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Abstract 

C'his thesis proposes a framework for using an artificial neural network (ANN) as a unifonn and 

miversal method for modelling the behaviour of both isotropic and anisotropic materials, 

~xhibiting hysteresis or not. It addresses the complex task of coupling a given material 

~epresentation with a true analysis system, i.e. one based on finite element analysis. We have 

demonstrated this approach through numerical examples and experimental results that we have 

commented and discussed. 

In this thesis, we present a broad review of targeted approaches used in the past to represent 

magnetic materials, pointing out their particular advantages and deficiencies. This comprehensive 

and detailed review has led us to suggest using mixed type models as a knowledge source in order 

to acquire training data for the proposed artificial neural network (ANN). We also include 

infonnation on characteristics pertinent to a better understanding of artificial neural networks 

(ANNs) to support the proposed architecture. 
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Sommaire 

lous proposons dans cette these, l'utilisation de reseaux de neurones artificiels pour modeliser 

.'une maniere unifonne et universelle des matenaux magnetiques hysteretiques ou non 

lysteretiques et tenant compte de leurs comportements isotropiques ou non isotropiques. Nous 

lVOns egalement eff'ectue la tache complexe de creer une interface numerique qui pennet de 

:oupler tout model de materiaux magnetiques aun systeme d'analyse. 11 s'agit dans ce cas precis 

Ie programmes d'analyse bases sur les elements finis en electromagnetisme. Nous avons 

~xperimenta1ement montre la faisabilite de notre approche en traitant des exemples numeriques et 

les resultats obtenus ont ete analyses et commentes. 

Dans cette these, nous avons egalement fait une analyse critique de certaines methodes 

selectionnes utilisees dans Ie passe pour modeliser et representer les materiaux magnetiques en 

faisant ressortir les avantages particuliers et les inconvenients de ces approches. Cette analyse 

detaillee p.ous suggere d'utiliser des modeles de materiaux magnetiques de types mixtes pour 

l'acquisition de Ia base de connaissances aexploiter pour l'entrainement des nSseaux de neurones 

artificiel proposes. Nous avons egalement inclus dans cette these, pour soutenir notre approche, 

des informations sur les caracteristiques pertinents pennettant la comprehension des reseaux de 

neurones artificiels. 
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Chapter 1 

. Introduction 

.1 Magnetic Material Modelling and Computer Aided Design Systems 

,fagnetic materials, i.e. those that exhibit permeabilities greater than air and, possibly, hysteresis, 

re crucial in the design of electromagnetic devices. They are used as sources of a magnetic field 

permanent magnets), as magnetic conductors and as the basis of memory in computer systems. 

n general, they are used to construct the electromagnetic field distributions required to 

lccomplish a desired task, whether it be the translation of energy between electric, magnetic and 

nechanical forms, or the creation ofa particular field structure at specified points in space, or yet 

Igain the storage ofenergy. 

The design process for such devices must be based on an accurate prediction of how these 

devices will perform. The concept of using computers to assist in this design process has been 

around almost as long as computers have been available. However, the accuracy of any computer 

simulation is only as good as the models used in the simulation. 'This implies that the behaviour 

of the materials must be modelled in a precise manner. The magnetic properties of materials are 

dependent on several parameters, including temperature, stress and frequency. In addition, the 

materials all exhibit "memory" to a greater or lesser extent in the form ofhysteresis. All of these 

features mean that constructing a computational model of a magnetic material is a complex and 

difficult task. 
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.2 Motivation 

1 the past, the methodology used for constructing a computer model for a given material has 

een dependent on the final goal of the analysis package and, since these goals have been both 

roited and specialised, the material models have been likewise. For example, ifthe material is to 

e modelled as non-hysteretic, the initial magnetisation curve can be handled by a pol~omia1, by 

liecewise linear segments or by a sequence of cubic splines. If a range of temperatures is a 

rucial factor, then a different model for each temperature needs to be constructed. For analyses 

vhere the hysteretic properties become important, polynomials [Hodgdon, 1988a; Cortial et al, 

.997] as well as phenomenological models based on Stoner-Wohlfarth [Stoner-Wohlfarth, 1948], 

)reisach [preisach, 1935] and Mayergoyz [Mayergoyz, 1991] have been used. 

rhus, in general, the modelling methodology has been elaborated according to the characteristics 

)f the material pertinent to a specific analysis and has been based on a purely mathematical 

ipproach. This has been a satisfactory technique for analysis systems thus far, since most of 

these have been highly specialised. But current trends have made multiple representations of the 

same material in analysis systems, within a more generic approach, an absolute must - an 

unwieldy task if following traditional methods. In addition, because of the interaction of many 

complex factors in the modelling of magnetic materials, it is difficult to systematise the process 

by the application ofa mathematical approach alone. 

The challenge, therefore, is to find a more effective way of representing all the properties and 

behaviours ofmaterials within a computational environment. This is critical to the success ofany 

simulation system. This thesis proposes the use of artificial neural networks (ANN) to meet this 

challenge, as has been illustrated in our recent publications [Saliah-Lowther, 1995, 1997a, 1997b; 

Saliah et al, 1997, 1998, 1999] and as has been referred to in papers by respected researchers in 
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the field [Takahashi et aI, 1998; Adly-Abd-EI-Hafiz, 1998; Benbouzid, 1998]. This approach is 

obviously gaining in popularity. Artificial neural networks provide a means of representing 

complex multi-dimensional surfaces in a uniform manner. Such a system offers the possibility of 

creating a uniform and universal model of all the properties of a magnetic material, including the 

effects of hysteresis, temperature, frequency and stress. It also offers reduced data and 

computational requirements compared to other approaches, resulting in a more efficient system in 

terms ofmemory usage and execution speed. 

1.3 Claim of Original Contribution 

In this thesis, the capability of various neural network architectures to handle different types of 

hypersurfaces is analysed in order to identify networks that are suitable for encompassing the 

multiple facets of magnetic material modelling. To that end, a framework for using Artificial 

Neural Networks as a uniform method for modelling the behaviour of both isotropic and 

anisotropic magnetic materials, with and without hysteresis, has been established. 

We followed a series of steps in our research by modelling successively, first anhysteretic and 

isotropic material, then hysteretic material and anisotropic material. But there is still some 

modifications of the finite element solver to be done before including the full hysteresis model. 

The contribution here consists of extracting and using the knowledge acquired from the neural 

network within a Computer Aided Analysis and Design System (CAD) or a Computer Aided 

Learning (CAL) environment, following an inductive method. 

This work also contributes to a unified and consistent format for a hierarchical classification of 

magnetic hysteresis models. 

As well, this thesis outlines a methodology for using artificial neural networks to identify 

electromagnetic hysteresis parameters and for determining the properties that this ANN should 
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rlribit, namely fast convergence and the ability to adapt its memory requirements to cope with 

Ie complexity ofa given problem. 

inally, this work takes a step towards automating the knowledge acquisition process required for 

Ie design of electromagnetic devices. This is a useful approach because much of this knowledge 

;; deduced from concrete examples. 

1.4 Thesis Outline 

1.4.1 Chapter 1 

rhis chapter provides an introduction to the complexities surrounding the process of adequately 

nodelling magnetic materials. It also establishes the need for an accurate model of such 

naterials. Previous approaches used to achieve this end are briefly examined and some of their 

,imitations are highlighted, thus demonstrating the need for a more comprehensive way of 

modelling these magnetic materials. The use of artificial neural networks is proposed as one such 

comprehensive way. Finally, the original contributions of this thesis are outlined. 

1.4.2 Chapter 2 

This chapter presents a literature survey of state-of-the-art magnetic material modelling 

techniques. A brief classification of the various material models is outlined with a focus on how 

the material properties impact on the choice of computation systems. Certain properties of the 

materials are discussed in regard to their suitability for various applications. The material model 

interface requirements for FE solvers are presented. 
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.4.3 Chapter 3 

.ms chapter provides some essential information on learning systems as well as a basic 

ntroduction to neural networks. It focuses only on characteristics pertinent to the understanding 

.f the neural networks used in the present work. 

1.4.4 Chapter 4 

fhis chapter introduces the concept of using an artificial neural network as a tool for modelling 

nagnetic materials. The requirements of such a model for magnetic materials are analysed and 

methods for mapping these requirements onto the properties ofneural networks are presented. 

[n this chapter it is shown how knowledge provided by the neural network, related to the model 

for magnetic materials, can be extracted and used within a Computer Aided Analysis and Design 

System (CAD), namely by coupling the model with a finite element analysis system. The 

requirements for such an interface are identified and discussed. 

1.4.5 Chapter 5 

This chapter provides conclusions on the proposed technique for modelling magnetic materials 

and provides pointers for further research in this area. 

1.5 Conventions 

All plots of B or M against H are in International System (SI) or Gaussian units (cgs), as 

indicated in the Conversion Table below. Since the latter are often used for certain quantities in 

practical magnetics work, we have also retained them for experimental comparison purposes. 

Quantity cgs (Gaussian) Conversion Factor International System (SI) 
Magnetic field, H oersted (Oe) (1I41t) x 10" ampere/meter (Aim) 
:Magnetisation,~ emu/em" or emu/cc to" ampere/meter (Aim) 
Flux density, B Gauss (G) 10'" tesla (T), weber/m", (Wb/m") 
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Chapter 2 


2 Review of Magnetic Material Modelling Techniques 

2.1 Definitions for Magnetic Materials 

Every material can be classified in tenns of its magnetic property, according to its capability of 

responding to an applied magnetic field, H. The resulting induced flux density, B , is determined 

by the constitutive relation 

(2.1) 

where P is the magnetic permeability and is equal to Po = 41l' X 10-7 Henry/meter 

for free space. The expression (2.1) can be replaced, using the relative permeability p,., by the 

relation 

(2.2) 

Most of the time, H and B are not oriented in the same direction. It is then better to consider the 

vector fonn of the scalar relation 2.2 together with an additional vector tenn M, the 

magnetisation of a given substance. It follows that the flux density is expressed by the general 

relation 

B=Po(H+M) (2.3) 


M can be fonnulated as 


M=XH (2.4) 
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vhere %= Pr -1, the ratio M I H, a dimensionless parameter, called the susceptibility of the 

naterial. Susceptibility is one of the most commonly used parameters to classify a given 

lubstance into a diamagnetic category, if Z < 0 or into a paramagnetic category, if Z > 0 . 

fhe following tensor representation relating the reluctivity v (i.e inverse permeability) and the 

tlux density Bp measured along the principal axis is sometimes .used to model anisotropic hard 

materials [Lowther-Silvester, 1986]. 

1 [V,.(Bp ) 0]v(B )=- (2.5) 
p Po 0 c 

where the constant c, a characteristic of the material, is expressed in terms of the anisotropic 

field HA and the saturation magnetisation Ms by: 

(2.6) 

Figure 2.1 illustrates various responses, also called the first or initial magnetisation curves, 

together with magnetisation states that occur when various classes of materials are submitted to 

an increasing field. In fact, some materials cannot be classified in either the paramagnetic or 

diamagnetic category. The M(H) relationship is multi-valued and M may be non-zero at H = 0 

and, moreover, its value depends on the past history of H. These types of materials are qualified 

asferromagnetic materials exhibiting hysteretic behaviour. 

Figure 2.2 shows an example of the outermost loop formed by the M(H)relationship known as 

the limiting hysteresis curve or the major loop. The initial slope is called the initial permeability 

(or initial susceptibility for the inverse). It is not mandatory to define the permeability of a given 

ferromagnetic material. Instead, it is common to use the term Pelf= MJ(AHh to describe the 

effective, the differential or the incremental permeability at a particular value of the applied field. 
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fhe maximum value ofthe magnetisation is the saturation magnetisation. The value of M on the 

najor loop where the applied field H = 0 is called remanent magnetisation. 

Ferromagnetic materials showing hysteretic behaviours are defmed in two groups, namely soft 

materials and hard materials. Soft materials are characterised by a low coercive force and high 

initial permeability, whereas hard materials exhibit a high coercive force and low initial 

permeability. Most magnetic materials, in particular permanent magnets, are fabricated so as to 

enhance their properties along a preferred direction. These preferred directions of magnetisation 

for a given sample are called easy axes. 

This raises the topic of anisotropy, a property that expresses why and how a given material 

exhibits different M(H) behaviours, depending on the direction of the applied field intensity. 

Anisotropy is a key concept to be considered when dealing with magnetic hysteresis effects. The 

need to deal with hysteresis and anisotropy effects for a given magnetic material reinforces our 

choice for the use of a vector hysteresis model as a starting point for the model proposed in this 

thesis. 

A key goal of this thesis is to present a more general approach based on the behaviour of linear, 

non-linear, isotropic, anisotropic, hysteretic and anhysteretic materials within the same 

computational framework representation. A finite element solver using the provided 

representation frame can then quickly compute the hysteresis and eddy current losses within a 

magnetic circuit or the read-write fields ofmagnetic recording heads. 
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Ferromagnetic Material (M19) 

Paramagnetic Substance 

Diamagnetic Stb8tance 

Figure 2.1 The Magnetisation Process 

In the case ofparamagnetic substances, beneath the Curie temperature, random orientation occurs 

above the field H axis, with an increasing extemal applied field. But in the case of diamagnetic 

substances, below the field H axis, as shown in Fig. 2.1, the material microstructure can be 

simulated by two loop currents of the same values, but with an opposite-directed magnetic 

moment. 
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Remanent 


Magnetisation M,. 
 Saturation
1+-.-..(9--+--W-

Magnetisation M s 

I . .....- li-......l·--I--lf­
i : ! 

Field intensity H 

Figure 2.2 The First Magnetisation and the Limiting Hysteresis Curve 

2.2 Classification of Material Models 

2.2.1 Single-valued M - Hand B - H Magnetic Material Models 

A magnetic material model should be described only in terms of a few parameters based on 

underlying physical principles and should exhibit adequate agreement with the given set of 

measurements. To cope with gradient-based iterative solution techniques such as Newton-

Raphson, the gradient information should be smooth. There are many theories regarding methods 

of modelling magnetic material properties and the most popular models using CAD systems 
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Lowther-Silvester, 1985] are based on single-valued B - H curves represented by one of the 

bllowing relations: 

1. The reluctivity as a function of flux density squared: v = V(B2). 

2. The field as a function of flux density: H=H(B). 

3. The permeability as a function offield squared: Jl= Jl (H2
). 

The above formulas are often stored in tabular or list form and models used to represent single­

valued B - H curves are created using one of the following mathematical curve fitting or 

interpolation processes: 

2.2.1.1 Polvnomial Interpolation Methods 

Spline approximation techniques and polynomial interpolation methods usmg Hermite or 

Lagrange polynomials, need the interpolant to pass through the data set used to calculate the 

interpolation. A number of lower degree piecewise-continuous polynomials for interpolation of a 

data set are then used to avoid problems associated with higher degree single polynomial 

interpolation, where Lagrange or Hermite polynomials tend to fluctuate and exhibit wiggles. 

