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ABSTRACT

Steady-state simulation is a crucial step in the design of Radio Frequency (RF)

circuits. The most popular steady-state simulation methods include Harmonic Bal-

ance (HB) in the frequency domain and Shooting methods in the time domain. Both

of these methods have their drawbacks; while HB can be computationally expensive

due to the large number of unknowns that are required to be found, Shooting methods

suffer computationally due to the necessity of computing the sensitivity matrix. This

work focuses on alleviating the computational costs of Shooting methods. A high

order Shooting-Newton method for steady-state simulation of Radio Frequency (RF)

circuits is presented. The method is based on high order A- and L-stable Obreshkov

formula (ObF). The proposed Shooting method can have arbitrarily high-order with-

out losing the stability property. The high-order methods allow using bigger step

sizes in numerical integration; the stability property guarantees that the accuracy

of the numerical solution is not compromised. Consequently, the presented method

allows for a considerable improvement in CPU cost when compared to the Backward

Euler based approach. Speedups of more than 8 are reported.
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ABRÉGÉ

La simulation en régime permanent est une étape cruciale de la conception de

circuits à radio-fréquences. Parmi les méthodes couramment utilisées pour la sim-

ulation en régime permanent, on retrouve notamment la méthode d’équilibre har-

monique dans le domaine fréquentiel et les méthodes de shooting dans le domaine

temporel. Chacune de ces méthodes comporte des lacunes. La méthode d’équilibre

harmonique peut demander une forte puissance de calcul à cause du grand nombre

d’inconnus dans le système, tandis que les méthodes de shooting sont également com-

plexes dû à la nécessité de calculer la matrice de sensitivité. Ce mémoire porte sur

la réduction du coût de calcul des méthodes de shooting, et présente une méthode

Shooting-Newton d’ordre supérieur pour la simulation en régime permanent de cir-

cuits radio-fréquences. La méthode proposée est fondée sur des formules ”A-stable”

et ”L-stable” d’Obreshkov d’ordre supérieur. L’ordre de la méthode de shooting peut

être arbitrairement grand sans perte de stabilité. Le recours à des méthodes d’ordre

supérieur permet d’utiliser des pas plus grands lors de l’intégration numérique, et

la stabilité de la méthode garantie la précision de la solution. Conséquemment, la

méthode proposée permet une amélioration considérable du coût de calcul par rap-

port aux approches fondées sur la méthode d’Euler implicite. Les résultats présentés

démontrent une amélioration du temps de calcul de plus de 8 fois.
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CHAPTER 1
Introduction

1.1 Background and Motivation

To characterize a radio frequency (RF) circuit properties like distortion, power,

frequency, noise, gain and impedance need to be measured. These properties are

usually characterized at steady-state solution [1]. Hence, non-linear steady-state

analysis is a crucially important step in the design process of RF circuits. Methods

to perform the non-linear steady-state analysis exist in both the frequency domain

and the time-domain.

Harmonic Balance (HB) is perhaps the most widely used frequency-domain

steady-state simulation method. It was first first implemented by Baily [2] around

1968, which was then followed by several works on new methods to solve HB [3, 4].

In HB each of the state state variables is represented using a Fourier Series, whose

coefficients are adjusted using an optimization algorithm such that the equations de-

scribing the system are satisfied with the least error. The major advantage in HB is

that it avoids performing the computationally expensive numerical integration of the

system equations. However, its main disadvantage is that the number of variables

that need to be solved for is large. For instance, a system that has N state variables

and each state variable requires 2M + 1 Fourier coefficients, then this means that

there are N(2M +1) variables to be solved for. This makes HB especially expensive

and perhaps impractical of large systems.
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In time-domain methods, finding the steady state solution can be done in several

ways. The steady-state solution is defined as the solution that is asymptotically

approached by the system after the effect of the initial conditions has died out.

Hence, a rather straightforward way to obtain the steady-state solution is to perform

a transient analysis long enough until the system reaches its steady-state. This

method for finding the steady-state solution is far from ideal. While it could work

well for circuits whose transients decay fast, it presents a lot of challenges for systems

where the transients die out slowly, which means the numerical integration has to be

done over a larger time interval resulting in expensive time and computational costs.

Therefore, time-domain numerical methods were developed specifically to tackle this

problem. The Shooting methods [5] are the most popular of these methods.

The main disadvantage in Shooting methods is due to computing the sensitivity

matrix, which necessitates several numerical integrations over one period. Finding

the steady-state response of a circuit can be formulated as a boundary-value prob-

lem (BVP). Shooting methods solve such BVPs by finding the initial conditions for

a system of differential equations such that the solution after one period is equal to

the initial conditions, i.e. x(0) = x(T ). This is done by solving the system’s differen-

tial equations for one period starting from some consistent set of initial conditions,

like the DC solution. Then, after one period, the initial conditions are iteratively

updated using a Newton iteration step. This combination is usually referred to as

Shooting-Newton algorithms, and they are an iterative layering on top of a transient

analysis [6]. Therefore, as is the case with time-domain transient methods, the ac-

curacy and efficiency of the Shooting methods are limited by the stability and the
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order of the integration method being used [7]. This is especially problematic in RF

circuits where the presence of widely separated tones at the output will force the

use of a very small time step size compared to the period of the system, and hence

will render finding the steady-state solution computationally expensive. The work in

this thesis focuses on mitigating the computational costs of time-domain steady-state

analysis using Shooting methods.

1.2 Thesis Contribution and Organization

In this thesis we present a high-order Shooting-Newton method based on high-

order stable integration methods. The presented method takes advantage of the

high-order to allow fast and accurate simulations. Since stability is not breached at

the higher orders, larger step sizes can be used without compromising the accuracy

of the method. The presented algorithm is based on the recently developed A- and

L-stable modified Obreshkov Formula (ObF) which allows integration methods with

arbitrarily high order [8, 9, 10].

This thesis is organized into seven chapters. Following this chapter, chapter 2

presents a review of fundamental theoretical concepts that will be referred to through-

out the thesis. Chapter 3 presents a review of various integration methods for solving

differential equations. Chapter 4 gives a summary of some practical considerations

to aid the implementation of the Obreshkov-based integration methods. Chapter 5

outlines the derivation of the high-order Shooting methods. In chapter 6, numerical

examples are presented to verify the performance of the high-order integration meth-

ods for both transient and steady-state analyses. Finally, chapter 7 gives a summary

of the contributions of this work.
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CHAPTER 2
Theoretical Framework

This chapter serves as a presentation of important theoretical concepts that will

be revisited throughout this work and that will be essential to present the algorithm

proposed in this thesis. Time-domain simulation can be mathematically represented

as an initial value problem in the case of transient analysis, or as a boundary value

problem in the case of steady-state analysis. Therefore, this chapter begins with

a general definition of these problems in sections 2.1 and 2.2. In the later two

sections of this chapter the concepts of the order of an integration method and the

stability of an integration methods are introduced. The order of the integration

method determines how closely an integration method, given a certain time step at

a certain iteration, can estimate the true solution of the problem at the next time

step. In general, the higher the order of the method the better it is at estimating

the solution. The concept is important in the context of circuit simulation because

it offers a way to study the errors introduced by the numerical integration process.

Finally, this chapter introduces the concept of stability of the integration method

which is a required property in order to obtain an accurate solution. The method of

characterizing the stability property of an integration method is presented and the

different types of stability are discussed.
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In general, problems involving numerical integration aim to solve a set of ordi-

nary differential equations (ODEs). When performing an integration the result will

have unknown integration constants.

Consider the following system of equations,

y′ = z

z′ = −y. (2.1)

The solution of the system is as follows,

y = A sin(t + α)

z = A cos(t+ α). (2.2)

Notice that the solution has two unknown integration constants (A and α). A

solution in this form is often referred to as the general solution of the system which

describes a family of functions parametrized by the integration constants. To be

able to arrive at a specific solution, the problem needs to be defined further by

including constraints or conditions on the dependent variables (y and z in this case)

at specific values of the independent variable t. If these conditions are given at the

initial time t0 then the problem being solved is called an initial value problem (IVP).

