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Abstract

In this thesis we study the structure of almost all T -free graphs for any tree T , that is graphs

that do not contain T as an induced subgraph. Let ⌫(T ) be the size of a maximum matching

in T . We show that almost all T -free graphs can be partitioned into w(T ) := |V (T )|�⌫(T )�1

parts such that each part has a specific structure. Specifically, each part is F -free for all

F 2 F , where F is a collection of graphs on at most 4 vertices. This result allows us to

show that for every tree T , for almost all T -free graphs G, every induced subgraph G0 of G

satisfies �(G0)  w(T ) · !(G0). Moreover, for every tree T , almost all T -free graphs G have

�(G) = !(G). This proves an asymptotic version of the Gyárfás-Sumner conjecture.
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Abrégé

Dans cette thèse on s’intéresse à la structure typique d’un graphe sans sous-graphe induit

isomorphe à un certain arbre T donné. Soit ⌫(T ) la taille d’un couplage maximum dans T , et

soit w(T ) := |V (T )|� ⌫(T )� 1. On montre que presque tous les arbres sans T induit peuvent

être partitionnés en w(T ) parties, toutes d’une structure très particulière. Plus précisément,

chaque partie est sans F induit, pour tout F 2 F où F est une collection de graphes à au plus

4 sommets. Ce résultat nous permet de prouver que pour tout arbre T , presque tout graphe

G sans F induit est tel que tout sous-graphe induit H de G satisfait �(H)  w(T ) ·!(H). De

plus, pour tout arbre T , presque tout graphe G sans T induit satisfait �(G) = !(G). Ceci

confirme une version asymptotique de la conjecture de Gyárfás-Sumner.
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Preface
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are joint work with Prof. Bruce Reed.
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Chapter 1

Introduction

Graphs are very natural and concrete objects which arise frequently in daily life. For example,

while browsing the internet, taking the metro to work or trying to challenge one nephew by

asking him to draw without lifting his pencil from the paper. Graphs also appear

in many branches of science, for example, in computer science, biology, physics, linguistics,

sociology and elsewhere. Graphs model a symmetric relation between entities. We call those

entities vertices. If there is a relation between two vertices, then we say that there is an

edge between those two vertices.

The study of graphs without some fixed substructure have received considerable attention

during the last century. There are two ways in which substructures are commonly forbidden

in graphs. A graph H with h vertices is a weak subgraph of a graph G, if it is possible

to find in G a set X of h vertices where by taking a subset of the edges in G all of whose

ends lie in X, we get a copy of H on X. For example, a graph G with n vertices and all the

possible edges between the vertices contains any graph H on at most n vertices as a weak

subgraph. A graph H with h vertices is an induced subgraph of G if it is possible to find

in G a set X of h vertices where by taking all the edges in G with both ends in X, we get a

copy of H on X. For example, a graph G with n vertices and all the possible edges between

the vertices contains as an induced subgraphs only graphs H on at most n vertices and all

the possible edges between the vertices of H. Let H be a graph. A graph G is H-free if it
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does not contain an induced copy of H.

There are many interesting questions regarding the properties of graphs which do not

contain some graph (or graphs) as an induced subgraph. We mention some of the most

famous such questions. We start with the Erdős-Hajnal conjecture [25]. Roughly speaking,

the conjecture asserts that for any graph H, any graph G which is H-free contains a large

set of vertices X such that either there are all the possible edges between any pair of vertices

on X (the graph induced on X is a clique) or there are no edges on X at all (the graph

induced on X is a stable set). Large here means that the set X must be of at size at least

|V (G)|" for some " > 0. For a graph G, we denote by V (G) the vertex set of G and by E(G)

the edge set of G.

Conjecture 1.0.1 (Erdős-Hajnal [25]). Let H be a graph, then there is an " = "(H) > 0,

such that every H-free graph contains a stable set or a clique of size at least |V (G)|"(H).

The Erdős-Hajnal conjecture is still open and appears to be very di�cult to resolve (see

a survey in [17]).

In some cases it is useful to partition a given graph G into a minimal number of stable

sets. For example, in the famous four colour problem, we want to colour countries on a

map with only 4 colours, such that any two neighbouring countries receive di↵erent colours.

For this problem it is possible to define a graph whose vertex set are the di↵erent countries,

and two vertices which represent two countries have an edge between them if and only if

they are neighbouring on the map. A stable set in this case represent a set of countries

such that no two countries share a border. The number of colours needed to colour the

map is equal to the minimal number of stable sets in which we can partition the graph.

The chromatic number of a graph G, which is denoted as �(G), is the minimal number

of stable sets into which it is possible to partition the vertex set V (G) of G. Equivalently,

�(G) is the minimal number k such that there is a function c : V (G) ! [k] where for each

{v1, v2} 2 E(G), c(v1) 6= c(v2). The graph which we get from the neighbour relation of the

countries in a map is an example of a planar graph. A planar graph is a graph which can

be drawn in the plane such that any two edges can intersect only at a vertex. The following
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result was shown by Appel and Haken in 1976.

Theorem 1.0.2 (The Four Colour Theorem [3]). Let G be a planar graph, then �(G)  4.

An immediate observation that one can make is that the chromatic number of a graph

G must be at least the size of a maximum clique in G. This is true because no two vertices

in a clique can be in the same stable set (equivalently, receive the same colour). We call the

size of a maximum clique G, the clique number of G, and we denote it by !(G).

The reverse inequality �(G)  !(G) does not hold in general. A path in a graph G

is a sequence of vertices v1, v2, ...vk such that all the vertices are di↵erent, and for every

1  i  k � 1, {vi, vi+1} 2 E(G). A cycle in a graph G is a path where the first and last

vertices are the same. A simple example of a graph G for which �(G)  !(G) is false is a

cycle on 5 vertices C5 = . For C5, !(C5) = 2 and �(C5) = 3.

A graph G in which every induced subgraph G0 satisfies, �(G0)  !(G0), is called a perfect

graph. Claude Berge conjectured in 1963 [11], that a graph is perfect if and only if it does

not contain as an induced subgraph an odd cycle with at least 5 vertices or the complement

of an odd cycle with at least 5 vertices, where the complement of a graph G is the graph

on the same vertex set but with the set of edges being the complement of the set of edges

in G. For example the complement of C7 = is C7 = . Berge’s conjecture was

open for 40 years and was proved in the groundbreaking work by Chudnovsky, Robertson,

Seymour and Thomas [18].

Theorem 1.0.3 (The Strong Perfect Graph Theorem [18]). A graph G is a perfect graph if

and only if no induced subgraph of G is an odd cycle with at least 5 vertices or a complement

of one.

As was mentioned it is not true that �(G)  !(G) for any G, but one can ask if it might

be the case that for any G, �(G) can be bounded by some larger function of !(G), as, for

example, by !(G)2 or 2!(G). The answer for that question is also no. Mycielski [40] gave
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Figure 1.1: G0 constructed from C5.

a construction of a family of graphs with clique number 2 and arbitrarily large chromatic

number. We call a clique on 3 vertices a triangle.

Theorem 1.0.4 (Mycielski [40]). Let G be a triangle-free graph, and let G0 be a graph

constructed from G as follows,

• The vertex set of G0 is V [ V 0 [ {u} where V and V 0 are two copies of the vertex set of

G.

• The graph induced on V is G.

• Let v0 2 V 0 be a vertex which is a copy of the vertex v in V , then the vertices to which

v0 is adjacent are exactly the vertices to which v is adjacent.

• The vertex u is adjacent to all the vertices in V 0.

Then the graph G0 is triangle-free and �(G0) = �(G) + 1.

The graphs in Mycielski’s construction are triangle-free, but might contain cycles on 4

vertices. One can ask further if it might be the case that if a graph G does not contain short

cycles then it is possible to bound �(G) with a function of !(G). The answer to this question

is also no. Erdős showed that for any g 2 N, there are graphs with no induced cycles with

less than g vertices and arbitrarily large chromatic number [21]. The length of a path (or

the length of a cycle) is the number of vertices in it. The girth of a graph G is the length

of the shortest induced cycle in G.
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Theorem 1.0.5 (Erdős [21]). Let g, c 2 N. Then there exists a graph G with girth larger

than g and chromatic number larger than c.

As it was mentioned it is not true that the chromatic number of any graph can be

bounded by its clique number (or its girth), therefore we restrict ourselves to smaller families

of graphs. A hereditary family (or hereditary property) of graphs is a family which is

closed under taking induced subgraphs. A hereditary family F is �-bounded, if there is a

bounding function fF , such that for each G 2 F , �(G)  fF (!(G)). By Theorems 1.0.4 and

1.0.5 the family of all graphs is not �-bounded. By Theorem 1.0.3 the family of graphs which

do not contain an induced cycle of length at least 5 or a complement of one are perfect and

therefore �-bounded with the bounding function being the identity. We restrict ourselves to

families which are defined by forbidding some graphs as an induced subgraphs.

Let H be a graph which contains a cycle of length ` as an induced subgraph. By The-

orem 1.0.5, there are graphs with girth greater than `, and therefore which are H-free, and

which have arbitrarily large chromatic number. Therefore the family of H-free graphs for a

graph H which contains a cycle is not �-bounded. Now let H be a graph without induced

cycles. We call such a graph H a forest. Gyárfás [30] and Sumner [54] independently con-

jectured that families of graphs without induced forest H are �-bounded. We denote by

Forb(H) the family of all H-free graphs.

Conjecture 1.0.6 (Gyárfás-Sumner conjecture [30], [54]). Let H be a forest and let F =

Forb(H) be the family of all H-free graphs, then there is a function fF such for any graph

G 2 F , �(G)  fF (!(G)).

A tree is a connected forest. A connected graph is a graph where there is a path

between any two vertices. Note that the family Forb(H), for a forest H, is �-bounded if and

only if all the families Forb(T ) are �-bounded for each of the connected components T of

H. Hence the above conjecture can be reduced to trees. The Gyárfás-Sumner conjecture

has been proved for the following families of trees which we mostly define later: paths and

stars [30], trees of radius two [35], trees which are subdivided stars [50], trees obtained from
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trees of radius two by making exactly one subdivision in every edge adjacent to the root [36],

“two-legged caterpillars”, “double-ended brooms” and a few others [19]. The conjecture is

still open in its general form.

The above mentioned results and conjectures ask about the properties of all graphs in

some family of graphs. It is of interest to study the properties of almost all graphs in a

family. Let F be a family of graphs and let n 2 N. We denote by (F)n✓ F the set of graphs

in F on exactly n vertices. For two families F ,F 0, such that F ✓ F 0, we say that almost all

graphs in F 0 are in F if

lim
n!1

|(F)n|
|(F 0)n| = 1.

Sometimes we refer to the graphs in the above family F as typical graphs in F 0. The Erdős-

Hajnal conjecture was shown to be true for almost all graphs without some fixed graph H

as an induced subgraph [39].

Theorem 1.0.7 ([39]). Let H be a graph, then there exists an " = "(H) > 0 such that almost

all H-free graphs G contain a stable set or a clique of size at least |V (G)|".

The above theorem was strengthened in the case where we do not restrict ourselves to

all graphs H [33].

Theorem 1.0.8 ([33]). For almost all graphs H, there is a constant b = b(H) > 0 such that

almost all H-free graphs G contain a stable set or a clique of size at least b|V (G)|.

The authors in [33] conjectured that the above theorem might be true for all graphs H

besides P3 and P4 which are paths on 3 and 4 vertices, respectively.

Before the strong perfect graph conjecture was proved, Prömel and Steger [45] showed

that almost all graphs without an induced C5 are perfect.

In this thesis, we show that the Gyárfás-Sumner conjecture holds for almost all T -free

graphs for any tree T .

Theorem 1.0.9. For every tree T , almost all T -free graphs G have �(G0)  �|V (T )|� ⌫(T )� 1
�·

!(G0) for every induced subgraph G0 of G. Moreover, for every tree T , almost all T -free graphs

G have �(G) = !(G).
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G1 G2

(a) P
4

and a vertex

G1 G2

(b) P
3

and K
2

G1 G2

(c) P
3

and S
2

Figure 1.2: Partitions of C5.

We prove this theorem by first obtaining strong structural results for almost all graphs

without some fixed induced tree T . Then we use the structure to show that almost all T -free

graphs have the required colouring.

1.1 Our Results and Outline of the Thesis

In this subsection we present our structural results. Before we can state those results we

present a few additional definitions.

Let G be a graph and let V 0 ✓ V (G), we denote by G[V 0
] the subgraph of G induced on V 0.

Let G be a graph and let V 0 ✓ V (G), we denote by G\V 0 the induced subgraph G[V (G)\V 0].

Let G0 be a subgraph of G, we denote by G\G0 the induced subgraph G\V (G0). A partition

of a graph G is a collection {G[V1], G[V2], ..., G[Vk]} where {V1, V2, ..., Vk} is a partition of V (G).

See for example in Figure 1.2 some possible partitions of C5.

Let H be a graph and let G be a graph which has a partition into �(H)�1 stable sets, then

such a graph G is H-free. This is true because otherwise, a partition of G into �(H)�1 stable

sets would induce a partition of V (H) into �(H)�1 stable sets which is a contradiction to the

definition of the chromatic number �(H) of H. Using the same idea, if G has a partition into

�(H)�1 cliques, where �(H) is minimal number of cliques into which H can be partitioned,

then such a graph G is H-free. We do not have to restrict ourselves to partitions of G into

only stable sets or into only cliques. Let G be a graph which can be partitioned into s stable

sets and c cliques for values s, c such that H cannot be partitioned into s stable sets and c

cliques, then again such a graph G is H-free. For any such s, c we can consider the set of all
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(a) 3 cliques

(b) 2 cliques and 1

stable sets

(c) 1 clique and 2

stable sets

(d) 3 stable sets (P ⇤
3

can be partitioned

into 2 stable sets)

Figure 1.3: Partitions of P ⇤
3 into cliques and stable sets.

graph which can be partitioned into s stable sets and c cliques. We get the biggest set of

such graphs G when the values s, c are chosen so s+ c is as large as possible (and H cannot

be partitioned into s stable sets and c cliques). The witnessing partition number of a

graph H, in short wpn(H), is equal to the maximal sum s+ c such that there are s, c and H

cannot be partitioned into s stable sets and c cliques.

A leaf of a tree is a vertex which has exactly one neighbour. Consider the graph which is

a path on 3 vertices with one leaf attached to each of the vertices on the path, we denote this

graph as P ⇤
3 . The graph P ⇤

3 cannot be partitioned into two cliques, but it can be partitioned

into 3 cliques, into two stable sets and one clique, into two cliques and one stable set, and

into 3 stable sets, see Figure 1.3 for partitions of P ⇤
3 , therefore wpn(P ⇤

3 ) = 2.

Prömel and Steger [46] were the first to introduce the above idea of the witnessing

partition number of a graph. They considered the value which they denoted by ⌧(H) and

is equal to wpn(H) + 1. In the literature this number also sometimes referred as binary

chromatic (in short, bichromaric) number (e.g. [4]) or a colouring number of a graph (e.g.

[12]).
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There are many classical results, which are stated as a function of the chromatic number

of H, regarding families of graphs which do not contain some graph H as a weak subgraph.

Prömel and Steger [44, 46] showed that similar results remain true also for families of H-free

graphs if the chromatic number is exchanged by ⌧(H) = wpn(H) + 1.

As described earlier, for a given graph H, every graph G which can be partitioned into

s stable sets and c cliques such that s + c = wpn(H) and H does not have such a partition,

is H-free. This is not the only way in which we can obtain an H-free graph. Let P =

(H1, H2, ..., Hw) be some ordered partition of a graph H. We say that an ordered partition

(G1, G2, ..., Gw) of a graph G is P -free if there is an i 2 [w] such that Gi is Hi-free. Let

P (H) be a set of all ordered partitions (H1, H2, ..., Hwpn(H)) of H into some sequence of

wpn(H) subgraphs. Let G be a graph which has an ordered partition (G1, G2, ..., Gwpn(H))

which is P -free for any partition P 2 P (H), then G is H-free. We call such a partition

(G1, G2, ..., Gwpn(H)), a P (H)-free partition. Reed and Scott made the following conjecture.

Conjecture 1.1.1 (Reed-Scott [47]). For every graph H, almost all H-free graphs G have a

P (H)-free partition.

There are a few graphs for which the above conjecture is verified. It is known for graphs

H which are cliques [38], and a special set of graphs which are called critical graphs [5].

Conjecture 1.1.1 is also proved for cycles of odd length [44, 5], and for cycles of even length

[43, 47, 34].

The main result of this thesis is a proof of Conjecture 1.1.1 in the case where H is a

tree. Let us now present some of the additional necessary definitions. A matching in G is

a collection of disjoint edges from E(G). Let ⌫(T ) be the size of the largest matching in T .

We say that a tree T has a perfect matching if 2⌫(T ) = |V (T )|.
A disjoint union of two disjoint graphs G1 and G2 is a new graph

�

V (G1) [ V (G2), E(G1) [ E(G2)
�

.

A join of two disjoint graphs G1 and G2 is a new graph
�

V (G1) [ V (G2), E(G1) [ E(G2) [ E0�

where E0 is the set of all edges with one end in V (G1) and the other in V (G2). A star is the

graph which is a complement of the disjoint union of a vertex and a clique. We say that a

graph G = (V,E) is bipartite if we can partition G into two disjoint stable sets A,B. We
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say that a graph G = (V,E) is r-partite if we can partition G into r disjoint stable sets

V1, V2, ..., Vr.

Let H be a graph, we call a sequence of families (F1,F2, ...,Fwpn(H)) a P (H)�free se-

quence if for any choice of graphs Gi 2 Fi, i 2 [wpn(T )], the resulting partition

(G1, G2, ..., Gwpn(H)) is P (H)-free. Moreover, the families are maximal and hereditary, and

to make the presentation easier, we restrict the families to contain graphs with at least h

vertices where |V (H)| = h. Note that there might be more than one P (H)-free sequence for

a graph H.

To state our structural results we need to partition the set of trees into the following

families. Trees T with 2⌫(T )  |V (T )|� 2, trees T with 2⌫(T ) = |V (T )|� 1 and trees T with

2⌫(T ) = |V (T )|, that is trees with a perfect matching. We partition further the set of trees

with a perfect matching into families which are defined below. The reason for the above

partition into the di↵erent families is that the trees in each family have di↵erent possible

partitions P (T ) into smaller graphs. In particular, this implies that the resulting P (T )-free

sequences are di↵erent for the trees in the di↵erent families. For each of the families we

characterize the P (T )-free sequences for the trees T in the corresponding family. Then we

state the theorem regarding the typical structure of T -free graphs for trees in each family.

Theorem 1.1.2 (P(T )-free sequence for trees T with 2⌫(T )  |V (T )| � 2). Let T be a tree

such that 2⌫(T )  |V (T )| � 2, and let (F1,F2, ...,Fwpn(T )) be a P(T )-free sequence, then for

every i 2 [wpn(T )], Fi is the set of all cliques.

Theorem 1.1.3 (Structure of typical T -free graph for trees T with 2⌫(T )  |V (T )|� 2). Let

T be a tree with 2⌫(T )  |V (T )| � 2, then almost all T -free graphs can be partitioned into

wpn(T ) parts such that each part is a clique.

A subdivided star is a graph which is a star where each edge is subdivided exactly

once.

Theorem 1.1.4 (P(T )-free sequence for trees T with 2⌫(T ) = |V (T )|�1 and T is a subdivided

star). Let T be a tree with |V (T )| � 5 such that 2⌫(T ) = |V (T )|�1 and T is a subdivided star.
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Let (F1,F2, ...,Fwpn(T )) be the P(T )-free sequence, then we have one of the following cases,

(i) F1 is the set of all stable sets, and Fi, for 2  i  wpn(T ), is the set of all cliques.

(ii) For every i 2 [wpn(T )], Fi is the set of all cliques.

Theorem 1.1.5 (P(T )-free sequence for trees T with 2⌫(T ) = |V (T )| � 1 and T is not a

subdivided star). Let T be a tree with |V (T )| � 5 such that 2⌫(T ) = |V (T )| � 1 and T is

a subdivided star. Let (F1,F2, ...,Fwpn(T )) be the P(T )-free sequence, then for every i 2
[wpn(T )], Fi is the set of all cliques.

Theorem 1.1.6 (Structure of typical T -free graphs for T with 2⌫(T ) = |V (T )| � 1). Let T

be a tree with 2⌫(T ) = |V (T )| � 1 and |V (T )| � 5. If T is a subdivided star, then almost all

T -free graphs can be partitioned into wpn(T ) parts such that each part is a clique, or into

wpn(T ) parts such that one of the parts is a stable set and the rest are cliques. If T is not a

subdivided star then almost all T -free graphs can be partitioned into wpn(T ) parts such that

each part is a clique.

Note that Theorems 1.1.3 and 1.1.6 can be also derived from a result by Balogh and

Butterfield [5]. In Section 5.1, we reprove their result.

The next results are for trees with a perfect matching, that is for trees T with 2⌫(T ) =

|V (T )|. To state the results we define a few families of graphs. As mentioned Pi is a path

on i vertices, Ki is a clique with i vertices and Si is a stable set on i vertices for any i 2 N,

note that K1 = S1. We denote by G1 + G2 the disjoint union of graph G1 and G2 and

G1 +G1 = 2G1. Let H be a collection of graphs, by Forb(H) we denote the set of all graphs

which are H-free for each H 2 H. As mentioned earlier, in the case that H = {H} for some

H then we write Forb(H) instead of Forb({H}).

• Let G1 be Forb(H) for H = {S3, P3}.

• Let G2 be Forb(H) for H = {P4, 2K2,K2 + S2}.

• Let G3 be Forb(H) for H = {P4, 2K2,K2 + S2, S4}.
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• Let G4 be Forb(H) for H = {P4, P3 +K1, 2K2,K2 + S2}.

• Let G5 be Forb(H) for H = {P4, P3 +K1, 2K2,K2 + S2, S4}.

• Let G6 be Forb(H) for H = {P4, 2K2, P3 + S1}.

It is not hard to see and we show in Section 5.2.1 the following.

Claim 1.1.7. The families Gi, i 2 [5] are as following.

• G1 is the family of graphs which are the join of stable sets of size at most 2 (multi-partite

graph with parts of size at most 2).

• G2 is the family of graphs which are the join of complete multi-partite graph with an

isolated vertex.

• G3 is the family of graphs which are the join of complete multi-partite graph with parts

of size at most 2 and an isolated vertex.

• G4 is the family of graphs which are the join of graphs which are either stable sets or

disjoint union of a vertex and a clique.

• G5 is the family of graphs which are the join of graphs which are either stable sets of

size three or a disjoint union of a vertex and a clique.

• G6 is the family of graphs which are the join of graphs which are disjoin union of a

stable set and a clique.

We denote by T pl be the set of trees with a perfect matching and where every non-leaf

vertex has a neighbour which is a leaf. The set T pl
star⇢ T pl is the family of all trees obtained

from stars by subdividing every edge, except one, exactly once.

Theorem 1.1.8 (P(T )-free sequence for trees T 2 T pl). Let T be a tree such that T 2 T pl and

let (F1,F2, ...,Fwpn(T )) be the P(T )-free sequence, then we have one of the following cases,

(i) Fi = G1 for each i 2 [wpn(T )].
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(ii) The families can be reindexed such that F1 is the set G2 and the rest of the families are

the sets of all cliques.

Theorem 1.1.9 (Structure of typical T -free graphs for T 2 T pl). Let T 2 T pl, then almost

all T -free graphs can be partitioned into wpn(T ) parts such that each part is a complete

multi-partite graph with parts of size at most two.

Theorem 1.1.10 (P(T )-free sequence for trees T 2 T pl \ T pl
star). Let T be a tree such that

T 2 T pl \ T pl
star, and let (F1,F2, ...,Fwpn(T )) be the P(T )-free sequence, then we have one of

the following cases,

(i) The families can be reindexed such that F1,F2 are the set G1, and the rest of the families

are the sets of all the cliques.

(ii) The families can be reindexed such that F1 is the set G3 and the rest of the families are

the sets of all the cliques.

Theorem 1.1.11 (Structure of typical T -free graphs for T 2 T pl \ T pl
star). Let T 2 T pl \ T pl

star,

then almost all T -free graphs can be partitioned into wpn(T ) parts such that two of the parts

are complete multi-partite graphs with parts of size at most two, and the rest are cliques.

The set of trees which have a perfect matching but are not in T pl, we denote by T npl.

A tree T is in S⇢ T npl if there is some path P in T of length 6 or 8, such that the ends of P

are leaves and the following hold. Let C be the set of connected components in T \ P , then
each components in C is an edge with the following additional properties.

i. For P = v1, v2, v3, v4, v5, v6 of length 6, each of the components in C is joined by an edge

to P at either v3 or v4. We denote this set as S⇤
6 .

ii. For P = v1, v2, v3, v4, v5, v6, v7, v8 of length 8, each of the components in C is joined by

an edge to P at either v3 or v6. We denote this set as S⇤
8 .

Let S = S⇤
6 [ S⇤

8 .
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Theorem 1.1.12 (P(T )-free sequence for trees T 2 T npl \{P6}). Let T 2 T npl \{P6}, and let

(F1,F2, ...,Fwpn(T )) be the P(T )-free sequence, then the families can be reindexed such that

F1 is G4, and the rest of the families are the sets of all cliques.

Theorem 1.1.13 (Structure of typical T -free graphs for T 2 T npl\{P6}). Let T 2 T npl\{P6},
then almost all T -free graphs can be partitioned into wpn(T ) parts such that one of the parts

is a complement of a disjoint unions of cliques and stars, and the rest are cliques.

Theorem 1.1.14 (P(T )-free sequence for the tree T = P6). Let T = P6 and let (F1,F2) be

the P (P6)-free sequence, then we have the following cases,

(i) The families can be reindexed such that F1 is the family of all stable sets and F2 = G1.

(ii) The families can be reindexed such that F1 is the family of all cliques and F2 = G6.

Theorem 1.1.15 (Structure of typical T -free graphs for T = P6). Let T = P6, then almost

all T -free graphs can be partitioned into wpn(P6) = 2 parts such that one of the parts is a

clique and the other is a join of graphs which are disjoint union of a stable set and a clique.

Theorem 1.1.16 (P(T )-free sequence for trees T 2 T npl \ (S [ {P6})). For a tree T 6= P6

such that T 2 T npl \ (S [ {P6}), and let (F1,F2, ...,Fwpn(T )) be the P(T )-free sequence, then

the families can be reindexed such that F1 is G5, and the rest of the families are the sets of

all cliques.

Theorem 1.1.17 (Structure of typical T -free graphs for T 2 T npl \ (S [ {P6})). Let T 2
T npl \ (S [{P6}), then almost all T -free graphs can be partitioned into wpn(T ) parts such that

one of the parts is a complement of a disjoint union of triangles and stars, and the rest are

cliques.

To summarize, we have the following corollary,

Corollary 1.1.18. For every tree T , almost all T -free graphs have a P (T )-free partition.

In Chapter 2 we review the definition of the witnessing partition number of a graph

H, and provide some additional properties of this function. We also give a more detailed
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overview of the existing results regarding the typical structure of the H-free graphs for some

graphs H.

In Chapter 3 we describe how to obtain a weaker result than in Conjecture 1.1.1. We

show that for any graph H, almost all H-free graphs G can be partitioned into wpn(H) parts

(G1, G2, ..., Gwpn(H)) and a set Z such that (G1 \ Z,G2 \ Z, ..., Gwpn(H) \ Z) is a P (H)-free

partition and |Z| = o(n) where |V (G)| = n. Then we reprove the result of Reed and Scott

[47] which shows that the above statement can be strengthen so |Z|  n1�" for some " > 0

which depends only on H. Finally we show a few general theorems about the structure and

properties of almost all H-free graphs from any H. Those theorems are used in the proofs

of the typical structure of almost all T -free graphs for a tree T . Note that some of the ideas

in those general theorems had already appeared in [47].

In Chapter 4 we prove a theorem regarding the value of the witnessing partition number

for any bipartite graph H.

In Chapter 5 reprove the result of Balogh and Butterfield [5] and show that Reed-Scott

conjecture 1.1.1 is true for critical graphs. We show that trees without a perfect matching

are critical. We prove Theorems 1.1.2, 1.1.4, 1.1.5 and derive Theorems 1.1.3, 1.1.6. Then we

prove Reed-Scott conjecture 1.1.1 for any graph H which is a tree with a perfect matching.

In Section 5.2.1 we analyze the P (T )-free sequence for all trees T and prove Theorems 1.1.8,

1.1.10, 1.1.12, 1.1.14 and 1.1.16. In Section 5.2.2 we prove 1.1.9, 1.1.11, 1.1.13, 1.1.15, and

1.1.17, which imply Corollary 1.1.18.

In Chapter 6 we prove Theorem 1.0.9, and show the Gyárfás-Sumner Conjecture 6 for

almost all T -free graphs.

1.2 Additional Notations

For completeness of presentation, we give some additional notations and definitions. We

mostly follow the conventions as in [13].

We always consider simple and labeled graphs, that is without parallel edges and loops.
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(a) P ⇤
3

(b) P ⇤
4

Figure 1.4: A sketch of P ⇤
3 and P ⇤

4 .

The set of labels for the vertices is always the set [|V (G)|] = {1, 2, ..., |V (G)|}. Let v 2 V (G), we

denote by NG(v) (respectively, NG(v)) the set of vertices which are adjacent (respectively,

not adjacent) to v. For V 0 ⇢ V (G), we denote by NG(V 0
)= [v2V 0NG(v). Let degG(v)=

|NG(v)|, and let degG(v)= |NG(v)|. If there is no confusion regarding the underlaying graph

G, we drop the subscript.

Let G be a graph, and let A,B ✓ V (G) such that A \ B = ;. We denote by G[A,B] the

subgraph of G obtained by taking all the edges with one end in A and the other in B.

Let P ⇤
k be a graph which is a path on k vertices with a leaf adjacent to every vertex on

the path. See Figure 1.4 for drawings of P ⇤
3 and P ⇤

4 .

Let G be a graph and let M a matching in G, an alternating path in G with respect to

M is a path P = v1v2v3v4...vk which alternates between the edges in the matching and edges

not in the matching. More precisely either for each odd i 2 [k], {vi, vi+1} 2 M and for each

even i 2 [k], {vi, vi+1} /2 M , or vice versa.

A clique-star is the complement of a graph which is a disjoint union of a vertex and a

complete multi-partite graph with at least two vertices.

Let H be a graph. We denote by Forb

w
(H) the family of graphs that do not contain

H as a weak subgraph. Similarly we denote by Forb

w
(H), the set of graph H, to be the

families of all graphs that do not contain H as a weak subgraph for every H 2 H.

Let n,w 2 N, we use the convention that ⇧ = (⇡1,⇡2, ...,⇡w) is the partition of [n], that

is for all i 6= j 2 [w], ⇡i \ ⇡j = ; and [w
i=1⇡i = [n]. We say that a partition ⇧ = (⇡1,⇡2, ...,⇡w)

of [n] is ↵-almost equal if for each i 2 [w], | |⇡i|� n
w | n1�↵.

We say that a number n1 is much smaller than a number n2 if n1 = o(n2). Similarly, a

number n1 is much larger than a number n2 if n2 = o(n1).

25



1.3 Some Useful Theorems

We mention a few results which we use more than once in our proofs.

In many of our proofs we need to bound the number of graphs with some specific prop-

erties. Sometimes we use the following bound on binomial coe�cients.

Lemma 1.3.1 ([5]). Let ↵ 2 (0, 1/2] and q(↵) = �↵ log↵� (1� ↵) log(1� ↵), then

X

i↵n

✓

n

i

◆

 2q(↵)n  22↵ log 1

↵n.

Here and in all our computations, log x is log2 x.

In some cases, we consider families of graphs where each graph is a join (or disjoint union)

of other graphs. We can estimate the number of such graphs on [n] vertices using the n-th

Bell number which we denote as Bell(n). The n-th Bell number is the number of ways to

partition the set [n] into any number of parts. We use the following lower and upper bounds

on Bell(n),

Theorem 1.3.2 ([10],[14]). Let n 2 N,
✓

n

e lnn

◆n

< Bell(n) <

✓

0.792n

ln(n+ 1)

◆n

.

Let w 2 N and let H be a graph and let (H1, H2, ..., Hw) be a partition of H. Let G be a

graph with |V (G)| = n and let ⇧ := (⇡1,⇡2, ...,⇡w) be a partition of [n]. Now assume that for

each i 2 [w], G[⇡i] contains at least q disjoint copies of the graph Hi for some prime q 2 N.

For each i 2 [w], let Hi be the set of the disjoint copies of Hi in G[⇡i]. The following lemma

shows that we can choose at least q2 sets of the form {H 0
1, H

0
2, ..., H

0
w} where H 0

i 2 Hi, i 2 [w],

such that no two sets intersect on more than one graph.

Lemma 1.3.3 ([5]). Let q be a prime, then we can find at least q2 edge-disjoint cliques of

size w in the complete w-partite graph where each part is of size q.

We denote by R(c, s) the smallest number such that every graph with at least R(c, s)

vertices contains either a clique on c vertices or a stable set on s vertices. A famous result

by Erdős and Szekeres gives an upper bound on this numbers,
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Theorem 1.3.4 (Erdős-Szekeres 35’, [29]). For all c, s � 1,

R(c, s) 
✓

c+ s� 2

c� 1

◆

.

The following theorems are also useful for our counting arguments.

Theorem 1.3.5 (Markov’s inequality). Let X be a non-negative random variable and a > 0,

then

P[X � a]  E[X]

a
.

Theorem 1.3.6 (Cherno↵ Bound [16]). Let X1, X2, .., Xn be independent random variables

with P[Xi = 1] = pi and P[Xi = 0] = 1 � pi. Let X =
Pn

i=1Xi with the expectation E[X] =

Pn
i=1 pi. Then,

P[X  E[X]� �]  e
� �2

2E[X]

P[X � E[X] + �]  e
� �2

2(E[X]+�/3) .
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Chapter 2

Structure of H-Free Graphs

In this chapter we give a more detailed review of the known results regarding the structure

of H-free graphs for all graphs H and more precise results for some specific graphs H.

2.1 Properties of All Graphs H

Recall that the witnessing partition number of a graph H, wpn(H), is the maximal sum s+ c

such that H cannot be partitioned into s stable sets and c cliques. The following properties

of the value wpn(H) were observed in [39] and [46].

Observation 2.1.1. Let H be a graph, then wpn(H) has the following properties,

• wpn(H) � max{�(H)� 1,�(H)� 1},

• wpn(H)  �(H) + �(H)� 1,

• |V (H)|  (wpn(H) + 1)2.

For example, the last property in the above observation is true because of the fol-

lowing. By the definition of wpn(H), H can be partitioned into wpn(H) + 1 stable sets

S1, S2, ..., Swpn(H)+1 and into wpn(H) + 1 cliques C1, C2, ..., Cwpn(H)+1. Let i 2 [wpn(H) + 1],

because |Ci \ Sj |  1, for each j 2 [wpn(H) + 1], we have that |Ci|  wpn(H) + 1. Hence

|V (H)|  Pwpn(H)+1
i=1 |Ci|  (wpn(H) + 1)2.
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As mentioned earlier many classical results regarding families of graphs which do not

contain some graph H as a weak subgraph, which are stated as a function of the chromatic

number of H, remain true also for families of H-free graphs if the chromatic number is

exchanged by ⌧(H) = wpn(H) + 1. One such result is Turán’s theorem [56] and its extension

by Erdős, Stone and Simonovits [27, 28]. Recall that Forbw(H) the family of graphs which

do not contain H as a weak subgraph. The family Forb(H) is the family of H-free graphs.

Let ex

w
(n,H) be the maximal number of edges in some graph in (Forbw(H))n.

Theorem 2.1.2 (Turán [56]). Let Kt be a clique on t � 2 vertices, then

exw(n,Kt) =
⇣

1� 1

t� 1

⌘n2

2
.

As mentioned the above result was extended by Erdős, Stone and Simonovits [27, 28] for

arbitrary graphs H such that �(H) � 2. Their result also gives an approximate version of

Turán’s Theorem.

Theorem 2.1.3 (Erdős and Stone, Simonovits [27, 28]). Let H be any graph with �(H) � 2,

then

exw(n,H) =
⇣

1� 1

�(H)� 1
+ o(1)

⌘n2

2
.

In the case of Forb(H) for some H, a di↵erent definition for the extremal graph in

(Forb(H))n, n 2 N, is required. Let ex(n,H) be the maximal number of edges that a

graph G 2 (Forb(H))n may have where there exists a graph G0 = (V,E0) with E \E0 = ; and

such that (V,E0 [X) does not contain an induced subgraph H for all X ✓ E. This definition

was introduced by Prömel and Steger in [46]. The also showed a bound on ex(n,H).

Theorem 2.1.4 (Prömel and Steger [46]). Let H be a graph. Then

ex(n,H) =
⇣

1� 1

wpn(H)
+ o(1)

⌘n2

2
.

Another result we mention concerns the number of graphs in (Forbw(H))n for any graph

H and n 2 N.
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Theorem 2.1.5 (Erdős, Frankl and Rödl [24]). Let H be a graph and n 2 N, then

|(Forbw(H))n| = 2

✓
1� 1

�(H)�1

+o(1)

◆
n2
2

.

The counterpart theorem for H-free graphs was shown by Prömel and Steger [44].

Theorem 2.1.6 (Prömel and Steger [44]). Let H be a graph and n 2 N, then

|(Forb(H))n| = 2

✓
1� 1

wpn(H)

+o(1)

◆
n2
2

.

Note that it is not hard to prove the lower bound in the above theorem (as also in

Theorem 2.1.5). Let H be a graph, and let s, c be such that s + c = wpn(H) and H cannot

be partitioned into s stable sets and c cliques. Let n 2 N and ⇧ =
⇣

⇡1,⇡2, ...,⇡wpn(H)

⌘

be

a partition of [n] into wpn(H) parts of as equal as possible size. Consider a graph G such

that G[⇡1] to G[⇡s] are stable sets, G[⇡s+1] to G[⇡wpn(H)] are cliques (the choice of edges

between the parts is not restricted). Then by the definition of wpn(H) and the choice of s

and c such a graph is H-free. The number of ways to choose the edges between the parts is
⇣

1� 1
wpn(H)

+ o(1)
⌘

�n2

2

�

, therefore we get the required lower bound.

