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Abstract

The search for cosmic strings has been of renewed interest with the advent of preci-
sion cosmology. In this thesis we discuss the possibility of observing cosmic strings
through their signature in the large scale structure. We review the standard picture
of structure formation caused by primordial fluctuations in the matter density and
introduce the notion of cosmic strings while presenting how they would act as early
seeds for structure formation. We also discuss previous work that studied structures
formed from cosmic string loops and the recent result that these could allow for ob-
servational effects by giving rise to significant star formation at early times. Finally
we give a quantitative description of the nonlinear matter density fluctuations that
can form from a scaling network of cosmic string wakes. Specifically, we compute the
distribution of dark matter halos. These halos would possess strong correlations in
position space that should have survived until today. We also discuss the challenges
involved in their detection due to their small size and the complex dynamics of their
formation.

Abrégé

L’intérêt pour la recherche de cordes cosmiques c’est récemment renouvelé avec
l’arrivée de nouvelles technologies permettant d’étudier la cosmologie avec grande
précision. Dans cette thèse, nous discutons de la possibilité d’observer ces cordes cos-
miques par leur effet sur les structures à grande échelle de l’univers. Nous présentons
le savoir standard associé à la formation de structure causée par des fluctuations
primordiales dans la densité de matière. Par la suite, nous expliquons la notion
de cordes cosmiques et leur effet catalyseur sur la croissance de structure. Nous
discutons également des travaux antérieurs qui ont été effectués sur les structures
former par les cordes cosmiques bouclées. Ces travaux démontrent que ces structures
peuvent potentiellement générer des étoiles très tôt dans l’histoire de l’univers, cela
causerait des effets observables. Finalement, nous donnons une description quanti-
tative des fluctuations de densité non-linéaire causée dans le sillage de longues cordes
cosmiques. Spécifiquement, nous calculons la distribution des halos de matière noire.
Ces halos posséderaient de fortes corrélations spatial qui devrait avoir survécues
jusqu’à aujourd’hui. Nous discutons aussi des obstacles, dûs à leurs petites masses
et aux dynamiques complexes de leur formation, auxquels nous devrons surmonter
en essayant de détecter les signaux de ces halos.
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1
Introduction

Cosmic strings are linear topological defects predicted by many models of particle

physics that go beyond the Standard Model, e.g. in supergravity [2], brane inflation

[3] and ”String Gas Cosmology” [4] models. In models which admit these defects,

a network of cosmic strings is inevitably [5] formed during a phase transition in

the very early universe and will persist to the present time. This is true as long

as the phase transition occurred after the period of inflation (provided there was

inflation). Since strings carry energy, they lead to gravitational effects which induce

distinctive signatures in cosmological observations. Since the string tension (which

equals the mass per unit length µ) increases as the energy scale η at the time of

string formation, the magnitude of the predicted signatures of strings increases as

the energy scale grows. Thus, a search for observational signatures of strings allows

us to constrain the physics occurring at energies much larger that can be probed by

earth-based particle accelerators.

It has long been known that cosmic strings are able to produce many interesting

effects for cosmology. In particular, cosmic strings lead to a scale-invariant spectrum

of cosmological perturbations [6]. Initially, the focus of interest was on strings which

have large enough tension to explain the entire amplitude of the power spectrum

[6]. Such strings would need to have a value of the tension given (in dimensionless

units) byGµ ∼ 10−6, whereG is Newton’s gravitational constant. The perturbations

produced by cosmic strings are, however, active and incoherent [7] and hence do not

lead to acoustic oscillations in the angular power spectrum of cosmic microwave

(CMB) anisotropies. Thus, when conclusive evidence for the existence of these
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oscillations was reached [8], it became clear that cosmic strings could not be the

dominant source of structure formation [70] and interest in cosmological effects of

strings collapsed. However, in light of the fact that in many models of inflation (or

other explanations for the dominant Gaussian component of the power spectrum

of cosmological perturbations) cosmic strings are predicted, there has lately been a

revival of interest in searching for cosmic strings (see e.g. [10] for a recent survey).

A second reason for the revival of interest in searching for strings is that there have

been great advances and technological breakthroughs in observational cosmology

which are now making it possible to search for signals of cosmic strings with much

lower tensions than those previously considered.

The searches have been progressing in many directions. First of all, cosmic

strings will contribute to the power spectrum of density fluctuations [6] and to

associated CMB anisotropies [11]. Signatures of these fluctuations can be searched

for in optical and infrared galaxy surveys and in CMB temperature anisotropy maps.

Cosmic strings leave behind distinctive signals in 21cm redshift surveys [82] and in

CMB polarization maps [13]. Considerable work has been done to study the effects

of strings in the angular power spectrum of CMB temperature and polarization

maps [14]. Analyses combining the SPT [15] and WMAP 7-year [16] data were able

to place the bound Gµ ≤ 1.7 × 10−7 [17] 1, and a similar bound can be obtained

[19] using data from the ACT telescope [20]. Improved bounds might be achievable

by analyzing CMB maps using statistical tools which are designed to pick out the

string-induced non-Gaussianities (see e.g. [21, 22] for some recent studies).

In addition to these purely gravitational effects, cosmic strings can be responsible

for the production of highly energetic bursts of particles [23], electromagnetic radi-

ation in a wide range of frequencies [24] and they can help seed coherent magnetic

fields on galactic scales [25]. Cosmic string loops decay by emitting gravitational

radiation [26]. Hence, strings lead to a scale-invariant stochastic background of

1See [18] for earlier bounds using only the WMAP data.
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gravitational waves [27] which can be constrained by pulsar timing measurements.

Cusps on string loops may lead to additional emission of gravitational waves [28],

and a resulting constraint on the cosmic string tension of Gµ ≤ 4×10−9 [29] has been

reported. However the bound is sensitive to details of cosmic string cusps which are

subject to potentially large back-reaction effects [30]. A bound of Gµ ≤ 5.2× 10−7

resulting from constraints on the amplitude of gravitational radiation from pulsar

timing constraints is more realistic [31].

Observational optical astronomy is also experiencing a phase of rapid progress.

Larger telescopes are probing the universe at increasing depth, i.e. at increasing

redshift. Since cosmic strings produce non-linear density perturbations at arbitrarily

large redshifts, it is expected that the signals of cosmic strings will stand out from

the structures produced by the main source of fluctuations (Gaussian fluctuations)

more clearly at high redshifts than at low ones. Signals from structures seeded by

string loops has been studied in a recent paper by Schlaer et al. [32] (see also [33] for

earlier work) who found that loops could cause significant star formation to occur

at high redshift. Therefore cosmic strings with enough mass will have an impact on

the epoch of reionization [34, 59]. String loops would also seed dense dark matter

clumps whose population today could produce a background of gamma radiation

sensitive to the Fermi telescope [36].

In this thesis we address the question of whether cosmic string wakes can produce

structures that would allow for observational signatures. In chapter 2 we give a

review of the standard knowledge of structure formation. Afterwards we do the

same with topological defects in chapter 3, here we mostly focus on covering the

notion of cosmic strings along with their dynamics and effects in a cosmological

setting. In chapter 4 and 5 we review the literature describing how cosmic strings

seeds the growth of structures at very early time. In chapter 5 we also expand on

the current literature by computing the mass functions of halos formed in cosmic

string wakes and compare them with the expectations from the standard paradigm.
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Finally in chapter 6 we explore some observational signals but argue that their

detection would be incredibly difficult and also unlikely for the cases we considered.
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2

Structure Formation

2.1 Lightning Introduction to Big Bang Cosmology

The big bang picture of the universe is based on the cosmological principle which

states that the universe is spatially homogeneous and isotropic on very large scales.

A description of the universe that includes these features can be obtained from gen-

eral relativity by considering the most general metric compatible with the features.

This yields the Friedmann-Lematre-Robertson-Walker (FLRW) metric,

ds2 = dt2 − a(t)2dx2 = dt2 − a(t)2
[ dx2

1− kx2
+ x2dΩ2

]
. (2.1)

with dΩ2 = dθ2 + sin2 θdφ2, and the value k ∈ {0, 1,−1} representing the curvature

of the universe. We will assume the universe flat (k = 0) in this thesis, we shall

soon see how this is justified. The quantity a is called the scale factor and sets the

distance between objects on a constant t hypersurface at fixed comoving positions.

Approximating matter by a perfect fluid, spatial homogeneity and isotropy re-

stricts the stress-energy tensor to be of the form,

T µν = diag(ρ,−p,−p,−p). (2.2)

The conservation of the stress-energy tensor is written as ∇µT
µν = 0 and its ν = 0

component yields, using the above metric and stress-energy tensor, the continuity

equation:

ρ̇+ 3
( ȧ
a

)
(ρ+ p) = 0. (2.3)
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The dynamics of the metric is related to the energy and matter density through

the Einstein’s equation Gµν = 1
M2

p
Tµν where M2

p = (8πG)−1 is the reduced Planck

mass. The 00 component and the trace of this equation gives, respectively, the two

following Friedmann equations: ( ȧ
a

)2

=
1

3M2
p

ρ (2.4)

( ä
a

)
= − 1

6M2
p

(ρ+ 3p). (2.5)

Solving the Friedmann equation will allow us to obtain the explicit form of a(t).

To do so we first need to specify an equation of state (E.O.S.) for matter which

we take to be of the form wρ = p with w constant. Different values of w will

describe the evolution of a(t) in a universe dominated by different types of matter.

For example, w = 1/3 corresponds to a radiation (r) dominated universe, w = 0

corresponds to a non-relativistic matter (m) dominated universe and w = −1 is from

a vacuum energy (Λ) dominated universe. Note that relativistic matter is labelled

as radiation since it has w = 1/3, when we speak of ”matter” we shall refer to the

kind that is non-relativistic and hence pressureless (w = 0). Combining the E.O.S.

with equations 2.3 and 2.4 we obtain,

a(t) ∝ t1/2 for radiation (r)

a(t) ∝ t2/3 for matter (m)

a(t) ∝ eHt for vacuum/dark energy (Λ) (2.6)

We define the Hubble parameter H = ȧ
a
. This sets the characteristic (Hubble)

time and (Hubble) radius of the universe by 1/H (note that we set c = 1). We can

rewrite the Friedmann equation 2.4 by defining ρc(t) = 3M2
pH(t)2 and Ωi = ρi/ρc

to get,
H(t)

H0

=
[Ωm

a3
+ ΩΛ +

Ωr

a4
+

Ωk

a2

]1/2

(2.7)
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where H0 ≈ 70.0 ± 2.2km · s−1 · Mpc−1, Ωm = Ωb + Ωdm, Ωdm ≈ 0.233 ± 0.023,

Ωb = 0.0463 ± 0.0024, ΩΛ = 0.721 ± 0.025, Ωk ≈ 0 [42] are the measured present

day value of each quantity after choosing the normalization scale a(t0) = 1. This

form makes it easy to see which matter type dominates at which time. For instance,

since a increases, our universe will eventually be dominated by the non zero ΩΛ.

The energy of the spatial curvature Ωk is consistent with zero. Such a small value

for this quantity can be explained by inflation and is the reason we have set k = 0

in equation 2.1.

There are three important regions of time for which the dynamics of a differs (as

shown in 2.6) and hence affects structure formation differently. To determine these

we will talk in terms of redshift, which is a very convenient way to parametrize time.

A photon’s wavelength will get stretched, i.e. redshifted, by the expansion of the

universe. By measuring this stretching we can determine how long ago, and also

how far away, it was emitted. Let t0 be the current age of the universe, the redshift

is defined as,

1 + z(t) =
a(t0)

a(t)
=

1

a(t)
, (2.8)

where in the second equality we have used that a(t0) = 1. In the early universe,

radiation was the dominant player until matter had time to catch up. The tran-

sition from a radiation to matter dominated universe happened at a redshift of

zeq ≈ 3300, the redshift of matter-radiation energy density equality. Afterwards

matter dominates until redshift z < 1 where the dark energy contribution becomes

important.

2.2 Linear Evolution of Newtonian Perturbations

Even though the universe is homogeneous on large scales, it is clear that this does

not hold for small scales. The center of the sun looks very different than the near

vacuum of outer space. Structures such as galaxies and stars have been created

from initially small fluctuations in the energy density, which can be detected as
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anisotropies in the CMB’s temperature as fluctuations with amplitude of 10−5 com-

pared to the background. Here we give a qualitative description of the evolution of

density perturbations on small scales (i.e. much smaller than the Hubble radius).

We will also assume that the matter and radiation fluid are decoupled. This is the

case for the dark matter component at any moment of the universe other than its

very beginning.

Since non-relativistic matter in the universe acts like a fluid we can treat the

dynamics of perturbations using hydrodynamics, the relativistic case is more com-

plicated and will be ignored here1. We will work in comoving coordinates ~x instead

of the physical coordinate ~r that we would measure from experiments, they are re-

lated by ~r = a(t)~x.

Lets define the pressure by p, the energy density by ρ, the speed of the fluid by ~v

and the gravitational potential by Φ and consider the following equations,

ρ̇m + a−1 ~∇x · (ρm~v) = 0

d~v

dt
+ a−1(~v · ~∇x)~v +

1

ρm
a−1 ~∇xpm + a−1 ~∇xΦ = 0

∇2
xΦ = 4πa2Gρt (2.9)

pm = p(ρm).

