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Abstract

The construction of four-dimensional string motlels via nonabelian twist is

discussed in an operator formalism. Features of Hilbert space related to nonabelian

twists are studied from the group theoretical point of view. This enables global

anomalies to be removed l' ,)ne insists the vacuum states to be a representation

of the nonabelian group. We present a systematic procedure for the identification

of the final gauge group, whose rank is generically reduced in a .•onabelian twist.

This general method of mode1-building is applied to obtain ail minimal-rank strings

resulting from twists by finite nonabelian subgroups of SU(2). Their partition

functions, vacuum representations, gauge groups, and the elimination of global

anomalies are considered individurJ1y for each case.
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R ' ,esume

Nous préseutons dans cette thèse une construction de la théorie des cordes dlUlS

un espace-temps quadri-dimensionel. La méthode utilisée, dans cette construc-

tion, est basée sur des transformations non-abéliennes appliquées sur le c1uunps

d'C'p';rateurs de cordes. Les caractéris~iques de l'espace Hilbertien, reliées ù ces

transformations, sont étudiées du point de vue de la théorie des groupes. Nous

constatons que les anomalies du type global disparaissent en demandant que les

états du vide forment une représentation du groupe non-abélien considéré. D'une

façon systématique, nous énumérons les étapes à suivre pour identifier le groupe

de symetrie de gauge de la théorie des cordes que nous obtenons après avoir per-

former les transformations non-abéliennes. Comme example, nous examinons tous

les sous-groupes non-abéliens du gToupe SU(2). Chaque sous-groupe donne une

théorie des cordes avec un groupe de symetrie de gauge d'ordre minimal. Finale-

ment, les fonctions de partitions, les représentations du vide, le groupe de gauge, et

l'absence des anomalies globales sont aussi revus pour chacu.ll de ces sous-groupes.
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Chapter 1

Introduction

§1.1 The Road to Superstring Models

It is generally bclieved that the Standard Model is an effective theory of the

weak, electromagnetic and strong forces valid below certain energy scale. The

Standard Model is a quantum field theory with a nonabelidIl gauge symmetry

SU(3) x SU(2) x U(l), in which the gauge group SU(3) describes the strong inter-

action while the SU(2) x U(l) unifies electromagnetic and weak interactions. It is

also a renormalizable theory which enables us to ,jo calculations without encoun-

tering too many divergences. Despite its remarkable success in fitting the present

('xperiment,ù data, the Standard Model still does not satisfy us since the theory

itself has many drawbacks. For exarnple, it does hot pro-"ide answers to the fol~"w-

ing questions: why are there three generations? Why do masses of quarks differ

50 greatly? Also tbere are about twenty free pararneters in the theory. Therefore,

mnl1Y efforts have been made to go beyond the Standard Model. There are various

scenarios 1Jeing proposed, such as grand unified theories (GUT), composite models,

supersymmetry and so on [1]. GUT c1aims that the three forces in the Standard

Model are unified into one force at the energy scale 1015 GeV. Since proton decay

Ims not been conc1usively observed, the minimal SU(5) GUT is ruled out. Other

1



•

GUT models are possibl~. but they have v;lry few measurable consequenc~s 'Uld

they suffer from the gauge hierarchy problem. This problem is essentinlly that, th"

~uantum correction of the IIiggs mass is affected by the GUT energy sc.ù" which

as p consequence either gives an unac~eptablelarge Higgs nlass or requires an un­

natura! fine tuning. There are twc ways to avoid this unnaturnlness. The lirst is to

llt.~!lme the Higgs to be a composite rather than an elementary particle; this leads

to a theory without the hierarchy problem from the very beginning. The second

is supersymmetry. If this symmetry is exact, bosons and fermions of equal masses

must exist in pairs. Since no supersymmetric particles have been observed, snper­

symmetry must be broken. The broken scale has been duggested to be around the

order of ITeV [2]. Even when supersymmetry is broken, its bosonic and fermionic

contributions nearly cancel each other, hence the quantum correction of the Higgs

mass is still small. In this way the hierarchy problem woulci again be avoided.

The two scenarios of solving the hierarchy problem lead to thousands of self·

consistent theories. Whether they are correct or not can be judged only eXi'eri.

mentally. As supercolliders and ultrahigh energy mll.chine3 are built 8.>ld run, new

phenomena may be discovered which may provide us with a means to select cer·

tain class of models. More accurate and more sensitive measurements may also

indicate a deviation from the Standard Model as weil. Recently the remarkable re·

sults [3J has been obtained by LEP, where the electroweak couplings were measured

very accurately and the error·bars of the strong coupling have been significant1y

reduced. A renormalization group analysis shows that the strong coupling misses

2



the crossing point of the other two couplings by almost four orders of magnitude or,

cquivaiently, by more than five standard deviations. This is an independent way

of ruling out minimal grand unification. However, in the presence of supersym­

metry the three couplings meet spectacularly at a single point around 1016GeV.

The particular mechanism of supersymmetry breaking has no significant effect if

one assumes a breaking scale in the range between the mass of W boson and a

fcw TeV. Although no explicit supersymmetric particle has yet been seen, the LEP

data implicitly favors the existence of supersymmetry.

Theoretically, once supersymmetry is acknowledged as a major building block

of modern unified theories, the gauge hierarcby problem is automatically solved as

aforementioned. However, the dynamical question of why the scale of the super-

symmetry breaking is ~1TeV arises. This question is addressed in no-scale super­

gravity theories [4] where a fiat classical potential is tuned to give the vanishing

of the cosmological constant (even after the supersymmetry breaking). But these

supergravity theories are not renormalizable. To solve the problem of quantum

gravity, there is only one known solution, namely the superstring theory [5].

A superstring theory is a string theory with supersymmetry. A string theory

is a theory in whicb the e1ementary constituents are not point partic1es, but are

rather one-dimensional string-like objects. String theory was first proposed for

describing the strong interaction of the hadronic physics [5,6] before the SU(3)

QCD came into the world. However, it was soon realized that the theory sulfers

from two major d,-awbacks. First, it involves a massless spin-two partic1e whicb

3



is not present in the hadronic spectrum. Second, the theory is not consistent in

four space-time dimensions but rather in critical dimensions 26 and 10 for the

bosonic string and the superstring respectively [7,8,9]. Later on it was suggested

that this spin-two particie can be identified with the graviton and the string theory

can be a potential candidate to describe ail interactions inciuding gravity if thl'

energy is pushed further to the Planck scale (1019 GeV) [10]. A revolution in string;

theory took place in 1984 when Green and Schwarz found that certain superstring

theories are anomaly-free [11]. The most promising string theory is the heterotic

string [12], whose left-moving component is taken to be a bosonic string and the

righG-m0ving component to be a superstring. The theory can be formulatcd as

a ten-dimensional theory with a rank 16 ,ymmetry group on top. The internai

consistency requirements of the theory dictates the dimension ten, as weil as the

possible symmetry group to be either Es x E~ or SO(32). The massless spectrum

of the theory as weil as its interaction give exactly ten-dimensional supergravity

and super-Yang-Mills fields with gauge group Es x E~ or SO(32). Ii contains and

is capable of unifying ail four interactions, and more importantly it is also a finitc

quantum field theory.

The problem with the original heterotic string is that it requires ten­

dimensional space-time, which obviously fails to satisfy the fact that our universe

is in four-dimensional space-time. This problem l'an be bypassed by requiring, in

the context of the old theory of Kaluza-Klein [13], that the extra dimensions be

compactified, that is, by letting them live on a tiny compact object with a size of

4



the order of the Planck length (1O-33cm). This would account for the experimental

failure to see these ludden dimensions.

Although efforts have been made on the nonperturbative effect of string theory,

it is still too primitive to rigorously answer the question of whether the theory

undergoes spontaneous dimensional breaking [14]. Rather than waiting for the full

development of the t,'ue quantum vacuum of the theory, we can instead look for

various classical vacua of the theory by compactifying the extra six dimensions

and see whether a reasonable phenomenology can be performed. Actually, much

progress has been achieved in this direction [15J.

There are many schemes in compactifying the extra six dimensions. The sim-

plest is toroidal compactification of six dimensions. This means that six dimensions

are described as forming a direct product of six circles with some radius. This ends

up with an N=4 splloCe-time supersymmetry, and the absence of chiral fermions. In

recent years a vast number of other exactly soluble models has been obtained. This

includes Calabi-Yau space compactification [16], Gepner models [17,18J, fermion

formulation [19,20,21], lattice approach [22,23], orbifold [24,25,26] and so on. How­

ever only relatively few may be called rt:alistic models. It has been proved that the

models from Type II superstring, in which both left- and right-moving are taken

to be superstring, can never produce the Standard Model containing triplet quarks

and doublet leptons [27J. The models from both Es x E~ and SO(32) heterotic

strings can contain the Standard Model, hut it seems that the E. x E~ string is

more viable phenomenologically, since among other things we can interpret the

5



matter fields broken from E~ as a hidden sector (cryptons). Technically regnrding

>'11 the compactification schemes, it is re1ative1y easy to construct renlistic mode\s

by using the real fermion formulation or orbifold.

The compactification by nonabelian orbifold was proposed by Dixon, Harvey,

Vafa and Witten [24], where they considered the simple case of "standard embed­

ding" , in which twists are the same for the !eft- and right-moving fermions. Lnter,

geometrical analysis showed that global anomalies will generally be present even

when the modular invariance conditions are satisfied [28J. The lack of n simple

way to identify the global anomalies is the main obstacle for model-building from

a nonabelian orbifold. That is one reason why there are very few studies on the

nonabelian orbifold [29,30,31]. In order to avoid global anomalies, the usual proce­

dure is to confine ourselves to "standard embedding", pos3ibly adding to that sorne

abelian twists or shifts. This is because global anomalies from the left and right are

cancelled among each other in the "standard embedding". Some of the work bnsed

on the "standard embedding" plus some abelian shift has been done by Chang and

Li [30]. They constructed models of the nonabelian orbifold corresponding to the

dihedral-like group .6.(3.32 ). lt is interesting that the models provide us with three

or four families of quarks and leptons with gauge group SU(3) x SU(2) x U(I)

multiplying sorne other group.

Recently the construction of realistic string models has been rapidly developed.

The class of fiipped SU(5) models has been constructed from the real fermion

formulation [32,33] and the class of SU(3) x SU(2) x U(I)n string models has been

6



obtained from the abelian orbifold [26,34]. These models give many interesting

results. Certainly they are still at their early stage, and need to be ful1y explored.

One important generalization of the real fermion formulation and abelian orbifold

is the nonabelian twist (or nonabelian orbifold). We expect many new features

will emerge in string models from the nonabelian twist. Since we are able to solve

the problem of global anomalies in a simple way, construction of nonabelian twist

models can be carried out successfully, in particular the interesting class of the

min:mal-rank models [35].

Technically there are at least two advantages in the framework of the non-

abelian twist. First, it can dramatically break the huge gauge group down to a low-

rank gauge group. Second, the aIlowed twist representations are very restricted,

since .10t only should they satisfy ail the modular invariance conditions of abelian

twists of the corresponding abelian subgroups, but also they should be free from

any global anomalies. Therefore the number of aIlowed models in the nonabelian

twi~t is much less than that in the real fermion construction or abelian orbifolds.

This fact in turo makes it easier to classify the models by nonabelian twists.

It is also interesting to note that the nonabelian nature actually exists even

in the real fermion formulation and abelian orbifold. The real fermion formalism

allows the twist group to be the nonabelian group 0(2) since the twist can change

the s:gn of the real part but not the imaginary part of a complex fermion which is

made from two real fermions. In the abelian orbifold, the combination of abelian

twist and abelian shift is generically a nonabelian space group. It is because of this

7



nonabelian nature that the rank of the gauge group could sometimes bl' reduced

in the real fermion formulation [19J or abelian orbifold [26) . Therefore the genernl

consideration of the real fermion formulation or abelian orbifold needs tlll' kno",l­

edge of nonabelian twist, such as the case of allowing the interchange of the n',d

fermions in the real fermion formulation or adding different Wilson lines tn thl' left

and to the right of the abelian orbifold.

§1.2 Present Work

The aim of this thesis is to give a detailed description of how to cnnstrnct

string models by means of nonabelian twists (orbifolds). The main obstacle of global

anomaly is removed by a representation requirement in the consistent Hilbert spacc.

This means not only that the twist of string fields should form a representation of

the underlying finite twist group, but also the vacua of all sectors should form a

representation of the éwist group as weil. Unlike other studies, we do not assume

here "standard embedding" .

In order to have a realistic string model, one would like to construct a four­

dimensional string theory to be as close to the Standard Model as possible. Among

other things, the rank of the gauge group is 4 in the Standard Model and 16

in the heterotic string in ten dimensions, and it has an even larger rank when

compactified to four spaœ-time dimensions. In order to dramatically reduce their

rank difference, 1 choose the nonabelian twist representation to give a minimal rank

to the resulting gauge group. Furthermore, sinee the supersymmetry is expected

8



to be broken at very low energy (~ 1TeV), one would like to keep the space-time

supersymmetry at the compactification scale. This in turn restricts the twist group

to be a finite subgroup of SU(3) [5,36]. A relatively simple class of those twist

nonabelian groups is the finite nonabelian subgroups of SU(2). We will restrict

the twist group to be in this simple class throughout all this thesis. Technically,

in order to eliminate unphysical degrees of freedom in the Hilbert space, one may

choose light-cone gauge, which reduces the ten space-time coordinates into eight

transverse coordinates. Contrary to the path integral formalism, we shall build

our theory starting from the Hilbert space instead of starting from the partition

function, and this is called the operator formalism in the literature. Also we shall

begin with the phenomenologically viable Es x E~ hetet'otic string, and confine

ourselves to symmetric orbifolds. The symmetric orbifold means that the twists are

the same for the left- and right-compactified space-time coordinates.

The plan of the thesis is as follows. In Chapter 2, the basic features of abelian

twists are reviewed and expauded in three subsections. General prescription of

string field boundary condition and GSO projection [37] is presented in Section

2.1, in which the modular invariance conditions are derived and vacuum phases

in a1l sectors are determined. In Section 2.2, Lorentz symmetry and space-time

supersymmetry are considered. In particular the constraints to the vacuum phases

by these symmetries are obtained. Abelian orbifolds are reviewed in Section 2.3,

where the general constraints as weil as a table of acceptable representations are

presented.

9
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Chapter 3, which spreads O\,t in three sections, is devoted to the detnil,'d

description of the construction of nonabelian twists. Some examples arc given to

illustrate how to carry out the model-building in practice. Specificnlly, in S,'clion

3.1, the boundary condition and eso projection are described in terms of th..

consistent Hilbert space, which is very different from the case of the abclinn twist.

From the Hilbert spaee, the partition function of the nonabclinn twist is obtained,

which turns out to be a linear combination of the partition functions of the abelian

twists corresponding to the abelian subgroups of the underlying nonabelinn group.

It then follows that the condition cf modular invariance for the nonnbeli'Ul twist is

nothing but the modulaJ. invariance conditions of ail corresponding abclinn t",ists.

Within each of the abelian subgroups, the twist is obtnined from the diagonali~ation

of the nonabelian twist representation, and the vacuum phases arc calculnted bnsed

on the formulae derived in Chapter 2. The consistency of Hilbert space dcmnncls

the vacua of ail seetors to form a representation of the nonabelian group, Il condition

which is not a priori satisfied. The failure for the YaClla to be in Il representation

indicates the existence of global anomalies, which will be discussed in Section 3.2.

Also sorne toy models are presented in this subsection in order to demonstrate

how the global anomalies arise in the operator formalism. In Section 3.3, the

general method of identifying the final gauge group is described. The rank of the

gauge group that l'an be obtained from the model is found by looking at the twist

representation. Emphasis is made on the effects of the discrete torsionn IUld the

rank enhancement,

10
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In Chapter 4, 1 systematically study and classify all minimal-rank nonabelian

twists arising from ail the finite nonabelian subgroups of SU(2). These finite non­

abelian groups are the dihedral groups DI (1 = 3,4,6), the tetrahedral group

T, the octahedral group 0, the icosahedral group [, and their double groups

Djd), T(d), O(d), [(dl [38J. The nonabelian twist of each of these groups is consid-

ered in a separate section. The partition function and the vacuum representations

are calculated for each nonabelian group, and global anomalies are eliminated for

each case. The twist representations and the final gauge groups of ail minimal-rank

models are presented in various Tables.

Finally some discussions and conclusions are made in Chapter 5. The detail of

modular transformations is derived in Appendix A, while the modular invariance

conditions and the formulae of vacuum phases are obtained in Appendix B.

11



Chapter 2

Constraints on Abelian Twist

String compactification via orbifolds is simple to construct and interesting pht"

nomenologically. In order to construct string theories from nonabc1ian twists (or

orbifolds), we have to establish sorne basic features of abelian twists, which are userl

in later chapters. So in this chapter we plan to discusf' the constraints given by lut

abelian twist. In Section 2.1 we review the conditions of modular invariance and

the vacuum parameters. The Lorentz symmetry and space-time supersymmetry are

considered in Section 2.2. We will see that those symmetries further restrict the

twist and vacuum parameters. In Section 2.3 the crystallographic constraints are

investigated. It shows that only very limited number of twist. groups are allowed.

§2.1 Modular Invariance of Abelian Twists

As we mentioned in Chapter 1, the left-moving component is taken to he a

bosonic string and the right-moving to be a superstring in the ten-dimensional het­

erotic string. In the light-cone gauge, there are eight real left-moving bosons and

eight real right-moving bosons for the transverse space-time coordinates, eight real

right-moving fermions for the world-sheet supersymmetric partners, plus sixteen

realleft-moving bosons for the gauge coordinates. As it is weil known a real boson

field in two dimensions may be replaced by a complex fermion field in a proces"

12



(2.1.2)

(2.1.3)

r
•

which is called fermionization [39J. In this way one may represent the gauge coor-

dinates by sixteen complex fermions. Also two real bosons or two real fermions can

be made into one complex boson or one complex fermion. l?oy doing that, the fields

of the heterotic string become

t/J'i,(t + 0'), Xi(t + 0'), Xk(t - 0'), t/J~(t - 0') (1 $ a $ 16,0 $ b $ 3), (2.1.1)

where t/JL, t/J~ are complex fermion fields, and xi, Xk are complex boson fields.

The subscript L stands for left-movers and R for right-movers.

In order to have a four-dimensional heterotic string, let us take the fields

X~) (0', t), xia) (0', t) to describe the transverse components of our four-dimensional

space-time coordinates, which are periodic, and define the following field vectors,

X == t/J~), '1 == (~~;), >. == (t/Jt ) ,
t/J}:) t/Ji16)

y == (~~;), Z == (~t:;) ,
X(3) X(3)

R L
where Y and Z correspond to the six compactified dimensions. In the construc:tion

of an abelian twist, the compactification is achieved by the general abelian bouudary

conditions of the string fields,

X(O' +211', t) = R;(g)X(u, t),

'1(0' +211', t) = R~(g )'1(0', t),

>'(0' +211',t) = RÀ(g)>'(O',t),

Y(u +211', t) = RY(g)Y(O', t) +Vy(g),

Z(O' + 211', t) = Rz(g)Z(O', t) + Vz(g),

13



where 9 is a group e1ement of an abelian group G", R;(g) for i = .\, 'l, ,\, } -, Z nn'

unitary representations of g, and V;(g) (j = Y, Z) are shift veetors. Sine!' only

symmetrie orbifold is eonsidered in this thesis, one has Ry(g) = Rz(g) == RX(!l)

and Vy(g) = Vz(g) == V(g). For simplicity, we will take V(g) = O. W" shall us,'

the word 3ector to mean a particular set of boundary conditions, and we denote th"

one specified in (2.1.3) as sector g,

The world-sheet supercurrent is given by [5,211

(2.1.4)

where a_ == ô/aO'- with 0'- == t - (J'. We know that T!(O', t) is a fermionie eurrcnt,

so it must be periodic or antiperiodic,

T! (0' + 211', t) = ±T!«(J', t). (2.1.5)

In order for the string boundary conditions to maintain the world-sheet supersym­

metry, we have to demand

R,,(g) = ±1,

Rx(g) = R,,(g)R~(g).

(2.1.6)

In the abelian boundary condit.ions, the representations Ri(9) of the abelian

group G" cao be expressed in Il diagonal form. Therefore we can discuss the bound­

ary condition of eac! :ield independently. For convenience, let us denote (Ài TI, X) Ils

a 20-component vector t/J, whose mst 16 components are À and last 4 components

are (TI, X). The boundary condition for a fermion t/J"(O', t) can be written as

t/J"(O' + 211', t) = e- i2
"'-.- t/JG(O', t), (2.1.7)
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where f" = +1 (1 :5 a :5 16) und f" = -1 (17 :5 a :5 20). The parameter v" may

be confined to the range 0 :5 v" < l and we wiil do so from now on.

It is straightforward to oetain the mode expansion of the free fermionic field

with these boundary conditions. They are
00

1/J"(u, t) = L 1/J::'+0'-1 exp[-i(t + f"u)(m +v" - 1)),
m=-oo

00

,p"(u, t) = L t/;::'-o' exp[-i(t + f"u)(m - v")],
m=-oo

(2.1.8)

where,p" = (1/J")t and t/;':..m-o' = (1/J::'+o.)t. A similar expansion for the complex

boson field Xb(u, t) can be made in terms of the oscillatormodes x~+o. and x~_o.'

where X b is one of the fields X~ or Xi.

A momentum eigenstate Ip) can be an.nihilated by any mode with positive

indices,

./.", Ip) - .ï.", 1) - X ba Ip) - X- b. 1) - 0 ( + > 0 - > 0)'+'m, +0, - '+'",,-0, P - m.+o. - ",,_0. p - mi Vi ,mi - vi •

(2.1.9)

State', in a sector are !inear combinations of states of the form

(2.1.10)

with al! mi +Vi :5 0 and mi - Vi :5 O.

The ground state energy for a complex fermion is E'F = - En>o(n-v") by the

normal ordering procedure [5]. Using zeta function regularization, this is known to

be

E" 1"( ") 1
F = -'2v 1 - v + 12'

15
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For a complex boson the ground state energy is the same forrnt:.la as above but with

the sign reversed, i.e. E~ = !vb(l - vb ) - 112' The vacuum energy for a given string

theory is therefore

Eo = LEF+ LE~.
• b

(2.1.12)

Closed string fields may obey aperiodic boundary conditions because these are

not directly observable. Physical states however must be one-valued. To sntisfy

this requirement, we may fust define B.:l operation by a group elcment h on the

fields of any sector,

(2.1.13)

which is consistent with the string boundary conditions in the abelian twist. Then

we can define a singlet projection operator P = EgEG. g/IG.1 where IG.I is the

order of the group G., and demand all physical states in each sector to be invariant

under this P. This turns out to be equivalent to the one-valued requirement for

the physical states. This scheme is called GSO projection in the literature [37J.

