
c

0

·C

PROJECT 2

A COMPUTERIZED SLIDE PROJECTOR SYSTEM

RUSSELL B. CROFT, COP, BA

A PROJECT
IN

THE DEPARTMENT
OF

COMPUTER SCtENCE

Presented in Partial Fulfillment of the Requirements for
the Degree of Master of Science (Applied)

at McGill University
Montreal, Canada

Apri 1, 1975

c - 1 -

PURPOSE

The original formulation of this problem, like most concepts, was born

in the casu.al conversation of some officers at CNR. In the course of

the conversation they pointed out that many times presentations are made

about the state of the corporation. The modern technique is to support

the presentation with "flip charts•• to emphasize various points. These

charts contain:

1) plain text (high-ligh~s of the presentation),

2} tables of corporate data shown in financial trends,

3} histograms or plots--an alternate form for presenting tables of data,

C 4) flow, processing, or work study c~arts,

c

5) occassionally cartoons or line drawings.

Recently there has been a trend away from using these flip charts because·

they are not really suited for large audience presentations or audiences

spread out in a large room. The traditional flip chart is being replaced

by overhead projectors and particularly projectors using 35mm photographic

slides.

The problem with slide presentations is that they do take time and money

to prepare, and time is usually at a premium as the presentation is being

prepared. However, when the slides are made they form a pseudo-data base

for later presentations. Unfortunately some of these slides are obsolete

c

c

0

- 2 -

as soon as they are made. These are the slides dealing with topical

data in the form of histograms, plots or tables of current data. When

these slides are presented regularly, (monthly or quarterly), managers

would like to find some way to update a slide with a new point on a

graph or a new column in a table with little cost. Thus, the natural

question arose: "Can a computer help?"

When viewed in the context of the computer, the problem of adding information

and reformatting a plot or table is really no problem. The real question

is: is it worth the bother? or is it worth while trying to formulate the

problem as a computer information retrieval problem? Would there be

sufficient demand for the information in this form? If the problem was

formulated for a computer would there be enhancements available which would

not normally be available if a computer was not used?

The justification for using the computer for this project lies in the

answer to the last question, i.e. if the problem is formulated with a computer

in mind, then there are certain facilities available which are not normally

available if a computer was not used. These include fast plotting and re­

plotting of ammended data and access to computer financial data bases like

CANSIM1, or various stock markets. And, of course, one must not overlook

the novelty of using the computer for this kind of work.

1 CANSIM is a very comprehensive socio-economic data base maintained by
Statistics Canada containing historical time series on factors
like population, e('lrnings, productivity, industrial and corporate
price indices, statistics related to GNP and so on.

c - 3 -

Thus I received a problem formulated as follows:

1) devise a method to store and retrieve corporate information suitable

for conference presentations

2) the retrieved information to be displayed via overhead projectors

and must fit into some predetermined 11 page size".

3) design the retrieval to be as much like a standard photographic slide

presentation as possible

4) allow for updating and reformatting of information so that current

data can be retrieved when needed

5) all retrieval to be made with 30 seconds (say) or during the time

0 that a presenter is dwelling o,n the topic of a previous slide which­

ever comes first

6) allow access to financial data bases and in particular to CANSIM

c

- 4 -

ANALYSIS OF THE PROBLEM - INTRODUCTION

For most projects, a computer analyst's job is well defined, so that he

can immediately start to think in terms of his programn1ing method. Such

was not the case with project. The first task was to envision just how

we could get a computer to act like a slide projector, and to do it in

such a way that it could be operated by (perhaps) inexperienced people.

In addition I felt that the whole procedure should be designed as much

like the manual way as possible so that users could relate to it easily.

For the present manual method, after the person making the presentation

- has designed his speech, he sketches out some slides to support the talk.

c

Remember that at CN most of these presentations deal with corporate affairs

and some of the information must come from CANSIM in some form. The presenter

first checks to see if he has any slides in his files that he can use.

The remainder is typed and photographed. The completed set of slides is

then collated and placed in a projector ready for the presentation.

During the presentation every time the presenter presses a button on the

projector, a new slide appears and he continues talking. He does have

the flexibility to go back to previous slides to re-emphasize what was

said, or he can skip ahead a few slides to get a "sneak preview" of other

slides. But if the presenter forgets a slide he cannot just stop his

presentation and return to his office to get it. Or if someone deviates

from the topic slightly and asks "But what about such-and-such? Have you

got a slide depicting that?" The presenter must politely say no.

START

.
t

BUILD SELECT

BACK UP

l
DISPLAY

T

I

EJ
Fig. 1

Process Flow for
Manual Projection

--

I
i GET

c

- 5 -

I felt that the above scenario could be simulated exactly even to the point

where CANSIM is accessed. There would be some differences and certainly one

big exception: my projector, being a computer, would never have run around

looking for slides. All these slides would be close at hand. I could envision

the ultimate system designed to perform these three basic functions: (See Fig. 1 opp.)

1) Build and store slides for later retrieval

2) Retrieve slides and arrange them for a projection type of display

3) Display slides on a device during a presentation

. During the display we will want not only to be able to show the selected slides,

but also to:

a) backup or review some slides

b) skip ahead or preview slides

c) (an option not available in the manual method) insert slides while talking.

All these options should be. made to work not only on our own bank of stored

slides, but also be able (according to my terms of reference) to access CANSIM~

some other financial data banks and some special plot functions. One might even

envision being able to "play around" with a plot on the screen to answer such

questions as, "but what would that plot look like if we did ... ". This last

idea is not impossible, but let's not get into that just yet.

Knowing what we wanted to do just amplified our problems. Of course, since

we must be able to access CANSIM and since some man-computer interaction must

take place, to be able to accomplish all this, a computer time-sharing service,

either commercial or private, must be made available. So from this starting

point let us address ourselves to:

Q

c

- 6 -

PROBLEM 1 - I/0 Design

If this project was to be successful at all, some suitable video display

device is needed. This device must be able to display enough characters

at once to be meaningful and at the same time be large enough to be seen

by larger audiences. There are many suitable video devices available

with attachments for large audience di.splays, but most of these have

a limited 11 page size 11
• By this I mean the number of characters that can

be displayed at one time. For example the page size of this paper is

64 x 120 characters (811 x 1011 paper with a resolution of 8 lines per inch

vertically and 12 characters per inch horizontally). Below is a sample of

some typical units with their page si ze,s:

1) VuCom 1 unit 16 x 80 characters

2) IPSA 100 unit (APL) 16 x 32 characters

3) Tektronix 4013 unit 35 x 74 characters

4) Tektronix 4015 unit 65 x 133 characters

The Tektronix unit also has two extra features:

a} full graphics capability to draw graphs or figures

b) a transmission line adaptor to link the unit to a closed

circuit television system

At this stage it was not necessary to choose a particular unit, but it

was necessary to. know what 1 imitations we were going to have. A page

APPLICATION AREAS
•••••••••••••••••••••••••••••••••••••

-PRESElt':A'.UOOS TO COVERlll1rWT • PUBLIC BODIES. MAOAGEUF.N'J' GROUPS

-CAPI':AL BUDCE':S

-PIPAYCIAL PLAPUING SIMULATION RESULTS

~J!I.RXE'l FORECASTS

-OPE?.ATIJtG STATISTICS

-INIESTM~ltTS 10 ROAD PP.OPEP.TY AOD FLEET

·CA.'!SI!! (01~ STATSCAtl) D/12'11 011 LABOR FORCI:, PRICE INDICES. DO/.fESTI11
~RAt'~ E'!C

FIG. 2-A Plain Text

:edl~-t~D-l!fD_A~'lllrra~ - dlat~~-aUUU4Hl

1972 197 3 • I• Il!P P.O VE /.!F. lr'l'
l.CkZ.~~~:;~:

COUISIM1!1 92. 9!\
.