However, if the conditions on the dependent variables are given at different instances

of the independent variables then the problem is called a boundary value problem

(BVP) [11]. Hence, for an IVP the integration starts at the initial point with all the

solution information and marches with it in time, such a process is called local. On

the other hand, for BVPs the the solution information is not locally known anywhere
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and thus the process of constructing a solution is global in time [12]. Consequently,

finding solutions for BVPs presents more difficulties when compared to IVPs, some

of these difficulties will be highlighted later in section 2.2 when the topic of BVPs is

revisited.

2.1 The Initial Value Problem

The initial value problem is often represented by the following equation

ẋ = f (x(t), t), 0 ≤ t ≤ b (2.3)

with x(0) = x0. It is enough to require f(x, t) to be sufficiently smooth to assure

that equation (2.3) has a unique solution. Specifically, let f (x, t) be continuous in a

region D = {0 ≤ t ≤ b, |x| < ∞} and Lipschitz continuous in x, i.e., there exists a

constant L such that for all (t,x) and (t, x̂) in D,

|f(x, t)− f (x̂, t)| ≤ L|x− x̂|. (2.4)

Then

1. For any x0 there exists a unique solution x(t) for the IVP (2.3) for t ∈ [0, b].

This solution is differentiable.

2. The solution x depends continuously on the initial data: if x̂ also satisfies the

ODE but not the same initial values then

|x(t)− x̂(t)| ≤ eLt|x0 − x̂0|. (2.5)

3. If x̂ satisfies, more generally, a perturbed ODE

˙̂x = f (x̂, t) + r(x̂, t)

6



where r is bounded on D, ||r|| < M , then

|x(t)− x̂(t)| ≤ eLt|x0 − x̂0|+
M

L
(eLt − 1). (2.6)

Consequently, a unique solution exists for t ∈ [0, b] that continuously depends on

the initial conditions, hence the problem subject to the conditions outlined above is

well-posed [12].

2.2 The Boundary Value Problem

As mentioned earlier, BVPs arise when the goal is to find a solution for a system

of ODEs that is required to satisfy subsidiary conditions at two or more distinct

instants of time. For instance, finding the solution of the equation

ẋ = f(x(t), t), (2.7)

over an interval [0, T ] is a two-point boundary problem if the solution is required to

satisfy

g(x(0),x(T )) = 0. (2.8)

Boundary problems are of interest in circuit simulation because the problem of find-

ing a steady-state solution whether it is periodic or quasi-periodic can be formulated

as a boundary problem.

While the theory for existence and uniqueness of a solution to an IVP is well

defined as described in section (2.1), the theory for existence and uniqueness of a

solution for a BVP is more complicated and less thoroughly developed, sometimes it

is not even possible to find a solution for a BVP. For example consider the following
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system,

ẋ = x(t) (2.9)

with boundary constraint

x(T )− x0 e
t = 1. (2.10)

The solution of equation (2.9) is given by

x(t) = x0 e
t. (2.11)

Therefore, by substituting the solution in equation (2.11) at time t = T into the

constraint (2.10), it can be seen that the solution doesn’t satisfy the boundary con-

straint. Hence this BVP has no solution .

Even though there is no general theory regarding the existence and uniqueness

of a solution for a BVP, there are robust theorems developed to deal with individual

problems. In the context of steady-state circuit simulation the solution is usually

linearly constrained at two points. This allows for reducing the solution of the BVP

to that of an initial value problem. Consider the system of N first order differential

equations

ẋ = f (x(t), t), (2.12a)

subject to the most general linear two-point boundary conditions

Ax(0) +Bx(T ) = c , (2.12b)

8



where x(t) ∈ R
N , f : RN+1 → R

N , A, B ∈ R
N×N , and c ∈ R

N .

The solution of the BVP presented in (2.12) reduces to the solution of the initial

value problem

ẋ = f (x(t), t), (2.13a)

x(0) = x0 , (2.13b)

where x0 is chosen to satisfy the implicit nonlinear equation

Ax0 +Bφ(x0, 0, T )− c = 0 , (2.14)

and φ(x0, t0, t) is the state transition function, which is the solution of the initial

value problem (2.13) at time t starting from state x0 at time t0. Hence, if x0 is the

root of (2.14), then x(t) = φ(x0, 0, t) is the solution of the BVP (2.12) [1]. This

result is best summarized in the following theorem.

Theorem 2.1 Let the function f (x(t), t) be continuous in t over the interval [0, T]

for all x and Lipschitz continuous in x, uniformly in t. Then the boundary value

problem (2.12) has as many solutions there are distinct roots x
(j)
0 of equation (2.14).

These solutions are

x(j)(t) = φ(x
(j)
0 , 0, t),

the solutions of the initial value problem (2.13) with initial state x(0) = x
(j)
0 [13], [1].

2.3 Order and Local Error of Integration Methods

Solving an ODE using numerical integration methods basically provides an ap-

proximation to the exact solution. The approximation arises due to the presence of
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inherent errors in the numerical integration process such as truncation errors and

round-off errors. The truncation error basically is the difference between the exact

solution and the approximated one, it arises from the fact that the exact solution of

the differential equation is not known and the approximated solution is reached by

solving a different problem dictated by the integration method used. The round-off

errors arise from the fact that the numbers cannot be expressed exactly, instead they

are expressed in finite precision [11]. Consequently, characterizing the error and its

accumulation during the numerical integration process has been a major concern in

the study of numerical integration methods as it indicates a measure of the accuracy

of the numerical method used [8].

A method is said to be of order p if

xn = x(tn) + Chp+1
n

dp+1

dtp+1
x(t)

∣∣∣
t=tn

+O(hp+2
n ), (2.15)

where xn is the approximation of the exact solution x(t) generated by the integration

method at time t = tn, and hn = tn − tn−1 is the time step. C is the error constant

which is a characteristic of the integration method used. The local truncation error

(LTE) of the integration method is thus given by the (p+1th) term in equation (2.15),

hence,

dn = Chp+1
n

dp+1

dtp+1
x(t)

∣∣∣
t=tn

. (2.16)

The LTE as defined in (2.16) is an approximation of the error that the difference

method is introducing as the solution evolves a single step forward assuming perfect

knowledge of the exact solution in the previous step. Therefore, another measure

10



of the error is devised which is defined as the difference between the exact solution

x(tn) and the approximated solution xn at each time step [8]. This measure is called

the local error and is given by,

ln = x(tn)− xn. (2.17)

It is shown in [12] that for the numerical integration methods considered in this

work that LTE is related to the local error by,

|dn| = |ln|(1 +O(hn)). (2.18)

Hence the LTE given in (2.16) is asymptotically the same as the local error defined

in (2.17).

2.4 Stability

In general the stability of a numerical method is an indication of its accuracy; a

method is said to be stable if small changes in initial values result in bounded changes

in the numerical approximations provided by the method. The stability of a numer-

ical method is usually determined by characterizing its behavior in approximating

the solution of the scalar test problem [11],

ẋ = λx, (2.19)

x(0) = x0,

where λ is a constant complex number representing the eigen value of the system’s

matrix and �e(λ) < 0. The solution of the scalar test problem is

x(tn) = x0e
λtn . (2.20)
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The solution is exponentially decaying for �e(λ) < 0, hence it is expected that the

sequence of approximations of the solution (2.20) provided by the numerical method

to satisfy,

|xn| ≤ |xn−1|, n = 1, 2, 3, · · · (2.21)

which is known as the absolute stability requirement [8]. For a numerical method

the region of absolute stability is defined as the region in the complex plane where

q = hλ in this region results in an approximation of the solution of the scalar test

problem (2.19) satisfying the absolute stability requirement (2.21). This means that

inorder to approximate the naturally stable system (2.19), h needs to be chosen

such that hλ lies in the region of absolute stability. Figure 2–1 shows the absolute

stability region of the forward Euler method.