For a general hereditary property F of graphs Alekseev [1] and Bollobás and Thomason

[12] showed a similar bound. In order to present the bound we need to define the colouring

number �c(F) of a property. For each r 2 N and v 2 {0, 1}r, let H(r, v) be the set of

all graphs G such that V (G) can be partitioned into r sets (⇡1,⇡2, ...,⇡r) where for each

i 2 [r], if vi = 0, then G[⇡i] is a stable set, and if vi = 1, then G[⇡i] is clique. Let F be a

hereditary property and let �c(F), be the maximal r 2 N such that H(r, v) ⇢ F for some

vector v 2 {0, 1}r.
Note that �c(Forb(H)) = wpn(H). Indeed, �c(Forb(H)) � wpn(H) because by the def-

inition of wpn(H) there are some s, c such that s + c = wpn(H) and H cannot be parti-

tioned into s stable sets and c cliques, so any graph G which can be partitioned into s

stable sets and c cliques does not contain H and therefore in Forb(H). On the other hand,

�c(Forb(H))  wpn(H) because H can be partitioned into s stable sets and c cliques for any

s, c such that s + c = wpn(H) + 1, then for any s, c such that s + c = wpn(H) + 1 there is a

graph G which can be partitioned into s stable sets and c cliques but is not in Forb(H).
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Theorem 2.1.7 (Alekseev [1], Bollobás and Thomason [12]). Let P be a hereditary property

of graphs, and suppose �c(G) = r. Then

|Pn| = 2

⇣
1�1

r+o(1)
⌘
(n

2

2

)
.

2.2 Properties of Specific Graphs H

In the following we focus on the structure of the graphs in Forb(H) for some specific graphs

H. We treat separately graphs H with wpn(H) = 1. Note that from Observation 2.1.1, any

graph H with wpn(H) = 1 also has |V (H)|  4, �(H)  2 and �(H)  2. Hence there are

exactly 5 graphs H with wpn(H) = 1, and they are K2, S2, P3, P3, P4. For K2 (respectively,

S2), there exists only one graph on n vertices that does not contain K2 (respectively, S2)

and it is the graph with no edges (respectively, a clique). Graphs G that do not contain P3

(respectively, P3) are disjoint unions of cliques (respectively, complete multi-partite graphs),

so their number on n vertices is as the number of ways to partition [n]. Therefore using the

bound on the Bell numbers in Theorem 1.3.2, we have the following.

Theorem 2.2.1. Let n 2 N, |(Forb(P3))n| = |(Forb(P3))n|  2n log n.

Finally we consider the path on 4 vertices P4.

Theorem 2.2.2 (Seinsche, [53]). Let G be a P4-free graph, then either G or G is disconnected.

Let G 2 (Forb(P4))n, we can encode G by a rooted tree T (G) which has exactly n leaves

and no vertices with exactly one child. It is easy to show by induction that in such a tree

the number of vertices which are not leaves is at most the number of vertices which are

leaves, therefore T (G) has at most 2n vertices. We define T (G) recursively as following. We

assign the root vertex for G. If G is just one vertex than we are done. Otherwise we use

Theorem 2.2.2 about the structure of P4-free graphs. Assume that G is disconnected, and

let G1, G2, ..., Gk be its connected components, then we assign k vertices to the components

G1, G2, ..., Gk and make them the children of the vertex which was assigned to G. Moreover,
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we colour the edges from a G vertex to G1, G2, ..., Gk vertices in red. If G is connected, then

we consider the components in G, assign vertices to them similarly, and colour the edges

from a G vertex to the vertices which represents the components in blue. Two di↵erent

P4-free graphs are encoded by two di↵erent trees.

Theorem 2.2.3 (Cayley’s formula [15]). Let n 2 N, the number of labeled trees on n vertices

is nn�2.

Using the above theorem, the number of rooted trees on 2n vertices with every edge

coloured either red or blue is at most (2n)2n�2 · n · 22n�1. Therefore we can derive the

following theorem.

Theorem 2.2.4. Let n 2 N,

|(Forb(P4))n|  23n log n.

We mention one more property of P4-free graphs. This property is a corollary to Theo-

rem 2.2.2 and it will be useful to us in Chapter 6.

Corollary 2.2.5. Let G 2 Forb(P4), then G is perfect.

As described earlier, for a given graph H, every graph G which can be partitioned into

s stable sets and c cliques such that s + c = wpn(H) and H does not have such a partition,

is H-free. As mentioned before, this is not the only way in which we can obtain an H-free

graph. We recall the Reed-Scott Conjecture.

Conjecture (Reed-Scott [47]). For every graph H, almost all H-free graphs G have a P (H)-

free partition.

There are several graphs for which the above conjecture is verified. Firstly, it is known

for graphs H which are cliques. Note that for any t 2 N, wpn(Kt) = t�1, this is true because

Kt cannot be partitioned into t � 1 stable sets, but it can be partitioned into any s stable

sets and c cliques such that s+ c = t. Moreover, Kt can be partitioned into an edge and t� 2

vertices, therefore each of the graphs in the P (H)-free partition is stable.
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Theorem 2.2.6 (Kolaitis, Prömel and Rothschild [38]). Almost all graphs in Forb(Kt) are

(t� 1)-partite graphs.

Let (F)n,m be the set of all graphs in F with exactly n vertices and m edges. Osthus,

Prömel and Taraz [41] extended the above result in the case of K3 for di↵erent values for

the number of edges.

Theorem 2.2.7 ([41]). Let " > 0 and and let m2(n) =
p
3
4 n3/2

p
log n. If m = o(n) or m �

(1+")m2(n), then almost all graphs in (Forb(K3))n,m are bipartite. If n/2  m  (1�")m2(n),

then almost all graphs in (Forb(K3))n,m are not bipartite.

Balogh, Morris, Samotij and Warnke [9] generalized the above result for any clique.

Theorem 2.2.8 ([9]). Let r � 2, and let ⇥r = r�1
2r

 

r ·
⇣

2r+2
r+2

⌘1/r�1
!2/r+2

and let mr(n) =

⇥rn
2�2/r+2(log n)

1

(r+1

2

)+1 .

For every r � 3, there exists a dr(n) = ⇥(n), such that for every " > 0, the following

holds. If m  (1� ")dr(n) or m � (1+ ")mr(n), then almost all graphs in (Forb(Kr+1))n,m are

r-partite. If (1 + ")dr(n)  m  (1 � ")mr(n), then almost all graphs in (Forb(Kr+1))n,m are

not r-partite.

Balogh and Butterfield [5] defined a set of critical graphs. Let H be a graph and s, c 2 N,

let F(H, s, c) denote the set of minimal (by induced containment) graphs F such that H can

be covered by s stable sets, c cliques, and F . Balogh and Butterfield called a graph critical if

for all s, c such that s+ c = wpn(H)� 1 and large enough n 2 N, | �Forb(F(H, s, c))
�

n |  2. As

presented later, this means that
�

Forb(F(H, s, c))
�

n ✓ {Sn,Kn}. For example, the graph C4

is critical, but every other cycle of even length is not. Moreover, the graph C5 is not critical,

but every cycle of odd length at least 7 is critical.

Let W(H) be the collection of all pairs (s, c) such that H cannot partitioned into s stable

sets and c cliques where s, c are such that s+c = wpn(H). Let Q(H, s, c) be the set of all graphs

that can be partitioned into s stable sets and c cliques. Let Q(H) = [(s,c)2W(H)Q(H, s, c).
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Theorem 2.2.9 (Balogh and Butterfield [5]). Let H be a graph with wpn(H) � 2. Almost

all H-free graphs are in Q(H) if and only if H is critical.

The easier direction in the above theorem is the necessity. To show it we need the

following lemma. The proof is as in [7].

Lemma 2.2.10 (Balogh et al [7], Scheinerman-Zito [49]). Let F be a family of graphs and

let n 2 N. If |(F)n| � 3, then |(F)n| � n� 1.

Proof. Let F be a family of graphs and let n 2 N. If |(F)n| � 3, then there is a graph

G 2 (F)n which is not a clique or a stable set. Such a graph G must contain a vertex v, such

that |N(v)|, |N(v)| � 1. For every di↵erent choice of labels for the vertices in N(v), we get a

di↵erent graph in (F)n. Therefore |(F)n| �
� n�1
|N(v)|

� � n� 1.

Sketch of the necessity direction in Theorem 2.2.9, [5]. Let H be a non-critical graph. Let

n 2 N be large enough, and let ⇧ = (⇡1,⇡2, ...,⇡wpn(H)) be a partition of [n] into wpn(H)

parts. Let m(⇧) =
Q

1i<jwpn(H) |⇡i| · |⇡j |, that is the number of possible edges between the

parts of the partition.

We give an upper bound on the number of possible graphs in Q(H) that we can get from

this partition. Let s, c be such s+ c = wpn(H) and H cannot be partitioned into s stable sets

and c cliques. The number of graphs G such that G[⇡1] to G[⇡s] are stable sets, G[⇡s+1] to

G[⇡wpn(H)] are cliques is 2m(⇧).

Now, we give a lower bound on the number of possible H-free graphs we get from this

partition. Due to the fact that H is not critical, there are c0, s0 such that c0+ s0 = wpn(H)� 1

and |(Forb(F(H, c0, s0)))k| � 3 for some k large enough. Then by Lemma 2.2.10 it must be the

case that |(Forb(F(H, c0, s0)))k| � k. Assume without loss of generality that ⇡1 is the largest

part in the partition. The number of graphs G such that G[⇡1] 2 Forb(F(H, c0, s0)), G[⇡2] to

G[⇡s0 ] are stable sets and G[⇡s0+1] to G[⇡wpn(H)] are cliques is at least n
wpn(H)

· 2m(⇧). Note

that it is possible that by counting the graphs with respect to a partition we counted much

more graphs than there are H-free graphs. As discussed in Subsection 3.3.1, this is actually

not the case, and most of the H-free graphs have only one partition.

34



Therefore the number of H-free graphs is much larger than the number of graphs in

Q(H).

We mention some additional families of graphs for which Conjecture 1.1.1 is true.

Theorem 2.2.11 (Prömel and Steger [44]). Almost all graphs in Forb(C5) are graphs G such

that either G or G can be partitioned into two sets V1, V2, such that the first set induces a

clique and the second a disjoint union of cliques.

The odd cycle C2k+1 for k � 3 is critical. Therefore, as a corollary to the result of Balogh

and Butterfield 2.2.9, we have the following.

Corollary 2.2.12 (to Theorem 2.2.9). Almost all graphs in Forb(C7) can be partitioned

either into 3 cliques or a stable set and 2 cliques. Almost all graphs in Forb(C2k+1) for k � 4,

can be partitioned into k cliques.

Conjecture 1.1.1 is also true for even cycles.

Theorem 2.2.13 (Prömel and Steger [5, 43]). Almost all graphs in Forb(C4) are graphs that

can partitioned into a stable set and a clique.

Theorem 2.2.14 (Reed and Scott [47]). Almost all graphs in Forb(C6) can be partitioned

into a stable set and a complement of a graph of girth 5.

Theorem 2.2.15 (Reed and Scott [47]). Almost all graphs in Forb(C8) can be partitioned

into 2 cliques and a graph whose complement is the disjoint union of graphs each of which

is a join of a clique and a stable set.

Theorem 2.2.16 (Reed and Scott [47]). Almost all graphs in Forb(C10) can be partitioned

into 3 cliques and a graph which is the complement of the disjoint union of stars and cliques.

Theorem 2.2.17 (Reed and Scott [47]). Let ` � 6, almost all graphs in Forb(C2`) can be

partitioned into ` � 2 cliques and the complement of a graph which is the disjoint union of

stars and cliques of size 3.
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Note that in Theorems 2.2.15-2.2.17 the graphs which are not cliques are taken from the

families G6,G4,G5, respectively.
Kim, Kühn, Osthus and Townsend [34], using a di↵erent approach showed the same result

for cycles C2` where ` � 6, and approximate results for cycles C2` where ` = 4 and ` = 5.
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Chapter 3

Obtaining Near Partitions

In this chapter we first show that for any graph H, almost all H-free graphs G can be

partitioned into wpn(H) parts (G1, G2, ..., Gwpn(H)) such that there is a set Z such that

(G1 \ Z,G2 \ Z, ..., Gwpn(H) \ Z) is a P (H)-free partition and |Z| = o(n) where |V (G)| = n.

Then we show that actually the above statement can be strengthened so that |Z|  n1�" for

some " > 0 which depends only on H. Finally we show a few general theorems which can be

applied in the proof of a typical structure of an H-free graph for nearly all graphs H. These

theorems are used in the proofs of the typical structure of almost all T -free graphs for a tree

T .

3.1 Obtaining Weak Near Partitions

The first step in proving the above mentioned weaker structural result is the celebrated

Szemerédi’s regularity lemma [55]. Next we present this lemma together with the necessary

definitions.

Let G be a graph and let A,B ⇢ V (G) such that A\B = ;, then let e(A,B) be the number

of edges {v1, v2} 2 E(G) such that v1 2 A, v2 2 B. The density of (A,B) is d(A,B) =
e(A,B)
|A|·|B| .

Let " > 0, for A,B ✓ V (G), we say that the pair (A,B) is "-regular if for every two subsets

of A0 ✓ A,B0 ✓ B, such that |A0| � "|A| and |B0| � "|B|, we have that |d(A,B)�d(A0, B0)| < ".
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That is a regular pair is a pair of sets where every reasonably sized subgraph has a density

which is not far from the density of the pair itself.

The regularity lemma says that every dense graph can be partitioned into a constant

number of regular pairs and a few leftover edges. Let G be a graph, a vertex partition

V0, V1, V2, ..., Vk of V (G) is "-regular for some " > 0 if (i) |V0|  "n, (ii) |Vi| = |Vj | for all

1  i, j  k, and (iii) all but "k2 pairs (Vi, Vj), 1  i < j  k, are "-regular.

Theorem 3.1.1 (Regularity lemma, Szemerédi 76’, [55]). For every " > 0 and t 2 N, there

exist n0 2 N and T such that for every n � n0, every n-vertex graph G admits an "-regular

partition V0, V1, V2, ..., Vk satisfying t  k  T .

Let " > 0 and t 2 N, and let G be a graph such |V (G)| = n for n large enough. Let

S = S(", t) = (V0, V1, V2, ..., Vk) be the "-regular partition of G that we get from Theorem 3.1.1

for the chosen t. Let � > 0, the reduced graph of G with respect to � and the partition S

is the graph with a vertex set {v1, ..., vk} where each vertex vi, i 2 [k], corresponds to the set

Vi in the partition S of G Vertices vi and vj , i 6= j, are adjacent if and only if (Vi, Vj) is an

"-regular pair and � < d(Vi, Vj) < 1 � �. We denote this reduced graph by R :

= R(G,S, �).

Alon et al. [2] showed the following induced version of the famous embedding lemma [37].

Theorem 3.1.2 (Lemma 9, [2]). Let � > 0 and h,w 2 N then there are " > 0, t 2 N and

n0 = n0(�, h, w, ", t) 2 N such that the following holds. Let G be a graph with |V (G)| � n0 and

"-regular partition S = S(", t). If R(G,S, �) contains a Kw+1, then for some s, c 2 N such that

s + c = w + 1, G contains as an induced subgraph any graph H with |V (H)|  h and which

can be partitioned into c cliques and s stable sets.

We recall also the famous stability theorem [22, 23, 52]. Let k, n 2 N, we denote by Tn(k)

the complete multi-partite graph with n vertices and k parts as equal as possible.

Theorem 3.1.3 (Stability Theorem [22, 23, 52]). Let H be a graph. For every ↵ > 0 there

exists � > 0 and n0 = n0(↵) 2 N such that for all n � n0 the following holds. Let G be a

graph G 2 (Forbw(H))n with |E(G)| �
⇣

1 � 1
�(H)�1

⌘

n2

2 � �n2, then G can be obtained from

Tn(�(H)� 1) by changing at most ↵n2 edges.
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Now we ready to prove the weaker statement regarding the structure of almost all H-free

graphs.

Theorem 3.1.4. Let H be a graph and let � > 0, then there is an n0 = n0(�) 2 N, such that

for all n � n0, almost all graphs G 2 (Forb(H))n have a partition ⇧ = (⇡1,⇡2, ...,⇡wpn(H))

of V (G) = [n] such that there is a set Z ⇢ V (G) where the following is true. The partition

(G[⇡1 \ Z], G[⇡2 \ Z], ..., G[⇡wpn(H) \ Z]) is a P (H)-free partition and |Z|  wpn(H) · 2h · h · �n,
where h = |V (H)|.

Proof. Let h := |V (H)| and w := wpn(H). For a partition P = (H1, H2, ..., Hwpn(H)) 2 P (H)

of H, we define m(P ) :=
Q

1i<jwpn(H) |V (Hi)| · |V (Hj)|. Let c(H) := minP2P (H)
m(P )�1
m(P )

and

let µ = µ(H,�) = � log c(H) ·
⇣

�
2

⌘2
.

Let 0 < ↵ < µ
16 . Let � > 0 and n00 2 N be the � and n0 we get from the stability theorem

3.1.3 for the given ↵. Let 0 < � < min
��
8 ,

µ
16

 

. Let "0 > 0 and n000 be the " and n0 that we

get from Theorem 3.1.2 for the above �, k, h. Let 0 < " < min{ �
16 ,

µ
16 , "

0} and let t 2 N be such

that 1
t  min

��
8 ,

µ
16

 

. Let n0000 and T be the n0 and T we get from Theorem 3.1.1 for above "

and t. Let n0 := max{T · n00, n000 , n0000 }. Let ⇧([n]) be the set of all partitions of [n].

Let G 2 (Forb(H))n for n � n0. By Szemerédi’s regularity lemma applied with " and t

as above, the graph G has an "-regular partition S = S(", t) = (V0, V1, V2, ..., Vk) satisfying

t  k  T . Let � > 0 as above and let R = R(G,S, �) be the reduced graph of G. By

Theorem 3.1.2, the graph R is Kwpn(H)+1-free, otherwise by the definition of wpn(H), G

contains an induced copy of H which contradicts the choice of G. By Turán’s Theorem 2.1.2,

|E(R)| 
⇣

1� 1
wpn(H)

⌘

�k
2

�

.

Let (B)n = (B(", k,�))n ⇢ (Forb(H))n be the set of graphs G 2 (Forb(H))n which have

an "-regular partition S = (V0, V1, V2, ..., Vk), and such that the reduced graph R contains at

most
⇣

1� 1
wpn(H)

⌘

�k
2

�� �k2 edges. We bound the number of graphs in (B)n by counting all

the possible partitions of [n] with the above properties. The number of ways to partition

[n] into k parts is at most nk. By our assumptions |V0|  "n and |Vi|  n
k for each i 2 [k].

Therefore the number of possible edges of which both ends are contained in some part of the

partition is at most
�"n
2

�

+ k
�

n
k
2

�  ("+ 1
k )
�n
2

�

. Hence the number of choices for graphs on the
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sets Vi, i 2 [k], is 2("+
1

k )(
n
2

)  2("+
1

t )(
n
2

). The number of choices for edges between pairs of

sets which are not "-regular or with density smaller than � or greater than 1 � � is at most

2("+�)(n
2

). Therefore, we can bound the number of graphs in (B)n by

2

 ✓
1� 1

wpn(H)

◆
��+o(1)+1

t+2"+�

!

(n
2

)
.

Note that by our choice of t, ", �, we have that 1
t +2"+�  �

2 . Therefore if we compare the up-

per bound on the number of graphs in (B)n to the lower bound |(Forb(H))n| � 2

✓
1� 1

wpn(H)

◆
(n

2

2

)

shown in Theorem 2.1.6, we get that |(B)n| = o((Forb(H))n).

In the following we focus on graphs in (Forb(H))n \ (B)n. Let G 2 (Forb(H))n \ (B)n, then
by the definition of this family of graphs, the corresponding reduced graph R contains at

least
⇣

1� 1
wpn(H)

⌘

�k
2

� � �k2 edges, therefore by the stability theorem 3.1.3, R can be made

into Tk(wpn(H)) be changing at most ↵k2 edges. Let R0 be the resulting graphs after the

change of the above ↵k2 edges and let W1,W2, ...,Wwpn(H) be the partition of V (R) = V (R0)

into wpn(H) stable sets. Let ⇡i = [vj2Wi
Vj , i 2 [wpn(H)] and let ⇧(G) = (⇡1,⇡2, ...,⇡wpn(H))

be the corresponding partition of [n]. Note that G[⇡i], i 2 wpn(H) is not necessarily a stable

set, but the number of possible subgraphs of G on each ⇡i, i 2 [wpn(H)] can be bounded by

a function of ↵, t, " and � as follows. By the definitions of R and R0, the underlying graph on

G[⇡i] for each i 2 [wpn(H)] is a collection of parts from the "-regular partition S such that

at most ↵k2 of the pairs of those parts are "-regular and have density in (�, 1 � �), let F be

the family of all such possible graphs on each ⇡i, i 2 [wpn(H)]. The number of graphs in F
is at most 2

⇣
↵+1

t+"+�
⌘
(n

2

2

)  2
µ
4

·(n2
2

), where the inequality is due to the choice of ↵, t, ", �.

We can conclude that graphs G 2 (Forb(H))n\(B)n can be partitioned into wpn(H) almost

equal parts such that the graph induced on each of the parts is a graph from F . Therefore

the number of graphs in (Forb(H))n \ (B)n is at most

2

✓
1� 1

wpn(H)

+o(1)+µ
4

◆
(n
2

)
.

Let ⇧ = (⇡1,⇡2, ...,⇡wpn(H)) be a partition of [n] and let P = (H1, H2, ..., Hwpn(H)) 2
P (H) be a partition of H. Let (B(�,⇧, P ))n ⇢ �

(Forb(H))n \ (B)n
�

be the set of graphs
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G 2 (Forb(H))n\(B)n such that for each i 2 [wpn(H)], G[⇡i] contains at least �n disjoint copies

of Hi, for each i 2 [wpn(H)], let Hi be the maximum collection of disjoint copies of Hi in G[⇡i].

As before, we want to bound from above the number of graphs in (B(�,⇧, P ))n. Note that

because we consider graphs in Forb(H), then for each choice of graphs (H 0
1, H

0
2, ..., H

0
wpn(H)

)

such that H 0
i 2 Hi, i 2 [wpn(H)], there is at least one edge arrangement between those

subgraphs that cannot appear otherwise we get a copy of H. Therefore for each choice of

graphs (H 0
1, H

0
2, ..., H

0
wpn(H)

) where H 0
i 2 Hi, instead of m(P ) possible edge arrangements we

have at most m(P )� 1. Let K = (H 0
1, H

0
2, ..., H

0
wpn(H)

) be a sequence of graphs where H 0
i 2 Hi

for each i 2 [wpn(H)] and let K be a maximum collection of sequences K such that every two

di↵erent sequences in K intersect on at most one element. By Lemma 1.3.3, we know that

there is a collection K such that |K| �
⇣

�n
2

⌘2
.Therefore the number of graphs in (B(�,⇧, P ))n

is at most

2

✓
1� 1

wpn(H)

+o(1)+µ
4

◆
(n
2

) · c(H)

⇣
�n
2

⌘
2

 2

✓
1� 1

wpn(H)

+o(1)+µ
4

◆
(n
2

) · 2�µ·n2
2 .

If we again compare the above bound the lower bound on the number of graphs in (Forb(H))n

from Theorem 2.1.6, then we can conclude that it is much smaller than the number of graphs

in (Forb(H))n.

Let G 2 �

(Forb(H))n \((B)n
S

([⇧2⇧([n]),P2P (H)(B(�,⇧, P ))n)
�

, and let ⇧(G) be a partition

of [n] as above. We define the set Zi for each i 2 [wpn(H)], to be the union of the vertex set of

all disjoint copies of all induced subgraph H 0 of H, such that G[⇡i] does not contain at least

�n disjoint copies of H 0. By setting Z = [wpn(H)
i=1 Zi, we get the required partition. Indeed,

if (G[⇡1 \ Z], G[⇡2 \ Z], ..., G[⇡wpn(H) \ Z]) is not P (H)-free partition then there is a partition

(H1, H2, ..., Hwpn(H)) of H such that for each i 2 [wpn(H)], Hi is an induced subgraph in

G[⇡i \Z], but then, by the definition of Z, each G[⇡i \Z] contains at least �n disjoint copies of

Hi, and this is a contradiction to the choice of G. There are at most 2h subgraphs of H, each

of them has size at most h and there are at most �n disjoint copies of each such subgraph,

therefore |Z|  wpn(H) · 2h · h · �n, as required.
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3.2 Obtaining Better Near Partitions

We start by presenting a result due to Alon, Balogh, Bollobás and Morris [2]. This result

is a crucial initial step in our arguments. Firstly we show how we can use this result to

strengthen the partition of almost all H-free graphs for all graphs H. We show that almost

all H-free graphs G can be partitioned into wpn(H) parts (G1, G2, ..., Gwpn(H)) where there

is a set Z such that (G1 \ Z,G2 \ Z, ..., Gwpn(H) \ Z) is a P (H)-free partition and there is an

" > 0 such that |Z|  n1�".

Before we can present the result of Alon et al [2] we need a few definitions. Let U(k)

be a bipartite graph with parts A ⇠= [2]k and B ⇠= [k] and edges between a vertex a 2 A and

b 2 B if and only if b 2 a. We say that G contains a copy of U(k) if there are A,B ✓ V (G)

such that A\B = ; and G[A,B] is isomorphic to U(k). Alon et. al. [2] showed the following

theorem. Note that part (iii) does not appear in the statement of their main theorem, but

can be derived from the proof, see [47].

Theorem 3.2.1 (Alon et al [2]). Let F be a hereditary property of graphs with a colouring

number �c(F) = r and let � > 0. Then there exist constants k = k(F) 2 N, " = "(F) > 0 and

b = b(F , �) 2 N such that the following holds.

For almost all graph G 2 F , there exists a partition (⇡1,⇡2, ...,⇡r) of V (G) = [n] such that

⇡i = ⇡0i[̇Xi for each i 2 [r], and a set B ⇢ V (G) of at most b vertices such that,

(i) G[⇡0i] does not contain a copy of U(k) for every i 2 [r],

(ii) | [r
i=1 Xi|  n1�",

(iii) for every vertex v 2 ⇡i, i 2 [r], there is a vertex b 2 B, |(N(v)4N(b)) \ ⇡i)|  �n.

We denote X := [wpn(H)
i=1 Xi. The following theorem is due to Reed and Scott [47] and

can be derived from the results in [2].

Theorem 3.2.2 (Reed-Scott [47]). For every graph H and constant ⇠ > 0, there are ⇢ =

⇢(H, ⇠) > 0 and b = b(H, ⇠) 2 N, such that the following holds.

42



For almost all H-free graphs G, there exists a partition (⇡1,⇡2, ...,⇡wpn(H)) of V (G) = [n]

such that ⇡i = ⇡0i[̇Zi for each i 2 [wpn(H)], and a set B ⇢ V (G) of at most b vertices such

that,

(I) the partition (G[⇡01], G[⇡02], ..., G[⇡0
wpn(H)

]) is a P (H)-free partition,

(II) | [wpn(H)
i=1 Zi|  n1�⇢,

(III) for every i 2 [wpn(H)] and vertex v 2 ⇡i, there is a vertex b 2 B such that

�

�

�

N(v)4N(b)
� \ ⇡i

�

�  ⇠n,

(IV) for every i 2 [wpn(H)], we have

�

�

�

�

|⇡i|�
n

wpn(H)

�

�

�

�

 n1�
⇢
4 .

Reed and Scott proved the above theorem using Theorem 3.2.1 together with the following

theorem.

Theorem 3.2.3 ([2]). For each k 2 N there exists " = "(k) > 0 such that there are at most

2`
2�"

distinct graphs which do not contain a copy of U(k) on the vertex set [`].

For completeness we reprove the Reed-Scott theorem.

Proof of Theorem 3.2.2. Let H be a graph and let ⇠ > 0, let � 2
✓

0,min{⇠, 1
24 wpn(T )

}
◆

, from

Theorem 3.2.1 applied with Forb(H) and �, we get k, b 2 N and " > 0 such that almost

all graphs in Forb(H) have a partition ⇧(G) of their vertex set with respect to which they

have properties (i)-(iii). We show that almost all graphs G 2 Forb(H) also have properties

(I) � (III) with respect to ⇧(G). Note that property (III) is an immediate consequence to

property (iii) and the choice of �. Let ⇧([n]) be the set of all partitions of [n].

We start from bounding the number of graphs in (Forb(H))n. We do that by bounding the

number of graphs in (Forb(H))n with a partition with respect to which they have properties

(i)-(iii) as in Theorem 3.2.1. There are at most wpn(H)n ways to partition [n] into wpn(H)

parts. Let ⇧ = (⇡1,⇡2, ...,⇡wpn(H)) be a partition on [n], and let ni := |⇡i|, i 2 [wpn(H)]. For
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each i 2 [wpn(H)], we partition further ⇡i = ⇡0i [ Xi. There are at most 2n ways to do so.

There are at most 2n ·2bn ways to choose the vertices in B and to choose their neighbourhoods

in the graph.

By our assumptions, G[⇡0i] does not contain a copy of U(k). By Theorem 3.2.3 there is a

"0 = "0(k) > 0 such that there are at most 2`
2�"0

graphs which do not contain a copy of U(k)

on [`]. Therefore we have at most 2n
2�"0

ways to choose the graphs on ⇡0i. Let i 2 [wpn(H)]

and let x 2 Xi, then using part (iii) in Theorem 3.2.1, there is a vertex b 2 B such that the

neighbourhood of x in ⇡i is similar to the neighbourhood of b in ⇡i. There are b ways to

choose such a vertex in B and there are at most
�ni
�n

�

ways to choose the neighbourhood of

x in ⇡i which di↵ers from the neighbourhood of b. Therefore the number of ways to choose

the neighbourhood of x in ⇡i is at most b
�ni
�n

�

. If we take the product over all vertices x in

X, then using the bound in 1.3.1, the number of ways to choose the neighbourhood of them

inside their corresponding parts is at most b|X|22� log
1

�n|X|. Hence using the bound on the

size of X in part (ii) of Theorem 3.2.1 we deduce that the number of graphs in (Forb(H))n

is at most

2
n2�"0+2� log 1

�n
2�"+

✓
1� 1

wpn(H)

◆
(n
2

)+O(n)
.

Next, using the above general bound on the number of graphs in (Forb(H))n, we bound

now the number of graphs which do not have properties (I), (II) or (IV). First we consider

properties (I) and (II). We proceed as we did in the proof of Theorem 3.1.4.

Let ↵ 2
⇣

0,min{ "0
16 ,

"
16}

⌘

, let ⇧ = (⇡1,⇡2, ...,⇡wpn(H)) be a partition of [n] and let P =

(H1, H2, ..., Hwpn(H)) 2 P (H) be a partition of H. Let (B(↵,⇧, P ))n ⇢ (Forb(H))n be the

set of graphs G 2 (Forb(H))n such that for each i 2 [wpn(H)], G[⇡i] contains at least n1�↵

disjoint copies of Hi. Let, for each i 2 [wpn(H)], Hi be the maximum collection of disjoint

Hi in G[⇡i]. We want to bound the number of graphs in (B(↵,⇧, P ))n. Note that because

G 2 Forb(H), for each choice (H 0
1, H

0
2, ..., H

0
wpn(H)

) of graph such that H 0
i 2 Hi, i 2 [wpn(H)],

there is at least one edge arrangement between those sets that cannot appear, otherwise we

get a copy of H. Let K = (H 0
1, H

0
2, ..., H

0
wpn(H)

) be a sequence of graphs where H 0
i 2 Hi for

each i 2 [wpn(H)] and let K be a maximum collection of sequences K such that every two
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di↵erent sequences in K intersect on at most one element. Using Lemma 1.3.3, |K| � n2�2↵

4 .

Therefore the number of graphs in (B(↵,⇧, P ))n is at most

2
n2�"0+2� log 1

�n
2�"+

✓
1� 1

wpn(H)

◆
(n
2

)+O(n)
· 2�c(H)n2�2↵

where c(H) > 0 is a constant which depends only on the graph H. By the choice of ↵ and

Theorem 2.1.6 the above is much smaller than the number of graphs in (Forb(H))n.

Let G 2 (Forb(H))n \ ([⇧2⇧([n]),P2P (H)(B(↵,⇧, P ))n), and let ⇧(G) be a partition of V (G)

as above. For each i 2 [wpn(H)], let Zi be the union of all disjoint copies of all induced

subgraphs H 0 of H, such that G[⇡i] does not contain at least n1�↵ disjoint copies of H 0. Let

Z = [wpn(H)
i=1 Zi. By the choice of G, the partition (G[⇡1 \ Z], G[⇡2 \ Z], ..., G[⇡wpn(H) \ Z]) is

P (H)-free. Moreover, there are 2h di↵erent subgraphs of H, so |Z|  2h · n1�↵. Let ⇢ = ↵/2,

then G has properties (I)-(II) with respect to ⇧(G) and Z chosen as above.

To finish the proof, we show that the number of graphs G in (Forb(H))n that do not have

a partition ⇧(G) = (⇡1,⇡2, ...,⇡wpn(H)) as above with property (IV ) is much smaller than the

number of graphs in (Forb(H))n. Let |⇡i| = ni =
n

wpn(H)
+ ai for ai 2 Z, i 2 [wpn(H)]. The

number of edges between the parts is at most

✓

n

2

◆

�
wpn(H)
X

i=1

✓

ni
2

◆

=

✓

n

2

◆

�
wpn(H)
X

i=1

✓ n
wpn(H)

+ ai

2

◆


✓

n

2

◆

� n2

2wpn(H)
� 1

2

wpn(H)
X

i=1

a2i .

Let ⇢ = ↵/2 as before and assume that there is an index i 2 [wpn(H)] such that ai � n1�
⇢
4 ,

then the number of such graphs is at most

2
n2�"0+2� log 1

�n
2�"+

✓
1� 1

wpn(H)

◆
(n
2

)+O(n)�n
2�⇢

2

.

By the choice of ⇢ and Theorem 2.1.6 the above is much smaller than the number of graphs

in (Forb(H))n.

3.3 General Tools

In this section we present a collection of tools which can be used in proving an exact structural

theorem of almost all H-free graphs for any graph H. All the following tools are used in the
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proof of the exact structure of all almost all T -free graphs for any tree T .

Let H be a graph and let ⇠ > 0 be a constant to be defined later. Let ⇢ = ⇢(H, ⇠) and let

B be the constant and the set, respectively, that we get from Theorem 3.2.2 applied with

H and ⇠. Let Z = [wpn(H)
i=1 Zi. Let n 2 N be large enough and let ⇧ be a ⇢/4-almost equal

partition of [n] into wpn(H) parts. In the following when we refer to properties (I),(II),(III)

and (IV), we always mean those properties from Theorem 3.2.2.

Let ⇢ > 0 and ⇧ be a ⇢/4-almost equal partition of [n]. A graph G 2 Forb(H) is ⇧-

conformal if it has properties (I)-(III) with respect to ⇧. Let RS✓ Forb(H) be the set of

all graphs which are ⇧-conformal with respect to some partition ⇧ as above.

A graph G 2 (RS)n is good if there is some partition ⇧ with respect to which it is

⇧-conformal and the set Z is empty (in this case, requiring property (II) is redundant). A

graph G 2 (RS)n is ⇧-good if it is ⇧-conformal and has the set Z empty with respect to ⇧.

A graph G 2 (RS)n is bad if for every partition ⇧ with respect to which it is ⇧-conformal,

G is not ⇧-good. In other words, there is no partition ⇧ such that G has properties (I)-(III)

and Z is empty with respect to this partition. A graph G 2 (RS)n is ⇧-bad if it is ⇧-

conformal and bad.

Our goal is to show that the number of bad graphs is much smaller than the number of

good graphs. We do it by choosing n 2 N large enough, fixing a ⇢-almost equal partition ⇧

of [n] for some ⇢ > 0 and then showing that the number of ⇧-bad graphs is much smaller

than the number of ⇧-good graphs. Firstly we need to establish that indeed showing that

the number of ⇧-bad graphs is much smaller than the number of ⇧-good graphs, for every

suitable partition ⇧, implies that the number of bad graphs is much smaller than the number

of good graphs. We do that by showing in the next subsection that the number of ⇧-good

graphs with respect to all suitable partitions ⇧ is not much larger than the number of good

graphs.
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3.3.1 Partitions

In order to present the main theorem of this subsection, we need the following definitions

and claims.

Lemma 3.3.1 (Lemma 6 for r = 2, [2]). For each k 2 N, there exists K = K(k) 2 N such

that the following holds. Let G be a graph which contains a copy of U(K), then it contains a

copy of U(k) such that V (U(k)) = A[B, G[A,B] = U(k), and each of G[A] and G[B] is either

a clique or a stable set.

Lemma 3.3.2. Let H be a graph, then for any s, c 2 N such that s+ c = wpn(H)� 1, H can

be partitioned into s stable sets, c cliques and either a bipartite graph, or a complement of a

bipartite graph or a graph which can be partitioned into a stable set and a clique.

Proof. Let s, c 2 N such that s+c = wpn(H)�1, then we argue that it is possible to partition

H into s stable sets, c cliques and a bipartite graph. The proof for the case of complement of

a bipartite graph or a graph which can be partitioned into a stable set and a clique is similar.

By the definition of wpn(H), H can be partitioned into s+2 stable (S1, S2, ..., Ss+2) sets and

c cliques (C1, C2, ..., Cc) (s + 2 + c = wpn(H) + 1). Then s stable sets (S1, S2, ..., Ss) together

with c cliques (C1, C2, ..., Cc) and H[V (S1) [ V (S2)] is the required partition of H.

Let H be a graph and let (F1,F2, ...,Fwpn(H)) be a P (H)-free sequence. Note that because

the families in a P (H)-free sequence are infinite, then using Theorem 1.3.4 we can deduce

that each of the families Fi contains either all the stable sets or all the cliques. Moreover,

the graph U where V (U) = A [B, U [A,B] = U(h) and U [A], U [B] are stable sets contains as

an induced subgraph every induced bipartite graph of H. A similar argument is true if one

of the U [A] and U [B] or both are cliques. Hence we can use the above lemma to obtain the

following property of P (H)-free sequences.

Corollary 3.3.3. Let H be a graph with |V (H)| = h and let (F1,F2, ...,Fwpn(H)) be a P (H)-

free sequence. Then for each i 2 [wpn(H)], Fi does not contain a graph U such that V (U) =

A [B, each of U [A] and U [B] is either a clique or a stable set and U [A,B] = U(h).
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Let H be a graph and let G be the collection of all good graphs in RS ✓ Forb(H). Let

(F1,F2, ...,Fwpn(H)) be a P (H)-free sequence, we say that a ⇧-good graph G 2 G extends

the sequence (G1, G2, ..., Gwpn(H)), Gi 2 Fi, i 2 [wpn(H)], if G is obtained by adding edges

between the graphs Gi, i 2 [wpn(H)].

