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Experggéntal and theoretical stu4§e§ have been conducted

¢
'

to investigate the effect of largéd tempegature differences on the »

. { ,
rate of heat transfer from a very hot gas to stationary spheres.
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:
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In the numerical analysis, the momentum arid energy equations
t ¢ !6’ ‘r
for variable-property flow past a sphere were solved simultaneously,

using finite-difference techniques. Results were obtained {ﬁ the\low
and Intermediate ranges of the Reynolds number with surface temper~\
. - 4

a

atiire to gas temperature ratios/varying between 0.25 and unity.

’

The

flow behaviour, drag coefficﬁents and Nusselt number were calculatedl\

n—

for each*case. A heat transfer correlation was derived which i
\ / ‘

a

cluded the effect of large variations in the plysical properties of

‘the fluid.

o ° % ; )

- c e

Heat transfe?hraces from a plasma jet to single atktionary
// A N Al

-

spheres were also determined experimentally, in simildr ranges 'of

' . / . @ .
thé Reynolds number and temperature ratios. The experimental results o
4

H

were correlated fairly accurately by the equation derived iniﬁhe_

. , d e the
numetical analysis. : ' “o7
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d?crivant' ’}éner‘gie %\) la quantité de mguvement relatives & uti gcoule~

ment de caractéris€iques variables autgur d'une sphére. On a obtenu

caractéristiques de 1'écoulement, coefficient de trainée et ncﬂf:are
“ . \

de N&gselc. ont &té calculés dans chague cas. Op en a déduit june

pour un domaine du nombre de Reynolds

t un rapport de em::jtures
similaires. Ces résultats expérimentaux étaient en fait*“accord

cédeu;\ept .
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i The present study forms part of a continuing programme of

1nvestigation carried out in this laboratory by the Plasma Technology
Group towards the application of plasmas tp chemical and metallurgical

processes of industrial interest. Solids-gas reactions involving the

% \ contacting of fine particles with an entraining'plasmaigas appear to

; ‘ be particularly promising, as for example in the production of such *

g refractory metals likﬂfmolybdenum, zirconium and titanium from their

%A ~ res;ective oregs. Owing to the very short contacting times available

% \ between the high—témperature—plasma and the entrained particles (of

Ef the orde:‘of a few milliseconds), an accurate knowledge of the rate )
i “of heat transfer to the pattﬂcles is a prime requirement for the

; reliable des;gn of plasma reactors, particulan%y when a high degree

% of conversion is required. The purpose of the present study was to

? provide this fund gntalﬁ&ngornntion.

ey

Although/a good deal. of work has been published on heat
transfer to particles under conditions of moderate temperature dif;
® e
ference, little -information is available on the situation where thfz

difference is so large that the assumption of constant-property flow

. is no longer parpissible.‘ In addition, the Reynolds number of a

| i, - _—
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particle exposed to a plaéma flame 1is charaqteristical}y small,

typically léas than 50, oo

2

The thesis is divided into threg parts: ‘a literature review, -
a theoretical section whe;e an original anal&sis is presented, based

on the numericgl solution of ‘the equations of motion and energy for

-

\ K) pure steady-statg heat éranéker and variaﬁi;lbroperty flow at low
. Reynolds numbers, and an experimental Bection where the measurements
- of heat transfer rates to small gtationary spheres in a conftn;d
argon plas@a Jet are reported. The latter two sections are complete

in themselves, in that they each have a separate Intrpduction, Con-

_ clusion, Nomenclature aﬁd Bibliography.
. /
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) INTRODUCTION

eat source in the experimental part of this study, discu!

plasma phenomena will be very brief.

\
i

-

The r?view is éivided into two parts, plasma phencmena and
diagnostics, and transpért phenomeng from spheres. The first part
will describe plasmas in general, methods of plasma generation, and

o

some aspects of plasma radiation. Plasma diagnostic techniques,
(mainly temperature and velocity measurements} will be discussed also
in somewhat greatér detail. Finally, a short review of recent studies

A\
of heat transfer phenomena in plasmas will be given.

- The.second‘part of this review will be concerned witﬁ%;he
problems ;f flow/éround and heat transfer_to spheres at low Reynolds
numbers. A stronger emphasis will\be place& on the theoretical
approach to these problems. A brief review of experimentalﬁstudies
on heat transfer to cylindgrs in laninar flows’ will be presented

also.

4



PLASMA PHENOMENA AND DIAGNOSTICS

' - .GENERAL

; ' A plasma is a partially ionized gas composed of free
eiéctrons, positive ions, neutral atom and molecules. These species
" are in continuous interaction and their composition and respective

\
concentration are a function of the temperature. A plasma, on a

‘ . macrosopic scale, is approximately neutral, since the number of
\\\\“ ’ pbsitively - and negatively,~ charged particles present at any

instant in time is almost equal.

- * \

A plasma is initiated whenever sufficient energy is imparted
. to a gas. This energy causes acceleration of randomly-occurring free
electrons up to the point where they can cause ionization of the

N neutral gas molecules. The additional electrons formed by this -
o
o

ionization are in turn accelerated, resulting in further ionization. -—

ST

This cascading effect will lead to én extensive breakdown of the gas.

s ) Iy

In all eleeFrical discharges the electrons act as the main agent for kam
transferring energy from the electric field to the gas. This transfer

is a result of either elastic collision where only the kinetic energy

of the molecule is increased or inelastic collision leading to eﬂ— ]

citation, fragmentation or ionization of the molecule. Steady state

.

is reached where ¥4 te of formation

(:5> ‘ " of ions and the rate of their recombination. In order to maintain the



" u

plasma, energy must be supplied continuously to make up for con-
ductive and radiative losses and to prevent immediate reattachment

and recombination.

The presence of charged species causes the plasma gas to

l \
ehave differently from an ordinary hot gas. The electrical con-

uctivity, which is almost negligible for a gas at relatively low
t mperaturesﬂ becomes quite significant at higher temperature levels
and is a function of the latter. While a heated gaélloses energy
tojlthe surroundings by atomic conduction (atom-atom collision) only,
lasma loses additional energy by heat conduction of other plésma

constituents (electron-ion collisions) and alsc by diffusion of

chimical energy (dissociation and ionization energy) to the surround-
ings. Moreover, energy is also lost by self-emitted radiation from

the plasma at high temperatures. to the surroundings. °,

T T

o

e

" PLASMA GENERATION o

Plasma can be generated by three different methods, either

by electrical means, by combustion processes or by Bhock waves.
- il /

Shock waves prgggfy’énly ﬂuasi-steady plasmas. Shock tubes of dif-_
. '
ferent designs dte used to generate high-temperature, high-density

plasmas which are used mainly in basic studies. The generation of

‘ plasmas by combustion is particularly interesting for magnetohydro-

*

dynamics applications. Such plasmas haye relatively low temperatures ®

and are frequently seeded with alkali metals or their compounds.

These compounds haye tion potential and, thus, the plasma

) can be sustained in sﬁite of the relatively low temperatures.

R

’#//'
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The generation of steady, high-%emperature (thermal) plasmas
ig limited to electrical methods which can be either arc discharges
or electrodeless discharges. Arc discharges can be prod&éed in
either a stationary or in a transferred arc configuration. In a

stationary (non-transferred) arc, the plasma gas is heated and

ionized by passing it through or around the electric discharge, in

- !

«,~the gab Pégveen the two elect¥odes. In a tramsferred arc, the arc °
\ is struckZ?éEWeen the cathope and an external workpiece which acts
as the anode. Based on the modes of stabilization, non-transferred
arcs cah be further divided into five categories: vortex-stabilized,

gas-sheath stabilized, wall-stabilized, magnetically-gtabilized and .

water-stabilized. This .is discussed in detail by Baddour and Timmins

(1967) and by Gerdeman and Hecht (1972). Ce
. In electrodeless discharges, the presence of electrodes
iriside the plasma chamber is eliminated:. The énergy is transferred \

from the high-frequency source (radio~ffeqﬂehcy or mf;rowave) to the

gas by either inductive or capacitive coﬁpling. As in the case of
___________-———7T-Tafé”discharges, the electrons gain energy ffqm theqfiéid, resulting
. in an increase in their kinetic ehergy. Ionization is efféét;d by

the collision of these electrons with thj éeutral atoms. Baddour

/ .
and Timmins (1967) give an extensive description of radio-frequency

s
o

devicés. .

. . ¥
'
‘

, A review of apparatus for generating laboratory-scale plasmas

'(:> L - and of techniques used in plasia: chemistry : y McTaggart

(1967) and more recently by Hollahan and Bell (1974). In both .of

e

/

A . )



these works, the authors are concerned with low-temperature non-
equilibrium plasmas, where species generated by ionization take'part
in the reaction; applications of high-temperaturé;piésmas have been

excluded, as these require the plasma only as a source of high tem-

perature.

o

PLASMA DIAGNOSTIC METHODS

i

The subject gf pI;sma diagnéﬁtics is—well covered in the
literature (see Huddlestone (1965), Lochte-Holtgreven (1968), Baddour
(1967) and Kettani (1973)]. However, these works deal with funda-
m;ntal paramFters of the plasma, sucp as electron denélty, electron
temperature, degree of ionization, etc. The work presented in this
‘thqéis; on the other hand,uwas carried out in the lower region of a
plasma tail flame where the temperatures are lower and the ifonization
of the gas used (argog)‘is almost negligible. Theréfore, the tech-
niques discuésed in tgese_references are largely inapplicablé,‘as
they rely mainly‘on the presencé of ionized sﬁecies in Qb% gés for
sensing purposes. The review presented here is thus limited to the ‘ .
determination of the two major characteristic parameters ;f the gas
after leaving the generating device, namely the g;s velocity and gASu
temperature. Generally speaking, it can be stated that\the~traqsport

‘ b
properties of a plasma are characterized by very high viscosities and

ey

very low Reynalds numbers, evén at high velocities.
S .

i

Gas_Velocity Measurement \

1

l

The velocity of a plasma stream can be measured either

, .
. . FY
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o g

;reviews. However, no deffiite conclusions are given. Finally, none

¥
[

v '

directly by the insertion of an impact probe into the plasma, or
indirectly by following the trajectories of tracers introduced in

the plasma at points higher upstream. ‘When probes are used, there

4
-

is'ﬁlﬁéys an irreducible, but in many cgses small disturbance of the

local plasma conditions. The simplicity and goéod resolution of'this

method, however, outweigh the inaccuracies caused by the disturbpance
of the flow. Tracer methods, on the other hand, pose difficulties
in obtaining local measurements and in interpreting the results.
Moreover, the method of introduction and the presence of the tracer

may also cause disturbance of the flow.

o

Several excellent reviews have appeared in the literature

a

. b
on the use of pressure probes for velocity measurements [Dean’ (1953),

‘

Folsom (1956), Daily (1964), Chue (1975), Becker (1974, 1975)]. As -

the bulk of the work on pitot tubes ?as been carried out in the field

of aerodynamics, experience with this sensing method ig largely
limited to isothermal flows. The effect of the\comﬁressibility of

the fluid has been studied extensively, but variation of fluid brbper—

Y

ties due only to Mach number effects was considered. The effect of .

viscous forces,on: pitot tube calibrations 1s discussed also in these‘r

n

-
4 .
wj '

9f the studies reported in these reviews was concerned with velocify

Wmeagurements in high-temperature flows, wheré the presence of a cooler

probe disturbs not only the yélocity field, but also the temperature
/ ’ . o ‘ .

field. - ° :

L]

<o . N v

1, -

: »
' v

Pressure probes have been used by several researchbrs to

-
Al (A
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measure the velocity plasma flows. Grey et al. (1962, 1964)

g
studied the mixing of fcoolant streams with both laminar and turbulent

plasma 5ets. Impact’ pressures weré measﬁred b; a water-cooled probe,
3475 mm in diamete;.' Velocities were calculated by using Bernoulli's
equation for incompressible and inviscid fluids. Katta et al. (1973)
and Gol'dfarb et al. (1967) also used this method to determine axial
and radial velocity profiles in a plasma jet. In a study on heat

and mass transfer between a plasma jet and a gaseous coolant, Smith

w

(1965) used a water-cooled probe to measure the gas velocity. How-
ever, in {hterpreting his results he modified the Bernoulli equation

to include the effect of varying fluid density between the free stream

and probe tip conditions, thus,
2
T u? = -2 [ 1/p dP ) (1)
1y  § L

Carleton (1970) and Carleton and Kadlec (1972) presented an
& - ¢
approximate analysis of the flow-’around the tip of a pressure probe.

In this analysis, the stagnation streamline is divided into two regions.
The flow region near the free stream is considered to be isentropic, _
inviscid and compressible, and the region next to f%g probe surface

to be laminar, viscous and incompressible. The probe tip is assumed
A

themispherical. The expressién arrived at cons’isted of three terms,
_hés shown in Equation (2). The first term is that obtained wheﬁ no

viscous or temperature effects are present, the second accounts for

i

Mach numbér effects, and the last represents a correttion for the

effect of viscous forces near the probe. This last term, however,

°

does not reflect the influence of variable fluid properties directly,
: a !

[3

\
o °
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‘. 1R
but is affected bg the latter only through the evaluation of average

fluid properties. Carleton's expression can be wlitten as. -

-

)

P -P =p U2+ p2U?/8yP_+ 2u U/R (@) T
. i i
‘I

~ . 3

(1 +/pfssis//§é) ,

where Re ='-URE/E (

-

-

\
Hare (1972) reported a study on the-effect of impact tube tip

temperature on velocity measurements in flame’s aﬂ temperatures higher
LY

v

than 1 500C. It was found that the impact presere measured by a
pitot tube was strongly affected by. the heat flux between the gas and
the *tube for temperatures in excess of 1 000C. When the temperature
diffe;ence was over 1 000C between the gas and the probe tip, there
was d significant change in the measured impact pressure, and wﬂen
this difference increased to 1 500C the error was too large to be

. ©

ignored. For their probe geometry the error in the velocity meas-
¥

uréments caused by using Bernoulli's equation was about 16 and 30
[

m/s for temperature differenceg of 1 500 and 2 000C, respectively.

Theractual velocity of the flow was in the range 20-50 m/s. No

quantitative description was, however, given for this phenomenon.

Kimura and Kanzawa (1963) studied plasma streaming in an arc,
caused by Lorentz forces génerated by self-magnetic fields. The
Streaming veiocity was evaluated by meééuring the drag on a small

plate swept across the arc. The temperature of the gas was deter-

-~

mined both spectrbscopically and by means of thermgcouples. The -

plate and its holder were made of molybdenun. * Thie holder was

“
T
e,
4
’



K : ~— :

—

attached to the diaphragm of avcapacitanc;:z§be\pggssure'segﬁor.

The sumof the drag force acting on the plate and p;;;\;E\EEE‘helggr
BN - |

was recogaed on an oscillograph via the pressure sensor. This method

of measureﬁent was applicable only to conditions where the direction

) of. the flow cular to the plate surface. The overall un-

certainty in the velocity measurément was estdmated to be less than

17.5%.

IS .
’ ¢

’
-

- ) ThF’Velocity of a plasma jet can be measured by ihjecting °

-

- f .
tracer particles in the flow and following their trajectories by
optical means. Desai et al. (1968) measured the velocity distribution

in an argon plasma jet in lamindar flow, using boron nitride particles

Ty

of diameters between 40 and 80 microns. The radial position of the

- particles in the jet was determined accurately by getting the front
{ .
and the side views of the jet on the same frame b& the use of split
|

mirror teLhniques. Chase (1971) obtained flow visualization and gas
velocitie% in the core of an RF induction plasma, by injecting par-
} -
i .
ticles anll following their trajectory with a movie camera. Waldie

(1975) st?died ;he flow patterns of powders and plasma gas in and
|

5}

around th% coil region of an induction plasma, by using cine phot o-

graphy. %he trajectories of spherical paft;ples with diameters of
t#e orderlof 100 microns wefglgeasured in three dimensions by
simultaneous recording of two views at«gight angles to each other
%5‘ \ ( imilar to Desai's techniqdé). Frame by frame measunementéc;f
' p%rcicle coordinates then allowed the calculationr2£ particle’;elocity

i

r (:)l veétor\gnd particle acceleration or deceleration as function of time
C .

“r
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v /S
and space. When deducing plnshg éfs velocities from the partiéle

~

velocities, the flow around the particle waL assumed to be Stokesian

AN
and the physical properties were evaluated at mean film temperatures.

T

In an investigation of flow pattefns in an RF induction
plasma, Gold (1975) described an optico-electronic methpd which is
based(QP the spatially'and temp0{§lly resolye% measurements of plasma
luminoesity. \The velocities of plasma and injected, particles were
both determined by this method. The optica? s?stem fgfggd an imige

of the plasma on a linear photodiode érray. These photodiodes were

scanned gequentially and the amount of light f%iling on them between
' ~ s

. : N |
two scans was determined. Eachrgingle scanning~cycle thus provided

1

an instantaneous intensity profile of the plasma."In order to-examine
N |

the flow ﬁattern of the plasma, sodium chloride particles were in-
jected into the flame and\fpe\velocity’das then deduced from following
the p;opagatioh of increased intensity. With this method, it was not
possible to determine the exact radial Position of the particles and

therefore the results obtained were not very accurate.

[y
h

Gol'dfarb et al. (1967) estimated the flow velocity of an
induction plasma from the lengths of the streaks of carbon particles
originating from the end of a carbon striking rod. ,Thig method was

v \g"\ - ‘D
inaccurate in the sense tha%iit was difficult to determine the

® ¢ $

location of the particlegjtn space.

e
- h

e
© \ -

Bohn et al. (1967) obtained radial temperature and velocity

profiles of an arégn plasma very low prespurég (1.5 torr). The

A

- N - - ’

-

#



@

velocities of the heavy particles were determined by measuring the

[

Doppler shift with a FaB;y—Perot interferometer.

. ~

Meubus (1974) injected;hydrogen into an argon plasma and was
able to determine the cogcéntration profiles spectroscopically. From
these profiles and the knowledge of the temperature fie}d (measured
aléo spectroscopically), the argon velocity profiles were calculated

by making a simplified material balance.

FEERY h

il

Meubus and Parent (1969) proposed a flow model of a helium

plasma jet. From a knowledge of the luminous profile equation,_

temperature distribution and gas flow rate, the velocity distribution '

in the plasma was determined by making an energy balance. This model
was later used for experimentally evaluating tragsfer coeffkcien;é
for helium. Comparison of these results with theoretical values
showed a 40% error, with an esti&ated error in the velocity measure-
ment of the order of 25%. Gottschlich et al. (1966) described a
similar model where the axial velocity of the 3et was calculated from
the temperature profile by a simple energy balanée. The»temperathre
fieid was obtained by spectroscopy. In this model, the flow was
assumed to ge axisymmetric and unidirectional. The derivatives of

the temperature were estimated nﬁmericalli from local values of the

temperature.

The use of laéer-Doppler anemometry in plasmas has been:

suggested by several researchers. This method determines the

instantaneous velocity of a particle suspended in the flow by

~

-
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measuring the Doppler shift of optical radiation scattered by the

moving particle. 1f small enough particles are used, then their

gelocities will represent the actual gas velocity. The use of this

| .
technique,in plasma is somewhat restricted by several factors such

as the method of seeding, material of the particles, cooling effect

of the particle and most importantly, hdﬁ accurately the particles
' &

can follow the plasma flow. A preliminary study has been carried
out in these laboratories and is described in moré detail by Ho

(1976) .

o~

¥

Gas Temperature Measurement
{

As in the case of velocity measurements,Cﬁimpenature meas-
urements in plasmas can be made either with the aid of insertion
Lo '
probes.of'by optical methods. Optical methdds, in general, are

préferable because they do not disturb the flow. Spectroscopic

~ [
~

techniques have- been widely u;ed to measure plasma temperatures in
excess of 9 000 K [Olsen (1959), Smith (1965), Gol'dfarb (1965, 1967),
Bott (1966), Rovinskii (%96§§¥ Cremers {1968),( Meubus (1969), Carleton

*(1970)]. ﬁ;e épec}rbsc&%ic techniques are Buged on measuring once of
. N /
th{.following quantities: absorption Qf radiation of known inlvnﬁﬂl¢.
* s

4

spectral line broadening, absolute intensity of a spectral line,

relative intensities of different spectral lines or of a single line
. 4
(Larenz method), or the intensity of continuum radiation [Knopp (1962),
! 2

Incropéra (1967)]. 1In general, absorption spectroscopy is impractical

»

in plasma diagnostics since the radiation intensities of the plasma

are quite high compared with that of the light source.

.«
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The single-line (Larenz qr Fowler-Milne) method is con~

!
1 R

te M
sidered ,one of the more suitable methods for'plasma temperature

'mgasufement [Knopp (1962), Gottschlich (1966) and Incropera (1967)]
r ¥

because it does not require a knowledge of the transition probabili-

ties of the plasma gas. This method, however, requires thermal
/ - .
equilibrium within the plasma, radial symmetry of the flow, negligibfe

.

self-absorption by the gas and that the line under study must exhibit
i -

an intens maximum. To satisfy the last condftion, the plasma
J: 4
temperature must be high enough to prbduce significant reduction in
\ 4
the number of particles of the species under observation, 1In other

words, this condition limits the use of the Larenz method to plasmas,

)
3

where the degree of ionization is appreciable. /For argon this

-

temperature is around 9 000 K and wheun the two-line method is used

this lower limit is pushed up to 12 000 K [Incropera (1967)].
x y ',/

Ay

Grey (1965) reviewed the éher@odynamic methods of high-

temperature measurement of gas flows and classified them into three

-

v

general categories: pneumatic probes, heat-f%ux gauges, and calori-
metric sampling probes. Pneumatic probes consist esséntially of two
flow restrictions through which the hot gas sample is aliowed to flow
and between which it is cooled. The temperature of the gas at the
stagnation point caﬁ be,determ;ned from the continuity equation,
p}ovidedlthat the pressures at each constriction, the total pressure
of the flow, the temperature at the downstream constriction and the

area and discharge coefficients of the constrictions Qre known. When

the flow through both constrictions is sonic then the intermediate



'
at

-

pressure between the two nozzles need ngt be known, and the con-
P

tinuity equation reduces to [Simmons and Glawe (1957)]:

0

T = (CL‘A;/CQAQ)Z . Tz(Po/Pz)z R (3)

. In practice, the quantity (C,A,/C2A;) is not constant and

some variations are expected due to changes in the actual areas of

! ) “ the nozzles (A, and A,;) and because of the dependency of the discharée
coefficients (C;—;nd C2) on the Reynolds number and the rate of heat -

tﬁansfer from thg\ﬁas\ig\fff\iifflé‘surface. The value of this term

can be found by calibrating the prehe at room temperature, where

o

This method ha veral drawbacks in that it needs pre:\\\\\\\\\\\\\\\\
calibration of the nozzles, ideal ropic flqw must take ﬁlace at )

.

T = Tz.

d when the total
pressure is low, and that. the nozzle ratio does not change
calibration and actual operation. Since the nozzle ratio is a

function of the fourth power of the nozzles diameters,t‘slight _l
expansion effects in the first nozzle (expected when measuring hiéﬂL $

-

temperatures around 4 000 K) can cause errors of the order of 10%

~ in the stagnation temperature [Grey (1965)].

LN

Heat-flux gauges measure the enthalpy or temperature of the
gas by determining heat transfer rates across the calorimeter su{facc.
’ A prerequisite for this method is calibration or know]edgé of the >

relation between the heat transfer rate and the gas temperatufea The

main sources of error in this technique/qre inaccuracies in estimating



(;v ‘Q’ .

15

| N
heat transfer rates to the insulating jacket and the relatively large
size of the probe required for adequate resolution, which raeduces

the validity of stagnation-point heat transfer assumption (Grey 1965).

Calorimetric methods determine the local énthaiﬁy'of the gas
by cooling a small amount of sample of the hot gas and measuring the
/ ’

increase in the codiaﬁt temperature and the final temperature of the
i \
gas. Grey et al. (1962, 1964) developed a water-cooled probe capable

of measuring gas\ temperatures up to 15 000 K. The calorimetric
kS ;

~

method used to determine.the gas temperature relied on a tare measure-
\

ment to corre&t for heat transfer to and from the/probe. The change
,in coolant' temperature was observed for the case when the valve in the

gas sample line was closed and when it was open. The difference in

n

the enthalpy change of the coolant was’'a measure of the heat lost by
the gas sample. '‘The accuracy of thé?“meghod depends heavily op ’
duplicating the flow conditions near the probe tip in the flow and

no-flow cases.

\ o ‘.

' . El-Shamy (1975), 1in his study of heat transfer to spheres in

RF induction plasmas, described a 'tare' calorimetric probe similar
- i '
to that of Grey.. The coolant temperatures were measured by thermistors
. |
and the exit gas temperature by means of a thermocouple. Petrov and
- ) 13

Sepp (1970) developed a similar calorimetric probe for the measurement

o

of temperature and total pressure of high velocity dense air plasma.

' These authors claim that their design is more suitable than that of

Grey fot high heat.fluk environments and is also less sensitive to
/o ' A . ~ J . l o
-variations of the suction rate of théxgasvsamplé. Temperatures up to

&

3
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"5 000 K on the axis of the flow with velocit\ieé up to 900 m/s were

measured.

' ‘ .

\

Smith and Churchill (1965) measur;ad plasma jet temperature
both spectroscopically and by a calorimetric probe. They concluded
that:. reliable e,xiEl.{;lpy data could not be obtained by using a sampling
probe. They showeci that this niet:hod is very dependent on the sampling

rate. At too low sampling rates, the sample is drawn only from thg

~

cold region near the probe and at too high samplilné rates a greater
portion of the gas whicha normally flows pdast the outside the probe
is drawn through i:he sampling probe. Both of these né‘ffects result

in a lower than actual enthalpy value. * Under one plasma condition
tt;ey found that the maximum temperature measured by the probe was

5 000 K, while at® that same point, spectrographic measurements gave

a temperature value in excess of 9 000 K. This discrepancy was also

/obser.ved by Chludzinski (1964). Similar results to those of Smith

and Churchill were obtained by Hare and co-workers (1972). They
mention that their results show ‘the same trend of variation of

measured gas enthalpy with the sampling rate. They note that in

P

.regions where both thermocouples and enthalpy probes could be-used
to-measure 'the temperatui‘e, the thermocouple always indicated sig-

nificantly higher temperatures. Also, when using the measured
temperature and velocity profi‘les, it was not possible to.gonserve

”

the mass of the gas in the jet. This view, however, was not shared

M @

by Incropera and Leppert (1967) who measured radial temperature and

!

velocit)/ profileé in a d.c. argon plasma, both by calorimetry and
B 4

\ - ¢
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spectroscopically. They found that, provided the flow conditions are

duplicated for actual and tare measurements (they did not say how),

L4

calorimetric results agreed within a few percents wi 1 those obtained
by spectroscopic methods. Spectroscopic methods"Were f?und to be
more accurate as ;he femperature increased (over 12 000 K). Below

10 000 K, they ;gree with Hare's findings that uncertainties.with
probe meagurement rise to excessively high values. They suggest,
however, that more reliable results can be obtained by choosing a

\

suitable coolant flow rate.

In a later paper, Grey (1968) desgribes two other geometries
of calorimetric probes, He first points out that the above method
can be used only in large heat flux énvironments. Its priﬁcipal

disadvantage, he maintains, is lack of sensitivity at lower ‘heat

.flux conditions cauged by small difféfence between two large numbers 7

(tare and actual measurements). For lower heat-flux conditions, the
fully-isolated non-tare measurement probe was recommended. Here the

calorimetric part of the probe is isolated from the cooling jacket

I

by a gas or vacuum gap. The enthalpy measurement is then obtained

directly without the need of a tare measurement. For very low

ambyent pressures such as encountered in most hypersonic flows, the
gas sample energy is so small that the coolant flow nﬁte cannot be

: !
reduced sufficiently to produce a measurable temperature difference.

Moreover, the stagnation ﬁressure is too l&w to dr%ve an adequate
1 ' N ®
amount of sample :through the probe. Under these conditions, the

sharp—-inlet shock-swallowing probe was recommended.
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2

Katta et al. (1973) made extensive tests with the improved,

b3

double-jacketed non-tare probe, designed by Grey, for axial texﬁ>

v perature measurement of argon and helium d.c. plasma jets, in the
!

range of 2 000 - 13 000 K. At high temperature levglgri;Z_OOO K)

the probe measurements agreed with spectrographic data reported in

the literature, while values in the lower temperature range were

confirmed by thermocouple measurements. They found that this
calorimeter was indeed capable of good accuracy but great care had

to bg exercised in the adjustment of the coolant flow rates, making

its use rather ponderous and time-consuming.

\ o [N

Y Provided that gas temperatures are not very high (less than
5 000 K), they can be measured by means of a bare thermocouple
immersed directly in the flow. The limitions of this method are the
restrictions on gas temperature level, fr;gility of the fine thermo-
__ couple wires and the need for temperature corrections to account for
the heat losses frofi the junc;i;n by radiation and conduction through

the support. Bradley and Matthews (1968) presented a model for
I

obtaining actual gas temperatures from Ehermocouple readings. This
\

\
model aécounted for heat transfer to and from the thermocouple
junction and support. Klyuchnikov (1966) stiggested a method for

determining the true gas temperature from the readings of two thermo-

~

couples slightly /different in size. By this method, uncertainties s

{
concerning radiation to the junction from the gas or the solid walls

were eliminated.
A
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PLASMA HEAT TRANSFER i

The problem of plasma heat transfer to solid surfaces is
important\in various engineering applications, such as in arc
technology, MHD generators, re-entry of space vehicles, g;c. The
most important aspect of plasma heat transfer is the effect of
electric and magnetic kields, caused by the presence Jf charged
particles, on the heat transfer process. Emmons (1963) and Eckert

and Pfender (1967) reviewed plasma heat transfer to electrically

insﬁlating and electrically conducting surfaces, bath in the absence

4 T~

‘of external fields and in the presence of electric and magnetic

fields in the boundary layer.

Kimura and Kanzawa (1965) reported values for average heat

- fluxes to wires immersed in a flowing plasma produced by a high

intensity electric arc. Average heat transfer results were obtained °

»

by measuring the change in the electrical resistance of a wire swept ¥

»

quickly through the arc. The temperature of the arc was determined
. ¥ .
spectroscopically. By making certain assumptions concerning the flow

A
conditions, they were able to correlate their results by using

empirical heat transfer equation derived for constant-property flows.

In order to determine the effect of ionization on the heat
transfer‘pr%cess to a solid surface, Petrie and Pfender (1969)
described acﬁethod for measuring heat transfer to wires immersed in

“

They used a technique similar to thafiof Kimura where total heat

) AN S
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transfer rates to wires, swept at a constant speed, were measured by
recording the change in the electrical resistance as function of
.position of the wire in the plasma. Local values of the heat flux
were calculated by uging Abel inversion on the average heat transfer
rates. A slig_i;tly différent technique was reported by Pfender (1971)
vhere averag:heat tr/a;xsfeir rates to a water-cooled probe were
determined @;alorimetricall‘%y, thus yielding more accurate results.
Foxr both of thf. methods (wire or probe) th%a object was biased elec-
trically at\various potentil'als to allow the study of the effect of
electric current on heat transfer. Contrary to the expected, heat
transfer rates by thermal conduction to solid su;'faces were not

strongly affected by the presence of free electrons in the plasma.

This was due to thermal insulation provided by the presence of a #cool
: A\

and less ionized layer at the solid wall which separates the latter

from the hot plasma. :

A similar study was conducted by Kanzawa (1973) to determine

)
heat transfer rates to spherical probes immersed in atmospheric argon

plasma. The probe temperature was measured by means of thermocouples.
}he effect of the electric field was found by applying an external

potential on the probe with values ranging from -30 to +5 volts.

% v ‘ ¢
Experimental values of the Nusselt number were measured for
‘heat transfer from a confined plasma jet to the entrance region of
water-cooled circular tubes [Skriva/n (1965), Johnson (1968)]. The

maximum ét}try temperature of the plasma was less than 7 000 K'and the

maximum Réynolds number was 900. The results were presented asg cor—
| .
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. relations between the Nusselt and the Reynolds numbers. Incropera

and Leppert (1967) solved a simplified form of the equations for the
laminar flow of a plasma stream inithe entrance region of a circulg#
tube. The solugion was obtained numerically; using implicit finite-
difference techniques. Schmidt and Leppert (1970) determined héég‘

\
transfer rates from a partially ionized argon plasma to a water— !

