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Abstract

A traditional heterodyne receiver downconverts its input signal to one or more intermediate
frequencies (IFs) before digitizing it at baseband. In a digital-IF receiver, the input signal is
digitized directly at an IF using a bandpass analog-to-digital converter (ADC). Accordingly,
the digital-IF receiver replaces the image-reject mixers and baseband filters of a heterodyne
receiver with accurate and efficient digital functions, and therefore provides greater potential
for reconfigurability. In order to maximize the advantages of a digital-IF receiver, a common
design objective is to position the bandpass ADC as close as possible to the antenna, and to

operate on the input signal at a high IF.

A bandpass ADC is efficiently implemented using a delta-sigma (AX) modulator, which
can provide high-resolution A/D (analog-to-digital) conversion over a relatively narrow band
around an IF. In order to operate on high-IF signals, conventional bandpass AY modulators
require high-frequency filters and high sampling rates, which can result in high sensitivity to
circuit non-idealities and high power consumption. These disadvantages are addressed by the
frequency-translating AY. modulator, which uses downconversion mixing inside its AY loop

to process high-IF signals using low sampling rates and primarily low-frequency filters.

This thesis investigates frequency-translating A3 modulators for direct A/D conversion
of high-IF signals. It first analyses the system architecture and performance limitations of an
existing type of frequency-translating A3 modulator that is based on image-reject mixing.
This analysis is supported by an initial study on the effect of timing errors in a conventional
AY. modulator. The thesis then introduces a novel frequency-translating AY modulator that
is based on single-path mixing. The advantages of the presented single-path architecture are

demonstrated using an experimental AY modulator.



il

The experimental AY modulator is designed to digitize a 4 MHz input-signal band that
is centred at an IF of 225 MHz. It uses a local oscillation signal with a frequency of 200 MHz
to downconvert this input-signal band to an IF of 25 MHz inside its AY. loop, and samples
at 100 MHz. The experimental prototype was fabricated in a standard 65 nm CMOS process.
It achieves a peak SNDR of 55dB and a dynamic range of 57.5dB, while consuming 13 mW
from a 1-V power supply. It has a full-scale range of 700 mVp_p.



Résumé

Un récepteur hétérodyne traditionnel transpose un signal en entrée vers une ou plusieurs
fréquences intermédiaires (FI) avant de le numériser a la bande de base. Dans un récepteur
numérique FI, le signal en entrée est numérisé directement a la fréquence FI a ’aide d’un
convertisseur analogique-numérique passe-bande. Par conséquent, le récepteur numérique FI
remplace les mélangeurs de réjection d’image et les filtres & bande de base d’un récepteur
hétérodyne traditionnel par des fonctions numériques précises et efficaces. De ce fait, le
récepteur numérique FI offre plus de possibilités de reconfiguration. Afin de maximiser les
avantages d’un récepteur numérique FI, un objectif de conception fréquent consiste a placer
le convertisseur analogique-numérique passe-bande aussi pres que possible de ’antenne et de

numériser le signal en entrée a une fréquence FI élevée.

Un convertisseur analogique-numérique passe-bande peut étre réalisé efficacement en
utilisant un modulateur delta-sigma (AX). En effet, ce dernier procure une conversion A/N
(analogique-numérique) a haute résolution sur une bande relativement restreinte centrée
autour d’une fréquence FI. Afin de fonctionner sur des signaux a fréquences FI élevées,
les modulateurs AY passe-bande classiques requierent des filtres hautes-fréquences et des
fréquences d’échantillonnage élevées, ce qui peut les rendre tres sensibles aux non-idéalités du
circuit et mener a une consommation électrique importante. Il est possible de remédier a ces
inconvénients en utilisant un modulateur AY & transposition de fréquence. En effet, ce dernier
utilise des mélangeurs dans sa boucle AY. pour traiter des signaux a fréquence FI élevée a

des fréquences d’échantillonnage faibles avec principalement des filtres basses-fréquences.
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Cette these étudie 'utilisation de modulateurs A a transposition de fréquence pour une
conversion A /N directe de signaux & fréquence FI élevée. Elle analyse d’abord I’architecture
et les limitations de performance d’un modulateur AY & transposition de fréquence basé
sur un mélangeur de réjection d’image. Cette analyse est appuyée par une étude initiale
effectuée sur leffet d’erreurs d’horloge sur un modulateur A classique. Cette these introduit
ensuite un nouveau modulateur AY & transposition de fréquence basé sur un mélangeur de
mono-trajet. Les avantages de cette architecture sont démontrés a 1’aide d’un prototype de

modulateur AY.

Le prototype de modulateur AY est concu afin de numériser une bande de signaux en
entrée de 4 MHz centrée autour d’'une FI de 225 MHz. Il utilise un signal a oscillation locale
d’une fréquence de 200 MHz pour transposer cette bande de signaux en entrée vers 25 MHz a
Iintérieur de sa boucle A et effectue ’échantillonnage a 100 MHz. Ce prototype a été réalisé
en utilisant un procédé CMOS standard de 65 nm. Il a un SNDR de 55 dB et une gamme
dynamique de 57.5dB tout en consommant 13 mW pour une alimentation de 1-V. Sa plage

d’amplitude maximale est de 700 mVp_p.
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Claim of Originality

The research presented in this thesis is the result of two, largely separate, projects. Chapter 3

investigates the effect of timing errors in a conventional continuous-time A3 modulator, and

Chapters 4 -8 investigate a type of bandpass AY. modulator that uses mixing in its feedback

loop (i.e., a frequency-translating AY modulator). The main contributions of this thesis are

summarized as follows:

K2
0’0

Chapter 3 presents a modeling technique to rapidly simulate the effect of timing errors
introduced in the feedback DAC of a continuous-time AY modulator. These errors are
added directly to the input of the AYX modulator and, therefore, can significantly limit
its performance. The presented modeling technique offers a significant speed advantage
over direct simulation methods and, as a result, is particularly useful for evaluating the
performance loss due to clock jitter. The modeling technique presented in this chapter

was published in [Cho07].

The speed advantage of the presented modeling technique is also applied in Chapter 3
to simulate a variety of different rectangular DAC pulses, and to analyse their effect on
the jitter sensitivity of both lowpass and bandpass AY modulators. The results of this
analysis indicate that the jitter sensitivity of a lowpass architecture can be significantly
reduced by imposing certain constraints on the timing of its DAC pulses, and by using
multi-bit quantization. The results also indicate that the jitter sensitivity of a bandpass
architecture cannot be improved using either technique. The analysis presented in this

chapter was published in [Cho(09a].

Chapter 3 also presents a behavioural model, for Simulink, that directly represents the
delay errors introduced in the feedback DAC of a continuous-time A3 modulator. This
behavioural model is used to demonstrate both the accuracy and speed of the proposed
modeling technique. It can be used in a wide variety of continuous-time AY modulators,

including those not considered by the proposed modeling technique.
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Chapter 4 investigates an existing type of frequency-translating AY. modulator that is
based on image-reject mixing. It describes a synthesis procedure for this image-reject
frequency-translating AY modulator, and derives a set of system-level constraints that
must be satisfied to achieve this synthesis. These constraints affect the selection of the
timing parameters, such as the sampling frequency, and the characteristic of the loop
filter. They ensure that the feedback loop of an image-reject frequency-translating AX
modulator is time-invariant and provides the correct noise-shaping characteristic. The

developed constraints were published in [Cho09b].

Chapter 4 also examines performance limitations of image-reject frequency-translating
AY modulators. In particular, it demonstrates their sensitivity to path mismatch, which
can be introduced by amplitude, phase, and delay errors in their timing signals, and by

gain errors in their functional blocks.

Chapter 5 proposes a novel type of frequency-translating AY. modulator that is based
on single-path mixing. It describes a synthesis procedure for this single-path frequency
translating AY, modulator, and develops a set of system-level constraints that must be

satisfied to achieve this synthesis, as described above.

Chapter 5 also proposes design techniques to enhance the performance of a single-path
frequency-translating AY modulator. The presented techniques specify the topology of
its loop filter, the properties of its noise-shaping characteristic, and the selection of its
timing parameters. Chapter 5 further derives a complete set of design equations for the

single-path frequency-translating AY. modulator.

Chapters 6, 7, and 8 present the system architecture, circuit-level implementation, and
measured results of an experimental single-path frequency-translating AY modulator.
This experimental AY modulator is used to validate the synthesis procedure and design
techniques proposed in Chapter 5. In addition, its measured performance is competitive
with state-of-the-art bandpass AY modulators. The system architecture and measured

performance of the experimental prototype were published in [Choll].
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A significant portion of the work presented in this thesis has been published in refereed
journals and conference proceedings. In particular, the single-path frequency-translating A3
modulator described in Chapters 5—8 was presented at the 2011 Custom Integrated Circuits
Conference (CICC), and received a student scholarship award from the CICC Committee for
being one of the highest-rated student papers. Section 9.1 provides a list of the publications

that resulted from the work presented in this thesis.
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HE CURRENT generation of wireless communication devices must support a wide range
T of services, including cellular, local /wide area networks, and satellite. This requirement
is the driving force behind the development of multi-standard receivers, which improve power
efficiency through reconfigurability. The goal of such receivers is to make all standard-specific
parameters programmable, so that the same receiver can be utilized to process any number
of communication standards. A receiver that is completely programmable is often referred to

as a software-defined radio (SDR) receiver [Mit95].

In general, a reconfigurable system is more efficiently implemented using digital circuitry
than analog circuitry. Therefore, a common design objective for multi-standard receivers is to
move the analog-to-digital converter (ADC) as close as possible to the antenna. This replaces
analog signal processing with equivalent digital signal processing. In order to increase system
integration and reduce fabrication costs, these receivers must further be implemented using a
nanoscale digital'! CMOS process. Both of these objectives can be facilitated by digitizing the
radio-frequency (RF) input signal at an intermediate frequency (IF) rather than at baseband.

A receiver that uses this approach is referred to as a digital-IF receiver [Sal03].

In a conventional digital-IF receiver, the input signal is digitized using a bandpass ADC,
which provides high-resolution A/D (analog-to-digital) conversion within a relatively narrow
band around a non-zero IF. A type of ADC that can focus its conversion effort in this way is

the delta-sigma (AY ) ADC [Nor97].

The term digital CMOS is used throughout this thesis to refer to a process with no special options.



2 Introduction

1.1 Motivation

Figure 1.1(a) shows a system diagram for a conventional digital-IF receiver. Here, the input
signal is first downconverted to a high IF (IF;), and is then digitized at a low IF (IF5) using a
bandpass AY ADC. A digital-IF architecture replaces the image-reject mixers and baseband
filters of a traditional heterodyne receiver with corresponding digital functions, which can be
implemented with greater efficiency and accuracy [Raz98]. In addition, due to its increased
use of digital processing, a digital-IF receiver can achieve a higher degree of reconfigurability
than a heterodyne receiver, while maintaining the same advantages (i.e., high dynamic range

and high immunity to interferers).

Figure 1.1(b) shows a block diagram for a corresponding digital-IF receiver that is based
on the frequency-translating AY. ADC proposed in this thesis. The proposed ADC combines
bandpass A/D conversion with single-path downconversion mixing, while providing inherent
filtering. In this way, it improves the linearity of the second downconversion mixer (LO3), as
compared to the conventional receiver shown in Figure 1.1(a), and reduces the requirements
on the image-reject filter at the first IF (IF;). Furthermore, it demonstrates a robust and low

power CMOS implementation of a high-IF bandpass AY> ADC.

There have been a number of recent examples of CMOS bandpass AY ADCs that operate
on RF, or high-TF input signals by using conventional AY modulator architectures [Ryc10].
However, these bandpass AY modulators use high sampling rates and high-frequency filters,
which can lead to high power consumption and high sensitivity to circuit-level non-idealities.
In order to minimize these issues, a bandpass AY. modulator can be designed with frequency
downconversion inside its AY loop [Tao99a][Nam99]. Such architectures, which are referred to
here as downconversion bandpass A3 modulators, operate on high-frequency input signals,

but use low sampling rates and primarily low-frequency filters.
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Figure 1.1: Block diagrams for: (a) a conventional digital-IF receiver, and (b) a digital-IF receiver

that is based on the frequency-translating A3 ADC proposed in this thesis.

Downconversion bandpass AY modulators can implement frequency downconversion using
mixing [Tao99a] or undersampling [Nam99]. In the literature, an undersampling architecture
is referred to as a subsampling AY. modulator, whereas a mixing architecture is referred to as

a frequency-translating AY. modulator.
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1.2 Thesis Scope

This thesis investigates ADC architectures for direct digitization of high-frequency bandpass
signals. It focuses on a particular type of bandpass AY. modulator that uses downconversion
mixing in its A3 feedback loop in order to convert a high-frequency analog input signal into
a corresponding low-frequency digital output signal. This architecture is generally referred to

as the frequency-translating AY. modulator.

The thesis first investigates the performance limitations of an existing type of frequency-
translating AY modulator that is based on image-reject (quadrature) mixing. It analyses the
system architecture of this image-reject frequency-translating AY modulator, and examines
the impact of amplitude, phase, and delay errors in its timing signals, and gain errors in its
functional blocks. These errors cause in-phase and quadrature path mismatch, time-variance
issues, and system instability. In order to provide a basis for this analysis, this thesis further

examines the effect of timing errors in a conventional AY modulator.

The thesis then investigates the practicality of a novel type of frequency-translating AY
modulator that is based on single-path mixing. One of the main advantages of a single-path
frequency-translating AY modulator is that it eliminates path mismatch, which can limit the

resolution of an image-reject architecture. Here, specific research objectives are:

1. To investigate whether a single-path frequency-translating AY modulator can provide
sufficient performance to make it a practical ADC architecture for direct digitization of

high-frequency bandpass signals.

2. To examine the effect, on the performance of a frequency-translating AY modulator, of

using single-path mixing rather than image-reject mixing.

3. To develop an optimized single-path frequency-translating A3 modulator architecture
that achieves low sensitivity both to timing errors, and to the additional mixing terms

that are introduced inside its AY. feedback loop.
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1.3 Thesis Outline

The outline of this thesis is as follows:

Chapter 2 reviews the fundamental theory of AY modulation, and provides an overview of
important system-level and circuit-level design considerations. It explains the concepts
of quantization, oversampling, and noise shaping which, when combined, form the basis
for a AY modulator. It also describes the advantages of discrete-time and continuous-
time implementations, presents conventional AY. modulator architectures, and reviews

standard performance metrics.

Chapter 2 also presents an overview of downconversion bandpass AY. modulators, and
provides a survey of relevant literature. It outlines the advantages of a downconversion
bandpass AY. modulator, relative to a conventional architecture, and describes the two
different types of downconversion architectures: frequency-translating AY. modulators

and subsampling A modulators.

Chapter 3 describes the standard synthesis procedure for continuous-time AY modulators
and reviews their primary timing errors, specifically excess loop delay and clock jitter.
It then introduces a modeling technique that can be used to rapidly simulate the effect
of these errors on the performance of a continuous-time AY. modulator. The accuracy
and speed of the presented modeling technique are demonstrated using a behavioural
model that was developed in Simulink. The presented technique is then used to evaluate

the clock-jitter sensitivity of various continuous-time AY. modulators.

Chapter 4 investigates an existing type of frequency-translating AY modulator, which is
based on image-reject mixing. It describes a synthesis procedure for the image-reject
frequency-translating AY modulator, and derives a set of system-level constraints that
must be satisfied to achieve this synthesis. This chapter also examines the performance
limitations of the image-reject architecture, in particular its sensitivity to in-phase and

quadrature path mismatch.
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Chapter 5 introduces a novel type of frequency-translating AY modulator, which is based
on single-path mixing. It presents a synthesis procedure for the single-path frequency-
translating AY, modulator, and develops a set of system-level constraints that must be
satisfied to achieve this synthesis. This chapter also proposes several design techniques

that can be used to improve the performance of a single-path architecture.

Chapter 6 presents the system architecture for an experimental frequency-translating AX
modulator that is used to validate the synthesis procedure and design techniques that
are described in Chapter 5. This chapter provides a complete set of design equations,
and presents behavioural simulation results that demonstrate the ideal performance of

the experimental AY modulator, as well as the effect of circuit non-idealities.

Chapter 7 presents the circuit-level implementation of the experimental AY modulator in

a standard 1-V 65-nm CMOS process.

Chapter 8 presents the measured performance of the experimental A3 modulator and then

compares these results to state-of-the-art bandpass AY modulators.

Chapter 9 provides a summary of this thesis, as well as suggestions for future research.
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Bandpass AY Modulation
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ELTA-SIGMA (AY ) modulation is a popular technique for medium-to-high resolution
D analog-to-digital conversion of low-to-medium bandwidth signals. The AY¥ modulator
combines oversampling and feedback to improve the resolution of a coarse quantizer inside a
relatively narrow bandwidth. It trades resolution in amplitude for resolution in time, which
enables it to shift complexity from the analog domain into the digital domain. This reduces
its sensitivity to analog component matching and amplifier gains, and makes it particularly
suited to modern low-voltage nanoscale CMOS technologies [Joh97]. An additional advantage
of AY modulators is that, through oversampling, they reduce the design requirements on the

anti-aliasing filter at the input of an ADC.

This chapter reviews the fundamental theory of AY modulation and provides a summary
of important system-level and circuit-level considerations. Section 2.1 explains quantization,
oversampling, and noise shaping, which form the basis for a AY modulator. It then compares
the advantages of discrete-time and continuous-time circuit implementations, and presents a
number of conventional architectures. Section 2.2 reviews standard performance metrics for

a AY. modulator, focusing on bandpass architectures.

This chapter also provides an overview of downconversion bandpass AY modulators, and
presents a survey of relevant literature. Section 2.3 describes the basic system architecture of
the downconversion bandpass AY modulator and summarizes its advantages as compared to
a conventional architecture. It then examines the two different downconversion architectures:
subsampling A modulators and frequency-translating A3 modulators, which are based on

undersampling and mixing, respectively.
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2.1 Fundamentals of AY Modulation

This section reviews the fundamental theory of delta-sigma (AY ) modulation. Section 2.1.1
outlines the concepts of quantization, oversampling, and noise shaping, which form the basis
for a AY modulator. Sections 2.1.2 and 2.1.3 then discuss discrete-time and continuous-time

circuit implementations, and compare standard architectures.

2.1.1 Operating Principles

This section presents the linear model for a uniform quantizer, and then uses this model to

demonstrate the advantages of oversampling and noise shaping.

Quantization

Quantization is the process of converting a signal that has infinite amplitude resolution into a
corresponding signal that has finite amplitude resolution. It is implemented using a quantizer,

which generally operates with a uniform step size and a fixed sampling rate.
Figure 2.1(a) plots the input-output transfer characteristic of a uniform mid-rise quantizer

that has B quantization bits. Here, the step size is defined as

_ 2VREr
2B -1

(2.1)

where Vrgr is the reference level of the quantizer, and 2Vgrgr is the full-scale range. The step

size corresponds to the least significant bit (LSB) of the quantizer.

A quantizer introduces a deterministic error, which can be defined as

q(n) = y(n) — z4(n) (2.2)

Here, z4(n) and y(n) represent the input and output signals, respectively. Figure 2.1(b) plots
the quantization error g(n) of the transfer characteristic in Figure 2.1(a) as a function of the
input-signal amplitude. For an input signal between £ (Vrgr +A/2), the error ¢(n) is limited
to = A /2. This is referred to as the no-overload range of the quantizer, and Vo, = Vrpr+A/2

is referred to as its overload level.



281
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Figure 2.1: (a) The transfer characteristic of a uniform mid-rise quantizer that is designed with B

quantization bits [Ham04], and (b) its associated quantization error.
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fa(q) Sq(f)
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A E 1
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Figure 2.2: (a) The probability density function of the quantization error, and (b) its single-sided

power spectral density under the additive white noise approximation.

If the sample-to-sample variation of the input signal z4(n) is sufficiently large, and it does
not exceed the overload level of the quantizer, the resulting quantization errors ¢(n) have an
approximately uniform distribution between + A /2. As a result, each ¢(n) can be represented
as a random variable with a uniform probability density function [Gra90]. Figure 2.2(a) plots
the probability density function fg(q) of this random variable, where its mean and variance

can be derived as

0o 1 A2
pQ = / qfo(g)dg = A gdg =0 (2.3)
—0o0 —A/2
) 1 A/2 A2
02—/ f qdq—/ ¢dg = = 2.4
0 . Q(q) NN D (2.4)

The sequence of quantization errors ¢(n) can be approximated as a random process with
a white power spectral density [Gra90]. This additive white noise approzimation models g(n)
as a set of independent and identically-distributed random variables that are independent of
the input signal z4(n). The distribution of each g(n) corresponds to fg(q), and the total rms
power (P;) corresponds to aé. This approximation replaces a deterministic non-linear block,
the quantizer, with a stochastic linear block, where the corresponding quantization errors are

referred to as quantization noise.
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Anti-Aliasing Filter  fg Quantizer
x(t) Xa(t) V. Xq(n) y(n)
— ——
B
fg/2

Figure 2.3: Block diagram for a Nyquist-rate ADC.

In a quantizer that satisfies the additive white noise approximation, the quantization noise
power (P;) is spread over the frequency range [0, fs/2], where fg is the sampling frequency of

the quantizer. The corresponding power spectral density is equal to

P 2 A
fs/2  fs12

where S;(f) is plotted in Figure 2.2(b).

Sq(f) (V?/Hz) (2.5)

Figure 2.3 shows a general block diagram for a Nyquist-rate ADC, which is composed of
a quantizer, a sampler, and an anti-aliasing filter. The anti-aliasing filter is used to attenuate
spectral components of the input signal above fg/2. These components alias into the Nyquist
band [0, fs/2] during sampling, causing aliasing distortion. Note that the anti-aliasing filter

of a Nyquist-rate ADC ideally requires a zero-width transition band.

The peak signal-to-quantization noise ratio (SQNR) of an ideal ADC can be derived using
a full-scale sinusoidal input signal. For the quantizer in Figure 2.1(a), a full-scale input signal

has an amplitude equal to the overload level (Vpr,), and an rms power equal to

VaL _ 22362

P, = 2.
2 8 (2:6)
Using Equation (2.6), the peak SQNR of a Nyquist-rate ADC can be expressed as
P 3
SQNR = 10log;, <> = 101log;, < 223> (2.7)
P, 2

Therefore, each additional quantization bit B results in a 6 dB increase in SQNR.
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Oversampling

The effective resolution of a quantizer can be improved by operating at a sampling frequency
that is higher than the Nyquist frequency of its input signal. This technique is referred to as

oversampling [Joh97].

In a quantizer that satisfies the additive white noise approximation, the total quantization
noise power () is spread evenly over the Nyquist band [0, fs/2]. Therefore, by oversampling
the input signal, the fraction of P, that is contained within its signal band! [0, fg] is reduced

by a factor referred to as the oversampling ratio (OSR), where

OSR = 45 — IS

N 2fs (28)

Here, fp and fx denote the bandwidth and Nyquist frequency of the input signal. Figure 2.4

illustrates the effect of oversampling on the in-band quantization noise.

In an oversampled system, the transition band of the anti-aliasing filter can span from fg
to fs— fB, since signals in this range do not fold into the signal band [0, fg ] during sampling.
This reduces the requirements on the anti-aliasing filter in an oversampling ADC, relative to
a Nyquist-rate ADC. The remaining out-of-band signals | fg, fs/2] are filtered at the output
of the quantizer using a decimation filter, which also downsamples the corresponding digital

signal by the OSR. Figure 2.5 shows a block diagram for an oversampling ADC.

S(f)

fg fg/2

Figure 2.4: Power spectral density of the quantization error in an oversampling ADC.

I This result is valid independent of the position of the signal band within the Nyquist band.
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Figure 2.5: Block diagram for an oversampling ADC.

For an oversampling ratio of OSR, the in-band quantization noise power is reduced to

Je o g AZ 1 A2

where Sy(f) is derived in Equation (2.5). Using Equations (2.6) and (2.9), the peak SQNR of

an oversampling ADC can be expressed as

Py

3
> = 1010g10 (2 22B> + 1010g10(OSR) (210)
q,B

Therefore, each doubling of the OSR results in a 3 dB increase in SQNR.

Noise Shaping

The effective resolution of an oversampled quantizer can be further improved by placing it in
negative feedback with a loop filter, as shown in Figure 2.6(a). This configuration is referred to

as a delta-sigma (AX ) modulator [Nor97].

In a AY modulator, the loop filter suppresses quantization errors inside the signal band,
due to the feedback loop. This technique is referred to as noise shaping. Figure 2.7 illustrates
the effect of noise shaping on the in-band quantization noise. The noise-shaping performance
of a AY modulator can be evaluated using the linear model that is shown in Figure 2.6(b).

Here, quantization errors are modelled by an additive white noise source Q(z).
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X(z) :
P o |
DAC
()

The output of the linear model can be expressed as

Q(z)
Y(2) X(2) : * Y(2)
:(Q HL(z) b >
(b)
Figure 2.6: Block diagrams for: (a) a AYX modulator, and (b) its linear model.
Y (z) = STF(z) X(2) + NTF(2) Q(2) (2.11)

where the noise transfer function (NTF) and signal transfer function (STF) are defined as

NTF(z)

STF(z)

Yo . L
Q(z) X(2)=0 N 1+H£(Z) (2.12)
) __Hi)
X(2) Q(2)=0 N 1+ Hj(z) (2.13)

As indicated in Equation (2.12), the zeros of the noise transfer function NTF(z) are set by

the poles of the loop filter H{ (z) or, equivalently, NTF(z) tends to zero at frequencies where

Hj (z) tends to infinity. Therefore, in order to suppress quantization errors, Hj (z) must have

a high gain over the required signal band, so that NTF(z) is approximately zero and STF(z)

is approximately unity. In this way, quantization errors are significantly reduced, whereas the

input signal is largely unaffected.
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S(f)

fg /2

Figure 2.7: Power spectral density of the quantization error in a noise-shaping ADC.

Figure 2.8 shows a block diagram for a A ADC, which is composed of a A modulator,
an anti-aliasing filter, a sampler, and a decimation filter. In order to achieve first-order noise
shaping, the loop filter H{ (z) of the AX modulator can be implemented using a discrete-time

integrator, which results in an STF and NTF of
STF(z) = 2! and NTF(z) = 12! (2.14)

Note that NTF(z) has a zero at dc (i.e., z = 1), and a pole at the origin (i.e., z = 0). This

corresponds to highpass noise shaping of quantization errors.

For an oversampling ratio of OSR, the in-band quantization noise power? of a first-order

lowpass AY. ADC is reduced to

B /B 2 2 A2
_ 2 _ Lafmfy2A%, . 1 ™A
Py = /0 INTF(f)] Sq(f) df = /0 4 sin <fs)fs 5 df = OSR® 3 12 (2.15)

where Sy(f) is given in Equation (2.5). Using Equations (2.6) and (2.15), the peak SQNR of

a first-order lowpass AY ADC can be expressed as

Py

q,B

) = 101logy, (g 22B> + 101log;, <32 OSR3> (2.16)
T

Therefore, each doubling of the OSR results in a 9 dB increase in SQNR.

2This derivation assumes a high OSR, so that sin(wf/fs) = 7f/ fs [Ort06].
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Figure 2.8: Block diagram for a AYX ADC.

The loop filter of a AY modulator can be designed with a lowpass, bandpass, or complex-

bandpass filtering characteristic, as described below.

Lowpass

In a lowpass AY modulator [Can85][Zwa96], quantization noise is suppressed inside a narrow
band around dc. A lowpass loop filter is implemented using a cascade® of integrators, where
each integrator introduces an NTF zero at dc. The signal band of a lowpass AY modulator is

defined over [0, fg], and its OSR is defined as in Equation (2.8).

Bandpass

In a bandpass AY modulator [Gai89][Sch89][Jan93|, quantization noise is suppressed inside a
narrow band around a non-zero centre frequency (fc). A bandpass loop filter is implemented
using a cascade of resonators, where each resonator introduces a pair of complex-conjugate
zeros into the NTF. Therefore, a bandpass AY. modulator of order 2N provides N zeros over
its signal band, and requires 2N amplifiers. The signal band of a bandpass AY modulator is
defined over [ fc—fB/2, fc+ fs/2], and its OSR is defined as in Equation (2.8).

Bandpass AY. modulators provide a number of advantages over lowpass AY. modulators,
including improved efficiency for bandpass signals, and reduced sensitivity to low-frequency
signal impairments, such as flicker noise and dc offsets. In addition, bandpass A3 modulators

facilitate a shift of analog baseband processing into the digital domain [Jan93].

3 A lowpass loop filter can also use resonators to spread the NTF zeros over the signal band [Lee87].
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Complez-Bandpass*

In a complex-bandpass AY modulator [Jan94][Jan97], quantization noise is suppressed inside
a narrow band around a non-zero centre frequency (fc), similar to the bandpass architecture,
however the noise-shaping characteristic is asymmetric around dc. A complex-bandpass loop
filter is split into in-phase and quadrature signal paths, and is implemented using a cascade
of complex resonators. A complex-bandpass A3 modulator of order N provides N zeros over

its signal band, however it still requires 2N amplifiers.

The signal band of a complex-bandpass A3 modulator is defined in the same way as that
of a bandpass AY. modulator. However, since the Nyquist band of a complex system is double
that of a real system, the OSR of a complex-bandpass AY. modulator is twice as high as that
of a lowpass or bandpass AY modulator [Sch06a]. A disadvantage of complex architectures is
that they are sensitive to mismatch between their in-phase and quadrature paths. The effect
of this mismatch is generally reduced by placing one of the NTF zeros in the image band of

the AY. modulator.

2.1.2 Loop-Filter Implementations

The loop filter of a A3 modulator can be implemented using a discrete-time circuit topology
or a continuous-time circuit topology. The primary difference between these implementations

is the position of the sampling operation.

Figure 2.9(a) shows a block diagram for a discrete-time AY modulator. Here, the sampler
is placed at the input of the AX modulator, and the loop filter H{ (z) is implemented using
a discrete-time circuit topology (e.g., switched-capacitor, or switched-current). Figure 2.9(b)
shows a block diagram for a continuous-time AY modulator. Here, the sampler is placed at
the input of the quantizer, and the loop filter Hy,(s) is implemented using a continuous-time
circuit topology (e.g., active-RC, gm-C, or LC). This section reviews the advantages and the
disadvantages of discrete-time and continuous-time A modulators, and discusses sampling

issues, loop-filter issues, and matching issues.

4This architecture is sometimes referred to as a quadrature-bandpass AY. modulator in the literature.
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Figure 2.9: Block diagrams for: (a) a discrete-time AY modulator, and (b) a continuous-time AX

modulator. Here, Tg represents the sampling period.

Sampling Issues

In a discrete-time AY. modulator, sampling takes place immediately at the input. As a result,
sampling errors that are introduced by switch non-linearity and clock jitter are added to the
input signal, and can limit the resolution [Zwa96]. Note that once the input signal is sampled,
it is effectively insensitive to timing errors. An additional disadvantage of a discrete-time loop
filter is that the thermal noise introduced by the switches and operational amplifiers in each

stage, and at the input, is folded into the signal band and increases the noise floor.

In a continuous-time AY. modulator, sampling takes place at the output of the loop filter.
As a result, sampling errors are suppressed by the gain of the loop filter and do not generally
affect the performance. An additional advantage of sampling inside the AXY loop is that the
STF provides inherent filtering, which can be used to replace the external anti-aliasing filter,
as outlined in Section 2.1.3. The primary disadvantage of sampling inside the A loop is that
the feedback path of the A modulator must convert the discrete-time output signal into a
corresponding continuous-time signal. The timing errors that are introduced by this process
are added directly to the input of the AY modulator, and can therefore limit its resolution,

as described in Section 3.2.
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Loop-Filter Issues

The loop filter of a discrete-time A3 modulator is normally implemented using a cascade of
switched-capacitor integrators. The noise-shaping performance of a switched-capacitor filter
is often limited by the settling accuracy of its operational amplifiers. The amplifier unity-gain
frequency must generally be 3-5 times higher than the sampling frequency in order to achieve
the required settling accuracy [Ort06]. This imposes a lower limit on the power consumption

of a discrete-time AY modulator, and an upper limit on its sampling frequency.

The loop filter of a continuous-time A3 modulator is normally designed using a cascade of
active-RC or gm-C integrators. The noise-shaping performance of a continuous-time filter is
often limited either by its linearity or its coefficient mismatch. The unity-gain frequencies of
its amplifiers are generally only required to be 1-2 times higher than the sampling frequency
in order to provide adequate gain across the signal band [Ort06]. As a result, continuous-time
AY. modulators can use higher sampling frequencies than discrete-time A modulators, and

can also achieve lower power consumption.

Matching Issues

The loop-filter coefficients of a discrete-time AY modulator are set using a ratio of similar
circuit elements (i.e., capacitors). Therefore, the accuracy of a discrete-time loop filter is only
limited by the relative component matching of a given technology, which is typically on the
order of 0.1 % for integrated capacitors. As a result, discrete-time AY modulators implement

highly-accurate loop filters that are robust to process variations.

The loop-filter coefficients of a continuous-time AY, modulator are set by the product of
dissimilar circuit elements (e.g., capacitors and resistors or transconductors). Therefore, the
accuracy of a continuous-time loop filter is limited by the absolute component tolerances of a
given technology, which are on the order of 10-20 % for integrated capacitors and resistors.
As a result, continuous-time AY modulators generally require some form of tuning to correct

for process variations.
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2.1.3 High-Order AY Modulators

This section reviews the primary design considerations for the loop filter of a high-order AY
modulator, focusing on continuous-time circuit implementations. It discusses the properties
of the noise transfer function (NTF) and the signal transfer function (STF), and outlines the

advantages and disadvantages of different loop-filter topologies.

Noise Transfer Function

In a high-order AY. modulator, the positions of the NTF zeros and poles determine both the

noise-shaping performance and the maximum input signal.