However, the method fails to represent the same material over the full range of B - H values, as 

shown in Figures 2.3 and 2.4. On the other hand, cubic and natural cubic splines, for example, 

use cubic polynomials and differ only in the necessary end-point conditions of the interpolation. 

A cubic spline interpolant of a given data set requires information regarding the first derivative 

of the interpolant at specified end points. In the case of a natural cubic spline interpolant of a 

given data set, the second derivative of the interpolant at the end points must be zero. When 

using the Lagrange interpolation method, the values in the data set have to be distinct. This is not 

always the case when the data are acquired from experimental measurements. On the other hand, 

the Hermite interpolation technique tolerates repeated values, that is, more than one point with 
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the same B - H co-ordinate can be found in a given data set. To model a non-linear B - H curve 

in MagNet 5, 40 cubic Hermite polynomials are used to guarantee the continuity of both the 

interpolant function and its derivative [Lowther-Silvester, 1985; Forghani et al, 1982]. 

B-H CUnIe Lagrange Polynomials Interpolation 
2 
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Figure 2.3 Wiggle Problems Exhibited by Lagrange Polynomials 
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B-H Curw Cubic Spline Interpolation 
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Figure 2.4 Cubic Spline Interpolation of Six Points Lying within the Range [0, 1.9] 

2.2.1.2 Curve Fitting by Exponential Functions 

An experimental B-H curve can be roughly approximated by a typical exponential function of the 

form B(H) =Bmax(l-e-II1l 
). This representation leads to a large error near the origin and the 

knee of the magnetisation curve. EI-Sherbiny [El-Sherbiny, 1973] and Hwang-Lord [Hwang-

Lord, 1976] proposed a representation of a magnetisation characteristic by a sum ofexponentials 

resulting from the equation: 

(2.7) 
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Figure 2.5 B-H Curves Representation by a Sum ofExponential Functions 

where the values of the constants are detennined beforehand from experimental data for each 

material. Figure 2.5 shows an example of the model for a cold rolled steel. One can imagine the 

computational cost ofevaluating each exponential for its implementation within a FEM code. 

2.2.1.3 Rational Fraction Approximations 

Widger [Widger, 1969] and Rivas et at [Rivas et at, 1981] proposed simple approximations of 

magnetisation curves by means of second-order rational functions resulting from the following 

formula: 
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2
M = ao+alH+a2H (2.8)

1+b.,H +b2H2 

¥here the coefficients have to be related to the material constants such as the initial magnetic 

:usceptibility and the Raleigh material constant. This approach attempts to prevent the power 

leries approximation scheme from saturating at high fields and these authors claim that the model 

.s efficient both for single B - H curves and hysteresis loops. 

Z.3 Hysteresis Models 

2.3.1 Hysteresis and Electric Circuits 

There are two classes in common use: 

• Electric circuits containing hysteretic components 

• Simulation ofhysteresis behaviour using circuit components (analogy). 

Simulating hysteresis behaviour by means of circuit components takes into account conditions in 

an electric circuit containing a set of linear and non-linear electric components such as 

resistances, inductances, capacitances and, in some cases, diodes are added to the modeL For 

example, an analogous R, L circuit can be used to model the relationship between the field 

intensity H and the flux density B using the following equations [Hannalla, 1980]: 

dB 
H=vB+~­ (2.9)

dt 

(2.10)with v= X,,uo 

(2.11) 

where v (the reluctivity) and ~ are considered to be analogous to resistance and inductance 

respectively and 7; represents the time from the peak of B in one direction to the maximum 
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'alue in the other direction and II represents the time since the last peak value of B. The tenn 

Bill stands for the last peak value ofthe flux density with the corresponding coercive force Ho. 

\n example ofa basic circuit model consists ofa ladder structure containing linear capacitors and 

lon-linear resistors. It can be perceived as an element of a hysteresis model. The static and 

lynamic hysteretic behaviours generated by this circuit can be simulated in such a way that they 

'esemble those observed in most experimental situations. Moreover, the ladder structure of the 

~ircuit can be the starting point towards identifying the fonnation process of local and non-local 

.nemory. 

R 

+ 
e(t) 

Figure 2.6 A Ladder Network Simulating an Hysteresis Behaviour 

Zhil [Zhu, 1993, 1995] suggests a discrete modelling technique and using the numerical aspect of 

the implementation of the Preisach theory of hysteresis effect in magnetic cores, [preisach, 1935] 

via the transmission line modelling method to solve problems exhibited by electric circuits with 

magnetic cores. The goal is to track the flux density versus the magnetic field strength path. The 

Preisach plane, as we will see later, allows the representation of the states of magnetisation and 

the corresponding Preisach diagram. The method claims to provide a simple, fast and yet 

accurate hysteresis model. 
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:.3.2 Differential Equations and Functional Models 

'or years, hysteresis problems have been treated with due mathematical rigour by a number of 

esearchers. Differential equations and "functionals" [V erdi-Visintin, 1985] play an important 

ole towards the best representation of mechanical, magnetic and at times thermodynamic 

lysteresis phenomena. Bouc [Bouc, 1971], in his pioneering research, used a kind of 

nathematical functional F to represent the hysteretic behaviour of a variable x(t) in a system 

vhen the characteristic diagram is time-independent. The F functional puts some functions end to 

:nd at each value of dxjdt. The method, given a suitable choice of key functions, can be 

:ffectively applied to the experimental behaviour of hysteretic electrical or mechanical systems. 

:;'or example Bouc [Bouc, 1969] developed the following operator A: 

t t 

[A(u)](t) =k u(t) + JF(Jlu' {T)I d{T»q>{u{s»u' (s)ds 'ift e[O,T] (2.12) 
o s 

where u is an absolutely continuous input, k is a positive constant, F and q> are continuous real 

functions with F positive and non-increasing that could be represented by F{v) = Ae-av with A 

and a positive. Similar methods are described by Kranoselskii et al [Kranoselskii et al, 1983] 

and Visintin [Visintin, 1994]. In a similar vein, two practical differential models developed by 

Hodgdon [Hodgdon, 1988b] and Jiles-Atherton [Jiles-Atherton, 1984] are noteworthy. We will 

briefly describe these models in the following sections. 

2.3.3 Hodgdon Differential Equation Model 

In the Hodgdon model, H is related to B by the following constitutive relations: 

dB ={ k [/{H)-B]+ g(H),/or H>O; 
(2.13) 

dB •-k [/(H)-B]+ g(H),/or H <0; 
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lith the following inequality constraints: 

co 

r'(H) ~g(H) ~ /rekHJ[/(1')- g(1')] e-kTd, (2.14) 
H 

n the above equation, k is a real constant, g and f the material functions and f must be a 

;iecewise continuous, monotonically increasing, odd function of H and its derivative has a finite 

imit for large H. 'On the other hand, gmust also be piecewise continuous and an'even function 

;f Hwith a finite limit satisfying g(oo) = /(00) [Hodgdon, 1988b]. The required experimental 

lata for Hodgdon's model measured on the major loop are: the coercive field He' the slope Pc of 

he major loop at the coercive point, the flux density Bel and the magnetic field Hel at the 

lositive closure point in the first quadrant as well as the slopes f.Js and Pel at and beyond this 

loint respectively and, finally, the flux density Br at full magnetic remanence and the 

;orresponding slope p,.. 

!o3.4 Jiles and Atherton Differential Equation Models 

['he Jiles-Atherton theory of ferromagnetism hysteresis [Jiles-Atherton, 1984], is a 

lhenomenological model. Five parameters are used to define the model: 

a , th~ fonn factor for the anhysteretic curve, 

c , the ratio ofthe initial susceptibility on the first magnetisation curve to the initial 

anhysteretic differential susceptibility. This parameter represents the reversible wall motion, 

a is a factor that takes into account the coupling between domains, 

k determines the hysteresis loss, 

• Ms is the saturation magnetisation, the most easy parameter to obtain experimentally. 
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\11 these parameters can be extracted from the experimental measurements of the coercive field 

:He)' the remanent magnetisation (Hr), the saturation magnetisation (Ms), the initial normal 

msceptibility (ZIn)' the initial anhysteretic susceptibility (Zan) and the maximum differential 

)usceptibility (Zm)' Jiles [Jiles, 1992] describes in detail the experimental procedures to follow 

In order to acquire the above-mentioned parameters. The equations of hysteresis are expressed in 

terms of their reversible and irreversible susceptibilities as follows: 

dMlrr Man - M irr (2.15)
dH 	= k8-a(Man -Mirr ) 

and 

(2.16) 

The summation of the aforementioned two terms gives the total magnetic susceptibility as 

expressed by d~M) in the following equation: 

dM(H) =(I-c)8x Ma;(HJ-M(H) +cdMan(He) (2.17) 

dH k(l-c)sign(H)-a[Man(He)-M(H)] dHIl 

where He =H + aM is the effective field and Manis the anhysteretic magnetisation, a modified 

Langevin function resulting from the equation: 

(2.18) 

and 8, the directional parameter, has the following values: 

• 
0, if H <0 and Man (He) - M(H) ?; ° 

• 
8= 	0, if H>OandM01I(He)-M(H)'5:0 (2.19) 

I, otherwise 
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be Jiles model [Jiles, 1992b] is a generalisation of the above-mentioned Jiles-Atherton [Jiles­

"therton, 1986] model that takes into account asymmetric hysteresis loops that occur in many 

,ractical magnetic applications such as those using permanent magnets. Jiles-Atherton's model 

lescribes a rate-independent hysteresis process demonstrating a good correlation with 

:xperimental data. Hence, this model is useful for fields that exhibit slow fluctuations in which 

here is almost no lag between the field and flux density. However, for rate-dependent problems 

mch as eddy current damping in metals, this model's parameters have to be adjusted according to 

~ach type of material. 

[n fact, to achieve more comprehensive results in simulation of ferromagnetic systems, one 

should distinguish between rate-dependent and rate-independent memory effects. Rate-dependent 

memory is typically fading, hence scale-dependent. Rate-independent memory is persistent and 

scale-invariant [Bertotti, 1998]. Hodgdon [Hodgdon, 1988b] considers two types of rate­

dependent responses: 1) the true pulse response in which the applied field changes 

instantaneously to a new value and then maintains that value while magnetic materials seek 

equilibrium; and 2) the second category of rate effect occurs when both the fluctuation rates of 

the applied field and flux density are zero. 

Kvasnica and Kundracik [Kvasnica- Kundracik, 1996] have proposed a modification to the Jiles- . 

Atherton anhysteretic model which allows temperature and stress to be taken into account by 

making some of the model parameters, functions of temperature and stress. The approach will 

give parametrized anhysteretic curves at different temperatures, as seen in the example illustrated 

in Figure 2.7, obtained by a Newton-Raphson technique from the following equation 

(2.20) 
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where Ms is the saturation magnetisation and a and p are the constant mean field parameters 

expressing the coupling between domains. The value a is the initial magnetisation slope 

parameter and L is the Langevin function given by L(x) = ( coth(x) - ~). 

The following table gives the temperature-dependent parameters used to solve the modified Jiles-

Atherthon model. 

Temperature 25°C 50°C 75°C 100°C 
a 0.00636 0.00695 0.00754 0.0081 

P 0.435 x lO-u 0.435 X 1O-1~ 0.435 x lO-u 0.435 x lO-u 

Ms(MNm) 1.462 1.462 1.462 1.462 
a (AIm) 3375 3657 3939 4221 

Temperature Dependent Anhysteretic Curves 

Target values (100 degrees 
0.9 	 ... Target values (75 degrees) 

-- Target values (25 degrees) 
0.8 

0.1 

o~--~--~--~--~--~--~--~--~----~~ o 	 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Scaled H field (KAlm)l25 

Figure 2.7 The Anhysteretic Curves from the Modified JHes-Atherton Model 
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!.3.5 The Hyperbolic Tangent Model 

fhe hyperbolic tangent model of hysteresis can be classified among the analytical or polynomial 

nodds [Ossart, 1990]. They are simple models used by Potter [potter, 1970] to model the 

writing process in magnetic recording. The magnetisation closure point on the major loop, the 

remanent magnetisation field and the coercive field are required to model hysteretic behaviour. 

Minor loops are deduced by homothetic transformations. These models are simple enough to 

implement but cannot appropriately represent a given magnetic material. Figure 2.8 shows a 

hyperbolic tangent model exhibiting symmetrica11oops. 
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A Hysteresis Model Exhibiting Symmetrical Loops 

!
'I 

---+-;':-4-"1'+:-+---"-' 

I 
-f---+..,.--' I _.._.. 

I 
! II-J~4-#J;r-::::+=~-·-··-·---fo....) ............_--....!-- -r-··---·····-

Br =1] +(I-1])*tanh{H -He) 

H 

Figure 1.8 Hyperbolic Tangent Model of Hysteresis 

In order to deal with the frequency for a broad range of materials, manufacturers provide a set of 

parameterised B-H curves as a function of frequency, as shown in Figure 2.9 obtained using a 

modified Zaher-Shobeir approach based on a hyperbolic tangent model [Zaher-Shobeir, 1983]. 

The following set ofequations are used to compute the curves ofFigure 2.9: 

B= s[aarctan{be H +c)+a e H +e] if -Hs <H <Hs (2.21) 
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B=Bs (2.16) 

B=-Bs if H~-Hs (2.17) 

£=-l if dH/ dt > 0 (ascending curve) 
(2.18)

{£= 1 if dH/ dt < 0 (descending curve) 

with 

a = 2 (Bs - a Hs)/(arctanXl - arctan X 2 ) (2.19) 

e=-a(arctan XI + arctan X 2 ) / 2 
(2.20){Xl =bHs and X 2 =-bH, +c 

From experimental studies, observations are made that neither remanence induction Br nor the 

slope around the coercive force vary with increased frequency. However, the coercive force 

varies with frequency. Frequency has a direct effect on parameter c in equation 2.21, therefore it 

is modified to take into account the frequency influence. The parameters a, a, b, and c are 

computed by a Newton-Raphson method from the system of non-linear equations derived from 

equation 2.21 to 2.26 given the prior experimental knowledge that b doesn't depend on a and c 

however, it is related to the slope around the coercive field He' On the other hand, parameter c, 

varies with the He obtained from the ascending experimental curve, Figure 2.9. 
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figure 2.9 Par8JDetrized B-B Curves with respect to Frequency (Sealed) 

2.3.6 The Classical Preisach Model 

The Preisach theory, first published in 1935, seems to be one of the most practical for hysteresis 

modelling and the advantages of using this approach have been pointed out by several researchers 

[Mayergoyz, 1991; Della Torre, 1990]. The Preisach model describes the hysteresis ofa magnetic 

material using an infinite set of dipoles, which have non-symmetric rectangular hysteresis loops, 

as shown in Figure 2.10. A set of simple hysteresis operators rafJ which is associated with 

positive and negative switching values a and p and a statistical distribution function p(a,p) , 

also called the Preisach or weighting function, are used as a mapping artefact to model the 

M - H behaviour for a given material. 
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be principle is better understood using the geometric interpretation of the Preisach model. 

