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Abstract

The bifurcation diagram of a model stochastic differential equation with de-

layed feedback is presented. We are motivated by recent research on stochastic

effects in models of transcriptional gene regulation. We start from the normal

form for a pitchfork bifurcation, and add multiplicative or parametric noise

and linear delayed feedback. The latter is sufficient to originate a Hopf bi-

furcation in that region of parameters in which there is a sufficiently strong

negative feedback. We find a sharp bifurcation in parameter space, and define

the threshold as the point in which the stationary distribution function p(x)

changes from a delta function at the trivial state x = 0 to p(x) ∼ xα at small

x (with α = 1 exactly at threshold). We find that the bifurcation threshold is

shifted by fluctuations relative to the deterministic limit by an amount that

scales linearly with the noise intensity.

Analytical expressions for pitchfork and Hopf bifurcation thresholds are

given for the model considered. Our results assume that the delay time τ is

small compared to other characteristic time scales, not a significant limita-

tion close to the bifurcation line. A pitchfork bifurcation line is found, the

location of which depends on the conditional average 〈x(t)|x(t − τ)〉, where

x(t) is the dynamical variable. This conditional probability incorporates the
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combined effect of fluctuation correlations and delayed feedback. We also find

a Hopf bifurcation line which is obtained by a multiple scale expansion around

the oscillatory solution near threshold. We solve the Fokker-Planck equation

associated with the slowly varying amplitudes and use it to determine the

threshold location. In both cases, the predicted bifurcation lines are in excel-

lent agreement with a direct numerical integration of the governing equations.

Contrary to the known case involving no delayed feedback, we show that the

stochastic bifurcation lines are shifted relative to the deterministic limit and

hence that the interaction between fluctuation correlations and delay affect

the stability of the solutions of the model equation studied.

Moreover, we obtain the characteristic correlation time associated to the

model. In particular, the validity of the common assumption of statistical

independence between the state at time t and that at t − τ is examined. We

find that the correlation time diverges at the models bifurcation line, thus

signalling the failure of statistical independence near threshold. We determine

the correlation time both by numerical integration of the governing equation,

and analytically in the limit of small τ . The correlation time T diverges as

T ∼ a−1, where a is the control parameter so that ac = 0 is the bifurcation

threshold. The small-τ expansion correctly predicts the location of the bifur-

cation threshold, but there are systematic deviations in the magnitude of the

correlation time.



Abrégé

Le diagramme de bifurcation d’une équation différentielle stochastique incluant

une échelle de temps retardée est présenté. Nous sommes motivés par des

recherches récentes portant sur des modèles de régulation des gènes. Nous

débutons avec la forme normale d’une bifurcation de type fourchette auquelle

est ajoutée un terme stochastique de manière paramétrique ainsi qu’un terme

linéaire incluant le délai. Ce dernier terme introduit une bifurcation de type

Hopf où le délai négatif est particulièrement fort dans l’espace des paramètres.

Une bifurcation abrupte est trouvée et nous définissons le seuil de bifurcation

comme étant le point dans l’espace des paramètres pour lequel la fonction de

distribution stationnaire p(x) change d’une fonction delta autour de l’origine à

p(x) ∼ xα pour x petit (avec α = −1 exactement au seuil). Nous démontrons

que le seuil de bifurcation est modifié par les fluctuations comparé à la limite

déterministique par une valeur qui suit une relation linéraire avec l’intensité

du bruit.

Des expressions analytiques pour les seuils de bifurcation de type fourchette

et Hopf du modèle considéré sont présentées. Nos résultats assument que

le temps retardé τ est petit comparé aux autres temps charactéristiques du

système, une limitation qui n’est pas significative près de la ligne de bifurca-
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Abrégé viii

tion. L’expression pour la bifurcation de type fourchette est déterminée suite à

une expansion stochastique de Taylor. La location de cette bifurcation dépend

de la moyenne conditionnelle 〈x(t)|x(t−τ)〉, où x(t) est la variable dynamique.

Cette probabilité conditionnelle comprend les effets combinés des fluctuations

corrélées et du retardement rétroactif. Nous déterminons aussi une expression

pour la bifurcation de type Hopf obtenue à l’aide d’une expansion des échelles

de temps autour de la solution près du seuil. Nous obtenons une équation

de Fokker-Planck associée à la dynamique des amplitudes des oscillations et

nous utilisons celle-ci pour déterminer la location du seuil. Contrairement au

cas sans délai, nous démontrons que la location des lignes de bifurcation est

modifiée comparé à la limite déterministique et donc que l’intéraction entre

les corrélations des fluctuations et le délai affectent la stabilité des solutions

du modèle étudié.

De plus, nous obtenons le temps de corrélation charactéristique associé au

modèle. En particulier, la validité de l’hypothèse d’indépendance statistique

entre l’état au temps t ainsi qu’au temps t − τ est examinée. Nous trouvons

que le temps de corrélation diverge à la bifurcation, signalant l’infirmation

de l’indépendence statistique au seuil de bifurcation. Nous déterminons le

temps de corrélation par une intégration directe de l’équation gouvernant

le modèle ainsi qu’analytiquement dans la limite où le délai est petit. Le

temps de corrélation T diverge suivant une relation du type T ∼ a−1, où a

est le paramètre de contrôle et où ac = 0 est la location de la bifurcation.

L’expansion dans la limite où le délai est petit prédit correctement la loca-

tion du seuil de bifurcation. Néanmoins, des déviations systématiques dans la

magnitude du temps de corrélation sont observées entre les deux résultats.
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Chapter 1
Introduction

At the cellular level, information encoded in the gene results into a phenotype

through the processes of transcription and translation [1, 2, 3]. In the former

process, the genetic code in DNA is transcribed to sequence of nucleotides

called messenger RNA (mRNA). The latter process involves translation of

the code carried by mRNA to an amino acid sequence during protein synthe-

sis. Generated proteins then interact with other molecular species or other

proteins. The ensemble of a given set of such interactions produces a given

phenotype. Some proteins, the transcription factors, regulate the activity of

genes. They bind to the promoter region of a gene in order to promote or

inhibit transcription. The expression level of a given gene coding for these

transcription factors may affect the activity of several genes. Genes are thus

interconnected into complex networks that are self-regulated. The regulated

genes, the transcription factors, and their interactions form a scheme that is

generically referred to as the gene regulation network. Each phenotype is asso-

ciated with a complex network of gene interactions. For this reason, the study

of the dynamics of gene regulatory networks has become one of the main active

research fields in theoretical biophysics today.
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Gene networks are determined experimentally from gene expression profiles

[4, 5]. Gene expression profiling is a measure of the activity or the expression

of thousand of genes in parallel in order to have a global picture of the func-

tion of the genes considered. The activity of genes under study is measured by

DNA microarray technology. Microarray is a two dimensional grid in which

each microscopic spot contains a specific concentration of a fragment of DNA

sequence. The concentration of mRNA’s produced by transcription are mea-

sured either from fluorophore-, silver- or chemi-luminescence labelling tech-

nology. Microarray experiments can be classified into two groups: time-course

experiments and perturbation experiments. The former are done to observe

changes of gene activity in time in order to understand time-dependent process

in the cell. The latter are performed to observe the effects of a given input

on the cell and are used to understand the difference between cell types or

responses to these inputs.

Some gene regulation networks are known in great detail, such as the ly-

sis/lysogeny cycle regulation of bacteriophage-λ [6], the endomesoderm de-

velopment network in Sea Urchin [7], and the segment polarity network in

Drosophilia development [8, 9]. The first two are mostly representations of the

relationship between the genes while the last one involves quantitative models.

Other gene networks are available in databases but in less detail such as in the

KEGG [10] or in the EcoCyc [11] databases. The huge amount of experimen-

tal data in databases provides a framework suitable for modelization of these

networks.

Several generic characteristics of gene networks emerge from the experi-

ments. It has been observed that the topology of the network is sparse [12]. In

order words, the average number of edges per nodes is much smaller than the
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total number of nodes. Genes are thus regulated by a small number of other

genes, about 2-4 in bacteria [13] and 5-10 in eukaryotes [14]. Moreover, the

distribution of connectivity of nodes tend to follow a power law [15]. Networks

showing this property are called scale-free. Furthermore, gene networks are

robust to fluctuations in their parameters [9, 16] and there is strong evidence

that only specific topologies allow such robustness [9, 15]. Finally, stochasticity

is an integral part of gene networks as it is an intrinsic property of biochemical

reactions [17, 18, 19].

Several methods exist to model the dynamics of gene networks. One of

such model is called the Boolean network [20, 21]. Each gene, input, and

output in the network is considered as a node in this method. Each node can

either be on or off. On the one hand, if the node is a gene, “on” corresponds

to the case where the gene is being expressed. On the other hand, if the node

is an input or output, “on” represents the case in which the molecular species

is present. Time is then modeled as discrete steps changing the state of the

network. However, this model is qualitative as it cannot give predictions about

the level of expression of genes in the system.

An alternative description that can yield quantitative predictions models

gene networks as networks of chemical reactions [22, 23]. In fact, a state

variable and a rate of synthetization or degradation are attributed to each

component of the network. For example, a given protein can be synthesized at

the rate s > 0 and degraded at the rate a > 0, corresponding to the chemical

reactions,

∅ s−→ n , (1.1)

n
a−→ ∅ , (1.2)



4

where n > 0 is the number of protein molecules. A Master Equation can

be associated to each network of chemical reactions [22, 23]. The Master

Equation describes the time evolution of the probability distribution function

over a discrete number of states. The states are defined by the number of

molecules of the molecular species present in the network. For example, the

Master Equation associated with the network defined by Eqs. (1.1) and (1.2)

is,

∂

∂t
p(n, t) = sΩ(E−1 − 1)p(n, t) + a(E − 1)[np(n, t)] , (1.3)

where Ω is the volume of the system, and where E is the raising operator,

Ef(n) = f(n+ 1). The dynamic evolution of the probability p(n, t) is numer-

ically simulated by using an algorithm devised by Gillespie [24].

The expression level of the genes can be approximated by a continuous func-

tion, and the network modeled by a set of Langevin equations when the number

of molecule is large [22, 23]. A Langevin equation describes the stochastic time

evolution of the concentration of a given molecular species in this context. It

is defined as

ẋ(t) = f [x(t)] + g [x(t)] ξ(t) , (1.4)

where x(t) is the concentration of a molecular species at time t, where f [x(t)]

and g [x(t)] are respectively the drift and the diffusion coefficient, and where

ξ(t) is a random process. Properties of Langevin equation are introduced in

Appendix A. The continuous representation of genetic networks is investigated

in this thesis, as well as the dynamics of the network as modeled by stochastic

differential equations.

The field of stochastic differential equations is very mature [25, 26, 27, 28,

29, 30, 31, 32]. Two different calculi have been introduced in the literature,
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one is due to Ito [33, 34], the other one to Stratonovich [35]. Existence and

uniqueness of solutions to stochastic differential equations have been estab-

lished in [36, 37]. The two calculi are introduced in Appendix A. Note that

they are equivalent to each other under some transformation rules. These rules

are presented in Appendix A. Even if the two interpretations are equivalent

to each other, a distinction can be made depending on the physical situations

modeled. In fact, it has been pointed out that the Stratonovich interpretation

is appropriate when white noise is considered as the limiting case of the colored

noise existing in the system [29, 38, 39, 40, 41, 42]. This observation has been

confirmed experimentally [43]. On the other hand, the Ito interpretation is

appropriate if the stochastic equation is considered as a continuous time limit

of a discrete problem [44].

Gene expression is intrinsically a stochastic process [17, 18, 19]. It is widely

accepted that the noise relevant to gene expression can be decomposed into

intrinsic and extrinsic sources [45, 18, 46, 47]. On the one hand, intrinsic noise

is inherent to the system and is due to the stochastic nature of biochemical

reactions. This type of noise is introduced by adding a stochastic term to a

differential equation describing the time evolution of the concentration of the

molecular species. The noise is then said to be additive. On the other hand,

extrinsic noise is due to the interaction with the environment and includes

fluctuations in the reaction rates of the biochemical reactions. For example,

the variability of activity of mRNAs between transcription and translation can

be considered as an extrinsic source of noise in protein production [48, 49].

Fluctuating reaction rates can be introduced in Langevin equations by adding

a stochastic component to the reaction rates. In this case, the noise is said to

be parametric or multiplicative as random terms multiply the variables that
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specify the state of the system. Both intrinsic and extrinsic sources of noise

are investigated in this thesis, modeled by Langevin equations for which the

noise enters either additively or multiplicatively.

This thesis focuses on biological regulation processes involving a feedback

motif. Some reactions are not instantaneous [1, 2, 3] and the concentration of a

given molecule at time tmight depend on its state at a time t−τ , where τ > 0 is

the time delay. For example, delay might be attributable to the time required

for a protein to cross the membrane or to a conformational change of a protein.

Another example is DNA transcription which is a fast process as compared to

the time required for the transcription factor to appear as a functional unit in

the cell. The mathematical theory of delay differential equations is extensively

developed [50, 51, 52, 53, 54, 55, 56, 57]. The presence of delayed feedback

changes drastically the solutions of the system and makes the governing models

rarely tractable analytically. However, delay differential equations lead to rich

dynamics such as oscillations, limit cycles, and Hopf bifurcations. The study

of delay differential equations is an important topic with several applications in

applied Mathematics, Physics (lasers [58, 59], liquid crystals [60]), Physiology

(neural networks [61, 62, 63, 64, 65, 66], neuronal and cardiac tissue activity

[67, 68]), and even Economics (agricultural commodity prices [69, 70]).

Stochastic processes without any time delay contributions can generally be

modelled as Markov process. A Markov process is a random process that is

only dependent on its present state [71, 72]. It simplifies analytical calculations

because the transition probabilities between two states are delta-correlated

[73]. This is no longer true for systems in which time delays are important

because their state at time t depends at least on their past state at time

t−τ . Delays in stochastic models of gene regulation network have been mostly
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ignored due to their non Markovian nature.

Our study is in part motivated by a model of protein degradation first

introduced by Bratsun et al. [74]. It has been observed experimentally that

the FRQ protein in Neurospora crassa degrades in the cell according to two

time scales [75, 76]. Neurospora crassa is a type of red bread mold of the

phylum Ascomycota. It is used in Biology as a model organism because it

is easy to grow and its haploid life cycle makes genetic analysis simple since

recessive traits show up in the offspring. The FRQ protein is known to be

involved in the regulation of the period of the circadian rhythm as well as in

the regulation of temperature compensation. It has been measured that the

FRQ protein degrades in the cell because of dilution at a rate of 0.3 h−1. It has

been also observed that protein degrades after multiple phosphorylation steps

at a rate of 1 h−1. In fact, phosphate groups are added to one end of the protein

so that it becomes a target of the ubiquitin proteosome machinery. The latter

degradation mechanism is thus delayed relative to the former. The network

representing this process is modeled by the following chemical reactions,

∅ s−→ n , (1.5)

n
a−→ ∅ , (1.6)

n
b

=⇒ ∅ , (1.7)

where s, a, and b are positive reaction rates and where n > 0 is the number

of proteins. The double arrow in Eq. (1.7) represents a delayed reaction.

Associated with this network of chemical reactions is a Master Equation [74,
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77],

∂

∂t
p(n, t) = sΩ(E−1 − 1)p(n, t) + a(E − 1) [np(n, t)]

+ b
∞
∑

m=0

mH(n)p(n, t;m, t− τ) ,
(1.8)

where p(n, t;m, t − τ) is the joint probability of having n molecule at time t

and m molecules at time t− τ , and where the step function H(n) = 1 if n > 0

and H(n) = 0 otherwise is added to ensure that there is at least one molecule

in the system. One can expand this equation by using the inverse system size

expansion of van Kampen [23]. The solution n(t) = Ωx(t) + Ω1/2ζ(t) for large

Ω is split into the deterministic solution x(t) and a fluctuation ζ(t) around the

deterministic solution. Substitution of this change of variable into Eq. (1.8)

and collecting terms at leading order Ω1/2 leads to the deterministic equation,

ẋ(t) = s− ax(t) − bx(t − τ) . (1.9)

This equation has a fixed point located at x∗ = s/(a+b). Equation (1.9) is the

starting point of our study. We have first chosen the fixed point to be located

at x∗ = 0 by setting s = 0. The rate constants in the differential equation

a and b are allowed to be either positive or negative, representing creation or

degradation respectively. The bifurcation diagram of Eq. (1.9) with s = 0 is

known [44] and is discussed in Chapter 2. It turns out that the solution is

unstable above a certain threshold in the space of parameters and diverges to

infinity. For this reason, we have added a nonlinear cubic term to this equa-

tion, which saturates the solution to a finite value above threshold and makes

the stochastic analysis mathematically well posed. Furthermore, we have in-

vestigated the inclusion of noise into Eq. (1.9). On the one hand, additive
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noise is known not to play a major role in the stability of the reaction (given

by the location of a bifurcation threshold), which is unchanged as compared to

the deterministic equation [44]. On the other hand, we are interested to know

if correlations induced by parametric noise couple with delayed feedback, and

perhaps modify the nature and location of the bifurcation. We therefore focus

in this thesis on the following Langevin equation,

ẋ(t) = ax(t) + bx(t− τ) − γx3(t) + x(t)ξ(t) + η(t) , (1.10)

where a is a control parameter, b is the intensity of the feedback loop of time

delay τ > 0, γ is a constant and may differentiate between linear (γ = 0)

and nonlinear (γ 6= 0) equation, and where ξ(t) and η(t) are two Gaussian

white noise stochastic processes with mean 〈ξ(t)〉 = 〈η(t)〉 = 0 and correlation

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′), 〈η(t)η(t′)〉 = 2Kδ(t− t′), and 〈ξ(t)η(t′)〉 = 0 for all t

and t′, where D and K are respectively the intensity of the stochastic process

ξ(t) and η(t). We interpret Eq. (1.10) under the Stratonovich interpretation

of stochastic calculus, as opposed to the stochastic calculus developed by Ito.

We focus in this thesis on the stability and bifurcation of stochastic dif-

ferential equations with delay. Bifurcation thresholds separate regions in pa-

rameter space of different qualitative dynamics [78, 79, 80]. In fact, a system

of differential equations is said to undergo a bifurcation when a slight contin-

uous change of one parameter in the equation causes a qualitative change in

the nature of the solutions and the stability of any fixed point. Stability in

the vicinity of a fixed point x∗ is studied by linearizing the flows around x∗.

Consider the differential equation

ẋ(t) = f [x(t)] , (1.11)
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and let x∗ be a fixed point of Eq. (1.11). Define q(t) = x(t) − x∗ as a small

perturbation away from the fixed point. The time evolution of the new variable

is then q̇(t) = ẋ(t) = f [x(t)] = f [q(t) + x∗]. Take the Taylor expansion of the

last expression around x∗,

f [q(t) + x∗] = f(x∗) + q(t)
∂

∂q
f(x∗) + O(q2) . (1.12)

Since f(x∗) = 0, we then have,

q̇(t) ≈ q(t)
∂

∂q
f(x∗) , (1.13)

where we have neglected higher order terms O(q2), a correct assumption if

∂qf(x∗) 6= 0. Equation (1.13) is a linear equation in the variable q(t) and

is called the linearization of Eq. (1.11) around the fixed point x∗. It shows

that the perturbation q(t) grows exponentially if ∂qf(x∗) > 0 and the solution

is said to be unstable. The perturbation decays to zero if ∂qf(x∗) < 0 and

corresponds to an stable fixed point. If ∂qf(x∗) = 0, quadratic terms O(q2)

cannot be neglected and a nonlinear stability analysis must be done.

In the absence of delay and fluctuations, Eq. (1.10) has a supercritical

pitchfork bifurcation. The normal form of a pitchfork bifurcation is [80]

ẋ(t) = rx(t) − x3(t) , (1.14)

where r is a control parameter. When r < 0, x∗ = 0 is the only fixed point,

and is stable. When r > 0, it is unstable. Two new fixed points appear in this

range x∗ = ±√
r, which are stable.

Introduction of a time delay term allows an oscillatory instability: a super-
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critical Hopf bifurcation. This type of bifurcation occurs when a stable spiral

changes to an unstable spiral surrounded by a small, nearly elliptical limit

cycle. Since Hopf bifurcations involve oscillatory solutions, it appears only in

systems that have dimensionality equal or bigger than 2. The normal form of

a supercritical Hopf bifurcation is [80]

ż(t) = λz(t) − bz(t)|z2(t)| , (1.15)

where z(t) and b = α + iβ are complex, and where λ ∈ R is a parameter. A

supercritical Hopf bifurcation occurs for α < 0 and λ > 0. On the other hand,

a subcritical is possible if α > 0 and λ < 0.

The bifurcation threshold of Eq. (1.10) and of its limits such as its lin-

earization (γ = 0) or without delayed feedback (b = 0) are investigated both

by computing moments of x(t), or from the stationary probability distribu-

tion function p(x). Stationary probability distribution functions are analyt-

ically determined from the associated Fokker-Planck equation [81]. While

the Langevin equation describes the time evolution of the state variable, the

Fokker-Planck equation describes the time evolution of the probability of being

in a state x at time t. To every Langevin equation is an associated Fokker-

Planck equation [23, 73, 22]. The derivation of the Fokker-Planck equation

in both Ito and Stratonovich interpretations for Markovian equations are well

known. We review the mathematical steps involved in this derivation in Ap-

pendix B in order to generalize both derivations to the case involving delayed

feedback.

We are particularly interested in the following issues: It is known that

the bifurcation threshold of Eq. (1.10) without delayed feedback (b = 0) is

independent of the intensity of the noise D [82]. We would like to know if
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delayed feedback and parametric noise couple and modify the nature and the

location of the bifurcation. It is also known that the correlation time for the

dynamical variable x without delayed feedback (b = 0) diverges at threshold

with exponent -1 with respect to the control parameter [83]. We are interested

to know if this result holds with delayed feedback.

This thesis is organized as follows. The bifurcation diagram of Eq. (1.10)

is determined numerically by using a new second order numerical integration

method that we have developed and that includes time delay. The algorithm is

introduced in Chapter 2 while the mathematical steps involved in the deriva-

tion are shown in Appendix C. In order to verify the accuracy of our numerical

method, several limits of Eq. (1.10) are investigated both analytically and nu-

merically. The known limit of no feedback (b = 0) is briefly reviewed in

Chapter 2. The bifurcation threshold of the moments of these equations is

known analytically and is compared to our numerical results.

In the case of delayed feedback, the bifurcation threshold of the first mo-

ment of the stochastic equation is known [84, 55, 68, 85, 44] as shown in

Chapter 3. We verify that additive noise (D = 0 and K 6= 0) does not affect

the location of the bifurcation threshold whereas multiplicative noise (D 6= 0

and K = 0) shifts its location by an amount that scales with the intensity

of the randomness. Furthermore, it is shown that the Fokker-Planck equa-

tion with delayed feedback is not closed. Time delay induces the presence

of a non-Markovian term in the Fokker-Planck equation, precluding the an-

alytical determination of stationary densities. The non-Markovian term can

be expanded in Taylor series under the assumption that the time delay is

small compared to other characteristic time scales in the system. We review

two expansion schemes already existing in the literature [86, 87, 88]. It is
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known that an expansion in the small time delay is valid only to first order

in τ [89, 56, 57], leading to a Markovian first order differential equation. One

dimensional differential equation cannot generates oscillation, and thus analyt-

ical results obtained in Chapter 3 are only valid in the vicinity of the pitchfork

bifurcation. Expansion of delay terms in Taylor series around τ = 0 leads to

a singular perturbation. Although this expansion leads to the correct results

to first order in τ , it completely fails to produce a Hopf branch.

We extend in Chapter 4 a method based on a multiple time scale expansion

of the solution [90, 91, 92, 93, 94] to obtain equations for the stochastic time

evolution of the envelope of the oscillation of both linear delayed equations

with additive and parametric noise as well as for the van der Pol oscillator.

The method is first applied to the van der Pol oscillator extended to allow delay

terms in the model. The location of the Hopf bifurcation threshold in the limit

of no time delay is known for this model, and is a way to verify the validity

of our approximation scheme. In essence, we assume that the solution evolves

over two time scales: The oscillations evolving over a fast time scale and their

envelopes, evolving over a slow time scale. Fast time scales are eliminated by

averaging over a period, leading to a stochastic differential equation for the

time evolution of the envelopes. The location of the bifurcation threshold is

found from the stationary probability distribution function. In addition, the

method allows an expression of the Hopf frequency in the presence of fluctu-

ations. Our theoretical predictions are in excellent agreement with numerical

results obtained by integrating the governing equation of the model. The same

expansion procedure is then applied to Eq. (1.10) and the Hopf bifurcation

line determined. We show that unlike the case of no delay, the bifurcation line

depends on the amplitude of the fluctuations, which generally destabilize the
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trivial state x∗ = 0.

A complete numerical analysis of Eq. (1.10) with multiplicative noise only

(K = 0) is given in Chapter 5. We show excellent agreement between numer-

ical and analytical results even for a range of parameter beyond the regime of

small time delay.

Chapter 6 addresses the calculation of the correlation time of the state vari-

able x. An analytical expression for the correlation time of Eq. (1.10) without

delayed feedback (b = 0) and parametric noise only (K = 0) is known as the

Jung-Risken theory [83]. The mathematical steps involved in the derivation of

the correlation time in this theory are summarized in Appendix D. However,

this theory requires the transition probabilities to be Markovian. We have

used the approximate one dimensional expression for small time delay derived

in Chapter 3 in order to compare our numerically determined correlation time

with delayed feedback to the Jung-Risken theory extended to accommodate

delay. We find that a divergent correlation time is recovered at the new pitch-

fork bifurcation line obtained when delay is included in the calculation. The

correlation time is seen to diverge as σ−1 near threshold, where σ is a con-

trol parameter (σc = 0 is the location of the threshold). There are however

numerical discrepancies with the numerical evaluation of the correlation time.



Chapter 2
Stochastic bifurcation

We review in this chapter earlier results on stochastic bifurcation theory which

will form the basis of our analysis of stochastic equations with delay. These

known results will also be used to verify a new second order algorithm that we

have developed to numerically integrate stochastic delay differential equations.

In particular, we discuss the different ways to define the stochastic bifurcation

threshold, and the mathematical difficulties associated with linearization near

threshold. The latter, of course, is standard procedure in conventional (or

deterministic) bifurcation theory.