In order, these equations are: the continuity equation for energy density, the Euler

equation, the Poisson equation of Newtonian gravity, and the equation of state. Note

how the Poisson equation depends on the total energy density ρt = ρm + ρr. The

other equations only refer to the matter quantities since it is this part of the fluid

that we want to describe. The appearance of ρr in the Poisson equation describes

how perturbations in the radiation component can seed perturbations in the matter

component.

Inserting the following perturbed quantities,

ρm(t, ~x) = ρm0 (t)(1 + δm(t, ~x))

1See [39] or [43] for a relativistic treatment.
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~vm(t, ~x) = ~vm0 (t, ~x) + δ~vm(t, ~x)

pm(t, ~x) = pm0 (t) + δpm(t, ~x). (2.10)

in the above ansatz and linearizing to first order, allows us to write the following

equation of motion for δm, in Fourier space (∇ → ±ik),

δ̈m + 2H ˙δm + c2
sk

2δm − 4πG(ρm0 δm + ρr0δr) = 0, (2.11)

where c2
s = dp

dρm
. This equation describe the dynamics of the matter perturbations

δm.

In the radiation era, ρr0 is dominant so that H = 1
2t

and any radiation per-

turbations will seed matter perturbations. Restricting ourselves to the large scale

behavior (i.e. c2
sk

2 is negligible, which is easily attainable for non-relativistic matter

where c2
s is already quite small), one can show that δr ∝ a(t)2 [39]. Using this with

the assumption ρm0 δm � ρr0δr, we can find a growing solution of the form δm ∼ ln(a)

to equation 2.11. We will see shortly that these perturbations grow much faster in

the matter dominated phase.

However we will be mainly interested in the evolution of fluctuation due to cosmic

strings which act like a non relativistic matter perturbation such that ρm0 δm � ρr0δr

and hence eq. 2.11 becomes,

δ̈m + 2Hδ̇m = 4πGρmδm. (2.12)

Since H2 = 8πG(ρm + ρr) we can define y = ρm/ρr and rewrite equation 2.12 as,

∂2δm
∂y2

+
2 + 3y

2y(1 + y)

∂δm
∂y
− 3

2y(1 + y)
δm = 0. (2.13)

This has two solutions, namely [40]

D1(y) = y + 2/3, (2.14)

D2(y) = D1(y)ln
[√1 + y + 1√

1 + y − 1

]
− 2
√

1 + y. (2.15)
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Hence in the radiation dominated era where y � 1 the perturbation does not grow

appreciably. Moreover since the radiation growth is independent on the CDM per-

turbations to zero’th order in y then, to linear order, cosmic strings will seed no

growth of matter perturbations before teq, which is the time when our universe be-

comes matter dominated! This growth impediment of matter perturbations in the

radiation era is called the Meszaros effect.

In the matter dominated regime, the Hubble constant is now H = 2
3t

and radia-

tion perturbations are negligible so that equation 2.11 becomes,

δ̈m +
4

3t
˙δm + (c2

sk
2 − 4πGρm0 )δm = 0, (2.16)

Equation 2.16 introduces a length scale, called the Jeans length, defined by the

wavelength with wavevector kJ =
(

4πGρm0
c2s

)1/2

. This length scale marks the transition

between when the outward fluid pressure or the inward gravitational force becomes

the dominant effect. For k � kJ the pressure dominates and perturbations have a

decaying oscillatory solution,

δk(t) ∼ a−1/2 exp
[
± icsk

∫
dt′a(t′)

]
, (2.17)

while for k � kJ matter is accreted by gravitational infall and we obtain,

δk(t) = c1t
2/3 + c2t

−1/2. (2.18)

Hence one solution is growing as the scale factor a(t) and the other is decaying. If we

use a more general H which also incorporates the effect of a non zero cosmological

constant Λ, we find that the growing mode can be given by a growth factor δm ∼ D(t)

[41] where,

D(t) ∝ (ΩΛa
3 + Ωm)1/2

a3/2

∫
a

a3/2da

(ΩΛa3 + Ωm)3/2
. (2.19)

Note that the effect of Hubble friction (the 3Hδ̇m term in 2.16) is drastic to the

dynamics of perturbations: if H = 0 the solution of modes with k < kJ would grow

exponentially.
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2.3 Non-linear growth

To study the evolution of matter overdensities in the non-linear regime, we use the

simplified assumption that we are dealing with a localised spherical overdensity. We

also assume that we are in an Einstein-de Sitter universe (Ωm = 1, Ωr = ΩΛ = 0),

which is a valid approximation for 1 ≤ z ≤ zeq.

Following the discussion in section 8 of Padmanabhan’s book [43], we consider a

sphere of radius r centered around the spherical perturbation. We write the energy

density inside the shell as ρ = ρ0 + δρ = ρ0(1 + δ) and follow the trajectory of a

particle at the boundary which obey the as equation of motion (EOM),

r̈ = −GM0

r2
− GδM

r2
, (2.20)

where M0 = 4π
3
ρ0r

3 = constant and δM =
∫
V

d3xδρ with V being the shell’s volume.

We can write r̈ = −GM
r2

with M = ρ0(ti)
4π
3
r3
i (1 + δ̄i) where the subscript i denotes

that we are dealing with the initial value of each quantity and the bar denotes

the average inside the shell. A shell will be bound and eventually turn around if

its energy is smaller than 0: E = Ki + Ui < 0. The initial kinetic energy of the

particles on the shell comes from the Hubble flow Ki =
H2

i r
2
i

2
while the gravitational

energy is Ui = GM
ri

= 1
2
H2
i r

2
i (1 + δ̄i). Since at turnaround all the energy is in U , we

can find the radius at which this happens. By equating

Ei =
GM

rta
= U(tta),

then given a surface with initial radius ri we find the turnaround radius rta to be,

rta
ri

=
(1 + δ̄i)

δ̄i
. (2.21)

We can also write the solution to equation 2.20 in parametric form by using

r = A(1− cos(θ)), A =
rta
2

=
ri
2

1 + δ̄i
δ̄i

(2.22)

t+ T = B(θ − sin(θ)), B =
( A3

GM

)1/2

=
1 + δ̄i

2Hiδ̄
3/2
i

. (2.23)
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At ti we must impose the boundary conditions r(θi) = ri and t(θi) + T = ti + T

which allows us to determine T and θi. The turnaround angle is θ = π so given δ̄i

and ri we can write down the turnaround time,

tta =
1

2Hi

(1 + δ̄i

δ̄
3/2
i

)
(π − θi + sin(θi)) + ti, (2.24)

with θi = ArcCos
(
1 − 2δ̄i

1+δ̄i

)
. More importantly, we can also give an expression for

the average density within our shell ρ(t) = 3M
4πr3

by replacing {M, r} by {t, θ},

ρ(θ, t)

ρ0(t)
=

9

2

(θ − sin θ)2

(1− cos θ)3
, (2.25)

here ρ0 = 1/(4πGt2) is the background density of the universe. At turnaround we

find ρ/ρ0 ≈ 5.6 which means that any spherical shell that collapses does so when

it becomes 5.6 times denser than the background. In other words, the concentric

shells slows down at different rate (faster for smaller ones) and hence their density

decreases at a smaller rate than the background.

At some point the shells decouple from the Hubble flow and start collapsing.

This increases the density inside the shell until the pressure and gravitational force

finds an equilibrium state. According to the virial theorem, this balance happens

when 2K = −U and implies a virialized radius that is half of the turnaround

radius 2rvir = rta, hence the density increases by a factor of 23 from the value at

turnaround. By symmetry it should also take as long for the shell to collapse as it

took it to decouple from the Hubble flow, hence tcol = 2tta and so the background

density has time to decay by a factor of 22. Therefore we consider objects that has

ρ(t)/ρ0(t) ≈ 22 × 23 × 5.6 ≈ 180 to be virialized. This allows us to determine the

properties of our defined collapsed objects such as their radius rvir, simply from by

knowing their mass M and the redshift z at which they collapsed [41],

M ≈ 4π

3
r3
vir180ρ0(z)→ rvir ≈

( GM
90H2

0

)1/3 1

1 + z
. (2.26)
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Using this and the virial theorem, we are able to find the average kinetic energy of

the halo’s protons and hence its temperature. Let mp be the protons mass and kb

the Boltzmann constant,

Tvir =
mpv

2
vir

3kb
=
mp

3kb

(GM
rvir

)
≈ 1.5

mp

kb
(H0GM)2/3(1 + z). (2.27)

This temperature holds valuable information. If it is high enough so that the

hydrogen atoms have enough energy to excite each other in inelastic collisions, then

as they bump into each other, they radiate away as they transition back to their

ground state. Hence the overall kinetic energy in the hydrogen atoms drops and the

gas condenses towards the center of the halo. This is how the density of matter is

able to increase in order to eventually give rise to stars. The required temperature

to have efficient star formation is usually taken to be 104 degree kelvins. We will

discuss this in more detail when determining if structures created by strings can

harbor star formation. Note that the picture is different for dark matter since it

has very weak interactions; dark matter particles cannot lose their kinetic energy

through collisions and therefore their distribution stays very spread out. This is why

we refer to dark matter halos around galaxies and their clusters. We will employ

this terminology to talk about collapsed clumps of matter.

2.4 Predicting the number of virialized objects

We now turn our attention to the Press-Schechter formalism which gives an esti-

mate of the number of halos with a given mass at different redshifts. Our previous

exploration of the non-linear regime is useful in that it allows us to talk about

non-linear dynamics using linear perturbation theory. In the linear regime we have

δL(t) = δ̄(ti)D(t)/D(ti). Inserting the time of virialization (2ta) into this ansatz we

obtain δL = 1.686 for an Einstein-de Sitter universe [41]. The linear analysis under-

predicts the actual value by a factor of 100, but this is fine if we are just interested in

devising a condition that tells us when stuff has collapsed. Our condition is simply
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that regions of space have virialized at the time their linear overdensity has grown

to a value δL = 1.686!

We will see how this is useful in a moment. We wish to predict the number of

collapsed objects of different mass that we should observe. Performing such a pre-

diction requires us to determine the value of δ̄(ti, R), the initial average overdensity

on a comoving length scale R. This will be a statistical value given by the root

mean square in the initial density fluctuation. Consider the Fourier modes δk of the

local overdensity δ(x) which are given by,

δk =

∫
dx3δ(x)e−ik·x. (2.28)

Far in the past, the value of each mode δk is drawn from a nearly Gaussian

distribution. This statement can be made since δ(x) at the time of recombination

trec is related to the CMB anisotropies: photons trying to escape dense regions gets

redshifted by escaping their gravitational well and hence the temperature in that

location decreases. These CMB anisotropies can be measured and the modes in

their Fourier decomposition have this Gaussian property, hence so must δk. We can

characterize the variance of δk by the power spectrum P (k) defined by,

〈δkδ∗k′〉 = (2π)3P (k)δ(3)(k− k′). (2.29)

Inflationary scenarios predict that P (k) ∝ kn with n ≈ 1, this is called a scale

invariant spectrum. However as the modes enter the horizon recall that they start

to evolve in different ways depending on whether we are in the radiation or matter

dominated era. This leads to a turnover in the power spectrum at the scale of equal

matter-radiation energy density k−1
eq . Therefore on scales k � keq we have P (k) ∝ k

while for k � keq we have P (k) ∝ kn−4. Figure 2.1 shows the current large scale

power spectrum. Note the bend at keq ≈ 0.01 h/Mpc and the subsequent oscilla-

tions, here we introduced h = H0

100
s Mpc

km
≈ 0.7.
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Figure 2.1: Current day power spectrum on large scales which are still well approximated by linear
perturbation theory. On smaller scales, gravitational clustering becomes important and corrections
to the linear theory must be considered. This can be done analytically by adding loop corrections
to our original two point function [45] or, as studied more recently, by taking an effective field
theory approach [46]. However to obtain the power spectrum on very non-linear scale we must
resort to N-body simulations. This power spectrum was plotted using data supplied by [47]
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One can use the power spectrum to determine the variance of mass fluctuation

on a given comoving length scale R. Consider a sphere of comoving radius R, we

define the window function W (y) to equal 3/(4πR3) inside the sphere and 0 outside

so that
∫
dy3W (y) = 1. We can then construct the smoothed density perturbation

field δW (x) =
∫
dy3δ(x + y)W (y) which follows a Gaussian distribution of zero

mean. The variance of the overdensity inside the sphere 〈δW (x)2〉 = σ2(R) can then

be expressed in the nice form,

σ2(R) =

∫ ∞
0

dk

2π2
k2P (k)

[3j1(kR)

kR

]2

, (2.30)

where j1(kR) =
(
sin(kR)− kRcos(kR)

)
/(kR)2 is a factor coming from the Fourier

transform due to W (x). The theory does not allow us to calculate the overall nor-

malisation of the power spectrum, therefore it is customary to normalise it so that it

agrees with the measured value of σ8 = σ(R = 8h−1Mpc). According to the WMAP

9-year results [42], σ8 = 0.821± 0.023.

