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ABSTRACT

Using the technique of Implicit nonlinear Normal Mode Initialization INMI), we
consider the extension of this method in a variational framework for initializing NWP
models. The fact that INMI works in physical space instead of the normal mode space,
offers the possibility to efficiently reconsider Daley's (1978) original proposal.

The first part of this study gives the formulation of a variational INMI scheme
(VINMI) for shallow-water models using Daley's approximation. Applications of VINMI
to a regional finite elements shallow-water model with a fairly large number of degrees of
freedom ( ~ 30,000 ) is first considered. It is shown that the VINMI scheme has the same
balancing benefits as INMI but also efficiently control the changes that are made to the
analyzed fields in a way consistent with their estimated error variance. Results of a two day
forecast also indicate that VINMI has the possibility to significantly affect the slowly
evolving component of the flow.

The second part of this research extends the VINMI scheme to a global spectral
shallow-water model with triangular truncation at zonal wavenumber 63. Similar
conclusions as the regional model are obtained in the present context (including a
reasonable computer cost), thus extending the range of applicability of the method to those
models which are more commonly used in NWP. Simple connections between INMI and
quasi-geostrophic theory are also used to asses the convergence problem of the method in
the context of height-constrained initialization.

The third aspect of the study shows that the VINMI procedure can be generalized in
a consistent way to multilevel NWP models. Several tests indicate the efficiency and
robustness of the scheme in an operational context.

Finally, a general outlook of possible future developments of the variational scheme

is presented at the end of the thesis.
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RESUME

On considére l'extension dans un cadre variationnel de la méthode d'initialisation
implicite (ou intrinséque ) non linéaire par modes normaux (INMI). La formulation dans
I'espace physique de I'INMI rend l'idée originale de Daley (1978) plus intéressante a
considérer dans un cadre opérationnel.

La'premiére partie de ce travail offre une formulation variationnelle de 'INMI
(VINMI) basée sur l'approximation de Daley. La méthode est ensuite appliquée a un
modele aux €léments finis pour les équations de Saint-Venant ayant un assez grand nombre
de degrés de liberté ( ~ 30,000 ). Il est démontré que la VINMI peut fournir un équillibre
dynamique comparable a celui obtenu par 1'INMI, mais permet en plus de controler les
changements faits aux champs d'analyse. Un résultat important dans ce contexte est que la
VINMI a un impact non négligeable sur les champs prévus apres 48 heures d'intégration.

En seconde partie, on a étendu la VINMI 3 un modele spectral global des équations
de Saint-Venant avec une troncature spatiale triangulaire au nombre d'onde zonal 63. On y
a observé le méme type de résultats que pour la version & domaine limité (y inclus un coiit
informatique abordable ) donnant ainsi un champ d'application plus vaste de la méthode,
étant donné 1'utilisation assez répandue de la méthode spectrale dans les centres de
recherche en prévisions numériques. Le probléme de convergence de la VINMI dans un
contexte de contrdle du géopotentiel uniquement fut ensuite examiné a partir de liens avec la
théorie quasi-géostrophique.

La VINMI est finalement considérée dans un contexte barocline. On a établi une
formulation généralisée de la VINMI qui opére complétement dans 1'espace physique mais
qui conserve l'aspect important de ~ restriction verticale ~ du schéma de Machenhauer
(1977). La méthode fut testée dans le contexte d'un modele de prévision opérationnel
Canadien.
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STATEMENT OF ORIGINALITY
The original findings of this thesis are :

1) The formulation and application of an efficient variational implicit nonlinear normal

mode initialization method for
a: aregional finite-element shallow-water model
b. a global spectral shallow-water model.
2)

a. The formulation of a variational implicit nonlinear normal mode initialization

method for a multilevel model.

b. Application of the VINMI-3D to an operational regional baroclinic model for

numerical weather prediction.

The VINMI method as formulated in the present study allows for the first time in
the field of nonlinear normal mode initialization for numerical weather prediction models,
to balance the analyzed fields in a consistent manner with their known statistical error

distributions in three dimensional space.
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Chapter I

Introduction

1.1 The initialization problem

One of the earliest problems encountered in the development of numerical weather
prediction (NWP) with the primitive equation models, concerned the generation of spurious
fast oscillations during the forecast integration. Since that time, it has been recognized that
the problem of properly setting the initial data for such models requires special treatment. In
fact when directly inserting initial conditions for mass and wind fields obtained from an
analysis scheme, it quickly becomes apparent that high frequency oscillations with
unacceptably large amplitudes are generated during the integration of the model. Figure 1.1
for example, illustrates this behaviour for a 48 hour forecast using the Canadian regional
finite-elements model (RFE) operational at CMC (Centre Météorologique Canadien)
starting with analyzed fields. Fast oscillations in the surface pressure field are present with
an amplitude of 2 mb, a feature which is rare in the routinely observed surface pressure
data at weather reporting stations throughout the world. Fast oscillations of the gravity
wave type are known to exist in the real atmosphere but their associated energy represents a
small part of the total motion which evolves on much slower timescales.

