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Abstract

The construction of four-dimensional string models via nonabelian twist is
discussed in an operator formalism. Features of Hilbert space related to nonabelian
twists are studied from the group theoretical point of view. This enables global
anomalies to be removed 1' one insists the vacuum states to be a representation
of the nonabelian group. We present a systematic procedure for the identification
of the final gauge group, whose rank is generically reduced in a _.onabelian twist.
This general method of model-building is applied to obtain all minimal-rank strings
resulting from twists by finite nonabelian subgroups of SU(2). Their partition
functions, vacuum representations, gauge groups, and the elimination of global

anomalies are considered individuzlly for each case.



Résumé

Nous préseutons dans cette thése une construction de la théorie des cordes dans
un espace-temps quadri-dimensionel. La méthode utilisée, dans cette construc-
tion, est basée sur des transformations non-abéliennes appliquées sur le champs
d'opérateurs de cordes. Les caractérisiiques de l'espace Hilbertien, relices a ces
transformations, sont étudiées du point de vue de la théorie des groupes. Nous
constatons que les anomalies du type global disparaissent en demandant que les
états du vide forment une représentation du groupe non-abélien considéré. D'une
facon systématique, nous énumérons les étapes a suivre pour identifier le groupe
de symetrie de gauge de la théorie des cordes que nous obtenons aprés avoir per-
former les transformations non-abéliennes. Comme example, nous examinons tous
les sous-groupes non-abéliens du groupe SU(2). Chaque sous-groupe donne une
théorie des cordes avec un groupe de symetrie de gauge d’ordre minimal. Finale-
ment, les fonctions de partitions, les représentations du vide, le groupe de gauge, et

'absence des anomalies globales sont aussi revus pour chacun de ces sous-groupes.
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Chapter 1

Introduction

%1.1 The Road to Superstring Models

It is generally believed that the Standard Model is an effective theory of the
weak, clectromagnetic and strong forces valid below certain energy scale. The
Standard Model is a quantum field theory with a nonabelian gauge symmetry
SU(3) x SU(2) x U(1), in which the gauge group SU(3) describes the strong inter-
action while the SU(2) x U(1) unifies electromagnetic and weak interactions. It is
also a renormalizable theory which enables us to do calculations without encoun-
tering too many divergences. Despite its remarkable success in fitting the present
experimental data, the Standard Model still does not satisfy us since the theory
itself has many drawbacks. For example, it does 1ot provide answers to the follrw-
ing questions: why are there three generations? Why do masses of quarks differ
so greatly? Also there are about twenty free parameters in the theory. Therefore,
many efforts have been made to go beyond the Standard Model. There are various
scenarios being proposed, such as grand unified theories (GUT), composite models,
supersymmetry and so on [1]. GUT claims that the three forces in the Standard
Model are unified into one force at the energy scale 10'°GeV, Since proton decay

has not been conclusively observed, the minimal SU(5) GUT is ruled out. Other

1



GUT models are possibl~. but they have very few measurable consequences and
they suffer from the gauge hierarchy problem. This problem is essentially that, the
quantum correction of the Iliggs mass is affected by the GUT energy scale which
as @ consequence either gives an unacreptable large Higgs mass or requires an un-
natural fine tuning., There are twoc ways to avoid this unnaturalness. The first is to
ascume the Higgs to be a composite rather than an elementary particle; this leads
to a theory without the hierarchy problem from the very beginning. The second
is supersymmetry. If this symmetry is exact, bosons and fermions of equal masses
must exist in pairs. Since no supersymmetric particles have been observed, super-
symmetry must be broken. The broken scale has been suggested to be around the
order of 1TeV [2]. Even when supersymmetry is broken, its bosonic and fermionic
contributions nearly cancel each other, hence the quantum correction of the Higgs

mass 18 still small. In this way the hierarchy problem would again be avoided.

The two scenarios of solving the hierarchy problem lead to thousands of self-
consistent theories, Whether they are correct or not can be judged only experi-
mentally. As supercolliders and ultrahigh energy machines are built and run, new
phenomena may be discovered which may provide us with a means to select cer-
tain class of models. More accurate and more sensitive measurements may also
indicate a deviation from the Standard Model as well. Recently the remarkable re-
sults [3] has been obtained by LEP, where the electroweak couplings were measured
very accurately and the error-bars of the strong coupling have been significantly

reduced. A renormealization group analysis shows that the strong coupling misses
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the crossing point of the other two couplings by almost four orders of magnitude or,
equivalently, by more than five standard deviations. This is an independent way
of ruling out minimal grand unification. However, in the presence of supersym-
metry the three couplings meet spectacularly at a single point around 10!¢GeV.
The particular mechanism of supersymmetry breaking has no significant effect if
ons assumes a breaking scale in the range between the mass of W boson and a
few TeV. Although no explicit supersymmetric particle has yet been seen, the LEP

data implicitly favors the existence of supersymmetry.

Theoretically, once supersymmetry is acknowledged as a major building block
of modern unified theories, the gauge hierarchy problem is automatically solved as
aforementioned. However, the dynamical question of why the scale of the super-
symmetry breaking is ~1TeV arises. This question is addressed in no-scale super-
gravity theories [4] where a flat classical potential is tuned to give the vanishing
of the cosmological constant (even after the supersymmetry breaking). But these
supergravity theories are not renormalizable. To solve the problem of quantum

gravity, there is only one known solution, namely the superstring theory {5].

A superstring theory is a string theory with supersymmetry. A string theory
is a theory in which the elementary constituents are not point particles, but are
rather one-dimensional string-like objects. String theory was first proposed for
describing the strong interaction of the hadromic physics [5,6] before the SU(3)
QCD came into the world. However, it was soon realized that the theory suffers

from two major drawbacks. First, it involves a massless spin-two particle which



is not present in the hadronic spectrum. Second, the theory is not consistent in
four space-time dimensions but rather in critical dimensions 26 and 10 for the
bosonic string and the superstring respectively [7,8,9]. Later on it was suggested
that this spin-two particle can be identified with the graviton and the string theory
can be a potential candidate to describe all interactions including gravity if the
energy is pushed further to the Planck scale (101°GeV) [10]. A revolution in string
theory took place in 1984 when Green and Schwarz found that certain superstring
theories are anomaly-free [11]. The most promising string theory is the heterotic
string [12], whose left-moving component is taken to be a bosonic string and the
righ¢-maving component to be a superstring. The theory can be formulated as
a ten-dimensional theory with a rank 16 symmetry group on top. The internal
consistency requirements of the theory dictates the dimension ten, as well as the
possible symmetry group to be either Eg x E} or SO(32). The massless spectrum
of the theory as well as its interaction give exactly ten-dimensional supergravity
and super-Yang-Mills fields with gauge group Fg x E{ or SO(32). It contains and
is capable of unifying all four interactions, and more importantly it is also a finite

quantum field theory.

The probleta with the original heterotic string is that it requires ten-
dimensional space-time, which obviously fails to satisfy the fact that our universe
is in four-dimensional space-time. This problem can be bypassed by requiring, in
the context of the old theory of Kaluza-Klein [13], that the extra dimensions be

compactified, that is, by letting them live on a tiny compact object with a size of
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the order of the Planck length (10~*3cm). This would account for the experimental

failure to see these hidden dimensions.

Although efforts have been made on the nonperturbative effect of string theory,
it is still too primitive to rigorously answer the question of whether the theory
undergoes spontaneous dimensional breaking [14]. Rather than waiting for the full
development of the true quantum vacuum of the theory, we can instead look for
various classical vacua of the theory by compactifying the extra six dimensions
and see whether a reasonable phenomenology can be performed. Actually, much

progress has been achieved in this direction [15)].

There are many schemes in compactifying the extra six dimensions. The sim-
plest is toroidal compactification of six dimensions. This means that six dimensions
are described as forming a direct product of six circles with some radius. This ends
up with an N=4 spuce-time supersymmetry, and the absence of chiral fermions. In
recent years a vast number of other exactly soluble models has been obtained. This
includes Calabi-Yau space compactification [16], Gepner models (17,18}, fermion
formulation [19,20,21], lattice approach [22,23], orbifold [24,25,26] and so on. How-
ever only relatively few may be called realistic models. It has been proved that the
models from Type II superstring, in which both left- and right-moving are taken
to be superstring, can never produce the Standard Model containing triplet quarks
and doublet leptons [27). The models from both Eg x Ej and SO(32) heterotic
strings can contain the Standard Model, but it seems that the Es x Ej string is

more viable phenomenologically, since among other things we can interpret the



matter fields broken from Ej as a hidden sector (cryptons). Technically regarding
a1l the compactification schemes, it is relatively easy to construct realistic models

by using the real fermion formulation or orbifold.

The compactification by nonabelian orbifold was proposed by Dixon, Harvey,
Vafa and Witten {24], where they considered the simple case of “standard embed-
ding”, in which twists are the same for the left- and right-moving fermions. Later,
geometrical analysis showed that global anomalies will generally be present even
when the modular invariance conditions are satisfied [28]. The lack of a simple
way to identify the global anomelies is the main obstacle for model-building from
a nonabelian orbifold. That is one reason why there are very few studies on the
nonabelian orbifold {29,30,31}. In order to avoid global anomalies, the usual proce-
dure is to confine ourselves to “standard embedding”, possibly adding to that some
abelian twists or shifts. This is because global anomalies from the left and right are
cancelled among each other in the “standard embedding”. Some of the work based
on the “standard embedding” plus some abelian shift has been done by Chang and
Li [30]. They constructed models of the nonabelian orbifold corresponding to the
dihedral-like group A(3-3?%). It is interesting that the models provide us with three
or four families of quarks and leptons with gauge group SU(3) x SU(2) x U(1)
multiplying some other group.

Recently the construction of realistic string models has been rapidly developed.
The class of flipped SU(5) models has been constructed from the real fermion

formulation [32,33] and the class of SU(3) x SU(2) x U(1)" string models has been



obtained from the abelian orbifold [26,34]. These models give many interesting
results. Certainly they are still at their early stage, and need to be fully explored.
One important generalization of the real fermion formulation and abelian orbifold
is the nonabelian twist (or nonabelian orbifold). We expect many new features
will emerge in string models from the nonabelian twist. Since we are able to solve
the problem of global anomalies in a simple way, construction of nonabelian twist
models can be carried out successfully, in particular the interesting class of the

minimal-rank models {35].

Technically there are at least two advantages in the framework of the non-
abelian twist. First, it can dramatically break the huge gauge group down to a low-
rank gauge group. Second, the allowed twist representations are very restricted,
since not only should they satisfy all the modular invariance conditions of abelian
twists of the corresponding abelian subgroups, but also they should be free from
any global anomalies. Therefore the number of allowed models in the nonabelian
twist is much less than that in the real fermion construction or abelian orbifolds.

This fact in turn makes it easier to classify the models by nonabelian twists.

It is also interesting to note that the nonabelian nature actually exists even
in the real fermion formulation and abelian orbifold. The real fermion formalism
allows the twist group to be the nonabelian group ((2) since the twist can change
the sign of the real part but not the imaginary part of a complex fermicn which is
made from two real fermions. In the abelian orbifold, the combination of abelian

twist and abelian shift is generically a nonabelian space group. It is because of this



nonabelian nature that the rank of the gauge group could sometimes be reduced
in the real fermion formulation [19] or abelian orbifold [26] . Therefore the general
consideration of the real fermion formulation or abelian orbifold needs the knowl-
edge of nonabelien twist, such as the case of allowing the interchange of the real
fermions in the real fermion formulation or adding different Wilson lines to the left

and to the right of the abelian orbifold.

§1.2 Present Work

The aim of this thesis is to give a detailed description of how to construct
string models by means of nonabelian twists (orbifolds). The main obstacle of global
anomaly is removed by a representation requirement in the consistent Hilbert space.
This means not only that the twist of string fields should form a representation of
the underlying finite twist group, but also the vacua of all sectors should form a
representation of the iwist group as well. Unlike other studies, we do not assume

here “standard embedding”.

In order to have a realistic string model, one would like to construct a four-
dimensional string theory to be as close to the Standard Model as possible. Among
other things, the rank of the gauge group is 4 in the Standard Model and 16
in the heterotic string in ten dimensions, and it has an even larger rank when
compactified to four space-time dimensions. In order to dramatically reduce their
rank difference, 1 choose the nonabelian twist representation to give a minimal rank

to the resulting gauge group. Furthermore, since the supersymmetry is expected

8



to be broken at very low energy (~ 1TeV), one would like to keep the space-time
supersymmetry at the compactification scale. This in turn restricts the twist group
to be a finite subgroup of SU(3) [5,36]. A relatively simple class of those twist
nonabelian groups is the finite nonabelian subgroups of SU(2). We will restrict
the twist group to be in this simple class throughout all this thesis. Technically,
in order to eliminate unphysical degrees of freedom in the Hilbert space, one may
choose light-cone gauge, which reduces the ten space-time coordinates into eight
transverse coordinates. Contrary to the path integral formalism, we shall build
our theory starting from the Hilbert space instead of starting from the partition
function, and this is called the operator formalism in the literature. Also we shall
begin with the phenomenologically viable Eg x E; heterotic string, and confine
ourselves to symmetric orbifolds. The symmetric orbifold means that the twists are

the same for the left- and right-compactified space-time coordinates.

The plan of the thesis is as follows. In Chapter 2, the basic features of abelian
twists are reviewed and expauded in three subsections. General prescription of
string field boundary condition and GSO projection [37] is presented in Section
2.1, in which the modular invariance conditions are derived and vacuum phases
in all sectors are determined. In Section 2.2, Lorentz symmetry and space-time
supersymmetry are considered. In particular the constraints to the vacuum phases
by these symmetries are obtained. Abelian orbifolds are reviewed in Section 2.3,
where the general constraints as well as a table of acceptable representations are

presented.



Chapter 3, which spreads ont in three sections, is devoted to the detailed
description of the construction of nonabelian twists. Some examples are given to
illustrate how to carry out the model-building in practice. Specifically, in Section
3.1, the boundary condition and GSO projection are described in terms of the
- consistent Hilbert space, which is very different from the case of the abelian twist.
From the Hilbert space, the partition function of the nonabelian twist is obtained,
which turns out to be a linear combination of the partition functions of the abelian
twists corresponding to the abelian subgroups of the underlying nonabelian group.
It then follows that the condition c¢f modular invariance for the nonabelian twist is
nothing but the modulax invariance conditions of all corresponding abelian twists.
Within each of the abelian subgroups, the twist is obtained from the diagonalization
of the nonabelian twist representation, and the vacuum phases are calculated based
on the formulae derived in Chapter 2. The consistency of Hilbert space demands
the vacua of all sectors to form a representation of the nonabelian group, a condition
which is not a priori satisfied. The failure for the vacua to be in a representation
indicates the existence of global anomalies, which will be discussed in Section 3.2.
Also some toy models are presented in this subsection in order to demonstrate
how the global anomalies arise in the operator formalism. In Section 3.3, the
general method of identifying the final gauge group is described. The rank of the
gauge group that can be obtained from the model is found by looking at the twist
representation. Emphasis is made on the effects of the discrete torsions and the

rank enhancement.

10



In Chapter 4, I systematically study and classify all minimal-rank nonabelian
twists arising from all the finite nonabelian subgroups of SU(2). These finite non-
abelian groups are the dihedral groups D; (I = 3,4,6), the tetrahedral group
T, the octahedral group O, the icosahedral group I, and their double groups
Df’”,T(‘”,O“),I (d) [38]. The nonabelian twist of each of these groups is consid-
ered in a separate section. The partition function and the vacuum representations
are calculated for each nonabelian group, and global anomalies are eliminated for
each case. The twist representations and the final gauge groups of all minimal-rank

models are presented in various Tables.

Finally some discussions and conclusions are made in Chapter 5. The detail of
modular transformations is derived in Appendix A, while the modular invariance

conditions and the formulae of vacuum phases are obtained in Appendix B.
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Chapter 2

Constraints on Abelian Twist

String compactification via orbifolds is simple to construct and interesting phe-
nomenologically. In order to construct string theories from nonabelian twists (or
orbifolds), we have to establish some basic features of abelian twists, which are used
in later chapters. So in this chapter we plan to discus: the constraints given by an
abelian twist. In Section 2.1 we review the conditions of modular invariance and
the vacuum parameters. The Lorentz symmetry and space-time supersymmetry are
considered in Section 2.2. We will see that those symmetries further restrict the
twist and vacuum parameters. In Section 2.3 the crystallographic constraints are

investigated. It shows that only very limited number of twist groups are allowed.

§2.1 Modular Invariance of Abelian Twists

As we mentioned in Chapter 1, the left-moving component is taken to he a
bosonic string and the right-moving to be a superstring in the ten-dimensional het-
erotic string. In the light-cone gauge, there are eight real left-moving bosons and
eight real right-moving bosons for the transverse space-time coordinates, eight real
right-moving ferraions for the world-sheet supersymmetric partners, plus sixteen
real left-moving bosons for the gauge coordinates. As it is well known a real boson

field in two dimensions may be replaced by a complex fermion field in a process

12
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which s called fermionizacion (39]. In this way one may represent the gauge coor-
dinates by sixteen complex fermions. Also two real bosons or two real fermions can
be made into one complex boson or one complex fermion. Ey doing that, the fields

of the heterotic string become
Yi(t+0), Xi(t+0), XR(t—0), ph(t-0) (1$a<16,0<b<3), (211)

where ¥, ¢4 are complex fermion fields, and X%, X% are complex boson fields.

The subseript L stands for left-movers and R for right-movers.

In order to have a four-dimensional heterotic string, let us take the fields
X gj)(a, 1), X go)(a,t) to describe the transverse components of our four-dimensional

space-time coordinates, which are periodic, and define the following field vectors,
(1) (1)
L

R
XE‘I’%), nEs \bg) y AS : y

3) (:15)
oy e @12
Xy xp)
Y=|x@|, z=[x?|,
(3) 3
Xk Xy

where Y and Z correspond to the six compactified dimensions. In the construction
of an abelian twist, the compactification is achieved by the general abelian boundary

conditions of the string fields,
x(o +2x,t) = R3(g,x(0, 1),

(o + 2m,t) = Ry(g)n(a,1),

Mo +2m,1) = Ra(g)Mo, 1), (2.1.3)
Y(o +2m,t) = Ry (9)Y (o, 1) + V¥ (9),

Z(o +2m,t) = Rz(9)Z(a,t) + Vz(g),

13



where g is a group element of an abelian group G,, R;(g) for t = 3.7, A}, Z are
unitary representations of ¢, and V;(¢)} (j = Y, Z) are shift vectors. Since only
symmetric orbifoid is considered in this thesis, one has Ry(g) = Rz(g9) = Rx{y)
and Vy(g) = Vz(g) = V(g). For simplicity, we will take V(g) = 0. We shall use
the word sector to mean a particular set of boundary conditions, and we denote the

one specified in (2.1.3) as sector g.

The world-sheet supercurrent is given by [5,21]

TI (o)1) = (x(0,1))" - 0-XR(0,t) + (n(o, 1) - 0_Y(a,t),  (2.1.4)

where 8.. = 8/80~ with 0~ = t— 0. We know that TF (o, ) is a fermionic current,

s0 it must be periodic or antiperiodic,
TF (o 4 27,1) = £TF (0, t). (2.1.5)

In order for the string boundary conditions to maintain the world-sheet supersym-

metry, we have to demand

Rx(g) =&l1,
(2.1.6)
Rx(g) = Rx(g)Rq(g)-

In the abelian boundary conditions, the representations R;(g) of the abelian
group G, can be expressed in & diagonal form. Therefore we can discuss the bound-
ary condition of eact 3eld independently. For convenience, let us denote (A;7n, x) as
a 20-component vector 1, whose first 16 components are A and last 4 components

are (17,x). The boundary condition for a fermion ¥°(o,t) can be written as

P (o + 2m,t) = e~ 2"V 90, 1), (2.1.7)

14



where € = +1 (1 € a € 16) und € = —1 (17 € a € 20). The parameter v* may

be confined to the range 0 £ v® < 1 and we wil do so from now on.

It is straightforward to obtain the mode expansion of the free fermionic field

with these boundary conditions. They are

YUO) = Y Phmive—1 xp[-i(t + o) (m + v — 1)),

o (2.1.8)
¥%(o,t) = Z Drm—ve €xp[—i{t + €0 )(m — v*)],

where $° = (¥°)! and $2,,_,« = (¥%, ). A similar expansion for the complex
boson field X "(cr, t) can be made in terms of the oscillator modes X b and X?

m—ub?

where X® is one of the fields X} or X}.

A momentum eigenstate |p) can be annihilated by any mode with positive

indices,

:'ll\-i-lul ) ﬂ'lz—l'g |p) ma+ﬂa|p) = ﬁu—u. lp) 0 (mi +‘U;‘ > 0’ Thi -V > 0)'

(2.1.9)
States in a sector are linear combinations of states of the form
'1bm;+u1 m:-{-u: ‘pﬁ‘lg-—-va Xm.‘-i-v.. tot Ip) (2'1‘10)
withallm; 4+ v; <0and m; —v; <0.
The ground state energy for a complex fermion is Ef = — 3 . o(n—v*®) by the

normal ordering procedure [5]. Using zeta function regularization, this is known to

be

1
B = —5v"(1-v%) + 11—2 2.1.11)
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For a complex boson the ground state energy is the same formula as above but with

the sign reversed, i.e. B} = %vb(l -y~ % The vacuum energy for a given string

theory is therefore

Eoy=) Ep+Y Eb. (2.1.12)
a b

Closed string fields may obey aperiodic boundary conditions because these are
not directly observable. Physical states however must be one-valued. To satisfy

this requirement, we may first define an operation by a group element k on the

fields of any sector,

hA(o,£)h™! = Ra(h)~* Mo, t), (2.1.13)

which is consistent with the string boundary conditions in the abelian twist. Then
we can define a singlet projection operator P = 3 . 8/|Ga| where |G, is the
order of the group G,, and demand all physical states in each sector to be invariant
under this P. This turns out to be equivalent to the one-valued requirement for

the physical states. This scheme is called GSO projection in the literature [37].