1igure 2.11 represents the Preisach diagram where the principle is based on the fact that there is a 

me-to-one correspondence between the switching operators 'Y and points (<l,/3) on the half-plane 

[a ~P}. The weighting function is symmetrical with respect to the line a = -p and tends 

:owards zero in all directions. Outside the limiting triangle p(a,fJ) = 0, the evaluation of the 

resulting magnetisation M(t)due to an applied field B(t) is then restricted to the surface S of the 

limiting triangle T by applying the following equation: 

M(t) = II p(a,fJ)yapB(t)dadP (2.27) 
s 

where 

(2.28) 

Figures 2.11 to 2.14 illustrate the numerical implementation of the classical scalar Preisach model 

and demonstrate an example of the evolution of a magnetisation process from a virgin state. At 

each instant, S splits into two sets of positive and negative magnetisation states, as shown in 

figure 2.12: 
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Figure 2.10 Preisach Hysteresis Operator Block Diagram adapted from Mayergoyz 
(Mayergoyz, 1991] 

S+(t) => rapH(t) = +1 and S-(I) => rapH(t) = -1. Before undertaking the numerical 

implementation of the model, one must determine the Preisach distribution function using the 

transition curves [Rouve et al, 1995; Mayergoyz, 1991]. The major steps in the numerical 

implementation include the discretization of the Preisach plane and the evaluation of the integral. 
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The latter is simply the sum of the triangles formed by the vertices and the comers at each time 


step. 


For a detailed explanation of this section, see references from Mayergoyz [Mayergoyz, 1991], 


Naidu [Naidu, 1990] and Henrotte [Henrotte, 1991]. 
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Figure 2.11 Preisacb Triangle 
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Figure 2.11 A Typical Dipole Distribution 
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J3 

Figure 2.13 Preisach plane from Virgin Material to Negative Saturation 

Figure 2.14 M(H)Evolution from Virgin State to Negative Saturation 
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l.3.7 The Combined Moving Vector Stoner-Wohlfarth-Preisach-based Model 

The theoretical foundation of a vector model includes the Stoner-Wohlfarth approach [Stoner-

Wohlf~ 1948], the classical scalar Preisach phenomenological model [preisach, 1935] and 

Mayergoyz's treatment [Mayergoyz, 1991]. In fact, a vector model can be thought of as the 

superposition of scalar models. Research work on the combined moving vector model can be 

found in Oti [Oti, 1990], Ossart-Davidson [Ossart-Davidson, 1995] and Davidson [Davidson, 

1996]. Figure 2.15 [Della Torre-Vajda, 1995] illustrates our interpretation of Della Torre and 

Vajda's classification ofPreisach-based hysteresis models. 

Table lookups 

(Deletion and Cmgruency properties) 


.,j,. 	 Stamtical and micromagnetic analysis 
(1 constant; a. moving parameter

.,j,. 

1!9l'ing M~el I ~:a!'::=~~ dclefun propertleS) 

DecomposiWn oftbePreWich function .,I.. 

magnetisation &. field-dependent 

components 
 Compalent of reversible magnetisation 

1 

TlIlIISient instability of !he moving particles 

Physical interpretation &. 

experimenlal observations 


Both mean interactive field and 

the a are not constant 


PmsachModel 

(Perpendicular I'CQ)I'ding media) 

Figure 2.15 Hierarchy of Scalar Preisach Models for Recording Media 



31 

rhis classification could be summarised as follows. The Classical Preisach Model (CPM) is 

lUmerically efficient. It requires only a table lookup to compute the magnetisation. Necessary 

md sufficient conditions for its applicability are achieved by the deletion property and the 

::ongruency property of minor loops. However the CPM takes into account the statistics of the 

interaction field that are considered to be independent of the magnetisation process. The Moving 

Model (MM) uses a fast-converging iterative computational process. It replaces the congruency 

property with its skew-congruency counterpart and preserves the deletion property. The Product 

Models (PM) are magnetisation-dependent Preisach models. They suggest a decomposition of 

the Preisach functions into a magnetisation-dependent and a field-dependent component. Via 

these models, non-linear congruent minor loops can be computed and the deletion property 

maintained. To compensate for the inability of the classical Preisach and Moving models to 

describe both the irreversible and reversible components of magnetisation, the Complete Moving 

Hysteresis (CMH) annexes a magnetisation state-dependent, locally reversible component into the 

moving model. The Moving Accommodating Complete Hysteresis model (MACH) is based on a 

physical interpretation of the Preisach-based modelling and computes accommodation features 

compatible with experimentally observed accommodation phenomena. In fact, this model takes 

into account the transient instability of moving particles in the Preisach plane, that is, during this 

time, the particles are no longer composed of an up and down switched region separated by a 

staircase line. When both the standard deviation and the mean interaction field are 

magnetisation-dependent, the physical assumptions that led to the moving model are no longer 

valid. The variable variance Preisach model, considered to be the most general Preisach Model, 

takes care ofthis phenomenon that appears when characterising perpendicular recording media. 

Our knowledge source for the hysteresis model used in this thesis, instead of being a true 

measurement laboratory, is a 3D moving vector hysteresis computational model by Oti [Oti, 
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.991] and Davidson [Davidson, 1996]. This model transfonns a sequence of vector magnetic 

ield inputs, H, into a sequence of vector magnetisation, M(H). But it is important to note that 

he specific predicted sequence of magnetisation depends on the values of the input parameters 

)f the model. These parameters have been identified beforehand by using an appropriate method 

in such a way that the modelled sequence M(H) fits the experimental magnetisation sequence. 

Validation of the model requires a good measurement database and the implementation. of other 

material modelling techniques for comparison purposes. 

We have used the results from a three-dimensional vector magnetisation model, along with 

applied fields and resulting magnetisation components in any direction in space, to acquire 

comprehensive magnetic hysteresis knowledge. We have also trained various neural network 

models. The usefulness of this type of model has been demonstrated through simulations related 

to a standard C-core problem and a ferrite dual-component magnetisation process. Certain issues 

related to the memory usage and computational speed of artificial neural networks and their 

capabilities to approximate non-linear curves, evoked in earlier works, have been successfully 

addressed in the present work. 

2.3.8 Basic requirements for Finite Element solvers 

Magnetic materials play a major role in the operation of many electromagnetic devices from 

transformers to recording systems. Structures which have been proposed for representing them 

have largely been based on either attempts to match the measured curves [Hodgdon, 1988] or 

phenomenological models which try to simulate the actual mechanisms of hysteresis [Vajda­

Della Torre, 1996], [Ossard et al, 1995]. The latter models are necessary if the detailed operation 

of magnetic recording systems are to be simulated. However, in the more general situation, an 
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!ffective material model is required for use in general purpose fInite element magnetic analysis 

;ystems. In these systems, the material model has to be applied to each element and, in a large 

three dimensional system, the number of elements needing to be able to track the material 

behaviour can be in the thousands or tens of thousands. Additionally, during the non-linear 

iteration process and the overall time evolution, it is necessary to evaluate the appropriate M - H 

relationship many times for each element. Thus there is a requirement for a material modelling 

approach which is both memory efficient, to minimise the required memory when a large number 

of elements are involved, and fast enough to speed up computation. In an attempt to meet these 

two criteria, the use of a neural network has been examined. 

The general procedure to implement fInite element analysis program involves mainly four steps 

[Silvester-Ferrari, 1996]: 

1. 	 Discretisation or meshing where the domain to be analysed translated into a number of 

nodes and triangles in two dimensional problems or tetrahedra in three dimensional cases. 

2. 	 Evaluation ofpotentials in each element 

3. 	 Finding the energy in each element 

4. 	 Assembling the elements to get the energy of the whole system 

5. Minimisation ofan energy functional 

Iterative solution techniques of a large set of simultaneous equations, which are highly dependent 

on the material properties, are required to achieve the minimisation of the energy functional. 

Newton-Raphson method are widely used to achieve this task. Special attention has been taken to 

insure that the material model proposed in this thesis copes, in tenns of accuracy and 

convergence, with the iterative search processes taking place. 
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Chapter 3 


3 Principles of Inductive Learning and Fundamentals of 

Neural Networks 

3.1 Inductive Learning 

Learning occurs when a system constructs or modifies its knowledge representations 

McCarthy [McCarthy, 1968]. Based on this definition, the acquisition of any kind of 

information may be seen as a form of learning. Learning is also achieved through inferences. 

The three basic types of inferences distinguished in the literature are deductive, analogical 

and inductive [Michalski, 1993; Kodratoff-Bares, 1991]. 

Inductive learning systems are based on the process of reasoning from a given set of facts 

according to certain general principles or rules [Durkin, 1991]. Induction processes derive 

knowledge from a set of examples and, thus, a record of past events must be available. 

Knowledge acquisition based on the system's learning from its experience is also called 

example-based learning or induction [Dym, 1991]. Michalski and Kodratoff [Michalski­

Kodratoff, 1990] outline a good survey of the classification oflearning processes (Figure 3.1). 

In this thesis, we have selected an inductive based inferencing mechanism that acquires 

knowledge from a set of examples by using a multi-layered feed-forward artificial neural 

network paradigm. To be efficient, a knowledge acquisition task should be automated. This 

automating process increases learning competence as well as logical capabilities and also 

reduces human resource costs needed for the development of Knowledge Based Systems 

[Buchanan et al, 1983]. As shown later through this thesis, it is desirable that a trained multi­
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ayered artificial network generalise and abstract infonnation from the training set of 

:xamples and reuse it in different, but analogous situations. 

leneralisation is related to interpolation [Wassennan, 1993]. It is a statement about a class of 

)bjects that also applies to members of that class. For a computational learning system, an 

~conomical storage of infonnation must be available [Coyne et al, 1989]. When generalisation 

takes place, the learning system recognises examples that have never been presented to the 

network before. Such a characteristic is essential for innovative and creative design processes 

requiring the ability to build general principles from knowledge about specifics and apply 

them as needed. 

On the other hand, deduction requires that a set of infonnation, generally expressed in an 

explicit way, be defined first, before any derivation of new knowledge occurs or before any 

consistency checking of the infonnation takes place. This presents some limitations because 

previous infonnation has to be judiciously chosen and expressed qualitatively and 

quantitatively in order to represent the whole situation. 

The use of a deductive inftrencing mechanism to acquire knowledge initially requires a good 

fonnulation of the background knowledge that may require sustained interaction with a 

human expert. This method of logic inference, nonetheless, presents some drawbacks because 

of the unavoidably incomplete character of the required adequacy of the inputs (Le. all the 

infonnation should be explicitly fonnulated by the system designer). Another drawback is that 

laborious search strategies, executed mostly across "decision trees" (the representation 

paradigm in this case), are always needed for deductive systems. Finally, the deduction 

inference does not allow the handling of some types of knowledge, such as modelling the 

non-linear mathematical relationship between magnetisation and the magnetic field. 

Deductive learning systems have shown their limitations in the earlier rule-based expert 
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:ystems. The analogical injerencing, approach, a case-based reasoning that transitions 

)etween case replay, case adaptation, and general problem solving has drawbacks similar to 

:he deductive systems described earlier. Both of them are not used in this thesis. 
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Figure 3.1 Classification ofLearning Processes [Kodratoff, 19901 

To summarise, our approach of using an artificial neural network paradigm to acquire 

magnetic material behaviour knowledge, t.e. a mathematical knowledge, copes with a 
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~omplex task where all the underlying physical principles are not explicitly known. Also, 

because of the interaction of many complex factors in the identification and modelling of a 

magnetic material, it is difficult to systematise the process by the application of a 

mathematical approach alone. Therefore, we have proposed applying a neural network-based 

approach, coupled with the mathematical Preisach-based technique to counter current costly 

modelling and implementations of hysteresis phenomena to solve electromagnetic problemS 

by finite element methods. 

The resurgence in neural network research has facilitated the growth of a whole range of 

methodologies to acquire and store data inductively for given material models and to use 

these models within a finite element solver. Now that neural network techniques are reliable, 

efficient and are providing a fast computational framework, it is possible to include them in 

magnetic problem-solving tasks. 

3.2 Fundamentals of Neural Networks 

3.2.1 Background 

Artificial neural networks have been inspired by the neurological architecture and operation of 

the human brain fonned by billions of interconnected biological neurons simultaneously 

activated or inhibited. Hence, a computation and knowledge representation paradigm 

consisting of a model of an individual neuron was constructed by Warren McCulloch and 

Walter Pitts in 1943 [McCulloch-Pitts, 1943] In the McCulloch-Pitts model, each neuron's 

activity Xi is determined by the sum of weighted inputs. The outgoing signal from neuron i is 

restricted to one or zero, a binary value. 
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An artificial neuron is represented in Figure 3.2. A neuron receives n inputs from the 

environment or from other neurons and produces a single output unit to the environment or to 

other neurons. Each neuron consists of a summing unit followed by an "activation function". 

The other mathematical operation performed within an artificial neuron consists of adding 

biases to tune its overall activity to a desirable behaviour. The networking of artificial 

neurons forms the so-called artificial neural network. Figures 3.3 represent a typical 

feedforward neural network topology. 

O(t) = F(net(t) + ) 

n 

net(t) = LXiWi 
i=l 

Figure 3.2 The Artificial Neuron; The Processing Unit 
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bias 

X2 

Input pattern 

Ouput response 

Input Layer Middle Layer Output Layer 

Figure 3.3 Topology of a Feedforward Neural Network. This figure shows a [24-3] 
three-layered network with 2, 4 and 3 neurons in the input, hidden and output layer 

respectively. 

The Warren McCulloch and Walter Pitts [McCulloch-Pitts, 1943] landmark work was ableto 

model some basic logic functions such as the AND, OR and NOT functions. By introducing 

so-called self-organisation capabilities to the network, Rosenblatt extended the McCulloch-

Pitts model and developed many variations of the perceptron, the first artificial neural 

network [Rosenblatt, 1958]. Minsky and Papert showed that a single-layer net can learn only 

linearly separable problems, i.e. functions such as the exclusive OR (XOR) function are 

beyond the capability ofa single layer net. [Minsky-Papert, 1969]. 
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fo overcome the shortcomings of the single layer net pointed out by Minsky and Papert, the 

research efforts by the Anderson~Rosenfeld and Rumelhart-McClelland teams renewed the 

passion for the use of artificial neural networks [Anderson~Rosenfeld, 1988; Rumelhart~ 

McClelland, 1986]. These include the multi~layer feedforward neural network trained with 

the backpropagation oferror learning rule, the Hopfield net [Hopfield, 1982], the Kohonen net 

[Kohonen, 1982], the probabilistic neural network (PNN) [Specht, 1990] and a number of 

variants that are all ofgreat interest for various design tasks and are able to provide reasonable 

solutions to real-life problems. 

