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Abstract

This thesis investigates the use of bootstrapping in Temporal Difference (TD)
learning, a central mechanism in reinforcement learning (RL), when applied to deep
neural networks. I first investigate generalization in deep learning and deep RL,
and show that it can be understood through the lens of gradient interference. This
perspective shows a need to adapt the tools of deep RL that are naively imported
from modern supervised learning. Using this insight, I propose a novel optimiza-
tion method for TD based on compensating for the staleness induced by modern
optimizers. I then propose a novel generative modeling method based on bootstrap-
ping. Finally, I propose a novel representation learning method to jointly learn to
act in and understand the world, again addressing the issue of generalization in deep
reinforcement learning.
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Résumé

Cette thèse étudie l’utilisation du bootstrapping en apprentissage par la méth-
ode des Différences Temporelles (TD), un mécanisme central en apprentissage par
renforcement (RL), tel qu’appliqué aux réseaux de neurones profonds. J’investigue
premièrement la généralisation en apprentissage profond ainsi qu’en apprentissage
par renforcement profond (deep RL), montrant que celle-ci peut être comprise via
une perspective d’interférence des gradients. Cette perspective démontre un be-
soin d’adapter les outils du deep RL, alors que ceux-ci sont naïvement importés de
l’apprentissage supervisé moderne. De par cette réalisation, je propose une nouvelle
méthode d’optimisation pour l’apprentissage par TD, basée sur la compensation d’un
biais d’ancienneté (staleness) induit par les optimisateurs modernes. Puis, je propose
un nouvel algorithme génératif basé sur le bootstrapping. Finalement, je propose une
nouvelle méthode d’apprentissage de représentations, qui apprend simultanément à
agir et à comprendre le monde, encore une fois dans le but d’adresser les problèmes
de généralisation en apprentissage par renforcement profond.
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Contributions to Original Knowledge

This thesis contributes to our comprehension of the use of bootstrapping and deep neural
networks from a number of point of views. Specifically, it proposes:

1. A perspective on generalization based around a functional definition of its opposite,
memorization, which shows that:

• memorization is a feature, not a bug: deep neural networks rely on individual
examples to map the space of general patterns and in doing so generalize;

• when using bootstrapping for Temporal Difference (TD) learning, generalization
(or lack thereof) behaviours can be partially explained by interference, i.e. how
learning about a new example affects what has been learned before.

2. An optimization algorithm for methods using bootstrapping, in particular TD learn-
ing, which:

• is based on a notion of staleness in momentum, whose existence is empirically
verified;

• provides a first-order correction which speeds up convergence of TD learning in
the evaluation setting.

3. A framework designed for the sampling of discrete objects, based on the concept of
diversity through reward-proportional sampling. This framework:

• is based on a notion of flows and flow-consistency, which is shown to achieve
the desired reward-proportional sampling;

• can be materialized through a bootstrapping-based objective for function ap-
proximators;

• is shown empirically to be able to diversely explore the space of drug-like
molecules while finding high-reward candidates.
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4. A representation learning framework based on jointly learning to represent the world
and act in it, which leverages the independence of the factors that an agent can
control. This framework is shown to be able to recover such factors in simple settings.
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Contributions of Authors

• Chapter 1 provides a high-level overview of the field of Artificial Intelligence, the so-
cial and scientific context in which this thesis is written, as well as central hypotheses
of the thesis. Chapter 2 provides the technical foundations of this thesis. Both are
original material.

• Chapter 3 is built around two papers, Arpit et al. (2017) and Bengio, Pineau, and
Precup (2020a).

– The first is a collaboration between a number of colleagues (with the four first
authors having equal contribution): Devansh Arpit, Stanisław Jastrzębski, Nico-
las Ballas, David Krueger, myself, Maxinder S Kanwal, Tegan Maharaj, Asja
Fischer, Aaron Courville, Yoshua Bengio, and Simon Lacoste-Julien. While we
collectively wrote an entire paper to which I have contributed to here and there,
there is a particular subsection and its corresponding set of experiments which
I have produced. Section 3.1 thus highlights and reuses the material from my
particular contribution to this paper, accompanied by a summary of its other
results as well as the context in which this paper was written.

– Section 3.2 is based on Bengio, Pineau, and Precup (2020a) and reproduces its
material for the most part, with some adjustment and extra contextualizing.
The code and experiments were written by myself, while the paper was written
with the help of my supervisors Joelle Pineau and Doina Precup.

• Chapter 4 is based on Bengio, Pineau, and Precup (2020b), and also reproduces the
original material fairly closely, with the code and experiments produced by myself,
and again writing done with the help of Joelle Pineau and Doina Precup.

• Chapter 5 is based on Bengio, Jain, Korablyov, Precup, and Bengio (2021), which
emerged through the Mila Molecule Discovery project, led by Maksym Korablyov.
Specifically, Yoshua Bengio and myself contributed to the original idea, and wrote
most sections of the paper. Yoshua Bengio wrote the proofs of Propositions 1-3, and
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I the proof of Proposition 4. I wrote the code and ran experiments for the single-
round reward-fitting setting. Moksh Jain wrote the code and ran experiments for
the multi-round setting and wrote the corresponding results section of the paper.
Maksym Korablyov wrote the biochemical framework upon which the molecule ex-
periments are built, assisted in debugging and running experiments, implemented
mode-counting routines, and wrote the biochemical details of the paper. Maksym
Korablyov, Doina Precup and Yoshua Bengio provided supervision for the project.
All authors contributed to proofreading and editing the paper.

• Chapter 6 is based on Bengio, Thomas, Pineau, Precup, and Bengio (2017), Thomas,
Pondard, Bengio, Sarfati, Beaudoin, Meurs, Pineau, Precup, and Bengio (2017), and
Thomas, Bengio, Fedus, Pondard, Beaudoin, Larochelle, Pineau, Precup, and Bengio
(2018), but the material reproduced in this thesis follows the second paper more
closely.

– Bengio et al. (2017) is the first paper of the series, and stems from an origi-
nal idea from Yoshua Bengio, which I implemented and produced results for.
Valentin Thomas then joined the effort, producing results for the second half of
the paper.

– Thomas et al. (2017) and Thomas et al. (2018) are attempts to follow up the
original work by extending it to the continuous domain. Attribution is fairly
spread, but there is a core group, Valentin Thomas, Jules Pondard, William
Fedus, and myself, who worked very closely on finding ways to make the ideas
in this project come to reality (and to whom equal contribution is credited in
those papers). Marc Sarfati contributed to some of the experimental effort,
while other authors acted as supervisors and gave some help in writing the
papers.
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1
Introduction

1.1 Context and Motivation

1.1.1 Cognition, Abstractions, and Scale

Humanity has long been in the business of creating more and more powerful tools, but
perhaps its most distinctive feature shared with but a few species is its capability to
create cognitive tools. Such tools simplify and accelerate the process of thinking, not only
within individuals but also within groups and societies (Hutchins, 1995). Language allows
information to flow faster, formal logic allows robust deductive reasoning, mathematics
and physics provide us with powerful predictive models of our physical reality.

Computer Science now allows us to think about a different category of cognitive tools.
By formalizing the very notion of information (Shannon, 1948) and what can be computed
out of it and to what limits (Church, 1936; Turing et al., 1936), this field empowered
humanity by offloading cognition itself to external tools, computers.

Yet, this transition is far from over. The first and most obvious cognitive tasks per-
formed on computers were arithmetic and logic, done on larger scales and at faster speeds
than humans are capable of. Today, computers are capable of a fantastic array of tasks:
drawing virtual scenes with an uncanny resemblance to reality, analyzing text for mis-
takes, coordinating satellites orbiting our planet, simulating incredibly complex quantum
mechanical systems, storing and communicating incredible amounts of information, and
more feats than I can list here.

However impressive, these tasks rely on fairly simple tools of cognition (or rather,
computation), that is, simple rules of logic and arithmetic that are arranged in complex
ways and at massive scale. Tomorrow, the limit we will be breaking is that of abstract
cognition.

Indeed, it was quickly realized that not all cognitive processes nicely fit the framework
of logic and arithmetic (Minsky, 1961): intelligent beings are capable of inductive thought
formed on the basis of fuzzy statistical beliefs, and these beliefs can be acquired, i.e.
learned over time (Turing, 1950). That this process can be automated in a computer is,
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in a nutshell, Machine Learning.
What of abstract cognition then? Are machines capable of dealing with complicated

arrangements of such fuzzy references to the world? Impressive human-like conversations
can be had today with computers trained with Machine Learning (Brown et al., 2020).
Arguably, such a system possesses the capacity for abstract thoughts; it takes in language,
an abstract encoding of ideas, and produces a language response that could have very well
been produced by a human. In doing so, it must have handled complex abstract ideas and
processed them in abstract ways to create novel sentences. Yet, two aspects indicate this
is possibly not the case.

Indeed, such impressive and complex systems suffer from a scale problem and a gen-
eralization problem, both of which might be attributed to these systems’ lack of some
automated capability for abstract thought.

The scale problem is simply that progress for current systems seems to roughly follow a
power-law (Kaplan et al., 2020): to increase the performance of the system by one unit one
needs to multiply (think “double”) the amount of computation it requires by a constant.
This is not practical, at least for the constants that our current methods have, and is at
odds with the little amount of data that biological intelligent systems seem to require to
achieve the same tasks. This observation, coupled with the observation that we can train
artificial systems to perform certain specific kinds of predictions better than humans (such
as identifying dog breeds, Foret et al., 2021), but not other kinds of predictions (such as
answering natural language questions about images, Zhang et al., 2021), suggest that a
particular type of abstract reasoning does not scale well with current methods.

Generalization is the ability for a model to make correct predictions about novel situa-
tions. The generalization problem refers here to the type (and frequency) of errors that are
made. When making predictions about things that have never been seen before, Machine
Learning systems sometimes behave in inconsistent (Arjovsky, 2021) or catastrophically
wrong ways (Szegedy et al., 2014). In other words, they sometimes fail to generalize from
their past experience, for reasons still fundamentally beyond the field’s grasp.

Interestingly, the difficulty in identifying such reasons seems to go hand in hand with the
increased complexity of the models we use. The last two decades have seen one particular
class of models gradually take over many parts of Machine Learning, but also of many
other sciences. Artificial neural networks (McCulloch and Pitts, 1943; Rosenblatt, 1958;
Fukushima, 1980; Rumelhart et al., 1988) have been found to be an extremely powerful
and general way to model natural data, particularly in their large scale form, deep neural
networks (LeCun et al., 2015; Goodfellow et al., 2016), which have been found to be capable
of impressive generalization (Krizhevsky et al., 2012; Silver et al., 2017; Brown et al., 2020).

This latter aspect, generalization, concerns a large part of this thesis, as we will discuss
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in §1.2.1. It seems likely that the abstract systems of the future will still rely on the
systems that we currently use as their foundation (assuming these systems resemble the
human mind; see e.g. Kahneman 2011 for literature inspiring current research). As such,
understanding how and why Machine Learning systems generalize (or don’t) seems of vital
importance.

1.1.2 Reinforcement Learning

Another more specific kind of cognitive task is that of predicting behaviour: actions to
take in a system over time. Such an aspect of Machine Learning also quickly became
a concern in the field (Skinner, 1953; Minsky, 1961; Sutton, 1988) due to its inherently
difficult challenges. A particular paradigm currently dominating the field is the framework
of Reinforcement Learning (RL, Sutton and Barto, 2018), which sees behaviours of all
complexities as nothing more than the maximization of a reward signal over time (Silver
et al., 2021). Although simple, and almost all-encompassing, such a framework has led to
some impressive feats of long term decision making by computers, perhaps most exemplified
by Silver et al. (2017)’s Go playing system, beating humans when such a capability was
considered to be still decades away.

Indeed, many problems can be usefully framed as Reinforcement Learning problems.
The problem of playing a game for example, where a player receives positive reward upon
winning and negative reward after loosing. Using these rewards, a player can learn to
change (or reinforce) its strategy, i.e. its behaviour. Other problems include regulat-
ing glucose levels in diabetics over time (Yasini et al., 2009), controlling regulators of
epilepsy (Panuccio et al., 2013), driving a car (Sallab et al., 2017), forming maximally
informative trajectories for MRI scanners (Pineda et al., 2020), or personalizing content
recommendations (Chen et al., 2019).

Because of its potential application to a wide array of important problems, studying
Reinforcement Learning is an appealing path for the simultaneous advancement of many
application fields.

In this thesis, we contribute to the comprehension of Reinforcement Learning, but
more specifically, this thesis revolves around the concept of bootstrapping (Bellman,
1956; Sutton, 1988). While we define this concept formally in the next chapter, it’s useful
to think of bootstrapping as relying on predictions of the future to learn about the present.

Intuitively, this can work particularly well with generalization. Consider the behaviour
of throwing a red ball; after the ball lands, I can observe its trajectory and learn to predict
its parabolic curve. What happens as soon as I start swinging my arm to throw a blue
ball? Its weight might be different, but even before it has left my hand, I can already
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adjust my internal model by relying on my prediction of the blue ball’s future, which I
make by generalizing from the trajectory of the red ball. Through this mechanism, which
compares what’s going on in my hand as I throw the blue ball with my predictions of the
future, I can adjust my mental model of reality much faster than if I had to wait for the
blue ball to complete its trajectory.

This analogy transfers to longer time horizons as well. By using our past experience,
combining it with our present experience, and comparing both, we can learn to answer
such questions as, what actions should I take to brew my coffee? or, should I get a PhD?

Let’s finish this discussion of Reinforcement Learning by discussing its inherent chal-
lenges alluded to above. Central to Reinforcement Learning is the concept of time. Even
though some aspects of the future can be predicted to various degrees of accuracy by
computers, the inherent randomness and exponential growth over time of the number of
possible futures makes predictions about how to act fundamentally hard. The reverse is
just as true: when an event occurs, the number of its possible causes can grow arbitrarily
large depending on how far back in time we’re willing to look. Fortunately, mechanisms
such as bootstrapping allow us to reuse information we’ve previously acquired to learn,
but this only helps us so much.

In practice, such difficulties make generalization, credit assignment, and exploration
hard. As I will make more explicit later in this chapter, these are central questions to this
thesis.

1.1.3 Automation and Humanity

It would seem amiss not to discuss the historical context in which this thesis is written.
Let us stray for a moment from the main topic of this thesis.

Tools empower whoever uses them: for a fixed amount of calories expended, more work
is done. Throughout history this has been both a curse and a blessing, depending on the
inclinations of the people wielding the tools (Diamond, 1997). Knowledge allowed humans
to build extraordinarily intricate structures and networks of now planetary scale, reduced
suffering, and prolonged life (Harari, 2014). The introduction of Machine Learning into
our set of everyday tools certainly also has been beneficial for humanity in a myriad of
ways, and in many aspects will continue to be for the foreseeable future. For example,
part of this thesis is concerned with finding more efficient tools to discover novel drugs.

At the same time, more efficient tools can mean more efficient manipulation and op-
pression. More efficient tools allow fewer individuals to affect (willingly or not) larger and
larger numbers of people (Noble, 2018; Ribeiro et al., 2020). That this is done on pur-
pose or not may not matter, as current automation tools propelled by Machine Learning
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often simply reproduce the existing biases that exist in the societies in which they are
built (Buolamwini and Gebru, 2018; Perez, 2019; Abid et al., 2021).

Indeed, the problems of fairness (Barocas et al., 2017) and alignment (Leike et al., 2018;
Brundage et al., 2020) are active fields of research. Until we have a deep understanding
of these facets of Machine Learning, it may be a dangerous game to work at improving
the existing tools we have (which we know to be unfair by default). At the same time, we
may not be able to achieve fairness and alignment until we improve the tools we have, or
at least our understanding of them (the two often go hand-in-hand).

Even assuming that all is well and fair, cognitive and physical automation through Ma-
chine Learning poses a new fundamental problem to the organization of societies. Virtually
all of humanity is now operating under local variants of the same economic system, one
which directly relates labour and value (Samuelson and Nordhaus, 2007; Piketty, 2018).
As we’ve just alluded to, automated tools increase the effective labour that one individual
can do, directly or indirectly through ownership of the tool. This means that whoever cre-
ates or owns such tools will be immensely valuable, which might mean wielding immensely
more influence over others (Gilens and Page, 2014; Birn, 2014). This is concerning, if one
cares about equality and equity, considering the current economic system is ubiquitously
perceived in Western societies as the only option, even by those opposed to it (Fisher,
2009; Pew Research Center, 2019). Although it has arguably served us well in the past,
and certainly propelled most of humanity forward, it’s not obvious that in the face of au-
tomation it will continue to do so. Considering the key role of automation in this equation,
it is likely that computer science and computer scientists will play a key role in how this
future unfolds.

Finally, it certainly isn’t too early in history to begin to think about the existential-risk
problem (§26.3 Russell and Norvig, 2002; Bostrom, 2002). Are we on the path to create
tools so powerful that their misuse, voluntary or not, could significantly harm humanity?
Furthermore, intelligence, sentience, and cognition appear to be intrinsically linked. It
makes sense to seriously ask what will happen when we create an artificial sentient being
with cognitive capacities well beyond our own (Bostrom, 2014). Again, it seems likely for
computer science to play a crucial role in the future of homo sapiens.

1.2 Central Hypotheses and Outline

Let’s now discuss the concrete problems that this thesis is trying to solve. After having
laid down the technical foundations of this thesis in chapter 2, we will spend some time
trying to understand the challenge of temporal credit assignment through bootstrapping
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in chapters 3 and 4. Then, in chapter 5, we will discuss how it is possible to leverage the
ideas behind bootstrapping to produce diverse reward-seeking generative models. Finally,
in chapter 6, we will discuss the challenge of learning representations, useful models of
the world, that would facilitate temporal credit assignment and solving Reinforcement
Learning problems.

1.2.1 Challenges in Temporal Credit Assignment

Generalization is the ability to make useful predictions about situations one has never
encountered before. Temporal credit assignment is the ability to attribute a cause, usually
backwards in time, to a currently observed effect. In chapters 3 and 4 we will see that
the two concepts are deeply tied to one another, and in what ways. In fact, both chapters
revolve around the hypothesis that deep reinforcement learning (RL using deep neural
networks) uses the wrong tools for temporal credit assignment.

Indeed, while the Reinforcement Learning framework is a powerful way of conceiving
of problems, allowing us to apply RL methods to a wide variety of them, its generality
comes at some cost. When dealing in problems that are related to time, some fundamental
assumptions that are at the core of many Machine Learning are no longer applicable.

Take for example the concept of a stationary environment. In such a environment,
the values that a Machine Learning model has to predict do not change over time. For
an image classification system, a cat will forever be a cat. In a large number of Machine
Learning methods, in particular those used within Reinforcement Learning methods (as
subroutines or subcomponents), this stationarity assumption is central. In many Rein-
forcement Learning methods, this assumption is broken. For example, as an agent learns
to play the game of Go, it may realize that certain strategies are more advantageous than
others, and will start using them when playing new games. This change will affect the
type of games that the agent will use to learn, and what it has to learn about will change.
We say here that the agent is facing a non-stationary learning environment. Here the
stationarity was self-induced, but there exist many more kind that may be external to an
agent.

By using tools from Machine Learning that rely on these (now broken) assumptions,
deep RL methods lack the robustness and guarantees that normally come with such tools.
In an attempt to understand this phenomenon, in chapter 3, we first introduce a functional
definition of generalization by contrasting it with that of pure memorization, and show
that this provides valuable insights into the behaviours of deep neural networks leading to
generalization. We then introduce the notion of interference, and show that it captures
some structural problems that prevent deep reinforcement learning agents from accurately
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learning and performing temporal credit assignment. In particular, we find that it is the
learning method (rather than the problem being solved) which, through its reliance on
bootstrapping, is at the root of behaviours we find to be radically different between RL
and non-RL experiments.

Armed with this knowledge, we introduce a novel optimization method in Chapter 4
which is aware of some aspects of non-stationarity, and show that it helps with speeding
up temporal credit assignment. More specifically, this method relies on correcting stale-
ness in momentum-based optimization methods (Polyak, 1964). These methods use the
accumulation of past information to learn faster, but as time passes such information be-
comes stale. This is doubly so in non-stationary learning situations, for which we provide
a correction when the non-stationarity arises from bootstrapping. Since bootstrapping is
about using predictions of the future to learn about the present, when such predictions
change, the learning problem changes, inducing non-stationarity.

1.2.2 Using Bootstrapping to Train Generative Models

A strength of Reinforcement Learning methods is that they can be used solve problems
that aren’t necessarily traditionally viewed as reward-maximization problems. In chapter
5 we take this view at heart to solve a generative problem by taking inspiration from a
core Reinforcement Learning mechanism: bootstrapping.

Let’s take for example the problem of generating a molecule such that it has nice prop-
erties. Such a process has multiple time steps, since the molecule must be enumerated in
some way (e.g. atom-by-atom), and has characteristics that can be turned into a scalar
reward (how good the molecule is), and so can be solved with RL methods (Popova et al.,
2019). Traditionally, this problem is solved with highly heuristic methods based on iter-
ative sampling (McDonnell et al., 1995; Kawai et al., 2014). For example in evolutionary
methods, an existing pool of candidates is iteratively randomly modified and filtered for
its most promising candidates. In so-called Monte Carlo Markov chain (MCMC) methods,
this modification is made to be adaptive in order to more quickly obtain a high-reward
candidate set. The advantage of these methods is that they naturally produce diverse
candidates, at some cost. By comparison, RL methods are typically designed to produce a
unique maximally rewarding solution. How should we best solve the problem of generating
diverse and high reward candidates?

In chapter 5, we show that applying either RL or iterative methods to this problem
has some particular downsides. We also propose a novel algorithmic framework, named
GFlowNet, which takes on the best parts of each of these methods. First, this framework is
sequential like RL rather than iterative like MCMC or evolutionary methods, which comes
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with several advantages (for example, sampling is amortized over the learning procedure).
Second, we use bootstrapping combined with the notion of flow to obtain a learning ob-
jective that induces the diversity normally achieved by iterative methods, but which RL
struggles to obtain due its fundamentally reward-maximizing nature. We then show that
the proposed method achieves these goals in practice, both in restricted settings and in a
large scale drug discovery problem.

1.2.3 Agents that Learn by Themselves

The third and final part of this thesis concerns learning representations (Bengio et al.,
2013b), internal world models that interactive agents rely on to take decisions. A central
hypothesis that is made here is that agents should want to learn to control their envi-
ronment, and more specifically, to learn to identify which parts of their environment are
independently controllable.

The problem of learning representations is central to the application of Reinforcement
Learning to large scale problems. Typically, problems are defined by an environment and
its reward function, and agents learn to behave entirely from this reward signal, which one
can think of a supervision to the agent provided by humans. This can be a problem if
this reward is very specific (i.e. the reward is 1 for a robot when it makes a good coffee, 0
at every other instant of its life), because it is very hard to discover. This can also be a
problem if the reward is not yet known, but we’d still wish for an agent to learn about its
environment by themselves, without explicit supervision, so that when we have a task for
it, adapting to the task is fast.

As such, in the absence of reward, the most interesting thing to do for an agent seems
to be to learn to explore the world and understand how it works. We postulate that one
effective way for an agent to model the world in such circumstances is to learn a set of
behaviours, and to tie each behaviour to an internal representation of what the behaviour
is changing. Furthermore, we push the agent to learn these representations and behaviours
such that the behaviours affect unrelated, or independent, aspects of the environment.

In chapter 6, we give a formal definition of what it means for representations to be
independently controllable, propose several learning algorithms that aim to recover such
representations, and show experimentally that they allow agents to recover the true con-
trollable aspects of their environment. We show that such agents are capable of interesting
abilities, such as planning about the future and how they can affect it directly.
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2
Technical Foundations

In this chapter, we present some of the technical foundations on which the work presented in
the rest of this thesis is based on. We define the shared technical language we will be using
throughout, and defer to later chapters the exposition of relevant technical background
unique to them. We finish this chapter by outlining the motivations for this work, in terms
of these technical foundations.

Throughout the thesis we assume technical knowledge from the reader at the level
of computer science undergraduate textbooks. In particular, we refer to linear algebra
concepts (see Anton and Rorres, 2013), probability theory (see Wasserman, 2013), calculus
(see Stewart, 2009), and set theory and algorithmics (see Brassard and Bratley, 1996).

2.1 Deep Learning

Something is said to be learning if it adapts, for some purpose, to the information available
to it over some period of time. This definition is quite broad, but useful to keep in mind as
a context in which machine learning arises. Evolution is a form of learning: DNA adapts
to its environment for the purpose of self-replication over generations. Memory is a form
of learning: animals retain maps of their environments to better survive over their lifetime.

Machine Learning (ML) refers to a broad category of algorithms, ran on digital ma-
chines, which achieve some purpose, some objective, by using the information or data
they are provided to self-correct and improve on this objective over iterations of the algo-
rithm.

This adaptation is commonly done by adjusting a set of parameters that inform the
predictions made by such algorithms. This predictive mechanism is commonly referred
to as a model. Just as scientific models help us describe some aspect of reality (for
example, Newtonian physics and general relativity are models; weather forecasts are done
with models) to some degree of fidelity, machine learning models help us predict something
about data (for example, what the data contains, how it is generated, or what actions to
take given data about the present).
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Deep Learning (DL) refers to a type of parameterization and accompanying learn-
ing algorithms that are inspired by biological neural networks and biological cognitive
mechanisms. Artificial Neural Network (ANN) models have emerged recently as a
very useful structure, a type of model that seems capable of making more accurate predic-
tions about some aspects of reality than previous types of models.

For an in-depth overview of machine learning and deep learning, we refer the reader to
Bishop (2006a) and Goodfellow et al. (2016) respectively. In what follows, we present the
aspects of machine learning and deep learning relevant to this thesis.

2.1.1 Machine Learning and Function Approximation

Machine Learning methods are typically concerned with approximating functions, map-
pings f from one space X to another Y . This approximation is possible when we have
data, examples of (x, y) ∈ X ×Y pairs (note that y is not always given) that come from
some “true” mapping f ∗ (for example human-provided labels). ML methods typically have
two main parts. The first describes a parameterization, an algorithm that describes how
to compute f(x) for any x. The second describes a learning method, an algorithm that
describes how to adjust f(x) given a set of examples, with the goal that f(x) approximates
f ∗(x). This learning (or training) is done by changing internal parameters of f used to
compute f(x), which we will denote with θ throughout (typically θ ∈ Rn, where n need
not be fixed during the lifetime of a model). This coupling of model and parameters is
explicited as f(x; θ).

We say that a given f(x; θ) is a model, it makes (imperfect) predictions about some
input x ∈ X . X can take a variety of forms, but conceptually can be thought of as Rd

in most cases (and in a way, Rd is a superset of any data representable on a computer,
which is convenient for us). For a given parameterization, we call the set of all possible
models, induced by the set of all possible parameters Θ (for example Rn), the hypothesis
class H = {f(·; θ)|θ ∈ Θ}. A common problem in ML is choosing this hypothesis class,
in particular choosing its size by fixing n when θ ∈ Rn. A naive view of this suggests two
outcomes: when |H| is too small and f ∗ /∈ H, we say that f ∈ H is underparameterized;
when |H| is too large and many hypotheses are “correct” (or appear correct) we say that f
is overparameterized, that is conceptually when |{θ | ∀x f(x; θ) ≈ f ∗(x)}| � 1. What
we exactly mean by correct can be a fairly involved question, but superficially we can
imagine correctness as the ability for a model to make good predictions on a given set
of data. Note that even if a parameterization is overparameterized, finding those optimal
parameters can be hard (in fact it can be NP-hard, see Blum and Rivest (1992)).

Another choice that induces different hypothesis classes is the parameterization choice,
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i.e. how each element of θ is used to compute f(x; θ). For example, we may choose a linear
parameterization for f , writing f(x; [a b]) = ax+b, or a quadratic one, f(x; [a b]) = ax2+b.
In the next section (§2.1.2) we will discuss the characteristics of using deep neural network
parameterizations.

As mentioned previously, learning is typically done to achieve some quantifiable ob-
jective, typically that of matching f ∗. In ML, this objective value often has a particular
interpretation, it is a loss function which we wish to minimize, usually through differ-
entiation (more on this later). It is worth noting that the design of objectives itself is a
non-trivial enterprise (see for example de Brébisson and Vincent (2015) or Jaderberg et al.
(2017)), as objectives are often only useful proxies of some other desire. For example, in
classification we wish to learn functions that map some input to a unique class. As such
we could measure the accuracy of a given model: how often the model gives the correct
answer when tested on a set of data points. We could also measure other things: the false
positive rate, the average likelihood of the correct answer (i.e. how confident the model
is about its prediction). In regression, instead of a unique label we want our models to
predict some scalar quantity in Y ⊆ R. We could measure the mean squared error, but
also the mean absolute error (or generally errors of the form |f(x; θ) − y|p). The right
objective to choose often depends on the problem on which we wish to apply the model.
These two problems, classification and regression, are examples of supervised learning
methods (see Murphy, 2012, for a reference), where y is known.

To quantify how well a model is doing, this objective value is typically measured on two
non-overlapping sets of data, the training set and the test set. The training set includes
examples that are used by the learning algorithm to adjust the parameters, while the test
set is only used to obtain an unbiased estimate of the expected objective value (over all
possible inputs). The training set itself is usually subdivided into two subsets, one of which
is the validation set. The latter is used not to adjust parameters but hyperparameters
(such as n, the number of allowed parameters).

Generalization refers to the ability of a model to make correct predictions on inputs
that it has never seen. The gap between the objective value on the training set and the
test set is called the generalization gap, i.e. let Dtrain and Dtest be these sets, and let
J(y, ŷ) be the objective value for a data point (x, y), it is:

Gap = 1
|Dtest|

∑
(x,y)∈Dtest

J(y, f(x; θ))− 1
|Dtrain|

∑
(x,y)∈Dtrain

J(y, f(x; θ)) (2.1)

= Jtest − Jtrain

When the objective value on the training set is near-optimal, and the generalization gap is
large (precisely what this means is problem-dependent), a model is said to be overfitting.
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Conversely, if the gap is small but the training objective is far from its optimal value, a
model is underfitting. We depict this visually in Figure 2.1.
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Figure 2.1: A cartoon view of overfitting and underfitting.

Generalization is often closely linked with the hypothesis class and the amount of data
available: succinctly, the more data one has, the less likely it is for an overparameterized
model to overfit.

Finally, the above discussion makes a very fundamental assumption about data. It
assumes that the training set and test set are drawn from independently identically
distributed (i.i.d.) random variables. In other words, it says that every example is drawn,
independently from other examples, from some distribution D. This is an important
assumption to be mindful of for two reasons: first, it is often broken, and second, it is often
a simplifying assumption. The so-called i.i.d. assumption is often broken, for example in
online settings where data is collected on the fly, the distribution of data can change with
time. This is often the case in Reinforcement Learning as we will see later (§2.3.2). The
i.i.d. assumption is also often a simplifying assumption, data can often contain information
about more aspects of the world than the task it is used for, other similar distributions we
also care about. This is the subject of ongoing research (Arjovsky et al., 2019), and is also
relevant in Reinforcement Learning.

Later in this thesis, we will discuss generalization in greater detail (§3.1), but note
now that it is a central challenge in ML. Making predictions and developing theory about
where models fail (especially complex models) and by how much they fail appears quite
hard (Krishnapuram et al., 2005; Szegedy et al., 2014; Zhang et al., 2017; Dziugaite et al.,
2020).
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2.1.2 Deep Neural Networks

Artificial Neural Networks (ANNs) have become a standard parameterization for a
large class of problems, often those concerned with so-called real-world data, such as
sensory perception data–images (Krizhevsky et al., 2012), videos (Ranzato et al., 2014),
sound (Oord et al., 2016), natural language (Devlin et al., 2018)).

Models are typically considered ANNs when they compose several simple parameterized
transformations in a directed acyclic graph, most commonly linear projections and non-
linear scalar transformations. Canonical ANNs (Rumelhart et al., 1988), also referred to as
Multi-layer Perceptrons (MLPs), are expressed as a composition of functions of the form:

f(x; θ) = (aL ◦ hL ◦ aL−1 ◦ hL−1 . . . a2 ◦ h2 ◦ a1 ◦ h1)(x), (2.2)

where al is a non-linear activation function applied element-wise to each component of a
vector, and where a so-called hidden layer h(v;W,b) is a linear projection of the form
Wv+b. Common activations include the hyperbolic tangent, tanh, and the rectified linear
unit, or ReLU: a(x) = max(0, x). For the model above, we write θ = {W1,b1, · · · ,WL,bL}.
Note that we shorthand (hl ◦ . . . ◦ a1 ◦ h1)(x) as hl(x).

In the above example, we would say that f is a neural network with L layers. When L
is large enough, we call these models Deep Neural Networks (DNNs). The distinction
arises because, with depth, surprising (and useful) properties arise. DNNs are capable of
expressing highly-complex functions (Montufar et al., 2014), of solving otherwise difficult
problems (Krizhevsky et al., 2012; He et al., 2015), and possess intriguing generalization
capabilities (Zhang et al., 2017) as well as scaling behaviours (Kaplan et al., 2020).

Again in the above example, note that the dimensions of the weight matrices can be
arbitrary. For some function with x ∈ Rdin and f(x) ∈ Rdout , as long as the dimensions of
the product of these matrices is correct, i.e. that WLWL−1...W2W1 ∈ Rdout×din , they can
be of any shape. When W1 has the shape n1×din, we say that the width of the first layer
is n1, and so on for higher layers.

Just like width, depth, can be chosen somewhat arbitrarily, which induces a model
design choice. Models with more width and depth can represent more complex functions,
but require more storage and more computation power. They are also sometimes less
convenient to train.