Having established the string boundary conditions and the GSO projection, we
actially have given the Hilbert space of our string theory. The next important tisk
is to calculate the one-loop string amplitude (or partition function). The one-loop
diagram in string theories is a torus. In order to globally describe the coordinate
transformations on the torus, we have to define the modula:r parameter 7 to be
T = t/o, where t and o are world-sheet coordinates. The torus admits coordinate

transformations that are not continuously connected to the identity. They are
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transformation [5]
ar + b
cr+d’

T —

(2.1.14)

where a, b, ¢, d are integers with ad — be = 1. In other words the matrix

(‘: 3) (2.1.15)

forms a group SL(2,Z)/ +1 called the modular group. The transformation {2.1.14)
is called a modular transformation. The whole modular group is generated by the
two modular transformations, 7 = 7+1, 7 — —1/7. The SL(2,Z)/+1 invariance
on a toroidal world-sheet is formally a consequence of the underlying reparametriza-
tion invariance in the classical action; we want to maintain this invariance in the
quantum theory. The modular invariance is crucial for the absence of ultraviolet di-
vergences (5] (see also Appendix A). Therefore we must check the partition function
for a string theory to see whether it is invariant under the modular transfcrmations.

We shall carry out this to one-loop order.

12nr =

Letg=c¢e and § = e~?"*, where 7 stands for the complex conjugate of 7.

The partition function is given by
2(Ga) = Trlg™=q"*(~1)7]

Z Try, [qHL(h)qHR(h)(__l)FP]

R (2.1.16)
1

= D Tl g1y
: alg.ﬁEG.

Here Tr and Ty, are respectively the traces taken over all physical states, and the

states in the sector h. Hp and Hg are the respective Hamiltonians for the left-

17



movers and right-movers, and F is the fermionic number operator. It is interesting
to note that this partition function for left-movers can be simply written down by

using the elementary quantum statistical mechanics with the identification e 7 #¥ ~

el?ﬂ'!’H.

Consider the general abelian twist group Ga, which can always be written as
Zpy X 2y, X+ x Zp,, for some A, Also the group clement can be represented by
a vector s = (81,82,'+,84), with s; being integers defined modulo n;, where the
multiplication of two group elements becomes the addition of two s vectors. The
generator g; of G, is represented by the vector s with all entries zero except the
ith, which is equal to 1. In sector s the boundary condition and the operation by
the group element for the 16 left-moving and 4 right-moving complex fermions are

(0 + 27,t) = exp[—i2me’w?(s)]y° (o, t),
(2.1.17)

s°(o,1)s™! = exp[i2ne’w?(s)]¥® (o, 1),

and similar formula is applied to the complex bosons X%(c,t) with the twist pa-
rameters &b(s) instead of w®(s). Let w(s) = (w®(s)) be a Lorentzian vector with
(16;4) components specifying the tv.ist of the fermions ¥». The group structure
demands w(s) = Y., sw; —w'(s) with 0 € wf,w(s) < 1, und w'(s} € Z is chosen
to maintain this bound on w(s). Notice that w; = w(g;). Let the cigenvalues of the

vacuum of s sector |{2,)} for the operator F and g; (g; € G.) to be

gi[s) = exp[—i27(i(s)][S2),

(2.1.18)
(-DF|Q,) = exp|—in F(3)}{).
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The partition function (2.1.16) is calculated to be the following [21],

16 20
Z(G.) = lgal S Ctrys) I] £t )t (s)ir) T] Lt (r)w ()l

a=1 a=17

5 (2.1.19)
T 6@ (r), @b (s)|m)b(@® (r), 2% ()T,
b=0
where the sum is taken over all 0 < r;,8; < n; —1,
m 0y .
f(u,vl'r) = q-—;}u(l—v)-l-ui% H (1 — qm—uel21ru)(1 _ qm—1+ve—32ﬂ'u),
m=1

- . 2

40,0 = 174() S xplns 2120

bu,vlr) = F 7 (w,olr)  (wor v #0),
C(r,s) = exP{_iWIF(s) +2r- C(s)]}!
r-((s) = E::I ri€i(8), ¢ = €*™", and n(r) is the Dedekind function defined in

Appendix A. By using the results in Appendix A, the function f(u,v|r) can be
expressed by the Jacobi function 9;(v|r) and the Dedekind function,

f(u,v|r) = explir(—u + vir — %)]191(—11 + vr|r)/n(7). (2.1.21)

The modular transformations, 7 — 7+ 1 and 7 — —2 for the function f(u,v|r) are

flu,vjr +1) = explin(v? —v + -;-)]f(u - v,v|7),
1 1 (2.1.22)
fu,v| - -1:) = exp[in(2uv —u—v — 5)]]‘(1 — v, u|r).

This shows that if one has a sector twisting by v, then one must have all sectors
twisting by u,u — v,1 — v,- -+, to enable the partition function to be modular in-

variant. Since the left-moving and right-moving bosons have the came boundary
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conditions, their phases generated by the modular transformations to the partition
function are actually cancelled each other. For the case u or v # 0, the cancellation
is obvious since there is no phase generated in |b(u, v|T)|* = |f(u.v|7)|™? by using
(2.1.22). The cancellation is also true for the case © = v = 0, which is shown in
Appendix A. Therefore, as far as modular invariance is concerned, we can neglect
the bosonic part of the partition function in our discussion. The requirement for

modular invariance of the partition function is

20

3 elw(s)wt(s) — wi(s)] — 23 - ((s) € 22,

a=]

20
a a a 1 a a 1
D et (rwt(s) - @) +wi ()] = s ((r) = r - ((s) + S[F(r) - F(s)] € Z.
a=1
(2.1.23)
After some calculations given in the Appendix B, the above two equations

turn out to be the following two non-trivial conditions, which are equivalent to

level matching conditions in the literature [24]:

ni(w? + F;) € 22, (2.1.24)

ninjw; - wj € Di;Z (4 7). (2.1.25)

a=20
a=1

In these equations, F; € Z,w; - wj = Yoc; wiw?, w? = w;-w; and D;; is the
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o :-'\A

common divisor of n; and n;. The vacuum parameters are found to be:
A
F(s) = siFi - 2'(s)- T + 22,

i=1

A

Gls) = Gl0) + Y _ 8iGij — wi - w'(s) + Z,
i=1

6i(0)= —w; - T — % +Z,

Civ = %(w? + F)+Z,

(2.1.26)

Gij = (n;Yiwi wi+ Qi)/Di; +Z (i #j),
where T = ((1)'%;(1)*), Y;;j € Z is defined so that Yj;n; + Yjin; = Dyj, and the

discrete torsion parameters @i; = —Qji (1 £ ¢ < j € A) can be taken to be
arbitrary integer from 0 to D;; — 1. The above vacuum parameters are the most
general solutions for a four-dimensional string to have modular invariance. The
importance of the discrete torsions was first noticed by Vafa [40]. We will see later

that these torsions may change the final gauge group in the nonabelian twist.

In order to produce the original Eg x E} heterotic string, one may simply
take the twist group Ga = Z2 x Zz X Zp with w; = T,wz = ((3)%,0%;0%),w; =
(0%,(3)%;0*). That implies the three groups of the first eight, the second eight
and the last four fermions can be chosen independently to be either periodic or
antiperiodic. We will use the symbol (N, N;N) to denote all three groups being
antiperiodic (Neveu-Schwarz fermions). For periodic fermions (Ramond fermions),
we will write R instead of N. On the other hand, if taking G, = Z2 x Z; with

wi = T,wy = ((1)'%;0%) instead, one gets SO(32) heterotic siring.

Since we would like to compactify the original ten-dimensional Ep x Ej heterotic
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string, the twist group should be taken to be Z; x Z; x Z; x G*, where G', is some
point group. Therefore, in describing the four-dimensional string, we have the eight
sectors from the Eg x E} string and also different sectors generated from the abelian
group G;. We will label the vacuum of the sector ¢ € G, with initial (N, N; N}

boundary conditions as |QF NNy Other vacua sre labelled in a similar way.

Before leaving this section, we would like to point out that although the con-
ditions (2.1.24) and (2.1.25) are derived by the requirement of modular invariance
at one-loop, these are actually the sufficient conditions for modular invariance to
all-loop in the abelian twist. The proof [41,42] can be done by writing down n-loop
string amplitudes and n-loop modular transformations, und by showing that no

more conditions can be obtained beyond the level matching conditions.

§2.2 Lorentz Symmetry and Space-Time Supersymmetry

So far we have only considered the constraints on the world-sheet. In this
section we will discuss two important space-time symmetries, i.e. Lorentz symmetry

and space-time supersymmetry. They will give more constraints on the twist and

vacuum parameters.

It is known that Lorentz symmetry is esgential for a theory to make sense
physically. The critical dimensions 26 for bosonic string and 10 for superstring
can be determined by requiring Lorentz invariance in the first quantization of the
string [5]. In the ten-dimensional heterotic string, the Lorentz algebra is SO(9,1).

It becomes SO(8) in the light-cone gauge where only eight transverse space-time
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coordinates remain. The Lorentz algebra is generated by the zero-modes of the
right-handed Ramond fermions (5], whose anti-commutation relations are
{48, %o} = 6,
{¥5 90} = {¥5, %5} =0,

and the appropriate space-time indices are 17 < a,b < 20. The anti-commutation

(2.2.1)

relations (2.2.1) generates the so-called Clifford algebra. The gauge particles reside

form a spinor representation of the Lorentz algebra.

Lorentz invariance must also be maintained in string compactifications. The
Lorentz algebra after compactifying the extra six dimensions becomes SO(2), which

is generated by the zero modes of 20th fermion d)((,m) and its complex conjugate,

or without d;}f"’ are Lorentz spinors, since they form spinor representations of the

Lorentz algebra. Therefore they are physical fermions. On the other hand the states

bosons. Hence all fermion are in the sectors with twist parameter w{2%) = 0, and
all bosons are in the sectors with w(?®) = 1. That implies, in order to have correct

spin-statistics relation, the total fermionic number of a state in sector s has to be
Fiot(s) = 1+ 2)(s) + 2Z. (2.2.2)

We can also determine the total fermionic number of a state in sector s from its
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explicit construction, and this gives
Fioe(s) = 2N(s) - T + F(s) + 2Z, (2.2.3)

where N(s) is 2 (16; 4) Lorentzian vector, which labels the number of different
fermion modes in that state. Since we start from Ej x Ej heterotic string, the twist
group is Gg = Zio X Zg X Zg X Zn, X -+ X T, with first three twist vectors fixed,
e wy = Tywy = ((3)8,0%,0%),ws = (0%,(3)%;0%). Without loss of generality we
can always choose w§2°) = 0 (¢ > 3) since we can add the twist vector w; to w; any

way. Therefore we have Ry(9i) = Rx(g:i) (+ > 3). The GSO invariance under the

group of the first Zy implies
N(s) T +¢(s) =0+ Z. (2.2.4)
From egs. (2.2.2)—(2.2.4) one can obtain

F(s) =1+ 25%(s) + 2¢;(s) + 2Z. (

X
to
(44

N’

Expanding both sides of the above equation by use of {2.1.26), one may deduce the

following,
F,=1+22,
(2.2.6)
Fy =20 +22.

That is the constraints to the vacuum parameters by the Lorentz symmetry.

Let us turn to the discussion of space-time supersymmetry. As we mentioned in
Chapter 1, we want to keep the space-time supersymmetry at the compactification

scale, since it is expected to be broken at very low energy (~ 1TeV). It also has
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been shown in the lattice construction that it is very difficult to have string theories
having vanishing cosmological constant without space-time supersymmetry {43].
This is another indication that a physical string theory should have at least N =1
space-time supersymmetry, in which case there must be the same mass spectra of

space-time bosons as their fermionic partners.

The experimentally measurable spectrum is the string massless states because
the cnergy scale of the massive states is 10'°GeV. The negative energy states
(tachyons) are unacceptable for a physical theory. Fortunately the existence of
space-time supersymmetry can guarantee a string model to be free of tachyons [5].
From Section 2.1 one can calculate that the vacuum energy for right-moving fields
is greater than or equal to —%, while that for left-moving fields is greater than or
equal to —1. The gauge particles are created by the modes gbf_z?,d_)(_z;). To have a
massless gauge bosons, we must take the minimal vacuum energy of right-moving
fields, which occurs in the identity (e) sector of the abelian group G*,. All other sec-
tors have no contribution to the vector bosons. More precisely, the gauge particles
are given by the vacua [QN VN, [QRNNY and |QN RN) excited by some string modes.
On the other hand, the gaugino particles come from the vacua [QN V), QRN ®) and
|2V RRY excited by some string modes. The excitation modes of the right-fermions
can be either 1.!:((,20) or without it. Notice that there is no twist to the fermion (2%
except by the first Z; group of the whole twist group Zs x Zz X Zz x G!,. In order
for the massless gauge bosons and their partner gauginos to be matched, it is nec-

essary that the phases generated by gi ( > 1) on the vacua [Q¥NN) and |[QNNR)
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are the same. It also should be true for the vacua |Q#VN) and |QRNRY or | RNy

and |QN R, In terms of the vacuum parameters, it has to satisfy the following for

1> 1,
Ci(61) = Ci(62 + 6a), (2.2.7)
Ci(62) = (61 + E3), (2.2.8)
i(83) = Ci(81 + 62), 2.2.9)
where §; is a vector of s = (s1,82,-+,34) with all entries zero except the ith, which

is equal to 1. Using (2.1.26), the above turns out to be

G1 =Gz +Cia + 2, (2.2.10)
G2 = Gi1 + Cis — 2wi w3 + Z, (2.2.11)
Gia = Cia + G2 — 2w; w2 + Z. (2.2.12)

By use of eq. (B.11) in Appendix B, which is (i; + (ji = wi -w; + Z, the three

equations above can be written as:

Gi = Qi+ Gitwi-w+ 2, (2.2.13)
C2i = Cri + Gai —wi - w+ %, (2.2.14)
G = Qi+ Qi ~wi-w+ 2, (2.2.15)

where w = T — w; — w3y = (0';(3)*). Obviously (2.2.13)—(2.2.15) are equivalent.

Therefore there is only one non-trivial equation,

Gi=wi w+li+Git2 (> 1) (2.2.16)
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Setting : = 2,3 and using (2.1.26) and (2.2.6), one can obtain
(23=0, (32=0. (2.2.17)

The parameters (2;,(3; (+ > 3) can be obtained from (2.1.26). In summary, the

vacuum parameters for (i > 3) are

Fl =1 + 2Z,
(23 =0, (32 =0,
C2i = nywi - wa, (3i = NwW; - w3 (ni odd),

. (2.2.18)

1
(2i = gniwi w2 + 5Qai, =73

niw; - w3 -+ %Qai (ni even),
C1i = wi - w + (2i + Gaiy
Fi =20 +2Z,
where F; = 219, F3 = 2(13, Q@2; and @3; can be chosen to be either 0 or 1. Those are
corresponding to Z; torsions among Z2's and other even cyclic groups. Eqgs. (2.2.18)

and (2.1.26) are our formulae for calculating vacuum parameters.

Imposing boundary condition 2¢y; € Z in (2.2.16), one has
wi-weZ  (i>3), (2.2.19)

which is a new constraint on the twist parameter. In general (2.2.19) can be rep-
resented by det(Rx(g:)) = 1 (¢ > 3). It is this constraint that restricts the twist
point group to be a subgroup of SU(3) rather than U(3). In other wards, we have
just demonstrated from the operator formalism the requirement of SU(3) holon-

omy which has been shown previously in the path-integral formalism [5). It can
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also be shown that the condition (2.2.19) is sufficient to guarantee at least N =1
space-time supersymmetry [36]. In our approach this conclusion can be reached by
comparing the spectra of the sector with twist w(s) + w and the sector with twist
w(s) for a given vector s. It turns out that these are mutually supersymmetric part-
ners. Therefore the requirements (2.2.7)-—(2.2.9) are necessary and also sufficient

to have space-time supersymmetry.

Comparing this fermionic formalism with the lattice approach [22,23], we find
that F; and Fy are always set to zero if one starts from an Es x Ej self-dual
lattice. In abelian twist the different values of F; and F3 meake no difference because
they are just a matter of choosing spinors versus conjugate spinors, which are
actually equivalent. However, we will see that this equivalence no longer exists in

the nonabelian case. In that sense the fermionic formalism is more general than

the lattice approach.

§2.3 Crystallographic Constraints on Abelian Orbifolds

The propagation of strings on the ten-dimensional space-time can be regarded
as on M4 x T%, with M* being four-dimensional Minkowski space and T being a
six-dimensional torus. An orbifold is essentially the torus modding some discrete
symmetry. Rather than being abstract, let us consider Z3; orbifold as a concrete
example. To begin with, we consider a special torus Ty (SU(3) root lattice) made

by the following identifications of points in the complex z plane,

2z 4+ 10z 423 (2.3.1)
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This lattice admits a Z; symmetry generated by
ap: z — 23z (2.3.2)

On the torus (the fundamental region) there are three points left invariant by this

transformation (see Figure 1). They are the points

‘T _\kféei"’ ¢ (k=0,1,2), (2.3.3)

with the understanding that points shifted by lattice vectors are considered to be

equivalent.

Now consider three complex variables z; (i = 1,2,3). With the identification
zi = z;+1 =~ z; + €?"/3 we obtain three tori T; (i = 1,2,3). The product
T =11 xTp x T3 is a torus of real dimension six (complex dimension three). T

admits the Zj symmetry:
a: oz €23y (i=1,2,3). (2.3.4)

This symmetry has 3* = 27 fized points, which are left invariant by the discrete (such
as Z3) transformations. We denote the point group (such as Z; group generated
by «) as P. We would like to supplement (2.3.1) with an additional equivalence
relation, this being the statement that two points on T are considered equivalent if

they are related by the P action. Thus, we impose the condition
ez (i=1,2,3). (2.3.5)

We denote as O the space T'/ P of equivalent points on T subject to this equivalence

relation. Since (2.3.5) introduces conica! singularities at the 27 fixed points, O is
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not a manifold. It is called an “orbifold”. If the point group P is Zj, then the space
T/Z3 1s called Z3 orbifold. Even though O is not a manifold, string propagation on

M* x O seems to make good sense since one can resolve the singularities by blowing

up the fixed points [24].

The discrete symmetry can be seen from the boundary conditions of abelian
twists for complex bosons, which was discussed in Section 2.1. Let X?%(o,t) be
one of the components of the field vector ¥ or Z defined in (2.1.2). Its boundary
condition is

X%(o + 2m,t) = e~ X%(q, 1), (2.3.6)
where Vy(g) or Vz(g) in (2.1.3) has been taken to zero, and €* is equal to +1 for

left-movers and —1 for right-movers. The mode expansion of the bosonic field is

X% o) =¢"+ —= 2\/_ t+eo)+i E %X:_H,. exp|—i(t +€"o)(n +v*)]. (2.3.7)
nF#0

Imposing (2.3.6) on the mode expansion for v® # 0, we may obtain

p* =0, (2.3.8)
q = e ¢ .qa, (2.39)
where p® will form a lattice for the case v* = 0. We know that ¢* (¢ = 1,2,3)
are complex variables. The equation (2.3.9) for the case v® = 1 and ¢ = —1 s

exactly the same as (2.3.5). Therefore the point group P which is used to define

the orbifold is nothing but the abelian group G, without the first three Z2's.

In general, we may take the (6; 6) real bosons as a lattice Tf @ T, which can

be thought as free bosons modding some shift vectors I. The elements of space
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group therefore can be represented by (8, t"), where # is an element of point group
P. Since we only deal with symmetric orbifold, if A is referred to either T or T}
for short, then the orbifolds we will consider can be represented by O = A/P. Let
be a vector describing 6 real bosons. The modding by the space group implies that
the points Z and 6% + [ are identified. Under this identification there are points,
such as the origin, left invariant up to a lattice vector. These invariant points are
called fixed points. Since the twist 8 is an automorphism of the lattice, i.e. 8] € A
for [ € A, this implies that there is 2 basis in which 2!\ the 0 entries are integers.
Thus in any basis detd and Trf must be integers. Since the number of fixed points,
which are invariant under & up to a lattice vector, is given by det(1 — 8) according
to Lefschetz theorem, det(1 — 6) must also be an integer, In summary we have to

have the following constraints,

Y6 € Z, (2.3.10)
detd € Z, (2.3.11)
det(1 — 6) € Z. (2.3.12)

The six real bosons can be viewed as three complex bosons. Let z; = z; +
iziy3 (1 = 1,2,3). Therefore (z;,22,23) are nothing but thc ¢* (¢ = 1,2,3) in
(2.3.9). Let z;,z7 (i =1,2,3) be a basis of the lattice A, the equations (2.3.10)—

(2.3.12) can be writtin to be

TH(Rx(g) + Ry (9)) € 2, (23.13)
det(Rx(g)R%(9)) € Z, (2.3.14)
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det(1 — Rx(9))(1 - Rx(9)) € Z, (2.3.15}

where Rx(g) is a 3 x 3 complex matrix, which is either Ry or Rz defined in (2.1.3).

Notice that (2.3.14) is trivial for any abelian representation Rx(g).

Recall that Rx(g:) = Rq(g:) fori >3 and g; € G.. Let a = w!'", b= w!'™,

c= w?g) ( > 3). The group element g; € G| acting on the complex bosons of

left-movers is

zl 21 ’ ei21rn - 21
gi| z2 |8 =R9)| 2| = et 2 |. (23.16)
23 z3 en21rc 23

From (2.2.19) we know a+b+g € Z. If we consider Zy abelian group, i.e. g; € Zy,
there are only six values of N, N = 3,4, 6,7, 8, 12 satisfied (2.3.13) and (2.3.15). The
total number of different representations is thirteen, which is the number of different
(a, b, c) values modulo the equivalences of the interchange of different sectors. The

acceptable representations are classificd in Table 1.
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Chapter 3

Construction of Nonabelian Twist

Nonabelian twists have the nice feature that they can reduce the rank of a
gauge group. However they suffer from global anomalies [28]. Instead of the rather
impractical cohomological conditions given by the geometrical analysis, we propose
a method to ensure a vanishing global anomaly from a group theoretical point of
view. This forms the basis of model constructions in the nonabelian twists. The
organization of this chapter is the following. In Section 3.1 we discuss the Hilbert
space of the nonabelian twist, which is very different from the abelian counterpart,
then consider the structure of the partition function which in turn depends on the
Hilbert space. In Section 3.2 the representation requirement for vanishing global
anomalies will be presented, which is actually a requirement for 2 consistent Hilbert
space. The identification of the final gauge group after the GSO projection will be

carried out in Section 3.3.