12
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Figure 2–1: Stability region for forward Euler method

2.4.1 A-stability of Integration Methods

Ideally, the step size h requirements should be dictated by approximation accu-

racy not by the stability region. An integration method is said to be A−-stable if its

region of absolute stability contains the entire left plane of the complex plane. Hence,

an integration method is A-stable if it leads to a bounded solution for the scalar test

problem (2.19) for any step size h for all �e(λ) < 0. For example,the Backward

Euler and the trapezoidal rule are both A-stable integration since their regions of
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stability include the entire left half of the complex plane as shown in figures 2–2 and

2–3 below.
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Figure 2–2: Stability region for backward Euler method
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Figure 2–3: Stability region for trapezoidal rule

2.4.2 L-stability of Integration Methods

A main shortcoming of A-stable methods is that they are not suitable for solving

stiff systems. There is no general robust definition of a stiff system, however, a

system usually arises when the underlying physical system has components with

widely deferring time constants [14]. This could lead to a highly oscillatory transient

component in the solution of the system, which forces the adoption of excessively

small step size to obtain accurate approximations even though the method is A-

stable.
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Consequently, the concept of L-stability was developed. A method is said to be

L-stable if it is A-stable and has stiff decay [11], [15], i.e. when it is applied to the

scalar test equation (2.19) the following condition is satisfied,

as �e(hλ) → −∞, then
xn+1

xn

→ 0. (2.22)

L-stable methods would cause cause rapidly decaying components to decay rapidly

in the numerical approximation as well, hence it would not be necessary to use an

excessively small step size [11].

2.4.3 A(α)-stability of Integration Methods

Constructing A-stable or L-stable methods with high order is a difficult en-

deavor, hence depending on the problem at hand it is possible to relax the stability

requirement. This leads to the rise of A(α)-stable methods which are stable over

a limited area of the left half side of the (hλ)-complex plane. A method is called

A(α)-stable if its region of absolute stability contains all hλ such that,

�e(hλ) ≤ 0 and − tan (α) |�e(hλ)| ≤ �m(hλ) ≤ tan (α) |�e(hλ)|

where α ∈ [0, π] [16]. Notice that for α = π/2, A(π/2)-stability results in the

definition of A-stability but for all other α ∈ [0, π] the stability requirements are

relaxed.

16



CHAPTER 3
Review of Integration Methods

This chapter provides a review of most common integration methods as well

as recently developed methods that are related to the work presented in this the-

sis, namely the stable high-order Obreshkov-based integration method. The chapter

highlights the characteristics of these methods and their limitations, and hence clar-

ifies the choice of using the Obreshkov-based integration method for steady state

simulation as proposed later.

3.1 Linear Multistep Methods

A linear mulistep method (LMS) uses the the values and the derivatives at the

previous k steps to advance to the next step at tn+k, it is hence also referred to as

a k-step linear method. The general form of a k-step linear method is given by the

following formula,

k∑
i=0

αixn+k−i = h

k∑
i=0

βix
(1)
n+k−i, (3.1)

where x
(1)
n is the approximation of

d

dt
x(t) at t = tn, the coefficients αi and βi are

specific to the integration method [8], [14].

In order to derive a k-step LMS method with order p the coefficients αi and βi

(i = 0, 1 · · · , k) have to be chosen such that the first p + 1 Taylor series coefficients
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of the following operator

L(x(t)) =

k∑
i=0

αix(tn+k−i)− h

k∑
i=0

βix
′(tn+k−i), (3.2)

vanish. An LMS is said to be explicit if approximating the solution xn+k at tn+k does

not require the knowledge of the derivative x
(1)
n+k, i.e. if β0 is set to 0. Otherwise, the

method is called implicit. The advantage of an explicit method is that the solution

at the next step xn+k at tn+k can be computed directly from the k previous points

and their derivatives. However, for an implicit method computing the solution at

the next step requires solving a system of nonlinear equations.

3.1.1 Stability of LMS methods

To analyze the stability of LMS method the scalar test problem (2.19) is con-

sidered. Hence, ẋ = λx is substituted into (3.1) to obtain

k∑
i=0

(αi − hλβi)xn+k−i = 0. (3.3)

It is shown in [8] that equation (3.3) simplifies to

ρ(z)− q σ(z) = 0, (3.4)

where, q = hλ, z = eq, ρ(z) =
∑k

i=0 αiz
k−i and σ(z) =

∑k

i=0 βiz
k−i. The polynomial

in (3.4) is of degree k in the variable z, hence it must have k roots call them zj

(j = 1, 2, · · · , k). It is also shown in [8] that to obtain a stable solution it is required

that,

|zj | ≤ 1. (3.5)
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Therefore, it is required that the roots of the polynomial (3.4) be on or inside

the unit circle in the z domain, this condition is referred to as the root condition.

Consequently, to find the region of absolute stability in the q-domain of an LMS

method the roots of polynomial (3.4) have to be found in terms of q. Thus, the

region of absolute stability would be all the values of q such that the roots zj remain

inside or on the unity circle in the z-domain. It should be noted that except for

simple cases computing the roots zj in terms of q could be very difficult. In such

cases some simplified stability properties could be studied like 0-stability (h → 0)

and A∞-stability (h → ∞).

3.1.2 The Dahlquist Barrier

In 1963, Dahlquist [7] was able to establish important properties regarding the

A-stability of LMS methods. He proved that an explicit k-step LMS method cannot

be A-stable. Moreover, he also proved that the highest possible order for an implicit

A-stable LMS method is 2, i.e. the trapezoidal rule is the highest order A-stable

LMS method. The Dalhquist barrier illustrates the trade-off between stability and

order.

3.1.3 Examples of LMS methods

Forward Euler (FE)

The Forward Euler method is a first order (p = 1) single step method (k = 1)

obtained by setting β0 = 0, hence it’s explicit. From equation (3.1) it is found that

the expression of FE is given by,

α0xn+1 + α1xn = hβ1x
′
n. (3.6)
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The coefficients α0, α1 and β1 are obtained as outlined in section 3.1 by satisfying

the condition set by equation (3.2) ( α0 = 1, α1 = −1 and β1 = 1). Hence the FE

difference formula is,

xn+1 = xn + hx′
n. (3.7)

By applying the scalar test equation x′ = λx to (3.7) we obtain,

xn+1 = (1 + hλ)xn. (3.8)

The absolute stability condition requires that |1 + q| ≤ 1 for �e(λ) < 0, where

q = hλ ∈ C. Let q = u + iv where u, v ∈ R, then the absolute stability condition

implies |1+ u+ iv| ≤ 1 → (1 + u)2 + v2 ≤ 1. Therefore, the absolute stability region

of FE is the unit circle in the q-plane centered at (-1,0) as shown in figure 2–1.

Backward Euler (BE)

BE is similar to FE in that it is a single-step first order method, however, BE is

an implicit method i.e. β0 	= 0. It is obtained from equation (3.1) by setting β1 = 0.

The coefficients of BE are found in the same way as described before for FE to obtain

the following formula,

xn+1 = xn + hx′
n+1. (3.9)

When the scalar test problem is applied to BE we find,

xn+1 =
1

(1− hλ)
xn. (3.10)
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Hence, the condition of absolute stability requires |1/(1 − q)| ≤ 1 for �e(λ) < 0.

Hence, |1/(1 − u − iv)| ≤ 1 → (1 − u)2 + v2 ≥ 1.Therefore, the absolute stability

region of BE is the unit circle in the q-plane centered at (1,0) as shown in figure 2–2.

Notice that we also have
xn+1

xn

=
1

1− q

∣∣
q→∞

→ 0 , hence the L-stability requirement

is satisfied which means BE is an L-stable method.

Trapezoidal rule (TR)

TR is a second order single step method which is given by,

xn+1 = xn +
h

2
(x′

n+1 + x′
n). (3.11)

TR is an implicit method, its region of stability is found by applying the scalar test

problem in a similar fashion as seen before. The region of stability of TR is the whole

left side of the complex q-plane as seen in figure 2–3, hence its an A-stable method.

Backward Difference Methods (BDF)

The BDF methods are obtained from equation (3.1) by setting β1 = β2 = · · · =

βk = 0 to get the following formula,

k∑
i=0

αixn+k−i = hβ0x
′
n+k. (3.12)

The BDF methods are k-step methods with order p = k. The BDF method of first

order reduces to the BE method and it is the only A- and L-stable BDF method.

