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Microstructure formation in alloys is a field of great interest to the materials science

community, as the microstructural features of a material determine many of its physi-

cal properties. As such there is a strong desire to understand the mechanisms behind

the formation of microstructure, so that material properties might be better engineered.

Dendritic solidification in particular has been extensively studied, and choice of dendrite

orientation related back to the interfacial anisotropy of the material. Experimental work

in recent years has found that the anisotropy selection mechanisms influencing dendrite

orientation are more complex than previously realized, and in fact may be strongly tied

to the respective compositions of alloy species. A large body of work done with phase

field (PF) and phase field crystal (PFC) type models has proven both very successful in

determining the underlying causes of microstructural formation. In this work we utilize

PFC and effective phase field methods derived from them to make a determination of the

concentration dependence of interfacial anisotropy in two-component metallic alloys.
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Résumé

La connaissance des phénomènes microscopiques dans les alliages est un sujet important

à la communauté de la science des matériaux, parce que la morphologie microscopique

détermine la plupart des propriétés physiques des matériaux. Par conséquent, il existe

un désir de comprendre les mécanismes de formation de ces structures afin de mieux

contrôler les propriétés des matériaux. En particulier, la solidification de dendrites a été

très étudié. Orientation préférentielle de la dendrite est lié à l’anisotropie de l’interface

du matériau. Travaux expérimentaux récents ont constaté que l’anisotropie de l’interface

est plus compliqué qu’on ne le pensait, et qu’il peut être fonction de la composition des

espèces d’alliage. Techniques phase field (PF) et phase field crystal (PFC) sont avérées

très efficaces dans la compréhension des mécanismes de formation de la morphologie

microscopique. Dans cette thèse, nous utilisons des méthodes PFC et PF connexes pour

déterminer la dépendance de la composition de l’anisotropie interfaciale dans les alliages

métalliques à deux composants.
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Chapter 1

Introduction

It is well known in the materials science and engineering community that many of the

characteristic physical properties of a material can be traced back to aspects of the mate-

rial’s microstructure, that is, the underlying, microscopic-scale features of the material[2].

It is often the case that gaining an understanding of the mechanisms behind the formation

of such microstructures gives us a tool with which to control particular properties of the

final material.

One particular such microstructural feature that has been of interest to both theoretical

and experimental studies for some time is the dendrite, a branched, directional structure

that forms in solidifying materials. Dendrites are understood to emerge as a result of

thermal or diffusive instabilities and subsequently grow in the orientation that provides

the lowest stiffness. Ascertaining this orientation had for some time been thought to

be a simple matter of determining the interfacial anisotropy associated with the crystal

symmetry of the material; in the case of an alloy with competing symmetries arising due

to the preferred crystal structures of its constituent species, the dendrite was thought

to select the orientation of the dominant species and to switch discontinuously from one

choice of direction to another[3][1] for different compositions.

A wealth of experimental studies[4][3][5] in the past ten to fifteen years have suggested

that this is not always the case, and in fact that there exist a class of materials for which

a continuous variation in dendrite orientation seems to be possible. This surprisingly

complex behaviour suggests, then, that the interfacial anisotropy of such materials is not

as simplistic as was previously thought. In particular, there has been some suggestion

from experiments[3][1] that this anisotropy has a significant dependence on the respective

composition of the alloy in question.

1



Chapter 1. Introduction 2

Modern numerical modelling techniques have proven very adept at discerning the be-

haviour and properties of materials at a microscopic scale, especially in terms of the

behaviour of the interface. In particular, phase field (PF) and phase field crystal (PFC)

methods have yielded impressive results in a multitude of diverse phase transformations,

including solidification and solid state processes.

In solidification, PF modelling has been succesful in quantitatively predicting the rela-

tionship between growth rate and morphology of individual dendrite crystals[6][7], the

branch-spacing selection in directional solidification under steady state conditions[8],

and transient conditions relevant to industrial processes[9]. In the solid state, the PFC

methodology, comprised of an atomic scale density functional theory, has been used along-

side TEM work to quantitatively predict the elusive mechanisms behind precipitation in

age-hardened alloys[10].

In this work we aim to make use of both PFC methods and effective phase field tech-

niques derived from these to further elucidate both the behaviour of and the mechanisms

behind the changing anisotropy of the solid-liquid interface in alloy materials. In particu-

lar we restrict ourselves to the investigation of a binary (two-component) alloy formation,

and the effect of altering the fractional composition of such an alloy on the resulting

interfacial anisotropy.

To date there has been, to our knowledge, no fundamental study of the possible mecha-

nism behind this phenomenon in alloy materials. Most molecular dynamics models have

examined pure substances, with a focus on fluctuations. Meanwhile, traditional phase

field models are not appropriate to examine anisotropy, as they require the input of in-

formation about the interfacial stiffness and other atomic scale properties. It is the aim

of this thesis to make use of a relatively new microscopic continuum theory, the struc-

tural PFC alloy model, to derive an effective phase field theory from which investigations

of the interface anisotropy can be made. Since the salient features of PFC theory are

fundamentally linked to classical density functional theory of the liquid state, the result-

ing PF model will be endowed with parameters that contain fundamental - rather than

phenomenological - information about anisotropy.



Chapter 2

Background Information

2.1 Microstructure

The term microstructure broadly refers to any structural feature of a material resolved

on the microscopic scale, and includes the material’s underlying crystal lattice, any grain

boundaries or defects, and the dendrite structure, to name a few. Microstructural features

are determining factors for many of the properties of engineering materials, from band

structure and conductivity to hardness and tensile strength. For instance, the presence of

a large number of grain boundaries (and correspondingly small grain size) has been shown

to contribute to increased ductility in metallic alloys. High numbers of dislocations, on

the other hand, decrease ductility but increase the hardness of the material via a well-

known process called work hardening. Being able to predict the microstructure that may

arise in a material has allowed us to make progress in controlling and understanding its

physical properties.

One particular feature of interest is the dendrite. Dendrites are branching tree-like

structures that form as a material solidifies. Their directionality and three-dimensional

shape are specified by the anisotropies of the material, and in particular are heavily

dependent on the thermodynamics of the solid-liquid interface. A variety of 3-dimensional

dendritic structures are possible [3]. As stated in the introduction, there is a long list of

investigations performed on dendritic microstructures, too extensive to discuss here. The

reader is referred to the following reviews by Granasy [11], Emmerich [12], and Provatas

[13].

3
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Figure 2.1: An example of a characteristic dendritic shape, grown in succinonitrile
(SCN). This image reprinted with permission from [14].

Many complexities of dendrite growth, such as tip radius, growth velocity, and side

branching behaviour, have merited study. The characteristic that we are interested in,

however, is growth direction. Previously it was believed that dendritic growth could only

occur along the primary crystallographic axes of a material; however, both experimental

[1, 4, 5, 15] and computational [3] results now exist showing that this is not always the

case, and, indeed, that a continuous range of dendrite growth directions may be possible

in certain solids. Studying the role of alloy impurities on dendritic growth direction will

be the focus of this thesis.

2.1.1 Dendrite Orientation and the Solid-Liquid Interface

Dendrites form due to instabilities in the solid-liquid interface of a solidifying material.

When the rate of solidification is low enough that the effect of attachment kinetics is neg-

ligible, it is expected that the direction of dendrite growth will follow one of the primary

crystallographic directions. This is the case for most conventional metal-casting technolo-

gies that manufacture aluminum or steel based products, for example. For crystals with

underlying cubic symmetry, the expected growth directions are < 100 > for FCC and

BCC structures, and < 1010 > for HCP [1], the assumption being that these directions

correspond to minima of the interfacial stiffness.

However, there is a growing body of evidence suggesting that this picture is oversim-

plified, particularly in cases where the material in question exhibits weak anisotropy.

Experimental studies in FCC aluminum alloys have found a wealth of unexpected mor-

phologies, including feathered structures along the < 110 > direction [5], dendrite growth
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along the < 320 > direction [15], and even curved dendrite paths changing orientation

from < 112 > to < 110 > [5].

In light of these observations it was clear that the relationship between interfacial

anisotropy and dendrite orientation merited further study. Following the presentation

of an improved expression for calculating anisotropy developed using molecular dynamics

simulations [16], a thorough phase field simulation study of pure material dendrite ori-

entation was performed by Haxhimali et al [3] for a variety of experimentally motivated

values of the anisotropy parameters. A continuous change in dendrite orientation from

< 100 > to < 110 >was found as these parameters were varied. This range of growth

orientations was consistent with those observed experimentally within a single sample.

It was clear that anisotropy could change dramatically, and the dendritic morphology

along with it; the question became what was causing it to vary. An experimental study

also done by Haxhimali et al [3] showed for an Al-Zn alloy that the same continuous change

in orientation could be obtained by varying the weight percentage of Zn. Additional

work on the same material by Gonzalez and Rappaz [1] provided theoretical fits for the

interfacial stiffness by assuming that observed growth angles corresponded to stiffness

minima. These fits demonstrate significant changes in angular dependence of stiffness for

various concentrations of zinc, to the point of maxima shifting to minima for sufficiently

large compositional changes.

There is thus significant experimental evidence for a relationship between alloy con-

centration and stiffness anisotropy; our goal in this study is to provide a computational

framework to both quantify and gain a theoretical understanding of this relationship.

2.1.2 Quantifying Interfacial Anisotropy

We intend to measure anisotropy via the interfacial energy. As mentioned in the previous

section, materials with relatively weak anisotropy may be more likely to exhibit a variety

of dendritic orientations and therefore, presumably, will be more strongly affected by

composition changes. Weak anisotropy is the case in metallic alloys, the most common

practical material in which dendritic growth is relevant. We thus need a method of

observing the changes in anisotropy even when it is quite weak.

Hoyt et al [16] proposed a method to examine anisotropy using stiffness rather than

interfacial energy alone as the representative quantity. In 3 dimensions, the energy of

an interface is traditionally fit via an expansion in terms of spherical harmonics, chosen
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to reflect the symmetry of the crystal in question [1]. Simplifying this expansion to two

dimensions (by setting one of the angular parameters to a constant) gives, for a crystal

with square symmetry, the form [16]:

γ(θ) = γ0(1 + ε4 cos 4θ + ε8 cos 8θ + . . .) (2.1)

where ε4 is the first order anisotropy parameter, ε8 is the second order anisotropy pa-

rameter, and so on. The first order parameter ε4 is typically on the order of 10−2. Higher

order fits can be made if necessary.

The interfacial stiffness

S(θ) = γ(θ) +
d2γ(θ)

dθ2
= γ + γ′′ (2.2)

shows anisotropy an order of magnitude stronger than γ alone, and thus makes it easier to

observe the maxima and minima of weakly anisotropic materials. This can be illustrated

explicitly if we calculate stiffness from the the first order expansion of Eq 2.1:

S = γ0(1 + ε4 cos 4θ − 16ε4 cos 4θ)

= γ0(1− α cos 4θ) (2.3)

where the stiffness anisotropy parameter becomes α = 15ε4.

We will use Eq 2.1 to fit simulation results for the interfacial energy, and from the

resulting fit determine the stiffness of the system.

2.2 Phase Field Crystal Modelling

The approach that we use in this work to model solid-liquid interfaces has been coined

the phase field crystal model. It can be seen as a hybrid between traditional phase field

theory and classical density functional theory (hereafter just ’density functional theory’).

The former allows a self-consistent and efficient approach for modeling interfaces, while

the latter introduces atomic-scale density variations.

Density functional theory can be thought of as a continuum extension of molecular dy-

namics (MD) studies, the latter of which functions by describing the interactions between

individual particles in terms of atomic potentials. These simulations provide atomic-scale
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resolution and can thus be used to study properties such as individual point defects in

the underlying crystalline symmetry of a lattice. The downside is that each atom must

be tracked individually, which severely limits both the system sizes and the timescales

that can reasonably be studied.

Phase field (PF) simulations, on the other hand, represent a system through a free energy

functional, expressed in terms of smooth local order parameter fields, and additional

fields representing relevant conserved parameters. The evolution of these fields is derived

via dissipative minimization of the free energy, subject to the appropriate conservation

laws. Thermal fluctuations are absorbed into the stochastic noise strength, which follows

the fluctuation-dissipation theorem. PF simulations are able to access system sizes and

time scales large enough to be experimentally relevant, but sacrifice atomic resolution in

order to do so: each phase of a system is represented as a constant field, with a largely

continuous transition between the two values occuring at the interface. The effects of

atomic scale features have only been introduced into these models phenomenologically.

In recent years a new type of phase field approach has been introduced [17][18][19] that

defines the free energy of the system to be minimized in terms of periodic order parameter

fields: the phase field crystal (PFC) technique. In its most fundamental form, this ap-

proach essentially reproduces classical density functional theory, and the order parameter

is proportional to the local time or ensemble averaged atomic number density. In its more

practical, albeit cruder, manifestations, the order parameter loses this rigorous connec-

tion to atomic number density, but maintains the ability to represent crystal symmetries,

topological defects, and density wave fluctuations that are seen in materials. With PFC,

then, we aim to maintain a computational advantage over CDFT and MD models, while

reproducing the physics resulting from the presence of atomic scale structures.

2.2.1 Derivation of the Standard PFC model from Density Func-

tional Theory

The first form of the PFC model was presented by Elder et al in 2002 [20]. It was

motivated by extending the free energy of the standard PF model for a conserved order

parameter to include a term minimized in the solid by a periodic order parameter field,

rather than a constant. This model can be seen as a re-interpretation of the classical

Swift-Hohenberg equation for modelling periodic patterns in block-copolymers. It has
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since been shown [18] that this form can also be derived directly from classical density

functional theory (DFT) formalism; the procedure to do so is outlined in this section.

We take as a starting point the free energy functional presented by Ramakrishnan and

Yussouff [21] in which free energy F [ρ] is expanded around a reference liquid state at a

coexistence point with the solid. The dimensionless form is:

F

kBT
=

∫
d3�x

{
ρ ln

(
ρ

ρ̄

)
+ (ρ− ρ̄)− ρ

2

∫
d3�x′C(|�x− �x′|)ρ(�x′)

}
(2.4)

in which ρ(�x) is the position-dependent density field, and ρ̄ is the liquid reference density.

The C(|�x− �x′|) term is the two-point correlation function. In the formal expansion (Eq

2.4), this would continue up to n-point correlations. However, past studies [17] have found

that retaining only the two-point correlation function is sufficient to obtain many of the

desired properties of the solid-liquid interface, the specifics of which will be addressed in

this work.

To obtain an expression in terms of the PFC model variables, position is rescaled in

terms of the lattice constant a such that �r = �x
a
. We also define a dimensionless density

term n = (ρ− ρ̄)/ρ̄ = (ρ/ρ̄)− 1, and can thus rewrite Eq 2.4 as

F

kBT
= a3

∫
d3�r

{
ρ̄ (n+ 1) ln (n+ 1) + ρ̄n− ρ̄ (n+ 1)

2

∫
d3�r′[ρ̄a3C(|�r − �r′|)](n(�r′)+1)

}
(2.5)

To obtain a more mathematically tractable expression, the nonlinear bulk term is ex-

panded to fourth order in n, giving

F

kBT
= a3

∫
d3�r

{(
2ρ̄n+

ρ̄

2
n2 − ρ̄

6
n3 +

ρ̄

12
n4
)
− ρ̄(n+1)

2

∫
d3�r′[ρ̄a3C(|�r − �r′|)](n(�r′)+1)

}
(2.6)

The key feature of the original PFC model [17] is the approximation of the correlation

function as a sum of gradients. We choose to truncate the sum at the ∇4 term:

C(|�x− �x′|)=
(
−Ĉ0 − Ĉ2∇2

x′ − Ĉ4∇4
x′

)
δ(�x− �x′) (2.7)

which can be written conveniently in k-space as

Ĉ(|�k|) = −Ĉo + Ĉ2k
2 − Ĉ4k

4 (2.8)
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For all Ĉn positive, this expression describes a single-peaked correlation function around

some finite wavelength 2π/|�k|. In terms of the dimensionless variable �r, the correlation

can be written as

ρ̄a3C(|�x− �x′|)=
(
−ρ̄Ĉo − ρ̄Ĉ2

a2
∇2

r′ −
ρ̄Ĉ4

a4
∇4

r′

)
δ(�r − �r′) (2.9)

The shape of Eq 2.9 implies that we can take dĈ/dk = 0 to solve for the lattice constant

a in terms of gradient coefficients. We find that a = 2π

√
2Ĉ4/Ĉ2. To obtain the form

presented by Elder and Grant [17] the following definitions are then made:

Bx =
ρ̄Ĉ2

2

4Ĉ4

Bl = ρ̄Ĉ0+1

ΔB = Bl − Bx

(2.10)

Rewriting Eq 2.9 with these substitutions and applying the delta function gives the final

form of the original PFC model for a pure substance.