§3.1 Hilbert Space and Partition Function

In the construction of the abelian twist we have different sectors, each of which
has a one-to-one correspondence with a group element. We also require a GSO
projection which ensures all physical states to be group invariant siates. Given a

state of one sector of an abelian twist, the operation of GSO projection is always
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within that sector. That means each sector itself is a sub-Hilbert space. Therefore
the whole Hilbert space is just the direct sum of the sub-Hilbert spaces of every

sector. However the Hilbert space structure of nonabelian twist differs greatly from

the abelian case.

Let us start with the general boundary conditions (twist represcntation) of a
nonabelian twist by a nonabelian group G. Similar to the abelian case, one may
define a g-sector (g € G) by the boundary condition as the Tsllowing,

Xg(o +2m,t) = Di(g9)x4(0yt),
no(0 + 27,t) = Di(g)ny(o,t),
Ag(o + 2m,t) = Da(g)ry(o,t), (3.1.1)
Yy(o + 2m,1) = D (9)¥,(0, t),
Zy(o +27,8) = Dx(0)Zy(5, %),
where D;(g) for { = x,n,A, X are unitary representations of g while assuming there
is no shift vector for simplicity. Also only symmetric orbifold is considered. In order

to maintain world-sheet supersymmetry, one has

Dx(g) = :hla
(3.1.2)
Dx(g) = Dx(g)Dn(g)

Due to the nonabelian nature of G, the representations D;(g) are generally non-
diagonal. In order to have the mode expansion of the string fields ir 2 particular
sector, one has to diagonalize the representations within that sector. The construc-
tion of the string states and the formulation of the vacuum energy are the same as

the abelian case within each sector.

34



One might think that the field operators under a nonabelian twists would

transform in the same way as in the abelian case,
h);(o,)h™1 = Dy(R)™1),(a,1), (3.1.3)

where h is an operator corresponding to a group element k. However this is not
correct. To understand why, let us assume it to be correct, and see what kind of
contradiction we may derive. To be specific, let us take the string fields A(o, )

whose boundary condition is defined in (3.1.1),
Ao + 2m,t) = Da(g)Ag(0,1). (3.1.4)
Applying the operator h on its both sides, one has
W, (o +2m,t)h~! = Dy(g)hr,(o,t)h 7, (3.1.5)
Applying (3.1.3) to the above, one obtains
Da(h)""Ag(o + 2m,) = Da(g)Da(k) ™ Ay (0, t). (5.1.6)
Substituting the boundary condition, it leads to
Da(h)™ Da(9)Aq(a,t) = Da(g)Da(h) ™" Ag(a, t). (3.L.7)
This implies
[Da(g) — Dalhgh™)|As(0,t) =0, (3.1.8)
where Dx(h)Dx(g)Da(h)™* = Dx(hgh™!) has been used. However, generally

Dx(g) # Da(hgh™!) for two arbitrary group elements h,g will lead to a non-
vanishing left side of (3.1.8).
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We have seen that the simple-minded definition for the GSO projection does
not work in the nonabelian twist when [g, ] # 0. There is however no contradiction

if {g, k] = 0. Let us define therefore

g0, t)c™ = Dae) Ag(ort)  (le,g] = 0) (3.1.9)

for any group element ¢ which commutes with g. This is consistent with the abelian
case where all group elements mutually commute and therefore ¢ actually is any

group element of the abelian group. Setting ¢ equal to g, one has
gho(a )8! = Da(g) ™ Ag(a, 1), (3.1.10)
Take a group element a, and apply the operator a on both sides of (3.1.10),
(aga1)ar,(o,t)a"(aga™1)"! = Di(g) tai,(o,t)a"". (3.1.11)

Multiplying D, (a) to the left of its both sides, one obtains

(aga~')Dx(a)a),(o,t)a" (aga™*)"? = Dj(aga=?)"! Dr(a)ary(o,t)a™?,
(3.1.12)
where Dy(aga™1)"! = Dy(a)Dx(g)~'Da(a)~! has been used. Substituting g with

aga~? in (3.1.10), one has
(aga™t)Aaga-1(0,t)(aga™ )"t = Daaga™ )P Agge-1(o,t). (3.1.13)
Compared (3.1.13) with (3.1.12}, one obtains

Dj(a)a),(o,t)a™! = Ci(aga™)Azge-1(0,1t), (3.1.14)
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where Cy(h) is a unitary representation that commutes with D)(k). Since Cx(h)
can be always absorbed by the redefinition of the string fields Aj(c,t) without
affecting the string boundary condition, one may set Cy(h) = 1. Then the equation

(3.1.14) can be written as
a),(o,t)a™! = Da(e) "  Aggq-1(0,1). (3.1.15)

Note that (3.1.9) is a special case of (3.1.15). It is straightforward to show that the
formula (3.1.15) is the general string field transformation that is consistent with the
general string boundary condition in the nonabelian twist. It is important to notice
that all sectors will be mixed with each other within one class of the nonabelian
group. Therefore all sectors within one class form a sub-Hilbert space. The whole
Hilbert space can be represented by the direct sum of all sub-Hilbert spaces of

corresponding group classes, i.e.

H=Ho®H1 @ & Hg—1, (3.1.16)

where K is the number of classes of the twist group, and H, denotes the sub-
Hilbert space of the identity (e) which forms a group class by itself. It is interesting
to notice that this Hilbert space structure also applies to the abelian case where
each group element itself forms a class in an abelian group. Therefore one may

think that abelian twist is nothing but a certain limit of the nonabelian twist.

Let us give an example to illustrate the structure of the Hilbert space. Take
a simplest nonabelian group D, which has six elements a,b,c,d,¢, f, and three

classes (e),(a,b,¢),(d, f). The two-dimensional irreducible representation 2 of the
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elements a and f generates the group [38], i.e.

a=((1’ (1, ) f=(‘6’ £2 ) (3.1.17)

with w = e™*2"*/3, The two one-dimensional irreducible representations are de-
scribed by 1{a = 1,f = 1) and 1'(a = -1, f = 1). For elements multiplication
to be specific, one may take d = f%,b = dad™! and ¢ = faf~!. We list the

multiplications in Table 2.

In order to simplify our discussion, consider two complex fermion fields
(1,42}, Suppose the boundary condition is given by the two-dimensional ir-

reducible representation D(g) of D; that is given in (3.1.17), i.e.

(beiimn)-2o(pes) o

Consider the identity (e) sector. Since the identity element commutes with all

elements of the group, one obtains
(1) (1) 2 (1)
() - ()~ (5 2 ) ()
o) =e0m (5) = (3o ) (f)
a = D(a )
(Y @ (%)=(1 5 ) (%

where the operations by other group elements can be obtained from the above two

(3.1.19)

operations. In the f sector, since the operation of the group element a will bring

the fields of the f sector to the fields of the sector afa™! = d, one has
7Y g - (¢“’) (w2 0 ) (¢“’)
f = = D(f
(‘b‘(fz) ) ,4,(2) 0 w ¢(2)
'l)(l) _ -1 "b(l) 0 1 ,!'b(l)
(¢"’ = D(a) (2) 10 ¢(2)
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In the sub-Hilbert space of the class (f,d), the string field transformation is

) m
) A
f {1) f—] - w 2 f” 3
e w ¥y
52) W ¢‘(12)
3.1.21)
(1) ) (
o) 1y (%,
a "b.fl a_l = 1 "[)f ,
Mo 1 1 S
Mo ¢,(2>

where all blank entries are zero. That is the group representation for the string
fields in the sub-Hilbert space of the class (f,d). With the same procedure, the

group representation for the fields in the sub-Hilbert space of the class (a,b,¢) is

found to be
(1) (1)
2
@ w M(z)\
a w
f ¢§1) f—l_ wz ¢§1)
N Py
(1) w? 1
2) w K 2)
\’/’m/ o (3.1.22)
N?z) 1 M?z)\
(1) 1 ¢?1
al ¥, o= bt
’;bb 1 "bb
gl) 1 (1)
\ 1 \wﬁ”)

Through this simple example, we have demonstrated that the whole Hilbert
space can be constructed by using (3.1.15) for a given boundary condition (twist
representation). Also we have seen that the string fielcs in each sub-Hilbert space

should form a representation of the nonabelian group.
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In order to complete the construction of the Hilbert space, we have to consider
the vacuum states. Take a vacuum state of the g sector |Q,). Following the defini-
tion (2.1.9) for the vacuum state und the structure of the string fields, if [, g} = 0,
then the operation of the operator h on [Q,) will remain in the g sector. On the

other hand, if [u,g] # 0, then the operation on |,) will result in the ugu~? sector.
This implies

h[Qy) =¢(k, 9)|Sy) (B, 9] = 0),

(3.1.23)
ulQg) =p(u,g)|Qugu-1) ([u, g1 # 0),

where e(h,g), p(u,g) are some phases. These phases are not arbitrary because
of two reasons. Firstly, the vacuum states should form a representation of the
nonabelian group in order for a theory to be consistent. This will be referred
to the represeniaiion requirement. Secondly, as we have seen in Chapter 2, the
vacuum phases are determined by the twist parameter via the modular invariance
requirement of the partition function. Similar constraints will be expected from the

modular invariance of the nonabelian twist.

In order to discuss the modular invariance, one has to consider the partition
function of the nonabelian twist. From the structure of the Hilbert space, the
operation of the group element c on the fields of the g sector will result in the fields
of the cgc™! sector. Also it is obvious that the fields of different sectors are mutual

orthogonal. Therefore the net contributions to the partition function is given by
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the commuting pair of group elements,

1

2(G) = Gl %G'I‘r{exp[i%r'rHL(g) — 277 Hp(g)|(~1)F h}
g g (3.1.2
= z E] h= z E] h,
g,hEG [g,h]=0

where |G| is the order of the nonabelian point group G, and the box symbol attached
with ¢ and h denotes the contribution to the partition function by the projector
of a group element A in the g sector. This formula was first obtained in the path

integral formalism [24].

As an example, consider the partition function of the nonabelian group Dj,

e a b <
Z(D;) = ] (e,a,b,¢,d, f) +[] (e,a) +[] (e,0) +0UJ (esc) (3.1.25)

d f
+[ (e, d, ) + [ (e, d, £),
where the (e,---) on the right of the box is referred to the sum of all projectors in

the parenthesis. Rewrite the above as

e a e b
2(D;) ={0 (e, +0 )} + {O 5 + O n)}
+ {lﬁ (e,c) +|__c-| (e, c)}

(3.1.26)
e d f e
+{OEdn+0@d N +0(dn}-30e
1 1 1 1 1
=12(28) 4 S2(E) + 32(B) + 32(Zs) - S 2(Z),
where the fraction factor is due to the definition of partition function involving a

factor 1/|G|, which is the inverse of the order of point group. Notice that each {---}

in (3.1.26) in itself is a partition function of an abelian twist. The three Z, abelian

41



groups (e, a), (e, b), (e, ¢) have equal contributions to the partition function because
of the sub-Hilbert space structure. This can be seen by the fact that the group
element b twisting string fields of the b-sector and c twisting those of the c-sector
are exactly the same as the group element a twisting string fields of the a-sector.

Therefore it is no longer necessary to distinguish these three partition functions in

(3.1.26). Hence the partition function of Dj is

Z(Ds) = Z(Zs) + %z(za) _ %Z(Zl). (3.1.27)

The partition functions of nonabelian twists in SU(2) WZW model were first
obtained by P. Ginsparg in the path integral formalism [29], where he considered
the ¢ = 1 conformal field theories based on modding out string propagation on the
SU(2) group manifold by its finite subgroups. Among other things he obtained
the same formula as (3.1.27) for D; orbifold. However, since he considered the
orbifolds of the ¢ = 1 case, our partition functions are more general. Furthermore
our partition functions constructed from the operator formalism can give more
information. For example, we know that the three partition functions of Z5, Z5 and

' in (3.1.26) are exactly equal even without any phase differences. From the path
integral formalism one can figure out that the partition function of a nonabelian
orbifold is a linear combination of the partition functions of some abelian orbifolds
[28], but the relative phases among those partition functions can be only fixed by

the knowledge of the accurate Hilbert space. We will see later that many things

become more transparent in our operator formalism.

Given the formula (3.1.24) for the partition function, in principle one can
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calculate it for any nonabelian group. However in practice, it is not easy to figure out
what kind of linear combination of the partition functions of the abelian subgroups
forms the partition function of the nonabelian group, especially for a large group.
There is however a straightforward approach to obtain the nonabelian partition
function which requires no guess work. This we shall discuss presently. Consider
the partition function of a general nonabelian twist, and let G; be the maximal
abelian subgroups of G. We will denote M as the total number of G;’s. We
might guess that the partition function of G would be the linear combination of the
partition functions of all the G;’s. However this turns out not to be true because we
have over-counted the sectors generated by the group elements of Gi; = G; N G;.
If we subtract the contributions from the group G;;, then we would have over-
subtracted the sectors given by the group Gijk = G: N G; N Gi, etc. This process
will go on until the group Gij... being the intersection of all M subgroups. Let
Z(Gijx...) = Z'(Gijk...)/\Gijk..|, then the partition function of the nonabelian twist
can be expressed in terms of the partition functions of the abelian twists,

2@ =) 2'G)- Y, ZGy)+ Y, ZGiu)--, (3.1.28)

J {i<i} {i<j<k}

where the summation is truncated with the last term being the partition function
of the intersection of all M subgroups. This is the general formula for the partition
function of a nonabelian twist. For a relatively large group, it is far more efficient

to use this formula instead of (3.1.24).

As a check, consider Dj group where there are four maximal abeliar ~ubgroups,
Gi = (e, f,d),G2 = (e,8),G3 = (&,0),G¢ = (e,c). It is easy to obtain Gi; =
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Gijk = Gijt = (e) (1 £i < j < k <1 < 4). Therefore we have 2'(D;) =
ZNZ3)+2'(Z5)+ 2N Z8)+ 2! (Z5')—62'(Z,) +42'(Z,)—- 2'(Z, ), which is the same

as (3.1.26) if the relation Z(Giji...) = Z'(Giji...)/|Gijx...| is taken into account.

From the general formula for the partition function it is rather obvious that
the partition function Z(G) will be guaranteed modular invariance if the parti-
tion functions Z(Giji...) for all the related abelian twists are modular invariant.
From the modular invariance of these abelian twists, we can obtain the vacuum
parameters within the corresponding abelian groups. From the group structure
of the Hilbert space we may construct the operations of group elements on the
whole vacua. However these operations on the vacua do not necessarily form a
representation of the group. The conflict between the modular invariance and the

representation requirement is referred to global anomaly, which will be discussed in

the next section.

Let us briefly summarize the discussion we have presented. For a given non-
abelian twist representation of the string boundary condition, one may construct
the huibert space and one may also compute its partition function from the partition
functions of the appropriate abelian twists. Vacuum phases in a nonabelian twist
are constrained by modular invariance requirements of the twists by its abelian sub-
groups. On the other hand, the representation requirement demands that the vacua
form a group representation. If a conflict arises between these two requirements,
then global anomaly is present. If not, the representation requirement would save

to further constrain the discrete torsion parameters.
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For an illustration, let us give a concrete example to show how to carry out
all these in practice. Similar to the case of the abelian twist, the whole nonabelian
twist group here is G = Zy x Z; X Zp x G', where G' is some finite nonabelian
subgroup of SU(3). The twist parameters of the first three Zo's are the same as
those in the case of the abelian twist. Take a nonabelian group G' to be D3 and

assign the D; representation
D=(Dx;Dy,Dy)=(83x2+1"+1,24+5x 1"+ 1;241"+1), (3.1.29)

where D), Dy, D, are defined in (3.1.1), and the irreducible representations of Dj

are given in (3.1.17) and the paragraph it following.

Conzider the Z3 abelian subgroup of D; generated by f, then the twist param-

eter is

2 12
Wy = ( —————— ) 01 0, ) '3'3010y0,0,0,0; '3", 5,0,0)- (3.1.30)

It is easy to show that it satisfies the modular invariance condition (2.1.24) with
Fy = 1. 1t also satisfies the condition (2.2.19) of space-time supersymmetry and
Table 1 of crystallographic constraints. We now consider the phase that f generates

on the vacuum ]Q?’ NNy of sector f. From (2.1.26) we have

GFVN) =Cr(0) + Cpr + G —wp - |wy + T, (3.1.31)
(s0) =—wy-T— -1;21 =0, (3.1.32)

. (3.1.33)

O =

1
(ry =5+ Fy) =
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From (B.11) in Appendix B, and (2.2.18) one has

F
(n=ws T=Gr=wy-T-=L =0 (3.1.34)

Therefore (3.1.31) becomes

N =542 (3.1.35)

For the phase generated by f on vacuum ]Qﬂ" NNy in sector d, onc obtains the

following from (2.1.26)

2
(N =)= O + 2+ ~wp 20+ T =2 +2. (3.130)
Eqs. (3.1.35) and (3.1.36) imply
|QINNN) _ e—izw% 0 |Q}VNN))
f (lné\'NN) = 0 e—i2nd IQ?’NN) . (3.1.37)
Consider now the operation on these two vacuum states by a. Since afa™! = d,

a takes the vacuum of the f sector into the vacuum of the d sector. The phase is

arbitrary which can be absorbed in the vacuum, so we have
a|Qf VN = |QF NPy, (3.1.38)
Therefore we have
(D-CHE).
Eas. (3.1.37) and (3.1.39) describe vacua representation of f,d sectors.
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Consider the Z, abelian subgroup of D3 generated by a. From the diagonal
form of the twist representation with respect to the group element a, the twist

parameter is found to be

1 1 1
5,0’ ————— 0:=.0 5,0) (3140)

It satisfies modular invariance conditions (2.1.24) and (2.1.25), as well as space-tin.e

supersymmetry and crystallographic constraints. The phase of vacuum |QYVV)

generated by a is
1
FMN(@) = Ca(0) + aa + o ~wa+ [wa + T] = ~5(Qaa + Qua),  (3.1:41)

where (2;, Q3; are the discrete torsions. Similarly one may obtain

SNV (b) = - ';'(sz + Qas),

. (3.1.42)
CEVNN(C) =- §(Q2c + QSc)-
From the sub-Hilbert space structure of group class (a, b, ¢), one has
!QNNN) |QNNN) :l:l 0 0 |Q‘IIVNN)
Ny ) 2 y=ia) | el 0 1) {1 |,
IQ.’:VNN) |9NNN) 0 10/ \|o"%)
(3.1.43)

QN NNy Qg VN 0 0 1\ /M)
f(lﬂi"””),) = V=) (lﬂi"””)) = (1 0 0) (lni"”"’>),
| NNy QNN N 0 1 0/ \|aFVF)

where V stands for the vacuum representation. This turns out to require

Q2a + Q3a = Qus + Qas +2Z = Q2 + Q3 + 27. (3.1.44)

47



Similarly if we consider the vacua |[QN®N) and |QFN¥) instead of |QNMN) (¢ =
a, b, ¢}, then the sub-Hilbert space structure requires

Q24 = Q25 = Qae,

Qaa = Qap = Q..

The different values of @24, @34 are the Z;'s discrete torsions. Generally the discrete

(3.1.45)

torsions of the sectors within one class should be the same in order to satisfy the re-
quirement of sub-Hilbert space structure. This example shows that the consistency
of the Hilbert space can help us to fix many free parameters. The representations
of other vacua, such as |[QRRR) JQNRRY 1QNRRY 4nd so on are found with the same

procedure. There is no inconsistency raised in this nonabelian twist.

§3.2 Global Anomalies

Global anomalies in 1onabelian twists were discovered in the path integral for-
malisr [28]. Cohomo.ogical ccasiderations restrict the possible pheces gained going
around a loop. Contradictions, or global anomalies, will result if these phases are
not consistently matched up. This is known to occur if higher loops are taken into
consideration. In our approach the global anomalies turn out to be the inconsis-
tency of the vacuum representation, and this additional information enables us to
stay withiu or e-loop order to detect these anomalies. In this sense our approach is

much simpler than the path-integral cohomology analysis.

In principle, one may calculate the vacuum phases from the modular invari-

ance requirement of the partition function, and see whether these phases fit the
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representation requirement. However it is a huge labor to worl out all the vacuum
representations since the number of the sectors is 8 multiplying the order of the
nonabelian group G'. In order to simplify the calculation, let us reconsider the

formula defined in (3.1.23), i.e.
h|Q) =e(h, 9)IR)  ((h,g] =0), (8.2.1)
“‘99) =p(u, g)lgugu‘l) ([u:g] # 0). (3.2.2)

Notice that the phases (h,g) can be calculated from the requirement of the mod-
ular invariance of all partition functions of the abelian subgroups of the underlying
nonabelian group. Also they should satisfy the representation requirement. How-

ever the phases p(u,g) cannot be calculated and only need to satisfy the group

representation.