%
cooled circular tube. Entrance gas temperatures were of the order of .

S

12 000 K and Re between 140 and 527. They found that the numerical ~

~

solution of Incropera under-predicted the heat transfbr rates in the

4 ©

first few tube diameters down from the plasma entrance. They att-"
vi N

. ? tr

ributed this discrepancy to non-equilibrium effects and inaccuracies

in the measured inlet enthalpy profiles. ’

Abu-Romia and Bhatia (1972) measured stagnation point heat
transfer from a plasma jet by means of a be#f’ﬁipe. Results were
obtained for plasma mean temperatures of up to 12 000 K and for

different .gas flow rates! At low flow rates, the experimental results
Y

\
3

were in agreement with theoretical laminar flow stagnation point heat
1

3 .
transfer predictions. However, as the gas flow rate increased the
plasma jet flow was no longer laminar and due to turbulent effeéts,

the heat transfer rates were much highefﬂthan those predicted theo-

retically.

The motion of partiéles entqgined in a hot jet is of a :
particular interest in powder processing dn plasmas. Lewis and Gauvin
(1973) followed the trajectories of small glass particles enCriined’

. P @ Fa N
in a free argon plasma jet, by means of high-speed cine streak%photo—

< i
{

s 0 /
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graphy. They found this system to be characterized by low Reynolds
number of the particles and high deceleration rates. A computer
fﬁogram was proposed which predicted-the particle trajectory,
velocity and temperature during its flight. ?heir results indicated
the necess&ty of including the Basset term in the computation of the
drag coefficient. Boulos and Gauvin (1974) develoéed a model to
calculate the trajectories of small particles in a plasma jet; in
order to predict the effect of various g&asma parameters on the
reaction rates of molybdenum disulfide particles éhat are injected
into the hot flame. This mddel was later modified by Bhattacharyya
and Gauvin- (1975) to include the effect of the swirl component of
the flow on the trajectories and reaction rates of these particles.
A similar model to thatipf Boulos was presented by H;rvey et al.

(1975) which calculated heat‘and momentum transfer to small particles

injected in a high temperature leindrical reactor. The particular

‘case studied was the spheroidization of magnetite particles, 75 to

125 microns in diameter. - Cx

Fd
Farnell and Waldie (1975) investigated the technique of

v {
fluid dynamic levitation of particles in an induction plasma tail
flame flowing vertically upwards. Theoretical predictions were made

by solving the transport equations around the particle. Results from
- ‘ -

éxperimenta% work on alumini‘particles in an argon plasma were in
- g -

{
eneral agréement with the theory.
& (’\ﬁJﬁ Y

- |
Heat transfer to single stationaty spheres in a plasma jet ~
' )

was first studied by Kubanek, Chevalier and Gauvin (1968)» Oyerall

¥

- . (
-~ I
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hegt\transfer rates to water-cooled spheres, 16 and 25 mm i :lia-
meter were meaéured calorimetrically. The Reynolds numbers
encountered were between 600 and 4 300 with temperature differences
between the sphere surface and the plasma gas of up to 3 000 K.
chal heat transfer rates weye reported by Katta and CiLvin (1973,
1473) to stationary sphere in similar Re, range (between 860 and

3 100) and temperature differences. El-Shamy (1975) conducted a

3] .

- -
similar study, but the Reynolds numbers of the sphere were much lower,

amely between 200 and 400. The reliability of El-Shamy's results is
\ :
rather debatable since the sphere supports were very short and of a
comparable diameter size to that of the sphere. Also, the theo- °
—

retical analysis was not very accurate, as it did not take into

considgration the eg$ect of the large temperature differences.

“or .

A , :
:

Several simplified models describing an inductively-coupled

v
¢

plasmdﬁhave been reported recently [Armstrong (1968), Freeman (1968),
Eckert (1970, 1970), Pridmore—quwne (1970), Eckert and Pridmore- )
Browne (1971)]. Miller and Ayen (1969) presented a model to piedict

radial and axial temperature ﬁrofiles in an induction plasma. This

model included temperature-dependence of the physicLl properties and
radiative losses from the gas. The energy and magnetic flux equations

were solved numerica%ly by an fmplicit finite-difference method. The
solution was obtained for an assumed velocity field. The velocity g
field was adjusted to .conserve the mass flow rate at any given section

in the torch. Yoshida and Akashi, (1975) modiffed this model by using

the concept of mixing of two~ideal\gas streams to obtain the assumed

velocity field. They also studied the effect of gas flow rate on
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the axial flow pattern and on the temperature field. Boulos (1975)
calculated the two-dimensional flow'and temperature fields in an
inductively coupled plasma. The complete flow, continuify, energy
and magnetic and electric field equations were solved simultaneously,

i

by using an iterative finite~difference procedure.

PLASMA RADIATION

)

hhen an electron at a high energy level makes a spontaneous
transition to a lower level, a ﬁhoton of light is emitted; %his
photon has an energy equal to the diff;rence between the two energy
levels. This is the principle behind plasma radiation. The number
of such transitions is dependent on the concentration of atoms in the
high excited levels ;nd on the probability of ingtantaneous tran—-
sition. From measurement of absolute intensity of a spectral line,
or relative intensities of two or more lines, the plasma &emperature
can be determined. When the plasma gas comprises molecgles, then the
spectrum always consists of bahds and the teﬁperature is determined

from the intensity of these molecular bands rather than from atomic

lings’ _ LA

Total radiatioﬁ from blasmas has been measured by several
methods. Tankin (1964) and Evang (1967) used a thermisto; bolometer,
while the use of a total radiometer was reported by Emmons (1967) and .
Barzeﬁay (1966). Results from different researcﬁgrs vary as much as
by a factor of 4. The most reliable data seem to be that reportea by
Emmons. Total emissivity values for argon were given by Mos#vin

|

(1968) for the temperature range of 6 000 to 12 000 K- and by Kon'kov

and Kulagin (1974) in the range of 12 000 to 16 000 K.



"TRANSPORT _ PHENOMENA

GENERAL
[ ]
A'large number of studies have been published in the litera- ,
1
ture on the subject of momentum and heat transport to spheres and
cylinders. To review them all is almost an impossible task. Clift:
et al. (1977) give an extensive coverage of transport phenomena

around soliqﬂpnd fluid spheres. The review in this section will,

therefore, be limited to studies pertinent to the type of flow
. - -

encountered in plasma jets, mainly in the low and intermediate rangesi
of the Reynolds number (0<Re<100). Also, the emphasis will be more
on theoretical analyses of the p;oblems of flow and heat transfer to
spheres, than on experimental results on drag coefficients or heat

transfer rate.

FLOW AROUND A SINGLE SPHERE

-

The Navier-Stokes equations for the flow around a sphere are

<

.Bighly non-linear even for the simplf}ed case of constant physical

\

property fluids. Consequently, no completely exact solution exists
for these equations. All reported solutions simplify the equations
to suit a particular flow condition. The earliest "exact" solution

for the flow around a, single sphere was given by Stokes (1850). This

solution linearizes the Navier-Stokes equations by assuming the

g

inertia forces to be negligible compared to the viscous and pressure

®
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forces. This assumption }imitg_&bg_yalidi%y’uf’fﬁéﬂgfbkes' solution

| to very small Reynolds numbers. Because of the absence of the in-

, .
~ ertia terms, the flow is 'reversible' and possesses a fore-and-aft

I

symmetry. In the Stokes' flow solution, the ratio of the neglected
~ »

inertia terms to the viscous terms is of the order of Rer/2R. Con-

sequently, even at very small Reynolds numbers the error in the

Stokes' assumption is significant at large distances away from the

e

surface of the sphere. ’

Oseen (1910) modified the Navier-Stokes equation by sim-

1 _ e —

p pletely. Oseen's equation can be written as:

§.va = -1/p VP + wia (4)

The introduction of the free stream velocity vector U accounts for the
inertia forces which gain importance at large distances away from the

sphere.

Proudman and Pearson (1957) obtaihe& higher order- approxi--
mations for the flow around a sphere by the method of matched asymp- '
totic expansions. These ;uthors used the solutions of Stokes and
Oseen as the "inner" and "outer" expansions, respectively. The
method of matched asymptotes assumes that the solution possesses
asymptotic expansions at the inner and outer boundaries. By matching
these expansions, a uniformly valid asymp;otic representation ;} the

\ flow can be found. In other words, the Proudman and Pedtson's

(:) solution makes use of the fact that the Stgkes' solution is valid
11 .

plifying the non-linear terms, “Instead of‘dropping them out com- - i -——
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near the surface while Oseen's solution satisfies the flow con- . ~

Fy

4 P B . 4
: ditions at large distances away from the sphere. These authors ~

‘cargied out their aralysis’ up to the term of the order of Re?fnRe. .
. T - 5

Chester and Breach (1969), following the same méthod, extended the

Y

analysis as far as the term of the orgfr of Re’fnRe. Thgs solution

converged more slowly as the Reynolds number increased “and was ‘not

accurate above a Reynolds number 6f 5. . >

.

&

b kawaguti (1955,-1958) obtained separate approximate solutions

. : ' o
of the Navier-Stokes equation For the low (0-10) and intermediate =~ "

_ . s

(10-80) ranges of the Reynolds -number.. He used a Galerkin error-
‘ 1

distribution method which involves the cho?ee of a trial polynomial

”

- for th%/sf;;;m function that is made to satisfy the flow equations

[y

. and the boundary conditions. This method was e§Eenaed by Hamielec
et al. (1962, 1963) to viscous flow around fluid ané‘solid spheres

at Reynolds numbers up to several thousands. 'Hoffman and Ross (1972)

r

employeg the error-distribution methpod, modified to include a finite

radial mass efflux from the surface, to investigate the effect of /
Y

« -

W

{ .
mass transfer on heat transfer to an evaporating droplet. ‘ ~

e

Several numerical solutions have appeared in the lit:erat:ux:e%3
éor the problem of 1ncompressibie,/axially-symmetric, viscous flow
past a sphere. 1In these solucio;s the partial differential equations
of the f}ow vere simplifigd by finite-difference approximationg.
Since the non-linearity was retained in the resulting algebraic dif-

ference equations, a direct solution was not possible and an iterative

(:) method had to be used. The earliest finite-difference solution was
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reported by 3gnson (1959) for steady state flow at Re of 5, 10, 20
and 40. Since a desk calculator was used for the computation, the
grid‘size used was relatively large and the distance to -the outer

boundary was only six radii away from the centre of the sphere.
- v

Hamielec et al. (1967) obtained more accurate results by using a

3

finer grid and a larger sizé field. The Reynolds number range of
their solution was between 0.1 and 100. LeClair et.al. (1970) ex-
b
o A
tended this work up to ég of 400. At low Re their results departed

. .
significantly (rom those of Jepson, while agreeing well with the
a f

"?Esultsggf:ﬁéﬂ{éiééiénd of Rimon and Cheng ,(1969) at higher Re. A

more tho;ough discussion of the numerical resufts wés presented by
Piuprcher, LeClair and Hamielec (1970). Rimon and Cheng (196§)
solved the time-dependent Navier-Stokes equations numerically for
very long times, to obtain the steady state solution. In this
method, only the stream function equation is solved iterag}vely.
|

The vorticity is computed directly at each time step. By this
approach the tempo;al development of the flow can be followed, and

3

the steady state solution is independent of the initial flow con-

ditions. However, because of the small time steps necessary for the

stability of the solution, the process requires relatively large
computer times to reach steady state. Ejgglair and Hamielec (1970)
studied the flow behaviour of an acceler}ting sphere in a viscous
fluid ln the Reynolds number range of 0.1 to 150. The completes

Navier-Stokes equations were solved numerically together with tﬂz

Basset equation for the sphere.

' / -
b
[ .

-
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Dennis and Walker (1971) solved the Navier-Stokes equations

for the flow around a sphere for Reynolds anumbers between 0.1 and

40. °They used a semi-analytical formulatipn where: the flow variables
were expanded: as series of Legendre functions, hence reducing the

{7 equations of motion to ordinary differential equations. The ODE were

“~ s '
a

then solved numerically. As the Reynolds number increased, more terms

in the series were necessary to approximate the flow, leading to an

increase in the number of) equations to be solved simultaneously.
X .

Consequéntly, this limited the analysis to Reynolds numbers of no

/ N
more thap 40. These authors show that at low Reynolds numbers this

~

method is faster than the numerical solbtibn of the complete Navier-
\ ! -

Stokes equations, by the finite-differéncp‘technique.

All the sblutions discussed above were obtained !for the case
N

Bf a constant-property fluid. Very few researchers have studied the
i

"problem of variable-property flow. .Kassoy et al. (1966) presented

solutions of the momentum equation foﬂ cases involving significant

" varilations of the physical propei}ies and temperature. The method
of matched asymptotic ex?ansioné was used, t?us restricting the
Reynolds number to the order of unity and the dimensionless’tem-\*
perature différence, 1, to the order of the Reynolds number. .The
viscosity and thermal condugtivity were assumed to vary linearly

with T. The coefficients of drag and the Nusselt numBer were

%

estimated from the velocit& and temperature profiles.

N

I
Seymour (1971) calculated the aerodynamic drag on-a small ~

-sphere moving in an ionized gas where the temperature ratios between

¢
- -
s

o,
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the bulk of the gas and the sphe;e s;rfacé were of the order of 40:1.
.The properties were allowed to vary exponentially with the temperature.
. The tempergture and property profilés were calculated, assuming forced

convection to be negligible. Using these profiles, the momentum
equation was then solved numerically. With the a;sumption‘of\low gg

(<1.5), the resulting solution possessed a fore-and-aft symmetry

.

similar to that of Stokes flow. The drag force on the sphere was

estimated by integrating the viscous dissipation of energy throughout.

the flow field.

Dumargue et al. (1974) studigd the problem of evaporation
from a spheric;l super-refractory particle in a fluid with variaﬁle
.physical properties. The casé of zero Reynolds number was solved |
first. Dufour effects, radiation and forded convection heat transfer
were introduced later by the use of perturbation techniques, while
a;suming the flow to be Stokesian. The results were presented as the

ratio of terminal velocity in the variable-property fluid to that

calculated by Stokes' equation.

i (
Woo (1971) using relaxation methods, solved the flow and

energy equations, numerically, for a variable-density fluid. The
:viscosity and the thermal conductivity were assumed temperature-
independent. Flow patterns were caIEhlqted for cases where natural’
corivection was significant.

{ '

o
-
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HEAT TRANSFER TO SPHERES

Quite a large number of studies have been carried out on.the
problem of heat transfer from single spheres. Because ofs the dif-
ficulties involved in the solution of the momentum and energy equa-
tions for flow around a sphere, the results from the published work
cannot be compared with an exact theoretical model. Consequently,
the heat transfer cérrelations that are available are solely based
on experimental results. Errors and uncertainties in the experimental
procedu}e thq prevented these workers from reaching a single valid
expression. Rowe et al. (1965) reviewed all the experimental work
that had been done in this field up to the early 1960's. They

concluded that although the heat transfer results can be expressed

as: '
Nu' = A + B Pr" Re" o (5)
- 1 )
N .
there are no single values of A, B, mn and n that would correlate all’

the reviewed experimental results. Also, since most of the data had 1

been obtained for air or water systems, it was not possible to examine

the applicability of such expressions to other fluid systems. e

Baird and Hamielec (1962) predicted theoretically approximate

1
!

local énd overall Sherwood‘numbers for forced-convective transfer
around solid and fluid s;heres for Re up to 100. The diffusion
equation was solved analytically for the case of a thin concentration
boundary layer (Pe>>1). The vélocity field used was that derived,iﬁiﬁ

Kawaguti and by Hamielec. The results agreéd reasonably with experi-

A




e

mental correlations of Griffith (1960) and of Ranz and Marshall

(1954). Hoffman and Ross (1972), assuming a similar velocity profile,

solved the energy equation to investigate the effect of mass transfer

\

on heat transfer. The solution was based on the integral boundary

layer formulation of the energy equation.. Solutions were obtained
. \
for the case of zero mass efflux in the Prandtl number range of 0.7

to 10 and Reynolds number between 20 and 500. Assuming the following

expression for the Nusselt number:

Nu = 2 + A P Re" 3 “ (6)

\ "L

m was found -to be a function of the Reynolds number, thus,
m = 1/3 + 2/3 exp (-0.85 Re®"?“) N

The upper and lower limits for m, namely 1 and 1/3 respectiveiy, were

predicted by "thick" and "thin" boundary layer assumptions.

\

§gries/truncat16n method was used by Dennis, Walker and Hudson

(1973) to solve the energy equation around a sphere. The velocity

profiles were those calculated by Dennis and Walker (1971). The

I
basis of the method is to approximate the solution, which in theory

consists of an infinite geries, by a finite number of terms. For the

case of low Re, an§‘g£ of the order of unity, only few terms are

'
required to give an adequate representation of the flow conditions,

making this approach superior to the finipe-diffeience method.

)

NN Acrivos and Taylor (1962) solved the equation of energy for

the flow around a sphere by the method of matched asymptotic

¢
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v

expansions. The flow field used was that given by Stokes' solution.

\
The expression derived was accurate for Pe<l and Re<<l. The analysis

was carried out up to terms of the order of Pe®fnPe. Rimmer (1968)

modified this analysis by using the velocity field equations given

by PrgquX; and Pearson (1957). He obtained an expression which was

similar to the one given by Acrivos and Taylor, except that it con-

tained one term that was a function of the Prandtl number only.

The

equations for the Nusselt number given by Acrivos and Taylor Jhd by

-

Rimmer can be written respectively as:

N

~ 0.5 Pe®nPe + ...

Nu = 2 + Pe + Pe®fnPe + {(Pr) Pe? + ...

where 1.1 <f(Pr)< 0}79 for 0.5 < Pr'< 1.5

2%

with\a value of f(Pr) = 0.83.at Pr = 1.35.

[ -

14

Agsuming the same flow field as that used by Rimmer, Gupalo '

Nu = 2 + Pe + Pe® + Pe?nPe + 0.8293 Pe? +

(8)

(9)

and Ryazantsev (1972) obtained a solution for the broblem of steady

™~ &

- S
state heat or-mass transfer when’a first-ofda{ chemical reaction on

“

R P o
the surface of sphere is also pénsadered. Even| though the same method

of analysis was employed, .their results, reduced for the case when the

|

j
chemical reaction does not influence the trambfer process, were dif-

ferent from those of Rimmer for pure heat transfer. These authors

claim that certain mistakes in, the matching procedure prevented Rimmer

' |
from obtaining ‘the correét results. Gupalo and Ryazantsev gave the

L]

following expriession for the Nﬁaselé number for the case of pure heatl
L3

N

)



transfer to the sphere: .
Mi = 1 +Pe+ Pe’tnPé + 0.5 Pe’tnPe + "(10)

g (Pr)Pe? +,2g(§?§?e’
|

where g(Pr) = 0.25[2pr? % Pr + A%ny - 173/40 + (11)

2(Pr + 1)3(Pr - 2)8h (1 + Prh)]
\ ’ \

It is worth noting here that the above equation is very sim-
uilar to that given by Rimmer: Howevet,xCupalo and Ryazantsev defined
the Reynolds and the Nusgelt numbers in tierms of the sphere radius
and, consequently, the Peclet ?3?ber appearing in their equation has
half the value of that in Rimmér's equatig . Nusselt nu&bers cal-
culated from Equation (9) are éuch lower than those obtained from

‘Acrivos and Taylor's or from Rimmer's equations.

“

Kassoy et al. (1966) studigq low Reynolds numbef flow past a
sphere for cases involving variations in the fluid properties. T‘é
equations of the flow were solved simqlta eously with the energy
equation, using the method of matched asymptotic expansions. The
viscosity and thermal conductivity were ﬁ&low;d to vary linearly with
the dimensionless temperature differencel 1+ Solutions were obtained
" of Re<<l and 1 of the order of Re and of unity. Expressions were
given for‘the Nusselt number, draglcoef icieﬁt and Fhe pressure dis- ’

tribution. For 1 = O(1):
N

Nu = (t+2)/(t+1) [2+Pe + 0(Re?)]. . (12)
Cy = 12/Re (16C /3K -~ K/3) o v (13)
where K =, t(t +2)

and the values of C (K) were qq}culateF numerically for 0.055<t<1.236.

)
[ 3 .
-

>
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The solutions for the case of 1 = O(Re) were given up to terms of

the order of Re’fnRe.

3 [

Woo (1970, 1971) solved the eqergy equation numerically in
conjunction with the equaéions’of the flow. The steady-state equa-
tions were transformed to difference form using Taylor series ex-

pansions (finite-difference method). For the case of forced ionvec—

/

tion alone, the flow equations were solved first an7’the results were
c

[
then inserted in the energy equatdon. When nagural onvection effects

were also‘éongidered, the density was temperature-dependent and,

A

therefore, both equations had to be solved simultaﬁéously. Local and
averagg values of the Nusselt number were obtained for Re up to 500.

Beard and Pruppacher (1971) in a complementary work investigated the

rate of evaporation of small water drops gglling at terminal veloci-

[
< LY

fies in air. For gg‘}a$ﬁer than 2, they found that the Sherwood

number was proport?gnal to the square root of the Reynolds number,

thu;: . .

fi

0.78 + 0.308 Sc‘/3 Re‘/’

1/2 sh 5
o l’ )

Q}4)

At Reynolds numbers lower than 2, the Sherwood number smoothly

©

approached the limiting value of 2 at Re =“0: In this range, the
expressidh can be written as:

e

i %

1/2 Sh 1 + 0.108 (Sc‘/3 Re‘/“)2

(15)

Pei ét al. (1962, 1965) studied pure and evaporative heat

transfer frgm spheres under eombined forced and natural convection.

v » *

ﬂ.. Ld
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They found that the two mechanisms of heat transfer were rionadditive

.and that the transition between the two was a gradual one. They also

gave the upper and lower limits of the parameter Gr/Re? when the

effects of natural or forced convection can be neglected.

HEAT TRANSFER TO CYLINDERS

. Heat transfer to cylinders will be discussed briefly in this
section, as it will be needed in connection with gas temperature
measurements in the experimental section of this thésis. Convective

.
heat transfer to cylinders has been widely studied because of its
importance in engineering applications, such as flow around tubes,
hot-wire aneggmetry, etc. Morgan (1975) recently gave a very ex—
haustive review of this subject. The discussion will therefore be
limited to studiig carried out at conditions similar to those ex- l
pected in the p?;smzujet, namely low Re and large temperature dif-

. ‘ A
ferences. '

Collis and Williams (1959) reported a very careful study of

heat transfer from hot wires in the Reynolds number range of 0.01 to

140. They were able to correlate their results in the following )

functional form:

Nu (T /T) °"*" = A+ B Re" , (16)°
L} - .

-

The Nusselt and Reynolds numbers were evaluated at mean film tempera-

-

tures. Two sets of values for the constants A, B and h were given, (Tf\\\

depending on whetherﬁﬁpe Reynolds number was above or below that at
e o R

" i ¥

- é
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which vortex shedding occurs,vyamely at Re = 44. This value of Re
was found to be independent of .the scale or intégsity of the tur-
bulence. Tﬁey also found that f;ee convecttion jt)&cts decrease
rapidly with increasj;gg}g; an& therefore the orientation of the wire
with the vertical (for‘horiibnta& flow conditions) hadllittle in-
fluence at higher Re. An approximate point at which natural con-

|

vection effects began to assume importance was when Re<Gr‘/3. /
w . ¢ 4

Ka%soy (1967) gave;én approximate analytic solution for the
problem of variable-proper£} flow past a heated cylinder at low '
Reynolds numbers, using Oseeﬁ's approximati?n. The flow and energy
equations were solved by means of matched ;symptotic expansions. The
effect of velocity and thermal slip at the surfagg was also consider-
edi\ Experimental heat transfer,yesults were in‘;ooq agreement with
the theory [Aihara (19679]. One shortcoming of this study was that
the expression given for the Nusselt n;ﬁber was very long and cumber-
some, and moreover, its validiéy was_limited to Re<0.1. Also, the
temperature diffgrences considered were restricted to values of the
order of Re. At Re<0.1, the values of the Nusselt number were almost
identical to those of Collis and Williams. Hodnett (1969) extended
Kassoy's analysis to larger temperaturé-differences. Howevér, slip

\
effects were not included. Matched asymptotic expansions were used

also in this analysis. Although the temperature field was calculated,

‘hodnett did not give any values for the Nusselt number.

Dennis, Hudson and Smith (1968) obtained the solution of the

enérgy equation based on a velocity field that satisfied the full
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Navier-Stokes equations. Both of the temperature and velocity fields
'were given in series form. The analysis was limited to constant-
o
property flow. Their results at low Re (<40) agree reasonably well

with those of Collis and Wiiliams.

AY L)

Hatton, James and Swire (1970) carried out a similar study
to that of Co}liP and Willfams, to 1nves£i§5te the lower range of
applicability of hot-wire anemoqgtry. They were able to correla;eh
the}r results in the game functional form as Equation (16). However,

the exponent of the temperature loading factor was -0.154 instead of

-0.1784 For combined convection they gave the following expreséion:

% oeee

t

0134 = 0* 439 .
Nu (Tm/Tw) . 0.384 + 0.581 Re_ ¢ (17)
wheL'e Re;ff = Re® (1L + 2.06 Ra° " “*®°/Re . cos O + (18)
1.06-Ra®"*?%/Re?)
and Ra = br , Pr ) K

o
1.4

It is possible from.this -equation to find approximately at what point -

L) »

- natural convection effects become important.
&

1
A

Woo (1970) solved the égmplete~flow anélfgfggy/éﬁﬁgzions for
flow past a cylinder numericallil/gging/fiﬁzzgldifferenée approxima-
tiona. He calculatedﬁlgeat’ggihes of the Nusselt number, at several

"ieynolds numbers. Tﬁe‘physical properties of thé fluid were keﬁt

constant. No correlation for the Nusselt number was, however, given.

v

: Ahmed‘?1971) investigated the responéé characteristics of
> ’ (=Y o
, cooled-film probes for the measurement of heat fluxes from high

»

{

\ - - :
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tempefature gas flows. In order to be able to characterize the flow
from the probe measurements, Ahmed measured forced convective heat °

transfer rates to the cooled film from a d.c. arc-heated jet. He

-

proposed a similar correlation to that of Collis and Williams:

Nu (v /v.) °'* = 0.2068 + 0.4966 Re® "’ (19)
' i

,f~4TﬁI§4§§§3EI§E*TEfZBBTIEEEIEWfB?—EETIGﬁjgfrﬁié;6;én flow in the Rey-
nolds n;Tber range of 5 to 40 and temperature rgtios (Tm/TS) betweeg
.2 and 4. Ahmed also noted discontinuities in the heat transfer chve
at Reynolds numbers of 40 ﬁ?&NSS. No physical explanation for these
discontinuities was however given, because no flow visualization

studies were conducted. ‘ . . -

Ay
a4

x -
Bradbury and Castro (1972) investigated the accuracy of some

heat ransfer correlations. They found that the Collis and Williams'

§

equation represented their experimental results best.

Mucoglu and Chen (1977) gave a the”ti\.cal analygis of the
problem of combined natural and forced convection across a horizontal
cylinder. Tye trﬁpsformed boundary layer equations were solved by a

finite~difference method. Local values of the Nusselt number were

calculated for a w&de‘range of Grashgff and Reynolds number ratios.

P ‘ l \ %



NOMENCLATURE

.
1

Constant
ib}A,, Az - Nozzle cross-sectional areas, Equation (3)
B

- Constant

c ~ A function of K, Equation (13) .
C;, Ca - Nozile coefficients, Equation (3)
Gr - Grashoff number '
K - Dimensionless temperature, Equation (13) .
m - Exponent of Prandtl number i
g
n - Exponent of Reynolds number ™
-»
Nu - Nusselt number
P - Presgsure
Pa - Pressure at second nozzle exit, Equation (3)
. h , \
Pe - . 'Peclet number
‘1 >
R - Radius
i
Ra - Raleigﬁ number .
Re - - Reynolds number ) - L/
Reeff - Effective Reynolds number for combined free and
forced convection )
- 3
Sc - Schmidt number '
1 = \ '
Sh - Sherwood number )
T - Temperature )
Ta - Temperature at second nozzle exit, Equation (3)
U - Free-stream velocity .
{ i mﬁ\*-—/
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Uy, Uj

Greek Letters

]

<

41" .

Free-stream velocity vector

Velocity vector

Velocities

Euler's constant
Viscosity

Kinematic visgcosity
Density

| Dimensionless temperatu
(T - Ts) / (Tm - Tls)

Free~stream conditions
Bulk gas conditions

|
Mean film conditions

Surface conditions

L.

5'e' difference

)

S
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- ’ INTRODUCTION’

' .

In the Literature Review chapter, several numerical solu-
tions for the eq;ations of momentum and heat transfer from spheres
were discussed. 1In all of these solutions, the transport properties
of the fluid were assumed to befconstant. For isothgrmal conditions,
thﬁg assgmption is valid and it simplifies the problem significantly'
by reduciﬁg the size of the equaéions and by uncoupling the flow
equations from the energy equation. However, when large temperatu;g

gradients exist between the surface of the sphere and the bulk of the

fluid, the constant-property assumption can no longer be justified.

]
L]

Th? aim of the work described in this chapter was to solve
the coupled momentum and energy.equations for vériable-property flow
around a ‘sphere by numerical method. By using finite-difference ép-“
proximations, the non-linear partial differentia11equations are
reduced to a set of non-linear algebraic equations. The method of
sélution‘of these algebfaic equations depends on the natur; sf the
original paféial differential equations. If steady-state 1s assumed
when formulating»the:groblem, the resulting eqqations are elliptic
and can only be sol;ed‘By iterative methods. This approach was ;sed
by Jenson (1959) and by Hamielec (1967). Convergence with this
method is dependent on the ;elaxation coef@icients and on the initial

-~

1 ‘ -
guess for the flow and temperature fields. Another approach is that

s
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1+

reported by Cheng (1970) wﬁgg;;the equations are wrig}en’for the
time-dependent flow and then solved for large times to obtain the
steady-state solution. The vorticity equation in this case ;s
parabolic and can b; solved explicity at each time st;p. This
approach is very useful in giving’description of the development of

the flow. However, because of the small time increment necessary

for a stable solutioﬁ; this ﬂgthod requires a large number of steps
. r-

K

to reach the steady state.

DESCRIPTION B’\ THE MODEL

. . ¢
In order to reduce the size and: duration of the computations
requ}red for the solution of the governing equétions, a few simpli-
f;ing assumptions were ﬁeceSSary. To retain the generality of the
solution, however, as few assumptions as postible were made. These

<

were: ‘ . 1

~ The flow past the sphere is laminar and axisymmetric
with zero velocity in the angular (¢) direction.

- The flow and thermal conditions are invariant"witﬂ )

t
time.

- The flow field is uniform and isothermal, except for
the perturbations caused b& the presence-of the sphere.

- The heat transferred to the sphere by convection is
completely dissipated by other means, such as radiation. This
balance of heat transfer results in a constant sphere temperaturé.

- The physi#al properties of the gas are dependent on the

- N

t .
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temperature only. The heat capacify is assumed to be constant.

- The temperature of“the snhere is unifiorm all over

- -~

shrface; .

- 'Gravity effects are not considered, and the effec
- ) .

free convection on heat transfer is insignificant.

*

- The fluid is extensive and an outer boundary was ?et\
. &
for computational purposes only.c

- Viscous dissipation and compredgsibility effects are

negligible.
¥

1

THE GOQVERNING EQUATJI;%ONS

1

The steady-state continuity, Navier-Stokes and energy

-equations deéEribing the'above’mgdel can be written, \dn spheriéﬁf

]

coordinétes,.as [Bird (1960)]: A ’ .