Ha.ving established the string boundary conditions and the GSO projection, wc

act1..lally have given the Hilbert space of our string theory. The next important ti..3k

is to calcu1ate the one-loop string amplitude (or partition function). The ont~-loop

diagram in string theories is a torus. In order to globally describe the coordinate

transformations on the torus, we have to define the modul8.I parameter 7' to be

7' = tla, where t and u are world-sheet coordinates. The torus admits coordinate

transformations that are not continuously connected to the identity. 't'hey are

16



trausformation [5]

aT + b
T -+ ,

eT +d

where a, b, e, d are integers with ad - be = 1. In other words the matrix

(
a b)
c d

(2.1.14)

(2.1.15)

forms a group 5L(2, Z)I ± 1 callcd t~e modular group. The transformation (2.1.14)

is called a modular transformation. The whole modular group is gcnerated by the

two modulaI' transformations, T -+ T +l, T -+ -liT. The 5 L(2, Z)I ± 1 invariance

on a toroidal world-shect is formally a consequence of the underlying reparametriza-

tion invariance in the classical action; we want to maintain this invariance in the

quantum thcory. The modular invariance is crucial for the absence of ultraviolet di-

vergences [5J (see also Appendix A). Therefore we must check the partition function

for a string theory to see whether it is invariant under the modular transfcrmations.

We shall carry out this to one·locp order.

Let q = ei2wT and ij = e- i2wt , where T stands for the complex conjugate of T.

The partition function is given by

Z(G.) =Tr[qHLijHR(_lll

= L Trh[qH"h)ijHR(h)(-l)FPl
hEG.

=~ L Trh[qH"h)ijHR(h)( _l)Fg].
,G.l g •hEG•

(2.1.16)

:f

Here Tr and Trh are respectively the traces taken over all physical states, and the

states in the sector h. HL and HR are the respective Hamiltonians for the left-

17



movers and right-movers, and F is the fermionic number opcrator. ft is intel'csting

to note that this partition function for left-movers l'an be simply writtcn clown by

using the elementary quantum statistical mechanics with the ident.ification e- tlH -

Consider the general abelian twist group G" which can always be writtcn as

Zn, X Zn, X ••• X ZnA for sorne A. Aiso the group clement can be represcnted by

a vector S = (SI, S2,"', SA), with s; being integers defined modulo nj, wll<'re the

multiplication of two group elements becomes the addition of two S vect.ors. The

generator 9j of G, is represented by the vector s with ail entries zero except t.he

ith, which is equal to 1. ln sector s the boundary condition and the operation by

the group clement for the 16 left-moving and 4 right-moving complex fermions arc

,p'((1 +2'1l",t) = exp[-i2'1l"c'w'(s)],p'((I,t),

s,p'((l, t)S-1 = exp[i2'1l"c'w'(s)],p'((l, t),
(2.1.17)

and similar formula is applied to the complex bosons Xb((I, t) with the twist pn­

rameters wb(s) instead of w'(s). Let w(s) = (wa(s)) be a Lorentzian vector with

(16i 4) components specifying the tV.I:t of the fermions,p. The group structure

demands w(s) = L:f=1 SjW; -w'(s) with 0 ~ wr,w(s) < 1, and w'(s) E Z is chosen

to maintain this bound on w(s). Notice that W; = w(gj). Let the eigenvnlues of the

vacuum of s sector ln,} for the operator F and gl (9; E G,) to be

gl\n,} =exp[-i2'1l"(j(s)lIn,},

(_l)Fln,) =exp[-i'll"F(s)lIn,}.

18
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The partition function (2,1.16) is calculated to be the following [21],

1 16 20

Z(G.) = IG.I~ C(r, s) 11 f(w·(r),w·(s)JT) .!l[f(w·(r),w·(s)IT)]'

3

.II b(w6(r),w6(s)IT)[b(w6(r),w b(s)IT)]",
b=O

where the SUIn is taken over all °:::; ri,Sj :::; ni -1,

00

f(u,vIT) = q-tv(l-vl+f:; II (1- qm-Vei2lrU)(1_ qm-l+ve-i2lru),
m=l

b(O,OIT) = 7j-2(T):E exp [i7l"Tp2] ,
p

b(u,vIT) = rl(u,vIT) (u or v '# 0),

C(r,s) = exp{-i7l"[F(s) +2r· (s)]),

(2.1.19)

(2.1.20)

r . (s) = 2:t=1 ri(i(s), q = ei2lrr , and 7j(T) is the Dedekind function defined in

Appendix A. By using the results in Appendix A, the function f(u,vIT) cao be

expressed by the Jacobi function 19 1(IIIT) and the Dedekind function,

(2.1.21)

The modular transformations, T -> T+1 and T -> -~ for the function f(u, viT) are

f(u, viT +1) = exp[i7l"(v2 - v + ~)lf(u - v, ViT),

f(u, vi - .!.) = exp[i7l"(2uv - u - v - .!. )]f(l - v, ul·r).
T 2

(2.1.22)

This shows that if one has a sector twisting by v, then one must have ail sectors

twisting by u, u - v,l - v,"', to enable the partition function to be modular in­

variant. Since the left-moving and right-moving bosons have the ~ame boundary
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conditions, their phases generated by the modular transformations ta the partition

funetion are aetual1y cancelled each other. For the case u or v =J 0, the caIlcel1ation

is obvious since there is no phase generated in Ib(u, viT )1 2 = II(u, viT )1-2 by using

(2.1.22). The cancellation is also true fOT the case u = v = 0, which is shown in

Appendix A. Therefore, as far as modular invariance is concerned, we CaIl neglcct

the bosonic part of the partition funetion in our discussion. The requircment for

modular invariance of the partition funetion is

20

L e"[w"(s)w"(s) - w"(s)]- 2s· ((s) E 2Z,
0=1

20 1 1L e"[w"(r)w"(s) - 2(w"(r) +w"(s))]- S· ((r) - r· ((s) + 2[F(r) - F(s)] E Z.
a=1

(2.1.23)

After some ca1culations given in the Appendix B, the above two equations

turn out to be the following two non-trivial conditions, which are equivalent to

level matching conditions in the literature [24]:

ni(w~ + Fi) E 2Z,

(i =Ji).

(2.1.24)

(2.1.25)

Z - ""'4=20 CI CI Cl 2 d D . thln these equations, Fi E , Wj • Wj = L.."=! e wi W j' Wj == Wj • Wj an i} IS e
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(2.1.26)
Fe

(i(O) = -Wi . T - -f +Z,

1
(ii = 2"(w; +Fi) +Z,

(ij = (njY;jWi· Wj + Qij)/Dij + Z (i oF j),

where T = «!)IS j (!)4), Y;j E Z is defined 50 that Y;jnj + Yjini = Dij, and the

common divisor of ni and nj. The vacuum parameters are found to be:
A

F(s) = LSiFi - 2w'(s). T + 2Z,
i=l

A

(i(S) = (i(O) + LSj(ij -Wi ·w'(s) +Z,
i=l

discrete torsion parameters Qij = -Qji (1 ::; i < j ::; A) can be taken to be

arbitrary integer from °to Dij - 1. The above vacuum parameters are the most

general solutions for a four-dimensional string to have modular invariance. The

importance of the discrete torsions was first noticed by vara [40]. We will see later

that these torsions may change the final gauge group in the nonabelian twist.

In order to produce the original Es x E~ heterotic string, one may simply

take the twist group GA = Z2 X Z2 X Z2 with WI = T,W2 = «!)8,OSj04),W3 =

(08, (~)8; 04). That implies the three groups of the first eight, the second eight

and the last four fermions can be chosen independently to be either periodic or

antiperiodic. We will use the symbol (N, N; N) to denote all three groups being

antiperiodic (Neveu-Schwarz fermions). For periodic fermions (Ramond fermions),

we will write R instead of N. On the other hand, if taking GA = Z2 X Z2 with

wl = T,W2 = «!)IS j 04) instead, one gets SO(32) heterotic string.

:r
Since we would like to compactify the original ten-dimensional Es x E~ heterotic
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string, the twist group should be taken to be Z2 x Z2 X Z2 X G~, where G~ is saille

point group. Therefore, in describing the four-dimensional string, we have the eight.

sectors from the Es x E~ string and also different sectors generated from the nbelian

group G~. We will label the vacuum of the sector g E G~ with initial (N, N; N)

boundary conditions as InfNN). Other vacua are labelled in a similar way.

Before leaving this section, we would like to point out that although the ('on­

ditions (2.1.24) and (2.1.25) are derived by the requirement of modular invariance

at one-loop, these are actually the aufficient conditions for modular invariance ta

all-loop in the abelian twist. The proof [41,42J can be done by writing down II-loup

string amplitudes and n-loop modular transformations, tond by showing that no

more conditions cao be obtained beyond the level matching conditions.

§2.2 Lorentz Symmetry and Space-Time Supersymmetry

So far we have only considered the constraints on the world-sheet. In this

section we will discuss two important space-time symmetries, Le. Lorentz symmetry

and space-time supersymmetry. They will give more constraints on the twist and

vacuum parameters.

It is known that Lorentz symmetry is essential for a theory to make sense

physically. The critical dimensions 26 for bosonic string and 10 for superstring

can be determined by requiring Lorentz invariance in the first quantization of the

string [5J. In the ten-dimensional heterotic string, the Lorentz algebra is 50(9,1).

It becomes SO(8) in the light-cone gauge where only eight transverse space-time
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coordinates remain. The Lorentz algebra is generated by the zero-modes of the

right-handed Ramond fermions [5), whose anti-commutation relations are

{t/Jg,,j;~} = oab,
(2.2.1)

and the appropriate space-time indices are 17 :5 a, b :5 20. The anti-commutation

relations (2.2.1) generates the so-called Clifford algebra. The gauge particles reside

in the sectors (", ..; N) since the modes t/J':~ and ,j;,:~ (17:5 a:5 20) for;n a vector
2 2

representation of the Lorentz algebra 50(8). On the other hand, the gaugino

particles reside in the sectors h ..; R) since t/Jg and t/Jgt/J~t/J8 (17 :5 a, b, c :5 20)

form a spinor representation of the Lorentz algebra.

Lorentz invariance must also be maintained in string compactifications. The

Lorentz algebra after compactifying the extra six dimensions becomes 50(2), which

is generated by the zero modes of 20th fermion t/J~20) and its complex conjugate.

Similar to the case in the ten-dimensional string, the states in (", ..; R) sectors with

or without t/J~20) are Lorentz spinors, since they form spinor representations of the

Lorentz algebra. Therefore they are physical fermions. On the other hand the states

in (", ..;N) sectors with or without the modes t/J~~l, ,j;~~) correspond to physical
2 2

bosons. Hence all fermion are in the sectors with twist parameter w(20) = 0, and

all bosons are in the sectors with w(20) = t. That implies, in order to have correct

spin-statistics relation, the total fermionic number of a statc in sector s has to be

(2.2.2)

We can also determine the total fermionic number of a state in sector s from its
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explicit construction, and this gives

F,OI(s) = 2N(s)· T + F(s) + 2Z, (2.2.3)

where N(s) is a (16; 4) Lorentzian vector, which labels the number of different.

fermion modes in that state. Since we start from Es x E~ heterotic string, the t.wist.

group is G. = Z2 X Z2 X Z2 X Zn. X ••• X ZnA with first three twist vectors fixed,

i.e. Wl = T,W2 = ((~)S,OS;04),W3 = (OS,(~)Si04). Without loss of generality w,­
can always choose wl20

) = 0 (i > 3) since we can add the twist vector Wl ta Wj UllY

way. Therefore we have Rq(gi) = RX(gi) l' > 3). The GSO invariance under the

group 0: the first Z2 implies

N(s)· T + (I(S) = 0 +Z.

From eqs. (2.2.2)-(2.2.4) one can obtain

F(s) =1 +2w(20)(s) +2(I(S) +2Z.

(2.2.4 )

(2.2.5)

'.

Expanding both sides of the above equation by use of (2.1.26), one may deduce the

following,
FI = 1 +2Z,

(2.2.6)
Fi = 2(li +2Z.

That is the constraints to the vacuum parameters by the Lorentz symmetry.

Let us turn to the discussion of space-time supersymmetry. As we mentioned in

Chapter 1, we want to keep the space-time supersymmetry at the compactification

scale, since it is expected to be broken at very low energy (- 1TeV). Il also has
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:r.,

been shown in the lattice construction that it is very difficult to have string theories

having vanisbing cosmolog;.cal constant without space-time supersymmetry [43].

This is another indica.ion that a physical string theory should have at least N = 1

space-time supersymmetry, in which case there must be the same mass spectra of

space-time bosons as their fermionic partners.

The experimentally measurable spectrum is the string massless states because

the energy scale of the massive states is 1Q19GeV. The negative energy states

(tachyons) are unacceptable for a physical theory. Fortunately the existence of

space-time supersymmetry can guarantee a string model to be free of tachyons [5].

From Section 2.1 one can calculate that the vacuum energy for right-moving fields

is greater than or equal to -!' while that for left-moving fields is greater than or

equal ta -1. The gauge particles are created by the modes I/I~~l, ,p~~). To have a
• •

ma.ssless gauge bosons, we must take the minimal vaeuum energy of right-moving

fields, which occurs in the identity (e) sector of the abelian group G~. Ali other sec-

tors have no contribution to the vector bosons. More precisely, the gauge particles

are given by the vacua In~NN), In:NN} and In~RN} excited by sorne string mod('s.

On the other hand, the gaugino particles come from the vacua In~N H), In:lNH) and

In~RR} excited by sorne string modes. The excitation modes of the right-fermions

can be either 1/I~20) or without it. Notice that there is no twist ta the fermion 1/1(20)

except by the first Z2 group of the whole twist group Z2 X Z2 X Z2 X G~. In arder

for the massless gauge bosons and their partner gauginos to be matched, it is nec­

essnry that the phases generated by gl (i > 1) on the vacua In~NN} and In~NR,\
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are the sarne. It also should he true for the vacua In~NN) and In~NR), or In~ lIN)

and In~RR). In terms of the vacuum parameters, it has to satisfy the fol1owing for

i> 1,

(;(01) = (;(02 +Oa),

(i(02) =(;(81 + o5a),

(;(Oa) = (i(e51 + 02),

(2.2.7)

(2.2.8)

(2.2.9)

where 0; is a vector of S = (SI, S2," • ,SA) with all entries zero except the ith, which

is equal to 1. Using (2.1.26), the above turns out to be

(il =(i2 + (ia + 21,

(;2 = (il + (ia - 2Wi . Wa + 21,

(;a = (il + (i2 - 2wi . W2 + 21.

(2.2.10)

(2.2.11)

(2.2.12)

By use of eq. (B.ll) in Appendix B, which is (ij + (ji = W; • Wj + 21, the three

equations above can be written as:

(1 i = (2i + (ai +Wi • W + 21,

(2; = (li + (ai - W; • W + 21,

(a. = (1 i +(2i - Wi • W + 21,

(2.2.13)

(2.2.14)

(2.2.15)

where W == T - W2 - Wa = (016 ; (!)4). Obviously (2.2.13)-(2.2.15) are equivalent.

Therefore there is only one non-trivial equation,

26
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Setting i = 2,3 and using (2.1.26) and (2.2.6), one can obtain

(23 = 0, (32 = O. (2.2.17)

The parameters (2i, (3i (i > 3) can be obtained from (2.1.26). In summary, the

vacuum parameters for (i > 3) are

FI = 1 +2Z,

(ni odd),

1 1 1 1
(2; = 2"niWi' W2 + 2"Q2i, (3i = '2niWi . w3 + 2"Q3i (ni even),

(li = Wi . W + (2i + (3i,

Fi = 2(li +2Z,

(2.2.18)

where F2 = 2(12, F3 = 2(13, Q2i and Q3i can be chosen to be either 0 or 1. Those are

corresponding to Z2 torsions among Z2'S and other even cyclic groups. Eqs. (2.2.18)

and (2.1.26) are our formulae for calculating vacuum parameters.

1mposing boundary condition 2(li E Z in (2.2.16), one has

2wi' wEZ (i > 3), (2.2.19)

which is a new constraint on the twist parameter. In general (2.2.19) can be rep­

resented by det(Rx(gi)) = 1 (i > 3). It is this constraint that restriets the twist

point group to be a subgroup of SU(3) rather than U(3). In other words, we have

just demonstrated from the operator formalism the requirement of SU(3) holon­

omy which has been shown previously in the path-integral formalism [5]. It can
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also be shown that the condition (2.2.19) is sufficient to guarantee at least N = 1

space-time supersymmetry [36J. In our approach this conclusion can be reached hy

comparing the spectra of the sector with twist w(s) + w and the sector with twist

w(s) for a given vector s. It turns out that these are mutually supersymmctric part­

ners. Therefore the requirements (2.2.7)-(2.2.9) are necessary and also suffici<'nt

to have space-time supersymmetry.

Comparing this fermionic formalism with the lattice approach [22,231, wc find

that F2 and F3 are always set to zero if one starts from an Es x E~ self-dual

lattice. In abelian twist the different values of F2 and F3 make no diffcrcnce becnusc

they are just a matter of choosing spinors versus conjugate spinors, which are

actually equivalent. However, we will see that this equivalence no longer exists in

the nonabelian case. In that sense the ferrnionic formalism is more general than

the lattice approach.

§2.3 Crystallographic Constraints on Abelian Orbifolds

The propagation of strings on the ten-dimensional space-time can be regarded

as on M4 x TB, with M4 being four-dimensional Minkowski space and TB being a

six-dimensional torus. An orbifold is essentially the toms modding sorne discrete

symmetry. Rather than being abstract, let us consider Z3 orbifold as a concrete

example. To begin with, we consider a special toms Ta (SU(3) root lattice) made

by the following identifications of points in the complex z plane,

(2.3.1 )
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This lattice admits a Z3 symmetry generated by

00: Z -+ ei2Tr
/

3 z. (2.3.2)

On the toros (the fundamental region) there are three points left invariant by this

transformation (see Figure 1). They are the points

(k = 0,1,2), (2.3.3)

with the understanding that points shifted by lattice vectors are considered to be

equivalent.

Now consider three complex variables Zi (i = 1,2,3). With the identification

Zi ~ Zi + 1 ~ Zi + ei2Tr
/

3
, we obtain three tori Ti (i = 1,2,3). The product

T = Tl X T2 X T3 is a toros of real dimension six (complex dimension three). T

admits the Z3 symmetry:

(i = 1,2,3). (2.3.4)

This symmetry has 33 = 27 fized points, which are left invariant by the discrete (such

as Z3) transformations. We denote the point group (such as Z3 group generated

by 0) as P. We would like to supplement (2.3.1) with an additional equivalence

relation, this being the statement that two points on T are considered equivalent if

they are related by the P action. Thus, we impose the condition

(i = 1,2,3). (2.3.5)

We denote as 0 the space T / P of equivalent points on T subject to this equivalence

relation. Since (2.3.5) introduces conical singu1arities at the 27 lixed points, 0 is
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not a manifold. It is called an "crbifold". If the point group P is Z3, then the space

T /Z3 is called Za orbifold. Even though 0 is not a manifold, string propagation on

M 4 X 0 seems to make good sense since one can resolve the singulnri ties by blowing

up the fixed points [24J.

The discrete symmetry can be seen from the boundnry conditions of abclian

twists for complex bosons, which was discussed in Section 2.1. Let X"(u, t) be

one of the components of the field vector Y or Z defined in (2.1.2). !ts boundury

condition is

X"(u + 27l", t) = e-i2"".' X"(u, t), (2.3.6)

where Vy(g) or Vz(g) in (2.1.3) has been takell to zero, and f" is l'quai to +1 for

left-movers and -1 for right-movers. The mode expansion of the bosonic field ia

X"(u,t) =q"+ ~p"(t+f"u)+iL~X~+., exp[-i(t+f"u)(n+v")J. (2.3.7)
2v 27l" n;O!O n

Imposing (2.3.6) on the mode expansion for v" oF 0, we may obtain

"-0p - , (2.3.8)

(2.3.9)

where p" will forro a lattice for the case v" = O. We know that q" (a = 1,2,3)

are complex variables. The equation (2.3.9) for the case v" = t and f" = -1 is

exactly the same as (2.3.5). Therefore the point group P which is used to define

the orbifold is nothing but the abelian group G" without the first three Z2 's.

In general, we may take the (6; 6) real bosons as a lattice Tf 181 T~, which can

be thought as free bosons modding some shift vectors [ The elements of spacc
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group therefore can be represented by (e, Ï), where 8 is an element of point group

P. Since we only deal with sy=etric orbifold, if Ais referred to either Tf or T~

for short, then the orbifolds we will consider can be represented by 0 = AIP. Let i

be a vector describing 6 real bosons. The modding by the space group implies that

the points i and 8i + Ï are identified. Under this identification there are points,

such as the origin, left invariant up to a lattice vector. These invariant points are

called fixed points. Since the twist 8 is an automorphism of the lattice, i.e. 8ÏE A

for Ï E A, this implies that there is a basis in which !!.1l the 8 entries are integers.

Thus in any basis det8 aud Tr8 must be integers. Since the number of fixed points,

which are invariant under eup to a lattice vector, is given by det(1 - 8) according

to Lefschetz theorem, det(l- e) must aiso be an integer. In summary we have to

have the following constraints,

Th8 E Z,

det8 E Z,

det(1 - 8) E Z.

(2.3.10)

(2.3.11)

(2.3.12)

The six real bosons can be viewed as three complex bosons. Let Zi = Xi +

iXi+3 (i = 1,2,3). Therefore (Z1>Z2,Z3) are nothing but the q" (a = 1,2,3) in

(2.3.9). Let zi,zi (i = 1,2,3) be a basis of the lattice A, th,~ equations (2.3.10)­

(2.3.12) can be writkn to be

-J

Tr(Rx(g) +RX(g» E Z,

det(Rx(g)RX(g)) E Z,
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det(l-Rx (g))(l- Rx(g)) E Z, (2.3.15)

where Rx(g) is a 3 x 3 complex matrix, which is either Ry or Rz defined in (2.1.3).

Notice that (2.3.14) is trivial for any abelian representation Rx(g).

Recall that RX(gi) = Rq(g,) for i > 3 and gi E G~. Let a = wl 17
), b = W~l~).

C = w~19) (i > 3). The group l'lement gi E G~ acting on the complex bosons of

left-movers is

(2.3.16)

From (2.2.19) we know a+b+~ E Z. Ifwe consider ZN abelian group, i.e. gi E ZN,

there are only six values of N, N = 3,4,6,7,8,12 satisfied (2.3.13) and (2.3.15). The

total number of different representations is thirteen, which is the number of differellt

(a, b, c) values modulo the equivalences of the interchange of different sectors. The

acceptable representations are classifid in Table 1.
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Chapter 3

Construction of Nonabelian Twist

Nonabelian twists have the nice feature that they can reduce the rank of a

gauge group. However they suffer from global anomalies [28]. Instead of the rather

impractical cohomological conditions given by the geometrical analysis, we propose

a method to ensure a vanishing global anomaly from a group theoretical point of

view. This forms the basis of model constructions in the nonabelian twists. The

org~.nization of this chapter is the following. In Section 3.1 we discuss the Hilbert

space of the nonabelian twist, which is very different from the abelian counterpart,

then consider the structure of the partition function which in turn depends on the

Hilbert space. In Section 3.2 the representation requirement for vanishing global

anomalies will be presented, which is actually a requirement for a consistent Hilbert

space. The identification of the final gauge group after the GSO projection will be

carried out in Section 3.3.

