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Abstract

As transistor dimensions scale down to the order of several atoms, digital systems are ex-

hibiting alarming performance degradation and significantly reduced yield due to transistor

variability. New Electronic Design Automation (EDA) tools have emerged across the spec-

trum of digital systems, aiming to capture and mitigate the effects of transistor degradation

and to enable error-tolerant computing. This thesis provides a set of comprehensive EDA

methodologies for efficiently capturing the impact of variability in deeply-scaled transistors.

The developed tools enable complete reliability analysis of an entire Central Processing Unit

(CPU) module over the design’s lifetime.

The majority of transistor variability phenomena are related to threshold voltage fluc-

tuations, resulting in timing failures due to an overall increase of circuit delay. This thesis

delivers valuable contributions in several areas of variability-aware approaches for captur-

ing the timing impact of Vth degradation: Firstly, it presents a linear regression technique

that allows accurate prediction of the overall delay of a circuit. Based on the regression

coefficients, the framework annotates the subset of transistors of the design that should

be tracked for variability. Secondly, the thesis presents a path pruning algorithm that

identifies the variation-critical paths of a design. Both the proposed approaches are ca-

pable of reducing the transistor inventory that needs to be monitored by the EDA solver.

That way, the respective EDA flows achieve reduced execution times and memory usage

for commercial Static Timing Analysis (STA) and open-source SPICE-based tools.

Prior art on reliability analysis under transistor variability exhibits a limited usability

of novel atomistic models for more complex and realistic CPU modules. This thesis com-

bines the accuracy of state-of-the-art (SotA) atomistic modeling with the efficiency of the

proposed path pruning algorithm. For an entire CPU module, the EDA flow captures the

evolution of reliability metrics (i.e. functional yield, maximum clock frequency) for three

years of operation. It also provides useful hints for the degradation of the design under

power management techniques and critical path re-ordering. To the best of our knowledge,

this is the first study that employs complete reliability analysis for processor-wide reliability

metrics, while exploiting the accuracy of atomistic variability modeling.
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Abrégé

Présentement, la miniaturisation de la taille des transistors à l’échelle atomique entrâıne

une dégradation inquiétante de la performance des circuits numériques. De plus, la vari-

abilité de fabrication exhibée entre les transistors engendre un rendement de production

considérablement plus faible. De nouveaux outils de Conception Assistée par Ordinateur

(CAO) ont été développés pour quantifier et réduire les effets de dégradation sur les transis-

tors permettant ainsi l’élaboration de circuits numériques tolérant aux pannes. Cette thèse

présente un ensemble de méthodologies CAO conçues pour évaluer efficacement l’impact

de la variabilité pour les transistors de très petite taille. Les outils développés permettent

de faire une analyse de fiabilité complète d’un Unité Centrale de Traitement (CPU) pour

la durée de vie du circuit.

Les phénomènes de variabilité entre transistors sont principalement liés aux fluctuations

de la tension de seuil, causant ainsi des erreurs de synchronisation par l’accumulation des

délais dans le circuit. Cette thèse formule des contributions significatives aux techniques

qui permettent de quantifier l’effet sur la synchronisation à partir de la dégradation de

la tension de seuil (Vth). Premièrement, la thèse présente une technique de régression

linéaire qui permet de prévoir avec précision le retard total du circuit. En se basant sur

les coefficients de la régression, il est possible d’identifier un sous-ensemble de transistors

dont la variabilité devrait être surveillée et analysée. Deuxièmement, la thèse présente un

algorithme qui identifie les chemins fortement sensibles à la variabilité des transistors en

épurant la liste complète des chemins. Les deux approches présentées permettent de réduire

le nombre de transistors qui doivent être surveillés par les outils de CAO. Ceci résulte en

une diminution du temps d’exécution et de l’espace mémoire nécessaire pour les produits

commerciaux d’analyse temporelle statique (STA) et pour les outils d’analyse SPICE en

code source libre.

Actuellement, les techniques qui considèrent la variabilité des transistors lors des analy-

ses de fiabilité sont incapables d’appliquer les nouveaux modèles atomistiques pour évaluer

des circuits numériques complexes tels que les CPU. Cette thèse combine la précision des

modèles atomistiques avec l’efficacité de l’algorithme présenté qui épure la liste des chemins

sensibles à la variabilité des transistors. Pour un CPU en entier, l’outil de CAO peut

élaborer l’évolution des métriques de fiabilités (i.e. fréquence maximum de l’horloge, ren-

dement de la production) durant trois années d’opération. De plus, la thèse identifie des
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pistes de solution pour traiter la dégradation causée par l’utilisation de techniques de ges-

tion de puissance et de réorganisation des chemins critiques. À notre connaissance, ceci

est la première étude qui applique une analyse de fiabilité complète pour les métriques

de fiabilités du processeur, tout en bénéficiant de la précision des modèles de variabilités

atomistiques.
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Chapter 1

Introduction

Transistor variability has been present as a valid concern for the reliability of Field-Effect

Transistors (FETs) ever since the first Integrated Circuit (IC) was created [1]. The varia-

tions observed in older technology nodes were global, affecting the electrical characteristics

of all transistors of a chip in the same way (i.e. inter-die variability). For many decades

chip makers were able to reduce global variations by improving the manufacturing process

control [2]. Moreover, the low complexity of integrated circuits allowed the development of

accurate yet simple statistical approaches that capture such variations [3]. Nevertheless, as

CMOS technology approaches nanometer scales, new threats for the transistor reliability

have emerged and numerous sources of semiconductor variability have been identified.

A large portion of these degradation sources are related to local process variations due to

the charge-level activity of dopant atoms in the gate stacks. These degradation mechanisms,

which result in threshold voltage Vth variations, were initially observed more than 30 years

ago [4]. Nonetheless, the impact of individual gate defects was insignificant since older

transistor channels contained tens of thousands of dopant atoms. Recent advances in

manufacturing tools during the past two decades enabled technology nodes with channels

less than 90 nanometers [5]. At that scale, transistors accommodate only a few hundred

of defects, and eventually the absence of a single atom has a much more severe impact on

the transistor performance. That is, local process variability has a different effect on every

transistor in any given chip (i.e. intra-die variability). As a consequence, “two transistors,

fabricated a few dozen nanometers apart on the same piece of silicon, will not have the

same electrical properties” [6].



2 Introduction

As dimensions scale down to the order of several atoms, transistor variability attracts

ever-increasing interest from both academia and industry. It has been described by the

International Technology Roadmap for Semiconductors (ITRS) as the “red brick” prob-

lem [7]: “one of a handful of important issues that lack any clear solution, forming a red

brick wall that prevents forward progress” on Moore’s Law, the defining paradigm of the

global semiconductor industry [8]. New EDA approaches have emerged across the spec-

trum of digital systems, aiming to capture the effects of process variations and to enable

error-tolerant computing [9]. The latest edition of ITRS describes the variability-aware

EDA methodologies as the key challenge to be addressed within the next five years [7]:

“Advanced numerical device simulation models and their efficient usage for pre-

dicting and reproducing statistical fluctuations of structure, dopant and material

variations [are necessary] in order to assess the impact of variations on statistics

of device performance, including non-Gaussian distributions.”

The impact of transistor variability propagates across the entire design abstraction

hierarchy, reducing the yield to uneconomic levels and resulting in defective designs that

“they might find no better destination than the junkyard. And the defect rate will only

get worse as transistors continue to shrink” [6]. As a consequence, variability is becoming a

threat not only for the semiconductor industry, with revenues that approached $350 billion

in 2014, but for the entire $1.5 trillion global electronics industry [10]. Hence, chip makers

now try to develop EDA methodologies to capture and eventually mitigate the impact of

transistor variability. Such research challenge is well articulated in the following quote from

Miguel Miranda, Qualcomm, CA [11]:

“But just because variability is here to stay doesn’t mean we can’t mitigate its

effects. [..] Fortunately, a new family of design techniques [..] use statistical

methods to make informed trade-offs between how fast the chips will run and

how many good chips a given batch is likely to yield. Some makers of high-

end microprocessors like IBM and foundries like the Taiwan Semiconductor

Manufacturing Co. are already using some of these statistical techniques in their

design flows. Although statistical tools are still far from being widely adopted, if

we can push them along, these tools will help us make affordable chips that are

as fast and efficient as those the semiconductor road map calls for–and perhaps

then some.”
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The aforementioned quotes from both industry and academia constitute the main moti-

vation behind the current thesis. Our goal is to develop variability-aware EDA methodolo-

gies, in order to create comprehensive design flows for credible reliability analysis. Recent

atomistic models have been proposed to accurately capture variability-induced Vth degrada-

tion, but they suffer from computational complexity. This thesis contributes to addressing

some of the obstacles to the widespread adoption of those novel models for design-level

simulations. We propose efficient variability-aware methods, such as regression techniques

and path pruning algorithms, in order to reduce the transistor inventory that needs to be

monitored by an EDA solver. The ultimate goal of our work is to provide a reliability engi-

neer with tools to capture and mitigate the impact of transistor variability, in a reasonable

amount of time and with reasonable accuracy.

1.1 Summary of Thesis Contributions

This thesis presents contributions in several areas of variability-aware EDA methodologies,

including accurate regression models, path pruning algorithms and efficient processor-wide

reliability analysis flows. A summary of contributions per Chapter is listed below.

Chapter 3

This work develops a linear regression model to accurately capture the variability-induced

delay degradation. First, we show that such degradation is highly correlated with thresh-

old voltage Vth variations. Based on the regression coefficients, we identify the subset of

transistors of the IC that should be tracked in order to accurately predict delay values. We

reduce the transistor inventory that needs to be monitored by a timing analysis tool and

eventually we reduce the operations required by the Static Timing Analysis (STA) solver.

That way, we achieve acceleration and reduced memory usage for commercial STA tools

with negligible accuracy loss.

Chapter 4

We propose a framework for efficiently capturing the timing impact of transistor variability.

Using commercial STA solvers as the core of our analysis, we integrate several novel ideas

to further enhance conventional variability analysis flows. To name a few, our analysis
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is not constrained inside the STA tool, but is fully decoupled from the STA kernel itself.

More specifically, the additional modules are built on top of the STA solver, while adding

negligible overhead compared to default timing analysis iterations. In addition, we propose

a threshold pruning algorithm to identify the variation-critical paths that needs to be mon-

itored by timing analysis and circuit simulation tools. That way, we achieve acceleration

and reduced memory usage for both STA and SPICE-like solvers with negligible accuracy

loss. To the best of our knowledge, no existing work attempts to tightly integrate all the

aforementioned characteristics into a unified variability analysis flow.

Chapter 5

We propose a comprehensive EDA flow for efficient, processor-wide reliability analysis under

transistor variability, i.e. Bias Temperature Instability (BTI). The proposed framework

combines the efficiency of pseudo-transient atomistic BTI modeling with the accuracy of

commercial STA tools. More specifically, we incorporate a novel pseudo-transient atomistic

BTI methodology with a complete EDA flow, reflecting on the usability of atomistic BTI

models for realistic circuits. Moreover, we use the path pruning technique developed in

Chapter 4 to identify the variation-critical part of an entire CPU module. To the best

of our knowledge, this is the first study that employs complete reliability analysis for

processor-wide reliability metrics (i.e. yield or maximum clock frequency), while exploiting

the accuracy of atomistic BTI models.

