CHALCOCARBONYL CHENISTRY: APPLICATION IN HORMONAL RECEPTOR DETERMINATION, NETALLOPORPHYRINS

AND METAL-ARENE BOND ACTIVATION

Ashraf A. Ismail

by

A Thesis Submitted to the Faculty of Graduate C Studies and Résearch in Partial fulfillment of the Requirements for the Degree of Doctor of Philosophy

McGill University

۲.

_ **4**

July, 1985.

Montreal, Quebec

Ph.D.

Department of Chemistry

Ashraf A. Isnail

Abstract

The reaction of $(\eta - Arene)Cr(CO)_2(CX)$ (X = S, Se) complexes with excess (RO)₃P (R = Me, Et, <u>n</u>-Bu, Ph) yields $Cr(CO)_2(CX)[(RO)_3P]_3$, predominantly as the mer I isomer, in which a phosphite ligand is trans to CX. Arene displacement from $(\eta - C_6 H_6)Cr(CO)_2(CX)$ by tridentate phosphine ligands L-L-L $[L-L-L = (Me)C(CH_2P(Ph)_2)_3, (Ph_2PCH_2CH_2)_PhP]$ gives $fac - (L-L-L)Cr(CO)_2(CX)$ products. The molecular structures of $Cr(CO)_2(CX)[(MeO)_3P]_3$ have been determined by single crystal X-ray diffraction. Intramolecular isomerization of these complexes as well as their tricarbonyl analogue has been demonstrated and activation parameters have been calculated for the rearrangement processes. Two-dimensional ³¹P NMR spectroscopy has provided evidence that isomferization occurs via trigonal prismatic intermediates. Kinetic investigations of the reaction of $(\eta - C_6 H_6)Cr(CO)_2(CX)$ with $(MeO)_3P$ have established a first-order rate dependence on both the complex and the entering ligand. The faster reaction rate of the selenocarbonyl derivative relative to its thiocarbonyl analogue originates in a lower entropy of activation in the former case. The effect on the reaction rate of variation in the nature of the arene and of the entering ligand has been investigated.

An approach to hormonal receptor assay involving the detection by FT-IRspectroscopy of $Cr(CO)_3$ -labelled modified estradiol bound to estrogen receptors in target tissue is reported.

The FT-IR spectra of FeTPP(CX) [FeTPP = (5,10,15,20-tetraphenylporphinato)Fe(II); X = S, Se] and FeTPP(CX)L (X = S, Se; L = pyridine, ethanol) have been obtained. Some changes in the porphyrin spectrum were observed with variation or removal of L, but not with variation of X.

CHALCOCARBONYL CHEMISTRY: APPLICATION IN HORMONAL RECEPTOR DETERMINATION, METALLOPORPHYRINS AND METAL-ARENE BOND ACTIVATION

Ph.D.

Département de chimie

Ashraf A. Ismail

Résumé

La réaction des complexes $(n-arène)Cr(CO)_2(CX)$ (X = S, Se) en présence d'exces de $(RO)_3P$ (R = Me, Et, n-Bu, Ph) produit $Cr(CO)_2(CX)[(RO)_3P]_3$, avec la prédominance de l'isomère mer I, chez lequel le ligand phosphite est en position trans du groupe CX. Le féplacement du groupe irène des complexes (n- $C_{2}H_{2}$)Cr(CO $_{2}$ (CX) par les ligands phosphines tridentates L.L. L-L-L = (Me)C(CH₂P(Ph)₃)₃, (Ph₂PCH₂CH₂)₃PhP] ronduit aux dérivés fac-(L-L-L)- $Cr(CO)_2(CX)$. Les structures moléculaires des complexes $Cr(CO)_2(CX)[(MeO)_3P]_3$ ont eté déterminées par diffraction des ravons-X des cristaux uniques. L'isomérisation intramoléculaire de ces complexes et de leurs analogues tricarbonylés a été démontré, et les paramètres d'activation ont été calculés pour les processus de réarrangement. La spectroscopie RMN ³¹P bidimensionelle a procuré des évidences montrant que l'isomérisation survient via des intermédiaires "prismatiques trigonales". Les études cinétiques de la réaction des complexes $(n-C_6H_6)Cr(CO)_2(CX)$ avec $(MeO)_3P$ ont établi la dépendance de la vitesse de premier-order pour chacun, le complexe et le ligand. Le dérivé sélénocarbony lé possède une vitesse de réaction la plus rapide relativement au dérivé thiocarbonylé, laquelle provient d'une entropte d'activation plus faible. L'effet sur la vitesse de la réaction de la variation de la nature du groupe arène et du ligand substituant a été étudié

• Une approche sur l'analyse des récepteurs hormonaux par détection des récepteurs estrogènes liés a des estradiols marqués de Cr(CO)₃ par spectroscopie IR-TF dans des tissus cibles est rapportée.

Les spectres IR-TF des complexes FeTPP(CX) [FgTPP = (5,10,15,20tetraphenylporphinato)Fe(II); X = S, Se] et FeTPP(CX)L (X = S, Se; L = pyridine, éthanol) ont été obtenus. Quelques changements dans le spectre du groupe porphyrinique ont été observés avec la variation ou l'absence du ligand, et non pas avec la variation du groupe X. Þ

{

(

ħ

To my parents

TABLE OF CONTENTS

0

. .

1

	Page
ACKNOWLEDGEMENTS	'v
LIST OF ABBREVIATIONS	vii
NOTE ON UNITS	viii
LIST OF FIGURES	ix
LIST OF TABLES	xiv
Introduction	1
References '	5
	•

PART I. Metal-Arene Bond Activation in Arene Chromium Chalcocarbonyl Complexes

<u>Chap</u>	ter 1.	Catalytic Activity of Arene Chromium , Chalcocarbonyl Complexes	}
Refe	rences	•••••••••••••••••••••••••••••••••••••••	17
<u>Chap</u>	ter 2.	<pre> , Reactions of (n-Arene)Cr(CO)₂(CX) (X = S, Se) Complexes with Tertiary Phosphites and Tridentate Phosphine Ligands</pre>	- 19
2,1′		l Reactivity of Group VIB Metal($\overset{\vartheta}{0}$) Thiocarbonyl lenocarbonyl Complexes	` 19
2.2	Experi	mental	29
	2.2.1	Synthesis of (n-Arene)Cr(CO) ₃	31
a	2.2.2	Synthesis of (n-Arene)Cr(CO) ₂ (CS)	32、
	2.2.3	Synthesis of (n-Arene)Cr(CO) ₂ (CSe)	32
	2.2.4	Synthesis of $Cr(CO)_2(CS)[(RO)_3P]_3$ (X = S, Se), (R = Me, Et, <u>n</u> -Bu, Ph)	33
• •	2.2.5	Preparation of (triphos-U)Cr(CO) ₂ (CS)	34
	2.2.6	Preparation of (triphos)Cr(CO) ₂ (CS)	35

۲.

	⊷ ں_	•	•
	2.2.7	Synthesis of (L-L-L)Cr(CO) ₂ (CSe) (L-L-L = triphos-U, triphos)	36
	2.2.8	Reaction of Tripod $[HC(P(Ph)_2)_3]$ with $(bz)Cr(CO)_2(CX)$ (X = S, Se)	°36
·	2.2.9	Synthesis of $Cr(CO)_3[(RO)_3P]_3$ (R = Me, Et, n-Bu, Ph) and $(L-L-L)Cr(CO)_3$ (L-L-L = triphos and triphos-U)	36
		Attempted Synthesis of (cht)Cr(CO) ₂ (CS) by Photolysis of (cht)Cr(CO) ₃	36
	2.2.11	Reactions of Cr(CO) ₅ (CS) with Cycloheptatriene	.37 .
•	2.2.12	Attempted Synthesis of (cht)Cr(CO) ₂ (CS) by Arene Exchange	37
2.3	Result	s and Discussion	37
	2.3.1	Crystal and Molecular Structure of Cr(CO) ₂ (CS)[(MeO) ₃ P] ₃	46
-	2.3.2	Crystal and Molecular Structure of Cr(CO) ₂ (CSe)[(MeO) ₃ P] ₃	`56
		FT-IR and ³¹ P NMR Spectra of Cr(CO) ₂ (CX)[(RO) ₃ P] ₃ (X = 0, S, Se)	63
	2.3.4	Reactions of (_n -Arene)Cr(CO) ₂ (CX) with Tridentate Phosphine Ligands	72
- ,	2.3.5.	Attempted Synthesis of (cht)Cr(CO) ₂ (CS)	78 ·
Refe	rences (• • • • • • • • • • • • • • • • • • • •	82.
<u>Chap</u>	<u>ter 3.</u>	Intramolecular Isomerization of $Cr(CO)_2(CX)[(MeO)_3P]_3 (X = 0, S, Se) Complexes$	' 86
3.1	Introdu	uction	86
3.2	Experi	nental	90 `
	3.2.1	Synthesis of $Cr(CO)_2(^{13}CO)_3(CS)$	90
ţ	3.2.2	Kingtic Investigation of Isomerization of Cr(CO) ₂ (CX)[(MeO) ₃ P] ₃ (X = 0 , S, Se)	91
•		Monitoring of Stereochemically Nonrigid Behavior of Cr(CO) ₂ (CX)[(MeO) ₃ P] ₃ (X = O, S, Se) Complexes	92

1

٠

(

. 1

. ii

			6	۰,	3 -	•				
,	.1		•	N					į ii	-
ţ	• •	•	د م		•		•	r		
•	3.3	Regult	s and Dis	cussion			• •			[′] 93
	_	rences	·	· · · · · · · · ·	•					124
•		, inces		•••••	•••••••••••••••	••••••	•••••	••••••	•	
<u>c</u>	Chap	ter 4.	Kinetic	Investi	gations	of Arene	Labiliz	ation		
			in (n-Are Complexe:					•••••	,	126
4	4.1	Introd	uction	, 	••••		• • • • • • • • •			126
4	4.2	Experi	mental	•••••	••••		, 	••••••	.	130
		4.2.1	Sources	of Mate	rials		•••••			130
		4.2.2	Preparat	ion of	Samples		. • • • • • • • • •			131
, 4	4.3	Result	s and Dis	cussion	• • • • • • •	1	•••••			133
~ 4	4.4	Conclu	ding Remai	rks	• • • • • • • • •	• • • • • • • •	•••••			160
, R	Refe	rences	•••••	• • • • • • •			• • • • • • • • •			162
2							,			
	<u> P/</u>	ART IÌ.				S pectros ry in Bi			15	3
<u>c</u>	Chapi	ter 5	Applicat: Study of							, , 166
R	Refe	rences	••••••	•••••••	• • • • • • • • •		• • • • • • • • •	• • • • • • • •		173
~	76					in Tenine	1			,
-			FT-IR Spe				-	<i>r</i> -		176
	5.1									176
6	5.2		mental							183
		6.2.1	Sheep Ute	,						183
•		6.2.2			-					183
•		6.2.3	Infrared						•	185
6	5.3		s and Disc							186
*6 *	5.4	Conclue	ding Remar	rks	• • • • • • • • •	• • • • • • • •	• • • • • • • • •	• • • • • • •	:	212
	Refer	ences	• • • • • • • • • •			• • • • • • • •	• • • • • • • • •	• • • • • • •	2	214
	1 2								~	~

Ø

			•				,			•	iv 、
			۷.		o)				
`	ł	<u>Çhap</u> i	ter 7.	tetrap	tigatior henylpo Spectro	rphina	to)iro	n(II) T	Derivat		´ 21 e
-	•	7-1	Introd	uction	• • • • • • •	• • • • • •	• • • • • •	•••••	*	• • • • • • • •	216
**		7.2	Experi	mental	• • • • • • •	• • • • • •	• • • • • •	•••••	• • • • • • •	•••••	221
			7.2.1	Source	s of Ma	terial	5	• • • • • • •	••••		22]
,			7.2.2	Spectr	oscopic	Measu	rement	5	•••••	• • • • • • • • •	222
		•	7.2.3	Reacti	on of F	eTPP(C)	x) (X =	= S, Se) with	со	222
•		7.3	Result	s and D	iscussi	on		• • • • • • •	••••		223
	1	Refer	ences		• • • • • • •			• • • • • • •	• • • • • • •	•	249
	5	Summa	ry and	Contri	butions	to Kno	wledge	<u>e</u>	• • • • • • •		252
	5	Sugge	stions	for Fu	ture Wo:	<u>rk</u>	•		••••••		256
	5	Scien	tific 1	Publica	tions .	, , • • • • • • •				• • • • • • • •	258
	· I	Paper	s Prese	ented a	t Scien	tific (Confere	ences .		• • • • • • • • •	` 26(
	P	APPEN	DICES .	• • • • • •	• • • • • • •	• • • • • • •	•••••		• • • • • •	• • • • • • • •	24
	ŀ	Appen	dix A.	Isomer	ural Cha of Cr((tion, S)	co),(cs	5)[(MeC	$()_{3}P]_{3}$:	X-Ray	Data	Al
,	· <u> </u>	Appen	dix B.	Isomer	ural Cha of Cr((tion, St	CO),(CS	Se)[(Me	$(0)_{3}P]_{4}$: X-Ra	y Data	Bl
¢	Į	Appen	dix C.		ing and of FT-1						Cl
		1					۲	·			~
•				u L	-	۔ بر ا		*	ì	¢)	
		*	•		'n			i.	,		, t
					\ #	2	ł	, ,		-	•
								5	•	r Y	
				•	a	•			•		(

, .

(...

1

0

Ĺ

11 74

iv

*

÷

•

. •

Acknowledgements

I would like to thank Dr. Ian S. Butler for his guidance, support and encouragement. I would also like to express my deepest appreciation to Jacqueline Sedman for the many helpful discussions during the course of this work and for her valuable comments and suggestions in reading this thesis.

I also wish to express my gratitude to:

- Dr. Gérard Jaouen and Dr. Anne Vessières of l'Ecole Nationale Supérieure de Chimie de Paris for providing all the samples for the investigations reported in Chapter 6 of this thesis, and for their hospitality during my visit to Paris;

- Dr. Françoise Sauriol for obtaining the 2-D NMR spectra, for introducing me to 2-D NMR techniques and for her contributions to the elucidation of the mechanism of stereochemical nonrigidity;

- Paul Fitzpatrick for providing some samples of (n-Arene)Cr(CO),(CS) complexes;

- Drs. D. Mansuy and J.P. Battion: of Laboratoire de Chimie de l'Ecole Normale Supérieure, Paris, for providing iron tetraphenylporphyrin complexes;

- Dr. Peter Bird of Concordia University for introducing me to crystallographic techniques and for the determination of the crystal structure of Cr(CO),(CS)[(MeO),P];

v

- Drs. Jean-Jacques Bonnet and Salomon Askenazy of the CNRS Laboratoire de Chimie de Coordination, Toulouse, France, and Dr. Ian Butler for the crystal structure of Cr(CO)₂(CSe)[(MeO)₃P]₃;

- Dr. Barbara Gour for her advice on kinetic measurements;

- Dr. Bernard Belleau for permission to use the Cary 210 UV-vis spectrometer;

- Mr. Fred Kluck for his contribution to the design of specialized apparatus required during the course of this work;

- Ms. Carla Durston for her care in the final correction of the thesis;

- Pierre Harvey for his skillful drawing of figures;

- Dr. Rita Werbowyj for proofreading the final draft of the thesis.

The financial support of McGill University, in the form of the Coll McFee Memorial Scholarship and the McConnell Memorial Fellowship, of NSERC and of le Gouvernement du Québec is gratefully acknowledged.

Ę.

vi

List of Abbreviations

I,

۱

- 8C8C	acetylacetonate anion (-1)
(bz) ·	(n ⁶ -benzene)
(cht)	(n ⁶ -cycloheptatriene)
dpm	disintegrations per minute
(est)	(η ⁶ -estradiol) .
fmol	$fantamo Pe (10^{-15} mole)$
Im	imidazole •
(m b z)	(n ⁶ -methyl benzoate)
Melm	methyl imidazole
NOE	nuclear Overhauser effect
OEP	octaethylporphyrin
OLRC	organometallic-labelled receptor complex
ру	pyridine
THF	tetrahydrofuran
TMS 0	tetramethylsilane
TPP	tetraphenylporphyrin
triphos	bis-(2-diphenylphosphinoethyl)phenylphosphine
triphos-U	l,l,l-tris(diphenylphosphinomethyl)ethane
(<u>o</u> -xy1)	(n ⁶ - <u>o</u> -xylene)

vii

\$^

NOTE ON UNITS

The parameters used in the text in units other than SI are shown below:

.

(

Parameter	Symbol	Unit.	SI equivalent
energy-factored CO force constant	k _{C0}	madyn Å ⁻¹	(100) N m ⁻¹
enthalpy of activation	ΔH [#]	kcal mol ⁻¹	∯ (4.184) kJ mol ^{−1}
entropy of (activation	∆s [#]	cal mol ⁻¹ deg ⁻¹	(4.184) J mol ⁻¹
pressure	P	atn	(101,325) N m ⁻²
wavenumber	V	cm ⁻¹	$(10^{-2}) m^{-1}$

2

へ

viii

LIST OF FIGURES

('

1

.

<u>Figure</u>	¢	Page
¥	<u>Chapter 1</u>	
1.1.	Mechanism proposed by Frankel <u>et al.</u> for the (n-Arene)Cr(CO) ₃ -catalyzed hydrogenation of dienes to monoenes	10
1.2.	Mechanism proposed by Cais and Rejoan for the (n-Arene)Cr(CO)3-catalyzed hydrogenation of dienes to monoenes	11
	Chapter 2	
2.1.	Thermal reactivities of Cr(CO) ₅ (CS) and Cr(CO) ₅ (CSe)	21
2.2.	Thermal reactivities of W(CO) ₅ (CS)	22
2.3.	Thermal reactivities of (n-Arene)Cr(CO) ₂ (CX) (X = S, Se)	39
2.4.	The $v(CO)$ region of the FT-IR spectrum (in methylcyclohexane) of the crude product of the reaction of (mbz)Cr(CO) ₂ (CS) with (MeO) ₃ P. Inset: $v(CS)$ region	42
2.5.	The three possible isomers of $Cr(CO)_2(CX)[(MeO)_3P]_3$ (X = S, Se)	43
2.6.	The $v(CO)$ region of the FT-IR spectrum (in CS ₂) of the crude product of the reaction of (mbz)Cr(CO) ₂ - (CSe) with (MeO) ₃ P	47
2.7.	The $v(CO)$ region of the FT-IR spectrum of the mer I isomer of $Cr(CO)_2(CSe)[(MeO)_3P]_3$ in CS_2	48
2.8.	The $v(CO)$ region of the FT-IR spectrum of <u>fac</u> - Cr(CO) ₂ (CSe)[(MeO) ₃ P] ₃ obtained by subtraction of the spectrum in Figure 2.7 from that in Figure 2.6	49
2.9.	The chalcocarbonyl resonances in the ^{13}C NMR spectrum (in C_6D_6) of a mixture of the <u>fac</u> and <u>mer</u> I isomers of $Cr(CO)_2(CSe)[(MeO)_3P]_3$	50
2.10.	A perspective drawing of the <u>mer</u> I isomer of $Cr(CO)_2(CS)[(MeO)_3P]_3$, with hydrogen atoms omitted for clarity	52

	2.11.	A perspective drawing of the <u>mer</u> I isomer of $Cr(CO)_2(CSe)[(MeO)_3P]_3$, with hydrogen atoms omitted for clarity	59
	2.12.	The V(CO) region of the FT-IR spectrum of (triphos-U)Cr(CO) ₂ (CS) in CH ₂ Cl ₂	73
	2.13.	The two possible isomers of (triphos)Cr(CO) ₂ (CX) (X = S, Se)	76
	2.14.	The v(CO) region of the FT-IR spectrum of (triphos)Cr(CO) ₂ (CSe) in CH ₂ Cl ₂	77
	2.15.	³¹ P NMR spectrum of (triphos)Cr(CO) ₂ (CSe) in deuterotoluene	7 9
		Chapter 3	
•	3.1. '	Proposed rearrangement pathway's available to octahedral complexes: (a) through a trigonal prismatic intermediate; (b) through a bicapped- tetrahedral intermediate	88
	3.2.	Isomerization of the mer I isomer of $Cr(CO)_2(CSe)[(MeO)_3P]_3$ in dichloroethane solution at 38.0°C as monitored by FT-IR spectroscopy, showing the formation of <u>fac</u> -Cr(CO)_2(CSe)[(MeO)_3P]_3	95
	3.3.	Isomerization of \underline{fac} -Cr(CO) ₃ [(MeO) ₃ P] ₃ in dichloroethane solution at 49.2°C as monitored by FT-IR spectroscopy, showing the formation of \underline{mer} - Cr(CO) ₃ [(MeO) ₃ P] ₃	96
,	3.4.	FT-IR spectra (in dichloroethane) in the carbonyl stretching region of (a) fac -Cr(CO) ₃ [(MeO) ₃ P] ₃ and (b) an equilibrium mixture of this complex and its <u>mer</u> isomer	97
	3.5.	¹³ C NMR spectrum of $Cr(CO)_2(^{13}CO)_3(CS)$ in CD_2Cl_2 .	99
	3.6.	FT-IR spectrum in the carbonyl stretching region of $Cr(CO)_2(^{13}CO)_3(CS)$ in CS_2	101
	3.7.	31 P'NMR spectrum of an equilibrium mixture of the isomers of Cr(CO) ₃ [(MeO) ₃ P] ₃	106
	3.8.	³¹ P NMR spectrum of an equilibrium mixture of the isomers of Cr(CO) ₂ (CS)[(MeO) ₃ P] ₃	107
	3.9.	³¹ P NMR spectrum of an equilibrium mixture of the isomers of $Cr(CO)_2(CSe)[(MeO)_3P]_3$	108

ú

1

(

¥

(

and an over the second second

x '

xi

•

3.10. Plots of ln k ₁ vs. $1/T$ for the <u>fac</u> \rightarrow <u>mer</u> isomerization of $Cr(CO)_3[(MeO)_3P]_3$ and the <u>fac</u> \rightarrow <u>mer</u> I isomerization of $Cr(CO)_2(CS)[(MeO)_3P]_3$ and $Cr(CO)_2(CSe)[(MeO)_3P]_3$. 111
3.11. 2-D ³¹ P contour map for Cr(CO) ₂ (CS)[(MeO) ₃ P] ₃ in deuterotoluene at 61°C on a Varian XL-300 spectrometer	. 114
3.12. 2-D ³¹ P contour map for Cr(CO) ₂ (CSe)[(MeO) ₃ P] ₃ in deuterotoluene at 61°C on a Varian XL-300 spectrometer	115
3.13. A cross section at 185 ppm in the evolution domain of Figure 3.12, displaying the correlation between the resonances of the mer I and mer II isomers of Cr(CO) ₂ (CSe)[(MeO) ₃ P] ₃	n
3.14. Schematic representation of possible pathways for the interconversion of the <u>mer</u> I and <u>mer</u> II isomers of Cr(CO) ₂ (CX)[(MeO) ₃ P] ₃ (X = S, Se)	. 118
3.15. Schematic representation of the intramolecular isomerization of Cr(CO) ₂ (CX)[(MeO) ₃ P] ₃ (X = S, Se) through trigonal prismatic or bicapped-tetrahedral intermediates	L
Chapter 4	•
4.1. Typical UV-vis spectra obtained in kinetic	

() (

:

Ş,

(

(*

134
137
141
149
158
•

\$

<u>Chapter</u> 5

,

\$,

_

いまちなどを見まるというながないとなったちちょうとなるないであるかとしてなるのであるかないないないないないないかいい いいしい

r

12 / V

1

ひっとう 大学をなったいいます しんかった ちょうちょうちょう しょうちょうちょうちょう いしい ていろう

£

C

.

	5.1.	Experimental setup of Gendreau et al. for the study of protein adsorption from flowing, intact dog blood on a polymer-coated germanium ATR crystal	172
		Chapter 6	
	6.1.	Traditional representation of the mode of action of a steroidal hormone in a target celi	178
	6.2.	FT-IR spectrum of the proteins precipitated by protamine sulfate from the cytosol of sheep uterus	187
	6.3.	FT-IR spectrum of (RO-est)Cr(CO) ₃ (compound <u>5</u>) in CsI	18 9
	6.4.	FT-IR spectrum of a pressed pellet of the proteins precipitated from the cytosol of sheep uterus after incubation with (RO-est)Cr(CO) ₃ (compound <u>5</u>)	191
	6.5.	Expansion of the $v(CO)$ region of the FT-IR spectrum in Figure 6.4	192
	6.6.	FT-IR spectrum of (RO-est)Cr(CO) ₂ (CS) (compound <u>7</u>) in CsI	194
	6.7.	The $v(CO)$ region in the FT-IR spectrum of a pressed pellet of the proteins precipitated from the cytosol of sheep uterus after incubation with (RO-est)Cr(CO) ₂ (CS) (compound <u>7</u>)	195
	6.8.	The $v(CO)$ region in the FT-IR spectrum of compound 5 in ethyl acetate (a) and the second derivative of this spectrum (b)	198
	6.9.	Plot of the area under the $a_1 \vee (CO)$ mode of the (RO-est)Cr(CO) ₃ label (compound 5) in the FT-IR spectra of pressed pellets (3-mm diameter) of a protein sample vs. pellet weight	199
•	6.10.	Synthesis of compound <u>12</u> , a tritiated, Cr(CO) ₃ - labelled modified estradiol, as described in Reference 15	203
	6.11.	FT-IR spectrum in the $v(CO)$ region of proteins precipitated from the cytosol of sheep uterus after incubation with (a) compound <u>12</u> and (b) compound <u>12</u> and a 100-fold excess of diethyl- stilbestrol in a competitive binding assay	205

xii

v

	<u>Chapter 7</u>	•
7.1.	Structure of (a) iron tetraphenylporphyrin and (b) protoporphyrin IX	2
7.2.	FT-IR spectrum in the 2200-600 cm ⁻¹ region of FeTPP(CO)(py)	2
7.3.	FT-IR spectrum in the 1800-600 cm ⁻¹ region of FeTPP(CS)	2
7.4.	FT-IR spectrum in the 2100-600 cm ⁻¹ region of FeTPP(CS)(EtOH)	
7.5.	FT-IR spectrum in the 2200-600 cm ⁻¹ region of FeTPP(CS)(py)	2
7.6.	FT-IR spectrum in the 1800-600 cm ⁻¹ region of FeTPP(CSe)	2
7.7.	FT-IR spectrum in the 2100-600 cm ⁻¹ region of FeTPP(CSe)(EtOH)	2
7.8.	FT-IR spectrum in the 2100-600 cm ⁻¹ region of FeTPP(CSe)(py)	2
7.9.	FT-IR spectrum in the 2200-600 cm ⁻¹ region of Fe(III)TPPC1	2
7.10.	Difference spectrum obtained by the subtraction of the FT-IR spectrum of Fe(III)TPPCl from that of FeTPP(CSe)(EtOH)	2
7.11.	Difference spectrum obtained by the subtraction of the FT-IR spectrum of FeTPP(CS)(py) from that of FeTPP(CSe)(py)	2
7.12.	Difference spectrum obtained by the subtraction of the FT-IR spectrum of FeTPP(CO)(py) from that of FeTPP(CSe)(py)	2
7.13.	Difference spectrum obtained by the subtraction of the FT-IR spectrum of FeTPP(CSe)(EtOH) from that of FeTPP(CSe)(py)	2

xiii

ŀ

Ì

0

ţ

Ļ

(

Ľ

ò

(

L

LIST OF TABLES

-4

Table		Page
i	<u>Chapter 1</u>	
1.1.	Hydrogenation of Methyl Sorbate (0.2 M) to Methyl 3-Hexenoate (I) and Methyl 2-Hexenoate (II) Catalyzed by (n-Arene)Cr(CO) ₃ in Cyclohexane	8,
1.2.	Hydrogenation of Norbornadiene (0.1 M) to Nortricyclene (I) , Norbornene (II) and Norbornane (III) Catalyzed by (n-Arene)Cr(CO) ₂ L	. 14
ı	Chapter 2	
2.1.	Bond Angles (deg) in Cr(CO) ₂ (CS)[(MeO) ₃ P]' ₃	ຸ 53
2.2.	<pre>4 Bond Lengths (Å) in Cr(CO)₂(CS)[(MeO)₃P]₃</pre>	55
2.3.	v(CS) Frequencies and C-S Bond Distances in Selected Transition Metal Thiocarbonyl Complexes	- 57
2.4.	Bond Angles (deg) in Cr(CO) ₂ (CSe)[(MeO) ₃ P] ₃	. 60
2.5.	Bond Lengths (Å) in Cr(CO) ₂ (CSe)[(MeO) ₃ P] ₃	62
2.6.	v(CX) Frequencies (cm ⁻¹) in the FT-IR Spectra of <u>fac</u> -Cr(CO) ₂ (CX)[(RO) ₃ P] ₃ (X = 0, S, Se)	64
2.7. ~	$v(CX)$ Frequencies (cm^{-1}) in the FT-IR Spectra of <u>mer</u> -Cr(CO) ₂ (CX)[(RO) ₃ P] ₃ (X = 0, S, Se)	65
2.8.	$v(CX)$ Frequencies (cm^{-1}) in the FT-IR Spectra of $(triphos-U)Cr(CO)_2(CX)$ and $(triphos)Cr(CO)_2(CX)$ (X = 0, S, Se)	66 ,
2.9.	³¹ P NMR Chemical Shifts and IR $v(CO)$ Frequencies of Selected Group VIB M(CO) _{6-n} [(MeO) ₃ P] _n Complexes	68
2.10.	³¹ P NMR Data for mer-Cr(CO) ₂ (CX)[(RO) ₃ P] ₃ (X = O, S; Se) and <u>fac</u> -Cr(CO) ₂ (CX)[(MeO) ₃ P] ₃ (X = S, Se)	71

C

(

2.11.	³¹ P NMR Data for $(triphos-U)Cr(CO)_2(CX)$ and $(triphos)Cr(CO)_2(CX)$ (X = O, S, Se),	74	~
	Chapter 3		•
3.1.	Activation Parameters Reported for Intramolecular Isomerizations of Group VIB Metal Carbonyl Complexes	89	
3.2.	Observed and Calculated Frequencies (cm^{-1}) for $v(CO)$ Modes of $Cr(CO)_2({}^{13}CO)_3(CS)$ in CS_2	102	
3.3.	Spin-Lattice Relaxtion Times (T_1) for Phosphorus Nuclei in Cr(CO) ₂ (CX)[(MeO) ₃ P] ₃ (X = 0, S, Se)	104	
3.4.	First-Order Rate Constants for the Isomerization Processes of $Cr(CO)_2(CX)[(MeO)_3P]_3$ (X = 0, S, Se) in Dichloroethane	110	
3.5.	Activation Parameters for Isomerization Processes of $Cr(CO)_2(CX)[(MeO)_3P]_3 (X = 0, S, Se)$	112	
	Chapter 4		
4.1.			
4 •1•	Pseudo-First-Order Rate Constants for the Reaction of (bz)Cr(CO) ₂ (CS) with Trimethylphosphite in Methylcyclohexane at 83.3°C	135	
4.2.	Pseudo-First-Order Rate Constants for the Reaction of (bz)Cr(CO) ₂ (CSe) with Trimethylphosphite in Methylcyclohexane at 72.6°C	. · 136	-
4.3.	Variation with Temperature of k ₂ for the Reaction of (bz)Cr(CO) ₂ (CS) with Trimethylphosphite in Methylcyclohexane	139	A
4.4.	Variation with Temperature of k ₂ for the Reaction of (bz)Cr(CO) ₂ (CSe) with Trimethylphosphite in Methylcyclohexane	140	{ {
4.5.	Activation Parameters for Ring Displacement Reactions of $(cht)Cr(CO)_3$ and $(\eta$ -Arene)Cr(CO)_2(CX) (X = O, S, Se)	143	-
*	•		
*	, _	·	
	, ,	1	
	· · · · ·	、	
	, -		, †

(,

(

(

. .

. .

xv

2

γ,

, °

xvi

4.6.	Pseudo-First-Order Rate Constants for Arene Displacement by Trimethylphosphite from (₇ -Arene)Cr(CO) ₂ (CS) Complexes at 83.3°C	∽ 146
4.7.	Pseudo-First-Order Rate Constants for Arene Displacement by Tertiary Phosphites from. (ŋ-Arene)Cr(CO)2(CS) at 83.3°C	, , 151
4.8.	Pseudo-First-Order Rate Constants for Arene Displacement from (bz)Cr(CO)₂(CSe) by Trimethylphosphite in the Presence of Varying Concentrations of Trimethylphosphine Oxide at 42.6°C	153
4.9.	Rate Constants for Ring Displacement from $(\eta$ -Arene)M(CO) ₂ (CX) and (cht)M(CO) ₃ Complexes by (MeO) ₃ P at 50.0°C	. ' 155
4	<u>Chapter 6</u>	
6.1.	Relative Binding Affinities of Modified Estradiols and Their Chromium Chalcocarbonyl Derivatives	•` ' ` .182
6.2.	Analysis of Peak Area, Peak Height and Derivative Methods for Quantitative Determination of (RO- est)Cr(CO) ₃ (Compound <u>5</u>) in CsI	,197
6.3.	Determination of Specific and Non-specific Binding of Compound <u>12</u> and Estradiol in Sheep Uterine Cytosol by Radioassay	206
6.4.	$v(CO)$ Frequencies (cm^{-1}) of $(RO-est)Cr(CO)_3$ (Compound <u>10</u>) in Solvents of Varying Dielectric Constant (ϵ)	208
	Chapter 7	
7.1.	Selected Frequencies (cm^{-1}) from the FT-IR Spectra of FeTPP(CX) and FeTPP(CX)(L) Derivatives and Fe(III)TPPC1	232
7.2.	¹³ C NMR Chemical Shifts of FeTPP(CA) and FeTPP(CX)(L) Complexes (X = S, Se)	。 247

1

(

Appendix A

à.

ţ

Ť

A.1.	Crystallographic Data for X-ray Diffraction Study of Cr(CO) ₂ (CS)[(MeO) ₃ P] ₃ (mer I)	A4
A.2.	Observed and Calculated Structure Factors for Cr(CO) ₂ (CS)[(MeO) ₃ P] ₃ (<u>mer</u> I)	A5
A.3.	Final Positional Parameters for Cr(CO) ₂ (CS)[(MeO) ₃ P] ₃ (<u>mer</u> I) and Their Estimated Standard Deviations	Al7
A.4.	Final Thermal Parameters for Cr(CO) ₂ (CS)[(MeO) ₃ P] ₃ *(<u>mer</u> I) and Their Estimated Standard Deviations,	A18
	Appendix B	
	Crystallographic Data for X-ray Diffraction Study of Cr(CO) ₂ (CSe)[(MeO) ₃ P] ₃	Bl
B.2.	Observed and Calculated Structure Factors for Cr(CO) ₂ (CSe)[(MeO) ₃ P] ₃ (mer I)	B 2
в.3.	Final Positional Parameters for Cr(CO) ₂ (CSe)[(MeO) ₃ P] ₃ (<u>mer</u> I) and Their Estimated Standard Deviations	B21
B.4.	Final Thermal Parameters for $Cr(CO)_2(CSe)[(MeO)_3P]_3$ (mer I) and Their Estimated Standard Deviations	B24

xvii

1

Introduction

Since the first synthesis of an $(\eta - \text{Arene})Cr(CO)_3$ complex in 1957 [1], the chemical reactivities of this class of complexes have been extensively investigated. Among the major and, from a practical point of (view, most important findings of such studies is the utility of $(\eta - \text{Arene})Cr(CO)_3$ complexes as catalysts in a variety of systems, particularly in the hydrogenation of dienes. The catalytically active species in the latter case has been established to involve partial or total loss of the agene [2,3].

The first syntheses of $(\eta - \text{Arene}) \text{Cr}(\text{CO})_{2}^{\prime}(\text{CS})$ and $(\eta - \eta)$ Arene)Cr(CO)₂(CSe) complexes were reported in 1974 [4] and 1975 [5], respectively. Although the physical properties of these thio- and selenocarbonyl derivatives have been examined extensively, studies of their chemical behaviour have been limited. A striking aspect of their reactivity is a markedly enhanced arene lability relative to their tricarbonyl analogues, as evidenced by their reaction with CO under mild conditions to yield the corresponding pentacarbonyl complexes, Cr(CO), (CS) and Cr(CO), (CSe) [6]. In view of the nature of the catalytically active species formed from $(\eta$ -Arene)Cr(CO)₃ in the hydrogenation of dienes it could reasonably be anticipated that $(\eta - Arene)Cr(CO)_{2}(CX)$ · (X = S, Se) complexes would be excellent catalysts for such processes. However, investigation of such complexes as

catalysts has revealed that they completely lack activity [7].

Part I of this thesis concerns the study of arene lability in arene chromium chalcocarbonyl complexes. This research was undertaken to extend the known chemistry of thiocarbonyl and selenocarbonyl complexes, to obtain quantitative measurements of arene labilization in (n-Arene)- $Cr(CO)_{2}(CX)$ (X = S, Se) and to probe the reasons for their reported inactivity as catalysts. Chapter 1 presents a brief review of mechanistic studies of $(\eta - Arene)Cr(CO)_3$ catalyzed hydrogenation of dienes to monoolefins. In Chapter 2, the reactions of $(\eta - \text{Arene}) Cr(CO)_2(CX)$ (X = S, Se) with tertiary phosphite and tridentate phosphine ligands will be described. The spectroscopic properties of new thio- and selenocarbonyl complexes obtained, as well as the crystal structures of two typical products, will be presented, followed, in Chapter 3, by an investigation of stereochemical nonrigidity in these systems. The kinetics and mechanism of arene displacement from $(\eta - Arene)Cr(CO)_2$ -(CX) (X = S, Se) by tertiary phosphites will be the subject of Chapter 4, which concludes Part I.

In Part II, the combined use of FT-IR spectroscopy and metal chalcocarbonyl chemistry in two different types of biological applications will be demonstrated. While infrared spectroscopy has been among the major techniques

employed in the study of organometallic complexes throughout the history of organometallic chemistry, its application in the study of biological systems has been fairly limited in the past. This situation has largely been due to the complexity of such systems and the presence of biomolecules of interest in low concentration, as well as the unsuitability of water as an IR solvent. The recent development of FT-IR spectroscopy has led to the alleviation of these problems, in Chapter 5. as described Chapter 6 concerns a novel application of FT-IR spectroscopy and arene chromium chalocarbonyl chemistry in a biological system: the incorporation of a Cr(CO), moiety in a biological molecule as a label for detection by FT-IR spectroscopy. In a collaborative project with Drs. G. Jaouen and A. Vessières of l'Ecole Nationale Supérieure de Chimie de Paris, Cr(CO)₃-labellèd hormonal steriods have been bound to receptors in their target tissue. The subsequent detection of the carbonyl label by FT-IR spectroscopy and the potential utility of this procedure as an alternative to radioisotopic methods in receptor assay will be described in Chapter 6. An FT-IR study of chalcocarbonyl ligands coordinated to metalloporphyrins will be presented in Chapter 7. This represents an example of the use of FT-IR spectroscopy in the study of biological model compounds.

3.

Finally, a summary of the contributions to knowledge,

suggestions for future work, and a list of publications and papers presented at scientific conferences which pertain to this work are given.

References

- 1. E.O. Fischer and K. Ofele, Chem. Ber., 90, 2532 (1957).
- 2. E.N. Frankel, E. Selke and C.A. Glass, J. Am. Chem. Soc., 90, 2446 (1968).
- M. Cais and A. Rejoan, Inorg. Chim. Acta, <u>14</u>, 509 (1970).
- 4. G. Jaouen and R. Dabard, J. Organometal. Chem., <u>72</u>, 377 (1974).
- 5. I.S. Butler, D. Cozak and S.R. Stobart, J. Chem. Soc., Chem. Commun., 103 (1975).
- 6. A.M. English, K.R. Plowman, I.S. Butler, G. Jaouen, P. Le Maux and J.-Y. Thépot, J. Organometal. Chem., <u>132</u>, Cl (1977).
- 7. R. Dabard, G. Jaouen, G. Simonneaux, M. Cais, D.H. Cohn, L. Lapid and D. Tatarsky, J. Organometal. Chem., <u>91</u>, 1841 (1980).

PART I

es

(

Arene Chromium Chalcocarbonyl Complexes

Chapter 1

Catalytic Activity of Arene Chromium Chalcocarbonyl Complexes

 $(\eta$ -Arene)Cr(CO)₃ complexes have found extensive use as catalysts in a variety of systems [1,2]. Among the most important catalytic applications of this class of compound is the hydrogenation of dienes to monoolefins [2-6]. As homogeneous catalysts (η -Arene)Cr(CO)₃ complexes effect stereospecific <u>cis</u>-addition of H₂ to one double bond of the diene with some regioselectivity [Eq. 1.1].

The conditions required for efficient catalysis depend critically on the nature of the arene. For monosubstituted arenes, high hydrogen pressure (30-50 atm) and high temperature (150-200°C) are needed (Table 1.1). The presence of electron-withdrawing substituents on the arene, which weaken the metal-arene bond, accelerates the rate of hydrogenation and shortens the induction period. However, polycyclic derivatives are even more favourable; for instance, with (η anthracene)Cr(CO)₃ and (η -naphthalene)Cr(CO)₃ efficient

% Conversion Product Reaction conditions Arene in $(\eta - Arene)Cr(CO)_3$ (% distribution)^C $P(H_2)$ °TC Time catalyst^b I atm 'n Benzene Benzene Toluene Mesitylene 17.5 Ethylbenzene Hexamethylbenzene Anisole Cycloheptatriene Chlorobenzene Methyl benzoate Methyl benzoate 0'.3 Phenanthrene

Table 1.1. Hydrogenation of Methyl Sorbate (0.2 H) to Methyl 3-Hexenoate (I) and Methyl 2-Hexenoate (II) Catalyzed by $(\eta$ -Arene)Cr(CO)₃ in Cyclohexane^a

^aData from References 1 and 3. ^bCatalyst concentration, 1×10^{-2} M.

^CBalance of % distribution is methyl hexanoate.

hydrogenation is achieved under mild conditions (80°C, 1 atm H_2) [4]. This is particularly advantageous and leads to a much cleaner reaction since decomposition of the catalyst, which occurs at higher temperature, is eliminated and unwanted side reactions are minimized. Also, less H_2 pressure is needed, thereby reducing cost.

From the observations concerning the variation of catalytic behaviour with change in arene-metal bond strength, the catalytically active species has been postulated to result from partial or total arene loss [1,3,5]. Two mechanisms have been proposed: Frankel et al. [2] postulated a dissociative mechanism in which the $(\eta$ -Arene)Cr(CO)₃ complex totally dissociates into arene + $Cr(CO)_3$. The catalytically active species is subsequently produced by reaction of the $Cr(CO)_3$ molety with H₂ to give a dihydride which then reacts with a diene to afford 1,4-cis-addition of hydrogen, forming the monoene (Figure 1.1). Cais and Rejoan [3,5] later proposed an associative mechanism (Figure 1.2), involving a stepwise displacement of the arene, resulting in slippage of the Jarene to occupy ultimately a single coordination site of • the metal (path a) or eventual total loss of arene (path b). The initial step involves the reversible dissociation of one double bond of the arene, followed by attack of the diene This is supported by the experimental observasubstrate. tion that heating the substrate in the absence of $\ H_2$,

Figure 1.1. Mechanism proposed by Frankel et al. for the $(\eta-Arene)Cr(CO)_3$ -catalyzed hydrogenation of dienes to monoenes. Adapted from Reference 2.

followed by the introduction of H_2 , eliminated the induction period for the onset of hydrogenation. Conversely, heating the catalyst in the presence of H_2 did not alter the induction period significantly [3].

In order to investigate the true nature of the catalytic species, the $Cr(CO)_3(THF)_3$ species has been formed in situ by reaction of $(\eta$ -Arene)Cr(CO), with THF as solvent It was found that addition of substrate to a solution [7]. containing this species effects catalysis at maximum rate with the elimination of the induction period normally seen with $(\eta - Arene)Cr(CO)_{3}$. Also, addition of arene inhibited Therefore, the catalytically active species the reaction. in the hydrogenation of dienes appears to be formed by the total loss of arene in the presence of a coordinating sol-In a separate kinetic investigation arene displacevent. ment has been found to occur via a stepwise displacement of the ring by the entering ligand [4], thus supporting path b of Cais and Rejoan's mechanism.

As indicated in Table 1.1, various attempts have been made to improve catalytic performance by experimenting with a variety of arenes [3-5,7]. However, the metal-arene bond strength in complexes of this type and consequently the ease of labilization of the arene which has proven necessary for effective catalysis is also a function of the electronic properties of the other ligands bonded to the metal. There-

fore, substituting a carbonyl group by another ligand will also modify the catalytic behaviour of the complex. This is of particular interest in the expectation that the use of a catalyst of the type $(\eta$ -Arene)Cr(CO)(L)(L*) would enhance the regioselectivity of the catalytic process [8-10].

The catalytic behaviour of complexes in which one of the carbonyl ligands has been replaced by a tertiary phosphine has been investigated [11,12]. The results for the hydrogenation of norbornadiene at $170^{\circ}C$ under H_2 (48 atm) with these complexes are given in Table 1.2. It is apparent from these results that incorporation of a phosphine ligand into the catalyst brings about serious deterioration or total loss of catalytic activity. This has been attributed to two possible effects. First, the steric effect caused by the substituents on the phosphine may hinder the binding of the substrate. Secondly, the stronger σ -donor and weaker π acceptor properties of the phosphine relative to CO lead to an increased electron density at the metal, resulting in strengthening of the metal-arene bond due to increased metal + arene π -back-donation [11,12]. One then concludes that ligands chosen to replace CO should be similar to CO in their electronic properties.

Another ligand type with analogous binding properties to those of CO is the isocyanide CNR (R = alkyl or aryl). Initial testing of these complexes for catalytic activity

13

. .

Catalyst ^b	% Conversion	Product (% distribution) ^c			Rxn.	
· · ·		I		III	time h	
(phen)Cr(CO)3 ^d	100 100	38 80	4 3 2 0	19 0	- 3 2	
(dmt)Cr(CO) ₃	95	35	45	Î 5	· 6	
(phen)Cr(CO) ₂ (Et ₃ P)	0	-	-	-	15	
(phen)Cr(CO) ₂ [(EtO) ₃ P]	0	-	- `	-	15	
(phen)Cr(CO) ₂ (Ph ₃ P)	10 30	5 1 2	2 1 5	2 3	8 30	
(mbz.)Cr(CO) ₂ [(PhO) ₃ P]	15	3	- 10	2	30	
(dmt)Cr(CO) ₂ (CNCH ₂ Ph)	20	8	10	2	15	
(mbz)Cr(CO) ₂ [CNC(O)Ph]	53	15	30	7	7	
(dmt)Cr _. (CO) ₂ [CNC(O)Me]	65	30	: 32	3	27	
(mbz)Cr(CO) ₂ (CS)	2	< 1	< 1	<1	20	

Table 1.2. Hydrogenation of Norbornadiene (0.1 M) to Nortricyclene (I), Norbornene (II) and Norbornane (III) Catalyzed by $(\eta - Arene)Cr(CO)_2L^{ac}$

^aData from References 10 and 11. ^bCatalyst concentration, 5×10^{-3} M.

cReaction conditions: 48 atm H_2 , $170^{\circ}C$, cyclohexane solution.

 $d_{phen} = phenanthrene, dmt = dimethyl terephthalate,$

mbz = methyl benzoate.

proved disappointing (Table 1.2) [11], indicating that the isocyanide ligands used were similar in bonding properties to tertiary phosphines. Dabard <u>et al</u>. [11] postulated that with the proper modification of the R group through the introduction of an <u>N</u>-acyl moiety [CNC(O)R] the π -acceptor properties of the isocyanide could be enhanced sufficiently to effect ring lability under catalytic conditions. Preliminary testing of these complexes proved that they indeed possessed catalytic activity superior to that of (η -Arene)-(CO)₂ (CNR) [11]. Hence an increase in the π -acceptor properties of the isocyanide ligand was found to enhance catalytic activity.

Among the coordinating ligands that exhibit similar binding properties to those of CO and are known to be stronger π -acceptors than CO are the thiocarbonyl and selenocarbonyl ligands [13]. They thus appear to be very suitable candidates for enhancing the accessibility of the catalytic species. However, an investigation of the catalytic activity of $(mbz)Cr(CO)_2(CS)$ (Table 1.2) has shown the thiocarbonyl complex to be one of the worst catalysts for the hydrogenation of dienes tested [11]: Under mild conditions no reaction took place, while at higher temperatures total decomposition of the complex was observed [11].

In the next chapter, the reactivities of Group VIB . metal thiocarbonyl and selenocarbonyl complexes will be

Ċ.
reviewed. Investigations of arene displacement reactions of $(n - Arene)Cr(CO)_2(CX)$ (X = S, Se) complexes will then be presented. Subsequently, the kinetic studies of such reactions will be described, and the results compared to those for analogous carbonyl complexes. This should provide some reasons for the lack of catalytic activity of $(n - Arene) - Cr(CO)_2(CS)$ complexes and give some indication as to the catalytic potential of the corresponding selenocarbonyl complexes in the hydrogenation of dienes to monoolefins.

References

1.

- M.F. Farona, in "Organometallic Reactions and Synthesis", Vol. 6, E.I. Becker and M. Tsutsui, eds., Plenum Press, New York, 1977, Chap. 3, and references therein.
- 2. E.N. Frankel, E. Selke and C.A. Glass, J. Am. Chem. Soc., <u>90</u>, 2446 (1968).
- 3. M. Cais and A. Rejoan, Inorg. Chim. Acta, <u>14</u>, 509 (1970).
- G. Yagupsky and M. Cais, Inorg. Chim. Acta, <u>12</u>, L27 (1975).
- 5. M. Cais, D. Fraenkel and K. Weidenbaum, Coord. Chem. Rev., <u>16</u>, 27 (1975).
- 6. R.P.A. Sneeden, "Organochromium Compounds", Academic Press, New York, 1975, pp. 18-25, 114-123, 189-214 and references therein.
- 7. P. Le Maux, J.Y. Saillard, D. Grandjean and G. Jaouen, J. Org. Chem., <u>45</u>, 4524 (1980).
- 8. G. Jaouen, Tetrahedron Lett., <u>52</u>, 5159 (1973).
- 9. G. Jaouen, A. Meyer and G. Simonneaux, Tetrahedron Lett., <u>52</u>, 5163 (1973).
- 10. G. Simonneaux, P. Le Maux, G. Jaouen and R. Dabard, Inorg. Chem., <u>18</u>, 3167 (1979).

- 11. R. Dabard, G. Jaouen, G. Simonneaux, M. Cais, D.H. Kohn, L. Lapid and D. Tatarsky, J. Organometal. Chem., 184, 91 (1980).
- 12. M. Cais, M. Kaftory, D.H. Kohn and D. Tatarsky, J. Organometal. Chem., <u>184</u>, 103 (1980).
- 13. I.S. Butler, Acc. Chem. Res., <u>10</u>, 359 (1977) and references therein.

Chapter .2

Reactions of $(\eta - \text{Arene})Cr(CO)_2(CX)$ (X = S, Se) Complexes with Tertiary Phosphites and Tridentate Phosphine Ligands

2.1 <u>Thermal Reactivity of Group VIB Metal(0) Thiocarbonyl</u> and Selenocarbonyl Complexes

The bonding properties of the thiocarbonyl and selenocarbonyl ligands in Group VIB metal complexes have been investigated extensively by a variety of spectroscopic and other techniques [1,2]. The two spectroscopic methods which have been most widely used are vibrational [2-7] and $1^{3}C$ NMR spectroscopy [5,8-10]. Other investigations have employed 170 NMR [11], photoelectron [12,13], electronic [5,14], and mass spectroscopy [15], and ESCA [16]. The body of evidence thus obtained has revealed that both the thiocarbonyl and selenocarbonyl ligands are stronger σ -donors and π -acceptors than CO in complexes with low oxidation state metals. For instance, in the case of IR studies, comparison between the carbonyl stretching force constants of π -bonded arene metal tricarbonyl complexes and those of their corresponding thioor selenocarbonyl derivatives where one of the CO ligands has been replaced by a CS or CSe ligand shows an increase in carbonyl bond order in the latter complexes [2,4,9]. This observation indicates that the carbonyl groups receive less electron density from the metal, illustrating that the CS

and CSe groups are capable of accepting more electron density from the metal than is CO. Good correlations between carbonyl stretching force constants and the carbonyl resonances in the ¹³C NMR spectra of $(n-Arene)M(CO)_2(CX)$ (X = S, Se) complexes have been reported [5,8,9]. The incorporation of a CX ligand into a complex results in an upfield shift of the carbonyl resonances, indicative of a decrease in the donation of electron density from the metal to the CO groups.

In view of the differences between the CX and CO ligands, the chemical behaviour of thio- and selenocarbonyl complexes and their carbonyl analogues would also be expected to differ. The existing data on the thermal reactivity of Group VIB metal thio- and selenocarbonyl complexes are discussed below and are schematically reviewed in Figures 2.1 and 2.2.

Treatment of $Cr(CO)_5(CS)$ in refluxing toluene or of $W(CO)_5(CS)$ in refluxing xylene with Ph₃P [Eq. 2.1] yields both <u>cis</u> and <u>trans</u> isomers of $M(CO)_4(CS)(Ph_3P)$.

aia

:

Figure 2.2. Thermal reactivities of W(CO)₅(CS).

These isomers were inseparable by either column chromatography or fractional distillation [17]. Synthesis of pure trans-W(CO), (CS)(Ph, P) by a different route (vide infra; Eq. 2.2) and subsequent heating at 105°C results in its isomerization to an equilibrium mixture of cis and trans with a much higher proportion of trans (cis:trans \sim 0.7:1) isomer than predicted on the basis of a statistical distribution of the phosphine (cis:trans 4:1), demonstrating that the configuration in which the CS ligand is trans to a weak π -acceptor such as Ph₃P rather than <u>trans</u> to CO is favoured Investigations [19] using stereospecifically ¹³CO-[18]. labelled trans-W(CO)_{μ} (¹³CO)(CS) revealed that this complex undergoes intramolecular isomerization to form cis- and trans-W(CO)_L (13CO)(CS) isomers in both decalin solution and the gas phase.

Further attempts to displace a second CO with another phosphine yielded $M(CO)_4 (Ph_3P)_2$ as the major product, as well as spectroscopic amounts of $M(CO)_3 (CS) (Ph_3P)_2$, which was not isolated [17]. However, the bidentate ligand ethylenebis(diphenylphosphine) (diphos) was found to react with $M(CO)_5 (CS)$ (M = Cr, W) to yield one product [17], $M(CO)_3 (CS) (diphos)$, which was assigned a <u>mer</u> geometry on the basis of its IR spectrum; two carbonyl stretching modes were observed - a weak band at higher energy, attributed to the a' stretching mode of the two trans carbonyls, and a strong

band at lower frequency assigned to the a" mode. The third band expected for this structure was presumed hidden under the strong lower-frequency band. Extended reaction of $W(CO)_{c}(CS)$ in excess diphos at very high temperatures yielded W(CO)(CS)(diphos)₂. However, no substitution beyond a single diphos ligand was observed for chromium [17]. Reactions of W(CO), (CS) with other bidentate ligands containing nitrogen, such as 2,2'-bipyridine (bpy) or o-phenanthroline (o-phen), yielded no thiocarbonyl-containing products, giving only W(CO) (bpy) and W(CO) (o-phen), respectively [17]. Reaction with pyridine (py) produced large amounts of $W(CO)_5(py)$ [17]. $Cr(CO)_5(CX)$ (X = S, Se) reacts with tetrabutylammonium halides to give a mixture of $[Cr(CO)_{5}(Y)]^{-}$ and trans- $[Cr(CO)_{4}(CX)(Y)]^{-}$ in a ratio of 2/3 for X = S and $Y^- = I_-$, Cl^- [5], while for X = Se a 5/4 mixture is obtained for $Y^- = Cl^-$ and a 3/l mixture for $Y^- = I^-$ [5,20]. In order to establish if $[Cr(CO)_{5}(Y)]^{-}$ was produced by thermal decomposition of the trans- $[Cr(CO)_{\mu}(CX)(Y)]^{-1}$ ion, thermal decomposition of a $[Cr(CO)_{5}(Y)]^{-}/trans-[Cr(CO)_{\mu}-$ (CX)(Y)] mixture was monitored by IR spectroscopy; no increase in the intensities of the v(CO) bands due to the $[Cr(CO)_{5}(Y)]^{-}$ ion was observed [20]. On the other hand, W(CO)₅(CS) reacts with tetrabutylammonium halides in coordinating solvent (e.g., acetone, THF) to produce only one product [17], trans-[$W(CO)_{\mu}(CS)(Y)$] (Y = C1, Br, I).

The iodide complex undergoes halide abstraction and ligand substitution forming exclusively the <u>trans</u> product according to Eq. 2.2 [17].

$$[\underline{trans}-W(CO)_{4}(CS)(I)]^{-} + Ag^{+} + L + \\ \underline{trans}-W(CO)_{4}(CS)(L) + AgI$$
(2.2)

Halide abstraction and subsequent coordination of bpy or <u>o</u>-phen in the presence of a coordinating solvent yields <u>mer-W(CO)₃(CS)(bpy) or mer-W(CO)₃(CS)(<u>o</u>-phen), respectively [21]. These products were inaccessible through direct reaction of the bidentate ligand with $W(CO)_5(CS)$.</u>

It should be mentioned that $M(CO)_5(CX)$ (X = S, Se) complexes exhibit other types of thermal reactivity, in addition to ligand substitution. Both chromium and tungsten thiocarbonyls as well as the chromium selenocarbonyl derivative undergo reactions with primary amines to produce $M(CO)_5(CNR)$ (R = alkyl group) [20,22]. $W(CO)_5(CS)$ has also been found [22] to react with secondary amines forming thioformamide complexes, $W(CO)_5(S=C(H)NR_2)$. Kinetic investiga- ° tions of the reaction of $W(CO)_5(CS)$ with primary amines revealed a second-order dependence on amine concentration and a first-order dependence on the concentration of the thiocarbonyl complex [22]. The mechanism proposed on the basis of these data involves attack of a hydrogen-bonded

amine molecule, RHN-H...NH2R, at the carbon of the thiocarbonyl ligand. Thus a second amine molecule acts as a catalyst, presumably by increasing the nucleophilicity of the attacking amine [22]. The reaction of cis- and trans- $W(CO)_{L}(CS)(Ph, P)$ with primary amines was found to be much slower than that of $W(CO)_{5}(CS)$, with the cis isomer reacting faster than the trans [22]. The low reactivity of trans-W(CO), (CS)(Ph, P) [approx. 20,000 times slower than $W(CO)_{S}(CS)$ has been attributed to increased electron density at the thiocarbonyl carbon due to the trans Ph₃P ligand, rendering attack by a nucleophile less favourable.

The kinetics of carbonyl substitution in $W(CO)_5(CS)$ by Ph₃ P were studied [17] to gain quantitative information about the reactivity of this complex compared to that of $W(CO)_6$. The rate was found to have a ligand-independent term and a ligand-dependent term as shown in Eq. 2.3.

$$rate = k_1 [W(CO)_{(CS)}] + k_2 [W(CO)_{(CS)}] [Ph_3P]$$
(2.3)

This is analogous to the accepted mechanism for CO substitution in $W(CO)_6$ [23]. Comparison of k_1 and k_2 for the thiocarbonyl complex with values obtained for the reaction of $W(CO)_6$ with Ph_3P reveals that the dissociative mechanism is approximately 75 times faster in $W(CO)_5(CS)$ while the associative (k_2) route is 250 times faster [17]. Another kinetic study [17] involving the associative reaction of $W(CO)_5(CS)$ with I⁻ showed that $W(CO)_5(CS)$ reacts more than 1000 times faster with I⁻ than does $W(CO)_6$ under the same conditions.

The reaction of <u>trans</u>-W(CO), $(^{13}CO)(CS)$ with I⁻ revealed that the <u>trans</u> CO is lost with high specificity [19]. The mechanism was postulated to involve attack by I⁻ at the metal accompanied by dissociation of the <u>trans</u> CO. Alternatively, the I⁻ may attack the C atom of the <u>trans</u> CO; subsequent rearrangement and loss of the <u>trans</u> CO would give the observed product. These two possibilities could not be distinguished on the basis of the kinetic data available [19].