•I• -~>.3
Dt.!'AIU1!WTS 6112 555 13.6
SWITCHI!!r: 1755 1534 12.6
nsc.r:LLA:tr:otJs 1B2 127 30.2 --------

:z'OTAL Il!CIDEllTS 2671 2 312 13.4 •I•
:z'OTAL COSTS(ftM) 13,8 11.8 11!. 7

PPOPI:."'':Y DA!MGE
EXCEEDI/!G $750 SI! I! 248 51!,4

RX:POR:'ED TO R.T;c. 21!5 212 13.5

FiG. 2-B Tabular Data

NE'l' INCOME
($' tliLLION)

1BO·I

srt;Tm• llP:T rr.cmre 1'tArt

I
I r.~~

16o-1 n~r.~n
1 n~~,
1 nn:~1

1110-l ~!"':-:':'1
1 n~nrJ
1 n~~~J

120 I 1'1M"":(V1

- 1 oi :r.1 ;t1
1 nr.non o~~~n

10 o- 1 mnoo mn:;:~
1 mnun m::r:1
1 n:ncn or::r-::1

so- 1 cr::J:.n o:.:::J
I O!.:'lfJ:-1 :lwr!'"1rl
I fJ~ JG~fl :J'l'l ::~1

eo-J n~1~~ s~~~~
1 rJnn::n rY. 1:!~r1
1 nmon m~::'l m'lr-:1

110-1 nn~oo or.nnn n~~
1 non~n n~~~~ ~~~1
1 on non 4 nr'lr.:l :r""r-~il

2 o- 1 moon n:-'!lrJn O'l:'"'J rr:r'"''l
1 onmo r.nnnn r:r:r::;n Tn:'"l
1 ooooo o~1cn n~r:~~ nr:Jn1

o-l·······---1 .. I I I I I
10111 1q75 1976 1977 1978 1979

FIG. 2-C A Histogram

................
B4f[Qlll[BASIC FUNCTIOn PLOY ••...•.............................

i---------i
I STAR': I
1 I

~-------------~-------------, . _____ I_____ _ ____ I_____ -----'-----
1 I I I I I
I· BUILD I I SELECT I I DI!:l'LAYI

I _________ , '----~::::~---~:::::::::~--------,
-----'----- -----'----- ____ I __ ___ I I l I I . I
I BACK Ul! I I SKIP ~0 I ! C'l':': I l _________ l , _______ I I _____ ,

FIG. 2-D Flow Chart

FIG. 2 EXAMPLES OF SLIDES NEEDED

•

http:IHPROYEf.fF
http:ifJ:Rr.E7

_c

c

- 7 -

of 35 x 75 characters is certainly adequate so we could now start planning

how to display the data with this ultimate restriction in mind.

Opposite is a sample of the kinds of display currently needed for this

project to be successful. These are: {See Fig 2 opposite)

A) formatted text of key phrases - summaries or highlights of

the presentation

B) tabular data - this data can be supplied by the user or

retrieved from CANSIM (say)

C) histograms or plots - an alternate way to present tabular data.

These can appear as character plots (shown) or line plots

(by using a graphics capability).

D) flow charts - which can be generated as character displays

or as graphics displays if the facility is available (not shown)

(not shown) maps, cartoons, or other diagrams - probably generated by

graphics facilities only.

For the present let us limit this discussion to character displays only.

Graphics displays can be formulated later without much extra effort, once

the technique is learned. I must assume the reader is familiar with computer

processing in some way. Consequently, it should be easy to formulate a method

to enter and store this kind of character data. One way to do this would be

to type one line at a time and store these lines as sequential fixed length

- 8 -

records on some storage medium. It is advisable to store these records

using a blokcing factor equal to the number of lines in the display, so

that each block contains one complete "slide". For example, for the Tektronix

screen of 35 x 75 characters, try to store 35 records (lines} of 75 characters

each in one block. To save storage, another way might be to store the

data as a fixed number of variable length records. Each record {line)

would have the trailing spaces deleted, but the number of records per

block would still be the depth of the display (35 lines for the Tektronix

unit}. Each programmer in his own way can see how he might physically

store the data. His method will depend on the computer processing

1 anguage and access method used. My method w.i 11 be presented 1 ater,
' but before we get to that topic, we should discuss.

PROBLEM 2 - Storage and Retrieval Method

At the beginning of the project it·was implied that no matter what we stored

and retrieved, it has to be done randomly. That is. we will want to store

data as it comes available and we will want to retrieve the formatted slides

generally speaking not in the same order in which it was stored. For

random retrieval and display, the only practical method is to use some sort

of random access disk organization. Magnetic tapes are really not appropriate

because they are sequential and take much time to scan. For instance, if

information we wanted was near the end of the tape, it would take 3 - 5

minutes to get to it assuming we had available modern tape drives. On

Slides

SLIDE l

SLIDE 2 I
SLIDE 3

SLIDE 4

1 SLIDE@
L----

Slide 1 deals with

2 is a

3 is a

4 deals with

5 is a

I

I
I

..J

Vocabulary
~Jords

Corporate

Planning

Objectives

Histogram

Train

Accident

Atlantic

Population

CORPORATE PLANNING OJECTIVES

CORPORATE PLANNING HISTOGRAM

Pointers
1 2 4

1 2 4

1

2 3 5

3 4

3

3 ®
$

•:.

TRAIN ACCIDENT HISTOGRAM fDr ATLANTIC frtwil\c.a~

TRAIN PLANNING OBJECTIVES

POPULATION of' ATLANTIC Pr~N,Mt'.tH I STORGRAM

Fig. 3

Inverted File Structure

e

~

http:frlN'lICt'.tH

- 9 -

the other end of the scale, data cells or drums are not readily available,

so should also be discarded from consideration in general. If they are

available, they could be used (most of the time) to greater effect than

disks. Disks (drums if available) allow us to access data immediately

when we know exactly on which track and cylinder it resides. This last

statement leads directly to this problem - how does one organize .data

for efficient and fast subsequent retrieval? We must keep in mind that

we must retrieve a slide in a relatively short space of time.

To store a piece of information for subsequent retrieval we must store it

away with a set of keys. For example, to store a slide showing a HISTOGRAM

C of the growth of the POPULATION of the ATLANTIC provinces, (data supplied

c

by CANSIM), the slide must be stored with a reference of these words in some

way. To do th~s sequential storage techniques must be rejected in favour

of random techniques for the same reasons that sequential storage devices

are rejected--they are just too slow. Since we are going to use multiple

keys to store the slides, some kind of an INVERTED FILE structure should be

used.

The simplest way to explain this technique is by way of a small example ·

(see Fig 3 opposite). For this kind of organization we could set up two

files on disk, the first containing all the slides, (in this case 4 slides)

and the other containing a vocabulary of keywords which reference these

slides (in this case 7 words). Each vocabulary word would have a list of

.0
- 10 -

positions in the slide file of all the slides referenced by that word. For

example, the list for the first word, CORPORATE, in the vocabulary file of

Fig 3 shows that slides 1, 2 and 4 deal with the subject CORPORATE.

When a new slide is to be added to the file, rather than inter-file it amongst

the others (the sequential technique), for convenience, it would be nice if

we could place it anywhere we like. So~ to avoid extra programming, let us

place the new slide at the end of the file.