1.2 Self-Citations

This thesis is comprised of a body of work that has either been previously published, or

is at various points in the process of being considered for future publication. Each paper

comprising the thesis has been primarily authored by Dimitrios Stamoulis, who is listed as

the first author of each of the publications seen below:

1. Linear Regression Techniques for Efficient Analysis of Transistor Variability [12] :

Prior art on time-zero/-dependent variability shows its importance for digital sys-

tem reliability throughout a typical integrated circuit (IC) lifetime. Timing analysis

results could be questionable if the impact of such variations is not taken properly

into consideration. Modern models can accurately capture transistor variability but
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they suffer from prolonged execution times. In this paper, we employ linear regres-

sion analysis to accelerate transistor variability estimation. Compared to commer-

cial transistor-level Static Timing Analysis (STA) tools, we achieve a 4.63x average

speedup and a 3.56x average memory usage reduction for standard cells and ISCAS85

benchmark circuits, with negligible accuracy degradation.

2. Efficient Reliability Analysis of Processor Datapath using Atomistic BTI Variability

Models (Best Paper Nomination) [13] : In this paper, we propose EDA methodolo-

gies for efficient, datapath-wide reliability analysis under Bias Temperature Instability

(BTI). The proposed EDA flow combines the efficiency of atomistic, pseudo-transient

BTI modeling with the accuracy of commercial Static Timing Analysis (STA) tools.

In order to reduce the transistor inventory that needs to be tracked by the STA solver,

we develop a threshold-pruning methodology to identify the variation-critical part of

a design. That way, we accelerate variation-aware STA iterations, with a maximum

speedup of 6.82x achieved for representative benchmark circuits. We substantiate

the efficiency of the proposed framework for realistic designs. For a CPU datapath,

our threshold-pruning technique outperforms built-in pruning commands of the STA

solver by 16.87% in terms of runtime improvement. We demonstrate the impact of

BTI after three years of operation, with clock frequency degradation up to 24% and

functional yield reduction below 90% for higher frequencies.

1.3 Thesis Organization

In Chapter 2 the thesis reviews EDA methodologies and practices that exist for modeling

transistor variability. Recent simulation techniques and reliability analysis methods are

contrasted, in order to highlight their accuracy issues and their limited applicability. The

Chapter also motivates and presents the objectives of the current work. Chapter 3 discusses

the leveraging of linear regression methods to efficiently capture variability-induced delay

degradation. The methodology to predict delay values is described and its efficiency is veri-

fied for representative test cases. Chapter 4 introduces a path pruning approach to identify

the variation-critical part of a circuit. The applicability of the proposed technique to both

timing analysis and SPICE-like solvers is assessed through benchmark circuits. The path

pruning algorithm is further exploited as part of a comprehensive EDA flow for processor-
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wide reliability analysis which is presented in Chapter 5. The Chapter demonstrates the

usability of our methodology as a useful aid for reliability analysis of an entire CPU mod-

ule. It also substantiates the impact of transistor variability to power-aware designs and

critical path re-ordering. Finally, Chapter 6 summarizes the methodologies detailed in the

thesis and speculates on the future of variability-aware EDA techniques.



7

Chapter 2

Background and Related Work

2.1 Introduction

This Chapter covers EDA methodologies and practices that exist for modeling transistor

variability. First of all, it explores the main sources of variability in deeply-scaled transis-

tors and the traditional simulation techniques that are employed to capture the impact of

threshold voltage degradation. Considerations surrounding the use of existing EDA tools

are explored in detail, while stressing the simulation challenges due to increased execution

times and accuracy issues. Previous statistical regression and path pruning approaches that

aim to tackle these challenges are also reviewed. Different reliability analysis methods are

presented, while highlighting their limitations and the over-simplified test cases. Finally,

the motivation and the objectives of the current thesis conclude this Chapter.

2.2 Transistor Variability

2.2.1 Sources of Threshold Voltage Degradation

Transistor variability has been studied for more than 30 years as a valid concern for the

reliability of Field-Effect Transistors (FETs) [4]. A large portion of transistor degradation

phenomena are related to threshold voltage Vth variations, due to the charge-level activity

of gate-stack defects. Based on [14], a defect is defined as an unpaired electron of Si atoms

at the SiO2/Si interface that corresponds to a carrier recombination (and generation) site.

At these sites, the minority carriers of the channel are trapped (and respectively emitted),
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thus reducing the IDS current during the device operation. Such reduction leads to an

increase of the absolute value of the threshold voltage that is required for strong inversion

of the transistor. While other factors could affect the transistor behavior [15], in this text

we focus on Vth degradation phenomena due to the intermittent interaction of gate-stack

defects with minority carriers, such as Bias Temperature Instability (BTI) and Random

Telegraph Noise (RTN) [16, 17, 18].

The perception of the defect activity, and consequently the development of variation-

aware EDA tools has undergone large changes over the years. Transistors of older tech-

nology nodes had sufficient size and a large number of defects, thus exhibiting a uniform

degradation throughout their lifetime. That is, one transistor was representative of the

way all transistors of the same technology node would behave. It was therefore a common

practice to capture any variability phenomena as deterministic transistor values via worst

case corner simulations. With knowledge of the specific characteristics of the technology

node, the EDA engineer could include these design margins as parameters of the circuit

solver. The low complexity of integrated circuits allowed simple variability models to be

directly incorporated with EDA tools.

A modeling approach that has gathered significant momentum throughout the years

is the Reaction-Diffusion (RD) model [19]. This approach advocates that Vth degradation

comes as a result of the breaking (and annealing) of bonds between silicon and hydrogen.

This model has been featured in many simulation methods [20], triggering extensive re-

search on BTI/ RTN countermeasures [21]. Nonetheless, recent literature shows that the

down-scaling trend observed in the semiconductor industry, has gradually been changing the

perception of physics of individual gate oxide defects and the underlying modeling require-

ments [22]. As CMOS technology approaches nanometer scales, the number of gate-stack

defects is reduced. As a consequence, the individual contribution of each defect amplifies

the transistor variability. Moreover, the stochastic activity of the oxide traps with minor-

ity carriers (i.e. charge capture and emission events) drastically increases the variability

among nominally identical transistors of the same technology node. Thus, pre-assigned

deterministic worst-case values are no longer accurate and they inherently fail to capture

variability phenomena at deca-nanometer technology nodes [22].

Previously, an atomistic approach has evolved, which concentrates on the charge-level

activity of gate-stack defects, rather than their actual origin [22]. It attributes the manifes-

tation of BTI/ RTN phenomena to the kinetics of a variable numbers of defects, each one
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with a specific temporal behavior (modeled using time constants) and a certain contribu-

tion to overall Vth degradation. Minority carriers are trapped and emitted from these sites,

leading to Vth fluctuations. It is also important that the atomistic model can accurately

capture the variability of both pFETs (Negative BTI – NBTI) and nFETs (Positive BTI –

PBTI), while the majority of RD models are limited to NBTI.

2.2.2 Time-Dependent Variability

Recent literature supports the “paradigm shift” from RD to defect-centric BTI model-

ing [22]. Novel defect-based EDA approaches inherently cover transistor aging, accounting

for transistor variability at deeply scaled technology nodes [23, 24]. Nonetheless, the atom-

istic treatment of Vth fluctuations leads to a statistical and confidence-based perception

of several reliability metrics (i.e. delay, functional yield etc) [25]. That is, the main pa-

rameters used to calibrate the atomistic model follow statistical distributions, as shown

in Table 2.1. More specifically, the threshold voltage shift ΔVth associated with each de-

fect follows an exponential distribution around the mean value η, whereas the number of

traps follows a Poisson distribution with an average λ based on the transistor dimensions

[26, 27, 28, 29]. Consequently, the Vth fluctuations for nominally identical transistors of the

same technology will be stochastically distributed in both time and magnitude (i.e. time-

and workload-dependent variability respectively).

Table 2.1: Main parameters of the atomistic model and their distributions, based on
experimental data [30], as similarly utilized in [13, 24, 31].

Parameter Distribution

Defects per pFET Np ∼ Poisson (λ = 1011 × Area[cm2])
Defects per nFET Nn ∼ Poisson (λ = 6.7× 1010 × Area[cm2])

Time Const. per Defect (s) log10
{
τ ∗pV

} ∼ Uniform (a = −12, b = 12)

ΔVth per Defect (mV) ΔVth ∼ Exponential (η = 5)

∗ p: process, either capture (c) or emission (e)
V : voltage, either high (H) or low (L)

The stohastic nature of Vth variability is fully consistent with our previous observation

that traditional EDA approaches which assume normal distributions fail to accurately ac-

count for transistor degradation [32, 33]. Novel methodologies capturing the non-normal
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defect-centric Vth distributions are necessary. In other words, given the variable manifesta-

tion of BTI/RTN it is imperative to develop tools that employ statistical methods. Monte

Carlo based techniques are therefore needed to capture time-dependent variability. This

observation constitutes a main motivation behind the current thesis. Our goal is to allevi-

ate the increased CPU overhead of Monte-Carlo (MC) based variability-aware simulations,

while maintaining the accuracy and the novel features of the atomistic model.

2.3 Variability-Aware EDA tools

As transistor dimensions scale down to the order of several atoms, digital systems are ex-

hibiting increasing amounts of performance degradation. As we discussed in the previous

Section, more complex variability models have emerged across the spectrum of EDA tech-

niques, aiming to simulate and mitigate the effects of threshold voltage variations. The

increasing transistor variability and complexity of integrated circuits create demand for

computationally viable, variability-aware EDA solutions.

Novel perception of physics of gate-stack defects has resulted in the respective change

of the underlying modeling methodologies. Earlier approaches do not account for time-

dependent variability, assuming either deterministic variations or parameter distributions

expressed as normal or log-normal statistics. The use of these statistics originates from the

practical requirements of low computational overhead during circuit simulations. Modeling

the Vth variability as a normal distribution has been already used in the state-of-the art

(SotA) techniques [34, 35]. Nonetheless, recent works show that the time-dependent com-

ponent of the aging-induced Vth distributions deviates from a normal distributions [29, 36].

Novel simulation techniques based on the atomistic model are able to capture the non-

normal defect-centric transistor variability. Therefore, more accurate variability-aware

EDA tools are being advocated by several groups [23, 37]. A variety of related imple-

mentations exist, modeling BTI either over arbitrary circuit lifetime intervals [38] or in

a transient way [39]. However, atomistic BTI modeling comes with increased processing

overheads. Recent works have attempted to reconcile the increased accuracy with the com-

putational feasibility of the atomistic BTI model through massive multi-threading [24, 40]

or novel signal representations [31]. The atomistic modeling could be placed in different

levels of abstraction, starting from transistor- up to system-level tools. In the following

Subsections, we review the main EDA solutions per abstraction layer.
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2.3.1 SPICE-based Solvers

One of the predominant methodologies for capturing transistor variability is to build tran-

sistor models on top of circuit solvers. For atomistic transient BTI/RTN simulation [23], a

Simulation Program with Integrated Circuit Emphasis (SPICE) [41] is required. Catthoor

et al. have integrated the atomistic model with a commercial SPICE solver [42]. Each

transistor is initially populated with a number of traps and the model is evaluated at each

simulation step, by calculating the probability for a capture or emission event of each trap.