A kinetic study of carbonyl dissociation from $W(CO)_3$ -(CS)(o-phen) has also been reported [Eq. 2.4] [21].

$$W(CQ)_{3}(CS)(\underline{o}-phen) + L + W(CO)_{2}(CS)(\underline{o}-phen)(L) + CO$$

[L = (MeO)₃P, (EtO)₃P, Ph₃P] (2.4).

The rate of the reaction follows a general two-term rate expression [Eq. 2.5] in which $k_{obsd} = k_1 + k_2$ [L] under pseudo-first-order conditions.

Rate =
$$k_1 [W(CO)_3 (CS)(\underline{o}-phen)]$$

+ $k_2 [W(CO)_3 (CS)(\underline{o}-phen)][L]$ (2.5

At higher temperatures, the k_1 term predominates and k_{obsd} is independent of the concentration and the nature of the ligand [21]. At lower temperatures the rate shows a small but significant dependence on ligand concentration. A direct comparison of the rates of the dissociative pathway for the thiocarbonyl complex and $W(CO)_4$ (<u>o</u>-phen), made by extrapolating the rate constant for the thiocarbonyl reaction to the temperature at which the reaction of $W(CO)_4$ (<u>o</u>phen) was studied [24], yields a k_1 value approximately 140 times faster for CO dissociation from the thiocarbonyl complex than from the carbonyl analogue.

The only kinetic data obtained for the reaction of Group VIB metal thiocarbonyl complexes have been those presented above for $W(CO)_5(CS)$ and its derivatives. These data have illustrated the difference between carbonyl and thiocarbonyl reactivity. The CS ligand, being a strongex π -acceptor than CO, limits the electron density available at the metal for π -backbonding to the carbonyl groups, especially the carbonyl <u>trans</u> to it. The CS ligand thus activates the complex to substitution by weakening the M-CO bonds (predominantly the <u>trans</u> M-CO bond), thereby reducing the activation energy and enhancing the rate of CO dissociation [17].

)

Asstriking example of labilization of ligands other than CO resulting from the presence of a thiocarbonyl or a selenocarbonyl ligand in a complex is the arene labilization observed for $(\eta$ -Arene)Cr(CO)₂(CX) (X = S, Se) [2,5,20]: Cr(CO)₅(CS) can be prepared by heating (mbz)Cr(CO)₂(CS) under CO pressure (10 atm) at 65°C for 5 h. These conditions are much milder than those required to produce Cr(CO)₆ from (mbz)Cr(CO)₃ (65°C, 20 atm CO, 6 days). In addition, the lability of the arene in (η -Arene)Cr(CO)₂(CSe) complexes is even more pronounced; (mbz)Cr(CO)₂(CSe) reacts with CO at 10 atm pressure in 1 h at 65°C to yield Cr(CO)₅(CSe).

Apart from the reactions with CO mentioned above, the thermal reactivity of $(\eta$ -Arene)Cr(CO)₂(CX) (X = S, Se) has not been previously investigated. In the present chapter, reactions of these complexes involving arene displacement by trialkyl- and triarylphosphites and selected tridentate phosphine ligands will be described.

2.2 Experimental

All synthetic reactions were performed under an atmosphere of prepurified nitrogen. All solvents were freshly distilled over sodium strips under nitrogen prior to use with the exception of 1,2-dichloroethane and CS₂ which were distilled over calcium chloride and molecular sieves, respectively.

Trialkyl- and triarylphosphites were purchased from Aldrich Chemical Co., with the exception of $(C_6H_{11}O)_3P$ which was obtained from Strem Chemicals. Carbon diselenide, chromium hexacarbonyl and the tridentate ligands bis(2diphenylphosphinoethyl)phenylphosphine (triphos), 1,1,1tris(diphenylphosphinomethyl)ethane (triphos-U) and 1,1,1tris(diphenylphosphino)methane (tripod) were purchased from Strem. (cht)Cr(CO)₃ was either prepared by the literature method [25], or purchased from Strem.

FT-IR spectra were recorded on a Nicolet 6000 spectrometer (32 scans, 1 cm⁻¹ resolution). Proton, ¹³C and ³¹P NMR spectra were measured on a Varian XL-200 or XL-300 spectrometer equipped with a broad-band probe. The chemical shifts reported here are relative to TMS (¹H and ¹³C) and 85% H_3PO_{μ} ⁽³¹P).

Chromatographic separation of the products was performed by column chromatography (silica gel 60-200 mesh) under N_2 atmosphere or on preparative TLC plates (l mm) prepared from a slurry of 80 g silica gel G (Macherey, Nagel & Co., 516 Durn, West Germany) and 180 ml water. The plates were activated prior to use by heating them at 110°C for 1 h.

2.2.1 Synthesis of $(\eta$ -Arene)Cr(CO),

All $(\eta$ -Arene)Cr(CO)₃ complexes were prepared according to a literature method [26], outlined below for (<u>o</u>-xyl)Cr-(CO)₃. A l-liter three-necked flask fitted with a reflux condenser and a cold finger was used. The addition of the cold finger is a new modification that has been found to eliminate the possibility of the condenser blocking with the easily sublimable starting material Cr(CO)₆.

Preparation of (o-xyl)Cr(CO), Cr(CO), (9.6 g), o-xylene (50 ml), THF (35 ml) and Bu_2O (230 ml) were added under a stream of N_2 to the l-liter flask. The mixture was heated slowly (at the reflux temperature of THF) overnight with magnetic stirring, allowing the Cr(CO) to dissolve. The temperature was then increased to the reflux temperature of Bu₂ O for 2 days. An IR spectrum was measured to confirm the complete disappearance of $Cr(CO)_{b}$ [v(CO) 1980 cm⁻¹]. The flask was then cooled and the greaction mixture filtered in air using a sintered glass funnel (medium porosity) to remove any decomposition products. The solvent was then evaporated on a rotary evaporator using a liquid nitrogen trap to collect the solvent. Bright yellow crystals were obtained (yield 9.4 g, 88%).

2.2.2 Synthesis of (n-Arene)Cr(CO)₂(CS)

The procedure for arene chromium thiocarbonyl synthesis was identical to that in the literature [27]. However since a large amount of $(bz)Cr(CO)_2(CS)$ was needed for kinetic studies, the procedure was modified to allow bulk synthesis of this complex.

 $(bz)Cr(CO)_3$ (6 g) was dissolved in 1.8 liter of benzene and 300 ml of <u>cis</u>-cyclooctene under N₂ in a 3-liter flask. A stainless steel transfer needle (18 gauge) was then used to transfer 700 ml of the solution to a quartz reactor [27]. The solution was then irradiated with a 450-W quartz mercury vapour lamp for 60 min. The reaction was monitored by the increase in the IR carbonyl peaks of $(bz)Cr(CO)_2(C_8H_{14})$ [v (CO) 1900, 1850 cm⁻¹]. The irradiated solution was then transferred to another 3-liter flask. After two additional cycles of this procedure, 500 ml of CS_2 were added to the irradiated solution. The workup at this point was identical to the established method [27].

1 2.2.3 Synthesis of (n-Arene)Cr(CO), (CSe)

 $(\eta - Arene)Cr(CO)_2(CSe)$ complexes were synthesized according to the previously reported procedure [28]; attempts to scale up the reaction resulted in poor yields.

2.2.4 Synthesis of $Cr(CO)_2(CX)[(RO)_3P]_3$ (X = S, Se), (R = Me, Et, n-Bu, Ph)

All $Cr(CO)_2(\notin X)[(RO)_3P]_3$ complexes were prepared according to the method outlined below for $Cr(CO)_2$ - $(CS)[(MeO)_3P]_3$ and $Cr(CO)_2(CSe)[(MeO)_3P]_3$.

Preparation of $Cr(CO)_2(CS)[(MeO)_3P]_3$. (mbz) $Cr(CO)_2(CS)$ (200 mg, 0.69 mmol) was dissolved in toluene (25 ml). (MeO)₃P (1.5 ml, 12.7 mmol) was added and the reaction mixture was heated for 12 h at 65°C under N_2 . After allowing the solution to cool to room temperature, all volatile material was removed under reduced pressure on a rotary evaporator. The yellow solid remaining was purified by preparative TLC on sil\ica gel plates (eluent: 1,2-dichloroethane). Yield 275 mg (75%). Anal. (Guelph Chemical Laboratories, Guelph, Ontario, Canada) Calcd. for $C_{1,2}H_{2,7}O_{1,1}P_3SCr$: C, 27.6; H, 5.19; P, 17.7. Found: C, 27.2; H, 5.15; P, 17.0. FT-IR (methylcyclohexame): v(CO) 1976(w), 1899(vs) cm⁻¹; v(CS) 1199(m) cm⁻¹. ¹H NMR (CD₂Cl₂): 3.40 (d, J = 11 Hz, 1), 3.72 ppm (d, J = 11 Hz, 2). 13 C NMR (CD₂Cl₂): 224.2 (q, J = 22 Hz, 2CO), 336.5 ppm (td, J_{\perp} = 30 Hz, J_{d} = 6 Hz, CS). ³¹P NMR ($C_b D_5 C D_3$): 181.2 (t, J = 65 Hz, 1), 188.6 ppm (d, J = 65 Hz, 2). Crystals were grown in pentane at -20° C.

33

(_____

<u>Preparation of $Cr(CO)_2(CSe)[(MeO)_3P]_3$ </u>. The same procedure described above was utilized for the synthesis of as $Cr(CO)_{2}(CSe)[(MeO)_{3}P]_{3}$ from $(bz)Cr(CO)_{2}(CSe)$ (250 mg, 0.90 mmol) and (MeO)₃P (2.1 ml, 17.8 mmol). Purification by TLC as above gave a bright yellow solid. Yield 355 mg (69%). Anal. (Guelph Chemical Laboratories, Guelph, Ontario, Calcd. for C₁₂H₂₇O₁₁P₃SeCr: C, 25.26; H, 4.74. Canada) Found: C, 25.09; H, 4.90. FT-IR (CS₂): v(CO) 1980.1(w), 1902.8(vs) cm^{-1} ; v(CSe) 1018(m) cm^{-1} . ¹H NMR (C₆D₆): 3.37 (d, J = 10 Hz, 1), 3.81 ppm (d, J = 10 Hz, 2). ¹³C NMR $(C_6D_6): 223.8 (q, J = 22 Hz, 2CO), 356.5 ppm (td, J_t = 29)$ Hz, $J_{d} = 6$ Hz, CSe). ³¹P NMR⁴ (C₆D₅CD₃): 177.5 (t, J = 65 Hz, 1), 184.9 ppm (d, J = 64 Hz, 2). Yellow crystals of $Cr(CO)_2(CSe)[(MeO)_3P]_3$ were obtained upon cooling a saturated pentane solution of the complex to -20°C.

2.2.5 Preparation of (triphos-U)Cr(CO)₂(CS)

Triphos-U $[(Me)C(CH_2P(Ph)_2)_3]$ (985 mg, 1.58 mmol) and $(bz)Cr(CO)_2(CS)$ (197 mg, 0.855 mmol) were dissolved under N₂ in 25 ml of toluene. The reaction was heated at 90°C overnight. The resulting solution was evaporated under reduced pressure, affording a yellow solid. The product was purified by TLC on silica gel plates using CS₂ as the moving phase. The yellow fraction was extracted with methylene chloride and evaporated to dryness. The solid obtained was dissolved in a minimal amount of benzene and hexane was added slowly to precipitate bright yellow crystals. Yield 617 mg (93%). <u>Anal</u>. (Guelph Chemical Laboratories, Guelph, Ontario, Canada) Calcd. for $C_{44}H_{39}O_2P_3SCr$: C, 68.04; H, 5.02. Found: C, 67.87; H, 5.25. FT-IR (CH_2Cl_2): v(CO) 1927.7(s), 1866.1(s) cm⁻¹; v(CS) 1190(m) cm⁻¹.

2.2.6 Preparation of (triphos)Cr(CO)₂(CS)

Triphos $[(Ph_2PCH_2CH_2)_2PhP]$ (1.02 g, 1.91 mmol) and (bz)Cr(CO)₂(CS) (203 mg, 0.88 mmol) were dissolved in 25 ml of toluene and heated at 95°C overnight while stirring under nitrogen. The workup was identical to the procedure described above for (triphos-U)Cr(CO)₂(CS). Attempts to separate the isomers of (triphos)Cr(CO)₂(CS) by TLC using various eluents (1,2-dichloroethane:hexane 3:1, benzene:CS₂ 2:1, ethyl acetate:petroleum ether 3:2) were unsuccessful. Yield 570 mg (94%). Anal. (Guelph Chemical Laboratories, Guelph, Ontario, Canada) Calcd. for $C_{37}H_{33}O_2P_3SCr$: С, 64.66; H, 4.85. Found: C, 64.24; H, 5.02. IR (CH₂Cl₂): v (CO) 1924.0(s), 1860.9(s) cm⁻¹; v (CS) 1191.4(m) cm⁻¹. 31 P NMR $(C_6 D_5 CD_3)$: isomers A and A^{*} 67.4 (dd, I = 1), 79.8 (dd, I = 1), 107.5 ppm (dd, I = 1); isomer B 100.9 (t, I = 1), 71.9 ppm (d, I = 2).

2.2.7 Synthesis of (L-L-L)Cr(CO)₂(CSe) (L-L-L = triphos-U, triphos)

These complexes were prepared in quantitative yield according to the methods outlined above for the corresponding thiocarbonyl derivatives.

2.2.8 Reaction of Tripod $[HC(P(Ph)_2)_3]$ with $(bz)Cr(CO)_2(CX)$ (X = S, Se)

583 mg (1.01 mmol) of tripod and an equimolar amount of $(bz)Cr(CO)_2(CX)$ were dissolved in 25 ml of benzene. Decomposition occurred upon heating the reaction mixture with no new peaks appearing in the carbonyl region of the IR spectrum.

2.2.9 Synthesis of $Cr(CO)_3[(RO)_3P]_3$ (R = Me, Et, n-Bu, Ph) and $(L-L-L)Cr(CO)_3$ (L-L-L = triphos and triphos-U)

The above complexes were prepared from $(cht)Cr(CO)_3$ by the same procedures as described above for the corresponding thio- and selenocarbonyl derivatives.

2.2.10 Attempted Synthesis of (cht)Cr(CO)₂(CS) by Photolysis of (cht)Cr(CO)₃

 $(cht)Cr(CO)_3$ (200 ψ mg) was irradiated in 150 ml of toluene in the presence of excess <u>cis</u>-cyclooctene (50% by volume) under N₂ for periods ranging from 1 to 4 h using a

450-W quartz mercury vapour lamp. No changes in the v(CO) absorptions were observed in the FT-IR spectrum. Warming the solution during irradiation brought about decomposition.

2.2.11 Reaction of Cr(CO), (CS) with Cycloheptatriene

 $Cr(CO)_5(CS)$ (30 mg) (prepared according to Reference 20) was refluxed in neat cycloheptatriene (30 ml) under N₂. No product formation was detected by FT-IR spectroscopy. In the presence of THF or acetonitrile (10% by volume) decomposition occurred.

2.2.12 <u>Attempted Synthesis of (cht)Cr(CO)₂(CS) by Arene</u> Exchange

 $(mbz)Cr(CO)_2(CS)$ (30 mg) was dissolved in 10 ml of neat cycloheptatriene, or in cycloheptatriene containing 10% (by volume) THF or acetonitrile and heated at 65°C under N₂ for periods of 6-48 h. The progress of the reaction was monitored by difference FT-IR spectroscopy. In all cases, gradual decomposition was observed with no appearance of new v(CO) peaks in the IR spectrum.

2.3 Results and Discussion

Since the synthesis of the first $(\eta - Arene)Cr(CO)_2(CS)$ and $(\eta - Arene)Cr(CO)_2(CSe)$ complexes a decade ago, few chemi-

cal reactions have been reported for them. However, a variety of spectroscopic techniques have provided a clear indication of the bonding properties of the CS and CSe ligands. The synthetic investigations described here have probed further the chemical behaviour of arene chromium thio- and selenocarbonyl complexes. The thermal reactivities of $(\eta$ -Arene)Cr(CO)₂(CX) (X = S, Se) complexes established in this study together with those reported in the literature are summarized in Figure 2.3.

The major reaction of $(\eta - \text{Arene}) \text{Cr(CO)}_2 \text{CX}$ complexes identified in this work, the kinetics of which will be the subject of Chapter 4, is the displacement of the arene by three tertiary phosphite ligands under relatively mild conditions:

$$(\eta - Arene)Cr(CO)_{2}(CX) + 3(RO)_{3}P +$$

 $Cr(CO)_{2}(CX)[(RO)_{3}P]_{3} + Arene$ (2.6)
(R = alkyl or aryl)

The spectroscopic properties and the crystal and ⁽⁵⁾ molecular structure of a typical product, Cr(CO)₂(CS)-[(MeO)₃ P]₃, are presented in this and the next section. Following this, the crystal structure of the analogous selenocarbonyl derivative will be described.

The $Cr(CO)_2(CS)[(MeO)_3P]_3$ complex is the first example

Figure 2.3. Thermal reactivities of $(y-Arene)Cr(CO)_2(CX)$ (X = S₁, Se).

\$

39

of a substituted Group VIB metal thiocarbonyl complex containing more than one monodentate ligand other than CO. Attempts to prepare such complexes from $Cr(CO)_5(CS)$ by thermal replacement of the CO groups have only resulted in the loss of the CS ligand following the first substitution step, i.e., yielding first $Cr(CO)_4(CS)L$ and then $Cr(CO)_4L_2$ [17]. Thus, arene substitution provides the first entry into multi-substituted complexes of the type $Cr(CO)_2(CS)L_3$.

Arene displacement in $(\eta$ -Arene)M(CO), complexes affords $fac-M(CO)_{3}L_{3}$ (M = Cr, L = CH₃CN [29]; M = Mo, L = (MeO)_{3}P, $Cl_3 P$, $Ph_2 ClP$, $n-Bu_3 P$ [30,31]; M = W, $L = (MeO)_3 P$ [32]). $fac-M(CO)_3[(MeO)_3P]_3$ (M = Cr, Mo, W) has also been synthesized by the substitution of cycloheptatriene in (cht)M(CO), by (MeO), P [25]. The fac stereochemistry of the products was established by the appearance of two strong v(CO) peaks in the IR spectra, in accord with the C31, local symmetry of the $M(CO)_3$ moiety [$\Gamma(CO) = a_1 + e$]. In the present work, as well as in other studies [25], it has been observed that cycloheptatriene displacement from (cht)Cr(CO), by (MeO), P in refluxing methylcyclohexane yields a mixture of fac- and mer-Cr(CO), [(MeO), P], Similar mixtures are obtained from the reactions of $(\eta$ -Arene)Cr(CO)₃ complexes with monodentate ligands at high temperatures, as evidenced by the appearance of a third v (CO) band in the IR spectra and the splitting patterns in the ³¹P NMR spectra of the products [33].

While the reactions of the tricarbonyl complexes described above give predominantly the fac isomer under the conditions employed in this work, the v(CO) region in the **PT-IR spectrum** of $Cr(CO)_2(CS)[(MeO)_3P]_3$ with one very strong and one very weak band being observed is clearly at variance with the intensity pattern expected for the fac isomer. The ' spectrum of the latter should most likely resemble that of $fac-Cr(CO)_{3}L_{3}$ with two strong peaks of comparable intensity. The FT-IR spectrum of the crude product of this reaction, prior to TLC purification, exhibits an additional peak in the CO stretching region at 1961 cm^{-1} of weak intensity (~10% of that of the 1899 cm^{-1} peak) (Figure 2.4). It will be shown below that this peak can be assigned to fac- $Cr(CO)_{2}(CS)[(MeO)_{3}P]_{3}$.

The very low intensity of the 1976 cm⁻¹ peak of the major product is immediately suggestive of the <u>mer</u> geometry (<u>mer</u> I, Figure 2.5) in which the two CO groups are <u>trans</u> to each other. The <u>mer</u> stereochemistry is further indicated by the similarity of the ³¹P NMR spectrum to that of <u>mer</u>- $Cr(CO)_3[(MeO)_3P]_3$ in $C_6D_5CD_3$ solution (Table 2.10), even down to the ${}^2J_{31p}{}^{31}p$ couplings (64 Hz). The solitary ${}^{13}C$ resonance for the CO groups is evidence of the absence of <u>mer</u> II and its appearance as a quartet is in complete agreement with the splitting pattern expected for <u>mer</u> I provided that the two different tertiary phosphite environments are

Figure 2.4. The $\nu(CO)$ region of the FT-IR spectrum (in methylcyclohexane) of the crude product of the reaction of (mbz)Cr(CO)₂(CS) with (MeO)₃P. Inset: $\nu(CS)$ region.

Figure 2.5. The three possible isomers of $Cr(CO)_2(CX)[(MeO)_3P]_3$ (X = S, Se).

sufficiently similar to afford comparable ${}^{2}_{J}c_{1}s_{1}{}^{3}_{C}s_{1}^{3}_{P}$ values. The observed coupling constant (22 Hz) is very close to the ${}^{2}_{J}c_{1}s_{1}{}^{3}_{C}s_{1}^{2}_{P}$ value reported for $Cr(CO)_{5}[(MeO)_{3}P]$ and <u>trans</u>- $Cr(CO)_{4}[(MeO)_{3}P]_{2}$ (21 Hz) [34]. The ${}^{13}CS$ resonance appears as a doublet, due to coupling with the <u>trans</u> ${}^{31}P$ nucleus, split into a triplet by the other two equivalent ${}^{31}P$ nuclei, again in accord with the predictions for mer I.

As mentioned above, the CO stretching region of the IR spectrum of the crude product obtained () the synthesis of $Cr(CO)_2(CS)[(MeO)_3P]_3$ contains, in addition to the peaks of $mer-Cr(CO)_2(CS)[(MeO)_3P]_3$, a weak peak at 1961 cm⁻¹. Subtraction of the spectrum of the pure mer product from this spectrum reveals a second peak at 1899 cm^{-1} of comparable intensity to that at 1961 cm^{-1} , as well as a peak in the v(CS) region at 1199 cm⁻¹. These data indicate that some quantity of either the fac or mer II isomer is present in the crude product. Further examination of the crude product using ¹³C and ³¹P NMR spectroscopy provided definitive evidence that the minor component present is $fac-Cr(CO)_2(CS)$ -[(MeO)₃P]₃. In addition to the peaks attributable to the <u>mer</u> I isomer, the 13 C NMR spectrum exhibits a single 13 CO resonance (δ = 226.3 ppm) split into a doublet of triplets and a ¹³CS resonance (δ = 335.3 ppm) also split into a doublet of triplets. It is well established [8,34] that chalcocarbonyl resonances exhibit a downfield shift when

they are trans to a stronger σ -donor or a weaker π -acceptor than CO. On this basis the mer II isomer would be expected to exhibit a thiocarbonyl resonance at higher field than observed for the mer I isomer and two distinct carbonyl resonances, one at higher field than that of the mer 1 for the CO trans to the CS ligand, and the other at lower field for the CO trans to the phosphite group. Therefore, the 13C NMR data are inconsistent with the identification of the minor product as the mer II isomer. For the fac isomer a single carbonyl resonance situated at lower field than that of the mer I isomer is expected, while the thiocarbonyl resonance is anticipated to appear at higher field on the basis that the CO groups should remove a larger share of the electron density donated by the tertiary phosphites to the metal in the fac isomer (CO trans to phosphite) than in the mer I (CO cis to phosphite) isomer. These predictions are, completely in accord with the observed ¹³C NMR spectra. The in the ³ P NMR spectrum attributed to the minor peaks product are also consistent with its identification as fac-Cr(CO), (CS)[(MeO), P], with the two equivalent phosphorus nuclei (trans to CO) being split into a doublet by the third phosphorus (trans to CS) which in turn is split into a trip-The fact that this doublet is at higher field than the let. doublet of the mer I is in line with the ³¹P NMR observations made by Pollblanc and his coworkers that two trans

phosphorus ligands appear at lower field than a phosphorus ligand trans to CO for $M(CO)_3[(MeO)_3P]_3$ (M = Cr, Mo, W) [33].

The IR, 13C NMR and 31P NMR spectra of the crude and the purified product from the reaction of (n-Arene)-Cr(CO), (CSe) with (MeO), P exhibit the same intensity patterns as observed for the thiocarbonyl product. Thus. the characterization of both the mer I and fac isomers was established in a similar manner to the spectroscopic analysis described for Cr(CO), (CS) [(MeO), P], The FT-IR spectrum of the crude Cr(CO)₂(CSe)[(MeO)₃P]₃ product is shown in Figure 2.6, while that of the yellow crystals obtained by TLC purification is displayed in Figure 2.7. The difference spectrum generated by subtraction of Figure 2.7 from Figure 2.6 is displayed in Figure 2.8, revealing the hidden v(CO)peak of the fac isomer. The 13C NMR spectrum (Figure 2.9) clearly shows the patterns expected for the mer I and fac The spectroscopic properties of $Cr(CO)_{2}(CX)$ isomers. $[(RO)_{3}P]_{3}$ (X = 0, S, Se; R = Me, Et, n-Bu, Ph) derivatives will be discussed more fully in Section 2.3.3.

2.3.1 <u>Crystal and Molecular Structure of Cr(CO)₂(CS)-</u> [(MeO)₃ P]₃

The <u>mer</u> stereochemistry (<u>mer</u> I) of the chromium thiocarbonyl derivative was confirmed by single-crystal X-ray

)

/~> .

8

ł

,

Figure 2.6. The \forall (CO) region of the T-IR spectrum (im CS₂) of the crude product of the reaction of (mbs)Cr(CO)₂(CSe) with (MeO)₃P.

47

.

()

•

ł

1

í

49

7

•

1

PPM

Figure 2.9. The chalcocarbonyl resonances in the 13 C NMR spectrum (in C₆D₆) of a mixture of the <u>fac</u> and <u>mer</u> I isomers of Cr(CO)₂(CSe)[(MeO)₃P]₃. Conditions: obtained on a Varian XL-300 FT spectrometer operating at 75.43 MHz; H-decoupled; sweep width 50 = 30,200 Hz; offset = 7,100 Hz; flip angle = 20°; repetition time = 0.6 s; number of scans = 2,624. Sample contained 0.1 M Cr(acac)₃.

diffraction (see Appendix A for crystal parameters, final positional parameters and structure factors). The resulting perspective diagram including the labelling scheme is shown in Figure 2.10. The arrangement of the ligands around the central Cr(0) atom is slightly distorted from idealized octahedral geometry (see Table 2.1 for the interatomic angles). The OC-Cr-CO angle is $175.2(4)^{\circ}$, while the <u>trans</u> phosphorus atoms are bent away from P(2) with P(1)-Cr-P(3) = $174.0(1)^{\circ}$, presumably to minimize steric interactions between the three (MeO)₃P groups.

The interatomic distances are given in Table 2.2. The <u>trans</u> Cr-P bond lengths are equal within experimental error [mean value = 2.262(3) Å], while the Cr-P bond <u>trans</u> to CS is appreciably longer [2.346(3) Å], i.e., an increase of 0.084(3) Å. This is attributed to the strong electron-with-drawing capacity of the CS ligand, leading to less π -back-donation from the metal to the phosphite and thus to a weakening (and lengthening) of the <u>trans</u> Cr-P bond.

A comparison of the Cr-C(S) and C-S bond lengths reported here with those in related metal thiocarbonyl complexes containing terminal CS linkages [35] reveals that these distances are among the longest C-S and shortest Cr-C(S)distances known. This effect is also reflected in the low value of the CS stretching mode (1199 cm⁻¹). The Cr-C(S)bond distance is significantly shorter than the mean Cr-C(O)

eir.

Table 2.1. Bond Angles (deg) in $Cr(CO)_2(CS)[(MeO)_3P]_3^a$

Angles about Cis angles	[°] chro mium atom	Angles about pho	sphorus ato	1 8
C1-Cr-C2	96.0(4)	Cr-P1-011	120.3(2)	
C1-Cr-C3	87.8(4)	Cr-P1-012	114.9(2)	
C1-Cr-P1	87.6(3)	Cr-P1-013	118.8(2)	
Cl-Cr-P3	87.8(3)	Cr-P2-021	119.4(2)	
C2-Cr-P1	86.9(3)	Cr-P2-022	111.4(2)	
C2-Cr-P2	89.6(3)	Cr-P2-023	120.2(2)	
C2-Cr-P3	89.7(3)	Cr-P3-031	119.6(2)	
C3-Cr-P1	90.4(3)	Cr-P3=032	119.4(2)	
C 3 - C r - P 2	86.6(3)	Cr-P3- 033	116.0(2)	
C3-Cr-P3	93.4(3)	011-P1-012	100.2(3)	
$P1-Cr \rightarrow P2$	91.6(1)	011-P1-013	96.5(4)	
P2-Cr-P3	93.3(1)	012-P1-013	102.6(4)	
	· ,	021-P2-022	101 .3(3)	
rans angles		021-P2-023	97.9(3)	
Cl-Cr-P2	174.4(3)	022-P2-023	10,4.0(3)	
C2-Cr-C3	175.2(4)	031-P3-032	96.2(3)	
Pl-Cr-P3	174.0(1)	031-P3-033	98.8(3)	
		032-P3-033	103.0(3)	

Table	2.1	(Cont'd)	
-------	-----	----------	--

\$

(

4

Angles in Cr-C(X) linkages Angles about oxygen atoms in phosphite ligands Cr-Cl-S 176.4(6) Cr-C2-02 177.2(8) P1-011-C11 119.8(6) Cr-C3-03 178.7(8) P1-012-C12 121.6(6) 120.3(6) P1-013-C13 1 . P2-021-C21 124.1(6) ړ P2-022-C22 121.6(6) P2-023-C23 121.7(6) P3-031-C31 119.5(6) P3-032-C32 122.1(6) P3-033-C33 122.0(6)

^aValues in parentheses are estimated standard deviations in the last figure quoted.

					-) -)
Cr-Pl	2.265(3)	P 2 – 0 2 1	1.581(6)	011-C11	1.434(12)
Cr-P2	2.346(3)	P2-022	1.582(6)	012-C12	1.488(11)
Cr-P3	2.260(3)	P 2 - 0 2 3	1.591(6)	013-C13	1.440(13)
Cr-Cl	1.782(9)	P3-031	1.607(6)	021-C21	1.433(11)
Cr-C2	1.844(9)	P3-032	1.586(6)	022-C22	1.465(11)
Cr-C3	1.834(9)	P3-033	1.577(6)	023-C23	1.424(12)
P1-011	1.597(6)	C 1 – S	1.585(9)	031-C31	1.430(12)
P 1-012	1.569(6)	C2-02	1.148(11)	032-C32	1.465(12)
P1-013	1.594(7)	C3-03	1.157(11)	033-C33	1.474(11)

Table 2.2. Bond Lengths (\mathring{A}) in $Cr(CO)_2(CS)[(MeO)_3P]_3$

÷

Μ

/

A

÷

^aNumbers in parentheses are estimated standard deviations in the last figure quoted.

٩,

value [1.839(9) A]. These different observations are attributed to the relatively large amount of electron density available for π -backbonding at the metal centre resulting from the presence of the three strongly σ -donating tertiary phosphite ligands.

Woodard <u>et al</u>. have reported a linear relationship between the CS stretching frequency and the C-S bond length in a series of terminal thiocarbonyl complexes [35]. Leastsquares analysis of the currently available data given in Table 2.3 [excluding Fe(OEP)(CS)] yields a correlation coefficient of 0,99. Inclusion of Fe(OEP)(CS) reduces the correlation significantly (r = 0.94). This difference may be attributed to appreciable mixing of v(CS) with v[M-C(S)], as observed in analogous porphinato thiocarbonyl complexes [36].

2.3.2 Crystal and Molecular Structure of Cr(CO)₂(CSe)-[(MeO)₃ P]₃

In this section, the crystal and molecular structure determined by a single-crystal X-ray diffraction study at 118 K of a typical selenocarbonyl product, $Cr(CO)_2(CSe)$ - $[(MeO)_3 P]_3$, of the reaction of $(\eta$ -Arene) $Cr(CO)_2(CSe)$ with trialkylphosphite is presented. These data confirm the <u>mer</u> I configuration postulated on the basis of spectroscopic properties (FT-IR; ¹³C, ³¹P NMR) and the established struc-

Complex	v(CS) cm ⁻¹	d(C-S) Å
$[(\eta - C_5H_5)Fe(CO)_2(CS)]PF_6$	1 3 4 8	1.501
[Ir(Ph ₃ P) ₂ (CO) ₂ (CS)]PF ₆	1321	1.511
(η-C ₅ H ₅)Mn(CS)(NO)(I)	1291	1.513
trans -RhCl(Ph ₃ P) ₂ (CS)	1299	1`.536
Fe(OEP) (CS) ^b	1292	1.559
$trans-W(CO)_4(CNC_6H_{11})(CS)$	1240	1.564
$(\eta - C_6 H_5 CO_2 CH_3) Cr(CO)_2 (CS)$	1225	1.570
Cr(C0) ₂ (CS)[(Me0) ₃ P] ₃ ^c	1205	1.585
(η-C ₁₀ H ₁₀ O)Cr(CO)(CS)(Ph ₃ P) ^d	-	1.59
cis-[(η-C ₅ H ₅)Fe(CO)(CS)] ₂ (bridging thiocarbonyl ligands)	ь 1124	1.592 1.587

Table 2.3. ν (CS) Frequencies and C-S Bond Distances in Selected Transition Metal Thiocarbonyl Complexes^a

ŋ

2

^aData from Reference 35 and references therein except ^bfrom Reference 42 (OEP = octaethylporphyrin), ^Cfrom this thesis (in KBr pellet), and ^dfrom Reference 43. turé of the thiocarbonyl analogue described in the previous section.

The final atomic coordinates are given in Appendix B (along with the crystal parameters and structure factors), while the bond angles and distances are listed in Tables 2.4 and 2.5, respectively. A perspective view of the structure indicating the atom labelling scheme used is shown in Figure 2.11. The coordination around the central Cr atom is essentially octahedral. The Cr-C-Se linkage is linear $[176.9(2)^{\circ}]$ with bond distances of Cr-C = 1.785(3) Å and C-Se = 1.750(3) Å. These values for the selenocarbonyl linkage are much more precise than those in the literature from the room temperature studies on (mbz)Cr(CO)₂(CSe) $(Cr-C-Se = 179.0(7)^{\circ}, Cr-C = 1.79(1) \text{ A}, C-Se = 1.73(1) \text{ A};$ [37]) and $RuCl_2(CO)(CSe)[(C_6H_5)_3P]_2$ (Ru-C-Se = 174(1), C-Se = 1.07(2) A; [38]). The Cr-C(Se) distance in the present case is 0.108(1) A shorter than the mean Cr-C(0) distance [1.893(3) A] and the Cr-P distance for the (MeO), P ligand trans to CSe is 0.091(1) & longer than the mean Cr-P value [2.282(1) A] for the other two (MeO)₃P ligands. While these trends are identical to those observed for the thiocarbonyl analogue, the lengthening in the Cr-P bond trans to CSe is about 0.02 A more than the corresponding lengthening for the thiocarbonyl complex suggesting that CSe is slightly better tha# CS in terms of electron-withdrawing capacity. А

Figure 2.11. A perspective drawing of the mer l isomer of $Cr(CO)_2(CSe)[(MeO)_3P]_3$, with hydrogen atoms omitted for clarity.

с 9 Table 2.4. Bond Angles (deg) in $Cr(CO)_2(CSe)[(MeO)_3P_3^a]^a$

Angles about Cis angles	chromium atom	Angles about pho	sphorus atoms
C1-Cr-C2	96.4(1)	Cr-P1-011	120.44(9)
C1-Cr-C3	88.1(1)	Cr-P1-012	114.48(9)
C1-Cr-P1	88.4(1)	Cr-P1-013	118.24(9)
C1-Cr-P3	87.8(1)	Cr - P 2-021	119.30(9)
C2-Cr-P1	87.4(1)	Cr. P 2-022	111.34(9)
C2-Cr-P2	89.0(1)	Cr-P2- 023	120.91(9)
C2-Cr-P3	89.4(1)	Cr-P3-031	119.26(9)
C3-Cr-P1	91.3(1)	Cr-P3-032	118.88(9)
C3-Cr-P2	86.5(1)	Cr-P3-033	115,45(9)
C3-Cr-P3	92.3(1)	011-P1-012	100.2(1)
P1-Cr-P2	90 .9 2(3)	011-P1-013	96.4(1)
P2-Cr-P3	93.18(1)	012-P1-013	103.8(1)
		021 - P 2 - 022	101.2(1)
ra ns angles		021 -P 2-023	97.8(1)
C1-Cr-P2	174.5(1)	022- P 2-023	103.3(1)
C2-Cr-C3	175.3(1)	031-P3-032	96.8(1)
P1-Cr-P2	174.75(4)	031-P3-033	99.8(1)
		032-P3-033	103.1(1)
			•

60

¥

Table 2.4 (Co	ont'd)	0	
Angles in Cr-	ngles in Cr-C(X) linkages Angles about oxygen atoms in phosphite ligands		
Cr-Cl-Se	176.9(2)	prospuite ilgand	1 8
Cr-C2-02	178.3(3)	P1-011-C11	119.2(2)
Cr-C3-03	176.7(3)	P 1-012-C12	121.1(2)
		P1-013-C13	120.1(2)
		P 2-021-C21	121 .9(2)
		P2 -022-C22	120.6(2)
		P 2 -023-C23	119.8(2)
		P3-031-C31	119.8(2)
		P 3 – 0 3 2 – C 3 2	122.0(2)
		P3-033-C33	121.1(2)
	<u></u>	۶ 	£*

^aValues in parentheses are estimated standard deviations in the last figure quoted.

> ((_____r

}

e

61

Table 2.5. Bond Lengths_(Å) in Cr(CO)₂(CSe)[(MeO)₃P]₃^a

١

				•	
Cr-Pl	2.285(1)	P2¹ 021	1.600(2)	011-C11	1.457(4)
Cr-P2	2.373(1)	P 2 - 0 2 2	1.590(2)	012-C12	1.456(4)
Cr-P3	2.279(1)	P 2 - 0 2 3	1.613(2)	013-C13	1.442(4)
Cr-Cl	1.785(3)	P 3-031	1.612(2)	021-C21	1.440(4)
Cr-C2	1.891(3)	P3-032	1.614(2)	022-C22	1.461(4)
Cr-C3	ل <mark>. 895(3</mark>)	P 3-033	1.600(2)	023-C23	1.430(4)
P1-011	1.608(2)	Cl-Se	1.750(3)	031-C31	1.431(4)
P1-012	1.597(2)	C 2 - 0 2	1.153(4)	032-C32	1.444(4)
P1-013	1.612(2)	C3-03	1.142(4)	033-C33	1.451(4)

^aValues in parentheses are estimated standard deviations in the last figure quoted. similar very strong electron-withdrawing effect was found for CSe in $\operatorname{RuCl}_2(CO)(CSe)[(C_6H_5)_3P]_2$ since the Ru-Cl distance trans to CSe is 2.480(5) Å, while the one trans to CO is 2.427(5) Å [38].

J

2.3.3 <u>FT-IR and ³¹P NMR Spectra of $Cr(CO)_2(CX)[(RO)_3P]_3$ (X</u> = 0, S, Se)

Arene displacement from $(\eta - \operatorname{Arene})\operatorname{Cr}(\operatorname{CO})_2(\operatorname{CX})$ (X = S, Se) by tertiary phosphite ligands affords a variety of novel complexes of spectroscopic interest. The IR data for these complexes give added support as to the effectiveness of the thiocarbonyl group in decreasing the net electron density at a metal centre compared to CO in the analogous parent carbonyl complexes. This can be clearly seen from the increase in the mean IR wavenumber for the carbonyl groups in the thiocarbonyl complexes in Tables 2.6 and 2.7 resulting from the decreased back-donation of electron density from the metal to the π^* orbitals of the CO groups [1].

The number of known Group VIB metal selenocarbonyl complexes is quite limited and restricted to chromium for reasons discussed elsewhere [5]. The compounds listed in Tables 2.6-2.8 are the first examples of Group VIB metal complexes containing both phosphorus and selenocarbonyl ligands. These complexes triple the number of selenocarbonyls known for Group VIB metals and provide further supTable 2.6. $\nu(CX)$ Frequencies (cm^{-1}) in the FT-IR Spectra of <u>fac</u>-Cr(CO)₂(CX)[(RO)₃P]₃ (X = 0, S, Se)^a

Complex	₽(CO) ^b	Average V(CO)	v(CS)/ v(CSe)
Cr(CO) ₃ [(MeO) ₃ ['] P] ₃	1962(s), 1875(s)	1919	
Cr(CO) ₂ (CS)[(MeO) ₃ P] ₃	1957(s), 1895(s)	1926	1199(m)
Cr (CO) ₂ (CSe)[(MeO) ₃ P] ₃	1962(s), 1903(s)	1933	1018(m)
Cr(CO) ₃ [(EtO) ₃ P] ₃	1957(s), 1867(s)	1912	
Cr(CO) ₂ (CS)[(EtO) ₃ P] ₃	1950(s), 1889(s)	1920	1193(m)
Cr(CO) ₂ (CSe)[(EtO) ₃ P] ₃	1957(s), 1898(s)	1928	1016(m)
Cr(CO) ₃ [(<u>n</u> -BuO) ₃ P] ₃	1956(s), 1867(s)	1912)
$Cr(CO)_2(CS)[(\underline{n}-BuO)_3P]_3$	1950(s), 1889(s)	1920	1192(m)
Cr(CO) ₂ (CSe)[(<u>n</u> -BuO) ₃ P ₃	1956(s), 1897(s)	1927	1016(m)
Cr(CO) ₃ [(PhO) ₃ P] ₃	1982(s), 1910(s)	1946	*
Cr(CO) ₂ (CS)[(PhO) ₃ P] ₃	1973(s), 1929(s)	1951	1220 % s)
Cr(CO) ₂ (CSe)[(PhO) ₃ P] ₃	1974(s), 1940(s)	1957	1023(m)

^aIn CS₂ solution; s = strong, m = medium.

^bFor <u>fac</u>-Cr(CO)₃L₃, $\Gamma_{CO} = a_1 + e$, with the a_1 mode assigned to the higher-frequency peak; for <u>fac</u>-Cr(CO)₂(CX)L₃ (X = S, Se), $\Gamma_{CO} = a' + a''$, with the a' mode assigned to the higher-frequency peak. These symmetry assignments are based on the assumption of C_{3v} and C_s local symmetry of the Cr(CO)₃ and Cr(CO)₂(CS)/Cr(CO)₂-(CSe) moleties, respectively; the validity of this assumption is indicated by the appearance of only two (CO) modes in the spectra of the tricarbonyl species.

Table 2.7. V(CX) Frequencies (cm⁻¹) in the FT-IR Spectra of <u>mer</u>-Cr(CO)₂(CX)[(RO)₃P]₃ (X = 0, S, Se)^a, b

Complex	ν(co) ^c	Average V(CO)	ν(CS)/ ν(CSe)
Cr(CO) ₃ [(MeO) ₃ P] ₃	1979(w), 1875(vs)	1927	
Cr(CO) ₂ (CS)[(Me0) ₃ P] ₃	1974(w), 1895(vs)	1935	1199(=)
Cr(CO) ₂ (CSe)[(MeO) ₃ P] ₃	1 98 0(w), 1903(vs)	1942	1018(m)
Cr(CO) ₃ [(EtO) ₃ P] ₃	1973(w), 1867(vs)	1920	
Cr(CO) ₂ (CS)[(EtO) ₃ P] ₃	1 97 0(w), 1889(vs)	1930	1193(m.)
Cr(CO)₂(CSe)[(EtO)₃P]₃	1975(w), 1898(vs)	1937	1016(m)
Cr(CO) ₃ [(<u>n</u> -BuO) ₃ P] ₃	1973(w), 1867(vs)	1920	
Cr(CO) ₂ (CS)[(<u>n</u> -BuO) ₃ P] ₃	1971(w), 1889(vs)	1 93 0	1192(m)
Cr(CO) ₂ (CSe)[(<u>n</u> -BuO) ₃ P] ₃	1974(w), 1897(vs)	1936	1016(m)
Cr (CO) ₃ [(PhO) ₃ P] ₃	2004(w), 1910(vs)	1957	
Cr(CO) ₂ (CS)[(PhO) ₃ P] ₃	1 987(w) , 1929(vs)	1958	1220(s)
Cr(CO) ₂ (CSe)[(PhO) ₃ P] ₃	1996(w), 1940(s)	1968	1023(m) 🎮

^aIn CS₂ solution; vs = very strong, s = strong, m = medium, w = weak.

w = weak. b In the case of X = S or Se, mer = mer I. CFor mer-Cr(CO)₃L₃, $\Gamma_{CO} = 2a_1 + b_1$, with one of the a_1 modes assigned to the higher-frequency peak; the a_1 and b_1 components of the lower-frequency peak were not resolved. For the mer I isomer of Cr(CO)₂(CX)L₃ (X = S, Se), $\Gamma_{CO} = a_1 + b_1$, with the a_1 mode assigned to the higher-frequency peak. These symmetry isometry based on the assumption of C₂. assignments are based on the assumption of C_{2v} local symmetry for all species.

Table 2.8. $\nu(CX)$ Frequencies (cm ⁻¹) in the FT-IR Spectra
of (triphos-U)Cr(CO) ₂ (CX) and (triphos)Cr(CO) ₂ (CX)
$(X = 0, S, Se)^{a}$

. . .

-___

Complex	v (CO)	ν(CS)/ ν(CSe)
(triphos-U)Cr(CO) ₃	, 1931(s), 1830(s)	1
(triphos-U)Cr(CO) ₂ (CS)	1929(s), 1871(s)	1190(m)
(triphos-U)Cr(CO) ₂ (CSe)	1937(s), 1881(s)	10 31(s)
(triphos)Cr(CO) ₃	1934(s), 1844(s) `	,
(triphos)Cr(CO) ₂ (CS) ^b	1924(s), 1861(s)	11 91(m)
(triphos)Cr(CO) ₂ (CSe) ^b	1940(s), 1885(s)	10 37(s)

ł

^aIn CS₂ solution; s = strong, m = medium. ^bThe peaks due to isomers A and B were not resolved. 66

port of the superiority of CSe to either CS or CO in depleting electron density from metals and other coordinated ligands, as indicated by the further increase in the stretching frequencies of the carbonyl ligands.

The poor correlation between the CX (X = S, Se) wavenumber and the σ -donor/ π -acceptor properties of the other, bound ligands in chalcocarbonyl complexes has been reported by English <u>et al</u>. and attributed to appreciable mixing of the v(CX) and v[M-C(X)] modes [3,4]. However, a qualitative trend can be seen for the v(CX) modes as the σ -donor/ π acceptor properties of the ligands are varied. This trend appears to be sensitive to the net electron density at the metal rather than the stereochemistry of the ligands relative to each other. This is illustrated by comparison of the data for the <u>fac</u> and <u>mer</u> isomers in Tables 2.6 and 2.7. A similar result has also been noted by Woodard <u>et al</u>. for <u>cis</u>- and <u>trans</u>-W(CO)₄ (CS)(L) derivatives [18].

To date, no ³¹P NMR data have been obtained for phosphorus-containing thio- or selenocarbonyl complexes of Group VIB metals. The ³¹P NMR spectra of $M(CO)_{6-n}[(MeO)_{3}P]_{n}$ (M = Cr, Mo, W) complexes have been examined by Mathieu and co-workers (Table 2.9) [33]. From their investigation, they concluded that the nature of the central atom appears to be the major factor influencing the chemical shifts, and that the resonance of the phosphorus atom <u>trans</u> to a carbonyl

Complex	δ(³¹ P) ^b	ν(co) ^c
	p p m	c= ⁻¹
Cr(CO) ₅ (MeO) ₃ P	179.6	2073, 1985, 1963, 1948
\underline{cis} -Cr(CO) ₄ [(MeO) ₃ P] ₂	180.2	2026, 1947, 1939, 1913
\underline{trans} -Cr(CO) ₄ [(MeO) ₃ P] ₂	193.1	1914
\underline{fac} -Cr(CO) ₃ [(MeO) ₃ P] ₃	186 ^d	1966, 1888 sh, 1879
<u>mer</u> -Cr(CO) ₃ [(MeO) ₃ P] ₃	189.1(I = 1) ^d 197.4(I = 2)	1981, 1891 sh, 1878.1 ເ
\underline{cis} -Cr(CO) ₂ [(MeO) ₃ P] ₄	187(I = 1) 198(I = 2)	- 1901, 1847
Mo(CO) 5 (MeO) 3 P	162	2080, 1993, 1965, 1952
\underline{cis} -Mo(CO) ₄ [(MeO) ₃ P] ₂	164	2037, 1945, 1926, 1921
$\underline{trans} - Mo(CQ)_4[(MeO)_3P]_2$	174	1972, 1921
\underline{fac} -Mo(CO) ₃ [(MeO) ₃ P] ₃	168.5 ^d	1976, 1893 sh, 1883
$\underline{\text{mer}} - Mo(CO)_{3}[(MeO)_{3}P]_{3}$	164.5(I = 1) ^d ,e 174.2(I = 2)	1993, 1919, 1890
$\underline{cis}-Mo(CO)_{2}[(MeO)_{3}P]_{4}$	166.9(I = 1)	1909, 1856

Selected Group VIB M(CO)_{6-n}[(MeO)₃P]_n Complexes^a

Table 2.9. ³¹P NMR Chemical Shifts and IR V(CO) Frequencies of

89

Table 2.9 (Cont'd)	•	
· · ·		
W(CO) ₅ (MeO) ₃ P -	137.3	2081, 1988, 1951, 1936
\underline{cis} -W(CO) ₄ [(MeO) ₃ P] ₂	141.1	2035, 1947, 1939, 1915
$(trans-W(CO)_4[(MeO)_3P]_2$	147	1915
\underline{fac} -W(CO) ₃ [(MeO) ₃ P] ₃	146.6 ^d	1973, 1894 sh, 1880
$\underline{\text{mer}} = W(CO)_{3} [(MeO)_{3}P]_{3}$	$144.4(I - 1)^{d}$	1989, 1890 sh, 1871
$\underline{cis}-W(CO)_2[(MeO)_3P]_4$	148.6	1905, 1845
`		

^aData from Reference 33.

¥

^bMost compounds were examined in benzene; chemical shifts are in ppm downfield from 85% H₃PO₄. ^cIn hexadecane solution. ^dRemeasured in this study on a Varian XL-200 spectrometer. ^eAssigned to the <u>fac</u> isomer in Reference 33.

group occurs at higher field than that for a phosphorus atom $\underline{\text{trans}}$ to another phosphorus. The latter trend was rationalized using Eq. 2.7 derived by Van Wazer and Letcher [39] where the ³¹P chemical shift is treated as the summation of the σ -bond and π -bond contributions:

$$\delta - \delta_0 = \delta_a + \delta_a \qquad (2.7)$$

where δ_{O} is a constant associated with the particular reference standard employed. Both the δ_{σ} and δ_{π} terms are negative and so an increase in the amount of metal d_{π} electron density transferred to the d_{π} orbitals or a decrease in the σ -donation from the phosphorus atom to the metal results in a shift of the ³¹P resonance towards lower fields [33]:

Table 2.10 summarizes the ³¹P NMR data obtained for the $Cr(CO)_2(CX)[(RO)_3P]_3$ (X = O, S, Se; R = Me, Et, <u>n</u>-Bu, Ph) complexes. A comparison of the ³¹P resonance for the two phosphorus atoms <u>trans</u> to each other in the chalcocarbonyl triad reveals an upfield shift of about 7 ppm for the thio-carbonyl derivative and about 11.5 ppm for the selenocarbonyl derivative when compared to the tricarbonyl complex. These upfield shifts are indicative of a net decrease in electron density at the metal centre available for donation to the d_π orbitals of the phosphorus atoms and are consistent with the established order of π -acidity for chalcocar-

Table 2.10.	³¹ P NMR Data ^a	for \underline{mer} -Cr(CO) ₂ (CX)[(RO) ₃ P] ₃
(x = 0, S, Se	e) ^b and <u>fac</u> -Cr($(CO)_{2}(CX)[(RO)_{3}P]_{3}$ (X = S, Se)

Complex	² J _{PP} Hz	δ(³¹ P) (d, I=2) ppm	δ(³¹ P) (t, I=1) ppm
ner isomers	,		
Cr(CO) ₃ [(MeO) ₃ P] ₃	64	197.4	189.1
Cr(CO) ₂ (CS)[(MeO) ₃ P] ₃	6 5	188.6	181.2
Cr(CO) ₂ (CSe)[(MeO) ₃ P] ₃	64	184.9	177.5
Cr(CO) ₃ [(EtO) ₃ P] ₃	60	193.3	184.9
Cr(CO) ₂ (CS)[(EtO) ₃ P] ₃	65	Cv 186.3	177.4
$Cr(CO)_2(CSe)[(EtO)_3P]_3$	64	181.6	172.5
Cr(CO) ₃ [(<u>n</u> -BuO) ₃ P] ₃	59	193.0	184.6
Cr(CO) ₂ (CS)[(<u>n</u> -BuO) ₃ P] ₃	64	186.2	177.2
$Cr(CO)_{2}(CSe)[(\underline{n}-BuO)_{3}P]_{3}$	64	181.5	172.8
Cr(CO) ₃ [(PhO) ₃ P] ₃	65	177.7	168.6
Cr(CO) ₂ (CS)[(PhO) ₃ P] ₃	6 2	170.5 _ >	162.6
Cr(CO) ₂ (CSe)[(PhO) ₃ P] ₃	6 2	166.0	159.9
ac isomers			
Cr(CO) ₂ (CS)[(MeO) ₃ P] ₃	7 2	180.7	178.2
Cr(CO) ₂ (CSe)[(MeO) ₃ P] ₃	72	178.4	174.7
Cr(CO) ₂ (CSe)[(PhO) ₃ P] ₃	68	160.1	157.0

^aIn C₆D₅CD₃ solution; chemical shifts are in ppm (+0.1 ppm) downfield from 85% H₃PO₄. ^bIn the case of X = S or Se, mer = mer I.

71

4.*

1

Q

e

٠

٩.

ノン

•

bonyl ligands (CSe > CS > CO). An increase in electron density donation from the phosphorus atoms to the relatively electron-deficient metal in the thio- and selenocarbonyl complexes may also contribute to the observed effect.

The signal for the phosphorus atom <u>trans</u> to the CX ligand is shifted upfield from that for the two <u>trans</u> phosphorus atoms. This resonance also is observed to shift to higher fields with increasing π -acidity of the CX ligand. The magnitudes of the shifts with variation in the CX ligand are comparable to those for the resonances of the two <u>trans</u> phosphorus atoms.

2.3.4 Reaction of $(\eta - Arene)Cr(CO)_2(CX)$ with Tridentate Phosphine Ligands

Reaction of triphos-U with $(\eta$ -Arene)Cr(CO)₂(CX) (X = S, Se) yrelds novel complexes characterized as <u>fac</u>-(triphos-U)Cr(CO)₂(CX) (Figure 2.12). The IR and ³¹P NMR data are presented in Tables 2.8 and 2.11, respectively, together with data for the corresponding tricarbonyl complex. As expected, the mean IR v(CO) frequency shifts to higher wavenumber on descending the chalcocarbonyl triad. The ³¹P NMR spectrum of the (triphos-U)Cr(CO)₃ complex exhibits only one signal since the three phosphorus atoms are equivalent. In the case of (triphos-U)Cr(CO)₂(CX) (X = S, Se), one phosphorus atom is trans to CX while two phosphorus atoms are

А,

$(triphos)Cr(CO)_2(CX) (X =$	$(triphos)Cr(CO)_2(CX) (X = 0, S, Se)^a$		
· · · · · · · · · · · · · · · · · · ·	<u>,</u>	· · · · · · · · · · · · · · · · · · ·	
Complex	J _{PP} Hz	δ(³¹ Ρ) ₂ ρm	
(triphos-U)	- · · · · · · · · · · · · · · · · · · ·	-24:8	
(triphos-U)Cr(CO) ₃	,	39.6	
/(triphos-U)Cr(CO) ₂ (CSe)	31	31.5(d, I = 26.9(t, I =	
triphos	28	-11.7(d, I = -15.6(t, I =	
(triphos)Cr(CO) ₃	1 12	84.0(d, I = - 115.2(t, I =	
(triphos)Cr(CO) ₂ (CS) (A)	10,24	67.4(dd, I = 79.8(dd, I = 107.5(dd, I =	
(triphos)Cr(CO) ₂ (CS) (B)	9	71.9(d, I = 100.9(t, I =	
(triphos)Cr(CO) ₂ (CSe) (A)	10,24	64.4(dd, I = 76.9(dd, I = 104.0(dd, I =	
(triphos)Cr(CO) ₂ (CSe) (B)	10	<pre>68.6(d, I = 96.7(t, I =</pre>	

J,

C

٢

^aIn CD_2Cl_2 solution; chemical shifts (+0.1 ppm) are given with positive values downfield from $85\frac{7}{2}$ H₃PO₄.

74

V

1

购

<u>trans</u> to CO. The different environments result in a doublet and a triplet splitting pattern for these complexes where the ³¹P signal <u>trans</u> to CX (triplet) is further upfield than the ³¹P resonance (doublet) of the two phosphorus atoms <u>trans</u> to CO. Comparison of the ³¹P resonance for (triphos-U)Cr(CO)₃ with that of the corresponding resonance of the phosphorus atoms <u>trans</u> to CO in (triphos-U)Cr(CO)₂-(CSe) indicates an upfield shift of 8 ppm in the selenocarbonyl complex. The phosphorus <u>trans</u> to CSe is approximately 5 ppm upfield from the other two phosphorus atoms <u>trans</u> to CO in the same complex.

÷ (

Arene displacement by triphos from $(\eta - Arene)Cr(CO)_2 -$ (CX) (X = S, Se) affords three new interesting types of fac **isomer** (A, A^* and B, where A^* is an enantiomer of A) (Figure 2.13) that are not available to the parent tricarbonyl complex. The IR spectra (Figure 2.14) of the complexes in carbonyl stretching region display only two the strong absorptions with mean values at higher energies than those for the corresponding tricarbonyl complexes [40]. Moreover, the mean v (CO) value in the case of the selenocarbonyl derivative is higher than, that for the thiocarbonyl derivative. The v(CX) (X = S, Se) modes for the A and B isomers appear as one unresolved peak. As will be shown below, the ³¹P NMR for the complexes proved crucial , in verifying the data presence of the two isomers and in establishing their rela-

tive concentrations.

Isomer A (and A^*) of (triphos)Cr(CO)₂(CX) (X = S, Se) is expected to exhibit three P NMR signals since the two terminal phosphorus atoms of the triphos ligand are trans to different ligands and the bridging phosphorus atom is in a different environment from the other two phosphorus atoms in the pure ligand. Isomer B with the bridging phosphine trans to the CX ligand is expected to have two signals since the terminal phosphorus nuclei experience identical environ-The isomers were detected in the ³¹P NMR spectrum ments. (Figure 2.15) in a 4:1 ratio (A: B). The assignment of the resonances for isomer A was facilitated by comparison with the spectrum of the parent tricarbonyl which enabled the resonance due to the bridging phosphorus atom to be easily identified. The resonances due to the terminal phosporus atoms were assigned on the basis of the trend observed for ³¹P resonances in the chalcocarbonyl complexes presented in this chapter. Thus, the resonance at higher field was wassigned to the phosphorus atom trans to CX ($X^{\circ} = S$, Se). The ³¹P NMR spectrum of isomer **B** was directly assigned by comparison with the spectrum of (triphos)Cr(CO), [41].