After the slide has been added to the file, the 1 i st for each keyword descri.bi ng

the new slide will be changed to include its position. Thus the lists for

C HISTOGRAM and ATLANTIC will have 11 511 (tne position of the new slide) added to

them. Once again, new keywords (POPULATION in this case} will be added to the

end of the vocabulary file, with the location of the new slide (5) recorded.

c

The retrieval procedure would be equally as simple. To retrieve the ATLANTIC

POPULATION HISTOGRAM slide, we would take the set intersection of the lists

of position numbers recorded with each of these keywords i.e. (2,3,5) (3,5)

(5), and the result (5) is the position of the slides desired.

Granted, the keyword list must be searched sequentially, but this list is

usually quite small (say around lOO keywords) compared to the number of slides

which could number several hundred. To save search operations on disk, the

vocabulary itself (just the words) could be kept in core. Only the "slide

_c

c

c

- ll -

pointer 11 as we will call them, will remain on this file. This will allow

us to use a very fast 11 in core 11 search technique for these keys.

The method outline above is the method used for the slide projection system.

The method can be used not only to store slides but also to retrieve some

of them for projection. To bring the system into perspective, the manual

and computer methods might be compared this way:

STEP

2

3

MANUAL METHOD

Slides are typed, photographed and
stored in a file box.

Slides are selected and placed
in a carousel ready for project­
ion in a slide projector.

The user displays the slides
under 11 push buttom 11 control.
He can move the carousel
forwards or backwards.

COMPUTER METHOD

Slides are typed into a
computer. The computer
files them in a slide file
with reference to a set of
keywords.

Slides are selected by supplying
a set of keywords and are placed
sequentially in a temporary dis­
play file.

The user tells the computer
to print the slides from the
display file, one at a time.
The user can tell the computer
to go forwards or backwards.
In addition he may tell the
computer to select other slides
from the slide file whenever
he wants.

All we must do is find a computer processing language to help do this work

quickly and efficiently.

- 12 -

PROBLEM 3 - Processing Language

Let Lis summarize what we have discussed so far. We have decided that:

1) A computer time-sharing service will be needed because it allows

access to CANS IM and a 1 so because there wi 11 be some man-computer

interaction needed.

2) A video display unit is available to connect to a computer to

show our results. Such a unit might be the Tektronix 4013 with

transmission line adaptor and graphics capability.

3) Our slides can be entered (for the Tektronix unit) as a series of

35 lines (possibly less) of 75 characters each (possibly less)

C and stored as one block on a disk.

4) Random storage and retrieval must be used because our data will

not be either available or needed in any particular order.

5} An inverted file organization might be the best way to store and

retrieve the data.

To this list we might append the following requirements for choosing a

processing language. The language used should :

6) be time-sharing oriented

7) be easy to write programmes in {since we do not want to take

forever developing the system)

8) be easy to use by ultimate users perhaps even by novices

9) be able to handle character strings easily and have efficient

input-output operations

_o

c

-C

1 0)

- 13 -

be easily programmed for conversational interaction between man

and his computer

11) (important) be readily available, both the language and the company

offering the service

12) finally (most important) be very reliable, i.e. we do not want

the computer to fail just when we need it most, since the computer

must be 11 0n-line .. during operation of the system.

If such a language could be found then the programming could be completed

with a minimum of keyboard effort for both the user and the analyst. COBOL

and FORTRAN though good for file handling (FORTRAN may not be the best as
'

far as 1/0 operations are concerned), do not handle and/or manipulate

character strings easily. Nor do they lend themselves to conversational

interaction with a minimum of programming effort. ALGOL, LISP, SNOBOL

PL/1 and other string processing languages answer most of these objections,

but are not readily available. In addition some of these languages are

11 wordy 11
, and still do not lend themselves to conversational interaction.

What is really needed is a good interpretive language, but is there such

a language that fits all these stringent requirements? Fortunately, yes,

APL 1 does all this and more. In fact, some of the techniques listed in problems

l and 2 can be greatly simplified by using APL with perhaps only a small

increase in cost. I think the extra cost will be worth all the trouble that

the language itself will save.

1 For the balance of this study, the APL language assumed will be Sharp
APL, supplied by I.P. Sharp Associates, Toronto; herein refered to only
as APL or occasionally SHARP APL.

-0

- 14 -

In particular, SHARP APL has available the Tektronix "Software" to handle

the video unit in graphics mode. APL file handling facilities are especially

good for this application, since APL stores data as variable length sequential

file components. However, each component can be retrieved randomly by specifying

its relative position .in the file (e.g. by actual component number) - a

very useful feature. This means that we do not need to think in terms of

35 lines per stored block on disk. Instead, the lines may be "strung out"

or concatenated, with imbedded ASCII carriage returns as separators. This

will have exactly the same effect as storing and printing several lines

deliminated as 11 records" in a block. And, again, since we are able to

address specific components (records) on disk, all we need to do is keep

track of where a particular slide is placed (by component number) for

later retrieval. Thus our INVERTED FILE organization technique is going

to be greatly simplified. As pointed out in the example, the easiest location

to file a new slide is at the end of the file. Again APL helps out because

at all times there is available the number of components in a file, so this

"last" location is known by number for later reference.

Finally, the very nature of APL encourages modular programming. These

modules or FUNCTIONS can be coded to give a high degree of interaction

between man and his machine.

In some of the following discussions because of this modular approach,

flowcharts may not be possible to write. Instead, a function flow may be

c

-C

- 15 -

a better way to describe the way things are being done. END OF "COMMERCIAL!

Now, with all the background completed, the reader is referred to the next

section which is, in effect, a users guide to the storage and retrieval

functions.

Most systems eventually get an acronym to identify it. So far we have implied

that this is a ~etrieval ~nd Qrojection ~stem. In addition, the project was

formulated as an Qnline ~isplay of corporate information to our ~xecutives.

So what better acronym than:

CN RAPSODIE

{~etrieval And frojection ~stem for

Q.nline Q_isplay of _!_nformation to fxecutives)

being

OPUS #1 in APL (SHARP) for video display units!

0
- 16 -

RAPSODIE FUNCTION DESCRIPTION

Introduction

RAPSODIE is an interactive video display system designed to store character

stringsrepresenting photographic slide images of information for conference

presentation. RAPSODIE is written in APL, consequently, many of the facilities

of APL have been exploited to make the operation of this system easy to use.

The first of these facilities is the modular programming concept. By

modular programming we mean a concept where many small functions (sometimes

called subroutines in other languages) are written to perform essentially

<:; menial tasks, and then linked together to form one large system of programmes.

RAPSODIE is written in some thirty interlocking functions, each of which

can stand alone or can be used in combination with other functions.

Because of the interaction of the functions and the way they can be called

from each other~ it is advantageous to design function names and parameters

to approximate the spoken word. This feature gives the appearance of

talking to the computer, having the computer understand, and executing

personal instructions.

RAPSODIE logically divides itself into four sets of functions:

1) The BUILDER functions- those functions that permit us to enter.

~ and store slides for later retrieval

0

-0

- 17 -

2) The SELECT function - those functions that will permit us to retrieve

slides and temporarily store them for later display.

3) The DISPLAY function- those functions that will allow us to display the

selected slides in a method not at all unlike a

photographic slide projector.

4) Some 11 housekeeping 11 functions - functions to clean up garbage floating

around, for deleting unwanted slides, and for

selective display of slides during programme

development.

These four sets of functions will be used to store and retrieve data in an

inverted file structure. The inverted file is also modularized into three
'

files. The structure of these files, their uses, and rules to form them are

as follows: See Fig A opposite.

File S: The slide file

- ·This file contains all the slides.

- New slides are added (appended) at the end of this file.

- The file is organized on disk.

File V: The vocabulary file

- This file contains all the keywords needed to describe a slide.

- New keywords are appended to the end of the file.