Consider a group element ¢. Operating ¢ on both sides of (3.2.1), one has
(che)cl) = e(hg)cl®)  ([h,g] = O). (3.23)

Using either (3.2.1) for the case [c,g] = 0 or (3.2.2) for the case [c,g] 7% 0, it leads

to
(che™)|Qege-1) = €(h, 9)|Rege-1)- (3.2.4)
Since [l 4] = 0, one can show [chc™?, cge™?] = 0. Following the definition (3.2.1),
one has
(che™)|Rege-1) = e(che™, ege™ ) Sieg 1) (3.2.5)
Comparing (3.2.5) with (3.2.4), one concludes
e(che™?, cge™!) = g(h, g). (3.2.6)
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Consider two group elements ki, h; such that [h,, g] = [h2,g] = 0. Operating hy . h-

successively on the vacuum |2,), one obtains
hihz2(|Qg) = hie(hs,9)I8%) = e(h1, g)e(hz2, 9)I9). (3.2.7)
It is obvious [khz2,g] = 0, so if thinking k1A, as 2 single element, then one has
h1h2|Q) = e(hy k2, g)|R,). (3.2.8)

From (3.2.7) and (3.2.8), one obtains

e(hihz,g) = e(h1, g)e(ha, g). (3.2.9)

The two conditions (3.2.6) and (3.2.9) are necessary for a theory to be consistent.
Since the phases e(h, g) can be calculated from the twist representation, these two
conditions are not a priori satisfied. The failure for the phases to satisfy the two
conditions indicates the presence of global anomalies. Notice that no more condi-

tions can be obtained from the operation of group elements on the both sides of

(3.2.1).

One may also consider (3.2.2) to try to derive other conditions. However, it
turns out that these conditions are either included in (3.2.6} and (3.2.9), or can
be satisfied by choosing appropriate values of p(u,g). Actually the representation
requirement cannot fix all the phases p(u,g), such as the vacuum representations
in the D3 twist considered in the last section. Therefore the representation re-
quirement can be satisfied as long as the two conditions (3.2.6) and (3.2.9) are

satisfied. This implies that (3.2.6) and (3.2.9) are equivalent to the representation
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requirement. In practice, checking these two conditions are much simpler than to

construct all the vacuum representations.

The two conditions that we have presented are necessary and sufficient to
eliminate global anomalies at least within one-loop in the operator formalism. To
show the presence of global ancmalies, we need only to find one condition that is
violated. However to show the absence of global anomalies, we have to check all
the conditions given by (3.2.6) and (3.2.9) being satisfied. If [h1,hy] = 0 in the
(3.2.9), then hy, hs,g belong to the same maximal abelian subgroup. Since there
is no global anomaly within an abelian group, the condition (3.2.9) for the case
[h1, k2] = 0 is always trivial. Therefore one only needs to check the non-trivial case

[h1, k2] # 0 in the (3.2.9).

In the following, we will illustrate this method with two toy examples that was
discussed by Freed and Vafa in the path integral formalism [28] to show how these
inconsistencies can alrcady be detected in one-loop. Many other cases of global

anomalies will be discussed in Chapter 4.
1. Extra-special p-group

This group G' is generated by three elements g, h, ¢ defined by the following

relatlions
gP=hP=¢"=1, gh = hg,
(3.2.10)
cg = gc, ch = ghe.

We consider the case p = 5 to be specific (but what we shall discuss applies to any

vrime number p > 5). This group contains 125 elements and 29 classes. It has six
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maximal abelian subgroups Gi = Zs x Zs (1 = 1,--+,6), generated respectively by
{9, R}, {g,¢c},{g,ch)}, {g,c*Rh},{g,c*h},{g,c*h}. The intersections of the different
Gi’s as well as their further intersections are given by the group generated by {g¢}
which is isomorphic to Zs. If we consider this nonabelian twist based on the Ey x Ey
heterotic string, then the whole twist group is Z; x Z3 x Z3 x G'. Let us define the
partition function Z3(G) = Z(Z2 x Z2 x Z; x G) from now on for any finite group
G, where the subscript h stands for choosing the heterotic string initially. From
the general formula (3.1.28) for the partition function, one chiains,
1g o 1
Zi(G") = 3 ;zh(zs x Z — < Zn(Zs): (3.2.11)

Let us consider a five-dimensional irreducible representation of G' described by

(a 1
a o
g= o ’ h= a’ '
o o’
\ [#3 a“
1 \ (3.2.12)
( 1
c= 1 R
1

\1

where a = e~#*/5, Take the twist representation as one copy of this to apply on the
five complex fermions ¥(®,...,4(3), while leaving the other fermions untwisted.
It is easy to check that all the modular invariant conditions for all the Zs x Zs and
Zs =belian subgroups of G' are satisfied. In the case when the abelian subgroup
involves ¢, which is non-diagonal, this matrix should first be diagonalized before

these conditions are applied. We now consider the abelian subgroup Zs generated
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by g. In this case, wy = (0% 5,5, 5:5+ 5> 0%;0%). The modular invariance condition
(2.1.24) demands F;, = 1. From (2.1.26) it's easy to obtain the rhase that g

generates on the vacuum Iﬂf’m) in sector g,

1 2
G5 (9) = (o0} + Gog = —wy - T+ swg =~ + Z. (3.2.13)
Hence
glgffiﬂ) = ei2w§leRR)' (3.2.14)

We know that g commutes with every element of the group G', and cgc™? = hg.
From the condition (3.2.6), one has e(h,g9) = e(chc™,cgc™?) = e(hg.g). That
means hiQFER) = hg|QRRR). On the other hand, we get from (3.2.14) that

hg|QFRR) = ei2mih|QRRR) 2 h|QRRR), (3.2.15)

This contradiction shows up as a global anomaly in the path-integral formalism.
2. Quaternion group (Double dihedral group ng))

This group has eight elements and five classes (e), (a®) , (a,a®), (b,a?b),
(ab,a’b), generated by [38]

—1'2»} —:'21r-}
a=(“3 . e_g,,}), b=(e,gﬂ% °, ) (2.2.16)

It has one two-dimensional irreducible representation 2 described by the above
matrix, and four one-dimensional irreducible representations described by 1(a =
L,b=1)1( = 1,b = -1),1"(a = -1,b = —1), and 1"(a = -1,b = 1). The
pertition function of this nonabelian group is computed to be

1 1 1 1
Zn(DY") = 5 24(Z4) + 3BM(ZY) + 5 24(ZY) - 520(Z2), (3:2.17)
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where the abelian group Z, is generated by a, Z§ by b, Z§ by ab, and Z; by

2

a*. Let us take the twist representation as four copies of the two-dimensional

representation to apply on the fermions $(?), ... {38 We check that all conditions
of abelian twists are satisfied. Consider the Z4 group {a,a?,a®,¢e}. The twist vector
iswe, =(0%,%,3,2,2 2,3 1 2:04) in (R,R;R) sector. From (2.1.26) one has

F,

RRRQ) = -3t 4 2,
1 F (3.2.18)
=1+ By g,

and this means )
alQRRR) = eirF. [QRAR,)

k]

(3.2.19)
aIQnR:RR) = e—in(l-i-F.)le:RR).
VWith the same procedure to the Z and Z{ groups, one has
b7 R) =R QIRR),
bIOES) ="+ ORER,)
(3.2.20)

ab|QRRR) =girFu [QRRR),
ablgﬁ}gﬁ.—-n’) =e_i“(1+F‘b)=ng§)}}=a’)'
From the condition (3.2.9), one has &(ab,g) = ¢(a,g)e(b, g) with g being e or a*.
This implies
Fo+ Fy=F, + 2Z, (3.2.21)

Fo41+F+1=F,+1+22Z. (3.2.22)

Obviously eqgs. (3.2.21) and (3.2.22) are mutually contradictory. In the path in-

tegral formalism, this contradiction again shows up as a global anomaly. Or the
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other hand, if we take the twist representation as eight copies of two-dimensional
representation and apply on (), ..., ¥(18) the above contradiction is removed. It
straightforward to check that there is also no inconsistency in other vacua. There-

fore global anomaly is absent.

Before leaving this section, let us make some comments on the relation between
the present representation requirement and the cohomological conditions given by
Freed and Vafa [28] in the path integral formalism. Our conditions of the absence
of the global anomalies was derived at the one-loop level in the operator formalism,
which could detect the high-loop global anomalies of the path integral formalism.
Explicit examples have been shown that the representation requirement and the
cohomological conditions are mutually equivalent to detect and eliminate the global
anomalies. Obviously our conditions are much simpler and easier to calculate. That
is because the operator formalism gives more information than the path integral
formalism. Following Seiberg and Witten [44], the whole partition function of spin
structures cannot be determined at one-loop level in the path integral formalism,
but the factorization and unitarity at two-loop can provide a definite answer to
the partition function. As discussed in Chapter 2, the partition function is fully
determined in the operator formalism without any two-loop information. Therefore
to some extent, the operator formalism at one-loop level is more or less equivalent
to the path integral formalism at two-loop. Furthermore, the non-trivial Dehn
twists [41] of high-loops are essentially caused by the non-trivial Dehn twist of two-

loop, i.e. the generator linking the twe handles {45). That implies the nontrivial
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features, such as the global anomalies, may fully show up at two-loop level in
the path integral formalism. From this argument it is very suggestive thac¢ the
representation requirement at one-loop in the operator formalism is the sufficient

condition for the absence of global anomalies at all-loops.

§3.3 The Massless Spectrum

As we know the relevant spectrum at low energy is given by the string massless
states. Suppose a given twist representation satisfies all the constraints that include
the absence of global anomalies discussed in the last section. From the structure
of the Hilbert space, it is straightforward to find out all the massless string states.
What is new here in the nonabelian twist compared to the abelian case is that the
different string fields will be mixed with each other after the GSO projection. This
complexity often makes it difficult to identify the final gauge group. In this scction
we will first present the general features of the massless spectrum, then concentrate

on the identification of the final gauge group.

The massless states are created by the string creation operators acting on
vacua. Similar to the abelian case, massless vector bosons are created by the modes
1!)(_22),1,1_)(_22). Furthermore they are in the identity (e) secior of the nonabelinn
group G'. All other sectors have no contribution to the vector bosons. Thus, to
get massless vector bosons of the nonabelian twist, we simply perform the GSO
projection on the states of the Eg x Ej adjoint representation. To do that, we

have to know the vacuum phases of the states |[QNVN) |QZNN) and |QN V) when
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operated on by any g € Zy x Z2 x Z; x G'. Following the formula (2.1.26) and
(2.2.18) derived in Chapter 2, one can evaluate the vacuum phases of the e-sector

of G' for each associated abelian twist with space-tin:s supersymmetry (z > 3):

NV (e) = Gi(0) + ¢ =0, (3.3.1)
¢V (€) = Gil0) + Gia + Ciz — 2wi - wp = —w; - w2 — (ai, (3.3.2)
CNEN(e) = Gi(0) + Gia + Cis — 2wi - wa = —wi + wy = (3, (3.3.3)

where (2; and (3; are determined by (2.2.18). One must get consistent result no
matter which abelian twist these vacuum states belong to. We see that the vacuum
IQNNN) is always invariant under all operations g € €. Since the GSO projection
involves not only the group element of G', but also the group element of the first
three Z2's, it is necessary to calculate the phases generated by the Z,’s elements
as well. These phases can be used to determine whether an even number or an
odd number of string excitation modes is selected in GSO-invariant states. From

(2.1.26) and (2.2.18) in Chapter 2 one can evaluate the phases grnerated by the

non-identity element of the first Z» group:

V() = GO+ G = 5,

NN (e) = G0) + G+ iz — 2y -w2 = (3.3.4)

+  +
oS ro 3

NRN(e) = ¢1(0) + (1 + 13 — 2wy ~w3 =

B b

Recall wy =T = ((1)1%;(1)®), so there should be an odd number of string modes
from fields (1, ..., (29 acting on the vacuum |QNVN) in order for a state to be

GSO-invariant under the first Z, group. The number of string modes acting on the
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vacuum |QENNY or |QNEN) i5 odd or even depends on the fermionic number F
or F3 chosen to be 0 or 1. Similarly one can obtain the phases generated by the
non-identity element of the second Z; group:

2 VN(e) = (2(0) + ¢ =10,

F.
(FVN(e) = 22(0) + Caz + G12 — 2wa wy = ?2, (3.3.5)

(3 (€)= (2(0) + (a1 + (o3 ~ 2wz * w3 = 0.
We know the twist parameter w2 = ()%, 08;04), so there should be an even number
of string modes from the fields ¥!),... (8 acting on the vacua |QNVMY and
|QNRNY in order to get GSO-invariant states under the second Z, group. The

number of string modes from ¥{1),-- -, 1(® acting on |QF¥¥) depends on the value

of Fy. Faor the third Z, group, one has

(VN (e) = ¢3(0) +¢a1 =0,

(VN (e) = ¢3(0) + Ga1 + Gaz — 2w -w2 =0, (3.3.6)
(VBN (e) = (3(0) + (a1 + (a3 — 2w w3 = %

The number of string modes from the fields $(®, ... (18} acting on vacua |QNVV)
and {QQFN M) should be even, while the number of those acting on |QN V) depends
on the vilue of F3, These criteria demand that the physical state cannot be such a
state like 'I’E.li 1,[}9)% ¢(_2;)|Qf NNy gince it is not GSO-invariant under the second and

the third Z, groups.

Knowing all the vacuum phases generated by the group elements of Z; x Zy x
Z2 < G', in principle we can obtain all the GSO-invariant massless states. 'Lhe

identification of a final gauge group is often the most important and also most
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difficult issue in the nonabelian twist, since the rank of the gauge group is generically

reduced, which is different from the abelian case.

In order to figure out what a final gauge group is, let us first define a complex
variable z = ¢'(*t9) then the mode expansion for the left-moving fermionic fields

in (2.1.8) becomes

+ o0
Pi2) = Y UG,z (MY,

m=ce (3:3.)
Po2) = . Pz,
m=-—c
The modes satisfy anti-commutation relations,
{ﬂb;s’ﬁ:} =6p+q,06a,b,
(3.3.8)

{95, 92} ={Pg, P} =0.

One may define generators of SO(16) Lie algebra in terms of Neveu-Schwarz

fermions for a # b [46),

d - ad - -
fe = f saz VPR = D (WP P,

i=0

dz - -
eates = T(ab — gt 5(2) :,
Eevte, = n(a,) j{zz,z P ) 559
Bermo = 3(0) § 5o 5°C0)

dz

E—come, =m(a,b) § 5= ¥°(2)¢°(2) 5,

omiz

where1 < a,6 < 8(or9< a,b £16), m(a,b) = +1(a < b) and 7(a,b) = —1 (a > b).

It can be shown that these generators satisfy the standard commutation relations
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of Lie aigebra,
[Hi:Ea] = CI,‘Ea,
(Ea, Es) = €(a, B)Eas8 (if @ + B is a root), (3.3.10)
[Em E—-a] =o- H,

where all other commutations are equal to zero. Notice that the cocycle factor

(e, B) can be determined by n(a, b).

In the ten-dimensional &g x Ej heterotic string, the 120 GSO-invariant mass-
less states of Neveu-Schwarz fermions form an adjoint representation of the SO(16)
defined in (3.3.9), and the 128 m._sless states of Ramond fermions form a spinor
representation of the SO(16). They togzther form an adjoint representation of
Es. This also applies to E;. In the construction of four-dimensional strings via
nonabelian twists, we also have to identify the representation of the states from
Neveu-Schwarz fermions first, which generally is an adjoint representation of a
subalgebra of SO(16), then consider the states from Ramond fermions. An ap-
propriate linear combination of the SO(16) generators can fulfil the first part of
our task. As for the second part, i.e. constructing the remaining generators of
the final Lie algebra, one has to consider generators corresponding to the massless
states from the (R, N; N) and (N, R; N) fermions, Since there involve the states of
the different sectors, generally one needs a picture change operator to relate these
states. However, there is a simple way to do this by using the bosonization pro-
cedure [39]. In the Eg x E} heterotic string, there is a one-to-one correspondence
between a state in the fermionic formalism and that in the Ez x Ej lattice ap-

proach [5]. For example, the state PV |QRNNY ig equivalent to a momentum state
2
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p=j(—e1—ex—e3 ~eq—es—eg—er—eg), and ¢§1)¢3s)¢£2§)|9§~~) is equivalent
to p = %(e; —ez —e3 —eq —e5 + €6 — e7 — €3). The presence of the above two
states in turn implies there exist two generators Ey(_., e, —cy—eq—es—eg—crmes) 204
Ey(ey—ea—enmeqmestea—er—es) respectively in the Eg Lie algebra. Since the massless
states of four-dimensionsl strings via a nonabelian twist in the fermionic formal-
ism are some linear combination of the states of the Eg x E; heterotic string, the
corresponding generators are expected to be & similar kind of linear combination of
the Eg generators. The representation of the massless states from (R, N; N) and
(N,R; N) fermions can be identified through the commutation relations of these
generators and the generators of the subalgebra of the SO(16). Then the gauge

group via the nonabelian twist can be found.

In the following we will present the procedure of the identification of the final

gauge group through two concrete examples.

Let us take as the first example the Dj orbifold, whose twist representation
was defined in (3.1.29) of Section 3.1. There exists no global anomaly in this case.

Consider the massless state from (V, N; N) fermions of Eg:
(1) ;(4) (20 ANNN
'\b_.k'»b_t':b,,.} |S2e ) (3.3.11)
where the subscript e for e-sector fermion fields is omitted since one can know it

from the vacuum symbol. When the GSO projection is applied, this state becomes
ot T U O ALY (3.3.12)

In order to simplify counting the number of massless states, we only allow 1,11(_22)
2
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to represent one of the two string modes gbf_zg),vl'f_z? for the degree of freedom of
SO(2) Lorentz algebra. We will do so from now on. There are 17 GSO-invariant
massless states from (N, N; N') fermions of Ej:
WLyl + eIl wEPIRYYY) (< T e (13,8)),
BLy @I + IO w0100 (< T e (1,3,5)),
W81y + 0l Y)  (1,7 €{1,3,5)), o
OO AR MR P S
For the above massless states, one may define

Hi = Haj1 + Hy (t = 1,2,3), Hi = 2(H7 + Hg), Hs = 2(H7 — Hg),

851-52 = Eq—e; + Eesmeqs E”:—ba = Eea—tu + Eeq-—eu Eb:-l-ba = Ee;-{-eg + Ee.+c;-
(3.3.14)

Then these generators generate a Lie algebra SO(6) x U, (1) x Un,(1). The first 15
GSO-invariant states in (3.3.13) belong to an adjoint representation of this SO(6),
and the rercaining 2 GSO-invariant states belong to an adjoint representation of

this Une, (1) % Uny(1).

Consider massless states from the (R, N; V) fermions of Eg. We know that
there involve discrete torsions in calculating vacuum phases. The choice F; = 0
corresponds to nn even number of Ej string modes in the GSO-invariant states,
while F» == 1 vorresponds to an odd number of Ey string modes in the GSO-
invariant atatec, %e know in abelian twist that the difference between F; = 0
and F5 = 1 is the matter of choosing the spinor representation or the conjugate

spinor representation [5] as the GSO-invariant states, so the ph:sical consea:nce

et
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pr

.

15 the same, In the current example of the nonabelian twist, the different choice of
discrete torsions makes no difference vo the final gauge group. We will see in next
example that this statement is no longer correct. In order for our discussion to be

specific, one may set F; = @2, = 0 and compute the phases generated by f and a

to be
RNN(e) =—wf wz — {25 =0,
(3.3.15)
(PN (e) = — wa -wp — (30 = 0.
This implies
flaf"™) =108,
(3.3.16)

al@fVN) <|QFNN),
There are 22 GSO-invariant massless states from (R, N; N) fermions of Ej,
PEDIRENY),  wg i ui e e ul w1,
(Wews ™ + 95t BWIPIORYY) (T < T € {1,3,8)),
(W:T%J“ _ g+1¢,61)¢(()7) 3)¢(20)IQRNN) (I < J e {1,3,5)),
vevstud w10 (I < T € {1,3,8)),
vt s e wIPIAINY) (1=1,3,9),
(o™ — 0 i eIy (I< T # K # 1€ {1,3,5)),
(09" + g s g e W1 Y) (I < T £ K £ T € {1,3,5)),
(¢31)¢(3) (5) + ¢(2)¢5u¢36))¢(8)¢(2;)mfNN),

(679898 — w0 u )RR,
(3.3.17)

By using the bosonization procedure, one may find the corresponding momentum

states to the above states then cue may write down the generators of the Lie aigebra
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in terms of the Eg generators. From the commutation relations, it is straightforward
to ident'fy the representation of these atates. It turns out that the first 20 of these
states form a 10(—2) + 10(2) representation of SO(6) x U, (1), and the other 2

together with Uj, form 50(3). They assemble to form an adjoint representation

[47] of SP(8) x SO(3).

The same procedure can be applied to E;. Considering all GSO-invariant
massless states from E} fermions acting on vacua [QNVN) and |2 RV), one can
see that there are 47 states with vacuum |Q¥V¥) forming an adjoint representa-
tion of SO(10) x U?(1Y, and there are 32 states with vacuum |QN V) forming
16(3) + 16(—3) of SO(10)' x U(1). Therefore they assemble to form an sdjoint
representation of Ef x U(1). The discrete torsions also have no physical conse-
quence. In summary the original gauge group Es x Ej in the heterotic string is
now broken dowsn to the gauge group SP(8) x SO(3) x Eg x U(1)'. It is interesting
to notice that the rank of the gauge group has been reduced by 4. The reason for
this is because there are 4 two-dimensional irreducible representations in our twist
representation Dy. It is usually true that each n-dimensional irreducible represen-
tation reduces the rank of the gauge group by n — 1, except in some special cases

with rank enhancement, which will t:e discussed in the next example.

Knowing the gauge group, other massless spectra can bz easily found. Gaug-

ino particles will Le the states in (3.3.13) under the substitutions gbf_zf) — %20) or
3

¢(()17)\b‘(,18)¢((,19), |QNNNY — |QNNRY, and states in (3.3.17) under ‘p(_zo) — t,bf,zo) or

3
PNy I®p0I9 IQRNNY _, |QRNR)  The two choices 5 and ¥ vy’ "
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reflect the spinor representation of the Lorentz algebra SO(2). The gravi-
ton is represented by the states :b(_zz)(Xio))..lmfNN). 1/35_2;)()[20))_1 |QNNNy
pEPEP QN NN, FED(XE)|RFNY), where (X[7)-1, (R[)-1 are the
excitation modes of the left-moving complex boson Xio) for the uncompactified
space-tim: coordinates. The partner gravitino is given by the graviton states un-
der the same substitution as that for the gaugino particles, Chiral fermions and
their partners could be found in the similar way. Unlike those of gauge bosons,
the states of chiral fermions may exist in the identity (e) sector, and in the twist
sectors as wel]l. The number of generations of chiral fermions depends on the num-
ber of fixed points of the nonabelian orbifold, which in turn depends on an initial
lattice being chosen. Notice that since our twist representation is not the “stan-
dar1 embedding”, we cannot simply use Lefschetz theovem to calculate the number
of generations. From the above discussion we know that the N = 1 space-time

supersymmetry is manifest.