§3.1 Hilbert Space and Partition Function

In the construction of the abelian twist we have different sectors, each of which

has a one-to-one correspondence with a group element. We also require a GSO

projection which ensures al! physical states to be group invariant st:J.tes. Given a

state of one sector of an abelian twist, the operation of GSO projection is always
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within that sector. That means each sector itseif is a sub-Hilbert spacc. Therefof<'

the whole Hilbert space is just the direct sum of the sub-Hilbert spaces of evcry

sector. However the Hilbert space structure of nonabelian twist differs grcatly from

the abelian case.

Let us start with the general boundary conditions (twist fI"prescntatioll) of a

nonabelian twist by a nonabelian group G. Similar to the abelian case, one may

define a g-sector (g E G) by the boundary condition as the ~':>l1owing,

Xg(O' + 211', t) = D~(g)xg(O', t),

TJg(O' +211',t) = D~(g)TJg(O',t),

>'g(O' +211',t) =D~(g)>'g(O',t), (3.1.1)

Yg(O' + 211', t) = DicCg)Yg(O', t),

Zg(O' +211',t) = Dx(g)Zg(O', t),

where Di(g) for i = X, TJ, >., X are unitary representntions of g while assurning there

is no shift vector for sirnplicity. Also only syrnrnetric orbifold is considered. In order

to rnaintain world-sheet supersyrnmetry, one has

Dx(g) = ±l,

Dx(g) =Dx(g)Dq(g).
(3.1.2)

Due to the nonabelian nature of G, the representations Di(g) are generally non­

diagonal. In order to have the mode expansion of the string fields in a particular

sector, one has to diagonalize the representations within that sector. The construc­

tion of the string states and the formulation of the vacuum energy are the saIne as

the abelian case within each sector.
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One might think that the field operators under a nonabelian twists would

transform in the same way as in the abelian case,

(3.1.3)

where h is an operator corresponding to a group element h. However this is not

correct. To understand why, let us assume it to be correct, and see what kind of

contradiction we may derive. To be specific, let us take the string fields ),(0', t)

whose boundary condition is defined in (3.1.1),

(3.1.4)

Applying the operator h on its both sides, one has

(3.1.5)

Applying (3.1.3) to the above, one obtains

(3.1.6)

Substituting the boundary condition, it leads to

(3.1.7)

This implies

where D>..(h)D>..(g)D>..(h)-l = D>..(hgh-1) has been used. However, genera11y

D>..(g) ::f: D>..(hgh-1 ) for two arbitrary group elements h,g will lead to a non­

vanishing left side of (3.1.8).
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We have seen that the simple-minded definition for the eso projection doe~

not work in the nonabelian twist when [g, hl # O. There is however no contradiction

if [g, hl = O. Let us define therefore

([c,g] = 0) (3.1.9)

for any group element c which co=utes with g. This is consistent \Vith the abcliiUl

case where ail group elements mutually commute and therefore c actually is ll.ny

group element of the abelian group. Setting c equal to g, one has

(3.1.10)

Take a group element a, and apply the operator a on both sides of (3.1.10),

(3.1.11)

Multiplying D>.(a) to the left of its both sides, one obtains

(aga-1 )D>.(a)a>'g(u, t)a-1 (aga-1 )-1 = D>.(aga-I )-1 D>'(I1)a>'g(U, t)a-1,

(3.1.12)

where D>.(aga-I )-1 = D>.(a)D>.(g)-1 D>.(a)-I has been used. Substituting 9 \Vith

aga-I in (3.1.10), one has

T

Compared (3.1.13) with (3.1.12), one obtains

D>.(a)a>'g(CT, t)a- I =C>.(aga-I )>'.go-I (CT, t),
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where C>.(h) is a unitary representation that commutes with D>.(h). 5ince C>.(h)

cao be always absorbed by the redefinition of the string fields .Àh(cr, t) without

affecting the string boundary condition, one may set C>.(h) = 1. Then the equation

(3.1.14) can be written as

(3.1.15)

Note that (3.1.9) is a special case of (3.1.15). It is straightforward te show that the

formula (3.1.15) is the general string field tranaformation that is consistent with the

general string boundary condition in the nonabelian twist. It is important to notice

that al! sectors will be mixed with each other within one class of the nonabeliao

group. Therefore.al! sectors within one class form a sub-Hilbert space. The whole

Hilbert space can be represented by the direct sum of al! sub-Hilbert spaces of

corresponding group classes, i.e.

?-l =?-lo œ?-lI œ... œ?-lK-1, (3.1.16)

where K is the number of classes of the twist group, and ?-lo denotes the sub­

Hilbert space of the identity (e) which forms a group class by itself. It is interesting

te notice that this Hilbert space structure aise applies to the abelian case where

each group e1ement itse1f forma a class in an abelian group. Therefore one may

think that abelian twist is nothing but a certain limit of the nonabelian twist.

Let us give an example to illustrate the structure of the Hilbert space. Take

a simplest nonabelian group D3 , which has six elements a, b, c, d, e, f, and three

classes (e),(a,b,c),(d,f). The two-dimensional irreducible representation 2 of the
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elements a and f generates the group [38J, i.e.

(
0 1

a = 1 0 ), (3.1.1 i)

with w = e-i2"/3. The two one-dimensional irreducible representations arc dt'-

scribed by l(a = 1,/ = 1) and l'(a = -l, f = 1). For elements multiplication

to be specifie, one may take d = /2, b = dad- l and c = faf-l. Wc list the

multiplications in Table 2.

In order to simplify our discussion, consider two complex fermion fields

.,p(l), .,p(2). Suppose the boundary condition is given by the two-dimensional ir-

reducible representation D(g) of D3 that is given in (3.1.17), i.e.

(3.1.18)

Consider the identity (e) sector. Since the identity element commutes with all

elements of the group, one obtains

(3.1.19)

where the operations by other group elements can be obtained from the above two

operations. In the / sector. sinee the operation of the group element a will bring

the fields of the f sector to the fields of the sector afa-l = d, one has

(3.1.20)
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(3.1.21)

(

In the sub-Hilbert space of the class (f, dl, the string field transformation is

t/J?) (W2 t/J?)
r t/J?) r-I = W ) t/Jj2)

t/J~) ~ t/J~)
t/J~2) W t/J~2)

t/Jjl) (1 1 1 1 t/Jjl)
a t/J?) a-I = ) t/J?)

t/J~I) t/J~I)

t/J~2) t/J~2)

where ail blank entries are zero. That is the group representation for the string

fields in the sub-Hilbert space of the class (f, dl. With the same procedure, the

group representation for the fields in the sub-Hilbert space of the class (a, b, c) is

found to be

t/Jil ) W2 t/Jil )

t/Ji2) W t/Ji2)

r
t/J~I)

r-I = W2 t/J~I)

t/J12) W t/J12)
t/J~I) w2 t/JP)
t/J~2) w t/J~2)

(3.1.22)
t/Jil ) t/Jil )1
t/Ji2) 1 t/Ji2)
t/J11

)
a-I = 1 t/J11

)
a

t/J12) 1 t/J?)
t/JP) 1 t/JP)
t/J~2) 1 t/J~2)

Through this simple example, we have demonstrated that the whole Hilbert

space cao be constructed by using (3.1.15) for a given boundary condition (twist

representation). Also we have seen that the string fielc's in each sub-Hilbert space

should form a representation of the nonabelian group.
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In order to complete the construction of the Hilbert space, we have to consider

the vacuum states. Take a vacuum state of the 9 sector [Qg). Following the defini·

tion (2.1.9) for the vacuum state b.Ild the structure of the string fields, if [h,g] = 0,

then the operation of the operator h on [Qg) will remain in the 9 sector. On the

other hand, if [u,g] '" 0, then the operation on [Qg) will result in the ugu-1sector.

This implies

h[Qg) =ë(h,g)[Qg)

uJQg) =p(u,g)!QU9U- 1 )

([h, g] =0),

([u, gJ '" 0),
(3.1.23)

where ë(h, g), p(u, g) are some phases. These phases are not arbitrary because

of two reasons. Firstly, the vacuum states should form a representation of the

nonabelian group in order for a theory to be consistent. This will be referred

to the repre~entation requirement. Secondly, as we have seen in Chapter 2, the

vacuum phases are determined by the twist parameter via the modular invariance

requirement of the partition function. Similar constraints will be expected from the

modular invariance of the nonabelian twist.

In order to discuss the modular invariance, one has to consider the partition

function of the nonabelian twist. From the structure of the Hilbert space, the

operation of the group element c on the fields of the 9 sector will result in the fields

of the cgc-1 sector. Also it is obvious that the fields of different sectors are mutual

orthogonal. Therefore the net contributions to the partition function is given by
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the commuting pair of group elements,

Z(G) == I~I 2: Tr{exp[i21l"THL(g) - i21l"THR(g)](-1)Fh}
9,hEa

g g

== 2: 0 h = 2: 0 h,
9,hEa [g,h)=O

(3.1.24)

where IGI is the order of the nonabe1ian point group G, and the box symbol attached

with g and h denotes the contribution to the partition function by the projector

of a group element h in the g sector. This formula was first obtained in the path

integral formalism [24].

As an example, consider the partition function of the nonabelian group Da,

e abc
Z(Da) = 0 (e,a, b,c,d, f) +0 (e,a) +0 (e, b) +0 (e, c)

d f
+0 (e,d,J) +0 (e,d,f),

(3.1.25)

(3.1.26)

(

where the (e,· .. ) on the right of the box is referred to the SUffi of all projectors in

the parenthesis. Rewrite the above as

e a e b
Z(Da) ={O (e,a) +0 (e,a)} +{O (e,b) +0 (e, b)}

e c
+{O (e,c) +0 (e,c)}

e d f e
+{O (e,d,j) +0 (e,d,f) +0 (e,d,f)} - 3 0 e

=~Z(Z~) +~Z(Z~) + ~Z(Z~') + ~Z(Za) - ~Z(Zl)'

where the fraction factor is due to the definition of partition function involving a

factor l/IGI, which is the inverse of the order of point group. Notice that each {...}

in (3.1.26) in itself is a partition function of an abelian twist. The three Z2 abelian
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groups (e, a), (e, b), (e, c) have equal contributions to the partition function becnllse

of the sub-Hilbert space structure. This can be seen by the fact that the group

element b twisting string fields of the b-sector and c twisting those of the c-sector

are exactly the same as the group element a twisting string fields of the a-sector.

Therefore it is no longer necessary to distinguish these three partition functions in

(3.1.26). Hence the partition function of Da is

1 1
Z(Da) =Z(Z2) + 2Z (Za) - 2Z(Ztl. (3.1.27)

The partition functions of nonabelian twists in SU(2) WZW model were first

obtained by P. Ginsparg in the path integral formalism [29], where he considered

the c = 1 conformal field theories based on modding out string propagation on the

SU(2) group manifold by its finite subgroups. Among other things he obtained

the same formula as (3.1.27) for Da orbifold. However, since he considered the

orbifolds of the c =1 case, our partition functions are more general. Furthermore

our partition functions constructed from the operator formalism can give more

information. For example, we know that the three partition functions of Z~, Z~ and

z~' in (3.1.26) are exactly equal even without any phase differences. From the path

integral formalism one can figure out that the partition function of a nonabelian

orbifold is a linear combination of the partition functions of sorne abelian orbifolds

[28J, but the relative phases among those partition functions can be only fixed by

the knowledge of the accurate Hilbert space. We will see later that many things

become more transparent in our operator formalism.

Given the formula (3.1.24) for the partition function, in principle one can
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(3.1.28)

calculate it for any nonabelian group. However in prl'.ctice, it is not easy to figure out

what kind of linear combination of the partition functions of the abelian subgroups

forms the partition function of the nonabelian group, especially for a large group.

There is however a straightforward approach to obtain the nonabeliao partition

function which requires no guess work. This we shall discuss presently. Consider

the partition function of a general nonabelian twist, and let Gi be the maximal

abelian subgroups of G. We will denote M as the total number of Gi'S. We

might guess that the partition function of G would be the linear combination of the

partition functions of ail the Gi 's. However this turns out not to be true because we

have over-counted the sectors generated by the group elements of Gij == Gi n Gj.

If we subtract the contributions from the group Gij, then we would have over­

subtracted the sectors given by the group Gijk == Gi n Gj n Gk, etc. This process

will go on until the group Gijk... being the intersection of ail M subgroups. Let

Z(Gijk ... ) =Z'(Gijk... )/IGijk... I, then the partition function ofthe nonabelian twist

cao be expressed in terms of the partition functions of t.he abeliao twists,

Z'(G) = L Z'(Gi) - L Z'(Gij) + L Z'(Gijk) -''',
{i<j} {i<j<k}

where the su=ation is truncated with the last term being the partition function

of the intersection of ail M subgroups. This is the general formula for the partition

function of a nonabelian twist. For a relatively large group, it is far more efficient

to use this formula instead of (3.1.24).

As a check, consider D3 group where there are four maximal abeliar "ubgroups,

G] - (e, f, d), G2 = (e, a), G3 = (e, b), G4 = (e, c). It is easy to obtain Gij =
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Gijk = Gijkl = (e) (1 S; i < j < k < 1 S; 4). Therefore we have Z'(DJ l =

Z'(ZJ)+Z'(Z~)+Z'(Z~)+Z'(Z~')-6Z'(Zl )+4Z'(Zl )-Z'(ZI l, which is the same

as (3.1.26) if the relation Z(Gijk ... ) = Z'(Giji; ... )/IGijk... 1 is taken into account.

From the general formula for the partition function it is rather obvious that

the partition function Z(G) will be guaranteed modular invariance if the parti­

tion functions Z(Gijk... ) for aIl the re1ated abelian twists are modular invariant.

From the modular invariance of these abelian twists, we can obtain the vacuum

parameters within the corresponding abelian groups. From the group structure

of the Hilbert space we may construct the operations of group clements on the

whole vacua. However these operations on the vacua do not necessarily form a

representation of the group. The confiict between the modular invariance and the

representation requirement is referred to global anomaly, which will be discussed in

the next section.

Let us briefiy summarize the discussion we have presented. For a given non­

abelian twist representation of the string boundary condition, one may construct

the h.:bert space and one may also compute its partition function from the partition

functions of the appropriate abelian twists. Vacuum phases in a nonabelian twist

are constrained by modular invariance requirement~of the twists by its abelian sub­

groups. On the other hand, the representation requirement demands that the vacua

form a group representation. If a confiict arises betwfen these two requirements,

then global anomaly is present. If not, the representation requirement would save

to further constrain the discrete torsion parameters.

44



For an illustration, let us give a concrete example to show how to carry out

all these in practice. Similar to the case of the abelian twist, the whole nonabelian

twist group here is G = Z2 X Z2 X Z2 X G', where G' is sorne fini te nonabelian

subgroup of SU(3). The twist parameters of the first three Z2'S are the samt as

those in the case of the abelian twist. Take a nonabelian group G' to be Da and

assign the Da representation

D == (D>.;D~,D"J = (3 x 2 + l' +1,2 +5 x l' + 1;2+ l' + 1), (3.1.29)

where D>., D~, D x are defined in (3.1.1), and the irreducible representations of Da

are given in (3.1.17) and the paragraph it following.

Con~ider the Za abelian subgroup of Da generated by f, then the twist param-

eter is

121212 12 12
wf = (3' 3' 3' 3' 3' 3,0,0, 3' 3,0,0,0,0,0,0; 3' 3,0,0). (3.1.30)

It is easy to show that it satisfies the modular invariance condition (2.1.24) with

Ff = 1. It also satisfies the condition (2.2.19) of space-time supersymmetry and

Table 1 of crystallographic constraints. We now consider the phase that f generates

on the vacuum In7NN) of sector f. From (2.1.26) we have

(fNN(f) =(,(0) +(ff + (/1 - wf . lw, +TJ,
F,

(,(0) =- w,· T - "2 =0,

1 2 1
(ff =2(w, + F,) = 3'
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Fr'/m (B.ll) in Appendix B, and (2.2.18) one has

(3.1.3-1 )

Therefore (3.1.31) becomes

(3.1.35)

For the phase generated by f on vacuum In~N N) in sector d, onc obtains th,'

fol1owing from (2.1.26)

NNN 2 2
(f (d= f) = (tC0)+2(ff+(fl- wf' L2wf +TJ = 3' + Z.

Eqs. (3.1.35) and (3.1.36) imply

(3.1.36)

(3.1.37)

Consider now the oper'l.tion on these two vacuum states by a. Since afa- I = d,

a takes the vacuum of the f sector into the vacuum of the d sector. The phase is

arbitrary which can be absorbed in the vacuum, so we have

(3.1.38)

Therefore we have

(3.1.39)

Eqs. (3.1.37) and (3.1.39) describe vacua representation of f, d sectors.
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Consider the Z2 abelian subgroup of D3 generated by a. From the diagonal

form of the twist representation with respect to the group element a, the twist

parameter is found to be

(3.1.40)

It satisfies modular invariance conditions (2.1.24) and (2.1.25), as weIl as space-tir..e

supersymmetry and crystallographic constraints. The phase of vacuum In~N N)

gencrated by a is

{.

where Q2i, Q3i are the discrete torsions. Similarly one may obtain

alNN(b) = - ~(Q26 + Q36),

NNN 1
(c (c) = - 2(Q2C + Q3c)'

From the sub-Hilbert space structure of group class (a, b, cl, one has

where V stands for the vacuum representation. This turns out to require
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Similarly if we consider the vacua InI"RN) and InfNN) instend of InI"NN) (i =

a, b, c), then the sub-Hilbert space structure requires

Q2. = Q2b = Q2c,
(3.1.45)

Q3. = Q3b = Q3c.

The different values of Q2., Q3. are the Z2 's discrete torsions. Genenùly the discrete

torsions of the sectors within one dass should be the same in order to satisfy the re­

quirement of sub-Hilbert space structure. This example shows that the consistency

of the Hilbert space cao help us to fix many free parameters. The represcntations

of other vacua, such as InfRR), InI" RR), InI"RR) and so on arc found with the SlUne

procedure. There is no inconsistency raised in this nonabelian twist.

§3.2 Global Anomalies

Global anomalies in l!onabeliao twists were discovered in the pnth integrnl for­

malis!""' [28]. Cohomo;ogical cc.lsiderations restrict the possible phe.::'es gnincd going

around a loop. Contradictions, or global anomalies, will result if these plll~~cs arc

not consistently matched up. This is known to occur if higher loops arc tnken into

consideration. In our approach the global anomalies tum out to be the inconsis­

te"cy of the vacuum representation, and this additional information enables us to

stay with;u or e-loop order ta detect these anomalies. In this sense our approach is

mllch simpler than the path-integral cohomology analysis.

In principle, one may calculate the vacuum phases from the modular invari­

ance requirement of the partition function, and sec whether these phases fit the
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repre3entation requirement. However it is a huge labor to worl. out all the vacuum

rcpresentations sinee the number of the sectors is 8 muitiplying the order of the

nonabelian group G'. In order to simplify the calculation, let us reconsider the

formula defined in (3.1.23), i.e.

hlng) =ê(h,g)lng ) ([h,g] = 0),

ulng) =p(u,g)lnugu-') ([u,g] :1 0).

(3.2.1 )

(3.2.2)

Notice that the phases ê(h, g) can be calculated from the requirement of the mod-

ular invariance of all partition funetions of the abelian subgroups or the underlying

nonabelian group. Also they should satisfy the representation requirement. How-

ever the phases p(u,g) cannot be calculated and only need to satisfy the group

representation.

Consider a group e1ement c. Operating con both sides of (3.2.1), one has

([h, g] = 0). (3.2.3)

Using either (3.2.1) for the case [c,g] = 0 or (3.2.2) for the case [c, g] jZ 0, it leads

to

(3.2.4)

Sincp. [1., '/] = 0, one cao show [chc-l , cgc-l] = o. Following the definition (3.2.1),

one has

·n.., 5)
t.>·~··

Comparing (3.2.5) with (3.2.4), one concludes

(3.2.6)
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Consider two group elements hl, h2 such that [hl' g] = [h2 , g] = O. Operating hl. h 2

successively on the vacuum IQg), one obtains

(3.2. i)

It is obvious [h l h2 , g] =0, so if thinking hl h2 as :l single element, then one llll$

(3.2.8)

From (3.2.7) and (3.2.8), one obtains

(3.2.9)

The two conditions (3.2.6) and (3.2.9) are necessary for a theory to be consistent.

Since the phases e:(h, g) <:an be calculated from the twist representation, these two

conditions are not a priori satisfied. The failure for the phases to satisfy the two

conditions indicates the presence of global anomalies. Notice that no more condi­

tions can be obtained from the operation of group elements on th~ both sides of

(3.2.1).

One may also consider (3.2.2) to try to derive other conditions. However, it

turne out that these conditions are either included in (3.2.6) and (3.2.9), or can

be satisfied by choosing appropriate values of p(u, g). Actually the representation

requirement cannot fix all the phases p(u, g), such as the vacuum representations

in the Da twist considered in the last section. Therefore the representation re­

quirement can be satisfied as long as the two conditions (3.2.6) and (3.2.9) are

satisfied. This implies that (3.2.6) and (3.2.9) are equivalent to the represent a.tion
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rcquiremcnt. In practice, checking these two conditions are much simp1er than to

construct al! H,e vacuum representations.

The two conditions that we have presented are necessary and sufficient to

e!iminate global anomalies at 1east within one-1oop in the operator formalism. To

show the presence of global anomalies, we need only to find one condition that is

violated. However to show the absence of global anomalies, we have to check all

the conditions given by (3.2.6) and (3.2.9) being satisfied. If [hl, h21 = 0 in the

(3.2.9), then hl, h2 , 9 belong to the same maximal abelian subgroup. Since there

is no global anomaly within an abelian group, the condition (3.2.9) for the case

[hl' h21 = 0 is always trivial. Therefore one onl>' needs to check the non-trivial case

[hl, h21 'lOin the (3.2.9).

In the following, we will illustrate this method with two toy examples that was

discussed by Freed and vara in the path integral formalism [28] to show how these

inconsistencies can alrcady be detected in one-Ioop. Many other cases of global

anomalies will be discussed in Chapter 4.

1. Extra-special p-group

This group G' is generated by three elements g, h, e defined by the following

relations
gP = hP = cP = 1, gh = hg,

(3.2.10)
cg = ge, ch = ghe.