- This file is contained entirely in 11 core11 as an N x 15 character

array. N will be in the order of lOO words

- The position of each keyword is the component number of the s 1 i de

pointers that this keyword references.

_Q

0

-C

- 18 -

File P: The slide pointers

This file contains one component for each keyword in file V.

- These components are in exactly the same order as File V.

- Each component contains pointers to each slide referenced by this

keyword.

- The pointers are the component numbers of the stored slides.

- This file is organized on disk.

RAPSODIE is simple in concept and design. To emphasize this each section

which follows contains both an operating guide and a technical guide rather

than separating these guides into separate secitons. For each group of functions,

·four descriptions are supplied as follows.

a) a general description of the main function of the group. In conjunction
'

with the sample terminal session this description is sufficient to

operate RAPSODIE.

b) a sample terminal session with corrments

c) a general description of each component function in the group arranged

in Alphabetical order. This description is supported by both a logic

flow chart and a function flow chart.

d) a detailed listing of the component functions of the group in order

of appearance in the function calling tree.

The user is referred to and assumed to have some basic familiarity with the

following publications:

a) APL PLUS file Subsystem Instruction Manual, I.P. Sharp Associates Ltd.

b) APL PLUS Plot Facility, I.P. Sharp Associates

c) APL An Interactive Approach, 2nd Edition, Gillman and Rose, Wiley, 1974

c - 19 -

LOADING RAPSODIE

RAPSODIE uses the file subsystem, consequently potential users will need

authorization to use these files before loading the system. Assuming authorizati.on

has been obtained, typing

)LOAD 1977269 PRES

will not only load the workspace containing all the necessary functions, but the

workspace will automatically initialize itself by executing a function called

START. START performs several necessary functions:

1) Tabs are set at 10 space intervals. There is nothing magic about the

number 10, so tabs can be set to any desired value.

C 2) The three storage files are "opened", i.e. made accessible for use.

-C

3) Three variables which RAPSODIE uses constantly are initialized. These

are NIDS- the number of keywords or id's currently available

IDS - the matrix of the keywords (id's) themselves

IDLEN - the current length of the keywords.

http:authorizati.on

c

-c

- 20 -

THE BUILDER FUNCTIONS

1. a) General Description- "Character String" Slides

By typing BUILD the builder group of functions is accessed. These functions

accept character data line by line until a line ending with at least 5 spaces

is typed. This can be done by entering "TAB, CR". As an option, the user

is asked to supply headings above and below the slide. 11 TAB, CR" will

terminate this input. The resulting set of characters, called a slide is

now ready for filing. The user is asked to enter a set of keywords descr·ibing

the slide entered. (Note to experienced users: portions of keywords may

be entered. RAPSODIE. is quite capable of finding the complete word by itself.)

The keywords are retyped for verification. If the set of keywords entered

defines no other slide, then the slide is filed for later reference under the

keywords specified. If the keywords specify exactly 1 slide already filed,

then the entered slide, assumed to be a replacement for the old one, replaces

the old slide on file. If the set of keywords specifies more than one slide

already on file, a new, more well-defined set of keywords is requested.

After this slide is filed, the user is asked if he wishes to continue. A

NO response will terminate the BUILDER.

c

-0

The compu~er prints '~'
before its dialogue

The BUILDer
is called

enter the slide

TAB, CR or
5 spaces end
input ~~~

Keys are entered

Keys are retyped
for verification

The keys specify
no other slide,
tbus the slide is
added

Let us try another

enter the slide

Headings
entered

5 spaces
TAB, CR

The keys are not
unique

We reject the
keys and try
again

This time no
other slide is
defined

The side is added

- 21 -

1 B) SAMPLE TERMINAL SESSION - SLIDE aUILQING

BUILD
+ ENTER SLIDE

THIS IS A SLIDE
IT HAS 2 LINES

+ ENTER TOP HEADINGS:

+ ENTER BOTTOM HEADINGS:

+INPUT IDENTIFIERS:SLIDE 1.
+ NO SLIDES FOR: SLIDE 1.
+ KEYS SELECTED. OK?

+SLIDE
+1.
YES
+ COMP 52 ADDED UNDER: SLIDE 1.

+ MORE? YES PLEASE
+ ENTER SLIDE

000000000000000~0000

BOX
I
I·

00000000000000000000

+ ENTER TOP HEADINGS:
DEMO BOX

+ ENTER BOTTOM HEADINGS:

+ INPUT IDENTIF.TERS:CORPORATE
+ 5 SLIDES FOR: CORPOH1TE
+ Kas SELECTED. OK?

+CORPORATE
Jl.Q_

+ INPUT IDENTIFIERS:SLIDE 2.
+ NO SLIDES FOR: SLIDE 2.
+ KEYS SELECTED. OK?

+SLIDE
+2.

YES
+ COMP 40 ADDED UNDER: SLIDE 2.

That is all for + MORE?
now

NO THANKS

- 22 -

2. a) General Description - Plot and Histogram slide BUILDing

To store a plot or histogram the following procedure is used.

1) type: NOPRINT. This supresses the actual printing of the plot

before storing the slide.

2) assign to a variable the result of PLOT, e.g.
"plotvariable" +PLOT "plotdata"

3) type: FILE HEADINGS FOR "plotdata" this instruction behaves

just like BUILD except that a slide is not entered. The user will

be asked to supply HEADINGS or titles on top of and below the plot ·

in "plotvariable". a "TAB, CR" ends each input as described in

BUILD. The plot slide will now be filed using keywords supplied

by the user, again, as described in BUILD.

It is assumed that the user knows how to use the APL PLOT Facility. For the

present, this is the easiest way to store a plot or histogram slide4 Future

enhancements will do this more automatically.

0

The computer prints ·~·
before its dialogue

First we set up the plotter

we create some data

and PLOT it

- 23 -

2 B) SAMPLE TERMINAL SESSION - PLOT ~UILQING

SET ABSCISSA TOTAL 4 SPACED 6 NUMBERED 1
SET ORDINATE TOTAL 3 SPACED 5 NUMBERED 1

COLUMN 1

X+.Sx1+t7
IT+~3 7pX,x.s-x
PLOT IT

s.oo +
I
* 0

Just what the doctor ordered
let us file it

I
I * o

We turn the print off
PLOT the data and save
it for later
Now we file the plot

We enter headings
(titles) on top ~

TAB, CR or 5 spaces .
end the input

Titles at the bottom

The keys specify no
other slide

Verification
But we can change our
mind

The new set is not
unique

We try again

The new set of keys
is OK

The slide of the

3.00 + * 0

I *
I o *
I
I o *

1.00 0--'--+--'--+--'--*
1.0 2.0 3.0 4.0

NO PRINT
SOMEVAR+PLOT IT

FILE HEADINGS FOR SOMEVAR

+ ENTER TOP HEADINGS:
DEMO PLOT

+ ENTER BOTTOM HEADINGS:

0 X= Y * X= 5 - Y (5 spaces here)
+ INPUT IDENTIFIERS:DEMO SLIDE
+ NO SLIDES FOR: DEMO SLIDE
+ KEYS SELECTED. OK?

+DEMONSTRATION
+SLIDE
NO
+ INPUT IDENTIFIERS:SLIDE
+ 2 SLIDES FOR: SLIDE
+ KEYS SELECTED. OK?

+SLIDE
NO
+ INPUT IDENTIFIERS:SLIDE 3o
+ NO SLIDES FOR: SLIDE 3.
+ KEYS SELECTED. OK?

+SLIDE
+3.

YES
+ COMP 35 ADDED UNDER: SLIDE 3.

' . -,
~ \ ~-. --.. - ,. .. i.'

FILf:
I<T:YS

{.

\.SToP)

Fig. B

':\ Bu i 1 der Flow Chart

, ...