Notable variants of the above parameterization include convolutional neural networks
(LeCun et al., 1998), which apply convolutions to the input to induce translation invari-
ant predictions that are useful in visual and audio domains, transformer neural networks
(Vaswani et al., 2017), which apply attention (Bahdanau et al., 2014) to selectively pro-
cess their inputs, and recurrent neural networks (Rumelhart et al., 1988; Hochreiter and
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Schmidhuber, 1997; Graves, 2013), which process their inputs sequentially, useful for do-
mains such as natural language processing. While these variants are more efficient at
dealing with various types of data, they all compose simple parameterized linear and non-
linear transformations, and as such they all possess the properties mentioned previously.
In that sense, they all belong to the class of DNNs. Since the work of this thesis does not
rely on the particular properties of these parameterizations (rather, simply on the prop-
erties shared by all DNNs), we refer the reader to Chapters 9 and 10 of Goodfellow et al.
(2016) as well as the works referred to above for more details.

Of particular interest in DNNs are the values that hidden layers take while computing
f(x). These values are referred to as the hidden features, or representations, or also
embeddings (Bengio et al., 2013a), learned by the neural network. In particular, the
value of the penultimate layer hL−1(x) is interesting. Naively, this level of representation
can be seen as the most abstract representation of the input. This is typically the case
due to the nature of the last layer hL, for example, for an accurate classifier with hL(v) =
Wv + b, hL(x)i being the unnormalized (log-)probability prediction for class i, the hidden
representations hL−1 must be linearly separable (the points hL1(x) of each class can be
separated from every other class by a hyperplane). This is a potentially useful property,
and allows for the reuse a models from one task to another (Bengio et al., 2007; Brown
et al., 2020).

In the previous section we described overparameterization as there being a large number
(or volume) of low-error solutions (where f(x; θ) ≈ f ∗(x)) in the hypothesis class. For most
problems, this is likely to be true for a large enough DNN. Indeed, Montufar et al. (2014)
look at a way to quantify the complexity of functions that MLPs can express, and find an
upper bound on this quantity. This bound is of the form Ω(cLd1 c2), where c1 > 1, c2 > 1
depend on the width of the network, L is the number of layers and d the input dimension.
The important aspect of this bound is the exponential dependency on L, the depth, which
suggests that deep ANNs can express incredibly complex functions, and thus, are very
likely to be in the overparameterized regime. More fundamentally, Cybenko (1989) and
Hornik (1991) show that, given sufficient width, ANNs can express any function to an
arbitrary degree of precision (but again, this doesn’t mean that such ANNs are easy to
find through learning and with limited information).

There is another important way in which DNNs are commonly thought of as overparam-
eterized: the number of parameters commonly exceeds the number of training examples
shown to a model. Common sense would suggest that in such a regime, the model is free
to simply memorize what to predict on its training data with no regards to uncovering
general patterns (i.e. it is not bound by Occam’s razor (Blumer et al., 1987)) and thus
will overfit and have a large generalization gap. Surprisingly, empirical results suggest the
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opposite: larger, deeper models tend to systematically generalize better (Kaplan et al.,
2020) if trained properly. In fact, there is now a wealth of literature trying to understand
how and why DNNs generalize surprisingly well. We explore this literature in more detail
in §3.1.

Let us conclude this section by discussing how DNNs are trained. We have so far
avoided this subject because Machine Learning contains a plethora of training methods
(and parameterizations). Such a variety also exists within the Deep Learning literature,
but most of these methods are fortunately based around a simple idea: gradient descent.
Recall how we formulated MLPs in (2.2), and note that as long as the activation functions
al are differentiable functions, then ∇θf(x; θ), the so-called gradient of f , exists. By
design, this is generally true of all DNNs. We noted earlier that there are many ways to
design objectives; by choosing a differentiable objective function J(ŷ), such that ∂J/∂ŷ
exists, we can compute the gradient g(x) = ∇θJ(f(x; θ)) of the objective with respect to
the parameters1 θ. This gradient tells us how to modify θ in order to change (increase
or decrease) J . By repeatedly following this gradient for a set (the training set) of xs,
we optimize for the objective J . When J represents a loss, something to minimize, then
starting from some (usually random; Glorot et al., 2011) θ and iteratively following −g(x)
for randomly chosen training examples x with some speed α (the learning rate) is referred
to as stochastic gradient descent (Bottou, 1998). Note that J may depend on more
than the model prediction, as in supervised learning where target data y is given and we
would write J(f(x; θ), y) or J(ŷ, y).

From this simple idea a large number of optimization methods were developed, and we
discuss these further in §4.1. One aspect to keep in mind is that these methods, gradient
descent and its derivatives, are a priori only suited for (and designed for) strictly convex
optimization problems (i.e. where the second derivative ∂J/∂θ2 is always positive). While
this property does not hold for DNNs, the loss landscape (how J varies with θ) of DNNs has
interesting properties (Dauphin et al., 2014; Garipov et al., 2018; Fort and Ganguli, 2019)
which make gradient-based methods work quite effectively, albeit sometimes requiring some
hyperparameter tuning effort.

Deep Neural Networks have been at the center of a massive shift in how large scale
algorithmic problems are solved. A significant part of this thesis explores how these models
behave when used in conjunction with algorithms designed for interactive agents, and
explores some problems that arise and some interesting solutions.

1Here, and throughout, we abuse notation slightly: when treating θ as a vector, we mean the concate-
nation of all scalar parameters contained in elements of set-θ. Similarly, here we’d consider g(x) to be a
vector of the same shape as vector-θ.
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2.2 Agents and the Reinforcement Learning
Framework

We have so far discussed the idea of models as fairly static predictive tools that transform
information from one type to another, perhaps more useful type. When such models also
predict what to do, we call those models agents. Such agents can be thought of as actors
exercising their agency in an environment.

This definition is again quite broad, but perhaps aptly so, as many things can be
accurately thought of as agents: bacteria, plants, animals, communities and countries, but
also robots, content recommendation systems, and electricity grid management systems.

Reinforcement Learning (RL, see Sutton and Barto, 2018) refers to a broad category
of algorithms concerned with analyzing and improving the behaviour of agents by learning
from data. It is often considered a subset of Machine Learning, although in practice it is
interconnected with a variety of other fields, ranging from neuroscience to economics.

What causes agents to act? The Reinforcement Learning framework makes a funda-
mental assumption about this, which is that agents act in order to maximize a reward
signal over a period of time. For some agents, this is quite straightforward: a chess-playing
program maximizes its odds of winning, i.e. the one-time reward it gets at the end of a
game for winning it. For other agents, perhaps like bacteria, this is not so obvious. This
induces two problems, finding the reward that an existing agent follows, or designing a
reward so that an agent maximizing it behaves in desired ways. Parts of this thesis are
concerned with the latter problem (see Chapter 6), but most of the thesis considers that
the environments and their reward signals are simply given, already designed.

It may also not be desirable to simply maximize reward. Learning behaviours which
vary the amount of reward without simply attempting the find the unique best thing to do
may be useful when the reward is noisy, uncertain, or when diverse solutions are required
(see Chapter 5).

For an in-depth overview of RL, we refer the reader to Sutton and Barto (2018). In
what follows, we present a common formalism used to instantiate RL, as well as the basic
learning methods used within that formalism that are relevant to this thesis.

2.2.1 Markov Decision Processes

A Markov Decision Process (MDP) (Bellman, 1957) is a standard formalism for the
agent-environment paradigm. An MDP M is a tuple 〈S,A,R, T 〉, with S the set of
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states, A the set of actions, R : S × A → ∆(R) the reward distribution2 function, and
T : S ×A → ∆(S) the transition distribution function.

This object M tells us what happens when an agent is in state s ∈ S and performs
action a ∈ A by defining a distribution over possible scalar rewards that the agents can
get from this action, and a distribution over possible states that the agent might end up
after taking this action. Note that this distribution only depends on s and a, and not
on states the agent might previously have been in, i.e. this process obeys the Markovian
property (see Murphy, 2012, Ch. 17). A policy π : S → ∆(A) is a mapping from states
to distributions over actions, and characterizes a behaviour for an agent. For convenience
we write the probability of an action given a state as π(a|s).

Let us now define a few key random variables. Let a trajectory τ(S0, π) = (S0,
A0, R0, S1, A1, R1, ..., SH) be a sequence of length H of states, actions, and rewards,
where St+1 ∼ T (St, At), At ∼ π(St), Rt ∼ R(St, At). Note that H, the horizon, can be
arbitrarily large and can itself be thought of as a random variable, as some formalisms
of MDPs define a set of states to be terminal states which terminate trajectories. Other
formalisms consider terminal states to simply be absorbing, they transition to themselves
regardless of the action, and consider H to always be infinite (see Puterman, 1994, for an
in-depth discussion of MDPs). We call the discounted sum of rewards

G(τ) =
H−1∑
t=0

γtRt, (2.3)

the return, where γ ∈ [0, 1) is a discount factor. Note that some formalisms of MDPs
include γ a part of the tuple, or make it a function of the state, but it is not strictly
necessary. We write G(S) for the return of a trajectory starting in S.

Two key quantities emerge, the so-called value function v, and its action-dependent
counterpart, the action-value function q, respectively defined as the expected return, when
starting from some state, or starting from some state and taking some action:

v(s, π) = Eτ [G(τ)|S0 = s], (2.4)

q(s, a, π) = Eτ [G(τ)|S0 = s, A0 = a]. (2.5)

An important observation is that these quantities can be expressed recursively. Here
we express v and q for countable action and state spaces, but the same definitions extend
to continuous spaces:

v(s, π) = ERt,At,St+1 [Rt + γv(St+1, π)|St = s], (2.6)

q(s, a, π) = ERt,St+1 [Rt + γ
∑
a′∈A

π(a′|St+1)q(St+1, a
′, π)|St = s, At = a]. (2.7)

2We shorthand ∆(X) throughout to denote the type “a distribution over the set X”.
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In general we omit the dependency on π when unambiguous. It may also be convenient
to subscript π as in vπ. The value functions can be useful when determining which states
it is desirable to be in, or which action to pick given the current state.

2.2.2 Value Approximation Methods and Temporal Difference

Much like any other function, the value functions can be approximated by a model. For
now, we assume that states have no information attached to them other than their identity.
In §2.3 we explore methods that would use available information. When the number of
states and actions is finite, we can simply store the predicted quantities in a look-up table;
this is the tabular setting. In general we write V for approximations of v.

When we do not have access to T and only to samples of trajectories, we have no choice
but to approximate the expectations in (2.6) and (2.7). There broadly exist two types of
methods, based on two simple algorithms. The first type is Monte Carlo methods, which
use entire trajectories to learn unbiased estimates. For example, in first-visit Monte Carlo,
the value of a state s is computed to be the average of returns G(s) found in trajectories
for the first occurrence of s in those trajectories.

The second type, and most relevant to this thesis, is Temporal Difference (TD)
methods (Sutton, 1988), which only use parts of trajectories. Its simplest method, 1-step
TD, or TD(0), iteratively uses each transition (St, At, Rt, St+1) to update the stored value
V (St) with some learning rate α with the following update:

V (St)← V (St) + α[Rt + γV (St+1)− V (St)]. (2.8)

Under this method, the value estimate of a state V (st) uses the value estimate of the
next state V (st+1) to improve itself. This is called bootstrapping. TD methods are
interesting because, in a sense, they allow for an efficient use of experience. Much of this
thesis is dedicated to understanding how TD methods interact with deep neural networks,
as this combination has yielded valuable results, but also interesting failures.

2.2.3 Policy Improvement Methods

So far we have discussed interesting quantities about MDPs, assuming some policy π was
given, or at least that we had data generated by an agent following some fixed policy, but
it is possible to learn and approximate policies as well.

A large part of RL is composed of methods to find reward-maximizing policies. These
methods are typically policy improvement methods; they take in a policy and output a
better policy. Generally, the iteration of such improvements lead to an optimal policy. In
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MDPs there exists a unique optimal value v∗, to which corresponds a set (possibly of size
1) of optimal policies π∗ such that v∗(s, π∗) = maxπ v(s, π) ∀s.

There are two notable classes of policy improvement methods. The first is based on
greedy policy improvement, which computes the value of the current policy πk, qπk , and
outputs πk+1(a|s) ← arg maxu q(s, u) or equivalently arg maxu

∑
St+1 P (St+1|St = s, At =

u)v(St+1). In other words, it creates a policy that greedily acts according to its current
estimates of how good actions are.

The second class is that of policy gradient methods (Sutton et al., 1999a), which,
as the name suggests, improve parameterized policies by computing the gradient of an
objective with respect to the policy parameters θ. Unlike for the above greedy deterministic
policies, a distribution over actions is stored3 instead of the best action. This permits the
gradient of the return w.r.t. θ to be expressed in terms of adjustments to the probability of
each action. The canonical policy gradient (Williams, 1992a) formulation is of the form:

Eτ [∇θG(S0)] = Eτ [G(S0)
H−1∑
t=0
∇θ log πθ(At|St)]. (2.9)

Note that this expectation is over all possible trajectories τ , and is typically intractable,
because the number of trajectories starting from some state S0 with horizon H is typically
in O(|A|H), i.e. it is exponentially large. Thus, the expectation has to be approximated
from a comparatively much smaller number of samples. This leads policy gradient meth-
ods to suffer from variance problems, whereby Monte-Carlo estimates of the gradient are
typically so high variance that a large number of samples would be required to obtain
coherent estimates (Ilyas et al., 2018), although in practice this does not always prevent
them from performing well, as we will illustrate in the next section.

2.3 Deep Reinforcement Learning

In Section 2.1 we have presented Deep Neural Networks; they are a powerful set of mod-
elling tools to approximate functions. In Section 2.2 we have presented the Reinforcement
Learning framework, which is a general way to conceptualize interactive agents, as well
as some classes of common learning methods to evaluate and improve the behaviour of
agents.

Deep Reinforcement Learning (DRL or Deep RL) refers to the category of methods
that use DNNs in order to approximate functions necessary to model interactive agents.

3There also exists so-called deterministic policy gradient methods (Silver et al., 2014), but they are
beyond the scope of this thesis.
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This combination opens up a myriad of possibilities in terms of what types of problems
can be solved, and how fast.

In section 2.2 we have discussed tabular methods, that assume all we know about a
state is its identity. This makes generalization impossible: unless we have information
about every state and every action, tabular models cannot make predictions about novel
situations. The MDP framework makes no specific assumptions about the nature of the
state space S, but becomes much more interesting when we allow S to have some struc-
ture, for example, if S ⊂ Rd represents a set of continuous variables representing some
information about the state. Such a setting is interesting because it makes generalization
possible, since it allows the use of function approximation using models, and so enables
models to make predictions about novel situations.

In the following sections we present some notable deep RL methods, the type of prob-
lems that they help solve and some of the challenges that arise.

2.3.1 Foundational Works and Methods

The first notable uses of an ANN within an RL algorithm date back to Barto et al. (1983),
(Schmidhuber, 1991), and Tesauro (1995). In particular, Tesauro’s work implements a par-
ticular form of Temporal Difference learning, TD(λ) (Sutton, 1988; Munos et al., 2016),
using a neural network to approximate the value function v, to play the game of Backgam-
mon. We previously discussed approximating v with a tabular V . More generally, we can
use any parameterized model that takes as input descriptions of states to approximate v,
and write Vθ(S) for a model with parameters θ.

Recall the recursive definition of the value function in (2.6):

v(s) = E[Gt|St = s] = ERt,At,St+1 [Rt + γv(St+1)|St = s].

When approximating v with Vθ, our goal is to perform a regression to G, or equivalently
using a weighted averaging of future targets called a λ-return:

Gλ(St) = (1− λ)
∑∞

n=1 λ
n−1Gn(St) (2.10)

Gn(St) = γnVθ(St+n) +
∑n−1

j=0 γ
jR(St+j)

LTD(λ)(St) = (Vθ(St)−Gλ(St))2. (2.11)

Note that the return depends implicitly on the trajectory and the actions followed from St

when following some policy π. When λ = 0, the loss is simply (Vθ(St)− (Rt+γVθ(St+1)))2,
leading to the TD(0) algorithm (Sutton, 1988).
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While TD(λ) is useful to evaluate a policy π, if we are interested in finding the best
policy π∗, two families of methods that are compatible with ANNs emerge: Q-Learning
methods (Mnih et al., 2013) and deep policy gradient methods (Mnih et al., 2016).

Recall now the definition of the action-value function in (2.7). The action-value function
of the greedy policy:

π(a|s) = 1[argmaxuQ(s, u) = a], (2.12)

can be written conveniently as:

q(s, a, π) = ERt,St+1 [Rt + γmax
a′

q(St+1, a
′)]. (2.13)

This yields the well known Q-Learning algorithm (Watkins and Dayan, 1992) and its
modern deep learning incarnation (Mnih et al., 2013), DQN. In such a method, we once
again perform a regression:

LQL(St, At) = (Qθ(St, At)− (Rt + γmax
a′

Qθ(St+1, a
′)))2, (2.14)

where once again this implicitly depends on St+1 via sampling of the policy.
Recall the policy gradient (PG) formulation in (2.9). This gradient computation can

be adapted to DNNs in a few straightforward ways. In particular, to reduce the reliance
on computing gradients over entire trajectories (as required by G(S0)), Mnih et al. (2016)
adapt the so-called actor-critic formulation to the deep case by relying on a learned value
function to perform the policy gradient update:

ESt [∇θG(St)] ≈ ESt [(Ĝ
(k)
t − Vθ(St))∇θ log πθ(At|St)]. (2.15)

with Ĝ(k)
t a truncated k-step return, Ĝ(k)

t = γkVθ(St+k) +∑k−1
i=0 γ

iRi.
Another notable PG method, used in multiple chapters, is Proximal Policy Optimiza-

tion (PPO, Schulman et al., 2017). PPO works by maintaining two sets of parameters
θ and θold, used to parameterize a policy π. θ is continually updated, while θold is only
updated at regular intervals, and is used to collect data (with πθold). PPO learns a stable
policy by forcing it to stay close to a policy it “already knows” works, or in other words,
it forces πθ to stay close to πθold . This is achieved by using the following objective:

L = ESt

[
(Gt − Vt)

πθ(At|St)
πθold(At|St)

]
, (2.16)

and by preventing this objective of updating πθ to be to far from πθold . One straightforward
way of doing so is by simply clipping the policy ratios. The objective proposed by Schulman
et al. (2017) is thus:

r = πθ(At|St)
πθold(At|St)

LCLIP = ESt [min (r(Gt − Vt), clip(r, 1− ε, 1 + ε)(Gt − Vt))] . (2.17)
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PPO is considered a state-of-the-art method for many problems, and commonly used as a
baseline.

Note that we haven’t addressed several details necessary to implement these methods,
e.g. how Q and V should be parameterized, where the data used for the updates above
should come from, what optimization method should be used. These details are important,
but vary from problem to problem, and are the principal content of a large number of recent
publications. Later in this thesis, we explore some of the problems of these methods, in
particular those tied to bootstrapping, at which point we will explicitly describe these
details.

2.3.2 Challenges of Large Scale Reinforcement Learning

Although the algorithms described so far are seemingly capable of solving increasingly
complicated problems using deep neural networks, two principal challenges have emerged
from the literature.

First is one of generalization. Even though DNNs have remarkable generalization ca-
pabilities, deep RL agents have been found to be very brittle (Farebrother et al., 2018),
incapable of adapting to minor changes in their environment. One of the reasons for this
brittleness appears to be that the tools (the learning methods, model parameterizations,
data processing) we use in deep RL are naively imported from supervised learning, where
for example data is ideally distributed–this is not the case in RL, since as an agent learns
its data distribution changes dramatically, hence not independently distributed.

The subject of Chapter 3 is to identify where these generalization problems take root,
while Chapter 6 concerns methods that aim to learn general representations of environ-
ments.

The second challenge is one of sample complexity. It takes incredible amounts of data
to solve problems using the most efficient deep RL methods known so far. For example,
AlphaGo Zero (Silver et al., 2017), while on-par with or capable of beating every human
expert, required 29 million virtual games against itself – around 40 days of training on
specialized hardware, but the equivalent of hundreds of human lifetimes (about 200 40-
year careers of 8 hours of daily play). This phenomenon is not unique to Go, on simple
arcade environments such as Atari games (Bellemare et al., 2013), agents are routinely
trained for hundreds of millions of frames – almost a thousand hours of real-time play. In
Chapter 4 an optimization method is presented which attempts to curb this complexity.
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3
Generalization and Temporal Difference

This chapter synthesizes two of my contributions, my partial contribution to the work of
Arpit et al. (2017), as well as my own work on interference and generalization (Bengio
et al., 2020a).

Defining generalization is no easy task. While some simple formulations of general-
ization can help us compare different models with some confidence, they do not provide
the breadth of guarantees that algorithm designers look for in their methods, nor do they
help us explain why certain models behave one way or another.

Here we focus on this latter aspect, the behaviour of models. We first ask what are
interesting behaviours to look for, and then propose some insights on how different methods
affect these behaviours, and thus generalization.

Through empirical analysis, we find interesting refinements on our tool set to under-
stand neural networks. One particular aspect of deep neural networks is their capability
for memorization; while neural networks do heavily rely on certain training examples (in a
sense, memorizing them), it seems this behaviour is not incompatible with generalization.
Another aspect of deep neural networks is the strong interconnectedness between parame-
ters, where any given parameter is responsible for a large number of inputs, and conversely,
a single input/output is affected by a large number of parameters. This behaviour, referred
to as interference, affects how neural networks learn and generalize. Interestingly, when
this learning is done through temporal difference, the relationship between interference
and generalization changes, in some cases reversing, which has intriguing consequences for
learning.

In the following sections we expand on these results, first providing some context for
the investigation of generalization, and then discuss how these results might affect what
research directions should be considered by our field.

23



3.1 Generalization in Supervised Deep Learning

3.1.1 Overparameterization and Memorization

Let’s first recall how we defined generalization in §2.1.1, where we said it is the ability
of a model to make correct predictions on inputs that it has never seen. Concretely, in
supervised learning this is often measured through the generalization gap, the difference
in performance on the training set, examples that the model has seen, and the test set,
which the model has never seen:

Gap = 1
|Dtest|

∑
(x,y)∈Dtest

J(y, f(x; θ))− 1
|Dtrain|

∑
(x,y)∈Dtrain

J(y, f(x; θ)), (3.1)

= Jtest − Jtrain.

In learning theory, several quantities predict this generalization gap by relating the
complexity of the input space with the complexity of the model (Vapnik and Chervo-
nenkis, 1971). Superficially, we can understand this relationship as predicting what model
complexity is necessary (how many parameters one can use) given the dimensionality of
the inputs on the number of training examples available. Such a prediction suggests that
if a model has too many parameters, it will have a large generalization gap.

As DNNs emerged as a parameterization of choice to solve increasingly complicated
tasks, this posed a problem. Why do models with orders of magnitude more parameters
than both input dimensions and number of training examples generalize so well? This is
not what traditional learning theory suggests.

One of the traditional views of overparameterization is that it induces a hypothesis
class where many models fit the training data exactly, and that when training an overpa-
rameterized model (i.e. performing a search within this hypothesis class) to convergence,
one essentially finds one of these models at random. This suggests that in-between training
data points, the interpolation could be anything – most likely nonsense.

This view is often depicted visually with a polynomial regression. Consider the re-
gressions in Figure 3.1; a polynomial of degree p = 3 (f(x; θ) = θ0 + θ1x + θ2x

2 + θ3x
3)

is sufficient to fit these 4 data points and obtain a “good looking” curve. We could use
higher degree polynomials, in fact if we’re smart about it we can even use p = 100 and get
reasonable results. But using so many parameters for such a simple problem is a dangerous
game, as we can see in Figure 3.1-Right, naively finding p = 100 solutions that fit the data
can yield models that make terrible predictions in-between data points.

This is a traditional view of the memorization hypothesis, namely that for overparame-
terized models that fit the data perfectly, we should not expect good generalization because
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Figure 3.1: Left: a standard polynomial regression with an increasing number of degrees,
p. Right: Randomly sampled polynomials of degree 100 that also perfectly fit the 4 data
points.

the model has simply memorized its training examples. A corollary of this hypothesis is
that a model that has a low generalization gap does not memorize, and instead relies and
generic features, general aspects of the data which are useful for prediction beyond the
training set. Thus, for a long time, it was assumed that DNNs find such general features
and avoid memorization, explaining their great performance. As it turns out, this is not
the right way to think about DNNs.

In their seminal paper, Zhang et al. (2017) show that DNNs can be trained to make
arbitrary (or random) zero-error predictions on random data, without significant additional
computational effort.

Let us focus on one particular experiment of Zhang et al. (2017), where deep convolu-
tional networks are trained on natural images to predict shuffled labels. In this setup, the
DNNs are forced to memorize the image-to-label mapping, since it is arbitrary. Surpris-
ingly, training such a model to near-zero loss takes only about 2× the number of learning
steps than training on the real labels.

This result was surprising when it came out, because it suggested the following: op-
timizing a DNN to memorize fake data isn’t much harder than optimizing a DNN to
“generalize” to real data, i.e. reach a low test-data error, and so DNNs trained on real
data are probably in a “memorization” regime as well. If this suggestion were true, then
if would leave us with a puzzle: understanding why overparameterized models that do in
fact memorize still have a low generalization gap.
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3.1.2 Reframing the Question of Memorization

In Arpit et al. (2017), we attempt to better understand this puzzle. Let us focus on
two central findings of the paper, (1) that DNNs learn simple patterns first, and (2) that
DNNs behave differently when trained on fake data. Here by fake data we mean data that
has been corrupted to remove its correlations, for example by assinging random labels to
natural images as in the experiment of Zhang et al. (2017) we just highlighted.

These findings allowed us to reframe this puzzle and claim something important: mem-
orization and generalization are not at odds. They show that DNNs have two underlying
phases during training: first they learn simple patterns, and then they adjust their param-
eters to find the patterns specific to individual examples to reach near-zero error. This
suggests that, even though DNNs do rely on memorization, their predictions on unseen ex-
amples is likely to rely on general features. This enables them to have a low generalization
gap.

The finding that DNNs behave differently when trained on fake data is also useful to
support this last hypothesis. Even though DNNs are capable of memorizing anything as
shown by Zhang et al. (2017), if they are trained on data that has structure, they appear
to be in a functionally different regime. As an analogy with Figure 3.1, when the data has
structure, DNNs are more likely to find solutions which are smooth and general (as in the
solutions on the left of the Figure) rather than more “arbitrary” solutions (as the ones on
the right).

I will now highlight my particular contribution to this paper, which came to life as a
fusion of multiple follow up experiments to the work of Zhang et al. (2017) from a total of
11 researchers.

Measuring the influence of individual training examples One way to show that
DNNs are in a different regime when trained on fake data is to try to measure if individual
data points are memorized. In this experiment, we propose a proxy for memorization.

Since we cannot measure quantitatively how much each training sample x is memorized,
we instead measure the effect of each sample on the average loss. To do so, we measure
gtxj the norm of the gradient of the loss, Lt, with respect to a given example xj, j < t after
t SGD updates. Let Lt = L(xt; θt) be the loss L (for example here a classification loss)
computed on xt after t SGD updates to θ, these updates have the form:

θt+1 = θt − α∇θtL(xt; θt), (3.2)

and so this measure is given by

gtxj = ‖∂Lt/∂xj‖1 . (3.3)
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Here, we can compute this quantity because Lt is a differentiable function of θt, itself
a differentiable function of θt−1, and so on until θj+1 where xj is the example used to
perform the update at t = j. In other words, the parameter update from training on
xj influences all future Lt>j indirectly through θ by changing the subsequent updates on
different training examples. In what follows we drop the j subscript for clarity. In practice,
we compute gtx by unrolling t SGD steps and applying backpropagation over the unrolled
computation graph, as done by Maclaurin et al. (2015). Unlike Maclaurin et al. (2015), we
only use this procedure to compute gtx, and do not modify the training procedure in any
way.

We denote the average gtx on the training set after T steps as ḡx, and refer to it as
loss-sensitivity.

We run experiments using a fully-connected network with 2 layers of 16 units on 1000
downscaled 14 × 14 MNIST digits using 105 SGD steps, and find that for real data, only
a subset of the training set has high ḡx, while for random data, ḡx is high for virtually all
examples. We also find a different behaviour when each example is given a unique class; in
this scenario, the network has to learn to identify each example uniquely, yet still behaves
differently when given real data than when given random data as input.
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Figure 3.2: Plots of the Gini coefficient of ḡx as training progresses, for a 1000-example
real dataset (14x14 MNIST) versus random data (uniform noise). On the left, y is the
normal class label; on the right, there are as many classes as examples, the network has to
learn to map each example to a unique class.

We visualize in Figure 3.2 the spread of ḡx as training progresses by computing the
Gini coefficient over x’s. The Gini coefficient (Gini, 1912) is a measure of the inequality
among values of a frequency distribution; a coefficient of 0 means exact equality (i.e., all
values are the same), while a coefficient of 1 means maximal inequality among values:

Gini(p ∈ ∆(X)) =
∑
i

∑
j |p(xi)− p(xj)|

2|X|∑i p(xi)
. (3.4)
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We observe that, when trained on real data, the Gini coefficient is high (the network
has a high ḡx for a few xs, and a low for other xs) suggesting the network is sensitive to a
select few examples, while on random data the network is sensitive to most examples–the
Gini coefficient is low.

The difference between the random data scenario, where we know the neural network
needs to do memorization, and the real data scenario, where we’re trying to understand
what happens, leads us to believe that this measure is indeed sensitive to memorization.
These results suggest that when being trained on real data, the neural network is in a
different learning regime. Nonetheless, this regime implies a larger amount of reliance on a
few select training examples, which implies that some form of memorization is happening.

The way we interpret these results is by associating this low Gini coefficient with
memorization: if all examples are equally important to the model, then in some sense, it
is likely that the model has memorized those examples into its parameters. On the other
hand, for a high Gini coefficient, it is likely that after having seen a few critical examples
(because, remember, the optimization process of SGD is sequential), those examples are
enough to have embedded general patterns into the parameters of the model; thus a high
Gini coefficient can be interpreted as being able to generalize from a few examples. The
semantics of whether reliance on these few examples should also be called memorization
is debatable. At the very least it is memorization of a different kind.

In addition to the different behaviours for real and random data described above, we
also consider a class specific loss-sensitivity:

ḡi,j = E(x,y)|y=j
1
T

T∑
t=1
|∂Lt(y = i)/∂x| (3.5)

where Lt(y = i) is the error on the prediction of probability of belonging to class i. We
observe that the loss-sensitivity w.r.t. class i for training examples of class j is higher when
i = j, but more spread out for real data (see Figure 3.3). An interpretation is that for
real data there are more interesting cross-category patterns that can be learned than for
random data.

3.1.3 Recent Developments

Understanding that memorization and generalization are not at odds has led to a number
of developments in our comprehension of how and why DNNs perform the way they do.
Let’s briefly highlight some recent developments that stem from this research.

In the work of Belkin et al. (2019), the authors find a new strange phenomenon that
again runs counter to the traditional insights of learning theory. When increasing the
width of commonly used DNNs which achieve low test error, it is observed that the test
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Figure 3.3: Plots of per-class sensitivity (log scale), a cell i, j represents the average loss-
sensitivity of examples of class i w.r.t. training examples of class j. Left is real data, right
is random data.

error first increases (as predicted by learning theory) but then decreases monotonically.
Nakkiran et al. (2019) even find that this happens when simply training for very long.
In either case, the training error is close to zero, again suggesting that these DNNs have
memorized their training set while still making accurate generalizing predictions.

This so-called double descent phenomenon shows that something interesting happens
with overparameterization. While increasing the number of parameters increases the size
of the hypothesis class, it also changes the likelihood of encountering certain parameter-
izations after training. The hypothesis proposed by Belkin et al. (2019) is simply that
having more parameters induces a smoother prior in randomly initialized DNNs (as the
neurons’ predictions are averaged with each other and there are more neurons, by the law
of large numbers their average tends to a smooth distribution), and that due to the large
number of parameters, SGD doesn’t require a large change in individual parameters. Since
the norm of this change is small, then the smoothness is conserved, which is beneficial for
generalization in high-dimensions.

Relatedly, Frankle and Carbin (2018) find the existence of so-called lottery tickets in
DNNs: subsets of parameters in large models which, at initialization, would have been
enough to train a good model without having to use the rest of the parameters. The
existence of these lottery tickets suggests that increasing the number of parameters is akin
to drawing more often from the lottery, increasing the odds of having a winning ticket, and
leaving more parameters free to memorize idiosyncrasies of harder examples. This again
partly explains the success of overparameterization and memorization.

Studying these phenomena is important, not just for the emergence of novel better
performing DNNs, but also to understand how memorization plays a role in how deployed
DNNs affect the real world. Hooker et al. (2020) highlight how crucial this is by showing
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that pruned DNNs (models whose “less important” parameters are removed for efficiency
in deployment) end up performing poorly on a heavy-tail of outliers. This can have serious
impacts on fairness for these models.

3.2 Interactions Between Interference
and Temporal Difference

So far we have discussed generalization in supervised learning and deep learning, how it is
measured, and how preconceptions and intuitions about it evolved over the last few years.

We have also previously mentioned that deep Reinforcement Learning has been found
to be brittle, not robust to changes. Here, we investigate this question by focusing on a
basic mechanism of RL, Temporal Difference learning, and how it affects generalization
and memorization. We again attempt to change the lens through which people understand
generalization and learning, in deep RL.

In the next sections, we closely follow the original material of my contribution on this
topic (Bengio et al., 2020a).

3.2.1 Interference in Neural Networks

We first start by introducing a concept central to this investigation, interference. The
interference between two gradient-based processes, each with objectives J1, J2, which share
parameters θ, is often characterized in the first order by the inner product of their gradients:

ρ1,2 = ∇θJ
T
1 ∇θJ2, (3.6)

and can be seen as the influence, constructive (ρ > 0) or destructive (ρ < 0), of applying
a gradient update using ∇θJ1 on the value of J2.

It’s important here to understand the nature of the sign of interference. Rooted in
physics (waves can constructively or destructively interfere with each other), this inter-
pretation brings attention to the dual nature of learning: learning about something can
help reinforce other similar concepts, but can also adversely affect the parameters used to
remember other concepts, i.e. it can induce forgetting.