The next example is still D orbifold but with a slight change of the twist
representation for the left-moving fermion fields. We assign the following represen-

tation,

D=(4x2,6x1+2x1;2+1"4+1). (3.3.18)

Compared it with (3.1.29), we have just interchanged 1' + 1 in Ey with 2 in Ej.
Again it satisfies all constraints including the absence of givbal anomalies. The
twist representation for E} is just the abelian representation. It’s very easy to

wri.e down all the GSO-invariant massless states from Ej fermions. They form
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an adjoint representation of E; x SU(2)'. Let us focus on the identification of the
broken gauge group from Eg. There are 28 GSO-invariant massless states from
(N,N; N) fermions of Fj,
@Lylft +pIPel w100 (1< T e(1,3,5,7)),
BLplP + I 20100 I <Te(1357),  (33.19)
WLyl + B2 P10 (1T € (1,3,5,7)).
Similar to the first example one may define
Hi= Hai—1 + Hyi (1=1,2,3,4),
Ebi=b; = Eeymes + Fesmeqs  Eby—by = Eegmey + Eey=cos (3.3.20)
Eby—by = Eeymey + Ecy—enr  Ebptbe = Eepires + Ecgter-

These generators generates SO(8) Lie algebra. The 28 states in (3.3.19) belong to

an adjoint representation of this SO(8).

As we mentioned before, the GSO-invariant states from (R, N; N) fermions of
Ejy depend on the discrete torsions being chosen. Let us set F; = 1,@2, = 0. The
phases generated by f and a are
(FNN(e) = —wywy — Gy =,

(3.3.21)
RNN(e) =

—wg w2 — (20 =0
The choice F; = 1 implies that there must be an odd number of string modes from
the fields ¥(1),...,4®) in the GSO-invariant states. There are 8 those states,

avd vl + i w1 Y) (I < T < K € {1,3,5,7)),

(Wd 93 vl — W e i W wg D I0ENN) (1,0,K, L € {1,3,5,7)),
(3.3.22)
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where no pair of the labels I,J, K, L is the same in (I,J,K,L € {1,3,5,7}) and
I < J < K. These states form a representation 8 of SO(8). Therefore the broken
gauge group [47] from Ej is SO(9). Including the part from Ej, the final gauge
group is SO(9) x E} x SU(2).

If we choose Q2, equal to 1 instead of equal to 0, the gauge group broken from
Ejg is still SO(9), so the different choice of @2, does not affect the gauge particles.
It is interesting to know that the rank of the gauge group is 4. The reason for
this is because there are 4 two-dimensional irreducible representati.ons in the twist
representation and each one reduces the rank of the gauge group by 1. However
this is no longer held if we set F; = 0. Again there is no physical difference for the
different choice of @2,. One may set @2, = 0 for the vacuum phases to be specific.

There are 35 GSO-invariant mass.css states from (R, N; N) fermions of Ejg,
i R e Lt (1l
vova eI (T < T e {1,8,5,7)),
(gd™! + eIV (< T e {1,3,5,7)),
(wgwa™ = vt e wspIDI0RY) (T < T # K #1€{1,3,5,7)),
(g™ + o o W U v R I08NY) (1,7, K, L € {1,3,5,7)),
(9006 e + we o v s Y 1R ),
@50 e 5" + e s e IR,

(000 s " + i e e Y I,
(3.3.23)

where no pair of the labels I, J, K, L is the same in (I,J,K,L € {1,3,5,7}) and
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I < JJK < L. These 35 states form a 35, representation of SO(8). Together

with the adjoint representation 28 of SO(8), they form an adjoint representation

of SU(8).

Notice that the states from (R, N; N) fermions of Eg enhance the rank of the
gauge group by 3. That can be verified by the following observation. From the
bosonization procedure, the state ¢f,”¢§”¢3”¢§,”¢‘_"?|0f” M) is equivalent to the
momentum state p = -;-(el —e2 —e3 + €4+ €5 —eg —er + eg) in the Ey lattice [5],
which in turn implies there exists a generator Ei(,, —c,—eqte tes—comerteq) M the
Lie algebra. The existence of the last three states in (3.3.23) implies that there are

three generators in the final Lie algebra,

Hs=Ey+ E_o, Hs = Eg+ E_g, H1 = E, + E_,,

with 1 ,
« = 5(61 —ey—e3+egtes—eg—cer+eg),

1
B=gler—er—estes—es+es+er—eq), (3.3.24)

7= %(61 —ey+e3—es—es+eg—e7+ eg).
It’s easy to show that Hs, Hg, H7 mutually commute and also commute with M, (i =
1,--+,4) defined in (3.3.20). Obviously H; (¢ = 1,---,7) are linear independent.
Also the other 32 generators corresponding to the first 32 states in (3.3.23) do not
commute with H; (i = 1,--+,4). Therefore the rank of the Lie algebra is 7, which
is exactly the rank of SU(8). In practice we use the above argument to figure out
the rank of a Lie algebra for a complicated case, which often helps us to identify

a specific Lie algebra. In this case the final gauge group broken from Eg x Ej i+
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SU(8) x E; x SU(2). 1t is clear that we have to specify the twist representation
and the discrete torsions for a particular nonabelian twist model. The torsion

parameters play a nou-trivial role in our construction of minimal-rank models.
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Chapter 4
Minimal-Rank Models

from Twists of Finite Groups

The construction of four-dimensional strings from an abelian twist suffers from
having too large a gauge group. This in principle can be cured by nonabelian twists
because generically they can reduce the rank of the gauge group, which is desirable
phenomenologically. As we know, there is a large difference between the rank of
the gauge groups in the Standard Model and the original ten-dimensional heterotic
string, and even more so when compactified to four space-time dimensions. In
order for a theory to be as realistic as possible, one would like to choose n twist
representation such that the resulting gauge group hus as small a rank as possible.

This kind of string theories will be referred to as minimal-rank models.

With the constraints for the nonabelian twist established in the previous chap-
ters, we have all the tools necessary to construct minimal-rank models from twists
of finite nonabelian groups. Given a finite group, we desire to choose a twist repre-
sentation such that it satisfies all the constraints and it also gives 2 minimal-rank
gauge group. Specifically we need to perform the following. Since we start with
the Eg x E{ heterotic string in the fermionic formalism, the whole twist group is
Zs x Z3 x Zy x G', where G' is a finite nonabelian group. From the discussion in

Section 3.1, we know that the twist parameters of the first three Z3's are the same

70



as in the abelian case and the whole twist representation is given by (3.1.1). Tet
us first consider the twist representation for right movers. One can always cloose
D, (g) = +1 which results in Dy(g) = Dx(g) for g € G'. In order to have a quali-
fied nonabelian orbifold with space-time supersymmetry as well, one has to ensure
all abelian orbifolds corresponding to the abelian subgroups of the underlying non-
abelian group to be in Table 1. This turns out to give a very tight constraint to
limit possible twist representations of Dx(g). Having chosen a representation for
the right movers, one may then find a twist representation Dy(g) (¢ € G') for the
left fermions by requiring modular invariance of the partition function for the non-
abelian twist. The rank of the final gauge group can be estimated by the argument
given in Section 3.3, that each n-dimensional irreducible representation may reduce
the rank by n — 1 assuming that there is no rank enhsncement. By using this
estimate, all twist representations that result in a minimal-rank gauge group may
be selected. Remember now that global anomalies can be present even when mod-
ular invariance is satisfied. One should then eliminate the global anomalies case by
case for the twist representations under consideration. Finally, for those consistent
minimal-rank models, we can find all the massiess GSO-invariant states that cor-
respond to gauge particles, and thereby identify the final gauge group. Notice that
since there are many more constraints in a nonabelian twist than an abelian one,
the number of nonabelian twist models is much less than that of abelian mcdels.

This in turn makes the classification of nonabelian twist models much more feasible.

As we discussed in Chapter 2, the nonabelian twist group G’ should be = finite
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subgroup of SU(3) in order to maintain space-time supersymmetry. A simple class
of twist groups of this type is the finite nonabelian subgroups of SU(2). We shall
confine ourselves to this simple class. In this chapter we shall classify all minimal-
rank models of nonabelian twists by finite nonabelian subgroups of SU(2). These
finite nonabelian groups include the dihedral groups D; (I = 3,4, 6), the tetrahedral
group T, the octahedral group O, the icosahedral group I, and their double groups
ng), 7(d), O(d)_ 1(d) [38], each of which will be discussed in a separate section. The
twist representations and the final gauge groups will be listed in the various Tables.
In each representation, the Z, torsions are sometimes left free (F3, Fy, Q2 and
Qa: can be equal to 0 or 1 ), in that case we shr¥ list all modcls of the same
representation with different cheices of torsions in one block. The first line of each
block always refers to a regular model in which F; = F3 = Q2 = @3 = 0, unless
otherwise specified. Since we are interested in obtaining different guuge groups,
we will not list those torsion models in which different Z; torsions do not lead to
a change in the final gauge group in our tables. We shall also ignore the possible
contributions to the final gauge group from the excitations of X;,, which depends on

the detail of an initial lattice Leing chosen for these compactified spatial coordinates.

§4.1 Nonabelian Twists of the Dihedral Group D;

The group D; is the simplest finite nonabelian group. Its irreducible represen-
tations are given in (3.1.17) and the paragraph it following. The partition function

of i%'s nonabelian twist is similar to (3.1.27) except that we start now from the
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heterotic string. It is
1 1
Zy(D3) = 52:.(23) + Zn(Zq) - 52,,(21). (4.1.1)

This contains Z3 and Z, abelian twists constructed from the Z; and Z, abelian
subgroups of Dj respectively. The representation D, = Dy should be 2+1', v'hich
is unique in the D; orbifold. In this case the Z3 orbifold belongs to Number 2 of
Table 1 with twist parameter (1,2,0), while the Z; orbifold belongs to Number
1 of Table 1 with twist parameter (3,0, %) When we consider the Z, abelian
orbifold, we should first diagonalize the matrix of the two-dimensional irreducible

representaticn, then we would proceed to obtain the twist parameters.

Let us assign the following twist representation for the sixteen left-fermions,
Dy=(mx2+nsx1+n; x1, (4.1.2)

where the non-negative numbers m, n, satisfy 2m+ng+n; = 16. Modular invariance

of the corresponding Z; abelian twist demands

g(m —~1) ez (4.1.3)

Modular invariance of the Z, abelian twist requires
1
E(m +ny —2) € 2Z. (4.1.4)

Since each two-dimensional irreducible representation may reduce the rank of the

gauge group by 1, for maximal rank reduction we choose the solutions to (4.1.3)
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and (4.1.4) with the largest value of m. It is easy to obtain the minimal-rank twist

representations in this nonabelian twist. They are

Ax2+6x14+2x1),

(4.1.5)
(4x246x1+2x1").

The above two representations are equivalent because 1 «++ 1' corresponds to the
interchange of NS (Neveu-Schwarz) fermions with R (Ramond) fermions in the a, b, ¢
sectors. Since the twist is on Ey x Ej, we have to divide the representation into

two pieces while maintaining modular invariance. There are three non-equivalent

divisions,
(3x2+1+1,2+4+5x1' +1),

(2x2+2x1'+2x%x1,2x244x1"), (4.1.6)

(4x2,6x1 +2x1),
which may result in minimal-rank models. The vacuum phases IQQ’ NNy (g € Dy)
of the first representation of (4.1.6) were calculated in Section 3.1. With similar
computation one can obtain the vacuum phases fer the second and the third rep-
resentations as well, and no global anomalies are present in all three cases. The
final gauge groups for the first and the third representations were obtained in Scc-
tion 3.3. Notice that the third representation with all discrete torsions vanishing
(the regular model) enhances the rank of the final gauge group. Therefore it does
not correspond to a minimal-rank model. In this nonabelian twists there are three

minimal-rank models, which are listed in Table 3.
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£4.2 Nonabelian Twists of the Dihedral Group D,

The nonabelian group D4 has eight elements, five classes (e), (6%), (4,6°).

(r,76%), (r6, 6r), generated by

—i2n(1/4) 0 0 1
0= (C 0 e—i21r(3/4)) » T = (1 0) . (421)

It has one two-dimensional irreducible representation 2 described by the above
defining matrix, and four one-dimensional irreducible representations described by
1 =1r=1,10=1r=-1),1"(6 = -1,r = -1),1"(# = -1,r = 1). The

partition function of this nonabelian twist is found to be
1 1 1 ' ' 1
Zh(Dy) = 53,-,(24) + EZ,I.(ZQ x Z2)+ 535(22 x Zy) — Ezh(ZQ) (4.2.2)

where the abelian group 7 is generated by 8, Z; x Z; by r,r6%, Z) x Z}, by r8,6r,
and Z, by 62.

The representation D, = Dx is unique. It is 2 4 1'. In this nonabelian twist
there are the following two equivalences. The representation under 1 «~ 1,1’ «
1" corresponds to the interchange of NS fermions with R fermions in 6,63, r6,6r
sectors. The representation under 1 « 1’,1" + 1" corresponds to the interchange

of NS fermions with R fermions in r,r62,r8, 6r sectors.
We assign the twist representation of the sixteen left-fermions as follows,
DAz(mxz-}-ﬂoX1+H1X1'+ﬂ2><1"+ﬂ3 X].m), (423)

where the non-negative integers satisfy 2m + ng + ny + ny + n3 = 16. Modular
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invariance of a Z; abelian twist leads to

5
5(m—1)+nz +n5 € 2Z. (4.2.4)

Modular invariance of a Z; % Z2 abelian twist demands

1
§(m+m+n2-2)ezz,

(4.2.5)
ny+ng—1¢?2Z.
Finally, modular invariance of a Z} x Z) abelian twist requires
1
—(m+n1 +Tl3 —2) €2Z,
2 (4.2.6)

ny +ny—1¢22.
The minimal-rank models correspond to the maximal value of m. We may easily

obtain m to be 5. Knowing that, equations (4.2.4)—(4.2.6) are equivalent to the

following,
n; +ng —1¢€ 47,
(4.2.7)
n; +n3 —1¢€47Z.
Solving these equations, we get two twist representations,
(5x2+1"+1"4+4x1),
(4.2.8)

(5x2+5x1 +1),
where the two equivalences of the twist representation mentioned above have been

taken into account. From that, the possible representations acted on (Ejg, Ey) are
(3x2+1"+1"2x2+4x1),
(4x2,2+1" +1" +4 x 1), (4.2.9)
(4x2,2+5x1 +1).
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In order to see the structure of vacuum representations, one would like to take
the first twist representation in (4.2.9) as an example for the D4 twist. Consider

the Z4 abelian subgroup of Dy generated by €. The twist parameter is
~,=,0,0). (4.2.10)

From (2.1.26) and (2.2.18) we have

(YN (e) = €o(0) + oy = 0,

CBMN(8) = Go(0) + Gou + Coo = wo - [wa + T) = 3(Qao + Qso),

NN N a2 (4.2.11)
Co ' (8°) = Go(0) + Cor + 2(po —we - |2we + T| =0,

GENN(6°) = Go(0) + Gon + 3on —we - 3w + T = 5(Qao + Q)

where Q24,36 are discrete torsions. From the Hilbert space structure we can

obtain the representation of the vacuum {25’V ¥) g |QQ§N Ny,

6 |Q£'INN) _ e~ 17(Qae+Qar) . 0 |Qé\v’NN)
IQg,NN) - 0 e—in(Qar+Qsy) lQQI’NN) y
r(mé""i”)) _ (0 1) (mé"””))_
"y ) N1 0/ (et

With diagonalizing the twist representation within the Z; x Z, abelian subgroup

(4.2.12)

generated by r,r8?, we have

1 1 1 1 11
wr =(0,'1',0,']'.',0,_,0,"‘,0,-,0,—,0,0,0,0;0,—,",U),
1 1 1 11 1 1 1 -
Wrg2 =(§101§10,§10v0$ Ea E’O’ §s010$070:0: §a01 510)
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The vacuum phases are
CiVNN(e) =(r{0) + ¢ =0,

NNN(r) = G{0) + Gt + Gor — e+ Lwr + T) = 5(1+ Qe + Qar),

(e N (e) = C93(0) + Croop = 0,

(4.2.14)
¢l N (re?) = -(1 + Q2(r47) + Q3(re2)),
1
r NN(r92) = Cf‘(o) + Crl + Cr(r@’) - Wy ‘_"‘JrO’ + TJ = ;Qr(ra’)v
1
¢RAN(r) = ¢roa(0) + Cro2n + ((rozyr = wror * lwr + T = 5 Q(re2),
where all Q’s are discrete torsions. From Hilbert space structure we have
I
) ) = e uemt@uen) 0 i)
|9NNN) e—i7(14Q2:+Qsr) 0 |QN NNy =
|Q£I91=VN> 0 e—nrQ..(...:) |Q%9{N) ’

where the discrete torsions satisfy Q2r + Qar = Q2(r97) + Qa(re2). With the same

procedure for the abelian group Z;, x Z generated by r#8, 6r, we obtain

|QNNN) 0 e~ '™Qara)+Qo(re)+Qqrexer)) |QNNN)
8 |QNNN) = (_1 0 ) (lQNNN))

|QNNN) _ 0 —e " TQ(re)er) |QNNN
IQNNN) - _cl"ﬂ'Q(,‘)(',.) 0 |Q£\LNN> ]

where the discrete tersions satisfy Qz(re) + Qa(re) = Qa(or) + Qaor)-

For the vacuum phase r generated on |23V "), we can think of 62 as an element
of the Z; x Z, abelian group generated by r,r8?, or as an element of the Z} x Z}
abelian group generated by r8,fr. We evaluate the phase in both ways and results

must be the same,

- 4 o 1
"iVA_'N(uz) = CrI_VNN(r . 1'92) = 5(1 + Q2r + Qar + Qr(r?’)):

] (4.2.17)
rNaNN(oz) = fﬁ;NN(T"} -6r) = 5(1 + Qa(roy + Qa(re) + Q(roy(sr))-
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That implies

rIQ{,V:NN) - e—-iw(1+er+Qar+Q,(,,:)) |QQI:NN),

(4.2.18)
rglgg’:NN) — e—iﬁ’(1+Q:(r0)+Qa(r0)+Q(u)(n))ngNN).
From (4.2.11) we have
8125 N) = |V V), (4.2.19)
so the consistency of (4.2.18) and (4.2.19) leads to
Q2r + Qar + Qr(ror) = Q2(ro) + Qa(r) + Q(ro)(or) + 2Z. (4.2.20)

If we consider the vacua [2FNV) @ |QRYN) and |QNAN) @ |QNEN), we mey obtain

the relations of the discrete torsions,

Qzr = Qa(r62), Q3r = Q3(re2)- (4.2.21)

Similar consideration to the vacua |QENVN) g |QRNNY and |QNEN) @ QN RV) leads

to
Qz(re) = Q2(or)y  Qa(re) = Q3(6r)- (4.2.22)

The results of (4.2.21) and (4.2.22) are expectec. since the discrete torsions between
the Z; abelian group element and the nonabelian group elements within one class
should be equal. Also the elements r,r6? belong to the same class, and so do the

elements r§, 8r.

Consider the vacua |5V V) and [2)4#V), the representation requirements de-

mand
Q26 + Qar + Qr(ren) = Qa(re) + Q(ray(on) + 22, _
(4.2.23)
Qe + Q2r + Qr(ro7y = Qa(rey + Qeroyor) +2Z,
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From (4.2.20) and (4.2.23) we have
Q2(r8) = Q2r + Q2o + 2Z,
Qarey = Qar + Q3o + 2Z, (4.2.24)

Q(re)(or) = Qr(ro2y + Q20 + Qas + 2Z.
We see in this example that the representaiion requirement not only naturally leads
to the class structure (requiring the equal discrete torsion for all sectors within one
class), but also gives more constraints to the discrete torsions of different classes.
In some cases if these constraints are mutually contradictory, then global anomalies
arise. There are no global anomalies in all three twist representations in (4.2.9).

We list final gauge groups of all minimal-rank models in Table 4.

§4.3 Nonabelian Twists of the Dihedral Group D¢

The nonabelian group Dg has twelve elements, six classes (e),(6%), (62,84),

(6,6%), (p,pb%, pb*), (pb, p6*,p6°), generated by

—i2m(1/6) 0 0 1
6= (3 0 e—iz«(s/e)) » PF (1 0) . (4.3.1)

It hes two inequivalent two-dimensional irreducible representations, 2 described by

the above defining matrix, 2' by

—i2m(1/3) 0 0 1
b= (e 0 e-izx(zja)) » P= (1 0) ' (4.3.2)

It also has four one-dimensional irreducible representations described by 1(6 =
1,p=1),1"(6 = 1,p = —=1),1"(6 = —1,p = —1),1"(6 = —1,p = 1). The partition
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function of this nonabelian twist 1s
1 1
Z2,(Dg) = —Z-Z;.(Ze) + Znp(Z, x Zy) — 52;,(22), (4.3.3)

where the abelian group Zs is generated by 6, Z, x Z, by p,p§® or pé,pé* or
p6?,p6®, and Zy by 6°. Since the elements p,pé?,pé* belong to one class and
pb, p6°, p6° belong to another class, the partition function of the abelian group
Z, x Z2 generated by p,p® is the same as that generated by pé,pé? or pé?, pé®.

Therefore we can just write a single partition function Zy(Z, x Z3).