Now lets see how to use σ(R) to estimate the number of dark matter halos. The

power spectrum is redshift dependent but we can evolve it linearly to the present

day, this yields a linear value of σ(R) at some fixed redshift which we take to be

0. One might ask the question: what is the probability that a sphere of comoving

radius R has an average linear overdensity larger than δ′ at z = 0. Since σ(R)

measures the variance of such fluctuations, the answer will simply be

P (> δ′) =

∫ ∞
δ′

1√
2πσ(R)2

exp(−δ̃2/(2σ(R)2))dδ̃. (2.31)

Now recall that a region with δ′ = 1.686 implies that the mass contained inside

it must have collapsed into a virialized object. Now define,

δc(z) =
1.686

D(z)
, (2.32)

where D(z) is the growth function, as defined in 2.19, and normalized such that

D(0) = 1. Then for δ′ = δc(0) the quantity in equation 2.31 measures the probability
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that a region of comoving radius R has collapsed at z = 0 and is now part of a halo!

We can do this for any z. A region that has collapsed at redshift z will have

δlin(z) ≥ 1.686 at that redshift, so this implies a δlin(0) = δ′ ≥ δc(z) after linearly

interpolating to redshift 0 and using this value in 2.31 would give us the probability

that such a region collapsed at a redshift z. An apparent problem here is that the

quantity 2.31 is always smaller than 1/2. To fix this we must multiply the final

answer by 2. Therefore the probability that the mass inside a comoving sphere of

radius R has collapsed at redshift z is given by,

P (R, z) = 2

∫ ∞
δc(z)

1√
2πσ(R)2

exp(−δ̃2/(2σ(R)2))dδ̃. (2.33)

= Erfc
( δc(z)√

2σ(R)

)
. (2.34)

The seemingly ad hoc factor of 2 takes into account regions that have δ′ < 1.686

but might be part of larger regions who themselves have δ′ ≥ 1.686. It was shown

by Bond et al. [44] that those situations gave precisely this extra factor of 2.

As we’ve seen in the previous section, we can write a relation between a comoving

volume R and the mass it contains at a given redshift by considering the background

density ρ(z),

M =
4π

3
R3ρ(z). (2.35)

Hence instead of speaking of the probability that the mass in a comoving volume V

has collapsed, we can speak of the probability that a halo of mass M has formed.

The probability in equation 2.33 can also be interpreted as the fraction of matter

in bound halos. At a given redshift dP = P (M) − P (M − dM) would count the

fraction of particles in halo’s of mass [M − dM,M ], this allows us to finally write

an expression for the comoving number density of halos of mass M ,

n(M)dM =
ρ

M

dP

dM
dM, (2.36)
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and the comoving mass function which describes the amount of matter found in

halos of a given mass,

dn

d(ln M)
= −

√
2

π
ρ

d(ln σ(M))

dM

δc(z)

σ(M)
exp
( δc(z)2

2σ(M)2

)
. (2.37)

This whole treatment to estimate the halo distribution is called the Press-Schechter

formalism and the extended Press-Schechter formalism when considering the addi-

tional factor of 2. This crude way of estimating the halo distribution might seem to

be overlooking many important effects, and it does, but it matches surprisingly well

the numerical simulations over a wide range of magnitude. A more modern approach

would be to introduce tunable parameters in the expression 2.37 and fit them to

N-body simulations. This leads to mass functions giving slightly different results

and the Sheth-Tormen [48] mass function is a famous example of this. Figure 2.2

compares these different mass functions using the input parameters from WMAP’s

measurements and figure 2.3 plots the mass function fitted by Reed et al. [47] at

different redshifts.
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Figure 2.2: Comoving Mass function of DM halos. The red solid one is using the original Press-
Schechter formalism while the blue dotted and green dashed ones are the Sheth-Tormen (1999)
[48] and Reed et al. (2006) [47] predictions respectively.
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Figure 2.3: Reed et al. comoving Mass function of DM halos at redshifts 0 (purple), 1 (blue),
5 (green), 10 (orange), 15 (red). Note how the mass functions take on lower values at lower
redshifts on small scales.
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3

What are Cosmic Strings?

Inflation is not the only mechanism that can produce inhomogeneities which give

rise to the structures we see in the universe. As mentioned in the introduction, cos-

mic strings is one such mechanism and we wish to determine if they could produce

observable signals in the large scale structure. In order to explore this possibility we

now give an introduction to the notion of topological defects, in particular cosmic

strings.

Certain field theories allow for static field configurations that are distinct from

the vacuum solution and are stable due to topological reasons. These configurations,

called topological defects, possesses regions where the energy density is non-zero.

One can imagine how these can have cosmological implications since they are a

generic property of many particle physics models and hence are expected to be

produced in the very early universe. Cosmic defects have yet to be observed, but

their stability assures that they should still be here today if they were produced

after the inflationary epoch. Actually one of the original motivations for inflation

[49] was to dilute the enormous amount of gauge monopoles: these are spherical

defects predicted by grand unified models and would be produced in such a large

quantity that it would strongly disagree with observations [50]. Topological defects

are still not seen in the sky but they are quite common in condensed matter physics,

some examples are: two dimensional domain walls are found in ferromagnet at the
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boundary between regions with different magnetic dipoles alignment, one and zero

dimensional defects such as strings and monopoles respectively can be found in

liquid crystals (figure 3.1).

Any construction of defects must be consistent with Derrick’s theorem [52] which

states that there cannot be localized, time-independent stable solution from scalar

theories described by the follow Lagrangian with D > 1,

L =
1

2
∂µφ

†∂µφ− V (φ). (3.1)

The proof of the theorem goes as follows [53]: suppose we have a localised solution

with finite energy

E =

∫
dDx

[1

2
(∇φ)2 + V (φ)

]
, (3.2)

then rescaling x→ αx, the energy rescales accordingly to,

E → E ′ =

∫
dDx

[1

2
(∇φ)2α2−D + V (φ)α−D

]
. (3.3)

If V (φ) 6= 0 and D > 1, a rescaling of the problem lowers the energy of the configu-

ration and therefore it will be unstable to collapse. We shall consider two extensions

of the above model, these will yield stable defects. The first extension drops the

requirement of locality, giving rise to global defects which allows for long range

forces between them. The second extension is to add gauge fields to our Lagrangian

which can take a stabilizing configuration, we call those gauge defects.

3.1 Topological defects

We will give an overview of the conditions required for the formation of topological

defects and give specific example of each type found in 3+1 dimensions using scalar

fields. Before doing so we introduce the concept of homotopy group of a manifold

M .
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Figure 3.1: Intercommuting strings in a liquid crystal (right) [51]. The boundary between two
regions with different spin orientation forms a domain wall in ferromagnet (left).

Definition: The nth homotopy group of a manifold M at x denoted by πn(M,x),

is the set of all homotopically distinct maps f : Sn → M such that there is a ∈ Sn

for which f(a) = x.

Essentially, πn(M,x) contains the equivalence class of different maps f : Sn →M

that cannot be continuously deformed (i.e. aren’t homotopic) into each other;

if f, g : Sn → M are homotopic, then [f ] = [g] ∈ πn(M,x). Notice that the

requirement that f goes through the basepoint x can be dropped for path connected

manifolds since the homotopy groups of M at any two basepoints are isomorphic.

Other than in the case of the domain wall, our manifolds of interest will be path

connected. Thus, whenever we talk about πn for n ≥ 1, we will simply talk about the

nth homotopic group of the manifold M denoted πn(M). When M is not connected

then πn(M) is not a group. Note that π0(M) is only non-trivial when M is not

connected since otherwise we can always bring two points together; the elements of

π0(M) labels the disconnected components of M .

This machinery will helps us classify different kinds of defects, so lets jump into

our first example to see how it achieves that.
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The Domain Wall

Consider a single real scalar field in 1+1 dimension with Lagrangian density and

potential,

L =
φ̇2

2
− (∂xφ)2

2
− V (φ), V (φ) =

λ

4
(φ2 − η2)2. (3.4)

This has as static solution φ(x) = ηtanh
(√

λ
2
ηx
)

and is sketched with the poten-

tial in figure 3.2. The solution goes to ±η as x → ±∞, hence the energy density

vanishes and is finite overall, only departing from zero near where φ = 0. The

existence of such a solution is related to our homotopy discussion in the following

way. We define the vacuum manifold M to be the set of field values that minimize

the potential energy. In our case M = {±η} is a disconnected set of two points,

so its 0th homotopy group π0(M) is isomorphic to Z2. Our solution at must there-

fore interpolate between these two disconnected point that can only achieve that

continuously by leaving the vacuum manifold. This feature give rise to a conserved

topological charge N =
∫
dx∂xφ = 2η which is carried by topological defects and

responsible for their stability.

x

Η

-Η

ΦHxL

Φ

VHΦL

Figure 3.2: Sketch of the soliton solution in one dimension.

In this way, looking at the homotopy groups of the vacuum manifolds allows us

to determine the existence of defects in the theory and then we can classify them

by their πn(M). Table 3.1 lists the allowed defects in 3+1 dimensions. We look at

the possible ways to map a region in physical space, that can have the topology of
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Homotopy group Name of Defect local global

π0(M) 6= 1 Domain Wall X X

π1(M) 6= 1 Cosmic Strings O O

π2(M) 6= 1 Monopoles X O

π3(M) 6= 1 Textures N.A. O

Table 3.1: Classification of defects in 3+1 dimension and if they are incompatible (X) or compatible
(O) with current cosmological observation. This figure was reproduced as found in [10].

S0, ..., S3, into the vacuum manifold M which gives us 4 possible defects.

Neglecting Derrick’s theorem for a moment, we can easily imagine extending the

kink to form a similar solution in 3+1 dimensions by having translational symmetry

in y, z to obtain a domain wall. Theories with domain walls are ruled out since

they would quickly dominate the energy density of the universe: the energy density

per unit surface is given by

σE ∼ V (φ = 0)× width ∼ λη4

λ1/2η
= λ1/2η3, (3.5)

which means that with the Hubble expansion - characterized by the scale factor a(t)

- the domain wall’s surface increases as A(t) = A0a(t)2 while σE stays constant.

For non-relativistic walls, their density is redshifted by a factor of 1/a(t)3, hence

the total energy density scales as 1/a(t). As we discussed in section 2.1, the energy

density of matter and radiation scales as a−3, a−4 respectively, hence domain walls

should quickly dominate the evolution of the universe and this is not observed.

Vacuum manifolds that have non trivial π1, π2 and π3 give rise to cosmic strings,

monopole and textures respectively. Note that, naively, applying a similar argu-

ment to cosmic strings would imply that they should be ruled out. However a more

detailed analysis taking into account string interactions changes this conclusion and

will be presented in section 3.3.1.

The Cosmic String
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Our cosmic strings will live in 3 + 1 dimensions and therefore we must consider the

cases that evade Derrick’s theorem. We will focus on gauge strings and mention how

global strings differ. Consider a complex scalar field φ with a U(1) gauge symmetry

giving rise to a gauge field Aµ.

L =
1

2
Dµφ

†Dµφ− V (φ) +
1

4
FµνF

µν (3.6)

Here Dµ = ∂µ+igAµ and Fµν is the stress energy tensor. We choose the ”Mexican

hat” potential V (φ) = 1
4
(φ†φ−η2)2 (figure 3.3) which has as vacuum manifoldM =

{eiθη : θ ∈ [0, 2π)}. M possess the same topology as a circle, therefore π1(M) = Z

and characterizes maps with different winding numbers n ∈ Z. In the Lorentz gauge

∂µA
µ = 0, a static solution can have the asymptotic form φ(r, θ, z) ≈ eimθη for large

r with m being an integer. This is a field configuration that winds around the

vacuum manifold m times and is independent of z. The solution near r ≈ 0 must

climb up the potential otherwise we could shrink a winding path in physical space

until it lies on a single point and this would imply that we have a point with |φ| = η

but without a well defined phase. Therefore we define the point (r′, θ′, z) such that

φ(r′, θ′, z) = 0 to be the center of the cosmic string. On the other hand, the gauge

field takes the asymptotic form Aµ ≈ 1
ie
∂µlnφ, note that it is not exact since lnφ is

a multivalued function and so we cannot gauge it away. One can compute the flux

through a path encircling the string,

ΦB =

∫
B · dS =

∮
A · dl =

2πm

e
, (3.7)

which shows that a gauge cosmic string possesses a magnetic flux flowing through

it.

The energy density per unit length is finite for a gauge string since Dµφ ≈ 0,

Fµν ≈ 0 away from the core. Moreover, the characteristic length scale associated

with each field gives us the approximate width of our string, namely it has a core

of false vacuum of radius δφ m
−1
φ = (

√
λη)−1 where V (φ) ∼ λη4, and a flux tube of
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Figure 3.3: Sketch of the Mexican hat potential responsible for cosmic strings.

radius δA ∼ m−1
A = (eη)−1 containing a magnetic field B ∼ ΦB/δ

2
A. Hence the string

tension, which is the energy per unit length, is µ ∼ δ2
φV (φ) + δ2

AB
2 ∼ η2. This will

be a very important quantity and the main parameter that we will try to constrain

with observations. Great information about high energy physics is found in µ since,

as we will see shortly, η is related to the energy scale at which cosmic strings form.