Interference as defined in (3.6) arises in a variety of ways: it is the interference between
tasks in multi-task and continual learning (Lopez-Paz and Ranzato, 2017; Schaul et al.,
2019), it forms the Neural Tangent Kernel (Jacot et al., 2018), it is the Taylor expansion
around θ of a gradient update (Achiam et al., 2019), as well as the Taylor expansion of
pointwise loss differences (Liu et al., 2019b; Fort et al., 2019).
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Interestingly, and as noted by works cited above, this quantity is intimately related to
generalization. If the interference between two processes is positive, then updating θ using
gradients from one process will positively impact the other. Such processes can take many
forms, for example, J1 being the loss on training data and J2 the loss on test data, or J1

and J2 being the loss on two i.i.d. samples.
As a takeaway, and in terms of the previous section, constructive interference is a

sign of simple patterns being learned, and is a form of generalization.

Deriving interference Consider an objective-based SGD update from ∇θJ using sam-
ple B (here A and B can be understood as samples, but in general they can be tasks, or
even entire data distributions):

θ′ = θ − α∇θJ(B)

The effect of this update on the objective elsewhere, here at sample A, can be understood
as the derivative of the loss elsewhere with respect to the learning rate, yielding the well-
known gradient interference quantity ρ:

−ρAB = ∂Jθ′(A)
∂α

= −∂Jθ′(A)
∂θ′

∂θ′

∂α
(3.7)

= −∇θ′Jθ′(A)T∇θJθ(B) (3.8)

≈ −∇θJθ(A)T∇θJθ(B). (3.9)

This quantity can also be obtained from the Taylor expansion of the loss difference at
A after an update at B:

Jθ′(B)(A)− Jθ(A) ≈ Jθ(A)− Jθ(A) +∇θJ(A)T (θ′ − θ) +O(||θ′ − θ||2) (3.10)

≈ −α∇θJθ(A)T∇θJθ(B). (3.11)

3.2.2 Temporal Difference changes Generalization Dynamics

What we would now like to claim is that in Temporal Difference Learning (TD), interfer-
ence evolves differently during training than in supervised learning (SL). More specifically,
we will show that in TD learning lower interference correlates with a higher gen-
eralization gap while the opposite seems to be true in supervised learning, where
low interference correlates with a low generalization gap (the difference between test error
and train error) when early stopping.

In supervised learning, there is a wealth of literature suggesting that SGD has a regu-
larization effect (Hardt et al., 2016; Zhang et al., 2017; Keskar et al., 2017a, and references
therein), pushing the parameters in flat highly-connected (Draxler et al., 2018; Garipov
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et al., 2018) optimal regions of the loss landscape. It would be unsurprising for such re-
gions of parameters to be on the threshold at the balance of bias and variance (in the
traditional sense, referring here to the phase transition between generalizing and overfit-
ting described in §3.1.2, i.e. when DNNs stop learning general patterns and start fitting
dataset noise) and thus have low interference as well as a low generalization gap. Indeed,
Fort et al. (2019) suggest that stiffness, the cosine similarity of gradients, drops but stays
positive once a model starts overfitting. It is also suggested there that overfitting networks
start having larger weights and thus larger gradients; this should result in the smallest ρ
precisely before overfitting happens.

In RL, and in particular in TD-based RL methods, generalization has proven to be
harder to achieve, or even to measure. This may be due to a multitude of factors, some
also related to interference.

First, the evaluation methods of new algorithms in the recent union of neural networks
and TD, despite an earlier recognition of the problem (Whiteson et al., 2011), often do
not include generalization measures, perhaps leading to overfitting in algorithm space as
well as solution space. This led to many works showing the brittleness of new TD methods
(Machado et al., 2018; Farebrother et al., 2018; Packer et al., 2018; Witty et al., 2018), and
works proposing to train on a distribution of environments (Zhang et al., 2018c; Cobbe
et al., 2019; Justesen et al., 2018) in order to have proper training and test sets (Zhang
et al., 2018a,b).

In TD methods, models also face a different optimization procedure where different
components may be at odds with each other, leading to phenomena like the deadly triad
(Sutton and Barto, 2018; Achiam et al., 2019) and leakage propagation (Penedones et al.,
2018). In its purest version, the tabular bootstrapping of TD expects its targets to be
fixed unless the target state is visited for an update; gradient updates create interference
in unvisited target states, which breaks this assumption.

With most methods, from value-iteration to policy gradients, parameters are also faced
with an inherently non-stationary optimization landscape. In particular for value-based
methods, bootstrapping induces an asymmetric flow of information (from newly explored
states to known states) which remains largely unexplored in deep learning literature. Such
non-stationarity and asymmetry may help explain the success of sparse methods (Sutton,
1996; Liu et al., 2019a) that act more like tabular algorithms (with convergence at the cost
of more updates).

Other works also underline the importance of interference. Riemer et al. (2018) show
that by simply optimizing for interference across tasks via a naive meta-learning approach,
one can improve RL performance. Interestingly, Nichol et al. (2018) also show how pop-
ular meta-learning methods implicitly also maximize interference (and thus constructive
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updates). Considering that the meta-learning problem is inherently interested in general-
ization, this also suggests that increasing constructive interference should be beneficial.

3.2.2.1 Computing interference quantities

Comparing loss interference in the RL and SL case isn’t necessarily indicative of the right
trends, due to the fact that in most RL algorithms, the loss landscape itself evolves over
time as the policy changes. Instead, we remark that loss interference, ρ1,2 = ∇θJ

T
1 ∇θJ2,

can be decomposed as follows. Let J be a scalar loss, u and v some examples, and f the
parameterized function’s output:

ρu,v = ∂J(u)
∂f(u)

∂f(u)
∂θ

T ∂f(v)
∂θ

∂J(v)
∂f(v) . (3.12)

While the partial derivative of the loss w.r.t. f may change as the loss changes, we find
experimentally that the inner product of gradients of the output of f remains stable1. As
such, we will also compute this quantity throughout, function interference, as it is more
stable and reflects interference at the representational level rather than directly in relation
to the loss function:

ρ̄u,v = ∂f(u)
∂θ

T ∂f(v)
∂θ

. (3.13)

For functions with more than one output in this work, e.g. a softmax classifier, we consider
the output, f(u), to be the max2, e.g. the confidence of the argmax class.

3.2.2.2 Empirical Setup

For the generalization experiments of §3.2.2.3 we loosely follow the setup of Zhang et al.
(2018a): we train RL agents in environments where the initial state is induced by a single
random seed, allowing us to have proper training and test sets in the form of mutually
exclusive seeds. In particular, to allow for closer comparisons between RL and SL, we
compare classifiers trained on SVHN (Netzer et al., 2011) and CIFAR10 (Krizhevsky and
Hinton, 2009) to agents that learn to progressively explore a masked image (from those
datasets) while attempting to classify it. The random seed in both cases is the index of
the example in the training or test set.

More specifically, agents start by observing only the center, an 8 × 8 window of the
current image. At each time-step they can choose from 4 movement actions, moving the

1Although gradients do not always converge to 0, at convergence the parameters themselves tend to
wiggle around a minima, and as such do not affect the function and its derivatives that much.

2This avoids computing the (expensive) Jacobian, we also find that this simplification accurately
reflects the same trends experimentally.
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observation window by 8 pixels and revealing more of the image, as well as choose from 10
classification actions. The episode ends upon a correct classification or after 20 steps.

We train both RL and SL models with the same architectures, and train RL agents
with a Double DQN objective (van Hasselt et al., 2016). We also train REINFORCE
(Williams, 1992c) agents as a test to entirely remove dependence on value estimation and
have a pure Policy Gradient (PG) method.

DDQN agents maintain two sets of parameters, θ and θ̄, that estimate the action-value
function Q. θ is trained to minimize

LQL = [Qθ(St, At)− (Rt + γmax
a

Qθ̄(St+1, a))]2 (3.14)

on trajectories S0, A0, R0, ... sampled from the ε-greedy policy, and θ̄ is updated after each
update of θ to be its exponential moving average. REINFORCE agents maintain one set
of parameters θ that estimate the policy π, and are modified according to the gradient:

∇θG(St) = G(St)∇θ log π(At|St), (3.15)

on trajectories sampled from π. In both cases the reward given to the agent is 1 on a correct
classification and -0.1 for moving the observation window or an incorrect classification.
Supervised models are trained to maximize the log-likelihood of the labels.

As much of the existing deep learning literature on generalization focuses on classifiers,
but estimating value functions is arguably closer to regression, we include two regression
experiments using SARCOS (Vijayakumar and Schaal, 2000) and the California Housing
dataset (Pace and Barry, 1997).

Finally, for the interactive environment experiments of §3.2.2.4 and §3.2.3, we investi-
gate some metrics on the popular Atari environment (Bellemare et al., 2013) by training
DQN (Mnih et al., 2013) agents, with the stochastic setup recommended by Machado et al.
(2018), and by performing policy evaluation with the Q-Learning and TD(λ) objectives.
To generate interesting trajectories for policy evaluation, we run an “expert” agent pre-
trained with Rainbow (Hessel et al., 2018); we denote D∗ a dataset of transitions obtained
with this agent, and θ∗ the parameters after training that agent.

We measure correlations throughout with Pearson’s r:

rxy =
∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(3.16)

which is a measure, between −1 and 1, of the linear correlation between two random vari-
ables X, Y . All architectural details and hyperparameter ranges are listed in 3.2.4.2. All
code is available at https://github.com/bengioe/interference_and_generalization_
in_td/.
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Figure 3.4: Correlation coefficient r between the (log) function interference ρ̄ and the
generalization gap, as a function of training set size; shaded regions are bootstrapped 90%
confidence intervals. We see different trends for value-based experiments (middle) than for
supervised (left) and PG experiments (right). For classification, these methods clearly have
different effect on interference even though they roughly approximate the same function.

3.2.2.3 Natural data generalization experiments

To measure interference in the overparameterized regime and still be able to run many
experiments to obtain trends, we instead reduce the number of training samples while also
varying capacity (number of hidden units and layers) with smaller-than-state-of-the-art
but reasonable architectures. Since in RL we could consider one trajectory to be a single
sample, we generalize this notion into the notion of “training seeds”–one per sample in
supervised learning and one per trajectory in RL.

First, in Figure 3.4 for each training set size, we measure the correlation between
interference and the generalization gap. We see that, after being given sufficient amounts of
data, TD methods tend to have a strong negative correlation, while classification methods
tend to have positive correlation.

Regression has similar but less consistent results; SARCOS has a high correlation peak
when there starts being enough data, albeit shows no correlation at all when all 44k training
examples are given (the generalization gap is then almost 0 for all hyperparameters); on
the other hand the California dataset only shows positive correlation when most or all of
the dataset is given. The trends for PG SVHN and CIFAR show no strong correlations (we
note that |r| < 0.3 is normally considered to be a weak correlation; Cohen, 2013) except
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for PG CIFAR at 100 training seeds, with r = −.60.
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Figure 3.5: Generalization gap vs interference ρ̄ for all runs. Larger circles represent larger
capacity models. Here value-based methods seem to be behaving like regression methods.

Second, in Figure 3.5, we plot the generalization gap against interference ρ̄ for every
experiment (normalized for comparison). We then draw the linear regression for each
experiment over all training set sizes and capacities. For both classification tasks, inter-
ference is strongly correlated (r > 0.9) with the generalization gap, and also is to a lesser
extent for the PG experiments. For all other experiments, regression and value-based, the
correlation is instead negative, albeit low enough that a clear trend cannot be extracted.
Note that the generalization gap itself is almost entirely driven by the training set size
first (r < −0.91 for all experiments except PG, where r is slightly higher, as seen in Figure
3.6).

The combination of these results tells us that (1) interference evolves differently in TD
than in SL, (2) interference for TD has some similarities with regression, as well as a dif-
ferent characterization of memorization: in classification, low-interference solutions
tend to generalize, while in TD, low-interference solutions often memorize. In
regression, this seems only true for a fixed quantity of data.

3.2.2.4 Interference in Atari domains

The Arcade Learning Environment (Bellemare et al., 2013), comprised of Atari games, has
been a standard Deep RL benchmark in the recent past (Mnih et al., 2013; Bellemare et al.,
2017; Kapturowski et al., 2019). We once again revisit this benchmark to provide additional
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evidence of the memorization-like behaviours of value-based methods on these domains.
Understanding the source of these behaviours is important, as presumably algorithms
may be able to learn generalizing agents from the same data. Additionally, such low-
interference memorization behaviours are not conducive to sample efficiency, which even
in an environment like Atari, could be improved.

Recall that interference is a first order Taylor expansion of the pointwise loss difference,
Jθ′ − Jθ. Evaluating such a loss difference is more convenient to do on a large scale and
for many runs, as it does not require computing individual gradients. In this section, we
evaluate the expected TD loss difference for several different training objectives, a set of
supervised objectives, the Q-Learning objective applied first as policy evaluation (learning
from a replay buffer of expert trajectories) and then as a control (learning to play from
scratch) objective, and the TD(λ) objective applied on policy evaluation. Experiments are
ran on MsPacman, Asterix, and Seaquest for 10 runs each. Results are averaged over these
three environments (they have similar magnitudes and variance). Learning rates are kept
constant, they affect the magnitude but not the shape of these curves. We use 10M steps
in the control setting, and 500k steps otherwise.

We first use the following 3 supervised objectives to train models using D∗ as a dataset
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and Qθ∗ as a distillation target:

LMC(s, a) = (Qθ(s, a)−G(D∗)(s))2

Lreg(s, a) = (Qθ(s, a)−Qθ∗(s, a))2

LTD∗(s, a, r, s′) = (Qθ(s, a)− (r + γmax
a′

Qθ∗(s′, a′)))2

and measure the difference in pointwise TD loss (LQL) for states surrounding the state used
for the update (i.e. states with a temporal offset of ±30 in the replay buffer trajectories),
shown in Figure 3.7.
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Figure 3.7: Regression on Atari: loss difference as a function of temporal offset in the
replay buffer from the update sample. We use dotted lines at 0 offset to emphasize that
the corresponding state was used for the update. The curve around 0 is indicative of the
constructive interference of the TD and regression objectives.

There, we see that curves tend to be positive around x = 0 (the sample used in the
update), especially from indices -10 to 10, showing that constructive interference is
possible when learning to approximate Q∗ with this data. Since Qθ∗ is a good approxi-
mation, we expect that Qθ∗(s, a) ≈ (r+ γmaxa′ Qθ∗(s′, a′)), so Lreg and LTD∗ have similar
targets and we expect them to have similar behaviours. Indeed, their curves mostly overlap.

Next, we again measure the difference in pointwise loss for surrounding states. We
train control agents and policy evaluation (or Batch Q) agents with the Q-Learning loss:

LQL = [Qθ(St, At)− (Rt + γmax
a

Qθ(St+1, a))]2. (3.17)

We show the results in Figure 3.8. Compared to the regressions in Figure 3.7, the
pointwise difference is more than an order of magnitude smaller, and drops off even faster
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when going away from x = 0. This suggests a low interference, and a low update propa-
gation. For certain optimizers, here RMSProp (Hinton et al., 2012) and SGD, this effect
is even slightly negative. We believe this difference may be linked to momentum (note the
difference with Adam (Kingma and Ba, 2015) and Momentum-SGD), which might dampen
some of the negative effects of TD on interference (further discussed in §3.2.3.3).
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Figure 3.8: TD Learning on Atari: loss difference as a function of offset in the replay buffer
of the update sample. Full lines represent Q-Learning control experiments, while dashed
lines represent policy evaluation with a Q-Learning objective. We exclude x = 0 for clarity,
as it has a high value (see Figure 3.9). Compared to regression, the magnitude of the gain
is much smaller.

Interestingly, while Q-Learning does not have as strong a gain as the regressions from
Figure 3.7, it has a larger gain than policy evaluation. This may have several causes, and
we investigate two.

First, we hypothsize that due the initial random exploratory policy, the DNN initially
sees little data variety, and may be able to capture a minimal set of factors of variation;
then, upon seeing new states, the extracted features are forced to be mapped onto those
factors of variation, improving them, leading to a natural curriculum. By looking at the
singular values of a decomposition of the last hidden layer’s weight matrix after 100k steps,
we do find that there is a consistently larger spread in the policy evaluation case than the
control case, suggesting that in the control case fewer factors are initially captured. This
effect diminishes as training progresses.

Figure 3.10 shows the spread of singular values after 100k minibatch updates on MsPac-
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Figure 3.9: Reproduction of Figure 3.8 including x = 0. RMSprop has a surprisingly large
expected gain at x = 0, but a negative gain around x = 0, suggesting that RMSprop
enables memorization more than Adam.

man for the Q-Learning objective and Adam/RMSProp. The difference between the control
case and policy evaluation supports our hypothesis that policy evaluation initially captures
more factors of variation. It remains unclear if the effect of the control case initially having
fewer captured factors of variation leads to a form of feature curriculum.

Note that current literature suggests that having fewer large singular values in the
weight matrices of neural networks is a sign of generalization in classifiers, see in particular
Oymak et al. (2019), as well as Morcos et al. (2018) and Raghu et al. (2017). It is not
clear whether this holds for regression, nor in our case for value functions. Interestingly
all runs, even for TD(λ), have a dramatic cutoff in singular values after about the 200th
SV, suggesting that there may be in this order of magnitude many underlying factors in
MsPacman, and that by changing the objective and the data distribution, a DNN may be
able to capture them faster or slower.

Second, having run for 10M steps, control models could have been trained on more data
and thus be forced to generalize better; this turns out not to be the case, as measuring
the same quantities for only the first 500k steps yields very similar magnitudes. In other
words, after a few initial epochs, function interference remains constant: Figure 3.11 shows
the evolution of TD pointwise loss difference during training; in relation to previous figures
like Figure 3.8, the y axis is now Figure 3.8’s x axis – the temporal offset to the update
sample in the replay buffer, the y axis is now training time, and the color is now Figure
3.8’s y axis – the magnitude of the TD gain.

Interestingly, these results are consistent with those of Agarwal et al. (2019), who study
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Figure 3.11: Evolution of TD pointwise loss difference, during training. Control experiment
with Adam, MsPacman, averaged over 10 runs. Note that index 0 is excluded as its
magnitude would be too large and dim all other values.

off-policy learning. Among many other results, Agarwal et al. (2019) find that off-policy-
retraining a DQN model (i.e. Batch Q-Learning) on another DQN agent’s lifetime set of
trajectories yields much worse performance. This is consistent with our results showing
more constructive interference in control than in policy evaluation, and suggests that the
order in which data is presented may matter when bootstrapping is used.
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3.2.3 The Instability of Deep Temporal Difference Learning

In §3.2.2.3 and §3.2.2.4 we have shown that TD-based methods induce different interference
dynamics.

We first showed that these manifest in terms of train-test generalization: in §3.2.2.3,
we could link the test-time performance of RL agents to the interference between their
training examples, and showed that this interference was different than for SL models.

We then showed in §3.2.2.4 that in control domains such as Atari, this difference be-
tween SL and RL manifests in terms of a highly reduced constructive interference, or in
other words state-to-state generalization. This possibly causes learning to be much slower.

We will now attempt to dissect where this phenomenon comes from, and find that it is
rooted in the instability of optimization with a Temporal Difference objective.

3.2.3.1 TD(λ) and bootstrapping

A central hypothesis of this work is that bootstrapping causes instability in interference,
causing it to become small and causing models to memorize more. Here we perform policy
evaluation on D∗ with TD(λ). TD(λ) is by design a way to trade-off between bias and
variance in the target by trading off between few-step bootstrapped targets and long-term
bootstrapped targets which approach Monte-Carlo returns. In other words, TD(λ) allows
us to diminish reliance on bootstrapping.

Intuitively, TD(λ) trades off between the unbiased target G(St) and the biased TD(0)
target (biased due to relying on the estimated V (St+1)) by trading off between different
intermediate targets, one for each step of a trajectory. More specifically, this trade off is
achieved by using a weighted averaging of future targets called a λ-return (Sutton, 1988;
Munos et al., 2016):

Gλ(St) = (1− λ)
∑∞

n=1 λ
n−1Gn(St) (3.18)

Gn(St) = γnV (St+n) +
∑n−1

j=0 γ
jR(St+j)

LTD(λ)(St) = (Vθ(St)−Gλ(St))2, (3.19)

for λ ∈ (0, 1]. Note that the return depends implicitly on the trajectory and the actions
followed from St. When λ = 0, the loss is simply (Vθ(St) − (Rt + γVθ(St+1)))2, leading
to the TD(0) algorithm (Sutton, 1988). Higher values of λ reduce the dependency on V
(i.e. reduce the bias) but increase the dependency on G, which is a high-variance random
variable.

This trade-off is especially manifest when measuring the stiffness of gradients (cosine
similarity) as a function of temporal offset, as shown in Figure 3.12. There we see that the
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Figure 3.12: Cosine similarity between gradients at St (offset x = 0) and the gradients
at the neighbouring states in the replay buffer (MsPacman). As λ increases, so does the
temporal coherence of the gradients.

closer λ is to 1, the more gradients are similar around an update sample, suggesting that
diminishing reliance on bootstrapping reduces the effect of TD inducing low-interference
memorizing parameterizations.

Note that this increase in similarity between gradients is also accompanied by an in-
crease in pointwise loss difference (shown in Figure 3.13), surpassing that of Q-Learning
(Figure 3.8) in magnitude. This suggests that TD(λ) offers more coherent targets that
allow models to learn faster, for sufficiently high values of λ.

Figure 3.14 shows the spread of singular values after 500k minibatch updates for TD(λ).
Interestingly, larger λ values yield larger singular values and a wider distribution. Presum-
ably, TD(λ) having a less biased objective allows the parameters to capture all the factors
of variation faster rather than to rely on bootstrapping to gradually learn them.

Here, by simply changing the target in the objective of Temporal Difference learning,
we’ve shown a notable improvement in constructive interference, suggesting that the TD(0)
target coupled with standard optimization methods and deep neural networks induces the
“bad” parameterizations we’ve discussed in previous sections. Since we know that this
target is biased, let’s now look at how it is biased and what this implies.
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Figure 3.13: Evolution of TD pointwise loss difference, as a function of λ in TD(λ). Notice
the asymmetry around 0.
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Figure 3.14: Spread of singular values after 500k iterations. Shaded regions show boot-
strapped 95% confidence intervals.

3.2.3.2 The high variance of target-bias in TD(0)

In TD(0), the current target for any state depends on the prediction made at the next
state. The difference between that prediction and the true value function makes the target
a biased estimator when bootstrapping is in progress and information flows from newly
visited states to seen states.

This “bootstrap bias” itself depends on a function approximator which has its own
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bias-variance trade-off (in the classical sense). For a high-variance approximator, this
bootstrap bias might be inconsistent, making the value function alternate between being
underestimated and being overestimated, which is problematic in particular for nearby
states3. In such a case, a gradient descent procedure cannot truly take advantage of the
constructive interference between gradients.

Indeed, recall that in the case of a regression, interference can be decomposed as:

ρx,y = ∂J(x)
∂f(x)

∂f(x)
∂θ

T ∂f(y)
∂θ

∂J(y)
∂f(y) ,

which for the TD error δx = V (x) − (r(x) + γV (x′)) with x′ some successor of x, can be
rewritten as:

ρx,y = δxδy∇θV (x)T∇θV (y).

If x and y are nearby states, in some smooth high-dimensional input space (e.g. Atari)
they are likely to be close in input space and thus to have a positive function interference
∇θV (x)T∇θV (y). If the signs of δx and δy are different, then an update at x will increase
the loss at y. As such, we measure the variance of the sign of the TD error along small
windows (of length 5 here) in trajectories as a proxy of this local target incoherence.

We observe this at play in Figure 3.15, which shows interference and rewards as a
function of sign variance for a DQN agent trained on MsPacman. As predicted, param-
eterizations with a large ρ̄ and a large sign variance perform much worse. We note that
this effect can be lessened by using a much smaller learning rate than is normal, but this
comes at the cost of having to perform more updates for a similar performance (in fact,
presumably because of reduced instability, performance is slightly better, but only towards
the end of training; runs with a normal α plateau halfway through training).

Interestingly, parameterizations with large ρ̄ generally do have a large sign variance
(r = 0.71) in the experiment of Figure 3.15. Indeed, we believe that the evolution of
interference in TD methods may be linked to sign variance, the two compounding together,
and may explain this trend.

These results are consistent with the improvements obtained by Thodoroff et al. (2018),
who force a temporal smoothing of the value function through convex combinations of
sequences of values which likely reduces sign variance. These results are also consistent
with those of Anschel et al. (2017) and Agarwal et al. (2019) who obtain improvements
by training ensembles of value functions. Such ensembles should partly reduce the sign

3Consider these two sequences of predictions of V : [1, 2, 3, 4, 5, 6] and [1, 2, 1, 2, 1, 2]. Suppose no
rewards, γ = 1, and a function interference (ρ̄) close to 1 for illustration, both these sequences have the
same average TD(0) error, 1, yet the second sequence will cause any TD(0) update at one of the states to
only correctly update half of the values.
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Figure 3.15: Top, average reward after training as a function of the sign variance for dif-
ferent learning rates (α) and number of hidden units (size of markers). We can see that
by using a much smaller learning rate than normal, the biasing effect of TD is lessened,
at the cost of many more updates. Bottom, average function interference ρ̄ after train-
ing. We see that, as predicted, parameterizations with large ρ̄ and a large sign variance
perform much worse (note that the x-axis of both plots are aligned, allowing for an easy
reward/interference comparison).

variance of δ, as bias due to initialization should average to a small value, making targets
more temporally consistent.

Finally, note that in regression, this problem may eventually go away as parameters
converge. Instead, in TD(0), especially when making use of a frozen target, this problem
simply compounds with time and with every update. In what follows we consider this
problem analytically.

3.2.3.3 Understanding the evolution of interference

Here we attempt to provide some insights into how interference evolves differently in clas-
sification, regression, and TD learning. For detailed derivations see §3.2.4.1.

Recall that the interference ρ can be obtained by the negative of the derivative of the
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loss J(A) after some update using B w.r.t. the learning rate α, i.e.

θ′ = θ − α∇θJ(B) (3.20)

ρAB = −∂Jθ′(A)/∂α = ∇θ′J(A) · ∇θJ(B) (3.21)

≈ ∇θJ(A) · ∇θJ(B). (3.22)

The last step being a simplification as θ ≈ θ′.
To try to understand how this quantity evolves, we can simply take the derivative of

ρ (and ρ̄) w.r.t. α but evaluated at θ′, that is, ρ′AB = ∂(∇θ′J(A) · ∇θ′J(B))/∂α. In the
general case, we obtain (assuming θ ≈ θ′, we omit the θ subscript and subscript A and B
for brevity):

ρ′AB = −(∇JTBHA +∇JTAHB)∇JB (3.23)

ρ̄′AB = −(∇fTB H̄A +∇fTA H̄B)∇JB (3.24)

where HA = ∇2
θJ(A; θ), H̄A = ∇2

θf(A; θ) are Hessians, fA = f(A; θ).
Interpreting this quantity is non-trivial, but consider ∇fTA H̄B∇JB; parameters which

make fA change, which have high curvature at B (e.g. parameters that are not stuck in a
saddle point or a minima at B), and which change the loss at B will contribute to change
ρ. Understanding the sign of this change requires a few more assumptions.

Because neural networks are somewhat smooth (they are Lipschitz continuous, although
their Lipschitz constant might be very large, see Scaman and Virmaux (2018)), it is likely
for examples that are close in input space and target space to have enough gradient and
curvature similarities to increase their corresponding interference, while examples that are
not similar would decrease their interference. Such an interpretation is compatible with
our results, as well as those of Fort et al. (2019) who find that stiffness (cosine similarity
of gradients) is mostly positive only for examples that are in the same class.

Indeed, notice that for a given softmax prediction σ, for A and B of different classes
yA, yB, the sign of the partial derivative at σyA(A) will be the opposite of that of σyA(B).
Since gradients are multiplicative in neural networks, this will flip the sign of all corre-
sponding gradients related to σyA , causing a mismatch with curvature, and a decrease
in interference. Thus the distribution of targets and the loss has a large role to play in
aligning gradients, possibly just as much as the input space structure.

We can also measure ρ′ to get an idea of its distribution. For a randomly initialized
neural network, assuming a normally distributed input and loss, we find that it does not
appear to be 0 mean. While the median is close to 0, but consistently negative, the
distribution seems heavy-tailed with a slightly larger negative tail, making the negative
mean further away from 0 than the median. In what follows we decompose ρ′ to get some
additional insights.
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In the case of regression, JA = 1/2(fA − yA)2, δA = fA − yA, we get that:

ρ′reg;AB = −ρ̄2
ABδ

2
B − 2δAδBρ̄ABρ̄BB

− δAδ2
B∇fB(H̄A∇fB + H̄B∇fA) (3.25)

Another interesting quantity is the evolution of ρ when J is a TD loss if we assume that
the bootstrap target also changes after a weight update. With the θ ≈ θ′ simplification,
δA = VA − (r + γVA′) the TD error at A, A′ some successor of A, we get:

ρ′TD;AB = −δ2
Bρ̄AB(ρ̄AB − γρ̄A′B)

− δAδBρ̄AB(ρ̄BB − γρ̄B′B)

− δAδ2
B∇fB(H̄A∇fB + H̄B∇fA) (3.26)

Again considering the smoothness of neural networks, if A and B are similar, but happen
to have opposite δ signs, their interference will decrease. Such a scenario is likely for
high-capacity high-variance function approximators, and is possibly compounded by
the evolving loss landscape. As the loss changes–both prediction and target depend
on a changing θ–it evolves imperfectly, and there are bound to be many pairs of nearby
states where only one of the δs flips signs, causing gradient misalignments. This would be
consistent with our finding that higher-capacity neural networks have a smaller interference
in TD experiments (see Figure 3.16) while the reverse is observed in classification.
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Figure 3.16: Average function interference during training as a function of capacity. TD
methods and classifiers have very different trends.

We now separately measure the three additive terms of ρ′reg and ρ′TD, which we refer
to as ρ′ = −r1 − r2 − r3, in the same order in which they appear in (3.25) and (3.26).
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The transparent dashed lines are the mean ri, averaged over 1024 (32× 32) sample pairs,
averaged over 3 runs. The full lines above and below 0 are the average of the positive and
negative samples of ri respectively. These lines show the relative magnitudes of each part:
in general, positive samples dominate for r1, r2 varies a lot between positive and negative
for TD, while r3 is mostly negative with some variance for TD.

We measure these terms in four scenarios, using a MsPacman expert replay buffer.
We regress to Qθ∗ (measuring ρ′reg), and run policy evaluation with three different targets
(measuring ρ′TD). In DQN, the target Qθ̄ is a frozen network updated every 10k iterations;
in DDQN the target is updated with an exponential moving average rule, θ̄ = (1−τ)θ̄+τθ,
with τ = 0.01; in QL the target is the model itself Qθ as assumed in (3.26). This is shown in
Figure 3.17. We see that in regression r1 and r2 are positive much more often than they are
negative, while in TD methods, the positive samples tend to dominate but the proportion
of negative samples is much larger, especially for r2, which contains a δAδB product. We
see that r3 tends to have a smaller magnitude than other terms for TD methods, and is
negative on average.

These results suggest that interference evolves poorly when applying SGD to variants
of the TD objective. On the other hand, momentum SGD is the optimizer of choice in the
literature and yields better performing agents. Could it have a beneficial effect?
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Momentum SGD has the following updates, β ∈ [0, 1):

µt = (1− β)∇θJB + βµt−1 (3.27)

θ′ = θ − α(βµt−1 + (1− β)∇θJB) (3.28)

yielding the following quantities:

ρµ;AB = (1− β)∇θ′JA · ∇θJB + β∇θ′JA · µt−1 (3.29)

ρ′µ;AB = −(1− β)ρ′AB − β∇JBHAµt−1 (3.30)

Note that the first term of ρ′µ;AB is simply eq. (3.23) times 1 − β. The second term is
more interesting, and presumably larger as β is usually close to 1. It indicates that for
interference to change, the curvature at A and the gradient at B need to be aligned with
µ, the moving average of gradients. As such, the evolution of interference may be driven
more by the random (due to the stochasticity of SGD) alignment of the gradients with
µ, which should be stable over time since µ changes slowly, than by the (high-variance)
alignment of curvature at A and gradient at B.

As such, momentum should lower the variance of ρ′ and dampen the evolution of
interference when it is high-variance, possibly including dampening the negative effects of
interference in TD. Unfortunately, applying momentum to bootstrapping updates may be
not be fully principled, as we will discuss later in this thesis.

Overall, these results and derivations suggest that TD methods do not have a stable
evolution of interference, at least not when naively applying SGD to the TD objective.
In some sense, this is unsurprising given that Temporal Difference as it is applied here is
not a “gradient” method (although such methods do exist, as we will discuss later). Such
findings are the central motivation to a future part of this thesis, §4.1, concerned with
optimization and TD.

3.2.4 Derivations and Hyperparameters

3.2.4.1 Second order quantities of interference

The derivative of ρ w.r.t. α, or second order derivative of Jθ′ w.r.t. α is:

∂2Jθ′(A)
∂α2 = − ∂

∂α
∇θ′J

T
A∇θJB (3.31)

= −(∂(∇θ′J(A))
∂θ′

∂θ′

∂α
)T∇θJB (3.32)

= −(−∇2
θ′JA∇θJB)T∇θJB (3.33)

≈ ∇JTBHA∇JB (3.34)
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assuming θ ≈ θ′ in the last step, and where HA = ∇2
θJA is the Hessian. Again the only

approximation here is θ ≈ θ′.
While this quantity is interesting, it is in a sense missing a part: what happens to the

interference itself after an update? At both A and B at θ′?