F

kBT ρ̄a3
=

∫
d3�r

{(
2n+

n2

2
− n3

6
+

n4

12

)
− (n+ 1)2

2
(1−ΔB) +

(n+ 1)

2

[
Bx

(
2∇2

r′ +∇4
r′
)]

n

}
(2.11)

Finally we consider the functional form of the solid density field, which emerges under

minimization of Eq 2.11 for certain parameter ranges. This is the key distinguishing

element of the PFC model, in which density is thought of as a continuously varying field

with peaks at atomic sites in the lattice and troughs between them. We can thus think

of the density as a sum of sinusoidal functions, or equivalently in terms of a sum of

exponentials of the reciprocal vectors of the desired crystal lattice

n(�r) = n0 +
∑
�G

η �Ge
i �G·�r + c.c. (2.12)

where �G are reciprocal lattice vectors of the crystal structure in question and η �G are the

amplitudes of each reciprocal lattice mode. Here we will take the lowest order single-mode

expansion, retaining only the smallest reciprocal lattice vectors required to reconstruct

the particular crystal symmetry. It can be shown that by using this expansion, constant

or linear terms in n(�r) will only contribute vanishing terms to the free energy at long
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wavelengths and as such can be disregarded at the microscopic level described by Eq 2.11

[18]. Applying this simplification, and as a final step introducing the variables η and χ

as additional degrees of freedom with which to parametrize the bulk terms of the free

energy expansion, the dimensionless PFC free energy is presented as1

F̄ ≡ F

kBT ρ̄a3
=

∫
d3�r

{
−η

n3

6
+ χ

n4

12
+

n

2

[
ΔB +Bx

(
2∇2

r +∇4
r

)]
n

}
(2.13)

Expanding out this notation for a moment to the form

F̄ =

∫
d3�r

{
n

2
− η

n3

6
+ χ

n4

12
+

n

2

[
ρ̄Ĉ0 +

ρ̄Ĉ2
2

4Ĉ4

(2∇2
r +∇4

r − 1)

]
n

}
(2.14)

reveals that the first, ideal component of Eq 2.14

ΔFid =

∫
d3�r

(
n

2
− η

n3

6
+ χ

n4

12

)
(2.15)

is an entropic term that, by itself, drives the system towards a uniform field. The second

component is termed the excess energy

ΔFex =

∫
d3�r

n

2

[
ρ̄Ĉ0 +

ρ̄Ĉ2
2

4Ĉ4

(2∇2
r +∇4

r − 1)

]
n (2.16)

and is what supports the existence of periodic structures (i.e.crystals). Effects of the

underlying crystal lattice, such as anisotropy or defects, arise due to the presence of this

term. It is clear then that the form of the correlation function is the critical feature

in controlling the behaviour of the system. The following section introduces the newer

structural PFC (XPFC) model, which differs from this approach primarily in its treatment

of the correlation function.

2.2.2 XPFC Functional

The structural PFC model was introduced in 2010 [23][19] and was intended as a for-

malism that allowed more direct connection to the underlying crystallographic symmetry

of the solidifying material in question. In 3 dimensions this model was able to stabilize

FCC, BCC, HCP and SC structures without difficulty, as well as coexistence between

1These coefficients can also be shown to arise as �k = 0 contributions from higher order correlation
functions[22].
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combinations of such structures and with the liquid phase. In 2 dimensions, square and

triangular symmetries are equally simple to obtain.

The ideal component of the XPFC free energy functional maintains the same form as

Eq 2.15.

For the excess free energy of the system we begin with the correlation function term

presented in Eq 2.4.

ΔFex = −1

2

∫
d3�rn(�r)

∫
d3�r′C(|�r − �r′|)n(�r′) (2.17)

The form of the correlation function is motivated by the underlying crystal symmetry

of the system in question. Thus to model different lattice structures it is necessary to

change both the mode approximation and the correlation function. The formulation of

the correlation function is as follows:

Consider a crystal in which each atom vibrates around its equilibrium lattice position.

The probability of the atom occupying some location in space at a given time can be

represented by a Gaussian centered at the equilibrium position. The full crystal can be

seen as a sum of Gaussians representing individual lattice sites,

P (�r) =
∑
i

Pi(�r) =
∑
i

1

σ
√
2π

e−
1

2σ2 (�r−�ri)2 (2.18)

where σ is the width of the Gaussian and the �ri are the equilibrium lattice positions. In

k-space

P̂i(�k) = cos(�k · �ri)e− 1
2
σ′2�k2 (2.19)

The sum over the P̂i(�k) gives a series of sinusoidal functions that interfere to produce

delta function peaks at the �k vector values corresponding to the locations of lattice planes

(assuming an infinite lattice). The exponential factor acts as a Debye-Waller coefficient

that modulates the height of the successive k-space delta peaks.

The form of Eq 2.18 served to motivate the introduction of the XPFC correlation kernel.

The more modes included, the sharper the real space Gaussian becomes and thus the more

stable and precise the description of the periodic structure in question. However, smaller

and smaller numerical grid spacings are required to resolve these narrower structures;

it has been found [19] that the increase in stability from additional frequency modes is

minor compared to the resulting computational cost. As such, we retain only the first

peak corresponding to each family of lattice planes.
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When constructing the correlation function itself we represent the delta functions as

Gaussians with finite widths αi, of the form exp
[
−(�k − �ki)

2
/2α2

i

]
, where the �ki are the

reciprocal lattice vectors. The Debye-Waller term presents an entry point for temperature

into the XPFC model through the σ parameter, which can be rigorously connected to

the temperature scale. Constants βi and ρi are also included, representing the number of

planar symmetries and the in-plane atomic density, respectively. The choice of αi acts as

a control on the stiffness of the model, and directly affects the width of the solid-liquid

interface. Additionally, the ratio between the different αi values can be used to introduce

an anisotropy between the elastic coefficients of the crystal. It has been shown [19] that

to maintain elastic isotropy within a particular crystal structure, the ratio between the

αi must equal the ratio between the values of the corresponding peak positions. The full

correlation function term around each dominant frequency mode is

Ĉ2(�k) = e
− σ2�k2i

2ρiβi e
− (�k−�ki)

2

2α2
i (2.20)

For any given �k-value in reciprocal space, the full correlation function is taken as the

envelope of the superposition of the Ĉ2 for each contributing �ki.

The full XPFC model has the form

ΔF

ρ̄kBT
= ΔFid +ΔFex (2.21)

where here we have set the lattice constant a = 1. The form of the XPFC correlation

function is a purely reciprocal space construction, and as such the dynamic equations of

the model are solved in reciprocal space and the Fourier transform is taken.

2.2.3 Binary Alloys in XPFC

A binary alloy consists of two component species. While for the pure material it is

only necessary to track a single density field, we must now consider the species A and B

separately. As previously, we break the free energy down into ΔFid and ΔFex.

The ideal part can be written in terms of the two components ρA and ρB as:

ΔFid

kBT
=

∫
d�r

[
ρA ln(ρA/ρ

0
A)− δρA + ρB ln(ρB/ρ

0
B)− δρB

]
(2.22)
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where ρ0A and ρ0B are the reference densities of each respective component. Rather than

expressing the energy in terms of these two components, it is more instructive to work in

terms of a total density ρ and a fractional concentration field c, defined as

ρ = ρA + ρB

c =
ρB

ρA + ρB
=

ρB
ρ

(2.23)

We additionally define a reference density ρ0 = ρ0A + ρ0B and reference concentration

c0 = ρ0B/ρ
0. As with the case of a pure material we then write a total dimensionless

density n = ρ/ρ0 − 1. Applying all of these transformations allows us to write the ideal

energy in the dimensionless form

ΔFid

kBTρ0
=

∫
d�r(n+1)

{
(1− c) ln

(
1− c

1− c0

)
+ c ln

(
c

c0

)}
+ (n+1) ln(n+1)− n (2.24)

We again expand the nonlinear terms in n to get

ΔFid

kBTρ0
=

∫
d�r

n2

2
− η

n3

6
+ χ

n4

12
+ (n+ 1)

{
(1− c) ln

(
1− c

1− c0

)
+ c ln

(
c

c0

)}

=

∫
d�r

n2

2
− η

n3

6
+ χ

n4

12
+ (n+ 1)ΔFmix(c) (2.25)

The first set of terms are the same as those seen in the pure material, and express the

individual free energies of the two separate fields. The last term, as the notation suggests,

represents the entropic mixing of the two fields and their interactions with each other.

We now consider the excess free energy which, as previously, contains a two-point cor-

relation function. However, unlike the pure case, we must now consider three types of

interactions: A-A, B-B, and A-B. We can begin with a summation using the same form

as in the pure case

ΔFex = −
∫

d�r
1

2

∑
ij

δρi(�r)

∫
d�r′C ij

2 (|�r − �r′|)δρj(�r′) (2.26)

where i,j sum over the two species.

Rewriting Eq 2.26 in terms of variables c and n, we note that the correlation function

acting on a constant (i.e. the �k = 0 mode) has zero contribution. We additionally make

the assumption that the concentration field is slowly varying as compared to density,
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which allows us to say that c(�r) ≈ c(�r′). We obtain the form [24]

ΔFex =

∫
d3�r

{−n

2

∫
d3�r′

(
Cn

effn
′ + Cc

effc
′)− (c− c0)

2

∫
d3�r′

(
Cc0n

effn
′ + Cc0c

effc
′)}
(2.27)

where

Cn
eff = c2CBB

2 + (1− c)2CAA
2 + c(1− c)(CBA

2 + CAB
2 )

Cc
eff = c(CBB

2 − CBA
2 )− (1− c)(CAA

2 − CAB
2 )

Cc0n
eff = c(CBB

2 − CAB
2 )− (1− c)(CAA

2 − CBA
2 )

Cc0c
eff = CBB

2 + CAA
2 − (CBA

2 + CAB
2 ) (2.28)

These expressions are obtained explicitly in Appendix A.

Coarse graining these terms (i.e.looking at their behaviour on length scales much greater

than that of the lattice constant) using the same prescription as with the PFC model for

a pure material, and taking advantage of the fact that c is a slow-varying field, the

remaining expression is

ΔFex =

∫
d3�r

(
α|∇c|2 − n

2

∫
d3�r′Cn

eff (|�r − �r′|)n′
)

(2.29)

We now consider the form of the correlation term, which is made up of elemental com-

ponents CAA, CAB, CBA, and CBB. The mixed terms AB and BA represent the cases

where A atoms are arranged in the B preferred crystal structure, and vice versa. These

terms can be approximated by interpolating between AA and BB correlations, allowing

us to re-express Cn
eff in Eq 2.28 as

Cn
eff = X1(c)C

AA
2 +X2(c)C

BB
2

X1(c) = 1− 3c2 + 2c3

X2(c) = 1− 3(1− c)2 + 2(1− c)3 (2.30)

where X1 and X2 are composition-modulated interpolation functions [24]. CAA
2 and CBB

2

are constructed from the dominant lattice peaks of the preferred crystal structures of

each respective species, as explained above in detail for the pure model. The full binary
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XPFC free energy is then:

ΔF

kTρ0
=

∫
d�r(

n2

2
− η

n3

6
+ χ

n4

12
+ (n+ 1)ΔFmix(c)

+α|∇c|2 − 1

2
n

∫
d�r′

[
X1(c)C

AA
2 +X2(c)C

BB
2

]
n′) (2.31)

A note: the X1 and X2 interpolation functions have been introduced to interpolate

between the fundamental interactions contained in the species correlation functions CAA
2

and CBB
2 . The precise form of these interpolation functions is not known, but can be made

quantitative by demanding that the equilibrium properties of the alloy system (e.g. the

phase diagram and free energy differences) are reproduced, and appropriate free energy

changes between solid phases are achieved.



Chapter 3

Methodology

3.1 XPFC Dynamics of the Pure Material

In this section we outline the derivation of the dynamic equations of motion for the

XPFC model, and their numerical integration. There is more than one numerical iteration

scheme possible. To begin with we present a scheme used to study dynamics in the

majority of XPFC simulations to date. We then introduce a method that makes use of

relaxed constraints to obtain a significant reduction of the time scales required to attain

equilibrated structures.

3.1.1 Conserved Diffusive Dynamics

The pure XPFC model equilibrates via diffusion of density through the system. We re-

quire that the density flow obey flux conservation, and thus we need a continuity equation

for a conserved quantity. The general form is

∂x

∂t
+∇ · �J = 0 (3.1)

where �J represents flux in the quantity x. We now require an expression for �J .

We are considering local changes in particle number, and as such must establish the local

driving force depending on number of particles. We look to the entropy of the system;

16



Chapter 3. Methodology 17

changes in entropy are written as

dS =
1

T
dU +

p

T
dV − μ

T
dN (3.2)

where U is the internal energy of the system, μ is chemical potential, p is pressure, V

the volume and T temperature. We then get an expression for change in entropy with

changing particle number.
dS

dN
= −μ

T
(3.3)

and
dS

dU
= − 1

T
(3.4)

The basic premise of most non-equilibrium transport theories is that Eq 3.2 can be

applied locally to derive the local flux of mass through a volume element according to

�J = M10∇ 1

T
+M11∇μ

T
(3.5)

where M10 and M11 are called Osanger coefficients. In our case we consider only uniform

temperature, which implies that the first term is zero. Setting M11 ≡ M for simplicity,

we thus write flux in terms of this driving force as

�J = −M∇μ

T
= −M

T
∇μ (3.6)

Here M is a constant coefficient representing solute mobility, and we write M̄ ≡ M/T ≈
M/Tc, which is assumed to be valid to lowest order close to the transition temperature

Tc. The form we have recovered is effectively Fick’s law of diffusion. Finally, the chemical

potential is defined from classical density functional theory as

μ =
δF [n(�r)]

δn
(3.7)

We substitute the expression for flux into Eq 3.1. The dynamics become

∂n

∂t
= ∇ ·

(
M̄∇δF

δn

)
= M̄∇2

(
δF

δn

)
(3.8)

which is the form of the Cahn-Hilliard equation [25].
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3.1.2 Nonlocal Dynamics

The diffusional dynamics equation is advantageous in that it allows the system to evolve

realistically in terms of local diffusion of solute. As such it gives a good illustration of

the behaviour of the system both on the path to and at equilibrium. However, this also

restricts the model to operating at diffusive timescales.

It is possible to obtain a significant decrease in required simulation time to reach equi-

librium by no longer restricting the solute to move via diffusion, the tradeoff being that

transient results may be unphysical and can’t be considered meaningful. For the pur-

poses of our investigation, only the equilibrium profiles of conserved and nonconserved

fields are relevant and as such this method is ideal. The prescription is outlined in Ref

[26] and is based around relaxing the requirement of local flux conservation. Only global

conservation of the order parameter is enforced via the chemical potential, which plays

the role of a Lagrange multiplier. This permits a decrease in the order parameter at some

point A to occur with a corresponding increase at point B, without necessarily having any

changes carried through the intervening space. This swapping process allows for faster

equilibration of the model.

This nonlocal method (as we shall henceforth refer to it) is illustrated as follows for the

case of a pure material. The global conservation condition is expressed as

∫
n(�r)d�r − V n0 = 0 (3.9)

where n0 is the average density of the system and V is the system volume. The free

energy is then rewritten as

F̃ = F + μ

[∫
n(�r)d�r − V n0

]
(3.10)

where the chemical potential μ acts as a Lagrange multiplier. Equilibrium is attained via

the pseudo-time equation of motion for the density field:

∂n

∂t
= −δF

δn
+ μ (3.11)

where μ is calculated at each timestep according to

μ =
1

V

∫
δF [n(�r)]

δn
d�r (3.12)
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It should be noted that additional speed increase can be obtained by setting μ to an ex-

ternally imposed constant value. However, doing so relaxes the final constraint of global

density conservation. Due to the degeneracy of n0 values corresponding to a single chem-

ical potential at phase coexistence, the non-conserved Eq 3.11 frees the system to move

anywhere along the common tangent line of slope μ between the coexisting liquid and

solid free energies. In minimizing the free energy, the system will move towards whichever

curve gives the lowest energy minimum. This will result in the system equilibrating at

either the liquidus or solidus line of the system, which means that the sample will either

entirely melt or entirely solidify. This constant μ method has its uses. For example, it

was effective in studying grain boundaries in fully solidified systems [26]. However as it

is incapable of stabilizing solid-liquid coexistence, it will not be discussed further here.