The zeros of the NTF are set by the functional blocks (i.e., integrators, resonators) of the
loop filter: an integrator introduces a real zero at dc, whereas a resonator introduces a pair of
complex-conjugate zeros at a non-zero centre frequency. The zeros of the NTF are generally
spread over the signal band to improve the noise-shaping performance. Use of this technique

is particularly important in a wideband AY modulator [Sch93].

The poles of the NTF are set by the coefficient paths of the loop filter. In a high-order AX
modulator, the noise-shaping performance depends primarily on the out-of-band gain® of the
NTF. For a given loop-filter order, increasing the out-of-band gain improves the noise-shaping
performance, however it also increases the magnitude of the out-of-band quantization noise,
and therefore limits the maximum signal amplitude that can be adequately processed by the
AY, modulator [Sch05]. Note that this increase in the quantization noise can be counteracted
by using a multi-bit quantizer. The out-of-band gain of the NTF can be increased by moving
its poles closer to the origin (i.e., | z| = 0). When all of its poles are positioned at the origin,
the NTF has a finite impulse response, and achieves the maximum noise-shaping performance

for a given loop-filter order.

For a maximally-flat NTF, the out-of-band gain refers to the magnitude of the NTF at fs/2. The out-of-band

gain is sometimes denoted as || H ||, which represents the infinity norm.
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Figure 2.10: Block diagrams for: (a) a feedforward loop-filter topology, and (b) a feedback loop-filter

topology. Here, I(s) represents the transfer function of a continuous-time integrator.

Loop-Filter Topology

The loop filter of a high-order AY modulator can be designed with feedback coefficient paths,

feedforward coefficient paths, or a combination of both. Figure 2.10 provides block diagrams

for continuous-time A3 modulators that are designed with strictly-feedforward and strictly-

feedback loop-filter topologies. Both of these loop-filter topologies implement the same NTF,

however each has different advantages and disadvantages.
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In a strictly-feedback topology, sometimes referred to as distributed feedback, the feedback
signal is subtracted from the input signal of each integrator. The result of each subtraction is
reduced by the loop gain, due to feedback, and therefore each integrator must regenerate the
full-scale input signal at its output. This can impose significant requirements on the linearity
of each integrator, in particular on the first stage of the loop filter. The linearity requirements
can be reduced by decreasing the feedback coefficients, however this increases the circuit noise
contribution. The primary advantage of a feedback topology is that it improves the inherent

anti-alias filtering in a continuous-time implementation.

In a strictly-feedforward topology, sometimes called weighted feedforward summation, the
output of each integrator is summed at the input of the quantizer. The primary advantage of
a feedforward topology is that it does not need to regenerate the input signal at the output of
each integrator, which reduces its linearity requirements relative to a feedback topology. The
primary disadvantages of a feedforward topology are that it requires an additional summing
amplifier at the input of the quantizer, and that its associated STF contains peaking at high

frequencies, as described next.

Signal Transfer Function

The STF of a continuous-time AY modulator provides significant attenuation of interferers
around aliases of its signal band. This is referred to as the inherent anti-aliasing property of
the continuous-time AY modulator [Can85][Sho95a] and is present in lowpass, bandpass, and
complex-bandpass architectures. The filtering characteristic of the STF differs depending on

whether the loop filter is implemented using a feedforward or feedback topology.

Figure 2.11(a) plots the STF of a 4th-order bandpass AY modulator that is implemented
using a feedback loop-filter topology. Here, the STF has notches at aliases of the signal band,
and its filtering characteristic has an Nth-order roll-off. Accordingly, it provides significant

attenuation of out-of-band interferers [Bre01].
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Figure 2.11: Simulated STF and NTF of a 4th-order bandpass AY modulator with: (a) a feedback
loop-filter topology, and (b) a feedforward loop-filter topology. Here, the signal band of the bandpass
AY modulator is centred at 1/4fs. (STF — and NTF - - )

Figure 2.11(b) plots the STF of a 4th-order bandpass AY. modulator that is implemented
using an equivalent feedforward loop-filter topology. Here, the STF has notches at aliases of
the signal band, similar to a feedback topology, however its filtering characteristic only has a
1st-order roll-off. Accordingly, it provides limited attenuation of out-of-band interferers, and

also has peaking that can amplify interferers [Bre01].

2.2 Performance Metrics

This section reviews the various metrics that are used in this thesis to evaluate and compare
the performance of different bandpass AY. ADCs. Note that the performance of a AY ADC
is generally characterized using dynamic metrics (e.g., signal-to-noise ratio, dynamic range),

rather than static metrics (e.g., offset, integral non-linearity).
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Signal-to-Quantization-Noise Ratio

The signal-to-quantization-noise ratio (SQNR) is the ratio of the input-signal power (P;) to

the quantization noise power within the signal band (P, g). It is expressed as

SQNR = 10log;q <PRS) (dB) (2.17)
q,B

Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) is the ratio of the input-signal power (P) to the total noise

power within the signal band (P, ). It is expressed as

SNR = 1Olog10<PPS> (dB) (2.18)

n,B

where P, includes quantization noise and circuit noise (e.g., thermal noise, flicker noise), as

well as noise introduced by clock jitter and other sources.

Signal-to-Noise-and-Distortion Ratio

The signal-to-noise-and-distortion ratio (SNDR) is the ratio of the input-signal power (Ps)

to the sum of the noise power (P, ) and the distortion power (Py). It is expressed as

Py
n, B d

Effective Number of Bits

The effective number of bits (ENOB) is an alternative expression for the peak SNDR. The
ENOB represents the number of quantization bits would be required to achieve the specified

peak SNDR in a corresponding Nyquist-rate ADC. It is expressed as

SNDR eax — 1.76

ENOB =
6.02

(bits) (2.20)
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Dynamic Range

The dynamic range (DR) is the ratio of the power (Ps max) of the maximum input signal to

the power (Ps min) of the minimum input signal. It is expressed as

PS max
DR = 1010g10<P’ : ) (dB) (2.21)

where P min is the input-signal power that corresponds to an SNR of 0dB, and Py ax is the

input-signal power that causes the SNR to drop by 3dB from its peak value.

Intermodulation Distortion

The linearity of a bandpass ADC is generally evaluated using a two-tone input signal, which
results in intermodulation distortion. The third-order intermodulation distortion (IM3) is the
ratio of the power (F;) of one tone of the input signal to the power (Py 3) of the third-order

distortion product. It is expressed as

P,
IM3 = 1010g10<Pt> (dBc) (2.22)
d,3

)

where dBc denotes dB relative to the carrier.

Figure of Merit

A figure of merit (FOM) combines the relevant performance metrics of an ADC into a single
expression, which is then used for comparison with different ADCs. In this thesis, ADCs are

compared in terms of their energy efficiency. This FOM can be expressed as

where P;ota1 is the total power consumption of the ADC, and fg is its signal bandwidth.



26 Bandpass AY, Modulation

2.3 Downconversion Bandpass AY> Modulators

In the past, the use of bandpass AY modulation was limited to low-frequency® input signals
in CMOS technologies. Recently, owing to the high intrinsic bandwidths of MOS transistors
in modern nanoscale technologies, bandpass AY. modulators have been reported with centre
frequencies above 1 GHz [Ryc10]. However, these conventional bandpass AY. modulators use
high sampling rates and multiple high-frequency resonators, which can result in high power
consumption and high sensitivity to timing and coefficient errors. In order to minimize these
issues, a bandpass AY modulator can be designed with frequency downconversion inside its
feedback loop, as proposed in [Tao99a] and [Nam99]. These architectures, which are referred
here as downconversion bandpass AY modulators, process high-frequency input signals, but

use low sampling rates and primarily low-frequency loop filters.

2.3.1 Overview

This section provides an overview of downconversion bandpass AY modulators, and outlines
their performance and implementation advantages compared to a conventional architecture.
Figure 2.12 shows general block diagrams for conventional and downconversion bandpass A

modulators, and identifies important design parameters.

Definitions

A downconversion bandpass AY modulator utilizes frequency downconversion in its forward
path and frequency upconversion in its feedback path. This enables it to shift its signal band
from a high centre frequency at its input, down to a low centre frequency at its output. Here,

the input and output centre frequencies of the signal band are denoted as fc; and fc,.

SBandpass AY modulators implemented in bipolar technologies were reported with centre frequencies around
1GHz as early as [Ga0o97]. However, until recently [Ryc10], bandpass AYX modulators implemented in CMOS

technologies were limited to centre frequencies below 100 MHz.
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Figure 2.12: General block diagrams for bandpass AY modulators: (a) a conventional architecture,

and (b) a downconversion architecture.

The loop filter of a downconversion bandpass AY modulator is generally split between a
high-frequency section, which is centred at fc;, and a low-frequency section, which is centred
at foo. The high-frequency section of the loop filter is referred to here as the outer-loop filter,
denoted as Hor,, and the low-frequency section is referred to as the inner-loop filter, denoted
as Hip,. In addition, the signal path between the input of the upconversion operation and the

output of the downcownversion operation is referred to as the outer-loop path.
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A downconversion bandpass AY modulator can implement frequency downconversion in
its forward path using either mixing or undersampling. The mixing architecture is referred to
here as a frequency-translating AY modulator, and the undersampling architecture is referred
to as a subsampling AY modulator. Both architectures generally use upconversion mixing in
their feedback path, and therefore require a local oscillation (LO) signal in addition to their
sampling clock. Frequency-translating AY. modulators are discussed further in Section 2.3.3,

and subsampling A modulators are discussed further in Section 2.3.2.

Comparison to Conventional Bandpass AY Modulators

This subsection outlines the advantages and disadvantages of downconversion bandpass AY
modulators relative to conventional bandpass AY. modulators. A downconversion architecture
is less sensitive to timing and coefficient errors than a conventional architecture, and has the
potential for lower power consumption and higher integration (i.e., reduced area). However,

the downconversion architecture has additional constraints on its timing parameters.

As described previously, the loop filter of a downconversion bandpass AY modulator can
be divided into a high-frequency section, which is centred at fc;, and a low-frequency section,
which is centred at fc,. Since errors in fc, are smaller, relative to the signal bandwidth (fg)
of the AY modulator, than equivalent errors in f¢;, the low-frequency section of the loop filter
is less sensitive to errors in its centre frequency. Therefore, a downconversion bandpass AX
modulator is less sensitive to coefficient errors than a conventional bandpass AY modulator,

since the loop filter of a conventional architecture is centred only at fc;.

The low-frequency section of the loop filter can be implemented using any of a number of
standard circuit topologies, which include active-RC, gm-C, and switched-capacitor, among
others. The high-frequency section, however, can only be implemented using an L.C topology
[Sch06a]. Since an LC circuit topology requires one or more inductors, it is not as well-suited
to integration as the aforementioned low-frequency topologies, which require only capacitors
and resistors. Therefore, by implementing one section of their loop filter at a low frequency,
downconversion bandpass AY modulators can generally achieve a higher level of integration

than conventional architectures.
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The sampling frequency (fs) of a downconversion bandpass AY modulator can be reduced
below its input centre frequency (i.e., fs < fci), and can therefore be significantly lower than
that of a conventional architecture. The sampling frequency of a conventional bandpass AY
modulator must be higher than the Nyquist frequency of its signal band (i.e., fg > 2fci+fB)
to avoid aliasing distortion, and is generally selected so that fg = 4fc;. This maximizes the
noise-shaping performance of its loop filter, and simplifies the implementation of its digital
post-processing. A downconversion bandpass AY, modulator can achieve the same advantages

by selecting its sampling frequency so that fs = 4fc,.

By using a lower sampling frequency than a conventional architecture, a downconversion
bandpass AY modulator can achieve reduced sensitivity to timing errors. Such errors can be
classified either as dynamic (e.g., clock jitter) or static (e.g., variations in the loop delay). In
a continuous-time AY. modulator, jitter on the sampling clock modifies the response of the
feedback DAC in such a way that out-of-band quantization noise is shifted into the signal
band (Section 3.2.1). The in-band noise associated with a given rms jitter is proportional to
the output rate of the feedback DAC, and therefore decreases with the sampling frequency.
At high sampling frequencies, static variations in the loop delay become significant, and can
reduce the noise shaping performance and stability of a A¥ modulator [Sch06¢c|. Again, the

effect of a given delay error decreases with the sampling frequency.

In a high-frequency continuous-time A modulator, the dynamic power of the quantizer,
the digital logic, and the clock buffers accounts for a significant portion of the overall power
consumption [Ryc09][Lul0]. Since the dynamic power of these circuits is proportional to the
operating frequency, the overall power consumption of a high-frequency A modulator can
be reduced by decreasing its sampling frequency. Therefore, a downconversion bandpass AY

modulator can achieve significant power savings over a conventional architecture.

A downconversion bandpass AY. modulator can implement frequency downconversion by
using either mixing or undersampling, as outlined previously. Since both operations are time
variant, their introduction into the forward and feedback paths of a AY modulator causes its
loop response to become time-variant. This time-varying loop response can shift out-of-band

quantization noise into the signal band, resulting in performance loss or instability. However,
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since both operations (mixing, undersampling) are also periodic, the sampling frequency of a
downconversion bandpass AY modulator can be selected in such a way that its loop response
is time-invariant after sampling. When the sampled response of a linear time-variant system is
time-invariant, it is generally referred to as periodically linear time-invariant (PLTI) [Tao99a].
Sections 4.2.1 and 5.2.1 derive the sampling constraints that must be satisfied to implement

frequency-translating AY modulators as PLTI systems.

2.3.2 Subsampling A> Modulators

A subsampling AY modulator uses undersampling to implement frequency downconversion
in its forward path. Figure 2.13 shows a block diagram for a subsampling A3 modulator. In
a subsampling architecture, the inner-loop filter must be implemented using a discrete-time
circuit topology, since downconversion and sampling must occur at the same time. Note that
the upconversion mixer in the feedback path is sometimes excluded, in particular when the

undersampling factor” is low [Koc04].

Subsampling A3 modulators are generally designed using single-path architectures, since
a sampling process cannot generate true quadrature phases of a signal. The subsampling AY
modulator reported in [Ree07] approximated image-reject mixing using delayed in-phase and
quadrature sampling clocks. This approach produced a frequency-dependent phase shift that

only provided adequate image rejection within a narrow band of frequencies.

The following is a brief review of papers related to subsampling AY. modulators that were

important to this work, and does not represent an exhaustive list.

[Nam99| This paper presented the first implementation of a bandpass AY modulator that
used undersampling inside its feedback loop. The reported architecture was designed to
downconvert a 40kHz signal band from 400 MHz to baseband, and used a reconstruction

filter in its feedback path to improve the linearity of its downconversion mixer.

"The undersampling factor is defined as the ratio of the input centre frequency (fci) to the output centre

frequency (fco) [Bei09].
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Figure 2.13: Block diagram for a subsampling AY modulator.

[Hus00] This paper derived a transfer function for the outer-loop path of a subsampling AX

modulator, and examined its dependence on the phase of the LO signal applied to the

upconversion mixer.

[Koc04] This paper proposed a mirrored-image subsampling AY. modulator, where the input

signal was downconverted from the first alias band (i.e., fc, = fs— fci), and the loop

filter did not include a low-frequency section. The presented architecture was designed

with undersampling primarily to reduce its sampling frequency (Section 2.3.1), and was

later implemented in [Ryc08] and [Bei09].

[Ryc08] This paper presented a 6th-order subsampling AY modulator that was designed to

downconvert a 60 MHz signal band from 2.4 GHz to 600 MHz. The reported architecture

was the first CMOS implementation of an RF bandpass AY modulator.
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2.3.3 Frequency-Translating AY Modulators

A frequency-translating AY modulator uses mizing to implement frequency downconversion
in its forward path. The frequency-translating AY modulator that is presented in this thesis
is designed with single-path mixing, whereas frequency-translating A3 modulators reported
previously in the literature utilized image-reject mixing. Figure 2.14 shows a block diagram

for an image-reject frequency-translating AY. modulator.

The following is a review of papers related to frequency-translating AY modulators that

were important to this work.

[Tao99a] This paper presented the first implementation of a bandpass AY modulator with
mixers inside its feedback loop. The reported architecture used image-reject mixing to
downconvert a 200 kHz signal band from 100 MHz to baseband, and was designed with
discrete-time inner-loop filters. This paper also described the basic sampling constraint

that is required to design a frequency-translating AY. modulator as a PLTI system.

[Pul05] This paper proposed a modification to the architecture presented in [Tao99a] that
replaced the discrete-time inner-loop filters with equivalent continuous-time filters. This
substitution enabled the proposed architecture to achieve clock-jitter performance that

is comparable to that of a lowpass AY modulator (Section 3.5).

[Kol10] This paper presented a 5Sth-order image-reject frequency-translating AY modulator
that was designed to downconvert a 9MHz signal band from 900 MHz to baseband. The
reported architecture avoided the sampling constraints derived in [Ta099a] by filtering

out-of-band quantization noise prior to its upconversion mixer.

Comparison to Subsampling AY. Modulators

In terms of their implementation and performance, the most important difference between a
frequency-translating AYX modulator and a subsampling AY modulator is the position of the
sampling operation. A subsampling architecture must perform downconversion and sampling

simultaneously, whereas a frequency-translating architecture separates these operations.
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Figure 2.14: Block diagram for an image-reject frequency-translating AY modulator.

In a frequency-translating A3 modulator, the low-frequency section of the loop filter can
be implemented using a continuous-time circuit topology or a discrete-time circuit topology,
whereas in a subsampling architecture, the low-frequency section must be implemented using
a discrete-time topology. As described in Section 2.1.2, a continuous-time loop filter offers a
number of advantages over a discrete-time loop filter, including inherent anti-alias filtering,
suppression of sampling errors, and higher potential for low-power and high-speed design. In
both architectures, the high-frequency section of the loop filter must be implemented using a
continuous-time circuit topology. As a result, both have approximately the same sensitivity

to clock jitter.
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In a subsampling AY modulator, the bandwidth (fs) of the sampling switch should be
higher than the input centre frequency (fc;) so that the input signal is not attenuated. Since
this bandwidth requirement can result in fs > fs/2, the performance of a subsampling AY
modulator is significantly affected by out-of-band noise, which is folded into the signal band
during sampling. In a frequency-translating AY modulator, the sampling bandwidth is only
required to be higher than the output centre frequency (fc,) to ensure that the input signal
is not attenuated. Accordingly, a frequency-translating architecture is less sensitive to folded

out-of-band noise than a subsampling architecture.

2.4 Summary

This chapter reviewed the fundamental theory of AY modulation. It explained the concepts
of quantization, oversampling, and noise shaping, compared the advantages of discrete-time
and continuous-time implementations, and reviewed conventional architectures. This chapter
also provided an overview of downconversion bandpass AY modulators. It summarized their
advantages relative to conventional architectures and examined the different downconversion
architectures: subsampling AY modulators and frequency-translating AY modulators, which

are based on undersampling and mixing, respectively.
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HE FEEDBACK loop of a continuous-time A3 modulator performs a continuous-time to
T discrete-time signal conversion in its forward path at the sampler and a corresponding
discrete-time to continuous-time conversion in its feedback path at the DAC. The accuracy of
these conversions is limited by the timing accuracy of the sampling clock. Timing errors that
are introduced at the sampler and feedback DAC decrease the noise-shaping performance of
a continuous-time AY modulator, and can significantly limit its resolution [Che99a][Tao99b].
The timing errors that are introduced at the feedback DAC are particularly important, since

they are not suppressed by the loop filter of the AY modulator.

This chapter presents a modeling technique that can be used to rapidly simulate the effect
of timing errors in the feedback DAC of a continuous-time AY, modulator. In particular, the
proposed technique is useful for evaluating the performance loss caused by clock jitter, since
it offers a significant speed advantage over direct simulation methods [Cho07]. The proposed
technique models time-delay errors in the feedback DAC of a continuous-time AY modulator
as coefficient errors in the loop filter of an equivalent discrete-time architecture. It is derived
from the impulse-invariant transform, which is a standard synthesis tool for continuous-time
AY. modulators. In this chapter, the speed advantage of the proposed modeling technique is

utilized to simulate a wide variety of rectangular DAC pulses.

35
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This chapter is organized into six sections. Section 3.1 reviews a standard NTF synthesis
procedure for continuous-time AY. modulators, and discusses impulse invariance. Section 3.2
reviews the primary sources of timing errors in a continuous-time AY. modulator, focusing in
particular on clock jitter. Section 3.3 presents a technique to model the effect of these timing
errors using an equivalent discrete-time AY. modulator, and explains how this technique can
be applied to simulate the performance loss caused by these errors. Section 3.4 demonstrates
the speed and accuracy of the proposed technique using a Simulink behavioural model that
directly represents timing errors. Section 3.5 then uses the proposed technique to analyse the
effect of different rectangular DAC pulses on the clock-jitter sensitivity of a continuous-time

AY modulator. Section 3.6 summarizes the results of the chapter.

3.1 NTF Synthesis

A common design procedure for continuous-time AY modulators is to start with a prototype
discrete-time N'TF that provides the required noise shaping performance, and then map it to
a corresponding continuous-time architecture. This approach enables designers to utilize the
wide range of design and simulation tools available for discrete-time AY modulators [Sch04].
In general, the required discrete-time to continuous-time transformation is carried out using

the impulse-invariant transform [Gar86].

Figure 3.1 shows block diagrams for a continuous-time AY. modulator and an equivalent
discrete-time AY. modulator. It also shows the loop feedback path of each architecture, from
their output y(n), to the input of their quantizers v(n). Here, the loop transfer functions of
the continuous-time and discrete-time AY modulators are represented as Hi,(s) and Hf (z),
respectively. The loop transfer function of a discrete-time A3 modulator can be expressed in

terms of its associated NTF as

ML) = e (31)

where the design of NTF(z) is discussed in Section 2.1.3.
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Figure 3.1: The loop feedback paths of: (a) a continuous-time AY modulator, and (b) an equivalent

discrete-time AY. modulator.

In order to replicate the NTF of a prototype discrete-time architecture, a continuous-time
AY. modulator must have the same loop response! at sampling instants [Che02]. This impulse
equivalence can be achieved using the impulse-invariant transform, which is defined as

Hi(z) = HT{HﬂQHbNﬂQ}::Z{L*{ngﬂbﬂﬂ@}hzﬂ%} (3.2)

sS—z

Here, Z{-} denotes the z-transform, £{-} denotes the Laplace transform, and IIT {-} denotes
S—z

an s — z impulse-invariant transform. In a continuous-time AY modulator, the DAC is used

to convert each feedback sample into an equivalent continuous-time pulse. The shape of these

pulses is set by the transfer function Hpac(s) of the DAC [Ort06].

1The term loop response is used to refer to the impulse response of the loop feedback path of a AY modulator,

from its output y(n), to the input of its quantizer v(n).
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The loop transfer function of a continuous-time A modulator can be expressed in terms

of a prototype NTF by combining Equations (3.1) and (3.2). This results in

, 1 - 1 _ _ 1
i) = ML} e = s Y e ©9

where IIT{-} denotes an z — s impulse-invariant transform. An example of this transform
zZ—S

is provided in Appendix A.1l.

In Equation (3.3), it is important to note that the loop response of a continuous-time A3
modulator depends on the response of its feedback DAC. This means that the noise-shaping
performance of a continuous-time architecture is sensitive to timing errors in the pulses that

are generated by its feedback DAC. These errors are discussed in Section 3.2.

3.1.1 Excess Loop Delay

In an ideal continuous-time AY modulator, the DAC output is updated on the same edge of
the sampling clock that the associated input is sampled by the quantizer. Therefore, unlike a
discrete-time architecture, a continuous-time AY modulator does not have an inherent delay
in its feedback path, and must include an additional delay to provide time for its quantizer to
settle and its mismatch shaping logic to operate. The non-zero delay between the time when
the signal is sampled by the quantizer and when the corresponding pulse is generated by the

feedback DAC is referred to as the excess loop delay [Che99b].

Ipac(t) Ipac(t)

t | } t
0 Ts 0 Te Ts Tgt+TE

(a) (b)

Figure 3.2: (a) An ideal non-return-to-zero (NRZ) DAC pulse, and (b) the DAC pulse shown in (a)

with an excess loop delay of Tg.
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Figure 3.3: Timing errors in a continuous-time AY modulator: (a) sampling errors in the forward

path, and (b) time-delay errors in the feedback DAC.

Figure 3.2 plots the response of a conventional non-return-to-zero (NRZ) feedback DAC
when the excess loop delay is zero and when it is equal to Tg. As indicated in Equation (3.3),
the NTF of a continuous-time AY. modulator depends on the response of its feedback DAC.
Therefore, the excess loop delay must be accounted for in the NTF synthesis by introducing
a corresponding delay term into Hpac(s). This modification is described in Section 6.1.4 for

the experimental AY modulator.

3.2 Timing Errors

In a continuous-time AY. modulator, timing errors in the sampling clock can affect both the
forward and feedback paths, as depicted in Figure 3.3. In the forward path, timing errors in
the sampling instants receive the same suppression from the AY loop as quantization errors,
and do not significantly affect the resolution. In the feedback path, timing errors in the pulses
generated by the feedback DAC are added to the input signal of the AY modulator, and can

significantly reduce the resolution.
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Figure 3.4: The effect of pulse-width and pulse-delay jitter on: (a) a non-return-to-zero (NRZ) pulse,
and (b) a return-to-zero (RZ) pulse.

The timing errors introduced into the feedback path of a continuous-time AY modulator

modify the response of its DAC, and therefore modify its NTF, where

—~ 1 1
NTF(z) = = =
(2) 1+ Hj(z) 1+ IIT {HL(S)I:TDAC(S)}

s§—z

(3.4)

The - notation is introduced here to identify continuous-time and discrete-time expressions
that model the effect of timing errors. In Equation (3.4), timing errors in the response of the
feedback DAC are represented using H pac(s), and are mapped into the discrete-time domain

using ﬁﬁ(z) The derivation of this mapping term is presented in Section 3.3.

3.2.1 Clock Jitter

The principal disadvantage of continuous-time AY modulators is their sensitivity to jitter on
the sampling clock [Red07]. Clock jitter introduces sampling errors into the forward path of a
continuous-time AY modulator, and time-delay errors into the pulses of its feedback DAC.
As described previously, sampling errors receive the same suppression as quantization errors,
and do not affect the resolution, whereas time-delay errors are added directly to the input of

a continuous-time AY modulator, and can significantly limit its resolution.
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Figure 3.5: (a) An exponential DAC pulse, and (b) a raised-cosine DAC pulse.

The timing errors that are introduced into the pulses of the feedback DAC by clock jitter
can be divided into pulse-width errors and pulse-delay errors [Oli98]. Figure 3.4 depicts these
errors on conventional non-return-to-zero (NRZ) and return-to-zero (RZ) pulses. In general,
a lowpass AY modulator is sensitive primarily to pulse-width jitter, whereas a bandpass AX
modulator is sensitive to both types of jitter [Che99a][Tao99b]. Section 3.5 analyses the jitter

sensitivity of lowpass and bandpass architectures for various rectangular DAC pulses.

The performance loss caused by clock jitter can be reduced by modifying the shape of the
DAC pulse. This is generally referred to as pulse shaping. Figure 3.5(a) shows an example of
exponential pulse shaping, which replicates the charge transfer phase of a switched-capacitor
circuit [Vel03][Ort01]. By shifting the charge transfer to the start of the sampling period, an
exponential pulse achieves reduced sensitivity to pulse-width jitter, and is therefore suitable
for lowpass AY. modulators. Figure 3.5(b) shows an example of raised-cosine pulse shaping,
where the shaping signal is synchronized with the sampling clock so that its minimum value
and its minimum slope occur when the DAC is updated [Lus04][Zha96]. When it is properly
synchronized, a raised-cosine pulse achieves reduced sensitivity to both pulse-width jitter and

pulse-delay jitter, and is therefore suitable for bandpass AY modulators.
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3.3 Modeling Technique

The impulse-invariant transform of a continuous-time filter yields a discrete-time filter that
has the same impulse response when the output of the continuous-time system is sampled at
the same frequency [Gar86]. The transform is used to design continuous-time AY. modulators

from prototype discrete-time AY. modulators, as described in Section 3.1.

The modeling technique presented in this section uses the impulse-invariant transform to
map time-delay errors in the edges of the pulses that are generated by the feedback DAC of
a continuous-time AY modulator to coefficient errors in the loop transfer function Hj (z) of
an equivalent discrete-time AY modulator (Figure 3.1). This mapping is possible because the
start and end times of the rectangular pulses that are generated by the feedback DAC appear

as parameters in the impulse-invariant transform.

Figure 3.6 shows timing diagrams for conventional NRZ and RZ DAC pulses. Here, « is
used to represent the time delay between the start of the sampling period and the rising edge
of the DAC pulse, and S is used to represent the time delay between the start of the sampling
period and the falling edge of the DAC pulse. Using this notation, the transfer function of a

rectangular DAC can be expressed, generally, as

]' —S —S
Hpao(s) = - (e7T — =7 (3.5)

Here, o and 8 are normalized with respect to the sampling period T5s.

BTs BTs
GTS GTS

(a) (b)

Figure 3.6: Timing diagrams for: (a) an NRZ pulse, and (b) an RZ pulse.
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Accordingly, additive time-delay errors on the nominal edges, a and 3, of the DAC pulse

can be expressed, respectively, as
a(n) =a+Aa(n) and B(n) =B+ AB(n) (3.6)

Here, a(n) and 3 (n) represent the normalized time delays for the rising and falling edges of

the non-ideal DAC pulse during the nth clock cycle. It is assumed that

a(n) > B(n—1)—1 for RZ pulses, and (3.7)

a(n) = B(n—1)—1 for NRZ pulses. (3.8)

The time index n is not included in subsequent expressions for simplicity.

The modeling technique presented in this section represents continuous-time delay errors
in the discrete-time domain using a series of z-domain error-mapping terms. These mapping
terms transform time-delay errors, Aa and AS, in the DAC pulses of a continuous-time AXY
modulator into corresponding coefficient errors in the loop transfer function of an equivalent
discrete-time AY modulator. In order to demonstrate this technique, the 2nd-order mapping

term is derived next.

3.3.1 Derivation of the Error-Mapping Terms

Given a prototype discrete-time loop transfer function Hj (z), the first step in developing an
equivalent continuous-time transfer function Hr,(s) using the impulse-invariant transform is
to split H{ (z) into its constituent terms by way of a partial fraction expansion. An example

of a 2nd-order term that can result from such an expansion is

Hi »(2) = G-12 (3.9)

where ¢y is its coefficient.
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Using a and S to denote the nominal start and end times of the DAC pulse, Hﬁz(z) can
be transformed into an equivalent continuous-time filter by way of a z — s impulse-invariant

transform. Such a transform results in

1 . bl(STs) + by

Hy,a(s) = T {H{ (=)} o = Ly (3.10)
where
b — ley(a+B8-2)
1= 9 88—«
by = -

and Hpac(s) is defined in Equation (3.5).

The objective here is to modify the nominal transfer function Hﬁz(z) in such a way that
the loop response of the associated discrete-time AY. modulator is equal to the loop response
of an equivalent continuous-time architecture when the DAC pulses of the latter are affected

by time-delay errors.

Assume that the rising and falling edges of the DAC pulses are independently shifted by
time-delay errors Aa and ApS, as defined in Equation (3.6). The effect of these errors can be
mapped into the discrete-time domain by performing an s — z impulse-invariant transform
on Hi, 2(s) using non-ideal edge timing o and B\ This transform results in

d1 dQZ +d3
(z=1)  (2—-1)2

Hi 5(2) = TT { Hy,2(5) Hpac(s) | = (3.11)

where
dy = bl[é—a}
do = =b

ds =

and Hpac(s) is defined in Equation (3.5).
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Table 3.1: Error-mapping terms for poles at z = 1.

Nominal Term Error-Mapping Term

C1 Acii

G- -1
Aciy = ci(AB - Aa)/ (B — a)

Hﬂ,l(z) = ﬁﬁ,l(z) =

(z-1)

/ c2 = 2 Acao Aca1
@) =0 | BB = et oo T e
Acas = c2(AB — Aa) /(B — @)
ACQl = —1/2 CQ(A(X + Aﬂ)
/ c - _ ¢ Acss Acsa Acz1
His(=) =1 —31)3 @) = s T e "o T o)

Acsz = c3(AB — Aa)/(B — @)
Aczo = —1/2 03(Aa + Aﬂ)
Acsy =1/12¢5[(8 — a) (AB — Aa) + 3(Da+ AB)]

The expression for f[ﬁz(z) can then be simplified to

Cc2 ACQQ ACQl

f[ﬁ,Q(Z) = (z—1)2 + (z—12 " (z—1)

(3.12)

where Acgo and Acgy are defined in Table 3.1. The first term of fII’JQ(z) corresponds to the
nominal term Hj, ,(z) in Equation (3.9), whereas the second and third terms are caused by
time-delay errors A« and AfS. Therefore, the expression in Equation (3.12) maps time-delay
errors in the DAC pulses of a continuous-time A3 modulator to coefficient errors in the loop

transfer function of an equivalent discrete-time architecture.

Table 3.1 provides the error-mapping terms for 1st-, 2nd-, and 3rd-order terms of a loop
transfer function with coincident poles at z = 1. Table 3.2 provides the error-mapping terms

for a 1st-order term with a pole at z = z,, and for a 2nd-order term with complex-conjugate

*

poles at z = z;

and z = z,. All of the error-mapping terms listed in Tables 3.1 and 3.2 were

derived using the procedure described in this section.
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Table 3.2: Error-mapping terms for poles at z = 2.