Lemma 3.3.4. Let k, n 2 N, ⇢ > 0 and ⇧ = (⇡1,⇡2, ...,⇡wpn(H)) be a ⇢-almost equal partition

of [n], let " 2
⇣

0, 12

⌘

and C � k. Let S = (G1, G2, ..., Gwpn(H)) be a sequence of graphs such

that V (Gi) = ⇡i for each i 2 [wpn(H)]. Then the number of graphs G which extend the

sequence S and do not have the following property is o(n) of the number of all the graphs

which extend S. For any two indices i 6= j and for all sets Wi ✓ V (Gi) and Wj ✓ V (Gj) such

that |Wi|, |Wj | � n
1

2

+" or |Wi| � C and |Wi| � |V (Gj)|� n
1

2

+" there are subsets Ai ⇢ Wi and

Bj ⇢ Wj such that G[Ai, Bj ] = U(k).

Proof. Let S be the sequence as above. We obtain a ⇧-good graph G which extends S by

choosing edges between the parts with probability 1
2 .

Let Wi ✓ V (Gi) and Wj ✓ V (Gj), i 6= j, be two subsets such that |Wi|, |Wj | � n
1

2

+". The

probability that for any Ai ⇢ Wi and Bj ⇢ Wj , G[Ai, Bj ] 6= U(k), is at most

✓

n
1

2

+"

k

◆

·
✓

n
1

2

+"

2k

◆

0

@

2k·2k � 1

2k·2k

1

A

n
1

2

+"

k ·n
1

2

+"

2

k

 22(n
1

2

+"
) · 2�c(k)n1+2"

,

where c(k) > 0 is a constant which depends only on k. Therefore the expected number of

sets Wi,Wj as above is at most

wpn(H)2 ·
✓

n

n
1

2

+"

◆2

· 22(n
1

2

+"
) · 2�c(k)n1+2"

 26n · 2�c(k)n1+2"
= o(n).

Hence the probability that a graph G which extends S has that for any Wi ✓ V (Gi) and

Wj ✓ V (Gj), i 6= j such that |Wi|, |Wj | � n
1

2

+", for any Ai ⇢ Wi and Bj ⇢ Wj , G[Ai, Bj ] 6= U(k)

is o(n).

48



Let Wi ✓ V (Gi) and Wj ✓ V (Gj), i 6= j, be two subsets such that |Wi| � |V (Gi)| � n
1

2

+"

and |Wj | � C. The probability that for any Ai ⇢ Wi and Bj ⇢ Wj , G[Ai, Bj ] 6= U(k), is at

most

✓

C

k

◆✓|V (Gi)|� n
1

2

+"

2k

◆

·
0

@

2k·2k � 1

2k·2k

1

A

|V (Gi)|�n
1

2

+"

k · C
2

k

 22
2k+2 log n · 2�c(k,C,H)n,

where c(k,C,H) > 0 is a constant which depends only on k, C,H. Therefore the expected

number of sets Wi,Wj as above is at most

wpn(H)2 ·
✓

n

n
1

2

+"

◆2

· 222k+2 log n · 2�c(k,C,H)n

 24n
1

2

+"
log n · 2�c(k,C,H)n = o(n).

Hence the probability for the existence of such sets is o(n). This completes the proof.

Let F be a graph, we say that a graph F [ {v} is a result of randomly adding a vertex v

to F if it is an outcome of adding every edge between v and V (F ) with probability 1
2 .

A hereditary family of graphs F is stable if for all t 2 N and almost all graphs F 2 F , if

we randomly add a vertex v then almost surely there are subgraphs F1, F2, ..., Ft of F [ {v}
such that for any i 6= j 2 [t], V (Fi) \ V (Fj) = {v} and Fi /2 F for all i 2 [t]. For example, if

F is the family of all cliques, then if we randomly add a vertex v to a large enough clique

F 2 F , then almost surely the non-neighbourhood of v is large enough so we get the required

subgraphs F1, F2, ..., Ft.

Let w 2 N, a sequence of families (F1,F2, ...,Fw) is properly arranged if for any i 6=
j 2 [w], either Fi = Fj or almost all graphs Gi 2 Fi cannot made into a graph Gj 2 Fj by

deleting a constant number of vertices. For example, a sequence of families (F1,F2, ...,Fw)

which is not properly arranged is as follows. The family F1 is the family of all graphs which

are cliques or a disjoint union of a clique and a singleton vertex. The rest of the families Fi,

i � 2, are the families of all cliques.
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Theorem 3.3.5. Let H be a graph and assume that all P (H)-free sequences (F1,F2, ...,Fwpn(H))

are properly arranged and moreover for each i 2 [wpn(H)], Fi is stable. Let (F1,F2, ...,Fwpn(H))

be a P (H)-free sequence, n 2 N be large enough and ⇢ > 0, then almost all good graphs G

have the following property. If G is ⇧-good and ⇧0-good so G[⇡i], G[⇡0i] 2 Fi, then there is

permutation � so ⇡i = ⇡0
�(i)

for each i 2 [wpn(H)].

Proof. Let G be a good graph and let ⇧ = (⇡1,⇡2, ...,⇡wpn(H)), ⇧
0 = (⇡01,⇡02, ...,⇡0wpn(H)

) be ⇢-

almost equal partitions of [n] so G is ⇧-good and ⇧0-good. Moreover, let (F1,F2, ...,Fwpn(H))

be the P (H)-free sequence so G[⇡i], G[⇡0i] 2 Fi for each i 2 [wpn(H)]. Assume to the contrary

that ⇧0 6= ⇧.

Let h = |V (H)|, let k � h, and let K = K(k) be the constant from Lemma 3.3.1. From

Corollary 3.3.3, we know that for each i 2 [wpn(H)], G[⇡i] and G[⇡0i] do not contain a copy

of U(K).

Let i 2 [wpn(H)] be such that |⇡1\⇡0i| � n
1

2

+" for some " > 0. Such an index exists because

both ⇧ and ⇧0 are ⇢-almost equal partitions. Then it must be the case that |⇡14⇡0i|  2n
1

2

+",

otherwise, by Lemma 3.3.4, G[⇡1] or G[⇡0i] contains U(K). But if this is the case then actually

it must be that |⇡14⇡0i| < 2 · 2k, because otherwise, again by Lemma 3.3.4, G[⇡1] or G[⇡0i]

contains U(K).

By our assumptions, G[⇡1] 2 F1, then because every P (H)-free sequence is properly

arranged it must be the case that G[⇡0i] 2 F1. Let v 2 ⇡14⇡0i, assume without loss of generality

that v 2 ⇡0i \ ⇡1. By our assumptions the family F1, i 2 [wpn(H)], is stable, therefore there

are subgraphs F1, F2, ..., Ft of G[⇡1 [ {v}] such that for any i1 6= i2 2 [t], V (Fi
1

)\ V (Fi
2

) = {v}
and Fj /2 F1 for all j 2 [t] and moreover t � 2 · 2k. By the choice of t and the fact that

|⇡14⇡0i| < 2 · 2k, there must be a graph Fj , j 2 [t], such that V (Fj) \ {v} ⇢ ⇡0i, but because

Fj /2 F1, then G[⇡0i [ {v}] /2 F1 and therefore, v /2 ⇡0i, contradicting the choice of v. Hence

⇡0i \ ⇡1 = ;. By a symmetric argument, ⇡1 \ ⇡0i = ;. Therefore ⇡1 = ⇡0i.

Repeating the same argument as above, we can conclude that there is mapping f :

[wpn(H)] ! [wpn(H)] such that ⇡i = ⇡0
f(i)

. Moreover there is an permutation of the parts in

the partition ⇧0 so f(i) = i for each i 2 [wpn(H)].

50



3.3.2 Additional preliminaries

LetH be a graph and let�(H) be the set of all P (H)-free sequences. Let ⇧ = (⇡1,⇡2, ...,⇡wpn(H))

be a partition of [n]. Then we define the following values.

m :

= m(⇧) =
Y

1i<jwpn(H)

|⇡i| · |⇡j |,

F :

= F (H,⇧) = max
(F

1

,F
2

,...,F
wpn(H)

)2�(H)

wpn(H)
Y

i=1

| (Fi)|⇡i| |.

Let (F1,F2, ...,Fwpn(H)) 2 �(H), by the definition of a P (H)-free sequence, for every choice

of graphs Gi 2 (Fi)|⇡i|, i 2 [wpn(H)], and any choice of the edges between the graphs

(G1, G2, ..., Gwpn(H)), the resulting graph is a ⇧-good graph. Therefore we can obtain the

following lower bound. In many of the following arguments when we want to show that

almost all H-free graphs do not have some property P , we compare the number of graphs

with property P to the following lower bound.

Observation 3.3.6 (Lower bound on ⇧-good graphs). Let H be a graph, and let ⇧ be a

partition of [n]. The number of ⇧-good graphs in (Forb(H))n is at least,

2m · F.

Let ⇧ = (⇡1,⇡2, ...,⇡wpn(H)) be a ⇢-almost equal partition of [n] for some ⇢ > 0 and let

� > 0 and i 2 [wpn(H)]. Let G 2 RS be a ⇧-conformal graph. A subgraph J of H is (⇧,�, i)-

common in G if there is a set J of disjoint copies of graphs isomorphic to J in G[⇡i] and

|J | � n1��.

Let ⇧ be a partition as above and let h 2 N, � > 0 and µ > 0. A graph G 2 RS
is (⇧, h,�, µ)-exceptional if G is ⇧-conformal and there is a graph J decomposable into

J1, J2, ..., Jwpn(H) such that for each i 2 [wpn(H)], |V (Ji)|  h, Ji is (⇧,�, i)-common in G and

moreover the following is true for G. Let Ji, i 2 [wpn(H)], be the maximal set of disjoint

copies of Ji in G[⇡i], then there are subsets J 0
i ⇢ Ji such that |J 0

i |  µn1��, i 2 [wpn(H)], and

the only way to obtain a copy of J from sets (J1, J2, ..., Jwpn(H)) where Ji 2 Ji, is if Ji 2 J 0
i
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for each i 2 [wpn(H)]. In other words, we are allowed to build a copy of J only by choosing

its parts from the sets J 0
i .

For example, let ⇧ be a partition as above and let G be such G[⇡i] is a clique for each

i 2 [wpn(H)]. Let J be a path on 2wpn(H) vertices, then J is decomposable into wpn(H)

edges J1, J2, ..., Jwpn(H). In this example, for each i 2 [wpn(H)], Ji is (⇧,�, i)-common for

any � > 0, let Ji be a maximum sets of disjoint edges in G[⇡i]. The graph G is (⇧, 2,�, µ)-

exceptional if any induced P2wpn(H) in G, which is build by choosing edges from Ji, uses

only edges in sets J 0
i ✓ Ji for some sets J 0

i such that |J 0
i |  µ|Ji|.

Let ⇧ as above and let h 2 N, � � 0 and µ � 0, we define C(⇧, h,�, µ) to be the set of

all (⇧, h,�, µ)-exceptional graphs. Note that in some cases we are interested in (⇧, h,�, µ)-

exceptional graphs for µ = 0, in this case we do not allow any copy of J as above.

Let k 2 N and " > 0 be the constants from Theorem 3.2.1 applied with Forb(H) and � > 0

su�ciently small. Let "0 > 0 be the constant from Theorem 3.2.3 applied with k.

Lemma 3.3.7. Let ", "0 > 0 as above, h 2 N, � 2 [0,
min{","0}

8 ) and µ 2 [0, 12), then the number

of graphs in C(⇧, h,�, µ) is much smaller than the number of ⇧-good graphs.

Proof. From Theorems 3.2.1 and 3.2.3 and similarly to the counting in the proof of Theo-

rem 3.2.2, the number of possible graphs G[⇡i] for all i 2 [wpn(H)] is at most

2n
2�"0+2� log 1

�n
2�"+(b+3)n  2n

2�"00/2
,

where "00 = min{", "0}.
There are at most (2h · 2n)wpn(H) ways to choose the sets Ji, i 2 [wpn(H)]. There are at

most (2h · 2n)wpn(H) ways to choose the subsets J 0
i ✓ Ji, i 2 [wpn(H)]. There are at most

⇣

µn1��
⌘

!wpn(H)�1 ways to partition the graphs in the sets J 0
i into the di↵erent copies of J .

The number of possible edges between the graphs J1, J2, ..., Jwpn(H) is

m(J) =
Q

1i<jwpn(H) |V (Ji)| · |V (Jj)|  wpn(H)2 · h2, therefore the number of possible

edge arrangements between the graphs J1, J2, ..., Jwpn(H) is 2m(J). By our assumptions, we

cannot have a copy of J by some choice of edges between graphs in Ji \ J 0
i , therefore for

every choice of sets (J 00
1 , J

00
2 , ..., J

00
wpn(H)

) where J 00
i 2 Ji \ J 0

i , i 2 [wpn(H)], instead of 2m(J)
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possible arrangements, there can be at most 2m(J) � 1. By Lemma 1.3.3, there are at

least
✓

|Ji|�|J 0
i |

2

◆2

�
✓

(1�µ)n1��

2

◆2

ways to choose the collections (J 00
1 , J

00
2 , ..., J

00
wpn(H)

) where

J 00
i 2 Ji \ J 0

i , i 2 [wpn(H)], such that no two collections intersect on more than one graph.

Hence for each such choice of a collection, we have one less choice of arrangements between

the sets. Therefore the number of graphs in C(⇧, h,�, µ) is at most

2m · 2n
2�"00/2

· 24wpn(H)n ·
⇣

µn1��
⌘

!wpn(H)�1 ·
 

2m(J) � 1

2m(J)

!

 
(1�µ)n1��

2

!
2

 2m · 22n
2�"00/2

· 24wpn(H)n · 2wpn(H)n1�� log n · 2�c(h,µ)n2�2�

where c(H) = log

✓

2m(J)

2m(J)�1

◆

· (1�µ)2

4 . Using that �  "00
8 , we get that the above is much

smaller than the number of ⇧-good graphs.

3.3.3 The set Y(G)

In this subsection we define a special set Y (G) ✓ V (G) in a graph G with respect to some

parameters specified later. Roughly speaking, the vertices in Y (G) are part of some constant

sized sets of vertices with a non-typical behaviour. There are a few graphs G with a large set

Y (G). Moreover, it is possible to derive some useful properties of the graph G[V (G) \ Y (G)].

Let ⇧ = (⇡1,⇡2, ...,⇡wpn(H)) be a ⇢-almost equal partition of [n] for some ⇢ > 0. Let � > 0

and i 2 [wpn(H)], a subgraph J of H is (⇧,�, i)-linearly common in G if there is a set J
of disjoint copies of graphs isomorphic to J in G[⇡i] and |J | � �n. Note that if a subgraph

J of H is (⇧,�, i)-linearly common, then it is also (⇧,�, i)-common.

Let µ > 0, a set S such that |S|  h and S for j 6= i, is (⇧,�, i, µ)-linearly extremal

in G if there is a (⇧,�, i)-linearly common graph J and a graph J 0 which can be partitioned

into (G[S], J), but there are less than µ · �n vertex disjoint copies of J in G[⇡i] inducing J 0

with S.

Let G be a graph, we build the collection of disjoint subsets Y(⇧, G, i) :

=

Y
✓

⇧, G,�, i, 1

2h
2+1

◆

by adding greedily all the sets S which are
✓

⇧,�, i, 1

2h
2

+1

◆

-linearly

extremal. Let Y(G)

:= [wpn(H)
i=1 Y(⇧, G, i), and Y (G)

:= [Y 2Y(G)Y and y(G)

:= |Y (G)|.
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Let ⇧ be a partition as above, let y 2 [n] and let F = (F1,F2, ...,Fwpn(H)) be some

sequence of families (not necessarily a P (H)-free sequence). Let M(⇧,F , y) be equal to

maxY⇢[n],|Y |y
Qwpn(H)

i=1 |(Fi)|⇡i\Y ||. Note that the value M(⇧,F , y) is similar to the value

F (H,⇧) defined earlier, with the di↵erence that in the case of M(⇧,F , y) we remove some

set of vertices Y such that |Y |  y and do not restrict ourselves to P (H)-free sequences. Let

� > 0 and let G(⇧,F , y,�) be the set of all graphs G which have properties (II) and (III)

with respect to ⇧. Moreover, for each i 2 [wpn(H)], G[⇡0i] 2 Fi and y(G) = y.

Lemma 3.3.8. Let H be a graph and let � > 0. Let ⇧ be a ⇢-almost equal partition for

⇢ = ⇢(H, ⇠) from Theorem 3.2.2 applied with H and ⇠ > 0 so 2⇠ log 1
⇠ < log e · �

2(2h
2

+3·h·wpn(H))
.

Let F = (F1,F2, ...,Fwpn(H)) be a sequence of families and let y 2 [n]. The number of graphs

in G(⇧,F , y,�) is at most

2m(⇧) ·M(⇧,F , y) · 2(b+3)n · 2�c(H,�)ny,

where c(H,�) > 0 is a constant which depends only on H and �.

Proof. We bound from above the number of graphs which have properties (II)-(III) as in

3.2.2 and y(G) = y. There are at most
�n
b

�  2n ways to choose the set B ⇢ [n]. There are

at most 2bn ways to choose the neighbourhoods of the vertices of B. There are at most 2n

ways to choose the set Y (G) and there are at most yy ways to partition it into the di↵erent

subsets S. As mentioned we can assume that the graphs we count have property (III) of

Theorem 3.2.2 with respect to ⇧. Using this property and Lemma 1.3.1, for any i 2 [wpn(H)]

there are at most b
� n
⇠n

�

= b2
2⇠ log 1

⇠n ways to choose the neighbourhood of any vertex y 2 ⇡i\Y
with respect to G[⇡i]. In total, there are at most 2n ·yy ·

✓

b2
2⇠ log 1

⇠n
◆y

possibilities for choosing

Y and the neighbourhoods of each y 2 Y with respect to the part which it belongs to.

Assume that we fixed some choice of subgraphs on each of the ⇡i, i 2 [wpn(H)]. We

choose each edge between the parts independently at random with probability 1
2 .

Let S 2 Y(G), by the definition of the set Y(G), the set S is
✓

⇧,�, i, 1

2h
2

+1

◆

-linearly

extremal and the following holds. Hence there is an index i 6= j 2 [wpn(H)] such that there

is a (⇧,�, i)-linearly common graph J and a graph J 0 which can be partitioned into (G[S], J),
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but there are less than �n

2h
2

+1

vertex disjoint copies of J in G[⇡i] inducing J 0 with S. Let

J be a maximum collection of disjoint copies of J in G[⇡i]. The probability for any graph

J 0 which can be partitioned into (G[S], J) is 1
2|S|·|V (J)| � 1

2h
2

where the inequality is due to

the assumptions that |S|  h and |V (J)|  h. The expected number of copies of each such

graph J 0 is at least |J |
2h

2

� �n

2h
2

. Using Cherno↵ bound 1.3.6, the probability for S being
✓

⇧,�, i, 1

2h
2

+1

◆

-linearly extremal is at most e
� �n

2

h2+3 .

By the pigeonhole principle, there is an index i 2 [wpn(H)], such that there is a collection

S of at least Y
wpn(H)

sets from Y which are
✓

⇧,�, i, 1

2h
2

+1

◆

-linearly extremal. The events

that the sets in S are
✓

⇧,�, i, 1

2h
2

+1

◆

-linearly extremal are independent. Hence the number

of graphs in G(⇧,F , y,�) is at most

2m(⇧) ·M(⇧,F , y) · 2(b+2)n · 2nyy
✓

b2
2⇠ log 1

⇠n
◆y

·
 

e
� �n

2

h2+3

!

Y
wpn(H)

 2m(⇧) ·M(⇧,F , y) · 2(b+3)n · 2(log y+log b+2⇠ log 1

⇠n)y · 2
� log e· �

2

h2+3·h·wpn(H)

ny

 2m(⇧) ·M(⇧,F , y) · 2(b+3)n · 2
(log n+log b)y�log e· �

2

h2+4·h·wpn(H)

ny
,

where the first inequality is due to the fact that every set S 2 Y(G) is of size at most h,

and therefore y  h|Y|. The second inequality is due to the choice of ⇠. We set c(H,�) =

log e · �

2h
2

+5·h·wpn(H)
and get the required inequality for n large enough.

We frequently apply the above bound in our arguments. As mentioned before we count

the graphs G where for each i 2 [wpn(H)], G[⇡i \ Y (G)] 2 Fi with respect to some sequence

(F1,F2, ...,Fwpn(H)) of families which is not necessarily P (H)-free. Usually we define this

sequence by first defining some family of graphs B with some well specified properties on

each ⇡i, i 2 [wpn(H)], and then considering the sequence F(B). The sequence F(B) =

(F1,F2, ...,Fwpn(H)) is defined by taking a maximal collection of graphs Fi, i 2 [wpn(H)], so

for each choice of graphs Gi 2 Fi we obtain a graph in B.
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3.3.4 Extendable subgraphs

In this subsection we describe some of the properties that we can derive about the subgraph

G[V (G)\Y (G)] for G a ⇧-conformal graph and a set Y (G) as defined in the previous subsection.

Let H be a graph and let F(H) = (F1,F2, ...,Fwpn(H)) be a P (H)-free sequence, let

k 2 [wpn(H)] and let � > 0. Similarly to before, a graph J is �-linearly common in a graph

G, if G contains at least �|V (G)| disjoint copies of J . A subgraph J of H is (F(H), k,�)-

extendable if for any choice of graphs Gi 2 Fi, i 2 [wpn(H)] \ {k}, there is a partition

(H1, H2, ..., Hk = J, ...,Hwpn(H)) 2 P (H) where for each j 2 [wpn(H)] \ {k}, Hj is �-linearly

common in Gj . A subgraph J of H is �-universally extendable with respect to H if

it is (F(H), k,�)-extendable for all F(H) 2 �(H) and k 2 [wpn(H)]. Note that because in

the definition of �-universally extendable we require J to be (F(H), k,�)-extendable for all

F(H) 2 �(H) then there is no need in fixing k.

For example, the graph P4 is 1
4 -universally extendable with respect to all trees T 2

T npl (and actually we show later that P4 is universally extendable in all trees with perfect

matching). Let T 2 T npl, as we show in Section 5.2.1, any tree T 2 T npl can be partitioned

into P6 and wpn(T ) � 2 edges. The graph P6 can be partitioned into P4 and an edge and

into P4 and a non-edge. Hence there are partitions of T into P4 and wpn(T ) � 1 edges and

into P4, a non-edge and wpn(T ) � 2 edges. By Theorems 1.1.12, 1.1.14, and 1.1.16 for a

tree T 2 T npl, for every P (T )-free sequence (F1,F2, ...,Fwpn(H)) and for any choice of graphs

(G1, G2, ..., Gwpn(H)) one of the following outcomes holds. Either each Gi, i 2 [wpn(T )],

contains at least 1
4 |V (Gi)| disjoint edges or one of the graphs, without loss of generality G1,

contains at least 1
4 |V (G1)| disjoint non-edges and the rest of the graphs Gi, i � 2, contain at

least 1
4 |V (Gi)| disjoint edges. Hence, for any choice of k 2 [wpn(T )], the rest of the graphs Gi,

i 2 [wpn(T )] \ {k} either all contain many disjoint edges or one of the graphs contain many

disjoint non-edges and the rest contain many disjoint edges. Therefore P4 is 1
4 -universally

extendable for trees T 2 T npl.

Let J := J (H) be the set of all graphs which are �-universally extendable with respect

to H and some � > 0. Assume J 6= ;, and let �0(J) be the value with respect to which
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J 2 J is �0(J)-universally extendable. Let � = �(J ) = minJ2J �0(J). Let ⇠ > 0 be such

2⇠ log 1
⇠ < log e · �

2(2h
2

+3·h·wpn(H))
and let ⇢ > 0 that we get from Theorem 3.2.2 applied with

H and ⇠ as above. Let ⇧ be a ⇢/4-almost equal partition of [n], for n large enough. Let

C(J ,⇧) be the collection of ⇧-conformal graphs G such that there are J 2 J and i 2 [wpn(H)]

such that J is an induced subgraph of G[⇡i\Y (G)], where Y (G) is the set of vertices as defined

in Subsection 3.3.3.

Lemma 3.3.9. Let H be a graph, J = J (H), � = �(J ), ⇠ > 0, ⇢ > 0, and ⇧ be a ⇢/4-almost

equal partition defined as above. The number of graphs in C(J ,⇧) is much smaller than the

number of ⇧-good graphs.

Proof. Let G 2 C(J ,⇧) be a ⇧-conformal graph such that there are a �-universally extendable

J 2 J and an index i 2 [wpn(H)] such that G[⇡i\Y (G)] contains a subgraph J 0 isomorphic to J .

The graph G is ⇧-conformal, therefore by the definition of ⇧-conformal graph, it has property

(I) from Theorem 3.2.2. Let (G[⇡01], G[⇡02], ..., G[⇡0
wpn(H)

]) be the P (H)-free partition which we

get from property (I). By our assumptions the graph J is �-universally extendable so therefore

there is a partition (H1, H2, ..., Hi�1, J,Hi+1, ..., Hwpn(H)) such that for each j 2 [wpn(H)]\{i},
G[⇡0j ] contains a set Hj of at least �|V (G[⇡0i])| � �n

2wpn(H)
disjoint copies of Hj .

By our assumptions J 0 /2 Y(G), so by the definition of Y(G), for each j 2 [wpn(H)] \ {i},
there is a subset H0

j ⇢ Hj such that |H0
j | � �n

2h
2

+1·2wpn(H)
and for each H 0

j 2 H0
j , G[J 0 [H 0

j ] is

isomorphic to H[J[Hj ]. Hence for any sequence (H 0
1, H

0
2, ..., H

0
i�1, H

0
i+1, ..., H

0
wpn(H)

) such that

H 0
j 2 H0

j , j 2 [wpn(H)] \ {i}, there is an edge arrangement that cannot appear, otherwise we

get an induced copy of H. Then by Lemma 3.3.7 applied with h = |V (H)|, � > 0 su�ciently

small and µ = 0 (because we do not want to allow any copy of H), the number of such graphs

is much smaller than the number of ⇧-good graphs.

Let J , � = �(J ), ⇠ > 0, ⇢ > 0, ⇧ be a ⇢/4-almost equal partition as above. Let fJ (`)

be such |(Forb(J ))`|  2fJ (`) for all ` 2 N large enough. Recall that G(⇧,F , y,�) is the set

of all graphs G which have properties (II) and (III) with respect to ⇧. Moreover, for each

i 2 [wpn(H)], G[⇡0i] 2 Fi and y(G) = y.
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Corollary 3.3.10. Let H be a graph, J = J (H), � = �(J ), ⇠ > 0, ⇢ > 0, and ⇧ be ⇢/4-

almost equal partition. Let F = (F1,F2, ...,Fwpn(H)) such that Fi ✓ Forb(J ) and let fJ (`) be

as defined above.

If fJ (n) = 2, then there exists a constant C(H) > 0 which depends only on H such that

if y � C(H), then the number of graphs in G(⇧,F , y,�) is much smaller than the number of

⇧-good graphs.

If fJ (n) � 2, then there exists a constant C(H) > 0 which depends only on H such that if

y � C(H) · fJ (n)
n , then the number of graphs in G(⇧,F , y,�) is much smaller than the number

of ⇧-good graphs.

Proof. We use the bound from Lemma 3.3.8 on the number of graphs in G(⇧,F , y,�). By

our assumptions, M(⇧,F , y)  2fJ (n).

If fJ (n) = 2, then the number of graphs in G(⇧,F , y,�) is at most

2m(⇧) · 2fJ (n) · 2(b+3)n · 2�C(H)·c(H,�)n·fJ (n)

 2m(⇧) · 2(b+3)n · 22(1�C(H)·c(H,�)n).

If fJ (n) � 2, then the number of graphs in G(⇧,F , y,�) is at most

2m(⇧) · 2fJ (n) · 2(b+3)n · 2�C(H)·c(H,�)n·fJ (n)
n

 2m(⇧) · 2(b+3)n · 2(1�C(H)·c(H,�))fJ (n)

 2m(⇧) · 2(b+3)n · 2(1�C(H)·c(H,�))n.

In both case, if we set C(H) � b+5
c(H,�)

, we get a number which is much smaller than the

number of ⇧-good graphs which is at least 2m(⇧).

We give one more definition related to the universally extendable definition. The following

definition di↵ers in two aspects. Firstly, if a graph J is �-universally extendable then for

every P (H)-free sequence (F1,F2, ...,Fwpn(H)) and for any index k 2 [wpn(H)], for any choice

of graphs Gi 2 Fi, [wpn(H)]\{k}, it is possible to find many disjoint copies of a subgraph Hi in

Gi where (H1, H2, ..., Hk�1, J,Hk+1..., Hwpn(H)) 2 P (H). On the other hand, in the following

definition the graphs Hi do not necessarily exist for any choice of index k 2 [wpn(H)], but
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there is some choice of such index. Moreover, in the following we allow to further partition

the graph J into smaller subgraphs.

Let F(H) = (F1,F2, ...,Fwpn(H)) be a P (H)-free sequence, let {i1, i2, ..., ir} ✓ [wpn(H)] be

a set of di↵erent indices and let � > 0. A subgraph J of H is (F(H), {i1, i2, ..., ir},�)-
extendable, if for any choice of graphs Gj 2 Fj , j 2 [wpn(H)] \ {i1, i2, ..., ir}, there is a

partition (H1, H2, ..., Hwpn(H)) 2 P (H) such that the following is true. The graph J can be

partitioned into (Hi
1

, Hi
2

, ..., Hir), and for each j 2 [wpn(H)] \ {i1, i2, ..., ir}, Hj is �-linearly

common in Gj .

Let F(H) = (F1,F2, ...,Fwpn(H)) be a P (H)-free sequence, let {i1, i2, ..., ir} ✓ [wpn(H)]

be a set of di↵erent indices and let � > 0. Let J be a (F(H), {i1, i2, ..., ir},�)-extendable
graph. Let C(J,F(H), {i1, i2, ..., ir},⇧) be the collection of ⇧-conformal graphs G such that

there is a partition (H1, H2, ..., Hwpn(H)) 2 P (H) where the graph J can be partitioned into

(Hi
1

, Hi
2

, ..., Hir) and for each i 2 {i1, i2, ..., ir}, G[⇡i \ Y (G)] contains a graph H 0
i isomorphic

to Hi and G[[i2{i
1

,i
2

,...,ir}V (H 0
i)] is isomorphic to J . Similarly to Lemma 3.3.9 it is possible

to show the following lemma.

Lemma 3.3.11. Let H be a graph, and let ⇠ > 0, ⇢ > 0, and ⇧ be ⇢/4-almost equal partition

defined as above. Let F(H) = (F1,F2, ...,Fwpn(H)) be a P (H)-free sequence, let {i1, i2, ..., ir} ✓
[wpn(H)] be a set of di↵erent indices and let � > 0. Let J be a (F(H), {i1, i2, ..., ir},�)-
extendable graph. The number of graphs in C(J,F(H), {i1, i2, ..., ir},⇧) is much smaller than

the number of ⇧-good graphs.

Let r 2 [wpn(H)], a subgraph J of H (r,�)-universally extendable if for each F(H) 2
�(H), it is possible to find a set of r di↵erent indices {i1, i2, ..., ir} ✓ [wpn(H)], such that J is

(F(H), {i1, i2, ..., ir},�)-extendable.
Let 1  r  wpn(H) � 1, let J (r) := J (H, r) be the set of all graphs which are (r,�)-

universally extendable with respect to H and assume J 6= ;. Let �0(r, J) be the value

with respect to which J 2 J (r) is �0(r, J)-universally extendable. Let �(r) = �(J (r)) =

minJ2J (r) �
0(J) and let � = min1rwpn(H)�1 �(r). Let ⇠ > 0 be such 2⇠ log 1

⇠ < log e ·
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�

2(2h
2

+3·h·wpn(H))
and let ⇢ > 0 that we get from Theorem 3.2.2 applied with H and ⇠

as above. Let C(J (r),⇧) be the collection of ⇧-conformal graphs G such that there is

J 2 J (r) and a set of r di↵erent indices {i1, i2, ..., ir} ✓ [wpn(H)] where there is a parti-

tion (H1, H2, ..., Hwpn(H)) 2 P (H) so the graph J can be partitioned into (Hi
1

, Hi
2

, ..., Hir)

and for each i 2 {i1, i2, ..., ir}, G[⇡i \ Y (G)] contains a graph H 0
i isomorphic to Hi and

G[[i2{i
1

,i
2

,...,ir}V (H 0
i)] is isomorphic to J . Also similarly to Lemma 3.3.9 it is possible to

show the following lemma.

Lemma 3.3.12. Let H be a graph, let 1  r  wpn(H)� 1, J (r), � > 0, ⇠ > 0, ⇢ > 0, and ⇧

be ⇢/4-almost equal partition defined as above. The number of graphs in C(J (r),⇧) is much

smaller than the number of ⇧-good graphs.

Finally, we give one more lemma which can be derived from 3.3.12. Let all the constants

as chosen above. Let f1(n), f2(n) be functions of n such that
fJ (n)

f
1

(n)·f
2

(n)
= o(1) for all n 2 N and

f1(n) � f2(n). Let C(J (r),⇧, f1(n), f2(n)) be the set of graphs G such that there is a (r,�)-

universally extendable graph J 2 J (r) which can be partitioned into (H1, H2, ..., Hr), and the

following is true for G. The graph G is ⇧-conformal and there are indices {i1, i2, ..., ir} ✓
[wpn(H)] such that G[⇡ij \ Y (G)], for each j 2 [r � 1], contains at least f1(n) disjoint copies

of Hij and G[⇡ir \ Y (G)] contains at least f2(n) disjoint copies of Hir .

Lemma 3.3.13. Let H be a graph, let 2  r  wpn(H) � 1, J (r), � > 0, ⇠ > 0, ⇢ > 0, ⇧ be

a ⇢/4-almost equal partition and f1(n), f2(n) defined as above. If fJ (n) � n then the number

of graphs in C(J (r),⇧, f1(n), f2(n)) is much smaller than the number of ⇧-good graphs.

Proof. Let J 2 J (r) and let (H1, H2, ..., Hr) be its partition. Let Hij be a maximum collection

of disjoint copies of Hij in G[⇡ij \ Y (G)]. A graph G in which there are H 0
ij

2 Hij , j 2 [r], so

G[[j2[r]V (H 0
ij
)] is isomorphic to J is in C(J (r),⇧). By Lemma 3.3.12, the number of such

graphs is much smaller than the number of ⇧-good graphs. Therefore we focus on graphs

G 2 C(J (r),⇧, f1(n), f2(n)) where G[[j2[r]V (H 0
ij
)] is not isomorphic to J for any choice of

graphs H 0
ij

2 Hij , j 2 [r]. Let C0 be this set of graphs.
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We use the bound from Lemma 3.3.8 on the number of graphs in C(J (r),⇧, f1(n), f2(n))

with a set Y such that |Y | = y. By Lemma 3.3.9 and our assumptions M(⇧,F , y)  2fJ (n).

Moreover, it is possible to find a collection S of sequences of graphs (H 0
i
1

, H 0
i
2

, ..., H 0
ir
) so

H 0
ij

2 Hij , j 2 [r], every two sequences in the collection intersect on at most one graph and

|S| � f
1

(n)·f
2

(n)
4 . As mentioned, for every sequence in S there is an edge arrangement that

cannot appear. Hence the number of graphs in C0 is at most

2m(⇧) · 2fJ (n) · 2(b+3)n · 2�c(H,�)ny · 2�c(H)f
1

(n)·f
2

(n) = o(2m(⇧)).

So in total we get that the number of graphs C(J (r),⇧, f1(n), f2(n)) is much smaller than the

number of ⇧-good graphs.

3.3.5 Ordinary sequences

The tools developed in Subsections 3.3.1-3.3.4 are used before the main body of the proofs

in Section 5.2. The majority of the arguments in the proofs in Section 5.2 goes into showing

that there is some sequence F 0 = (F 0
1,F 0

2, ...,F 0
wpn(H)

) of families of graphs with some specific

properties such that almost all ⇧-conformal graphs G have a partition (G[⇡1 \W (G)], G[⇡2 \
W (G)], ..., G[⇡wpn(H)\W (G)]) where G[⇡i\W (G)] 2 F 0

i for all i 2 [wpn(H)] and W (G) ✓ V (G) is

a very small set. Once we showed the existence of such sequence we apply the tool described

in this subsection. That finishes the proof of the exact structure.

Let G be a graph and ⌧ 2
⇣

0, 12

⌘

, a vertex v is (⌧, G)-trivial if |NG(v)|  ⌧n or |NG(v)| 
⌧n.

Let P = (H1, H2, ..., Hwpn(H)) 2 P (H) be a partition and let Q = (G1, G2, ..., Gwpn(H))

be a sequence of graphs. Let w0 /2 [i2[wpn(H)]V (Gi) and assume that it has some neigh-

bourhood in [i2[wpn(H)]V (Gi). Let i 2 wpn(H), we say that there is a (P,w0, i)-form

(H1,H2, ...,H0
i, ...,Hwpn(H)) in Q if there is a vertex w 2 V (Hi) such that there is a set H0

i of

disjoint copies of Hi \ {w} in Gi, and for each j 2 [wpn(H)] \ {i} there is a set Hj of disjoint

copies of Hj in Gj . Moreover, w0 is adjacent to each H 0
i 2 H0

i as w to Hi \ {w} and w0 is

adjacent to each H 0
j 2 Hj , j 2 [wpn(H)] \ {i} as w to Hj . Note that if we have a sequence Q
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and we want to choose edges between the graphs in the sequence without creating an induced

copy of H, then there are edge arrangements that cannot appear between the graphs in the

form.

Let ⌧ 2
⇣

0, 12

⌘

,� � 0, k 2 N, a (⌧,�, k)-ordinary P (H)-free subsequence is a sequence

of families of graph F 0 = F 0(⌧,�, k) = (F 0
1,F 0

2, ...,F 0
wpn(H)

) such that there is a P (H)-free

sequence (F1,F2, ...,Fwpn(H)) and F 0
i ✓ Fi for each i 2 [wpn(H)]. Moreover, all sequences

Q = (G1, G2, ..., Gwpn(H)) for any Gi 2 F 0
i, i 2 [wpn(H)] has the following properties,

(a) For each i 2 [wpn(H)], every v 2 V (Gi) is (⌧, Gi)-trivial.