The probability evaluation is implemented on top of a Verilog-A code that functions as

the transistor model. More recent works have further optimized the Verilog-A code [39],

making the run-time model details fully transparent to the end-user.

These techniques are very accurate but they suffer from prolonged simulation times.

Such temporal overhead has a significant impact on time to market, by increasing the com-

plexity of reliability analysis during later design stages. Thus, it is important to efficiently

facilitate the usage of a variation-aware SPICE tool during the variability analysis stage of

a design process. Several approaches attempt to address the introduced overhead of tran-

sistor variability models. Rodopoulos et al. proposed a multi-threaded SPICE-based solver

that scales across the nodes of a many-core system to handle massive simulations [24].

Nonetheless, an increase up to 24× in execution times is reported for atomistic BTI sim-

ulations, compared to default SPICE sessions, where the effect of transistor aging is not

taken into consideration.

Another important observation is that transistor-level models focus on a particular

physical degradation phenomenon. However, it has been shown that several degradation

mechanisms exhibit an intrinsic interdependence [43]. Not capturing such correlation be-

tween different variability sources can lead to inaccurate results, with overall error up to

89.23% in temperature and Vth estimations [44]. Thus, we can easily observe that SPICE

tools are not efficient for statistical Monte-Carlo reliability assessment, due to their com-

plexity and accuracy issues.

2.3.2 Gate-level Timing Analysis Tools

In the previous Subsection, we showed that SPICE-like solutions tools are not viable for

statistical time-dependent variability analysis. Thus, it is essential to develop techniques

that accurately model Vth variability without the cost of prolonged execution times. Moving
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to this direction, simulation-free timing analysis tools have been introduced. Different

gate-level timing models have been proposed [45, 46]. Numerous transistor degradation

phenomena result in timing failures due to an overall increase in circuit delay. Timing

analysis results could be questionable if the impact of such variations is not taken properly

into consideration. Representative works show that not considering such variability can

result in 30% error in delay estimations during timing analysis [47].

State-of-the-art frameworks exhibit a trend towards approaches that allow incorpo-

rating stochastically distributed parameters encompassing their combined effect and cor-

relations [48]. Representative examples are methods based on Statistical Static Timing

Analysis (SSTA) [46, 49, 50] and enhanced Monte Carlo (EMC) [51, 52, 53] techniques. In

Statistical STA (SSTA) methods [43, 44], the variational parameters are treated as ran-

dom variables with probability distribution functions. Although SSTA and EMC could be

more accurate compared to older deterministic simulations, the parameter distributions are

usually limited by normal statistics. This underlying assumption of normally distributed

variables is not always valid [48], resulting in inaccurate results. An interesting alternative

for timing analysis employs Multi-Corner STA [54, 55], where the variational parameters

are treated as unknown variables with known bounds. Circuit delay is predicted based on

affine (linear) functions of these variables and their corner values. However, it has been

shown the linear dependence of process, voltage and temperature (PVT) variables may not

always hold, leading to questionable results [48].

2.3.3 Transistor-level STA Tools: Our reference for comparison

As we have already mentioned, our goal is to “capture the timing impact of aging-induced

variability at the transistor level”. At this level of abstraction, netlists contain transistor

properties (e.g. ΔVth values) that can be used directly by transistor-level STA methods [56].

Recent works have shown that transistor-level STA tools have many advantages compared

to other timing analysis solvers. More specifically, on-chip variations could be efficiently

handled by using margins in transistor-level STA runs [48, 57]. Moreover, it has been

shown that transistor-level STA models have a better defined relationship with physical

parameters [47]. Finally, these STA approaches are more practical for multimillion gate

STA iterations [58]. It is therefore critical to select transistor-level timing analysis tools for

a credible analysis of transistor variability.
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Throughout this work, we select a commercial STA solver as the reference for compari-

son, namely Synopsys NanoTime [59]. NanoTime is an industry-standard STA solution for

deeply-scaled technology nodes [60]: “As designs go down to 90nm and below, [..] solutions

including traditional static timing analysis with 3rd party variation-aware delay analysis

do not provide the accuracy and productivity that is required.” The selected reference has

been used extensively to deliver timing verification of commercial products with an overall

degree of accuracy up to 95% compared to actual delay data [61]. This accuracy obvi-

ously comes with an increased computational complexity for larger system-level designs.

Nonetheless, in the context of our variability analysis we will focus on subsystem-level CPU

modules and benchmarks. Hence, NanoTime is the most accurate yet efficient reference for

comparison for our exploration.

2.4 Efficient Variability Analysis

Based on the assessment of variability-aware EDA approaches presented in the previous

Section, it is evident that traditional STA methods remain the most accurate EDA solution

for capturing the timing impact of transistor variability. This observation is another major

motivation behind the current thesis: Our goal is to accelerate Monte-Carlo based explo-

rations, while maintaining the advantages and novel features of commercial transistor-level

STA tools. A key aspect for efficient timing analysis is the identification of the variation-

critical part of the design under test. Several related methodologies have been proposed

and applied to timing analysis tools, such as regression techniques and path pruning al-

gorithms. In the following Subsections, we review existing works that aim to reduce the

transistor inventory that needs to be monitored during timing analysis.

2.4.1 Regression Techniques

In order to predict delay degradation, several statistical techniques could be used. Wang

et al. have used Chebyshev polynomial series to fit the gate delay degradation, achieving a

maximum fitting error of 0.38% [62]. Nevertheless, time consuming SPICE simulations are

necessary per fitting node for discrete delay values to be extracted. Alternatively, regression

analysis has taken place at higher abstraction levels (i.e. architecture level) to estimate the

architectural vulnerability factor (AVF) of the register file for out-of-order cores [63]. Hence,
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it is an attractive option to explore linear regression methods for transistor variability

analysis using STA tools.

Following this research direction, Ganapathy et al. have used regression methods to

capture spatio-temporal variability at low computational cost [64]. However, significant

accuracy degradation is reported in some cases (i.e. 14% average error). In addition, the

delay estimation speedup is computed by comparing against SPICE simulators. Nonethe-

less, it has been shown that SPICE solvers are impractical for timing analysis purposes [65]

and as a consequence they are not necessarily a suitable reference in order to evaluate

the applied methodology. It is therefore essential to explore linear regression methods for

transistor variability analysis, using STA tools as both the implementation base and the

reference point.

2.4.2 Pruning Methods

Recent works aim to identify the variation-critical part of the circuit under test. In [66],

the authors suggest a threshold pruning method that annotates paths as timing-critical

and computes their delay values. Onaissi et al. have presented a path selection method

that covers several corner cases [55]. This method was further optimized in [48], by the

introduction of pre-determined small set of corners that reduces the required number of

STA iterations. Onaissi et al. have also proposed a similar approach that uses branch

and bound analysis to annotate the variation-critical paths [67]. Heloue et al. have in-

troduced the notion of Parameterized STA (PSTA), where existing pruning algorithms are

mathematically formulated and projected to a parameter space [68, 69, 70].

Nonetheless, all the aforementioned approaches are part of monolithic timing analysis

solvers, isolated from the the underlying physical transistor degradation mechanisms. In

other words, these techniques focus on reporting delay distributions in the context of a

timing analysis solver, while failing to provide a generic exploration flow, in order to utilize

the results in post-analysis or re-design stages. The motivation of the current thesis is the

simple notion that, the results of timing analysis should be further useful, by providing

guidance on which variability-sensitive parts the reliability engineer should focus during

later development stages (e.g. during computationally heavy simulations for library char-

acterization). Therefore, our intention is to develop a comprehensive framework where the

pruning methodologies are built as generic, flexible modules on top of the default STA flow.
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2.5 Processor-Wide Reliability Analysis

While the accurate modeling of Vth fluctuations at the transistor level remains a motivat-

ing challenge for the EDA community, its implications for variability-tolerant VLSI designs

are even more important. Handling and mitigating transistor degradation at the system

level has become one of the most significant design challenges for computer architects and

embedded system engineers. It is therefore crucial to efficiently incorporate the accurate

atomistic model with higher levels of abstraction, enabling processor-wide reliability assess-

ment of state-of-the-art systems and applications. Nonetheless, all the existing atomistic

modeling approaches limit their exploration to individual transistors, simple gates, SRAM

cells and logic blocks.

Table 2.2: Assessment of SotA: Literature lacks an atomistic BTI flow for subsystem-wide
reliability analysis, as also published in [13].

Approach Case Study Max No. FETs Level of Abstraction

[23, 71] CMOS Logic Gates 6 Gates
[38, 72] 6T SRAM cell 6 Gates
[31, 39] subset of SRAM 244 Gates
[73] Benchmark Circuits 68,000 RTL/ALU
[24] Array Multiplier 229,376 RTL/ALU
[74] Logic Subblocks∗ N/A ∗∗ RTL/ALU

Current Thesis CPU module 1830 Subsystem

∗ Adders, multipliers, mux-demux and shifter blocks
∗∗ Not explicitly reported

A summary of state-of-the-art (SotA) approaches on atomistic modeling is presented in

Table 2.2. To fully assess prior art, we sort existing works by the level of abstraction in

which BTI/RTN modeling has been placed, starting from lower to higher abstraction layers.

By inspecting the atomistic-related literature, it is evident that it lacks a comprehensive

atomistic modeling flow for subsystem-wide reliability analysis. Previous works have been

mostly focusing either on simple CMOS logic gates [23, 71] and SRAM cells [31, 38, 39, 72]

or on larger netlists of repetitive logic subblocks with reduced functional complexity [24,

73, 74]. Thus, we observe a limited usability of SotA atomistic models for more complex

netlists and realistic CPU modules. This observation constitutes the main motivation
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behind the current thesis. Our goal is to incorporate an accurate yet efficient variability

modeling methodology with a design flow for credible, subsystem-wide reliability analysis.

2.6 Motivation and Mission Statement

The intention of this thesis is to provide meaningful contribution and to improve any

insufficiencies observed in prior art. Therefore, in the previous Sections we presented an

extensive assessment of the research landscape in order to identify such insufficiencies.

After having properly motivated our work, we can now summarize the main objectives of

our exploration:

1. Modeling of transistor variability : Prior art has shown that older modeling approaches

fail to account for time-dependent variability at deca-nanometer technology nodes.

Thus, we will instead use the more accurate atomistic model to capture Vth fluctua-

tions throughout the thesis.