In this thesis we will take advantage of the properties of artificial neural networks which 

provide a means of representing complex multi-dimensional surfaces in a uniform manner. A 

trained network can be considered as providing a form of least squares fit to the hypersurface 

defined by the input and output vectors. It has been shown that this architecture can 

approximate any function over a compact set [pao et al' 1989; Funahashi, 1989; Hornick et al' 

1989]. However, this statement should be considered with care. Proof that three layer neural 

networks are universal approximators usually includes the following conditions [Cybenko, 

1989]: 

1. The function is to be approximated over a finite domain. 

2. The function is defined and continuous over that domain. 

3. The number ofhidden units is unlimited (but finite). 

4. The size of weights is unbounded (but finite). 

5. The function is approximated to some arbitrary small, but non~zero degree. 
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Utificial neural networks could be classified according to the following criteria: 

• 	 ArchitectW'e or topology (feed-forward, laterally connected, single-layer, multi-layer, 

recurrent). 

• 	 Learning or training strategies (supervised, unsupervised or reinforcement manner). 


• Learning rules 


t Activation functions that are used 


t Metrics used for error computations 


• Validation technique. 


Some of these criteria will be explored a bit later in the present work. 


3.2.1.1 Learning Strategies 


Learning laws or rules and training algorithms are what drive an ANN towards a desired 


behaviour. i.e. their generalisation ability. Two types of learning systems - supervised and 


unsupervised - are used to train ANNs. In a supervised learning system, an output evaluation 


is provided and the desired response is encoded in a cost function. The network is given the 


training data consisting of both the input pattern and the desired output it is supposed to 


induce. After many trials, the network tunes itself to achieve the mapping from the input to 


the output. 


In an unsupervised learning system, input patterns are clustered according to pertinent 


properties that the network learns or discovers. The learning method is not based on a 


comparison with some target output. This interesting property is also known as self­


organisation or, in other words, the network is considered autonomous. No desired response is 


given and no evaluation of output is provided. In this thesis, we have considered ANNs using 
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supervised learning systems and the backpropagation learning strategy and its variants, that 

represent the most well known approach. 

3.2.1.2 Learning Rules and Error Metrics 

The training processes can be implemented in three ways - gradient-based, deterministic and 

stochastic. Those chosen for this work are of the gradient-base type. a generalisation of the 

least mean square method. This technique can be summarised in three steps. The first step 

involves the computation ofan error function based on the difference between the desired and 

actual outputs, the second stage is the determination of the contribution of each weight to the 

error and, ultimately, weights are updated to minimise the error. This last process of adjusting 

the weights as shown in Figure 3.4 is implemented by weakening weights that contribute to 

wrong outputs and reinforcing those that contribute to correct ones. 

] 
• .• 

Figure 3.4 Training a Three-Layered Neural Network. The training involves adjusting 
the weights ( , •••, ) using the appropriate learning algorithm. 

The classical learning rule for standard feedforward neural networks is called the 

backpropaganon ofe"or [Rumelhart et al, 1986] and is the most popular supervised learning 
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~chnique for multi-layered networks. The learning process is implemented by using the 

18dient descent-based algorithm. Backpropagation of error is a generic concept and many 

rariants currently exist. 

~evenberg-Marquardt algorithms [Hagan-Menhaj, 1994] and Quasi-Newton, also known as 

8rayden-Fletcher-Goldfarb-Shanno (BFGS) algorithms [Fletcher, 1987], are the other 

learning mechanisms applied in this thesis. These learning algorithms are treated in greater 

detail in Appendix 2. Major handicaps mentioned in the literature are the local minima 

problem and the sluggish speed of the standard backpropagation of error training process. 

The former refers to the optimisation problem over a complex error surface that can be 

resolved by using computational methods, such as genetic algorithms, simulated annealing or 

certain stochastic gradient descent techniques. 

3.2.1.3 The Activation Functions 

Each neuron consists of a summing unit followed by an "activation" function, this is used to 

limit the outputs of the network to a specific range and is designed to be differentiable in 

order to speed up the network training. The activation function can take many forms including 

sinusoidal, sigmoidal, gaussian and similar activation functions. Its purpose is to limit or 

cluster each neuron' s activity in a specific region. Yet the only necessary condition to be 

satisfied by these functions is differentiability. However the choice of a particular activation 

function and its parameters is crucial for a given neural network to acquire knowledge. In this 

thesis, we observed that the hyperbolic tangent function in the hidden layers as well as linear 

functions in the output layer outperformed all others. Figure 3.5 illustrates some typical 

activation functions. 
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Figure 3.5 Typical Activation Functions 

3.2.1.4 Artificial Neural Network Validation Techniques 

Cross-validation is the most frequently used algorithm for combining training with validation 

techniques [Masters, 1995]. Numerous methods of cross-validation exist. A typical method is 

provided in Table 3.1. The main purpose is to reduce the bias caused by estimating the 
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eneralisation error due to the training set, rather than to test the robustness of the model. The 

~rm "generalisation" refers to the ability ofneural networks to produce reasonable outputs for 

lpUts not encountered during the training process. 

~ simple approach to cross-validation consists of dividing the training set into three parts: 

raining, testing and validating. The Artificial Neural Network (ANN) is taught using the 

raining set, but is periodically tested with the test set. Performance measures on the test set 

Ife used to determine when to terminate the training process. Finally, the use of the validation 

,et establishes how well the ANN really performs. Many implementations of ANN training 

nc1ude automatic training and testing methods, but usually the validation process parameters 

U'e virtually non-existent and the user must develop them. 

fable 3.1 Typical Validation Steps 

Validation Technique 

1. Randomly partition the data into f statistically equivalent subsets. 

2. Repeat k times: 

a. Train on k-l subsets. 

b. Test on the "holdout" subset. 

c. Accumulate the moment and/or rank error statistics. 

3. Use the results to estimate the summary statistics ofthe generalisation error. 

3.2.2 RBF Networks 

Radial basis function (RBF) networks are attracting a great deal of attention due to their rapid 

training period, their potentially generic applications and their inherent simplicity. They have 
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nique features that are most noteworthy in fitting multivariate functions and are part of a 

roader class of interpolation techniques. The RBF interpolation process does not require the 

ivision of the domain into a mesh of sub-domains. This class also includes a host of similar 

aradigms directed towards complex mapping tasks where the mapping is continuous. A 

ypical radial basis function neural network consists of three layers of neurons: input, hidden 

nd output. It is a fully connected feedforward-like perceptron architecture in which the 

IUtpUt units have a linear activation function. The network paradigm is based on the simple 

A 

ntuitive idea that an arbitrary function y(x) can be approximated as the linear superposition 

)f a set of localised basis functions, 'Pi (x), expressed by the following equation: 

Yi = L Wy'PAx) (3.1) 
j 

.vhere 'PI(X) is a radially symmetric function, called a "kernel function", centred on the ith 

lata point and x is the corresponding input. A common basis function is usually the bell­

;haped gaussian function represented by 

(3.2) 

Other kernel functions that have good theoretical backing are thin plate splines, 

'P(x)=x2 log x•and multiquadric and inverse multi quadric that are expressed respectively by 

the input vector x and Cj is determined by 

(3.3) 
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v-here the vector Cj represents the centres; (J'j' the standard deviation, describes the width or 


ne spreading factor of the gaussian basis function at node j; and wi/ are the second-layer 


veights. The network is entirely defined when the parameter set {c j' (J' j' { wi/ }} is detennined. 


~ch hidden unit has a localised response, that is, valid responses range within a limited zone, 


~enerally a circular shape, named the receptive field, (J' being the size of the receptive field. 


rhe implementation should be adaptive (i.e. weights, centre location, widths are all tuned to 


he data). 


).2.2.1 Training RBF Networks 


The goal of the training process is to fmd the appropriate parameter set {c j' (J'j'{ Wy }} to map 


:1 given input vector onto a desired output vector efficiently and with an adequate degree of 


:1ccuracy and generalization. Accuracy, of course, means minimisation of a given cost 


function and the generalisation was defined earlier. RBF networks are often trained via hybrid 


techniques, in which the hidden weights (centres) are first obtained by unsupervised learning, 


after which the output weights are obtained by supervised learning. Unsupervised methods for 


choosing the centres include: 


• The distribution ofthe centres in a regular grid over the input space; 

• Choosing a random subset of the training cases to serve as centres; 

• Clustering the training cases based on the input variables, and using the mean ofeach 

cluster as a centre. 

Various heuristic routines are also available for choosing the RBF widths. Once the centres 

and widths are determined, the output weights can be ascertained very efficiently, since the 

computation reduces complex data to a linear or generalised linear model. The hybrid training 
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pproach can thus be much faster than with some classical non-linear optimisation methods, 


lch as the conjugate gradient descent algorithm, that would be required for supervised 


'aining ofall the weights in the network. 


.2.2.2 Radial Basis Function Networks (RBF) compared to feedforward neural networks 


trained with Backpropagation or its variant algorithms (FFNN-BP) 

Vhen executing complex approximation or prediction tasks, RBF and FFNN-BP exhibit 

imilar performances. However, the following considerations have to be taken into account: 

In terms ofaccuracy, RBF networks typically require 10 times or more data to achieve a 

precision equivalent to that ofFFNN-BP. 

I RBF networks require less training time than backpropagation nets. 

I When used as function approximators, RBF net predictions are poor when dealing with 

extrapolation tasks. In fact, zones that are far beyond the input space are mapped onto low 

values by the RBF localised receptive fields. 

I RBFs, without an enhanced tuning scheme, are unable to model the saturation region ofa 

ferromagnetic material properly. In fact, in this zone, there could be many to one mapping 

obstacles where matrix singularity problems appear. 

• 	 RBF architectures with large numbers ofinputs could lead to what is known as a curse of 

dimensionality as well as the above-mentioned singularity drawback [Haykins, 1994]. 

• 	 The need for large training data for RBF networks, as revealed earlier, also implies an 

enormous amount ofcomputer memory for training at the first stage. This also entails a 

number oftime-consuming pre-processing tasks such as clustering methods. These tasks 

range from classical statistical methods to neural networks, fuzzy sets, wavelet theories 

and genetic algorithms [Masters ,1993]. 
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.2.3 CMAC Networks 

be CMAC, first developed by Albus [Albus, 1971], stands for Cerebellar Model Articulation 

:ontroller or Cerebellar Model Arithmetic Computer. This CMAC model belongs to a class 

If contents-addressable-memory-based neural networks that have an associative memory that 

levelops the ability to realise complex non-linear functions. A CMAC can provide a model 

or a physical system that has an unknown transfer function, just as other artificial neural 

letworks. Among the numerous benefits of the properties a CMAC offers, we can mention 

he following: 

• 	 Local generalisation capability (The input vectors in "local learning networks," such 

as radial basis functions (RBF) and CMAC, act on a delimited region as shown by the 

coarse coding scheme for the data representation in Figure 3.6.); 

• 	 Fast learning without fixation problems (In fact, a CMAC network is considered as an 

alternative to backpropagation multi-layer networks.); 

• 	 Incremental training and output superposition capability (A CMAC network is an 

adaptive system that uses local learning and also permits incremental training. This 

enables the net to be retrained on-line to produce the correct signals for locally 

changed conditions.). 

3.2.3.1 Data Representation 

The operation of the conventional CMAC can be described in terms of a large set of 

overlapping, multi-dimensional receptive fields with finite boundaries [Albus, 1975a, 1975b, 

1981; Edgar et al, 1991; Harris-Brown, 1994]. By using the CMAC technique, the problem 

space is discretized into several regions called blocks as shown in Figure 3.6, a two­
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.imensional problem space example. A quantization scheme is applied to each variable. 

ueas formed by quantized regions are called hypercubes. The quantization for each variable 

s shifted by one interval. The conventional Albus CMAC can be seen as a technique with a 

lasis function that has a constant value of "1" within Ii restricted area and "0" elsewhere. In 

his case the basis function is called binary. The area is a square, a cube, or a hypercube 

lepending on the dimension of the input space. For example, blocks into M, B, H, and R 

Lescribing the variablevt and n, c, i and r for variable V2 ' define the activated state where 

lypercubes Mn, Bc, Hi and Rr are involved. Any input vector falls within the range of 

;pecific local receptive fields (the excited hypercubes), and so falls outside of the range of 

nost of these hypercubes. The response of the CMAC neural network to a given input is the 

lverage of the responses of the receptive fields excited by that input, and it is not affected by 

he other receptive fields that are not covering the state. The generalisation width is often 

=alled the generalisation parameter c, or referred to as the number of simultaneously excited 

:eceptive fields for each input. It could also be thought ofas a quantization resolution. CMAC 

nakes use of a number of overlapping sets of receptive fields of this width. Hence, the 

:::MAC has an input resolution of the generalisation width divided by the number of sets of 

:eceptive fields. 
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Figure 3.6 A Four Layer Block Division ofCMAC for a Two Variables Example 

3.2.3.2 A CMAC Computation 

A CMAC network is an adaptive system that works by means of functional relationships. This 

is basically carried out by a series ofsequential mappings as shown in Figure 3.7: 
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Figure 3.7 CMAC Mapping Operations 

Consider a set of N-dimensional input spaces S = {set of all input vectors} = {Sl,S2, ... ,Sn} 


with a generalisation parameter c, i.e. the identified number of simultaneously excited 


receptive fields. A CMAC operation involves the following steps: 


Step 1: Pre-processing the input vector (Normalisation) 


Each component of an input vector is first treated to get a set of normalised integer values 


obtained by dividing the original input set by an appropriate factor, called a quantization 


parameter coi ,according to the following equation: 


(3.4) 
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Step 2: Determination of the vectors' virtual addresses 

The c receptive fields which consist of the set S' vector virtual addresses are detennined 

using the modulus operator "%" by the expression A;, that is an address in N dimensional 

space: 

Ai= { s; -((s; -i)% e), s; -((s; -i)% e) ,... ,s: -((s: -i)% e)} (3.5) 

where the index i spans from a value of one to the generalisation width c which corresponds 

to the number of parallel layers. As mentioned earlier, Figure 3.6 shows 4 parallel layers for 

the 2D problem example. 