Due to the notable decrease in equilibration time obtained by switching to the nonlocal

method, the XPFC results presented in this thesis were obtained using this method.

3.1.3 Numerical Integration of the Non-Local Model in Recip-

rocal Space

In order to simulate equations describing a continuous system, we assume that it is possi-

ble to discretize the system into a series of elements that are all locally at thermodynamic

equilibrium. The free energies from these discrete elements are used to calculate local

driving forces that evolve the system towards a global equilibrium. In the limit of van-

ishing element size, such a coarse graining procedure leads to continuum equations such

as those described above. When solving such equations numerically, we are essentially

discretizing space and time into elements that a computer can process. This subsection

describes the iterative scheme that we use to model the XPFC equations numerically.

To solve the dynamic equations numerically on the discrete lattice, we begin with the

following approximation:
∂n(�r)

∂t
≈ nt+1(i, j)− nt(i, j)

δt
(3.13)

This is applied to Eq 3.11 (or Eq 3.8) and the functional derivative δF/δn is explicitly

evaluated using the form of the XPFC free energy. For the nonlocal method this gives

nt+1 − nt

Δt
= −

(
n− η

2
n2 +

χ

3
n3 −

∫
C2(|�r − �r′|)n(�r′)d�r′

)
+ μ (3.14)
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In the XPFC model, the correlation function has an analytical form in reciprocal space

only, so rewriting the Fourier transformed expression gives:

n̂t+1
k − n̂t

k

Δt
= −n̂t+1

k − Ĉ2(�k)n̂
t+1
k −

[η
2
n2 +

χ

3
n3 + μ

]t
k

(3.15)

where the final bracketed expression contains all of the nonlinear terms in n. The super-

scripts t and t+ 1 indicate at which timestep the term is being evaluated. All nonlinear

terms are evaluated at time t and all linear terms at t+1 in what is called a semi-implicit

method. The nonlinear terms are evaluated separately in real space and then trans-

formed as a single term. All transforms are performed using a parallel (MPI) fast Fourier

transform routine (FFTW). Finally note that the realspace convolution in the correlation

function has become a simple product in kspace. Eq 3.15 can then be rearranged to

obtain

n̂t+1
k =

[
1

1 + Δt(1 + Ĉ2(�k))

](
n̂t
k −Δt

[η
2
n2 +

χ

3
n3 + μ

]t
k

)
(3.16)

The overall prescription is thus to initialize a density profile (using the mode approx-

imation form in Eq 2.12), then at each timestep to transform the density field (or the

nonlinear function of the density field) via FFTW, update the field in k-space according

to Eq 3.16, and transform back to real space.

3.2 Dynamics of the Binary Alloy

It is possible to extend the same general methods above to an alloy. We describe the

process for a binary alloy model. While the basic prescription is unchanged, there are

some special considerations worth mentioning.

In particular, note that we now have two number density fields, ρA and ρB, representing

species A and B. Following the variable transformations described in Eq 2.23, we are able

to make contact with the XPFC functional variables, n and c.

3.2.1 Alloy Conserved Diffusive Dynamics

The diffusive dynamics method for the alloy [24] takes as a starting point the two fields

n and c. In one of the approximations considered herein, the assumption is made that
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two chemical potentials based on the respective fields can be defined as follows:

μn =
δF

δn

μc =
δF

δc
(3.17)

In analogy with the pure method we then trivially obtain the following expressions:

∂n

∂t
= ∇ ·Mn∇δF

δn

= ∇ ·Mn∇
{
n− η

n2

2
+ χ

n3

3
+ ΔFmix −

∫ [
X1(c)C

AA
2 +X2(c)C

BB
2

]
n′
}

(3.18)

and

∂c

∂t
= ∇ ·Mc∇δF

δc

= ∇ ·Mc∇
{
(n+ 1)

δΔFmix

δc
− α∇2c− 1

2
n

∫ [
δX1

δc
CAA

2 +
δX2

δc
CBB

2

]
n′
}

(3.19)

where Mn and Mc are the mobilities of the respective fields. Equations 3.18 and 3.19

have previously been used for binary XPFC studies.

3.2.2 Alloy Nonlocal Dynamics

The nonlocal dynamics method is also known as pseudo or fictitious dynamics. As

mentioned previously, its purpose is solely to rapidly converge the fields c and n to the

equilibrium state defined by Eq 3.18 and 3.19.

We consider two choices of Lagrange multiplier for the alloy model.

We once again assume Eq 3.17, and integrate both components of these expressions over

the system volume. This yields

μn =
1

V

∫
δF [n(�r), c(�r)]

δn
d�r (3.20)

μc =
1

V

∫
δF [n(�r), c(�r)]

δc
d�r (3.21)

Note that Eq 3.20 and 3.21 constrain the two chemical potentials to be constant in a

mean, integrated sense, but not locally. With these expressions for μn and μc, nonlocal
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dynamics for n and c are given by

∂n

∂t
= −δF

δn
+ μn

∂c

∂t
= −δF

δc
+ μc (3.22)

This description is appealing in its simplicity and elegance, however note that it effectively

treats the evolution of the density and concentration fields as independent of each other.

This is strictly speaking incorrect, since they are by definition connected via ρA and ρB

(Eq 2.23) and thus a second derivation, beginning from the grand potential functional in

ρA and ρB, is considered.

3.2.2.1 Derivation from DFT

We begin with the form of the grand potential, defined in terms of the fundamental

fields ρA and ρB [27]

Ω[ρA, ρB] = F [ρA, ρB]− μA

∫
ρA(�r)d�r − μB

∫
ρB(�r)d�r (3.23)

From classical density functional theory, equilibrium is defined to occur when the grand

potential functional is minimized, leading to

δΩ[ρA, ρB]

δρA
= 0 =⇒ δF [ρA, ρB]

δρA
= μeq

A

δΩ[ρA, ρB]

δρB
= 0 =⇒ δF [ρA, ρB]

δρB
= μeq

B (3.24)

We perform the variable transforms laid out in Eq 2.23, noting that we can also write

ρA = (1− c)(n+ 1)ρ0

ρB = c(n+ 1)ρ0

ρ = (n+ 1)ρ0 (3.25)

The final expressions for free energy are normalized by the reference density ρ0; as such

for convenience’s sake we will omit this factor from here on out.
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We proceed as follows:

δΩ[ρA, ρB]

δρA
=

δΩ

δn

δn

δρ

δρ

δρA
+

δΩ

δc

δc

δρA

=
δΩ

δn
− c

n+ 1

δΩ

δc

=

[
δF

δn
− μA

δ

δn

∫
ρAd�r − μB

δ

δn

∫
ρBd�r

]

− c

n+ 1

[
δF

δc
− μA

δ

δc

∫
ρAd�r − μB

δ

δc

∫
ρBd�r

]
= 0 (3.26)

Rearranging the last line to solve for μA gives

μA =
δF

δn
− c

n+ 1

δF

δc
(3.27)

Doing the same for ρB

δΩ[ρA, ρB]

δρB
=

δΩ

δn

δn

δρ

δρ

δρB
+

δΩ

δc

δc

δρB

=
δΩ

δn
+

(1− c)

n+ 1

δΩ

δc

=

[
δF

δn
− μA

δ

δn

∫
ρAd�r − μB

δ

δn

∫
ρBd�r

]

+
(1− c)

n+ 1

[
δF

δc
− μA

δ

δc

∫
ρAd�r − μB

δ

δc

∫
ρBd�r

]
= 0 (3.28)

and

μB =
δF

δn
+

(1− c)

n+ 1

δF

δc
(3.29)

We can use these expressions to simplify Euler-Lagrange equations for n and c. First

we subtract Eq 3.27 from Eq 3.29, and in the process define μeq = μeq
B − μeq

A . This gives

δF

δc
= (n(�r) + 1)μeq (3.30)

and

μeq =
1

V

∫
1

(n+ 1)

δF

δc
d�r (3.31)

Finally, substituting Eq 3.30 into Eq 3.27, we solve to obtain a second equation for n.

δF

δn
= c(�r)μeq + μA (3.32)
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where

μA =
1

V

∫ [
δF

δn
− c

n+ 1

δF

δc

]
d�r (3.33)

We thus end up with a set of evolution equations that explicitly tie the behaviour of the

density and concentration fields to the variable transforms Eq 2.23, making manifest the

connection between the fields n and c and the fundamental species densities ρA and ρB.

Note that the method described by Eq 3.22 makes the same assumption as the conserved

diffusive dynamics (Eq 3.18, 3.19), namely, that the fields n and c are independent and

as such that the alloy grand potential can be represented by

Ω[n, c] = F [n, c]− μn

∫
n(�r)d�r − μc

∫
c(�r)d�r (3.34)

The nonlocal method Eq 3.22 and the conserved diffusive dynamics are thus expected to

return the same equilibrium profiles; trial runs reveal this to be the case for both n and

c fields.

The grand potential Eq 3.23, resulting in the evolution equations Eq 3.30, 3.32 derived

above, cannot be manipulated to agree with Eq 3.34. As such we expect different results

from this method and indeed find that resulting equilibrium profiles are shifted somewhat.

In what follows, the latter DFT form of the nonlocal XPFC alloy dynamics will be used,

because of its self-consistent connection to the density fields. It is found, however, that

the results of this thesis do not change qualitatively whether the simplified (Eq 3.22) or

the self-consistent (Eq 3.30, 3.32) formulation of the Euler Lagrange equations are used

to solve for the interface energy.

3.3 Binary Alloy Amplitude Model

We find in practice that it is not trivial to numerically stabilize an equilibrium solid-

liquid interface in the binary alloy XPFC model with variable average density. This

was not a problem in past work done with the binary PFC or XPFC models; however,

no previous PFC alloy study has incorporated density changes in the investigation of

dynamical or equilibrium interfacial properties and structure. In order to avoid practical

issues associated with solving the above equilibrium density and concentration equations,

we also looked to the long wavelength limit of the alloy XPFC equations, wherein we

work with a coarse grained representation that emerges from the microscopic equations
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(Eq 3.30, 3.32). Such coarse grained equations have become known in the literature as

amplitude equations.

We obtain an alloy amplitude model by coarse-graining the binary XPFC free energy,

presented in detail in section 2.2.3, to obtain an equivalent phase field model. This

method requires us to evolve not only the concentration and average density fields, but

also fields representing the amplitudes of the respective oscillatory terms in the density

mode expansion (Eq 2.12). For a square-triangle alloy system, the full mode expansion

employed to capture either square or triangular crystal symmetries is

n(�r) = n0 +
2∑
j

Aje
i�kj ·�r +

2∑
l

Ble
i�ql·�r +

3∑
m

Cme
i �Qm·�r (3.35)

where n0(�r) is the average density, the Aj and Bl are the generally complex amplitudes

for the square (1, 0) and (1, 1) directions, respectively, and the Cm are the amplitudes

for the triangle. This mode expansion is substituted into the binary XPFC free energy,

which is then coarse-grained. Details of the procedure are presented in Appendix B.
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The final free energy functional has the form

Fcg =

∫
d�r

{(
1− ηn0 + χn2

0

) (
A2

1 + A2
2 +B2

1 +B2
2 + C2

1 + C2
2 + C2

3

)
+
1

2
n2
0 −

η

6
n3
0 +

χ

12
n4
0 + ω(n0 + 1)ΔFmix(c) + α|∇c|2

+(4χn0 − 2η) (A1A2B1 + A1A2B2 + C1C2C3)

+
χ

2

(
A4

1 + A4
2 +B4

1 +B4
2 + C4

1 + C4
2 + C4

3

)
+2χA2

1 (B1B2 + C2C3) + 2χA2
1

(
A2

2 +B2
1 +B2

2 + C2
1 + C2

2 + C2
3

)
+2χA2

1B1B2 + 2χA2
2

(
B2

1 +B2
2 + C2

1 + C2
2 + C2

3

)
+2χB2

1

(
B2

2 + C2
1 + C2

2 + C2
3

)
+ 2χB2

2

(
C2

1 + C2
2 + C2

3

)
+2χC2

1

(
C2

2 + C2
3

)
+ 2χC2

2C
2
3 + 4χB1B2BC2C3

−2(A2
1 + A2

2)
(
X1(c)Ĉ

AA
2 (|�kA

10|) +X2(c)Ĉ
BB
2 (|�kA

10|)
)

−2(B2
1 +B2

2)
(
X1(c)Ĉ

AA
2 (|�kA

11|) +X2(c)Ĉ
BB
2 (|�kA

11|)
)

−2(C2
1 + C2

2 + C2
3)

(
X1(c)Ĉ

AA
2 (|�kB

10|) +X2(c)Ĉ
BB
2 (|�kB

10|)
)

− 1

|�kA
10|2

(
X1(c)Ĉ ′′

AA

2 (|�kA
10|) +X2(c)Ĉ ′′

BB

2 (|�kA
10|)

) [
|
(
i�kA

10 · ∇
)
A1|2 +

(
i�kA

10 · ∇
)
A2|2

]

− 1

|�kA
11|2

(
X1(c)Ĉ ′′

AA

2 (|�kA
11|) +X2(c)Ĉ ′′

BB

2 (|�kA
11|)

) [
|
(
i�kA

11 · ∇
)
B1|2 +

(
i�kA

11 · ∇
)
B2|2

]

− 1

|�kB
10|2

(
X1(c)Ĉ ′′

AA

2 (|�kB
10|) +X2(c)Ĉ ′′

BB

2 (|�kB
10|)

)
[
|
(
i�kB

10 · ∇
)
C1|2 +

(
i�kB

10 · ∇
)
C2|2 +

(
i�kB

10 · ∇
)
C3|2

]}
(3.36)

where Ĉ ′′
IJ

2 is the second derivative of the IJ correlation function, evaluated at the

indicated reciprocal lattice vector length.

For many applications it is sufficient to make the simplifying assumption that each set

of amplitudes is real and has the same value, that is, A1 = A2 = A and so on. However,

in order to retain an explicit angular dependence with respect to interface orientation, it

is necessary to track all of the amplitudes separately. We do still assume that they are

real; the main drawback of this assumption is that we lose the potential for describing

topological defects in the bulk, which is not the focus of this study. We show the necessity

of separate amplitudes explicitly in what follows.
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The angular dependence comes into the dot product terms of Eq 3.36; for example:

2∑
j

|(i�kj · ∇) �Aj|2 =
2∑
j

(�kj · ∇ �Aj)
2 =

2∑
j

(�kj · n̂)2(∇Aj)
2 (3.37)

which, in the case where Aj = A, simplifies to

(∇A)2
∑
j

(�kj · n̂)2 (3.38)

We obtain different orientations by performing a rotation on the �kj vectors of the recip-

rocal lattice,

k′x = kx cos θ − ky sin θ (3.39)

k′y = ky cos θ + kx sin θ (3.40)

where for the 1D simulation only the k′x component is retained. For any θ we then obtain

(∇A)2
∑
j

(kjx cos θ − kjy sin θ)
2 (3.41)

The reciprocal lattice vectors for the respective crystal structures are as follows.

�ksquare
1 = 2π(1, 0) �ksquare

2 = 2π(0, 1)

�q square
1 = 2π(1, 1) �q square

2 = 2π(1,−1)

�Qtri
1 = 2π

(
0, 2√

3

)
�Qtri
2 = 2π

(
1, −1√

3

)
�Qtri
3 = 2π

(
−1, −1√

3

) (3.42)

Inserting, for example, �k1 and �k2 into Eq 3.41, we can see that the angular dependence

is lost:

(∇A)2
[
(−2π sin θ)2 + (2π cos θ)2

]
= (∇A)2

[
4π2(sin2 θ + cos2 θ)

]
= 4π2(∇A)2 (3.43)

Similarly for both the �q and �Q, we obtain a constant of 8π2 multiplying the gradient

term, regardless of the choice of angle θ.