A v
Continuity S o ‘
r
- ) ‘
1/x* 3/3r(pr?v ) + 1/r sin6 3/38(pvysind) = 0
Momentum
’ <
- . - y?2 = - -
r-component p(vravrlar + ve/; avs/ae ve/r) ap/ar
2 2 .
. [ﬁ/r B/Br(r‘Trr) +. 1/r siée a/ae(rresine)
» |
A AT ’ . ’

- : - - l "
6-~-component p(vrave/ar)
", l1/r? ayar(rzrre) + 1/r sind 3/8@ (teesine)
+ Tre/r -‘ cotl/r 1¢¢]

\

: .
X ; ) @ - -
: v/t ave/ae\g?wrve/r) 1/r 3p/de ~9m

&

n-

(2)

T



l&

where T = -u(zavr/ar - 2/3v.v)
wgea -u{2(1/r aye/ae +v_[r) -~ 2/3 v.v]
1¢¢ = -u[2(vr/r +_ye/cot®/r) ~ 2/3 V.v]
o ’
T ™ ~p[rd/ox velr) + 1/r avr/BG]
. . . ]
V.y - " 1/r? a/ar(rzy ) + 1/r sin0® a/ae(vesinO]
\ Y
At
Energy

RS

/ \\{he number of the ab

duction

concept

!

\

cv(vraT/'air + v/t a'r/z?o) = -[1/x? a/ar(r“qr) +

1/r sin® 3/30(q sin@&] } A\
0 s
- / 7 /\

ofxfhe stream function. ‘ﬁbr three~dimensional flows the

»

J
of the stream function 4s valid only when the flow is
i
* f

a4

(4)
(5)
(6)
(N

(8)

¢)

6vqye?uatioﬁs was reduced by the intro- -

axisymmetric. :The ream fuﬁction, modtfied for,variable-densit
- P A - % - \

fluid, was related to the velocity components by the following

<}

equations: -
v ‘= =1/r%psin® ‘3¥/30
r
. A
. ‘ be = 1/rpsin® av/ar, C o
¢ " ) N X

f

With its units changeé from volume/ﬁhit time to masg/unit

(10)

(1)

time, the stream function defined in the above equations sa®isfied

the codtinuity equation for a variable-density fluid.
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%  The vorticity vector is defined jas the curl of the velocity
vector. The components of vorticity, in spherical coordinates -
[Yuan (1967)] are: . ) ,

/ . \ v
@ =  1/r’sinel2/20(rv sine) - 2/24(rvy)) (12)
Qy = 1/rsine[3/3¢(vr) - Q/Br(rv¢sinif] . (13)
2, = 1/rla/3r(xvy) - a/ae(vr)] (14)
For axisymmetric flow with v¢ = (, the vorticity components
Qr and Qe are both equal to zero. Replacing the velocity terms by
D I L aad
the stream function, reduces Equation (14) to: i
E® = rprsin6 + 1/p(9¥/9r . 3p/3r + _
1/r? 2¥/36 . 3p/236) (15)\
& - - ' '
. where I = 0 - x“\
A ¢ )
v S '
- . oo~ . t
~ and E* = 3¥9r? + sin8/r? 3/36(1/sine 3/30) - (16)

The momentum equations (;) and (3 written in the above form %
cannot bé solvéd before the boundary condition for the pressure at

the surface is defined. For a blunt body, such as a sphere;, the '
surface pressure varies significantly over the syrface and can only

.
be determined from a knowledge of ®hke velocity fiéld. To overcome

’ \
-~ this difficulty, Equations (2) azd (3) can be cross-differentiated

ompletely. Carrying out these ,

o

to eliminate the pressure terms

operations and replacing the velocities by the stream function and
rv'

) . AN
vorticity, reduces the momentum equatfgns to:
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|

Rersin®/2 [3¥/3z.3/30(r/rsind) -
2¥/30.2/32(z/rain0)] = E’uc%sin0‘+ I(u)sind -

Re rsin0/2 TI'(p) “(22)

where E? = 3%/3z? -~ 3/3z + sin6 3/30(1/8ind® 3/30) (zgﬂ

. - 7 2 2 2
£(u)/2 3u/azld vrlazBO + vy + avr/ae + 93 ve/a? +
a(vecote)/ae - ave[az] +

- n2 2 _ A2 -
au/aefvr ) vr/az 3 ve/azae

cot8(dv. /dz - v )] + 32n/9z3[ov_/30 - v.]) + ‘
C] <] b 3] /\
a’u/ae=[-av9/az] +
. . )
] p/azae[ave/ae +-vr 3vr/az] \ (24)
and F(p) = ap/ar(vravr/ao + veavelae) - | !
9p/30 (vravgﬁpz + veave/az) (25)
Defiﬁing.the dimensionless tempevatuﬂé,as: )
e = T/T, ko= k/k,
and Pe = 2RU_p . C [k, o (26)
give7 (Pe rp/2) (v 3T/3z + v 3T/30) = k[3°T/p2® + 2T/32 +
32T/302 + cot® 3T/38] + §T/az.ak/a$i4-aT/ae.ak/ae (2?‘)~ ,
.

>

-

The auperséript on all the dimensionless variable was dropped -

out for simpchityf

A

-

The thermal conductivity, viscosity and demsity of argon

[Amdur (1958), Drellishak (1963)] in the tehperatﬁre range of 1 500
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(o \
- 3¥/30 + 3/3r(g/rsin®) - 3¥/3r + 3/30@(y/rsin®) =
| !
E%uzrsin /sin® + I(u) + I'(p) , . an
+where  I(uw)/2 = 3u/3r[aV.v/30 - dv,/ar] + 3u/d0[3 (v /r)/3r - R

2 n - - 2 2 y - -
2/r BVO/BO av.? or] + 9 P/ar (Bvr/BG YO),

27u/302(1/r3vy /3r) + 37u/3x30[3(v,y/x) /20 -

#
rd (v /t)/3r] . (18)
() = -3p/20 - B/ox(vi 4 v /24
3/32/20(v? + v2) /2 P LA

and ¢ and E*are’ defined by Equations (15) and X16), respectively.

I | .

| {
/ ' The above equations are normalized by”introduciﬁg new varia-

bles, non-dimensionalized in terms of the bulk conditions of the gas,

S thus:
3 2 ' ' N
L. 2 (- ) ’
.v w/pwUmR LS g g oo r' = r/R
l < ‘ ‘
v =v /U, Vo = Vo/Us p' = olp,
u' o= wlug Re = 2RU_p_/u_ }
Y . | x
also r' ='e (20)
* 4 | 1\
The dimensionless radial distances, z, allows exponentiél
A

increase in r for equal increments of z. Also, when z is used, _the
f
radiél spacing near the Eurface of the sphere is kept small, while '

°

still maintaining a relatively large domain with a reasonable number °
of mesh pointg. Substituting Equationg (20) into Equations (15) to
(19)‘gives: . e

;o " E?Y= rr’psind + 1/p(3¥/9z.30/3z + 3¥/30.3p/30) (21)

. ) ’ )

.
i&eﬁ \eh’
-

~
/
“P



R %1

KJ
-

Y

to 5 000 K, are related to the absolute temperature by the following
expressions: ‘

0 = 487/T (kg m %)

- - (&

Y = 2x 10T | (Nem ?)
‘f‘ Y , by X - - - .(

k = 1.57 x 10 °T (Jm ' s ' k1Y) (28) ' ©

where X = 0.8

0

ues of these properties are listed in Appendix C. 1In

ES)

The, actual va

[N

dimensionlesy variables:
¥ . g -
= I/T v , : (2_92
= k= 1% (30)

° - 4
Wijth Cp for argon independent of the temperature, Equation
(30) agre s with the fact that' the Prandtl number for argon is

o

constant,}] and is equal to 0.672.#

ith the physicg\l properties varying only with the tempera— h

ture, the independent variables that characterized the .flow around a

) (only by changing the value Z(the .exponent Xx.
AN ' \ '

Equations (29) and (30) couple the enérgy equation to the
N e : d ' »
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¥
three variables only, namely, ¥, ¢ aqd T.

3
3y

THE BOUNDARY CONDITIONS

[
PR

1
The three main variables in the momentum and energy.equations
are the stream function, vorticity and temperature. In the numerical

solution, a few other variables were also introduced, to reduce the
. X

number of calculations and the size and complexity of the difference
/
equationg. The functions F and G were defined as:

’ 4
F vé g/r sino (31)

wzr sin ° - 132)
| N 1 K

I ¢

]
Furthermore, when the functionsf& and | were evaluated, v and Yo

/

| i
were used and not the stream function.
|

The boundari@conditions at the sphere surface, (z = 0)

3

Lwere:
\ N o u
) y = 0
T - . To ' Lo .
‘ | \57 ) o
v = ¥/ = 0
r
£ A m ov¥/ez = 0 ) .

N 2 t
a2

The condition for the vorticity at the surface was derived as
follows: ‘ .
[from Equation (14)]

z = 2 dvg/az + vy - av J30)/x
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@ ?

At the surface, this-reduced to: _ !

)

Carrying out the differentiation and dropping out all terms con-

taining 3¥/3z gave:

Also

N

r - ’ave/az“ = 23/3z (1/pr?sin®.3¥/3z)

¢
+* . - a
!

X3
Y

|

l

=

Zo = 1/p081in0.32¥/32% = Ty/sinG.3%¥/3z?
. &
.o v J []
F = Co/81n0
G = HoZosin® = T§ Lo8ind ’
At the outer boundary (z =2z ): , ’ \V
S .
Y = 1/2 ¢? sin®@ . -
g = F = ¢ = 0 @
T r = 1
v = ~cps0 C L
r )
2" ®
v = d&nﬁ@h
(0] K. '\

= 1 n
)

* To 'reduce~the size of the computation domain, only the upper

half of the flow field was considered. The other half was exactly )

]
the qpég since the flow was symmetric around the axis. Consequently,

] ? ¢

conditions along the axis of symmetry also had to be defined.

N ¢

’ b At @ = 0°: - ' L™

. RN
i L
¥ - o o
c - G - 0 ) i
aT/30 = 0 ’
“ ° - A
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“ 4

4 "‘w r
3

&

§

At 0 = 180°:

b ] F = aTao
|
!
|
|

z = =G = 0
¢ B aT/30 = 0 '
. ve' = 0 -

v, + n 1/or23%y/5

. F~ ¥ = " -1fr Qa;/a

K Y
THE DIFFERENCE EQUATIONS

[ I3

: !
transfo}med from their original partial

‘ \
solu]tion. To do this, the flow field wa

number of mesh points. The variables,

o

approximated by Taylor series and the de
of idjacené points. The solution, then,

\——étfferencr‘q\mticms at every lattipe po

’ N L]

N of algebraic equations, thus, making thejm amenable to a computer

3Y/30

ezu

0 ‘

“fhe stream function, vorticity and temperature equ ions’ were

differential form_to as

1
i

. - L)
8 first divided into a large

h 13
at each of tl:}se points, were

consisted of ’satiéfying ‘the
* i

int ¢ . The égﬁ'pral—differe”nég

‘ <
rivatives determin%g in terms
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]

L ¢
method was used for all of the internal points. With thisvmeéhod,

the derivative }s apgyoximated by the difference between points on

both sides of the point under consideration. Forwaxd-difference

Al

and backward-diffemence approxfgations evaluate the derivatives in

-

terms of two or more comsecutive pointg in the same directionm,
¢

.
. either in front or behind the lattice point. These were used to

f

Q

approximate the Neumann-type boundary conditions. The general
,.é

fiﬂite—difference equations, accurate up to the order of hf are

»

-

listed in Appeﬁdix A.

A

-
¢

Figurérl illustrates the cirdular mesh used. It can be seen

\ . ) .

. that the divisions are smal}est'near“the surface of the sphere, This

&

was necessary for obtaining accurate description of the flow where
‘ .

the gradients are steepest. The governing equations, wr%tten in the

! ?

dif ference form accu;ate to 0(h?®), together with the boundary con-

*

)ditions are ‘listed below. .,
e ' Y

\ I
£
. — o

Stream Function

o e

. o
[¥(I,J+1) (2-4) + ¥(I,J-1)(24A)]/2A* + (¥(I+1,J)(2-Bcotd) +

\v'(f;l,ﬁ)(2+3cqote)]/2-132 - Y(1,J)(2/A+2/B%) - (1,3)r’sin®/T(1,J).

+ 1/T(1,J) [9¥/92.3T/3z + 3¥/30.3T/30] = 0 (33)
Vorticity ‘ s » » \ v

b

[y

'[G(I,J+1)(2-A) + G(I,J¥1)(2¥A)]/2A’ + [c(1+1,J)cz—ncoté»,J—’*ﬁ‘ ‘

G(I-1,J) (2+Bcot0)}/2B* - G(I,J)(2/A*+2/B?) +'%(u)sinG - Rersind/2T (p)

)

+ Rersin0/4{3Y¥/30[F(1,J+1) = F(I,J-l)/é - ?V/Bz[f(1+l,3) - '

F(I-1,D)1/B} = 0 + t " W)

u

B g

v
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The functions\_z_ and I', in difference form are given in
Appendix A, For simpiicity, some of 'the derivatives in the dif-

ference equations are written in their differential form. The

-

difference equivalent of these derivatives can be obtained by
-
direct substitution into the finite~difference equations listed in -

Appendix A.

. N [ | "
. Energy ‘i‘( - - . . T
, [T(L,J41) (244) + T(1,J-1) (2-A)1/2A% + ” )
I'4 ‘ l . )
_ [T(141,3) (24Bcotd®) + T(I-1,J)(2-Bcot0)]/2B* -
. T(I,J)(2/A* + 2/B?) + Pe/[2rsin0T(I,])*] (3¥/38.3T/3z -
0¥/92.9T/30) + x/T(1,J) [(3T/3z)* + (3T/90)?] =.0 . (35)-
V l‘ 2 ! L.
Bo@ndary Conditions . Ty A
_’\ . . * R
1 h ”V €
, [ 7
#* . . Atz = 0! ¥ i\
[ . B . )
I,y = o0 ) ’ ,
f‘ N O .
~ vy (1,1) = 0 R , '
| . ) R
S - '/( N a‘
/ ‘Vr(I‘:l) - '= 0‘
’ 10 % § R ‘T,
> *
- ’ £(I,1) & . T,.[8Y(1,2) -~ ¥(I1,3))2A%s1n0
S 1e % = - TX(1,8)sin0 R
T K
F(Ipl) - 3.6(1',1)/811‘:‘ "



1Y a
¥(I,MH1) - 1/2 x} sin® 5
b4
£(1,MH1) - & 0
F(I,M+1) = G(I,MH) = 0
T(I, M) = -1
~ e ? VO(I,M-H.) . = sin®
s, ' ) [« ] -0 3 -
( o vr(I,’M+1) \= - -cos _ _
' . At © = 0: e .
:F N e - ’
’ Y1, = 0 . \
z(1,3) = 0’
‘ ' ‘ i I . LA
I T(1,9) - 4T(2,0) = 76,0113 )
< u N ,: \
o S vX1,) = 0- |
Y oo
. Y ! y
B ¢ v (1,D) =, -2T(1,)[¥(2,3) /B
,1(__"; - X
J |
¥F(1,J) ‘
4
» G(L, .-
&
L 2]
: . .
¥ (N¥L,J) /
. - W
w g(N+1,D) - 0 = /o A
. . k
S T(WLD) = /. -I4T(N,0) - T(N-1,D)]1/3
Vo (H1,1) = .0 v
! . ,‘
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/
! ) ' ‘ \ 2_2
v_(N+1,0) - 2T(N+1,J) ¥(N,J)/B3r
CF(N+L,T) - -z (N,J) /Br
. y G(N+1,J) - 0.

The derivation of the Neumann-type boundary conditiou%&is

/ given in Appendix A. 0 ;

i
N
It .

The above algebraic equations cannot be solved directly
because of their non-linearity. ﬁence, an iterative procedure:was
- used. Thg_most appropriate iterétioﬁ method is the Successive Over

| e Relaxation (SOR) method, where a relaxation factor is used to con-
trol the speed of convergence of the process and to maintain its

stability. /

‘ t
' THE RELAXATION PROCEDURE .
\
{ " 1 ll ,”
- e Equations (33) to (35) can bg written in a general form
1] . ' i , \.
as} ) / : BN
" , / N \\ N
(1,J) = £{o(I+1,]), o(1—1,$), ¢(1,J+1), &(1,J-1)] "~ (36)

o

».
. P\ o
: : g Hence, to find the value of the function ¢ at the point (I,J), the

{

values of this function must be defined Aor the foﬁ* adjacent poinis.
\ In other words, to start the process, initial values {#f all the

functions at every mesh point in the grid must be agssigned. To
satisfy the governing equations, new valueg of the variable are then
calculated with the aid of Equation (36). If the initial guess was

very far from the required aoﬂution, then direct substitution of the

‘(:) ) X . P ™ .
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/! 4’{
,/spéce, and therefore it was the method used in this study.

Q
¥
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- 1

new 'values in th‘e‘grid can cause instabilities which may léad to
divergence. To avoid this, the r{gw value of the fundtion that is .

placed in-the grid iswchosen somewhere between the old and the

! - R
calculaﬁed values, thus:
\
Pnew - ?old tOWCLL1%1d) (37)

-

W'is known as the relaxation coefficient. Equation (36) can be
i 1
re-written as:

Res =, F[g(I+1,d), $(I-1,0), 8(1,3+1), #(1,3-1)] +
Q(IIJ) ® \ - " (38)
& X

This simplifies Equation (37) to:

®ew ®,1q * W-Res (39)

o . :
Equation (39) was easier to program than Equation (37).

Either of two methods can be used to evaluate Equaﬂ.on (38): (a)p

i
Richardseén's method where the old values for all of the variables are

ugsed to gvaluate Res, or (b) Liebmann's method where the new values

é're used as they are calculatqd. Liebmann's method gonverges much *

&
3

faster than Richardson's and reciuires‘ about one half the storage
£

The opté:ll;mm value of the relaxation cpefficient that will

give the fastest convergence depends on the mesh, the shape of the

A .
domain, the type of boundary conditions and on the nature of the -

‘ aquations [Roache (1972)]. Roache (1972) and Lapidus (1§62) gave

]



.
J_.l)

- y
’
methods for calculating the optimum relaxation coe_ffic{ents for
linear elliptic equations. No such methods are.availahlg when the
N - LY
© equations are non-linear, Moreover, because of the large times

/quirel-l for solving a sét of non-linear equations, it is not “\.

K:jactical to conduct a systématic study of‘&the effect of different

relaxation coefficients on the rate of colnvergence. In such in-

’ sta:nces, the relaxation coefficients are chosen by trial and error,
and their valu;e is specific to the system under consideratiqn:
Usually, the selection of the relaxation» coefficient is based on

thé highest value that does not cause instabilities.

o
®

\ ‘ ¢

For non-linear problems, there is no reason for assuming

-that' the optimum relaxation éoefficient has the same value over '

the entire flow field. 1In the logarithmic grid of the present study,

the f,nesh size increased éxponentially with radial distance w from
> A

T

. L
the surface resulting in an increased instability near the outer

4

boundary. Therefore, small values of the relaxation coefficients

ngar the outer boundary were necessary to reduce erroﬁr propagation

£
Q

and to dampen oscillations.

-~
N

(
The general form of a second-order el.liptic\equation is: ¢
V3 o =  Pad/ax + Q -30/3y e , (40)
. Xy “
‘ a ~
Woo (1970) derived the following expression for)b\é\zlaxation
coefficfents to be used :},n\ the solxlthion of the above ™Mquation:
o M 1 #
ﬁ S
W = 2/[1 + Y0.5(P7 + Q%)) ’ LA
o1, ]

,

k3

G
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E 4
and for the linear Poisson's equation:‘ . N N
’ . '
W, o= &, 2/01+ w/05(N M )] (42)
‘J\ 3 .
El .
» Woo found that for linear equations, such as constant-

Y . \
, | : .
property heat transfer to 'a sphere, convergence with these relaxation
o o

coefficients was much faster than when constant factors were used.

w L]
No such comparisoﬁ was possible for the non-linear problem, where

q b g , 0
the relaxation coefficients had to be evaluated at every step since

Vi
P and Q were con,tinuous’ly changed during the computation. ortu-~

' L3

nately, Woo' found that these coefficients (P and §) did not| vary
\ ‘.

- much from one iteration to the other and, thus, had to be re-

0 f. !
calculated only once in every K iterations. K was of the Arder of

20.

;

ETo speed up the rate of cqonvergehce,” Woo also described a
]

“convergence promotion technique", where the process was given a
. .\ -
N - 14 . ]
periodical pulse change everyRK iteratiéns, by multiplyiq'g the
. —_— %

~ 7
relaxation coefficients by a large factor (of the order pf 30).

This pulse change caused temporary instability that, ‘in general,

=

s 3 s . (\
'shot' the solution towards convergence. To prevent such insta-
bility from propagating across the field, a new sequence of cal-

culations was devised. In this sequence, each complete iteration o

»
1 a ’

cycle was divided into two alternatihg half-cycles: one used

direct substitution'and the other Yariable coefficients with

cc;nvergencq promction. It was found that this method was more stable

-y - ! .

and two to three tiimes faster than direct SOR.

o

V\st
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/ fhe values of P and Q were found from Bqua;tions (22) and
w |

(27):
; N , 4

P, =  Re/2rsin® 3¥/dz R T (43) 7
. / “ N

| QC = -Re/2rsin® 3¥/30 oo (48)
PT = Pe/2rsind- 3V¥/3 ' (45)
Qp " = -Pef2rsin® 3¥/30 ~(46)

"

& /
A computer programme was written for the simultaneous soluT

1
a

tion of the governing equ{ations.by the above iteration method. Diréct
substitution and varying relaxation coefficients were applied alter-
nately on the mesh points, to calculate the new.values of the vor-

" .

ticity, stream function and temperature. The programme listing is

given in Appendix D. The independent variables of the programme weré;,.
- -

B3

-

PO ad
éﬁi Reynolds number, Pec;et nuiiber , dimensionless surface temperature
an

the property exponent x. The programme, however, did not give

-

the constant-property solution when x was set to zero, because the .
—~

variation of the dé’:sity with temperature was still included in the =~

e,ci“uatioxis. This-less general set of 'equationd was found to require
less camputations, as compared to that where the properties were
[
. ' .
evaluated individually at every point. To obtain the|constant-,
iy
S

property solution a separate programme was written. ce the simpler

. <

conatant—-property&equations were used in this programme, the energy
. o "l \; _b J
“equation was no Ionger t’:oupled to .the ﬁnomentum equations, and thus,

the former was solved after ‘the flow"field had been calculated. This

| “
»programme, is also listed in_ Appendix D\ . . \

A ! L4 -

'

N

-

-,
J N . e
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k¢ COMPYTATION SEQUENCE 2 )
/
' The number of iterations required to reach convergence

depended on the nature of the‘;roblem, the relaxation coefficients
4 &
A

Starting with a guess that was far

used and on the initial guess.
from the condition under study caused instabilities and required the

use Qé very low relaﬁation coefficient’s which in turn led to an
{1
T overcome this problem,

increase in the number of iterations.
Y ° /
the solutions were obtained in small faster steps, through which

the Reynolds numbér and the ‘surface temperature, T, were changed
L]

i
N

P] .
gradually.
To allow the use of one s¢lution as an initial guess for a
R &

/

v

successive one, the lattice spacing and the domdin size must be the

2
-

The mesh size and spaEing,thus thésen should be suitable

°

1]
same, otherwise a complicated interpolation scheme would be, re-
.

At low Reynolds

-

quired.
over a reasonable range of the Reynolds number.

Lat-

numbers wall effects are important ‘and consequently the flow field
must be fairly large. As the Reynolds number increaseF the effect

/ .
of the proximity of the outer boundary onithe flow decreases.
tice spacing starts to gain importance with increaslng‘gg because
. From

-

¢

the gradients become steeper near the sgurface .of the ‘sphere
a computation point of view, the direct effect 6f increasing field

«
1
°

size and reducing lattice spaciqg is an increase in thQ}computer
Decreasing the °

>

L 1
memory and in the timg required per iteration.
number of points by increasdng lattice spacing or reducing theé field

size may cause inaccuracies and instabilities in the solutionm,
. . »
RN

o

2
N
o
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o

Re = 1 was obtained with a qiﬁferent\grid.‘

e
[

o /’i
a
.
°

especfally at the rear part of the sphere.
, \

4

°

The complexity of the equations under study prevented a -

systematic investigation of the exact effects of lattice spacing
l -

and field size on the accuracy of the solutjons, in ordeﬁgto permit

the selection of an optimum mesh. Woo (1971) studied. the constant-—

S

property problem exténsivgsy and made some recommendations on the
optimum mesh wnd field sizes. These guidelines were used in this

study,- where twg different mesh sizes were used for the low and the
. ’ y . P .
intermediate Reynolds number raﬁgeg, thus:
{4 -

o

'y Q

Re ~ Az M 'r, s X
: d.1 - 1 0.1 40 54.6  6° 30 A
10 -50 0.05 40 7.39 6> 30 « ..
¢ ' . c
- In the present work, the constant-property solutions were

k]

L ; §
obtained first for all Reynolds numbers under consigeration. The

i

simpler computer programme was used. It waé found that, p;r itera-
tion, this programme was four times faster than the variable- )
property oné:;wFor the constant-property flow, all the temperature

y ] : - . , .
p?ofiles'were calculated with Tg set equal to Oy5.,

il .- ¥ ' 6

A

.

0

'

For Ioﬁ‘ngﬁolds numbers (Re = 0.1, 1) the iniiial guessesu
were_the creeping flow and the heat conduction solutions around a

hphere; Theqé‘solutions,.and not the solution for Re = 1, were also

%

used as first approximation for Re = 10, since the solution at

<

® %
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1
The convergence criterion in this study was based on maxi-

mum absolute error in the temperature and vorti'city.‘ When the

o -« e
change in thé&se variables between successive iterations was less
i /

than t$e tolerance, at every lattice point, the computation process

. ¢

was stopped and the Nusselt number and the drag coefficients cal-
[ ! ’ -

culdted. ®hese were also calculated once every K iteratfons. The

K
o

— ) - Fi
™ tolerance was 10 ® for low Re and went up to 10 ® at Reynolds number . -

of 50. As the computation timgs became excessive,_ the walculations "

were stopped-wlien the'variations in the Nusselt mumber and the drag '
‘ <« - .

coefficients from‘one iteration to the otheﬂr were small, It was

© 3 .
-~ e »

\
felt that very ccurate solutions-were not quite necessary since,
. o "
o in° practice, the f£low variables in high temperature environments are ¥ »

not known to such an’accuracy as to justify the incmease in the com—

I 3 4\ .
Jputation work. ’ . v, o .
0 -
. ~N ‘ .
, ) The constant-property flow and temperature fields were

-

calculated for Re = 0.1, 1, 10, 26, 3b and 50. The surf;ée tem-

v

- N N ¢ N i
perature was set at;. a value'of 0.50. Since the constant-property

o L)

- . # - ° v
energ’ynequation' is linear, in temperature, the temperature field is
»

{

‘not affected by Dtﬁe actual value of the surface temperature. The

A
/’ ariab e-property flow conditions studied are listed in Table I.

Y

14
The variable-—property solution for the Limiting case,\of To = 1\was

the same as the constant—property solutié’n. . b \

~ . L] . [
AN N

N M i

[ B

-

. j
. The constant-property golutionJ were used as the initial -

guess for thHe variabl;e-‘-prop‘ertf?} calculatfons. . In cases when To of ,'

|

&
(; ) / _ the ‘initial guess was different from that of the \requireﬁ solution,

4
|
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TABLE I . °
~ ke
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VARIABLE-PROPERTY FLOW CONDITIONS L 3
' . ”
. I . . >
h ¢ Y A ‘, -
v
VALUE OF SURFACE REYNOLDS NUMBER, Rey - .
LY . R ] ? . N
R —— ) ®
- o [}
Ty =\0,75 To = 0.50 To = 0.25 .
. - r N -
\ *
0.17 N 0.35 , 1.27 .
A | ) o .
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& .
the temperature field was multiplied by a scaling factor. This

i

step was necessary to avoid divergence’” and to accelerate the

solution. The following equatibn was used to change the témperature
4

field from Te, <T{I.J) <1 to To.2<T(1,J),<1:
1

T(g.\])g = (1 - To,z)/(l - To;:) . [T(I;J)l -

TO:I] + TOo? (1‘7)

0 1

A one-step jump from constant-property to variable-property

flow, at Te = 0.5, was found to diverge at Re<10. This reflects the
large effect of the variation of properties on the flow and tempera-

¢
ture patterns. To stabilize the process the following sequence was

used: i - - e — —

— \

Constant-property (T, = 0.5) - Variable-property:

To = 0.75 » T, = 0.50 » To = 0.25
|

At each step the temperature-profile-was adjusted by Equation (47).

Even with the above stepwise procedure, the computation

3

process still tended to diverge as the Reynolds number increased or
gﬁ'dec;éased. A further dampening factor was introﬂuced in the
vorticity calculation to check these instabilities; the residue of
the vorticity equation was mulgipliéd'by a factor g a£ every lattice

point. a had a value between zero and unity. Table II lists the
‘ e
values of a used at different Reynolds ngmbe?s and temperature.

-

L4 ' S
i As T, décreased, the solution took longer to converge and,

therefore, it was not possible to go below To = 0.25. It is worth.
2

<

o ' *
W : :

b
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TABLE II

>

VALUES OF DAMPENING FACTOR, «

3\
J 3
Re_, To = 1.00* To = 0.75 . To = 0.50 To = 0.25
0.1 1.0 1.0 0.7 0.7
1 1.0 1.0 0.7 0.7
10 - 1.0 1.0 0.5 0.4
20 , 1.0 0.7 '0.5 0.4
-~ .
30 1.0 ;g& 027" 0.5 0.4
50 Py 1.0 . 0.7 0.4 0.4
P!

. s

*To = 1 refers to constant-property solution. s
i \ /
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.therefore the promotion factor was set at a value of unity, -

77

e

noting here that the surface Reynolds guhber at To = 0.25 was

s et e

twelve times larger than that evaluated at bulk flow conditions. $
N " N
i

This may explain the difficulties incurred in reachihg convergence.

It is quite possible that’ the process might have been moré stable
kg .

had the initial guess been at a higher Reynolds number t%an that of

¥
the required solution.

1

As the Reynolds numbér increased and T, decreased the process ‘ [/

became more susceptible to instabilities caused by the convergence

promotion technique. The number of iterations between the promotion
steps, K, had to be increased from 20 to 30, and the acceleration
factor reduced from 30 to 20, for the constant property solution.

For the variable-property situation it was found that convergéLce '

was ﬁ}owed by this téchniqqe due to increased instabilities and:

It should be emphasized again, at this point, that all the
methods used above to acceleratg or ieach convergence were very
arbitrary. By no means are they the fastest or the 'optimum' ones.
Because of the leﬁgthy nature'of the problem, it was not ppssible’to
investigate the methoquOf solution systematically anqﬁ;ome up with

definite recommendations on the best pethod that should be used.
. : ' ‘

CALCULATION OF THE DRAG COEFFICIENTS

{
¢

The drag acting on a sphere can be divided into two com- : . T %?

- ¥ 'j&
ponents: skin drag which is due to viscous forces at the surface of &

the sphere, and pressure drag which 1s caused by differences in the

I
' L.
s
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) .
. \/\ ‘

pressure bétween the front and rear of the sphere.
- ‘

A

", . \
The force acting on a sphere is the sum of the pressure and ‘

friction forcéz minus the static forces [Bird (1960)], thus:

| N [ 4 '
s Fe o= - F) 4+ R _ (48
2-".": L ) , N . v
where F = ! [p] cos@) R? sin® 30 8¢ (49)
n o0 r=R i .
' 27 . )
Fpo= S [P] g 080 R* sind 30 3¢ - (50)
Iz'“'" i
F = I {ulr 3/0x(v, /x) +
t [ 2] ' 0 '
‘}\ . 1/r avrlaellésRsinG}R’ sin0 303¢ (5D

.