2.1 Algorithm for delay stochastic differential

equation

Numerical integration of differential equations requires the discretization

of time in small steps of ∆t. The discretized equation becomes a difference

equation that can be solved iteratively. Integration of stochastic differential

equation is more challenging and an abundant literature has been developed on

the subject (see for example [38]). However, no numerical methods have been

developed to integrate stochastic delay differential equation to order greater

15
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than 1 (example of first order methods can be found in [95, 86, 87, 88]). First

order methods are computationally expensive because they require a small

time step ∆t to achieve convergence. In order to reduce the computational

effort, we have extended a known second order numerical integration method

for stochastic differential equations [96] and included time delay in the algo-

rithm. The mathematical steps are summarized in Appendix C. In the case

of delay terms involving a delay time τ , the algorithm needs to take into ac-

count trajectories into the past over an interval of 2τ . With additive noise

only (D = 0 and K 6= 0), the algorithm used to integrate Eq. (1.10) is,

x(t + ∆t) =x(t)

(

1 + a∆t +
1

2
a2∆t2

)

+H1(t,∆t)

+ aH2(t,∆t) + bH2(t− τ,∆t) − 3γx2(t)H2(t,∆t)

+ bx(t− τ)(1 + a∆t)∆t − γx3(t)(1 + 2a∆t)∆t

+
1

2
b2x(t− 2τ)∆t2 +

3

2
γ2x5(t)∆t2

− 3

2
γbx(t− τ)x2(t)∆t2 − 1

2
bγx3(t− τ)∆t2 ,

(2.1)
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whereas for multiplicative noise only (D 6= 0 and K = 0), the algorithm is,

x(t + ∆t) = x(t)

[

1 + a∆t + a2 ∆t2

2
+ (1 + a∆t)G1(t,∆t)

+
1

2
(G1(t,∆t))

2

]

+ bx(t − τ)

[

∆t + a∆t2 + ∆tG1(t,∆t) −G2(t,∆t)

+G2(t− τ,∆t)

]

− γx3(t)

[

2a∆t2 + [G1(t,∆t) + 1]∆t + 2G2(t,∆t)

]

− γx2(t)x(t− τ)

(

3b∆t2

2

)

− γx3(t− τ)

(

b∆t2

2

)

+ γ2x5(t)

(

3∆t2

2

)

+ x(t− 2τ)

(

b2
∆t2

2

)

.

(2.2)

where G1(t,∆t), G2(t,∆t), H1(t,∆t), and H2(t,∆t) are stochastic integrals

defined by,

G1(t,∆t) =
√

2D∆tΨ1(t) , (2.3)

G2(t,∆t) =

√

2D

3
∆t3

[√
3

2
Ψ1(t) +

1

2
Ψ2(t)

]

, (2.4)

H1(t,∆t) =
√

2K∆tΨ′
1(t) , (2.5)

H2(t,∆t) =

√

2K

3
∆t3

[√
3

2
Ψ′

1(t) +
1

2
Ψ′

2(t)

]

, (2.6)

where Ψ1(t), Ψ2(t), Ψ′
1(t), and Ψ′

2(t) are random numbers normally distributed

with zero mean and variance one. These random numbers are generated by

using the Box-Muller algorithm [97].

The accuracy of the algorithm is defined in terms of its approximation to

the exact solution as a power of ∆t. An algorithm is thus said to be of the
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nth order if the error is of the order O(∆tn). In our case, we have expanded

x(t+ ∆t) to second order in ∆t so that the error at each step is O(∆t3). The

cumulative error is proportional to the total number of steps, which is itself

proportional to the inverse step size. Thus, the total error of our method is of

the order O(∆t2), and is called a second order algorithm.

2.2 Stochastic bifurcation

Consider the deterministic differential equation,

ẋ(t) = ax(t) , (2.7)

where a is a constant called the control parameter. The solution of Eq. (2.7)

is

x(t) = x(0)eat , (2.8)

where x(0) is the initial condition. The solution grows to infinity if a > 0

and decays to zero if a < 0. The bifurcation point is thus located at ac = 0.

Consider the stochastic counterpart of Eq. (2.7) by adding a noise term,

ẋ(t) = ax(t) + η(t) , (2.9)

where η(t) is a Gaussian white noise with mean 〈η(t)〉 = 0 and correlation

〈η(t)η(t′)〉 = 2Kδ(t − t′), where K is the intensity of the noise. The bifur-

cation threshold of Eq. (2.9) can be investigated either from the stationary

probability distribution function or from the time evolution of the moments.

The stationary density can be obtained analytically from the Fokker-Planck

equation associated to Eq. (2.9). In fact, there is a Fokker-Planck equation

associated to every Langevin equation [23, 73, 22]. The mathematical steps
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involved in the derivation of the Fokker-Planck equation given a Langevin

equation are shown in Appendix B. Using those results, the Fokker-Planck

equation associated to Eq. (2.9) is obtained from Eq. (B.32) with f(x) = ax

and is

∂

∂t
p(x, t) = − ∂

∂x
[axp(x, t)] +K

∂2

∂x2
p(x, t) . (2.10)

The stationary probability distribution function ps(x) of Eq. (2.10) is found

by using Eq. (B.9) with g(x) = 1 and leads to,

ps(x) = N exp
( a

2K
x2
)

, (2.11)

where N is a normalization constant. The solution is not normalizable if

a > 0. The bifurcation threshold is hence not well defined as the stationary

distribution function does not exist as a > 0.

The bifurcation threshold may be defined from the statistical moments of

x(t). Analytical expression for the time evolution of the moments of Eq. (2.9)

is found from the Fokker-Planck equation [Eq. (2.10)]. By definition of the

ensemble average [98],

∂

∂t
〈xn(t)〉 =

∂

∂t

∫ ∞

−∞
xnp(x, t)dx =

∫ ∞

−∞
xn ∂

∂t
p(x, t)dx . (2.12)

Substitute Eq. (2.10) in Eq. (2.12) and integrate by parts. Assuming further

that the probability distribution function vanishes at x = ±∞ yields,

∂

∂t
〈xn(t)〉 = na〈xn(t)〉 +Kn(n− 1)〈xn−2(t)〉 . (2.13)
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The solution of Eq. (2.13) is obtained in integral form,

〈xn(t)〉 = enat

[

〈xn(0)〉 +Kn(n− 1)

∫ t

0

ds
〈

xn−2(s)
〉

e−nas

]

. (2.14)

The first moment (n = 1) evolves in time according to,

〈x(t)〉 = 〈x(0)〉eat , (2.15)

whereas the second moment (n = 2) satisfies

〈

x2(t)
〉

= e2at

[

〈

x2(0)
〉

+
K

a

(

1 − e−2at
)

]

. (2.16)

For small time t, exp(−2at) ≈ 1, and Eq. (2.16) reduces to

〈

x2(t)
〉

=
〈

x2(0)
〉

e2at . (2.17)

The solution of the higher moments in the limit of small t can be found from

Eqs. (2.14), (2.15), and (2.17). In the small t limit where exp(−nat) ≈ 1, the

nth moment satisfies

〈xn(t)〉 = 〈xn(0)〉 enat . (2.18)

Let λa = na be the growth exponent of the moments. Hence, the bifurcation

point is located at λa = 0 or ac = 0, point separating exponentially growing

from decaying solutions. The location of the bifurcation point thus agrees with

the deterministic model and is independent of the intensity of the randomness.

We have verified our numerical algorithm with additive noise [Eq. (2.1)] by

integrating Eq. (2.9) over 108 independent realizations of the noise. Trajecto-

ries are obtained by setting b = 0, γ = 0, and K = 0.3 in Eq. (2.1) and by
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Growth exponent of ẋ(t) = ax(t) + η(t)

-1 -0.5 0 0.5 1
a

-2

-1

0

1

2
n = 1
n = 2
n = 3

λa

Figure 2.1: Growth exponent λa as a function of the control parameter a
of the n = {1, 2, 3} moment of stochastic linear equation without delayed
feedback (b = 0) where the noise is additive [Eq. (2.9)]. The intensity of
the noise is fixed at K = 0.3. Symbols in the figure are the numerically
determined growth exponent obtained from an exponential fit on the time
evolution of the moments. The numerical determination is compared to
the theoretical prediction λa = na, the solid lines. The bifurcation point
is located at ac = 0, identified from the dotted curves, for all moments
independently of the intensity of the randomness.

using a integration step of ∆t = 0.01. The growth exponent λa is computed

from an exponential fit performed on the time evolution of the moments in

the time window t = [0, 5]. Results are shown in Fig. 2.1 and compared to the

analytical prediction λa = na. The agreement between the two is excellent.

The phenomenology changes considerably if parametric noise is considered

instead,

ẋ(t) = ax(t) + x(t)ξ(t) . (2.19)
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Equation (2.19) is to be interpreted under Stratonovich calculus. Parametric

or multiplicative noise of the form of Eq. (2.19) is encountered in stochastic

differential equations in which fluctuations in control parameters are consid-

ered, i.e. if a → a + ξ(t). The bifurcation threshold of Eq. (2.19) is also

studied from its associated stationary probability distribution function and

from the statistical moments. The Fokker-Planck associated with Eq. (2.19)

is obtained by using Eq. (B.29) with f(x) = ax and g(x) = x,

∂

∂t
p(x, t) = − ∂

∂x
[(a+D)xp(x, t)] +D

∂2

∂x2

[

x2p(x, t)
]

. (2.20)

The stationary probability distribution function of Eq. (2.20) is found from

Eq. (B.9) with g(x) = x and yields,

ps(x) =















δ(x)

N|x| a
D
−1

, (2.21)

where N is a normalization constant found by conserving probabilities over

all space,

1 =

∫ ∞

−∞
ps(x)dx = 2N

∫ ∞

0

x
a
D
−1dx =

2DN
a

x
a
D

∣

∣

∣

∣

∞

0

. (2.22)

On the one hand, the power law solution is not normalizable and hence it

is not an admissible solution. On the other hand, trajectories are observed

numerically to diverge above a certain threshold and the delta function is not

stable in this region. The bifurcation threshold is hence not well defined since

the solution does not exist everywhere.

Alternatively, one may wish to define the bifurcation from the stability of
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the moments of Eq. (2.19). Substitute Eq. (2.20) into Eq. (2.12) and integrate

by parts, by assuming that the probability distribution function vanishes at

x = ±∞,

∂

∂t
〈xn(t)〉 = na〈xn(t)〉 +Dn2〈xn(t)〉 . (2.23)

Assume a solution of the form 〈xn(t)〉 = C exp(nλnt), where C is a constant

and λn the growth exponent. After substitution in Eq. (2.23), it leads to the

characteristic equation,

λn = a+ nD . (2.24)

The bifurcation occurs at λn = 0, or (ac)n = −nD. Despite the lack of

existence of a stationary distribution function above threshold, one seems to

find a bifurcation that depends on the order of the moment n.

This apparent bifurcation point is well reproduced numerically. Equation

(2.19) is integrated by using Eq. (2.2) with b = 0, γ = 0, and D = 0.3 in order

to verify these results. Trajectories are generated in the time interval t = [0, 20]

by using an integration step of ∆t = 0.01. Over 108 independent realizations

of the noise are averaged to determine the time evolution of the moments. The

growth exponent λn is computed from an exponential fit on the time evolution

of each moment. Numerical results are shown in Fig. 2.2 and compared to Eq.

(2.24). The two are in excellent agreement with each other. The bifurcation

point thus appears to depend on the order n of the moment considered with

parametric noise, which differs from the deterministic result ac = 0. This is a

peculiar property of power law distributions. It is known that this behavior

can be traced to a significant probability of encountering extremely diverging

trajectories. Those trajectories dominate the ensemble average becoming more

and more significant for higher moment of x. This pathology can be resolved
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Growth exponent of ẋ(t) = ax(t) + x(t)ξ(t)
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Figure 2.2: Growth exponent λn as a function of the control parameter
a of the n = {1, 2, 3} moment of the stochastic linear equation without
delayed feedback (b = 0) with parametric noise [Eq. (2.19)]. Symbols are
the numerically determined growth exponent whereas the solid curves are
the theoretical prediction, λn = a+ nD. The intensity of the noise is fixed
at D = 0.3. Bifurcation points, shown by the dotted lines, depend on the
order of the moment and the intensity of the noise (ac)n = −nD.

by introducing a saturating nonlinearity on the model.

2.3 Normal form of a pitchfork bifurcation

Consider the deterministic (K = D = 0) but nonlinear (γ = 1) counterpart

of Eq. (1.10) without delayed feedback (b = 0),

ẋ(t) = ax(t) − x3(t) . (2.25)
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Equation (2.25) is known as the Landau model [99, 100, 101]. This equation

has one stable fixed point x∗ = 0 if a < 0 and three fixed points as a > 0,

x∗ = 0, which is unstable, and two stable fixed points located at x∗ = ±√
a.

The bifurcation point is thus located at ac = 0.

In order to investigate further the validity of our numerical integration

method, we have computed the location of the bifurcation threshold of the

stochastic counterpart of Eq. (2.25) with additive and multiplicative noise.

Consider then Eq. (2.25) with additive noise,

ẋ(t) = ax(t) − x3(t) + η(t) . (2.26)

Take the ensemble average of Eq. (2.26) on both sides,

∂t〈x(t)〉 = a〈x(t)〉 − 〈x3(t)〉 , (2.27)

where we have used 〈η(t)〉 = 0. The moments of Eq. (2.27) are not of the same

order excluding an analytical determination of the solution of this equation.

Nevertheless, the bifurcation threshold is found from its associated stationary

probability distribution function.

Consider then the Fokker-Planck equation associated with Eq. (2.26).

Given Eq. (B.32) with f(x) = ax− x3, we have

∂

∂t
p(x, t) = − ∂

∂x

[(

ax− x3
)

p(x, t)
]

+K
∂2

∂x2
p(x, t) . (2.28)

The stationary solution of Eq. (2.28) is found by using Eq. (B.9) with g(x) = 1

and is

ps(x) = N exp

(

a
x2

2K
− x4

4K

)

, (2.29)
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Histogram of ẋ(t) = ax(t) − x3(t) + η(t)
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Figure 2.3: Stationary probability distribution function p(x) as a function
of x of Eq. (2.26) as the control parameter a is varied. The symbols are
the numerical determination of the stationary densities whereas the solid
curves are the analytical prediction, Eq. (2.29). The intensity of the noise is
fixed at K = 1. The bifurcation point is located at ac = 0, point separating
unimodal (a < ac) to bimodal (a > ac) distribution.

where N is a normalization constant. This probability distribution function is

shown in Fig. 2.3. The position of the maxima of the distribution are located

at x∗ = ±√
a if a > 0 and at x∗ = 0 if a < 0. Clearly the bifurcation occurs at

ac = 0, the point separating unimodal from bimodal densities. The bifurcation

threshold thus agrees with the deterministic model.

We next turn our attention to the case where Eq. (2.25) includes paramet-

ric noise,

ẋ(t) = ax(t) − x3(t) + x(t)ξ(t) . (2.30)

This equation has been studied in [82, 102, 98] and is commonly called the
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Stratonovich model. Consider the first moment of Eq. (2.30) found by taking

the ensemble average,

∂t〈x(t)〉 = a〈x(t)〉 − 〈x3(t)〉 + 〈x(t)ξ(t)〉 . (2.31)

The correlation of the state variable x(t) and the noise ξ(t) can be found by

using the Furutsu-Novikov theorem [103, 104],

〈x(t)ξ(t)〉 = 〈x(t)〉〈ξ(t)〉 +

∫ t

0

〈ξ(t)ξ(t′)〉
〈

δx(t)

δξ(t′)

〉

dt′ , (2.32)

where δx(t)/δξ(t′) is the functional derivative of x(t) with respect to ξ(t′). By

using 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′) and performing the integration,

Eq. (2.32) reduces to

〈x(t)ξ(t)〉 = D

〈

δx(t)

δξ(t)

〉

. (2.33)

By using Eq. (B.25), we find

〈x(t)ξ(t)〉 = D〈x(t)〉 , (2.34)

and Eq. (2.31) thus reduces to

∂t〈x(t)〉 = (a+D)〈x(t)〉 − 〈x3(t)〉 . (2.35)

This equation is not closed and cannot be solved analytically. We note how-

ever that the effect of the correlation 〈x(t)ξ(t)〉 is to renormalize the control

parameter a. Interestingly, this renormalization does not lead to a change in

the location of the bifurcation point with respect to the deterministic equation,

as we show next.
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The bifurcation of the Stratonovich model is investigated from its station-

ary probability density. Given Eq. (B.29) with f(x) = ax− x3 and g(x) = x,

the Fokker-Planck equation associated with Eq. (2.30) is

∂

∂t
p(x, t) = − ∂

∂x

{[

(a+D)x− x3
]

p(x, t)
}

+D
∂2

∂x2

[

x2p(x, t)
]

. (2.36)

The stationary probability distribution function of Eq. (2.36) is obtained by

using Eq. (B.9) with g(x) = x and is

p0(x) =















δ(x) if α ≤ −1

N|x|αe− x2

2D if α > −1

, (2.37)

where N is a normalization constant and where α = a/D − 1 is the exponent

of the power law. The distribution is normalizable as long as α > −1. In

this limit, the normalization constant N is found by imposing conservation of

probability over all space,

1 =

∫ ∞

−∞
p0(x)dx = 2N

∫ ∞

0

|x|αe− x2

2D dx , (2.38)

where we have used the fact that the stationary probability distribution func-

tion p0(x) is symmetric in x. Perform the change of variable t = (2D)−1x2. In

those terms Eq. (2.38) is,

1 = 2(2D)N
∫ ∞

0

(2Dt)
α−1

2 e−tdt = 2N (2D)
α+1

2 Γ

(

α + 1

2

)

, (2.39)

where we have introduced the gamma function Γ(z) defined by,

Γ(z) =

∫ ∞

0

tz−1e−tdt . (2.40)
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Histogram of ẋ(t) = ax(t) − x3(t) + x(t)ξ(t)
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Figure 2.4: Stationary probability distribution function p0(x) as a function
of x of Eq. (2.30) as the control parameter a is varied. The intensity
of the noise is fixed at D = 1. Symbols are the numerical determination
of the stationary densities whereas the solid curves are Eq. (2.42). The
distribution function is bimodal for α = a/D−1 > 0 and unimodal for −1 <
α < 0. The distribution is a delta function for α < −1. The bifurcation
point is located at αc = −1 (ac = 0), point at which the distribution
function becomes non normalizable.

The normalization constant N is thus

N =
1

2
(2D)−(α+1

2 )Γ−1

(

α + 1

2

)

, (2.41)

and the stationary probability distribution function for α > −1 is

p0(x) =
1

2
(2D)−(α+1

2 )Γ−1

(

α + 1

2

)

|x|αe− x2

2D . (2.42)

The stationary probability distribution function is not normalizable if α <
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−1. Hence, the bifurcation occurs at the point where αc = −1, or ac = 0,

independently of the intensity of the randomness. The bifurcation point is

characterized as the point at which the stationary distribution function p0(x)

changes from a delta function δ(x) to a power law with an exponential cut off

at large x. Note that this is in contrasts with the linearized counterpart of Eq.

(2.30) where the bifurcation occurs at (ac)n = −nD, where n is the order of

the moment considered. Note that the solution [Eq. (2.42)] is unimodal with

a singularity at x = 0 for α ∈ [−1, 0], whereas it is bimodal for α > 0.

The stationary distribution function of Eq. (2.30) has been computed

numerically by setting b = 0, γ = 1, and D = 1 in Eq. (2.2). Histograms

are calculated in the time interval t = [480, 500] with ∆t = 0.01, where the

solution is believed to be stationary. Over 105 independent realization of the

noise are considered in the ensemble average. Results are shown in Fig. 2.4.

Note the excellent agreement between numerical results and the theoretical

prediction.

The saturating nonlinearity in the model allows for a bound stationary

probability distribution above threshold, and therefore a determination of the

bifurcation. Interestingly, the bifurcation remains at ac = 0, the same value

as in the case without fluctuations. It is now believed that the divergence

of the moment at (ac)n = −nD is spurious, and related to large deviations

allowed by the linear model. In short, one concludes from this analysis that

a stochastic bifurcation requires the analysis of a nonlinear model, in contrast

with conventional theory.



Chapter 3
Stochastic bifurcation of delayed

equations

We address in this chapter the bifurcation diagram of a stochastic differen-

tial equation with delayed feedback. Recall (cf. Chapter 2) that the linear

counterpart of Eq. (1.10) without delayed feedback does not have a stationary

probability distribution function, and hence does not have a well defined bi-

furcation threshold. The solution of the linear counterpart of Eq. (1.10) with

delayed feedback diverges also above threshold, and hence we will repeat the

procedure of adding a nonlinear saturating term to the governing equation.

We study the bifurcation threshold through both the time evolution of the

moments and from the stationary probability density. The analog of a Fokker-

Planck equation is derived, except that time delay introduces a non-Markovian

drift term in the equation, and hence it is not closed. We explore several ap-

proximate schemes to obtain the drift term when the delay time τ is small as

compared to the other characteristic time scales in the system. We present

two methods existing in the literature to expand this term based on the Ito

interpretation and introduce a new procedure following the Stratonovich in-

31
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terpretation of stochastic calculus. Unfortunately, expansions of the drift term

results in an effective Markovian model which fails to capture any oscillatory

behavior, the hallmark of a feedback loop as discussed next.

3.1 Delayed feedback induces oscillation

The bifurcation diagrams of both the deterministic and stochastic linear

(γ = 0) counterpart of Eq. (1.10) with delayed feedback (b 6= 0) are known.

We briefly review these results. Consider first the deterministic equation (K =

D = 0). It corresponds to the equation introduced by Bratsun as a model of

protein degradation [74],

ẋ(t) = ax(t) + bx(t− τ) , (3.1)

where a, b are constants, and where τ > 0 is the delay time. The analytical

solution to Eq. (3.1) is known [44, 105]. Assume a solution of the form

x(t) = C exp(λt), where λ is a growth exponent and C is a constant, and

substitute into Eq. (3.1). This yields a characteristic equation,

λ = a+ be−λτ . (3.2)

Split the growth exponent into a real and imaginary part λ = µ+ iω,

µ = a+ be−µτ cos(ωτ) , (3.3)

ω = −be−µτ sin(ωτ) . (3.4)

A direct bifurcation occurs as µ = ω = 0, or

ac = −b . (3.5)
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This branch separates exponentially decaying solutions (ac < −b) from expo-

nentially diverging solutions (ac > −b). There is another bifurcation that is a

direct consequence of the delay: a Hopf bifurcation at µ = 0 but ω 6= 0,

−ac

b
= cos

(

τ
√

b2 − a2
c

)

. (3.6)

Oscillations (ω 6= 0) are a direct consequence of the presence of time delay in

Eq. (3.1). It is well known that oscillatory behavior requires at least a two

dimensional system [80]. However, delay terms are considered as independent

variables, and thus Eq. (3.1) has an infinite number of dimensions. It is in-

structive to express the eigenvalue equation [Eq. (3.2)] in terms of the Lambert

function. The Lambert function, also known as the product-log function, is a

well studied function in the field of delay differential equations [106, 50, 107].

By definition, the Lambert function y = Wk(x) is the set of the k branches

of the inverse of x = y exp(y). The characteristic equation [Eq. (3.2)] can be

written as,

(λ− a)τe(λ−a)τ = bτe−aτ . (3.7)

We can thus use the definition of the Lambert function to write the growth

exponent λk as

λk =
1

τ
Wk

(

bτe−aτ
)

+ a . (3.8)

Each branch Wk(bτe
−aτ ) corresponds to a different eigenvalue λk. Since there

are an infinite number of branches, Eq. (3.1) has an infinite number of in-

dependent solutions. Again, this property might seem peculiar as one would

expect a single independent solution to a first order differential equation. Since

the initial condition is a function being defined in [−τ, 0], it implies an infi-

nite numbers of variables to describe the dynamics of the system. The Lam-
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Real branches of the Lambert function
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Figure 3.1: The two real branches of the Lambert function Wk(x) as a
function of x. The solid curve is the branch corresponding to k = 0 whereas
the dotted curve is the branch k = −1. The branch point is located at
x = −e−1, identified by the dashed lines.

bert function has only two real valued branches in the domain [−e−1,∞] and

[−e−1, 0]. The principal branch W0(x), shown in Fig. 3.1, is the only branch

that contains any part of the positive real axis in its range. It has a second

order branch point located at x = −e−1, corresponding to y = −1. This point

is also shared with the branch k = 1 and k = −1. All the other branches map

the real line into the complex plane, providing complex values for λ, and thus

oscillatory solutions for x(t). This property contrasts with first order differ-

ential equations which can not provide oscillatory solutions [80]. In terms of

the parameters of the model, the multicritical point is at (a, b) = (1/τ,−1/τ).

Furthermore, the eigenvalue is complex and hence the solution is oscillatory if
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bτ exp(−aτ) < − exp(−1). Note that in the special case of short delay τ → 0,

the multicritical point moves to (a, b) = (∞,−∞) and the Hopf branch [Eq.

(3.6)] disappears.

The bifurcation diagram of Eq. (3.1) is also investigated numerically to

verify the validity of our numerical method with delayed feedback, as well

as the procedure to locate the bifurcation line. Equation (3.1) is integrated

by using Eq. (2.1) with γ = 0 and K = 0. The initial condition over the

time interval [−τ, 0] is a constant being drawn from a Gaussian distribution

with mean 0 and variance 1. The bifurcation threshold is determined by

averaging 106 trajectories with different initial conditions at fixed parameters

a, b, and τ . The integration step is fixed at ∆t = 0.01. The numerically

determined growth exponent λ is computed from an exponential fit in the time

window t = [290, 300] to the averaged trajectories. The process is repeated

for several values of a at fixed b and time delays τ . The bifurcation point is

then identified as the point in the (a, b) plane for which the growth exponent

is zero. The growth exponent is shown in Fig. 3.2 and compared to Eq.

(3.8). The analysis is repeated for many intensities of the feedback loop b.

The resulting bifurcation diagram is shown in Fig. 3.3 and compared to the

theoretical predictions Eqs. (3.5) and (3.6). Both are in excellent agreement

with each other. We showed in Chapter 2 that the bifurcation threshold of the

stationary moments of the linear equation (γ = 0) without delayed feedback

(b = 0) and parametric noise depend on the order of the moment considered

while it is unchanged with additive noise. We verify if this is the case with

delayed feedback.

Consider then the case of a differential delay equation with additive noise
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Growth exponent of linear equations with delay
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Figure 3.2: Growth exponent λ as a function of the control parameter
a. The time delay is fixed at τ = 1 and the intensity of the feedback
loop is b = 1 while the intensity of the noise is K = D = 0.3 for the
stochastic equations. Numerical results for the deterministic (K = D = 0)
equation (◦) and the equation with additive noise (×) are compared to
Eq. (3.8) (solid curve) while numerical results with parametric noise (�)
are compared to Eq. (3.29) (dashed curve). The bifurcation is located
at the point λ = 0 (dotted line). Parametric noise shifts the location of
the bifurcation threshold with respect to its deterministic counterpart as
opposed to additive noise.

ẋ(t) = ax(t) + bx(t − τ) + η(t) . (3.9)

The location of the bifurcation threshold of the first moment of this equation

is known [44]. Take the ensemble average on both sides,

∂t〈x(t)〉 = a〈x(t)〉 + b〈x(t− τ)〉 , (3.10)

where we have used 〈η(t)〉 = 0. Assuming a solution of the form 〈x(t)〉 =
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Bifurcation of ẋ(t) = ax(t) + bx(t− τ)
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Figure 3.3: Bifurcation diagram b as a function of a of the deterministic
delay equation [Eq. (3.1)]. The time delay is fixed τ = 1. The dotted line
is placed at bτ exp(−aτ) = − exp(−1) and separates the oscillatory regime
(ω 6= 0) from the non oscillating one (ω = 0). The solid curve is the direct
branch Eq. (3.5) whereas the dashed curve is the Hopf branch Eq. (3.6).
The symbols (◦) are the numerically determined bifurcation point from the
growth exponent (see Fig. 3.2).

C exp(λt), where λ is the growth exponent and C is a constant, we obtain the

same characteristic equation [Eq. (3.8)] and hence the same location of the

bifurcation threshold than the deterministic and linear delayed equation [Eqs.