For the representation D x, we could choose 2'+1’, but it corresponds to the D3
nonabelian orbifold, since 2’ + 1’ is a representation of Dj3. In order to qualify a Dg
orbifold, the representation Dx has to be 2+ 1'. In this nonabelian twist there are
following equivalences: 2 + 2',1 — 1,1’ «+ 1" corresponding to the interchange
of NS fermions with R fermions in §, 8%, 8% sectors; 1 « 1',1” « 1" corresponding
to the interchange of NS fermions with R fermions in p, pé, p§?, p6®, p6*, p6® sectors;
and 1" « 1" corresponding to the interchange of p, p§?, p6* sectors with pé, pé*, p6*
sectors. As for the twist representation of the sixteen left-fermions, we assign the

following,
Dy=(mgx24m x2'+ngx14n x1 +nx1"+n3x1"), (4.3.4)

where the non-negative integer numbers m;, n; satisfy 2(mo4-m1)+ Zj:o n; = 16.

Modular invariance of a Zg abelian twist demands

12 5 3
F(mg -1+ §m1 + Z(nz +n3) € Z. (4.3.5)
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Modular invariance of a Zs x Z7 abelian twist leads to
mo+my+n;+n—2¢€4Z,
mo <+ m; +ny +n3 —2 € 427, {4.3.6)

my+ny—1¢€2Z,

and modular invariance of a Z; abelian twist demands
2ma + n,+n3;—2€dz, (437)

Since there are three equivalences, we can restrict the solutions to be my > m,ny >
na,ng > ny. Also we want solutions with a maximal value of g + m; because the
minimal-rank models are desired. Solving (4.3.5) and (4.3.6), we can obtain the
maximal value of mg 4+ m; to be 4. Knowing that we can find all the solutions by
solving the following,

ny+n; €472+ 2,

n1+n3€4z+2!

2mo+ny +n3 €472 + 2,

(4.3.8)
ng+ny+nz+n3 =38,

mp + m; = 4,

mp 2™y, n32nz, ng 2N
We list all non-negative solutions of m;, n; modulo the three equivalences in Table &.
We should maintain the modular invariance when we split the sixteen-dimensional
twist representation into two eight-dimensional representations. Also the three

equivalences should be considered in order to avoid duplications of our models.
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e

To see what the vacuum representations look like, one may take the following

twist representation as a typical example,
2x2+2+1"+1",2 +1'+5x 1;2+1' +1). (4.3.9)

Considering the length of this thesis, we only present results of vacuum represen-

tations for the twis: of (4.3.9). For vacuum |[Q¥ ¥V} @ |QNXNV) we have

5 !QNNN) _ e~ i17(Qas+Qss) . 0 |-Q{}5VNN)
lﬂ N) 0 e—im(Qas+Qss) |Qﬁ~~) ’

SEERDIE)
() I8~ )
Similarly, for the vacuum |QNVN) @ |QNNN)| we have
IQNNN) e—i?vr(?/:!) 0 IQ?’:NN)
(oo ) = (7o amam ) (Jon) )
(4.3.11)
b 'QﬁNN _ 0 1 |QNNN)
i) =1 o) \jalivy)
The representation of the vacuum |QNNV) is
5|Q'Js'~;NN> = e—‘ﬂ(1+Q:d+Qas)|Q§gNN),
(4.3.12)

pIQﬁNN) _ e—iﬂ(1+Q:p+Qap+Q,(,aa)) |QEIVBNN)-

For the vacuum |QVVV) @ |Q£2",VN) ) |Q,’X5’.VN), we have

{ |9“' NNy 0 0 e—im(1+Q@ap+Qa)\ 7 |Q) V)

|Qf\21‘VN) 0 e—:fr(l-i'Q,,(”S)) 0 |QA2£VN
P P
QNN e—iT(1+Q2+Qs) o 0\ /|QYNV)
(m,{,‘;‘;”:’)) ( 0 0 1) (m;‘gﬁ”“)).
;‘QT‘V ) 0 10 |Q£Q§VN)
(4.3.13)
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Finally, the representation of vacuum |QNVV) @ |QNVNY @ |QNNNY i5

p6 p&’ p&l
IQ:’\;NN) 0 0 e~ iF(1+Qa+ Qe |Q£;N )
sl 1™y | =1 0 0 QNaNy |
[ AR 0 e "+ Qpureny) 0 QR wy
|Q:,V§NN) 0 | 0 1 lQ::sNN)
p |Qgsg:) = [0 e "2 anmen) 0 m;\ggw) .
mp&“ 1 0 0 |Qf§. N)
(4.3.14)

All @'s are discrete torsions. We have checked that there are no global anomalies in
all minimal-rank models. Final gauge groups together with the twist representations

of the minima!-rank models are listed in Table 6.

§4.4 Nonabelian Twists of the Tetrahedral Group T

The nonabelian group T has twelve elements, four classes (e), (r,r',rr'),

(u,ru,r'u, rr'u), (u?,(ru)?, (*'v)?, (rr'u)?), generated by

0 10 1 0 0
u=}0 0 1), r=|0 -1 0}, (4.4.1)

1 00 0 0 -1
where r' = uru~!. It has one three-dimensional irreducible representations 3
described by the above defining matrix. It also has three one-dimensional irre-

ducible representations described by 1(z = 1,r = 1),1(u = e~ r = 1),1"u =

e™273 r = 1). The partition function of this nonabelian twist is
1 1
Zi(T) = Zu(Zs) + §Zh(Z2 x Zz) — 52},(21 )s (4.4.2)

where the abelian group Z; is generated by u or ru or r'u or rr'u, Z x Z3 by r, 7',

and Zj by the identity.
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The representation Dx has to be 3, which is unique in this nonabelian group.
In this nonabelian twist there is one equivalence 1' + 1", which is the interchange
of a fermion with its complex conjugate. Let us assign the twist representation of

sixteen left-fermions as
Dy=(mx3+ngx1+4+n;x1 +ny;x1"), (4.4.3)

where the non-negative integers m,n; satisfy 3m + E?___O n; = 16. Modular invari-

ance of corresponding Z; and Z; x Z; abelian twists demands

5 1 4
sm-1)+_-ni+-npeZ
3 3" 3 ’ (4.4.4)

m—1¢€22Z.
Solving (4.4.4) with the maximal value of r2, we obtain the twist representations,

(3x3+1"+1'+5x1),
(4.4.5)
(3x3+5x1"+2x1),

where the equivalence has been considered. To split the sixteen-dimensio:-al repre-
sentation into two eight-dimensional representations, we should keep in mind the

modular invariance conditions.

We can take the following representation,
(2x3+2x1,3+1"+1'+3x1;3+1), (4.4.6)

to work out vacuum representations. After some calculation we will obtain the
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representation for |QY NN} @ |QNNN) g |QNNNY g |QNNNY 1t is

rr!

mNNN) e—27(1/3) g 0 0 {IQNAN
. |QNNN) N 0 0 e—i2n(1/3) 0 QNNN
|QNNN) = 0 0 0 e—12m(2/3) IQNNN ’
Qi) 010 o/ \jakkw
[N 0 0 0 1y /oY)
N /
r|Q)=|0010|9N)
Ql g::) \u 1 .0 0] |QNNN
|er‘u) 1 000 IQFHALN)
(4.4.7)
For vacuum [QNNN) g |Qg.f)],v) ® |Qg,,~uj¥) ) |Q("_,u),) we have
QNN Ny e—i27(2(3) g 0 0 [
N I R R R
Q ) QNnN.
(rr'u)? l (rr‘u)'>
124277) 00 0 1y /19"
r |Q(ru)2) — 0 010 lQ(Nﬂ!‘\;gV)
nip )7 o e
IQ(rr’u)’) 00 |Q(T!"lﬁ?)
{(4.4.8)

The representation of |QYVN) @ [QNNVN) g [QNNN) ig

Ing””) 0 1 0) /iefVY
REVMy 1 =0 0 1 Iy
|QNNNy 100 [QNN Ny
]QENN) ei7(Q2 +Qsr) 0 0 |.Q,1.VNN)
r| [QYFMY ) = 0 ei® Qe 0 |QNNNy .
|Q’ILNN) 0 0 eim{(Q2r +Qa, +Q..1) IQN'NN)

(4.4.9)
All @'’s are discrete torsions, There are no global anoralies in the minimal-rank

twist representations. We present all minimal-rank models in Table 7.
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§4.5 Nonabelian Twists of the Octahedral Group O

The nonabelian group O has twenty-four elements, five classes (e),
(ryr',rr"), (uyru,r'uy e, u?, (ru)?, (Pu)?, (e w)?), (PO, 180, 8, P8 21O 10,

(0,6%,6',8".6",6") generated by

010 0 -1 0
wu=[00 1}, 6={1 0 o}, (4.5.1)
1 0 0 0 0 1

where §' = ubu™!, 6" = u”l0u, r = 6" = diag(1,-1,-1), ' = & =

diag(—1,—1,1). It has irreducibl= representations 3 described by the defining mna-

010 0 -1 0
u=[00 1], 6=11 0 o0 |, (4.5.2)
100 0 0 -1

e-—-i21r(1/3) 0 0 1
U= ( 0 e-—izw(zfa)) , 0= (1 0) ) (4.5.3)

and 1(u = 1,6 = 1),1'(u = 1,0 = —1). The partition function of this nonabelian

trix, 3' by

2 by

twist is ) 1 ]
Z,(0) =§Zh(Z4) + =Zn(Z3) + = Zr(2q x I7)
2 2
. . X (4.5.4)
+520(Z2 x Zg) = 520(Z2) - £ Za(Za),
where the abelian group Z4 is generated by 6 or #' or 8", Z3 by v or ru or r'u or

rr'u, Zg X Z, by r8,76° or r8',r8" or r'8",r'6"3 2L x Z, by r,r' ,Zy by ror ' or

rr', and Z; by the identity.

Let us first consider the twist representation of the right-moving fields. The

representation Dx(g) could be chosen to be 2 + 1, but it actually corresponds to
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Do~y

the nonabelian orbifuld of D3, since 241’ is a representation of D;. To be a faithful
reprasentaticn of O, either 3 or 3'can be chosen. But 3’ is ruled out by the space-
time supersymmetry condition (2.2.19) since the diagonalization of group element
8 gives diag(e™%,e2"% ¢"?"1) and } + 3 + } € Z. Therefore only 3 is qualified
to be a nonabelian orbifold of O. In this nonabelian twist there is one equivalence.
The representation under 3 « 3',1 « 1’ corresponds to the interchange of NS

fermions with R fermions in 6, 6%,6',8%,r0,76%, ', r673 76", r'8"% sectors.

For the representation of sixteen left-fermions, assign the twist representation

of O,
Dy=(myx3+m1x3+myXx24+nyxl4n;x1'), {(4.5.5)
where all non-negative integers m;, n; satisfy 3(m¢ + m;) + 2mg + no + 1 = 16.

For Z, and Z3 abelian twists to be modular invariance, we have to have

5 7
§(mn -1)+ ™ + ma +n; € 22,

5 (4.5.6)
§(m0 —14m;+m2)eZ.
Modular invariance of a Z, x Z, abelian twist leads to
1
mo— 14 -(m1 +m2+m) e 2Z,
2 (4.5.7)
meg —1+mqz 4+ ny € 27Z.
Finally, for a Z, x Z} abelian twist to be modular invariance, we obtain
mo—14m; € 2Z, (4.5.8)

where modular invariance condition of a Z; abelian twist is already included in

the above. In order to have minimal-rank models, we have to find solutions to the
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equations (4.5.6)—(4.5.8) with maximal value of Z(mq 4 m,) + mg, which is the

amount of the rank of the gauge group might be reduced. We rewrite (4.5.6) —
(4.5.8) to be

1

§(m0 —1—-m1)+m2+n1 € 27,

mp — 1 + my + mq € 3Z, (

=
en
]
o

1
my—1+ 5("11 + ma +ﬂ-1)E?.-Z.

After some calculation we obtain possible minimal-rank twist representations,
(83+3x2+1'+6x1),
(34+3x2+5x1"+2x1),

where the equivalence of the twist representation has been considered. Apply the

representations of (4.5.10) on (&g, Eg), and we have
(3+2x2+1,2+1'+5x1),
(3+2+1'+2x1,2x24+4x1),
(3+5x1,3x2+1'+1), (4.5.11)
B+2+3x1,2x2+2x1"'+2x1),
(B44x1"+1,3x2+1"+1),

where the equivalence and modular invariance have been taken into account.

To see the vacuum structure, one may take the following twist representation,
(3+2x2+1,24+1'+5x1;34+1). (4.5.12)

For the vacuum |2F'VN) @ |28Y) @ 1080Y) @ 12017) @ 105Y™) @ 190,)2) &
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lgﬁ,”ugi) ® QNN ‘f‘)',), the representation is calculated to be

NNN NNN
(‘Q"NNN)\ w 000 0 000 (]QNNN)\
19y ) 0010 0 00 0]] S

NN Ny NNN
lﬂmN, 0 001 0 00O lQN

Sl 19 ) o100 0 000 QNN

QN¥NY 1T 10 0 0 0 w2 0 0 O Q%Y |
Qo) 0000 0 01 0f] [N

QNN Ny 0 000 0 00O 1) |QNNK
\| rﬂ'f\?‘z’v’ \o 000 0 100 \Q,ir"}&‘;{r’))

("""-‘)2 ‘ (rr'u)’)
(Q;'VNN\ ooooooou:/‘;\,w\
Ko 0000 0 0 w? 0] K 0
lﬂNNN) 0000w 0 0 0] Km0

ol 19 1 o000 0 w o0 0 1)

Q¥ 1 7fo 001 0 0 0 0 jQNNNy |
|QENEY 0010 0 0 00 QRN

QNN 1000 0 0 0 0| NN
\IQNNN J No100 0 0 0 0/ \l () )

("""‘)2 (rr’u\’

where w = =273, The representation of the vacuum |QY VMg |QNNNyg|QNN Mg

Q5NN @ 105N) © (M) is

5N 01000 oy (19"
(QN””)\ 001000 ( N””)\
LR L 1100000 |Q{,Y,NN)
QEFMY 1T 10 0 0 0 1 0] | |QNNYy |
|QNNN 0 000O0O01 [QNNN)
\lo}¥¥)) N0 0 0 10 0/ \jqupn )
a2V g (4.5.14)
( - « 0000 0y (1
0 000 0 1}{I2 N”)

8 |9£!'NN _lo 10000 ln{,‘.’,NN)
et T o 00 @ 0 0} QEYN |
QNN Ny 0 01000 QNN N
\iofir)) Vo 00 0 1 0/ \jafiyn



where a = e~*"(Qu+Qa) and @Q’s are discrete torsions. The representation of

1247) @ [N @ [NEE) @ [N Y) @ [XAM) @ NN i

rég’

8" rgd
NNN
(IQNNN) 0100 0 0y (12"
1205 ) 00100 0 Ky grs
u LA _[1r 000 0 offtelfd
| Qi Ny 0000 1 0]} QNN
Qrg) 0.0 00 0 1Ff |Nky)
Klnxgm)) 0 00100 m,r_\ggfv)) (6.5.15)
WLl
(124" 70 0 0 0 0 1 HQNﬁN)\
1200 ) 0 0100 0}]flQ%"
0 QNN _|o 00100 |Q§ﬁ¥)
|QMNNY 0 000 8 0ffiQNvM |
Q7" 0 £ 0.0 0 01 raN
\lfi'M) ) N8 000 0 0/} johin,

where 8 = e~ Qraxr1®) and Q2(r8)+Q3(rg) = 11in order to satisfy the representation

requirement. For the vacuum |Q¥VN) @ |QNNV) @ |QNNN) we have

[QN VN 0 1 0\ /loNVY)
uf QYN =0 0 1}[|Q¥¥M ],
oMy ) \1 0 o) \joNNw

QN NNy 0 0 e~ @\ /|QNNM)
6108 ) =10 0 ANy |
NN 1 0 JQNN N

where Q2 + @3- = 0 and Qrr = Q(ro)(re%) = Q(ro')(ro®) = Q(ror)(gr2) in order

(4.5.16)

o I T OO

to satisfy the representation requirement. Notice that the discrete torsions between
the abelian Z; group element and the nonabelian group elements within one class

are always the same, such as Q2 = Q2p, Qar = Qip.

In a similar way we can calculate the group O representations of vacua

|QNRNY IQRNNY |QRRRY and so on, and the representation requirement will give
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’z,\'.&; .

more constraints to the discrete torsions. However there are no contradictions on
these constraints, so no global anomalies arise. We have checked that there exist no
global anomalies in all minimal-rank models in this nonabelian group. The results

of the minimal-rank models are listed in Table 8.

§4.6 Nonabelian Twists of the Quaternion Group ng)

This nonabelian group was considered in Section 3.2 when we dealt with global
anomalies. The irreducible representations are listed in (3.2.16) and the paragraph
it following. The partition function of this nonabelian twist is given by (3.2.17).
The representation Dy is 2 + 1. Notice that this nonabelian orbifold keeps N = 2
space-time supersymmetry [36]. We will see that the nonabelian orbifold of D:(,d)
shares the same feature. There are four equivalences in the twist representation.
The representation under 1 « 1',1" « 1" corresponds to the interchange of NS
fermions with R fermions in b, a®b, ab, a®b sectors, while it under 1 « 1", 1' & 1"
corresponds to the interchange of NS fermions with R fermions in a,a?,ab,a’b
sectors. The equivalence 1" « 1" corresponds to the interchange of b,ab sectors

with ab, a®h sectors, while 1’ « 1" corresponds to the interchange of a,a® sectors

with ab, a®b sectors.
Consider the twist representation of the sixteen left-fermions,
Dy=(mx2+nyx1+n; x1 +np x1"4n3 x1"), (4.6.1)

where the non-negative numbers m, n; satisfy 2m + 2?:0 n; = 16. In order for
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Z4,Z),,Z and Z, abelian twists to be rnodular invariant, we have to demand
g—(m— 1) 4+ ng + nj € 2Z,
g(m - 1)+ n; +np €22, (4.6.2)
g(m-1)+n1+n3 € 22Z.
The minimal-rank models correspond to solutions with m being a maximal value,
It is easy to get m = 5. The possible minimal-rank twist representations are
(5x2+6x1),

(Bx2+4x1+2x1"),

(4.6.3)
(5x2+2x14+2x1'+2x1"),

(Bx2+4+3x1+1"+1"+1"),
where the equivalences of the twist representation have been considered. Com-
pared the first representation of (4.6.3) with that discussed in Section 3.2, we have
one more copy of the two-dimensional representation acting on the left-fermions,
but we also have the same extra copy acting on the right-fermions. Their extra
contributions cancel each other when the vacuum phases are evaluated. Therefore
we expect to have the same vacuum phases as (3.2.19) and (3.2.20}, and global

anomalies arise. Let us consider the second twist representation of (4.6.3), i.e.
(5x2+4x1+2x132+141). (4.6.4)

Although we leave the sixteen-dimensional representation undivided, we still can

calculate some vacuum phases. Consider the Z, abelian twist, and we obtain

algfﬂﬂ) — cirF. IQfRR),

(4.6.5)
a|Qf,RR) - e-m(l-!—F.;IQt}lI:RR).
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For the Z abelian twist, we have

leﬁZRR) =eiﬂ(1+F5)IQ§RR)

*

| (4.6.6)
bIOSAE,) e PIQAE,)
Similar computation for the Z§ abelian twist leads to
aleRRR) =eiw(1+F.5)|QRRR)
e [ 3 b
(4.6.7}

-4 a R
ab|ﬂg,§f§=,:) =€ (1+F, b)lﬂﬁfp:a:).

From (3.2.9), we have £(ab, g) = €(a, g)e(b, g) with g being e or a?. This implies

(4.6.8)
1+ F+ 1+ Fo=14 F; +22.

Obviously global anomalies arise. With the same procedure we can show that the
third representation of (4.6.3) also suffers from global anomalies. Therefore only

the last of (4.6.3) is left free from global anomalies at this moment.

There are several ways to split it into two eight-dimensional representations,

3x2+1+1,2x2+1"+1"+2x1),
(Bx2+1"+1"2x2+1'+3 x1),

(4.6.9)
Bx2+2x1,2x24+1"41"+1'+1),

4x2,2+1"4+1"4+1'+3x1),
where the equivalences and modular invariance have been considered. We will show
that the first two representations in (4.6.9) have global anomalies. Take the twist

representation,

Bx2+1"4+1,2x2+1"+1"+2x1;24+1+1). (4.6.10)

94



The phase that b generates on [QY#®) 15

7 7T 1 3 1
N RR(e) = (oo = whwa — Cop = 1 —(5 + EQza) ==~ EQ“‘ +Z, (4.6.11)

where the discrete torsion parameter Q23 can be equal to 0 or 1. That implies
bQNRR) = i(3+Qa) | QNRRy (4.6.12)

From (3.2.6), one has e(aba~!,aea™!) = ¢(b, ), which is e(a?b = b*,€) = (b, ¢).
On the other hand, one has £(a?b, e} = (e(b,€))® from (3.2.9). Therefore the rep-
resentation requirement leads to ((b,e))> = 1. However, one obtains (e(b, ¢))* =
expli2n(3 + Qz5)] = —1 from {4.6.12). Obviously, the inconsistency occurs. As for

th: .cond twist representation in (4.6.9), one obtains the same formula as (4.6.12),

so there also exist global anomalies.

Let us take the twist representation,

Bx2+2x1,2x2+1"+1"+1'+1;2+1+1), (4.6.13)

to see the vacuum structure. The representation of the vacuum |QN V) g {QNNV V)

can be calculated to be

a |Q‘I:VNN) _ eim(Qaa+Q34) | 0 )(|Q;VNN))
!Q{:;NN) - 0 C'*(Q"'*'an) IQQLNN) )

NNN NNN (4.6.14)
L(IOYEMY g 1 vy
[ Al WA S UNVAN i)
Similarly for the vacuum | VV) @ [2MY V), we have
(i) = 5 ) (i)
NNN =\1 0 Q0 )
|€225% Q225 ) (46.15)

b IQFNNY)\  [eimQuiQun) g QN NNy
ALY AN VAN S VA
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and the representation of |GNVN) @ |QNNNY s
|QNNN 0 1 | NNN)
(Iﬂ”””)) B (1 0 ) (m.{:’aﬁ“"))'

b |QNNN _ 0 e i (Qa(as) +Qa(as)) IQNNN
‘QNNN) T\ ¢3*(Qaras) +Qa(ar)) 0 IQNNN)

adb
(4.6.16)
For the vacuum |QNVV) we obtain
alQN Ny = QMY bl Yy = NNy, (4.6.17)

We have checked that there are no global anomalies in the last two twist represen-

tations in (4.6.9). The minimal-rank models are presented in Table 9.