Nominal Term Error-Mapping Term
HY, () = 58 By 1ple) = 222
P (2 — 2p) P (2 — 2p)

ferp = exp(f 5 = 25757/ (2F ~ )

(5621pZ — (5022p

22 —2Re{zp} +1

*
C2p Cap

(z=2) (2-2)

H£,2p(z) = H£,2p(z) =

_ C21p% — C22p

= 2 _2Re{s) +1 c2p = (C22p — C21p2p) /(25 — 2p)

deap = caplzy 2% — 257 2) /(55 — 27)

662113 = 2Re{662p}
dca2p = 2Re{0capzy}

Note that the derivation approach presented in this section is not formally correct, since
it involves taking the Laplace transform and z-transform of expressions that depend on error
terms Aa(n) and AB(n), which can vary from one cycle to the next. Appendix A.2 provides
an extended derivation of the 2nd-order error-mapping term, which demonstrates how these
error terms can be shifted to the input of the loop filter, so that the same result is achieved

without having to process Aa(n) and Af(n) in the Laplace and z-transforms.

3.3.2 Discrete-Time Simulation of Timing Errors

The error-mapping terms derived in Section 3.3.1 can be used, with a discrete-time simulator,
to evaluate the performance loss that is caused by time-delay errors in the feedback DAC of

a continuous-time AY modulator as follows:

1. (a) If starting from a continuous-time loop transfer function Hy (s), use the impulse
invariant transform to derive an equivalent discrete-time transfer function H{ (z),

and then split Hj (z) into its constituent terms.
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Figure 3.7: Block diagram for a discrete-time AY modulator that is realized using the error-mapping

terms in Tables 3.1 and 3.2.

b) If starting from a discrete-time loop transfer function HY (z2), split H (2) into its
L L

constituent terms using a partial-fraction expansion.

2. Replace each nominal term in the loop transfer function H{ (z) with its corresponding
error-mapping term, provided in Tables 3.1 and 3.2, to obtain the error-mapping loop

transfer function ﬁﬁ(z)

3. Place the error-mapping transfer function ﬁﬁ (z) in a conventional AY. feedback loop,

and simulate the resulting system using a discrete-time simulator.

In a continuous-time A3 modulator, timing errors in the DAC pulses affect the response
of the feedback path, but do not modify the response of the forward path. In order to model
this behaviour, the error-mapping terms in Tables 3.1 and 3.2 must be realized in such a way
that coefficient errors modify the feedback path, but not the forward path. Figure 3.7 shows
a block diagram for a discrete-time AY modulator that is realized using the developed error
mapping terms. Figure 3.8 shows realizations of the fII’JQ(z) and lEII’J op(2) terms specified in

Tables 3.1 and 3.2, respectively.
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Figure 3.8: Realizations of: (a) Hj, ,(z) in Table 3.1, and (b) Hj, ,,(z) in Table 3.2. The terminal

names in this figure correspond to the discrete-time AY. modulator in Figure 3.7.

3.4 Validation of the Modeling Technique

In order to validate the modeling technique proposed in Section 3.3, a behavioural model was
developed in Simulink that directly, and therefore accurately, represents time-delay errors in
the feedback DAC of a continuous-time A modulator. This section describes the design of
this behavioural model, and then uses it to demonstrate the simulation accuracy and speed

of the presented modeling technique.

3.4.1 Simulink Behavioural Model

Figure 3.9 shows a block diagram for the Simulink behavioural model that was developed to
simulate time-delay errors. Its input parameters are the nominal pulse-edge timing, o and 3,
and their errors, A« and AfS, and its output is a delayed rectangular pulse with edge timing

that is set by the supplied input parameters.
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Figure 3.9: Block diagram for the developed Simulink model.

The developed Simulink model is realized completely using discrete-time blocks, since the
continuous-time delay blocks that are provided in Simulink do not allow for sufficient timing
accuracy. This model is divided into two sampling domains: a low-resolution domain, which
operates at the sampling period Tg, and a high-resolution domain, which operates at Tg/Ng.
Here, Ng is an integer that is used to divide the sampling period into smaller time segments.
Increasing the value of Ny increases the resolution of time-delay variations, but also increases

the associated simulation time (Section 3.4.3).

In Figure 3.9, the blocks that operate in the low-resolution sampling domain are used to
generate the timing parameters for the o and 8 edges. Here, the nominal timing parameters,
« and [, are added to the corresponding errors, A« and AfS, in order to derive the non-ideal
timing parameters, a and B . The non-ideal parameters are generated during the clock cycle
immediately prior to the cycle that they are associated with, so that the model can account
for large negative timing errors. These parameters are then offset and delayed in such a way
that they are between 0 and 1 during the correct clock cycle. The corresponding sequence of
operations is summarized in Table 3.3. The non-ideal timing parameters are combined into a

bus, which then determines the edge timing in the high-resolution domain.
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Table 3.3: The operations applied to the timing parameters.

Timing Parameter ‘ Offset ‘ Delay ‘ Path

—1<an) <0 +1 0 cycles | o
0<an) <1 0 1 cycle a1
0< B(n) <1 0 1 cycle By
1< E(n) <2 -1 2 cycles Ba

In Figure 3.9, the blocks that operate in the high-resolution sampling domain are used to
translate the o and E values generated in the low-resolution domain into edge timing for the
rectangular output pulse. This is achieved by first converting o and B into integers, between
0 and Ng — 1, using appropriate scaling and rounding. These integers are then compared to
the output of a running counter, which has corresponding limits 0 and Ng — 1. The result of
this comparison is a series of impulses, which are then used as the clock signal for a positive
edge triggered subsystem. The output of the subsystem switches, from 0 — 1 or 1 — 0, upon
arrival of either an « or B impulse, which simplifies the generation of the output signal and

eliminates timing conflicts caused by an overlap of a and B\

RZ Pulse

The presented Simulink model can be used to simulate the response of an RZ DAC, together
with associated timing errors, by applying its output as the clock signal and active-low reset
of a triggered subsystem. This approach can be used in both single-bit and multi-bit designs,

since the model only applies a delay to the input signal of the DAC.

NRZ Pulse

The presented Simulink model can also be used to simulate the response of an NRZ DAC by
applying its output as the clock signal of a triggered subsystem. The 5 edge is not important

when generating an NRZ pulse, provided that E > « in all cases.
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3.4.2 Comparison of Simulation Results

The accuracy of the modeling technique proposed in Section 3.3 is verified by comparing its
simulation results to those generated by the direct Simulink behavioural model presented in
Section 3.4.1. The proposed technique is validated for the case of dynamic time-delay errors,
which are changed from one clock cycle to the next in such a way that they approximate the

behaviour of clock jitter, as described next.

In general, clock jitter can be represented as an additive timing error on the edges of the
DAC pulses, as defined in Equation (3.6). Here, assuming that the timing errors caused by
clock jitter are independent from one edge to the next, Aa(n) and AS(n) can be modeled as
sequences of independent and identically-distributed random variables, each of which follows
a Gaussian distribution with a standard deviation of oj. Using this approximation, the errors

introduced by clock jitter have a white power spectrum [Che99a].

Table 3.4 defines two continuous-time transfer functions Hi,, (s) and Hy,(s). Figure 3.10
provides block diagrams for continuous-time AY, modulators that realize these loop transfer
functions directly, and Figure 3.11 provides block diagrams for discrete-time A modulators
that realize equivalent loop transfer functions using the derived error-mapping terms. Note
that Hy,, (s) and Hy(s) utilize all of the mapping terms in Tables 3.1 and 3.2. The presented
modeling technique was validated by simulating the continuous-time architectures shown in
Figure 3.10 using the developed Simulink model (Section 3.4.1), simulating the discrete-time
architectures shown in Figure 3.11 using the derived error-mapping terms (Section 3.3), and

comparing the results of these two approaches.

Table 3.4: Test architectures used to validate the modeling technique.

Loop Transfer Function DAC Pulse ‘ B ‘ OSR

b3 " b n b1
(STs)3 (ST5)2 (STs)

A | Hy,(s) = RZ (¢ =0.25,8=0.75) | 5 | 32

_ ba1(sTs) + b2 b1
B | Huip(s) = (sTs)? + 52 (sI5)

NRZ (¢« =0.5,6=1.5) | 5 16
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Block diagrams for the continuous-time AY. modulator architectures in Table 3.4.
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Figure 3.11: Block diagrams for discrete-time A3 modulators that use the error-mapping terms in

Tables 3.1 and 3.2 to realize loop transfer functions that are equivalent to those in Table 3.4.

Figure 3.12 plots the simulated SNR of Architectures A and B, specified in Table 3.4, as a

function of the normalized clock jitter oj. The excellent agreement (to within 1dB) between

these results demonstrates the accuracy of the proposed modeling technique.

3.4.3 Comparison of Simulation Time

The speed advantage of the modeling technique proposed in Section 3.3 is demonstrated by

comparing its simulation time to that of the direct Simulink behavioural model presented in

Section 3.4.1. In order to optimize the simulation time required by the Simulink model, this

section first derives the minimum value of its timing resolution variable Ny.
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Figure 3.12: The simulated SNR, as a function of the normalized clock jitter, for Architectures A
and B specified in Table 3.4. Here, — denotes results derived from the presented modeling technique,

and O denotes results derived from the Simulink behavioural model.

Timing Resolution

The timing resolution variable Ny of the developed Simulink behavioural model (Figure 3.9)
determines the minimum time-delay variation that it can represent. Since the high-resolution
domain of this model operates at a sampling period of Ts/Ng, as described in Section 3.4.1,
an increase in the value of Vg results in a proportional decrease in the maximum simulation

step size. This improves the model accuracy, but also increases the simulation time.

In order to derive the minimum timing resolution that is required to accurately evaluate
the effect of time-delay errors, Architecture A in Table 3.4 is simulated using the Simulink
behavioural model for different values of Ni. Figure 3.13(a) plots the SNR of Architecture A
as a function of the normalized timing resolution (o3Ng) for o3 = 0.01 and o3 = 0.001. This

plot demonstrates that Ny = 2/0; provides sufficient accuracy, independent of oj.
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Figure 3.13: (a) The simulated SNR of Architecture A in Table 3.4, as a function of the normalized
timing resolution (o3 Ng), using the Simulink behavioural model. Here, — denotes o= 0.01 and - - -
denotes oy = 0.001. (b) The simulation time required to generate the results shown in Figure 3.12(a).
Here, — denotes results derived from the modeling technique presented in Section 3.3 and O denotes
results derived from the Simulink behavioural model. Each data point in (b) was generated using 216
simulation points and, when using the Simulink behavioural model, each simulation step was divided

into Ng/oj time segments, with Ng set to 2.

Simulation Time

Figure 3.13(b) plots the simulation times of the proposed modeling technique (Section 3.3)
and the developed Simulink behavioural model (Section 3.4.1) that were required to generate
the results in Figure 3.12(a). Here, as the normalized clock jitter variation o decreases, the
required timing resolution Ny of the Simulink behavioural model increases, which increases
the associated simulation time. Using the proposed modeling technique, the simulation time
remains constant, independent of the jitter variation oj. As an example, for o3 = 0.0001, the
Simulink model requires approximately 7 hours to simulate, whereas the proposed modeling
technique requires less than a minute. Accordingly, the proposed modeling technique offers a

significant speed advantage over direct simulation methods.
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3.5 Analysis of Timing Errors

This section uses the modeling technique presented in Section 3.3 to evaluate the performance
loss that results from timing errors in the feedback path of a continuous-time A3 modulator.
In particular, it analyses the relative ability of different rectangular DAC pulses to minimize
the sensitivity of a continuous-time architecture to clock jitter. The analysis examines both

lowpass and bandpass AY modulators, in single-bit and multi-bit configurations.

This analysis considers four different rectangular DAC pulses (Figure 3.14):

1. An NRZ pulse, where the a edge of the current clock cycle is equivalent to the 8 edge

of the previous clock cycle, such that a(n) = f(n —1) — 1.
2. An RZ pulse with independent errors Aa(n) and AB(n) on the a and g edges.

3. An RZ pulse with a fixed off-time duration (fixed-off RZ), where the a edge timing of
the current clock cycle is generated from the 8 edge timing of the previous clock cycle,

such that Aa(n) = AB(n — 1) [Pat04].

4. An RZ pulse with a fixed on-time duration (fixed-on RZ), where the § edge timing is
derived from the « edge timing, such that Ag(n) = Aa(n) [Oli98].

The analysis examines three different continuous-time AY modulator architectures. The
loop transfer function of each architecture is specified in Table 3.5. These test architectures
were each simulated using an OSR of 256, so that the jitter-induced errors dominated over
the quantization errors in the signal band. The multi-bit configurations were designed with

5-bit internal quantizers and corresponding feedback DACs.

3.5.1 Lowpass AY Modulators

Figures 3.15(a)—(b) plot the SNR, as a function of the normalized clock jitter, for single-bit
and multi-bit configurations of lowpass AY modulators A and B in Table 3.5. Both pairs of
plots include curves for each of the DAC pulses shown in Figure 3.14. This section analyses
the results of Figure 3.15 to form general conclusions about the effect of the pulse shape and

number of quantization bits on the sensitivity of a lowpass AY modulator to clock jitter.
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Figure 3.14: The rectangular DAC pulses that are studied in the analysis. (a) An NRZ pulse with
ideal timing, and one affected by clock jitter. (b) An RZ pulse with ideal timing, and three affected
by clock jitter. Here, the effect of timing errors is shown for RZ pulses with: standard timing, a fixed

off-time duration, and a fixed on-time duration.
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Pulse Shape

In a lowpass AY modulator, the fixed-on RZ pulse provides the lowest sensitivity to jitter by

a significant margin. This result can be explained by examining the equivalent discrete-time

loop transfer functions of Architectures A and B in Table 3.5.

R
0‘0

For Architecture A, the equivalent error-mapping transfer function is composed only of
terms in Table 3.1. When it is realized in a conventional AY: feedback loop, coefficient
error Acsy receives 2nd-order highpass shaping, errors Aco; and Acss receive 1st-order
highpass shaping, and errors Acss, Acoe, and Acy; do not receive noise shaping. For a
fixed-on RZ pulse, Aa = Af, which causes coefficient errors Acss, Acos, and Acyy to
be reduced to zero (Table 3.1). As a result, the fixed-on RZ pulse provides significantly

lower sensitivity to clock jitter than the remaining rectangular pulses [Oli98].

For Architecture B, the equivalent error-mapping transfer function also includes terms
in Table 3.2. When it is realized in a conventional A feedback loop, coefficient errors

dcaop and dearp are not shaped. For a fixed-on RZ pulse, dcop reduces to

dcop = czpzp_Aa = cype 12 (Fo/Fs)Aa (3.13)

where fg is the sampling frequency and f, is the frequency of pole z,. In a lowpass AX
modulator, the pole z, is generally placed inside the signal band, and therefore f, < fs
assuming OSR > 1. Under this condition, coefficient error dca, approaches its nominal
value of cp,. Accordingly, in a lowpass AY modulator, the fixed-on RZ pulse provides
significantly lower sensitivity to clock jitter than the remaining pulses, independent of

whether the loop filter includes one or more resonators.

Number of Quantization Bits

In a lowpass AY modulator, increasing the number of quantization bits decreases the jitter

sensitivity of the NRZ pulse and fixed-off RZ pulse, relative to the standard RZ pulse. This

result can be explained as follows.
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Figure 3.15: The simulated SNR, as a function of the normalized clock jitter, for: (a) a lowpass AX

modulator with three NTF zeros at dc (A in Table 3.5), (b) a lowpass AY modulator with one zero at

dc and one pair of complex zeros at the edge of the signal band (B in Table 3.5), and (c) a bandpass

AY. modulator with one pair of complex zeros at each edge of the signal band (C in Table 3.5). Here,

O denotes fixed-on RZ, — denotes NRZ, x denotes fixed-off RZ, and - - - denotes RZ.
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The input signal of a lowpass AY. modulator is sampled at least fs/fg (i.e., 20SR) times
over its period. Therefore, assuming OSR > 1, an increase in the number of quantization bits
decreases the sample-to-sample variation at the output of the feedback DAC, which reduces
the magnitude of the pulse errors that are caused by clock jitter [Gee02]. This decreases the
jitter sensitivity of the NRZ pulse and fixed-off RZ pulse, but does not affect the sensitivity
of the standard RZ pulse. A fixed-off RZ pulse effectively compensates for errors introduced
in the previous clock cycle during the current clock cycle and, therefore, is sensitive to only
one pulse edge. In this way, a fixed-off RZ pulse provides performance that is comparable to

an NRZ pulse, although approximately 6 dB lower.

3.5.2 Bandpass AY Modulators

Figure 3.15(c) plots the SNR, as a function of the normalized clock jitter, for single-bit and
multi-bit configurations of bandpass AY. modulator C in Table 3.5. Both plots include curves
for each of the DAC pulses in Figure 3.14. This section analyses the results of Figure 3.15 to
form general conclusions about the effect of the pulse shape and number of quantization bits

on the sensitivity of a bandpass AY modulator to clock jitter.

Pulse Shape

In a bandpass AY modulator, the fixed-on RZ pulse does not provide an advantage over the
remaining pulses. This result can be explained by examining the equivalent discrete-time loop

transfer function of Architecture C in Table 3.5.

< For Architecture C, the equivalent error-mapping transfer function is only composed of
terms in Table 3.2. When it is realized in a conventional AY feedback loop, coefficient
errors dcop and dco1p are not shaped. For a fixed-on RZ pulse, dca;, again reduces to
the form shown in Equation (3.13). However, in a bandpass AY modulator, the centre
frequency fc of the signal band, and therefore the frequency f, of pole zp, is generally
a significant fraction of the sampling frequency fg (Section 2.3). As a result, coefficient

error dcg, remains significant when AfS = Aa.
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Number of Quantization Bits

In a bandpass A modulator, increasing the number of quantization bits does not decrease
the jitter sensitivity of the NRZ pulse and fixed-off RZ pulse, as in a lowpass AY. modulator.

This result can be explained as follows.

The input signal of a bandpass AY. modulator is only sampled approximately fs/fc times
over its period, where fc is generally a significant fraction of fg (Section 2.3). Therefore, an
increase in the number of quantization bits does not reduce the sample-to-sample variation
at the output of the feedback DAC, and does not appreciably decrease the magnitude of the
pulse errors that are caused by clock jitter. Accordingly, a multi-bit bandpass AY modulator

does not provide lower sensitivity to clock jitter than a single-bit configuration.

3.6 Conclusion

This chapter presented a modeling technique that can be used to rapidly simulate the effect
of time-delay errors in the feedback DAC of a continuous-time AY modulator. The proposed
technique is derived from the impulse-invariant transform, and maps time-delay errors in the
feedback DAC of a continuous-time AY. modulator into coefficient errors in the loop filter of
an equivalent discrete-time architecture. The proposed technique was applied in this chapter
to analyse the effect of different rectangular DAC pulses on the clock jitter sensitivity of both

lowpass and bandpass continuous-time AY. modulators.

The simulation results presented in Section 3.4 demonstrated that the proposed modeling
technique uses significantly less simulation time than a direct approach, such as the Simulink
model described in Section 3.4.1. For example, to simulate the performance loss caused by a
normalized jitter variation of o3 = 0.001, the Simulink model required approximately 3 hours,

whereas the proposed technique required less than a minute (Figure 3.13).

The simulation results presented in Section 3.5 demonstrated that the jitter sensitivity of
a lowpass continuous-time AY, modulator can be reduced by using a rectangular DAC pulse

with specific timing constraints, such as a fixed on-time, and by using multi-bit quantization.
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These results also demonstrated that the jitter sensitivity of a bandpass continuous-time AY
modulator cannot be improved using either of the aforementioned techniques. In a bandpass
A3 modulator, all rectangular DAC pulses provide approximately the same jitter sensitivity,

and this sensitivity is not reduced using multi-bit quantization.

The clock jitter sensitivity of a bandpass continuous-time AY modulator can be improved
using pulse shaping, as outlined in Section 3.2, however its performance is ultimately limited
by the accuracy of the clock signal that is applied to its feedback DAC. The simulation results
presented in Section 3.5 demonstrated that, for a given jitter variation, the performance loss
due to clock jitter is proportional to the sampling frequency of the AY. modulator. Therefore,
for a given centre frequency, the jitter sensitivity of a bandpass architecture can be reduced
by decreasing its sampling frequency. This can be achieved by mixing in the A loop, which

is the approach that is used in a frequency-translating A modulator (Section 2.3.1).
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HE MOTIVATION for a bandpass AY. modulator that uses frequency downconversion in
T its feedback loop comes from a desire to digitize high-frequency bandpass signals using
low sampling frequencies and low-frequency filters. The frequency-translating AY. modulator
provides a number of advantages over conventional bandpass AY modulators, as outlined in
Section 2.3. This chapter examines the frequency-translating architecture that was proposed
in [Tao99al, which used a hybrid continuous-time/discrete-time loop filter and downconverted
its input signal directly to baseband using image-reject mixing. This image-reject frequency-
translating AY modulator was later modified in [Pul05] to use a strictly continuous-time loop

filter, which enabled it to achieve reduced sensitivity to clock jitter.

This chapter examines the image-reject frequency-translating AY. modulator architecture
proposed in [Tao99a]. It outlines a procedure to synthesize this architecture from a prototype
discrete-time NTF, and derives a set of design constraints that must be satisfied in order to
achieve this synthesis. The derived constraints affect the selection of the timing parameters,
and the filtering characteristic of the loop filter. This chapter also examines the performance
limitations of an image-reject frequency-translating AY modulator, specifically its sensitivity

to in-phase and quadrature path mismatch.

63
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This chapter is divided into five sections. Section 4.1 provides an overview of image-reject
frequency-translating A modulators and their design parameters. Section 4.2 describes an
NTF synthesis procedure for the image-reject architecture, and develops constraints on both
its timing parameters and its loop filter. Section 4.3 presents behavioural simulation results,
which demonstrate the importance of the derived constraints. Section 4.4 examines the effect
of path mismatch on an image-reject frequency-translating AY modulator, and discusses its

performance limitations. Section 4.5 provides a summary of the chapter.

4.1 Overview

Figure 4.1 shows a block diagram for a frequency-translating A modulator that is designed
with image-reject mixing [Tao99a]. Here, the forward-path mixers (mp) implement frequency
downconversion and the feedback-path mixers (my) implement frequency upconversion. This
splits the AY feedback loop into a high-frequency section and a low-frequency section, where
the latter section is divided into an in-phase path and a quadrature path. The high-frequency
section of the loop filter is referred to as the outer-loop filter and the low-frequency section is
referred to as the inner-loop filter. The image-reject frequency-translating A modulator in

Figure 4.1 has the following design parameters:

% The input centre frequency (fc;) is the centre frequency of the signal band at the input
of the frequency-translating AY modulator. It determines the centre frequency of the

outer-loop filter (Hor,).

% The LO frequency (fLo) is generally set to the input centre frequency (fc;) in an image
reject architecture. The sampling frequency (fs) is then derived from the value of fio

according to certain constraints, which are developed in Section 4.2.1.

% The sampling delay (Tp) of the quadrature path is similarly derived from the values of

fro and fg, according to the developed constraints.
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Figure 4.1: Block diagram for an image-reject frequency-translating AY modulator. Here, Ty is the

sampling period, and Tp is the quadrature-path sampling delay.

% The outer-loop filter (Hor,) and the inner-loop filter (Hyy,) determine the noise-shaping

characteristic of the frequency-translating AY modulator. Section 4.2.2 develops basic

constraints on the characteristic of the inner-loop filter.

% The LO phases (y and 0p) modify the response through the loop feedback path of the

frequency-translating AY. modulator and, in this way, modify its NTF. The effect of 0y

and 0p is discussed briefly in Section 4.2, and in greater detail in Section 5.5.
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Note that although the sampler is shown after the inner-loop filter Hyy,(s) in Figure 4.1,
it could also be placed prior to this filter, or between two stages. In such cases, the inner-loop

filter is implemented using one or more discrete-time stages.

4.2 NTF Synthesis

The noise-shaping characteristic of an image-reject frequency-translating AY modulator can
be derived from a prototype discrete-time AY modulator using the same procedure that was
outlined in Section 3.1 for a conventional continuous-time architecture. Here, the prototype
discrete-time architecture must have a complex loop filter in order to replicate the feedback
path of an image-reject frequency-translating AY modulator. Figure 4.2 shows a prototype
discrete-time complex AY modulator. It is important to note that, although the signal paths
of the AY modulators in Figures 4.1 and 4.2 are different, their loop responses, and therefore

their noise-shaping characteristics, are equivalent.

Figure 4.3(a) shows the loop feedback path of the image-reject frequency-translating A
modulator in Figure 4.1, while Figure 4.3(b) shows the loop feedback path of the equivalent

discrete-time complex AY modulator in Figure 4.2.

nTS
a v wn) [ yi(n)
r\ﬂ/ ] »
- HL@) —
an . R
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n-i-s
DAC,
DACq

Figure 4.2: Block diagram for a discrete-time AY modulator with a complex loop filter.
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Figure 4.3: The loop feedback paths of: (a) the image-reject frequency-translating AY modulator

in Figure 4.1, and (b) the equivalent discrete-time complex AY modulator in Figure 4.2.

In order to achieve the same NTF as the prototype discrete-time complex AY. modulator
shown in Figure 4.2, the image-reject frequency-translating AY. modulator in Figure 4.1 must
provide the same loop response! at sampling instants (Section 3.1). This impulse equivalence

can be achieved using the impulse-invariant transform, which is defined as

: / L L R
i) = ML{m) e = g Y mew O

The design of NTF(z) is discussed in Section 2.1.3.

1The term loop response is used to refer to the impulse response of the loop feedback path of a AY modulator,

from its output y(n) to the input of its quantizer v(n).



68 Performance Limitations of Image-Reject Frequency-Translating AY. Modulators

Here, fAIL(s) is used to represent the effective transfer function of the loop feedback path
of the image-reject frequency-translating AY. modulator shown in Figure 4.1. This effective
loop transfer function combines the transfer functions of the outer-loop filter Hor,(s) and the
inner-loop filter Hip,(s), and includes the effect of mixing. Chapter 5 develops an expression

for the effective loop transfer function of a frequency-translating A modulator.

Due to the use of mixing in the feedback loop of a frequency-translating AY modulator,
the relationship in Equation (4.1) cannot be satisfied without imposing specific constraints
on the sampling period Tg and the loop transfer function ﬁIL(s). Section 4.2.1 discusses the
constraints on the timing parameters of an image-reject frequency-translating A3 modulator

and Section 4.2.2 discusses the constraints on its inner-loop filter.

4.2.1 Selection of Timing Parameters for Time Invariance

The loop response of a frequency-translating A modulator is dependent on the response of
its mixers (Section 2.3). Since mixers are time-variant blocks by definition, their introduction
into feedback loop of a AY modulator causes its loop response to also become time-variant.
Accordingly, certain constraints must be imposed on the timing of the sampling instants in a
frequency-translating AY modulator to prevent its time-varying loop response from shifting
out-of-band quantization noise into the signal band. These sampling constraints ensure that
the loop response of a frequency-translating AY. modulator is time-invariant after sampling.
When the sampled response of a linear time-variant system is time-invariant, it is referred to

as a periodically linear time-invariant (PLTI) system [Tao99al.

The in-phase and quadrature sampling instants of the image-reject frequency-translating

AY. modulator in Figure 4.1 can be expressed, respectively, as

t, =nTs and t,q=nTs+Tp (4.2)

where Tg is the sampling period and Tp is the delay of the quadrature-path sampling instants

relative to the in-phase-path sampling instants.
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The required sampling constraints are developed by first evaluating the response through
the outer-loop path of the image-reject frequency-translating A modulator in Figure 4.1,
and then selecting its timing parameters, T and Tp, in such a way that time-varying terms

of this response remain constant across all sampling instants.

Following upconversion mixing, the sum of the in-phase and quadrature feedback paths

can be expressed as
xl(t) = yl(t) COS(wLot) + yQ(t) Sin(UJLot) (4.3)

where yi(t) and yq(t) represent the outputs of the in-phase and quadrature feedback DACs,
respectively. In order to make the derived equations more tractable, phase terms 6y and 6p

in Figure 4.1 have both been set to zero.

The loop response is derived by setting the input signal z(¢) to zero. The response of the

outer-loop filter in Figure 4.1 is then given by

xo(t) = /00 hor(T)y1(t — 7) cos(wro[t — 7]) dr (4.4)

—00

+ /_OO hor(T)yq(t — 7)sin(wro[t — 7]) dr

By expanding the cos(wr,o[t — 7]) and sin(wpo[t — 7]) terms using standard trigonometric

identities, x2(t) can be rewritten as

x2(t) = xar(t) cos(wrot) + z2q(t) sin(wrot) (4.5)

where
xoy(t) = [hOL (t) cos(wrot) ] ®@yi(t) — [hOL (t) sin(wrot) ] ® yq(t) (4.6)
T2q(t) = [hoL(t)sin(wrot) | ® yi(t) + [ hoL(t) cos(wrot) | ® yq(t) (4.7)

The in-phase and quadrature components in (4.6) and (4.7) are individually time-invariant,

however the overall response in (4.5) is time-variant.
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The outputs of the downconversion mixers can finally be expressed as

ri(t) = %:pgl(t) [ 1+ cos(2wrot) | + % T2 (t) sin(2wr,ot) (4.8)
rolt) = %m(t) sin(2wL0f) + %:@Q(t) 1 - cos(2wrot) ] (4.9)

Here, ri(t) and rq(t) are the in-phase and quadrature components of the response through

the outer-loop path, given inputs y1(t) and yq(t).

The loop response of the image-reject frequency-translating AY. modulator in Figure 4.1
is time-variant due to the presence of the periodic terms, cos(2wrot) and sin(2wrot), in (4.8)
and (4.9). Accordingly, it can be designed as a PLTI system by selecting Ts and Tp in such

a way that cos(2wrot) and sin(2wrpt) remain constant across all sampling instants.

When the in-phase component r1(¢) in (4.8) is sampled at time instants ¢, = nTs, with Ty
set to an integer multiple of T1,0/2, r1(t,) reduces to x91(t,), and is therefore time-invariant.

This constraint on the sampling period can be generalized as

7
Ts = ks%, ks =1,2,3,... (4.10)

When the quadrature component rq(t) in (4.9) is sampled at time instants ¢, = nTg, with Ts
selected according to the sampling constraint in (4.10), rq(t,) reduces to 0 in all cases. Since
the quadrature LO signal is 90° out-of-phase with the in-phase LO signal, sampling instants
in the quadrature path must be delayed by T = 11,0 /4 relative to the in-phase path. When
rq(t) is sampled at delayed time instants t,q = nTs+Tp, rq(tnq) reduces to zaq(tnq), and is
therefore time-invariant. Using (4.10), the constraint on the quadrature-path sampling delay

can be generalized as

1 Ty

= —— ks =1,2,3,... 4.11
ks27 S )73a ( )
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Note that, when applying the constraints in (4.10) and (4.11), the ratio Tp/Ts decreases
as the ratio Ts/T1,0 increases (i.e., as ks increases). As a result, it is increasingly difficult to
accurately realize the quadrature-path sampling delay (7p). In order to reduce this problem,
the constraint in (4.10) is modified such that Tp scales with T1,0. This makes it possible to

adjust the ratio Ts/TL.0 without changing the ratio Tp/7Ts.

Let the quadrature-path sampling delay be fixed at Tp = Ts/2. Consider the case where
the sampling period is set to Ts = T,0/2 (i.e., for ks = 1). At the quadrature-path sampling
instants, sin(2wr,otng) = 0 and cos(2wr,otng) = —1, which yields rq(t,q) = x2q(tha) in (4.9).
Figure 4.4(a) plots the cos(2wr,ot) term and demonstrates the timing of the quadrature-path
sampling instants for Ts = T1,0/2 and Tp = T5/2. In Figures 4.4(b) and (c), Ty is increased
by multiples of 11,0 /2, whereas Tp is fixed at Tg/2. Note that sin(2wrot,g) = 0 in both cases.
In Figure 4.4(b), cos(2wr,0tnq) = 1, which yields rq(t,q¢) = 0 in (4.9) and demonstrates that
Ts = T1,0 is not a valid design option when T = Tgs/2. In Figure 4.4(c), cos(2wr,otnq) = —1,
which yields rq(tnhg) = 2q(tnd) in (4.9) and demonstrates that 375 = T1,0/2 is a valid design
option when Tp = Tg/2.

Therefore, when T = Ts/2, rq(tnq) in (4.9) is time-invariant and non-zero only if T is
an odd multiple of 71,0 /2. This result can be generalized by introducing an additional design

factor kp into the sampling constraint in (4.10) as

T
TS:k:Dks%o, kp =1,3,5,...  ks=1,2,3,... (4.12)

Using (4.12), the constraint in (4.11) can be rewritten as

T
Ty = kD%, kp =1,3,5,... (4.13)
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Figure 4.4: Timing of the quadrature-path sampling instants (¢,q) for Tp = Tg/2.

Accordingly, the sampling period of an image-reject frequency-translating AY modulator

must be selected according to (4.12), and the sampling instants in its quadrature path must

be delayed according to (4.13). It is important to note that the sampling constraints in (4.12)

and (4.13) have been derived independent of the inner-loop filter and can therefore be applied

to image-reject frequency-translating AY modulators with continuous-time or discrete-time,

lowpass or complex inner-loop filters. Note, however, that a complex inner-loop filter cannot

be implemented using a discrete-time circuit topology, since the cross-coupled feedback paths

of a complex integrator cannot be correctly synchronized when the sampling instants of the

in-phase and quadrature paths have different delays.
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General LO Signals

The constraints in (4.12) and (4.13) have been derived here by assuming that the LO signals
have the same phase as the sampling clock (i.e., 6y = 0 and p = 0 in Figure 4.1). In order to
verify that (4.12) and (4.13) are valid beyond this particular case, r1(t) and rq(t) in (4.8) and
(4.9) have also been derived for the case that the LO signals have general phases. When the
constraints in (4.12) and (4.13) are applied to these revised equations, the sampled response

at the output of the downconversion mixers is equal to

r1(tn) = cos(fp) | cos(u) za1(tn) + sin(fp) z2q (tn) | (4.14)

’I”Q(tnd) = COS(QD) [COS(GU) $21(tnd) - Sin(eD) 2Q (tnd) ] (4.15)

Here, r1(ty,) and rq(tnq) remain time-invariant, but are dependent on LO phases 0y and 6p.
The effect of the LLO phase on the loop response of a frequency-translating AY modulator is

discussed further in Section 5.3.