Step 3: Converting the virtual addresses to physical addresses 

This operation is also called hashing the virtual memory and its ultimate goal is to form the 

scalar physical addresses so as to reduce the required amount of computational resources 

(memory). In fact, the number ofreceptive fields in a space of dimension N can be very large 

and so cannot be implemented by allocating a physical address for each state space. The 

hashing operation consists mainly of a many-to-one mapping and uses some combinations of 

AND orland OR gates to perform this task. For example, in the circuit shown in Figure 3.8, a 

simpl~fication of the CMAC network mapping process, the internal layers consist of 

connected matrix such that each input vector (eg. X, Y, Z) activate exactly "width" number of 

AND gates and the output is summation ofweights corresponding to activated AND gates. To 

summarise, the operation of obtaining the physical addresses A~ can be written using the 

equation (3.6) as shown below: 

(3.6) 
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Figure 3.8 CMAC Layout as described in Ref. [Burgin, 1992] 

Step 4 Training CMAC Networks 

Training a CMAC network is a supervised process; i.e. the CMAC's output for various inputs 

is compared to the desired output. The output values obtained are then adjusted to reduce the 

mismatch by modifying the weights. The number of memory locations required depends on 

the degree of non-linearity of the system being modelled. Finally, the average addressed 

weights, also called the CMAC network scalar output Y(s) , is computed. 
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1 c 
~(s) =- L W(A.) (3.7)

C 1=1 I 1 

The learning algorithm employed to update the weights is basically a variant of the LMS 

method and can be expressed by the formula: 

AW = p.( ~(S)-Y(S» (3.8) 

where p is the training gain. 

This technique involves an adjustable mixture of fixed basis functions as well as a linear 

update rule. A Gauss-Seidel iteration algorithm ofa linear system can also be efficiently used. 

The techniques of Radial Basis Functions (RBF) and CMAC can be combined in order to 

benefit from the merits ofboth. Figure 3.10 illustrates the concept of using gaussians instead 

of binary functions. In fact, as we have previously seen, while the conventional CMAC uses 

binary basis functions, the RBF uses mostly gaussian ones. The advantages of RBF networks 

include the continuity and differentiability of the approximate function. SimilarlY1 a recent 

paper [Lin-Chiang, 1998] suggests an integration of CMAC techniques and weighted 

regression to achieve enhanced accuracy as well as output differentiability. However, non-

differentiability of the output is the major drawback when using a conventional CMAC 

magnetic material model within a finite element solver. In fact, the output provided by a 

standard CMAC is not smooth, as is shown in Figure 3.9. Two other major problems related 

to CMAC networks are the collisions that may occur when the hashing operation is not 

appropriately carried out and of course, the huge memory requirements. 
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CMAC and BP-FFNN Approximation Perfomance 
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Figure 3.9 CMAC and BP-Feedforward Neural Network Approximation of a Damping 
Sinusoidal Waveform 

Network Type Sum Squared Epoch Number of 
Error Weights 

FFNN. 0.0198747 536 16 (1-5-1) 

CMAC 0.015 8 260 
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Figure 3.10 CMAC and Gaussian Basis Function 

However, CMAC nets have advantages over the classical feedforward neural network trained 

with the backpropagation neural networks in terms of speed of learning, and the ability to 

cope with changing goals, so there is no need to retrain the CMAC network from scratch with 

new data. 

3.2.4 Adaptive Logic Networks 

Artificial Neural Networks tend to be "opaque" black boxes which doesn't affect simple 

material modelling, but designers are rather clueless about how they arrived at their 



5& 


conclusions. The Adaptive Logic Network (ALN) approach is proposed by Annstrong 

[Armstrong et al, 1991; Atree 3.0) 1996] to avoid the opaqueness of conventional neural net 

approximating functions. The network estimates the parameters of linear functions which are 

combined by maximum and minimum operators to form a model. ALN-derived models can 

be used in conjunction with standard mUltiple regression programs to significantly improve 

the process of building statistical models. Furthermore, the fact that this approach can be 

looked at as a regression model identification device brings us to consider that a work similar 

to [Vajda-Della-Torre, 1994] can be accomplished much more easier using ALN. In this 

thesis, only a bit ofwork has been carried out to test the ALN ability for modelling non-linear 

behaviour of magnetic material. The net is trained to reproduce an B - H - M relationship. 

The output of the program leads to a piecewise linear function. The domain of the learned 

function is divided by thresholds on the variables successively (Le. by a decision tree), until 

the functions for the regions involve only a few linear pieces. The major drawback is that the 

number of function segments forming the generated decision tree can be very large. This 

means that our goal of representing a magnetisation function with only a few parameters does 

not hold in terms of the required memory storage. In order to use the ALN to solve a practical 

problem, a parser is also needed to retrieve the encapsulated knowledge. When the generated 

decision tree is large, this task is usually time-consuming and creates problems, particularly 

when a fast, easy to use model is needed. Some experimental results are outlined in Appendix 

3. The results show a large number of piecewise decision trees generated when capturing an 

M - H behaviour within an ALN framework. 
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J.2.5 The Use of Neural Networks in Magnetic Hysteresis Identification 

3.2.5.1 Introduction 

fhis section describes an approach to the problem of magnetic hysteresis identification based 

)n the use ofneural networks. The problem for many of the models currently being proposed 

for representing hysteresis in analytical systems is the identification of the model, i.e. the 

reliable determination of the appropriate parameters for a particular material. Some work has 

been published on the use of neural networks in this area and the present work seeks to 

develop this approach even further_In addition, the networks being considered are structured 

in such a manner that the information acquired by the network may be extracted at the end of 

the learning process, thus providing explicit values for the parameters, if needed. The basic 

methodologies being considered are based on the Preisach models and neural networks. Two 

techniques structured around the use of radial basis functions and a CMAC architecture are 

examined. The CMAC paradigm can allow incremental training and thus retraining the 

network for a new hysteresis curve can take place relatively quickly_ Once the parameters 

have been established, the model can be used within a conventional finite element analysis 

system. 

As we have said earlier, some mathematical hysteresis models use, as prior knowledge, the 

underlying physical principles of the devices, expressed in terms of partial integro-differential 

equations. Unfortunately, the physical principles governing most hysteretic elements are 

generally not well understood and there are no generic mathematical methods for solving the 

resulting strong non-linear equations. Among the representations those based on Preisach 

theory as well as the Jiles-Atherton counterpart, seem to be the most practical for hysteresis 

modelling. Although Vajda and Della Torre [Vajda-Della Torre, 1995] present the 
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relationship between the various Preisach-based scalar hysteresis models, there is still a need, 

from a practical point of view, for a concise classification of these models; i.e. a designer 

should know which model is the most suitable for a given design task. An embedded material 

selection process can then be ultimately automated within a design framework to match the 

requirements with the device configuration and the fabrication process as shown in Figure 

3.11. 

Device Configuration 

Performance Estimate 

Fabrication Processes 

SeiedioB 

Figure 3.11 Material Model in The Design Framework 

Another critical problem is the identification of the model's parameters. While some 

parameters are hard to identify, the use of empirical strategies makes the process a specific 
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problem-dependent one. Finally, a practical, suitable model to be implemented in a finite 

element process should be fast enough and not greedy in terms of the required memory for 

storage and computation. 

In this thesis, we propose using the neural network paradigm to circumvent the drawbacks 

intrinsic to some classical approaches in regard to the identificatio~ modelling or estimation 

ofhysteretic systems and their corresponding parameters, as shown in Figure 3.12: 

outpJt 


Mx1el Paratreters y(desired) 


(estirmted)y 

Figure 3.12 Leamiag a Preisach-Based Hysteresis Model usiag Neural Networks 

The work published so far on the use of neural networks in this area is mentioned in 

publications by Ghaboussi, Alam et at, Madayam et al and Xu-Ref sum [Ghaboussi et at, 

1991; Alam et at, 1993; Madayam et al, 1994; Xu-Ref sum, 1993], Saliah, Lowther and 

Forghani [Saliah-Lowther, 1995, 1997a, 1997b; Saliah et at, 1997, 1998, 1999]. The neural 

network approach uses a combination of experimental data and data provided by some 

previously identified mathematical models to ease the modelling of the global hysteretic 

behaviour ofthe system at hand. Four different types ofartificial neural network structures are 
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considered for this application, namely the standard feedforward multilayer network 

(FFMLN), the Radial Basis Functions (RBF) [Chen et ai, 1991], the Cerebellum Manipulator 

Controller (CMAC) [Albus, 1975; Miller, 1990] and the Adaptive Logic Networks (ALN) 

[Armstrong et ai, 1991]. While RBF and FFMLN are appropriate for function and functional 

representations, CMACs are suitable for implementing compact and quickly retrievable 

lookup tables and the ALN can be used to fit functions to given data points or compute 

decision trees. The strength and attractiveness of the ANN approach to the solution of the 

hysteresis identification problem resides in its inherent capability to generalise from a 

relatively limited number ofexamples. 

3.2.5.2 System and Parameter Identification 

In terms of the Preisach approach mentioned earlier, "identification" relates to the 

determination of the model's parameters so that the model matches experimental 

measurements. The models proposed by Vajda and Della Torre [Vajda-Della Torre, 1994] 

require the determination of the moving parameter, saturation magnetisation, squareness, zero 

field reversible susceptibility, remanent coercivity and the switching field distribution 

expressed by the standard deviation in the irreversible and critical field. These are found by a 

combination of control systems and statistical physics theory. In the case of Ossart et al 

[Ossart et al, 1995] a heuristic trial and error strategy is used to direct the search of their 3D 

Moving Vector Preisach Hysteresis Model. This model is characterised by a Preisach density 

function portrayed by the three parameters of the Preisach density function and five other 

parameters. The experimental information used in the identification process is the limiting 

hysteresis and delta M curves. 

In this thesis, the term "identification" means an adaptive process using the neural network 

paradigm as well as control systems and signal processing theory. In general, the problem 
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involved in material modelling is one of finding a mathematical model which both represents 

the material behaviour accurately and is matched to the required numerical processes. In this 

thesis, this search process is replaced with the more direct approach of storing information 

relating to the magnetic performance ofa material in an associative network. 

3.2.5.3 Example 1: Learning M-H excursion using Radial Basis Functions 

The goal ofthis learning task is to capture the variation ofa given magnetisation M subject to 

a driving H field using major loop behaviour. The raw data is made up of vectors consisting 

of five columns acquired from a simulation of a 3D Moving Vector Preisach Hysteresis 

Model [Ossart et aI, 1995], namely ( lin, 1In+}' Mn. Mn+I, M) as shown in Figures 3.13 and 

3.14. The RBF network was able to predict the variation of the magnetisation with good 

accuracy without overfitting, as shown in Figure 3.15 . 

.Mn+1 
---~-------------

I M =.Mn-.Mn+l 

I 
I 

I I 
I I 

.Mo.1 I I 

: I 
I I... ­

~; H =R.-R.+1 

Figure 3.13 Training Data for a Neural Network 
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Figure 3.14 A Major Hysteresis Loop 
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x 10'" Testing the RBF Network 
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Figure 3.tS Learning Magnetisation Variation using a RBF 
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3.2.5.4 Example 2: Learning M-H excursion using CMACs 

In this example. two ID CMACs are used to construct a 2D CMAC. The training vectors are 

formed by a set of input pairs {M, H} and a corresponding differential variation ofM (M). Here 

again, data are provided by the use of a Preisach Model-based simulator. The training data used 

for the CMAC system are shown in Figures 3.13 and 3.14 and learned responses are indicated in 

Figure 3.16. It can be seen that the CMAC system appears to be accurate and it exhibits good 

generalisation characteristics. 
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Figure 3.16 Learning Magnetisation Variation using a CMAC 
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3.2.5.5 Conclusion 

The principles ofthe RBF and CMAC neural networks have been presented and their capabilities 

for magnetic hysteresis behaviour identification have been established. The utility of CMAC and 

RBF networks in modelling a non-linear system with unknown dynamics have been verified 

through numerical examples. However, it has generally been observed that experiments with 

CMAC networks show the need for finding techniques in adaptively selecting the quantization 

level, in order to cope with the function to be learned so as to reduce the required memory space 

and the speed of the learning process [Brown-Harris, 1994]. It is intended that future work will 

demonstrate that it is also possible to structure the networks in order to identify the necessary 

parameters for the Preisach model itself. This is also the subject ofongoing research and this task 

could be done after more comprehensive and relevant experimental data for a broad range of 

magnetic materials become available. 
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Chapter 4 


4 	 Contribution to A Universal Representation of Magnetic 
Materials using Artificial Neural Networks 

4.1 Introduction 

This chapter discusses magnetic material modelling as applied to artificial neural networks, 


demonstrating the various requirements needed to make models compatible with a finite element 


solver interface. 


First we will discuss models for materials that do not exhibit hysteretic behaviour. Then, we will 


treat models, both isotropic and anisotropic, as well as with and without hysteresis. 


To establish our methodology and the adequacy of various neural network models, we will use 


standard feedforward networks and radial basis functions and test their ability to represent the 


desired behaviours. 


4.2 The Need for Universal ANN material models 

This section discusses the use of artificial neural networks as a uniform method for modelling the 

behaviour of magnetic materials, both isotropic and anisotropic, as well as with and without 

hysteresis. 

In the past, the methodology used for constructing a computer model of a material has been 

dependent on the ultimate and highly specific goal of the analysis package and, since these have 

been both limited and specialised, the material models have been likewise. For example, if the 

material is to be modelled as non-hysteretic, the initial magnetisation curve can be handled by a 

polynomial, by piecewise linear segments, by a sequence of cubic splines, etc. If a range of 

temperatures is to be considered, then a different model for each temperature needs to be 
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constructed. For analyses where hysteretic properties become important, polynomials [Hodgdon, 

1988; Cortial et al, 1997] have been used, as well as phenomenological models based around 

Stoner-Wohlfarth and Preisach [Mayergoyz, 1991]. 

Thus, in general, the modelling methodology has been dependent on the characteristics of the 

material needed for the analysis. While this has been a satisfactory approach, given that many of 

the analysis systems have been highly specialised, it is becoming unwieldy to handle multiple 

representations of the same material in analysis systems that are becoming much more generic in 

character. 

Therefore, what is needed is a system offering the possibility of creating a uniform and universal 

model for all the properties ofa given magnetic material, including hysteretic, thermal, frequency 

and stress effects. In addition. the data and computational requirements of such a system should 

be extremely low. resulting in a highly efficient approach from the point of view of memory and 

time. 