2.3.5. Attempted Synthesis of (cht)Cr(CO)₂(CS)

In Chapter 4 of this thesis, a kinetic investigation of

Figure 2.15. ³¹P NMR spectrum of $(triphos)Cr(CO)_2(CSe)$ in $C_6D_5CD_3$. Conditions: obtained on a Varian XL-300 FT spectrometer operating at 121.42 MHz; ¹H-decoupled; sweep width = 6,300 Hz; offset = 10,200 Hz; flip angle = 66°; repetition time = 20 s; number of scans = 200.

displacement reactions of (n-Arene)Cr(CO)₂(CX) arene (X = S, Se) complexes with (RO)₃P ligands will be presented. Similar kinetic studies have been reported in the literature for $(cht)M(CO)_3$ (M = Cr, Mo, W) and $(\eta$ -Arene)M(CO)_3 (M = Mo, W) but not for $(\eta$ -Arene)Cr(CO)₃ complexes because thê reactions are too slow. It would be of interest to compare kinetic data for tricarbonyl, thiocarbonyl and selenocar-However, it appears that molybdenum and bonyl complexes. tungsten arene thiocarbonyls are not accessible [5] due to the inability to photochemically or thermally generate the $(\eta - \text{Arene})M(CO)_2(L)_(L) = C_8H_{14}F_{C}^{\alpha}THF)$ precursor necessary to #afford $(n-Arene)M(CO)_2(CS)$ [1]. Therefore, synthesis of (cht)Cr(CO)₂(CS) was attempted in an effort to obtain a basis for direct comparison of the effects of CS and COligands on the lability of the metal-arene bond in analogous The conventional synthetic route to thiocar,complexes. bonyls through photolysis of the parent tricarbonyl complex in cis-cyclooctene and subsequent addition of CS5 to yield the thiocarbonyl complex [1] proved unfeasible because (cht)Cr(CO)₃ was photochemically inactive under the conditions employed. Only one research group has obtained spectroscopic evidence for photochemical formation of (cht)- $Cr(CO)_2(L)$ [L = py, (PhO)_3P], this after irradiation for 40 h at -40°C [42]. For $L = C_8 H_{14}$, no product formation was detected. Consequently, they postulated initial forma-

tion of $(\eta^4 - cht)Cr(CO)_3(L)$ prior to CO dissociation for the reactions where L = py and $(PhO)_3 P$. The poor nucleophilicity and the size of the cyclooctene ligand may hinder its binding to the metal at such a low temperature [42]. In the present work UV photolysis of (cht)Cr(CO); in 1:1 toluene/ cyclooctene at 0°C and at room temperature produced no detectable concentration of the cyclooctene complex. Heating the sample in conjunction with photolysis resulted in The ring exchange decomposition. procedure, which was for the synthesis of (cht)M(CO), (M = Mo, W) from reported $(\eta - Arene) M(CO)_3$ in excess cht [25], resulted in decomposition in the case of (mbz)Cr(CO), (CS). Another synthetic route to (cht)Cr(CO), involves refluxing a mixture of cht and $Cr(CO)_{c}$ either in neat ligand or in a high-boiling solvent such as heptane [25]. Therefore, Cr(CO) (CS) was synthesized following the established procedure [20], and its reaction with cht was investigated. After refluxing for 24 h, no product was obtained. Finally, attempted synthesis of $Cr(CO)_2(CS)(CH_2CN)_3$ from either $(\eta - Arene)Cr(CO)_2(CS)$ or ·Cr(CO)₅(CS) resulted in decomposition. This complex would have provided another route to the coordination of cht to the chromium thiocarbonyl moiety, as demonstrated by the synthesis of $(cht)W(CO)_3$ from $W(CO)_3(RCN)_3$ (R = alkyl) [43].

'81

References

1. I.S. Butler, Acc. Chem. Res., <u>10</u>, 359 (1977) and references therein.

82

- 2. A.M. English, Ph.D. thesis, McGill University, Montreal, Quebec, Canada, 1980.
- 3. A.M. English, K.R. Plowman and I.S. Butler, Inorg Chem., <u>21</u>, 338 (1982).
- 4. A.M. English, K.R. Plowman and I.S. Butler, Inorg. Chem., <u>20</u>, 2553 (1981).
- 5. I.M. Baibich, Ph.D. thesis, McGill University, Montreal, Quebec, Canada, 1981.
- 6. I.M. Baibich, A.M. English and I.S. Butler, Organometallics, <u>3</u>, 1786 (1984).
- 7. J.-Y. Saillard, G. LeBorgne and D. Grandjean, J. Organometal. Chem. <u>94</u>, 409 (1975).
- B. D. Cozak, I.M. Baibich and I.S. Butler, J. Organometal.
 Chem., <u>169</u>, 381 (1979).
- 9. D. Cozak, Ph.D. thesis, McGill University, Montreal,
 Quebec, Canada 1977.
- 10. D. Cozak, I.S. Butler, J.P. Hickey and L.J. Todd, J. Magn. Reson., 33, 149 (1979).

II. J.P. Hickey, I.M. Baibich, I.S. Butler and L.J. Todd, Spectrosc. Lett., <u>11</u>, 671 (1978).

- D.L. Lichtenberger and R.F. Fenske, Inorg. Chem., <u>15</u>, 2015 (1976).
- A.M. English, K.R. Plowman, I.S. Butler, E. Diemańn, and
 A. Muller, Inorg. Chim. Acta, 32, 113, (1979).
- 14. I.M. Baibich and I.S. Butler, Inorg, Chim. Acta, <u>89</u>, 73 (1984).
- 15. D. Cozak and I.S. Butler, Can. J. Spectrosc., <u>27</u>, 141 (1982).
- 16. H.W. Chen, W.L. Jolly, S.F. Xiang, I.S. Butler and J. Sedman, J. Electron Spectrosc. Relat. Phenom., <u>24</u>, 121 (1981).
- 17. B.D. Dombek and R.J. Angelici, Inorg. Chem. <u>15</u>, 1089 (1976).
- 18. 5.S. Woodard, R.J. Angelici and B.D. Dombek, Inorg. Chem., <u>17</u>, 1634 (1978).
- 19. B.D. Dombek and R.J. Angelici, J. Am. Chem. Soc., <u>98</u>, 4110 (1976).
 - 20. A.M. English, K.R. Plowman, I.M. Baibich, J.P. Hickey, 'I.S. Butler, G. Jaouen and P. Le Maux, J. Organometal. Chem., 205, 177 (1981).
- 21. R.A. Pickering and R.J. Angelici, Inorg. Chem., <u>17</u>, 2035 (1978).
- 22. B.D. Dombek and R.J. Angelici, Inorg. Chem., <u>15</u>, 2403 (1976).

23. J.R. Graham and R.J. Angelici, Inorg. Chem., <u>6</u>, 2082 (1967).

- 24. J.R. Graham and R.J. Angelici, Inorg. Chem., <u>6</u>, 992 (1967).
- 25. A. Pidcock and B.W. Taylor, J. Chem. Soc. (A), 877 (1967).
- 26. C.A.L. Mahaffy and P.L. Pauson, Inorg. Synth., <u>19</u>, 154 (1979).
- 27. G. Jaouen and G. Simonneaux, Inorg. Synth., <u>19</u>, 197 (1979).
- 28. I.S. Butler, A.M. English and K.R. Plowman, Inorg. Synth., <u>21</u>, 1 (1982).
- 29. G. Yaguspsky and M. Cais, Inorg. Chim. Acta, <u>12</u>, L27 (1975)
- 30. A. Pidcock, J.D. Smith and B.W. Taylor, J. Chem. Soc. (A), 872 (1967).
- 31. F. Zingales, A. Chiesa and F. Basolo, J. Am. Chem. Soc., <u>88</u>, 2707 (1966).
- 32. A. Pidcock, J.D. Smith and B.W. Taylor, J. Chem. Soc. (A), 1604 (1969).
- 33. R. Mathieu, M. Lenzi and R. Poilblanc, Inorg. Chem., <u>9</u>; 2030 (1970).
- 34. G.M. Bodner, Inorg. Chem., <u>14</u>, 2694 (1975).
- 35. S.S. Woodard, R.A. Jacobson and R.J. Angelici, J. Organometal. Chem., <u>117</u>, C75 (1976).
- 36. P.D. Smith, D. Dolphin and B.R. James, J. Organometal. (Chem., 208, 239 (1981).

- 37. J.-Y.Saillard and D. Grandjean, Acta Cryst., <u>B34</u>, 3772 (1978).
- G.R. Clark, K.R. Grundy, R.O. Harris, S.M. James, and
 W.R. Roper, J. Organometal. Chem. <u>90</u>, C37 (1975).
- 39. J.R. Van Wazer and J.H. Letcher, Topics in Phosphorus Chemistry, 5, 169 (1967).
- 40. R.B. King, P.N. Kapoor and R.N. Kapoor, Inorg. Chem., <u>10</u>, 1841 (1971).
- 41. R.B. King and J.C. Cloyd Jr., Inorg. Chem., <u>14</u>, 1550 (1974).
- 42. W.P. Anderson, W.G. Blenderman and K.A. Drews, J. Organometal. Chem., <u>42</u>, 139 (1972).
- 43. G.J. Kubas, Inorg. Chem., 22, 692 (1983).
- 44. R. Scheidt and D.K. Geiger, Inorg. Chem., <u>21</u>, 1208 (1982).
- 45. D. Korp and I. Bernal, Cryst. Struct. Commun., <u>9</u>, 821 (1980).

G

Chapter 3

Intramolecular Isomerization of $Cr(CO)_2(CX)[(MeO)_3P]_3$ (X = 0, S, Se) Complexes

3.1 Introduction

h

An unexpected feature of the arene displacement reactions of $(\eta$ -Arene)Cr(CO)₂(CX) (χ = S, Se) complexes investigated in Chapter 2 is the involvement of an isomerization The major product isolated from these reactions process. has been characterized as the mer I isomer and not the fac isomer observed as the major product in triene displacement reactions of Group VIB (cht)M(CO), and arene displacement reactions of $(\eta$ -Arene)M(CO), (M = Mo, W). The formation of the mer I isomer may be postulated to result from the isomerization of an intermediate in the seaction pathway. However, in recent years several reports have appeared in literature [1-10] of intramolecular isomerization of the Group VIB metal carbonyl complexes. Accordingly, the possibility that $\underline{mer}-Cr(CO)_2(CX)[(MeO)_3P]_3$ complexes are formed as a result of the intramolecular isomerization of the corresponding fac isomers was investigated.

Intramolecular rearrangement of octahedral complexes is thought to proceed through either a trigonal prismatic [11] or bicapped-tetrahedral [12] intermediate or transition
The schematic representation of these processes is state. shown in Figure 3.1. One of the first examples reported of intramolecular rearrangement in Group VIB metal carbonyl complexes was the isomerization of $Cr(CO)_{\mu}[C(OMe)Me](R_{3}P)$ (R = Et, Cy) [1,2]. Shortly after, the thiocarbonyl-containing complex trans-W(CO)_{μ} (¹³CO)(CS) was investigated by Angelici and his co-workers and was also shown to undergo isomerization through a non-dissociative mechanism [3]. Since then, Darensbourg and his research group have found that other complexes such as $M(CO)_{6-n}(R_3P)_n$ (M = Cr, Mo, W; n = 1,2; R = Me, Et, \underline{i} -Pr, <u>n</u>-Bu, OMe, OEt) undergo isomerization by a non-dissociative pathway [4-7], with the rate of reagrangement decreasing in the order Cr > W > Mo [6,7]. Similarly intramolecular isomerization of $M(CO)_4(PF_3)_2$ (M = Cr, Mo, W) has been reported [8]. Activation parameters were determined for some of the above complexes (Table 3.1). In the case of the chromium and tungsten complexes trans-Cr(CO)4-. $(^{13}CO)(Et_3P)$ [7] and trans-W(CO)₄ $(^{13}CO)(CS)$ [3], large positive enthalpies of activation and positive entropies of activation were obtained for the isomerization to the cis On the basis of the large enthalpies of activaisomers. tion, significant bond lengthening in the activated states was postulated to occur. For $\underline{trans}-W(CO)_4(1^3CO)(Et_3P)$ [7], isomerization exhibited a small enthalpy and a large negative entropy, supportive of a trigonal prismatic twist.

trigonal prismatic intermediate; (b) through a bicapped-tetrahedral intermediate.

Figure 3.1. Proposed rearrangement pathways available to octahedral complexes: (a) through

(•Å × - 17

Table 3.1. Activation Parameters Reported for Intramolecular Isomerizations of Group VIB Metal Carbonyl Complexes

10

Complex	Process .	$\Delta H^{\#}$ kcal mol ⁻¹	$\Delta S^{\#}$ cal mol ⁻¹ deg ⁻¹	Reference
Cr(CO) ₄ [C(OMe)Me](Et ₃ P)	<u>cis</u> > <u>trans</u>	21.2 <u>+</u> 0.5	-6.5 <u>+</u> 1.5	1,2
• ,	<u>trans</u> > <u>cis</u>	22.5 <u>+</u> 0.5	-3.5 <u>+</u> 1.5	
Cr(CO) ₄ (¹³ CO)(Et ₃ P)	<u>cis</u> > <u>trans</u>	26.6 <u>+</u> 4.3	1.8 <u>+</u> 13.1 /	° 7
$Mo(CO)_4(\underline{n}-Bu_3P)_2$	<u>cis</u> > <u>trans</u>	24.5 <u>+</u> 1.6	-5.6 <u>+</u> 4.8	4
· ' .	<u>trans</u> > <u>cis</u>	24.2 <u>+</u> 1.3	-9.8 <u>+</u> 4.0	
$w(co)_{4}^{(13}co)(Et_{3}P)$	<u>cis</u> > <u>trans</u>	9.2 <u>+</u> 3.7	-54.9 <u>+</u> 11.4	, , 7
w(co) ₄ (¹³ co)(cs)	trans> cis	31.5 <u>+</u> 1.9	9.1 <u>+</u> 5	, 3

د

3.2 Experimental

3.2.1 Synthesis of $Cr(CO)_2(1^3CO)_3(CS)$

(mbz)Cr(CO)₂(CS) (10 mg) was dissolved in 10 ml of THF and transferred under N_2 to a specially constructed highpressure stainless steel reaction vessel, lined with a Teflon jacket and connected to a second stainless steel chamber containing a measured amount of 13CO (transferred on a vacuum line through a manometer and adsorbed on charcoal at The solution was degassed by three freeze-thaw 77 K). cycles and frozen in liquid nitrogen. The 13 CO was transferred to the solution chamber to give 20 atm pressure. The valve to the ¹³CO storage chamber was then closed. The solution was heated at 65°C for periods of 6-24 h. Unreacted ¹³CO was then readsorbed on the charcoal in the storage chamber by opening the valve between the chambers while both were submerged in liquid N2. The product was isolated by evaporation of the solvent under reduced pressure with the temperature maintained at -15°C due to the volatility of Cr(CO)₅(CS) [13]. _¹³C NMR (10/ scans) (relative to TMS): 212.1 (d, $J \stackrel{\scriptscriptstyle d}{=} 5$ Hz, cis CO) and 209.2 ppm (t, J = 5 Hz, trans CO). FT-IR (CS₂): v(CO) 2066(m), 2056(w), 2008(m), 1988(m), 1978(s), 1958(vs), 1956(vs), 1945(m) cm⁻¹. The high-resolution mass spectrum of the product was obtained with a DuPont 21-492B spectrometer interfaced to a Hewlett Packard computer. Mol. calculated for wt: ¹³C₃¹²C₃O₅SCr, 238.897; found, 238.894.

90°

When the above reaction was carried out with less than 1 atm 13 CO pressure, partial decomposition of the starting material was observed. With the use of octane in place of THF as solvent under identical conditions to those described in the above procedure, no reaction occurred and the starting material was recovered with no observed decomposition.

91

3.2.2 Kinetic Investigation of Isomerization of Cr(CO)2-

$(CX)[(MeO)_3 P]_3 (X = 0, S, Se)$

The <u>fac</u> \longrightarrow mer I isomerization reactions of Cr(CO)₂(CX)- $[(MeO)_3 P]_3$ (X = 0, S, Se) were monitored by FT-IR spectro-Solutions of complex in DCE were prepared and transscopy. ferred under nitrogen to a thermostatted IR cell (0.1 mm pathlength, NaCl windows) (constructed in-house in accordance with a design published in Reference 14). The thermostatted cell assembly was placed in the IR beam, and IR spectra were acquired at recorded time intervals. The rate of fac + mer isomerization for the tricarbonyl complex was followed by monitoring the decrease of the $a_1 \nu$ (CO) peak of the fac isomer, while the rate of mer I + fac isomerization for the thio- and selenocarbonyl derivatives was monitored by the growth of the a' v (CO) peak of the fac isomer. Rate constants $(k_1 + k_{-1})$ were calculated from the first-order rate plot of $\ln[A_e/(A_e-A_t)]$ vs. time, where A_t is the absorbance at time t and A_e is the absorbance at equili-

Å,

brium, using a linear least-squares program (Plotrax 2 from Engineering-Science Inc., Atlanta, Georgia, U.S.A.). The rate constants for the forward and reverse reactions were obtained by solving the equations:

 $k_{c} = k_{1} + k_{-1}$

 $K_{eq} = k_1/k_{-1}$

where k_c is the calculated rate constant and K_{eq} was determined from the integrated areas of the resonances of the isomers in the ³¹P NMR spectrum recorded on a Varian XL-300 NMR spectrometer. The activation parameters were calculated from the rate constants at three different temperatures.

3.2.3 <u>Monitoring of Stereochemically Nonrigid Behaviour of</u> $\frac{Cr(CO)_2 (CX)[(MeO)_3 P]_3 (X = 0, S, Se) Complexes}{(CX)[(MeO)_3 P]_3 (X = 0, S, Se) Complexes}$

Two-dimensional (2-D) NOE ³¹P NMR experiments were performed on a Varian XL-300 spectrometer, equipped with a 5-mm broad-band probe. $Cr(CO)_2(CX)[(MeO)_3P]_3$ (X = O, S, Se) was dissolved under N₂ in deuterotoluene and heated in the probe at temperatures ranging from 30-80°C. Usually 4-32 transients were co-added to achieve a good signal-to-noise ratio. A total of 128 or 256 FIDs were acquired and zero filling was performed in the evolution domain. The 2-D NOE Accordian pulse sequence used was: $(\pi/2, t_1, \pi/2, mix, \pi, t_2)$ with a repetition delay of 2 s and incrementing the

mixing time according to the equation $t_{mix} = \kappa \times t_1$ with $\kappa = 30$. ³¹P nuclei were proton-decoupled during the evolution and detection periods. The FIDs were collected in either a [512 X 512] or [1024 X 1024] matrix. The data matrix was Fourier transformed in two dimensions and plotted by a contour plot program. The digital resolution in the evolution domain is sw_2/NI , where sw_2 is the spectral width in the evolution domain and NI is the number of increments or FIDs, while the digital resolution in the detection domain is equal to 1/AT (AT = acquisition time) and is approximately 8 Hz.

3.3 Results and Discussion

The isomerization of $\underline{\text{mer}}-\operatorname{Cr}(\&O)_2(\operatorname{CX})[(\underline{\text{MeO}})_3P]_3$ (X = S, Se) in solution at room temperature was established by monitoring the changes with time in the carbonyl region of the IR spectrum of the pure $\underline{\text{mer}}$ I isomer, obtained by TLC purification as described in Chapter 2. The $\underline{\text{mer}}$ I to $\underline{\text{fac}}$ interconversion is illustrated in Figure 3.2 for the case of the selenocarbonyl derivative, displaying the growth of the peak at 1962 cm⁻¹ characteristic of the $\underline{\text{fac}}$ isomer (Figure 2.8).

The study was also extended to the analogous \underline{fac} -Cr(CO)₃[(MeO)₃P]₃ complex. The higher-frequency v(CO) mode in the FT-IR spectrum of this complex in solution at room

temperature was observed to decrease with time, accompanied by the growth of a new peak at 1977 cm^{-1} (Figure 3.3) attributable to mer-Cr(CO), [(MeO), P], (see Table 2.7). The intensity of the second v (CO) mode of the fac isomer increased with time due to its coincidence with the intense lower-frequency v (CO) mode of the mer isomer (Figure 3.4). Thus fac-Cr(CO)₃[(MeO)₃P]₃ has been shown to also undergo rearrangement in solution at room temperature. In a recent publication [9], electrochemical oxidation has been reported to induce intramolecular isomerization of fac-M(CO), [(MeO), P], (M = Cr, Mo). This process occurs through the generation of the <u>fac</u>-{ $M(CO)_3$ [(MeO)_3 P]_3} + cationic complex which undergoes rapid conversion to $\underline{mer} - \{M(CO)_3[(MeO)_3P]_3\}^+$. Addition of one electron to the cationic mer isomer generates mer- $M(CO)_{3}[(MeO)_{3}P]_{3}$. The authors mention that the neutral chromium complex also exhibits intramolecular isomerization, but at a much slower rate than the cation.

In order to establish that the isomerization of $Cr(CO)_2(CX)[(MeO)_3P]_3$ (X = S, Se) proceeds through a nondissociative mechanism, the isomerization of <u>mer-Cr(CO)_2</u>- $(CX)[(MeO)_3P]_3$ was followed in solution in the presence of excess (PhO)_3P at 60°C using FT-IR spectroscopy. No incorporation of (PhO)_3P into the complex was observed, as evidenced by the lack of any peaks in the FT-IR difference spectrum of the equilibrium mixtures obtained in the

94

\$

dichloroethane) in the carbony stretching region of (a) fac- $Cr(CO)_3[(MeO)_3P]_3$ and (b) an equilibrium mixture of this complex and its mer isomer.

-

presence and absence of (PhO)₃P. Furthermore, there was no. shift in the position of the isosbestic point obtained for the isomerization process. The above evidence indicates that the isomerization occurs through a non-dissociative pathway:

In a record experiment, arene displacement from $(mbz)Cr(CO)_{2}(CS)$ was effected in the presence of 13CO at 60°C for 6 h in THF to yield $Cr(CO)_2(^{13}CO)_3(CS)$. The splitting pattern in the ¹³C NMR spectrum of this product (Figure 3.5) reveals that only three labelled carbonyl groups are present, while a fourth ¹³CO ligand would have been incorporated if isomerization occurred by a dissociative mechanism subsequent to product formation. The two ¹³CO resonances observed were identified on the basis of the previous assignment of the 13C NMR spectrum of Cr(CO)₅(GS) [13]. The higher-field resonance (209.2 ppm) is attributed to ^{13}CO trans to the CS ligand and is split into a triplet, while the lower-field resonance (212.1 ppm) due to 13CO in the equatorial plane is split into a doublet. This splitting pattern is consistent with both the fac and mer I configurations of $Cr(CO)_{2}(CS)L_{3}$ (L = ¹³CO), whereas the mer II isomer, having three ¹³CO ligands in the equatorial plane, would give rise to a singlet which may be 'hidden under the doublet. While the number of isomers of $Cr(CO)_2(^{13}CO)(CS)$ in the sample thus cannot be established from the $^{1.3}$ C NMR

, 98

Figure 3.5. ¹³C NMR spectrum of $Cr(CO)_2({}^{13}CO)_3(CS)$ in CD_2Cl_2 . Conditions: obtained of a Varian XL-200 FT spectrometer operating at 50.31 MHz; sweep width = 20,000 Hz; offset = 5,000 Hz; flip angle = 30°; repetition time = 0.6 s; number of scans = 10.

spectrum, the abundance of peaks in the carbonyl region of the IR spectrum (Figure 3.6) establishes that more than a isomer is present. The observed frequencies are single tabulated in Table 3.2, together with the frequencies calculated in the energy-factored force field approximation on the basis of force constants reported for Cr(CO)₅(CS) [15]. The comparison of the observed and calculated frequencies reveals that fac-Cr(CO)₂ (¹³CO)₃ (CS) is present together with. some amount of either the mer I or the mer II isomer or These results do not demonstrate definitively that both. Cr(CO)₂ (¹³CO)₃ (CS) also undergoes intramolecular isomerization, since the observation of at least two isomers of this complex may be the result of a rearrangement process during the course of the arene displacement reaction. However, they do establish that if $Cr(CO)_2(^{13}CO)_3(CS)$ does isomerize, it does so by a non-dissociative mechanism, as does $W(CO)_{\mu}$ (¹³CO)(CS) [3].

The rate constants for $\underline{fac} \rightarrow \underline{mer}$ and $\underline{mer} \rightarrow \underline{fac}$ isomerization of $Cr(CO)_2(CX)[(MeO)_3P]_3$ (X = S, Se; $\underline{mer} = \underline{mer}$ I) and $Cr(CO)_3[(MeO)_3P]_3$ were calculated from the opposing first-order reactions

 $\underbrace{fac-Cr(CO)_{2}(CX)[(MeO)_{3}P]_{3}}_{k_{-1}} \xrightarrow{k_{1}} \underbrace{mer-Cr(CO)_{2}(CX)[(MeO)_{3}P]_{3}}_{k_{-1}}$

(X = 0, S, Se)

. 100

Table 3.2. Observed and Calculated Frequencies (cm^{-1}) for $\nu(CO)$ Modes of $Cr(CO)_2(^{13}CO)_3(CS)$ in CS_2

)bserved	\searrow	Calculated ^a		
	fac	mer I	<u>mer</u> II	
2066	2067	2069	2066	
2056	-		· _	
2008	2007	÷	2014	
1988		1991 1989	1986	
1978	1978			
\$		1972		
1958	1959		,	
1956	1955	-	1957	
1945		1945	1945	

^aCalculated from energy-factored anharmonic force constants reported in Reference 15 for $Cr(CO)_5(CS)$ in CS_2 solution: $k_{CO}(ax) = 16.63$; $k_{CO}(eq) = 16.46$; $k_{CO,CO}(ax,eq)$ = 0.22; $k_{CO,CO}(cis)(eq,eq) = 0.24$; $k_{CO,CO}(trans)(eq,eq) = 0.47$ mdyn A^{-1} .

using the equations:

$$K_{eq} = k_1/k_{-1} = \frac{[mer - Cr(CO)_2(CX)[(MeO)_3P]_3]}{[fac - Cr(CO)_2(CX)[(MeO)_3P]_3]}$$

and

$$k_1 + k_{-1} = t^{-1} \ln A_e / (A_e - A_t)$$

where A_t is the absorbance at time t and A_e is the absorbance at equilibrium of a v(CO) mode in the FT-IR spectrum.

In order to determine the rates of the forward and reverse reactions, it was necessary to measure the distribution of the isomers at equilibrium. ³¹P NMR spectroscopy was the technique chosen. The relative intensities of the peaks in a ³¹P FT-NMR spectrum are a reliable measure of relative concentration providing the nuclei are given sufficient time to relax between pulses. Consequently, the spinlattice relaxation times, $T_1 \neq$ were determined for the isomers under investigation and the values obtained are shown in Table 3.3. It is of interest to note that the relaxation times decrease in the order P trans to P > P trans to CX (X = 0, S, Se). This trend has been observed for other M(CO)_n[R₃P]_{6-n} complexes and is attributed mainly to dipoledipole relaxation [16]. Using gated decoupling, with an interval between pulses approximately ten times longer than

Table 3.3. Spin-Lattice Relaxtion Times (T_1) for Phosphorus Nuclei in $Cr(CO)_2(CX)[(MeO)_3P]_3$ (X = 0, S, Se)

Q

۰. ۲	T ₁ (s)				
Complex	P <u>trans</u> to P	P <u>trans</u> to CS/CSe	P <u>trans</u> to CO		
fac-Cr(CO) ₃ [(MeO) ₃ P] ₃		•	2.35 <u>+</u> 0.03		
<u>mer</u> -Cr(CO) ₃ [(MeO) ₃ P] ₃	1.84 <u>+</u> 0.03	, · · · · ·	2.37 <u>+</u> 0.06		
<u>fac</u> -Cr(CO) ₂ (CS)[(MeO) ₃ P] ₃		2.40 <u>+</u> 0.04	2.28 <u>+</u> 0.03		
<u>mer</u> I Cr(CO) ₂ (CS)[(MeO) ₃ P] ₃	1.76 <u>+</u> 0.05	2.45 <u>+</u> 0.02	-		
<u>mer</u> II $Cr(CO)_2(CS)[(MeO)_3P]_3$	1.86+0.05	-	2.41+0.10		
<u>fac</u> -Cr(CO) ₂ (CSe)[(MeO) ₃ P] ₃		3.17 <u>+</u> 0.24	2.84 <u>+</u> 0.22		
<u>mer</u> I Cr(CO) ₂ (CSe)[(MeO) ₃ P] ₃	2.40+0.14	3.18+0.23			

 T_1 , thus allowing the nuclei sufficient time to relax, the relative ratios of the isomers present were obtained (Figures 3.7-3.9). The equilibrium constants were not found to be temperature dependent in the range of 20°C to 80°C. For all three complexes, the <u>mer</u> isomer (<u>mer</u> I in the case of the CS and CSe complexes) is predominant and the equilibrium <u>mer/fac</u> ratio is approximately the same (K_{eq} = 5.0).

Although the mer II isomer has not been observed spectroscopically by FT-IR or ¹³C NMR, the ³¹P NMR spectra of both the thiocarbonyl and selenocarbonyl complexes provided some empirical evidence of a minor component (~ 5% of the mer I isomer) with a splitting pattern and chemical shift values consistent with the mer II configuration (Figures 3.8 The appearance of a doublet and a triplet with a and 3.9). coupling constant similar to that of the mer I isomer indicates a structure in which two (MeO), P ligands are trans to each other and cis to a third (MeO), P. The location of the triplet resonance downfield from the triplet of both fac and mer I isomers is indicative of a phosphorus trans to a CO rather than a CX, while the upfield shift of the doublet resonance relative to that of $\underline{mer}-Cr(CO)_3[(MeO)_3P]_3$ (see Table 2.10), indicating a lower ⁹electron density at the metal centre, confirms the presence of a CX ligand. The low concentration of the mer II isomer relative to the fac or I isomer can be interpreted in terms of a site mer

Figure 3.7. ³¹ P NMR spectrum (in deuterotoluene) of an equilibrium mixture of the isomers of $Cr(CO)_3[(MeO)_3P]_3$. K_{eq} = <u>mer /fac</u> = 5.0. Conditions: obtained on a Varian XL-300 FT spectrometer operating at 121.42 MHz; ¹H-decoupled; sweep width = 2,700 Hz; offset = 22,900 Hz; flip angle = 66° ; repetition time = 20 s; number of scans = 4.

(;

Figure 3.8. ³¹P NMR spectrum (in deuterotoluene) of an equilibrium mixture of the isomers of $Cr(CO)_2(CS)[(MeO)_3P]_3$. K_{eq} = <u>mer</u> I/fac = 5.0, <u>mer</u> I/mer II = 20.3. Conditions: obtained on a Varian XL-300 FT spectrometer operating at 121.42 MHz; ¹H-decoupled; sweep width = 2,600 Hz; offset = 22,100 Hz; flip angle = 90°; repetition time = 40 s; number of scans = 400.

Figure 3.9. ³¹P NMR spectrum (in deuterotoluene) of an equilibrium mixture of the isomers of $Cr(CO)_2(CSe)[(MeO)_3P]_3^{\circ}$. $K_{eq} = \underline{mer} \ I/\underline{fac} = 5.0, \ \underline{mer} \ I/\underline{mer} \ II = 20.3.$ Conditions: obtained on a Varian XL-300 FT spectrometer operating at 121.42 MHz; ¹H-decoupled; sweep width = 3,400 Hz; offset = 20,900 Hz; flip angle = 90°; repetition time = 40 s; number of scans = 400.

preference of the CX ligand. In studies of the <u>trans</u> \rightarrow <u>cis</u> isomerization of a series of W(CO)₄(CS)(L) complexes [17], \rightarrow it was found that $K_{eq} = [cis]/[trans]$ decreased with an increase in the ratio of σ -donor/ π -acceptor strength of the ligand L. Therefore, the thiocarbonyl ligand appears to exhibit a preference for a site <u>trans</u> to a strong σ -donor/ weak π -acceptor. Consequently, the <u>fac</u> and <u>mer</u> I isomers of $Cr(CO)_2(CS)[(MeO)_3P]_3$, in which the CS ligand is <u>trans</u> to (MeO)_3 P, would be predicted to be favoured with respect to the <u>mer</u> II isomer, in which CS is <u>trans</u> to CO. While the site preference of the CSe ligand has not been investigated, it is expected to be the same as that of CS, due to the similarity in the bonding properties of these ligands.

The rate constants for the <u>fac</u> \longrightarrow <u>mer</u> isomerization of $Cr(CO)_2(CX)[(MeO)_3P]_3$ (<u>mer</u> I for X = S, Se) revealed that $k_1 > k_{-1}$ (Table 3.4) and that k_1 decreases in the order X = Se > S > O. The ln $k_1 \cdot vs$ 1/T plots are shown in Figure 3.10. The activation parameters for the forward and reverse processes are given in Table 3.5. The activation enthalpies are large and positive while the entropies are negative. Moreover, for the three chalcocarbonyl complexes examined, the forward and reverse reactions differ mainly in the entropy value, indicating steric factors determine the equilibrium ratio. The greater stability of the <u>mer</u> or <u>mer</u> I isomers may thus be postulated to result from the

Table 3.4. First-Order Rate Constants for the Isomerization Processes of $Cr(CO)_2(CX)[(MeO)_3P]_3$ (X = 0, S, Se) in Dichloroethane

Observed CX		T	Rate constants $X \ 10^4 \ (s^{-1})$		
	process	°c	$k_1 + k_{-1}$	k ₁	k_1)
					·
CSe	<u>mer</u> I> <u>fac</u>	50.4	8.82	7,35	1.47
	1	38.0	3.28	2.73	0.55
5	•	32.6	2.14	1.78	0.36
`C S	<u>fac</u> > <u>mer</u> I	61.8	15.28	12.73	2.55
	·	45.3	3.88	3.23	0.65
۔ ب	•	23.4	5.96	0.50	0.10
CO	<u>fac</u> > <u>mer</u>	59.0	3.58	2.98	0.60
	- •	49.2	1.64	1.37	0.27
er	· · · · · ·	22.0	0.12	0.10	0.02
-	· · · · ·		·, · ·		· · · · · · · · · · · · · · · · · · ·
		· .	e ,	~	ې م

Ē

Figure 3.10. Plots of in k_1 vs. 1/T for the fac $\leftrightarrow = mer$ isomerization of $Cr(CO)_3[(MeO)_3P]_3$ (\blacklozenge) and the fac $\leftrightarrow = mer$ I isomerization of $Cr(CO)_2(CS)[(MeO)_3P]_3$ (\blacktriangle) and $Cr(CO)_2(CSe)[(MeO)_3P]_3$ (\blacksquare).

<u>_</u>

F

Table	3.5.	Activation	Parameters	for	Isomerization	Processes	of	
Cr(CO),	(CX)[(H	$(e_0)_3 P_3 (X =$	0, S, Se)		•			

\$

ç

Complex	Process	ΔH [#] kcal mol ⁻¹	$\Delta S^{\#}$ cal mol ⁻¹ deg ⁻¹
Cr(CO) ₂ (CSe)[(MeO) ₃ P] ₃	<u>fac</u> > <u>mer</u> I	15.6+0.3	-25 <u>+</u> 1
Cr(CO) ₂ (CSe)[(MeO) ₃ P] ₃	<u>mer</u> I> <u>fac</u>	15.5 <u>+</u> 0.3	-28 <u>+</u> 1
Cr(CO) ₂ (CS)[(MeO) ₃ P] ₃	fac> mer I	16.6 <u>+</u> 0.4	-22 <u>+</u> 1
Cr(CO) ₂ (CS)[(MeO) ₃ P] ₃	mer I> fac	16.6+0.4	-25 <u>+</u> 1
Cr(CO) ₃ [(MeO) ₃ P] ₃	fac> mer	18.0 <u>+</u> 0.3	-20 <u>+</u> 1
Cr(CO)3[(MeO)3P]3-	mer> fac	18.0 <u>+</u> 0.3	-24 <u>+</u> 1

112

,

V

decreased steric interaction between phosphite ligands in these isomers relative to the <u>fac</u> isomers.

Large enthalpies of activation have been measured for the intramolecular isomerization of other Group VIB metal carbonyl complexes (Table 3.1) and have been accounted for in terms of bond lengthening in the activated complex prior to or during the course of rearrangement [7]. In comparing the activation parameters of the selenocarbonyl and thiocarbonyl complexes to those of their tricarbonyl analogue, it is of interest to note that the enthalpy of activation is smaller for the former complexes. This is in line with the observed trans labilizing effect of CS and CSe ligands in dissociative processes. The increasing negative entropy of activation in the order 0 < S < Se can be related to the relative sizes of these atoms (Se > S > 0).

Two-dimensional NMR spectroscopy [18] has recently been employed in the study of chemical exchange processes of organometallic complexes [19,20]. ^cIn the present work, a 2-D NOE ³¹P NMR investigation demonstrated dynamic intramolecular interconversion between the <u>mer</u> I and <u>mer</u> II isomers of $Cr(CO)_2(CX)[(MeO)_3P]_3$ (X = S, Se) taking place on the time scale of the NMR experiment at temperatures above 50°C (Figures 3.11-3.13). The intramolecular nature of the process was demonstrated by the lack of correlation in 2-D NMR between resonances of the complexes and those of excess ligand present in solution. However, the <u>fac</u> to <u>mer</u> I or

Figure 3.11. 2-D ³¹P contour map for $Cr(CO)_2(CS)[(MeO)_3P_{3}]$ in deuterotoluene at 61°C on a Varian XL-300 spectrometer; an NOE accordian pulse sequence was employed with K = 30. All three isomers exhibit an AB₂ coupling pattern (chemical shifts are relative to H₃PO₄ as external standard): $\nabla = \underline{mer}$ II P₂,P₃(d) 191.4 ppm, P₁(t) 184.0, ppm (J = 64 Hz); $\bullet = \underline{mer}$ I P₂,P₃(d) 188.6 ppm, P₁(t) 181.2 ppm (J = 64 Hz); $X = \underline{fac} P_2,P_3(d)$ 181.1 ppm, P₁(t) 178.5 ppm (J = 72 Hz).

Figure 3.12. 2-D ³¹P contour map for $Cr(CO)_2(CSe)[(MeO)_3P]_3$ in deuterotoluene at 61° C on a Varian XL-300 spectrometer; an NOE accordian pulse sequence was employed with K = 30. All three isomers exhibit an AB₂ coupling pattern (chemical shifts are relative to H₃PO₄ as external standard): $\nabla = \underline{mer}$ II P₂,P₃(d) 187.2 ppm, P₁(t) 180.3 ppm (J = 63 Hz); $\bullet = \underline{mer}$ I P₂,P₃(d) 184.9 ppm, P₁(t) 177.5 ppm (J = 63 Hz); $X = \underline{fac}$ P₂,P₃(d) 178.6 ppm, P₁(t) 174.7 ppm (J = 72 Hz).

NTENSITY

(

<u>fac</u> to <u>mer</u> II interconversion was not observed at temperatures ranging up to 80°C for either the selenocarbonyl or the thiocarbonyl complex. Temperatures higher than 80°C resulted in some decomposition of these complexes.

The 2-D NMR studies of the mer I to mer II isomerization of $Cr(CO)_2(CX)[(MeO)_3P]_3$ (X = S, Se) provided information 'on the possible nature of the intermediates involved. The bicapped-tetrahedron mechanism would preserve the coupling pattern for each phosphorus nucleus in the two isomers (Figure 3.14). On the other hand, for the trigonal prismatic twist, the triplet of the mer I isomer would correlate with the doublet of the mer II isomer while the doublet of the mer I isomer would correlate with both the triplet and the doublet in the spectrum of the mer II isomer. The 2-D NMR spectra (Figures 3.11-3,12) illustrate both NOE and possible chemical exchange between the phosphorus nuclei of the same molecule by the distinct symmetrical off-diagonal contour on the exchange map. More importantly, however, the exchange of the mer I to mer II isomer provides convincing proof of dynamic rearrangement via a trigonal prism rather than a bicapped tetrahedron, as seen from the correlation of the off-diagonal peak of the doublet of the mer II isomer (bottom left-hand side of the contour map) to the doublet and triplet of mer I, while the triplet of the mer II is exchanging with the doublet of mer I.

Figure 3.14. Schematic representation of possible pathways for the interconversion of the mer I and mer II isomers of $Cr(CO)_2(CX)[(MeO)_3P]_3$ (X = S, Se): top, trigonal prismatic intermediate; bottom, bicapped-tetrahedral intermediate. For the sake of clarity, the (MeO)_3P ligands have been represented by P₁, P₂ and P₃.

On the basis of the observation that mer I + mer II isomerization of $Cr(CO)_{2}(CX)[(MeO)_{3}P]_{3}$ (X = S, Se) proceeds through a trigonal prismatic twist, it is highly probable that the mer I + fac isomerization of these complexes, as well as the fac + mer isomerization of the tricarbonyl analogue, occurs in the same manner. The failure to observe the dynamic interconversion, of the fac and mer isomers may imply that the rearrangement is taking place, at too slow a rate to be observed on the NMR time scale, i.e., that the phosphorus nuclei are relaxing at a faster rate than the time required for rearrangement to take place at these tem-This in turn indicates that the energy barrier peratures. for mer I to mer II isomerization is lower than that for mer Figure 3.15 shows the schematic reprefac exchange. sentation of the rearrangement of the thio- or selenocarbonyl complex through a trigonal prismatic twist. Thiś mechanism should involve a large negative entropy for interconversion from mer I to fac due to the steric hindrance resulting from the eclipsing of two phosphites in the activated state. However, the interconversion of the mer I to mer II isomer should take place with a smaller entropy of activation; in this case, the activated state would have the phosphite ligands eclipsing CO and CX ligands, thus minimiz-The activation parmeters obtained ing the steric effect. for the interconversion of fac and mer isomers suggest that

fac

Ш

. እ

Ĩ

σ.

.mer H

Figure 3.15. Schematic representation of the intramolecular isomerization of $Cr(CO)_2(CX)[(MeO)_3P]_3$ (X = S, Se) through trigonal prismatic (lower pathway) or bicapped-tetrahedral (upper pathway) intermediates.

mer f

120 .

In the assumed trigonal prismatic intermediate the unfavourable steric interactions between eclipsed pairs of ligands are minimized by the occurrence of some bond lengthening. Figure 3.15 illustrates that a 2-D NOE $^{3,1}P$ NMR experiment would allow the trigonal prismatic and bicapped-tetrahedron pathways to be distinguished in the case of <u>fac</u> + <u>mer</u> I isomerization as well, if this process could be detected. These two pathways would not be distinguished by ^{3}PD $^{3,1}P$ NMR in the case of the tricarbonyl complex due to the simplicity of the spectrum of the <u>fac</u> isomer, with only a single resonance.

The observation of an off-diagonal correlation between the doublet and triplet of the fac isomer in the 2-D ³¹P NMR spectrum of $Cr(CO)_2(CX)[(MeO)_3P]_3$ (X = S, Se) (Figures 3.11 and 3.12) may be due to chemical exchange between equivalent fac isomers. The energy barrier for such a rearrangement by a trigonal prismatic mechanism would be expected to be of comparable size to the barrier for mer I to mer II interconversion since the activated state would involve in this case as well the eclipsing of each phosphite by a CO or CX , ligand, rather than by a second phosphite ligand. However, the possibility that the observed correlation is solely due to NOE cannot be ruled out at the present time. It is, however, possible to distinguish chemical exchange between fac isomers and NOE in the case of $(triphos)Cr(CO)_2(CX)$ (X = S, Se), since two fac configurations of these complexes are

chemically distinguishable. Initial 2-D NOE ³¹P NMR investigation of these complexes in deuterotoluene at temperatures ranging from 60-90°C revealed no off-diagonal correlation between the A and B isomers. However, the steric constraints and electronic properties of the triphos ligand are quite different from those of the trimethylphosphite ligands in fac-Cr(CO)₂ (CX)[(MeO)₃P]₃ so that the evidence obtained for the triphos complexes is not necessarily pertinent to the trimethylphosphite complexes.

Vancea et al. have examined the stereochemical nonrigidity of $\underline{cis}-M(CO)_{\mu}(ER_3)_{2}$ (M = Fe, Ru, Os; E = Si, Ge, Sn, Pb; R = organic group or halogen derivatives [21]. In these complexes, the axial and equatorial carbonyls exhibit one signal in the carbonyl region of the ¹³C NMR spectrum at room temperature signifying that the axial and equatorial carbonyls are exchanging extremely fast on the NMR time scale, through an intramolecular rearrangement process. These complexes become stereochemically rigid at, or below, approximately -50°C. The crystal structures of cis-Fe(CO), - $(SnPh_3)_2$ [22] and <u>cis</u>-Fe(CO)₄) $(SiMe_3)_2$ [23] are significantly distorted from octahedral geometry with the latter complex being particularly distorted, its structure being described as "a pseudo-bicapped tetrahedron with the trimethylsilyl groups as capping ligands" [23]. The most striking feature of this complex is the 141.2(1) angle between

the two CO <u>trans</u> ligands instead of the 180° expected for a regular octahedron. Also, the Si-Fe-Si angle is $111.8(1)^{\circ}$. The <u>cis</u>-Fe(CO)₄ (SnPh₃)₂ complex is similarly distorted with an angle between trans CO groups of 159.6(4)°, and an Sn-Fe-Sn angle of 95.95°. The above distortions provided support for the possibility that rearrangement occurs through a bicapped-tetrahedral intermediate. The authors further showed that this rearrangement involved a <u>cis</u> to <u>trans</u> to <u>cis</u> sequence where the carbonyls become equivalent in the trans isomer.

The crystal structures of $Cr(CO)_2(CX)[(MeO)_3P]_3$ (X = S, Se), described in Chapter 2, exhibit no marked distortions of the magnitude reported for <u>cis</u>-Fe(CO)₄(SiMe₃)₂ or <u>cis</u>-Fe(CO)₄(SnPh₃)₂. All the angles between <u>trans</u> ligands are approximately 174 ± 1° for both complexes. On this basis, rearrangement by a bicapped-tetrahedron mechanism would not appear to be favoured.

References

(*

- 1. H.F. Fischer, E.O. Fischer and H. Werner, Angew. Chem. Internat. Edit, 11, 644 (1972).
- 2. H.F. Fischer, E.O. Fischer and H. Werner, J. Organometal. Chem., 73, 331 (1974).
- B.D. Dombek and R.J. Angelici, J. Am. Chem. Soc., <u>98</u>, 4110 (1975).
- 4. D.J. Darensbourg, Inorg. Chem., 18, 14 (1979).
- A. D.J. Darensbourg and B.J. Baldwin, J. Am. Chem. Soc., 101_{t} 6447 (1979).
- 6. D.J. Darensbourg, R. Kudaroski and W. Schenk, Inorg. Chom., <u>21</u>, 2488 (1982).
- 7. D.J. Darensbourg and R.L. Gray, Inorg. Chem., 23, 2993 (1984).
- 8. E.L. Denham and R.J. Clark, Abstracts, 189th Meeting of the American Chemical Society, Miami, Florida, April-May, 1985, paper INOR-236.
- A.M. Bond, S.W. Carr and R. Colton, Organometallics, 3,
 541 (1984).
- .10. F.A. Van-Catledge, S.D. Ittle and J.P. Jesson, Organometallics, 4, 18 (1985).
 - 11. E.L. Muetterties, J. Am. Chem. Soc., 90, 5097 (1968).
 - R. Hoffmann, J.M. Howell and A.R. Rossi, J. Am. Chem.
 Soc., <u>98</u>, 2484 (1975).

- 13. A.M. English, K.R. Plowman, I.M. Baibich, J.P. Hickey, I.S. Butler, G. Jaouen and P. Le Maux, J. Organometal. Chem., <u>205</u>, 177 (1981).
- 14. D.G. Cameron and R.N. Jones, Appl. Spectrosc., <u>35</u>, 448 (1981).
- 15. A.M. English, K.R. Plowman and I.S. Butler, Inorg. Chem., <u>20</u>, 2553 (1981).
- 16. P.S. Pregosin and R.W. Kunz, "³¹P and ¹³C NMR of Transition Metal Phosphine Complexes", Springer-Verlag, New York, 1979, p.12.
- 17. S.S. Woodard, R.J. Angelici and B.D. Dombek, Inorg. Chem., 17, 1634 (1978).
- 18. G. Bodenhausen and R.R. Ernst, J. Am. Chem. Soc., <u>104</u>, 1304 (1982).
- 19. R. Benn, Angew. Chem., Int. Ed. Engl., 21, 626 (1982).
- 20. A.M. Kook, P.N. Nicklas, J.P. Selegue and S.L. Smith, Organometallics, 3, 499 (1984).
- 21. L. Vancea, R.K. Pomeroy and W.A.G. Graham, J. Am. Chem, Soc., 98, 1407 (1976).
- 22. R.K. Pomeroy, L. Vancea, H.P. Calhoun and W.A.G. Graham, Inorg. Chem., <u>16</u>, 1508 (1977).
- 23. L. Vancea, M.J. Bennett, C.E. Jones, R.A. Smith and
 W.A.G. Graham, Inorg. Chem., <u>16</u>, 897 (1977).

Chapter 4

<u>Kinetic Investigations of Arene Labilization in $(\eta - Arene)$ -</u> Cr(CO)₂(CX) (X = O, S, Se) Complexes

4.1 Introduction

The study of arene labilization in Group VIB metal tricarbonyl complexes has been of considerable interest for many years [1-8], and the mechanism of arene displacement reactions remains under investigation to date [9-11]. Such interest stems from the importance of these complexes in catalytic hydrogenation [5,12] as well as the potential utility of arene exchange processes in the liberation of arenes from such complexes following their derivatization by, for example, Friedel-Crafts reactions [12].

Arene and triene displacement from $(\eta-\text{Arene})M(\text{CO})_3$ and $(\text{cht})M(\text{CO})_3$ (M = Cr, Mo, W) by a monodentate ligand L [L = $(\text{RO})_3$ P, R_3 P, RCN, R_nCl_{3-n}P (n = 1,2; R = alkyl or aryl)] has been reported [2-7] to yield <u>fac-M(CO)_3L_3</u>. Kinetic investigations of arene displacement reactions of $(\eta-\text{Arene})M(\text{CO})_3$ (M = Mo, W) [2,3,5] and $(\eta-\text{naphthalene})Cr(\text{CO})_3$ [5] complexes revealed that they follow a second-order rate equation, first order with respect to both the complex and the attacking ligand. In the case of the $(\text{cht})M(\text{CO})_3$ (M = Cr, Mo, W) complexes, initial studies involving cht displacement by

 $(MeO)_3$ P indicated that these reactions also follow a secondorder rate law, first order with respect to the complex and with respect to the attacking ligand [3]. In later studies, employing RCN (R = alkyl and aryl) as entering ligand, the reaction was found to be second order in the case of Cr but third order for Mo and intermediate between second and third order for W [6].

A mechanism for arene displacement reactions of this. type was first proposed by Zingales <u>et al</u>. [1] in their study of arene substitution by $R_n Cl_{3-n}P$ (n = 1,2; R = alkyl or aryl) in (η -Arene)Mo(CO)₃ complexes, and has been widely accepted. In a recent kinetic investigation of arene exchange and arene displacement reactions, Traylor <u>et al</u>. [10] demonstrated that this same mechanism can account for the observed kinetic behaviour of both arene displacement and arene exchange, as well as catalyzed arene exchange, reactions of (η -Arene)Cr(CO)₃. The mechanism involves a slippage process whereby the ring initially undergoes a transformation from an η^6 to an η^4 bonding mode prior to attack by the incoming nucleophile.

If the rate constant for the reverse process, k_{-1} , were small, then the reaction would be zero order with respect to the incoming ligand. Since this is not the case in any of the arene displacement reactions studied, where no dissociative term has been found, it is assumed that $k_{-1} >> k_2$. Thus, the arene displacement reactions exhibit a first-order dependence on the concentration of both the incoming ligand and the complex. Subsequent steps leading to total displacement of the arene are rapid, and generally do not contribute to the observed rate. The variation in the reaction order observed for cht displacement from $(cht)M(CO)_{3}$ (M = Mo, W) by nitriles was attributed to the weak nucleophilic strength of the nitriles resulting in comparable rates of nitrile dissociation from and coordination of a second nitrile to the proposed intermediate $(\eta^4-cht)M(CO)_{3}(RCN)$ (M = MO, W) [6].

The above mechanism is consistent with various considerations that have been put forward in the literature regarding the reaction pathways available to complexes of this type. Basolo [13] has stated that "Substitution reactions of 18-electron transition metal organometallic compounds may proceed by an associative mechanism provided the metal complex can delocalize a pair of electrons onto one of its ligands." Muetterties <u>et al</u>. [14] postulated for the reaction of (bz)ML₃ complexes with L' that "Mechanistically

a reasonable intuitive scenario would start with an n^6 to n^4 dissociation of the coordinated arene ... An associative mechanism (or an interchange mechanism of associative intimate character) for the attack of an external ligand on n^6 -benzene-ML, would seem unlikely." Such a "ring slippage" creates a vacant orbital at the metal, providing a lowenergy associative reaction pathway [14]. Muetterties et al. also stated that the resulting η^4 complex should be sensitive to steric effects induced by either a substituent on the ring or on the incoming nucleophile, and that the n^4 ring must undergo distortion from planarity to allow the incoming ligand access to the metal. They estimated that the energy required to bend the coordinated benzene ring in (bz)Cr(CO), from planarity, as well as to distort the Cr(CO), group to facilitate acceptance of the incoming ligand, is about 15 kcal mol⁻¹ [14].

In this chapter, an investigation of the kinetics of arene displacement from $(\eta - \text{Arene}) \text{Cr}(\text{CO})_2(\text{CX})$ (X = S, Se) complexes by tertiary phosphites is reported. This represents the first kinetic study of an organometallic selenocarbonyl derivative, ever undertaken. These studies will provide a quantitative measure of the influence of the chalcocarbonyl ligands on arene lability in these complexes.

4.2 Experimental

4.2.1 Sources of Materials

All $(\eta$ -Arene)Cr(CO)₂(CX) (X = 0, S, Se) complexes and $(cht)Cr(CO)_3$ were purified by TLC prior to use, and their purity was established by the absence of any superfluous peaks in the v(CO) region of their FT-IR spectra. Trimethyl- and triphenylphosphite, gold label purity (99+%), triethylphosphite, 99% purity, and trimethylphosphate, gold label purity (99+%), were purchased from Aldrich Chemical Co. and were used without further purification. Tri-nbutyl- and tricyclohexylphosphite were obtained from Strem The phosphites were handled under an atmosphere Chemicals. of prepurified N₂ (3 ppm O₂, 5 ppm H₂O). ³¹P NMR spectra of the phosphites over a full spectral window (40,000 Hz) were measured periodically to verify the absence of any phosphorus-containing impurities. Fresh bottles of phosphite (100 ml) were used every third run or within four days of opening the bottle. The methylcyclohexane (99%) solvent was distilled over sodium under nitrogen and transferred under nitrogen to a nitrogen-purged flask containing a weighed amount of the complex. Dichloroethane (99%) was distilled over calcium chloride under nitrogen and transferred according to the above procedure.

4.2.2 Preparation of Samples

All procedures were performed under a nitrogen atmosphere in a stainless steel glove box which was periodically evacuated and purged with nitrogen. The nitrogen purge was maintained throughout the sample preparation procedure. Typically two samples of 1.40 mg of $(\eta - \text{Arene})Cr(CO)_2CX$ (X = O, S, Se) were weighed out on a Cahn electrobalance (precision ±0.01 mg) and were transferred to two 25-m1 volumetric flasks fitted with hollow Teflon plugs capped flasks were then purged with with rubber septa. The nitrogen prior to transferring the solvent. A third flask was filled with distilled solvent under nitrogen. The three flasks were then transferred to the glove box, together with , at least four matched quartz cuvettes (1-cm pathlength) fitted with Viton O-rings, the bottle containing the phosphite ligand and two l-ml (±1%) Hamilton syringes with Teflon barrels. A measured volume of the solution was syringed out and replaced by an equal volume of phosphite 800-3000 (providing [L] times in excess οf $((\eta - Arene)Cr(CO)_2(CX))$. The flask was then capped and shaken vigorously. One cuvette was filled with the solution containing only (n-Arene)Cr(CO)₂(CX). Another cuvette was filled with the solution containing both phosphite ligand and complex. The other two cuvettes were filled with pure solvent.

131 '

The cuvettes were transferred to a Varian Cary 210 UVvis spectrophotometer equipped with a thermostatted multisample support assembly. Due to the elevated temperatures used (> 45°C), two water-cooled jackets (supplied by Varian) were placed on either side of the heating assembly to protect the spectrophotometer optics. The time to equilibrate the cuvettes to the designated kinetic run temperature was 17 min. The kinetic run temperature was determined by placing a calibrated thermocouple wire into a cuvette containing methylcyclohexane under the exact conditions of the kinetic No loss of solvent was observed up to 72 h at 85°C. run. The spectrometer was equipped with a cell programmer acces-'sory and was interfaced to an Apple II+ computer (64K). The programs "Master Scan Storage" and "Master Kinetic Storage", both supplied by Varian, were utilized to collect and store wavelength scans (500-280 nm) and absorbances at three selected wavelengths, respectively, at programmed time intervals. Usually a run was between 10 h and 48 h in duration and the data acquisition was triggered every 10 or 15 The data acquired for the disappearance of the startmin. ing material were analyzed, yielding kohsd, using the "Advanced Order Kinetic Program" supplied by Varian and based on a multiple-linear-regression program described in Reference 15.

Least-squares analysis for the calculation of k_1 and k_2

and the activation parameters was performed with no data smoothing or data averaging, using a "Curve Fitter" program written by P.K. Warm for Interactive Microware, Copyright (C) 1980.

4.3 Results and Discussion

The kinetics of arene displacement in $(n-Arene)Cr(CO)_2$ -(CX) (X = S, Se) by trialkyl- and triarylphosphiles were monitored by UV-vis spectroscopy. All reactions exhibited one isosbestic point (Figure 4.1), indicating only one process was taking place, with no side reactions. The rate of reaction under pseudo-first-order conditions (800-3000 fold excess of tertiary phosphite) was determined from the decrease in absorbance of the starting material with time. The pseudo-first-order rate constants, k_{obsd} , were determined by a multiple-linear-regression program [15].

The dependence of reaction rate on ligand concentration was investigated for the reaction of $(b_2)Cr(CO)_2(CX)$ (X = S, Se) with trimethylphosphite (Tables 4.1 and 4.2).⁴ Plots of k_{obsd} vs. [(MeO)₃P] were linear for the range of concentrations used (Figure 4.2). Least-squares analysis was used to fit the data to the equation $k_{obsd} = k_1 + k_2[(MeO)_3P]$, The value of k_2 was obtained from the slope. For both complexes the intercept was zero within the standard deviation

Figure 4.1. Typical UV-vis spectra obtained in kinetic investigations of $(\eta$ -Arene)Cr(CO)₂(CX) (X= S, Se): (ä) (bz)Cr(CO)₂(CSe); (b) reaction of (bz)Cr(CO)₂(CSe) with (MeO)₃P at 53°C, showing isosbestic point; (c) Cr(CO)₂(CSe)[(MeO)₃P]₃.

•

ABSORBANCE

¢

ĩ

n

Q.

Ø

5]

1

Ç

WAŸELENGTH, nm

A....

Table 4.1. Pseudo-First-Order Rate Constants for the Reaction of $(bz)Cr(C0)_2(CS)$ with Trimethylphosphite in Methylcyclohexane at $83.3^{\circ}C^{a}$

[(MeO) ₃ P] X 10		kobsd X 10 ^{,5}
. M	· •	s ⁻¹
2.3	7	1.52
2.3	7	1,43
. 4.07	7	2.24
4.00	7	2.17
4.02	7 •	2.24
5.10) ,	3.24
5.10) '	3.20
6.10) , '	3.35
6.10)	3.38
6.10) .	3.43
6.78		3.96
- 6.78	3	3.74

^aA least-squares fit of these data to the equation

 $k_{obsd} = k_1 + k_2[(Me0)_3P]$ yields $k_1 = (1.4 \pm 1.7) \times 10^{-6} \text{ s}^{-1}$, $k_2 = (5.46 \pm 0.34) \times 10^{-5} \text{ M}^{-1} \text{ s}^{-1}$; r = 0.98.

Table 4.2. Pseudo-First-Order Rate Constants for the Reaction of $(bz)Cr(CO)_2(CSe)$ with Trimethylphosphite in Methylcyclohexane at $72.6^{\circ}C^{a}$

. . . .

[(MeO) ₃ P] X 10 M	. k _{obsd} X 10 ⁵ . s ⁻¹
2.71	4.06
2.71	4.06
3.39	4.73
3.39	4.72
3.39	4.57
4.06	5.84
4.06	5.93
4.06	5.85
5.08	6.95
5.08	7.02
6.10	8.58
6.10	8.73
6.10	8.79

^aA least-squares fit of these data to the equation

 $k_{obsd} = k_1 + k_2[(MeO)_3P]$ yields $k_1 = (1.2 \pm 1.8) \times 10^{-6} s^{-1}$, $k_2 = (1.39 \pm 0.04) \times 10^{-4} M^{-1} s^{-1}$; r = 0.99.