Discrete-Time versus Continuous-Time

In an image-reject frequency-translating A modulator (Figure 4.1), the output spectrum of
the downconversion mixers includes both a low-frequency term, which is centred at dc, and a
high-frequency term, which is centred at 2wpo. When the inner-loop filters are implemented
using a conventional discrete-time topology [Ta099al, the in-phase and quadrature paths are
sampled immediately after the downconversion mixers. In this case, the high-frequency term
is subsampled, and will be subtracted from the low-frequency term if the sampling instants

in the quadrature path are not delayed by Tp, relative to those of the in-phase path.

In an image-reject frequency-translating A modulator with continuous-time inner-loop
filters [Pul05], the high-frequency term is significantly attenuated by the STF from the output
of the downconversion mixers to the input of the quantizer. As a result, it does not affect the
low-frequency term during sampling. This inherent STF filtering makes it possible to reduce
the quadrature-path sampling delay Tp to zero, and to sample the in-phase and quadrature

paths at the same instant.
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Figure 4.5: (a)—(d) Frequency spectrum at points in the forward path of an image-reject frequency
translating AY modulator (Figure 4.1) with continuous-time inner-loop filters and a quadrature-path
sampling delay T, of zero: (a) before the downconversion mixers z5(t), (b) after the downconversion
mixers 7(t), (c) before the sampler v(t), after inherent filtering by the STF, and (d) at the output of
the AY modulator y(n). (€)—(h) The equivalent plots for an image-reject frequency-translating AY

modulator with discrete-time inner-loop filters. In this figure, fro is set to 3fs/2.

Figures 4.5(a)—(d) plot the frequency spectrum at various points in the forward path of
an image-reject frequency-translating AY modulator with continuous-time inner-loop filters
and a quadrature-path sampling delay T of zero. Figures 4.5(e)—(h) provide equivalent plots
for an image-reject architecture with discrete-time inner-loop filters. These figures illustrate
how the inherent filtering provided by the STF of a continuous-time loop filter can be used

to reduce the quadrature-path sampling delay Tp to zero.
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4.2.2 Constraints on the Characteristic of the Inner-Loop Filter

In order to achieve stable operation, the feedback loop of a AY modulator must be designed
such that the spectral content of its input signal can be replicated by the spectral content
of its feedback signal. As a result, the low-frequency output signal of a frequency-translating
A modulator must be upconverted into the same band as the high-frequency input signal.
In an image-reject frequency-translating AY. modulator (Figure 4.1), this upconversion, and
the subsequent in-phase/quadrature path recombination, imposes a basic constraint on the
filtering characteristic of the inner-loop filter when the quadrature-path sampling delay Tp is
set to zero. Note that this section only considers a single value of kg for each configuration,

however the results are valid independent of the values of fg and fro.

Lowpass Inner-Loop Filter

Figures 4.6(a)—(d) plot the frequency spectrum at various points in the feedback path of an
image-reject frequency-translating AY modulator that is designed with a lowpass inner-loop
filter and a quadrature-path sampling delay Tp of Tg/2. Here, f10 is equal to 3fs/2, and the
feedback DAC has a non-return-to-zero (NRZ) pulse, which results in a sin(f)/f magnitude
response that has notches at multiples of fg. Using this design, the signal band contains only
the input signal and shaped quantization noise, as illustrated in Figure 4.6(d). Therefore, an
image-reject frequency-translating AY modulator can be correctly designed using a lowpass

inner-loop filter when T, is selected according to Equation (4.13).

Figures 4.6(e)—(h) plot the frequency spectrum at the same points in the feedback path of
an equivalent frequency-translating AY modulator that is designed with a quadrature-path
sampling delay Tp of zero. Using this design, the signal band contains an attenuated image
in addition to the input signal and shaped quantization noise, as illustrated in Figure 4.6(h).
This image is significantly attenuated by the magnitude response of the feedback DAC and,
in general, does not limit the resolution. Accordingly, an image-reject frequency-translating
A modulator can also be correctly designed using a lowpass inner-loop filter when Tp is set

to zero, as described in Section 4.2.1.
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Figure 4.6: (a)—(d) Frequency spectrum at points in the feedback path of an image-reject frequency
translating AY modulator with lowpass inner-loop filters and a quadrature-path sampling delay Tp
of Ts/2: (a) at the output of the AY modulator y(n), (b) after the feedback DACs y(t), (c)—(d) after
the upconversion mixers and in-phase/quadrature path recombination z1(t). (e)—(h) The equivalent
spectra for an image-reject frequency-translating AY modulator with lowpass inner-loop filters and a

quadrature-path sampling delay Tp of zero. In this figure, fLo is set to 3fs/2.

Complex Inner-Loop Filter

Figures 4.7(a)—(d) plot the frequency spectrum at various points in the feedback path of an
image-reject frequency-translating AY. modulator that is designed with a complezx inner-loop
filter and a quadrature-path sampling delay Tp of Tg/2. Here, f10 is equal to 3fs/2, and the
output centre frequency fc, is equal to fg/4. Using this design, the signal band contains only
the input signal and shaped quantization noise, as illustrated in Figure 4.7(d). Therefore, an
image-reject frequency-translating AY, modulator can be correctly designed using a complex

inner-loop filter when T is selected according to Equation (4.13).
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Figure 4.7: (a)—(d) Frequency spectrum at points in the feedback path of an image-reject frequency
translating AY modulator with a complez inner-loop filter and a quadrature-path sampling delay Tp
of Ts/2: (a) at the output of the AYX modulator y(n), (b) after the feedback DACs y(t), (c)—(d) after
the upconversion mixers and in-phase/quadrature path recombination z1(t). (e)—(h) The equivalent
spectra for an image-reject frequency-translating AY. modulator with a complex inner-loop filter and

a quadrature-path sampling delay Tp of zero. In this figure, fLo is set to 3fs/2.

Figures 4.7(e)—(h) plot the frequency spectrum at the same points in the feedback path of
an equivalent frequency-translating AY modulator that is designed with a quadrature-path
sampling delay Tp of zero. Using this design, quantization noise in the image band, which is
centred at —7fs/4 in Figure 4.7(g), is mirrored into the signal band during the in-phase and
quadrature path recombination, as illustrated in Figure 4.7(h). As a result, an image-reject
frequency-translating A modulator with a complex inner-loop filter and a quadrature-path
sampling delay Tp of zero must have additional filtering prior to its upconversion mixers in

order to attenuate quantization noise in its image band.
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4.3 Behavioural Simulations

This section provides behavioural simulation results that demonstrate the importance of the
constraints derived in Section 4.2. Figure 4.8 shows a block diagram for the test image-reject
frequency-translating AY modulator architecture that is considered here. It has a 2nd-order
continuous-time outer-loop filter, and 1st-order discrete-time lowpass inner-loop filters in its
in-phase and quadrature paths. In addition, it has a single-bit quantizer in each path, and a

corresponding feedback DAC.

Since the test architecture is designed with lowpass inner-loop filters, it downconverts its
input signal directly to baseband. Therefore, the centre frequency of its outer-loop filter and
the frequency of its LO signal f1,o are both set to its input centre frequency fc;. Its sampling
period Tg and its quadrature-path sampling delay Tp are then modified for each test case. In
this section, with the exception of the errors under consideration, all simulation parameters

are set to their ideal values.
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Figure 4.8: A test image-reject frequency-translating AY modulator architecture.
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Figure 4.9(a) plots the output spectrum of the test architecture (Figure 4.8) for the case
that Ts = 3T1L0/2 and Tp = Tg/2. Here, ks = 1 and kp = 3, which satisfy the constraints in
Equations (4.12) and (4.13), and produce the correct output. In Figure 4.9(b), T is changed
to 3.25T1,0/2, which violates the constraint in Equation (4.12) and causes the loop response
of the test architecture to be time-variant. This reduces the noise-shaping performance, and
introduces additional signal tones into the output, in particular at 0.25fs. In Figure 4.9(c),
Ts is set to 3.5 T1,0/2, which again decreases the noise-shaping performance, and introduces

additional signal tones, in particular at 0.5 fg.

Figure 4.10(a) plots the output spectrum of the test architecture (Figure 4.8) for the case
that Ts = 3T1,0/2 and Tp = Ts/2, as outlined above. In Figure 4.10(b), the sampling delay of
the quadrature path Tp is set to 0.9575/2, which violates the constraint in Equation (4.13).
This creates a mismatch between the in-phase and quadrature paths of the test architecture,
and introduces a significant image tone at its output. In Figure 4.10(c), Tp is set to 0, which

reduces the output of the test architecture to a real spectrum.
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Figure 4.9: The output spectrum of the test architecture shown in Figure 4.8, when it is designed
with: (a) TS = 3TL0/2 and TD = Ts/2, (b) TS =3.125 TLO/2 and TD = Ts/2, and (C) TS =3.5 TL0/2
and Tp = Ts/2. Here, the configuration in (a) satisfies the constraints in Equations (4.12) and (4.13),

whereas those in (b) and (c) violate the constraint in Equation (4.12).
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Figure 4.10: The output spectrum of the test architecture shown in Figure 4.8, when it is designed
with: (a) Ts = 3TL0/2 and Tp = Ts/2, (b) Ts = 3TL0/2 and Tp = 0.95’115/27 and (C) Ts = 3TL0/2
and Tp = 0. Here, the configuration in (a) satisfies the constraints in Equations (4.12) and (4.13),

whereas those in (b) and (c) violate the constraint in Equation (4.13).

4.4 Performance Limitations

This section examines the performance limitations of the image-reject frequency-translating
A3 modulator in Figure 4.1, in particular its sensitivity to mismatch. Section 4.4.1 examines
the effect of phase mismatch in the LO signals and time-delay mismatch in the responses of
the feedback DACs, and Section 4.4.2 examines the effect of amplitude mismatch in the LO
signals. In this section, with the exception of the errors under consideration, all simulation

parameters are set to their ideal values.

4.4.1 Phase and Delay Mismatch

In a frequency-translating AY modulator (Figure 4.1), timing errors can be introduced into
the forward path, at the downconversion mixers and the sampler, and into the feedback path,
at the upconversion mixers and the feedback DACs. Section 4.3 examined the effect of errors
in the sampling period Ty and the quadrature-path sampling delay Tp. This section looks at

the effect of phase mismatch in the LO signals and time-delay mismatch in the DACs.
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Figures 4.11 and 4.12 plot the output spectrum of the test architecture in Figure 4.8 for
the case that Ts = 37L0/2 and Tp = Ts/2, both of which satisfy the constraints derived in
Section 4.2. In Figure 4.11(a), a phase error of 0.00157 is introduced into the LO signal that
is applied to the quadrature mixer in the feedback path of the test architecture. This results
in a mismatch between the in-phase and quadrature paths, which introduces an image tone
into the output spectrum. In Figure 4.12(a), the same error is introduced at the quadrature
mixer in the forward path of the test architecture. Although this also results in a mismatch,
the associated image tone is suppressed by the gain of the outer-loop filter. Accordingly, the
phase mismatch of the forward-path mixers has less of an effect on the resolution than that
of the feedback-path mixers. Figures 4.11(b) and 4.12(b) plot equivalent results for a phase
error of 0.0157. Here, the mismatch of the forward-path mixers is again suppressed, however

it still has a significant effect on the performance.

Figure 4.13 plots the output spectrum of the test architecture in Figure 4.8 for the case
that Ts = 3T1L0/2 and Tp = Ts/2, as outlined above. In Figure 4.13(a), a time-delay error of
0.0005 T3 is introduced into the response of the quadrature-path feedback DAC. This delay
error is equivalent? to the phase error simulated in Figure 4.11(a), however it introduces less
mismatch into the feedback path. Figure 4.13(b) shows a comparable result for a delay error
of 0.05Ts. Since the test architecture is designed with lowpass inner-loop filters (Figure 4.8),
and downconverts its input signal directly to baseband, its loop response approximates that
of a lowpass AY modulator [Pul05]. As a result, it has similar sensitivity to time-delay errors
in its DAC. Section 3.5.1 demonstrated that a lowpass AY modulator has low sensitivity to

time-delay errors in its feedback DAC using the example of clock jitter.

4.4.2 Amplitude Mismatch

In an image-reject frequency-translating AY modulator (Figure 4.1), amplitude mismatch is
introduced primarily by the LO signals, the feedback DACs, and the coefficients of the inner-
loop filters. This section only examines the impact of amplitude mismatch in the LO signals,

however the results are representative of DAC and coefficient mismatch.

2Here, a phase error (Af) and a time-delay error (At) are considered to be equivalent if A0 = wroAt.
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Figure 4.11: The output spectrum of the test architecture shown in Figure 4.8, when it is designed
with Ts = 37Lo/2 and Tp = Tgs/2. Here, a phase error of A# is introduced into the LO signal that is
applied to the quadrature mixer in the feedback path, where: (a) A6 = 0.00157, and (b) Af = 0.157.
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Figure 4.12: The output spectrum of the test architecture shown in Figure 4.8, when it is designed
with Ts = 371,0/2 and Tp = Tg/2. Here, a phase error of A# is introduced into the LO signal that is
applied to the quadrature mixer in the forward path, where: (a) A6 = 0.00157, and (b) A8 = 0.157.

Figure 4.14 plots the output spectrum of the test architecture in Figure 4.8 for the case
that Ts = 371,0/2 and Tp = Ts/2, as described above. In Figure 4.14(a), the LO signal that
is applied to the quadrature mixer in the feedback path of the test architecture is scaled by a
factor of 0.995. This amplitude error is equivalent® to the phase error in Figure 4.10(a), and

results in approximately the same mismatch. In Figure 4.14(b), the same error is introduced
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Figure 4.13: The output spectrum of the test architecture shown in Figure 4.8, when it is designed
using Ts = 3T1,0/2 and Tp = Ts/2. Here, a time-delay error of At is introduced into the response of

the quadrature-path feedback DAC, where: (a) At = 0.0005Ts, and (b) At = 0.05Ts.
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Figure 4.14: The output spectrum of the test architecture shown in Figure 4.8, when it is designed
with Ts = 3T1,0/2 and Tp = Ts/2. Here, an amplitude error of 0.5% is introduced into the LO signal
that is applied to the quadrature mixer of: (a) the feedback path, and (b) the forward path.

at the quadrature mixer in the forward path of the test architecture. Here, as in Figures 4.10
and 4.11, the mismatch error of the forward path is suppressed, whereas that of the feedback

path is added directly to the input signal.

3Here, a phase error (Af) and an amplitude error (AA) are equivalent if !1—AA| = |l—efjA9| [Mar04].
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4.5 Conclusion

This chapter investigated the image-reject frequency-translating AY modulator architecture
proposed in [Tao99a]. It outlined a procedure to synthesize the image-reject architecture from
a prototype discrete-time complex AY. modulator, and derived a set of constraints that must
be satisfied to achieve this synthesis. The derived constraints limit the selection of the timing
parameters and the characteristic of the loop filter. The importance of these constraints was

demonstrated using simulation results, which are shown in Figures 4.9 and 4.10.

The constraints on an image-reject frequency-translating A3 modulator (Figure 4.1) can

be summarized as follows:

% The sampling period Tg must be an integer multiple of T1,0/2, where 11,0 is the period
of the LO signal. This constraint is required to ensure that the sampled response of the

AY feedback loop is time-invariant (Section 4.2.1).

% A delay Tp is required between the sampling instants of the in-phase and quadrature
paths. The value of this delay depends on Ty and 11,0, and can be reduced to zero when

the inner-loop filter has a continuous-time circuit topology (Section 4.2.1).

« The inner-loop filter can have a lowpass or complex characteristic. However, a complex
inner-loop filter can only be implemented using a continuous-time circuit topology, and

can require additional filtering in the feedback path (Section 4.2.2).

This chapter further examined the performance limitations of the image-reject frequency
translating AY modulator, focusing on its sensitivity to path mismatch. Section 4.4 provided
simulation results for the effect of phase and amplitude mismatch, as shown in Figures 4.11,
4.12, and 4.14, and demonstrated that both can significantly reduce the performance of the
image-reject frequency-translating AY modulator. This mismatch problem can be solved by
using single-path mixing in a frequency-translating AY. modulator, rather than image-reject

mixing. The single-path architecture is presented in the next chapter.
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OWNCONVERSION mixing can be achieved using two different approaches: image-reject
D and single-path. An image-reject mixing process uses in-phase and quadrature phases
of an LO signal to generate a complex output spectrum, which is defined over f € [ —o0, 00].
A single-path mixing process uses one LO phase to generate a real output spectrum, which is
defined over f € [0, 00]. Chapter 4 investigated the limitations of a frequency-translating A%
modulator architecture that is based on image-reject mixing [Tao99a]. This chapter presents
the design procedure for a frequency-translating AY modulator that is based on single-path
mixing [Choll]. The primary advantage of the single-path architecture, over an image-reject
architecture, is that it eliminates the potential for path mismatch introduced by phase, delay,

and amplitude errors (Section 4.4).

This chapter first describes a procedure to synthesize a single-path frequency-translating
AY modulator from a prototype discrete-time NTF, and develops a set of design constraints
that are required to achieve this synthesis. It then discusses the realization of the loop filter,
and develops an effective transfer function for the high-frequency, or outer-loop path, and an

optimal configuration for the low-frequency, or inner-loop filter.
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This chapter is organized into seven sections. Section 5.1 gives an overview of single-path
frequency-translating AY. modulators and describes their advantages relative to image-reject
architectures. Section 5.2 outlines a synthesis procedure for the single-path architecture and
derives constraints for its timing parameters and loop filter. Sections 5.3 and 5.4 discuss the
realizations of the outer-loop filter and inner-loop filter, as described above, and Section 5.5
discusses the LO phase dependence of the NTF. Section 5.6 presents a technique to plot the
effective STF of a single-path frequency-translating A3 modulator, and develops additional

design equations. Section 5.7 provides a summary of the chapter.

5.1 Overview

Figure 5.1 shows a block diagram for a frequency-translating A3 modulator that is designed
with single-path mixing [Choll]. Here, the forward-path mixer (mp) implements frequency
downconversion, and the feedback-path mixer (my) implements frequency upconversion. This
splits the AY feedback loop into a high-frequency section and a low-frequency section, where
the high-frequency section of the loop filter is referred to as the outer-loop filter, and the low
frequency section is referred to as the inner-loop filter. The single-path frequency-translating

A modulator in Figure 5.1 has the following design parameters:

% The input and output centre frequencies (fc; and fc,) are the centre frequencies of the
signal band at the input and output of the frequency-translating AY modulator. They

determine the centre frequencies of its filters (Hor, and Hiy,).

% The LO frequency (fLo) determines the frequency separation between fc; and fc,. Its
value is selected, in conjunction with the sampling frequency (fs), according to certain

constraints, which are derived in Section 5.2.

% The outer-loop filter (Hoy,) and the inner-loop filter (Hy,) determine the noise-shaping
characteristic of the frequency-translating A modulator. Their design is discussed in

Sections 5.3 and 5.4, respectively.
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Figure 5.1: Block diagram for a single-path frequency-translating AY modulator.

% The LO phases (6y and 0p) modify the response through the loop feedback path of the

frequency-translating AY modulator and, in this way, modify its NTF. The selection of

Ay and 60p is discussed in Section 5.5.

Comparison to the Image-Reject Architecture

The single-path frequency-translating AY. modulator eliminates the path mismatch that can

limit the resolution of the image-reject architecture. The trade-off for this advantage is that

the signal transfer function (STF) of a single-path frequency-translating AY modulator does

not provide the same degree of inherent filtering as that of an image-reject architecture.
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Path Mismatch

The resolution of an image-reject frequency-translating AY modulator is limited by mismatch
in its in-phase and quadrature paths. This path mismatch is caused by amplitude and phase
errors in its LO signals, delay errors in its sampling clock, and scaling errors in its functional
blocks. In an image-reject architecture, path mismatch introduces images of the input signal
into the feedback and forward paths at the upconversion and downconversion mixers. In the
feedback path, images are added directly to the input signal, and can significantly reduce the
resolution of the AY modulator. In the forward path, images receive limited suppression by
the outer-loop filter, and can still reduce the performance. Section 4.4 provided behavioural
simulations that illustrate the effect of path mismatch on the performance of an image-reject

frequency-translating AY. modulator.

A single-path frequency-translating AY. modulator only uses one phase of the LO signal,
and is not affected by path mismatch. This enables it to achieve significantly lower sensitivity

to amplitude and phase errors in the LO signal than an image-reject architecture.

It is important to note how the image of an image-reject architecture differs from that of
a single-path architecture. In an image-reject architecture, images are caused by mismatch in
the timing signals and in the functional blocks. These images are generated inside the signal
band and limit the resolution of the AY¥ modulator. In a single-path architecture, images are
inherent to the mixing process. These images are generated outside the signal band and only

result in signal-swing issues that can be resolved in the system-level design.

Inherent Filtering

In order to operate on high-frequency signals, the outer-loop filter of a frequency-translating
AY. modulator must be implemented using a continuous-time circuit topology (Section 2.3).
As a result, the STF of a frequency-translating AY modulator always provides some degree
of inherent filtering (Section 2.1.2). Figure 5.2 plots the STF of an image-reject architecture,
and that of a single-path architecture. Here, although both architectures provide significant
attenuation at aliases of their signal band, the STF of the single-path frequency-translating

AY. modulator provides limited attenuation within its image band.
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Figure 5.2: Simulated STF and NTF of: (a) an image-reject frequency-translating AY modulator
with fo; = 2fs, and (b) a single-path frequency-translating AYX modulator with fc; = 9/4fs. Here,
the image band of the single-path architecture is centred at 7/4fs. (STF — and NTF - - -)

Using a single-path mixing process, a signal and its image are downconverted to the same
frequency. In the same way, a single-path frequency-translating AY. modulator downconverts
interferers from its image band into its signal band. These interferers are attenuated by the
outer-loop filter, prior to downconversion, which provides partial image-reject filtering for the
forward-path mixer. The inherent image-reject filtering of a single-path frequency-translating
AY. modulator is improved by increasing the order of its outer-loop filter, and by increasing

its output centre frequency (fc,), relative to its sampling frequency (fs).

The image-reject and single-path frequency-translating AY modulator architectures both
require additional filtering when they are incorporated into a wireless receiver. This filtering
is necessary to ensure that the interferers close to the signal band, which are not significantly
attenuated by the STF, do not overload the AY modulator. Since this filtering supplements
the inherent image-reject filtering of a single-path frequency-translating AY modulator, the
limited inherent filtering of the single-path architecture is not a significant disadvantage, as

compared to an image-reject architecture.
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Implementation Issues

In terms of their implementation, the single-path and image-reject frequency-translating AX
modulators provide advantages and disadvantages comparable to conventional bandpass and
complex-bandpass AY modulators (Section 2.1.3). An image-reject frequency-translating A%
modulator uses two quantizers, and requires twice as many feedback DACs as an equivalent
single-path architecture. However, since it generates a complex output spectrum, the OSR of

an image-reject architecture is double that of a single-path architecture.

5.2 NTF Synthesis

The noise-shaping characteristic of a single-path frequency-translating A3 modulator can be
derived from a prototype discrete-time AY. modulator, using the general procedure that was
described in Section 3.1 for a conventional continuous-time architecture. Here, the prototype
discrete-time architecture must have a bandpass loop filter to replicate the feedback path of a
single-path frequency-translating AY modulator. Figure 5.3 shows a prototype discrete-time
bandpass A3 modulator. The loop feedback path of a single-path frequency-translating AY.
modulator is shown in Figure 5.4(a), and the loop feedback path of a prototype discrete-time

bandpass AY modulator is shown in Figure 5.4(b).

s Hi(@)
X v vi) | [ y(n)
D 5 >

fCo

DAC

Figure 5.3: Block diagram for a discrete-time AY modulator with a bandpass loop filter.
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Figure 5.4: The loop feedback paths of: (a) the single-path frequency-translating AY modulator in
Figure 5.1, and (b) the equivalent discrete-time bandpass AY modulator in Figure 5.3.

In order to achieve the same N'TF as the prototype discrete-time bandpass AY modulator
in Figure 5.3, the single-path frequency-translating A> modulator in Figure 5.1 must provide
the same loop response at sampling instants (Section 3.1). This impulse equivalence can be

achieved using the impulse-invariant transform, which is defined as

: / 1 L GRS
i) = m (o) s = e Y e O

The design of NTF(z) is discussed in Section 2.1.3. Here, }AIL(S) represents the effective loop

transfer function of the single-path frequency-translating AY modulator.
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Figure 5.5: The effective loop feedback path of the single-path frequency-translating AY. modulator
in Figure 5.1, which combines the upconversion and downconversion operations with the response of

the outer-loop filter Hor,(s).

In order to use Equation (5.1) to map a prototype discrete-time NTF to the architecture
shown in Figure 5.1, an effective transfer function is required for the time-varying response
through its outer-loop path, from the input of the upconversion mixer y(t) to the output of
the downconversion mixer r(t), as illustrated in Figure 5.5. This effective transfer function,
denoted as ﬁ[OL(s), is derived by imposing certain constraints on the timing parameters of

the AY modulator (Section 5.2.1). The effective loop transfer function can be expressed as

AN AN

HL(S) = HOL(S)HIL(S) (5.2)
Figure 5.6(a) shows the effective loop feedback path of the single-path frequency-translating
AY. modulator in Figure 5.1, and Figure 5.6(b) shows the equivalent loop feedback path of
the discrete-time bandpass AY modulator in Figure 5.3.
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Figure 5.6: The effective loop feedback path of a single-path frequency-translating AY modulator,
and the loop feedback path of a discrete-time bandpass AY modulator.

The effective transfer function of the outer-loop path, H oL(s), depends on the response of
the outer-loop filter, Hor,(s) in Figure 5.1, and the frequency of the LO signal (fro). Given

a 2nd-order filter, this effective transfer function has a general form of

WCoS + w%o

A
HOL(S) =
(s +55)° +u,

(5.3)

where wc; and wc, are the input and output centre frequencies of the frequency-translating
AY. modulator, and Q is the quality factor of its outer-loop filter Hor,(s). Section 5.3 derives

AN
an expression for Hop,(s) assuming a prototype 2nd-order outer-loop filter.
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The inner-loop transfer function, Hiy,(s), that is required to implement a prototype NTF
is then derived from the effective loop transfer function of the AYX modulator ﬁL(s), defined
in Equation (5.1), and fAIOL(s), defined in Equation (5.3), where

Hy (5) = 2(8) (5.4)

Hor(s)

The realization of the inner-loop filter is discussed in Section 5.4.

Due to the use of mixing in the feedback loop of a single-path frequency-translating AY
modulator, the relationship in Equation (5.1) cannot be satisfied without setting additional
constraints on its sampling period Tg and its inner-loop filter Hip,(s). Section 5.2.1 discusses
the selection of the timing parameters in a single-path frequency-translating AY modulator,

and Section 5.2.2 discusses the design of its inner-loop filter.

5.2.1 Selection of Timing Parameters for Time Invariance

The sampling constraint of a single-path frequency-translating AY modulator is identical to
that of the in-phase path in an image-reject architecture, which was derived in Section 4.2.1.

The previous derivation is summarized below.

The response through the outer-loop path of the single-path frequency-translating AY

modulator in Figure 5.1 can be expressed as

r(t) = %mgl(t) [ 1+ cos(2wrot) ] + %CEQQ(i) sin(2wr,ot) (5.5)

where
zo1(t) = [hoL(t) cos(wrot) | ® y(t) (5.6)
22q(t) = [hoL(t) sin(wrot) | ® y(t) (5.7)

Note that Equation (5.5) is identical to (4.8) in Section 4.2.1, and Equations (5.6) and (5.7)

are modified from (4.6) and (4.7) to remove the yq(t) term.
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When 7(t) in (5.5) is sampled at time instants ¢, = nTg, defined in (4.2), with Ty set to
an integer multiple of T1,0/2, r(t,) reduces to zor(ty), and is therefore time-invariant. This

constraint on the sampling period can be generalized as

7
Tszks%o, ks =1,2,3,... (5.8)

which is identical to the sampling constraint in Equation (4.10).

5.2.2 Constraints on the Characteristic of the Inner-Loop Filter

In order to achieve stable operation, the feedback loop of a AY modulator must be designed
such that the spectral content of its input signal can be replicated by the spectral content of
its feedback signal. This condition cannot be satisfied in a single-path frequency-translating
AY. modulator (Figure 5.1), since its feedback signal contains a full-scale image, in addition
to the upconverted output signal. Therefore, in order for a single-path architecture to have a

practical implementation, a constraint must be imposed on its inner-loop filter.

Lowpass Inner-Loop Filter

Figure 5.7 plots the frequency spectrum at different points in the feedback of a single-path
frequency-translating AY. modulator that is designed with a lowpass inner-loop filter. Here,
fro is equal to 3fg/2, and the feedback DAC has an NRZ pulse, which results in a sin(f)/f
response that has notches at multiples of fs. In a single-path architecture, the feedback-path
mixer upconverts both the output signal and its image. The signal component is subtracted
at the input summation of the AY. modulator, whereas the image is not attenuated prior to
the outer-loop filter. In order to avoid swing issues at the output of the outer-loop filter, the
frequency separation of the output signal and its image must be sufficient to ensure that the
image falls well outside the bandwidth of the outer-loop filter. This condition is not satisfied
when the signal and image bands are adjacent to one another, as illustrated in Figure 5.7(c).
Accordingly, a single-path frequency-translating AY. modulator cannot be correctly designed

using a lowpass inner-loop filter.
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Figure 5.7: Frequency spectrum over the feedback path of a single-path frequency-translating AY
modulator with a lowpass inner-loop filter: (a) at the output of the AX modulator y(n), (b) after the
feedback DAC y(t), and (c) after the upconversion mixer z1(¢). In this figure, fLo is set to 3fs/2.
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Figure 5.8: Frequency spectrum over the feedback path of a single-path frequency-translating AX
modulator with a bandpass inner-loop filter: (a) at the output of the AX modulator y(n), (b) after the
feedback DAC y(t), and (c) after the upconversion mixer z1(¢). In this figure, fLo is set to 3fs/2.
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Bandpass Inner-Loop Filter

Figure 5.8 plots the frequency spectrum at different points in the feedback of a single-path
frequency-translating AY modulator that is designed with a bandpass inner-loop filter. Here,
fro is equal to 3fs/2, and the output centre frequency fc, is set to fs/4. Using this design,
the frequency separation of the signal and image bands is sufficient to ensure that the image
band falls well outside the bandwidth of the outer-loop filter, as illustrated in Figure 5.8(c).
Therefore, a single-path frequency-translating A3 modulator can be correctly designed using

a bandpass inner-loop filter.

5.3 Outer-Loop Filter Realization

This section develops an effective transfer function for the time-varying outer-loop path of a
single-path frequency-translating AY. modulator. It also demonstrates the dependence of the
outer-loop path on the phase of the LO signal, and proposes a design technique that reduces

the sensitivity of a frequency-translating AY modulator to phase variations.

Figure 5.9 shows a block diagram for the outer-loop path of a frequency-translating AY
modulator that is designed with single-path mixing. The effective transfer function is derived
here by applying a unit impulse d(n) at the input of the feedback DAC, and then evaluating
its associated response at the output of the downconversion mixer. This derivation assumes
that the periods of the sampling clock and the LO signal, Tg and 11,0 respectively, have been
selected according to the constraint derived in Section 5.2.1 and, therefore, that the cascade

of blocks in Figure 5.9 is periodically linear time-invariant (PLTI).

The derivation further assumes that the outer-loop bandpass filter, Hor,(s) in Figure 5.9,
is implemented using a parallel RLC circuit that has a centre frequency of fo; and a quality
factor of Q. The transfer function of this 2nd-order filter can be expressed as

wess
52 + %s + wd,;

Hov(s) = (5.9)

where fc; is equal to the input centre frequency of the frequency-translating AY modulator,

as defined in Section 5.1.
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In a practical implementation, the quality factor of an LC resonator is typically limited by
the series resistance of its inductor, rather than the parallel resistance of its LC tank. Such a
configuration shifts the position of the zero in Hor,(s), however it has a minimal effect on the

derived result and does not require further consideration.

For a sinusoidal LO signal with a frequency of fro and a phase of 0y, relative to an edge

of the sampling clock, the response of the upconversion mixer is given by

z1(t) = cos(wrot + Ou) hpac(t) (5.10)

where hpac(t) is the impulse response of the feedback DAC.

It is assumed that the outer-loop DAC in Figure 5.9 uses an NRZ pulse that is delayed
by dgTs relative to the sampling clock. The response of this DAC can be expressed as

hpac(t) = u(t — dgTs) — u(t — [1 + dg|Ts) (5.11)

where u(t) represents the unit step function. This chapter presents a technique to design the
inner-loop filter of a frequency-translating AY modulator, Hyy,(s) in Figure 5.1, such that the
response of its outer-loop path does not depend on the delay prior to its upconversion mixer.

Therefore, this delay is not considered in subsequent equations (i.e., g = 0).

In order to satisfy the time-shifting property of the Laplace transform, Equation (5.10) is

modified so that the delay of the LO signal matches the delay of each term in hpac(t), where
z1(t) = cos(wrot + bu) u(t) — cos(wrolt — Ts] + Ov) u(t — 13) (5.12)

Note that Equation (5.10) can only be modified as shown in Equation (5.12) when 71,0 and

Ty are selected according to the constraint derived in Section 5.2.1.

By applying the constraint in Equation (5.8), the LO signal satisfies
cos(wrot + 0uy) = (—1)%s cos(wrolt — Ts] + 6v) (5.13)

where the sign inversion for odd values of kg is reversed during downconversion mixing, and

does not require further consideration.
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Figure 5.9: The outer-loop path of a single-path frequency-translating AY. modulator.