Depending on the diffusion properties of the model (i.e. numerical and explicit
diffusion), these oscillations will persist typically for the first 12-24 hours of a forecast
unless the initial mass and wind fields are properly adjusted. This initial adjustment is
referred to as initialization. Since most current operational analysis schemes do not produce
“balanced” (to be defined later) initial data, these unrealistic large amplitude oscillations can
seriously damage the quality of the forecasts during the early stages of integration. A
classical disastrous aspect of these fast oscillations, is that they have associated with them

a considerable amount of divergence and vertical motion which can completely obscure the



O

O

O
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Fig.1.1 Time-trace of surface pressure for a point in the Northern-Atlantic as forecast by the
operational Canadian RFE model. Solid line: no initialization. Dashed line: after three
iterations of Implicit Nonlinear NMI (gfter Temperton and Roch 1991 ).
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slowly evolving meteorologically significant cloud and precipitation patterns.

12 The initialization methods

The problem of * initial imbalance ~ may be attacked by imposing diagnostic
balancing relationships on the initial data in order to mimic the approximate type of
"balance" observed in long term integrations of the model. One of the most widely used
operational analysis scheme at the present time, ~ statistical optimal interpolation (OI) ~
(Gandin 1963), uses geostrophic balance in a multivariate analysis mode (Rutherford
1972). Ignoring some other well known deficiencies of the Ol schemes, geostrophy is
easily shown to be a too crude approximation. Williamson et al. (1981) examined the
accuracy of OI analyses when geostrophy is used to determine covariances between
analyzed variables. Their study also clearly demonstrated an improved behaviour of the
slow and fast (transient inertia-gravity) components (based on Tribbia's 1981 axisymmetric
vortex) when a more accurate nonlinear relationship is used. The earliest attempt to force a
nonlinear balance between dynamical variables of the model was based on the nonlinear
balance equation (Charney 1955) obtained by setting D = 8 D = 0 in the divergence
equation (where D is the horizontal divergence of the wind field) thereby giving a relation
between the rotational part of the wind field and the geopotential (see also section 2.4). The
nonlinear balance equation gives no information on the initial divergent wind field and
Phillips (1960) pointed out that initial fields with vanishing divergence lead to an imbalance
with subsequent high frequency oscillations. He proposed that the nonlinear balance
eqﬁation be supplemented by a form of the classical omega equation to obtain a
divergent initial wind field. Further discussions concerning the use of the balance equation

are given in chapter Il and IV.
During the period 1968 to 1977, the dynamic initialization method was

introduced. This consists of integrating the model forward and backward around the initial



time to allow the model to adjust before starting a forecast. The procedure used a special
time integration scheme that selectively damps the amplitude of certain high frequency
modes. The earliest contributions are those of Miyakoda and Moyer (1968) (using a limited
area two layer baroclinic model with Euler-backward time integration scheme), Temperton
(1973) (with the shallow-water equations), and Temperton (1976) (similar to Nitta and
Hovermale 1969, on a five level hemispheric model). One disadvantage of this method
relates to the lack of control on the magnitude of the changes to the slow component of the
analyzed fields during this cycling process. Also, dynamic initialization would seem to
eliminate fast modes by introducing an artificial numerical diffusion. One consequence
could be that it leads to a false balance, i.e., an effective dissipative term is added to the
right-hand side of the fast mode equations which changes the nature of the balance.
Consequently, it is not clear that this method can be justified in the context of initialization.
The method does have the advantage that it is easy to apply (even for the non-hydrostatic
primitive equations, Tanguay et al. 1990).

Meanwhile, the need to improve our understanding of the fype of “balance”
developped by primitive equation models for weather forecasting forced the development of
more sophisticated initialization methods. This lead naturally to the normal mode
initialization‘ (NMI) method. By considering the discretized form of the model
equations, linearized about a basic state atmosphere, the resulting linearized dynamics
describes the evolution of a broad spectrum of free modes called normal modes. An
essential characteristic of this spectrum is the appearence of two widely different groups of
frequencies referred to as slow (Rossby) and fast (gravity-inertia) modes. Once the
structure and frequencies oi the normal modes has been obtained, the model equations may
be rewritten in normal mode space (i.e. the linear space spanned by the normal modes).
Balancing schemes devised to force the fast gravity modes to evolve slowly in time by
properly specifying their amplitudes in normal mode space at the initial time are termed

normal mode initialization schemes. A number of NMI techniques for the primitive



O

equations exist at this time and some of them will be considered more precisely in the next
chapter.