4.2.1 Neural Network Design 

Previous work involving the use of neural networks for modelling magnetic materials [Saliah­

Lowther. 1997a; 1997b] has concentrated on the hysteretic properties and has shown that a 

conventional feedforward neural network based around perceptron-like neurons [Rosenblatt, 

1962] is capable of modelling such aspects of a material. It would seem reasonable to expect that 

such a model will also be effective for non-hysteretic behaviour. However, little attention was 

paid in the previous work in regard to the construction of the input vector. To construct a feasible 

model, one should first establish if one or more hidden layers are required. In order to handle the 

non-linear nature of the data, the network requires at least one hidden layer. The size of the 

hidden layer can be determined in two ways. The first is a simple trial and error approach, Le. 
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neurons are added to the layer until the network can provide a close fit to the training data. The 

second is to use a pruning algorithm [Hassibi-Stork, 1993] to remove neurons without affecting 

the accuracy of the representation. The goal of the network design, then, is to create a structure 

that can handle the full range of material characteristics including anisotropy and hysteresis. The 

training system has to be constructed so that an effective model is created for the desired 

application. 

Within a finite element analysis system, the material model is subjected to an arbitrary driving 

field, H. Thus the training scheme for the neural network necessarily includes teaching it an 

appropriate response to each arbitrary H value. 

4.2.2 The Input Vector to the Network 

The design of the input vector for a neural network is absolutely critical. If the inputs are not 

independent, then the training time can increase, with little benefit to the modelling itself. If the 

input set is incomplete, then the result will not provide an accurate representation of the system. 

The proposed method, if it is to eventually handle hysteretic as well as non-hysteretic materials, 

has to retain a history of the behaviour under an arbitrary driving field, H. For a non-hysteretic 

material, only one input is needed and only one output. If the system is anisotropic, then three 

inputs are required - the three orthogonal components of the magnetic field - and three outputs 

need to be considered. If there is no coupling between the three principal directions, Le. if the 

permeability tensor has no off-diagonal terms, the system is in actual fact the equivalent of three 

independent networks. 

However, when hysteresis is considered, the problem becomes somewhat more complex. At any 

point in the M - H plane, the next state depends not only on the current state but also on the 

previous state. The current state alone is not sufficient because, for any given (M, H) pair, there 
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ire a large number of possible M - H trajectories that pass through the point. Thus, enough 

lnfonnation must be provided to detennine which trajectory is being followed. The minimum is 

to determine two states in order to define the curve. While this is overkill for a non-hysteretic 

material. the same input vector can handle both hysteretic and non-hysteretic materials, providing 

a unifonn method for handling all fonns of a given material. The complete input vector for a 

single component of H then consists of 5 variables: the previous (M, H) pair, the current 

( M, H) pair and the next H. The output is the next value of M. 

4.2.3 The Network Architecture 

The architecture is a feedforward neural network trained with a variant of supervised learning to 

determine the parameters (the weights and biases). Five (5) inputs and one (1) output are enough 

to capture and represent the material behaviour within a finite element solver. However, the 

number of units in the hidden layer depends on the complexity of the problem and the required 

degree of accuracy. The number of units in the hidden layer doesn't affect at all the generality of 

the proposed neural network interface for a fInite element solver since this infonnation is 

provided only in the external initialisation file described later in section 4.4. The goal, from the 

point of view of the analysis system. is to determine the appropriate value for M. Le. the 

magnetisation level. given the current value of H, the magnetic field. While. from a number of 

our experiments , six hidden units are enough to represent an anhysteretic material with an 

infinitesimal margin of error as shown in Figure 4.6, the five twelve and one ([5-12-1]) model is 

sufficient to represent magnetic materials of all kinds. 

The final architecture for each magnetic axis of the material consists of five inputs and twelve 

hidden units with a hyperbolic tangent activation function and one output to be predicted. This 
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[5-12-1] model provides a universal framework, since the same interface can be used for all types 

ofmaterials, isotropic or not. 

4.2.4 Training Sets 

Some level of pre-processing is always needed to generate an .appropriate input set for a neural 

network used in a training set. In the particular case of magnetic material modelling, the training 

is critical and must take into account the way in which the neural network will be expected to 

function within the analysis system. A finite element solver will tend, at least in the early stages 

of the process, to present random magnitudes of H and thus the network should be able to work 

effectively in such a context. In the light of work on time series prediction methods using multi­

layered feedforward networks, we have developed our own way of better generating and 

sampling our input to the neural networks. Selecting the appropriate training sets has been a very 

lengthy process and is still a task that requires special consideration. A number of methods are 

explained or referred to by Shimodaira [Shimodaira, 1996], including the "moving window data 

learning" method (MWDL) [peng et al, 1990] and a "similar data selective learning" method 

(SDSL) [peng et al, 1992] . The pre-processing scheme used in this case is described below: 

1. 	 The inputs and the output are scaled in such a way that the maximum values of H and 

M are equal to one. 

2. 	 A lookup table is created and more data are generated using a cubic spline based model. 

3. 	 The inputs are processed so that a large spectrum ofdata with diversified amplitudes and 

sequences can be used to capture the random nature ofa fmite element solver's requests. 

4. 	 The data is resampled at a lower rate, after low pass filtering, using a Chebyshev filter. 

This procedure contributes to appropriately reducing the amount ofdata to be used for the 
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training and aims at achieving a good generalisation. (Validation tests will be done later 

using the whole set of data). 

Figures 4.1 to 4.5 illustrate the above process. And Figures 4.6 to 4.13 present some successful 

experimental modelling results achieved with a number of training algorithms used for the task. 

Those based on a variant of the Levenberg-Marquardt approach [Murray-Wright, 1981; Hagan-

Menhaj. 1994] and on the BFGS described in Appendix 2 outperformed the standard gradient 

descent backpropagation. Special care is taken to verify the generalisation ability of the models 

when a Newton-Raphson. a non-physical search, process is carried out on a limiting ascending or 

descending hysteresis branch. as shown in Figures 4.11 to 4.13. 
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M-H Curve Predicted with a Feed10rward Neural Network 
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Easy axis M-H curves 
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Hard axis M-H descending branCh trained with 5-16-1 FFNN 
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Figure 4.11 Simulating Newton-Raphson Arbitrary Excursions on the Descending Limiting 

Hysteresis Loop (0 represents the random check points) 
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Hard axis M-H rising branch trained with 5-16-1 FFNN 
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Hard axis M-H curves learned by a 5-16-1 FFNN 
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4.3 Neural Network Based Models for Finite Element Solvers 

4.3.1 Introduction 

It has been established in the previous section that magnetic material behaviours can be modelled 

using artificial neural networks, but the real test of the system is its use within a finite element 

code. Several authors have considered the use of an Artificial Neural Network (ANN) as a 

method of providing a functional representation of the hysteresis curve while minimising the 

storage and time requirements [Nafalski et at, 1996; Mandayam, 1994; Xu-Ref sum, 1993]. 

However, while these papers show that it is possible to model the hysteresis curves with a high 
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legree of accmacy, they do not attempt to use these models to solve realistic magnetic field 

)roblems by embedding them within a finite element analysis. Alternate models, based on the 

>reisach structure, have been embedded in finite element analysis systems and have shown good 

:esults [Miano, 1995; Bottauscio, 1995]. The aim of this work is to demonstrate that neural 

letwork material models can be used in a finite element based analysis with comparable results, 

:mt with considerable savings in terms ofcomputer memory and execution time. 

Here, we will describe in more detail, how these models are effectively implemented within a 

finite element program. We will also discuss an experimental implementation of the universal 

material model within a finite element program capable of solving magnetostatic problems by 

accounting for anisotropy with and without hysteresis. The results obtained by test cases are 

presented as well. Both a typical electrical steel (M19) trained as if it were a "generic magnetic 

materiaf' (i.e. isotropic or anisotropic with or without hysteresis) and an hysteretic Preisach­

based material model [Davidson, 1996] are used to test our solution. 

4.4 Material Model Requirements for Finite Element Solvers 

In order to build an interface for neural network material models that takes into account isotropic, 

anisotropic and anhysteretic or hysteretic behavior, one must create a set of routines. Most 

commercial analysis programs such as MagNet [MagNet 5.2, 1996] allow the user to provide 

their own material models through these typical set of routines. In the 3D permanent magnet 

magnetostatic problem solver used as a test bed in this thesis, eight routines are required to 

complete this task. The various steps involved in this process are outlined in detail in Appendix 4 

and a sample code for H - M retrievals is shown in Appendix 5. The code should work with one 

component of H and M at a time. The implementation supports two previous states with the X, 

Y and Z components decoupled. 
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f.4.1 A Finite Element Implementation 

;onsider a problem in which the goal is to track the magnetisation of a device as the current is 

ncreased from zero and then reduced to zero. If the material is initially unmagnetised, it will 

nove up its initial magnetisation curve until the current peaks, and then will track down the 

Lppropriate hysteresis loop. At each current value, the system solves a non-linear magnetic 

)roblem using a Newton-Raphson process. Keeping track of the magnetic field at any point so as 

o identify whether it is on the rising or falling direction is a major concern. During the iterations 

)fthis method, the starting state of the material magnetisation must be kept constant. 

fo generate a complete curve, there is a second iterative process in which the current is stepped 

Ip and the magnetisation is dependent on the previous state. In actual fact, once the 

nagnetisation curves have been defined, the process is identical to that used for a standard 

nagnetostatic solution. Therefore, provided that the time variation of the sources is not fast, the 

;:volution of the magnetisation of an hysteretic material is similar to a succession of quasi-static 

states. At the point at which the field begins to decrease, the data regarding the state of the 

material are stored and form the basis for the next part ofthe hysteresis curve to be used. 

The calculation ofmaterial properties takes place during the matrix assembly. The material model 

receives the values of the magnetic field, H, at each step and immediately returns the 

permeability values. In order to help the convergence of the Newton-Raphson technique, these 

routines also compute the slope of the curve at the current operating point. To do so, the 

following linear material relation is considered in each element: 

(4.1) 
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vhere M is the vector magnetisation and H is the magnetic field vector, Q is a 3x3 tensor that 

epresents the permeability and Mo is the initial magnetisation vector expressing the state of a 

Jermanent magnetic material for example. During the non-linear steps inside the finite element 

;olver, the following events take place: 

(i) The material modelling routines provide the initial values ofQand Mo in each element. 

[il) The finite element solver solves the linear problem. 

(iii) Based on the solution H, the material modelling routines provide new valuesfor Q and Mo. 

(iv) Steps( ii) and( iii) are repeated until the field H stabilises. 

If (HI' MI) are the latest values of the magnetic field and magnetisation, then the following 

calculations in the material modelling routines provide the data that the FEA solver and the 

Newton-Raphson method require: 

dM. 
Q - I (4.2)

ii - dH. 
J 

(4.3) 

4.4.2 A C-Core Test Problem For Speed and Memory Requirement 

The neural network was trained with' data representing the M and H values for a typical _ 

electrical steel (M19) and an interface, as illustrated in Appendix 4 (Figures A4.1 to A4.3), was 

developed to suit the finite element solver, so as to allow this model to be used instead of the 

built-in magnetisation curve model based on a set ofhermite polynomials. 

The topology used is a standard feedforward artificial neural network with five inputs and one 

output. The inputs to the system are the current value of the magnetic field and the previous 

values of the magnetic field and magnetisation, while the output is the new value of 

magnetisation. The system is trained using error backpropagation [Rumelhart et ai, 1986; 
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\leksander, 1995], by presenting it with the M and H field described in section 4.2 and 

.1lustrated in Figures 4.1 to 4.5. For a conventional network based on simple neurons 

mplementing a weighted sum of its inputs, a hidden layer is required in order to model the non­

linear behaviour. In the implementation within a finite element based analysis system, each 

element has access to the defining parameters of the neural network, namely the weights of the 

interconnections. In addition, each element has to store the values of M and H for the last two 

time steps. This is the minimum amount of data needed and thus the approach should address the 

minimum memory requirement stated at the outset of this work. The time to evaluate the required 

value of M for a given H is minimised, since the output of the neural network is just a weighted 

sum of the inputs. 

The two M19 models, the neural network and the conventional polynomial, were then compared 

on the same problem, as shown in Figure 4.14, in tenns of the accuracy of the results, the amount 

of memory used for each model and the operation count in the code. The basic process in each 

case is that a value of H is provided to the curve model and a new value of M is returned. The 

problem was non-linear and was solved using a Newton-Raphson process. The intention was to 

look at testing the generalisation of the neural network over a range of H values. 

The polynomial model for the material has the advantage of being capable of returning the value 

of M, the penneability, 1-1 and owoH. At present, the neural network returns only M; the 

calculation of Jl and owoH is done externally. Clearly, it would be appropriate to train the 

network to generate Jl as well as M. Since these calculations are perfonned using a finite 

difference approximation, there is likely to be some error introduced in the calculations. Figure 
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·.14 shows the error field, i.e. the difference between B values computed, using the two different 


:urve models on the same finite element discretization. The errors have been quantized into about 


, levels of grey and show an average error in the core ofless than 1.4%. For the solution using a 


~ewton convergence tolerance of 0.01 %, flux densities in the core ranged from 0.9 Tesla (below 


mturation) to around 2 Tesla. Differences in the solutions are generated because of the 


lifferences exhibited in the two material curves shown in Figure 4.15. However, the inductance 


~omputed from the two solutions, a measure ofthe total energy in the system, concurred to within 


0.3%. It should be also remembered that the polynomial curve used is only an approximation of 


the measured data and thus the error in the core flux densities between predicted and measured 


data could well be ofthe same order as the errors between the two models. 
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Figure 4.14 Error Plot between Solutions for M19 using Hermite Cubics and the Neural 

Network 
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Figure 4.15 M-H Curve for M19 around the Initial Magnetisation Region 

In terms of the memory required for each model, the polynomial model currently requires 83 

floating point numbers to store the data, whereas the neural network requires 19 for the isotropic 

case - a saving of almost a factor of 4. The operation counts for both methods are given in table 

4.1 for each model. 

It is .true that the operation count suggests that the neural network model is likely to cost about 

20% more than is the case for the polynomial equivalent on each access in terms of CPU time. 

However, this is only a small component of the total overall solution process and the neural 

network system was measured as being 10% slower than the polynomial approach. In terms of 

Newton convergence, the polynomial model required 25 steps, whereas the neural network took 

20. The difference here is probably due to the computation of JL as described earlier. The average 
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lumber ofconjugate gradient steps for each Newton step differed by 5 in 100 (the network being 

arger). 

Table 4.1 Comparison of Operation Counts 

Polynomial Neural 
Network 

Additions 12 14 
I 

Multiplications 18 17 

Divisions 3 6 

Exponentials 0 2 

Comparisons 4 0 

Other sample experiments with various computational tolerance have shown that both Newton 

and successive substitution solution techniques can be successfully used for the two M19 models. 