The global string, although it possess a scalar field configuration of the same

form as the gauge string, differs in energy density due to the lack of gauge field that

can absorb the gradient energy at large r (i.e. ∂µφ 6= 0 unlike Dµφ ≈ 0 for gauge

string). The tension for such strings goes as

µ ∼
∫ R

δ

2πrdr
(1

r

∂φ

∂θ

)
≈ 2πη2ln

(R
δ

)
, (3.8)

where R is a large cutoff that will be determined by the string’s curvature or by the

distance to the nearest other string. Both global and gauge string are still consistent

with observations and hence allowed to exist in our universe. However we shall focus

on the gauge string when discussing gravitational implications. The main reason is

that gauge symmetries are favored over global symmetries in particle physics mod-

els. Nevertheless it is argued that the cosmological implications are very similar in

both cases [53]. For instance, their different tensions will be the only difference in

the scaling behavior of their energy density, a topic we will discuss in section 3.3.
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Before dwelling into finer details of cosmic strings, we will mention a few words

about monopoles and textures.

The Monopole and the Texture

To get a monopole we need a vacuum manifold with non contractible spheres,

namely π2(M) 6= 0. A simple example is a field theory with scalars φa, a ∈ {1, 2, 3}

and potential V = λ
4
(
∑

a φ
2
a − η2)2. A solution taking the form of ~φ = ηr̂ (where r̂

is the unit radial vector) at large r yields a monopole. As in the string case, we can

add a gauge field to our theory which will soak up the gradient energy so that the

total energy of our field configuration remains finite. In that situation, the gauge

field configuration would produce a magnetic field which would impart a magnetic

charge to the monopole. As discussed in the introduction, the formation of gauge

monopoles would be a disaster since these don’t dilute fast enough and would domi-

nate the energy density. However in the case of global monopoles, long range forces

allows them to strongly interact and settle in a scaling solution in such a way that

only a few monopoles are present per horizon volume [54]. Therefore no current

cosmological constraint allow us to rule them out.

Finally, textures come from some M with π3(M) 6= 0. Note this implies that

a field configuration giving rise to a texture in our universe can lie solely in M

and have only gradient energy. This means that adding a gauge field would simply

cancel any effect of the texture. Moreover the fact that the field configuration does

not leave the vacuum manifold implies that there is no topological charge associated

to textures and thus that they are not stable. If we recall Derrick’s theorem, the

energy in textures scales as E ∝ α−1 under x → αx, therefore textures shrink and

eventually decay.
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3.2 How does Cosmic String formation arise from Particle

Physics?

Mexican hat potentials generic for many scalar fields in particle physics model. One

such example is the Higgs field which give the fermions their masses. These potential

have finite temperature corrections which can alter the effective vacuum manifold.

To find those corrections we note that quantum fields at finite temperature tend

to minimize their free energy F which, assuming the chemical potential is zero, is

given by

F = E − TS, (3.9)

where E is the energy, T is the temperature and S the entropy. At low T this is

minimized when φ ∈M however as T increases the second term become important

and higher temperature allows for more states to be accessible. An intuitive picture

is that the field’s fluctuations become increasingly large with temperature and hence

small features of the potential - such as the double well - have no effect on its

dynamics.

It was shown (see p.40 of [53]) that the free energy of a QFT can be computed

from the same diagrams as the effective potential but with finite temperature Green’s

function, i.e.

F = − 1

β
logZ(β), (3.10)

with Z(β) being the Euclidean path integral. The free energy per unit volume is

called the effective temperature potential, and is given by

Veff (φ, T ) = V (φ) +
∑
n

Fn(φ, T ), (3.11)

where,

Fn = ±T
∫

dk3

(2π)3
ln(1± exp(εk/T )), εk = (k2 +m2

n)
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Here Fn is the contribution to the free energy of different spin states of the various

fields. The fermions come with the − sign while the bosons come with the + sign.

At temperatures much lower than the mass scale mn � T we can neglect the Fn,

but in the other extreme T � mn we can evaluate the integral to get,

Fn = −π
2

90
T 4 +

m2
nT

2

24
+O(Mn)4 for fermions, (3.12)

Fn = −7π2

720
T 4 +

m2
nT

2

48
+O(Mn)4 for bosons (3.13)

where the mass of each particle type is given by the Higgs mechanism. Namely if we

couple both fields with a term in the Lagrangian such as ∼ φ2ψ2, then when φ takes

a non-zero vacuum expectation value (VEV) it produces a mass term ∼ 〈φ2〉ψ2 =

m2
ψψ

2. For example, using the potential in equation 3.6 we end up with an effective

potential (see [53] for more details on the derivation),

Veff =
λ

12
(T 2 − 6η2)φ†φ+

λ

4
(φ†φ)2. (3.14)

This yields an example of a potential giving rise to a second order phase transition

which are characterized by a continuous growth of |φ| with decreasing T , for first

order phase transitions this parameter has a discontinuous jump through tunneling.

We can see this dynamic by inspecting the potential (3.14): the VEV is 〈φ〉 = 0

whenever the temperature is greater than some critical value T > Tc =
√

6η while it

takes the value 〈φ〉 = 1√
6
(T 2

c −T 2)1/2 for T < Tc. Note that at low temperature 〈φ〉 ∼

η, this dependence is expected on dimensional grounds and is very generic, recall that

µ ∼ η2 hence the cosmic string tension can give us very valuable information about

the critical temperature associated with a phase transition in the very early universe.

Strings are created when the universe has cooled down so that the temperature

drops below Tc, at that time φ starts rolling towards the new minimum. However

in causally disconnected regions, the direction taken by φ will be uncorrelated and

hence non trivial windings of the field configuration on the vacuum manifold are

expected to arise with probability of order one. For instance, with a power-law

29



expansion the Hubble radius is H−1 ∝ t, therefore we expect at least one cosmic

string to be produced per Hubble volume. This gives an lower bound to the number

of formed strings: the values of φ might be uncorrelated on a smaller length scale

ξ(t) and this correlation length must be smaller than the causality bound at all

times ξ(t) < t. This explanation of the inevitable formation of cosmic strings given

a suitable vacuum manifold is called the Kibble mechanism [55]. Figure 3.5 shows

a sketch of the situation.

Φ

VHΦL

T>Tc

T=Tc

T<Tc

T<<Tc

Figure 3.4: Sketch of effective potential at various temperatures.

3.3 Network and Dynamics

After their creation, the strings form a complex and dense network which evolves,

through interactions between strings and the expansion of the universe, towards a

scaling solution which states its properties become constant in time if all lengths

are scaled to the Hubble radius [56]. The network is composed of two parts. The

first is the long strings defined by their curvature radius being of the order of the

Hubble scale, i.e. Rc = γt with γ ∼ O(1). These long strings are assumed to be
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Figure 3.5: Formation of cosmic strings through the Kibble mechanism. The phase of φ is uncor-
related on large scales while they tend to align on smaller scales. Such alignment cannot happen
in the regions where the winding number is non-zero, as circled in orange, and hence a stable
configuration where the field must depart from the vacuum manifold is formed.
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straight since any wiggles would either be redshifted away or would cause string self-

intersections hence creating string loops that would detach from the mother string

thereby straightening it out. This brings us to the second part of the network: a

distribution of string loops with curvature radius much smaller than the Hubble

scale. To give a quantitative argument for this we must understand the dynamics

of cosmic strings.

3.3.1 Dynamics of a Cosmic String

The first thing to note is that if the radius of curvature R of the string is much

larger than its thickness δ then we can treat it as a one-dimensional object. Such

object will sweep a world sheet described by two coordinates ζ0, ζ1. Its spacetime

coordinates will depend on the two parameters of the string’s worldsheet, namely

xµ = xµ(ζ0, ζ1). We can define the induced worldsheet metric γab the following way,

ds2 = gµνx
µ
,ax

ν
,bdζ

adζb, γab = gµνx
µ
,ax

ν
,b, γabγbc = δac , (3.15)

where the notation xµ,a = ∂
∂xa

xµ is used. Since a gauge string has no long range

interactions, we can write down a local action to describe its behavior,

S =

∫
L
√
−γd2ζ, (3.16)

where γ is the determinant of the induced metric. The Lagrangian L can be con-

structed from the string’s tension and geometric quantities such as the extrinsic and

intrinsic worldsheet curvature. Moreover we require invariance under spacetime dif-

feomorphism xµ → x′µ(xν) and world sheet reparametrization ζa → ζ ′a(ζb). Since

we are considering strings with typical radius R >> δ, the tension µ ≥ δ−2 � R−2

will be much more important than any curvature terms. Hence our Lagrangian can

be written as L ' −µ and then our dynamics is described by the well known Nambu

action for one dimensional relativistic strings,
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S = −µ
∫ √
−γd2ζ. (3.17)

Using dγ = γγabdγab and the Christoffel symbol Γµµρ = 1
2
gµτ (gτν,σ + gτσ,ν − gνσ,τ )

we can write down the EOM

1√
−γ

∂a

(√
−γγabxµ,b

)
+ Γµνργ

abxν,ax
ν
,b = 0. (3.18)

To simplify our above equation we shall choose to work with a specific gauge

called the conformal gauge, namely we determine a specific parametrization of our

world sheet by the property that γ01 = 0 and γ00 + γ11 = 0. The gauge inherits

its name since the induced metric takes the conformally flat form γab =
√
−γηab.

However, there is still gauge freedom left, enough so that we can choose ζ0 = x0 = t,

while ζ1 = ζ becomes a spacelike parameter on the string. This allows us to write

the string trajectory as a three vector x(ζ, t) which, using γab = gµνx
µ
,ax

ν
,b, can be

shown to satisfy

ẋ · x′ = 0, (3.19)

ẋ2 + x′2 = 0, (3.20)

with . = d
dt
, ′ = d

dζ
. The first equation tells us that the speed of the string is

perpendicular to the string’s tangent vector. The second can be used to write

dζ = (1 − ẋ2)−1/2|dx| which implies that dζ is proportional to the energy of the

string since

E = µ

∫
(1− ẋ2)−1/2|dx| = µ

∫
dζ. (3.21)

If we work in flat spacetime, the Christoffel symbols vanish and the EOM in this

gauge is just the wave equation

ẍ− x′′ = 0. (3.22)

Therefore any curvature will cause the string to straighten itself out and oscillate.

In an expanding background there should also be Hubble friction which makes these
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oscillations decay. If we repeat our derivation with a cosmological background using

the flat FRW metric ds2 = −dt2 + a(t)2dx2, the EOM in equation 3.22 is a bit more

complicated and end up being,

ẍ + 2
ȧ

a
(1− ẋ2)ẋ = ε−1

(x′

ε

)′
, (3.23)

where we chose the ẋ · x′ = 0 transverse gauge with the notation (note that now a

dot ˙ refers to a derivative with respect to conformal time dτ = a(τ)dt),

ε =
( x′2

1− ẋ2

)1/2

, ˙ = d/dτ, ′ = d/dζ. (3.24)

By using 3.23 and 3.24 we can find the constraint

ε̇ = −2
ȧ

a
εẋ2,

which we use, together with the expression for the energy E = a(τ)µ
∫

dζε, to get

the total rate of change of the string’s energy density ρ,

ρ̇ =
( ȧ
a

)
(1− 2〈v2〉)ρ, (3.25)

where,

〈v2〉 =

∫
dζεẋ2∫
dζε

. (3.26)

Equation 3.25 describes how a cosmic string will either gain energy through being

stretched (first term on the RHS) or lose some by the decay of its velocity/oscillations

(second term on the RHS). Both effects are caused by the Hubble flow.

3.3.2 The Long String Network and the Scaling Solution

The string network must be uncorrelated on large scales and hence the shape of long

strings follows a random walk beyond a certain scale that we call the characteristic

length L of the string network. In other words, in a volume of size L3, we expect to

see ∼ 1 string which looks fairly straight. Therefore in a volume V we can estimate
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the energy in these long ”infinite” strings to be E = µL V
L3 , or equivalently their en-

ergy density ρ∞ = µ/L2. If we neglect the damping of sub Hubble ”wiggles” on the

string (a valid assumption due to the expansion), we can make the approximation

that L(t) = a(t)
a(ti)

L(ti) and hence ρ∞ ∝ a(t)−2. This would eventually dominate the

energy density of the universe, and cosmic strings would thus suffer the same fate

as domain walls. However we have overlooked the possibility that cosmic strings

lose energy through loop creation by intersections. Indeed, as mentioned previously,

string loops can be created by intersection of two long strings since these have a high

probability of exchanging ends after collisions. This process is not fully understood

analytically but was shown through numerical simulations. We also are careful in

making the assumption that strings are not superconducting (there is no electro-

magnetic current flowing along them) which will be implied from now on, otherwise

such strings have a much smaller probability of exchanging ends after intersections.

Figure 3.6: Processes involved in string dynamics responsible for the scaling solution. 1) String
intersection causes their ends to exchange 2) Self intersections produces string loops 3) Rapid
anisotropic oscillations causes the loops to shrink via emission of gravitational radiation 4) Sub-
structures such as ”wiggles” on long strings get redshifted away by Hubble expansion.

There is a heuristic picture to understand how string loop production saves the

string scenario by changing the scaling of its energy density to an acceptable rate.