··: _:. t '

' <(:

Fig. C

Builder Calling Tree

c

- 24 -

c) Component Descriptions - BUILDer group

Below is a brief description of the BUILDer group of functions.
Fig. B (opposite) is a flow chart of the BUILDer logic
Fig. C (opposite) shows the BUILDer function calling tree
BUILD allows entry of slides and stores them by keywords for later

retrieval. The fo1lowing functions are used by BUILD

ADD string adds 'string' to the slide file and records its location

for later retrieval

FILE string initiates filing of 'string' under keyword control

FOR x a 11 do nothing" programme used for readability~ the output

from FOR is the same as the input (x)

HEADINGS s allows user to supply headings above and below string 's'

INPUT text prints 'text' as a message to user and allows a response on

· the same 1 ine

LOCATE locates all slides in the slide file described by a set of

keywords supplied by the user

RAVEL array converts 'array' to a string with imbedded ASCII carriage

c READ f

SQUEEZE k

a SRCHl b

returns.

reads the component 'c' from the file tied to 'f' (refer to

FILE SUBSYSTEM manual if this terminology is meaningless)

removes extra spaces between keywords in the set 'k'

a specialized string searcher which finds all occurances of

string 'a' in string 'b'

0

D)

- 25 -

DETAILED FUNCTION LISTING OF ~Ul~QER GROUP

IN ORDER OF APPEARANCE IN CALLING TREE

V BUILD;INP;A;NEW;KI
[1] MOR:'+ ENTER SLIDE',CR • INP+CR,CR
[2] INN:+(-A/(1 ')=-1~-6+INP+INP,~,CR)/INN • FILE HEADINGS FOR

INP • +('N'~1+INPUT 20t 1 + MORE?')/MOR

[1]

[2]
[3]

[4]

[5]

V

V FILE X;A;KI;NEW

V

ENT:A+LOCATE • '+KEYS SELECTED. OK?',CR,CR,(RAVEL '+',IDS[
KI;],[1] NEW),CR
+(('QN'=lt~),(l 0 =pA),l)/O,ENT,GO AD,ENT

GO:((SQUEEZE IDS[KI;]),CR,'''',((X~' 1'')/X+(1t(,'''•) SRCH1 X)
-l-X+RAVEL X),, .. ,) FE. 8 10 ,A
1 + COMP ',(,'I3' AFMT A),' RE-FILED UNDER: ',(SQUEEZE IDS[
KI;]), CR, CR • +0

AD:ADD CR,'''',CR,((X~' .. ')IX+(1t(,'''t) SRCH1 XHX+RAVEL X),C
R • ' .. '

V R+LOCATE;T;S;I;X;Y;Z;K
[1] R+tNSLIDES • I+tNIDS • S+K+(SQUEEZE INPUT 20t'+ INPUT IDEN

TIFIERS:'),' ' • KI+X+lO • NEW+(O,IDLEN)p' '
[2] F:+((O=pX), (Z+A/' '=S+T~S), -1~pR+(Rd l+X+(((NIDS, pY)tiDS)A.

=Y+(-1+T+S1' ')tS)/I) READ KEYS)/R)/3tA,D,F,KI+KI,X
[3] A:+(Z, 1) /2 +D,F, pNEW+NEW, [f] ((O=pX) ,IDLEN)piDLEN+Y
[4] D:'+ ',(((3p-T),T+3p(pR)~O)/' NO',,'BI3' AFMTpR),' SLIDE',(

(l~pR)/'S'),' FOR: ',K,(pKIHKI+KI,X

V R+SQUEEZE X;S
[1] R+1-t(Sv1cpS+X~' ')IX+' ',,X

V

V R+INPUT T
[1] R+(pT)~(-pT)-l-~.~+T

V

V R+COMP READ FIL;I
(1] +((p,COMP)=pR+ti+0)/0
[2] R+R,FE. 6,,PIL,(,COMP)[I+I+1]
[3] +(I<p,COMP)/2

V

V R+A SRCH1 B
[1] R+((B,(pA)p' ')[Ro.+-l+tpA]A.=A)/R+(B=ltA)/tpB

V

V R+RAVEL X
[1] R+,X,CR

V

I
l
t

r

http:IDS[KI;]).CR
http:SLIDE'.CR

_o

0

-0

- 26 -

V ADD S;N;M;I;V;VV
[1] (IDS+IDS,[I+1] NEW) FE 3t 8 30 1 ,V+KI,NIDS+tltpNEW
[2] ((SQUEEZE IDS[V;]),S) Ff(1+M),10,(M+N~M)/N+1+(VV+PE. 6 10 1

) ,M+1t14-FE 10 10
[3] ((-VVeN)/VV) FE. 8 10 1
[4] A1:(N,M/Ff(6+4x-M),30,M/V[I]+1) FE.(1+M),30,(M+V[I]~KI)/V[I]

+1
[5] +((I+I+1)Sp,V)/A1
[6] '+ COMP ';N;' ADDED UNDER: ',(SQUEEZE IDS[V;]),CR.CR,1+NID

S+1tpiDS . .

V R+HEADINGS X;I1;I2
(1] ~+CR,'+ ENTER TOP HEADINGS:',I1+I2+CR
[2] IN1:+(-A/(' ')=-14--6ti1+I1,1!],CR)/IN1
[3] CR,'+ ENTER BOTTOM HEADINGS:',CR
[4] IN2:+(-A/(' ')=-1+-6+I2+I2,1!],CR)/IN2
[5] R+I1,(RAVEL X),I2

V

V R+FOR X
[1] R+X

V

.0
- 27 -

THE SELECTOR FUNCTIONS

a) General Description

By typing SELECT KEYS the selector group of functions is accessed. These

functions allow selection of stored slides under keyword control. The

selected slides are placed on a temporary DISPLAY file for presentation at

a later date. The user is asked for a set of keywords. RAPSODIE selects

all the slides applicable and asks the user if all of them are needed.

If some of the slides are not needed the user is asked to define a more

well-defined set of keywords. This process is repeated until the user has

SELECTed all the slides necessary. If the user wants to continue SELECTing

slides he answers YES when asked if he wants to continue. To assist the

user a catalogue of slide titles is available.

The computer prints ·~·
before its dialogue

A display file is made
ready
We try to find the first
slide

Found it. Let us keep
for the display

Now let us get all 3
of the test slides
including slide 1.

They have been found

We place them on the file
we now have slides
1,3,2,1
We do not have to use
the entire keyword

Let us quit here and
se what we have

- 28 -

B) SAMPLE TERMINAL SESSION - ~ELEk~

SELECT KEYS

+ OLD DISPLAY DESTROYED

+ INPUT IDENTIFIERS:SLIDE 1

+ 1 SLIDE FOR: SLIDE 1

+ WANT THEM ALL? YES

+ MORE? YES PLEASE

+ INPUT IDENTIFIERS:SLIDE

+ 3 SLIDES FOR: SLIDE

+ WM THEM ALL? YES

+ MORE? YES

+ INPUT IDENTIFIERS:DEMO SLI

+ NO SLIDES FOR: DEMO SLI

+ MmE? NO

' " . ~ . . ' --:.:..~;;

I -" •,

, S5T ·up
I J)t SPLRY

FILE

~ ' ' · .. : . ' .

~ ... • • f '

·.,

,.,
d ••

·- ' '

' . ·~"

Fig. D

Flow Chart SELECTor

(.

FIG. E The SELECTor Calling Tree

--

.0

c

- 29 -

c) Component Function Descriptions - SELECTor group

Fig D (opposite) is a flow chart of the SELECTor logic.

Fig E (opposite) shows the SELECTor function calling tree.