This loss of rotational dependence in the gradient terms of a PFC amplitude theory

can be remedied by tracking each amplitude field separately rather than making this
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simplification. This gives a total of seven evolving amplitude fields for the square-triangle

system. In initializing these fields it is sufficient to seed all of the Aj amplitudes with the

same initial profile. It is important to note however that this model is necessarily more

sensitive to amplitude values than the XPFC model, and as such when obtaining the

phase diagram we must solve separately for both the A and B amplitudes of the square

phase, rather than making the assumption that B = fA for some appropriate choice of

f , as has been the case for most XPFC work to date [19].

In order to obtain the evolution equations for the fields we take variational derivatives

of Eq 3.36. The variational with respect to average density n0:

δF

δn0

= (2χn0 − η)(A1
2 + A2

2 +B1
2 +B2

2 + C1
2 + C2

2 + C3
2)

+4χ(A1A2B1 + A1A2B2 + C1C2C3) + n0 − η

2
n0

2 +
χ

3
n0

3 + ωFmix(c)

(3.44)

The variational with respect to concentration c:

δF

δc
= ω(n0 + 1)

dFmix(c)

dc
− α∇2c

−(A1
2 + A2

2)

[
dX1(c)

dc
ĈAA

2 (|�kA
10|) +

dX2(c)

dc
ĈBB

2 (|�kA
10|)

]

−(B1
2 +B2

2)

[
dX1(c)

dc
ĈAA

2 (|�kA
11|) +

dX2(c)

dc
ĈBB

2 (|�kA
11|)

]

−(C1
2 + C2

2 + C3
2)

[
dX1(c)

dc
ĈAA

2 (|�kB
10|) +

dX2(c)

dc
ĈBB

2 (|�kB
10|)

]

− 1

|�kA
10|2

[
dX1(c)

dc
Ĉ ′′

AA

2 (|�kA
10|) +

dX2(c)

dc
Ĉ ′′

BB

2 (|�kA
10|)

]
(|k′1x∇A1|2 + |k′2x∇A2|2)

− 1

|�kA
11|2

[
dX1(c)

dc
Ĉ ′′

AA

2 (|�kA
11|) +

dX2(c)

dc
Ĉ ′′

BB

2 (|�kA
11|)

]
(|q′1x∇B1|2 + |q′2x∇B2|2)

− 1

|�kB
10|2

[
dX1(c)

dc
Ĉ ′′

AA

2 (|�kB
10|) +

dX2(c)

dc
Ĉ ′′

BB

2 (|�kB
10|)

]
(|Q′1x∇C1|2 + |Q′2x∇C2|2 + |Q′3x∇C3|2)

(3.45)
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The variationals with respect to each of the amplitudes:

δF

δA1

= 4χA1(A2
2 +B1

2 +B2
2 + C1

2 + C2
2 + C3

2)

+2χ(A1
3 + 2A1B1B2) + (4χn0 − 2η)(A2B1 + A2B2) + 2A1(1− ηn0 + χn0

2)

−2A1

[
X1(c)Ĉ

AA
2 (|�kA

10|) +X2(c)Ĉ
BB
2 (|�kA

10|)
]

+
1

|�kA
10|2

[
X1(c)Ĉ ′′

AA

2 (|�kA
10|) +X2(c)Ĉ ′′

BB

2 (|�kA
10|)

]
2|k′1x|2∇2A1 (3.46)

δF

δA2

= 4χA2(A1
2 +B1

2 +B2
2 + C1

2 + C2
2 + C3

2)

+2χ(A2
3 + 2A2B1B2) + (4χn0 − 2η)(A1B1 + A1B2) + 2A2(1− ηn0 + χn0

2)

−2A2

[
X1(c)Ĉ

AA
2 (|�kA

10|) +X2(c)Ĉ
BB
2 (|�kA

10|)
]

+
1

|�kA
10|2

[
X1(c)Ĉ ′′

AA

2 (|�kA
10|) +X2(c)Ĉ ′′

BB

2 (|�kA
10|)

]
2|k′2x|2∇2A2 (3.47)

δF

δB1

= 4χB1(A1
2 + A2

2 +B2
2 + C1

2 + C2
2 + C3

2)

+2χ(B1
3 +B2A1

2 +B2A2
2) + (4χn0 − 2η)A1A2 + 2B1(1− ηn0 + χn0

2)

−2B1

[
X1(c)Ĉ

AA
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BB
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11|)
]
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1
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11|)

]
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δF

δB2

= 4χB2(A1
2 + A2

2 +B1
2 + C1

2 + C2
2 + C3

2)

+2χ(B2
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2 +B1A2
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2)
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[
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2|q′2x|2∇2B2 (3.49)

δF

δC1

= 4χC1(A1
2 + A2

2 +B1
2 +B2

2 + C2
2 + C3

2)

+2χC1
3 + (4χn0 − 2η)C2C3 + 2C1(1− ηn0 + χn0

2)

−2C1

[
X1(c)Ĉ

AA
2 (|�kB

10|) +X2(c)Ĉ
BB
2 (|�kB

10|)
]

+
1
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[
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2 (|�kB
10|) +X2(c)Ĉ ′′

BB

2 (|�kB
10|)

]
2|Q′1x|2∇2C1 (3.50)
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δF

δC2

= 4χC2(A1
2 + A2

2 +B1
2 +B2

2 + C1
2 + C3

2)

+2χC2
3 + (4χn0 − 2η)C1C3 + 2C2(1− ηn0 + χn0

2)

−2C2

[
X1(c)Ĉ

AA
2 (|�kB
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BB
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]

+
1
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BB

2 (|�kB
10|)

]
2|Q′2x|2∇2C2 (3.51)

δF

δC3

= 4χC2(A1
2 + A2

2 +B1
2 +B2

2 + C1
2 + C2

2)

+2χC3
3 + (4χn0 − 2η)C1C2 + 2C3(1− ηn0 + χn0

2)

−2C3

[
X1(c)Ĉ

AA
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10|) +X2(c)Ĉ
BB
2 (|�kB
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+
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2 (|�kB
10|)

]
2|Q′3x|2∇2C3 (3.52)

where the �k′jx, �q′lx, and �Q′mx represent the x components of the rotated reciprocal lattice

vectors.

The pseudo-time Euler-Lagrange evolution equations for the concentration and average

density fields retain the same form as presented in Eq 3.32 and 3.30 of the previous

section. In the amplitude formalism, however, in addition to concentration and density

we must also minimize all amplitude fields, which thus follow the non-conserved (so-called

Model A) dynamics [14] as described in the above amplitude equations. It is also noted

that for this model, the values for chemical potentials μeq and μa are not evolved, and

instead are constant values calculated offline via the phase diagram. Calculation of the

model’s phase diagram will be studied in Chapter 5.

The fields c, n0, Aj, Bl, Cm are all equilibrated to represent a solid-liquid interface by

using the above functional derivatives as driving forces to minimize the total free energy

of the system as a function of pseudo time. The resulting equations of motion are:

n0
t+1 = n0

t + dtM

(
μeqc+ μa − δF

δn0

)
(3.53)

ct+1 = ct + dtM

(
μeq(n0 + 1)− δF

δc

)
(3.54)

Aj
t+1 = Aj

t − dtM
δF

δAj

(3.55)

Bl
t+1 = Bl

t − dtM
δF

δBl

(3.56)

Cm
t+1 = Cm

t − dtM
δF

δCm

(3.57)
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where j, l, and m run over the indices associated with each amplitude in the density

expansion sum of Eq 3.35.

3.4 Determining Anisotropy

3.4.1 Solid-Liquid Interfacial Energy

This section derives the expression used to compute the solid-liquid interfacial energy.

The methodology is illustrated first for a single component material, and then expanded

to include the alloy systems that will be the main topic of this thesis.

For our calculation of the interfacial energy we begin by considering the grand potential

of the system, defined as

Ω = G− μN (3.58)

where Ω = Ω(V, T, μ), G is the Helmholtz free energy of the system and N is the number

of particles. In the case of a pure material, we can rewrite the grand potential as

Ωtotal =

∫
d�rg[n(�r)]− μ

∫
d�rn(�r) =

∫
d�rg[n(�r)]− μn0V (3.59)

where g is the free energy density, n(�r) is the number density field, and n0 is the average

density.

We can in addition calculate the grand potential that would arise from a constant bulk

phase. We can choose either the solid or the liquid phase at equilibrium to calculate this;

then

Ωbulks/l = gs/l[ns/l]V − μns/lV (3.60)

where the subscripts s/l refer to values in the bulk solid or liquid, respectively.

We define [27]

Ωtotal = Ωbulks/l + Ωinterface (3.61)

which states that the total grand potential is made up of one contribution from the bulk

region, and another due to the presence of an interface. We isolate for the interface term,

which gives us the total energy contained within the interface. The unit interfacial energy
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γsl [27] is obtained by dividing this by the length of the interface.

γsl =
Ωtotal − Ωbulks/l

Lint

=
1

Lint

(∫
d�rg[n(�r)]− gs/l[ns/l]V + μ(ns/l − n0)V

)
(3.62)

This expression is used to determine γsl from the pure material simulations.

For the alloy, the two-component version of the grand potential is a simple extension of

the ideas presented above. Beginning with the grand potential in terms of ρA and ρB

Ω[ρA, ρB] = G[ρA, ρB]− μA

∫
d�rρA − μB

∫
d�rρB (3.63)

Using the expressions for ρA and ρB from Eq 3.25 we can rewrite in terms of the alloy

model fields, c and n.

Ω[ρA, ρB] = G[n, c]− μA

∫
d�r(1− c)(n+ 1)− μB

∫
d�rc(n+ 1)

= G[n, c]− μA

∫
d�r(n+ 1)− (μB − μA)

∫
d�rc(n+ 1)

= G[n, c]− μA

∫
d�r(n+ 1)− μeq

∫
d�rc(n+ 1) (3.64)

Which, for the alloy, gives us finally

γsl =
1

Lint

∫
d�r

[
(g − gs/l) + μA(ns/l − n) + μeq(cs/l(ns/l + 1)− c(n+ 1))

]
(3.65)

This is the expression used for calculations from the solutions of Eq 3.32 and 3.30, which

respect the variable transformations in Eq 2.23.

For the simpler method where n and c are assumed to be decoupled, the assumption is

made that

Ω[n, c] = G[nc]− μn

∫
d�rn− μc

∫
d�rc (3.66)

and the interfacial energy thus becomes

γsl =
1

Lint

∫
d�r

[
(g − gs/l) + μn(ns/l − n) + μc(cs/l − c)

]
(3.67)

As mentioned previously, the simpler method is formally inconsistent because n and c

are in reality coupled. However, we consider both approaches where possible given the

convention to sometimes treat n and c as independent for simplicity.
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Upon coarse graining, the surface energy calculation for the so-called amplitude model

is essentially unchanged; the only differences being that the density field becomes an

average density field without atomic-scale fluctuations (that is, n(�r) becomes n0(�r)), and

that the free energy becomes a function of the amplitudes Aj, Bl, Cm as well as of the

density and concentration fields.

3.5 Numerical Considerations

The angular dependence of the interfacial energy is a small quantity and as such care

must be taken to avoid or reduce as many sources of numerical error and fluctuation as

possible. This is challenging in that our concern is not just with fluctuations within a

given simulation; we also want to ensure that between runs for different angular offsets θ,

the other parameters of the model remain constant or fluctuate on a much smaller scale

than the changes in interfacial energy.

3.5.1 2D XPFC Simulations

In our investigation we do not want to deal with any interfaces or boundaries aside

from the solid-liquid interfaces that we are controlling; that is, away from the interface

both in the bulk liquid and in the bulk solid, we want to come as near as possible to

simulating an infinite system. The standard procedure in the two-dimensional XPFC

case is to implement periodic boundary conditions; that is, one side of the simulation box

’wraps around’ to the opposite side, in both the x and y directions (or in x, y, and z for

the 3D case). In order to ensure that the wraparound occurs in such a way that there

is no partial overlap between or cutoff of lattice points, we choose the number of lattice

sites of size a we want to simulate (nx) and the number of pieces we want each site to be

divided into (1/dx) and from this calculate the numerical array size

Nx =
nxa

dx
(3.68)

This ensures that an integer number of lattice sites fit into the box, and thus an atom on

the far left edge of the box will see the same environment both to its right and to its left.

This procedure is standard, and is fine for the case where there is no rotation of the

solid with respect to the interface; that is, when θ = 0◦ or θ = 90◦. However, for other

choices of angle this is no longer sufficient. Consider the following:
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Say we measure the size of a lattice site from peak maximum to peak maximum (recall

that in the XPFC model our ’atoms’ are diffuse structures) and call this the lattice

constant a. The method above ensures an integer number of lattice constants will fit in the

unrotated simulation box. However, when we rotate the periodic solid with respect to the

interface –and therefore also with respect to the x-axis, as our interface is always parallel to

this axis – this condition becomes irrelevant. What we are now concerned with is fitting

an integer number of ”effective lattice constants”, which we will call the peak-to-peak

distance along the particular angular cut of the lattice. This effective constant may pass

through two or more unit cells of the crystal before encountering another peak. However

without taking this into consideration, when the simulation box is wrapped around we

may encounter a mismatch that can act something like a grain boundary in terms of its

impact on the energy of the system. This is especially important to our study in that

our calculation of interfacial energy makes the assumption that the only contribution to

the free energy not from the bulk phases comes from the interface. However, these grain-

boundary-like structures introduce new sources of energy to the system, and impact the

measured interfacial energy in a variety of ways that are not easily accounted for. The

degree to which the energy is changed, and the angles for which there is a major impact,

will vary with system size as different sizes will accomodate different effective constants.

It thus becomes necessary to slightly vary the size of our simulation box in order to

fit an integer number of effective constants. However, not all angles can be fit in such a

way. Mellenthin [26] presents a method to determine permissable angles for the triangular

lattice; here we extend the method to the square.

We begin by applying the following rotation to the square basis vectors �a1 = a(1, 0) and

�a2 = a(0, 1)

x′ = x cos θ − y sin θ

y′ = y cos θ + x sin θ (3.69)

which gives the rotated basis vectors

�a′1 =

(
cos θ

sin θ

)
(3.70)

and

�a′2 =

(
− sin θ

cos θ

)
(3.71)
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The minimum box size in each direction is given by the conditions [26]:

n�a′1 −m�a′2 =

(
Lx

0

)
(3.72)

− i �a′1 + j �a′2 =

(
0

Ly

)
(3.73)

where m,n,i, and j are integers. Since we are simulating a strip of solid lying in the x

plane, sandwiched between two liquid regions in the y direction, it is only necessary for

us to impose condition Eq 3.72. We solve the bottom equation for n and m to get

tan θ =
m

n
(3.74)

for some integer choices of m, n. Having determined θ, this gives us an effective lattice

constant (i.e. the size of the repeated chunk of lattice in the x-direction) of

Lx = n cos θ +m sin θ (3.75)

With these values determined we must now choose the size of our simulation array.

Some approximations must necessarily be made in the following steps. For the unrotated

matrix we chose the number of lattice sites and the number of subdivisions; for each

rotated lattice we’d like to stay as close to these values as possible; that is, we aim to

keep the actual area of the simulation box roughly the same. To get an estimate of the

number of ’effective’ unit cells n′x we should include, we use the following:

n′x =

√
n2
xa

2

L2
x

(3.76)

and round to the nearest integer. Thus we ensure that there is not a large change in the

simulation area.

There is one final consideration that must be made; namely that we cannot blindly follow

Eq 3.68 any more, as with the new n′x and Lx values replacing nx and a we typically do not

arrive at an integer value. We thus select values of Nx that agree as closely as possible

with an integer n′x, while also keeping Nx on a scale that is tenable to simulate in a

reasonable period of time. Some examples of the set of values chosen are illustrated in

Table 3.1.
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Angle m n Nx
0 0 1 1280

4.76364 1 12 1204
9.46232 1 6 1217
15.2551 3 11 1254
18.4349 1 3 1265
21.8014 2 5 1292
26.5651 1 2 1275

Table 3.1: A selection of angles and the corresponding array widths used for XPFC
simulations.