2. Using efficient yet accurate EDA tools : We will exploit the accuracy of STA tools to

capture the timing impact of transistor variability. As we have already mentioned, we

will use the commercial transistor-level Synopsys NanoTime tool [59] for the majority

of the inspected test cases.

3. Accelerating variability-aware STA iterations : We will develop efficient EDA method-

ologies to accelerate STA iterations. Using regression techniques and path pruning

algorithms we will identify the variation critical part of a design, in order to reduce the

transistor inventory that needs to be tracked by the STA tool. The proposed meth-

ods will be extensively tested through representative cases studies (e.g. benchmark

circuits, arithmetic modules etc).

4. Enabling processor-wide reliability analysis : After accelerating MC-based timing anal-

ysis iterations, we will incorporate the proposed EDA methodologies with a com-

prehensive design flow in order to enable processor-wide reliability analysis. The

efficiency of our EDA flow will be fully verified for an entire CPU module.
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2.7 Conclusion

In this Chapter we present the landscape of variability-aware EDA methodologies. The

plethora of different variability models and EDA solutions yields a heterogeneous land-

scape to be explored. Consequently, we classify all the representative approaches into

several levels of categorization. First, we present the main sources of Vth variations and

the respective simulation techniques. Then we discuss the main simulation challenges of

existing tools. Finally, we review related works that employ regression or pruning tech-

niques and EDA flows that perform reliability analysis. That way, we are able to identify

the insufficiencies of prior art and eventually the objectives of our work.
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Chapter 3

Linear Regression Techniques

3.1 Introduction

In this Chapter, we employ linear regression analysis to model variability-induced delay

degradation. First, we formulate the regression model. Based on our experimental setup,

we show that the overall delay of a circuit is highly correlated with the Vth variations

across the transistor inventory, which allows accurate prediction of delay values. Moreover,

we explore which subset of transistors of the IC should be tracked in order to accurately

predict these values. Finally, we verify our method through representative test cases,

where acceleration and reduced memory usage are achieved for commercial STA tools with

negligible accuracy loss.

3.2 Linear Regression Model

The general form of a univariate linear regression model is given by Equation 3.1, where

y is the univariate response, x is the matrix that contains the predictor values, β contains

the regression coefficients and e corresponds to the error terms.

y = x · β + e ⇒

⎡
⎢⎢⎢⎢⎢⎢⎣

y1

y2
...

ym

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

x11 · · · x1n

x21 · · · x2n

...
. . .

...

xm1 · · · xmn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

β1

β2

...

βn

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎣

e1

e2
...

em

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.1)
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Each row of Equation 3.1 corresponds to an individual data point of the regression

model. We could identify two sets of observations:

Definition 1. Training set is the data set (yi, xi1, ..., xin)
m
i=1 of m observations used to fit

the regression model.

After having a sufficient number of observations, we fit the model using the Training

Set. Using maximum likelihood estimation, we derive the regression coefficients (vector

β) and the error terms (vector e). We compute the coefficient of determination R2. This

metric will be used as an indicator of how well the generated function fits the observed

data (i.e. 100% indicates perfect correlation).

Definition 2. Test set is the data set (yi, xi1, ..., xin)
k
i=1 of k observations used to evaluate

the regression coefficients βi that were obtained by self-correlating the Training set.

Using the predictor events of the Test set and the regression coefficients βi, we compute

the expected max delay value ỹi. The prediction error is given by Equation 3.2.

ei = yi − ỹi = yi − (β1 · xi1 + ...+ βn · xin) (3.2)

In the context of our exploration, we should properly select the predictors and the

response of the model. Our intention is to capture the timing impact of threshold voltage

variations on the IC’s delay degradation. We will therefore use the maximum delay value

Dmax,i as the univariate response of the regression model. Moreover, given the equation-

based nature of a transistor-level STA solver, several transistor parameters could be used

to fit the regression model. Recent EDA approaches focus on the distribution of Vth values

[31, 38], in order to capture the time-dependent variability. Thus, it is reasonable to use

the threshold voltage values of all transistors as predictor variables. We can now derive

the following linear regression model (Equation 3.3), where Vth(ij) is the threshold voltage

value of the j − th transistor during the i− th Monte-Carlo iteration:
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⎡
⎢⎢⎢⎢⎢⎢⎣
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(3.3)

To obtain the aforementioned data sets, we perform Monte-Carlo transistor-level STA

iterations. The delay values are derived using the Synopsys NanoTime [59] on an AMD®

Opteron® server @2.61GHz. We utilize the 90 nm Predictive Technology Model [75]. Per

MC iteration, we introduce a variation to the nominal threshold voltage Vth0 values. For

the introduced Vth degradation to be consistent with experimental results (i.e. stochastic

properties of gate oxide defects [76]), the ΔVth0 variations follow the proper exponential

distribution [30]. The circuit netlist with the transistors and the variational threshold

voltage parameters is given as an input to the NanoTime tool. After performing a detailed

transistor-level timing analysis, the tool returns the maximum delay across all paths of the

circuit.

3.3 Experimental Results

Initially, we inspect a simple array multiplier as the circuit under test [77]. We focus our

exploration on the main repetitive Full-Adder (FA*) module (i.e. 1 × 1 array multiplier).

The schematic of this circuit is shown in Figure 3.1. The SPICE-like netlist that is given

as an input to the STA tool consists of 56 transistors.

3.3.1 Delay Degradation Prediction

A Training set of 5000 MC iterations is given as an input to the linear regression model.

The model is fitted using simple MATLAB commands (i.e mvregress). An overall coeffi-

cient of determination R2 = 93.56% is achieved, indicating a good correlation between the

maximum delay Dmax and the Vth values of the circuit transistors. Next, we evaluate the

accuracy of our analysis. Figure 3.2 shows the measured and predicted maximum delays

using a Test set of 50 observations. We observe satisfactory prediction results with negligi-

ble deviations (i.e. 0.28% maximum error). In order to further inspect the accuracy of our
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Fig. 3.1: A simple test-case: The FA* module.

regression model, we use a Test set of 2000 MC observations. An average error of 0.1125%

and a maximum error of 0.3179% are reported.
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Fig. 3.2: Maximum circuit delay prediction: Predicted values, as compared to real delay
data reported using the Synopsys NanoTime STA tool.

3.3.2 Tracking a subset of IC’s transistors

We have shown that the regression model is able to predict the maximum circuit delay with

reasonable accuracy. By further exploring the regression results for the FA* module, we

notice that the regression coefficients β vary among the different MOSFET transistors of

the circuit under test. Hence, we investigate how accurately we can predict the maximum
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delay value using only a subset of the predictor events (i.e. Vth values of a subset of

transistors). We sort the transistors by their regression coefficients β and we set a varying

“threshold” value. That is, all regression coefficients smaller than this value are not taken

into consideration while computing the maximum delay of the circuit. For all different

subsets, we compute the correlation factor R2. These values are shown in Figure 3.3. They

indicate the overall accuracy while correlating the Dmax acquired by tracking all transistors

with the Dmax acquired by tracking only a subset of n transistors. We highlight with an

horizontal red dotted line the points where a correlation factor R2 ≥ 0.9 is achieved.
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Fig. 3.3: Impact on the correlation factor of the number of transistors tracked.

Considering this as a level of reasonable accuracy, we can easily notice that we can

exclude up to 22 out of 56 transistors. Another important observation could be made

based on the topology of the FA* circuit itself. The critical path that was identified by

the timing analysis tool consists of 24 transistors. One can see that reaching this number

gradually leads to accuracy degradation, while keeping less than 24 MOSFETs leads to

zero correlation. That is, by excluding transistors that significantly affect the Dmax value

(i.e. transistors of the critical path), the result becomes inaccurate.

Given the aforementioned observation, we fully investigate the accuracy degradation of

timing analysis results while tracking the variability of a subset of transistors. That is,

we set the threshold voltage parameters of certain MOSFETs to be variational inside the

technology modelcard, while the rest of them maintain their nominal Vth0 values. Once
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again, we inspect the FA* module and we perform 200 pairs of MC STA iterations. For the

second iteration per pair, the variability of a subset of MOSFETs is taken into consideration.

Figure 3.4 shows the Dmax values computed using the NanoTime tool for all pairs. To show

that the same overall variability is introduced per pair, the mean value of all Vth values is

presented in x axis, while their standard deviation σ{Vth} is 7.87% of μ{Vth}. We notice

that the measured delays per pair are almost identical. More specifically, we observe an

average error of 0.0135% and a maximum error of 0.4566%, while tracking the Vth variations

of 40 out of 56 transistors.
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Fig. 3.4: Accuracy assessment of NanoTime results while tracking the variability of a subset
of transistors.

3.4 Case Study: Accelerating STA tools

Up to this point, we have been able to track the Vth fluctuations only of a subset of

transistors, with no significant accuracy degradation. Thus, the impact of the remaining

transistors could not be taken into consideration during complex timing analysis. We

exploit this observation in order to accelerate STA iterations of larger device inventories.

More specifically, we apply our methodology to varying dimensions of the array multiplier

and some ISCAS85 benchmarks [78]. Per circuit under test, we identify the MOSFETs

that contribute more to the overall delay degradation due to Vth variations (i.e. greater

regression coefficients β). That way, we reduce the transistor inventory that needs to be

monitored in order to accurately model transistor variability, using a timing analysis tool.
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Reduced execution times and memory usage are achieved compared to default, commercial

STA sessions, where the variability of all transistors is tracked.

3.4.1 Test Case I: Array Multiplier

First, we inspect the circuit of a simple array multiplier [77], as shown in Figure 3.5. The

device inventory of this circuit is manipulated by changing the bit length of its operands

(assumed of equal length).

Fig. 3.5: Test Case I: Array Multiplier.

For varying array multiplier sizes and subsets of tracked transistors (i.e. respective

speedup), we compute the maximum error of our analysis according to Equation 3.2 (Figure

3.6). We see an increase in the maximum error which is positively related to the logic depth

of the circuit. We can easily notice that the reported error never exceeds 1.81%, with a

mean error of 1.4%. Moreover, the experimental results illustrate the tradeoff between

achieved speedup and accuracy degradation (i.e. less transistors tracked).

For representative subsets of tracked transistors (i.e. where R2 ≥ 0.9 based on Figure

3.3), we achieve reduced execution times and memory usage for STA iterations with more

than 10,000 transistors. The acquired values are shown in Figure 3.7 and Figure 3.8 re-

spectively. In general, a 2.25× maximum speedup and a 2.19× memory usage reduction

are achieved, with an overall accuracy of > 98% always maintained.

3.4.2 Test Case II: ISCAS85 Benchmarks

We extend our analysis to representative ISCAS85 benchmarks [78]. Per benchmark, we

identify the subset of transistors that contribute more to the overall delay degradation (i.e.

greater regression coefficients β). We then perform pairs of STA iterations per benchmark
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Fig. 3.6: Accuracy assessment of applied regression analysis for different netlist sizes and
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Fig. 3.8: STA tool performance: Maximum memory usage for different netlist sizes and
subsets of tracked transistors (i.e. respective speedup).

