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Abstract

A number of studies have investigated transmission clusters in the Human Immunode-
ficiency Virus (HIV) epidemic among Men who have Sex with Men (MSM) in the province
of Québec, Canada, stressing the contribution of clusters to incidence. Studies of that type
usually rely on a sample of HIV-1 genetic sequences, whose ancestry is inferred with a phylo-
genetic model, yielding a tree used to partition the sample. Understanding of clusters found
through phylogenetic analyses is still limited, which is reflected in the many ad hoc criteria
used in their estimation. This manuscript-based thesis aims to improve understanding of
phylogenetic clusters, propose improvements to transmission cluster inference methods, and
provide updated estimates of HIV-1 transmission clusters in Québec, by means of a thorough
comparison between results from conventional approaches and the new method.

The first manuscript in the thesis addresses the issue of phylogenetic cluster interpreta-
tion. Through simulations of epidemics on several categories of contact networks, we explore
the association between phylogenetic clusters, found under a variety of distance-based clus-
tering methods, and communities, distinctive groups of densely-connected individuals in
the network. We find limited overlap between clusters and communities, suggesting that a
network interpretation of phylogenetic clusters may not be warranted.

The second manuscript presents a new phylogenetic clustering algorithm, DM-PhyClus,
that readily weaves into cluster inference a clear definition of transmission clusters, resulting
in a straightforward interpretation for the inferred clusters. Unlike conventional phylogenetic
clustering approaches, the method does not rely on arbitrary genetic distance or clade-
confidence cutpoints applied a posteriori to the estimated phylogeny. Simulations reveal that
DM-PhyClus can outperform a number of conventional clustering methods in terms of mean
cluster recovery. We apply DM-PhyClus to a sample of real HIV-1 sequences obtained from
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the Québec HIV genotyping program database, revealing a set of clusters whose estimates
are in line with the conclusions of a previous curated analysis.

The third manuscript includes a detailed clustering analysis of HIV-1 cases among MSMs
based on DNA sequences collected for the Québec HIV genotyping program. We first clus-
ter the data with two conventional approaches, maximum likelihood phylogenetic inference
coupled with bootstrap estimation of confidence in clades, and pure Bayesian phylogenetic
estimation, under a variety of clustering criteria and cutpoints. We then partition the sam-
ple with the help of DM-PhyClus and the Gap Procedure, both approaches aiming to avoid
arbitrary selection of cutpoints. The analyses based on conventional methods reveal largely
overlapping sets of clusters, while DM-PhyClus and the Gap Procedure propose moderately
different partitions. An examination of more recently-diagnosed cases that are known to have
been infected at most six months prior to diagnostic shows considerable expansion of large
clusters, and hint at the emergence of a few new transmission clusters. The analyses stress
the continued importance of clustering in maintaining the HIV epidemic among MSMs, and
suggest that the frequency of early transmission events might explain why improvements in
antiretroviral therapy have not lead to the end of the epidemic.



Résumé

Plusieurs études se sont penchées sur les grappes de transmission au sein de l’épidemie
de VIH-1 parmi les hommes ayant des relations sexuelles avec d’autres hommes (HARSAH)
au Québec, au Canada, mettant en lumière la contribution de ces grappes à l’incidence.
Les études de ce type se fient habituellement à un échantillon de séquences génétiques de
VIH-1, dont l’histoire ancestrale est inférée à l’aide d’un modèle phylogénétique, produisant
un arbre utilisé pour partitionner l’échantillon. La compréhension des grappes trouvées par
l’intermédiaire d’une analyse phylogénétique est toutefois limitée, ce qui se traduit par une
multitude de critères arbitraires pour leur estimation. La thèse, comportant trois articles,
a comme but d’améliorer la compréhension des grappes phylogénétiques, de proposer des
améliorations aux méthodes actuelles d’inférence des grappes de transmission, et de fournir
une mise à jour des estimés des grappes de transmission du VIH-1 au Québec, au moyen
d’une comparaison rigoureuse entre les résultats d’approches conventionnelles et ceux de la
nouvelle méthode.

Le premier article de la thèse traite de l’interprétation des grappes phylogénétiques.
À l’aide de simulations d’épidémies sur plusieurs catégories de réseaux de contacts, nous
explorons l’association entre les grappes phylogénétiques, obtenues par l’application de dif-
férentes méthodes de regroupement basées sur la distance, et les communautés, des groupes
distinctifs d’individus dans le réseau. Nous remarquons une correspondance limitée entre les
grappes et les communautés, et concluons qu’une interprétation des grappes phylogénétiques
en termes de la structure du réseau de contacts pourrait être difficile à justifier.

Le deuxième article présente un nouvel algorithme de regroupement phylogénétique, DM-
PhyClus, qui mêle à l’inférence des grappes une définition claire des grappes de transmission,
donnant ainsi une interprétation sans ambiguïté aux grappes inférées. Contrairement aux
approches conventionnelles de regroupement, DM-PhyClus ne nécessite pas l’application à la
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phylogénie inférée de critères arbitraires de distance génétique ou de confiance en les clades
obtenues. Les simulations révèlent que DM-PhyClus peut battre les méthodes convention-
nelles sur le plan du taux moyen de détection des grappes. Nous appliquons la méthode à
un échantillon de séquences véritables de VIH-1 tirées de la base de données du programme
québécois de génotypage du VIH, ce qui révèle un ensemble de grappes très similaires à celles
proposées par une étude précédente dont les estimés ont été partiellement validés.

Le troisième article inclut une analyse détaillée de regroupement des cas de VIH-1 parmi
des HARSAH basée sur les séquences d’ADN collectées dans le cadre du programme québé-
cois de génotypage du VIH. Tout d’abord, nous regroupons les données à l’aide de deux
méthodes conventionnelles: l’inférence phylogénétique par maximum de vraisemblance, cou-
plée avec l’estimation de la confiance en les clades par le bootstrap, et l’estimation phylogéné-
tique bayésienne pure. Nous partitionnons par la suite l’échantillon à l’aide de DM-PhyClus
et du Gap Procedure, deux approches cherchant à éviter la sélection arbitraire de critères
de regroupement. Les analyses basées sur les méthodes conventionnelles produisent des es-
timés de grappes très similaires, tandis que DM-PhyClus et le Gap Procedure proposent des
partitions modérément distinctives. Un coup d’oeil aux cas diagnostiqués récemment, et
dont la date d’infection se situe au maximum six mois auparavant, met en lumière une ex-
pansion considérable des plus grandes grappes de transmission et l’émergence potentielle de
quelques nouvelles grappes. Les résultats de l’étude soulignent le rôle persistant des grappes
de transmission dans la survie de l’épidémie de VIH parmi les HARSAH. De plus, ils sug-
gèrent que les événements de transmission hâtifs expliqueraient pourquoi les améliorations
aux traitements antirétroviraux n’ont pas mené à une résorption de l’épidémie.
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CHAPTER 1

Introduction

1. The HIV-1 pandemic

Since the World Health Organization (WHO) initiated surveillance of Human Immunod-
eficiency Virus (HIV) in 1983, conditions related to Acquired Immunodeficiency Syndrome
(AIDS) have claimed the lives of more than 35 million people. In 2015, an estimated 36.7

million people were living with HIV/AIDS worldwide, most of them in Sub-Saharan Africa
[67]. Thanks to major improvements in Antiretroviral Therapy (ART), the prognostic of
people diagnosed with HIV/AIDS has improved tremendously, increasingly turning HIV-1
into a manageable chronic condition. Nevertheless, in 2015, life expectancy of HIV-positive
individuals with access to care was still 8 years under that of uninfected people [83]. ART’s
side-effects can also be debilitating in some cases, leading to imperfect adherence [8, 115].

2. HIV-1 among men who have sex with men (MSM) in Canada

In Canada, an estimated 75, 500 people were living with HIV-AIDS in 2014, among which
39, 630 belong to the Men who have Sex with Men (MSM) risk category. HIV-1 prevalence
in MSMs in major cities ranged from an estimated 11% in Ottawa to over 23% in Toronto,
making HIV-1 a major public health concern in large urban areas [3].

3. HIV-1 genotyping programs

Imperfect adherence to ART may lead to the emergence of drug resistance, and the need
to detect drug-resistant subspecies and monitor their transmission has lead to the onset of
HIV-1 genotyping efforts. The Québec HIV genotyping program and Swiss HIV Cohort
Study (SHCS), for example, have created large HIV sequence databases, making it possible
to obtain a very accurate molecular description of HIV epidemics in their regions of coverage.
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4. Transmission clusters

Phylogenetics is the study of the ancestral relationships between genetic sequences, the
ancestry being modelled with a tree structure known as a phylogeny. Phylogenetic analyses
of HIV-1 sequencing data from different HIV-positive MSMs have revealed the existence
of distinctive sets of genetically-close sequences, so-called transmission clusters, which may
result from transmission cascades known as quick transmission chains [19]. The presence of
clustering in an HIV-1 epidemic has implications for prevention strategies, insomuch as it
might reasonably stress the major contribution of Primary HIV Infection (PHI) and recent
stage infection to incidence [18]. Successive clustering analyses of data collected for the
Québec HIV genotyping program also indicate that large transmission clusters may be the
driving force behind the epidemic, with 51% of newly-infected MSMs in Montreal belonging
to a large transmission cluster in 2011, compared to 25% in 2005 [18]. Understanding the
transmission dynamics of HIV among MSMs therefore requires identifying the factors behind
cluster expansion.

Partitioning a sample of genetic sequences using an inferred phylogeny requires a cluster
definition, usually combining an arbitrary within-cluster genetic distance criterion with a
minimum confidence requirement for the existence of the cluster. The lack of any convention
regarding transmission cluster estimation from phylogenies has lead to researchers using a
large array of criteria, whose implications are unclear [94]. What transmission clusters can
teach us about HIV transmission networks is also an open question. More importantly,
phylogenetic estimation does not aim first and foremost to produce cluster estimates, but
rather, an estimate of the sample’s ancestry, which is then used as a tool in the partitioning.
Such post hoc cluster estimation procedures make cluster point estimates much harder to
interpret.

5. Objectives

This manuscript-based thesis has three main objectives,

(1) Clarify the meaning of transmission clusters in terms of contact network structure,
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(2) Propose a new phylogenetic clustering method that results in straightforward infer-
ence for transmission clusters,

(3) Apply the new clustering algorithm to the MSM sequencing data in the Québec
HIV genotyping program database to update and improve current cluster estimates,
obtained using conventional approaches.

The work is split into three manuscripts, each of which addresses one of the stated objectives.

6. Manuscript overview

6.1. Manuscript 1: “Assessment of Overlap of Phylogenetic Transmission
Clusters and Communities in Simple Sexual Contact Networks: Applications
to HIV-1”. Sexual transmission of HIV among MSMs in the province of Québec occurs on
an intricate sexual contact network, whose properties may affect epidemic dynamics. Map-
ping transmission clusters obtained from viral phylogenies onto the sexual contact network
graph may reveal links between network structure, more specifically so-called communities,
and transmission clusters. The first manuscript aims to verify the latter statement in a
simulation setting, and consequently provide a more intuitive understanding of clusters.

In a nutshell, we simulate epidemics on different random sexual contact networks under
the assumption of a simple diagnostic scheme. For each epidemic, we track viral transmission
and infection diagnostic, producing a phylogeny that we then use to cluster the resulting
sample of diagnosed individuals. We finally measure overlap of phylogenetic clusters with
communities.

The study revealed limited correspondence between phylogenetic clusters and communi-
ties, mainly attributable to the way phylogenetic clusters are conventionally defined. There-
fore, we concluded that the intuition that phylogenetic clusters map precisely onto network
communities was often misleading, but that the phylogeny could still be helpful in detecting
community structure, provided an alternative cluster definition be proposed.
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6.2. Manuscript 2: “DM-PhyClus: A Bayesian phylogenetic algorithm for in-
fectious disease transmission cluster inference”. Transmission cluster inference from
phylogenetic estimates usually relies on an ad hoc within-cluster patristic distance require-
ment, where patristic distance between any two sequences is computed by summing branch
lengths along the shortest path between the corresponding tips in the tree. Such distance
criteria are often paired with a confidence threshold for inferred clades, resulting in non-
straightforward inference. Clusters obtained by applying those criteria are thought to result
from quick transmission chains, albeit accidentally. The manuscript aims to propose a new
Bayesian phylogenetic clustering method, DM-PhyClus, based on a new cluster definition. A
cluster is now a set of sequences supported by a phylogeny with short mean branch lengths.
We show through simulations that DM-PhyClus is on average more successful at recovering
transmission clusters than more conventional approaches, under a variety of prior assump-
tions. We also apply the algorithm to a sample of 526 sequences from patients belonging to
the MSM risk category in the Québec HIV genotyping program sequence database, confirm-
ing the results of a previous analysis largely based on heuristics.

6.3. Manuscript 3: “Characterizing HIV-1 transmission clusters among men
who have sex with men in Quebec, Canada”. Previous studies have revealed the
existence of several large transmission clusters in the HIV-1 epidemic among MSMs in the
province of Québec [19, 20]. Manuscript 3 presents an up-to-date clustering analysis of MSM
sequences in the Québec HIV genotyping program database. We compare cluster estimates
obtained following the application of the conventional maximum likelihood and Bayesian
methods to those produced by DM-PhyClus and the Gap Procedure [130], that both aim to
simplify phylogenetic clustering by avoiding arbitrary cutpoint selection. All methods reveal
fairly similar cluster estimates, with DM-PhyClus, and the Gap Procedure to a lesser extent,
proposing the most distinctive partitions. Clustering patterns in sequences obtained from
cases in the Primary HIV Infection (PHI) stage, corresponding to the six months following
seroconversion, highlight the sizeable contribution of large clusters to recent incidence and
the emergence of several new transmission clusters. We conclude by emphasising the link
between early transmission events and clustering, the understanding of which is crucial to
inform public health strategies to curb transmission.



CHAPTER 2

Background

As an introduction to the core ideas covered in this thesis, we present a summary overview
of several topics pertaining to Human Immunodeficiency Virus (HIV)-1 and phylogenetics.
We start with a brief genetic and epidemiological description of HIV-1, followed by a reminder
of fundamental concepts in network theory and of random network models. We then move
on to formally introduce phylogenies from a genetic, probabilistic, and statistical standpoint.
We describe a number of algorithms used for phylogenetic reconstruction and inference, and
finally, we tackle the subject of clustering, first presenting model-based and distance-based
clustering, then illustrating how those approaches are applied to phylogenetic data.

1. The Human Immunodeficiency Virus

1.1. The pandemic. Thirty-two years after the World Health Organization (WHO)
started monitoring the Acquired Immunodeficiency Syndrome (AIDS) pandemic, HIV preva-
lence is still a major public health burden in many regions of the world. In 2015, most people
living with HIV were found in sub-Saharan Africa, followed by southeast Asia [4]. In Canada,
more than 75, 500 people are HIV-positive, most of them belonging either to the men who
have sex with men or injection-drug user risk category, and in 2014, incidence estimates
ranged between 2, 570 and 3, 200 [3]. Improvements in Antiretroviral Therapy (ART) have
drastically improved the long-term prognosis of HIV, although an 8-year gap in curtate life
expectancy may still remain [83]. Further, side-effects of ART are known to be debilitating,
leading to imperfect compliance.

1.2. Classification and landmarks of HIV-1. HIV is a lentivirus of the retrovirus
family, known for its large degree of genetic diversity. It is classified into groups, types,
and subtypes. HIV type 1, abbreviated HIV-1, the viral type responsible for the pandemic,

5
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belongs to group M, for “Major”, and originates from several zoonotic transmissions from
Pan Troglodytes Troglodytes [57].

HIV-1 is further broken down into genetic subtypes, denoted by letters ranging from A

to J , and recombinants. Common recombinants are denoted CRF-xy, for “Circulating Re-
combinant Forms” mixing subtypes x and y. For example, a recombinant between subtypes
A and E, denoted CRF-AE, represents a majority of infections in southeast Asia [57]. Rare
recombinants are instead denoted URF-xy, where the U stands for “Unique”. Although
subtype C represents roughly half of infections worldwide, in Canada, subtype B is pre-
dominant. However, due to new introductions of the virus from other regions of the world,
genetic diversity has been increasing [21].

The HIV genome comprises 9 genes. The pol gene codes for enzymes essential for RNA
transcription and replication, which are targeted by ART. More specifically, ART works by
disrupting the action or production of the enzymes Protease (PR), Reverse Transcriptase
(RT), and integrase, coded by the PR/RT and int regions of the pol gene. The env gene
codes for the viral membrane and lets the virus target and bind to lymphocytes. Finally, the
gag (group-specific antigen) gene codes for several structural core proteins. The other genes,
rev, tat, vpr, vif, nef, and vpu are regulatory. They control the virus’s metabolism and life
cycle, and help increase infectivity [1].

1.3. Genotyping HIV-1. Due to the virus’s high mutation rate, in the absence of
perfect compliance, selective pressure created by ART may lead to the emergence of drug
resistance. The need to monitor the transmission of drug-resistant strains has lead to the
creation of large HIV-1 genotyping programs [19, 117]. Sequencing efforts for HIV-1 system-
atically include the pol gene, more specifically the PR/RT region, since its action is directly
affected by ART. A list of sites associated with drug resistance is available, and updated
periodically [134].
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2. Contact networks

2.1. Networks and epidemics. Classical epidemic models work under the random
mixing assumption. In a random mixing population, each individual has a small and equal
chance of coming into contact with any other individual, and knowing the actual contact
structure is unnecessary. The original Susceptible-Infected-Recovered (SIR) model, for ex-
ample, relies on the random mixing assumption and consisted of differential equations rep-
resenting the expected temporal variation in the number of subjects in each category [69].

For epidemics such as HIV-1 however, the random mixing hypothesis fails to hold: sub-
jects have a fixed number of contacts, usually not sampled uniformly among individuals
in the population. In such a case, employing network models is necessary: they work by
constraining transmissions to the “neighbourhood” of infected subjects. Network structure
matters for public health authorities, as it determines to what extent a vaccination campaign
can help curb epidemic spread. Under certain network types, random vaccination will be
systematically ineffective in preventing epidemic outbreaks [69].

2.2. Graph representation. Transmission of HIV-1 through sexual contact or needle-
sharing occurs on an intricate contact network, which we represent with a static undirected
graph, whose vertices, or nodes, correspond to individuals and edges, to a transmission route
between them, cf. Figure 1. We denote the graph structure with an adjacency matrix, with
element (i, j) taking value 1 if node i connects to node j, and 0 otherwise. Unless loops are
allowed, that is, edges can connect a node to itself, diagonal elements in the matrix take
value 0. In a static network, an edge is permanent: in other words, it represents a contact
that at one point in time made transmission of the virus possible. In undirected graphs,
edges are not assigned a direction, and it follows that transmission between two connected
individuals, called neighbours, can originate from any of them, and the adjacency matrix is
symmetrical. Directional edges could help constrain the number of potential paths followed
by the virus, but would be hard to infer in the case of HIV-1, where sensitive information
would need to be collected [109].
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Figure 1. A graph representing a contact network between 20 indi-
viduals. The vertices in red represent infected individuals and the edges in
red, the connections used by the virus to infect new subjects. A vertex in a
box represents a diagnosed infection. The individual represented by the vertex
in blue contracted the virus first and triggered the epidemic. We call the col-
lection of edges and vertices in red, plus the vertex in blue, the transmission
network. The collection of all edges and vertices is called the contact network.

Embedded within this graph is the transmission network, representing solely HIV-positive
individuals and the edges along which HIV transmission occurred. The transmission network
is a snapshot of the epidemic at a given point in time. Because the graph is undirected, we
cannot deduce from it a deterministic history of the epidemic.

2.3. Network characteristics. Contact networks are characterised, among other things,
by their size, degree distribution, clustering, and modularity.

2.3.1. Degree distribution. We define a node’s degree as the number of edges connecting
to it. For example, in Figure 1, the blue node has degree 9. In other words, it has 9

first-degree neighbours.

2.3.2. Clustering coefficient. A network’s clustering indicates its level of interconnected-
ness. The clustering coefficient usually consists in a ratio of the number of triangles within
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the network to the number of connected triples [69]. If we denote the adjacency matrix A,
we have that the clustering coefficient takes value

C =
Tr(A3)∑

i,j A
2
i,j − Tr(A2)

,

where Tr denotes the trace of the matrix. For example, the subnetwork represented by the
hexagon on the left side of Figure 1 has clustering coefficient 1.0, since all possible sets of
three edges are interconnected. The entire network, on the other hand, has a clustering
coefficient equal to 0.61.

2.3.3. Modularity. We define communities as distinctive, non-overlapping sets of densely-
interconnected nodes in a network graph. We can rate the quality of any partition of vertices
into communities with the so-called modularity score, which is proportional to the difference
between the number of edges falling within sets in the identified partition and the expected
number in a same-size network with randomly-placed edges [87]. Let element (i, j) of matrix
e denote the proportion of edges connecting components i and j in the partition. We have
that the trace of e is equal to the proportion of edges within the identified components. The
modularity score is then expressed

Mod. = Tr(e)−
∑
i,j

e2i,j,

where, as expected, the second term corresponds to the proportion of edges that would fall
within the identified components if the edges were placed at random.

The best community estimates are found by identifying the partition that maximizes the
modularity score. However, even that partition may still contain components that are not
obviously distinctive: there is no absolute criterion for calling any set of nodes a “community”.
Partitions are merely more or less modular. Since the number of ways in which vertices can
be split into non-overlapping sets grows quickly with network size, community detection
usually relies on heuristic algorithms.

The walktrap algorithm [91], for example, is based on the intuition that if a set of
vertices forms a community, then any short random walk launched from within it is unlikely
to leave it. Accordingly, the walktrap algorithm works by performing a large number of
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Term Definition

Degree The number of edges connecting to a node.
x-th degree neighbour (With respect to an arbitrary node) All nodes reachable by crossing

exactly x different edges.
Clustering coefficient Measure of the network’s interconnectedness, equal to the ratio of

connected trios of nodes to the total number of trios in the network.
Modularity The extent to which the network comprises distinctive components.
Community A subset of a network comprising densely-interconnected nodes

with comparatively few connections with nodes outside the set.
Small-world property Can be said of networks with the mean length of shortest path

between any two nodes growing logarithmically with network size.
Connection probability In network generation, probability that any two nodes become first-

degree neighbours.
Lattice Network with no disconnected component whose vertices all have

the same number of first-degree neighbours.
Rewiring probability In Watts-Strogatz network, probability that the edge between any

two neighbours is disconnected at one end to form a bridge between
more distant regions in the lattice.

Preferential attachment Phenomenon guiding network formation, where the probability that
an individual already in the network attracts a new (disconnected)
contact increases with that individual’s current number of connec-
tions (degree).

Scale-free network Network whose degree distribution follows a power law.
Table 1. Glossary of terms used in network analysis.

random walks on a graph, usually involving between two and five steps, from a starting
point selected at random. Using these short random walks, a distance matrix is derived,
which can then be employed in a standard hierarchical clustering algorithm, such as those
described in section 10.2. The cutpoint for the dendrogram is selected in such a way as to
optimise the modularity score. Other popular community detection algorithms include label
propagation, Girvan-Newman, spinglass, and Louvain [91, 96].
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2.4. Network models. Real contact networks rarely have a straightforward structure,
and estimating them can be challenging [69]. Consequently, to study the effects of network
characteristics on epidemics, we often rely on simpler network models, whose properties
are well known. Such models include those of Erdos-Renyi [40], Watts-Strogatz [132], and
Barabasi-Albert [12]. Table 1 presents a list of terms used in describing contact networks
such as those introduced in the upcoming sections.

Figure 2. Graph representing an Erdos-Renyi network with a 5%
connection probability.

2.4.1. Erdos-Renyi networks. Erdos-Renyi (ER) graphs are generated by randomly con-
necting any two vertices based on a draw from a Bernoulli distribution with an arbitrary
success rate, cf. Figure 2. In large networks, ER graphs have an approximately Poisson-
distributed degree distribution, with mean equal to (connection probability)*(network size -
1). Such networks tend to have low clustering, and long mean shortest path lengths, that is,
the average number of edges along the shortest path between any two vertices.

2.4.2. Watts-Strogatz networks. Watts-Strogatz (WS) networks, also known as “small-
world” networks, are formed by randomly rewiring edges in a lattice, cf. Figure 3. A
lattice is a graph consisting solely of nodes with an equal degree. The lower part of Figure
3, for example, is an intact lattice with degree 4. By “rewiring”, we mean that an edge is
disconnected at one end and reconnected to a randomly-selected vertex. The rewiring creates
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Figure 3. Graph representing a Watts-Strogatz network with a 5%
rewiring probability.

bridges between different regions of the lattice, granting it the “small-world property”, thus
dramatically reducing the mean shortest path lengths. Further, such graphs are characterised
by a relatively high clustering coefficient and very low variance in the degree distribution.

Figure 4. Graph representing a Barabasi-Albert network. Several
vertices in the center have a distinctively high degree.
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2.4.3. Barabasi-Albert networks. Barabasi-Albert (BA), or “scale-free”, networks result
from preferential attachment, cf. Figure 4. When preferential attachment guides network
formation, new subjects are more likely to form connections to already well-connected sub-
jects. In the graph, we therefore observe a large number of vertices with a small degree,
and a few so-called “hubs”, nodes with a disproportionately high degree. For example, the
degree of central vertices in Figure 4 is much larger than that of peripheral nodes. It follows
that such networks produce a heavy right-tail, termed power-law, degree distribution and
low clustering [12]. In other words,

P (D = d) ∝ d−ψ,

where D is node degree and ψ is a positive constant.