BDF methods of higher orders are A(α)-stable up to 6th order, and they are very

well suited to handle stiff systems [11]. Figure 3–1 below shows the absolute stability

region for BDF methods upto order 6.
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Figure 3–1: Stability region for BDF methods (stability region is exterior to the
curves)

3.2 Single-step Multi-stage Methods

Single-step multi-stage methods don’t rely on the values of the solution and its

derivatives computed at the past points like LMS methods do. Instead, as their name
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suggests, they introduce extra calculations within a step to compute approximations

to the solution and its derivatives at several off-step points. One of the advantages

in these methods stems from the fact that they are single step, so they are trivial to

implement with a variable step size algorithm as opposed to LMS methods.

The most prominent methods in this category are the Runge-Kutta (RK) meth-

ods [14], [16]. An s-stage Runge-Kutta methods is given by the following equations,

Xi = xn−1 + h

s∑
j=0

aijf (tn−1 + cjh,Xj), 1 ≤ i ≤ s (3.13)

xn = xn−1 + h
s∑

i=1

bif (tn−1 + cjh,Xi). (3.14)

The stage values Xi’s are intermediate approximations to the solution at times

tn−1 + cih, these stage values are local to the step from tn−1 to tn and the only

approximation that the next step sees is xn. The coefficients of the method are

chosen such that the values of xn approaches x(tn). The Runge-Kutta methods can

be represented by a Butcher tableau [16] shown below,

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass

b1 b2 · · · bs
or in a more concise form,

c A

bT
.
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A ∈ R
s×s and b, c ∈ R

s where s is the number of stages. Unlike LMS methods, RK

methods have no theoretical barrier that limits the stability of higher order methods,

hence A-stable RK methods with arbitrarily high order are possible. The order of

the RK method is limited by the number of stages where q ≤ s. Still, the difficulty of

forming A-stable high order RK is due to the fact that it becomes extremely difficult

to form the appropriate Butcher tableau. Moreover, the performance of RK methods

can suffer in very stiff systems with moderate step sizes such as those encountered

in electronic circuit represented by a systems of differential algebraic equations. In

these cases, the effective order of the method falls well below the its nominal order

due to the fact that the stage order dominates the error. This has been the main

reason that no serious effort has been made to ubiquitously adopt RK methods in

circuit simulators and their use is limited for specific problems (such as overcoming

the difficulties of BDF in oscillatory problems) [9].

3.3 General Linear Methods

The general linear methods (GLMs) are the generalization of LMS and RK

methods. They were developed to circumvent the theoretical limitations of LMS

methods while also overcoming the computational complexities in RK methods [17].

Still, they require powerful optimization techniques to construct the method. The

general linear methods typically use r past points from previous time steps along with

s to approximate the solution at the next step. The output approximations from step

number n−1 that are available to to compute the next step n are denoted by x
[n−1]
i ,

where i = 1, 2, · · · , r, the stage values are given by Xi, where i = 1, 2, · · · , s and the

stage derivatives are given by Fi, where i = 1, 2, · · · , s. Then the computations of
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the stages and outputs from the next stage n are governed by the following formulae,

Xi =
s∑

j=1

aijhF j +
r∑

j=1

uijx
[n−1]
j , i = 1, 2, · · · , s, (3.15)

x
[n]
i =

s∑
j=1

bijhF j +

r∑
j=1

vijx
[n−1]
j i = 1, 2, · · · , r. (3.16)

where the coefficients aij, uij , bij and vij are the elements of the matrices A ∈ Rs×s,

U ∈ R
s×r, B ∈ R

r×s and V ∈ R
r×r respectively. This coefficients are specific to the

integration method. To simplify the notation the following vectors are defined,

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2

...

Xs

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F1

F2

...

Fs

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, x[n−1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x
[n−1]
1

x
[n−1]
2

...

x
[n−1]
r

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, and x[n] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x
[n]
1

x
[n]
2

...

x
[n]
r

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Therefore, equations (3.15) and (3.16) can be rewritten as,

⎡
⎢⎣X

x[n]

⎤
⎥⎦ =

⎡
⎢⎣A⊗ IN U ⊗ IN

B ⊗ IN V ⊗ IN

⎤
⎥⎦
⎡
⎢⎣ hF

x[n−1]

⎤
⎥⎦ . (3.17)

IN is the N × N identity matrix and ⊗ denotes the Kronecker product. The

stability properties of GLMs are studied by substituting the scalar test problem in

equation (3.17) where the stability matrix M(q) = V +qB(I−qA)−1U is obtained.

The stability function of GLMs is given by, Φ(z, q) = det (zI −M(q). A GLM is

A-stable if all the z-roots of Φ(z, q) lie inside the unit disk whenever �e(q) ≤ 0,

with only simple roots allowed on the unit circle [16]. In [18] it was proved that for

an A-stable GLM with order p the inequality p ≤ 2s holds. Moreover the methods
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attaining the highest order (p = 2s) will have an error constant whose lower limit is

given by,

C ≥ (−1)k
s!s!

(2s)!(2s+ 1)!
. (3.18)

3.4 Multi Derivative Methods : The Obreshkov Formula

All the methods presented so far had used information either from previous step

or stages or both to approximate the solution at the next step. In the 1940s Nikola

Obreshkov proposed that information from a third dimension can be used to predict

the solution at the next step, namely from using high order derivatives [19]. The

Obreshkov methods were left untried due to difficulties involved in handling the high

order derivatives [8], [9]. The generalized single step Obreshkov methods are defined

by,

k∑
i=0

αi,k(−1)ihix
(i)
n+1 =

k∑
i=0

αi,kh
ix(i)

n . (3.19)

The coefficients αi,k are computed by substituting xn+1 and xn in (3.19) by x(tn+1)

and x(tn) respectively then expanding the resulting equation using Taylor series

around the point t = tn, same powers of h are grouped to get,

αi,k =
(2k − i)!

(2k)!

(k)!

i!(k − i)!
. (3.20)

Obreshkov showed that the order of the method (3.19) is 2k i.e. xn+1 = x(tn+1) +

O(h2k). It was later noted that the coefficients (3.20) are those of the diagonal

(k, k)-Padé approximant to the exponential function [20]. Hence, by applying the
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Obreshkov formula to the scalar test problem (2.19) the following result is obtained

xn+1 = R(k,k)(q)xn. (3.21)

where q = hλ and R(k,k)(q) is the unique kth diagonal approximant to the exponen-

tial function. Hence, for the Obreshkov method to be A-stable it is required that

|R(k,k)(q)| ≤ 1 for �e(λ) < 0. It was shown by Birkhoff and Varga [21] that, in

fact, this condition is satisfied by all diagonal Padé approximants to the exponen-

tial function. Therefore the Obreshkov formula is A-stable. The Obreshkov method

is not L-stable since limλ→−∞ |R(k,k)(hλ)| = 1 instead of 0 as required according to

equation (2.22). Note that the Obreshkov based methods can be arbitrary high in

order with out losing the A-stability property.

3.4.1 The Modified Obreshkov Formula

Recently, Gad et al. presented a criterion to formulate an L-stable Obreshkov

method [8], [9]. They proved that it is possible to achieve L-stability by modifying

the Obreshkov formula in the following fashion,

k∑
i=0

αih
ix

(i)
n+1 =

l∑
i=0

βih
ix(i)

n . (3.22)

where αi and βi are the coefficients of the (l, k)-Padé approximant given by

αi = (−1)i
(l + k − i)!

(l + k)!

(k)!

i!(k − i)!
i = 0, · · · , k

βi =
(l + k − i)!

(l + k)!

(l)!

i!(k − i)!
i = 0, · · · , l.

It was shown in [9] that the modified Obreshkov method is A-stable if and only if l ∈

{k−2, k−1, k}, and that is is L-stable if and only if l ∈ {k−2, k−1}. Notice that for
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l = k the modified Obreshkov formula (3.22) reduces to the original formula (3.19),

thus the Obreshkov formula is a special case of the modified Obreshkov formula. The

order of the modified Obreshkov formula is k + l and error constant is given by,

Cl,k = (−1)k
l!k!