When Using Newton's approach, as shown in Table 4.2 for a computational tolerance of 0.01 %, 

the neural M19 model appears to be faster than the Hermite polynomial model, with convergence 

steps of 20 and 25 steps respectively, as we have said earlier. However, when the tolerance 

increased, the number ofconvergence steps is almost the same. Results in Table 4.2 show as well 

that the computed energies are very close and the overall largest errors for the flux density are 

within the acceptable limit of experimental measurement errors. 
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)verall, it appears that the neural network model performs as well as more conventional models 

md is somewhat more efficient in terms of memory requirements, although the amount of 

nemory required for isotropic, non-hysteretic materials is fairly small, in both cases. 
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Table 4.2: A C-Core Test Problem for M19 Models using a Finite Element Analysis Solver. 
Testing for Convergence and Solution Techniques 

Tolerance 0.01 % 0.01 % 

Energy Co-energy LargestB Energy Co-energy. Largest B 
(Joule) (Joule) Error (Joule) (Joule) Error 

Hermite 
683 690 688 691

M19 

5.6% 3.4% 

Neural 645 690 688 691
M19 

·-"'.t 

Successive Substituti~n Method 

Tolerance 1% 0.01 % 

Energy Co-energy Largest B Energy Co-energy LargestB 
(Joule) (Joule) Error (Joule) (Joule) Error 

Hermite 689 691 686 690
M19 

0.1 % 1.1 % 

Neural 688 691 678 691
M19 

Similarly~ Figures 4.16 to 4.18 show results obtained from tests carried out on a C-core problem 

to make sure that anisotropic material properties can be handled as well. Both solutions for a 

neural network approach and the hermite polynomials M19 model are used in this case. We have 
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treated the C-core as an anisotropic material by assuming the permeability of M19 in the y-

direction and the permeability ofair in the x-direction. The results obtained are quite similar. We 

can see as expected that the H -field is stronger along the horizontal path of the flux lines and 

weak along the vertical paths. 

Figure 4.16 A C-Core H-Field Plots Results from MagNet [MagNet 5.1, 1996] with the 

Neural Network Based Material Model Interface. 
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4.4.3 The Advantage of Neural Networks 

In the approach outlined in this thesis, each magnetic material to be used in a particular problem 

would have its own weight set, which of course characterises its response, but would use a 

network architecture common to all magnetic materials. The network for a non-hysteretic 

material would be the same as that for a material exhibiting hysteresis, thus making the 

representation uniform and universal. 

In addition, in a magnetic device, a material is likely to be operating not only under a distributed 

set of H values, but also within a given range of temperatures. With models currently in use, a 

whole range ofcurves must be constructed to represent temperature variations as shown in Figure 

4.19. The solution system then interpolates between them to determine an appropriate value for 
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the penneability and/or M . The neural network architecture described above can be modified to 

include an extra input that represents the temperature of the material. It is then trained with 

information that includes both the magnetic field and temperature level. The final network will be 

able to generate the appropriate response without the need for explicit interpolation. This is likely 

to both simplify the system, reduce the amount of memory required to represent a material and. 

reduce the problem-solving time. 

Prediction of the Temperature Dependent Anhysteretic Curves 
1 
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Figure 4.19 Neural Network Prediction of the ParalDetrized vs TelDperature of tile 

Modified Jiles-Atherton Model described in section 2.3 
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Chapter 5 


5 Future Work and Conclusions 

5.1 Future Work 

Future work on solving electromagnetic problems using the proposed model should 

follow these lines: 

Improvements need to be made toward a more efficient automated knowledge acquisition 

process, particularly the investigation of a way of implementing other schemes of pre­

processing algorithms, or using artificial neural networks to classify and cluster the 

generated data beforehand to gather the best sequences of training data and their number. 

Such a technique would reduce the required training time and remove the burden on a 

user not familiar with artificial neural network methods. 

In a magnetic device, a material is likely to be operating not only under a distributed set 

of H values at various frequencies but also at various temperatures, not to mention stress 

effects. It is clear that artificial neural networks are more appropriate since they can, in 

this sense, allow a straightforward inclusion ofdiverse factors and considerations. 

Material representations can be stored in neural database systems [Bower-Beeman, 1994] 

so that they can be retrieved when required during a magnetic device optimisation or 

simulation task. A number of problems have to be solved and analysed within an 

optimisation or optimization process many parameters are to be tried. Thus, for example, 

getting a neural based material model to quickly replace another could be useful. 
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Today, both in the market place and in the research field, the provider, be it the 

manufacturer or the vendor, must furnish the :functional characteristics of materials. 

Thus, research in this area is a key concern for all parties. An approach combining the use 

of :functional material characteristics instead of simple structural behaviour, together with 

soft computation techniques such as neural, genetic and fuzzy systems, could be viable in 

many areas. In other words, what is needed are "intelligent", multi-purpose materials 

representations. 

As we all know, the finite element method provides a technique involving the 

transformation of field equations into energy:functionals to be minimised using some 

optimisation algorithms. An approach to be considered in the future could be to use the 

energy :functional information as a priori knowledge to train the selected artificial neural 

network. The appropriate knowledge source or theoretical base can be, rather than a 

Preisach-based phenomenological model, grounded on energy density based B - H curve 

modelling, as suggested by Silvester and Gupta [Silvester-Gupta, 1991] who show that a 

full description is available if the stored energy density is known for any given magnetic 

state of the material. These new considerations should help bring about another approach 

in solving electromagnetic problems using finite element or boundary element methods. 

The B - H - M behaviour will then not be the sole and ultimate modelling goal. 

5.2 Conclusions 

The research reported here is an example of using a neural-based approach to model and 

utilise magnetic materials. The neural network serves as the memory component for 
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complex non-linear dependencies, while the less computationally intensive tasks are 

accomplished with conventional analysis techniques. The approach provides a uniform 

method of handling all materials, rather than using different representations for different 

properties. The performance of the system is heavily dependent on the architecture of the 

network chosen as well as on the input-output data. This seems to be particularly 

promising for a wide range ofpractical applications. 

The capabilities of various artificial neural network capabilities for modelling non-linear 

systems with unknown dynamics and their identification have been presented and verified 

through numerical examples. The experiments carried throughout the frame of this thesis 

clearly show that supervised multilayer non recurrent feed-forward neural networks best 

suit both the memory and speed requirements to run large finite elements problems. 

Recurrent netWorks have to perform more difficult task than that of a feed-forward 

network. In fact, a recurrent network not only has to make the prediction, it has to figure 

out what information it needs to keep about past data points in order to make a prediction. 

Thus it needs more neurons in its hidden layers so that there is enough variation in 

weights and biases to form a precise enough representation ofpast inputs for the problem. 

In our case, the past data information, the two previous states, are known beforehand. 

Finally, the major problems concerning the recurrent networks is that related to their 

stability. 

The utility of CMAC and RBF networks in modelling have been shown in our previous 

work. However, the experiments with CMAC networks show the need for finding 

techniques in adaptively selecting the quantization level in order to cope with the function 

to be learned so as to reduce the required memory space and the speed of the learning 
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process. In the case of the standard RBF networks another drawback is their inability to 

deal with duplicated input data that cause singularity problems. This drawback is not 

avoidable without using a number of preprocessing strategies such as clustering the input 

data. Standard RBF networks suffer. as well, from the curse of dimensionality; Le. when 

the number of inputs increases, the number of neurons in. the hidden layer of a RBF 

network grows exponentially. 

Discussions and experimental work in this thesis suggest as well, that to achieve a 

generalised magnetic material model, multiple established material models identifying 

clearly the influence of some factors such as the temperature, the frequency and stress 

should be explicitly used. Modular artificial neural networks architectures can be thought 

of for this purpose. 

In this thesis, we have shown a possible approach for integrating neural network based 

magnetic materials models, both isotropic or anisotropic and with or without hysteresis 

within a large-scale finite element analysis system in an efficient manner - the 

computation ofmagnetisation values being reduced to a simple weighted sum calculation. 

The results obtained have demonstrated that the neural network model can provide a 

computational model that has a cost in terms of time comparable to that of more 

conventional polynomial-based systems, but that does have a reduced requirement in 

terms of memory. However, while the basic process has been proven, there is still more 

work to be done in producing a complete system handling major and minor loops. 

Preprocessing the input-output information is not a simple task. To take into account the 

broad range of data needed to train the neural network, special care has been taken to 

ensure that both the material physical model that can be acquired using fixed sequences 
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of states and the non-linear solver, the Newton-Raphson method which uses random 

search techniques, are satisfied. For this purpose, we have used sequential spline 

inteIpolation technique and filtering methods to respectively grow the number of training 

data points and appropriately distribute them as described in section 4.2.4. 

Provided that a great number of experimentally validated data points are available for a 

large number of materials and that measurement techniques can isolate differing factors 

such as temperatures, frequencies and stresses, the use of techniques based on neural 

networks for modelling magnetic materials can be automated with a higher degree of 

accuracy. 
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Appendix 1 Principle of construction of the 3D Moving 
Vector Preisach Model's Lookup Table 

----~~~----_r- x 

z 

M (H ,8,;), My (Hy,8,;) , M z(Hp 8,;) are functions for evaluation of magnetizationx x

components from first octant data implemented in reference [Oti, 1990]. 

9' =cos-l [IHxI/Hsin8L 8= cos-1QHzI/H] 

Case 1 : Hl[;;:::O 
s=1 : 

s =-1 


if IHI < Hc(8,;) 


Mx = -Mx(-Hx,8,;);My = My (H,.,8,;);Mz =M z (H%>8,;) 

else 
Mx =M x(Hx,8,;);My = My (Hy>8,;);Mz = M z(Hz ,8,;) 

end if; 

Case 2 : Hx sO 
5=1 : 

if IHI < Hc(8,;) 

Mx = M z (-Hx,8,;);My = My (Hy,8,;);M =M (Hz,8,;)z z 

else 
Mx = -Mz(-Hz,8,;);My = My (Hy,8,;);Mz = Mz(Hz,8,;) 

5 +--1 
end if 

s= -1 

Table At : Computation of the Components of Magnetisation from the Fint Octant 
Data [Oti, t990] 
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Appendix 2 Multilayer Feedforward Neural Network 

Learning Algorithms 

Figure Al.l Multilayer Feedforward Neural Network Architecture 

The figure A2.1 above shows the architecture of a p +1 layer feedforward neural 

network with input and output vectors y~(j =1,.· ·,no)and Yf(i =1,. .. ,np ). 

The output yf is computed by the equation 

nI'-l JPP P p-IY; = J; 
( 

LlUijYi +b; (A2.l) 
Jal ' 

where WP is the weight matrix related to the pth layer, where bj(i =1, ...• p) are the bias 

vectors for each neuron i and where J;P[.] is the transfer function discussed earlier in 

this thesis. 

The learning occurs when the weights stabilise after a cost function minimisation process. 

The most common cost function is the quadratic error between the computed and the 

desired ouputs, respectively, yf and Yd , determined by 
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(A2.2) 

where es(k) =y~(k)- yS(k, WI , ... ,WP}, where n)s the number of samples and np is 

the length ofthe output vector y. 


A number of training strategies are used to achieve the quadratic error minimisation task, 


such as the gradient descent and backpropagation of error, the Newton and Quasi-Newton 


methods as well as the Levenberg-Marquardt techniques. 


The gradient descent and backpropagation of error technique 

The goal is to evaluate the error on the output neurons of the hidden layers by calculating 

the error on the output layer. For example, the gradient evaluated at the q'h layer with nq 

neurons is given by the following expression 

oJ n. n, OJ ays(k ) 
g% = -~w-q = I I -;:).,-"'S(k-:-) ~wq (A2.3) 

U ij k",1 s",1 v)' U Ii 

and the weight update formula is given by the expression 

W(k+ 1)= W(k)-TJ H(k)V(k) (A2.4) 

where V(k} is the gradient, TJ is the learning coefficient updated at each iteration 

andH(k} is the estimation of the inverse Hessian, i.e. the matrix of second derivatives of 

the error function. 

Newton Technique 

The Newton approach is based on a Taylor series approximation, but truncated after 

three terms, as given by 
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(A2.5) 

After dropping higher order tenns , the equation (A2.5) yields 

(A2.6) 

where l(x;xk ) is a functional approximated at a given pointxk • 

Ans finally, an iterative sequence can be inferred so that the gradient ofl(x;xk ) = Oat the 

next point Xk+l' After a few manipulations, the following equation will arrived at: 

(A2.7) 

Quasi-Newton Method 

This approach makes use of line searches, a constrained minimisation along a specific 

search direction. The Quasi-Newton method uses successive steps to construct an 

approximation to the inverse Hessian matrix. Brayden, Fletcher, Goldfarb and Shanno 

(BFGS)[Fletcher, 1987] have shown that H(k) can be evaluated at each iteration using 

the following simplified relation 

(A2.S) 

where 

A=V(k+l)-V(k) (A2.9) 

and 

A = -qH(k)V(k) (A2.lO) 
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Levenberg-Marquardt Learning 

To alleviate the problem of computing a large number of second derivatives in the 

Hessian, the Levenberg·Marquardt method uses an approximation to the Hessian. This 

can be quickly calculated during the backpropagation proc~ss, that produces the gradient. 

In this case, the weights are adjusted according to equation 

(A2.11) 

where: 

is the Jacobian, i.e. the derivatives of each error with respect to the weights; Jb 

e is the error vector; 

P. a scalar, is adjustable with respect to the error vector ek • (The smaller the error, the 

larger pis. ) 
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Appendix 3 Results from Adaptive Logic Networks 

A Sample of Experimental Data BHALNOO.dat 

B Field (AIm) B(Tesla) 

10000.000000 1.027791 

8000.000000 . 1.026574 

6000.000000 1.023828 

4000.000000 1.014892 

3000.000000 1.002775 

2000.000000 0.975148 

1500.000000 0.945954 

1250.000000 0.923952 

1000.000000 0.896448 

750.000000 0.859994 

500.000000 0.815234 

250.000000 0.758208 

0.000000 0.683723 

250.000000 0.523001 

500.000000 0.223567 

500.000000 -0.223565 

750.000000 0.160691 

1000.000000 0.472657 

1250.000000 0.621799 

1500.000000 0.768766 

2000.000000 0.926253 

3000.000000 0.991367 

4000.000000 1.009740 

6000.000000 1. 022971 

8000.000000 1.026574 

10000.000000 1.027791 

!ill (incremental variation) 

-0.000002746 

-0.000008936 

-0.000012117 

-0.000027627 

-0.000029194 

-0.000022002 

-0.000027504 

-0.000036454 

-0.000044760 

-0.000057026 

-0.000074485 

-0.000160722 

-0.000299434 

-0.000384258 

-0.000312167 

0.000312166 


0.000146942 


0.000146967 


0.000157487 


0.000065134 


0.000018353 


0.000013231 


0.000003603 


0.000001217 


0.0 

0.000001217 
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Program in ALN Definition Language to Learn an Hysteresis Behavior 

IIBHALN01.ADL 

/ / create ALN with 3 variables, third variable is the output 

ALN aBHALNOl(3, 3) 

{ 

var 1 

{ 


min = -10000; 


max = 10000; 


epsilon = 0.001; 


wmin=O; 

}; 


var2 


{ 


min = -1.5; 


max = 1.5; 


epsilon = 0.0001; 

wmin= 0; 

}; 

var3 

{ 

min = -0.0004; 
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max = 0.0004; 

epsilon = 0.00000005; 

}; 

II The ALN will have 7 layers, and fanin 2 for the top layers. 