(3.5) and (3.6)].

Associated with Eq. (3.9) is the equivalent of a Fokker-Planck equation

from which the time evolution of the moments can be obtained. Derivation

of the Fokker-Planck equation follows the lines of Appendix B. However, the

derivation must be generalized to include delay. In fact, the drift coefficient is
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now a function of a time delay term f [x(t); x(t− τ)]. Moreover, the functional

derivative of the solution x(t) with respect to the noise might be modified

by the time delay. In order to generalize the derivation of the Fokker-Planck

equation, consider a general Langevin equation with a delayed drift coefficient,

ẋ(t) = f [x(t), x(t− τ)] + g[x(t)]ξ(t) , (3.11)

where ξ(t) is a Gaussian white noise with mean 〈ξ(t)〉 = 0 and correlation

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′), where D is the intensity of the randomness. Consider

then the definition of the one point probability distribution function p(x, t) =

〈δ[x(t) − x]〉 as in Eq. (B.12). Take the time derivative on both sides, and

substitute Eq. (3.11),

∂

∂t
p(x, t) = − ∂

∂x

{

〈δ[x− x(t)]f(x, xτ )〉
}

− ∂

∂x

{

g(x) 〈δ[x− x(t)]ξ(t)〉
}

,

(3.12)

where we have used the identity given in Eq. (B.15). Consider first the drift

coefficient in Eq. (3.12) ,

〈f(x, xτ )δ[x− x(t)]〉 =

∫∫

f(x, xτ )δ[x− x(t)]p(x; xτ )dxdxτ , (3.13)

where p(x; xτ )dxdxτ is the joint probability distribution function that x ∈

[x, x + dx] at time t and xτ ∈ [xτ , xτ + dxτ ] at time t − τ . Use the property,

p(x; xτ ) = p(xτ |x)p(x), and substitute f(x, xτ ) = ax+ bxτ in Eq. (3.13),

〈(ax + bxτ )δ[x− x(t)]〉 =

∫∫

(ax+ bxτ )δ[x− x(t)]p(xτ |x)p(x)dxdxτ

= p(x, t)

[

ax(t) + b

∫

xτp(xτ |x)dxτ

]

.

(3.14)
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Equation (3.14) contains a non-Markovian term,

〈xτ |x〉 =

∫

xτp(xτ |x)dxτ . (3.15)

This integral is called the average conditional drift [87, 88]. There is no analyt-

ical solution to Eq. (3.15) to our knowledge. Nevertheless, the drift coefficient

with delayed feedback associated with Eq. (3.9) is,

〈f(x, xτ )δ[x− x(t)]〉 = [ax + b〈xτ |x〉] p(x, t) . (3.16)

Consider next the derivation of the diffusive term but corresponding to a

Langevin equation with delayed feedback. Equations (B.17) to (B.19) are the

same starting from Eq. (3.12) but the functional derivative involved in Eq.

(B.19) is modified by the time delay. Integrate Eq. (B.11) with respect to

time but with f [x(t), x(t− τ)] = ax(t) + bx(t− τ),

x(t) = x(t′) +

∫ t

t′
{ax(s) + bx(s− τ) + g[x(s)]ξ(s)}ds . (3.17)

Take then the functional derivative with respect to ξ(t′) on both sides,

δx(t)

δξ(t′)
=

∫ t

t′

{

a
δx(s)

δξ(t′)
+ b

δx(s− τ)

δξ(t′)
+ ξ(s)

∂g

∂x

δx(s)

δξ(t′)

+ g[x(s)]
δξ(s)

δξ(t′)

}

ds .

(3.18)

We introduce the change of variable s = s − τ in the second term of the

integrand of Eq. (3.18) so that,

∫ t

t′

δx(s− τ)

δξ(t′)
ds =

∫ t−τ

t′−τ

δx(s)

δξ(t′)
ds . (3.19)



3.1. Delayed feedback induces oscillation 40

Furthermore, the causality condition [Eq. (B.22)] implies that the functional

derivative is zero for times earlier than t′,

∫ t

t′

δx(s− τ)

δξ(t′)
ds =

∫ t−τ

t′

δx(s)

δξ(t′)
ds . (3.20)

Therefore, by using Eq. (B.23), Eq. (3.18) is

δx(t)

δξ(t′)
= H(t− t′)

{

g[x(t′)] +

∫ t

t′

[

a
δx(s)

δξ(t′)
+ ξ(s)

∂g

∂x

δx(s)

δξ(t′)

+g[x(s)]
δξ(s)

δξ(t′)

]

ds
}

+H(t− τ − t′)

[

b

∫ t−τ

t′

δx(s− τ)

δξ(t′)
ds

]

,

(3.21)

where the causality condition has been taken into account by the introduction

of the step function H(t − t′) = 1 if t > t′ and H(t − t′) = 0 otherwise, and

H(t− τ − t′) = 1 if t − τ > t′ and H(t− τ − t′) = 0 otherwise. If t = t′, the

functional derivative is,

δx(t)

δξ(t)
= g[x(t)] , (3.22)

which is the same result than without delayed feedback. Time delay does not

change the diffusion coefficient. We can hence apply these results to Eq. (3.9).

For additive noise, g[x(t)] = 1, and the Fokker-Planck equation is found from

Eq. (B.32) but with drift coefficient given by Eq. (3.13),

∂

∂t
p(x, t) = − ∂

∂x
[(ax+ b〈xτ |x〉)p(x, t)] +K

∂2

∂x2
p(x, t) . (3.23)

The Fokker-Planck equation associated to Eq. (3.9) is non Markovian and

hence not closed because of the presence of the average conditional drift 〈xτ |x〉.

We cannot therefore solve for the stationary probability distribution function.

We investigate next the time evolution of the moments. Use the definition
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of the ensemble average [Eq. (2.12)] and substitute Eq. (3.23),

∂t〈xn(t)〉 =

∫∫

xn
{

− ∂

∂x
[(ax + b〈xτ |x〉) p(x, t)]

+K
∂2

∂x2
p(x, t)

}

dxdxτ .

(3.24)

Integrate by parts and assume that the probability distribution function van-

ishes at x = ±∞,

∂t〈xn(t)〉 = na〈xn(t)〉 + nb〈xn−1(t)x(t− τ)〉 +Kn(n− 1)〈xn−2(t)〉 . (3.25)

The time evolution of the nth moment of x thus requires the determination of

the correlation 〈xn−1(t)x(t − τ)〉. No analytical expression is known for this

term, precluding the solution of Eq. (3.25). Only the bifurcation threshold of

the first moment can thus be solved analytically. The numerical determination

of the bifurcation threshold of the first moment is shown in Fig. 3.4 and

compared to Eqs. (3.5) and (3.6). The two are in excellent agreement. The

method used to determine the threshold is the same than the deterministic

case. Equation (3.9) is integrated using Eq. (2.1) with γ = 0 and K = 0.3.

The moment of x is estimated by averaging over 106 independent realizations

of the noise. The growth exponent λ is found from a exponential fit to the

time evolution of the moment and the bifurcation point is determined from

the point at which the growth exponent is zero. The numerically determined

growth exponent is shown in Fig. 3.2. We again conclude that additive noise

does not change the location of the bifurcation threshold of the first moment

of x relative to its deterministic counterpart even with delayed feedback.

This conclusion does not hold with parametric noise. For instance, consider
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the linear counterpart of Eq. (1.10) with multiplicative noise only (K = 0),

ẋ(t) = ax(t) + bx(t− τ) + x(t)ξ(t) . (3.26)

An analytical expression for the location of the bifurcation threshold of the

first moment of Eq. (3.26) is also known [44]. Taking again the ensemble

average on both sides,

∂t〈x(t)〉 = a〈x(t)〉 + b〈x(t− τ)〉 + 〈x(t)ξ(t)〉 . (3.27)

Since we showed that the functional derivative of x(t) with respect to the noise

ξ(t) is not affected by time delay [Eq. (3.22)], we can use the Furutsu-Novikov

theorem and the result of Eq. (2.34) to write

∂t〈x(t)〉 = (a+D)〈x(t)〉 + b〈x(t− τ)〉 . (3.28)

Equation (3.28) is identical to Eq. (3.10) except that a → a + D. By using

this observation, we conclude that the growth exponent satisfies,

λk =
1

τ
Wk

[

bτe−(a+D)τ
]

+ (a+D) . (3.29)

The location of the direct bifurcation threshold of the first moment is found

by setting µ = ω = 0, leading to

ac = −(b +D) , (3.30)
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whereas the Hopf bifurcation is located at µ = 0 and ω 6= 0 yielding,

−
(

ac +D

b

)

= cos
(

τ
√

b2 − (ac +D)2
)

. (3.31)

Therefore the location of the bifurcation threshold of the first moment is shifted

by an amount that scales with the intensity of the randomness D. The bi-

furcation threshold might be further investigated by computing the stationary

probability distribution function, and by the time evolution of higher order

moments. Consider the Fokker-Planck equation associated to Eq. (3.26). The

drift coefficient is the same as in the additive case, f(x, xτ ) = ax + bxτ but

now g(x) = x. Combining the Fokker-Planck equation given by Eq. (B.29)

but with delayed drift coefficient, Eq. (3.13), we find

∂

∂t
p(x, t) = − ∂

∂x
{[(a+D)x+ b〈xτ |x〉] p(x, t)} +D

∂2

∂x2

[

x2p(x, t)
]

. (3.32)

As with additive noise, the stationary probability density cannot be deter-

mined from Eq. (3.32) due to the presence of the average conditional drift

〈xτ |x〉. The time evolution of the moments can be given by substituting Eq.

(3.32) into Eq. (2.12) and integrating by parts. If the surface terms are zero

at x = ±∞, one finds

∂t〈xn(t)〉 = n (a+ nD) 〈xn(t)〉 + nb〈xn−1(t)x(t− τ)〉 , (3.33)

and a hierarchy of equation results, except for n = 1. Again the correlation

〈xn−1(t)x(t−τ)〉 is not known and there is no analytical solution to Eq. (3.33).

Numerical results for the first moment are shown in Fig. 3.4, and compared

with the theoretical predictions, Eqs. (3.30) and (3.31). We have used the same
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Bifurcation of linear stochastic equations with delay
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Figure 3.4: Bifurcation diagram b as a function of a of the stationary first
moment 〈x〉s of the linearized equations with delayed feedback. The time
delay is fixed τ = 1, and where the intensity of the noise is K = D = 0.3.
We show results with additive noise (�) compared to Eqs. (3.5) and (3.6)
(solid curve) and with parametric noise (∗) compared to Eqs. (3.30) and
(3.31). Parametric noise shifts the location of the bifurcation threshold with
respect to its deterministic counterpart, as opposed to additive noise.

numerical procedure to determine location of the bifurcation as for additive

noise, namely Eq. (3.26) is integrated using Eq. (2.2) with γ = 0 and D = 0.3.

Over 106 independent realizations of the noise are considered in the ensemble

average. The numerically determined growth exponent is shown in Fig. 3.2.

As shown in Eqs. (3.30) and (3.31), the bifurcation threshold of the first

moment is shifted relative to the deterministic threshold.

Recall that the solution of the linear equations considered with delayed

feedback diverges above threshold, and the moments can only be computed

numerically. In order to stabilize the solution in this region of the bifurcation
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diagram, we have augmented the linear stochastic equations by a saturating

nonlinearity. As it was shown in Chapter 2, nonlinear cubic term saturates the

solution to a finite value above threshold without delayed feedback. This addi-

tion permits the calculation of the stationary probability distribution function

above threshold.

3.2 Stationary density for small time delay

The theoretical methods introduced in section 3.1 can be combined to

directly write the Fokker-Planck equation associated with Eq. (1.10) with

multiplicative noise only (K = 0) and γ = 1. In fact, given the Fokker-Planck

equation with parametric noise Eq. (B.29), combined with the result for the

delayed drift coefficient, Eq. (3.13), but with f(x, xτ ) = ax + bxτ − x3 and

g(x) = x, we find that the Fokker-Planck equation associated with Eq. (1.10)

with K = 0 is

∂

∂t
p(x, t) = − ∂

∂x

{[

(a+D)x− x3 + b〈xτ |x〉
]

p(x, t)
}

+D
∂2

∂x2
[x2p(x, t)] .

(3.34)

This equation is not closed due to the presence of the average conditional

drift 〈xτ |x〉. The average conditional drift can be expanded by using a Taylor

stochastic expansion under the assumption that the time delay is small [56,

57]. We first review two methods that exist in the literature, introduced by

Guillouzic [87, 88] and by Frank [95, 86] to perform such an approximation.

However, both require an Ito interpretation of the Langevin equation being

expanded. The first method introduced by Guillouzic simply expands the

stochastic process dx(t, t− τ) in small τ . We present here a simple description

for a general Langevin equation with delayed feedback and parametric noise
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under the Ito interpretation of stochastic calculus,

dx(t, t− τ) = f(x, xτ )dt+ g(x)dW (t) , (3.35)

where f(x, xτ ) and g(x) are respectively the drift and diffusion coefficient, and

where W (t) is a Wiener process as defined in Appendix A with mean 〈W (t)〉 =

0 and variance 〈W 2(t)〉 = 2Dt. The idea is to derive an expression for the

approximate drift and diffusion coefficient by expanding the stochastic delay

process dx(t, t− τ) and by assuming that the resulting process is Markovian.

Let dx(a)(t) be the Markovian counterpart of Eq. (3.35) defined by

dx(a)(t) = f (a)(x)dt + g(a)(x)dW (t) , (3.36)

where f (a)(x) and g(a)(x) are respectively the approximate drift and diffusion

coefficient.

Since the stochastic Taylor expansion follows the rules of ordinary calcu-

lus [108, 38] in the Ito interpretation, one can expand the stochastic process

dx(t, t− τ) by assuming that the time delay τ is small,

dx(t, t− τ) = dx(t, t− τ)

∣

∣

∣

∣

∣

x=xτ

+ [x(t− τ) − x(t)]
∂

∂xτ
dx(t, t− τ)

∣

∣

∣

∣

∣

x=xτ

+ ... .

(3.37)

A stochastic Taylor expansion can also be performed on the delay term x(t−τ),

x(t− τ) = x(t) − τ
dx(t, t− τ)

dt

∣

∣

∣

∣

t=t−τ

+ ... . (3.38)
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Since only the drift coefficient of Eq. (3.35) involves the delay term, we have

∂

∂xτ

dx(t, t− τ)

∣

∣

∣

∣

x=xτ

=
∂

∂xτ

f(x, xτ )dt

∣

∣

∣

∣

x=xτ

. (3.39)

Substitution of Eqs. (3.38) and (3.39) into Eq. (3.37) yields,

dx(t, t− τ) = dx(t, t− τ)

∣

∣

∣

∣

∣

x=xτ

− τ
dx(t, t− τ)

dt

∣

∣

∣

∣

t=t−τ

∂

∂xτ

f(x, xτ )dt

∣

∣

∣

∣

x=xτ

+ O(τ 2) .

(3.40)

After cancellation of the dt, we obtain the Markovian approximation up to

first order in τ ,

dx(t, t− τ) = dx(t, t− τ)

∣

∣

∣

∣

∣

x=xτ

[

1 − τ
∂

∂xτ

f(x, xτ )

∣

∣

∣

∣

x=xτ

]

+ O(τ 2) . (3.41)

In terms of the approximate drift f (a)(x) and diffusive coefficient g(a)(x), the

Markovian process defined by Eq. (3.36) is,

f (a)(x) =

[

1 − τ
∂

∂xτ
f(x, xτ )

∣

∣

∣

∣

x=xτ

]

f(x, xτ )

∣

∣

∣

∣

∣

x=xτ

, (3.42)

g(a)(x) =

[

1 − τ
∂

∂xτ
f(x, xτ )

∣

∣

∣

∣

x=xτ

]

g(x) . (3.43)

In order to apply this result to Eq. (1.10) with K = 0, it must first be written

under the Ito interpretation of stochastic calculus. In order to do so, use Eq.

(A.17) to find

dx(t, t− τ) = [(a+D)x+ bxτ − x3]dt+ xdW (t) . (3.44)

Using then Eqs. (3.42) and (3.43) with f(x, xτ ) = (a + D)x + bxτ − x3 and
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g(x) = x, the approximate Markovian process for small time delay is

dx(a)(t) = (1 − bτ){[(a + b +D)x− x3]dt+ xdW (t)} . (3.45)

The Fokker-Planck equation associated to Eq. (3.45) is derived using the Ito

interpretation of stochastic calculus. Use Eq. (B.8) with f (a)(x) = (1−bτ)[(a+

b +D)x− x3] and g(a)(x) = (1 − bτ)x,

∂

∂t
p(x, t) = − (1 − bτ)

∂

∂x

{

[(a + b+D)x− x3]p(x, t)
}

+D(1 − bτ)2 ∂
2

∂x2

[

x2p(x, t)
]

.

(3.46)

The stationary solution is found by using Eq. (B.9) and leads to the stationary

probability distribution function,

ps(x) =















δ(x) if α ≤ −1

N|x|αe− 1
(1−bτ)

x2

2D if α > −1

, (3.47)

where the exponent of the power law is

α =
(a+ b +D)

(1 − bτ)D
− 2 . (3.48)

The normalization constant N is found by imposing conservation of probability

over all space. To determine its value, use then Eq. (2.41) but with 2D →

2D(1 − bτ). The stationary probability distribution function is then

ps(x) =
1

2
[2D(1 − bτ)]−(α+1

2 ) Γ−1

(

α+ 1

2

)

|x|αe− 1
(1−bτ)

x2

2D , (3.49)

for α > −1. The location of the pitchfork bifurcation threshold is located at
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αc = −1 or

ac = −b(1 +Dτ) . (3.50)

Equation (3.50) does not agree with our numerical simulations because we

have use a fairly large value of the time delay τ , as it will be shown in Chapter

5. However, to first order in τ , (1−bτ)−1 ≈ (1+bτ). With this approximation,

the stationary probability distribution function [Eq. (3.49)] is

ps(x) =















δ(x) if α ≤ −1

N|x|αe−(1+bτ) x2

2D if α > −1

, (3.51)

where the exponent of the power law is

α =
(1 + bτ)(a + b +D)

D
− 2 . (3.52)

The normalization constant N is found again by imposing conservation of

probabilities over all space. Use again Eq. (2.41) but with 2D → 2D/(1+ bτ).

In those terms, the stationary probability distribution function is thus

ps(x) =
1

2

[

2D

(1 + bτ)

]−(α+1
2 )

Γ−1

(

α + 1

2

)

|x|αe−(1+bτ) x2

2D , (3.53)

if α > −1. The pitchfork bifurcation threshold is located at αc = −1, or in

terms of the parameter of the model at,

ac = −b[1 + τ(b +D)]

1 + bτ
. (3.54)

This prediction agrees with our numerical results but only around the pitch-

fork branch (bτ > −1) as it will be shown in Chapter 5. This is expected
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as the approximation leads to a one dimensional Markovian equation [Eq.

(3.46)] and oscillatory behavior can only originate in system having at least

two dimensions.

A second method has been proposed by Frank [95, 86], and involves ex-

panding the drift coefficient f(x, xτ ) for small time delay τ in Eq. (3.35).

The idea is to perform a Taylor expansion directly on the conditional proba-

bility distribution function p(xτ , t − τ |x, t) and to assume that the resulting

transition probabilities are normally distributed. The resulting Fokker-Planck

equation,

∂

∂t
p(x, t) = − ∂

∂x

[

f (a)(x)p(x, t)
]

+D
∂2

∂x2

[

g2(x)p(x, t)
]

, (3.55)

is then closed and the stationary distribution function can be calculated. In

fact, consider Eq. (3.35) describing a general Langevin equation under the Ito

interpretation of stochastic calculus. Derivation of the Fokker-Planck equation

introduced in Appendix B under the Ito interpretation must be modified to

include delay. This generalization has been performed in [95, 86, 87]. Follow

the steps shown in Appendix B, section B.1 but with f [x(t)] → f [x(t), x(t−τ)]

up to Eq. (B.6). Define then p(x, t; xτ , t − τ)dxdxτ as the joint probability

that x ∈ [x, x + dx] at time t and xτ ∈ [xτ , xτ + dxτ ] at time t− τ . Equation

(B.7) is then generalized to

∫ ∞

−∞

∫ ∞

−∞
G(x)

∂

∂t
p(x, t; xτ , t− τ)dxτdx =

∫ ∞

−∞

∫ ∞

−∞
G(x)

{

− ∂

∂x
[f(x, xτ )p(x, t; xτ , t− τ)]

+D
∂2

∂x2

[

g2(x)p(x, t; xτ , t− τ)
]

}

dxτdx ,

(3.56)
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where the right-hand side has been integrated by parts with respect to x,

assuming that the surface terms at x = ±∞ vanish. Since G(x) is arbitrary,

then

∂

∂t
p(x, t) = − ∂

∂x

[

p(x, t)

∫ ∞

−∞
f(x, xτ )p(xτ , t− τ |x, t)dxτ

]

+D
∂2

∂x2

[

g2(x)p(x, t)
]

,

(3.57)

where we have used p(x, t; xτ , t− τ) = p(xτ , t− τ |x, t)p(x, t). Assume that the

process is in a stationary state. In this regime, the transition probabilities only

depend on the time difference between two states and ps(x−τ |x) = ps(xτ |x)

[95, 86, 35] where x−τ = x(t + τ) and xτ = x(t − τ). Assume further that

the time delay τ is small and expand the conditional probability distribution

function up to order τ so that

ps(x−τ |x) = p(0)
s (x−τ |x) + O(τ) . (3.58)

It has been shown that the zeroth order transition probability p
(0)
s (x−τ |x) can

be approximated by a Gaussian distribution in this limit [73]. This procedure

has been used in [95, 86, 109, 110]. Under this approximation, the transition

probabilities are

p(0)
s (x−τ |x) =

√

1

2πτg2(x)
exp

{

−
[

xτ − x− τf (0)(x)
]2

2τg2(x)

}

, (3.59)

where f (0)(x) = f(x, xτ )|xτ=x. To order τ , the Markovian drift coefficient
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f (a)(x) is

f (a)(x) =

∫ ∞

−∞
f(x, xτ )p

(0)
s (x−τ |x)dxτ

=

√

1

2πτg2(x)

∫ ∞

−∞
f(x, xτ )e

− [xτ−x−τf(0)(x)]
2

2τg2(x) dxτ ,

(3.60)

and can be substituted into the Fokker-Planck equation [Eq. (3.55)]. The

resulting equation is then Markovian. Let’s apply these results to Eq. (1.10)

with K = 0 but interpreted under Ito stochastic calculus rules, Eq. (3.44). In

those terms, f(x, xτ ) = (a + D)x + bxτ − x3 = f̃(x) + bxτ , where we define

f̃(x) = (a+D)x−x3 so that f (0)(x) = (a+ b+D)x−x3, and where g(x) = x.

The Markovian drift coefficient is then

f (a)(x) = f̃(x) + b

√

1

2πτg2(x)

∫ ∞

−∞
xτe

− [xτ−x−τf(0)(x)]
2

2τg2(x) dxτ

= f̃(x) + b
[

x+ τf (0)(x)
]

= (1 + bτ)f (0)(x)

= (1 + bτ)
[

(a+ b +D)x− x3
]

.

(3.61)

Substitute Eq. (3.61) into the Fokker-Planck equation Eq. (3.55),

∂

∂t
p(x, t) = − (1 + bτ)

∂

∂x

{[

(a+ b +D)x− x3
]

p(x, t)
}

+D
∂2

∂x2

[

x2p(x, t)
]

.

(3.62)

The stationary probability distribution function of Eq. (3.62) satisfies ṗs(x) =

0 and leading to

ps(x) =















δ(x) if α ≤ −1

N|x|αe−(1+bτ) x2

2D if α > −1

, (3.63)
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where the exponent of the power law is

α =
a+ b [1 + τ(a + b +D)]

D
− 1 . (3.64)

This probability density is identical to Eq. (3.51). The bifurcation threshold

is thus located at αc = −1 or

ac = −b [1 + τ(b +D)]

1 + bτ
. (3.65)

This prediction agrees with our numerical results and with Eq. (3.54).

3.3 Expansion under Stratonovich calculus

It is instructive to derive the approximations just introduced under a

Stratonovich interpretation. Since both interpretations are equivalent, the

same result is anticipated. However, the Stratonovich interpretation provides

additional insight into the coupling between delay and correlations. Assume

that the time delay is small and integrate Eq. (1.10) with multiplicative noise

only (K = 0) over the time interval [t, t− τ ],

x(t) = x(t− τ) +

∫ t

t−τ

[

ax(t′) − x3(t′) + bx(t′ − τ) + x(t′)ξ(t′)
]

dt′ . (3.66)

Consider the first integrand of Eq. (3.66) and integrate it again, but over

[t− τ, t′],

x(t′) = x(t− τ) +

∫ t′

t−τ

[

ax(t′′) − x3(t′′) + bx(t′′ − τ) + x(t′′)ξ(t′′)
]

dt′′ . (3.67)
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Approximate then the integrands of Eq. (3.67) by their value at the lower

bound, x(t′′) ≈ x(t− τ), x(t′′ − τ) ≈ x(t− 2τ), and x3(t′′) ≈ x3(t− τ), so that

x(t′) =x(t− τ) +
[

ax(t− τ) − x3(t− τ) + bx(t− 2τ)
]

[t′ − (t− τ)]

+ x(t− τ)

∫ t′

t−τ

ξ(t′′)dt′
′′

.
(3.68)

The first integral of Eq. (3.66) is thus

∫ t

t−τ

x(t′)dt′ = x(t− τ)τ +
1

2

[

ax(t− τ) − x3(t− τ) + bx(t − 2τ)
]

τ 2

+ x(t− τ)

∫ t

t−τ

∫ t′

t−τ

ξ(t′′)dt′
′′

dt′ .

(3.69)

Since the stochastic integral in Eq. (3.69) is of the order O(∆t3/2), only the

first term in the right hand side of Eq. (3.69) contributes to the order of our

approximation. The same procedure can be applied to the other integrals of

Eq. (3.66) yielding,

∫ t

t−τ

x(t′ − τ)dt′ ≈ x(t− 2τ)τ , (3.70)

∫ t

t−τ

x3(t′)dt′ ≈ x3(t− τ)τ , (3.71)

and
∫ t

t−τ

x(t′)ξ(t′)dt′ ≈ x(t− τ)

∫ t

t−τ

∫ t′

t−τ

ξ(t′)ξ(t′′)dt′′dt′ . (3.72)

Equation (3.72) is the only stochastic integral that is first order in τ . Substitute

Eqs. (3.69)-(3.72) into Eq. (3.66)

x(t) =x(t− τ) +
[

ax(t− τ) − x3(t− τ) + bx(t− 2τ)
]

τ

+ x(t− τ)

∫ t

t−τ

∫ t′

t−τ

ξ(t′)ξ(t′′)dt′′dt′ .
(3.73)
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Consider then Eq. (3.73) and let t→ t− τ . Then x(t− τ) ≈ x(t− 2τ) +O(τ)

and use this result in Eq. (3.73). Furthermore, take the ensemble average on

both sides given the numerical value of x(t− τ),

〈x(t)|x(t− τ)〉 = x(t− τ) +
[

ax(t− τ) − x3(t− τ) + bx(t− τ)
]

τ

+ x(t− τ)

∫ t

t−τ

∫ t′

t−τ

〈ξ(t′)ξ(t′′)〉dt′′dt′ ,
(3.74)

where we have used 〈ξ(t′)ξ(t′′)|x(t−τ)〉 = 〈ξ(t′)ξ(t′′)〉 since the quantity x(t−τ)

is given. Use further 〈ξ(t′)ξ(t′′)〉 = 2Dδ(t′−t′′) and integrate the delta function

so that,

〈x(t)|x(t− τ)〉 = x(t− τ) + τ [(a + b+D)x(t− τ) − x3(t− τ)] . (3.75)

We then make a step forward in time so that t→ t+ τ , leading to

〈x(t + τ)|x(t)〉 = x(t) + τ [(a + b +D)x(t) − x3(t)] . (3.76)

Note further that under stationary conditions, the conditional probability dis-

tribution function only depends on time differences [35], i.e τ in this case, so

that we have

〈x−τ |x〉 = 〈xτ |x〉 , (3.77)

where x−τ = x(t+ τ) and xτ = x(t− τ). We then obtain an expression for the

average conditional drift for small time delay,

〈xτ |x〉 = x+ τ [(a + b +D)x− x3] . (3.78)
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Substitute then Eq. (3.78) into Eq. (3.34),

∂

∂t
p(x, t) = − (1 + bτ)

∂

∂x

{

[(a+ b +D)x− x3]p(x, t)
}

+D
∂2

∂x2

[

x2p(x, t)
]

.