(l + k)!(l + k + 1)!
. (3.23)

Note that the error constant of the Obreshkov formula Ck,k is identical to the low-

est possible error constant achieved by a GLM or an RK method with k-implicit

stages (see equation (3.18)). Hence, the Obreshkov method obtains the most accu-

rate results than any existing single-step or multi-step methods with equal number

of unknowns [9]. In [9] and [8] the idea of generalized multi-step Obreshkov formu-

lae is explored as well. It was found that although A-stable and possibly L-stable

multi-step Obreshkov methods can be formulated, these methods wouldn’t provide

an advantage in terms of order achievable compared to the single step method. More-

over, it was proven that A-stable multi-step Obreshkov methods wouldn’t provide

any improvement in terms of accuracy over the single step Obreshkov method either,

since their minimum error constant is identical to that of the A-stable Obreshkov for-

mula i.e. Ck,k (for k = l). Figure 3–2 below shows the stability regions for Obreshkov

methods of orders 1, 3, 5 and 7, all these methods are L-stable.
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Figure 3–2: Absolute stability regions for different Obreshkov methods shaded in
green: (a) Obreshkov 1st order (BE), (b) Obreshkov 3rd order, (c) Obreshkov 5th

order, (d) Obreshkov 7th order.

3.4.2 Application to Circuits

The dynamics of a circuit are represented by the general modified nodal analysis

(MNA) equation as follows [22],

Gx(t) +Cẋ(t) + f (x(t)) = b(t), (3.24)
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where x(t) is an N × 1 vector of unknown nodal voltages and device currents, G

and C are N ×N matrices of memoryless elements (resistors) and memory elements

(capacitors, inductors) respectively, f (x(t)) is an N × 1 vector representing the

nonlinear elements in the circuit (diodes, transistors, ...) and finally b(t) is an N × 1

representing the forcing functions. To be able to solve the system of differential

equation (3.24) numerically it is discretized in time, where starting from a known

solution at time tn a step h is made to get to the solution at time tn+1. The discretized

system is represented as follows,

Gxn+1 +Cx
(1)
n+1 + fn+1 = bn+1, (3.25)

where xn+1 and x
(1)
n+1 are the approximations of x(tn+1) and

d

dt
x(t)

∣∣∣∣
t=tn+1

respec-

tively, fn+1 is f (xn+1) and bn+1 is b(tn+1). Discretizing the system (3.24) using the

modified Obreshkov formula is outlined in [8] and [9] by discretizing (3.24) and its

derivatives in the following fashion,

Gxn+1 +
1

h
C(hx

(1)
n+1) + fn+1 = bn+1 rewriting (3.25)

G(hx
(1)
n+1) +

1

h
C(h2x

(2)
n+1) + hf

(1)
n+1 = hb

(1)
n+1

G(h2x
(2)
n+1) +

1

h
C(h3x

(3)
n+1) + h2f

(2)
n+1 = h2b

(2)
n+1

...

G(hk−1x
(k−1)
n+1 ) +

1

h
C(hkx

(k)
n+1) + hk−1f

(k−1)
n+1 = hk−1b

(k−1)
n+1

α0xn+1 + α1(hx
(1)
n+1) + · · ·+ αk(h

kx
(k)
n+1) =

l∑
i=0

βih
ix(i)

n
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The last equation is the modified Obreshkov formula (3.22). The discretized equa-

tions shown above can be represented in the augmented system,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G C/h 0 · · · 0

0 G C/h
. . .

...

...
. . .

. . .
. . . 0

0 · · · 0 G C/h

α0I α1I · · · αk−1I αkI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xn+1

hx
(1)
n+1

...

hk−1x
(k−1)
n+1

hkx
(k)
n+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ξn+1

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fn+1

hf
(1)
n+1

...

hk−1f
(k−1)
n+1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ρ̃n+1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bn+1

hb
(1)
n+1

...

hk−1b
(k−1)
n+1∑l

i=0 βih
ix

(i)
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
b̃n+1

(3.26)

where x
(k)
n+1 is the approximation of

dk

dtk
x(t)

∣∣
t=tn+1

, f
(k)
n+1 =

dk

dtk
f(x(t))

∣∣
t=tn+1

, b
(k)
n+1 =

dk

dtk
b(t)

∣∣
t=tn+1

and I is an N×N identity matrix. The system (3.26) can be rewritten

as,

(G̃+ C̃)ξn+1 + ρ̃n+1 = b̃n+1. (3.27)

The matrices G̃ and C̃ ∈ R(k+1)N×(k+1)N and are given by,

G̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G 0 0 . . . 0

0 G 0 . . . 0

...
. . .

. . .
. . .

...

0 · · · 0 G 0

α0I α1I · · · αkI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and C̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 C/h 0 . . . 0

0 0 C/h . . . 0

...
...

. . .
. . .

...

0 0 · · · 0 C/h

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.28)
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The vectors ξn+1, ρ̃n+1 and b̃n+1 ∈ R
(k+1)N×1 are the derivative-augmented un-

knowns vector, nonlinear vector and independent sources vector respectively as shown

in (3.26).

Notice that for linear equations the nonlinear vector ρ̃n+1 = 0, hence, (3.27)

reduces to,

(G̃+ C̃)ξn+1 = b̃n+1. (3.29)

The linear system (3.29) can be solved directly by direct inversion,

ξn+1 = (G̃+ C̃)−1b̃n+1.

For the more general nonlinear case Newton iteration is necessary. Since the

Obreshkov methods are A- or L-stable with arbitrarily high order it is expected that

the increase in computation cost due to solving a bigger system will be outweighed

by the ability to utilize big step sizes without compromising accuracy.

3.4.3 Difficulties in Modified Obreshkov Methods

There are a number of difficulties in integration methods based on the modified

Obreshkov formula, mostly related to the presence of the high order derivative. These

difficulties however were adequately addressed in [8], [9] and [10].

The first difficulty arises from the need to have at least l high oreder dervatives

at t = 0, these derivatives usually aren’t readily available and need to be calcu-

lates. In [8], [9] two methods to deal with this problem were formulated. The first,

derived a recursive formula relating the (k + 1)th derivative to the kth derivative.

Using the recursive formula, theoretically, one should be able to compute the high
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order derivatives starting from the zeroth derivative (initial conditions). However,

in practice this method is problematic because it introduces numerical errors that

grow exponentially with the order of the derivative. Hence, another more robust

method was suggested. The second method is based on the fact that the modified

Obreshkov methods needs l derivatives at tn to approximate k derivatives at tn+1

with k − 2 ≤ l ≤ k. Hence it is possible to start the integration at low order; 1st

order (l = 0, k = 1), for example, where no derivatives are required at t0 and then

step in time which will generate k derivatives (in this case the first derivative) auto-

matically. The order of the method is then ramped gradually till the desired order is

achieved. The order ramping is done at small step sizes at first, later when the order

of the method increases the step size is increased without compromising accuracy.

This method is summarized in a ramping algorithm detailed in [8].

A second difficulty arises when dealing with nonlinear systems where it’s nec-

essary to find the high order derivatives f
(i)
n+1 (for i = 1, · · · , k − 1) in order to

obtain the augmented nonlinear vector ρ̃n+1 given a trial solution ξn+1. Moreover,

the Jacobian matrix of the augmented system
∂ρ̃n+1

∂ξn+1

needs to be computed as well.

In [8], [9], a systematic efficient approach that represents the nonlinear functions

in a rooted-tree structure is proposed to numerically carry out these computations

while being compatible for integration with a circuit simulator. The advantage of the

rooted-tree representation is that it allows for fast computation of the augmented

nonlinear vector and the augmented Jacobian matrix while adding little computa-

tional cost since the tree structure for each nonlinear function has to be formed once

off-line and saved for use during the integration process.
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Furthermore, in [10] several optimization techniques were presented aimed at

improving the Obreshkov-based high order methods formulated in [8], [9]. It was

shown that the size od the augmented system can be shrunk from (k+1)N×(k+1)N

to kN×kN while preserving the sparsity pattern and the lower Hessenberg structure

of the augmented Jacobian matrix. Moreover, a more efficient block LU factorization

algorithm is presented that takes advantage of the sparsity pattern of the augmented

Jacobian matrix to speed up the integration process. Finally, a method to reduce the

cost of Newton-Raphson iteration is suggested by using a low order method (such

as trapezoidal method) to predict the approximated solution at the next step then

correct the prediction using Obreshkov-based method. This was shown to speed up

the convergence of Newton-Raphson iteration and hence improve the performance.
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CHAPTER 4
Practical Considerations in the Implementation of Obreshkov-Based

Methods

This chapter serves to aid anyone interested either in recreating the work pre-

sented in this thesis as well as the relevant literature. After having gone though

the process of implementing a working Obreshkov based integration method, a lot

of insight was gained on the hurdles that might delay or setback a first-time im-

plementation of an Obreshkov-based numerical integration method. Therefore, in

this chapter we seek to share with the reader this gained insight in the hope to pro-

vide a deeper understanding of the underlying issues and the limitations of certain

techniques that are proposed in the literature. This chapter does not offer any fun-

damentally novel content and the literature cited [8, 9, 10] cover most of the points

that will be discussed here and thus it could be skipped without loss of continuity.