3.5.2 1D Amplitude Model Simulations

For the 1D effective phase field model we have significantly fewer constraints to worry

about than with direct simulation of the microscopic XPFC model. Since we are no

longer representing periodic atomic structures, the problem of edge-matching is no longer

an issue. Rather than solid sandwiched between regions of liquid and periodic boundary

conditions, we now implement a single solid-liquid interface in 1D, where the rotation is

handled through the angular dependence of the gradient energy coefficients in Eq 3.45 -

3.52, and zero flux boundary conditions at each edge of the box. That is, for a simulation

box with boundaries at start and end, we create ’ghost’ sites on either side of the box

intended simply to create the desired environment at the box edges. At each timestep we

enforce

n[start - 1] == n[start + 1];

n[end +1] == n[end - 1 ];

for each field. Not that this is sufficient for the 3-site stencils that we have used to

calculate gradient terms; however, as the size of the stencil increases so must the size of

the ghost region. For instance, if a 5-site stencil was used, we would now require:

n[start - 2] == n[start + 2];

n[start - 1] == n[start + 1];

n[end + 2] == n[end - 2] ;

n[end + 1] == n[end - 1];

and so on.
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As with the simulations of the microscopic XPFC equations, we also encountered one

particular numerical difficulty in the amplitude simulation. The above method requires

the use of constant values of the chemical potentials μeq and μa computed from the rel-

evant phase diagram of the alloy system in its relevant thermodynamic variables. Past

work done with this model [28] for the binary alloy case where n = 0 found no difficulty

in stabilizing the solid-liquid interface with constant chemical potential values. However,

upon inclusion of the accurate density n0(�r) profile, we encountered similar difficulties in

obtaining a stable interface as those we found for the binary XPFC model. In particular,

we found that after some initial adjustment of the interface shape our system melted.

Namely, the interface profile, while maintaining the same shape, began to translate lat-

erally through the simulation box, continuing to do so until the system was entirely one

phase. As this happened the far field values for all of the fields remained unchanged from

their initial values.

We were able to track this issue down to a numerical artefact. For the initial profile, the

driving forces (i.e. the right hand sides of Eq 3.53 and 3.54, and the variational derivatives

of the amplitude equations) were nonzero around the interface, exhibiting both a positive

and a negative spike around this region. As the system evolved and the interface shape

cleaned up, these peaks reduced in size significantly and approached zero. However, these

peaks do not all succeed in reaching zero, instead maintaining either a small dip or well

that stops changing at some finite size. This feature was also observed in the simple

binary alloy case; however, it was a small enough value that it did not effect the evolution

of the system. In our case, however, this peak is sufficiently large that it evidently

drives the system to minimize the energy in the only way that it can: by eliminating the

interface. It is likely that this effect is the result of one of the many gradient terms in

our expressions, either in concentration or one of the amplitudes. Moving to higher order

numerical gradient approximations does not seem to show any improvement, however.

Decreasing both spacial and time steps dx and dt does reduce the size of this persistent

peak somewhat, but at a dx of 0.1 and a dt of 0.001 the ’runaway interface’ behaviour

was still seen. It may be possible to eliminate this behaviour entirely by moving to

even smaller dx and dt values; however at some point this becomes unreasonable for the

purpose of efficient simulation.

We note that as long as some care is taken in obtaining measurements from the system,

this effect is not important. As mentioned, for relatively early times the only changes

occuring in the system profile are at the interface, which corrects its shape somewhat.

This interface is stable for a brief period of time before it starts to move, and we emphasize
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that the movement of the interface is only a translation; there is no shifting of the far field

values of any of the fields. As such the calculated value of the grand potential rapidly

converges after the interface has completed its adjustments and before the system has

melted entirely (we note as well that the timescales for the system to completely melt are

roughly an order of magnitude higher than those for the interface corrections to occur).

We thus take our systems to be converged when the total grand potential of the system

has stopped changing up to 10−9. Visual checks of the data confirm that this is sufficient

for the interface shape to have made any changes, and that for longer timesteps no changes

to this shape occur.



Chapter 4

Surface Energy Results for Single

Component Materials

4.1 XPFC Phase Diagram

In this section we consider a two-dimensional pure material that can stabilize square

or triangular crystal structures. To construct the phase diagram of the corresponding

XPFC construction for this system, we need to obtain free energies for all the possible

competing phases. We begin with the mode approximations for the densities of the solid

phases. Following the form of Eq 2.12, we take a single-mode approximation for the

triangular phase, and a two-mode approximation for the square phase. Simplifying we

get the following approximations:

nsq(x, y) = n0+2A

[
cos

(
2π

a
x

)
+ cos

(
2π

a
y

)]
+2B

[
cos

(
2π

a
(x+ y)

)
+ cos

(
2π

a
(x− y)

)]
(4.1)

ntri(x, y) = n0 + 2C

[
cos

(√
3π

a
y

)
+ cos

( π

2a
(3x+

√
3y)

)
+ cos

( π

2a
(3x−

√
3y)

)]

(4.2)

where n0 is the mean density in the solid and A, B, and C are mode amplitudes. As

previously we set the lattice spacing a = 1.

We then substitute each of these mode approximations into the form of the free energy

functional from Eq 2.21 and integrate over the respective crystal unit cells to obtain

39
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square and triangular free energies. For the purposes of the phase diagram it is sufficient

to take the sum of the correlation peaks rather than the envelope. The integral over

the convolution term yields a Dirac delta function in k-space and as such simply returns

a sum of terms in which each respective mode is multiplied by the correlation function

evaluated at that mode.

We are left with equations for the free energy of the bulk square and triangle phases in

terms of the average density and the mode amplitudes.

Fsq = 2(A2 +B2)(1− n0η + n2
0χ) + 3χ2(A4 +B4) + 4A2B(2n0χ− η + 3Bχ)

+
n2
0

2
− η

n3
0

6
+ χ

n4
0

12
− 2A2Ĉk10(k = k10)− 2B2Ĉk11(k = k11) (4.3)

Ftri = 3C2(1− n0η + n2
0χ) + 2C3(2n0χ− η) + 15C4χ

2

+
n2
0

2
− η

n3
0

6
+ χ

n4
0

12
− 3C2Ĉk10(k = k10) (4.4)

These expressions are then minimized with respect to the amplitudes A, B, and C. For

mathematical simplicity (only in calculating the phase diagram) we make the assumption

that for the square, B = fA and take the computed value of f = 0.605 from past XPFC

studies [24]. We thus minimize to solve for one amplitude for each phase.

We can additionally construct a liquid phase free energy from either of these expressions

by considering the case where all mode amplitudes are zero. The resulting free energy

curves are plotted for a chosen temperature (Fig 4.1) and compared. A Maxwell equal

area construction is then performed between each pair of curves to determine coexistence

regions and thereby the liquidus and solidus lines. The resulting phase diagram is shown

in Fig 4.2.

It should be noted that these calculated phase diagrams are necessarily approximate,

and may not agree exactly with equilibrium results from the XPFC simulations; however,

this method is sufficient to give a reliable starting point for initialization of the system

(i.e. the boundary conditions of the fields in the Euler-Lagrange equations).
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Figure 4.1: Calculated free energy curves for the square, triangle, and liquid phases
of a single-component XPFC material, at a model temperature of σ = 0.10.
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Figure 4.2: Phase diagram for a two-dimensional pure XPFC material capable of
stabilizing both square and triangular crystal structures. Phase diagram is in terms
of average density n0 and model temperature σ. A peritectic temperature between
square, triangle and liquid can be obtained with higher order density expansion around

n0 = 0.075[23].

4.2 Results of Surface Energy Calculations

For the pure material we performed trials for a variety of angles between 0 and π
2
(Fig

4.3), in which we solved Eq 3.11 and 3.12. We confirm that for each angle trial the average

density n0 is constant on the order of the change in γ, with fluctuations in density occuring

only on order 10−6. For each n0 the chemical potential μ converges quickly to a single

value (Fig 4.4) with fluctuations between trials of order 10−5.
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a.) b.) c.) d.) e.)

Figure 4.3: Density plots of the initialized solid strips embedded within liquid, at
angles of a.) 0◦, b.) 9◦, c.) 21◦, d.) 30◦, and e.) 40◦. The 2D simulation has been
initialized with a sharp interface; however, this becomes more diffuse over the course of

the simulation.
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Figure 4.4: Convergence of chemical potential μ values with time step for all angles
tested. Inset shows rapid convergence for early timescales.

We can predict the approximate form of the interfacial energy curve by making the

assumption that the primary mechanism affecting the energy is the number of broken

bonds per unit length of the solid-liquid interface. It is easy to picture that, for a square

crystal, at 0 or π
2
there will be less broken bonds at the interface than at π

4
; this idea is

illustrated in Fig 4.5, as is the resulting approximate free energy curve.

We see no change in the interfacial energy data with average concentration, as is expected

for a single-component material. We see a small change in anisotropy, on the order of 1%,

with a temperature increase of 0.02 in terms of model parameters (Fig 4.6, left panel).

The curves are fitted with the third order form of Eq 2.1. The data follows the form
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Figure 4.5: On the left we present representations of the solid-liquid interface for a
crystal oriented at a.) 0◦ and b.) 45◦. Dashed lines represent broken bonds. The
right-hand plot illustrates the approximate shape of the free energy curve by plotting

the number of broken bonds per unit length versus angle.

predicted from the broken bonds approximation. The isotropic fitting parameter γ0 and

the anisotropies εi are shown in Table 4.1.

σ γo ε4 ε8 ε12
0.05 0.284454 -0.023609 -0.001932 -0.000282
0.07 0.253944 -0.025088 -0.001984 -0.000301

Table 4.1: Fitting parameters for pure material interfacial energy curves.

Finally, we take the second derivative of the interfacial energy fits to obtain stiffness

S(θ) = γ + γ′′. As with γ(θ) itself we see only a small change with either temperature or

average concentration. The resulting curve is also shown in Fig 4.6 (right panel).

Both surface energy and stiffness of a pure XPFC material follow the expected form.

A maximum of interfacial energy corresponds to a minimal stiffness point in the in-

terface. We note one interesting result however; our work here has been done with a

single-component material that can stabilize both square and triangular crystals. When

compared to past work[29] for a single-component material that stabilized only the tri-

angle phase, we find that our curves for both γ(θ) and S(θ) are significantly broader in

comparison. We attribute this, and the necessity of our use of a higher order fit, to the

effect of the second crystal symmetry influencing the correlation function. The details of

the curve fitting are discussed in further detail in Chapter 6, when we address alloys.
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Figure 4.6: Normalized interfacial energy (left) and stiffness (right) plots for two
temperatures; note that changes in these curves are minimal. Both γ(θ) and S(θ)
follow the general trend of the expected behaviour for a pure material; however the
curves are not as sharp as in the case where the single-component material can stabilize

only a single crystal symmetry.



Chapter 5

Thermodynamics of an XPFC

Binary Alloy in Concentration,

Density, Pressure, and Temperature

Space

5.1 Phase Diagram Construction

The binary alloy phase diagram follows the same basic high level prescription as a pure

material, in terms of inserting the respective density mode approximations into the free

energy functional and integrating over the unit cell to arrive at a mean field free energy

density of solid phases. However when it comes to determining regions of coexistence, we

now have an expression in terms of both average density n0 and average concentration c0

at a single temperature; we’ve effectively added another dimension to our phase diagram.

Moreover, since density is a conjugate variable to pressure, control of the density axis

implies control of pressure. To our knowledge there has been no previous PFC or related

phase field study that examines the full c - n0 - T space for metallic alloys.

The detailed construction of the full binary phase diagram is somewhat complex. Past

work with alloys ([24],[28]) has typically been done around a density n0 = 0 in the mode

approximation inserted into the free energy. This leads to an effective two-dimensional

phase diagram in temperature and concentration, shown in Fig 5.1.

45
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Figure 5.1: Simplified binary alloy phase diagram in concentration and temperature,
calculated with the density field n0 set to zero. The concentration axis represents the
fraction of species B present. The eutectic point occurs at a model temperature of

σ = 0.10.

We aim in this thesis to construct a comprehensive phase diagram for a binary alloy by

retaining both density and concentration as values that can be varied; this necessitates a

3-dimensional phase diagram construction. In addition we find that for a given constant

temperature σ, a variety of sets of far-field values nS, nL, cS, cL can be found, each existing

at a different pressure p. We are thus able to map out the phase diagram in pressure

space as well.

Constructing a phase diagram in these variables will be necessary for setting the far-

field values of the amplitude equations in concentration, density and order parameter

amplitudes discussed above. To solve for the required far field (i.e equilibrium) values in

both density and concentration, we require a set of 4 independent equations. We begin

with the coarse grained expressions for the chemical potentials μeq and μA (Eq 3.31 and

3.33, respectively) presented in Chapter 3 and evaluated in each bulk phase:

μeq =
1

nS + 1

∂FS

∂cS
=

1

nL + 1

∂FL

∂cL
(5.1)

μA =
∂FS

∂nS

− cS
nS + 1

∂FS

∂cS
=

∂FL

∂nL

− cS
nL + 1

∂FL

∂cL
(5.2)

Where FS and FL are the coarse grained bulk free energies of the solid and liquid phases,

respectively. Additionally, we write the equation for pressure (recalling that p = −Ω and



Chapter 5. Binary Results 47

substitute the forms for μeq and μa above into Eq 3.64):

p = (nS + 1)
∂FS

∂nS

− FS = (nL + 1)
∂FL

∂nL

− FL (5.3)

We then specify a temperature σ and pressure p, and using the expressions above solve

the set of equilibrium equations [30]:

μL
eq(σ, nL, cL) = μS

eq(σ, nS, cS) (5.4)

μL
a (σ, nL, cL) = μS

a (σ, nS, cS) (5.5)

pL(σ, nL, cL) = p (5.6)

pS(σ, nS, cS) = p (5.7)

for nS, nL, cS, cL. In addition, the equilibrium chemical potentials and the solid ampli-

tudes to be put into the simulation can be calculated from these far-field values. It is

recalled that amplitudes are eliminated as previously by minimizing the respective free

energies; note however that to obtain sufficiently accurate amplitude values for the simula-

tion, all amplitudes must be solved for independently. The ratio approximation discussed

in section 4.1 is insufficient for this method.

Note that not every combination of average values n0, c0 is possible at any given pressure.

For a given choice of c0 it is necessary to equate the respective lever rules in density and

concentration to solve for n0.

c0 − cL
cS − cL

=
n0 − nL

nS − nL

(5.8)

Alternately, if a particular c0, n0 combination is desired, one can choose not to specify

pressure, and instead to solve

μL
eq(σ, nL, cL) = μS

eq(σ, nS, cS) (5.9)

μL
a (σ, nL, cL) = μS

a (σ, nS, cS) (5.10)

pL(σ, nL, cL) = pS(σ, nS, cS) (5.11)
c0 − cL
cS − cL

=
n0 − nL

nS − nL

(5.12)

for given coexistence values and temperature. The latter value is not ideal for constructing

a full phase diagram however, since there is no control over the pressure at which the

resulting solution exists.
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We present the phase diagram calculation for a square-triangle binary alloy with equal

stiffness in both species, that is, αA
10 = αB

10 = 1.5. The stiffness for the second length

scale of the square is chosen as αA
11 =

√
2αA

10, in order to preserve elastic isotropy within

the square phase. The simplified phase diagram for an analagous system constructed in

2 dimensions around n0 = 0, is shown in Fig 5.1 for comparison.
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Figure 5.2: c - σ projection of a c-n0-σ phase diagram for a binary alloy in the case
of constant pressure. The same general shape as in the simplified n0 = 0 case (Fig
5.1) is maintained. The phase diagram was constructed at a constant model pressure
of p = −0.07. Note that at this pressure the eutectic temperature has risen to about

σ = 0.125.

For the purposes of our numerical experiments, and indeed for most practical purposes,

a constant-pressure phase diagram is preferred. We present by way of analogy, a 2D

projection of the temperature-density-concentration phase diagram onto the temperature-

concentration axes (Fig 5.2); here we can see that the general shape of the phase diagram

closely mirrors the zero-density version, but with a small shift in the eutectic that was

not adequately captured in the simplified n0 = 0 approximation.

Fig 5.3 shows a three-dimensional phase diagram for a constant pressure of p = −0.07.