(b) Let w0 /2 [i2[wpn(H)]V (Gi) and assume that it has some neighbourhood in [i2[wpn(H)]V (Gi)

so for each i 2 [wpn(H)], Gi [ {w0} /2 Fi. Let `i(w
0) = min{|N(w0) \ V (Gi)|, |N(w0) \

V (Gi)|}, i 2 [wpn(H)], let `(w0) = mini2[wpn(H)] `i(w
0) and let i 2 [wpn(H)] be such that

`(w0) = `i(w
0). Assume also that for each j 2 [wpn(H)] \ {i}, `j(w0) � ⌧n, that is w0

is not (⌧, Gj)-trivial. Then there is (P,w0, i)-form (H1,H2, ...,H0
i, ....,Hwpn(H)) in Q so

there is � 2


0, ⌧

24h
2

◆

such that one of the following conditions holds.

(1) |H0
i| � `(w0)��n

(log n)k
and |Hj | � ⌧n

4h for each j 2 [wpn(H)] \ {i}.

(2) |H0
i| � `(w0)

(log n)k
and |Hj | � n1�� for each j 2 [wpn(H)] \ {i}.

Let F 0 = F 0(⌧,�, k) = (F 0
1,F 0

2, ...,F 0
wpn(H)

) be a (⌧,�, k)-ordinary P (H)-free subsequence

for some ⌧ � 0,� � 0 and k 2 N. Let ⇧ be a ⇢-almost equal partition for some ⇢ > 0, and

let k0 2 N. Let B(F 0,⇧, k0) be the set of ⇧-bad graphs G such that the minimal subset of

vertices W ✓ V (G) where for each i 2 [wpn(H)], G[⇡i \W ] 2 F 0
i is of size |W |  (log n)k

0
. Note

that for any ⇧-bad G, the set W is not empty, because otherwise it contradicts the definition

of ⇧-bad graph.

Similarly to the earlier definition of a linearly extremal set we define a (⇧, i,�, µ)-

extremal set S if there is a (⇧,�, i)-common graph J and a graph J 0 which can be par-

titioned into (G[S], J), but there are less than µ|J | vertex disjoint copies of J in ⇡i inducing

J 0 with S where J is the collection of disjoint copies of J .
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Let ⌧ 2
⇣

0, 12

⌘

, � > 0, µ > 0 and i 6= j 2 [wpn(H)] and |V (H)| = h, a set S such that |S|  h

is (⌧,�, µ,⇧, i, j)-special if every s 2 S is (⌧, G[⇡i])-trivial and S is (⇧, j,�, µ)-extremal.

Let K 2 N and " > 0 be the constants from Theorem 3.2.1 applied with Forb(H) and

� > 0 su�ciently small. Let "0 > 0 be the constant from Theorem 3.2.3 applied with K. Let

� 2 [0,
min{","0}

8 ).

Let ⇧ be a ⇢-almost equal partition of [n] for ⇢ = ⇢(H, ⇠) from Theorem 3.2.2 applied with

H and ⇠ > 0 so 2⇠ log 1
⇠ < log e · �

2(2h
2

+3·h·wpn(H))
.

Lemma 3.3.14. Let ", "0 > 0 as above, � 2 [0,
min{","0}

8 ), ⌧ 2
⇣

0, 12

⌘

and k 2 N. Let F 0 =

F 0(⌧,�, k) = (F 0
1,F 0

2, ...,F 0
wpn(H)

) be a (⌧,�, k)-ordinary P (H)-free subsequence. Let ⇧ partition

as above. Then the number of graphs in B(F 0,⇧, k0) is much smaller than the number of ⇧-

good graphs.

Proof. Let µ 2
✓

0, 1

2h
2

+1

◆

and let G 2 B(F 0,⇧, k0). Let X be the collection of all (⌧,�, µ,⇧, i, j)-

special sets for any i 6= j 2 [wpn(H)]. Let X be the union of all vertices in sets in X . Let

W ✓ V (G) be the minimal subset of vertices such that for each i 2 [wpn(H)], G[⇡i \W ] 2 F 0
i.

By the choice of G, |W |  (log n)k
0
. Let W 0 = W \X.

Assume that W 0 6= ;. Let w 2 W 0, then either (i) the vertex w is not (⌧, G[⇡i])-trivial

for all i 2 [wpn(H)] or (ii) there is i 2 [wpn(H)] such that w is (⌧, G[⇡i])-trivial and for any

set S ✓ V (G) such that w 2 S, |S|  h and each s 2 S is (⌧, G[⇡i])-trivial, the set S is not

(⇧, j,�, µ)-extremal for all j 2 [wpn(H)] \ {i}.
In case (i), by property (b) of F 0(H), we have a (P,w0, i)-form (H1,H2, ...,H0

i, ...,Hwpn(H))

in (G[⇡1\W ], G[⇡2\W ], ..., G[⇡wpn(H)\W ]) for some partition P = (H1, H2, ..., Hwpn(H)) 2 P (H).

Moreover |H0
i| � min

⇢

⌧n��n
(log n)k

,
`i

(log n)k

�

� ⌧n
2(log n)k

� n1�� for n large enough, and |Hj | � n1��

for all j 2 [wpn(H)] \ {i}. Then because we need to forbid some edge arrangement for every

choice of graphs from the form, by Lemma 3.3.7, the number of graphs in case (i) is much

smaller than the number of ⇧-good graphs.

In case (ii), then as in the previous case, by property (b) of F 0(H), we have a (P,w0, i)-

form (H1,H2, ...,H0
i, ...,Hwpn(H)) in (G[⇡1 \W ], G[⇡2 \W ], ..., G[⇡wpn(H) \W ]) for some partition
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P = (H1, H2, ..., Hwpn(H)) 2 P (H). Let S0 2 H0
i and set S = S0 [ {w}. By our assumptions

S is not (⇧, j,�, µ)-extremal for all j 2 [wpn(H)] \ {i}, therefore there are subsets H0
j ✓ Hj ,

j 2 [wpn(H)] \ {i} so for each H 0
j 2 H0

j , G[S [ H 0
j ] is isomorphic to H[Hi [ Hj ] and |H0

j | �
µn1��. For every sequence (H 0

1, H
0
2, ..., H

0
i�1, H

0
i+1, H

0
wpn(H)

) where H 0
i 2 H0

i, there is an edge

arrangement that cannot appear. Therefore again by Lemma 3.3.7, the number of graphs

in case (i) is much smaller than the number of ⇧-good graphs. Hence we can assume that

W 0 = ;.
Next we consider vertices in W \ X. Let Wi ⇢ W \ X, i 2 [wpn(H)], be the set of all

vertices w for which the value `(w) = `i(w). Let A1 be the set of vertices in W \X for each

of which condition (1) of (b) holds. Let A2 = (W \X) \A1. By the definition for any w 2 A2

condition (2) of (b) holds.

We treat di↵erently the case where A1 6= ; and the case where A1 = ;. Firstly assume

that A1 6= ;. Assume that there is an index i 2 [wpn(H)] and a vertex w 2 A1 \ Wi such

that `(w) � 2�n, then as before we get a (P,w0, i)-form (H1,H2, ...,H0
i, ...,Hwpn(H)) for some

P 2 P (H) such that |H0
i| � �n

(log n)k
and also |Hj | � ⌧n

4h � �n
(log n)k

for each j 2 [wpn(H)] \ {i}.
Again by Lemma 3.3.7, the number of such graphs is much smaller than the number of

⇧-good graphs. Therefore we assume that `(w)  2�n for all w 2 A1.

Let A0
2 ✓ A2 be the set of vertices w such that `(w) � h(log n)k

0
. If A0

2 6= ;, let `⇤ =

maxw2A0
2

`(w). From the definition we have that `⇤ � `(w) for all w 2 A2.

Let i 2 [wpn(H)], the number of ways to choose the neighbourhood of a vertex w 2 A1\Wi

with respect to ⇡i is at most 22�n+|W\X|. The number of ways to choose the neighbourhood

of a vertex w 2 (A2 \ A0
2) \ Wi with respect to ⇡i is at most 2h(log n)

k0+|W\X|. The number

of ways to choose the neighbourhood of a vertex w 2 A0
2 \Wi with respect to ⇡i is at most

2`
⇤+|W\X|. Let a1 = |A1|, a02 = |A0

2|, a002 = |A2 \A0
2|. Therefore in total, the number of ways to

choose the neighbourhoods of all vertices in W \ X with respect to the part that they are

in, is at most 22�na1+h(log n)k
0
a00
2

+`⇤a0
2

+|W\X|2 .

Let X1 ✓ X be the collection of all sets X such that X \ A1 6= ;. By the definition of X ,

the sets in X1 are of size at most h, therefore there are at least |A
1

|
wpn(H)·h disjoint sets in X1
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which are contained in the same part of the partition ⇧. Let S 2 X1 and assume without loss

of generality that S ✓ ⇡i and let j 2 [wpn(H)] \ {i} be the index such that S is (⌧,�, µ,⇧, i, j)-

special. Then there is a graph Hj which is (⇧,�, i)-common and S is (⇧, j, ⌧h , µ)-extremal.

Hence the number of ways to choose the neighbourhood of S in ⇡j is at most 2(1�c(H) ⌧µh )|S||⇡i|

where c(H) > 0 is a constant which depends only on H.

Note that because |A1|  |W |  (log n)k
0
and every set S 2 X has size at most h, we have

that | [X2X
1

X|  h(log n)k
0
. Assume now also that A0

2 6= ; and let w be such that `⇤ = `(w).

Assume without loss of generality that w 2 Wi, i 2 [wpn(H)]. By property (b) part (2), there

is a (P,w, i)-form (H1,H2, ...,H0
i, ...,Hwpn(H)) for some P 2 P (H) such that |H0

i| � `⇤�h(log n)k
0

(log n)k

and |Hj | � n1�� for each j 2 [wpn(H)] \ {i}. As in the proof of Lemma 3.3.8, we assume that

we chose the subgraphs on the parts ⇡i, i 2 [wpn(H)] and we choose every edge between the

parts with probability 1
2 . Let H 0

i 2 H0
i and j 2 [wpn(H)] \ {i}, the probability for any edge

arrangement between H 0
i and a graph H 0

j 2 Hj is at least
1

2h
2

. Hence the expected number of

graphs from Hj which give the same edge arrangement with H 0
i is at least

|Hj |
2h

2

� n1��

2h
2

. We

use Cherno↵ bound 1.3.6 to bound the probability that the number of such graphs is less

than n1��

2h
2

+1

. We conclude that the number of graphs in B(F 0,⇧, k0) in the case that A1 6= ;
and A0

2 6= ; is at most

2m · F · 22�na1+h(log n)k
0
a00
2

+`⇤a0
2

+|W\X|2� c(H)⌧na
1

4h22h
2

� `⇤�h(logn)k
0

(logn)k
· c0(H)n1��

2

2h2

 2m · F · 2
h(log n)2k

0
+2�na

1

� c(H)⌧na
1

4h22h
2

+`⇤(log n)k
0�c0(H)

`⇤�h(logn)k
0

2

h2
(logn)k

·n1��

 2m · F · 2
2h(log n)2k

0� ⌧na
1

c00(H)

+
`⇤�h(logn)k

0

2

h2
(logn)k

·(2h2(log n)k0+k�c0(H)n1��)
.

The above bound is much smaller than 2m · F which is, from Observation 3.3.6, the lower

bound on number of ⇧-good graphs.

In the above we showed that the number of graphs wuth A1 6= ; and A0
2 6= ; is much

smaller than the number of ⇧-good graphs. Next we consider the case that A1 6= ; and
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A0
2 = ;. Similarly to before, the number of graphs in B(F 0,⇧, k0) in this case is at most

2m · F · 22�na1+h(log n)k
0
a00
2

+|W\X|2� c(H)⌧na
1

4h22h
2

 2m · F · 22h(log n)
2k0� ⌧na

1

c(00H) ,

this is again much smaller than the lower bound of 2m · F on the number of ⇧-good graphs.

The last case we consider is if A1 = ;. In this case we use that each w 2 A2 has property

(b) part (2). Let `⇤ = maxw2A
2

`(w) and let w be such `(w) = `⇤, assume without loss of

generality that w 2 Wi, i 2 [wpn(H)]. Repeating the arguments as before we get that in this

case the number of graphs in B(F 0,⇧, k0) is at most

2m · F · 2`⇤|W\X|+|W\X|2 · 2�c0(H) `⇤
(logn)k

·n1��

 2m · F · 2
(log n)2k

0
+

✓
(log n)k

0�c0(H) n1��

(logn)k

◆
`⇤

because we consider ⇧-bad graphs, it must be the case that `⇤ � 1. Hence the above is much

smaller than the lower bound of 2m · F on the number of ⇧-good graphs.
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Chapter 4

Witnessing Partition Number of a

Bipartite Graph

In this chapter, we give a formula for the witnessing partition number wpn(H) whereH is a bi-

partite graph. Recall that ⌫(H) is the size of a maximum matching in H. LetH(h1, h2, ...hk)

be a graph which is a disjoint union of complete bipartite graphs Khi,hi
, i 2 [k].

Lemma 4.0.1. Let H be a bipartite graph with |V (H)| � 3, if H = H(h1, h2, ...hk) for some

collection of vlaues hi 2 N, i 2 [k], then wpn(H) = |V (H)| � ⌫(H) = ⌫(H) =
Pk

i=1 hi. Other-

wise, wpn(H) = |V (H)|� ⌫(H)� 1.

Proof. Let M be a matching in H of maximum size. Let U = [e2Mv(e) and let L = V (H)\U .
We denote |V (H)| = h, |M | = m, |L| = `, note that |U | = 2m and h = 2m + `. Therefore we

can restate what we want to show as, wpn(H) = h�m� 1 = (2m+ `)�m� 1 = m+ `� 1, in

the case that H is not a disjoint union of complete bipartite graphs with a perfect matching,

and otherwise wpn(H) = m.

Firstly assume that H is not a disjoint union of complete bipartite graphs with a perfect

matching. Note that wpn(H) � m + ` � 1. Indeed, H cannot be partitioned into m + ` � 1

cliques (which are either edges or vertices in a bipartite graph) and 0 stable sets. Assume

otherwise, then out of the m + ` � 1 cliques, at most m are edges, and therefore m + ` � 1
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cliques can contain at most 2m+`�1 vertices in their union. This contradicts the assumption

that h = 2m+ `.

Next we show that wpn(H)  m + ` � 1. Indeed, let c, s 2 N such that c + s = m + `, we

need to show that H can be partitioned into c cliques and s stable sets. If s � 2, then we are

done because H is bipartite and therefore can be partitioned into two stable sets and any

number of cliques (which can be for example singleton vertices). If s = 0, then we are also

done because by our choice of m and `, H can be partitioned into m+ ` cliques.

We are left with the case where s = 1. Firstly assume that ` � 1. Note that H[L] is a

stable set, because otherwise we could add another edge to M which contradicts M being

the maximum matching. Therefore if we partition H into the edges in M and L then we get

a partition of H into at most m+ `� 1 cliques and 1 stable set.

Secondly we consider the case that ` = 0, that is H has a perfect matching. Let A,B be

the partition of V (H) into two stable sets. By our assumption about H, there is a connected

component C of H which is not a complete bipartite graph. Between the vertices of any two

edges of the perfect matching in C (and in the whole graph H) there can be, besides the

edges of the matching, at most two additional edges. If there are two edges of the matching

e1 = {v1, u1} 2 M and e2 = {v2, u2} 2 M such that there is exactly one additional edge

between the vertices {v1, u1, v2, u2}, then we are done due to the following. Assume without

loss of generality that v1, v2 2 A and u1, u2 2 B, moreover there is no edge between v1 and u2

and there is an edge between u1 and v2, see Figure 4.1. The stable set {v1, u2} together with

the set of edges M \{{v1, u1}, {v2, u2}}[{v1, u2}, is a partition of H into a stable set and m�1

cliques, as required. Otherwise, between any two edges of the matching there are either 0 or

2 edges. Let C 0 be a auxiliary graph such that V (C 0) are the edges of the perfect matching

in C, and E(C 0) are the set of pairs of matching edges {e1, e2} such that additionally to

the edges of the matching, there are 2 more edges between the vertices V (e1) [ V (e2) (so in

total there are all the possible edges between V (e1) [ V (e2)). The graph C 0 is connected,

because C is connected. Moreover, because C is not a complete bipartite graph, there are

two vertices in C 0 which do not have an edge between them. Let d1 = {v1, u1}, d2 = {v2, u2}
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v1

v2

u1

u2

A B

Figure 4.1: The edge arrangement between the vertices v1, v2, u1, u2.

v1 = v01

v2 = v03

u1 = u01

u2 = u03

A B

d1 = e01

d2 = e03

e02
v02 u02

Figure 4.2: An example of P 0.

be those two vertices. Because C 0 is connected, there is a path P 0 = (d1 = e01, e02, ..., d2 = e0k)

between d1 = e01 and d2 = e0k in C 0. Let e0i = {v0i, u0i}, i 2 [k], without loss of generality,

v0i 2 A, u0i 2 B, i 2 [k]. See Figure 4.2 for an example of possible edge arrangement. Then

P = v1, u
0
2, v

0
2, u

0
3, v

0
3..., v

0
k�1, u2 is an alternating path in H. Therefore the stable set {u1, v2}

together with the set of edges
⇣

M \ {e01, e02, ..., e0k}
⌘

[
n

{v01, u02}, {v02, u03}..., {v0k�1, u
0
k}
o

, is a

partition of H into a stable set and m� 1 edges, as required.

Now assume that H = H(h1, h2, .., hk) for some values hi 2 N, i 2 [k]. It is the case that

wpn(H) � m because H cannot be partitioned into 1 stable set and m � 1 cliques. It is the

case that wpn(H)  m, because similarly to before, it is possible partition H into c cliques
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and s stable sets such that c+ s = m+ 1 in the cases s = 0 or s = 2. In the case that s = 1,

let {v, u} 2 M , then {v} together with {u} and M \ {v, u} is a partition of H into 1 stable set

and m cliques.
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Chapter 5

Obtaining Exact Partitions

In this chapter, we first reprove the result of Balogh and Butterfield [5] and show an exact

structure theorem for critical graphs. We prove that graphs which are trees without a perfect

matching are critical. The main part of this chapter is dedicated to the proof of an exact

structure theorem for trees with a perfect matching.

5.1 Critical Graphs

We recall the definition that was given by Balogh and Butterfield in [5] of a critical graph.

This definition was presented in Chapter 2. Let F(H, s, c) denote the set of minimal (by

induced containment) graphs F such that H can be covered by s stable sets, c cliques, and

F . A graph is critical if for all s, c such that s + c = wpn(H) � 1 and large enough n 2 N,

| �Forb(F(H, s, c))
�

n |  2, or equivalently by Lemma 2.2.10,
�

Forb(F(H, s, c))
�

n ✓ {Sn,Kn}.
As mentioned in Chapter 2, the graph C4 is critical and every odd cycle of length at least

7 is critical. Let us consider two additional examples for a critical graph. The star T3 with

4 vertices (3 leaves) is critical. It is not hard to check that wpn(S3) = 2. The set F(S3, 1, 0)

is a non-edge, therefore (Forb(F(S3, 1, 0)))n is a clique for all n 2 N. The set F(S3, 0, 1) is a

vertex, therefore (Forb(F(S3, 0, 1)))n is an empty set for all n 2 N. Another example for a

critical graph is a path P7 on 7 vertices. It is not hard to check that wpn(P7) = 3. The set
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F(P7, 2, 0) is P3, P3, the set F(P7, 1, 1) contains a non-edge and the set F(P7, 0, 1) contains a

vertex. In all the cases, the set (Forb(F(P7, c, s)))n is either a clique or a stable set or both,

or none.

We give a proof for Balogh and Butterfield’s theorem using the results in [2] and [47]

and also the tools from Chapter 3. Let W(H) be the collection of all pairs (s, c) such that H

cannot be partitioned into s stable sets and c cliques where s, c are such that s+ c = wpn(H).

Let Q(H, s, c) be the set of all graphs that can be partitioned into s stable sets and c cliques.

Let Q(H) = [(s,c)2W(H)Q(H, s, c).

Theorem (2.2.9, [5]). Let H be a graph with wpn(H) � 2. Almost all H-free graphs are in

Q(H) if and only if H is critical.

For the proof we need a structural lemma that was also shown in [5].

Lemma 5.1.1 ([5]). If H is a critical graph, then for any s, c such that H cannot be parti-

tioned into s stable sets and c cliques the following holds.

• If s � 1, then F(H, s� 1, c) contains a graph that is the disjoint union of a clique and

a vertex.

• If c � 1, then F(H, s, c � 1) contains a graph that is the join of an stable set and a

vertex.

Proof of Theorem 2.2.9. We show that if H is critical then almost all H-free graphs are in

Q(H). The other direction was explained in Chapter 2.

Let H be a critical graph and let (F1,F2, ...,Fwpn(H)) be a P (H)-free sequence. First we

argue that there is `0 2 N, such that for all ` � `0 and i 2 [wpn(H)], |(Fi)`|  2, that is

by Lemma 2.2.10, (Fi)` ✓ {K`, S`}. Indeed, by the definition of P (H)-free sequence, each

of the families Fi, i 2 [wpn(H)] is infinite and hereditary so by Theorem 1.3.4, it must

contain either all the stable sets or all the cliques or both. Let i 2 [wpn(H)], let s be the

number of families that contain all the stable sets and c be the number of families which

contain all the cliques out of the families F1,F2, ...,Fi�1,Fi+1, ...,Fwpn(H). Then (Fi)` ✓
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�

Forb(F(H, s, c))
�

` ✓ {S`,K`} for any ` � h where h = |V (H)|, where the second containment

is due to H being critical.

From the structure of the families in a P (H)-free sequence as shown above, we can

conclude that any P (H)-free sequence is properly arranged and the families are stable. Hence

from Theorem 3.3.5, to prove what is required, it is enough to show that the number of ⇧-bad

graphs is much smaller than the number of ⇧-good graphs for any ⇢/4-almost equal partition

⇧ for ⇢ > 0 specified below.

Let h = |V (H)| and let ⇠ > 0 be such that 2⇠ log 1
⇠ < log e · 1

23·2h2+3·h·wpn(T )
. Let ⇢ =

⇢(H, ⇠) > 0 be the constant which we get from Theorem 3.2.2 for H and the above ⇠. Let

⇧ = (⇡1,⇡2, ...,⇡wpn(T )) be a ⇢/4-almost equal partition of [n]. We fix the partition ⇧ for all

of the following discussion. Let ni = |⇡i|, i 2 [wpn(T )].

Let G be a ⇧-conformal graph. Let Y(⇧, G, i) = Y(⇧, G, 14 , i,
1

2h
2

+1

) be the collection

of sets obtained by adding greedily sets S which are (⇧, 14 , i,
1

2h
2

+1

)-linearly extremal. Let

Y(G) = [wpn(T )
i=1 Y(⇧, G, i), Y (G) = [Y 2Y(G)Y and y(G) = |Y (G)| as defined in Chapter 3.

Let F(H) = (F1,F2, ...,Fwpn(H)) be a P (H)-free sequence, then as argued before each

of the families is either the family of all stable sets, all cliques, or both. Assume with-

out loss of generality that families F1,F2, ..,Fs contain all the stable sets and families

Fs+1,Fs+2, ...,Fwpn(H) contain all the cliques, let c = wpn(H) � s. Let F 2 F(H, s � 1, c),

then F is (F(H), {i}, 1
2h)-extendable for all 1  i  s. Similarly, let F 2 F(H, s, c � 1),

then F is (F(H), {i}, 1
2h)-extendable for all s + 1  i  wpn(H). By Lemma 3.3.11, in al-

most all H-free graphs G, for each 1  i  s, G[⇡i \ Y (G)] 2 (Forb(F(H, s � 1, c)))|⇡i\Y (G)| ✓
{S|⇡i\Y (G)|,K|⇡i\Y (G)|} and for each s+1  i  c, G[⇡i\Y (G)] 2 (Forb(F(H, s, c�1)))|⇡i\Y (G)| ✓
{S|⇡i\Y (G)|,K|⇡i\Y (G)|}. From Lemma 3.3.8 and similarly to the proof of Lemma 3.3.10, there

is a constant C(H) > 0, so the number of graphs G with a set Y (G), so y = |Y (G)| � C(H) is

much more than the number of ⇧-good graphs.

Let F(H) = (F1,F2, ...,Fwpn(H)) be a P (H)-free sequence (in this case we do not need to

choose a subsequence). We show that there ⌧ 2
⇣

0, 12

⌘

,� > 0 and k 2 N for which F(H) is a

(⌧,�, k)-ordinary P (H)-free subsequence. Let i 2 [wpn(H)], and let G 2 Fi, then G is either
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a stable set or a clique, therefore for each v 2 V (G), either |NG(v)| = 0 or |NG(v)| = 0, hence

one of those values is at most ⌧n for any ⌧ � 0, so property (a) holds for F(H).

Next we check property (b). Let (G1, G2, .., Gwpn(H)) be such that Gi 2 Fi for each

i 2 [wpn(H)]. Let w0 /2 [i2[wpn(H)]V (Gi) such that for each i 2 [wpn(H)], Gi [ {w0} /2 Fi. Let

`i(w
0) = min{|N(w0) \ V (Gi)|, |N(w0) \ V (Gi)|}, i 2 [wpn(H)], let `(w0) = mini2[wpn(H)] `i(w

0)

and let i 2 [wpn(H)] be such that `(w0) = `i(w
0). By the definition we can also assume that

`j(w
0) � ⌧n, that is |N(w0)\V (Gj)| � ⌧n and |N(w0)\V (Gj)| � ⌧n for each j 2 [wpn(H)]\{i}.

Assume without loss of generality that Gi is a clique, and out of the rest of the graphs Gj ,

j 2 [wpn(H)] \ {i}, s are stable sets and c� 1 are cliques.

By Lemma 5.1.1, F(H, s, c� 1) contains a graph H 0 which is a disjoint union of a clique

and a vertex. Note that |V (H 0)|  |V (H)| = h. Let P = (H1, H2, ..., Hwpn(H)) be a partition

of H into s stable sets, c � 1 cliques and the above mentioned graph Hi = H 0. We argue

that we can find a (P,w0, i)-form (H1,H2, ...,H0
i, ...Hwpn(H)). Let w be the vertex in V (Hi)

which is not adjacent to any other vertex in Hi. Note that N(w0) \ V (Gi) 6= ;, as otherwise
Gi [ {w0} 2 Fi. Let H0

i be a partition of N(w0) \ V (Gi) into disjoint sets of size |V (Hi)| � 1.

Note that |H0
i| � `(w)

h . Let j 2 [wpn(H)] \ {i}, and assume without loss of generality that Gj

is a clique, because as mentioned `j(w
0) � ⌧n, it is possible to find in Gj a collection Hj of

disjoint cliques of size |V (Hj)|  h such that w0 is as adjacent to each clique in Hj as w to

Hj in P (H). Moreover, |Hj | � ⌧n
2wpn(T )h

. This shows that case (2) of property (b) holds for

the form for any � > 0 and k 2 N.

Finally, let G be a typical ⇧-conformal graph and let W (G) = Y (G). Then as argued

before |W (G)| = |Y (G)|  C(H) for some constant C(H) which depends only on H. Then

by Lemma 3.3.14 the number of graphs with W (G) 6= ; is much smaller than the number of

⇧-good graphs. This completes the proof.

In the following we focus on graphs H which are trees without a perfect matching. Recall

that ⌫(T ) is the size of maximum matching in T .

Theorem 5.1.2. A tree T with wpn(T ) � 2 and 2⌫(T )  |V (T )|� 1 is a critical graph.
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In the proof of this theorem we use the following claims.

Claim 5.1.3. Every tree T with 2⌫(T )  |V (T )|� 2 can be partitioned into S2 (a non-edge)

and wpn(T )� 1 edges or vertices.

Proof. By Claim 4.0.1, wpn(T ) = |V (T )|�⌫(T )�1. Let M be a perfect matching of maximum

size in T . Let L be the set of vertices not covered by M . Let m = |M |, ` = |L|, then

wpn(T ) = 2m+ `�m� 1 = m+ `� 1.

By our assumption we consider trees T with 2⌫(T )  |V (T )| � 2, therefore |L| � 2.

Moreover, L is a stable set, because otherwise we could add an edge to the maximum

matching. Let {v, u} ✓ L, then {u, v}, ` � 2 remaining singleton vertices in L and the m

edges of the matching M give the required partition. Indeed the above partition is into

1 + `� 2 +m = m+ `� 1 = wpn(T ) parts, as required.

Claim 5.1.4. Let T be a tree such that |V (T )| � 5 and 2⌫(T ) = |V (T )| � 1, then T can be

partitioned into

• P3 and wpn(T )� 1 edges, and

• P3 and wpn(T )� 1 edges.

Proof. Let M be a maximum matching in T and let v be the unique vertex which is not

covered by M . If v is not a leaf, then we consider some alternating path P from v to one

of the leaves `0 in T which is starting with an edge not in the matching and is ending with

an edge in the matching. We can find such a path greedily. We define a new matching

M 0 := M4P , this is a valid matching and now the only vertex which is not matched is the

leaf `0. Therefore we can assume that v is a leaf.

Let u1 be the unique neighbour of v, and let u2 be the vertex such that {u1, u2} 2 M 0.

Then {`, u1, u2} induce a P3 and T 0 = T \{`, u1, u2} has a perfect matching. This is a partition

of T into P3 and wpn(T )� 1 edges. To show that we can partition T into P3 and wpn(T )� 1

edges, we consider some edge e 6= {u1, u2} such that e 2 M 0. We have that e = {u01, u02}
together with ` induce a P3 and F 0 = T 0 \ {`, u01, u02} has a perfect matching.
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Let Tstar be the set of trees which are subdivided stars, that is each such tree is a star

where every edge is subdivided exactly ones. Note that in each tree T 2 Tstar we have that

2⌫(T ) = |V (T )|� 1.

Claim 5.1.5. Let T be a tree such that |V (T )| � 5 and 2⌫(T ) = |V (T )| � 1, then T can be

partitioned into S3 and wpn(T )� 1 edges if and only if T /2 Tstar.

Proof. Let T be a tree not in Tstar, and let M be a maximum matching such that the only

vertex which is not covered by M is a leaf, we denote this vertex by `. We can find such a

matching as we did in the proof of Claim 5.1.4. Let {u1, u2} 2 M such that u1 is a neighbor

of `. Let F be the tree (or a forest) that we get once we remove the vertices {`, u1, u2}. For
a tree T such that T /2 Tstar, we have that there is at least one connected component with

at least four vertices in F . In this component we can find an alternating path P between

its ends which we denote as `s and `e. The path P starts and ends with an edge from

the matching M . The set {`, `s, `e} is stable. We define a new matching M 0 = M4P , this

matching shows that we can partition T into S3 = {`, `s, `e} and wpn(T )� 1 edges.

Let T 2 Tstar, then there are three types of vertices in such a tree, the centre c, the set D1

of vertices at distance one from the centre, and the set D2 of vertices at distance two from

the centre. Assume to the contrary that it is possible to partition T into S3 and wpn(T )� 1

edges. If we choose for the stable set S3 a vertex from D1, then the leaf adjacent to it will

not be matched in the remaining forest. Therefore we need to choose at least two vertices

from D2, but then only one vertex out of the two adjacent to them will be matched. Hence

there is no such a stable set.

Now we prove that every tree T with 2⌫(T )  |V (T )|� 1 is critical.

Proof to Theorem 5.1.2. Let T with 2⌫(T )  |V (T )|� 2. The tree T can be partitioned into

two stable sets and wpn(T )� 2 vertices. Therefore the set Forb(F(T, s,wpn(T )� s� 1)) is an

empty set for every s � 2. By Claim 5.1.3, F(T, 1,wpn(T ) � 2) contains an edge, therefore

Forb(F(T, 1,wpn(T )� 2)) contains only stable sets. Again by Claim 5.1.3, F(T, 0,wpn(T )� 1)

contains a non-edge, therefore Forb(F(T, 0,wpn(T )� 1)) contains only cliques.
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Figure 5.1: Partition of S⇤
3 into S3,K2 and S2.

Let T with 2⌫(T ) = |V (T )|�1. As before, the set Forb(F(T, s,wpn(T )�s�1)) is an empty

set for every s � 2.

If T 2 Tstar, if T = P5, then wpn(P5) = 2, and F(P5, 1, 0) contains a non-edge. Otherwise,

T can be partitioned into a graph S⇤
3 which is a star with leaves and with 3 subdivided edges

and wpn(T ) � 3 edges. The graph S⇤
3 can be partitioned into S3,K2 and S2, see Figure 5.1.

Therefore F(T, 1,wpn(T ) � 2) contains a non-edge. In both cases, Forb(F(T, 1,wpn(T ) � 2))

contains only cliques. By Claim 5.1.4, F(T, 0,wpn(T ) � 1) contains P3 and P3, therefore

Forb(F(T, 0,wpn(T )� 1)) contains only cliques or stable sets.

If T is a tree with 2⌫(T ) = |V (T )|�1 but not in Tstar, then F(T, 1,wpn(T )� c�1) contains

an edge by Claim 5.1.5. As for trees T 2 Tstar, by Claim 5.1.4, F(T, 0,wpn(T ) � 1) contains

P3 and P3, therefore Forb(F(T, 0,wpn(T )� 1)) contains only cliques or stable sets.

Next we present the proofs of the theorems regarding the structure of the families in the

P (T )-free sequence for trees T with 2⌫(T )  |V (T )| � 1. Those theorems were mentioned in

the introduction.

Theorem (1.1.2). Let T be a tree such that 2⌫(T )  |V (T )| � 2, and let (F1,F2, ...,Fwpn(T ))

be a P(T )-free sequence, then for every i 2 [wpn(T )], Fi is the set of all cliques.

Proof. First observe that no two families Fi and Fj , i 6= j, can contain all the stable sets and

this is because any tree T can be partitioned into two stable sets. Hence at most one family,

without loss of generality F1, contains all the stable sets. Then each family Fi, i 2 [wpn(T )],

contains an edge. By Claim 5.1.3, the tree T with 2⌫(T )  |V (T )| � 2 can be partitioned
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into a non-edge and wpn(T )� 1 edges or vertices. Therefore F1 cannot contain a non-edge.

Hence all the families are the families of all cliques.

Next we analyze the P(T )-free sequence for trees T with |V (T )| = 2⌫(T ) � 1. Naturally

we need to separate between the trees with 2⌫(T ) = |V (T )|� 1 in Tstar and such that are not

in Tstar.

Theorem (1.1.4). Let T be a tree with |V (T )| � 5 such that 2⌫(T ) = |V (T )| � 1 and T is a

subdivided star. Let (F1,F2, ...,Fwpn(T )) be the P(T )-free sequence, then we have one of the

following cases,

(i) F1 is the set of all stable sets, and Fi, for 2  i  wpn(T ), is the set of all cliques.

(ii) For every i 2 [wpn(T )], Fi is the set of all cliques.

Proof. Let us assume that one of the families, without loss of generality F1, contains all the

stable sets. The tree T can be partitioned into two stable sets, so no other family Fi, i � 2,

contains all the stable sets, so it contains an edge.

Every tree T 2 Tstar can be partitioned into P5 and wpn(T ) � 2 edges. The path P5 can

be partitioned into P3 and S2 and into P3 and S2. Therefore because we assumed that F1

contains a non-edge, each Fi for i � 2 must be P3 and P3-free. As mentioned each Fi, i � 2

contains an edge so it must be the set of all cliques.

If F1 is not the set of all stable sets, then each Fi, i 2 [wpn(T )] contains an edge, and

therefore by Claim 5.1.4, each Fi is a clique.

Theorem (1.1.5). Let T be a tree with |V (T )| � 5 such that 2⌫(T ) = |V (T )| � 1 and T

is a subdivided star. Let (F1,F2, ...,Fwpn(T )) be the P(T )-free sequence, then for every i 2
[wpn(T )], Fi is the set of all cliques.

Proof. As in the proof of Theorem 1.1.4 we know that only one family can contain all the

stable sets, without loss of generality it is F1, therefore each of the families Fi, i � 2, contains

an edge. But by Claim 5.1.5, the family F1 can contain only a stable set of size at most 2,
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therefore it also contains an edge. Thus using Claim 5.1.4, we conclude that each family Fi,

i 2 [wpn(T )], is the family of all cliques.

Proof of Theorems 1.1.3 and 1.1.6. The statements in the theorems are a direct corollary of

Theorems 2.2.9, 5.1.2, 1.1.2, 1.1.4 and 1.1.5.

5.2 Trees with a Perfect Matching

In this section we prove Conjecture 1.1.1 for trees with a perfect matching. That is, we

prove Theorems 1.1.9,1.1.11,1.1.13,1.1.15, and 1.1.17. A first step in proving those theorems

is finding the P(T )-free sequences for each tree T with a perfect matching. Recall that

P(T )-free sequence is a sequence of maximal families (F1,F2, ...,Fwpn(T )) of graphs such that

for any choice of graphs Gi 2 Fi, i 2 [wpn(T )], the resulting partition (G1, G2, ..., Gwpn(T ))

is P(T )-free. A partition P (G) = (G1, G2, ..., Gwpn(T )) of a graph G is P(T )-free if for any

partition P (T ) = (T1, T2, ..., Twpn(T )) of T , there is an i 2 [wpn(T )], such that Ti is not induced

subgraph of Gi.

5.2.1 P (T )-free sequences for trees T with a perfect matching

As was mentioned earlier, we focus on trees with wpn(T ) � 2. Recall that T pl is the set of

trees with a perfect matching where every non-leaf vertex has a neighbour which is a leaf.

The set T pl
star ⇢ T pl is the family of all trees obtained from stars by subdividing every edge,

except one, exactly once.

We denote by T npl, the set of trees which have a perfect matching but not in T pl. A tree

T is in S ⇢ T npl if there is some path P in T of length 6 or 8, such that the ends of P are

leafs and the following property holds. Let C be the set of connected components in T \ P ,
then each components in C is an edge with the following additional properties. See example

in Figure 5.2.

i. For P = v1, v2, v3, v4, v5, v6 of length 6, each of the components in C is joined by an edge

to P at either v3 or v4. We denote this set as S⇤
6 .
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v1 v2 v3 v4 v5 v6

Figure 5.2: An example of a tree in S; P6 with three edges incident to v3.

ii. For P = v1, v2, v3, v4, v5, v6, v7, v8 of length 8, each of the components in C is joined by

an edge to P at either v3 or v6. We denote this set as S⇤
8 .

Let S = S⇤
6 [ S⇤

8 . Let Tp be the set of all trees which have a perfect matching and

wpn(T ) � 2.

Claim 5.2.1. Let T 2 Tp, then T has a unique perfect matching.

Proof. Assume to the contrary that T has at least two di↵erent perfect matchings M and

M 0. Consider the graph T 0 = (V (T ),M [M 0), if M4M 0 6= ;, T 0 will contain a cycle. But T 0

is a subgraph of T which is a tree and therefore does not contain cycles. Hence it must be

that M = M 0.