2.4.4. Network models and real contact networks. All three network models, while unre-
alistic, have desirable features for the modelling of epidemics. Although ER networks tend to
have overly long mean shortest path lengths, they are a valuable alternative to the classical
SIR model, with a lower growth rate in the number of infected subjects [69]. They might
offer a reasonable simplification to describe the transmission of airborne diseases such as
influenza or measles.

WS networks allow for bursts in the number of infected subjects, as crossing a bridge
may lead to a drastic increase in the number of susceptible subjects. Their high clustering
is also noteworthy, because of its effect on transmission dynamics. Human social networks,
for instance, are believed to exhibit the small-world property [124]. The very small variance
in their degree distribution remains problematic though.

Finally, preferential attachment may be an important phenomenon guiding the formation
of sexual contact networks [80]. It follows that BA networks are well-suited for modelling the
spread of HIV-1, even though their very low clustering coefficients tend to be a weakness.

More realistic network models have been proposed to represent empirical findings on
network structure. For example, the model of [123] is characterised by high clustering,
allows for assortative mixing, that is, a tendency of subjects to form connections with similar
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individuals, and has a power-law degree distribution. Accordingly, it has small mean shortest
path lengths that grow slowly with network size.

3. Features of a phylogeny

Figure 5. Phylogeny for a sample of five viral DNA sequences ob-
tained from five different subjects, labelled S1 to S5. External nodes,
at the right end of the tree, are called tips or leaves. The internal node at the
left end of the phylogeny is called the root. Distance is measured in expected
number of nucleotide substitutions per base pair, denoted “nt/bp”. For in-
stance, an expected 2 nucleotide substitutions per 10 base pairs separate the
viral sequences from individuals S1 and S2. Lineages merge once they find a
common ancestor.

Because of shared ancestry, sequence data sampled in different organisms are not marginally
independent and identically distributed (iid). Phylogenetic approaches usually represent the
ancestral relationship between such data with a bifurcating tree structure known as a phy-
logeny.

Figure 5 is an example of a phylogeny for five DNA sequences. In that tree, branch
lengths, expressed in expected nucleotide substitutions per base pair (nt/bp), measure ge-
netic distance between DNA sequences. Genetic distance is defined broadly as the expected
number of substitutions per site between two sequences. By making a molecular clock as-
sumption, branch lengths can be converted to a more intuitive time unit such as month or
day. The topology consists of hierarchically-nested sets of tips called clades. A clade is de-
fined as a set that comprises all and only leaves from a given ancestral node. In Figure 5 for
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example, {S3, S4, S5} and {S3, S4} form clades, but not {S1, S5} or {S3, S5}. The combi-
nation of the topology with branch lengths provides a complete unambiguous representation
of the phylogeny.

4. Genetic distance estimation

We can naively estimate distance between two aligned sequences by counting the num-
ber of differences across loci and dividing by sequence length. For example, under that
model, nucleotide sequences AATA and ACTA are separated by 0.25 nt/bp. This measure
corresponds to the so-called Hamming or raw distance [53]. Because of potential multiple
substitutions at the same site, Hamming distances tend to underestimate the true distance
[136]. We can refine genetic distance estimation by assuming that substitutions occur ac-
cording to a continuous-time Markov chain, with rate matrix Q and limiting probabilities
π.

The simplest model of DNA evolution is called Jukes-Cantor 1969 (JC69). It assumes
that all transitions occur with equal rate λ. In other words, we have transition rate matrix
Q,

Q =


−3λ λ λ λ

λ −3λ λ λ

λ λ −3λ λ

λ λ λ −3λ


with rows and columns corresponding to states T, C, A, and G, respectively. Under this
model, limiting probabilities are uniformly equal to 1/4 and a method of moments estimate
of distance can be obtained,

d̂ = −3

4
log

(
1− 4

3
p̂

)
,

with p̂ corresponding to the Hamming distance estimate.

Since transitions are known to occur at higher rates than transversions, a common ex-
tension to JC69, called Kimura 1980 (K80) [71], involves letting transition and transversion
rates differ in the Q matrix. Transitions are mutations from one purine to another purine or
from one pyrimidine to another pyrimidine, that is, A ↔ G or T ↔ C, while transversions
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are mutations from a purine to a pyrimidine, or vice versa, that is, A ↔ C, T ↔ G, A ↔

T, or C ↔ G. The K80 rate matrix then corresponds to,

Q =


−(α + 2β) α β β

α −(α + 2β) β β

β β −(α + 2β) α

β β α −(α + 2β)

 ,

with α and β being the transition and transversion rates, respectively.

Let S and V correspond to the proportion of sites with transitional and transversional
differences, respectively. The method of moments distance estimate is now equal to,

d̂ = −0.5 log(1− 2S − V )− 0.25 log(1− 2V ),

and limiting probabilities are still uniformly 1/4.

Multiple other extensions have been proposed: Hasegawa-Kishino-Yano 1985 (HKY85),
Tamura-Nei 1983 (TN93), and the General Time Reversible (GTR) [54, 119, 102] model.
The GTR model is the most flexible: its substitution rate matrix has nine parameters,
corresponding to all distinct substitution rates (six in total) and limiting probabilities (three,
since they are constrained to sum to 1.0). Note that method of moments estimates may not be
readily available for more complicated models. In that case, maximum likelihood estimates
can be used instead.

Pairwise estimation of genetic distance can however result in conflicting estimates when
samples of three sequences or more are involved, hence the need for phylogenetic models, that
help overcome this problem by permitting joint estimation of all pairwise genetic distances.

5. Phylogenetic likelihood

Felsenstein’s tree-pruning, or tree-peeling, algorithm is the standard method for comput-
ing phylogenetic likelihoods [136, 42]. Its computational complexity is linear in the number
of sequences and loci. We illustrate it in Figure 6. The notation was suggested by [136].
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Figure 6. An illustration of Felsenstein’s tree-pruning algorithm for
one locus. The algorithm starts by assigning unit vectors L1 and L2 to nodes
1 and 2, supported by branches of lengths d1 and d2, respectively, found in
level 1 of the phylogeny. The value for (non-unit) vector L7 is obtained by
applying Eq. 1. The substitution rate matrix and limiting probabilities are
assumed known. We then move up to level 2. Since node 3 is a tip, we assign
to it a unit vector corresponding to its state. We just computed the value for
L7. Now that we have L7 and L3, we can compute L6. We use the same
method to obtain L5. Finally, by applying Eq. 2 to L5, we obtain the required
likelihood.

Let us consider an alignment of n sequences, each denoted yi, with nl loci, supported
by a bifurcating phylogeny whose nodes and levels are numbered 1 to n(n + 1)/2, and 1 to
nlev, respectively. A level is a set of nodes separated by a given number of splits from the
root node. The level farthest from the root is labelled 1. We arbitrarily number the root
node n+1. For example, the phylogeny in Figure 6 has four tips (n = 4), and three internal
nodes, for a total of seven nodes. Nodes are split between four levels (nlev = 4), and the root
node is labelled 5. We compute the log-likelihood by following Algo. 1.
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Algorithm 1: Felsenstein’s tree pruning algorithm.

for l = 1, . . . , nl do
for a = 1, . . . , n do

Assign to tip a a length-m unit vector L(l)
i (m = 4 for DNA alignments), with

the position of the 1 determined by state ya,l;

end

for b = 2, . . . , nlev do
List nodes at level b whose children, at level b− 1, have been assigned vectors
L

(l)
i ;

Iterate across nodes listed in the previous step. For each of them, compute,

(1) L
(l)
i (xi) =

∑
xj

pxi,xj(dj)L
(l)
j (xj)

∑
xk

pxi,xk(dk)L
(l)
k (xk),

where i is the node label, j and k are the labels for the children of node i, xi
is a state label that indexes L(l)

i , pxi,xj(dj) is the probability that a
continuous-time Markov chain transitions from state xi to xj in time dj, and
dj being the length of the branch supporting node j. That transition
probability depends on the assumed genetic distance model, e.g. JC69 or K80
;

end
Obtain the likelihood contribution of locus l by computing,

(2) hl(θ) =
∑
xi

πxiL
(l)
n+1(xi),

where θ is the vector of phylogenetic parameters, π are the limiting probabilities,
and n+ 1 is the label of the root node

end
Result: Compute log-likelihood by calculating,

(3) l(θ) =

nl∑
i=1

log[hi(θ)].
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In Figure 6, we only consider one locus, which is why we omit the (l) superscript. The
nucleotides at that sole locus are A, T , T , and G, corresponding to tips 1 to 4, respectively.
The first inner loop in the algorithm assigns tips 1 to 4 vectors L1 = [1, 0, 0, 0], L2 =

[0, 1, 0, 0], L3 = [0, 1, 0, 0], and L4 = [0, 0, 0, 1]. We then move to the second inner loop.
We start at level 1, formed by the blue tips, numbered 1 and 2. The parent node, at level
2, is numbered 7. We know L1, L2, d1, and d2 and so, we obtain L7 by using Eq. 1.
We obtain the required transition probabilities p.,.(.) by computing the exponential of the,
assumed known, transition rate matrix scaled by the branch length, e.g. for tip 1, we have
pA,i(d1) = exp(Qd1)|A,i. We have that xi indexes vector Li and can take one of four values,
A, T , C, or G.

Node 7 is the only internal node at level 2. We therefore move up to level 3, where we
find node 6, the parent of nodes 7 and 3. Since both L7 and L3 are known, we obtain L6

exactly as we did for L7. Since node 7 is the only internal node at level 3, we move up to
level 4, where root node 5 is located. We compute L5, which concludes the second inner
loop. We then use Eq. 2 to obtain the log-likelihood contribution of the locus. Note that
the limiting probabilities are also assumed known. More specifically, we have,

h1(θ) =
∑

xi={A,T,C,G}

πxiL
(1)
5 (xi).

Since the simple alignment used in the example only has one locus, that concludes the outer
loop, and we have that l(θ) = log[h1(θ)]. If the alignment had loci 1 to nl, we would instead
move to locus l = 2, then l = 3, . . . , then l = nl and for each of them, repeat the previous
steps until we get log[hl(θ)]. We would then use Eq. 3 to obtain the required log-likelihood.

5.1. Mutation rate variation. In the example above, we assume that the cumulative
mutation rate at each locus is the same. That is however unrealistic: in real genotyping data,
certain sites evolve much faster than others [136]. We can incorporate among-sites mutation
rate variation into the likelihood by treating it as a random effect. The assumption that each
site has its own mutation rate is cumbersome from a computational standpoint and so, it is
common to assume instead that each site belongs to one of a few rate variation categories.
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In that case, Eq. 1 becomes,

(4) L
(l)
i,r(xi) =

∑
xj

pxi,xj(ξrdj)L
(l)
j,r(xj)

∑
xk

pxi,xk(ξrdk)L
(l)
k,r(xk),

where r = 1, . . . , nr indexes rate variation categories and ξr acts as a frailty parameter.

The likelihood contribution of locus l is now,

(5) hl(θ) =
nr∑
r=1

P (R = r)
∑
xi

πiL
(l)
n+1,r(xi),

where R is a random variable giving the value of the rate variation parameter, and l(θ)

is computed as before, with Eq. 3. In practice, rate variation is often assumed to follow
a discrete gamma distribution with three or four components, and with equal shape and
rate parameters, in order for the distribution to have mean 1. The non-zero values of the
distribution correspond to ξr, r = 1, . . . , nr, in Eq. 4, and area under each corresponding
segment is equal to one divided by nr, and it follows that P (R = r) = 1/nr in Eq. 5.
Extending Eq. 5 to the case where rate variation is assumed to follow a standard gamma
distribution is straightforward. In practice however, as was noted before, this assumption is
seldom made, as it involves a much heavier computational burden.

Several phylogenetic analyses also involve a fixed proportion of invariant sites. This
assumption, although very common in practice, may not however be essential, as gamma-
distributed rate variation with a relatively small shape parameter already allows for sites
with very low mutation rates [136].

6. Rooted and unrooted trees

All models mentioned in Section 4 are time-reversible, that is, they all meet the detailed
balance condition,

πipi,j(d) = πjpj,i(d).

Time-reversibility precludes identification of the ancestor of the sample, the root of the
tree, and accordingly, phylogenetic likelihood is invariant to root placement. It follows that,
for example, moving root node 5 between nodes 6 and 7 in Figure 6 does not affect likelihood.
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Under time-reversibility, without further assumptions, phylogenetic models lead to unrooted
trees, like the one in Figure 7 a).

[ATTTCA...]

Outgroup

[ATTTCA...]

Outgroup

(b)(a)
Figure 7. Rooting a tree with an outgroup. The tree in (a) is unrooted.
At one of its tips, we find an outgroup sequence, that we use to place the root
of the phylogeny for the sampled sequences, as in b).

Rooting the tree consists in choosing a common ancestor for sampled sequences. In order
for the phylogeny to better reflect evolution in a given population, it is customary to select
a sequence external to the sample as a root, called an outgroup. We provide an illustration
in Figure 7. For example, phylogenies for HIV-1 subtype B sequence data are often rooted
with a subtype C sequence.

7. Phylogenetic inference

Phylogenetic inference commonly involves estimation of the following parameters [136,
104],

(1) The topology,
(2) The branch lengths,
(3) The Markov chain substitution rate matrix and limiting probabilities,
(4) The among-sites rate variation parameters.
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7.1. Tree construction. Phylogenetic inference requires at least a tree-construction
algorithm, but many applications also involve a tree-searching algorithm and a method to
estimate confidence in elements of the topology [60].

Tree construction produces an initial estimate of the sample phylogeny. The basic
Neighbour-Joining (NJ) algorithm, an agglomerative distance-based clustering method, is
a very popular tree construction method [106, 86]. It starts with a star tree, a tree whose
tips are all connected directly to a central node, and reconstructs the phylogeny by recur-
sively joining branches, selecting at each step the change that minimises cumulative branch
length or equivalently, total genetic distance along the entire tree [136]. Algo. 2 lists the
steps involved [114]. [48] proposed improvements to the algorithm: the so-called BIONJ
algorithm is like basic NJ, except that mergers are selected as to minimise the variance of
the updated distance matrix. Neighbour-joining undoubtedly owes its popularity to its sim-
plicity and speed: the algorithm can produce a phylogeny for even large samples in a few
seconds [120].

The Weighted Pair-Group Method of Analysis (WPGMA) is also commonly used for tree
construction. It is another name for simple hierarchical clustering with McQuitty’s method
used to compute inter-cluster distances [55]. In agglomerative hierarchical clustering, we use
the matrix of pairwise distances to successively aggregate elements, or sets of elements, until
all elements form a single cluster, forming an ultrametric tree structure known as dendrogram.
At first, each element is in a distinct cluster. At each step, the algorithm aggregates the two
closest clusters, and updates the distance matrix accordingly, depending on the clustering
method. Nodes in the dendrogram are placed as to reflect the distance between the merged
elements. In McQuitty’s method, the distance between the merged clusterM , obtained after
merging clusters K and L, and any other cluster N , denoted DMN is simply (DKN+DLN)/2.

7.2. Tree searching. Tree construction algorithms often fail to produce an optimal es-
timate of the sample phylogeny, that is, a phylogeny that maximises measures such as the
posterior probability or the likelihood of the phylogenetic parameters. Taking the tree con-
struction algorithm output as a starting value, tree-searching algorithms recursively explore
the phylogenetic space in order to improve the estimate. Algorithms that score all trees in
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Algorithm 2: The Neighbour-Joining (NJ) algorithm.
Data: Start with D0, a n× n matrix, n being the sample size, containing

pairwise distance estimates between any two sampled sequences,
for a = 1, . . . , n− 1 do

Calculate the E matrix, with,

E(i, j) = (n− 2)Da−1(i, j)−
n∑
k=1

Da−1(i, k)−
n∑
k=1

Da−1(j, k),

with Da−1(i, j) being element (i, j) in matrix Da−1 ;
Select for merger nodes k and l such that E(k, l) is the minimum value in the
lower-triangular section of E . Let the new node be labelled n+ a ;

Compute incremented distance matrix Da with
Da(1 : (n+ a− 1), 1 : (n+ a− 1)) = Da−1 and

Da(k, n+ a) = Da(n+ a, k) = 0.5Da−1(k, l)+

+
1

2(n− 2)

[
n∑

m=1

Da−1(k,m)−
n∑

m=1

Da−1(l,m)

]
,

Da(l, n+ a) = Da(n+ a, l) = 0.5Da−1(k, l)−

− 1

2(n− 2)

[
n∑

m=1

Da−1(k,m)−
n∑

m=1

Da−1(l,m)

]
,

Da(m,n+ a) = Da(n+ a,m) = 0.5[Da−1(k,m) +Da−1(l,m)−

−Da−1(k, l)], m ̸= k, l.

end

the tree space, deemed exhaustive, quickly become impractical as the number of sequences
increases and so, heuristic algorithms are commonly preferred. At each iteration, they pro-
pose a new phylogeny based on the input phylogeny, a “move in the tree space”, and score
it [60].

Maximum likelihood-based tree-searching algorithms are usually strict hill-climbers: they
accept a proposed move if and only if it improves likelihood. Markov Chain Monte Carlo
(MCMC) algorithms, on the other hand, accept the move only if a uniformly-distributed
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Figure 8. An illustration of nearest-neighbour interchange (NNI).
We start with a rooted phylogeny. After unrooting it (line 2), the algorithm
proposes transitions (line 3) by interchanging clades. Each tree with four or
more tips has two distinct nearest neighbours. Finally, the algorithm restores
the root (line 4).

random number falls below the Metropolis-Hastings acceptance ratio [56]. If the move is
rejected, the proposed phylogeny is discarded and the input phylogeny is kept. The process
is repeated until a stopping rule is activated.

7.2.1. Tree proposal mechanisms. Popular tree proposal algorithms include Nearest-Neighbour
Interchange (NNI) and Subtree Pruning and Regrafting (SPR). We illustrate NNI in Figure
8. In SPR, a subtree is first selected at random to be pruned, and then, it is reattached
to a randomly selected branch of the amputated tree. NNI and SPR propose moves in the
topological space. Changes in branch lengths can then be proposed jointly, in order to limit
the total length of the tree for instance [98], or independently for each branch.

Another method, used by [84] and [74], involves representing a phylogeny with a peak-
and-valley graph giving distances between neighbouring leaves and their most recent common
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Figure 9. Valley-and-peak graph for a 4-leaf phylogeny. There is a
one-to-one correspondence between the phylogeny on the left and the graph
on the right: the ordering of the leaves (red squares, peaks) and internal nodes
(teal circles, valleys) is identical, and the vertical distance between the circles
and the squares is maintained. The root of the tree is placed at 0 on the vertical
axis, and it follows that the height coordinate gives the distance between each
node and the root.

ancestor. We provide an example in Figure 9. There is a one-to-one correspondence between
such a graph and the phylogeny. The proposal mechanism is in two steps. First, a permu-
tation of the tip labels is obtained by swapping tips around each node (valley) based on a
fair coin toss. Then, the algorithm perturbs the length of the lines in the graph by sampling
updated values from a uniform distribution centred at the original length whose support is
determined by a tuning parameter.

7.3. Bayesian tree-searching. We now focus on on Bayesian phylogenetic inference.

7.3.1. The basic algorithm. Algorithms most commonly used for Bayesian phylogenetic
inference, such as those implemented in BEAST and MrBayes [33, 105], rely on MCMC, and
differ mainly in their transition kernels, the user-defined function used to propose moves in
the parameter space. We summarise the basic MCMC algorithm applied to phylogenetic
inference in Algo. 3.

If the chain is irreducible and aperiodic, then it can be shown that the sample produced is
a draw, albeit correlated, from the posterior of parameter vector θ [122]. We can determine
reasonable values for N , the total number of iterations, and B, the size of the burn-in, by
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Algorithm 3: The basic MCMC algorithm.
Data: Starting values for the phylogenetic parameters θ
Compute likelihood L(θ) and prior probability p(θ) ;

for iter = 1, . . . , N do
for i = 1, . . . ,m do

Use transition kernel q(θi, θ′) to propose an update to the parameter, i.e. a
move from θi to θ′ ;

Compute the likelihood and prior at θ′;
Evaluate the Metropolis-Hastings acceptance ratio,

(6) AR = min
[
1,
q(θ′, θi)L(θ

′)p(θ′)

q(θi, θ′)L(θ)p(θ)

]
Draw a random number from U(0, 1);

if the number falls under AR then
Accept the move and update the parameter value

end

else
Reject the move and do nothing

end
Record the current parameter values.

end

end
Discard the first B iterations of the chain, called the burn-in

looking at a posterior probability graph from the chain. If non-negligible autocorrelation
is observed, larger values of N are recommended. In real phylogenetic analyses of large
datasets, the total number of iterations is often larger than three million, and more than 25%
of iterations are discarded as a burn-in. The posterior probability graph normally shows a
steep increase in posterior probabilities at the start of the chain, followed by a stabilisation.
B should be chosen as to keep only values sampled after stabilisation. Another heuristic
diagnostic for the chain consists in graphing individual parameter values across iterations.
The discreteness of the topology, and the inherent correlation in the limiting probability
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parameters in the substitution rate matrix may limit their applicability though. [30] discuss
other convergence diagnostics.

Specifying a transition kernel that can efficiently explore the parameter space, while
simultaneously ensuring a reasonably high acceptance ratio, is key. NNI, for instance, tends
to produce high acceptance ratios, but since the proposed moves are small, a larger number of
iterations is required to properly map the posterior probability space. Also, if the posterior
probability surface has several peaks and valleys, it may get trapped in a local posterior
probability maximum region [131].

7.3.2. The algorithm of Larget and Simon 1999. The algorithm of [74] is in two steps,
both of them based on Metropolis-Hastings (MH). First, it attempts a conventional update
of all phylogenetic parameters conditional on the topology. Then, conditioning on other
parameter values, it proposes a new topology by performing multiple successive MH scans
starting from the current topology. That scheme leads to a proposal that belongs to a higher
posterior probability region and consequently, increases the acceptance ratio. In each scan,
a tree is proposed following the peak-and-valley mechanism described in section 7.2. In
order to control acceptance ratios, tree proposals can be either global or local, that is, new
trees may be obtained by permuting elements across the whole initial tree or only in the
neighbourhood of a randomly-selected internal branch [131].

7.3.3. Metropolis-coupled Markov Chain Monte Carlo ((MC)-cubed). [49] proposed Metropolis-
coupled MCMC, also called (MC)3, which takes advantage of parallel computing to improve
mixing and cross regions of low posterior probability. The main idea resembles that of sim-
ulated annealing. Multiple chains are run in parallel following the general MCMC scheme:
the regular one is called the cold chain, while the others, meant to help improve mixing,
are called heated chains. Chains are “heated” by applying exponents between 0 and 1 to
the posterior probability expression, thus flattening it, which in turn makes moves across
posterior probability troughs more likely. The algorithm attempts to swap the states of
two randomly-selected chains periodically, with probability of acceptance corresponding to
a Metropolis-Hastings ratio. In the end, inference is based on the cold chain only. [105]
implemented this algorithm in a phylogenetic setting, and improvements were proposed by
[45] and [7].
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7.3.4. Stochastic approximation Monte Carlo (SAMC). Stochastic approximation Monte
Carlo (SAMC) is also based on MH [9, 27, 79, 131]. It deals with ruggedness in the posterior
probability space by dynamically modulating, thus biasing, the jump acceptance ratio in such
a way that the chain is increasingly likely to leave regions where it spends much time. It is
based on an arbitrary partition of the energy landscape, the energy function corresponding
to the negative logarithm of the posterior probability density. The user specifies a vector of
weights that determines the limiting proportion of time the chain spends in each subregion
of the partition.

That scheme forces the chain into regions of lower posterior probability, which lets it
reach other regions of high posterior probability. Once the sample from the posterior has
been generated, a correction factor is included in the estimator of quantities of interest to
account for the bias in sampling induced by the modulations in the jump ratio.

7.3.5. Sequential Monte Carlo (SMC). Sequential Monte Carlo (SMC) phylogenetic al-
gorithms have also been devised, mainly to grapple with the heavy computational load of
conventional MCMC methods applied to very large sequence datasets [16]. SMC methods
are based on Sequential Importance Sampling (SIS), a reparameterisation of Importance
Sampling (IS).

IS lets us infer quantities of interest, functions of the mean for example, defined with
respect to a certain distribution by independently simulating values from a proposal distri-
bution, which is convenient when simulating values from the original distribution is difficult.
The bias resulting from the altered sampling scheme is subsequently fixed by weighting
sampled values.

In SIS, we generate particles sequentially and update those weights along the way.
Whereas in IS, we sample independent values from the proposal distribution, in SIS, we in-
stead sample independent chains of values by drawing from conditional distributions. Each
intermediate value is considered a particle and forms a generation. Particles found in a given
generation across the different chains form a particle population.

One problem shared by IS and SIS is that of particle degeneracy, in which a few particles
contribute overwhelmingly to expectation estimates by having weights much higher than
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that of other particles in a population. A particle resampling step can be added to alleviate
the issue, laying the foundation of SMC.

7.4. Priors in Bayesian phylogenetic inference. Attributing a uniform prior to the
tree topology is common. Such a prior should reflect the assumption that all hierarchical
partitionings of the sample are equally probable a priori. However, such a prior implies
different prior probabilities for clades, depending on both their sizes and the total number
of leaves in the tree [131, 89]. Clades containing few or a large number of sequences have
higher prior probabilities than middle-size clades. It may not be possible to define a prior
that would give equal probability to all clades, irrespective of size [131, 113]. However, if
the data are informative, the likelihood should dominate the prior and mitigate the issue
[131, 17].

Priors on branch lengths are known to be highly informative [131, 138]. For convenience,
they are usually assumed to be independent and identically distributed exponential or uni-
form, which leads to unrealistically long trees in the posterior. Those priors may also create
local peaks in the posterior and cause poor mixing in MCMC algorithms [131, 98, 139]. As-
suming instead compound Dirichlet priors may help alleviate the problem [98], at the cost
of a heavier computational load.