Figure 4.2. Plots of k_{obsd} vs. [(HeO)₃P] for the reaction of (bz)Cr(CO)₂(CX) with (HeO)₃P: A, X = S; B, X = Se.

and hence k₁ is zero (Tables 4.1 and 4.2). Therefore, the rate of the reaction can be accurately represented by the rate expression:

$$\frac{d[(\eta - Arene)Cr(CO)_2(CX)]}{dt}$$

 $= k_{2} [(_{\Pi} - Arene)Cr(CO)_{2}(CX)] [(MeO)_{3}P]$ (4.1)

So, $k_2 = k_{obsd} / [(MeO)_3P]$ for the range of $(MeO)_3P$ concentrations used. It is of interest to note that all of the kinetic investigations reported to date on arene and triene displacement from chromium(0) tricarbonyl derivatives by a range of both strong and weak nucleophiles or another arene or triene did not reveal any contribution from a dissociative term.

The activation parameters were obtained by leastsquares analysis of the kinetic data for the variation of k₂ with temperature (Tables 4.3 and 4.4) employing the following equation:

$$k_2 = (kt/h)e^{\Delta S^{\#}/R} e^{-\Delta H^{\#}/RT}$$
 (4.2)

The enthalpy of activation was calculated from the slope of the usual $\ln k_2$ vs. 1/T plot and is small and positive while the entropy of activation is large and negative in both the thiocarbonyl and the selenocarbonyl case (Figure 4.3). Thus the rate-determining step appears to involve a

Table 4.3. Variation with Temperature of k_2 for the Reaction of $(bz)Cr(CO)_2(CS)$ with Trimethylphosphite in Methylcyclohexane

T ° C		k ₂ X 10 ⁵ M ⁻¹ s ⁻¹	
83.3	•	5:46 <u>+</u> 0.34	
76.6 72.4		3.27 ± 0.09 2.42 ± 0.12	
67.0		-1.69 <u>+</u> 0.05	
59.9	· •	0.92 ± 0.06	

å

139

Ð

Table 4.4. Variation with Temperature of k_2 for the Reaction of $(bz)Cr(CO)_2(CSe)$ with Trimethylphosphite in Methylcyclohexane

Т	$k_2 \times 10^5 $
°c	M ⁻¹ s ⁻¹
72.6	13.9 <u>+</u> 0.4
63.2	5.92 <u>+</u> 0.04
57.9	4.31 ± 0.13
53.0	2.72 <u>+</u> 0.07

Figure 4.3. Plots of ln k₂ vs. 1/T for the reaction of $(bz)Cr(CO)_2(CX)$ with $[(MeO)_3P] : A, X = S; M, X = Se.$ Leastsquares analysis of these data yields $\Delta H^{\mp} = 17.7\pm0.4$ kcal mol⁻¹ and $\Delta S^{\mp} = -28\pm1$ cal mol⁻¹ deg⁻¹ for X = S and $\Delta H^{\mp} = 17.9\pm1.3$ kcal mol⁻¹ and $\Delta S^{\mp} = -24\pm2$ cal mol⁻¹ deg⁻¹ for X = Se.

bimolecular associative process. Similar activation parameters (Table 4.5) were obtained in previous kinetic studies of the reactions of $(\eta - \text{Arene})M(\text{CO})_3$ (M = Mo, W) with a ligand L [L = $(\text{MeO})_3 P$, $R_n \text{Cl}_{3-n} P$ (n = 0-2; R = alkyl or aryl)] [1,2,4] and of $(\text{cht})M(\text{CO})_3$ (M = Cr, Mo, W) with $(\text{MeO})_3 P$ [3]. These data were interpreted in terms of the mechanism described in Section 4.1, involving a partial displacement of the η^6 -coordinated arene or triene to an η^4 bonding mode prior to attack by the ligand. This same mechanism may, therefore, be postulated to account for the kinetic data reported here for arene displacement from $(\eta -$ **Arene**)Cr(CO)₂ (CX) (X = S, Se).

Comparison of the activation parameters in Figure 4.3 reveals that the entropy of activation is the factor governing the difference in reactivity between $(bz)Cr(CO)_2(CS)$ and $(bz)Cr(CO)_2(CSe)$, while the enthalpies of activation are similar for the two complexes. That ΔS^{\ddagger} is more negative for $(bz)Cr(CO)_2(CS)$ than for $(bz)Cr(CO)_2(CSe)$ may imply a closer proximity of the arene and the incoming ligand to the metal in the transition state in the thiocarbonyl complex, leading to more unfavourable steric interactions. This possibility is supported by the longer metal-arene bond in $(mbz)Cr(CO)_2(CSe)$ compared to $(mbz)Cr(CO)_2(CS)$, established by X-ray diffraction studies of these complexes [16]. Furthermore, the P-Cr bond lengths observed in the crystal

1

Table 4.5. Activation Parameters for Ring Displacement Reactions

of $(cht)Cr(CO)_3$ and $(\eta - Arene)Cr(CO)_2(CX)$ (X = 0, S, Se)

Complex .	Entering ligand	∆H [#] kcal mol ⁻¹	cal mol ⁻¹ deg ⁻¹
(cht)Cr(C0)3 ⁴	(MeO) ₃ P	16.5 <u>+</u> 0.7	-25 <u>+</u> 2
(cht)Cr(CO)3 ^{b /}	C ₆ H ₅ CN	17.7 <u>+</u> 0.5	-26 + 1
(cht)Cr(CO)3 ^b	снзси	21.6 <u>+</u> 1.0	-15 <u>+</u> 3
(naphth)Cr(CO) ₃ ^b	снзси	16.8	-20
(bz)Cr(CO) ₃ ^c	с ₆ (сн ₃) ₆	29.6 ± 1.0	-4 <u>+</u> 3
(<u>p</u> -xy1)Cr(CO)3 ^c	с6(сн3)6	29.9 <u>+</u> 1.0	-12 ± 3
(mes)Cr(CO) ₃ ^C	с ₆ (сн ₃) ₆	25.7 <u>+</u> 0.9	-18 <u>+</u> 2
(η-Arene)Cr(CO) ₂ (CS) ^d	Arene*e	decomposition	
$(bz)Cr(CO)_2(CS)^f$	(MeO) ₃ P .	17.7 <u>+</u> 0.4	-28 <u>+</u> 1
$(bz)Cr(CO)_2(CSe)^f$	(MeO) ₃ P	17.9 <u>+</u> 1.3	-24 + 2

^aFrom Reference 3; methylcyclohexane solution. ^bFrom Reference 6; dichloroethane solution. ^cFrom Reference 8; cyclohexanone solution. ^dArene = $C_{6}H_{6}$, $C_{6}H_{5}CO_{2}CH_{3}$, $C_{6}H_{5}CH_{3}$. ^eThis work; Arene = $C_{6}H_{3}(CH_{3})_{3}$, $C_{6}(CH_{3})_{6}$, $C_{7}H_{8}$ (neat or with THF). ^fThis work; in methylcyclohexane solution.

structure of $Cr(CO)_2(CSe)[(MeO)_3P]_3$ [especially for the P-Cr bond <u>trans</u> to the CSe ligand (Table 2.4)] are longer than the corresponding bond lengths in the thiocarbonyl analogue (Table 2.2). These longer P-Cr bond distances suggest a less significant steric effect due to the incoming ligand during bond formation in the activated complex in the case of the selenocarbonyl derivative.

A second factor that may be considered in accounting for the observed difference in $\Delta S^{\#}$ is the ease of distortion the arene ring. The complexes $(\eta - 1, 2, 3 - trimethoxy$ of benzene)Cr(CO), and (n-diethylaniline)Cr(CO), have been found to exhibit a greater degree of arene lability than would be anticipated on the basis of the metal-arene bond strengths in these complexes [18]. Recently, crystal structure investigations of these complexes [19] revealed significant distortions of the arene from a planar geometry in both cases; it has been proposed [19] that these distortions allow an incoming nucleophile greater accessibilty to the metal centre, thereby effecting an enhancement in ring Analysis of the crystal structure data for the lability. complexes $(mbz)Cr(CO)_2(CX)$ (X = O, S, Se) [16] revealed minor variations in the metal-C(ring) distances. No evidence was found for arene distortions of comparable magnitude to those observed for $(\eta$ -diethylaniline)Cr(CO)₃ or $(\eta - 1, 2, 3 - trimethoxybenzene)Cr(CO)_3$. However, the lack of

ring distortion in the solid-state structure does not preclude the possibility that the lower entropy of activation in the arene displacement reaction for $(bz)Cr(CO)_2(CSe)$ relative to the thiocarbonyl analogue may be due to a more facile distortion of the arene ring in the activated state.

Subsequent to establishing the rate expression for arene displacement, an examination of the effect on arene lability of substituents on the ring was undertaken. Increasing the number of methyl groups on the ring generally decreases the rate of the reaction (Table 4.6). The reaction of $(\eta$ -mesitylene)Cr(CO)₂(CS) with (MeO)₃ P was too slow to measure accurately so that only the rate for reaction with the much more nucleophilic $(n-BuO)_3 P$ (see Table 4.7) is given in Table 4.6. No attempts were made to investigate reactions of arenes with more than three electron-donating substituents because these would be too slow to monitor with any degree of accuracy. The results in Table 4.6, including the anomalously fast rate of o-xylene displacement, are in line with kinetic studies reported by other groups who have investigated the arene displacement reactions of $(\eta - Arene)M(CO)_{\eta}$ (M = Mo, W) [1,2,4]. The decrease in reaction rate upon addition of electron-donating substituents on the arene ring may be attributed to the strengthening of the metal-arene bond resulting from the increased electron density at the ring. Steric effects may also contribute to the

Table 4.6 Pseudo-First-Order Rate Constants for Arene Displacement by Trimethylphosphite from $(\eta$ -Arene)Cr(CO)₂(CS) Complexes at 83.3°C^a

٤٠

Complex	Arene in	$k_{obsd} \times 10^{5b}$
به منه العالم الما^{ر عا}م العالم ا	υ (η-Arene)Cr(CO) ₂ (CS)	s ⁻¹
I	1,3,5-с ₆ н ₃ (сн ₃) ₃	0.99 ± 0.02^{c}
II ,	<u>р-с6н4(сн3)</u>	d
III	<u>o</u> -C ₆ H ₄ (CH ₃) ₂	2.06 + 0.04
IV	C6H5CH3	1.99 <u>+</u> 0.04
V	^C 6 ^H 6	$2.91 + 0.17^{e}$
V I	$\underline{\mathbf{m}}$ -C ₆ H ₄ (CH ₃)(CO ₂ CH ₃)	4.15 <u>+</u> 0.14
vit	с ₆ н ₅ со ₂ сн ₃	7.33 <u>+</u> 0.08
/111	$\underline{P}^{-C_6H_4(CO_2CH_3)_2}$	10.2 + 0.2
LX -	, <u>р</u> -с ₆ н ₄ (осн ₃) ₂	20.2 + 0.2
κ.	C ₆ H ₅ N(CH ₃) ₂	24.8 + 0.2

^aIn methylcyclohexane at [(MeO)₃P] = 0.508 M. ^bAverage of at least 3 runs; uncertainties are standard deviations.

^cRate constant for $(n-BuO)_3P$; cf. value for reaction of $(bz)Cr(CO)_2(CS)$ with $(n-BuO)_3P$ in Table 4.7. dReaction too slow to yield an accurate rate constant.

^aReaction too slow to yield an accurate rate constant. ^eValue interpolated from plot in Figure 4.2; uncertainty is standard error of the least-squares-fitted line. observed trend in that the substituents on the ring may hinder the attack of the nucleophile at the metal centre.

£

The presence of electron-withdrawing groups on the ring enhances ring lability (Table 4.6) in accord with the ability of these groups to decrease the electron density available at the ring for bonding to the metal. The presence of both an electron-donating and an electron-withdrawing group on the ring gives an intermediate rate for the ring displacement reaction, while the presence of a second electron-withdrawing group in the <u>para</u> position has a cooperative effect in enhancing the rate of displacement.

In order to probe further the relationship between the rate of arene displacement and metal-arene bond strength, force constant calculations for the metal-arene stretching vibrations in these complexes would be in order. These force constants can really only be acquired through detailed normal coordinate calculations [20]. Fortunately, 'however, the CO stretching force constants are known to reflect the electron density at the metal in complexes of this type and can' be correlated with the electron-donating/withdrawing properties of the substituents on the arene [21]. Therefore, the rate constants for arene displacement for a series of $(\eta_{-}Arene)Cr(CO)_{2}(CS)$ complexes as a function of the CO stretching force constants of the complexes are plotted in The latter were calculated from the positions Figure 4.4.

 $(\tilde{\nu}_1, \tilde{\nu}_2)$ of the two $\nu(CO)$ peaks in the IR spectrum according to the energy-factored force field approximation:

 $k_{CO} = (\lambda_1 + \lambda_2)/2\mu$ (4.3)

where $\lambda_i = 1/(4\pi^2 c^2 \tilde{\nu}_i^2)$, c is the speed of light and μ is the reduced mass of CO. A least-squares analysis of these data yields a linear relationship between the CO force constant and $\ln k$ (Figure 4.4) (r = 0.98, for compounds However, the points corresponding to the III-VIII). dimethylaniline and <u>p</u>-dimethoxybenzene complexes exhibit anomalous behaviour (r = 0.11 for compounds III-X). The same observation has been reported by Pidcock et al. in their studies of arene displacement from $(\eta - Arene)M(CO)_3$ (M = Mo, W) [2,4]. This may be proposed to result from distortions of the arene from a planar geometry, as observed for the diethylaniline and trimethoxybenzene chromium tricarbonyl derivatives discussed above. Thus, in the thiocarbonyl complexes studied here, a similar distortion in conjunction with the labilizing effect of the thiocarbonyl ligand can explain the anomalously fast rate of arene displacement from (n-p-dimethoxybenzene)Cr(CO)₂(CS) and (n-dimethylaniline)Cr(CO)₂(CS).

- The rate of ring displacement can also be affected if the carbonyl groups are replaced by weaker π -acceptors or

Figure 4.4. Plot of ln k_{obsd} values for the reactions of $(\eta$ -Arene)Cr(CO)₂(CS) complexes with (MeO)₃P vs. the carbonyl stretching force constants (k_{CO}) of the arene complexes. The following k_{CO} values for the complexes given in Table 3.6 were calculated from Eq. 4.3: III, 15.32; HV, 15.36; V, 15.42; VI, 15.52; VII, 15.58; VIII, 15.75; IX, 15.30; X, 15.18 mdyn A⁻¹.

stronger c-donors. The reactivity of $(mbz)Cr(CO)_2(CS)$ was compared with that of $(mbz)Cr(CO)(CS)[(PhO)_3P]$. The monocarbonyl complex is seen to be unreactive over a period of 24 h at 87°C while $(mbz)Cr(CO)_2(CS)$ reacts at 60°C in half the time. The lack of reactivity may be attributed to two factors. First, the weaker π -accepting and stronger σ -donating properties of the tertiary phosphite relative to 'CO increase the electron density at the metal available for π -backbonding to the arene, thus strengthening the metalarene bond. Second, a steric effect may also contribute in that the phosphite may block the access of the attacking nucleophile to the metal. The decreased catalytic activity of $(\pi$ -Arene)Cr(CO)₂(R₃P) (R = Ph, OPh) compared to $(\pi$ -Arene)Cr(CO)₃ has been attributed to the above factors [22,23].

Table 4.7 shows the effect observed with the variation in the steric and nucleophilic character of the attacking ligand. The reaction rate increases with increasing nucleophilicity for ligands of comparable size (similar cone angles) and decreases with increasing size of the ligand. This trend has also been reported in the study of arene displacement from $(\eta$ -Arene)Mo(CO)₃ complexes [1]. Thus, the rate of arene displacement by tertiary phosphite decreases in the order $(\underline{n}-BuO)_3P > (EtO)_3P > (MeO)_3P > (PhO)_3P >$ $(C_6H_{11}O)_3P$ [no reaction was observed for $(C_6H_{11}O)_3P$].

Catalytic enhancement of ring displacement from

Arene in (η-Arene)Cr(CO) ₂ (CS)	Phosphite	Cone angle ^b deg	k _{obsd} x _{.10} 5c s-1
с _б н _б	(<u>n</u> -BuO) ₃ P	-	14.4 + 0.3
с ₆ н ₆	(EtO) ₃ P	109	7.16 <u>+</u> 0.28
с ₆ н ₆	(MeO) ₃ P	109	2.91 <u>+</u> 0.17 ^d
<u>р</u> -с ₆ н ₄ (осн ₃) ₂	(MeO) ₃ P	107	20.2 + 0.2
С ₆ H ₅ N(CH ₃) ₂	(MeO) ₃ °P	107	24.8 + 0.2
<u>р</u> -с ₆ н ₄ (осн ₃) ₂	(PhO) ₃ P	128	4.82 <u>+</u> 0.38
с ₆ н ₅ N(CH ₃) ₂	(PhO) ₃ P	128	5.68 <u>+</u> 0.18
с ⁶ н ⁶	(c ₆ H ₁₁ 0) ₃ P	135	no rxn.

Tertiary Phosphites from $(\eta$ -Arene)Cr(CO)₂(CS) Complexes at 83.3°C^a

Table 4.7 Pseudo-First-Order Rate Constants for Arene Displacement by

^aIn methylcyclohexane at [(RO)₃P] = 0.508 M. ^bFrom Reference 25. ^cAverage of at least 3 runs; uncertainties are standard deviations.

^dValue interpolated from plot in Figure 4.2; uncertainty is standard error of the least-squares-fitted line.

 $(bz)Cr(CO)_2(CSe)$ was seen with the addition of $(Me)_3PO$ (Table 4.8). Decomposition was observed in the absence of tertiary phosphite. The strong labilizing effect of oxygen donor bases has been noted previously [24]. Trialkylphosphine oxides have been used in various systems to catalyze CO substitution [25,26] and have been reported to enhance ring lability in $(\eta$ -Arene)Mo(CO)₃ [2]. In the present case, the catalytic enhancement can be postulated to involve nucleophilic attack on the metal by the oxygen, forming $(\eta^4$ -Arene)Cr(CO)₂(CSe)(+O=P(Me)₃).

The kinetic study of arene displacement in $(n-Arene)Cr-(CO)_2(CSe)$ by $(MeO)_3P$ was also performed in dichloroethane $(k_2 = 3.56 \times 10^{-5} M^{-1} s^{-1} at 53.0 °C)$. The reaction rate is slightly higher than that observed in methylcyclohexane $(k_2 = 2.72 \times 10^{-5} M^{-1} s^{-1} at 53.0 °C)$ providing evidence that the activated complex may be polar in character and possibly solvent stabilized [1].

No kinetic data are available for arene displacement from $(\eta$ -Arene)Cr(CO)₃ complexes due to their slow reactivity. Attempts were made in this study to measure the kinetics of arene substitution reactions of arene chromium tricarbonyls under rigorous conditions (83.3°C, [(MeO)₃P]: [(η -Arene)Cr(CO)₃] = 3000:1) and even for (η -dimethylaniline)Cr(CO)₃, one of the most reactive tricarbonyl complexes, after heating for 48 h there was no decrease in its
Table 4.8 Pseudo-First-Order Rate Constants for Arene Displacement from (bz)Cr(CO)₂(CSe) by Trimethylphosphite in the Presence of Varying Concentrations of Trimethylphosphine Oxide at 42.6°C^a

3

[(MeO) ₃ P] .	.[(Me) []] ₃ PO] M	k _{obsd} x 10 ⁵ s ⁻¹	
м			
0.510		0.61 ^b	
0.510	0.171	2.60	
0.510	0.343	10.2	
- '	0.510	1.43 ^c	

^aIn methylcyclohexane solution. ^bReaction too slow to measure; value estimated as $k_2 \times [(Me0)_3P]$, with k_2 calculated using Eq. 4.2, ^cRate of decomposition.

UV-visible absorbance nor was there any evidence of product formation. Under the same conditions, (n-dimethylaniline) $Cr(CO)_{2}(CS)$ reacts completely in less than 3 h. Clearly, the effect of the thiocarbonyl ligand on the reactivity of the arene chromium carbonyl complex is quite significant. From these data it can be seen that even placing the most electron-withdrawing substituent on the arene ring in a tricarbonyl complex would not result in a labilizing effect on the metal-arene bond as great as that resulting from the substitution of one carbonyl group by a thiocarbonyl ligand. Furthermore, the effect of substitution of a selenócarbonyl ligand in place of a carbonyl ligand has even more dramatic effects on arene lability. These first kinetic results for a selenocarbonyl complex reported here have provided a quantitative measure of the increased reactivity of $(\eta$ -Arene)Cr(CO)₂(CSe) complexes with respect to their thiocarbonyl counterparts, the enhancement in ring lability being close to fivefold at 50°C.

Table 4.9 shows the rates recorded for various ring displacements from Group VIB metal complexes by $(MeO)_3P$. Ring lability decreases in the order $(cht)Mo(CO)_3 >$ $(cht)W(CO)_3 \Rightarrow (cht)Cr(CO)_3 >> (bz)W(CO)_3 > (bz)Cr(CO)_2(CSe)$ > $(bz)Cr(CO)_2(CS) > (bz)Cr(CO)_3$. The reactivity of the cycloheptatriene derivatives has been attributed to the relative weakness of the bonds between the metal and the

154

3

Table 4.9. Rate Constants for Ring Displacement from $(\eta$ -Arene)M(CO)₂(CX) and (cht)M(CO)₃ Complexes by (MeO)₃P at 50.0°C

Complex	έ, k 2	
	M ⁻¹ s ⁻¹	
(cht)Cr(CO)3 ^a	$(11.0 \pm 0.2) \times 10^{-4}$	
(bz)Cr(C0) ₃ ^b	< 10 ⁻⁶	
(bz)Cr(C0) ₂ (CS) ^c	$(4.11 \pm 0.26) \times 10^{-6}$	
(bz)Cr(C0) ₂ (CSe) ^C	$(2.17 \pm 0.06) \times 10^{-5}$	
(cht)Mo(CO) ₃ ^a	2.43 <u>+</u> 0.03	
(cht)W(CO) ₃ ^a	$(3.94 \pm 0.11) \times 10^{-1}$	
(bz)W(CO) ₃ ^d	$(2.29 \pm 0.10) \times 10^{-5}$	

^aFrom Reference 3, in methylcyclohexane. ^bEstimated value from the present study; the rate of the reaction was too slow to measure accurately under the conditions employed. cFrom this work, in methylcyclohexane. dFrom Reference 4, in 1,2-dichloroethane.

ring carbons adjacent to the methionine group in the cht ligand while the relative rates down the metal triad have been correlated to the ring-metal force constants and metal size [3].

A striking feature of the arene displacement reactions $(\eta$ -Arene)Cr(CO)₂(CX) (X = S, Se) complexes is of the involvement of an isomerization process, as evidenced by the predominant formation of the mer I isomer rather than the fac isomer which is the major product in the cht displacement from (cht)Cr(CO)₃. It has been shown in Chapter 3 that the temperature range at which the reactivity of in $(\eta$ -Arene)Cr(CO)₂(CX) with (MeO)₃P has been studied the fac and mer I isomers of the products, Cr(CO)₂(CX)[(MeO)₃P]₃, are in equilibrium, with the mer I isomer predominating (K = 5). Furthermore, comparison of the rates measured for the fac + mer I isomerization process with results of the kinetic studies reveals that the isomerization of fac-Cr(CO)2-(CX)[(MeO)₃P]₃ is at least an order of magnitude faster than the rate of reaction to form Cr(CO)₂(CX)[(MeO)₃P]₃ at all temperatures studied. It is therefore likely that fac-Cr(CO)₂(CX)[(MeO)₃P]₃ is formed first in the reaction of $(\eta$ -Arene)Cr(CO)₂(CX), with (MeO)₃P, and then isomerizes to the mer I isomer. However, the possibility that isomerization also takes place in the intermediate steps of the reaction prior to the formation of the final product cannot be

Some evidence against this latter possibility ruled out. was obtained by monitoring the reaction of (bz)Cr(CO)₂(CSe) with (PhO), P by ³¹ P NMR spectroscopy. <u>fac</u>-Cr(CO)₂(CSe)-[(PhO)₃P]₃ was detected in a higher concentration than the mer I isomer in the initial stages of the reaction with (PhO)₃ P (Figure 4.5), while the final product was predominantly the mer I isomer. This observation suggests that rearrangement to the thermodynamically more stable mer I isomer occurs subsequent to the formation of the kinetically expected fac product. The initial detection of the fac isomer with the (PhO)₃ P ligand but not with (MeO)₃ P may be the result of a slower rate of isomerization in the former case due to steric effects imposed by the bulky phenoxy substituents.

The reactions of the tridentate ligands triphos-U and triphos with $(\eta - Arene)Cr(CO)_2(CX)$ afford <u>fac</u>-(L-L-L)-CT(CO)₂(CX) complexes in quantitative yield, giving added support to the hypothesis that the fac product is formed. first in the reactions with the monodentate phosphite If the formation of the mer I isomer in the latter ligands. cases was the result of isomerization of an intermediate in the reaction pathway, then reaction with tridentate ligands might be expected to result either in bridging of the tridentate ligand across the metal or, if such a structure were unfavourable, in a low, rather than quantitative yield of

Figure 4.5. ³¹P NMR spectrum recorded at t = 60 min of the reaction of $(bz)Cr(CO)_2(CSe)$ with $(PhO)_3P$ at 60°C, revealing the initial formation of $\underline{fac}-Cr(CO)_2(CSe)[(PhO)_3P]_3$. Conditions: obtained on a Varian XL-300 PT spectrometer operating at 121.42 MHz; ¹H-decoupled; sweep width = 30,000 Hz; offset = 12,400 Hz; flip angle = 40°, repetition time = 0.5 s; number of scans = 400.

the <u>fac</u> product. However, the high effective local concentration of incoming ligand after coordination of the first phosphorus atom of the tridentate ligand to the metal would not provide much time for rearrangement of an intermediate to occur.

1

It is of interest to note that in earlier studies of arene displacement from (n-Arene)M(CO)₃, kinetic investigations of the reactions of $(\eta$ -Arene)Cr(CO), with ligands L were not undertaken because they yielded products other than the expected $fac-Cr(CO)_{3}L_{3}$. Although we were unable to obtain kinetic data for arene displacement from (n-Arene)Cr- $(CO)_{3/}$ by (MeO)₃P, we were able to characterize the products of these reactions as mixtures of mer- and fac-Cr(CO)₃- $[(Me0)_3P]_3$ with the mer isomer predominant. Furthermore, the rate measured for fac + mer isomerization of this complex (Chapter 3) is faster by at least three orders of magnitude than the rate of arene displacement in the (n-Arene)-Cr(CO), systems (Table 4.9). Therefore, just as for the thio- and selenocarbonyl analogues, the formation of predominantly \underline{mer} -Cr(CO)₃[(MeO)₃P]₃ in the reaction of (n-Arene) $Cr(CO)_3$ with (MeO)₃P may be attributed to isomerization of the expected fac isomer at a much faster rate than, its rate of formation. In the case of the reaction of $(cht)Cr(CO)_3$ with $(MeO)_3P$, the reaction rate at, for example, 50°C^{*}[3] is eight times faster (for $[(MeO)_3P] = 1 M$)

than the rate of isomerization of $Cr(CO)_3[(MeO)_3P]_3$ at this temperature, thus accounting for the formation of the <u>fac</u> isomer.

4.4 Concluding Remarks

The studies of arene labilization for the thiocarbonyl complexes were initially undertaken to elucidate why such complexes lack the catalytic activity exhibited by the corresponding tricarbonyl complexes. The results described here demonstrate that the products of arene displacement reactions of the thiocarbonyl complexes exhibit a faster rate of intramolecular isomerization than the parent tricarbonyls. The rapid occurrence of rearrangement processes of the type observed in this study would not afford the necessary intermediates required for catalytic activity to take place, since it has been shown that the fac configuration is crucial in effecting hydrogenation through the mechanisms outlined in Chapter 1. In addition, the crystal structure of Cr(CO)₂(CS)[(MeO)₃P]₃ obtained provided evidence for a very large amount of electron density on the thiocarbonyl ligand - the C-S bond distance approximating that of a bridging CS group. Nucleophilic attack by the sulfur atom of the thiocarbonyl ligand has been reported [27] for complexes exhibiting low v(CS) frequencies and, accordingly, long C-S bond lengths. Since hydrogenation, studies take place in the presence of donor solvents, $Cr(CO)_2(CS)L_3$

species are probably formed. It is likely that the electron density on the CS ligand in such species is sufficient to cause the thiocarbonyl to act as a nucleophile leading to side reactions or autodecomposition.

Although, to date, no catalytic studies have been performed with selenocarbonyl complexes, their catalytic activity will almost certainly be the same as that of the thiocarbonyl complexes because of the similar reactivities of these chalcocarbonyl derivatives.

-161

References ·

- 1. F. Zingales, A. Chiesa and F. Basolo, J. Am. Chem. Soc., 88, 2707 (1966).
- A. Pidcock, J.D. Smith and B.W. Taylor, J. Chem. Soc.
 (A), 872 (1967).
- 3. A. Pidcock and B.W. Taylor, J. Chem. Soc. (A), 877 (1967).
- 4. A. Pidcock, J.D. Smith and B.W. Taylor, J. Chem. Soc.
 (A), 1604 (1969).
 - 5. G. Yagupsky and M. Cais, Inorg. Chim. Acta, <u>12</u>, L27 (1975).
 - M. Gower and L.A.P. Kane-Macguir, Inorg. Chim. Acta, <u>37</u>, 79 (1979).
 - 7. W. Strohmeier and H. Mittnacht, Z. Phys. Chem., <u>29</u>, 339 (1961).
 - C.L. Zimmerman, S.L. Shanér, S.A. Roth and R.B. Willeford, J. Chem. Res.(s), 108 (1980).
 - T.G. Traylor and K. Stewart, Organometallics, <u>3</u>, 325 (1984).
 - 10. T.G. Traylor, K.J. Stewart and M.J. Goldberg, J. Am. Chem. Soc., 106, 4445 (1984).
 - 11. C.D. Hoff and S.P. Nolan, Abstracts, 189th Meeting of the American Chemical Society, Miami, Florida, April-May, 1985, paper INOR-23.

	1,2.	M.F. Farona, in "Organometallic Reactions and
٠	•	Syntheses", Vol. 6, E.I. Becker and M. Tsutsui, ed.,
	,	Plenum Press, New York, 1977, pp. 223-288.
	13.	F. Basolo, Inorg. Chim Acta, <u>50</u> , 65 (1981).
	14.	E.L. Muetterties, J.R. Bleek, E.J. Wucherer and T.A.
1		Albright, Chem. Rev., <u>82</u> , 499 (1982).
	15.	G. Mieling and H. Pardue, Anal. Chem., 50, 1611
	ø	(1978).
	16.	JY. Saillard, D. Grandjean, P. Caillet and A. Le
		Bauze, J. Organometal. Chem., <u>190</u> , 371 (1980).
	17.	P.E. Baikie and O.S. Mills, J. Chem. Soc. (A), 2704
		(1968).
	1.8.	P. Le Maux, J.Y. Saillard, D. Grandjean and G. Jaouen,
		J. Org. Chem., <u>45</u> , 4524 (1980).
	. 19.	JY. Saillard, D. Grandjean, P. Le Maux and G. Jaouen,
		Nouveau J. Chim., <u>5</u> , 153 (1981).
	20.	A.M. English, Ph.D. thesis, McGill University,
		Montreal, Quebec, Canada, 1980.
	21.	E.W. Neuse, J. Organometal. Chem., <u>99</u> , 287 (1975).
	22.	R. Dabard, G. Jaouen, G. Simonneaux, M. Cais, D.H.
		Kohn, L. Lapid and D. Tatarsky, J. Organometal.
		Chem., <u>184</u> , 91 (1980).
	23.	M. Cais, M. Kaftory, D.H. Kohn and D. Tatarsky, J.
		Organometal. Chem., <u>184</u> , 103 (1980).

٩

163

¥

- 24. D.J. Darensbourg, in "Advances in Organometallic Chemistry", Vol. 21, Academic Press, New York, 1982, pp. 113-149.
- 25. D.J. Darensbourg, N. Walker and M.Y. Barensbourg, J.
 Am. Chem. Soc., <u>102</u>, 1213 (1980).
- 26. D.J. Darensbourg, M.Y. Darensbourg and N. Walker, Inorg. Chem., 20, 1918 (1981).

11

27. B.D. Dombek and R.J. Angelici, J. Am. Chem. Soc., <u>96</u>, 7568 (1974). PART II

:47

1

Applications of FT-IR Spectroscopy and Metal Chalcocarbonyl Chemistry in Biological Systems

Chapter 5

Applications of FT-IR Spectroscopy in the Study of Biological Systems

In the 1984 May-June issue of Applied Spectroscopy, Jakobsen announced in a guest editorial the recent formation of the first National Center for Biomedical FT-IR Spectroscopy. The logo for the center is an interferogram joining

the double helix structure of DNA with a caduceus to represent the bridge of molecular spectroscopy between biology and medicine. He stated the functions of the center are "1) to advance the state-of-the-art of FT-IR; 2) to demonstrate new applications of FT-IR in both biology and medicine; 3) to collaborate with scientists outside the Center and provide them with spectroscopy information useful to their research; 4) to spread the word to the scientific community about the use of FT-IR in this research; and 5) to train

scientists in the use of FT-IR for biomedical purposes." In the past, IR spectroscopy has been of limited usefulness in the study of complex biological systems for the

following reasons:

(a) Spectra of dry protein could not provide a direct correlation to in vivo biological processes. Therefore, in order to simulate biological conditions, spectra of biological systems were generally measured in H_2O (or D_2O) solutions; resulting in a loss of large regions of the spectra because of the strong H_2O (D_2O) absorptions. The use of D_2O posed additional problems because of hydrogen-deuterium exchange which often causes conformational changes.

(b) Biological systems generally contain many different proteins, as well as numerous organic species, which can have an interfering effect in the study of the biomolecule or the biological process of interest.

(c) A large number of biologically active species exist in too low concentrations to be detected by dispersive IR spectroscopy.

The advent of FT-IR instrumentation has allowed several orders of magnitude improvement in signal-to-noise (S/N) ratio in relatively short times of data acquistion [1-13] as a result of the multiplex (Fellgett's) and throughput (Jacquinot's) advantages of the FT-IR spectrometer. Digitization of the spectra permits digital absorbance subtraction, thereby eliminating solvent and other interferences. The following examples illustrate the types of information which have been obtained by FT-IR investigations of biological systems. This survey in part serves to indicate the rather limited extent to which FT-IR spectroscopy has been applied in biological studies. It does not include studies of the FT-IR spectra of isolated small biomolecules or model compounds, which are far more numerous.

The first applications of FT-IR spectroscopy in biological investigations were carried out by Alben and co-wor-An example of this group's work is their study of the kers. nature of carbon monoxide; binding and of the molecular binding sites in various hemocyanins [14,15]. Hemocyanins are the oxygen transport proteins in the hemolymph of many mollusc's and decapod crustaceans λ and reversibly bind oxygen or carbon monoxide with a stoichiometry of one ligand per two copper atoms. Relatively little was known about the ligand binding to copper in these proteins before the FT-IR stu-IR spectra of the hemocyanin-carbon monoxide dies. The complexes of various species show great similarities. They exhibit only one narrow absorption band between 2300 and 1800 cm⁻¹ due to bound carbon monoxide. Therefore, only one kind of CO environment appears to exist for each species The observed narrow half-band width, as compared to [16]. half-band widths of carbonyl peaks in solvents of different polarities, suggests that the active site of the copper is

located in a non-polar environment in the protein [14,15]. Also, the observed differences in the absorption maximal [v(C0)] for carboxyhemocyanin in various species were attributed to differences in the amino acid groups coordinated to the copper binding the carbon monoxide [15].

Alben and his co-workers have also utilized the enhancement of the S/N ratio in FT-IR spectroscopy relative to previous IR spectroscopic methods to examine specific amino acid interactions (e.g., sulfhydryl groups [v(SH)] of cystine residues of human carboxyhemoglobin) [17]. They showed that the absorbance of the sulfhydryl group is highly sensitive to the state of ligation, and to the tertiary and quaternary structure of the protein, thus, providing a new probe of native hemoglobin structure and its conformational alterations.

More recently Alben <u>et al</u>. undertook a detailed FT-IR Investigation of the dynamic interaction of carbon monoxide with a_3 Fe and Cu_B in cytochrome c oxidase at low temperature [18]. They found that photolyzing the Fe-CO bond results in the transfer of CO to Cu_B . This process is reversible in the absence of light above 140 K. That the a_3 FeCO showed a very narrow v(CO) peak, while the Cu_B exhibited a much broader one, indicated that the carbon monoxide in a_3 FeCO is in a highly ordered environment separated from the Cu_B atom which is in less ordered, more flexible surroundings. Mantsch and co-workers have employed FT-IR spectroscopy in the elucidation of the structure and functional properties of biomembranes. They have designed an integrated system, including hardware and software modifications [19,20], to study several aspects of the thermal behaviour of natural phosphatidylethanolamines, phosphatidylcholines and phosphatidylsulfocholines, by monitoring subtle changes in the absorption bands characteristic of specific functional groups.

FT-IR spectroscopy has recently been used to examine metal ion interactions with DNA nucleotides [21], as well as the interactions of certain drugs, such as platinum compounds with anti-tumour activity [e.g., \underline{cis} -Pt(NH₃)₂Cl₂], with DNA [22].

The monitoring of blood protein interactions with polymers is of great importance for the assessment of the suitability of a material as an implant in the body (e.g., artificial heart valves, indwelling catheters, dialysis membranes and other artificial organs). The event which seems to determine how well the body will tolerate a given implant is protein adsorption, since adsorption of certain proteins can induce thrombosis (clotting). The coupling of FT-IR with ATR (attenuated total reflection) has provided the necessary sensitivity to detect very thin layers of adsorbed proteins on various surfaces [23-25]. Gendreau et al. have

utilized this technique for the first time to study protein adsorption from flowing, intact dog blood on a polymercoated germanium surface [24] (Figure 5.1). They demonstrated that within the first few seconds of flow rapid adsorption of albumin and glycoproteins took place; immediately thereafter, increased amounts of fibrinogen and other proteins began to adsorb, displacing albumin until finally a clot was formed. This example represents one of the only <u>ex</u> <u>vivo</u> biomedical experiments involving FT-IR spectroscopy.

Clearly the use of FT-IR spectroscopy in the study of biological systems has not been widespread. As biological, biochemical and medical resarchers become more aware of the enhanced sensitivity and flexibility of this nondestructive spectroscopic technique, new applications will certainly emerge. In Chapter 6, the investigation of such an application, involving the use of FT-IR spectroscopy to detect organometallic-labelled steroidal hormones in their target tissue for purposes of receptor assay, will be described. Further utility of FT-IR in the study of some selected chalcocarbonyl porphyrin derivatives will be presented in Chapter 7.

Pump ATR C Jugular Vein Cerotid Arlery

Figure 5.1. Experimental setup of Gendreau et al. for the study of protein adsorption from flowing, intact dog blood on a polymer-coated germanium ATR crystal. Adapted from Reference 24.

References

 P.R. Griffiths, "Chemical Infrared Fourier Transform Spectroscopy", J. Wiley and Sons, New York, 1975.
 J.A. Haseth in "Fourier, Hadamard and Hilbert Transforms in Chemistry", A.G. Marshall, ed., Plenum

Y 27.

Press, New York, 1982, pp. 378-420.

3. P.R. Griffiths, Appl. Spectrosc., <u>31</u>, 497 (1977).

- . C. Foskett and T. Hirschfeld, Appl. Spectrosc., <u>31</u>, 239 (1977).
- 5. G. Mamantov, A.A. Garrisón and E.L. Wehry, Appl. Spectrosc., <u>36</u>, 339 (1982).
- 6. P.L. Hanst in "Fourier Transform Infrared Spectroscopy", Vol. II, J.R. Ferraro and L.J. Basile, eds., Academic Press, New York, 1979.

7. D.R. Mattson, Appl. Spectrosc., <u>32</u>, 335 (1978).

-8. T. Hirschfeld, Appl. Spectrosc., 31, 550 (1977).

9. D.H. Anderson and T.E. Wilson, Anal. Chem., <u>47</u>, 2482^{*} (1975).

10. R. Cournoyer, J.C. Shearer and D.H. Anderson, Anal. Chem., <u>49</u>, 2275 (1977).

11. H.J. Sloane and R.J. Obremski, Appl. Spectrosc., <u>31</u>, 506 (1977).

12. T. Hirschfeld and C. Cody, Appl. Spectrosc., <u>31</u>, 551 (1977).

'173

D.L. Wall and A.W. Mantz, Appl. Spectrosc., 31, 13. 552 (1977).J.O. Alben, L. Yen and N.J. Farrier, J. Am. Chem. 14. Soc., 92, 4475 (1970). Biochemistry, 15., J.O. Alben 4786 and L.¥. Fage, 11, (1972).P.P. Moh, J.S. Rieske and O.J. Alben, Fed. Proc., 37, 16. 1389 (1978). 17. G.H. Bare, J.O. Alben and P.A. Bromberg, Biochemistry, 14, 1578 (1975). 18. F.G. Fiamingo, R.A. Altschuld, P.P. Moh and J.O. Alben, J. Biol. Chem., 257, 1639 (1982) and references therein. H.H. Mantsch, A. Martin and D.G. Cameron, Biochemistry, 19. 20, 3138 (1981). H.H. Mantsch, D.G. Cameron, P.A. Tremblay and M. Kates, 20. Biochim. Biophys. Acta, 689, 63 (1982) and references therein. 21. T. Theophanides, in "Fourier Transform Infrared Spectroscopy", T. Theophanides, ed., D. Reidel Publishing Co., Dordrecht, Holland, 1984, pp. 83-96. 22. T. Theophanides, Appl. Spectrosc., 35, 461 (1981). R.M. Gendreau and R.J. Jakobsen, Appl., Spectrosc., 32, 23-326 (1978).

24. R.M. Gendreau, S. Winters, R.I. Leininger, D. Fink, C.R. Hassler and R.J. Jakobsen, Appl. Spectrosc., <u>35</u>, 353 (1981).

25. R.M. Gendreau, Appl. Spectrosc., <u>36</u>, 47 (1982).

Chapter 6

FT-IR Spectroscopy in Biological Assay

6.1 Introduction

The determination of hormonal receptor concentrations in tissue requires highly sensitive techniques in view of the minute quantities involved (nanograms or less per gram of tissue). Radioassay has been the principal technique used in measuring such low concentrations. Though this method has proved quite powerful and is widely accepted, it has certain drawbacks: high cost of radioisotopes, health hazards, limited variety of usable isotopes, labelling difficulties, chemical and biochemical instability (including radiolysis in solution). These problems have encouraged the search for non-radioisotopic methods in biological assay.

In this chapter, the investigation of the feasibility of a new method of receptor assay will be presented. The method is based on the labelling of a steroidal hormone with a metal tricarbonyl moiety and detection of this label in the hormone-receptor complex by FT-IR spectroscopy. The receptor chosen for the investigation was the estrogen receptor. The approach to receptor assay described in this chapter represents one of the few examples reported of research on the incorporation of organometallic labels into

estrogens in order to label the estrogen receptor for diagnostic or therapeutic purposes. Recently estrogen has been labelled with boron-10 atoms (in the form of a cage carborane molecule containg ten boron atoms and two carbon atoms) by Hadd [1] (patent under review), with the hope that such a label would be taken up by cancerous cells that contain estrogen receptors. Subsequent bombardment with a lowenergy neutron beam would split the ${}^{10}B_{75}$ giving off alpha particles causing necrosis in the immediate area. Cais and co-workers [2] have investigated the determination of metal labels in steroids by atomic absorption spectrometry. Dilution of the metal-labelled steroids in phosphate buffer yielded an atomic absorption calibration curve in the 20-500 ng ml⁻¹ range for Fe-labelled steriod. However, no in vitro or in vivo studies have been performed to date to assess the utility of this method for receptor assay.

The process by which specific estrogen binding to its receptor takes place has been traditionally described as follows: the estrogen enters the target cell from the blood stream and interacts with specific receptor proteins in the cytoplasm, forming a non-covalent, high-affinity complex. This complex then enters the cell nucleus and ultimately effects new protein synthesis [3] (Figure 6.1). However, recent studies utilizing monoclonal antibodies to estrophilin (estrogen receptor protein) [4] and cell enucleation [5]

E)

E = STEROIDAL HORMONE R = RECEPTOR R = MODIFIED RECEPTOR

23

Figure 6.1. Traditional representation of the mode of action of a steroidal hormone in a target cell. Adapted from A.L. Lehninger, "Biochemistry", 2nd ed., Worth Publishers, New York, 1975, p. 824.

셒

have provided evidence that the estrogen receptor resides solely in the cell nucleus. It has been postulated that the observed localization of the free receptor in the cytosolic fraction of cell homogenates occurs during homogenization [5].

The interaction of estrogens with their specific receptors has been the focus of considerable research [6] and changes in estrogen receptor levels are implicated in certain hormone-dependent cancers [7]. Estrogen receptor levels have been determined by radiochemical techniques using a variety of radiolabelled modified estrogens (e.g., ³H, ¹⁴C, ¹²⁵I) [6].

The synthesis of chromium tricarbonyl derivatives of steroids has been reported in the literature [8,9]. $(est)Cr(CO)_3$ has been prepared by heating $Cr(CO)_6$ and estradiol in the presence of donor solvents such as THF and The A ring is the preferred site^b for complexation $n-Bu_20$. because it acts as a six-electron donor to complete an 18-electron configuration for the Cr(CO), moiety. Since the Cr(CO), moiety can complex on either side of the A ring, two . diasteriomers with the $Cr(CO)_3$ group either trans ($\dot{\alpha}$) or cis (β) to the methyl group at the 13-position of the steroid These isomers have recently been separated are obtained. using thin layer chromatography [10]. The α isomer was found to be more stable as well as being the preferred pro-

duct; this situation was attributed to the greater steric hindrance encountered by the tricarbonyl moiety in the <u>cis</u> product due to the methyl group.

The first requirement that must be met by these derivatized hormones if the organometallic molety is to serve as a label for receptor assay is that they must be stable in 'aqueous media. The second requirement is that they must retain a high specificity for their particular receptor. The presence of the hydroxyl group at the 3-position of the steroid was found to contribute to the rapid decomposition of $(est)Cr(CO)_3$ complexes in solution, yielding estradiol and chromium salts. Incorporation of a protecting group at the 3-hydroxyl group of the estradiol resulted in stabilization of the product, presumably by shielding the metal tricarbonyl molety from attack by solvent molecules.

Enhancing the stability of the complex in solution invariably decreases receptor binding. Thus a variety of protecting groups were examined [11] in order to select the modified estradiol with the highest affinity for the estrogen receptor. The binding affinities of the modified estradiol complexes were assayed by competitive binding studies using uncomplexed, tritiated estradiol hormone. (A drawback of this procedure is the inability to measure accurately the levels of high-affinity, non-specific binding of the modified estrogen complexes.) Both the α and β complexes with a

variety of protecting groups at the 3-hydroxyl group were tested and the relative binding affinities (RBA) were calculated (Table 6.1). When the hydroxyl group is maintained away from the steroid skeleton by a spacer chain $(H-O-(CH_2)_3-,9)$ the highest affinity was observed. It appears also that the fixation site of the tripod on the A ring of the steroid strongly discriminates the α and β diasteriomers with respect to their receptor recognition While the β -isomers (6,11) show relatively properties. modest affinities, the α -isomers (5,7,10) bind with significantly higher affinities. Among the complexes listed in Table 6.1, compound 10 has the highest RBA value, 28, which is very close to that of the free ligand 9 (RBA = 37), and thus may serve as an excellent choice on the basis of the recognition criteria.

In this chapter, an investigation of the utility of FT-IR spectroscopy in the detection of the modified, organome-, tallic-labelled estrogens at physiological concentrations will be presented and the potential and limitations of the use of FT-IR in their quantitative analysis as an alternate technique to radioassay will be discussed.

Relative binding affinity (RBA)^b Compound R/metal chalcocarbonyl moiety H/-100 $Si(Me)_2(t-Bu)/-$ 11 4 5 $Si(Me)_2(t-Bu)/$ $a-Cr(20)_{3}$ 1.05 6 $Si(Me)_2(t-Bu)/$ $\beta - Cr(\tilde{C}0)_{3}$ 0.36 $Si(Me)_2(t-Bu)/$ 7 a-Cr(Ĉ0),(CS) 1.5 9 $HO(CH_2)_3/-$ 37 10 $HO(CH_2)_3/$ $a - Cr(CO)_3$ 28 11 $HO(CH_2)_3/$ $\beta - Cr(C\delta)_{3}$ 1.75

^aData from References 10 and 11.

^bThe relative binding affinity represents the ratio of the concentration of unlabelled estradiol to that of the compound required to inhibit half of the binding of [³H]-estradiol in a competitive binding assay, with the RBA of estradiol set at 100%.

•

6.2 Experimental

The general procedure for organometallic labelling of the steriod has been published previously [9] and is not included here. However, the biochemical assay has not been fully published. It should be noted that the procedures described in Sections 6.2.1 and 6.2.2 were performed by A. Vessières and are only included here to provide the reader with the necessary background in the sample preparation required for the FT-IR studies.

6.2.1 Sheep Uterus Estrogen-Receptor Purification

Young sheep uteruses were obtained from the slaughterhouse and were put in ice immediately after their removal from the animal (the weight of the uterus should not exceed All further manipulations were performed between 0 10 g). and 4°C. Surrounding fat was first removed from the uteruses, which were then washed with 0.9% NaCl solution and They were then homogenized in a "Waring Blender" weighed. in twice their volume of Tris-Saccharose (Tris pH 7.5, 50 mM; Saccharose, 0.25 M, mercaptoethanol, 1%), and centrifuged for 15 min at $800 \times g$. After centrifugation the supernatant was filtered through nylon gauze and centrifuged at 105,000 x g for 1 h. The supernatant from this centrifugation constitutes what is called the cytosol. The receptor concentration in the cytosol was measured for one aliquot

183 J using the method described by Thieulant <u>et al</u>. [12]. The cytosol was subsequently divided into small fractions not larger than 10 ml which were kept at -70°C. Periodic measurements of the receptor concentration in these samples showed that under these conditions the level of estradiol receptor remains constant for several months. The amount of cytosol proteins was determined by the Lowry assay using BSA (bovine serum albumin) as a standard. The concentration of proteins in the above preparations was usually 10-12 mg/ml cytosol.

6.2.2 Preparation of Samples for FT-IR Studies

Varying volumes of cytosol were incubated for 4 h at 0°C with known concentrations of the organometallic-labelled estradiol derivatives to yield a final concentration of the label in the range $10^{-8} - 10^{-6}$ M. At the end of the incubation period, an equal volume of protamine sulfate solution (6 mg/ml) was added to precipitate the proteins. The precipitate obtained was collected by centrifugation (3300 x g, 15 min). After elimination of the supernatant, the precipitate was washed 4 times with 5 ml of phosphate buffer (0.05 M, pH 7.4), twice with 5 ml of distilled water and lyophilized. This provides a white powder which can be used without further treatment for the IR studies. The receptor concentration in these samples was established by competitive

binding assay using ³H-estradiol to be in the range of 300 fmol per mg of precipitated protein.

6.2.3 Infrared Studies

All solvents used were of spectrograde purity or were distilled under nitrogen prior to use. KBr and CsI (gold label 99.999%) were obtained from Aldrich Chemical Co. Solid samples were pressed into 3- or 5-mm pellets, using a "Qwik Handi-Press Set" available from Aldrich. Samples mixed with KBr or CsI were ground in stainless steel vials using "Wig-L-Bug", also available from Aldrich.

All spectra were recorded with a Nicolet 6000[°]Fourier transform-infrared spectrometer equipped with a mercury cadmium telluride (MCT) detector (Infrared Associates, New Brunswick, NJ), and having a beam diameter at the focal point of 5 mm. The pellet holder was supported on an X-Y translator, so that the sample position could be adjusted to obtain maximal detector response. Ten thousand to thirty thousand scans (with a medium correlation) were accumulated and co-added using the LWA program listed in Appendix C. The mirror velocity was adjusted empirically to 0.640 cm s⁻¹ for optimum detector sensitivity; the gain was increased to allow the interferogram to reach 50-75% of its height in a background scan recorded for the empty pellet holder with a source aperture of 6.3 mm. The relative gain of all the points after the first 1024 set was increased by a factor of eight. The co-added interferograms were apodized using the Happ-Genzal function and Fourier transformed with one level of zero filling to yield a resolution of 4^{19} cm⁻¹.

6.3 Results and Discussion,

The preliminary results presented below were obtained with an organometallic-labelled estradiol derivatized at position 3 with a silyl group (compound 5, Table 6.1). The results of further studies with compound 10, having the highest RBA of any derivatized steriod complex tested, will be shown later in this section.

In the receptor assay procedure under investigation, the 'organometallic-labelled hormone is incubated with the cytosol containing the hormonal receptor, forming an organometallic-labelled receptor complex (OLRC), and the cytosol proteins are then precipitated by addition of protamine sulfate. The precipitate is then lyophilized, yielding a " white powder. The same procedure is followed in the absence of the organometallic-labelled hormone to yield the apoproteins. Figure 6.2 shows the spectrum of the apoprotein diffuted in a CSI matrix. Of particular interest here is the lack of absorption in the region between 2200 and 1800 cm⁻¹, thereby limiting any interference from the protein backbone

18¢

in the detection of the metal carbonyl stretching vibrations which occur in this region. Samples in which the proteins from the cytosol had been precipitated with hydroxyapatite rather than protamine sulfate were also examined. The choice of this precipitating agent proved unsuitable for the purposes of this work since the FT-IR spectra of these samples exhibited four weak peaks in the 2200-1800 cm⁻¹ region, presumably due to overtones of hydroxyapatite P-O stretching modes.

The spectrum of $Cr(CO)_3$ -labelled modified estradiol/ (compound <u>5</u>) is presented in Figure 6.3. The much larger relative intensity of the metal carbonyl vibrations of the $Cr(CO)_3$ moiety at 1956(a₁) and 1876(e) cm⁻¹ compared to the estradiol backbone, vibrations clearly indicates the advantage of the $Cr(CO)_3$ label in the detection of low concentrations of steroids by FT-IR spectroscopy.

Since the ratio of receptor to total precipitated proteins is very small, and since mixing with CsI or KBr or dissolution would dilute the sample, thus weakening the IR intensity of the carbonyl peaks, the protein was pressed into a 3-mm diameter minipellet without addition of CsI. The choice of the 3-mm diameter, which is less than the diameter of the IR beam (5 mm), represents a compromise between allowing the maximum amount of energy to pass through the sample and minimizing the amount of protein required.

1.88,

The spectrum of a pressed pellet of the precipitated proteins containing the OLRC (Figure 6.4) demonstrates the importance of the "window" in the carbonyl region since all the absorptions of the steroid skeleton are masked by the enormous absorptions due to the precipitated proteins. The carbonyl region of this spectrum is shown in Figure 6.5; two peaks at $1955(a_1)$ and 1881(e) cm⁻¹ are observed which correspond well to the v(CO) modes identified in the spectrum of compound 5 in a CSI matrix.

The spectrum in Figure 6.5 was obtained by coradding 20,000 scans. Co-adding spectra results in an increase in the S/N ratio equivalent to (number of scans)^{1/2}. This can be a time-consuming process; however, if the number of data points collected is reduced (i.e., lower resolution), the time required to obtain a given spectrum is shortened by (lower res./higher res.)². Accordingly, enhancing the S/N ratio is achieved much faster at lower than at higher resolution. Since the width at ^chalf-height of the carbonyl peaks is approximately 17 and 25 cm⁻¹ for the a₁ and e modes, respectively, 4 cm⁻¹ resolution is quite acceptable as no further information could be gained from scanning at higher resolution [13].

In order' to confirm that the peaks. observed in the carbonyl region can be attributed to the carbonyl stretching vibrations of the Cr(CO), molety, samples of the precipita-

.

.

Figure 6.5. Expansion of the P(CO) region of the FT-IR spectrum in Figure 6.4.

¥

ted proteins obtained after incubation of the thiocarbonyl analogue of (RO-est)Cr(CO), (compound 7) [10] in the presence of the receptor under the same conditions as described for the tricarbonyl analogue were obtained. The FT-IR spectrum of compound 7 in CsI is shown in Figure 6.6. The v(CS) vibration is observed at 1204 cm⁻¹ and the v(CO)modes at 1954 and 1895 cm^{-1} . The carbonyl region of the FT-IR spectrum of the protein sample (Figure 6.7) shows two v(CO) bands which are shifted as expected in going from the tricarbonyl to the thiocarbonyl analogue. This observation provides confirmation that the bands seen are indeed due to carbonyl absorptions. The thiocarbonyl stretching the (1200 cm^{-1}) is buried beneath the extremely. vibration intense vibrational modes of the proteins.

In order to assess the potential of this method in quantitative determination, investigation of the intensity of the carbonyl peaks of the $Cr(CO)_3$ label as a function of pellet weight (i.e., amount of protein) was undertaken. Clearly a linear relationship is required if the FT-IR measurements are to serve as a basis for receptor assay.

Various methods of treating the data were investigated using CsI pellets of varying weights with the same concentration of $(RO-est)Cr(CO)_3$ (compound <u>5</u>) so as to ascertain the best approach to the correlation of carbonyl intensity with amount of complex present (as represented by wt. of the

0

Figure 6.7. The $\nu(CO)$ region in the FT-IR spectrum of a pressed pellet of the proteins precipitated from the cytosol of sheep uterus after incubation with (RO-est)Cr(CO)₂(CS) (compound <u>7</u>) (3-mm mini-pellet; 20,000 scans; 4 cm⁻¹ resolution).

rş.

sample). Table 6.2 lists the four methods examined. These include peak height, peak area, and first derivative and second derivative techniques. In all cases, data were analyzed for the $a_1 \vee (CO)$ mode rather than the broader e mode. The results show that the integrated band area method provides the best correlation between band intensity and the concentration of the organometallic complex by virtue of having the highest correlation coefficient and the largest slope. The peak height measurements are also seen to correlate well with concentration, while the derivatives 'are somewhat less reliable. Differentiation enhances narrow spectral lines, and this enhancement can be used advantageously in the analysis for trace quantities of small or highly symmetrical molecules. Conversely, the broader the band the less useful this feature becomes [14]. The second derivative spectrum of the (RO-est)Cr(CO), complex is presented in Figure 6.8. The second derivative of the a, mode can be clearly seen while that of the broader e mode is poorly defined.

Subsequent to these studies of compound 5 in CsI, FT-IR spectra were recorded for a series of pellets of varying weights prepared from the precipitated proteins containing the OLRC without addition of CsI. The areas under the a_1 v(CO) mode in these spectra were plotted as a function of pellet weight (Figure 6.9). The linearity of this plot is

Table 6.2. Analysis of Peak Area, Peak Height and Derivative Methods for Quantitative Determination of $(RO-est)Cr(CO)_3$ (Compound <u>5</u>) in CsI^a

Parameter	$x 10^2$	$ x 10^2 $	Г	Standard error $\times 10^2$
Area ^{c,d}	2.56	54.10	.99992	0.92
Peak height _.	1.59	2.03	.9991	0.13
lst derivative, maximum	0.85	0.36	.9771	0.099
lst derivative, minimum	-0.31	-0.54	.9930	0.099
lst derivative, span	1.16	0.91	.9894	0.099
2nd derivative, span	-0.13	-0.075	.9371	0.097

a Results for the $a_1 \nu(CO)$ mode.

Ŵ

^bIntercept, A, and slope, B, obtained from plot of parameter as a function of weight of 3-mm CsI pellet containing compound 5 at a dilution of 5.540 X 10⁻⁷ g/g CsI. ^cIntegration limits between 1984.0 and 1924.0 cm⁻¹. ^dUncorrected for background noise (i.e., an equivalent area in a non-absorbing region was not integrated and subtracted to compensate for the contribution of noise in the integration).

Figure 6.8. The $\mathcal{V}(CO)$ region in the FT-IR spectrum of compound 5 in ethyl pacetate (a) and the second derivative of this spectrum (b).

199

ø

Figure 6.9. Plot of the area under the a_1 V(CO) mode of the (RO-est)Cr(CO)₃ label (compound 5) in the FT-IR spectra of pressed pellets (3-mm diameter) of a protein sample vs. pellet weight.