The planar surfaces represent the solid-liquid coexistence regions for the square and tri-

angle, respectively. The area above these curves corresponds to the liquid region of the

phase diagram, and below to the solid region. The small n0 and large n0 edges of these

planes are the respective solidus and liquidus lines, while points anywhere along the sur-

face represent average values c0, n0, that can yield coexisting phases. The curve along

which the two planes intersect represents the 2D analog of the eutectic point; a ’eutectic

line’.
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Figure 5.3: Solid-liquid coexistence regions of the 3D binary alloy phase diagram in
temperature σ, concentration c0, and density n0, at a constant pressure p = −0.07. The
orange represents the square-liquid coexistence plane, while the blue is the triangle-
liquid. Red lines indicate coexistence tie lines.The intersecting eutectic line can be
clearly seen; note that the eutectic temperature changes as one moves through density

space.

5.1.1 Pressure Space Phase Diagram

We additionally present the behaviour of the phase diagram in pressure space. It is

interesting to note that as we vary pressure for a constant temperature of σ = 0.12, the

overall phase diagram maintains the same major features as the more typical constant

pressure representation.

Fig 5.4 shows a pressure-concentration phase diagram of a binary alloy at constant

temperature, projected from a concentration-density-pressure phase diagram. As model

pressure becomes increasingly negative, the behaviour of the phase diagram mimics that
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Figure 5.4: c-p phase diagram for a binary alloy projected from a three-dimensional
c-p-n0 phase diagram for the case of constant model temperature σ = 0.12. We see an
inversion of the typical temperature-concentration phase diagram, with what may be

termed a ’eutectic pressure’ at p = −0.75.
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Figure 5.5: Pressure-concentration curves plotted for a variety of temperatures, for
the triangle-liquid coexistence region of the phase diagram. This type of plot is more
common when pressure is varied. Note that both the position and the width of the

resulting coexistence region changes with temperature.

seen for constant pressure as temperature increases. Note in particular that the respective

sizes of the square and triangle solid-liquid coexistence regions are comparable to those

seen in the constant pressure case. We can also draw a parallel to the eutectic temperature

and note the presence of a ’eutectic pressure’ for the constant temperature case, located

at roughly p = −0.75.

Rather than presenting a full 3D concentration-pressure-temperature phase diagram,
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which can be awkward to visualize, in Fig 5.5 we present explicit pressure-concentration

cuts of the triangle-liquid coexistence region, measured at a variety of temperatures. This

clearly shows the manner in which both the shape and position of the major features of

the liquidus and solidus lines vary with temperature.

The pressure dependence of the binary alloy phase diagram is clearly quite significant,

and may strongly impact the potential of a simulation to stabilize certain structures

and/or coexistence regions. Care must therefore be taken, especially if one desires to

compare simulation results to experimental work, to ensure that trial profiles conform

to a constant pressure. As we have demonstrated, when pressure is not specified in

the construction of the phase diagram itself, a variety of different pressures may be

inadvertently represented for each set of equilibrium solutions.



Chapter 6

Binary Alloy Surface Anisotropy

We investigate the impact of species concentration on the surface anisotropy of a binary

alloy via a 1D amplitude expansion simulation, derived via coarse-graining of the binary

XPFC model as presented in Section 3.3.

In order to investigate the effect of concentration c0 on interfacial anisotropy, we alter the

parameters of our generating XPFC model to emulate a phase diagram more in line with

those of the aluminum-zinc alloys (see Fig 6.2) in which such concentration dependence

has been observed experimentally [1]. Namely, we require a case where one component

element has significantly higher stiffness than the other, resulting in a highly asymmetrical

phase diagram. Using the standard procedure described in Chapter 5 for constructing

alloy phase diagrams we obtain the phase diagram in Fig 6.1, which represents the alloy

system we will be studying in the latter half of this chapter.

To begin with, however, we test our method for calculating interfacial energy on the

more symmetrical phase diagram obtained in Chapter 5 to ensure that we can reproduce

past results for a similar system.

6.1 Fitting Interfacial Energy curves

We digress briefly to discuss Eq 2.1 used to fit the interfacial energy data from our

simulation of the symmetric binary alloy in Chapter 5. The first image in Fig 6.3 shows

a sample of the raw data obtained from equilibrating the concentration, amplitude, and

density profiles (hereafter just a profile) repeatedly for a range of interface orientations

from θ = 0◦ to θ = 90◦. A clear sinusoidal form can already be observed.
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Figure 6.1: Solid-liquid coexistence region of the theoretical phase diagram obtained
from the choice of parameters in Table 6.2, in which the left-side (square) species

strongly dominates. This was constructed at a constant pressure of p = −0.07.

Figure 6.2: Aluminum Zinc phase diagram reproduced with permission from [1].

In fitting this curve, the expansion in Eq 2.1 can be taken to any desired order, where

contributions from successive orders yield smaller and smaller corrections to the form. We

aim to choose the smallest order expansion that can accurately capture the behaviour of

the stiffness S = γ+γ”. Past work with the same simulation method [28] has found a first

order fit to be sufficient. However, we note that such trials were done for pure materials

and alloys with symmetrical phase diagrams; that is, alloys where both species have the

same preferred crystal structure (either both square or both triangle, for instance). In



Chapter 6. Binary Alloy Surface Anisotropy 54

either of these cases there is no competition from a different crystal structure and thus

it is reasonable to expect that a simple first-order fit will be sufficient to capture the

behaviour.
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Figure 6.3: Top panel: simulation data for the interfacial energy γ(θ) at temperature
σ = 0.12 and average concentration c0 = 0.2 for the symmetric alloy in Fig 5.2 at a
model pressure of p = −0.07. Middle panel: the notably poor first-order fit to the data;
Bottom panel: the sixth-order fit to the data. A clear improvement in fit is visible.

In our case, however, the influence of the triangle species on the interfacial energy in

the square phase is quite pronounced. Taking only the first order expansion results in

an obviously poor fit to the data (middle image of Fig 6.3) and so we consider higher
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order terms. Here we must be careful, as we obtain stiffness results by taking the second

derivative of the fit to γ. As discussed previously, anisotropies in γ are exaggerated in

S, and we must take care that artificial angular dependences introduced by an imperfect

fit to the data in γ are not taken as significant results in stiffness. We find in particular

that a second order fit introduces an artificial local maximum in stiffness at the location

of the global minimum for higher order fits. We continue taking successively higher order

fits until we are satisfied that no significant changes in the resulting stiffness curves are

present (Fig 6.4). We thus present stiffness curves obtained by a sixth order fit to the

interfacial energy data, that is:

γ = γo [1 + ε4 cos 4θ + ε8 cos 8θ + ε12 cos 12θ + ε16 cos 16θ + ε20 cos 20θ + ε24 cos 24θ]

(6.1)

Such a high order expression may not be reasonable or desirable for some applications

of this data, however. We therefore note that several major features of the stiffness

anisotropy curve are still obtained by the first order fit: that is, the same number of max-

ima and minima exist, at the same angles. Additionally, we note that moving from first to

sixth order, the values of the lowest order fitting parameters γ and ε4 only differ by 0.002%

and 0.2% respectively, and that each successive fitting parameter εi is approximately an

order of magnitude smaller than the one previous. As such for practical purposes (such

as determining dendrite orientation), the first order fit contains the relevent data needed

to extract important information about dendritic growth directions. By the same token,

for regions where a double local minima may exist in the stiffness (as seen in Rappaz’

results for a composition of 0.58)[1], the third-order fit should be sufficient in maintaining

an accurate global minimum while also sustaining the presence of multiple local wells or

peaks. These features are illustrated in Fig 6.4.

6.2 Species of Comparable Stiffness

Considering solid-liquid interfaces in the square-liquid coexistence region of the more

symmetrical phase diagram, we begin by performing trials at a constant temperature σ

and a variety of average concentration values c0 within the solid-liquid coexistence region.

Note that for this simulation, keeping the temperature constant amounts to staying on

the same phase coexistence tie line, with the same far field values in concentration and

density, and as such we do not expect to see any difference in the resulting interfacial

energies. We can see from Fig 6.5 that this is the case, and the values of the various
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Figure 6.4: Stiffness curves S(θ)/γo resulting from first through sixth order fits. The
second order fit in particular is misleading as it destroys the global minimum. Note
that from fourth to sixth order there are minimal changes in the fit, and as well that
for a stiffness with a single minimum the first order maintains the appropriate features,
while for a stiffness with multiple minima, the third order fit is expected to be sufficient.

fitting parameters {γ, εi} for the curves corresponding to different c0 remain unchanged.

In all cases pressure remains fixed at p = −0.07.

σ cS cL nS nL

0.12 0.166754 0.582612 0.094614 -0.069095
0.13 0.151997 0.488390 0.092782 -0.069095
0.14 0.129449 0.364015 0.090405 -0.069095

Table 6.1: Far field values of density and concentration for a variety of temperatures,
used to initialize simulation profiles in these fields. The subscripts S/L denote solid

and liquid, respectively.

We next scan over a variety of temperatures; each temperature chosen gives a different

set of far field values for phase concentration and density (shown in Table 6.1). The

normalized interfacial energies and stiffnesses are presented in Fig 6.6. We see a clear

change in the amplitudes of these curves with temperature. We additionally present plots
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Figure 6.5: Interfacial energies γ and stiffnesses S overlaid for average concentrations
of c0 = 0.2, 0.3, and 0.4, at a constant temperature σ = 0.13. It is clear that there
is no appreciable change in the behaviour of either of these quantities with average

concentration when changing along a fixed-temperature tie line.
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Figure 6.6: Interfacial energies γ and stiffnesses S normalized by the constant γo,
shown for a constant average concentration c0 = 0.2 and a variety of temperatures.
The overall shape of the curves shown stays the same; however a change in the heights

of the respective maxima and minima are clearly visible.

of the isotropic and anisotropic parameters in terms of temperature (Fig 6.7). We confirm

that both γ and ε4 decrease as temperature increases, as was observed in previous 1D

amplitude simulations for an alloy system with n0 = 0 [28]. Higher order anisotropy
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Figure 6.7: The behaviour of the isotropic fitting parameter γo (top) and the highest
order anisotropic parameter ε4 (middle) are shown. Both decrease with increasing
temperature. Note from the bottom panel that the change in γo (square) values is not

significant on the order of the ε4 (circles).

parameters follow the same trend, albeit with shallower slopes. In addition note that the

leading order anisotropy values ε4 are several orders of magnitude larger than the γo.

6.3 Asymmetrical Alloy

We do not have sufficient degrees of freedom in our theoretical phase diagram construc-

tion to exactly recreate the aluminum-zinc phase diagram (Fig 6.2) used by Rappaz et
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al. We satisfy ourselves with a phase diagram for which the solid-liquid coexistence re-

gion for species A extends significantly past a 50% concentration of species B. This is

crucial since we measure the anisotropy by making use of the solid-liquid interface, and

as such require an alloy system for which solid and liquid can coexist over a wide range

of concentrations.

We primarily alter the phase diagram by changing the αj values, which determine the

widths of the Gaussian peaks in the correlation function, and thus control the relative

stiffness of the component pure materials that comprise the alloy. In addition, we adopt

the convention described in Greenwood et al [24], where the Debye Waller prefactor to

the Gaussian is rewritten as

e
− σ2�k2j

2ρjβj = e
− σ2

σ2
Mj (6.2)

where σ2
Mj is an effective transition temperature that can be tuned to obtain desired

behaviour. We can thus manipulate both peak heights and widths via the αj and σMj for

each correlation peak. We however still choose the α for the square correlation function

to satisfy the ratio for isotropic elasticity within the square crystal (Table 6.2).

We make an initial selection of parameters such that we can access both a wide range

of concentrations overall, and several concentrations at any given temperature. In order

to satisfy this range of coexistence requirements, we produce a somewhat eccentric phase

diagram that is heavily dominated by the square phase. In particular the solid-solid

region of the phase diagram (i.e. the region below the eutectic) is somewhat irregular.

However, we consider the resulting calculated phase diagram adequate to illustrate both

the capabilities of the model and the dependence of the interfacial anisotropy on the

various model parameters. The resulting diagram also sufficiently mimics the one used in

the main experimental study on this topic by Rappaz et al[1] in the solid-liquid coexistence

region. The phase diagram obtained from these choices of parameters is shown in Fig

6.1.

�kj αj σMj

�kA
10 1 π2

3
�kA
11

√
2 2π2

3
�kB
10 3.5 8π2

9

Table 6.2: Choice of correlation function widths and heights (α and σM respectively)
to create the square-biased binary alloy phase diagram in Fig 6.1.

As previously we consider a variety of concentrations at a constant temperature. Once

again when confined to a single tie line we observe no change in the interfacial energy or



Chapter 6. Binary Alloy Surface Anisotropy 60

the resulting stiffness. We thus vary the temperature for a constant concentration and

once again see different amplitudes for the interfacial energy and stiffness curves. We

discuss our results further in the following section.

6.3.1 Following the solidus curve

We pause in our analysis to consider carefully what is being measured in the exper-

imental results obtained from studies of Al Zn alloys[1][3]. These works were able to

observe a concentration dependence in dendrite orientation and provided strong motiva-

tion for performing this study. These experimental works observed a change in stiffness

anisotropy of Al Zn alloy with percentage zinc composition by measuring the dendrite

orientation in the final solidified sample. Samples were solidified gradually via directional

solidification, and results were presented both in terms of average composition and of

nominal composition of the solid phase. We note that for a sufficiently steady cooling

rate, this solid composition is ostensibly equivalent to the far field solid value from the last

solid-liquid tie line encountered as the sample is cooled. Making an analogy between this

experimental procedure and our method we can argue that each simulation temperature

can be associated with a particular composition for the solid sample (Fig 6.8). We make

the argument that the anisotropy changes that we have observed are the result of far-field

composition changes rather than temperature, or at least, are a convolved representation

of both effects. The possibility that this numerical method was in fact capturing two

effects was actually suspected in past work [28]. With this in mind we additionally argue

that the experimental results in question are more correctly presented in terms of solid

composition (rather than average). We follow this line of reasoning in the further analysis

of our results.1

To obtain surface energy curves we initialized simulation profiles with far-field values

for concentration and density obtained from the calculated phase diagram Fig 6.8 (or

Fig 6.1). All simulations and the calculation of the phase diagram itself were done at

a constant pressure of p = −0.07. Starting amplitude profiles as well as the chemical

potentials μeq and μA were calculated from these values. The simulation was considered

to be equilibrated when the total grand potential Ω converged up to 10−9.

1We also note, given that interfacial energy doesn’t change while moving along a constant temperature
tie line, that the results presented here will not change qualitatively even if the changes in anisotropy
are connected instead to the liquidus line.
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Figure 6.8: We illustrate the method by which a choice of temperature selects a partic-
ular associated concentration via its intersection with the solidus line of our calculated

phase diagram (obtained with p = −0.07.)

Following this procedure and setup, we fitted the resulting surface energy to obtain

interface stiffness as described in section 6.1. Figures 6.9 and 6.10 show the parameters

γo and ε4 resulting from these fits, in terms of both solidus concentration and temperature.

We omit plots of the higher-order fitting parameters, but note that they follow the same

general trend as ε4, and report their values in Table 6.3.

σ ε8 ε12 ε16 ε20 ε24
0.12 −9.4× 10−4 −1.4× 10−4 −3.1× 10−5 −7.9× 10−6 −2.4× 10−6

0.13 −9.9× 10−4 −1.5× 10−4 −3.3× 10−5 −8.7× 10−6 −2.6× 10−6

0.14 −11.0× 10−4 −1.7× 10−4 −3.8× 10−5 −10.1× 10−6 −3.1× 10−6

0.15 −12.8× 10−4 −2.0× 10−4 −4.6× 10−5 −12.5× 10−6 −3.9× 10−6

0.16 −154× 10−4 −2.5× 10−4 −5.8× 10−5 −16.4× 10−6 −5.1× 10−6

0.17 −18.9× 10−4 −3.2× 10−4 −7.6× 10−5 −21.9× 10−6 −7.3× 10−6

0.18 −23.2× 10−4 −4.0× 10−4 −9.7× 10−5 −26.7× 10−6 −8.4× 10−6

Table 6.3: Higher order anisotropy parameters for interfacial energy curves, up to
sixth order. Note the decrease in magnitude with increasing order.