ρ′AB = ∂

∂α
∇θ′J

T
A∇θ′JB (3.35)

= (∂(∇θ′JA)
∂θ′

∂θ′

∂α
)T∇θJB +∇θ′J

T
A (∂(∇θ′JB)

∂θ′
∂θ′

∂α
) (3.36)

= (−∇2
θ′JA∇θJB)T∇θJB +∇θ′J

T
A (−∇2

θ′JB∇θJB) (3.37)

≈ −∇JTBHA∇JB −∇JTAHB∇JB (3.38)

Following Nichol et al. (2018) we can rewrite this as:

=− (∇JTBHA +∇JTAHB)∇JB (3.39)

=− (∇θ(∇JTB∇JA))∇JB (3.40)

This last form is easy to compute with an automatic differentiation software and does
not require explicitly computing the hessian. We also verify empirically that this quantity
holds with commonly used small step-sizes.

The derivative of function interference can also be written similarly:

ρ̄′AB = ∂

∂α
∇θ′f

T
A∇θ′fB (3.41)

= (∂(∇θ′fA)
∂θ′

∂θ′

∂α
)T∇θ′fB +∇θ′f

T
A (∂(∇θ′fB)

∂θ′
∂θ′

∂α
) (3.42)

= (−∇2
θ′fA∇θJ(B))T∇θ′fB +∇θ′f

T
A (−∇2

θ′fB∇θJ(B)) (3.43)

≈ −∇JTBH̄A∇fB −∇fTA H̄B∇JB (3.44)

= −(∇fTB H̄A +∇fTA H̄B)∇JB (3.45)

where by H̄ we denote the Hessian of the function f itself rather than of its loss.
Note that for the parameterized function fθ

∇θJ = ∂J

∂f

∂f

∂θ

Let’s write ∂J
∂f

= δ. For any regression-like objective (f − y)2/2, δ = (f − y). δ’s sign
will be positive if f needs to decrease, and negative if f needs to increase.

Let’s rewrite the interference as:

∇θJθ(A)T∇θJθ(B) = δAδB∇θfθ(A)T∇θfθ(B)
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Then notice that ρ′ can be decomposed as follows. Let gAB = ∇θfθ(A)T∇θfθ(B) ,
g′AB = ∇θ′fθ′(A)T∇θ′fθ′(B) :

ρ′reg;AB = ∂

∂α
δAδB∇θ′f

T
A∇θ′fB (3.46)

=∂δA
∂α

δBg
′
AB + ∂δB

∂α
δAg

′
AB

+ δAδB( ∂
∂α
∇θ′fA)T∇θ′fB + δAδB( ∂

∂α
∇θ′fB)T∇θ′fA (3.47)

=−∇θ′f
T
A∇θJBδBg

′
AB −∇θ′f

T
B∇θJBδAg

′
AB

+ δAδB(−H̄θ′;A∇θJB)T∇θ′fB + δAδB(−H̄θ′;B∇θJB)T∇θ′fA (3.48)

if we assume θ ≈ θ′, g ≈ g′ we can simplify

≈− gδBδBg − 2δBgδAgBB − δAδBδB∇θfBH̄A∇θfB − δAδBδB∇θfBH̄B∇θfA (3.49)

=− g2
ABδ

2
B − 2δAδBgABgBB − δAδ2

B∇θfB(H̄A∇fB + H̄B∇θfA) (3.50)

We can also compute ρ′ for TD(0) assuming that the target is not frozen and is influenced
by an update to θ. Again we want ∂/∂α[g′AB] for an update at B, interference at A,
assuming that B′ is a successor state of B used for the TD update, and A′ a successor of
A in δA:

θ′ = θ − αδB∇θfB (3.51)

= θ − α(fB − (r + γfB′)∇θfB (3.52)

Also note that:
∂δA
∂α

=
(
∂fA
∂θ′

∂θ′

∂α
− γ ∂fA′

∂θ′
∂θ′

∂α

)
(3.53)

=− δB(∇θ′fA
T∇θfB − γ∇θ′fA′

T∇θfB) (3.54)

Let gAB = ∇θf
T
A∇θfB, g′AB = ∇θ′f

T
A∇θ′fB and g\AB = ∇θ′f

T
A∇θfB:

ρTD;AB = ∂

∂α

[
δAδB∇θ′f

T
A∇θ′fB

]
(3.55)

= ∂

∂α
δAδB∇θ′f

T
A∇θ′fB

+ δA
∂

∂α
δB∇θ′f

T
A∇θ′fB

+ δAδB
∂

∂α
∇θ′f

T
A∇θ′fB

+ δAδB∇θ′f
T
A

∂

∂α
∇θ′fB (3.56)

= −δB(g\AB − γg\A′B)δBg′AB
− δB(g\BB − γg\B′B)δAg′AB
+ δAδB(−H̄θ′;A∇θJB)T∇θ′fB + δAδB(−H̄θ′;B∇θJB)T∇θ′fA (3.57)
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which again if we assume θ′ ≈ θ, gAB ≈ g′AB ≈ g
\
AB, we can simplify to:

ρ′TD;AB = −δ2
BgAB(gAB − γgA′B)− δAδBgAB(gBB − γgB′B)

−δAδ2
B∇θfB(H̄A∇θfB + H̄B∇θfA) (3.58)

3.2.4.2 Architectures, hyperparameter ranges, and other experimental
details

We use the PyTorch library (Paszke et al., 2019a) for all experiments. To efficiently
compute gradients for a large quantity of examples at a time we use the backpack library
(Dangel et al., 2020).

To summarize the choice of problems, we run natural images experiments first to get
a more accurate comparison of the generalization gap between RL and SL. We then run
Atari experiments to analyze information propagation, TD(λ), and the local coherence
of targets, because Atari agents (1) have long term decision making which highlights the
issues of using TD for long term reward predictions (which is TD’s purpose) and (2) are a
standard benchmark.

Figure 3.4, 3.5, 3.6 and 3.16 In order to generate these figures we train classifiers,
regression models, DDQN agents and REINFORCE agents.

Models trained on SVHN and CIFAR10, either for SL, DDQN, or REINFORCE, use a
convolutional architecture. Let nh be the number of hiddens and nL the number of extra
layers. The layers are:

• Convolution, 3 in, nh out, filter size 5, stride 2
• Convolution, nh in, 2nh out, filter size 3
• Convolution, 2nh in, 4nh out, filter size 3
• nL layers of Convolution, 4nh in, 4nh out, filter size 3, padding 1
• Linear, 4nh × 10× 10 in, 4nh out
• Linear, 4nh in, no out.

All layers except the last use a Leaky ReLU (Maas et al., 2013) activation with slope 0.01
(note that we ran a few experiments with ReLU and tanh activations out of curiosity,
except for the slightly worse training performance the interference dynamics remained
fairly similar). For classifiers no is 10, the number of classes. For agents no is 10+4, since
there are 10 classes and 4 movement actions.

Models trained on the California Housing dataset have 4 fully-connected layers: 8
inputs, 3 Leaky ReLU hidden layers with nh hiddens, and a linear output layer with a
single output.
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Models trained on the SARCOS dataset have 2+nL fully-connected layers: 21 inputs,
1+nL Leaky ReLU hidden layers with nh hiddens, and a linear output layer with 8 outputs.

Let nT be the number of training seeds. We use the following hyperparameter settings:
• SVHN, nh ∈ {8, 16, 32}, nL ∈ {0, 1, 2, 3},
nT ∈ {20, 100, 250, 500, 1000, 5000, 10000, 50000}

• CIFAR10, nh ∈ {16, 32, 64}, nL ∈ {0, 1, 2, 3},
nT ∈ {20, 100, 250, 500, 1000, 5000, 10000, 50000}

• SARCOS, nh ∈ {16, 32, 64, 128, 256}, nL ∈ {0, 1, 2, 3},
nT ∈ {20, 100, 250, 500, 1000, 5000, 10000, 44484}

• California Housing, nh ∈ {16, 32, 64, 128},
nT ∈ {20, 100, 250, 500, 1000, 5000, 10000}

For SVHN and CIFAR10, we use the same architecture and hyperparameter ranges for
classification, DDQN and REINFORCE experiments. Each hyperparameter setting is run
with 3 or more seeds. The seeds affect the initial parameters, the sampling of minibatches,
and the sampling of ε-greedy actions.

Note that while we run REINFORCE on SVHN and CIFAR, we do not spend a lot of
time analyzing its results, due the relatively low relevance of PG methods to the current
work. Indeed, the goal was only to highlight the difference in trends between TD and
PG, which do indicate that the two have different behaviours. Policy gradient methods do
sometimes rely on the TD mechanism (e.g. in Actor-Critic), but they use different update
mechanisms and deserve their own independent analysis, see for example Ilyas et al. (2018).

For optimizers, we use the standard settings of PyTorch:
• Adam, β = (0.9, 0.999), ε = 10−8

• RMSProp, α = 0.99, ε = 10−8

• Momentum SGD, β = 0.9 (with Nesterov momentum off)

Figure 3.7, 3.8, 3.9, 3.10, and 3.14 Figure 3.7 is obtained by training models for
500k steps with a standard DQN architecture (Mnih et al., 2013): 3 convolutional layers
with kernels of shape 4× 32× 8× 8, 32× 64× 4× 4, and 64× 64× 3× 3 and with stride
4, 2, and 1 respectively, followed by two fully-connected layers of shape 9216 × 512 and
512 × |A|, A being the legal action set for a given game. All activation are leaky ReLUs
except for the last layer which is linear (as it outputs value functions). Experiments are
run on MsPacman, Asterix and Seaquest for 10 runs each. A learning rate of 10−4 is used,
with L2 weight regularization of 10−4. We use γ = 0.99, a minibatch size of 32, an ε of
5% to generate D∗, and a buffer size of 500k. The random seeds affect the generation of
D∗, the weight initialization, the minibatch sampling, and the choice of actions in ε-greedy
rollouts.
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As per the previous figure, for Figure 3.8 we run experiments with a standard DQN
architecture, train our policy evaluation models for 500k and our control models for 10M
steps. When boostrapping to a frozen network, the frozen network is updated every 10k
updates.

Figures 3.9, 3.10, and 3.14 also use results from these experiments.

Figure 3.12, 3.13, and 3.14 The experiments of Figure 3.12 are run for 500k steps, as
previously described, on MsPacman. λ-targets are computed with the forward view, using
the frozen network to compute the target values – this allows us to cheaply recompute all
λ-targets once every 10k steps when we update the frozen network. Each setting is run
with 5 random seeds.

Figures 3.13 and 3.14 also use results from these experiments.

Figure 3.15 Figure 3.15 reuses the results of Figure 3.8’s policy evaluation experiments
run with Adam.

Figure 3.17 Figure 3.17 uses the same experiment setup as in the Atari regression exper-
iments on MsPacman, as well as policy evaluation experiments on MsPacman as previously
described, all the while measuring individual terms of ρ′reg and ρ′TD. Experiments are only
run for the first 100k steps. Minibatches of size 32 are used.

3.3 Discussion

In this chapter we’ve seen that in deep neural networks, memorization and generalization
are not necessarily at odds. In supervised learning, with structured data, DNNs learn to
rely on a few samples and in a sense memorize them, while at the same time learning
simple patterns, applicable to a wide range of inputs. Both these mechanisms enable
generalization, the ability to make correct predictions on novel inputs.

We’ve then taken this investigation to deep Reinforcement Learning, where we found
that some behaviours related to generalization, in particular interference, are heavily al-
tered in comparison to supervised learning. These suggests that there is a lack of gen-
eralization even within the training data–or perhaps more precisely, a lack of parameter
sharing between samples of the training data. What should we make of it?

Indeed, RL is generally considered a harder problem than supervised learning due to the
non-i.i.d. nature of the data. Hence, the fact that TD-style methods require more samples
than supervised learning when used with neural networks is not necessarily surprising.
However, with the same data and the same final targets (the “true" value function), it is
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not clear why TD updates lead to parameters that generalize worse than in supervised
learning. Indeed, our results show that the interference of a converged model evolves
differently as a function of data and capacity in TD than in supervised learning.

Our results also show that Q-Learning generalizes poorly, leading to DNNs that mem-
orize the training data (not unlike table lookup). Our results also suggest that TD(λ),
although not widely used in recent DRL, improves generalization. Additionally, we found
differences between Adam and RMSProp that we initially did not anticipate. Very little
work has been done to understand and improve the coupling between optimizers and TD,
and our results indicate that this is an important future work direction. Indeed, a method
aware of this coupling is later proposed in §4.1 (Bengio et al., 2020b).

While a full description of the mechanisms that cause TD methods to have such prob-
lems remains elusive, we find that understanding the evolution of gradient interference
reveals intriguing differences in memorization behaviours between the supervised and tem-
poral difference objectives, and hint at the importance of stable targets in bootstrapping.

Looking forward, this work suggests that the RL community should pay special
attention to the current research on generalization in DNNs, as naively approaching the
TD bootstrapping mechanism as a supervised learning problem does not seem to leverage
the full generalization potential of DNNs.

This is especially visible in what has been driving the recent impressive successes of
deep RL (Silver et al., 2017; Hessel et al., 2018; Vinyals et al., 2019), relatively simple
methods, massively scaled. It seems probable that the need for these methods to leverage
many lifetimes of data results from poor generalization mechanisms in deep RL.

Another problem this work alludes to is the need to properly define generalization in
RL. There are likely to be multiple axes to it, state-generalization, task-generalization,
action-generalization (Cobbe et al., 2019; Packer et al., 2018; Zhang et al., 2018a; Justesen
et al., 2018; Witty et al., 2018; Igl et al., 2020; Lan et al., 2022); although these superficially
appear to be separate issues, recent empirical results all suggest they are in fact deeply
intertwined.
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4
Optimization and Temporal Difference

This chapter synthesizes my contribution on a novel optimizer for temporal difference
learning methods (Bengio et al., 2020b).

A central part of Machine Learning is, of course, the learning aspect, which happens
in a myriad of different ways. In deep learning, most of it happens through gradient
descent and its many variants taking roots in stochastic optimization (Bottou, 1998).

This proliferation of optimization tools has led to a number of advances in supervised
learning, which we will start the chapter by discussing. Surprisingly, deep reinforcement
learning methods have been able to use these tools as is and obtain great empirical results,
despite the technical challenges that arise from non-stationarity in RL. In the rest of the
chapter, we will discuss a novel optimization method that explicitly assumes this non-
stationarity, and uses it to enhance the performance of optimization process of temporal
difference learning methods. We find that by trying to correct for staleness, one can learn
the value function much faster.

In the next sections, we again closely follow the original material of my contribu-
tion (Bengio et al., 2020b). The code for the methods described here is available at
https://github.com/bengioe/staleness-corrected-momentum.

4.1 Accelerated Methods, Bootstrapping
and Staleness

4.1.1 On Supervised Learning Tools in Reinforcement Learning

Typical stochastic convex optimization problems are formulated as finding parameters θ∗

for which the expected value J(θ) = EX [J(X; θ)] is minimized for some convex (∇2
θJ > 0)

function J(θ).
Since the expectation is generally intractable, we instead rely of stochastic samples of

X to update the current estimate of θ using a step-size at as:

θt+1 = θt − at∇θtJ(Xt; θt). (4.1)
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This follows Robbins and Monro (1951)’s method, where we estimate θ for which ∇θJ(θ) =
0. This method converges if the following assumptions hold:

• we can sample the random variable G(θ) such that EX [G] = ∇θJ(θ),

• G(θ) is bounded

• the step size at is such that ∑t at =∞ and ∑t a
2
t <∞

Note that the samples of G here are formed through another random variable X, which
represents the data. For these conditions to hold, sampling of X must follow the same
distribution throughout. In other words, X1, X2, . . . are identically and independently
distributed (i.i.d.). This method is commonly referred to as stochastic gradient de-
scent (SGD).

Supervised Deep Learning breaks a central assumption here, that J is convex. Deep
Reinforcement Learning, which is broadly based on the same update mechanism, also
breaks the i.i.d. assumption. Although there are results on convergence in non-convex
non-i.i.d. settings, they are not always readily applicable to DNNs.

There is a broad literature on why DNNs still converge, even though their optimization
landscape is non-convex, but it is not the focus of this work. Let’s nonetheless highlight
a key result discovered by Dauphin et al. (2014); one well known danger of non-convex
optimization is that of local minima (Gori and Tesi, 1992), whereby the iterative process
above converges to a locally convex region of J(θ) for which J(θ) > J(θ∗). Dauphin et al.
(2014) find that this turns out not to be a problem for DNNs, due to the high-dimensionality
of θ, one is much more likely to encounter a saddle point (where ∇θJ(θ) = 0) than a local
minima (and there are many methods to escape saddle points). Indeed, as Dauphin et al.
(2014) point out, there are exponentially more saddle points in an N variable Gaussian
process than local minima as N increases.

By relaxing the i.i.d. assumption on the data distribution, we enter a hazardous territory
where there are no guarantees, and many pitfalls (van Hasselt et al., 2018). We can
in particular highlight two categories of so-called non-stationarity, whereby X1, X2, . . .

are no longer independent, nor identically distributed. As an agent learns and collects
experience, the data it sees changes. More fundamentally, a host of RL methods rely on an
agent’s own predictions of the future to learn, i.e. so-called bootstrapping. This means
that as an agent learns, its own learning signal changes, which is another significant source
of non-stationarity.

Both these non-stationarites break the “identically distributed” assumption, but more
importantly they break the “independently distributed” assumption, as what an agent
learns now depends on what it has learned in the past.
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These fundamental questions highlight the necessity to understand optimization in
Deep RL much better, and to formulate methods adapted to this setting.

4.1.2 Accelerated Methods and Staleness

While SGD is a fundamental and well understood method, it can be rather slow to con-
verge. In a sense, because of the stochastic nature of each iterate, all the information used
previously is lost.

A notable method to make SGD faster ismomentum, a so-called acceleratedmethod,
which combines these past iterates in a velocity term to obtain a stronger sense of direction.
An interesting 3-dimensional analogy is to imagine SGD as someone walking downhill, ad-
justing their direction after every step to find the steepest descent; momentum would be
a large heavy ball, rolling downhill via gravity and its own momentum.

The usual form of momentum (Polyak, 1964; Sutskever et al., 2013) in SGD maintains
an exponential moving average with factor β of gradients w.r.t. to some objective J ,
changing parameters θt ∈ Rn with learning rate α:

µt = βµt−1 + (1− β)∇θt−1Jt(θt−1) (4.2)

θt = θt−1 − αµt (4.3)

We write Jt to fold in the dependency on Xt. Note that other similar forms of this
update exist, notably Nesterov’s accelerated gradient method (Nesterov, 1983), as well as
undampened methods that omit (1−β) in (4.2) or replace (1−β) with α, found in popular
deep learning packages (Paszke et al., 2019b).

We make the observation that, at time t, the gradients accumulated in µ are stale.
They were computed using past parameters rather than θt, and in general we’d expect
∇θtJt(θt) 6= ∇θkJt(θk), k < t. As such, the update in (4.3) is a biased update.

Note that here we do not use “bias” as it relates to convergence (indeed it appears that
momentum SGD is well behaved in that regard, see Wang et al., 2021). Rather, we note
that the update differs in expectation (in the limit of infinite an batch size used to compute
∇θJ(θ)) from a gradient descent update, because it depends on the previous location of
the parameters in the optimization process. In that sense, we say that this dependency on
previous gradient updates induces some staleness, some bias, to the update.

In supervised learning where one learns a mapping from x to y, this staleness only
has one source: θ changes but the target y stays constant. As we’ve discussed in the last
section, bootstrapping introduces an additional non-stationary, and we argue that in TD
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learning, momentum becomes doubly stale: not only does the value network change, but
the target (the equivalent of y) itself changes1 with every parameter update.

Let’s recall the TD(0) update:

θt+1 = θt − α∇θt

(
Vθt(St)− (R(St) + γV̄θt(St+1))

)2
, (4.4)

with V̄ meaning we consider V constant for the purpose of gradient computation.
When θ changes, not only does V (s) change, but V (s′) as well. The update itself

changes, making past gradients stale and less aligned with recent gradients (even more so
when there is gradient interference (Liu et al., 2019a; Achiam et al., 2019; Bengio et al.,
2020a), constructive or destructive, as we have seen in the previous chapter).

Note that several sources of bias already exist in TD learning, notably the traditional
parametric bias (of the bias-variance tradeoff when selecting capacity, see Neal et al., 2019),
as well as the bootstrapping bias (of the error in V (s′) when using it as a target; using a
frozen target prevents this bias from compounding, see van Hasselt et al., 2018). We argue
that the staleness in momentum we describe is an additional form of bias, slowing down or
preventing convergence. This has been hinted at before, e.g. Gupta (2020) suggests that
momentum hinders learning in linear TD(0).

Part of the success of DNNs, including when applied to TD learning, is the use of
adaptive or accelerated optimization methods (Hinton et al., 2012; Sutskever et al., 2013;
Kingma and Ba, 2015) to find good parameters. In this chapter we investigate and extend
the momentum algorithm (Polyak, 1964) as applied to TD learning in DNNs. While
accelerated TD methods have received some attention in the literature, this is typically
done in the context of linear function approximators (Baxter and Bartlett, 2001; Meyer
et al., 2014; Pan et al., 2017; Gupta et al., 2019; Gupta, 2020; Sun et al., 2021), and while
some studies have considered the mix of DNNs and TD (Zhang et al., 2019; Romoff et al.,
2021), many are limited to a high-level analysis of hyperparameter choices for existing
optimization methods (Sarigül and Avci, 2018; Andrychowicz et al., 2020); or indeed the
latter are simply applied as-is to train RL agents (Mnih et al., 2013; Hessel et al., 2018).

As a first step in going beyond the naive use of supervised learning tools in RL, we
examine momentum. We argue that momentum, especially as it is used in conjunction with
TD and DNNs, adds an additional form of bias which can be understood as the staleness
of accumulated information. We quantify this bias, and propose a corrected momentum
algorithm that reduces this staleness and is capable of improving performance.

1Interestingly, even in most recent value-based control works (Hessel et al., 2018) a (usually frozen)
copy is used for stability, meaning that the target only changes when the copy is updated. This is considered
a “trick” which it would be compelling to get rid of, since it slows down learning, and since most recent
policy-gradient methods (which still use a value function) do not make use of such copies (Schulman et al.,
2017).
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4.1.3 Related Work

To the best of our knowledge, no prior work attempts to derive a corrected momentum-
SGD update adapted to the Temporal Difference method. That being said, a wealth of
papers are looking to accelerate TD and related methods.

On momentum, traces, and gradient acceleration in TD
From an RL perspective, our work has some similarity to the so-called eligibility traces

mechanism. In particular, in the True Online TD(λ) method of van Seijen and Sutton
(2014), the authors derive a strict-online update (i.e. weights are updated at every MDP
step, using only information from past steps, rather than future information as in the λ-
return perspective) where the main mechanism of the derivation lies in finding an update by
assuming (at least analytically) that one can “start over” and reuse all past data iteratively
at each step of training, and then from this analytical assumption derive a recursive update
(that doesn’t require iterating through all past data). The extra values that have to be
kept to compute the recursive updates are then called traces. This is akin to how we will
later conceptualize the “ideal” momentum µ∗, (4.6), and derive µ̂.

The conceptual similarities of the work of van Seijen and Sutton (2015) with our work
are also interesting. There, the authors analyse what “retraining from scratch” means (i.e.,
again, iteratively restarting from θ0 ∈ Rm) but with some ideal target θ∗ (e.g. the current
parameters) by redoing sequentially all the TD(0) updates using θ∗ for all the n transitions
in a replay buffer, costing O(nm). They derive an online update showing that one can
continually learn at a cost of O(m2) rather than paying O(nm) at each step. The proposed
update is also reminiscent of our method in that it aims to perform an approximate batch
update without computing the entire batch gradient, and also maintains extra momentum-
like vectors and matrices. We note that the derivation there only works in the linear TD
case.

In a way, such an insight can be found in the original presentation of TD(λ) of Sutton
(1988), where the TD(λ) parameter update is written as (equation (4) in the original paper,
but with adapted notation):

∆θt = α[rt + γVθt(st+1)− Vθt(st)]
t∑

k=1
λt−k∇θtVθt(sk)

Remark the use of θt in the sum; in the linear case since ∇θtVθt(sk) = φ(sk), the sum does
not depend on θt and thus can be computed recursively. A posteriori, if one can find a
way to cheaply compute ∇θtVθt(sk) ∀k, perhaps using the method we propose, it may be
an interesting way to perform TD(λ) using a non-linear function approximator.

Our analysis is also conceptually related to the work of Schapire and Warmuth (1996),
where a worst-case analysis of TD∗(λ) is performed using a best-case learner as the per-
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formance upper bound. This is similar to our momentum oracle; just as the momentum
oracle is the "optimal" approximation of the accumulation gradients coming from all past
training examples, the best-case learner of Schapire and Warmuth (1996) is the set param-
eters that is optimal when one is allowed to look at all past training examples (in contrast
to an online TD learner).

Before moving on from TD(λ), let us remark that eligibility traces and momentum,
while similar, estimate different quantities. The usual (non-replacing) traces estimate the
exponential moving average of the gradient of Vθ, while momentum does so for the objective
J (itself a function of Vθ):

et = (1− λ)
t∑
k

λt−k∇θVθ, µt = (1− β)
t∑
k

βt−k∇θJ(Vθ)

Our method also has similarities with residual gradient methods (Baird, 1995). A
recent example of this is the work of Zhang et al. (2019), who adapt the residual gradient
for deep neural networks. Residual methods learn by taking the gradient of the TD loss
with respect to both the current value and the next state value V (S ′), but this comes at
the cost of requiring two independent samples of S ′ (except in deterministic environments).

Similarly, our work is related to the “Gradient TD” family of methods (Sutton et al.,
2008, 2009b). These methods attempt to maintain an expectation (over states) of the TD
update, which allows to directly optimize the Bellman objective. While the exact relation-
ship between GTD and “momentum TD” is not known, they both attempt to maintain
an “expected update” and adjust parameters according to it; the first approximates the
one-step linear TD solution, while the latter approximates the one-step batch TD update.
Note that linear GTD methods can also be accelerated with momentum-style updates
(Meyer et al., 2014), low-rank approximations for part of the Hessian (Pan et al., 2017),
and adaptive learning rates (Gupta et al., 2019).

Interestingly, while GTD is a “proper” gradient method, TD as it is generally used is
not, although the latter is widely used because it does not suffer from the double sampling
problem. Such an observation is part of the motivation of trying to address issues in the
use of momentum applied to TD methods.

More directly related to this work is that of Sun et al. (2021), who show convergence
properties of a rescaled momentum for linear TD(0). While most (if not every) deep
reinforcement learning method implicitly uses some form of momentum and/or adaptive
learning rate as part of the deep learning toolkit, Sun et al. (2021) properly analyse the
use of momentum in a (linear) TD context. Gupta (2020) also analyses momentum in the
context of a linear TD(0) and TD(λ), with surprising negative results suggesting naively
applying momentum may hurt stability and convergence in minimal MDPs.
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Another TD-aware adaptive method is that of Romoff et al. (2021), who derive per-
parameter adaptive learning rates, reminiscent of RMSProp (Hinton et al., 2012), by con-
sidering a (diagonal) Jacobi preconditioning that takes into account the bootstrap term in
TD.

Finally, we note that, as far as we know, recent deep RL works all use some form
of adaptive gradient method, Adam (Kingma and Ba, 2015) being an optimizer of choice,
closely followed by RMSProp (Hinton et al., 2012); notable examples of such works include
those of Mnih et al. (2013), Schulman et al. (2017), Hessel et al. (2018), and Kapturowski
et al. (2019). We also note the work of Sarigül and Avci (2018), comparing various SGD
variants on the game of Othello, showing significant differences based on the choice of
optimizer.

On Taylor approximations
Balduzzi et al. (2017) note that while theory suggests that Taylor expansions around

parameters should not be useful because of the "non-convexity" of ReLU neural networks,
there nonetheless exists local regions in parameter space where the Taylor expansion is
consistent. Much earlier work by Engelbrecht (2000) also suggests that Taylor expansions
of small sigmoid neural networks are easier to optimize. Using Taylor approximations
around parameters to find how to prune neural networks also appears to be an effective
approach with a long history (LeCun et al., 1990; Hassibi and Stork, 1993; Engelbrecht,
2001; Molchanov et al., 2016).

On policy-gradient methods and others
While not discussed in this chapter, another class of methods used to solve RL prob-

lems are PG methods. They consist in taking gradients of the objective w.r.t. a directly
parameterized policy (rather than inducing policies from value functions). We note in
particular the work of Baxter and Bartlett (2001), who analyse the bias of momentum-like
cumulated policy gradients (referred to as traces therein), showing that β the momentum
parameter should be chosen such that 1/(1− β) exceeds the mixing time of the MDP.

Let us also note the method of Vieillard et al. (2020), Momentum Value Iteration,
which uses the concept of an exponential moving average objective for a decoupled (with
its own parameters) action-value function from which the greedy policy being evaluated is
induced. This moving average is therein referred to as momentum; even though it is not
properly speaking the optimizational acceleration of Polyak (1964), its form is similar.
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4.2 Correcting Staleness in Momentum

4.2.1 Identifying Bias

Here we propose an experimental protocol to quantify the previously described bias of
momentum. We assume we are minimizing some objective in the minibatch or online set-
ting. In such a stochastic setting, momentum is usually understood as a variance reduction
method, or as approximating the large-batch setting (Botev et al., 2017), but as discussed
above, momentum also induces bias in the optimization.

We note that µt, the momentum at time t, can be rewritten as:

µt = (1− β)
t∑
i=1

βt−i∇θiJi(θi), (4.5)

and argue that an ideal unbiased momentum µ∗t would approximate the large batch case
by only discounting past minibatches and using current parameters rather than past pa-
rameters:

µ∗t
def= (1− β)

t∑
i=1

βt−i∇θtJi(θt). (4.6)

Note that the only difference between (4.5) and (4.6) is the use of θi vs θt. The only way
to exactly compute µ∗t is to recompute the entire sum after every parameter update. We
will consider this our unbiased oracle. To compute µ∗t empirically, since beyond a certain
power βk becomes small, we will use an effective horizon of h = 2/(1− β) steps (i.e. start
at i = t− h rather than at i = 1).

We call the difference between µt and µ∗t the bias, but note that in the overparameterized
stochastic gradient case, minor differences in gradients can quickly send parameters in
different regions. This makes the direct measure of ‖µt − µ∗t‖ uninformative. Instead, we
measure the optimization bias by simply comparing the loss of a model trained with µt
against that of a model trained with µ∗t .

Finally, we note that, in RL, momentum approximating the batch case is related to
(approximately) replaying an entire buffer at once (instead of sampling transitions). This
has been shown to also have interesting forms in the linear case (van Seijen and Sutton,
2015), reminiscent of the correction derived below. We also note that, while the mathe-
matical expression of momentum and eligibility traces (Sutton, 1988) look fairly similar,
they estimate a very different quantity (as we have seen in §4.1.3).
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4.2.2 Correcting Bias

Here we propose a way to approximate µ∗, and so derive an approximate correction to
the bias in momentum for supervised learning, as well as for Temporal Difference (TD)
learning.

We consider here the simple regression and TD(0) cases, for the online (minibatch size
1) case. We show the full derivations, and results for any minibatch size, TD(λ) and n-step
TD, in §4.2.3. In least squares regression with loss δ2 we can write the gradient gt as:

gt(θt) = (yt − fθt(xt))∇θtfθt(xt) = ∇θtδ
2
t /2. (4.7)

We would like to “correct” this gradient as we move away from θt. A simple way to do so
is to compute the Taylor expansion around θt of gt:

gt(θt + ∆θ) = gt(θt) +∇θtgt(θt)>∆θ + o(‖∆θ‖2
2), (4.8)

≈ gt(θt) + (δ∇2
θtfθt(xt)−∇θtfθt(xt)⊗∇θtfθt(xt))>∆θ, (4.9)

where ⊗ is the outer product, ∇2 the second derivative. We note that the term multiplying
∆θ is commonly known as “the Hessian” of the loss (Bottou, 1998). We also note that
Taylor expansions around parameters have a rich history in deep learning (LeCun et al.,
1990; Molchanov et al., 2016), and that in spite of its non-linearity, the parameter space
of a deep network is filled with locally consistent regions (Balduzzi et al., 2017) in which
Taylor expansions are accurate.

The same correction computation can be made for TD(0) with TD loss δ2. Remember
that we write t as the learning time; we denote an MDP transition as (st, at, rt, s′t), making
no assumption on the distribution of transitions used for learning:

gt(θt) = (Vθt(st)− rt − γVθt(s′t))∇θtVθt(st) = ∇θtδ
2
t /2, (4.10)

gt(θt + ∆θ) ≈ gt(θt) + (∇θt(Vθt(st)− γVθt(s′t))⊗∇θtVθt(st) + δ∇2
θtVθt(st))

>∆θ. (4.11)

Here, because we are using a semi-gradient method, the term multiplying ∆θ is not exactly
the Hessian: when computing ∇θδ

2, we hold V (s′) constant, but when computing ∇θg, we
need to consider Vθ(s′) a function of θ as it affects g, and so compute its gradient.2

Without loss of generality, let us write equations like (4.9) and (4.11) using the matrix
Zt ∈ Rn×n:

gt(θt + ∆θ) ≈ gt(θt) + Z>t ∆θ, (4.12)
2This computation of the gradient of Vθ(s′) may remind the reader of the so-called full gradient or

residual gradient (Baird, 1995), but its purpose here is very different: we care about learning using semi-
gradients, TD(0) is a principled algorithm, but we also care about how this semi-gradient evolves as
parameters change, and thus we need to compute ∇θVθ(s′).
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where the form of Zt, which we will refer to as the “Taylor term”, depends on the loss (e.g.
the Hessian in (4.9)).