On average, a string of length L will collide with another string of the same length

after having travelling a distance L. Therefore the stationary string in a volume L3

will get hit by another string after time L hence the rate of collisions per unit volume

is L−4. We assume the colliding strings exchange ends to create a loop whose size is
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also of the characteristic length. Hence the rate of energy density loss into loops is

ρ̇loss ≈
Ėloss
V

=
1

V

µLV

L4
= ρ∞/L, (3.27)

so that

d

dt
ρ∞ ≈ −2Hρ∞ −

ρ∞
L
. (3.28)

The characteristic length scale will have a time dependence which describe by

L(t) = γ(t)t. The factor γ allows us to compare how L evolves compared to the

horizon length. Plugging this in equation 3.28 along with ρ∞ = µ/L2 we find, in

the radiation era (H = 1/2t),

γ̇

γ
≈ − 1

2t
(1− 1/γ). (3.29)

Therefore γ̇ > 0 for γ < 1 and γ̇ < 0 for γ > 1 suggesting a fix point at γ ≈ 1.

The string network scales in the same way as the horizon so that the energy den-

sity scales as ρ∞ ∼ µ/t2 and does not come to dominate over radiation or matter!

In terms of strings, this scaling solution suggest that we should find Ñ ≈ 1 long

strings per Hubble volume. The conclusion of the existence of a scaling solution is

supported by numerical simulations but these find Ñ ≈ O(10) (see [57] for recent

long-string simulations).

3.3.3 The Loop network

This creation of loops from long strings will create a distribution of loops which

possesses a scaling peak of loops with radius ≈ 1/20t and a decaying tail of smaller

loops [59]. The evolution of the string loop distribution is more elusive than the

long string network. Nevertheless we can still get a good analytical idea of what

the loop network looks like. We first write down the energy density found in loops

which will then allow us to determine their number density.
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We define a cutoff length to differentiates between infinite strings and loops. This

means that we consider any string of length longer than lc to be of the infinite type

and any string below it to be a loop. This cutoff is usually taken to be comparable

to the horizon so that lc ∼ t. With this in mind, if we assume that the energy loss of

the infinite string network is due to a scale-invariant loop production characterised

by the function f(l/L) we can then define the rate of energy density loss to be

ρ̇∞|loops =
µ

L3

∫ lc

0

dl

L
f(l/L) = c

ρ∞
L
. (3.30)

Note that µf(l/L)dl/L represents the energy loss into loops of size [l, l + dl] per

unit time per correlation volume L3 and c is some constant to be determined that

depends on 〈v2〉 and the cosmological era (matter or radiation dominated).

Moreover we expect 〈v2〉 ∼ 1/2 since this is the value the points of a static loop

possess in flat spacetime. In this case the change in the energy density of loops of

length l can be written as

ρ̇L(l, t) = −3
( ȧ
a

)
ρL(l, t) + g

µ

L4
f(l/L), (3.31)

with g = (1 − v2
i )

1/2 ∼ 1/
√

2 is a Lorentz factor characterizing the initial speed of

the loops. The first term on the RHS describes the redshift of the loop population

and the second one takes into account loop creation. This can be integrated to yield,

during the radiation epoch,

ρL(l, t) =
gµ

γ5/2t3/2l3/2

∫ ∞
l/γt

dx
√
xf(x). (3.32)

Defining νr = gγ−5/2
∫∞

0
dx
√
xf(x) we have, at late times,

ρL(l, t) =
µνr

(tl)3/2
. (3.33)

A similar analysis allows us to find the corresponding energy density during the

matter dominated era,

ρL(l, t) =
µνm
t2l

, (3.34)
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with νm = gγ−3
∫∞

0
dxf(x). Note that f(x), g, γ, c does not have to be of the

same form during the radiation or matter dominated era and we have also left their

values undetermined, expressing our ignorance in the dynamics of loop creation.

The above analysis of ρL did not take into account the shrinking due to gravi-

tational radiation. Loops are quite asymmetric and have non vanishing quadrupole

moment as they oscillate. A loop of length l will decay as dl/dt = −ΓGµ [53] with

Γ ≈ 100 [59] being a number determined from numerical simulations. Hence a loop

of initial length li formed at ti will have at time t > ti a length,

l = li − ΓGµ(t− ti).

Modifying our previous work to take into account the shrinking, we simply sub-

stitute li in terms of t and l in equations 3.33 and 3.34 (we also assume that t� ti).

If we make the final assumption that all loops are created at the same relative size

l = αt - this is the scaling peak we see in numerical simulations with α ≈ 0.05 -

then f(x) = cδ(x−α/γ). Finally, since ρL(l, t) = lµn(l, t), we find that the number

density of loop of length l < αt at time t is,

n(l, t) =
νr

t3/2(l + ΓGµt)5/2
(3.35)

where

νr = g
√
αγ−2

r (1− 〈v2
r〉).

Similarly, for loops created in the matter dominated era we have,

n(l, t) =
νm

t2(l + ΓGµt)2
(3.36)

νm =
2

3
gγ−2

m (1− 2〈v2
m〉).

There are two behaviors depending on whether l > ΓGµ or not. Defining the

quantity nl(t) = l n(l, t) and using the numerical simulations suggesting that, in the
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radiation era, νr ≈ 0.4γ−2α1/2 (see section 9.3 − 9.4 of [53] for numerical modeling

discussion), eq. 3.35 reduces to

nl ∼ γ−2α1/2(tl)−3/2, for l > ΓGµt (3.37)

nl ∼ lt−4(ΓGµ)−5/2, for l < ΓGµt. (3.38)

Therefore a good approximation is to use equation 3.37 with a cutoff at l = ΓGµt.

In this case,

ρL =

∫ t

ΓGµt

nlµdl ∼
( α

ΓGµ

)1/2 µ

γ2t2
,

which shows that for α � ΓGµ we have more energy in loops than in long strings

(recall ρ∞ ≈ µ/(γt)2). This is the case if we adopt the current picture of α ≈ 0.05,

Γ ≈ 100, and Gµ ≤ 10−7.

In the matter era, ν ≈ 0.12γ−2 and so,

nl ∼ νt−2l−1, for l > ΓGµt, αteq. (3.39)

However for teq < t <
(

α
ΓGµ

)
teq some of the loops formed during the radiation era

survived. Their loop distribution will then redshift like the energy density of matter

to give,

nl ∼
α1/2

γ2(teql)3/2

(teq
t

)2

, for ΓGµt ≤ l ≤ αteq. (3.40)

Considering only t > α/(ΓGµ) teq then only the loops formed in the matter domi-

nated era will remains and their energy density is then,

ρL ∼
νµ

t2
ln
( α

ΓGµ

)
.

3.4 Gravitational Effects of Strings

Cosmic strings are essentially lines of trapped energy density, hence we should ex-

pect that they have a gravitational effect on their surrounding. These effects will

be small enough that we will be able to understand them through linear gravity.
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We decompose the string metric into two parts, gµν = ηµν + hµν where ηµν is the

Minkowski metric and |hµν | � 1 is a small correction. The Einstein equations allow

us to determine how matter affects the curvature of spacetime. They are quite hard

to solve in general and in order to simplify our lives, it is useful to pick a specific

gauge that allow us to put them in a more manageable form. In general relativity

(GR) we parametrize spacetime by coordinates xµ, however the definition of these

is arbitrary, we could have chosen a different set of coordinates by performing a

coordinate diffeormorphism and instead use x̃µ = xµ + ξµ(x) without affecting the

physics. Fixing a gauge means fixing which coordinate system we would like to use.

In linear gravity, the harmonic gauge is specified by,

∂ν

(
hνµ −

1

2
δνµh

σ
σ

)
= 0, (3.41)

and allows us to write the Einstein equations in a form similar to the wave equation,

(∂2
t − ~∇2)hµν = �hµν = −16πGSµν , (3.42)

with,

Sµν = Tµν −
1

2
ηµνT

σ
σ , (3.43)

being the source term written in terms of the stress energy tensor Tµν , a quantity

we can find using the Nambu action for our string.

T µν =
−2√
−g

δS

δgµν
=

µ√
−g

∫
d2σ
√
−γγab δγab

δgµν
(3.44)

=
µ√
−g

∫
d2σ
√
−γγabxµ,axν,bδ(4)(x− x(σ)), (3.45)

T µν(x, t) = µ

∫
dσ(ẋµẋν − x′µx′ν)δ(3)(x− x(σ, t)). (3.46)

In the last line we have used our gauge freedom on the string worldsheet to write

our action in the conformal gauge.
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String Loop Metric

We will first attempt to find the metric of a string loop, a harder task than for the

long string case. The difficulty with loops is they can oscillate and change their

shape frequently and hence change their stress-energy tensor drastically, however

this is nothing that averaging cannot cure. Consider a loop centered at the origin

and lets look at its retarded time contribution at radius r. The time component of

the source S0
0 = (T 0

0 − T ii )/2 is,

S0
0(r, t) = µ

∫
dσẋ2δ(3)(r− x(σ, t)), (3.47)

and the retarded solution of the Einstein equations is,

hµν(r, t) = −4G

∫
d3y

|r− y|
Sµν(r, τ), (3.48)

with τ = t − |r − y| being the retarded time. Using T µν plus the definition of

Sµν we integrate over y,

hµν(r, t) = −4Gµ

∫
dσ

F µν(σ, τ)

|r− x(σ, τ)|(1− n · ẋ(σ, τ))
, (3.49)

F µν(σ, τ) = ẋµẋν − x′µx′ν + ηµνx′σx′σ, (3.50)

here n is a unit vector in the direction of x. We now take the time average, namely

we integrate a period of time over which the loop oscillation returns to its original

position. This period being half of the loop’s length [53],

〈hµν(r)〉 = −8Gµ

L

∫ L/2

0

dτ

∫ L

0

dσ
F µν(σ, τ)

|r− x(σ, τ)|(1− n · ẋ(σ, τ))
(3.51)

= −8Gµ

L

∫ L/2

0

dτ

∫ L

0

dσ
F µν(σ, τ)

|r|
at large r (3.52)

= −A
µν

r
. (3.53)
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With Aµν obtained by performing the integrals over τ, σ one obtains the following

values,

A00 = 4GµL〈ẋ2〉 = 2GM, since 〈ẋ2〉 = 1/2, (3.54)

A0i = 0, (3.55)

Aij = 2GMδij. (3.56)

So finally we end up with the Scharzschild metric! Far away, and on large enough

time scales, an oscillating loop will give rise to a spherical source of mass M . These

will be great seeds for structure formation in the early universe.

Straight String Metric

In the case of the long strings we will be interested in studying segments that are

shorter than the characteristic length scale of the network, therefore we can restrict

ourselves to straight strings. The stress-energy tensor for a straight string lying on

the z-axis is,

T µν = µδ(x)δ(y)diag(1, 0, 0, 1)µν , (3.57)

which allows us to easily solve for hµν to find,

h00 = h33 = 0, h = h11 = h22 = 8Gµln
( r
r0

)
, (3.58)

with r = (x2 + y2)1/2 and r0 an integration constant. This yields the following

metric,

ds2 = dt2 − dz2 − (1− h)(dr2 + r2dθ2). (3.59)

Our linear approximation seems to break down for large r but this is just due to

a poor choice of coordinates, letting (1 − h)r2 = (1 − 8Gµ)r′2 we can rewrite the
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metric to linear order in Gµ as,

ds2 = dt2 − dz2 − dr′2 − (1− 8Gµ)r′2dθ2 (3.60)

= dt2 − dz2 − dr′2 − r′2dθ′2, (3.61)

with θ′ = (1 − 4Gµ)θ. So locally this is just a flat spacetime! Hence a straight

cosmic string will not have a gravitational pull associated to it; the non-trivial effect

of the long strings will come due to this redefinition of the angle. If we look at the

geometry more closely, we see that spacetime is actually conical with the tip at the

string. Indeed, 0 ≤ θ′ ≤ 2π(1−4Gµ) so we define the deficit angle 4 = 8πGµ. How

can this global feature of our spacetime can affect the dynamics of test particles?

Consider figure 3.7, the string is in the middle and we have drawn the trajectory of

two test particles. As the string moves between them, we observe they start to move

towards one another. Therefore if the string moved in a gas of particles initially at

rest, a static observer residing in the plane swept by the string would see particles

acquire a velocity kick towards him as the string passed by. The magnitude of the

impulse is

v = 4πGµvsγs, (3.62)

where vs is the velocity of the string and γs is the corresponding gamma factor that

arise from being in the rest frame.
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Figure 3.7: (Left) The conical deficit created by the string is shown, the lines marked by two slash
(//) should be identified. We draw the dashed trajectories of two test particles. They eventually
meet. (Right) We draw the same situation on the left hand side after removing the deficit angle.
Note that the ambiguity in the direction of the cut made on the left disappears. Also the tip of the
cone is smoothed out because of the string’s width. In the case of a global string - with ”infinite”
width - the divergent energy density would force the deficit angle to increase as we moved away
from the string’s location and eventually the universe would close back on itself.
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4

Structure Formation from Loopy Strings

4.1 The Zel’dovich approximation

We want to understand how a string accretes matter. For this, we introduce the

Zel’dovich approximation [61], a method that allows us to calculate trajectories

of particles with good approximation even as they enter some non-linear regime.