§4.7 Nonabelian Twists of the Double Dihedral Group ng)

The nonabelian group D:(,d) has twelve elements spread out in six classes:
(e), (), (a,a®), (a?,a?), (b,a%b,a'd), (ab,a®h,adb). It has two inequivalent two-
dimensional irreducible representations. The ' can be taken as the definition of

the gre -p and is given by

e~ i2r(1/6) 0\ 0 e—izn(1/4)
= ( 0 e“zﬂ(ﬁls)} y b= (e—i2x(1/4) 0 ' (4.7.1)

while the 2 given by

e WM g 0 1
a= ( 0 e—iZw(2/3)) ) b= (1 0/ (47‘2)

It also has four one-dimensionz] irreducible representations described by 1(a =

L,b=1),1"(a =1,b=—-1),1"(a = =1,b = e~?7}),1"(a = —1,b = ¢~?"3). The
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partition function of this nonabelian twist is

1 1
Zn(D57) = S Ea(Zs) + Za(Zas) - 5 Za(Za), (4.7.3)

where the abelian group Zs is generated by a, Z, by b or a?b or a*b , and Z. by
a®. For the representation Dx, we could choose 2 + 1, but it corresponds to the
Dj orbifold. The twist representation Dx has to be 2' + 1 in order to qualify a
ng) orbifold. There are twc equivalences in twist representations. The represen-
tation under 1 «+ 1',1” — 1" corresponds to the interchange of NS fermions with
R fermions in b,a?b, a%h, ab,ab,a®b sectors. The representatic: under 1" « 1™

corresponds to the interchange of one fermion with its complex conjugate.

Let us assign the twist representation of ng) for the sixteen left-fermions,
Dy=(mox24+my x2+4+nyx1l+n x1' +ny x1"+n3 x1"), (4.7.4)

where the non-negative integers m;, n; satisfy 2(mo+m, )+ Zj’:o n; = 16. Modular

invariance of Zg and Z4 abelian twists demands

1 10 3

—3(mo — 1) 4 —my + —(ﬂ2 + ﬂa) € 2Z,

3 3 2 4.7.5
5 1 9 (4.7.5)
E(mo - 1) +my+n+ Ing + Zn;, € 2Z,

where modular invariance of a Z, abelian twist is already included in the above.

We rewrite (4.7.5) as

1 1

—(mg -1- 2171.1) - —'(ﬂg + n;) € 2Z,
:;: . 2 (4.7.6)
z(mo = 1+ S(n2 + 1))+ my +m €22
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We want to find solutions with a maximal value of mg+m, because they correspond

to minimal-rank models. The necessary but not sufficient condition for holding

(4.7.6) 1s
ny +n3 € 22,
(4.7.7)
mp —1+nry € 32.

One may guess that the maximal value of mo+m, is 7. In fact it is correct. We list
all the solutions of m,,n; of the minimal-rank models in Table 10, while the two
equivalences have been taken into account. The split of the sixteen-dimensional
twist representation into two eight-dimensional representations can also be worke-
out as long as modular invariance is considered and model duplications are elimi-

nated.

To see the vacuum structure, one may take the following twist representation,
(4x2,2x2'+2+2x1"2'+1+1). (4.7.8)

We present the result of vacuum representations for the twist of (4.7.8). The ng)

» () = (o ) (i)

)
).
» (i) = (3 o) (i)

where discrete torsions satisfy Q2. = Q3s = 0 because of the representation re-

representation of the vacuum |QYVVN) @ |QNNNY is

(4.7.9)

quirement. The representation of the vacuum |QNNV) @ |QNNV) is

(1)) = (75 o) ()
» (o)) = (3 o) ()

o8

(4.7.10)



For the vacuum [QNNV) we have
alQl Ny = —JQlVN),  bIQNNN) = ez NNy, (4.7.11)

The D representation of QN NNy @ |QNNNY @ QNN

atd

lQNNN) 010 |QNNN)
|QNNN) =10 0 1 ‘QNNN) .
NNN 10 0 QNNN
‘Qab ) a‘b ) (4.7.12)
|2’ V) a 0 0) /1%
b |QNNN) =10 0 « IQNNN)
12" 0 o« 0/ \|28)'")
where @ = ¢'™(1+@n+Qn)  and discrete torsions satisfy Qu = Qaazpy =

Q2(atb)s Qsp = Qa(azb) = Qa(a4b)- For the vacuum |Q£\LNN) ® |QNNN) & |Qﬁ!:N ,

adb
|QNNN) 01 0 ‘QNNN)
a 108 ) = (0 o 1] (kv
[R5 1.0 0/ \jex}")

|Q£\£NN 0 0 o IQNNN>
blia™ =10 « o[ QN
Ny « 00/ \|aNym

There are no global anomalies in this twist representation. Furthermore we have

we obtain

(4.7.13)

checked that there exist no global anomalies in all minimal-rank models. The twist

representations and final gauge groups are listed in Table 11.

§4.8 Nonabelian Twists of the Double Tetrahedral Group 7%

The nonabelian group T(¥ has twenty-four elements, seven classes (e),
(a®), (a,ab,ab’,ab"), (a?,a%b,a®t',a%b"), (at,a*b,a®V',a*d"), (a®,a*b,a’b’,a?d"),
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(b, b, b",a%b,a®d,a3b"), generated by

a=(1'2"i)(_1i ;) b-_-(fi B’), (4.8.1)

where ' = aba™',}" = ab'a™?. It has three inequivalent two-dimensional irre-
q

ducible representations, one of which 2 is described by the above defining matrix,

and other two are 2’ by

No—i2T3 /- .
a=(1+=)28. (1' ;) b_—_(_?z. 0’), (4.8.2)

1+:)e 273 /5 0 —i
a=(——-)2——(1 ;) b=(_i 0’). (4.8.3)

It has one three-dimensional irreducible representation 3 described by

010 1 0 0
a=00 1), b=]0 -1 o0 }|. (4.8.4)
100 0 0 -1

It also has three one-dimensional irreducible representations described by 1(a =

and 2" by

1,b =1),1(a = e7273,b = 1),1"(a = e~27%,b = 7). The partition function of

this nonabelian twist is
(d) 1 1
Zh(I ) = Z;.(Ze) -+ 535(24) —_ EZ;.(ZQ), (4.8.5)

where the abelian group Z¢ is generated by e or ab or ab’ or ab", Zy by bor b or

b" , and Z:; by a®.

Let us first consider the twist representation of the right-moving fields. We

could choose Dy to be 3, but it actually corresponds to the nonabelian orbifold of
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T, since 3 is a representation of T. To be a faithful representation of T4 either 2
or 2' or 2" plus suitable one-dimensional representation can be chosen. Since the
corresponding abelian twists should be in Table 1, there are three options for the
twist representation Dy, which are 241, 2'4+1' and 2"+41". In these three cases, the
twist parameters of a Z4 abelian orbifold are the same and equal to (3}, 3,0), while
the twist parameters of a Zg orbifold zve (}, §,0),(}, }, 1) and (£, L, £) respectively.
There are two equivalences in the twist representation. These two equivalences are
the representation under 1’ « 1" or 2’ « 2" corresponding to the interchange of
fermions with their complex conjugate. Therefore the two representations 2'+ 1’
and 2" + 1" are equivalent. Notice that the two twist representations 2 + 1 and

2' 4+ 1" have N = 2 and N = 1 space-time supersymmetry respectively [36].

Let us first consider the case of the twist representation Dx being 2 + 1, and

assign the following representation for (16; 4) fermions,
(mox2+myx2' 4+myx2'+myx38+negx1l+4+n;x1 +n,x1";2+4+1+1), (4.8.6)

where the non-negative integers m;, n; satisfy Z?=o(2m.- + ny) + 3ms = 16. Since
the partition function of T(# twist is given by (4.8.5), the modular invariance of
the nonabelian twist requires Zg, Z4 and Z, abelian twists to be modular invariant.
The abelian twist parameters can be found by diagonalizing (4.8.6) with respect to
a specific abelian group. Modular invariance conditions of the Z¢ and Z, abelian
twists are

5 17 10

13 2 8
—3—(m0 - 1) + §m1 + ‘?mz + 'E'ms + 5111 + -§n2 € 2Z,

(4.8.7)
g(mo —14+m; +m2) € 2Z,
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where the condition from the Z; twist is already included in the above equations.

We can rewrite (4.8.7) as

mo — 1+ my +me € 47,
(4.8.8)
mo—-l—ml-—mg—2m3+2(n1 -l-ng)GGZ.

The minimal-rank models correspond to the twist representation with a maximal
value of mg + my + mq + 2m3. After some calculation one can find solutions of
(4.8.8) corresponding to the minimal-rank models. The twist representations are

(5x2+2x%x3;2+14+1),

(2x2+3x2"+2x3;2+1+41),
(4.8.9)
(2+4x3+1'+1;24+1+1),

(2'+4x3+1+1%2+1+1),
where we have considered the two equivalences corresponding to the interchange
of fermions with their complex conjugate. Notice that the twist representations in
(4.8.9) can possibly reduce the rank of the gauge group by 9. Now we should check
that whether global anomalies arise in these twist representations. Let us take the
first one of (4.8.9), i.e.

(5x2+2x3;2+1+1). (4.8.10)

The twist parameter of the Z4 abelian twist is

1313131313 _11_1113
---------- 220,55 =,2,0,0). 11
@w=Grrrrrrrre®y»®23p%0 (48.11)
The vacuum phases that b generates on |Q7%%) and |Q2/7%) can be calculated,
(PRR(e) = —wy - T—-F—‘b-—-ﬂ-i-z
2 2 - (2.8.12)
FRRE = 0®) = ((0) + 2 —wi - [23) = T + 5 + 2.
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This implies
b|QfRR) — eiﬂ'ﬁleRR)

¥

| (4.8.13)
blgfaRR) = er.-r(F'n,+1) |QfaRR).

Since |Qf%R) is in a one-dimensional representation and = 1 in all three one-
dimensional representations, we have to demand F, = 0 + 2Z. On the other hand,
|2EFR) should also be in a one-dimensional representation since the group element
a® itself forms a class, so we have to set F}, = 142Z. This contradiction indicates the
existence of global anomalies. With the same procedure, i.e. calculating the phases
that b generates on the vacua [2FFR) and |Q8FR), we know that the second twist
representation in (4.8.9) also suffers from global anomalies. The third and the last
ones in (4.8.9) are free from global anomalies at this moment, but we should check
them further when the sixteen-dimensional twist representation is divided into two
eight-dimensional ones. The divided representations are

(24+2x3,2x3+1'+1;241+1),

(4.8.14)
(2'+2x3,2x3+1"+1524+1+1).
Consider the first one of (4.8.14), i.e.
(2+2x3,2x3+1'+1;2+1+1). (4.8.15)

We can calculate the vacuum phases. In order for the vacua to form representations
of T(d), we have to deman Q2a = Q3a = ng = 0 and sz = 1. The same procedure
for the second twist representation of (4.8.14) also leads to Q20 = Qaa = Q3 =0

and Q23 = 1. There are no global anomalies in these two twist representations.

So far we only considered the case with Dy being 2 + 1. Let us look at the

103



other case with Dy being 2' + 1', and assign the twist representation as
(mox2+4+mix2'+mox2"4+mix3+nyx1+n) x1'+n;x1";2"+1'+1), (4.8.16)

where the non-negative integers m}, n; satisfy 2?20(2171"- + n}) + 3m} = 16. Since
a phase for the partition function generated from modular transformations by the
right-fermions is always the opposite sign of that by the left-fermions, the moduiar
invariance conditions (4.8.7) have a term with a factor (mg — 1) corresponding
to the contribution by my copies of 2 in the twist of the left-fermions and one
copy of 2 in the twist of the right-fermions. This observation allows us to obtain
modular invariance conditions for the twist (4.8.16) from (4.8.8) with the following
substitutions: mp —1~mf,m; ~m{ —1,ny ~n} =1, m; ~m! (1 =2,3),ns ~ ni.

It turns out
my +m) — 1+ my € 4Z,
(4.8.17)
mp — (m} — 1) — mj — 2mj + 2(n} — 1 +n}) € 6Z.
We rewrite the above as

my — 1 + m) + mj € 4Z,
(4.8.18)
my — 1 —m} — mj — 2mj + 2(n} + n}) € 62.

Obviously (4.8.18) is the same as (4.8.8). By using (4.8.9) we may write down the
twist representations of the minimal-rank models with Dx being 2' + 1/,

(5x2+2x3;2 +1' +1),

(2x2+3x2'+2x3;2'4+1'+1),

(4.8.19)
(2+4x34+1"+1;2'+1'+1),
(2' +4x3+1+1"2'+1'+1).
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Similarly, we can show that the first two representations in (4.8.19) suffer from

global anomalies. Splitting the sixteen-dimensional twist representations, we have

(2+2%x3,2x3+1"+1;2'+1'+1),

(4.8.20)
(2'+2x38,2x3+1"+152'+1'4+1).

In the both above twist representations, the representation requirement leads to

QR2s = Qaa = Q35 = 0,Q2s = 1. There are also no global anomalies.

To see the vacuum structure, we present the result of vacua |QV¥") for the

model with the twist (4.8.15). For vacuum |25V V) we have

alQNNVN) = QNN ), BIQNNN) = | ), (4.8.21)
The representation of |QY ¥V} @ [QNVN) @ |QNNN) @ |QNNN) is calculated to be
IQNNN) _ 0 0 1 0 NNN
2l ey [ =1o 0 0 1 ﬁ!"" '
\mﬁ;yrv 010 0 \m;\gw
(4.8.22)
IQN””)\ 0010 (IQNNN)\
b%~~=1ooo k) |
a’ ab’
\m“,’,!:’” 0100 \Iﬂ"iﬁ’”)/
while the representation of [QNNN) @ |QNVN) @ |QNNNY @ QNVN) is
N N) 1 0 0 0y /193"Y)
REMY ] _[0 0 1 o) | lem”
Tl oMMy T o 0 0 1| jelin |
QNiN 0100 QNN
| “"’N | ;;N (4.8.23)
(AR 000 1y /9 ")
gl o™ _fo o 1o} flesd”
QNNMy P10 1 0 o0 | |eNEY
ki) \1 o 0 o/ \jakiy
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For the vacuum [QNVN) @ |QNVN) g [

[ e B e I —)

IQNNN

abb!’
while for the vacuum [QNYN) @ |
[
Ko
€aap )

Qqsper )

o= OO

= OO o

o= oo

M e

oo o

-0 oo

NNN
adb

oo = O

o O = O

|QNNN

[o= R e B i e

[ v s B

) @ |QNNNY, we obtain
0
0
1
0

(4.8.24)

o O

0 |9N.NN>
QNNN

a4pri ), we have

atd’ ) l
|QN.NN)
NNN
I a‘h )
kA |
g
|QNNN)
IQNNN
‘QNNN)

asy’

0
0
1
0
(4.8.25)

0
1
0

Finally, the representation of the vacuum QY VM@ | VM@ |Q) VN g QNI My @

QNN & [QNNN) is calculated to be

(|QNNN)\
|y NN
|9£\‘F'NN

QOO = OO0
L= i wee I e I - I s I
oo~ O

i

[y NNy
|Q£\'I'NN
IQNNN

\ |2NN) )

(

[ I e R e B e R B )
o =oOo0 0o
-H OO0 OO

HOOOoOOoOO

OO OO0O0O
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We present all minimal-rank models of this nonabelian group in Table 12.

§4.9 Discussions on Twists by Other Finite Subgroups of SU(3)

As we argued in Section 2.2, the twist group should be finite subgroups of
SU(3) in order to have space-time supersymmetry. The finite subgroups of SU(3)
can be divided by two categories [48]: the finite subgroups of SU(2) and the finite
subgroups of SU(3) but not of SU(2). Concerning the first category, we have not
considered the groups D'V, D{¥, 0 I and 1), It turns out that there exist
no nonabelian orbifolds for these groups because there are no abelian orbifolds

corresponding to their abelian subgroups.

Let us take the ng) nonabelian group as an example to show that the ng)
nonabelian orbifold does not exist. This group has sixteen elements, seven classes

(e), (04), (azias)a (0307)! (assas): (b, a®b, a"bsaeb)’ (ab, ab,ah, aTb), generated by

e~i27(1/8) 0 0 —i2m(1/4)
@= ( 0 e_iz"(7/3)) , b= e—i2m(1/4) 0 . (4.9.1)

It has irreducible representations 2 described by the above defining matrix, 2' by

e—12%(3/8) 0 0 e—i2w(1/4)
az( 0 e—i2n(5/8) |1 b= e—12%(1/4) 0 ) (4.9.2)

e—izn(1/4) 0 0 1
a= ( 0 e-izx(sﬂ)) , b= (1 0) ; (4.8.3)

and 1(a =1,b=1),1(a=1,b=~1),1"(a = —=1,b= 1),1"(a = —1,b = ~1). We

2" by

could take the twist representation Dx to be 2" 4 1', but it is the D, nonabelian
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orbifold, since 2" 4 1’ is a representation of Dy. If we choose Dy to be 2 or 2'
plus some one-dimensional representation, the twist parameters corresponding to
the abelian subgroup Zs are not in Table 1. Therefore there is no Did) nonabelian
orbifold. With the same procedure for the groups Déd), O, I and I'Y | we found

that there exist no orbifolds corresponding to these groups.

Results from twists by any other finite nonabelian subgroups of SU(3) can be
obtained similarly. We expect that more promising models can be obtained if the

nonabelian subgroup is chosen appropriately.
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Chapter 5

Summary and Conclusions

In this chapter we recapitulate the major findings of this thesis and make some

comments about the possible applications and extensions of the present work.

We discuss in this thesis four-dimensional string theories defined by free fields
on the world-sheet satisfying & set of twisted boundary conditions. In Chapter
2, conditions leading to a consistent and desirable string are discussed for abelian
twists. The partition function of the string is required to be modular invarinnt,
which in turn limits the allowed twist parameters, vacuum phases, and fermionic
numbers. Four-dimensional Lorentz invariance is satisfied only when fermionic
numbers and discrete torsions are suitably related, and space-time supersymme-
try places further restrictions on the twist parameters and the vacuum phases.

Furthermore, crystallographic requirements reduce the consistent twist parameters

for the right-moving fields to those listed in Table 1.

Nonabelian boundary conditions have been discussed in Chapter 3. Instcad
of restricting ourselves to “standard embedding”, we allow the most general twist
for right-moving and left-moving fermions. The Hilbert space of a nonabeclian twist
is constructed, which has many new features compared to the abelian case. A
general formula of the partition function for a nonabelian twist is derived, and

it turns out to be a linear combination of partition functions of abelian twists by
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abelian subgroups of the nonabelian group. Therefore, one can discuss the partition
functions, vacuum phases, and mass spectra from its abelian subgroups by using the
technique developed in Chapter 2. It is necessary for a consistent string to require all
the constraints given by the twists from the abelian subgroups. However, this is not
sufficient. The consistent structure of the Hilbert space requires not only the string
fields to form a representation of the nonabelian group, but the vacua as well. The
vacuum phases are calculated from the twist parameters and they are not necessarily
in a representation. The failure for the vacua to be a representation leads to global
anomalies, which have been known to exist in the path integral formalism. This
problem does not arise in the abelian case because the Hilbert space structure there
is much simpler. The advantage of the present operator formalism is that one can
identify and correct for the global anomalies purely within one loop, unlike the path
integral formalism where multi-loop information is needed. Once the well-behaved
Hilbert space has been constructed, one can extract from the model the massless
spectrum. The rank of the gauge group is generally reduced, with the generators
of the final Lie algebra being some nontrivial combination of the generators of the
Lie algebra Eg x Ej. We have given a general procedure to identify the Lie algebra
from the massless states. The resulting gauge group is not always embedded in

Ey x Eg in a regular way.

Four-dimensional string models obtained from the heterotic string by an
ebelian twist suffer from having too high a rank for the gauge group. Non-

abelian twist models can potentially correct this problem since such twists can
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reduce the rank of the gauge group, whereas abelian twists cannot. For this rea-
son one would like to choose the nonabelian twist representation to give a mini-
mal rank to the res.lting gauge group. These minimal-rank models are system-
atically analysed in Chapter 4 for twists from all finite nonabelian subgroups of
SU(2). Twist parameters, vacuum phases, and gauge groups arc obtained; sys-
tematic elimination of global anomalies are discussed in each case. Although
the Standard Model gauge group has not emerged from this analysis, we obtain
gauge groups such as SU(5) x U(1) x SO(7)* {from the octahedral group) and
SU(3) x SU(2) x Gy x SU(3) (from the double tetrahedral group) which have
small enough ranks in the non-hidden sector and are close enough to the Standard

Model to make them interesting.

In summary, we have presented systematically the methods and the results for
mode] building from the nonabelian twist in the operator formalism. The Hilbert
space of *he nonabelian twist is very different from that of the abelian case, and as a
result, group theory is required to keep a consistent structure in the Hilbert space.
Global anomalies are eliminated by requiring the vacua to be in a representation of
the nonabelian group. The generators of the final Lie algebra describing the gauge
symmetry of the theory are obtained by making appropriate linear combination of
the generators of the algebra Eg x Ej. Since it is desirable to obtain models with a
low-rank gauge group, we have classified all the minimal-rank string from the twists
of finite nonabelian subgroups of SU(2). This provides an important step forward

to the construction of realistic models from a nonabelian twist.
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Much further work remains to be done with the nonabelian twist models. As
aforementioned, the twist zroup is to be a finite subgroup of SU(3) in order to
have space-time supersymmetry. It is straightforward to extend the present work

to twist models by finite nonabelian subgroups of SU(3) not in SU(2).