1/ The numbers ofelements in successive layers 

1/ (top=output, to above the bottom) are 1,2,4,8, 16,32. 

1/ The last fanin is also 3, so there are 96 linear-threshold elements 

1/ in the bottom (= 7th) layer. If each linear piece matches three data 

1/ points exactly, there are easily enough pieces for al1144 data points. 

tree = OR(7, 2, 3, FULL); 

};@echooff 

I/MULT.SHL 

1/ Program in ALN Shell Language for hystereis path tracking 

1/ First make sure there are no objects in the working space 

clear 

I/load in ALN from BHALN01.ADL 

LoadADL" bhalnOI.adl " 

II Train the tree on the data 

1/ echo is turned on so we can get the train command 

1/ interactively if required high learning rate to start 

/I with, in order to get.a fast, coarse approximation 

@echoon 

II Train an ALN, using the data provided in the bhalnOI.dat 
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II file, for 500 epochs with RMS tolerance for delta B egals 


110.00001, and a learning rate 0.1 


aBHALN01.Train(500, 0.00001, 1.0, It bhaln01.dat It) 


@echooff 


/1 continue training with a slower learning rate to II tune It 


/I the surface for better generalization 


@echoon 


aBHALN01.Train(SOO, 0.000005, 0.1, tI bhaln01.dat II) 


@echooff 


/I Evaluate on training set 


aBHALN01.0utputFmt(3, r) 


aBHALNOl.Eval(3, 144, It bhalnOl.dat ", "bhalnOlo.dat ") 


II Test generalisation on some fractional numbers 


IlaMult.Eval(3, 14400, " frac.dat ", " fracout.dat ") 


II Create a 41ayers decision tree on variable 3 and save 


/I for use in multest.shl 


DTREE dBHALNO 1 (aBHALNO 1 , 3,4) 


dBHALNOl.Write(" BHALNOl.dtr "); 
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Plot of Bh.1rill.daI: column I YS column 2 

0.5 

o 

·0.5 

·1~--------=--~ 

·1.5+---------+-----<--------------+------.. 
·10000 .8!Dl ·6000 ·4000 ·2000 o 

Figure AJ.l B-H Curve Ploted from an ALN 

Generated Decision Tree me 

II BHALNOl.dtr exported on Tue May 19 17:35:46 1998 

II ALN Decision Tree file 

VARIABLES = 3; 

II Maximwn and minimwn values for the field (AIm) 

xO: [-10000, 10000]; 

II Maximwn and minimwn values for the induction (Tesla) 

xl : [-1.5, 1.5]; 


II Maximwn and minimwn values for the incremental variation 


/I of the induction (Tesla) 


x2 : [-0.0004,0.0004]; 


OUTPUT = x2; 


/I The training gives 96 piecewise linear functions as shown bellow 


LINEARFORMS = 96; 
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0: -1 (x2 + 5.525780289462935E-005); 

1 : -1 (x2 + 5.314660343819683E-005); 

2: -1 (x2 + 5.509529264766634E-005); 

3: -1 (x2 + 5.968951847731343E-005); 

4: -1 (x2 + 5.719889198657595E-005); 

5: -1 (x2 + 5.866102874427959E-005); 

6: -1 (x2 + 5.70936612947134E-005); 

7 : -1 (x2 + 4.544087631198782E-005); 

8: -1 (x2 + 5.784146579023843E-005); 

9: -1 (x2 + 4.144284850500426E-005); 

91 : -1 (x2 + 5.125856885642749E-006); 

92: -1 (x2 + 3.619435948892792E-006); 

93 : -1 (x2 + 2.421819194630696E-006); 

94: -1 (x2 + 1.600902132381746E-006); 

95: -1 (x2 + 3.435025933796655E-006); 
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Appendix 4 Neural Networks Based Material Model 
Interface Integration and the Requirements for Finite 
Element Implementation 

Routine: newh 

The routine handles the neural network materials, that we have called, for our purposes, 

"PMNN". Any other materials in the problem are handled from the material database in 

the usual way. The routine uses the latest estimate of the magnetic field to update the 

state of the material in the tetrahedron for a three dimensional solution or triangles for 

2D. In this way, the field and magnetisation components previously computed are 

provided to the mline routine. If the field is converged at the end of a nonlinear iteration, 

then the flag "Solution_Converged" is set to 1; otherwise, it is set to O. 

Routine: mhline 

The routine provides a linear M - H model ( M = QH+ Mo) that the finite element (FE) 

solver will use to take the next step in the iteration. First-order tetrahedra (or triangles) 

only are considered. (Thus H and M do not vary with position in the tetrahedron.) The 

ma~x Q is symmetric, so only the lower triangle will be used by the FE solver. If this is 

not one of the tetrahedra in the user's material database, the Not_Present flag should be 

set to 1. Then, the solver will get the linear model from the material database in the usual 

way. 
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Routine: getm 

The routine provides the magnetisation in a tetrahedron and reports the magnetisation 

components mx,my,m ' previously stored by the newh routine.z 

Routine: initmh 

The routine initialises the user's material model for one tetrahedron. After this 

initialisation, calls to mhline or getm for this tetrahedron should return valid answers. If 

this is not one of the tetrahedra in the user's material database, the Not_Present flag 

should be set to 1. Then the solver will get the linear model from the material database in 

the usual way. This routine will be called for each tetrahedron, once for each problem 

defined. It initialises the input MH. The initialisation could start at 0 and the path is the 

first magnetisation-saturation-descending curve-ascending curve. Other starting points 

could be considered (e.g. remanence at the state previous to the former one (delay 2), i.e., 

Mn-2 =Mr or at the saturation point where Mn_2 =Ms' 

Routine: openmh 

The routine opens the user's material model database. If the database does not exist, the 

flag" M - H _Database" is set to 0; otherwise, it is set to 1. This routine will be called 

just once per run of the solver. It reads "PMNN.INI " , i.e., the neural network 

initialisation file, as shown in Figure A4.3. Memory for the neural network weight 

matrices and biases are allocated and when a neural network material model is 

considered, a switch is made to a single input single output (anhysteretic) or multiple 

inputs single output (hysteretic). 
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Routine: closmh 

The routine closes the user's material model database. If the database does not exist, the 

flag" M - H _Database" is set to 0; otherwise, it is set to 1. The routine will be called 

just once per run of the FE solver. 

Routine: inmh 

The routine checks the tetrahedra status. If this is not one of the tetrahedra in the user's 

material database, the Not_Present flag should be set to 1. Then the solver will get the 

model from the material database in the usual way. 

upen 


Initialise neural net weights (read in PMNN.INI) 

and/or read last 2 previous states from the material database 

for each Newton step: 

{ 

Matrix Assembly 

For each element { 

For first time 


call initmh 

Calculate H 
Call newh (input the H vector to material database) 
Call mhiine to get Q and 110 (user defined I1-H 

relationship) 


} 


Solve the system ofequations 


} 

cl08emh (update the state ofthe material for each element in the 
database) 

Figure A4.1 Implementation Steps 
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Update state 
No of material in 

database I 

Matrix Assembly for each element 

I'Initialise 
yes ,material state, 

Yes 

Figure A4.2 Implementation Flowchart 



- - - - - ---
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Figure A4.3 The Neural Network Initialisation File (pMNN.INI) 

# Infonnation switch: Use Artificial Neural Networks Training 
# Results and switch to a Multiple Inputs Case (200); or Single 
# input single output case (100) 

ANN 200 

# Matrices (F) and Biases (B) Files to read for each axis 

FIX NeuraCNet_First_Layer_ Weights_Matrix_for_Axis_X.dat 
F2X Neural_ N et_ second _Layer_ Weights_Matrix _for_Axis _X.dat 
FlY Neural_Net_First_Layer_ Weights_Matrix_for_Axis_Y.dat 
F2Y Neural_Net_second_Layer_ Weights_Matrix_for_ Axis_ Y.dat 
FIZ Neural_Net_First_Layer_ Weights_Matrix_fof_Axis_Z.dat 
F2Z Neural_Net_second_Layer_ Weights_Matrix_fof_Axis_Z.dat 
BIX Neural_ Net_Input_ Units_Bias_ Vector_for _Axis _ Xdat 
B2X Neural Net Hidden Units Bias Vector for Axis X.dat 
BIY Neural_Net_Input_Units_Bias_ Vector_for_Axis_ Y.dat 
B2Y Neural_Net_Hidden_Units_Bias_ Vector_fof_Axis_ Y.dat 
BIZ Neural_Net_Input_Units_Bias_ Vectof_for_Axis_Z.dat 
B2Z Neural_Net_Hidden_Units_Bias_ Vectof_for_Axis_Z.dat 

# Number oflnputs (N) 

N 5 

# Number ofHidden Units (MN) 

MM 12 

# Number ofoutputs (P) 

P 1 
# Saturation Field Strength (Oe) fOf X, Y, Z Axis respectively 

HXMAX 10000 
HYMAX 10000 
HZMAX 10000 

# Saturation Magnetisation (emulcc) for X, Y, Z Axis respectively 

MXMAX 600 
MYMAX 600 
MZMAX 600 
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Appendix 5 A Sample Artificial Neural Networks Material 
Model Interface Routine for FE Solvers 

/* Author: Hamadou Saliah-Hassane 

'" 
'" propagate is called in the newh, mhline and inmh routines to compute M(R) 
* given the following parameters: 

* 
'" 
'" 

tet Tetrehedra no. 

* idir Index ofthe field direction (1, 2 or 3, standings for x, y or z) 

* 	 (hI, mgl), (b2 mg2), (h3, mg3) Respectively two previous magnetisation states and the 
current state. * 

* 
matnam 	 Material name * 

* 	 hxmax, mxmax, hymax, mymax, hzmax, mzmax :Saturation magnetisation for x, y and z 

* 
* 
*/ 

void propagate(int tet, int idir, double *hI, double *h2, double *h3, double *mg3, 
double *mg2, double *mgI) 

{ 

intj, k; 
double B=O; 

char matnam[5]; 
double hxmax, hymax, hzmax; 
double mxmax, mymax, mzmax; 

strcpy(matnam, tetmat[tet-l ]); 

if( !strncmp(matnam,"PMNN",4» { 
hxmax = HXMAX; hymax = HYMAX; hzmax = HZMAX; 
mxmax =MXMAX; mymax =MYMAX; mzmax =MZMAX; 

} 
else if( !strncmp(matnam,"PMNl ",4) ) { 

hxmax =3*HXMAX; hymax = 3*HYMAX; hzmax = 3*HZMAX; 
mxmax = 3*MXMAX; mymax =3*MYMAX; mzmax = 3*MZMAX; 

} 
else if( !strncmp(matnam,"PMN2",4) ) { 

hxmax = HXMAX; hymax =HYMAX; hzmax =HZMAX; 
mxmax = MXMAX; mymax = MYMAX; mzmax = MZMAX; 

} 
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/* Build the input vector */ 

if (idiI 1){ 
MH[1]=h3[1]lbxmax; MH[2]=mg3[1]/rnxmax;MH[3]=h2[1]/hxmax; 
MH[4 ]=mg2[ 1 ]/mxmax; MH[ 5]=h 1 [I ]lbxmax; 

} 

if (idiI 2) { 
MH[I ]=h3 [2]/hymax; MH[2]=mg3 [2]/mymax;MH[3]=h2[2]/hymax; 
MH[ 4 ]=mg2[2]/mymax; MH[5]=h 1 [2]/hymax; 

} 

if (idiI 3) { 
MH[1]=h3[3]/hzmax; MH[2]=mg3 [3]/mzmax;MH[3 ]=h2[3]/hzmax; 
MH[4]=mg2[3]/mzmax; MH[ 5]=hl [3]/hzmax; 

} 

1* Propagate the input MH through layer M M, N and M 
* with 
* Wl(X, Y and Z) and W2(X,Y and Z) First and second layer weights *1 
*Bl(X, Y and Z) and B2(X,Y and Z) Biases *1 


* 

1* Layer N->M *1 
for (k= 1;k<=M;k++) { 


M12[k]=O.O; 

for G=I;j<=N;j++) { 


if (idh I) 

M12[k]+=MH[j] *W lX[k][j]; 


else if (idh 2) 

M12[k]+=MH[j]*WIY[k][j]; 


else if (idil 3) 

M12[k]+=MH[j]*WIZ[k][j]; 


} 
if (idit 1) 


B = BIX[k]; 

else if (idiI 2) 


B = BIY[k]; 

else if (idit 3) 


B = BIZ[k]; 


M12[k]=1-2J(exp(2*M1 2[k]+B)+1); 

} 


/* Layer M->P */ 
I*M12[M+l]=1.0;*! 

for (k=1;k<=P;k++) { 

mgl [idir]=O.O; 

for G=l;j<=M;j++) { 


if(idiI 1) 
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mgl [idir]+=M12[j]*W2X[k.][j]; 
if(idit 2) 

mgl[idir]+=M12[j]*W2Y[k.][j]; 
if (idh 3) 

mgl [idir]+=Ml 2 [j]* W2Z [k][j]; 
} 

if (idiI 1) 
B=B2X[k]; 


else if (idiI 2) 

B =B2Y[k]; 


else if(idil 3) 

B =B2Z[k]; 


mgl[idir] = 1-2J(exp(2*mgl[idir]+B)+1); 

} 

if (idir = I) 


mgl[l]*=mx:max; 
else if (idir = 2) 

mgt [2]*=mymax; 
else 

mgt [3]*=mzmax; 
} 

/* 
nnet with a single input and a single output 

*/ 

void propagateSISO_BP(double *h, double *mg) 

{ 

intj, k; 

/* Propagate the input given MH * / 

h[l]/=HXMAX; h[2]/=HYMAX; h[3]/=HZMAX; 

1* Layer N->M */ 


for (k=l;k<=M;k++) { 

MI2[k]=O.O; 

for G=l;j<=N;j++) 


MI2[k]+=h[j]*WIX[k][j]; 

M12[k.]=2J(1 + exp(-2*(M12[k]+Bl[k])))-1; 


} 


1* Layer M->P *1 
for (k= 1 ;k<=P;k++) { 


mg[k]=O.O; 

for G=t j<=Mj++) 


mg[k.]+=M12[j]*W2X[k][j]; 
mg[k] += B2[k]; 

} 
mg[l]*=MXMAX; mg[2] *=MYMAX; mg[3] *=MZMAX; 

} 