We consider the case p = 5 to be specifie (but what we shall discuss applies to any

prime number p ~ 5). This group contains 125 elements and 29 classes. lt has six
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maximal abelian subgroups G. ~ Z5 XZ5 (i = 1,'" ,6), generated respective1y by

{g,h}, {g,c}, {g,ch}, {g,c2h}, {g,c3 h},{g,c4 h}. The intersections of the diffcrcnt

G;'s as weil as their further intersections are given by the group gcneratcd by {g}

which is isomorphic to Z5. li we consider this nonabelian twist based on the Ea x E~

heterotic string, then the whole twist group is Z2 X Z2 X Z2 X G'. Let us define th..

partition function Zh(G) == Z(Z2 x Z2 X Z2 X G) from now on for any finite group

G, where the subscript h stands for choosing the heterotic string initially. From

the gcneral formula (3.1.28) for the partition function, ont obtains,

(3.2.11)

Let us consider a five-dimensional irreducible representation of G' described by

g=

c=

Ct 1
Ct Ct

Q h= Ct2

Ct Ct3

Q Ct4

(3.2.12)
1 \

1 ,}1

1

where Q = e-'2"/5. Take the twist representation as one copy of this to apply on the

five complex fermions .plU), •.• ,.pll3), while leaving the other fermions untwisted.

It is easy to check that all the modular invariant conditions for ail the Z5 x Z& and

Z5 abelian subgroups of G' are satisfied. In the case when the abelian subgroup

involves c, which is non-diagonal, this matrix should mst be diagonalized before

these conditions are applied. We now consider the abelian subgroup Z5 generated
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by g. In this case, W g = (08, k. k. k, k, k,03;04). The modular invariance condition

(2.1.24) demands Fg = 1. From (2.1.26) it's easy to obtain the rhase that g

generates on the vacuum In:RR ) in sector g,

RRR 1 2 2
(g (g) = (g(O) + (gg = -Wg' T + 2Wg = -5" + Z.

Hence

(3.2.13)

(3.2.14)

We know that 9 co=utes with every element of the group G' , and cgc-1 = hg.

From the condition (3.2.6), one has é(h,g) = é(chc-1,cgc-1) = é(hg,g). That

means hjn:RR) = hgln:RR). On the other hand, we get from (3.2.14) that

(3.2.15)

This contradiction shows up as a global anomaly in the path-integral formalism.

2. Quaterniol\ group (Double dihedral group D~d»

This group has eight elements and five classes (e), (a2 ) , (a,a3 ), (b,a2 b),

(ab, a3 b), generated by [38]

(8.2.16)

lt has one two-dimensional irreducible representation 2 described by the above

matrix, and four one-dimensional irreducible representations described by l(a =

1, b = 1), l'(a = 1, b = -1), ll/(a = -1, b = -1), and lll/(a = -l, b = 1). The

ppxtition function of this nonabelian group is computed to be

Zh(D~d»)= ~Zh(Z4) + ~Zh(Z~) + ~Zh(Z~) - ~Zh(Z2)'
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where the abelian group Z4 is generated by a, Z~ by b, Z~ by ab, and Z2 by

a2 . Let us take the twist representation as four copies of the two-dimensional

representation to apply on the fermions 1jJ(9), • •• ,1jJ(l6). We check that all conditions

of abelian twists are satisfied. Consider the Z4 group {a, a2 ,a3 , e}. The twist vector

. - (08 .!. ~ .!. ~ .!. ~ .!. ~. 04 )' (R R'R) t Fr (? 1 ?6) , 115 Wc - , 4 ' 4' 4' 4 ' 4 ' .. ' 4 ' 4 1 ln " sec or. om.......... one la.."i

and this means

(~RR(O) = - ~. + Z,

(~RR(a2) = ~ + ~. + Z,

aln~RR) = eÎ1rF'ln~RR),

aln~2RR) = e-i"(I+F.) In~2RR).

'. vith the same procedure to the Z~ and Z~ groups, one has

bl"RRR ) =.-i"(I+F.) l''RRR )
UP=a2 "" Uf>'=a 2 ,

(3.2.18)

(3.2.19)

(3.2.20)

From the condition (3.2.9), one has ê(ab, g) = ê(a, 9)ê( b, g) with 9 being e or a2
•

This implies

(3.2.21 )

(3.2.22)

Obviously eqs. (3.2.21) and (3.2.22) are mutuall:\, contradictory. In the path in-

tegral formalism, this contradiction again sl>ows up as a global anomaly. OP. the
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other hand, if we take the twist representation as eight copies of two·dimensional

representation and apply on t/J(I), ••• ,t/J(16), the above contradiction is removed. Il

straightforward ta check that there is also no inconsistency in other vacua. There·

fore global anomaly is absent.

Before leaving this section, let us make sorne comments on the relation between

the present representation requirement and the cohomological conditions given by

Freed and Vafa [28J in the path integral formalism. Our conditions of the absence

of the global anomalies was derived at the one-loop level in the operator formalism,

which could detect the high·loop global anomalies of the path integral formalism.

Explicit examples have been shown that the representation requirement and the

cohomological conditions are mutually equivalent to detect and eliminate the global

anomalies. Obviously our conditions are much simpler and easier to calculate. That

is because the operator formalism gives more information than the path integral

formalism. Following Seiberg and Witten [44J, the whole partition function of spin

structures cannot be determined at one-loop level in the path integral formalism,

but the factorization and unitarity at two-loop can provide a definite answer to

the partition function. As discussed in Chapter 2, the partition function is fully

determined in the operator formalism without any two-loop information. Therefore

to some extent, the operator formalism at one·loop level is more or less equivalent

to the path integral formalism at two-loop. Furthermore, the non·trivial Dehn

twists [41J of high·loops are essentially caused by the non·trivial Dehn twist of two·

loop, i.e. the generator linking the twc h~dles [45J. That implies the nontrivial
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features, such as the global anomalies, may fully show up at two-Ioap I.'ve! in

the path integral formalism. From this argument it is very suggestive tha, the

representation requirement at one-Ioop in the operator formalism is the suflkient

condition for the absence of global anomalies at all-Ioops.

§3.3 The Massless Spectrum

As we know the relevant spectrum at low energy is given by the string massless

states. Suppose a given twist representation satisfies all the constraints thnt include

the absence of global anomalies discussed in the last section. From the structure

of the Hilbert space, it is straightforward to find out ail the massless string states.

What is new here in the nonabelian twist compared to the abelinn case is that the

different string fields will be mixed with each other after the eso projection. This

complexity often makes it difficult to identify the final gauge group. In this section

we will first present the general features of the massless spectrum, then concentrat"

on the identification of the final gauge group.

The massless states are created by the string creation operators acting on

vacua. Similar to the abelian case, massless vector bosons are created by the modes

,p~~), ,j;~~). Furthermore they are in the identity (e) sector of the nonabeli~'n, ,
group C'. All other sectors have no contribution to the vector bosons. Thns, to

get massless vector bosons of the nonabelian twist, we simply perform the eso

projection on the states of the Es x E~ adjoint reprcsentation. To do that, we

have to know the vacuum phases of the states In~NN), In:N N) and In~ lIN) when
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(
operated on by any g E Z2 X Z2 X Z2 X G'. Following the fonnula (2.1.26) and

(2.2.18) derived in Chapter 2, one can evaluate the vacuum phases of the e-sector

of G' for each associated abelian twist with space-tin·'l supersymmetry (i > 3):

(3.3.1)

(3.3.2)

(3.3.3)

where (2i and (3i are determined by (2.2.18). One must get consistent result no

matter which abelian twist these vacuum states bë:long to. We see that the vacuum

In~NN) is always invariant under all operations g E C'. Since the GSO projection

involves not only the group element of G', but also the group element of the first

thJ:ee Z2 '5, it is necessary to calculate the phases generated by the Z2 '5 elements

as well. These phases can be used to determine whethe~ an even number or an

odd numbe.r of string excitation modes is selected in GSO-invariant states. From

(2.1.26) and (2.2.18) in Chapter 2 one can evaluate the phases gpr..~rated by the

non-identity element of the fi.rst Z2 group:

(3.3.4)

(

Recall WI = T = (( ~ )16; (~)8), 50 there should be an odd number of string modes

from fields 1/1(1), .•• ,1/1(20) acting on the vacuum In~NN} in order for astate to be

GSO-invariant under the first Z2 group. The number of string modes acting on the
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vacuum In~NN), or jn;,RN) is odd or even depends on the fermionic number F1

or F3 chosen to be 0 or 1. Similarly one can obtain the phases generated by the

non-identity element of the second Z2 group:

aYNN(e) = (2(0) +(~l = 0,

alNN(e) = (2(0) + (22 + (12 - 2w2 . W2 = ~2 ,

a'RN(e) = (2(0) + (21 + (23 - 2w2 . W3 = O.

(3.3.5)

(3.3.6)

We know the twist parameter W2 = « t)8, 08;04), so the.e should be an even number

of string modes !rom the fields ljJ(I), ... , .p(8) acting on the vacua ln;' N N) and

ln;'RN) in order to get GSO-invariant states under the second Z2 group. The

number of string modes !rom ljJ(I), ... , ljJ(8) acting on In~NN) depends on the value

of F2 • F,.,r the third Z2 group, one has

(fNN(e) = (3(0) +(31 = 0,

(:NN(e) = (3(0) + (31 + (32 - ~3 . W2 = 0,

NRN( ) ()' F3
(3 e = (3 0 + \.31 + (33 - 2w3 . W3 = 2"

The number of string modes !rom the fields ljJ(9), ••• , ljJ(16) acting on vacua ln;'N N)

and In~NN) should be even, while the number of those acting on ln;'RN) depends

on the v..:lue of F3 • These criteria demand that the physical state cannot be such a

state like ljJ~l.p~l"'~~) In~N N) sinee it is not GSO-invariant under the second and
2 2 2

the third Z2 groups.

Knowing al! the vacuum phases genemted by the group elements of Z2 x Z2 X

Z2 .~ G', ln principle we can obtain al! the GSO-invariant massless states. The

identificat lon of a final gauge group is often the most important and aiso most
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clifficult issue in the nonabelian twist, sinee the rank of the gauge group is generically

recluced, which is different from the abelian case.

In order to figure out what a final gauge group is, let us first define a complex

variable z = e'(l+u), then the mode expansion for the left-moving fermionic fields

in (2.1.8) becomes

+ex>
,p·(z) = L

m=-oo

+ex>
,p·(z)= L ,p::'_v.z-(m-v·).

m=-oo

The modes satisfy anti-commutation relations,

(3.3.7)

(3.3.8)

One may define generators of 50(16) Lie algebra in terms of Neveu-Schwarz

fermions for a # b [46J,

f dz - Lex> - -
H. = -2': ,p·(z),p·(z): = (,p~,_1,p;+1 +,p~i_1,p;+d,

1l'lZ :1 2 :1:1
Î=O

f dz -. -b
E e.+e • = 7l"(a,b) -2' :,p (z).p (z):,

7l"IZ

f dz -. b
E e.-e • = 7l"(a,b) 27l"iz:,p (z).p (z):,

E- e.-e • = 7l"(a,b)f ?d~ : ,p·(z).pb(z):,
_7l"IZ

(3.3.9)

where 1 ~ a,b ~8(or9 ~ a,b ~ 16), 7l"(a,b) = +1 (a < b) and7l"(a,b) = -1 (a > b).

It Call be shown that these generators satisfy the standard commutation relations
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of Lie 8.lbebra,

(if a + 13 is a root), (3.3.10)

[Ea , E_a ] = a . H,
where all other commutations are equal to z";o. Notice that the cocycle factor

e(a, 13) can be determined by 11'(a, b).

In the ten-dimensional Es x E~ heterotic string, the 120 GSO-invarinnt mllSS-

less states of Neveu-Schwarz !:ermions form an adjoint representation of the SOt 16)

defined in (3.3.9), and the 128 m.";3Ies& states of Ramond fermions form a spinor

representation of the SO(16). They tog~ther form an adjoint representation of

Es. This also applies to E~. In the construction of four-dimensional strings via

nonabelian twists, we also have to identify the representation of the states from

Neveu-Schwarz fermions mst, which generally is an adjoint represe.ntation of a

subalgebra of 50(16), then consider the states from Ramond fermions. An ap­

propriate linear combination of the 50(16) generators can fulfil the first part of

our task. As for the second part, Le. constructing the remaining generators of

the final Lie algebra, one has to consider generators corresponding to the masslcss

states from the (R, Nj N) and (N, Ri N) fermions. Since there involve the states of

the different sectors, generally one needs a picture change operator to relate these

states. However, there is a simple way to do this by using the bosonization pro-

cedure [39). In the Es x E~ heterotic string, there is a one-to-one correspondence

between a state in the fermionic formalism and tha.t in th'l Es x E~ lattice ap­

proach [5). For example, the state tP~f)ln~NN) is equivalent to a momentum statc,
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1 ( ) d ol.(I)ol.(S)ol.(20)l rlRNN ) . 'valp = 2" -el - e2 - ea - e4 - es - es - e7 - es ,an '1'0 '1'0 '1'_1 He IS eqUl ent,
to p = Hel - e2 - ea - e4 - es + es - e7 - es). The presence of the above two

states in turn implies there exist two generators Et<-e,-e,-e.-e.-e.-e.-<7-eo) and

EtCel-e,-e.-e.-ea+eo-er-e.> respectively in the Es Lie algebra. Since the massless

states of four-dimensional strings via a nonabelian twist in the fermionic formal-

ism are sorne linear combination of the states of the Es x E~ heterotic string, the

corresponding generators are expected to be a similar kind of linear combination of

the Es generators. The representation of the massless states from (R, N; N) and

(N, R; N) fermions can be identified through the co=utation relations of these

generators and the generators of the subalgebra of the 80(16). Then the gauge

group via the nonabelian twist cao be found.

In the following we will present the procedure of the identification of the final

gauge group through two concrete examples.

Let us take as the mst example the Da orbifold, whose twist representation

was defined in (3.1.29) of Section 3.1. There exists no global anomaly in this case.

Consider the massless state from (N,N; N) fermions of Es:

(3.3.11)

where the subscript e for e-sector fermion fields is omitted since one can know it

from the vacuum symbol. When the GSO projection is applied, this state becomes

(3.3.12)

.,,
In order to simplify counting the number of massless states, we only allow t/J~~),
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f h . d (20) -(20)to represent one 0 t e two stnng mo es tP _1 ,1/'_ 1 for the degree of frcedolll of, ,
50(2) Lorentz algebra. We will do 50 from now on. There are 1ï eSO-imarilUlt

massless states from (N,NiN) fermions of Es:

(I,J E {1,3,5}),

(1 < J E {1,3,5}),

(I < J E {1,3,5}),

(tP~ltP':11 + t/J~11t/J:1)tP~~)ln~NN)
2 2 2 2 2

( .ï,I .ï.J+1 + .ï.Hl.ï.J ).1.(20) InNN N)
0/_1.0/_J. 'f'_1. 'f'_1. 'f'_.1 e

2:1 2 2 2

( .1.1 .ï.J + .1,I+J.ï.J+l).,.(20)lnNNN)
0/_1.0/_1. 0/_1. 0/_.1. 0/_.1. e

2 2 2 2 2

tP~l tP~l tP~~)ln~NN), tP~l tP~l tP~~)ln~NN).
2 2 2 , 2 2

For the above massless states, one may define

1f.i = H2i- 1 + H2 i (i = 1,2,3), 1f., = 2(H7 + Hs), 1f.~ = 2(H7 - Ha),

(3.3.13)

&b,-b, = E., - •• +E.,_... &b,-b. = E••_., +E•• _•• , &b,+b. = E••+•• + E••+.,.
(3.3.14)

Then these generators generate a Lie algebra 50(6) x Ull. (1) X Ull, ti). The first 15

eSO-invariant states in (3.3.13) belong to an adjoint representation of this 50(6),

and the remaining 2 eSO-invariant states belong to an adjoint representation of

this Ull.(l) x U1i,(l).

Consider massless states from the (R, Nj H) fermions of Es. We know that

there involve discrete torsions in calcul~ting vacuum phases. The choice F2 = 0

corresponde to r.Il even number of Ea string modes in the eSO-invariant states,

while F2 ~ 1 ,,(jrresponds to an odd nurnber of Es string modes in the eso­

invariant ~tat~. We know in abelian twist that the difference between F2 = 0

a':ld 1'2 = 1 is the matter of choosing the spinor represents.tion or the conjugate

spinor representation [5] as the eSO-invariant st<'tes, so the ph:'sical conseq"~nce

..,
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is the same. In the current example of the nonabelian twist, the different choice of

discrete torsions makes no difference ,0 the final gauge group. We will see in next

example that this statement is no longer correct. In order for our discussion to be

specifie, one may set F2 = Q2. = 0 and compute the phases generated by f and a

to be

This implies

(fJVN(e) = - w/· W2 - (2/ = 0,

(:.zN N(e) = - w• . w2 - (2. = O.
(3.3.15)

(3.3.16)
fln~NN) =ln~NN),

aln~NN) =ln~NN).

There are 22 GSO-invariant massless states from (R,N;N) fermions of Es,

1/>~~)In~NN),
2

.~(I).~(2).~(3).~(4).~(8).~(6).~(7).~(S).~(20)lnllNN)
~o ~o ~o ~o ~o ~o ~o ~o ~_~. ,

2

(
!

(1/>61/>/+1 + 1/>t+· pt)1/>~f)ln~NN) (I < J E {1,3,5}),
2

(1/>61/>/+1 -1/>t+11/>t)1/>~7)1/>~8)1/>~t)ln~NN) (I < JE {1,3,5}),

1/>61/>6+11/>t1/>t+11/>~~)ln~NN) (I < JE {1,3,5}),
2

1/>61Jit+I1/>~7)1/>~8)t;'~~)ln~N/'.) (I = 1,3,5),
2

(3.3.17)

By using the bosonization procedure, one may find the corresponding momentum

states to the above states then OCle may write doWll the generators of the Lie a1geb>:a
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in terms ofthe Es generators. From the commutp.tion relations, it is straightforwnrd

to ident:.fy the representation of these ~tates. It turns out that the first 20 of tllt'se

states fOrIIl a 10(-2) + 10(2) representation of 50(6) x [/1(,(1), and th" oth"r 2

together with U1(, form 50(3). They assemble to form an adjoint representlltion

[47] of SP(8) x 50(3).

The same procedure can be applied to E~. Considering all GSO·invnrillnl

massless states from E~ fermions acting Oll vacua In~N N) and In~RN), one clin

see that there are 47 states with vacuum In~N N) forming an adjoint represelltll·

tion of 50(10)' x U2(1)', and there ar" 32 states with vacuum In~RN) formillg

16(3) +16(-3) of 50(10)' x U(l)'. Therefore they assemble to form an adjoint

representation of E~ x U(l )'. The discrete torsions also have no physical conse·

quence. In s=ary the original gauge group Es x E~ in the hctcrotic string is

now broken down to the gauge group SP(8) x 50(3) x E~ x U(I)'. It is interesting

to notice that the rank of the gauge group has been reduced by 4. The reason for

this is because there are 4 two-dimensional irreducible representations in our twist

representatioll D),.. It is usually true that each n·dimensional irreducible represen·

tation reduces the rank of the gauge group by n - 1, except in sorne special cases

with rank enhancement, which will 1:oe discussed in the next example.

Knowing the gauge group, other massless spectra can b~ easily found. Gaug.

ino particles will he the states in (3.3.13) under the substitutions .p~~) -+ .p~20) or
2

.p~17).p~lS).p~19), In~NN) -+ In~NR}, and states in (3.3.17) under .p~~) -+ .p~20) or

.p~17).p~18).p~19), In~NN) -+ In~NR}. The two choices .p~20) and .p~I7).p~18).p~19)
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reflect the spmor representation of the Lorentz algebra 50(2). The gravi­

ton is represented by the states ,p~~)(XiO»)-lln~NN), ,j;~~>cxiO) )-J1n~ NN),
2 2

,p~~>c.XiO»)_lln~NN), ,j;~~)(.XiO»)_J1n~NN), where (XiO»)-l, (X1.°»)-l are the
2 2

excitation modes of the left-moving complex boson xia) for the uncompactified

space-tiffi'! coordinates. The partner gravitino is given by the graviton states un-

der the same substitution as that for the gaugino partides. Chiral fermions and

their partners could be found in the similar way. Unlike those of gauge bosons,

the states of chiral fermions may exist in the identity (e) sector, and in the twist

sectors as weil. The number of generations of chiral fermions depends on the num­

'Jer of fixed points of the nonabelian orbifold, which in tarn depends on an initial

lattice being chosen. Notice that since our twist representation is not the "stan-

dad embedding" , we cannot simply use Lefschetz theoœm to calculate the number

of generations. From the above discussion we know that the N = 1 space-time

supersymmetry is manifest.

The next example is still D3 orbifold but with a slight change of the twist

representation for the left-moving fermion fields. VVe assign the following represen-

tation,

D = (4 x 2,6 x l' +2 x 1; 2 + l' + 1). (3.3.18)

Compared it with (3.1.29), we hav,- just interchangel11' + 1 in Es with 2 in E~.

Agair.. it s::.tisfies all constraints including the absence of gi,,:>al anomalies. The

twist representation for E~ is just the abelian representation. lt's very easy to

wr;.e down all the GSO-invariant massles3 states from E~ fermions. They form
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an adjoint representation of E~ x 5U(2)'. Let us focus on the identification of tht'

broken gauge group from Es. There arl' 28 GSO-invariant masslcss states from

(N,N;N) fermions of Es,

(tP:'l tP~11 + tP~11tP: l )tP~~) In~NN)
:2 2 2 2 2

(.ï.I .;:J+l + .;:Hl.;:J ).1,(20) InNNN)
0/_10/_1 'f"_.l 0/_1. 'f"_.l c

2:2 2:1 2

(",1 .;:J +tPI+I.;:J+l)./,(20)lnNNN)
'f"_.1lf'_1 _.1 'f"_.1 0/_.1 c

2:2 2 2 2

Similar to the first example one may defint:

'Hi = H2i-l + H2i (i = 1,2,3,4),

(1 < JE {1,3,5, ï}),

(1 < J E ~1,3,5, ï}),

(I,J E {1,3,5, ï}).

(3.3.19)

(3.3.20)

(3.3.21)

These generators generates 50(8) Lie algebra. The 28 states in (3.3.19) belong ta

an adjoint representation of this 50(8),

As we mentioned before, the GSO-invariant states from (R, N; N) fermions of

Es depend 9n the discrete torsions being chosen. Let us set F2 = l, Q2a = O. The

phases generated by f and a are

(fNN(e) =- wf' W2 - (2f =C,

(~NN(e) =- w. 'W2 - (2. = O.