Table 3.1: Runtime measurements: Evaluation of proposed methodology against default
STA sessions for representative ISCAS85 benchmark circuits.

Default Proposed STA
Benchmark STA sessions Methodology Methodology Evaluation

circuit Max Max Max Min Avg
Runtime (s) Runtime (s) Error Speedup Speedup

c432 123 99 0.09% 1.22× 1.24×
c499 282 42 2.77% 6.64× 6.84×
c880 230 56 1.21% 4.04× 4.09×
c1355 316 62 2.23% 5.00× 5.09×
c1908 492 131 1.01% 3.70× 3.76×
c3540 1016 178 2.10% 5.56× 5.67×
c5315 1493 262 0.52% 5.59× 5.71×

Average 1.42% 4.54× 4.63×

circuit as before. We select 100 iterations as an indicative number of MC samples [31].

Reduced execution times and memory usage are reported in Tables 3.1 and 3.2 respectively.

More specifically, a 4.63× speedup and a 3.56× memory usage reduction are achieved on

average, while reasonable accuracy is always maintained (i.e. 2.77% maximum error).
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Table 3.2: Memory usage measurements: Evaluation of proposed methodology against
default STA sessions for representative ISCAS85 benchmark circuits.

Default Proposed STA
Benchmark STA sessions Methodology Methodology Evaluation

circuit Max Memory Max Memory Min Memory Avg Memory
Usage (MB) Usage (MB) Usage Reduction Usage Reduction

c432 266.17 222.89 1.19× 1.19×
c499 584.86 135.15 4.32× 4.33×
c880 482.00 157.69 3.05× 3.06×
c1355 635.17 164.25 3.85× 3.87×
c1908 970.10 306.41 3.16× 3.17×
c3540 1913.98 402.25 4.75× 4.76×
c5315 2852.53 623.56 4.57× 4.57×

Average 3.56× 3.56×

3.5 Conclusion

In this Chapter, we propose a regression analysis method to capture the timing impact

of threshold voltage variations. Based on the properly defined regression model, we ana-

lyze the data acquired by the commercial transistor-level STA NanoTime tool. First, we

manage to accurately correlate the maximum delay degradation with the Vth fluctuations

of circuit transistors. Furthermore, we identify the transistors which contribute more to

the maximum circuit delay. By deriving the subset of transistors to be tracked for timing

analysis purposes, we apply the methodology to standard cells and ISCAS85 benchmark

circuits. For all the inspected cases, we achieve reduced execution times and memory us-

age in comparison to the reference, commercial STA tool, which employs no regression

models. For different benchmark circuits, our analysis outperforms default STA sessions

(4.63× speedup and 3.56× memory usage reduction on average), while exhibiting negligible

accuracy degradation (2.77% maximum error).
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Chapter 4

Variability-Aware Path Pruning

4.1 Introduction

In this Chapter, we propose a path pruning methodology that identifies the variation-

critical part of a circuit. First, we present the EDA flow and we describe the individual

components. Moreover, we evaluate the performance of our approach against prior art and

in terms of introduced overhead. We also verify the efficiency of the proposed framework

by applying the path pruning algorithm to representative benchmark circuits. Finally, we

present experimental results where acceleration is achieved in comparison to timing analysis

tools and SPICE-based solvers.

4.2 Proposed Framework

The proposed framework for capturing delay degradation under transistor variability is

shown in Figure 4.1. Our methodology consists of three main parts: (i) the end-user con-

figuration, (ii) the default STA kernel and (iii) our extensions, built on top of a conventional

timing analysis flow. The Netlist and Modelcard Generator modules introduce variability

to the netlist (top-level module and subcircuits) and the modelcard respectively. Detailed

STA iterations are employed using the commercial, transistor-level STA tool, Synopsys

NanoTime [59]. Given the STA results, the Pathfinder module identifies the variation-

critical paths of the circuit.
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Fig. 4.1: Proposed framework for capturing timing impact of transistor variability.

4.2.1 Netlist Generator

The first step of our method is to capture the variability-induced degradation of the circuit

under test. We would like to create a generic flow, well suited to other stages of a design

process. That is, our flow is compatible with both SPICE-like netlists or RTL circuits

(VHDL, Verilog etc), providing designers with the respective flexibility during previous

design stages. We create the Netlist Generator. This module consists of a set of fully

automated Perl scripts that parse the selected circuit file and generate the netlist to be

given as input to the STA tool. The resulting netlist maintains all the characteristics of

a standard transistor-level netlist (syntax, subcircuits, etc), thus being highly applicable

to any transistor-level tool. That way, circuit descriptions of higher levels (e.g. RTL files

from previous design stages) are ported to the transistor level, which is more accurate and

suitable for directly capturing transistor degradation sources [47].
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4.2.2 Modelcard Generator

To capture the timing impact of multiple variability sources, users can fully define the

variational parameters and their distribution. To properly introduce transistor variability

per STA iteration, we create the Modelcard Generator module. Given the distribution of

the variational parameters, a set of Perl scripts generates the proper modelcard. It should

be noted that the resulting modelcard maintains the syntax of the standard technology

modelcard which is given as input by the user. The only difference is that the introduced

variability varies among all transistors of the circuit (i.e. one model for each individual

transistor) and for all individual STA iterations. That way, the analysis accounts for both

the inter- and intra-die variations.

4.2.3 Pathfinder: Identifying the variation-critical part

The key idea behind our framework is to leverage accurate timing analysis results to identify

the variation-critical part of a circuit. Intuitively, paths with small delay values for all

samples do not exhibit significant delay degradation. Hence, we develop a threshold-pruning

technique to identify the variation-critical paths under variability-induced Vth fluctuations.

We create a set of Python and Perl scripts to implement such functionality. Given the

netlist of our design, we first generate all the input-output paths Pi,o as candidate search

paths. Moreover, the user could select the variational parameters and explicitly define

their distributions. Given the STA compatible netlist and the user-defined variability, we

perform MC iterations to capture the timing impact of transistor degradation.

Having delay values across all paths of the circuit per MC iteration and the maximum

delay D among all samples, we can apply a simple threshold-pruning condition. In [24], it

is shown that a signal path that is not initially considered critical could dictate the total

circuit delay when transistor variability is incorporated. To account for such uncertainty

associated to the timing model, the authors in [66] propose a pruning procedure based on

the following condition:

max
Δλ

[d path
υ (Δλ)] + εmax

path < D (4.1)

where ε is the range that models uncertainty, D is the measured silicon delay and d(Δλ) is

the linear function of the process parameters. This function estimates the worst case delay

given a parameter variation vector Δλ. We select this condition as the pruning operator for
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its simplicity. We properly adjust Equation 4.1 in the context of our framework by replacing

the estimated values with results acquired by the STA solver. The resulting condition is:

DPi,o
+ ε < D (4.2)

where DPi,o
is the computed delay of the candidate path Pi,o, D is the maximum delay

across all paths and for all MC samples and ε is the range that models uncertainty. It is

reasonable to treat the uncertainty range as a deviation from the maximum expected value

D, as in [66]. That is,

ε = α ·D, α ∈ [0, 1] (4.3)

Thus, the pruning condition can be written as:

DPi,o
+ α ·D < D ⇒

DPi,o
<(1− α) ·D = κD, κ ∈ [0, 1]

(4.4)

Instead of initially storing all candidate paths to be later pruned as non-critical, we apply

the negation of Equation 4.4 to directly identify paths as critical. That way, we improve

the memory efficiency of our pruning technique, as we store only the critical paths to the

initially empty set P. The resulting condition is:

DPi,o
> κ ·D, κ ∈ [0, 1] (4.5)

In [66], it is shown that the threshold pruning strategy is effective, even for a small

introduced range (i.e. ε = ±1% · d(Δλ)). Therefore, it is quite straightforward to select

the κ value accordingly. For the remainder of this work, we select κ = 99%. By applying

the pruning operator, we identify the variation-critical paths (set P) of the design under

test. It is worth noting that this outcome is not restricted to a particular abstraction layer,

is thus highly applicable to different EDA tools.

In the context of the current work, our goal is to apply our approach to accelerate

transistor-level timing analysis and circuit simulation tools. Given that these solvers are

not aware of paths, but only transistors, the transistors of the variation-critical paths should

be therefore properly annotated for use in these tools. Such step is the last step of the

proposed methodology. More specifically, fully-automated scripts annotate the variation-
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critical part of the circuit under test inside the output files of our framework, by performing

Breadth-First search (BFS) to traverse the circuit paths. Given the exponential complexity

of the BFS algorithm for larger circuits, it is important to reduce the number of times BFS

is executed. Thus, we perform BFS only to variation-critical paths Pi,o.

Algorithm 1 Proposed Pruning Algorithm.

Input: Gate-level HDL design
1: parse HDL
2: generate STA netlist & Pi,o search paths
3: initialize maximum delay D = 0
4: set P ← {∅}
5: for all MC STA samples do
6: introduce variability (Table 2.1)
7: find delay per path Pi,o

8: for all delay values DPi,o
do

9: if DPi,o
> maximum delay D then

10: D ← DPi,o

11: end if
12: end for
13: end for
14: for all MC STA samples do
15: for all delay values DPi,o

do
16: if DPi,o

> κ ·D then
17: add P ← Pi,o

18: end if
19: end for
20: end for
21: BFS: traverse P & generate variation-aware STA inputs
Output: Variation-Aware netlist+ and modelcard+

The aforementioned methodology is summarized in Algorithm 1. By executing the Al-

gorithm, the Pathfinder module returns the variability-aware modelcard and netlist files,

that are referred as modelcard+ and netlist+ respectively. Inside these files, only tran-

sistors that belong to variation-critical paths are annotated as variational (i.e. they are

assigned parameters or new models), while the rest of them maintain their nominal values.

The resulting files are returned to the user front-end and are used as input for successfully

accelerating transistor-level tools, as we discuss in Section 4.4.
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4.3 Methodology Evaluation

4.3.1 Pruning Performance

In order to assess the efficiency of our approach, we evaluate the performance of the pro-

posed pruning algorithm against related state-of-the-art (SotA) results [66]. Such compar-

ison is shown in Figure 4.2, where we report the percentage of paths that are pruned using

our algorithm and the method presented in [66], for the same κ value. We observe that our

proposed methodology is equally aggressive compared to prior art, in terms of number of

paths pruned. The performance of both pruning methods is almost identical with only a

0.03% deviation between the average percentage of pruned paths. This is to be expected

given the usage of the same pruning condition in both approaches.
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Fig. 4.2: Algorithm 1 is equally aggressive compared to prior art [66], in terms of number
of paths pruned.