(3.79)

The stationary solution of Eq. (3.79) satisfies ṗs(x) = 0 and leads to the

stationary probability distribution function,

ps(x) =















δ(x) if α ≤ −1

N|x|αe−(1+bτ) x2

2D if α > −1

, (3.80)

where the exponent of the power law is

α =
(1 + bτ)(a + b +D)

D
− 2 . (3.81)

The distribution obtained, Eq. (3.80), is identical to Eqs. (3.51) and (3.63).

The expansion in small delay τ can also be performed on equations with

additive noise only. For instance, consider the expansion applied on Eq. (1.10)

but with D = 0. The only difference stands in the stochastic integrals, as none

of them is of first order in τ . For this case, the average conditional drift is

〈xτ |x〉 = x+ τ [(a + b)x− x3] . (3.82)

The Fokker-Plack equation associated with Eq. (1.10) but with additive noise

is thus,

∂

∂t
p(x, t) = − (1 + bτ)

∂

∂x

{

[(a+ b)x− x3]p(x, t)
}

+K
∂2

∂x2

[

x2p(x, t)
]

.

(3.83)
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The stationary distribution function associated to Eq. (3.83) is

ps(x) = N exp

{

(1 + bτ)

K

[

(a+ b)
x2

2
− x4

4

]}

. (3.84)

which might be compared to Eq. (2.29) in the absence of delay. In this case,

the bifurcation occurs at ac = −b, the same as in the deterministic and linear

equation. Note that bτ = −1 is the point separating the pitchfork and the

Hopf lines. Hence, additive noise does not change the location of the pitchfork

bifurcation threshold.

In summary, delayed feedback and parametric stochasticity couple and

shift the location of the bifurcation threshold as shown in Eq. (3.65). The

bifurcation diagram of Eq. (1.10) has been determined numerically as shown

in Chapter 5. The results are compared to the analytical results achieved in

this chapter. Interestingly, we show that both are in agreement even when the

time delay is not small. In fact, our numerical calculations were done by using

a value of τ = 1, well beyond the region of what one can consider small τ .

It is worth remarking that the moments of x of the stochastic linear equa-

tions with and without delay diverge above threshold. Even though an analysis

of the stability of the linear equations provides some insight about the effect of

time delay, nonlinearity must be introduced into the equation in order to have

a well defined bifurcation threshold in all cases. This is in marked contrast

with the case of deterministic systems in which linearization is sufficient to

determine the location of the bifurcation threshold.

All the analyses described in this chapter fail around the Hopf bifurcation

branch. Naively, all methods described are first order in the time delay and

lead to an effective Markovian one dimensional differential equation, hence

they cannot describe an oscillatory instability. One might consider a second
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order expansion in τ instead. Unfortunately, it has been rigorously shown

that such an expansion is not valid even in the deterministic limit [89, 56, 57].

Furthermore, the location of the multicritical point goes to infinity as τ →

0, and the Hopf branch completely disappears in this limit. A completely

different procedure is thus needed to analytically determine the location of

the Hopf branch. We have introduced a multiple time scale expansion method,

which we describe in the next chapter.



Chapter 4
Multiple time scale expansion

Taylor expansion of delay terms as described in Chapter 3 fails to describe

oscillatory instabilities. The fact that the multicritical point moves to infinity

as the delay time goes to zero suggests that τ → 0 leads in effect to a singular

perturbation. We generalize here the classical multiple time scale expansion to

obtain asymptotic solutions of stochastic differential equations with delay near

a bifurcation threshold. We exploit the separation of temporal scales between

fast random variables, order one oscillation near the bifurcation threshold,

and a divergent correlation time, as the threshold is approached. The method

has been previously used in the stochastic processes literature on the linear

counterpart of Eq. (1.10) [91, 92], and on studies of the van der Pol-Duffing

oscillator with parametric noise [90, 93, 94].

We extend the method to obtain the Fokker-Planck equation describing the

stochastic dynamics of the slowly varying amplitude or envelope variables. We

then predict the location of the Hopf bifurcation threshold from normalization

conditions imposed on the stationary probability density of the slow envelope.

The method is general and can be applied in principle to any stochastic equa-

tion with delayed feedback that presents a similar separation of scales. In order

59
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to verify the methodology, we apply it first to the stochastic van der Pol oscil-

lator with added delayed feedback. The location of the bifurcation threshold

without time delay is known for this model [102, 111], and we show that our

general solution reduces to the known case when the feedback is removed. We

also note that the van der Pol oscillator with delayed feedback is important in

its own right in the theory of vibration. For example, there is a recent inter-

est in this model to help reduce abnormal behavior of engineered structures

caused by interaction with the environment. We use our method to derive

an analytic expression for the location of the Hopf bifurcation threshold for

the delayed oscillator. Interestingly, the procedure also yields an expression

for the renormalized Hopf frequency. The analytical expression agrees with

the location of the bifurcation threshold of the stochastic oscillator without

delayed feedback. Furthermore, the theoretical prediction is compared with a

numerical integration of the governing equation, and shown to be in excellent

agreement. We then use the multiple time scale expansion method to obtain

an asymptotic solution of Eq. (1.10), our model of interest.

4.1 Van der Pol oscillator with delayed feedback

The location of the Hopf bifurcation of the van der Pol oscillator driven

by a parametric noise and under delayed feedback is derived in this section

by using a multiple time scale expansion of the solution. In order to do so,

consider the van der Pol (VDP) oscillator with delayed feedback driven by

multiplicative noise,

ẍ(t) + ω2
0x(t) + χx(t− τ) = βẋ(t) + κẋ(t− τ) + bx2(t)ẋ(t) + x(t)ξ(t) , (4.1)
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where ω2
0 is the natural frequency of the oscillator, χ is the intensity of the

feedback loop in the position of the oscillator and has units of frequency, β is

the damping parameter, κ is the intensity of the feedback loop in the velocity

of the oscillator and has units of damping coefficient, b is a positive constant,

and ξ(t) is a Gaussian white noise process with mean 〈ξ(t)〉 = 0 and correlation

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′), where D is the intensity of the noise.

The deterministic van der Pol oscillator was introduced by Appleton and

van der Pol to describe triode oscillations in electrical circuits [112]. Since then,

the model has been used as a prototypical equation that describe self-excited

stable oscillations. The deterministic (D = 0) oscillator without delayed feed-

back χ = κ = 0 has a fixed point at (x, ẋ) = (0, 0). In order to study the

stability of this fixed point, consider the system of equations,

ẋ(t) = y(t) , (4.2)

ẏ(t) = −ω2
0x(t) + βy(t) − bx2(t)y(t) , (4.3)

obtained by setting y(t) = ẋ(t). The Jacobian JV PD associated to the system

of equations (4.2) - (4.3) is,

JV PD =







0 1

−ω2
0 − 2bxy β − bx2






. (4.4)

The eigenvalues λ1,2 around the fixed point (x, y) = (0, 0) are

λ1,2 =
β

2



1 ±
√

1 −
(

2ω0

β

)2


 . (4.5)

If β < 0, the fixed point is stable. Otherwise, the fixed point is unstable and
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the trajectory is a periodic orbit. The Hopf bifurcation is located at the point

where the eigenvalue is zero, which occurs at βc = 0.

The van der Pol model supplemented with delayed feedback plays an im-

portant role in the theory of nonlinear vibration. For example, complex re-

sponse due to time delay such as bifurcation, high amplitude vibration, quasi-

periodic motion, or chaotic behavior may cause the failure of an engineered

structure subjected to vibration due to its environment. On the other hand,

careful choices of parameters may enhance the control of oscillatory systems

[113, 114, 115]. For instance, it has been shown in a periodically driven van

der Pol oscillator with delay terms in position and velocity that feedback may

control the amplitude of oscillation and even suppress quasi-periodic motion.

A similar model but with a cubic nonlinearity has been investigated via a

center manifold reduction together with an averaging method [116] to show

that time delay can act as an effective switch, and control motion either from

regular motion to a chaotic behavior or vice versa. The dynamics of a forced

van der Pol-Duffing with both linear and nonlinear feedback control has also

been studied [117, 118] as an example of a Neimark-Sacker bifurcation to quasi

periodic motion.

The bifurcation diagram of the van der Pol oscillator without delayed feed-

back but parametrically driven by a stochastic source is well known. It has

been obtained by either a perturbation analysis of the linear stability problem

[111], or by adiabatic reduction [102]. It is found that the bifurcation point is

shifted relative to the deterministic limit by an amount that is proportional to

the intensity of the randomness. This model has also been investigated by us-

ing a multiple time scale expansion of the solution in order to derive the result-

ing slow amplitude or envelope equations near the bifurcation [93, 90, 94, 119].
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The same multiple scale method has been used to analyze stochastic differ-

ential equations with delayed feedback in order to derive the stochastic time

evolution of the envelope of the oscillation [91, 92] as well as to determine the

location of the bifurcation threshold if the time delay is small [120].

Scant research has focused on stochastically driven oscillators with feedback

as compared to its deterministic counterpart. The coherence and the frequency

of the oscillator under delayed feedback is studied with additive Gaussian white

noise in [121]. Moreover, a relationship between its coherence and reliability

has been established [122]. Even less literature exists if the randomness is

parametric. The stability and bifurcation of the van der Pol-Duffing oscillator

is qualitatively studied in [123]. Moreover, the steady-state response as well

as a stability analysis are investigated by means of the Lyapunov exponent

in [124] where the oscillator is subjected to two time delays. Our focus here

is an extension of this latter work, and focuses on a nonlinear oscillator with

delayed feedback that is stochastically driven. We pay especial attention to

the interplay between the delayed feedback and temporal correlations, and its

effect on the stability of oscillation.

Consider then a multiple time scale expansion of the form [125],

x(t, T ) = εA(T ) cos(ωt) − εB(T ) sin(ωt) , (4.6)

ẋ(t, T ) = −ωεA(T ) sin(ωt) − ωεB(T ) cos(ωt) , (4.7)

where we have introduced a fast time scale t relative to a slow time scale T =

ε2t, where 0 < ε� 1 is called a scaling parameter, and where ω is the frequency

of the fast oscillation. We assume that the envelope of the oscillation A(T ) and

B(T ) evolves over the slow time scale T . We further assume that the dominant

stochasticity near threshold is over the slow time scale. The envelope variables
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are assumed to scale according to O(ε) close to the bifurcation. The two time

scales have to be understood as independent from each other even if we have

defined the relation T = ε2t. We also assume that a linear combinations of

the parameters of the model are small close to the bifurcation threshold and

will be scaled accordingly in the expansion. Substitute Eqs. (4.6) and (4.7)

into Eq. (4.1) and use the relation ∂t → ∂t + ε2∂T ,

ε3∂T A(T ) sin(ωt) + ε3∂TB(T ) cos(ωt) = − 1

ω

{

(ω2 − ω2
0) [ε cos(ωt)A(T ) − ε sin(ωt)B(T )]

− χ
{

ε cos[ω(t− τ)]A(T − ε2τ)

−ε sin[ω(t− τ)]B(T − ε2τ)
}

− βω [ε sin(ωt)A(T ) + ε cos(ωt)B(T )]

− κω
{

ε sin[ω(t− τ)]A(T − ε2τ)

+ε cos[ω(t− τ)]B(T − ε2τ)
}

+ bω [ε cos(ωt)A(T ) − ε sin(ωt)B(T )]2 ×

[ε sin(ωt)A(T ) + ε cos(ωt)B(T )]

+ [ε cos(ωt)A(T ) − ε sin(ωt)B(T )] ξ(t)
}

.

(4.8)

For small ε and finite τ , we have A(T − ε2τ) ≈ A(T ) and B(T − ε2τ) ≈ B(T ).

Define moreover the parameters µ = βω + χ sin(ωτ) + ωκ cos(ωτ) and ν =

ω2 − ω2
0 − χ cos(ωτ) + ωκ sin(ωτ), for simplicity. We then eliminate the fast

time scale by integrating Eq. (4.8) over a period of the oscillation. Multiply

both sides of Eq. (4.8) by L−1
∫ L

0
dt sin(ωt), where L = 2π/ω, and perform

the integration. The method leads to a stochastic differential equation for the
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envelope variable A(T ),

ε3∂T A(T ) =
1

ω

{

µεA(T ) + νεB(T ) − ε3

4
bωA(T )

[

A2(T ) +B2(T )
]

+ ε
B(T )

L

∫ L

0

ξ(t)dt− ε
B(T )

L

∫ L

0

cos(2ωt)ξ(t)dt

− ε
A(T )

L

∫ L

0

sin(2ωt)ξ(t)dt

}

.

(4.9)

We next determine the stochastic terms over the slow time scale. We first use

the relation T = ε2t to write

ξ(t) = εξ0(T ) , (4.10)

where ξ0(T ) is a Gaussian random variable with mean 〈ξ0(T )〉 = 0 and corre-

lation 〈ξ0(T )ξ0(T ′)〉 = 2Dδ(T − T ′). This relation is further understood from

the correlation of ξ(t),

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′) = 2Dδ

[

1

ε2
(T − T ′)

]

= 2Dε2δ(T − T ′)

= ε2〈ξ0(T )ξ0(T ′)〉 ,
(4.11)

where we have used the identity for the delta function δ(Cx) = |C|−1δ(x),

where C is a constant. In order to define the random sources cos(2ωt)ξ(t) and

sin(2ωt)ξ(t) over the slow time scale, consider their correlations

〈cos(2ωt)ξ(t) cos(2ωt′)ξ(t′)〉 = ε2〈cos2(2ωt)〉〈ξ1(T )ξ1(T ′)〉 , (4.12)

〈sin(2ωt)ξ(t) sin(2ωt′)ξ(t′)〉 = ε2〈sin2(2ωt)〉〈ξ2(T )ξ2(T ′)〉 , (4.13)

where ξ1(T ) and ξ2(T ) are a Gaussian random variables with mean 〈ξj(T )〉 = 0
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Phase portrait of the delayed VDP oscillator
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Figure 4.1: Phase portrait of the deterministic (D = 0) van der Pol oscil-
lator with delayed feedback for different values of the damping parameter
β. The velocity y of the oscillator is shown as a function of its position x.
The parameters are fixed at ω0 = 1, b = 1, χ = 1, κ = 1, and τ = 1.

with j = {1, 2} and correlation 〈ξj(T )ξk(T ′)〉 = 2Dδ(T − T ′) if j = k and 0

otherwise. We replace the oscillating functions by their time averages. The

random sources are then in the slow time scale

cos(2ωt)ξ(t) → ε√
2
ξ1(T ) , (4.14)

sin(2ωt)ξ(t) → ε√
2
ξ2(T ) . (4.15)

Substitute Eqs. (4.10), (4.14), and (4.15) into Eq. (4.9). We thus obtain a

stochastic differential equation for the envelope variable A(T ) that is indepen-
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dent of the fast time scale t,

ε3∂T A(T ) =
1

ω

{

µεA(T ) + νεB(T ) − ε3

4
bωA(T )

[

A2(T ) +B2(T )
]

+ε2B(T )ξ0(T ) − ε2√
2
B(T )ξ1(T ) − ε2√

2
A(T )ξ2(T )

}

.

(4.16)

The same method is applied to the envelope variable B(T ). Integrate then

both sides of Eq. (4.8) by L−1
∫ L

0
dt cos(ωt), where L = 2π/ω. Use further

Eqs. (4.10), (4.14), and (4.15) to obtain the stochastic time evolution of the

envelope variable B(T ),

ε3∂TB(T ) =
1

ω

{

−νεA(T ) + µεB(T ) − ε3

4
bωB(T )[A2(T ) +B2(T )]

−ε2A(T )ξ0(T ) − ε2√
2
A(T )ξ1(T ) +

ε2√
2
B(T )ξ2(T )

}

,

(4.17)

where we have defined the stochastic term over the slow time scale. Assume

that the parameters scale as µ = ε2µ̃ and ν = ε2ν̃ close to the bifurcation. In

matrix form, the Langevin equations are,

d

dT







A

B






=

1

ω







µ̃ ν̃

−ν̃ µ̃













A

B






− b

4







A (A2 +B2)

B (A2 +B2)







+
1

εω







0 1

−1 0













A

B






ξ0(T ) +

1√
2εω







0 −1

−1 0













A

B






ξ1(T )

+
1√
2εω







−1 0

0 1













A

B






ξ2(T ) .

(4.18)

We can then write the Fokker-Planck equation associated to Eq. (4.18). In

order to do so, note that the Fokker-Planck equation associated to the system
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of equations,

d

dt







u

v






=







a11 a12

a21 a22













u

v






+







k11 k12

k21 k22













u

v






ξ(t) , (4.19)

where ξ(t) is a Gaussian white noise process with mean 〈ξ(t)〉 = 0 and corre-

lation 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′), is [22, 126]

∂

∂t
p(u, v, t) = − ∂

∂u
[(a11u+ a12v)p(u, v, t)]

− ∂

∂v
[(a21u+ a22v)p(u, v, t)]

+D

{

∂

∂u

[

(k11u+ k12v)

{

∂

∂u
[(k11u+ k12v)p(u, v, t)]

+
∂

∂v
[(k21u+ k22v)p(u, v, t)]

}]

+
∂

∂v

[

(k21u+ k22v)

{

∂

∂u
[(k11u+ k12v)p(u, v, t)]

+
∂

∂v
[(k21u+ k22v)p(u, v, t)]

}]

}

.

(4.20)

We use this result to write the Fokker-Planck equation corresponding to Eq.



Chapter 4. Multiple time scale expansion 69

(4.18),

∂

∂T p(A,B, T ) = − 1

ω

∂

∂A

{[

µ̃A+ ν̃B − 1

4
bωA(A2 +B2)

]

p(A,B, T )

}

− 1

ω

∂

∂B

{[

−ν̃A + µ̃B − 1

4
bωB(A2 + B2)

]

p(A,B, T )

}

+
D

ω2ε2

{

A2 ∂2

∂B2
− 2AB

∂2

∂A∂B
+B2 ∂2

∂A2

−
(

A
∂

∂A
+B

∂

∂B

)

}

p(A,B, T )

+
D

2ω2ε2

{

A2 ∂2

∂B2
+ 2AB

∂2

∂A∂B
+B2 ∂2

∂A2

+

(

A
∂

∂A
+B

∂

∂B

)

}

p(A,B, T )

+
D

2ω2ε2

{

A2 ∂2

∂A2
− 2AB

∂2

∂A∂B
+B2 ∂2

∂B2

+

(

A
∂

∂A
+B

∂

∂B

)

}

p(A,B, T ) ,

(4.21)

Assume also that the intensity of the noise scales as D = ε2D̃ close to the

bifurcation. The bifurcation threshold is now obtained from the Fokker-Planck

equation expressed in polar coordinates. Let A = r cos(θ) and B = r sin(θ).

Under this change of variable, the probability distribution function transforms

as p̃(r, θ, T ) = rp(A,B, T ), where r is the Jacobian of the transformation.

Furthermore, the diffusive terms of the Fokker-Planck equation Eq. (4.21)

that are factors of D̃/(2ω2) are

(A2+B2)

(

∂2

∂A2
+

∂2

∂B2

)

+2

(

A
∂

∂A
+B

∂

∂B

)

= r2 ∂
2

∂r2
+3r

∂

∂r
+
∂2

∂θ2
, (4.22)



4.1. Van der Pol oscillator with delayed feedback 70

Probalility density of the VDP oscillator
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Figure 4.2: Numerical determination of the stationary probability distribu-
tion function p(x) as a function of the position x of Eq. (4.1) where the
upperbound t of the time window used to calculate the probability den-
sity is varied. The parameters are fixed at ω0 = 1, χ = 1, b = 1, κ = 1,
τ = 0.025, and D = 0.1. The distribution is stationary in (a) and (b) where
α ' 0.02 (β = −1) and α ' −0.39 (β = −1.04) respectively. However, the
probability density is no more stationary below threshold, as shown in (c)
(β = −1.1). The solid line extends the domain used for the determination
of the exponent.
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whereas terms that are proportional to D̃/ω2 transform as

A2 ∂2

∂B2
− 2AB

∂2

∂A∂B
+B2 ∂2

∂A2
−
(

A
∂

∂A
+B

∂

∂B

)

=
∂2

∂θ2
. (4.23)

Furthermore, we use the following expressions to write the drift terms in Eq.

(4.21) in polar coordinates,

∂

∂A
[Ap(A,B, T )] +

∂

∂B
[Bp(A,B, T )] =

1

r

∂

∂r
[rp̃(r, θ, T )] , (4.24)

∂

∂A
[Bp(A,B, T )] − ∂

∂B
[Ap(A,B, T )] = −1

r

∂

∂θ
[p̃(r, θ, T )] , (4.25)

∂

∂A

{[

A(A2 +B2)
]

p(A,B, T )
}

+
∂

∂B

{[

B(A2 +B2)
]

p(A,B, T )
}

=

1

r

∂

∂r

[

r3p̃(r, θ, T )
]

.

(4.26)

Use also the following identity,

(

r2 ∂
2

∂r2
+ 3r

∂

∂r

)

p̃(r, θ, T )

r
=

1

r

{

∂2

∂r2
[r2p̃(r, θ, T )] − 3

∂

∂r
[rp̃(r, θ, T )]

}

.

(4.27)

The Fokker-Planck equation Eq. (4.21) in polar coordinates is then,

∂

∂T
p̃(r, θ, T ) =

ν̃

ω

∂

∂θ
p̃(r, θ, T ) +

3D̃

2ω2

∂2

∂θ2
p̃(r, θ, T )

− 1

ω

∂

∂r

[(

µ̃r − bω

4
r3

)

p̃(r, θ, T )

]

+
D̃

2ω2

{

∂2

∂r2
[r2p̃(r, θ, T )] − 3

∂

∂r
[rp̃(r, θ, T )]

}

.

(4.28)

The radial and angular components of the Fokker-Planck equation [Eq. (4.28)]

are uncoupled. The stationary probability distribution function can then be
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solved independently from each other. Let p̃(r, θ) = ps(r)ps(θ). Then

0 =
ν̃

ω
ps(θ) +

3D̃

2ω2

∂

∂θ
ps(θ) . (4.29)

The stationary solution of the angular component is,

ps(θ) = Nθe
− 2ω

3D̃
ν̃θ , (4.30)

where Nθ is a normalization constant. Furthermore, the stationary probability

density of the radial component satisfies,

0 = − 1

ω

(

µ̃r − bω

4
r3

)

ps(r) +
D̃

2ω2

{

∂

∂r
[r2ps(r)] − 3[rps(r)]

}

, (4.31)

leading to

ps(r) = Nr|r|
2ωµ̃

D̃
+1e−

bω2

4D̃
r2

, (4.32)

where Nr is a normalization constant. The probability distribution function

is normalized so that

1 =

∫ 2π

0

∫ ∞

0

p(r, θ)drdθ =

[
∫ 2π

0

ps(θ)dθ

] [
∫ ∞

0

ps(r)dr

]

, (4.33)

and we choose to normalize both terms in square brackets of Eq. (4.33) to 1.

The normalization constant of the stationary probability distribution function

of the angular component is

Nθ =

(

ν̃ω

3D̃

)

e
2πν̃ω

3D̃

sinh(2πν̃ω
3D̃

)
. (4.34)

The stationary probability distribution function of the angular component,

Eq. (4.30), has to be invariant under the exchange of A and B. Choosing
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A = r sin(θ) and B = r cos(θ) only changes the sign of the left hand side

of Eq. (4.25), yielding a stationary distribution function ps(θ) = N exp(Cθ),

where C = 2ων̃/(3D̃). Interchanging A and B thus changes the sign of the

argument of the exponential, suggesting that the exponential solution is not

an admissible solution (unless C = 0). If D̃ → 0, the solution of Eq. (4.28) is

limD̃→0 p(θ) = δ(θ + ωt) [127]. For D̃ 6= 0 the density approaches a stationary

state in the long time limit. Therefore, one can take the limit t→ ∞ prior the

limit D̃ → 0 to obtain limD̃→0 limt→∞ p(θ) = limD̃→0 ps(θ) = 1/(2π). Given

that ps(θ) = 1/(2π), Eq. (4.29) must also be satisfied. This leads to ν̃ = 0,

our condition for the location of the bifurcation threshold.

Furthermore, the normalization constant of the stationary probability dis-

tribution function of the radial component is

Nr = 2

(

4D̃

bω2

)−(α+1
2 )

Γ−1

(

α + 1

2

)

, (4.35)

where

α =
2ωµ̃

D̃
+ 1 . (4.36)

If α < −1, the probability distribution function is not normalizable. We

then define the location of the threshold at the point where the exponent of

the power law of the stationary distribution function is -1. We obtain two

conditions at threshold,

βω2 + χω sin(ωτ) + ω2κ cos(ωτ) +D = 0 , (4.37)

ω2 − ω2
0 − χ cos(ωτ) + ωκ sin(ωτ) = 0 . (4.38)

These conditions can be further reduced by expanding Eqs. (4.37) and (4.38)



4.1. Van der Pol oscillator with delayed feedback 74

up to order τ . One obtains from Eq. (4.38) the Hopf frequency,

ω =

√

ω2
0 + χ

1 + κτ
. (4.39)

By using this result, the exponent of the power law of the stationary probability

distribution function of the radial component is

α =
2

D

(

ω2
0 + χ

1 + κτ

)

(β + χτ + κ) + 1 . (4.40)

We define the location of the bifurcation threshold as αc = −1, or

(ω2
0 + χ)(β + χτ + κ) = −D(1 + κτ) . (4.41)

This is our central result. The bifurcation threshold Eq. (4.41) in the limit

of no time delay, τ = 0, is in agreement with Drolet [102] and Lücke [111].

However, it disagrees with Toral [119] by a numerical factor, and with earlier

results of Knobloch and Wiesenfeld [126], and Seshadri, West, and Lindenberg

[128].