The friction facﬁor (drag coefficient) is defined as:

» C
Gy = F AR, (52)

where A is a characteristic area and E, a characteristic kinetic

i

energy per unit volume. For a sphere the characteristic area is the
projected area, wR?, ;nduthe kinetic energy is p“ﬁ’mIZ. The choice
of p is arbitrary and\tan be taken as any density in the flow field.
Since all the variables were:non-&imensionalized in ‘terms of the Lulk

gas condition, the density used in the kinetic energy term was eva-

luated at bulk gas tgmpetatuté.' The components of the drag are then:

1 // .
Cpp = (F - ?e)/[ﬂ}R’me’Q/Z]‘ 4 (53) |
! ,
e Ft/[mll'pmﬂ°w/2] ', (54)

<

\ - L4

\ 1

i
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a

Assuming axisymmetric flow and defining the surface pres-
L

P . ’ ¢

sure, p(@), as:

@ o
p(® = fp - p)/ o U /2] (55)
1 \\ - /
reduce the drag equations to Ehe'following dimensionless form:
2
a0 7
C = I p(®) sin20 30 (56)
DP 0 !
" “a ,
l i ‘" - >
. Cop = <, 8ue/Re / r, 5in%0 30 : ’ (57)
s ) 7 -

Details of !he derivation can be found ingAppendix B.
‘ \ -
To evaluate the surface pressure from the velocity field,

a gimilar method to that of Jenson (1959) was used, except the
physical pgoperties were allowed to vary with the radial and angular,
positions. With this method the stagnation pressure, po, (at 0=0°)

was evaluated first by integrating the r-component of the Navier-
[

Stokes equation along the forward axis of symmetry. The gurface

pressure distribution was then found by integrating thefé-componént

of the flow equation along the surface of the sphere between ©=0°
{ B

N .
and 0=0. This is briefly described below with further details to be_

b “

found in Appendix B.

r~tomponent:

| : .
aplarle_o = f(Vr! v@’ .pv' ®) ' (58)
” ) *
T am i
Po = { ap/Qr‘e'o dr -".g ap/azle_o tlz6 a (59)
i ) b
; . ; \
! N

e
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#

Substitution of Equation (58).int\i\: (59) gave, in gimen-

AN / .
sionless variables: \,
.
. o, & |
) ' P, - / {8/Re.T¥FE/30 - 2/3 3V.v/dz
[+]
N : ) '

e X/T a'r/az(\v.\‘;/a - Jvp/82/3)] -
i ' \
. 2/T v 3v /3z} d=z ’
r r .

’
+

+

4

o

0

(60)

In a similar manner, the dimensionless surface pressure can be ex-

ey

pressed as:

[

p(0)

1

LA
& F

=

F4

0 - . _
po + 4T:/Re fX0r/0z + ¢ + tx/T.9T/32) do (61)
. x/T.3T/3z)

Equation (60) was integrated numerically}hlo%& the axis.

The derivatives were evaluated by central- and forward-difference

‘methods. Simpson's rule was used for approximating the integrals.
P .

The pressures at the surface mesh points were found by successive

i b

f‘ix
integration of -Equation (61), using the Trapezoidal

] F {
EVALUATION OF THE NUSSELT NUMBER

T —

I

The local Nusselt number can be found by est

-

rule.

U

imating the

rate of heat transfer to a point at the surface of the sﬁhere, thus!

q, = -~k 3T/9r

q, - ’h AT

h(@) = (k/oT 8T/3r)|r;R ! \

.

(62)
(63)
(64)

The Nusselt number was based on bulk gas conditioms. Therefore,

-
57
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certain parameters. of the flow arnundY the sphere which will be

81

\ H
J A
“ ' 2 X LIS /‘ f/ \
<
Nu(®) .=  h(®) D/k, .- (65) i
v AN : , |
+ ’ / 3
= -~ L
1 / .
From Equation (64): 7 P ' Y
: ~ 4
) - ; .
b .
L. - /
Nu(e) k /e, . LT, ' ) DaT/or (66) . 1
- . 1,!
, : L /.
In dimensionless vadiabl%: /]
¥
Nu(0) = 2kd/(1 - To) . 2TV02 f 67)

To‘ calcxx_lahte the overall Nusselt number;,/‘Nu(G) is averaged

over the entire surface,

Jf

7
N " v/ n
i} , ,
Nu. = {/Nu(@) 2R sin@® R dO}/{/27R? sind® dO} (68) [
] . °
N |
or Nu - 1/2 / Nu(0) sin@ d¢ 69)
0 ! S v
3T/ was evaluated numerically at every mesh point at the i
- surface. The overall Nusselt number w?é obtained by numerical in-
| L
tegration of Equation (69), using Simp/‘son's rule. .

e

RESULTS AND DISCUSSION

'
g

this point that the
/ ¢ <.
objective of this anﬁlysis waé to obtain predictions of the heat

It 1is pérhaps useful to keep in mind at

L3

transfer rate', as expressed/by the Nusselt number, Qurider conditions
. ¢ . .
of variable properties of the flow. These predictions are presented

/ v
in the next section. In{the course of the numerical computations,
‘ AN

however, a number of iftefmediate results were obtained concerning

¢ \

o .
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L4

' ’ 'V-\) ¢ >
@ .
pregented first. These results are extremely interesting, since
they provide an insg'ight as to the complex phenomena occurring during

the particular situation studied in this investigation. A detailed -
/

{ .
quantitative discussion of these phenomena is, however, beyond the

scope of this thesis. The discussion will therefore-be limited to ¢
a qualxitative consideration of the major aspects of the numericals ’
results. '

In the discussion that folfows, results obtained under

1

isgthermal conditions (constant-property flow) will be presented and

l

compz,arﬂison will be made ‘%@h the results obtained under conditions

2

4

of ﬁn;:reasing aeparture from isothermal conditions, as the temperature
difference between the free stream and the sphere surface increases.
In tl)lis comparison, it will be usleful to visualize that the free
stream conditions/,remain constant for a given Reynolds number, and
the ;ncreasing teI‘nperat’ure difference as expressed by the value of

To is{brou ht upon by a deéreasing sphere surface ,temperature. In
other wofrds, while To decreases, the free stream temperature,
kinematic viscosity and veloc’ity remain constant, thus facilitating

the interpretation of the observed trends.

Flow Eield /\
, A

1 ! i ! 4
The surface vorticity distributions for 0.1<Re, <50 and 0.25

i
surface vorticity distribution exhibits a fore-and-aft symmetry with

<To<1.0 are shown in Figures 2 to 7. At low~Reynolds/humbers the

a maximum va'lue’atv the equator, (0=90°). As the Reynolds number

SN . eIy
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FIGURE 5
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increascs, the velocity gradients near the surface become steeper,

leading ta an increase in the vorticity of the flow in this region.

'
-

- g
Moreover, the fore-and-aft symmetry is lost and the point of maximum

~

vorticity moves up closer to the frout stagnation point. This is
caused by the increase in the inertia forces in the boundary layer
so that at high enough Reynolds numbers the flow can no longer

follow the contour of the body and separation Sccurs. Flow separa-

]
tion leaves a region of recirculating flow behind the sphere. The

3

velocity gradients near the surface in this wake region are negative

t é - * , i
since the ﬂlnw is in the direction opposite to the main flow. Con-
*
sequently, the surface vorticity in the recirculating vortex is also
negative. Separation thus takes g}aTe at the point where the surface

vorticity is equal to zero.//Ségg;ation points at different Reynolds
1

e
numbers were dgﬁg;m{ﬁéa/;;om Figures 5 to 7 and are listed in Table

III./;Qhéfgg;;Aary of the vortex is defined by the streamline ¥=0.

/ ~

The length of the vortex is then the distance at which this streamline
intersects ‘the axis of symmetry. The variations of the vortex length,

expressed as the ratio L/D, with the Reynolds number and To are listed

in Table 1V. ¥

It can be ?bserved from Figures 2 to 7 and Tables III and IV
that the decrease in the spQgre surface temperature had iittle effect
'on the overall trends of the flow. At a specific Reynolds%@ﬁéber,
the maximum walue of the'surface vorticity occurred at thexiame angle,

at all T, values. Flow separation point and vortex size were also

onlylmarginally affected by the decrease in the surface tempefature.

"

I
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: TABLE v

et oo e

2

- 4 ?\' ~
; | - N
! .(
) Re Te = 1.0 To = 0.75 To = 0.50 " T = 0.25
.
20 - 0.02 0.03 0.03
) <, 30 0.22 0.20 0.21 ~ 0.22'
_ ) ’ ;
50 . 0.48 © 0.54 | 0.55 0.52
, |
o I\ (k .i
‘ |
{
1
|-
I 1 v
\ I -
t - ° #
~
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, The actual vorticity values, however, became vefy much higher as To
, J

f decreased, actually increasing exponentially with a decrease in Ta.

' i

This is attributed to higher velocities and hence steeper velocity

" 'v.gradients near the surface caused by a decrease in the fluid vis-

|
“¢osity. It is certainly the most striking feature of the vorticity
calculations. A

Figures 8 and 9 compare ;he separat;bn angle and vortex
‘lengths obtained in this study for conéganL-property\glow with ex-
ﬁerimental and'theoretical results reported in the literature. Very
good agreement is indicated. It was not possible to present a
similar comparison for the variable-property case, due to the un-

avajilability of pertinent data.

¢

Figures 10 to 15 show the streaml{p@s»and vorticity contours
‘

W/
for constant-properFyvf}ow and the variable-property case at T, = °
\"r~ / ‘
0.25 for Re = 0.1,/ 10-and 50. Here again, the general shape of the

- flow field did not” change significantly with departure from isother-

-~

mal conditions. The streamlines, however, moved closer as the surface

temperature was reduced. This was partly caused by an increage in

,,,,,,,,,,,,

the [luid density accompanied with.little change in- the velocity, and

. '
N
>

velocities ggar»tﬁéﬂsurface. For the same reasons, the recirculation

e . -
in the wake was much faster for colder sphere surfaces while the actual
size of the vortex was approximately the same as for the constant-
property case. The presence of low viscosity, higher demsity and

o
" velocity near the surface, as that experienced in the variable-

.
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/property case, should effedt a much ‘earlier separation.. This,
however, was not t)he case due to the complex interaction between the
steep velocity, temperature and property gradients near the surface.

A detailed discussion of these phenomena is beyond the scope of this

thesis.

ot Texlmerature Field and Local Nusselt Numbers N

=
The temperature fields for constant-property flows and

variable-property flows at To = 0.25 ate shown in Figures 16 to 18,
for Re = 0.1, 10 and 50. Figures 19 to 24 are plots of the local
Nusselt number distributions along the sphere surface for all the

cages studied. All of the Nusselt numbers were evaluated at free-n

- -~ stream conditions (same k) to allow comparison between diffement
fls surface temperature conditions.:
~ o

- Once again, the change in thé sg{%face temperature affebt;‘é‘&

the leyel of the temperature ornly and no,t;/)tﬁe general pattern of the
‘temperature field. The variéble-property flow isotherms moved\closer
to each other as the surface temperature was decr‘easedp, regulting in
higher temperature g’f'a/dients ‘at the surface than in the congtants-

.. ’ property case. 'f'his increase in the temperature gradient, Ahowever,. /

| £

did not result in higher heat transfer rates, or Nusselt numbers

(se

was accompanied by a similar reduction in the thermal condudtivity

T ?f t}hé: gas near the surface. .
P 3, L_" » . , " \ .
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FIGURE 21
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Surface Pregssure Distribution

!

N

N

- oo Figures 25 to 30 show the surface pressure distributions for

\

all of the cases studied. It can be observed that at low.Reynolds

numbers (Re<1) the effect of decreasing the surface temperature was
a lowering in the value of the front stagnation pressure, p,. On
the other hand, for intermediate values of the Reynolds number this

N ? ‘fnfluence was reversed and po, attained higher values at lower surface

<

temperatures. Equation (60) cgsvpe re-written in the following
. by

simplified form:

i

\
Po = 1inertia term + 8/Re [viscous term] s

v ORI R T

\
4

. As the surface temperature is lowered, the density of the
/ fluid increases, resulting in higher inertia' forces. On ;he other
hand, lower gurface temperature reduces viscous forces by reducing
fluid viscosity near the sphere. At low Reynolds number the viscous
N forces are predominating and by reducihg them :gg front stagnation
pressure is also reduced. However, at highér Reynolds numbers, the

inertia forces gain importance, leading to higher po values at lower

temperatures.
i In Figure 31 the values of the front stagnation pressure for

&
\

, , constant-property flow were plot;ed versus the Reynolds number. A
very good agreement between the present results and the results of

others can be observed- ' i
[ 4

1

(i) Figures 25 to 30 1Jd1cate that for all the Reynolds numbers

\ ~
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FIGURE 25
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FIGURE 27

EFFECT OF SURFACE TEMPERATURE

ON SURFACE PRESSURE DISTRIBUTION
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and To>0.5 the effect of varying fluid properties on the surface
pressure distribution was not vef§ marked. Howeve;Z at To = 0.25
the surface pressure gradient 3p/30 became less steéﬁ,?nd at Re>20
its *direction changed from negativ? to positive. Consequently, the
surface pressure increased witﬁ © leading to b(n)>po. The explana-
tion for this phenomenon can be deduced from the Navier-Stokes equa-
tion. At the sphere su;face, the inertia, forces are equal to zero
because of the no-slip condition. Hence, the change in the momentum
transfer by viscous forces is balanced by an equal change in the
pressure force. The rate of momentum ga}n by viscous transfer in
\

the © direction at the sphere surface is proportional to 3/3z(-uCr).
[

For constant property flow, the viscosity is constant and the change

e

in momentum transfer is positive sirce drr/dz is negative. Con-
séquently, the change in the pressure fgrce is negative. However,
when the viscosity is also changing with radial position, the overall
change in momentum transfer can be either negative’orrpositive,

depending on the relative magnitude of the viscosity and velocity

gradients. . J

v

From a\?urely physical po?nt of view,'it must be admitted
that the behaviour at T, = 0.25 is highf& anomalous. The increase
}n s*;face pressure at Re>20 predicted by the numerical analysis
is extremely di}ficult to reconcile with the cl§ssical phisical‘
visualization of béundary l;xgl,flow. Flow wit#out separation in

the presence of such large positive pressure gradients could only be

i
sustained if the boundary lafer were turbulent; the transition -
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v

occurring in the frontal region of the sphere. A turbulent boundary
-

layer would aldo account for the very low total drag coefficients, .

reported in the next section, under these conditions. It must be

emphasized, however, that the numerical analysis was entirely based
. - . »

on laminar flow considerations. The solutions would, therefore, be

invalid if turbulence were present. Nor c%n the analysis preJ&ct

the onset of turbulence. The interpretation must, therefore, be

strictly based on the momentum transfer considerations mentioned

~ above. ‘

Drag Coefficients 1

L

nThe values of the friction, pressure and total drag co-
efficients are listed in 'Tables V td& VIL. Since the friction drag

ig directly proportional to the viscosity and inversely proportional
< 3

® .
to the Reynolds number, it decreased monotonically with increasing N

Re and decreasing To. The pressure drag is a result of differences \

in the pressure over the sphere surface and is, therefore, directly
\

related to the shape of the pressure distribution curve. As was

discussed earlier, for -To>#.5 the effect of decreasing T, on p(©)

was small and consequently the variation of with To is also small.

? Sop
At To = 0.25, however, the shape of ﬁ(@) vs. O curves was drastically®
changéd and fience the pressure drag coefficients were significantly

reduced. -

" The constant—property drag coefficleuts obtained in this

study are compared in Figure 32 with experimental and theoretical

o~
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\ AN
oy .
™ .
N ,
f) TABLE V 1
P -
C N ,
;- a
£ ‘"’ B
FRICTION DRAC COEFFICIENTS
\ B
¥
. - [
Re To'= 1.0 To = 0.75 To = 0.50°  To = 0.25
’
, 0.1 168.4 148.1 129.2 103.8
o
e
1 18.45 16.56 14.63 L 12.42
N .(\\
. 10 2.96 2.69 2.46 2.19 ‘
3 ? -
. 20 1.07 1.65 1.52 1.37
b / famiiannd ‘3
30 1.35 1.26 1.16 1.04
4 50 0.96 0.90 0.84 *0.77
& ° /
- ) ‘/’ Py
¢ " |
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‘ TABLE VI
! \ /
| AN
| _ PRESSURE DRAG COEFFICIENTS ¢
!
- ™~
:
%. ?Q}‘ l” /
: Re To = 1.0 To = 0.75 To = 0.50 To = 0.25
' . ~T - '
: 0.1 82.3 87.7 85.0 38.0
: Co 9.04 9-90 9.70 2.90
EN N
; .10 1.63 1.77 1.89 0.33
g 20 1.79 1.18 1.21 -0.61 -
o ~ '
~ \
. / '
: 50 0.67 0.72 0.66 ~1.52
B ’ - ‘
:;é 3
?
- @
5 | \ . ~/
’ : } P X i
A .
¢ “ ’ -
[ ‘ ;/3 l A -
&' "\i"‘* “
) L
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a

. TABLE _VII
TOTAL DRAG COEFFICTENTS
i
1
- ! |
Re ° To .= /1-0 To = Oo 75 To = OQSO To = 0.25
N
. 0.1 250. 6 235.8 214.1 146.2
" ../7/ ’ﬁ
oo 1- 27.49 26.46 24.33 15.32
10 h /4.59 Ift46 * 4-36 2052
e ) !
20 - 2.86 2.83° 2.73 0.76
»
.
Y, 30 - 2.21 2.21 2.10 0.007
’ 50 1.62° 1.62. 1.50 ~.075
¥
i s
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»
~

B a

results of other workers. 'lzhe present results are slightly higher
than ‘most of the rest. This diqcrppgncy is possibly due to the

-
closer outer boundarigs selected for the present analysis (r, = 7.4)

as compared o r_ = 90 in LeClair's (1970) solution.

-
i - s
\

LORRELATION OF HEAT TRANSFER RESULTS )

“

The values of the overall Nusselt number for all of the

cases studied are listed in Table VIII. In the following analysis

» -

a correlation will be derived  for constant-property flow which will

/
then be modif}ed to include the effect of variable properties.

9

¥

™

Constant-Property Transfer

5} 3

?'Z{In Figure 33 ;he constant-property results of this study are
compared with’ the Eheoret;cafAreSZIts of Woo (1971) and Dennis et al.
(1973) and to the expé;imental equations of Whitaker (1972}, Beard
and Pruppacher (1971) and Ranz and Marshall (1952). Woo solved the °

governing equation; numerically, by finite-difference methods, while -

Dennig et al. applied the ser;es truncation method to both of the

~ o Lt o
4

flow and e;:jgy equations. Beard and Pruppacher's eqLations for

heat trapsfer are:

1

° . e
Re > 2 :° 1/2 Nu = 0.78 +'0.308 Pr*ls Re‘/’ (70)
. . } \ "‘\
Re <2 : 1/2 Nu =?1.+ 0.108 (Pr"/’ Re‘“)’ - (71)
*  Whitaker's correlation for Eonstant—property flow is: P
A . e o
No = 2 4 (0.4 Re? 4 0.06 Re*' ) Brovt (72)
s 0 N . . s
- 2 : - . " ~
- 5y - Y L
o 5
o ° 3 < L
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. . TABLE VIIT '

s - » . R -

\
.
> -
b .
1
N o

\ t -
‘ . . i

:

! . .

.

! V2

Re ‘ o "
uD/ v, To = 1.0% To = 0.75 To = 0.50 To = 0.25° s
) R %
, — \\ i 11,
. ’ S ¥
& 01 2ol 7 1,918 1.687 1.370, R
S 1 2.932 - 2,123 ' 1.879 1.526 . o
10~ ¢ 3.323 7 3.161 ° 2.924 . 2.537 ~. ‘
© . . R » ) . i \ .
~20 4.022 3.872 3.614 3.136 _
(3 ! k3 I . » © o
© 30 o 4.560 . 41425 4.143 3.584
« ] 1 ‘ - . B
50 5,411 5.281 < 4,979 . 4.313.°
~
. K : - ' 2 - - .
L N : A ) q [N S, .
. + - X = ‘3 ) )
* 7, =.1.0 refers to constant-property solution .
o * ) ) 2
. , o
. . . .
vt * -t
. / .
N \ k ) » / ! l' »
T ' 5
- , - 3 [y ‘ R . =<4
. X &
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N
\
» =1 ( ‘4’?“ ’ N '
, and Ranz and Marshall's is:
Nu - 2 + 0.6 Pr‘la Re‘/’ (73)

I 2
“ v

4
! Excellent agreement can be observed among the theoretical

results, including those of the present study. The experimental

correlations, however, are accurate for only very small ranges of
the Reynoldg}number. A new correlation will, therefore, be proposed

here to fit the ?umerical results. The general form of the equation

hY

will be assumed to be:

i

Nu = a # bPr™ Re" ' ) (74)

/
*

ggiggghe limiting Nusselt number at Re = 0. For a sphere immersed

A3
in a constant-property fluid, a has the value of 2. .The exponents

3
mand n needinot necessarily be constants.

4
af:: 3 v

In the present work, only one value of the Prandtl number

r

q‘as studied, namely, Pr = 0.67. Conseqaently, it was not possible
L]

to:investigate the effed%'of the Prandtl number from the results.
\ \

However, Hoffman and Ross (1972) solved the integral boundary-layerv

‘formulation of the energy equation numerically, and preposed the fol-

-

lowing equation for the exponent m:
m = 1/3-+2/3 exp (-0.85 Re®"3*) (75)
/
This equation was derived for the Prandtl number between 0.7.and 10.
A\
Equation (75) reduces to the asymptoﬁic values of unity at' very small

]

Reynolds numbers and of 1/3, predicted by the boundary layer thfory,—

.
A

S~
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at high Reynolds numbers. °\

=f
*

Woo (1970) solved the energy equation for Re between 1 and
300 and 0.25<Pr<5. Based on Equation (74), the exponent m in the

range 0.5<Pr<2 can be'derived from Woo's result®s as:

m = ' 0.78 Re %43 | (76)
\ " , 2 .- ) j
for O.2<Re<100§L For Re<0.2, m approaches the value of unity and at

high Re (>100) a value of 0.435. Both of Equations (75) and (76)

will be used to correlate the present results. Using Equation (75)
| {

¢

the Nugselt number dependence on Bg and Pr was found to, be:

" , 9
»

2 + 0,461 Pr" Re®°%32 (77)

Nu
EY
2N

and Lhen Equation (76) was used:

. ’ €
P Nu = 2 + 0.473 Pr™ Re®'3%2 C(78) .

It should be noted here that the exponent glis constant and
i i 4

the same in both of the above equétions. The ‘Nusselt numbers ob-
tained from these equalions aré compared to the résplts of the
numerical solution in Table IX. V?ry good agreement is observéd for
Re>1l. Since Woo's results were more accurate, Equation (78) wili géH

the one used» } *

| 4

Variable-Property Transfer
3

4 0

g
For the limiting case of the'Reynolds number approaching zero,

the Nusselt number for a sphere submerged in an infinite pbnstant-

4

o ) a2
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i \ TABLE X
2y !
COMPARISON OF THEORETICAL AND EMPIRICAL
NUSSELT NUMBERS
CONSTANT-PROPERTY FLOW
e °
o
A ,'\ Nu Nu Nu
Re [ Numerical Solution ¥quation. (77) Equation (78)
0.1 2.021 , 2.096 2.089
) \ P ) °
. { \
1 2.832 2.361 | 2,347 _7
. ; \ . "
1051 3,323 ) o 37355 3.350
20 4.022 4.015 4.022
’ »
30 , 44560 4.539- 4.559
50 5.411 | 5.395 5.438
' A
L
“m .
AN
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- v

property fluid approaches a value of 2, which represents conduction

S

heat transfer. This value, however, deviates from 2 for variable-
property fluids due to the variation of the gas conductivity with,
radial distance away from the sphere. The energy equation at zero

Re reduces to:

1 !

N (1/¢%) d/ar (x*q) = 0O (79)
or r®kdT/dr = O ' (80)

o i ’ :
where ¢ is constant.. Substituting the relation between k and T into

the above equation and integrating between the limits of the sphere

>~

surface and infinity give in ‘dimensional variables:

S T S VORGSR Sai \ (81).

°°I
1 1
o ’ ] . /
or in dimensionless variables:
‘ ) '/ N \(// LY
B A R VA - O £ . (82)
;- - o

+

ForgTp = 0.25, T' = 0.5 écdfs at r' = 1.50 for the constant-
, property case (x = 0) and dt t' f/l .29 for variable-propgrty flow

(x = 0.8). These digtances are very aimilar to tHose shown ﬁh Figure
16 for the isotherms T = 0.5 at Re = 0. 1. The expression for the
temperature gradient at the surface at zero Re can be obtaingd from

. ¢ i
Equation (82), thus:

»
1 , o
This equation shows that as the thermal conductivity becomes

° h

dT'/dr' = Qa -1/ + x)T¥] - (83)

»
" n .
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N v ’
i ' = N
\
é .

more dependent on the temperature (x increases), the temperature

oo gradient at the sphere surfage becomes steeper.
c ) s : -~
k The overall Nusselt number based on properties evaluated at B
' )
. the surface temperature is given by:
‘ " Tr *
Nuo = hD/k = R/(T, - T)) [dT/dx| _. sino de (84)
) In dimensionless variables: ' .
o Tr -
. N = 1/(1 7 To) [dr'/dr'|., ) sin® do > (85)
t N ° ~
% , .
\ rr , Substituting Equation (83) andiintegrating gives, for Re = 0:
- (Nuf =20 - T ™)/ 11 + x) (L - To) T3] (86),
. When using g dimensionless réference temperature, _'I_‘f instead of To
I , - ‘
o i tc( evaluate the thermal conductivity, the above equation becomes:
& \ +x i"
L v Nu, 7- hD/k. = 2(1 - To* D/[(1 + x)(1 - To) Tg)l  (87)
1 since kf/k /= (T,/To)™ p .
8 4 9
a9 - . o ' . "“
' As X approaches zero, i.e., constant-property, the limiting Nusselt
N number approaches the value of 2. Equatiof (87) can be re-written' as:
e N
LI } a ‘\
Nu, . = 2 f £ ’ ‘ (88)
N 2N . ' .
AN ‘where\w e 7 Q-TTHAQ A 1) T3] G TOR
i . . i )
, Equation (78) for constant-property transfer can now be
O - modified to include the effect of variable proi)er les, thus: i

l

4 [ *
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N

{

‘ m"_ o.ss2
Nu = 2 f_ +0.473 Pr Re +690)
flg fk : fv —

— -

~ 3 ’ .
In this g¥uation the Nugselt number is evaluated at reference tem-
LI LS
v N - N
perature lfk and the Reynolds number at _'Igf\’. Reference temperatures
w

are used to account for changing physical properties in the flow

*y

field. Since the thermal conductivity and the kinematic viscosity
do not change in the flow field in exactly the same manner, nor is 2t
8

their effect on the heat trangsfer process identical, there is no

Justification for presuming that the reference temperatures at which

© B »

Re and Nu are evaluated are the game. Obviously, the function, £,

should be evaluated at the same temperature as Nu.

¢ | J '

From the numerical results it was found that Equation (90)

»

gave the best fit when the _Nussglt number was evaluated at surface

1

¢

temperature 3nd the ‘Reynolds number at To.29, Where

Toss = Ty +0.09 (T, -1.) j (91)

"

< " onwe #
The value 0.19 was mainly dependent on the value of the exponent of

r

the Reynolds, n, used. Therefore, this reference temperature was,
- ok © )

 equally apﬁlicable to Equation (77). The exponent of the Prandtl

. number in both of Equations (77) and (78) was calculated using Reg.;.

] | - ?
It should be mentioned h re‘@hat it wag not possible to correlate the

[

result accurately by using a single refmg&ceﬂtemperature.

~

. N A N ¢
Ay x s
g Frém Figures 17 and 18 it can be seen that the temperature

4

3\
)

gra-dients3 for variable-property flow are very aﬁeep near the surface

-due to the ificreased velocity in thit region. In other words, most -

S — ) ©

LR
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~

of the heat transfer was taking place in the vicinitf of the sphere.
" Consequently, surface con&itions have a higher influerice on the
transfer procesé than the condition in the bulk of the flow. This

explains why Nu and Re wefe evaluated at near surface conditions in
|

o

Equation (90). As a matter of fact, at Re = 50 and T, = 0.25, the

' 1
reference temperature, Top.,p in the front half, occurred at a .

distance of only 0.05R away .from the sphere surface.

~ L

A commén method for accounting for variable-property ;ari -
tions is to multiply the heat transfer equation by a prdﬁerty ratio
raised to-a certain power. This method-was not used in the presen

.anal§sis for two reasons: (a) the equation does not reduce to Eyé

variable~property l#miting Nusselt number at Re = 0 and (b) there
o - .

is no theoretical justification for this property ratio.

(

/

’

3 : - _
CONCLUSIONS : \ . ’

¢

1. Numerical solutions have been obtained for the coupled

?

momentum and energy equations’ for variable~property flow past a
. A%

/

agreement with numerical and experimental results reported. in the

sphere. The constant-property solutions were ‘generally in excellent

literature. No gpch comparison was possible for the variable-pro-

perty case, due to the unavailability of pertinent data.

i
h
‘T'I

. 2. Convergence became more difficult as the Reynolds number

o

or the temperature difference was increased. Very low relaxation
. . R
-coefficient had to be used, thus increasing computation time signi-

L3
\ .

0 . -

1

[~}
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‘ficantly. This limited the present analysis to Re of 50 and di- ' }

-

mensionless surface temperature to 0.25.

3. In geéneral, the effect of variable properties was to
drastically increase the flow velocity, vorticity and temperature
and vorticity gradients near the surface. The Nusselt number and

\

the drag coefficients were decreased ag, a result of lower thermal

conductivity and viscosity near the surface.
N

4. The flow separation and the size of the vortex were not
markealy affected by the change in the surface temperature. However,
as the surface temperature was decreased the surface pressure was

drastically‘phqnged, leading in some instances to negative vaiues of

~n

8

the preg;;re drag coefficient. ‘

5. A general heat transfer correlation has been derived that
applies equally to constant- $nd variable-property flows. The varia-
tions in the fluid properiies were accounted for by choosing suitable

»

reference temperatures for the kinematic viscosity and thermal con-

1 N
ductivity, and by introducing the variable-property limiting Nusselt
. ! . y .

&

* number. This equation can be written as: . \

° N

4NT‘° , = 2 fo ,+ 00107'3 ‘Prm Rag:gga

| Cun (e
vhere aml 0.78 Rego)i%® |

| .

A= 7 @ s a 31 1.9

s« + fo

“Reo.10 = UD/Vo.ss

\~
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The kinematic viscosity 1s’ evaluated at To.is, where}

o

¢
Toeas = T, + 0.19 (T, - 1)

4
~ -

!
A

Use of the mean film temperature resulted in errors as

high as 20%. The applicability of these reference temperatures

-4

“for gase;‘having,values of x other than that f 0.8 wass not,

-

1/
[

however, vewified.

- o

é} The change in the drap coefficient due to positive

.
" pressure gradient over the sphere surface cannot be predicted from

the constant—property situation and, therefore, the use of av?rdge

temperatures to correct for varying properties tan lead to highly

dsy
. =

erroneous resultg. 5 ’ 7

R 2
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NONENCLATURE
-
- Lattice spacing in z-direction
v - Characteristic area, Equationq(SZ)

- Constant, Rquation (74)
- Laitiée é%actné in 0-direction

- Constant, Equation (78)

s

- Constant, quglion (80) o
- Total drag coefificient

- Friction drag coefficient

£

- ' Pressure drag coefficient

- , Heat capacity at constant volume

o o
- Heat capacity at constant pressute
‘- Diameter of sphere

.= Differential ope}ator

< = Characteristic kinetic enérgylterm, Equation (5?)