Recall that in (4.6) we define µ∗ as the discounted sum of gradients using θt for losses
Ji, i ≤ t. We call those gradients corrected gradients, gti := gi(θi + (θt − θi)). At timestep
t we update θt with αµt, thus we substitute ∆θ = θt − θi = −α∑t

k=i µk in (4.12) and get:

ĝti
def= gi(θi)− αZ>i

t−1∑
k=i

µk ≈ gti . (4.13)

We can now approximate the unbiased momentum µ∗t using (4.13), which we denote µ̂:

µ̂t
def= (1− β)

t∑
i=1

βt−iĝti (4.14)

= µt − α(1− β)
t−1∑
k=1

k∑
i=1

βt−iZ>i µ̂k. (4.15)

Noting that µt can be computed as usual and that the second term of (4.15) has a recursive
form, which we denote ηt (see §4.2.3), we rewrite µ̂ as follows:

µ̂t = µt − ηt (4.16)

ηt = βηt−1 + αβζ>t−1µ̂t−1 (correction term) (4.17)

µt = (1− β)
t∑
i=1

βt−igi = (1− β)gt + βµt−1 (normal momentum) (4.18)

ζt = (1− β)
t∑
i=1

βt−iZi = (1− β)Zt + βζt−1. (“momentum” of Taylor terms) (4.19)

Algorithmically, this requires maintaining 2 vectors µ and η of size n, the number of
parameters, and one matrix ζ of size n× n. In practice, we find that only maintaining the
diagonal (or block-diagonal) of ζ can also work and can avoid the quadratic growth in n.

The computation of Z also calls on computing second order derivatives ∇2f (e.g. in
(4.9) and (4.11)), which is impractical for large architectures. In this work, as is commonly
done due to the usually small magnitude of ∇2f (Bishop, 2006b, section 5.4), we ignore
them and only rely on the outer product of gradients.

Ignoring the second derivatives, computing Z for TD(0) requires 3 backward passes, for
g = ∇δ2, ∇γV (s′), and ∇V (s). In the online case g = δ∇V (s), requiring only 2 backward
passes, but in the more general minibatch of size m > 2 case, it is more efficient with
modern automatic differentiation packages to do 3 backward passes than 2m passes (see
§4.2.3.2).

Finally, we note that this method easily extends to forward-view TD(λ) and n-step TD
methods, all that is needed is to compute Z appropriately (see §4.2.3.1).
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4.2.3 Derivation of the momentum correction

Let us recall some definitions. In momentum, µt can be rewritten as:

µt = (1− β)
t∑
i=1

βt−i∇θiJi(θi) (4.20)

We argue that an ideal unbiased momentum µ∗t would approximate the large batch case
by only discounting past minibatches and using current parameters θt rather than past
parameters θi:

µ∗t
def= (1− β)

t∑
i=1

βt−i∇θtJi(θt) (4.21)

Note that the only difference between (4.20) and (4.21) is the use of θi vs θt. The only way
to compute µ∗t exactly is to recompute the entire sum after every parameter update. Al-
ternatively, we could somehow approximate this sum. Below we will define gti = ∇θtJi(θt),
which we will then approximate with ĝti . We will then show that this approximation has
a recursive form which leads to an algorithm.

We want to correct accumulated past gradients gi to their “ideal” form gti , as above.
We do so with their Taylor expansion around θ, and we write the correction of the gradient
gi computed at learning time i corrected at time t as:

gti = gi(θi + ∆θ(t− 1; i)) = gi +∇θg
T
i ∆θ(t− 1; i) + o(‖∆θ‖2

2) (4.22)

≈ ĝti = gi + ZT
i ∆θ (4.23)

where ∆θ(t; i) = θt − θi, gi = ∇θiJi, Zi = ∇θigi. Note that we allow ourselves this
simplification knowing that the parameter space of a deep network is filled with locally
consistent regions in which Taylor expansions are accurate (Balduzzi et al., 2017).

Here we are agnostic of the particular form of Z, which will depend on the loss and
learning algorithm, and is not necessarily the so-called Hessian. To see why this is the case,
and for the derivation of Z for the squared loss, cross-entropy and TD(0), see §4.2.3.1.

Let’s now express ĝti in terms of gi and updates µt. At each learning step, the current
momentum µt is multiplied with the learning rate α to update the parameters, which allows
us to more precisely write ĝti :
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θt = θt−1 − αµt = θ0 − α
t∑
i=1

µi (4.24)

∆θ(t; i) = θt − θi = θ0 − α
t∑

k=1
µk − θ0 + α

i∑
k=1

µk = −α
t∑
k=i

µk (4.25)

ĝti = gi + ZT
i ∆θ(t− 1; i) = gi − αZT

i

t−1∑
k=i

µk (4.26)

We can now write µ̂t, the approximated µ∗t using ĝti :

µ̂t = (1− β)gt + (1− β)
t−1∑
i=1

βt−iĝti (4.27)

= (1− β)gt + (1− β)
t−1∑
i=1

βt−igi − (1− β)
t−1∑
i=1

βt−iαZT
i

t−1∑
k=i

µ̂k (4.28)

= µt − α(1− β)
t−1∑
i=1

t−1∑
k=i

βt−iZT
i µ̂k extract µ (4.29)

= µt − α(1− β)
t−1∑
k=1

k∑
i=1

βt−iZT
i µ̂k change the sum indices for convenience (4.30)

= µt − ηt extract ηt (4.31)

Note that here we plugged in µ̂k rather than µk, this is because we defined ĝti in terms
of some momentum updates µk, without specifying what those were. Since we’re now using
µ̂k momentum updates, we replace ĝti above as a function of µ̂k.

Let’s try to find a recursive form for ηt:

ηt − ηt−1 = α(1− β)
t−1∑
k=1

k∑
i=1

βt−iZT
i µ̂k − α(1− β)

t−2∑
k=1

k∑
i=1

βt−1−iZT
i µ̂k

= α(1− β)
(
t−2∑
k=1

k∑
i=1

(βt−iZT
i µ̂k − βt−1−iZT

i µ̂k) +
t−1∑
i=1

βt−iZT
i µ̂t−1

)

= α(1− β)
(
t−2∑
k=1

k∑
i=1

(β − 1)βt−1−iZT
i µ̂k +

t−1∑
i=1

βt−iZT
i µ̂t−1

)

= (β − 1)ηt−1 + αβ(1− β)
t−1∑
i=1

βt−1−iZT
i µ̂t−1

Let ζt = (1− β)
t∑
i=1

βt−iZi

ηt − ηt−1 = (β − 1)ηt−1 + αβζt−1µ̂t−1

ηt − ηt−1 = −(1− β)ηt−1 + αβζTt−1µ̂t−1

ηt = βηt−1 + αβζTt−1µ̂t−1
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We can now write the full update as:

µ̂t = µt − ηt
ηt = βηt−1 + αβζTt−1µ̂t−1

µt = (1− β)
t∑
i=1

βt−igi = (1− β)gt + βµt−1

ζt = (1− β)
t∑
i=1

βt−iZi = (1− β)Zt + βζt−1

with η0 = 0.
This corresponds to an algorithm where one maintains η, µ and ζ.

4.2.3.1 Derivation of Taylor expansions and Z

For least squares regression, the expansion around θ of g(θ) is simply the Hessian of the
loss δ2:

δ2 = 1
2(y − fθ(x))2 (4.32)

g(θ) = ∇θδ
2 (4.33)

g(θ + ∆θ) = g(θ) +HT
J ∆θ + o(‖∆θ‖2

2) (4.34)

This Hessian has the form

HJ = ∇θf ⊗∇θf + δ2∇2
θf (4.35)

δ2 being small when a neural network is trained and ∇2 being expensive to compute,
a common approximation to Hj is to only rely on the outer product. Thus we can write:

Zreg = ∇θf ⊗∇θf (4.36)

For classification, or categorical crossentropy, Z has exactly the same form, but where
f is the log-likelihood (i.e. output of a log-softmax) of the correct class.

For TD(0), the expansion is more subtle. Since TD is a semi-gradient method, when
computing g(θ), gradient of the TD loss δ2, we ignore the bootstrap target’s derivative, i.e.
we hold Vθ(s′) constant (unlike in GTD). On the other hand, when computing the Taylor
expansion around θ, we do care about how Vθ(s′) changes, and so its gradient comes into
play:
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g(θ) = (Vθ(x)− γVθ(x′)− r)∇θVθ(x)

g(θ + ∆θ)i = gi(θ) + (∇θVθ(x)− γ∇θVθ(x′))∇θiVθ(x) ·∆θ + δ∇θ∇θiVθ(x) ·∆θ
g(θ + ∆θ) = g(θ) + ((∇θVθ(x)− γ∇θVθ(x′))⊗∇θVθ(x))T ∆θ + δ∇2

θVθ(x)T∆θ

Similarly for TD we ignore the second order derivatives and write:

ZTD = (∇θVθ(x)− γ∇θVθ(x′))⊗∇θVθ(x)

For an n-step TD objective, the correction is very similar:

ZTD(n) = (∇θVθ(xt)− γn∇θVθ(xt+n))⊗∇θVθ(xt)

For a forward-view TD(λ) objective this is also similar, but more expensive:

ZTD(λ) = (∇θVθ(xt)− (1− λ)∇θ(γλVθ(xt+1) + γ2λ2Vθ(xt+2) + ...))⊗∇θVθ(xt)

Finally, to avoid maintaining n × n values for Z, it is possible to only maintain the
diagonal of Z or some block-diagonal approximation, at some performance cost.

4.2.3.2 Additional Remarks

Much of RL analysis is done in the linear case, as it is easier to make precise statements
about convergence there. We write down such a case below, but we were unfortunately
unable to derive any interesting analyses from it.

Recall that the proposed method attempts to approximate µ∗:

µ∗t = (1− β)
t∑
i=1

βt−i∇θtJi(θt)

which in the linear case Vθ(x) = θ>φ(x) is simply:

= (1− β)
t∑
i=1

βt−iδiφi

which depends on θi through δi the TD error. As such we can write Z as:

ZTD = (∇θVθ(x)− γ∇θVθ(x′))⊗∇θVθ(x) = (φ− γφ′)φ>

which interestingly does not depend on θ. To the best of our knowledge, and linear
algebra skills, this lack of dependence on θ does not allow for a simplification of the pro-
posed correction mechanism (in contrast with linear eligibility traces) due to the pairwise
multiplicative t, i dependencies that emerge.
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As for similar adaptive gradient methods (Romoff et al., 2021), we require per-input
gradients. Fortunately, these can be computed efficiently for a minibatch of examples with
methods such as BackPack (Dangel et al., 2020).

4.3 Empirical Results

We evaluate our proposed correction as well as the oracle (the best our method could
perform) on common RL benchmarks and supervised problems. We evaluate each method
with a variety of hyperparameters and multiple seeds for each hyperparameter setting. The
full range of hyperparameters used as well as architectural details can be found in §4.3.3.

We will use the following notation for the optimizer used to train models: µ is the usual
momentum, i.e. (4.2)&(4.3), and serves as a baseline. µ∗ is our oracle, defined in (4.6).
µ̂ is the proposed correction, with updates as in (4.16)-(4.19), using the outer product
approximation of Z. µ̂diag is the proposed correction, but with a diagonal approximation
of Z. Throughout our figures, shaded areas are bootstrapped 95% confidence intervals
over hyperparameter settings (if applicable) and runs.

4.3.1 Supervised Learning

We first test our hypothesis, that there is bias in momentum, in a simple regression task
and SVHN (Netzer et al., 2011). For regression, we task a 4-layer MLP to regress to a
1-d function from a 1-d input. For illustration we use a smooth but non-trivial mixture of
sines of increasing frequency in the domain x ∈ [−1, 1]:

x y(x) = 0.5 sin(2.14(x+ 2)) + 0.82 sin(9x+ 0.4)+

0.38 sin(12x) + 0.32 sin(38x− 0.1) (4.37)

Note that this choice is purely illustrative and that our findings extend to similar simple
functions. We train the model on a fixed sample of 10k uniformly sampled points. We
measure the mean squared error (MSE) when training a small MLP with momentum SGD
versus our oracle momentum µ∗ and the outer product correction µ̂. As shown in Figure
4.1, we find that while there is a significant difference between the oracle and the baseline
(p ≈ 0.001 from Welsh’s t-test), the difference is fairly small, and is no longer significant
when using the corrected µ̂ (p ≈ 0.1).

We compare training a small convolutional neural network on SVHN (Netzer et al.,
2011) with momentum SGD versus our oracle momentum µ∗ and the diagonalized correc-
tion momentum µ̂diag. The results are shown in Figure 4.2. We do not find significant
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Figure 4.1: Regression to (4.37) with vary-
ing momentums (10 seeds per setting).
Note that the difference between µ and µ̂
is not significant, but µ and µ∗ is.
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Figure 4.2: Classification on SVHN with
varying momentums (5 seeds per setting).
Dotted lines are test losses. The only sig-
nificant difference is between the training
loss of µ∗ and µ.

differences except between the training loss of µ∗ and µ, and find that the oracle performs
worse than the normal and corrected momentum.

From these experiments we conclude that, in supervised learning, there exists a quan-
tifiable optimization bias to momentum, but that correcting it does not appear to offer any
benefit. It improves performance only marginally at best, and degrades it at worst. This is
consistent with the insight that µ∗ approximates the large batch gradient, and that large
batches are often associated with overfitting or poor convergence in supervised learning
(Wilson and Martinez, 2003; Keskar et al., 2017b).

4.3.2 Temporal Difference Learning

We now test our hypotheses, that there is optimisation bias and that we can correct it, on
RL problems. First, we test policy evaluation of the optimal policy on the Mountain Car
problem (Singh and Sutton, 1996) with a small MLP. We also test the standard Acrobot
and Cartpole environments (Sutton and Barto, 2018) and find very similar results. We
then test our method on Atari (Bellemare et al., 2013) with convolutional networks.

4.3.2.1 Testing the method on standard problems

Figure 4.3 shows policy evaluation on Mountain Car using a replay buffer (on-policy state
transitions are sampled i.i.d. in minibatches). We compare the loss distributions (across
hyperparameters and seeds) at step 5k, and find that all methods are significantly different
(p < 0.001) from one another. Figure 4.4 shows online policy evaluation, i.e. the transitions
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are generated and learned from once, in-order, and one at a time (minibatch size of 1).
There we see that the oracle µ∗ and full corrected version µ̂ are significantly different from
the baseline µ (p < 0.001) and diagonalized correction µ̂diag, as well as µ from µ̂diag, while
µ∗ and µ̂ are not significantly different (p > 0.1).

This suggests that the ζ matrix carries useful off-diagonal temporal information about
parameters which co-vary, especially when the data is not used uniformly during learning.
We test another possible explanation, which is that performance is degraded in online
learning because the batch size is 1 (rather than 16 or 32 as in Figure 4.3). We find that a
batch size of 1 does degrade µ̂diag’s performance significantly, as shown in Figure 4.6, but
does not fully explain its poor online performance.

In Figure 4.7, we evaluate the effect of the momentum parameter β, and in Figure
4.8 we evaluate the effect of the learning rate. Both show the expected U-shaped curves,
where there appears to be fairly clear optimal hyperparameter regions. We additionally
test our method on policy evaluation in Acrobot and Cartpole, which are two standard RL
problems. Results are shown in Figures 4.9 and 4.10.
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Figure 4.3: TD(0) policy evaluation on
Mountain Car with varying momentums on
a replay buffer. The MSE is measured
against a pretrained V π (10 seeds per set-
ting). At step 5k, all methods are signifi-
cantly different.
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Figure 4.4: TD(0) online policy evaluation
on Mountain Car, transitions are seen in-
order. The MSE is measured against a pre-
trained V π (50 seeds per setting). At step
20k, µ∗ and µ̂ are not significantly different.

73



0 10000 20000 30000 40000 50000

SGD steps

0.00

0.02

0.04

0.06

0.08

0.10
M

ea
n

S
q
u

ar
ed

E
rr

o
r,
E(
V
θ
−
V
π
)2 Oracle: µ∗

Baseline: µ

Corrected: µ̂

Corrected: µ̂diag

Figure 4.5: Replication of Figure 4.3 with
10× more training steps. Methods gradu-
ally converge to the value function.
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Figure 4.6: TD(0) policy evaluation on
Mountain Car with varying minibatch size
on a replay buffer. The MSE is measured
after 5k SGD steps against a pretrained V π.
Shaded areas are bootstrapped 95% confi-
dence runs (20 seeds per setting).
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Figure 4.7: TD(0) policy evaluation on
Mountain Car with varying β on a replay
buffer. The MSE is measured after 5k SGD
steps against a pretrained V π. Shaded ar-
eas are bootstrapped 95% confidence runs
(10 seeds per setting). We use a minibatch
size of 4 to reveal interesting trends.
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Figure 4.8: Effect of the learning rate on
Mountain Car, replay buffer policy evalua-
tion, MSE after 5k training steps. The MSE
is measured after 5k SGD steps against
a pretrained V π. Shaded areas are boot-
strapped 95% confidence runs (20 seeds per
setting).
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Figure 4.9: TD(0) policy evaluation on Ac-
robot with varying hyperparameters on a
replay buffer. The MSE is measured af-
ter 5k SGD steps against a pretrained V π.
Shaded areas are bootstrapped 95% confi-
dence runs (10 seeds per setting).
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Figure 4.10: TD(0) policy evaluation on
Cartpole with varying hyperparameters re-
play buffer. The MSE is measured af-
ter 5k SGD steps against a pretrained V π.
Shaded areas are bootstrapped 95% confi-
dence runs (10 seeds per setting).
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4.3.2.2 Understanding the momentum correction

A central motivation of this work is that staleness in momentum arises from the change in
gradients and targets. In theory, this is especially problematic for function approximators
which tend to have interference, such as DNNs (Fort et al., 2019; Bengio et al., 2020a),
i.e. where taking a gradient step using a single input affects the output for virtually every
other input. More interference means that as we change θ, the accumulated gradients
computed from past θs become stale faster. We test this hypothesis by (1) measuring the
drift of the value function (how much V (s) changes over learning steps for some fixed s) in
different scenarios, and (2) computing the cosine similarity between the corrected gradients
of (4.13), ĝti , and their true value gti = ∇Ji(θt).
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Figure 4.11: Value drift of V (s′) when
training with TD(0) on a replay buffer. We
see that RBFs being a sparse feature rep-
resentation, the value functions of recently
seen data tend not to drift (10 seeds per
setting). Here σ2 = 1.
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Figure 4.12: MSE as a function of the
width, σ2, of RBF kernels. The larger the
kernel, the more value drift our method, µ̂,
is able to correct (10 seeds per setting).

In Figure 4.11 we compare the value drift of MLPs with that of linear models with
Radial Basis Function (RBF) features. We compute the value drift of the target on recently
seen examples, i.e. we compute the average (Vθi(s′i)−Vθt(s′i))2 for the last h = 2nmb/(1−β)
examples, where nmb is the minibatch size. We compute the RBF features for s ∈ R2 as
exp(−‖s− uij‖2/σ2) for a regular grid of uij ∈ R2 in the input domain. We find that the
methods we try (even the oracle) are all virtually identical when using RBFs. We also
find, as shown in Figure 4.11, that RBFs have very little value drift (due to their sparsity)
compared to MLPs. This is consistent with our hypothesis that the method we propose
is only useful if there is value drift–otherwise, there is no optimization bias incurred by
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using momentum. We can test this hypothesis further by artificially increasing the width
of the RBFs, σ2, such that they overlap. As predicted, we find that reducing sparsity
(increasing interference) increases value drift and increases the gap between our method
and the baseline (Figure 4.12). This drift correlates with performance when changing σ2

(Figure 4.13).

10−4 10−3 10−2 10−1

Mean value drift

0.06

0.08

0.10

0.12

0.14

0.16

M
S

E
,
E(
V
θ
−
V
π
)2

Oracle: µ∗

Baseline: µ

Corrected: µ̂

Corrected: µ̂diag

Figure 4.13: MSE as a function of mean
Value drift of V (s′) for RBFs of varying
kernel size. The lines match the σ2 lines of
Figure 4.12, and show the relation between
σ2, drift, and error.
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Figure 4.14: Average cosine similarity
of the Taylor approximations ĝti with their
true value gti for recently seen data; Moun-
tain Car, replay buffer policy evaluation (40
seeds per setting).

In Figure 4.14 we measure the cosine similarity of the Taylor approximations ĝti =
gi + Z>i (θt − θi) with the true gradients gti = ∇Ji(θt) for the last h = 2nmb/(1 − β)
examples. We find that the similarity is relatively high (close to 1) throughout training
but that it gets lower as the model converges to the true value V π. This is also consistent
with our hypothesis that there is change (staleness) in gradients, while also validating the
approach of using Taylor approximations to achieve this correction mechanism.

It is also possible to correct momentum for a subset of parameters; we try this on
a per-layer basis and find that, perhaps counter-intuitively, it is much better to correct
the bottom layers (close to x) than the top layers (close to V ), and correcting all layers
is the best (see Figure 4.15). Although one may expect that changes close to V should
produce more drift (it is commonly thought that bootstrapping happens in the last layer
on top of relatively stable representations), the opposite is consistent with µ̂ interacting
with interference in the input space, which the bottom layers have to learn to disentangle.
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Figure 4.15: TD(0) policy evaluation on Mountain Car with an MLP. We vary the number
of layers whose parameters are used for full µ̂ correction (n2 params); e.g. when “bottom
used” is 3, the first 3 layers, those closest to the input, are used; when “top used” is 1, only
the last layer, that predicts V from embeddings, is used. The parameters of other layers
are either corrected with the diagonal correction or use normal momentum. Correcting
“both ends" is not better than just the bottom (not shown here).

4.3.2.3 Correcting momentum in Atari

We now apply our method on the Atari MsPacman game. We first do policy evaluation
on an expert agent (we use a pretrained Rainbow agent (Hessel et al., 2018)). Since the
architecture required to train an Atari agent is too large (n ≈ 4.8M) to maintain n2 values,
we only use the diagonal version of our method. We also experiment with smaller (n ≈
12.8k) models and the full correction, with similar results (see §4.3.3.8). To (considerably)
speed up learning, since the model is large, we additionally use per-parameter learning
rates as in Adam (Kingma and Ba, 2015), where an estimate of the second moment is used
as denominator in the parameter update; we denote this combination µ̂diag/

√
∇2 + ε. We

see in Figure 4.16 that our method provides a significant (p < 0.01) advantage.
Note that our method does not use frozen targets (as is usually necessary for this

environment). A simple way to avoid momentum staleness and/or target drift in TD(0) is
the use of frozen targets, i.e. to keep a separate θ̄ to compute Vθ̄(s′), updated (θ̄ ← θ)
at large intervals. Such a method is central to DQN (Mnih et al., 2013), but its downside
is that it requires more updates to bootstrap. We find that for policy evaluation, frozen
targets are much slower (both in Atari and simple environments) than our baseline (see
Figures 4.17 and 4.18).
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Figure 4.16: TD(0) policy evaluation on Atari (MsPacman) with varying momentums (20
seeds) on a replay buffer. The MSE is measured against sampled returns Gπ.

We finally apply our method to control, first in combination with a policy gradient
method, PPO (Schulman et al., 2017), in its policy evaluation part, and second with a
5-step Sarsa method, but find no improvement (or marginal at best) in either setting.
As in simpler environments we measure cosine similarity and value drift. We find low
similarity (≈ 0.1) but a 2× to 3× decrease in drift using our method, suggesting that
while our method corrects drift, its effect on policy improvement is minor. We suspect
that in control, even with a better value function, other factors such as exploration or
overestimation come into play which are not addressed by our method.

4.3.3 Hyperparameters and Architecture Choices

All experiments are implemented using PyTorch (Paszke et al., 2019b). We use Leaky
ReLUs throughout. All experimental code is available at https://github.com/bengioe/
staleness-corrected-momentum.

On Leaky ReLUs: we did experiment with ReLU, tanh, ELU, and SELU activation
units. The latter 3 units have more stable Taylor expansions for randomly initialized neural
networks, but in terms of experimental results, Leaky ReLUs were always significantly
better.

4.3.3.1 Regression

We use an MLP with 4 layers of width nh.
We use the cross-product of nh ∈ {8, 16, 32}, β ∈ {0.9, 0.99}, α ∈ {0.005, 0.01}, nmb ∈

{4, 16, 64}.
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Figure 4.17: Replication of Figure 4.3 in-
cluding the frozen targets baseline.

0 100 200 300 400 500

SGD steps (×103)

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

M
ea

n
S

q
u

a
re

d
E

rr
or

,
E(
V
θ
−
G
π
)2

Adam

Adam (frozen target)

Corrected: µ̂diag/
√
∇2 + ε

Figure 4.18: Replication of Figure 4.16 in-
cluding the frozen targets baseline. Inter-
estingly the models trained with frozen tar-
gets eventually become more precise than
those without, but this only happens after a
very long time. This is explained by the sta-
bility required for bootstrapping when TD
errors become increasingly small, which is
easily addressed by keeping the target net-
work fixed.

4.3.3.2 SVHN

We use a convolutional model with the following sequence of layers, following PyTorch
convention: Conv2d(3, nh, 3, 2, 1), Conv2d(nh, 2nh, 3, 2, 1), Conv2d(2nh, 2nh, 3, 2, 1),
Conv2d(2nh, nh, 3, 1, 1), Flatten(), Linear(16nh, 4nh ), Linear(4nh, 4nh), Linear(4nh, 10),
with LeakyReLUs between each layer.

We use the cross-product of nh ∈ {8, 16}, β ∈ {0.9, 0.99}, α ∈ {0.005, 0.01}, nmb ∈
{4, 16, 64}.

4.3.3.3 Mountain Car

We use an MLP with 4 layers of width nh.
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We use the cross-product of nh ∈ {8, 16, 32}, β ∈ {0.9, 0.99}, α ∈ {0.5, 0.1, 0.05},
nmb ∈ {4, 16, 64}.

4.3.3.4 Mountain Car online

We use an MLP with 4 layers of width nh.
We use the cross-product of nh ∈ {16}, β ∈ {0.9, 0.99}, α ∈ {0.005, 0.001, 0.0005},

nmb ∈ {1}.

4.3.3.5 Value Drift

We use a linear layer on top of a grid RBF representation with each gaussian having a
variance of σ2/ngrid.

For the RBF we use ngrid = 20, α = 0.1, nmb = 16, β = 0.99. For the MLP we use
nh = 16, α = 0.1, nmb = 16, β = 0.99.

4.3.3.6 RBF value drift ranges

We use RBFs with σ2 ∈ {4, 3.5, 3, 2.5, 2, 1.5, 1.25, 1, 0.75, 0.5}, ngrid ∈ {10, 20}, α ∈ {0.1, 0.01}.

4.3.3.7 Cosine Similarity

We use an MLP with 4 layers of width nh = 16, α = 0.1, nmb = 16, β = 0.95.

4.3.3.8 Atari

We use the convolutional model of Mnih et al. (2013) with the same default hyperparam-
eters, following PyTorch convention: Conv2d(4, nh, 8, stride=4, padding=4), Conv2d(nh,
2nh, 4, stride=2, padding=2), Conv2d(2nh, 2nh, 3, padding=1), Flatten(), Linear(2nh ×
12× 12, 16nh), Linear(16nh, nacts).

We use nh = 64, nmb = 32, for Adam we use α = 5×10−5 and β = 0.99, for our method
we use α = 10−4 and β = 0.9 (these choices are the result of a minor hyperparameter search
of which the best values were picked, equal amounts of compute went towards our method
and the baseline so as to avoid “poor baseline cherry picking”). For the frozen target
baseline we update the target every 2.5k steps.

We were able to find similar differences between Adam and our method with a much
smaller model, but using the full correction instead of the diagonal one. Although the full
correction outperforms Adam when both use this small model, using so few parameters is
not as accurate as the original model described above, and we omit these results.
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This small model is: Conv2d(4, nh, 3, 2, 1), Conv2d(nh, nh, 3, 2, 1), Conv2d(nh, nh,
3, 2, 1), Conv2d(nh, nh, 3, 2, 1), Conv2d(nh, nacts, 6). For nh = 16 (which we used for
experiments), this model has a little less than 16k parameters, making Z about 250M
scalars. While this is large, this easily fits on a modern GPU, and the extra computation
time required for the full correction mostly still comes from computing two extra backward
passes, rather than from computing Z and the correction.

This is beyond the scope of this thesis, but seems worth of note: Interestingly this
small model still works quite well for control (both with Adam and our method). We have
not tested this extensively, but, perhaps contrary to popular RL wisdom surrounding Deep
Q-Learning, we were able to train decent MsPacman agents with (1) no replay buffer, but
rather 4 or more parallel environments (the more the better) as in A2C (Mnih et al., 2016)
(2) no frozen target network (3) a Q network with only 16k parameters rather than the
commonplace 4.8M-parameter Atari DQN model. The only “trick” required is to use 5-step
Sarsa instead of 1-step TD (as suggested by the results of Fedus et al. (2020), although in
their case a replay buffer is used).

4.3.3.9 Mountain Car minibatch size

We use the same configuration than previously with nmb ∈ {1, 4, 16, 64}.

4.3.3.10 Mountain Car momentum parameter

We use the same configuration than previously with β ∈ {.8, .9, .95, .975, .99, .995, .999}.

4.3.3.11 Mountain Car MLP depth

We use an MLP with 6 layers of width nh = 16, α = 0.1, nmb = 16, β = 0.9. We vary
which layers get used in the corrected momentum; see caption.

4.3.3.12 Acrobot and Cartpole

We use the same settings as for Mountain Car, with the exception that we do 5-step TD
for Acrobot, and 3-step TD for Cartpole. Using n > 1 appears necessary for convergence
for both our method and the baseline.

4.4 Discussion

So far in this thesis we’ve discussed generalization and memorization showing that good
models arise from a balance of the two, and linked generalization and interference by show-
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ing that Temporal Difference learning pushes DNNs to memorize too much as a result of
poor optimization dynamics. We then proposed a novel method to change those dynamics
by taking into account the non-stationary nature of the TD objective.

We found that this method improves momentum, when applied to DNNs doing TD
learning, by correcting gradients for their staleness via an approximate Taylor expansion.
We showed that correcting this staleness is particularly useful when learning online using
a TD objective, but less so for supervised learning tasks. We showed that the proposed
method corrects for value drift in the bootstrapping target of TD, and that the proposed
approximate Taylor expansion is a useful tool that aligns well enough with the true gradi-
ents.

4.4.1 Limitations

In its most principled form, the proposed method requires computing a second-order deriva-
tive, which is impractical in most deep learning settings. While we do find experimentally
that ignoring its contribution has a negligible effect in toy settings, we are unable to verify
this for larger neural networks. Compared to the usual momentum update, the proposed
method also requires performing two additional backward passes, as well as storing 2n+n2

additional scalars. This can be improved with a diagonal approximation requiring only 3n
scalars, but this approximation is not as precise, which is currently an obstacle for large
architectures.

While these extra computations improve convergence speed, since we get more out
of each sample, they do not necessarily improve convergence speed in computation time
because of the n2 scaling. Nonetheless, since this method is inherently parallel, it does
scale relatively well with parallel computing. For example, our method is suited to GPU
parallelism and has reasonable speed even for large n2s, even in Atari settings.

One meta-result stands out from this work: something is lost when naively applying
supervised learning optimization tools to RL algorithms. In particular here, by simply
taking into account the non-stationarity of the TD objective, we successfully improve the
per-update learning speed of a standard tool (momentum), and demonstrate the potential
value of incorporating elements of RL into supervised learning tools. The difference ex-
plored here with momentum is only one of the many differences between RL and supervised
learning, and there remain plenty of opportunities to improve deep learning methods by
understanding their interaction with the peculiarities of RL.
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4.4.2 The Supremacy of Accelerated Adaptive Methods

So far we’ve mostly discussed so-called accelerated methods, of which momentum is the
canonical form. These methods maintain some form of velocity, pushing parameters at a
certain speed which only varies a little at each learning iteration.

Adaptive methods are another important class of methods, instead of maintaining a
velocity, they maintain a per-parameter learning rate. The canonical adaptive method in
deep learning is RMSprop (Tieleman and Hinton, 2012), which uses the inverse approxi-
mate standard deviation of each parameter’s derivative as an adaptive learning rate.

Adam (Kingma and Ba, 2015) combines these two ideas into one, and is important to
single out as it currently sits on top of optimization methods used in deep RL (Henderson
et al., 2018; Ceron and Castro, 2021). There exists a large variety of optimizers for super-
vised learning, yet none seem to be able to significantly improve performance in deep RL
beyond that of Adam. The accelerated method proposed in this chapter does not reliably
scale to complex high-dimensional problems. Another recent attempt (to which I made a
minor code contribution) by Romoff et al. (2021), which proposes an adaptive optimizer
for TD, also struggles to reliably improve performance.

All these recent results seem to suggest that not much can be done in terms of naive
optimization for 1-step bootstrapping methods like TD(0). Indeed, our own results show
how TD(λ) and n-step methods provide more stable targets from which it is faster to learn
(see also Fedus et al., 2020). Perhaps what this suggests is that we need to gain a deeper
mathematical understanding of bootstrapping in non-linear settings (Brandfonbrener and
Bruna, 2020), long-term temporal information transfer (Sutton et al., 1999b), and more
generally of the dynamics of self-supervision (Hadsell et al., 2006; Chen et al., 2020). With
novel insights, outperforming naive supervised learning tools may become easy.
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5
Generative Models through Bootstrapping

This chapter synthesizes my contribution to a novel method to train generative models of
discrete objects (Bengio et al., 2021).

In the previous chapters we’ve analyzed the bootstrapping mechanism as it is used in
the literature, through the TD mechanism and its variants. Here we build a novel method
around the realization that bootstrapping can be used to estimate flow in a directed graph,
like water in pipes. In turn, this flow estimation can be used to train generative models
that have a particular feature: they generate objects based on a continuous scalar signal
rather than the traditional set of positive and negative examples used for many generative
models. In that sense, these generative models are closer to RL agents.

This diversity feature is practical in many settings in which exploration is beneficial.
Of particular interest here, we will discuss exploration in the biochemical space of small
drug-like molecules. In this domain, we show that the proposed method shines by its
capacity to discover a large number of chemically interesting molecules.