Predictions of Eqs. (4.39), (4.40), and (4.41) have been verified numerically

for τ > 0. In order to do so, we have used a first order numerical method to

integrate Eq. (4.1) [129]. Define y(t) = ẋ(t). The algorithm with delay is

x(t+ ∆t) = x(t) + y(t)∆t , (4.42)

y(t+ ∆t) = y(t) +
[

−ω2
0x(t) − χx(t− τ) + βy(t) + κy(t− τ) (4.43)

−bx2(t)y(t)
]

∆t+ x(t)ξ(t) ,

where ξ(t) =
√

2D∆tψ1(t), where ψ1(t) is a random variable normally dis-
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Exponent of the power law of the VDP oscillator
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Figure 4.3: Exponent of the power law α as a function of the damping
parameter β calculated from the stationary probability distribution function
p(x) for the stochastic van der Pol oscillator with delayed feedback. The
parameters are fixed at ω0 = 1, χ = 1, b = 1, κ = 1, and D = 0.1. The
calculations are done for three values of the time delay τ . The bifurcation
point is located at αc = −1 (dashed line), point at which the distribution
function becomes non-normalizable. The symbols are the results of the
numerical simulations whereas the solid lines are the theoretical predictions
from Eq. (4.40).

tributed with mean 0 and variance 1. The initial condition in [−τ, 0] is a

constant drawn from a Gaussian distribution with mean 0 and variance 1.

The equations are typically integrated up to tmax = 500, where the solution

is believed to have reached a stationary state, by using an integration step of

∆t = 0.001. The stationary probability density p(x) of the position x of the

oscillator is then constructed in the time interval [tmax − 10, tmax]. The overall

process is repeated in order to generate an ensemble average of 106 indepen-
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Bifurcation diagram of the VDP oscillator
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Figure 4.4: Bifurcation diagram of Eq. (4.1). We show the parameter βc

evaluated at threshold as a function of the time delay τ . The parameters
are fixed at ω0 = 1, χ = 1, b = 1, κ = 1, and D = 0.1. The symbols are
the numerically determined threshold calculated as the point for which the
exponent of the power law of the stationary probability distribution func-
tion is -1 whereas the solid curve corresponds Eq. (4.41). The agreement
between the two is excellent when the time delay is small.

dent trajectories. A phase portrait showing the velocity y and the position x

of the deterministic delayed oscillator is shown in Fig. 4.1 for different values

of the damping parameter β.

Our results for the stationary probability density are shown in Fig. 4.2.

Below the bifurcation threshold (β < βc), the stationary distribution is given

by p(x) = δ(x). As expected ([130]), we observe instead a very long transient

with p(x) approximately a power law distribution with an apparent exponent

α < −1 at small x. This is a non-normalizable distribution and hence unphys-

ical. It only appears as a long-lived transient. The probability amplitude at
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Hopf frequency of the VDP oscillator

0 0.1 0.2 0.3 0.4
τ
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Figure 4.5: Frequency ω of the oscillation as a function of the time delay
τ as the intensity of the feedback loop of the velocity κ is varied. The
parameters are fixed at ω0 = 1, χ = 1, β = −κ, b = 1, and D = 0.1. The
symbols are the numerically determined frequency whereas the solid curve
is Eq. (4.39).

x = 0 (not shown in the figure) grows with time, signalling the build up of

a delta function distribution. Because of normalization, the growth at x = 0

implies a decaying amplitude for x > 0 as shown in the figure. For β > βc, we

do obtain a time-independent power law distribution function with exponent

−1 < α < 0. This probability distribution function is normalizable and is the

stationary distribution above threshold. We finally show p(x) in the range of

β values where it is bimodal.

The exponent α is estimated in the interval x = {0.01, 0.1}. Figure 4.3

shows the value of the exponent α obtained from a power law fit to p(x) as a

function of β. Predictions from Eq. (4.40) are also included for comparison.
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We observe a smooth variation of α with β, allowing a convenient determina-

tion of βc, the value for which α = −1. That method was used to determine

the threshold results shown in Fig. 4.4. For sufficiently small values of the

time delay τ (τ < 0.15 for the set of parameters shown in the figure), the

numerical results are found to be in excellent agreement with predictions from

Eq. (4.41).

Finally, we have numerically computed the Hopf frequency close to the

bifurcation threshold of the oscillator. The Hopf frequency corresponds to the

frequency at which the amplitude of the Fourier transform of the trajectories

is maximum. Our numerical results are shown in Fig. 4.5 as a function of

the time delay, and compared to the analytic result Eq. (4.39). Once again,

excellent agreement between the two sets of data is found provided the time

delay is sufficiently small.

4.2 Multiple time scale expansion of a SDDE

Multiple time scale expansion of the solution is then applied to the deter-

ministic (K = D = 0) counterpart of Eq. (1.10),

ẋ(t) = ax(t) + bx(t− τ) − x3(t) , (4.44)

where γ = 1. In order to separate the time scales of Eq. (4.44), we assume a

solution of the form,

x(t, T ) = εA(T ) cos(ωt) + εB(T ) sin(ωt) , (4.45)

where A(T ) and B(T ) are the envelopes of the oscillation evolving over the

slow time scale T = ε2t as compared to the fast time scale t of the oscillations,
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where 0 < ε � 1 is small and is called the scaling parameter, and where ω is

the frequency of the fast oscillations. Note that the envelope variable A(T )

and B(T ) are assumed to scale according to O(ε) close to the bifurcation. We

assume that some linear combinations of the parameters of the model are small

close to threshold and will be scaled accordingly in the expansion. Substitute

Eq. (4.45) into Eq. (4.44),

ε3∂T A(T ) cos(ωt) + ε3∂TB(T ) sin(ωt) =

ω [εA(T ) sin(ωt) − εB(T ) cos(ωt)]

+ a [εA(T ) cos(ωt) + εB(T ) sin(ωt)]

+ b
[

εA(T − ε2τ) cos[ω(t− τ)] + εB(T − ε2τ) sin[ω(t− τ)]
]

− [εA(T ) cos(ωt) + εB(T ) sin(ωt)]3 .

(4.46)

We have thus used the relation ∂t → ∂t + ε2∂T to write Eq. (4.46) as before.

Since the scaling parameter ε is small, we approximate A(T − ε2τ) ≈ A(T )

and B(T −ε2τ) ≈ B(T ). In those terms and after few steps of algebra, rewrite

Eq. (4.46) as,

ε3∂T A(T ) cos(ωt) + ε3∂TB(T ) sin(ωt) =

cos(ωt) [−εωB(T ) + εaA(T ) + εb cos(ωτ)A(T ) − εb sin(ωτ)B(T )

−ε3A3(T ) cos2(ωt) − 3ε3A(T )B2(T ) sin2(ωt)
]

+ sin(ωt) [εωA(T ) + εaB(T ) + εb sin(ωτ)A(T ) + εb cos(ωτ)B(T )

−ε3B3(T ) sin2(ωt) − 3ε3A2(T )B(T ) cos2(ωt)
]

.

(4.47)

We next eliminate the dependence on the fast scale t. In order to do so, we

use the orthogonality of the trigonometric functions. Multiply both sides of

Eq. (4.47) by (ω/2π)
∫ 2π

ω

0
dt cos(ωt), where 2π/ω is a period of the oscillation,
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and perform the integration. Repeat the operation but multiply instead both

sides by (ω/2π)
∫ 2π

ω

0
dt sin(ωt) and perform again the integration. We obtain

two coupled deterministic differential equations,

∂T A(T ) = µ̃A(T ) − ν̃B(T ) − 3

4
A(T )

[

A2(T ) +B2(T )
]

, (4.48)

∂TB(T ) = ν̃A(T ) + µ̃B(T ) − 3

4
B(T )

[

A2(T ) +B2(T )
]

, (4.49)

where we have defined µ = a+ b cos(ωτ) and ν = ω + b sin(ωτ) for simplicity.

These parameters have units of frequency. Assume furthermore that these

parameters scale as µ = ε2µ̃ and ν = ε2ν̃ close to the bifurcation. Equations

(4.48) and (4.49) can also be written in matrix form,

d

dT







A

B






=







µ̃ −ν̃

ν̃ µ̃













A

B






− 3

4







A(A2 +B2)

B(A2 +B2)






. (4.50)

The location of the bifurcation threshold is found in polar coordinates. Let

A = r cos(θ) and B = r sin(θ). Under those variables, Eqs. (4.48) and (4.49)

are

ṙ(T ) = µ̃r(T ) − 3

4
r3(T ) , (4.51)

θ̇(T ) = ν̃ . (4.52)

The bifurcation threshold is located at ν̃c = 0, the fixed point of Eq. (4.52),

and at µ̃c = 0, point separating to two branches of the pitchfork bifurcation
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of the radial component. Hence

a + b cos(ωτ) = 0 , (4.53)

ω + b sin(ωτ) = 0 . (4.54)

Substitute further Eq. (4.53) into Eq. (4.54). It predicts that the Hopf

frequency is

ω =
√
b2 − a2 . (4.55)

Moreover, it predicts that the location of the Hopf bifurcation is

−ac

b
= cos

(

τ
√

b2 − a2
c

)

. (4.56)

This expression is identical to Eq. (3.6) predicting the location of the Hopf

bifurcation of the deterministic linear counterpart of Eq. (1.10).

We next apply the method to the stochastic counterpart of Eq. (4.44).

Consider first the case for which the noise enters additively. Assume again that

there are two relevant time scales in the system and substitute Eq. (4.45) into

the differential equation. Moreover, split the Gaussian white noise η(t) into

two independent white noises ηA(t) and ηB(t) with mean 〈ηA(t)〉 = 〈ηB(t)〉 = 0

and correlation 〈ηA(t)ηA(t′)〉 = 〈ηB(t)ηB(t′)〉 = 2Kδ(t− t′) so that

η(t) = cos(ωt)ηA(t) + sin(ωt)ηB(t) . (4.57)
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The time evolution of the envelope variable A(T ) and B(T ) is then,

ε3∂T A(T ) cos(ωt) + ε3∂TB(T ) sin(ωt) =

ω [εA(T ) sin(ωt) − εB(T ) cos(ωt)]

+ a [εA(T ) cos(ωt) + εB(T ) sin(ωt)]

+ b
[

εA(T − ε2τ) cos[ω(t− τ)] + εB(T − ε2τ) sin[ω(t− τ)]
]

− [εA(T ) cos(ωt) + εB(T ) sin(ωt)]3

+ cos(ωt)ηA(t) + sin(ωt)ηB(t) .

(4.58)

We again approximate A(T − ε2τ) ≈ A(T ) and B(T − ε2τ) ≈ B(T ). In those

terms and after few steps of algebra, rewrite Eq. (4.58) as

ε3∂T A(T ) cos(ωt) + ε3∂TB(T ) sin(ωt) =

cos(ωt) [−εωB(T ) + εaA(T ) + εb cos(ωτ)A(T ) − εb sin(ωτ)B(T )

−ε3A3(T ) cos2(ωt) − 3ε3A(T )B2(T ) sin2(ωt) + ηA(t)
]

+ sin(ωt) [εωA(T ) + εaB(T ) + εb sin(ωτ)A(T ) + εb cos(ωτ)B(T )

−ε3B3(T ) sin2(ωt) − 3ε3A2(T )B(T ) cos2(ωt) + ηB(t)
]

.

(4.59)

We next eliminate the dependence on the fast scale t. Multiply both sides

of the resulting equation by L−1
∫ L

0
dt cos(ωt), where L = 2π/ω, and perform

the integration. Repeat the same procedure but with L−1
∫ L

0
dt sin(ωt). We

then have two coupled differential equations describing the time evolution of
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the envelope variables of the oscillation,

ε3∂T A(T ) =εµA(T ) − ενB(T ) − 3

4
ε3A(T )

[

A2(T ) +B2(T )
]

+ εηA(T ) ,

ε3∂TB(T ) =ενA(T ) + εµB(T ) − 3

4
ε3B(T )

[

A2(T ) +B2(T )
]

+ εηB(T ) ,

(4.60)

where we have defined again µ = a+b cos(ωτ) and ν = ω+b sin(ωτ). We have

also used the relation T = ε2t to define the noises over the slow time scale

ηA(t) = εηA(T ) and ηB(t) = εηB(T ). The Fokker-Planck equation associated

with Eq. (4.60) is found by using Eq. (4.20),

∂

∂T p(A,B, T ) = − ∂

∂A

{[

µ̃A− ν̃B − 3

4
A(A2 +B2)

]

p(A,B, T )

}

− ∂

∂B

{[

ν̃A+ µ̃B − 3

4
B(A2 +B2)

]

p(A,B, T )

}

+ K̃

{

∂2

∂A2
+

∂2

∂B2

}

p(A,B, T ) ,

(4.61)

where we have scaled the parameters so that µ̃ = ε−2µ, ν̃ = ε−2ν, and K̃ =

ε−4K. We again try to write the Fokker-Planck equation in polar coordinates.

Set A = r cos(θ) and B = r sin(θ). The drift terms of Eq. (4.61) are,

1

r

∂

∂T p̃(r, θ, T ) ∼ −1

r

∂

∂r

[(

µ̃r − 3

4
r3

)

p̃(r, θ, T )

]

− 1

r

∂

∂θ
[ν̃p̃(r, θ, T )] . (4.62)

Furthermore, the diffusion coefficient transforms as,

{

∂2

∂A2
+

∂2

∂B2

}

p(A,B, T ) =

{

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

}

p̃(r, θ, T )

r
. (4.63)
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Combine Eq. (4.62) and Eq. (4.63) so that the Fokker-Planck equation is,

∂

∂T p̃(r, θ, T ) = − ∂

∂r

{[

µ̃r − 3

4
r3

]

p̃(r, θ, T )

}

− K̃
∂

∂r

[

1

r
p̃(r, θ, T )

]

+ K̃
∂2

∂r2
p̃(r, θ, T )

− ∂

∂θ
[ν̃p̃(r, θ, T )] + K̃

1

r2

∂2

∂θ2
p̃(r, θ, T ) .

(4.64)

The radial and angular dependencies do not separate because of the presence

of the radial variable in the last term of Eq. (4.64). Furthermore, the drift and

the diffusion coefficients of Eq. (4.64) do not scale the same in the same way

with ε. Since µ̃ = ε−2µ, ν̃ = ε−2ν, and K̃ = ε−4K, the drift terms dominate as

ε → 0, i.e. close to threshold. In this limit, we can ignore the diffusive terms

of Eq. (4.64). The resulting equations are then identical to the deterministic

limit. This result is in agreement with the location of the bifurcation threshold

of the first moment derived in [44].

We consider next the model defined in Eq. (1.10) with multiplicative noise

only (K = 0). Substitute Eq. (4.45) in Eq. (1.10),

ε3∂T A(T ) cos(ωt) + ε3∂TB(T ) sin(ωt) =

ω [εA(T ) sin(ωt) − εB(T ) cos(ωt)]

+ a [εA(T ) cos(ωt) + εB(T ) sin(ωt)]

+ b
[

εA(T − ε2τ) cos[ω(t− τ)] + εB(T − ε2τ) sin[ω(t− τ)]
]

− [εA(T ) cos(ωt) + εB(T ) sin(ωt)]3

+ [εA(T ) cos(ωt) + εB(T ) sin(ωt)] ξ(t) .

(4.65)

where we have used the relation ∂t → ∂t + ε2∂T in Eq. (4.65) as before. We

further approximate A(T − ε2τ) ≈ A(T ) and B(T − ε2τ) ≈ B(T ) since the
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scaling parameter ε is small to rewrite Eq. (4.65) as,

ε3∂T A(T ) cos(ωt) + ε3∂TB(T ) sin(ωt) =

cos(ωt) [−εωB(T ) + εaA(T ) + εb cos(ωτ)A(T ) − εb sin(ωτ)B(T )

−ε3A3(T ) cos2(ωt) − 3ε3A(T )B2(T ) sin2(ωt) + εA(T )ξ(t)
]

+ sin(ωt) [εωA(T ) + εaB(T ) + εb sin(ωτ)A(T ) + εb cos(ωτ)B(T )

−ε3B3(T ) sin2(ωt) − 3ε3A2(T )B(T ) cos2(ωt) + εB(T )ξ(t)
]

.

(4.66)

We next eliminate the dependence on the fast scale t in the same way than

we did for the deterministic equation. Multiply both sides of Eq. (4.66) by

(ω/2π)
∫ 2π

ω

0
dt cos(ωt) and perform the integration. Repeat the operation but

multiply instead by (ω/2π)
∫ 2π

ω

0
dt sin(ωt) and perform the integration. We

thus obtain two coupled stochastic differential equations,

ε3∂T A(T ) = εµA(T ) − ενB(T ) − 3

4
ε3A(T )

[

A2(T ) +B2(T )
]

+ εA(T )
ω

2π

∫ 2π
ω

0

ξ(t)dt+ εA(T )
ω

2π

∫ 2π
ω

0

cos(2ωt)ξ(t)dt

+ εB(T )
ω

2π

∫ 2π
ω

0

sin(2ωt)ξ(t)dt ,

ε3∂TB(T ) = ενA(T ) + εµB(T ) − 3

4
ε3B(T )

[

A2(T ) +B2(T )
]

+ εB(T )
ω

2π

∫ 2π
ω

0

ξ(t)dt− εB(T )
ω

2π

∫ 2π
ω

0

cos(2ωt)ξ(t)dt

+ εA(T )
ω

2π

∫ 2π
ω

0

sin(2ωt)ξ(t)dt ,

(4.67)

where we have defined µ = a+ b cos(ωτ) and ν = ω + b sin(ωτ) for simplicity.

We assume furthermore that these parameters scale as µ = ε2µ̃ and ν = ε2ν̃

close to the bifurcation. We next define the stochasticity over the slow time
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scale. One can takes the advantage of the relation T = ε2t to write

ξ(t) = εξ0(T ) , (4.68)

where ξ0(T ) is a Gaussian random variable with mean 〈ξ0(T )〉 = 0 and cor-

relation 〈ξ0(T )ξ0(T
′)〉 = 2Dδ(T − T ′). We exploit the same idea to define

cos(2ωt)ξ(t) and sin(2ωt)ξ(t) over the slow time scale T . In order to do so,

consider their correlations,

〈cos(2ωt)ξ(t) cos(2ωt′)ξ(t′)〉 = ε2〈cos2(2ωt)〉〈ξ1(T )ξ1(T ′)〉 , (4.69)

〈sin(2ωt)ξ(t) sin(2ωt′)ξ(t′)〉 = ε2〈sin2(2ωt)〉〈ξ2(T )ξ2(T ′)〉 , (4.70)

where ξ1(T ) and ξ2(T ) are independent Gaussian white noise with mean

〈ξj(T )〉 = 0 and correlation 〈ξj(T )ξk(T
′)〉 = 2Dδ(T − T ′) if j = k and zero

otherwise with (j, k) = {1, 2}. We then replace the squared trigonometric

function by their averages over a period, 〈cos2(2ωt)〉 = 〈sin2(2ωt)〉 = 1/2. We

thus define over the slow time scale,

cos(2ωt)ξ(t) → ε√
2
ξ1(T ) , (4.71)

sin(2ωt)ξ(t) → ε√
2
ξ2(T ) . (4.72)

We then have two coupled stochastic differential equations in the slow time
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scale,

ε3∂T A(T ) = εµA(T ) − ενB(T ) − 3

4
ε3A(T )

[

A2(T ) +B2(T )
]

+ ε2A(T )ξ0(T ) +
ε2√
2
A(T )ξ1(T ) +

ε2√
2
B(T )ξ2(T ) ,

ε3∂TB(T ) = ενA(T ) + εµB(T ) − 3

4
ε3B(T )

[

A2(T ) +B2(T )
]

+ ε2B(T )ξ0(T ) − ε2√
2
B(T )ξ1(T ) +

ε2√
2
A(T )ξ2(T ) .

(4.73)

The system of equations (4.73) can then be written in matrix form,

d

dT







A

B






=







µ̃ −ν̃

ν̃ µ̃













A

B






− 3

4







A(A2 +B2)

B(A2 +B2)







+
1

ε







1 0

0 1













A

B






ξ0(T ) +

1

ε
√

2







1 0

0 −1













A

B






ξ1(T )

+
1

ε
√

2







0 1

1 0













A

B






ξ2(T ) .

(4.74)

We can then write the Fokker-Planck equation associated with Eq. (4.74) by
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using Eq. (4.20),

∂

∂T p(A,B, T ) = − ∂

∂A

{[

µ̃A− ν̃B − 3

4
A(A2 +B2)

]

p(A,B, T )

}

− ∂

∂B

{[

ν̃A+ µ̃B − 3

4
B(A2 +B2)

]

p(A,B, T )

}

+
D

ε2

{

A2 ∂2

∂A2
+ 2AB

∂2

∂A∂B
+B2 ∂2

∂B2

+ 5

(

A
∂

∂A
+B

∂

∂B

)

+ 4

}

p(A,B, T )

+
D

2ε2

{

A2 ∂2

∂A2
− 2AB

∂2

∂A∂B
+B2 ∂2

∂B2

+

(

A
∂

∂A
+B

∂

∂B

)

}

p(A,B, T )

+
D

2ε2

{

B2 ∂2

∂A2
+ 2AB

∂2

∂A∂B
+ A2 ∂2

∂B2

+

(

A
∂

∂A
+B

∂

∂B

)

}

p(A,B, T ) .

(4.75)

The intensity of the noise scales as D = ε2D̃, and all terms of Eq. (4.75)

are of the same order in ε. In order to find the stationary solution of this

Fokker-Planck equation, we introduce polar coordinates. Let A = r cos(θ)

and B = r sin(θ). Under this change of variables, the probability distribution

function transforms as p̃(r, θ, T ) = rp(A,B, T ), where r is the Jacobian of

the transformation. On the one hand, the drift coefficients of Eq. (4.75) are

identical to Eq. (4.62). On the other hand, terms in brackets proportional to

D̃ in Eq. (4.75) transform as,

{

A2 ∂2

∂A2
+ 2AB

∂2

∂A∂B
+B2 ∂2

∂B2
+ 5

(

A
∂

∂A
+B

∂

∂B

)

+ 4

}

p(A,B, T ) =

{

r2 ∂
2

∂r2
+ 5r

∂

∂r
+ 4

}

p̃(r, θ, T )

r
,

(4.76)
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whereas the sum of the terms in brackets proportional to D̃/2 in Eq. (4.75)

transform as

{

(A2 +B2)

[

∂2

∂A2
+

∂2

∂B2

]

+2

(

A
∂

∂A
+B

∂

∂B

)}

p(A,B, T )

=

{

r2 ∂
2

∂r2
+ 3r

∂

∂r
+

∂2

∂θ2

}

p̃(r, θ, T )

r
.

(4.77)

Combining Eqs. (4.62), (4.76), and (4.77), the Fokker-Planck equation in polar

coordinates is

1

r

∂

∂T p̃(r, θ, T ) = −1

r

∂

∂r

[(

µ̃r − 3

4
r3

)

p̃(r, θ, T )

]

− 1

r

∂

∂θ
[ν̃p̃(r, θ, T )]

+
D̃

2

(

3r2 ∂
2

∂r2
+ 13r

∂

∂r
+ 8 +

∂2

∂θ2

)

p̃(r, θ, T )

r
.

(4.78)

We now make use of the identities,

1

r

∂2

∂r2

[

r3 p̃(r, θ, T )

r

]

=

(

r2 ∂
2

∂r2
+ 6r

∂

∂r
+ 6

)

p̃(r, θ, T )

r
, (4.79)

2

r

∂

∂r

[

r3 ∂

∂r

p̃(r, θ, T )

r

]

=

(

2r2 ∂
2

∂r2
+ 6r

∂

∂r

)

p̃(r, θ, T )

r
, (4.80)

1

r

∂

∂r

[

r2 p̃(r, θ, T )

r

]

=

(

r
∂

∂r
+ 2

)

p̃(r, θ, T )

r
, (4.81)

to rewrite the Fokker-Planck equation as,

∂

∂T p̃(r, θ, T ) = − ∂

∂r

{[(

µ̃+
5D̃

2

)

r − 3

4
r3

]

p̃(r, θ, T )

}

+
3D̃

2

∂2

∂r2

[

r2p̃(r, θ, T )
]

− ∂

∂θ
[ν̃p̃(r, θ, T )] +

D̃

2

∂2

∂θ2
p̃(r, θ, T ) .

(4.82)

The Fokker-Planck equation can now be solved by separation of variables in

the stationary regime. Let p̃s(r, θ) = ps(r)ps(θ). The stationary solution of
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the angular component, ṗs(θ) = 0, satisfies,

0 = − ∂

∂θ
[ν̃ps(θ)] +

D̃

2

∂2

∂θ2
ps(θ) , (4.83)

which leads to

ps(θ) = Nθ exp

(

2ν̃

D̃
θ

)

, (4.84)

where Nθ is a normalization constant. The stationary solution of the radial

component, ṗs(r) = 0, satisfies

0 = − ∂

∂r

{[(

µ̃+
5D̃

2

)

r − 3

4
r3

]

p(r)

}

+
3D̃

2

∂2

∂r2

[

r2p(r)
]

, (4.85)

which leads to,

ps(r) = Nr|r|α
′

exp

(

− r2

4D̃

)

, (4.86)

where Nr is another normalization constant. We have defined,

α′ =
1

3

(

2µ̃

D̃
− 1

)

. (4.87)

The stationary probability distribution functions are normalized according to,

1 =

∫ 2π

0

∫ ∞

0

p̃s(r, θ)drdθ =

[
∫ 2π

0

ps(θ)dθ

] [
∫ ∞

0

ps(r)dr

]

, (4.88)

and we choose to normalize both components in the square bracket to one.

Normalization of the radial component leads to,

Nr = 2(4D̃)
−

“

α′+1
2

”

Γ−1

(

α′ + 1

2

)

. (4.89)

If α′ < −1, the probability distribution function of the radial component is
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not normalizable. The bifurcation threshold is therefore located at α′ = −1.

This leads to the condition,

µ̃+ D̃ = 0 . (4.90)

Normalization of the angular component yields,

Nθ =

(

ν̃

D̃

) exp
(

−2πν̃
D̃

)

sinh
(

2πν̃
D̃

) . (4.91)

The dynamics in the deterministic limit is a limit cycle at threshold. Here,

we choose the probability distribution function of the angular component to

be uniform at threshold (α′ = −1) [127]. This occurs at ν̃ = 0 for all θ and

the stationary probability distribution function of the angular component is

ps(θ) = 1/(2π). By combining both conditions we find,

ac +D + b cos(ωτ) = 0 , (4.92)

ω + b sin(ωτ) = 0 . (4.93)

By substituting Eq. (4.93) into Eq. (4.92), we find our final result for the

Hopf bifurcation line,

−
(

ac +D

b

)

= cos
[

τ
√

b2 − (ac +D)2
]

, (4.94)

Interestingly, this condition agrees with the bifurcation threshold of the first

moment 〈x〉 from the linearization of Eq. (1.10) with multiplicative noise only

(K = 0) derived in Chapter 3 [Eq. (3.31)].





Chapter 5
Numerical stability analysis

We present in this chapter a numerical verification of several approximations

described earlier, and a determination of the bifurcation thresholds of Eq.