Below is a brief descr·iption of the SELECTor group of functions

SELECT KEYS selects slides (by keywords supplied by the user} from the

slide fil~ and stores them on a dispaly file ready for

presentation at a later date. The following functions are used

by SELECT

INPUT text prints 'text' as a message "to the user and allows a response on

the same line

LOCATE

c READ f

SQUEEZE k

locates all slides in the slide file described by a set of

keywords supplied by the user

reads the component •c• from the file tied to 'f'. (The user

is referred to the FILE SUBSYSTEM manual if this terminology .

is meaningless.)

removes extra spa.ces between keywords in the set 'k'

_Q

V
[1]

[2]
[3]
[4]
[5]
[6)
[7]
[8]

V

V
[1]

[2)

[3]
[4]

V

0 V
[1)

V

V
[1)

V

V
[1]
[2]
[3]

V

-c

- 30 -

D) DETAILED FUNCTION LISTING OF ~~L~QXOR GROUP

IN ORDER OF APPEARANCE IN CALLING TREE

SELECT X;A;I;NEW;KI;V;Y
F~ 13 20 .--1+1t1~F~ 2t 10 20 .p~+ 1 + OLD DISPLAY DESTROYED
1 ,CR
+(((I+1)<ppX),1)/2+GO,LP,pA+,X

GO:+(O=pA+LOCATE)/LP+2
+('QN'=Y+(I+1)tiNPUT 20t 1 + WANT THEM ALL?')/(LP+2),GO

LP:((-2+Vt' .. 'HV+FE 6 10 ,A[I]) F~ 7 20
+((p,A}~I+I+1)/LP
+('N'~1+INPUT 20t'+ MORE?')/GO
(' .. ',CR,CR,(15p' '),'END OF DISPLAY',CR,,··,,CR) FE. 7 20

R+LOCATE;T;S;I;X;Y;Z;K
R+tNSLIDES • I+tNIDS • S+K+(SQUEEZE INPUT 20+'+ INPUT IDEN
TIFIERS: 1), 1 1

• KI+X+tO • NEW+(O,IDLEN)p' '
F:+((O=pX), (Z+A/' 1 =S+T+S), -1~pR+(R€ (1+X+(((NIDS, pY)tiDS) A.

=Y+(-l+T+St' 1)+S)/I) READ KEYS)/R)/3+A.D,F.KI+KI.X
A:+(Z,1)/2+D,F,pNEW+NEW,[1]((0=pX),IDLEN)piDLEN+Y
D:'+ ',(((3p-T),T+3p(pR)~O)/' NO',,'BI3' 6FMTpR),' SLIDE',(
(1~pR)/'S')•' FOR: ',K,(pKIHKI+KI,X

R+SQUEEZE X;S
' R+1+(Sv1$S+X~' ')/X+' t • • X

R+INPUT T
R~(pT)+(-pT)+~.~+T

R+COMP READ FIL;I
+((p.COMP)=pR+ti+0)/0
R+R,FE. 6. ,FIL. (.COMP)[I+I+1]
+(I<p,COMP)/2

- 31 -

THE DISPLAY FUNCTIONS

a) General Description

By typing DISPLAY, the display group of functions is accessed. These functions

start the prepared overhead presentation on the desired video display device.

RAPSODIE immediately pauses--the stage is set!

Depressing the CARRIAGE RETURN key will start the DISPLAY of the next slide.

After each slide is DISPLAYed RAPSODIE will pause while conversation is in

progress. At the end of the DISPLAY, the message END OF DISPLAY is seen.

The pause in the DISPLAY is a request for something to be typed. The normal

c;) response is to depress the carriage return as mentioned, however, since

RAPSODIE is asking for some input, any set of characters can be typed. APL

is unique in that this set of characters can be treated as character input

(and in this case ignored) or the characters can be scanhed and executed if

c

they form a value set of APL or functions instructions. This is the "back

bone" of RAPSODIE. The following functions have been coded to allow the

user to treat the video display unit exactly like a photographic projector.

FUNCTION SYNTAX

BACK x

BACK TO x

SKIP x

SKIP TO x

GET set-of-keys

MEANING

DISPLAY the slide that was displayed x slides ago

DISPLAY the slide x again

DISPLAY the slide x slides ahead of the slide about to be

displayed

DISPLAY the slide x and return the current slide.

allows the user to select extra slides and insert it (them)

any valid APL

expression

- 32 -

before displaying the current slide

the expression is executed and control is returned

to the DISPLAY function.

Each of these functions temporarily suspend the slide presentation to allow

the stated operation, after which control is returned to the DISPLAY function.

The GET feature allows the user to insert any forgotten information at any

point without disturbing the entire presentation. The GET function acts

exactly like a mini-SELECT function, i.e. the user is told how many slides

satisfy his request and asks if he wants them all. A NO answer returns

control to the DISPLAY function, otherwise the slide(s) are displayed and then

~ control is returned.

-0

0

0

- 33 -

B) SAMPLE TERMINAL SESSION - ~l~ELdl

.The projector D IS P LA 1
is made ready

A Carriage return is keyed

The first slide!

carriage return
to continue

the next slide

the , •• ,

is a slide
delimiter
use for positioning

THIS IS A SLIDE
IT. HAS 2 LINES

s.oo +
I
*

*

DEMO PLOT

3.00 + * 0

I *
I o *
I

0

I o *

0

1~00 0--'--+--'--+--'--*
1.0 2.0 3.0 4.0

o X=:t * X=5-:t

A CONTINUE NEXT PAGE

Let's see that first
one again.

There it is!

we may type an
executable statement

we forgot to put in
a slide so let us do
it now

- 34 -

BACK TO 1

THIS IS A SLIDE
IT HAS 2 LINES

(t3) X 7
7 1~ 21

GET JOKE PUN
+ 1 SLIDE FOR: JOKE PUN
+ WANT THEM ALL? YES

TWO SONS DECIDED TO LEAVE HOME AND SETTLE IN AUSTRALIA.
THERE THEY STARTED TO RAISE BEEF CATTLE AND BECAME VERY
SUCCESSFUL.
THEY DECIDED , SINCE THEIR OPERATION WAS GETTING FAMOUS, TO
FIND A GOOD NAME FOR THEIR RANCH; THUS, THEY WROTE HOME ASKING
THEIR MOTHER TO SUGGEST A NAME. SHE WROTE BACK WITH THE NAME 'FOCUS'.
'WHY ''FOCUS''?' THEY WROTE BACK.
5HE REPLIED, 'BECAUSE THAT IS WHERE THE SUN'S RAYS MEET!!. '

we have retrieved
successfully during
the presentation! ·

A CONTINUE NEXT PAGE

0

0

0

Let us see what is
coming

The computer knows
there are only 4
slides not 10

let us continue

the presentation
continues were
we left it

carriage return to
continue

the last slide
it is the same as
the first
(we asked for slide 1

twice during
SELECT

continue

There is no more
the presentation
is over

- 35-

SKIP 10 ..
END OF DISPLAY

DEMO BOX

00000000000000000000

BOX
00000000000000000000

THIS IS A SLIDE
IT HAS 2 LINES

.. END OF DISPLAY

(: ;

' ~, .
. . .)

.......
\

uoao ~DDUODDCDUODOU~

. {\'

, ... ·~ ·'·

-·.

Fig. F

Display Calling Tree

. ~ '·

0

-0

- 36 -

c) Component Function Descriptions - DISPLAY

Fig F shows the DISPLAY function calling tree.