4.1 Algorithm Initialization

In an Obreshkov-based method the solution and l high order derivatives from

the previous step are used to approximate the solution and k of its derivatives at

the next step. An obvious issue arises at the beginning of the integration process

where usually the only information available is the solution at time t = 0 or in

circuit simulation context the DC-solution of the circuit. Hence, a method had to

be devised to compute need l high-order derivatives to be able to proceed with the
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integration process. In [8, 9], two methods are proposed, we will discuss each of them

and provide a general guide on how they can be implemented.

4.1.1 Computing the High-Order Derivatives Using the Recursive For-
mula

The first method for finding the required high order derivatives is based on a gen-

eral recursive formula that can be obtained from the discretized MNA equation (3.25)

by considering its ith derivative at time t = 0,

G(hi−1x
(i−1)
0 ) +

1

h
C(hix

(i)
0 ) + hi−1f

(i−1)
0 = hi−1b

(i−1)
0 . (4.1)

Thus, assuming C is invertible we can write,

hix
(i)
0 = hC−1(hi−1b

(i−1)
0 −G(hi−1x

(i−1)
0 )− hi−1f

(i−1)
0 ). (4.2)

Using equation (4.2) it is possible to build up the augmented unkown vector ξ0 up

to the desired order. However, if the matrix C is not invertible it will not be possible

to retrieve the high order derivatives using equation (4.2). Instead, the system can

be partitioned into differntiial and algebraic set of equations given by,⎡
⎢⎣C11 0

0 0

⎤
⎥⎦
⎡
⎢⎣hix

(i)
0,U

hix
(i)
0,L

⎤
⎥⎦ = h

⎡
⎢⎣hi−1b

(i−1)
0,U

hi−1b
(i−1)
0,L

⎤
⎥⎦−

h

⎡
⎢⎣G11 G12

G21 G22

⎤
⎥⎦
⎡
⎢⎣hi−1x

(i−1)
0,U

hi−1x
(i−1)
0,L

⎤
⎥⎦− h

⎡
⎢⎣hi−1f

(i−1)
0,U

hi−1f
(i−1)
0,L

⎤
⎥⎦ , (4.3)

such that C11 and G22 are invertible. Thus, hix
(i)
0,U can be obtained from the upper

part of (4.3) by inverting C11 as shown below, since it is dependent on the already
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availabe lower order derivatives,

hix
(i)
0,U = hC−1

11 (hi−1b
(i−1)
0,U −G11(h

i−1x
(i−1)
0,U −G12(h

i−1x
(i−1)
0,L )− hi−1f

(i−1)
0,U . (4.4)

From the lower part of (4.3) a nonlinear algebraic equation to compute hix
(i)
0,L can

be written as follows,

G22(h
ix

(i)
0,L) + hif

(i)
0,L = hib

(i)
0,L −G21(h

ix
(i)
0,U), (4.5)

where hix
(i)
0,U has already been computed from (4.4). The main difficulty in equa-

tion (4.5) is that finding the x
(i)
0,L requires knowing f

(i)
0,L which is not readily available.

In [8], it is shown that f
(i)
n+1 can be expressed as a sum of a product of the block

entries of the Jacobian matrix ∂ρ/∂ξ

∣∣∣∣
t=tn+1

and the derivatives of xn+1 which in turn

are the block entries of the augmented vector ξn+1 as follows,

hif
(i)
n+1 = hi

i−1∑
j=0

(
i− 1

j

)
R

(i−1−j)
n+1 x

(j+1)
n+1

= R
(0)
n+1h

ix
(i)
n+1 + hi

i−2∑
j=0

(
i− 1

j

)
R

(i−1−j)
n+1 x

(j+1)
n+1 , (4.6)

where R
(u)
n+1 =

∂u

∂tu

(
∂f

∂x

)
. Therefore, equation (4.5) can be simplified to the follow-

ing,

(G22 + J̃0,L)(h
ix

(i)
0,L) = hib

(i)
0,L −G21(h

ix
(i)
0,U)− γ0,L, (4.7)

where J̃0,L = ∂f 0,L/∂x0,L and γ0,L = hi
∑i−2

j=0

(
i−1
j

)
R

(i−1−j)
0,L x

(j+1)
0,L which does not

depend on x(i).
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To partition the system (4.2) into its invertible and non-invertible parts, we

formulated a heuristic approach which yields the required structure of the system.

We start by applying singular value decomposition to the singular C matrix to get,

C = UCnewV , (4.8)

where U and V are invertible matrices and Cnew has the required structure shown

in (4.3). By left multiplying (4.1) by U−1 and using the fact that the identity matrix

I = V −1V it follows that,

U−1GV −1(hi−1V x
(i−1)
0 ) +

1

h
U−1CV −1(hiV x

(i)
0 ) + hi−1U−1f

(i−1)
0 = hi−1U−1b

(i−1)
0

Gnew(h
i−1x

(i−1)
0,new) +

1

h
Cnew(h

ix
(i)
0,new) + hi−1f

(i−1)
0,new = hi−1b

(i−1)
0,new , (4.9)

where Gnew = U−1GV −1, Cnew = U−1CV −1, x0,new = V x0, f0,new = U−1f 0 and

b
(i−1)
0,new = U−1b0. The resulting new system (4.9) has the partitioned structure shown

in (4.3), the upper and lower parts of the x
(i)
0,new can then be calculated using (4.4)

and (4.7). The required solution for the original system is then retrieved simply by

using x
(i)
0 = V −1x

(i)
0,new.

4.1.2 Computing the High-Order Derivatives Using Order Ramping

An alternative way to compute the high-order derivatives would be to use the

inherent property of the L-stable Obreshkov formula where only l derivatives are

needed at the nth step to generate k derivatives at the (n+1)th step, where k−2 ≤ l ≤

k−1. Therefore, for a method of an order p = k+ l in order to obtain the respective

augmented initial vector of the integration is started from the DC solution at t = 0

with a low order method say k = 2 and l = 0. Since l = 0 this means that the only
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necessary information at t = t0 is the DC solution x0, at the next step the first two

derivatives are now available hence a higher order method can be used, say k = 4

and l = 2, to obtain four derivatives at the third step. This order ramping process

can be continued until the desired order of integration is reached. It is important to

note that since the lower order methods have a higher local truncation error than

the higher order methods a very small step size must be used during the ramping

process. The step size can then be increased gradually as the order is increased.

After implementing both methods, it was found that calculating the high or-

der derivatives using the recursive formulas introduces huge numerical errors to the

derivatives due to the inversion of the C or C11 matrix. The numerical error could

be small for the first or second derivative but it gets exponentially amplified for in-

creasingly high-order derivatives. The amplification factor gets bigger in the presence

of parasitic elements with small capacitances or inductances. Therefore, The first

one or two derivatives can be calculated using the recursive formula but computing

the higher order derivatives has to be done using the order ramping process while

choosing a small step size for lower order steps to keep the local truncation error

small. As a starting point, we suggest to focus on implementing the initialization

algorithm using the order ramping process.

4.2 Error Estimation

In [8, 9] an error estimation method is proposed to control the step size in order

to keep the error below a specified threshold. After implementing the high-order

Obreshkov based integration method with the error control mechanism it was found

that the method used to estimate the error might exhibit some limitations. This
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section sheds light on the possible source of these shortcomings, for details about

the theoretical derivations and implementation of the error estimation method refer

to [8].