(1.10) with multiplicative noise only (K = 0) as we have shown that additive

noise does not change the location of the bifurcation threshold. We employ

the second order algorithm that we have developed [Eq. (2.2)], described in

Appendix C. The bifurcation diagram of Eq. (1.10) with multiplicative noise

only (K = 0) as numerically determined is shown in Fig. 5.1. The bifurca-

tion threshold has been computed from the stationary probability distribution

function p(x) of the state variable x. The distribution function is dominated

by a power law at small x and to exponential decay at large x. The bifurcation

threshold is defined to be located at the set of parameter for which the expo-

nent of the power law is -1 for normalizability reason. Equation (1.10) with

K = 0 has been integrated over a finite time window [0, tmax] by using Eq.

(2.2) with γ = 1 and D = 0.3. The integration step is ∆t = 0.01. The value

of the upperbound tmax is chosen to ensure that trajectories have reached a

stationary state above threshold. The stationary distribution probability dis-

tribution function is computed over a time domain [tmin, tmax], typically with

93
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Bifurcation of ẋ(t) = ax(t) + bx(t − τ) − x3(t) + x(t)ξ(t)

-4 -3 -2 -1 0 1
a

-4

-2

0

2

4
b

Figure 5.1: Numerically determined bifurcation diagram for Eq. (1.10)
with τ = 1, K = 0, and D = 0.3 defined as the point in the (a, b) plane
for which α = −1, the exponent of the stationary probability distribution
function (◦). For reference, we also show the exact bifurcation diagram
for the deterministic equation K = D = 0 at the same value of τ [44]
(dotted line). The solid line is the approximate pitchfork threshold [Eq.
(3.65)] while the dashed line is the approximate Hopf line [Eq. (4.94)]. The
symbols (�) are the numerically calculated Hopf branch from the probability
distribution function of the maximum amplitude of the Fourier transform
of the trajectories.

tmin = tmax − 10, in which the solution is believed to have reached the steady

state. The calculation is repeated over several realizations over the random

process ξ(t). We usually consider an ensemble average of the order of 106

independent trajectories.



Chapter 5. Numerical stability analysis 95

Pitchfork bifurcation with delay
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1× 10−4
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Figure 5.2: Long time histogram of x (in grey scale) as a function of the
control parameter a with b = 1, τ = 1, K = 0, and D = 0.3. The
histograms have been collected in the time interval t ∈ (50, 80) and further
averaged over 106 independent runs. In the absence of noise, the critical
value of the control parameter for instability is ac = −1. We find instead
that the bifurcation from a delta function to a power law distribution occurs
at ac ' −1.169 for this set of parameters. Fluctuations around x = 0 are
observed for a < ac due to the finite length of the time series.

5.1 Pitchfork bifurcation

A qualitative depiction of the bifurcation of Eq. (1.10) with K = 0 is pre-

sented in Fig. 5.2. It shows in grey scale the stationary distribution function

of x as a function of a. For a ≤ ac ≈ −1.17, the histogram is sharply peaked

at x = 0. At the critical value ac, the bifurcation point, a board distribution

emerges, although the most likely value remains x = 0. Beyond a larger value

of a, the histogram is a bimodal distribution. Note that a qualitatively similar
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Probability density with delay
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Figure 5.3: Probability distribution function p(x) for b = 1, τ = 1, K =
0, and D = 0.3 at the times given, and averaged over 106 independent
realizations. Values of the control parameter shown are: (a) a = −1.2
with α ' −1.208, (b) a = −1.1 with α ' −0.638, and (c) a = −0.9 with
α ' 0.746. The distributions in (a) show a clear transient, whereas those
in (b) and (c) are stationary. The solid line shows the power law at small
x; the domain covered by the line indicated the range of data that were
used to estimate α, and is placed above or below the curves for clarity. The
dashed line is our approximate determination of p(x) in the limit of small
τ [Eq. (3.80)].
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Exponent of the power law with delay
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Figure 5.4: Results of a power law fit to p(x) for small x. The fitted value
of the exponent α is shown as a function of the control parameter a. We
define the bifurcation threshold for the stochastic problem when α = −1,
or ac ' −1.169 for this parameter set (b = 1, τ = 1, K = 0, and D = 0.3).
The solid line follows from our approximate determination of α in the limit
of small τ [Eq. (3.81)].

graph is obtained around the Hopf bifurcation (not shown).

The location of the bifurcation threshold is determined from the probabil-

ity distribution function p(x). Our results are summarized in Fig. 5.3 for three

different values of a, and as the upper bound tmax of the time window used

to compute the distribution function is varied. First (top), the probability

distribution is not stationary as a < ac. In fact, we would expect p(x) = δ(x)

to the asymptotic stationary distribution, but instead we observe very long

transients with p(x) approximately characterized by a power law distribution,

with an effective exponent α < −1 (and hence non normalizable). The ampli-
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Dependence on the noise intensity
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Figure 5.5: Bifurcation threshold ac from p(x) as a function of noise in-
tensity D for b = 1, K = 0, and τ = 1. Time averages used for the
determination of p(x) are in t ∈ (290, 300), and 106 independent realiza-
tions have been considered. The line in the figure is the prediction from
our approximate determination of the stationary probability distribution
function [Eq. (3.65)].

tude of the point at x = 0 does grow with time, signalling the build up of the

delta function around the origin. Because the overall normalization, growth

at x = 0 implies a decaying amplitude for finite x, as shown in the figure. For

a > ac the distribution quickly reaches a stationary power law form (middle),

or a bimodal distribution (a� ac) (bottom).

The location of the bifurcation point is determined from a power law fit

to the distribution function at small x. A result of such a fit is shown in

Fig. 5.4. We observe a smooth variation of the exponent α with respect to a

that allows the determination of ac, the value for which α = −1. The fit has
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Average conditional drift 〈xτ |x〉
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〈xτ |x〉

x

Figure 5.6: Ensemble average of xτ given x, 〈xτ |x〉, as a function of x. We
have set b = 2, τ = 1, K = 0, and D = 0.3. The average is computed
over 106 realizations for a time interval t ∈ (290, 300). The dotted line is
〈xτ |x〉 = [1+τ(a+b+D)]x with a = −1.5, the linear part of the approximate
analytic result in the limit of small τ .

been performed on several intervals of x for which the power law is observed,

and no significant difference in ac was observed. This is the method that has

been used to determine numerically the bifurcation diagram of Eq. (1.10) with

K = 0.

It is observed from the bifurcation diagram (Fig. 5.1) that the bifurcation

threshold is shifted relative to its deterministic counterpart. The bifurcation

threshold ac determined from p(x) in the vicinity of the pitchfork bifurcation

is shown in Fig. 5.5 as the intensity of the noise is varied. The shift scales

linearly with the intensity of the noise, as predicted by Eq. (3.65). In fact, time

delay and parametric randomness couple, resulting in a shift on the location
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of the threshold. This coupling is captured by the average conditional drift

〈xτ |x〉. Note that the shift disappears when b = 0 (no delay).

Given that no analytical expression is known for the average conditional

drift [Eq. (3.15)], we have computed this quantity numerically, with the results

shown in Fig. 5.6. The figure shows a histogram of xτ at time t − τ given

its value at time t, as the trajectory has reached a stationary state. This

term is directly responsible for the non-Markovian nature of the Fokker-Planck

equation associated with the delay differential equation.

5.2 Hopf bifurcation

The same method has been used to determine the Hopf bifurcation line.

In the deterministic case, the bifurcation is associated to oscillations. When

fluctuations are added, oscillation amplitudes fluctuate as well. The location

of the Hopf branch has been determined by calculating the Fourier transform

of the trajectories because they oscillate close to the Hopf branch at approx-

imately the Hopf frequency. The calculation of the stationary distribution

function can thus be repeated but by using the maximum amplitude of the

Fourier transform of the trajectories rather than the state variable x as order

of parameter. This calculation is shown in Fig. 5.7. Technically, the Fourier

transform of a trajectory is performed over a time interval for which the solu-

tion is believed to be stationary. We have used the same interval than in the

determination of the probability distribution function of x. We then construct

a histogram p(max[X(ω)]) of the maximum amplitude of the Fourier trans-

form max[X(ω)] over realizations of the noise. It is observed that the resulting

distribution function is also dominated by a power law as the maximum am-

plitude is small. We have thus defined the bifurcation threshold to be located

at the set of parameters for which the exponent of the power law is -1. Re-
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Probability density around the Hopf branch
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Figure 5.7: Probability distribution function of the maximum amplitude of
the Fourier transform of the trajectories p(max[X(ω)]) for b = −2, τ = 1,
K = 0, and D = 0.3, at t = 300 and averaged over 106 independent
realizations. Values of the control parameter shown are: (a) a = −1.1
with α ' −1.603, (b) a = −0.9 with α ' −0.782, and (c) a = −0.5 with
α ' 0.024, as shown by the solid lines, placed above the curves for clarity.
The solid lines extend over the range used for estimation of α.
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Exponent of the power law around the Hopf branch
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Figure 5.8: Results of a power law fit to p(x) (◦) and to the probability
of the maximum amplitude of the Fourier transform of the trajectories
p(max[X(ω)]) (�), for small x or small max[X(ω)]. The fitted value of the
exponent α is shown as a function of the control parameter a. We define
the bifurcation threshold for the stochastic problem when αc = −1 (dashed
line), or ac ' −0.942 (◦), and ac ' −0.941 (�) for this parameter set
(b = −2, τ = 1, K = 0, and D = 0.3). The solid line is the approximate
expression for the exponent α [Eq. (4.87)].

sults of such a fit together with the fit performed on the stationary probability

distribution function of x is shown in Fig. 5.8. The two determinations agree

with each other.



Chapter 6
Correlation time near threshold

The approximate pitchfork and Hopf bifurcation lines derived in Chapters 3

and 4 are in great agreement with the numerical determination of the bifur-

cation thresholds even if the value of the time delay used extends the regime

of small delay. We demonstrate in this chapter that this is because the value

used for the time delay is smaller than the correlation time of the state vari-

able. Furthermore, we note that the correlation time of Eq. (1.10) without

delayed feedback (b = 0) and multiplicative noise only (K = 0) diverges with

exponent -1 with respect to the control parameter of the equation [83]. We

analyze in this chapter whether delayed feedback modifies this latter result.

In order to do so, we apply the theory developed by Jung and Risken [83] to

Eq. (1.10) with K = 0. This theory provides an integral representation of the

correlation time of the state variable. The integral can be computed numeri-

cally. However, the theory needs the transition probabilities to be Markovian.

We thus use the one dimensional expression resulting from the Stratonovich

Taylor expansion under the assumption that the time delay is small introduced

in Chapter 3 in order to compare the analytical predictions with the numerical

determination of the correlation time. We show that non-Markovian effects in-

103
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duce correlations which are not taken into account in the Jung-Risken theory,

and we underline the need for a generalized theory with delay.

6.1 Correlation time

The correlation function and correlation time of Eq. (1.10) without de-

layed feedback (b = 0) and with multiplicative noise only (K = 0) were first

studied by Stratonovich [131] by decoupling the correlation, and approximat-

ing higher-order correlation functions Cn(t
′) = 〈xn−1(t + t′)x(t)〉 − 〈xn−1〉〈x〉

in terms of the usual correlation function C2(t
′). The correlation function and

correlation time were further investigated numerically in [129, 132]. The ana-

lytical limit of the correlation time at small and large control parameter a are

known [133, 134, 83]. Furthermore, an analytical expression for the correlation

function and correlation time is provided in [83] by using a continued matrix

method. This is the method that we have employed in our study and we refer

to it as the Jung-Risken theory. Predictions of the correlation time have been

verified by electronic analogue experiments [135, 136]. The study has also been

generalized in [137] for stochastic differential equations with colored noise. The

mathematical steps involved in the derivation of the correlation time according

to the Jung-Risken theory are shown in Appendix D. We apply the results

introduced in this appendix to the approximate Markovian expression associ-

ated to Eq. (1.10) as derived in Chapter 3. Systematic expansions at small

and large noise intensities are also presented in Appendix D in order to derive

a Padé approximant to the correlation time. Padé approximant is a rational

function that approximates complex function, such as the integral representa-

tion of the correlation time. We briefly state results derived in Appendix D in

this section and apply these to Eq. (1.10) under the assumption that the time

delay is small.
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The correlation time T of a stochastic process in its stationary state can be

defined as the area under the correlation function normalized by the variance

[138],

T =
1

C(0)

∫ ∞

0

C(t′)dt′ , (6.1)

where C(t′) is the correlation function,

C(t′) = 〈∆x(t + t′)∆x(t)〉 , (6.2)

and where ∆x = x − 〈x〉. The Jung-Risken theory [83] demonstrates that

given the Markovian process,

ẋ(t) = h(x) + g(x)ξ(t) , (6.3)

where ξ(t) is a Gaussian white noise process with mean 〈ξ(t)〉 = 0 and corre-

lation 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′), the correlation time of x is given by,

T =
1

C(0)

∫ ∞

0

f 2(x′)

g2(x′)ps(x′)
dx′ , (6.4)

where

f(x) = −
∫ x

0

∆x′ps(x
′)dx′ , (6.5)

where g(x) is the coefficient of the noise of Eq. (6.3), and where ps(x) is its

corresponding stationary probability distribution function. To apply the Jung-

Risken theory to Eq. (1.10) with K = 0, we need the stationary probability

distribution function from the Fokker-Planck equation associated to Eq. (1.10)
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with K = 0 [Eq. (3.34)],

∂

∂t
p(x, t) = − ∂

∂x

{[

(a+D)x+ b〈xτ |x〉 − x3
]

p(x, t)
}

+D
∂2

∂x2

[

x2p(x, t)
]

.

(6.6)

Of course, this Fokker-Planck equation is not closed because of the presence of

the non-Markovian term 〈xτ |x〉, as explained in Chapter 3. We thus use the

approximate expression obtained under the assumption that the time delay is

small,

∂

∂t
p(x, t) = − ∂

∂x

{[

(σ +D)x− γx3
]

p(x, t)
}

+D
∂2

∂x2

[

x2p(x, t)
]

,

(6.7)

where σ = a+ b[1 + τ(a+ b+D)] and γ = (1 + bτ). The approximate Fokker-

Planck equation [Eq. (6.7)] is Markovian, and the known results from the

Jung-Risken theory can be applied. In particular, the stationary probability

distribution function of x ∈ [0,∞] satisfies ṗs(x) = 0 and is found to be

ps(x) = 2(βγ)βσΓ−1(βσ)|x|2βσ−1e−βγx2

, (6.8)

where β = (2D)−1, and where Γ(x) is the gamma function. In those terms,

the stochastic threshold is located at σc = 0. Furthermore, the nth stationary

moment of the state variable is

〈xn〉s =

∫ ∞

0

xnps(x)dx = (βγ)−n/2Γ−1(βσ)Γ(βσ + n/2) . (6.9)
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Substitute Eq. (6.8) into Eq. (6.5) so that

f(x) = 〈x〉s
[

P (βσ, βγx2) − P (βσ + 1/2, βγx2)
]

, (6.10)

where P (η, ω) is the incomplete gamma function defined by

P (η, ω) = Γ−1(η)

∫ ω

0

qη−1e−qdq . (6.11)

Using the n = 1 and n = 2 moment of Eq. (6.9), together with g(x) = D1/2x

and Eq. (6.10), the correlation time corresponding to the random process

defined by Eq. (6.7) is

T =
β(βγ)−βσΓ(βσ + 1)Γ2(βσ + 1/2)

Γ2 (βσ + 1) − (βσ) Γ2 (βσ + 1/2)
×

∫ ∞

0

[P (βσ, βγx2) − P (βσ + 1/2, βγx2)]
2

|x|2βσ+1e−βγx2 dx .

(6.12)

Equation (6.12) has to be evaluated numerically. Because of the singularity

at x = 0, we perform the change of variable x = exp(z) prior to integration.

The calculation has been verified by using several lower bound zmin and upper

bound zmax ; no significant change was observed. The incomplete gamma

function is calculated by using an ordinary continued fraction representation

[139]. The limits of Eq. (6.12) are known [133, 134, 83]. At large σ or small

D, the correlation time can be expanded in a power series,

T (σ,D) =
1

2σ
+

7D

16σ2
+

9D2

64σ3
+ O

[

D3

σ4

]

, (6.13)

whereas for small σ or large D,

T (σ,D) =
π

2σ
− A

D
+ O

[ σ

D2

]

, (6.14)
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where A = 1.5421.... The mathematical steps involved in the derivation of

both expansion are shown in Appendix D. A Padé approximant to Eq. (6.12)

has also been proposed in [83]. The expression is

T (σ,D) =
1

2σ
+

0.6037Dσ + 1.0708D2

1.38σ3 + 2.004Dσ2 +D2σ
, (6.15)

also shown in Appendix D. The correlation time T obtained from the numeri-

cal integration of Eq. (6.12) is shown in Fig. 6.1, together with its asymptotic

limits of small and large σ. We also show the Padé interpolant. Equation

(6.15) is expected to be valid in the limit of small time delay. We will com-

pare this result with the correlation time computed from a direct numerical

integration of Eq. (1.10) with K = 0 in the next section.

6.2 Numerical determination of the correlation time

The correlation function and correlation time are determined numerically

with finite feedback, and compared to the approximation that follows from the

Jung-Risken theory. We start to reproduce known results on the Stratonovich

model [Eq. (1.10) with b = 0, γ = 1, and K = 0] in order to verify the

methodology. The Stratonovich model is numerically integrated by using Eq.

(2.2). The initial condition is a constant function in [−τ, 0] for each trajectory,

with the constant being drawn from a Gaussian distribution of zero mean and

variance 1. The time step used in the numerical integration is ∆t = 0.01. The

correlation function of the dynamical variable x,

C(t′) = 〈x(t + t′)x(t)〉 − 〈x〉2 , (6.16)
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Theoretical correlation time
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Figure 6.1: Correlation time T (σ) as a function of the parameter σ =
a + b[1 + τ(a + b + D)] as calculated from Eq. (6.12) at fixed b = 0,
D = 1, and τ = 0 (symbols). The dotted curve is the large σ limit,
T (σ) = 1/(2σ) + (7D/16σ2) + (9D2/64σ3) [Eq. (6.13)] and the dashed
curve is the limit for small σ, T (σ) = π/(2σ)− 1.5421/D [Eq. (6.14)]. The
solid curve is the Padé approximation [Eq. (6.15)].

is computed in the time interval t ∈ [tmin, tmax], with tmin = 300 and tmax =

1400. Trajectories have reached a stationary state in this time interval. Note

that the lower bound tmin is larger than the largest correlation time that we

have calculated. For a given trajectory, the correlation function is averaged

over N = 104 values of x(ti), with ti = {tmin, ..., tmin +N∆t}, at fixed time lag

t′. The correlation function is constructed for a time lag t′ ∈ [0, L], where L is

the maximum time lag. The ensemble average is further constructed by con-

sidering 106 independent trajectories. The first moment of the state variable

x in Eq. (6.16) is calculated in the time interval t ∈ [tmin, tmin + L + N∆t].
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Correlation function without delayed feedback
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Figure 6.2: Correlation function C(t′) normalized by the variance C(0) of
the dynamical variable x in its stationary state as a function of the time
lag t′ without delayed feedback (b = 0) at fixed K = 0 and D = 0.3 as
the control parameter a is varied. The bifurcation threshold is located at
ac = 0 for this set of parameters.

The correlation time is the area under the curve of the normalized correla-

tion function. It is calculated according to Eq. (6.1) by using an integration

time step of ∆t′ = 0.01. The normalized correlation function without delayed

feedback (b = 0) is shown in Fig. 6.2 as the control parameter is varied.

Close to threshold, we expect that the correlation time will diverge. How-

ever, due to the finite time window of size L involved in the numerical in-

tegration, a true divergence cannot occur for purely numerical reasons. In

order to analyze the divergence from the finite size of the integration domain,

we repeat the determination of the correlation function for several values of

the maximum time lag L = {20, 50, 100, 200, 500}, and study the extrapola-
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Correlation time of the Stratonovich model
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Figure 6.3: Correlation time T (a) as a function of the parameter a without
delayed feedback (b = 0), at fixed τ = 0, K = 0, and D = 0.3. The symbols
are the numerically determined correlation time for several maximum time
lag L while the solid line is the Padé approximation [Eq. (6.15)]. The
stochastic bifurcation is located at ac = 0.

tion as L → ∞. The procedure is repeated for different values of the control

parameter a close to threshold.

The correlation time as calculated from the normalized correlation func-

tion in Fig. 6.2 is shown in Fig. 6.3. Away from the bifurcation threshold

(σ � σc = 0), the normalized correlation function decays rapidly to zero.

For large values of the control parameter, trajectories quickly saturate and

fluctuate around their equilibrium value. The correlation time is small for

this range of parameters and agrees well with the analytical prediction [Eq.

(6.12)]. The decay of the normalized correlation function slows down as the

bifurcation threshold is approached (σ ∼ σc). In this range, one would have
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Correlation time of the Stratonovich model scaled
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Figure 6.4: Correlation time scaled by a power law of the maximum time
lag T (a)L−µ as a function of the control parameter also scaled by a power
law of the maximum time lag aLµ without delayed feedback (b = 0), at
fixed τ = 0, K = 0, and D = 0.3. The inset shows the correlation time
T (L) evaluated at threshold (ac = 0) as a function of the maximum time lag
L for the same set of parameters. The solid curve is T (L) = 2.69L0.443. We
use this linear regression to scaled the correlation time, which are evaluated
at µ = 0.44, the best estimate for the exponent in the limit L→ ∞.

to integrate the normalized correlation function over a very long time lag win-

dow to approach the analytical prediction. We use instead scaling theory to

overcome this limitation and to characterize the divergence of the correlation

time. The correlation time is expected to diverge at threshold (σ ∼ σc) for

L→ ∞. We therefore write for finite L,

T (σ, L) = LµT̃ (σLν) . (6.17)
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Correlation function with delayed feedback
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Figure 6.5: Correlation function C(t′) normalized by the variance C(0) of
the dynamical variable x in its stationary state as a function of the time
lag t′ at fixed b = 2, K = 0, D = 0.3, and τ = 1, as the control parameter
a is varied. The bifurcation threshold is located at ac = −2.2 for this set of
parameters. Time delay induces peaks in the correlation function because
the state of the dynamical variable x at time t is correlated with its value
at time t− τ .

For finite σ and taking the limit L→ ∞, we have that T ∼ σ−µ/ν if the scaling

function is regular. Close to threshold, Eq. (6.14) predicts that the correlation

time diverges with exponent µ/ν = 1. We show in Fig. 6.4 the scaled correla-

tion time assuming only one unknown exponent for L ∈ [50, 900]. The value

of the exponent µ is determined from the dependence of the correlation time

on the maximum time lag evaluated at threshold (σc = 0). The extrapolation

is shown in the inset of Fig. 6.4. The correlation time appears to follow a

power law with the maximum time lag. Our best estimate for the exponent

is µ = ν = 0.44. It is this value of the exponent that has been used to scale
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Correlation time with delayed feedback
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Figure 6.6: Correlation time T (a) as a function of the control parameter a
with b = 2, τ = 1, K = 0, and D = 0.3. Results for several maximum time
lag L are shown. The solid line is the Padé approximation [Eq. (6.15)].
For those parameters, the bifurcation threshold is located at ac = −2.2, in
agreement with the maximum of the correlation time and the divergence of
the Padé approximation.

the correlation time according to Eq. (6.17), shown in Fig. 6.4. With this

exponent, the curves of the correlation time calculated at different maximum

time lag collapse to each other close to the bifurcation threshold. Our scaling

analysis therefore agrees with the conclusion that the correlation time follows

a power law divergence close to threshold, with exponent T ∼ σ−1.

The same analysis has been conducted for the case with delay b 6= 0.

Equation (1.10) with γ = 1 and K = 0 is numerically integrated by using

Eq. (2.2). Delayed feedback induces the presence of additional peaks in the

normalized correlation function of the dynamical variable x as shown in Fig.
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Correlation time with delayed feedback scaled
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Figure 6.7: Correlation time scaled by a power law of the maximum time
lag T (σ)L−µ as a function of the parameter σ also scaled by a power law
of the maximum time lag σLµ with b = 2, τ = 1, K = 0, D = 0.3, and
with exponent µ = 0.53. The stochastic bifurcation threshold is located at
σc = 0. The inset shows the correlation time T (L) evaluated at threshold
as a function of the maximum time lag L for the same set of parameters.
The solid curve is T (L) = 3.60L0.534.

6.5. These peaks are a direct consequence of the correlation between the state

of x at times t, t − τ , t − 2τ , etc. introduced by the delay. The correlation

time with delayed feedback is calculated from a direct numerical integration

of the governing equations and is shown in Fig. 6.6 for different values of L

together with the Padé approximation given in Eq. (6.15). The analytical

determination of the threshold agrees well with the location of the maximum

of T in the figure. As was the case for no delay (b = 0), the maximum of the

numerically determined correlation time increases with L. The scaling form

[Eq. (6.17)] is tested again with the same condition µ = ν that follows from
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Correlation time as a function of the time delay
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Figure 6.8: Correlation time T (σ) as a function of σ = a+b[1+τ(a+b+D)]
with b = 2, K = 0, and D = 0.3 for different values of the time delay τ . The
solid curve is the Padé approximation [Eq. (6.15)]. The magnitude of the
numerically determined correlation time at τ 6= 0 disagree with the Padé
approximation at the same parameters due to the non-Markovian nature of
the delay stochastic differential equation under study.

our analytic results for small τ . We show our scaling results with σc = 0 or

ac = −2.2 in Fig. 6.7. We further estimate µ ≈ 0.53 by fitting the correlation

time as a function of L ∈ [50, 900] (inset in the figure). This value of the

exponent is quite close to the case of no delay. The correlation time curves

calculated for different values of L collapse close to the bifurcation threshold

as shown in Fig. 6.7. We therefore conclude that the correlation time diverges

as T ∼ σ−1.

We note that the value of the correlation time predicted from Eq. (6.12)

does not agree with our numerical determination, only the threshold location
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and the exponent of the divergence of the correlation time. According to our

analytic prediction, the correlation time depends on the delay τ through σ.

This is not the case for our numerical results as T has a separate dependence

on τ as shown in Fig. 6.8. Delayed feedback induces correlations between the

state of the dynamical variable x at time t and t−τ and those correlations affect

the value of the normalized correlation function. Those additional correlations

are not included in the Jung-Risken theory applied to small delay because it

assumes that the transition probabilities are Markovian.





Chapter 7
Conclusions

A continuous model of a common gene regulatory network motif has been

investigated in this thesis by means of the Langevin equation,

ẋ(t) = ax(t) + bx(t− τ) − γx3(t) + x(t)ξ(t) + η(t) , (7.1)

where a is a control parameter, b is the intensity of a feedback loop of time

delay τ > 0, γ is a constant, and where η(t) and ξ(t) are independent random

processes normally distributed with mean 〈η(t)〉 = 〈ξ(t)〉 = 0 and correlation

〈η(t)η(t′)〉 = 2Kδ(t− t′) and 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′), where K and D are the

intensity of the additive and multiplicative random processes, respectively.

Equation (7.1) incorporates a time delay term modeling non-instantaneous

biological process as well as parametric noise modeling fluctuations in reac-

tion rates due to the environment. The underlying deterministic model ex-

hibits both pitchfork and Hopf bifurcations. The bifurcation diagram for the

stochastic case has been determined numerically from the stationary proba-

bility distribution function p(x). Additive noise (D = 0) does not change

the location of the bifurcation threshold, as opposed to multiplicative noise

119
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(K = 0).