Let MT be the unique perfect matching of T 2 Tp.

Lemma 5.2.2. Let T 2 Tp, if T is not a path then MT contains 3 edges e1, e2, e3 such that

T [e1 [ e2 [ e3] is isomorphic to P ⇤
3 .

Proof. If T is not a path then it has at least one vertex v such that deg(v) � 3. Let v0

be the neighbour of v such that {v, v0} 2 MT , and let a 6= b be neighbours of v which are

not v0. Due to the fact that T has a perfect matching, there are vertices a1, b1 such that

{a, a1}, {b, b1} 2 MT . Hence the three edges {v, v0}, {a, a1}, {b, b1} induce a graph isomorphic

to P ⇤
3 .

Corollary 5.2.3. If T 2 T pl then MT contains 3 edges e1, e2, e3 such that T [e1 [ e2 [ e3] is

isomorphic to P ⇤
3

Let T 2 T pl, we denote by Ts the graph we get from T after removing all of its leaves.
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v1 u1 v2 u2

`v1 `u1 `v2 `u2

(a) Partitions of P ⇤
4

into S
4

and two edges.

v1 u1 v2 u2

`v1 `u1 `v2 `u2

(b) Partitions of P ⇤
4

into 2P
3

+

S
2

.

Figure 5.3: Partitions of P ⇤
4 .

Lemma 5.2.4. If T 2 T pl \ T pl
star, then T can be partitioned into P ⇤

4 and wpn(T ) � 3 edges.

In particular, T can be partitioned into S4 and wpn(T )� 1 edges, or 2P3+S2 and wpn(T )� 2

edges.

Proof. Let T 2 T pl \ T pl
star, then Ts contains a path of length at least 4, let P = v1, u1, v2, u2

be this path. Let L = {`v
1

, `u
1

, `v
2

, `u
2

} ⇢ V (T ) be the neighbouring leaves of v1, u1, v2, u2,

respectively, those leaves exists due to the definition of trees in T pl. Then {v1, u1, v2, u2}[L

induces P ⇤
4 .

The set L is a stable set andM 0 = MT \{{v1, `v
1

}, {u1, `u
1

}, {v2, `v
2

}, {u2, `u
2

}}[ {{v1, u1}, {v2, u2}}
is a perfect matching in T \ L. See Figure 5.3a.

The sets {v1, u1, `u
1

}, {v2, u2, `v
2

} induce two P3, the remaining vertices {`u
1

, `u
2

} induce

a non-edge. See Figure 5.3b.

As in the case of trees in T pl, we partition the tress in T npl to the ones which can be

partitioned into S4 and wpn(T )�1 edges and those which cannot. Before doing so we present

a general claim about the trees in T npl.

Lemma 5.2.5. Let T 2 T npl, then MT contains 3 edges e1, e2, e3 such that T [e1 [ e2 [ e3] is

isomorphic to P6.

Proof. Let a1 2 V (T ) such that a1 is not a leaf and it does not have a neighbour which a leaf,

such a vertex exists by the definition of the trees in T npl. Let m = {a1, a2} 2 MT . By the

choice of a1, the vertices a1 and a2 have neighbours b1 6= a2 and b2 6= a1 respectively. Because
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MT is a perfect matching, there are vertices c1 and c2 such that {b1, c1}, {b2, c2} 2 MT . The

three matching edges {a1, a2}, {b1, c1}, {b2, c2} induce a graph isomorphic to P6.

First we consider trees in T npl \ S.

Lemma 5.2.6. A tree T 2 T npl can be partitioned into a S4 and wpn(T ) � 1 edges if and

only if T 2 T npl \ S.

Proof. First we show that if a tree T is in T npl \ S, then it can be partitioned into a S4 and

wpn(T )� 1 edges. Note that it is enough to find in T two induced disjoint alternating paths

a1, a2, a3, a4 and b1, b2, b3, b4 ({a1, a2}, {a3, a4}, {b1, b2}, {b3, b4} 2 MT ) such that a1, a4, b1, b4

is an induced stable set, because then this set can be partitioned into S4 and 2 edges.

Indeed, MT \ {{a1, a2}, {a3, a4}, {b1, b2}, {b3, b4}} [ {{a2, a3}, {b2, b3}} is a perfect matching in

T \ {a1, a4, b1, b4}. Hence our proof strategy is for any of the following cases to find two such

alternating paths.

Let T 2 T npl\S, and let P = v1, v2, ...vk be the longest alternating path in T , note that the

ends of P are leafs and P is of even length. If k � 10, then the two paths will be v1, v2, v3, v4

and v7, v8, v9, v10. Otherwise, consider the connected components of T \ P , such components

exist because of the following. By our choice of T it has wpn(T ) � 2 and therefore T 6= P4,

and also T /2 S and {P6, P8} ⇢ S so T 6= P6 and T 6= P8. Note that each of those connected

component is a subtree with a perfect matching, and therefore in particular contains at least

2 vertices, that is an edge. If a component contains more than 2 vertices, then it must contain

at least 4 vertices and an alternating P4 with the end edges in MT . This P4 together with

the vertices v1, v2, v3, v4 gives the two needed paths. Now we are left only with the case that

the remaining connected components are edges. We divide this case into some further cases:

If P = P6, because T /2 S⇤
6 , then deg(v3) = deg(v4) = 2 and either deg(v2) � 3 or deg(v5) � 3,

assume that deg(v2) � 3 (the case that deg(v5) � 3 is symmetric). We denote by u1 one of

the vertices adjacent to v2 and by u2 the neighbor of u1 which is not v2, we have that

{u1, u2} 2 MT , then the two paths will be v1, v2, u1, u2 and v3, v4, v5, v6. See Figure 5.4a for

illustration.

82



v1 v2 v3 v4 v5 v6

u1

u2

(a) P
6

with deg(v
2

) � 3

v1 v2 v3 v4 v5 v6 v7 v8

u1

u2

(b) P
8

with deg(v
4

) � 3

Figure 5.4: Examples for the proof of claim 5.2.6.

If P = P8, because T /2 S⇤
8 , then deg(v3) = deg(v6) = 2, and the degree of either of

the vertices v2, v4, v5, v7 is greater than two. In the case when deg(v2) � 2 (the case that

deg(v7) � 2 is symmetric) we can find the two paths similarly to the case of P = P6. If

deg(v4) � 2 (the case that deg(v5) � 2 is symmetric) we denote by u1 one of the vertices

adjacent to v4 and by u2 its neighbour which is not v4, we have {u1, u2} 2 MT , then the two

paths can be v3, v4, u1, u2 and v5, v6, v7, v7. See Figure 5.4b for illustration.

Next we show that if T is in S, then it cannot be partitioned into S4 and wpn(T ) � 1

edges. Note that if a tree T contains a vertex v such that at least two components of T \ {v}
are edges, then T can be partitioned into S4 and wpn(T ) � 1 edges if and only if the tree

obtained from T by deleting one such component can. This can be seen by analyzing all the

possible choices of two vertices, one from each such an edge, for the S4. Let T 2 S, we show

that T cannot be partitioned into S4 and wpn(T )�1 edges by induction on |C|, where C is the

collection of connected components in T \ P and P is the longest alternating path in T . By

the definition of S each component in C is an edge. If |C| = 1, then T 2 {P6, P8} and we can

see by inspection that neither can be partitioned into S4 and wpn(T )� 1 edges. Otherwise,

if |C| > 1, then by the above observation, we can remove any such edge from the graph and

proceed by induction.

Before we analyze the structure of the P(T )-free sequence for trees T 2 Tp, we state a few

observations. See Figures 5.5 and 5.6 for the illustration of the following observations.

Observation 5.2.7. The graph P ⇤
3 can be partitioned into two sets inducing each of the

following pairs of graphs: (P3, P 3), (P 3, P 3), (S3, S3), (S3, P 3), (S3, P3) and also into (K2, P4),
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S3 + S3

P4

P3 + S3

P3 + P3

P3 + S3

P3 + P3

2K2

K2 + S2

K2 S2

Figure 5.5: Partitions of P ⇤
3 .

(K2, 2K2), (K2,K2 + S2) and (S2, P4), (S2,K2 + S2).

Observation 5.2.8. The graph P6 can be partitioned into two sets inducing each of the

following pairs of graphs: (P3, P3), (P3, P 3), (P 3, P 3), (S3, S3),(S3, P 3), and also into (K2, P4),

(K2, 2K2), (K2, P3 + S1) and (S2, P4), (S2, 2K2), (S2, P3 + S1).

Observation 5.2.9. The graph P8 can be partitioned into (S3, P3,K2), (S2, 3K2).

We analyze the structure of a graph G without an induced P4 = and other graphs

on 4 vertices.
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S3 + S3

P4

P3 + S3

P3 + P3

P3 + P3

P3 + P3

2K2

P3 +K1

K2 S2

Figure 5.6: Partitions of P6.
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Lemma 5.2.10. The following is a characterization of the families which are defined by

forbidding the stated graphs.

(i) Forb({P4, 2K2,K2+S2}) = G2, that is the family of graphs which are the join of complete

multi-partite graph with an isolated vertex.

(ii) Forb({P4, 2K2,K2 + S2, S4}) = G3, that is the family of graphs which are the join of

complete multi-partite graph with parts of size at most 2 and an isolated vertex.

(iii) Forb({P4, 2K2,K2 + S2, P3 + S1}) = G4, that is the family of graphs which are joins of

graphs which are either stable set or a disjoint union of a vertex and a clique.

(iv) Forb({P4, 2K2,K2 + S2, P3 + S1, S4}) = G5, that is the family of graphs which are joins

of graphs which are either a stable set of size 3 or a disjoint union of a vertex and a

clique.

(v) Forb({P4, 2K2, P3 + S1}) = G6 is the family of graphs which are joins of graphs which

are a disjoint union of a clique and a stable set.

Proof. If G does not contain a P4 as an induced subgraph then either G or G is disconnected

[53]. Therefore it is enough to analyze the structure of G when it is disconnected. Indeed, if

it is not disconnected then it is a join of subgraphs which are disconnected (the connected

components in G). Hence we assume that G is disconnected and let C1, C2, ..., Ct be the set

of maximal connected components in G.

(i) If G does not have as an induced graphs 2K2 and K2 + S2, if t � 3, then G is a stable

set. If t = 2, then one of the connected components is just a vertex, without loss of

generality C2, then C1 does not contain a P 3, therefore it is a complete multi-partite

graph. All the following cases are the current case with additional restrictions, so we

will just describe the additional structure due to them.

(ii) If G does not have as an induced graphs 2K2, K2 + S2 and S4, with those restrictions

t  3, for t = 3 as before we get a S3, for t = 2, we get that C1 will be a multi-partite

complete graph with parts of size at most 2.
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(iii) If G does not have as an induced graphs 2K2, K2+S2 and P3+S1, for t = 2, C1 cannot

contain either P 3 or P3, so it is a clique.

(iv) If G does not have as an induced graphs 2K2, K2+S2, P3+S1 and S4, again with those

restrictions t  3, for t = 3 as before we get a S3 and for t = 2 in this case C1 is a clique

again.

(v) If G does not have as an induced graphs 2K2 or P3 + S1, then at most one of the

connected components C1, C2, ..., Ct can contain more than one vertex, assume it is C1.

Then C1 must be P3-free and because it is a connected component, it must be a clique.

This completes all the cases.

Finally, we analyze the P(T )-free sequence for trees T 2 Tp and present some important

lemmas for the next subsections. Let G1 = Forb({S3, P3}), that is all the graphs G, such that

G is collection of edges and singleton vertices.

Theorem (1.1.8). Let T be a tree such that T 2 T pl and let (F1,F2, ...,Fwpn(T )) be the

P(T )-free sequence, then we have one of the following cases,

(i) Fi = G1 for each i 2 [wpn(T )].

(ii) The families can be reindexed such that F1 is the set G2 and the rest of the families are

the sets of all cliques.

Proof. Note that by Corollary 5.2.3 and Observation 5.2.7, every tree T 2 T pl
star can be

partitioned into,

(a) (P3, P 3), (P 3, P 3), (S3, P3), (S3, P 3), (S3, S3) and wpn(T )� 2 edges.

(b) P4, 2K2, K2 + S2 and wpn(T )� 1 edges.

Firstly, assume that one of the families, without loss of generality, F1 contains the set of all

the stable sets. The tree T can be partitioned into two stable sets of size at most |V (T )|� 1,

so no other family Fi, i � 2, can contain all the stable sets, so it contains an edge. Because
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F1 contains an S3, using (a) no other family can contain P3, P 3, so every other family is the

set of all cliques.

Secondly, assume that no family contains all the stable sets. Therefore each family Fi,

i 2 [wpn(T )], contains an edge. Assume that there are at least two families which are not the

sets of all the cliques. Then no family can contain either S3 or P 3, because then no other

family can contain either one of P3, P 3, so they will be the families of all the cliques. Hence

every family is the set of all complete multi-partite graphs with parts at most 2, that is equal

to G1. Now, assume that there is at most one family F1 which is not the set of all cliques.

Then by (b), the graphs in F1 are H-free for each H 2 {P4, 2K2,K2+S2}, and therefore using

Claim 5.2.10 F1 = G2.

Theorem (1.1.10). Let T be a tree such that T 2 T pl \ T pl
star, and let (F1,F2, ...,Fwpn(T )) be

the P(T )-free sequence, then we have one of the following cases,

(i) The families can be reindexed such that F1,F2 are the set G1, and the rest of the families

are the sets of all the cliques.

(ii) The families can be reindexed such that F1 is the set G3 and the rest of the families are

the sets of all the cliques.

Proof. As in the previous theorem, using Corollary 5.2.3 and Observation 5.2.7, the trees in

T pl \ T pl
star, can be partitioned into,

(a) (P3, P 3), (P 3, P 3), (S3, P3), (S3, P 3), (S3, S3) and wpn(T )� 2 edges.

(b) P4, 2K2, K2 + S2 and wpn(T )� 1 edges.

Moreover, using Claim 5.2.4, the trees in T pl \ T pl
star, can be partitioned into,

(c) S4 and wpn(T )� 1 edges.

(d) 2P3 + S2 and wpn(T )� 3 edges.
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Firstly, no family can contain all the cliques. Indeed, assume that one of the families, without

loss of generality, F1 contains the set of all the stable sets. The tree T can be partitioned

into two stable sets of size at most |V (T )| � 1, so no other family Fi, i � 2, can contain all

the stable sets, so it contains an edge. Hence by (c), F1 cannot contain S4 and therefore it

does not contain all the stable sets.

If there are two families, without loss of generality, F1 and F2 which contain P3, then

by (d) and the fact that every family contains an edge, every other family Fi, i � 3, is the

family of all cliques.

Finally, if there is at most one family F1 which is not the set of all cliques. Then by (a),

F1 is H-free for each H 2 {P4, 2K2,K2+S2, S4}, and therefore using Claim 5.2.10 F1 = G3.

The next observation and a few lemmas are useful in the proofs of the exact structure of

almost all T -free graphs for trees T 2 T pl in Subsection 5.2.2. The observation and lemmas

use the definitions from Section 3.3.

Observation 5.2.11. Let T 2 T pl, then each P (T )-free sequence (F1,F2, ...,Fwpn(T )) is prop-

erly arranged. Moreover, each of the families Fi, i 2 [wpn(T )], is stable.

Lemma 5.2.12. Each of the graphs in {P4,K2 + S2} is 1
4-universally extendable for all

T 2 T pl. Moreover, each of the graphs in {2K2, S4} is 1
4-universally extendable for all trees

T 2 T pl \ T pl
star.

Proof. Let T 2 T pl, then by Corollary 5.2.3 and Observation 5.2.7, T can be partitioned into

(K2, P4), (K2,K2 + S2) and (S2, P4), (S2,K2 + S2) and wpn(T )� 2 edges. By Theorem 1.1.8,

for any k 2 [wpn(T )], P(T )-free sequence F = (F1,F2, ...,Fwpn(T )), and (G1, G2, ..., Gwpn(T )),

where Gi 2 Fi for all i 2 [wpn(T )] \ {k}, either each Gi contains
|V (Gi)|

4 disjoint edges, or one

of those graphs contains |V (Gi)|
4 disjoint non-edges and there contain |V (Gi)|

4 disjoint edges.

Hence {P4,K2 + S2} is 1
4 -universally extendable for such tree T .

Let T 2 T pl \T pl
star, then by Corollary 5.2.3, Observation 5.2.7 and Lemma 5.2.4, T can be

partitioned into 2K2 or S4 and wpn(T )� 1 edges. By Theorem 1.1.10, for any k 2 [wpn(T )],

P(T )-free sequence F = (F1,F2, ...,Fwpn(T )), and (G1, G2, ..., Gwpn(T )), where Gi 2 Fi for all
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i 2 [wpn(T )] \ {k}, each Gi contains
|V (Gi)|

4 disjoint edges. Hence {2K2, S4} is 1
4 -universally

extendable for such tree T .

Lemma 5.2.13. The graph P ⇤
3 is (2, 14)-universally extendable for all T 2 T pl.

Proof. Let T 2 T pl, then by Corollary 5.2.3, T can be partitioned into P ⇤
3 and wpn(T ) � 2

edges. By Theorem 1.1.8, for any P(T )-free sequence F = (F1,F2, ...,Fwpn(T )), there is a

choice of i1 6= i2 2 [wpn(T )], such that for any (G1, G2, ..., Gwpn(T )), where Gi 2 Fi for all

i 2 [wpn(T )] \ {i1, i2}, each Gi contains
|V (Gi)|

4 disjoint edges. Hence P ⇤
3 is (2, 14)-universally

extendable for such a tree T .

Lemma 5.2.14. The graph P ⇤
4 is (3, 14)-universally extendable for all T 2 T pl \ T pl

star.

Proof. Let T 2 T pl\T pl
star, by Lemma 5.2.4, T can be partitioned into P ⇤

4 and wpn(T )�3 edges.

By Theorem 1.1.10, for any P(T )-free sequence F = (F1,F2, ...,Fwpn(T )), there is a choice of

di↵erent indices {i1, i2, i3} 2 [wpn(T )] (actually in this case, any choice of di↵erent indices will

su�ce), such that for any (G1, G2, ..., Gwpn(T )), where Gi 2 Fi for all i 2 [wpn(T )] \ {i1, i2, i3},
each Gi contains

|V (Gi)|
4 disjoint edges. Hence P ⇤

4 is (3, 14)-universally extendable for such

tree T .

Next we consider the trees in T npl.

Theorem (1.1.12). For a tree T such that T 2 T npl \ {P6}, and let (F1,F2, ...,Fwpn(T )) be

the P(T )-free sequence, then the families can be reindexed such that F1 is G4, and the rest of

the families are the sets of all cliques.

Proof. By Lemmas 5.2.5 and 5.2.2, each tree T 2 T npl can be partitioned into P6 and

wpn(T )� 2 edges or in the case it is not a path it can be partitioned into P ⇤
3 and wpn(T )� 2

edges. Hence by Observations 5.2.8 and 5.2.7 and 5.2.9, each tree T 2 T npl \ S can be

partitioned into,

(a) (P3, P3), (P3, P 3), (P 3, P 3), (S3, S3), (S3, P 3), (S3, P3) and wpn(T )� 2 edges.

(b) P4, 2K2, K2 + S2, P3 +K1 and wpn(T )� 1 edges.
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Assume that there is a family, without loss of generality, F1, which contains either of

{S3, P3, P3}, then by (a) the rest of the families cannot contain either of the graphs from

{S3, P3, P3} and therefore are the sets of all cliques. Then by (b) and Claim 5.2.10 F1 = G4.
If no family contains either of graphs in {S3, P3, P3}, then all the families are the sets of

all cliques.

Theorem (1.1.14). Let T = P6 and let (F1,F2) be the P (P6)-free sequence, then we have the

following cases,

(i) The families can be reindexed such that F1 is the family of all stable sets and F2 = G1.

(ii) The families can be reindexed such that F1 is the family of all cliques and F2 = G6.

Proof. By Observation 5.2.8, P6 can be partitioned into,

(a) (P3, P3), (P3, P 3), (P 3, P 3), (S3, S3), (S3, P 3).

(b) P4, 2K2, P3 + S1 and an edge.

A tree T can be partitioned into 2 stable sets, therefore at most one family contains all the

stable sets, without loss of generality, this family is F1. If F1 is the set of all stable sets,

then F2 is S3 and P3-free, and therefore is the family G1. Otherwise both F1 and F2 contain

edges. Assume without loss of generality, that F2 contains either P3 or P3, then F1 is the

family of all cliques and F2 is H-free for each H 2 {P4, 2K2, P3+S1}, and therefore by Claim

5.2.10, F1 is the family of all graphs which are a join of graphs which are disjoint union of

a clique and a stable set.

Theorem (1.1.16). For a tree T 6= P6 such that T 2 T npl\(S[{P6}), and let (F1,F2, ...,Fwpn(T ))

be the P(T )-free sequence, then we have the following case,

(i) The families can be reindexed such that F1 is G5, and the rest of the families are the

sets of all cliques.

Proof. By Lemmas 5.2.5 and 5.2.2, each tree T 2 T npl can be partitioned into P6 and

wpn(T )� 2 edges or in the case it is not a path it can be partitioned into P ⇤
3 and wpn(T )� 2
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edges. Hence by Observations 5.2.8 and 5.2.7 and 5.2.9 and also Claim 5.2.6, each tree

T 2 T npl \ S can be partitioned into,

(a) (P3, P3), (P3, P 3), (P 3, P 3), (S3, S3), (S3, P 3), (S3, P3) and wpn(T )� 2 edges.

(b) P4, 2K2, K2 + S2, P3 +K1 and wpn(T )� 1 edges.

(c) S4 and wpn(T )� 1 edges.

Assume that there is a family, without loss of generality, F1, which contains either of

{S3, P3, P3}, then by (a) the rest of the families cannot contain either of the graphs from

{S3, P3, P3} and therefore are the sets of all cliques. Then by (b), (c) and Claim 5.2.10

F1 = G4.
If no family contains either of {S3, P3, P3}, then all the families are the sets of all cliques.

As in the case of trees in T pl, we mention an observation and a few lemmas which are

useful in the proofs of the exact structure of almost all T -free graphs for trees T 2 T npl in

Subsection 5.2.2

Observation 5.2.15. Let T 2 T npl, then each P (T )-free sequence (F1,F2, ...,Fwpn(T )) is

properly arranged. Moreover, each of the families Fi, i 2 [wpn(T )], is stable.

The proofs of the following lemmas is similar to the corresponding proofs of Lemmas

5.2.16, 5.2.17 and 5.2.18.

Lemma 5.2.16. Each of the graphs in {P4, 2K2, P3+K1} is 1
4-universally extendable for all

T 2 T npl. Moreover, P2 + S2 is 1
4-universally extendable for all trees T 2 T npl \ {P6} and S4

is 1
4-universally extendable for all trees T 2 T npl \ S.

Lemma 5.2.17. The graph P6 is (2, 14)-universally extendable for all T 2 T npl.

Lemma 5.2.18. Either P ⇤
3 is (2, 14)-universally extendable or P8 is (3, 14)-universally extend-

able for all T 2 T npl \ {P6}.
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Before we finish this subsection, we mention some additional structural properties of trees

with a perfect matching and graphs in families G1 and G4.

Lemma 5.2.19. Let k 2 N, n 2 N, ⌧ 2
⇣

0, 12

⌘

and � 2
⇣

0, ⌧
24

⌘

. Let G 2 (G1)n
k
such that G

contains at most �n singleton components, and let w /2 V (G) such that |N(w) \ V (G)| � ⌧n

and |N(w) \ V (G)| � ⌧n. Then there is a collection P of disjoint copies of P3 such that

|P| � ⌧n��n
4 and one of the following cases happens,

(i) w is adjacent to exactly one end (and not other vertices) of each copy of P3 in P, or

(ii) it is possible to choose P such that w is either not adjacent to any of the vertices of

each copy of P3 in P or w is adjacent to the centre vertex (an not other vertices) of

each copy of P3 in P.

Proof. Let G0 = G[V (G) \ L] where L it the collection of singleton vertices in G, let A be

the collection of non-edges in G0, let A = [S2AS = V (G0), and let N1 = N(w) \ V (G0) and

N2 = N(w) \ V (G0). Then |N1| � ⌧n� �n and |N2| � ⌧n� �n.

(i’) There is a set of non-edges A0 ✓ A such that |A0| = |N
1

|
2 and for each edge {a1, a2} 2 A0,

a1 2 N1 and a2 2 N2.

(ii’) There is a set of non-edges A0 ✓ A such that |A0| = |N
1

|
2 and for each edge {a1, a2} 2 A0,

{a1, a2} ✓ N1.

If case (i’) happens then we attain the set P as in case (i) by taking all the copies of P3 which

are obtained from a non-edge in A0 and a vertex in N1 which is not a part of a non-edge in

A0. If case (ii’) happens then we attain the set P as in case (ii) by taking all the copies of P3

which are obtained from a non-edge in A0 and either a vertex in N1 or a vertex in N2 which

is not a part of a non-edge in A0.

Observation 5.2.20. It is possible to choose a vertex w 2 V (P ⇤
4 ) such that either of the

following cases holds.
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w

(a) in Observation 5.2.20

w

(b) in Observation 5.2.20

w

(c) in Observation 5.2.20

Figure 5.7: Partitions of P ⇤
4 considered in Observation 5.2.20.

(a) There is partition of P ⇤
4 into S2+P3+P3 such that w is a part of P3, and it is adjacent

to one end of S2 and one end of the P3.

(b) There is partition of P ⇤
4 into S2+P3+P3 such that w is part of P3, and it is not adjacent

to S2, and not adjacent to P3.

(c) There is partition of P ⇤
4 into S2 + P3 + P3 such that w is a part of S2, and it is not

adjacent P3 and adjacent to one of the ends of the P3.

See in Figure 5.7 the partition as in Observation 5.2.20. Similarly to the proof of Lemma

5.2.19, it is possible to show the following.

Lemma 5.2.21. Let k 2 N and n 2 N large enough, let ⌧ 2
⇣

0, 12

⌘

and � 2
⇣

0, ⌧
24

⌘

. Let

G 2 (G4)n
k
such that G contains at most �n vertices in components of size at least (log n)2,

and let w /2 V (G) such that |N(w) \ V (G)| � ⌧n and |N(w) \ V (G)| � ⌧n. Then there is a

collection P of disjoint copies of P3 such that |P| � ⌧n��n
(log n)2

and one of the following cases

happens,

(i) w is adjacent to exactly one end (and not other vertices) of each copy of P3 in P, or

(ii) w is not adjacent to any of the vertices of each copy of P3 in P.

5.2.2 Typical structure of T -free graphs for T with a perfect match-

ing

In this subsection we finish the proof of Theorems 1.1.9, 1.1.11, 1.1.13, 1.1.15, and 1.1.17.

We give separate proofs for trees in T pl and for trees in T npl.
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(a) G 2 G
2

(b) The complement G

Figure 5.8: A graph G in G2 and its complement.

Trees in T pl

We showed in Theorems 1.1.8 and 1.1.10 that for any T 2 T pl, the families Fi, i 2 [wpn(T )],

in a P (T )-free sequence (F1,F2, ...,Fwpn(T )) are either of the families G◆ for ◆ 2 [3] or the set

of all cliques. We recall the definition of the families G◆, ◆ 2 [3].

The family G1 = Forb({S3, P3}) is the family of graphs which are complete multi-partite

graphs with parts of size at most 2. The complement of any graph in G1 is a disjoint union

of a matching with a stable set.

The family G2 = Forb({P4, 2K2,K2+S2}) is the family of graphs which are joins of graphs

which are complete multi-partite graph and an isolated vertex. The complement of any

graph in G2 is a disjoint union of clique-stars. Recall that a clique-star is a graph which is

a complement of a disjoint union of a vertex and a complete multi-partite graph on at least

two vertices. In particular, any clique-star contains either S3 or P3. See in Figure 5.8 an

example for a graph in G2 and its complement. In the figure, a thick edge between two sets

of vertices represents the existence of all the possible edges between those two sets.

The family G3 = Forb({P4, 2K2,K2 + S2, S4}) is the family of graphs which are joins of

graphs which are complete multi-partite graph with parts of size at most 2 and an isolated

vertex. Note that G3 ✓ G2, and in particular |(G3)n|  |(G2)n| for all n 2 N. Next we give
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bounds on the number of graphs in the families G◆, for ◆ 2 [3].

Theorem 5.2.22 ([32]). Let n 2 N,

|(G1)n| =
⇣

1 + O(n�1/2)
⌘

✓

n

e

◆n/2 e
p
n

(4e)1/4
.

From the above we can derive the following bounds.

Corollary 5.2.23. Let n 2 N,

✓

n

e

◆n/2

 |(G1)n|  n
n
2 .

Let (G1)
s
n⇢ (G1)n be the set of graphs G on n vertices in G1 such that G contains at least

s singleton components.

Lemma 5.2.24. Let n 2 N and s  n, then,

(G1)sn  2n · (n� s)
n�s
2 .

Proof. There are at most 2n ways to choose the singleton vertices. The graph induced on

the rest n � s vertices is in G1, therefore by Corollary 5.2.23 there are at most (n� s)
n�s
2

ways to choose such graphs. This gives the required bound.

Let G◆ = {G | G 2 G◆}, ◆ 2 [3].

Lemma 5.2.25. Let n 2 N,

| (G2)n |  40n ·
✓

n

log log n

◆n

.

Proof. To make the presentation easier, we count the graphs in (G2)n. Let X [ Y be a

partition of [n], and assume that the components induced on X are of size at most log n and

the components induced on Y are of size at least log n. There are 2n ways to partition [n]

into the two sets X,Y .

Firstly we count the number of possible graphs on X. Let |X| = x, if x  3

p
n, then

we bound the number of graphs on X by 2x · x2x  2
3

p
nn2/3

3

p
n. Indeed, there are at
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most 2x ways to choose the centres of the clique-stars on X, there are at most xx ways to

partition the vertices in X into the clique-stars and there are at most xx ways to partition the

vertices chosen for every clique-star into the di↵erent cliques of the clique-star. If x � 3

p
n,

then we count the number of possible graphs on X as following. Using the bound on the

Bell numbers 1.3.2, there are at most
⇣

x
log x

⌘x 
✓

n
1

3

log n

◆x

ways to partition X into the

di↵erent components. Let C be a component on X, then again by 1.3.2 there are at most
⇣ |C|
log(|C|)

⌘|C| 
⇣

log n
log log n

⌘|C|
ways to partition it. Hence the number of ways to obtain a graph

on X is at most
 

n
1
3 log n

!x

·
Y

C,V (C)✓X

✓

log n

log log n

◆|C|
=

 

n
1
3 log n

!x

·
✓

log n

log log n

◆x

=

✓

3n

log log n

◆x

.

Secondly we count the number of possible graphs on Y . Let |Y | = y, let Sj be the union

of the vertices in components of size between 2j log n and 2j+1 log n, and let |Sj | = sj . There

are at most y!

⇧
logn�log logn
j=1

sj !
ways to partition the vertices in Y into the Sj . Note that there

are at least
sj

2j log n
components of sizes between 2j log n and 2j+1 log n. Therefore there are

at most
✓

sj
2j log n

◆sj
ways to partition Sj into the components. Using again Theorem 1.3.2

and the fact that there are at most 2sj ways to choose the centres of the cliques stars, there

are at most 2sj
✓

2j+1 log n
log(2j+1 log n)

◆sj
ways to partition each of the components on Sj . Therefore

for each Sj , we have at most
✓

sj
2j log n

· 2j+2 log n
log(2j+1 log n)

◆sj
=

✓

4sj
log(2j+1 log n)

◆sj
ways to obtain a

collection of clique-stars on Sj . Hence the number of ways to obtain a graph on Y is at most

y!
Qlog n�log log n

j=1 sj !
·
log n�log log n

Y

j=1

 

4sj

log(2j+1 log n)

!sj


✓

4n

log log n

◆y

.

By taking the product over all x, y such that x+ y = n, we get the required bound.

Let G 2 G2, a matching M ⇢ E(G) is mild if it is a matching in the subgraph G0 of G

which is obtained after removing the centres of all clique-stars which are not cliques from G.

Let (G2)
c,n0,n00,`
n ⇢ (G2)n be the set of graphs G such that G has the following properties.

• G contains at most c clique-stars,

• the number of vertices in the clique-stars in G is at most n0,
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• there is a clique-star with at least n00 vertices in G,

• there are at most ` edges in a mild matching in G.

Similarly to before we denote (G2)
c,n0,n00,`
n = {G | G 2 (G2)c,n

0,n00,`
n }. If there is no restriction

on any of the values in the upper script, then we write a ⇤ in the corresponding entry. In

case that a clique-star is a clique we set any of its vertices to be the centre arbitrary.

Lemma 5.2.26. Let c, `, n0, n00, n 2 N, then

|(G2)c,⇤,⇤,`n |  n2 · 22n · (c+ 1)n · (3`)3`. (5.1)

|(G2)c,n
0,⇤,`

n |  n2 · 23n · (c+ 1)n
0 · (3`)3`. (5.2)

|(G2)⇤,⇤,n
00,`

n |  n · 23n · (n� n00)n�n00 · (3`)3`. (5.3)

Proof. We consider the graphs in (G2)c,⇤,⇤,`n . For each c0  c and `0  `, we count the number

of graphs in with exactly c0 clique-stars and exactly `0 edges in the mild matching. We have

at most 2n ways to choose the centres of the clique-stars and at most 2n ways to choose the

vertices for the mild matching.

Note that once we remove the centres of each of the clique-star we are left with a disjoint

union of cliques, let G0 be the resulting subgraph. The number of vertices in components of

size at least 2 is at most 3`0. Indeed, let K be the collection of all components of size at least

2. The number of such components is at most `0. Assume that we remove a vertex from

every odd component in K, and let K0 be the new collection of components of size at least 2.

Each component K 2 K0 contributes exactly |V (K)|
2 edges to the mild matching. Therefore

the number of vertices in the components in K0 is 2`0. To obtain K0, we removed at most `0

vertices. Hence the total number of vertices in K is at most 3`0. By the bound on the Bell

numbers 1.3.2, there are at most (3`0)3`0 ways to partition 3`0 vertices into any number of

components of any size. There are at most 2n ways to choose the singleton vertices in G0.

There are at most (c0+1)n ways to assign the vertices in G0 to the di↵erent centres of the

clique-stars together with the option that some of the components in G0 are not assigned to

any clique-star. Therefore in total there are at most 23n · (c0 + 1)n · (3`0)3`0 ways to obtain
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the required graph. Note that the bound increases with c0 and `0. Therefore summing over

at most n2 options for c0 and `0, we get that the number of required graphs in (G2)c,⇤,⇤,`n is at

most

n2 · 22n · (c+ 1)n · (3`)3`.

Now we show the bound on (G2)c,n
0,⇤,`

n . The number of ways to choose the n0 vertices

which are in the clique-stars is at most 2n. As before there are at most 3` vertices in G0.

We have at most (3`)3` way to partition those vertices into the di↵erent components. We

have at most (c+1)n
0
ways to assign the n0 vertices to the di↵erent centres together with the

option of not assigning those vertices to any of the centres. Therefore the number of graphs

in (G2)c,n
0,⇤,`

n is at most

n2 · 23n · (c+ 1)n
0 · (3`)3`.

Now we show the bound on (G2)⇤,⇤,n
00,`

n . As before there are at most 3` vertices in G0.

There are at most (3`)3` way to partition those vertices into the di↵erent components. Let K

be the clique-star which contains n00 vertices. We have at most 2n to choose those vertices.

On the remaining n � n00 vertices we can have at most n � n00 clique-stars. The number

of ways to partition those remaining vertices into the clique-stars is at most (n � n00)n�n00 .

Therefore the number of graphs in (G2)⇤,⇤,n
00,`

n is at most

n · 23n · (n� n00)n�n00 · (3`)3`.

Let (G3)
c
n⇢ (G3)n be the family of graphs G on [n] such that G contains at most c clique-

stars.

Lemma 5.2.27. Let n 2 N and c 2 [n], then

|(G3)cn|  2n · (c+ 1)n · nn
2 .

Proof. There are at most 2n ways to choose the c centres of the clique-stars. Let G 2 (G3)cn
and let G0 be the resulting graph after removing the centres of the clique-stars from G. Then
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G
0
is a disjoint union of edges and vertices. By Theorem 5.2.22, there are at most n

n
2 ways

to partition n vertices into edges and vertices. There are at most (c+1)n ways to assign the

vertices of G0 into the di↵erent clique-stars together with the option that the vertices are not

assigned to any clique-star. By taking the product of all of the above, we get the required

bound.

Observation 5.2.28. Let T 2 T pl
star and ⇧ a partition of [n], then

|F (T,⇧)| � |(G1)n| �
✓

n

e

◆n/2

.

Observation 5.2.29. Let T 2 T pl \ T pl
star and let ⇧ be a ⇢/4-almost equal partition for some

⇢ > 0. Let n1 := |⇡1| and n2 := |⇡2|, then

|F (T,⇧)| = |(G1)n
1

| · |(G1)n
2

| �
✓

n1
e

◆

n
1

2 ·
✓

n2
e

◆

n
2

2 �
 

n/wpn(T )� n⇢/4

e

!(n/wpn(T )�n⇢/4)

.

Observation 5.2.30. All the following pairs of graphs can be extended to P ⇤
3 with a proper

choice of edges between the graphs in the pair,

(a) (P3, P3) with an edge between their centres, see Figure 5.9a.

(b) (P3, S3) with either an edge between the centre of the P3 and one of vertices of S3 or

without such edge, see Figure 5.9b.

(c) (S3, S3) with an edge fixed between some vertex from one of the S3 to some vertex from

the other S3 or without such edge, see Figure 5.9c.

(d) (P3, S3) with either an edge between the centre of the P3 and one of vertices of S3 or

with an edge between one of the ends of the P3 and one of vertices of S3, see Figure

5.9d.

(e) (P3, P3) with either an edge between the centre of the P3 and one of the ends of P3 or

without such edge, see Figure 5.9e. Moreover, (P3, P3) with an edge between the centre

of P3 and one of the ends of the edge of the P3, see Figure 5.9f.
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(a) P
3

and P
3

(b) P
3

and S
3

(c) S
3

and S
3

(d) P
3

and S
3

(e) P
3

and P
3

(f) P
3

and S
3

Figure 5.9: Partitions of P ⇤
3 considered in Observation 5.2.30.

Lemma 5.2.31. Let K1 and K2 be such that K1 and K2 are the disjoint union of a clique-

star S1 (resp. S2) on k1 (resp. k2) vertices together with k1 (resp. k2) vertices (there is

no restriction on the graph on those vertices). The number of ways to choose edges between

V (K1) and V (K2) without creating an induced copy of P ⇤
3 is at most

22k1·2k2 · 2�min

n

k
1

�1

2

6

,
k
2

�1

2

6

o

.