The proposed error estimation technique for a numerical integration method of

order p relies on estimating the h-scaled pth derivative at two consecutive time steps.

Then, the (p + 1)th is estimated as the difference of the two pth derivatives divided

by the step size. The local truncation error which is proportional to the (p + 1)th

derivative is then calculated using by multiplying the (p+1)th derivative by a scaling

coefficient specific to the integration method being used called the error constant.

Therefore, the accuracy of the estimated error is dependent on the accuracy of the

estimated pth derivative.

To evaluate the accuracy of error estimation process, the h-scaled pth derivative

of a known sinusoidal function was computed using the proposed method and then

compared to the exact value at a specified time instant tn. The sinusoidal function

was chosen to have a frequency of 1MHz so that it represents a practical time varying

function in the context of circuit simulation. The step size was varied and the value

of the h-scaled pth derivative at an arbitrarily chosen time t = 2s was plotted as a

function of the step size h using a log-log scale as shown in figure 4–1.
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Figure 4–1: The variation of the h-scaled derivative of the function y(t) = sin(2π ×
106t) at tn = 2s as a function of the step size h.

Since the data is being plotted on a log-log scale the negative values of the h-scaled

derivatives are ignored. It can be seen from figure 4–1, that the estimated value of the

pth derivative matches the exact value for a certain range step sizes. It is also noted

that as the order of the derivative being estimated increases the range of step sizes

that allow accurate estimation of the higher order derivative shrinks. For example
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for the 5th order derivative that range appear to be h ∈ [10−8, 10−6], while for the

13th order derivative that range shrinks to about h ∈ [4 × 10−7, 10−6]. Moreover, it

seems to be that the largest possible step size that allows for an accurate estimation

of the high order derivative has a value of about one period, in this case h = 10−6.

Consequently, the proposed error estimation method will provide a good measure of

the error but only for a certain range of step sizes at each order. It is important to

note the limitations that this method acquires when it is being used.
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CHAPTER 5
High-Order Steady-State Simulation

In this chapter, a detailed derivation of the high-order Shooting method is pre-

sented. The method is a Shooting-Newton algorithm based on the A- and L-stable

Obreshkov-based integration methods. This chapter is divided into two sections, the

first offers a review of the construction of the Shooting-Newton method. The second

details the derivation of the high-order Shooting-Newton method.

5.1 The Shooting Method

Shooting methods are designed to solve boundary value problems (see sec-

tion 2.2), this section describes the general theoretical framework of the shooting

methods. Consider the following system of differential equation,

ẋ = f (x(t), t), (5.1a)

subject to the most general linear two-point boundary conditions

Ax(0) +Bx(T ) = c . (5.1b)

The goal of the shooting method is to solve for x0 that satisfies equation (5.1b)

given that x(t) is subject of the dynamics defined by equation (5.1a). We can rewrite

equation (5.1b) as the following variational formula for x0,

Ψ(x0) = Ax(0) +Bφ(x,x0, t0, T )− c = 0 , (5.2)
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where φ(x,x0, t0, T ) is the transition function of x(t) that defines its state between

t = t0 and t = T starting from x(0) = x0. In other words, φ(x,x0, t0, T ) is the

solution of the IVP given by equation (5.1a) with initial condition x(0) = x0. The

nonlinear variational equation in x0 (5.2) can be solved using Newton-Raphson,

which necessitates finding φ(x,x0, t0, T ) by solving the IVP (5.1a) between from

t = 0 to t = T , as well as computing the following Jacobian matrix,

dΨ(x0)

dx0
= A+B

dφ(x,x0, t0, T )

dx0
. (5.3)

The Jacobian in (5.3) is computed by deriving equation (5.1a) with respect to the

initial condition x0 to get,

d

dt

( dx

dx0

)
︸ ︷︷ ︸

ż

=
df(x, t)

dx︸ ︷︷ ︸
J(t)

dx

dx0︸︷︷︸
z

, (5.4)

where z(t) is known as the sensitivity matrix and J(t) is the Jacobian matrix gener-

ated during the integration process of equation (5.1a). Notice that the equation (5.4)

is a linear differential equation and hence its solution can be obtained at a given time

t directly after J(t) had been computed when solving equation (5.1a) at the same

time t. At time t = T , we will have z(T ) =
dφ(x,x0, t0, T )

dx0

and hence the Ja-

cobian matrix in equation (5.8) van be easily computed. Therefore, by integrating

the IVP (5.1a) from t = 0 to t = T all the information needed to update x0 using

Newton-Rapshon will be available,

xnew
0 = xold

0 −
dΨ(x0)

dx0

−1
∣∣∣∣∣
x0=x

guess
0

Ψ(xguess
0 )

︸ ︷︷ ︸
Δx0

. (5.5)
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After x0 is updated, the whole process is iterated until |Δx0| falls within the defined

error tolerance level.

5.2 High-Order Shooting Method

In the context of circuit simulation, shooting methods are essential in time-

domain steady-state simulation. While a transient analysis solves an IVP, a shooting

method is an iterative procedure layered on top of transient analysis that is designed

to solve boundary value problems [6] (BVPs). Since the shooting method is not

concerned in finding the transient behaviour of a given system, it is thus desirable

to be able to perform the iterative transient procedure as fast as possible without

violating the accuracy of the numerical solution. In the light of this argument, the

benefit of deriving a high-order shooting algorithm becomes apparent. A stable high-

order shooting algorithm will allow bigger step sizes in the numerical integration

without compromising the accuracy of the solution, and thus make it possible to

faster find an accurate steady-state solution.

The goal in time-domain steady-state analysis is to find the set of initial condi-

tions that will start the numerical integration process at the steady-state solution of

the system. This requirement is represented as the solution of the boundary value

problem given by,

Ψ(x0) = φ(x,x0, t0, T )− x0 = 0. (5.6)

The transition function of φ(x,x0, t0, T ) is obtained by solving the initial value

problem given by,

Gx(t) +Cẋ(t) + f (x, t)− b(t) = 0. (5.7)
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The nonlinear variational equation in x0 (5.6) can be solved using Newton-Raphson,

which necessitates finding the transition function φ(x,x0, t0, T ) by solving the initial

value problem (3.24) between t = 0 to t = T , as well as computing the following

Jacobian matrix,

dΨ(x0)

dx0

=
dφ(x,x0, t0, T )

dx0

− I . (5.8)

To find dφ(x)/dx0 the IVP given in equation (5.7) is derived with respect to x0 to

obtain,

GZ(t) +CŻ(t) +A(t)Z(t)︸ ︷︷ ︸
F (Z)

= 0, (5.9)

whereZ(t) = dx(t)/dx0 ∈ RN×N is the sensitivity matrix, andA(t) = df(x, t)/dx ∈

RN×N .

To obtain the high-order shooting algorithm, equations (5.7) and (5.9) are dis-

cretized using the modified Obreshkov Formula to obtain (3.26) and (5.10) shown

below,

(G̃+ C̃)ξn+1 + ρ̃n+1 = b̃n+1 (3.26)

(G̃+ C̃)Z̃n+1 + F̃ n+1 = B̃n+1, (5.10)

where Z̃n+1, F̃n+1 and B̃n+1 ∈ R(k+1)N×N such that,

Z̃n+1 =

[
Zn+1

T hZ
(1)
n+1

T

. . . hkZ
(k)
n+1

T

]T
, (5.11)

B̃n+1 =

[
0T 0T . . .

∑l

i=0 βih
iZ(i)

n

T

]T
, (5.12)
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F̃n+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F (Zn+1) = An+1Zn+1

hF (Zn+1)
(1) = h

(
A

(1)
n+1Zn+1 +An+1Z

(1)
n+1

)

h2F (Zn+1)
(2) = h2

(
A

(2)
n+1Zn+1 + 2A

(1)
n+1Z

(1)
n+1An+1Z

(2)
n+1

)
...

hk−1F (Zn+1)
(k−1) = hk−1

((
k−1
0

)
A

(k−1)
n+1 Zn+1 +

(
k−1
1

)
A

(k−2)
n+1 Z

(1)
n+1 + · · ·+

(
k−1
k−1

)
An+1Z

(k−1)
n+1

)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.13)

The equation (5.13) can be simplified to,

F̃n+1 = Jn+1Z̃n+1, (5.14)

where Jn+1 is given by,

Jn+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

An+1 0 0 . . . 0 0

hA
(1)
n+1 An+1 0 . . . 0 0

h2A
(2)
n+1 2hA

(1)
n+1 An+1

. . . 0 0

...
...