We define the bifurcation threshold of the stochastic model as the point in

model parameter space at which p(x) changes from a delta function centered

at the trivial state to a power law with an exponential cutoff at large x. In

order to do so, we have obtained the Fokker-Planck equation associated with

Eq. (7.1) (with K = 0)

∂

∂t
p(x, t) = − ∂

∂x

{[

(a+D)x+ b 〈xτ |x〉 − x3
]

p(x, t)
}

+D
∂2

∂x2

[

x2p(x, t)
]

.

(7.2)

Due to the non Markovian nature of the process x(t), Eq. (7.2) is not closed,

but includes the average conditional drift,

〈xτ |x〉 =

∫

xτp(xτ |x)dxτ . (7.3)

We have expanded the conditional average in a stochastic Taylor series valid

for small delay τ , and found,

〈xτ |x〉 = x [1 + τ(a + b +D)] − τx3 . (7.4)

We have shown from this equation that the coupling of delayed feedback

and parametric stochasticity shifts the bifurcations diagram relative to the

deterministic model (this is in contrast with the case of parametric fluctuations

without delayed feedback for which the location of the bifurcation is known to

be independent of the intensity of the noise). In that range of parameters in

which the bifurcation is direct, a small delay time expansion yields the desired

stationary probabilty distribution function. By substituting Eq. (7.4) into Eq.
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(7.2), a closed Markovian Fokker-Planck equation can be found,

∂

∂t
p(x, t) = − (1 + bτ)

∂

∂x

{[

(a + b+D)x− x3
]

p(x, t)
}

+D
∂2

∂x2

[

x2p(x, t)
]

.

(7.5)

The stationary probability distribution function of Eq. (7.5) is

p(x) =















δ(x) if α ≤ −1

1
2

(

2D
1+bτ

)−(α+1
2 )

Γ−1
(

α+1
2

)

|x|αe− (1+bτ)
2D

x2
if α > −1

. (7.6)

where α is the exponent of the power law,

α =
(1 + bτ)(a + b +D)

D
− 2 . (7.7)

The power law solution in Eq. (7.6) is not normalizable if α ≤ −1, and hence

p(x) = δ(x) is the only admissible solution in this range. Hence, the bifurcation

threshold is located at the point where αc = −1, or in terms of the parameter

of the model,

ac = −b [1 + τ(b +D)]

1 + bτ
. (7.8)

Equation (7.8) is only valid as bτ > −1, corresponding to the direct pitchfork

branch.

A multiple scale expansion has been developed to obtain the location of the

Hopf bifurcation as this branch appears as a singular perturbation as τ → 0.

We separate the time scale of the solution into a fast time scale t describing

order 1 oscillations, and a slow time scale T = ε2t, where 0 < ε� 1, describing

the time evolution of the amplitude of the oscillation, called also the envelope

variables. Fast time scales are eliminated out of the equation by integrating
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over a period of the oscillations. In terms of Eq. (7.1), we assume a solution

of the form,

x(t, T ) = εA(T ) cos(ωt) + εB(T ) sin(ωt) , (7.9)

where A(T ) and B(T ) are the envelope variables and where ω is the Hopf fre-

quency. Substitution of Eq. (7.9) into Eq. (7.1) and integration over a period

leads to a system of Langevin equations describing the slow time evolution of

A(T ) and B(T ). Associated to this system of equations is a Fokker-Planck

equation, which is uncoupled in polar coordinates. The normalizability con-

dition described above applied to the stationary densities leads to the Hopf

line,

−
(

ac +D

b

)

= cos
(

τ
√

b2 − (ac +D)2
)

. (7.10)

The analytical method just introduced is quite general and can be applied to

any stochastic differential equation with delayed feedback. We have tested

the methodology on the van der Pol oscillator driven by parametric noise and

augmented by delay term in the position and velocity of the oscillator. The

location of the bifurcation threshold has been derived and agrees with results

in the literature as τ = 0.

Finally, the correlation time of the state variable x has been further inves-

tigated. It is known that the correlation time of Eq. (7.1) without delayed

feedback (b = 0) diverges at threshold with exponent -1 with respect to the

control parameter a. We have determined numerically that the same conclu-

sion applies with delayed feedback (b 6= 0).

The results of this thesis suggest future paths that may be investigated.

First, this thesis focuses on a continuous representation of a gene regulatory

network by means of a Langevin equation. This representation is valid only if
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the number of molecules involved in the network reactions is large. However,

several gene networks are known to involve a limited number of copies of a

given molecular species. A discrete representation would be more appropriate

for those networks. This representation can be modeled by a Master equation.

It could be interesting to know if the location and the nature of the bifurcation

threshold are modified if the number of molecules is small. Note that the

chemical reactions involved in the network could be investigated numerically

with the Gillespie algorithm.

Furthermore, it has been underlined that the Jung-Risken theory is only

valid as the transition probabilities are Markovian. Hence, the theory cannot

be applied as it is to delay differential equations. However, it might be possible

to expand the transition probability by assuming that the steps are small in

order to generalize the Jung-Risken theory.

All through this thesis, time delay only appears in the drift coefficient of

the stochastic equations considered. It is however possible to generalize the

theoretical methods developed in this work in order to include time delay in

the diffusion coefficient. This addition might make sense in biology as the

intensity of the feedback loop might be also influenced by its environment and

be a random number. For instance, this can be modeled by letting b → b+ζ(t)

in Eq. (1.10), where ζ(t) is a Gaussian white noise with mean 〈ζ(t)〉 = 0 and

correlation 〈ζ(t)ζ(t′)〉 = 2D′δ(t − t′). It is expected that such a modification

will shift the location of the bifurcation diagram by an amount scaling with

the intensity of the noise D′. Taylor expansion of this new term as well a

multiple time scale expansion can also be performed in a straightforward way

with the analytical methods introduced in this thesis.





Appendix A
Ito and Stratonovich calculus

Two interpretations of stochastic calculus have been introduced in the liter-

ature. One is due to Ito [33, 34] while the other one is from Stratonovich

[35]. The two perspectives are equivalent to each other given the appropriate

transformation rules. The main difference between the two is how the noise

should be integrated. Before introducing both interpretations, let’s introduce

the concept of a Gaussian white noise [22, 42, 23]. It is a stochastic process

ξ(t) that satifies the following properties,

1. 〈ξ(t)〉 = 0 .

2. 〈ξ(t)ξ(t′)〉 = δ(t− t′) .

3. All cumulants beyond the second vanish .

No well defined stochastic process with these properties exists. This random

process is called white because it has a constant power spectral density. It is

also Gaussian as the probability distribution function of a given realization of

ξ(t) is normally distributed. One can imagine ξ(t) as a random sequence of

small pulses, positive and negative, with short duration and small heights. Its
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integral is called a Wiener process

W (t) =

∫ t

0

ξ(t′)dt′ . (A.1)

This process is neither stationary nor differentiable. A stochastic process x(t)

evolving in time through a differential equation understood in the Ito inter-

pretation is usually written as ,

dx(t) = f [x(t)]dt+ g[x(t)]dW (t) , (A.2)

where f [x(t)] and g[x(t)] are respectively the drift and diffusion coefficients,

and where dW (t) is the derivative of the Wiener process W (t) with mean

〈W (t)〉 = 0 and variance 〈W 2(t)〉 = 2Dt where 〈...〉 denotes an ensemble

average over all the realizations of W (t) and where D is the intensity of the

noise. Equation (A.2) is called a Langevin equation. It defines the stochastic

time evolution of a state variable. In the Ito convention, x(t) in the diffusion

coefficient g[x(t)] is defined to be taken at the lower bound of the interval of

the Wiener process. A stochastic process x(t) is a solution to Eq. (A.2) if for

all t and t0,

x(t) = x(t0) +

∫ t

t0

f [x(t′)]dt′ +

∫ t

t0

g[x(t′)]dW (t′) . (A.3)

The integral over the differential Wiener process dW (t) is understood as,

∫ t

t0

g[x(t′)]dW (t′) = ms-lim
n→∞

n
∑

i=1

g [x(ti−1)] [W (ti) −W (ti−1)] , (A.4)

where ms-lim represents the mean square limit. Suppose that Xn(ω) is a

sequence of random variables that are functions of ω and consider the mean
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square deviation of Xn(ω) from X(ω). We say that Xn converges to X in the

mean square sence if

lim
n→∞

∫

p(ω)[Xn(ω) −X(ω)]2dω = lim
n→∞

〈

(Xn −X)2
〉

= 0 . (A.5)

For this case, we thus have

ms-lim
n→∞

Xn = X . (A.6)

Typically, a solution of Eq. (A.2) is understood as the discretized version of

the stochastic differential equation,

xi+1 = xi + f(xi)∆ti + g(xi)∆Wi , (A.7)

where xi = x(ti), ∆ti = ti+1 − ti, and ∆Wi = W (ti+1) −W (ti), defined over a

mesh of points ti,

t0 < t1 < t2 < ... < tn−1 < tn = t . (A.8)

The solution is then formally constructed by letting the mesh size to go to

zero.

Stratonovich introduced a different prescription to calculate the stochastic

integral. A stochastic differential equation interpreted in the Stratonovich

sense is usually written as

ẋ(t) = F [x(t)] +G[x(t)]ξ(t) , (A.9)
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where F [x(t)] and G[x(t)] are respectively the drift and diffusion coefficient,

and where ξ(t) = dW (t)/dt is a Gaussian white noise. The value of x(t) in

the Stratonovich convention in the diffusion coefficient G[x(t)] is the average

of the values at the lower and upper bound of the interval. The solution of

Eq. (A.9) is

x(t) = x(t0) + S

∫ t

t0

F [x(t′)]dt′ + S

∫ t

t0

G[x(t′)]dW (t′) , (A.10)

where the S in front of the integrals refers to the Stratonovich interpretation

and where the integral over the Wiener process is defined as

S

∫ t

t0

G[x(t′)]dW (t′) =ms-lim
n→∞

n
∑

i=1

G

[

x(ti) + x(ti−1)

2

]

×

[W (ti) −W (ti−1)] .

(A.11)

Note that the dependence on x(t) is averaged at the beginning and end of each

interval.

Both the Ito and Stratonovich interpretation of stochastic calculus are

equivalent. We derive next a relation between the two conventions. Consider

a Langevin equation in the Ito convention Eq. (A.2). Write x(ti) in Eq. (A.11)

as,

x(ti) = x(ti−1) + dx(ti−1) , (A.12)

where dx(ti−1) satisfies Eq. (A.7),

dx(ti−1) = f [x(ti−1)](ti − ti−1) + g[x(ti−1)][W (ti) −W (ti−1)] . (A.13)
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Taylor expand the diffusive term in Eq. (A.11),

G
[x(ti) + x(ti−1)

2

]

=G
[

x(ti−1) +
dx(ti−1)

2

]

=G [x(ti−1)] +
1

2

∂

∂x
G [x(ti−1)] dx(ti−1)

+
1

4

∂2

∂x2
G [x(ti−1)] d

2x(ti−1) + ...

=G [x(ti−1)] +

{

1

2
f [x(ti−1)]

∂

∂x
G [x(ti−1)]

+
D

2
g2 [x(ti−1)]

∂2

∂x2
G [x(ti−1)]

}

(ti − ti−1)

+
1

2
g [x(ti−1)]

∂

∂x
G [x(ti−1)] [W (ti) −W (ti−1)] ,

(A.14)

where we have used d2W (t) = 2Ddt. Hence, we have derived,

S

∫ t

t0

G[x(t′)]dW (t′) =

∫ t

t0

G[x(t′)]dW (t′)

+D

∫ t

t0

g [x(t′)]
∂

∂x
G [x(t′)] dt′ ,

(A.15)

where the S in front of the integral in the left hand side of Eq. (A.15) refers to

Stratonovich integral as opposed to the integrals in the right hand side which

are Ito integrals. This formula gives a connection between the Ito and the

Stratonovich interpretation of stochastic calculus. In fact, given the stochastic

differential equation interpreted in the Stratonovich sense,

ẋ(t) = F [x(t)] +G[x(t)]ξ(t) , (A.16)

it can be equivalently written as a stochastic differential equation interpreted

in the Ito perspective,

dx(t) =

{

F [x(t)] +DG[x(t)]
∂

∂x
G[x(t)]

}

dt+G[x(t)]dW (t) , (A.17)
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and vice and versa. Note that similar rules apply to multivariable Stratonovich

and Ito stochastic differential equations.



Appendix B
Fokker-Planck equation

There is a an associated Fokker-Planck equation to every Langevin equation

[23, 73, 22]. While the Langevin equation defines the time evolution of a given

state variable in time, the Fokker-Planck equation describes the time evolution

of the probability of being in a specific state. Since a Langevin equation can

be understood in either the Ito or Stratonovich interpretations, the deriva-

tion of the Fokker-Planck equation can also be done under either of the two

perspectives. We are using both interpretations in this thesis but modified

to include time delay. We thus review in this appendix the steps involved

in both interpretations to obtain the Fokker-Planck equation associated to a

Markovian Langevin equation.

B.1 Ito interpretation

We derive in this section the Fokker-Planck equation associated to a Langevin

equation originally interpreted under the Ito convention [73, 87]. In order to

do so, consider a Langevin equation interpreted under the Ito interpretation

of stochastic calculus,

dx(t) = f [x(t)]dt+ g[x(t)]dW (t) , (B.1)
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where W (t) is a Wiener process with mean 〈W (t)〉 = 0 and variance 〈W 2(t)〉 =

2Dt where 〈...〉 denotes an ensemble average over all the realizations of W (t)

and where D is the intensity of the noise. Consider an arbitrary function G(x)

defined on [a, b] and that satisfies the following properties

lim
x→a

G(x) = lim
x→b

G(x) = 0 , (B.2)

and

lim
x→a

d

dx
G(x) = lim

x→b

d

dx
G(x) = 0 . (B.3)

With those properties, one can write

dG[x(t)] = G [x(t) + dx(t)] −G [x(t)] . (B.4)

One can then expand the quantity G [x(t) + dx(t)] in a Taylor series around

x(t). Substitute Eq. (B.1) into Eq. (B.4) and keep terms up to the first order

in dt,

dG[x(t)] =

{

f [x(t)]
d

dx
G[x(t)] +Dg2[x(t)]

d2

dx2
G[x(t)]

}

dt

+ g[x(t)]
d

dx
G[x(t)]dW (t) .

(B.5)

Equation (B.5) is known as the Ito formula [22]. The ensemble average of

dG[x(t)] can be written as

d

dt
〈G[x(t)]〉 =

〈

f [x(t)]
d

dx
G[x(t)] +Dg2[x(t)]

d2

dx2
G[x(t)]

〉

, (B.6)
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where we have used 〈W (t)〉 = 0. Use the definition of the ensemble average

with p(x, t)dx, the probability that x ∈ [x, x + dx] at time t,

∫ b

a

G(x)
∂

∂t
p(x, t)dx =

∫ b

a

G(x)

{

− ∂

∂x
[f(x)p(x, t)] +D

∂2

∂x2

[

g2(x)p(x, t)
]

}

dx ,

(B.7)

where the right-hand side has been integrated by parts with respect to x and

where surface terms at x = ±∞ are zeroes. Since G(x) is arbitrary, then

∂

∂t
p(x, t) = − ∂

∂x
[f(x)p(x, t)] +D

∂2

∂x2

[

g2(x)p(x, t)
]

, (B.8)

which is the Fokker-Planck equation associated to Eq. (B.1) under the Ito

interpretation of stochastic calculus. The stationary probability distribution

function ps(x) associated to Eq. (B.8) satisfies ṗs(x) = 0 and is,

ps(x) = N|g(x)|−2 exp

[

1

D

∫

f(x′)

g2(x′)
dx′
]

. (B.9)

where N is a normalization constant found by imposing conservation of prob-

ability over the whole space,

1 =

∫ ∞

−∞
ps(x)dx . (B.10)

The derivation of the Fokker-Planck equation using the Stratonovich interpre-

tation is shown next.

B.2 Stratonovich interpretation

Derivation of the Fokker-Planck equation given a Langevin equation under

the Stratonovich convention is well known [140]. We review the mathemati-
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cal steps under the Stratonovich interpretation of stochastic calculus in this

section. Consider a Langevin equation understood in the Stratonovich inter-

pretation,

d

dt
x(t) = f [x(t)] + g[x(t)]ξ(t) , (B.11)

where f [x(t)] and g[x(t)] are respectively the drift and diffusion coefficient,

and where ξ(t) is a gaussian white noise with mean 〈ξ(t)〉 = 0 and correlation

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′), where D is the intensity of the randomness. In order

to derive the Fokker-Planck equation associated to Eq. (B.11), consider the

definition of the probability distribution function

p(x, t) = 〈δ[x− x(t)]〉 , (B.12)

where x(t) is a solution of Eq. (B.11) corresponding to a definite realization of

ξ(t) and where the averaging is carried over the set of all realizations of ξ(t).

Taking the time derivative in both sides of Eq. (B.12),

∂

∂t
p(x, t) =

〈

∂

∂t
δ[x− x(t)]

〉

= −
〈

d

dt
x(t)

∂

∂x
δ[x− x(t)]

〉

. (B.13)

The partial derivative involved in the last term of the right hand side of Eq.

(B.13) can be taken outside the ensemble average since it is with respect to the

non-random variable x. Substitute furthermore Eq. (B.11) into Eq. (B.13),

∂

∂t
p(x, t) = − ∂

∂x
〈δ[x− x(t)] {f [x(t)] + g[x(t)]ξ(t)}〉 . (B.14)

Consider the following identity [140],

δ[x− x(t)]h[x(t)] ≡ δ[x− x(t)]h(x) , (B.15)
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where h[x(t)] is an arbitrary function dependent of the stochastic process x(t)

and where h(x) is the same function but dependent of the non-stochastic

variable x. With this identity, the drift and diffusion coefficient can be taken

outside the ensemble average of Eq. (B.14),

∂

∂t
p(x, t) = − ∂

∂x
[f(x)p(x, t)] − ∂

∂x
{g(x) 〈δ[x− x(t)]ξ(t)〉} , (B.16)

where we have used Eq. (B.12). To calculate the correlation function of the

right-hand side of Eq. (B.16), use the Furutsu-Novikov theorem [103, 104],

〈[δ[x− x(t)]ξ(t)〉 = 〈δ[x(t) − x]〉〈ξ(t)〉

+

∫ t

0

〈ξ(t)ξ(t′)〉
〈

δ

δξ(t′)
δ[x(t) − x]

〉

dt′ .
(B.17)

By using the properties of the noise about its mean 〈ξ(t)〉 = 0 and correlation

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′), Eq. (B.17) is

〈[δ[x− x(t)]ξ(t)〉 = D

〈

δ

δξ(t)
δ[x(t) − x]

〉

. (B.18)

Moreover, from the property of the delta function, the right hand side of Eq.

(B.18) is
〈

δ

δξ(t)
δ[x(t) − x]

〉

= −
〈

δx(t)

δξ(t)

∂

∂x
δ[x(t) − x]

〉

. (B.19)

We evaluate the functional derivative involved in Eq. (B.19) with respect to

ξ(t′) and then impose t = t′ [98]. In order to do so, integrate Eq. (B.11) with

respect to time,

x(t) = x(t′) +

∫ t

t′
ds {f [x(s)] + g[x(s)]ξ(s)} . (B.20)
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Take then the functional derivative on both sides,

δx(t)

δξ(t′)
=

∫ t

t′
ds

{

∂f

∂x

δx(s)

δξ(t′)
+ ξ(s)

∂g

∂x

δx(s)

δξ(t′)
+ g[x(s)]

δξ(s)

δξ(t′)

}

. (B.21)

Equation (B.21) must satisfy the causality condition. In fact, the stochastic

process x(t) depend functionally only on values of ξ(t′) which come earlier in

terms of t in the interval 0 ≤ t′ ≤ t. It follows that the function derivative is

zero outside this time interval,

δx(t)

δξ(t′)
= 0 , if t′ < 0 , or if t′ > t , (B.22)

which is called the causality condition. We further use the following property

of the functional derivative,

δξ(s)

δξ(t′)
= δ(s− t′) , (B.23)

and integrate term proportional to the delta function to write Eq. (B.21),

δx(t)

δξ(t′)
= H(t− t′)

{

g[x(t′)] +

∫ t

t′
ds

[

∂f

∂x

δx(s)

δξ(t′)
+ ξ(s)

∂g

∂x

δx(s)

δξ(t′)

]}

, (B.24)

where the causality condition has been taken into account by the introduction

of the step function H(t − t′) = 1 if t ≤ t′ and H(t − t′) = 0 otherwise. At

t = t′, we have,

δx(t)

δξ(t)
= g[x(t)] . (B.25)

Substitute Eq. (B.25) and Eq. (B.19) in Eq. (B.18),

〈[δ[x− x(t)]ξ(t)〉 = −D ∂

∂x
〈g[x(t)]δ[x(t) − x]〉 . (B.26)
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Use the identity Eq. (B.15) to take the diffusion coefficient out of the ensemble

average of Eq. (B.26) and use the definition of the probability distribution

function [Eq. (B.12)] so that

〈[δ[x− x(t)]ξ(t)〉 = −D ∂

∂x
[g(x)p(x, t)] . (B.27)

Substituting Eq. (B.27) in Eq. (B.16) leads to the Fokker-Planck equation,

∂

∂t
p(x, t) = − ∂

∂x
[f(x)p(x, t)] +D

∂

∂x

{

g(x)
∂

∂x
[g(x)p(x, t)]

}

, (B.28)

which can equivalently be written as

∂

∂t
p(x, t) = − ∂

∂x

{[

f(x) +Dg(x)
∂g(x)

∂x

]

p(x, t)

}

+D
∂2

∂x2

[

g2(x)p(x, t)
]

.

(B.29)

The term proportional to D in the first term of the right hand side of Eq.

(B.29) is called the noise-induced drift. It is a direct consequence of the

Stratonovich interpretation of Eq. (B.11). The stationary solution of Eq.

(B.29) satisfies ∂tp(x) = 0 and leads to the solution,

p(x) = N|g(x)|−1 exp

[

1

D

∫

f(x′)

g2(x′)
dx′
]

, (B.30)

where N is a normalization constant found by imposing conservation of prob-

ability,

1 =

∫ ∞

−∞
p(x)dx . (B.31)
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If the Langevin equation is additive, g[x(t)] = 1, and the Fokker-Planck equa-

tion [Eq. (B.29)] is

∂

∂t
p(x, t) = − ∂

∂x
[f(x)p(x, t)] +D

∂2

∂x2
p(x, t) . (B.32)

The same expression would be obtained under the Ito interpretation. There

is thus no difference between the Fokker-Planck equation derived either from

the Ito or the Stratonovich interpretation if the noise is additive.



Appendix C
Integration method with delay

A second order numerical integration method is derived in this section in order

to include delay in the algorithm. The derivation is based on a known second

order numerical methods without delay [96]. Consider a Langevin equation of

the form,

ẋ(t) = f [x(t)] + bx(t − τ) + g[x(t)]ξ(t) + η(t) , (C.1)

where f [x(t)] and g[x(t)] are respectively the drift and the diffusion coefficient,

where b is the intensity of the feedback loop, τ > 0 is the time delay, and where

ξ(t) and η(t) are two Gaussian white noises with mean 〈ξ(t)〉 = 〈η(t)〉 = 0 and

correlation 〈ξ(t)ξ(t′)〉 = 2Dδ(t−t′), 〈η(t)η(t′)〉 = 2Kδ(t−t′), and 〈ξ(t)η(t′)〉 =

0, where D and K are respectively the intensity of the stochastic process ξ(t)

and η(t). The algorithm focuses on cases where delayed feedback enters only

linearly in Eq. (C.1), although it can be generalized for any function including

time delay. Integrate Eq. (C.1) over the time interval [t, t + ∆t],

x(t + ∆t) =x(t) +

∫ t+∆t

t

{f [x(t′)] + bx(t′ − τ) + g[x(t′)]ξ(t′)

+η(t′)} dt′ ,
(C.2)
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and expands the drift f [x(t′)] and diffusion g[x(t′)] coefficient in power series

around x(t),

f [x(t′)] ≈ f0[x(t)] + f1[x(t)][x(t
′) − x(t)] , (C.3)

g[x(t′)] ≈ g0[x(t)] + g1[x(t)][x(t
′) − x(t)] , (C.4)

where the indices {0, 1} are respectively the zeroth and first derivative with

respect to x. The integrand x(t′) is found by further integrating Eq. (C.1),

x(t′) = x(t) +

∫ t′

t

{f [x(t′′)] + bx(t′′ − τ) + g[x(t′′)]ξ(t′′) + η(t′′)} dt′′ . (C.5)

Approximate the integrands by their value evaluated at the lower bound, i.e.

f [x(t′′)] ≈ f0[x(t)], x(t
′′ − τ) ≈ x(t− τ), and g[x(t′′)] ≈ g0[x(t)],

x(t′) =x(t) + {f0[x(t)] + bx(t− τ)} (t′ − t) + g0[x(t)]

∫ t′

t

ξ(t′′)dt′′

+

∫ t′

t

η(t′′)dt′′ .

(C.6)
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Substitute then Eq. (C.6) as well as Eqs. (C.3) and (C.4) into Eq. (C.2) leads

to

x(t + ∆t) = x(t) + f0[x(t)]∆t + g0[x(t)]

∫ t+∆t

t

ξ(t′)dt′

+ f1[x(t)]

{

{f0[x(t)] + bx(t− τ)} ∆t2

2

+ g0[x(t)]

∫ t+∆t

t

∫ t′

t

ξ(t′′)dt′′dt′

+

∫ t+∆t

t

∫ t′

t

η(t′′)dt′′dt′

}

+ b

{

x(t− τ)∆t + {f0[x(t− τ)] + bx(t− 2τ)} ∆t2

2

+ g0[x(t− τ)]

∫ t+∆t

t

∫ t′−τ

t−τ

ξ(t′′)dt′′dt′

+

∫ t+∆t

t

∫ t′−τ

t−τ

η(t′′)dt′′dt′

}

+ g1[x(t)]

{

{f0[x(t)] + bx(t− τ)}
∫ t+∆t

t

(t′ − t)ξ(t′)dt′

+ g0[x(t)]

∫ t+∆t

t

∫ t′

t

ξ(t′)ξ(t′′)dt′′dt′

+

∫ t+∆t

t

∫ t′

t

ξ(t′)η(t′′)dt′′dt′

}

+

∫ t+∆t

t

η(t′)dt′ .