- Arbitrayy function of vortjicity, defined it Equation (31)

-, Total force acting on a sphere

(
;oo

= Total pressure force acting on a sbhere

K

5w Static preséure force on a sphere
- 8kin friction force acting on a sphere

~ Function defined in Equgtion'(BQ)

R

’

A
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[ ‘ﬂ > 4
‘ * ;,_(
o / . ¢ « . -~ =
. A t, C \ . EA TN N
’ ( J ) k . . o
' ;- “ ' N . ‘\ “ , e .
) .G - Arbitrary fu;lctipn of \vorticity definedin Equatioﬁ (32)
3 . . ° -~ ~ - o
- . N o
- : h - - Lattice spacing, ”?general\\w»—w‘” . » . ¥
] - o +# N :
. ﬁ - Heat transfer coefficient .
3 ) ! ‘ '
; h(®) ° - Local heat transfer coefficient - ~ " . p ]
‘- ) L - ®
= - I .- Subscrip® defining mesh point in o-direction .
. 3 . e’ ." 1 i 9 [
] ’ J ¢ A Subscript defining mesh point in z-direction ~
" L - vortex length, dimensional . v "
p M - ’ Total number of divisions in grid, z=direction
! N - N
T . ) m - E;cponent of Prandtl nymber, Equation (74) .
& ¢ A “c° ) - - s . ] .
- Total number of divigions in grid, ©-direction ! @
- < Exponent of Reynolds number, Equation (74) . /‘ 5! ¥, '
&) A :
- Overall Nusselt number, hD/k " o
. ’ T oa T
- Coefficient defined in Equation (40) . ’ ! ﬁ :
. . a - " ’ . ;{E‘;;‘.’:
- . Pressure, dimensional . ‘ 4;1,
- . Front stagnatipn pressure, dimensionless ] -~ ;
2 ' ‘ o
- Rear stagnation pressure, dimensionless b
o \ ° r ’D
- Surface pressure, dimensiohless s v
e t N - .
" .- oPeclet number, Pr.Ree ) 2
| ' e
- Prandtl number, cpu/k ' \ ’
| z “
- [Coefficient defined in Equstiom (40
v /. .
- ,Heat lux , ‘ " N 1t
g ] ‘ { ) : .
.~ Radius of sphere N } o . L
' “ ’ ! ( u

- Radial distance -
¥ . | ' ) \ v
« Distance from spheré surface to outer bbundary, dimensionless '

. ¢
- Reynolds number, UD/v , § <
- Lo . ’
- Residue from iteratiﬁn step ' . ) -
] " * t N
o
! — e




, in e v'“ ! \
- . a M ~~
. . - ] LEPY )
o ° p. -~ [ - "
‘- ] ) * ®
(, ’ j :
. . . - o
°T, - Temperature °
4 - . "‘
i - ¢ Torae - Reference temperature defined in Equation (91), dimensional
s ® 'S . 4
i - Free-stream velocity - N "
eV - “Velocity vector % . . Lo
* ' - Veloeity vectm: cpmp;ment ) T ' v
. P [ s . .
W - Relaxation coef f%cient ~ oy .
’ \ N - . ¥
v X + = Transport property exponent ' . '
o . ' " , v \
- P - Dimensionles§ radial distance . SR ot
i A < : g . ‘ ¢
. Greek Letters . . ' .
a -, Dampening factor . s . co e, T
; e - a /,/"!a« ) ’ tor p
r - Function dgfined in Equatfo 9 - - . -
A - Difference . . < . .
' LT . . ' - '.f_'. Y o
L~ -, Vorgicit;y, )-cpmpo‘ne‘ttt P-3 { g
. \ , ‘:." o -, . LIS
] - Amgle»measuregl from front stagnation point~, "
» ! - e - . ‘ . .., - -4" -
‘e‘s - 'Separation angle, measured from rear stagnation point - ’
) I a L T a, .
. | L . S .
-u -, Vigcosity - R , . o L s R
v " - Kinematic viscosity , e . - S
' ‘ - : ’ “’ = 7 [ . - ¢
p' - DenSity e g . Sx ° .
s \ v . . e oLl '
] * © - v L
VI w,(Function defined in Equatden (18). T ! :
T LT . ‘ J - . o= -
rr N ~ » .!‘ - - ) ’ 4 ‘ -
T PN T ' - ' . - 7 . v
r\(?*_. £ . ' R
x .=+ Components of stress tensor, defined in Equation (4),to (7)
ee. . “ - © . \' s )
. . > ) 2 - ‘/.. a‘
T r a 1 . l ‘ A :
¢¢ ¢ e , . f ‘: /‘
) - IArb;l"trary function = ' ‘ L. ,
o ’ p - . . b r
, \ . , T ‘
v ‘ ' ¢ A : 'QL 1 4 -
> a2 S v /2 . . .
P ' ﬂ ¢! ' ' - . . - L
v « g h . . . ‘.'! 4
\\ . ""' e b ; ' , .
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¢ - Angle, in spherical coordinates
¥ - Stream function '
g .
Q -, Components of vorticity ijtor ’/ *

Subscripts

kY

f - Evgluatad at reference temperature

r - In r-direction ¢

] - Evaluated at surface conditions, dimenslonal variable; only
0 - In @-direction - i

¢ - In ¢~direction

® - Evaluated at‘free-stream conditions

° - Evaluated at surface éondﬂtion, diﬁenaiénlegs variables only

»

4

Superscript

\

-  Dimensionless variable

£




s

t

.

\ -

REFERENCES .

la-<ik nad *:‘:va\'sr\(v il ndid wm\n"«» -
\

Amdur, I. and Mason, A.E., "Properties of Gases at’ Very High Tem-—
i ) peratures”, Phys. Fluids 1, 370 (1958)

" » ¢

, Beard, K.V. and Pruppacher, H.R., "A Determination of the Terminal
Velocity and Drag of Small Water Drops by Means of a Wind Tunnel,

J. Atmos. Sci: 26, 1066 (1969)

Beaid,'K:V. and Pruppacﬂ;r, H.R., "A Wind Tunnel Investigation of
the Rate of Evaporation of Small Water Drops Falling at Terminal
Velocity in Adir", J. Atmos. Sei. 28, 1455 (1971)

Bird, R.B., Stewart, W.E. and Lightfoot, E.N., Transport Phenomena,
J. Wiley and Sons, Inc., New York (1960)

Cheng, S.I., "Numerical Integration of Navier-Stokes Equations",
AIAA Journal 8 (23, 2115 (1976)7F , \
Dennis, S.C.R. and Walker, J.D.A., "Calculation of théQSteady Flow
Past a Sphere at Low and Moderate Reynolds Numbers"l2 J. Fluid Mech.
48 (4), 771 (1971) ,

Dennis, S.C.R., Walker, J.D.A..and Hudson, J.D., "Heat Transfer from
a Spllere at Low Reynolds Numbers", J. Fluid Mech. 60 (2), 273 (1973)

Drellishak, K.S., Knopp, C.F. and Cambel, A.B., "Partition Functions
. and Thermodynamic Properties of Argon Plasma", Arnold Engineering
Devélopment Centre, Report No. AEDC, TDR63-146 (1963)

Hamielec, A.E., Hoffmen, T.W. and Ross, L.L., "Numerical Solution of
the Navier-Stokes Equation for Flow Past Spheres", AIChE Journal 13 .
(2), 212 (1967) ;

'Hoffman, T.W. and Ross, L.L., "A Theoretical Investigation‘of the
Effect of Mass Transfer onHeat Transfer to an Evaporating Droplet",
Int.. J. Heat Mass Transfer 15, 559 (1972)

Jenson, V.G., "Viscous Flow Round a Sphere at Low Reynolds Numbers
(<40)", Proc. Roy. Soc. (London) 249A, 346 (1959)

Lapidus; L., Digital'Comgutatioﬂ for Chemical Engineers, McGraw Hill
(1962) o

141 -




Ea

2

"

<.

- 1 K¢ \
LeClair, B.P., Hamlelec, A.E. and Pruppacher, H.R., "A Numerical
Study of the Drag on a Sphere at Low and Intermediate Reynolds

Numbe;g", J. Atmos, Sci. 27 (2), 308 (1970) i A

-
Ranz, W.E, and Marshall, W.R., Evaporation from Dropa -1 and II"
Chem. Eng. Prop. 48, 141 and 173 (1952) § .

Rimon, Y. and Cheng, S.1., "Numerical Solution of a Uniform Flow
over a Sphefe at Intermediate Reynolds Numbérs", Phys. Fluids.12
(5), 949 (1969) " ¢

Roache, P.J., Computational Fluid Dynamics, Hermosa Publ., Albaquerque,
N. Mexico (1972)

—

Roos, F.W. and Willmarth, W.W., "Some Experimental Results on Sphere
and"Disk Drag", AIAA Journal 9 (2), 285 (1971)

.Taneda, S., "Experimental Investigation ?f the Wake Behind a Sphere
at Low Reynolds.Numbers", J. Phys. Soc¢. Japan 11, 1104 (1956)

Whitaker, 5., "Forced Convection Heat Transfer Correlations for Flow
in Pipes, Past Flat Plates, Single Cylinders, Single Sphergs, an r
“for Flow in Packed Beds and Tube Bundles", AIChE Journal 18 (21))
361 (1972)

. -
Woo, S. E.. "Simultanecug Free and Forced Convection around Submerged
Cylinders and Spheres", Ph D. Thesis, McMaster University, Hamilton
(1970) o

.k
iy

. “{ Woo, §. E. and Hamielec, A.E., "A Numerical Method of* Determining

the Rate of Evaporation of Small Water Drops Falling at Terminal
Velocity in Air", J. Atmos. Sci. 28 (8) 1448 (1971)

Yuan, S.W., Foundations of Fluid Mechanic , Prentice Hall New
Jersey (1967) /Z |

=

&




“~

N I ST L R -
Cr el S RRERN R A YT
* u&n&.ﬂ«v Nmﬁ LT e LS o ’
fn, Ty By

EXPERIMENTAL MEASUREMENTS OF HEAT TRANSFER

\

"

JET

~TO A STATIONARY SPHERE IN A PL

-




INTRODUCTION

1]

In most solid-gas plasma processes the rate-controlling step .

_appears to be the rate of heat transfer to the individual particles.

»

An accurate knowledge of the heat transfer rate is,, therefore, nec-

essary for the reliable design of such devices. As was pointed out -

in the Literature Review chapter, most of the studies on heat trans-
fer to spheres were carried out at relatively low temperatures (less
than 1 000 K) where variations in the flu1d~pr5berties were small

and could be accounted for by choosing a reference mean film tem-

pg?ﬁfure. The applicability of the me;; film temperature concept
to large te&perg&ure difference has not yet been‘verified. ‘Some
workers on heat.transfer to cylinders have introduced a temperature
or property ratio correction factor to account for these variations

in' the physical properties. The form of the correction employed,
\ «

however, had no soﬁnd théoretical basis and was chogen arbitrarily

to mergly correlate the experimental results. /

|

The aim of the work presented in this chapter was to ex-

| , v
perimentally determine the rates of heat trangfer to single sta-

¥

- tionary spheres under conditions where large variations in the

N

physical properties existed between the sphere surface and th bulk

% of the fluid. The results of these experimentﬁ were then compared
7 M

-

E’ \

143




et as s e

with the predictions of the heat transfer equation derived in Be ( )
p———
numerical analysis presented in tﬁbrevicms chapter, ’ "
v s o | d
&
EXPERIMENTAL APPARATUS -
. . \ ! |
The apparatus used in this study consisted of a plasma - N

torch, a test chamber and a sphere support assgmbly (see Figure 1).
The confinement of the plasma jet in a test chamber was necessary

to avoid contam;nation of the plasma gas with entrained air from

the surroundings. The presence of air inside the chamber would have %
. 4 / '
o

led to rapid oxidation and tarnishing of the metal specimen and also ' g

¢

would have caused changés- in the physical properties of the fluid

surrounding the sphere.

The Plasma Toxrch P

The plasma was generat'ed it; a radio-frequency induction

torch operating at 4.5 MHZ. The induction torch was preferred to 9

a d.c. jet generator because of the lower velocities and larger
volume plasma produced in the former. The plasma torcv mag\ufactured
by TAFA (Concord, N.H.), consisted ;:f a copper heating coil w?und
three’ turns around a Ao‘m—diamgter quartz tube. Cold argon ga;

entered the torch from the top, through a gas distributor. The gas

distributor allowed the introd;mtion of the gas in three different

directions: axial, radial and tangential directions., The tangential

N

swirl stream served the purpogse of stabilizing the flow and preventing

- y . ?q\
the hot” plasma fire-ball, formed near the axis, frgm reaching the

inner walls of the quartz tube. The induction coil was kept cool by




FIGURE 1

e

SCHEMATIC DIAGRAM OF EXPERII&ENTAL APPARATUS
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the flow of water in the annulus b;tween the quart:z tube. and the
outer Teflon jacket. The circulating water helped also in 'c;ooling
th'e quartz tube, the gas distrit:xtor and the nozzle. The plasma
gas, heated up and ionized in the coil section, left the torch as

a low velocity jet through a constricting nozzle, 25 mm in diameter.

The operating variables of the plasma torch were the power
input and the gas flow rate. Power input to the high-voltage power
supply was of the order of 6 KVA, Only 30-40% of Athis power input |
did actually go in ‘the plasma gas. The rest, lost in the transformer,
ogcillator and induction coil in the form of heat, was carried away

A\

N \
by the cooling circuit in the power supply. Seﬁarate rothgnetera

- were used to monitor the three modes of gas flow in the torch.

During operation, only the radial and tangential flows were kept

open, while the axial stream was used in place of the radial stream

during start-ups. The ratio of the radial to tangential gas flow
L . .

e WY
rates was adjusted, at each power level, to give a stable, laminar

and non-flickering tail-flame.

The Test Chamber

The test chamber was attached directly to the bottom of the
plasma torch, and served the purpose of confining the issuing plasma
jet. The chamber consisted of a Pyrex glas{s tube, 150 mm in diameter
and 250 mm long.‘ It was equipped at both ends with brass flanges,
20 mm thick. The orifice of the inlet flange was 77 mm in diameter,

and that of the outlet flange 25 mm (the same as the torch nozzle

e \ \
o o
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) aia@eter). The diameter of the inlet orifice was made as wide as

N
possible in order to reduce the kin.ter:ferem:e of the flange with the

jet: to a minimumf{ The bottom outlet flange had two small openings,

|
) \
r located diametrically opposite to(each othér and 125 mm apart, to
|
i

N, .
adcommodate the sphere support legs which passed through them,

%‘ *
. . ; \ \ l
% The Sphere Assembly
f -
3 , ) g
| ’ The sphere assembly consisted of the metal sphere, two : ;
i :‘ vertical support rods and a moving platform. Three different sphere
T \ .. 8izes were used, 2.2, 3.3 and 5.6 mm in diameter, respectively. The -
3 .

spheres were accurately machined from high-purity molybdenum rods.
. Molybdenum was selected for several reasons: (a) high melting point

(2 833 K); (b) ease of machining; (¢) known emissivity (as a pure

‘o

e !
k3

metal); /and most importantly (d) the high volatility of its oxide.

“a

Although great care was taken to avoid the contamination of

argon wit}'\ air during tl\ie‘ operation of the torch, air still managed

to diffuse inside the chamber once the torch was switched off. The

presence of oxygen in the chamber while the sphere was still hot,
, naturally, led to oxidation and tarnishing of its surface. Purging
! L with cold argon after shut-down reduced the degree of oxidation by
forming a blanket of inert a;t‘mo;phere around the aphere. It was not
possible, however, to eliminate oxidation completely., Since main-
talning a very clear surface Awas essential for the reproducibility:
of the measurements and for accurate estimation of the radiation

losges, it was, therefore, necessary to use a metal that was able

g

e
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to lose its oxide layer when heated up to high temperatures. The
slight oxidation of the sphere é&wthe end jof one run and the sub-
sequent evaporation of the oxide in a following run gave the sphere

a highly polished surface and freed it of any roughness or scratches

' caused during machining. It was noticed that the spheres' temperature

had to be raised to above 2 000 K before the surfacé was thoroughly

clean.

The spheres were supported horizontally by means of a thin
tungsten wire passing through the axis of the sph?re. ?he diameter
éf the wire was 0.25 mm for the.medium and large spheres and 0.125 '
mm for the small sphere. The size and the ghape of thé‘holg in the
sphere depended on the method of temperature'meaaurement. Whenlthe
gemperature was measured optically, the hole was simply a cylin?rical
bore 0.35 mm in diameter (0,22 um for the small sphere). On the
otherlhand, when thermocouplas;were used, the method of attachmen£

was more complicated, as the sphere itself constituted the thermo-

‘couple junction. This will be discussed in more detail later on.

The sphere support wire was held in place by two vertical
gtainless steel tuﬂes, 3‘mm in diameter and over 100 mm apart. The
wide spacing of tﬂe support tubes and their small size were necessary
to reduce interference with the flow. The bottom ends of the tubes
fitted snugly in holes drilled in a thin Plexiglass plate. This’
whole assembly was fixed onfan adjustable manual jack. Plexiglass

was uged to isolate the metal supports, electrically, from the jaék.

+

\ -

\
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The sphere and support were introduced in ﬂt’he chamber

éhrough the bottom flange. Their level in the chamber was adjusted
/ ‘ '

by raising or lowering the jack. Four hair-lines, painted 90° apart

on the-outside of tHe glass chamber, were used to align the spheres

{i
exactly on the jet axis, ,

MEASUREMENT TECHNIQUES

The three variables needed for calculating the heat transfer

Y .

rates .to the sphere were the gas temperature, gas velocity and the
sphere temperature. A review of the experimental methods applicable

to pl/asma conditions was presented in the first chapter. The actual

-measurement techniques used in this study are described below.

Gas Temperature Measurements

Thermocouples were first used to meaa.ure the gas temperature.
Calorimetric._probeis were too bulky and elaborate and presented no
real advantage over thermocouples. Spectroscopy was inaccurate “at
the temperature levels expected (below 5 000 K). Measuréments were
made by ralsing and\ iowering the thermocouple leads in the chamber
while making sure that the thermocouple junction remained at the
axis of the jet. This method, however, turned out to be highly
susceptible to arcing, because of the large size of the Ei:hemocouple
circuit. Arcing was found to take p\lace between the plasma 'gas and
any conducting object that was placed inside i:he chamber and that was
large enough to act as a groun;i. As a resui-t of this problem, r:he

use of thermocouples had to be abandoned. !
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lternative method was used for' the gas temperature

. This method was based on the s.amq principle as the
one behifd the thermocouple technique, x;an’\ely, to estimate the gas
temperature by measuring the temperature of a small object susﬁended
in the/flow. A thin tungsten wire, 0.25 mm in diametgr, was held

. horizgntally and perpendicular to the jet axis by the same method
of support as that of the sphere. The temperature of the wire at
its centre (at the jet axis) was determined with a high-resolution

" optical pyrometer. Heat losses from the wire by conduction and
fadi tion cause a temperature difference betwéen ‘the wire and ‘t:he

o

The magnitude of this difference depends largely on the wire

the/ determination of the gas temperature and it, was the;efore“

degirabfe to use a wire of as small a diamefér as possib{le in order
to reduce the relative effect of such pogsible errors. One problem
was however encountered vhen a smaller wire (0,125 mm in diameter) .

w/as used,.e_md that- was the difficulty of focusing on the wire. To
'y - . .
facilitate a good comparison between the pyrometer filament and the

-

ghaller wffe, a léns .of higher magnification (and narﬁrc;wer'depth of

~

fleld) w?s required. This reduction.in éhe depth of field made

focusing very difficult‘and sensitive to slight movement of the

instrument. The inaccuracies caused by ill-focusing more than ‘cover-

9

0 \

therefore neasurements were limited to\the 0.55 mm wire.
|

shadowed the benefit ga(ined by the use of the 0.1205 mm wire and

.0

-~y
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Since tungsten ‘ages with the period it is kept hot (around

2 000 K), the surface characteristics and especially the emissivity
L4 , ” L] 2
sof a new wire are not tle same as that of a used one, For this R
: o 4.
reason the first few runs with a new wire always indicated higher

¢
temperatures on the wire. f%ese runs were discarded since the
a

‘/' \',“
¢ }/ emissivity values reported in the diterature were obtained mostly y B :

with aged tungsten specimens. Wires had to be replaced regularly to

avoid reduction in their diameter caueed'by'slight oxidation losses wiga
at the end of the runs. Tungsten, like molybdenum, forms volatile
oxides that leave the surface when the wire is brought up to the

test temperatures. ¢

Gas' Velocity Measurements -+

The axial velocity of the jet was measured by means of total

pressure and static pressure probeé. The probes were not cooled 80

\

" as to keep their size (and interference with the flow) down to a

e e e g

minimum. The probes, therefore;ﬂhad to be made out of a high melting

point material. The probes consisted of two parts, a 65 mm long
//mélybdenum tip and aKAOO mm long stainless steel stfm. The lower

portion of the tip fitted tightly inside the stainless steel tube.

a

Molybdenum tubes were not available at the time. The probes were

L4

round-nosed, 3.2 mm in dismeter with a 1.6 mm insgdé bore. This was

. the smallest practical size; as smaller probes tended to melt because‘

r

of 'Tower radiation and con&uction losses from the tip. The taps on

L

(r) the static preigure probe consisted of four holes, 0.5 mm in diamete;,~‘

!
bored QQ? apart and normal to the wall of the probe. Thése taps were

&
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located 26 mm down from the closeﬁ‘hose. The temperature'oé;ftg////
nose was measured with an optical pyrometer. Total and stﬁt c
pressures were measured in separate runs by &eans of ;Nz:bacitance-
type differential preséure transducer. The trangducer was able to
indicate pressure differences as low as 10" ° mm Hg. One tap of the
transducer was kept open to the atmosphere. The probes were intro-
duced from the bottom of the chamber and were aligned vertically -
along the axis of the jet. The lower end of the probe was attached

to a Plexiglass platform. The platform was moved up and down by

means of the manual jack. A flexible plastic tubing connected the

" lower ends. of the probes to the pressure transducer.

b "

Sphere Temperature Measurement

N

The temperature of solid.ﬂin the range between 1 500 and

[

3 000 K, can be measured by two methods: thermocouples or optical

-

pyrometry. Thermocouples cannot be.used in the hot regions of a-

plasma generazea by high voltage, because of arcing.

L]

In optical pyrometry, the brightness temperature of an

T

object, at a certain wavelength, is compared to that of a reference!
tungsten filament. The current passi;g through the,tﬁngscen filament -
gives a direct measure of the power input to the filsment and,.

therefore, of its temperature., Special narrow-band filtereﬁare used‘

to allow the comparison of the temperatures to be made at i‘aingle

wavelength only;j,Auxiliary filters can also be used to attenuate

P )

the’radiation:coming from the object. These filters extend the
; /7 AN A N

Y
- - .
-4
N
°
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'upper 1imit of the pyrometer without excessively over-heating the
tungsten filament. To obt;in=an accurate comparison of brightness
between the filament and the object surface, the objeét slze must be
gseveral (approximately five) times larger than the filament diameter.
To facilitate this, a high-resolution pyrometer (Pyro Micro-Optiéal
Pyrometer, The Pyrometer Instrument Co. Inc., Northvaie, N.J.) was
used. The pyrometer was supplied with six interchangeable objective
lenses that permitted méasurgmentg to be made at distances varyiné

from 120 mm to inffnity with object sizes as small as 0.1 mm.

The spheres' temperatures were measured by focusing the pyro-
meter filament on'the eqﬁator portion of the spheres. It was noticed
that the sphere temperature went through cyclic variation, mainly
caused by cyclic changes in the flow conditions. The period of these
fluctuationsww?s of the order of 10 seco?ds. \Larger objec?s tended
to dawmpen: this effect, which was very pronounced in éhe wire tempera-
ture measureéents. In order to obtain an average value of the- '
temperafure, the filament current was so adjusted that the filament

was darker and brighter than the sphere for equal lengths of time.

‘

/

// Thermocouple Arrangement

B “tt i
7 b o

;;;" Bare -thermocouples were used to measure the gas temperature.

L

The thermocouple leads were held horizontally by two separate supports.
The two wires formed a.croif and the point of intersection was thE
thermocouple junction. This method of forming the junctioﬁ was

preferred over conventional arc welding for several reasons. The




o m————t 1

‘tubes were used to insulate the leads electrically from the supports.

154

only thermocouple materials that are able to withstand the high

temperature of the plasma are tungsten and tungstef-rhenium alloys: ~

A ] ’
These thermocouples are very brittle and readily-oxidizable at high

1

temperatures. Consequently, it was very difficult to form a bead -

junction with a standard arc welded and if formed, the junction was

" very weak and did not last very long, Another important drawback

. ¥ >
of such a junction was the difficulty in characterizing the bead.

The exact shape and size of the junction bead was not reproducible

i -~

a

and was hard to measure. Fnrthermoéé,_the emissivity was dependent

on the degree of tarnishing of the surface inherent in the welding
process. As a result of these uncertainties, it would have been
difficult to calculate the radiation losses or to estimate the

ot
convective and conductive heat transfer rates to the j&gition.

3

In the thermocouple assembly, one énd of each lead was

attached to dne leg of the support, via an electrically insulating ™

mullite rod; the other end was passed through thin m&flite tubes

et T

placed inside the stem of the stainless steel support. The mullite

The thermocouple leads were connected to a battery-operated millivolt

)

chart recorder. A high-frequency cut-off filter was placed in the

circuit to prevent the ra&io-frequency noise, produced 1n'fhe heating -.

/

coil, from reaching the recorder.

To measure the temperature of the sphere, the two thermo-

couple leads were passed through the mullite insulating tubes inside

-

of the support legs. The leads were thenm attached directly to the
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sphere. 1In other words, the sphare itself formed the junction and
was helJ in place by the thermocouple leads. A diagram of the
cross;section of the sphere is shown in Figure 2. The wiris passed
through small grooves in the gcrew. Part of the screw was not
threaded in order to lock the screw in place, flush with the spﬁére
surface. Great care was taken to ensure that the two leads did not
touch each other directly. The wires'ftemgetature being higher than
that of the sphere;_this direct congact would have caused the thermo-
~couple to indicate values that dfdht}of'; truly represent the dctual |
temperature of the sphere. The‘sciéﬁ arrangement gave a much better
contact between the wires and the sphére, than by me;ely placing the

B

‘
junction inside a hole in thée sphere.

Arcing

. The high voltage Qeed to generate'the plasma causes the gas
inside the torch to reach a fairly high electric potential, of the
order of several kilovolts. This potential decays rapidly as the
gas moves away from the torch exit. Whgn this gas comes in contact
with a grounded %bject, or with an object large enough to act as a
ground, discharge between the gas and the object-takes place. The
higher the temperafurq of the gas, the easier it is to form a con-
ductive path between the object and the high potential regions of
the gas - in the plasma core. Arcing causes over-heating at the
points of discharge, leading in some instances to etching of the

surface. This is highly undesirable in a heat transfer study as

heat 1s transferred to the object by an additional mechanism that

ProTenIpr)
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cannot be accounted for quantitavely. Also, the damage caused to

s

“the surface alters its radiative propertiesy?ﬂgkrthermore, if the

solid constitutes a part of an electric circuit, for example when
using a thermocouple, arcing causes electric interference and noise

!
many times larger than the actual signal carried.

“

It should be ﬁoted, at this point, that the problem of arcing
was not restricted to the thermocouple measurements only, but was
also encountered when the temperatures were measured by optical

!

pyrometry. This Beant that even with the absence of the recorder,

the system was still iarge enough to induce arcing. /

One way of preventing arcing was to maintain the object at

a potential level comparable to that of the gas. To bring up the

sphere assembly to the plasma potential, a water-cooled probe, 6.3

,mm‘in diameter, was introduced inside the plasma core, along the

axis of the heating coil, as shown in Figure 3. Copper wire connected

this probe, electrically, to all of the metallic objects that were to
be brought in contact with the plasma gas. When thermocouples were’
used, grounding of the assembly was avoided by using a battery-
operated chart recorder. The whole system was then floated at the
probe potential by connecting tai recorder chasgsis to the water-

cooled brobe. 'The support and the negative lead of the thermocouple

were also connected to the probe.

The thermocouple measurements were successfully employed in

the lower sections of the test chamber, as arcing was eliminated
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However, it seemed that
/

| the potential attained by the probe was not exactly that. of the gas.

completely by the above-described method.

+ This difference in potenrtials manifested itself by sustained arcing

I

in the upper sections of the chamber. An, attempt was made to bring
-the thermocouple assembly to the gas potential by comnecting it to
the nozzle or the ground lead of the induction coil., These attemps,

hoyever, were even legs successful in reducing arcing.

When the optical pyrometer was used, the fxrobe mei:bod worked
only when the object was several. centimeters 7way from the nozzle.
With closer objecl:s,\ arcing persisted. The reason for this was the
large size of the assembly. To overcome this problem, the sphere
was isolated from the support by means of @: mullite rods fixed
to the top er‘;’gsu?f the stainless steel tubes. Tl{e apherle and its
support wire were, hencé, allowed to float electrically in the plasma
gas. As a result of the reduced object éize, arcing did not take

“place. However, the sphere support and the bottom flange still had

to be connected to the probe to avoild arcing. 1

A
Although only the sphere assembly was discussed above, the
problemg and the solutions were ‘equally applicable to the case of

* the wire temperature measurements.

EXPERIMENTAL PROCEDURE

/ |

Four different conditions of plasma power and gas flow rates
\ T .
.were studied. When selecting the plasma conditions, careful con-

sideration was given to the stability and the laminar behaviour of
|
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the -Jet. The presence of tﬁ% confining chamber tended to cause

a cyclic eccentric rotation of the jet. This instability was eli-

minated by adjusting the ratio of the-swirl to radial components of

the gas stream to the torch, The operating variables of the four

plasma conditions are listed in Table I.

B
N

""'For each Bﬁgthe above conditions, the total and static pres-

e

sures, wire tempe¥ature and the three spheres' temperatures were

’

measured at points along the axis of the jet. Each of these measure-
ments were répeated several kimes to ensure reproducibility. For
temperature measurements, the sphere (or wire) was raised to the

highest position in the chamber and then the kemperatures were
. |
oy !
_ "determined at discrete positions with the spetimen moving downwards.

This was done in order to remove the oxide layer at the highest

temperature possible. Moreover, with the spedimen moving downwards

oﬁly; slight/térnishing of the surface that might have taken place
|- ,
atllower positions did not affect higher points' measurements. Before

thl end of each run, the specimens were raised|to the highégt position
inEt ) hamber and were purgéd with cold argon after shut-down to

A \
're% e/ the extent of oxidation. The reproduciﬁility o; different runs,
unier identical conditions, was very aensitive!to Lhelmetal surface

|

conditions.

1

| EXPERIMENTAL RESULTS

Sphere and Wire Temperatures

\

Pyrometer ammeter readings are pre-calibrated with an NBS

v

e e et e ..ww»-a_u»«m%
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standard light source to indicate the tempérhture of a black body -
4
. ! that has the same brightness as the tungsten filament, when a e
o -~ . , ! 3
¢ gpecific d.c. current is passed through the ‘1atter. Calibration 1s g
. carried out at a single wavelength, usually 0.65 micron. Radiatijon ‘
from real bodies and, consequently, their brightness temperature are

i o

\both lower than those‘from a black body. When the temperature of a
real body is measured with an optical p§romecar, the value 1ndicated

by the ammeter is, therefore, less than the actual surface tempera-

v

ture of the object. B .
|
. The spectral radiance from a black body can be described

by Planqk Distribution Law [Branstetter (1966)]: S

\ o

. d
\ Ny = 2methaT/ (@ Y

or simplified to:

No.o= ceant /@B 2)

b N

T 0
alr, ‘,!
33

~ ¥ At short wavelengths and/or low temperatures, the Wien approximation

L
can be uged, thus, o

¢ |
/ . *}),b = G, A3 e:C:/)'\T ) - (3?

At the wavelength of the pyrometer filter (0.65 micron) and surface U

.y ®

temperatures of less than 3 500 K, the errow incurred by this approx-
imation is less than 1 K, for a constant radiance flux. The spectral

emissivity .of a realnbody is defined as: ’ “
3 e \

g T NN, | (4)
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and, therefore, th;ggpectral radiance fro; a réal bo&} can be written ~

as: - . /

4

.