8. Evaluating confidence in inferred clades

Once an optimal tree is found, we assess confidence in its clades. In non-Bayesian phy-
logenetic inference, non-parametric bootstrapping is by far the most common approach [39].
In a nutshell, each bootstrap iteration involves sampling with replacement site indices, con-
structing a new alignment by stitching together configurations at the selected sites in the
original alignment, and performing tree construction and tree searching for that new align-
ment. Each iteration yields a tree, whose clades are then listed. After performing a large
number of bootstrap iterations, we merge all the lists and compute clade frequencies. We
call these frequencies bootstrap support for clades.



10. CLUSTER INFERENCE 30

Bayesian phylogenetic inference, on the other hand, merges tree searching and confidence
assessment. Topologies sampled using the MCMC procedure let us obtain directly posterior
probability support for the different clades.

9. Summarising a sample of trees

Once a sample of phylogenies has been obtained, with MCMC for example, it is cus-
tomary to propose a “best” phylogenetic estimate. In this context, the Maximum Posterior
probability (MAP) estimate is a natural choice [136]. We obtain a measure of posterior
probability support for its clades by listing clades found in each of the sampled trees. The
posterior probability support for any clade found in the MAP tree then corresponds to the
proportion of times it is observed in the sample. The MAP estimate may not be ideal
however, given the usual flatness of the phylogenetic posterior probability surface. In other
words, many different phylogenies may have more or less equal posterior probability scores
and so, the MAP tree may not be much preferable to other configurations.

Another solution consists in generating the so-called majority-rule consensus tree [74], a
tree whose bifurcations only support clades found in at least half the sampled trees. It can be
shown that such a tree always exists [136]. Note that although it is useful for summarising a
large number of topologies, its lack of branch length measures may be problematic in certain
analyses.

10. Cluster inference

Phylogenies provide estimated distances between any two sequences in a sample and so,
they are ideal for the clustering of genotyping data. There are however several model-based
and distance-based alternatives for clustering such data.

10.1. Model-based clustering.
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10.1.1. The core model. Conventionally, in model-based clustering, data are assumed iid,
with likelihood given by a finite mixture,

(7) L(π,θ) =
n∏
i=1

K∑
j=1

πjg(yi | θj),

where πj and θj, j = 1, . . . , K, are, respectively, the mixture weight and cluster-specific
parameter for cluster j.

10.1.2. Maximum likelihood estimation. We can use the Expectation-Maximization (EM)
algorithm to obtain maximum likelihood estimates for cluster assignment probabilities [32].

We first expand the likelihood by adding the latent cluster assignment indices si, i =
1, . . . , n. Moving to the log-scale, we get the so-called complete-data log-likelihood,

(8) l(θ; s) =
n∑
i=1

log
[

K∑
j=1

I(si = j)g(yi | θj)

]
,

where I(si = j) is an indicator function taking value 1 when the cluster assignment index for
sequence i takes value j, and 0 otherwise. Note that the expectation of the complete-data
likelihood with respect to s yields Eq. 7.

We iteratively refine the starting value for θ with Algo. 4, yielding estimates (θ(1), . . . , θN(EM)
).

Once the algorithm has converged, we use Eq. 10 to compute cluster assignment probabil-
ities for each data point. By assigning each observation to the cluster that maximises that
probability, we obtain the required point estimate for s.

The number of clusters, K, must be specified a priori. A common approach for choosing
K consists in fitting mixture models with varying number of components and comparing
them using the Akaike Information Criterion (AIC) or the Bayesian Information Criterion
(BIC). However, the dependence between genetic sequences, resulting from shared ancestry,
limits the applicability of mixture models for clustering sequence data.

10.1.3. Bayesian inference of mixture parameters with a known number of components.
When K is known, the standard MCMC algorithm, described in section 7.3, can be used to
infer posteriors for θ and π. Conjugacy is achieved when the prior and posterior belong to
the same parametric family, and can provide considerable computational benefits.
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Algorithm 4: The Expectation-Maximisation (EM) algorithm
Data: Starting value for θ, denoted θ(0)

for iteration l = 1, . . . , N (EM) do
(Expectation step) Compute,

Es|y,θ(l) [l(θ; s)] =
n∑
i=1

Es|y,θ(l)

{
log

[
K∑
j=1

I(si = j)g(yi | θj)

]}

=
n∑
i=1

Es|y,θ(l){log[g(yi | θsi)]}

=
n∑
i=1

K∑
si=1

log[g(yi | θsi)]P (si | yi,θ(l)),(9)

with,

P (si | yi,θ(l)) =
g(yi | θ(l)si )p(θ

(l)
si )

P (yi | θ(l))

=
πsig(yi | θ

(l)
si )∑K

j=1 πjg(yi | θ
(l)
j )

.(10)

(Maximisation step) Find θ that maximises Eq. 9 and set θ(l+1) equal to this
value.

end

The Dirichlet distribution, a multivariate expansion of the beta distribution, is a a pop-
ular prior for mixture weights. Its density is given by,

f(π1, . . . , πK ;α, K) =
1

B(α)

K∏
i=1

παi−1
i , 0 ≤ πi ≤ 1,

K∑
i=1

πi = 1,

with,

B(α) =

∏K
i=1 Γ(αi)

Γ
(∑K

i=1 αi

) ,
and α = (α1, . . . , αK), αi > 0.

The mixture distribution given by Eq. 7 can also spring from the assumption of a
multinomial distribution for the cluster assignment indices. To see that, we generate each
observation yi in two steps. First, a cluster assignment index j is sampled from a multinomial
distribution with parameters π1, . . . , πK and then, a value is sampled from distribution g(yi |
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θj), θj being the centroid of cluster j. It can then be shown that the density of yi is indeed
given by Eq. 7.

We can exploit the conjugacy between the multinomial and Dirichlet distributions to
simplify computations. Indeed, by giving the multinomial sampling probabilities π a Dirich-
let prior, we find that the posterior for the mixture weights follows a Dirichlet distribution
with parameters (n+α), where n is the number of occurrences of each cluster in the data,
that is, ni =

∑n
j=1 I(sj = i). If we select the posterior as a transition kernel for the MCMC

algorithm, the jump acceptance probability reduces to 1, and we are left with Gibbs sam-
pling. In the case where Eq. 7 corresponds to a mixture of normal distributions, priors for
θ can also be selected to ensure conjugacy [51].

To obtain cluster assignment probabilities, we note that,

P (si | θsi) ∝ g(yi | θsi)p(si), i = 1, . . . , n,

where P (.) and p(.) are the posterior and prior distributions, respectively. It follows that
the posterior of cluster assignment index si is multinomial with sampling probabilities pro-
portional to πsig(yi | θsi).

10.1.4. Bayesian inference of mixture parameters with an unknown number of compo-
nents. If K is unknown, we can make it a parameter and give it, for example, a Poisson or
discrete uniform prior. An increase in K implies however an increase in the dimensionality
of the parameter space, precluding use of the standard MCMC procedure we described in
section 7.3. The ’reversible jump’ sampler suggested in [100, 52] lets us overcome that issue.

The approach involves a conventional update mechanism for parameters that do not affect
the dimension of the parameter space - the cluster centroids, for example. The algorithm
moves in the K-space by first, either splitting an existing cluster or merging two existing
clusters, and then, by spawning a new empty cluster or deleting an existing empty cluster.
Each split or spawn move increases the dimension of the parameter space by an amount
equal to the number of cluster-specific parameters. Equivalently, merge or deletion moves
reduce the dimension of the parameter space by an equal amount.
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When a split move is proposed, we obtain the cluster-specific parameters for the re-
sulting two clusters by multiplying the old cluster-specific parameters by independent ran-
dom numbers, denoted u. Computing the value of the transition kernel for the move,
q((st,u, K,θt), (st+1, K +1,θt+1)), is straightforward. Computing that value for the reverse
move, q((st+1, K + 1,θt+1), (st,u, K,θt)) is not trivial.

Let us denote by f the function mapping (θt, K,u) to (θt+1, K), that is, f : (θt, K,u) →

(θt+1, K + 1). If f is 1-to-1, then the inverse function f−1 exists, and we can obtain the
probability density for f−1 by applying standard results pertaining to the transformation of
random variables. Merge and split moves are reciprocal and so, we handle cluster mergers the
same way as splits. In other words, we compute the transition kernel ratio for the reciprocal
split move like before and simply swap the numerator and denominator.

A cluster, albeit non-empty, is born when a split move occurs, and it follows that we can
obtain the value of the transition kernel ratio for an empty cluster birth move by adapting
the technique used to handle splits. Since cluster death is reciprocal to cluster birth, we can
use the strategy outlined before to process such moves.

10.1.5. Dirichlet process clustering. To avoid a priori specification of the number of clus-
ters, we may assume that the data were sampled from a mixture distribution with an infinite
number of components. The Dirichlet Process (DP) defines a random distribution, whose
support is made up of infinite mixture distributions [14, 10]. The DP can serve as a prior
for cluster assignment indices when the number of clusters is unknown. Thanks to the Polya
urn or stick-breaking algorithms, sampling from the DP is straightforward [66]. Such a prior
is exchangeable and has one tuning parameter, the concentration parameter, that controls
the expected number of clusters [59]. A higher concentration parameter value increases
the expected number of clusters, which also grows logarithmically with sample size. The
cluster size distribution is characterised by the ’rich-get-richer’ property: when sequentially
simulating from the DP, large clusters tend to attract new sequences, which translates as
exponential decay in the tail of the distribution.

The Pitman-Yor process (PYP) generalises the DP by adding a so-called discount param-
eter, that improves flexibility in terms of the cluster size distribution [90]. The PYP reduces
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to the DP when the discount parameter is brought to 0, and its tail is characterised by a
power-law decay. Sampling from the PYP is still straightforward, as it involves an extension
of the stick-breaking algorithm.

10.2. Distance-based clustering. Distance-based clustering algorithms take as input
a matrix of pairwise distances and, in many cases, a number of tuning parameters. Defining
an appropriate distance measure is key in ensuring the quality of the final partition.

Conventional distance-based approaches include simple hierarchical clustering, K-means,
and K-medoid. We briefly described hierarchical clustering in section 7.1. Clusters returned
by hierarchical clustering approaches are a partition of the sample into non-overlapping
clades. We can obtain such a partition by snipping the dendrogram at a fixed height from
the bottom, or by selecting multiple cutpoints in order to optimise a cluster quality measure
such as, for instance, the Dunn index [35] or the Calinski-Harabasz index [23].

In K-means, we select a number of clusters a priori and try to find,

argmin
s

n∑
i=1

E(yi, µsi)
2,

with µsi being the centroid of cluster si, and E(x, y) denoting the Euclidean distance between
points x and y.

Optimisation is performed iteratively, by sequential updates of si and µsi . Convergence
of the method is assured, but stabilisation may occur around a local minimum.

The K-medoid method extends K-means by allowing an arbitrary distance measure and
categorical data. It also consists of two steps. First, for each cluster, it selects as centroid
the element that minimises the sum of distances to co-clustering elements. Then, it iterates
across all elements, potentially assigning each of them to a new cluster, in order to minimise
the sum of all distances between elements and centroids. The two steps are repeated until
stabilisation.

However, both K-means and K-medoid may be ill-suited for clustering epidemic data.
The Euclidean distance is not a natural measure of distance between genetic sequences, thus
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disqualifying K-means. Also, just like for the mixture approach described in section 10.1,
picking the number of clusters a priori might be difficult.

More recently, [130] proposed a distance-based clustering approach focusing on sequence
data, called the Gap Procedure. It does not require any user-specified threshold and is very
fast, since it avoids phylogenetic estimation entirely.

10.3. Phylogenetic clustering. Tree-searching algorithms, like those described in sec-
tion 7.2, can produce an optimal phylogeny, or set of phylogenies, that serves as the base
for cluster inference. Just like in simple hierarchical clustering, phylogenetic clusters are
conventionally disjoint clades. They are typically found from an estimated phylogeny by
applying an ad hoc rule, usually involving a maximum within-cluster distance requirement
and a confidence requirement. A depth-first tree-traversal algorithm can be used for that
purpose [36], cf. Algo 5.

Algorithm 5: A depth-first tree-traversal algorithm for clustering sequence data
Data: A phylogeny
Create an empty list of nodes to inspect;

Add to the list the root node;

repeat
if the first node in the list is a tip then

Skip the next check
end
if the clade formed by tips descended from the first node meets the clustering
requirements then

Record the clade (it is a cluster)
end

else
Append the children nodes to the end of the list

end
Remove the first node from the list of nodes to inspect

until the list of nodes to inspect is empty;
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10.3.1. Confidence requirements in non-Bayesian clustering. A large confidence estimate
for a clade is usually required to conclude in clustering. For instance, under strict evolution-
ary assumptions, a 70% bootstrap support corresponds roughly to a 95% probability that
the inferred clade be found in the true phylogeny [60, 58].

Adopting an exceedingly high bootstrap frequency requirement results in the exclusion
of many valid clusters, while increasing marginally the probability that the selected clusters
are found in the true phylogeny. Simulations shown in [41] reveal a modest gain (< 0.02%)
in the probability of an inferred cluster appearing in the true phylogeny when the bootstrap
requirement is increased from 0.9 to 0.99. Caution must be exercised before drawing conclu-
sions from bootstrap confidence levels: the sole consideration of a fixed bootstrap threshold,
irrespective of the genetic distance model, is insufficient to draw reliable inferences of co-
clustering [63]. Also, several papers propose different interpretations of bootstrap support
for clades [43, 58, 44, 39, 110, 116, 82]. Bootstrap estimation of confidence in groupings is
further known to be affected by the number of taxonomic units considered [62].

10.3.2. Confidence requirements in Bayesian clustering. Bayesian and non-Bayesian clus-
tering can usually be tuned to uncover largely-overlapping sets of clusters, but the approaches
do not consistently agree. Bayesian support for inferred clades is systematically higher than
that derived from non-parametric bootstrapping [41]. For higher support values, the increase
in the probability that a cluster be correctly inferred resulting from a fixed-size increase in
posterior probability is greater than that resulting from a same-size increase in bootstrap
frequency. Adopting a higher posterior probability requirement is therefore justified.

Some limitations of bootstrap-based cluster inference extend to Bayesian inference. In
both cases, misspecification of the genetic distance model results in an increase in the number
of misidentified clades [41]. Even under model misspecification, a fixed posterior probability
requirement produces a considerably larger number of clusters than an equal non-parametric
bootstrap frequency requirement. The proportion of misidentified clades will be much lower
with the latter requirement, at the cost of missing a considerable number of clusters. Unlike
bootstrap frequency, posterior probability support for a clade has the advantage of having
a straightforward interpretation. It may however produce conflicting sets of clusters when
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different sets of loci are used, all of them supported by an empirical posterior probability
estimate of 1.0 [103].

Finally, as emphasised in section 7.4, unrealistic priors may have a detrimental effect on
cluster recovery. Indeed, if total tree length is overestimated, a fixed distance requirement
will result in spuriously small clusters. Since a uniform prior on tree topologies involves
different prior probabilities for clades of different sizes, the support for any two inferred
clades may not be readily comparable, which makes choosing a uniform minimum posterior
probability requirement difficult.



CHAPTER 3

Manuscript 1: “Assessment of Overlap of Phylogenetic

Transmission Clusters and Communities in Simple Sexual Contact

Networks: Applications to HIV-1”

1. Preamble

The association between phylogenies for HIV-1 and sexual contact networks is of interest
to public health specialists and accordingly, several studies have formally tackled the subject
[133, 77, 101, 85, 31], leading to conflicting results. The research presented in manuscript
1 aims first and foremost to improve substantive understanding of phylogenetic clusters,
by highlighting and quantifying their potential association with communities, community
structure being a defining characteristic of sexual contact networks [123].

Experts have observed episodic spikes in HIV-1 incidence, that lead to clustering in
phylogenetic samples [19], but the reason behind their occurrence is unclear. We hypothesise
they might be caused by the pathogen entering non-infected communities, suddenly boosting
the number of subjects exposed to the virus, and thus, contributing to an increased incidence.
That conjecture motivated the study.

Because of the error associated with phylogenetic inference and the lack of relevant and
reliable estimates of sexual contact networks, we investigate overlap between phylogenetic
clusters and network communities in a simulation setting, that lets us track the epidemic.
The study reveals that this correspondence is often limited, mainly due to the requirement
that clusters should correspond to clades in the phylogeny, thus casting doubt over the
intuitive interpretation proposed before. Nevertheless, the study emphasises features of a
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phylogeny that may be used to recover communities, stressing once more that the clade
assumption is fundamentally flawed for that purpose.
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Abstract

Background. Transmission patterns of Sexually-Transmitted Infections (STIs) could
relate to the structure of the underlying sexual contact network, whose features are there-
fore of interest to clinicians. Conventionally, we represent sexual contacts in a population
with a graph, that can reveal the existence of communities. Phylogenetic methods help infer
the history of an epidemic and incidentally, may help detecting communities. In particu-
lar, phylogenetic analyses of Human Immunodeficiency Virus (HIV)-1 epidemics among Men
who have Sex with Men (MSM) have revealed the existence of large transmission clusters,
possibly resulting from within-community transmissions. Past studies have explored the
association between contact networks and phylogenies, including transmission clusters, pro-
ducing conflicting conclusions about whether network features significantly affect observed
transmission history. As far as we know however, none of them thoroughly investigated the
role of communities, defined with respect to the network graph, in the observation of clusters.
Methods. The present study investigates, through simulations, community detection from
phylogenies. We simulate a large number of epidemics over both unweighted and weighted,
undirected random interconnected-islands networks, with islands corresponding to commu-
nities. We use weighting to modulate distance between islands. We translate each epidemic
into a phylogeny, that lets us partition our samples of infected subjects into transmission
clusters, based on several common definitions from the literature. We measure similarity
between subjects’ island membership indices and transmission cluster membership indices
with the adjusted Rand index. Results and conclusion. Analyses reveal modest mean
correspondence between communities in graphs and phylogenetic transmission clusters. We
conclude that common methods often have limited success in detecting contact network
communities from phylogenies. The rarely-fulfilled requirement that network communities
correspond to clades in the phylogeny is their main drawback. Understanding the link be-
tween transmission clusters and communities in sexual contact networks could help inform
policymaking to curb HIV incidence in MSMs.
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2. Introduction

2.1. Background and objectives. Basic epidemiologic models rest on the random
mixing assumption [6, 77]. In the presence of random mixing, each individual in a population
has a small and equal probability of coming into contact with any other individual, which
can lead to very quick epidemic spread. For Sexually-Transmitted Infections (STIs) however,
the random mixing hypothesis fails to hold: STIs spread within sexual contact networks,
that limit their propagation. In particular, the random mixing assumption seems ill-suited
for modelling HIV-1 epidemics [77].

We conventionally represent a sexual contact network with a graph whose nodes, also
called vertices, correspond to individuals, and edges, to a sexual association between them.
Connected nodes are called neighbours. The number of neighbours for a given node is called
its degree, and the degree distribution is one of the defining features of contact network
graphs. The sexual contact network therefore maps potential transmission paths for sexually-
transmitted pathogens. A graph may also be characterised by community structure, that
is, it may contain distinctive, non-overlapping sets of nodes within which we observe a high
connection density [87]. We call these sets communities.

Communities in sexual contact networks could very well leave a footprint in the observed
epidemiologic history. On one hand, we expect quick (early) transmission within a recently-
infected community. Indeed, right after a virus infects a first node in a community, the
number of edges leading to uninfected nodes is high, which decreases the mean time until
the next infection event. In other words, when the virus enters a new community, the
number of exposed subjects, that is, uninfected neighbours of infected subjects, tends to rise
quickly, and the incidence is expected to spike as a result. On the other hand, we expect
slow (late) transmission between different communities [76]. After all, in a contact network
sense, communities have to be distinctive, which implies that their member nodes tend to
be considerably more frequently connected with one another than with non-member nodes.

Our study explores the association between communities and epidemic spread, the trans-
mission history being represented with a bifurcating tree known as a phylogeny. Phylogenetic
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methods make use of sequence data to reconstruct the ancestral history of a set of organisms,
such as HIV-1, and it is still unclear to what extent community structure can be recovered
from the phylogeny.

2.2. A formal definition of community structure. There are two requirements for
a set of nodes to be called a community: a large enough proportion of nodes in the set must
be connected to one another, and the set must be sparsely connected to external nodes [50].
Formally, a proposed split of nodes into communities is evaluated using a modularity score
[87]. Different node partitions are proposed and scored, the objective being to identify the
partition that maximises this score: a higher maximum modularity implies a more apparent
community structure.

Computing the modularity of all possible node partitions quickly becomes intractable as
network size increases and so, communities in graphs are usually found heuristically. For
example, the walktrap and label propagation algorithms are two basic community-detection
algorithms [91, 96]. Several more sophisticated approaches can also be used [50]. In large,
complicated graphs, different algorithms may yield vastly different results, whose validity
can be assessed based on substantive criteria such as a priori knowledge of the relatedness
of subjects in the network, if this information is available, or through the modularity score.

In undirected interconnected-islands models however, characterised by disjoint subnet-
works connected by bridges (see Figure 10), it is straightforward to make all algorithms
return the optimal partition: in these models, each island corresponds to a community.
Although simplistic, such networks are not entirely unrealistic. Islands could be thought
of as subnetworks in separate countries, cities, or neighbourhoods. They can also result
from a high degree of assortative mixing. Assortative mixing refers to the tendency of sub-
jects to form connections with individuals sharing similar characteristics, for example, age,
socio-economic status, or profession. A high degree of assortative mixing tends to produce
easily-distinguishable regions in the contact network graph, made up of nodes represent-
ing similar subjects. More specifically, sociodemographic characteristics such as age could
contribute to producing islands within a localised sexual contact network.
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Figure 10. A simple undirected interconnected-islands network,
representing subjects living in three different islands, correspond-
ing to cities. The graph was randomly-generated. It has three islands of of
size 15, and the connection probability of any two vertices within an island is
0.6. There are two edges, called “bridges”, between any two islands. The label
within each vertex indicates in which city the subject lives.

2.3. The link between contact networks and phylogenies. Several studies have
looked at the link between contact networks and phylogenies, producing seemingly mixed
conclusions. [133] investigated how clustering in a contact network graph, defined as the
propensity of pairs of connected nodes to share a common neighbour, affects epidemics, in
terms of their phylogenies. They found that changes in network clustering result in very little
variation in trees. [77], on the other hand, found a strong association between the shape of
phylogenies resulting from epidemics on four types of static contact networks. [101] extended
the investigation of [77] by, among other things, looking at a family of dynamic networks.
Unlike the latter, they found only a modest direct effect of network configuration on phylo-
genies. Another study presents an attempt to directly reconstruct a sexual contact network,
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underlying HIV transmission, based on epidemiological and genetic information [140]. The
approach is based on a filtering scheme: starting with a fully-connected graph, the method
removes edges by comparing individuals based on socio-demographic and medical covariates,
and then, adds directions to the remaining edges by using estimates of seroconversion dates.

2.4. The relevance of sexual contact networks: HIV-1 epidemics among men
who have sex with men. HIV-1 remains at a high prevalence among Men who have Sex
with Men (MSM) in developed countries. In the United States, in 2010, MSMs represented
63% of the estimated total number of new HIV infections, and the prevalence of HIV in
this subpopulation was approximately 18% [24]. Despite an increase in the proportion of
individuals treated with Highly Active Antiretroviral Therapy (HAART), the incidence rate
of HIV in MSMs in the United States has increased by an estimated 12% between 2008 and
2010.

2.4.1. Quick transmission chains. Studies have revealed the existence of quick transmis-
sion chains in HIV epidemics among MSMs [19, 20], that is, distinct groups of infected
subjects with genetically-similar viruses. Such groups can only be formed through series of
infection events close in time. Indeed, the fast evolution of HIV-1 ensures that correspon-
dence in the genetic makeup of viruses in different subjects indicates not only epidemiologic
relatedness, but also a recent viral common ancestor. In other words, sets of genetically
similar infections must result from chains of quickly-occurring transmissions. We stress that
a quick transmission chain does not necessarily involve a first individual transmitting the
virus to a second individual, who then infects a third one, and so on. We can also have a
single infected subject transmitting the virus to an arbitrary number of individuals in a short
amount of time. The “chain” is defined with respect to transmission events, irrespective of
the transmission path.

Understanding the reasons for the existence of quick transmission chains is crucial, as it
could inform public health interventions in MSMs. For instance, the WHO now advocates
Treatment as Prevention (TasP) [135]. However, the potential of TasP to curb the HIV-1
epidemic in this subpopulation depends in great part on the timing of onward transmission.
If it tends to occur mostly within the first month after infection, corresponding to the acute
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infection stage [2], TasP is unlikely to succeed in significantly reducing incidence rates, since
HIV-1 is rarely diagnosed so early [72]. Indeed, the detection of numerous quick transmission
chains may suggest that early transmissions are mainly responsible for the rising HIV-1
incidence rates in MSMs [20]. In this context, TasP could still potentially prevent a number
of infections, but would be unsuccessful in containing the epidemic.

2.4.2. Transmission clusters. Quick transmission chains for HIV correspond to transmis-
sion clusters, loosely defined as sets of HIV-positive individuals whose viruses share a “close”
common genetic ancestor [21]. How close this common ancestor ought to be is typically de-
cided in an ad hoc way. Sets of co-clustered subjects have viruses that are not only close in
genetic terms, but also distinct from any viruses from non-co-clustered subjects.

Numerous studies have used phylogenetics for transmission cluster inference, and have
reported the existence of large transmission clusters in HIV epidemics among MSMs [20, 75,
78, 73]. In MSMs, transmission clusters may explain as much as 75% of incidence, with one
infection leading up to an estimated 10 to 13 onward transmissions [21, 76].