Proof. Let c1 (resp. c2) be the centre of the clique-star S1 (resp S2). Note that S1 contains at

least k
1

�1
2 disjoint edges or disjoint non-edges. Similarly, S2 contains at least k

2

�1
2 disjoint

edges or disjoint non-edges. We have three possible cases: (1) S1 contains at least k
1

�1
2

disjoint edges and S1 contains at least k
2

�1
2 disjoint edges; (2) S1 contains at least k

1

�1
2

disjoint non-edges and S2 contains at least k
2

�1
2 disjoint non-edges; (3) without loss of

generality, S1 contains at least k
1

�1
2 disjoint edges and S1 contains at least k

2

�1
2 disjoint

non-edges.

First assume that there is an edge between c1 and c2. If we are in case (1), we use part (a)

in Observation 5.2.30. The graphs K1 and K2 are fixed and we are choosing edges between

V (K1) and V (K2) with probability 1
2 . Let E1 be the set of disjoint edges in K1 such that c2 is

not adjacent to any end of each such edge, and let E2 be the set of disjoint edges in K2 such

that c1 is adjacent to exactly one end of each such edge. The expected size of E1 is k
1

�1
22·2 ,

and the expected size of E2 is k
2

�1
2·2 . By Cherno↵ bound 1.3.6, the probability that either

|E1|  k
1

�1
23·2 or |E2|  k

2

�1
22·2 is e

�k
1

�1

2

5 + e
�k

2

�1

2

4 . The number of graphs where |E1| � k
1

�1
23·2 and
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|E2| � k
1

�1
22·2 is at most 22k1·2k2 ·

✓

24�1
24

◆

k
1

�1

2

3·2
·k1�1

2

2·2
, this is because we must forbid at least one

edge arrangement between every e1 2 E1 and e2 2 E2, otherwise we get a copy of P ⇤
3 . Hence

in total, the number of possible graphs is at most 22k1·2k2 · 2�min

n

k
1

�1

2

6

,
k
2

�1

2

6

o

.

In all the other cases the argument is very similar. If we are in case (2), then we use part

(c) of Observation 5.2.30. If we are case (3), then we use part (b) of Observation 5.2.30.

If there is no edge between c1 and c2, if we are in case (1), then we use the first arrangement

of part (e) of Observation 5.2.30. We can find many disjoint P3 either in K1 or K2 by using

the vertices which are not part of the clique-stars. If we are in case (2), then as before we

use part (c) of Observation 5.2.30. If we are case (3), then we use part (b) of Observation

5.2.30.

We always apply the above lemma to two collections of clique-stars.

Lemma 5.2.32. Let G1, G2 2 G2 be two disjoint graphs. Let |V (G1)| = n1, |V (G2)| = n2 and

let S1 and S2 be maximum collections of disjoint clique-stars in G1 and G2, respectively. Let

s1 = |S1|, s2 = |S2| and S1 = [S2S
1

S, S2 = [S2S
2

S. Let n01  n
1

4 . We make the following

assumptions.

(i) The largest clique-star in S1 contains at most n1 � n01 vertices,

(ii) n01  |S1|  n
1

4 , and

(iii) every clique-star in S2 is larger than any clique-star in S1.

The number of ways to choose edges between V (G1) and V (G2) without creating an induced

copy of P ⇤
3 is at most 2n1·n2 · 2�cn0

1

·s
2 for some constant c > 0.

Proof. We define two collections K1 and K2 of subgraphs of G1 and G2, respectively, so we

can apply Lemma 5.2.31 to each pair of sets (K1,K2) such that K1 2 K1 and K2 2 K2.

First we define a set K1 of subgraphs of G1. Let L be the clique-star with most vertices

in S1. If |V (L)| � n01, then we define a component K to be a subgraph of L which is a
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clique-star with n01 vertices together with a set of some n01 vertices in V (G) \V (L). Note that

|V (G) \ V (L)| � n01 due to assumption (i). In this case K1 = {K}.
Next assume that |V (L)| < n01. In this case, we can find a collection of clique-stars which

contains between n01 and 2n01 vertices. Indeed, let C1, C2, ..., Ck = L be the ordering of the

clique-stars in S1 in increasing order by the number of vertices. Let t 2 [k] be such that
Pt

i=1 |V (Ci)| < n01 and
Pt+1

i=1 |V (Ci)| � n01. By assumption (ii), |S1| =
Pk

i=1 |V (Ci)| � n01,

therefore t < k. Moreover, |V (Ct)|  |V (L)|  n01. Therefore n01  Pt+1
i=1 |V (Ci)|  2n01. Let V 0

be a set of vertices in V (G)\[t+1
i=1V (Ci) such that |V 0| = Pt+1

i=1 |V (Ci)|, such a set exists because

|S1|  n
1

4 . We partition V 0 into parts of sizes |V (C1)|, |V (C2)|, ..., |V (Ct+1)|, let V 0
1, V

0
2, ..., V

0
t+1

be the resulting partition where |V 0
i | = |V (Ci)| for i 2 [t + 1]. We define the set Ki to be

G[V (Ci) [ V 0
i ]. Let K1 be the collection of sets Ki, i 2 [t+ 1].

Next we define the set K2. Let C1, C2, ..., Ck be the ordering of the clique-stars in S2 in

increasing order by the number of vertices. We define a set K2i, 1  i  k/2, by taking Ci�1

together with |V (Ci�1)| vertices from Ci. We can do that because |V (Ci)| � |V (Ci�1)| for all
1  i  k/2.

We apply Lemma 5.2.31 to each pair of a set from K1 and a set from K2. This gives the

required bound.

We recall the structural properties of trees in T pl which are needed in the proof of the

exact structure of almost all T -free graphs.

(A) Each of the graphs in {P4,K2+S2} is 1
4 -universally extendable for all T 2 T pl. Moreover,

each of the graphs in {2K2, S4} is 1
4 -universally extendable for all trees T 2 T pl \ T pl

star.

(B) P ⇤
3 is (2, 14)-universally extendable for all T 2 T pl \ {P ⇤

3 }.

(C) P ⇤
4 is (3, 14)-universally extendable for all T 2 T pl \ T pl

star.

Those properties are shown in Lemmas 5.2.12, 5.2.13 and 5.2.14. Using those properties

we give a few important corollaries to the general claims which we gave in Section 3.3.
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Let K 2 N and " > 0 be the constants from Theorem 3.2.1 applied with Forb(T ) and

� > 0 su�ciently small. Let "0 > 0 be the constant from Theorem 3.2.3 applied with K. Let

� 2 [0,
min{","0}

8 ).

Let n 2 N be large enough and let ⇢ > 0 be the constant which we get from Theorem 3.2.2

for this n and ⇠ > 0 such that 2⇠ log 1
⇠ < log e · �

23·2t2+3·t·wpn(T )
where t = V (T ). Let ⇧ =

(⇡1,⇡2, ...,⇡wpn(T )) be a ⇢/4-almost equal partition of [n]. We fix the partition ⇧ for all of the

following discussion. Let ni= |⇡i|, i 2 [wpn(T )].

Let G be a ⇧-conformal graph. Let Y(⇧, G, i) = Y(⇧, G, 14 , i,
1

2t
2

+1

) be the collection

of sets obtained by adding greedily sets S which are (⇧, 14 , i,
1

2t
2

+1

)-linearly extremal. Let

Y(G) = [wpn(T )
i=1 Y(⇧, G, i), Y = Y (G) = [Y 2Y(G)Y and y = y(G) = |Y (G)| as defined in

Section 3.3.

Corollary 5.2.33 (to Lemma 3.3.9). Let T 2 T pl, the number of ⇧-conformal graphs G,

such that for some i 2 [wpn(T )], G[⇡i \ Y (G)] contains an induced graph isomorphic to H 0

where H 0 2 {P4,K2 + S2} is much smaller than the number of ⇧-good graphs.

Moreover, if T 2 T pl \T pl
star, then the number of ⇧-conformal graphs G such that addition-

ally there is an index i 2 [wpn(T )] where G[⇡i \ Y (G)] contains an induced graph isomorphic

to H 0 where H 0 2 {2K2, S4} is much smaller than the number of ⇧-good graphs.

Corollary 5.2.34 (to Corollary 3.3.10 and Theorem 2.2.4). Let T 2 T pl, there is a constant

C(T ) � 0 which depends only on T such that the number of ⇧-conformal graphs where y �
C(T ) log n is much smaller than the number of ⇧-good graphs.

Corollary 5.2.35 (to Lemma 3.3.12). Let T 2 T pl, the number of ⇧-conformal graphs where

there are indices i1 6= i2 2 [wpn(T )], and there are subgraphs Ji
1

and Ji
2

in G[⇡i
1

\ Y (G)] and

G[⇡i
2

\ Y (G)], respectively, such that G[V (Ji
1

) [ V (Ji
2

)] is isomorphic to P ⇤
3 is much smaller

than the number of ⇧-good graphs.

Corollary 5.2.36 (to Lemma 3.3.13). Let T 2 T pl, and let (J1, J2) be a partition of P ⇤
3 . The

number of ⇧-conformal graphs where there indices i1 6= i2 2 [wpn(T )], such that G[⇡i
1

\Y (G)]

contains at least f1(n) disjoint copies of a graph J1 and G[⇡i
2

\G(Y )] contains at least f2(n)
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disjoint copies of a graph J2 such that n log n
f
1

(n)·f
2

(n)
= o(1), is much smaller than the number of

⇧-good graphs.

Corollary 5.2.37 (to Lemma 3.3.13). Let T 2 T pl \ T pl
star, and let (J1, J2, J3) be a partition

of P ⇤
4 . The number of ⇧-conformal graphs where there indices i1, i2, i3 in [wpn(T )], such that

G[⇡i
1

\ G(Y )] and G[⇡i
2

\ G(Y )] contain at least f1(n) disjoint copies of a graph J1 and J2

respectively, and G[⇡i
3

\G(Y )] contains at least f2(n) disjoint copies of a graph J3 such that

f1(n) � f2(n) and
n log n

f
1

(n)·f
2

(n)
= o(1), is much smaller than the number of ⇧-good graphs.

In every step in the following proof we define a property of ⇧-conformal graphs. We show

that the number of graphs having this property is much smaller than the number of ⇧-good

graphs. This allows us to focus on ⇧-bad graphs without this first property. For this subset

we again define a new property and again show that the number of ⇧-conformal graphs with

this new property is much smaller than the number of ⇧-good graphs. We continue in this

manner until we conclude that a typical ⇧-bad graph does not have all the above properties

and has a very specific structure. We finish by showing that also the number of ⇧-bad graphs

in this final set is much smaller than the ⇧-good graphs.

Let C be the set of all ⇧-conformal graphs and let G be the set of all ⇧-good graphs. Let

C 0⇢ C be the set of all ⇧-conformal graphs G with the following properties.

(a) For all T 2 T pl, G[⇡i\Y (G)] 2 Forb({P4,K2+S2}), i 2 [wpn(T )], and for all T 2 T pl\T pl
star,

G[⇡i \ Y (G)] 2 Forb({P4, 2K2,K2 + S2, S4}) = G3, i 2 [wpn(T )].

(b) y(G)  C(T ) log n for some constant C(T ) � 0,

(c) There are no indices i1 6= i2 2 [wpn(T )], where there are subgraphs Ji
1

and Ji
2

in

G[⇡i
1

\ Y (G)] and G[⇡i
2

\ Y (G)], respectively, such that G[Ji
1

[ Ji
2

] is isomorphic to P ⇤
3 ,

(d) There are no indices i1 6= i2 2 [wpn(T )], such that G[⇡i
1

\ Y (G)] contains at least f1(n)

disjoint copies of a graph J1 and G[⇡i
2

\ Y (G)] contains at least f2(n) disjoint copies of

a graph J2 such that the following holds. The collection (J1, J2) is a partition of P ⇤
3

and, n log n
f
1

(n)·f
2

(n)
= o(1).
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(e) For a tree T 2 T pl \ T pl
star there are no indices i1 6= i2 6= i3 2 [wpn(T )], such that

G[⇡i
1

\ Y (G)] and G[⇡i
2

\ Y (G)] contain at least f1(n) disjoint copies of a graph J1 and

J2 respectively, and G[⇡i
3

\Y (G)] contains at least f2(n) disjoint copies of a graph J3 such

that the following holds. The collection (J1, J2, J3) is a partition of P ⇤
4 , f1(n) � f2(n)

and n log n
f
1

(n)·f
2

(n)
= o(1).

Lemma 5.2.38. The number of graphs in C \C 0 is much smaller than the number of graphs

in G .

Proof. This is a direct corollary to Corollaries 5.2.33, 5.2.34, 5.2.35, 5.2.36 and 5.2.37.

Let F be a family of graphs G which are defined with respect to the properties of the

subgraphs G[⇡i], i 2 [wpn(T )]. Recall that F(F ) = (F1,F2, ...,Fwpn(T )) is a collection of

families where Fi = [G2FG[⇡i], i 2 [wpn(T )].

Before we give the proof for our main theorem of this section we give one more lemma.

Let C 00✓ C 0 be a collection of ⇧-conformal graphs G such that there is an i 2 [wpn(T )],

without loss of generality i = 1, such that G[⇡1 \ Y (G)] contains a stable set of size at least

3n
1

4 . Note that by the structure of the graphs in a P (T )-free sequence, there can be at most

one such index and also only for trees in T pl
star.

Lemma 5.2.39. The number of graphs in C 00 is much smaller than the number of graphs in

G .

Proof. Let G 2 C 00, by the definition of the family, G[⇡1\Y (G)] contains a stable set of size at

least 3n
1

4 � 3n
23 wpn(T )

. Hence we can find in G[⇡1 \Y (G)] a set J1 of at least n
25 wpn(T )

disjoint

copies of S3. Hence by property (d) of graphs in C 0, for all i � 2, G[⇡i \ Y (G)] contains at

most (log n)2 disjoint copies of either S3, P3 or P3. Let Xi ✓ (⇡i \ Y (G)) be the vertex set of

the collection of those copies in ⇡i \ Y (G). Note that G[(⇡i \ Y (G)) \Xi] is a clique.

We bound the number of graphs with the above properties and with y  C(T ) log n. Let

Y ⇢ [n] be some set of size at most C(T ) log n and let ⇡0i = ⇡i \ Y , i 2 [wpn(T )].

Let B1 ✓ C 00 be the family of graphs where there is an index i � 2, such that there is a

vertex v 2 Xi with |N(v) \ (⇡0i \ Xi)| � n
1

2

+" for some " > 0. By our assumptions {v} /2 Y,
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therefore by the definition of the set Y, there is a set J 0
1 ✓ J1 of disjoint copies of S3 such that

v is adjacent to only one vertex of each J 2 J 0
1 and |J 0

1| � n

2t
2

+6 wpn(T )
. Let Ei be a maximal

collection of disjoint edges in N(v) \ (⇡0i \ Xi). There is an edge arrangement that cannot

appear between any S3 in J 0
1 and an edge e 2 Ei, otherwise we get a copy of P ⇤

3 contradicting

property (c). Let F(B1) = (F1
1 ,F1

2 , ...,F1
wpn(T )

), then by property (a) of graphs in C and

Theorem 2.2.4 about the number of P4-free graphs, for each i 2 [wpn(T )], |F1
i |  23n log n.

Therefore using Lemma 3.3.8, we can bound the number of graphs in B1 in this case by

2m(⇧) · 23n log n · 2(b+3)n · 2�c(T )ny ·
 

26 � 1

26

!

n

2

t2+6

wpn(T )

·n
1

2

+"

2

which is much smaller than the number of ⇧-good graphs. Therefore for each i � 2, for each

v 2 Xi, |N(v) \ (⇡0i \Xi)|  n
1

2

+" for any " > 0.

Let F(C 00 \ B1) = (F2
1 ,F2

2 , ...,F2
wpn(T )

). We have that |F2
1 |  2n · �n14

�

n
1

4 . Indeed, there

are at most 2n ways to choose the stable set of size at least 3n
1

4 � 3n
23 wpn(T )

in G 2 F2
1 . By

Lemma 5.2.25, the number of ways to obtain the graph on the vertex set which is not a part

of the largest stable set is at most
�n

1

4

�

n
1

4 .

Let i � 2, there are at most
� ni
(log n)2

�

ways to choose the set Xi, by Lemma 5.2.25, there

are at most (log n)2(log n)
2

= 22(log n)
2·log log n to choose the graph on Xi. By our assumptions,

there are at most
� ni

n
1

2

+"

�

|Xi|  n
n
1

2

+"·|Xi|
i ways to choose the edge arrangement between Xi

and ⇡i \ Xi. Therefore for each i � 2, |F2
i | 

� ni
(log n)2

� · 22(log n)2·log log n · nn
1

2

+"·|Xi|
i . Using

Lemma 3.3.8 the number of graphs in C 00 \ F(B1) is at most

2m(⇧) · 2(b+3)n · 2�c(T )ny · 2n1
✓

n1
4

◆

n
1

4 ·
Y

i�2

✓

ni
(log n)2

◆

· 22(log n)2·log log n · nn
1

2

+"·|Xi|
i

 2m(⇧) · 2(b+3)n · 2n
✓

n1
4

◆

n
1

4 · 2wpn(T )n
1

2

+"
(log n)3 ,

using that we choose " < 1
2 and the lower bound of

�n
1

e

�

n
1

2 · �n2e
�

n
2

2 on the number of ⇧-good

graphs from Observation 5.2.29, we conclude that the above is also much smaller than the

number of ⇧-good graphs.
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⇡01 ⇡02 ⇡0wpn(T )

⇡1 ⇡2 ⇡wpn(T )

Y

Figure 5.10: A sketch of a graph G 2 B. The edges between the parts are not drawn.

We focus on graphs in C 0 \ C 00. By the definition of this family, for each i 2 [wpn(T )],

G[⇡i \ Y (G)] contains at least n
1

4 disjoint edges. Hence, similarly to the proof of Lemma

3.3.9, in almost all graphs in the family, for each i 2 [wpn(T )], G[⇡i \ Y (G)] is also 2K2-free.

Hence we can assume that G[⇡i \ Y (G)] 2 G2, i 2 [wpn(T )], and G[⇡i \ Y (G)] is a disjoint

union of clique-stars with edges and singleton vertices. For each i 2 [wpn(T )], we define

ci = ci(G[⇡i \ Y (G)]) to be the number of clique-stars in G[⇡i \ Y (G)] and similarly we

define `i = `i(G[⇡i \ Y (G)]) to be the maximum number of edges in the mild matching in

G[⇡i \ Y (G)]. Let G 2 C 0 \ C 00, we denote by ⇡0
i= ⇡i \ Y (G), i 2 [wpn(T )].

Let B ✓ C 0 \ C 00 be the collection of all ⇧-bad graphs in C 0 \ C 00. Note that we will use

the fact that we are considering ⇧-bad graphs only towards the end of the proof. See Figure

5.10 for a sketch of an example of a graph in B. In particular, in Figure 5.10, c1 = 4, `1 = 6,

c2 = 3, `2 = 8, cwpn(T ) = 2, `wpn(T ) = 2.

Our first goal is to show that the number of graphs in B which do not have an i 2 [wpn(T )],

such that G[⇡i \Y (G)] contains a large mild matching is much smaller than the number in G .

Let ↵ 2
✓

0, 1
10wpn(T )3

◆

and B1 = B1(↵)⇢ B be the set of graphs in B such that for each

i 2 [wpn(T )], `i  ↵n.

Lemma 5.2.40. Let T 2 T pl and ↵ 2
✓

0, 1
10wpn(T )3

◆

. The number of graphs in B1 is much
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smaller than the number of ⇧-good graphs G .

Proof. We start by listing the di↵erent subsets of graphs in B1 that we consider during the

proof. We show that the number of graphs in each of the following subsets is much smaller

than the number of graphs in G . We finish by showing the number of graphs in B1 which

are not in any of the following families is also much smaller the number of graphs in G .

Let � 2
✓

0, 1
10wpn(T )2

◆

. Let B1 = B1(�) ⇢ B1 be the set of graphs G which have at most

n� clique-stars G[⇡0] [G[⇡02] [ ... [G[⇡0
wpn(T )

].

Let S be the set of the n� largest clique-stars in G[⇡01] [G[⇡02] [ ... [G[⇡0
wpn(T )

]. Let S be

the union of the vertices in the components in S. Let B2 ⇢ B1\B1 be the set of ⇧-bad graphs

where each subgraph G[⇡0i \ S], i 2 [wpn(T )], has at least one of the following properties,

(1) it contains at most n� clique-stars,

(2) there are at most �ni vertices are in the clique-stars,

(3) there are at least (1� �)ni vertices in one clique-star.

Next we consider the graphs in B1 \ [2
i=1Bi. By the definition of the graphs is this set

there must be an index i 2 [wpn(T )], such that G[⇡01 \ S] does not have any of the properties

(1),(2) and (3) as above, without loss of generality i = 1. Now we want to start using Lemma

5.2.31. Note that when we apply Lemma 5.2.31 to two clique-stars from di↵erent parts, it

matters which of the clique-stars is larger. Let B3 ⇢ B1 \ [2
i=1Bi be the set of graphs where

for some i � 2, G[⇡0i] contains more than (log n)2 components from S.
Let G 2 B1 \ [3

i=1Bi, then because |S| � n� and that for each i � 2, G[⇡0i] contains at

most (log n)2 clique-stars from S, there are at least 1
2n

� clique-stars from S in G[⇡01]. Let

B4 ⇢ B1 \ [3
i=1Bi be the set of graphs where there is an index i � 2 where both of the

following properties are true for G[⇡0i \ S].

(i) the largest clique-star in G[⇡0i \ S] contains at most ni � n1��/2 vertices, and

(ii) there are at least n1��/2 vertices in clique-stars in G[⇡0i \ S].

109



We first show that the size of |B1| is much smaller than |G |. Let F(B1) = (F1
1 ,F1

2 , ...,F1
wpn(T )

),

by the definition of B1 and our assumptions, for a graph G 2 B1, `i  ↵n and
Pwpn(T )

i=1 ci  n�.

By Lemma 5.2.26, the number of graphs in each F1
i , i 2 [wpn(T )], is at most n2i · 22ni · 2n�ni ·

(3↵n)3↵n. Using Lemma 3.3.8 and get that the number of ⇧-bad graphs in this case is at

most

2m · 2(b+4)n · 2�c(T )ny ·
Y

i2[wpn(T )]
n2i · 22ni · 2n�ni · (3↵n)3↵n

 2m · 2(b+4)n · 23n · 2n�n · (3↵n)3wpn(T )↵n

 2m · 2(b+7)n · 2n
n

10wpn(T )

2 · n
n

3wpn(T )

2

where the last inequality is due to the choice of ↵ and �. From Observation 5.2.29 we know

that the number of ⇧-good graphs is at least 2m · n
n

2wpn(T ) . We compare those two bounds.

|B1|
|G |  2m · 2(b+7)n · 2n

n
10wpn(T )

2 · n
n

3wpn(T )

2

2m · n
n

2wpn(T )

 2(b+7)n

n

(wpn(T )�1)n

2wpn(T )

2

= o(1).

Next we consider graphs in B1 \ B1, by our assumptions those graphs contain at least n�

clique-stars in G[⇡01] [G[⇡02] [ ... [G[⇡0
wpn(T )

]. Let S be the set of the n� largest clique-stars

in G[⇡01] [G[⇡02] [ ... [G[⇡0
wpn(T )

]. Let S be the union of the vertices in the components in S.
Next we show that B2 ⇢ B1 \ B1 is much smaller than the number of ⇧-good graphs. Let

F(B2) = (F2
1 ,F2

2 , ...,F2
wpn(T )

), by the definition of B2, at least one of the following properties

is true for G[⇡0i \ S] for each i 2 [wpn(T )],

(1) it contains at most n� clique-stars,

(2) there are at most �ni vertices are in clique-star,

(3) there are at least (1� �)ni vertices in one clique-star.

By Lemma 5.2.26, the number of ways to choose a graph on ⇡0i\S with property (1) is equal to

|(G2)n
� ,⇤,⇤,↵n

ni | and is at most n2i ·22n ·n�ni ·(3↵n)3↵n; The number of ways to choose a graph on

⇡0i\S with property (2) is equal to |(G2)⇤,�ni,⇤,↵nni | and is at most n2i ·23n ·n�ni ·(3↵n)3↵n. Finally,
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the number of ways to choose a graph on ⇡0i\S with property (3) is equal to |(G2)⇤,⇤,(1��)ni,↵n
ni |

and is at most ni · 23n · (�ni)�ni · (3↵n)3↵n. In all the cases, the number of graphs on each

G[⇡0i \ S], i 2 [wpn(T )], is at most

n2i · 23n · n�ni · (3↵n)3↵n.

Therefore we can bound the number of graphs in B2 almost in the same way as the number of

graphs in B1. The di↵erence is that we need to add a factor of n�ni because of the additional

number of ways to partition the vertices in G[⇡0i] into at most n� components from S. Hence
for each i 2 [wpn(T )], |F2

i |  n2i · 23n · n2�ni · (3↵n)3↵n, using Lemma 3.3.8 the number of

graphs in B2 is at most

2m · 2(b+4)n · 2�c(T )ny ·
Y

i2[wpn(T )]
23ni · n2�ni · (3↵n)3↵n

 2m · 2(b+4)n · 23n · n2�n · (3↵n)3wpn(T )↵n

 2m · 2(b+7)n · n
n

5wpn(T )

2 · n
n

3wpn(T )

2 .

In the same way as before, the number of graphs in B2 is much smaller than |G |.
Let G 2 B1 \

⇣

[2
i=1B1

⌘

, then by the definition of this family there is an i 2 [wpn(T )] where

G[⇡0i \S] contains at least n� clique-stars, at least �ni vertices in the clique-stars and at most

(1� �)ni vertices in one clique-star. Assume without loss of generality that i = 1.

We focus on the set B3 ⇢ B1 \
⇣

[2
i=1B1

⌘

. By the definition of the family, there is an

index i � 2, G[⇡0i] contains more that (log n)2 components from S. Note that as mentioned

earlier B1 ⇢ B, therefore any G 2 B3 has property (c), that is, there are no indices i1 6= i2 2
[wpn(T )], where there are subgraphs Ji

1

and Ji
2

in G[⇡0i
1

] and G[⇡0i
2

], respectively, such that

G[V (Ji
1

) [ V (Ji
2

)] is isomorphic to P ⇤
3 . We apply Lemma 5.2.32 to the graphs induced on

G[⇡01] and G[⇡0i\S] and get that the number of ways to choose edges between those subgraphs

is at most 2|⇡1|·|⇡i\S| ·2�c�n·(log n)2 for some constant c > 0. Let F(B3) = (F3
1 ,F3

2 , ...,F3
wpn(T )

),

we use that for each i 2 [wpn(T )], F3
i ✓ G2, and therefore using the bound on G2 in Lemma

5.2.25 and Lemma 3.3.8, we can bound the number of graphs in B3 by,

2m · 2(b+4)n · 2�c(T )ny · |(G2)n| · 2�c�n·(log n)2

 2m · 2(b+4)n · 2n log n · 2�c�n·(log n)2 .
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The values of c > 0 and � > 0 are constants, therefore for n large enough, the above is much

smaller then 2m and therefore much smaller than the number of ⇧-good graphs.

We focus on the set B4 ⇢ B1 \
⇣

[3
i=1B1

⌘

. Let G 2 B4, then because for each i � 2, G[⇡0i]

contains at most (log n)2 clique-stars from S and |S| � n�, there are at least 1
2n

� clique-stars

from S in G[⇡01]. Assume that there is an index i � 2 where the largest clique-star in G[⇡0i \S]
contains at most ni � n1��/2 vertices and there are at least n1��/2 vertices in clique-stars in

G[⇡0i\S]. We apply Lemma 5.2.32 to the graphs induced on G[⇡0i] and G[⇡01\S] and get that the

number of ways to choose edges between those subgraphs is at most 2|⇡1\S|·|⇡i| ·2�cn� ·n1��/2
.

Let F(B4) = (F4
1 ,F4

2 , ...,F4
wpn(T )

), we use that for each i 2 [wpn(T )], F4
i ✓ G2, and therefore

using again the bound on G2 in Lemma 5.2.25 and Lemma 3.3.8, we can bound the number

of graphs in B4 by,

2m · 2(b+4)n · 2�c(T )ny · |(G2)n| · 2�cn� ·n1��/2

 2m · 2(b+4)n · 2n log n · 2�cn1+�/2
.

The values of c > 0 and � > 0 are constants, therefore for n large enough, the above is much

smaller then 2m and therefore much smaller than the number of ⇧-good graphs.

Let G 2 B1 \
⇣

[4
i=1B1

⌘

and let F
✓

B1 \
⇣

[4
i=1B1

⌘

◆

= (F5
1 ,F5

2 , ...,F5
wpn(T )

). From the

above there is i 2 [wpn(T )], without loss of generality i = 1, such that G[⇡01] contains at least
1
2n

� components from S, also it contains at least �n1 vertices in the clique-stars and at most

(1��)n1 vertices in one component. Moreover, for each i � 2, G[⇡0i] contains at most (log n)2

components from S, either the largest clique-star in G[⇡0i \ S] contains at least ni � n1��/20

vertices or there are at most n1��/2 vertices in clique-stars in G[⇡0i \S]. Furthermore because

c1 � n� and property (d) of graphs in B1 ⇢ B, for all i � 2, `i  n1��/2. We have that

|F5
1 |  |(G2)n

1

|  40n1 ·
⇣

n
1

log log n

⌘n
1

where the inequality is due to Lemma 5.2.25. Using

Lemma 5.2.26, the number of graphs in each F5
i for i � 2 is at most n2i · 24ni · sni · 4n4(1��/2)

where si is the number of clique-stars from S in G[⇡0i]. We apply again Lemma 5.2.32 to

the graphs induced on G[⇡01] and G[⇡0i \ S] and get that the number of ways to choose edges

between those subgraphs is at most 2|⇡1|·|⇡i\S| · 2�c�n·si . Using Lemma 3.3.8, we have the
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following bound,

2m · 2(b+4)n · 2�c(T )ny · |(G2)n
1

| ·
Y

i�2

25ni · (4n)4(1��/2)n1��/2 · (si)n · 2�c�nsi

 2m · 2(b+9)n · 40n1 ·
✓

n1
log log n

◆n
1

· (4n)4wpn(T )(1��/2)n1��/2 · 2n(wpn(T ) log s�c�s)

where s is the number of clique-stars in S which are not in G[⇡01]. We compare it to the lower

bound of 2m · �n1e
�n

1 on the number of ⇧-good graphs from Observation 5.2.29. Therefore

using that n1 � n
2wpn(T )

,

|B1|
|G |  2(b+100)n · 24wpn(T )(1��/2)n1��/2 log n · 2n(wpn(T ) log s�c�s)

(log log n)
n

2wpn(T )

 2(b+100)n · 2c0(T )n1�� log n · 2c0(T )n

(log log n)
n

2wpn(T )

= o(1)

for some constants c0(T ) and � > 0. Hence the number of graphs in B1 is much smaller than

the number of ⇧-good graphs.

Let ↵ 2
✓

0, 1
10wpn(T )3

◆

and let B2 = B2(↵)⇢ B \ B1 be the subset of ⇧-bad graphs

where there is exactly one index i 2 [wpn(T )] such that `i � ↵n.

Lemma 5.2.41. Let T 2 T pl and let ↵ 2
✓

0, 1
10wpn(T )3

◆

. The number of graphs in B2 is

much smaller than the number of graphs in G .

Proof. For this proof we define the following subsets of B2 ⇢ B \ B1. Let G 2 B2 and

let i 2 [wpn(T )] such that `i � ↵n, assume without loss of generality that i = 1. Let

� 2
✓

0, 1
10wpn(T )2

◆

and let B1 ⇢ B2 be such that s1  2n�.

Let G 2 B2 \ B1, let S1 be the set of n� largest clique-stars in G[⇡01] and let S1 be the

union of vertices in S1. Let B2 ⇢ B2 \B1 be the set of graphs where one the following is true

for G[⇡01 \ S1] (note that we consider the subgraph on the vertex set without the vertices in

the largest clique-stars),

(a) it contains at most n� clique-stars,

(b) there are at most �n1 vertices are in clique-stars,

113



(c) there are at least (1� �)n1 vertices in one clique-star.

We describe how we use those families. Let G 2 B2 ⇢ B, by our assumptions `1 � ↵n

and therefore we can find at least ↵n disjoint P3 in G[⇡01]. Then by part (d) of the definition

of B this implies that for each i � 2, ci  (log n)2.

We consider now the set B1 ⇢ B2, let F(B1) = (F1
1 ,F1

2 , ...,F1
wpn(T )

). By the definition

of B1 in each G 2 B1, c1  n�, therefore by Lemma 5.2.27, |F1
1 |  2n1 · n�n1 · n

n
1

2

1 . In each

G 2 B1, for each i � 2, ci  (log n)2 and `i  ↵n, therefore using Lemma 5.2.26, for each

i � 2, |F1
i |  n2i · 22ni · (log n)2ni · (3↵n)3↵n. Using Lemma 3.3.8 the number of graphs in B1 is

at most

2m · 2(b+3)n · 2�c(T )ny · 2n1 · (2n)�n1 · n
n
1

2

1 ·
Y

i�2

n2i · 22ni · (log n)2ni · (3↵n)3↵n

 2m · 2(b+8)n · n�n1 · n
n
1

2

1 · (log n)2n · (3↵n)3wpn(T )↵n

we compare it to the lower bound in Observation 5.2.29.

|B1|
|G |  2m · 2(b+8)n · n�n1 · n

n
1

2

1 · (log n)2n · (3↵n)3wpn(T )↵n

2m · �n1e
�

n
1

2 · �n2e
�

n
2

2

 2(b+9)n · n�n1 · (log n)2n · n3wpn(T )↵n

(n2)
n
2

2

 2(b+10)n · n
n

wpn(T )

2 · (log n)2n · n
n

wpn(T )

2

n
n

4wpn(T )

= o(1).

Next we consider graphs in B2, let F(B2) = (F2
1 ,F2

2 , ...,F2
wpn(T )

). Similarly to the argu-

ments in Lemma 5.2.40, using Lemma 5.2.27, |F2
1 |  24n ·n2�n1 ·n

n
1

2

1 . Using almost the same

computation as above, we get that the number of graphs in B2 is much smaller than the

number of graphs in G .

Let G 2 B2 \[2
i=1Bi, then `1 � ↵n, c1 � n�, G[⇡01 \S1] contains at least n� clique-stars, at

least �n1 vertices in those components and no component contains at least (1��)n1 vertices.

Moreover, by property (d) of the graphs in B, for each i � 2, ci  (log n)2 and `i  n1��/2.

Let t be the size of the largest component in G[⇡01 \ S1] and let K1 be the clique-stars of

size at most t in G[⇡01 \ S1] (and so in G[⇡01]). For i � 2, let Si be the clique-stars in G[⇡0i] of
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size at least t and let Ki be the clique-stars in G[⇡0i] of size at most t. For i � 2, let |Si| = si

and let Si be union of vertices in all clique-stars in Si in G[⇡0i]. Similarly, let Ki be the union

of vertices in all clique-stars in Ki in G[⇡0i] and ki = |Ki|.
Let F(B2 \ [2

i=1Bi) = (F3
1 ,F3

2 , ...,F3
wpn(T )

). Let i � 2 and let n00i = |⇡i \ Si|. The number

of graphs in F3
i such that one of the components in Ki contains at least n00i � n� vertices is

at most sni · (G2)⇤,⇤,n
00
i �n� ,n1��/2

n00i
 sni · 24ni · n�n� · (3n)3(1��/2)n(1��/2)

where the bound is by

Lemma 5.2.26. Let U ⇢ [wpn(T )] \ {1} be the set of indices such that for each i 2 U , one of

the components in Ki contains at least n00i � n�.

Let i /2 U [ {1}, then we can bound the number of graphs in F3
i by 24ni · kkii · sni ·

(3n)3(1��/2)n1��/2
. There are at most 24ni ways to choose the elements in Si,Ki, components

of size 2 in G[⇡i], and the centres of the clique-stars. There are at most kkii ways to partition

the vertices in Ki into the di↵erent clique-stars. There are at most sni ways to partition the

vertices into the si di↵erent components on Si. Finally, there are at most (3n)3(1��/2)n1��/2

ways to partition the n1��/2 non-edges in G[⇡i].

Finally, we apply Lemma 5.2.32 to G[⇡01 \S1] and G[Si] for each i � 2. Moreover, we apply

Lemma 5.2.32 to G[S1] and each G[Ki], such that i /2 U [ {1}. Then using also Lemma 3.3.8,

we can bound the number of graphs in B2 \ [2
i=1Bi by

2m · 2(b+4)n · 2�c(T )ny · |(G2)n
1

| ·
Y

i2U
sni · 24ni · n�n� · (3n)3(1��/2)n(1��/2) · 2�c�nsi ·

·
Y

i/2U[{1}
24ni · kkii · sni · (3n)3(1��/2)n1��/2 · 2�ckin

� · 2�c�nsi

 2m · 2(b+8)n · |(G2)n
1

| · swpn(T )n · n�n� · nk · n5wpn(T )(1��/2)n1��/2 · 2�ckn� · 2�c�ns

 2m · 2(b+8)n · 40n1 ·
✓

n1
log log n1

◆n
1

· 210wpn(T )(1��/2)n1��/2 log n · 2k(log n�cn�) · 2n(wpn(T ) log s�c�s)

where s =
P

i�2 si and k =
P

i/2U[{1} ki and c > 0. We compare it to the lower bound of

2m ·�n1e
�n

1

/2 ·�n2e
�n

2

/2 on the number of ⇧-good graphs G from Observation 5.2.29. Therefore

using that ⇧ is a ⇢/4-almost equal partition and every two parts of the partition can di↵er
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on at 2n1�⇢/4 elements,

|B2|
|G |  2(b+15)n · 210wpn(T )(1��/2)n1��/2 log n · 2k(log n�cn�) · 2n(wpn(T ) log s�c�s)

(log log n)
n

4wpn(T )

 2(b+15)n · 2c0(T )n1�� log n · 2c0(T )n

(log log n)
n

4wpn(T )

= o(1),

where � > 0 and c(T ) a constant which depends only on T . Therefore the number of graphs

in B2 is much smaller than the number of graphs in G

Let ↵ 2
✓

0, 1
10wpn(T )3

◆

, and G 2 B \ (B1 [ B2), due to property (d) of graphs in B, we

can deduce the following.