The Laplace transform of Equation (5.12) yields

Xi(s) = [COS(OU) — sin(Ay) wLOZ] [1— e 5T5] (5.14)

2+ 2 2+wLO

S Wro S

The response of the outer-loop filter Xo(s) is derived by multiplying X1 (s) and Hor(s),

and expanding their product using a partial fraction expansion. This results in

bis —bowro  bis — ban;i wei
s2 +wi, 52 + “Gts + Wi

Xo(s) = [1— e 5T5] (5.15)

where n; = < and the phase components b; and by are equal to
M= Yo

by = cos(fy) c2 —sin(fy) c1 (5.16)

by = cos(fy) c1 +sin(Oy) ca (5.17)

The coefficients ¢; and cs can be expressed in terms of 7; as

lim
Q*(nZ — 1)y 92> s
Cl = 2 2 2 2 v 2 = 2 v 1 (518)
Q*(ny — 1)? +n; n; —
= s ~ (5.19)

Q*(n? —1)? +n?

Note that coefficient co — 0 as the quality factor Q — oo, and therefore has a minimal effect

on the response of the outer-loop path for practical values of Q.
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The inverse Laplace transform of Xs(s), given in Equation (5.15), is equal to

2a(t) = Ta(t) u(t) — To(t — Ts) u(t — Ts) (5.20)

where

Za(T) = [b1 cos(wrLoT) — be sin(wpoT) | (5.21)

wCi

— [b1 cos(xiwciT) — (bami + blﬁ) sin(yweiT)]e” 2@ 7
Note that Q% > 1 and, correspondingly, y; = 1 for practical values of Q. Accordingly, y; is

not included in subsequent equations.

The response of the downconversion mixer can be expressed as

r(t) = cos(wrot + Op) xa(t) (5.22)

where 6p is the phase of the LO signal that is applied to the downconversion mixer, relative
to the sampling clock. In order to satisfy the time-shifting property of the Laplace transform,

the LO signal must be modified in the same way as in Equation (5.12).

The downconversion mixer splits the response of the outer-loop path into two terms: the
required low-frequency term rioy(t), which is centred at fc, = (fci — fLo), and an additional
high-frequency term rpigh(t), which is centred at (fc; + fro). The low-frequency term 716w (t)
results from the difference in the arguments of the LO signals that are applied to the mixers,
and has a scaling factor that depends primarily on the difference in their phases (6y — 6p).
The high-frequency term 7high () similarly results from the sum of these arguments, and has

a scaling factor that depends primarily on the sum of their phases (6y + 6p).

If the high-frequency term is significantly attenuated following the downconversion mixer,
the response of the outer-loop path is effectively independent of the absolute values of phases
0y and fp, and instead depends only on their difference (6 — 0p). This result can be further
extended to excess loop delay. When the high-frequency term is significantly attenuated, the
response of the outer-loop path is independent of the delay prior to the upconversion mixer,

and instead depends only on the delay between the mixers, which is negligible. Accordingly, by



5.3 Outer-Loop Filter Realization 101

significantly attenuating the high-frequency term, the loop response of a frequency-translating
AY. modulator becomes independent of the delay between its LO signal and sampling clock,
and is therefore insensitive to synchronization errors between these signals. Furthermore, the
response of the outer-loop path becomes independent of the excess loop delay, can therefore

be represented as an linear time-invariant (LTI) filter.

The remainder of this derivation assumes that the high-frequency term is attenuated, and
therefore only considers the low-frequency term. The response of the low-frequency term can

be expressed as

Tow(t) = Tlow(t) u(t) — Flow(t — Ts) u(t — Ts) (5.23)
where
_ 1 _¥Ci 1 _YCi, |
Tlow(T) = 5 dy [1 —e 2Q cos(wcoT)} + 3 da [e 2Q SIH(WCOT)} (5.24)

and the phase components d; and dy are equal to

di = cos(fy) ca — sin(Ou) 1 (5.25)

da = cos(by) c1 + sin(Onr) c2 (5.26)

Here, 0\ = (0y — 0p) represents the phase difference between the LO signals that are applied

to the upconversion and downconversion mixers.

Note that a number of terms have been excluded from Equations (5.25) and (5.26). These
secondary terms depend on both the sum and the difference of the LO phases, however their
magnitudes are negligible as compared to d; and dy. Therefore, they can be omitted from the

derived transfer function without significantly affecting its accuracy.

The Laplace transform of Equation (5.23) yields the effective response of the outer-loop

path. It can be expressed as
Riow(s) = How(s) Hpac(s) Y (e*T5) (5.27)

where Hpac(s) is the Laplace transform of hpac(t) in Equation (5.11).
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Accordingly, the effective transfer function of the outer-loop path can be expressed as

(dlz% + d2> weos + diwd,
Ho(s) = —= R (5.28)
WCo
(s + ;é ) + wg,

where fc, represents the output centre frequency of the frequency-translating AY modulator

and the quality factor é = (weo/wei) Q.

5.4 Inner-Loop Filter Realization

This section discusses the realization of the inner-loop filter of the frequency-translating AY
modulator in Figure 5.1, focusing on the configuration of its coefficient paths. The inner-loop
filter of a single-path frequency-translating AY modulator must provide a bandpass filtering
characteristic (Section 5.2.2), and is implemented using a cascade of resonators. The transfer

function of the inner-loop filter can be generalized as

, Ni—1 N;
bN,+1 Weos™ 4 -+ by Wae 8+ brwe,

Hi(s) = (52wl ) Ni/2

(5.29)

where fc, is the output centre frequency of the frequency-translating AY modulator and N;

is the order of the inner-loop filter.

In Equation (5.29), Hip(s) provides (N; + 1) coefficients. The loop filter of a single-path
frequency-translating AY modulator requires a total of N = (N, + V;) coefficients to realize
a prototype NTF, where N, is the order of the outer-loop filter. The outer-loop filter Hor,(s)
considered in Section 5.3 has N, = 2, however it does not provide any additional coefficient
paths. Accordingly, if the expressions in Equations (5.9) and (5.29) are realized directly, the
resulting loop filter will be missing one coefficient path. This path, and its implementation,

are discussed further in Section 6.1.4.
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The loop filter of a AY modulator can be realized using feedforward coefficient paths or
feedback coefficient paths (Section 2.1.3). In a frequency-translating AY modulator, the loop
filter best implemented by combining both types of coefficient paths into a hybrid topology.
This section discusses the advantages of feedforward and feedback paths in the context of a
frequency-translating A modulator. The analysis that is presented here is used to develop an

optimized loop-filter topology in Section 6.1.

5.4.1 Feedforward Paths

In a frequency-translating AY modulator (Figure 5.1), a feedforward loop-filter topology can
be used to decrease the signal swing through the forward-path mixer and, in this way, reduce
the distortion introduced by the mixer. Figure 5.10 shows a single-path frequency-translating

AY modulator that is realized using a strictly-feedforward loop-filter topology.

The advantages of a feedforward loop-filter topology are first described in the context of
a conventional AY modulator. Figure 5.11(a) shows a conventional bandpass AY modulator
that is realized using a strictly-feedback loop-filter topology. Here, the first stage of the loop
filter I1(s) must generate an input-signal component proportional to feedback coefficient as,
since the loop gain of the AY modulator forces the output of each subtraction node to zero.
This large input-signal component means that the distortion introduced by I;(s) can limit
the maximum signal swing at its output and, correspondingly, the dynamic range of the AY
modulator. Although this input-signal component could be reduced by decreasing the values
of coefficients a; and ag using dynamic range scaling [Sch05], this reduces the suppression of

the circuit noise introduced by the remaining stages of the loop filter.

Figure 5.11(b) shows a strictly-feedforward realization of the conventional bandpass A
modulator shown in Figure 5.11(a). Here, the magnitude of the input-signal component that
must be generated at the output of the first stage I (s) is significantly lower than that in the
feedback topology. As a result, the distortion that is introduced by this stage is reduced, and
dynamic range scaling can be used to increase coefficients a; and as, in order to improve the
suppression of circuit noise. Note that the linearity enhancement provided by a feedforward

implementation is most effective for designs with high oversampling ratios [Sch05].
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Figure 5.10: Block diagram for a 6th-order single-path frequency-translating AY modulator that is
designed with a strictly-feedforward loop-filter topology.

In a frequency-translating AY modulator (Figure 5.10), a feedforward loop-filter topology
reduces the magnitude of the signal component that must be passed by the downconversion
mixer and, in this way, reduces the distortion that is introduced by the mixer. In addition, it
facilitates the use of dynamic range scaling. Here, the coefficient a; of the outer-loop path is

increased to improve the suppression of circuit noise introduced by the inner-loop filter.

Use of a feedforward implementation is particularly important in a frequency-translating
AY modulator, since the nominal value of its outer-loop path coefficient a; is lower than that
of the equivalent coefficient in a conventional bandpass AY modulator (Figure 5.11). When
the filtering characteristic of the outer-loop filter is shifted from the input centre frequency to
the output centre frequency (fc; to foo), its effective quality factor is decreased by (fci/ fco),
however its mid-band gain is only decreased by 1/2 (Section 5.3). As a result, the effective
filtering characteristic of the outer-loop path has a higher stopband gain than a conventional

resonator and, therefore, requires a smaller nominal coefficient.
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Figure 5.11: Block diagrams for a conventional 4th-order bandpass AY. modulator that is designed
with: (a) a strictly-feedback loop-filter topology, and (b) a strictly-feedforward topology.

Figure 5.12(a) uses Equations (5.8) and (5.28) to plot the effective filtering characteristic
of the outer-loop path for a single-path frequency-translating AY modulator. Figure 5.12(b)

provides an equivalent plot for one resonator in a conventional bandpass AY modulator.
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Figure 5.12: (a) The effective filtering characteristic of the outer-loop path Hor(s) of a single-path
frequency-translating AY. modulator (Section 5.3), where kg is varied from 1 to 4, and (b) the filtering

characteristic of one resonator in a conventional bandpass AY¥ modulator.

As the value of kg increases in Figure 5.12(a), the effective quality factor of the outer-loop
filter decreases, whereas its mid-band gain remains approximately constant. In this way, the
effective stopband gain of the outer-loop filter increases with kg, so that the nominal value
of the outer-loop path coefficient a1 decreases, which reduces the suppression of circuit noise.
Therefore, use of a feedforward implementation becomes increasingly important as the input
centre frequency of a frequency-translating AY. modulator is increased above its sampling

frequency or, equivalently, as the value of kg is increased.

5.4.2 Feedback Paths

In a frequency-translating AY. modulator, feedback coefficient paths can be used in the loop
filter to attenuate the high-frequency term of the loop response, as described in Section 5.3.
Figure 5.13 depicts a single-path frequency-translating AY modulator that is realized using

a hybrid feedforward-feedback loop-filter topology.
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Figure 5.13: Block diagram for a 6th-order single-path frequency-translating AY modulator that is
designed with a hybrid feedforward-feedback loop-filter topology.

The single-path frequency-translating AY modulator in Figure 5.13 is different from the
general architecture shown in Figure 5.1, in that it has feedback paths connected directly to
its inner-loop filter. Figure 5.14 shows a general block diagram for a single-path architecture

that has a hybrid feedforward-feedback loop-filter topology.

The loop feedback path of the hybrid feedforward-feedback architecture in Figure 5.14 is

shown in Figure 5.15. Here, the effective loop transfer function can be expressed as

A A

HL(S) = HOL(S)HIL,F(S) + HIL,B(S) (530)

where Hip, r(s) denotes the forward! component of the inner-loop filter Hyy,(s), and Hi,g(s)

denotes the feedback? component.

'The forward component, Hir, r(s), is the transfer function from the output of the downconversion mixer to

the input of the quantizer, excluding the effect of the feedback paths.

2The feedback component, Hii, 5(s), is the transfer function from the output of the AY. modulator to the input

of the quantizer, excluding the response of the outer-loop path.
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Figure 5.14: General block diagram for a single-path frequency-translating A¥ modulator that has
a hybrid feedforward-feedback loop-filter topology.

The transfer functions that are implemented by the forward and feedback components of
the inner-loop filter, Hiy, p(s) and Hi,B(s), depend on the selected topology. The coefficient
paths of the loop filter must be realized such that the effective loop transfer function of the
frequency-translating AY modulator, ﬁL(s) in Equation (5.30), can satisfy the relationship
in Equation (5.1) for a prototype NTF. In particular, a loop filter of order N must provide

an equal number of unique coefficient paths.

For the single-path frequency-translating AY. modulator shown Figure 5.13, the forward

and feedback components of the inner-loop filter can be expressed as

2 3 4
a4 WCoS a3 Weo a2 WeoS Yo
o . N L 5.31
L7 (s) (2 wl,)  (2+wd)  (2+wd)?  (2+wd)? (5.31)
2
ag WCoS as w
Hip(s) = 70 4 oo (5.32)

(2 4+ wd,)  (s2+wd,)
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Figure 5.15: The loop feedback path of a single-path frequency-translating AY modulator that is
designed with a hybrid feedforward-feedback loop-filter topology.

In a frequency-translating AY modulator (Figure 5.1), feedback coefficient paths can be
used to attenuate the high-frequency term of the loop response. As described in Section 5.3,
the loop response of a frequency-translating A modulator contains two terms: the required
low-frequency term, which is centred at (fc; — fLo), and an additional high-frequency term,
which is centred at (fc;+ fro). When the inner-loop filter is designed with a continuous-time
circuit topology, the high-frequency term is attenuated by the STF from the output of the
downconversion mixer to the input of the quantizer. The resulting filtered term is then aliased
by the sampling operation and, in this way, is added to the low-frequency term to form the

overall loop response.

In order to satisfy the sampling constraints derived in Section 5.2, f1,0 must be an integer
multiple of fg/2. As a result, the 21,0 frequency separation between the high-frequency term
and the low-frequency term always corresponds to a multiple of fg. When the inner-loop filter
is designed using a continuous-time topology, the centre of the high-frequency term coincides
with one of the notches in the STF. Therefore, the in-band component of this term is always
significantly attenuated. The proposed loop-filter topology uses feedback coefficient paths to
increase the roll-off of the forward filter (Section 2.1.3), so that the STF also attenuates the

out-of-band components of the high-frequency term.
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Reducing the contribution of the high-frequency term to the overall loop response has the

following advantages:

1. The sampled contribution of the high-frequency term depends on the degree to which
it is attenuated by the STF. However, the STF is a function of the NTF, and therefore
depends on the contribution of the high-frequency term. This interdependence between
the STF and the high-frequency term makes it difficult to accurately include the latter
in the design of the NTF. Therefore, significantly attenuating the high-frequency term

improves the design accuracy of the NTF.

2. As described in Section 5.3, the loop response depends on the phase difference between
the sampling clock and the LO signal:® the low-frequency term depends on (fy — fp),
and the high-frequency term depends on (6y + 0p). When the high-frequency term is
significantly attenuated, the phase dependence of the loop response effectively reduces
to that of the low-frequency term 6y = (6y — p). In this case, since 6y depends on the
difference between 6y and 0p, and not on their sum, the loop response is independent
of the delay between the sampling clock and the LO signal, and is therefore insensitive

to synchronization errors between these signals.

3. In order to accurately process the high-frequency term, the operational amplifiers that
are used to implement the inner-loop filter must provide a high signal gain at its centre
frequency (fci + fro). When the high-frequency term is significantly attenuated, these
amplifiers are only required to provide a high signal gain at the centre frequency of the

low-frequency term fc,. This advantage is described further in Section 6.1.3.

The attenuation of the high-frequency term, relative to the low-frequency term, is evaluated

using Equation (5.39), derived in Section 5.6.3.

3Recall that fy and fp represent the phases of the LO signal, relative to an edge of the sampling clock, that

are applied to the upconversion and downconversion mixers, respectively.
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5.5 Phase of the LO Signal

The loop response of a frequency-translating AY modulator depends on the phase difference
between its LO signal and its sampling clock, as described in Section 5.3. The low-frequency
term of the loop response depends primarily on (fy— 0p), whereas the high-frequency term
depends primarily on (fy+ 0p). Here, 8y and 6p denote the phases of the LO signal, relative
to an edge of the sampling clock, that are applied to the upconversion and downconversion

mixers, respectively.

When the high-frequency term is significantly attenuated, as outlined in Section 5.3, the
LO phase dependence of the loop response is effectively reduced to that of the low-frequency
term, 6y = (fu — 6p). This section discusses the selection of the relative LO phase (0y), and
presents a design technique to reduce the sensitivity of the loop response to variations in the

implemented value of 6.

5.5.1 Sensitivity to Phase Errors

In a frequency-translating AY modulator, the relative LO phase (fy) is set using an on-chip
delay, and is therefore sensitive to the effect of process variations. An error in the value of Gy
modifies the response through the outer-loop path, which shifts the poles of the NTF from
their nominal positions. This type of error can decrease the noise-shaping performance of a
frequency-translating AY modulator and, if it is sufficiently large, can cause the closed-loop

transfer function to become unstable.

The relative LO phase (fyr) sets the position of the zero in the effective transfer function
of the outer-loop path, which was derived in Section 5.3. As a result, the phase sensitivity of
the loop response cannot be decreased using a conventional minimization procedure, since it

would produce an optimal value of #y; that is a function of frequency.
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The phase sensitivity of a frequency-translating AY modulator can be reduced by noting
that an error in the relative LO phase (6y) shifts the poles of the NTF in approximately the
same way as an error in one of the loop-filter coefficients. Figure 5.16 plots three NTF's for a
6th-order single-path frequency-translating AY modulator that is designed with fc, = 1/4fs
and fro = fs. Here, the poles of the NTF are selected so that its out-of-band gain? is equal
to: (a) 3.5 dB, (b) 12.0 dB, and (c) 16.3 dB.

Figure 5.16 also plots a root locus for each NTF on the complex z-plane, illustrating the
shift in the poles of the NTF as the relative LO phase (fyr) is varied from its nominal value.
Here, as the out-of-band gain increases, the minimum phase error (Afy) that causes one or
more poles of the NTF to move outside the unit circle (i.e., | z| = 1) decreases. Accordingly,
the phase sensitivity of a frequency-translating AY. modulator can be reduced by decreasing

the out-of-band gain of its NTF.

5.5.2 Selection of the LO Phase

The relative LO phase (fy) modifies the response through the outer-loop feedback path of a
frequency-translating AY modulator, as derived in Section 5.3. However, with the exception
of a phase shift, which can be referred to the input of the AY modulator, the value of fy; does
not affect the response of the forward path. As a result, the effective transfer function of the
outer-loop path ﬁOL(s), in the loop feedback path of a frequency-translating AY modulator,
does not match the transfer function of the outer-loop filter Hor,(s) in its forward path. This
difference affects the in-band STF gain of a frequency-translating AY modulator and, when
the quality factor of the outer-loop filter is fixed, becomes increasingly important for higher

values of the sampling parameter kg (Section 5.2.1).

4Recall that increasing the NTF out-of-band gain improves the noise shaping performance of a AY modulator,

but also reduces the maximum signal that can be applied at its input (Section 2.1.3).
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Figure 5.16: Root locus plots that illustrate the shift in the NTF poles of a frequency-translating AY
modulator when the relative LO phase (fyr) is varied from its nominal value. Here, the out-of-band

gain is set to: (a) 3.5 dB, (b) 12.0 dB, and (c) 16.3 dB.
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Figure 5.17: The STF gain, as a function of 6y, at the input centre frequency (fc;) of a single-path
frequency-translating AY modulator for: (a) ks =1, (b) ks = 2, (c) ks = 3, and (d) kg = 4.

Figures 5.17(a)—(d) plot the STF gain, as a function of fy, at the input centre frequency
of a single-path frequency-translating AY modulator that is designed with fc, = 1/4fs, and
kg ranging from 1, in (a), to 4, in (d). In all four cases, the STF gain is maximized when the

relative LO phase is set to

O = (u —bp) = (5.33)

w3

The value of 8y; does not affect the noise-shaping performance of a single-path frequency
translating AY modulator, assuming that the coefficients of its loop filter are selected using
the procedure described in Section 5.2. However, increasing the STF gain is beneficial, since
it decreases the signal swing that is required at the input of the AY. modulator, and therefore

reduces the linearity requirement on the first stage of the loop filter (Section 7.1).
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5.6 Signal Transfer Function

This section outlines a general procedure to derive the effective signal transfer function (STF)
of a single-path frequency-translating A> modulator. The derived STF is required to evaluate
the inherent image-reject filtering of a single-path architecture, and to verify the attenuation

of its high-frequency term.

The effective STF is derived using a variation on the standard procedure that is applied
to continuous-time AY modulators [Ort06]. Here, the forward component of the loop filter is
modified such that the filtering characteristic of the outer-loop filter Hor,(s) and that of the

inner-loop filter Hyy,(s) are both represented at the same centre frequency.

5.6.1 General Procedure

Figure 5.18(a) shows the linear model of a single-path frequency-translating AY modulator,
where transfer functions Hop,(s) and Hyp(s) represent the outer-loop and inner-loop filters,
respectively. In order to derive the effective STF, the continuous-time forward filter® must be
separated from the discrete-time loop filter by moving Hor,(s) and Hyy,(s) through the input
summation, together with the downconversion mixer and the sampling switch. The resulting
modified block diagram® is shown in Figure 5.18(b), where Hiy, r(s) represents the forward

component of the inner-loop filter.

The cascade of filters and mixing operations in the feedback path of the modified system
depicted in Figure 5.18(b), implements the loop transfer function of the AY modulator. Since

both the input and the output of this path are sampled, these blocks can be combined into a

sTg )

single discrete-time” filter HY (e*73), as shown in Figure 5.18(c).

5The forward filter refers to the transfer function from the input of a AY modulator to its sampling switch,

and excludes the effect of its feedback paths.

5The block diagram shown in Figure 5.18(b) is not strictly correct, since it does not account for the effect of
the feedback paths on the STF prior to sampling. However, it is a useful representation for identifying the
different components of the forward filter and the loop filter [Ort06].

sTg

"The continuous-time argument e*” is used here to emphasize the repetition of the loop filter and the NTF

along the imaginary (s = jw) axis of the complex s-plane.
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Figure 5.18: (a) The linear model of a single-path frequency-translating AY modulator, (b) the AX
modulator in (a), modified so that the forward component of its inner-loop filter Hy, p(s) is separated

from Hy,(s), and (c) the model that is used to derive the effective STF.
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In the forward path of the modified system, shown in Figure 5.18(b), the outer-loop filter
is centred at fc;, whereas the inner-loop filter is centred at fc,. In order to derive the effective
STF, the forward component of the inner-loop filter Hyy, p(s) is therefore shifted by +j fr,o,
so that its frequency response is represented relative to fg;. The effective STF is referenced to
the input centre frequency (fc;), rather than the output centre frequency (fc,), so that the
signal band can be distinguished from the image band. Since the modified inner-loop filter is
different for the low-frequency and high-frequency terms of the loop response (Section 5.3),

it is represented generally as ﬁIL,F(s) in Figure 5.18(c).

Since a complex frequency shift is required to accurately represent the signal conditioning
that is applied by the forward component of the inner-loop filter Hyy, 7 (s), the effective STFs
of the low-frequency and high-frequency terms are only valid within the positive half of the

frequency spectrum, f € [0, 00].

5.6.2 Low-Frequency Term

For the low-frequency term (Section 5.3), the modified inner-loop filter is given by

A 1 .
Hip(s) = 5 Hip(s — jwro) (5.34)

where Hyp, r(s) is shifted by +j fro and scaled by half to model, respectively, the frequency
downconversion and the gain of the forward-path mixer. In this case, the centre frequency of

the modified filter IjA[ILF(s) is equal to that of the outer-loop filter Hoy,(s).

The effective STF of the low-frequency term is then derived by substituting }AIILF(S) in
Figure 5.18(c) with the function in Equation (5.34), and solving for the closed-loop transfer
function. This procedure yields

Y (e575) 1 How(s)Hi,r(s — jwro)

STFow(s) = =3 ey (5.35)

Figure 5.19(a) uses this equation to plot the STF of the low-frequency term for a frequency-
translating AY, modulator that is designed with fr,o = fs and fo, = 1/4fs.
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Figure 5.19: Simulated STF for the: (a) low-frequency term, and (b) high-frequency term of a single
path frequency-translating AY modulator with fo; = 5/4fs. (STF — and NTF - - .)

Inherent Image-Reject Filtering

The outer-loop filter of a single-path frequency-translating AY. modulator implements partial
image-reject filtering for the downconversion mixer in its forward path. This inherent filtering
is applied to both its input and feedback signals, and reduces the design requirements on the

image-reject filter that must be included prior to its input (Section 5.1).

The inherent image-reject filtering of a single-path frequency-translating AY modulator

can be evaluated from the effective STF of its low-frequency term as

A
_ ‘STFlow(jzﬂfCi, img) ‘

R -
ISTF1ow (727 fci)|

(5.36)

where fc; img is the centre frequency of the image band.
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5.6.3 High-Frequency Term

For the high-frequency term (Section 5.3), the modified inner-loop filter is given by

A 1 )
Hip(s) = 5 Hip(s + jwro) (5.37)

where Hyp, r(s) is shifted by —j fr,o and scaled by half to model, respectively, the frequency
upconversion and the gain of the forward-path mixer. In this case, the centre frequency of the

modified filter fAIIL,F(s) is offset by 2f1,0 from that of the outer-loop filter Hoy,(s).

The effective STF of the high-frequency term is then derived by substituting ﬁIL,F(s) in
Figure 5.18(c) with the function in Equation (5.37), and solving for the closed-loop transfer

function. This procedure yields

Y (e75) _ 1 Hou(s)HiLp(s + jwio)
2 1 4 Hy (e5T5)

STFpign(s) = (5.38)

Q(z)=0

Figure 5.19(b) uses this equation to plot the STF of the high-frequency term for a frequency-
translating AY modulator that is designed with fro = fs and fo, = 1/4fs.

Attenuation of the High-Frequency Term

A number of advantages are achieved by significantly attenuating the high-frequency term of
a frequency-translating AY modulator, as described in Section 5.3. The attenuation of the
high-frequency term, relative to the low-frequency term, can be derived from the expressions

in Equations (5.35) and (5.38) as

HFA(j2rf) =

Srthigh (j27f) ‘ - ‘HIDF ot feol (5.39)

STFiow (27 1)

Here, the relative magnitude of the high-frequency and low-frequency terms only depends on

the forward-component of the inner-loop filter Hip, p(s).
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5.7 Conclusion

This chapter presented an architecture, and associated design considerations, for a frequency
translating AY modulator that is based on single-path mixing. It described the procedure to
synthesize this single-path architecture from a prototype bandpass AY modulator, and also
derived constraints that must be satisfied in order to achieve the synthesis. These constraints

can be summarized as follows:

R

% The sampling period Tg must be an integer multiple of T1,0/2, where 11,0 is the period

of the LO signal (Section 5.2.1).

% The inner-loop filter must have a bandpass characteristic (Section 5.2.2).

This chapter discussed the realization of both the high-frequency, or outer-loop filter of a
frequency-translating A modulator, and its low-frequency, or inner-loop filter. Section 5.3
developed an effective transfer function for the time-varying response of the outer-loop path,
and Section 5.4 described the importance of using both feedback and feedforward coefficient
paths to realize the inner-loop filter. The feedforward paths are used to reduce the distortion
that is introduced by the forward-path mixer, whereas the feedback paths are used to reduce
the LO phase sensitivity, and the implementation requirements on the inner-loop filter. This
chapter further examined how the noise-shaping performance of a frequency-translating AY
modulator is affected by errors in the phase of its LO signal. Section 5.5 demonstrated that

LO phase sensitivity of the NTF can be reduced by decreasing its out-of-band gain.

Figure 5.14 provided a general block diagram for a single-path frequency-translating AX.
modulator with a feedforward-feedback loop-filter topology. Chapters 6, 7, and 8 present the
system architecture, circuit implementation, and measurement results for an experimental

AY modulator that is based on the single-path architecture in Figure 5.14.
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HIS CHAPTER presents a complete system architecture for an experimental single-path
T frequency-translating AY modulator. This experimental AY modulator is designed to
operate on a wideband (4 MHz) signal that is centred at a high IF (225MHz), while providing
moderate (10bit) resolution. It is used to validate the NTF synthesis procedure described in

Section 5.2, and the design techniques presented in Sections 5.3, 5.4, and 5.5.

This chapter is divided into five sections. Section 6.1 describes the system architecture of
the experimental AY modulator, and defines its frequency and phase parameters. Section 6.2
presents the synthesis of the experimental A modulator from a prototype NTF, and derives
its loop-filter coefficients. The remainder of this chapter analyses the results of behavioural
simulations. Section 6.3 examines the ideal performance of the experimental AY. modulator,
and verifies the accuracy of both its NTF and STF. Section 6.4 examines the effect of circuit
noise, non-linear distortion, and clock jitter on its performance, and Section 6.5 examines the

effect of component variation and mismatch.

121
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6.1 Architecture of the Experimental AY Modulator

Figure 6.1 depicts a simplified block diagram for the experimental frequency-translating AX:
modulator. Its topology is based on the single-path architecture presented in Chapter 5, and
it is designed with a 6th-order continuous-time loop filter and a 3-bit internal quantizer. The
high-frequency outer-loop filter is implemented using an LC resonator (RESON1), which has
a centre frequency of fg;. The low-frequency inner-loop filter is implemented using a cascade
of active-RC resonators (RESON2 and RESON3), each of which has a centre frequency of fc,.
The downconversion operation is implemented using a switching mixer and the upconversion
operation is implemented using a current-steering DAC that has raised-cosine pulse shaping,

as described in Section 3.2.1.

The experimental AY modulator (Figure 6.1) is designed to convert a 4 MHz signal band
that is centred at fo; =225 MHz. It uses an LO signal with a frequency of f,0 =200 MHz to
downconvert the signal band to fc,=25MHz, and samples at fg=100MHz. Here, f1,0 and fg
are selected such that they satisfy the constraints in Section 5.2.1. Table 6.1 summarizes the

frequency parameters of the experimental AY modulator.

Table 6.1: Frequency parameters of the experimental AY modulator.

Parameter Value

Input Centre Frequency fci | 225 MHz

Output Centre Frequency  fco 25 MHz

LO Frequency fro | 200 MHz

Sampling Frequency fs 100 MHz

6.1.1 Mixing Considerations

Figures 6.2(a)-(f) plot the frequency spectrum at various points around the feedback loop of
the experimental AY. modulator (Figure 6.1). These plots demonstrate important properties

of the downconversion and upconversion mixing processes, as described next.
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Figure 6.1: Simplified block diagram for the experimental AY modulator.
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Figure 6.2: Frequency spectrum at various points around the feedback loop of the experimental AY

modulator, shown in Figure 6.1.
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Downconversion

In the forward path of the experimental AY modulator, the downconversion mixer splits the
loop response into two mixing terms, as shown in Figure 6.2(c). Here, the low-frequency term

is centred at fco, = (fci — fLo), and the high-frequency term is centred at (fc; + fLo)-

The high-frequency term of the loop response is attenuated by the STF of the continuous-
time loop filter, from the output of the downconversion mixer to the input of the quantizer,
as shown in Figure 6.2(d). The attenuated term is then subsampled at the quantizer, and is

added to the low-frequency term to form the overall loop response.

The high-frequency term falls well outside the bandwidths of the amplifiers that are used
to implement the active-RC resonators (RESON2 and RESON3), and is therefore sensitive to
process variations (Section 6.1.3). Furthermore, due to its interdependence with the STF, it
is difficult to accurately include the high-frequency term in the NTF synthesis. Accordingly,
the loop filter of the experimental AY modulator is designed such that its STF significantly
attenuates the high-frequency term and, in this way, reduces its contribution to the overall

loop response, as described in Section 5.4.2.

Upconversion

In the feedback path of the experimental AY modulator, the mixer upconverts both the input
signal and its image, as shown in Figure 6.2(f). This image is significantly attenuated by the

LC resonator (RESON1), and does not limit the dynamic range.

In order to maximize the attenuation of the image, as well as the alias components of the
feedback signal, the output centre frequency (fc,) of the experimental AY modulator is set
to fs/4, as shown in Figure 6.2(b). Note that setting the output centre frequency to a simple
fraction of the sampling frequency also reduces the complexity of the DAC mismatch-shaping

logic and the digital image-reject mixing [Sch06¢].



6.1 Architecture of the Experimental AY Modulator 125

6.1.2 Phase Considerations

The loop response of the experimental A3 modulator includes scaling factors that are set by
the phase difference between its LO signal and sampling clock:! the low-frequency term is a
function of (Ay — 0p), and the high-frequency term is a function of (6y + 6p). By significantly
attenuating the high-frequency term, as described in Section 6.1.1, the phase dependence of

the loop response is reduced to that of its low-frequency term, Oy = (6y — 6p).

The phase component of the low-frequency term (6yp) is set using a delay block, as shown
in Figure 6.1. The delay, denoted as tyr, is implemented on-chip, and is therefore sensitive to
process variations. As outlined in Section 5.5.1, the phase sensitivity of a frequency-translating
AY. modulator can be improved by decreasing the out-of-band gain of its NTF. Accordingly,
the NTF of the experimental AY. modulator is designed with an out-of-band gain? of 12 dB

in order to reduce its phase sensitivity.

The relative LO phase () of the experimental AY modulator is set to 7/4, as outlined
in Section 5.5.2. This requires a delay of ¢\ = (Ou/wrLo), or 625 ps, in Figure 6.1. The phase
of the LO signal that is applied to the upconversion mixer (fy) is then set to m, so that the
outer-loop feedback DAC (DAC1) has a raised-cosine pulse of the form shown in Figure 3.5.

Table 6.2 summarizes the phase parameters of the experimental AY modulator.

Table 6.2: Phase parameters of the experimental AY modulator.