The idea behind the technique is to choose a Lagrangian frame which follows the

bulk flow of the fluid, in contrast to an Eulerian frame who is kept at a fixed spatial

position. To follow the evolution of dark matter particles using this technique, hence

consider such particles described by trajectories in an expanding FRW background

r(x, t) = a(t)[x + Ψ(x, t)].

Here x and Ψ represents the unperturbed comoving position and the comov-

ing displacement from that position respectively and a(t) is the scale factor. The

physical coordinate r has as equation of motion,

r̈ = −∇rΦ, (4.1)

for a gravitational potential Φ(r, t) satisfying the Poisson equation ∇2
rΦ = 4πG(ρs+

ρ). Here ρ(r, t) is the dark matter density while ρs(r, t) is the density of the string

seed. Introducing a new coordinate system with r we can then define ρ(r, t), through
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mass conservation ρava
3d3x = ρ(r, t)d3r, by

ρ(r, t) =
ρav(t)a

3(t)

|det(∂r/∂x)|
, (4.2)

≈ ρav(t)[1−∇x ·Ψ(x, t)]. (4.3)

In the second line we expanded the determinant to first order in Ψ using det(1+A) =

1 + trA+O(A2).

4.2 Accretion unto loops

We now consider the case of a string loop with ρs = mδ[r − rs(t)] in a matter

dominated era such that ρav = 1/(6πGt2). Using this with the Poisson equation for

Φ we obtain,

∇rΦ =
4π

3
Gρav(r− 3aΨ) +

Gm(r− rs)

|r− rs|3
.

We can now use that expression and the EOM 4.1 to write the linearized equation

of motion for the displacement,

Ψ̈ +
4

3t
Ψ̇− 2

3t2
Ψ = −Gm(x− xs)

a3|x− xs|3
, (4.4)

with xs = rs/a(t). Taking the divergence of this equation and noting that δρ/ρ =

−∇x ·Ψ we rewrite the equation of motion as( ∂2

∂t2
+

4

3t

∂

∂t
− 2

3t2

)δρ
ρ

(x, t) =
4πGm

a3(t)
δ[x− xs(t)].

For m = 0 the solution is δρ/ρ = A(x)t2/3 +B(x)t−1, which is the usual result from

linear perturbation theory. Moreover if δρ/ρ = 0 and a loop seed is introduced, then

the perturbations will stay zero outside the loop.

4.2.1 Static Loops

Since matter perturbations do not grow until teq we can focus on computing the

accreted mass on a loop formed at ti > teq. The initial conditions of a particle’s
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displacement Ψ is Ψ(x, ti) = Ψ̇(x, ti) = 0 with a(ti) = 1. Then from the equation

4.4 with a loop seed of mass m, we find the solution,

Ψ(x, t) =
3Gmxt2i

2|x|3
[
1− 2

5

(ti
t

)
− 3

5

( t
ti

)2/3]
, (4.5)

≈ − 9

10

Gmxt2i
|x|3

( t
ti

)2/3

for t� ti. (4.6)

The turnaround surface is the given by ṙ = 0 yielding the following expression

for the radius of the turnaround sphere at time t,

|x|3 =
9

5
Gmt2i

( t
ti

)2/3

. (4.7)

In such conformal coordinates, the mass enclosed by a sphere of initial radius ri =

a(ti)|x| is simply (4π/3)ρi|x|3. Hence the mass falling towards the perturbation at

time t is M = 2
5
m(t/ti)

2/3 and the sphere has a radius

rmax = a(t)ri =
5

2

( 3

4π

m

ρi

)1/3(M
m

)4/3

. (4.8)

Using equation 4.8 and dM/dr = 4πr2ρ shows that we end up with a radial

density profile following ρ ∝ r−9/4. The finite size of the loop L ∼ m/µ was

neglected and would initially enclose a mass of ML ∼ ρiL
3 inside the loop. Hence

our analysis should only be valid for M > ML which corresponds to a turnaround

radius of r > L3/(Gµt2i ).

4.2.2 Moving Loops

Now lets turn to the accretion pattern created by a moving loop. We must first

determine the loop trajectory. This can be achieved from the equation of motion

4.1 of a point charge, namely r̈ = −4πG
3
ρavgr, here we denote the average density of

the universe by ρavg. Using the second Friedmann equation ä/a = (−4πG/3)ρavg

and that r = ax we can find the motion of the loop. Suppose it starts at rs = 0,

has an initial velocity vi at ti, and is accelerating with the Hubble flow, then using
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the EOM and Friedmann’s equation,

r̈ = äx + 2ȧẋ + aẍ = äx, (4.9)

and since a ∝ t2/3,

2Hẋ + ẍ = 0→ dv

v
= − 4

3t
, (4.10)

integrating and using the initial conditions,

x = 3viti(1− a−1/2), (4.11)

and hence xs(t) = 3viti(1− a−1/2) ≡ d(1− a−1/2)êz with the last equality being for

a loop moving strictly in the z-direction with d = 3viti. The solution to equation

4.4 with the above initial conditions was found by Bertschinger [60] to be (for t� ti

and neglecting the decaying mode),

Ψ(x, t) = −b(t)d[êxfx(x) + êzfz(x)], (4.12)

where

b(t) =
1

5

Gm

v2
i d
a(t), (4.13)

fx =
Rf −Ri

x
+

zd

xRi

. (4.14)

fz = ln
( Ri + z

Rf + z − d

)
− d

Ri

, (4.15)

Ri = (x2 + z2)1/2, distance from x to xs(ti) = 0 (4.16)

Rf = (x2 + (z − d)2)1/2, distance from x to xs(t). (4.17)

The turnaround surface in this case is defined as the surface such that ṙx = 0

with r = a[x + Ψ]. This yields the condition x+ 2Ψx = 0 and we obtain

x = 2db(t)fx(x, z). (4.18)
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At late time the surfaces are nearly spherical and we find that f ≈ d
2(x2+z2)

er,

however at early times the accreted matter resides in a thin band behind the loop

and therefore we can expand 4.18 for x2 � z2, (d− z)2 which yields

x2 = 4b(t)d(d− z). (4.19)

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-0.5

0.0

0.5

1.0

X

Z

Figure 4.1: The turnaround surfaces around a moving string loop. The curves corresponds to the
contour plots of eq. 4.18 for different values of t. Early on, the surfaces form a thin band behind
the loop and become progressively more spherical as time progresses.

The accreted mass can be estimated by integrating over the narrow turnaround
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surface

M ≈ ρi

∫ d

0

πx2dz =
3

5
m
( t
ti

)2/3

, (4.20)

which is found to be of the same order as the case of a static loop and is also in-

dependent of the loop’s initial velocity. For large and slow loops, their motion will

be affected by the drag caused by the accretion of matter in their wakes, however

since most loops are formed on small scales with high velocity they decay before

this effect becomes important. Moreover there is also the gravitational rocket effect

- the oscillations on the loop produces gravitational waves that accelerates the loop

in some random direction n̂ - and therefore the loops trajectory should be curved

but this is not important when determining the structures it forms [32].

Knowing the loop distribution from the scaling solution and the dynamics of

mass accretion, the number and properties of dark matter halos obtained from these

objects was studied by Schlaer et al. [32]. The mass accreted by moving loops will

form an elongated cylinder that will fragment in smaller beads due to gravitational

instability. Hence there will be more halos than loops. Moreover, for strings with

Gµ ≥ 10−7, [32] found that a significant amount of star forming halos could be

produced at early times. These could have a detectable impact on the period of

reionization.

Such results motivates studying the contribution to structure formation from the

second part of the string network, namely the long strings. The rest of the thesis

will address this question.
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5

Structure Formation from Long Strings

5.1 Accretion unto wakes

Here we also make use of the Zel’dovich approximation to study the accretion of

matter behind the long straight strings. Recall that due to the conical deficit, the

effect of the moving string on the surrounding particles will be to induce a kick

in the direction perpendicular the plane that they sweep, giving them a speed of

v = 4πGµvsγs where vs is the speed of the string and γs is the corresponding gamma

factor that arises from being in the rest frame of the wake. Other than that, the

string has no gravitational effect on the surrounding gas. However this kick will cause

an overdensity of matter to form behind the string (see figure 5.1), gravitational

instability will set in and matter starts pilling up and decoupling from the Hubble

flow in the dimension transverse to the string’s worldsheet. These non-linear objects,

that we call the strings wakes, are formed as soon as matter perturbations can start

growing, namely at teq. The goal of this thesis is to understand what kind of

structures can be formed from those. We first determine the dynamics of the wakes

formation and evolution.

Consider a particle that finds itself above the plane swept by the string and label

its distance from the wake by r = a(t)(x + ψ). We can then find the particle’s

trajectory from the equation of motion obtained as in section 4.2,

ψ̈ +
4

3t
ψ̇ − 2

3t2
ψ = 0 (5.1)
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Figure 5.1: Particles receive a kick as a long cosmic strings moves through the gas. The streams
overlap and creates an overdensity of matter. The string extends outside of the page and the red
line denotes the position where particles experiences the impulse.

with initial condition ψ̇(x, ti) = −sgn(x)v, ψ(x, ti) = 0. The solution to this equa-

tion is

ψ(x, t) = −12

5
Gµπvsγsti

( t
ti

)2/3

+
12

5
Gµπvsγs

t2i
t
. (5.2)

Dropping the decaying mode corresponding to the second term, we can find the

turnaround surface from the condition ṙ = 0 or more specifically x+ 2ψ = 0 which

yields,

x(t) = ±24

5
Gµπvsγsti

( t
ti

)2/3

. (5.3)

This shows that the turnaround surface happens at a comoving distance that

is half of what it should have been without the wake (xta = 1
2
x(t)). Moreover the

physical width of the wake will be given by w(t) = 2rta(t) = x(t) a(t)
a(ti)

and the surface

density will simply be σ(t) = w2ρavg. Explicitly these are,

w(t) =
24

5
πGµvsγsti

( t
ti

)2/3( t
ti

)2/3

=
6

5
vti

( t
ti

)4/3

, (5.4)
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σ(t) =
2v

5πGt

( t
ti

)1/3

(5.5)

=
8πGµvsγs

5πGt0
(z + 1)3/2

(zi + 1

z + 1

)1/2

. (5.6)

This behavior makes sense at an intuitive level. Since the area of the sheet grows

with the scale factor as ∼ a2, the surface density should decrease by the inverse of

this, however we know from linear perturbation theory that overdensities grows as

∼ a and hence the surface density should only decrease as ∼ a−1 which is the result.

The dimension of these wakes will be approximately c1ti × vsγsti × 4πGµvsγsti at

time ti.

5.2 Thermalization, shocks and diffuse wakes

Matter that turned around at a height rta will virialize at a radius 1
2
rta and hence

the density of matter in the wake should be 4 times higher than the background.

Shells of infalling baryonic matter will collide with one another at that distance

and hence will create shocks on either side of the wake. The energy of the falling

particle will be thermalized in the wake. The temperature was estimated in [62] by

considering the relation
3

2
kBT =

1

2
mv2

shell, (5.7)

where vshell is the speed of the shell of hydrogen particles of mass m that collides

with the wake to form the shock. A shell that turns around at time tta will hit the

wake at t = (1 + 1/
√

2)3/2tta, therefore their speed will be given by

vshell = ṙ(t, tta = t(1 + 1/
√

2)−3/2) =
4

5
(3− 2

√
2)v
( t
ti

)1/3

, (5.8)

which yields an average temperature,

T =
16

75
(4(3− 2

√
2))2 m

kB
(Gµ)2(vsγs)

2
( t
ti

)2/3

(5.9)

' [10K](Gµ)2
6(vsγs)

2 zi + 1

z + 1
, (5.10)

53



This temperature is actually very low, mainly because gravity is only pulling in

one direction. Numerical simulations of the wake [63] agree fairly well with this

value. Moreover it is interesting to note that the baryonic and dark matter will not

have similar density profiles inside the wake. Since dark matter is nearly collisionless,

its density will spike on the edge of the wake at the turnaround point. Baryonic

matter will get stuck in the middle by additional matter piling up on it, this is

shown in figures 5.2 obtained from the simulation done in [63]. This makes it hard

to predict the subsequent dynamics of small perturbations of matter density, which

we would need to determine structure formation. We will come back to this point

latter.

For the moment, notice that during a long period of time, the background tem-

perature is higher than the wake’s. Therefore at high redshifts the thermal velocity

should satisfy vth > vshell which means our derivation of the wake’s width - from the

virial theorem - was not quite right. Before the background’s temperature decreases

below the wake’s, the latter will be diffuse [64].

Until z . 150 − 300 the hydrogen gas in the universe is still coupled to the

CMB radiation. The hydrogen temperature TH will follow the CMB temperature

Tcmb(z) = 2.725(1 + z) until decoupling. Afterwards the hydrogen expand as an

adiabatic gas. Since adiabatic processes for monatomic gases can be described by

V T 3
H = const we can use V ∝ a3 to determine that TH ∝ (1 + z)2 [65]. Obtaining a

crude approximation by asking that these two temperature agree at z = 150 we find

TH = 2.725
150+1

(1 + z)2. Shocks will be created when Twake(zshock) = TH(zshock). We use

our computed Twake to obtain,

1 + zshock =
( 1510

2.725
(Gµ)2

6(vsγs)
2(zi + 1)

)1/3

, (5.11)

and hence zshock ≈ 23 for a wake created at teq with Gµ ∼ 10−7, vsγs = 1/
√

3.
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Figure 5.2: Density profile of matter inside the wake at different times. The figures were taken
from [63].
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Figure 5.3: Temperature of the wake (dashed), matter (solid) and CMB (dotted) at different
redshifts.