The choice F2 = 1 implies that there must be an odd number of string modes from

the fields tP(I), ... , tP(S) in the GSO-invariant states. There are 8 those states,

(tP~tPltP/! +tP~+ltPl+ltP/!+I)tP(2~)ln~NN)(1 < J < K E {1,3,5, 7}),-,
(tP~tPltP/! _tP~+ItPg+ltP/!+I)tPN{;+ltP~~)ln~NN)(I,J,K,L E {1,3,5, 7}),,

(3.3.22)
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where no pair of the labels l, J, K, L is the same in (l, J, K, L E {l, 3, 5, 7}) and

1< J < K. These states form a representation 8 of 50(8). Therefore the broken

gauge group [47J from Ea is 50(9). Inc!uding the pa.!'t from E~, the final gauge

group is 50(9) x E~ x 5U(2)'.

If we choose Q2a equa! to 1 instead of equa! to 0, the gauge group broken from

Ea is still 50(9), 50 the different choiee of Q2a does not affect the gauge partic!es.

It is interesting to know that the rank of the gauge group is 4. The reason for

this is beeause there are 4 two-dimensiona! irredueible representations in the twist

representation and each one reduees the rank of the gauge group by 1. However

this is no longer held if we set F2 = O. Again there is no physiea! differenee for the

different choice of Q2a. One may set Q2a = 0 for the vacuum phases to be specifie.

There are 35 GSO-invariant mass:.;ss states from (R, Ni N) fermions of Ea,

.1.(1) .1.(2) .1.(3) .1.(4) .1.(5) .1.(6) .1.(7).I.(a) .1.(20) InRNN)
0/0 % % % % % % % o/_~ e ,

2

(.,,1 ./,1+1 .I.J+I.I.J'.I.K.1.K+I.I.(20) InRNN)
0/0 % - % '+"0 } flQ % If'_1 c

2
(1 < J '# K '# l E {1,3,5, 7}),

(3.3.23)

where no pair of the labels I,J,K,L is the same in (I,J,K,L E {1,3,5,7}) and

67



with

1 < J, [( < L. These 35 states form a 35. representation of SO(8). Tog<·th<'r

with the adjoint representation 28 of SO(8), they form an adjoint repre~<'ntation

of SU(8).

Notice that the states from (R, Ni N) fermions of Ea enhlulce the rlUlk of the

gauge group by 3. That l'an be verified by the following observation. From the

bosonization procedure, the state ,p~I),p~(),p~s),p~a),p~~)ln~NN)is l'quivalent to the,
momentum state p = Hel - e2 - e3 +e( + Cs - ea - C7 +ea) in the EH lattice [51,

which in tum implies there exists a generator Et(e,-e,-e.+e.+e.-e.-e,+e.) in the

Lie algebra. The existence of the last three states in (3.3.23) implies that t!lere lLre

three generators in the final Lie algebra,

1
Ct = 2(el - e2 - e3 + e( + es - ea - C7 + ca),

1fi = 2(el - e2 - e3 +e4 - es + ea + C7 - ca), (3.3.24)

1
"Y = 2(el - e2 + e3 - c( - es + ea -. C7 + ca).

It's easy to show that 'Hs, 'Ha, 'H7 mutually commute and also commute with 'Hi (i =

1,···,4) defined in (3.3.20). Obviously 'Hi (i '"= 1,···,7) are linear indepcndent.

Also the other 32 generators corresponding to the first 32 states in (3.3.23) do not

commute with 'Hi (i =1,'" ,4). Therefore the rank of the Lie algebra is 7, which

is exact1y the rank of SU(8). In practice we use the above argument to figure out

the rank of a Lie algebra for a complicated case, which often helps us to id"ntify

a specifie Lie algebra. In this case the final gauge group broken from Ea x E~ i·,
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SU(8) x E~ x SU(2)'. It is c1ear that we have to specify the twist representation

and the discrete torsions for a particular nonabelian twist mode!. The torsion

parameters play a nO"'-trivial role in our construction of minimal-rank models.
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• Chapter 4

Minimal-Rank Models

from Twists of Finite Groups

The construction of four-dimensional strings from an abelinn twist suffers from

having too large a gauge group. This in principle cau be cured by nonabclian twists

because generically they can reduce the rank of the gauge group, which is de.,imble

phenomenologically. As we know, there is a large difference betwcen the mnk of

the gauge groups in the Standard Model and the original ten-dimensional heterotic

string, and even more 50 when compactified to four space-time dimensions. In

order for a theory to be as realistic as possible, one would like to choose a twist

representation such that the resulting gauge group has as small a rank as possible.

This kind of strihg theories will be referred to as minimal-Tank mode/j.

With the constraints for the nonabelian twist established in the prcvious cimp­

ters, we have all the tools necessary to construct minimal-rank models from twists

of finite nonabelian groups. Given a finite group, we desire to choose a tV!;st repre­

sentation such that it satisfies all the com,traints and it also gives a minimnl-rank

gauge group. Specific.ally wc need to perform the following. Since wc start with

the Es x Es heterotic string in the fermionic formalism, the whole twist group is

Z2 x Z2 X Z2 X G' , where G' is a fini te nonabelian group. From the discussion in

Section 3.1, we know that the twist parameters of the first three Z2 '5 are thc salllc
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as in the abelian case and the whole twist representation is given by (3.1.1). Jet

us first consider the twist representation for right movers. One can always à ..Jose

D,,(g) = +1 which results in D~(g) = Dx(g) for 9 E G' . In order to have a quali­

lied nonabelian orbifold with space-time supersymmetry as well, one has to ensure

all abelian orbifolds corresponding to the abelian subgrOl~?s of the underlying non­

abelian group to be in Table 1. This turns out to give a very tight constraint to

limit possible twist representations of Dx(g). Having chosen a representation for

the right movers, one may then find a twist representation D À(g) (g E G') for the

left fermions by requiring modular invariance of the partition function for the non­

abelian twist. The rank of the final gauge group can be estimated by the argument

given in Section 3.3, that each n-dimensional irreducible representation may reduce

<ne rank by n - 1 assuming that ther" is no rank enh~'J.cement. By using this

estimate, al1 twist representations that result in a minimal-rank gauge group may

be selected. Remember now that global anomalies can be present even when mod­

ula::- invariance is satisfied. One should then eliminate the global anomalies case by

case for the twist representations under con:::deration. Finally, for those consistent

minimal-rank models, we can find all the massless GSO-invariant states that cor­

respond to gauge particles, and thereby identify the final gauge group. Notice that

since there are many more constraints in a nonabelian twist than an abelian one,

the number of nonabelian twist models is much less than that of abelian models.

This in turn makes the classification of nonabelian twist models much more feasible.

As we discussed in Chapter 2, the nonabelian twist group G' should be a finite
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subgroup of 8U(3) in order to rn.aintain space-time supersymmetry. A simple clnss

of twist groups of this type is the finite nonabelian subgroups of 8[1(2). We shlùl

confine ourselves to this simple class. In this chapter we shall classify ail minimal­

rank moclels of nonabelian twists by finite nonabelian 3ubgroup. of 8[1(2). Thes"

finite nonabelian groups include the dihedral groups DI (1 = 3,4,6), the tetral,edrn1

group T, the octahedral group 0, the icosahedral group l, and their double groups

Dld
), T(d), O(d), l(d) [38], each of which will be discussed in a separate section. The

twist representations and the final gauge groups will be listed in the various Tables.

10 each representation, the Z2 torsions are sometimes left free (F2 , F3 , Q2i and

Q3i can be equal to 0 or 1 ), in that case we shF·1! list all models of the same

representation with different chok<:o ~f tûl"sions in one block. The first line of each

block always refers to a regu1ar model in which F2 = F3 = Q2i = Q3i = 0, unless

otherwise specified. Since we are interested in obtaining different gJ.uge groups,

we will not list those torsion models in which different Z2 torsions do not lead to

a change in the final gauge group in our tables. We shall also ignore the possible

contributions to the final gauge group from the excitations of XL, which depends on

the detail of an initiallattice Leing chosen for these compactified spatial coordinates.

§4.1 Nonabelian Twists of the Dihedral Group D3

The group D3 is the simplest finite nonabelian group. !ts irreducible represen­

tations are given in (3.1.17) and the paragraph it following. The partition function

of t~:. nonal'elian twist is sirnilar to (3.1.27) except that we start now from th"

72



heterotic string. Il is

('-.1.1)

This contains Z3 and Z2 abelian twists constructed from the Z3 and Z2 abelian

subgroups of D3 respectively. The representation D q = Dx should be 2+ l', Y'hich

is unique in the D3 orbifold. In this case the Z3 orbifold belongs to Number 2 of

Table 1 with twist parameter (k, ~,O), while the Z2 orbifold belongs to Number

1 of Table 1 with twist parameter (~, 0, ~). When we consider the Z2 abelian

orbifold, we should first diagonalize the matrix of the two-dimensional irreducible

rp.presentation, then we would proceed to obtain the twist parameters.

Let us assign the fol1owing twist representation for the sixteen left-fermions,

D>. = (m x 2 +no x 1 +nI x l'), (4.1.2)

where the non-negative numbers m, ni satisfy 2m+no +nl = 16. Modular invariance

of the corresponding Z3 abelian twist demands

5
'3(m -1) E Z.

Modular invariance of the Z2 abelian twist requires

1
2(m +nI - 2) E 2Z.

(4.1.3)

(4.1.4)

Since each two-dimensional irreducible representation may reduce the rank of the

gauge group by 1, for maximal rank reduction we choose the solutions to (4.1.3)
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and (4.1.4) with the largest value of m. It is easy to obtain the minimal-rank t.wist

representations in this nonabelian twist. They are

(4 x 2 + il x l' + 2 xl),
(4.1.5)

(4 x 2 + 6 x 1 + 2 x l').

The above two representa.tions are equivalent because 1 ..... l' corresponds to th,'

interchange of NS (Neveu-Schwarz) fermions with R (Ramond) fermions in th,· a. b...

sectors. Since the twist is on Es x E~, we have to divide the representation int."

two pieces while maintaining modular invariance. There are three non-C'IUi\,lùt'nt.

divisions,
(3 x 2 + l' + 1,2 + 5 x l' + 1),

(2 x 2+2 x l' +2 x 1,2 x 2+4 x l'), (4.1.6)

(4 x 2,6 x l' + 2 xl),

which may result in minimal-rank models. The vacuum phases In~N N) (g E DJ )

of the first representation of (4.1.6) were calculated in Section 3.1. With similar

computation one can obtain the vacuum phases fer the second and the thi,,! rep­

resentations as weil, and no global anomalies are present in ail three cases. The

final gauge groups for the first and the third representations were obtained in Sec­

tion 3.3. Notice that the third representation with all discrete torsions vanishing

(the regular model) enhances the rank of the final gauge group. Therefore it does

not correspond to a minimal-rank mode!. In this nonabelian twists there are thr",'

minimal-rank models, which are listed in Table 3.

74



§4.2 Nonabelian Twists of the Dihedral Group D 4

The nonabelian group D4 has eight elements, five classes (e), (112 ), (11,113 ).

(r, rIl2 ), (rll, IIr), generated by

(

e-i2,,(1/4)

11= 0 r=(~ ~). (4.2.1 )

It has one two-dimensional irreducible representation 2 described by the above

defining matrix, and four one-dimensional irreducible representations described by

1(11 = 1,r = 1),1'(11 = 1,r = -1),1"(8 = -l,r = -1),1"'(11 = -l,r = 1). The

partition function of this nonabelian twist is found to be

(4.2.2)

where the abelian group Z4 is generated by 8, Z2 X Z2 by r, r1l2 , Z~ x Z~ by rll,lIr,

The representation D q = Dx is unique. It is 2 + l'. In this nonabelian twist

there are the fol1owing two equivalences. The representation under 1 +-+ 1"', l' +-+

1" corresponds to the interchange of NS fermions with R fermions in Il,113 , rll,lIr

sectors. The representation under 1 +-+ 1',1" +-+ 1'" corresponds to the interchange

of NS fermions with R fermions in r, rll2 , r8, IIr Bectors.

We assign the twist representation of the sixteen left-fermions as fol1ows,

D). = (m X 2 +no xl +nI x l' +n2 xl" +n3 X 1/11), (4.2.3)

where the non-negative integers satisfy 2m + no + nI + n2 + n3 = 16. Modular
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invariance of a Z4 abelian twist leads to

Modular invariance of a Z2 x Z2 abelian twist demands

1
ï(m + nI +n2 - 2) E 2Z,

nI + n2 - 1 E 2Z.

Finally, modular invariance of a Z~ x Z~ abelian twist requires

1
ï(m + nI +nJ - 2) E 2Z,

nI + nJ - 1 E 2:l.

(4.2..1)

(4.2.5 )

(4.2.G)

The minimal-rank models correspond to the maximal value of m. We may easily

obtain m to be 5. Knowing that, equations (4.2.4)-(4.2.6) are equivlllcnt ta tlw

following,

(4.2.7)
nI +nJ - 1 E 4Z.

Solving these equations, we get two twist representations,

(5 x 2 + 1'" + 1" +4 xl),
(4.2.8)

(5 x 2 +5 x l' +1),

where the two equivalences of the twist representation mentioned above have been

taken into account. From that, the possible representations acted on (Es, E~) are

(3 x 2 + 1'" +1",2 x 2 +4 xl),

(4 x 2, ~ + 1'" + 1" + 4 xl),

(4 X 2,2 +5 X l' +1).
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In order to see the structure of vacuum representations, one would like to take

the first twist representation in (4.2.9) as an example for the D4 twist. Consider

the Z4 abelian subgroup of D 4 generated bye. The twist parameter is

131313111313 13
W8 = (4' 4' 4' 4' 4' 4' 2' 2' 4' 4' 4' 4,0,0,0,0; 4' 4,0,0).

From (2.1.26) and (2.2.18) we have

(tINN(e) = (8(0)+(81 = 0,

NNN l 1(8 (8) = (8(0) + (81 + (88 - W8' W8 + TJ = 2(Q28 + Q38),

(tINNW) = (8(0) + (81 +2(88 -W8 ·l2w8 +TJ = 0,

NNN("" L 1(8 11') = (8(0) + (81 + 3(88 - W8' 3w8 + TJ = 2(Q28 + Q38),

(4.2.10)

(4.2.11)

where Q28, Q38 are di~.crete torsions. l'rom the Hilbert space structure we can

obtain the representation of the vacuum Int'NN) œIn~NN),

(4.2.12)

With diagonalizing the twist representation within the Z2 x Z2 abelian subgroup

generated by r, r82 , we have
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The vacuum phases are

(:'NN(e) = (r(O) + (rI = 0,

NNN 1
(r (r) = (r(O) + (rI + (rr - Wr ' LWr +TJ = 2(1 + Q2r + Q3r).

(~tm(e) = (r9'(O) + (r9')1 = 0,

(~fN(r02) = ~(1 + Q2(r9') + Q3(r9'»),

(:'NN(r02) = (r(O) + (rI + (r(r9') - W r ' LWr9' T TJ = ~Qr(r9')'

NNN ) 1
(r9' (r = (r9'(O) + (r9')1 + (r9')r - W r9' . LWr +TJ = 2Qr(r9'),

where ail Q's are discrete torsions. From Hilbert space structure we IllLV<'

(4.2.14)

(4.2.15)

(4.2.16)

For the vacuum phase r generated on In~NN), we can think of 02as an element

of the Z2 x Z2 abelian group generated by r, r02, or as a.'l element of the Z~ x Z~

abelian group generated by rO, Or. We evaluate the phase in both ways and rcsults

must be the same,

~~NN(t?) = (:'NN(r. r02) = ~(1 + Q2r + Q3r + Qr(r9'»),

1
(~NN(02) = (~NN(rt'. Or) = 2(1 + Q2(r9) + Q3(r9) + Q(r9)(9r»)'
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That implies

rln~NN) = e- i"(I+Q"+Q.,+Q,(,,,» In~NN),

rOln~N N) =e- i ,,(I+Q,(,,)+Q.(,,)+Q(,,)(,,» In~NN).

From (4.2.11) we have

Oln~NN) = In~NN),

80 the consistency of (4.2.18) and (4.2.19) leads to

Q2r + Q3r + Qr(r9') = Q2(r9) + Q3(r9) + Q(r9)(9r) + 2Z.

(4.2.18)

(4.2.19)

(4.2.20)

If we consider the vacua In~NN) EIlln~f,N) and In~RN) EIlln~~N), we mr.y obtain

the relations of the discrete torsions,

(4.2.21)

Similar consideration to the vacua In~tN) EIlln::N) and In~RN) EIlln~RN) leads

to

(4.2.22)

The results of (4.2.21) and (4.2.22) are expeete<: since the discrete torsions between

the Z2 abelian group element and the nonabelian group elements within one c1ass

should be equal. Also the e1ements r, r02 be10ng to the same c1ass, and so do the

elements rO, Or.

Consider the vacua Inff,NN) and In~RN), the representation requirements de­

mand
Q29 + Q3r + Qr(r9') =Q3(r9) + Q(r9)(9r) + 2Z,

Q39 + Q2r + Qr(r9') =Q2(r9) + Q(r9)(9r) + 2Z,

79

(4.2.23)



From (4.2.20) and (4.2.23) we have

(4.:!.:!·1)

We see in this example that the representatiGn requirement not only nllturnlly ll'lt<b

to the class structure (requiring the equal discrete torsion for all seclors within OIU'

class), but also gives more constraints to the discrete torsions of diffcrent class"s.

In some cases if these constraints are mutually contradictory, then globlÙ lUlolllali".

arise. There are no global anomalies in all three twist representations in (4.2.D).

We list final gauge groups of ail minimal-rank models in Table 4.

§4.3 NOl.abelian Twists of the Dihedral Group D6

The nonabelian group D 6 has twelve elements, six classes (e),(6J ), (62 ,64 ),

(

e-i21rCI/6)

0= 0 p=(~ ~). (4.3.1)

It h~.:; two inequivalent two-dimensional irreducible representations, 2 described by

the above defining ma':rix, 2' by

(

e-i21r(l/J)

0= 0 p=(~ ~). (4.3.2)

It also has four one-dimensional irreducible representations described by 1(0 =

1,p = 1),1'(0 = 1,p = -1),1"(0 = -I,p = -1),1/1/(0 = -l,p = 1). The partition
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function of this nonabelian twist is

(4.3.3)

where the abelian group Z6 is generated by 6, Z2 X Z2 by p,p63 or p6,p64 or

p62, p65 , and Z2 by 63 . Since the elements p, p62, p64 belong to one c1ass and

p6, p63 , p65 belong to another c1ass, the partition function of the abelian group

Z2 x Z2 generated by p, p63 is the same as that generated by p6, p64 or p62, p65
•

Therefore we can just write a single partition function Zh(Z2 x Z2).

For the representation Dx , we could choose 2' +1', but it corresponds to the D3

nonabelian orbifold, since 2' +l' is a representation of D 3 • In order to qualify a D6

orbifold, the representation D X has to be 2 + l'. In this nonabelian twist there are

following equivalences: 2 _ 2',1 _ 1"', l' - 1" corresponding to the interchange

of NS fermions with R fermions in 6,63 ,05 sectors; 1 - 1',1" - 1'" corresponding

to the interchange of NS fermions with R fermions in p, po, p02, p63 , p64 , p65 sectors;

and 1" _ 1'" corresponding to the interchange of p,p62, p04 sectors with po,p63 ,p65

sectors. As for the twist representation of the sixteen left-fermions, we assign the

following,

D),. = (mo x 2 + ml x 2' + no xl + 'lI x l' + n2 x 1" + n3 x 1/11), (4.3.4)

where the non-negative integer numbers mi, nj satisfy 2(mo +ml) + L:~=o nj = 16.

Modular invariance of a Z6 abelian twist demands

-(

13 5 3
6"(mo - 1) + 'Sml + 4(n2 + n3) E Z.
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Modular invariance of a Z2 x Z2 abelian twist !eads to

mo + ml + ni + n2 - 2 E 4Z,

mo + ml + ni + n3 - 2 E 4Z,

ml + ni - 1 E 2Z,

and modular invariance of a Z2 abelian twist demands

(4.3.6)

(4.3.ï)

(4.3.8)

Since there are three equivalences, we can restrict the solutions to be mu ~ ml. "3 ~

n2, no ~ ni. Also we want solutions with a maximal value of mu + ml heClUlse th,'

minimal-rank models are desired. Solving (4.3.5) and (4.3.6), wc C/Ul obtuin tlll'

maximal value of mo + ml to be 4. Knowing that we can find all the solutions by

solving the fol1owing,

ni + n2 E 4Z + 2,

ni +n3 E 4Z +2,

2mo + n2 + n3 E 4Z + 2,

no + ni + n2 + n3 = 8,

mo +ml =4,

mo ~ ml, n3 ~ n2, no ~ ni,

We list al! non-negative solutions of mi, ni modulo the three equivalences in Table 5.

We should maintain the modular invariance when we split the sixteen·dimensional

twist representation into two eight-dimensional representations. Also the three

equivalences should be considered in order to avoid duplications of our models.
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'.

To see what the vacuum representations look like, one may take the following

twist representation as a typica! example,

(2 X 2+2' + 1/11 +1",2' + l' +5 x 1;2+1' + 1). (4.3.9)

Considering the length of this thesis, we only present results of vacuum represen-

tations for the twist of (4.3.9). For vacuum Int'NN) œIn~NN) we have

(
Int'NN) ) (e-i..(Q,,+QUl 0 ) (Int'NN) )

é In~NN) = 0 e-i..(Q26+Qul In~NN)'

(
Int'NN)) (0 1) (Int'NN))

p In~NN) = 1 0 In~NN)'

Similarly, for the vacuum inf,NN) œIn~NN), we have

The representation of the vacuum in~NN) is

éln~NN) = e-i"(J+Q,,+Qul In~NN),

. (e-i..(J+Q,,+Q.,l 0

= 0 0
o 1
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Finally, the representation of vacuum In~tN) œIn~~N) œIn~~ N) is

o
o

e- ;,,(1+Q(,.)(,•• »

o
e-i,,( I+Q(,.)(,•• »

o
(4.3.1·1)

Ali Q's are discrete torsions. We have checked that there are no global allonllùics in

all minimal-rank models. Final gauge groups together with the twist rcprcscntations

of the lninima1-rank models are listed in Table 6.

§4.4 Nonabelian Twists of the Tetrahedral Group T

The nonabelian group T has twelve elements, four classes (c), (r, r' ,rr'),

(u, ru, r'u, rr'u), (u2,(ru)2 ,(r'u)2, (rr'u)2), generated by

(

0 1 0)
u= 0 Û 1 ,

100 (

1 0

r = ~ ~1 ~ ),
-1

(4.4.1)

where r' = uru-1. It has one three-dimensional irreducible reprcsclltations 3

described by the above defining matrix. It also has three one-dirncnsional irrc­

ducible representations described by l(u = 1,r =l),l'(u =e-i2"i,r = l),l"(u =
C i2"S, r = 1). The partition funetion of this nonabelian twist is

(4.4.2)

where the abelian group Z3 is generated by u or ru or r'u or rr'u, Z2 x Z2 by r, r',

a;.,d ZI by the identity.
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The representation Dx has to be 3, which is unique in this nonabelian group.