As mentioned previously, it inevitably turns out that analyzed fields have some
projection on the fast modes with amplitudes not reflecting the appropriate "balance"
required by the model itself. Altough this is generally negligible for mean or long term
forecasts ( > 2 days ), the proper initial setting of these modes is a fundamental problem
when viewed from the point of view of data assimilation.

Dickinson and Williamson (1972) were the first to use the model's normal modes in
the initialization problem. Although it required the construction of the normal modes of the
numerical model, the approach was attractive in that it dealt directly with the spectrum of
frequencies and structure of the fast modes. This aspect was attractive compared to quasi-
geostrophic theory since it improved the compatibility of the balanciﬂg schemes and the
underlying model. The limited benefit of Dickinson and Williamson's experiments using
linear NMI (i.e. eliminate the initial amplitude of the fast modes in the analyzed fields ) was
rapidly improved by considering the nonlinear nature of the dynamical system written in
normal mode space. Machenhauer (1977) devised his nonlinear balancing scheme by
observing (i.e by running a spectral shallow-water model) that the nonlinear forcing term
for the fast modes varied “slowly” (i.e. on a much slower timescale than the amplitude of
the fast modes). His scheme (as will be discussed in subsequent chapters) thus required the
vanishing of the zime tendency of the amplitudes of the fast modes.

Baer (1977) and “later” Baer and Tribbia (1977) used a Rossby number expansion
of the scaled primitive equations in normal mode space to devise a “filtering procedure” of
the fast oscillations. In operational practice, Machenhauer's scheme was preferred and
introduced by Andersen (1977), Daley (1979), and Temperton and Williamson (1979) for
global models. Ballish (1980) analyzed the application of Baer and Tribbia's initialization
scheme for the NMC ( National Meteorological Centre ) global spectral model and found

similar performance of the scheme as compared to Machenhauer's scheme. Until now,
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numerical modellers have concentrated their efforts on the application of the nonlinear NMI
to their models, discovering various limitations of Machenhauer's scheme regarding the
number of vertical modes to be initialized, the proper treatment of diabatic effects, etc.
These specific problems are well documented in Temperton and Williamson (1979) and
Daley (1981) for example. There is also the possibility of examining the behaviour of the
fast modes that we usually initialize when the model is  properly balanced “ and try to
assess the degree of accuracy of the preceding initialization methods. This typé of
pioneering work has been done by Errico (1984, 1988 a,b,c, 1989 a,b) for climate models
and a mesoscale model both using the primitive equations. Further research of this type is
of crucial importance if the nature of dynamical balance is to be dccurately characterized.

Ballish (1980) was the first to show that the main benefits of nonlinear NMI (i.e.
balancing the highest frequency gravity-inertia oscillations of the modei) could be obtained
by neglecting the ~ beta terms ™ in his linearized system used to determine the normal
modes, a technique which he called non-normal mode initialization. This reasoning was
based on the ideas of the bounded derivative initialization (BDI) method of Kreiss
(1979, 1980). This latter initialization method was first used in the meteorological context
by Browning et al. (1980). The BDI method has a firm mathematical sounding, and deals
with the specification of initial data (including boundary conditions if necessary) for
ordinary or partial differential (hyperbolic) systems having different time scales.

The practical use of nonlinear NMI in regional models received more attention at the
beginning of the 1980's . The nonseparability of the linearized equations due to the
appearence of the horizontally variable map scale factor and Coriolis parameter (for
projected grids) render the determination of the normal modes of the model intractable.
Briére (1982) and Bourke and McGregor (1983) reexamined Ballish's results and
succeeded in applying the ideas of nonlinear NMI for their regional models using specific
assumptions to eliminate the beta terms in their linearizations. Their results together with