4.3.2 Performance Assessment

Moreover, we inspect the overhead introduced by our extensions, executed on top of a

default Monte-Carlo (MC) based timing analysis flow. We compare the total runtime of

our methodology against a commercial STA solver executed for 1,000 iterations. The total

runtime values for both cases are presented in Table 4.1. We observe that the additional

temporal overhead is negligible, with an average 0.533% increase in execution times.
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Table 4.1: Temporal overhead compared to default STA iterations

Runtime (104× s)
Benchmark MC STA Proposed Temporal

circuit Iterations Framework Overhead
c432 0.2024 0.2030 0.330%
c499 0.4659 0.4675 0.332%
c880 0.3790 0.3803 0.334%
c1355 0.5194 0.5249 1.048%
c1908 0.8089 0.8122 0.413%
c2670 1.1480 1.1540 0.522%
c3540 1.6577 1.6652 0.452%
c5315 2.4683 2.4891 0.836%

Average 0.9562 0.9620 0.533%

While the proposed pruning algorithm is an effective method for identifying the variation-

critical paths, it could have some limitations. More specifically, the BFS used to traverse

the circuit paths has an exponential complexity. This complexity might not be negligible

for larger, system-level designs. Existing works have successfully addressed this limita-

tion by substituting a brute-force search with more mathematically formulated methods

[69, 70]. Nonetheless, fully formulating the proposed method is beyond the scope of the

current work. It is important to note that in the context of our variability analysis we will

focus on subsystem-level benchmarks and CPU modules in Chapters 4 and 5 respectively.

Thus, the BFS overhead is insignificant for the purposes of our exploration.

4.4 Experimental Results

4.4.1 Case Study I: Accelerating STA tools

Given the computational feasibility of our framework, we can accelerate STA sessions by

capturing the variability of the variation-critical part of a circuit. That is, we provide the

netlist+ and modelcard+ files as inputs to the STA solver. Inside these files, transistors

that belong to variation-critical paths are annotated as variational, while the rest of them

maintain their nominal values. That way, we reduce the transistor inventory that needs to

be monitored for variability by the transistor-level timing analysis tool.

We compare against 1,000 MC STA iterations where all paths are tracked for the same
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(a) Normalized execution times (b) Normalized memory usage

Fig. 4.3: Comparison of the proposed methodology against default STA sessions.

Table 4.2: Evaluation of proposed methodology against default STA sessions for repre-
sentative ISCAS85 benchmark circuits

Benchmark Min Min Mem Max Avg
circuit Speedup Usage Reduction Error Error
c432 1.23× 1.19× 0.27% 0.03%
c499 6.82× 4.32× 3.99% 2.64%
c880 4.01× 3.05× 1.31% 0.77%
c1355 4.98× 3.86× 2.52% 1.60%
c1908 3.72× 3.16× 1.36% 0.70%
c2670 2.67× 2.45× 0.97% 0.48%
c3540 5.57× 4.75× 2.66% 1.60%
c5315 5.59× 4.57× 0.84% 0.45%

Average 4.32× 3.42× 1.74% 1.03%

introduced variability. We achieve reduced execution times (Figure 4.3a) and memory us-

age (Figure 4.3b) in comparison to the reference, commercial Synopsys NanoTime tool.

Analyzing the results in Table 4.2, we can conclude that our approach achieves significant

improvement for each circuit, except the c432. Such performance is highly dependent on

the circuit topology, which dictates the number of variation-critical paths selected over the

pruned paths. A 4.32× speedup and a 3.42× memory usage reduction are achieved on

average, while reasonable accuracy is always maintained (i.e. 3.99% maximum error). It
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should be noted that these reported values are the minimum acquired values per bench-

mark. That is, even for the most pessimistic results, our methodology always outperforms

traditional STA iterations, while a maximum speedup up to 6.82× is achieved.

4.4.2 Case Study II: Accelerating SPICE tools

In terms of SPICE-level variability modeling, related works develop transistor models

tightly integrated into circuit solvers [24, 39]. The execution flow of such EDA solvers

is shown in Figure 4.4. It has been shown that 66% of transient run-time is spent inside

the SPICE Iteration phase, to fully evaluate the transistor model code [79]. Thus, integrat-

ing degradation models inside the simulation flow introduces further temporal overhead.
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Fig. 4.4: Default and proposed SPICE simulation methodology.

We could accelerate this computationally expensive phase by reducing the operations

required by the circuit solver. In other words, we can exploit the outcome of our analysis and

apply it to SPICE-like solvers. Given the properly annotated netlist+ and modelcard+

files, we can optionally bypass the execution of the degradation model. We modify the

traditional execution flow by adding the respective condition. At each time step of the

simulator, we check if the transistor to be evaluated belongs to a variation-critical path P.

This modified flowchart is presented in the right half of Figure 4.4.
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To evaluate our variation-critical methodology, we fully integrate the modified SPICE

simulation flow into a SPICE kernel. We use the open source version of U.C. Berkeley’s

Spice3f5 simulator, namely ngspice [80]. Full observability of the code base allows fine-

grained alterations. We emulate a degradation model (Variability Model black-box) by

using two parameters: (i) the introduced variability and its distribution and (ii) the timing

impact of simulating the degradation mechanism. Both parameters are given as input to the

modified SPICE kernel. It is important to point out that the fluctuations are introduced per

transient analysis step. That is, our analysis can capture transient evolution of transistor

variability, implemented as time-dependent degradation models.

Moreover, the temporal overhead is emulated per transient step as a “busy wait” of the

circuit solver. Our goal is to provide scope for a broad exploration space, by selecting a

distribution that encloses a reasonably wide overhead. As we have already mentioned, a

defect-based model is atomistic, assigning different numbers of defects to each transistor.

The degradation model is evaluated at each step of the simulation, for all the defects [39].

It is quite straightforward to assume that the atomistic model can be implemented as a for

loop, that cycles through all the defects of all transistors. The complexity of such model

per transistor is O(n), where n is the number of defects of the MOSFET.

Given that n follows a Poisson distribution [24], it is reasonable to assume that the

CPU overhead introduced due to the degradation model does the same. Hence, we perform

SPICE simulations where the emulated overhead β per transistor follows distributions

consistent with experimental results. More specifically, we have overheads βp and βn for

pMOS and nMOS transistors respectively, as shown in Equation 4.6. Finally, it is worth

noting that the proposed flow is fully decoupled from the content of the “black box” itself,

making our analysis applicable to any underlying physical phenomenon and variation-aware

transistor model [24, 39].

βp ∼ Pois
(
λ = 1011 ×W × L [cm2]

)

βn ∼Pois
(
λ = 6.7 · 1010 ×W × L [cm2]

) (4.6)

We apply the proposed SPICE simulation flow (Figure 4.4) to accelerate circuit solvers.

We compare our methodology against default SPICE sessions, using identical input traces of

2.56μs. For all the variation-critical paths (set P), we measure delays based on the rise/fall

times of the SPICE input/output signals [77]. Given these delays, we assess the accuracy
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degradation while neglecting the variations of a subset of MOSFETs, in comparison to

default SPICE simulations where the variations of all transistors are tracked. The computed

error values and the respective speedup per case are presented in Table 4.3. A 4.48×
speedup is observed on average, while reasonable accuracy is always maintained (i.e. 1.17%

maximum error). Once again, it should be noted that the presented results correspond to

the minimum speedup and maximum error. That is, even for the most pessimistic cases,

our proposed methodology outperforms default SPICE simulations (Figure 4.5). In fact,

a 7.49× maximum speedup is achieved, which is a significant improvement for SPICE

simulations with execution times up to 10 hours.

Table 4.3: Evaluation of proposed methodology against default SPICE simulations for
representative ISCAS85 benchmarks

Benchmark Min Max Avg
circuit Speedup Error Error
c432 1.19× 0.0351% 0.0094%
c499 7.49× 0.2000% 0.0592%
c880 3.97× 0.0102% 0.0053%
c1355 6.09× 0.0187% 0.0153%
c1908 3.67× 1.1700% 0.6850%

Average 4.48× 0.2868% 0.1548%

Fig. 4.5: Comparison of the proposed methodology against default SPICE simulations.
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4.5 Conclusion

In this Chapter, we propose a framework that efficiently captures the timing impact of tran-

sistor variability. First, we present a pruning algorithm built on top of a timing analysis

flow and we evaluate its performance by identifying the variation-critical part of represen-

tative benchmark circuits. We then show that the outcome of our framework is highly

applicable to both timing analysis and SPICE-like tools. For ISCAS85 benchmarks, we

achieve speedup and memory usage reduction compared to commercial STA tools. We also

accelerate SPICE simulations with negligible accuracy degradation. That way, we alleviate

the CPU complexity of time consuming STA and circuit simulation tools, while retaining

variability-aware analysis, thus combining high speed and good accuracy.
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Chapter 5

Processor-Wide Reliability Analysis

5.1 Introduction

In this Chapter, we propose a comprehensive EDA flow for efficient, processor-wide relia-

bility analysis under transistor variability. More specifically, we capture the impact of Bias

Temperature Instability (BTI) on reliability metrics, such as the functional yield and the

maximum clock frequency of an entire CPU module. The proposed EDA methodologies

combine the accuracy of atomistic BTI modeling with the efficiency of the path pruning

method that was proposed in the previous Chapter. As we have already observed during

the assessment of prior art, all the existing approaches limit their exploration to single

transistors or to simple gates and logic blocks. To the best of our knowledge, this is the

first study that employs complete reliability analysis for processor-wide reliability metrics,

while exploiting the accuracy of atomistic BTI models.

First, we present the main principles of a novel, pseudo-transient atomistic BTI method-

ology [31], that is incorporated with our framework. We also describe the proposed EDA

flow and its components. We then demonstrate the usability of our approach as a useful aid

for reliability analysis through realistic testcases. For an entire CPU module, we capture

the impact of BTI and we present the evolution of processor-wide reliability metrics for

three years of operation. We also provide useful hints regarding power-aware designs. We

investigate the design degradation under BTI for different power management techniques

(i.e. voltage scaling). Finally, we substantiate the impact of BTI-induced variability to

critical path re-ordering.
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5.2 Transistor-Level Vth modeling

In previous work, a pseudo-transient simulation scheme has been devised, enabling fast yet

accurate modeling of BTI [31]. We incorporate some of the basic principles of this prior art

framework within our proposed EDA flow, in order to have an accurate transistor-level mod-

eling of threshold voltage variations. In the context of our analysis, we will introduce two

sources of Vth variability, (i) a time-zero (ΔVth,TZ) and (ii) a time-dependent (ΔVth,TD (t))

component, as summarized in Equation (5.1). The former source of variability is typi-

cally attributed to fluctuations during the manufacturing process. We will assume that

this component is constant throughout the device lifetime and that it follows a Gaussian

distribution, namely ΔVth,TZ ∼ Norm (0, 0.1× Vth0), where Vth0 is the threshold voltage at

Vbs = 0 V, which is typically provided in the transistor modelcard. The latter variability

component includes all the time-dependent mechanisms that affect Vth, which in our case

includes BTI defect activity, simulated according to the atomistic model.

ΔVth (t) = ΔVth,TZ +ΔVth,TD (t) (5.1)

In order to enable maximum compatibility with existing STA tools, we choose to express

Vth variability with a single Gaussian distribution. This design choice also removes the

complexity of verbose, circuit-wide, defect databases that were previously utilized [24, 31],

since we are only interested in the aggregate Vth variability at the level of each transistor. As

a result, our goal is to create a distribution formulated as ΔVth (t) ∼ Norm {μ (t) , σ (t)}.
To achieve this goal, we perform a Monte Carlo session per transistor size, where each

iteration follows the procedure illustrated in Figure 5.1, calibrated according to Table 5.1.