Below is a brief description of the DISPLAY group of functions

DISPLAY

BACK n

ENTER

GET string

INPUT text

LOC k

c READ f

SKIP n

TO n

Display selected slides like a slide projector. The following

functions are used by DISPLAY

described above

a specialized function which accepts a character string, converts

it (if possible) to an executable function and executes it.

described above

prints 'text• as a message to the user and allows a response

on the same line

same as function LOCATE (described earlier) except that the set

of keywords (k) is entered as a parameter of the function. This

function locates all the slides in the slide file described by

the set of keywords 'k'

reads component 'c' from the file tied to 'f' {the user is referred

to the FILE SUBSYSTEM manual if this terminology is meaningless)

described above

allows a specific slide to be read. Used with functions SKIP and

BACK

0

c

-0

- 37 -

D) DETAILED FUNCTION LISTING OF Q!~~Ldl GROUP
IN ORDER OF APPEARANCE IN CALLING TREE

V DISPLAY;N;I;EXEC
[1] I+1t1,N+-1+1+1+F~ 10 20
[2] LP: ENTER
[3] FE. 6 20 ,I
[4] -+((I+I+1)-s,N)/LP

V

V ENTER;R;EXEC
[1] -+((A/ 1 '=R), A/'GET 1 =4tR+l!J)/0$
[2] R+(4tR),'''',(4+R),'•••
[3] E:-+(O=O\O/R+3 AFD 'VEXEC',CR,'[1]',R,CR,'V')/O
[4] EXEC
[5] -+1, pR+6 AFD 'EXEC'

V

V BACK X
[1] FE. 6 20 ,1ri-X

V

V R+TO X
[1] R+I-X

V

V SKIP X
[1] FE. 6 20 ,(-1+1t1+F~ 10 20)LI+IX

V

V GET X;J;A;NEW;KI;Y;Z
[1] -+(O=pA+LOC X)/0
[2] -+(('Q'=Z),'Y'=Z+(J+1)+INPUT 20t'-+ WANT THEM ALL?')IO,LP
[3] -+1,pX+(INPUT 20t'-+ INPUT IDENTIFIERS:'),' '
[4] LP:(-2+Yl'~·'HY+FF 6 10 ,A[J]
[5] -+((p,A)~J+J+1t1,pl!J)/LP

V

V R+LOC S;T;K;I;X;Y;Z;NEW
[1] R+l.1tNSLIDES,I+l1+NIDS,pK+(S+SQUEEZE S),' ',KI+X+,,NEW+(O,

IDLEN)p' '
[2] F:-+((O=pX),(Z+A/' '=S+T+S),-1~pR+(R€(1+X+(((NIDS,pY)+IDS)A.

=Y+(-l+T+S\ 1 ')+S)/I) READ KEYS)/R)/3+A,D,F,KI~KI,X
[3] A:-+(Z,1)/2tD,F,pNEW+NEW,[1]((0=pX),IDLEN)piDLEN+Y
[4] D:'-+ ',(((3p~T),T+3p(pR)~0)/ 1 NO',,'BI3' AFMTpR),' SLIDE',(

(1~pR)!'S'), ' FOR: ',K,{pKIHKI+KI,X
V

V R+SQUEEZE X;S
[1] R+1HSv1$S+X~' ')/X+ 1 ',.X

V

V R+COMP READ FIL;I
[1] -+((p,COMP)=pR+ti+0)/0
[2] R+R,FE. 6,,FIL,(,COMP)[I+I+1]
[3] -+(I<p,COMP)/2

V

V R+INPUT T
[1] R+(pT)+(-pT)+~,l!J+T

V

0

·0

- 38 -

THE UTILITY FUNCTIONS

a) General description

The following utility functions have been included in this workspace·

primarily for programme development. The DELETE function, the

most important of these, is used to delete obsolete or redundant

slides.

By typing DELETE the delete group of functions is accessed. The

user is asked to supply a set of keywords. Each slide referenced by

this set of keywords will be made available to the user for possible

deletion. DELETE will access the slides individually, by printing

the actual keywords under which this slide was stored, and ask the

user if he really wants to DELETE it. No response will access the next

slide, otherwise, DELETE removes the slide, removes all keyword

references to it, and appends the freed space to a garbage list for future

use. Then the next slides are accessed and so on. The user may type

MORE if he wishes to see more of the slide for better identification.

If another group of slides is to be DELETEd, the user answers YES when

he is asked if he wants to continue.

For tbe other functions in this group, only the brief description in

section c will be given.

-0

0

0

- 39 -

B) SAMPLE TERMINAL SESSION - UTILITIES

The computer types
'~' before its DELETE
dialogue + INPUT IDENTIPIERS:DEMO SLIDE

+ NO SLIDES POR: DEMO SLIDE
+ MORE? YES

to delete + INPUT IDENTIFIERS:SLIDE
enter the keys. + 3 SLIDES FOR: SLIDE
the keys of
the first are + SLIDE 3. -COMP 35
printed + WANT IT? NO·
and it was + SLIDE 3. -COMP 35 DROPPED
deleted

+ SLIDE 2. -COMP 40
also the 2nd + WANT IT? NO

+ SLIDE 2. -COMP 40 DROPPED

+ SLIDE 1. -COMP 52
finally the + WANT IT? NO
third + SLDE 1. -COMP 52 DROPPED

+ MORE? YES

verification + INPUT IDENTIFIERS:SLIDE
that they + NO SLIDES POR: SLIDE
have been + NORE? NO
deleted

..... ,\ r , "\ ~ ..
~ ' ' ' \ .

INPIJT J

Fig. G

Delete Flow Chart

Fig. H

De 1 ete Ca 11 i ng Tree

. '

-:~

•

0

c

-0

- 40 -

C) Description of Utility functions

Fig .. G in the delete function flow chart
Fig. H is a function calling tree for DELETE.

START

DELETE

CLEANUP x

LIST x

DUMP x

ERASE GARBAGE

FIND x

Initializes the worspace by opening the required files and

setting required constants. See the Introduction for a more

complete description of this function.

A 11 ows redundant and ob so 1 ete s 1 ides to be de 1 eted from the

file, and appends the reusable space to.a garbage list. All

the functions used by Delete are described in the previous

groups.

Allows for the reorganizing of the f"ile x after extensive

revision by adds, changes or deletes.

Prints the array x with line numbers

Produces a list of either the keywords and the slides they

reference (x= 1 0) or a 1 i st of all the keywords used to

define specific slides {x:30)

ERASES any unwanted and extraneous constants before storing

the workspace.

A generalized Locate function which locates slides defined

by the set of keywords x.

0

0

-C

[1]
[2]
[3]
[4]
[5]

V

V

- 41 -

D) DETAILED FUNCTION LISTING OF UXILIXIE~ GROUP

START;X
FE 3,FE 18 • X+TABS 10
1 1917269 SLIDES ' FE 2,SLIDES+10
'1977269 DISPLAY' FE 2 20
'1977269 KEYS ' FE 2,,KEYS+ 1 1 p30
NSLIDES+1t1-4-FE 10,SLIDES • IDLEN+-1t,:JIDS+FE. 6 30 1 • NIDS+
1tpiDS

V DELETE;A;I;J;KI;NEW;B;X;Y;T;Z
[1] +((I+1)+0=pA+LOCATE)I1+(D1+2),Z+O
[2] D2:+(1 QMY'=T+1tiNPUT 20t 1 + WANT IT?')I3+D5,D3,D1,p~+CR,'+ 1

,(Y+(-2+Xt 1 .. ')tX+FE 6 10 ,A[I]),(,'~ -COMP~,BI3' llFMT A[I]
) , CR

[3] (Op' ') FE 3t 8 10 ,A[IJ. (J+1) ,B+FIND y
[4] (A[I],FE 6 10 1) FE 8 10 1
[5] D4:((A[I]~Y)IY+FE 6 30 ,KI[J]+l) FE 8 30 ,KI[J]+1
[6] -+ ((J +J + 1) ~ p , K I) ID 4
[7] D1: 1 -+ ',(SQUEEZE IDS[KI;]),' -COMP ';A[I];' ',((7p-T),T+7p'