Ballish's results pointed out an interesting direction of research in the domain of



initialization, that is: “what is the least drastic approximation in the linearization of the
primitive equations that permits the physical space formulation of nonlinear NMI 7,
Temperton (1985) was the first to establish a general formulation for what he called
implicit nonlinear NMI using a simple algebraic reformulation of the standard “explicit
" nonlinear NMI procedure. It was later shown by Temperton (1988, 1989, 1991) and
Juvanon du Vachat (1986, 1988) that implicit normal mode initialization is also feasible by
including most of the beta-terms of the usual linearization considered in explicit NMI The
technique has been extended successfully to the operational Canadian RFE model
(Temperton and Roch 1991) an to the operational global spectral model at the Europeén
Centre for Medium Range Weather Forecasts (ECMWF) (Temperton 1990). We finally
note that the BDI method may give some answers to the previpusly stated question. The
connections between the BDI and nonlinear NMI methods were examined in part by
Kasahara (1982a). We note however that in order to characterize the complicated type of
adjustment required for the various normal modes of the model, the explicit knowledge of
the structure of certain of these modes is important. An example of this is given by the
treatment of equatorially trapped modes characterizing the tropical circulations. On the
other hand, the very high frequency gravity modes may simply be considered as noise and
treated with a physical space initialization. Considering the future demands of the “next
generation” models (i.e. global models with very high and variable resolution), the
treatment of the latter group of modes by such a scheme will become highly desirable. As
it stands presently, the application of the BDI method on the sphere results in two different
balancing schemes due to the separate scaling of the dynamical equations in the tropics and
extratropics. These schemes were formulated by Browning et al. (1980) whereas Kasahara
(1982) extended these schemes for the multilevel case. - On the sphere, some sort of

combination of these two schemes would be required.
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L3 Constrained initialization

The preceding sections have discussed the problem of dynamic imbalance and
various initialization methods to remedy this problem. We now indicate two issues relating
to initialization schemes of the form M(R,G) = 0 (where R is a given vector of the
amplitude of the slow modes at the initial time, and G is the vector of gravity modes to be
specified by the nonlinear constraint M), i.e. nonuniqueness and accuracy. The question of
nonuniqueness may be stated as “Even if we know the location of the manifold
characterizing balanced states accurately, what do we change to ensure that M =0, G, R or
both ? “. This nonuniqueness is linked with the accuracy problem since current balancing
schemes for NWP models are only approximations of the type of balance developped by
the model after a certain period of time. Moreover, the errors introduced by the inherent
limitations of the analysis scheme when determining the Rossby mode amplitudes, also
introduces inaccuracies which may result in large changes on the reliable data (e.g. surface
pressure). Variational methods allow one to make unique corrections based on error
statistics, thus complementing the balancing scheme. The pioneering work of Daley (1978)
dealt precisely with this aspect of the analysis-initialization problem. His “ variational
nonlinear NMI " scheme forced the initialized state to be as “close” as possible to the
analyzed fields by minimizing a functional of the weighted changes of the analyzed fields.
The essential features of Daley's scheme may be illustrated by using Leith's (1980)
diagram (see Fig. 1.2). In phase space, each model state may be represented by a unique
point having both slow and fast mode components (R,G). This is also valid for the original

analyzed fields which is represented in Fig. 1.2 by point O. Balanced model states are

‘located on a manifold described by M. Starting from the analyzed state O, successive

application of the initialization scheme (i.e. adjustment of the fast mode amplitudes G) and
the minimization algorithm (i.e. alteration of the slow mode amplitudes R) leads to the
“optimal” balanced state I. This process was originally formulated in normal mode space for

a spectral shallow-water model and its operational use could not be envisaged due to
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Figure 1.2. Variational initialization in phase space.
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prohibitive computational cost. Some attempts to render the variational extension of
nonlinear NMI schemes tractable were considered by Tribbia (1982) and Temperton
(1984). Their schemes suffered from restrictions on the choice of weight functions used to
limit the changes.

It is precisely the purpose of this thesis to reconsider Daley's variational proposal of
nonlinear NMI using the implicit formulation. Chapter II includes a review of the principal
initialization schemes applicable for NWP models and discusses briefly their relationships.
In chapter III and IV the feasibility of variational INMI ( VINMI ) schemes for shallow-
water models ( regional and global ) with present typical horizontal resolution of NWP
models is demonstrated. The extension of the VINMI scheme to multilevel models is
considered in chapter V. The method is then tested in the context of the presently
operational regional finite-elements Canadian (RFE) model. Finally, chapter VI
summarizes the essential findings of this research together with possible future

developments of the method.
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Chapter I

Initialization methods for primitive equation models and their relationship

The purpose of this chapter is to briefly review and clarify the theoretical and
practical aspects of various initialization methods. The reader will find a more complete and
detailed di#cussion of each of these methods in references cited in the text. For simplicity
we restrict considerations to an f-plane shallow-water model without external forcing (i.e.
orographic and thermal forcing). Further discussion of the relation between implicit normal
mode initialization and quasi-geostrophic theory will be given in chapter IV. We begin by

describing the basic shallow-water system.