In the next sections, we closely follow the original material of our contribution (Bengio
et al., 2021), but also include additional explanations, results, and insights into future
work. I note that this contribution was born out of a larger project focused on drug
discovery, and includes two additional aspects, active learning and in-silico biochemistry,
as well as proofs for several interesting properties of the proposed method. All the credit
for those parts of the work go to my coauthors, and as such discussion on these topics
is kept to a minimum. All implementations of the described methods are available at
https://github.com/bengioe/gflownet.

5.1 Generating Diverse Rewards

The maximization of expected return R in RL is generally achieved by putting all the
probability mass of the policy π on the highest-return sequence of actions. Here, we study
the scenario where our objective is not to generate the single highest-reward sequence of
actions but rather to sample a distribution of trajectories whose probability is proportional
to a given positive return or reward function. This can be useful in tasks where exploration
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is important, i.e., we want to sample from the leading modes of the return function. This
is equivalent to the problem of turning an energy function into a corresponding generative
model, where the object to be generated is obtained via a sequence of actions. By changing
the temperature of the energy function (i.e., scaling it multiplicatively) or by taking the
power of the return, one can control how selective the generator should be, i.e., only
generate from around the highest modes at low temperature or explore more with a higher
temperature.

A motivating application for this setup is iterative black-box optimization where the
learner has access to an oracle which can compute a reward for a large batch of candidates
at each round, e.g., in drug-discovery applications. Diversity of the generated candidates
is particularly important when the oracle is itself uncertain. For example, it may consist
of cellular assays which is a cheap proxy for clinical trials, or it may consist of the result
of a docking simulation (estimating how well a candidate small molecule binds to a target
protein) which is a proxy for more accurate but more expensive downstream evaluations
(like cellular assays or in-vivo assays in mice).

When calling the oracle is expensive (e.g. it involves a biological experiment), a stan-
dard way (Angermueller et al., 2020) to apply machine learning in such exploration settings
is to take the data already collected from the oracle (say a set of (x, y) pairs where x is a
candidate solution an y is a scalar evaluation of x from the oracle) and train a supervised
proxy f (viewed as a simulator) which predicts y from x. The function f or a variant of
f which incorporates uncertainty about its value, like in Bayesian optimization (Srinivas
et al., 2010; Negoescu et al., 2011), can then be used as a reward function R to train a gen-
erative model or a policy that will produce a batch of candidates for the next experimental
assays.

In this setup, searching for x which maximizes R(x) is not sufficient because we would
like to sample a representative set of x’s with high values of R, i.e., around modes of
R(x). Note that alternative ways to obtain diversity exist, e.g., with batch Bayesian
optimization (Kirsch et al., 2019). An advantage of the proposed approach is that the
computational cost is linear in the size of the batch (by opposition with methods which
compare pairs of candidates, which is at least quadratic). With the possibility of assays
of a hundred thousand candidates using synthetic biology, linear scaling would be a great
advantage.

In this chapter, we thus focus on the specific machine learning problem of turning a
given positive reward or return function into a generative policy which samples with a
probability proportional to the return. Formally, we want to train models that generate x
such that:

p(x) ∝ R(x)β (5.1)
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where R(x) > 0 and β ≥ 1 (we ignore β for much of the rest of this discussion as it can be
folded into R).

This would be useful to sample novel drug-like molecules when given a reward function
R that scores molecules based on their chemical properties. Being able to sample from
the high modes of R(x) would provide diversity in the batches of generated molecules sent
to assays. This is in contrast with the typical RL objective of maximizing return which
we have found to often end up focusing around one or very few good molecules. In our
context, R(x) is a proxy for the actual values obtained from assays, which means it can
be called often and cheaply, and can be implemented as another DNN. R(x) is retrained
or fine-tuned each time we acquire new data from the assays.

To achieve this, we use the notion of flow networks, which we describe in the next
section, §5.2, after having briefly surveyed related literature.

5.1.1 A Primer on MCMC

In this chapter we compare our method to Monte Carlo Markov Chain (MCMC) methods,
in particular to MCMCmethods using the so-called Metropolis-Hastings algorithm (Metropo-
lis et al., 1953; Hastings, 1970). This algorithm is designed to sample unnormalized proba-
bility distributions, that is, sample some x with probability proportional to some f(x) > 0,
exactly as in our desiderata in Eq. 5.1.

Metropolis-Hastings MCMC works as follows: given a proposal distribution g(x′|x),
iteratively generate a sequence of xt, a Markov Chain, such that

xt+1 =


x′ with probability min

{
1, f(x′)
f(xt)

g(xt|x′)
g(x′|xt)

}
xt otherwise

with x′ ∼ g(·|xt)

After some number of steps T , we are guaranteed to have sampled xT ∼ p(x). In other
words, after T steps xT is independent from any choice of x0 with high probability. This
is known as the burn-in period.

While a fundamental method, MCMC has a number of drawbacks (which the method
proposed in this chapter aims to address); for a reference see Robert and Casella (2004)
Ch. 7. One common problem is that for many distributions the burn-in time may be
arbitrarily large; samples may never become truly independent from x0 in a reasonable
amount of computation time. This is often due to mode separation: imagine walking in a
city located on an island with only one bridge to the mainland, taking a random turn at
every intersection. The probability of randomly taking the right series of turns that leads
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out of the city is extremely low, and vice versa. We would say that the mainland and the
island are well separated modes, as it would take a very long time for a Markov Chain to
switch from one mode to the other.

Another problem, even supposing T is reasonable, is that sampling n times from p with
MCMC has complexity O(nT ). To get around this, a common solution is to subsample
from the Markov Chain, i.e. choose to produce a sample every k step of the chain. While
this strategy is adopted by modern MCMC applications (Xie et al., 2021), it produces
correlated samples, meaning that the final set of n samples produced may have different a
empirical distribution than the intended p(x) ∝ f(x).

5.1.2 Literature Review

The objective of training a policy generating states with a probability proportional to
rewards was presented by Buesing et al. (2019) but the proposed method only makes sense
when there is a bijection between action sequences and states. In contrast, our method is
applicable in the more general setting where many paths can lead to the same state. The
objective to sample with probability proportional to a given unnormalized positive function
is achieved by many MCMC methods (Grathwohl et al., 2021; Dai et al., 2020). However,
when mixing between modes is challenging (e.g., in high-dimensional spaces with well-
separated modes occupying a tiny fraction of the total volume) convergence to the target
distribution can be extremely slow. In contrast, our method is not iterative and amortizes
the challenge of sampling from such modes through a training procedure which must be
sufficiently exploratory.

This sampling problem comes up in molecule generation and has been studied in this
context with numerous generative models (Shi et al., 2020; Luo et al., 2021; Jin et al., 2020),
MCMCmethods (Seff et al., 2019; Xie et al., 2021), RL (Gottipati et al., 2020; Popova et al.,
2019; Cao and Kipf, 2018) and evolutionary methods (Brown et al., 2004; Jensen, 2019;
Swersky et al., 2020). Some of these methods rely on a given set of “positive examples”
(high-reward) to train a generative model, thus not taking advantage of the “negative
examples” and the continuous nature of the measurements (some examples should be
generated more often than others). Others rely on the traditional return maximization
objectives of RL, which tends to focus on one or a few dominant modes, as we find in our
experiments.

The objective that we later formulate in (5.16) may remind the reader of the objective
of control-as-inference’s Soft Q-Learning (Haarnoja et al., 2017), with the difference that
we include all the parents of a state in the in-flow, whereas Soft Q-Learning only uses
the parent contained in the trajectory. This induces a different policy, as we later show
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in Proposition 1, one where P (τ) ∝ R(τ) rather than P (x) ∝ R(x). More generally, we
only consider deterministic generative settings whereas RL is a more general framework for
stochastic environments. While we believe this framework can be adapted to broader set-
tings, this particular setting offers simplifications that allow us to create efficient generative
models for an entire class of problems.

Literature at the intersection of network flow and deep learning is sparse, and is mostly
concerned with solving maximum flow problems (Nazemi and Omidi, 2012; Chen and
Zhang, 2020) or classification within existing flow networks (Rahul et al., 2017; Pektaş and
Acarman, 2019).

5.2 Flow Networks

We now introduce the central concept of this chapter, flow networks.

5.2.1 Setting Description

Consider a discrete set X and policy π(a|s) to sequentially construct an object x ∈ X with
probability u(x) with

u(x) ≈ R(x)
Z

= R(x)∑
x′∈X R(x′) (5.2)

where R(x) > 0 is a reward for object x, and Z = ∑
x′∈X R(x′) is the so-called partition

function.
A bit of setup: we are in an MDP setting. Let S denote the set of states and X ⊂ S

denote the set of terminal states. There is a unique initial state s0. Let A be a finite set, the
alphabet, A(s) ⊆ A be the set of allowed actions at state s, and let A∗(s) be the set of all
sequences of actions allowed after state s. To every action sequence ~a = (a1, a2, a3, ..., ah)
of ai ∈ A, h ≤ H corresponds a single x, i.e. the environment is deterministic so we
can define a function F mapping a sequence of actions ~a to an x. If such a sequence is
‘incomplete’ we define its reward to be 0, i.e. only terminal states have reward and this
reward is always positive.

What method should one use to generate batches sampled from π(x) ∝ R(x)? Let’s
first think of the state space under which we would operate.

When the correspondence between action sequences and states is bijective, a state s
is uniquely described by some sequence ~a, and we can visualize the generative process as
the traversal of a tree from a single root node to a leaf corresponding to the sequence of
actions along the way. In particular, the TreeSample method of Buesing et al. (2019) can
be seen as a special case of the method we propose, i.e., allocating to each node s a value
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corresponding to the sum of all the rewards R(x) over the terminal states or leaves of the
subtree rooted at s.

However, when this correspondence is non-injective, i.e. when multiple action se-
quences describe the same x, things get trickier. Instead of a tree, we get a directed
acyclic graph or DAG (assuming that the sequences must be of finite length, i.e., there are
no deterministic cycles), as illustrated in Figure 5.1. For example, and of interest here,
molecules can be seen as graphs, which can be described in multiple orders (canonical
representations such as SMILES strings also have this problem: there may be multiple
descriptions for the same actual molecule).

The standard approach to such a sampling problem is to use iterative MCMC methods
(Xie et al., 2021; Grathwohl et al., 2021). Another option is to relax the desire to have
p(x) ∝ R(x) and to use non-iterative (sequential) RL methods (Gottipati et al., 2020), but
these are at high risk of getting stuck in local maxima and of missing modes. Indeed, in
our setting, the policy which maximizes the expected return (which is the expected final
reward) generates the sequence with the highest return (i.e., a single molecule rather than
a set of them, which is what we desire).

In what follows we propose the Generative Flow Network framework, or GFlowNet,
which enables us to learn policies such that p(x) ∝ R(x) when sampled. We first discuss
why existing methods are inadequate, and then show how we can use the metaphor of
flows, sinks and sources, to construct adequate policies. We then show that such policies
can be learned via a flow-matching objective.

Problems with standard methods and the non-injective case In the bijective
case, one can think of the sequential generation of one x as an episode in a tree-structured
deterministic MDP, where all leaves x are terminal states (with reward R(x)) and the root
is the unique initial state s0. Interestingly, in such a case one can express the pseudo-value
of a state Ṽ (s) as the sum of all the rewards of the descendants of s (Buesing et al., 2019).

In the non-injective case, these methods are inadequate. Constructing u(τ) ≈ R(τ)/Z,
e.g. as per Buesing et al. (2019), MaxEnt RL (Haarnoja et al., 2017), or via an autoregres-
sive method (Nash and Durkan, 2019; Shi et al., 2021) has a particular problem as shown
below: if multiple action sequences ~a (i.e. multiple trajectories τ) lead to a final state x,
then a serious bias can be introduced in the generative probabilities. Let us denote ~a +~b

as the concatenation of the two sequences of actions ~a and ~b, and by extension s +~b the
state reached by applying the actions in ~b from state s.

Proposition 1. Let C : A∗ 7→ S associate each allowed action sequence ~a ∈ A∗ to a state
s = C(~a) ∈ S. Let Ṽ : S 7→ R+ associate each state s ∈ S to Ṽ (s) = ∑

~b∈A∗(s) R(s+~b) > 0,
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where A∗(s) is the set of allowed continuations from s and s+~b denotes the resulting state,
i.e., Ṽ (s) is the sum of the rewards of all the states reachable from s. Consider a policy π
which starts from the state corresponding to the empty string s0 = C(∅) and chooses from
state s ∈ S an allowable action a ∈ A(s) with probability π(a|s) = Ṽ (s+a)∑

b∈A(s) Ṽ (s+b) . Denote

u(~a = (a1, . . . , aN)) = ∏N
i=1 π(ai|C(a1, . . . , ai−1)) and u(s) with s ∈ S the probability of

visiting a state s with this policy. The following then obtains:
(a) u(s) = ∑

~ai:C(~ai)=s u(~ai).
(b) If C is bijective, then u(s) = Ṽ (s)

Ṽ (s0) and as a special case for terminal states x, u(x) =
R(x)∑
x∈X R(x) .

(c) If C is non-injective and there are n(x) distinct action sequences ~ai s.t. C(~ai) = x,
then u(x) = n(x)R(x)∑

x′∈X n(x′)R(x′) .

Proof. Since s can be reached (from s0) according to any of the action sequences ~ai such
that C(~ai) = s and they are mutually exclusive and cover all the possible ways of reaching
s, the probability that π visits state s is simply ∑~ai:C(~ai)=s u(~ai), i.e., we obtain (a).
If C is bijective, it means that there is only one such action sequence ~a = (a1, . . . , aN)
landing in state s, and the set of action sequences and states forms a tree rooted at s0.
hence by (a) we get that u(s) = u(~a). First note that because Ṽ (s) = ∑

~b∈A∗(s) R(s +~b),
i.e., Ṽ (s) is the sum of the terminal rewards for all the leaves rooted at s, we have that
Ṽ (s) = ∑

b∈A(s) Ṽ (s + b). Let us now prove by induction that u(s) = Ṽ (s)
Ṽ (s0) . It is true

for s = s0 since u(s0 = 1) (i.e., every trajectory includes s0). Assuming it is true for
s′ = C(a1, . . . , aN−1), consider s = C(a1, . . . , aN):

u(s) = π(aN |s′)u(s′) = Ṽ (s)∑
b∈A(s′) Ṽ (s′ + b)

Ṽ (s′)
Ṽ (s0)

.

Using our above result that Ṽ (s) = ∑
b∈A(s) Ṽ (s+b), we thus obtain a cancellation of Ṽ (s′)

with ∑b∈A(s′) Ṽ (s′ + b) and obtain

u(s) = Ṽ (s)
Ṽ (s0)

, (5.3)

proving that the recursion holds. We already know from the definition of Ṽ that Ṽ (s0) =∑
x∈X R(x), so for the special case of x a terminal state, Ṽ (x) = R(x) and Eq. 5.3 becomes

u(x) = R(x)∑
x′∈X R(x′) , which finishes to prove (b).

On the other hand, if C is non-injective, the set of paths forms a DAG, and generally not
a tree. Let us transform the DAG into a tree by creating a new state-space (for the tree
version) which is the action sequence itself. Note how the same original leaf node x is now
repeated n(x) times in the tree (with leaves denoted by action sequences ~ai) if there are
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n(x) action sequences leading to x in the DAG. With the same definition of Ṽ and π(a|s)
but in the tree, we obtain all the results from (b) (which are applicable because we have
a tree), and in particular u(~ai) under the tree is proportional to R(x′) = R(x). Applying
(a), we see that u(x) ∝ n(x)R(x), which proves (c).

In combinatorial spaces, such as for molecules, where C is non-injective (there are
many ways to construct a molecule), this can become exponentially bad as trajectory
lengths increase. It means that larger molecules would be exponentially more likely to be
sampled than smaller ones, just because of the many more paths leading to them. This
creates an imbalance when sampling the model which can hurt exploration, learning, and
eventually sampling, if we wish to use the learned model as a true generative model with
the property p(x) ∝ R(x).

5.2.2 Flow Networks as Generative Models

In the previous scenario, the pseudo-value Ṽ is “misinterpreting” the MDP’s structure as
a tree, leading to the wrong π(x). An alternative is to see the MDP as a flow network,
that is, leverage the DAG structure of the MDP, and learn a flow F , rather than estimating
the pseudo-value Ṽ as a sum of descendant rewards, as elaborated below.

For what follows, it’s useful to think of the flow network as a set of pipes, and of the
flow itself as the amount of liquid that goes through each pipe. The pipes, the edges,
connect nodes to each other. Nodes are either sources (they make liquid come in from the
outside), intermediaries (all the liquid coming into them goes out to other nodes), or sinks
(all their liquid is thrown out into the void).

For our use, we define the flow network as a having a single source, the root node (or
initial state) s0 with in-flow Z, and one sink for each leaf (or terminal state) x with out-flow
R(x) > 0. We write T (s, a) = s′ to denote that the state-action pair (s, a) leads to state
s′. Note that because C is not a bijection, i.e., there are many paths (action sequences)
leading to some node, a node can have multiple parents, i.e. |{(s, a) | T (s, a) = s′}| ≥ 1,
except for the root, which has no parent. We write F (s, a) for the flow between node s and
node s′ = T (s, a), F (s) for the total flow going through s1. This construction is illustrated
in Fig. 5.1.

To satisfy flow conditions, we require that for any node, the incoming flow equals the
outgoing flow, which is the total flow F (s) of node s. Boundary conditions are given by

1In some sense, F (s) and F (s, a) are close to V and Q, RL’s value and action-value functions. These
effectively inform an agent taking decisions at each step of an MDP to act in a desired way. With some
work, we can also show an equivalence between F (s, a) and the “real” Qπ̂ of some policy π̂ in a modified
MDP (see 5.2.3.2).
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Figure 5.1: A flow network MDP. Episodes start at source s0 with flow Z. There are
no cycles. Terminal states are sinks with out-flow R(s). Exemplar state s3 has parents
{(s, a)|T (s, a) = s3} = {(s1, a2), (s2, a5)} and allowed actions A(s3) = {a4, a7}. s4 is a
terminal sink state with R(s4) > 0 and only one parent. The goal is to estimate F (s, a)
such that the flow equations are satisfied for all states: for each node, incoming flow equals
outgoing flow.

the flow into the terminal nodes x, R(x). Formally, for any node s′, we must have that the
in-flow

F (s′) =
∑

s,a:T (s,a)=s′
F (s, a) (5.4)

equals the out-flow
F (s′) =

∑
a′∈A(s′)

F (s′, a′). (5.5)

More concisely, with R(s′) = 0 for interior nodes and A(s′) = ∅ for leaf (sink/terminal)
nodes, we can write:

∑
s,a:T (s,a)=s′

F (s, a) = R(s′) +
∑

a′∈A(s′)
F (s′, a′), (5.6)

where F (s, a) is the edge flow, F (s, a) > 0 ∀s, a (for this we needed to constrain R(x) to be
positive too). One could include in principle nodes and edges with zero flow but it would
make it difficult to talk about the logarithm of the flow, as we do below, and such states
can always be excluded by the allowed set of actions for their parent states.

We show that such a flow correctly produces u(x) = R(x)/Z when the above three flow
equations are satisfied.

Proposition 2. Let us define a policy π that generates trajectories starting in state s0 by
sampling actions a ∈ A(s) according to

π(a|s) = F (s, a)
F (s) = F (s, a)∑

a′ F (s, a′) (5.7)

where F (s, a) > 0 is the flow through allowed edge (s, a), F (s) = R(s) + ∑
a∈A(s) F (s, a)

where R(s) = 0 for non-terminal nodes s and F (x) = R(x) > 0 for terminal nodes x,
and the flow equation ∑s,a:T (s,a)=s′ F (s, a) = R(s′) +∑

a′∈A(s′) F (s′, a′) is satisfied. Let u(s)
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denote the probability of visiting state s when starting at s0 and following π(·|·). Then
(a) u(s) = F (s)

F (s0)

(b) F (s0) = ∑
x∈X R(x)

(c) u(x) = R(x)∑
x′∈X R(x′) .

Proof. We have u(s0) = 1 since we always start in root node s0. Note that ∑x∈X u(x) = 1
because terminal states are mutually exclusive, but in the case of non-bijective C, we
cannot say that ∑s∈S u(s) equals 1 because the different states are not mutually exclusive
in general. Then

u(s′) =
∑

(a,s):T (s,a)=s′
π(a|s)u(s) (5.8)

i.e., using Eq. 5.7,
u(s′) =

∑
(a,s):T (s,a)=s′

F (s, a)
F (s) u(s). (5.9)

We can now conjecture that the statement

u(s) = F (s)
F (s0) (5.10)

is true and prove it by induction. This is trivially true for the root, which is our base
statement, since u(s0) = 1. By induction, we then have that if the statement is true for
parents s of s′, then

u(s′) =
∑

s,a:T (s,a)=s′

F (s, a)
F (s)

F (s)
F (s0) =

∑
s,a:T (s,a)=s′ F (s, a)

F (s0) = F (s′)
F (s0) (5.11)

which proves the statement, i.e., the first conclusion (a) of the theorem. We can then
apply it to the case of terminal states x, whose flow is fixed to F (x) = R(x) and obtain

u(x) = R(x)
F (s0) . (5.12)

Noting that ∑x∈X u(x) = 1 and summing both sides of Eq. 5.12 over x we thus obtain
(b), i.e., F (s0) = ∑

x∈X R(x). Plugging this back into Eq. 5.12, we obtain (c), i.e., u(x) =
R(x)∑

x′∈X R(x′) .

Thus our choice of π satisfies our desiderata: it maps a reward function R to a generative
model which generates x with probability u(x) ∝ R(x), whether C is bijective or non-
injective (the former being a special case of the latter, and we just provided a proof for
the general non-injective case–in other words, trees are DAGs but not vice versa, and we
proved this for DAGs).
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5.2.3 Objective Functions for Flow Matching
We can now leverage our RL intuitions to create a learning algorithm out of the above
theoretical results. In particular, we propose to approximate the flows F such that the flow
conditions are obtained at convergence with enough capacity in our estimator of F , just
like the Bellman conditions for temporal-difference (TD) algorithms (Sutton and Barto,
2018).

Recall that we’ve defined the flow network such that for any node s′, we have the
following equalities, the first for the in-flow

F (s′) =
∑

s,a:T (s,a)=s′
F (s, a), (5.13)

and the second for the out-flow

F (s′) =
∑

a′∈A(s′)
F (s′, a′). (5.14)

By approximating F and matching these equalities, i.e. by a kind of bootstrapping
mechanism, we recover the policy as in (5.7) and obtain a generative model. This could
yield the following objective for a trajectory τ :

L̃θ(τ) =
∑

s′∈τ 6=s0

 ∑
s,a:T (s,a)=s′

Fθ(s, a)−R(s′)−
∑

a′∈A(s′)
Fθ(s′, a′)

2

. (5.15)

One issue from a learning point of view is that the flow will be very large for nodes near
the root (early in the trajectory) and tiny for nodes near the leaves (late in the trajectory).
In high-dimensional spaces where the cardinality of X is exponential (e.g., in the typical
number of actions to form an x), F (s, a) for early states will be exponentially larger than
for later states. Since we want F (s, a) to be the output of a neural network, this would
lead to serious numerical issues.

To avoid this problem, we define the flow matching objective on a log-scale, where we
match not the incoming and outgoing flows but their logarithms, and we train our predic-
tor to estimate F log

θ (s, a) = logF (s, a), and exponentiate-sum-log the F log
θ predictions to

compute the loss, yielding the square of a difference of logs:

Lθ,ε(τ) =
∑

s′∈τ 6=s0

log
ε+

∑
s,a:T (s,a)=s′

expF log
θ (s, a)

− log
ε+R(s′) +

∑
a′∈A(s′)

expF log
θ (s′, a′)

2

(5.16)

which gives equal gradient weighing to large and small magnitude predictions. Note that
matching the logs of the flows is equivalent to making the ratio of the incoming and
outgoing flow closer to 1. To give more weight to errors on large flows and avoid taking
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the logarithm of a tiny number, we compare log(ε+incoming flow) with log(ε+outgoing
flow). It does not change the global minimum, which is still when the flow equations are
satisfied, but it avoids numerical issues with taking the log of a tiny flow.

The hyper-parameter ε trades-off how much pressure we put on matching large versus
small flows. Since we want to discover the top modes of R, it makes sense to care more
for the larger flows. In practice, we find that using ε close to the minimal effective reward
in the environment makes learning stable.

Many other objectives are possible for which flow matching is also a global minimum.
We will come back to this later in the chapter.

In what follows we use Fθ to denote the parameterized flow predictor, and uθ(x) for
the distribution on X induced by Fθ.

We call this method to train generative models using flow networks GFlowNet.

5.2.3.1 GFlowNet is an off-policy method

An interesting advantage of such objective functions is that they yield off-policy offline
methods. The predicted flows F do not depend on the policy used to sample trajectories
(apart from the fact that the samples should sufficiently cover the space of trajectories in
order to obtain generalization). This is formalized below, which shows that we can use
any broad-support policy to sample training trajectories and still obtain the correct flows
and generative model, i.e., training can be off-policy.

Proposition 3. Let trajectories τ used to train Fθ be sampled from an exploratory policy
P with the same support as the optimal π defined in Eq. 5.7 for a correct flow F ∗. Also
assume that ∃θ : Fθ = F ∗, i.e., we choose a sufficiently rich family of predictors. Let
θ∗ ∈ argminθEP (τ)[Lθ(τ)] a minimizer of the expected training loss. Let Lθ(τ) have the
property that when flows are matched it achieves its lowest possible value, 0. First, it can
be shown that this property is satisfied for the loss in Eq. 5.16. Then

Fθ∗ = F ∗, and (5.17)

Lθ∗(τ) = 0 ∀τ ∼ P (τ), (5.18)

i.e., a global optimum of the expected loss provides the correct flows. If

πθ∗(a|s) = Fθ∗(s, a)∑
a′∈A(s) Fθ∗(s, a′)

then we also have
πθ∗(x) = R(x)

Z
. (5.19)
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Proof. A per-trajectory loss of 0 can be achieved by choosing a θ such that Fθ = F ∗ (which
we assumed was possible), since this makes the incoming flow equal the outgoing flow. Note
that there always exists a solution F ∗ in the space of allow possible flow functions which
satisfies the flow equations (incoming = outgoing) by construction of flow networks with
only a constraint on the flow in the terminal nodes (leaves).

Since having Lθ(τ) equal to 0 for all τ ∼ P (τ) makes the expected loss 0, and this is the
lowest achievable value (since Lθ(τ) ≥ 0 ∀θ), it means that such a θ is a global minimizer
of the expected loss, and we can denote it θ∗.

Since we have chosen P with support large enough to include all the trajectories leading
to a terminal state R(x) > 0, it means that Lθ(τ) = 0 for all these trajectories and that
Fθ = F ∗ for all nodes on these trajectories. We can then apply Proposition 2 (since the
flows match everywhere and we have defined the policy correspondingly, as per Eq. 5.7).
We then obtain the conclusion by applying result (c) from Proposition 2.

5.2.3.2 Action-value function equivalence

Here we show that the flow F (s, a) that the proposed method learns can correspond to a
“real” action-value function Q̂µ(s, a) in an RL sense, for a policy µ.

First note that this is in a way trivially true: in inverse RL (Ng et al., 2000) there
typically exists an infinite number of solutions to defining R̂ from a policy π such that
π = arg maxπi F πi(s; R̂) ∀s, where we will adapt our notation to indicate that F πi(s; R̂)
is the flow function at s induced by solving the flow-matching problem for some reward
function R̂. We apply the same notation for Q.

More interesting is the case where F (s, a;R) obtained from computing the flow corre-
sponding to R is exactly equal to some Qµ(s, a; R̂) modulo a multiplicative factor f(s).
What are µ and R̂? In the bijective case a simple answer exists.

Proposition 4. Let µ be the uniform policy such that µ(a|s) = 1/|A(s)|, let f(x) =∏n
t=0 |A(st)| when x ≡ (s0, s1, ..., sn), and let R̂(x) = R(x)f(sn−1), then Qµ(s, a; R̂) =

F (s, a;R)f(s).

Proof. By definition of the action-value function in terms of the action-value at the next
step and by definition of µ:

Qµ(s, a; R̂) = R̂(s′) + 1
|A(s′)|

∑
a′∈A(s′)

Qµ(s′, a′; R̂) (5.20)

where s′ = T (s, a), as the environment is deterministic and has a tree structure.
For some leaf s′, Qµ(s, a; R̂) = R̂(s′) = R(s′)f(s). Again for some leaf s′, the flow is

F (s, a;R) = R(s′). Thus Qµ(s, a; R̂) = F (s, a;R)f(s). Suppose (5.20) is true, then by
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induction for a non-leaf s′:

Qµ(s, a; R̂) = R̂(s′) + 1
|A(s′)|

∑
a′∈A(s′)

Qµ(s′, a′; R̂) (5.21)

Qµ(s, a; R̂) = 0 + 1
|A(s′)|

∑
a′∈A(s′)

F (s′, a′;R)f(s′) (5.22)

we know from (5.6) that

F (s, a;R) =
∑

a′∈A(s′)
F (s′, a′;R) (5.23)

and since f(s′) = f(s)|A(s′)|, we have that:

Qµ(s, a; R̂) = F (s, a;R)f(s′)
|A(s′)| (5.24)

= F (s, a;R)f(s)|A(s′)|
|A(s′)| (5.25)

= F (s, a;R)f(s) (5.26)

Thus we have shown that the flow in a bijective case corresponds to the action-value of
the uniform policy. This result suggests that the policy evaluation of the uniform policy
learns something non-trivial in the tree MDP case. Perhaps such a quantity could be used
in other interesting ways.

In the non-injective case, since an infinite number of valid flows exists, it’s not clear
that such a simple equivalence always exists.

As a particular case, consider the flow F which assigns exactly 0 flow to edges that
would induce multiple paths to any node. In other words, consider the flow which induces
a tree, i.e. a bijection between action sequences and states, by disallowing flow between
edges not in that bijection. By Proposition 4, we can recover some valid Qµ.

Since there is at least one flow for which this equivalence exists, we conjecture that
more general mappings between flows and action-value functions exist.

Conjecture There exists f a function of n(s) the number of paths to s, A(s), and
np(s) = |{(p, a)|T (p, a) = s}| the number of parents of s, such that

f(s, n(s), np(s),A(s))Qµ(s, a; R̂) = F (s, a;R)

and R̂(x) = R(x)f(x) for the uniform policy µ and for some valid flow F (s, a;R).
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5.3 Empirical Results

We first verify that GFlowNet works as advertised on an artificial domain small enough
to compute the partition function exactly, and compare its abilities to recover modes
compared to standard MCMC and RL methods, with its sampling distribution better
matching the normalized reward.

We find that GFlowNet (A) converges to u(x) ∝ R(x), (B) requires less samples to
achieve some level of performance than MCMC and PPO methods and (C) recovers all the
modes and does so faster than MCMC and PPO, both in terms of wall-time and number
of states visited and queried.

We then test GFlowNet on a large scale domain, which consists in generating small drug
molecule graphs, with a reward that estimates their binding affinity to a target protein
(see §5.3.2.1). We find that GFlowNet finds higher reward and more diverse molecules
faster than baselines.

All our ML code uses the PyTorch (Paszke et al., 2019a) library. We reimplement
RL and other baselines. We use the AutoDock Vina (Trott and Olson, 2010) library for
binding energy estimation and RDKit (Landrum) for chemistry routines.

Running all the molecule experiments presented in this chapter takes an estimated 26
GPU days. We use a cluster with NVidia V100 GPUs. The grid experiments take an
estimated 8 CPU days (for a single-core).

All implementations are available at https://github.com/bengioe/gflownet.

5.3.1 A (hyper-)grid domain

Consider an MDP where states are the cells of a n-dimensional hypercubic grid of side
lengthH. The agent starts at coordinate (0, 0, ...) and is only allowed to increase coordinate
i with action ai (up to H, upon which the episode terminates). A stop action indicates
to terminate the trajectory. There are many action sequences that lead to the same
coordinate, making this MDP a DAG. We associate with each cell of the grid a coordinate
in [−1, 1]n, mapping s = (0, 0, ...) to x = (−1,−1, ..). The reward for ending the trajectory
in x is some R(x) > 0. For MCMC methods, in order to have an ergodic chain, we allow
the iteration to decrease coordinates as well, and there is no stop action.

We ran experiments with this reward function:

R(x) = R0 +R1
∏
i I(0.5 < |xi|) + R2

∏
i I(0.6 < |xi| < 0.8)
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with 0 < R0 � R1 < R2, pictured above when n = 2 and H = 64. For this choice of
R, there are only interesting rewards near the corners of the grid, and there are exactly
2n modes. We set R1 = 1/2, R2 = 2. By varying R0 and setting it closer to 0, we make
this problem artificially harder, creating a region of the state space which it is undesirable
to explore. To measure the performance of a method, we measure the empirical L1 error
E[|p(x)− u(x)|]. p(x) = R(x)/Z is known in this domain, and u is estimated by repeated
sampling and counting frequencies for each possible x. We also measure the number of
modes with at least 1 visit as a function of the number of states visited.

We run the above experiment for R0 ∈ {10−1, 10−2, 10−3} with n = 4, H = 8. In Fig.
5.2 we see that GFlowNet is robust to R0 and obtains a low L1 error, while a Metropolis-
Hastings-MCMC based method requires exponentially more samples than GFlowNet to
achieve same levels of L1 error. This is apparent in Fig. 5.2 (with a log-scale horizontal
axis) by comparing the slope of progress of GFlowNet (beyond the initial stage) and that
of the MCMC sampler. If method 1 has slope m1 and method 2 has slope m2, then the
ratio of the number of samples needed grows as em1/m2 . This validates hypothesis (A).

We also see that MCMC takes much longer to visit each mode once as R0 decreases,
while GFlowNet is only slightly affected, with GFlowNet converging to some level of L1
error faster, as per hypothesis (B). This suggests that GFlowNet is robust to the separation
between modes (represented by R0 being smaller) and thus recovers all the modes much
faster than MCMC (again, noting the log-scale of the horizontal axis).