We see that in terms of temperature the anisotropy ε4 follows the same trend as is seen for

the case of the equal stiffness species. The isotropic parameter γo, however, only shows this

same behaviour for the high temperature/ low solidus concentration. Past σ ≈ 0.15 (cS ≈
0.3), we instead see the opposite behaviour, and γo decreases abruptly with decreasing

temperature (and increasing concentration). We suggest as a possible explanation that

we are observing two competing effects; for low cS the previously reported constant-

density temperature dependence [28] of the isotropy is seen. At sufficiently high cS,
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Figure 6.9: The isotropic fitting parameter γo, plotted in terms of both temperature
and associated solidus concentration. For the higher temperature (low concentration)
range the isotropy follows the behaviour seen in the comparable stiffness case (Fig
6.7); in the lower temperature (higher concentration) region its behaviour is inverted.
However, the changes in this parameter are at least two orders of magnitude smaller
than those observed in the anisotropy parameter and thus may not be significant.

however, this opposite behaviour may be due to the intrusion of the triangular species on

the dominant square phase over this range of concentrations; namely, that the material

wants to maintain an isotropic square structure but the intrusion of increasing amounts

of the triangular species inhibits this. As such the preferred isotropic component is

stronger the less the concentration of triangular species present; this corresponds to higher

temperatures. In the equal stiffness case, the effect of increased triangle concentration is

not as pronounced, and it is likely that the behaviour observed is solely due to temperature

differences, possibly simply due to the inaccessability of higher concentrations. However

in either case the change in γo is very small; on the scale of the anisotropy change, the

isotropic component is effectively constant (Fig 6.11). Changes in γo are on the order of

10−5 and as such are not large enough to be considered statistically significant.

In terms of the anisotropic parameter ε4, we note that in comparison to the 1% change

in ε4 seen in the pure material, we now observe a change an order of magnitude higher

(10%) for the same difference in model temperature, or alternately for a difference in

solidus concentration on the order of 0.01. In the scope of dendritic growth this is a very
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Figure 6.10: The first order anisotropic fitting parameter ε4 plotted in terms of both
temperature and associated solidus concentration. In both plots ε4 appears to approach
a plateau; it does so slightly more sharply in terms of concentration, as sufficiently high
concentrations of the secondary species are reached. Higher values of concentration
were not attainable within the square solid-liquid coexistence region of this XPFC alloy

system.
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Figure 6.11: Isotropic γ (square) and anisotropic ε4 (circle) fitting parameters plotted
together in terms of solidus concentration; note that on the scale of ε4 the values of the

isotropic parameter are effectively constant.

significant predicted change. This agrees with the change in the dominant anisotropy

parameter measured by Rappaz et al [1] over the same difference in solidus concentration,

which is also on the order of 10%. We argue that this may be in part due to the influence

of the solid concentration in the observed behaviour of the anisotropy, rather than the
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Figure 6.12: Normalized interfacial energies γ(θ) for the case of a large
stiffness disparity between alloy species. The highest amplitude curves corre-
spond to lowest solidus concentrations and vice versa. Concentrations shown are
0.117, 0.162, 0.201, 0.243, 0.290, 0.348, 0.430. These curves were used to extract the data

in Figures 6.9-6.10

presence of a temperature effect only; this is plausible in light of the observed plateau in

the temperature versus concentration curve of the solidus line in Fig 6.1.

Figure 6.12 shows the interfacial energy curves used to extract the data in Figures 6.9

and 6.10. Figure 6.14 shows the corresponding normalized stiffness curves S
γo
. We see a far

more dramatic change than is observed for the equal stiffness case in Fig 6.6 or the pure

material case in Chapter 4. In particular as a solidus composition of 0.5 is approached,

the stiffness curve becomes notably more shallow and the global minimum at θ = 45◦

becomes far less well-defined; in fact we see a range from roughly 30◦ to 60◦ where the

stiffness is almost flat, suggesting there is little preference for dendrite orientation within

this range. These results in particular agree very well with the behaviour seen by Rappaz

up to concentrations of 0.58 (Fig 6.13). We have not been able to observe the flip of

the maxima to minima (and vice versa) that has been seen experimentally at higher

concentrations of the second species; we attribute this to the fact that we have not been

able to accurately reproduce the long, thin region of square liquid coexistence seen in the

experimental Al-Zn phase diagram, and as such were not able to accurately model such

high solidus concentrations with our simulation.

We surmise that the weakening stiffness curves that we observe with increased concen-

tration are due to the presence of increasing amounts of species B, a soft material with
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Figure 6.13: Angular variation of the normalized stiffness in the (001) plane for
various zinc concentrations in Al-Zn, obtained via dendrite growth direction measured

in experiments. Reprinted with permission from [1]

a preference for the triangle phase embedded in the square lattice structure. At low con-

centrations, where species A is still dominant, the crystal settles into a very stiff square

lattice structure with little tolerance for misalignment. To illustrate this mechanism,

we have engineered our system such that the square species is exceedingly stiff in com-

parison to the triangle species, and as such intermediate concentrations of the triangle

phase are insufficient to produce stiffness minima reminiscent of a triangular crystal as

has been seen in experimental work [1]; however, the influence of the increased amount

of the second species is evident. Sufficient species B atoms present in the square species

A lattice will, eventually, lead to the material overall becoming softer, as more and more

of the lattice is made up of the low stiffness material. This is what is occuring in the

flattened region of the c0 = 0.430 curve in Fig 6.14. To our knowledge, this is the first

fundamental theoretical study to examine the role of impurities on interfacial anisotropy,

and to provide a mechanism to help explain the experimental results with regards to the

role of impurities on dendritic anisotropy obtained by Rappaz et al [1].
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Figure 6.14: (Top) Normalized stiffness curves S(θ)/γo corresponding to the
interfacial energy curves of Fig 6.12. The highest amplitude curves corre-
spond to lowest solidus concentrations and vice versa. Concentrations shown are
0.117, 0.162, 0.201, 0.243, 0.290, 0.348, 0.430. In the bottom figure the highest and low-
est concentration curves obtained are presented to illustrate the extent to which the

stiffness has changed.
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Conclusions

We have motivated this work in part due to experimental studies that have suggested

a concentration dependence on interfacial anisotropy of certain metallic alloys. As this

anisotropy determines dendrite growth directions, it is important to the microstructure

of the material which in turn can determine the material properties. There is thus a great

deal of practical import in determining the mechanism behind this relationship.

The work done by Rappaz et al[1] in particular measured the changing anisotropy via

dendrite orientation in fully solidified samples. We have instead made use of an established

microscopic theory for measuring the anisotropy inherent in an equilibrium solid-liquid

interface, namely, a phase field crystal model coarse grained to obtain an equivalent

amplitude-expansion phase field model. For the case of constant temperature, we did

not see any change in interfacial anisotropy with average concentration. This was to be

expected, as for each average concentration value at a given constant temperature we

were still restricted to the same set of far field (i.e. bulk phase) values and thus there

was no mechanism for changing the interfacial energy. We did however observe a fairly

large change in the anisotropy of the interfacial energy (and interfacial stiffness) with

temperature.

In attempting to understand these results we make an important distinction; namely,

that in our studies of the solid-liquid coexistence region, the significant value is not

the average concentration of the material, but rather, the far-field solid concentration.

With this in mind we argue that the effect of varying temperature is actually (or at

least, is primarily) to move the system to different values along the solidus line. The

concentrations at which experimental results are reported for fully solidified samples

should then most correctly be determined by the point at which the solidus line was

67
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crossed as the sample was cooled. Note that one could follow the liquidus line as well

and would obtain the same qualitative results as those we have reported, albeit tied to

different concentrations.

Our simulation results help us to explain this behaviour observed in experiments (re-

ported in Fig 6.13) by the increased percentage of secondary species atoms infiltrating

the preferred lattice structure of the primary species. In the case where the two species

prefer different lattice symmetries, and one of the species is sufficiently stiff in compar-

ison to the other, softer material, we may not see a discontinuous transition from one

preferred dendrite orientation to another. Rather, the stiffer material may hold on to its

preferred structure while becoming increasingly ’mushy’ in certain directions due to the

increased presence of the softer material. Our simulation results suggest that this can lead

to flattened regions of the stiffness curves that exhibit no strongly preferred direction for

dendrite growth. Our results also showed that the role of concentration, modulated pre-

sumably by temperature, causes a much more significant change in interface anisotropy

than does a change in temperature in a single component material. This is consistent

with experiments that have observed significant anisotropy change in binary alloys.

We have simulated one dimensional interface cuts using a one dimensional binary alloy

amplitude model, derived from the XPFC model, as a method of studying this phe-

nomenon. We argue that observing anisotropy in terms of the equilibrium solid-liquid

interface is not only sufficient, but is perhaps the more correct way of characterizing

this concentration dependence, due to the model’s connection to elemental interactions

inherited from the liquid state correlation functions built into the XPFC model.

This behaviour is still not fully characterized nor understood, however, and two avenues

of further study in particular are evident.

The first is in the construction of the phase diagram itself. We have stated that given

the approximation used we were unable to exactly reproduce the shape of the Al Zn phase

diagram for which the changing interfacial anisotropy has been observed experimentally.

The creation of a more accurate analagous phase diagram, presumably via the inclusion

of high order terms in the ideal and excess components of the free energy, would allow

our simulation to access higher values of the solidus concentration. We expect that this

would allow a numerical determination of the full variation of the stiffness anistropy from

the preferred crystal stiffness form of the first species to that of the second.
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The second is somewhat complex. We have been unable to completely separate the tem-

perature and concentration dependence of the interfacial anisotropy, althought a compar-

ison of our constant σ versus changing σ anisotropy results does strongly indicate that the

role of concentration on interface anisotropy is modulated by temperature as a control.

As part of this work we have obtained a greater understanding of the behaviour of the

binary alloy phase diagram in all its relevant thermodynamic variables. As such we are

forced to conclude that this convolved effect is a limitation of the accessible phase space.

The majority of past computational studies of binary alloys have made use of a simplified

phase diagram [24][28] in which the density field is effectively set to zero. In this work we

have demonstrated the method for calculating a full phase diagram in both density and

concentration space, and in doing so have also been able to map out the variation of the

equilibrium properties of binary alloys as a function of temperature, density, concentration

and pressure variables.

In particular, in calculating the three-dimensional phase diagram we found that not

every density and concentration combination is possible in a binary alloy; choosing n0

and c0 haphazardly may still give solutions, but at arbitrary points in pressure space. We

are thus still restricted to a single coexistence tie line at a given temperature.

We expect that this may change upon moving to higher order alloys, i.e. the ternary. The

addition of a second concentration field should create a phase space wherein multiple tie

lines can be constructed for a particular temperature, and we can thus create a coexistence

plane rather than just a coexistence line.

It should be relatively straightforward to obtain both a phase diagram and dynamics

equations for a ternary alloy by following the same procedure outlined in this work,

namely, beginning with a grand potential formulation of the form

Ω[ρA, ρB] = F [ρA, ρB]− μA

∫
ρA(�r)d�r − μB

∫
ρB(�r)d�r − μC

∫
ρC(�r)d�r (7.1)

Calculating the phase diagram would now require six values to be solved for (due to

the addition of two far field values for the additional concentration field), and as such

two additional equations would be necessary. The expression for the additional chemical

potential μc should provide one of these; there may be a way to make use of the lever

rule, for example, as a second.

The ability to access multiple far field concentrations at a single temperature may thus

be the key to further elucidating the concentration dependence of surface anisotropy,
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potentially freeing us from the indistinct combination of temperature and concentration

effects.



Appendix A

Effective Correlation Function Terms

used in the XPFC Binary Alloy

Beginning with correlation function terms in AA, AB, BA and BB as described in

Section 2.2.3, we start with the form:

δρA

∫
CAAδρ′A + δρBC

BBδρ′B + δρA

∫
CABδρ′B + δρB

∫
CBAδρ′A (A.1)

we consider each correlation term separately and perform the variable transforms in Eq

2.23.

Starting with the AA term:

δρA

∫
CAAδρ′A = (ρA − ρ0A)C

AA(ρ′A − ρ′0A)

= ρAC
AAρ′A − ρ0AC

AAρ′A

= (1− c)(n+ 1)ρ0CAA(1− c)(n′ + 1)ρ0 − (1− c0)(n0 + 1)ρ0CAA(1− c)(n′ + 1)ρ0

= n(1− c)2CAA
2 n′ − n(1− c)CAA

2 c− (c− c0)(1− c)CAA
2 n′ + (c− c0)CAA

2 c

(A.2)

where we have divided by ρ0 to go from CAA to CAA
2 . We can see that we have a term

in n′, a term in c, a term inc0 and n′, and a term in c0 and c. These four categories will

provide the grouping used to obtain expressions Cn
eff , C

c
eff ,C

c0n
eff , and Cc0c

eff .
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For the BB term:

δρB

∫
CBBδρ′B = (ρB − ρ0B)C

BB(ρ′B − ρ′0B)

= ρBC
BBρ′B − ρ0BC

BBρ′B

= c(n+ 1)ρ0CBBc(n′ + 1)ρ0 − c0(n0 + 1)ρ0CBBc(n′ + 1)ρ0

= nc2CBBn′ + ncCBBc+ (c− c0)cCBBn′ + (c− c0)CBBc

(A.3)

For the AB term:

δρA

∫
CABδρ′B = (ρA − ρ0A)C

AB(ρ′B − ρ′0B)

= ρAC
ABρ′B − ρ0AC

ABρ′B

= (1− c)(n+ 1)ρ0CABc(n′ + 1)ρ0 − (1− c0)(n0 + 1)ρ0CABc(n′ + 1)ρ0

= nc(1− c)CABn′ + n(1− c)CABc− (c− c0)cCABn′ − (c− c0)CABc

(A.4)

And finally, for the BA term:

δρB

∫
CBAδρ′A = (ρB − ρ0B)C

BA(ρ′A − ρ′0A)

= ρBC
BAρ′A − ρ0BC

BAρ′A

= c(n+ 1)ρ0CBA(1− c)(n′ + 1)ρ0 − c0(n0 + 1)ρ0CBA(1− c)(n′ + 1)ρ0

= nc(1− c)2CBAn′ − ncCBAc+ (c− c0)(1− c)CBAn′ − (c− c0)CBAc

(A.5)

Grouping the terms as described above, we can then obtain:
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Cn
eff = c2CBB

2 + (1− c)2CAA
2 + c(1− c)(CBA

2 + CAB
2 )

Cc
eff = c(CBB

2 − CBA
2 )− (1− c)(CAA

2 − CAB
2 )

Cc0n
eff = c(CBB

2 − CAB
2 )− (1− c)(CAA

2 − CBA
2 )

Cc0c
eff = CBB

2 + CAA
2 − (CBA

2 + CAB
2 ) (A.6)



Appendix B

Amplitude Expansion of the XPFC

Free Energy Functional

Beginning with the binary alloy free energy in Eq 2.31, we demonstrate in this section

how to recover a PF type model expression. The key consideration here is the separation

of timescales of the model. We consider the mode approximation of the density, which

has the form

n = n0(�r) +
∑
�G

η �Ge
i �G·�r + c.c. (B.1)

where n0(�r) is the average density, and the η �G are the amplitudes of the oscillations in

density. In addition for the alloy we have concentration field, c(�r). These amplitudes and

the average fields in density and concentration are all slow-varying in terms of atomic

timescales. The goal of the amplitude expansion procedure that follows is effectively to

coarse-grain this model such that only these slow variables remain; that is, the oscillating

exponential factors themselves will no longer remain. To lowest order this amounts to

retaining the terms in which the oscillatory exponential factors go to zero.

Formally, this is done by making use of a volume-averaging function which is normalized

such that

∫
d�r′XV (�r − �r′) = 1 (B.2)

and which acts on a function f(�r) to be coarse-grained as

74
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〈f(�r)〉V ≡
∫

d�r′f(�r′)XV (�r − �r′) (B.3)

The Fourier transform of this function can be written as

XV (�r − �r′) =
∫

d�kX̂V (|�k|)ei�k·(�r−�r′) (B.4)

We present the formal derivation, using a generic mode approximation, below.

Consider first the ideal terms. We begin by substituting in the mode approximation.

Using the n2 term to demonstrate:

∫
d�rn(�r)2 =

∫
d�r

∑
j,l

ηj(�r)ηl(�r)e
i( �Gj+ �Gl)·�r)

+

∫
d�r

∑
j,l

ηj(�r)η
†
l (�r)e

i( �Gj− �Gl)·�r)

+

∫
d�r

∑
j,l

η†j(�r)ηl(�r)e
i( �Gl− �Gj)·�r)

+

∫
d�r

∑
j,l

η†j(�r)η
†
l (�r)e

−i( �Gj+ �Gl)·�r) (B.5)

We can make use of Eq. B.2 to multiply all terms by one.