1.1 The shallow-water model
The discussion to follow will be based on the shallow-wa.ter model which describes
the hydrostatic motion of an homogeneous fluid with a free upper surface, although the
concepts can be extended to more complicated baroclinic models. The shallow-water model
may be termed the " kernel problem " since as will be shown in chapter V, initialization of
baroclinic models can in a certain sense be reduced to the initialization of a set of shallow-
water models differing only in their associated equivalent depths. The momentum and

continuity equations are

%’-+v-Vv+V¢ + fkxv =0 (2.1.1)
X VYo +Vov=0 (2.1.2)

where
¢ = ®+¢ where ¢ is the geopotential deviation about @

@ = mean geopotential depth

11
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g = acceleration due to gravity

p = constant density of the fluid

| = viscosity of the fluid : taken to be zero here (i.e. inviscid fluid)

Q = angular speed of the earth

L = typical horizontal length scale characterizing shallow-water perturbations
x,y,z = east-west (north-south, vertical) spatial coordinates

v = (u,v) = zonal and meridional wind components.

In this chapter, we will concentrate on the dynamical equations themselves while ignoring
the effects of lateral boundaries. Figure 2.1 shows the essential parameters characterizing
the model.

,w
& -
g
: L |
P= CONSTANT
p= 0
LN 2 (xy1) )
| ha (x,y)
/\______‘
> 4
X, U |

Figure 2-1. The shallow-water model.

Equations (2.1.1) and (2.1.2) may be written in the compact form

.12



O

@

O

xx+Lx+NX) =0 (2.1.3)

where

0 -f o | u

L=l f 0 o ; X = ; (2.1.4)
®o ®9, 0 ¢
Uy +Vuy Ny

N = Uvy+vvy = N, (2.1.5)
u¢,s+v¢y+¢(ux+vy) Ny

I12 The normal modes of the shallow-water equations

We now briefly discuss the nature of the linear normal modes of the shallow-water
system. There are two classes; low-frequency quasi-geostrophic modes generally
associated with the meteorologically significant part of the motion and high-frequency
inertial-gravity modes which carry a small portion of the overall energy of the flow. This is
most easily seen by considering small disturbance to a motionless background state (u,v,9)
= (0,0,0). The motion is then described by the linear operator L to leading order. For
periodic solutions characterized by a wavevector k=(k , ky) and frequency o of the form

x = x°exp (ik x + ikyy - iot) 2.2.1)

where xo represents the amplitude of the perturbation. Substituting (2.2.1) into the
linearized form of (2.1.3) (i.e. where f and ¢ are replaced by f, and @ resp.), the
eigenfrequencies are obtained by requiring that

-ic f, iky

£, -o iky |[=0 . (2.2.2)

i®ky iPky, -ic '

The eigenvalues o are real for a given set of (k , ky) and are given by:
c=06=0 |,

13
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o - Oo = & [+ Bk + kyz)]l”

Thus, on an f-plane, the slow ( Rossby ) modes are stationary while the fast
(gravity-inertial) modes appear as a pair of modes traveling in the k and -k directions
Further, the vorticity-divergence ({, D) form of the momentum equations linearized about a

+

resting basic state are
318 _ . dD _ v
§+fD—O ; T-fc— V(l) s
where
_0dv du _du odv
=y P ay

Using the previous results, it is clear that gravity-inertial waves possess both divergence
and vorticity due to coupling by rotation. Rossby modes however, are divergence free due

to the assumption of constant f. Further, the principle of conservation of potential vorticity

LY
¢

for the full nonlinear shallow-water equations reduces, in the present linear context, to

conservation of the linearized potential vorticity q (normalized by ®2), i. e.
%tg- =0 where q= <I>C-f¢'

For plane waves, the previous result implies that gravity-inertial waves have zero linearized
potential vorticity. The vanishing of the frequency of the slow modes implies that the

evolution is determined by the nonlinear terms.