L A e N A LI (5)

and approximately:

/

T L R L )

)

An optical pyrometer compares spectral radiance from a real

i -~

surface to that from the filament and, hence, the temperature in-

\ .
dicated by the meter is that of a black body having the same radiance

» 2
\ ' . i
as the object:ﬂﬁjp terms of Planck's equation: - )
, 0 ) \ |
' - -s ~Ca/AT ¢ “J\\ !
Nk,b C; A e b ) N R (7) /)
- {
e ¢ e !
. °In_ this equation the value,of N! . is equal to the value of N, given .
) Agb )
by Equation (6), The substitution of Equation (6) into (7) gives: o
1/t - 1T = A/Ca Ine S (8)
b A
The value of C; is 14,38 mm K. Equation (8) can be used to
correct for pyrometer readings. A knowlédge of the variation of the,
spectral emisfivity of the surface is necessary for the pyrometer *

coxrection.

n

The two metals used in this study, namely, molyb&gnumfand
tungsten, were of high purity and g@eir surfaces were maintained

clean and polished t*%oughout the expérimente. This meant that it

@

wag possible to use.emissivity values reported in the literature

»

'
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without introducing sigpificant uncertainties in‘final corrected
teﬁpefatupe. The spectral emissivity values for tungsten'were taken
from Kovalev (1970), Latyev (1969) and Sadykov\(1965); for molybdenum,%i
Makarenko;s (1970) results were used. Correction plots were mqﬁe,

with the use of the’spectral emigsivity data, to transform Equation

\
(8) into a direct relation between Tiand T., Figures 4 to 19 show

b
the variation of the true wire and sphere;T temperatures with axial
posigion in the cﬁamber, for the four plasma condigions investigated.
1t can be seen from these figures that the reproducibility of the
plasma conditions was excellent, since the points,ghown in eaéﬁ of

these figures represent data obtained from at least three separate

Yuns. |

Pressure Tube Analysis

|

. @ -
7

R
s

The results of the static and total pressure measuremefits,s

for the four plasma conditions, are shown in Figures 20 to 23. To
& \ -

R
transform these measurements ififo.actual gas velocities, a relation

between the stagnation pressure and the *free-stream velocity and
W , i
physical properties is required.

-

« f

For isothermal, high Reynolds number flows, the pitot tube

equation, as derived from Bernoulli's equation, is:

I
¢ ~4
Ah-‘\s*.-

U o= 20, -P) /0 gkt

s \

.

This equation is obtained by assuﬁing potential flow, where the effect

of viscosity is neglected. At low Reynolds mumbers and/or non-iso-

. r .
~ ‘ d L] R .
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FIGURE 10

VARIATION OF 3.3 mm SPHERE TEMPERATURE
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mw'

" thermal condition, Equation (9) modifies to:

taneously. Details of these solutions were presented in the Numer-

‘ Y

- — 2 ' ’
c, (P = B/ (e, Ui (10) .

2

The value of EE depends on the Reynolds number of the pressurg probe /

& Q)
and on the flow and temperature conditions upstream1from the probe.

o

Chue {(1975) reviewed experimental calibrations and theoretical solu- °

7 ’
tions for round- and square-nosed pitot tubes at low Reynolds number;{
]
- - 1
He conclu@ed that for the low Reynolds numbersrange, corrections . ‘

°

, .
based on theoretical solutions were quite adequate for hemispherical- |

°

- .
nose probesi, inpgspeotive of their orifice size, pnovided it lay in P
ki) B ! . . N

»

the rangg10.2<d/0<0.74. " S \ 4 :
N “ 9.?

[ 1
Y

& 0
The surface pressure distribution‘oéer a sphere at different - . g3

P I
3 (] , . ?{{g

Reynolds nuglbers and temperature conditions has been calculated by oy o

o
a

the author by solving the momentum dud energy eqyations simul-
¢ [}

L ° Y
ical Analysis chapter of this thesis. For a hemispherical-nose '

probe, the pressure distributiod at the nose assumed to be the
same as that arouid the leading half of a sphére, under similar

v

thermal and dynamic conditions. It was at first thought that §n-

tegration of this distribution over an area equivalent to the probe

, !

bore size wpuld give the average stagnation pressure on Fhe impact

probe, for that parficular flow condition, thus:
-— - [ ' v
Cp = { S/ P(O) 8ind 46'] !/ (1 - cos0,) (11)
) ‘
]

AN O]

.If only the axial compoment of the pressure is’ taken, while -

'
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| ’g l\
- ] -

/
dtopping out the radial component, because it does not act on the

column of gas inside the impact tube, Equation (1}) modifies to:
| ! 4

.

C
p

0
[ J P(O) s5in® cos® dO ] (1 - co8d,)
°oH .
d s

' /
Results of the‘ﬁ’herical integrations of Efuations (11) and

(12)

i

- ]
(12), using the Trayezoidal Rule, are listed in Table II. The
f . ,
pressure distributions were those obtained for constant-property
r
@?%w. These results indicate that the value of EB drops well below

unity, at Reynolds numbers as low as 30. On the other hand, experi-
L 3 A

‘? mental calibrations of pitot tubes reported in the literature [Chue . -

(1975)] give much higher values than the ones obtained by e%ther
4 ~ ) ( eota . . \ ‘“
Equation (11) pr (12). They alsd show no tendency for ER to go below

N

unity. Some workers ngted that C_ can be”legs than-ones but the

-erroneous va s of C .
P

).
{}I

Comparison of the pressure at the frontal stagﬁation point,

D
the

-«

for constant-property flow, with experimental Cp values from

~

. ,
literature shows reasonable agreement. This trend is not expected

to be different for non-isothermal flows since the pressure dis--

LS

tribution over the front half of the sphere, in a variable-property

flow, is very similar to that for isothermal flow, provided that

i “4
the sphere temperature is not much lower than one half the value of

- 4

the gas temperature. In thlis work, therefore, the numerical resulté
B . A Y
o ! -

obtained q:i the frontal stggnation pressﬁ;e will be used to evaluate

B
. o
T ' ?
.

{l

P
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TABLE 11 (
T
LY . v

) AN
PIPOT TUBE PRESSURE COEFFICIENTS

‘ ¢
\ £
Ré”nol a3 ) Cp Average
Number Equation (11) - Equation (12) Equation (11)
uD/v, © To = 1.00 To = 1.00 To = 0.50
) l
10 1.589 1.486 o 1.643
—-‘ ) . N b
20 1.199 . 1.123 1.245 \
l : § -
30 1.058 v 0.993
50 - ~0.936 ©0.877
- . ‘~l
. ¢
/ «
i { :
F\wf .
|
]
- )
. /
¥ " | /
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o | .
“‘. EE: This confirms Chue's findings that theoretical calibration, ’
of pitot tubes is independent of the orifice size. Figure 24 e

ghows the variation of ER with the temperature ratio, at several

Reynolds numbers. : R

To determine the flow conditions around the probe, th;
¢ L tempeggthre of the probe tip must be known. This was measured with
the optical pyrometer. “The variation of the tip temperature with
~ axial distance from the nozzle, for the four plasma conditions, 13‘55

shown in Figure 25. A knowledge of the gas temperature is also

necessary. This is discussed in the following section. 'ﬁ

Gas Temperature Correction

e
. )

As stated earlier, the temperature of a wire finite size, f

‘n \n

i ; LR

{ immersed in a hot gas, is always lower than the actual temperature

of the gas, owing to radiation and conduction lossea. To evaluate

the qggnitude of this difference, a heat balance is made on the

wire, thus:
. /

Qomv. * Qéas rad.” " Qrad. Qcond. (13)
| or (vDd1) b (T8 =T+ (wal/?) eplaama“on“plasma - .
’ £, 9(Ddl) T = (1D*/4) [g;ar/d1|1_1+dl
kdr/df, ] | (14)

: Equation (14) c;n be simplified to:
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average plasma gas Eemperature over a depth of 100 mm near the coil
region,'then the radiation received by the wire from the g;s i8 less
than 0.5% of the total convective transfer. No effect of viewing
angle was included in this calculation., With the presence of the
water-cooled probe along the axis of the torch, average plasma
temperature is ﬁot expected to be over 6 000 K in that vicinity.
Furthermore, the presence of the probe blocked the view for direct
radiation to the wire at positions further down from the nozzle,
and, therefore, the relative effect of radiation was still 1nsigﬁi—
ficant even though the convective transfer rates were lower at these i
points. Consequently, Equation (15) simplifies to:

- &
Tg sw"Tw“‘w*}w (16)

To evaluate E&, the convective heat transfer fates to thin
wires must bghgpown, for conditions where an appreciable temperature
difference between the wire and the gas exists. Heat transfer to
cylinders was discussed in the Literature Review chapter. Some of
the more reliable results were those reported by Collis and Williams
(1969). However, their experiments were carried out on heat transfer
from a hot wire to a colder gas and the applicability of their re-
sults to the reverse situation hgs not ﬁeen verified. On the other
hand, Woo (1970) ob:;;ned uume;icgl results for local and overall
Nusselt numbers around infinite cylinde;s in- the Reynolds number
range of 2 to I?S. His results will aow be modified to include the
effect of variable fluid properties. - WOo'g results for heat transfer
in air in the range 2<Re<40 can be correlated by the following

'{H;%@“' . - »

EE
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4/D hw (Tg - Tw) +2/D e

. (
4/D equw - d/dl(kwdT/dl) (15)

s &4 -
plasmquOTplasma

In Equation (14) only the top part of the wire was assumed

to be subjected to plasma radiation. Curvature effects were not ”

5

‘ = _J’"-.v. T T D
included. \\\ [

/

The temperature gradient along the wire near its mid-section

is proportionai to the radial temperature gradient ?ﬁ‘the jet. 1If
v

/ n

the jet temperature profile near the axis is flat then the tempera-
ture gradient in the wire will be very close to zero, and conduction
losses from the wire at this point will be inaignificant. On the
other hand, neglecting conduction losses when the gas temperature -
gradient is appreciable, will lead to an underestimate of the axial
gas teﬁperature. This underestimate is directly proportional to

the gas temperature gradient. Since spheres of finite sizes were
used in ghks gtudy, then the average temperature of the gas sur-

rounding the sphere was not exactly the temperature at the axis but

a sligh}ly lower value, due to the radial temperature gradient in the

jet., The difference between this average value and the axial tem~
perature is also directly proporfional to the Cemperature_gradient.
Conééquent{y, errors introduced by negle;ting conduction in the wire
when a radial temperature gradient exists are balgnced by the

averaging £effect of the finite sphere size.

L

[

#
Moskvin (1968) reported some emissivity values for argom in

the temperature range between 6 OOOAand,lz 000 K. Assuming an

\\‘M : ) .

' [

™
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equation:

0.2496 + 0.5817 Re®"“%* [ an

Nu

Also for air, Collis and Williams' experimentally-derived w

. . equation ¢an be written as:

2

4 VN (T /T)TON =t 0.24 4 0.56 Rep L (18)
AN :

1 ’ It can be seen that the exponent on the Reynolds number is approxi-

mately the same in the two correlations.

N
~

In the numerical analysis presented in the préceding chapter,

the constant-property heat transfer equation to a sphere was found

d

' ] to be of the following form: ' o .
¢ ~ ) \ :
\ " o
m n
. Nu = A+ BP Re - (19) .
) ¥ ' ° This equation was later modified to include the effect of variable
fluid properties, thus:
w \
NUo = Afo + B P!.'m Rero‘. 19 (20)
N “ i
] .
: . vhere £, = @A-1 [+ oA - To)TE (21)
L) o ! )

- and the kinematic viscosity of the gas is evaluated at To.,s Where
' ' . = . - ) S
. Toers T8‘+ 0 L%Tg ) (22),

’ . : /o 5
Afo is the limiting Nusselt number at Re = 0, for v%giab1e~property

: fluids. fo gives thg NusseLt'number in terms of surface tempgta;uie

¢ / ° s
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O ° '
conditions. ;
\ ) , . , 9

, For cylinders, the limiting Nusselt number is indeterminate.
\ Howéver, the ratio of the limiting Nusselt numbers for variable~ to ‘
, . constant;property flow is still egqual to fo. Assuming the effect

of variable ﬁropérty is similar for spheres and cylinders, then

. L. - R - - ’
VAR / “"Nup - = 042496 £, + 0.5817 Re®’ 73 (23)
/ - [

Eqgation (17), fol variable-property fluids, becomes:
: ’

0+19
-

The general form of heat transfer correlations for cyliﬁders
.o N :
is: .

\ B R , N . -

ny oo :
. Nu = A + BR Pr 24
« ( ! 7) a (24)

a N f

m is bgtween 0.3 and 1/3. To convert a correlation obtained in 6
- N 1 ) * \f;;
air to one applicable £°R argon, the equation .is multiplied by tHe '

* | .
Prandtl number ratio to the power m. For argon, Equations (18) and

- (23) become, respectively:

NTocr7 AR Y- ] o
\ O N (T /T) 0.235 + 0.47 Re_ o (25)
N N e No‘l‘ ° .
Nuo 0.2417 £o + 0.5633 Re? "2 _ (26).

N
' Both of these equations’will be used to evaluate/g, and the

results wiIl then be compargﬂ.

@ -

The total hemispherical emissivity of tungsten is also

required for the evaluation of the gas [temperature from Equafion
’ A

\(16). Since the emissivity varies with the temperature, the value

Lo
\"-"}" ‘

-
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of €y used must correspond to the actual wire Iemperature T .

.—.‘,, . _.~.

\

The values used in this work were those given by Logunov (1969) and
) Sadykov (1963), which agree very well with the values reported in

the International Critical Tables (1926). )

The velocity of the gas.must be known in order to evaluate

i it T

[

. the heat transfer coefficient. Since the velocity, in turn, requires
‘ »

a knowledge of the temperature, then these mu§t be found simultane-

, ' ously by an interative method. The,values of the wire temperature ‘-
and the étagnation pressure were taken from the smoothed cuf§é§ of
the experimental results, at 5 mm-intervals a}ong the axis, for the

four plasma conditions. An empirical equation relating Cp to Re and

—— ©

N L4
To was derived based on the numerical results. Values of the velocity :

and tehperature were agsumed and then inserted in this empirical

equatiaon no give a first approximation of the gas velocity. This

- 4 !
.

y velocity was used in Equation (25) or (26) to find h, from which Tg

was calculated with the aid of quation (16). This procedure 'was

repéated until the difference between two consecutive values of the
\\‘ velocity and temperatiure was Less than 0.1% of the absolute value,

_ It was %fuudjthat at each point this process required only three to °

.four iterations.‘

° f 2
[

- Gas Velocity and Temperature Profiles \ . n\\

< . - . .
AN ' ' x-‘}, 4

. \ The gas velocity and temperature profiles calculated from ?Qe

\ * ’ . e

stagnation pressure and wire temperature 'are shown in Figures 26 to-

' '
1 v

(Z?h ’ 29, for the four conditions of gas flow rate and power input. The
|

@
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gas temperature. Tables III and IV list the temperatures and
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! 'E 1 H
(’.{ [ . \Y ) ‘\IAZ_ )
™ results obtained using Eqdations (25) and (26) were exactly the |
0 f a0 by
- - i <
A same for the gas velocity and within g fraction of a percent for the 3
j
i

.

velocities calculated by the two equations, for two plasma operating"
conditions. This agreement reconfirms the conceptyof using variable-

\\\\ property limiting Nusselt number 4nd the reference temperature Tg.,s

¥

N !
“For evaluating the Reynolks number.
A

o | o T :

HEAT! TRANSFER CALCULATIONS
Ll

N e e

Heat Balance ‘ '
E 4 . ]

A similar heat balance can be written around a sphere as

, that given for cylinders in Equations (13) and (14), namely:
L ” ) !
~ \ 2 2 4
- 5 : =
hs (wD*) (Tg TS) + f‘plasma usa (nD>/2)0o Tplasma ] \ %
O N 2 ™
&\; €s o (1D%) Ts + Qcond. * @n . .
. - e o P :
L ‘ . o 3
QCond cannot be written in an exact form since the wire was
L — @ i |
‘ in contact with the sphere at only a few discrete poifl¥s. 4The wire /
temperéture was always higher than that of the sphere at the poipts ) .
Fi A 9

of contact. However, due to the relatively small size of the wire
éhd the small area of contacth heat transfer by sonductibn from the

wire to the sphere was assqmed to have insignificant influence on

.

.the overall heat transfer process. ‘”%,h o - ’
- . * ' ¢
“ \ ) A ¥
/ Radiation from the plasma gas was discussed earlier. For an
-~ ;’ . I N ! .
(:\)\ average gas temperature of\ 000 K over a depth of 100 mm in the hot .
. : - i ' ' '
| | )
o Dl 2T .
N
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s GAS VELOCITY AND TEMPERATURE PROFTLES
. ~
‘ -
Plasma Power = 1.5 A x 3.25 KV
Gas Flow Rate = 0.87 g/s .
& e B - )
Equation (26) Equation (25) f
Distance Temperature Velocity Temperature - Velocity ° .
mm K n/s 14 m/s e
o /
%0 4277 9.41 4275 9.41
P N . B ° B l:‘
20 4218 9.38 4217 9.38 fr,z
30 4032 9.24 4035 ",9.24{;5;;» .
40 3705 8.90 3713 8.90
4] . ’
50 3170 8.04 3182 8,04
!
. 60 2632 6.92 2645 6.93
70 . 2263 5.86 2274 5.8
W p X % . o, ‘
9 5 i ,
R
o ' !
\h
° - I\ : “ t
N
b . a, )
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AN IS
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f “ Plasm% Power = 1.7 & x 3.55 KV
| . [Gas Flow Rate = 0.72 g/s
o quation (26) ¥ Equation (25)
. Distance Temperature Velocity Temperature Velocity
mm K | m/s K m/s
- |
) - " - Pl
10 . \’ 4590- 11.43 4581 11.42
% i 20 4473 11.25 4467 11.24
| ) N L .
30 4322 ¥ 11.00 ) 4320 11.00 |
r : ' "
s > 4103 10.69 . 4105 10.69
f‘ 50 A 3830 10.24 3837 _ 10.25
. . !
| 60 3524 9.49 . 3534 - 9,50
| ~ -7 , Y ANl
70 ” 3154 8.40 3167 '8.40
] s ¢t
p -80 2790 7.20 ~2803 7.20
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core, radiation from the plasma amounted to leéss than 0.57% of the ®

t

R overald heat transfer rate. This simplif{esquuation (27) toun

(28) ’

o T‘. l/ (T - TS) § '

. This equation shows the direct influence of the total hem- |
\ Y S

}spheriéal ed?ssivity_on,the vdlue of the heat tfamsfér coefgicient
/

¢ B

?

calculated. . . . |

Assumptions in Experimental Model
[ .
- N

»

i 1. Flow is uniform and unidirectional along the axis of the ,

jét. Velocity and temperature gradients in the gas are not important.

- 1
a & €

» . 4
2. Radiation from the plasma core is negligible.

a -
e , .
) ’ : 4

3.'No conduction losses through the support.

-4. No turbulence effects.on the heat transﬁer'process.‘ The

] T /
jet is assumed ‘to be laminar. ! . a

L]
» f - ~

5.'Natural,cobvection is very small compared to forced con- .

.
-

- 'vectlon. ) L

N
N

°

6. Sphere temperature is uniform over the entire surface.

]

: - - Thgse assumptions will be discugged indivk?ually. Point
’ l' \} . “
‘ (1): in an axisymmetric jet, the ounly velocity?component at the axis
' ° ‘ S

1s the axial 7omponent. Radial andhangular components start to gain
. AY . " '

t +
importance .with increasipg distance away from the axis. Radial tem-

I ' ‘ +




pefature and velocity gradients in a jet are.not very steep near

!
"

the axis. especially at points cldse to the nozzle‘exit plang" . The
disturbance caused by the presence of the sphere depends on’the ratio
"of the sphere diameter ta the nozzle dianfeter, or more Specificall;g
“on' the ratio of their créss—section;l areas. In‘tﬁis séud§, the

largest’sphere size used was 5.6 mm and the nozzle diameter was 25.4

Y .
“mm, which amounts to’'5% mak Lmum blockage mnear the nozzle, and much
_ : ~ ﬁ.\.’ * -

-less as the jet expadds. pWith .the largest sphere diameter of 5.6 mm, ¢

the naximum distance the spheres extended to away from the axis was

8 -

less than 3 mm. At this\distance it was presumed thgt-radial and |
N s

. angular components of the flow were still very small compargd to the
. Co

3
i -

axial component. et — .
N 4 v . ¥ s

-~

Pointh (Z) and (3) have already been discussed. Point (4);

turbulence in a ﬁ%asma jet was studied by Incropera and Leppert ) i .

s

(1966). Turbulence was assumed to be a fufiction’ of the jet noise. N

. d
i »

The Reynoldh ndmbér of the jet was evaluated at bulk gas properties,
1 ‘

- thus: .

. B -
° B e @ I s

] . ¢
Re = .4 m/ Dy N -, (29)
%

The ériterialset for flow trahsitions were Eheafoifowing:

.Lgpinar at Re < 110 - 250 N

.
¢ r

Transitional at 110 - 250 < Re < 300.--800 ;f.~*

Turbulent *at  Re >.300 ~ 800 .

®

« 1 Transition from turbulent ﬁaﬂsransitional-qas at 300 < Re < 600 and

v/ °
[

AN

. B
-
"ﬁ"\ : -
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.~ from t¥ansitional to laminar at 210 -« Re < 250. ’

. [

g . . .
The maximum mass flow rate of argon used i%>the experiments
" . , - ™ . \
' of tlte present study was 0:9.g/sec.’ Assuming an average gas tem-

‘ ° . rd ) ( -
perﬂfure of 4 000 K, which has a viscosity of 1.53 x 10 “N s/m?,
. ~ 4 -

P
h
N

then the bulk Reynolds number of the jet is:

» n [-3

- - N Q

Re L= % 4 x 0.9/(n x 1.53 x 107%.x°25.4) = 295
; | O :

This means thatothe jet wag in the transitional regime.

& -
S ¢ v

\ However, a surprising result was found by Inéropera and Leppert when

e ° »

theJReynélds number was computed with the viscosity evaluated at the,
. N

*r

e k]

o z A)
nozzle wall temperature. In all the cases studied, the ngnolds
/ number for transition to a laminar%jet was approximately 2 300.

4 . )
. . Assuming a conservative wall temperature of 300 K where argon vis-
. - ! ) ®
. » cOSity—is aboute2 x 10 ° N sec/m’, the surface Reynolds number of .
the plasma jet in the present work becomes:
o ? ’ . °

»

. » ® v
S T4 x 0.9/(n ¥2.6 x 107 x 254) = 1880 %

3
\ . ) B

- ” ' ey

1

» s This Reynolds number‘indicate% positively that théxjet was

laminar. Moreover, Richardson (1963)'stated‘fhat at low and moderate

. . . {
Reynolds number, free stream turbulence does not *have a stroFg in-

) . Y s !
that this observation applies equally to heat transfer to spheres.
In conclugion, it can be sdid that the plasma jeE was laminar and \

L , . . N
' .+ even 1f slight turbulence ex%gted, its "effect-"on the heat transfer - ¢

. \ R y 7 ~\ - °
(:> rate'could be neglected. ] N\\¥ :

,

® i

fluence on the heat transfer to cylinders. - It caﬁ‘be safety assumed ¢

N .



‘ - “~¢ . %
2 S ' ° 3’ -
’ - 206 - )
’ v ‘ & Cot [
. S
! f . 4 -
( ) . "&_A o .
&‘» 2 4 P Point (5): Pei (1965) found that for freerconvection to Be
‘ & Yoot < )
B negligible, the ratio Gr/Re” must be less than 0.05. :This ratio '
. . F Y -
can be written as: . ,
. (- . ”
] . a -
B SREN . . . ’ ‘
B o 2 . D3AT/v3. C ) : '
e = § . i .
i ‘ v SR * B .
. : For ideal gases B ="1/T. From the experimental results, the '
s ° -+ N °
i -
1 * temperature differencel AT, was approximately equal to one half -of .
; ) ' ’ T .
ol : . ‘ L . . . s
. the value of the gas femperature. Also, . .
g <, - ‘ .
) R ° « D '\,\‘.\ 5 mm. E - * " oY .
. , . . : , - - AN . ‘ . 7
8 B - , . U o 10,m c . . '
< § e N 9 ‘ i ’ ! ’ ) N Id «" )
‘; - then ¢ér/Re? ="' (1/T) x g x 5 x (T/2)/(10,000)%, - Lo
. - -, "t o ' T : .
. . N ¢ \Qa ) ( ’ . , W .‘
. : “~ g " CE/Re? T 3.x 1078 o )
. . A - "
b v o L . ‘ '
5 / \ o The value of Gr/Re? is nt-herefore‘ much less than the lfmit » ’
. - .proposed by Pel.- K \ . ) N 1,\ )
b a . ‘ - ! LA ¢ : .
) ;7‘. o . i ) ‘ ‘ . ’ X . . l i ?
Point (6):  <he copdition for gradients .to exist within_ the )
x \ & R ' N

s . . c . Lo . s .
| sphere is that its Biot number.is higher than 0.2. The, Blot number .
S ' “ - *

. \

.. . ¢ 7 - : —
is -defined.as: v R .
. k . . e gk ‘ / \’/
. Few ¥ } . . - '
¢ - . - N » ' » . N
a~ e Bi ) hR/ksphere . (3].? ,
- . f . . ”
, ' ) -3 ¢ . ¥ LI
. or Bi ‘= ks/stpheré ' m v ;
l\ ., . ' N T ' ‘./ A Vol
J Assuming a high value of or the\ﬂusselt number with a sphere ,
, temperature of 2 500 K, then thé upper limit of tﬁ\;\ktot number f:° “
\ L ; ' , i

' , ¢ .? s “t - " - 1 -
I ', ' N ‘ Pad R
/l) \'g/‘?' | R 4 . B a f_- . e

. v *w - . o
N )
‘ :
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\

B1 = Y5 % 1.57 x 1074(2,500)°" "/ (2 x 42)
Bi A 00.01

4

At lower Nusselt numbers and sphere temperatures the value

b d

éf the Biot number will be even less than 0.01.
[

Results ¢

Equation (28) was used to calculate the forced-convection

heat trangfer coefficients to the three spheres. The spheres'
_

temperatures were read from the smoothed experimental curves. Values
/ Tl - - - )
were taken at intervals of 5 mwh, along the jet axis. The results of

. N
these calculations are .given in Tables V tp XVI for the four plasma.

conditions.

The values of the total hemispherical emissivity of molyb-
denum were taken from the works of Makarenko (1970), Peletskii an&’

o

Druzhinin (1969) and of Sadykov (1965).

CORRELATION AND DISCUSSION OF RESULTS

The general form of the heat transfer equation can be

expressed as.

Nu = A + B Pr" Re” (32)

In the numerical analysis chapter, the momentui and energy

equations for flow past a sphere were sclved numerically for constant-

property flow and fo:‘cases involvingd;arge variations in the physiéaI'

1

o uE T ‘ ‘>
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POWER = 1.53 A X 3,25 KV
GAS FLOW RATE = 0.870 G/S

SPHERE DI AMETER = 2.2 MM

‘z - H

1.0 183.9
15 184.3 R
240 181.9
25 ’ 181.5

3.0 . 182.1
‘35 182 .9

4 .0 180.5
30

4.5 184.9

540 ' 177.3 -
5.5 172.2

640 161.8

65 ) 144.3

7 +0 1309

3

0.526
04529
0.530
0.536
Ce540
0.560
0.574
O« 605
0. 628
0.660
0.687
0.706
0.723

Vd

TABLE

14.3
1a.5
14 6
15.0
15.0
16.4
17.4
19.2
0.7
22.8
24 .7
- 26.2
27.1

V'

3<168
35192
3.166
3.204
3.285
3.405
3.478
3.789
3.858
4.031
4.062
3.853
3.687

4543
a5.4
45.7
86.C
46.3
46.7
47.3
47.5
47.8
48,3
48.5
49.0
48,7

«

S5.292
5.312

Se?61-

Se276

S5.333°

S.415
5.421
5.668
5.596
5.621
S.4R6
5090
4.779

807
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PONER = 150 A X 3.25 KV -t

GAS FLOW RATE = 0.870 G/S

SPHERE DIAMETER =

z La) Jo RE,
“1e0 13€.9 0.501 21.4-
1eS 137.0 0.504 21.7
2.0 . 135.0 0.505 2149
2.5 136.2 Ce511 22.5
3.0 - 13841 0.519 23.4
3.5 135.7 0.533 24.6
4.0 132. 6 0.546 26. 1
4.5 ~ 137.9 0.577 28.8
5.0 " 138.8 0+605 31.1
S5e5. T 13241 0.635 34 .3
640 122.8 0.661 37.0
6.5 102.6 0.674 39.3
73 _75.6 0.672 20.7

v

74.3
7845
7540
75.2
7601
76.4
77.6

* 775

7647
777
779

79.9
83.3

654146

64162

* 64095

6.168
6.133

‘6262
6217 .

64578
6+769
6.676
6.439
S.632
4.393

607




POWER = 1450 A X 3.25 KV
GAS FLOW RATE = 0Q0.870 GrS

SPHERE DIAMETER = S.6 MM

-

Z . H -, I0

7o
10 ’ 94,0 0%470
1.5 93.9 0.472
2.0 \ " 92.4 0.473
2.5 _ 92.0 0.a478
3.0 92.2 C.a87
3.5 ' 92.5 0.500
4.0 90.8 - 0.513
a.s » 94.3 . 0.543
5.0 9446 . 0.570
5.5 93,2 T 0e602°
6.0 8.7 5 0630
6.5 y 76.0 " . 0.646

. 70 63.0 - 0+ 655

T ABLE

RE

37.7
38.1

© 38.5
39,.%
41.1
43.3
46.0

50 «6

- ss.6
602
65.1
-69.1

71 .6

F

44268
4.290

4.240

4.284
4,384
4.539
4.614
S«094
5.425
Se751
Se790
5.348
4,675

l¢6.5
146.9
-148,0
iag.8
149.8"
1506 *
152.6
152.0 ,
150.3
149.9
149,.5
151.5
153.3

<

-5

7806
7.816
7717
T.727
7.79?