5.3 Fragmentation

As we previously discussed, the substructure of the wake makes it very hard to

accurately predict the dynamics of perturbations without resorting to N-body sim-

ulations. We will still attempt to get an idea of what might happen using analytical

tools.

Recall that the Newtonian hydrodynamical equations for the growth of a pertur-

bation in a fluid with expanding background is given by

δ̈k + 2Hδ̇k +
( c2

s

a2
k2 − 4πGρb

)
δk = 0, (5.12)

where δk is the Fourier mode with comoving wavenumber k of the density perturba-

tion characterized by ρ = ρb(1 + δ). The solutions to this equation depends on the

value of k. If k � kJ =
(

4πGρb
c2s

)1/2

we have as solution

δk = C1t
2/3 + C2t

−1,
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which means that the perturbation grows. On the other hand if k � kJ the over-

density has an oscillatory behavior. The Jean’s length in the wake ends up being

λJ =
16π

5
(3− 2

√
2)
√

3/2Gµvsγs
t4/3

t
1/3
i

∼ 2.11×Gµvsγs
t4/3

t
1/3
i

∼ w. (5.13)

Hence we might expect fragmentation of the wake into blobs of size ∼ w3. An-

other clue that this is the right picture is from a detailed analysis by Miyama et

al. [66] of perturbation growth in a static isothermal sheet-like cloud. They found

that the timescale of perturbation growth is of the order of the freefall time with

the length of the most unstable mode equalling the sheet’s width and the longest

wavelength unstable mode being twice that. Taking the very optimistic route and

assuming our wake behaves in a similar way1, long filaments of virial diameter≈ w(t)

should form in a similar fashion to the Zel’dovich pancakes. These filaments would

subsequently break into beads themselves, again the fastest growing mode having a

length ≈ 2πw(t) [32]. Therefore the wakes will eventually fragment into virialized

halos of size ≈ π(w/2)3, in agreement with our previous Jean’s length analysis. Sim-

ilar conclusions were also obtained in [67]. We will assume this optimistic picture

for the rest of this thesis.

5.4 Properties of Halo’s and Star formation

To compute the properties of the clumps formed by wake fragmentation, we assume

the dynamics described in [66]. Therefore virialized halos of size ≈ π(w(z)/2)3 will

quickly form at redshift z. These halos will likely have obtained a very clumpy

substructure due to their bottom-up hierarchical formation.

1The neglect of Hubble flow along the wake might not be justified. In an expanding universe struc-

tures with planar, cylindrical and spherical symmetry undergo a self-similar growth proportional

to t4/3, t and t8/9 respectively [68]. In this case one could argue that if perturbations grew as

cylindrical or spherical objects, they would grow slower than the planar wake and therefore no

clear fragmentation would occur.
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The temperature of halos can be estimated from the virial theorem and conser-

vation of energy by considering a collapsing gas cloud of radius w containing two

times the background density ρ0,

2
1

2
v2
virial =

3

5

GM

rvirial
, (5.14)

1

2
v2
virial −

3

5

GM

rvirial
=

1

2
v2
th −

3

5

GM

w
, (5.15)

with w being the radius of our collapsing cloud, M = 2ρb
4
3
π(w)3 its mass and

vth = vshell the initial thermal velocity. The shock heated baryonic gas will have

a temperature of T = µ
2

mp

kb
v2, with mH being the mass of the proton and µ the

mean molecular weight [41]. Star formation can occur if the temperatures are high

enough so that colliding molecules can excite each other to higher energy states.

They will then radiate energy away when they come back to their ground state and

hence lose some momentum, sinking in the potential well. Atomic cooling requires

T > 104K while H2 cooling has channels that can be efficient to temperatures as

low as 200K. However these H2 molecules are very fragile and get destroyed by the

radiation of the first stars, therefore this cooling mechanism alone will not allow for

multiple stars to form in close proximity as would be the case for halos formed from

wakes. Figure 5.4 shows the temperature of the hottest halos that can be formed

with the parameters in eq. 5.19 and µ ≈ 1.22 in the case of neutral hydrogen. As

we can see, the temperatures are far too low to have any significant star formation,

and hence no noticeable effect on the history of reionization will be present. This

will also make the halos essentially invisible to optical telescopes.

5.5 Toy Model for the Long String Network

Now that we’ve seen what kind of halos are formed from wakes. We can work

towards writing down a mass function for the halos. The first step is to must under-

stand the network and distribution of wakes created from our scaling solution. As

58



5 10 15 20 25 30

200

300

400

500

600

700

z

T
HK

L

Figure 5.4: Redshift dependence of the temperature in the hottest halos that are formed from
wakes. We use the parameters in eq. 5.19 and µ ≈ 1.22.

previously mentioned, we expect Ñ strings per Hubble volume which grow in length

through expansion of space and can also change their direction of motion after in-

tersecting other strings and exchanging ends. We use a toy model introduced in [70]

and used in [71] to characterize these features. Wakes first form behind strings at

the time of equal matter-radiation energy density teq, when matter perturbations

can start to grow. Therefore we consider Hubble time steps from teq to t0 labelling

t1 = teq, t2 = 2teq, ..., tm = 2m−1teq. At the beginning of each time step we create

Ñ strings of length γt where γ is less but close to unity and each string has a ve-

locity vs in a random direction. At the end of the time step we remove them and

start over with a new set of strings. At each time steps, every strings will have laid

down a wake with dimensions γtm× vsγstm×w(t) that will then grow from Hubble

expansion and matter accretion to eventually fragment as discussed above.
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5.6 DM Halo mass function

Consider a redshift z, then the comoving number density of wakes laid down at time

zm > z is given by,

ñwake(zm) =
Ñ

H−3
m

1

(zm + 1)3
. (5.16)

Each wake will fragment in clumps of the size of its width. Therefore one can

compute the comoving number density of halos of mass greater than M that frag-

ments from the wakes created at redshift zm:

n(z,zm, > M) = ñwake(zm)
Volwake
Volhalo

Θ(Mhalo −M) (5.17)

= ñwake(zm)(γtm × vsγstm × w(z))
(zm + 1

z + 1

)2 1
4
3
πw(z)3

Θ(2ρb(z)
4π

3
w(z)3 −M),

(5.18)

where Θ is the Heaviside step function

If we want to consider all the wakes that exist at redshift z we simply con-

sider n(z,> M) =
∑

zm>z
n(z, zm, > M). The collection of step functions given

by the sum is a bit odd as a distribution since in reality this should be contin-

uous. The discrepancy arises because of the model that considers the wakes to

be instantaneously create while this process actually spans a Hubble time. The

part of a wake that is being created close to time tm will have different properties

than the part created at around 2tm which will look more like the beginning of the

next set of wakes. Hence we should smear out the distribution n(z,> M) to have

something more realistic. To do this we fix z and split the mass range in intervals

∆Mm = [M(z, zm),M(z, zm−1)] with M(z, zj) being the mass of the halos formed

at z from a wake created at zj being the redshift of our Hubble time steps. Since

the values of n(z,> M(zj)) =
∑

m>j n(z, zm, > M) are known, we can just linearly

interpolate to create a continuous n(z,> M). One can then obtain the comoving

mass function from dn(z,>M)
d logM

.
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In figures 5.6 and 5.5, we plot and compare dn(z,>M)
d logM

and n(> M) of the halos

created from wakes with the predictions based on the Press-Schechter formalism as

found in Reed et al. [47]. We use the string parameters

Gµ = 1.5× 10−7, Ñ = 10, vs = 1/2 and γ = 1. (5.19)

Note that the ”wiggles” in the plots of n(> M) are just an artefact of our interpo-

lation.

Using the current bound on Gµ in equation 5.19, we see from the figures 5.6 and

5.5 that structures formed from primordial fluctuations start to dominate before

redshift z = 20. Even if the wake halos make up a possibly noticeable fraction of

the total halos in the small mass region at any redshift, objects of these masses

are hard to detect. Therefore, mapping the mass function in that range is far from

currently possible.

Nevertheless, if we could manage to detect the halos, this mass function statistic

misses the crucial point that the halos from the same string wake will have a strong

position space correlation between them. They will have similar masses and lie in

the same plane. This will aid a search for such cosmic string signals. We will inves-

tigate detecting this possible signature in section 6.

At this point our whole discussion has been assuming no interactions between

wakes and primordial fluctuations. Such interaction will have minimal impact on the

formation of the very large structures (≥ 1010 − 1011M�) since these are formed by

collapse of a length scale much larger than can be affected by a wake. However a large

primordial density fluctuation can distort and even destroy the fragile correlation

between the wake’s halos.

We give a rough estimate of the number of surviving wakes by determining the
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Figure 5.5: n(> M) of dark matter halos for a string network with Gµ = 1.5 × 10−7 (solid) and
the Reed et al. [47] predictions (dashed) at different redshifts. The colors with largest wavelength
corresponds to the largest redshifts.
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Figure 5.6: Mass function of dark matter halos for a string network withGµ = 1.5×10−7 (solid) and
the Reed et al.[47] predictions (dashed) at different redshifts. The colors with largest wavelength
corresponds to the largest redshifts.
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fraction of space that are voids with no large halos. The fraction of space that

collapsed in Gaussian noise-induced halos of mass greater than M is given by [41],

F (> M, z) = 2

∫ ∞
δcrit(z)

dδ
1√

2πσ(M)
exp
(
− δ2

2σ(M)2

)
= Erfc

( δcrit(z)√
2σ(M)

)
. (5.20)

Here, δcrit = 1.686(1 + z) and σ(M) is the rms density fluctuation on a comoving

length scale R = (3M/4πρ0(0))1/3 which, as we’ve seen, depends on the power spec-

trum of matter. Figure 5.7 shows F (> Mw, z) for three different values of Gµ. Here

Mw(z,Gµ) is the maximum mass of wake halos. We also plot F (> 103M�/h, z)

which was the smallest mass that was resolved in the simulation by Reed et al. [47].

If F is close to 1, then most of the matter was accreted onto large Gaussian noise-

induced halos, and therefore these large halos wiped out any geometrical structures

and spatial correlations that wake halos could possess. As the figure shows, the

larger the redshift is, the less will be the washout of string-induced structures by

the Gaussian noise.

Before moving our discussion to the search of observational signals in the large

scale structures, we briefly mention the problems with another observational win-

dow. Studies using observations of γ-rays flux allow for constraints on the popu-

lations of ultracompact minihalos (UCMH) [69]. The UCMHs are created in the

early universe (z & 100) as isolated objects insuring that their formation is well

approximated by a radial infall picture. We expect structures from string wakes to

dominate over the ones formed by the primordial fluctuations at high redshift. This

suggests that the contribution to the population of UCMH friom wakes could impose

constraints on Gµ. Following this idea, we hit a wall when trying to determine the

density profile of the UCMHs formed in the wakes. The bulk motion of the matter

inside the wake oscillate around the center. This will cause heavy tidal forces on

the growing perturbations and hence mess up the nice spherical accretion needed
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Figure 5.7: Fraction of matter in halos of mass greater than wakes can create. We plot the curves
for multiple values of Gµ and one of a mass of 103M� for reference. These were computed with
the program supplied in [47].

to produce reliable density profiles. Therefore it is unlikely that structures formed

in wakes can be used to give accurate predictions as in [69]. The situation will be

different when considering string loops since they accrete matter because of their

Newtonian potential. That situation was studied in [36].
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6

String Wakes in the Large Scale Structure

6.1 Gravitational Lensing

Very little star formation is expected in wake halos and so we must find ways that

does not rely on optical methods to detect them. Since they are still massive, could

gravitational lensing work (for reviews on gravitational lensing see [72],[73])? We

would expect the wakes and their substructure to create specific signatures from

their lensing of background sources.

Consider a mass distribution (the lens) and a source located away from us at an

angular distance of dl, ds respectively. If the mass distribution is small in extent

compared to dl, ds, then we can define the deflection angle α. This measures how

much bendingl the geodesics of light will suffer as they propagate past the lens (see

figure 6.1). This quantity is given by [73],

~α(~ξ) =
4G

c2

∫
V

dξ′1dξ′2dr′3ρ(ξ′1, ξ
′
2, r
′
3)

~ξ − ~ξ′

|~ξ − ~ξ′|2
, (6.1)

where r3 is the radial distance, the ξ’s are the perpendicular coordinates and ρ is

the density of matter. The true position of the source in the sky ~β can be related

to the observed one ~θ = ~ξ/dl through the lens equation,

~β = ~θ − ds − dl
ds

~α(dl~θ)), (6.2)
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The term weak lensing is used if this equation can be inverted to obtain a one-

to-one correspondence between θ and β while strong lensing refers to the cases

in which multiple images are produced (i.e. multiple θ relating to one β). The

distortion matrix A(~θ) = ∂~β/∂~θ encodes the information about the distortion and

magnification of images.