чP

satisfactory in the range of pellet weights from 1.4 to 2.5 mg (r = 0.98). Samples weighing less than 1.4 mg represent insufficient material to form a pellet. For pellet weights greater than 2.5 mg, significant deviations from linearity occurred, indicating self-absorption or a decrease in energy throughput in these thicker pellets. Therefore, although it would be advantageous to use pellets of the maximum thickness possible in order to enhance the intensity of the peaks due to the $Cr(CO)_3$ label, pellet weights under 2.5 mg must be employed for quantitative accuracy.

In order to obtain an approximate value for the amount of $Cr(CO)_3$ label in these pellets, the integrated absorptivity of the a_1 mode of $(RO-est)Cr(CO)_3$ (compound 5) in CsI was calculated from the area under the $a_1 v(CO)$ mode $(A_{int})^2$ as a function of pellet weight according to the following derivation:

 $A_{int} = \int A_{v} dv$

where ∫ ε_vdv is the integrated absorptivity = ε_{int}
b = thickness of the pellet
c = wt. of (RO-est)Cr(CO)₃/πr²b, for a pellet of
diameter 2r and thickness b

= bc $\int \varepsilon_{i} dv$

This holds true if $r_{beam} > r_{pellet}$; also if $r_{pellet} = r_{beam}$ maximum throughput is achieved with minimum sample weight. The wt. of $(RO-est)Cr_{(CO)_3}$ in the pellet, W_{com} , is given by:

where C_{com} is the known concentration by weight of the complex in the CsI matrix and wt. pellet \simeq wt. CsI in pellet. Thus

A int =
$$\varepsilon$$
 int x b x (W com/ $\pi r^{2}b$)

= $\varepsilon_{int}/\pi r^2 \times C_{com} \times (wt. pellet)$

Plotting A int vs. (wt. pellet) gives a slope = $\epsilon_{int}/\pi r^2 \times C_{com}$.

The measurement of A_{int} (area under the $a_1 v(CO)$ mode (integrated from 1984.0 to 1924.0 cm⁻¹) for various weights (mg) of pellets of (RO-est)Cr(CO)₃ in CsI having a concentration

 $C_{com} = 5.54 \times 10^{-4} \text{ g (RO-est)Cr(CO)}_{3}/\text{g CsI}$

gave a slope, through least-squares analysis, of 0.541 (r = 0.9999). Thus

0.541 mg⁻¹ x π x $(0.15)^2$ cm²

 5.54×10^{-7} g (RO-est) Cr(CO) $_{3}$ /mg CsI

€int

Using this value, the integrated absorbance expected for the $a_1 \circ v(CO)$ mode of compound <u>5</u> (mol. wt. = 521.47) labelling all the receptor sites in a 2-mg pellet containing 300 fmol mg⁻¹ of receptor protein can be estimated as:

 $= 6.88 \times 10^4 \text{ cm}^2 \text{ g}^{-1}$

 $= 3.04 \times 10^{-4}$

 $A_{int} = [6.88 \times 10^4 / \pi (0.15)^2] \times (300 \times 10^{-15})(521.47) \times 2$

This estimated integrated absorbance value is significantly lower than that observed for the precipitated proteins labelled with compound 5 (Figure 6.9). This indicates a large degree of high-affinity, non-specific binding in these samples which may be attributed to the initial incubation of the receptor with a high concentration of compound 5 (10^{-6} M) and possibly insufficient washing of the precipitated proteins [11].

Further studies were carried out with compound $\underline{12}$ ([$17\alpha - {}^{3}H$] compound $\underline{10}$). The elegant synthesis by Jaouen et at [15] of this doubly labelled complex is illustrated in Figure 6.10. It should be noted that introduction of the ${}^{3}H$. label at a carbon too close to the metal resulted in autoradiolysis of the organometallic moiety. FT-IR studies of

Figure 6.10. Synthesis of compound 12, a tritiated, $Cr(CO)_3$ -labelled modified estradiol, as described in Reference 15.

compound 12 indicate that it is quite stable in solution.

Figure 6.11a shows the v(CO) region of the FT-IR spectrum of a sample obtained by in vitro incubation of compound 12 with sheep uterine cytosol at approximately the same concentration ($\approx 10^{-8}$ M) as currently used in radiochemical assays with estradiol itself. The carbonyl intensities in this spectrum are clearly much lower than those observed with compound 5. Although the S/N ratio is high enough to discern definitively the presence of the carbonyl vibrations, the areas of these peaks cannot be measured with quantitative accuracy. The results of a competitive binding assay with free diethylstilbestrol (DES) show that compound 12 is bound specifically and reversibly to the uterine estrogen receptor [15] (Table 6.3). It should be noted that in this sample the level of non-specific binding is significantly lower than that of specific binding, indicating the high degree of specificity of compound 12 for the estrogen receptor. Therefore, the weak carbonyl peaks detected in Figure 6.11a are due in large part to the OLRC.

The reversibility of the binding between compound <u>12</u> and the receptor was demonstrated by FT-IR, as well as by radioassay. The spectrum of a sample obtained subsequent to the competitive binding experiment with excess DES was recorded. The carbonyl region of this spectrum (Figure 6.11b) reveals the absence of any peaks due to the OLRC,

Table 6.3. Determination of Specific and Non-specific Binding of Compound <u>12</u> and Estradiol in Sheep Uterine Cytosol by Radioassay^a

Ligand Added	Radioactivity (dpm ml ⁻¹)					
	Bound without DES	Bound with DES	Specifically bound			
Compound <u>12</u>	46,420	19,472	4,664	14,808 (32%)		
[6,7- ³ H]- 17β-estradiol	535,466	166,333	23,080	/ 143,253 (28 %)		

^aResults from Reference 15. Portions (500 μ 1) of sheep uterine cytosol were incubated at 0°C for 6 h with either [6,7-³H]17β-estradiol (4.7 nM; specific activity, 52 Ci mmol⁻¹) or compound <u>12</u> (6.3 nM; specific activity, 3.3 Ci mmol⁻¹). Non-specific binding was determined by using a 100-fold excess of unlabelled diethylstilbestrol (DES). Bound fractions were determined by protamine sulfate precipitation.

because of the binding of DES to the receptor, and also demonstrates the relative insensitivity of the FT-IR measurements at the present time in that the non-specific binding of compound $\underline{12}$ measured by the radioassay was not detected in the FT-IR spectrum.

The measurement of non-specific binding can also be accomplished by deactivating the receptor (usually by heating) and then incubating the denatured receptor with the hormone. The FT-IR spectrum of a sample prepared by thermal deactivation of the receptor protein and subsequent incubation with the organometallic-labelled hormone displayed a carbonyl intensity larger than that of the unheated sample. This situation, however, was also observed radioisotopically [11], indicating that denaturation contributes in these samples to increasing the non-specific binding.

The FT-IR spectra of the organometallic-labelled receptor complex may also be used to elicit some information on the polarity of the receptor binding site. The dependence of v(CO) frequencies of metal carbonyl complexes on solvent polarity is well established [16]. Table 6.4 shows the shift of the carbonyl peaks of compound <u>10</u> to lower frequency as the polarity of the solvent increases. Comparison of these data with the positions of the v(CO) modes in the protein samples suggests that the carbonyl moiety in the OLRC lies in a polar environment. However,

Solvent		- Solubility ^a	ν(CO)		
	€		A ₁	E	Average
Benzene	2.3	8	1957.7	1879.3	1918.5
Carbon disulfide	2.6	88	1959.0	1885.3	1922.2
Ethyl acetate	6.0	VS	1957.3	1877.3	1917.3
Tetrahydrofuran	7.3	VS .	1955.9	1875.8	1915.8
Acetonitrile	36.2	° V8	1954.0	1869.0	1911.5
ĊsI	- 0	۶ – «	1952.9	1868.4	1910.6

^as = soluble; ss = slightly soluble; vs = very soluble.

Ð

ι.

8

208

, **(a**, 14)

not provide definitive evidence of a polar this does environment at the receptor binding site since the carbonyl moiety may not be in proximity to the actual binding site. Also, the proteins were precipitated using protamine sulfate which could be a contributing factor to the polarity of the environment. Recent studies have shown that the addition of hydrophobic substituents such as aliphatic chains in the estradiol increases the affinity of 7α -position of the steroid for the receptor binding site [17]. This could be considered as evidence for hydrophobic character of the binding site. However, further studies [17] have shown that addition of aliphatic chains of varying length in the 6α -position brings about a significant decrease in the binding affinity of the steriod, thereby demonstrating the variability in the polarity of the receptor binding site.

The FT-IR measurements reported here have shown that FT-IR spectroscopy can provide qualitative information on hormone-receptor binding and has the potential to serve as a technique for quantitative determination of receptor concentration. However, the very weak intensities of the carbonyl peaks in Figure 6.11a, obtained from a sample in which there is a higher level of specific binding than of non-specific binding, indicate that receptor assay by FT-IR spectroscopy is not as yet feasible. The transformation of this technique from the qualitative to the quantitative realm will

require enhanced sensitivity of the FT-IR spectrometer inthe carbonyl region of the spectrum. Possible instrumental modifications that may achieve such enhancement include the use of more sensitive detectors and larger collection mirrors after the sample. The FT-IR spectrometer can be interfaced with a variety of specialized detectors. Room temperature (triglyceride sulfate, TGS) detectors are not suited for fast-scanning spectrometers working in the mid-IR region because of their slow response time. Mercury cadmium telluride (MCT) detectors give a much faster response time and 'are well suited for the mid-IR region, the faster response time significantly decreasing data acquistion times. The MCT detectors are made of an alloy of HgTe and CdTe, and their spectral response is a function of both specific alloy composition and operating temperature. These detectors operate in the 5000-750 cm⁻¹ (MCT A), 5000-400 cm^{-1} (MCT B) and 5000-300 cm^{-1} (MCT C) regions with a typical operating temperature range of 77-295 K. The detector used for obtaining the protein spectra in this study was the MCT B detector operating at 77K. Figure 6.12 illustrates the relative sensitivity of the different detectors commercially available over the mid-IR range. It can be seen that the InSb detector has its maximum sensitivity in the metal . carbonyl region (2200-1850 cm^{-1}) and is about an order of magnitude more sensitive in this region than the MCT A

۰.

.

(

Figure 6.12. Detectors utilized in FT-LR spectrometers and their sensitivity as a function of energy. Adapted from FT-IR documentation supplied by Nicolet Instruments Corporation, Madison, Wisconsin, U.S.A.

211

detector and approximately forty times more sensitive than the MCT <u>B</u> detector used in this study. Clearly the InSb detector is the detector of choice for further research on the use of metal carbonyl labels in receptor assay. Other recommendations include directly placing the pellet onto the detector, which would reduce energy loss due to scattering. Alternatively, scattered energy could be captured and refocused by using a larger collection mirror to intercept a wider cone of diffusely scattered radiation [18].

6.4 Concluding Remarks

In the present work, it has been shown that FT-IR spectroscopy can detect very low concentrations of metal carbonyl-labelled modified estradiol in protein samples extracted from biological tissue. FT-IR spectroscopy can also in principle be used to calculate the concentration of estradiol-receptor complex in such samples providing that the extinction coefficient for the metal carbonyl peaks in the OLRC can be determined. Thus the combined efforts of judiciously labelling a hormone with an organometallic moiety and subsequent detection of the label by FT-IR spectroscopy yield a novel method for receptor assay which is both non-destructive and possesses none of the drawbacks of radioisotopic techniques. However, the development of this

technique is in its early stages. In order for it to become viable in clinical use, a minimum of two orders of magnitude increase in the sensitivity of the FT-IR measurements must be achieved. Current work in this area is also being focused on the synthesis of hormone-labelled metal carbonyl cluster complexes [11], which should yield higher integrated v(CO) absorptivities.

,213

References

- 1. Chemical and Engineering News, <u>62</u>(46), 24 (1984).
- M. Caiś, S. Dani, Y. Eden, O. Gandolfi, M. Horn, E.E. Isaacs, Y. Josephy, Y. Saar, E. Slovin and L. Snarsky, Nature, <u>270</u>, 534 (1977).
- E.V. Jensen and E/R. DeSombre, Science, <u>182</u>, 126 (1973).
- 4. R.B.J. King and G.L. Greene, Nature, 307, 745 (1984)¹.
- 5. W.V. Welshons, M.E. Lieberman and J. Gorski, Nature, 307, 747 (1984).
- J.A. Katzenellenbogen, D.F. Heiman, K.E. Carlson and J.E. Lloyd, in "Receptor-Binding Radiotracers", Vol. I, W.C. Eckelman, ed., CRC Press, Boca Raton, Florida, 1982, pp.93-126 and references therein.
- See, for example, C.J.L.M. Meijer, J. van Marle, J.P. Persijn, W. van Niewenhuizen, J.P.A. Baak, M.E. Boon and J. Lindeman, Virchows Arch., <u>40</u>, 27 (1982).
- A. Nakamura and M. Tsutsui, Z. Naturforsch., <u>18</u>, 666 (1963).
- 9. G. Pouskouleli, I.S. Butler and J. Hickey, J. Inorg. Nucl. Chem., <u>42</u>, 1659 (1980); G. Pouskouleli, Ph.D. thesis, McGill University, Montreal, Quebec, Canada, 1981.
- 10. G. Jaouen, A. Vessières, S. Top, A.A. Ismail and I.S. Butler, C.R. Acad. Sci. Paris, <u>298</u>, 683 (1984).

. 9

11. G. Jaouen and A. Vessières, unpublished results.

- 12. M.L. Thieulant, S. Samperez and P. Jouan, Endocrinolgy, <u>108</u>, 1552 (1981).
- 13. P.R. Griffiths, "Chemical Infrared Fourier Transform Spectroscopy", J. Wiley and Sons, New York, 1975.

14. M.R. Whitbeck, Appl. Spectrosc., 35, 93 (1981).

15. G. Jaouen, A. Vessières, S. Top, A.A. Ismail and I.S.

Butler, J. Am. Chem. Soc., in press (1985).

16. D.A. Brown and F.J. Hughes, J. Chem. Soc. (A), 1519 (1968).

17. J.P. Abjean, Thèse 3ième cycle, Rennes, 1983.

18. M. Friedman and J.L. Freeman, Appl. Spectrosc., <u>38</u>, 700 (1984).

Chapter 7

Investigation of Chalcocarbony1(5,10,15,20-tetrapheny1porphinato)iron(II) Derivatives by FT-IR Spectroscopy

7.1 Introduction

Many metal-porphyrin derivatives have been synthesized as model compounds for the study of the binding of oxygen and other small diatomic molecules to hemoglobin and myoglobin, as well as to further the understanding of the detoxification mechanisms of porphyrin=containing cytochrome P-450 [1]. Among these porphyrin derivatives, (5, 10, 15, 20 tetraphenylporphinato)iron(II) (FeTPP)^{\mp} is often used because of its stability and convenient synthesis [2,3]. The structure of FeTPP is shown in Figure 7.1. Four nitrogens bind the iron in the equatorial plane through σ -donation, and two ligands can be introduced at the axial positions to complete a pseudo-octahedral structure. The bonding between the iron and the porphyrin also involves π -donation from the filled metal $d\pi$ orbitals to the vacant π^* orbitals delocal-The extent of the π -backized over the porphyrin ring. bonding component of the metal-porphyrin interaction varies with the π -accepting properties of the axial ligands. FeTPP

Unless otherwise stated, FeTPP in the various complexes discussed in this section will represent low-spin Fe(II).

differs from the naturally occurring protoporphyrin IX found in hemoglobin or myoglobin in that four phenyl groups are introduced at the <u>meso</u> carbons and hydrogens at the β carbons, while in hemoglobin the <u>meso</u> carbons are hydrogen substituted and the β positions have propionic acid, ethylenic or methyl group substituents (Figure 7.1).

Complexes of the form FeTPP(CO)L with axially bound CO. trans to various ligands L (e.g., py, EtOH, Im, MeIm) are well-known synthetic models for the study of the binding of CỞ to hemoglobin [4]. Recently, a series of analogous complexes in which the CO ligand is replaced by a thiocarbonyl or selenocarbonyl ligand have been prepared [5-7]. In addition, the pentacoordinated species FeTPP(CX) (X = S, Se) have been obtained [6,7]. Although other metalloporphyrin complexes containing a CS ligand have been synthesized [8], FeTPP(CSe) and Fe(TPP)(CSe)L (L = py, EtOH, MeIm) represent the only examples of the incorporation of a CSe group into a metalloporphyrin system. The bonding properties of both the CS and CSe ligands have been reviewed elsewhere [9] and the stronger σ -donor and π -acceptor capabilities of CS and CSe \cdot relative to CO, giving rise to a stronger bonding to lowoxidation state metals, have been emphasized in this thesis. The CS and CSe ligands may also act as π -donors [10] and a greater flexibility in the bonding properties of these ligands relative to those of CO has been demonstrated [11] ag

The effect of these differences between the CS and CSe ligands, on the one hand, and CO, on the other, in the porphyrin complexes studied here is manifested by the stability of FeTPP(CX) (X = S, Se) whereas the corresponding FeTPP(CO) derivative is only stable under partial CO pressure [12]. The thio- and selenocarbonyl complexes can be heated up to 150°C under vacuum without decomposition [6]. The strength of the Fe-C(X) (X = S, Se) bond is dramatically demonstrated by the stability of the thiocarbonyl and selenocarbonyl complexes towards oxidation in aerated benzene - the half-life of FeTPP(CO)(py) is ~5 min [5] while the corresponding selenocarbonyl complex is stable for: hours [7], and FeTPP(CS)(py) or FeTPP(CS) is stable to oxidation even after oxygen has been bubbled through the solution for 20 h [5]. The remarkable strength of the Fe-C(S) bond is also indicated by the two-electron oxidation of FeTPP(CS), without loss of the CS ligand, to form Fe(III)TPP(CS)⁺ whereas FeTPP(CO) loses CO during the removal of the first electron[°][13].

The general synthetic route to the thiocarbonyl or selenocarbonyl FeTPP complexes involves a relatively easy procedure: Fe(III)TPPCl is stirred in benzene under argon in the presence of Fe powder to form Fe⁰TPP; the subsequent addition of PhCH₂SCCl₃ or PhCH₂SeCCl₃ affords FeTPP(CS) [6] or FeTPP(CSe) [7] is respectively, in very high yields (≥80%).

$$F_{\Theta}(TPP) + RXCC1, \frac{-2CI^{-}}{F_{\Theta}^{\bullet}, CH, CI_{2}^{-}CH, OH} F_{\Theta}(TPP)(CICIIXR) \xrightarrow{-RCI} F_{\Theta}(TPP)(CX)$$
(7.1)

The above reaction is of great interest since various compounds of the formula $RSCCl_3$ exhibit fungicidal activity [e.g., Folpet (<u>a</u>) and Captan (<u>b</u>)]. Their toxicity has been postulated to stem from the generation of free radicals $RSCCl_2$ (which irreversibly attach to the macromolecules of the cell) during the reduction of $RSCCl_3$ by cytochrome P-450 and subsequent formation of P-450-Fe(II) \leftarrow C(Cl)SR and P-450-Fe(II) \leftarrow CS [6].

The effects on metalloporphyrins of substituents on the porphyrin ring and of axially bound ligands have been studied by a variety of spectroscopic techniques [14,15]. The use of IR spectroscopy has been fairly limited, presumably due to the complexity of the porphyrin spectra. The IR spectra of tetraphenylporphyrin and several tetraphenylpor-

phyrin metal complexes have been reported and partially assigned by Alben <u>et al.</u> [16,17]. The metal-nitrogen stretching vibrations of such complexes, appearing in the far-IR spectra, have also been assigned [18]. In a recent study of the IR spectra of a series of iron tetraphenylporphyrin complexes [19], bands sensitive to spin state and oxidation state were identified. In this chapter, the results of a study of the FT-IR spectra of FeTPP(CX) (X = S, Se) and FeTPP(CX)L (X = S, Se; L = py, EtOH) will be presented. This investigation was undertaken in order to examine the perturbations induced by the axially bound ligands on the metal-porphyrin interactions.

7.2 Experimental

7.2.1 Sources of Materials

Fe(III)TPPC1 was purchased from Strem Chemicals. Samples of FeTPP(CX)L (X = S, Se; L = EtOH, py) were obtained from Drs. J.P. Battioni and D. Mansuy (Laboratoire de chimie de L'Ecole Normale Supérieure, Paris, France) or were synthesized utilizing the procedure given in References 6 and 7; the reagents $PhCH_2XCCl_3$ (X = S, Se) were also obtained from Drs. Battioni and Mansuy. FeTPP(CX) (X = S, Se) complexes were prepared by heating FeTPP(CX)(EtOH) at 160°C for 4 h, as described in Reference 6. FeTPP(CO)- (py) was synthesized according to the literature procedure [4]. CsI (99.999%) was obtained from Aldrich Chemical Co.

7.2.2 Spectroscopic Measurements

The IR spectra of all FeTPP derivatives were recorded for samples pressed into CsI pellets, which were prepared in an argon-purged glove bag. FT-IR spectra were obtained on a Nicolet 6000 Fourier-transform infrared spectrometer (resolution 0.5 cm⁻¹). ¹³C NMR spectra were measured on a Varian XL-200 spectrometer equipped with a broad-band probe. The chemical shifts reported are relative to TMS.

7.2.3 Reaction of FeTPP(CX) (X = S, Se) with CO

FeTPP(CX) (X = S, Se) (20 mg) was dissolved in deaerated spectrograde benzene (10 ml) under argon. The solution was transferred to the high-pressure apparatus described previously (Section 3.2.1) and degassed in three freeze-thaw cycles. The reaction compartment was then pressurized with CO (20 atm). After periods of 6-24 h the CO gas was removed by adsorption on charcoal in a second compartment. The FT-IR spectrum of the solution did not exhibit any peaks in the carbonyl region.

7.3 Results and Discussion

FeTPP(CO)L complexes are quite unstable with a halflife in aerated solution of the order of minutes [5]. The pentacoordinated complex, FeTPP(CO), decomposes virtually instantly on exposure to air [12]. In contrast, the compounds described here are remarkably stable; their halflife in solution is of the order of hours [FeTPP(CX)L] or days [FeTPP(CX)] (X = S, Se; L = py, EtOH) [5-7]. The pentacoordinated FeTPP(CX) (X = S, Se) species are stable in air for years in the solid state. The difference in stability between these complexes and their carbonyl analogues within the above series indicates a decreasing susceptibility of the metal toward oxidation and accordingly decreasing electron density at the metal in the order CO > CSe \simeq CS. This trend may be interpreted in terms of a greater extent of π -back-donation from the metal to the CS or CSe ligand than to CO [20].

The FT-IR spectra of these complexes were obtained to assess the effects of the differences in the bonding properties of the ligands on the metal-porphyrin interaction. The spectra of the porphyrin derivatives studied are shown in Figures 7.2-7.9, and the positions of the major peaks, together with assignments adopted from Alben <u>et al.</u> [16,-17], are listed in Table 7.1. The first row of this table

.

Figure 7.4. FT-IR spectrum in the 2100-600 cm⁻¹ region of FeTPP(CS)(EtOH) (CsI pellet; 200 scans; 0.5 cm⁻¹ resolution).

A STATE OF THE STA

- 8

۶.

Table 7.1. Selected Frequencies (cm^{-1}) from the FT-IR Spectra of FeTPP(CX) and FeTPP(CX)(L) Derivatives and Fe(III)TPPC1

CX	CO .	ĊS ·	, CS	CS	CSe	CSe	CSe -	·- <
L	ру	-	EtOH	ру	-	EtOH	ру	c1)
Oxidation state	II	ÌÌ	II	11	II	II	ÌI	, []]
Spin	0	°``-	0	- 0 -	0 -	Q	0	5/2
ν(CX)	1983.6	1312.4	1294.1	1282.7	1164.7	1137.9	1121.6	, '
	(1598.4	1598.6	1598.8	1598.8	1598.2	1598.8 -	1598.6	1596.9
Aromatic ring vibrations ^a	1441.1	1440.6	1440.7	1440.9	1440.6	1440.5	1440.8	1440.3
Spin state [©] marker ^b	1349.9	1350.8	1350.4	1350.0	1350.3	1350.0	1350.0	1340.2 1334.1
Split in TPPH2 ^a .	1176,3	1175.0	1175.7	1176.2	1175.5	1176.7	1176.9	1175.1
Unassigned	1071.2	1072.4	1072.6	1072.3	1072.3	1072.5	1072.8	1069.7
Porphyrin ring vibration ^a	1002.4	1001.2	1003.1	1003.7	1001.6	1002.9	1004.0	1002.2

۰. .`-

~

Table 7.1. (Cont'd)

and the second	f							
СХ	CO	CS	C S	сs	CSe	CSe	CSe	. –
L	РУ	-	EtOH	ру	-	EtOH	РУ	Cl
					- · · · · · · · · · · · · · · ·			······································
Found at 1002 in TPPH ₂ ^a	995.3	995.3	995.7	996.4	995.5	995.7	996.5	995.5
β-pyrrole out-of-plane C-H deformation ^a	796.9	802.6	799.8	795.2	802.6	799.4	795.3	806.5
Split in TPPH ₂ ^a	752.7	753.2	753.5	752.3	752.7	752.7	752.5	750.5
Porphyrin ring deforma- tion (split in TPPH ₂) ^a	714.9	. 720.7	717.8	713.9	720.5	717.2	713.7	720.3
Unassigned .	701.3	704.3	702.1	701.0	70 3.9	701.4	700.7	703.4

^ASee Reference 16. ^{'b}See Reference 19.

Э

lists the v(CX) vibrations, while the remaining frequencies correspond to peaks characteristic of the FeTPP moiety.

Difference spectra represent the simplest method of establishing empirically any perturbations induced by the axial ligands on the porphyrin ring vibrations. In order to illustrate the utility of difference spectra in assessing changes in metal-porphyrin bonding, the spectrum obtained by subtracting the spectrum of Fe(III)TPPC1 from that of FeTPP(CSe)(EtOH) is presented in Figure 7.10. The features in this spectrum are the result of a number of factors: the different oxidation and spin states of the iron atom in the two complexes; the lower symmetry of Fe(III)TPPC1 due to ring puckering [21]; and the absence of axial π -backbonding in the chloride complex.

The difference spectrum obtained by the subtraction of the spectrum of FeTPP(CS)(py) from that of FeTPP(CSe)(py) is shown in Figure 7.11. The elimination of all porphyrin vibrations in the difference spectrum indicates that the interactions of the CS and CSe ligands with the metal in these systems are similar. Specifically, the comparable extent of metal $d\pi + CX \pi^*$ backbonding in these complexes is demonstrated by this result in that the availability of metal $d\pi$ electron density for donation to the π^* orbitals of the porphyrin is a function of the amount of $d\pi$ electron density transferred to the axial ligands [20]. Therefore,

Figure 7.10. Difference spectrum obtained by the subtraction of the FT-IR spectrum of Fe(III)TPPC1 from that of FeTPP(CSe)(EtOH).

. 4

Figure 7.11. Difference spectrum obtained by the subtraction of the FT-IR spectrum of FeTPP(CS)(py) from that of FeTPP(CSe)(py).

236

 \Im

720

- This task of this

any variation in this amount should be reflected in the frequencies of the porphyrin vibrational modes. The difference spectra obtained for the FeTPP(CX)(EtOH) (X = S, Se) pair and the pentacoordinated species, FeTPP(CX), also did not exhibit any features due to the vibrational modes of FeTPP.

Figure 7.12 displays the FeTPP(CSe)(py)-FeTPP(CO)(py) difference spectrum. The most significant features are the v(CX) modes at 1984 (X = 0) and 1122 (X = Se) cm⁻¹ and a peak at 680 cm⁻¹ present in the carbonyl complex only. The position of the latter peak suggests its assignment to the Fe-C-O bending mode [22]. No peaks attributable to the Fe-C-X bending modes were observed in the spectra of the thiocarbonyl and selenocarbonyl derivatives. However, these peaks may appear in the region of the spectrum below 600 cm^{-1} , which was not examined, in view of the substantial shift to lower frequencies of M-C-X bending modes with increase in mass of the terminal atom [23]. The difference spectrum in Figure 7.12 and the data in Table 7.1 reveal some small shifts (<2 cm⁻¹) in positions of porphyrin vibrational modes in the spectrum of FeTPP(CSe)(py) as compared to that of the carbonyl analogue. The small magnitudes of these shifts suggest a much greater similarity between the selenocarbonyl (or thiocarbonyl) and the carbonyl complex than do the relative stabilities described earlier in this

section. It thus appears that the differences in M-C(X) bond strengths among the carbonyl, thiocarbonyl and selenocarbonyl FeTPP complexes do not induce sufficient changes in the extensively delocalized π -framework of the porphyrin to give rise to significant shifts in vibrational frequencies.

The subtraction of the spectrum of FeTPP(CSe)(EtOH) from that of the corresponding pyridine derivative (Figure 7.13) reveals several shifts in peaks due to porphyrin vibrational modes. Similar changes are observed in Figure where the spectrum of FeTPP(CS)(EtOH) has been sub-7.14 tracted from that of FeTPP(CS). The positive peak in this **spectrum** at 1175 cm⁻¹ represents a peak which appears in the spectra of both complexes but with an enhanced intensity in the spectrum of FeTPP(CS). This increased intensity may be attributed to reduced symmetry of the porphyrin ring in the pentacoordinated complex: an X-ray crystallographic study of FeOEP(CS) has revealed a 0.23-A displacement of the iron atom out of the porphyrin plane towards the CS ligand [24]. Comparison of the data in Table 7.1 indicates that the shifts observed in the difference spectra with variation in or removal of the axial ligand L generally follow a consis-The magnitude of the shift of a given peak tent trend. relative to its position in the spectrum of FeTPP(CX)(py) (X S or Se) increases in the order FeTPP(CX)(EtOH) < Fe(III)TPPCl < FeTPP(CX), while the direction of the shift.

Figure 7.13. Difference spectrum obtained by the subtraction of the FT-LK spectrum of FeTPP(CSe)(EtOH) from that of FeTPP(CSe)(py).

Ŷ

may be towards higher or lower frequencies. This order appears to parallel the extent of displacement of the iron atom out of the porphyrin plane. For instance, FeTPP(CS)-(py) exhibits planarity of the FeTPP core (data reported in Table II of Reference 25) while 0.23- and 0.38-A displacements of the iron atom out of the porphyrin plane have been reported for FeOEP(CS) [24] and Fe(III)TPPC1 [21], respectively. It is of interest to note that the 1350 cm^{-1} peak remains unshifted in the spectra of all the Fe(II) com-This peak has been found to be sensitive to the plexes. spin state of the metal [19], and this observation is corroborated in the present study by the appearance of this peak as a shifted doublet in the spectrum of Fe(III)TPPC1 at 1340.2 and 1334.1 cm^{-1} . A second peak identified in previous work [19] as oxidation-state sensitive and slightly spin-state sensitive is observed in the 803-795 cm^{-1} range in the spectra of all the Fe(II) complexes studied here and at 807 cm⁻¹ in the spectrum of Fe(III)TPPC1. Among the Fe(II) complexes, this peak shifts to higher frequency on going from FeTPP(CX)(py) to FeTPP(CX)(EtOH) and is further shifted to higher frequency in the spectrum of the pentacoordinated species. Since the shifts of peaks sensitive to oxidation state are generally interpreted in terms of changes in the amount of metal $d\pi$ electron density transferred to the porphyrin π^* orbitals [19], the above data

indicate that the extent of metal to porphyrin π -back-donation in the complexes studied here increases in the order FeTPP(CX) < FeTPP(CX)(EtOH) < FeTPP(CX)(py).

The resonance Raman spectra of FeTPP(CS) and FeTPP(CS)-(py) have been reported, as part of a resonance Raman investigation of a series of 1ron tetraphenylporphyrin com-Spectra were obtained with excitation into plexes [25]. both of the characteristic visible absorption bands of porphyrins - the Soret and α,β bands. From the data obtained for the entire series of complexes studied, two bands sensitive to the extent of metal to porphyrin π -back-donation were identified. Both these bands were observed to shift to higher frequency on going from FeTPP(CS)(py) to FeTPP(CS), indicating that less electron density is transferred from the metal to the porphyrin in the pentacoordinated complex, in agreement with the present study. This result was attributed to the displacement of the iron atom out of the porphyrin plane in FeTPP(CS), leading to less favourable overlap of the Fe d π orbitals and the porphyrin π^* orbitals than is the case in planar species such as FeTPP(CS)(py) [25].

In view of the frequency variations observed between the IR spectra of FeTPP(CX), FeTPP(CX)(py) and FeTPP(CX)(EtOH) for a given X, it is of interest to assess the extent of metal \rightarrow CX π -back-donation in these various complexes.

differences in carbonyl frequencies can be related to While the CO bond order (i.e., the energy-factored in changes force field approximation is valid for v(CO) modes) [26], the CS and CSe stretching frequencies cannot serve as direct measures of bond order due to increased mixing of M-C(X) and C-X stretching modes with increase in the mass of X [27]. This effect was noted in a study of M(II)OEP(CS)(py) (M = Os) [8], and data for FeOEP(CS) were found not to Fe, Ru, fit the relationship between v(CS) and the C-S bond distance established for a series of thiocarbonyl derivatives [24] (see Table 2.3). However, a trend in v(CX) values among a series of related compounds can generally be considered to reflect variations in M \rightarrow CX π -backbonding. It can be seen in Table 7.1 that substitution of a pyridine ligand by an ethanol ligand results in an increase in v(CX) (X = S, Se), indicating that when the trans ligand is ethanol less electron density is donated to the metal. The higher v(CX) for the 'pentacoordinated complexes is indicative of a further decrease in the net electron density at the metal. The trend in v(CX) frequencies thus suggests that the availability of metal electron density for π -back-donation to the porphyrin decreases in the order FeTPP(CX)(py) > FeTPP(CX)-(EtOH) > FeTPP(CX).This finding is consistent with the conclusions reached after examination of the porphyrin vibrational modes in both the IR resonance Raman and spectra.

244 -

An attempt was made to coordinate a CO ligand <u>trans</u> to CX (X = S, Se) in the pentacoordinated FeTPP(CX) complexes [Eq. 7.2], since the frequencies of the v(CO) modes of the FeTPP(CO)(CX) complexes would provide a quantitative measure of the extent of d_{π} electron density transferred to the CX ligands.

FeTPP(CX) + CO
$$\leftarrow$$
 FeTPP(CO)(CX) (X = S, Se) (7.2)

The reactions represented by Eq. 7.2 did not take place even at CO pressures of 20 atm, while the corresponding reaction of (FeTPP(CO)) under less than 1 atm CO pressure yields $FeTPP(CO)_2$ [12]. However, the latter complex undergoes facile CO loss. The equilibrium constants for the formation of the monocarbonyl and dicarbonyl complexes by the following reactions:

FeTPP + CO
$$\leftarrow 1$$
 FeTPP(CO) (7.3)

$$\frac{K_2}{FeTPP(CO) + CO} = FeTPP(CO)_2$$
(7.4)

have been reported, [12]. K_1 [(6.6 ± 0.3) X 10⁴] was found to be much greater than K_2 (140 ± 3) in direct contrast with the corresponding reaction of deuteroheme (H) with pyridine

where K_1 for the formation of H(py) is substantially smaller than K_2 for the formation of $H(py)_2$ [28]. The lower affinity of the iron atom for CO after binding of one CO ligand has been attributed to the decreased availability of \checkmark Fe d π electron density for π -back-donation to CO after formation of the first Fe-CO bond [12]. This is manifested in the substantially higher v(CO) value for FeTPP(CO)₂ as compared to that of FeTPP(CO) [12]. Since it is well established that both the CS and CSe ligands are stronger π acceptors than CO [9], the lack of CO incorporation into the FeTPP(CX) complexes (i.e., K_t [Eq. 7.2] < K_2) is not unexpected.

As part of the present study, the 13 C NMR spectra of FeTPP(CX) (X = S, Se) and FeTPP(CS)(py) were recorded. The positions of the resonances are listed in Table 7.2, together with the corresponding values from the literature for FeTPP(CX)(EtOH) [6,7]. Comparison of the chemical shift for the CX resonance of FeTPP(CX) with that for FeTPP(CX)-(EtOH) reveals an upfield shift in the pentacoordinated species. The CS resonance of FeTPP(CS)(EtOH) is in turn upfield from that of FeTPP(CS)(py). It has been established in studies of the 13 C NMR spectra of metal chalcocarbonyl complexes that an upfield shift in the position of a CX (X = O, S, Se) resonance is indicative of a decrease in the extent of metal to chalcocarbonyl π -back-donation [29,30].

			-					
Complex	α ,	β	meso	с ₁ "	С ₂ п,С ₆ н	C ₃ ",C ₅ "	с ₄ .,	СХ
FeTPP(CS) ^C	146.5	133.1	122.7	161 9	134.2	127.3	128.2	308.1
FeTPP(CS)(EtOH) ^d	140.5	132.5	121.8	141.9	133.6	127.5	127.6	313.5
FeTPP(CS)(py) ^e	145.6	132.0	121.2	142.3	≥ 133.6	126.6	127.3	315.4
FeTPP(CSe) ^C	146.3	133.0	, 122.7	141.9	134.0	127.3	128.2	305.1
FeTPP(CSe)(EtOH) ^f	145.8	132.5	- 122.1	141.6	133.6	126.9	127.8	320.1

Table 7.2. ¹³C NMR Chemical Shifts of FeTPP(CX) and FeTPP(CX)(L) Complexes $(X = S, Se)^{a,b}$

a Chemical shifts in ppm (+0.1 ppm) relative to TMS. b Assignments adopted from Reference 15, Chapter 1, p. 43. c In CD₂Cl₂ solution. d Data from Reference 6; CDCl₃ solution. e In CD₂Cl₂ solution containing 10% (v/v) pyridine-d₅. f Data from Reference 7; CDCl₃ solution.

Accordingly, the trends in the CX resonances reported above are consistent with the trends observed in the v(CX)frequencies in the IR spectra. The other peaks listed in Table 7.2 exhibit very small shifts with variation in the axial ligands. In particular, it may be noted that replacement of a CS ligand by a CSe ligand in a given complex has virtually no effect on the ¹³C NMR spectrum of the FeTPP moiety.

References

- P.D. Smith, B.R. James and D.H. Dolphin, Coord. Chem. Rev., <u>39</u>, 31 (1981).
- 2. A.D. Adler, F.R. Longo, J.D. Finarelli, J. Goldmacher, J. Assour and L. Korsakoff, J. Org. Chem., <u>32</u>, 476 (1979).
- K. Rousseau and D. Dolphin, Tetrahedron Lett., <u>48</u>, 4251 (1974).
- 4. S.-M. Peng and J.A. Ibers, J. Am. Chem. Soc., <u>98</u>, 8032 (1976).
- D. Mansuy, J.-P. Battioni and J.-C. Chottard, J. Am. Chem. Soc., <u>100</u>, 4311 (1978).
- 6. J.-P. Battioni, J.-C. Chottard and D. Mansuy, Inorg. Chem., 21, 2056 (1982).
- 7. J.-P. Battioni, D. Mansuy and J.-C. Chottard, Inorg. Chem., 19, 791 (1980).
- P.D. Smith, D. Dolphin and B.R. James, J. Organomet. Chem., 208, 239 (1981).
- 9. I.S. Butler, Acc. Chem. Res., 10, 359 (1977).
- 10. J.L. Hubbard and D.L. Lichtenberger, Inorg. Chem., <u>19</u>, 3866 (1980).
- 11. M.A. Andrews, Inorg. Chem., 16, 496 (1977).
- 12. B.B. Wayland, L.F. Mehne and J. Swartz, J. Am. Chem. Soc., 100, 2379 (1978).
- 13. L.A. Bottomley, M.R. Deakin and J.-N. Gorce, Inorg. -Chem. 23, 3563 (1984).

- 14. D. Dolphin, ed., "The Porphyrins", Volume III, Academic Press, New York, 1978.
- D. Dolphin, ed., "The Porphyrins", Volume IV, Academic Press, New York, 1979.
- 16. J.O. Alben, S.S. Choi, A.D. Adler and W. S. Caughey, Ann. N.Y. Acad. Sci., 206, 278 (1973).
- 17. J.O. Alben, in "The Porphyrins", Vol. III, D. Dolphin, ed., Academic Press, New York, 1978, pp. 323-345.
- J. Kincaid and K. Nakamoto, J. Inorg. Nucl. Chem., <u>37</u>, 85 (1975).
- H. Oshio, T. Ama, T. Watanabe, J. Kincaid and K. Nakamoto, Spectrochim. Acta, <u>40A</u>, 863 (1984).
- 20. A. Antipas, J.W. Buchler, M. Gouterman and P.D. Smith, J. Am. Chem. Soc., 102, 198 (1980).
- 21. J.L. Hoard, G.H. Cohen and M.D. Glick, J. Am. Chem. Soc., 89, 1992 (1967):
- 22. L.H. Jones, R.S. McDowell, M. Goldblatt and B.I. Swanson, J. Chem. Phys., <u>57</u>, 2050 (1972).
- 23. P.S. Braterman, "Metal Carbonyl Spectra", Acadamic Press, London, 1975, p. 25, Eq. 3.1.
- 24. R. Scheidt and D.K. Geiger, Inorg. Chem., <u>21</u>, 1208 (1982).
- 25. G. Chottard, P. Battioni, J.-P. Battioni, M. Lange and D. Mansuy, Inorg. Chem., <u>20</u>, 1718 (1981).

26. Reference 23, p. 27.

Э

- 27. A.M. English, K.R. Plowman and I.S. Butler, Inorg. Chem., <u>20</u>, 2553 (1981).
- 28. M. Rougee and D. Brault, Biochemistry, <u>14</u>, 4100 (1975).
 29. G.M. Bodner, Inorg. Chem., <u>14</u>, 2694 (1975).

30. D. Cozak, I.M. Baibich and I.S. Butler, J. Organometal. Chem., 169, 381 (1979).

()

٠.

Summary and Contributions to Knowledge

- 1. Arene displacement from $(\eta$ -Arene)Cr(CO)₂(CX) (X = S, Se) complexes by ligands other than CO has been studied for the first time and has provided a route to the synthesis of chromium thiocarbonyl and selenocarbonyl derivatives containing more than one monodentate ligand (other than CO) or a tridentate ligand. The reaction of $(\eta$ -Arene)Cr(CO)₂(CX) (X = S, Se) complexes with excess $(RO)_3P$ (R = Me, Et, n-Bu, Ph) afforded $Cr(CO)_2(CX)[(RO)_3P]_3$ in high yield. The products were identified as mixtures of isomers consisting predominantly of the mer I isomer, in which a phosphite ligand is trans to CX, together with a small amount of the fac isomer. Very small amounts of the mer II isomer, in which a phosphite ligand is trans to CO, were detected in the ³¹P NMR spectrum of Cr(CO)₂(CX)- $[(MeO)_3P]_3$. Arene displacement from $(bz)Cr(CO)_2(CX)$ by the tridentate ligands triphos-U [(Me)C(CH₂P(Ph)₂)₃] and triphos [(Ph₂PCH₂CH₂)₂PhP] yielded, respectively, $(tr_iphos-U)Cr(CO)_2(CX)$ as the fac isomer and $(triphos)Cr(CO)_{2}(CX)$ as a mixture of two fac isomers.
- 2. The crystal structures of the <u>mer</u> I isomer's of $Cr(CO)_2(CX)[(MeO)_3P]'_3$ (X = S, Se) were obtained.

252

- 3. The ³¹P NMR spectra of the complexes mentioned in 1 above were recorded. These presented the first opportunity to compare the ³¹P resonances of tertiary phosphite and tridentate phosphine ligands <u>cis</u> and <u>trans</u> to CO, CS and CSe ligands in Group VIB metal complexes.
- 4. $Cr(CO)_2(CX)[(MeO)_3P]_3$ (X = O, S, Se) complexes were found to undergo intramolecular isomerization. The rate of isomerization was established to be fastest for the selenocarbonyl complex and slowest for the tricarbonyl complex.
- 5. Activation parameters were calculated for the $\underline{fac} \leftrightarrow$ <u>mer</u> isomerization of $Cr(CO)_3[(MeO)_3P]_3$ and the $\underline{fac} \leftrightarrow$ <u>mer</u> I isomerization of $Cr(CO)_2(CX)[(MeO)_3P]_3$ (X = S, Se).
- 6. In one of the few applications to date of two-dimensional NMR spectroscopy in the study of stereochemically nonrigid organometallic complexes, the interconversion of <u>mer</u> I and <u>mer</u> II isomers was observed in the 2-D NOE ³¹P NMR spectra of Cr(CO)₂(CX)[(MeO)₃P]₃⁷(X = S, Se). Analysis of these spectra established that the observed processes involved a trigonal prismatic twist rather than a bicapped-tetrahedron mechanism.

- 253-

- 7. Kinetic studies of arene displacement from (bz)- $Cr(CO)_2(CX)$ (X = S, Se) by $(MeO)_3P$ demonstrated that the reaction rate is first order with respect to the incoming ligand and first order in complex. These reactions were proposed to proceed by the same ring slippage mechanism postulated for arene displacement from $(\eta$ -Arene)M(CO)_3 (M = Mo, W) complexes. The relative rates of arene displacement from $(bz)Cr(CO)_2(CX)$ by $(MeO)_3P$ and of <u>fac</u> + <u>mer</u> I isomerization of the $Cr(CO)_2(CX)[(MeO)_3P]_3$ product were found to be consistent with the possibility that the <u>fac</u> isomer is the initial product of the reaction and subsequently isomerizes to the observed mer I product.
- 8. The rate of arene displacement from (bz)Cr(CO)₂(CSe) by
 (MeO)₃P was found to be faster than that for the corresponding thiocarbonyl complex. On the basis of comparison of the activation parameters calculated for these reactions, this result was attributed to less crowding in the activated complex in the selenocarbonyl case.
- 9. The effects on the rate of arene displacement from $(\eta Arene)Cr(CO)_2(CS)$ complexes of size and nucleophilicity of the incoming ligand and of substituents on the arene were investigated.

- 10. The feasibility of a procedure for estrogen receptor assay based on the detection by FT-IR spectroscopy of $Cr(CO)_3$ -labelled modified estradiol bound to estrogen receptors in target tissue was examined. The sensitivity of the FT-IR measurements proved sufficient for detection of the metal carbonyl label but not for its quantitative determination.
- 11. The FT-IR spectra of (5,10,15,20-tetraphenylporphinato)iron(II) (FeTPP) complexes containing axially bound chalcocarbonyl ligands were recorded. Difference spectra obtained by subtraction of spectra of pairs of complexes in the series FeTPP(CX) (X = S, Se) and FeTPP(CX)L (X = S, Se; L = py, EtOH) were examined in order to assess the perturbations of the vibrational. modes of the porphyrin ring with variation in the axial ligands.
- 12. FeTPP(CX) (X = S, Se) was found not to bind CO at its vacant coordination site under 20 atm CO pressure, demonstrating a substantial withdrawal of Fe d π electron density by the CX ligands.

Suggestions for Future Work

2

In Chapter 3 of this thesis, an example of the use of two-dimensional NMR spectroscopy in the study of stereochemical nonrigidity of organometallic complexes was described. This investigation, which represents one of the few applications to date of 2-D NMR spectroscopy in organometallic chemistry, demonstrated that 2-D NMR measurements can be employed not only to establish the occurrence of a chemical exchange process but also to elucidate rearrangement mechanisms. Accordingly, further studies by 2-D NMR spectroscopy of stereochemically nonrigid organometallic complexes are clearly worthwhile.

Further investigations of the rearrangement processes of $Cr(CO)_2(CX)L_3$ (X = 0, S, Se) complexes should be undertaken. It would be of interest to assess, through the study of a variety of ligands, the effects of electronic and steric factors on the equilibrium distribution of $Cr(CO)_2$ - $(CX)L_3$ isomers and on the activation parameters for intramolecular isomerization. The synthesis of complexes of the type $Cr(CO)_2(CS)(L)_2L'$ would allow chemical exchange between fac isomers to be studied by 2-D NMR spectroscopy. The results of the present study suggest that interconversion between the fac and mer I or mer II isomers of $Cr(CO)_2(CS) - [(MeO)_3P]_3$ (X = S, Se) is too slow to be observed by 2-D ³¹P NMR spectroscopy but that the replacement of the (MeO)_3P

groups by ligands that minimize steric effects as well as possess electronic properties comparable to those of CX ligands may accelerate the rates of these processes. In addition, the application of 2-D 13 C NMR spectroscopy in these systems should be investigated since 13 C nuclei in most organometallic complexes relax slower than 31 P nuclei, thus allowing slower rearrangement processes to be observed by 2-D 13 C NMR. Such studies would be facilitated by 13 Cenrichment, which could be readily achieved by photochemical substitution of carbonyl groups by 13 CO in the (η -Arene)= Cr(CO)₂ (CX) precursors to the Cr(CO)₂ (CX)L₃ complexes.

Scientific Publications:

- 1. A.A. Ismail and I.S. Butler, "Co-adding and Permanent Storage of Large Numbers of FT-IR Scans", <u>FT-IR</u> Spectral Lines, Vol. 5, No. 2, 14 (1983).
- 2. G. Jaouen, A. Vessières, S. Top, A.A. Ismail and I.S. Butler, "Voie d'application inédite des complexes des métaux carbonyle. Exemple dans la détection du récepteur de l'oestradiol", <u>Comp. Rend. Acad. Sci.</u> <u>Paris, t. 298, Serie II, n^O 16, 683-686 (1984).</u>
- 3. A.A. Ismail, J. Sedman and I.S. Butler, "FT-IR Spectra of Coordination Compounds" in <u>Fourier Transform</u> <u>Infrared Spectroscopy</u>, ed. T. Theophanides, D. Reidel Publishing Co., Dordrecht, Holland, pp. 83-96 (1984).
- 4. A.A. Ismail, I.S. Butler, J.-J. Bonnet and S. Askenazy, "Crystal Structure of mer-Dicarbonyl(selenocarbonyl)tris(trimethylphosphite)chromium(0)", <u>Acta Cryst.</u> <u>C.</u>, in press (1985).
- 5. G. Jaouen, A. Vessières, S. Top, A.A. Ismail and I.S. Butler, "Metal Carbonyl Fragments as a New Class of Markers in Molecular Biology", <u>J. Am. Chem.</u> <u>Soc</u>., in press (1985).
- 6. P.H. Bird, A.A. Ismail and I.S. Butler, "Arene Activation in Chromium Chalcocarbonyl Complexes. I. Spectroscopic Properties and Crystal and Molecular Structure of mer-Dicarbonyl(thiocarbonyl)tris(trimetbylphos-

2⁄58

phite)chromium(0)", Inorg. Chem., in press (1985).
7. A.A. Ismail, I.S. Butler and G. Jaouen, "Organometallic"
Linkage Isomers: Chromium Carbonyl Acyl Isocyanide and
Cyanide Complexes", Inorg. Synth., accepted for publication (1985).

- G. Jaouen, A. Vessières, S. Top, A.A. Ismail and I.S. Butler, "Metal Carbonyl Oestrogen Receptor Assay", <u>Science</u>, submitted for publication.
- 9. A.A. Lamail, F. Sauriol, J. Sedman and I. S. Butler, "Application of 2-D NOE Phosphorus-31' NMR Spectroscopy in Determining Rearrangement Mechanisms of Stereochemically Nonrigid, Octahedral Organometallic Complexes", Organometallics, accepted for publication.
- 10. A.A. Ismail and I.S. Butler, "Arene Activation in Chromium Chalcocarbonyl Complexes. II. Kinetics of Arene Displacement by Trialkyl- and Triarylphosphites in $(\eta$ -Arene)Cr(CO)₂ (CX) (X = S, Se)", <u>Inorg. Chem.</u>, submitted for publication.

Papers Presented at Scientific Conferences:

(1985)

 A.A. Ismail, I.S. Butler, G. Jaouen, A. Vessières, S. Tondu and S. Top, "Detection of Physiological Levels of Hor- monal Steroids Labelled with Organometallic Markers by FT-IR Spectroscopy", International Conference on Fourier and Computerized Infrared Spectroscopy, Ottawa, Ontario, June, 1985.

(1984)

A.A. Ismail and I.S. Butler, "Kinetic Study of Ring Lability in $(\eta$ -Arene)Cr(CO)₂(CX) (X = S, Se) Complexes", Can-Am Chemical Congress (67th Canadian Chemical Conference and Exhibition), Montreal, Quebec, June, 1984.

(1983)

I.S. Butler, A.A. Ismail, G. Jaouen, A. Vessières et S. Top, "Application de la spectroscopie IRTF dans la détection des sites de réception hormonale", 51e Congrès de l'Association Canadienne-Francaise pour l'Avancement des Sciences, Trois Rivières, Québec, mai, 1983."
Papers Presented at Scientific Conferences: (Cont'd)

(1982)

- A.A. Ismaid, I.S. Butler and G. Jaouen, "Physicochemical Studies of Isonitrile and Nitrile Ligands in Group VIB Metal Carbonyl Complexes", 183rd National Meeting of the American Chemical Society, Las Vegas, Nevada, March-April, 1982.
- A.A. Ismail, I.S. Butler and G. Jaouen, "Reactions of Selected Group VIB Metal Carbonyl Complexes with Isonitrile Ligands", 65th Canadian Chemical Conference and Exhibition, Toronto, Ontario, May-June, 1982.
- I.S. Butler, A.A. Ismail, G. Jaouen and A. Vessières, "FT-IR Spectra of Ørganometallic-labelled Steroids", 9th Annual Conference of the Federation of Analytical Chemistry and Spectroscopy Societies, Philadelphia, Pennsylvania, September, 1982.
- G. Jaouen, A. Vessières-Jaouen, S. Top, A.A. Ismail and I.S.
 Butler, "Hormonal Receptor Site Detection Using FT-IR
 Spectroscopy", 29th Annual Conference of the Spectroscopy Society of Canada, St-Jovite, Quebec, September, 1982.

261[°]

Papers Presented at Scientific Conferences: (Cont'd)

(1981)

A. Ismail and I.S. Butler, "Organometallic-porphyrin Chemistry: FT-IR Spectra of Some Chalcocarbonyl (5,10, 15,20-Tetraphenylporphinato)iron(II) Derivatives and Related Compounds", 64th Canadian Chemical Conference, Halifax, Nova Scotia, June, 1981.

A.A. Ismail and I.S. Butler, "Spectroscopic Studies on Some 5,10,15,20-Tetraphenylporphinatoiron(II) Derivatives",
28th Canadian Spectroscopy Symposium, Ottawa, Ontario, September, 1981.

<u>Appendix À</u>

Structural Characterization of the mer I Isomer of <u>Cr(CO)₂(CS)[(MeO)₃P]₃: X-Ray Data Collection,</u> <u>Structure Solution and Refinement</u>

The unit cell and data collection parameters are summarized in Table A.1. Weissenberg and precession photographs showed mmm symmetry and the systematic absences: on $0\underline{kl}$, $\underline{k} = 2\underline{n} + 1$, on $\underline{h}0\underline{l}$, $\underline{l} = 2\underline{n} + 1$, and out $\underline{hk}0$, $\underline{h} = 2\underline{n} + 1$, which uniquely define the space group 'Pbca' (No. 61, $D_{2\underline{h}}^{15}$). The accurate unit cell dimensions were obtained by automatic centering of 51 reflections scattered randomly in reciprocal space in the range $15^{\circ} < 2\theta < 25^{\circ}$. The following formulas were used in the data reduction

$$I = N - B(t_g/t_b), \qquad \sigma(I) = [N + B(t_g/t_b)^2]^{\frac{1}{2}}$$

$$Lp = \frac{(\sin 2\theta)(\cos^2 2\theta_m + 1)}{(\cos^2 2\theta + \cos^2 2\theta_m)}$$

The net intensity I is derived from the total count <u>N</u> accumulated during the scan time \underline{t}_s . The background count

Al

<u>B</u> was measured for time \underline{t}_b . The Lorentz-polarization correction <u>Lp</u> is calculated for diffraction angles $2\theta_m$ and $2\theta_s$ at the monochromator and sample crystals, pospectively.

The structure was solved by conventional heavy atom techniques and refined using the block-diagonal leastsquares approximation. In the last stages of the refinement all atoms were refined with anisotropic thermal parameters. A final difference Fourier map was devoid of significant features; the highest peaks were about 1% of the intensity for the last carbon atom found and were randomly located. Also, since there appeared to be no clear indication of hydrogen atom locations, these atoms were not included in the structure factor calculations.

The computer programs used for the data collection, structure solution and refinement and geometry calculations are those contained in the N.R.C. PDP-8e crystal lographic package [1]. The perspective diagram was prepared by the Concordia University CDC Cyber system. The function minimized in the least-squares refinement was

 $\Sigma_{w}(|\mathbf{F}_{o}| - |\mathbf{F}_{c}|)^{1/2}$

where $w = 1/[(\sigma(F))^2 + 0.03F^2]$.