Initially, time-zero variability is appended. Then, BTI is evaluated over four distinct in-

tervals of transistor lifetime, covering a total of roughly three years (108 s). Strides over

these intervals are performed according to a “pseudo-transient” simulation setup presented

in previous work [31].

After 300 iterations of this process, one can derive estimates for μ (t) and σ (t), by

calculating the mean and standard deviation of the available Vth data at each point of tran-

sistor lifetime. In Figure 5.2, we present these simulation results, exploring representative

FET transistor sizes, assuming the 90 nm Predictive Technology Model [75] and a 95%

confidence interval [81]. Given that transistors of the same technology node are typically
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Table 5.1: BTI model calibration [13], based on experimental data [30] and the 90 nm
Predictive Technology Model [75].

Parameter Distribution
Operating Vdd Vdd = 0.9 V = const.

Operating Clock Freq. f = 1 GHz = const.
Temp./Signal Activity T = 50oC = const. / α = 0.5 = const.

Time-Zero pFET ΔVth,TZ ∼ Norm (0 V, 0.0397 V)
Time-Zero nFET ΔVth,TZ ∼ Norm (0 V, 0.0397 V)
Defects per pFET Np ∼ Pois (λ = 1011 × Area[cm2])
Defects per nFET Nn ∼ Pois (λ = 6.7× 1010 × Area[cm2])

Time Const. per Defect (s) log10
{
τ ∗pV

} ∼ Unif (a = −12, b = 12)

ΔVth,TD per Defect (mV) ΔVth,TD ∼ Exp (η = 5)

∗ p: process, either capture (c) or emission (e)
V : voltage, either high (H) or low (L)

Create Transistor

Instantiate ΔVth,TZ ∼ Norm (0, 0.1× Vth0)

Pseudo-transient simulation for ΔVth,TD [31]

i < Niterations

i++

Calculate μ (t) and σ (t)

yes

no

Fig. 5.1: MC iteration scheme to derive distributions for ΔVth (t); we use Niterations = 300
as the halting criterion.

instantiated at various widths (W), we explore different width values, assuming unit widths

of W = 180 nm for an nFET and W = 360 nm for a pFET. Thus, for the 90 nm technology

node the notation “i× pFET” refers to a pFET with area A = i× 360× 90 nm2 (similarly,

for nFETs). This notation is used in the legends of Figure 5.2.
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Fig. 5.2: Simulation data for ΔVth (t) ∼ Norm {μ (t) , σ (t)}, while combining both time-
zero and time-dependent variability [13].

Based on the results of Figure 5.2, we can make the following observations: (i) The

parameter estimation for the distribution of ΔVth (t) shows a distinct shift after the time-

zero instance and remains fairly constant for the rest of the transistor lifetime. This is to

be expected given the uniform distribution of defect time constants across the logarithmic

time axis. In other words, striking changes in threshold voltage are to be expected if

transistor lifetime is inspected logarithmically [23]. This also resembles the power law that

is expected by older BTI models, such as the Reaction-Diffusion model [82]. (ii) For the

considered technology node, transistor area appears to have effectively no impact on BTI
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impact. This is to be expected, if we consider that the mean Vth impact of a single defect is

inversely proportional to transistor area, whereas the number of charged traps is positively

related to A [83]. In other words, as the transistor area increases (by increasing W ) more

defects contribute to ΔVth,TD, each of which has a decreased contribution. Thus, increase

of W does not affect the aggregate Vth variability.

Design
(HDL description)

Identify variation-critical part
(Path pruning flow, Chapter 4)

Instantiate netlist+

Create control script (.scr)
Operating
Conditions

Introduce time-zero/-
dependent BTI variability

Atomistic BTI
model (Table 5.1)

Transistor-level STA (NanoTime)

i < Nsamples

i++

Derive reliability metrics

netlist+

aged netlist+

yes

no

Fig. 5.3: Proposed reliability analysis flow.
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5.3 Proposed EDA Flow

In order to create a comprehensive reliability analysis framework, we combine the modeling

methodologies presented in the previous Section and the pruning algorithm introduced in

the previous Chapter. All the individual components that have been already extensively

tested are incorporated with a complete EDA flow that is shown in Figure 5.3. The first

part of our analysis is the path pruning procedure, where the variation-critical part of

the design is identified, using Algorithm 1 and the respective scripts. The variation-aware

netlist+ is given as an input to the remainder of the reliability analysis flow.

During the second part of the framework, we perform timing analysis iterations under

varying operating conditions and different instances of transistor variability. Per itera-

tion, we first generate the proper control script based on the operating conditions (i.e.

fCLK, VDD). We then introduce BTI-induced variability to the transistor-level netlist+,

according to the distributions that accurately capture the time-dependent variability (Ta-

ble 5.1). Hence, we can now employ accurate yet efficient transistor-level timing analysis

using Synopsys NanoTime. Given the MC STA samples, we decide on the processor-

wide reliability metrics (i.e. functional yield etc). We test our framework on an AMD®

Opteron® server @2.61GHz.

5.4 Experimental Results

5.4.1 Case Study: Datapath

In order to investigate the usability of the proposed design flow for realistic circuits over

their lifetime, we use a modern open source RISC architecture, namely OpenRISC [84]. We

focus our exploration on an important CPU module, the datapath. The main I/O pins and

a top-level schematic of the module are shown in Figure 5.4. More specifically, the inputs

are presented in the left side of the module, whereas the outputs are shown in the right

side. Based on the input buffers, we can observe that the CPU in general uses a 32-bit

Instruction Set Architecture (ISA) and that the operand length is 16 bits. The module

also consists of control logic that sets the proper control flags per instruction, in order to

identify the ALU command to be executed, to reset the datapath values and to distinguish

read or write register operations.
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Fig. 5.4: A top-level schematic of the datapath module.

The next step is to port the exploration to the transistor level, starting from the RTL

description. We utilize the 90 nm Predictive Technology Model [75], for which we have

already calibrated the atomistic variability model in Section 5.2. Given the behavioral

VHDL code of the datapath and the target technology node, we use the Synopsys Design

Compiler [85] to generate the gate-level design. The synthesis is conducted considering

the highest degree of optimization, in terms of area and speed. We should also identify the

subset of the cell library to be used for the synthesis phase.
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Fig. 5.5: A gate-level schematic of the datapath module.
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For our exploration, we use simple CMOS logic, thus we utilize D Flip-Flops, Inverters,

NAND and NOR gates. By issuing the set dont use command inside the compilation

script, we identify the gates to be used from the library file. Such selection will further fa-

cilitate the timing analysis phase later on, given that Nanotime has powerful netlist parsing

tools which automatically identify Flip-Flop topologies and basic gates (i.e. INVs, NANDs,

NORs). The resulting netlist consists of 1830 transistors and its gate-level schematic is

shown in Figure 5.5.

5.4.2 Generating the variation-aware netlist+

We apply Algorithm 1 that was presented in the previous Chapter to the gate-level datap-

ath netlist. We select 150 iterations as an adequate number of MC samples [31]. Compared

against pruning-free STA sessions, we achieve 18.69% and 18.29% minimum runtime and

memory usage reduction respectively, with 0.84% maximum error. We observe that the

performance is highly dependent on the design topology. That is, a significant portion of

the datapath corresponds to variation-critical registers, reducing the performance of Algo-

rithm 1 compared to results that we acquired for the ISCAS85 benchmarks (Section 4.4.1).

Nonetheless, it is worth observing that our approach outperforms the built-in pruning com-

mand of the STA solver, achieving up to 16.87% extra runtime improvement. That can

be attributed to the phasing of the built-in pruning that is performed after the parsing

phase of all varying parameters [59]. On the contrary, our methodology is decoupled from

the STA solver itself. An already “pruned” (in terms of variability) design is generated,

reducing the parameters to be captured by the STA solver beforehand.

5.4.3 Functional Yield Analysis

We now move towards performing a complete reliability analysis, using the flow presented

in Figure 5.3. We estimate the functional yield of the module over three years of operation.

A sample of this design is defined as functionally correct iff the worst path exhibits correct

timing behavior (i.e. positive slack), under a particular state of BTI-induced variability.

We estimate the functional yield of the target circuit, namely the percentage of samples

that exhibit correct functionality at different instances of circuit lifetime. Our first step is to

identify a representative exploration space. We perform STA MC iterations using Synopsys

NanoTime for a set of different operating points (f, VDD) with no variability introduced, as
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Fig. 5.6: Selecting the proper exploration space: “Optimal” behavior of our design with
no variability introduced.

shown in Figure 5.6. Based on the “optimal” behavior of our design (i.e. 100% yield), we

select the following 2D exploration space of (f, VDD) pairs:

1.9 GHz ≤ f ≤ 2.5 GHz, step = +0, 1 GHz (5.2a)

0.8 V ≤ VDD ≤ 1.4 V, step = +0, 1 V (5.2b)

We introduce time-zero and time-dependent ΔVth variations based on the estimates μ(t)

and σ(t) derived in Section 5.2. Again, we select 150 MC samples. As we have already

mentioned, the ΔVth distributions remain fairly constant after the time-zero instance. Thus,

it is reasonable to select one more instance to capture BTI for the rest of the transistor

lifetime. We estimate the functional yield at time-zero instance (Figure 5.7a) and after

three years of operation (Figure 5.7b). We can observe that BTI significantly affects the

proper functionality of our design.

More specifically, we notice the impact immediately after including the time-zero vari-

ability. We have non-functional samples starting from 2.1 GHz. That is, compared to the

2.5 GHz optimal frequency of the design without variability, we observe an fmax degrada-

tion by 16%. Such degradation is more intense after three years of operation, with the first

non-functional samples appearing at 1.9 GHz, resulting in a greater frequency degradation

of 24%. Another important observation is that the estimated yield is 0% for frequencies

greater than 2.4 GHz in Figure 5.7b. In other words, the design loses its functionality com-
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(a) Yield estimation ŷ TZ at time-zero instance

0.8 0.9 1 1.1 1.2 1.3 1.4
1.9 2 2.1 2.2 2.3 2.4 2.5

0

20

40

60

80

100

VDD (V)fClk (GHz)

ŷ
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Fig. 5.7: Functional yield analysis : Applying the proposed EDA methodologies.

pletely for higher frequencies during its lifetime due to time-dependent variability. Thus,

we stress the importance of properly accounting for BTI-induced variability, in order to

achieve functional designs.
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5.4.4 Power-Aware Reliability Analysis

We substantiate the usability of our flow as a useful aid for BTI-aware design techniques.

A popular power management technique is voltage scaling. Figure 5.7 shows that the

number of functional samples decreases as we reduce the supply voltage. As a consequence,

decreasing VDD to meet a power constraint could lead to an increased number of non-

functional modules. Such observation is of great importance in terms of power-aware design.