In our discussions above we have presented the gauge group in each case, which
is actually the most difficult part to compute among the whole spectra. Other
consequences, such as the number of generations and representations of the chiral
fermions, can also be worked out and is usually straightforward. Furthermore,
paralleling the discussion in the realistic models obtained from abelian twist or the
real fermion formulation, one can also study the phenomenologies of nonabelian
twist models, including the Yukawa couplings, proton stability, neutrino masses,

quark-lepton masses and so on.

A slight variation of our formalism could also lead to another interesting class
of models. Recall that we fermionized the sixteen left-moving real bosons into
sixteen complex fermions at the beginning in describing the boundary conditions.
It is known that the bosonic shift is equivalent to the fermionic twist in the abelian
case. However this is no longer true in the nonabelian twist. Therefore we may keep
left-moving fields to be all bosonic and impose instead the nonabelian twist and also
shift on these fields at the beginning. We expect that the Hilbert space structure
will be similar, but the spectrum will be different since there will be bosonic modes
and momenta instead of fermionic modes in the massless states. Therefore a new

class of models will be expected. In principle, there will be no technical difficulties
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in building this kind of models.

As we have seen, in corstructiug low-rank realistic models, four-dimensional
strings obtained via nonabelian twists have their advantages. Much more work still
need to be done in order to have a complete phenomenological analysis of this kind
of strings. The presznt thesis shows how far we can go using only the twist of a
single nonabelian subgroup of SU(2), so more promising models are expected if one
considers other nonabelian subgroups of SU(3). Inspired by the recent LEP data
and the realistic models obtained by abelian twist and the real fermion formulation,
it is reasonable to hope that the nonabelian twist technique will lead to its own

realistic models, which may eventually be tested by the experiment.
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Appendix A

Modular Transformations

In this appendix we will derive modular transformations of the function

f(u,v|r) and discuss the function b(u,v|r), which are used in Chapter 2.

The Jacobi function 91(v|7) is defined by [5,49)

91 (v|r) = 2Gq? sinwv H(l — g e?™)(1 — g"e~ ™), (A1)

n=1

where G = []o2,(1 — ¢"), and ¢ = ¢'?"". The modular transformations for this

Jacobi function are given by
D(vlr +1) = e ¥y (vlr),

(4.2)
191(——| - —) =e'Triel™ 191(u|T)
The Dedekind function n(7) is defined by
= =]
n(r)=q% J[J(1-q"). (A.3)
n=]
It has the following modular transformations
n(r +1) = e'tEn(r),
(4.4)

n(=7) = e Erin(r).

In order to represent the function f(u,v|r) in terms of the Jacobi function and

the Dedekind function, one may rewrite the Jacobi function as

"-91(1’"') — in(,r)q-}:-(e—iirv ~ el'mr) H(l l21ru)(1 n —:21w)
o (4.5)
= in(,r)q-he—in'u H(l n—1 121ur)(1 q" -121rV)

n=1
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Therefore the function f(u,v|r) can be expressed by 9,(v|r) and n(r),

oo
f(u,v|1') _ q-12~v(1-v)+'115 H(l _ qn—veﬂfru)(l _ qn—l+ve-|'21ru)
n=l1

.. - (4.6)
= eurr(u _")qu H(l — qne—|2x(ur—u))(1 . qn—le:.‘u’(vr—u)) e

n=1

= e'."'("”:_“_]?')ﬂl(—u + vr|7T) /(7).
Since we know the modular transformations of the Jacobi function and the Dedekind
function, it is straightforward to derive the modular transtormations of the function
f(u,v|7). The modular transformatior. 7 — 7 + 1 for the function f(u,v|r) is
flu,vjr+1) = em(rv?=u=d+eh) gyt v 4 orir + 1) /(7 + 1)
= e'."(r"z“("_")_é"'":_”"'%)191(—u +v+or|r)/n(T) (A.7)
= ™=+ 8) fy — v, v]7),
while the modular transformation 7 — -1 is
Fup] - 2y = e F gy a2 Dy L

= MY, (4 4 ur|r) () (48)
= et(re?+2uv—u=N)yg (3 4y 4 ur|r)/n(r)

— eifr(2uv-—u—u+§)f(1 _ U,u|1').

Let us discuss the modular transformations of b(u,v|r). For the case u or
v # 0, since b(u,v|r) = f~1(u,v|r), the modular transformations for b(u,v|r) arc
just followed those of f(u,v|r). This is obvious. However, there are two cascs for

the modular transformations of
5(0,017) = n~%(7) ) _ exp(inp?). (A9)
P
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First the summation will be interpreted as an integration for the four-dimensional
space-time coordinates, since the physical momentun can be any value. Second the
summation will be over some momentum lattice for the compactified coordinates.
In the first case, notice that the physical momenta for the left- and right-moving
should be the same, so the contribution to the partition function by both a left-

nioving complex boson and a right-moving complex boson is calculated to be

40,01 )0, 011" =1~ 2(7) [ e emints’
=n-—2(7_)n—2(,-,-.)fe-zxfm(r)p’dzp (A.10)
=RIm(r) TN 7HF)  (Im(7) > 0),

where 7 is the complex conjugate of v, and Im(r) is the imaginary part of r. Notice
that Im(—1/7) = Im(7)/|r|*. Using (A.4), it is easy to show that |b(0,0|7)|? is
modular invariance. In the second case, it is known that [5(0,0]7)|? is also modular
invariance as long as the momentum lattice is a self-dual integral lattice [23]. From
(A.10} one also can know that there is a ultraviolet divergence when Im(7) £ 0.
If a theory has modular invariance, one can restrict the integral over 7 within the
fundamental domain (Im(r) > 0,{—% < Re(r) < 0,jr] 2 1} U {0 < Re(r) <

12-, |7j > 1}) [50], then the divergence can be avoided.
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Appendix B

Derivation of Vacuum Parameters

In this appendix we would like to derive the equations (2.1.24)-(2.1.26) by
solving (2.1.23). Let T = ((3)'%;(3)*), T2, efw(r)w?(s) = w(r) - w(s), and we
rewrite (2.1.23) as the following [21],

A
w(s) w(s) = Ww(s) - T =2 silils) € 2Z, (B.1)
=1

A
wfr) wls) = [w(r) +w(s)] - T = _[siGilr) + ricilo)] + 5[F(r) - Fls) € Z.(B.2)

i=1
Let 6; be a vector of s = (81,92, ++,84) with all entries zero except the ith, which
is equal to 1. We can decompose w(s), F'(s) and {;(s) as
A
w(s) =Y siwi — w'(s),

i=1
A

F(s)=Y_ siFi+ F'(s), (B.3)
1=1 .
Gis) = Gi(0) + ) s3G5 + CiCa),
i=1
where 0 < wj,w(s) < 1,w'(s) € Z,w'(0) = w'(&) = 0,F'(0) = F'(6) = 0 and
¢i(0) = ¢i(65) = 0.

Let us substitute respectively r = 0,8 = &;, and r = §;,s = 0 as well in
eq. (B.2), and we obtain

—wi+ T = (G(0) = % € Z. (B.4)
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From the above one obtains
F:' S Z1

) BA5
G(0) =i T- 2 42, (B:5)

Setting s = §; in (B.1), one has
w? = 2w; - T — 2¢;(0) — 2(;; € 2Z. (B.6)
Substituting (B.5) into (B.6), one obtains
Cii = %(W? + Fy) + Z. (B.7)

Let r = 0 in (B.2), and it leads to

A _ ’
Z $i(—w;- T — % —¢i(0)) —w'(s) - T — Fés) € Z. (B.8)
=1
Applying (B.4) to the above equation, one obtains
F'(s) = —2w'(s) - T + 22Z. (B.9)
Let r = §;,s = §;, and eq. (B.2) becomes
E F;
wiwj —wi T —wj T —¢(0) = Cji — Gi(0) — Gij + - — 5 €% (B.10)
Using (B.4), the above equation can be simplified as
Gij + (i = wi ~wy + 2. (B.11)

Imposing boundary conditions ni(;; € Z in (B.11), which means that an operation

on vacua by the identity (2) operator does not pick up a phase, one may obtain
ninjw; - w; € D2, (B.12)
Gij = (n;Yiwi-wi +Qi;)/Dij +2 (i #), (B.13)
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where D;; is 2 common divisor of n; and n;, Y;; € Z is defined such that Y;;n; +
Yjini = Dj, and the discrete torsion parameters Q;; = —Qj; (1 <1< j < 4) can
be taken to be an arbitrary integer from 0 to D;; — 1. Setting r = §; in (B.2), then
imposing (B.4) and (B.11), one has

(i(s) = —wi-w'(s) + 2. (B.14)

Using boundary conditions n;(;; € Z in (B.7), one obtains

ni(w? + Fi) € 22. (B.15)
Eqs. (B.3) and (B.9) lead to
A
F(s) =) siFi —2'(s)- T + 22, (B.16)
=1

and eqs. (B.3) and (B.14) lead to

Gi(s) = ¢(0) + i%(ﬁj —w; - w'(s) + Z. (B.17)
i=1

Obviously egs. (B.15), (B.12) give modular invariance conditions (2.1.14) and
(2.1.15) respectively, and egs. (B.16), (B.17), (B.5), (B.7), (B.13) give vacuum
parameters (2.1.16}. One might ask whether these solutions are general solutions
of egs. (B.1) and (B.2) for any vectors s and r, since we only use the special vectors
s and r to obtain the solutions. It is straightforward to check them by substituting
them back to (B.1) and (B.2) in arbitrary s and r. It turns out that these are the

most general solutions.
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Figure and Table Captions

Figure 1. An SU(3) root lattice in the complex z plane is used in constructing a
torus with Z3 symmetry, i.e. Z3 orbifold. The “fundamental region” in

this construction contains three fixed points.

Table 1. Thirteen acceptable representations Rx(g;) = diag(e?™, 2™ ¢#27¢) for

the right-moving bosons satisfy all the constraints in the twist by a single

abelian group.

Table 2. This is the multiplication table of the nonabelian group D; with e being

an identity element.

Table 3. This table describes minimal-rank models of the D3 nonabelian twist. We
list the representations D) of the underlying nonabelian group acted on
the (Es, Eg), and present the final gauge groups G, which are broken from
Eg x Ej. For each model, if only a representation is listed, then we mean
the regular model with all torsions setting to zero (F2 = F3 = @z =
@3i = 0 for i > 3), otherwise we specify the torsion values. Furthermore
only those torsion models that give different final gauge groups are listed.
The above also applies to other tables that list minimal-rank models for

other nonabelian groups.

Table 4. This table lists all minimal-rank models of the D, nonabelian twist. The

models in one block are the same representation, which is characterized
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Table 5.

Table 6.

Table 7.

Table 8.

Table 9.

Table 10.

Table 11.

by the first line of the representation, and possibly followed by other lines
with different Z, torsions, i.e. different Fy, F3, @24, @34 values, where 6
generates even cyclic group Z(#). The first line in one block is always
the regular model, unless the torsion values are indicated. The above also

applies to other tables of minimal-rank models.

The twist representations (4.3.4) of the nonabelian group Dg for the six-
teen left-moving fermions are given in this table, which are the solutions

by requiring modular invariance of the partition function.

This table lists all minimal-rank models of the Dg nonabelian twist.

All minimal-rank models of the T nonabelian twist are listed in this table.
This table presents all minimal-rank models of the O nonabelian twist.

All mirimal-rank models of the ng) nonabelian twist are given in this

table.

The twist representations (4.7.4) of the nonabelian group ng) for the
sixteen left-moving fermions are listed in this table, which are the solutions

by requiring modular invariance of the partition function.

All minimal-rank models of the ng) nonabelian twist are listed in this
table. Notice that the torsion parameter i3 = 1 in all models of this

table.
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Table 12. All minimal-rank models of the T{?) nonabelian twist are presented in
this table. Notice that we also list the twist representation Dy for the
right-moving fields since there are two inequivalent representations of Dy

(2 +1 and 2’ 4 1') in this nonabelian twist.
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Figure 1
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Table 1

No (a,b,e) Group Order N | # of Fixed Points
1 (33,0 2 0
2 (1,%,0) 3 0
3 | (5Y) 3 27
4 | 130 4 0
5 (5r3:3) 4 16
6 {§:%,0) 6 0
7T (6D 6 3
8 | (5:3:3) 6 12
o | (1,344 7 7
10 | (3.5,2) 8 4
1 | (5,34 8 8
12 | (5.4.5%) 12 3
13 | (35,55 3) 12 4
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Table 3

No | D; Representation Dy and Z; Torsion Gauge Group G
1 3-241+1,24+5-1'+1 Sps - SO3 - B - Uy
2 |2.242.9'+2.1,2.2+4-1 502 - S0, - SU;
3 4.26.1'+2 15 =1 SOQE;SU&
Table 4
No | D4 Representation Dy and Z; Torsion Gauge Group G
1 | 3-2+1™41"2-244-1' Sps - Uy - SO, - SU}
2 Q=1 S0g - Uy - SO, - SU;
3 Q30 =1 Spg - Uy - SOy - SUJE
4 Q2 = Q3 =1 S50 - Uy - SO} - SUE
5 4:-2,24+5- 1"+ 1, F, =1 S0y - SO}, - U
6 | F=Qsp=1 $0s - EL-U!
7 | 4-2,24+1"+1"4+4-1L;F, =1 S0z - SO, - U
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Table 5

No | mo | mi | no { ny | no | na
1 2 2 5 1 1 1
2 4 0 5 1 1 1
3 4 0 1 1 1 5
4 3 1 6 2 0 0
5 3 1 4 0 2 2
6 3 1 2 2 0 4
7 3 1 0 0 2 6
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Table 6

No D¢ Representation Dy and Z; Torsion Gauge Group G

1 [2-242+1"4+1",2'+1'4+5-1 503 Uy - Ey - Uj

2 Q=1 SU4-50; U, - E; - U

3 | Qu=1 SO% Uy - S0}, -Up

4 | Qu=Q=1 SU- 805 -U, - S0, - UF
5 (2242 +1'+1,2'4+1"4+1"44.1 S0%.850;- 501, -U*

6 | Q=1 SUs-U? -S04, - U

7 | 2-24+1"+1"+1'+1,2.2"+4-1 S0%.U?.80,, - SU;

8 | Q=1 S0%.-U2.50,-SUR?

9 [2-241"4+1"4+1'4+1,2-24+4-1 SQt-U%- SO, - SU;

10 | Q=1 SO%-U?. S0, - SUL

11 | 2.242' 4+ 41,241 +5-1 S0%.S0; - E; - U]

12 | Q=1 SU-U?-EL - U;

13 | Q=1 S0} .50, S0, -U?
14 | Qs =Cys=1 SU,-U2.-50%, - UP

15 | 2242 +1"4+1",241"+1"4+4.1 | SO2-U, -850, -Uf?

16 | Q=1 SU,-SO; - U,y - 504, - U
17 | 24+2'+1" 41" 4+1'+1,24+2"+4-1 | SUS- S0}, - Uj

18 | Qi =1 Sy .- 50 - U2

19 | 3-2+1"+1",241'4+5-1 Sps-S0; - Ey - U}

26 | @s=1 SU,-U} . E}-Uj

21 | Qs =1 Sps - SO;3 - SOy, - Uf?

22 | Qa5 =Qs5 =1 SU, - Ui - SO}, - UP

23 | 3-24+14+1,24+1"+1"+4-1 Spg - Uy - SO}y - U2

24 Q25=1 SU4°SO:;-U1 'SOio-Uiz
25 | 3-24+1"M 412/ 41" +1" 441 Spg - SO3 - SO, - Uf?

26 | Q=1 SU,-U2.850%,-Uk
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Table 6 (cont’d)

27 [ 4-2,1"+1"+ 1V +5-1; /=1 SOg - Ef - U}?

28 | Fp=0Qq=1 S50y E{-UZ

20 [ 3-24+1'+1,2°+1'+5-1 Spg-Uy-Eg -Uj

30 | Qs =1 SU4-S0:-U, - E§ - U,
31 | Qas=1 Spg-Ur- 50), - U

32 Qu=0Q3=1 SU,-50;-Uh -SO;O-U;Q
33 |2:24+2-1"4+2-1,24+2'+4-1 50%.50-U}

34

Q2 =1

SUS - SO, - Ul

35 | Qas=1 50%-50;-U?
36 Q26 =Q35 — 1 SU;'SQIQ .U{?
37 | 2-244-1,242'+2.1"4+2.1 S0y - SU; - SUR

38 | Q=1 504 - SUZ - SU?

39 | Q=1 501, - 8U; - SOZ - U
40 | Q25 =Qas =1 S50y - SUZ-S02 . U2
41 { 2-24+2-1"+2.1,2+2'+2.1"+2.1 | §0,.8SUZ-SU;-SO; U}
42 | 2-242-1"4+2.1"242'4+4.1 S0} - 50}, - U

43 | Q=1 SU$ - S04, - Uj

44 | Qs =1 S0%. S0, - U

45 | Q25 = Q35 =1 SUg§ - S0, - UP

46 | 2-24+4-1" 242" 4+2.1'4+2.1 801 - SU, - SUZ

47 | Q=1 S0g - SU2 - SUE

48 Q36 =1 SOu . SU2 . SO;2 . U{z
49 | Q5 =Qas =1 S0 - SUZ.8S02 -UP
50 | 3.242,2.1"42.1"+4-1 Spg - SO}, - SU

51 | Fp =1 SO;-U, - 50’12 . SU&2
52 F2=Q26=1 S'Oe;SUQSO'IZSU;";2
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Table 6 (cont’d)

53 | 3-24+22-1"+6-1 Spy - E7 - SU,

54 1 Qs =1 Spg - SOy, - SUP

55 | Fo=1 S50;-U, - E; - SUj

26 F2=Q35=1 SOT'U] 'SO'I.Z-SU{)?
ST | o=Qa=1 S0¢-SU, - E7-SU;
58 | F2=Q =03 =1 506 - SUz - 503, - SUY!
59 | 2.242.201" 41"+ 1" +5- 1/ =1 | SO,-SOs- E}-U?
60 | Q=1

SO, - EL - U

Table 7

No T Repiesentation D)

Gauge Group G

‘34+2-1,34+1"4+1'4+3-1

Gy - Gy - SUL- UL

3+1"4+1'.3+5:1

G- SU; - B!

‘341'+1,34+1"4+4-1

SU2 - SO, - U

‘3+2-1,34+5-1"

Gz -Gy - SUL-U!

34+1"+1.3+3:1"4+2-1

G, - SUs - SUL

Do | | e =
XEICHISRICEICE L

‘34+14+1,3+4-1"4+1

SUZ - 504 - UP
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Table 8

No | O Representation Dy and Z,; Torsion Gauge Group G

1 | 3+42.2+41,2+1'+5-1 SOs - SU,-Uy - EL - U!

2 [ 3+24+1'+2-1,2-2+4-1 SUZ.U,- S0, - SU;

3 | 3+5-1,3-2+1'+1 S§O1 0 U1 -SF-S0;

4 Q=1 Es- 5P S0}

5 3+2+3.1,2.24+2-1'42-1 SUs - Uy - SO

6 3+4-1'+1,3.-241'41 S0y0-Ur-SP- S0,
Table 9

No ng) Representation Dy and Z; Torsion Gauge Group G

1 | 2.24+1"4+1"4+1'+1,3-24+2-1 50, -8U3 - Sp} - SU,

2 Qig=1 50, SU3 - F; - SU}

3 |4-224+1"41"+1'43-1;F,=1 Sps - SUL - U
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Table 10

mg | my [ ng | ny | nz | n3
1 7 0 1 1 0 0
2 6 1 0 0 2 0
3 5 2 2 0 0 0
4 3 4 1 1 0 0
5 2 5 0 0 2 0
6 1 6 2 0 0 0
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Table 11 (The torsion parameter F; =1 in all models of this table.)

No ng) Representation Dy and Z; Torsion Gauge Group G

1 | 4-2.3.24+1'+1;Q5.=1 Sps - Spl - SO, - U

2 [4-2,2-27+242-1" Sps - SO - SU; - Ul

3 | B=1 Sps - Spl, - SO - Ut

4 | 4-22'4+2.24+2-1 Spg - SO, - SUZ2

5 [4-23.24141:Q5,=1 SOy - Spl - SO, - U!

6 )4-2,2.2'+2+4+2.1" 50y - 504 - SU; - U

7 | B=1 50, - Spl - SO - U!

8 |4.2,2'+2-2+2-1 S0, - SO, - SU2

9 |3:2+23-2+1"+1"Q2.=1 Spes-S0; - F - 504

10 | @Quu=Qun=1 Sps - 503 - Spg - SOy

11 | F5 =0z =1 Sps - SO - Sp; - SU; - Uy
12 | 3-2'42,2.2'+2+42-1;Q2. = Q3o =1 | Sp,-50;-8p;-SU; - U}
13 | 3:-2242,3:-24+1'4+1;Q2.=1 Spe- 503 - Spy - SO
14 | 2-2'42-2,3-2'+2-1 Spk - Spy - SU,

15 | Q=1 Spi-Fy - SU;

16 | 2.2'+2-2,2'+2.24+1'+1;@3, =1 Sp? . SU; - SU; - SO
17 {2.24+2.2.3.2+4+2-1" Sp? - Spy - SU,

18 | =1 Sp? - SO - SU} - SO,
19 | 2'+3:2,2-24+241'41;Q2. =1 S0 -SU, - 805 - SU; - 505
20 | 2'4+3-2,2'4+2-24+1" 4+ 1"Q2 =1 SO - SU, -S04 - SU; - SO
21 | F5=0h.=1 S0, - SU, - SU, - SUZ
22 [ 2°43:2,3.2+2.1;Qp = Q3. =1 50, - SU, - SO - SO},
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Table 12

T4} Representation (Dx; Dx) and 2, Torsion

Gauge Group G

24+2:3,2.3+1'+1;24+1;Qn =1

Gy - SU, - SUZ

2'+2.3,2.34+1" 41524+ 1LQu=1

SUs - SU, - G, - SUy

24+2-3,2:341'+1;2+1Qu=1

Gy - SUa - SUJ?

wa | [

2'+2.3,2.34+1"4+152'+1,Qp =1

SU, - ST, - G, - SU!
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