The dispersion diagram in this case is represented in figure 2.2a. When strong
variations of the Coriolis parameter are considered, as in the case of global or equatorial
models for example), the frequency separation is less clear-cut as some niodes have
intermediate frequencies. One then has to use arbitrary selection criteria (principally on the

frequency of these modes) to define the eigenfrequencies as fast or slow. In multilevel

14
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Fig. 2.2 Dispersion diagram for (a) f-plane shallow-water models in normalized frequency

and wavenumber coordinates. The normalization factors are respectively f and ®"*, and the
Rossby modes are stationary. (b) a global spectral shallow-water model with equivalent

depths 10 km and 100 m. (Daley 1986 )
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models, the frequency separation also depends on the vertical structure or "equivalent
depth" (see chapter V). As an example of this, Fig. 2.2b shows the dispersion diagram for
two vertical modes of equivalent depth 10 km and 100 m. The lowest frequency "band"
characterizes slow modes while the highest (eastward-westward) inertia-gravity frequency
band characterizes modes that are initialized in nonlinear NMI schemes. Intermediate
modes (Kglvin and mixed Rossby-Gravity) can be regarded as fast or slow depending on
the wave-number domain considered. These last modes generally are much more difficult
to initialize. The detailed structure of the normal modes of the linearized shallow-water
equations on the sphere may be found in Longuet-Higgins (1968), Kasahara (1976), and
more recently in Miiller (1989).

11.3 The nondimensional form of the shallow-water equations
It will be usefull for later comparison of various initialization methods to deal with

the nondimensionalized form of the model. Let us scale the variables as

x*=X : y*:% ; t‘:.L Al =X (2.3.1)

L T ° v
where L, T, and V are typical values of the length, time, and velocity scales of the problem.

The Coriolis parameter f will be set to a constant value of f,. If we introduce an advective

time scale
=L
T = S (2.3.2)
and a geostrophic scaling of the geopotential perturbation ¢, i.e.
¢=60¢0 where ¢;=fVL ,

then

0=0+¢=D(1+eF ¢) , (233)
where

16
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_ f02L2 _ .
F = = Rotational Froude number ,

D
??i— = Rossby number

£

If the horizontal length scale is fixed by requiring F, = 1, i.e. if
1/2
L=1g= 9;,— = Rossby radius of deformation
0

0=d(l+ed ) , (2.3.4)

then, (2.1.1) and (2.1.2) become on dropping asterisks

£ %% + kxv = -Vo (2.3.5)
e%q%=-(1+e¢)V-v , (2.3.6)

which may also be written as
x; +€IL*X*+N(x*) =0 , (2.3.7)

where the linear operator L* is the same as L in (2.1.4) with f and ® replaced by unity,

and x* is the nondimensional state vector.

114 Quasi-geostrophic balancing

Historically, the quasi-geostrophic balancing method was the first to be applied
operationally in numerical weather prediction. It has since been replaced by other more
sophisticated schemes. The éommon basis of initialization methods is to limit the amplitude
of the high-frequency oscillations (gravity-inertia) largely characterized by their associated
divergence field. Obviously, a flow evolving in such a way that the divergence field is
identically zero for all times is free from high-frequency gravity-inertia waves since the
principal mechanism for producing them is absent. This would be the case for example
with the non-divergent barotropic vorticity equation. In the special context envisaged in this

chapter, the shallow-water equations do posses these high-frequency linear free modes (
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see section I1.2). One might intuitively expect that setting the initial amplitude of the flow to
be non-divergent and further that the time tendency of the divergent field be zero initially
ie.D = StD = Owhent= O, should be sufficient to remove (at least for a certain period
of time) these high-frequency oscillations. It is nevertheless quite clear that this is at best
approximate if one is to allow for a slow, weakly divergent meteorologically significant
Rossby wave type of motion.

Since the divergence of synoptic-scale disturbances is small in comparison with the
vorticity field, it is convenient to separate the wind into rotational and divergent parts using
Helmbholtz's decomposition theorem. Since the divergence is small according to (2.3.6)
(i.e. is zero to O(g)), we may write

V=Vy + € Vy, Vy = kwi, Vx = Vx ’ (2.4.1)

where y and j are the dimensionless streamfunction and velocity potential. Applying the
horizontal divergence operator to (2.3.5) and using (2.4.1), we get:

= +e3V -(vx-va) +

+ eV {vyVvy) + (v3-¢) = 0 2.4.2)
where D =V.V, and{ =k-VxV,
Thus to order €2 we get
Vi - (+ eV {vyVvy) =0
or in a more familiar form (Charney 1955) as

Vi - 2el(uyvy) = V0 (2.4.3)
which is the classical nonlinear balance equation relating the rotational part of the

wind field with the geopotential field.

A diagnostic equation for the divergent part of the wind field may be obtained to the

same order of approximation as (2.4.3), i.e. by neglecting terms of order e» where n > 1.