Parameter Value
Relative LO Phase On w/4
Upconversion LO Phase 6y T

'Recall that 0y and @p represent the phases of the LO signal, relative to an edge of the sampling clock, that

are applied to the upconversion and downconversion mixers, respectively.

2For an Nth-order bandpass AY modulator with a centre frequency of fs/4, the NTF can be designed with
a maximum out-of-band gain of |H||e = 201log,,(2V/?). For N = 6, ||H ||« = 18.1dB.
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Figure 6.3: Complete block diagram for the experimental AY modulator.

6.1.3 Loop Filter

Figure 6.3 shows a complete block diagram of the experimental AY. modulator. This section
derives an expression for the effective loop transfer function of the experimental architecture,
where the associated scaling coefficients are derived in Section 6.2 according to a prototype

discrete-time NTF.

Outer-Loop Filter

In Figure 6.3, the transfer function of the outer-loop filter is given by

wess
2 wgi 2
8% + Qfs + wey

Hop(s) = (6.1)

where wc; is the input centre frequency of the experimental AY modulator (Table 6.1), and

Q is the quality factor of the LC resonator (RESON1).
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The effective transfer function of the outer-loop path? can be derived using the approach

described in Section 5.3. This results in

<d1£ + dz) WCoS + dla%o

H - u ! 2
OL(S) - 9 2 ) (6 )
WCo
(s—i— T2Q1) + wg,

AN
where wc, is the output centre frequency of the experimental A¥ modulator, and Q is the
JAN
effective quality factor of the response through its outer-loop path. Here, Q | = (wco/wei) Q 1,

and coefficients d; and dz depend on the relative LO phase (Oy).

Inner-Loop Filter

In Figure 6.3, the transfer function of the inner-loop filter has both a forward component and

a feedback component (Section 5.4.2). These components are given by

2 3 4
a4 WCoS a3z We, a2 Wi, Weo
i o n I + 6.3
IL.F(S) (s2 + UJ%O) (s2 + w{éo) (s + W%O) 2 (s2+ W%O) 2 (6.3)
2
a6 WCoS a5 W
HIL’B(S) _ 6 WCo + 5 Yo (64)

(s24+wd,) (s2+wd,)
The additional delayed coefficient path (a7) is required to compensate for excess loop delay,
and is discussed in Section 6.1.4.

The effective loop transfer function of the experimental AY. modulator is then derived by

combining the expressions in Equations (6.2), (6.3), and (6.4). This results in

A

Hy(s) = ﬁOL(S) Hi,r(s) + Hip(s) (6.5)

Note that Equation (6.5) corresponds to Equation (5.30), derived in Section 5.4.2.

3The outer-loop path of a frequency-translating AY. modulator refers to the signal path from the input of its

upconversion mixer to the output of its downconversion mixer (Section 2.3.1).
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The hybrid feedforward-feedback loop-filter topology of the experimental AY, modulator

provides a number of performance advantages, as described below.

Feedforward Paths

The loop filter of the experimental AY modulator (Figure 6.3) is designed with feedforward
coefficient paths (ag, ag, a4) to decrease the magnitude of the input-signal component that is
passed by the switching mixer. This reduces the distortion that is introduced by the mixer,

and facilitates an increase in the coefficient (a1) of the outer-loop path (Section 5.4.1).

The feedforward paths of the loop filter are configured such that a summing amplifier is
not required at the input of the quantizer (Figure 6.3). This reduces the power consumption

of the experimental A3 modulator, and decreases the delay through its feedback loop.

Feedback Paths

The loop filter of the experimental AY. modulator is also designed with feedback coefficient
paths (a5, ag) to increase the attenuation of the high-frequency term. Since fi,o must be an
integer multiple of fs/2, in order to satisfy the sampling constraint derived in Section 5.2.1,
the 2 f10 frequency separation between the high-frequency term and the low-frequency term
corresponds to a multiple of fg. As a result, the signal-band component of the high-frequency
term falls inside one of the notches of the STF and is significantly attenuated. The feedback
paths of the loop filter are used to improve the filtering characteristic of the STF, so that it

also attenuates the out-of-band components of the high-frequency term.

In addition to providing the advantages described in Section 5.4.2, attenuating the high-
frequency term reduces the gain-bandwidth requirements of the amplifiers that are used to
implement the active-RC resonators (RESON2 and RESON3). In order to accurately process
the high-frequency term, these amplifiers must provide a high gain at its centre frequency. In
the absence of a high gain, the high-frequency term is sensitive to process-related variations
in the circuit parameters of the active-RC resonators, which could reduce the stability of the
experimental AY, modulator. By attenuating the high-frequency term, the feedback paths of
the loop filter reduce the effect of these variations, and therefore reduce the gain-bandwidth

requirements on the amplifiers.
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6.1.4 Feedback DACs

The feedback DACs of the experimental AYX modulator (Figure 6.3) are configured in a way
that reduces their implementation complexity and associated power consumption relative to

a conventional bandpass AY modulator.

Additional Coefficient Path

In addition to the advantages outlined in Section 6.1.3, the hybrid feedforward-feedback loop-
filter topology of the experimental AY modulator facilitates an efficient implementation of

the additional coefficient path that is required when using an LC resonator.

As illustrated in Figure 6.3, the LC resonator (RESON1) introduces a 2nd-order loop-filter
term, but only provides one coefficient path. As a result, an additional coefficient path must
be created to achieve full control over the design of the NTF. Figure 6.4 provides simplified
block diagrams for equivalent strictly-feedforward and strictly-feedback configurations of the
experimental AY modulator (Figure 6.3). In both diagrams, the required coefficient path is
created by connecting a second DAC, referred to here as DACz, at the input summation of
the A3 modulator. This additional DAC can be implemented using either a modified pulse
shape [Sho95b], or a delay [Bei05], as shown in Figure 6.4, however it has the same complexity

and thermal-noise requirements as DACI.

The hybrid loop filter of the experimental AY modulator (Figure 6.3) sets the high-order
terms of the loop response using feedforward paths (ag, as, a4), and sets the low-order terms
using feedback paths (as, ag). Accordingly, relative to the strictly-feedback configuration in
Figure 6.4(b), it replaces DACxz (a}) with a feedforward path (ag2) and, relative to the strictly-
feedforward configuration in Figure 6.4(a), it replaces DACz (ag) with DAC3 (ag). Note that,
since DAC3 is connected at the input of the last integrator, rather than at the input of the
AY. modulator, it has lower thermal-noise requirements than DACz, and therefore consumes
less power. Furthermore, since DAC3 is connected to the low-frequency section of the loop
filter, it can be implemented with rectangular pulse shaping, and is less complex than DACz,

which uses raised-cosine pulse shaping.
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of the AY modulator in Figure 6.3, showing the additional required coefficient path (DACz).

Excess Loop Delay Compensation

The experimental AY modulator (Figure 6.3) is designed with a continuous-time loop filter,

and therefore requires a direct feedback path to its quantizer to compensate for the effect of

excess loop delay (Section 3.1.1). The excess loop delay of the experimental AY modulator is

set

to half of the sampling period (i.e., T5/2), which provides sufficient time for its quantizer

to settle and for its DAC mismatch-shaping logic to operate.



6.1 Architecture of the Experimental AY Modulator 131

The excess loop delay compensation of the experimental A modulator is implemented
using the technique described in [Mit06], where the direct feedback term of the loop response
is differentiated so that it can be applied to the input of the final integrator, rather than the
input of the quantizer. This technique removes the requirement for a summing amplifier prior
to the quantizer, and therefore reduces the overall power consumption. The direct feedback
term of the loop response is implemented by coefficient paths ag and a7 (DAC3 and DAC4) in
Figure 6.3. It is differentiated, as outlined above, by delaying the input of coefficient path ar
by Ts/2 relative to that of coefficient path ag.

In order to accommodate a delayed coefficient path (a7), the impulse-invariant transform
in Equation (5.1) must be modified to

H.(z) = UT {ﬁL(s) HDAC(S)} + 11T {ﬁhd(s) HDAC,d(s)} (6.6)

s—z

A
where Hr,(s) is the main component of the loop transfer function (Section 6.1.3), and H{ (z)
is the prototype discrete-time loop transfer function. In Figure 6.3, the delayed component

of the loop transfer function is given by

A a7 WCoS
Hy a(s) = Erl) (6.7)

and the transfer functions of the feedback DACs are equal to

1
HDAC(S) — g<e—80.5Ts _ e—sl.5Tg> (68)
1 —sTg —52Tg
HDAC,d(S) = g(@ — e ) (69)

Here, DAC1-DAC3 implement Hpac(s), and DAC4 implements Hpac,4(s).
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6.2 NTF Design and Synthesis

The loop filter of the experimental AY modulator is composed of three resonators, as shown
in Figure 6.1. Each resonator introduces one pair of complex-conjugate zeros into the NTF,
where the position of a zero pair is determined by the centre frequency and quality factor of
its associated resonator. The high-frequency resonator (RESON1) is centred at fc;, in order
to maximize the attenuation of the image and alias components of the upconverted feedback
signal (Section 6.1.1). The low-frequency resonators (RESON2 and RESON3) are then centred
at fco, in order to improve the signal-swing reduction provided by the feedforward paths of
the loop filter (Section 6.1.3). Accordingly, the zeros of the prototype NTF are placed at the

centre frequency of the signal band.

The poles of the NTF are configured so that it has a maximally-flat magnitude response
with an out-of-band gain of 12dB. The out-of-band gain has been reduced from its maximum
upper limit in order to reduce the sensitivity of the loop response to variations in the phases

of the LO signal, as described in Section 6.1.2.

The prototype NTF of the experimental AY modulator was designed with the specified

characteristics using the Delta-Sigma Toolbox [Sch04]. It has a general form of

(24 emm/e) (22 41
3

H (z+2p) (2 + 25)

=1

NTF(z) = (6.10)

where the zeros, poles, and gain are listed in Table 6.3.

The high-frequency resonator (RESON1) has a quality factor of Q, = 25, which is set by
its implementation (Section 6.5.1). As a result, the outer-loop path of the experimental A%
modulator has an effective quality factor of (E) 1 = 3 (Section 6.1.3) for the selected frequency
parameters (fc; and fo, in Table 6.1). The low-frequency resonators (RESON2 and RESON3)
have nominal quality factors of Q4, Q3 = co. Section 6.5.1 examines how the performance of

the experimental AY modulator is affected by Q, Q,, and Q5.
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Figure 6.5: Magnitude response and pole-zero map of the prototype NTF.

Figure 6.5 plots the magnitude response and associated pole-zero map of NTF(z). Here,
the zeros introduced by the low-frequency resonators (RESON2 and RESON3) are on the unit
circle (i.e., | z| = 1), since these resonators have infinite quality factors. The zeros introduced
by the high-frequency resonator (RESON1) are shifted toward the origin (i.e., | z| = 0), since

this resonator has a finite quality factor.

Table 6.3: Zeros, poles, and gain of the prototype NTF.

Parameter Value
Zeros 221 + 1.00y
22 + 1.00;
223 + 0.755
Poles Zp1 0.38 £ 0.475
zp2 | — 0.38 &+ 0.47j
Zp3 + 0.47j
Gain 1
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Table 6.4: Loop-filter coefficients of the experimental AY modulator.

Coefficient ay as as a4 as ae ar

Value —0.1546 | —0.4169 0.5846 0.7757 —1.0519 | —0.3774 0.4480

In order to synthesize the prototype NTF, specified in Equation (6.10), the loop transfer
function of the experimental AY. modulator must satisfy the impulse-invariance relationship

in Equation (6.6). This relationship can alternatively be expressed as

SILTZ{ﬁL(S)HDAC(S)} + SH_:E{PAIL,d(S)HDAc,d(S)} = NTll?(z) -1 (6.11)

where Hpac(s) and Hpac,q(s) are defined in Equations (6.8) and (6.9).

The main and delayed components of the loop transfer function, ﬁIL(s) and ﬁILd(s), are

derived by substituting Equations (6.2), (6.3), and (6.4) into Equation (6.5), where

JAY
F(s) = @ [d1/(2Q)) + da]weos + diwd, [ a4 WCoS a3 wé, } (6.12)
L(s) = - ‘
2 [stwee/QQ)) +wd, el (7,
JAY
+ a1 [dl/(QQl) + dQ] WCoS + dlw%o [ az w%os wéo :|
R PR e8] LY S I AL RN R N,
i ag WCoS as w%o
(s +wdy) (s +wg,)
. a(s) a7 W, (6.13)
L,d(8) = 75— 75~ .
(82 + wi,)

The coefficients (a1—a7) of ﬁL(s) and ﬁL,d(s) are solved by substituting the expressions in
Equations (6.10), (6.12), and (6.13) into Equation (6.11), and equating corresponding powers
of z on each side of (6.11). Table 6.4 lists the coefficients that result from this procedure, and

correspond to the block diagram in Figure 6.3.
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6.3 Behavioural Simulations

This section provides behavioural (system-level) simulation results for the experimental A%
modulator (Figure 6.3), and compares its NTF and STF to the prototype transfer functions.
In this section, the functional blocks of the experimental architecture (loop filter, quantizer,
and feedback DACs) are simulated using ideal models. The effect of associated circuit-level

non-idealities is discussed in Sections 6.4 and 6.5.

Figure 6.6(a) compares the NTF of the experimental AY modulator (Figure 6.3), derived
from behavioural simulations, to the magnitude response of its prototype NTF (Figure 6.5).
This plot demonstrates the accuracy of the synthesis procedure outlined in Section 5.2, and
validates the techniques presented in Sections 5.3, 5.4, and 5.5. The deviation between these
two plots, in particular around fg/8 and 3fs/8, is a result of the limited attenuation of the
high-frequency term (Section 5.4). The additional contribution of the high-frequency term to
the loop response of the experimental AY modulator shifts the poles of its NTF from their
nominal configuration (Figure 6.5). Figure 6.6(b) shows the signal band of the experimental

AY. modulator, where fc,= 25MHz and fg= 4 MHz.
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Figure 6.6: The simulated NTF of the experimental AY modulator (Figure 6.3): (a) from 0 to fs/2,
and (b) over the signal band (fc,—fB/2 to fco+/B/2). In this figure, O denotes results derived from

behavioural simulations, and — denotes results derived from equations.
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Figure 6.7: The simulated STF of the experimental AY modulator (Figure 6.3): (a) from fs to 3fs,
(b) over the signal band (fc;— fs/2 to foi+fs/2) and over the image band. Here, O denotes results

derived from behavioural simulations, and — denotes results derived from equations.

Figure 6.7(a) compares the STF of the experimental AY modulator (Figure 6.3), derived
from behavioural simulations, to the magnitude response of its prototype STF. This second
plot was generated using the procedure described in Section 5.6. The deviation between these
two plots is again caused by the limited attenuation of the high-frequency term. Figure 6.7(b)
shows the signal and image bands of the experimental AY modulator, where fc; = 225 MHz
and fg= 4 MHz. These plots demonstrate that the inherent image-reject filtering? is 22.0 dB

at the centre frequency of the image band (175 MHz).

Figure 6.8 plots the simulated SQNR of the experimental AY modulator as a function of
its input level for an input tone at fi, = 224.6 MHz. It achieves a peak SQNR of 62.5dB and
a dynamic range of 64.0dB over a signal bandwidth of fg= 4 MHz. Figure 6.9(a) plots the
simulated output spectrum of the experimental AY modulator for a —5dBFS input tone at
fin= 224.6 MHz, which results in the peak SQNR. Figure 6.9(b) shows the signal band of the
experimental AY modulator, where fc,= 25 MHz and fg =4 MHz

4The inherent image-reject filtering is evaluated using Equation (5.36) in Section 5.6.
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Figure 6.8: Simulated SQNR of the experimental AY. modulator, as a function of its input level, for

an input tone at 224.6 MHz.
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Figure 6.9: Simulated output spectrum of the experimental AY. modulator for a —5dBFS input tone
at 224.6 MHz: (a) from 0 to fs/2, and (b) over the signal band (fc,— fB/2 to fco+fB/2).
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6.4 Performance Limitations

This section examines the effect of circuit noise, non-linear distortion, and clock jitter on the
resolution of the experimental AY modulator (Figure 6.3). It extends the simulation results

presented in Section 6.3, and provides additional performance metrics.

6.4.1 Circuit Noise

The primary sources of circuit noise in the experimental AY modulator (Figure 6.3) are the
transconductor and output buffer of its LC resonator (RESON1), the resistors and amplifiers
of its first active-RC resonator (RESON2), and the current sources of its outer-loop feedback
DAC (DAC1).5 The magnitude of each noise source is derived from circuit-level simulations,

and is simulated here using standard behavioural models.

Figure 6.10(a) plots the simulated output spectrum of the experimental A¥X modulator,
and includes the effect of the above mentioned noise sources. The spectrum in Figure 6.10 is
generated using a —5 dBFS input tone, which results in the peak SNR. When circuit noise is
incorporated into the behavioural simulations (Section 6.3), the experimental A modulator
achieves a peak SNR of 61.0dB and a dynamic range of 62.0dB over a signal bandwidth of
fB=4MHz. Therefore, circuit noise reduces the SNR of the experimental AY modulator by
less than 2dB from its nominal value (Section 6.3). Figure 6.10(b) shows the signal band of

the experimental AY modulator.

6.4.2 Distortion

The primary sources of non-linear distortion in the experimental AY. modulator (Figure 6.3)
are the output buffer of its LC resonator (RESON1), and the amplifiers of its first active-RC
resonator (RESON2). The distortion of these blocks is derived from circuit-level simulations,

and is simulated here using standard behavioural models.

5The circuit noise introduced by the second active-RC resonator (RESON3), the quantizer, and the inner-loop
feedback DACs (DAC2-DAC4) is suppressed by the gain of preceding loop-filter stages, and does not have a

significant effect on the resolution of the experimental AY. modulator.
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Figure 6.10: Simulated output spectrum of the experimental AY modulator for a —5 dBFS input
tone at 224.6 MHz: (a) from 0 to fs/2, and (b) over the signal band (fc,— f5/2 to fco+fB/2). This

plot demonstrates the effect of circuit noise, as compared to Figure 6.9.

Since the experimental AYX modulator has a bandpass loop filter (Section 6.1), harmonic
distortion products introduced by the above mentioned blocks appear at aliases of its signal
band. As a result, they are attenuated by the STF of the continuous-time loop filter, and do
not have a significant effect on the resolution of the experimental A3 modulator. In general,
the linearity of a bandpass ADC is evaluated using a two-tone input signal, which introduces

intermodulation distortion products.

Figure 6.11(a) plots the simulated output spectrum of the experimental AYX modulator,
and includes the effect of non-linear distortion, described above, and circuit noise, described
in Section 6.4.1. The spectrum in Figure 6.11 is generated using two —11dBFS input tones
that have a frequency separation of 880 kHz. When non-linear distortion is incorporated into
the behavioural simulations (Section 6.4.1), the experimental AY modulator achieves a peak
SNDR of 61.0dB, and a third-order intermodulation distortion of —70.0 dBc. Figure 6.11(b)

shows the signal band of the experimental AY. modulator.
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Figure 6.11: Simulated output spectrum of the experimental AY. modulator for two —11dBFS tones
separated by 880 kHz: (a) from 0 to fs/2, and (b) over the signal band (fc, — f5/2 to fco + [B/2)-

This plot demonstrates the effect of non-linear distortion, as compared to Figure 6.10.

6.4.3 Clock Jitter

The experimental AY modulator (Figure 6.3) is designed using a continuous-time loop filter,
and is therefore sensitive to clock jitter. As described in Section 3.2.1, clock jitter introduces
timing errors into both the forward and feedback paths of a continuous-time AY modulator.
In the forward path, timing errors in the sampling instants are suppressed by the loop gain,
and do not significantly affect the resolution. In the feedback path, timing errors in the pulses
of the feedback DACs are added to the input signal of the AY modulator, and can reduce its

resolution significantly.

This section extends the behavioural simulations presented in Section 6.4.2 to evaluate
how the resolution of the experimental AY modulator (Figure 6.3) is affected by clock jitter
introduced at its feedback DACs (DAC1-DAC4). Here, the effect of clock jitter is simulated
using the Simulink behavioural model in Section 3.4.1, and it is considered to be significant
when it reduces the SNDR of the experimental AY modulator by more than 3dB from the

nominal value (Section 6.4.2).
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Figure 6.12: Simulated SNDR of the experimental AY, modulator as a function of the clock jitter
introduced at each of its feedback DACs (DAC1-DAC4).

Figure 6.12 plots the simulated SNDR of the experimental AY¥ modulator as a function
of the normalized clock jitter introduced at each of its feedback DACs (DAC1-DAC4). This
figure demonstrates that the clock jitter introduced at DAC1 (oy1) has a significantly greater
effect on the resolution of the experimental AY. modulator than the clock jitter introduced
at DAC2-DAC4. The loss of performance due to the clock jitter introduced at DAC1 becomes

significant when oj; > 0.25 %.

6.5 Sensitivity Simulations for Design Centring

This section presents behavioural simulation results that are used to evaluate the sensitivity
of the experimental A¥ modulator (Figure 6.3) to various circuit-level errors. Specifically, it
analyses the effect of the finite quality factor and centre-frequency error of each resonator in
the loop filter, the mismatch between the unit elements of the feedback DACs, and the phase
errors in the LO signal. The presented simulation results are used to evaluate the magnitude
of each error that leads to significant performance loss. These maximum errors are converted
into design and tuning requirements for the associated circuits in Chapter 7. In this section,
a circuit-level error is considered to be significant if it reduces the SNR of the experimental

AY modulator by more than 3dB from its nominal value (Section 6.3).
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6.5.1 Resonator Quality Factor

The quality factor of a resonator determines its selectivity. A practical resonator has a finite
quality factor (i.e., Q < o0), which can reduce the in-band noise suppression of a bandpass
AY. modulator. In general, the loss of performance that results from a finite quality factor is
significant when Q < fc/f [Sch06a]. Here, fp is the signal bandwidth of the bandpass AX

modulator and fc is the centre frequency of the resonator.

This section uses behavioural simulations to evaluate how the noise-shaping performance
of the experimental AY modulator (Figure 6.3) is affected by the finite quality factors of the

resonators in its outer-loop and inner-loop filters.

Outer-Loop Filter

The outer-loop filter of the experimental AY modulator (Figure 6.3) is implemented using a
conventional LC resonator (RESON1). The circuit-level implementation of the LC resonator

is discussed in Section 7.1.

The quality factor of the LC resonator (RESON1) is set primarily by the series resistance
of its inductors. The inductance and capacitance that are required to achieve a resonance at
the input centre frequency of the experimental AY modulator (fc; = 225MHz) are too large
for a practical on-chip implementation. Therefore, the capacitor is implemented on-chip and

the inductors are placed off-chip (Section 7.1.2).

The nominal quality factor (Q;) of the LC resonator (RESON1) is derived by simulating
the selected off-chip inductors using available circuit-level models [Coi09]. These simulations

demonstrated a nominal value of 25 for Q.

Figure 6.13(a) plots the simulated SQNR of the experimental AY modulator versus the
quality factor (Q) of its LC resonator (RESON1). This figure demonstrates that the loss of
performance due to the finite quality factor of the LC resonator is significant when Q < 25.
The quality factor of the LC resonator could be improved using a Q-enhancement technique,
for example [S0002], however this would increase the implementation complexity and require

additional tuning circuitry.
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Figure 6.13: Simulated SQNR of the experimental AY. modulator as a function of: (a) the quality
factor (Q ;) of its LC resonator, and (b) the quality factors (Q4, Q) of its active-RC resonators.

Inner-Loop Filter

The inner-loop filter of the experimental AY modulator (Figure 6.3) is implemented using a
cascade of active-RC resonators (RESON2 and RESON3). The circuit-level implementation of

the active-RC resonators is discussed in Section 7.2.

The quality factors of the active-RC resonators (RESON2 and RESON3) are set primarily
by the finite gain-bandwidth of their amplifiers, and the series resistance of their integration
capacitors (Section 7.2.1). Both of these parameters are subject to process-related variations
that can cause significant errors in the quality factors of the active-RC resonators, as well as

instability in their local feedback loops.

Figure 6.13(b) plots the simulated SQNR of the experimental AY. modulator versus the
quality factors (Q4 and Q3) of its active-RC resonators (RESON2 and RESON3). This figure
demonstrates that the loss of performance due to the finite quality factors of the active-RC
resonators is significant when Q,, Q3 < 15. The quality factors of the active-RC resonators
are nominally set to 20. This is the maximum value, with additional margin, for which the

local feedback loops of the resonators remain stable over every process corner.
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6.5.2 Resonator Centre-Frequency Errors

The centre-frequency error of a resonator determines its accuracy. A practical resonator has
a non-zero centre-frequency error (i.e., Afc > 0), which limits the in-band noise suppression
in a bandpass AY. modulator. In general, the loss of performance that results from a centre-
frequency error is significant when A f¢ is an appreciable fraction of the signal bandwidth fg

of the bandpass AY modulator [Sch06a].

This section uses behavioural simulations to evaluate how the noise-shaping performance
of the experimental AY modulator (Figure 6.3) is affected by the centre-frequency errors of

the resonators in its outer-loop and inner-loop filters.

Outer-Loop Filter

The outer-loop filter of the experimental AY modulator (Figure 6.3) is implemented using a
conventional LC resonator (RESON1). The circuit-level implementation of the LC resonator

is discussed in Section 7.1.

The centre frequency of the LC resonator (RESON1) is set by the values of its capacitor
and inductors. Here, the capacitor is implemented on-chip, whereas the inductors are placed
off-chip. The selected off-chip inductors have small tolerances (2 %), however the bond wires,
package leads, and PCB traces associated with off-chip components all introduce additional
parasitic inductances that can increase the overall error. The on-chip capacitor is subject to

large process-related variations (25 %), and therefore also contributes significant error.

Figure 6.14(a) plots the simulated SQNR of the experimental AY. modulator versus the
centre-frequency error (A fcp) of its LC resonator (RESON1). This figure demonstrates that
the loss of performance due to the centre-frequency error of the LC resonator is significant
when A fcp > 2MHz. In order to correct for centre-frequency errors, the on-chip capacitor of
the LC resonator is designed such that it is discretely tunable (Section 7.1.2). It provides a

nominal tuning range of 30 MHz, with a maximum error of 1 MHz.
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Figure 6.14: Simulated SQNR of the experimental AY modulator as a function of: (a) the centre-
frequency error (Afcy) of its LC resonator, and (b) the centre-frequency errors (Afca, Afcs) of its

active-RC resonators.

Inner-Loop Filter

The inner-loop filter of the experimental AY. modulator (Figure 6.3) is implemented using a
cascade of active-RC resonators (RESON2 and RESON3). The circuit-level implementation of

the active-RC resonators is discussed in Section 7.2.

The centre frequencies of the active-RC resonators (RESON2 and RESON3) are set by the
magnitudes of their capacitors and resistors, which are implemented on-chip. Both of these
components are subject to large process-related variations (25 % for capacitors and 15 % for

resistors), and can therefore introduce significant error.

Figure 6.14(b) plots the simulated SQNR of the experimental AY modulator versus the
centre-frequency errors (A fce and A fcg) of its active-RC resonators (RESON2 and RESON3).
This figure demonstrates that the loss of performance caused by the centre-frequency errors
of the active-RC resonators is significant when A fco, Afos > 500kHz. In order to correct for
centre-frequency errors, the on-chip capacitors of the active-RC resonators are designed to
be discretely tunable (Section 7.2.1). They provide a nominal tuning range of 20 MHz, with

a maximum error of 500 kHz.
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6.5.3 DAC Mismatch Errors

The feedback DACs of the experimental AY modulator (Figure 6.3) are implemented using
two different multi-bit current-mode circuit topologies. The circuit-level implementations of

the feedback DACs (DAC1-DAC4) are discussed in Section 7.4.

A multi-bit DAC is composed of an array of unit elements, which are nominally equal in
value. The unit element of a current-mode DAC is implemented using a current source, and
is therefore sensitive to transistor mismatch. The unit element mismatch (oy) of a multi-bit
feedback DAC reduces the linearity of a AY. modulator, and increases its in-band noise. The
variable oy is used in this section to denote the normalized rms mismatch between the unit

elements of a multi-bit DAC.

This section uses behavioural simulations to evaluate how the linearity and in-band noise
of the experimental AY. modulator (Figure 6.3) are affected by the unit element mismatch of

its feedback DACs (DAC1-DAC4).

Figure 6.15(a) plots the simulated SNDR of the experimental AY modulator versus the
unit element mismatch of its feedback DACs (DAC1-DAC4). This plot demonstrates that the
mismatch of DAC1 (op) has a significantly greater effect on the SNDR of the experimental
AY modulator than the mismatch of DAC2-DAC4. The loss of performance due to the unit

element mismatch of DAC1 is significant when oy > 0.5 %.

Figure 6.15(b) plots the simulated IM3 of the experimental AY modulator versus the
unit element mismatch of its feedback DACs (DAC1-DAC4). This plot demonstrates that the
mismatch of DAC1 (o) has a significantly higher effect on the linearity of the experimental
AY modulator than the mismatch of DAC2-DAC4. The loss of performance due to the unit
element mismatch of DAC1 is significant when oy > 0.25%. Here, the loss of performance is
considered to be significant when the intermodulation products introduced by the mismatch

of DAC1 are 3dB lower than those introduced by the loop filter (Section 6.4.2).
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Figure 6.15: (a) Simulated SNDR, and (b) simulated IM3 of the experimental A%
function of the unit element mismatch of its feedback DACs (DAC1-DAC4).

modulator as a

The unit element mismatch of the current-mode feedback DACs is reduced by increasing

the area of their current-source transistors (Section 7.4.1). The noise and distortion that are

introduced by the remaining mismatch errors are then suppressed using a bandpass mismatch

shaping scheme (Section 7.4.3).
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6.5.4 LO Phase Errors

As described in Section 6.1.2, the loop response of the experimental AY modulator includes
scaling factors that are set by the phase difference between its LO signal and sampling clock:
the low-frequency term is a function of (fy — fp), and the high-frequency term is a function
of (fuy + 0p). By significantly attenuating the high-frequency term, the phase dependence of

the loop response is reduced to that of the low-frequency term, 6y = (fy — 0p).

Figure 6.16(a) plots a root locus for the NTF of the experimental AY modulator, where
the relative LO phase (fy) is varied from —0.257 to +0.257 around its nominal value (7/4).
This plot demonstrates that, for the selected out-of-band gain, the poles of the NTF remain
inside the unit circle (i.e., | z| = 1) and, correspondingly, the NTF remains stable when the

LO phase error (afy) is between —0.157 and +0.1257.

Figure 6.16(b) plots the simulated SQNR of the experimental AY. modulator versus the
error (Afyp) in its relative LO phase. This figure demonstrates that the loss of performance
due to LO phase errors is significant when A6y > 0.17 or Aby; < —0.17. In order to correct
for phase errors, the delay in Figure 6.3 is designed with 2-bit tuning control. It provides a

nominal tuning range of 0.27, with a maximum error of 0.0257.

6.6 Conclusion

This chapter presented the system architecture of an experimental frequency-translating AY
modulator. This experimental AY modulator was utilized to verify the accuracy of the NTF
synthesis procedure proposed in Section 5.2, and to validate the design techniques proposed
in Sections 5.3, 5.4, and 5.5. It is designed to convert a wideband (4 MHz) input signal that
is centred at a high IF (225 MHz), while providing moderate (10 bit) resolution.

Section 6.1 presented the architecture of the experimental AY. modulator, and specified
its frequency and phase parameters. The experimental architecture is depicted in Figure 6.3,
and its parameters are specified in Tables 6.1 and 6.2. Section 6.2 presented the synthesis of
the experimental AY modulator from a prototype NTF. Table 6.3 summarizes the properties

of the prototype NTF, and Table 6.4 specifies the associated loop-filter coefficients.
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Figure 6.16: (a) Root locus plot for the NTF of the experimental AY modulator, where the relative
LO phase is varied from —0.257 to +0.257 around its nominal value (7/4). (b) Simulated SQNR of

the experimental AY modulator as a function of the error (Afy) in its relative LO phase.

This chapter also evaluated the nominal performance of the experimental AY modulator
and its sensitivity to circuit-level non-idealities using behavioural (system-level) simulations.
The experimental A3 modulator achieves a peak SQNR of 62.5dB over a signal bandwidth
of 4 MHz. Figures 6.6 and 6.7 demonstrate the accuracy of the simulated NTF and STF, and
validate the synthesis procedure and design techniques proposed in Chapter 5. When circuit
noise and non-linear distortion are included in behavioural simulations, the experimental AY

modulator achieves a peak SNDR of 61.0dB, and an associated IM3 of —70.0dB.
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HIS CHAPTER presents a circuit-level implementation for the experimental single-path
T frequency-translating A3 modulator that was proposed in Section 6.1. The prototype
architecture is implemented in a 1-V 65-nm CMOS process, and has been fabricated without
any special process options. The measured performance of the experimental AY modulator is

presented in Sections 8.3 and 8.4.

Figure 7.1 shows a circuit diagram for the experimental AY. modulator, and is equivalent
to the system diagram in Figure 6.3. This chapter is divided into four sections, each of which
discusses one of the main functional blocks of the experimental AY. modulator. Section 7.1
presents the circuit implementation of the LC resonator (RESON1), which is composed of a
transconductor, an LC tank, and a voltage buffer. Section 7.2 presents the implementation
of the active-RC resonators (RESON2 and RESON3), and discusses the operational amplifiers
and the switching mixer. Sections 7.3 and 7.4 present the implementations of the flash ADC,
the feedback DACs (DAC1-DAC4), and the mismatch-shaping logic.
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Figure 7.1: Circuit diagram of the experimental AY modulator. The capacitors and the delay block depicted in this diagram are tuned using

manual off-chip control.
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7.1 LC Resonator

This section presents the circuit-level design of the LC resonator, which is used to implement
the outer-loop filter of the experimental AY modulator (Section 6.1). Figure 7.2 provides a
circuit schematic for the LC resonator, which is composed of a transconductor, an LC tank,

and a source follower.