In this nonabelian twist there is one Equivalence l' .... 1", which is the interchange

of a fermion with its complex conjugate. Let us assign the twist representation of

sixteen left-fermions as

D>. = (m x 3 + no x 1 +nI x l' +n2 xl"), (4.4.3)

where the non-negative integers m, ni satisfy 3m + L:~=o ni = 16. Modular invari­

ance of correspondi~Za and Z2 x Z2 abe\ian twists demands

5 1 4
S(m -1) + SnI + Sn2 E Z,

m-l E 2Z.

(4.4.4)

Solving (4.4.4) with the maximal value of m, we obtain the twist representations,

(3 x 3 +1" + l' +5 xl),

(3 x 3 +5 x 1" +2 xl),
(4.4.5)

where the equivalenœ has been considered. To split the sixteen-dimensio:'al repre-

sentation into two eight-dimensional representations, we should keep in mind the

modular invariance conditions.

We can take the fol1owing representation,

(2 x 3 + 2 x 1,3 +1" + l' +3 x 1; 3 + 1), (4.4.6)

r
to work out vacuum representations. After some calculation we will obtain the
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(4.4. ï)

(
In~,NN) ) (e-i2lf(2!3) 0 0 0
In~~~) _ 0 0 e- i2lf(2!3) 0 )

u InNNN) - 0 0 0 e-i2lf(1!3)

\
(ru»

In NNN ) 0 1 0 0)
(rru»

(

In~NN) ) (0 0 0 1) (In~,NN) )
In~~~) _ 0 0 1 0 In~~~)

r InNNN) - 0 1 0 0 1 NNN .
"(ru» n(ru»)

InNNN ) 1 0 0 0 InNNN )
(rr'u)' (rru»

(4.4.8)

The representation of In~NN) œln:::NN) œIn~:N) is

Ail Q's are discrete torsions. There are no global ano"lalies in the minimal-rank

twist representations. We present all minimal-rank models in Table 7.
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§4.5 Nonabelian Twists of the Octahedral Group 0

The nonabelian group 0 has twenty-four elemènts, live classes (d,

(r, r', Tr'), (u, ru, r'u, rr'u, u2, (ru)2, (r'u)2, (rr'u)2), (r8, r8~, rO', r8'3, r'f}", 1"(1"3),

( (J, (J3 , (J' , (J,3 , (J" , (J"3) generated by

(
010)

u-= 0 0 1 ,
100 (0-1 0)

(J= 1 0 0 ,
001

(4.5.1)

where (J' = u(Ju-1, (J" = u-1(Ju, r = (J"2 = diag(l, -l, -1), r' = (J2 =

diag( -l, -l, 1). It has irreducibb representations 3 described by the delining ma-

trix, 3' by

(
01 0)

u= 0 0 1 ,
1 0 0

~ ),
-1

(4.5.2)

2 by

(
e- i2,,(1/3)

u= 0 (4.5.3)

(4.5.4)

and l(u = 1,(J = l),l'(u = 1,(J = -1). The partition function of this nonabelian

twist is

Zh(O) =~Zh(Z4)+ ~Zh(Z3) + ~Zh(Z2 x :~2)

+ ~Zh(Z~ x Z~) - ~Zh(Z2) - ~Zh(Zd,

where the abelian group :l.4 is generated by (J or (J'or 8", Z3 by u or ru or r'u or

rr'u Z x Z by r8 r(J3 or r(J' r8'3 or r'8" r'8,,3 Z' x Z' by r r' Z by r or r' or,22, , "221,2

rr' , and Zl by the identity.

Let us first consider the twist representation of the right-moving fields. The

representation Dx(g) could be chosen to be 2 +1', but it actually corresponds to
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the nonabelian orbifuld of D3 , sinee 2+ l' is a representatian of D3 . To be a faithful

repr~sentaticn of 0, either 3 or 3'can be chosen. But 3' is ruled out by the space-

time supersymmetry condition (2.2.19) since the diagonalization of group element

B gives diag(ei2..t,e;2"~,ei2"t) and t + ~ + ~ ~ Z. Therefore only 3 is qualified

ta be a nonabelian orbifold of O. In this nonabelian twist there is one equivalence.

The represenlation under 3 ..... 3',1 ..... l' corresponds to the interchange of NS

fermions with R fermions in B, B3, B', B'3, rB, rB3 ,rO', rB,3, r' Bit, r'B lt3 sectors.

For the representation of sixteen left-fermions, assign the twist representation

of 0,

(4.1;.5)

where al! non-negative integers mi, nj satisfy 3(mo + ml) + 2m2 + no + nI = 16.

For Z4 and Z3 abelian twists to be modular invariance, we have to have

5 7
2(mo -1) + 2ml + m2 + nI E 2Z,

5
S(mo-1 +ml +m2) E Z.

Modular invariance of a Z2 x Z2 abelian twist leads to

1
mo -1 + 2(ml + m2 + nI) E 2Z,

mo - 1 +m2 +nI E 2Z.

Finally, for a Z~ x Z~ abelian twist to be modular invariance, we obtain

mo - 1 + ml E 2Z,

(4.5.6)

(4.5.7)

(4.5.8)

1,

where modular invariance condition of a Z2 abelian twist is already included in

the above. In order to have minimal-rank models, we have to find solutions to the
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equations (4.5.6)-(4.5.8) with maximal value of 2(mr. + ml) + m2, wh;~h i" tilt'

amount of the rank of the gauge group might be reduced. We rewrite (4.5.6)·-

,

(4.5.8) to be
1
2(ma -l-ml) + m2 +nl E 2Z,

ma - 1+ ml + m2 E 3Z,

1
ma -1+ 2(ml -t-m2 +nl) E 2Z.

(1.5.9)

After some calculation we obtain possible minimal-rank twist repr"sentat.ions,

(3 + 3 x 2 + l' + 6 xl),

(3+3 x 2+5 x l' +2 xl),
(4.5.10)

where the equiva1ence of the twist representation has been considered. Apply the

representations of (4.5.10) on (E8,E~), and we have

(3+2 X 2+1,2+1' +5 xl),

(3+2+1' +2 x 1,2 x 2+4 xl),

(3+5 x 1,3 x 2+ l' + 1),

(3 + 2 + 3 x 1',2 x 2 + 2 x l' + 2 xl),

(3+4 X l' +1,3 X 2+1' + 1),

(4.5.11)

where the equiva1ence and modulor invariance have been taken into account.

To see the vacuum structure, one may take the fol1owing twist representation,

(3 + 2 x 2 + 1,2 + l' + 5 x 1; 3 + 1). (4.5.12)
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1
'\.

In~:':~} Œ Inr.::~2}' the representation is calculated to be

In~NN}
w 0 0 0 0 0 0 0

In~NN)

In~NN) 0 0 1 0 0 0 0 0 In~NN)

/n NNN\ 0 0 0 1 0 0 0 0 In::~N)ru 1

InNNN} 0 1 0 0 0 0 0 0 InNNN)rru rru
U In~';2NN) - 0 0 0 0 w2 0 0 0 In~NN)

Inr.~~} 0 0 0 0 0 0 1 0 Inr.~~}

In~:':r,} 0 0 0 0 0 0 0 1 In~:"r,}

Inr.::~2}
0 0 0 0 0 1 0 0

Inr.::~2}
(4.5.13)

In~NN} In~NN}
0 0 0 0 0 0 0 w

In~NN} 0 0 0 0 0 0 w2 0 In~NN}

In~~N} 0 0 0 0 w2 0 0 0 In~~N)

InNNN) 0 0 0 0 0 w 0 0 InNNN}
8 rru rru

In~NN} - 0 0 0 1 0 0 0 0 In~2NN}

Inr.~~} 0 0 1 0 0 0 0 0 Inr.~~)

In~:"r,} 1 0 0 0 0 0 0 0 Inr:..~}

Inr.~~2}
0 1 0 0 0 0 0 0

Inr.::~2}

where w =e-i2lf i. The representation of the vacuum In~NN)œln~NN)œln~,NN}œ

In~NN} œIn~fN} œIn~,~N} is

In~NN} 0 1 0 0 0 0 In~NN)

In&:NN) 0 0 1 0 0 0 In&:NN}
In&:,NN} 1 0 0 0 0 0 In~,NN}

u
In~NN} - 0 0 0 0 1 0 In~NN)

In:'fN) 0 0 0 0 0 1 In:'fN}
In:,,~N} 0 0 0 1 0 0 ln:'!."N}

(4.5.14)
In~NN} In~NN}a 0 0 0 0 0
In~NN} 0 0 0 0 0 1 In~NN}

8
1n&:,NN) 0 1 0 0 0 0 In&:,NN}
In~NN) - 0 0 0 0 0 In~NN}a

In:'fN) 0 0 1 0 0 0 In&:fN)
In:',~N) 0 0 0 0 1 0 In~,~N}

~

i
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where Ct = e- i ,,(Q,,+Q3I), and Q's are discrete torsions. The representntioll of

u

()

o 1 0 0 0 0
o 0 1 0 0 0
1 0 0 0 0 0
o 0 001 0
o 000 0 1
o 0 0 1 0 0

000001
001000
000100
o 0 0 0 ,8 0
0,80000
,800000

(4.5.15)

where,8 = e-i"Q(•• )(••• ) and Q2(r9)+Q3(r9) = 1 in order to satisfy the representntioll

requirement. For the vacuum In~NN) œIn~NN) œIn~:N) we have

(4.5.16)

where Q2r + Q3r = 0 and Qrr' = Q(r9)(r9') = Q(r9')(r9") = Q(r'9")(r'9"') in order

to satisfy the representation requirement. Notice that the discrete torsions between

the abelian Z2 group element and the nonabelian group elements within one clMS

are always the same, such as Q2r = Q2r', Q3r = Q3r'.

In a sirnilar way we can calculate the group 0 representations of vacua

In~RN), In~NN}, In~RR) and 50 on, and the representation requirement will gi"/e
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more constraints to the discrete torsions. However there are no contrp.dictions on

these constraints, so no global anomalies arise. We have checked that there exist no

global anomalies in all minimal-rank models in this nonabelian group. The result"

of the minimal-rank models are listed in Table 8.

§4.6 Nonabelian Twists of the Quaternion Group D~d)

This nonabelian group was considered in Section 3.2 when we dealt with global

anomalies. The irreducible representations are listed in (3.2.16) and the paragraph

it following. The partition function of this nonabelian twist is given by (3.2.17).

The representation Dx is 2 + 1. Notice tb.at this nonabelian orbifold keeps N = 2

space-time Bupersymmetry [36). We will see that the nonabelian orbifold of D~d)

shares the BaIne feature. There are four equiva1ences in the twist representation.

The representation under 1 .... 1',1" .... 1/11 corresponds to the interchange of NS

fermions with R fermions in b, a2 b, ab, a3 b sectors, while it under 1 .... 1"', l' +-+ 1"

corresponds to the interchange of NS fermions with R fermions in a, a3 ,ab, a3 b

sectors. The equiva1ence 1" .... l'" corresponds to the interchange of b,a2 b sectors

with ab, a3 b sectors, while l' +-+ 1" corresponds to the interchange of a, a3 seCotors

with ab, a3 b sectors.

Consider the twist representation of the sixteen left-fermions,

D>. = (m x 2 +no x 1 +nI x l' +n2 x 1" +n3 xl"'), (4.6.1)

(
where the non-negative numbers m, ni satisfy 2m + L:~=o ni - 16. In order for

92



(4.6.21

Z4, Z~, Z~ and Z2 abelian twists to be modular invariant, we have ta del1Huld

5
2(m - 1) + n2 + nJ E 2Z,

5
2(m -1)+ nI +n2 E 2Z,

5
2(m - 1) +nI + nJ E 2Z.

The minimal-rank models correspond to solutions with m bcing a mlt.""imal value,

It is easy to get m = 5. The possible minimal-rank twist representations are

(5 x 2 + 6 xl),

(5 x 2 +4 x 1 + 2 x l'),
(4.6.3)

(5 x 2 + 2 x 1 + 2 x l' + 2 xl"),

(5 x 2 + 3 x 1 + l' + 1" + 1/11),

where the equivalences of the twist representation have been considered. Com-

pared the first representation of (4.6.3) with that discussed in Section 3.2, we have

one more copy of the two-dimensional representation acting on the left-fermions,

but we also have the same extra copy acting on the right-fermions. Their extra

contributions cancel each other when the vacuum phases are evaluated. Therefore

we expect to have the same vacuum pha.!:es as (3.2.19) and (3.2.20), and global

anomalies arise. Let us consider the second twist representation of (4.6.3), i.e.

(5 x 2 + 4 x 1 + 2 xl'; 2 + 1 + 1). (4.6.4)

Although we leave the sixteen-dimensional representation undivided, we still can

calculate some vacuum phases. Consider the Z4 abelian twist, and we obtain

aln~RR) = ei"F'ln~RR},
(4.6.5)
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For the Z~ abelian twist, we have

Similar computation for the Z~ abelian twist leads to

bl roRRR ) _ -i"(I+F•• ) IroRRR \
a "(ab)'=a' -e "(ab)'=a'.·

(4.6.6)

(4.6.7)

From (3.2.9), we have e(ab,g) = e(a,g)e(b,g) with 9 being e or a2 • This implies

Fa + 1 + H = 1 + Fab + 2Z,
(4.6.8)

1 + Fa + 1 + Fb = 1 + Fab + 2Z.

Obviously global anomalies anse. With the s:une procedure we can show that the

third representation of (4.6.3) also suffers from global anomalies. Therefore only

the last of (4.6.3) is left free from global anomalies at this moment.

There are several way~ to split it into two eight-dimensional representations,

(3 x 2 + l' + 1,2 x 2 + 1'" + 1" + 2 xl),

(3 x 2 + 1'" + 1",2 x 2 + l' +3 xl),
(4.6.9)

(3 x 2 + 2 x 1,2 x 2 + 1'" + 1" + l' + 1),

(4 x 2,2 + 1'" + 1" + l' + 3 xl),

where the cquivalences and modular invariance have been considered. We will show

that the mst two representations in (4.6.9) have global anomalies. Take the twist

representation,

:J

(3 x 2 + l' + 1,2 x 2 + 1'" + 1" + 2 x 1; 2 + 1 + 1).
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The phase that b generates on In~RR) i3

where the discrete torsion parameter Q2b can be equal to 0 or 1. That implips

(4.6.12)

From (3.2.6), one has e(aba-I,aea- I ) = e(b,e), which is e(a2b = b3,e) = e(b,f).

On the other hand, one has e(a2b, e) = (e(b, e»3 from (3,2.9). Thcrcfore th" n'p­

resentation requirement leads to (e(b,e»2 = 1. However, one obtains (e(b,c))" =

exp[i21l'(~ + Q2b)] = -1 from (4.6.12). Obviously, the inconsistcncy (J'·curs. As for

th, _cond twist representation;n (4.6.9), one obtains the same formula as (4.6.12),

so there also exist global anomalies.

Let us take the twist representation,

(3 x 2+2 x 1,2 x 2+ 1'" +1" +1' + 1;2+ 1 + 1), (4.6.13)

to see the vacuum structure. The representation of the vacuum In~NN) 6J In~,N N)

can be calculated to be

(4.6.14)

(4.6.15)
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and the representation of Ift~tN) œ1l1~fN) is

For the vacuum 1l1~NN) we obtain

(4.6.17)

We have checked that there are no global anomalies in the last two twist represen-

tations in (4.6.9). The minimal-rank models are presented in Table 9.

§4.7 Nonabelian Twists of the Double Dihedral Group D~d)

The nonabelian group D~d) has twelve elements spread out in six classes:

(e), (a3 ), (a,a5 ), (a2 ,a4 ), (b,a2 b,a4 b), (ab,a3 b,a5 b). It has two inequivalent two-

dimensional irreducible representations. The ~t' can be taken as the definition of

the grc 'p and is given by

(

e-i2>1'(I/G)
a-- 0

while the 2 given by

e- i2 "(1/4) )

o ' (4.7.1)

(

e- 2>1'(1/3)

a= 0 (4.7.2)

It also has four one-dimeIlsionci irreducible representations described by I(a =
'2 1 1 ~1, b = 1),I'(a = 1, b = -1), ll/(a = -1, b = e-' >l'.), III/(a = -1, b = e-' ".). The
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partition function of this nonabelian twist is

(-1.ï.3)

where the abelian group Z6 is generated by Il, Z4 by b or a2 b or a4b • nnd Z~ hy

aJ
• For the representation Dx, we could choose 2 + l', but it corresponds ta tl\('

D J orbifold. The twist representation Dx has to be 2' + 1 in order to qunlify 1\

D~d) orbifold. There are twc equiva1ences ir. twist representations. The rcprescu-

talion under 1 .... 1',1" .... 111/ corresponds to the interchange of NS fcrmions with

R fermions in b, a2 b, a4 b, ab, aJ b, a5 b sectors. The representalÎL.; uuder 1" .... 1'"

corresponds to the interchange of one fermion with its complex conjugale.

Let us assign the twist representation of D~d) for the sixteen left·fermions,

D}" =(mo X 2' +ml x 2+no x 1 +nl x l' +n2 x 1" +nJ x 111/), (4.7.4)

where the non-negative integers mi, ni satisfy 2(mo +ml 1+ L:~=o ni = 16. Moduillf

invariance of L.6 and Z4 abelian twists demands

13 10 3
"3(mo - 1) + "3m1 + 2(n2 + nJ) E 2Z,

5 1 9
2(mo - 1) + ml + ni + 1n2 + :in. E 2Z,

(4.7.5)

where modular invariance of a Z2 abelian twist is already included in the above.

We rewrite (4.7.5) as

1 1
3(mo-1 - 2ml) - 2(n2 + nJ) E 2Z,

1 1
~(mo -1 + 2(n2 +nJ))+ml +nl E 2Z.
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Wc want to find solutions with a maximal value of ma +m) becausc they correspond

to minimal-rank models. The necessary but not sufficient condition for holding

(4.7.6) is

(4.7.7)
ma - 1 + m) E 3Z.

One may guess that the maximal value of ma +m) is 7. In fact it is correct. We list

all the solutions of mi, ni of the minimal-rank models in Table 10, while the two

cquivalences have been taken into account. The split of the sixteen-dimensional

twist representation into two eight-dimensional representations can also be work.."

out as long as modular invariance is considered and model duplications are elimi-

nated.

To see the vacuum structure, one may take the following twist representation,

(4x2',2x2'+2+2xl"j2'+1+1). (4.7.8)

We present the result of vacuum representations for the twist of (4.7.8). The D~d)

rcpresentation of the vacuum In~NN) œIn~".NN) is

(4.7.9)
( InNNN)) (1

a In~.NN) = °
( InNNN)) (0b In~NN) = 1

where discrete torsions satisfy Q2. = Q3.

0) (In
NNN

))1 In~NN)'

.) (In
NNN

))
Ô In~NN)'
= 0 because of the representation re-

quirement. The representation of the vacuum In~NN) œIn~NN) is

(4.7.10)
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For the vacuum In~NN) we have

(4.7.11)

(4.7.:2)

where Cl< = ei"(t+Q,.+Q••), and discrete torsions satisfy Q2b = Q2(a'b) =

Q2(a'b),Q3b = Q3(a'b) = Q3(a'b)' For the vacuum In~NN) œIn~.ZN) EElln~~N),

we obtain

(4.7.13)

There are no global anomalies in this twist representation. Furthermore we have

checked that there exist no global anomalies in all minimal-rank models. The twist

representations and final gauge groups are listed in Table 11.

§4.8 Nonabelian Twists ~f the Double Tetrahedral Group T(d)

The nonabelian group T(d) has twenty-four elements, seven classes (e),

(a3 ), (a,ab,ab', ab"), (a2 ,a5b,a5 b',a5b"), (a4 ,a4 b,a4 b',a4b"), (a5 ,a2 b,a2 b',a2 b"),
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_ (1 +i) (-i
a - 2 1 i) (0 -i)

1 ' b = -i 0 ' (4.8.1 )

where b' = aba- l , b" = ab'a- l . It has three inequivalent two-dimensional irre-

ducible representations, one of which 2 is described by the above defining matrix,

and other two are 2' by

(-i i) (0 -i)
1 1 ' b = -i 0 ' (4.8.2)

and 2" by

= (1 + i)e-i2"~ (-i i)
a 2 1 1 ' (

0 -i)
b = -i 0 . (4.8.3)

It has one three-dimensional irreducible representation 3 described by

(
010)

a= 0 0 1 ,
100 (1 0 0)

b = 0 -1 0 .
o 0 -1

(4.8.4)

It also has three one-dimensional irreducible representations described by l(a =

" 1 "2 2l, b = 1), l'(a = e-·2"., b = 1), l"(a = e-' "', b = J). The partition function of

this nonabelian twist is

(4.8.5)

where the abelian group Z6 is generated by a or ab or ab' or ab", Z4 by b or b' or

b" , and Z. by a3 •

Let us first consider the twist representation of the right-moving fields. We

could choose DX to be 3, but it actually corresponds to the nonabelian orbifold of

100



T, since 3 is a representation of T. To be a faithful representation of T(d), either 2

or 2' or 2" plus suitable one-dimensional representation can be chosen. Since tIlt'

corresponding abelian twists should be in Table l, there are three options for tIlt'

twist representation Dx , which are 2+1, 2'+1' and 2" + 1". In these three cases, the

twist par=eters of a Z4 abelian orbifold are the same and equal to 0, ~,O), whil..

the twist parameters of a Z6 orbifo1cl;:.œ (k, i,O), (~, k, t) and (i,~, ~) respeetively.

There are two equivalences in the twist representation. These two equivalences an'

the representation under l' +-+ 1" or 2' +-+ 2" corresponding to the interchange of

fermions with their complex conjugate. Therefore the two representations 2'+ l'

and 2" + 1" are equivalent. Notice that the two twist representations 2 + 1 and

2' + l' have N = 2 ar,d N = 1 space-time supersymmetry respectively [36].

Let us first consider the case of the twist representation Dx being 2 + l, and

assign the fol1owing representation for (16; 4) fermions,

(mo X 2+ml x 2' +m2 x 2" +m3 x 3+no x l+nl x l' +n2 xl"; 2+1 + 1), (4.8.6)

where the non-negative integers mi, ni satisfy l:~=0(2mi + ni) + 3m3 = 16. Sinee

the partition function of T{d} twist is given by (4.8.5), the modular invariance of

the nonabelian twist requires Z6' Z4 and Z2 abelian twists to be modular invariant.

The abelian twist parameters can be found by diagonalizing (4.8.6) with respect to

a specific a.belian group. Modular invariance conditions of the Z6 and Z4 abelian

twists are
13 5 17 10 2 B
S(mo -1) + Sml + Sm2 + Sm3 + SnI + Sn2 E 2Z,

5
2(mo -1 +ml + m2) E 2Z,
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where the condition from the Z2 twist is already inc1uded in the above equations.