To compare to RL, we run PPO (Schulman et al., 2017). To discover all the modes in
a reasonable time, we need to set the entropy maximization term much higher (0.5) than
usual (� 1). We verify that PPO is not overly regularized by comparing it to a random
agent. PPO finds all the modes faster than uniform sampling, but much more slowly than
GFlowNet, and is also robust to the choice of R0. This and the previous result validates
hypothesis (C). We also run SAC (Haarnoja et al., 2018), finding similar or worse results.

Let’s now to understand our method, and look at what is learned by GFlowNet. What
is the distribution of flows learned?

First, in Figure 5.3 (Left), we can observe that the distribution learned, uθ(x), matches
almost perfectly p(x) ∝ R(x) on a grid where n = 2, H = 8. In Figure 5.3 (Middle) we

100



0 104 105 106

states visited

10−4

em
pi

ri
ca

lL
1

er
ro

r

0 104 105 106

states visited

0

5

10

15

m
od

es
fo

un
d

(m
ax

=1
6) R0 = 10−1

R0 = 10−2

R0 = 10−3

ours
MCMC
PPO
random

Figure 5.2: Hyper-grid domain. Changing the task difficulty R0 to illustrate the advantage
of GFlowNet over others. We see that as R0 gets smaller, MCMC struggles to fit the
distribution because it struggles to visit all the modes. PPO also struggles to find all the
modes, and requires very large entropy regularization, but is robust to the choice of R0.
We plot means over 10 runs for each setting.

plot the visit distribution on all paths that lead to mode s = (6, 6), starting at s0 = (0, 0).
We see that it is fairly spread out, but not uniform: there seems to be some preference
towards other corners, presumably due to early bias during learning as well as the position
of the other modes. In Figure 5.3 (Right) we plot what the uniform distribution on paths
from (0, 0) to (6, 6) would look like for reference. Note that our loss does not enforce any
kind of distribution on flows, and a uniform flow is not necessarily desirable (investigating
this could be interesting future work, perhaps some distributions of flows have better
generalization properties).
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Figure 5.3: Grid with n = 2, H = 8. Left, the distribution uθ(x) learned on the grid
matches p(x) almost perfectly; measured by sampling 30k points. Middle, the visit dis-
tribution on sampled paths leading to (6, 6). Right, the uniform distribution on all paths
leading to (6, 6).

Note that we also ran Soft Actor Critic (Haarnoja et al., 2018) on this domain, but we
were unable to find hyperparameters that pushed SAC to find all the modes for n = 4,
H = 8; SAC would find at best 10 of the 16 modes even when strongly regularized (but
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not so much so that the policy trivially becomes the uniform policy). While we believe
our implementation to be correct, we did not think it would be relevant to include these
results in figures, as they are poor but not really surprising: as would be consistent with
reward-maximization, SAC quickly finds a mode to latch onto, and concentrates all of its
probability mass on that mode, which is the no-diversity failure mode of RL we are trying
to avoid with GFlowNet.

Next, let’s look at the losses as a function of R0, back in the n = 4, H = 8 setting. We
separate the loss in two components, the leaf loss (loss for terminal transitions) and the
inner flow loss (loss for non-terminals). In Figure 5.4 we see that as R0 decreases, both
inner flow and leaf losses get larger. This is reasonable for two reasons: first, for e.g. with
R0 = 10−3, log 10−3 is a larger magnitude number which is harder for DNNs to accurately
output, and second, the terminal states for which log 10−3 is the flow output are 100× rarer
than in the R0 = 10−1 case (because we are sampling states on-policy), thus a DNN is less
inclined to correctly predict their value correctly. This incurs rare but large magnitude
losses. Note that theses losses are nonetheless small, in the order of 10−3 or less, and at
this point the distribution is largely fit and the model is simply converging.
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Figure 5.4: Losses during training for the “corners” reward function in the hyper-grid, with
n = 4, H = 8. Shaded regions are the min-max bounds.

GFlowNet as an offline off-policy method To demonstrate this feature of GFlowNet,
we train it on a fixed dataset of trajectories and observe what the learned distribution is.
For this experiment we use R(x) = 0.01 + ∏

i(cos(50xi) + 1)fN (5xi), fN is the normal
p.d.f., n = 2 and H = 30. We show results for two random datasets. First, in Figure
5.5 we show what is learned when the dataset is sampled from a uniform random policy,
and second in Figure 5.6 when the dataset is created by sampling points uniformly on the
grid and walking backwards to the root to generate trajectories. The first setting should
be much harder than the second, and indeed the learned distribution matches p(x) much
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Figure 5.5: Grid with n = 2, H = 30. Left, the learned distribution uθ(x). Middle, the
true distribution. Right, the dataset distribution, here generated by executing a uniform
random policy from s0.

better when the dataset points are more uniform. Note that in both cases many points
are left out intentionally as a generalization test.
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Figure 5.6: Grid with n = 2, H = 30. Left, the learned distribution uθ(x). Middle,
the true distribution. Right, the dataset distribution, here generated by sampling a point
uniformly on the grid and sampling random parents until s0 is reached, thus generating a
training trajectory in reverse.

These results suggest that GFlowNet can easily be applied offline and off-policy. Note
that we did not do hyperparameter search on these two plots, these are purely illustra-
tive and we believe it is likely that better generalization can be achieved by tweaking
hyperparameters.

5.3.2 Generating small molecules

Here our goal is to generate a diverse set of small molecules that have a high reward. We
define a large-scale environment which allows an agent to sequentially generate molecules.
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This environment is challenging, with up to 1016 states and between 100 and 2000 actions
depending on the state.

We follow the framework of Jin et al. (2020) and generate molecules by parts using a
predefined vocabulary of building blocks that can be joined together forming a junction
tree (detailed in 5.3.2.1). This is also known as fragment-based drug design (Kumar et al.,
2012; Xie et al., 2021). Generating such a graph can be described as a sequence of additive
edits: given a molecule and constrains of chemical validity, we choose an atom to attach
a block to. The action space is thus the product of choosing where to attach a block and
choosing which block to attach. There is an extra action to stop the editing sequence. This
sequence of edits yields a DAG MDP, as there are multiple action sequences that lead to
the same molecule graph, and no edge removal actions, which prevents cycles.

The reward is computed with a pretrained proxy model that predicts the binding energy
of a molecule to a particular protein target (soluble epoxide hydrolase, sEH, see 5.3.2.1).
Although computing binding energy is computationally expensive, we can call this proxy
cheaply. Note that for realistic drug design, we would need to consider many more quan-
tities such as drug-likeness (Bickerton et al., 2012), toxicity, or synthesizability. Our goal
here is not solve this problem, and our work situates itself within a larger project. Instead,
we want to show that given a proxy R in the space of molecules, we can quickly match its
induced distribution u(x) ∝ R(x) and find many of its modes.

We parameterize the proxy with an MPNN (Gilmer et al., 2017) over the atom graph.
Our flow predictor Fθ is parameterized similarly to MARS (Xie et al., 2021), with an
MPNN, but over the junction tree graph (the graph of blocks), which had better per-
formance. For fairness, this architecture is used for both GFlowNet and the baselines.
Complete details can be found in §5.3.2.2.

We pretrain the proxy with 300k molecules from a 80/20 mix of random trajectories
and RL-generated trajectories2 down to a test MSE of 0.6; molecules are scored according
to the docking score, computed with docking (Trott and Olson, 2010), renormalized so
that most scores fall between 0 and 10 (to have R(x) > 0). We plot the dataset’s reward
distribution in Fig. 5.8. We train all generative models with up to 106 molecules. During
training, sampling follows exploratory policy P (a|s) which is a mixture between π(a|s)
(Eq. 5.7), used with probability 0.95, and a uniform distribution over allowed actions with
probability 0.05.

2The reasoning for this mix is that populating the dataset with a few more high-scoring molecules
(according to the docking oracle) would make for a more interesting generative task.
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5.3.2.1 Molecule Domain Chemical Details

We allow the agent to choose from a library of 72 predefined blocks. We duplicate blocks
from the point of view of the agent to allow attaching to different symmetry groups of a
given block. This yields a total of 105 actions per stem; stems are atoms where new blocks
can be attached to. We choose the blocks via the process suggested by Jin et al. (2020)
over the ZINC dataset (Sterling and Irwin, 2015). We allow the agent to generate up to 8
blocks in a given molecule.

In chemistry, molecules can be written down using a SMILES notation (Weininger,
1988). These 72 blocks’ SMILES are Br, C, C#N, C1=CCCCC1, C1=CNC=CC1, C1CC1, C1CCCC1,
C1CCCCC1, C1CCNC1, C1CCNCC1, C1CCOC1, C1CCOCC1, C1CNCCN1, C1COCCN1, C1COCC[NH2+]1,
C=C, C=C(C)C, C=CC, C=N, C=O, CC, CC(C)C, CC(C)O, CC(N)=O, CC=O, CCC, CCO, CN, CNC,
CNC(C)=O, CNC=O, CO, CS, C[NH3+], C[SH2+], Cl, F, FC(F)F, I, N, N=CN, NC=O, N[SH](=O)=O,
O, O=CNO, O=CO, O=C[O-], O=PO, O=P[O-], O=S=O, O=[NH+][O-], O=[PH](O)O, O=[PH]([O-])O,
O=[SH](=O)O, O=[SH](=O)[O-], O=c1[nH]cnc2[nH]cnc12, O=c1[nH]cnc2c1NCCN2, O=c1cc[nH]c(=O)[nH]1,
O=c1nc2[nH]c3ccccc3nc-2c(=O)[nH]1, O=c1nccc[nH]1, S, c1cc[nH+]cc1, c1cc[nH]c1,
c1ccc2[nH]ccc2c1, c1ccc2ccccc2c1, c1ccccc1, c1ccncc1, c1ccsc1, c1cn[nH]c1, c1cncnc1,
c1cscn1, c1ncc2nc[nH]c2n1.

We illustrate these building blocks and their attachment points in Figure 5.7 showing
standard planar representations of molecules.

Figure 5.7: The list of building blocks used in molecule design. The stem, the atom which
connects the block to the rest of the molecule, is highlighted.

We compute the reward based on a proxy’s prediction. This proxy is trained on a
dataset of 300k randomly generated molecules, whose binding affinity with a target protein
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has been computed with AutoDock (Trott and Olson, 2010). Since the binding affinity is
an energy where lower is better, we takes its opposite and then renormalize it (subtract
the mean, divide by the standard deviation) to obtain the reward.

We use the sEH protein and its 4JNC inhibitor. The soluble epoxide hydrolase, or sEH,
is a well studied protein which plays a role in respiratory and heart disease, which makes
it an interesting pharmacological target and benchmark for ML methods.

5.3.2.2 Molecule Domain Architecture Details

For the proxy of the oracle, from which the reward is defined, we use an MPNN (Gilmer
et al., 2017) that receives the atom graph as input. We compute the atom graph using
RDKit. Each node in the graph has features including the one-hot vector of its atomic
number, its hybridization type, its number of implicit hydrogens, and a binary indicator
of it being an acceptor or a donor atom. The MPNN uses a GRU at each iteration as the
graph convolution layer is applied iteratively for 12 steps, followed by a Set2Set operation
to reduce the graph, followed by a 3-layer MLP. We use 64 hidden units in all of its parts,
and LeakyReLU activations everywhere (except inside the GRU).

For the flow predictor F we also use an MPNN, but it receives the block graph as input.
This graph is a tree by construction. Each node in the graph is a learned embedding (each
of the 105 blocks has its own embedding and each type of bond has an edge embedding).
We again use a GRU over the convolution layer applied 10 times. For each stem of the
graph (which represents an atom or block where the agent can attach a new block) we pass
its corresponding embedding (the output of the 10 steps of graph convolution + GRU) into
a 3-layer MLP to produce 105 logits representing the probability of attaching each block
to this stem for MARS and PPO, or representing the flow F (s, a) for GFlowNet; since
each block can have multiple stems, this MLP also receives the underlying atom within
the block to which the stem corresponds. For the stop action, we perform a global mean
pooling followed by a 3-layer MLP that outputs 1 logit for each flow prediction. We use
256 hidden units everywhere as well as LeakyReLU activations.

For further stability we found that multiplying the loss for terminal transitions by a
factor λT > 1 helped. Intuitively, doing so prioritizes correct predictions at the endpoints
of the flow, which can then propagate through the rest of the network/state space via our
bootstrapping objective. This is similar to using reward prediction as an auxiliary task in
RL (Jaderberg et al., 2017).

Here is a summary of the flow model hyperparameters:
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Learning rate 5× 10−4

Minibatch size 4 # of trajectories per SGD step

Adam β, ε (0.9, 0.999), 10−8

# hidden & # embed 256

# convolution steps 10

Loss ε 2.5× 10−5 ε in (5.16)

Reward T 8

Reward β 10 R̂(x) = (R(x)/T )β

Random action probability 0.05 exploratory factor

λT 10 leaf loss coefficient

Rmin 0.01 R is clipped below
Rmin, i.e.
R̂min = (Rmin/T )β

For MARS we use a learning rate of 2.5 × 10−4 and for PPO, 1 × 10−4. For PPO we use
an entropy regularization coefficient of 10−6 (higher did not help) and we set the reward
β to 4 (higher did not help). For MARS we use the same algorithmic hyperparameters
as those found in Xie et al. (2021). For JT-VAE, we use the code provided by Jin et al.
(2020) as-is, only replacing the reward signal with ours.
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Figure 5.8: Empirical density of rewards.
We verify that GFlowNet is consistent by
training it with Rβ, β = 4, which has the
hypothesized effect of shifting the density
to the right.
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Figure 5.9: The average reward of the top-
k as a function of learning (averaged over
3 runs). Only unique hits are counted.
Note the log scale. Our method finds more
unique good molecules faster.
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Reward at 105 samples
method top-10 top-100 top-1000

GFlowNet 8.36± 0.01 8.21± 0.03 7.98± 0.04
MARS 8.05± 0.12 7.71± 0.09 7.13± 0.19
PPO 8.06± 0.26 7.87± 0.29 7.52± 0.26

Reward at 106 samples
GFlowNet 8.45± 0.03 8.34± 0.02 8.17± 0.02
MARS 8.31± 0.03 8.03± 0.08 7.64± 0.16
PPO 8.25± 0.12 8.08± 0.12 7.82± 0.16

Reward for 106-equivalent compute
JT-VAE + BO 6.03 5.86 5.31

Table 5.1: Average reward of the top-k molecules. Means and standard deviations com-
puted over 3 runs. We see that GFlowNet produces significantly better molecules.

5.3.2.3 Experimental results

In Fig. 5.8 we show the empirical distribution of rewards in two settings; first when we
train our model with R(x), then with R(x)β. If GFlowNet learns a reasonable policy
π, this should shift the distribution to the right. This is indeed what we observe. We
also compare GFlowNet to MARS (Xie et al., 2021), which is known to work well in the
molecule domain, and observe the same shift. Note that GFlowNet finds more high reward
molecules than MARS with these β values; this is consistent with the hypothesis that it
finds more high-reward modes.

In Fig. 5.9, we show the average reward of the top-k molecules found so far, without
allowing for duplicates (based on SMILES). We compare GFlowNet with MARS, PPO and
JT-VAE (Jin et al., 2020) with Bayesian Optimization. As expected, PPO plateaus after
a while; RL tends to be satisfied with good enough trajectories unless it is strongly regu-
larized with exploration mechanisms. For GFlowNet and for MARS, the more molecules
are visited, the better they become, with a slow convergence towards the proxy’s max
reward. Given the same compute time, JT-VAE+BO generates only about 103 molecules
(due to its expensive Gaussian Process) and so does not perform well. We also report these
numerical results in Table 5.1.

The maximum reward in the proxy’s dataset is 10, with only 233 examples above 8.
In our best run, we find 2339 unique molecules during training with a score above 8, 39
of which are in the dataset. We compute the average pairwise Tanimoto similarity (a
standard measure of chemical similarity, see Bajusz et al., 2015) for the top 1000 samples:
GFlowNet has a mean of 0.44±0.01, PPO, 0.62±0.03, and MARS, 0.59±0.02 (mean and
std over 3 runs). A random agent for this environment would yield an average pairwise
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similarity of 0.231 (and very poor rewards). As expected, our MCMC baseline (MARS)
and RL baseline (PPO) find less diverse candidates.
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Figure 5.10: Number of Tanimoto-separated modes found above reward threshold T as a
function of the number of molecules seen. See main text. Left, T = 7. Right, T = 8.

0.0 0.2 0.4 0.6 0.8 1.0
states visited ×106

0

2000

4000

6000

8000

10000

#
of

m
od

es
w

ith
R
>

7.
5 GFlowNet

MARS
PPO

0.0 0.2 0.4 0.6 0.8 1.0
states visited ×106

0

500

1000

1500

#
of

m
od

es
w

ith
R
>

8

GFlowNet
MARS
PPO

Figure 5.11: Number of diverse Bemis-Murcko scaffolds found above reward threshold T
as a function of the number of molecules seen. Left, T = 7.5. Right, T = 8.

We can also see that GFlowNet produces much more diverse molecules by approxi-
mately counting the number of Tanimoto-separated modes found within the high-reward
molecules. Here, we define “modes” as molecules with an energy above some threshold
T , at most similar to each other in Tanimoto space at threshold S. In other words, we
consider having found a new mode representative when a new molecule has a Tanimoto
similarity smaller than S to every previously found mode’s representative molecule. We
choose a Tanimoto similarity S of 0.7 as a threshold, as it is commonly used in medicinal
chemistry to find similar molecules, and a reward threshold of 7 or 8. We plot the results
in Figure 5.10. We see that for R > 7, GFlowNet discovers many more modes than MARS
or PPO, over 500, whereas MARS only discovers less than 100.
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Another way to approximate the number of modes is to count the number of diverse
Bemis-Murcko scaffolds (Bemis and Murcko, 1996) present within molecules above a certain
reward threshold. We plot these counts in Figure 5.11, where we again see that GFlowNet
finds a greater number of modes.

Next, let’s try to understand what is learned by GFlowNet. In a large scale domain
without access to p(x), it is non-trivial to demonstrate that uθ(x) matches the desired
distribution p(x) ∝ R(x). This is due to the many-paths problem: to compute the true
pθ(x) we would need to sum the pθ(τ) of all the trajectories that lead to x, of which there
can be an extremely large number. Instead, we show various measures that suggest that
the learned distribution is consistent with the hypothesis the uθ(x) matches p(x) ∝ R(x)β

well enough.
In Figure 5.12 we show how Fθ partially learns to match R(x). In particular we plot

the inflow of leaves (i.e. for leaves s′ the ∑s,a:T (s,a)=s′ F (s, a)) as versus the target score
(R(x)β).
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Figure 5.12: Scatter of the score (R(x)β) vs the inflow of leaves (the predicted unnormalized
probability). The two should match. We see that a log-log linear regression has a slope
of 0.58 and a r of 0.69. The slope being less than 1 suggests that GFlowNet tends to
underestimate high rewards (this is plausible since high rewards are visited less often due
to their rarity), but nonetheless reasonably fits its data. Here β = 10. We plot here the
last 5k molecules generated by a run.

Another way to view that the learned probabilities are self-consistent is that the his-
tograms of R(x)/Z and p̂θ(x)/Z match, where we use the predicted Z = ∑

a∈A(s0) F (s0, a),
and p̂θ(x) is the inflow of the leaf x as above. We show this in Figure 5.13.
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Figure 5.13: Histogram of the predicted density vs histogram of reward. The two should
match. We compute these with the last 10k molecules generated by a run. This plot again
suggests that the model is underfitted. It thinks the low-reward molecules are less likely
than they actually are, or vice-versa that the low-reward molecules are better than they
actually are. This is consistent with the previous plot showing a lower-than-1 slope.

In terms of loss, it is interesting that our models behaves similarly to value prediction
in deep RL, in the sense that the value loss never goes to 0. This is somewhat expected due
to bootstrapping, and the size of the state space. Indeed, in our hyper-grid experiments
the loss does go to 0 as the model converges. We plot the loss separately for leaf transitions
(where the inflow is trained to match the reward) and inner flow transitions (at visited
states, where the inflow is trained to match the outflow) in Figure 5.14.
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Figure 5.14: Loss as a function of training for a typical run of GFlowNet on the molecule
domain. The shaded regions represent the min-max over the interval. We note several
phases: In the initial phase the scale of the predictions are off and the leaf loss is very
high. As prediction scales adjust we observe the second phase where the flow becomes
consistent and we observe a dip in the loss. Then, as the model starts discovering more
interesting samples, the loss goes up, and then down as it starts to correctly fit the flow
over a large variety of samples. The lack of convergence is expected due to the massive
state space; this is akin to value-based methods in deep RL on domains such as Atari.

5.3.3 Multi-Round Active Learning Experiments

To demonstrate the importance of diverse candidate generation in an active learning set-
ting, we consider a sequential acquisition task. We simulate the setting where there is a
limited budget for calls to the true oracle O. We use a proxyM initialized by training on a
limited dataset of (x,R(x)) pairs D0, where R(x) is the true reward from the oracle. The
generative model (uθ) is trained to fit to the unnormalized probability function learned
by the proxy M . We then sample a batch B = {x1, x2, . . . xk} where xi ∼ uθ, which is
evaluated with the oracle O. The proxyM is updated with this newly acquired and labeled
batch, and the process is repeated for N iterations.

More concretely, Algorithm 1 defines the procedure to train Fθ used in the inner loop of
the multi-round experiments in the hyper-grid and molecule domains. The effect of diverse
generation becomes apparent in the multi-round setting. Since the proxy itself is trained
based on the input samples proposed by the generative models (and scored by the oracle,
e.g., using docking), if the generative model is not exploratory enough, the reward (defined
by the proxy) would only give useful learning signals around the discovered modes. The
oracle outcomes O(x) are scaled to be positive, and a hyper-parameter β (a kind of inverse
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temperature) can be used to make the modes of the reward function more or less peaked.

Algorithm 1 Multi-Round Active Learning
Input:

Initial dataset D0 = {xi, yi}, |D0| = n ;
k for top-k evaluation;
number of rounds (outer loop iterations) N ;
Oracle O;
inverse temperature β

Returns: A set top-k(DN) of high valued x
Initialize:

Proxy M ;
Flow model Qθ;
i = 1
while i <= N do

Fit M on dataset Di−1
Train Fθ with unnormalized probability function r(x) = M(x)β as target reward
Sample query batch B = {x1, . . . , xb} with xi ∼ uθ
Evaluate batch B with O, D̂i = {(x1, O(x1)), . . . , (xb, O(xb))}
Update dataset Di = D̂i ∪Di−1
i = i+ 1

end while
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Figure 5.15: The top-k return (mean over 3
runs) in the 4-D Hyper-grid task with active
learning. GFlowNet gets the highest return
faster.
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Figure 5.16: The top-k docking reward
(mean over 3 runs) in the molecule task
with active learning. GFlowNet consis-
tently generates better samples.

Hyper-grid domain We present results for the multi-round task in the 4-D hyper-
grid domain in Figure 5.15. We use a Gaussian Process (Williams and Rasmussen, 1995)
as the proxy. We compare the top-k Return for all the methods, which is defined as
mean(top -k(Di)) − mean(top -k(Di−1)), where Di is the dataset of points acquired until
step i, and k = 10 for this experiment. The initial dataset D0 (|D0| = 512) is the same for
all the methods compared.
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We use the Gaussian Process implementation from botorch3 for the proxy. The query
batch size of samples generated after each round is 16. The hyper-parameters for train-
ing the generative models are set to the best performing values from the single-round
experiments.

The initial dataset only contains 4 of the modes. GFlowNet discovers 10 of the modes
within 5 rounds, while MCMC discovered 10 within 10 rounds, whereas PPO manages to
discover only 8 modes by the end (with R0 = 10−1).

We observe that GFlowNet consistently outperforms the baselines in terms of return
over the initial set. We also observe that the mean pairwise L2-distance between the top -k
points at the end of the final round is 0.83±0.03, 0.61±0.01 and 0.51±0.02 for GFlowNet,
MCMC and PPO respectively. This demonstrates the ability of GFlowNet to capture the
modes, even in the absence of the true oracle, as well as the importance of capturing this
diversity in multi-round settings.

Small Molecules For the molecule discovery task, we initialize an MPNN proxy
to predict docking scores from AutoDock (Trott and Olson, 2010), with |D0| = 2000
molecules. At the end of each round we generate 200 molecules which are evaluated with
AutoDock and used to update the proxy. Figure 5.16 shows GFlowNet discovers molecules
with significantly higher energies than the initial set D0. It also consistently outperforms
MARS as well as Random Acquisition. PPO training was unstable and diverged consis-
tently so the numbers are not reported. The mean pairwise Tanimoto similarity in the
initial set is 0.60. At the end of the final round, it is 0.54 ± 0.04 for GFlowNet and
0.64 ± 0.03 for MARS. This further demonstrates the ability of GFlowNet to generate
diverse candidates, which ultimately helps improve the final performance on the task.

The initial set D0 of 2000 molecules is sampled randomly from the 300k dataset. At
each round, for the MPNN proxy retraining, we use a fixed validation set for determining
the stopping criterion. This validation set of 3000 examples is also sampled randomly from
the 300k dataset. We use fewer iterations when fitting the generative model, and the rest
of the hyper-parameters are the same as in the single round setting.

Reward after 1800 docking evaluations
method top-10 top-100

GFlowNet 8.83± 0.15 7.76± 0.11
MARS 8.27± 0.20 7.08± 0.13

3http://botorch.org/
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(a) Reward=8.26 (b) Reward=9.18 (c) Reward=9.08 (d) Reward=8.73 (e) Reward=8.64

Figure 5.17: (a) Highest reward molecule in D0 in the multi-round molecule experiments.
(b) Highest Reward molecule generated by GFlowNet. (c)-(e) Samples from the top-10
molecules generated by GFlowNet.

5.3.4 Revisiting the hyper-grid with RL tricks

The objective of GFlowNet uses bootstrapping, it uses prediction of future events (the
flow of outgoing edges in the DAG MDP) to learn present quantities (the flow of incoming
edges). This has enough similarities with TD methods that it warrants trying to apply the
methods that improve the performance of TD to GFlowNet.

In particular here, we try the following: using a frozen target (Mnih et al., 2013),
an exponential moving average target (Lillicrap et al., 2016), or a doubly parameterized
target (van Hasselt et al., 2016); using a replay buffer (Mnih et al., 2013), a prioritized
replay buffer (Schaul et al., 2015), or a top-k replay buffer; using different optimizers,
Adam (Kingma and Ba, 2015), RMSProp (Hinton et al., 2012), or momentum (Polyak,
1964); and using an ε-online sampling strategy (Mnih et al., 2013), or a higher softmax
sampling temperature for exploration.

We revisit the hyper-grid setting of § 5.3.1 with n = 4 and H = 8. In the figures that
follow, each setting has 20 seeds, and we plot the histogram of mean average distributional
error over the seeds, E[|uθ(x) − p(x)|]; both uθ(x) and p are computed exactly since the
environment is small.

First we compare optimizers in Figure 5.18, and somewhat unsurprisingly find that
Adam and RMSProp are close contenders, with Adam having less variance (Henderson
et al., 2018). Momentum SGD lags far behind, as it lacks the advantage of per-parameter
adaptive learning rates.

We compare different replay mechanisms in Figure 5.19. Interestingly we find that
both uniform sampling (Mnih et al., 2013) and prioritized experience replay (Schaul et al.,
2015) help quite a bit. This suggests that the optimal data distribution to learn flows is not
necessarily uθ(x), but also possibly that the i.i.d.-ness induced by the replay mechanism
(i.i.d. transitions are sampled) is superior to sampling i.i.d. trajectories from uθ. For the
no-replay setting, a minibatch is formed with 16 trajectories sampled from uθ, as such
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there is still some correlation within the batch.
We also compare to a replay buffer that replays the top-k trajectories seen so far. Figure

5.20 compares several settings of this replay style, whereby nmb trajectories are used in the
minibatch of size 16 (trajectories), sampled from the best k trajectories seen so far.
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Figure 5.18: Hyper-grid, n = 4, H = 8, Mo-
mentum SGD, RMSProp, and Adam com-
pared with learning rates α. y-axis: the
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Figure 5.19: Hyper-grid, n = 4, H = 8,
no replay, top-k replay, uniform, and prior-
itized experience replays compared. y-axis:
the estimated distribution’s L1 error.
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Figure 5.20: Hyper-grid, n = 4, H = 8, top-k replay buffer of size k mixing nmb top
trajectories in the minibatch (of size 16). We only use color as a visual aid.

We then compare different uses of target networks, but find that, unlike reported in
deep RL, no method beats not using any separate target network. This may however be
due to how easy this setting is. Figure 5.21 compares no-target, using an exponential
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Figure 5.21: Hyper-grid, n = 4, H = 8, comparing no target, a moving average target with
rate τ , a frozen target with update period T , and a doubly parameterized target. We only
use color as a visual aid.
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Figure 5.22: Hyper-grid, n = 4, H = 8, comparing no exploration, using a softmax
temperature of κ, and sampling a random action with probability ε. We only use color as
a visual aid.

moving average target (Lillicrap et al., 2016) with rate τ (θ′t = τθ′t−1 + (1− τ)θt), a frozen
target (Mnih et al., 2013) updated after every T SGD steps, and a doubly parameterized
target (van Hasselt et al., 2016).

Finally, we compare different ways of exploring the state space. When computing the
policy since we predict F log, we obtain π by taking the softmax of F log. By multiplying
the logits by κ we can push the policy to be more or less exploratory. As in Mnih et al.
(2013), we also try exploring via sampling a random action at every step with probability
ε. We see that these approaches can have beneficial effects, but can also hurt, as seen in
the higher variance of the error distributions.
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5.4 Discussion & Limitations

In this chapter we have introduced a novel TD-like objective for learning a flow for each
state and state-action pair such that policies sampling actions proportional to these flows
draw terminal states in proportion to their reward. This can be seen as an alternative
approach to turn an energy function into a fast generative model, without the need for
an iterative method like that needed with MCMC methods, and with the advantage that
when training succeeds, the policy generates a great diversity of samples near the main
modes of the target distribution without being slowed by issues of mixing between modes.

One downside of the proposed method is that, as for TD-based methods, the use of boot-
strapping may, as we have seen in previous chapters, cause optimization challenges (Kumar
et al., 2020) and limit its performance.

In applications like drug discovery, sampling from the regions surrounding each mode is
already an important advantage, but future work should investigate how to combine such
a generative approach to local optimization in order to refine the generated samples and
approach the local maxima of reward while keeping the batches of candidates diverse. As it
is, our approach is not necessarily suitable for needle-in-a-haystack scenarios, as while it is
capable of identifying many modes, it seems to rely on these modes being at least partially
locally concave. In other words, it relies on local maxima to have close neighbours with
similarly high rewards, and is likely to samples those neighbours rather than the actual
maxima, especially if there are many of those neighbours.

Finally, we believe that the proposed framework has the potential to be used in a
number of scenarios. In general, any black-box optimization problem where candidates are
generated iteratively may benefit from this approach: material discovery, antibiotic discov-
ery, hyperparameter search, or reasoning tasks all could benefit from reward-proportional
sampling.
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6
Learning to Act and Understand Without

Supervision

This chapter synthesizes my contributions to a novel way to learn representations in RL
in the absence of reward (Bengio et al., 2017; Thomas et al., 2017, 2018).

In the previous chapters, we’ve discussed methods that train Deep Neural Networks
to accomplish certain things, evaluate the goodness of a policy, learn to solve problems,
learn to generate interesting objects. All of these depend on a reward signal, which, loosely,
quantifies the goodness of a state. In this chapter, we attempt to provide methods that still
learn interesting things, behaviours and representations, in the absence of reward. In
most environments used in RL, this reward is something that is crafted, designed to achieve
some desired behaviour from agents; in other words, reward is a form of supervision. From
this point of view, what we present next may well be qualified of unsupervised reinforcement
learning.

More specifically, we present a method that learns a set of policies to which corresponds
a set of representations (a designated layer within a DNN). These policies are driven to
learn the different controllable aspects of the environment in which an agent is situated.
Moreover, these policies are driven to learn not to interfere with each other, and learn
independent factors of variation, which are in turn represented through a learning neural
network. This ensemble is dubbed Independently Controllable Features.

In the next sections, we loosely follow the original material on controllable features (Ben-
gio et al., 2017; Thomas et al., 2017, 2018), with some credit again going to my coauthors
for their contributions.

6.1 Unsupervised Learning

Unsupervised learning refers to a broad class of algorithms which learn in the absence
of supervision. Typically, this terminology is used to contrast with supervised learning,
where one trains models of some mapping y = f(x) with labelled data pairs (x, y).

With only access to observations, a set of x, one can nonetheless do interesting things.
For example, one can cluster observations based on their similarity (Forgy, 1965; Lloyd,
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1982), learn a likelihood model of the data (Ferguson, 1973; Rasmussen et al., 1999), or
extract the principal factors of variation (Pearson, 1901; Jutten and Herault, 1991). These
can help us understand better, or provide a valuable signal that can be used for downstream
supervised learning.

6.1.1 Disentanglement and Representation Learning

In Deep Learning, something particularly interesting can be done with unlabeled data: pre-
training models. Recall that DNNs are made of a series of layers, which when presented
with an input compute a hidden feature, or representation for this input. This represen-
tation is typically taken to be the activations of the second to last layer, i.e. hL−1(x)
following the notation of §2.1.2, although as we will see we can consider the entire network
to be producing a representation and thus take it to be last layer’s output. In such a case
we say the model is an encoder. For what follows we will shorthand hL(x) with h.

A common way to leverage access to large amounts of unlabeled data is to train h to
have certain desirable properties. In fact, before we knew how to train very deep networks,
training each layer to have desirable properties before finetuning (more on this later) the
entire network was the best way to train DNNs with more than a few layers (Hinton et al.,
2006; Bengio et al., 2007).