We define a sample as functionally correct for a specific clock frequency f , iff it can meet

the timing constraints (i.e. positive slack), without exceeding a specific power constraint.

To select a representative constraint, we compute the power consumption of the data-

path through SPICE simulation for each (f, VDD) pair. We acquire power values varying

from 2.07 W up to 9.17 W. We set a power constraint of Pmax = 5 W. For varying max-

imum clock frequencies, we estimate the functional yield (Figure 5.8), assuming a 95%

confidence interval [81]. The yield estimations of this Figure provide useful hints regarding

power-aware design under BTI variability. For higher frequencies, the functional yield is

reduced below 90% under voltage scaling, after three years of operation. This observation is

fully consistent with a recent, BTI-aware, mitigation technique that suggests progressively

increasing supply voltage [31].
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Fig. 5.8: Power-aware reliability analysis: Functional yield of datapath design for varying
clock frequencies.
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5.4.5 BTI-Induced Critical Path Re-ordering

Finally, prior art has already provided hints towards capturing the BTI-induced degradation

of the critical path [24, 74]. Nonetheless, the experimental results are limited to simple case

studies of logic subblocks (i.e. adders, multipliers etc). In the current Subsection, we fully

investigate such observation for an entire CPU module with explicit timing analysis results.

In Table 5.2, we sort paths based on delay values acquired using Synopsys NanoTime for

one sample of our reliability analysis. For sake of brevity, we present the first few delay

values. By highlighting the critical-path with no variability introduced, it is evident that

paths that are not considered critical if BTI is ignored may finally dictate the total circuit

delay when time-zero/-dependent activity is incorporated. Thus, we fully substantiate the

impact of BTI-induced variability with respect to critical path re-ordering.

Table 5.2: Capturing critical path re-ordering while incorporating BTI-induced variability.

No variability Time-zero After 3 years
Delay(ns) Path Delay(ns) Path Delay(ns) Path

1 0.438 RdB - X31 0.496 RdB - X29 0.514 RstR - X24
2 0.436 RdB - X30 0.492 RdB - X24 0.507 RdB - X25
3 0.436 RdB - X29 0.492 RdB - X25 0.505 RdB - X25
4 0.436 RdB - X28 0.489 RdB - X26 0.499 RstR - X26
5 0.435 RdB - X27 0.487 RdA - X7 0.498 RdB - X7
6 0.435 RdB - X26 0.485 RstR - X29 0.493 RdB - X29
7 0.434 RdB - X25 0.478 RdB - X31 0.490 RdB - X31
8 0.433 RdB - X24 0.475 RstR - X24 0.490 RstR - X24
9 0.431 RdA - X15 0.475 RdB - X30 0.482 RdB - X30

· · · · · · · · · · · · · · · · · ·
20 0.431 RdA - X4 0.469 RdB - X18 0.473 RdB - X31

5.5 Conclusion

In this Chapter, we propose a design flow for reliability analysis under BTI-induced vari-

ability. We exploit a novel, pseudo-transient BTI approach which alleviates the complexity

of atomistic BTI models, while retaining time-zero/-dependent variability. We also take

advantage of the pruning methodology presented in the previous Chapter, in order to effi-

ciently capture the timing impact of transistor variability. We demonstrate the usability of
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our framework as a useful aid for reliability analysis through realistic testcases. Until now

and to the best of our knowledge a time- and workload-dependent yield analysis of an en-

tire CPU module has never been performed with the atomistic BTI model. For a datapath

design, we capture the impact of BTI and we present the evolution of the functional yield

for three years of operation. We also provide useful hints regarding power-aware design

under BTI variability. Finally, we substantiate the impact of BTI-induced variability to

critical path re-ordering.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

As CMOS technology approaches nanometer scales, numerous sources of transistor vari-

ability have emerged. In order to mitigate transistor degradation at the system level and

eventually meet lifetime reliability requirements of modern electronics, designers need accu-

rate yet efficient EDA methodologies to capture the variability phenomena. A large portion

of those reliability threats are related to threshold voltage variations, resulting to timing

failures due to an overall increase of the IC’s delay. Thus, it is important to develop EDA

approaches that efficiently account for Vth fluctuations.

Recent literature supports a “paradigm shift” to workload- and time-dependent variabil-

ity modeling. That is, the threshold voltage degradation for nominally identical transistors

is stochastically distributed in both magnitude and time. Given this stochastic nature of

Vth variability, it is imperative to develop tools that employ statistical methods. Efficient

Monte Carlo based techniques are necessary to capture the timing impact of transistor

degradation. It is therefore essential to alleviate the increased CPU overhead of Monte-

Carlo (MC) based variability-aware timing analysis, while maintaining the accuracy and

the novel features of the atomistic model.

To contribute to this research direction, we first propose a linear regression model in

Chapter 3. By fitting our model to actual timing analysis results and Vth values, we achieve

accurate prediction of delay values. We further exploit the results of the proposed model

to accelerate STA sessions. Given the regression coefficients, we are able to identify the

subset of transistors of the IC that should be tracked in order to accurately predict the
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path delays. As a result, we reduce the transistor inventory that should be monitored by

the STA solver. For representative test cases, we achieve acceleration and reduced memory

usage for commercial STA tools with negligible accuracy loss.

The path pruning algorithm presented in Chapter 4 provides the reliability engineer with

an alternative method to accelerate STA sessions. We develop a set of fully automated

scripts to port the analysis to the transistor level and to introduce variability to STA

MC iterations. The proposed EDA flow annotates the variation-critical part of a circuit,

by identifying the paths (and eventually their transistors) that should be monitored for

Vth fluctuations. It is worth observing that such result is highly applicable to different

circuit-solvers, since the variability-aware netlist+ could be given as an input to either

transistor-level STA tools or SPICE-like kernels. For several ISCAS benchmarks, we verify

the efficiency of our approach by achieving reduced execution times in comparison to the

commercial Synopsys NanoTime and the open-source ngspice solver.

Given the achieved efficiency, the path pruning algorithm presented in Chapter 4 is

suited to processor-wide reliability analysis. Hence, we combine the pruning method with

the accuracy of a novel atomistic modeling approach, in order to capture the impact of

transistor variability on reliability metrics, such as the functional yield and the maximum

clock frequency of an entire CPU module. The resulting EDA flow is presented in Chapter 5.

As we have already stressed in Chapter 2 and to the best of our knowledge, this is the

first study that employs complete reliability analysis for an entire CPU module, while

exploiting the accuracy of atomistic BTI models. Through an extensive exploration for

a CPU datapath, we demonstrate the usability of our methodology as a useful aid for

reliability analysis. First, we apply the path pruning algorithm to identify the variation-

critical paths of the circuit under test. We then present the evolution of functional yield

for three years of operation. We also investigate the design degradation under power

management techniques (i.e voltage scaling) and critical path re-ordering.

In summary, the current thesis proposes EDA methods to accelerate timing analysis

solvers. The purpose of our work is to develop efficient variability-aware EDA approaches to

be incorporated with a comprehensive design flow for credible reliability analysis. The main

differentiator in comparison to previous works is that we do not limit our exploration to

simple CMOS gates and logic subblocks of reduced functional complexity, but we accelerate

STA sessions of an entire CPU module. That way, we substantiate the usability of the

proposed framework as a useful aid for variability-aware design techniques.
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6.2 Future Work

There are many opportunities for future research in the EDA methodologies presented in

the current thesis. While the approaches presented in both Chapters 3 and 4 are applied

to MOSFETs, a flow that applies to other transistor types can be also be considered.

Moreover, given the high applicability of the developed tool chains to several benchmarks,

more test cases could be investigated. A summary of the main ideas that could either

explored or they are currently under development is listed below.

Variability Analysis for Novel Transistor Architectures

A notable recommendation for future work is the employment of our methodologies to

capture the timing impact of the variability observed in new transistor types, such as

FinFETs and nanowire FETs. Recent literature shows that conventional transistor designs

are being replaced by advanced 3D architectures. Even though these designs have emerged

as important candidates for technology scaling within the following years [7], they exhibit

increased transistor-to-transistor variations. According to the latest ITRS edition, the

reliability issues of novel 3D architectures are listed among the most difficult challenges to

be addressed within the next five years [7].

Recent works have successfully applied the time-dependent atomistic variability mod-

els to state-of-the-art transistor architectures [86, 87, 88]. These defect-centric modeling

approaches inherently account for other Vth degradation mechanisms as well, such as the

Random Telegraph Noise (RTN) [89] and the Channel Hot Carrier (CHC) [90]. The re-

spective models capture stochastic trap behavior by using multiple statistical distributions,

thus providing a unified perspective of several variability phenomena [91, 92].

The aforementioned observations lead to a straight-forward way to extend our proposed

methodologies to FinFET-based netlists, while capturing multiple sources of Vth fluctua-

tions. It is important to notice that all the developed tool chains receive the modelcard as

a user-defined input. Thus, we could simply replace the currently used technology PTM

files for MOSFETs with the respective PTM-MG models for FinFETs [75]. Moreover, the

scripts that introduce variability to the transistor instances can be easily updated to in-

clude more than one source of variability (i.e. multiple distributions could be hard-coded

at the proper portion of our code base). These additions will enable variation-aware timing

analysis for FinFET netlists, while the current user-friendly flows will be fully maintained.
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That way, the presented EDA approaches will be further enhanced as a meaningful option

for reliability analysis.

Variability Analysis of VLSI DSP Modules

Another research direction that is currently under development is the employment of the

regression models to accelerate variability analysis of Digital Signal Processing (DSP) de-

signs. A growing number of on-chip co-processing components consists of modules dedicated

to hardware acceleration [93, 94]. The reliability of these modules and their efficiency to

carry out repetitive DSP operations can be consider especially important for the reliable

performance of the entire design. Thus, it is essential to accelerate timing analysis of DSP

circuits by exploiting the EDA methods proposed in Chapter 3.

The largest portion of several DSP applications (e.g. Fast-Fourier Transform, FIR fil-

ters) include Add-Multiply (AM) operations, which implement the Z = X ·(A+B) compu-

tation. As a consequence, the design of the AM units of a co-processor is a challenging task

that involves several power, critical delay and area trade-offs. Aiming to optimize the AM

operation, prior art proposes fusion techniques based on the recoding of the Y = A+B sum

in its Modified Booth (MB) form [95, 96]. Nonetheless, the majority of these works focus on

reporting the nominal behavior of their designs against previous implementations, without

accounting for the presence of transistor variability. We can therefore use a representative

design and evaluate its performance under Vth fluctuations.

A state-of-the-art DSP design that proposes a fused modulo 2n−1 AM unit is presented

in [97, 98]. Such module can be a perfect candidate to assess the applicability of our EDA

flow to VLSI arithmetic topologies. We can first fit the regression model to delay and Vth

values. By following the analysis described in Chapter 3, we can accelerate STA simulations

of AM unit. That way, we can efficiently perform MC iterations and investigate the critical

path sensitivity under transistor degradation.
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