2.4.3. Sexual contact networks in MSMs. The existence of quick transmission chains
should inform public health approaches and so, gaining insight into the factors contributing
to time between transmissions is important. One such factor could be the structure of the
sexual contact network: it might play a major role in the production of quick transmission
chains.

Sexual contact networks in MSMs are characterised by high clustering, assortative mixing,
and the presence of several nodes with a distinctively larger degree [123]. Clustering, in a
contact network graph, refers to the frequency at which any pair of nodes share a common
neighbour. The existence of several distinctive high-degree nodes may result from preferential
attachment, which implies that each subject, when forming a new connection, tends to prefer
individuals with an already large number of connections. Preferential attachment leads to
graphs with several “hubs”, nodes with an exceptionally high number of neighbours. The
resulting degree distribution, called a power-law distribution, therefore has a heavy right tail.
In other words, we have

P (D = d) ∝ d−ψ,
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where d is node degree and ψ is a positive constant. Communities may result from a com-
bination of assortative mixing and preferential attachment.

2.4.4. Understanding communities for prevention of HIV-1 in MSMs. The existence of
numerous transmission clusters, because of their correspondence with quick transmission
chains, may explain the difficulties in containing HIV-1 incidence in MSMs [21], but its link
with community structure in MSM sexual contact networks is poorly understood. Assessing
the contribution of community structure to HIV-1 incidence in MSMs may be helpful to
design more effective intervention strategies. With this goal in mind, our study looks specif-
ically at how well transmission clusters map onto communities in a graph. In other words,
findings in the present study will help understand the extent to which HIV-positive MSMs in
the same transmission cluster tend to belong to the same community, defined with respect
to a graph, within a known network structure with easily-distinguishable communities.

3. Methods

Since we do not know of any extensively mapped sexual contact network for MSMs
and infection tracing is difficult in this population [15], we have no choice but to rely on
simulations.

3.1. Simulating the sexual contact networks. In each simulation, we simulate a
sexual contact network, and then, an epidemic spreading onto it. We simulate epidemics
on three classes of randomly-generated networks, all within the framework of undirected
interconnected-islands models: two deliberately simplistic, called “type” A and “type B”,
and the other, called “type C”, tailored in such a way that it displays prominent features of
real sexual contact networks. Weights in our networks modulate distance between any two
connected subjects. In unweighted networks, any two connected subjects are at arbitrary
distance 1. In weighted networks, we attribute weights below 1 to edges serving as bridges.
Distance between any two subjects is equal to one over the sum of weight values for edges
on the shortest path between them. It follows that the two subjects delimiting a bridge are
more distant when we attribute it a lower weight. In each weighted network, we give all
bridges the same weight.
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3.1.1. Network consisting of many islands of equal size (Type A). In the first network
structure, we find 13 islands of 20 subjects each, with each island being a fully-connected
graph, and one bridge linking any two islands. In a fully-connected graph, all vertices are
connected to each other. We let bridge weights take values 0.25, 0.5, 0.75, or 1. In the latter
case, the network is unweighted.

3.1.2. Network consisting of one large island connected to many small islands (Type B).
The second network structure consists of one central island of size 60, representing a foreign
sexual contact network, connected by single bridges to 25 islands of size 20. Each small
island is a fully-connected graph. We implement weighting exactly as before. The set of
small islands represents disjoint sexual contact subnetworks in a population of interest.

3.1.3. The more realistic network (Type C). The more realistic networks are made of 100
islands each. To ensure that all islands are accessible, we first link islands in a chain. We
then create additional bridges by connecting any two vertices belonging to different islands
with probability 0.00075. As in networks of types A and B, we consider networks in which
bridge weights take values 0.25, 0.5, 0.75, or 1.

We introduce preferential attachment by making each island a Barabasi-Albert graph
[12]. In our simulations, each subnetwork is generated by first creating three interconnected
subjects. New subjects are then added one by one. When introduced into the network, a
subject randomly forms three connections with existing subjects, who become first-degree
neighbours. The probability that a subject is selected increases linearly with his degree.
We call this linear preferential attachment, and this process gives subjects the expected
power-law degree distribution.

Further, islands in these networks are of variable size. We sample island sizes indepen-
dently from an empirical distribution obtained by inspection of the maximum likelihood
phylogeny for HIV-1 subtype B sequences used in [11]. All viral sequences come from partic-
ipants in the Swiss HIV Cohort Study (SHCS). We use this phylogeny to partition the 5395
sampled HIV-positive subjects into transmission clusters. We consider co-clustered sets of
subjects whose viral sequences are separated by a tree distance of at most 0.1 nt/bp, forming
a clade of size five or more, with this clade having bootstrap support greater than 70%. A



3. METHODS 50

set of tips forms a clade if and only if there is a node in the tree with its descending tips
corresponding exactly to this set of tips. Based on these criteria, we obtain a list of clusters,
for which we derive a cluster size distribution. This distribution may have gaps and so, we
apply a loess smoother to it [29].

Because [11] are working with empirical HIV sequence data, many HIV-positive sub-
jects who would co-cluster with individuals in the sample may be missing. This incomplete
sampling may result from undiagnosed subjects or diagnosed subjects that could or would
not participate in the SHCS [73]. In order to account for this, we assume that each known
infection is connected to either 0, 1, or 2 unknown infections, with an average of 1 unknown
infection.

3.2. The link between islands and communities. In our analyses, we assume that
each island is a community. We ensure that two conventional community-detection algo-
rithms validate this assumption. That is why we measure, with the Adjusted Rand Index
(ARI) [129], correspondence between subjects’ island and community membership indices,
with the latter indices produced by the walktrap and label-propagation community-detection
algorithms [91, 96]. The ARI is equal to the ratio of correctly co-clustered and separated
elements to the total number of pairs of elements, with a correction term for chance. It
is bounded above by 1, which in our case indicates perfect overlap between islands and
communities. It gives insight similar to the adjusted mutual information score.

3.3. Simulating the epidemics. Subjects can be in one of three states: “susceptible”,
“infected”, or “removed”. All subjects start in the “susceptible” state. After introduction of
the virus in the network, susceptible subjects may contract the virus from an infected neigh-
bour, at which point they enter the “infected” state. Infections are eventually diagnosed,
and subjects move to the “removed” state. In the context of HIV, removal corresponds to
diagnosis and uptake of HAART, which prevents transmission by drastically reducing the
viral load. Two parameters are involved: an infection rate that scales linearly with the num-
ber of susceptible neighbours of an infected individual, and a removal rate, that determines
when infected individuals become diagnosed.
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We stop simulating new transmissions once a predetermined number of subjects are in
the “removed” state or, trivially, once the epidemic becomes extinct, that is, all infected
subjects have moved on to the “removed” state.

We represent each simulated epidemic with a transmission tree connecting the infected
individuals. We terminate a lineage, that is, we obtain a tip, upon an individual leaving
the “infected” state and entering the “removed” state. In the analyses, we consider only
the subtree connecting all tips corresponding to removed individuals. This phylogeny lets us
partition those subjects into transmission clusters. This scheme reflects real data collection,
in which an infection can only be recorded after diagnosis.

In type A sexual contact networks, epidemics result from one random introduction of
the virus. In type B networks, we randomly introduce the virus once in the large island, but
we assume that only subjects in the small islands can be observed. It follows that removed
subjects in the large island are not counted for the purpose of determining when to stop the
simulations, as they belong to a foreign epidemic. Thus, the tips in the phylogenies repre-
senting the simulated epidemics only correspond to removed individuals in the small islands.
Given the large size of the type C networks, we increase the number of introductions to two.
This increase also aims to produce a more plausible epidemic, as multiple introductions are
common in practice [73].

Transmission time along any edge follows an exponential distribution with rate directly
proportional to the associated weight, or equivalently, inversely proportional to the distance
between the subjects delimiting the edge. In type A and type B networks, we stop simulating
new infections once 60 subjects have entered the “removed” state. In type C sexual contact
networks, because of their large size, we raise this requirement to 200 subjects. Those
numbers have been chosen to represent epidemics with moderate prevalence. If an epidemic
fails to reach this threshold, we discard it along with the sexual contact network on which it
was simulated. We then generate a new network and a new epidemic. We simulate epidemics
until 300 manage to reach the threshold.

The minimal size requirement ensures that all sampled epidemics are of the same size and
span more than one community, which makes comparisons across and within scenarios more
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straightforward. Indeed, since an increase in the distance between islands reduces mean time
to extinction, without the size requirement, scenarios with more distant islands would involve
systematically smaller epidemics, with more of them becoming extinct before a single bridge
is crossed. In that extreme case, the ARI for community recovery would be trivially 0, which
could be misleading. Indeed, the ARI is meaningful only when the data are partitioned in a
non-trivial way. Further, averaging ARIs obtained on epidemics of different sizes would be
questionable, since epidemic size affects the difficulty of the clustering problem.

In order to reduce the probability of epidemics going extinct too early, we use a shifted
exponential distribution to generate time until removal. In other words, this time corresponds
to the sum of a fixed time and a value simulated from an exponential distribution. It follows
that the distribution of time until removal is bounded below by a value greater than zero. The
shift gives all newly-infected subjects a minimum amount of time to potentially transmit the
virus to their susceptible neighbours. A subject enters the “removed” state at the moment
of diagnosis and so, this delay is understood as reflecting the time it takes for an infection to
become diagnosable. We select the shift parameter by generating epidemics across network
types and weighting scenarios while ensuring that at most 10% of them go extinct before
the epidemic size requirement is reached.

Time in the simulation of epidemics corresponds to genetic distance. In other words, it is
understood as the expected number of mutations divided by the number of loci in the DNA
alignment. Under a strict molecular clock assumption, genetic distance translates directly
to calendar time. We represent each simulated epidemic by a rooted phylogeny, with which,
if needed, we can obtain simulated samples of DNA sequences. To get such a sample, first,
we simulate a root sequence, that is, the genetic makeup of the virus that first entered the
sexual contact network, assuming equal frequency for all four bases. Evolution along the
phylogeny follows a continuous time Markov process, whose rate matrix we inferred from a
subsample of HIV-1 subtype B sequences collected in Québec, Canada. By letting the root
sequence evolve along the phylogeny, we obtain the required sample.
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3.4. Finding the clusters and assessing correspondence to islands. There is no
widely-accepted method for partitioning samples of sequencing data into transmission clus-
ters, and different methods tend to yield contradicting results. To ensure that our analyses
are not overly affected by the arbitrary selection of one method, we obtain transmission clus-
ters in four different ways, all commonly employed in HIV transmission cluster inference.
We define a transmission cluster as,

(1) A clade whose elements are separated by a fixed tree distance of at most x, where
tree distance is the sum of branch lengths between any two tips [19],

(2) A clade whose elements are separated by a fixed distance of at most x, where distance
is the standardised number of different nucleotides between any two sequences [97],

(3) A clade whose elements are separated by a median pairwise tree distance below
x, an arbitrary percentile of the tree’s between-tip tree distance distribution [94],
where tree distance once again corresponds to the sum of branch lengths,

(4) A clade in a dendrogram, that is, an ultrametric tree obtained from the matrix of
between-tip tree distances, cut at height x, where the dendrogram is obtained using
one of three methods: average linkage, complete linkage, or Weighted Pair-Group
Method of Analysis (WPGMA),

where we let x vary in order to inspect its effect on community recovery.

Methods in definition 4 are standards in agglomerative hierarchical clustering, which
involves recursively combining the two clusters that are closest one to another [55]. The
three selected methods differ in how they define inter-cluster distance. In the average linkage
method, distance between two clusters is an average of genetic distance within all non-co-
clustered pairs of elements from these clusters. In the complete linkage method, this distance
is instead the maximum distance within those pairs. In WPGMA, distance between two
clusters is the distance between two elements, one in each cluster, each deemed the most
representative of its cluster.
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Under definitions 1, 2, and 3, the clade-based methods, we explore the tree from root to
tips to verify if nested clades meet the clustering requirements. More specifically, we employ
a depth-first algorithm,

(1) Start exploration at the root node,
(2) Check if the clade whose Most Recent Common Ancestor (MRCA) is the current

node meets the cluster definition. If so, stop. If not, move down to the two imme-
diate children nodes and for each of them, repeat the current step,

(3) Stop exploration along any given path once a tip is reached.

In real studies, transmission cluster inference additionally relies on a confidence requirement
for clades in the phylogeny. In our analyses however, we use the true phylogeny and so, all
clades are known with confidence 1. We assume that each island is a community and we
measure overlap between transmission clusters and islands with the Adjusted Rand Index
(ARI) [129].

3.5. Ethics. Our study is a pure simulation study and so, did not require approval
by an ethics committee. We used trees inferred in a study by Avila et al. [11] to ob-
tain a component of our simulation algorithm. The latter study was conducted within the
framework of the Swiss HIV Cohort Study (SHCS). The SHCS has been approved by the fol-
lowing ethics committees: Ethikkommission beider Basel (EKBB), Kantonale Ethikkommis-
sion Bern (KEK), Comité départemental d’éthique des spécialités médicales et de médecine
communautaire et de premier recours des Hôpitaux Universitaires de Genève, Commission
cantonale d’éthique de la recherche sur l’être humain du canton de Vaud, Comitato etico
cantonale - Cantone Ticino, Ethikkommission des Kantons St.Gallen, Kantonale Ethik-
Komission Zürich (KEK). The data collection was anonymous and written informed consent
was obtained from all participants. The detailed ethics approval for the SHCS can be found
at http://www.shcs.ch/206-ethic-committee-approval-and-informed-consent.

3.6. Software. We perform simulations and cluster inference in R v3.1.2, using func-
tions contained in the igraph, ape, and phangorn packages [108, 88]. We validate results

http://www.shcs.ch/206-ethic-committee-approval-and-informed-consent
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obtained for cluster definitions 2 and 3 by comparing them to those from ClusterPicker v1.3
and PhyloPart v2.0, respectively. Code is available upon request.

4. Results

4.1. Networks and phylogenies. In order to highlight the association between phy-
logenetic and network representations of epidemics, we plot two toy examples, involving
simulated epidemics on unweighted and weighted networks of type A.

We show a simulated network on the right in Figure 11. Each island is identified by
a colour: purple, orange, and green. The virus was introduced in the green island and
then travelled to the purple island. A subject in the green island was also responsible for
transmitting the virus to the orange island. On the left in Figure 11, we have the epidemic’s
phylogenetic representation. Branch colour indicates on which island sequences are evolving
and transmissions are taking place. Tip label colours indicate to which transmission cluster,
black or grey, a given sequence belongs and are matched with node colours in the network
graph. We obtained those clusters by applying the WPGMA method (Def. 4) and selecting
the cutpoint that maximised correspondence between islands and clusters. The network
graph emphasises the limited correspondence between the transmission clusters we obtained
and the islands. Indeed, subjects in the grey cluster were found on all three islands and
shared the green island with the 10 subjects in the black cluster.

The plotted phylogeny emphasises that any clustering method assuming that a cluster is
a clade cannot achieve high island recovery, as infected individuals from the same island may
not form a clade. Indeed, in our example, infected individuals in the orange and the purple
islands formed a clade in the phylogeny, while infected individuals in the green island did
not. In general, the correspondence between island membership and a clade in the phylogeny
is broken once an individual in the island transmits to another island.

A visual inspection of the phylogeny can however reveal the existence of community
structure, as emphasised by Figure 12, which shows an epidemic simulated on a weighted
network of type A. We attributed a weight of 0.25 to bridges, thus multiplying by 4 the mean
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Figure 11. Phylogeny and associated unweighted network graph for
a simulated epidemic. Branch colour indicates on which island transmission
and evolution takes place, while tip label colour indicates cluster membership
based on snipping the WPGMA dendrogram at height 0.007. Only islands
with at least one infected vertex are displayed. Vertex and edge colours are
matched with tip label and branch colours, respectively. A white vertex with
a teal frame is infected, but undiagnosed. A white vertex with frame colour
matching that of the island is uninfected.

time required for the virus to cross to another island. Both islands ended up saturated. We
can easily identify the branch in the phylogeny supporting the subtree representing the sub-
epidemic in the pink island. This pattern is typical: when a sufficiently large number of
infection events take place after a bridge is crossed, we generally observe a subphylogeny
supported by a long branch, consequence of the limited number of between-island, compared
to within-island, connections.

Each island was a fully-connected graph. In epidemics on fully-connected graphs, the
incidence rate is proportional to the number of edges connecting infected subjects to their
susceptible neighbours. Per lineage however, the transmission rate decreases with the number
of infected individuals. In a phylogeny, this translates to short branches right after a crossing
event, and then an increase in branch lengths.
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Figure 12. Phylogeny and associated weighted network graph for a
simulated epidemic. Branch colour indicates on which island transmission
and evolution takes place, while tip label colour indicates cluster membership
based on snipping the WPGMA dendrogram at height 0.0071. Only islands
with at least one infected vertex are displayed. Vertex and edge colours are
matched with tip label and branch colours, respectively. A white vertex with
a teal frame is infected, but undiagnosed. A white vertex with frame colour
matching that of the island is uninfected.

4.2. Epidemics in type A networks. In type A sexual contact networks, correspon-
dence between islands and communities returned by the label propagation and walktrap
algorithms was close to perfect, with ARIs slightly under 1. Type A networks had a clus-
tering coefficient of 0.94, a mean degree of 19.6, and a mean shortest path length of 2.76.
Epidemics on these networks had an estimated reproduction number of 3.7.

ARIs varied widely across simulations. For instance, at cutpoint 0.02, on networks with
bridge weights set at 0.25, clusters obtained from the complete linkage method produced
ARIs between 0, meaning that we concluded in the absence of clusters, to 0.88, yielding a
variance of 0.02. Figure 13 gives mean island recovery rates across distance requirements
under the different weighting schemes for the cluster definitions stated previously. Overall, we
observed low to moderate correspondence between transmission clusters and communities,
with mean recovery rates lower when epidemics spread on unweighted networks. Around
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the optimal cutpoint, clusters obtained under Def. 4 tended to agree more with the island
structure, as evidenced by Figure 13 D, with complete linkage usually producing better
correspondence.

Figure 13 A and 13 B further suggest that complete linkage worked better under a wider
range of cutpoints. However, past this optimal range, Def. 2 produced greater overlap with
the islands. Figure 13 C and 13 D show that even under the optimal percentile threshold,
Def. 3 produced clusters that overlapped modestly with the islands, although it did slightly
outperform Def. 1 and Def. 2 under optimal setting.

Figure 13 A and 13 B emphasise how weighting affects cluster recovery. In clusters
resulting from the use of hierarchical clustering with complete linkage, from above 0.58 when
bridge weights were set at 0.25, the ARI decreased to approximately 0.43 in the unweighted
network case. Weighting also improved optimal recovery rates for Def. 1, 2, and 3, although
the variation was much smaller.

4.3. Epidemics in type B networks. The mean ARIs for correspondence between the
small islands in type B sexual contact networks and communities returned by the walktrap
and label propagation algorithms were also very close to 1. Type B networks had a mean
clustering coefficient of 0.98, a mean degree of 17.7, and a mean shortest path length of 5.9.
Epidemics on these networks also had an estimated reproduction number of 3.7.

As before, we observed large variations in ARIs across simulations. For example, on
networks with bridge weights taking value 0.25, clusters obtained using the complete linkage
method, at optimal cutpoint 0.04, had ARIs ranging from 0.02 to 1, producing a variance of
approximately 0.02. Figure 14 shows that all cluster definitions could be tuned to recover the
island structure fairly accurately. In the weighted case (Fig 14 B), optimal island recovery
reached over 0.90. Once again, hierarchical clustering (Def. 4) tended to perform better,
but the difference in optimal recovery rates was rather small. Like before, Def. 2 clearly
outperformed other definitions at higher cutpoints. The improved performance of clade-
based definitions was not a surprise. After all, in type B networks, all epidemic outbreaks
in the smaller islands form clades in the phylogeny.
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Figure 13. Estimates of island recovery for epidemics on type A
sexual contact networks, measured with the adjusted Rand Index
(ARI). Figure A indicates the mean ARI across cutpoints for the different
cluster definitions applied to epidemics simulated on unweighted networks. In
Figure B, we show corresponding results for weighted networks with between-
island transmission rate equal to 25% the within-island transmission rate. In
Figure C, each curve gives mean island recovery rates across between-tip dis-
tance percentile requirements in Def. 3 for networks with between-island trans-
mission rates 25%, 50%, 75%, or 100% the within-island transmission rate.
Figure D gives the optimal ARIs across between-island transmission rates.
Each curve represents the maximum achieved mean island recovery under the
different cluster definitions. For example, the values at bridge weight 0.25 are
the suprema in Figure B, as well as the supremum of the red curve in Figure
C. Def. 1-4 correspond to the methods for cluster detection described in the
Methods section.

4.4. Epidemics in type C networks. The more realistic networks were of mean size
985.70, with mean degree 5.70, mean clustering coefficient 0.37, and mean shortest path
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Figure 14. Estimates of island recovery for epidemics on type B
sexual contact networks, measured with the adjusted Rand Index
(ARI). Figure A indicates the mean ARI across cutpoints for the different
cluster definitions applied to epidemics simulated on unweighted networks. In
Figure B, we show corresponding results for weighted networks with between-
island transmission rate equal to 25% the within-island transmission rate. In
Figure C, each curve gives mean island recovery rates across between-tip dis-
tance percentile requirements in Def. 3 for networks with between-island trans-
mission rates 25%, 50%, 75%, or 100% the within-island transmission rate.
Figure D gives the optimal ARIs across between-island transmission rates.
Each curve represents the maximum achieved mean island recovery under the
different cluster definitions. For example, the values at bridge weight 0.25 are
the suprema in Figure B, as well as the supremum of the red curve in Figure
C. Def. 1-4 correspond to the methods for cluster detection described in the
Methods section.

length 5.64. Islands had sizes ranging from 5 to 16, with mean 9.84. Approximately 9.63%
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of islands were of size 5. The island size distribution frequency decreased slowly, but sys-
tematically, with increasing size until it reached 2.90% for islands of size 16 (Figure 16 in
Supplementary Material). Within-island degree distributions had the heavy right tail re-
sulting from preferential attachment (Figure 17 in Supplementary Material). Communities
returned by the label propagation algorithm overlapped strongly with the islands, with an
ARI close to 0.99. With an ARI of 0.80, the communities proposed by the walktrap algorithm
still matched the islands rather closely. Epidemics on type C networks had an estimated
reproduction number of 2.35.

Because of the larger size of the epidemics, variability in ARIs obtained across simulations
was lower than before. For example, in networks with bridge weights set to 0.25, at optimal
cutpoint 0.025, clusters inferred using the complete linkage method lead to ARIs ranging from
0.39 to 0.70, with a variance of 0.003. Figure 15 presents mean island recovery rates across
distance requirements under the different weighting schemes and cluster definitions. Despite
considerable differences between networks of type A and type C, the results were similar
to those outlined before. Once again, hierarchical clustering algorithms (Def. 4) suggested
transmission clusters that overlapped more with islands, and among those algorithms, the
complete linkage method performed better, as it worked better under a wider range of
cutpoints and produced slightly higher suprema.

The other three definitions offered a better performance than in networks of type A. We
suggest that this is due to the increase in the number of introductions and the larger number
of infected islands, leading to infected individuals from the same island forming clades in the
phylogeny more often.

5. Discussion

Disagreements persist about the interpretation of transmission clusters inferred from
phylogenies [94]. The present work illustrates how transmission clusters obtained by apply-
ing common methods may overlap only partially with islands in the underlying network,
especially when epidemics result from a small number of introductions. Because hierarchical
clustering methods do not require clusters to be clades in the phylogeny, they tended to
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Figure 15. Estimates of island recovery for epidemics on type C
sexual contact networks, measured with the adjusted Rand Index
(ARI). Figure A indicates the mean ARI across cutpoints for the different
cluster definitions applied to epidemics simulated on unweighted networks. In
Figure B, we show corresponding results for weighted networks with between-
island transmission rate equal to 25% the within-island transmission rate. In
Figure C, each curve gives mean island recovery rates across between-tip dis-
tance percentile requirements in Def. 3 for networks with between-island trans-
mission rates 25%, 50%, 75%, or 100% the within-island transmission rate.
Figure D gives the optimal ARIs across between-island transmission rates.
Each curve represents the maximum achieved mean island recovery under a
different cluster definition. For example, the values at bridge weight 0.25 are
the suprema in Figure B, as well as the supremum of the red curve in Figure
C. Def. 1-4 correspond to the methods for cluster detection described in the
Methods section.

produce clusters that corresponded more closely to islands. The three clade-based methods
performed almost as well as hierarchical clustering when we simulated under scenarios where
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each transmission chain within an island formed a clade (type B networks). Since the simu-
lated islands form clear-cut communities, we conclude that community structure cannot be
inferred reliably using the existing phylogenetic clustering tools.

The present study does have limitations. Real genotyping data from a mapped trans-
mission network was unavailable and so, we had to rely on simulations. It follows that we
cannot establish without a doubt that our results would generalise beyond the scenarios we
selected. Nevertheless, the similarities between the results we obtained across network types
make us confident that our conclusions are reasonably robust to the characteristics of the
network structure. We recognise that the networks we simulated are major simplifications
of empirical networks, but they do exhibit some important properties of real sexual contact
networks, namely moderate to high clustering, community structure, and low mean shortest
path lengths.

The island network model has the important advantage of comprising unambiguous com-
munities. If transmission clusters do not approximate communities in such networks, it is
unlikely they will correspond to communities in other network models.