One common strategy to train h is to train an autoencoder. Autoencoders work by
reducing their input to a vector with a smaller number of dimensions, thus forcing some
sort of data compression to occur (Hinton and Salakhutdinov, 2006; Vincent et al., 2008).
Formally, an autoencoder consists of an encoder fθ : Rdin → Rdout and a decoder gθ′ :
Rdout → Rdin . Here we consider that h = fθ(x), i.e. in an autoencoder the representation
is the last layer’s. A plain autoencoder is trained to minimize the loss:

LAE = Ex‖x− gθ′(fθ(x))‖, (6.1)

by adapting both θ and θ′. When the dimension of h is smaller than that of x, this can
be seen as a compression mechanism, but other mechanisms can induce compression. For
example denoising autoencoders (Vincent et al., 2008) can be seen as doing a contractive
compression of the representation space (Rifai et al., 2011) by minimizing the norm of
g(f(x + ε))− x, where ε is some appropriate noise.

Often, this compressive force pushes the optimization procedure to uncover principal
factors of variation of the data on which they are trained. However, this does not necessarily
imply that the different components of the vector h = f(x) are individually meaningful. In
fact, note that for any bijective transformation T , we could obtain the same reconstruction
error by replacing f by T ◦ f and g by g ◦ T−1, so we should not expect any form of
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disentangling of the factors of variation unless some additional constraints or penalties
are imposed on h.

Generally speaking, disentanglement occurs when the different quantities that explain
how data are generated are made explicit. For example, in a dataset of images of red or
blue squares and circles, one could disentangle the pixels into 4 factors of variation, the
color, the shape, and the horizontal and vertical position of the object on the image.

There are several other ways to discover and disentangle underlying factors of variation.
Many deep generative models, including variational autoencoders (Kingma and Welling,
2014) and other descendants of the Helmholtz machine (Dayan et al., 1995), generative
adversarial networks (Goodfellow et al., 2014) or non-linear versions of ICA (Dinh et al.,
2014; Hyvarinen and Morioka, 2016) attempt to disentangle the underlying factors of
variation by assuming that their joint distribution (marginalizing out the observed x)
factorizes, i.e., that they are marginally independent.

Once some representation has been learned on unlabeled data, i.e. some set of param-
eters θ has been learned for the encoder f , it is possible to finetune (Hinton et al., 2006)
θ to perform some supervised task by training it on labeled data. Finally, it is possible to
both use an unsupervised representational objective and a supervised objective are used at
the same time (on possibly disjoint datasets), this is described as semi-supervised learning.

6.1.2 Reinforcement Learning without Reinforcement

In the previous section we’ve seen that it is possible to learn without supervision when
given data points with structure. In RL, not only do we have access to individual data
points, the observations of each state, we also have access to trajectories. That is, we have
access to the temporal structure hidden in these data through trajectories. Furthermore,
since agents have agency, they can in theory choose which regions of the state space to
visit and be “curious” about the world (Schmidhuber, 1991; Singh et al., 2005; Still and
Precup, 2012).

Leveraging this temporal structure yields many opportunities to indirectly learn good
internal representations without requiring explicit supervision. In the work Jaderberg
et al. (2017), agents learn off-policy to control their pixel inputs, pushing them to learn
features that, intuitively, help control the environment (at the pixel level). Oh et al. (2015)
propose models that learn to predict future observations, conditioned on action sequences,
which pushes the agent’s internal representations to capture temporal features. Many
more works go in this direction, such as (deep) successor feature representations (Dayan,
1993; Kulkarni et al., 2016) which learn to predict how internal representations activate
and accumulate through time, or the options framework (Sutton et al., 1999b; Precup,
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2000) when used in conjunction with neural networks (Bacon et al., 2016) which aims to
decompose the behaviour of an agent into a discrete set of general and reusable policies,
the so-called options.

The approach we propose next is also similar in spirit to the Horde architecture (Sutton
et al., 2009a). In that scenario, agents learn policies that maximize specific inputs, whereas
we learn policies that control simultaneously learned features of the input. The predictions
for all these policies then become features for the agent.

6.2 Jointly Learning Features and Policies

In the previous section we’ve described unsupervised learning, and suggested that there
are many approaches to learn representations and policies in the absence of a reward signal
in RL. Interestingly, the previous approaches that we highlighted mostly focus on one or
the other, either learning a representation or learning sets of policies. Here we propose
instead a method that explicitly learns a joint set of features and policies, by aiming to
make them independent.

To do this, we assume that there are factors of variation underlying the observations
coming from an interactive environment that are independently controllable. That is, a
controllable factor of variation is one for which there exists a policy which will modify that
factor only, and not the others. For example, the object associated with a set of pixels
could be acted on independently from other objects, which would explain variations in
its pose and scale when we move it around while leaving the others generally unchanged.
The object position in this case is a factor of variation. What poses a challenge for
discovering and mapping such factors into computed features is the fact that the factors
are not explicitly observed. Our goal is for the agent to autonomously discover such
factors – which we call independently controllable features – along with policies that
control them. While these may seem like strong assumptions about the nature of the
environment, we argue that these assumptions are similar to regularizers, and are meant to
make a difficult learning problem (that of learning good representations which disentangle
underlying factors) better constrained.

6.2.1 Quantifying Independence into Learning Objectives

What does it mean for features to be independent in a control setting? There are many
ways in which this desire can be interpreted. We propose a particular formulation which
binds features and policies together to express independence.
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Consider an autoencoder (f, g), which produces K features, i.e. f(x) ∈ RK , fk(x) ∈ R.
In tandem with these features we train K policies, denoted πk(a|s), that map an agent’s
observation s to a categorical distribution over a set of actions a. Autoencoders can learn
relatively arbitrary feature representations, but we would like many of these features to
correspond to controllable factors in the learner’s environment. Specifically, we would like
policy πk to cause a change only in fk and not in any other features (we relax this constraint
later on in §6.2.2). We think of fk and πk as a feature-policy pair.

In order to quantify the change in fk when actions are taken according to πk, we define
the selectivity of a feature as:

sel(s, a, k) = Es′∼Pa
ss′

[
|fk(s′)− fk(s)|∑
k′ |fk′(s′)− fk′(s)|

]
. (6.2)

where s,s′ are successive raw state representations (e.g. pixels), a is the action, and Pass′
is the environment transition distribution from s to s′ under action a. The normalization
factor in the denominator of the above equation ensures that the selectivity of fk is maximal
when only that single feature fk changes as a result of some action.

By having an objective that maximizes selectivity and minimizes the autoencoder ob-
jective, we can ensure that the features learned can both capture the main factors of
variation in the data and recover independently controllable factors. Hence, we define the
following objective, which can be minimized jointly on πk, f and g, via stochastic gradient
descent:

Es[1
2 ||s− g(f(s))||22]︸ ︷︷ ︸

Lae the reconstruction error

− λ
∑
k

Es[
∑
a

πk(a|s)sel(s, a, k)].︸ ︷︷ ︸
Lsel the disentanglement objective

(6.3)

Here one can think of sel(s, a, k) as the reward signal Rk(s, a) of a control problem, and
the expected reward Ea∼πk [Rk] is maximized by finding the optimal set of policies πk.

Note that many variations of this objective are possible. For example it is also possible
to have directed selectivity: by using max{0, f ′k−fk} (denoted |f ′k−fk|+) or simply f ′k−fk
instead of the absolute value |f ′k − fk| in the numerator of (6.2), the policies must learn to
increase the learned latent feature rather than simply change it. This may be useful if the
policy to gradually increase a feature is distinct from the policy that decreases it. Using
log-selectivity, log sel, or this sharpened form, log(sel/(1 − sel)), may also lead to easier
optimization.

Another variation is to consider the return instead of the immediate reward. Indeed,
we may want to incentivize agents that modify aspects of their environments over multiple
steps rather than a single one.
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The learning algorithm we propose is summarized in Algorithm 2, where θf and θg are
the parameters of f, g and θk the parameters of πk.

Algorithm 2 Training an autoencoder with disentangled factors
1: for t = 1..T do
2: Sample s from the environment
3: θf ← θf − ηf∇θf [1

2 ||s− g(f(s))||22]
4: θg ← θg − ηg∇θg [1

2 ||s− g(f(s))||22]
5: for k = 1..n do
6: θf ← θf + ηf λ ∇θfEa∼πk(·|s)[sel(s, a, k)]
7: θk ← θk + ηk λ ∇θkEa∼πk(·|s)[sel(s, a, k)]
8: end for
9: end for

The gradients on lines 3 and 4 are computed exactly via backpropagation. In our
experiments, the gradient on line 6 is also computed by backpropagation and sampling of
the expectation, while the gradient on line 7 is computed with the REINFORCE (Glynn,
1987; Williams, 1992b) estimator:

∇θkEa∼πk(·|s)[sel(s, a, k)] = Ea∼πk(·|s)[(sel(s, a, k)− b(s)) · ∇θk log πk(a|s)],

where b(s) is a baseline function, which can for example be chosen to be the mean reward
or an estimate of the value of the state.

6.2.2 Expanding controllable factors to be continuous

A limitation of the approach in Algorithm 2 is that it requires the set of potentially control-
lable factors to be small and enumerated. This makes sense in a simple environment where
we always have the same set of objects in the scene. But in more realistic environments,
the number of possible objects present in the set can be combinatorially large (and better
described by notions such as types), while an individual scene will only comprise a finite
number of instances of such objects. Therefore, instead of indexing the possible factors by
an integer, we propose to index them by an embedding, i.e., a real-valued vector.

In what we defined above, we enforced variations in the environment to be captured
by a coordinate of h = f(s). We can view this as having a set of k attribute variations
A(h′−h, k) = |h′−h|k who are influenced separately by the policies πk. We now relax this
assumption by indexing this set by a learned real-valued vector φ leading to a continuous
set of attributes A(h′ − h, φ) ∈ R. The idea of mapping symbolic entities to a distributed
representation is one of the key ingredients of the success of deep learning (Goodfellow
et al., 2016), and can be exploited here as well.

124



6.2.2.1 Selecting attributes

Conditioned on a scene representation h, a distribution of policies are feasible. Samples
from this distribution represent ways to modify the scene and thus may trigger an internal
selectivity reward signal. For instance, h might represent a room with objects such as a
light switch. φ = φ(h, z) can be thought of as the distributed representation for the “name”
of an underlying factor, to which is associated a policy and a value. In this setting, the
light in a room could be a factor that could be either on or off. It could be associated with
a policy to turn it on, and a binary value referring to its state, called an attribute or a
feature value.

We wish to jointly learn the policy πφ(·|s) that modifies the scene, so as to control
the corresponding value of the attribute in the scene, whose variation is computed by an
attribute variation selector function A(h′−h, φ) ∈ R. In order to get a distribution of such
embeddings, we compute φ(h, z) as a function of h and some random noise z.

In this scenario, one strategy to determine whether some selected attribute variation
A(h′ − h, φ) evolves independently from other attributes variations is to compare its value
(in expectation over the policy actions) to the values obtained with other φ′ factors. We
thus compute the following selectivity that acts as an intrinsic reward signal, generalizing
(6.2):

sel(h, φ) = Ea∼πφ(·|s),s′∼Pa
ss′

[
A(h′ − h, φ)

Eφ′ |A(h′ − h, φ′)|

]
, (6.4)

where h′ = f(s′). We approximate the expectation over φ′ by sampling a fixed number
of factor embeddings. This model is then trained by jointly minimizing the autoencoder
reconstruction cost Lae and the disentanglement objective Lsel as depicted in Figure 6.1.
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πφ(·|st)

φ

zt ∼ U A(ht+1, ht, φ)

at

env

Lae Lsel

Figure 6.1: The proposed distributed representation architecture. Lae and Lsel are the
reconstruction and selectivity objectives respectively.
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6.2.2.2 Implementing an attribute selector

Ideally A(h′ − h, φ) could be an arbitrary function, e.g. a neural network, but such a
function may be harder to optimize. Instead, we observe that in the discrete case mentioned
previously, using A(h′ − h, φ) to select attribute k is equivalent to φ>|h′ − h| where φ is
a one-hot vector at index k. One simple step towards continuous embeddings is to relax
this constraint, and let φ be a function of h and random vector z, drawn from uniform
distribution, and compute A as A(h′ − h, φ) = φ(h, z)>|h′ − h|. An even better form,
used in most of our experiments, is to wrap this in a gaussian kernel: A(h′ − h, φ) =
exp(−||h′ − h− φ||2/(2σ2)) because of the better numerical stability it provides.

Unlike in the finite case, we are not sampling uniformly over policies πk, as we now let
a neural network choose φ’s probability distribution. This could lead to exploration issues.
We demonstrate that simple strategies allow for a network to learn simple distributions in
the experiments of §6.3.3.

6.3 Empirical Results

In order to validate that our method learns independently controllable features, we perform
several experiments. First, in the most basic gridworld-like setting, an agent is allowed
to move around in four directions. This basic domain allows us to verify whether in the
discrete case, the learning process disentangles the underlying features and recovers the
ground truth properties of the environment.

Then, we show results of our continuous factors embeddings method applied to Maze-
Base (Sukhbaatar et al., 2015), as well as how we can use the learned representations to
tackle policy inference or planning problems.

6.3.1 A simple gridworld

Our first experiment is performed on a gridworld-like setting, illustrated in Figure 6.2(a):
the agent sees a 2 × 2 square on a 12 × 12 pixel grid, and has 4 actions that move it up,
down, left or right. We use the following autoencoder architecture: f has two 16 × 3 × 3
ReLU convolutional layers with stride 2, followed by a fully connected ReLU layer of 32
units, and a tanh layer of n = 4 features; g is the transpose architecture of f ; πk is a
softmax policy over 4 actions, computed from the output of the ReLU fully connected
layer. We use Adam (Kingma and Ba, 2014) to perform gradient descent.

By interacting with the environment, an autoencoder with directed selectivity (objec-
tive (6.2) without absolute value in the numerator) learns latent features that map to the
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(x, y) position of the square (see Figure 6.2(b,c)), without ever having explicit access to
these values, and while reconstructing its input properly. In contrast, a plain autoencoder
also reconstructs properly but without learning the two latent (x, y) features explicitly.

Note that in this setting, the learning process is robust to a stochastic version of the
environment – where with probability p either no action is taken (s = s′) or a random
action is taken. We have successfully trained models recovering ±x and ±y with up to
p = 0.5, using the same architecture but a smaller learning rate.

(a) (b) (c)

Figure 6.2: A simple gridworld with 4 actions that push a square left, right, up or down.
(a) left is an example ground truth, right is the reconstruction of the model trained with
selectivity. (b) The slope of a linear regression of the true features (the real x and y
position of the agent) as a function of each latent feature. White is no correlation, blue
and red indicate strong negative or positive slopes respectively. f0 and f1 recover y and
f2 and f3 recover x. (c) Each row is a policy πk, each column corresponds to an action
(left/right/up/down). Cell (k, i) is the average over s of πk(ai|s);

6.3.2 Selectivity as an only objective

We also find experimentally that training discrete independently controllable features with-
out training the autoencoder objective correctly recovers ground truth features and their
associated control policies. Albeit slower than when jointly training an autoencoder, this
shows that the objective we propose is strong enough to provide a learning signal for
discovering a disentangled latent representation.

We train such a model on a gridworld MNIST environment, where instead of a 2 × 2
square there are two MNIST digits . The two digits can be moved on the grid via 4
directional actions (so there are 8 actions total), the first digit is always odd and the
second digit always even, so they are distiguishable. In Figure 6.3 we plot each latent
feature fk as a curve, as a function of each ground truth. For example we see that the
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black feature recovers +x1, the horizontal position of the first digit, or that the purple
feature recovers −y2, the vertical position of the second digit.
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Figure 6.3: In a gridworld environment with 2 objects (in this case 2 MNIST digits), we
know there are 4 underlying features, the (xi, yi) position of each digit i. Here each of the
four plots represents the evolution of the fk’s as a function of their underlying feature,
from left to right x1, y1, x2, y2. We see that for each of them, at least one fk recovers it
almost linearly, from the raw pixels only.

6.3.3 Experiments on MazeBase

We use MazeBase (Sukhbaatar et al., 2015) to assess the performance of our continuous
embeddings approach on a more complex and well-known environment. MazeBase contains
10 different 2D games in which an agent has to solve a specific task (going to a certain
location on the board, activate switches, move a block to a specific place, and so on). We
do not aim to solve the game, and only deal with one-step policies.

In this setting, the agent (a red circle) can move in a small environment (64×64 pixels)
and perform the actions down, left, right, up, and, to complexify the disentanglement
task, we add the redundant action up as well as the action down+left. The agent can go
anywhere except on the orange blocks.

In Figure 6.4, we show that the learned representation is such that for each underlying
factor of variation, the learned representation clusters dh vectors such that it is possible
to decompose the variation between two arbitrary state representations as a sum of small
variations along a trajectory (Figure 6.5).

6.3.3.1 Continuous policy embeddings

We consider the model described in §6.2.2.1. Our architecure is as follows: the encoder,
mapping the raw pixel state to a latent representation, is a 4-layer convolutional neural
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network with batch normalization (Ioffe and Szegedy, 2015) and leaky ReLU activations.
The decoder uses the transposed architecture with ReLU activations. The noise z is
sampled from a 6-dimensional gaussian distribution and both the generator Φ(h, z) and
the policy π(h, φ) are neural networks consisting of 2 fully-connected layers. Our attribute
selector A(dh, φ) is a gaussian kernel. In practice, a minibatch of n = 64 vectors φ1, . . . , φ64

is sampled at each step. The agent randomly choses one φ = φbehavior and samples an action
a ∼ π(h, φbehavior). Our model parameters are then updated using policy gradient and
importance sampling. For each selectivity reward, the term Eφ′ [|A(h′−h, φ′)|] is estimated
as 1

n

∑n
i=1 |A(h′ − h, φi)|.

After jointly training the reconstruction and selectivity losses, our algorithm disentan-
gles four directed factors of variations as seen in Figure 6.4: ±x-position and ±y-position
of the agent. For visualization purposes, in the rest of the section, we chose the bottleneck
of the autoencoder to be of size K = 2.

The disentanglement appears clearly as the latent features corresponding to the x and
y position are orthogonal in the latent space. Moreover, we notice that our algorithm
assigns both actions up (white and pink dots in Figure 6.4.a) to the same feature. It also
does not create a signifant mode for the feature corresponding to the action down+left
(light blue dots in Figure 6.4.a) as this feature is already explained by features down and
left.

As far as we know, such a clear recovery of x, y coordinates on a grid would not emerge
without specific model-based objectives or regularizations using prior representation learn-
ing frameworks. In particular, traditional autoencoder-based frameworks would not be
able to recover this structure (even allowing for some non-linear deformation) unless the
specific structure of the grid could somehow be present in the inputs.
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(a) (b)

Figure 6.4: (a) Sampling of 1000 variations dh = h′ − h and its kernel density estimation
encountered when sampling random controllable factors φ. We observe that our algorithm
disentangles these representations on 4 main modes, each corresponding to the action that
was actually taken by the agent (pink and white for up, light blue for down+left, green
for right, purple black down and night blue for left). (b) The disentangled stucture
in the latent space. The x and y axis are disentangled such that we can recover the x
and y position of the agent in any observation s simply by looking at its latent encoding
h = f(s). The missing point on this grid is the only position the agent cannot reach as it
lies on an orange block.

6.3.3.2 Towards planning and policy inference

This disentangled structure could be used to address many challenging issues in reinforce-
ment learning. We give two examples in figures 6.5 and 6.6:

• Model-based predictions: Given an initial state, s0, and an action sequence a{0:T−1},
we want to predict the resulting state sT .

• A simplified deterministic policy inference problem: Given an initial state sstart and
a terminal state sgoal, we aim to find a suitable action sequence a{0:T−1} such that
sgoal can be reached from sstart by following it.

Because of the tanh activation on the last layer of φ(h, z), the different factors of variation
dh = h′−h are placed on the vertices of a hypercube of dimension K, and we can think of
the the policy inference problem as finding a path in that simpler space, where the starting
point is hstart and the goal is hgoal. We believe this could prove to be a much easier problem
to solve.
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h︸︷︷︸
(0.4, 13.1)

ĥ′︸︷︷︸
(−4.6, −1.9)

= h+ dhright︸ ︷︷ ︸
(5, −5)

+ 2 · dhdown︸ ︷︷ ︸
(−10, −10)

Encoder Decoder

Figure 6.5: Predicting the effect of a cause on Mazebase. The leftmost image is the visual
input of the environment, where the agent is the round circle, and the switch states are
represented by shades of green. After the training, we are able to distinguish one cluster
per dh (Figure 6.4), that is to say per variation obtained after performing an action,
independently from the position h. Therefore, we are able to move the agent just by
adding the corresponding dh to our latent representation h. The second image is just the
reconstruction obtained by feeding the resulting h′ into the decoder.

h1︸︷︷︸
(0.4, 13.1)

h2︸︷︷︸
(5.9, −11.6)

dh = (5.5, −24.8) ≈ 2 · dhdown + 3 · dhright

Encoder Encoder

Figure 6.6: Given a starting state and a goal state, we are able to decompose the difference
of the two representations dh into a (non-directed) sequence of movements.

However, this disentangled representation alone cannot solve completely these two is-
sues in an arbitrary environment. Indeed, the only factors we are able to disentangle are
the factors directly controllable by the agent, thus, we are not able to account for the
ambiant dynamics or other agents’ influence.
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6.4 Discussion

We have introduced a novel method aiming at learning representations which disentangle
the underlying factors of variation. Its main assumption is that some of those factors
correspond to independently controllable aspects of the environment. This leads to training
frameworks in which one learns jointly a set of exploratory policies and corresponding
features of the learned representation which disentangle those controlled aspects.

6.4.1 Considering Instances and Object Diversity

In this work we focused on the simpler setups in which the environment is made of a static
set of objects. In this case, if the objective posited in §6.2.1 is learned correctly, we can
assume that feature k of the representation can unambiguously refer to some controllable
property of some specific object in the environment. For example, the agent’s world might
contain only a red circle and a green rectangle, which are only affected by the actions of
the agent (they do not move on their own) and we only change the positions and colours
of these objects from one trial to the next. Hence, a specific feature fk can learn to
unambiguously refer to the position or the colour of one of these two objects.

In reality, environments are stochastic, and the set of objects in a given scene is drawn
from some distribution. The number of objects may vary and their types may be different.
It then becomes less obvious how feature k could refer in a clear way to some feature of
one of the objects in a particular scene. If we have instances of objects of different types,
some addressing or naming scheme is required to refer to the particular objects (instances)
present in the scene, so as to match the policy with a particular attribute of a particular
object to selectively modify. While our proposed distributed alternative (§6.2.2.1) is an
attempt to address this, a fundamental representational problem remains.

This is connected to the binding problem in neuro-cognitive science: how to represent
a set of objects, each having different attributes, so that we do not confuse, for example,
the set {red circle, blue square} with {red square, blue circle}. The binding problem
has received some attention in the representation learning literature (Minin et al., 2012;
Greff et al., 2016), but still remains mostly unsolved. Jointly considering this problem and
learning controllable features may prove fruitful.

These ideas may also lead to interesting ways of performing exploration. The RL explo-
ration process could be driven by a notion of controllability, predicting the interestingness
of objects in a scene and choosing features and associated policies with which to attempt
controlling them – such ideas have only been briefly explored in the literature (e.g. Ratitch
and Precup (2003)). How do humans choose with which object to play? We are attracted
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to objects for which we do not yet know if and how we can control them, and such a process
may be critical to learn how the world works.

6.4.2 The (Poor) Dynamics of Joint Disentanglement

An obvious extension of the proposed ideas is to consider that controllable aspects of an
environment are only controllable over many time steps. Instead of considering that a
controllable feature has an associated policy which immediately modifies it, we’d like to
allow multiple time steps before a change in a feature.

While this is feasible, and indeed we have tried it experimentally, it leads to an inter-
esting and possibly inevitable conundrum (also faced by options discovery, see e.g. Bacon
et al., 2016). To put it simply, considering multiple time steps creates an exponentially
large (in time) set of candidate “temporally-extended features” to choose from, jointly
with a correspondingly large number of “temporally-extended actions” (commonly known
as options).

While one could assume that our proposed independence constraint limits the potential
subsets which end up as controllable features, in most environments there actually exists a
virtually limitless number of pairs of features which satisfy mutual independence. Indeed
practically, this problem is observed by agents choosing seemingly random sequences of
actions as independently controllable features that modify pixel inputs in a cleverly (but
useless) independent way.

This phenomenon is further compounded by the dynamics of learning policies and
features at the same time. Since one depends on the other and vice-versa, a circular
dependency emerges which easily prevents any sort of convergence of the parameters. While
in the experimental results presented above this circular dependency could be resolved by
tuning learning rates appropriately, this was because of the limited number of features and
possible ways of partitioning the state space.

While more work needs to be done to understand this problem, and in general the prob-
lem of coordination between mutiple modules in deep neural network architectures (Bengio
et al., 2016; Shazeer et al., 2017), it does seem possible that there are fundamental barriers
here–barriers that cannot be crossed without including other fundamental inductive biases
in temporal learning, such as affordances (Khetarpal et al., 2020) or causality (Goyal et al.,
2020).
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7
Synthesis

7.1 Summary of Contributions

What unifies the research in this thesis is a desire to understand fundamental phenomena
behind the many methods used in Machine Learning. This knowledge not only propels us
forward in the discovery of new and better techniques, it also offers us stable foundations
to build upon. Indeed, much of science concerns building models of reality, but perhaps
paradoxically, we now find ourselves building models of our models of reality. Deep neural
networks having become so complex, we must now resort to understanding their function
through high-level abstractions—models. Having the right abstractions, the right mental
images, is thus crucial.

We started this thesis by providing such abstractions, and pointed to a more precise
understanding of memorization and its function within neural networks as a mechanism
for generalization. We then showed that analyzing interference reveals interesting patterns
in neural networks, in particular when they are used to perform bootstrapping in Rein-
forcement Learning. These patterns help us understand why naive deep RL methods are
sample inefficient and can appear to generalize poorly.

We then continued this thesis by taking to heart the insight that deep RL uses the wrong
tools. Naively imported from the supervised deep learning literature, the assumptions that
these tools rely on are broken in deep RL. We thus proposed a novel optimization method
that takes into account the non-stationarity of the bootstrapping target in value prediction.
We showed that this addresses the problem of staleness, which in turns helps learning value
functions faster.

Out of a deeper comprehension of bootstrapping, we then proposed a novel framework
for training generative models based on the notion of flow. By using bootstrapping to
estimate flow we showed that we can efficiently generate large sets of diverse and high-
reward candidates. Such a framework is shown to be effective in the context of drug
discovery, but its possible applications seem to cast a much wider net. Indeed, in any black-
box optimization problem where one cares about exploration and amortizing exploration
over the course of training, our framework seems like a logical choice.
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Finally, we ended the thesis by discussing work again related to generalization, joint
representation learning of features and policies. We proposed a notion of independence
and controllability which could be used to recover such objects, and showed that in simple
environments the proposed method recovered the underlying factors that were under the
agent’s control.

7.2 Limitations

While the novel ideas presented in this thesis certainly move forward our comprehension of
neural networks and deep reinforcement learning, they also point to a series of fundamental
unknowns which remain to be understood, perhaps the most fundamental of which remains
the question of generalization. How is it achieved? Are our current neural architectures
enough to solve any generalization problem, or do we need new priors? New learning
methods?

Even though we set out to understand generalization, it seems we are left with more
questions than answers. In Chapter 3 we used to notion of interference to understand how
learning algorithms such as Temporal Difference learning induce underparameterization
and improper generalization in DNNs. Similar conclusions emerge from recent related
work (Kumar et al., 2020), yet still do not offer a cohesive and actionable framework that
helps us predict when generalization occurs.

Methodologically, Chapter 3 is also limited in the kind of generalization in measures,
and only tackles fairly simple RL environments (Bellemare et al., 2013). Some much richer
conceptualizations of generalization exist in RL (Whiteson et al., 2011); importantly, these
suggest training and testing agents on different tasks and environments with structural
commonalities, and have recently started to be adopted as good practice (Cobbe et al.,
2020).

In Chapter 6, we also tackled generalization through priors, proposing novel ways of
learning features which appeal to our intuitions about generalization. Yet, this intuition
didn’t prove to be enough, and we found that such ideas are missing the ingredients required
for scale. What we learn from the exploration of those ideas is that the priors we choose
to encode within our models can be powerful, but always have the danger of being too
specific—too narrow to be widely useful, or too demanding to be easily learnable.

Another unknown related to generalization arises in Chapter 5. In this chapter we
proposed a way to train generative models that behave in some desired ways. We opposed
these models to MCMC methods that are reliant on iteration to produce samples. To do so,
we claimed that we essentially amortize the iterative process that occurs in MCMC through
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the training of our generative model. It is still unclear how and why this amortization
happens, as we once again rely on the concept of generalization: assuming that generic
patterns are learned means assuming that information is reused after each iteration of
learning (as opposed to the iteration of the Markov chain in MCMC).

Relying on this assumption could be dangerous, since, at scale, measuring whether
the “right” patterns are captured—or if only a simpler subspace of the generative domain
is captured—is intractable. Instead we heavily rely on the generalization capabilities and
assumptions provided by the deep learning literature. There are two dangers here currently
known, the first is that deep architectures, while very capable of generalization within their
training distribution, can fail in arbitrary ways outside of that distribution (Arjovsky,
2021). In our case, the model “chooses” its own distribution in some sense, so while it
may appear to perform correctly around it, it may be missing important modes of the true
distribution. The second danger is that of defining metrics of generalization, which has
proven to be a challenge in both generative modelling (Heusel et al., 2017; Barratt and
Sharma, 2018) and Reinforcement Learning (Kirk et al., 2021). What paradigm should be
adopted in the context of the proposed method is still unclear.

Another important limitation of the work presented in Chapter 5, although perhaps
more technical, is the lack of a sense of approximation error. Although we show that, at
convergence, the models we learn provide us with a reward-proportional sampling mech-
anism, it’s not clear how far off we become if the model is imperfect (which, in practice,
it always is). While it could be that small errors in flows induce small errors in sam-
pling probability, there could also be compounding effects, where small errors in flows lead
to large errors in probability, emerging from the typically exponential number of paths
combinatorially-generated objects have.

7.3 Future Work

One thing is certain from the last section, opportunities to keep digging and understanding
the field of machine learning abound.

Yet, the discoveries in this thesis also led its author to a shifting perspective on the
field: its existing tools are beginning to be strong enough to solve larger and larger real
world problems, and so affect the lives of more and more people, hopefully, for the best.

This is probably best reflected in the motivating topic of Chapter 5, the problem of
drug discovery and molecular design. Although computational methods have long been
considered essential in this domain (McDonnell et al., 1995; Brown et al., 2004; Kawai
et al., 2014), machine learning and deep learning methods now appear mature enough to
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significantly contribute (Cao and Kipf, 2018; Popova et al., 2019; Swersky et al., 2020;
Gottipati et al., 2020). Nonetheless, much remains to be done and understood: finding
accurate models of uncertainty (Jain et al., 2021), understanding the generalization of
architectures applied to molecules (Garg et al., 2020), finding efficient search methods
in large combinatorial spaces (such as presented in Chapter 5), or predicting chemical
properties (Gentile et al., 2020). All these challenges revolve around data and predictions,
and so are challenges that machine learning can presumably help solve.

Going back to the specific method proposed in Chapter 5, two immediate next steps ap-
pear: first, developing strong theory around the methods would be valuable—approximation
error bounds and the likes; second, developing more efficient or stable learning objectives.
Even though interesting results were obtained by using the objective we propose, a num-
ber of stability issues very likely remain—issues intimately related to issues in Temporal
Difference learning.

Indeed, the issues highlighted in Chapter 3 also suggest that a number of things could
be improved in TD-based methods: architecture (Dong et al., 2020), objectives (e.g. TD(0)
vs TD(λ), see §3.2.2.4), or optimizers (e.g. that of Chapter 4, see also Romoff et al. 2021).

While this thesis contains suggestions and possible solutions to the latter two prob-
lems, a number of opportunities remain. Novel objectives including auxiliary prediction
tasks (Jaderberg et al., 2017) or self-supervision (Scholz et al., 2021) have been found to
be very beneficial. In general, leveraging the data one already has to learn as much as
possible from it appears very effective (Laskin et al., 2020). Understanding how these
techniques improve generalization will be critical to improving them further. On the op-
timization side, existing methods that explicitly try to take the RL factor into account
seem to struggle scaling up (Romoff et al., 2021; Bengio et al., 2020b), but the findings of
Chapter 4 suggest that the fact that they work at all means some important differences
exist between the stationary i.i.d. setting of supervised learning and the RL setting, which
can potentially be leveraged to speed up learning. Adapting the supervised learning tools
that we naively use in deep RL may reap interesting benefits beyond optimization (Li and
Pathak, 2021).

The representation learning work of Chapter 6, in its failure to scale, also suggests that
the right priors needed to learn useful and reusable abstractions remain elusive. More re-
cent literature has many promising leads, affordances (Khetarpal et al., 2020), independent
mechanisms (Goyal et al., 2020), architectures that plan implicitly (Schrittwieser et al.,
2020), or temporally extended actions (Bagaria and Konidaris, 2019). The opportunities to
take inspiration from biological intelligence are many, and can be tempting, even if slightly
terminologically blurring the lines between the neuroscience and machine learning. For
example, the use of concepts like consciousness (Zhao et al., 2021) or dreaming (Hafner
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et al., 2019) have inspired real progress in the field.

∼

We started this thesis with a discussion on cognitive tools and abstraction. If one thing
is clear from only the last 5 years over which this thesis was written, deep learning has
enabled the creation of models of ever-increasing complexity. While it may appear that
the rate at which we create these new systems of abstraction outpaces the rate at which
we’re able to understand them, the emergence of a unifying theory seems to be on the
horizon. More and more, the field is able to connect the dots between various phenomena
occuring in neural networks (Frankle and Carbin, 2018; Li et al., 2018) and find useful
predictive models of our own models (Kaplan et al., 2020). If we keep relentlessly going
back to the fundamentals, and unifying all that which our vast field has learned, we may
very well unlock the keys to cognition and intelligence.
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