N'=T)I'KEPT DROPPED'
[8] -+((I+I+1)~p,A)I1+D2,Z+O
[9] D5:+((1 N 1 ~1+INPUT 20t 1 + MORE?'),1)12+ 1 0 ,Z+O
[1 o J D 3 : +D 2 , p ~+ (50 0 l Z + 5 :: 0 + Z) t (0 r Z- 5o)+ (p Y)+X

V '

V CLEANUP X;N;I;Y
[1] 'TEMP' FE. 2+ 1 40 ,I+1t1,N+ 1+1+1-4-Ff lO,X+,X
[2] (FE 6,X,I) FE 7 40
[3] +((I+I+1)~N)I2

[4] (Y+, o 11 -4-(X=FE 18)1[1] FE 19) FE 5,X
[5] Y FE. 15 40
[6] START

V

V ERASE XX
[1] 6 llFD. (3 llWS XX) • I t

V

V R+DUMP X;Y;N;I;A;M
[1] +1tA,pR+ 0 51 p(1+I+1tO,(N+-2+1t1+FE 10 10),A+((X+,X)=,SLI

DES,,KEYS)I 3 2)+' 1

[2] +(((1tpR+R,[1] IDS[I;],'12BI3' llFMT 1 12 p12tFE 6,X,1+I+I+
1) <NIDS), 1) I A, 0

[3] +((1tpR+R,[1] 51+BQUEEZE((-2+1t(,' .. ') SRCH1 Y)tY+FE 6,X,1+
I),, 'l'J S[!],ZI2' llFMT 1+I+I+1)<N)IA

V

V R+LIST X
[1] ('I3,[!] ~.',(,'I3' llFMT 1+pX),'A1'). llFMT((((1tpX),1)pt1tpX

);X)
V

-0

c

-o

- 42 -

DETAILED LISTING OF UELEXE FUNCTION GROUP

IN ORDER OF APPEARANCE IN CALLING TREE

LISTGRP 'DELETEFNS'
V DELETE;A~I;J;KI;NEW;B;X;Y;T;Z

[1] ~((I+1)tO=pA+LOCATE)/1t(D1+2),Z+O

[2] D2:~('QMY'=T+1tiNPUT 20+'~ WANT IT?')/3tDS,D3,D1,p[!]+CR, '~ '
,(Y+(-2+Xt 1 .. ')tX+FE 6 10 ,A[I]),(,'l'J -COMP[!],BI3' t:.FMT A[I]
) ,CR

[3] (Op' ')FE 3t 8 10 ,A[I],(J+1),B+FIND y
[4] (A[I],FE 6 10 1) FE a 10 1
[5] D4:((A[I]~Y)/Y+FE 6 30 ,KI[J]+1) FE 8 30 ,KI[J]+1
[6] ~((J+J+1)~p,KI)/D4

[7] D1:'~ ',(SQUEEZE IDS[KI;]),' -COMP ';A[I];' 1 ,((7p-T),T+7p 1

N'=T)/'KEPT DROPPED'
[8] ~((I+I+1)~p,A)/1tD2,Z+O
[9] D5:~(('N'~1+INPUT 20t'~ MORE?'),1)/2t 1 0 ,Z+O
[10] D3:~D2,pl'J+(SOOlZ+500+Z)t(OrZ-SO)+(pY)+X

V

V R+LOCATE;T;S;I;X;Y;Z;K
[1] R+tNSLIDES • I+tNIDS • S+K+(SQUEEZE INPUT 20+'~ INPUT IDEN

TIFIERS:'),' ' • KI+X+tO • NEW+(O,IDLEN)p' '
[2] F:~((O=pX),(Z+A/ 1 '=S+T+S),-1~pR+(RE:(1+X+(((NIDS,pY)+IDS)A.

=Y+(-1+T+Sl' ')tS)/I) READ KEYS)/R)/3+A,D,F,KI+KI,X
[3] A:~(Z,1)/2tD,F,pNEW+NEW,[1]((0=pX),IDLEN)piDLENtY
[4] D:'~ ',(({3p-T),T+3p(pR)~O)/' NO',,'BI3' t:.FMTpR),' SLIDE',(

(1~pR)/'S'),' FOR: ',K,(pKI)+KI+KI,X
V

V R+SQUEEZE X;S
[1] R+1i-(SV1tPS+X~' ')/X+' ',,X

V

V R+INPUT T
[1] R+(pT)+(-pT)+l'J,[!]+T

V

V R+COMP READ PIL;I
[1] ~((p,COMP)=pR+ti+0)/0

[2] R+R,FE. 6, ,FIL, (,COMP)[I+I+1]
[3] ~(I<p,COMP)/2

V

V R+FIND S;T;K;I;X;Y;Z;NEW
[1] R+tl+NSLIDES,I+tl+NIDS,pK+(S+SQUEEZE S),' ',KI+X+,,NEW+(O,

IDLEN)p' ' .
[2] F:~((O=pX),(Z+A/' '=S+T+S),-1~pR+(Re(1+X+(((NIDS,pY)tiDS)A.

=Y+(-1+T+St' ')tS)/I) READ KEYS)/R)/3tA,D,F,KI+KI,X
[3] A:~(Z,1)/2+D,F,pNEW+NEW,[1]((0=pX),IDLEN)piDLEN+Y
[4] D:KI+KI,X

V

- 43 -

WHERE DO WE GO FROM HERE?

RAPSODIE in its present form does satisfy the requirements set out in the

Introduction with only one exception: I have not explicitly stated how

access to CANSIM will fit into the display functions. At the present time,

if CANSIM data is needed, they can be retrieved through elementary APL and

CANSIM access functions, formulated using much the same technique as for

PLOT, stored as a variable, then filed. However, we do plan to add more

flexibility to RAPSODIE by adding functions necessary not only to interface

with the CANSIM access functions, but also to interface with APL GRAPHICS

(the software supplied by Tektronix for use with their video display

~ terminals in graphics mode).

·0

At the present time, slides are stored as character strings which are

retrieved and displayed when required. However, APL is able to convert

properly formated character strings· into executable APL functions. If

such a character string is stored as a slide, when it is retrieved, identified

as executable, converted to an executable function, then the resulting

function can be used quite effectively. For example, we could.store a

generalized plot function to plot data specified in a pre-defined format.

If the Tektronix software is available PLOT will produce line plots of this

data. If the Tektronix software is not available, then PLOT will produce

the standard character plot by default.

- 44 -

As implied above, we used the CANSIM data base to produce a plot or histogram

which is then stored as a character string slide on the slide file. This

means that the slide must be reformatted for more up-to-date data. However,

we could combine these last two ideas {PLOT and CANSIM) to produce a plot of

current data without having to store the result as a slide. The procedure

might be something like this:

1) Store as a slide, a character string which can be converted to an

executable function to produce a 11 standard 11 plot. (This procedure

is outlined above.)

2) Write a small function like the GET function (described in the

0 DISPLAY section) to retrieve a, specific CANSIM series under keyword

control. (The functions of RAPSODIE are able to do this now with

only slight modifications).

-o

3) Format the series in a pre-defined format.

4) Retrieve and convert the pre-defined PLOT function stored as a slide.

5) Executed the plot function using the formatted CANSIM series as data.

At the present time only the details need to be worked out to ~roduce such

a fantastic result!

When the above modifications are completed then all of the original requirements

for the slide projection system will be complete.

•

•