∑
j,l

∫
d�r

∫
d�r′XV (�r − �r′)ηj(�r)ηl(�r)ei(

�Gj+ �Gl)·�r)

+
∑
j,l

∫
d�r

∫
d�r′XV (�r − �r′)ηj(�r)η

†
l (�r)e

i( �Gj− �Gl)·�r)

+
∑
j,l

∫
d�r

∫
d�r′XV (�r − �r′)η†j(�r)ηl(�r)e

i( �Gl− �Gj)·�r)

+
∑
j,l

∫
d�r

∫
d�r′XV (�r − �r′)η†j(�r)η

†
l (�r)e

−i( �Gj+ �Gl)·�r)

(B.6)

Taking, for example, the first term, the limiting procedure is applied by switching the

order of integration:
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∫
d�r′

∫
d�rXV (�r − �r′)ηj(�r)ηl(�r)ei(

�Gj+ �Gl)·�r (B.7)

We now make use of the assumption that the amplitudes ηj are slow-varying compared

to the volume-averaging scale to justify taking a Taylor expansion of the amplitudes

around �r′ = �r (to second order). Inserting the expansion into Eq B.7 gives

∫
d�r′

∫
d�rXV

(
ηj(�r) + (�r − �r′)1∂�r′1

ηj(�r) +
1

2
(�r − �r′)2(�r − �r′)1∂�r′2

∂�r′1
ηj(�r)

)
(
ηl(�r) + (�r − �r′)1∂�r′1

ηl(�r) +
1

2
(�r − �r′)2(�r − �r′)1∂�r′2

∂�r′1
ηl(�r)

)
ei(

�Gj+ �Gl)·�r (B.8)

Expanding out this expression and pulling the �r′ terms out of the �r integral, we get

integrals in �r of the from zeroth to fourth order with the forms:

∫
d�rXV e

i( �Gj+ �Gl)·�r (B.9)∫
d�rXV (�r − �r′)1ei(

�Gj+ �Gl)·�r (B.10)∫
d�rXV (�r − �r′)2(�r − �r′)1ei(

�Gj+ �Gl)·�r (B.11)∫
d�rXV (�r − �r′)2(�r − �r′)1(�r − �r′)1ei(

�Gj+ �Gl)·�r (B.12)∫
d�rXV (�r − �r′)2(�r − �r′)1(�r − �r′)2(�r − �r′)1ei(

�Gj+ �Gl)·�r (B.13)

Eq. B.9 can be simplified by substituting in the Fourier transform of the volume aver-

aging function as follows.

∫
d�rXV e

i( �Gj+ �Gl)·�r =
∫

d�r

∫
d�kX̂V (|�k|)ei�k·(�r−�r′)ei(

�Gj+ �Gl)·�r

=

∫
d�kX̂V (|�k|)e−i�k·�r′δ(�k + �Gj + �Gl)

= X̂V (| �Gj + �Gl|)ei( �Gj+ �Gl)·�r′ (B.14)
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For the remaining expressions, we also perform repeated partial integrations to get rid

of the (�r − �r′) terms.

∫
d�rXV (�r − �r′)1ei(

�Gj+ �Gl)·�r =
∫

d�r

∫
d�kX̂V (|�k|)ei�k·(�r−�r′)(�r − �r′)1ei(

�Gj+ �Gl)·�r

=

∫
d�r

∫
d�kX̂V (|�k|)

(
−i∂�k1e

i�k·(�r−�r′)
)
ei(

�Gj+ �Gl)·�r

= i
(
∂�k1X̂V (| �Gl + �Gj|)

)
ei(

�Gl+ �Gj)·�r′ (B.15)

∫
d�rXV (�r − �r′)2(�r − �r′)1ei(

�Gj+ �Gl)·�r =
∫

d�r

∫
d�kX̂V (|�k|)

(
i2∂�k2∂�k1e

i�k·(�r−�r′)
)
ei(

�Gj+ �Gl)·�r

= −i2
(
∂�k1∂

�k2X̂V (| �Gl + �Gj|)
)
ei(

�Gl+ �Gj)·�r′ (B.16)

∫
d�rXV (�r − �r′)(�r − �r′)2(�r − �r′)1(�r − �r′)1ei(

�Gj+ �Gl)·�r

=

∫
d�r

∫
d�kX̂V (|�k|)

(
−i3∂�k3∂�k2∂

�k1e
i�k·(�r−�r′)

)
ei(

�Gl+ �Gj)·�r′

= i3
(
∂�k1∂�k2∂�k3X̂V (| �Gl + �Gj|)

)
ei(

�Gl+ �Gj)·�r′ (B.17)

∫
d�rXV (�r − �r′)(�r − �r′)2(�r − �r′)1(�r − �r′)2(�r − �r′)1ei(

�Gj+ �Gl)·�r

=

∫
d�r

∫
d�kX̂V (|�k|)

(
i4∂�k1∂�k2∂�k3∂�k4e

i�k·(�r−�r′)
)
ei(

�Gl+ �Gj)·�r

= −i4
(
∂�k1∂�k2∂�k3∂�k4X̂V (| �Gl + �Gj|)

)
ei(

�Gl+ �Gj)·�r′ (B.18)

Inserting each of these expressions back into the integral over �r′, we can now apply

the volume averaging function to the exponential terms of the form ei(
�Gl+ �Gj)·�r′ . These

terms represent oscillatory functions on the scale of the lattice spacing a of the crystal

structure, while the limiting factor of the averaging function restricts us to length scales

significantly greater than a. Thus any surviving exponential terms will go to zero.
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The only terms that will survive are those at resonance, that is, with ei(± �Gl± �Gj)·�r′ such

that (± �Gl± �Gj) equals zero. With only two �G vectors this amounts to the case (�Gl− �Gj)

where j = l. Thus for the n2 term we are left with

∑
j

[∫
d�r

∫
d�r′XV (�r − �r′)ηj(�r)η

†
j(�r) +

∫
d�r

∫
d�r′XV (�r − �r′)η†j(�r)ηj(�r)

]
(B.19)

where we make use of Eq B.2 to write the final contribution to the coarse-grained

expression from the n2 term:

2
∑
j

∫
d�r|ηj(�r)|2 (B.20)

The same procedure is applied to the n3 and n4 terms. We can take a shortcut by

simply determining which combinations of vectors �Gj will give resonance for each order,

and retaining the corresponding combinations of amplitudes.

For the square-triangle binary alloy with mode approximation

n(�r) = n0 +
2∑
j

Aje
i�kj ·�r +

2∑
l

Ble
i�ql·�r +

3∑
m

Cme
i �Qm·�r + c.c. (B.21)

where the Aj correspond to the (1, 0) square vectors, the Bl to the (1, 1) square vectors,

and the Cm to the (1, 0) triangle vectors, the surviving 3 and 4 vector combinations are:

�Q1 + �Q2 + �Q3 (and c.c.)

�q1 − �k1 − �k2 (and c.c.)

�q2 − �k1 + �k2 (and c.c.)

−�k1 − �k1 + �q1 − �q2 (and c.c.)

−�k2 − �k2 + �q1 + �q2 (and c.c.) (B.22)

and so the final coarse-grained expression resulting from the ideal terms is
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Fid(cg) =

∫
d�r

(
1− ηn0 + χn2

0

) (
A2

1 + A2
2 +B2

1 +B2
2 + C2

1 + C2
2 + C2

3

)
+
1

2
n2
0 −

η

6
n3
0 +

χ

12
n4
0 + ω(n0 + 1)ΔFmix(c)

+ (4χn0 − 2η) (A1A2B1 + A1A2B2 + C1C2C3)

+
χ

2

(
A4

1 + A4
2 +B4

1 +B4
2 + C4

1 + C4
2 + C4

3

)
+2χA2

1 (B1B2 + C2C3) + 2χA2
1

(
A2

2 +B2
1 +B2

2 + C2
1 + C2

2 + C2
3

)
+2χA2

1B1B2 + 2χA2
2

(
B2

1 +B2
2 + C2

1 + C2
2 + C2

3

)
+2χB2

1

(
B2

2 + C2
1 + C2

2 + C2
3

)
+ 2χB2

2

(
C2

1 + C2
2 + C2

3

)
+2χC2

1

(
C2

2 + C2
3

)
+ 2χC2

2C
2
3 + 4χB1B2BC2C3 (B.23)

We now proceed with the coarse graining of the excess term of Eq 2.31. There is no coarse

graining required for the purely concentration term α|∇c|2 and so we are only concerned

with the correlation function term. For now we write the interpolated correlation function

as X1(c)C
AA
2 +X2(c)C

(
2BB) = Ceff

2 (|�r − �r′|). Note that

Ceff
2 (|�r − �r′|) =

∫
d�kĈ2(|�k|)ei�k·(�r−�r′) (B.24)

Substituting the Fourier transform into the excess term we get

−
∫

1

2
d�rn(�r)

∫
d�r′

∫
d�kĈ2(|�k|)ei�k·(�r−�r′)n(�r′) (B.25)

As previously, we substitute in the full mode expansion (Eq B.21) for n(�r′) into Eq B.25

and Taylor expand the amplitudes around �r = �r′. For clarity we neglect to put in the

mode expansion for the leading n(�r) for the time being.

− 1

2

∫
d�rn(�r)

∫
d�r′

∫
d�kĈ2(|�k|)

∑
j

{ηj(�r) + (�r′ − �r)1∂�r1ηj(�r)

+
1

2
(�r′ − �r)2(�r′ − �r)1∂�r2∂�r1ηj(�r)}ei �Gj ·�rei

�k·(�r−�r′)

− 1

2

∫
d�rn(�r)

∫
d�r′

∫
d�kĈ2

∑
j

{η†j(�r) + (�r′ − �r)1∂�r1η
†
j(�r)

+
1

2
(�r′ − �r)2(�r′ − �r)1∂�r2∂�r1η

†
j(�r)}e−i �Gj ·�rei

�k·(�r−�r′) (B.26)
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We can now insert the volume averaging function Eq B.2 as before; we obtain zeroth,

first and second order integrals of the forms in Eq B.9 - B.11. As previously for the

first and second order forms, we perform partial integration (repeated as necessary) to

eliminate the (�r − �r′) terms. After evaluating the integrals we get the following forms.

For zeroth order:

− 1

2

∫
d�rn(�r)

∑
j

Ĉ2(| �Gj|)ηj(�r)ei �Gj ·�r (B.27)

For first order:

− 1

2

∫
d�rn(�r)

∑
j

(−i)∂�k1Ĉ2(| �Gj|)∂�r1ηj(�r)ei �Gj ·�r (B.28)

And for second order:

− 1

2

∫
d�rn(�r)

∑
j

i2

2
∂�k2∂�k1Ĉ2(| �Gj|)∂�r2∂�r1ηj(�r)ei �Gj ·�r (B.29)

Now we can insert the mode expansion for the n(�r) term. Rather than explicitly writing

out all possible combinations, we simply recall the resonance condition described previ-

ously. The highest order terms in amplitude that we acquire are only second order, and

so we just have to be concerned with the case where j = l. The surviving terms are then

∑
j

∫
d�rĈ2(| �Gj|)ηjη†j − i∂�k1Ĉ2(| �Gj|)ηj∂�r1η†j +

i2

2
∂�k2∂�k1Ĉ2(| �Gj|)ηj∂�r2∂�r1η†j

+ Ĉ2(| �Gj|)η†jηj − i∂�k1Ĉ2(| �Gj|)η†j∂�r1ηj +
i2

2
∂�k2∂�k1Ĉ2(| �Gj|)η†j∂�r2∂�r1ηj (B.30)

Recall that the XPFC model constructs the terms of the correlation functions as Gaus-

sians around the reciprocal space lattice vectors; as such the first derivative of Ĉ2(| �Gj|)
must be zero. We are left with
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∑
j

∫
d�rĈ2(| �Gj|)ηjη†j +

i2

2
∂�k2∂�k1Ĉ2(| �Gj|)ηj∂�r2∂�r1η†j

+ Ĉ2(| �Gj|)η†jηj +
i2

2
∂�k2∂�k1Ĉ2(| �Gj|)η†j∂�r2∂�r1ηj (B.31)

We can also eliminate the terms of the form ηj∂�r2∂�r1η
†
j by integrating by parts to obtain:

∫
d�r

(
ηj∂�r2∂�r1η

†
j + η†j∂�r2∂�r1ηj

)
= 2

∫
d�r

(
∂�rη

†
j∂�rηj

)
= 2

∫
d�r|∇ηj|2 (B.32)

We now calculate the second derivative of the effective correlation function Ĉeff
2 :

∂�k1∂�k2Ĉ
eff
2 = ∂�k1∂�k2

(
X1(c)Ĉ

AA
2 +X2(c)Ĉ

BB
2

)
= ∂�k1

(
X1(c)Ĉ ′

AA

2 +X2(c)Ĉ ′
BB

2

) �k

|�k|
=

(
X1(c)Ĉ ′′

AA

2 +X2(c)Ĉ ′′
BB

2

) �k2

|�k|2 (B.33)

where the derivatives are evaluated at �k = �Gj.

The final expression is now

Fex(cg) =
∑
j

∫
d�r(−1)|ηj|2

(
X1(c)Ĉ

AA
2 (| �Gj|) +X2(c)Ĉ

BB
2 (| �Gj|)

)

− 1

| �Gj|2
(
X1(c)Ĉ ′′

AA

2 (| �Gj|) +X2(c)Ĉ ′′
BB

2 (| �Gj|)
)
|
(
i �Gj · ∇

)
ηj|2 (B.34)

Thus our total coarse grained, amplitude model expression, obtained via a binary alloy

XPFC model, is:
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Fcg =

∫
d�r

(
1− ηn0 + χn2

0

) (
A2

1 + A2
2 +B2

1 +B2
2 + C2

1 + C2
2 + C2

3

)
+
1

2
n2
0 −

η

6
n3
0 +

χ

12
n4
0 + ω(n0 + 1)ΔFmix(c) + α|∇c|2

+(4χn0 − 2η) (A1A2B1 + A1A2B2 + C1C2C3)

+
χ

2

(
A4

1 + A4
2 +B4

1 +B4
2 + C4

1 + C4
2 + C4

3

)
+2χA2

1 (B1B2 + C2C3) + 2χA2
1

(
A2

2 +B2
1 +B2

2 + C2
1 + C2

2 + C2
3

)
+2χA2

1B1B2 + 2χA2
2

(
B2

1 +B2
2 + C2

1 + C2
2 + C2

3

)
+2χB2

1

(
B2

2 + C2
1 + C2

2 + C2
3

)
+ 2χB2

2

(
C2

1 + C2
2 + C2

3

)
+2χC2

1

(
C2

2 + C2
3

)
+ 2χC2

2C
2
3 + 4χB1B2BC2C3

−2(A2
1 + A2

2)
(
X1(c)Ĉ

AA
2 (|�kA

10|) +X2(c)Ĉ
BB
2 (|�kA

10|)
)

−2(B2
1 +B2

2)
(
X1(c)Ĉ

AA
2 (|�kA

11|) +X2(c)Ĉ
BB
2 (|�kA

11|)
)

−2(C2
1 + C2

2 + C2
3)

(
X1(c)Ĉ

AA
2 (|�kB

10|) +X2(c)Ĉ
BB
2 (|�kB

10|)
)

− 1

|�kA
10|2

(
X1(c)Ĉ ′′

AA

2 (|�kA
10|) +X2(c)Ĉ ′′

BB

2 (|�kA
10|)

) [
|
(
i�kA

10 · ∇
)
A1|2 +

(
i�kA

10 · ∇
)
A2|2

]

− 1

|�kA
11|2

(
X1(c)Ĉ ′′

AA

2 (|�kA
11|) +X2(c)Ĉ ′′

BB

2 (|�kA
11|)

) [
|
(
i�kA

11 · ∇
)
B1|2 +

(
i�kA

11 · ∇
)
B2|2

]

− 1

|�kB
10|2

(
X1(c)Ĉ ′′

AA

2 (|�kB
10|) +X2(c)Ĉ ′′

BB

2 (|�kB
10|)

)
[
|
(
i�kB

10 · ∇
)
C1|2 +

(
i�kB

10 · ∇
)
C2|2 +

(
i�kB

10 · ∇
)
C3|2

]
(B.35)
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