In summary, current widely-used phylogenetic clustering methods (Def. 2 and 3, which
are extensions of Def. 1) often failed to recover sexual contact network communities reliably.
A major drawback was their assumption that clusters form clades in the phylogeny, while
many clusters were not clades, like in the epidemics simulated in type A and type C networks.
Conventional hierarchical clustering methods outperformed the more sophisticated methods
in the case where clusters were not clades, and produced similar performance in networks
where clusters always formed clades, like in networks of type B. However, particularly for
epidemics in type A and type C networks, hierarchical clustering was still far from optimal.
Therefore, we call for new clustering methods improving on existing approaches, by dropping
for instance the clade assumption.

Understanding the link between HIV transmission clusters and community structure in
sexual contact networks could help inform policymaking to curb HIV incidence in MSMs.
This work stresses the need for new clustering algorithms that focus on community recovery,



6. ACKNOWLEDGEMENTS 64

which remains limited and incidental under current methods. We speculate that covari-
ate information, such as sociodemographic characteristics, could be helpful in community
detection, and could best be integrated within a novel parametric approach that, unlike
conventional methods, would not rely on the clade assumption and ad hoc requirements.

6. Acknowledgements

L. V. would like to thank the ThinkSwiss program, as well as David J. Vasilevsky for
his invaluable help in designing and writing the program whose outputs form the core of
this work. L.V. would also like to thank Dorita Avila for providing phylogenies used in
configuring the network simulations and the people working in T.S.’s team for their support.

This study has been conducted within the framework of the Swiss HIV Cohort Study
(SHCS project number 776). The members of the SHCS are: Aubert V, Battegay M,
Bernasconi E, Böni J, Bucher HC, Burton-Jeangros C, Calmy A, Cavassini M, Dollenmaier
G, Egger M, Elzi L, Fehr J, Fellay J, Furrer H (Chairman of the Clinical and Labora-
tory Committee), Fux CA, Gorgievski M, Günthard H (President of the SHCS), Haerry D
(deputy of “Positive Council”), Hasse B, Hirsch HH, Hoffmann M, Hösli I, Kahlert C, Kaiser
L, Keiser O, Klimkait T, Kouyos R, Kovari H, Ledergerber B, Martinetti G, Martinez de
Tejada B, Metzner K, Müller N, Nadal D, Nicca D, Pantaleo G, Rauch A (Chairman of the
Scientific Board), Regenass S, Rickenbach M (Head of Data Centre), Rudin C (Chairman of
the Mother & Child Substudy), Schöni-Affolter F, Schmid P, Schüpbach J, Speck R, Tarr
P, Telenti A, Trkola A, Vernazza P, Weber R, Yerly S.



SUPPLEMENTARY MATERIAL 65

Supplementary Material

0.04

0.06

0.08

8 12 16

Size

F
re

q
u

e
n

c
y
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7. Bridge between manuscript 1 and manuscript 2

Manuscript 1’s aim, in the context of the thesis, was mainly to clarify the meaning of
phylogenetic clusters. The variety of standards used for clustering HIV-1 sequence data
is problematic, as it reflects a lack of agreement in the literature as to what phylogenetic
clusters correspond to. Clinicians view them as estimates of transmission clusters [19], but
the implications of that interpretation remain unclear. Manuscript 1 sought to address this
issue.

Although the work presented in manuscript 1 did not end up producing a very clear
network interpretation of phylogenetic clusters, it did highlight the need for phylogenetic
clustering methods based on an intuitive cluster definition that agrees with conventional
epidemiologic insight. Manuscript 2 describes such a method. Rather than making clusters
the results of snipping a phylogenetic estimate at arbitrary locations, it weaves them into the
inference process itself. By explicitly linking clusters to phylogenetic branch length patterns,
it produces unambiguous cluster estimates that can be readily assumed to result from quick
transmission chains.



CHAPTER 4

Manuscript 2: “DM-PhyClus: A Bayesian phylogenetic algorithm

for infectious disease transmission cluster inference”

1. Preamble

HIV-1 transmission cluster inference conventionally relies on a phylogenetic estimate,
with a measure of confidence in clades. The lack of a clear definition for transmission clusters
has lead to studies using a wide array of criteria for selecting clusters from a phylogeny, with
varying implications [26].

Transmission clusters are thought to result from quick transmission chains, that is, series
of concurrent transmission events close in time. Manuscript 2 introduces a new Bayesian
phylogenetic clustering algorithm, called DM-PhyClus, that estimates clusters now defined
as sets of sequences produced by quick transmission chains.

The algorithm splits the sample phylogeny into several components: each cluster has its
own within-cluster phylogeny, whose root is linked to that of other clusters by the between-
cluster phylogeny. The between-cluster phylogeny, in other words, is a tree whose tips cor-
respond to the Most Recent Common Ancestors (MRCAs) of each cluster. Since we assume
transmission clusters result from quick transmission chains, we assign branch lengths in the
within-cluster phylogenies priors with a small mean. We let cluster membership follow the
Dirichlet-multinomial distribution, with a Poisson weight accounting for the number of clus-
ters observed in the sample. Explicit modelling of the partitioning of the sample into clusters
lets us obtain uncertainty estimates for cluster configurations, making cluster inference more
rigorous.

We estimate the posterior distribution with MCMC, with cluster point estimates ob-
tained from either the maximum posterior probability state, called the MAP estimate, or

67
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by requiring a minimum co-clustering frequency, computed from all cluster assignment in-
dex vectors sampled from the posterior, for any two sequences to be assigned to the same
cluster, producing the linkage estimate. We let the chain move within a subspace of cluster
membership indices defined by either the maximum likelihood topological estimate produced
by RAxML [111], or a maximum posterior probability tree estimate obtained by exploring
neighbouring configurations. We come up with starting values for cluster membership in-
dices by comparing partitions resulting from the application of a range of genetic distance
cutpoints. We pick the partition found to maximise the Dunn index [35]. After testing
cluster recovery in a simulation setting, we cluster a sample of 526 real HIV-1 subtype B
sequences, collected for the Quebec HIV genotyping program [19].

Simulations revealed cluster recovery rates higher than those obtained with the conven-
tional maximum likelihood phylogenetic clustering approach. The real data analysis, on the
other hand, uncovered a set of clusters that largely overlaps with the one computed in a
previous study [20].

The method does have some limitations. The results can be sensitive to prior specifi-
cation for the concentration parameter, whose interpretation is not straightforward. The
simulations do however provide some helpful insight into configuring that parameter. Fur-
ther, the use of a fixed topology, necessary to ensure good mixing in the chain, results in an
underestimation of the uncertainty around returned cluster configurations. Defining a tran-
sition kernel that would solve the mixing problem encountered when the chain also performs
transitions in the topological space would be a worthwhile improvement.
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DM-PhyClus: A Bayesian phylogenetic algorithm for HIV-1
transmission cluster inference
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Abstract

Background. Conventional phylogenetic clustering approaches rely on arbitrary cut-
points applied a posteriori to phylogenetic estimates. Although in practice, Bayesian and
bootstrap-based clustering tend to lead to similar estimates, they often produce conflicting
measures of confidence in clusters. The current study proposes a new Bayesian phylogenetic
clustering algorithm, which we refer to as DM-PhyClus, that identifies sets of sequences re-
sulting from quick transmission chains, thus yielding easily-interpretable clusters, without
using any ad hoc distance or confidence requirement. Results. Simulations reveal that DM-
PhyClus can outperform conventional clustering methods, as well as the Gap procedure, a
pure distance-based algorithm, in terms of mean cluster recovery. We apply DM-PhyClus
to a sample of real HIV-1 sequences, producing a set of clusters whose inference is in line
with the conclusions of a previous thorough analysis. Conclusions. DM-PhyClus, by elim-
inating the need for cutpoints and producing sensible inference for cluster configurations,
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can facilitate transmission cluster detection. Future efforts to reduce incidence of infectious
diseases, like HIV-1, will need reliable estimates of transmission clusters. It follows that
algorithms like DM-PhyClus could serve to better inform public health strategies.

2. Introduction

The collection and, often public, availability of viral genotyping data has made phyloge-
netics, the field concerned with the inference from genetic data of the ancestral history of
organisms, a popular tool for modelling epidemics [46, 64]. Phylogenetic models represent
the ancestral relationships between sequences of nucleotides or amino acids with a hierarchi-
cal tree structure known as a phylogeny. Phylogenetics can help guide public health efforts to
curb incidence of HIV-1 and tuberculosis [21, 18, 125], by revealing the existence of transmis-
sion clusters, epidemiologically-linked individuals infected by a genetically-similar pathogen.
Transmission clusters are known to affect incidence and may hinder the implementation of
effective intervention strategies [20].

2.1. Transmission cluster inference. Observed clustering in viral sequencing data,
thought to result from series of fast onward transmission events called quick transmission
chains, is a convenient proxy for transmission clusters [19]. To estimate transmission clusters
from an inferred phylogeny, a collection of ad hoc rules are conventionally applied. One
normally looks for a partition of the sample into clades. A clade is a set of sequences
corresponding to all tips descended from a given ancestral node in the tree. Usually, a clade
corresponds to a cluster only when it is known with high confidence, and when its sequences
are similar. Unsurprisingly, disagreements over clustering rules are common, and what the
resulting partitions mean in an epidemiological sense is still unclear [26, 128].

2.2. Study objective. In the present study, we aim to propose a new Bayesian phy-
logenetic clustering algorithm, called DM-PhyClus, that eliminates the need for arbitrary
distance and confidence criteria. DM-PhyClus looks directly for sets of sequences resulting
from quick transmission chains, thus also improving interpretability of clusters.
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2.3. Phylogenetic inference and clustering. Bayesian phylogenetic inference is com-
monly used in the clustering of sequencing data, mainly because it readily provides an in-
tuitive confidence measure for inferred clades [137, 105]. Popular software implementations
include BEAST and MrBayes [33, 105], which both rely on variations of the Markov Chain
Monte Carlo (MCMC) approach. Convergence issues have prompted the development of
several other approaches, based, for example, on Sequential Monte Carlo [16] and Stochastic
Approximation Monte Carlo [28].

Software like MEGA and PAUP* [121, 118] have made Maximum Likelihood (ML) phy-
logenetic reconstruction a popular alternative. RAxML [111] and FastTree [93] are more
recent options, designed specifically to handle large datasets. They both rely on heuristic
tree-searching strategies to considerably speed up likelihood optimisation. Generally, meth-
ods for maximum likelihood phylogenetic reconstruction do not yield measures of confidence
for clades, which are necessary to apply conventional clustering rules. To solve that prob-
lem, they are combined with a bootstrap scheme. However, the interpretation of bootstrap
support for clades remains controversial [41, 116, 82].

Bayesian and ML phylogenetic approaches involve generating a large collection of trees.
The Maximum Posterior probability (MAP) or ML estimates are natural choices for the tree
that best describes the ancestry of the data. However, especially in large samples, the score
for those estimates may not be much higher than that for many other trees. Therefore,
summarising a collection of phylogenies by building a so-called consensus tree [74, 22, 61] is
common. Unlike conventional point estimates, consensus trees provide measures of uncer-
tainty for elements in the tree topology, an unambiguous representation of the hierarchical
nesting of clades in the phylogeny.

After computing a sensible phylogenetic estimate, one can then proceed to estimate
clusters. [19] define a cluster as a clade known with high confidence, and with patristic
distances bounded above by a reasonably low value, where the patristic distance between
any two sequences is calculated by summing branch lengths along the path linking the
corresponding tips in the tree. The method itself however does not specify how confidence
and distance requirements should be selected. In their ML-bootstrap analysis for example,
[19] used a confidence threshold of 98% and a patristic distance requirement of 0.015 nt/bp.
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[94] designed PhyloPart, a method that also defines clusters as clades known with high
confidence. The genetic distance requirement is now formulated in terms of the median
patristic distance in a clade. To conclude in clustering, we must have median patristic
distance in a clade below a value equal to a reasonably low percentile of patristic distances
in the entire tree. In their analyses, [94] used the 1st, 10th, 15th, and 30th percentiles.
The choice of a percentile threshold is arbitrary: in their study, it was selected to maximise
agreement with a number of “confirmed clusters”. The paper does not however mention how
those clusters were validated.

Alternatively, [97] proposed ClusterPicker, that also finds clusters by identifying clades
inferred with reasonably high confidence. The distance requirement in ClusterPicker does
not involve patristic distances, but rather simple pairwise estimates of genetic distance,
computed for example with the JC69, K80, HKY85, or raw (Hamming) model [68, 71, 54].
The method is convenient, as it can be applied readily to consensus trees, which do not
naturally have branch lengths. Once again, the tuning of the clustering requirements is left
entirely to the investigator.

Clustering criteria are often arbitrary, and tend to be poorly justified. In Bayesian
phylogenetic clustering, posterior probability requirements of 1 are the most common [136,
41], although studies may opt for a lower value [5]. In the ML-bootstrap framework, clade
support requirements as low as 70% [25, 65, 81], or above 90% [75, 97, 19] are common.
A lot of variability is also observed in genetic distance requirements. For instance, [75]
use the HKY85 + γ model [54] to assess pairwise distances between sequences and impose
a maximum distance of 0.045 nt/bp within any cluster. [94] instead find that a median
patristic distance requirement of 0.07 nt/bp maximises correspondence with known clusters.

The variety of standards encountered in the literature may reflect a lack of agreement
as to what clusters correspond to [26]. More recently, [130] proposed the Gap Procedure,
a distance-based clustering approach that avoids phylogenetic reconstruction and cutpoint
selection altogether by defining clusters based on a measure of distinctiveness. Although it is
very fast, it does not provide any means to evaluate uncertainty around its point estimates.
Like the Gap Procedure, the method presented in this paper aims to avoid cutpoint selection
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by giving clusters a straightforward definition. However, it should also offer an intuitive
measure of confidence in cluster estimates. We designed it specifically for clustering HIV-1
sequencing data, which will be the main substantive focus in the remainder of the paper.

3. Methods

DM-PhyClus is a MCMC-based algorithm [56] that innovates by relying on a definition
of transmission clusters that better reflects clinical understanding, and by avoiding ad hoc
distance and confidence requirements. DM-PhyClus makes use of a likelihood formulation
that distinguishes between between-cluster and within-cluster components of the phylogeny,
cf. Figure 18. The between-cluster phylogeny represents the ancestral relationships between
each cluster’s Most Recent Common Ancestor (MRCA), and the within-cluster phylogenies,
the ancestral history of each cluster.

Under DM-PhyClus, clusters have a clear definition: they are sets of sequences whose
ancestral history is characterised by a specific distribution for branch lengths. In order for
clusters to reflect quick transmission chains, we attribute branch lengths in the within-cluster
phylogenies a prior with a reasonably low mean, in comparison to that for branches in the
between-cluster phylogeny.

3.1. Likelihood. We compute the tree likelihood recursively with Felsenstein’s tree-
pruning algorithm [42]. Let (y1, . . . , yn) denote the sequence data, and yi,s, the state at the
s’th site, s = 1, . . . , S, of sequence i. If sequences are made up of nucleotides, yi,s can take
one of 4 values, each represented by a unit vector of length 4. For example, nucleotides A
and T are represented by vectors (1, 0, 0, 0) and (0, 1, 0, 0), respectively.

At each site, evolution along branches of the tree, whose topology is denoted τ , follows
a continuous time Markov chain with rate matrix Q. We denote branch lengths in the
between-cluster and within-cluster phylogenies l(b) and l(w), respectively, with l = (l(b), l(w)).
Further, we assume that among-loci variation in evolution rates follows a discrete gamma
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Figure 18. A phylogeny split into between- and within- cluster com-
ponents. Sequences C01-1 and C01-2 belong to cluster 1, while C02-1, C02-2,
and C02-3 belong to cluster 2. Sequence S01 is a singleton, that is, a clus-
ter of size 1, and O is an outgroup, used to root the sample phylogeny. The
red sub-phylogeny is called the between-cluster phylogeny, while the blue sub-
phylogenies are called the within-cluster phylogenies.

distribution with nr categories and parameter r. Evolution occurs independently at different
loci and so, the likelihood takes value,

(11) ζ(τ, l, nr, r, Q) =
S∏
s=1

ζs(τ, l, nr, r, Q),

where ζs(τ, l, nr, r, Q) represents the likelihood contribution of site s.

Let j and k index the two children of an arbitrary internal node i in topology τ , and x.
be a numerical code for the state at node ., e.g. A = 1, C = 2, T = 3, G = 4. Omitting
superscripts for branches in the between-cluster and within-cluster phylogenies, we have,

(12) L(s,i,m)
xi

=
∑
xj

pxi,xj(ξmlj)L
(s,j,m)
xj

∑
xk

pxi,xk(ξmlk)L
(s,k,m)
xk

,

where pxi,x.(ξml.) represents the transition probability from state xi to x. along a branch of
length l., with coefficient ξm being a scaling factor resulting from the conditioning on rate
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variation category m. We note that xi indexes the L(s,i,m) vector, and it follows that the
vector has as many elements as there are states in the data, e.g. 4 for nucleotide data. From
the Markov assumption, it follows that,

pxi,x.(ξml.) = exp(Qξml.).

When index i is for a tip, we have that L(s,i,m) = yi,s. We must compute L(s,i,m) for each
combination of locus s, node i, and rate variation category m.

We start by computing L(s,i,m) for all nodes i whose children j and k are both tips. Then,
we list all pairs of nodes j and k for which both L(s,j,m) and L(s,k,m) are known, and compute
L(s,i,m) for each of them.

Let the root of the tree have index ϑ. We have that the likelihood contribution of site s
takes value,

ζs(τ, l, nr, r, Q) =
1

nr

nr∑
m=1

∑
xϑ

L(s,ϑ,m)
xϑ

pxϑ ,

where p represents the limiting probabilities of the Markov chain.

In real DNA sequences, sequencing may reveal that two or more nucleotides can be found
at certain loci, producing an ambiguity. In Felsenstein’s tree-pruning algorithm, ambiguities
are expressed as a sum of the unit vectors for the potential states. For example, if A and T
are observed at site m in sequence i, we get that yi,m = [1, 1, 0, 0].

3.2. Priors. We assign branch lengths in the between-cluster phylogeny a log-normal
prior with parameters µ and σ. We picked that distribution because of its potentially heavy
right tail, which allows for a small number of distinctively long branches. We tune priors
for those parameters based on a desired mean and coefficient of variation. To lighten the
computational load, we assign that mean a uniform prior over a finite number of discrete
values, and the coefficient of variation is fixed. We assign branch lengths in within-cluster
phylogenies an exponential prior with rate δ, whose prior is, like before, discrete uniform
over a finite range of sensible values.
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We assign cluster membership indices (c1, . . . , cn) a multinomial prior with probability
parameters (p1, . . . , pmax(c)), weighted by values from a Poisson distribution, with rate param-
eter λ, evaluated at max(c) and an indicator function giving probability 0 to configurations
not meeting the clade assumption,

(13)
P (c1, . . . , cn | τ, λ,π) ∝

(
n

n1 . . . nmax(c)

)
πn1
1 · · · πnmax(c)

max(c)
exp(−λ)λmax(c)

max(c)! ×

× I[Partition allowed by τ ],

with nk =
∑n

i=1 I[ci = k] and I[.] being an indicator function.

The probability parameters (π1, . . . , πmax(c)) have a symmetric Dirichlet hyperprior with
concentration parameter α, to which we assign a gamma hyperprior with shape and scale
parameters η and β. We summarise parameters in Figure 19.

3.3. Posterior probability derivation. We are interested primarily in the posterior
distribution of cluster membership indices c and so, we marginalise out probability param-
eters π, as well as all branch lengths. Marginalising out π from Equation 13, we obtain,

(14)
P (c1, . . . , cn | τ,α, λ) ∝ B(n+α)

B(α)

(
n

n1 . . . nmax(c)

)
λmax(c) exp(−λ)

max(c)! ×

× I[Partition allowed by τ ],

with,

B(α) =

∏max(c)
i=1 Γ(αi)

Γ
(∑max(c)

i=1 αi

) .
We use Monte Carlo integration to marginalise out branch lengths from the likelihood.

When the number of Monte Carlo replications NMC is large enough, the probability of a
transition from state xi to xj over any given branch is approximately,

(15) P (xj | xi, c) =
∫
D(l|c)

[exp(Ql)](xi,xj)p(l | c)dl ≈
1

NMC

NMC∑
k=1

[exp(Qlk)](xi,xj),

where D(l | c) is the domain of l | c, p(l | c) is the prior distribution of l conditional on c,
and lk is drawn from that distribution. [exp(Ql)] denotes the transition probability matrix
along a branch of length l, and [exp(Ql)](xi,xj) represents element (xi, xj) of that matrix. The
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Figure 19. Graphical representation of the relationships between
parameters and the data. Parameters in a black box are fixed. Parameters
in a red box are marginalised out. The vector (y1, . . . , yn) is the sample, and
“SD” stands for standard deviation. We denote the within-cluster phylogenies
(τ

(w)
1 , . . . , τ

(w)
k ), k being the number of clusters, and the between-cluster phy-

logeny, τ (b). Within-cluster phylogenies are degenerate when they support a
cluster of size 1, while the between-cluster phylogeny is degenerate when the
sample comprises only one cluster. The log-normal prior distribution for the
between-cluster branch lengths is reparameterised in such a way that it has
mean and standard deviation parameters, like in the normal distribution.

conditioning on c appears as a result of the marginalisation, because of the different priors
for branch lengths in the within-cluster phylogenies and the between-cluster phylogeny.

The posterior distribution of the cluster membership indices is denoted,

P (c1, . . . , cn | y1, . . . , yn, τ,α, λ) ∝ ζ(τ, nr, r, Q | c1, . . . , cn)P (c1, . . . , cn | τ,α, λ),

where P (c1, . . . , cn | τ,α, λ) is given by Equation 14 and ζ(τ, nr, r, Q | c1, . . . , cn) is obtained
by replacing pxi,x.(ξml.) in Equation 12 by the approximation derived in Equation 15, but with
simulated branch lengths lk being multiplied by ξm. There is a one-to-one correspondence
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between (c1, . . . , cn) and the breakdown of τ into within-cluster phylogenies and between-
cluster phylogeny, and the conditioning on (c1, . . . , cn) in the marginal likelihood appears as
a result.

3.4. Transition kernels and Metropolis-Hastings (MH) ratios. DM-PhyClus first
searches for a sensible phylogenetic estimate, that acts to restrict the space of potential
cluster membership indices, and then, conditional on that phylogeny, performs successive
Metropolis-Hastings (MH) updates of the concentration parameter and the cluster member-
ship indices.

We sample tentative transitions in the space of concentration parameter α from a uniform
distribution defined over an interval of length 1 centred around the current value of α,
resulting in the transition kernel ratio reducing to 1. We propose moves in the space of
cluster membership indices c by using a cluster split-merge strategy. Any cluster of size
2 or more can be split in two disjoint clusters, corresponding to the clades supported by
the children of the original cluster’s root. We can merge any two neighbouring clusters, or
in other words, any two clusters whose most recent common ancestor is at most one split
above their respective roots. The transition kernel is a discrete uniform distribution over
all split-merge transitions allowed by the topology from the current state. It follows that
the transition kernel ratio is equal to the total number of potential moves from the current
configuration divided by the total number of potential moves starting from the proposal.
With the ratio of priors obtained from Equation 14 and the conventional likelihood ratio,
we have all necessary components for computing the MH ratio.

3.5. Point estimates for cluster membership indices. We produce two kinds of es-
timates for cluster membership indices, the Maximum Posterior probability (MAP) estimate,
and the linkage-xx estimate, which we obtain in three steps,

(1) Derive an adjacency matrix from each sampled cluster membership indices vector.
An adjacency matrix is a symmetrical matrix with a 1 at position (i, j) if elements
i and j co-cluster, and with a 0 otherwise.
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(2) Average adjacency matrices computed in step 1 and apply a co-clustering frequency
threshold of xx%.
The average adjacency matrix provides co-clustering frequencies. All frequencies
higher than the threshold are rounded up to 1, while all others are rounded down
to 0.

(3) Identify all disjoint sets, called modules or components, from the matrix obtained
in step 2.
Two sets of sequences are disjoint if no co-clustering exists between them. We use the
walktrap algorithm [91] to detect disjoint sets, which leads to the cluster estimates.

We present a structured, step-by-step description of DM-PhyClus in Supplementary Ma-
terial S1.

3.6. Simulation study.

3.6.1. Data. We simulate an HIV-1 sequence dataset of size 200 by going through the
following steps:

(1) Sample the total number of clusters from a Poisson distribution with mean 50,
(2) Sample cluster assignment probabilities from a symmetric Dirichlet distribution with

a concentration parameter generated from a normal distribution with mean 10 and
standard deviation 2,

(3) Sample 200 values from a multinomial distribution with the obtained probability
vector,

(4) Generate each within-cluster phylogeny by picking a topology at random, and by
sampling branch lengths from an exponential distribution with mean equal to 0.003,

(5) Generate the between-cluster phylogeny by picking a topology at random, and by
sampling branch lengths from a log-normal distribution with mean and standard
deviation equal to 0.008,

(6) Let the HXB2 sequence evolve along the simulated tree, with evolution rate matrix
and limiting probabilities obtained from [92].
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HXB2 is an HIV-1 subtype B sequence that serves as a reference for site position numbers
in any HIV-1 sequence. In other words, the range of site indices in any HIV-1 sequence
is found by aligning it with HXB2. We generate 50 datasets in total, and add to each
of them an arbitrary subtype C outgroup (http://www.hiv.lanl.gov/, accession number:
AB254141) for rooting the inferred phylogenies. We list parameters used for data generation
in Supplementary Material S2.