Observation 5.2.42. Let T 2 T pl and let ↵ 2
✓

0, 1
10wpn(T )3

◆

and G 2 B \ (B1 [ B2). Let

i1 6= i2 be the indices such that `i
1

� ↵n and `i
2

� ↵n, then ci  (log n)2 for all i 2 [wpn(T )].

Trees in T pl
star: Let ↵ 2

✓

0, 1
10wpn(T )3

◆

and let G 2 B \ (B1 [ B2). Let W = W (G) ⇢ [n] be

a minimal set such that for each i 2 [wpn(T )] G[⇡i \W (G)] 2 G1, that is each G[⇡i \W (G)] is

a disjoint union of edges and singleton vertices.

Lemma 5.2.43. Let ↵ 2
✓

0, 1
10wpn(T )3

◆

and let G 2 B \ (B1 [ B2), then |W (G)|  2wpn(T ) ·
(log n)2.

Proof. Let Ci be the centres of the clique-stars in G[⇡0i], i 2 [wpn(T )]. Note that G[⇡0i\Ci] is in

G1. Therefore we can define W (G) to be
✓

[wpn(T )
i=1 Ci

◆

[ Y . By property (b) in the definition

of the set B, y  C(T ) log n. By Observation 5.2.42, there are at most (log n)2 clique-stars,

and therefore |Ci|  (log n)2.

Let ↵ 2
✓

0, 1
10wpn(T )3

◆

, � 2
⇣

0, 1
2wpn(T )

⌘

and let B3 = B3(�)⇢ B \ (B1 [ B2) be the set

of graphs where there is i 2 [wpn(T )] such that G[⇡i \ W (G)] contains at least �n singleton

components.

Lemma 5.2.44. Let T 2 T pl
star and let ↵ 2

✓

0, 1
10wpn(T )3

◆

, � 2
⇣

0, 1
2wpn(T )

⌘

. The number of

graphs in B3 is much smaller than the number of graphs in G .
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Proof. Let F(B3) = (F1,F2, ...,Fwpn(T )). Let i 2 [wpn(T )] be such G[⇡i \W ] contains at least

�n singleton components, then by Lemma 5.2.24, |Fi|  2ni · (ni � �n)
ni��n

2 · (log n)2ni . The

number of graphs in each Fj for j 2 [wpn(T )] \ {i} is at most n

nj
2

j · (log n)2nj . We compare

it to the lower bound on the number of ⇧-good graphs from Observation 5.2.29 and get the

following.

|B3|
|G | 

2m · 2(b+4)n · 2�c(T )ny · 2ni · (ni � �n)
ni��n

2 · (log n)2ni ·Qj 6=i n

nj
2

j · (log n)2nj

2m · �ne
�

n
2

 2(b+8)n · (log n)2n · nn
2 · n

��n
2

i

n
n
2

 2(b+8)n · (log n)2n ·
✓

n

2wpn(T )

◆��n
2

= o(1),

where the last inequality due to the fact that ni � n
2wpn(T )

. Hence we get the required

result.

Let ↵ 2
✓

0, 1
10wpn(T )3

◆

, � 2
✓

0, 1

24t
2

wpn(T )3

◆

, we focus on graphs in B \ [3
i=1Bi. Let

F 0
(B \ [3

i=1Bi) = (F 0
1,F 0

2, ...,F 0
wpn(T )), that is each F 0

i ✓ G1 and for each G 2 F 0
i and

i 2 [wpn(T )], G contains at most �n singleton components.

Lemma 5.2.45. Let ", "0 > 0 to be the constants defined earlier in the subsection. The

sequence F 0 is (⌧,�, k)-ordinary P (T )-free subsequence for any � 2 [0,
min{","0}

8 ), ⌧ = 1
w2

, and

any k 2 N.

Proof. We check properties (a) and (b) of the definition of (⌧,�, k)-ordinary P (T )-free sub-

sequence. Let Q = (G1, G2, ..., Gwpn(T )) be a sequence of graphs such that Gi 2 F 0
i for each

i 2 [wpn(T )].

First we check property (a). Let i 2 [wpn(T )], the graph Gi 2 G1, therefore for each

v 2 V (Gi), degGi
(v) 2 {0, 1}. Hence v is (⌧, Gi)-trivial for any ⌧ > 0. Let ⌧ = 1

w2

.

Now we check property (b). Let w0 /2 [i2[wpn(T )]V (Gi) be such for each i 2 [wpn(T )],

Gi [ {w0} /2 F 0
i. Let `i(w

0) = min{|N(w0) \ V (Gi)|, |N(w0) \ V (Gi)|}, i 2 [wpn(T )], let `(w0) =

mini2[wpn(T )] `i(w0) and let i 2 [wpn(T )] be such that `(w0) = `i(w
0), then for each j 2

[wpn(T ))] \ {i}, `j(w0) � ⌧n, that is w0 is not (⌧, Gj)-trivial.
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Let K be a maximal collection of disjoint edges or non-edges in V (Gi) such that for each

K 2 K, K [ {w0} is isomorphic to either S3 or P3. The set K 6= ; because Gi [ {w0} /2 F 0
i.

Assume that |K| � �n, then there are at least |K| � �n disjoint non-edges in N(w0) \ V (Gi),

let N ✓ K be this set of non-edges. Let N 2 N , then N [ {w0} is isomorphic to either P3

or S3. By Lemma 5.2.19, it is possible to find in G1 a set P of disjoint copies of P3 such

that |P| � ⌧n��n
4 and either (i) w0 is adjacent to exactly one end (and not other vertices) of

each copy of P3 in P or (ii) w0 is adjacent to the centre vertex (an not other vertices) of each

copy of P3 in P. Assume without loss of generality that N contains a set N 0 of at least |N |
2

non-edges such that each such non-edge together with w0 induces a copy of P3. Note that in

each such P3, w0 is an end of an edge. By our assumptions, for each j 2 [wpn(T )]\{1, i}, w0 is

not (⌧, Gj)-trivial, therefore for each of the possible edge arrangement between a vertex and

an edge, Gj contains a set Hj of at least
⌧n
4 disjoint edges, so w0 has this edge arrangement.

Let P (T ) = (P3, H2, ..., Hwpn(T )) be a partition of T where Hi = P3 and each Hj for

j 2 [wpn(T )] \ {1, i} is an edge, let w be the centre of the Hi = P3. The tree T has such

a partition by Lemma 5.2.2 and Observation 5.2.7. By part (e) of Observation 5.2.30 and

the above, w0 is adjacent to each copy P3 in P = H1 as w to P3 in the partition P (T ). The

collection of sets (P,H2, ..,Hi�1,N 0,Hi+1, ...,Hwpn(T )) is a (P,w0, i)-form in Q with property

(1) of (b).

Now we complete the proof of the exact structure for all trees T 2 T pl
star.

Proof of Theorem 1.1.9 for trees T 2 T pl
star. From Observation 5.2.11, to show that the num-

ber of bad graphs is much smaller than the number of good graphs it is enough to show

that the number of ⇧-bad graphs is much smaller than the number of ⇧-good graphs.

From Lemmas 5.2.38, 5.2.39, 5.2.40, 5.2.41, Observation 5.2.42, and Lemmas 5.2.43, 5.2.44,

we have the following. Almost all ⇧-bad graphs G have a set W (G) ⇢ V (G) such that

|W (G)|  2wpn(T )·(log n)2, for each i 2 [wpn(T )], G[⇡i\W (G)] 2 G1, and for each i 2 [wpn(T )],

G[⇡i \W (G)] contains at most �n singleton vertices for any fixed � 2
⇣

0, 1
2wpn(T )

⌘

, let D be

this collection of graphs. Let � 2
✓

0, 1

24t
2

wpn(T )3

◆

and let F 0 = F(D), then by Lemma 5.2.45,
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F 0 is (⌧,�, k)-ordinary P (T )-free subsequence for ⌧ = 1
w2

, any � small enough and any k 2 N.

Finally, by Lemma 3.3.14, the number of the remaining ⇧-bad graphs is much smaller than

the number of ⇧-good graphs.

Trees in T pl\T pl
star: Let B3⇢ B\(B1 [ B2) be the set of graphs where `i

1

� ↵n and `i
2

� ↵n

for some i1 6= i2 2 [wpn(T )] and there is i 2 [wpn(T )] \ {i1, i2}, such that G[⇡0i] contains at

least (log n)2 disjoint non-edges. This is a direct corollary to Corollary 5.2.37

Corollary 5.2.46. Let T 2 T pl \ T pl
star and let ↵ 2

✓

0, 1
10wpn(T )3

◆

. The number of graphs in

B3 is much smaller than the number of graphs in G .

Let G 2 B \
⇣

[3
i=1Bi

⌘

let i1 6= i2 2 [wpn(T )] so `i
1

� ↵n and `i
2

� ↵n, assume without

loss of generality that i1 = 1 and i2 = 2. Let W = W (G) ⇢ [n] be a minimal set such that

G[⇡i \W ] and G[⇡2 \W ] are in G1 and G[⇡i \W ] for each i 2 [wpn(T )] \ {1, 2} is a clique.

Lemma 5.2.47. Let T 2 T pl \ T pl
star and let ↵ 2

✓

0, 1
10wpn(T )3

◆

. Let G 2 B \
⇣

[3
i=1Bi

⌘

, then

|W (G)|  2wpn(T ) · (log n)2.

Proof. Let C1 and C2 be the centres of the clique-stars in G[⇡01] and G[⇡02], and let Ci for

i 2 [wpn(T )] \ {1, 2} to be the union of the centres of clique-stars and the non-edges in

G[⇡0i]. Note that G[⇡01 \ C1] and G[⇡02 \ C2] are in G1, and G[⇡i \ W ] is a clique for each

i 2 [wpn(T )] \ {1, 2}. Therefore we can define W to be
✓

[wpn(T )
i=1 Ci

◆

[ Y . By property (b) in

the definition of the set B, y  C(T ) log n. By Observation 5.2.42 and Corollary 5.2.46, for

all i 2 [wpn(T )] |Ci|  (log n)2. Hence we get the required bound.

Let ↵ 2
✓

0, 1
10wpn(T )3

◆

and let � 2
⇣

0, 1
2wpn(T )

⌘

. Let B4 ⇢ B \
⇣

[3
i=1Bi

⌘

to be the set of

graphs where there either G[⇡1 \W ] or G[⇡2 \W ] contains at least �n singleton components.

Lemma 5.2.48. Let T 2 T pl \T pl
star and let ↵ 2

✓

0, 1
10wpn(T )3

◆

and let � 2
⇣

0, 1
2wpn(T )

⌘

. The

number of graphs in B4 is much smaller than the number of graphs in G .

Proof. Let j 2 {1, 2} be such G[⇡j \W ] contains at least �n singleton components, then by

Lemma 5.2.24, the number of graphs in G[⇡0j \W ] is at most 2nj ·
⇣

nj � �n
⌘

nj��n

2 . We assume
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without loss of generality that j = 1. Therefore similarly to the proof of Lemma 5.2.44,

|B4|
|G |  2m · 2(b+4)n · 2�c(T )ny · 2n1 · (n1 � �n)

n
1

��n
2 · n

n
2

2

2 · (log n)2n

2m · �n1e
�

n
1

2 · �n2e
�

n
2

2

 2(b+8)n · (log n)2n · n
n
1

2

1 · n
��n
2

i

n
n
1

2

1

 2(b+8)n · (log n)2n ·
✓

n

2wpn(T )

◆��n
2

= o(1),

where the last inequality due to the fact that ni � n
2wpn(T )

. Hence we get the required

result.

Let ↵ 2
✓

0, 1
10wpn(T )3

◆

, � 2
✓

0, 1

24t
2

wpn(T )3

◆

, we focus on graphs in B \ [4
i=1Bi. Let

F 0
(B \ [4

i=1Bi) = (F 0
1,F 0

2, ...,F 0
wpn(T )), that F 0

1 ✓ G1, F 0
2 ✓ G1 and for each G 2 F 0

1 [ F 0
2,

G contains at most �n singleton components. For each i 2 [wpn(T )] \ {1, 2}, F 0
i contains a

clique.

Lemma 5.2.49. Let ", "0 > 0 to be the constants defined earlier in the subsection. The

sequence F 0 is (⌧,�, k)-ordinary P (T )-free subsequence for any � 2 [0,
min{","0}

8 ), ⌧ = 1
w2

, and

any k 2 N.

Proof. We check properties (a) and (b) of the definition of (⌧,�, k)-ordinary P (T )-free sub-

sequence. Let Q = (G1, G2, ..., Gwpn(T )) be a sequence of graphs such that Gi 2 F 0
i for each

i 2 [wpn(T )].

First we check property (a). Let i 2 {1, 2}, the graph Gi 2 G1, therefore for each v 2 V (Gi),

degGi
(v) 2 {0, 1}. Let i � 3, then Gi is a clique, therefore for each v 2 V (Gi), degGi

(v) = 0.

Hence v is (⌧, Gi)-trivial for any ⌧ > 0. Let ⌧ = 1
w2

.

Now we check property (b). Let w0 /2 [i2[wpn(T )]V (Gi) be such for each i 2 [wpn(T )],

Gi [ {w0} /2 F 0
i. Let `i(w

0) = min{|N(w0) \ V (Gi)|, |N(w0) \ V (Gi)|}, i 2 [wpn(T )], let `(w0) =

mini2[wpn(T )] `i(w0) and let i 2 [wpn(T )] be such that `(w0) = `i(w
0), then for each j 2 [wpn(T )]\

{i}, `j(w0) � ⌧n, that is w0 is not (⌧, Gj)-trivial.

If i 2 {1, 2}, then the proof is the same as in Lemma 5.2.45. Therefore we consider the
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case where i � 3. It is possible to find in Gi a set N of disjoint edges such that |N | � `(w0)
2

and each edge N 2 N together with w0 induce either S2, P3 or P3.

From Lemma 5.2.19 in both G1 and G2, it is possible to find a set P of disjoint copies

of P3 such that |P| � ⌧n��n
4 and either (i) w0 is adjacent to exactly one end (and not other

vertices) of each copy of P3 in P or (ii) w0 is not adjacent to any of the vertices of each copy

of P3 in P. Note that conditions (i) and (ii) also imply that there is a set P 0 of disjoint

non-edges such that w0 is either adjacent to exactly one end or not adjacent to any of those

non-edges and |P 0| = |P|.
We consider 3 di↵erent cases: (a) G1 and G2 contain sets P1 and P2 respectively, such

that w0 is adjacent to each P3 in P1 and P2 as in case (i), (b) G1 and G2 contain sets P1

and P2 respectively, such that w0 is adjacent to each P3 in P1 and P2 as in case (ii) and (c)

G1 and G2 contain sets P1 and P2 respectively, such that without loss of generality w0 is

adjacent to each P3 in P1 as in case (i) and to each P3 in P2 as in case (ii).

Note that by Lemma 5.2.4, each tree T 2 T pl\T pl
star has a partition into P ⇤

4 and wpn(T )�3

edges. In case (a), we set N to be the maximal collection of disjoint edges in N(w0) \ V (Gi)

and P 0
1 to be a collection of non-edges that we get from P1. By our assumptions, for each

j 2 [wpn(T )]\{i}, w0 is not (⌧, Gj)-trivial, therefore for each of the possible edge arrangement

between a vertex and an edge, Gj contains a set Hj of at least ⌧n
4 disjoint edges, so w0 has

this edge arrangement with each edge in Hj . Let P1 = (S2, P3, ..., Hwpn(T )) where Hi = P3

and for each j 2 [wpn(T )] \ {1, 2, i}, Hj is an edge. As shown in Observation 5.2.20, part a,

there is a partition of P ⇤
4 such that one of the vertices w 2 V (P ⇤

4 ) is adjacent to one end of a

non-edge, one end of a P3 and induce a P3 with the remaining edge. Therefore the collection

of sets (P 0
1,P2, ..,Hi�1,N ,Hi+1, ...,Hwpn(T )) is a (P1, w

0, i)-form with property (2) of (b).

In case (b), we set N to be the maximal collection of disjoint edges in Gi such that w0 is

adjacent to exactly one end of each such edge. Note that for any N 2 N , N [ {w0} induces

a P3. Let P 0
1 to be a collection of non-edges that we get from P1. By our assumptions, for

each j 2 [wpn(T )] \ {i}, w0 is not (⌧, Gj)-trivial, therefore as before for each of the possible

edge arrangements between a vertex and an edge, Gj contains a set Hj of at least
⌧n
4 disjoint
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edges, so w0 has this edge arrangement with every edge in Hj . Let P2 = (S2, P3, ..., Hwpn(T ))

where Hi = P3 and for each j 2 [wpn(T )] \ {1, 2, i}, Hj is an edge. As shown in Observation

5.2.20, part b, there is a partition of P ⇤
4 such that one of the vertices w 2 V (P ⇤

4 ) is not

adjacent to the non-edge, and not adjacent to P3 and induce a P3 with the remaining edge.

Therefore the collection of sets (P 0
1,P2, ..,Hi�1,N ,Hi+1, ...,Hwpn(T )) is a (P2, w

0, i)-form with

property (2) of (b).

In case (c), we set N = N(w0)\ V (G1). Note that for any N 2 N , N [ {w0} is a non-edge.

By our assumptions, for each j 2 [wpn(T )] \ {i}, w0 is not (⌧, Gj)-trivial, therefore as before

for each of the possible edge arrangements between a vertex and an edge, Gj contains a set

Hj of at least ⌧n
4 disjoint edges, so w0 has this edge arrangement with every edge in Hj .

Let P3 = (P2, P3, ..., Hwpn(T )) where Hi = S2 and for each j 2 [wpn(T )] \ {1, 2, i}, Hj is an

edge. As shown in Observation 5.2.20, part c, there is a partition of P ⇤
4 such that one of

the vertices w 2 V (P ⇤
4 ) is not adjacent to one of the P3, and adjacent to one of the ends

of the other P3 and induce a S2 with the remaining vertex. Therefore the collection of sets

(P 0
1,P2, ..,Hi�1,N ,Hi+1, ...,Hwpn(T )) is a (P2, w

0, i)-form with property (2) of (b).

Now we complete the proof of the exact structure for all trees T 2 T pl.

Proof of Theorem 1.1.11 and Theorem 1.1.9 for all trees T 2 T pl. From Observation 5.2.11,

to show that the number of bad graphs is much smaller than the number of good graphs

it is enough to show that the number of ⇧-bad graphs is much smaller than the number of

⇧-good graphs. From Lemmas 5.2.38, 5.2.39, 5.2.40, 5.2.41, Observation 5.2.42, Corollary

5.2.46, and Lemmas 5.2.47, 5.2.48 we have the following. Almost all ⇧-bad graphs G have a

set W (G) ⇢ V (G) such that |W (G)|  2wpn(T ) ·(log n)2, for there are indices i1 6= i2 such that

G[⇡i
1

\W (G)] 2 G1 and G[⇡i
2

\W (G)] 2 G1, and for i 2 {i1, i2}, G[⇡i \W (G)] contains at most

�n singleton vertices for any fixed � 2
⇣

0, 1
2wpn(T )

⌘

, moreover, for all j 2 [wpn(T )] \ {i1, i2},
G[⇡j \W (G)] is a clique. Let D be this collection of graphs. Let � 2

✓

0, 1

24t
2

wpn(T )3

◆

and let

F 0 = F(D), then by Lemma 5.2.49, F 0 is (⌧,�, k)-ordinary P (T )-free subsequence for ⌧ = 1
w2

,

any � > 0 small enough and any k 2 N. Finally, by Lemma 3.3.14, the number of the
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remaining ⇧-bad graphs is much smaller than the number of ⇧-good graphs.

Trees in T npl

We showed in Theorems 1.1.12, 1.1.14 and 1.1.16 that for any T 2 Tnpl so T 6= P6, the

families Fi, in a P(T )-free sequence are either of the families G◆, ◆ 2 {4, 5} or the set of all

cliques. In the case that T = P6, then the families are either G1, G6, the sets of all stable set

or the set of all cliques. We recall the definitions of the families G◆, ◆ 2 {4, 5, 6}.
The family G4 = Forb({P4, 2K2,K2 + S2, P3 + S1}) is the family of all graphs which are

joins of graphs which are either a stable set or a disjoint union of a vertex and a clique. The

complement of a graph in G4 is a disjoint union of stars and cliques.

The family G5 = Forb({P4, 2K2,K2+S2, P3+S1, S4}) is the family of all graphs which are

joins of graphs which are either a stable set of size 3 or a disjoint union of a vertex and a

clique (note that stable sets of size 1 and 2 are disjoint union of a vertex and a clique). The

complement of a graph in G5 is the disjoint union of stars and cliques of size 3. We refer to

a clique of size exactly 3 as triangle. Note that G5 ⇢ G4.
The family G6 = Forb({P4, 2K2, P3+S1}) is the family of graphs which are joins of graphs

which are disjoint union of a clique and a stable set. Note that G5 ⇢ G4 ✓ G6. See in Figure

5.11 an example for a graph G in G6 and its complement. In the figure, a thick edge between

two sets of vertices represents the existence of all the possible edges between those two sets.

As before, we first give bounds on the number of graphs in the above families.

Lemma 5.2.50. Let n 2 N and ◆ 2 {4, 5, 6},

Bell(n)  |(G◆)n|  n! · 22n.

Proof. Let k 2 [n] and let (⇡1,⇡2, ...,⇡k) be a partition of [n] into k parts. It is possible to

define a graph G for G 2 G5 with respect to this partition by building a star from every part

⇡i, i 2 [k] (choosing the centre of every star arbitrary). In this way for two di↵erent partitions

of [n] we obtain two di↵erent graphs in G5. Therefore |(G6)n| � |(G4)n| � |(G5)n| � Bell(n).
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(a) G 2 G
6

(b) The complement G

Figure 5.11: A graph G in G6 and its complement .

It is possible to obtain any graph in G6 by considering some permutation of n and a

choice of two subsets of n, let I1, I2 be those subsets. The elements of I1 mark the partition

into the di↵erent components of the complement graph. More precisely, let i, i0 2 I1 be such

that i appears before i0 and there is no other element of I1 between i and i0, then i together

with all the elements between i and i0 after i in the partitions define a component in the

complement graph. An element I2 which appears between i, i0 2 I1 marks the partition into

a stable set and a clique. Let j 2 I2, then the elements between i and j are the elements of

the stable set in the complement. Similarly, the elements between j to i0 are the elements of

the clique.

Let G 2 G6, we call a connected component in G a rich component if it is of size at least

2. Note that a rich component of size at least 3 contains either an induced P3 or S3. Let

r = r(G) be the number of rich components in G. Let (G6)r,n
0,n00

n ✓ (G6)n be the set of graphs

G such that G has the following properties.

• G contains at most r rich components,

• the number of vertices in the rich components in G is at most n0,

• there is a rich component with at least n00 vertices,
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Similarly to before we denote (G6)r,n
0,n00

n = {G | G 2 (G6)r,n
0,n00

n }. If there is no restriction

on any of the values in the upper script, then we write a ⇤ is the corresponding entry.

Lemma 5.2.51. Let r, n0, n00, n 2 N, then

|(G6)r,⇤,⇤n |  22n · rn. (5.4)

|(G6)r,n
0,⇤

n |  22n · rn0 . (5.5)

|(G6)⇤,⇤,n
00

n |  22n · n00 · (n� n00)! · 22(n�n00). (5.6)

Proof. Firstly we consider (G6)r,⇤,⇤n . There are at most 2n ways to choose the vertices which

are in the rich components. There are at most 2n ways to choose the vertices which are in a

stable set in their corresponding component in the complement. There are at most rn ways

to partition the elements chosen for the rich components into the di↵erent r rich components.

Therefore we get the bound

|(G6)r,⇤,⇤n |  22n · rn.

Secondly we consider (G6)r,n
0,⇤

n . Similarly to before, there are at most 2n ways to choose

the n0 vertices which are in the rich components. There are at most 2n ways to choose

the vertices which are in a stable set in their corresponding component in the complement.

There are at most rn
0
ways to partition the elements chosen for the rich components into

the di↵erent r rich components. Therefore we get the bound

|(G6)r,n
0,⇤

n |  22n · rn0 .

Lastly we consider (G6)⇤,⇤,n
00

n . Let C be the rich component with at least n00 vertices.

There are at most 2n ways to choose the vertices in C, there are at most 2n
00
ways to vertices

in the stable set in C. By the bound in Lemma 5.2.50, the number of ways to choose a graph

from G6 on the rest (n � n00) vertices is at most ·(n � n00)! · 22(n�n00). Therefore we get the

bound

|(G6)⇤,⇤,n
00

n |  22n · n00 · (n� n00)! · 22(n�n00).
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Lemma 5.2.52. Let n 2 N and s, k 2 [n], let (Gs,k
6 )n ⇢ (G6)n be the collection of graphs G

which contain more than s rich components in G and the number of vertices in the union of

all rich components, but the s largest, is k. Then,

|(Gs,k
6 )n|  22n · sn · kk.

Proof. There are at most 2n ways to choose the vertices for the s largest rich components.

There are at most sn ways to partition the vertices into s components. There are at most kk

ways to partition the k remaining vertices into di↵erent components. There are at most 2n

ways to choose the vertices which are part of a stable set in their corresponding component.

Lemma 5.2.53. Let n 2 N, the number of graphs G in (G6)n so G contains at most (log n)2

rich components of size at least 3 is at most

22n · nn
2 · (log n)2n.

Proof. There are at most 2n ways to choose the vertices which are in components of size

at most 2. By Theorem 5.2.22, there are at most n
n
2 ways to partition those vetices into

components of size at most 2. There is at most (log n)2n ways to assign vertices to the rich

components of size at least 3. There are at most 2n ways to choose which vertices are a part

of a stable set in their corresponding component.

Lemma 5.2.54. Let n 2 N, ◆ 2 {4, 5, 6}, and n0, c 2 [n] then the number of graphs in (G◆)n
such that there are at least n0 vertices in components of size at least c is at most

22n ·
✓

n

c

◆n0

· |(G◆)n�n00 |.

Proof. There are at most 2n ways to choose the n0 vertices which are in the components of

size at least c. There are at most n
c di↵erent components of size at least c and there are at

most
�

n
c

�n0 ways to partition the n0 vertices into those components. There are at most 2n

ways to choose the vertices which are a part of a stable set in each of the components in the

complement. The graph on the rest n� n0 vertices is taken from (G◆)n�n00 .
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(a) S
3

and S
3

(b) P
3

and S
3

(c) P
3

and P
3

(d) P
3

and P
3

(e) P
3

and P
3

Observation 5.2.55. Let T 2 T npl and ⇧ = (⇡1,⇡2, ...,⇡wpn(T )) be a partition of [n]. Let

n1 = |⇡1| then,
|F (T,⇧)| � |(G5)n

1

|.

The proof of the typical structure for trees in T npl is very similar to the proof of the

typical structure of trees in T pl.

Observation 5.2.56. All the following pairs of graphs can be extended to P6 with a proper

choice of edges between the graphs in the pair,

(a) (S3, S3) with an edge fixed between them or without such edge, see Figure 5.12a.

(b) (P3, S3) with either an edge between the centre of P3 to one of vertices of the S3 or

without such edge, see Figure 5.12b.

(c) (P3, P3) with either an edge or without an edge between their centres, see Figure 5.12c.

(d) (P3, P3) with either an edge between the centre of the P3 to one of the ends of the P3

or without such edge, see Figure 5.12d.

(e) (P3, P3) with one end of one of the P3 not adjacent to any of the vertices of the other

P3, or adjacent to exactly one end of the other P3, see Figure 5.12e.

Using parts (a),(b),(c) and (d) of observation 5.2.56, and similarly to the proof of Lemma

5.2.31, it is possible to show the following.
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Lemma 5.2.57. Let K1 and K2 be such that K1 and K2 are rich components on k1 and k2

vertices respectively and k1 � 3, k2 � 3. The number of ways to choose edges between V (K1)

and V (K2) without creating an induced copy of P6 is at most

2k1·k2 · 2�min

n

k
1

�1

2

6

,
k
2

�1

2

6

o

.

Lemma 5.2.58. Let G1, G2 2 G6 be two disjoint graphs. Let |V (G1)| = n1, |V (G2)| = n2 and

let S1 and S2 be maximum collections of disjoint rich components in G1 and G2, respectively.

Let s1 = |S1|, s2 = |S2| and S1 = [S2S
1

S, S2 = [S2S
2

S. We make the following assumptions.

(i) No rich component in S2 contains at least n2 � s2 vertices, and

(ii) every rich component in S2 is larger than any rich component in S1.

The number of ways to choose edges between V (G1) and V (G2) without creating an induced

copy of P6 is at most 2n1·n2 · 2�c|S
1

|·s
2 for some constant c > 0.

Proof. Let S 0
1 ✓ S1 and S 0

2 ✓ S2 be the collections of all rich components of size at least

3. Let K1 2 S1 and K2 2 S2. Then using Lemma 5.2.57, the number of ways to choose

edges between V (K1) and V (K2) without creating P6 is at most 2|V (K
1

)|·|V (K
2

)| ·2�c|V (K
1

)|. If

|[S2S0
1

S| � S
1

2 then |S 0
2| = s2 and we get the required bound. Hence we analyze the situation

where this is not the case.

In the case that | [S2S0
1

S|  S
1

2 , there are at least S
1

2 vertices in components of size

exactly 2, let T1 be the maximal collection of disjoint P3 in G1. Using assumption (i), we

can find in G2 at least s
2

2 disjoint copies of P3 and P3. Indeed we can define a set T2 by

taking a copy of P3 from every component in S2 which contains P3 in G2. Moreover, for

every two sets in S2 which are stable sets in G2, we can define a P3 by taking a non-edge

from one of such stable sets and a vertex from the other. Because, by observation 5.2.8, P6

can be partitioned both into (P3, P3) and (P3, P3), then we need to forbid at least one edge

arrangement between every set T1 2 T1 and T2 2 T2. Therefore the number of ways to choose

edges between V (G1) and V (G2) without creating an induced copy of P6 is again at most

2n1·n2 · 2�c|S
1

|·s
2 for some constant c > 0.
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We recall the structural properties of trees in T npl which are needed in the proof of the

exact structure of almost all T -free graphs.

(A) Each of the graphs in {P4, 2K2, P3 + K1} is 1
4 -universally extendable for all T 2 T npl.

Moreover, K2 + S2 is 1
4 -universally extendable for all trees T 2 T npl \ {P6} and S4 is

1
4 -universally extendable for all trees T 2 T npl \ S.

(B) P6 is (2, 14)-universally extendable for all T 2 T npl.

(C) Either P ⇤
3 is (2, 14)-universally extendable or P8 is (3, 14)-universally extendable for all

T 2 T npl \ {P6}.

Those properties are shown in Lemmas 5.2.16, 5.2.17 and 5.2.18. As we did in the case of

trees in T pl, using those properties we give a few important corollaries to the general claims

which we gave in Section 3.3.

Let K 2 N and " > 0 be the constants from Theorem 3.2.1 applied with Forb(T ) and

� > 0 su�ciently small. Let "0 > 0 be the constant from Theorem 3.2.3 applied with K. Let

� 2 [0,
min{","0}

8 ).

Let n 2 N be large enough and let ⇢ > 0 be the constant which we get from Theorem 3.2.2

for this n and ⇠ > 0 such that 2⇠ log 1
⇠ < log e · �

23·2t2+3·t·wpn(T )
where t = V (T ). Let ⇧ =

(⇡1,⇡2, ...,⇡wpn(T )) be a ⇢/4-almost equal partition of [n]. We fix the partition ⇧ for all of the

following discussion. Let ni= |⇡i|, i 2 [wpn(T )].

Let G be a ⇧-conformal graph. Let Y(⇧, G, i) = Y(⇧, G, 14 , i,
1

2t
2

+1

) be the collection

of sets obtained by adding greedily sets S which are (⇧, 14 , i,
1

2t
2

+1

)-linearly extremal. Let

Y(G) = [wpn(T )
i=1 Y(⇧, G, i), Y = Y (G) = [Y 2Y(G)Y and y = y(G) = |Y (G)| as defined in

Section 3.3.

Corollary 5.2.59 (to Lemma 3.3.9). Let T 2 T npl, the number of ⇧-conformal graphs G,

such that for some i 2 [wpn(T )], G[⇡i \ Y (G)] contains an induced graph isomorphic to H 0

where H 0 2 {P4, 2K2, P3 + S1} is much smaller than the number of ⇧-good graphs.
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Also, let T 2 T npl \ {P6}, the number of ⇧-conformal graphs G, such that for some

i 2 [wpn(T )], G[⇡i \ Y (G)] contains an induced graph isomorphic to K2 + S2 is much smaller

than the number of ⇧-good graphs.

Moreover, if T 2 T npl \ S, then the number of ⇧-conformal graphs such that additionally

there is an index i 2 [wpn(T )] where G[⇡i \Y (G)] contains an induced graph isomorphic to S4

is much smaller than the number of ⇧-good graphs.

Corollary 5.2.60 (to Corollary 3.3.10 and Theorem 2.2.4). Let T 2 T npl, then there is a

constant C(T ) > 0 which depends only on T such that the number of ⇧-conformal graphs

where y � C(T ) log n is much smaller than the number of ⇧-good graphs.

Corollary 5.2.61 (to Lemma 3.3.12). Let T 2 T npl, the number of ⇧-conformal graphs where

there are indices i1 6= i2 2 [wpn(T )], and there are subgraphs Ji
1

and Ji
2

in G[⇡i
1

\ Y (G)] and

G[⇡i
2

\ Y (G)], respectively, such that G[V (Ji
1

) [ V (Ji
2

)] is isomorphic to P6 is much smaller

than the number of ⇧-good graphs.

Corollary 5.2.62 (to Lemma 3.3.13). Let T 2 T npl, and let (J1, J2) be a partition of P6. The

number of ⇧-conformal graphs where there indices i1 6= i2 2 [wpn(T )], such that G[⇡i
1

\Y (G)]

contains at least f1(n) disjoint copies of a graph J1 and G[⇡i
2

\G(Y )] contains at least f2(n)

disjoint copies of a graph J2 such that n log n
f
1

(n)·f
2

(n)
= o(1), is much smaller than the number of

⇧-good graphs.

Moreover, if T 2 T npl and T is not a path then the following holds. Let (J1, J2) be a

partition of P ⇤
3 . The number of ⇧-conformal graphs where there indices i1 6= i2 2 [wpn(T )],

such that G[⇡i
1

\ Y (G)] contains at least f1(n) disjoint copies of a graph J1 and G[⇡i
2

\G(Y )]

contains at least f2(n) disjoint copies of a graph J2 such that n log n
f
1

(n)·f
2

(n)
= o(1), is much

smaller than the number of ⇧-good graphs.

Corollary 5.2.63 (to Lemma 3.3.13). Let T be a path of lengths at least 8, and let (J1, J2, J3)

be a partition of P8. The number of ⇧-conformal graphs where there indices i1, i2, i3 in

[wpn(T )], such that G[⇡i
1

\ G(Y )] and G[⇡i
2

\ G(Y )] contain at least f1(n) disjoint copies of

a graph J1 and J2 respectively, and G[⇡i
3

\G(Y )] contains at least f2(n) disjoint copies of a
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graph J3 such that f1(n) � f2(n) and
n log n

f
1

(n)·f
2

(n)
= o(1), is much smaller than the number of

⇧-good graphs.

Let C be the set of all ⇧-conformal graphs and let G be the set of all ⇧-good graphs.

Similarly to before, let C 0⇢ C be the set of all ⇧-conformal graphs G with the following

properties.

(a) For all T 2 T npl, G[⇡i\Y (G)] 2 G6, i 2 [wpn(T )], for all T 2 T npl\{P6}, G[⇡i\Y (G)] 2 G4,
i 2 [wpn(T )], and for all T 2 T npl \ S, G[⇡i \ Y (G)] 2 G5, i 2 [wpn(T )].

(b) y  C(T ) log n for some constant C(T ) > 0.

(c) There are no indices i1 6= i2 2 [wpn(T )], where there are subgraphs Ji
1

and Ji
2

in

G[⇡i
1

\ Y (G)] and G[⇡i
2

\ Y (G)], respectively, such that G[Ji
1

[ Ji
2

] is isomorphic to P6.

Moreover, if T is not a path then the above is also true for the case where G[Ji
1

[ Ji
2

]

is isomorphic to P ⇤
3 .

(d) There are no indices i1 6= i2 2 [wpn(T )], such that G[⇡i
1

\ Y (G)] contains at least f1(n)

disjoint copies of a graph J1 and G[⇡i
2

\ Y (G)] contains at least f2(n) disjoint copies

of a graph J2 such that the following holds. The collection (J1, J2) is a partition of P6

and, n log n
f
1

(n)·f
2

(n)
= o(1). Moreover, if T is not a path then the above is also true for the

case where (J1, J2) is a partition of P ⇤
3 .

(e) For a tree T which is path of length at least 8, there are no indices i1 6= i2 6= i3 2
[wpn(T )], such that G[⇡i

1

\Y (G)] and G[⇡i
2

\Y (G)] contain at least f1(n) disjoint copies

of a graph J1 and J2 respectively, and G[⇡i
3

\Y (G)] contains at least f2(n) disjoint copies

of a graph J3 such that the following holds. The collection (J1, J2, J3) is a partition of

P8, f1(n) � f2(n) and
n log n

f
1

(n)·f
2

(n)
= o(1).

Lemma 5.2.64. The number of graphs in C \C 0 is much smaller than the number of graphs

in G .

Proof. This is a direct corollary to Corollaries 5.2.59, 5.2.60, 5.2.61, 5.2.62 and 5.2.63.
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⇡01 ⇡02 ⇡0wpn(T )

⇡1 ⇡2 ⇡wpn(T )

Y

Figure 5.13: A sketch of a graph G 2 B. The edges between the parts are not drawn.

Let G 2 C 0 then by the definition of the set C 0, G[⇡i \ Y (G)] 2 G6, i 2 [wpn(T )], therefore

G is a disjoint union of rich components and singleton vertices. Hence for each i 2 [wpn(T )],

we can define ri = ri(G[⇡i \ Y (G)]) to be the number of rich components in G[⇡i \ Y (G)] and

similarly we define `i = `i(G[⇡i\Y (G)]) to be the maximum number of connected components

which are edges in G[⇡i \ Y (G)].

We start from the ⇧-bad graphs in the set C 0, let B✓ C 0 be the collection of all ⇧-bad

graphs in C 0. Note that we will use the fact that we are considering ⇧-bad graphs only

towards the end of the proof. See Figure 5.13 for a sketch of an example of a graph in B.

In particular, in Figure 5.13, r1 = 5, r2 = 5, rwpn(T ) = 2. For G 2 B, for each i 2 [wpn(T )],

⇡0i = ⇡i \ Y (G).