18



O

@)

At this order of approximation, we write the vorticity and continuity equations (using

(2.4.1), (2.3.5), and (2.3.6)) as

eaai: +eVyVo +eD =0 , (2.4.4a)
ag -
e +eVyV{ +eD =0 . (2.4.4b)

By taking the Laplacian of (2.4.4a) and combining with (2.4.3) and (2.4.4b), the desired

diagnostic equation is

VD - D = VyV{ - VA(Vy-V0)
This is the usual quasi-geostrophic divergence equation on an f-plane (see Haltiner
and Williams 1980, chapter 3). Using a simple linearized shallow-water model on an f-
plane, Phillips (1960) demonstrated that both the quasi-geostrophic divefgence and balance
equations are required to suppress gravity-inertia oscillations in the system. He further
suggested a more general quasi-geostrophic set of divergence and balance equations to

balance primitive equation models.

The balance equation (2.4.3) can be used in two different ways to initialize a
primitive equation numerical model. One can determine the initial rotational part of the wind
from the "observed" (or analysed) geopotential field. This is known as the direct balance
equation. One can also attempt to determine geopotential from the observed wind. This
method is referred to as solving the reverse balance equation. Apart from the obligation to
specify consistent boundary conditions to solve (2.4.3), one faces a special problem of
solvability with the direct balance equation.

For the reverse balance equation, (2.4.3) is an elliptic partial differential equation
for ¢ and the resulting Poisson problem is well-posed (i.e. it has a unique solution which

depends continuously on the data) provided one specifies the values of the streamfunction
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or its derivative (i.e. Dirichlet or Neumann) at the boundaries of the domain of integration
of the model. For the global problem no such boundary conditions are required.

The direct equation is of the " Monge-Ampére " type. As a boundary value

_problem, the nonlinear equation (2.4.3) admits at most two solutions if its coefficients and

the right-hand-side of (2.4.3) ( owing to the nonlinearity of the equation ) are sufficiently

well behaved. Equation (2.4.3) may be written as
E(WxxWyy - Viy) + AWy + 2BYy + Cyyy - D = 0, (2.4.5)

and it can be shown that (as an elliptic boundary value problem) it admits at most two

solutions (Courant and Hilbert 1962, Vol. 2) provided the criterion
AC-BZ2-DE>0 , (2.4.6)

is satisfied everywhere in the interior domain (Rellich 1934). Here we have

A=C=-1, B=0,D =-%-v2¢, E=¢ , 2.4.7)

B =

while (2.4.6) becomes

eV + % >0 (2.4.8)

If y is a solution of (2.4.5), then using (2.4.6) we have the inequality
EYx+C) Eyyy+A) - Evyy-B)?2 >0

It follows that both (Ev,, + C) and (Ev,, + A) are either always greater than or always less
than zero in the domain of interest. This means that there are two types of solutions of
(2.4.5), one yielding (1 + €V2y < 0) and the other yielding (1 +€V2y > 0) in the domain.
In dimensional form, this means that we have negative (resp. positive) absolute vorticity
everywhere in the domain. The meteorologically significant solution retained for (2.4.5) is

characterized by the requirement that in the Northern Hemisphere we have
—é—+£\|fxx>0 and %+e\uyy>0
and in the Southern Hemisphere

-:12-+8\|Ixx<0 and %+ewyy<0
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By continuity we must let both y,, and y,, vanish at the equator since f = 0 there.
It is however quite clear that the ellipticity condition is violated only when the scaling fails.
Kasahara (1982b) examined the appearence of non-elliptic geopotential regions based on
level IIIb FGGE data and found that the breakdown of (2.4.8) was frequent in the tropics.
In the past, the ellipticity problem was avoided by altering thé mass field. It is important to
stress here that for reasons of consistency, the violation of the ellipticity criteria implies that
the basic assumptions used to derive the balance equation do not apply. This point will be
reexamined in the context of height-constrained implicit normal mode initialization in
chapter IV. It should also be noted that important divergent circulations in the tropics were

not taken into account in the previous derivation of the nonlinear balance equation.

I1.5 The Bounded Derivative method

Browning et al. (1980) were the first to introduce the application of the * Bounded
Derivative Initialization method (BDI) ” for initializing the primitive equations model. The
basic principle of this method was formulated by Kreiss (1979,1980) for systems governed
by ordinary or partial differential equations. An interesting aspect of Kreiss's principle is
that it may be used either in normal mode or physical space. The bounded derivative
method can also be applied to systems with open boundaries (Browning and Kreiss 1982)
where NMI is hardly applicable. Kreiss examined the requirement on the initial data to
ensure slow time scale evolution of a given dynamical system for a certain period of time
(to be defined). In order to simply express Kreiss's principle, let us call x(t) the state vector
of the nondimensionalized dynamical system having a number of degree of freedom of the
model (not necessarily the normal mode components). Kreiss then used the following
observation for systems having slow and fast time scales: if x(t) varies slowly, then its first

few time derivatives must satisfy
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d™x(t)
de"

where p > 0 and t is a slow timescale.