3.6.2. Scenarios. Assessing sensitivity of the cluster estimates to the concentration pa-
rameter prior is vital, as it may be challenging to properly specify in practice. For each sim-
ulated dataset, we run DM-PhyClus under the assumption that the concentration parameter
follows a gamma distribution with scale parameter 0.1, and, successively, with means 1, 10,
and 100. The use of fixed estimates for the mutation rate matrix and limiting probabilities
may also affect cluster recovery. To verify that such a restriction is not overly detrimental
to cluster recovery, we use values for those parameters obtained from a separate analysis of
a real HIV-1 sequence dataset, that we ensure are reasonably different from those used for
data generation.

3.6.3. Setup. Given the synthetic nature of the problem, tuning priors for branch lengths
is difficult and so, we opt for an empirical Bayes approach, where we use maximum likelihood
phylogenetic estimates to derive mean branch lengths in the within- and between-cluster
phylogenies. We then define a range around each of the obtained means with radius equal
to 8% of the obtained mean. Finally, we select 20 equidistant points in each range, at
which we compute transition probability matrices by sampling 100, 000 values from the log-
normal distribution for between-cluster branch lengths, or the exponential distribution for
within-cluster branch lengths.

We use RAxML [111] to obtain an estimate of the maximum likelihood phylogeny, and to
perform 500 bootstrap iterations, producing the usual clade support estimates. We then get
starting values for the cluster membership indices by running a depth-first search on the tree.
We stop exploration along any path once we find a clade with bootstrap support greater than
70% and with patristic distances below a certain threshold, selected through maximisation
of the Dunn index [35], a measure of clustering quality. In a first round of simulations, we

http://www.hiv.lanl.gov/
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use that partition as a starting value for the chain, and the maximum likelihood topology to
bound the space of cluster solutions.

In a second round of simulations, before launching the main chain, we explore the topolog-
ical space around the maximum likelihood phylogeny, using nearest-neighbour interchange
to find a configuration that improves posterior probability, and letting values for the con-
centration parameter and cluster membership indices vary as well. We start the MCMC run
once a suitable topology is identified. We present an exhaustive list of the tuning parameter
values used in the simulations in Supplementary Material S2.

3.6.4. Chain configuration and point estimates comparison. For each simulated dataset,
we produce 55, 000 samples from the posterior distribution of the cluster membership indices
vector. We apply a thinning ratio of 1 over 50, and take out the first 5, 000 iterations as a
burn in, leaving us with 1000 samples. Once the MCMC run is complete, we obtain the MAP
and linkage-xx cluster estimates, and measure overlap between the real and inferred clusters
with the Adjusted Rand Index (ARI), a measure of similarity between two sets of clusters.
It involves the ratio of pairs of elements that are similarly co-clustered or dissociated in both
sets to the total number of pairs in the sample, combined with a numerical adjustment for
chance. It is bounded above by 1, which indicates perfect correspondence. We compare those
estimates to those we initially obtained from RAxML, which we refer to as the Bootstrap-70
estimates, and to the estimates from the so-called Gap procedure, a quick distance-based
genetic sequence clustering approach that requires minimal tuning [130]. The Bootstrap-70
estimate is a natural standard for comparison, since it is obtained by applying a conventional
method for the clustering of HIV-1 sequencing data [41].

3.7. Real data analysis.

3.7.1. Data. The original sample consists of 3, 537 HIV-1 subtype B sequences collected
for the Québec HIV genotyping program [19]. Each sequence is from a different male patient
belonging to the Injection Drug User (IDU) or Men who have Sex with Men (MSM) risk
category, and that has not yet started antiretroviral therapy, the standard treatment regimen
for HIV-positive individuals. The dataset includes sites 10-297 of the Protease (PR) region,
and 112-741 of the Reverse Transcriptase (RT) region, of the pol gene.
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[20] obtained an initial set of clusters by partitioning the sample through inspection of
the maximum likelihood tree, selecting clades with bootstrap support greater than 98% and
whose patristic distances were below 0.01 nt/bp. They also looked for congruent polymor-
phisms and mutational motifs. Whenever new sequences entered the database, they updated
their cluster estimates by re-inferring the tree, and attaching new sequences to previously-
inferred clusters when the clade they belonged to had bootstrap support greater than 98%.
They also used clinical and demographic information to exclude sequences from inferred
clusters.

We focus on a subsample of 526 sequences, made up of 18 previously-inferred clusters of
sizes ranging from 2 to 69, inclusively, as well as 12 singletons selected uniformly at random in
the original sample. We add to the sample 3 subtype C outgroups from Zambia, downloaded
from the Los Alamos HIV-1 sequencing database (http://www.hiv.lanl.gov/, accession
numbers AB254141, AB254142, AB254143).

3.7.2. Bootstrap analysis. To evaluate sensitivity of DM-PhyClus to the input topology,
we produce 100 bootstrap samples of the data by resampling site indices with replacement
and re-assembling each sequence based on the sampled indices. We use maximum likelihood
topological estimates and use the same strategy as in the simulations to obtain starting
values for the chain. Each run also consists of 55, 000 iterations, with a burn-in of 5, 000 and
a thinning ratio of 1/50.

3.7.3. Approximation of the fully Bayesian analysis. Fixing the topological parameter
in the chain results in the inference not being fully Bayesian. Such an approximation is
acceptable only so long as we can establish that the results do not differ too much from
those resulting from the fully Bayesian approach. To do so, we first use MrBayes [105],
run under the default configuration, to sample 1.5 million phylogenies from the posterior
distribution P (τ | y, . . . ), where . . . represents the other parameters. We take out the first
375, 000 samples as a burn-in, and apply a thinning ratio of 1/500. Of the remaining 2, 250

samples, we select 100 uniformly at random, which we use as input in 100 separate runs of
DM-PhyClus. Each run produces samples from the conditional posterior distribution of the

http://www.hiv.lanl.gov/
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cluster membership indices P (c | τi, . . . ,y), i = 1, . . . , 100. Noting that,

P (c | y) = Eτ [P (c | τ,y)] ≈
100∑
i=1

P (c | τi,y)/100,

we see that high overlap between the maximum posterior probability cluster membership
indices obtained from the 100 chains ensures that the peak of P (c | y) is found at a config-
uration similar to those obtained in each individual run, thus confirming the quality of the
approximation resulting from the conditioning assumption.

3.7.4. Main run. We obtain starting values with the help of RAxML, under the assump-
tion that genetic distance follows the GTR + Γ(3) model. As in the simulations, we configure
priors for branch lengths based on the maximum likelihood topology. We use limiting prob-
abilities and nucleotide substitution rates previously inferred for HIV-1 subtype B [92]. We
assume discrete gamma substitution rate variation with 3 categories. Finally, we fix the rate
parameter for the Poisson distribution at 30, the number of clusters obtained in [20]. We
run 220, 000 iterations, keeping one iteration out of 150 and taking out the first 70, 000 itera-
tions as a burn-in. We then obtain point estimates for cluster membership indices as before.
An exhaustive list of tuning parameter values used in all real data analyses is available in
Supplementary Material S3.

3.8. Software. We present a technical description of the software in Supplementary
Material S4. We implement the algorithm in R, with functions contained in the phangorn,
ape, and phytools libraries [108, 99]. Likelihood evaluations rely on compiled C++ code
integrated into the R script using the Rcpp and RcppArmadillo packages [38, 37]. We produce
starting values with RAxML [111]. Finally, we also produce cluster estimates with the
the GapProcedure package [130]. A package, DMphyClus, is available on Github (https:

//github.com/villandre/DMphyClus) and will be submitted to CRAN.

4. Results

4.1. Simulation study. On an Intel(R) Xeon(R) CPU E7-4820 v4 2.00GHz CPU,
running 55, 000 iterations took on average a bit more than 2 hours. Log-posterior probability

https://github.com/villandre/DMphyClus
https://github.com/villandre/DMphyClus
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Topology used Alpha mean Estimator Min. Max. 10th perc. Median 90th perc. Mean SD SE

GapProcedure - - 0.012 0.719 0.030 0.385 0.654 0.361 0.227 0.005

Bootstrap-70 - - 0.074 0.882 0.256 0.483 0.771 0.504 0.221 0.004

ML topology 10 MAP 0.000 0.935 0.686 0.820 0.900 0.769 0.210 0.004

Linkage-0.7 0.000 0.946 0.711 0.853 0.920 0.793 0.213 0.004
Linkage-0.8 0.000 0.971 0.707 0.838 0.912 0.793 0.213 0.004
Linkage-0.9 0.000 0.962 0.710 0.822 0.893 0.771 0.206 0.004
Linkage-1 0.089 0.710 0.359 0.494 0.631 0.484 0.129 0.003

1 MAP 0.098 0.862 0.328 0.619 0.833 0.601 0.199 0.004

Linkage-0.7 0.012 0.939 0.381 0.725 0.861 0.653 0.218 0.004
Linkage-0.8 0.011 0.959 0.394 0.760 0.865 0.680 0.207 0.004
Linkage-0.9 0.053 0.937 0.466 0.776 0.885 0.712 0.191 0.004
Linkage-1 0.159 0.716 0.397 0.470 0.646 0.491 0.103 0.002

100 MAP 0.123 0.931 0.594 0.848 0.917 0.790 0.196 0.004

Linkage-0.7 0.123 0.973 0.346 0.859 0.931 0.791 0.215 0.004
Linkage-0.8 0.123 0.971 0.348 0.852 0.920 0.785 0.211 0.004
Linkage-0.9 0.123 0.980 0.378 0.820 0.896 0.761 0.202 0.004
Linkage-1 0.123 0.802 0.351 0.514 0.652 0.504 0.133 0.003

MAP topology 10 MAP 0.000 0.935 0.714 0.839 0.923 0.798 0.180 0.004

Linkage-0.7 0.000 0.950 0.727 0.858 0.919 0.818 0.172 0.004
Linkage-0.8 0.000 0.953 0.791 0.846 0.919 0.823 0.165 0.003
Linkage-0.9 0.000 0.947 0.751 0.824 0.891 0.798 0.156 0.003
Linkage-1 0.000 0.686 0.318 0.449 0.598 0.454 0.117 0.002

1 MAP 0.011 0.870 0.329 0.623 0.832 0.598 0.203 0.004

Linkage-0.7 0.162 0.930 0.321 0.738 0.848 0.649 0.212 0.004
Linkage-0.8 0.170 0.931 0.384 0.746 0.872 0.671 0.201 0.004
Linkage-0.9 0.175 0.911 0.437 0.764 0.852 0.693 0.178 0.004
Linkage-1 0.341 0.745 0.396 0.516 0.660 0.524 0.093 0.002

100 MAP 0.123 0.947 0.761 0.854 0.914 0.816 0.171 0.003

Linkage-0.7 0.123 0.976 0.793 0.867 0.923 0.830 0.170 0.003
Linkage-0.8 0.123 0.970 0.789 0.857 0.914 0.825 0.169 0.003
Linkage-0.9 0.123 0.965 0.703 0.819 0.901 0.789 0.164 0.003
Linkage-1 0.123 0.672 0.298 0.459 0.619 0.457 0.122 0.002

Table 2. Summary statistics for adjusted Rand indices (ARI) for
cluster membership estimates obtained from chains run on 50

datasets under different simulation scenarios.

graphs show no obvious issue with autocorrelation or convergence, and indicate good mixing
(see, for example, Supplementary Material S5). We show the obtained ARIs for the six
scenarios in table 2. Overall, mean cluster recovery from DM-PhyClus was superior than
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that from the conventional Bootstrap-70 approach and GapProcedure, both of which usually
struggled to recover the clusters. We observe a noticeable drop in mean overlap when the
concentration parameter has a prior whose mean is much smaller than that used for data
generation, but not when it is larger.

The linkage-xx estimates performed comparably or slightly better than the MAP es-
timates when the linkage requirement was 0.7 − 0.8 and the prior on the concentration
parameter had mean equal or superior to the the true value. When the prior underestimated
the true concentration parameter value however, the linkage estimates greatly improved re-
covery, sometimes as much as much as 10%, as long as the linkage requirement was not 1.
Maximum observed recovery rates were also consistently superior for the linkage estimates.

The slightly better performance of DM-PhyClus when the concentration parameter has a
mean greater than that used for data generation was unexpected. We observe it both when
the MAP and ML topologies are used. When the concentration parameter prior had mean
10, two chains returned a MAP configuration with a single cluster, producing the 0 in the
table, which explains at least part of the gap. The datasets analysed by those chains seem to
imply a hard clustering problem, as evidenced by the low recovery rates from Bootstrap-70,
0.13 and 0.18. Overall, starting with the MAP configuration from a shorter preliminary
run resulted in small increases in mean recovery rates. When the concentration prior mean
was 10, the same two chains as before resulted in a MAP configuration with only 1 cluster,
yielding ARI = 0. With median recovery around 0.87 in the better scenarios, we are not
overly worried about the consequences of using fixed values for the limiting probabilities and
mutation rate matrices, as long as they are selected reasonably.

4.2. Real data analysis.

4.2.1. Bootstrap analysis. We measured overlap within all pairs of MAP configurations
produced in the bootstrap analysis. ARIs ranged from 0.10 to 0.98, with median 0.83 and
mean 0.72, indicating reasonable robustness of the chain to the assumed topology. Unsur-
prisingly, linkage estimates led to essentially the same conclusion. For example, overlap
between cluster configurations proposed under the linkage-70 estimate ranged from 0.11 to
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0.98, with median 0.83 and mean 0.70. Moreover, concordance between MAP estimates from
the bootstrap replicas and the MAP cluster configuration obtained from the full data was
generally high, with median and mean ARI equal to 0.88 and 0.80, respectively.

4.2.2. Approximation of the fully Bayesian analysis. Estimates based on the 100 topolo-
gies sampled with MrBayes were overall very similar, leading to the conclusion that the DM-
PhyClus estimates are reasonable approximations of those resulting from a fully Bayesian
analysis. Indeed, concordance between the MAP estimates obtained from the 100 chains
tended to be high: ARIs ranged from 0.38 to 1, with median and mean 0.89 and 0.86, re-
spectively. Overlap with the usual MAP estimate, obtained conditional on the topology
found to optimise joint posterior probability after a short exploration of the topological
space, was also considerable, with median and mean 0.92 and 0.90, respectively.

4.2.3. Full data analysis. The MAP configuration obtained from DM-PhyClus revealed
the existence of 16 clusters of size 2 or more, and 2 singletons. Linkage estimates were
identical to the MAP estimate when the linkage requirement was 98% or below, indicating
little uncertainty in the returned partition. The Gap Procedure returned a rather similar set
of clusters (ARI = 0.87). We represent clusters from DM-PhyClus against those from the
curated analysis in Figure 20. DM-PhyClus has a tendency to merge neighbouring clusters,
as evidenced by the smaller number of singletons and the merger of clusters 43 and 83, which
also absorbed sequence r132, and of clusters 27 and 49. The GapProcedure, on the other
hand, proposed a configuration with 43 clusters of size 2 or more, and 14 singletons, splitting,
for example, clusters 18 and 59 in 3 and 8 sets, respectively.

5. Discussion

In this paper, we introduced a phylogenetic clustering algorithm, DM-PhyClus, that
integrates an original cluster definition into cluster inference, which results in more intuitive
estimates, unlike conventional approaches, that rely instead on arbitrary cutpoints applied a
posteriori to a phylogenetic estimate. Simulations indicate that the algorithm can accurately
recover phylogenetic clusters, often outperforming more conventional approaches. Analysis



5. DISCUSSION 87

15 15 1515 15 1515 151515 1515 15 1515 1515 151515 1515 1515 1515 15 1515 151515 15 1515 1515 151515 15151515 1515 15 1515 15151515 15 1515 1515

101010 10 1010 10101010 101010 1010 101010 10 1010 10 101010 10

77 77 777 7 77 777 7777 77777 77 7 7 77 77 77 7 777 7

7 777 7 7

8 8888 88 88 8 8

121212 12 12 1212 12 1212 1212 12 1212 1212 121212 121212 1212 121212 12 1212 12 1212 1212

1717 17 17 171717 17 1717 171717 17 1717 17 1717 1717 17 1717 1717 17171717 17 1717 1717 1717171717 17 1717 17 171717 171717 17 1717 1717 17

66 666 6 66 666 6 666 6 666 66 6 66 6

888 8 8 888888 88 888 8

4 44444 4444 444 4 444 44 44 4 44 44 444 4 44 44 4

1414 1414 1414 1414 14 14 141414 1414 14 141414 141414 14 1414 14

9 9 99 99 99 9 99 9

3 33 333 33 33 33333 33 3

11 1111 1111 1111 1111 11

1818 18 1818 1818 18181818 181818 1818 181818 1818 1818 1818 1818

5 555 55 5 5555 55 55 555 5 555 555 55 5 55 55 555 5 55 5 5 55 555 55 55 5 5 5555 555 55 55555 5555

131313 13 1313 131313 13131313 13 1313 131313 1313 1313 131313 1313 1313 13 131313 13 131313 1313 13 13 13

1515

9

9

6

16

14

14

2

4

8

6

18

9

C001

C018

C027

C029

C043

C045

C059

C062

C083

C089

C094

C102

C103

C105

C120

C163

C185

C222

r006

r033

r047

r055

r062

r087

r096

r116

r132

s391

s562

s642

0 20 40 60

Seq_number

C
lu

s
te

r_
n

a
m

e

Figure 20. Comparison of the DM-PhyClus cluster estimates with a
proposed cluster configuration for the real dataset. The coordinates on
the vertical axis indicate cluster membership according to [20], and the colour
and number of each dot, the cluster membership according to the maximum
posterior probability (MAP) estimate of DM-PhyClus.

of a real dataset of HIV-1 subtype B sequences revealed a set of clusters largely similar to
that from a previous analysis, but with more straightforward inference.

The study does have some limitations. Because of time constraints, we were only able
to run short chains in the simulations. Log-posterior probability graphs for the simulated
samples however did strongly suggest that the chains had converged, making us confident
that increasing the number of iterations would not change our conclusions. We suspect
that the apparent weakness of Bootstrap-70 might be in part attributable to the use of the
Dunn index. For several simulated datasets, we noticed that it failed to identify the optimal
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partition in terms of recovery. Comparing our results to that solution would have been unfair,
however, since identifying it requires knowledge of the true clusters. For computational
reasons and to ensure adequate mixing in the chain, we opted for a fixed topology, thus
limiting the number of partitions the algorithm can propose and ignoring uncertainty in
phylogenetic reconstruction. Although simulations and the real data analyses indicate that
this simplification works well in practice, proposing an efficient transition kernel that jointly
updates cluster membership indices and the phylogeny would be necessary.

Further DM-PhyClus rests on the assumption that cluster-specific phylogenies have a
distinctive branch length distribution. Our goal was to reflect intuitive understanding of
transmission clusters, but our branch length assumptions do remain simplistic. Phylogenies
for HIV-1, for instance, are characterised by long external branches [72]. Moreover the ex-
ponential prior is known for producing overly long trees [131]. The assumption however is
common in Bayesian phylogenetic inference [33], and leads to considerable computational
simplifications. It is unclear whether more sophisticated, potentially dependent, branch
length priors would improve cluster inference overall. Given the often high recovery rates
observed in the simulations, we are confident that the simplification was not overly detri-
mental. Improvements to the code should also make it possible to apply DM-PhyClus to
much larger datasets, such as those collected for major HIV-1 genotyping programs.

We contend DM-PhyClus is a worthwhile addition to existing methods used to detect
transmission clusters. Understanding clustering in epidemics is crucial: in the case of HIV-1
among men who have sex with men for example, transmission clusters have been found to
contribute overwhelmingly to incidence [20, 21]. Investigations into the reasons behind the
existence of those clusters are likely to help in reducing transmission rates, and those studies
will need to rely on methods based on cluster definitions that reflect clinical insight, like
DM-PhyClus.
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Supplementary Material S1 - Algorithm description

Input:

(1) Topology: For example, the maximum likelihood topology,
(2) Nucleotide transition rate matrix: An empirical estimate, like the one in [92],

or alternatively, one derived from the sample itself, with the help of RAxML or
MrBayes for example,

(3) Gamma shape parameter for among-loci mutation rate variation: Assumed
equal to the scale parameter, can be obtained in the same way as the nucleotide
transition rate matrix. In the simulations, we use an estimate from [92],
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(4) Cluster membership indices prior: Follows a Dirichlet-multinomial distribu-
tion, combined with a Poisson-distributed weight with a pre-determined rate param-
eter, e.g. the number of clusters resulting from a conventional bootstrap-maximum
likelihood phylogenetic clustering analysis,

(5) Poisson rate for the assumed number of clusters,
(6) Concentration parameter prior: Assumed gamma-distributed with user-specified

scale and shape parameters,
(7) Shape and scale parameter values for the concentration parameter prior:

We set the scale parameter equal to 0.1 in all analyses, and changed the shape
parameter to vary the distributional mean,

(8) Transition kernel for the concentration parameter: A uniform distribution
with radius 0.5 centred at the current parameter value,

(9) Transition kernel for the cluster membership indices: A uniform distribution
over all configurations reachable from the current state. A configuration is reachable
if it can be obtained by splitting in two a cluster of size 2 or more, or merging two
neighbouring clusters. Two clusters are considered neighbours if their respective
MRCAs are siblings. Clusters are obtained by partitioning the sample into disjoint
clades. It follows that each cluster can be represented, alternatively, by its MRCA.
When a cluster is split in two, the MRCAs of the new clusters are the children nodes
of the original cluster’s MRCA. When two neighbouring clusters are merged, the
new cluster’s MRCA is the parent node of the selected two clusters’ MRCAs.

(10) Prior for branch lengths in the within-cluster phylogenies: Assumed to
follow the exponential distribution,

(11) Prior for branch lengths in the within-cluster phylogeny: Assumed to follow
a log-normal distribution with equal mean and standard deviation, which implies a
coefficient of variation of 1,

(12) Prior for the transition probabilities along branches in the within-cluster
phylogenies: Represented by an array of 4×4 matrices. Each row of the array cor-
responds to a different assumed mean branch length, while each column corresponds
to a different rate variation category,
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(13) Prior for the transition probabilities along branches in the between-
cluster phylogeny: Same as before,

(14) Starting value for the cluster membership indices: Must be a partition of
the sample into clades found in the input topology,

(15) Starting value for the Dirichlet-multinomial concentration parameter,
(16) Starting values for the between-cluster and within-cluster transition prob-

abilities,
(17) Number of iterations,
(18) Burn-in size,
(19) Thinning ratio.

Algorithm output:

(1) Values sampled from the posterior distribution of the cluster membership indices,
(2) Values sampled from the posterior distribution of the concentration parameter,
(3) A non-standardised joint log-posterior probability value for the parameter values at

the end of each iteration.

A standard run.

Obtaining the topology. In each simulation run, we start by obtaining an estimate of the
maximum likelihood topology from RAxML. We assume that genetic distances follow the
GTR+Γ(5) model and use a subtype C outgroup (http://www.hiv.lanl.gov/, accession
number: AB254141). We then produce 500 bootstrap estimates of the tree, resulting in
the usual clade support estimates. RAxML stores the best scoring tree in a file with the
“bestTree” mention. More details on RAxML’s tree optimisation and scoring methods can
be found in [112].

Starting values for the cluster membership indices. We then use the topology to obtain
initial cluster estimates. More specifically, we look for a partition of the sample into clades
for which,

http://www.hiv.lanl.gov/
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(1) Maximum patristic distance between any pair of elements within a clade is bounded
above by an arbitrary value, e.g. 0.05 nt/bp,

(2) Bootstrap support for any clade is above a certain value, e.g. 70%.

We find such a partition by traversing the tree starting at the root. At the beginning, all
sequences are assumed to be in one cluster. If the (trivial) clade supported by the root node
meets the requirements above, no further move is required. If not, we move down to the two
children nodes, and update the cluster membership vector to account for the creation of a
new cluster after the split of the original cluster into two non-overlapping clusters. At each
child, we repeat the checks performed at the root, moving down and splitting clusters until
a set that meets the clustering criteria is encountered, or until we reach a tip.

In the analyses, we impose a confidence requirement of 70%, and find cluster configura-
tions for maximum genetic distance requirements between 0.03 nt/bp and 0.12 nt/bp. For
each distance requirement, we have a potentially different set of clusters, and for each of
them, we calculate the Dunn index [35], deriving the distance matrix from the phylogenetic
estimate. Finally, we pick the set that maximises that index as the starting value for the
cluster membership indices.

Estimates of transition probabilities. Once we have an estimate of cluster membership
indices, we use it to set up priors for transition probabilities along branches in the within-
cluster and between-cluster phylogenies. In the within-cluster phylogenies, branch lengths
have an exponential prior. We pick a range of values for the mean parameter by,

(1) Computing the average branch length across all within-cluster phylogenies obtained
from the starting partition,

(2) Finding 20 equidistant points in a radius equal to 8% of the value computed previ-
ously.

For each point in the range, we simulate 100, 000 values from the corresponding exponential
distribution. We then obtain the required transition probability matrices by computing,

P (r) =
1e5∑
i=1

exp(Qdilr)/1e5, r = 1, 2, 3,
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where r indexes the rate variation category, di denotes a value generated previously, Q, a
transition rate matrix estimate, and lr, a distance scaling factor. We use a similar strategy to
derive a prior distribution for transition probabilities along branches in the between-cluster
phylogeny.

Running the chain and obtaining point estimates for cluster membership indices. Each
iteration in the chain involves successive Metropolis-Hastings updates of the cluster member-
ship indices, the between and within-cluster transition probabilities, and the concentration
parameter. The algorithm produces a joint posterior probability value at the end of each
iteration, which we use to identify the MAP estimate. To obtain the linkage-xx estimates,
we compute an adjacency matrix from each sampled cluster membership vector, under the
assumption that all sets of co-clustering sequences form fully-connected graphs, all disjoint
from each other. We then average all adjacency matrices, and apply the xx threshold to the
resulting matrix, rounding up to 1 all values in the matrix above the threshold, and down
to 0 the other values. We then run the walktrap algorithm [91], using chains of 10 steps to
detect disjoint sets, which correspond to the cluster membership indices estimate.