We can rewrite (4.8.7) as

ma - 1 +ml + m2 E 4Z,
(4.8.8)

ma - 1 - ml - m2 - 2m3 + 2(nl + n2) E 6Z.

The minimal-rank models correspond to the twist representation with a maximal

value of ma + ml + m2 + 2m3. After some calculation one can find solutions of

(4.8.8) correspo:lding to the minimal-rank models. The twist representations are

(5 x 2 +2 x 3; 2 + 1 +1),

(2 x 2 + 3 x 2' + 2 x 3; 2 + 1 + 1),
(4.8.9)

(2+4 x 3+ l' + 1;2+ 1 + 1),

(2' +4 x 3+ l' + 1";2+ 1+ 1),

where we have considered the two equivalences corresponding to the interchange

of fermions with their complex conjugate. Notice that the twist representations in

(4.8.9) can possibly reduce the rank of the gauge group by 9. Now we should check

that whether global anomalies arise in these twist representations. Let us take the

first one of (4.8.9), i.e.

(5 x 2 + 2 x 3; 2 + 1 + 1).

The twist parameter of the Z4 abelian twist is

(4.8.10)

(4.8.11)

(2.8.12)

The vacuum phases that b generates on In~RR) and In~"RR) can be calculated,

RRR Fb Fb
(b (e) = -Wb' T - 2 = -2 + Z,

(llRR(b2 = a3
) = ((0) + 2(bb - Wb' L2wbJ = ~ + ~ + Z.
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(4.8.13)
bln~fR) = e;"(F.+l)ln~fR).

Since In~RR) is in a one-dimensional representation and b = 1 in all three OIH'-

This implies

dimensional representations, we have to demand Fb = 0 +2Z. On th<, other lllU1<\.

In~3RR) should also be in a one-dimensional representation since the group clement

a3 itselfforms a dass, so we have to set Fb = 1+2Z. This contradiction indicll.tes tlll'

existence of global anomalies. With the same procedure, i.e. calculll.ting the phases

that b generates on the vacua In~RR) and In~3RR), we know that the second twist

representation in (4.8.9) also suffers from global anomalies. The thinl and the last

ones in (4.8.9) are free from global anomalies at this moment, but we should check

them further when the sixteen-dimensional twist representation is divided into two

eight-dimensional ones. The divided representations are

(2 +2 x 3,2 x 3+ l' + 1;2+ 1 +1),
(4.8.14)

(2' +2 x 3,2 x 3+ 1" + 1';2+ 1 + 1).

Consider the first one of (4.8.14), i.e.

(2+2 x 3,2 x 3+ l' + 1;2+ 1+ 1). (4.8.15)

We can calculate the Vl.\cuum phases. In order for the vacua to form representations

of T(d), we have to demand Q2a = Q3a = Q3b = 0 and Q2b = 1. The same procedure

for the second twist representation of (4.8.14) also leads to Q2a = Q3a = Q3b = 0

and Q2b = 1. There are no global anomalies in these two twist representations.

So far we only considered the case with Dx being 2 + 1. Let us look at the
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"

other case with Dx being 2' + l', and assign the twist representation as

(m~ x 2+m; x 2'+m~ x 2" +m; x 3+n~ x l+n; x l'+n~ xl"; 2' +l' +1), (4.8.16)

where the non-negative integers m:, nj satisfy L:;=o(2m: + nD + 3m; = 16. 5ince

a phase for the partition function generated from modular transformations by the

right-fermions is always the opposite sign of that by the left-fermions, the moduiar

invariance conditions (4.8.7) have a term with a factor (mo - 1) corresponding

to the contribution by mo copies of 2 in the twist of the left-fermions and one

copy of 2 in the twist of the right-fermions. This observation allows us to obtain

modular invariance conditions for the twist (4.8.16) from (4.8.8) with the following

substitutions: mo -1 - m~, ml - m~ -l, nI - n~ -l, mi - m: (i = 2,3), n2 - n~.

It turns out

m~ + m; - 1 + m~ E 4Z,
(4.8.17)

m~ - (m; -1) - m~ - 2m; +2(n; -1 +n~) E 6Z.

We rewrite the above as

m~ - 1 + m; + m~ E 4Z,
(4.8.18)

m~ - 1 - m; - m~ - 2m; +2(n; + n~) E 6Z.

Obviously (4.8.18) is the same as (4.8.8). By using (4.8.9) we may write down the

twist representations of the minimal-rank models with Dx being 2' +1',

(5 x 2 + 2 x 3; 2' + l' + 1),

(2 x 2 + 3 x 2' + 2 x 3; 2' + l' + 1),
(4.8.19)

(2 + 4 x 3 + l' + 1; 2' + l' + 1),

(2' +4 x 3+ l' + 1";2' + l' + 1).
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Similarly, we can show that the first two representations in (4.8.19) suifer from

global anomalies. Splitting the sixteen-dimensional twist representations, wc have

(2 + 2 x 3,2 x 3 + l' + 1; 2' + l' + 1),
(4.8.20)

(2' +2 x 3,2 x 3+1" +1';2' + l' + 1).

In the both above twist representations, the representation requirement leads 1.0

Q2. = Qa. = Qab = 0, Q2b = 1. There are also no global anomalies.

Ta see the vacuum structure, we present the result of vacua ln;" N N) for th"

model with the twist (4.8.15). For vacuum In~NN) we have

(4.8.21 )

The representation of In~NN) œIn.;tNN) œIn.;ti"N) œIn.;tJ'fN) is cal.:ulated ta be

C~NNI) 1
0 0 o C~NNI)InNNN) 0 0 1 o InNNN)

a IO~~NI ~ (0 0 0 1) IO~~NI '
InNNN) 0 1 0 o InNNN)ob" ab"

(4.8.22)

(IO:
NN

») 0 0 1 o C~NNI)In~NN) _ 0 0 0 1 InNNN)
b IO~~N) - (, 0 0 0) lo~~N) ,

InNNN) 0 1 0 o InNNN)ab" ab"

while the representation of In~NN) œIn~~N) œIn~~N) œIn~~,N) is

C~NNI) 1
0 0 o C~NN»)In~~N) 0 o In~~N}

a IO~~NI ~ (0 0 1 1) IO~~NI '0 0
1 0In~~,N) 0 o In~~,N)

(4.8.23)CNN
») 0

0 0
1 C~NN»)b lo~fNI _ (Q o In~~N)0 1 0) IO~~N) .InNNN) - 0 1 0

0 26'

In~~,N) 1 0 0 o In~~,N)

105



(4.8.24)

(

o 1 0 0 0 0
00100 0
100 0 0 0

-000010
o 0 0 0 0 1
000 100

1 0 0 0 0 0
000 0 1 0
o 0 0 0 0 1

-000100
o 1 0 0 0 0
o 0 1 0 0 0
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in~NN)

jntiNN }
Inti,NN}
In~fN}

In~f.N}

In~f.,N}

In~NN}

IntiNN}
Inti,NN}
In~fN}

In~f.N}

In~f.,N}

(4.8.26)



We present all minimal-rank models of this nonabelian group in Table 12.

§4.9 Discussions on Twists by Other Finite Subgroups of SU(3)

As we argued in Section 2.2, the twist group should be finite subgrouJl' of

SU(3) in order to have space-time supersymmetry. The finite subgrouJls of SU(3)

can be divided by two categories [48]: the finite subgroups of SU(2) and the finit,·

subgroups of SU(3) but not of SU(2). Conceming the first category, we have not

considered the groups Did) , D~d), O(d), l and [(d). It turns out that there exi,t

no nonabelian orbifolds for these groups because there are no abelian orbifol,b

corresponding to their abelian subgroups.

Let us take the Di
d

) nonabelian group as an example to show that the D~d)

nonabelian orbifold does not exist. This group has sixteen elements, seven classes

(

e-i2,,(l/B)
a-- 0 (4.9.1)

It has irreducible representations 2 described by the above defining matrix, 2' by

2" by

(

e-i2"(3/B)

a= 0 (4.9.2)

(

e-i2"(1/4)

a= 0 (4.9.3)

and l(a =1, b = 1), l'(a = 1, b =-1), l"(a = -1, b = 1), l/l/(a = -1, b = -1). We

could take the twist representation Dx to be 2" + l', but it is the D4 nonabeliall
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orbifold, since 2" + l' is a representation of D4 • If we cboose Dx to be 2 or 2'

plus sorne one-dimensional representation, the twist parameters corresponding to

the abelian subgroup Za are not in Table 1. Therefore there is no D~d) nonabelian

orbifold. With the same procedure for the groups D~d), O(d),I and [(dl, we found

that there exist no orbifolds corresponding to these groups.

Results from twists by any other finite nonabelian subgroups of SU(3) can be

obtained similarly. We expect that more promising models can be obtained if the

nonabelian subgroup is chosen appropriately.
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Chapter 5

Summary and Conclusions

In this chapter we recapitulate the major findings of this thesis and Illake SClIlle

comments about the possible applications and extensions of the present work.

We discuss in this thesis four-dimensional string theories defined by free fielc1s

on the world-sheet satisfying a set of twisted boundar~' conditions. In Chapter

2, conditions leading to a consistent 'l.Ild desirable string are discussed for nhclinn

twists. The partition function of the string is required to be modular invariant,

which in turn limits the allowed twist parameters, vacuum phases, and ferlllionic

numbers. Four-dimensional Lorentz invariance is satisfied only when fcrlllionic

numbers and discrete torsions are suitably related, and space-time supersymmc·

try places further restrictions on the twist parameters and the vacuum phases.

Furthermore, crystallographic requirements reduce the consistent twist parametcrs

for the right-moving fields to those Iisted in Table 1.

Nonabe1ian boundary conditions have been discussed in Chapter 3. Instead

of restricting ourselves to "standard embedding", we allow the most gcneral twist

for right-moving and left-moving fermions. The Hilbert space of a nonabc1ian twist

is constructed, which has many new features compared to the abelian case. A

general formula of the partition fundion for a nonabe1ian twist is dcrived, and

it turns out to be a linear combination of partition fundions of abelian twists by

109



(

abelian subgroups of the nonabelian group. Therefore, one can discuss the partition

functions, vacuum phases, and mass spectra from its abelian subgroups by using the

technique developed in Chapter 2. It is necessary for a consistent string to require all

the constraints given by the twists from the abelian subgroups. However, this is not

sufficient. The consistent structure of the Hilbert space requires not only the string

fields to form a representation of the nonabelian group, but the vacua as weIl. The

vacuum phases are calculated from the twist parameters and they are not necessarily

in a representation. The failure for the vacua to be a representation leads to global

anomalies, which have been known to exist in the path integral iormalism. This

problem does not arise in the abelian case because the Hilbert space skucl,ure there

is much simpler. The advantage of the present operator formalism b th<!t CIne can

identify and correct for the global anomalies purely within one loop, unlike the path

integral formalism where multi-loop information is needed. Once the well-behaved

Hilbert space has been constructed, one can extract from the model the massless

spectrum. The rank of the gauge group is generally reduced, with the generators

of the final Lie algebra being sorne nontrivial combination of the generators of the

Lie algebra Es x E~. We have given a general procedure to identify the Lie algebra

from the massless states. The resulting gauge group is not always embedded in

Es x E~ in a regular way.

Four-dimensional string models obtained from the heterotic string by an

r.belian twist suifer from having too high a rank for the gauge group. Non­

abelian twist models can potentially correct this problem since such twists can
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reduce the rank of the gauge group, whereas abelian twists cannot. For this rea·

son one would like to choose the nonabelian twist representation to give n mini­

mal rank to the res~lting gauge group. These minimal-rank modcls are s)'stem­

atically analysed in Chapter 4 for twists from ail finite nonabclian subgroups of

SU(2). Twist parameters, vacuum phases, and gauge groups are obtllined; sys­

tematic elimination of global anomalies are discussed in each case. Although

the Standard Model gauge group has not emerged from this analysis, we ohtain

gauge groups such as SU(5) x U(l) x SO(7)'z (from the octalledral group) lUld

SU(3) x SU(2) x G~ x SU(3)' (from the double tetralledral group) which Illwe

small enough ranks in the non-hidden sector and arc close enough to the Standard

Model to make them interesting.

In summary, we have presented systematically the methods and the results for

model building from the nonabelian twist in the operator formalism. Tile Hilbert

space of •'"te nonabelian twist is very different from that of the abc1ian case, and liS a

result, group theory is required to keep a consistent structure in the Hilbut space.

Global anomalies are eliminated by requiring the vacua to be in a rcpresentation of

the nonabelian group. The generators of the final Lie algebra describing the gauge

symmetry of the theory are obtained by making appropriate linear combination of

the generators of the algebra Es x E~. Since it is desirable to obtain modcls with 11

low-rank gauge group, we have c1assified ail the minimal-rank string from the twists

of fini te nonabelian subgroups of SU(2). This rrovides an important step forward

to the construction of rea1istic models from a nonabeliantwist.
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Mucb further work remains to be done with the nonabelian twist models. As

aforementioned, the twi"t :çoup is to be a fini te subgroup of 5U(3) in order to

have space-time supersymmetry. It is straightforward to extend the present work

to twist models by finite nonabelian subgroups of 5U(3) not in 5U(2).

In our discussions above we have presented the gauge group in each case, which

is actually the most difficult part to compute among the whole spectra. Other

consequences, sucb as the number of generations and representations of the chiral

fermions, C!l.Il also be worked out and is usually straightforward. Furtr.ermore,

paralleling the discussion in the realistic models obtained from abelian twist or the

real fermion formulation, one can also study the phenomenologies of nonabelian

twist models, inc1uding the Yukawa couplings, proton stability, neutrino masses,

quark-lepton masses and so on.

A slight variation of our formalism could elso lead to another interesting c1ass

of models. Recell that we fermionized the sixteen left-moving real bosons into

sixteen complex fermions at the beginning in describing the boundary conditions.

It is known that the bosonic shift is equiva1ent to the fermionic twist in the abelian

case. However this is no longer true in the nonabelian twist. Therefore we may keep

left-moving fields to be ail bosonic 3Ild impose inatead the nonabelian twist and elso

shift on these fields at the begi.nning. We expect that the Hilbert space structure

will be similar, but the spectrum will be different aince there will be bosonic modes

and momenta instead of fermionic modes in the massless states. Therefore a new

class of models will be expected. In principle, there will be no tecbnical difficulties
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in building this kind of models.

As we have seen, in cor.Structilig low-rank realistic models, four-dimensionlll

strings obtained via nonabelian twists have their advantages. Much more work still

need to be done in order to have a complete phenomenological analysis of this kind

of strings. The present thesis shows how far we can go using only the twist of a

single nonabelian subgroup of SU(2), so more promising models are expectcd if ail<'

considers other nonabelian subgroups of SU(3). Inspired by the reccnt LEP data

and the realistic models obtained by abelian twist and the real fermion formulation,

it is reasonable to hope that the nonabelian twist technique will lead to its own

realistic models, which may eventual!y be tested by the experiment.
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Appendix A

Modular Transformations

In this appendix we will derive modular transformations of the fu'lction

f(u,vlr) and discuss the function b(u,vlr), which are used in Chapter 2.

The Jacobi function 19 j (vlr) is defined by [5,49J
00

19 j (vlr) = 2Gqli: sin7l"v II (1- qnei2"v)(1_ qne-i2"v), (A.l)
n=1

where G = rr:=j(l - qn), and q = ei21rr . The modular transformations for this

Jacobi function are given by

19 j (vlr +1) =eit 19 j (vlr),

vI,. ~ ,~
19 j (--I- -) =e"r 2 e' r 19 j (vJr).

r r
The Dedekind function 1)(r) is defined by

00

I)(r) = qt< II (1- qn).
n=l

It has the following modular transformations

I)(r +1) = ei'"'I)(r),

1 'z, ~
1)(--) =e-'· 7"'1)(r).

r

(A.2)

(A.3)

(A.4)

In order to represent the function f(u, vlr) in terms of the Jacobi function and

the Dedekind function, one may rewrite the Jacobi function as
00

19 j (vlr) = il)(rlq"ti(e-i"V -- ei"V) II (1- qnei2"v)(1 _ qne-i2"v)
n=1

00

= il)(r)q!2e-i"V II(l- qn- j ei2"V)(1_ qn e-i2"V).
n=1
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Therefore the function f(u,vlr) can be expressed by 19 1(vlr) and 'I(r),

00

feu, vlr) = q-~v(l-vl+n TI (1 _ q"-V ci2"U)(1 _ q"-I+Vc- i2"u)
n=1
00

= cÎ>rr(v'-v)qn TI (1 - q"c- i2 ,,(vr-u))(1 _ q"-lc'·',,(vr-ul)

n=1
. (' ~l= c.... rv -U-, i1 1(-u +vr\r)/I)(r).

(A.6)

Sinee we know the modular transformations of the Jaeobi funetion and the Dedekind

funetion, it is straightforward to derive the modular transtormations of the fllnction

f( u, vlr). The modular transformatior. r ..... r +1 for the function f( u, vlr) is

. (' ~+ ')f(u,vlr+1) =c"r rv -U-, v i1 1(-u+v+ vr ir+1)/I)(r+1)

= cÎ"(rv'-(u-v)-~+v'-v+t)i11(_U +v +vrlr)fr1(r) (A.7)

= ci,,(v'-v+t) feu - v,vlr),

while the modular transfo:mation r ..... -~ is

f( 1 1) i"(-"!-u-~).• ( vI 1)/ ( 1)U,v -- =e r 2 UI -u-- -- t]--
r r r r

= ci,,(ru'+2uv-U)i1I(v +urlr)/I)(r)

= ci ,,(ru'+2uv-U-I)t9I (-1 +v +urlr)/7](r)

= ei"(2UV-U-V+~) f(l- v,ulr).

(A.8)

Let us diseuss the modular transformations of b(u,vlr). For the ease u or

v;6 0, sinee b(u,vlr) = f-I(u,vlr), the modular transformations for b(u,vlr) arc

just followed those of f( u, vlr). This is obvious. However, there arc two e'~~es for

the modular transformations of

b(O,Olr) = 7]-2(r) L:exp(i1l"p2).
p
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First the summation will be interpreted as an integration for the four-dimension,,)

space-time coordinates, since the physical momentun can be any value. Second the

summation will be over some momentum lattice for the compactified coordinates.

In the first case, notice that the physical momenta for the left- and right-moving

should be the same, so the contribution to the partition function by both a left-

moving complex boson and a right-moving complex boson is calculated to be

b(O, Olr )[b(O, 0lr»)" =7) -2(r)7) -2(of)Je;'''P' e-;"'P' d2p

=7)-2(r)7)-2(f)Je-2dm(T)p' d2p

=[2Im(r)]-17)-2(r)7)-2(f) (Im(r) > 0),

(A.lO)

where f is the complex conjugate of r, and l m(r) is the imaginary part of r. Notice

that Im(-l/r) = Im(r)/\rI2. Using (A.4), it is easy to show that Ib(0,0Ir)12 is

modular invariance. In the second case, it is known that Ib(O,Olr)12 is also modular

invariance as long as the momentum lattice is a self-dual integrallattice [23]. From

(A.IO) one also cao know that there is a ultraviolet divergence when Im(r) ~ O.

If a theory has modular invariance, one can restrict the integral over r within the

fundamental domain (Im(,-) > O,{-~ ~ Re(r) ~ 0,17"1 ~ l} U {D < Re(r) <

~, Ir 1 > l}) [50], then the divergence cao be avoided.
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(B.1)

Appendix B

Derivation of Vacuum Parameters

In this appendix we would like to derive the equations (2.1.24)-(2.1.26) by

solving (2.1.23). Let T = ((~)16i(~)4), E~~I f·w·(r)w·(s) == w(r) ·w(s), and wc

rewrite (2.1.23) as the following [21J,

A

w(s)· w(s) - 2w·(s) . T - 2 LSi(i(S) E 2Z,
Î=l

A 1
w(r)· w(s) - [w(r) +w(s)]. T - L[si(i(r) + ri(i(s)) + 2[F(r) - F(s)) E Z. (B.2)

i=l

Let Oi be a vectOl" of s = (SI,S2,'" ,SA) with all entries zero cxcept the ith, which

is equal to 1. We can decomposew(s),F(s) and (i(S) as

A

w(s) = LSiWi -w'(s),
i=l
A

F(s) = LSiFi+F'(S),
i=l

A

(i(S) = (i(O) +L Sj(ij + (1(s),
i=l

(B.3)

where °S; Wi,W(S) < 1,w'(s) E Z,w'(O) = W'(Oi) = O,F'(O) = F'(Oi) = °nad

(HO) = (I(Oj) = o.

Let us substitute respectively r = 0, S - Oi, and r = Oi, S = °as weil in

eq. (B.2), and we obtain

F..
-Wi . T - (i(O) =+= 2' E Z.
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From the above one obtains

Fi E Z,

F..
(i(O) = -Wi . T - i +Z.

Setting S = Oi in (B.I), one has

W? - 2wi . T - 2(;(0) - 2(;i E 2Z.

Substituting (B.5) into (B.6), one obtains

l 2 )
(;i = '2(W; + F; + Z.

(B.5)

(B.6)

(B.7)

Let r = 0 in (B.2), and it leads to

A F.. F'(s)'E Sie-W; . T - i - (i(O)) - W'(S). T - -2- E Z. (B.8)
Î=l

Applying (BA) to the above equation, one obtains

F'(s) = _2w'(S)· T +2Z.

Let r = Oi,S = Oj, and eq. (B.2) becomes

F, F·
Wi . Wj - Wi . T - Wj • T - (j(O) - (ji - (i(O) - (ij + i - -t E Z.

Using (BA), the above equation can be simplified as

(;j + (j; = W; •Wj +Z.

(B.9)

(B.IO)

(B. 11)

Imposing boundary conditions ni(;j E Z in (B.11), which means that an operation

on vacua by the identity (e) operator does not pick up a phase, one may obtain

ninjWi . Wj E DijZ,

(ij =(njY;jWi 'Wj +Q;j)/Dij +Z
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where Di; is a co=on divisor of ni and ni> Yi; E Z is defined such that lij" j +

Y;ini = Di;, and the discrete torsion parameters Qij = -Q;; (1 ::; i < j S; A) ClUl

be taken to be an arbitrary integer from 0 to Di; -1. Setting r = 6; in (B.2). then

imposing (BA) and (B.U), one has

(l(S) = -Wi .w'(s) + Z.

Using boundary conditions ni(ii E Z in (B.7), one obtains

ni(W~ +Fi) E 2Z.

Eqs. (B.3) and (B.9) lead to

A

F(s) = I:siFi - 2w'(s). T +2Z,
i=l

and eqs. (B.3) and (B.14) lead to

A

(i(S) =(0) + I:S;(i; - wi' w'(s) + Z.
i=l

(B.14)

(B.15)

(B.16)

(B.17)

Obviouslyeqs. (B.15), (B.12) give modular invariance conditions (2.1.14) and

(2.1.15) respectively, and eqs. (B.16), (B.17), (B.5), (B.7), (B.13) give vacuum

parameters (2.1.16). One might ask whether these solutions are general solutions

of eqs. (B.l) and (B.2) for any vectors S and r, since we only use the special vectors

S and r to obtain the solutions. It is straightforward to check them by substituting

them back to (B.l) and (B.2) in arbitrary s and r. It turns out that these are the

most general solutions.