Figure 6.1: Strong lensing of a background source due to a string wake.

6.1.1 Weak Lensing by the wake’s halos

Recent advances in weak gravitational lensing ([74], [75]) allows detection of very

small dark matter halos in the mass range of 106M�−108M�. They do so by looking

at an unexpected distortion in one of the many images in strongly lensed systems

and can then infer the mass of the object causing the anomaly. Any clumps of mat-

ter intersecting the path of the light rays will cause lensing and hence distortion; it

is expected that around 90% of the halos detected with this method are not part of

the lens [76]. Since the dark matter halos created from cosmic string wakes will have

a very strong correlation in position space, we can hope that a wake intersecting the

geodesics of the source’s light rays would cause image distortions that would allow

us to detect such spatial correlations.
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To determine the probability that a wake intersects such a geodesic we focus

on the ones formed at teq since these are the most numerous and will possess the

most massive halos. The number of string wakes intersecting the hypersurface S2

at redshift z was calculated in [71] and is given by,

NS2(z) = 4πñwake(zeq)(1 + z)3vsR
2
eqH

−1
eq

( √πγvsγs
3vs cos(θs)

)
, (6.3)

where cos(θs) = 1√
2

is the average orientation of string wakes, Req = 3t
2/3
eq (t

1/3
0 −t

1/3
z )

is the physical radius of the hypersurface S2 at teq, Heq is the Hubble parameter at

that time and ñwake(zeq) is the comoving number density of wakes given by equation

5.16.

The probability that a wake located at redshift z does not intersect along our line-

of-sight a lensed image that spans an angle θ in the sky is,

P (z) =
(AS2 − Aθ

AS2

)NS2 (z)

=
(1

2
+

1

2
cos(θ/2)

)NS2 (z)

, (6.4)

with Aθ being the area in the sky taken by the lensed image, and AS2 = 4π the area

covered by the whole sky.

In redshift space, the average thickness of the wakes is,

l =
γ + γsvs

2
√

2

( z + 1

zeq + 1

)1/2

. (6.5)

Therefore, if we discretize redshift space in bins of size ∆z = a(t0)
(

1
a(t(z))

− 1
a(t(z)+l)

)
so that z1 = 0, z2 = z1 + ∆z(z1), ..., zm = zm−1 + ∆z(zm−1), we are assured that

wakes cannot intersect more than one hypersurface, and hence the probabilities in

eq. 6.4 are independent for different zi. This allows us to get a good estimate on

the probability that a wake intersects our line-of-sight with a lensed image,

P = 1−
zm<zlens∏
zi=0

P (zi). (6.6)

Using the parameters of 5.19 with a lens of size θ = 1 arcsec at zlens = 2, we find

P ≈ 3 × 10−6. This is a very small number considering that there are 572 lenses
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catalogued in the Master Lens database [77] as of March 2013. The lens number is

expected to increase drastically in the next few years but considering that we would

require 300000 lens to statistically constrain strings we don’t expect this method to

be viable in the foreseeable future. The situation does not get better if we include

wakes formed at later times, the probability of intersection stays the same order of

magnitude.

6.1.2 Strong Lensing by the wake itself

A wake formed at teq with parameters in 5.19 will have grown to a mass of about

1014M� at z = 0. In the case of a spherical lens, this is enough mass to create lensed

images with Einstein radius of 0.3 arcsec. In the case of a wake, its orientation is

important. Consider an observer who looks through a wake on its side as in figure

6.1. If the wake is located at a redshift zl it will have dimension L × L × w with

L(zl) = 1
2
c(γteq + vsγsteq)

a(zl)
a(zeq)

being the average length of its sides. The density of

matter ρ in equation 6.1 will only be non-zero inside the wake and take a value of

ρ(zl) = 4
6πGt20

(zl + 1)3. Assuming w(zl) � ξ1 � L(zl) we can treat the wake as an

infinite line in the ξ′2 direction passing through (r′3, ξ
′
1) = (dl, 0) and with mass per

unit length obtained by performing the dξ′1dr′3 integrals of equation 6.1. With these

simplification we have that α2 = 0 and,

α1(~ξ) =
4G

c2
ρ(zl)L(zl)w(zl)

∫ ∞
−∞

dξ′2
ξ1

ξ2
1 + (ξ2 − ξ′2)2

(6.7)

=
4G

c2
ρ(zl)L(zl)w(zl)πsgn(ξ1) (6.8)

=
32Gµvsγs

5
(γ + vsγs)πsgn(ξ1) = C(zl)sgn(ξ1). (6.9)

This ~α gives us two solutions to the lens equation 6.2,

β1 = θ1 −
ds − dl
ds

C(zl)sgn(θ1), β2 = θ2. (6.10)

To lowest order, the matrix A(~θ) of this solution is the identity and therefore there

is no magnification or distortion in the images. This is the same lensing effect
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that the conical geometry around a string would produce, namely two images with

no magnification or distortion. For example, using the parameters of equations

5.19, a wake at redshift 1 lensing a source at redshift 2 would create two images

separated by ∼ 0.2 arcsec in the sky. Note how L ∼ 50Mpc� ξ1 ∼ 1.6Mpc� w ∼

0.15Mpc justifies our original simplification. In order to have enough mass along the

integrated line of sight to get strong lensing we require that the background source

lies, with us, very close to the plane delimited by a wake. This makes the signal too

rare to be useful to statistically constrain string parameters. However, if one were

lucky, assuming the images do not overlap, which could happen for extended source

and a small Gµ or if we are not in the proximity of the wake’s plane, a lensed source

would appear as two images with no magnification or distortion. In such a case one

could hope to find other similarily lensed objects along some line in the sky.

6.2 Topological Signature of wakes and Minkowski Func-

tionals

As previously discussed, halos from wakes should have strong position space cor-

relations amongst themselves. If we could some day detect halos in the relevant

(small) mass range, it would be interesting to see how observable this correlation

would be compared to the background. In order to do this we employ a tool -

namely Minkowski functionals - already used in cosmology (see [78] for examples)

and that allows to characterize the geometric properties of shapes. The large scale

structures seeded by wakes will have a different shape than the ones seeded from

Gaussian random fluctuations since the former should coherently create structures

along planes. However we will see that non-linear growth of the background pertur-

bations are able to mimic the wakes signal, making it hard to resolve. We first give

a brief overview of Minkowski functionals before applying it to our problem while

directing the reader to [79] for additional details.
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6.2.1 Minkowski Functionals

We would like to find a set of operators that allows us to characterize different

shapes. Geometric characteristics of a set should satisfy certain requirements which

our operator V will also follow. Consider a convex body E , then we impose the

following three properties that V acting on E must obey,

• Motion Invariance

Changing the position of our manifold E by some action of a group G should

not affect the value of the functional. Namely, ∀g ∈ G

V (E) = V (gE). (6.11)

• Additivity

If we have two sets E and D, their geometric properties should add and hence

the functional should satisfy,

V (E ∪ D) = V (E) + V (D)− V (E ∩ D). (6.12)

• Conditional Continuity

Finally the functionals of convex approximations Ei to a convex set E should

converge. Namely,

V (Ei)→ V (E), as Ei → E for i ∈ I. (6.13)

The possible functionals obeying the above are very restricted, a fact captured by

Hadwiger’s theorem [80]. The theorem states that for a convex body in d dimensional

space, there exists only d+1 linearly independent functionals Mi, i ∈ {1, ...d+1} sat-

isfying the above three conditions. In three (spatial) dimensions, these can be chosen

to be the fractional volume V , the surface area A, the mean curvature H and the
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Euler characteristic χ of our set E . The details involved in computing these can be

found, along with information about programs already written to do the job, in [79].

How do we use the above data to pick out signals from the large scale structure?

Consider an arbitrary density ρ(x) in a box of length L. Define ρavg to be the

average value and σ to be the standard deviation. Now if we remove all points of

space with ρ(x) < ρavg + vσ a shape is formed from the remainder. The previous

operation can be thought of as setting

ρ(x) = 0, if ρ(x) < ρavg + cv (6.14)

ρ(x) = 1, if ρ(x) ≥ ρavg + cv, (6.15)

and obtaining the resulting shape defined by the x’s that have ρ(x) = 1. This is

called the excursion set and we can evaluate its corresponding Minkowski function-

als. The functionals will depend on the threshold v and hence allow for plots Mi(v)

that will look quite different for various density distributions. For instance, imagine

how the fractional volume V = M1 changes for a distribution with a nearly homo-

geneous density profile; it will look similar to a step function since for v < 0 all

our points are included so we will have Mi(v) ≈ 1 and then there will be a sharp

decrease so that Mi(v) = 0 for v > 0. For random Gaussian fluctuations, the curve

will run from 1 to 0 much more smoothly as we increase v.

Our goal will be to compare the Minkowski functionals of a density of halos made

from cosmic strings and primordial fluctuation against a distribution made only from

primordial fluctuations. We should be able to see a difference if the wakes create

many planar-like structures since they will appear as a very distinct shape in the

functional curve. To generate the wake halos distributions, we laid down wakes at

random positions and orientation in a box of size (50Mpc)3 then fragmented them

into halos according to the results we previously discussed. Generating maps of

the background is much trickier. We are interesting in a redshift where the initial
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perturbations - being a Gaussian random field - had time to evolve into non-linear

structures. To obtain different realizations of the final structure, we must resort

to N-body simulations which can resolve halos of mass below 107M�. These are

computationally expensive and complex to perform. To simplify our life we use the

data from the Millennium-II simulation [81], a N-body simulation done in a box of

size (100Mpc)3 which can resolve halos down to 106M�. This only allowed us to

obtain 8 independent maps of background structure (each corner of the simulation).

We computed the Minkowski functionals of those maps then averaged them. We did

the computation a second time, but now we added the halos from the string wakes

on top of the background. We then compared the averaged Minkowski functionals

of the two model (string+background) and (background). One thing to note is that

the background between the two model will be 100% correlated, we will come back

to this point in a moment.

In figures 6.2.1 we show the averaged Minkowski functionals of the background

in blue, along with the error bars, compared to the average Minkowski functionals of

the background + string wakes in black. The different is noticeable but expected.

Because the backgrounds are so correlated, any additional change to the maps (like

adding a set of wake halos) will change the geometry of the excursion set.

Just by eye, this looks like a distinguishable signal. However we did not take

into account how large primordial perturbations would affect the wake’s geometry.

We gave a quick estimate that roughly ∼ 50% of the wakes will be destroyed (this

can be seen in figure 5.7). We try to capture this dynamics by removing randomly

50% of the wake network and repeating the Minkowski functional calculation. The

result is shown in figure 6.2.1 and it is already a lot harder to see the a difference.

Figure 6.2.1 shows the same result but with error bars on both curves, rendering

them nearly indistinguishable. The reason the background and the combined back-

ground + wake curves look similar is because primordial fluctuations also tends to
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Figure 6.2: Comparison of the average Minkowski functionals for excursion sets defined by v
between background structures (blue) and background+wake structures (black). The Minkowski
functionals are M1 (top left), M2 (top right), M3 (bottom left) and M4 (bottom right).

form sheet-like structures as they agglomerate into dense clumps, an effect called

the Zel’dolvich pancake. Hence even with no string wakes, there will still be sheet-

like structures present. Of course the string wakes will have specific dimensions

whereas the Zel’dovich pancakes would have more random properties. With much

more background maps and a finer resolution one could possibly detect the wake

signals using Minkowski functionals. The lack of background maps (only 8) renders

our current analysis very fragile but we did not carry the work further since realisti-

cally mapping the density of matter with the accuracy needed is far from currently

possible in the foreseeable future.
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Figure 6.3: Comparison of the average Minkowski functionals for excursion sets defined by v
between background structures (blue) and background+wake structures (black). However this time
we took into account the backreaction of the background on the wake structure. The Minkowski
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Figure 6.4: Same situation as in figure 6.2.1 but this time with error bars on both curves.
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7

Conclusion

In this thesis we first reviewed the theory of structure formation and cosmic strings.

Strings come in two different shapes, namely long strings and string loops, their

population distributions were qualitatively different but both evolved following a

scaling solution proportional to the horizon size. The two shapes also have differ-

ent effects on the surrounding matter: loops possess a Newtonian potential that

directly causes matter to be attracted while long ”infinite” strings have no local

gravitational potential but generate wakes of non-linear density perturbations as

they move through matter. Structure formation from string loops was previously

studied in [32], where it was found that string loops with mass Gµ ∼ 10−7 (the

current constraint [17]) would produce halos with significant star formation at early

times and have an impact on the period of reionization. This prompted us to study

the structure formed from the other part of the network, namely the long strings.

We showed that observational signals in the large scale structure from string wakes

are challenging to detect [1]. To be more precise, we have shown that string wakes

dominate the nonlinear structures in the universe at sufficiently high redshifts, and

at lower redshifts they may be identifiable from the background because of the dis-

tinct spatial correlations which they induce. However we argued afterwards that

the string-induced halos are typically too cold to induce star formation and observe

them through optical telescopes, and too light and rare to be detected by gravita-

tional lensing techniques. Moreover the non-linear background is able to mimic the
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planar correlations between wake halos which makes these challenging to extract.

One promising window - studied in other works [62, 82, 83, 84, 85] - is via 21cm

redshift surveys.
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