A2

1.24

The discrepancy indices listed in Table Al are:

 $\mathbf{R}_{\mathbf{F}} = [\boldsymbol{\Sigma} \mid |\mathbf{F}_{\mathbf{O}}| - |\mathbf{F}_{\mathbf{C}}^{\top}| | / \boldsymbol{\Sigma} \mid \mathbf{F}_{\mathbf{O}}^{\top}]]$ $R_{wF} = [\Sigma w (|F_{o}| - |F_{c}|)^{2} / \Sigma |F_{o}|^{2}]^{\frac{1}{2}}$ GOF = $[\Sigma w(|F_0| - |F_c|)^2 / (m-n)]^{\frac{1}{2}}$

The neutral atom scattering factors and anomalous dispersion corrections were taken from standard listings [2]. The observed and calculated structure factors are listed in Table A.2. The final positional parameters are collected together in Table A.3. The final thermal parameters appear in Table A.4. Table A.1. Crystallographic Data for X-ray Diffraction Study of $Cr(CO)_2(CS)[(MeO)_3P]_3$

Crystal Parameters

crystal system 7 orthorhombic space group = Pbca a = 15.61(1) Å

- b = 15.32(2) Å
- c = 18.88(1) Å
- $v = 4505 \text{ Å}^3$
- z = 8

calcd density = 1.466 g cm⁻³ obsd density = 1.40(2) g cm⁻³ temp = 295 K formula = $C_{12}H_{27}O_{11}SP_{3}Cr$ mol wt = 524,0 g mol⁻¹

Measurement of Intensity Data

diffractometer = Picker Nuclear FACS-1 radiation = Mo K_{α} monochromator = highly oriented graphite detector aperture = 3 mm X 3 mm# crystal to detector distance = 25 cm detector = scintillation counter and pulse height analyzer set for 100% of Mo Ka peak attenuators = Ni foil used for intensities > 10⁴ Hz scan type = coupled θ (cryst) -20 (detector), 2.0° min⁻¹ scan length = (20) = [1.8 + (0.692 tan θ)]⁰, beginning 0.9° below .the predicted peak rotation axis [0 1 0] reflections measured = +h, +k, +1 min and max 2θ = 3.5,40.0° stds every 50 cycles = 4 3 0, 0 0 6, 0 4 3 variation = $\pm 3\%$ (random) number of reflections collected = 2108 no. with $I > 3\sigma(I) = 1453$ $R_{\rm F} = 5.06$ % $R_{WF} = 7.30$ GOF = 1.19 = 7.30 %

Table A.Z. Observed and Calculated Structure Factors Cr(CO)₂(CS)[(MeO)₃PJ₃ (<u>BEC</u> I)

COLUMNS ARE 10FD-10FC. 10516

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. 1	KFO	FC	S 18	L	KFO	FC	818	i	. KFO	FC	\$1G
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						379		.18		1057	1174	· 5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 2		201	, •	14	314	331	22 ′	5	466	502	
			145	. 13-	15	664	636	- 16	. 6	1500	1461	
8 1504 1575 7 0.	<u> </u>	2597	2400	5		552		17		221		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	1504	1575	7								10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	- 362	325	13		510	551					12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	685	707	11	1						302	19/
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14				2					636		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16		604		3	1131	1140		15	257		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 18 -		1354	13	2		875		18		146	- 30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.	0,	2. L	,	5				•			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1515	1428		<u>e</u>	344			4	JIOT	3244	.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1		4438	10	/	543			4	333	151	27 197
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12		472	2		1420	1404				171	13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· 3	16/6		1		411	421	11		1177		J.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. .	1334		2	10		1130		ž	126	1771	
7. 1436 1704 7 13 443 441 17 8 830 835 8 9 503 543 12 15 490 707 15 9 706 747 9 9 503 543 12 15 490 707 15 9 706 757 11 10 825 815 10 9 10,"L 13 340 371 18 11 582 406 12 2 213 235 25 14 3400 443 20 12 443 420 13 3 524 507 13 17 812 788 14 14 514 512 14 4497 732 12 9 17 1202 1255 5 17 420 403 19 6 279 253 22 7 508 457 6 14 547 8 0 122 11 3 1077 </td <td>3</td> <td>.1285</td> <td>1270</td> <td>•</td> <td>11</td> <td></td> <td>- 107</td> <td>22</td> <td>s 😼</td> <td>209</td> <td>212</td> <td>· 17</td>	3	.1285	1270	•	11		- 107	22	s 😼	209	212	· 17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2460	2311	- 🚽 🚛	12			17	<u>í</u>	870	235	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						440	747	15		904	947	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						491	205					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		303	243	12	10		10.7		13		371	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				12		217	235	25		180	443	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				14	4			13		1 812		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 15						772			1.		1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 12		J] Z A74		- Z	222	199	23	ę,	1202	1255	5
0, 4, L 7 944 1027 11 3 912 944 4 9 948 1128 4 11 817 809 13 4 1077 1011 4 1 414 547 8 0 12 L 5 751 494 7 2 1177 10477 6 0 12 L 5 751 494 7 2 1377 10477 6 0 12 13 7 215 178 17 4 2173 2001 6 4 322 219 13 7 215 178 17 4 2173 2001 6 4 322 219 9 592 596 10 5 523 529 10 543 11 7 424 439 18 14 294 299 20 11 344 351 14 8 744 750 14 15 425 415	17.		441	· 10	ž	279		22	ź	-508	457	ž
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.,			1027	11	· 3	912	944	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1120	4	11		809	13	4	1079	1011	▲
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	AIA	547				12. 1	•••	• Š	751		.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1127	1097	Z	٥	320		17 、	ő	197		16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2445		5	2	711	720	13	· · · 7	215		17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ă	3171		6	ī	322		22	š 🛢	703	696	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1121	1094	7	Š	407	424	19 -	9	592	578	10
9 510 543 11 7 424 439 18 14 296 299 20 11 344 351 16 8 744 750 14 15 425 415 17 13 494 725 13 9 263 243 26 1,4 15 425 415 17 14 253 234 26 10 425 459 16 1 551 543 7 15 327 338 22 0, 14, L 2 953 853 6 14 414 434 21 0 235 271 30 3 1699 1414 6 17 359 500 17 3 470 505 18 4 1035 1004 6 0 614 484 7 5 208 169 33 6 1352 1398 7 1 816 752 7 1,0,L 7 590 <	Ĭ		529	10		201	134	* 31	11 .	1187	1197	10 .
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.7	424	439	18 -		296		.20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	344	351	16	** * B	744-	750	14 -	15 '	425	415	197
15 327 338 22 0 14 L 2 953 853 6 14 414 434 21 0 235 271 30 3 1699 1414 6 17 559 500 17 3 470 565 18 4 1035 1004 6 0 614 484 7 5208 149 33 6 1352 1398 7 0 814 484 7 5208 149 33 6 1352 1398 7 1 814 752 7 1 0 1 7 590 609 9 2 338 342 11 2 4145 4544 4 8 377 391 13 3 1697 7 4 954 848 5 9 539 566 11 4 10975 1177 </td <td>13</td> <td></td> <td>725</td> <td>13</td> <td>. 9</td> <td>263</td> <td>243</td> <td>.26</td> <td>•</td> <td>l.</td> <td>4, L</td> <td>_</td>	13		725	13	. 9	263	243	.26	•	l.	4, L	_
15 327 338 22 0 14 L 2 953 853 6 14 414 434 21 0 235 271 30 3 1699 1414 6 17 559 500 17 3 470 565 18 4 1035 1004 6 0 614 484 7 5208 149 33 6 1352 1398 7 0 814 484 7 5208 149 33 6 1352 1398 7 1 814 752 7 1 0 1 7 590 609 9 2 338 342 11 2 4145 4544 4 8 377 391 13 3 1697 7 4 954 848 5 9 539 566 11 4 10975 1177 </td <td>ÎĂ</td> <td>253</td> <td></td> <td>26</td> <td>10</td> <td>425</td> <td></td> <td>16</td> <td>1</td> <td>551</td> <td>543</td> <td></td>	ÎĂ	253		26	10	425		16	1	551	543	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	327		22		Ö .	14, L		2	953	853	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 16	414		21	~ (235	- 271	30		1699		
0 814 484 7 5 208 169 33 6 1352 1398 7 1 816 752 7 1,0,L 7 590 609 9 2 338 342 11 2 4165 4544 4 8 379 391 13 3 1612 1789 7 4 954 848 5 9 539 566 11 4 1695 1177 8 6 2074 1816 4 10 245 271 19 5 5864 441 9 8 874 891 8 11 179 169 28 4 1377 1501 8 10 425 271 19 28 13 191 220 29 13 7 1897 241 22 1,1 1,4 10 12 602 595 13 7 1897 241 22 1,1 1,4 14 468 <td>17</td> <td>557</td> <td>500</td> <td>17</td> <td>J</td> <td>470</td> <td>505</td> <td>. 18 .</td> <td></td> <td>1035</td> <td></td> <td>·</td>	17	557	500	17	J	470	505	. 18 .		1035		·
1 814 752 7 1,0,L 7 590 609 Y 2 338 342 11 2 4165 4544 4 8 379 391 13 3 1612 1789 7 4 954 848 5 9 539 566 11 4 1695 1177 8 6 2074 1816 4 10 245 271 19 5 5864 641 9 8 714 10 12 602 595 13 7 1897 241 22 1,1 1 13 191 220 29 4 453 520 13 1 118 287 14 14 468 470 16 9 211 214 22 2 1543 1454 4 14 502 492 17				_	4	241	320	32		378	372	10
2 338 342 11 2 4145 454 4 8 379 391 13 3 1612 1789 7 4 954 848 5 9 539 564 11 4 1695 1177 8 4 2074 1816 4 10 245 271 19 5 586 641 9 8 874 891 8 11 179 169 28 4 1377 1501 8 10 444 714 10 12 602 595 13 7 189 241 22 1 1 1 13 191 220 29 8 453 520 13 1 118 287 14 14 468 470 16 9 211 214 22 2 1543 1454 4 14 502 492 17 9	0	816	684	7	5			22	· 6	1352		Z
3 1012 1789 7 4 954 848 5 7 5.37 584 11 4 1095 1177 8 6 2074 1816 6 10 245 271 19 5 584 641 9 8 874 891 8 11 179 169 28 6 1377 1501 8 10 644 714 10 12 602 595 13 7 189 241 22 1 1 1 13 191 220 29 8 453 520 13 1 118 287 14 14 468 470 16 9 211 214 22 2 1543 1454 4 14 502 492 17 5	1		752	7	V.			•		240		
3 1012 1789 7 4 954 848 5 7 5.37 586 11 4 1095 1177 8 6 2074 1816 6 10 245 271 19 5 586 641 9 8 874 891 8 11 179 169 28 6 1377 1501 8 10 644 714 10 12 602 595 13 7 189 241 22 1 1 1 13 191 220 29 8 453 520 13 1 118 287 14 14 468 470 16 9 211 214 22 2 1543 1454 4 14 502 492 17 5	2	339	342	· 1 <u>1</u>	2	4192			2 X	379	371	13
5 586 641 9 8 874 891 8 11 179 169 28 4 1377 1501 8 10 644 714 10 12 602 595 13 7 189 241 22 1 1 1 13 191 220 29 8 453 520 13 1 118 287 14 14 468 470 16 9 211 214 22 2 1543 1454 4 14 502 492 17 5		1412	1787	7		734				737		11
4 1377 1501 8" 10 444 714 10 12 602 595 13 7 189 241 22 1, 1, L 13 191 220 29 8 453 520 13 1 118 287 14 14 468 470 16 9 211 214 22 2 1543 1454 4 14 502 492 17 5		1075				2074					2/1	
7 189 241 22 1, 1, L 13 191 220 29 8 453 520 13 1 110 287 14 14 468 470 16 9 211 214 22 2 1543 1454 4 16 502 492 17	2.	586		7				_	11	3/7	107	
8 453 520 13 1 118 287 14 14 468 470 16 9 211 214 22 2 1543 1454 4 16 502 492 17 ···	<u>.</u>	1377	1 201		10		/14	. 14			373	13
• •				24	`.		11 L		13			14
T CII CLT CC C IJ70, 1707 7 10 576 776 17 18 400 764 12 7 1107 1211 A 17 479 446 19		435	320	. 13	· 4	1447	1444		- 17 -			
				12	4	11973.	1711	1 7	• 17	479	450	

À5

10516

f(CH30)3PJ3 CR (C0)2 (CS) CULUMNS ARE 10FD-10FC-

PAGE 2

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			CULUM	INS ARE	10FD,1	OFC	10516	-			•		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		I	KEO	FC	C16	1	***	FC	STG	L	KEQ	FC	. SIG .
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					31 0 ,	-		b					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•		315	12				13	12		763	
4 353 336 11 14 308 353 26 15 220 259 29 5 350 331 11 14 308 358 17 2.7 2.4 17 9 352 359 11 4 580 601 13 0 2426 2349 4 12 357 343 17 5 1066 1094 11 1 470 671 5 14 497 506 13 5 1087 1718 13 4 1005 1732 6 1 1442 1556 7 N 940 985 13 3 1087 1732 6 2 1026 1556 7 N 940 985 13 3 1081 365 6 4 8052 837 8 447 4322 16 9 1961 391 12 2 12 14 16 450 17 16 16 391<				005		-	109		17				13
4 353 336 11 14 308 353 26 15 220 259 29 5 350 331 11 14 308 358 17 2.7 2.4 17 9 352 359 11 4 580 601 13 0 2426 2349 4 12 357 343 17 5 1066 1094 11 1 470 671 5 14 497 506 13 5 1087 1718 13 4 1005 1732 6 1 1442 1556 7 N 940 985 13 3 1087 1732 6 2 1026 1556 7 N 940 985 13 3 1081 365 6 4 8052 837 8 447 4322 16 9 1961 391 12 2 12 14 16 450 17 16 16 391<	•	5		297	12		393	· 431	21	14			13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 44.	Ă	353	336	11	. 14		353		15		259	29
	. .	5	350		11				-	16		434	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- (Ă			22	2			- 17				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		9	552	589	11	1 4	580	601	13	0	2426	2349-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1			343 -		5	1086	1094	11	1	670	671	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		14	497		15	. 6	718		13 .	2	1274	1175	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	15	231		28	7	1077		11	3	236	259	11.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							703	718	13		1905	1739	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1		1539	7	N	940	985	. 13	~ <u>~</u> ~	1087	1132	· 6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	2	1076	1075		12	405	399	20	<u>.</u>	1297	1240 -	ð
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	329	299	12	13	617		10	/	701	70J 70J	12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4			U	*	1/	11, 1		, o	104		12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5	925		8	1	447			10	370		12,
B 379 413 14 7 2207 144 20 12 378 373 13 9 284 269 19 8 332 297 21 12 378 373 13 11 742 746 12 14 217 273 28 12 483 495 15 4 332 2977 21 15 548 558 15 14 741 729 14 6 461 466 17 2.7 3.1 1 14 741 729 14 6 461 466 17 2.7 3.1 1 14 741 729 14 6 461 462 1 202 264 13 14 744 21 6 353 348 21 1 202 264 13 14 742 21 23 3 341 300 9 350 15 1 2 306	*	<u>6</u>	217	249		Ş	243	3/2	13	11	1105	1240	10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7	791	843		6	282	2/4	21	12	570	505	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3/9	413	14		224			17	247	225	24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			284		17	.0	37/		24		.217	233	29
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		11	/42	/ 70	16		7.17	127 L	-1-21	15	SAR		15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		12	.483	477	13		1170	1148	12	16.	415		19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				770	14		441	444	17		2.		• •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		17.		A12	21		307	319	24	0	868		5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	10		7. 1	<i>41</i>		353		21	· 1			13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	246		15		364	375	21	2	746	791	Å
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	۲	i		301	13		352		23	3	348	300	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- 4 1		466	12		1	13. L		4	321		10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5		515	- 11	· 2	306	333	24	5	1662	1606	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.7	228	215	20.		215	287	33	· 6	1155		7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	Ċ9.	216	237	24 -	6			27,	. 8	788		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· 10	245	202	22		4,			9		1737	· 10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		12	240		.26	, 3	254		32	10		222	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		14		508	17	_	21	<u>97</u> L			400		15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			10	81 L			3106	3342	<u>o</u>	. 14	3/8		1/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1		637		2	436	437		10	175	440	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Z	694	* 713		1	1/70		17	-17	425	773-	1/2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0//	/34			710			14	120	A40	18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2		203		10	1 7 1 1	1251	10	10.	2.		10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		·					227	212		0			•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	0	TOL	. 170	1.0	19	709	704	ĨĂ	1	108.3	1153	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			450	444	15	10	. 2.			» Ž	269		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	10	247	. 271	21	٥	1544		4	3	1182		6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	`	12	1204	1271	17		571	600	4	4	282	287	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	13		374	1	2			Ś	5	1003	926	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• •	14.	¢ 557		17		537	474	. 6		1446	1421	7
2 706 715 10 6 536 476 9 9 576 548 11 3 187 247 27 7 963 1033 7 10 821 846 10					.,		932	797	5	. 7	170	142	21 .
2 706 715 10 6 536 476 9 9 576 548 11 3 187 247 27 7 963 1033 7 10 821 846 10		1	347	· 344	14		783	782	N 6	8	854	873 >	9
3 187 247 27 7 963 1033 7 10 821 846 10 4 651 681 11 9 156 175 25 11 357 372 16		2				2	536	496	\$ 8/	9	576	548	
4 651 681 11 9 156 175 25 11 357 372 16		3		247	27	7	.963		3-7	10	821	844	10
	• .	Ā	651		11 .		156	175 [.]	25	11′	357	372	16

A6

A7.

N

(CN10) 3P]]	CP (CO)2 (CS)		-		,			1	P/
(CHJU	COLUN		1.0F0.10	FC+	10516	ľ	*		v		
Ľ	KFO	FČ	516	ι	KFO	FC	SI6	, L	KF O	FC	
		-45 L		13	358	361	22	14	480	498	1
12	400	428	16	14	549	519	15	16	404	358	
13	443	- 460	16	•	2.	91 L			3,	1, L	
14	721	709	13	0	870	883	10	1	266	253	
15	281	282	24,	2	175	210	24	2	951	987	
16	816	578	16	3	769	752	10	• 3	866	- 739	
. 17	463	435	17 .	4	784	1780	11	4	708	691	
	2,	5, L	•	6	" 415	422	- 15	5	1846	1807	
0	2246	1877	.6	7	567	531	13	. 7	491	475	
1	895	863	7	8	238	313	.25		170	196	
23	1182	1032	· 7	. 9	322	354	· 21	8 9	668- 888	8 82 932	
3	919	874 1356	777	11	476	495	17 ° 30	10	832	899.	
1	1374 502	474	10	12	240	265 126	33	11	364	379	
ŝ	466	406	11	14	200	10, L	ູ້	- 12	908	903	
7 	329	346	15	0	397	399	15	13	662	642	
10	808	776	11	÷1	366	346	16	· ^ 14	227	227	j
î.	947	960	11	<u>்</u> ว	« 391	401	.16	15	502	462	
15	561	524	15	2 3 4	384	612	13		3.	2, L	
16	205	214	- 34	- 4	586 923	959	11	- 1	360	407	
,	21.	6, L		5	559	545	14	2	409	285	
1	678	709	8	~7	660	3646	13	3	206	179	
2	437	430	10	9	367	344	19	4	1382	1313	
*3	899	840	^8	11	262	242	28	5	1723	1 5 5 3	
4	172	117	21		2,	115 L		6	527	557	
5	156	126	24	Ò	572	. 547	13	7	756	721	
7	91,6	940	· 9	1	390	441	17	8 9	1314 851	1264 958	
10	400	401	15	3	331 805	357 800	19 12	10	480	536.	
11 413	328	537 320	21	V 35	627	680	14	~ 11	370	375	
14	445	472	18	۲ ۱	734	723	13	12	342	308	
15	570	561	16	10	494	470	- 18	13	342 438	484	
15	2,			1, 🗸	2,	12, L	ð 1V	14	534	535	
Q	2143	1961	7	0	1099	1098	12'	- 16	194	153	_
Í	522	556	10	2	358	380	. 20		3,	3, L	
1 2 3	271	246	15	· 3	596	588	1.#	1	1928	1480	
3	, 925	876	8	4	709	737	14	2	442	460	
≜ ′	1059	1049	9	5	283	264	25	4 1	~~~	378	
5	279	241	16	7	305	344	-24	5	379	398	
6	191	198	24	8	659	646	15	6	1337	1230	,
7	302	309	17		.2,	13, L		Ž	892	820	
8	628	626	11	0	633	676	15	8	-557	548	
10	833	847	- 12	3	274	255	25	9 10	240 1199	25J 1219	
1+	472	477 8. L	, 17	· 7	280 444	314 438	26 19	11	995	1018	٠
a (),	538	57 L		/	'2,	14, L	.,	12	1177	1230	x
1	176	560 123	11 22	1	704	728	15	13	851	888	
5	498	488	11	4 ,	3,	0, L	4.0	15	358	392	
23	380	416	14	2	160	45	14	16	555	539	
° 4	798	864	10	4	· 174	160	16	17.	236	229	
5	172	197	25	6	455	491	9		3,	4. L	
6	330	315	15	8	639	697°	11	1	1 3 9 5	1325	
- J	702	697	12	10	557 179	632	11	3	909	816	

k.

(

1

1	~	. ,		,		•	,		- •	• •
	0	•		٠	,			,		
C (CH30) 3P 13	ER (CO)2 (CS		9816	١	/	v			PAGE	4
L KFU	FC \$16	L	KF D	FC	SI 6	L	KFO	FC	,SIG	1
51 E	4, L	9	428	- °463	16	12.	300	286	<u>``20</u>	•••
5 922	924 8	10	258	303	24	16	549	566	17	,
6 276	326 14	12	573	544	15	΄o	, 4, 730	1.1 l 729	· ·	•
7 547 8 324	524 10 316 14	2	3+ 882-	9+/ L 903	- 10	ĭ	152	163	18	
9 360	405 15	j	853	. 818 /	10	, 2	724	- 746	. 6	b
1Ì 594	593 13	4	716	717	- 11 🔍	3	1904	1629	5	
12 750	750 12	, 5	749	727 522	11	4 K	167 870	241 883	- 18	1
13 (758 14 463	792 °12 430 18	* 6 7°	277	243	22	6	. 666	594	, 8	3
15 292	355 26	9	609	601	14	7	1464	1498	. 8	
16 379	367 20	10	202	130	29	8	. 418	463	11	
3,	5, L 1105 7	11 12	229 323	199 335	28 , 23	10	882 1327	891 1302	10	
- 2 1113 3 630	1105 7 588 8	13 .	205	205	34	12 -		858	11	
4 699	659 8		3,	10% L		13	870	655	1-3	۲. ·
5 175	198 21	1	Ng 7 W	394	16	14	757	,720	12 17	
6 377	403 12 376 14	2 3	447 464	412 479	15 · · 15	15 17	. 419 266	410 258	28	
· · · · · · · · · · · · · · · · · · ·	376 14 1920 9	. 4	347	364	1.8		4,	2 - 1		
10 275	268 19	5	5.7.3	545	5.4	0	872 [°]	837	6	
12 311	326 20	6	805	802	12 -	. 1	2208	1921	. , 5	
13 507	560 15	7	700	- 710	14 13	2	* 899 261	520	12	
15 529	564 17 61 L	8	769 291	· 810 328	24		1003	999	7	• 0
1 455	430 10	<u>`10'</u>	391	408	19	' 4 5	990,	885	7	
2 955 3 361	851 8	12	230	218	30	6	398	392	19	2-051
3 361	319 12	•	3≠ 218	11, L 167	26	7	200 296	213 305	18	ţ.
4 919 5 319	913 9 362 13	2	1066	1058	11	12	326	309	19), ·
6 202	215 20	3	346	. 325	19	13	201 .	189	29	•
- 7 376	382 14	4	583	575	14	16	271	281	26	
8 213 12 350	170 22 388 20	· 8	269 448	276	25 18	17	456	444 3= 1	12	•
12 350 13 703	650 14	· 0	3+	125 L	19	· 0	2796	2471	5	
14 657	682 15	· 2	951	· 942°	12	1	458	530	. 8	ł
3,	7. L _	4	410	402	19	• ²	, 670 , 1085	701	7	58
1, 502 2 577,	484 10 565 10	5 6	497 664	476 * 645	17		1203	1046	67	, .
1 4 332	342 14	7	681	708	15	Ġ,	258	279	- 14	
5 1234	1160 9		3,	13, Ľ		7	274	351	16	
8 432	439 15	Ţ	.659	665 326	- 15 24	·8 10	1522	1611 973	· 9 10.	
9 273 10 548	238 20 585 14	2 5	294 557	-540	1.6 .	11	1224	1262	10	₽
11 215	201 27	~		14. L.	•	12	564	593	14	
13 351	<u>32</u> 3 20	1 .	415	435 472	*> 20	13	258	1259	25	
14 2.09	136 30	· 3	464	472	19 -	14	842 534	807 547	12	¢ 1
15 228	244 31 8, L	4	298 4+	300 0, L	26	15 16	347	372	22	1
1 490	494 11		3494	3492	5	~ ••	4)	4, L	22	
2 618	575 10	4 1	993	1878	6	0, '	346	302	11	•
3 267	282 18	6	302	261	✓ 12 10	1 3	1089 926	952 872	67	1
6 1075 7 396	1082 10 406 16	8 10	616 576	^685 569	12 9	6	172	192	23	

₫.

(

A8

1

• •

0

	COLON	NO MAL	10-011	or C Y	14914						
Ł	KFO	¥C.	516	L	KFO	FC	816	- L	KFO	FC	SI 6
•	4,	4, L		14	313	298	24	5	795	856	8
7	636	650	10	• •	4,	9, L	•	6	680	647	9
13	304	296	22	-0	- 1182	1143	9	ž	1099	1023	8
14	260	234	26	Ĭ	859	823	10	8	533	541	11
	855	876	13	3	857	810	jī.	ÿ	1411	1471	9
15		232	35	4	357	365	· 18	10	949	918	10
16	207 4,	5, L	.20	5	1048	1055	11	12	815	843 1	12
^	1187	1005	7	6	624	573	13	j3	356	509	14
0	791	801	8	7	438	436	15	<u>14</u>	608	617	15
1	1467	1413	7	8	356	355	17	15	383	406	20
2 3	637	629	9	U	4,	10, L		16	495	461	17
4	924	906	8	2,	198	231	29	17	414	396	22
5	904	957	ğ	Ă	- 204	245	31	• ·	5,	2. L	
J	207	277	21	5	448	444	16	r	1616	1442	6
6 7	749	755	50	56	506	514	15	2 3	1965	1890	6
9	585	574	13	7	295	322	23	2	1490	1423	6
10	330	334	17	, ý	302	323	23		1844	1711	7
11	956	973	iί	12	324	348	(24	6	530	540	10
12	246	272	25		4,	115 L	-	7	176	238	22
ĴĴ	321	325	21	0	1261	1258	11	8	95 3	906	9
· 14	5021	491	16	Ĩ	424	462	17	9	484	503	12
15	402	408	21	2	255	260	25	. 10	563	569	12
16	725	733	16	2	1022	1025	12	<u>Å</u> 1	447	456	14
	4,	6, 1	~~	5	328	356	20	- 10 11 13	394	383	19
0	1900	1800	7	Ť	345	329	20	15	402	380	20
1	622	570	9	8	250	226	27		5,	3, L	
5	1115	1058	9	9	250 206	207	32	1	1180	1050	6 -
8	307	309	17		4,	12, L		2	1508	1 505	6
- 101	- 325	331	18	0	735	744	13	3	393	347	10
12	347	325	19	1	448	432	17	4	1045	971	7
13	211	203	30	3	445	41.8	17	5	297	275	13
	4,	7, L	-	5	27,0	271	25	6	865	885	9
0	191	259	23	7	588	594	15	8	682	687	10
3	510	515	12	_	4,	13, L	• •	ÿ	1155	1145	10
4	1960	1923	8	0	300	278	24	10	983	974	10
5	781	796	10	1	419	376	19	11	257	314	23
6	229	231	21	3	801	794	14	12	214	234	28
4 5 6 7 8	446	442	14	4	289	218	26	13	573	579	14
8	944	954	11	5	332	318	22	16	479	466	19
9	344	321	17	7	222	209	33	•	5,	4, L	• 8
14 15	578	565	16		4,	14, L	20	j	639	593 281	
15	485	454	18	1	447	483 0, L	20	1 2 3	266	607	14
	41	8, L		3	881	0, L 8 89	7	4	408	394	11
0124	299	283	17	° 4	2147	2101	6		745	759	9
(1)	264	268	18 15	8	385	332	13	5 7 8	516	556	12
2	318	312		10	1424	1495	13	Ŕ	496	500	12 12
	779 552	730 557	11 12	12	1424	1163	11	ÿ	392	373	15
2	552 577	574	13	14	441	390	17	10	205	227	27
0 7	306	281	18	16	634	622	16	12	309	303	20
5 6 7 9	204	144	27		5,	1, L		13	484	457	16
10	521	562	15	2	970	1063	8	• ••	5,	5, L	
1.2	234	249	30	2 3	1332	1234	6	1	1048	1041	. 8
1-2 1-3	219	171	<u>31</u> ·	Ă	1332 739	738	7	2	223	214	17
4 17					-						

.(CH30)3P13 CR (C0)2 (CS) COLUMNS ARE 10F0,10FC, 10516

٢

{

Α9

C(CH30) 3P 33 CR (CO)2 (CS) COLUMNS ARE 10FD, 10FC, 10516

٩

١

	CULUM	ND MAL	146.021	WG 1. P		•				-	
Ł	KF0	FC	516	L	KF O	FC	516	L	KFO	FC	8 IG
L	5.	5, L	17 2 17	7	596	562	14	8	~538	489	11
-	1314	1237	8	é	436	430	17	9	425	432	14
3	1314	704	, 9	13	348	313	23	10	484	457	13
4	717 296			10	5,	10, L		12	335	335	19
6	270	279	16	•	409	362	16	14	260	196	24
9	1346	1304	10	1	523	497	14	15	363	352	21
10	257 737	238	22	2 3	299	314	22		61	3, 1	•••
11	73/	761	13	4	345	323 -	18	0	1385	1250	7
12	254	246	2.6		342	324	19	i	1210	1201	7
13	468	444	17	5 7	566	596	15	Ĵ	1126	1074	8
14	264	244	26			290	23	4	483	521	10
15	542	530	16	8	287			7	326	300	f4
_	5,	61 L		9	389	348	20	8	458	436	13
1	364	346	13		5,	11, L	16	10	288	333	20
2	683	673	•	1	432	412	12	12	361	375	19
4	573	650	11	2	898	874		13	206	199	29
5	566	569	11	5	561	556	16	14.	345	354	22
7	399	377	54		201	134 280	30	15	392	392	19
8	363	357	16		271	280	26	11	6,	41 L	. /
9	813	818	11		5,	12, L	18	1	562	490	9
10	817	869	12	2	439	452	70	2	406	355	11
11	460	490	16	4	216	221	32	4	815	837	,
12	874	826	12	6	430	456	17	J 5	182	219	22
13	428	_412	17	8	285	267	26	5 7	585	571	22
	5,	7, L	• •	•	5/	13, L	4.0		1093	1110	, 11
1	346	399	14	1	478	460	19	1.1		5, L	¢ • •
2	1485	1446	9	Ž	393	404	20	'A	6, 328	306	
2 3 4	721 '	649	10	5 -	592	_549	17	0 2 3		236	13 17
	311	286	15	-	6,	0, L	,	4	319	273	14.
5	698	658	11	0	1697	1559	6	4	1043	1025	9
6	1549	1504	9	2	2477	2416	6	្រះ	770	763	10
7	408	440	16	4	688	66A	8	, J	437	447	13
8	276	273	20	.6	1004	1012	8	6	1229	1264	10
10	768	800	12	8	565	575	11	7	532	1207	13
- 11	226	271	30	10	283	279	20	8	332	520 336	13
12	486	477	16	16	507	.464	18	9	307	222	19 22
	5,	8, L		•	6,	1+ L		10.	269	981	12
1	289	305	18	<u>0</u>	1198	1163	6	11	966 403	395	12 19
· 2	384	335	14	2	277	219	12	12	202		25
23	443	455	14	3	884	908	8	13	277 323	265	25 24
- 4	370	359	15		881	841	8	15		354	2.9
5	231	220	24	5 8	602	564	9		6,	6, L	•
6	705	694	12	8,	1426	1497	•	0	863	825	9
9	344	357	20	· 9	841	806	11	4	940	918	10
10	785	793	13	1,0	1074	, 1076	10	8	-313	338	19
11	265	270	24	14	710	724	. 12	9	203	175	28
_ 12	379	376	20 °	15	606	564	15	10	599	601	14
13		496	17		64	21 L	•	11	313	330 65J	23
14	512 433	411	19	× 0	1690	104/	6	12	628	ູຈວງ	15
D .	5,	91 L		1	438	436	10	``	61.	7, L	
1	1284	1253	10	2 3	220	183	16	Ó	362	351	16
2	455	442	15	3	1475	1362	7	2.	1226	1196	9
23	785	785	11		540	514		2	019	938	n 10
4	268	308	24	5	379	388	11	. 4	1098	1095	10
5	898	895	11	6	154	146	24	8	39.1	428	17

A10

R.

PAGE 4

A11

,

								a			
)2 (CS)								PAGE 4
[(СН20	COLUN		10F 0 . 1	OFC,	10516			,			
						~			KF0	₽C	81 G
L	KFO	FC	\$16	Ĺ	KFO	FC	SI6 14	L 8	5,38	489	11
_	5.	5, L	-	7	596	562 430	17	9	425	432	14
, 3	1314	1237	8	8 13	436 348	313	2Ĵ	10	484	457	13
` 4	717 296	704 279	16 1	10	5,	10, L		12	335	335	19
ÿ	1346	1304	10	1	409	362	16	14	260	196	24
10	257	238	22	2	523	497	14.	15	363	_ 352	21
11	737	761	13	.√^ 3	299	314	22	•	41	3. 1	7
11 12	254	246	2.6	4	345	323	18 19	s 1	1385 1210	1250	ź
13	468	444	17	5 7	342 566	324 596	15	° 1	1126	1074	8
14	264	244 530	26 16	8	287	290	23	Ă	483	521	10
15	542 57	6, L	10	9	389	348	20	7	326	300	14
1	364	346	13	•	5+	11, L		8	458	436	13
2	683	673		1	432	412	16	10	288	333	20
4	573	650	11	2	898	874	12	12	361	375	19 ¹ 29
2 4 5 7	566	569	11	67	561	556	16 30	N	206 345	199 354	22
7	399. 363	377	14	8	201 271	134 280	26	15	392	392	19
8	813	357 818	11	0	5,	12, L		••	6,	45 L	
10	817	869	12	3	439	452	18	1	562	490	9
11	460	490	16	- 4	216	221	32	2	406	355	11
12	874	826	12	6	, 430	456	17	35	815	837	,
1,3	428	_412	17	8	285	267	26	5 7	182 585	219 571	22 11
	5,	7, L 399	• •		5, 478	13, L 460	19	11	1093	1110	11
1	346 1485	1446	14	1	393	404	20		6,	5. L	_
234	721	649	10	รั	592	549	17	¢.	328 243	306 236	13 17
4	311	286	15		6,	0, L		02	243	236	17
5	698	658	11	0	1697	1559	6	3	319	273	14
6	1549	1504		2	2477	2416	6	4	1043 770	1025 763	9
7	408	440	16	4	688 1004	660 1012	8	56	437	447	13
8 10	276 768	273 800	20 12	8	565	575	11	ž	1229	1264	10
11	226	271	30	10	283	279	20	9	532	520	13
12	486	477	16 -	16	507	464	18	9	307	336	19
	5,	8, L			61	1+ L		10	269	222	22 12
1	289	305	18	0	1198	1163	.6	11	966 403	981 395	12
2	384	335	14	2.	277	219 908	12 8	12 13	277	265	25
<u>3</u> 4	443	455 359	14 15	3	884 881	841	8	15	323	354	24
5	370 231	220	24	°5	605	564		••	61	67 L	
6	705	694	12	8	1426	1497	And the second s	$\langle \rangle$	863	825	^9
9	344	357	20	9	841	806			940	918_	10
10	785	793	13	10	1074	1076	10	8	313	338	19
11	265	270	24	11	710	724	- 12	9	203 599	175 601	28
12	379	376	20	15	606	564	15	10	313	330	23
13	512 433	496	17	0	6+ 1690	21 L 1647	6	11 12	628	65J	-14 23 15
1 4		9, L		1	438	436	10		6.	7. L	
· 1	5, 1284	1253	10	23	220	183	16	0	362	351	16
23	455	442	15	3	1475	1362	7	2 3	1226	1196	9
3	785	785	11	•	540	514	9		910 1098	938 1095	10
4	268	308	24	· 5	379 154	388 146	11 24	4 8	391	428	iž
5	898	895 ·	11	. 0	1.04	140	27	, 8		72.0	• *

(

1

A12

H30) 3P 33 COLUN)2 (CS) 10F0,10	ofc,	1051 6					I	PAGE
ι	KFO	FC	SI6	ι	KF O	FC	516	ĩ	KFD	FC	SI
	6,	7. L		10	454	476	14	2	945	.954	
10	447	467	17	12	66 I	459	14	3	333	347	1
12	-535	509	16	14	690	721	15	5	756	76	- 10
14	723	728	15	16	331	332	24	6	708	711	1
	6.	8, L			7.	1. L	_	Ž	797	. 798	11
0	1 580	1484	9	1	617	592	•	8	862	#57	1
1	513	517	13 -	2 3	1452 424 196	1476	7	/11	647	666	1
2	748	744	11	3	424	443	11	/11	192	150 488	
2 3	512	492	14	4	196	252	20	´ 13	683		- 14
5	233	233 432	24	5	158	115	23		7,	61 L	
5 7	408	432	17	6	195	37.0	13	1 -	647	673	11
8	2791	799	12	7	237 649 845	· 247	19	3	302	298	1
10	399	357	19	8	-649	661	11	4	527	458	- 17
11	670	665	15	9	845	207	. 11	6	366	342	11
••	° 61	9. L	~-	10	411	419	党 15	9	864	843	- 12
0	1007		11	12	554	537	** 15	10	502	494	10
2	360	1001 334	17	12 15	250	280	28	11	456	488	17
23579	985	993	11	16	479	489	19	13	224	208	· 3
Ř	473	491	15		7,	2, L		14	362	347	21
7	787	797	13	12	590	585 273	' 9		7.	7. L	
6	26 1	265	24	12	296	273	14	1	401	375	52
ú	531	527	17	- 4	401	426	- 12	2	408	388	1
12	245	234	29	5	882	711	9	Ā	542	544	13
14	Z4 5	107 1		56	263	303	17	Ś	248	217	2
Q	681	647	13	8	623	614	11	4567	248 499	501	14
1	785	808	12	9	258	269	21	.7	713	756 479	1
5	272	808 212	-21	10	258 563	580	13	8	507	479	13
2357	520	530	15	11	456	435	15	10	263	257	2
ŝ	520 318	308	22	13	336	337	21	12	715	743	11
5	419	419 4	19	14	236	185	27		7,	8, L	
9	222	251	32		7,	3. 1	.	1	7 · 437	431	1:
10	269	250	27	1	512	538 1202 1327	10	26	693 458	488 429	12
ΤΨ	6,	115 L	4 .,	2	512 1172	1202	8	6	458	429	16
2	287	279	24	23	1338	1327	8	7	779	789 731	1
1	390	358	18	. 4	205	199	21	ė	695	731	14
2454	307	338	23	6	236	257	19	10	693	708	1.
Ă	435	414	18	67	602	635	12	11	.298	294	23
7	212	195	34	8	1128	635 1176	10	12	317	284	2.
é	207	180	33	Ŧ	583	579	13		7,	9. L	
•	- ×.	12, L	•-	10	228	248	25	1	661	651	1.
0	288	276	23	11	225	219	25	3	501	505	1
1	463	410	17	13	- 550	554	15	4	636	656	1
Ĵ	224	184	29		7,	41 L		5	345	318	19
4	224 458	184 470	29 18	1	277	266	15	6	503	497	1
6	472	479	1 1 5	Ź	544	513	10	7	240	280	28
7	235	303	34	1 2 3	832	805	•	9	494	481	- 10
•	- <u>.</u>	13, L	•• •	A	365	389	14		7,	10, L	
2	239	230	30	Ś	925	916	10 .	2	312	275	21
2 3	576	554	17	59	93ō	· 932	£1	2 5	483	491	21 17
4	293	276	27	11	260	261	25	6	393	416	19
-	7,	0. L	, – -	14	226	242	30	7	285	281	26
2	706	792	9	iš	489	519	18	8	482	474	17
Ä	1540	1571	8		7,	5i L		9	491	509	18
8	231	254	22	1	639	676	10		7,	11, L	

G

Ø

{

0

(

.

ι.

PAGE 8

[(CH30)3P33 CR (CO)2 (CS) COLUMNS ARE 10FD+10FC+ 19816

ŧ

			141 011								
L	KF O	FC	, 919,	L	KFO	FC	SIG	L	KFO	FC	SIG
L .		11, Ľ		. 8	655	697	13	4	399	398	18
•	280	272	25			-602	14	Ś	233	209	29
1	200	272	2.3		598 > 243	201	26	6	823	841	14
6	256	22B	28	12	243			7	722	693	15
8	627	621	16	1,4	305	_ 260	24		24	209	
_	. 7.	125 L			8,	հ5չ_L		8	231		30
3	267	271	27	· 0	211	209	23	-	8/	11, 1	
6	563	545	17	1	198	254	25	3	248	272	28
	8,	0, L		3	450	440	13	. s. 👲	287	317.	26
0	478	509	11	4	801	789	11	7	390	417	21
2	295	243	15	6	319	295 °	19	•	8,	12, L	
4	1032	1103	•	7	568	560	13	0	215	158	29
6	446	507	13	. 9	692	706	13	1	441	432	19
8	352	334	16	9	558	559	14		9,	0, L	
10	226	187	25	14	312	330	24	2	1456	1486	9 *
14	282	309	25	• •	8,	67 L			260	256	19
* *	8,	LI L		0	677	654	11.	6	834	836	11
0	256	284	16	ĭ	815	810	11	8	317	286	19
ų.		511	11		1112	1037	10	ıž	212	241	30
135	483			, 2 , 3 5	197	209	25	14	536	496	17
్త	662	643	10	· · · · · · · · · · · · · · · · · · ·	447	451	15	14	9,	1, L	
2	319	322	16	Ş		369		1	519	506	12
8	203	172 303	25	6	394		17 12	1	253	261	20
9	287	303	20	7	779	770			303	273	17
11	251	297	25	8	612	611	- 14	257	303	2/3	17 13
12	241	245	27	11	790	786	13		564	589	13
-14	239	239	28	12	284	_301	26	.8	487	536	15
	8 ,	2, L			8,	7, L		<u>II</u>	480	490	16
0	398	439	13	0	310	346	- 19	12	189	80	31
1	931	916	•	1	540	533	13	14	393	373	21
23	645	704	10	2 3	561	567	13		9,	21 L	
3	1397	1479		3	348	370	17	1.	673	684	10
5	365	376	. 15	5	717	712	12	3	1226	1215	9
57	258	248	20	6	198	159	29	5	1465	1503	10
8	227	240	25	Ţ	245	220	26	6	882	869	11
9.	394	400	16	ú	329	397	23	7	666	692	12
12	429	420	17	**	8,	81 L		Ś	228	226	25
12 15	511	518	18	0	886	862	11	10	187	61	29
T J	8,		1.	ĭ	221	233 -	26	iĭ	262	264-	25
0	1169	3, L 1164	9	5	239	244	25	125	252	263	27
1	589	582		25	505	467	15	13	502	436	17',
, i	367	362	10	3	543	578	15	14	341	294	22
234	605	575	11	. 6		410	19	14	341	3, L	4.6
S	281	303	17	7	407	581	15	3	9 , 613	360 0	11
4	808	863	10	9	590	201		2		421	14
5 7	601	601	11	10	333	329	23	4	443		12
	400	391	16	11	443	. 390	18	5	607	641	12
	312	320	19	-	8,	9, L		67	763	776	12 28-
11	294	317	22	0	243	244	27		186	138	20
13	248	213	27	1	215	232	30	8	338	332	19
	8.	41 L		235	207	116	26	11	372	401	20
0	1220	1267	9	3	. 468	468	16	12	848	868 -	- 13
1	650	609	11	5 1	338	339	22	13	414	391	20
Ī	813	803	10	Ă	404	415	19		9.	41 L	
3 4	1003	1031	10	ě	273	- 306	28	1	769	766	11
, A	448	472	14	-	8,	10, L	-	23	1722	1745	9
67	406	400	15	0	617	613	14	3	737	751	11
	144		- 17	•			- •				• -

C (CH30	DISP13 COLUI	CR (CO WS ARE)2 (CS) 10F0+1		10516	•		۵			PABE 9
۰L	KFU	FC	516	î	KFO	FC	SI6	L	KFO	FC	SIG
-	•	4. L		7	226	152	30	2	214	203	26
4	578	627	13	-	9,	11, 1	n /	4	318	330-	20
5	1017	1065	11	2 3	283	274 330	26 24	· 5 6	706 282	718 289	13 23
6	1138	10 89 354	10	2	10.	0, L	24	8	240	207	28
9 10 12	481	506	· 19 17	2	10, 375	405	15	11	240	272	20
12	371	372	22 17	2	1286 - 324	1293	10		10,	6, L	
13	551	530	17 1	6	· 324 732	363 745	20 13	0	880 1196	817 1184	12 11
	9, 119	51 L	17	8 10	534	- 547	15	1 2	270	274	24
1234	J18 317	290 348	17 18	12	443	448	19	. 4	455	483	- 16 -
3	249	208	22	ι,	~ 10,	1, L	2.	57	252	242	25
4	287	288	20	· 0 2 3 5 4 8	666	_669 _585	11 13	8	902 264	907 295	13 27
. 7	572 314	611 294	14 20	2	578	363 199	24	11	510	496	18
10	237	259	27	5	208 584	608	ĩj		10,	7, 1	
10 12 13	614	621	16	Ğ	677	706	13	0 1	592 772	593	15
13	402	394	21	, 8	476	496	17	· 3	7/2	742 421	13
•	857	61 L 793	11	° 9 12	293 -610	347 595	22 15	4	376 413	44.5	19
2	332	357	~ 18	13	279	277	27		° 217	166	28
123456	763	755	12		10,	2, L			10,	8, L	
4	451	462	16	0	218	248	23	Q	1112	1086	12
5	523	513	14 15	1	525 1221	540 1223	13 10	1	727	698 553	13
•	441 754	423 736	13	3	397	390	16	4	542 333	325	16
9 11 12	428	415	18	5	323	365	20	67	602	599	15
12	.482	472	17	1 3 4 5 6 7	335	350	19	7	427	451	20
	9+	7, L	17		783	786 668	12 14	8	226 10,	193 9, L	32
123	422 725	3 95 720	13	- 11 - 13	206	173	34	0	436	467	18
3	· 197 463	149	28		10,	3. L		, 0 2 3	501	502	16
4	463	447	16	Q	- 214	194 727	23	· 3	433	439	- 18 30
· 6	224	239	29 18	. 4	720 319	327	11 `20	× 4 5	225 481	216 441	17
9	457 597	448 573	15	·	207	208	27	7	472	490	19
•	9.	8, L		5.7	207 487	506	15		10,	10, L	
1	372 237	365	18.7	8	339	328	20	0 1	562	535	16
2	237	221	25	10	534 295	· 577 225	16 . 34	3	313 254	290 245	25 30
1267	430 478	426 480 -	18 17	11	308	292	24	· 4	218	200	31
	438	623	15	••	10,	4. L		•	10,	11) L	
, Ţ	444	398	18	0	10, 1022	1062	11	Q	289	26,3	26
10	395	384	21	2	560	554	13		11+ 1024	0, L 1011	12
	7.	9, L J39	22	4	1046	1010 722	11 13	ہ 8	842	837	13
,3	320 333	351	22 21	5	407	418	18	10	245	260	° 28
- 4	388	397	29	8	675	684	13	12	1129	1108	13
<u>é</u> -	342	329	22	9	338 429 367	305	21		11,	11 L	17
Ž	597	565 389	16 21	10 12	367	415 392	19	1	52 8 186	506 207	13 30
-	373 71	10, L	4 4	14	10,	S, L		2 7	1056	1057	12 (
25	458	435	18	0	763	770	12	8	502	497	16 22
5	531	489	17	1	547	544	- 13	11	344	363	22

C(CH30)3P33 CR (CD)2 (CS).

ł

A14

ł

E (CH30) 3P33 CR (C0)2 (CS) CDLUNNS ARE 10F0, 10FC, 10516

t-.

1

	CULUN	IND MAL	101011	yr c r i	0210		•				
Ł	KFO	FC	\$16	L	KFO	FC	SI6	L	KFO	FC	SIG
	11,	2. L		- 1	. 455	426	18	ō	871	865	14
4	443	444	15	2	267	269	27	Ĩ	276	325	27
5	1055	1039	11		297	283	23		250	219 338	29 23
. 6	311	298	21	-	11,	10, L		45	328	338	23
· • •	209	237	31	*1	469	459	20	6	231	217	31
y	664	673	15		12,	0, L			12,	8, L	
11 12	543	513	17	0	12, 552	563	14	0 2 3	12, 722	730	15
12	212	151	34	2	430	423	16	2	346	316 303	· 22
	11,	31 L		4	, 219	195 325 7	29		299	303	24 30
1	274	226 345	21	8	328	325 *	- 22	4	243	274	30
23	330	345	19 29	10	617 12, 299 453	600	16		13,	OLL	
5	193	4 77 254	27	•	12/	.1, L 305		4	740 686	726	14 14
	257	234	25	0	277	303	21	6	47		14
6	541	525 276	15 23	1 2 3	433	448	15 18	6	13, 247	1, L 295	. 30
89	284 595	585	14	ź	377 298	310	21	i 3	279	306	* 28 25
7	373	383	1.4	4	214	266	. 30	4	308	336	24
	11, 319	4, L 292	20	. 8	267	263	26	5	756	729	24 13
3	498	543	16	10	718	696	15	6	360	728 363	22
5	193	199	31	10	12,	2, L	13	4 8	554	519	22 17
	586	607	14	- 0	744	386	19	Ì ğ	554 224	204	3 2
67	844	879		· · ·	366 432	446	16	,	13,	2, 4	V 2
ś	346	297	20	5	205	770	20	7	715	720	14
· 10	332	317	13 20 22	1 2 4	295 252 379	256 252	26		13,	3, L	• •
	11,	5, L	2.6	. 5	170	375	19	2	360	358	20
2	639	637	14	` X `	298	375 258	22	4	329	329	20 23
í	234	241	28	ž	« 720	710	14	5	286	296	25
23	234 231	189	27	6 7 8	* 720 216	710 163	31	- 6	445	461	25 20 20 23
5	196	227	32	•	12,	3. L		Ī	426	439	20
Å	288	227 284	32 23	0	マウマ	326 328	21	8	331	326	23
ž	292	268	28	3	319	328	21	~	13,	4, L	
8	317	299	24	0 3 5	319 251	258	27	t	620	646	16
5 6 7 8 10	346	347	21	. 7	411	388	20	2	314	325	23
	11,	6, L		7	535	522	17 *	6	671 581	684 600	23 15 17
. 1	462	429	16	10	219 12, 377	244	34	7	581	600	17
<u>`</u> 2	604	604	15		12,	4, L		•	13,-	5% L	
ʻ 3	464	473	17	Ø	377	376	19	1	464	489	19 19
5	421	446	18	5	409	413	19	3	448	451	19
1 2 3 5 4 8 9	594	579	15	0 5 6 7	421	405	18	5	482	483	18
8	366 618	379	21	7	303	319	24		137	61 L	~ ~
•	618	593	16	Ċ.	460	504	17	1235	347	377	24
	11,	7, L		9	429	452	20	2	475	442	18
1	732 399	761 417	·13 19	•	121	5, L	~.	3	359 · 258	373 255	22 29
4	399	417	17	0	12; 204 311	178	31	3	· 739		27
2	215	190	30	4	311	384	25	•	13,	7, L	
5 6 7 8	236 255 315	257 274	29	567	387 440	379	20	2	749	719 0, L	15
/	235	2/4	28	9	44U	435 431	19 20	0	14, 417	01 L 447	10
9	313	247	23	~	415		24	ő	488	490	19 19
	15+ 744	8, L	• •	4	909	61 L	13	9	14,	.l, L	. 7
- 4	344	750	14 21	1	371	929 356	20	0	488	457	17
236	282	293	27	7	589	570	16	. J	871	900	14
7	333	317	22	4	348	361	23		511	502	17
, /	333	91 L	24	. .	12,	7, L	43	· 4 · 5	260	316	17 30
	***	77 L		•	147	// L		~		w 4 w	

PAGE10

A15.

A16

((CH30)3P33 CR (CO)2 (CS) COLUMNS ARE 10F0,10FC, 10816

C.

C

PABE11

L 034 56	KF0 14, 526 219 279 625 213 14,	FC 2, L 508 225 270 645 156 3, L	516 17 31 27 16 33	•	L01245	KF 0 459 428 445 898 244 14; 341	FC 411 457 502 920 230 4, L 352	516 18 19 19 14 32 24	L 2 4 0 1 2	KFD 423 208 279 14, 575 490 290	FC 397 221 284 5, L 571 515 234	SIG 20 33 25 17 19 24	
----------------	--	---	-----------------------------------	---	--------	--	--	---	----------------------------	--	--	---	--

Table A.3. Final Positional Parameters for

Cr(CD)₂(CS)[(MmG)₃P3₃ (mer I) and Their Estimated

Standard Deviations

Atom	X	Y	2	BISOª
Ċr	0.19911(9)	0.38303(9)	0.38742(7)	2.43(7)
P1	0.32792(15)	0.41733(16)	0.43546(12)	2.82(11)
₽2 '	0.23895(15)	0.44281(15)	0.27786(12)	2.67(11)
P 3	0.07087(15)	0,33602(16)	0.34657(13)	2.81(11)
C 1	• 0.1663(5)	0.3483(5)	0.4733(5)	2.9(4)
S	0.13294(20)	0.32226(20)	0.54977(14)	5.17(15)
C2	0.2478(6)	0.2782(6)	0.3610(5)	3.1(4)
02	0.2780(5)	0.2140(4)	0.3418(4)	5.6(4)
C3	0.1580(6)	0.4919(6)	0.4097(5)	3.0(4)
03	0.1317(4)	0.5600(4)	0.4251(4)	4:8(4)
011	0.3437(4)	0.5118(4)	0.4690(3)	3.8(3)
C11	0.3014(7)	0.5356(8)	0.5336(6)	6.0(6)
012	0.4058(4)	0_4123(4)	0.3830(3)	3.5(3)
C12	0.4958(6)	0.4274(7)	0.4062(6)	5.2(6)
D13	0.3613(4)	0.3626(4)	0.5018(4)	4.5(3)
C13	0.3648(7)	0.2686(7)	0.4986(7)	6.0(6)
021	0.2931(4)	0.3858(%)	0.2242(3)	4.0(3)
C21	0.2585(7)	0.3154(6)	0.1832(5)	4.9(6)
D22	0.2993(4)	0.5250(4)	0.2876(3)	* 3.6(3)
C22	0.3387(7)	0.5691(7)	0.2268(5)	5.1(6)
023	0.1675(4)	0.4755(4)	0.2239(3)	3.7(3)
C23	0.1101(7)	0.5445(7)	0.2413(6)	5.1(6)
031	-0.009764)	0.4015(4)	0.3464(3)	4.0(3)
C31	-0.0444(7)	0.4313(7)	0.4122(6)	5.4(6) 。
032	0.0238(4)	0.2580(4)	0.3858(3)	3.9(3)
C32	0.0672(7)	0.1753(7)	0.4016(6)	5.2(6)
D33	0.0683(4)	0.3071(4)	0.2664(3)	3.6(3)
C'33	-0.0101(6)	0.2719(7)	0.2333(5)	4.5(6)

^ağISO is the srithmetic mean of the principal axes of the

thermal ellipsoid.

A17

Y.

Table A.4. Final Thermal Parameters for Cr (CD) 2 (CB) [(MeD) 3 P] 3

(mer I) and Their Estimated Standard Deviations

•		¢		. •		•
Atom	U11	U22	. U33	UIZ	÷ 113	U23'
Cr	2.76(8)	3.07(9)	3.41 (8)	0.04(7)	-0.08(7)	0.15(7)
P1	3, 14(14)	3.68(15)	3.71(15)	-0.08(12)	-0.37(12)	0.18(12)
P2	3.30(14)	,3.40(14)	3.47(13)	-0.00(12)	0.15(12)	0.04(12)
P3	3.07(14)	3.58(14)	4.02(14)	-0.09(12)	-0.05(12)	0.49(13)
C1	3.1(5)	3.0(5)	4.9(6)	-0,6(4)	-0.9(5)	-0.1(5)
5	7.88(21)	7.55(21)	*4.23(17)	-0.85(17)	0.88(16)	1.01(16)
,C2	3.2(5)	3.5(6)	5.1(6)	0.9(4)	-0.4(5)	0.0(5)
02	8.1(5)	5.4(5)	7.6(5)	2.1(4)	-1_0(4)	-0.7·(4)
C3	3.8(6)	3.4(6)	4.2(6)	-0.0(5)	0.3(5)	-1.4(5)
03	6.7(5)	4.4(4)	6.9(5) [`]	0.7(4)	(0.8(4)	-1.4(4)
011	4.1(4)	4.9(4)	\$ 5.4(4)	-0.9(3)	0.3(3)	-1.8(4)
C11	7.0(8)	8.7(9)	7.1(8)	0.7(7)	· 0.9(7)	-4.3(7)
012	2.9(4)	6.0(4)	4.5(4)	0.4(3)	-0.5(3)	-0.7(3)
C12	2.8(6)	7.9(8)	9.2(9)	-1.1(6)	-0.7(6)	-1.9(大)
013	4.7(4)	6.6(5)	5,7(4)	-1.3(4)	-1.9(4)	1.7(4)
C13	6.5(7)	5.5(8)	10.9(9)	0.3(6)	-3.3(7)	3.9(7)
021	5.1(4)	4.9(4)	5.1(4)	0.0(3)	0.9(4)	-1.1(3)
C21	8.0(8)	5.0(7)	5.6(7)	Q.0(6)	-0.1(7)	-1.7(6)
022	4.4(4)	4.8(4)	4.6(4)	-1.3(3)	-0.2(3)	0.0(3)
<u>C22</u>	8.4(8)	5.6(7)	5.3(7)	-2:8(7)	2.2(6)	2.0(6)
023	5.1(4)	4.7(4)	4.2(4)	0.0(4)	-0.5(3)	0.5(3)
C23	5.5(7)	5.7(7)	8.3(8);	2.1(6)	-1.5(6)	-0.2(7)
031	3.8(4)	5.8(4)	5.5(4)	1.1(3)	-0.5(3)	0.2(4) ^
C31	5.6(7)	_ 6.5(8) V	8.2(8)	1.5(6)	2.7(7)	-1.6(7)
032	4.4(4)	4.9(4)/	5.3(4)	-1.4(3)	-0.1(3)	1.1(3)
C32	7.2(8)	4.7(7)	7.7(8)	-1.0(6)	-0.4(7)	0.\$(6)
033	4.1(4)	5.3(4)	4.4(4)	-0.6(3)	0.5(3)	-0.7(3)
C33	5.4(6)	6.4(7)	5.4(7)	-2.3(6)	-1.6(6)	-0.7(6)
	1	\ с.е Б		1	- 4 L/	• •

All the UIJ values have been multiplied by 100. (

À18

References

es.

 E.J. Gabe, A.C. Larson, F.L. Lee and Y. Wang, The NRC PDP-8e Crystal Structure System, NRC, Ottawa, Ontario, Canada, 1979.

A19

 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, England, Vol. IV, 1979, Tables
 2.28-2.31.