119



References

[1] R.N. Mohapatra, Unification and Supersymmetry (Springer-Verlag New York,

1986).

[2] J. Ellis, S. Kelley and D.V. Nanopoulos, Phys. Lett. B249 (1990) 441; B260

(1991) 131.

[3) U. Amaldi, W. de Boer and H. Fürstenau, Phys. Lett. B260 (1991) 447.

[4] A.B. Lahanas and D.V. Nanopoulos, Phys. Rep. 145 (1987) 1.

[5J M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory, Volumes 1 and

2 (Cambridge University Press, 1987); M. Kaku, Introduction to Superstrings

(Springer-Verlag New York, 1988).

[6) S.C. Frautschi, Regge Poles and S-Matrix Theory (W.A. Benjamin, 1963);

G. Veneziano, Phys. Rep. C9 (1974) 199.

[7J Y. Nambu, Lectures at the Copenhagen Summer Symposium (1970); T. Goto,

Prog. Theor. Phys. 46 (1971) 1560.

[8) P. Ramond, Phys. Rev. D3 (1971) 2415; A. Neveu and J.H. Schwarz. Nuc!.

Phys. B31 (1971) 816; Phys. Rev. D4 (1971) 1109.

[9) P. Goddard, J. Goldstone, C. Rebbi and C.B. Thom, Nuc!. Phys. B56 (1973)

109.

120



[10] J. Scherk and J.H. Schwarz, Phys. Lett. B81 (1974) 118.

[11] M.B. Green and J.H. Schwarz, Phys. Lett. B149 (1984) 117; B151 (1985) 21.

[12] D.J. Gross, J.A. Harvey, E. Martinec and R. Rhom, Nucl. Phys. B256 (1986)

253; B267 (1986) 75.

[13] Th. Kaluza, Sitz. Preuss. Akad. Wiss. K1 (1921) 966; O. Klein, Z. Phys. 37

(1926) 895.

[14J E. Berzin, Two-Dimensional Quantum Gravity, Proceedings of the 25th In­

ternational Conference on High Energy Physics (World Scientific, Singapore,

1990); M. Cvetië, A. Font, L.E. Ibanez, D. Lüst and F. Quevedo, Nue\. Phys.

B361 (1991) 194.

[15] J.H. Schwarz, CALT-68-1503 (1988); CALT-GS-1740, Ginsparg#9108022

(1991).

[16] P. Candelas, G. Horowitz, A. Strominger and E. Witten, Nue\. Phys. B258

(1985) 46; G. Horowitz, Unified String Theories (edited by M. Green and

D. Gross, World Scientific, Singapore, 1986).

[17] D. Gepner, Nucl. Phys. B296 (1988)757; Phys. Lett. B199 (1987) 380.

[18J Y. Kazama and H. Suzuki, Nucl. Phys. B321 (1989) 232; Mod. Phys. Lett.

A4, (1989) 235.

[19] H. Kawai, D.C. Lewellen and S.-H.H. Tye, Phys. Rev. Lett. 57, (1986) 1832;

Nucl. Phys. B288 (1987) 1;

121



[201 M. MucHer and E. Witten, Phys. Lett. B182 (1986) 28; W. Lerche, D. Lüst

and A.N. SeheHekens, Nue!. Phys. B287 (1987) 477; 1. Antoniadis, C. Bachas

and C. Kounnas, ibid. B289 (1987) 87; A. Chamseddine and J.P. Derendinger,

ibid. B301 (1988) 381.

[21] C.S. Lam, Int. J. Mod. Phys. A3 (1988) 913; Beijing Notes presenied in

the Symposium at Institute of Theoretieal Physies, Aeademia Siniea, Beijing

(1988), Unpublished.

[22] K.S. Narain, Phys. Lett. B169 (1986) 41; K.S. Narain, M.H. Sarmadi and

E. Witten, Nue!. Phys. B279 (1987) 369.

[23] T. Gannon and C.S. Lam, Phys. Rev. D41 (1990) 4!l2.

[24J 1. Dixon, J. Harvey, C. Vara and E. Witten, Nue!. Phys. B261 (1985) 678;

B274 (1986) 285.

[25J K.S. Narain, M.H. Sarmadi and C. Vara, Nue!. Phys. B288 (1987) 551.

[261 A. Font, L.E. IbBiiez, H.P. Nilles and F. Quevedo, Phys. Lett. B210 (1988) 101;

B213 (1988) 564; A. Font, L.E. IbBiiez, H.P. Nilles, F. Quevedo and A. Sierra,

Nue!. Phys. B331 (1990) 421; J.E. Kim, SNUHE 90/01 (1990).

[27] L. Dixon, V. Kaplunovsky and C. Vara, Nue!. Phys. B294 (1987) 43.

[28J D.S. Freed and C. Vara, Commun. Math. Phys. 110 (1987) 349; R. Dijkgraaf,

C. Vara, E. Verlinde and H. Verlinde, ibid. 123 (1989) 485.

[29J P. Ginsparg, Nue!. Phys. B295 (1988) 153.

122



[30] N.P. Chang and D.X. Li, Phys. Lett. B206 (1988) 5I.

[31] H. Miyata and N. Ohtsubo, DPKU-8905 (1989).

[32J A. Antoniadis, J. Ellis, J.S. Hagelin and D.V. Nanopoulos, Phys. Lett. B194

(1987) 231; B205 (1988) 459; B20S (1988) 209; B231 (1989) 65.

[33] J.L. Lopez and D.V. Nanopoulos, Phys. Lett. B268 (1991) 359; J.1. Lopez,

D.V. Nanopoulos and K. Yuan, CTP-TAMU-ll/92 (1992).

[34J L.E. Ib8iiez, D. Lüst and G.G. Ross, Phys. Lett. B272 (1991) 25I.

[35] Z.-S. Li and C.S. Lam, To appear in lnt. J. Mod. Phys. A.

[36] A.H. Chamseddine, J.P. Derendinger and M. Quiros, Nue!. Phys. B326 (1989)

497; A.H. Chamseddine, J.P. Derendinger and C. Kounnas, ibid. B343 (1990)

716.

[37] F. Gliozzi, J. Scherk and D. Olive, Phys. Lett. B65 (1976) 282; Nue!. Phys.

B122 (1977) 253.

[38] J.S. Lomont, Applications of Finite Groups (Academie New York, 1959);

P.E. Desmier and R.T. Sharp J. Math. Phys. 20 (1979) 74.

[39J S. Mandelstam, Phys. Rev. D11 (1975) 3026; S. Coleman, Phys. Rev. D11

(1975) 2088.

[40] C. Vafa, Nucl. Phys. B273 (1986) 592.

[41] L. Alvarez-Gaumé, G. Moore and C. Vafa, Commun. Math. Phya. 106 (1986)

123



r
!

1.

[421 1. Antoniadis and C. Bachas, Nuc!. Phys. B298 (1988) 586.

[43J T. Gannon and C.S. Lam, To appear in Phys. Rev. D.

[44J N. Seiberg and E. Witten, Nuc!. Phys. B276 (1986) 272.

[45] 1. Antoniadis and C. Bachas, Nucl. Phys. B298 (1988) 586.

[46] H. Kawai, D.C. Lewel1en, J.A. Schwartz and S.-H.H. Tye, Nucl. Phys. B299

(1988) 431.

[47] W.G. McKay and J. Patera, Tables of Dimensions, Indices and Branching

Rules for Representations of Simple Lie Algebras (Dekker New York, 1981);

R. Slansky, Phys. Rept. 79 (1981) 1.

[48J W.M. Fairbairn, T. Fulton and W.H. Klink, J. Math. Phys. 5 (1964) 1038.

[49J E.T. Whittaker and G.N. Watson, A Course of Modern Analysis (University

Press Cambridge, 1927).

[SOJ T. Apostol, Modular Functions and Dirichlet Series in Number Theory

(Springer-Verlag New York, 1976).

124



Figure and Table Captions

Figure 1. An SU(3) root lattice in the complex z plane is used in constructill!!: a

torus with Z3 symmetry, i.e. Z3 orbifold. The "fundamentnl rcgion" in

this construction contains three fixed points.

Table 1. Thirteen acceptable representations RX(9i) = diag( ei2"., Ci21fb , "i2"') for

the right-moving bosons satisfy all the constraints in the twist by a singl,'

abelian group.

Table 2. This is the multiplication table of the nonabelian group D3 with e bcing

an identity element.

Table 3. This table describes minimal-rank modela of the D3 nonabelian twist. We

list the representations D>. of the underlying nonabelian group acted on

the (Es,ED, and present the final gauge groups g, which are broken from

Es x E~. For each model, if only a representation is listed, then we menn

the regular model with all torsions setting to zero (F2 = F3 = Q2i =

Q3i =0 for i > 3), otherwise we specify the torsion values. Furthermore

ooly those torsion models that give different final gauge groups are listed.

The above also applies to other tables that list minimal-rank models for

other nonabelian groups.

Table 4. This table lists all minimal-rank models of the D4 nonabelian twist. The

models in one block are the same representation, which is characterized
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by the first line of the representation, and possibly followed by other lines

with different Z2 torsions, i.e. different F2 , F3 , Q29, Q39 values, where 0

generates even cyclic group Z(0). The first line in one block is always

the regular model, unless the torsion values are indicated. The above also

applies to other tables of minimal-rank models.

Table 5. The twist representations (4.3.4) of the nonabelian group D 6 for the six­

teen left-moving fermions are given in this table, which are the solutions

by requiring modular invariance of the partition function.

Table 6. This table lists ail minimal-rank models of the D6 nonabelian twist.

Table 7. Ali minimal-rank models of the T nonabelian twist are listed in this table.

Table 8. This table presents ail minimal-rank models of the 0 nonabelian twist.

Table 9. Ail micimal-rank models of the D~d) nonabelian twist are given in this

table.

Table 10. The twist representations (4.7.4) of the nonabelian group D~d) for the

sixteen left-moving fermions are listed in this table, which are the solutions

by requiring modular invariance of the partition function.

Table 11. Ali minimal-rank models of the D~d) nonabelian twist are listed in this

table. Notice that the torsion parameter 2 2 = 1 in ail models of this

table.
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Table 12. Ali minimal-rank models of the T(d) nonabelian twist are presentcd in

this table. Notice that we also list the twist representation D x for the

right-moving fields since there are two inequivalent rcprcscntations of D x

(2 +1 and 2' + 1') in this nonabelian twist.
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Figure 1
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'Iàble 1

No (a, b, c) Group Order N # of Fixed Points

1 (~,~,O) 2 0

2 (~,~,O) 3 0

3 e 1 1) 3 273'3'3

4 (t,~,O) 4 0

5 1 1 J) 4 16(4).> 2'

6 Il 5 0) 6 0\6' 6'

7 e 1 2) 6 36'G'3

8 e 1 1) 6 126'3'2

9 e 2 4) 7 77'7'7

10 e 1 5) 8 48'4'8

11 (1 3 l' 8 8,8' 8'"2)

12 (1 1 7) 12 3'12'Z'12
-

13 (.1. .A.. !) 12 4"'12' 12' 2
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Table 2

e a b c d f

e e a b c d f

a a e d f b c

b b f e d c a

c c d f e a b

d d c a b f e

f f b c a e d
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Table 3

No D3 Representation D>. and Z2 Torsion Gauge Group 9

1 3·2+ l' + 1,2 + 5 . l' + 1 Sps . S03 . E~ . U:

2 2·2 + 2 . l' + 2 . 1,2· 2 + 4 . l' SO; . SO;, . SU~

3 4· 2,6· l' + 2 . 1; F2 =1 S09' E~· SU~

Table 4

No D4 Representation D>. and Z2 Torsion Gauge Group 9

1 3·2 + 1'" + 1",2'2 + 4 . l' Sps' UI . SO\I . SU;
2 Q29 = 1 SOs' UI . SO\I . SU;

3 Q39 = 1 Sps . UI . SO~ . SU;2

4 Q29 = Q39 = 1 SOs' UI . SO~ . SU~2

5 4·2,2+ 5· l' + 1; F2 = 1 SOs' SOlo . U?
6 F2 = Q39 = 1 SOs ·E~· U~

7 4·2,2+ 1'" + 1" + 4· li F2 = 1 SOs' SO:O . U:2

131



Table 5

No mo ml no nI n2 n3

1 2 2 5 1 1 1

2 4 0 5 1 1 1

3 4 0 1 1 1 5

4 3 1 6 2 0 0

5 3 1 4 0 2 2

6 3 1 2 2 0 4

7 3 1 0 0 2 6
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Table 6

No DG Representation D). and Z2 Torsion Gauge Group 9

1 2·2 + 2' + 1'" + 1",2' + l' + 5 . 1 SO~ . UI . E~ . U;

2 Q26 = 1 SU4 . S03 . UI . E~ . u;

3 Q36 = 1 SO~ . UI . SO\o . U:2

4 Q26 = Q36 = 1 SU4 . S03 . UI . SO:" . U:2

5 2·2 + 2' + l' + 1,2' + 1'" + 1" + 4 . 1 SO~ . S03 . SO\o . U;2

6 Q26 = 1 SU4 . Ur . SO:" . U:2

7 2·2+ 1'" + 1" + l' + 1,2· 2' + 4 . 1 SO~ . Ur . SO\I . SU~
8 Q36 = 1 sm . Ur . SO~ . SU~2

9 2·2 + 1'" + 1" + l' + 1,2·2 + 4·1 SO~· Ur . SO\I . SU~
10 Q36 = 1 SO~ . Ur . SO~ . SU~2

11 2·2 + 2' + l' + 1, 2 + l' + 5 . 1 SO~ . S03 . E~ . U;
12 Q26 = 1 SU4 . Ur . E~ . U;
13 Q36 = 1 SO~ . S03 . SO\o . U;2

14 Q26 = Q36 = 1 SU4 . Ur· SO:" . U!2

15 2·2 + 2' + 1'" + 1",2 + 1/11 + 1" + 4·1 SO~ . UI . SO\o . U;2

16 Q26 = 1 SU4 . S03 . UI . SO:" . u:2

17 2 + 2' + 1/11 + 1" + l' + 1,2 + 2' + 4·1 SU~ . SO\o . u;

18 Q36 = 1 SU~ . SO~ . U:2

19 3·2+ 1/11 + 1",2 + l' + 5 . 1 Spa' S03 . E~ . U;
2(; Q26 = 1 SU4 . Ur . E~ . U;

21 Q36 = 1 SPa' S03 . 50\0 . U?

22 Q26 - Q36- 1 SU4 . Ur . SO: • . U:2

23 3·2+ l' + 1,2 + 1'" + 1" + 4 . 1 SPa' Ul • SOlo . U{2

24 Q26 = 1 SU4 . 503 . UI . SO:" . U:2

25 3·2+ 1'" + 1",2' + 1/11 + 1" + 4 . 1 SPa' 503 . 50\0 . U?

26 Q26 -1 SU• . Uf ·50:" . U(2
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Table 6 (cont'cl)

27 4· 2, 1'" + 1" + l' + 5 '1; F2 = 1 SOa' E~· U!2

28 F2 = Q26 = 1 S09' E~· U:2

29 3·2+ l' + 1,2' + l' + 5 . 1 Spa' U1 • E~ . U!

30 Q26 = 1 SU4 • SOa . U1 • E~ . U!

31 Qa6 = 1 Spa' U1 • SO\o . U?

32 Q26 = Qa6 = 1 SU4 • SOa . U1 • SO~n . U:2

33 2,2 + 2 ·1' + 2'1,2 + 2' + 4·1 SO~ . SO\o . U!

34 Q26 = 1 SU~ . 50\0 . U:

35 Qa6 = 1 SO~' SO~· U?
36 Q26 = Qa6 = 1 SU~ . SO~ . U:2

37 2·2 + 4· 1,2 + 2' + 2 ·1' + 2·1 SOu' SU2 . SU~2

38 Q26 = 1 SOa . SUi . SU~2

39 Qa6 = 1 SOu' SU2 . SO~2 . U:2

40 Q26 = Qa6 = 1 SOa . SU; . SO~2 . U~2

41 2· 2+2·1'" +2·1',2+ 2' +2·1" +2 ·1' S07 . SUg . SU~ . SO~ . U:

42 2 . 2 + 2 . 111/ + 2 . 1",2 + 2' + 4 . l' SO~ . SO\o . U:
43 Q26 = 1 SU~ . SO\o . U:
44 Qa6 = 1 SO~ . SO~ . Ui2

45 Q26 = Qa6 = 1 Sug . SO~ . U~2

46 2· 2 + 4 '111/,2 + 2' + 2· l' + 2·1 SOu' SU2 . SU~2

47 Q26 = 1 SOa . SU? . SU~2

48 Qa6 = 1 SOu' SU2 . SO~ •Uf

49 Q26 = Qa6 = 1 SOa • SU; . SO~2 . Ur
50 3,2 + 2',2· 111/ + 2· 1" + 4 . l' Spa' 50\2 . SU~2

51 F2 = 1 507 . U1 • SO\2 . SU~2

52 F2 = Q26 = 1 506 • SU2 . SO: • . SU~2
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Table 6 (cont'd)

53 3·2 + 2',2· l' + 6 . 1 Sps' E~· SU~

54 Qa6 = 1 Sps . SOb . SU?
55 F2 = 1 S07 . U1 • E~ . SU~
56 F2 = Qa6 = 1 S07 . U1 • SO;2 . SU?
57 F2 = Q26 = 1 S06 . SU2 . E~ . SU~
58 F2 = Q26 = Qa6 = 1 S06 . SU2 . SO\? . SU~2

59 2·2 + 2 . 2',1/11 + 1" + l' + 5· 1; F2 = 1 S04 . SOs . E~ . U?
60 Q26 = 1 SOs' E~· Ui2

Table 7

No T Representation D>.. Gauge Group g

1 2· 3 + 2 ·1,3 + 1" + l' + 3·1 G2 • G2 • SU~ . Ui

2 2,3+1"+1',3+5,1 G2 · SUa' E~

3 2·3+ l' + 1,3 + 1" + 4·1 SU; . SO~ . Ui2

4 2,3+2,1,3+5,1" G2 • G2 • SU~ . U~

5 2 . 3 + 1" + 1',3 + 3 . 1" + 2 . 1 G2 • SUa . SU~3

6 2·3+ l' + 1,3 + 4 ·1" + 1 SU; . SO~ . Ui2
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Table 8

No o Representation D>. and Z2 Torsion Gauge Group 9

1 3 + 2·2 + 1,2 + l' + 5·1 SOs' SU2 . UI . E~ . Ui
2 3+ 2+ l' +2'1,2· 2+4·1 Sul· UI • SO~, . su;

3 3 + 5 ,1,3,2 + l' + 1 SOlO' UI • SP~ . SO;
4 Q29 = 1 Es' Sp~· SO~
5 3 + 2 + 3 . 1',2·2 + 2 . l' + 2 . 1 SUs' UI . SO~2

6 3+4'1' + 1,3· 2+ l' + 1 SOlO' UI • SP~ . SO~

Table 9

No D~d) Representation D>. and Z2 Torsion Gauge Group 9

1 2· 2 + 1'" + 1" + l' + 1,3·2 + 2 . 1 S07 . SU~ . Sp~ . SU~
2 Q3. = 1 S07 . SU? . F~ . SU;

3 4· 2,2 + 1'" + 1" + l' + 3 . 1; F2 = 1 SPa . SU~ . U:2
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Table 10

No ma ml na nI n2 nJ

1 7 0 1 1 0 0

2 6 1 0 0 2 0

3 5 2 '2 0 0 0

4 3 4 1 1 0 0

5 2 5 0 0 2 0

6 1 6 2 0 0 0
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Table 11 (The torsion parameter F2 = 1 in all mode1s of this table.)

No D~d) Representation D). and Z2 Torsion Gauge Group 9

1 4 . 2',3 . 2' + l' +1; Q3a = 1 SPa . Sp~ . SO~ . U;

2 4· 2',2 . 2' +2 +2 . 1" Spa . 80~ . SU~ . U(

3 F3 = 1 Spa . Sp~ . SO~ . U;

4 4 . 2', 2' +2 . 2 +2 . 1 SPa . SO~ . SU~2

5 4·2,3·2' + l' + 1; Q3. = 1 S09 . Sp~ . SO~ . U;

6 4·2,2·2' +2 + 2 . 1" S09 . SO~ . SU~ . U(

7 F3 = 1 S09 . Sp~ . SO~ . U!

8 4 . 2,2' +2 . 2 +2 . 1 S09 . SO~ . SU~2

9 3·2' +2,3·2' + 1/11 +1"; Q2a =1 Spa· S03 . F~ . SO~

10 Q2a =Q3h =1 Spa· 803 . Sp~ . SO~

11 F3 =Q2a =1 SPa· S03 . Sp~ . SU~ . U!

12 3 . 2' +2,2 . 2' +2 +2 . 1; Q2a =Q3a =1 SPJ . S03 . Sp~ . SU~ . U;

13 3·2' +2,3·2 + l' +1; Q2a =1 SPa· SOa . Sp~· SO~

14 2 . 2' +2 . 2,3 . 2' +2 . 1 Sp~ . Sp~ . SU~

15 Qa6 =1 Sp~· F~· SU~

16 2·2' +2 . 2,2' +2 . 2 + l' +1; Qaa =1 Sp~ . SU~ . SU~ . SO~

17 2·2' +2·2,3·2 +2 ·1" Sp~ . Sp~ . SU~

18 Fa =1 Sp~ . SO~ . SU~ . SO~

19 2' +3 . 2,2 . 2' +2 + l' +1; Q2a =1 807 • SU2 . SO~ . SU~ . SO~

20 2' +3 . 2,2' +2 . 2 + 1/11 +1"; Q2a =1 807 • SU2 . SO~ . SU~ . SO~

21 Fa =Q2a =1 807 • SU2 . SUi· SUf

22 2' +3 . 2,3 . 2 +2 . 1; Q2a =Qa. =1 807 • SU2 . SO~ . SO~
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Table 12

No T(d) Representation (D>.; Dx) and Z2 Torsion Gauge Group 9

1 2 +2·3,2·3 + l' +1; 2 +1; Q2b = 1 G2 • SU2 . SU~2

2 2' +2·3,2·3 +1" +1'; 2 + 1; Q2b = 1 SU3 • SU2 . G~ . SU~

3 2 +2·3,2' 3 + l' +1; 2' +1'; Q2b = 1 G2 • SU2 . SU~2

4 2' +2·3,2·3 +1" +1'; 2' + 1'; Q2b = 1 SU3 • srT2 • G!• . SU~
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