(C.7)
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In order to calculate the integrals containing the random processes ξ(t) and

η(t), we define

G1(t,∆t) =

∫ t+∆t

t

ξ(t′)dt′ , (C.8)

G2(t,∆t) =

∫ t+∆t

t

∫ t′

t

ξ(t′′)dt′′dt′ , (C.9)

H1(t,∆t) =

∫ t+∆t

t

η(t′)dt′ , (C.10)

H2(t,∆t) =

∫ t+∆t

t

∫ t′

t

η(t′′)dt′′dt′ . (C.11)

If η(t) and ξ(t) are two Gaussian processes of zero mean, G1, G2, H1, and H2,

are also Gaussian variables of zero mean, and correlations

〈

G2
1

〉

= 2D∆t , (C.12)

〈

G2
2

〉

=
2D

3
∆t3 , (C.13)

〈G1G2〉 = D∆t2 , (C.14)

〈

H2
1

〉

= 2K∆t , (C.15)

〈

H2
2

〉

=
2K

3
∆t3 , (C.16)

〈H1H2〉 = K∆t2 , (C.17)

〈G1H2〉 = 0 , (C.18)

〈G2H1〉 = 0 . (C.19)
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The three remaining integrals can be expressed in terms of G1 and G2, and

H1 and H2, as

∫ t+∆t

t

(t′ − t)ξ(t′)dt′ = G1(t,∆t)∆t−G2(t,∆t) , (C.20)

∫ t+∆t

t

∫ t′

t

ξ(t′)ξ(t′′)dt′′dt′ =
1

2
G2

1(t,∆t) , (C.21)

∫ t+∆t

t

∫ t′−τ

t−τ

ξ(t′′)dt′′dt′ = G2(t− τ,∆t) , (C.22)

∫ t+∆t

t

(t′ − t)η(t′)dt′ = H1(t,∆t)∆t−H2(t,∆t) , (C.23)

∫ t+∆t

t

∫ t′

t

η(t′)η(t′′)dt′′dt′ =
1

2
H2

1 (t,∆t) , (C.24)

∫ t+∆t

t

∫ t′−τ

t−τ

η(t′′)dt′′dt′ = H2(t− τ,∆t) , (C.25)

∫ t+∆t

t

∫ t′

t

ξ(t′)η(t′′)dt′′dt′ = 0 . (C.26)

The Gaussian variables G1 and G2 as well as H1 and H2 can be simulated with

four Gaussian random variables, Ψ1(t) and Ψ2(t), and Ψ′
1(t) and Ψ′

2(t), of zero

mean and variance one:

G1(t,∆t) =
√

2D∆tΨ1(t) , (C.27)

G2(t,∆t) =

√

2D

3
∆t3

[√
3

2
Ψ1(t) +

1

2
Ψ2(t)

]

, (C.28)

H1(t,∆t) =
√

2K∆tΨ′
1(t) , (C.29)

H2(t,∆t) =

√

2K

3
∆t3

[√
3

2
Ψ′

1(t) +
1

2
Ψ′

2(t)

]

. (C.30)
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Combining all our results, we write the iteration of our algorithm,

x(t + ∆t) = x(t) + f0[x(t)]∆t + f1[x(t)]

{

{f0[x(t)] + bx(t − τ)} ∆t2

2

+ g0[x(t)]G2(t,∆t) +H2(t,∆t)

}

+ b

{

x(t− τ)∆t + {f0[x(t− τ)] + bx(t− 2τ)} ∆t2

2

+ g0[x(t− τ)]G2(t− τ,∆t) +H2(t− τ,∆t)

}

+ g0[x(t)]G1(t,∆t) + g1[x(t)]

{

{f0[x(t)] + bx(t− τ)} ×

[G1(t,∆t)∆t−G2(t,∆t)] +
1

2
g0[x(t)]G

2
1(t,∆t)

}

+H1(t,∆t) .

(C.31)

Consider Eq. (1.10) with additive noise (D = 0 and K = 1). We have

f0[x(t)] = ax(t)− γx3(t), f1[x(t)] = a− 3γx2(t), g0[x(t)] = 1, and g1[x(t)] = 0,

leading to,

x(t + ∆t) =x(t)

(

1 + a∆t +
1

2
a2∆t2

)

+H1(t,∆t)

+ aH2(t,∆t) + bH2(t− τ,∆t) − 3γx2(t)H2(t,∆t)

+ bx(t− τ)(1 + a∆t)∆t− γx3(t)(1 + 2a∆t)∆t

+
1

2
b2x(t− 2τ)∆t2 +

3

2
γ2x5(t)∆t2

− 3

2
γbx(t − τ)x2(t)∆t2 − 1

2
bγx3(t− τ)∆t2 .

(C.32)

However, with multiplicative noise (D = 1 and K = 0), Eq. (1.10) has

f0[x(t)] = ax(t)−γx3(t), f1[x(t)] = a−3γx2(t), g0[x(t)] = x(t), and g1[x(t)] =
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1, and the algorithm is,

x(t + ∆t) = x(t)

[

1 + a∆t + a2 ∆t2

2
+ (1 + a∆t)G1(t,∆t)

+
1

2
(G1(t,∆t))

2

]

+ bx(t − τ)

[

∆t+ a∆t2 + ∆tG1(t,∆t) −G2(t,∆t)

+G2(t− τ,∆t)

]

− γx3(t)

[

2a∆t2 + (G1(t,∆t) + 1)∆t+ 2G2(t,∆t)

]

− γx2(t)x(t− τ)

(

3b∆t2

2

)

− γx3(t− τ)

(

b∆t2

2

)

+ γ2x5(t)

(

3∆t2

2

)

+ x(t− 2τ)

(

b2
∆t2

2

)

.

(C.33)

Equations (C.32) and (C.33) are the algorithms used in this thesis to determine

the bifurcation threshold of the equations considered.





Appendix D
Jung-Risken theory

The correlation function and correlation time of Markovian stochastic differen-

tial equation can be calculated exactly from the so-called Jung-Risken theory

[83]. Consider a Langevin equation of the form

ẋ(t) = h(x) + g(x)ξ(t) , (D.1)

where h(x) and g(x) are respectively the drift and the diffusion coefficient and

where ξ(t) is a Gaussian white noise with mean 〈ξ(t)〉 = 0 and correlation

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′), where D is the intensity of the noise. Equation (D.1)

is understood under the Stratonovich interpretation of stochastic calculus. Its

corresponding Fokker-Planck equation is given by Eq. (B.29). Define the

Fokker-Planck operator L as

L = − ∂

∂x

[

h(x) +Dg(x)
∂g(x)

∂x

]

+D
∂2

∂x2
g2(x) , (D.2)

so that the Fokker-Planck equation is

∂

∂t
p(x, t) = Lp(x, t) . (D.3)
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Assume also that p(x, t) vanishes at the boundaries x = 0 and x = ∞. The sta-

tionary probability distribution function of Eq. (D.3) is given by Eq. (B.30).

Furthermore, the moments of the stationary distribution p(x) are defined by

〈xn〉 =

∫ ∞

0

xnp(x)dx . (D.4)

Define the correlation function C(t′) of the state variable x so that

C(t′) = 〈∆x(t + t′)∆x(t)〉 , (D.5)

where ∆x = x − 〈x〉. Several normalizations of the correlation function exist

in the literature depending on the system under study. For example, the

correlation function is normalized by the squared of the first moment in [82,

141, 142]. We choose to normalize the correlation function C(t′) by its variance

C(0) = 〈x2〉 − 〈x〉2. This choice is also used in [129, 39]. The correlation time

is defined as the area under the normalized correlation function,

T =
1

C(0)

∫ ∞

0

C(t′)dt′ . (D.6)

We simplify the definition of the correlation time [Eq. (D.6)] in this appendix

to obtain an expression that we can compute numerically. In order to do so, use

the definition of the correlation function with respect to the joint probability

density p2(x1, t1; x2, t2) [73]

C(t′) =

∫ ∞

0

∫ ∞

0

p2(x1, t+ t′; x2, t)∆x1∆x2dx1dx2 . (D.7)

Introduce the transition probability W (x1, t
′|x2, 0) and the stationary proba-

bility distribution function p(x2) to rewrite the joint probability distribution
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function as

p2(x1, t+ t′; x2, t) = W (x1, t
′|x2, 0)p(x2) . (D.8)

The transition probability W (x1, t
′|x2, 0) satisfies the Fokker-Planck equation

∂

∂t
W (x1, t

′|x2, 0) = LW (x1, t
′|x2, 0) . (D.9)

A formal solution of Eq. (D.9) with initial conditionW (x1, 0|x2, 0) = δ(x1−x2)

is

W (x1, t
′|x2, 0) = eLt′δ(x1 − x2) . (D.10)

Substitute Eq. (D.10) into Eq. (D.8) and use the resulting expression in Eq.

(D.7). Integrate then by parts [134, 73] to obtain

C(t′) =

∫ ∞

0

∆x1e
Lt′∆x1p(x1)dx1 . (D.11)

We make the change of variable x1 → x to simplify the notation. We next

define time-dependent terms in Eq. (D.11) as a new function

p̂(x, t′) = eLt′∆xp(x) . (D.12)

This new function satisfies the Fokker-Planck equation

∂

∂t′
p̂(x, t′) = Lp̂(x, t′) , (D.13)

with initial condition p̂(x, 0) = ∆xp(x). In those terms, Eq. (D.11) is

C(t′) =

∫ ∞

0

∆xp̂(x, t′)dx . (D.14)
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Substitute Eq. (D.14) into the definition of the correlation time, Eq. (D.6),

T =
1

C(0)

∫ ∞

0

∆xdx

∫ ∞

0

p̂(x, t′)dt′ , (D.15)

and define further a new function ψ(x) so that

ψ(x) =

∫ ∞

0

p̂(x, t′)dt′ . (D.16)

Integrate then the Fokker-Planck equation defined in Eq. (D.13) with respect

to time and use the initial condition p̂(x, 0) = ∆xp(x) to derive

−∆xp(x) = Lψ(x) . (D.17)

Integrate then Eq. (D.17) with respect to x and use the formal form of the

Fokker-Planck operator,

−
[

h(x) +Dg(x)
∂g(x)

∂x

]

ψ(x) +D
∂

∂x

[

g2(x)ψ(x)
]

= f(x) , (D.18)

where

f(x) = −
∫ x

0

∆x′p(x′)dx′ . (D.19)

The homogeneous solution of Eq. (D.18) is the stationary probability distri-

bution function and leads to a vanishing term. The inhomogeneous solution

has the form

ψ(x) = p(x)

∫ x

0

f(x′)

g2(x′)p(x′)
dx′ . (D.20)
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Substitute Eq. (D.20) into Eq. (D.15) and integrate by parts. It yields to a

simple expression for the correlation time

T =
1

C(0)

∫ ∞

0

f 2(x′)

g2(x′)ps(x′)
dx′ . (D.21)

We use this simplified expression on Eq. (1.10) without delayed feedback

(b = 0),

ẋ(t) = ax(t) − γx3(t) +
√
Dx(t)ξ(t) , (D.22)

where a, γ, and D are constants, and where ξ(t) is a Gaussian white noise with

mean 〈ξ(t)〉 = 0 and correlation 〈ξ(t)ξ(t′)〉 = 2δ(t− t′). Results are known for

this expression [83]. Its stationary probability density ps(x) is found from Eq.

(B.30)

p(x) = 2(βγ)βaΓ−1(βa)|x|2βa−1e−βγx2

, (D.23)

where β = (2D)−1, and where Γ(x) is the gamma function. In those terms,

the stochastic threshold is located at ac = 0. Furthermore, the nth moment of

the state variable is

〈xn〉 =

∫ ∞

0

xnp(x)dx = (βγ)−n/2Γ−1(βa)Γ(βa+ n/2) . (D.24)

Substitute Eq. (D.23) into Eq. (D.19) so that

f(x) = 〈x〉
[

P (βa, βγx2) − P (βa+ 1/2, βγx2)
]

, (D.25)

where P (η, ω) is the incomplete gamma function defined by

P (η, ω) = Γ−1(η)

∫ ω

0

qη−1e−qdq . (D.26)



152

Using the n = 1 and n = 2 moment of Eq. (D.24), together with g(x) = D1/2x

and Eq. (D.25), the correlation time corresponding to the random process

described by Eq. (D.22) is

T =
β(βγ)−βaΓ(βa+ 1)Γ2(βa+ 1/2)

Γ2 (βa+ 1) − (βa) Γ2 (βa+ 1/2)
×

∫ ∞

0

[P (βa, βγx2) − P (βa+ 1/2, βγx2)]
2

|x|2βa+1e−βγx2 dx .

(D.27)

Equation (D.27) can be evaluated numerically. Moreover, one can expand

Eq. (D.27) for large and small intensity of the noise D and derive a Padé

approximant from the results of the expansion. Padé approximant is a tool

to express a function originally in power series by a rational function [143].

We perform next this approximation. Consider first the expansion of the

correlation time for small noise intensity. In order to do so, we use a scaled

version of Eq. (D.22). In fact, perform first the change of variable x =

(a/γ)1/2x′ so that Eq. (D.22) is,

(

a

γ

)1/2
d

dt
x′(t) = a

(

a

γ

)1/2

x′(t) − γ

(

a

γ

)3/2

x
′3(t)

+

(

a

γ

)1/2

x′(t)ξ(t) .

(D.28)

Eliminate then γ from Eq. (D.28) and divide both sides by a. Rescale further

time t′ = at and the intensity of the noise D′ = D/a to obtain the reduced

equation

ẋ′(t′) = x′(t′) − x
′3(t′) + x′(t′)ξ′(t′) , (D.29)

where ξ′(t′) is a Gaussian white noise with mean 〈ξ ′(t′)〉 = 0 and correla-

tion 〈ξ′(t′)ξ′(t′′)〉 = 2D′δ(t′ − t′′). Consider then the stationary probability

distribution function defined in Eq. (D.23). This quantity has extremum at
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x′ = ±
√

1 −D′. Consider then the change of variable

q = 1 +
√
D′x′ , (D.30)

and write the Fokker-Planck operator associated to Eq. (D.29),

L = − ∂

∂q

[

(1 +D′) q − q3
]

+D′ ∂
2

∂q2
q2 , (D.31)

in terms of the new variable Eq. (D.30),

L =2
∂

∂x
x +

∂2

∂x2
+ (D′)

1/2

[

∂

∂x
(3x2 − 1) + 2

∂2

∂x2
x

]

+D′
[

∂

∂x
(x3 − x) +

∂2

∂x2
x2

]

,

(D.32)

where we have make the change of variable x′ → x to simplify the notation.

Furthermore, the adjoint of the Fokker-Planck operator [Eq. (D.32)] is,

L† = − 2x
∂

∂x
+

∂2

∂x2
+ (D′)

1/2

[

−(3x2 − 1)
∂

∂x
+ 2x

∂2

∂x2

]

+D′
[

−(x3 − x)
∂

∂x
+ x2 ∂

2

∂x2

]

.

(D.33)

We first compute the moments Mn = 〈xn〉. Use the following identity

∫

(

L†xn
)

p(x)dx = 0 , (D.34)

together with

L†xn = − 2x(nxn−1) + n(n− 1)xn−2

+ (D′)1/2
[

−(3x2 − 1)(nxn−1) + 2xn(n− 1)xn−2
]

+D′ [(x− x3)(nxn−1) + x2n(n− 1)xn−2
]

,

(D.35)
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Coefficients M
(ν)
n of the moment

0 1 2 3 4 5 6

0 1 -1/4 1/2 -1/8 3/4 5/16 15/8

1 0 1/32 -1/16 3/16 -7/16

2 0 5/128 5/64

Table D.1: Coefficients M
(ν)
n of the expansion defined in Eq. (D.37) of the

moment Mn = 〈xn〉.

n
ν

in order to obtain the relations,

0 = − 2Mn + (n− 1)Mn−2 + (D′)1/2 [(2n− 1)Mn−1 − 3Mn+1]

+D′ [nMn −Mn+2] .

(D.36)

To find the moments Mn, insert the following expansions,

M2n =

∞
∑

ν=0

(D′)νM
(ν)
2n

M2n+1 =
√
D′

∞
∑

ν=0

(D′)νM
(ν)
2n+1 ,

(D.37)

in Eq. (D.36). The coefficients M
(ν)
n then obtained are shown in Tab. D.1.

We can further obtain expansions for the correlation function K(t′) defined as

K(t′) = 〈∆xn(t+ t′)∆x(t)〉 = 〈xn(t+ t′)x(t)〉 − 〈xn〉〈x〉 . (D.38)
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In fact, take the time derivative on both sides of Eq. (D.38) and use

〈xn(t+ t′)x(t)〉 =

∫

xneLt′xp(x)dx , (D.39)

and

d

dt′
〈xn(t+ t′)x(t)〉 =

∫

(L†xn) eLt′xp(x)dx , (D.40)

to obtain an hierarchy of differential equations

K̇n =n{−2Kn + (n− 1)Kn−2

+ (D′)1/2 [(2n− 1)Kn−1 − 3Kn+1] +D′ [nKn −Kn+2]} ,
(D.41)

where Kn = 0 for n ≤ 0. Terms involving the moments Mn vanish because of

Eq. (D.36). The initial conditions of Kn are thus given by

Kn(0) = Mn+1 −M1Mn . (D.42)

The initial condition Kn(0) can be found by inserting the expansions

K2n(0) =
√
D′

∞
∑

ν=0

(D′)νK
(ν)
2n (0)

K2n+1(0) =

∞
∑

ν=0

(D′)νK
(ν)
2n+1(0) ,

(D.43)

in Eq. (D.42). The coefficients K
(ν)
n (0) then obtained are shown in Tab. D.2.

We then define the scaled correlation times T ′
n = aTn according to Eq. (D.6),

but not normalized by the variance,

T ′
n =

∫ ∞

0

Kn(t′)dt′ . (D.44)
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Coefficients K
(ν)
n (0) of the correlation function

1 2 3 4 5

0 1/2 0 3/4 1/2 15/8

1 -1/8 5/32 -15/32

2 -1/16

Table D.2: Coefficients K
(ν)
n (0) of the expansion defined in Eq. (D.43) of the

correlation function K(t′) = 〈xn(t+ t′)x(t)〉 − 〈xn〉〈x〉 evaluated at t′ = 0.

n
ν

With this definition, we obtain by using Eq. (D.41),

−Kn(0) =n{−2T ′
n + (n− 1)T ′

n−2

+ (D′)1/2
[

(2n− 1)T ′
n−1 − 3T ′

n+1

]

+D′ [nT ′
n − T ′

n+2

]

} .
(D.45)

The correlation time T ′
n are found by inserting the expansions

T ′
2n =

∞
∑

ν=0

(D′)νT
′(ν)
2n

T ′
2n+1 =

√
D′

∞
∑

ν=0

(D′)νT
′(ν)
2n+1 .

(D.46)

in Eq. (D.45). Results for these coefficients are shown in Tab. D.3. The

correlation time T normalized by the variance, in terms of the original variables
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Coefficients T
′(ν)
n of the scaled correlation time

1 2 3 4 5

0 1/4 -3/16 3/8 -5/16 15/16

1 5/32 -1/64 -11/64

2 -1/64

Table D.3: Coefficients T
′(ν)
n of the expansion of the scaled correlation time

Tn, Eq. (D.46).

n
ν

is,

T =
T1

K1(0)
=

1

2a
+

7D

16a2
+

9D2

64a3
+ O

(

D3

a4

)

. (D.47)

Note that Eq. (D.47) is independent of γ. Equation (D.47) constitutes the

expansion of the correlation time for small noise intensity. The limit of Eq.

(D.27) as the intensity of the noise D is large can also be obtained. In fact,

consider the following identity [139],

P (βa, βγx2) = P (βa+ 1, βγx2) + (βγx2)βae−βγx2

Γ−1(βa+ 1) , (D.48)

where P (η, ω) is the incomplete gamma function defined as

P (η, ω) =

∫ ω

0

tη−1e−tdt . (D.49)



158

Use this identity to rewrite the function f(x) [Eq. (D.25)] as follows,

f(x) =〈x〉
[

P (βa+ 1, βγx2) + (βγx2)βae−βγx2

Γ−1(βa+ 1)

− P (βa+ 1/2, βγx2)
]

.

(D.50)

Substitution of Eq. (D.50) in the expression of the correlation time Eq. (D.21)

leads to three terms T = T1 + T2 + T3,

T1 =
〈x〉2
C(0)

∫ ∞

0

(βγx)
β [P (βa+ 1, βγx2) − P (βa+ 1/2, βγx2)]

2

2Γ−1(βa)(βγx2)βa+1e−βγx2 dx , (D.51)

T2 =
〈x〉2
C(0)

∫ ∞

0

(2βγx)
βΓ−1(βa+ 1)(βγx2)βae−βγx2

Γ−1(βa)(βγx2)βa+1e−βγx2 × (D.52)

[

P (βa+ 1, βγx2) − P (βa+ 1/2, βγx2)
]

dx ,

T3 =
〈x〉2
C(0)

∫ ∞

0

(βγx)
βΓ−2(βa+ 1)(βγx2)2βae−2βγx2

2Γ−1(βa)(βγx2)βa+1e−βγx2 dx . (D.53)

Consider the first term, Eq. (D.51). Make the change of variable z = βγx2

and define the integral

I2(β) =

∫ ∞

0

z−(βa+1)ez [P (βa+ 1, z) − P (βa+ 1/2, z)]2 dz . (D.54)

In those terms, Eq. (D.51) is

T1 =
β

2

Γ(βa+ 1)Γ2(βa+ 1/2)

[Γ2(βa+ 1) − (βa)Γ2(βa+ 1/2)]
I2(β) . (D.55)

The same change of variable is applied for the simplification of Eq. (D.52),

but now defines the integral,

I1(β) =

∫ ∞

0

z−1 [P (βa+ 1, z) − P (βa+ 1/2, z)] dz . (D.56)
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In those terms, Eq. (D.52) reduces to

T2 = β
Γ2(βa+ 1/2)

[Γ2(βa+ 1) − (βa)Γ2(βa+ 1/2)]
I1(β) . (D.57)

Finally, the same change of variable is also used for simplification of the third

term. With this change, the infinite integral is the definition of the Γ function

and so the third term reduces to

T3 =
1

2a

Γ2(βa+ 1/2)

[Γ2(βa+ 1) − (βa)Γ2(βa+ 1/2)]
. (D.58)

Combining Eqs. (D.55), (D.57), and (D.58), the expression for the correlation

time is rewritten as

T (β) =
Γ2(βa+ 1/2)

[Γ2(βa+ 1) − (βa)Γ2(βa+ 1/2)]
×

[

β

2
Γ(βa+ 1)I2(β) + βI1(β) +

1

2a

]

.

(D.59)

We now use the assumption that the intensity of the noise D is large to expand

Eq. (D.59) such that,

T (β) = T (0) + β
∂

∂β
T (β)

∣

∣

∣

∣

β=0

+ O(β2) . (D.60)

The first term of Eq. (D.60) is

T (0) =
1

2a

Γ2(1/2)

Γ2(1)
=

π

2a
, (D.61)
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where we have used the known values of the Γ function, Γ(1/2) =
√
π and

Γ(1) = 1. Consider then the second term of Eq. (D.60),

∂

∂β
T (β)

∣

∣

∣

∣

β=0

=
1

2a

{

2aΓ(1/2)Γ′(1/2)

Γ2(1)

− Γ2(1/2)

Γ4(1)

[

2aΓ(1)Γ′(1) − aΓ2(1/2)
]

}

+
Γ2(1/2)

Γ2(1)

[

1

2
Γ(1)I2(0) + I1(0)

]

,

(D.62)

where the sign ′ in Eq. (D.62) denotes the first derivative with respect to β .

The values of the derivative of the gamma function can be found by using the

a tabulated function, the so-called digamma function ψ(z) defined as

ψ(z) = −
∫ ∞

0

e−zt

1 − e−t
dt . (D.63)

Note that by definition

ψ(z) =
d

dz
ln [Γ(z)] =

Γ′(z)

Γ(z)
. (D.64)

In particular, ψ(1/2) = −κ − 2ln(2) and ψ(1) = −κ, where κ = 0.5772... is

the Euler-Mascheroni constant. Hence, we have

∂

∂β
T (β)

∣

∣

∣

∣

β=0

=
π2

2
− 2πln(2) + πI1(0) +

π

2
I2(0) . (D.65)

We then need only need to find the value of the integral I1(β) and I2(β) at

zero. Consider the first integral,

I1(0) =

∫ ∞

0

z−1 [P (1, z) − P (1/2, z)] dz , (D.66)
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and integrate by parts,

I1(0) =ln|z| [P (1, z) − P (1/2, z)]
∣

∣

∣

∞

0

−
∫ ∞

0

ln|z|e−z(1 − Γ−1(1/2)z−1/2)dz .
(D.67)

By definition of the incomplete gamma function, P (1, 0) = P (1/2, 0) = 0

and P (1,∞) = P (1/2,∞) = 1, and so only the second term of Eq. (D.67)

contributes. Furthermore, use the following identity [144],

∫ ∞

0

ln|z|zν−1e−µzdz = − 1

µν
Γ(ν) [ψ(ν) + ln|µ|] , (D.68)

so that Eq. (D.67) simplifies to

I1(0) = −
∫ ∞

0

ln|z|e−z
[

1 − Γ−1(1/2)z−1/2
]

dz = −2ln(2) . (D.69)

Finally, consider the integral I2(β) as defined in Eq. (D.54) and evaluate it at

the origin,

I2(0) =

∫ ∞

0

z−1ez [P (1, z) − P (1/2, z)]2 dz . (D.70)

Note that the incomplete gamma function can be expressed as [139],

P (1, x) = 1 − e−x , (D.71)

and

P (1/2, x) = 2π−1/2

∫

√
x

0

e−u2

du = erf(
√
x) , (D.72)

where erf(x) is the error function. The value of I2(0) can thus be evaluated

numerically by using a continued fraction representation of the error function.
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This leads to

I2(0) = 0.4401 . (D.73)

Combining Eqs. (D.61) and (D.73) and substitute in Eq. (D.60), we thus ob-

tain the expansion of the correlation time for large value of the noise intensity,

T =
π

2a
− A

D
+ O

( a

D2

)

, (D.74)

where A = 1.5421.... Note that the correlation time diverges with respect

to the control parameter with exponent -1. The expansion of the correlation

time at small [Eq. (D.47)] and large [Eq. (D.74)] intensity of the noise can be

combined together to derive the Padé approximant associated to Eq. (D.27).

Padé approximant is a tool to express a function originally in power series by

a rational function [143]. This method provides an analytical rational function

that approximates the integral representation of the correlation time with the

appropriate limit. In terms of the scaled correlation time T ′ = aT , assume a

solution of the form,

T ′ = a0 +
a1D

′ + a2D
′2

b0 + b1D′ + b2D′2 = c0 + c1D
′ + c2D

′2 , (D.75)

where c0 = 1/2, c1 = 7/16 and c2 = 9/64. Equation (D.75) leads to a set of

equations to solve,

a0 = c0 , (D.76)

a1 = b0c1 , (D.77)

a2 = b0c2 + c1b1 , (D.78)
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Furthermore, we impose the following limits determined from Eqs. (D.47) and

(D.74),

lim
D′→∞

T ′ = a0 + a2 =
π

2
(D.79)

and

∂

∂β
T ′(β) = −2A . (D.80)

where A = 1.5421. The last condition implies that

a1 − a2b1 = −A . (D.81)

Then we have

a2 =
π

2
− a0 = 1.0708... , (D.82)

a1 =
c1

c21 + c2a2

(a2
2 − Ac1) = 0.6037... , (D.83)

b0 =
a1

c1
= 1.3800... , (D.84)

b1 =
A+ a1

a2
= 2.0040... , (D.85)

Combine Eqs. (D.82), (D.83), (D.84), (D.85), and a0 = 1/2 and substitute in

Eq. (D.75). In terms of the parameters of the model, the correlation time is

T =
1

2a
+

0.6037Da+ 1.0708D2

1.38a3 + 2.004Da2 + aD2
. (D.86)

Equation (D.86) constitutes the Padé approximant of the correlation time

associated to Eq. (D.22).
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