7.1.1 Transconductor

The transconductor converts the differential input voltage of the experimental AY modulator
into a corresponding current. Since it operates directly on the input signal, the transconductor

has the same noise and linearity requirements as the overall AY modulator.

The input voltage-to-current conversion of the transconductor is achieved using an nMOS
differential pair (M;—M5) that is linearized with a fixed source-degeneration resistor (Rg). Its
tail current source is split (Ms—Ms), with Rg connected differentially, to reduce the required
common-mode input voltage, and is further cascoded (Ms3—My) to improve the common-mode
rejection. Transistors Ms—Mg are biased at the edge of saturation using a wide-swing cascode

current mirror, which further reduces the common-mode input voltage [Joh97].

The transconductance of this circuit topology can be derived as

10 1
Gm.in = = 7.1
Ty 27512+ (Rs || 27r43.4) 7-1)

(2

where 741 2 is the small-signal source resistance of M;—M> and 743 4 is the resistance looking

into the drains of M3—Mjy.

The required transconductance (G, in) is set by the full-scale current of DAC1 (ipac1),
and by the input coefficient of the loop filter (ai,). The value of ipaci is selected according
to the matching and thermal-noise requirements of DAC1, as described in Section 7.4.1. The
value of aj, is selected so that it maximizes the input voltage swing of the experimental AY
modulator, which reduces the required value of G, in and, therefore, the power consumption
of the transconductor. The maximum input voltage (viq, max) is limited by the linearity of the

input voltage-to-current conversion.
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Linearity

The linearity of the input voltage-to-current conversion is determined by the distortion of the

input transistors (M;—Ms) and that of the cascode transistors (Ms—My), as follows:

1. The distortion of M;—Mj, dominates when the tail current (Ii,;) of the transconductor
is low. The small-signal source resistances (rs; and rg2) of M1—My appear in series with
the fixed source resistor (Rg), as shown in Equation (7.1). Therefore, their effect on the
input voltage-to-current conversion increases as their magnitude increases. The value of

rs1,2 scales inversely with Ii,i, and therefore increases as Iy, is decreased.

2. The distortion of M3—M4 dominates when the tail current (Ii,;) of the transconductor
is high. The sum of the drain resistances (743 + r44) of M3s—My4 appears in parallel with
the fixed source resistor (Rg), as shown in Equation (7.1). Therefore, their effect on the
input voltage-to-current conversion increases as their magnitude decreases. The value of

T43,4 scales inversely with Ii,j, and therefore decreases as Iy, is increased.

Since the distortion of M3—M, is dominant when [i,; is high, and the distortion of M—M5 is
dominant when Ii; is low, there is an optimal tail current (Ii,j), for each Rg, that maximizes
the linear input range of the transconductor. The maximum input voltage (vi4, max) remains

approximately constant with Rg.

The transconductor is nominally designed for Gy, in = 1.35mA /V with a source resistance
of Rs= 5758 and a tail current of I, = 2 x 800 A. In simulation, the transconductor has

a linear input range of approximately £+ 200mV.

Noise

The transconductor operates on the signal band of the experimental AY modulator when it is
centred at fc; = 225 MHz. As a result, the in-band noise performance of the transconductor is
dominated by the thermal noise of its source resistor and transistors. The flicker (1/f) noise

of the transistors is negligible at 225 MHz, and is not considered here.
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Figure 7.3 illustrates the sources of thermal noise! in the transconductor. Since the input
transistors (M;—Ms) are biased in their active region, their thermal noise contribution can be
represented using an equivalent voltage source connected in series with their gate. The power

spectral density of this noise voltage is white, and is approximated [Joh97] as

V2o (f) = 4kTyr (V?/Hz) (7.2)

9m1,2

The thermal noise contribution of the bias transistors (Ms—M;g) can be similarly represented

2

using a current source” connected in parallel with their source and drain. The power spectral

density of this noise current is white, and is approximated as

Loagy o () = 4kTyrgmss  (A*/Hz) (7.3)

The thermal noise contribution of the source resistor (Rg) can be represented using a voltage
source connected in series with Rg. The power spectral density of this noise voltage is white,

and is approximated as

V2 p(f) = 4kTRg (V2/Hz) (7.4)

In these equations, & = 1.38 x 10723 J/K is Boltzmann’s constant, 7" is the temperature in

degrees Kelvin, and ~p is the excess thermal-noise factor.

The noise voltages of the input transistors (M;—Mas) and the source resistor (Rg) appear
directly between the input terminals of the transconductor, and can be referred to the input
without modification. The noise currents of the bias transistors (Ms—M;g) are referred to the
input by first evaluating their contribution to the output current of the transconductor, and

then dividing by Gy, in [San00].

!The noise contribution of the cascode transistors (Ms—My) is degenerated by the output resistance of the bias

transistors (Ms—Ms), and can therefore be neglected.

2A current-domain representation is used here so that the noise contribution of Ms—Ms can be easily referred

to the input of the transconductor.
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Figure 7.3: Sources of thermal noise in the transconductor.

The total input-referred thermal noise of the transconductor can be expressed as

2
VEall) = 2V, (0 Vin(D 42 (8) Ban ) (/) (79)

The source resistance (Rg) must be greater than the small-signal source resistances (1/gm1,2)
of M1—Ms> for the transconductor to achieve adequate linearity. As a result, the in-band noise

performance is dominated by the contributions of Rg and the bias transistors (Ms—Mg).

In simulation, the transconductor achieves an input-referred rms thermal noise density of
7.5n1V/vHz around fc; = 225 MHz. Since the experimental AY modulator is designed with

a continuous-time loop filter (Section 6.1), its resolution is only affected by the thermal noise

within its signal band.
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7.1.2 LC Tank

The LC tank must implement a resonance at the input centre frequency of the experimental
AY. modulator (fc; = 225MHz). Since the associated capacitance and inductance require too
much layout area for a practical on-chip implementation, the inductor is placed off-chip, and
the capacitor is placed on-chip. The on-chip capacitor is implemented using an interdigitated
metal-oxide-metal (MOM) fringe capacitor. It is subject to process-related variations as high
as +25% in the selected 65-nm technology, and is therefore designed such that it is discretely
tunable. The implemented tuning array is also required to correct for the additional parasitic

inductances that are introduced when the inductors are placed off-chip.

The values of the off-chip inductors (L) are maximized in order to minimize the relative
contribution of the parasitics that are introduced by the PCB traces, the package leads, and
the bond wires. The maximum value of L is limited by the self-resonant frequency (SRF) of
available discrete inductors. The SRF should be at least a decade higher than the required
resonance frequency in order to ensure that the inductors have a flat impedance characteristic
over the frequency range of interest [Coi08]. These considerations resulted in the selection of

two 33nH (L) inductors, which have a SRF of 2.7 GHz.

The on-chip capacitor (Ct) is composed of a base component and a 4-bit binary-weighted
tuning array. In order to reduce the area of the on-chip capacitor, the array is only designed
to cover half of the required tuning range. It can correct for small-to-large positive variations
in the capacitance, and small negative variations. The tuning array is not required to correct
for large negative variations, since these can be corrected using off-chip capacitors. The base
capacitor is designed with a nominal value of 4.8 pF', which provides the required capacitance,
including additional margin, for the maximum positive process variation. The tuning array
is designed with binary-weighted values ranging from 100 fF to 800 fF. It provides a nominal

tuning range of 30 MHz, with a maximum error of 1 MHz.

Figure 7.4 shows a circuit diagram for one element of the tuning array. Here, the control
switches are designed using a three-transistor configuration that maximizes both the linearity

and the quality factor of the LC tank for a given tuning code. When an element of the tuning



7.1 LC Resonator 159

VTANKn VerLi VTANKp

Cii Cyi
| | . _l . |

‘ [ | = R ‘

| |

| D—| M12 M13 I—G |

' VT VT '
Device M1 Mio—Mi3

W(um)/L(pm) || 6-36/0.06 | 0.2/0.06

Figure 7.4: Circuit diagram for one element of the tuning array that is used by the LC tank.

array is active, transistor Mj; provides a low-resistance path between capacitors C7 and Co,
while minimum-sized devices Mj2 and M3 provide the bias voltages at its source and drain.
Use of a single wide-channel device (M71) minimizes the series resistance that is connected to
the LC tank when an element of the tuning array is active, which maximizes the achievable
quality factor. In addition, it minimizes the non-linear parasitic capacitance that is connected
to the LC tank when an element is not active, which maximizes the achievable linearity. The
gate capacitance of transistor M is significantly lower than C and Cs, and does not reduce

the accuracy of the tuning array.

7.1.3 Source Follower

A conventional source follower (M7—Mj) is used at the output of the LC resonator, as shown
in Figure 7.2. This follower is required to isolate the LC tank from the input resistors of the
active-RC resonators, which would otherwise reduce the quality factor. It is also required to
shift the common-mode level from 1V at the LC tank to 450 mV at the switching mixer and

the active-RC resonators (Section 7.2).
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Noise

The source follower operates on the signal band of the experimental AY. modulator when it is
centred at fo; = 225 MHz. As a result, the in-band noise performance of the source follower is
dominated by the thermal noise of its transistors. The flicker (1/f) noise of the transistors is

negligible at 225 MHz, and is not considered.

The source follower is biased with a tail current of Ii,; = 2 x 300 pA. In simulation, this

bias results in an rms thermal noise density of 9.5nV/vHz at fc;= 225 MHz.

7.2 Active-RC Resonators

This section describes the circuit-level design of the active-RC resonators that are used to

implement the inner-loop filter of the experimental AY modulator (Section 6.1).

7.2.1 Resonator

Figure 7.5 shows a general circuit diagram for an active-RC resonator. It is composed of two
active-RC integrators connected in negative feedback, where each integrator is implemented
using an operational amplifier, a feedback capacitor and an input resistor. The input voltage
of an active-RC integrator is converted into a current over the resistor, which is connected to
the virtual ground of the amplifier. This current is then integrated on the feedback capacitor,

which generates a corresponding output voltage.

The centre frequency of an active-RC resonator is determined by the product of its input
resistance and feedback capacitance. A centre frequency of fc,= 25 MHz is achieved here by
using a nominal resistance of 4k{) and a nominal capacitance of 1.5 pF. Both components are

implemented on-chip, and tuning is required to correct for process variations.
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Figure 7.5: Circuit diagram of the active-RC resonator.
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Figure 7.6: Circuit diagram of a standard active-RC integrator.

Finite Amplifier Gain

Figure 7.6 shows a circuit diagram for a standard active-RC integrator, where the amplifier is
modeled as a voltage-controlled current source with a finite transconductance (G,,), and an
infinite bandwidth (wsqp = 00). Here, Ry, is used to represent the resistive loading of the next
stage. The transfer function of this integrator can be approximated as

Vo($) Ay(1 — s/wz1)

Ii(s) = ils) = T it sjoy (7.6)

wp = wr/Ay

Wz1 = Gm/CF

where A, = G,,, Ry, is the equivalent voltage gain of the amplifier, and wp = 1/(R;CF) is the
ideal unity-gain frequency of the integrator (4, — o0). Note that Equation (7.6) is simplified
by assuming that A, > 1.
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The right-half-plane zero (w,1) in Equation (7.6) is the result of the forward signal path
through the feedback capacitor of the integrator. This zero introduces a negative phase shift
into the response of the integrator that can lead to instability when two integrators are placed
in feedback to implement a resonator. In general, this negative phase shift is compensated by
adding a small resistor (Ry) in series with the feedback capacitor [Lin00]. This resistor shifts
the right-half-plane zero to w’,; = w,, /(1 — G Rz), and can be selected such that G, Rz= 1,

which results in w); = oo.

Finite Amplifier Gain-Bandwidth

If the amplifier in Figure 7.6 is instead modeled as a voltage-controlled current source with a
finite transconductance (G,,) and a finite bandwidth (w3qp), the integrator transfer function
can be approximated as

Vo($) Ay(1 = s/w.1)(1 + s/wz2)

B = 5 T T sfem) (L /i) .7

wp1 = wr/Ay

wp2 = Ay wszdp/2

where the derived expression is simplified by assuming that real poles wy1 and wp2 are widely

separated [Joh97], and that A, wsqp > w.

The non-dominant pole (wp2) in Equation (7.7) is caused by the finite gain-bandwidth of
the amplifier. This pole introduces a negative phase shift that causes the total phase shift of
the integrator to be greater than 90° at its unity-gain frequency (wr). When two integrators
are connected in feedback, these additional poles cause the phase shift in the local feedback
loop of the corresponding resonator to be greater than 180° at its unity-gain frequency. This

results in positive feedback, which causes the local feedback loops to oscillate.
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The negative phase shift that is introduced by the finite gain-bandwidth of the amplifier
can be compensated by inserting a small resistor (Ryz) in series with its feedback capacitor,
as described previously. This resistor decreases the frequency of the left-half-plane zero (w,2)
in Equation (7.7), which reduces the phase shift of the integrator at its unity-gain frequency.
In this way, it compensates for the finite gain-bandwidth of the amplifier, and is used both to

stabilize the local feedback loop of an associated resonator and to set its quality factor.

Quality Factor

The quality factor (Q) of a resonator depends on the phase margin of its loop response. The
value of Q can be maximized by increasing the phase shift inside the local feedback loop of a
resonator so that its phase margin is as close as possible to zero, without becoming negative.
As described previously, the phase shift of an active-RC integrator is adjusted by inserting a
small resistor (Rz) in series with its feedback capacitor. Accordingly, the quality factor of an
active-RC resonator can be adjusted by changing the series resistance (Ryz) that is used by

its composite integrators [Sch06a].

In the experimental AY modulator, the active-RC resonators (RESON2 and RESON3) are
both designed with a series resistance of Rz = 250 €2. This is the minimum series resistance
for which their local feedback loops do not oscillate over any process corner. In simulation,

this value of Ry results in a quality factor of 20 for both resonators.

Tuning

The active-RC resonators (RESON2 and RESON3) are implemented using on-chip capacitors
and resistors, which are sensitive to process variations. In the selected 65-nm CMOS process,
the absolute capacitor variation? is 425 %, whereas the absolute resistor variation is #+ 15 %.

Therefore, tuning is required to set the centre frequency of each resonator.

3The specified tolerances are for fringe capacitors and N+ polysilicon resistors.
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The centre frequencies of the active-RC resonators (RESON2 and RESON3) are tuned by
switching the feedback capacitance of their composite integrators. Each feedback capacitor is
composed of a base component and a 5-bit binary-weighted tuning array. The base component
of RESON? is designed with a nominal value of 950 fF and the base component of RESONS is
designed with a nominal value of 775fF. These components are selected so that they provide
the required time constant under the maximum positive process variation. The tuning arrays
are designed with binary-weighted capacitor values ranging from 50 fF to 800 fF. They have

a nominal tuning range of 20 MHz, with a maximum error of 500 kHz.

In the selected 65-nm CMOS process, the capacitors and resistors provide better than 1%
matching for the required component values. Accordingly, the same tuning code is applied to
both active-RC resonators, using RESON2 as a reference. The centre frequency of RESON2 is
tuned by disconnecting its inputs, using the switches of the mixer, and connecting a positive

feedback path in order to reconfigure it as an oscillator.

Noise

The in-band noise performance of an active-RC resonator is determined by the thermal noise
of its resistors and the noise of its operational amplifiers. The noise of both integrators must
be considered since, by definition, the voltage gain of the first integrator is unity at the centre

frequency of the resonator (fc,).

4 in an active-RC resonator. The thermal noise

Figure 7.7 illustrates the sources of noise
contributions of the input resistors (R1; and R12) and the local feedback resistors (Rrp) can
be represented using equivalent voltage sources connected in series with Ry, R, and Rpp,
as described in Section 7.1.1. The power spectral density of each noise voltage is white, and is
approximated in the same way as Equation (7.4). The noise contributions of the operational

amplifiers (A; and As) can be represented using equivalent voltage sources connected in series

with their non-inverting input terminals.

“The series resistors (Rz) also introduce thermal noise, however their contribution is relatively small and has

been excluded to simplify Equation (7.8).
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Figure 7.7: Sources of thermal noise in the active-RC resonators.

The total input-referred noise of the active-RC resonator can be expressed as

Rn  Rn

2 2
V2ulh) = 2% () +2 (5 ) Vi) + (14 52+ 2 VL) (78)

Ru\. , Ru  RuRr\’, 2
r2 () im0+ (2T Vil (/i

where Zp represents the impedance of the feedback capacitor. This expression is simplified by

assuming that the operational amplifiers have infinite gain-bandwidth [Ort06].

The in-band noise of the first active-RC resonator (RESON2) has a more significant effect
on the performance of the experimental AY. modulator than that of RESON3, since the latter
is largely suppressed by the loop gain. In simulation, RESON2 achieves an input-referred rms

thermal noise density of 26.5nV/vHz at fc,= 25 MHz.
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7.2.2 Operational Amplifier

The operational amplifier (opamp) is implemented using a fully-differential two-stage design
that provides moderate voltage gain and high output signal swing. Figure 7.8 shows a circuit
diagram of the opamp and its common-mode feedback (CMFB) circuit. Here, the first stage
is composed of a pMOS differential pair (My—M3), and an nMOS active load (My—Ms5), and
the second stage is composed of an nMOS common-source amplifier (Mg—My), and a pMOS
active load (Mg—M7). The opamp is not buffered from its resistive load, since the addition of

an output buffer would increase the complexity of the frequency compensation.

The opamp is designed with pMOS input transistors so that the common-mode level that
is required at its input (Vo in) can also be used at its output (Vom, out) without significantly
limiting its output signal swing. In the selected 65-nm CMOS process, the threshold voltage
of an nMOS device (V4,) is approximately 50mV higher than that of the pMOS device (V)
under equivalent bias conditions. Accordingly, the gates of a pMOS input pair can be biased
closer to Vpp/2 than the gates of an nMOS input pair, which results in higher output signal
swing when Vo, out = Vo, in. The same common-mode level is used at the input and output
of the opamp to avoid dc level-shifting, which would increase the thermal noise and power

consumption of the active-RC integrators [Kar00].

The voltage gain (A,1) of the first stage can be expressed as

Avt = gm2,3(7Tds2,3 || Tdsa5) (7.9)

where 745 3 and 74445 are the drain-source resistances of My—M3 and My—Ms, and g2 3 is
the transconductance of My—Mj3. For a given overdrive voltage, g,, scales directly with the
bias current, through the transistor W/ L ratio, and r4s scales inversely with the bias current.
Accordingly, the bias current of the first stage (Ipias1) does not affect the value of 4,1, and is

selected according to thermal noise requirements.
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Figure 7.8: Circuit diagrams for: (a) the operational amplifier, and (b) the common-mode feedback

circuit of its second stage.
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The voltage gain (A,2) of the second stage can be expressed as

Ava = gmso(Tassollrase 7 || RL) (7.10)

where Ry, represents the load resistance of the opamp. The value of A,s depends on the bias

current of the second stage (Ipias2) as follows:

1. When Ipias2 is low, rgs > Ry, and Aya = gmgo(Rr). Since gy, scales directly with the
bias current, for a fixed overdrive voltage, an increase in I, results in a proportional

increase in the value of A,s9.

2. When Thiaso 18 high, rgs < R, and Avg = gm&g(rdsﬁ”f

| 7ds8.9 ). Since rqs scales inversely
with the bias current, further increases in Ip;,50 do not result in proportional increases

in the value of A9.

Accordingly, the bias current of the second stage (Ipias2) is selected so that r4s > Ry, in order

to maximize the gain efficiency for a given value of Ry,.

Common-Mode Feedback

The operational amplifier is designed with separate common-mode feedback (CMFB) circuits
for its first and second stages, as shown in Figure 7.8. The common-mode levels of the first

and second stages are set to 515mV and 450 mV, respectively.

The common-mode level of the first stage does not need to be set to an external reference,
and is established using feedback resistors R1—Rs. These resistors are selected such that they
do not limit the voltage gain. The common-mode level of the second stage must be set to an
external reference, since it drives the next integrator. This common-mode level is established
by a CMFB loop, which senses the voltage at the output of the opamp using resistors R3—Ry,
and adjusts the voltage at the gates of transistors Mg—M~. Since the output resistance of the
opamp is relatively small, the voltage at the output can be sensed without a source follower,

which improves its output signal swing [Joh97].
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The CMFB loop of the second stage uses a single-stage amplifier with a differential input
and a single-ended output. Since this amplifier drives the gates of pMOS transistors Mg—M?7,
it must have pMOS load transistors and, therefore, nMOS input transistors. In order to drive
an nMOS input pair, the common-mode level of the second stage is shifted to 725 mV using a
resistive voltage divider formed by R3, R4, and R7. The reference common-mode level is also
shifted, using a corresponding resistive voltage divider formed by Rs5, Rg, and Rg, in order to
correct for process variations. The frequency compensation of the CMFB loop is provided by

capacitors C1—Cy [Raz01].

Frequency Compensation

The frequency compensation of the operational amplifier is implemented using the modified
cascode compensation technique described in [Tahl1]. Here, the input transistors (My—M3)
are each split, and the compensation capacitors (C¢) are connected to the intermediate nodes

of the split transistors.

This modified cascode compensation technique is better suited to low-voltage design than
Miller compensation, since its compensation network does not require a transistor biased in
triode [Tahl1]. Furthermore, it requires less bias circuitry, and therefore consumes less power
than conventional cascode compensation, while maintaining the same advantages relative to
Miller compensation: process-insensitive poles and zeros, higher power-supply rejection, and

higher phase margin for the same compensation capacitance [Ahu83][Hur04].

When the input transistors (May—M3) are split, Mo, —Ms, operate in triode and Moy—Ms;,
operate in saturation. In order to bring transistors Ms,—Ms3, closer to the edge of saturation,
the bulk terminals of Ms,—Ms, are connected to Vpp, while the bulk terminals of Moy,—Masyp
are connected to the sources of My,—Ms,. This increases the threshold voltages of Mo,—Ms,,
relative to those of Mop—Msy,, and increases their gate-source voltages correspondingly. Since
the gates of Mo,—Moy, and Ms,—Msp are each connected, increasing the gate-source voltages
of My,—Ms3,, relative to those of Moy—Msy, increases the drain-source voltages of Mo,—Ms,,
and therefore moves them closer to saturation. This bias configuration increases the dc gain

of the opamp without reducing its phase margin.
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Noise

The in-band noise performance of the operational amplifier is dominated by the noise of its
first stage. The noise that is introduced in its second stage is effectively divided by the gain of
its first stage, and is therefore negligible. The noise performance of first stage is dominated by
thermal noise. The channel lengths of the input and load transistors are increased to 3Ly S0

that their flicker (1/f) noise is negligible over the frequency range of interest.

The first stage of the opamp is biased with a tail current of Ii,; = 400 pA. In simulation,
this bias results in an rms thermal noise density of 5.5nV/vHz at fc,= 25 MHz.

7.2.3 Switching Mixer

The downconversion mixer is implemented using a passive, or switching, topology. Figure 7.9
shows a circuit schematic for the switching mixer, as it would be incorporated into the input
resistors of an active-RC integrator. The switching mixer provides a conversion gain of 2/,

which is compensated for in the corresponding loop filter coefficient.

The switches of the downconversion mixer are implemented using simple nMOS devices,
which facilitate high-speed operation. In general, the design of the switching transistors is a
trade-off between LO leakage and linearity: the LO leakage is reduced by decreasing the gate
capacitance of the switches (i.e., decreasing WL), and the linearity is improved by decreasing
the on-resistance (ron) of the switches (i.e., increasing W/L). However, since the experimental
AY. modulator has a bandpass loop filter and feedforward coefficient paths (Section 6.1), the
LO leakage and linearity of the downconversion mixer do not have a significant effect on the
resolution. In particular, use of feedforward paths reduces the signal swing through the mixer

and facilitates the use of nMOS switches, rather than transmission gates.

The size of the switching transistors (M;—My) is instead selected to reduce the effect of
process variations on the loop-filter coefficients of the experimental AY modulator. Since the
switching transistors are connected in series with the input resistors (Rp) of the active-RC
integrator, their on-resistance (ron1-4) modifies the corresponding loop-filter coefficient. The
value of ron1-4 varies significantly with the process, and can therefore limit the noise-shaping

performance of the experimental AY. modulator.
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Figure 7.9: Circuit diagram of the switching mixer.

Accordingly, the size of M;—My is selected such that the corresponding coefficient varies
by less than 5% under the maximum possible process variation. In behavioural simulations,
a 5% coefficient error results in a loss of SQNR of less than 1dB. Using this approach, the

nominal on-resistance (ron1-4) of M1—My is equal to 480 2.
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7.3 Flash ADC

The internal quantizer of the experimental AY modulator (Section 6.1) is implemented using
a 3-bit flash ADC, which has seven binary comparators and a corresponding reference ladder.
The comparators are each designed with a single-stage pre-amplifier and a regenerative latch,
and the reference ladder is implemented with a single string of resistors. Figure 7.10 shows a

circuit diagram of the flash ADC.

7.3.1 Pre-Amplifier

Figure 7.11 shows a circuit diagram for the pre-amplifier that forms the first stage of each
comparator in the flash ADC. The pre-amplifier is used to reduce the input-referred offset of
the regenerative latch, and to reduce the capacitive feedthrough from the clock input of the
latch to the reference ladder. The input transistors of the pre-amplifier (Ms—My and M5—Mg)
subtract the input signal from the corresponding reference level, and pass the resulting signal
current to the diode-connected load transistors (Mg—Mjg). The input and load transistors are

designed with long channel lengths (L = 3Ly,;,) to improve their matching.

The voltage gain of the pre-amplifier can be expressed as

A, = Imss (7.11)
9m9,10

where gp3-6 is the transconductance of the input transistors (Ms—Ms), and 1/gmg 10 is the

input resistance of the load transistors (Mo—Mjy).

The voltage gain of the pre-amplifier is increased by adding shunt transistors (M7—Ms) in
parallel with its load transistors (Mg—M;g). These shunt transistors decrease the bias current
through the load transistors, which decreases their transconductance (gmg,10) and, therefore,
increases the voltage gain [Gre99]. Here, the shunt current is four times higher than the load

current, which increases the voltage gain by approximately 11 dB.

In simulation, the pre-amplifier achieves a voltage gain of 6.1 dB. It has an input-referred
rms thermal noise density of 25nV/vHz at fc,= 25 MHz, and an rms offset of 11.9mV. The

pre-amplifier consumes 50 uW from a 1-V power supply.
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Figure 7.10: Circuit diagram of the flash ADC.

7.3.2 Regenerative Latch

Figure 7.12 shows a circuit diagram for the regenerative latch that forms the second stage
of each comparator in the flash ADC. When the sampling clock is low, transistors Mg—Mig
connect the outputs of the latch to Vpp, so that it is reset. When the sampling clock is high,
transistors My—Mg connect the cross-coupled inverters implemented by M3—M, and M;—Msg,
and the input transistors (M;—Mz) force the next input onto the latch. The input transistors

are designed with long channel lengths (L = 3Lyyi,) to improve their matching.
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Figure 7.11: Circuit diagram of the pre-amplifier.

In simulation, the regenerative latch achieves an rms offset of 10.6 mV. In order to derive

the total offset of the comparator, the offset of the latch is referred to the input, and is added

to the offset of the pre-amplifier.

7.3.3 Reference Ladder

The reference ladder of the flash ADC is composed of six 200 €2 unit resistors. It is designed
using positive and negative references of 625mV and 275mV, which result in a step size (A)
of 100mV. The reference ladder is connected to the positive and negative references through

two 1002 resistors, which reduce the effect of process variations. The size of the unit resistor

is selected to reduce the power consumption and capacitive feedthrough.
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Figure 7.12: Circuit diagram of the regenerative latch.

The capacitive feedthrough, or kick-back, from the clock input of the regenerative latch to
the reference ladder introduces errors into the reference levels that can affect the decisions of
the comparators. The kick-back error scales with the input capacitances of the pre-amplifier
and latch, and the unit resistance of the reference ladder [Ort06]. Since the channel lengths of
the input transistors are determined by matching requirements, the input capacitances of the
latch and pre-amplifier are effectively fixed. Accordingly, the kick-back error is decreased by

reducing the size of the unit resistors.

The reference ladder consumes 250 pW. In simulation, the ladder results in a maximum

kick-back error of 6.5 mV for a clock signal with a rise time of 50 ps.
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7.4 Feedback DACs

This section describes the circuit-level design of the feedback DACs of the experimental A

modulator (Section 6.1).

7.4.1 Outer-Loop DAC

Figure 7.13 shows a circuit diagram for the outer-loop DAC (DAC1). It is implemented with a
current-mode topology, and uses the LO signal to generate raised-cosine pulse shaping. Here,
the digital input signal (the thermometer-coded output of the flash ADC) controls the input
transistors (M3z—My), which steer the current of the tail transistor (M) either to the positive
or negative output. The tail transistor is cascoded (M3) to provide isolation from the digital
input signal, and to increase the output resistance of the DAC. The outer-loop DAC (DAC1)
is connected directly to RESON1, and must therefore have a high output resistance to prevent

it from reducing the quality factor of the LC tank.

VO
D Vv,
D
- + —
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W (pm)/L(pm) 24/0.72 10/0.12 4/0.12

Figure 7.13: Circuit diagram of the outer-loop DAC (DAC1).



7.4 Feedback DACs 179

The outer-loop DAC (DAC1) is designed with raised-cosine pulse shaping. This enables it
to upconvert the feedback signal of the experimental AY. modulator, and to achieve reduced
sensitivity to clock jitter [Lus04]. A raised-cosine pulse is generated by applying the LO signal
to the gate of the tail transistor (M) in the place of a fixed bias voltage. The sampling clock
and the LO signal are then synchronized such that, during an input transition, the LO signal
is low and M is turned off. This reduces the effect of timing errors on the shape of the DAC

pulse, and therefore gives the experimental AY modulator high immunity to clock jitter.

Figure 7.14 shows circuit diagrams for the driver and latch that are used before each unit
element of the outer-loop DAC (DAC1). These circuits are designed to reduce the effect of the

following issues, which limit the dynamic performance of a current-mode DAC [Bos99]:

1. The capacitive feedthrough of the digital input signal to the output. The transitions on
the input signal of the DAC can couple to its output across the gate capacitance of the
input transistors (Ms—My). These errors are reduced by decreasing the output swing of
the high-crossing switch driver [Fal99]. The low output level (Vpgry) of the driver is set

using a bias voltage of 600 mV, which is generated off-chip.

2. The variation in the drain-source voltage of the tail transistor (M). If the digital input
signal of the DAC is applied directly to the gates of M3—My, both devices turn off for a
short period of time during each input transition. This causes the parasitic capacitance
at the sources of M3—M, to discharge, which decreases the drain-source voltage of My,
and therefore introduces an error into the output current. This error is reduced by using
a high-crossing switch driver [Fal99], as shown in Figure 7.14(b). This driver ensures

that Ms—M, are never off at the same time.

3. The synchronization of the input signals in a multi-bit design. The digital input signals
of the DAC are latched immediately prior to the drivers, in order to ensure that all
unit elements switch at the same time when new data arrives. Figure 7.14(a) shows a

circuit diagram for the latch.

The full-scale current of DAC1 is selected to meet thermal-noise requirements, whereas its

unit elements are sized to meet matching requirements, as described below.
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Figure 7.14: Circuit diagrams for: (a) the latch, and (b) the driver that are used prior to each unit
element of the feedback DACs.

Matching

The experimental AY modulator (Section 6.1) is implemented with multi-bit feedback DACs,
and is therefore sensitive to unit element mismatch. This mismatch can reduce the linearity of
the AY modulator, and increase its in-band noise (Section 6.5.3). The static mismatch of the
feedback DACs is reduced by increasing the area of their tail transistors. The remaining errors

are then suppressed using a bandpass mismatch-shaping scheme.

A conventional® bandpass mismatch-shaping scheme suppresses the in-band noise caused

by mismatch errors [Shu98| by

872
N2 = — 7.12
© 30SR3 (7.12)

where it is assumed that the mismatch noise has a white power spectral density. Therefore,

given an OSR of 12.5 (fg= 4 MHz), the mismatch noise is suppressed by 18.7 dB.

5This expression is valid for 2nd-order bandpass mismatch shaping around a centre frequency of fs /4.
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According to the behavioural simulation results presented in Section 6.5.3, the mismatch
of DAC1 must be reduced below 0.5 % to prevent mismatch errors from significantly affecting
the performance of the experimental A3 modulator. The matching of the outer-loop DAC is
improved by increasing the lengths of its tail transistors (M;). In the selected 65 nm process,

the required matching is achieved when the channel length of My is set to 12L .

Noise

The in-band noise performance of the outer-loop DAC is dominated by the thermal noise of
its tail transistor (M ). The noise contributions of the cascode transistor (Msz) and the input
transistors (M3—My) are both degenerated by the output resistance of Mj, and can therefore
be neglected. In addition, since M7 must have a long channel to achieve adequate matching,

its flicker (1/f) noise can also be neglected.

The thermal noise contribution of the tail transistor (M;) can be represented using an
equivalent voltage source connected in series with its gate, as described in Section 7.1.1. The
power spectral density of this noise voltage is white, and is approximated in the same way as
Equation (7.2). The total thermal noise of DAC1 is derived by evaluating the noise of one of
its unit elements, and multiplying by the number of unit elements. Note that since the input

of the DAC is a digital signal, its noise is referred to the input of the transconductor.

The outer-loop DAC is designed with a least significant bit of I1,gg = 200 uA. This results
in an input-referred rms thermal noise density of 2nV/vHz at fc; = 225 MHz.