Supplementary Material S2 - Tuning parameters used in the simulations

Simulating datasets.

• Sample size: 200,
• Rate parameter for Poisson-distributed number of clusters: 50,
• Mean value for normally-distributed concentration parameter: 10,
• Standard deviation for normally-distributed concentration parameter: 2,
• Number of rate variation categories: 5,
• Shape and scale parameters for gamma-distributed rate variation: 0.7589,
• Number of datasets: 100,
• Root sequence: HXB2 sequence (http://www.hiv.lanl.gov/), sites 10-297 of the
Protease (PR) region, and 112-741 of the Reverse Transcriptase (RT) region, of the
pol gene.

• Limiting probabilities: (A = 0.39, T = 0.22, C = 0.17, G = 0.22)

http://www.hiv.lanl.gov/
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• Rate matrix Q: 
−0.8371 0.0432 0.1213 0.6726

0.0766 −0.8255 0.6614 0.0876

0.2782 0.8559 −1.1857 0.0516

1.1924 0.0876 0.0398 −1.3198


• Mean parameter for exponentially-distributed branch lengths in within-cluster phy-
logenies: 0.003,

• Mean and standard deviation parameters for log-normal-distributed branch lengths
in between-cluster phylogenies: 0.008.

Chain parameters.

• Number of discrete states for the within-cluster and between-cluster transition prob-
ability matrices: 20,

• Number of samples used to obtain transition probability matrices: 100, 000,
• Radius around mean within-cluster and between-cluster branch length estimates:
8%,

• Bootstrap confidence requirement for initial cluster estimate: 70%,
• Limiting probabilities: (A = 0.4298969, T = 0.2227602, C = 0.1459, G = 0.2014428),
• Rate matrix Q: 

−0.7963 0.0456 0.1085 0.6422

0.0880 −0.7635 0.5919 0.0836

0.3198 0.9037 −1.2727 0.0492

1.3705 0.0925 0.0357 −1.4986


• Shape parameter for concentration parameter prior: 1000, 100, 10,
• Scale parameter for concentration parameter prior: 0.1,
• Poisson rate for weight applied to the cluster membership vector prior: 50,
• Number of iterations: 55, 000.
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Supplementary Material S3 - Tuning parameters used in the real data analysis

Bootstrap analysis.

• Number of discrete states for the within-cluster and between-cluster transition prob-
ability matrices: 20,

• Number of samples used to obtain transition probability matrices: 100, 000,
• Radius around mean within-cluster and between-cluster branch length estimates:
8%,

• Discrete gamma distribution parameter: 0.7589,
• Bootstrap confidence requirement for initial cluster estimate: 70%,
• Limiting probabilities: (A = 0.39, T = 0.22, C = 0.17, G = 0.22),
• Rate matrix Q: 

−0.8371 0.0432 0.1213 0.6726

0.0766 −0.8255 0.6614 0.0876

0.2782 0.8559 −1.1857 0.0516

1.1924 0.0876 0.0398 −1.3198


• Shape parameter for concentration parameter prior: 1000,
• Scale parameter for concentration parameter prior: 0.1,
• Poisson rate for weight applied to the cluster membership vector prior: 32,
• Number of iterations: 55, 000.

Approximation of the fully Bayesian analysis.

• Number of discrete states for the within-cluster and between-cluster transition prob-
ability matrices: 20,

• Number of samples used to obtain transition probability matrices: 100, 000,
• Radius around mean within-cluster and between-cluster branch length estimates:
8%,

• Discrete gamma distribution parameter: 0.4394492,
• Limiting probabilities: (A = 0.4032,  T = 0.2148,  C = 0.1625,  G = 0.2195),



SUPPLEMENTARY MATERIAL S3 - TUNING PARAMETERS USED IN THE REAL DATA ANALYSIS 97

• Rate matrix Q: 
−0.8411 0.0592 0.1122 0.6697

0.1112 −0.8053 0.6214 0.0727

0.2784 0.8211 −1.1718 0.0723

1.2305 0.07116 0.0535 −1.3552


• Shape parameter for concentration parameter prior: 1000,
• Scale parameter for concentration parameter prior: 0.1,
• Poisson rate for weight applied to the cluster membership vector prior: 32,
• Number of iterations: 55, 000.

Main run.

• Number of discrete states for the within-cluster and between-cluster transition prob-
ability matrices: 20,

• Number of samples used to obtain transition probability matrices: 100, 000,
• Radius around mean within-cluster and between-cluster branch length estimates:
8%,

• Discrete gamma distribution parameter: 0.7589,
• Bootstrap confidence requirement for initial cluster estimate: 70%,
• Limiting probabilities: (A = 0.39, T = 0.22, C = 0.17, G = 0.22),
• Rate matrix Q: 

−0.8371 0.0431 0.1213 0.6726

0.0766 −0.8255 0.6614 0.0876

0.2782 0.8559 −1.1857 0.0516

1.1924 0.0876 0.0398 −1.3198


• Shape parameter for concentration parameter prior: 1000,
• Scale parameter for concentration parameter prior: 0.1,
• Poisson rate for weight applied to the cluster membership vector prior: 32,
• Number of iterations: 220, 000.
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Supplementary Material S4 - Notes on the software

We implemented DM-PhyClus in R, with C++ modules to handle log-likelihood evalua-
tions. In R, we use classes and functions defined in the ape and phangorn packages [108] to
represent and manipulate phylogenies. The interface between R and C++ relies on features
offered by the Rcpp and RcppArmadillo packages. [38, 37].

The C++ modules make extensive use of containers in the Standard Template Library
(STL) and functionalities implemented in the C++11 standard. For now, the code still
relies on the GNU Scientific Library (GSL) for random number generation, but we intend to
change that in future versions in order to improve portability. Phylogenies are represented
by a custom binary tree class, consisting of objects instanced from an input node class,
representing the tips of the tree, and from an internal node class. Both classes inherit from
an abstract class, standing in for a generic tree node.

We use Felsenstein’s tree-pruning algorithm [42] to perform likelihood evaluations. Our
implementation of the latter algorithm makes use of containers, functions, and operators
defined in the Armadillo library [107]. To reduce the algorithm’s memory footprint and
improve performance, all intermediate solutions are saved in a map container, and the tree
node objects store merely a pointer to the corresponding map elements. To ensure pointer
validity, we opted for an ordered map. We use functions in the boost package in the generation
of keys for map elements. The keys are obtained recursively by combining, among other
things, keys computed for children nodes.

The size of the map tends to increase quickly for even moderately-sized datasets, even-
tually saturating the memory on most standard machines, and so, the software wipes the
map periodically. That strategy is also beneficial from a computational standpoint: by
eliminating configurations rarely visited by the algorithm, mean lookup time is reduced.
Moreover, allowing very large maps is detrimental from a computational standpoint: once
a map reaches a certain size, re-computing solutions turns out to be on average faster than
doing a lookup.
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We obtained a great boost in performance after defining a persistent pointer to the object
used to represent the tree structure. Indeed, profiling had revealed that the software was
being weighed down considerably by the memory allocation operations involved in building
the tree structure, hence the vast improvement resulting from keeping the object in memory
and updating it when required. More specifically, we implemented that strategy by passing a
so-called external pointer to R, implemented by the XPtr class template in the Rcpp library.
By trading the pointer between R and C++, we effectively prevent garbage collection of the
tree object until the pointer goes out of scope.

We wrote a vignette that explains how the R package can be used to cluster an arbitrary
dataset.

Supplementary Material S5 - Log-posterior probability graph
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Figure 21. Log-posterior probability graph for the thinned chain
obtained from one of the simulated samples.
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6. Bridge between manuscript 2 and manuscript 3

Manuscript 2 described a new phylogenetic method grounded in a straightforward def-
inition of phylogenetic clusters, yielding results more in line with clinical understanding.
To demonstrate the capacity of the method to handle sequencing data in practice, we per-
formed a clustering analysis of a real dataset, obtained by sampling potential clusters from
the Québec HIV genotyping program database. That analysis, however, was mostly for
illustrative purposes. It was short and limited and so, did not provide much insight into cur-
rent clustering patterns in diagnosed HIV infections. Manuscript 3 tackles that question: it
contains a thorough clustering analysis of a large sample of sequences obtained from MSMs
in the province of Québec. We use both conventional methods, implemented in popular
software solutions, and more recent methods, including DM-PhyClus, to produce updated
cluster estimates. Manuscript 3 therefore strengthens the conclusions of manuscript 2, by
highlighting the potential of the algorithm to produce reasonable inference for large sequence
datasets, representative of those collected for HIV-1 genotyping programs around the world.



CHAPTER 5

Manuscript 3: “Characterizing HIV-1 transmission clusters

among men who have sex with men in Quebec, Canada”

1. Preamble

[18] detail the contribution of clustering to the HIV-1 epidemic among MSMs in the
province of Québec, Canada. They present estimates for the growth of large clusters in a
period ranging from early 2002 to early 2012. Manuscript 3 aims to update and extend
several analyses in that paper. Indeed, the Quebec HIV genotyping program database now
includes sequences from more than 3, 704 ART-naive MSMs, diagnosed before February 1st,
2016. Up-to-date estimates of clusters in those data, with a focus on their expansion after
January 2012, have not yet been published.

In this paper, we compare six competing approaches for the clustering of HIV-1 sequence
data. Three of them use an estimate of the maximum likelihood phylogeny, incremented with
measures of bootstrap support for its clades. All three involve a minimum bootstrap support
requirement for a clade to be called a cluster, but differ with respect to the formulation of the
within-cluster genetic distance requirement. One of them imposes a maximum on median
[94] patristic distances, while another puts a cap on maximum patristic distances instead
[19]. The third one ignores the within-cluster phylogenies altogether, by ensuring instead
that within-cluster p-distances - the usual pairwise distance estimates presented in Section
4 - are bounded above by a sensible value [97].

The fourth method relies on conventional Bayesian phylogenetic inference. From the
output of the MCMC algorithm, the so-called majority-rule consensus tree, which summarises
sampled trees by collapsing into a polytomy any clade missing from more than half of the
sampled trees [136], is constructed. The basic majority-rule consensus tree has no branch
lengths, which is why we obtain clusters by applying to it the p-distance requirement. Finally,

101
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we partition the sample with the help of the Gap Procedure and DM-PhyClus, introduced
in Manuscript 2.

Studies focusing on HIV-1 transmission cluster inference typically opt for one method
only, without properly justifying their choice. Manuscript 3 is a worthy addition to the
literature because it avoids that pitfall: the use of a large array of clustering algorithms
considerably strengthens the credibility of the proposed estimates. Further, we make explicit
the reasons behind our selection of cutpoints, which is rarely done in the literature [26].

Manuscript 3 fulfils the last objective of the thesis. Although it does not focus on DM-
PhyClus per se, by highlighting how its estimates compare to those resulting from a number
of favoured approaches in a real-life analysis, it remains a crucial part of the thesis.
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Characterizing HIV-1 transmission clusters among men who have
sex with men in Quebec, Canada

Luc Villandré1 Aurelie Labbe2¶ Bluma Brenner3¶ Michel Roger4,5¶ David A. Stephens6¶

1 Department of Epidemiology, Biostatistics, and Occupational Health, McGill
University
2 Department of Decision Science, HEC Montréal
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Abstract

Background. Several studies have used phylogenetics to investigate HIV-1 transmission
among Men who have Sex With Men (MSMs) in the province of Québec, Canada, revealing
many transmission clusters. The Québec HIV genotyping program sequence database now
includes viral sequences from close to 4, 000 HIV-positive individuals classified as MSMs.
In this paper, we investigate clustering in those data by comparing results from several
methods: the conventional Bayesian and maximum likelihood-bootstrap methods, and two
more recent algorithms, DM-PhyClus, a Bayesian algorithm that produces a measure of
uncertainty for proposed partitions, and the Gap Procedure, a fast distance-based approach.
We estimate cluster growth by focusing on recent cases in the Primary HIV Infection (PHI)
stage. Results. The analyses reveal considerable overlap between cluster estimates obtained
from conventional methods. The Gap Procedure and DM-PhyClus rely on different cluster
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definitions and as a result, suggest moderately different partitions. All estimates lead to
similar conclusions about cluster expansion: several large clusters have experienced sizeable
growth, and a few new transmission clusters are likely emerging. Conclusions. The lack of
a gold standard measure for clustering quality makes picking a best estimate among those
proposed difficult. Work aiming to refine clustering criteria would be required to improve
estimates. Nevertheless, the results unanimously stress the role that clusters still play in
promoting HIV incidence among MSMs.

2. Introduction

The genotyping of pathogens provide novel opportunities to improve understanding of
epidemic dynamics, and as a result, phylogenetic models have become a common tool in
the study of infectious disease transmission [34, 70, 46, 64]. Those models have been used
extensively to study HIV epidemics [21, 18], mainly due to the availability of large sequence
databases, collected mainly in the context of antiretroviral drug resistance testing [117, 1, 62].
The Québec HIV genotyping program database [19] for example, as of 2017, contains 27, 487
sequences from HIV-positive individuals, living mostly in Montreal, Québec, Canada.

Men who have Sex With Men (MSMs) remain especially at risk of contracting HIV: in
Montreal, prevalence in that risk group could be as high as 13% [95]. Phylogenetic analyses
of sequences obtained from MSMs in the Québec HIV genotyping program database have
revealed the existence of many large transmission clusters, and highlighted their association
with incidence: 51% of newly-infected MSMs belonged to a large transmission cluster in
2011, compared to 25% in 2005 [18]. Highly Active Antiretroviral Therapy (HAART) has
been successful in substantially suppressing viremia within the diagnosed population, making
late transmission of the virus a lot less common, and consequently, early transmission has
been increasingly driving the epidemic. Recently-infected individuals are much more likely
to transmit because of their high viral load, potentially leading to quick transmission chains,
consecutive transmission events happening in a short time span. Quick transmission chains
tend to manifest themselves as clusters in the sequence data, and increased clustering may
therefore point to a higher proportion of early transmissions. Quantifying the role of early



2. INTRODUCTION 105

transmission in the epidemic is important from a public health standpoint, as it can help
assess the extent to which programs are able to reach infected individuals early enough. This
is the motivation behind the current study, in which we analyse a large sample of sequences
collected via the Québec HIV genotyping program with a variety of clustering methods,
comparing their estimates to shed light on the recent evolution of clustering in the epidemic.

2.1. Background. Phylogenetic studies of clustering in HIV-1 epidemics tend to rely
on a number of ad hoc rules applied a posteriori to phylogenetic estimates. Availability of
software like MEGA and PAUP* [121, 118] has led to widespread adoption of maximum
likelihood phylogenetic reconstruction, coupled with the bootstrap to evaluate confidence in
the inferred clades. In that context, cluster estimation relies on an arbitrary cutoff applied to
bootstrap support estimates, usually between 70% and 95% [58, 60, 19]. Alternatively, soft-
ware like BEAST and MrBayes [33, 105] have popularised Bayesian phylogenetic estimation.
Both are based on versions of the Markov Chain Monte Carlo (MCMC) algorithm, that nu-
merically approximate posterior distributions for a variety of evolutionary and phylogenetic
parameters. They also provide posterior probability support for clades, a crucial measure for
the identification of clusters, which in phylogenetic terms correspond to non-nested clades
forming a partition of the sample. For example, many studies require posterior probability
support of 1 to conclude in clustering [136].

In addition to clade confidence requirements, many studies also impose a within-cluster
genetic distance requirement, usually between 0.01 nt/bp and 0.05 nt/bp [97]. Distance
requirements may be applicable to mean [62], median [94], or maximum patristic distances
[19], that is, distances calculated by summing branch lengths along the shortest path between
any two tips in the phylogeny. The ClusterPicker algorithm [97] instead formulates that
requirement in terms of maximum within-cluster p-distances, e.g. the Hamming distance.

Cutoffs are however hard to justify rigorously [26] and so, methods grounded in more ex-
plicit definitions of clusters have been published. [130] proposed the so-called Gap Procedure,
a fast pure distance-based approach that requires minimal tuning. In a similar vein, [127]
formulated DM-PhyClus, a Bayesian algorithm that aims to minimise reliance on thresholds
while still offering rigorous inference for cluster membership.
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The heavy computational burden of conventional phylogenetic inference is problematic
in light of the fast increase in the size of sequence databases, and can therefore limit its
applicability [131]. Thankfully, software designed to handle larger datasets is now avail-
able. RAxML [111] and FastTree [93], for example, make use of heuristics in phylogenetic
optimisation to improve scalability of the maximum likelihood phylogenetic methods. Clus-
tering of large datasets in a purely Bayesian paradigm is a computational challenge that has
not yet been fully overcome, although vast progress has been made thanks in part to GPU
computing [33, 105].

2.2. Objectives. This paper aims to provide up-to-date estimates of transmission clus-
ters in the HIV epidemic among MSMs in the province of Québec and assess their temporal
expansion. In doing so, we seek to improve previous assessments of the contribution of early
transmission and quick transmission chains to the epidemic. We therefore perform an ex-
haustive clustering analysis of HIV-1 subtype B sequences in the most recent version of the
Québec HIV genotyping database originating from MSM subjects. There is a lack of consen-
sus as to how clustering of HIV-1 sequence data should be done, and different methods may
produce equally valid, but conflicting results [21]. To assess sensitivity of cluster estimates
to phylogenetic assumptions and cluster definitions, we compare results from a number of
methods,

(1) Maximum likelihood phylogenetic reconstruction, coupled with a bootstrap support
requirement for clades, which we refer to as the ML-bootstrap approach,

(2) Bayesian phylogenetic inference, coupled with a posterior probability support re-
quirement for clades,

(3) DM-PhyClus [127],
(4) Gap Procedure [130].

3. Materials and methods

3.1. Data. The Québec HIV genotyping program database comprises 27, 487 sequences
collected in the province of Québec. They cover sites 10-297 of the protease region (PR),
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and 112-741 of the reverse transcriptase (RT) region, of the pol gene, for a total of 918 loci.
Each of them comes with a time stamp, indicating when the blood sample was collected,
and an indicator of infection status, either chronic treated, chronic untreated, or Primary
HIV Infection (PHI). A case is considered a PHI if the sequence was obtained fewer than 6

months after seroconversion [19].

3.2. Methods.

3.2.1. Conventional maximum likelihood. We obtain the maximum likelihood (ML) phy-
logenetic estimate [42] with RAxML 8.2.10 [111], under the assumption that nucleotide
evolution follows the GTR + I + Γ(5) model. We produce 1, 000 bootstrap trees, and use
them to evaluate confidence in clades present in the “best scoring” phylogeny, RAxML’s
estimate of the ML phylogeny. To conclude in clustering, we require, in turns, bootstrap
support greater than 70%, 90%, or 95% and consider genetic distance requirements of 0.015
nt/bp, 0.03 nt/bp, 0.045 nt/bp, 0.068 nt/bp, and 0.077 nt/bp. More specifically, we apply,
in turns, the maximum within-cluster Hamming distance requirement of ClusterPicker [97],
the maximum median within-cluster patristic distance requirement of PhyloPart [94], and
the maximum within-cluster patristic distance requirement of [19]. For the PhyloPart analy-
sis, [94] recommend setting cutpoints based on percentiles of the total tree patristic distance
distribution. In their real data analysis, they use the 15th and 30th percentiles as cutpoints,
which we also try.

3.2.2. Conventional Bayes. We perform phylogenetic inference with MrBayes 3.2.6 [105]
using default parameters, under the assumption that nucleotide evolution follows the GTR
+ I + Γ(4) model. MrBayes uses the MCMC algorithm [56], more specifically the so-called
Metropolis-coupled MCMC, or (MC)3 [49], algorithm, to generate estimates for the posterior
distribution of phylogenetic parameters. The MCMC algorithm lets us recursively obtain
samples from the posterior distributions of interest. It starts off by setting all parameters
at an arbitrary value. Then, in each iteration, updates to parameter values are proposed,
conditional on their current values. Each proposal is randomly accepted with probability
equal to the Metropolis-Hastings (MH) ratio, producing a move in the parameter space;
else, no move is recorded. After a large number of iterations, parameter values generated
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throughout the chain are used to empirically estimate the posteriors. We run three million
iterations, burning in the first 50% and sampling one iteration out of 500. We derive the
majority rule consensus tree from the remaining 3, 000 trees, and produce cluster estimates
by identifying clades with posterior probability support of 1.0. Once again, we use the
ClusterPicker algorithm to obtain cluster estimates, under the requirement that within-
cluster distance be, in turns, bounded above by 0.015 nt/bp, 0.03 nt/bp, and 0.045 nt/bp,
0.068 nt/bp, and 0.077 nt/bp.

3.2.3. Cutpoint selection. All conventional clustering approaches require selection of ge-
netic distance and confidence cutpoints. Prior to the analyses, researchers involved directly
in the Québec HIV genotyping program performed a preliminary clustering of the dataset,
and identified from the results seven noteworthy sets of sequences, comprising 372 sequences
in total, that they expect correspond with genuine transmission clusters. One of those sets,
for instance, comprises 68 sequences and is characterised by more than half of its members
harbouring the Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTI) mutation K103N.
As in [94], we use that subsample as a reference set. We compare partitions obtained across
a range of cutpoints with that set using the Adjusted Rand Index (ARI), a measure of
similarity between two partitions, with the aim of maximising overlap. Greater ARI values
are better, and the measure is bounded above by 1, indicating perfect correspondence. We
describe the comparison scheme in more details in Supplementary Material S1.

3.2.4. DM-PhyClus. DM-PhyClus is a Bayesian phylogenetic algorithm that aims to esti-
mate transmission clusters directly, by identifying sets of sequences supported by distinctive
subtrees, thus avoiding the need to specify thresholds arbitrarily [127]. Unlike conventional
methods, as a way to directly find sets of sequences resulting from quick transmission chains,
it defines a cluster as a clade supported by a phylogeny with a distinctive branch length dis-
tribution, usually with a relatively small mean. Conditional on an input phylogeny – the
maximum likelihood estimate in this study – it uses the MCMC approach to produce an
estimate of the posterior distribution of cluster membership indices. As a result, it has the
added benefit of providing a straightforward measure of uncertainty for cluster membership
estimates, in the form of co-clustering frequencies across the chain. It requires specification
of a number of other priors and evolutionary parameters, which we list in Supplementary
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Material S3. We perform 220, 000 iterations, discarding the first 20, 000 as a burn-in and
applying a thinning ratio of 1 over 200, leaving us with a sample of size 1, 000. We identify
the partition that maximises the joint posterior probability score, which we refer to as the
Maximum Posterior probability (MAP) estimate.

3.2.5. Gap Procedure. The Gap Procedure is a pure distance-based clustering algorithm
that requires minimal tuning, and avoids reliance on ad hoc cutpoints by partitioning sets
of sequences into distinctive components without requiring phylogenetic estimation [130].
When the true clusters are compact and separable enough, the Gap Procedure can propose
partitions that largely agree with conventional phylogenetic estimates, but in a fraction of the
time normally required for such analyses, thus making the method ideal for handling large
datasets. For example, in an analysis presented in [130], partitioning a dataset comprising
627 sequences of length 810 took 126 hours with MrBayes and less than a second with the
Gap Procedure. The method takes as input a matrix of pairwise distances, which we obtain
under the K80 model. We leave tuning parameters at their default values.

3.2.6. Cluster growth evaluation. To evaluate cluster growth properly, we would need to
know seroconversion dates for all cases whose sequences were sampled. The dataset however
contains instead an infection stage indicator, equivalent to a censored estimate of infection
time, i.e. smaller (greater or equal) than six months prior to the sampling date for PHIs
(chronic cases). Most HIV-positive individuals are diagnosed while already in the chronic
stage, at which point seroconversion date estimates are very imprecise [72]. As a result, we
use PHIs only to obtain a lower bound estimate for the growth of inferred clusters, since
PHIs can be reliably associated with a short time window prior to sampling. We focus on a
“recent” period, ranging from January 1, 2012 to February 1, 2016, during which 957 cases
were added to the database, including 304 PHIs. For example, one of the methods may
propose a cluster of size 20, with eight of its sequences having been obtained from cases
diagnosed while in the PHI stage at some point in 2014. We can therefore be certain that
those cases were infected after January 1, 2012 and so, we conclude that the cluster has
accrued at least eight new cases in the selected period.

3.2.7. Software. Under the conventional methods, we get cluster estimates by importing
phylogenetic estimates from RAxML or MrBayes into R v3.2.3 and analysing them with
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functions in the phangorn and ape libraries [108]. We use functions in the GapProcedure and
DMphyClus R libraries to obtain the other estimates.

4. Results

4.1. Sample characteristics. We retain 3, 936 subtype B sequences, each obtained
from a different individual who self-identified as MSM. Since the analyses focus on transmis-
sion clusters among MSMs only, we exclude 20 sequences obtained from women, leaving us
with 3, 916 sequences. To avoid potential artefacts resulting from selective pressure induced
by antiretroviral therapy, we remove sequences for chronic treated patients and patients
with missing infection status information as well, leaving us with 3, 704 sequences. Of those,
1, 402 are from PHIs, and 2, 302 are from chronic untreated cases. The earliest sequence was
collected on May 3rd 1996, and the latest, on January 12, 2016. Only 69 sequences were
collected prior to 2002. The number of sequences added yearly to the sample follows an up-
ward trend until 2008, with 359 sequences added that year, and then steadily decreases until
it reaches 217 in 2015. The sample includes only one sequence collected in 2016. Finally, for
rooting purposes, we add to the sample three subtype A outgroups from Zambia [1] (NCBI
accession numbers AB254141, AB254142, AB254143).