Appendix B

Structural Characterization of the mer I Isomer of Cr(CO)₂(CSe)[(MeO)₃P]₃: X-Ray Data Collection, Structure Solution and Refinement

Table B.1. Crystallographic Data for X-ray Diffraction Study of $Cr(CO)_2(CSe)[(MeO)_3P]_3$

° <u>Cr</u>	ystal Param	neters		· · ·
crystal system = orth	orhombic		. •	
space group = Pbca	,	calcd der	nsity. = 2.3	396 g cm ⁻³ /
a = 15.483(3) Å	~	temp = 118	BK + , th	E '
b = 15.213(5) Å		formula =	C ₁₂ H ₂₇ O ₁₁ Se	P ₃ Cr
c = 18.997(3) Å	、 、	_ mol wt = 5	570.9 g mol	·1
V = 4474.6 Å ³		• K • • • •		, , , , , , , , , , , , , , , , , , ,
2 = 8		• •	• •	•
<u>Measurement of İn</u>	tensity Dat	a and Struc	<u>sture Soluti</u>	on
calculations but no	east-square 0-18, 1 0-2 oKa radiati 2 2 6, 0 0 measured, 3 r Lorentz a terson and otropic re ng include	on 10,460, 10,460, Fourier m finements (at of $25 \mod 3\sigma(1)$ ation effect	variation used s and for ll-matrix es) with
$R_{\rm F} = 0.042$ $R_{\rm WF} = 0.062$, 		3 . t
•				-

Table B.2. Observed and Calculated Structure Factors for

B2

 $Cr(CO)_2(CSe)[(MeO)_3P]_3 (mer I)$

 \mathcal{D}

Values of 10%Fobs and 10%Fcalc

ŧ

0

	Values	٥ f	10*Eobs	and 10	AFC31C																	Pa	3e l	
×,	н к 	L -	fots	Feale	519£	н 	к -	L -	Fobs	Feale	513F	н -	к -	L ~	Fabs	Fesie	519E	H -	к -`	L -	Fobs	Feale	513E	_
۳ م ۲ ۲	 к - 00000000000000000000000000000000000	L - 246802468201012345679013456789	Fors 541 195 2717 364 1327 879 666 147 2785 391 800 137 379 3118 1060 711 1087 1910 1884 1714 712 1557 956 790 333 564 1270 1870 1910 1884 1717 1910 1884 1717 1910 1884 1717 1910 1884 1717 1910 1887 1950 1950 1870 1917 1917 1950 1970 1950 1950 1950 1970 1950 1970 1950 1950 1970 1950 1950 1970 1950 1970 1950 1950 1970 1950 1970 1950 1970 1950 1970 1950 1970 1950 1970 1970 1970 1950 1970	Feale 573 250 3106 344 1435 957 678 116 2642 330 0 0 366 3236 1098 730 1184 2103 2096 1976 808 1751 1219 768 407 597 1212 490 518 808	S19F 2 5 10 5 4 4 5 21 5 13 3 2 6 2 2 9 3 3 4 4 5 10 7 5 12 9 8	- • • • • • • • • • • • • • • • • • • •		$\begin{array}{c} - & 16\\ 17189222 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 6 \\ 7 \\ 8 \\ 10 \\ 13 \\ 15 \\ 15 \\ 10 \\ 2 \\ 1 \\ 15 \\ 10 \\ 2 \\ 1 \\ 1$	587 821 952 668 855 126 1202 1181 2531 1241 1253 1430 1384 140 504 1384 140 504 262 1384 140 504 1753 1138 154 154 154 154 154	696 829 949 950 569 750 129 1175 1175 2597 1219 1147 1562 1411 129 560 360 360 315 446 432 560 1291 315 446 432 1086 994 1701 1063 113 1351 1084 967	519F 9 7 7 10 9 12 3 3 3 4 9 4 4 19 7 14 5 18 9 13 7 8 3 4 13 4 4 4			0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 1 2	737 379 661 1362 1013 882 1013 598 716 671 356 541 1372 356 1372 1256 600 1421 3072 1250 600 1425 1270 264 1588 1270 264 1588 1270 264 1588 1270 1270 264 1588 100 1379 100 100 100 100 100 100 100 100 100 10	699 369 642 1405 850 1052 585 735 910 714 691 369 737 691 369 524 1379 764 436 2918 259 1250 624 1505 259 1288 2355 1027 855 586	5754556656 56656 11796711661356756514 609		- 16 16 16 16 16 16 16 16 16 16	- 12356900101246801114680201234569	573 433 606 1229 771 284 320 297 81 143 2851 2489 816 1036 2489 816 1036 301 198 715 679 136 497 820 198 501 1839 971 1839 92012 848	Fcalc 616 440 638 1178 1330 784 301 344 323 0 2864 114 2737 902 1147 763 865 198 153 580 0 464 797 1017 1503 2214 995	519F 9 11 8 6 8 18 17 2 6 8 10 3 4 5 5 10 3 9 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	0 2 0 4 0 4 0 4 0 4	0	1269 1063 944 1078 3506	1120 923 924 1023 3830	6 2 2 2 9	0000	8 8 8 8 8 8	6 7 9 10	1371 1007 2716 442 2196	1395 4013 2809 440 2318	4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0	12 12 : 14 14 14	14	1027 552 1208 1101 324	1050 533 1263 1149 - 351	6 9 5 6 12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*1 1	10 11 12 13 14	684 170 869 .350 1249	714 187 907 361 1303	4 12 4 8 5	
P	0 4 6 4 0 4 0 4 - 4	7 8 9	2131 2086 123 397 456 678	 2245 2279 183 396 484° 396 396 	3 3 11 - 5 5 4		ယ် ^က ်တ ည စာ'ထ	15 16 17	384 700 1006 879 244 455	396 733 997 852 188 425	6 16 10	0 0 0	14 14 14 14	11	243 1122 261 632 1552 874	270 205 331 641 1649 879	16 6 17 8 `6 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	112222	19 22 11 2 3	301 336 3328 959 446 1741	432 309 3032 915 452 1817	16 15 6 2 3 2	٠
	04 04 04	11 13 15	386 1733 1015	391 1319 1025	7 4 5	· 0 0	3	18 19 20	555 567 441	538 475 411) 9 11 • 12		14 14 16	14	396 417 1238	418 453 1330	13 13 6	1 1 1	11 [1]	n	1250 1610 195	1303 1720 	ເມີ່ ເ	В3

\$

 \checkmark

A

Valles of	104Eobs	and 10	*Ecalc	•	•		ĩ				-		4	a						Pá	9 e 2
нкц	Fobs	Ecalc	SigE	н	к	L	Fots	Ecalc	SigE	н	к	L	Fobs	Ecalc	519F	н	к	L	Fabs	Ecalc	SigF
				-	-					-	-	-				-	-	-			
1 2 8	767 410	806	35	$\int \frac{1}{1}$	5 5	6	354	384	5	1		8	689	695	5		11		634	634	7
1 2-10	403	497 422	5	\mathcal{F}^{-1}	5	7 9	622 1338	691	4	1	-	, 9	637	670	5			13,	534	565	9
1 2 11	1033	1093	-	1	-	-		1438	4	1	-	11	222	231	13		11		431	402	12
1 2 12	455	508	4	1		11 •14	541 955	593 957	55	1			995	1022	5		12	1	522	496	7
1 2 13	363	396	8	1	-	15	603	607	. 7	1	-		473	498 1482	8 5		12	2	356	332	10
1 2 14	964	988	5	1		17	702	711	. 7	1		15	393	382	10		12 12	3	572 341	564 343	7
1 2 17	1617	1596	Š	i		19	481	458	10	- î	8	16	807	793	7						
1 2 19	839	874	8	1	รั	21	347	326	15	1		17	202	181	20		12	5	1791	1825	<u> </u>
1 3 1	2112	1875	8	1	6	1	1392	1252	3	1	_	20	346	308	15		12 12	6 8	631 477	665 499	8
1 3 2	302	274	4	1	6	2	1553	1463	3	1		1	918	859	4		12	9	1229	1260	5
1 3 3	537	536	3	ī	6	3	705	700	4	ī		2	1496	1461	4		12		510	503	8
134	771	783	3	1	6	4	1563	1557	`з	1	9	Э	504	491	6		12		219	233	18
1 3 5	634	193	3	1	6	5	784	821	4	1	. 9	4	1541	1604	4		12		254	260	17
136	584	613	3	1	6	6	718	769	4	1		5	543	515	, .		12		791	787	7
13,"	444	491	4	1	6	7	1323	1421	4	1		6	302	331	• 9		12		445	450	11
1 3 8	783	753	4	1	6	8	349	339	6	1	ò	7	339	375	8		12		431	424	11
139	1433	1625	3	1	6	9	803	853	4	1	. 🤊	9	1098	1143	4 5	1	12	16	617	608	9
1 3 11	1731	1780	4	_1	6	10	494	. 5,06	6	1	9	11	559	564	7		13	1	905	909	£
1 3 1 2	170	180	14	1	6	11	1223	1,2(35	4	1	. 9	12,	351	350	10		13	2	299	266	12
1 3 14	238	269	12	1	6	12	1190	11,85	5	1		13	556	579	8		13	з	468	478	9
1 3 19	708	738	9	1	6	13	1161	1177	5	• 1		14	1009	1048	6		13	4	815	828	6
4 4 1	1658	1463	2	1	6	14	1377	1301	5	1	9	16	384	381	12	1	13	5	219	289	18
1 4 2	1100	986	2	1	ę	16	498	487	8	1	. 9	19 19	, 269	3.13	19	1	13	6	695	755	7
1 4 3	2136	2093	2	1	Ğ	18	769	746	7			-		767	5		13	7	538	582_	8
144	955 105	979	3	1	6	20	575	689	13		10	э	467	474	7		13	8	340	351	12
146	1336	74	12	1	6	21	602	674	13		10	9	293	324	10		13		398	422 (12
		1465	3	1	7	2	742	644	4		10	5	1362	1369	4	1	13	12	270	288	16
147	142	132	11	1	7	3	617	589	4		10	6	1151	1178			13		263	265	17
148	360 1293	401 1378	5	1	777	4 5	1267	1255	3		10	7	1893	1983	4		13		742	750	8
1 4 10	282	333	- 8	1	7	6	581 522	559 489	4		10	9	1394 1578	1418 1645	5 • 5		13	12	359	348	14
1 4 11	592 5	² 611	5	1	-7	7	367	343	6		10		257	797	7		14		561	568	8
1 4 12	753	742	5	1	7	8	212	191	11					-			14	3	229	228	17
1 4 13	299	341	5 9	1	7	-	348	350	11		10		923 196	953	6		14	4	705	739	-7
1 4 14	688	682	6	1	7	14	1308	1308	5		11	13	721	152 650	21 6		14	6 7	1311 502	1407 521	59
1 4 15	287	391	14	ī		16	511	487	8		11	3	300	260	10		14	é	410	408	าเ
1 4 16	599	608	7	1	7	20	529	466	11	1		4	332	378	9		14	9	1194	1234	
1 4 19	223	· 626	31	1	8	1	677	649	4	1		5	772	814	· ć		14	-	409	412	6. 12
1 5 1	1219	1202	3	i	s	ż	1452	1371	3	-	11	6	230	.254	14		14		680	701	8
152	978	901	3	1	8	4	1668	1683	4		11	7	241	212	13		14		905	961	7
1 5 3	701	<u>7</u> 2 ט	3	ī	8	5	569	543	5		11	9	675	670	Ĝ		14		584	605	10
154	747	754	3	1	8	6	489	511	5		11	9	629	825	6		15	.3	158	209	20
1 5 5	6 ¹ 0	652	4	ī	8	7	5.0	587	5		11		139	168	13		15	-	294	300	15
			•	3	-				đ					100		1		-		30-	1.7

1

١

^

¢

В4

Values of 10%Fots and 10%Fcalc

•

1

*

+

. .

\$

	٠				~											•								
-	H	ĸ	L _	Fobs	Ecalc	519£	н	K L	Fobs	Fealc	S19F	H	ĸ	L	Fabs	Feale	S19E	H	ĸ	L	Eobs	Ecalc	SigF	
•	_	-	_		•		_											_	_	-				
	1	15	4	486	506	10	3	1 13	1090	1143	4	2	з	16	857	845	6	2	6	2	516	447	4	
	1	15	6	817	868	7	2	1 14	598	598	6	2	З	19	197	200	20	2	6	3	1011	995	3	
		15	?	745	799	7	2	1 15	496	490	7	2	Э	21	224	245	21	,2	6	4	367	343	5	
		15 15	8	782 698	811 710	7 8	3	1 16 1 18	166 1009	153 971	- 18 6	2	4	0	301 1162	247	53	2	6	5	229	226	8	
			-10	417	427	12	2	1 19	203	265	21	2	4	2	182	1014	3	2	6	6 7	217	237	9	
		15	12	362	379	15	• 2	1 20	720	686	6	ົ້	4	3	1365	1275	3	2	6 . ý	10	1066 562	1128 598	4	
		16	1	402	396	13	2	2 0	2447	2173	2	2	4	4	293	298	5	2	¥۲.		577	567	5	
		16	Э	541	569	9	2	2 1	700	608	2	2	4	5	1056	1041	Э	2		13	336	190	11	
		16	4	366	398	13	2	2 3	1297~	_1238	2	3	4	6	1547	1526	3	` 2	6	13	271	279	11	
			6	712	724	8	فه	2 3	320	255	4	2	4	8	1063	1045	3	2		14	617	621	7	
		16	7 8	254 916	262 961	19	2	2 4 2 5	1894 1194	1910 - 1207	9 3	2	4	9 10	696 840	709 863	4	2	۰6 6		718	695	6	
		16	9	225	252	' 23	2	2 6	1517	1573	3	2		11	612	624	5	2		19	413 296	414	11 15	,
		16	10	826	881	8	2	2 7	1002	1055	3	2		12	627	684	5	2		21	501	437		¥
	1	17	1	928	938	° 7≞	3	28	495	538	4	2	4	13	510	539	6	2	7	ō	3954	3323	12	
4	· 1	17	2	563	608	10	3	29	255	258	7	2	4	14	786	773	5	3	7	1	775	733	4	
		17	5	438	466	12	2	2 10	- 165	184	11	2		15	372	368	9	2	7	3	1423	1289	3	
		\$ 7 17	6 7	232	- 486	22 12	2	211 212	1436 767	1493	4	22		16 17	996 507	961 502	5	2	7 7	3	1507 1430	1365	3	
		18	í	723	739	9 (2	2 13	444	451	7	2		18	604	592	8	<u>ن</u> ہ ح	7	4 : 6	394	1366 335	3	
	2	0	0	. 2756	2504	6	2	2 14	209	232	13	2		19	812	746	2	2	÷ .	8	1729	1757	Ģ 4	
	2	ō	2	477	495	3	2	2 15	702	701	6	2	4	20	405	368	12	2	7	9	132	128	ĭs	
	2	D	Э	92	0	9	2	2 16	4930	477	8	2	5	0	3039	2685	10	2		10	1719	1817	4	
-	- A - A	0	4	1680		8	3	2 18	• 665	623	, 7		5	1	739	617	3	3	7		151	. 126	17	
	4	0	8	265 672	225 693	6	2	2 19	897	846	?	2	5	2	1725	1534	.3	3	2		423	436	8	
		0	10 12	1463	1520	1	. 1	2 20 2 21	49 9 195	491 218	11 · 23	22	5 5	3	2113 1513	2022 1472	, 3 , 3	2	7 7	13	405 867	440 863	8 6	
	ĩ	ĩŏ		423	423	7	2	3 0	1513	1307	2	2	5	5	1081	1114	3	2		15	394	315	12	
	2	0	18	853	801	6	2	Э 1	336	329	4	2	5	6	968	971	3	2		17.	239	322	16	
,	2	0	20	921	813	7	. 2	3 2	1109	1027	2	3	5	7	1138	1083	3	2		18	957	932	7	
	2	1	0	2684	2410	6	3	3 3	1508	1462	2	2	5	8	878	865	4	2		19	374	365	13	
-	22	1	- 2	275 479	234 429	- 3° - 7	·2 2	13 . 4 3 ⁻ 5	313 2660	298	10	32		10	1267 496	1285 487	4	3		20	657	613	9	
	2	i	3	959	1003	2	้ำ	3 5	1548	2745 1577	- 10	2		12	248	234	6	4	8	1	289	258	9	
	5	5	Ĩ	788.	830	2	2	37	371	460	5	2		13	240	234 766	10 5	4	8	2 3	663 320	585 389	57	
	2	i	5	+ 1272	1308	⁄ ä	2	38	1193		3	2		15	1331	1344	5	4	8	4	1005	1053	4	
•	2	1	6	1248	1280	3	2	3 9	955	1064	4	2	5	16	614	602	7	2	8	ธ	209	150	11	
	2	1	7	1131	1243	3	2	3 10	921	999	4	2		17	372	369	11	3	`8	6	380	370	7	
	2	Ť	8	, 1031	1099	3	5	3 11	1085	1138	4	3	-	18	514	9, 201 28	9	. 2	8	8	909	949	5	
	3.	1	•	232	265	7	3	3 12	417	441	7	2	_	19	167		23	Ĵ,	8	ġ	211	200	12	
٠	2	1		1705	1764 411	9 6	3	3 13 3 14	1443 614	1520 635	4	2		20 21	464 413	461 517	11 16	2 7		10 11	572	588 147	ů L	
	2		12	1180	1230	4	2	3 15	964	974 974	5	2	6	1	798	705	3	i n	8		161 481	167 503	17	
•		-				-						•	~	•	110	,	5	-		L U	101	103	, 0	

¢

1.

٠

B U U Values of 10xEobs and 10xEcalc

Page	4
------	---

F

4

																							44 -	
	H -	к -	L _	Fobs	Ecale	\$19F	H -	к -	L -	Fobs	Fcalc	\$19F	н к , — —	L -	Fobs	Fcalo-	519F	н	ĸ	L 	Fobs	Fcalc	519F	
	2	8	14	699	706	. 7	2	11	151	1030	1054	7	2 15	6	785	787	. 7	3	1	17	583	543	7	
	3	-	17	237	224	17		11	16	556	555	9	2 15		450	456	11	3		19	180	185	21	
	2	83	20	464	429	12	2		0	1941	1747	5	2 15	19	610	608	9	3		20	505	482	10	-
•	2	9	3	683 1376	613 1319	5		12	2	593	562	7	2 15		410	431	12	3		21	236	240	20	
	5	ģ	4	13/0	1278			12	3	674	673	7	2 15		501	545	F1	3		22	650	566	9	
	ŝ	9	5	569		•	3	12	4	1216	1184	5	2 15		438	448	12	3	2	1.	1047	952	2	
	2	9	7	526	536 554	6	2 2		5	266 183	272 228	13 19	2 16		702	674	9	3	2	2	97	81	11	
	^2	9	8	348	-364	9	-	12	7	386	402	10	2 16 2 16		461 476	462 500	12 12	3	2	3	172 - 2082	161 2120	7 9	
	2	9	9	559	555	6	• 2		8	937	978	6	3 16		221	222	21	3	2	5	1698	1686	3	
	2	9 1	0	883	861	5	. 2		9	382	380	10	2 16	-	561	606	10	3		7			3	
	2	9		316	314	10	2		-	382	367	10	2 16		349	361	15	3	2	8	298 1595	291	5	
	2	9 . 1		169	192	19		12		314	357	13	2 17		352	377	17	3	ź	9	1571	1583 1698	3	
	2	9 1		569	563	7		12		326	358	13	2 17		204	211	26	з	2	10	783	797	4	
,	2	9 1		1136	1147	6	2	12	13	453	453	10	Ž 2 17	3	324	337	16	3	2	11	716	729	4	
	3	9		587	565	8	2	12	14	352	351	13	2 17	4	468	485	13	3		13	528	556	6	
	2	9 1		227	207	18		12		553	547	10	2 17		707	737	9	З	2	14	1100	1114	5	•
	2	91	18	536 345	527 315	10	2			530	525	10	2 17		574	603	10	3		15	243	245	12 -	
		10 '	0	466	466	15	2	13 13	0 1	1585	1521	5	2 17		663	711	9	3.		17	302	303	12	
	2		Ň	644.	594	-			-	168	228	24	3 0	-	629	563	2	3		19	515	462	9	
		10 10	2	540	394	6	2	13	23	652 233 -	606 · 249	7 16	3,0	-	1017	1046	2	3	2	21	505	431	10	
	2		3	891	840	5	-		4	170	203	22	3 0	_	1114 559	1127 558	3	3	23	22 -	216 2655	182 2416	22 9	
	2 1	10	4	1217	1200	Ä		13	5	323	317	12		10	350	411	6	3	3	2	688	578	3	
	21	10	5	845	861	5	2	13	7	1148	1167	6	3 0	12	998	999	4	ā	3	3	329	361		
	2 1	10	7	813	840	5	2	13	8	675	655	7	3 0	14	1127	1158	5	3	3	5	210	198	7	
	2 1		9	474	510	7		13		588	608	8	3 0	16	753	716	6	3	3	6	1292	1286	3	
		10		411	410	9		13		615	631	8	3 0		639	584	. 8	3	Э	7	1633	1685	3	
		10 1		283	274	13		13		456	437	11	30	22	3174	284	ľ 6	3	3	8	433	428	5	
		10		362	369	11	3			241	246	20	3 1	. 1	154	117	6	Э	3	9	345	383	6	
		10		217	217	19,			1	1218	1153	6	3 1	-	1594	1547	8	3	-	10	1373	1443	4	
		10 1 10 1		416 257	418 284	11 18	2	14 14	3 5	193 393	211 393	20 11	31 31		728	719	3	Э		11	1694	1743	4	•
	2		Ó	1169	1032	5	_		6	299	312	14	3 1		1579 2021	1586 1989	2	3		12	1107	1129	1	
	2 1		ī	1045	953	Ę	-		7	534	543	9	3 1	6			10	3	_	13	1082	1119	5	
	2		2	839	767	5		14	9	231	236	18	3 1	-	1076	1106 419	3	3		14	535	- 521	6	
	2		3	2119	1961	Ă		14	-	546	578		3 1	•	1147	1165	3	3	-	16 17	834 753	823	6	
	2 1		5	1891	~1865	4		14		632	651	8	3 1	-	715	785	· 3	3		17 18	289	741 247	13	
	21	11	6	1011	1002	5		14		320	328	15	3 1		1322	1423	4	Ğ.	. 3		524	503	9	
	2 :	11	7	673	711	6	2	14	14	315	332	16	3 1	11	155	190	13	3	`	20	/257	229	17	
		11 1		528	520	8			0	1599	1481	5		12	1575	1620	4	3	-	21	237	207	~ 19	
		11		496	484	- 8	2		2	1162	1154	6		13	754	786	5	3	4	ĩ	2442	2206	10	α
		11 1		457	477	9			4	657	647	8.	. 3 1	14	728	739	5	3	4	3	573	557	3	õ
	2	11	13	1106	1135	ú	3	15	5	208	221	21	3 1	15	365	362	9	3	4	4	1463	1423	3	
																							-	

.

Values of 10*Fobs and 10#Fcalc

	H -	к -	L -	Fabs	Fcalc	Sige	H -	K -	^ L _	Fobs	Fcalc	SigF	H	к -	L -	Fabs	Fralc	SigF	H -	К -	L -	Fabs	Feale	SigE	•
	3	4	5	813	775	3	3		11	221	225	12	3	9	6	1296	1261	4	з	12	1	836	769	6	
	3	4	6	253	258	7	3		13	893	900	5	3	9	7	578	581	6	3	12	3	1364	1295		
	3	4	7	1189	1205	3	• 3	6	14	1460	1496	5	3	9	8	225	251	13	3	12	4	731	703	6	
	3	4	8 9	339 1353	361	6	3		16	170	172	21	3	9	9	1199	1212	/ 5	3	12	5	418	410	9	
	3	-	0	195	1368 258	4	3 3		17 18	730	695	,7	3	9	10	390	405	9	3	12	6	1025	1031	5	
	3		i i	963	988	4	3		19	421 368	397	11	3		11	389	355	9		12	7	1437	1447	5	
	3		2	841	796	5	3		20		376	12	3		12	1090	1069	5	3	12	9	409	411	10	
	3		13	1058	1082	5	3	67	20	269 204	231	17	- 3	-	13	245	253	14		12		496	492	9	
	3		4	622	595	6	3	2	2	1292	192 1214	10 3	3		14 15	607 474	599 477	79		12		1071	1087	.6	
	3.		is –	187	203	16	3	7	4	1099	1047	4	3		16	419	415	10		12 12		224 369	213	18	
	3	4 1	. 6	409	397	9	3	7	5	1469	1392	4	3	-	18	267	244	17		12		373	343	12	
1	3	4 1	7	767	732	7	3	7	6	497	473		3	10	ĩ	, 1173	1098	4		12		3/3	401 292	13	
:	3	4 1	8	327	341	12	3	7	8	432	396	6	-		2	746	696	- 5		13	10	1559	1446	15 5	
	3		9	792	751	7	3		10	336	356	8	Э	10	З	455	420	7		13	2	936	895	Ğ	
	3		1	254	225	18	3		11	328	336	9	3	10	4	886	837	5	3	13	4	546	500	۰ 9	
	3	-	1	998	915	3	3	7	12	455	484	7	Э	10	5	884	875	5	Э	13	5	859	843	6	
	3.	5	2	1071	937	3	3		13	402	400	9	3	10	6	600	, 576	6	3	13	7	190	175	20	
	3	5	3	1023	960	3	3		14	691	703	6			7	597	573	6.			9	445	448	10	
	3	5	4	420 482	393 450	2	3	7	15 16	275	273	13		10	8	1221	1248	5		13		276	273	15	
	7	_	6	732	720		3		17	1018 257	1003	6		10	9	1105	1145	5		13		600	625	8	
	3	š	7	585	643		3	7	20	237 534	272	16		10		838	819	· 6		13		428	433	11	
	3	-	á	537	529		3	é	1	534 665	467 605	10 5		10		582	586	7		13		510	505	10	
	3	5	9	2885	2902	4	3	8	ີ່ລໍ	196	202	12		10		613 464	605 463	7 9		13		642	643	9	
	3	5 1	0	587	611	5 -	- 3	8	3	264	226	9		10		263	246	15	_	14	1	368	394	13	
	3	5 1	1	141	129	16	3	8	° 4	709	653	5		10		581	585	3		14	3	833	798	7	
:	3	5 1	12	649	676	5	3	8	5	154	151	15		10		414	381	12	-	14 14	4	987 361	972 331	6 12	
i	3	5 1	13	685	715	6	3	8	6	2005	1958			11	1	404	418			14	7	195	193	21	
	3		5	975	964	5	3	8,	7	358	-341	8		11	2	1383	1268	4		14	9	758	744	7	
		5 1		489	469	9	3	8	9	728	735	5	3	11	3	883	820	5		14		204	186	23	
	3	5 1		472	467	9	3	8	10	159	145	17	3	11	4	579	554	7		14		213	207	22	
	3	5 1		486	. 449	9		* 8	11	188	196	15		11	5 -		225	14		15	1	438	4195	' <u>11</u>	
	3 3		20 21	210° 571	232	22	3	8	12	1290	1293	5		11	6	615	600	6		15	3	3Ì1	261	15	
	3	6	1	1207	1108	10	3	8	13	292	272	12		11	7	299	308	11		15	3	559	571	9	
-	3	6	2	610	521	3	3		14	287	272	12		11	8	799	766	6		15	4	605	625	9	
	3	6	3	324	25B	,	3	8	16	324	301	12		11	9	221	214	16		15	6	737	751	8	
	3	6	4	1787	1693	3	3	8	17 19	215 384	215	19		11		303	329	12		15	8	735	746	8	
	-	6	5	348	359	6	3	9	1	547	363 444	13		11 11		218 266~	250 231	17		15		186	206	26	
	3	6	6	673	690	· 4	3	9	ż	1779	1619	4		11		323		15		16	3	758,	754	8	
	3	G	8	122	73	17	3	9	3	1302	1221						341	13		16	3	279 .		18	
	3	6	9	576	611	5.	3	9	4	1543	1451]		11		264 223	249° 209	16 20		16	4	- 373	385	14	
	3	_	10	137	165	17	3	ģ	5	712	697	s		11		245	269	20		16 16	5	231	201	20	
•		, -			,		-	-	-		¥ 2 /		5	• •	• •			~ V	J	10	6	213	219	23	

0

-

Values	of 10±Eabs	and 10AFcalc
--------	------------	--------------

Page 6

}	+	к -	L -	Fobs	Fcalc	813E	H T	к -	L -	Fobs	Fcalc	819F	H	H H 	< -	L	Fobs	Fcalc	SigF	H	ĸ	L	Fobs	Fcalc	SigF
:	3		9	855	866	8	4	2	10 [.]	595	611	5				17	270	274	14	4	7	6	474	. 462	6
		17	1	· 1266	1230	• 7	. 4	3	11	496	501	5		4 4	. :	21	970	846	7	- Ă	7	7	671	677	ŝ
	3		3	195	193	27	4		12	474	477	6	4	4 5		0	1526	1307	3	4	7	8	1112	1086	Ā
		17	4	. 544	541	11	- 4	2		845	841	Sy.	4		5	1	911	848	3	4	7	9	363	342	8
		17	5	491	507	12	4			394	442	8	4	4 5	•	2	1642	1528	3	4		11	175	168	16
	3	17	6	562 1574	575	11	4			526	525	7	4	4		3	662	640	4	4		12	352	352	9
		ŏ	1	4166	4051	. 9		2		163 704	194 675	19 7		4 5 4 5		4	1100	1044	3	4		13	216	237	15
		ŏ	4	2249	2182	10	· 7	2	18	1031	980	6			-	5 6	1074 295	, 1048	3	4		14	904	918	6
	i	ŏ	Ğ	1174	1138	3	4	2	19	410	372	10		• •	5	7	826	306 830	7	1		15 17	655	646	7
4	Î.	Ō	8	1811	1845	3		2	20	585	- 534	9				ś	837	814	4	- 2		18	351 329	331 293	12 13
4	L	0	10	1400	1486	4	4	2	21	229	216	20				10	306	281	8	4		19	- 460	421	11
4		0	14	407	372	7	4	3	0	2948	2643	10	4	1 3	5 1	11	960	952	ธ์	4	7	20	460	413	ii
4	١	0	16	1571	1549	5	4	3	1	483	431	4			5)		401	-380	7	Å	8	, <u>'0</u> ,	1738	1494	4
	1	-	18	541	507	8	4	з	2	787	742	3	4		5 3		430	419		4	8	ĩ	264	205	9
4	•	0	20	968	907	7	4	3	3	1249	1191	3			5		516	506	7	4	8	2	1303	1207	4
		1	0	825	787	3	4	3	4	1284	1241	` 3	~ '		5 1		738	713	6	4	8	3	453	445	6
	•	1	1	109	75	10	4	3	5	212	179	`7	Ŭ		5 3		1177	1164	5	4	8	4	928	876	4
1		1	2	845	790	Э	4	3	6	110	89	14			5 1		269	256	14	4	8	5	900	884	4
	1	1	3	1981	1912	9	4.	3	7	423	501	5				21	388	325	13	4	8	6	1434	,1350	4
		1	4	227 993	227	6 3	4	3	8	1728	1757	3		4 6		0	3157	2854	12	4	8	7	305	362	9
		÷	6		1038	-	4	3	10	1030	1024	4	•		5	1	1052	251		4	8	8	1193	1186	4
		1	7	741	764	3	1	3	11	1470	1495	. 4		4 6	-	2	736	633	4	4	8	10	1580	1591	4
	1	i	8	1513 474	1552 484	ม 5		3	12 13	693	750	5			5	3	639	578	4	4	8	11	313	311	10
	ĩ	1	10	983	990	J 4	4	3		140	146 1059	18		4 6	5	4	144	129	14	4	8	12	764	780	6
4	i	-	ii	1545	1530	4	-		15	719	700	6			-	6	2143 471	2080 504	35	1	8 8	13 15	298	321	12
	4		12	1195	1233	Å	À	3		420	411	9,			5	7	536	578	5		8	16	444	471	9
	1		13	682	685	5	Å	-	17	173	167	20/		4 6	-	8	372	374	7		8		1208	1209	6
	4		14	751	736	ŝ	4	3		386	377	ĩơ			-	10	1029	998	4	4	8	17 18	192 767	196 748	22 8
4	L	1	15	569	595	6	4	3		188	194	21				11	497	497	• 6	4	8	19	346	303	14
4	•		16	303	306	11	4.	, 4	0	512	444	4	4			12	635	653	6	4	9	ō	1734	1555	4
4	1	1	17	374	352	10	4	4	1	811	726	3		4 6	5 1	13	838	859	5	4	9	i	1090	980	
	4	1	20	362	299	12	4	- 4	3	2209	2047	3		4 (5	15	278	266	12 -	4	9	2	172	107	15
. '	4	1	21	178	148	25	4	4	5	1058	1032	Э	4		5 1		261	280	14	4	9	3	941	896	ŝ
	4	2	0	132	123	9	4	4	6	150	114	11				17	192	177	20	4	9	4	464	397	7
	•	2	1	2547	2415	9	4	4	7	1417	1461	3	4		5]		891	838	7	4	9	5	1507	1394	4
	•	3	3	1667	1634	2	4	4	9	307	279	7		4 (19	189	144	23	4	9	6	712	662	5
		2	3	1102	1038	3.	· •	4	10	268	337	9	4			20	520	491	10	4	9	7	425	432	7
•	٩	2	4	1290	1241	3	4	4	11	610	622	5			7	0	269	310	8	4	9	8 °	357	376	9
-		22	5 15	1838 145	1807	3	4		13	1477	1517	4		• 7		1	203	213	10	4	9	9	287	283	11
	4	ź	¹⁵ 7	145	147	10	4		14	427	436	8	•	4	7	3	706	638	4	4	9	10	212	190	14
•	•	Ľ,	8	1022			,4	4	15	1742	1750	5	4	1	_	4	2404	2272	3	4	9	11	207	216	16
			đ	10	1046	3	4	4	16	103	1 429	9		4 '	7	5	242	941	4	4	9	12	214	344	16

~ 6

Values of 104Fobs and 104Ecalc

,

н к L 	Fobs	Ecale	513E	•	н к 	L -	Fabs	Feale	SigE	н -	к -	L +	Fabs	Fcalc	519F	н -	к -	L -	Fobs	Fcalc	SigF
4 9 15	410	373	10		1 12	1.4	194	201	23	5	^	12	2136	, 2150	•		-	~	1000		
4 9 17	330	320	14		1 12	15	1146	1154		5	ŏ	16	1267	1235	4	5	3	23	1332 1027	1252 1009	3
4 10 0	689	689	6		1 13	õ	497	464	10	5	.0	18	302	307	13	5	3	4	1444	1369	3
4 10 1	532	446	7	4	1 13	1	497	465	9	รี	ō	20	629	572	8	Š	3	6	1124	1158	· 3
4 10 2	215	222	14	4	13	З	_ 1187	1157	÷ 5	· 5	1	1	345	377	4	5	3	7	592	599	- 4
4 10 3	485	475	- 7		1 13	4	704	700	7	5	1	2	1639	1552	3	5	3	8	748	744	4
4 10 4	322	338	10		13		548	532	8	5	1	3	1560	1479	• 3	ູ 5	3	9	2050	2076	4
4 10 5	1403	1328	4		1 13		259	251	17	5	1	4	1452	1507	3	5	3	10	1146	1146	4
4 10 6	1189	1153 730	5		14	0	538	464	9	5	1	5	624	617	4	5	3	11	724	779	5
4 10 B	457	458	8		14 14	1	876	832	7	5	1	6	167	175	9	5		12	324	362	9
4 10 9	624	622	7			2 3	277 238	236 273	16 19	5 5	1	89	355 1757	397 1829	6	5		13	616	630	6
- 4 10 10	399	399	ģ		14	4	313	, 295	14	5	1	-	824	832	3	5		14 15	369 279	391 286	9
4 16 11	696	697	· 7		1 14	5	962	937	6	. 5	ĩ	11	235	226	10	5		16	499	480	11 8
4 10 12	· 923	948	6		1 14	6	548	546	9	5		12	333	336	ß	Š	3		354	334	11
4 10/13	699	703	7		1 14	8	794	789	2	5		13	664	635	6	Š	ž		264	283	16
4 10 15	269	254	, 15	4	1 14	9	260	246	17	5	-	14	1511	1506	4	5	3	20	325	306	14
4 10 17	456	451	11		1 14		927	933	7	5	1	15	589	592	7	5	З	21	743	650	8
4 10 18	510	511 .			1 14		300	305	16	5	1	16	835	- 812	6	5	4	1	1601	1429	3
4 11 0	1764	1614	<u>ر او ا</u>	4	1 14	13	524	515	10	5	1	17	552	508	8	5	4	2	215	233	8
4 11 1	650	620	6		15	0	581	552	9	5	1	18	238	- 217	15	5	4	3	1077	1013	Э
4 11 2	442	415	8		1 15	1	× 384	378	13	5	1	20	685	598	8	5	- 4	4	463	401	5
4 11 3	408	419	9		15	2	495	505	10	5	1	21	240	204	19	5	- 4	5	636	634	4
4 11 4	1368 449	1302	5		15	3	254	244	' 18	5	2	1	2347	2219	10	5	- 4	7	1293	1284	4
4 11 7	419	452	8		15	4	856	850	7		3	2	2502	2376	10	5	4	B	422	424	6
4 11 8	258	425 260	9 14		115	5	64-0 257	658 296	9	5 5	2 2	3	1819	1730	3	5		.9	187	183	12
4 11 9	242	224	15		1 15	-	279	301	19 18	5	2	5	2455	2403 433	11 5	5	4	10 11	220 690	211 693	11'
4 11 11	370	380	11		16		286	253	18	5	2	6	155	190	11	J E	-				
4 11 12	413	423	10		16	ī	843	822	8	5	2	7	684	761	4	5		12 13	469 596	465 613	76
4 11 13	253	242	16		1 16	2	979	944	7	5	2	8	1226	1237	4	5		14	190	230	16
4 13 0	1281	1187	5	4	1 16	3	251	232	20	5	2	9	1117	1111	4	5		15	195	, 221	17
4 12 1	378	351	10		1 16	5	483	481	11	5	2	10	980	995	. 4	5		·17	723	697	7
4 12 2	427	425	. 9	4	1 16	8	873	876	8	5	2	11	261	251	ຶ 9	5	4	18	332	328	12 .
4 12 3		1421	5	4	1 17	0	334	318	17	5	2	12	488	487	6	× 5	4	19	535	491	9
4 12 5		513_	8		17	1	380	371	16	. 5		13	444	429	7	5	4	21	205	173	23
4 13 6		272	14		17	2	218	228	26	5		14	499	499	7	5	5	1	1917	1770	3
4 12 7 4 12 8	1450	1430	5		1 17	3	735	733	9	5		15	873	869	6	5	5	2	580	526	4
	456	447	9	•	1 17	4	366	373	15	5		17	832	815	6	° 5	5	3	1059	1002	3
4 12 9	177	192	21			2	1480	1433	3	5		18	221	225	17	5	5	4 1	1094	1044	3
4 12 10 4 12 11	377 494	* 385 511	11		5050	4	1602	1532	3	5		19	418	403	10	5	5	6	759	702	4
4 12 13	312	345	14		50	6 3	650 329	669 291	4	5.	. 2	20 21	227 325	227	19	5	5	7	422	387	6
4 12 13	395	404	11		5 0	10	1271		ن ۸	5 5	3			293	15	5	5	9	164	211	14
		л чл ,	**	Ē	, ,	10	14/1	1299	. 1	Ű	3	1	540	488	4	5	5	9	,917	934	. 4
			1													-			•		

-

۰,

Values of 10xFobs and 10xFcalc

Page	8
------	---

نْسر	`н 	к -	L -	Fobs	Feale	519F	н -	к -	L -	Fobs	Fcalc	519E	•	H -	к -,	L -	Fobs	Fcalc	519F	H	к -	۰L 7	Fobs	Feale	\$19F	
	5		10	311 '	310	9	5	8	34	673	650	5		5 1	10	15	502	482	9	5	14	10	486	451	10	
	5		11	1492	1449	4	5	8	4	378	353	7		5	10	17	518	497	10	5	14		356	351	14	
	5		13	645	643	6	5	8	Ŝ	389	352	7			11	1	1307	1191	5		15	2	1525	1462	6	
	5		14	521	518	7	5	8	6	1517	1438	4			11	3	1229	1145	5,	5	15	3	329	314	15	
	5		15	, 355	362	10	5	8	7	230	221	- 12		5 1	11	3	530	518-	7	5	15	4	845	839	7	
	2	•	16 '	681	683	7	5	8	9	547	517	6		-	11	5	293	303	12	5	15		347	351	14	
· .	5		17	901	855	6	5		10	705	687	6			11	6	594	539	• 7		15		386	391	13	
	5		18°	349	,335	12	/ 5		11	201	214	16		5		7	588	595	7	5	15		278	281	-i9	
د	3	5 6	19	824	769	7 (Ś	8 3		1080	1114	5		5 1		8	392	378	10		16	1	250	216	ʻ 21	
		-	1	181	174	11	5		13	668	69B	7	•	5		9	562	582	8	5	16	-	463	462	12	
2	2 5	6	23	1305 324	1253 305	3	5	8		876	864	?		5 1		10	294	289	13	5	16	4	605	615	10	
	5	6	4	1370	1305	4	,5 6		18 19	- 336 266	337 260	14		5		11	523	536	9	5	16		949	-947	7	
	Š	6	5	837	762	4	5	9	1	2015	1826	19					194 192	187	20 22 .	5 5	17	1	274	247	21	
	5	6	6	640	587	5 3	5	ş	2	330	280	9						191		-	17	2	374	382	16	
	- Ē	6	8	514	518	6	5	9	3	848	829	5			11		290	315	16	5	17	3	442	438	14	
	5	6	9	1423	1387	4	5	79	4	259	233	-		5	-	16	426	405	12	6	0		1846	1655	3	
	5		10	1595	1589	4	5	9	5	1108	1037	11			12	1 3	749 437	702 404	7 9	6 6	00	_	2421 653	2359 598	11	
	5	6	11	365	334	8	5	9	6	720	662	Š			2	4	336	317	ní	6	ŏ	6	1099	1103	. 3	
	5	6	12	1439	1398	5	5	9	7	456	454	7			12	5	415			-					. 3	
	5		13	640	627	6	5	é	8	852	.809	Ś			12	6		401	10	6	0	8	730	709	4	
	ŝ		14	556	551	7	5	9	9	228	188	14			12	7	684 935	652	7	6	0		470	471	6	
	5		15	319	334	·	5	-	10	, 251	231	13			12	é	413	933 425	6 10	6	0		. 339	340	8	
	5		17	303	256	13			11	212	197	16		5		ŝ	860	844	6	6	ŏ		587 246	573	7	
	5	6	19	434	413	n	5	.9		505	480	8		5		ú	735	723		-				206	15	
	5		20	884	316	6	- 5	9		379	355	10							7	6	0		187	195	23	
	5	7	-1	824	762	4	5		14	281	274	14		5		14 15	183 245 *	196 253	25 19	6 6	1	- 0	144	116	11	
	5	7	2	1333	1199	Ā	5	9		194	210	22			13	1	302	281	14	6	1	2	211 471	288 474	7	
	5	7	3	918	842	4	5	9 1		552	534	9			13	3	1017	973	6	6	÷.	3	1334	1390		
	5	7	4	1261	1187	Ă	5		18	192	176	24			13	5	788	776	7	6	1		990	1023	3	
	. 5	7	5.	994	942	4	-	10	1	1189	1057	5			13	6	289	280	15	6	i	5	• 149	146	3 11	
	5	7	6	2394	2391	4	5	10	2	453	402	8			13	7	210	201	19	6	i	6	550	551	4	
	5	7	7	695	679	5	5	10	3	721	667	6			3	8	363	345	12	6	ī	7	283	269	7	
	5	7	8	360	383	8	5	10	4	863	821	5			13	9	708	692	. 8	6	ī	8	2626	2676	, 3	
	5	7	9	283	261	10	5	10	5	605	579	6				11	271	292	16	۰6	ī	9	1066	1013		
	5		10	1326	1345	4	_	10	6	150	130	20			13		179	103	24	6	1	-	2008	2012	7	
	5	7~		1041	1034	5	5	10	7	1363	1316	5			3		389	400	13	6	ī		508	489	6	
	5	7		325	336	10	5	10	8	446	431	9		5	14	1	191	178	23	6		12	345	349	8	
	5		14.	736	764	6	5	10	9	938	892,	6		5)	4	2	937	894	7	6	Ĩ		375	391	Ā	
	5		15	175	175	20	° 5	10	10	332	348	11			14	3	334	327	14	6	-	14	451	444	8	
	5	7	16	450	· 432	9	5	10 1	11	674	664	\$ 7			4	4	1343	1300	6	6	i		1056	1049	Š	
	5		17	520	497	9	5	10	12	171	131	32			14	6	491	485	10	6	ī		384	367	10	
	5	8	1	297	275	9	5	10]	13	483	513	9		_	4	7	820	809	7	' ē	1	17	493	474	8	
	5	8	2	988	875	۴ 🕯	5	10 1	14	596	574	8		5	14	9	637	655	9	6	-	10	320	302	12	
27										-		-				-	~~.		•	1.4	•	**	~44	474	* #	

		1	4			-											
Values of	10AEabs	and 10	*Ecalc	-	•				• -							Pa	98 .9
HKL	Fobs	Ecale	\$19E	HKL	Fobs	Fcalc	SigE	H	K . L	Fobs	Fcalc	SigF	Ĥ	K L	Fobs	Fcalc	SigF
6 1 19		443	10	6 4 10	270	211	,10	6	7 4	1179	1100	4	6	9 1 8	974	935	7
6 1 20		441	~ 10	6 4 11	1479	1490	× 4	6	75	390	c 378	7	61	0 0	986	939	5
6 1 21		413	12	6 4 16	474 7	469	- 9	6	76	665	641	5	6 1	01	1233	1134	5
620		1623	3	6 4 17	443	421	9	6	77	438	450	7	61		235	205	14
6 2 1 6 2,2		379 183	59	6419 650	177 977	159 842	23	6	78 79	476	468	,7	61		907	880	5
`Ğ 2´3		1574	á	651	591	525	5	6	7 10	168 258	181 266	17 12	61	-	439	420	• 8
6 2 4	485	461	4	652	149	154	13	6	7 11	170	177	12		0607	294 5 5 2	287	11
6 2 5		402	5	6 5 3	613	642	4	6	7 12	1099	1076	19		0 8	523 453	515 432	89
626	219	179	8	6 5 4	1322	1311	4	6	7 13	355	355	10		õ õ	395	407	, 10
6 2 8		707	4	6 5 5	1881	1838	3 `	6	7 14	655	653	7	6 1	0 10	429	434	. 9
629		503	6	656	885	897	4	6	7 16	1459	1463	6	.61	0 11	207	196	18
6 2 10		528	5	6 5 7	2029	2029	4	6	7 18	1104	1044	6		0 14	537	529	9
6 2 12 6 2 15		430 351	7 10	658 6259	1161	1141 311	- 8	6	80 81	2263	2022	4		0 16	518	505	10
6 2 16		387	9	6 5 9 6 5 10	779	784	· o	6	81 82	617 1087	544 1026	5	61 61	0 17	667	656 257	9
6 2 17		281	12	6 .5 11	1901	1901	4	6	8 3	611	597	ν ¶ 6	6 1		663		13
6 2 18	348	339	12	6 5 12	646	631	6	Ğ	.84	190	171	14		1 4	458	644 433	79
6 2 20	303	273	15	6 5 1 3	961	953	5	6	8 5	274	244	10	6 1		1344	1354	5
6 2 21	306	263	15	6 5 1 4	477	478	ė	6	8 7	674	645	6		16	650	641	7
630 631	2040	1844	3	6 5 16	337	313	11	6	8 8	1104	1077	5	6 1		870	848,	6
632		- 1716	3. 5	6 5 17	264	271	15	6	89	167	167	18		18	543	512	8
633		386 2109	, 3	6518 660	187	185	21	6	8 10	467	431	、 , 8	61		-186	168	20
634		533		6 6 1	1067 1041	996 987	4	6	811 813	980 197	962 171	5 18		1 10	753 977	743 - 968	76
6 3 5		839	4	6 6 2	313	302	<u> </u>	6	8 14	341	349	12	6 1	1 12	572	549	8
636	452	-,494	5	663	137	98	16	6	8 15	307	305	13		1 13	891	876	7
6 3 7	ູ 228	~214	9	6 6 4	1097	1033	4	6	8 16	655	620	8		1 14	556	552	ģ
6 3 11		937	5	6 6 ≫¶5	275	292	9	6	8 17	302	- 254	- 14	61	1 15	517	511	10
6 3 12 6 3 13		609 1073	6- 5	667 668	165	166	15	6	8 1 B	432	402	12		1 16	363	342	14
6 3 14		321			441	431	. 7	6	90	2640	2434	4		2 0	452	457	10 +
6 3 15		1070	10 5	669 60610	335 710	346 667	9 5	6 6	92 93	1194	1077	-4	6 1		655	598	7
6 3 16		368	10	6 6 11	276	279	11	6	93 95	697 · 1019	684 941	. 5		2 2 2 3	329 389	300 394	12 10
6 3 17		548	8	6 6 1 2	945	964	5	6	96	244	238	1 13	- 6 1		748	712	7
6 3 18		614	80	6 6 1 3	276	254	12	6	97	1320	1353	5		2 5	222	225	18
6 3 19	429	406	11	6 6 1 4	2í8	218	15	6	98	587	557	, 7		2 6	822	811	6
6 3 21		1017	· 7	6 6 16	283	258	13	6	9 1.0	487	453	6		2 7	435	425	10
641 642		572	4	6 6 17	241	233	17	6	9 11	1124	1133	5		28	541	542	9
642 643		295 891	6	6618 6619	318 345	. 308	14	6	9 12	579	571	8		2 10	192	185	22
6 4 5		- 199	10	670	1630	306	14.	6	9 13	897	900	6		2 13	305	336	15
647	•••	- 199 682	4	672	2396	1497	4	j 6	915	438	402 580	10	6 1		340	322	14
649		187	17	673	2396	_218 832		6	9 16 9 17	596 318	302~	9 ~ 15	, 61 61		527 821	586 741	10
		/	••		000		· 7	3	/	510		~ . J			041	741	1 -

· '

1

à.

B11

e 14

Values'of 10kEubs and 10kEcalc

		-	*•								,		-					-					· Pa	98 10
H	•	K	L	Fabs	Feale	819E	H -	ĸ	L	Fobs	Fcalc	SigF	H -	K	L	Eabs	Fcalc	SigF	. H	ĸ	Ļ	Fabs	Fçalc	SigF
6			í	465	433	10	7	1	1	390	392	5	7	3 1	7	337	334	12	7	6	14	168	175	21
• 6			2	857	825	7	7	1	2	2040	2094	3	7	3 2	20	467	420	11	7	6	15	276	225	· 14
6	1	5	3	1685	1590	5	• 7	1	3	518	509	4	7	4	1	1049	1024	4	.7	6	16	313	299	13
6	1	3	4	481	470	10	7	1	4	1026	1037	3	7	4	2	669	619	4	7	6	17	437	405	10
6	1		5	670	630	8	7	1	5.	146	141	13	7	4	3	1538	1441	3	2	6	10	390	404	12
6			6	633	600	8	7	1	6	1139	1074	4.	7	4	4	616	610	5	7	6	19	449	413	11
6	1	3	7	240	228	. 18	7	1	7	. 558	562	5	7	4	5	1398	1354	4	7	.7	1	703		5
6	1	3	8	507	515	10	7	1	8	692	674	5	7	4	6	144	152	15	2	7	2	1093	990	
<u>'</u> 6			10	380	391	13	~~~7	1	9	1090	1118	4	7	4	7	471	481	6	2	7	-5	178	159	15
· 6	-		12	241	245	20	<u>`</u> 7	1	12	1165	1154	5	7	4	9	1910	1849	· 4	7	7	6	1007	994	5
- 6	1	3 3	13	+ 341	. 339	' 15	7-	1	13	195	199	15	7	4 1	13	252	238	13	7	7	7	733	724	5
6	1	4	1	446	408	11	7	1	14	384	395	9	7	4 1	14	381	369	9	7	7	8	744	691	5
,6	1	4	2	406	408	12	- 7	1	15	437	459	ġ	7	4 1	15	1125	1102	5	7	7	10	872	836	5
G		4	3	427	410	11	7	ŀ	16	955	939	6	7	4 1	17	696,	644	7	7	7	11	258	236	13
6	1	4	5	1371	1333	6	7		17	247	240	15	7		9	584	543	9	7	7	12	1429	1367	្មីទ
6	i I	4	8	306	· 313	16	7	1	20	591	549	9	7	- 4 :	20	449	393	11	7	7	13	393"	370	- 10
6	1	4	9	536	501	10	7	3	3	905	844	. 4 *	7	5	1	1418	1419	4	7	7	14	180	207	21
6	1	4	11	233	212	21	, 7	2	3	120	138	15	7	5	2	1442	1381	4	.7	7	17	260	252	17
6			12	474	4661	12	7	3	4	179	142	10	7	5	з	970	922	4	7	7	18	362	375	14
6	. –		3	463	458	12	7	2	5	1056	1035	4	°7	5	4	412	435	6	·. 7	8	1	656	587	6
6	l l	5	3	493	506	11	7	2	6	809	860	4	7	5	5	1385	1443	4	7	8	2	418	415	7
6	1	5	4	915	888	7	7	3	7	490	524	5	7+	-5	6	879	829	1 4	7.	8	3	202	179	1.4
6	1.1	5	7	228	215	21	. 7	2	8	602	589	° 5	7	5	7	1603	1591	4	7	8	4	685	[^] 669-	6
6			8	1239	1232	÷ 7	7	2	10	552	557	6	7	5.	8	1139	1095	4	7	8	5	169	178	17
6			10	865	879	8	7	2	11.	915	922	° 5	7	5	9	289	255	10	7	8	6	1165	1141	5
, 6			1	243		. 22	?	3	12	470	470	7	7	5 1	11	253	256	12	7	18	7	1319	1275	5.
6	1	6	2	391	381,	14	7	2	13	488	467	7	7	51	13	958	926	5	7	8	8	1160	1165	5
-'6	1	6	З	238	253	, 22	7	2	15	178	179	19	7	5 1	14	508	508	8	7	8	10	1237	1211	5
6		-	4	907	911	8	7	2	16	677	683	7	7	5 1	15	592	598	7	7	8	11	449	437	9
6			6	218	245	24 .	7	3	19	344	325	13	7		16	672	649	· 7	. 7	8	12	850	846	6
6	1		7	450	410	12	7	3	1	170	112	11	7	-'5-1	17	822	824	?	• 7	8	13	212	192	18
6			0	614	583	11	7	3	2	1161	1154	΄ 3	7	5 1	18	281	259	15	7	8	14	717	692	7
6			1	562	554	, 11	7	З	3	1946	1889	3	7	51	19	757	718	8	7	8	17	529	518	10
~			2	419	373	14	7	3	5	449	420	5	7	6	1	1284	1176	. 4	7	9	' 1	1267	1210	5
7		0	2	1272	1279	3	7	3	6	613	592	5	7	6	2	791	773	4	7	9	2	458	429	8.
7		Q	4	,2462	2428	12	7	3	7	1403	• 1354	4	7	6	3	208	221	12	7	9	3	852	800	5
7		0	6	384	363	6	7	З	8	1454	1428	4	7	6	6	882	820	5	7	9	4	1655	1608	4
7	,	Q	8	655	628	5	7	3	9	1354	1301	4	7	6	7	652	598	5	7	9	° 5	508	490	7
2	-		10	704	724	5	7		10	347	362	8	7	6	.8	304	263	9	7	9	6	1254	1233	Ś
7			12	346	367	. 9	7	3	11	802	792	5	.7	6	9	753	705	5.	7	.9	• 7	712	705	6 -
7	•	0	14	1620	1606	5	, 7	3	12	235	238	12	7	6 1	10	431	413	9	7	9	9	221	215	15
7	,	0	16	730	723	6	7	3	13	758	739	6	7	6 1	11	1026	1015	5	7	9	9	495	486	
7	1	0	16	/ 327	327	12	7	3	14	-150	107	21	7		12	315	286	11	· 7	9	10	472	464	9
7	1	0	29 /	734	651	8	?		15	519	501	8	7	~	13	351	366	10	, i	-	il	359	383	11
			1-1										-							-				• •

Page 10

B12

T

Values of 10AFobs and 10AFcalc

.