7 898
-

7.866
8. 302

T 84509

8.626
8.38)1

7.581"

64s55%

or¢




R T P — - e e e

A

o~
. .- ‘ .
. 2 \ '
— : - ! -
— ‘ “Qerﬁf - . \£TABLE>‘ g N ' ’
. - ’ N . ’ l“.
POWER = 1455 A X 335 KV - ' ° > )
GAS-FLOW RATE ;= 1.350 G/S _ . " ; X
SPHERE DIAMETER = 2.2 MM i .
. z T w 10 RE= / Nye RE, NU, :
) 1.0 18622 " o.508 12.8 3.064 43.8 5.266 )
1.5 180.1 0.508 - 13.0 2.984 a3.9 - s.127 .
20 179.0 . 0Oa515 134 ‘3.020 44 .3 5».132
2.5 174,2 v . Ce522 13.9 2.998, 45.0 5.047 0
3.0 . 171.7 0.533 14.8 3.045 45,8 - 5,037 AH
- 3.5 166.2 ’ " 0.547" 15 .8 3.065 46.9 4.965 .
4.0 - 157.6 " 0.561 S 17.1 3.032 48.4 4.813
4.5 147.5 0.580 18.8 T 24996 50.3 4.635
5.0 & 146.9 0.612 _21.4 3.205 51.8 - 4.749 .
545 145.7 0.656 | 2a.1 3.455 523 4.878
6.0 136.1 0.679 26.2 34475 .. 5246 4.738 r
6e S 131.4 0.71a 28.6 3.631 o ‘52.4 4.755 .
" 7.0 120.3 0.743 30.9  3.591 ¢ ) 52.7 44553 ‘
" ) >
’ - s

&
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TABLE Ix —
) -
POWER = 1.55 A X 3.35 KV ' : .
7/ - .
 GAS FLOW RATE = 1.050 G/S : ‘ ] : . -
SPHERE DIAMETER = 3.3 MM ] S {
e i
L)
z H .TO *REw NUw . RE, NU,  f
. — : ) ) ' .
- 1. 140.0 C.a84 19.3 3.455 ¢ 71.0 7 6
1.5 138.7 - 0.486 19.5 3.487 & 71,3 65134 .
. v ‘q‘
2.0 139.2 0.4%a 20. 2 3.523 71.7 6.193
. 245 136.7 : Ce501 . 2049 3.530 72.6 6.138 ) -
' v - ” 5 . L
3.0 137.8 C.514 22.1 3.666 - . 73.3 | 6.242 =
. 3.5 136.2. 0.530 23.8 . 3.769 74.6 6.266 -
4.0 130.1. 0.584 25.7 < 3.754 . 76.8 . 6+116 ‘
4o 128.3 +S67 28.3 3.909 7845 " 64156 -
540 126.7 0.598 T 32.1 4.144 . 81.0 = ' 6.254 )
5¢5 12642 0.636 36.1 /- 4.489 ‘ * B81.5 * 6.4a7 . -
6.0 120.6 - 0.668 ) 39.3 4.619 81.3 6.382
. - ‘
o -
. 665 110.0 0 «697 . 42 .9 - 4,558 82.0 ' 6.082 ° i
7.0 . _1c1.i 0.727 46 .4 a.s29 - 82.3 Sigas., ¢ ,
i R ,
) ® SN
' %
- / — a. ) .
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. - - TABLE )
19 R N g ; .
- J: ’IX' . N N
SOWER = 1.55/A X 3.35 KV ;
) GAS FLOW-RATE = 1.05G G/S ) » "
SPHERE DIAMETER. = 5.6 MM P *
™~ o
- S \\\ ; -
z H 10 RE o NU o : RE, NU,
1.0 94.6 0e453 = 33.9 44106 14C. 9 7.73R
b N N
1.5 93.0 0.4854 3433 _ 4.064 la1.3 7.641
==
2.0 93.5 0.462 35. 4 . 4.158 142.4 7717
. “i\_; -, -
, 2es 9341 0.469 36.7 402380 143.5 7.738
3.C 92.5 0.a81 38,9 4e327 T 14544 7. 774
3.5 93.2 0.497 a1.8 4.530 14630 7.923
4.0 91.9 0.514 45 .1 4.659 139:6 T 7.939
—
- 8,5 89,2 0.534 49,7 4.776 1535 7.885
5.0 88.7 -0.565 5644 5.100 J 157.a B.048
" 5.5 88.3 0.604 63.4 Se518 157.4 8 #264
6.0 81.9 0.632 69.0 54516 157 7 7.964
~ N .
6.5 7543 0.662 . 75.3 5.483 1S58 .3 7.626
7e0 69.9 0.693 81 .5 54502 157.7 7.378
r-4 ) o
. } #
. . . -
M 5_"\ & . <

oD

an
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X TABLE
POWER = 1465 A X 3.45 KV o
GAS FLOW RATE = '0,830 G/S
SPHERE DIAMETER = 2.2 MM

z Cone T — 1o RE,,
1.0 195.5 0.50a 14.0
4.5 195.4 0.507 . 14.2
2.6 . 198:6 - 0.S14a 14.6
2.5 195.7 _ 10e519 ;1449
3.0 194.3 0.525 | 15.3
3.9 v . 1919 / 0533 T 1547
4.0 189.1 “&.546
4.5 198.1 T «560 17.
5 08 181.1 0+.575 18,
5.5 183.6 C. 604 19
6.0 o 168.5 0.623 21.3
6e 5 * 155.4SL~— 0.653 23.3
7.0 147.4 0.678 24.9
7.5 — 130.0 ‘ 0.633 26.0
3,0 o 116.6 ) Ce707 26.6

Y , -

RE

3.1590
3.171
3.268
3.267
3.298
3.323
3.390
3.450
3.494
3e ;63
3.663
3.71a
3.704

3.446¢

3.2590

RE

48.2
48,3
48.3
48.7
48 .8
s6.8
49.2
49.4
49.5
49,3
50 .0
50 .2
S0.'1

SOe4

4947

5.453
S5e465 °
5.569
5.525
5.522
00
Se499
5 489
5.a439
S.63S
5.349
S.226

Se 053

4.621
4 .289

H1e
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POWER =

GAS FLOW RATE = C.830 G/5 -

le65 A X 3%45 KV

SPHERE DIAMETER

S

o

r4

1«0

1.5
d2.0
"2 5

3.0
3¢5
4.0

de5

. 5.0

Se5
6 «0

He5
7.0
7.5

‘3.0

r

-

L]

142,11

1415

141 .9
141.2

139.5

137.1
136.6
140.2
139,1
138.7
131.8

125.8 .

120.7

L04.3
a

89,0

_TABLE

21.0
2143
21.8
22.4
23.0
23.6 -
24 .
26 01

27 .4 -

29.8
32.0

34.'9
37.4
39.1

39 .9

3.436
3.445
3.504°
3.536
3.554
"3.562
_ 3.754
bl B.QQS
-44025-
4.263
T "4.298°
4,425
4,548
“e149
3.721

~

79.7
79.9
80.2

'80.7

B0.9
81 .0
80 .8
8065
80.2
80.1
8Ce3
801
79 &0
79.§
795

P

N
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[ ' TABLE XItL . .
i B ) - ‘
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POWER = 1465 A X 3,45 KV . ¢

GAS FLOW RATE = 0330 G/S : :

SPHERE CIAMETER =. 5.6 MM — ) ) . .
) 1 # ~ ) . -
z H 10 RE,, NU, BE NUg
. s ,
, ¢ . .
10 98.0 Ce.a48 37.0 4.164 [ 157.2 7.921 ’ .
- 1.5 96.9 . 0.489 . 37.8 . a.1aa 1s7.8 7.860 )
2,6 - 97.3 +04455 38.4 a.226° 158.3 © 7.92% g
2.5 97.0 0.460 39. 4.270 159. 1 - Teoar - .3
3.C * 9746 0.468 40.4 4.369 158.6 8.025
, 3.5 , 96.7 : 0475 ° 4t.a 4.416 158.4 8.013
4.0 96.3 c.a88 43.7 4.552 1ss.8 7 8.077 . i
4.5 95.8 " - 0.S502 4as.8 4.68s 158.6 8.132 ‘
S.0 92.5 0.515 s8.2 a.705 159.0 7.996 S
S5¢5 . 89.8 0.539 52.4 a.850Q 159.7 74957 , .
6.0 86.3 0.562 56.3 4.950 ’ 158.9° .  7.853 A
6e5 83.6 0,593 “61.4 | 54167 157.0 . Te844 s
© Te0 80.9 0623 657 5.358 154.0 7+823
7.5 72.6 - 0.639 68. 6 " 5.076 153.7 ., 7.263
849 63.4 0.650 ° . 7062 2.657 152.2 6571
/ 1 k3
- - 5 ° - [
s - " -
, ~ ~
N % < - ’




POWER = 170 A X 3455 KV

GAS FLOW RATE = 0.720 G/S5
SPHERE DIAMETER = 2,2 MM

z ’ al
T 1.0 209.0
15 20€.5
2.¢ 206.8
Zog 203.9 .
3.0 ) 200.3
3.5 199.1
3.0 ’ 195.9
A4S . 189.6
" s.0 1B2.8
55 1_ 1774 .
6.0 16540
645 Y 15€e5
7 .0 142.9
7.5 131.6 .
30 © 12648 )
g

TABLE

X1V

RE

e )

15.3
15.5
15.8
1661
16e4
17.0
17.%
1843

18.9

19 «6
203
- 21.0
21.8
22.5
23.2

o%

s

50.8

50.8

\ 50.9
51e1
‘Skes
S1.7
51.9

. 5247
53,1
53,1
53.5

. 53«2
53.2
527
S1le6

4

S5.8C0

S.805

Se 787
50741
5.683
54691
5.657
Se553
Se430
Se 347
‘.cas
4 + 930
4,636
44395

4,277

Le
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TAGLE _XV. ) . ’ . .
POWER = 1.70 A X 3.55 KV e o ’ ; 7 X
" 'GAS F_Ow RATE = 0.772C G/S .. - ; e ~ °
. SPHERE DIAMETER = 3.3.-MM o . o o - -
e . _ . B t D
z H To T eel NUe RE, Nu,
1.0 146.1 0.a84 23.0 3.573 84.9_; T 6383 .
15 14544 ° 0.487 23, 3 3.587 35.0 6:376 -
2.0 145.7" . C.492 23,7 3.635 ° ‘Ba.9 6.410 .. :
2.5 14602 ' Ged97 241 3.693 . 8448 6.456 =
3.0 ‘545.7 0.503 28 .6 3.73€ 8a.8 6.471 )
3.5 14649 - 0.512 254 3.840 _-84.8 © 6eS00
440 1871 0.521 - 26.3 3.927 "Ba.a” 6.613. o
4 45 147.5 0.533 ‘- 2745 4,047 8S.2 T 6693
S50 18S5.4 0.544 28. 4 4,098 85.2 6.673 : )
5.5 138.1 0.552 " 29.4 4,009 8546 6.450
6e O 131.3 0+563 - 305 3949 85.7 6.252
6.5 123.5 0.57a " 31.s 3.858 85.4 6.010
7.0 119.1 0.593 32.8 3.903 84.0 5.930
745 1105 04607 . 33.8 3. 797 82.9 L.658
P) 1011 c.622 34.8° 3,639 81.8 S5.323

/I
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} TABLE xvi . -
TFPOWER = 170 A X 3.55 KV ] - u s _
GAS FLOW RATE = 04720 G/5 , e ' . -
SPHERS DIAMETER = S.6 MM e ' .
- 0‘7 ' < ) '
z H o TO RF, \ NUg RE o NU,
- p . — o
' 3 > M .
Vo o i - e . i
e 1lo . . 100.6 ° 0.458 © - - 40.4 £.323 1674 8¢131 . .
145 " 99.9  Ces457 - 40.9 ) 4.331 ’ 1677 8. 104 - . ~
2.0 : 99.8 - 04461 41.6 4.376" . 16746 . Be126 T
. . . N
., 2e5 98.5 O0+46S5 Laz.a . 4.371 168.2 B8.065 ) o
3.0 97.7 De 470 \s43.3 “4.804 . 168.4 8.053 i
3.5 98.1 . 0.478  ° a4 .7 4¢504- 168.6 Be126 .
L 4.0  96.1 ’ 0+485 461 - 4.512 169.5 . 8.0ua -
4.5 * 97.0.. 0.497 4d.3 ) 4.679 169.7 - 8.181
540 94%5 . 0.506 -~ 50.C 2.694° " 170.0 8.091 - -
t - o . N
5.5 93.8 0.518 Sle6 4.783 168.7 8,093 )
6.0 . 91.7 ' 0.531. 53.6 4.847 167.4 B.042
55 89¢ 4 Ce545 S5e3 46907 16484 .9 7971
7.0 . 8640 "7 o.s63 - 157 «6 . 4.953 161.8 7.839 ] .
- Tes 80C.9 " G.580 S9.a 4.882 158.5 7.553 ‘ E
T 840 77.? ) 0597 6la1 4.887 — 1545 7.380
l’ " - - - ’
& - - . -~
- - rFy 4
Y - e -
) P )
: . ¥ ‘ - -
8 v . ' ~
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propé?tiea of the fluid, Comparison of the constant-property sol-

ution with the results of Woo (1970) and Dennis et al. (1973) in-

\dicated excellent agreement in the values of the calculated Nusselt

number.. These constant-property results can be correlated by the
following equation, with a maximum error in the Nusselt nuwber of

less than 1Y in the range 10<Re<100:

~

3

Nu = 240,473 Pr® Re®'®" (33)

»

The exponent of the Prandtl nunbcr,'!, vas determined from
Woo's results. m was found to be a function of the Reynolds number.

In the ranges 0.2<Re<100 and 0.25<Pr<2, m can be expressed as:

m = 0,78 Re o - T 38

a

. with a maximum error of a few percents, §Iﬁ thi'raﬁgc of 0.5<Pr<l

the error is less than 12.

Equation (33) was assumed to apply to-the variable-property
case provided appropriatg reference temperatures are used. The
const?nt, 2, i; Equation (33) is the limiting value of the Nusselt
numbef at Re = 0, This constant was modified to include the effect
of the temperature on the thermal conductivity, by integrating the
energy equation at zero flow. Details of ;é% dori;atton were pre-
sented in the numerical Qnalysic chapter. A for variable-property

transfer, therefore, becomes:

Q
-~
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where £, = (T -/l + 0@ ST T (36)

Tf is the reference temperature at which the Nusgelt number is

evaluated.

Uéing Bquation (33) the values of the reference temperatures

for the thermal conductivity and kinematic viscosity which gave the

best representation of the numerical results were found for the
variable-property fluid. The reference temperature for the thermal
conductivity was the surface temﬁéggiure and Tp.,9 for the kinematic

viscosity, where: .

Toero = T, +0.19 (T, - Tp) . ~ ' a7

»

In the ranges 10<Re <50 and 0.25<To<l, the error in the

estimated Nusselt number whgn these two reference temperatures were

used was of the order of one perceﬁt. The corresponding range of

-

Reo., s was between 10 and 265. ) ™

The applicability of Equation (33) to the ex?erinental results
b .

., was tested using four different reference temperatuteﬁ. The standard

deviaEion was calculated for all of the points and for the individual
spheres. The reference temperatures unre:‘(a) free-strean temperature,
(b) sphere surface temperature, (c) arithmetic mean filiytcnperature

and (d) surface temperature foxr evaluating the thermal conductivity

and To.;9 for the kinenatic\vinconity. The results of these tests are.

'preaented in Table XVII.

'

o

-, It can be 'seen from Table XVII that the tufqraﬁi: temperatures -

[
13

)
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s
. TABLE XVI
! 1
EFFECT OF REFERENCE TEMPERATURE ON THE ' .
! , ,
' N ACCURACY OF HEAT TRANSFER EQUATION
1§
Reference Standard Deviation (% of Nu)
Temperature’ Overall Small Sphere Medium Sphere Large Sphere
\
H
T 10.98 10.40 9.29 . 12,91
T 6.56 7.63 5:15 6.55
\ . ) ‘
Ts 5.06 6.70 4,36 3,48
/.
T, /Touss 4.99 6.76 b.31 3.10
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l
Nusselt number [Equation (33)] 1s shown for selected values of T /T

223

Ts - To.19 gave only marginally beéter correlation‘than Tg. The use

-

of the mean temperature resulted in less accurate results, while
large errors were encountered when the surface Eemperature was used.
The reason for this can be found by examining Table XVIII, where’ the
effect of the different reference temperatures on the calculated

8 B
and Re_. The results indicate that.the die%repancy among the three

refé;;;;e temperatures béqomes appa?ent only at low surface tempera-
tures. In the Reynoldglnugbéf‘andltempeéature ratio ranges of the
experimental sfﬁdy (10<Re_<80, 0’4<Ts/Tg<°°8)! the variations in the
calculated Nusselt number [Equation (33)] caused by using the dif-
ferent reference temperatures are within 52 of the absolute value.
Variations of this magn;tudenyere within tﬁ% range of experimental
uncertainty, and thus it was not possible tuv determine the 'best'
reference temperature gsing the experimental results only. However,
the applicability of Ts - To.,.areference temperatures was yonfirmed,
for heat transfer to cylinders. The heat. transfer equation derived
from numerical results gave ré;ults very similar to those reported
in the literature, when these reference temperatures were used in

the former.

/ Because of the influence of the surface temperature on the
limiting Nusselt number, a plot of Nu vs. Re does not give a good
representation of the experimental data, even if the Nusselt and the
Reynolds numbers are evaluated at their respective reference temq’

|
peratures. In Figures 3a, 30b and Figure 31, the parameter Nu-2f

)
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TABLE XVIII

EFFECT OF REFERENCE TEMPERATURE ON

CALCULATED NUSSELT NUMBER

* ! |

/

Reynolds Number __Nusselt Number, hD/K
‘ U!.)/\)°° . _ To = TS/TS T = Tg T, = TII T, = TaJTO'l’

f £ £

N

. 10 ' 0.75 3.1‘7 30193 3-156
80 0.75 6.305.  6.449 6.323
10  0.50 2.9 3.035 2.920
8o 0.50 6.093 6.407 6.012
10 O 0.25 2,710 2.877 2.543

80 .. 025 5.868 6.392 5.263
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FIGURE 31
VARIATION OF THE PARAMETER
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{ - is plotted against the Reynolds number using the reference tem-

peratures Ts/To.;. a;d T, respectively. Figure 30 shows larger

8 ‘ |
scatter of the data than Figure 31. The resson for this is that |

for the same flaw conditions the ranges of Re  and Nu_ are much

— —

smaller than of Ree.;s and Nuo, which tended to bring the points

closer together in Figure 31, :

]

B

In Figure 32 the values Of the Nusselt number calculated ‘

. “from Equations (33) and (37), using experimental values of Re and

v

‘T, are plotted against the experimental values of the Nusselt number,

Nu_ was used in these plots for clarity as the values of Nup, were

( \ too close to each other. It can be seen that approximately 80% of -/

/ ' the experimental points fall within #52 of theoretical value.j

1

N Although it was not possible to determine from the experi-
mental results which reference temperature gives the most accurate
representation, the agreement of these results with the,fhe?rétical

k ,

‘curve, as ehowﬁ in Figure 32, confirms the'accuracy of the other

parameters in Equation (33), namely, A, B, m and n.

The scatter shown in Figurés 30 and 31 could have been

b caused by two main[factors: (a) errors introduced when interpreting
the experiﬁenfal measurements, and (b) errors caused by the presence

-of the sphere in the flow, thus changing the actugl flow and tem-

perature fields from those predicted, It should also be kept in

mind that the experimental situation is rather difficulé and that

<:) ‘ the étability of gﬁe induction-generated arc is not absolute.

wy —
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For the velocity measurements it was assumed that the effect
-

of viscosity and temperature on EE ¢ould be predicted from theoreti-

cal considerations. Errors introduced here due to uncertainties in

ithin £ ts). . s1 '
EP_ are small (within few percents) nce g was approximately 1.2 ) /

;nd U is proportional to the square root of C_, the overall effect
U 1is propor qua Gy /

of Cp on the measured vélocity is small. Another error may have been:
introduced in the velocity measurement, due to actual presence of the

probe in the flow. This miéht have led to cooling down of tbfiflaﬁg ]
thus changing its yeiocity. This effect was minimized by Jsiﬁg;;he

. . ¢
smallest practical size and by keeping the probe hot. Moreover, the

disturbance of the flow by the probe was of a similar magnitégg as h

that caused by the sphere.

d

Because of the finite size of the probe, the measured ve-
locities were average velocities and not point velocities. This, T A

however, was more desirable, since the spheres themselves were of a

finite size.

The accuracy of the gas temperature determinations depended
1arge}y on two factor;: the agssumptions made in the heat balance and
the values of hw used. The assumptions have already been discussed
in an earlier ;;;tion. The valu;s of the heat transfé; coefficient
were obtained from two correlations, one bésed on the work of Collis
and Willians and the other derived from the numeri®41 solution of
hea; traggfe; to cylinders. The latter was modigied to include

variable-property effects, by the use of reference temperatures. The

°
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agreement between the two correlations was excellent. Consequently,

it can be safely concluded that the,val‘es of hﬁ used were quite

accurate.

One factor that might.have led to scatter of the data in the’ \~§\‘>\J(
. . ﬁh\\\\¢ -
lowe? sections of the chamber was the cooling effect of the sﬁine \ N

on the gas temperature, resulting in lower actual gas temperaiures” h

¥ &

than those measured by the wire. In thesge sections, the temperature
differense (T8 - Ts) was smal} and very sensitive to slight changes

in E&, thus leading to appfeciable errors in the values of e

The surface emissivity influences radiation losses directly,

and' for the case when these are of the same magnitude as the con-

.
\ .

vection transfer fates, errors in the emigsivity values have large
s '

effect on the calcuiated heat transfer coefficients. In this study,

N 5
o 3 &
data from several wogkers on the total hemispherical emissivity for

both molybdenum and tungsten wére examined and the reliable ones

selected. These data were withfn a few percents of each other.
]

CONCLUSIONS =

.

1. Heat transfer rates to stationary spheres were determined

experimentally under high temperature conditions iS 000 K) and where

¢

tehperature diffqrences of the order of 2 000 K were present. The

Reynolds number varied between ﬂ%’;nd 80.

2. The experimental results showed reasonable agreement with

&




the results of the numerical solution.
f

N > [

3.‘The effect of varzable properties was accounted for by !

v

using a limiting Nusiflt number that was a function of the tem-
perature and by using reference temperatures for evaluating the
\

fluid properties.

i
4, For. argon, two sets of reference temperatures were found
VT /

to correlate the results: (1) the gas temperature at free stream,

and (2) Ts and To.;5 to evaluate the thermal conductivity and kinematic

v .

viscosity, respectively. From the experimental results alone it was , E }
not possible to determine which of the two was more accurate. How-
ever, 1t was possible to obtain an excellent correlation for heat

transfer to wires using the latter set. For design and engineering .

purposes, the use of Es'as the reference temperature is probably '
adequate, and offers the advantage of a somewhat easier computational
approach. ‘ ‘

e




dl

dT/dl

sphere

NOMENCLATURE

«

Constant

Constant

/Biot number ,

Constant, Equation (2)

Constant, Equation (2)

. Pitot tube pressure coefflcient, dimensionless

l

Speed of light

Diameter

Increment of wire length

Temperature gradient along the wire
Effect of variable-properties on limiting Nﬁsaelf
number defined in Equation (21)

Acceleration to the gravity

Grashoff number
-KQ%Plaqfk‘éonstant )

-  Heat transfer coefficient, J.m 2.5 }

- Boltzmann constant ) . i
- Thermal conductivity of the fluid
-  Thermsl conductivity of the sphere

- Thermal conductivity of tﬁe wire

N
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m -  Exponent of Prandtl number
'NA - Normal spectral radiance from a real body
. INA’b , - Normal spectral radignce from 4 black body .
Ni;b "' - Normal spectral radiance from a black'body equivalent
to that from a real body .
Nu - Nusselt number .
n "N Exponent on Reynolds number
Pt - Total pressure at stagnation point, dimensional
P - Static pressure at stagnation point, dimensionaf
P(0). - Surface pressure distribution, dimensionless

. - Conductive heat transfer rate “n
cond. : . ] .
Qond, - .Convective heat transfer rat
ans.rad. - Rate of heat transfer by radiation from plasma {
Qrad -~ Rate of heat transfer l&pdi&tion from plasma .- 1
l':
R -  Radius :“;
’ §
Re = 'Reynolds number .
| : ' \ .
Ty -  Brightness temperature
; plasma Temperature of plasma core

Free-stream velocity.

—t‘
% <
T

Property exponent

_ Greek Letters "

Q@ -
]

Absorbitivity :
! 8 - Coefficient of volumetric expansion \
A - Difference |
3 ° = Total hemispherical emissivity .




EA -
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Q
0] 1 -
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u -
v -
p -
o -

)

£ -
g -
m -
s -
\
w -
[ ] . -
i
i
De19 =

Spectral emissivity at wavelength, A
[

Angle from front stagnation point

Angle from frént stagnation point that is subtended
by the pressure probe bore »

Wavelength
Viscosity

Kinematic viscosity
Density

Stephan-Boltzmann constant

Reference temperature condition

Bulk gas condition

Arithmegic mean fiim condition 1
Sphere surface condition

Wire surface condition

Free-gstream condition

Reference condition at To.i19
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CONTRIBUTIONS TO KNOWLEDGE

1. The finite-difference technique was applled successfully

to the solution of the coupled momentum and energy equations for
flow past a sphere where large vax;iations in the physical properties
" exist, - ‘
. [}
2. Flow and temperature fields, drag coefficients and the -
Nusselt number\(ere calculated for surface temperatures to .8as

temperature ratios between 0.25 and u;}ity and for Reynolds numbers

between O.i and 50.

3. Experimental measurements of heat transfer to spheres

confirmed the predictions of the numerical solution.

!

4, A correlation was derived for heat transfer to a sindle

~

sphere which took into consideration the presence of large variations

7

in the fluid properties.

. . o 237
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SUGGESTION FOR FUTURE WORK . - .

1. Devise new measurement techniques for determining gas
velocities and temperatures more reliably in the temperature range

L]

between 2 000 and 5 000 K.

\ . ) 3 !

2. Study the effect of intense mass efflux from the surface
of the sphere on the overall heat transfer rate. These results on
the effects of superimi.\osed dass transfer will find widé applica-
bility in powder processing where e;taporation or su;face reaction

1
accompanied by the evolution of a gaseous product is present.

I

1

3. ’ Confirm experimentally the effects %f lérge temperature
gradients on the fluid flow phenomena past a sphere (principally,
on the value of the overall drag coefficient) for comparison with

those predicted theoretically in the present work.

2
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Backwatd-difference s

APPENDIX A

FINITE-DIFFERENCE APPROXIMATIONS

RIFFERENCE FORMULAE

First Derivative

Central-difference :
- ' 2
dy, /dx = (y, .. =y, ,)/2h + 0(h?) \
Forward-difference : -
- - 2
dy, /dx (=Yiqp * 4¥44q = 3y,)/2h + 00T

S dy Jdx = (y,_, - 4y;_q * 3y)/2h + O(h?)

,

Second Derivative .

Cenfral—difference :
2 2 - 2 lﬂ
ay,laxt = (g, - 29, + /0t + OG)
. N .
a - - -
Bfyyfoxdz = (¥yyy qaa * Yy, 5-1 T Via1,4
. .
Yi41,3-1/00, + 005

Forward-difference

2 E - ! 2 ay -
Ay dx? = oy g + 4y, = 5V + 29 /0T + 00T

When dy, /dx =.0 :
d?y, /dx® = (8y, 4 = ¥,,, = 7¥.)/2h" + 0(h™)

Backward—diffetenée s

dayi/dx'f (yi_3 - 4y1_2 + 5y, 1 " 2y1)/gz,+ 0(h?)

(A-4)

(A-5)

(A-6)

(A-7)

(A~8)



DIFFERENCE FORM OF FUNCTIONS » AND '

The velocity compor;ents are defined as!

v (1,3) = NN, D) - ¥(I-1,D)/
(2Br? sind) (A= 9)
W@ 4 D@, - ¥L,IDY
~ (2ar? 1n0) \ (A-10)
Also, avr(I,J)laz = [vr(I,J+1) - vr(},le)]/ZA (A-11)
avr(I.J)/ = Hvr(z+1,3) - vr(I-l,J)IIZB (A-12)

|

The derivatives of the functions y_e and T can be written in
a similar form to Equations (A-11) and (A—iZ). In a simplified form,

the difference approximation of I is:

£(1,J) - 20 ML an/0lv, (1) - 3% /327 - 0
8’v9/8230 - cot@(ave/az - ve(I::J))l +

21/3z (v /3200 + v (20 + a’vé/ao= -

Bve/Bz +. cot® (3\70/39 - cot® ve'(I,J))] +l
(x-1)/T(1,J) [a’r/az’(avr/ae - V(D) -

Na \ 271/20.38/3z + 37T/3230(3v, /30 +

. | N
‘vt(I,J) - avr/az)]} (A-13)

and r(L,a = -UT(,D? {3T/3zlv (1,1)dv /20 +

. . ) |
' ve(I.J)avelael - 3T/30[vr(I,J)avr/az +

‘ VG(I,J)aVG/GZI} (A-14)
. 4 ‘ \




(~) ;" BOUNDARY CONDITIONS
/ 0
/ At z = (!
/ z ‘- Bve/az = 3faz (1/pr? 8139 av/faz) . (A-15) /
! |
r = 3¥/dz (3(1/pr? sind )/3z + 1/pr?
i _ sind 37¥/3z?
‘ .
‘l
At the sphgre surface Vo " 0 and consequently 3¥/3z is also
\ A
zero. Therefore:
Lo = 1/(pssin®)d¥/az? (A-16)
. , h
i
‘\ ' Substitution into Equation (A-7) gives:
j o f
Ll = To/aine. [8¥(1,2) - ¥(I,3)] /2A° (A-17)
\
- N [
t z=2.
, A
aT/30 = 0 (A-18)

From Equation (A-2):

v

v \

M(1,)/90 = [-1(3,3) + 4T(2,J) - 3T(1,J))/2B (A519)

5

. y
or T, = lr@e,y - 13,01/3 (4-20)
vrcl;a) - -1/pr7 2%y¥/303 (A-21)

1

Using central-difference approximation [Equation (A-4)],

kil

29/20° = [¥(2,d) - 2¢(1,) + ¥(0;)]/B? w2y

iy
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A-b -5

Fron the;ondition of symmetry around the axis, ¥(0,J) =

¥(2,J), and Equation (A-22) becom\es: h
2%9/302 = 2¥(2,7)/B? ’ . (A-23)
and v (1,0 = =27(1,3) ¥(2,J)/B%? T (A-24)
Also  F(1,) = 1/r /a0 ] ’ (A—|25)
35/90 = [52,J - £(0,0)]/28 (4-26)
£(0,J3)” = (2,0 ¥ ‘ 1
Therefo're:
F(1,J) = 1/ c(i,J);nﬂ ,; | (A-27)
/ ]

manner.

“aa,

The boundary conditions at O=w can be derived in a similar
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DERIVATION OF DRAG COEFFICIENT EQUATIONS

v +

STAGNATION PRESSURE :

[

The r-componerft of the Navier-Stokes equation [Numerical

Analysis, Equation (2)) can be written as:

ap/ar = ul4/33V.v/or - 1/r dr/230

- cot0 y/r] +
// /W[L/r dvy/or - vo/rd + 1/r? av Ja0] + ,,
/ dwlcf2av for - 2/3 V.v] -
- - a -
, p[vravrlar + ve/r avr/ae v c_)/r] (8~1)
\
Y Along @ = 0°:
//J
;) t.= 0 / AT/30 = 0 VO'O

. By taking limits fcoto = éz;/ae and since } = constant

< Yy A ’ [ ! ~ '
xTx,“then 3u/30 i8 also zero. Equation (B-1), thus simplifies to :
l o

“dp/dr|, .. = ul4/3 3V.v/dr - 2/r 3g/a0] +
0=0 !

/3r [2v_/or - 2/3 7.9] - pirravrlar (8-2)
From the/ continuity equation: " |
pV-; - ‘;vvp - . . ‘ (3_3)
or J’V\,g - ~1/p(vri§o/5r + v,/r 3p/30) | (8-4)
‘ L \'/ .
v A B~1 -




where

.and

*or

At the axis, Equation (B-4) simplifies to:

A

V.v = —l/p'vr aplar , (B-5)
Similarly, '
v.v/far = v.;[avr/:sr)/&r + (3%p/3r®)/(3p0/3r) -
(30/3r) /0] (8-6)
In dimensionless variables [p' =>(p - p_)/(p_U2/2)],
-dp/dz = -8/Re {u[3z/30 - 2/3 aV.v/3z]
© u/dz[v.v/3 - 10/1' ov_/oz]} - \ .

' 2pvravr/az a (8-7) .
Vev = v /xT 37/dz (B-8)
av.v/az -, V.\_r[avrlaz)/vr + (3%1/ z’?/(BT/Bz) -

(3T/3z)/T = )] (B-9)
{(dp/dz)dz = p. = Po (B-9)
‘ ////
In dimensionless variables, p, = O. Therefore, . -~
‘ N ///r/"\,
Po = -/ (dp/dz) dz s
o - 5/ .
[ z® -
. Po = 8/Re { {nldg/a0 -~ 2/3 3v.v/3z] +
- . E\ ;
, du/dz[v.v/3 - llravr/azi} dz +
2o F 3 !
2/ [pv. dv_/3z] dz (B-10)
) /] r,r o ©
'/‘4 & 1
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|
For constant properties, Equation (B-10) reduces to:

o

v

z= L] [+
Po =, S/Re f (BC/’BO) dz + [V;]Q .
o . B
2‘”’\»‘ '
os - 8/Re / (30/30) dz + 1 (B-11)
° .

"SURFACE PRESSURE DISTRIBUTION

- |
The O-component of the Navier-Stokes equation [Numerical .