4.2. Cutpoint selection. In all maximum likelihood analyses, the bootstrap support
requirement of 70% resulted in greater overlap with the reference set. Under the maximum
patristic distance scheme of [19], we found that a distance requirement of 0.077 nt/bp max-
imised the correspondence (ARI = 0.91). With ClusterPicker, requirements of either 0.068
nt/bp or 0.077 nt/bp were preferable (ARI = 0.91). In PhyloPart, a median within-cluster
patristic distance requirement of 0.03 nt/bp resulted in the largest overlap with the reference
(ARI = 0.98). Finally, in the Bayesian analysis, in addition to a posterior probability re-
quirement of 1, we determined that a 0.068 nt/bp or 0.077 nt/bp requirement for maximum
within-cluster Hamming distances were equivalent (ARI = 0.91). Except for [94], published
clustering analyses tend to rely on more restrictive distance requirements and so, in cases
where several distance requirements were equivalent, we picked the smallest one.
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ML + CP ML + PhyloPart ML + Max. pat. dist. MrBayes + CP Gap Procedure DM-PhyClus

ML + CP 1.00 0.92 0.93 0.94 0.83 0.65
ML + PhyloPart 0.92 1.00 0.91 0.86 0.88 0.68

ML + Max. pat. dist. 0.93 0.91 1.00 0.88 0.83 0.66
MrBayes + CP 0.94 0.86 0.88 1.00 0.84 0.64
Gap Procedure 0.83 0.88 0.83 0.84 1.00 0.72
DM-PhyClus 0.65 0.68 0.66 0.64 0.72 1.00

Table 3. Adjusted Rand index for the overlap between the cluster
estimates obtained from the different methods. CP stands for Cluster-
Picker.

It is no surprise that the proposed schemes resulted in similar choices of cutpoints. Clus-
ter estimation based on the consensus tree computed from the Bayesian tree search relies
on ClusterPicker, just like one of the ML-bootstrap approaches. Normally, clusters found
through a Bayesian analysis agree substantially with those obtained through a ML-bootstrap
approach. Also, ClusterPicker uses maximum within-cluster pairwise distances, which pro-
vide a rough approximation of patristic distances. It follows that tuning ClusterPicker to
produce estimates in line with those from the method of [19] should be feasible.

4.3. Estimates comparison. We first compare optimal estimates from all methods
with the ARI, cf. Table 3. We observed the largest overlap between the partitions resulting
from the ML + maximum patristic distance and ML+ClusterPicker methods (ARI = 0.94).
On the other hand, we obtained the smallest overlap between estimates suggested by the
MrBayes+CP and DM-PhyClus methods (ARI = 0.64). DM-PhyClus produced the most
distinctive set of clusters, with overlap with clusters from the other methods ranging from
0.64 and 0.72. The larger correspondence with the Gap Procedure estimate is not surprising,
since both methods define clusters in terms of their separation from other clusters.

We represent graphically the correspondence between the different estimates in Figure
22. The heat map, showing the 2, 938 sequences found to co-cluster with at least one other
sequence by at least one of the methods, reveals 11 moderately-sized clusters. The largest
rectangle, marked “1” in the figure, matches roughly one of the reference clusters, and is of
size ≈ 125. The earliest sequence in the cluster was collected on August 13, 2002 and was
a PHI, and the latest sequence, also corresponding to a PHI, was obtained on December
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Figure 22. Heat map showing the frequency at which sequences co-
clustered across methods. The x and y axis represent the 2, 938 sequences
that were found to be non-singletons by at least one of the methods.

23, 2015. The MAP estimate of DM-PhyClus, on the other hand, split this cluster into 14

components, including three clusters of size 37, 36, and 14, respectively, and 7 singletons.
Instead of the MAP estimate, we could have derived the so-called linkage estimate from the
chain results [127]. Broadly speaking, the linkage estimate proposes clusters by partitioning
the sample into subsets of sequences that co-cluster often across iterations in the chain. We
present a more detailed description in Supplementary Material S4. The linkage estimate
ends up more in line with the other estimates: it contains 12 components, with 3 large
clusters of sizes 37, 36, and 30, and 7 singletons.

The second largest cluster, represented by the mostly black block on the right, marked
“2” in the figure, comprises 87 sequences, and is also part of the reference set. All methods
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ML + ClusterPicker ML + PhyloPart ML + Max. pat. dist. MrBayes + ClusterPicker Gap Procedure DM-PhyClus

Mean clus. size 2.29 2.08 2.19 2.48 2.33 2.11
Mean (no singletons) 6.01 5.53 5.62 5.96 4.80 5.62

Median (no singletons) 3.00 3.00 3.00 3.00 2.00 3.00
Max. clus. size 126 126 126 126 125 77

Num. singletons 1205 1353 1261 1051 1035 1330
Num. clus. size ≥ 2 1621 1779 1696 1497 1592 1753

Table 4. Summary statistics for estimates returned by the different methods.

agree more or less that it indeed represents a transmission cluster. It comprises sequences
sampled fromMay 11, 2004 (chronic untreated) to December 14, 2015 (PHI), which highlights
its durability. The moderately-sized black block to its immediate right, marked “3”, also
stands out. Its 45 sequences, also found in the reference set, co-cluster according to all the
methods. Its first sequence was collected on January 11, 2012 and its last, on April 8, 2015.
Two methods, MrBayes + ClusterPicker and ML + ClusterPicker added to that cluster an
extra 38 sequences, as evidenced by the light orange rectangle underneath it.

Figure 23 presents truncated cluster size distributions derived from the preferred estimate
from each method and Table 4 gives related summary statistics. Unsurprisingly, distributions
obtained from the four conventional methods are very similar. Among those, the one for the
conventional Bayesian estimate, labelled “MrBayes + ClusterPicker”, stands out because
of its thicker right tail. The distribution derived from the DM-PhyClus estimate is also
distinctive, because of its much thinner right tail. Frequencies for singletons are not shown
in the graphs for readability purposes. We found that ML + PhyloPart and DM-PhyClus had
the highest proportions of singletons, each having approximately 36% of size 1 clusters. On
the other hand, the Gap Procedure and the conventional Bayesian estimate had the fewest
singletons, with 28% of clusters having a single member. The Gap Procedure estimate,
however, had much more transmission pairs than the other methods.

4.4. Cluster growth assessment. A total of 957 cases in the MSM risk group were
added to the database in the selected time period, including 304 PHIs. Of those PHIs, 254
were sampled after June 30, guaranteeing that the corresponding transmission events took
place in 2012. According to the ML + PhyloPart estimate, 50 (20%) of those 254 PHIs are
singletons, 23 (9%) are found in transmission pairs, and 153 (60%) belong to clusters of size
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Gap Procedure DM−PhyClus
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Figure 23. Truncated cluster size distributions for the preferred es-
timate across methods. We refer to the figure in section 4.3, that focuses
on summary statistics for the obtained cluster estimates, in order to highlight
their differences. To improve readability, we removed the bars corresponding
to singletons.

five or more. In comparison, in the period ranging from July 1st 2008 to January 1st 2012,
319 MSM cases diagnosed in the PHI stage were added to the database. After excluding
all sequences sampled after January 1st 2012, we find that of those PHIs, 83 (26%) form
singletons, 34 (11%) belong to transmission pairs, and 159 (50%) are part of clusters of size
five or more. If we do not exclude the more recent sequences, we find that 79 of the 319
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Figure 24. Bar plot showing the breakdown in membership for the
30 largest clusters in the ML + PhyloPart estimate. The labels at
the end of each bar indicate the sequence collection dates for the first and
last “recent” PHIs in the cluster, that is, recorded on or after July 1st, 2012.
When there is only one such PHI, we display the corresponding collection date
instead. We assume that all chronic cases recorded before July 1st, 2012 were
infected prior to 2012. The dark red bar represents the “minimum cluster size
before 2012” because several chronic cases diagnosed after July 1st 2012 were
probably infected prior to 2012. Also, it is likely that several PHIs sampled in
the first half of 2012 match with transmission events that occurred late in
2011.

cases (25%) are still singletons, which tends to indicate that the more recent PHIs tend to
cluster more.
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We represent the 30 largest clusters, according to the ML + PhyloPart estimate, in
Figure 24. Those clusters include 126 recent PHIs, split between 22 clusters. Among the
largest ten clusters, nine include at least one recent PHI. The largest cluster includes 12

recent PHIs, while the second and third include 26 and two, respectively. Cluster 369 is
noteworthy: despite its small size prior to 2012, it has grown quickly, with the addition of 22
recent PHIs. Cluster 97, on the other hand, is still small, but has not been recorded before.
Each of those two clusters has a PHI recorded as late as the second half of 2015, indicating
that they may still be expanding. Other conventional estimates and the Gap Procedure lead
to similar conclusions, as can be seen in Supplementary Material S5.

The partition produced by DM-PhyClus is different, but leads to similar conclusions, as
shown in Figure 25. Of the 30 largest clusters, 20 include at least one recent PHI. The largest
cluster overlaps largely with cluster 257 in Figure 24 and includes 26 recent cases, while the
second and third largest include 22 and 1, respectively. The fifth largest cluster includes 10
recent PHIs, out of 42 members, also hinting at considerable growth.

5. Discussion

5.1. Summary. In this paper, we investigated clustering in a sample of 3, 704 HIV-1
cases belonging to the men who have sex with men risk category. We compared estimates
from six methods, four conventional approaches relying on a variety of cutpoints applied
to phylogenetic estimates, and two additional recent approaches seeking to avoid cutpoints
entirely, the Gap Procedure and DM-PhyClus. We found that estimates obtained from con-
ventional methods were overall fairly similar. The estimate from DM-PhyClus involved a
noticeably different, albeit not unreasonable, cluster size distribution. Unlike other methods
however, DM-PhyClus provides a straightforward measure of co-clustering frequencies and
so, we found that requiring a certain degree of co-clustering, through the linkage-xx esti-
mate, could change estimates for certain clusters. All estimates however produced a similar
assessment of cluster growth in the period ranging from January 1st, 2012 to February 1st,
2016: nine of the ten largest clusters had grown in the selected period, three of those having
accrued at least ten new cases. Further, we observed several emerging clusters.
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Figure 25. Bar plot showing the breakdown in membership for the
30 largest clusters in the DM-PhyClus estimate. The labels at the end
of each bar indicate the sequence collection dates for the first and last “recent”
PHIs in the cluster, that is, recorded on or after July 1st, 2012. When there is
only one such PHI, we display the corresponding collection date instead. We
assume that all chronic cases recorded before July 1st, 2012 were infected prior
to 2012. The dark red bar represents the “minimum cluster size before 2012”
because several chronic cases diagnosed after July 1st 2012 were probably
infected prior to 2012. Also, it is likely that several PHIs sampled in the first
half of 2012 match with transmission events that occurred late in 2011.

5.2. Limitations. The study has several limitations. Cutpoint selection remains inher-
ently subjective. Indeed, choosing cutpoints as to maximise overlap with a reference set does
not guarantee that other clusters will be estimated well. Moreover, identifying a suitable
reference set can be difficult. In our study, researchers involved directly in the Québec HIV
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genotyping program proposed the set based on a curated clustering analysis they conducted.
A different reference set might have led to different cutpoints. Several of the approaches we
used did manage to recover the reference set very closely though, which suggests that it is
not unrealistic.

DM-PhyClus, being a Bayesian method, rests on a number of prior assumptions, which
are all more or less informative, and it follows that prior calibration is key. [127] suggest
that estimates are reasonably robust to some prior assumptions, but it remains possible that
a combination of very poorly chosen priors may result in misleading cluster estimates.

Reliable infection date estimates for cases diagnosed while in the chronic stage are un-
available and so, we could only obtain a lower bound for cluster growth between January
1st, 2012 and February 1st, 2016. The average time between seroconversion and diagnostic
is between 2 and 3 years [126], and it follows that several chronic cases diagnosed after June
30th might have been infected during the selected period. Estimating infection time from
the fraction of ambiguous nucleotides in each sequence would have been possible [72], but
the high standard deviation for such predictions would have limited their usefulness.

Because of the non-random sampling of cases, we cannot readily deduce from our esti-
mates the population-level cluster size distribution. In the absence of covariate information,
we cannot model the sampling process. If, for example, the probability for a case to be
sampled correlates positively with cluster size, we might end up underestimating the size of
smaller clusters and the number of singletons, and consequently, overestimating the contri-
bution of clustering to the epidemic. Nevertheless, the results we presented provide good
evidence of cluster growth, and that phenomenon alone warrants attention.

5.3. Selecting a best transmission cluster estimate. Determining which partition
among the six proposed provides the most accurate representation of transmission clusters in
the sample is difficult. The choice depends ultimately on our confidence in the assumptions
of each approach, and on substantive knowledge. The agreement between estimates from
the conventional approaches, although explained in great part by shared assumptions, is still
a good sign. The moderately different partitions proposed by the Gap Procedure and DM-
PhyClus are not erroneous: they result from the way the two methods define clusters. The
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two approaches also have additional aims and benefits. [130] designed the Gap Procedure
with scalability in mind, and [127] formulated DM-PhyClus in such a way that it could offer
a straightforward measure of uncertainty around the returned clusters.

5.4. Conclusion. The existence of large transmission clusters is not only a feature of
transmission of HIV-1 among MSMs in the province of Québec: it has been observed across
Europe and other regions of North America as well [75, 78, 13, 11]. The increasing size
of sequence databases represents a considerable computational challenge, especially in the
Bayesian framework, and so, scalability should be an essential feature of future clustering
algorithms [47]. We contend that methods that avoid cutpoint selection altogether are conve-
nient and promising, and would benefit from further improvements. In addition to lightening
their computational burden, adapting them to use time-stamp and covariate data, for exam-
ple, would be a welcome extension. Further, methods designed to provide a clear measure
of uncertainty for estimated partitions, like DM-PhyClus, would warrant more attention.
Indeed, the strength of co-clustering between sequences within an inferred cluster may vary
sizeably, and the separation between neighbouring clusters may not be very clear-cut. Such
variability may be hard to measure rigorously under conventional phylogenetic clustering
approaches.

Phylogenetic surveillance of HIV transmission among MSMs provides helpful clues for
explaining the persistence of the epidemic. The portrait of clustering presented in this study
suggests an ongoing contribution of quick transmission chains to incidence, a finding that
should inform public health strategies to reduce transmission rates.
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Supplementary Material S1: Cutpoint selection with a partial gold standard

The reference set includes only a small fraction of sequences in the dataset, and acts
therefore as a partial gold standard. We select cutpoints for each method as to maximise
overlap with that reference set. The lack of a reference solution for other sequences in the
sample makes comparison with this standard non-straightforward. Let us assume we have
a sample of size 10, and that sequences 1-3 and 4-6 form two confirmed clusters, labelled 1

and 2, respectively. A representation for cluster membership in the full gold standard would
be [1, 1, 1, 2, 2, 2, Not 1 or 2, Not 1 or 2, Not 1 or 2, Not 1 or 2]. To best quantify overlap
with the full gold standard, in all partitions we test, all sequences that do not co-cluster with
any element in the reference set are given a membership index equal to (Number of clusters
found among sequences in the reference set + 1). The full gold standard is reformulated
in such a way that all sequences outside the reference set are given index (Number of true
clusters in the reference set + 1). In the example, the gold standard would be reformulated
[1, 1, 1, 2, 2, 2, 3, 3, 3, 3]. Let’s say a clustering algorithm returns configuration [1, 1, 2, 3,
3, 3, 3, 4, 4, 5]. To obtain the correct ARI, we would need to transform it into [1, 1, 2, 3, 3,
3, 3, 4, 4, 4].

Supplementary Material S2: MrBayes script

begin mrbayes; set autoclose=yes nowarn=yes; execute brennerComplete-
Data.nex; lset nst=6 rates=invgamma; outgroup AB254141; set beaglescal-
ing=dynamic beaglesse=yes; mcmc nruns=2 nchains=4 ngen=3000000 sam-
plefreq=500 diagnfreq=10000 printfreq=500 append=yes; sump relburnin=yes
burninfrac=0.25; end;

Supplementary Material S3: Tuning parameters used in the DM-PhyClus and
Gap Procedure analyses

DM-PhyClus.
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• Number of discrete states for the within-cluster and between-cluster transition prob-
ability matrices: 20,

• Number of samples used to obtain transition probability matrices: 100, 000,
• Radius around mean within-cluster and between-cluster branch length estimates:
25%,

• Discrete gamma distribution parameter: 1,
• Bootstrap and distance requirements for initial cluster estimate: 90%, 0.045,
• Limiting probabilities: (A = 0.38, T = 0.24, C = 0.16, G = 0.21),
• Rate matrix Q: 

−0.8891 0.0659 0.1324 0.6908

0.1047 −0.7205 0.5477 0.0681

0.3096 0.8069 −1.1801 0.0636

1.2540 0.0779 0.0494 −1.3812


• Shape parameter for concentration parameter prior: 500,
• Scale parameter for concentration parameter prior: 0.2,
• Poisson rate for weight applied to the cluster membership vector prior: 2368,
• Number of iterations: 220, 000.

Gap Procedure.

• Threshold for largest gap search: 90%.

Supplementary Material S4: The linkage estimate

We obtain the linkage estimate by first projecting each cluster membership vector pro-
duced by DM-PhyClus as an unweighted undirected network graph, where each sequence is
represented by a vertex, and an edge between any two vertices implying co-clustering be-
tween the corresponding sequences. For example, cluster membership vector [1, 1, 1, 2, 2,
2] would translate as a graph with six vertices, split between two disjoint components, each
of those being a fully-connected graph. In other words, all vertices within each component
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are inter-connected. We can express an unweighted undirected network graph with an adja-
cency matrix, a symmetric matrix with as many rows and columns as vertices, with a 1 (0)
at position (i, j) indicating a connection (no connection) between vertices i and j. Elements
on the diagonal are set to 0.

Once we have adjacency matrices for all cluster membership states visited by the chain,
we average all the matrices element-wise, resulting in an adjacency matrix for a weighted
undirected network. Values in that matrix, all between 0 and 1, indicate the strength of
the association between any two sequences. We then run the walktrap algorithm on the
corresponding graph to identify communities [91]. Communities are sets of vertices that
are a lot more interconnected than would be expected from chance alone. The walktrap
algorithm works by performing a large number of short random walks on the graph. It
starts at a random vertex, and jumps to neighbouring vertices a fixed number of times. It
is based on the principle that a short random walk starting in a community is more likely
to end up in the same community, because of the high degree of interconnectedness between
its vertices. The algorithm then outputs an estimate of community structure in the form of
a vector of arbitrary community labels, which corresponds to the desired linkage estimate.
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Supplementary Material S5: Additional bar plots depicting cluster growth
between January 1st, 2012 and February 1st, 2016

The bar plots in this section can be read like Figures 24 and 25. The labels at the end
of each bar indicate the sequence collection dates for the first and last “recent” PHIs in the
cluster, that is, recorded on or after July 1st, 2012. When there is only one such PHI, we
display the corresponding collection date instead. We assume that all chronic cases recorded
before July 1st, 2012 were infected prior to 2012. The dark red bar represents the “minimum
cluster size before 2012” because several chronic cases diagnosed after July 1st 2012 were
probably infected prior to 2012. Also, it is likely that several PHIs sampled in the first half
of 2012 match with transmission events that occurred late in 2011.
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Figure 26. Bar plot showing the breakdown in membership for the
30 largest clusters in the ML + ClusterPicker estimate.
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Figure 27. Bar plot showing the breakdown in membership for the
30 largest clusters in the ML + maximum patristic distance esti-
mate.



SUPPLEMENTARY MATERIAL S5: ADDITIONAL BAR PLOTS 126

[2012−07−16, 2015−12−23]

[2012−08−30, 2015−12−14]

[2012−09−17, 2014−11−25]

[2015−01−26, 2015−01−27]

[2012−09−27, 2015−09−13]

[2013−02−04, 2014−05−14]

[2012−07−11, 2015−01−28]

[2012−07−03]

[2013−01−09, 2015−12−28]

[2012−07−19, 2013−05−08]

[2014−08−19]

[2013−04−16, 2014−01−08]

[2013−02−08, 2015−04−28]

[2012−07−17, 2013−10−18]

[2012−12−27]

[2012−11−12, 2013−01−07]

[2013−10−01, 2015−12−23]

[2013−09−17]

[2014−07−18, 2015−05−05]

[2013−06−19]

[2015−06−18]

466

47

112

1045

362

975

1037

711

221

1402

703

747

1345

538

937

1166

1062

471

399

467

585

93

1467

1471

801

861

299

461

558

1367

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Number of sequences

C
lu

s
te

r 
la

b
e
l

Accrued PHIs after mid−2012

Accrued PHIs − First half of 2012

Accrued CUN after mid−2012

Min. clus. size before 2012

Figure 28. Bar plot showing the breakdown in membership for the
30 largest clusters in the MrBayes+CP estimate.
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Figure 29. Bar plot showing the breakdown in membership for the
30 largest clusters in the Gap Procedure estimate.



CHAPTER 6

Discussion

1. Summary

In this thesis, we explored concepts related to phylogenetic clustering, with a substantive
focus on HIV-1. In manuscript 1, we investigated through simulations a network interpre-
tation of phylogenetic clusters, obtained under conventional definitions. Overall, we found
limited correspondence between phylogenetic clusters and communities in networks, suggest-
ing a limited potential for phylogenetic clusters to be readily used in community inference.
Previous studies had found small effects of network characteristics on phylogenetic structure
[133, 101], without however focusing on communities. Manuscript 1 complements the con-
clusions from those studies, by stressing that the link between communities and phylogenetic
clusters may not be straightforward.

In manuscript 2, we presented DM-PhyClus, a new Bayesian phylogenetic clustering al-
gorithm. After testing the method through simulations, that highlighted its potential to
uncover clusters better than conventional methods, we applied it to a real HIV-1 sequence
dataset, revealing a set of clusters largely similar to that inferred in a previous curated
analysis [19]. DM-PhyClus partitions the sample by identifying distinctive subtrees, char-
acterised by a different branch length distribution, thus removing the need for arbitrary
genetic distance requirements, one major shortcoming of standard approaches. As an addi-
tional advantage, the approach also provides straightforward estimates of uncertainty around
the obtained cluster estimates. The similarities between the results of conventional analyses
and those from DM-PhyClus are not accidental: if clusters are defined in terms of maximum
patristic distance, many of them will also be supported by subtrees with noticeably shorter
branches.
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In manuscript 3, we presented a thorough clustering analysis of a large sample of se-
quences, obtained from individuals belonging to the MSM risk category who consented to
participate in the Québec HIV genotyping program. The manuscript first showed results
produced by conventional methods, namely bootstrap-augmented maximum likelihood phy-
logenetic estimation and pure Bayesian phylogenetic estimation. We included an explicit
justification for cutpoint selection, which is rarely seen in the literature. We then clustered
the dataset with DM-PhyClus and the Gap Procedure, a fast distance-based approach that
also aims to avoid cutpoint selection. Overall, estimates from all conventional approaches
were fairly similar. DM-PhyClus proposed the most distinctive partition, its cluster size
distribution having a noticeably thinner right tail. All methods however similarly attributed
a large proportion of confirmed recent infections to existing or new clusters, a result concor-
dant with [18]. The analyses therefore stress the persistent association between clustering
and incidence, and incidentally, the increasing role of recently-infected MSMs as transmission
vectors for the virus.

2. Future work

Although the work described in the first manuscript suggests that, in general, phyloge-
netic clusters and communities in a contact network should not be equated, we did find cases
where such a connection may be warranted. It follows that the manuscript does not discredit
the usefulness of sequence data for contact network inference. Nevertheless, what phyloge-
netic inference can tell us about an epidemic’s underlying contact network is still, as far as
we know, an open question. Sequencing data alone might not be enough to permit reliable
inference of network structure or parameters in real-life applications. Combining those data
with covariate and epidemiologic information, or partial contact or infection tracing data,
might be necessary to improve understanding of the interplay between network structure and
the evolution of pathogen populations. Efforts to model explicitly the association between
data of those types and phylogenetic estimates would therefore be worthwhile.

To improve mixing in the chain, we opted for a “fixed topology” version of DM-PhyClus:
after identifying a suitable topology, the algorithm explores solely the space of cluster con-
figurations permitted by it. Although simulations indicate that such an approach is not
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overly detrimental in practice, in view of the sometimes sizeable uncertainty in phylogenetic
inference, it might result in an underestimation of the uncertainty around cluster estimates.
Rigorously addressing the issue would involve formulating a new transition kernel that pro-
poses joint moves in the space of phylogenies and of cluster membership indices. The main
challenge resides in the interaction between the topology and the space of cluster member-
ship indices: since clusters must correspond to clades, a minor transition in the topological
space can have profound effects on the cluster membership states accessible from the current
configuration. Because of the very large size of the topological space, conventional phylo-
genetic transition kernels such as nearest-neighbour interchange invariably cause the chain
to get trapped in low posterior probability configurations. Escaping those regions requires
the transition kernel to propose a very specific series of moves, which may take a very large
number of iterations. Updating the algorithm to let the chain explore various topologies,
while avoiding the stated problem, would therefore be a natural and necessary improvement.

In 2015, the Swiss HIV Cohort Study (SHCS) database contained information about
19, 074 HIV-positive individuals diagnosed in Switzerland [117], representing a majority of
cases diagnosed in the country. Comparing cluster estimates for those data with those
presented in manuscript 3 could help highlight the effect of the sampling proportion, higher
in the SHCS than in the Québec HIV genotyping program, on cluster inference. The sheer
size of the SHCS database remains a major challenge from a computational standpoint
though. Work to reduce the computational burden of our algorithm is therefore an essential
prerequisite. Improvements to the software, coupled with better transition kernels, will lead
to better scalability, allowing DM-PhyClus to cope with the expanding scope of sequence
databases. Finally, reworking and adding functionalities to the software’s user interface
would also be crucial to help the method gain widespread acceptance.
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