7.4.2 Inner-Loop DACs

Figure 7.15 shows a circuit diagram for one of the inner-loop DACs (DAC2-DAC4). They are
implemented with a current-mode topology, and use a fixed bias to generate rectangular pulse
shaping. Here, since the nMOS input transistors (Ms—M,) can only sink current, each of the
DACs must be designed with an additional pMOS current source (Ms—Mg), which provides

the required offset current.
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Figure 7.15: Circuit diagram of the inner-loop DACs (DAC2-DAC4).

The inner-loop DACs (DAC2-DAC4) are connected to the last resonator (RESON3) of the
loop filter. Therefore, their noise and distortion are largely suppressed by the loop gain of the
experimental A3 modulator. This suppression reduces their matching requirements relative
to those of the outer-loop DAC (DAC1). Furthermore, since the clock jitter that is introduced

at DAC2-DACA4 is also suppressed, it facilitates rectangular pulse shaping.

7.4.3 Mismatch Shaping

The static mismatch between the unit elements of the multi-bit feedback DACs is decreased
by increasing the size of their tail transistors, as described in Section 7.4.1. The noise and
distortion that are introduced by the remaining mismatch errors are then reduced using a

bandpass mismatch-shaping scheme.
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The implemented bandpass mismatch-shaping algorithm is based on an element rotation
scheme. In an element rotation scheme, the mismatch-shaping logic rotates through the unit
elements of the DAC in such a way that the noise and distortion introduced by mismatch are
reduced at its output. One of the most widely-used element rotation schemes is data-weighted
averaging (DWA) [Bai95]. The DWA algorithm achieves highpass shaping of mismatch errors

by rotating forward through the least-recently-used unit elements of the DAC.

The signal band of the experimental AY modulator is centred at fg/4 when it is processed
by the mismatch-shaping logic (Section 6.1). In order to implement bandpass shaping at fs/4,

this logic must provide a mismatch transfer function® of
Hy(z) = 14272 (7.13)

An element rotation scheme can be specified in terms of its selection pattern. The mismatch
transfer function in Equation (7.13) is implemented by the element selection pattern defined

in [Shu98], which is derived from a two-path transformation (z — 2%) of
Hi(z) = 14271 (7.14)

Figure 7.16 shows element selection patterns for both Hi(z) and Ha(z) [Shu98]. Here, H1(z)
is implemented by rotating back and forth through the most-recently-used unit elements of

the DAC, and Haz(z) is a time-interleaved version of Hi(z).

Figure 7.17 provides a block diagram for the bandpass mismatch-shaping logic. Here, the
thermometer-coded output outy (n) of the flash ADC is rotated according to the value of the
pointer ptr (n), which is derived from the addition of the previous output codes. In order to
implement bandpass mismatch shaping around fg/4, a two-cycle delay is required between
the output and the input of the adder. That is, the next pointer ptry, (n) is equal to the sum
of the current digital output code outyq(n) and the pointer generated two cycles previously
ptr(n) = ptry, (n-2). Furthermore, the thermometer-coded output outy (n) must be flipped
at four-cycle intervals, and the digital output code outq(n) must be similarly inverted. Both

of these operations use a divided clock (c1k4), which is generated locally.

6The mismatch transfer function (MTF) is used to specify the mismatch-shaping performance.
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Figure 7.16: Element selection patterns for: (a) Hi(z), and (b) Ha(z) [Shu98].
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Figure 7.17: Block diagram for the bandpass mismatch-shaping logic.
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HE EXPERIMENTAL single-path frequency-translating AY modulator (Figure 7.1) was
T fabricated in a 65-nm digital CMOS process, and operates from a nominal 1-V supply.
This chapter presents the layout and test setup of the experimental prototype, and compares
its measured performance to state-of-the-art bandpass AY modulators. This comparison only

considers designs that are implemented in CMOS technology.

The experimental AY modulator (Figure 7.1) is designed to digitize a 4 MHz signal band
that is centred at 225 MHz. It uses an LO signal with a frequency of 200 MHz to downconvert
the signal band to a centre frequency of 25 MHz inside its AX. loop, and samples at 100 MHz.
The experimental prototype achieves a peak SNR of 55.5dB, a peak SNDR of 55.0dB, and
a dynamic range of 57.5dB. It consumes 13 mW from a 1-V power supply, where its analog
and digital circuits consume 12.75mW and 0.25 mW, respectively. The measured performance
of the experimental prototype is competitive with state-of-the-art bandpass AY modulators,

as demonstrated by Table 8.2.

This chapter is divided into four sections. Section 8.1 discusses layout considerations for
the experimental AY, modulator, and provides the chip micrograph. Section 8.2 describes the
printed circuit board (PCB) and experimental test setup. Section 8.3 presents the measured
performance of the experimental prototype, and Section 8.4 then compares this performance

to state-of-the-art bandpass AY modulators.

185
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8.1 Layout

The experimental AY modulator is implemented in a 1-poly 7-metal 65-nm CMOS process,
without any special options. The selected process provides both low-power (LP) devices and
general-purpose (GP) devices in its standard options; the GP devices nominally operate from
a 1-V supply and the LP devices nominally operate from a 1.2-V supply. The analog circuits
of the experimental AY. modulator are implemented using the GP devices, whereas its digital

circuits are implemented using the LP devices. However, both the analog and digital circuits

of the experimental AY modulator operate from a 1-V supply.

Figure 8.1 shows the chip micrograph of the experimental AY modulator. It occupies an

active area of 0.55 mm? Here, REF denotes a voltage reference, BIAS denotes a current bias,

and CTL denotes a control signal.
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Figure 8.1: Chip micrograph of the experimental AY, modulator.



8.2 Test Setup 187

The experimental AY. modulator is implemented with four separate pairs of supply and
ground lines. The analog supply (VDD4, GND4,) is used for the LC resonator, the active-RC
resonators, the unit elements of the feedback DACs, and the pre-amplifiers of the flash ADC.
The digital supply (VDDp, GNDp) is used for the latches of the flash ADC, and those of the
feedback DACs, and for the mismatch-shaping logic. The clock supply (VDD¢, GND¢) is used
for the clock generator, and the buffer supply (VDDg, GNDg) is used for the output buffers.
The supply lines are separated in this way to reduce the coupling of switching noise from the
digital, clock, and buffer circuits into the sensitive analog circuits [Raz01]. The ground lines

are connected off-chip to prevent latch-up.

In order to reduce the coupling of substrate noise into sensitive circuits, the main blocks
of the experimental AY modulator (e.g., the transconductor and operational amplifiers) are
surrounded by guard rings, and long signal interconnects are placed over n-wells. In order to
reduce crosstalk, sensitive signals are shielded from one another with additional lines biased
at signal ground. These additional layout elements are connected to separate shield supplies,

which are associated with the above mentioned power supplies.

Decoupling capacitors are placed on the supply and reference lines to reduce the effect of
switching transients, and to bypass the noise introduced by the dc power supplies. Additional
decoupling capacitors are placed off-chip, as outlined in Section 8.2. Damping resistors (15€2)
are connected in series with the on-chip decoupling capacitors to minimize ringing on the

supply and reference lines [Raz01].

8.2 Test Setup

The experimental prototype was packaged in a 80-pin ceramic quad flat pack (CQFP), which
was mounted on a custom printed circuit board (PCB). Figure 8.2 shows the test setup for a

single-tone input signal.
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Figure 8.2: Test setup of the experimental prototype for a single-tone input signal.

The PCB is designed with four layers. The top layer contains the input /output connectors,
the tuning control, and the components related to biasing. The middle two layers are ground
and power planes, each of which is split into four sections that correspond to the supplies on
the chip (analog, digital, clock, and buffer). The bottom layer is used primarily for decoupling
capacitors. The inductors of the LC tank are also placed on the bottom layer of the PCB in

order to ensure that they are as close as possible to the corresponding pins of the chip.

Decoupling capacitors are placed on each of the supply and reference traces at the point
where the wires from the associated dc power supplies are connected to the PCB. The supply
and reference voltages each pass through capacitors ranging from 100 uF to 0.001 uF, where
the smallest capacitors are repeated close to the chip. Here, multiple capacitors are placed in

parallel to increase the range over which they provide effective decoupling [Mon00)].
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Figure 8.3: Test setup of the experimental prototype for a two-tone input signal.

The input and LO signals of the experimental AY modulator are generated using analog
signal generators (SMA100A and SMTO03), which are synchronized with a 10 MHz pulse. The
clock signal is derived from the LO signal on-chip in order to ensure correct synchronization
between these signals. When a two-tone input is required, the input signals are generated by
the aforementioned analog signal generators, and the LO signal is generated by an arbitrary
waveform generator (AWGH5014). Figure 8.3 shows the test setup for a two-tone input signal.
The input signal and LO signal are processed using bandpass filters RBP-220 and RBP-204
before they reach the PCB.

The 3-bit output of the AY¥ modulator is captured on a logic analyser (TLA7012), and is
processed in Matlab. The experimental prototype is implemented with a clock output, which

is used to synchronize the logic analyser with the output data.
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8.3 Measurement Results

This section summarizes the measured performance of the experimental AY modulator, and

compares these results to its simulated performance (Section 6.3).

During the initial phase of testing, the LC resonator (Figure 7.2) demonstrated common
mode oscillations around 375 MHz. These oscillations were caused by signal feedback through
the gate-drain capacitance of the input transistors. In order to reduce these oscillations, two
1.5k resistors were connected in parallel with the discrete inductors of the LC tank. These
resistors decreased the quality factor of the tank, from 25 to approximately 15, and therefore
decreased the noise-shaping performance of the experimental AY modulator (Section 6.5.1).
The observed oscillations could be eliminated in a revised implementation by adding cascode
transistors between the input transistors and the LC tank. Cascode transistors were not used
in the experimental AY modulator because they decreased its linearity, and the oscillations

were not present in simulation.

Figure 8.4 shows an example of the measured output of the experimental AY modulator
for a —5 dBFS input tone at fi, = 224.6 MHz. Note that this input tone is downconverted to

a frequency of fout = 24.6 MHz at the output of the experimental prototype.
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Figure 8.4: Measured output of the experimental AY modulator for a —5dBFS input tone.



8.3 Measurement Results 191

60
56
o )
4l 8 55
o
5 S
5 5 °
= o
Z 20} Z 55
@ DR =57.5dB —>|
AV :
5—10 -75 -5 -25 0
0 ; ; ; i i : : Input Level (dBFS)
-64 -48 -32 -16 0
Input Level (dBFS)
(a) (b)

Figure 8.5: Measured SNR and SNDR of the experimental AY. modulator as a function of its input
level for an input tone at 224.6 MHz. (SNR — and SNDR - - -)

Figure 8.5 plots the measured SNR and SNDR versus the input level for an input tone at
fin = 224.6 MHz. The experimental AY modulator achieves a peak SNR of 55.5dB, a peak
SNDR of 55dB, and a dynamic range of 57.5dB for a signal bandwidth of fg= 4 MHz. The
peak SNDR was measured at a differential input-signal amplitude of 395 mVp_p (—5dBFS),
where the full-scale range of the quantizer is equal to 700 mVp_p (0 dBFS). Figure 8.6 plots
the measured output spectrum of the experimental AY modulator for a —5dBFS input tone
at 224.6 MHz. Figure 8.7 plots the output spectrum for two —11 dBFS input tones separated
by 880 kHz, and demonstrates a third-order intermodulation distortion (IM3) of —61.5 dBc.
Both plots use a noise bandwidth (NBW) of 760 Hz.

Figure 8.8 compares the measured output spectrum of the experimental AY modulator
to its simulated output spectrum, where the latter incorporates the effect of circuit noise and
non-linear distortion (Section 6.4). This plot demonstrates that the measured noise floor of

the experimental AY modulator is higher than its simulated noise floor. This increase in the
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Figure 8.6: Measured output spectrum of the experimental AY. modulator for a —5dBFS input tone

at 224.6 MHz: (a) from 0 to fs/2, and (b) over the signal band.
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Figure 8.7: Measured output spectrum of the experimental AY modulator for two —11 dBF'S tones
separated by 830kHz: (a) from 0 to fs/2, and (b) over the signal band.
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Figure 8.8: The simulated and measured output spectrum of the experimental AY¥ modulator for
a —5dBFS input tone at 224.6 MHz: (a) from 0 to fs/2, and (b) in the signal band. Here, the black

spectrum denotes simulation results, and the grey spectrum denotes measurement results.

noise floor is caused primarily by the reduced quality factor of the LC resonator (RESON1),
as described above. It decreases the measured SNDR of the experimental AY modulator by

approximately 6 dB from its simulated value.

The measured output spectrum of the experimental AY modulator further deviates from
its simulated output spectrum around fs/8 and 3 fs/8. This deviation is a result of reducing
the bias currents of the inner-loop feedback DACs (DAC2-DAC4). These bias currents were
reduced to decrease the values of loop-filter coefficients a5 —a7 in Figure 6.3. It was necessary
to decrease these coefficients in order to improve the linearity of the experimental prototype,
which was limited by the distortion of its first active-RC resonator (RESON2). Note that the
additional peaking in the NTF (Figure 8.8) did not significantly limit the input amplitude of

the experimental prototype.
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Figure 8.9: The measured STF of the experimental AY modulator: (a) from fs to 3fs, (b) over the
signal band and over the image band. Here, — denotes simulation results (Figure 6.7), and O denotes

measurement results.

Figure 8.9 plots the measured STF of the experimental AY modulator, together with the
simulated STF (Section 6.3). The measured STF has lower attenuation over the image band,
as compared to the simulated STF, and has additional peaking around aliases of the signal
band. The lower attenuation over the image band is a result of the reduced quality factor of
the LC resonator (RESON1), whereas the additional peaking is a result of the reduced bias
currents of the inner-loop feedback DACs (DAC2-DAC4). These implementation issues were
discussed previously in the context of the noise-shaping performance. This plot demonstrates
that the measured image-reject filtering! of the experimental AY modulator is 16.5dB at the

centre frequency of its image band (175 MHz).

The experimental AY modulator consumes 13mW under a 1-V voltage supply. The analog
circuits consume 12.75 mW, whereas the digital circuits and clock buffers consume 0.25 mW.

Table 8.1 summarizes the measured performance.

!The inherent image-reject filtering is evaluated using Equation (5.36) in Section 5.6.
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Table 8.1: Measured performance of the experimental AY modulator.

Parameter Value
Input Centre Frequency fci 225 MHz
Output Centre Frequency fco 25 MHz
LO Frequency fro 200 MHz
Sampling Frequency fs 100 MHz
Signal Bandwidth fB 4MHz
Peak SNR 55dB
Peak SNDR 55.5dB
Dynamic Range DR 57.5dB
Intermodulation Distortion IM3 —61.5dBc
Image-Reject Filtering IR 16.5dB
Power Consumption Piotal 13 mW
Analog 12.75 mW
Digital/Clock 0.25 mW
Supply Voltage 1V
Process 65nm CMOS

8.4 Comparison to the State-of-the-Art

Table 8.2 compares the measured performance of the experimental AY modulator to that of
state-of-the-art bandpass AY. modulators. This table only includes CMOS implementations,
and is restricted to wideband (fg > 1 MHz) bandpass AY. modulators that have high input
centre frequencies (fo; > 20 MHz). It considers conventional bandpass architectures, as well

as frequency-translating and subsampling architectures (Section 2.3).
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Table 8.2: State-of-the-art CMOS bandpass AY modulators (fg > 1 MHz and fc; > 20 MHz).

Reference | Arch.? foi fs B DR | SNDR | SNR | IM3 | CMOS | Supply | Power | FOM
(MHz) | (MHz) | (MHz) | (dB) | (dB) | (dB) | (dB) | Process (V) (mW)

[Sal02] CN 20 80 3.84 50 48 48 - 0.35 pm 3 38 24.1
CN 1.25 82 75 75 - 37 3.2
[Sal03] CN 20 80 1.762 72 69 70 - 0.35 pm 3 37 4.6
CN 3.84 50 48 48 - 38 24.1

[Tha03] CN 23 92 3.84 - - 54 58 | 0.35 um 2.5 47.5 18.0
[Yin04] CN 40 2x60 2.5 - 69 72 - 0.18 pm 1.8 150 13.0
[Che04] CN 60 2x120 1.25 - 52 - 51 0.35 pm 3.3 37 4.5
[Sch06b)] CN 44 264 8.5 85 - 7 72 | 0.18um | 3.3/1.8 375 7.6
[GaloT] CN 40 2x60 1 72 - 65.1 68 | 0.18 um 1.8 16 6.7
[Ryc08] SB 2.4e3 3e3 60 - 40 - 51 90 nm 1 40 4.1
[Bei09] SB 2.442e3 | 3.256e3 25 - 34 - - 0.13 pm 1.3 26 12.7
[Ryc10] CN 2.44e3 6.1e3 80 43 41 - - 40nm 1.1 52.8 3.6
[Kol10] FT 900 le3 9 - 56 - - 65 nm 1.2 80 8.6
[Lu10] CN 200 800 10 70 68.4 70 73.5 | 0.18 pm 1.8 160 3.7
[Ash11b] SB 2.4e3 3.2e3 25 44 40 - 51 0.13 pm 1.2 19 4.7
[Ashlla] CN 900 3.6e3 28 53 50 - 52 | 0.13 um 1.2 15 1.0
[Cho1l1] FT 225 100 4 57.5 55 55.5 | 61.5 | 65nm 1 13 3.5

aHere, CN denotes a conventional bandpass AY modulator, SB denotes a subsampling AY modulator, and FT denotes

a frequency-translating AY modulator.

The bandpass AY modulators listed in Table 8.2 are compared in terms of their energy
efficiency (i.e., energy/conversion step), which can be quantified using the following standard
figure of merit (FOM):

PO a.

Here, Piota1 is the power consumption of the AY modulator, ENOB is its effective number of

bits, as defined in Equation (2.20), and fg is its signal bandwidth.

The comparison in Table 8.2 demonstrates that the single-path frequency-translating AY
modulator presented in this thesis achieves a FOM that is competitive with state-of-the-art

CMOS bandpass AY. modulators.
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T HIS CHAPTER reviews the main research contributions of this thesis, and summarizes
the measured results of the experimental prototype. In addition, it suggests a number

of directions for future research.

9.1 Thesis Summary

This thesis examined delta-sigma (AY. ) modulator architectures for direct analog-to-digital
conversion of high-frequency bandpass signals, without prior downconversion to baseband. It
focused on a particular type of AY modulator that uses mixing inside its AX. feedback loop to
convert high-frequency analog signals into corresponding low-frequency digital signals. This

architecture is referred to as the frequency-translating A modulator.

As a starting point, this thesis examined the effect of timing errors on the resolution of
a continuous-time AY. modulator. It developed a modeling technique to rapidly simulate the
effect of timing errors introduced in the feedback path of a continuous-time AY. modulator,
which can limit the performance. The proposed technique demonstrated a considerable speed
advantage over direct simulation methods, and is therefore particularly useful for evaluating
the performance loss caused by clock jitter. The speed advantage of the proposed technique
was applied simulate a variety of rectangular DAC pulses, and to analyse their impact on the

clock-jitter sensitivity of various continuous-time AY, modulator architectures.

197
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This thesis then examined an existing type of frequency-translating A3 modulators that
is based on quadrature, or image-reject mixing. It presented a complete synthesis procedure
for the image-reject frequency-translating AY modulator, and developed a set of system-level
constraints that must be satisfied to achieve the synthesis. It then examined the performance
limitations of the image-reject architecture, and demonstrated that in-phase and quadrature
path mismatch, introduced by phase, delay, and amplitude errors, can significantly limit the
resolution. As a solution to the problem of path mismatch, this thesis proposed a novel type

of frequency-translating AY, modulators that is based on single-path mixing.

A synthesis procedure was developed for the proposed single-path frequency-translating
AY modulator, including its required system-level constraints. Additional design techniques
were then developed to improve the resolution of the proposed architecture, and decrease its
sensitivity to timing errors. The accuracy of the synthesis procedure, and the validity of the
presented design techniques were demonstrated using an experimental single-path frequency
translating AY modulator. Both the system architecture and circuit implementation of this

experimental prototype were described in detail.

The experimental AY modulator was implemented in a standard 65-nm CMOS process,
and operates from a 1-V power supply. It was designed to digitize a 4 MHz input-signal band
that is centred at 225 MHz, and further downconverts this signal band to a centre frequency
of 25 MHz inside its AY loop. The experimental prototype achieves a peak SNR of 55.5 dB,
a peak SNDR of 55.0dB, and a dynamic range of 57.5dB, and has a power consumption of
13mW. The measured performance of the experimental AY, modulator was demonstrated to

be competitive with state-of-the-art bandpass AY modulators.
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The research work presented in this thesis resulted in the following publications:
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Conf., Sep. 2011.

P. M. Chopp and A. A. Hamoui, “Design constraints for image-reject frequency-trans-
lating AY. modulators,” IEEE Trans. Circuits Syst. II, vol. 56, no. 12, pp. 896-900,
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9.2 Suggestions for Future Research

This thesis proposed the single-path frequency-translating A3 modulator, and demonstrated

its performance using an experimental prototype. It also developed a technique to model the

effect of timing errors introduced in the feedback DAC of a continuous-time AY modulator.

These contributions could potentially be extended as follows:

The modeling technique proposed in Chapter 3 only considered the effect of time-delay
errors in rectangular DAC pulses. A rectangular pulse was selected because it is simple
to implement, widely-used in the literature, and has high sensitivity to clock jitter. The
developed modeling technique could be further extended to a variety of different pulse
shapes (e.g., raised cosine, exponential) in order to evaluate their relative effectiveness

in reducing the jitter sensitivity of a continuous-time AY modulator.
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Conclusion

The primary motivation for the frequency-translating AY modulator is that it directly
and efficiently digitizes high-frequency bandpass signals. Therefore, a natural extension
to the research presented in this thesis is to increase the input centre frequency of the
experimental AY modulator. It is not practical to increase the ratio of the input centre
frequency to the output centre frequency, since this reduces the effective quality factor
of the outer-loop filter and affects the noise-shaping performance. However, the centre
frequency of the inner-loop filter could be increased, and the input centre frequency of

the experimental AY. modulator then scaled proportionally.

The inner-loop filter of the experimental AY modulator is centred around 25 MHz, and
is designed using active-RC resonators. In the literature, active-RC implementations of
bandpass AY. modulators have achieved centre frequencies as high as 200 MHz [Lu10],
by using multi-stage amplifiers and linearity enhancement. The centre frequency of the

inner-loop filter could be increased using similar circuit techniques.

An additional advantage of increasing the input centre frequency of the experimental
AY. modulator is that it facilitates an on-chip implementation for the inductors of the
LC resonator. This eliminates the parasitics introduced by the bond wires, the package
leads, and the PCB traces, and therefore improves the accuracy of the centre frequency

of the LC resonator, and that of its associated loop filter coefficient.

At the circuit level, the noise shaping performance of the experimental AY. modulator
could be further improved by increasing the quality factor (Q) of its LC resonator using
Q-enhancement techniques. The LC resonator was designed without Q-enhancement in
order to simplify its implementation and tuning. The linearity of the experimental A
modulator could be improved by reducing the distortion that is introduced by its first
active-RC resonator, which limits the performance. This can be achieved by increasing

the gain of the associated amplifiers using standard techniques.
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T HIS APPENDIX provides an example of the impulse-invariant transform, as well as an

extended derivation of the error-mapping terms developed in Section 3.3.

A.1 Example of the Impulse-Invariant Transform

This section provides an example of the impulse-invariant transform. It demonstrates how to
derive a continuous-time loop transfer function Hy (s) that achieves the same noise-shaping
performance as a prototype discrete-time loop transfer function Hj (z). The impulse-invariant
transform was defined in Equation (3.3) as

1

Hi(s) = IIT {Hﬁ(z)} T

zZ—rS

(A1)

The objective of this example is to develop a loop transfer function for a continuous-time
A modulator that achieves 1st-order highpass shaping of quantization errors. The required

noise-shaping characteristic can be achieved using an NTF of
NTF(z) = 1 —z" (A.2)

which corresponds to a discrete-time loop transfer function of

L1
Hi(2) = NT;(Z)—l - (A.3)

This example first converts a continuous-time loop transfer function Hy,(s), which has the
required order and general coefficients, into an equivalent discrete-time transfer function. It

then solves for the coefficients by comparing the result with Equation (A.3).

201
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This example assumes that the feedback DAC of the continuous-time AY, modulator has
a return-to-zero (RZ) pulse with rising and falling edges at 0.57s and Tg, respectively. The

transfer function of this rectangular DAC is equal to

1
Hpac(s) = - (e 05 — =) (A4)

where Tg denotes the sampling period.

In order to achieve the NTF that is specified in Equation (A.2), the loop transfer function

of the continuous-time AY. modulator must have a general form of

Hy(s) = :Tls (A.5)

The combined transfer function of the continuous-time loop filter and the feedback DAC is
then expressed as
b
Hi(s) = Hi(s)Hpac(s) = —r (705 — o=T) (A.6)
S TS
where the objective is to solve for coefficient b;.

The expression in Equation (A.6) can be converted into the time domain using an inverse

Laplace transform. This operation yields a loop response of

(t = To/2ult — Ts/2) — (1~ To)ult ~Ts) (A7)

M) = £ H(5)) = -z

hel
S
The corresponding sampled loop response of the continuous-time AY. modulator can then

be derived by setting t = nTs in Equation (A.7). This substitution results in
hi(n) = hi(t)}t:nTS =bi(n—1/2)u(n—1) —bi(n — 1 u(n —1) (A.8)

The expression in Equation (A.8) is finally processed using the z-transform, which yields a

discrete-time loop transfer function of

Z_l
Hi(2) = 2{nm} = 22 (A.9)

Accordingly, for correspondence with Equation (A.3), the coefficient (b1) of the loop transfer

function of the continuous-time AY modulator must be set to 2.
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A.2 Extended Derivation of the Error-Mapping Terms

This section provides an extended derivation of the 2nd-order error-mapping term, for which
a simple derivation was presented in Section 3.3. This extended derivation demonstrates how
continuous-time delay errors, in the pulses of the feedback DAC, can be shifted to the input
of the loop response. In this way, it shows how the error-mapping terms given in Tables 3.1
and 3.2 can be derived without processing these potentially time-varying delay errors using

the Laplace and z-transforms.

In the same way as Section 3.3.1, this extended derivation starts with the 2nd-order term

of a prototype discrete-time loop transfer function

C2
H ,(z) = —— A.10
L, 2( ) (Z _ 1)2 ( )
Using a and S to represent the nominal start and end times of the DAC pulse, as shown
in Figure 3.7, H{ ,(z) can be transformed into an equivalent continuous-time filter by way of

a z — s impulse-invariant transform. This transform results in

1 bl (STs) + bg
H = T {H, ()} - - Al
L,2<3> poiaiel L,2(z> HDAC(S) (STS)Q ( )
where
b — 102(04+ﬁ—2)
179 68—«
C2
by =
2 5—a
and Hpac(s) is the transfer function of the feedback DAC. For a rectangular pulse
1
Hpac(s) = - (e750Ts = e=*9T) (A.12)
s

where a and 8 are normalized with respect to the sampling period Tgs.

The combined transfer function of the continuous-time loop filter and the feedback DAC

will be denoted here as

Hi, 5(s) = Hy 2(s)Hpac(s) (A.13)
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In order to demonstrate how continuous-time delay errors can be mapped into coefficient
errors in an equivalent z-domain expression, H{ ,(s) must first be transformed into the time

domain using an inverse Laplace transform, where

[ a(t) = L_I{Hﬁ’z(s)} - [(t - aTg);; +(t— aTg)22b;S2}u(t ~ aTy) (A.14)
+ [(t - ﬁTS);ls +(t - 5Ts)22%] u(t — BT)

and u(t) represents the unit step function.

The remaining steps of this derivation differ depending on whether the feedback DAC is
designed with: an RZ pulse, where the o and 8 pulse edges both occur in the same cycle of
the sampling clock, or an NRZ pulse, where the o edge occurs in the clock cycle prior to the

one that contains the [ edge. Each case is discussed separately below.

RZ Pulse

The edges of an RZ pulse are generally defined so that 0 < o <1 and 0 < 8 < 1. Therefore,
when A} ,(t) in Equation (A.14) is sampled with a period of T, u(t — aTs) and u(t — S1s)
both reduce to u(n — 1). In this case, the sampled impulse response is equal to
/ / 2 ba
b1, orz(n) = hL,2(t)‘t:nTS =|(n—a)bi+(n—a) 5 u(n —1) (A.15)
202
+ |(n—=pB)bi + (n—p) B u(n —1)
In order to the model the effect of time-delay errors, the nominal edge timing parameters,

a and (3, in Equation (A.15) are replaced by non-ideal timing parameters a(m) and E (m),

defined in Equation (3.6). The resulting time-varying impulse response can be expressed as

/BIL,QRZ(n’m) = hi, orz(d) + [h,L,szB(d) AB(m) — h, org, (d) Aa(m) ] (A.16)

where d = n — m and
Lorz () = [b1+ (d = 1) by + (1 — a)ba]u(d - 1)

L QRZB(d) = [b14 (d—1) by + (1 — B) bo]u(d — 1)
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Here, d is the delay between time m when the input sample is applied, and time n when
the output sample is observed. Note that the second-order error terms, Aa(m)? and AB(m)?,

are not included in Equation (A.16), since |Aa(m)| < 1 and |AB(m)| < 1, and therefore the

Ist-order error terms, Aa(m) and AfB(m), are dominant.

The impulse responses hi, op7(d), hi, opz (d) and hy, QRZB(d) in (A.15) and (A.16) are all

individually time-invariant. Therefore, their z-transforms can be directly evaluated as

Hi, 9rz(2) = e i21)2 (A.17)
/ G 1 2 1

Hy, orz () = B—a(z-1)2 + 2 - 1) (A.18)
, ) 1 e 1

HL,ZRZB(Z) - /B — (Z N 1)2 9 (Z - 1) (Alg)

In Equation (A.16), the timing errors Aa(m) and AB(m) depend only on time m, when
the input sample is applied. This models the behaviour of a continuous-time AY modulator,
where the input of the loop filter during clock cycle m, equivalent to y(m) in Figure 3.1(a),
is only affected by the timing errors, Aa(m) and AS(m), that are introduced during clock
cycle m. Since Aa(m) and ASB(m) only depend on time instant m when the input is applied,

they can be shifted from the impulse response, EL orz(n,m), to the input, y(m).

In this way, the response of ﬁi orz(n, m) to y(m) can be expressed as

varz(n) = = M, apz(n,m) y(m) (A.20)
m=0
The output of Equation (A.20) can be split into
%\QRZ (n) = ang(TL) + [EQRZB(R) - /ﬁgﬁza(n)] (A.Ql)
where

vorz(n) = — Y hi arz(n—m)y(m) (A.22)

m=0
VaRzZ,(N) = — Z h/L, 2Rza(” —m) Aa(m) y(m) (A.23)

m=0
VaRrz,(M) = — Z h/L, 2RZB(n —m) AB(m)y(m) (A.24)

m=0
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Here, y(m), Aa(m)y(m), and AB(m)y(m) can be interpreted as the inputs of loop filter
components Hf sy (2), Hf, opy (2), and H£,2RZ[3(Z) in Equations (A.17)—(A.19). Therefore,
error sequences Aa(m) and AB(m) only act as scaling factors on the input of the loop filter
and can be accurately modeled as errors in the coefficients of an equivalent discrete-time AY
modulator. Note that the 2nd-order error-mapping term derived in Section 3.3.1 can be split

into the form shown in Equations (A.17)-(A.19).

NRZ Pulse

The edges of an NRZ pulse are generally defined so that 0 < o < 1 and 1 < 8 < 2. Therefore,
when hy ,(t) in Equation (A.14) is sampled with a period of T, u(t — oT%) and u(t — 5Ts)

reduce to u(n — 1) and u(n — 2). In this case, the sampled impulse response is equal to

M () = M a0,y = (0= @b+ (- 0P Efutn—1) (a25)

# |08 - 97 atn -2

In order to the model the effect of time-delay errors, the nominal edge timing parameters,
a and 3, in Equation (A.25) are replaced by non-ideal timing parameters a(m) and B (m),

defined in Equation (3.6). The resulting time-varying impulse response can be expressed as
h, oz (n,m) = ha(d) + [hannz(d) AB(m) — haxgz,(d) Aa(m)]  (A.26)

where d = n — m and

hiygNRZa(d) = [bl +(d—1)by+ (1 —a) bg]u(d -1)

hi Nz (d) = [b1+(d —2) by + (2 — B) bo]u(d — 2)

Here, d is the delay between time m when the input sample is applied, and time n when
the output sample is observed. Note that the second-order error terms, Aa(m)? and AB(m)?,
are not included in Equation (A.26), since |Aa(m)| < 1 and |AS(m)| < 1, and therefore the

Ist-order error terms, Aa(m) and AfB(m), are dominant.
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In Equation (A.26), the z-transform of Ay o\pz(d) is equal to Hy oz,(2) in (A.17), after
it is compensated for excess loop delay, the z-transform of hy o\gy (d) is equal to Hj, 5gy (2)

in (A.18), and the z-transform of hy, 2NRZB(d) is equal to

-1 -1
/ G z C2 z
HL,QNRZB(Z) = B _a (Z — 1)2 + 9 (z — 1) (A27)

where 8 = 1+ «. The additional delay in HIC,QNRZB(Z)7 as compared to H£72RZB(Z) in (A.19),
is due to the fact that the input of Hﬁ 2NRzﬂ(z) is generated in the previous clock cycle. The
difference in the signs of the 1st-order terms of H£72NRZﬁ(z) and Hﬁ,szﬁ(z) does not have a
significant effect on the results of the modeling technique, since the errors introduced by this

term receive 1st-order highpass shaping (Section 3.5).

The remainder of the derivation for the case of an NRZ pulse matches the derivation for
an RZ pulse. Once again, error sequences Aa(m) and AB(m) only act as scaling factors on
the input of the loop filter, and can therefore be represented as gain errors in the coefficients

of an equivalent discrete-time AY modulator.
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