. . .
. . .

...
...

hk−1
(
k−1
0

)
A

(k−1)
n+1 hk−2

(
k−1
1

)
A

(k−2)
n+1 . . . h

(
k−1
k−2

)
A

(1)
n+1 An+1 0

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.15)

Therefore, (5.10) can be re-written as,

(G̃+ C̃ + Jn+1)Z̃n+1 = B̃n+1. (5.16)

The matrix Jn+1 described above in (5.15) is formed from the entries of first N -

column block of the Jacobian matrix dρ̃n+1/dξn+1 of system (3.26) which is available
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after every time step update. Hence, systems (3.26) and (5.16) are solved consecu-

tively at each time step. Once Jn+1 is available, Z̃n+1 is calculated by one matrix

inversion. The sensitivity matrix Zn+1 at t = tn+1 is given by the first N × N

block of Z̃n+1. When t = T the initial conditions x0 is updated by the following

Newton-Raphson step,

xnew
0 = xold

0 −
dΨ(x0)

dx0

−1
∣∣∣∣∣
x0=xold

0

Ψ(xold
0 )

︸ ︷︷ ︸
Δx0

= xold
0 −

(
ZT − I

)−1(
xT − xold

0

)
. (5.17)

The process is repeated until Δx0 falls below the required convergence tolerance level

(econv).
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CHAPTER 6
Numerical Results

In this chapter we present some numerical examples that demonstrate the per-

formance of the implementation of the Obreshkov based integration methods, as

well as outline the advantages of the proposed method for high-order steady-state

simulation. The algorithms used were implemented in Matlab R©.

6.1 High-Order Transient Analysis

In this section numerical example is presented to verify that the implementation

of the high-order Obreshkov method yields results consistent with what has been de-

scribed in the literature. Except for the algorithm initialization required to build up

the augmented unknowns vector for high-order Obreshkov-based integration meth-

Figure 6–1: Common-emitter Amplifier.
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ods, simulations are done using a constant step size. The test circuit shown in

figure 6–1 describes a common emitter amplifier. The amplifier has a gain of 30dB

at frequencies greater than 10kHz. At the input of the amplifier a sine wave was

applied with an amplitude of 0.01V and frequency of 10kHz. The size of the system

given by the MNA equation describing the circuit is N = 13.

Since a closed form expression for the solution is not possible, the error mea-

surement was done by integrating the system describing the amplifier circuit using

Backward Euler (BE) at a very small step size (h = 1ns, which is equivalent to

100,000 points per period) and the result was used as the reference solution. The

circuit was then simulated using different step sizes, the relative error was computed

at each time point by calculating the deviation of the solution from the reference

solution. Figure 6–2 shows a magnified portion of the solution to demonstrate how

the error was computed. The green graph represents the reference solution and the

blue and black graphs are obtained using BE with step sizes h = 0.1μs and 1μs re-

spectively leading to a maximum relative error of 0.17% and 1.7%. The starred data

point is obtained using an 11th order Obreshkov method with a step size h = 58μs

resulting in a maximum relative error of 0.15%.
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Figure 6–2: Error computation criteria.

Finally, the output of the common emitter amplifier is shown in figure 6–3. The

solid line represents the solution obtained using BE at a step size h = 0.05μs and

the starred data points represent the solution points obtained 11th order Obreshkov

method with a step size h = 58μs, both methods have a maximum relative error of

about 0.15%. Note that for the solution obtained by using the 11th order Obreshkov

the first few steps are taken with a gradually increasing step size as required by the

initialization process using order ramping.
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Figure 6–3: The output voltage of the CE amplifier.

6.2 High-Order Steady State Analysis

To evaluate the performance of the high-order shooting method we consider a

two-stage low-noise amplifier (LNA) designed to have a gain of 17dB at 1GHz. The

amplifier, shown in figure 6–4, also has internally regulated voltage supply to stabilize

the gain against temperature variation [23]. The LNA is one of the early stages in

an RF mixer circuit and it usually receives signals with different frequencies at its

input. In the test scenario, two tones were applied at the input; F1 = 1GHz, and

F2 = 1.01GHz. Hence the downmixed signal would be at 10MHz which sets the
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Figure 6–4: Two stage LNA.

period of the system. The size of the system given by the MNA equation describing

the circuit is N = 48.

The steady state response of the circuit was found using several high-order

shooting methods whose order was varied from 2 through 9. The order of these

methods is given by (2k− 2) or (2k − 1). The CPU time consumed by each method

was recorded and compared to that of a shooting algorithm based on the L-stable BE

integration method. Aside from the algorithm initialization required by high-order

Obreshkov-based methods, a constant step size is used in all the simulations.

Since a closed-form expression of the solution is not possible the error was mea-

sured in the same way as described in the previous section. A reference solution was

computed using BE with very small step size (h = 10−6 ns, which is equivalent to
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100,000 points per period). The relative error was computed at each time point by

calculating the deviation of the solution from the reference solution. The step size

for each integration method was chosen so that the maximum relative error to the

reference solution remained constant across the different integration methods. To

verify that the obtained steady-state solutions have the same accuracy, a Fourier

Transform was applied to obtain the intermodulation spectra, which were then com-

pared. A sample is shown in Figure 6–5. The time domain steady state solution is

shown in Figure 6–6.
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Figure 6–5: The intermodulation spectra at the steady-state solution using BE and
ObF 7th order both with the same error tolerance of 0.12%.

Table I summarizes the results of the High-order Obreshkov based shooting

method where k is the number of high order derivatives used and h is the step

size. The number of Newton iterations required for convergence is also indicated.
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Figure 6–6: Steady-state output of LNA using using BE and ObF 7th order both
with the same error tolerance of 0.12%.

Note that a higher order method requires a larger step size and thus a faster CPU

time. However, this is balanced to some extent by the larger corresponding system

of equations whose size is given by (k + 1)N × (k + 1)N where N is the size of the

original MNA equations.

Table 6–1: High Order Shooting Method Results

k Method (order) h (ns) # iterations CPU time (s) speedup

BE (1st) 1e-3 5 1013.6 1

2
ObF (2nd) 1.2e-2 5 1027.2 0.987
ObF (3rd) 0.09 5 193.3 5.244

3
ObF (4th) 0.125 5 190.1 5.333
ObF (5th) 0.25 6 141.9 7.143

4
ObF (6th) 0.3 6 148.8 6.811
ObF (7th) 0.4 6 125.5 8.076

5
ObF (8th) 0.48 6 148.3 6.835
ObF (9th) 0.65 7 133.1 7.618
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As can be seen from the results the speedup increases as the order of the method

increases. However, the extra computation overhead due to the number of derivatives

and size of equations can diminish the benefit gained from being able to use a larger

step size. This trade-off between the computation overhead and the larger step size

allowed can clearly be observed when going from 5th to 6th order ObF and from 7th

to 8th order ObF for example. A parallel scheme for the Obreshkov formula was

proposes in [24] and addresses this issue for regular transient analysis. However,

even a serial implementation in Matlab can still achieve a speedup of up to 8 times

as shown in Table 1.
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CHAPTER 7
Conclusion

In this thesis a high-order Shooting-Newton method based on the A- and L-

stable Obreshkov formula was proposed. The higher order methods allow faster

steady-state simulations since a larger step size can be used in the numerical integra-

tion without compromising the accuracy of the method. Consequently, a significant

reduction in CPU computation time can be obtained for a given level of accuracy.

A practical RF circuit was presented as a test scenario and it was shown in the

results that speedups of more than 8 are possible. There is still plenty of room for

improvement in the performance of the high-order Shooting-Newton method. The

implementation presented in this work does not make use of the improved implemen-

tation techniques outlined in [8]. Furthermore, the advantage of using a high-order

Shooting-Newton algorithm to find the steady-state solution can be even more pro-

nounced if parallelization schemes are utilized.
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