Let F be a family of graphs G which are defined with respect to the properties of the

subgraphs G[⇡i], i 2 [wpn(T )]. As before we define F(F ) = (F1,F2, ...,Fwpn(T )) to be the

collection of families where Fi = [G2FG[⇡i], i 2 [wpn(T )].

Let B1⇢ B be the set of graphs in B such that there is no index i 2 [wpn(T )] where

ri � n
(log n)2

.

Lemma 5.2.65. Let T 2 T npl, the number of graphs in B1 is much smaller than the number

of ⇧-good graphs G .
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Proof. We start by listing the di↵erent subsets of graphs in B1 that we consider during the

proof. We show that the number of graphs in each of the following subsets is much smaller

than the number of graphs in G . As before, we finish by showing the number of graphs in

B1 which are not in any of the following families is also much smaller the number of graphs

in G .

Let � 2
✓

0, 1
28 wpn(T )2

◆

. Let B1 = B1(�) ⇢ B1 be the set of graphs G which have at most

n� rich components (components of size at least 2) in G[⇡01] [G[⇡02] [ ... [G[⇡0
wpn(T )

].

Let S be the set of the n� largest rich components in G[⇡01] [G[⇡02] [ ... [G[⇡0
wpn(T )

]. Let

S be the union of the vertices in the components in S. Let B2 ⇢ B1 \ B1 be the set of

⇧-bad graphs where each subgraph G[⇡0i \ S], i 2 [wpn(T )], has at least one of the following

properties,

(1) it contains at most n� rich components,

(2) there are at most �ni vertices in rich components,

(3) there are at least (1� �)ni vertices in one component.

Next we consider the graphs in B1 \ [2
i=1Bi. By the definition of the graphs in this set

there must be an index i 2 [wpn(T )], such that G[⇡0i \ S] does not have any of the properties

(1),(2) and (3) as above, without loss of generality i = 1. Let � 2 (0, 1) and let B3 ⇢ B1\[2
i=1Bi

be the set of graphs so there is an index i � 2 where G[⇡0i] contains a stable set of size at

least ni � n�.

Let B4 ⇢ B1 \ [3
i=1Bi be the family of graphs where for some i � 2, G[⇡0i] contains more

than (log n)2 components from S.
We start by bounding the number of graphs in B1 ✓ B1. Let F(B1) = (F1

1 ,F1
2 , ...,F1

wpn(T )
).

By the definition of B1, for each i 2 [wpn(T )], ri  n�, so by Lemma 5.2.51, for each

i 2 [wpn(T )], |F1
i |  |(G6)n

� ,⇤,⇤
ni |  23ni · n�ni . Therefore by Lemma 3.3.8, the number of
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graphs in B1 is at most

2m ·

0

B

@

wpn(T )
Y

i=1

23ni · n�ni
1

C

A

· 2(b+3)n

 2m · n� wpn(T )n · 2(b+6)n

 2m · n
n

2

7

wpn(T ) .

We compare it to the lower bound on the number of ⇧-good graphs from Observation 5.2.55.

|B1|
|G |  2m · n

n
2

7

wpn(T )

2m · Bell(n1)
 n

n
2

7

wpn(T )

 

n
2wpn(T )

e ln n
2wpn(T )

!

n
2wpn(T )

=

⇣

e ln n
2wpn(T )

⌘

n
2wpn(T )

n

(1�2

6

)n

2

7

wpn(T )

= o(1).

Next we consider the graphs in B2 ✓ B1\B1. Let F(B2) = (F2
1 ,F2

2 , ...,F2
wpn(T )

). By the def-

inition of B2, for each i 2 [wpn(T )], |F2
i |  2ni ·n�ni ·max{|(G6)n

� ,⇤,⇤
ni |, |(G6)⇤,�ni,⇤ni |, |(G6)⇤,⇤,(1��)ni

ni |}.
By Lemma 5.2.51, |(G6)n

� ,⇤,⇤
ni |  22ni · n�ni ; |(G6)⇤,�ni,⇤ni |  22n · n�ni ; |(G6)⇤,⇤,(1��)ni

ni | 
22ni · ni · (�ni)�ni . Hence for all i 2 [wpn(T )], |F2

i |  25ni · n2�ni . By Lemma 3.3.8, the

number of graphs in B2 is at most

2m ·

0

B

@

wpn(T )
Y

i=1

25ni · n2�ni
1

C

A

· 2(b+3)n

 2m · n� wpn(T )n · 2(b+8)n

 2m · n
n

2

7

wpn(T ) .

As before, the above number is much smaller than the lower bound on the number of ⇧-good

graphs from Observation 5.2.55.

Now we consider the graphs in B3 ✓ B1 \ [2
i=1Bi. Let G 2 B3, then by the definition

of this family there must be an index i 2 [wpn(T )], such that G[⇡0i \ S] contains at least n�

components of size at least 2, at least �ni vertices are in components of size at least 2 and

no component contains at least (1� �)ni vertices. Without loss of generality i = 1. Let i � 2
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so G[⇡0i] contains a stable set of size at least ni � n�. This means that in particular G[⇡0i]

contains at least n
8wpn(T )

disjoint S3.

If T 6= P6, then by properties (d) and (e) of graphs in B1, we can deduce that the number

of such graphs is much smaller than the number of ⇧-good graphs. Hence assume that

T = P6. By property (d) of graphs in B1, G[⇡01] can contain at most (log n)2 disjoint copies

of either S3 or P3. Let F(Bi) = (F3
1 ,F3

2 ). Then |F3
1 |  22n1 · n

n
1

2

1 · (log n)2n1 and by Lemma

5.2.51, |F3
2 |  24n2 · (ni � n�) · n�n� . By Lemma 3.3.8, the number of graphs in B3 in the case

that T = P6 is at most

2m · 22n1 · n
n
1

2

1 · (log n)2n1 · 24n2 · (ni � n�) · n�n� · 2(b+3)n

2m · 2(b+11)n · n
n
1

2

1 · (log n)2n1 · n�n� .

We compare it to the lower bound on the number of ⇧-good graphs from Observation 5.2.55.

|B3|
|G |  2m · 2(b+11)n · n

n
1

2

1 · (log n)2n1 · n�n�
2m · Bell(n1)

 2(b+11)n · n
n
1

2

1 · 23n log log n

⇣

n
1

e lnn
1

⌘n
1

 210n log log n

⇣

n
2wpn(T )

⌘

n
2wpn(T )

= o(1).

Next we consider the graphs in B4 ⇢ B1 \ [3
i=1Bi. Let i � 2 be such G[⇡0i] contains more

than (log n)2 components from S. Note that as mentioned earlier B1 ⇢ B, therefore any G 2
B4 has property (c), that is, there are no indices i1 6= i2 2 [wpn(T )], where there are subgraphs

Ji
1

and Ji
2

in G[⇡0i
1

] and G[⇡0i
2

], respectively, such that G[V (Ji
1

)[V (Ji
2

)] is isomorphic to P6.

We apply Lemma 5.2.58 to the graphs induced on G[⇡01] and G[⇡0i\S] and get that the number

of ways to choose edges between those subgraphs is at most 2|⇡1|·|⇡i\S| ·2�c�n·(log n)2 for some

constant c > 0. Let F(B4) = (F4
1 ,F4

2 , ...,F4
wpn(T )

), then because for each F4
i ✓ Forb(P4) and

Theorem 2.2.4, we have that |F4
i |  23ni log ni . In total, by Lemma 3.3.8, the number of

graphs in B4 is at most

2m ·

0

B

@

wpn(T )
Y

i=1

23ni log ni

1

C

A

· 2(b+3)n · 2�c�n·(log n)2

 2m · 23n log n · 2(b+3)n · 2�c�n·(log n)2 .
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The values of c > 0 and � > 0 are constants, therefore for n large enough, the above is much

smaller then 2m and therefore much smaller than the number of ⇧-good graphs.

Let G 2 B1 \ [4
i=1Bi, by the definition of this family, G[⇡01 \ S] contains at least n�

components of size at least 2, at least �n1 vertices are in components of size at least 2 and

no component contains at least (1 � �)n1 vertices. For each i � 2, G[⇡0i] does not contain a

stable set of size at least ni�n� and more than (log n)2 components from S. Therefore G[⇡01]

also contains at least n�

2 components from S.
Let F(B1 \ [4

i=1Bi) = (F5
1 ,F5

2 , ...,F5
wpn(T )

). First we want to bound |F5
1 |. By Lemma

5.2.51, |F5
1 |  2n1 ·

✓

n
(log n)2

◆n
1

. For each i � 2, let si be the number of components from

S in G[⇡0i] and let ki be the number of vertices in rich components in G[⇡0i \ S]. Hemce

by Lemma 5.2.52, for each i � 2, |F5
i |  22ninkisni . We apply again Lemma 5.2.58 to

the graphs induced on G[⇡01] and G[⇡0i \ S] and to the graphs induced on G[⇡01 \ S] and
G[⇡0i \ S] and get that the number of ways to choose edges between those subgraphs is at

most 2|⇡1\S|·|⇡i\S| · 2�c�n·si · 2|⇡1\S|·|⇡i\S| · 2�cn� ·ki for each i � 2. Therefore by Lemma 3.3.8

we get the following bound on the number of graphs in B1 \ [4
i=1Bi,

2m · 2(b+3)n · n1 · 2n1 ·
 

n

(log n)2

!n
1

·
Y

i�2

22ninkisni · 2�c�n·si · 2�cn� ·ki

 2m · 2(b+5)n · n1 · 2n1 ·
 

n

(log n)2

!n
1

· 2(log n�cn�)k · 2(wpn(T ) log n�c�n)s

where k =
P

i�2 ki and s =
P

i�2 si. We compare it to the lower bound of 2m · |(G5)n
1

| on the

number of ⇧-good graphs, we also use the lower bound on G5 from Lemma 5.2.50. Therefore,

|B1 \ [4
i=1Bi|

|G | 
2m · 2(b+6)n · 2n1 ·

✓

n
(log n)2

◆n
1

· 2(log n�cn�)k · 2(wpn(T ) log n�c�n)s

2m · |(G5)n
1

|

 2(b+6)n · nn1 · 2(log n�cn�)k · 2(wpn(T ) log n�c�n)s

(log n)2n1 ·
⇣

n
2ewpn(T ) log n

1

⌘n
1

 2(b+6)n · �2ewpn(T )�n1 · 2(log n�cn�)k · 2(wpn(T ) log n�c�n)s

(log n)n1
= o(1).

Hence the number of graphs in B1 is much smaller than the number of ⇧-good graphs.
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Let B2✓ B \ B1 be the collection of graphs such that r1 � n
(log n)2

and there is an index

i � 2 so the number of vertices in the union of the stable sets in G in the rich components is

at least (log n)3.

Lemma 5.2.66. Let T 2 T npl, the number of graphs in B2 is much smaller than the number

of ⇧-good graphs G .

Proof. As in the proof of Lemma 5.2.65, let � 2 (0, 1), then no G[⇡0i], i � 2, contains a stable

set of size at least ni � n�.

Let i � 2 and let Ui be the union of all the vertices in the stable sets in G[⇡0i]. Then we

can find in G[⇡0i] at least min{ |Ui|
2 , n�} disjoint copies of P3. Then the number of such graphs

is much smaller than the number of ⇧-good graphs by property (d) of graphs in B.

Let G 2 B \ (B1 [ B2). Let W (G) ✓ [n] be the minimal set such that there is an index

i 2 [wpn(T )], without loss of generality i = 1, such that for T = P6, G[⇡1 \W (G)] 2 G6, for all
trees T 2 T npl \ {P6}, G[⇡1 \W (G)] 2 G4, and for all trees T 2 T npl \ (S [ {P6}), G[⇡01] 2 G5.
Moreover, for each i � 2, G[⇡i \W (G)] is a clique.

Lemma 5.2.67. Let T 2 T npl and let G 2 B \ B1, then |W (G)|  2wpn(T ) · (log n)3.

Proof. Let T 2 T npl, then for each i � 2, let Ui be the union of all the vertices in the stable

sets in G[⇡0i]. We define W (G) =
�[i�2Ui

� [ Y . By property (b) of the definition of B,

y = |Y |  C(T ) log n. By Lemma 5.2.66, for any G 2 B \ [2
i=1Bi, |Ui|  (log n)3 for all i � 2.

Therefore |W (G)|  2wpn(T ) · (log n)3.

Let B3✓ B \[2
i=1Bi be the set of graphs where G[⇡1 \W (G)] contains at least n

log log log n

vertices in components of size at least (log n)2.

Lemma 5.2.68. Let T 2 T npl, the number of graphs in B3 is much smaller than the number

of ⇧-good graphs G .

Proof. Repeating the arguments in the proofs of Lemmas 5.2.65 and 5.2.66 we can obtain

B0
3 ✓ B3 such that the number of graphs in B3 \ B0

3 is much smaller than the number of
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graphs in G . Moreover, the following holds for every graphs G 2 B0
3. The subgraph G[⇡01]

contains at least n
(log n)2

rich components, and the subgraphs G[⇡0i], i � 2, contain at most

(log n)3 vertices in the union of the stable sets in G in the rich components. Let ◆ 2 {4, 5, 6},
to count the graphs on ⇡1 \W (G) we use Lemma 5.2.54,

|B2|
|G | 

2m · 2(b+4)n · 2n1 ·
✓

n
(log n)2

◆

n
log log logn · |(G◆)n

1

� n
log log logn

| · 2(log n�cn�)k · 2(wpn(T ) log n�c�n)s

2m ·
 

n
log log logn

e log n
log log logn

!

n
log log logn

|(G◆)n
1

� n
log log logn

|

 2(b+6)n · 2(log n�cn�)k · 2(wpn(T ) log n�c�n)s

(log n)
n

log log logn
= o(1),

as required.

Let F 0
= (F 0

1,F 0
2, ...,F 0

wpn(T )) be such F 0
1 ✓ G6 and for any G 2 F 0

1, the complement G

contains at most n
log log log n vertices in components of size at least (log n)2. For every i � 2,

F 0
i is a collection of all cliques.

Lemma 5.2.69. Let ", "0 > 0 to be the constants defined earlier in the subsection. The

sequence F 0 is (⌧,�, k)-ordinary P (T )-free subsequence for any � 2 [0,
min{","0}

8 ), ⌧ = 1
w2

, and

any k 2 N.

Proof. We check properties (a) and (b) of the definition of (⌧,�, k)-ordinary P (T )-free sub-

sequence. Let Q = (G1, G2, ..., Gwpn(T )) be a sequence of graphs such that Gi 2 F 0
i for each

i 2 [wpn(T )].

First we check property (a). By the definition of F 0
1, G1 contains at most n

log log log n

vertices in components of size at least (log n)2, then for v 2 V (G1), degG
1

(v) = degG
1

(v) 
n

log log log n  ⌧n for any ⌧ > 0. Let i � 2, Gi is a cliques, therefore for v 2 V (Gi), degGi
(v) = 0.

Let ⌧ = 1
w2

.

Now we check property (b). Let w0 /2 [i2[wpn(T )]V (Gi) be such for each i 2 [wpn(T )],

Gi [ {w0} /2 F 0
i. Let `i(w

0) = min{|N(w0) \ V (Gi)|, |N(w0) \ V (Gi)|}, i 2 [wpn(T )], let `(w0) =

mini2[wpn(T )] `i(w0) and let i 2 [wpn(T )] be such that `(w0) = `i(w
0), then for each j 2 [wpn(T )]\

{i}, `j(w0) � ⌧n, that is w0 is not (⌧, Gj)-trivial.
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First we consider the case where i = 1. Let N be either (i) a collection of disjoint

copies of P3 or (ii) a collection of disjoint copies of P3 in N(w0) \ V (G1). Note that by the

assumptions on G1, |N | � `(w0)� n
log log logn

2(log n)2
and for each N 2 N , N [ {w0} is isomorphic to

K2 + S2 in case (i) and to P3 +K1 in case (ii). By our assumptions, for each i � 2, w0 is not

(⌧, Gi)-trivial, therefore for each of the possible edge arrangements between a vertex and an

edge, Gi contains a set Hi of at least
⌧n
4 disjoint edges, so w0 has this edge arrangement. Let

P = (H1, H2, ..., Hwpn(T )) be a partition of T where H1 = K2+S2 in case (i) and H1 = P3+K1

in case (ii), for each i � 2, Hi is an edge. The tree T has such a partition by Lemma 5.2.2

and Observation 5.2.7. The collection of sets (N ,H2,H3, ...,Hwpn(T )) is a (P,w0, i)-form in Q

with property (1) of (b).

Now, let i � 2. From Lemma 5.2.21, G1 contains a set P of disjoint copies of P3 such

that either (i) w0 is adjacent to exactly one end (and not other vertices) of each copy of P3

in P, or (ii) w0 is not adjacent to any of the vertices of each copy of P3 in P. Moreover,

|P| � ⌧n� n
log log logn

2(log n)2
. As before, by our assumptions, for each j 2 [wpn(T )] \ {i}, w0 is not

(⌧, Gj)-trivial, therefore for each of the possible edge arrangements between a vertex and an

edge, Gj contains a set Hj of at least ⌧n
4 disjoint edges, so w0 has this edge arrangement.

Let T 2 T npl, then by Lemma 5.2.5, T can be partitioned into P6 and wpn(T )� 2 edges.

Let N to be the maximal collection of disjoint edges so w0 is adjacent to exactly one end of

each such edge. Let P = (P3, H2, ..., Hwpn(T )) where Hi = P3 and for each j 2 [wpn(T )]\{1, i},
Hj is an edge. As shown in Observation 5.2.56 part (e), there is a partition of P6 such that

either there is a choice of a vertex w which is a part of P3 and is adjacent to exactly one end

of the remaining P3, or there is a choice of a vertex w which is a part of P3 and not adjacent

to the remaining P3. Therefore the collection of sets (P,H2, ..,Hi�1,N ,Hi+1, ...,Hwpn(T )) is

a (P,w0, i)-form in Q with property (2) of (b).

Now we complete the proof of the exact structure for all trees T 2 T npl.

Proof of Theorems 1.1.13, 1.1.15 and 1.1.17. From Observation 5.2.15, to show that the

number of bad graphs is much smaller than the number of good graphs it is enough to
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show that the number of ⇧-bad graphs is much smaller than the number of ⇧-good graphs.

From Lemmas 5.2.64, 5.2.65, 5.2.67 and 5.2.68 we have the following. Almost all ⇧-bad

graphs G have a set W (G) ⇢ V (G) such that |W (G)|  2wpn(T ) · (log n)3. Moreover, there is

index and i 2 [wpn(T )] such that if T 2 T npl, then G[⇡i \W (G)] 2 G6 and if T 2 T npl \ {P6},
G[⇡i\W (G)] 2 G4 and if T 2 T npl\(S[{P6}), then G[⇡i\W (G)] 2 G5, and G[⇡i\W (G)] contains

at most at most n
log log log n vertices in components of size at least (log n)2. Additionally, for all

j 2 [wpn(T )]\⇧}, G[⇡j \W (G)] is a clique. Let D be this collection of graphs. Let F 0 = F(D),

then by Lemma 5.2.69, F 0 is (⌧,�, k)-ordinary P (T )-free subsequence for ⌧ = 1
w2

, any � > 0

small enough and any k 2 N. Finally, by Lemma 3.3.14, the number of the remaining ⇧-bad

graphs is much smaller than the number of ⇧-good graphs.

The following lemma is needed in the proof in Chapter 6.

Lemma 5.2.70. Let T 2 T npl and n 2 N large enough, then almost all T -free graphs G with

|V (G)| = n have a partition into wpn(T ) parts (G1, G2, ..., Gwpn(T )) such that without loss

of generality G1 2 G6 and Gi for i � 2 is a cliques. Moreover G1 contains at least n
(log n)2

connected components of size at least 2.

Proof. In this section we showed that almost all T -free graphs are ⇧-good for some suitable

partition ⇧. We bound the number of good graphs which are ⇧-good with respect to some

partition and have that G[⇡1] contains at most n
(log n)2

connected components of size at least

2. There are at most wpn(T )n ways to obtain a partition ⇧ of [n]. Using Lemma 5.2.50, the

number of possible graphs on ⇡1 is at most 24n ·
✓

n
(log n)2

◆

n
(logn)2

, but the number of ⇧-good

graphs is at least Bell(n) which, by Lemma 1.3.2 is at least
⇣

n
e lnn

⌘n
. Hence almost all T -free

graphs have the required property.
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Chapter 6

Colouring of Typical T -Free Graphs

In this chapter we prove the asymptotic version of the Gyárfás-Sumner Conjecture. Recall

the Gyárfás-Sumner Conjecture that was presented in the introduction.

Conjecture (Gyárfás-Sumner conjecture [30, 54]). Let H be a forest, then there is a function

fH such that in any H-free graph G, �(G)  fH(!(G)).

As mentioned, the family Forb(H) for a forest H, is �-bounded if and only if all the

families Forb(T ) are �-bounded for each connected component T of H. Hence the above

conjecture can be reduced to trees. Also as mentioned, Gyárfás-Sumner conjecture has been

proved for the following graphs: paths and stars [30], trees with radius two [35], trees which

are subdivided stars [50], trees obtained from trees with radius two by making exactly one

subdivision in every edge adjacent to the root [36], “two-legged caterpillars”, “double-ended

brooms” and a few others [19]. The conjecture is still open in its general form.

We use the structural results we obtained in the previous chapter to show an asymptotic

version of the Gyárfás-Sumner conjecture. We recall and prove Theorem 1.0.9.

Theorem (1.0.9). For every tree T , almost all T -free graphs G have �(G0)  wpn(T ) · !(G0)

for every induced subgraph G0 of G. Moreover, for every tree T , almost all T -free graphs G

have �(G) = !(G).

For the proof we need a definition and the famous Hall’s Theorem [13]. Let G be a
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bipartite graph with a bipartition V (G) = A [ B, that is G[A] and G[B] are stable sets. We

say that a matching M in G saturates B, if B ⇢ [e2Me.

Theorem 6.0.1 (Hall’s theorem [13]). Let G be a graph with a bipartition V (G) = A [ B.

There is a matching which saturates B if and only if for every W ✓ B, |N(W )| � |W |.

Recall that G1 is the family of graphs which are complete multi-partite graphs with parts

of size at most 2, and G6 is the family of graphs which are join of graphs which are disjoint

union of a clique and a stable set. Now we prove the main theorem of this chapter.

Proof for Theorem 1.0.9. By Theorems 1.1.3, 1.1.6, and also theorems 1.1.9, 1.1.11, 1.1.13,

1.1.15, and 1.1.17 we can partition the possible P (T )-sequences into two classes.

(i) A P(T )-free sequence (F1,F2, ...,Fwpn(T )) where for each i 2 [wpn(T )], Fi ✓ G1.

(ii) A P(T )-free sequence (F1,F2, ...,Fwpn(T )) where the families can be reindexed such that

F1 ✓ G6 and the rest of the families are the sets of all cliques.

Note that in both cases (i) and (ii) each Fi ✓ Forb(P4), i 2 [wpn(T )], so by Corollary

2.2.5, for each i 2 [wpn(T )], for all F 2 Fi and induced subgraph F 0 of F , �(F 0) = !(F 0).

Also note that in both cases (i) and (ii) for every choice of graphs (G1, G2, ..., Gwpn(T )) where

Gi 2 Fi, i 2 [wpn(T )], there is an i 2 [wpn(T )] such that !(Gi) � |V (Gi)|
2 .

We first show the first part of the theorem. We show that for every tree T , almost all

T -free graphs G have �(G0)  wpn(T ) ·!(G0) for every G0 which is an induced subgraph of G.

Let G be a typical T -free graph and let (G1, G2, ..., Gwpn(T )) be its partition such that for each

i 2 [wpn(T )], Gi 2 Fi for a P(T )-free sequence as in (i) or (ii). Let G0 be an induced subgraph

of G and let (G0
1, G

0
2, ..., G

0
wpn(T )

) be the corresponding partition of G0 such that for each i 2
[wpn(T )], G0

i is an induced subgraphs of Gi. We colour the graphs G0
i iteratively starting from

G0
1. We colour each G0

i, i 2 [wpn(T )], with a set of !(G0
i) = �(G0

i) colours which are di↵erent

from the colours we already used on graphs G0
1, G

0
2, ..., G

0
i�1. Let w = maxi2[wpn(T )] !(Gi), so in

this iterative colouring we used
Pwpn(T )

i=1 �(G0
i) =

Pwpn(T )
i=1 !(G0

i)  wpn(T ) ·w  wpn(T ) ·!(G0)

colours, as required.

142



Now we show the second part of the theorem. Let T be a tree, we show that almost all

T -free graphs G have �(G) = !(G). We treat trees with corresponding P (T )-free sequences

as in class (i) and in class (ii) separately.

Let (F1,F2, ...,Fwpn(T )) be a sequence of class (i) and let G be a T -free graph with a

partition (G1, G2, ..., Gwpn(T )) where Gi 2 Fi, i 2 [wpn(T )]. Assume without loss of generality

that !(G1) � !(G2) � ... � !(Gwpn(T )). As before we colour the graphs Gi iteratively starting

from G1. We assign c1 := !(G1) distinct colours to the vertices V (G1). It is possible because

G1 is perfect. Let i � 2, at iteration i, we define an auxiliary bipartite graph Ai, where

V (Ai) = (Ci�1,Ki). The set Ci�1 corresponds to the collection of the colour classes in the

colouring of G1, G2, ..., Gi�1. We denote the colour of a colour class C 2 Ci�1 by c(C). Each

vertex K 2 Ki corresponds to a connected component in Gi, note that because we are in

case (i), each such component is of size at most 2. The edges E(Ai) are defined as following,

an edge {C,K = {v1, v2}} 2 E(Ai) if and only if (NG(v1) [ NG(v2)) \ C = ;, in particular it

means that it is possible to colour the vertices in K with colour c(C) and keep the colouring

proper.

We argue that in almost all T -free graphs G, in each iteration 2  i  wpn(T ), the graph

Ai contains a matching which saturates Ki. Let (G1, G2, ..., Gwpn(T )) be a collection of graphs

where Gi 2 Fi, i 2 [wpn(T )] for a sequence as in (i). We choose the edges between the parts

with probability 1
2 . We want to bound the probability such that there is an i 2 [wpn(T )]

where Ai does not contain a matching which saturates Ki. By Hall’s Theorem 6.0.1, if such

an index i 2 [wpn(T )] exists, then it must be the case that there is a subset W ⇢ Ki such

that |NAi
(W )| < |W |. See a sketch in Figure 6.1.

By our assumption, for each i 2 [wpn(T )], Gi 2 G1, therefore at most 2 vertices in Gi can be

in the same colour class. Let C 2 Ci�1 and K 2 Ki, then |C|  2(i�1) and |K|  2. Hence the

probability for an edge {C,K} in Ai is
⇣

1
2

⌘|C|·|K| �
⇣

1
2

⌘2(i�1)·2
= 1

24(i�1)

. By our assumptions

|Ci�1| � |Ki|, therefore the expected number of neighbours in Ai of a vertex v 2 V (Ai) is at

least |Ki|
24(i�1)

� n
2wpn(T )·24(i�1)

. Using Cherno↵ bound 1.3.6, the probability that there is an

index i 2 [wpn(T )] and a vertex v 2 V (Ai) such that |NAi
(v)|  n

22 wpn(T )·24(i�1)

, is at most
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KiCi�1

W

NAi(W )

Ci�1 \NAi(W )

C

Figure 6.1: Sketch of the graph Ai.

wpn(T ) ·n · e
� n

2

3

wpn(T )·24(i�1) . Therefore the number of such graphs is much smaller than the

number of T -free graphs without such a vertex. Hence we can make the following assumptions

about the graph we consider. The size of the neighbourhood of W in Ai is at least the size

of the neighbourhood of some vertex w 2 W , that is |NAi
(W )| � |NAi

(w)| � n
22 wpn(T )·24(i�1)

.

Moreover by our assumptions |NAi
(W )| < |W | and |Ci�1| � |Ki|, so Ci�1 \ NAi

(W ) 6= ;. Let

C 2 Ci�1 \NAi
(W ), then |NAi

(C)| � n
22 wpn(T )·24(i�1)

. By the choice of C, NAi
(C) \W = ;, so

|Ki \W | � |NAi
(C)| � n

22 wpn(T )·24(i�1)

. We summarize,

n

22wpn(T ) · 24(i�1)
 |NAi

(W )| < |W |  |Ki|� |Ki \W | 
 

1� 1

22wpn(T ) · 24(i�1)

!

n.

Moreover,

n

22wpn(T ) · 24(i�1)
 |Ci�1|� |W |  |Ci�1 \NAi

(W )| 
 

1� 1

22wpn(T ) · 24(i�1)

!

n.

Therefore we can conclude that the probability for the event that there is an i 2 [wpn(T )]

such that in Ai there is a set W ⇢ Ki where |NAi
(W )| < |W | is at most the probability that

there are no edges between W and Ci�1 \NAi
(W ) which is,

2n ·
✓

1

2

◆

 
n

2

2

wpn(T )·24(i�1)

!
2
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which means that in almost all T -free graphs G, such a set W does not exist. Therefore we

can colour V (G) with at most !(G1)  !(G) colours.

Now we consider the remaining case for the P(T )-free sequence. Let (F1,F2, ...,Fwpn(T ))

be a sequence of class (ii) and let G be a T -free graph with a partition (G1, G2, ..., Gwpn(T ))

where Gi 2 Fi, i 2 [wpn(T )]. As mentioned, we have that G1 2 G6, we describe how to

partition V (G1) into stable sets of at most 2 vertices. Let K1,K2, ...,Kk for some k 2 N be

the connected components in G1, and let Si, Ci be the partition of Ki, i 2 [k], into the stable

set and the clique. If |V (Ci)| � |V (Si)|, then we match every vertex from Si to a vertex in Ci,

and every such matched pair of vertices is a part in the partition of V (G1). If |V (Ci)| < |V (Si)|,
then we match |V (Ci)| from Si to |V (Ci)| vertices of Ci and again every such matched pair

of vertices is a part in the partition of V (G1), the rest |V (Si)| � |V (Ci)| vertices from Si we

partition arbitrary into b |V (Si)|�|V (Ci)|
2 c pairs and maybe one more singleton part. By Lemma

5.2.70, G1 contains at least n
(log n)2

connected components, therefore !(G1)  |V (G1)|� n
(log n)2

and therefore there is i � 2 such that !(Gi) � !(G1). We proceed as in the previous case and

this gives us the required colouring.
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Chapter 7

Summary and Future Work

In this thesis we have studied the structure of almost all T -free graphs for any tree T . In

Chapter 2 we reviewed some of the results regarding the structure of H-free graphs both

for any graph H and for some specific graphs H. In Chapter 3, we proved weaker results

regarding the structure of almost all H-free graphs. Moreover, we developed some general

tools which can be applied to nearly all graphs H. In Chapter 4, we gave a formula for the

value of the witnessing partition number of any bipartite graph H. In Chapter 5, we reproved

the result of Balogh and Butterfield [5] regarding the structure of almost all H-free graphs

where H is a critical graph. Moreover, we proved the exact structure of almost all T -free

graphs for any tree T . Finally, in Chapter 6, we used our result regarding the structure of

almost all T -free graphs to show that almost all T -free graphs are �-bounded, which is an

asymptotic version of the Gyárfás-Sumner Conjecture [30, 54]. In the following we list some

possible future directions for the thesis topic.

7.1 Reed-Scott Conjecture

We recall the statement of Reed-Scott conjecture.

Conjecture (Reed-Scott [47], 1.1.1). For every graph H, almost all H-free graphs G have a

P (H)-free partition.
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We proved the above conjecture for trees. The starting point of our proof was under-

standing the set P (T ) of partitions of T . For the rest of the proof we did not use any

additional properties of the trees besides the structure of the partitions in P (T ). Note that

we divided the proof into the di↵erent subfamilies of trees because the trees in the di↵erent

subfamilies have somewhat di↵erent partitions into smaller graphs. Due to the fact that the

only property we used is the structure of the partitions in P (T ), our proof can be applied to

some graphs H which have the same minimal partitions in P (H) as in P (T ) for some tree T .

A very natural next step is to try to prove Reed-Scott conjecture for bipartite graphs B

which have a set of partitions P (B) di↵erent from the ones which were already considered. As

proved in Theorem 4.0.1, the value of the witnessing partition number of a (non-complete)

bipartite graph can be computed in the same way as the witnessing partition number of

a tree. Therefore the first step of the proof would be to find all the partitions in P (B).

Knowing those partitions allows us to obtain the P (B)-free sequences and understand which

graphs are extendable (in any of the definitions of extendability). Once we have all the

above, one way to proceed with the proof is to define subfamilies of B-free graphs which do

not have a P (H)-free partition and to show that each of those subfamilies is much smaller

than the number of graphs which have a P (H)-free partition. It would be useful to define

those families in a way that allows us to gain a better understanding of the structure of

almost all B-free graphs. This in a very general terms was what we did for the case of trees.

After the case of bipartite graphs, it would be interesting to consider the case of all

triangle-free graphs. As before, one way to prove Conjecture 1.1.1 for such graphs H, is by

first finding the value of the witnessing partition number of H, the set of possible partitions

P (H) and then proceed obtaining better and better structure until the point where one shows

that almost all H-free graphs have a P (H)-free partition.

In the opposite direction, it could be interesting to try to disprove Conjecture [47]. To

this end, one possible approach is to try to find a graph H such that almost all H-free graphs

have an almost P (H)-free partition. In other words, a graph H where there are many H-free

graphs G and there is a set of vertices B ✓ V (G) such that G[V (G) \ B] has a P (H)-free
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partition, but there is a way to add the vertices B so there is still no induced copy of H in

G.

7.2 Applying the Techniques Further

The techniques which were developed in this thesis could be applied to a range of families

of graphs which can be characterized by forbidding some collection of induced subgraphs.

For example, recently with János Pach, we have applied the ideas from the thesis and

[47] to string graphs [42]. A string graph is the intersection graph of a family of continuous

arcs in the plane. We showed that the vertex set of almost all string graphs on n vertices

can be partitioned into four sets, such that three of them are cliques and the last set is a

disjoint union of two cliques (n ! 1). The intersection graph of a family of plane convex

sets is a string graph, but not all string graphs can be obtained in this way. Together with

some additional arguments we could show that almost all string graphs on n vertices are

intersection graphs of plane convex sets. This result also verified a conjecture by Janson and

Uzzell [31].

The main lemma that allowed us to apply our techniques to string graphs was that the

graph which is a subdivision of K5, together with some additional edges connecting the

vertices of degree 2 in the subdivision, is not a string graph.

As a future work it would be of interest to try to apply our techniques to additional

families of graphs.

7.3 Graphs without U(k)

From Theorems 3.2.1 and 3.2.2 together with 3.3.2, we know that for any graph H, almost

all H-free graphs G contain a set Z(G) ✓ V (G) such that G[V (G) \ Z(G)] has a partition

into wpn(H) parts where each of the parts does not contain a copy of U(k). Moreover

|Z(G)|  |V (G)|1�" for some " > 0. Therefore an understanding of graphs without a copy of
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U(k) can lead to a better understanding of the structure of almost all H-free graphs for all

graphs H.

Here is a simple result for k = 2. A threshold graph is a graph which does not

contain an induced 2K2, P4 or C4. A bipartite threshold graph is a bipartite graph which

does not contain an induced 2K2. A half-graph is a bipartite graph with the bipartition

({a1, a2, ..., ak}, {b1, b2, ..., bk}) in which aj is adjacent to bj if and only if i + j � k + 1. An

alternating blow up of a P5 is a graph which is a P5 = v1, v2, v3, v4, v5 where the vertices

v1, v3, v5 are blown up into stable sets. The bull graph is a graph which is combined of

P4 = v1, v2, v3, v4 together with a vertex u which is adjacent to v2 and v3.

Theorem 7.3.1 (Norin and Yuditsky). Let G be a graph without a copy of U(2), then the

following is true.

• If G is not C5-free then G = C5.

• If G is not P5-free, then G is an alternating blow up of a P5.

• If G is {P5, P5, C5}-free. Then either G or G is a disjoint union of graphs G1, G2, ..., Gk

for some k 2 N and each Gi, i 2 [k], is one of the following graphs,

(1) threshold graph,

(2) bipartite threshold graph,

(3) graph obtained from the bull graph by substituting each vertex of the P4 with either

a clique or a stable set, and substituting u with a threshold graph,

(4) if k = 1, graph obtained from P4 by substituting each vertex with either a clique or

a stable set, and if k � 2, graph obtained from P4 by substituting vertices v2 and

v3 with stable sets,

(5) if k = 1, graph obtained from the half-graph by substituting each vertex with a

threshold graph, and if k � 2, graph obtained from the half-graph by substituting

each vertex with a threshold graph, where additionally for every edge {v1, v2} of
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the half-graph, either both v1 and v2 are stable sets, or one of them is threshold

graph and the other is a clique.

It would be of interest to generalize the above result to U(k) for k = 3 or greater.
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(⌧,�, µ,⇧, i, j)-special, 63
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E(G), 11

F := F (H,⇧), 51

G[A,B], 25

H-free, 10

H(h1, h2, ...hk), 67
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NG(V
0), 25

NG(v), 25

P -free partition of a graph G, 18

P (H), 18

P (H)-free partition of a graph G, 18

P (H)-free sequence, 19

P ⇤
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Ts, 80
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T pl
star, 21
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�c(F), 30

degG(v), 25

"-regular pair, 37

"-regular partition, 38

ex(n,H), 29

exw(n,H), 29

�-extendable, 56

�-linearly common, 56

⌫(T ), 18

NG(v), 25

degG(v), 25

�(H), 16

wpn(H), 17

e(A,B), 37

m := m(⇧), 51

r-partite graph, 19

almost all, 15

alternating path, 25

bad graph, 46

Bell number, 26

bipartite graph, 18

chromatic number, 11

clique, 11

clique number, 12

clique-star, 25

complement of a graph, 12

connected graph, 14

copy of U(k), 42

critical graphs, 33

cycle, 12

density of (A,B), 37

edge, 10
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forest, 14

girth, 13

good graph, 46

hereditary family, 14

hereditary property, 14

induced subgraph, 10

join of graphs, 18

leaf of a tree, 17

length of a cycle, 13

length of a path, 13

matching, 18

mild matching, 97

much larger, 25

much smaller, 25

partition of [n], 25

partition of a graph G, 16

path, 12

perfect graph, 12

perfect matching, 18

planar graph, 11

properly arranged sequence of families, 49

reduced graph, 38

stable family of graphs, 49

stable set, 11

star, 18

subdivided star, 19

tree, 14

triangle, 13

typical graphs, 15

vertices, 10

weak subgraph, 10

witnessing partition number wpn(H), 17

Y(G), 53

y(G), 53
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