,																		•					<u>م</u>		
	н	K	L	Fobs	Ecalc	SigE	H	K	L	Fobs	Feale	SigE	н	к	L.	Eabs	Ecalc	SigE	н	к	L	Fohr	Feale	Sict	
	-	-	-				-	-	-				-		-			**].	-		-			.0190	
												X							-		-				
	7	9	12	503	496	9	7	13	3	751	747	7 7	8	1	8	301	316	8	8	а	19	186	189	24	
-	7	9	13	861	848	7	7	13	5	- 515	514	ું ૧	8	ī	9	391	367	7	8	4	ō	1544	1594	4	
	7	9	14	361	388	12	7	13	6	430	422	11	8	1	10	166	163	16	8	4	ì	1248	1155		
	7	9	15	229	250	19	7	13	7	232	248	• •	ā		ii -	469	478	2	8		ġ	152	124	15	
	7	9	16	260	278	18		13	. 8	626	582	B			12	337	360	9	8		4	1306	1290	4.4	
	7	9	17	891	857	7		13	9	1346	1352	6	8		14	218	217	15	° ĕ	4	5	1005	981		
	7	10	1	390	406	9	7	13	10	692	655	8	. 8		15	198	159	18		4	6	- 497	510	6	
	7	10	2	595	543	7	7	13	11	251	217	19	8		18	178	151	. 22	8	Ā	7	1098	1099		
	7	10	400	600	571	7		13		553	554	- 10	B	1	19	322	305	14	. 8		8	935	916		
	7	10	ີວ໌	948	919	5		13		583	551	10	8	- 2	ō	1369	1307		8	4	9	691	687	5	
	7	10	6	858	839	6		14	2	709	711	8	8	2	ī	1477	1477	4	8	-	10	167	173	17	
	7	10	8	500	482	~ 8	7	14	3	491	456	10	8	2	2	1357	1308	4	8	-	ĩĩ	932 '	931 -	ີ່ຮໍ	
	7	10	9	265	262	14	7	14	4	- 220	218	21	8	2	3	2220	2326	3	8	-	12	350	340	10	
	7	10	12	458	s446-	10	7	14	5	386	367	13	' 8	ź	4	224	252	10	8		13	1038	1033	,5	
		10	13	819	8041	7	7	14	7	877	880	7	8	3	5	1251	1222	4	9		14	436	404-	. 9	
		10		284	266	16		14,	8	263	24B	19	0	2	6	190	179	12	- 8	.4	17	1118	1074	• 6	
	7	10	16	184	168	25	7	14	9	422	425	13	8	' 2	7	153	115	15	8	4	18	447	421	10.	
		11	1	1090	1034	5	7	14	10,	199	241	26	8	2	8,	948	950	4	8	4	19	186	202	24	•
		11	3	171	156	21		14	11	411	426	13	8	2	9	409	428	7	9	5	0	-418	414	7	
		11	3	307	307	12		15	2	1103	1056	7	8		10	404	383	7		5	1	. 328	329	· 8	
		11	4	226	199	16		15	4	- 649	626	9	8	2	11	678	707	6	8	5	2	206	· 212	12	
		11	5	222	249	17		15	6	278	259	18	8		12	971	979	5	8.	5	3	428	469	7 .	
		11	6	273	240	14	7	15	9	462	478	13	8	ຸ 2	13	791	768	6	8	5	- 4 °	915	871	° 4 ′	
		11	7	361	349	11	7		1	335	318	17	8	-2	14	222	213	15	8	5	6	369	346	8	
		11	8	843	835	6		16	2	495	517	, 12	8	2	15	1143	1113	6	8	5	7	625	648	6	
		11		953	938	6		16	4	386	373	15	8	2	16	991	961	6	8	5	8.	944	950	6 5	
		11		407	384	11	7	16	5	233	190	23	8	.3	1.7	243	226	16	8	5	9	767	°776	5	
		11		581	561	9	7	16	6	535	549	11	9	2	18	527	208	9	8	5	10	204	179	15	
		11		935	909	7	8	-	0	732	654	4	8	2	19	643	592	8	8	5	11	198	. 198	16	
		11		259	254	19	8	-	2	1514	1384	3	8	2	20	396	356	13	8	5	14,	442	432	. 9	
		12	1	521	510	.9	8	-	4	1440	1508	- 4	8	3	0	1329	1292	4	8		18	· 220	303	20	
	7	12	3	333	289	12	8	• 0	6	150	157	14	8	3	1	759	700	4	0	5	19	285	252	16	
	7	12	3	651	613	7	8	0	8	1425	1410	4	8	3	2	770	693	4	8	6	0	319	237	• 9	
		12	4	591	561	8	8	-	10	1152	1111	4	8	3	Э	337	386	7	8	6	1	790	788	5	
		12	6	1027	997.	-	3	-	14	778	746	6	8	3	4	1068	1057	4	8	6	2	2045	1950	4 -	•
	7	12	7	501	503	9	B	-	16	786	786	6	8	3	5	205	737	5	8	6	3	553	497	6	
	<u>،</u>	12	8	260	224	lů	3	-	18 -	430	389	10	8	3	7	558	561	6	8	6	- 4 '	290	294	.9	
		12		893	895	7	8	-	20	471	415	11	8	3	8	476	465	6	8	6	5.	1210	1136	4	
		13		487	484	10	8	•	1	606	610	4	8	3	9	330	331	9	- 8	6	6	893	907	5	•
	7	12		471	473	11	8	-	. 2	131	108	15	8	3	11	,447	433	7	8	6	~	1356	1319	- 4	
		12		766	-	8	8		3	771	763	4	8	3	13	285	263	13	9	6	3	1455	1458	4	
	-	12		197	- 92	20	5	1	5	510	477	5	.8		16	232	249	15	3,	୍ତ	10	475	472	1	
	.,	13	1	557	511	9	3		ΰ	151	169	14	3	3	17	321	1 293	+ 13	9 '	ŝ	11	1494.	1459	5	
	•	12	2	380	. 3 4 0	12	9	, 1	7	236	193	10	fe.	3	13	156	' 4°22	10	9	U	12	703	° 719	. د ر	-

Page 11

Ó

	Val.		٥r	10#Fobs	and 10	O¥Ecalc									-							-	19	9e 12	
· •	H	к -	L -	Fobs	Fcalc	SigF	H -,	ĸ	L	Fobs	Ecalc	819F	H	к -	L	Fobs	'Feale	519 F	н,	ĸ	Ĺ	fots	- 1		
	8		13	262	239	14	8		13	231	226	18		13	8	439	461	12	, ,	1		۰ 565	524	9	
	0		14	184	134	20	_8	9	15	> 515	492	10		13	9	328	327	15	و, ،۹	1		349	358	12	
	8	6	15 16	302 1584	287	14	8	10	, O	480	479	9		13		493	487	11	9	1		_ 594	568	8	
	8	6	17	300	1544	6	8	10	1	171	169	· 21	-	13		545	534	10	9	1		487	479	10	
	Â		18	521	296 482	15 10	8	10 10	2 3	780 922	716 908	6		13		396	- 402	14	9	1		264	246	18	
	ē	7	ō	652	648	6	8	10	4	535	508	8		14	12	213 738	204 744	23 8	9	2		187	162	12	
	8	?	1	731	684	5	8	10	5	899	886	6	-	14	3	691	663	9	9	2		484	506	- 6	
	8	7	2	614	556	6	ā	10	6	923	897	. 6		14	4	251	246	19	9	2		1640 786	1663 824	1	,
	8	7	. 3	325	298	9	8		7	1534	1522	5		14	5	/ 183	189	26	, 9	2		1693	1720		
	8	7	5	948	908	5	8	10	8.	989	973	6		14	6	252	262	19	°9	2		1590	1575		
	9	7	6	188	187	16	8	10	10	862	-843	6	8	14	7	659	. 640	9	9	2		1341 .	1432	Å	
	8	7	8	254	230	12	8	10	11	1802	1767	5	8	14	8	1119	1119	7	9.	3	* 8	328	311	9	
	9	?	9	385	379	9	8	10	13	1033	1014	· 7	8	14	9	195	146	27	9	2	9	439	459	7.	
	9 9	77	11	689	683	7	8	10		260	340	17			10	959	975	8	9	2		320	313	10	
	2	2	13 15	199 579	-214 553	19	8	1-1	0	256	257	16		15	0	290	243	18	.9	3		770	784	6	
	8	,	16	431	410	-	8	11	1	,191	158	20		15	1	314	274	17	9	2		744	727	6	
	8	8	0	2047	1907	11	8	11	3	385	, 348	10		15	4	209	193	25	9	3	-	785	760	6	
	8	8	ĭ	370	347	4	8 8	11	4	459 418	463 433	9 10		15 16	5	288	277	18	9		14	1,93	152	18	
	8	8	2	397	413	é		ii	7	654	640	B		16	0	1036	1055 197	8 26	, 9 , 9	2		400 455	403. -449	10 10	
	8	8	5	554	547	7	8	11	8	711	699	7	8	16	2	347	311	16	-9	3		627	587	5	
	8	8	6	1416	1398	5	8	11	10	414	429	11	-	16	3	410	423	15		3	-	826	770	J 5.	
	8	8	7	765	755	6	8			552	554	、 9	9	ō	2	2189	2121	4	9	3		190	209	L3	
	8	8	8	803	624	6	B	11		509	514	10	9	ō	- Ā	1031	940	4	ูร์	3	4	357	318	7	
	3	8	9	372	674	7	3	11	13	341	322	14	9	0	6	645	- 608	5	Ìġ	3		943	899	4	
	8	8	10	301	328	11	8	11	14	616	579	9	9	0	8-	614	594	6	9	3	6	1106	1059	4	
	8	8	11	675	660	7	8	12	0	277	213	15	9	0	10	601	564	6	9	3	7	642	630	5	
	8		12	1297	1281	5	8	12	1	1094 °	1037	6	9	0	12	173	154	18	9	3	8	210	206	13	
	8		15	379	362	12	. 8		2	292	274	14	9		14	1329	1279	5	9	3	-	[°] 492	492	7	
,	8	8 8	16 17	428	431	11		12	3	379	323	11	9		16	1007	955	6	9	3		215	206	14	
	8	9	0	267 219	253	18	8	12	4	197	209	21	9	1	1	* 952	925	4	9	3		1378	1362	5	
	ß	9	1	263	188 235	- 13	8	12	5 6	1244 489	1234	6	9	1	3	835	817	4	9	3		616	627	7	
	8	9	ŝ	172	173	19	-	12	8	419	408	10 11	9	1	3	222 547	185 536	10	9 9		15 16	369 450	360 406	11 10-	
	8	9	3	626	592	7	8	12	9	466	453	ii	ģ	i	5	159	142	15	9	3		624	593	9	
	8	9	4	283	247.	. 12	8	1,2	10	528	519	10	9	ī	6	514	509	6	ģ	-	18	388	378	. 12	
	8	9	5	438	438	8	8			733	721	, <u> </u>	9	ī	7	900	206	5	9	3		421	404	12	
	8	9	6	594	596	2	8	12	13	948	937	7	9	ī	é.	821	819	รั	ý	4		1710	1632	4	
	8	9	8	417	395	9	8	13	0	407	406	12	9	ī	9	609	563	6	2	4		2170	2099	4	
	a	9	9	271	281	14	8	13	З	494	514	10	9	1	10	196	199	- 15	, 9	4	3	1226	1203	4	
	9)	15	305	314	13	8	13	5	326	334	14	9	1	11	682	665	6	9	4	4	710	717	Ś	
	8	9	11	44.	418	10	8	13	6	352	345	14	9			430	421	â	9	4	5	1438	1487	4	
	9	5	12,	174	160	20	3	13	2	450	471	11	ż	1		212	220	17	2	4		1424	1443	4	
							*									-	,	-	-	-	-	•		•	

B14
Values of 104Fors and 104Fcalc Page 13 Fcalc SigE н к Fabs L Eobs Feale SigE H ĸ Fobs fcalc SigE Fobs Fcalc SigF q 9 11 11 1 16 9 11 12 9 11 R 4 12 9 12 ₼ 9 12 . 11 1.80 9 12 З 9 12 9 12 9 12 9 12 3. • 11 9 12 ° 7 9 12 9B4 9 13 9 13 2 16 39B 9 13 369. q 9 13 з · 294 q 9 13 з 7. 9 14 9 14 9 14 9 14 Э - 7 q 9 14 9 14 '9 3 11 9 15 3 12 .344 3 13 ń 10. 3.14 ,o 9 10 Ò 383 🖌 9 10 0 10 9 10 39B 9 10 0 14 6 15 9 10 0 18 ø - 9 g -11 4 13 З រេង A - 318 9. 9 11 -562 6,46 7 13

ŋ

9 11

A83

 -1.11

 B

.1

-											•	1													,
	Valu	ues	: a f	10×Eobs	and 10	AEcalc		-			*•					1							_		
											•	· ·		•			•	-					୍ମା	9 8 14	
	H -	+	L -	Fobs	Feale	519F	H.	к -	L ~ -	Fobs	Ecalc	519F	н -	к -	L -	Fobs	Fcalc	519E	н 	к .	Ľ	Fobs	Fcalc	519£ 5	-
	10	5		1105	1091	5	10	8	4	438	406	9	10	11-1	12	343	324	15	11	1 1	1	485	486	۰ B	
	10	5		453	445	7	10	8	5	219	191	16	10	11 1	13	406	416	13	11	1 1	2	503	- 518	9	
	10	5 5		947	955	5	10	8	6	937	976	6`		12	0	1159	1124	6	11	1 1		359	350	12	
	10 10	5		615 1772	620 1822	6	10 10。	9 8	7. B	589 350	586 314	8 11		12 12	1	-615 262	577	9 18	$\frac{11}{11}$	1 1 1		595 274	590	8	·
	10	5	6	761	736	. 6	10		ī	353	330	12		12	3	549.	543	9	ii	ii		441	257 414	16 11 ·	
•	10	5	7	547	559	7	10		2	620	605	8		12	4	482	472	10	ii	ii		263	249	10	
	10	5		689	685	6	10	9	0	1370	1322	5		12	6	298	300	16	11	2		212	236	14	
	10	5 5		244 977	256	14	10	9	1	187	159	20		12	8	256	. 539	19.	11		2	189	176	15.	
-	10 10		11	217	- 965 202	6 17	10 10	9 9	2 3	1336 859	1310	5		12	9	341	. 342	15	11		3	439	491	8	
	10	5		1142	1127	£.	· 10	9	4	575	845 544	6 8	10 10	12 1	LL, Ö	249	210	20	11			1356	1404	5	
	10	5		610	598	8	10	`9	5	323	293	17	_	13	1	411	406 411	13 13	11		7 8	190 + 251	163 249	16	
	10	5	-	423	410	11	10	9	ú	565	559	8	10		2	1037	1033	*	11		ð.	568	590	7	
	1.10	6		1179	. 1031	5	10	9	7	1037,	1014	6		13	3	700	684	8	11	2 1	0	264	255 -	13	•
1	10	ý		1752	1649	4	10	9	8	1013	995	<u> </u>		13	5 '	1015	1032	7	11	3 [•	436	420	9	
	10	6		458 174	427	8 18	10 10	9 9 1	9	330 722	339 724	13	10 10	13	6 8	654 523 .	656 543	9 [†] 11	11	2,1		432 -	~ 444	10	
	10	6		673	668	. 6	10	9 i		598	610	, ý	ĩŏ		5	312	305	. 17	11	31		1774 266	1757 268	5 16	
_	10	6	- 5	398.	387	9	10	9)	2	448	433	11	10	14	ed)	988	965	8	11	2 1		219	191	19	
	10	6		200	234	16	10	91	3	306	283	15	10	14	1	218	140	24	11	2 1		794	» 74B	8	
	10	6		1298	1279	5	10	51		570	554	10		14	Э	825	804	' 8'	11	-	1	350	373	9	
	10 10	6 6		343 740	349 37	10	10 10		5	335 702	323 676	15	10 10		5 6	393 291	378 290	14			2 3	620 464	608	6 7	
	10	6		636	. 620	. 8		10	ī	592	551	é		15	ŏ	683	681	10 /	ii		4	725	470	6	, .
	10	. 6	17	475	460	11	10	10	2	453	463	. 10		15	1	504	520	12	11	-) 5	244	261	13	
	10	₹7	' o	197	171	17	10	10	3	377	394	11		15	2	247	223	23	ii		6	618	593	, 6	
-	10	7	-		833,	6	10	-	4	251	252	16	11	0	3	763	, 722	5	11	3	7	521	538	7	-
	10 10	7		- 1043	989	5 9'		10	7 8	369	357	- 12	11	0	4	516	528	7	41-	-	B -	231	224	14	2
	10	7	_	401 705	374 677	6	10 10		8 9	563 280	575 286	9 16	11	0	5 0	1988	. 1948	4	11	-		1578	1550	5	
	10		۳ د د	-374	- 331	10		10 1	-	200	301	15		-	8 10	1291 - 501	1303	5 8.	11	31	-	171 559	137 542	20	
	10	7		849	835	6		ìŏi		531	526	10	11	01		1866	18695		11	31		523	517-	- 8 - 8	,
	10	7	- ,-	1573	543	8	10	1Q 1	3	222	228	21	- 11	0 1	14	743	718	` 7	11	3 1		343	331	12	
	10		11	393	409 -		- 10		0	242	239	18	11	0 1	18	403	433	`13	11	31	4	168	174	24	
	· 10 • 10		× 12 × 13	617 230	618 243	.8			<u>,</u>	655	648	8	11	1	1	979	924	5	11	3 1		403	381	11	` .
	10		13	133	119	, 18 22	10 10		2	379 267	- 396 265	12 16	11 11	1	4	664 778	714 755	6 5	11	31 4	7 "	458 850	437 819	11 5	
	10	- 7	15	523	499	10 .	10		4	200	322	21	ii	î	S	330	319	10	11		ŝ	694	674	. 6	
÷	10	7	16	566	534	10	10	11	5	472	460	10	11	1	6	400	363	9	11		4	627	674	6	
	10	8	-	1785	1735	- 5	10	11	6	522	517	9	- 11	1	7	1566	1550	4	11		6	873	857	5	
٠	10	8		1011	950	5	10		7	574	582	9	11	1	8	732	-32	6	11	•		1732	1748	.5.	
	10	6 8	3 - 2 1 - 3	- 313	827 320	6 11	10		5 1	294 583	260 557	16	11	1	9 10	333	321	11	11	4		364	333	10	B1
	·	0	تى ت	113	1.1	11	10	11 1	. 4	ರಚಿತ್ರ.		9	. 1	1	10	234	246	15	11	4	·)	177	154	30	6
								•		,	50														

ð

o

	~											*	2				•	
Values of	lotes	and 10	DAFcalc		љ ,											Pa	9e 15	
H K/ L	Fobs	Ecale	»SigE	н -	K L	Fobs	Fcalc	\$19E	нк.	E Eob	s Feale	SigF	н	KL	Fobs	Feale	SigF	
11 4 10	570	558	8	-11	7 13	195	184	22 22	11 19 4			Ňa		• • • •		•		
11 4 11	568	541	` 8	11	7 14	719	714	8		3 45: 5 690		12	12	2 16	317	314	15	
11 4 12	1001	986	Ğ.,	11	8 2	1466	1419	5		5 445		9	12	3 0	323	300	11	
11 4 14	337	.343	13	11	8 3	, 397	393	10				12	12 .12	323	388 555	421	9 7	
11 4 15	479	481	10	11	8 4	482	476	9		3 421		14	12	33	170	558 148	1.9	
11 4 16	363	338	13	11	87	592	<u> </u>	8	12 0 0			12	12	3 5	321	307	11	
11 4 17	606	570	9	11	88	429	429	10		2 1477		5	12	3 64	170	164	20	
11 5 1	-	598	ຣັ	11	89	367	352	12	12 0 4	4 260		12	12	3 7	643	634	7	
11 5 2		930	5	11	8 10	700	689	8		5 334	324	10	12	39	825	847	6	
11 5 3		174	17	11	8 11	203	212	21	12,08			12	12	3 10	265	275	15	
11 5 4		557	7	11	8 12	.449	431	11	12 0 10			19	13	3 11	681	684	7	
11 5 5	296	335	12	11	8 13	216	244	21	12 Q 13			8	12	3 10	292,	315	15	
11 5 6	578 253	593 1239	7 *		°8 14	514	513	10	12 0 1			8	12	3 1 4	349	337	13	
	411	397	14	1.1	8 15 9 1	397 889	379 910	13	12 0 10 12 ₅ 1 0	5 1043 D 440		7 8	i2 12	315 40	566 618	567 620	9 7	
11 5 9	560	527	8	11	95	181	189	. 22	12°1			. 7	12	4 2	224	226	15	
11 5 10		349	11	11	9 6	650	640	8		523		7	12	4 3	851	817	. 6	
11 5 11	579	575	8	11	9 7	561	552	9		3 565		, 7	12	4 4	187	160	18	-
11 5 12	573	561	8	11	98	599	586	8		4 408		9	12	4 5	257	265	13	
11 5 13	196	178	21	11	9 11	279	~.271	16		5 240		14	· 12	46	525	539	8	
11 5 16	453	441	11	11	9 12	556	569	· 10		7 223	3 203	15	12	47	997	1031	6	
11 6 1	342	356	~10	11	9 14	187	148	- 26	1211 1	3 469	435	8	្វ12	48	704	721	.7	,
11 6 2		1030	5		10 1	465	455	10	12 I I	0 1044	1025	6	12	14 9	673	669	. 7	
II 6 3 11 6 4		837 647	6 7	11		722	714	7	12 1 1			8	- 13	4 10	<u></u> 522	511	9	
11 6 5	564	568	7	11		695 332	713	8	• 12 1 12			11	12	4 11,	360	382	12	
11 6 6	371	347	10		10 5		315	103	12 1 13			15	12	4 12	503	° 492	• 9	
11 6 7		155	22		-	322	301	/. 13				11	\\? <u>`</u>	4 13	173	175	24	
11, 6 8	674	674	7	11		299 677	307 5 686	· 15 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			8/		4 14	293	303	°_15	
11 8 9	1162	1157	Ś	11		416	398	12				10 22	12	415 51	822 251	780 247	8 14	
11 6 12		343	13	11		1266	1236	6	. 12 2 0			5.	12	54	532	528		
11 6 13	249 '	234	17	.11		653	646	8	12 2			ं उँ	. 12°		620	608	2	
11 6 15		179	20	ii '	'ii 3	658	679	8		767		· 6	12	56	515	528	2. 8	
11 6 16	574	555	10	11		445	450	11		3 701		6	12	5 7		·· 619	7	
11 7-1	1289	1264	5	11		380	404	13	12 2 4	447	' 434	8	1,2	5 8.	291	<u><u></u>321</u>	14.	-
11 7 2		426	9.	11		393	3 8 8	13	12 2 3	5 1287	/ 1299	5	12	5 10	- 365	355	12	
11 7 4		1236	5		11 9	607	6.08	- 9		5 580		7	12	5 11	203	183	· 20	
11 7 5		333 _817	11	F 11 F 11	12 1	91¢	890	.7	12 2 2			5	1,2	5 12	231	217	ie	
		502	6 9	11		1374	1344	6		a 761		6	12	5 13	332	326	14	1 ~
11 7 3		441	10	11			533	10	12 .2 10			ʻ 9°	10	6 0	11.58	1120	5	
11 7 10		644	8			109	406	12	12 2 1			5	12	6.1	1641	1616	. 5`	
	181-				12 7 12 8		334	- 15	12 2 13			12	12	6 2	548	538	8	
' 11 7 12	836	820	,		12 3	366	372 399	14 14	12 21 12 2.14			7	12 12	63 64	302	307	13	
	990	020	7	* *	**_**	200	379	14	هلا∘ت سل	s ಎಇಇ		15	ت. ۲	64)	308	285	12	

t

0

C

Values of 10AEobs and 10AEcalc

£

																				2 a	9 e 16
ł	н к 	L -	Epbs	Ecalc	513F	H	к L 		Ecale	S19F	н	κι	Fobs	Fcalc	SigE	н	К	L	Fotis	Ecalc	SigF
								,)		-		2			-	-	-			
1:	2 6	5	699	669	7	12 1	0 11	310	601	17	13	2 14	657	636	9	13	6	5	20.4	0.05	
1 :	26	6	925	908	6	12 1	1 0	840	801	8	13	3 1		523	8	13	6	6	204 406	205 409	19 11
12		7	591	609	8	12 1		371	342	14	13	3 2		727	6	13	6	7	452	492	10
1:		8	970	980	6	12 1	1 3	255	/245	19	13	3 3	290	275	13	13	6	8	591	618	10
12		10	868	866	7	12 1		489	491	11	13	3 4		532	8	13	6	9	860	842	7
1:		11	176	127	23	12 1		430	424	12	13	35	536	532	8	13		10	271	262	16
12		12 13	510 754	509 746	10	12 1		261	275	19	13	36		444	9	13	6	11	202	205	22
112		14	644	629	8	12 1	19	226	184	22	13	37	906	939	6	13		12	214	203	22
1 1 1		12	399	· 372	9 13	- 12 1 12 1		1339	1317	6	13	3 8		574	8	13		14	510	476	11
1 2		õ	1167	1174	6	12 1		413	197 406	24 13	13 13	39 310		680	7	13	7	2	1464	1456	5
1 :	2 7	1	356	354	12	12 1		732	710	13	13	3 10	387	212 409	17 12	13	7 7	4	585	593	8
12		4	542	528	- B	12 1		469	476	12	13	3 12		328	14	13 13	2	9	411 641	396 625	11
12		5	233	279	17	12 1	2 7	636	633	9	13	3 13		522	9	13		10	378		8
12		6	334	333	12	12 1	2 8	307	299	18	13	3 14	428	417	12	13		11	412	400 416	13 12
1 :		7	323	311	13	12 1		413	-416	• 14	13	3 15		187	19	13		1	603	593	8
1		8	612	603	´ 8	12 1		465	465	13	13	4 1	1561	1561	5	13	в	2	756	750	7
1.		11	201	280	15	12 1		493	515	12	13	4 2	494	462	8	× 13	8	З	247	218	18
1:		14	265	251	19	12 1		721	699	9	13	4 3	366	378	11	13	8	4	949	943	7
1 :		3	321	305	• 13	12 1		614	595	10	13	4 4	228	236	17	13	8	5	203	207	21
1:		12	216 1122	249 1103	19		0 2	446	487	9	13			1028	6	13	8	6	717	705	8
1:		3	1120	508	6		04	1671	1681	5	13	4 7		1393	5	13	8	7	202	235	22
1		4	252	271	9		0 6	1426	1436	5	13	4 9		696	7	13	8	8	205	230	22
13		8	1269	1291	16		0 14	1015 928	1012 932	6 7	13	4 10		332	13	10	8	9	522	483	10
0 11		10	1032	1054	7		1 1	745	724	6	13 13	4,11	810 367	799 381	7 13	13 13		11 12	249	254	19
12	: 8	11	373	371	ЪЗ		1 3	468	461	9	-13	4 13		554	5	13	9	1	508 342	505 325	11
1.	9	Q.	941	949	7	13	1 5	1161	1130	5	13	4 15		459	12	13	9	÷.	273	274	
13		7	414	412	11	13	16	872	858	6	13	5 1		410	10	13	9	3	781	756	ັ 17 ອ
1 1		2	222	216	19		1 8	961	965	6	13	5 3		332	12	13	ś	4	195	198	23
12			230	237	19		19	163	132	22	13	53		970	6	13	9	5	327,	362	14
11		5 6	405 357	407	11		1 10	460	464	10	13	5 5		612	8	13	9	6	199	207	23
1:		8	261	- 342 289	13 18		1 11	283	259	14	13	56	296	272	-13	13	9	7	339	355	15
1:		9	356	331	13		1 12 1 13	627 847	614	8 7	13	57		235	20	13	9		268	255	18
1		11	254	283	16		1 15	277	837 256	18	13 13	58 59	467	475	10	13	9	?	843	847	8
1.		12	291	259	18		2 1	518	482	3	13	5 10	897 519	885 505	7 9	13		10 11	208	221	24
13		0	449	442	11		2 2	219	222	16	13	5 11	462	1 477		13			479	504	12
1:		1	842	804	7		2 4	488	493	10	13	5 12	963 451		10	13		1	235	209	20
1:	-	2	304	313	15		2 0	238	215	15	13	5 14	101	433 193	11 23	13 13		4 5	630 363	676 365	л 1 л
	2 10	Э	1632	16.0	6.		2 7	754	257	7	13	6 1	246	232	16	13		6	290	393	14
1		5	817	866	-	13	29	465	459	9	13	6 2		554	8	13		3	313	282	17
1.		7	270	2 6 8	17	10	2 1 2	305	519/	21	13	63	715	716	7	13		9	1020	1060	L
13	1.	15	יינ '	300	lь	13	2 13	322	302	14	13	 4 دי	631	617	, 9	13		í	339	316	10
				,					_			- •		.	- 5		• •		100	310	10

Page 16

B18'

5

Values of 10xFobs and 10xFcalc

н к L

13 11

13 11

13 11

13 11

13 11

13 12

13 12

13 12

13 12

Э

. 14

L

1 11

1 12

1 13

з

З

2 10

2 12

2 13

2 14

з

з

Fots Feale SigE н К L Eqps Ecalc SigE н Eobs L Ecalc SigE L Eobs Ecalc SigF g Э 14' З 2. З **I4**7 1 f З 3 10 2 12 3 11 3 12 8/ з 3 13 Э 3 14 з з З, З, З 3 11 377. 14 10 14 10 14 10 з 14 10 รั 962. 14 10 14 10 14 10 1.1 14 11 14 11 14 11 1 397 14 11 99.4 5-13 .15 --10 -1/1 0 12 1. $\mathbf{1}$. 6 ź '6 6 12 `4 · 749 ĥ 1. "

 \mathbf{C}

٩.

ш

Q

3.46

J: 520

Ţ

7 10

30-1

1 10

1 11

-1

* 1E

•7

ů

Page 17

	Vali	es	of	10AFobs	and 10	AFcalc						• •										Pa	9e 18	
-	H	-	L -	Eobs	Fcalc	519F	н -	ĸ	L Fobs	Fcalc	SigF	H	к -	L _	Fobs	Fcalc	519F	н -	к -	L -	Fots	Ecalc	519E	
•	15 15 15 15 15 15 15 16 16 16 16	0 0 0	93478235550 1008005	755 286 257 274 489 272 313 272 319 1787 373 373 373 373 373 42 874 223	757 269 231 309 505 240 315 230 350 1786 413 324 413 324 413 324 238	9 17 19 12 19 12 19 12 19 12 19 12 19 17 23 17 6 13 15 9 7 20	16 16 16 16 16 16 16 16 16 16 16 16	5555556666677	2 580 3 916 4 332 5 498 7 358 8 288 9 268 0 581 2 216 3 776 4 298 8 447 1 266 8 447 1 266 4 298 8 447 1 263 4 497	936 328 508 379 280 300 540 234 793 275 457 265 245	10 7 15 11 15 18 20 10 23 8 17 12 20 19 11	18 18 18 18 18 18 18 18 18 18	- 00111222233	- 04013012302	558 265 784 332 800 321 389 379 198 478 522	572 318 778 340 835 326 389 391 250 459 541	11 21 9 17 9 17 15 15 27 13 12	-		-		· .		,
•	- 16 16 16 16 16 16 16 16 16 16 16 16		3 4 5 6 10 0 1 2 3 5 7 8 9 10	1309 939 295 376 221 798 509 548 673 824 481 262 312 605	1318 968 316 397 202 785 546 679 840 467 241 284 597	6 7 16 13 22 8 10 10 8 7 11 18 16 10	16 16 16 16 16 17 17 17 17 17 17 17	7 8 8 8 8 0 0 0 1 1 1	5 509 6 559 0 1010 2 389 4 283 5 286 2 389 4 1224 6 983 8 913 2 414 726 5 5 231	544 559 1009 357 287 276 382 1233 1016 920 414 724 724 247	11 11 8 14 19 19 13 7 7 8 13 9 8 22					\int	-				•	•		,
•	10 10 10 10 10 10 10 10 10 10 10 10 10 1	333333334444455	012345670345701	327 756 723 549 459 410 437 548 404 498 1157 241 434 135	299 770 719 291 561 449 411 455 555 423 486 1156 256 442 259	15 8 10 11 12 10 12 10 12 10 20 12 21	17 17 17 17 17 17 17 17 17 17 17 17	2 112 1 3 3 3 7 4 4 5 5 5 5	1 743 3 344 5 206 6 611 8 362 2 376 5 220 1 956 2 251 6 594 1 792 3 198 5 202 4 700 4 700	349 182 647 366 393 462 185 966 237 576 787 76 238	8 15 24 10 15 14 12 23 8 21 10 8 25 20 9	•					•							

Ł

B20

•

,

~ 1

Ş

Table B.3. Final Positional Parameters for $Cr(CD)_2(CSe) E(MeD)_3PJ_3$ (BMC I) and Their Estimated Standard Deviations

Atom	× -	¥,	8 -	· B(A2)
CR	0.19914(5)	0.38146(5)	9-38628(4)	0.74(1)
₽1	0.32976(8)	0.41673(9)	0.43460(7)	
J 2	0.24156(8)	0.44238(8)	0.27659(7)	0.89(2)
P3	0.06939(8)	0.33459(9)	0.34383(7)	0.88(2)
C1	0.1646(3)	0.3461(3)	0.4713(3),	1.2(1)
SE	0.12779(4)	0_31681(4)	0.55521(3)	1.61(1)
C2	0.2489(3)	0.2733(4)	0.3587(3)	1.2(1)
02	0.2804(3)	0.2085(3)	0.3405(2)	2.16(9)
CO	0.1546(3)	0.4943(4)	0.4080(3)	1.2(1)
03	0.1271(3)>	9.5609(3)	0.4243(2)	2.01(8)
011	0.3453(2)	0.5121(2)	0.4688(2)	1.27(7)
C11 '	0.2989(4)	0.5360.43	0.5327(3)	2.0(1)
012	0.4090(2)	0.4127(2)	0.3507(2)	1.25(7)
C12	0.4976(3)	0-4240(4)	0.4051(3)	1.6(1)
013	0.3628(2)	0.3607(2)	9.5014(2)	1.40(7)
C13	0.3661+4>	0.2660(4)	0.4977(3)	2.0(1)
021	0.2794(2)	0.3850(2)	0.2240(2)	1.32(7)
C21 .	0.2640(4)	0.3129(4)	9.1844(3)	1.7(1)
022	0.3010(2)	0.5366(2)	0.2872(2)	1.27(7)

	Atom	х -	۰ <mark>۲</mark>	- -	3'(A2)	
	C22	0.3397(4)	0.5708(4)	9.2266(3)	1.9(1)	ų ·
	023	0.1705(2)	0.4750(2)	0.2203(2)	1.22(7)	•
	C23	0.1113(4)	0_5433(4)	0.2388(3)	1.9(1)	
	031	-0.0114(2)	0.4014(2)	0.3434(2)-	1.35(7) -	
	C31	-0.0469(4)	0.4317(4)	9.4086(3)	1.7(1)	
	032	0.0211/2)	0.2542(2)	0.3829(2)	1.26.7)	
a	C32	0.0630(4)	0.1732(4)	0.3997(3)	1.5(1)	
~	030	0.0691(2)	0.3051(2)	0.2630(2)	1.25(7)	
	C33	-9.3079(4)	0.2688(4)	0.2306(3)	1.7(1)	
	H11A	0.3146	0.5942	þ.3458 .	****	
	H118	0.2385	0.5235	0.5245	****	
	HIIC	0.3141	0.4965 .	0.5691	****	1
	H12A	0.5367 `	0.4197	0.3675	****	
,	H128	0.5038	Q.4800	0.4276	*****	
	H12C	0.5110	0.3794	0.4395	****	
	H13A	.0,3874	0.2425	0.5410	****	*
,	H138	0.3103	0.2422	0.4889	****	
	H13C	0.4041	0.2475	0.4606	****	
	H21A	0.3077	0.2867	0.1568	****	

9

(

(

:

(________

B22.

4

3

Atom	, x		-	•••	
	•	Y _	1 a -	B(A2)	
H219	0.2415	0.2698	0.2166	, ****	
H21C	0.2184	0.3331°	9.1554	****	
H22A	0.3729	0.6204	0.2425	****	
H229	0.3764	0.5319	0.2020	****	
H22C	0.2956	0.5918	0.1958	****	
H23A	0.0730	0.5539	0.1996	, *****	-
H238		0.5252	0.2779	****	
H23C	0.1406	0.5954	0.2499	*****	
H31A	-0.0941	0.4703	0.4008	****	
H31B	-0.0672	0.3824	0.4361	****	
H31C	-0.0040	0.4616	0.4358	****	
H32A	0.0261	0.1537	C . 4229	****	
4329	0.0862	0.1459	0.3583	****	
H32C	0.1122	0.1346	0.4308	***	
H33A	0.0033	0.2540	0.1823	***	
H338 ,	-0.0257	0.2161	0.2543 (****	

1

-___

Starred stoms were refined isotropically. Anisotropically refined stoms are given in the form of the isotropic equivalent thermal parameter defined as: $(4/3) \land (a2AB(1,1) + b2AB(2,2) + c2AB(3,3) + ab(cos gama)AB(1,2) + ac(cos beta)AB(1,3) + bc(cos alpha)AB(2,3)3$

Table B.4. Final Thermal Parameters for $Cr(CO)_2(CSe)[(MeO)_3P]_3$ (mer I) and Their Estimated Standard Deviations

Ą

Table of General Temperature Factor Expressions - 2'

ŀ

(

6.33(3) 1.40(3) -0.04(4) -0.04(3) 6.05(3) 0.56(5) 1.51(5) -0.04(4) 0.01(4) -0.01(4) 0.53(5) 1.51(5) -0.04(4) 0.01(4) 0.02(4) 0.53(5) 1.51(5) -0.00(4) 0.00(4) 0.02(4) 0.53(5) 1.57(5) 0.00(4) 0.00(4) 0.02(4) 0.53(5) 1.57(5) 0.00(4) 0.00(4) 0.02(4) 0.53(5) 1.57(5) 0.00(4) 0.00(4) 0.02(4) 0.53(5) 1.57(5) 0.21(2) 0.00(4) 0.02(4) 1.40(2) 1.57(2) 0.21(2) 0.23(2) 0.23(2) 1.40(2) 1.57(2) 0.21(2) 0.23(2) 0.23(2) 1.1(2) 1.57(2) 0.21(2) 0.23(2) 0.23(2) 1.11(2) 1.71(2) 0.21(2) 0.21(2) 0.21(2) 1.21(2) 1.21(2) 0.21(2) 0.21(2) 0.21(2) 1.21(2) 1.21(2) 0.21(2) 0.21(2) 0.21(2) 1.21(2) 1.21(2) 0.21(2) 0.21(2) 0.21(2)	(1.1)	8(2,2)	8 (3.3)	10 10	, C 18		
0.33(3) $1.40(3)$ $-6.00(2)$ $-0.04(3)$ $0.05(3)$ $0.56(5)$ $1.51(5)$ $-0.04(4)$ $0.02(4)$ $0.02(4)$ $0.553(5)$ $1.51(5)$ $-0.00(4)$ $0.02(4)$ $0.53(5)$ $1.57(5)$ $0.00(4)$ $-0.00(4)$ $0.07(4)$ $0.53(5)$ $1.57(5)$ $0.00(4)$ $-0.00(4)$ $0.07(4)$ $0.53(5)$ $1.57(5)$ $0.00(4)$ $0.07(4)$ $0.07(4)$ $0.53(5)$ $1.57(5)$ $0.00(4)$ $0.07(4)$ $0.07(4)$ $0.53(5)$ $1.57(5)$ $0.20(2)$ $0.23(2)$ $0.22(2)$ $1.40(2)$ $1.57(2)$ $-0.18(2)$ $0.28(2)$ $0.22(2)$ $1.1(2)$ $1.86(2)$ $-0.18(2)$ $0.28(2)$ $0.22(2)$ $1.2(2)$ $1.86(2)$ $-0.2(1)$ $0.23(2)$ $0.22(2)$ $1.2(2)$ $1.7(2)$ $-0.2(1)$ $0.22(2)$ $0.22(2)$ $1.2(2)$ $1.7(2)$ $-0.2(1)$ $0.22(2)$ $0.22(2)$ $1.2(2)$ $1.7(2)$ $-0.2(1)$ $0.22(2)$ $0.2(2)$ $1.2(2)$ $1.7(2)$ $0.2(1)$ $0.2(2)$ $0.2(2)$ $1.2(2)$ $1.7(2)$ $0.2(1)$ $0.2(2)$ $0.2(2)$ $1.4(1)$ $1.7(2)$ $-0.2(1)$ $0.2(1)$ $0.2(2)$ $1.4(1)$ $1.7(2)$ $0.1(2)$ $0.1(2)$ $0.2(2)$ $1.2(2)$ $1.7(2)$ $0.1(2)$ $0.1(2)$ $0.2(2)$ $1.4(1)$ $1.7(2)$ $0.1(2)$ $0.1(2)$ $0.2(2)$ $1.4(1)$ $1.7(2)$ $0.1(2)$ $0.1(2)$ $0.1(2)$ 1					<pre></pre>		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.49(3)	(5)33(3)	1.40(3)	-6.09(2)	-0.04(3)	6.05(3)	0.74(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.61(5)	U.56(5)	1.5.1(5)	-9-04(4)	-0- 06 4)	-0.01(4)	12106-0
0.53(5) 1.5?(5) 0.00(4) -0.00(4) 0.07(4) 5.6(2) 2.2(2) -0.18(2) 0.28(2) 0.23(2) 1.40(2) 1.53(2) -0.18(2) 0.28(2) 0.23(2) 1.40(2) 1.53(2) -0.18(2) 0.28(2) 0.23(2) 1.40(2) 1.53(2) -0.18(2) 0.28(2) 0.23(2) 1.40(2) 1.6(2) -0.18(2) 0.51(2) 0.23(2) 1.1(2) 1.8(2) -0.18(2) 0.51(2) 0.21(2) 1.3(2) 2.9(1) 0.5(1) -0.2(2) 0.21(2) 1.2(2) 2.9(1) 0.5(1) 0.2(1) 0.1(2) 1.9(2) 2.9(1) 0.3(1) 0.2(1) 0.2(1) 1.9(2) 2.9(2) 0.3(1) 0.2(1) 0.2(1) 1.9(2) 2.9(2) 0.1(2) 0.1(2) 0.2(1) 1.9(2) 2.9(2) 0.1(2) 0.1(2) 0.2(1) 1.9(1) 1.7(1) 0.1(2) 0.1(2) 0.1(2) 1.9(1) 1.9(1) 0.1(2) 0.1(2) 0.1(2) 1.9(1) 1.0(1) <	0.71(5)	0.46(5)	1.51(5)	-0-64(4)	0.01(4)	0.02(4)	0.89(2)
6.6(2) 2.2(2) 0.2(2) -0.4(2) -0.5(2) 1.40(2) 1.52(2) -0.18(2) 0.23(3) 0.23(3) 1.1(2) 1.8(2) -0.18(2) 0.23(2) 0.23(2) 1.1(2) 1.8(2) -0.18(2) 0.23(2) 0.23(2) 1.1(2) 1.8(2) -0.18(2) 0.23(2) 0.23(2) 1.2(2) 1.8(2) -0.3(1) 0.23(2) 0.23(2) 1.2(2) 1.7(1) -0.3(2) 0.0(2) 0.0(2) 1.2(2) 1.7(1) 0.3(1) 0.23(2) 0.0(2) 1.2(2) 1.7(1) 0.3(1) 0.23(2) 0.0(2) 1.2(2) 2.6(1) 0.13(2) 0.13(2) 0.13(2) 1.9(2) 2.6(2) 0.13(2) 0.13(2) 0.23(1) 1.9(1) 1.7(1) 0.13(2) 0.13(2) 0.13(1) 1.9(1) 1.9(1) 0.13(2) 0.13(2) 0.13(2) 1.9(1) 1.9(1) 0.13(2) 0.13(2) 0.13(2) 1.9(1) 1.9(1) 0.13(2) 0.13(1) 0.13(1) 1.9(1) 1.9(1)	0.54(4)	0.53(5)	1.57(5)	0.00(4)	-0.00(4)	0.07(4)	0.88(2)
1.40(2) 1.53(2) -0.18(2) 0.28(3) 0.23(3) 1.1(2) 1.6(2) -0.2(1) 0.2(2) 0.2(2) 1.3(2) 1.6(2) 0.5(1) -0.2(2) 0.2(2) 1.3(2) 1.7(2) 0.5(1) -0.2(2) 0.0(2) 1.3(2) 1.7(2) 0.5(1) 0.0(2) 0.0(2) 1.3(2) 1.7(2) 0.3(2) 0.0(2) 0.0(2) 1.3(2) 1.7(2) 0.3(2) 0.0(2) 0.0(2) 1.3(2) 1.7(2) 0.3(1) 0.2(1) -0.3(1) 0.8(1) 2.0(1) 0.3(1) 0.2(1) -0.3(1) 1.9(2) 2.6(2) 0.1(2) 0.1(2) -0.3(1) 1.4(1) 1.7(1) 0.1(2) 0.1(2) -0.3(1) 1.9(2) 2.6(2) 0.1(2) 0.2(2) 0.2(2) 1.4(1) 1.7(1) 0.1(2) 0.1(2) 0.2(2) 1.9(2) 2.6(2) 0.1(2) 0.2(2) 1.1(2) 1.9(1) 1.7(1) 0.1(2) 0.1(2) 0.2(2) 1.9(1) 1.7(2) 0.1(2) 0	0.7(3)	č.6(2)	2.212)	0.212)	-0.4(2)	-0.5(2)	1.2(1)
1.1(2) $1.8(2)$ $-6.2(2)$ $-6.1(2)$ $0.2(2)$ $1.3(2)$ $2.9(2)$ $0.5(1)$ $-0.2(2)$ $0.2(2)$ $1.2(2)$ $1.7(2)$ $-0.3(1)$ $0.5(2)$ $0.0(2)$ $0.7(1)$ $3.2(2)$ $0.5(1)$ $0.5(2)$ $-0.3(1)$ $0.7(1)$ $3.2(2)$ $0.5(1)$ $0.5(2)$ $-0.2(1)$ $0.7(1)$ $2.0(1)$ $0.5(1)$ $0.5(2)$ $-0.2(1)$ $1.9(2)$ $2.6(2)$ $0.5(1)$ $0.1(2)$ $-0.2(1)$ $1.4(1)$ $1.7(1)$ $0.1(2)$ $0.1(2)$ $-0.2(1)$ $1.4(1)$ $1.7(1)$ $0.1(2)$ $-0.1(1)$ $-0.2(2)$ $1.4(1)$ $1.7(1)$ $0.1(2)$ $-0.1(2)$ $-0.2(2)$ $1.4(1)$ $1.7(1)$ $-0.1(2)$ $-0.2(1)$ $0.1(2)$ $1.6(1)$ $1.7(2)$ $-0.1(2)$ $-0.2(2)$ $1.3(2)$ $1.2(2)$ $0.0.2(2)$ $0.0.2(2)$ $1.2(2)$ $1.7(2)$ $-0.1(2)$ $0.1(2)$ $1.2(2)$ $1.2(1)$ $0.1(2)$ $-0.2(1)$ $1.2(1)$ $1.2(1)$ $0.1(2)$ $0.1(2)$ $1.2(1)$ $1.2(2)$ $0.1(2)$ $0.1(2)$ $1.2(1)$ $1.2(1)$ $0.1(2)$ $0.1(2)$ $1.2(1)$ $1.2(1)$ $0.1(2)$ $0.1(2)$	1.91(2)	1.46(2)	-1.52(2)	-0.18(2)	0.28(2)	0.22(2)	1.61(1}
1.3(2)2.9(2)0.5(1) $-0.2(2)$ $-0.3(1)$ 1.2(2)1.7(2) $-0.3(2)$ $0.0(2)$ $0.0(2)$ $0.7(1)$ $3.2(2)$ $0.3(2)$ $0.0(2)$ $0.0(2)$ $0.7(1)$ $3.2(2)$ $0.5(1)$ $0.2(1)$ $1.7(1)$ $0.8(1)$ $2.0(1)$ $-0.3(1)$ $0.2(1)$ $1.1(2)$ $1.9(2)$ $2.6(2)$ $-0.1(2)$ $0.1(2)$ $-0.2(1)$ $1.4(1)$ $1.7(1)$ $-0.1(2)$ $-0.1(1)$ $-0.2(1)$ $1.4(1)$ $1.7(1)$ $-0.1(2)$ $-0.1(2)$ $-0.2(2)$ $1.4(1)$ $1.7(2)$ $-0.1(2)$ $-0.2(2)$ $0.3(1)$ $1.3(2)$ $3.1(3)$ $0.0(2)$ $0.3(1)$ $-0.2(2)$ $1.0(1)$ $1.7(2)$ $0.0(2)$ $0.1(2)$ $-0.4(2)$ $1.2(2)$ $1.2(1)$ $0.1(2)$ $-0.1(2)$ $-0.4(2)$ $1.2(1)$ $1.2(1)$ $0.1(2)$ $0.1(2)$ $-0.4(2)$ $1.2(1)$ $1.2(1)$ $0.1(2)$ $0.1(2)$ $-0.4(2)$	6.9(2)	1.1(2)	1.8(2)	-6.2(2)	-6.1(2)	0.2(2)	1.2(1)
1.3(2) 1.7(2) -0.3(2) 0.0(2) 0.0(2) 0.7(1) 3.3(2) 0.5(1) 0.5(2) -0.3(1) 6.8(1) 2.0(1) -0.3(1) 0.5(2) -0.3(1) 1.9(2) 2.6(2) -0.1(2) 0.1(2) -0.3(1) 1.9(2) 2.6(2) -0.1(2) 0.1(2) -0.3(1) 1.9(1) 1.7(1) 6.1(1) -0.1(1) -0.3(1) 1.4(1) 1.7(1) 6.1(1) -0.1(2) -0.3(1) 1.4(1) 1.7(1) 6.1(1) -0.1(2) -0.3(1) 1.4(1) 1.7(1) 6.1(2) -0.1(2) -0.3(1) 1.5(2) 2.8(3) -0.1(2) -0.3(1) -0.3(2) 1.5(2) 2.8(3) -0.1(2) -0.3(1) -0.3(1) 1.9(1) 1.9(1) -0.1(2) 0.8(2) 0.8(2) 1.3(2) 1.7(2) 0.6(1) 0.3(1) 0.8(2) 1.2(2) 1.7(2) 0.1(2) 0.1(2) 0.4(2) 1.3(2) 1.7(1) 0.1(2) 0.1(2) 0.4(2) 1.2(2) 1.7(1) 0.1(2)	2.4(2)	1.3(2)	2.9(2)	0.5(1)	-0.213)	(1)8.0-	a.16(9)
1.7(1) 3.2(2) 0.5(1) 0.5(1) 0.2(1) 6.8(1) 2.0(1) -0.3(1) 0.2(1) -0.3(1) 1.9(2) 2.6(1) -0.1(2) 0.1(2) -0.1(1(2) 1.9(2) 2.6(1) -0.1(2) 0.1(1) -0.3(1) 1.9(2) 2.6(1) -0.1(2) 0.1(2) -0.2(2) 1.14(1) 1.7(1) 0.1(2) -0.2(2) 0.2(2) 1.9(1) 1.7(1) 0.1(2) -0.2(2) 0.2(2) 1.10(1) 1.9(1) -0.1(2) 0.1(2) 0.8(2) 1.2(1) 1.9(1) -0.1(2) 0.1(2) 0.1(2) 1.2(2) 1.9(1) 0.1(2) 0.1(2) 0.1(2) 1.2(2) 1.9(1) 0.1(2) 0.1(2) 0.1(2) 1.2(2) 1.12(2) 0.1(2) 0.1(2) 0.1(2) 1.2(2) 1.9(1) 0.1(2) 0.1(2) 0.1(2) 1.2(2) 1.12(2) 0.1(2) 0.1(2) 0.1(2) 1.2(2) 1.12(2) 0.1(2) 0.1(2) 0.1(2)	0.9(2)	1.2(2)	1.7(2)	-0.3(2)	010(3)	0.0(2)	1.200
6.8(1) 2.6(2) -0.3(1) 0.2(1) 1.9(2) 1.9(2) 2.6(2) -0.1(2) 0.1(2) -1.1(3) 1.9(2) 2.6(2) -0.1(2) 0.1(2) -0.3(1) 1.1.5(2) 2.8(2) -0.1(2) 0.1(2) -0.3(2) 1.5(2) 2.8(2) -0.1(2) -0.1(2) -0.2(2) 1.5(2) 2.8(2) -0.1(2) -0.2(2) 0.3(1) 1.0(1) 1.9(1) -0.0(1) 0.3(1) -0.3(1) 1.2(2) 1.9(1) -0.1(2) 0.1(2) -0.4(2) 1.2(2) 1.7(2) 0.1(2) 0.3(1) -0.4(2) 1.2(2) 1.9(1) -0.1(2) 0.1(2) -0.4(2) 1.2(2) 1.9(1) 0.1(2) 0.1(2) -0.4(2)	2.1(2)	1.7.61	(E)2.E	0.5(1)	0.5(2)	(1.)[-0-	3-01(8)
1.9(2) 3.6(2) -0.1(2) 0.1(2) -1.1(3) 1.4(1) 1.7(1) 6.1(1) -0.1(1) -0.3(1) 1.4(1) 1.7(1) 6.1(1) -0.1(1) -0.3(1) 1.5(2) 2.8(2) -0.1(2) -0.2(2) -0.3(1) 1.5(2) 2.8(2) -0.1(2) -0.2(2) 0.3(1) 1.5(2) 2.8(2) 0.0(1) -0.2(2) 0.3(1) 1.9(1) 1.9(1) -0.2(2) 0.3(1) 0.8(2) 1.2(2) 1.7(2) 0.1(2) 0.1(2) 0.3(1) 1.2(2) 1.7(2) 0.1(2) 0.1(2) 0.4(2) (1) 1.2(2) 0.1(2) 0.1(2) 0.4(2) (1) 1.8(1) 0.4(1) 0.1(1) 0.4(2)	1.0(1)	(1)8.3	(1)0.2	-0-3(1)		-0.5(1)	1.27(7)
1.4(1) 1.7(1) 6.1(1) -0.1(1) -0.3(1) 1.5(2) 2.8(2) -0.1(2) -0.1(2) -0.3(2) 1.5(2) 2.8(2) -0.1(2) -0.3(2) -0.3(1) (1)0.1 1.0(1) 1.0(2) -0.3(1) 0.8(2) (1)0.1 1.9(1) -0.4(1) 0.3(1) -0.3(1) (1)2(2) 1.7(2) 0.1(2) 0.1(2) 0.4(2) (1)2(1) 1.7(2) 0.1(2) 0.1(2) 0.4(2) (1)2(1) 1.8(1) 0.1(2) 0.1(2) 0.4(2) (1)2(1) 1.8(1) 0.4(1) 0.1(1) 0.0(1)	Ì.6(2)	1.9(2)	3.6(2)	-9.1(2)	0.1(2)	-1.1(3)	2.0(1)
(1.5(2) 2.8(3) -0.1(2) -0.1(3) -0.2(2) (1.5(2) 2.8(3) -0.3(1) -0.3(1) -0.3(1) (1.0(1) 1.2(0) -0.1(2) -0.3(1) -0.3(1) (1.0(1) 1.2(1) -0.1(2) -0.1(2) -0.1(2) (1.0(1) 1.8(1) -0.1(1) 0.1(1) -0.0(1)	0.6(1)	1.400	1.7(1)	(1)1-9	-0.1(1)	-0.3(1)	1.25(7)
(1)0.1 1.0(2)0 - (1)2.0 - (1)2.0 - (2)0.2 (1)0.1 (2)2.1 (2	ù.s(ż) .	1.512;	(C)8.2	-0.1(2)	-0.1(3)	-0.2(3)	1.6(1)
(2)8(2) (2)8(2) (2)0.0 (2)0.0 (2)8(2) (2)8(2) (2)8(2) (2)9(2) (2)1.0 (2)1.0 (2)1.0 (2)1.0 (2)1.0 (2)1.0 (2)1.0 (2)1.0 (2)1.0 (1)8(1(1)8(1(1)8(1(1)8(1(1)8(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)((1)2.1	1.0.1	7.0(2)	(1)2/0-	-6.5(1)	0.3(1),	1.40471
1.0(1) 1.5(1) -6.0(1) 0.3(1) -0.3(1) 1.2(2) 1.7(2) 0.1(2) -0.4(2) 0.8(1) 1.8(1) -0.4(1) 0.1(1) -0.0(1)	1.6(2)	12.6.1	(E,1' E	0.0.21	-0.8(2)	0.8(2)	2-0(1)
1.2(2) 1.7(2) 0.1(2) 0.1(2) -0.4(2) 0.8(1) 1.8(1) -0.4(1) 0.1(17 -0.0(1)	(1)1.1	1.0(1)	(1)5*1	-6.0(1)	0.3(1)	-0.3(1)	(2)26.1
6.8(1) 1.8(1) -0.4(1) 0.1(17 -0.0(1)	2.2(2)	1.2(2)	1.7(2)	0.1(2)	0.1(2)	-0.4(2)	1.7(1)
	1.2(1)	(1)8.3	1.8(1)	-0.4(1)	0.1117	-0.0(1)	1.27(7)

Table of General feaperature Factor Expressions - 2's (Continued)

- 11-11-11

· · · · ?] · · · · · · ·

			(C'E)#			8(2,3)	
C22	2.0(2)	1.3(2)	2.5(2)	-0.7(2)	0.5(2)	0.3(2)	1.9(1)
033	1.0(1)	0.811	1.9(1)	0.1(1)	-0.2(1)	0.1(1)	1.22(7)
C23	1.6(2)	1.2(2)	2.8.3)	0.6(2)	-0.6(2)	0.1(2)	1.901
, 1CO	0.7(1)	1.2(1)	2.1(2)	0.4(1)	-0.0(1)	0.1(1)	1.35(7)
163	0.8(2)	1.6(2)	2.6(2)	0.3(2)	0.4(2)	-0.3(2)	1.7(1)
032	1.0(1)	(1)8.0	2.1(2)	-0.2(1)	(1).1.0	0.2(1)	1-26(7)
C33	1.8(2)	0.8(2)	2.0(2)	-0.2(2)	0.1(2)	0.3(2)	
650	0.8(1)	1.2(1)	1.7(3)	-6.2(1)	-0.1(1)	-0.01)	1.25(7)
C 3 3	1.1(2)	1.6(2)	2.4(2)	-0.4(2)	-0.5(2)	-0.1(2)	1.7/1

exp(-0.25(h1=2000)) + F0:28(2.0) + 13:28(3.0) + 20(3.0) + 20(38(1.0) + 20(28(2.0) + 13:28(3.0) + 20(28(1.0) + 20(28(1.0) + 13:28(1

1

•						
Nane	B(1,1)	B(2,2)	1(3,3)	B(1,2)	8(1,3)	B(2,3)
CR	0.00051(3)	0.00036(3)	0.00097(2	>-0.00000(5)-0.00007t)) 0.00008(3)
P 1	0.00064(5)	0.00061(5)	0.00106(4)-0_00008(9)-0.00011(7	-0.00002(7)
F2	0.00074(5)	0.00050(5)	0.00104(3	-0.00008(9	.00001(7	0.00003(7)
*3 1	0.00056(5)	0.00058(5)	0.00108(4	> 0.00001(9	-0.0000017) 0.00012(7)
C1	0.0007(2)	0.0007(2)	0.0015(2)	0.0003(4)	-0.0006(3)	-0.0008(3)
SE	0.00200(2)	0.00151(2)	0.00106(1	-0.00038(4	0.00048(3) 0.00039(3)
CS	0.0009(2)	0.0011(2)	0.0012(1)	-0,0004(4)	-0.0002(3)	0.0003(3)
02	0.0025(2)	0.0013(2)	0.0020(1)	0.0012(3)	-0.0003(3)	-0.0005(3)
C3	0.0009(2)	0.0012(2)	0.0012(2)	-0.0007(4)	0.0000(3)	0.0000(3)
03	0.0022(2)	0.0008(2)	0.0022(1)	6-0010(3)	0.0008(3)	-0-0005(2)
011	0.0010(1)	0.0008(1)	0.0014(1)	-0.0007(3)	0.0003(2)	-0.000#(2)
C11 ,	2.0017(2)	0.0020(3)	0.0013(2)	-0.0002(4)	0.0001(4)	-0.0019(4)
01Z ,	0.0006(1)	0.0016(2)	0.0012(1)	5,0003(3)	-0.0002(2)	-0.0004(2)
· C12	0.0005(2)	0.0016(2)	0.0019(2/	-:.0003(4)	-0.0001(3)	-0.0003(4)
013	G.0012(2)	0.0611(2)	9.0014(1)	-0.0005(3)	-0.0008(2)	0.0005(2)
610	0.0016(2)	0.0014(3)	0.0021(2)	0.0000(4)	-0.0014(4)	0.0014(4)
021	0.9011(1)	0.0011(2)	0.0013(1)	-0.0000(3)	0.0005(2)	-0.0005(2)
C21	0.0023(3)	0.0012(2)	0.0012(1)	0.0002(4)	0.0003(3)	-0.0003(3)
022	0.0012(2)	0.0009(2)	0.0013(1)	-0.0009(3)	0.0001(2)	-0.0001(2)

Table of Refined Temperature Factor Expressions - Bota's

						,
Name	B(1.1)	9(2,2)	B(3,3)	8(1.2)	8(1.3)	8(2.3)
C22	0.0921(2)	0.0014(2)	0.0017(2)	-0,0014(4)	0.0009(4)	0.0006(3)
023	0.0011(1)	0.0008(1)	0.0013(1)	0.0002(3)	-0.0004(2)	0.0001(2)
C 2 3	0.0017(2)	0.0013(2)	0.0019(2)	0.0012(4)	-0.0010(4)	0.0002(4)
931	0.0007(1)	0.0013(2)	0.0015(1)	0.0009(3)	-0.0001(2)	0.0001 . 21
:31	0.0009(2)	0.0017(3)	0.0018(2)	0.0006(4)	0.0006(3)	-0.0005(4)
32	0.0010(1	0.0008(1)	0.0014(1)	-0.0004(3)	0.0002(2)	0. 004(2)
32	0.0019(2)	0.0009(2)	0.0014(2)	-0.0005(4)	0.0001(3,	0.0005 · 3)
33	0.0009(1)	0.0013(2)	ð.0012(1)	-0.0005(3)	+0.0002(2)	-0.0001(2)
33	0.9011(2)	9.0018(2)	0.0017(2)	-0.0009(4)	-0.0009(3)	-0.0001(3)

50

•	· Table of (Soneral Tee	persture Ta	etor Expres	sions - U's	,
Kase	U(1,1)	U(2,3)	U(3,3)	¥(1,2)	V(1,3)	U(3,3)
CR	0.0062(4)	0.0042(4)	0.0177 (4)	-9.0000(3)	-0.0005(3)	0.0006(3)
P1	0.0078(5)	0.0071(6)	0.0194(7)	-0.0005(5)	-•. •••	-0.0001(5)
P2	9.0090(6)	0.0058(6)	8.0191(6)	-0,0005(5)	0.0001 (6)	0.0002(5)
P 3	0.0069(6)	0.0067(6)	0,0198(7)	· 0.000(5)	-è. 0000 (3)	ė
C1	0.009(2)	0.008(2)	40.028(3)	0.002(2)	-0.005(2)	-0-006(2)
SI	0.0242(3)	0.0177(3)	8_0193(3)	-0.0023(3)	0.0036(2)	0.0028(2)
C2	0.011(2)	0.013(3)	0.023(3)	-0.003(2)	-0,002(2)	0.003(2)
02	0.030(2)	0.015(2)	0.037(2)	9.997(2)	-0.082(2)	-0.004(2)
C3	0.011(2)	0.015(3)	0.022(3)	-0.004(2)	4,090(2)	0.000(2)
03	0.026(2)	0.009(2)	0.041(2)	0.006(2)	0.006(2)	-9-994(2)
q11 ′	0.013(2)	0.010(2)	0.026(2)	-0.004(2)	9.002(2)	-9-006(2)
C11	0.031(3)	0.024(3)	0.033(3)	-0.001(3)	0.001(3)	-9-014(3)
012	0.007(2)	0.018(2)	0.022(2)	0.002(2)	-0.003(2)	-0.003(2)
C12	0.006(2)	0.019(3)	0.332(3)	-0.902(2)	-9,001(2)	-9.002(3)
013	0.015(2)	0.013(2)	0.025(2)	-9.003(2)	-9.006(2)	0.004(2)
C1 3	0.020(3)	9.017(3)	0.039(3)	0.00Q(3)·	-0.010(3)	0.010()
021	0.014(2)	0.013(2)	C.024(2)	~0,000(2)	0,004(2)	-9.994(2)
C31	0.938(3)	0.015.3)	9-021/3)	0.001(3)	0.002(2) [,]	-0.006(2)
922	0.015(2)	0.010(2)	0.023(2)	-0.005(2)	0.001(2)	-0.000(2)

Tab	le of Genera	l Temperatu	re Eactor i	Expressions	- U's (Cor	tinued)
	· ·	•			, c	,
Name '	U(1.1)	4(2.2)	U(3,3)	U(1,2)	Ú(1.3)	U(2,3)
C22	ó.025(3)	0.016(3)	0.031(3)	-0.008(2)	0.005(3)	0.004(3)
023	0.013(2)	0.010(2)	0.023(2)	0.001(2)	-0.003(2)	0.001(2)
C23	0.020(3)	0.015(3)	0.035(3)	0.007(2)	-0.007(3)	0.001(3)
031	0:009(2)	0.015(2)	0.027(2)	0.005(2)	-0.001(2)	0.001(2)
C31	0.011(3)	0.020(3)	0.033(3)	0.004(2)	0.005(2)	-0.004(3)
032	0.012(2)	0.010(2)	0.025(2)	-0.003(2)	0.001(2)	0.003(2+
C32	0.023(3)	.0.01 0 (2)	0.025(3)	-0.003(2)	0.001(2)	0.004(2)
033	0.010(2)	0.015(2),	0.022(2)	-0.003(2)	-0.002(2).	-0.001(2)
C 32	0.013(3)	0.021(3)	0.030(3)	-0.005(2)	-0.007(2)	-0.001(2)

The form of the anisctropic thermal parameter is: exe[-2PI2(h2a2U(1,1) + k2b2U(2,2) + 12c2U(3,3) + 2hkabU(1,2) + 2hlacU(1.3) + 2klbcU(2,3))] where a,b, and c are reciprocal lattice constants.

:

1

́В30

Co-adding and Permanent Storage of Large Number of FT-IR Scans

The following is a listing of a program (named LWA) written as a macro compatible with the Nicolet FT-IR software. The program was created in order to overcome the problem of insufficient data collection due to correlation drifting inherent in the collection of large numbers of FT-IR scans. It enables any convenient number of scans to be collected at a time and stored in specified destination files prior to co-addition and subsequent transfer to the permanent storage disk.

Appendix C

C1

THIS MACRO COLLECTS, CO-ADDS AND STORES INTERFEROGRAMS FOR MULTIPLE SAMPLES QIT = 3

OMD

OMD

ENTER NUMBER OF SAMPLES

QIT 🥵. SRT = 30

DWD

ENTER NUMBER OF FILES TO BE CO-ADDED

SRT

NSD = 1000

OMD

ENTER NUMBER OF SCANS PER FILE

NSD

EXT = 000

OMD

SPECIFY A FILE NAME, DO NOT ADD AN EXT (USE/6 CHARACTERS OR LESS)

```
IFN

FOR III = 1 TIL QIT

PAU INSERT SAMPLE, PURGE IF DESIRED, THEN PRESS RETURN

DFN = 5

FOR LLL = 1 TIL SRT

DFN = DFN + 1

CLD

NXT LLL

OFN = DFN
```

FOR KKK = 2 TIL SRT OFN = OFN - 1CAD NXT KKK AFP EXT = EXT + 1NXT III END