Analysis, Equation (3)] can be written as:

\
H

3p/30 = u[4/3V.v/30 + r aglar + ] +

) sufdr [gr- 2v, + 2 avr/ae] +

0
3n/20 [2/r avO/ao + 2vr/r - 2/3 V) -

pr [vr av@/ar + velr avG/ae +

vrvO/r] (B-12)

At the sphere surface the temperature is constant. There-

fore /yer= 0. Also:

\

N 1
\av;/ 30 = 5v@/ae 0 ; .

" ’ \
Equation (B~12) thus becomesi
L
dp/dod_, = w [4/3 39.5/30 + rag/ar + ¢] + )

‘ du/dr {xr) , (B'i3)
v.v - -1/pv.Vp 2 -1/p (V£3D/3r + '
N i
‘ /r 30/38)

0

e
Ve ) //y(

Y .
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B-4

AV.v/30 = 1/p (Bvr/BGBp/Br + vrB’plarBG +
1/r 3v,y/30 3p/30 + vg/r 3%0/30) +

1/023p/30 (v 3p/0r + vy/r 3p/30) (B-14)

All the terms in Equation (B-14) are equal to zero. In

' . 7
dimensionlegs variables Equation (13) can be written as:

i

. dp/do 4T¥/Re [32/3z + ¢ + ¢ x/T aT)aa]l \  (B-15)

' 0
and p(0) po + 4T5/Re J [3z/oz + ¢ (1 +
N 0

x/T 3T/dz) do B (B-16)

’

For constant properties:
\ ’ [¢] ' .
p(0) .= po + 4/Re [ (3g/d3z + ) dO (B-17)
o

¢

DRAG COEFFICIENT

-~

™~

—

The components of the drag force on a sphere are defined as

[Numerical Analysis, Equations (53) and (54)]:

J = ‘ - "{’ 2 2 - —
| Cpp = (Fy - FD) 7 [nR% UZ/2] (B-18)
Cop - = F./[mR% UZ/2] . (B-19)
~ ‘ ! 2mn
where F = 17 Ip| cos0] R? sin® 30 59 (é‘E?)
. n 0 0 r=R
, 25
Fg = 1Y [P, | .p c08O] R? 5ind 20 3¢ (B-21)
amw
F ~ o= L {uled/3x(v, /) +

xdv /30]]| _. sind} sind 30 3¢ (B~22)

u‘;
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' B“S ‘\
For axisymmetric flow: ' '
N\
‘ \ n , :
F - F., = wR*J (p~-p.) sin20 30 . (B-23)
n s 0 ¢
ki)
. and F, ‘ = 2 R® J u (3vy/dr] sin’0 20 (B-24)
[ - . .
From Equation (14) (Numerical Analysis):

4 - avelar + ve/r - 1/r Bvr/B@ ti (B-25)
At the surface, Equation (B=25) becomes: \
T = BVelat \ (B-26)
S \ 1 “

and (B-24) reduces to:

. "
F, = 21 R? f uz sin0 30 / : (B-27)

o

Substitution into Equations (B-18) and (B-19) gives:

n - .
Cpp = [(p- p;f?(me1/2) 8in20 30 (B-28) -

<

7
Cop = bu/p U2 { sin®0 20 (B-29)

©

In dimensionless variables:

L
QDP* = [ p(0) sin20 30 ) x (B-30)
o
“ -
& Cop = 8/Re o [ Lo sin’o ), ' (B-31)

N a
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APPENDIX €

PROPERTIES OF ARGON » o

, /
. |
. \ ¢
/// Temperature Densigy Visco§ity ‘ Thegmal Eonductivity
N K . kg m N.s.m 2 x 10* Jom ',8. ! x 102
o ¢
’ ~

1000 0.487 Q.541 4.23

- 1500 0.326 - 0.708 * s.gz

/ . ! ¢
2000 0.243 - 0.886 } 6.90
. & , , i
2500 < 0,195 1.05 8.20
3000 0.162 1.21 9.46 B
3500 . 0.139 1.37 " 10.71
4000 0.122 1.53\ ; 11.92
. |
4500 0.108 . 1.68' . 13.10 .
5000 0.0973 . 1.83 14,29
5500 0.0885 1.97 15.36
- {
‘ o




APPENDIX D

. / / '

LISTING OF COMPUTER PROGRAMMES

&

VARIABLE-PROPERTY FLOW

Pages D~ 2 to D- 9 \ -

L3

CONSTANT-PROPERTY FLOW
‘Pages D-10 to D-16
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DIMOASION SF (R
DIMENSINN  F (3
"DINENSIIN P(4?
DIMENSION CN(3
DIMENS ION ALPHA( 3

NDRNN

RFAND{S451) KKC,ACCL
TOL=0.27C0Y -

X=0e3 .

XYZ=235.7 ' -

PE=IF %0, 672 ' .

R=IBC0,N

VRITE(GR:82) RELPELTNe X

WRITE(E +56) AsRsNsM,TOL

Mi=M4Y .

Al=N+1} }

MY =M=

NI=N=-1

ANG(1)=zn,

DO 4% =1 ,N '

ANG(I+1)1=ANG(1) 48 '
a5 CONTINUE .

R=B8/%57,265776% ! .

A2=A%A - ‘

F2=R=0 !

AH=A¥Y 2, ' -

FH=RE 2,

TOX=TOw*X . o -

AP2=(2,+A)/7A2/2, % ’ -

AM2=(2,-A)/7A2/2,. ) ’ . -

COF=f,/8242,792 ) S

AGR=4 , £ AX3 . ¢ w0

APRz=AGNA/D, . B , AN

RET=4 . 4T X/ 7z

~

a0

-~ T

1]
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® D0 fjmmmin e || )
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SN
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DO 4 I=1,N1 :
SF( 1)=0.5*(R(M1)*SN(Iig**2

c
~C
\
5

44

c

C

c
4

, C
5

C

c

c

D-3

l
CS{Nl)=~1,

G(1eJ)=R(
F(IsJ)=VOD
CONT NUFE .

)
)
)
.
DO 44 J=2,
J
R

[l ™
- e
»*
-
-
-
-
(5
-
»*
»
x

BOUNCARY CONDITIONS
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<
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>» Cwwliieo Ll

CALCULAT ION OF RELAXATION COEFF,

*e TZ QA
+

NN e,

SF(I
’ SF{1
o ¥ ( *

E/R /SN(1)/
wWV(ledi=1e/¢

+RES %S Q)
PES=RES#*0,672
WT{lsd)=1e/(1e+PES*SQ)
VRII+J)==DSTRY(1,J)/7R2(JI/SN(])
VI(I,J)= DSR2T(1,J)/R2{(J)I/SN(])
CONT INVE
WS=1e/7(1e4341416/N1)

1)-
J)=
CSR
(J4)
le

g



[2Xa1a]

ann

a0

12

11

13

D~4

€O 2 I=2,N i
VOR(141)=(R*SF(],2)=-SF(1,3))/7(2.%A2*%SN(1})*TQ
G(1+1)=VOR(T,1)%SN(T1)*=TODX
FUl141)=VRPR(L,1)/SN(T)

CONT INUE

WRITE(6,54) (VORP(T41)s1=1,N1,23)

CALCULATING 34Cse'S ALDONG THE SYMMETRY AXIS

D0 28 J=2 M

TC123)=({6axT(2,
TINL.J)=(8+%T(
F{(1sJ)=VOR(2,J
FINLsJ)==VAR(N
VP (LlsJ)==2¢*T{
VRENT o JI=2,4%T(
CONT INUE

FELAXATION STARYS HERE

230 > » -

[ T I

K, reom
Rl

ACC=1.,

CONT INUE

FPR=C,

NNENINED!

KK=KK+1 -
IF(KK «NFWXKC) GO TO B
KK=N K
ACC=ACCL

CONTINUE

CALC CF GRID PJINTS STARTS HERE

DO 25 1=2.N

IF(11.ENe1) GO TO 12

11=1

Ji=1

60 TN 11 , ]

CONT INUF

11=0

J1=0

CONTINUE -
DD 25 J=24M - .
IF(J] +E0N) GO TO 173 v
Ji=0 )
GD TC 14

J1=1 \

GO TL 25

il
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T s

[gXale]

[aXalal

aonn

as

16

17

22

26

19

19

T(EWJ)=2T(1,J) +AT ’

VORI 4J)=6G{1,J)/RS/TEX

FCIsJd)=VOR(TsJ)/RS \
CONTINUF 0‘
IF{I2.ENeN) GO TN 15 N

Il =" ? :

12=%

GO TC 17

11=1

12=1

GC TO A

CONTINUF R .

DO 27 1=24+N .

DO 23 J=2.M *

DSR=(SF(I,J4+1)=SF(1,J=1))/AH
CDST=4SF(I#1 v U)-5F({1-1,J))/8H

VP (1 J)==DSTxT(I1,4J)7/R2(JI/SN(I])

VT(1,J)= DSEXT(I,J)/R2(J)I/7SNI(T)

COMTINUE ,

POUNCARY COGNDITION FOR VORTICITY AT THE SURFACE

“

CO 27 1=24N L
VOR(I 1) =(R . .SF(1,2)=SF(]43))/(2.%A2%5N(1))%xTN
G{Ie1)=VOR(Is1)I%SNCI)%TOX
FUI141)=2VOR(I41)/5NCT) :
CONTINUF

DN 26 J=2.M

TCLoI)={4.%kT(2,4)=-T(3,0))1 /3, °
TINL I = (4o ®xTANLJI=TINT4J) )/ 30
F(1eJ)=VNS(24J)/7R(J) /B .
FUNLoJ)==VDORINGJI/R(J)/B ‘ ’ .
VP (14J)==2%T(1,J)%SF{2VJ)V/R2/R2(J)
VRINL1,sJ)=2.*TINL4J)*SF(NyJ)/sB2/7R2(J)
CONT INUE . . e
ACC=1, . ’
IFU(KK$1) EQeKKC) 6O TO. 18 B N
CONTINUC . ® 4 .
IF(EFRR.LTLTOL) GO TO 10C ; °
IF(JJIEQ.TOC) GO TC 100 . & g ‘ -
IF(ERR«GT.1:) GO TO 101 ©
Go Tn 7 /
CONTINUE ) ’ . . e
CALTULATION COF RELAXATION CNEFF, o -
DO 21 T=2,N . ° .
DQ 21 J=2.M ' a . “
DST=(SF(I+14J)=SF(I=1,J))/RH| -
]
= " N
3 . 2 °
2
LY > I




\J

aon

a¥aXse]

(2 X aTh]

1

IR AR SN N N iy b v a4 e e

~ Y -

y

DSR=(SKE(TsJ+1)=SF(14J=-1))/AH
S50=S0RT (2. %(NSR*DSR+DS5T*DST))
RES=ABS (RE/R(JI/SN(I)/4,),
WWI{TeJd)=1le/(1,4RESRKQ)
PES=RES*() 672
*TL{I+J)=1/(1.4PES¥SQ)
CNONTINUF

CONT INUE 5

CALC. NF THEFE DRAG CNEF,
DN 21 J=2,M
VRZ=(vR(l,J+1)~VR(},
DYR=(T(1,4J41)=T(1,J~
CY27=(T(1,J¢1)=2%T
VR2Z=(VR(1sJ¢1)=2,%
OMEGA(J ) = (1,J)%VR
GRAD=VRI(1 YRDTFR/R(
CGRAD=GRAD® (VRZ/VPR(
RETA(JI)=T o) Rk X w(

1
(
R
)
(

Ome G+ Dw

v . =tew

/ZDTR=DTR/T(1+4J)1=1,)
B~2:%DGRAD/ 2,
*DTR*(GPAD/3+s~VRZ/R(J)}))

vJ
1,
VR
v J
D%
{1

KODe w\\ Trerq.
NN~ = |
b X PN WA
AN e |
-

o N\, N w

31 _CONTINUT ‘

13

34

CALC BETA AT THE STAGNATICN POINT

VRZ=(=vD (1

( +4.%VR(1,2))/AH
DTR=(-T(1,

TO

-4

e*T(1,2)=3,%T0)/AH ' , .
DR(24,1)/B-DTR*VFZ/TO¥{(24/34+X}) "
(LeM))/72H .
(14MI)=a.%T(1,M)¢3)/AHRKVRZ/R(ML)

3
3)+4
BETA(1)=TOX*(V
VRZ=(~-1., + ¥ VR
RETA(M] )==x&(T

EVALUATION OF STAGNATION PRESSURE. INTEGRATION 3Y SIMPSON'S RULE &

SUM=8 ,/DE* (IIETA( 1) +3ETA(M1)) /
AA=32,/KF

DO 32 J=2,M,2
SUMZSUMEARRCMEGALJ ) HAAXKFTA(Y)
CONTINUE

AA=U JS¥AA

nNno 23 J=I NI, 2 .
SUNSSUM+4 2 CNFGAT(J}+AAXBEFTAC(Y)
CONT INUFE )
F(1)=AxsSUM/3, :

CALZ ALPHA ALGNG THENSURFACF

~

° )

44¥VOR(1:2)=2.%VOR(I,1))/AH
T(1+42)=3.%T0)/AH
RET1)®(1a4¢X/TO%NTZ)

N

CONTINUE
ALPHA(1
ALPHA(N

L




CALC NF PRESSURE. AT THE SURFACE. INTEGRATION RY TRAPEZOIDAL

[aXa 4

@

FACT=RxRFT/2,
PD 35 I=2.N1
« P(I)=P(]= 1)*FACT*(ALPHA(l)tALPHA(l-l)) N . |
35 CONTINUF

tg,

CALC 'CF THE DRAG COEFF'S, INTFGRATINN BY SIMPSON'S RULFT

[aXaX2]

CDd:O .

CDF=C., %
N DO 36 1=22,N,2

COP=COP AR ¢xP(T)%RSN(T)

COF=CHIF+VOR(I1.1)%SN(]
26 CONTINUF

CPP=CNP*R/2, '

COF=CDF *3%XRET*B ./ 32,

Ch=COF+CHP

WRITE(E,4,57) CDP,CNDF,CO

ECS(I ) Ha#P{T+1)SN(TI#+1)RCS(T+1
JRSNCII+0 S¥WOR(I+141 )% (I+l) N(I#l)

'
CALC, OF THE NUSSELT NUMBER

DO 41 I=1,N1 '
ANUCTII=(=T(1,43)+4 4%T([42)=3.%TNI/7A/(1.~TQ) '
a1 CONTINUE ; '
AVNU=O. LY o
DO 42 I=2sNe2 N Jh
A AVNUSAVNU+2, 2 ANUCT ) *SNIT ) +ANUCT+1 ) #SNCI+1) k)
42 CONTINUF o
AVNU=AVNU*H/3, L
WRITE(6,55) AVNU :
IF(JJEQ89¢) GO TC 20
IF(SRR+LTTOL)Y GO T 20 , j#
GO 70O 19
20 CONTINUE
WRITE(7.5
wRITE(7,
WRITE(T,
. 101 CONTINUF
WRITE(& .6
unlfF(b.
WRITE
wR I
wR1
_wPR1
‘ wR1
wR1
wRhR1
wel

NN

($ R 8]
[FEV RS
-

( SF{(
(vor{
T

vI=1,1FR) v J=1,M1)
|

I=17sN1) o J=10M1) /
J
e I=1416)4Jd=14M1)

P

o

[
e e

wWRI
WR I

t 3

o

—
"QLMO:D1HMO*‘@A)OGLDN

mmmmmmmmmnmminm.
GW?OOW’OOHDOOWDOJ
W a wr WP W o P P e W N P

~ 6 @ ® & ¢ & 9w S O O ¢ e

{
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(
{
= (
(
(
(
(
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(
(
(

mOHhJUHhOONIOOMHU

wR1 (ANGCTI)1=1T74NL) .




-

/

d

o F14e645%, 1CN=1 o F1606)

WRITE (6 4AC) (P(J)v(VOR(IoJ,o!=l7th'nJ=1oMl'
WRITE(Ff ,64)
WRITE(E+6R)
WRITE(H6.58) (ANG(I)oI=141¢€)
WRITE(H59) (R(J) el TUT I I=1416)sJd=1,M1)
WRPITE(6,64)
WRITE(6,68)
NR}TE(5061) (ANG(I),I=174N1)
WRITE(O«RY) (R(J),( TOTod) o I=17\NL) g J=1,M1)
WRITE(S 65) v
WRITE(E+66) (P(I),1=1,N1)
WRITE(6+67) 3 \
WRITE(S4A6) (ANULI),1=1,N1)
50 FORMAT(2E1043,215) ,
51 FORMAT(I10N,F10,2)
52 FORMAT(* 1 ,I0CX4'RE=¢? WFT7a2ySXe"PE=,F 10,6, 5X4'T0=°,F7,3,
1 SXe ¥XTVF743)
S3 FORMAT(1928)
54 FORMAT(Y 'ySX,11F10,6,F10.4)
55 FORMAT (¢ 1, 15X¢"'NUS?,Fl4,.6) -
56 FORMAT(? 'olﬂXo'A='0F506|5X0'9="F°.5|5X0'N='01505XQ
b IM=P 4 165X *TOL=?t ,FHE)
57 FORMAT(® 'S 10X+ 'COP=V,Fl4,6,5X, *COF=
58 FORMAT( "0, 11X,16F7.2/)
59 FORMAT(? ¢, F7,2,65X916F7.4) ‘
600 FORMAT(® ' ,57,2,5Xs15F7.4)
€1 FORMAT(*2'y11X,15F7.2/)
62 FORMAT{'1'///" *,50X,'STREAM FUNCTION?')
63 FORMAT(*1///0 ¢ ,80X,'VORTICITY!)
€4 FORMAT('1¢///70 ¢ ,S)X,*TEMPERATURE )
85 FORMAT('1'////% * 415X, *SURFACE PRESSURE DISTRIHUTION'/Y)
55 FORMAT(1HOL,1DX,8F15,.6) ‘
€7 FORNAT(® '/7//7415Xs'LOCAL NUSSELT NUMABER /)
68 FURMAT( "0 42X ' %kRkk? 4Tx, tkkANGLER® ¢ )

sTAP
END




3 b | \

F 'Il ’%«r %

)

RI22,82) 3 T(32,82) 4WVL32,82),WT(22,42)
, DINENSIMN F(32 2,42) .
DIMENSINDN R(42 .
CIMENSICON CO(32 2
CIMENSION ALPHA( (
! READ(5,50) RELTOC
RFAC(5,51) KKC AC
TAL=N. N NO0OL
. X=N, }
FE= v0°7:‘RE .
R=130e/N B
WRITE(6H:52) ~REWPE Ty X //

|

f v /ﬁluruqlwd SF (32
¥ 1 ]
} )

THCI2 )0 ANG(32)sSN(32),CS(32)
) 4BM2(32)
31), ANU(32)

! |

A\
4
L 2
)

2).Vv0
Yo GL3
2(a2)
Ro2(3
1),y . P
AyNy M
CL NS

TART

WRITE(E+56) AsRyNsM,TOL
N1=N+1]
Nl=Ms}
MY =M=]
! NI=N-1
[ - ANG(1)=N,

< B0 45 I=1,N
+1)=ANG(]1)+3 . . .
I NUF
37.2957795

=hen ‘ : &
‘ KN AHZ{A% 2, 2 -
. aHIgx2, , .
;(2.+A)/5}/2. ® . r
i =(2e=AV/A2/2,
COF-QQ/A2+ + /82
CONS=32./F . 4

DO 2 J=1,M1"
F(J) EXP((J‘ )*A’ ) .

I
W
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+EQa1) GG TO 46
1 .

V1 ‘
(B ~TOY /R (J) -

SHSN( T )«SN(I) *‘PZ(JQ-‘.StP(J’*'S/R(J),

«SESNC(I)/R2(J ) . i
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NOOANAN

4 YY)

’ D-11

CONT INUF

GO TG a7
CONTINUE -~
READ(S+53) (( S
READ(S5,53) ((vC
READ{5+53) ((
CONTINUE

%

BCUNDARY CNNDIT IONS

0O & I=1,4N1

SEF(TeML ) 2,55 (P (V1 )%SN{T))*%2

SF(I1.,1)=n,

VOR(T4M1 )=, - g

bl

—40™
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bt P8 gy
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FLOW FIELD 1S CALCe. FIRST ¢

CALCULATICN OF KELAXATION CNEFF,

)

+
CONTINUZ
WS=1./(1.+4241416/N1)
WRITE(6A,58) ( F(lol)ol 1.N1,.3)

RTS HERPE \

'

PFLAXATICN S

JJ=1)

wK=D

11=n

12=0

ACC=1. : ~
CONTINUE
FRR=N,
Jd=JJ+d N

KKsKK+1 k
IF{KKNE KKE) GO TO A . Ty
KKsH

ACC=ACCL




p-12 :

R [CONT INUF ' .
c
¢ CALC PF GRID POINTS STARTS HERF ' _
C - .
nn 25 =2+N ';I /K
1IF(IY . n.:v a0 TN 12 .
x 11=1 \
Ji =1 . |
Gh TD 11 .
! 12 CONTWINUF
11=2
; J1=0 Y
11 CONT INUE, p "
DO 26 J=2.M
IF(J1FNN) CO TO 13 .
* Ji1=) ' \
GO TN 14 N , \
' 13 Ji=) - .
GO TC 25 . \ » )
14 COANT INUF
PERS= fr/(ﬂ.*h*i*R(J)*SN(I))
Us(SF(T41,J)=SF{1=1,44))%PERS
V-lSF(l.J+X) SF(1.J=1))%REPS
w-AH~u+1./5N(1)/SN(!)+cur-nw*co(!)tv
AV=VOR(T, J#!)*(ApZOU)+VOP(IoJ-!)t(AMZ-U)§VOR(JOIcJ)*(HP’(!)~Vl
) FVNE(L=1, D R CBM2CT)HVI=VOR(T,J) %W
N AV=AV/W
AS=GF (Lo Jt1)MAM24SF( T J=1)%AP24SF(1+1,J) % AIN2(T)4SF(T=1,4)%BRP2(T)
1 o™ CFRSF(Tod)=VOR(TJ) 2Rt JIwSN(T) 2(1)
; . AS=AS/CNF o
IF( AV eLT+CRR) GO TG 29
FRR=AV
\ =1 \
! Ji=J N
! 29 CONTINUF o
! IF(12+.EQel) GO TN 153
SF(TeJ)=SFL1,4)4¢ ACCHWS*AS
VORC(T )=V (TeJ) 4 ACCAWV(T e J)#AV"
o GO TN 25
r 15 CONTINUF
. SF(14J)=SF(Iy,J)*+AS
VORCT 4 JY=VCR{1 4 J)4AV ;
' 2S CONTINUE '
» . IF(12.EQeD) GO TO 16 P
!!--0 . 1 ) IS
. 2=n . o~ .
Yo 0 To 17 . .
& 11=1 | \
. 12=1 )
L ‘GO TO & . .
g 17 CONTINUT .
-C / , -
N . C ROUNDAKY CONDITION FOR VORTICITY AT THEZ SURFACE
C .
N ' - AN
I .
. I
) s .




o

' D‘la ‘ N

DO 9 Ix2,4N T

l’ VOR( ] l)E(Bo*SF(loZ!‘SF(lcE))/(20‘!2‘3"(!)) -
9 CONTINUFE R
WRITE(E&54) (VOP(!.!).!'!.N!.S’QFRR : T,
ACC=1, ° ”

IF(IKKE) ) FOKKC) GO TO 3B
19 CONYINUF

IF(ERRLLTLTCL) GO TO 200 -
IF(JJ+ENL300) GO TO 200
Gh TC 7
18 CONTINUZ
¢ AN
g CALCULATION NF RELAXAT ION COEFF.
DO 21 1=24N v
DO 21 J=2,M .
2 APZ(SF(1,J41)=SF (1,4=1))/A . . .
PP=(SFl1+1,J)=SF(1=1,4))/8 '
SO=SORT (04 5% ( AP APSBPHRR ) )
RES=AHBS(RE/R(J)/SN(I)/4,)
WWlIeJd)=1e7(1 e *RESHSN) - :
21 CONTINUE )
; 200 CONTINUE ‘
¢ CALC. OF THE DRAG COEF,
c | .
SUM=VOR(2,4,1)¢VNR(2,M41) ;
_ DO 22 Jz2.Me2 S
SUMZSUM+4 ¢ 8VOR(2,J)42,8VOR(24J¢1) =
22 CONTINUE . .

P(1)=1,¢0,%A%SUM/ 3, /A/RE
DO 223 I=1,N)
ALPHALT)=(44%VOR(142)=VOR(I,3)~ =38VOR(1¢1))/7(2.,8A)VOR(] 1) A
23 CONTINU® \

FACT=2,*R/RE . K\

a DO 24 I=2,Ni

. " F(I)EP(I=1)4FACT®(ALPHA(TI)$ALPHA(T=1))
. 24 CONTINUF

COP=1,

CnF=r, ;

DO 2€ I=2,Ns2 fl :

COP=COP+B4#P( ] ) %S (1194480 ( 101 )0SNL [61)RCS(142)

COF=COF+VOF(I o1 )&SNIT)ESNIT)4Co3OVOR(T4] o1 JESN(TH1)RSN(T o)
26 CONTINUF :

COP=COP*R/34 _—

COF=CDF *BRCONS /2 »
‘ CD=COF +CDP * — -
WRITE(6,57) COPyCOFsCO :

IF(EFRLT.TOLY GO TN 20
IF(JJeEQe300) GO TO 20

© GO TO 19 .

20 CONTINUE , .
WRITE(7¢53) (( SF(IeJdeln]oNi)eJus o) "
WRITE(7,53) ((VOR(I+J)elmloNL)oduloMl) . |

L




AN

[eYals)

OO

106

7 : ” bﬁb~

TErPERATUQE FIELC CALCULATICN

CALC. NF RELAXATION COEFF,

|

O/ 106 122N
DO 1€6 J=2,M
PES=PE/R(JI/SN(I Y /2,
PE(SF(T¢J¢1)=SF(1,J0=1))/AHSPES .
BPE(SF(1+1,J)=SFl1=1,J))/7BHePES
SAESART( O 5% (APSAPRAPEAP ) )
WY(led)=1e/7(1,:450Q)
F(1,J)=AP/RH

GUIvI ) =RP/7AH o

CONTINUE

-
PELAXATION STARTS HERE

137

168

112

111

112
114

JJ=0
KK=d
It=0k : 1 v
12=0
ACC=1,
CONTINUE
ERR=0N,
JizJlie]
KKEKK 4]
IF (KK 4N KKC) GO TO 108
KK =)
ACC=ACCL -
CONT INUE
f

cALc. OF GRID FPOINTS ‘?

DO 128 1=

lF(lloEO-li GO Ta 112

11 =] ‘

Ji=1 ‘

GN TC 111

CONT,NUF

11=0 -

J1 =2 -

CDNTXNU

0N 125 J=24M /
!V(JI.EO.O) GO TOD ‘11

J1=z0

GO TN 114

Ji=l

GO TN 128

CONT INUE :

AT=T(L o JE1 1% (AP24G (14 JI)OT (T 4 Y=l IB(AM2=-G( ]
1 ' +T(I182J)%(BR2A(1)=F(1¢U))oT{(1el,J)s(BY
AT=zAY/COF ERF

)y
1)e

COF2T (1,4)
F(ledd)

B




129

115
128

115

7

109

119

118

D-15

N
!
IF(ATUT ,FRF) GO TO 129
ERR=AT ) A
11=%
Ji=J
CONTINUE

IF( 12 +EQel) GO TO 115
T(l+sJd)= T(loJ)#ACC*'?(!.J)*AT
GO TO 125

CONTINUE
T(1ed)=aT(1e.J)eAT
CONTINUT

IF{12.EQeQ) GO TN 116
131=0

12=0

GO TO 1V?

11=1

12=1

GO TD 1CA

CONT TNUF

CALCULATING BeCoe®S ALONG THE SYMMETRY AXIS

DO 1609 J=2,M

T(1eJd)= (4.*T(2.J’—T(3.JD /7
TINLo J)Z(8.#T(NoJ)=T(N=L1,J)
CONTINUE

ACC’I.

IF((KK+1)¢EQeKKC) GN TD 118
CONTINUE .
IF(CFPLLT,TCOL) GO TN 118

IF(JJ.EQ.200) GO TO 118

IF(ERRLLT.TCL) GN Tn 120

GO TC 107

CALCs OF THE NUSSELT NUMRER

»
V/

CONT INUE

. DO a5 1=1,M {

41

a2

C12e

ANUCT)I=(=T(T o3)44,4T(1,2)=3.%TO)7A7(1,4-T0})
CONT INUF

AVNU=C, -

DO 42 1=24N,2
AVNU'AVNU#Z.*ANU(I’*SN(T’0ANU([41‘*SN(!*I’
CONTINUT

AVNU=AVNUSB/2,

WRITE(6.55) AVNU

IF(JJEQINDC)Y GO TN 120 o °
GO TO 119
CONTINUE
WRITE(7.53) (( T(IsdDel=2 oNL ) oIl oMY) N
WRITELE,62) :
WRITE(64,68)
WRITE (6.55) (ANG(I),I=i,16)
WRITECG:+59) (R(J) el SF(loJ)olxml 4816)dnt M)
| s
ﬂ T 7
) J

P I S

ey




I b ) D-16 N
! »
|
WRITE(6,62) ’
WRITE(6,+68)
WRITE(6+61) (ANG(1)eI=17,N1)
' WRITE(Gs6C) (R(J) sl SF(Ied)sIx1T7Nt) gJdx]l ML) * s
WRITE(6.613)
WRITF(6,68)
VRITE(6,:58) (ANG(I1)sl1z1,416)
WRITE(S+59) (R{J) 1 (VOR(Ie J)sIx1,16)s0=1,M1)
WRITE(6,63) .
WRITE(G 48)
WRITE(G6,61) (ANG(I)oI=174N})
WRITE(G6460) (R(J)(VOR(T 4J), 1317'N1)0J=l M1)
WRITE(E ,64) |
WRITE (£ ,68) -
WRITE(64:58) (ANGUl1)e1=1,1€)
WRITE(F59) (R(J)4( T(leJd)elIxml,16)ed=l,M4]1)

WRITE(O,FE)
WRITE(6468)
WRITF(nh461) (ANG(I) I=17,41) !
WRITE(S1€6C) (R(JIs(  T(I4I)yI=174N1) gJdmloML) .

WRITE(6.65)

WRITE(S:66) (P(I)eI=1,4N1)

WRITE(E A7)
. unxrs(eigé' (ANUCT) o T214NS )
S0 FORMAT( 10.34,215)
51 AORMAT(J1C0sFL0,4,2,110) *
S2YFORMAT(® 10X o 'RES? qF7, 345X PEX? F1066:8Xo?TOR® oF7,3,

SXe"X=?,F7,43) , ~
3 FORMAT(1D28)
54 FORMAT(* *,11F1C6,F83,6) ~
58 FORVAT(Y ',15X ' NUR® 4F14 (€)
S6 FORMAT( ¢ '.lbx.'At'oFeob.ﬁX.'Bz'.F9.505x.'N='.I6.Sx.
1 ."=.|‘605XQ.TOL".F806’

57 FORMAT(® * 10X .'CDP=" eFl1a8 465X 4 COF=® ¢F14 645X, 'CD=x?, Fla,.,6)

58 FORMAT( 0, 11X, léF?cZ/)
.59 FORMAT(" 'oF7-2o5X 156F7.4)
B0 FORMAT(® 'uF7o2o!XoISF7.4i |
61 FORMAT('0',11X,15F7,2/) ' . i '
62 FORMAT( 1 ///7% 0 ,50X4*STREAM FUNCTION®) }
63 FORMAT( /77 'o50Xo'VORTlClTY')
54 FORMAT('!'///' oSOXo'TEMPERATUQE')
6S FORMAT(*1%/7///% %,15x%,'SUPFACE PRESSURE DISTRIRUTION®)
66 FORMAT(1HO, 10X 8F15.6)
67 FORMAT(' '7/77/7+15X¢* LOCAL NUSSELT NUMBER?)
68 FNRMAT(? G'o?x.'**R‘*'043Xo'*‘ANGLF‘*'i

sTOP - .

END

N

(Y