=0(1) ; n=1,..,p

Applying this principle at the initial time t = Q0 constrains the initial state to allow a
slow time variation of x(t) for a given period of time where 0 <t < T = O(1). Note that it is
not necessary to bound all derivative up to order p, this is automatic once the p* order
derivative has been bounded. Applications of this principle to ordinary differential
equations are discussed in Kreiss (1979). The reader will also find in Kasahara (1982a) a
simple application of the bounded derivative principle in thé context of the normal mode
form of the shallow-water equations and a comparison with Baer and Tribbia's (1977)
filtering procedure. Also, Kasahara (1982a) examined (using the beta-plane approximation)
the relationship between the BDI, nonlinear NMI and quasi-geostrophic theory for
baroclinic primitive equations. To add to Kasahara's work, we establish the BDI method in
physical space in a form appropriate to compare with the recent formulation of implicit
nonlinear NMI (Temperton 1988, 1989 and Juvanon du Vachat 1986, 1988). We restrict
the present analysis to the f-plane approximation.

We proceed in an analogous manner as in Browning et al. (1980) to derive the BDI scheme
for the shallow-water equations. From (2.3.7), the first-order derivative is unity if and only
if (dropping the “star” notation) L x/ € is order unity, i.e., if and only if

Lx =€r 2.5.1)
and r is O(1). Second, to compute the second order time derivatives, we rewrite system
(2.3.7) by using (2.5.1), i.e.

X +r+N(x) =0 (2.5.2)
therefore, the second order time derivative of x is of the order of unity if and only if r, is of
the order of unity. Using (2.5.1) and (2.5.2), it follows that

-ert=-th=Lr+LN(x) . (2.5.3)
Combining (2.5.1) and (2.5.3) yields
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L2x = -eLN (x)-¢€%r, . (2.5.4)

Dropping the €2 term in (2.5.5) and setting € = 1 to get a dimensional relation, we get

L?x = -LN (x) , (2.5.5)

to O(e?) and L. is given by (2.1.4). As mentioned in Browning et al,, an iterative
procedure can be used to solve (2.5.5) and it is also shown that it is related to the classical
nonlinar balance equation. Our interest will however be to directly compare the preceding
result (2.5.5) with the balancing constraint from Machenhauer's scheme in the context of

implicit NMI as described in section IL.7.

I1.6 Initialization schemes in normal mode space

This class of initialization schemes operates in normal mode space. They differ from the
bounded derivative method in that they are usually applied to a subset of the fast modes
only. In some sense they are more controllable and may be more usefull for systems for
which the scaling assumptions are not very well satisfied. As a preliminary requirement for
applying the initialization schemes to be presented in later sections of this chapter, we
introduce the formal procedure to get the normal mode form of the governing dynamical
equations. The selected finite set of basis functions ( e.g. spherical harmonics, finite-
elements, etc. ) or grid points discretization, transform the shallow-water equations into a
set of ordinary differential equations in time usually called a dynamical system. The

model equations may then be written as

dy | . _
it + i Ay = N(y)
The state vector 'y will represents the vector of predictive variables, A is a (real and

symmetric) constant coefficient matrix. The normal mode decomposition of A is

A = EAET (2.6.1)
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where A is a diagonal matrix of eigenvalues of A, E is an orthogonal matrix whose
columns corresponds to the eigenvectors of A. We further assume that the eigenvalues of

A which are real, can be split into slow (Rossby) or fast (gravity) parts. This splitting can

0 Ag

The normal mode decomposition of the dynamical system is given by

be represented for A as:

ET %% + iETAy = ET N(y) (2.6.2)
or
%f +iAz=Q (2.6.3)

where z = (R,G) i.e. the state vector in normal mode space having both Rossby and
gravity-inertia components, while Q now represents the projected nonlinear terms. R and

G are vector amplitudes of the slow and fast mode of the system respectively.
a. Baer and Tribbia's initialization method

The starting point for this scheme (first derived by Baer and Tribbia 1977 using a
somewhat different approach where fast and slow time scales were introduced) is the
nondimensional form of the shallow-water equations (2.3.7) which is written on a slow
(advective) timescale. Noting that the time tendncy and nonlinear terms in (2.3.7) are O(1)

and that we may write Ag is O(1) and Ay is O(g), we get

%%* iArR = Qr(R,G) (2.6.4)
e%(;’—+ iAcG = £QuR,G) (2.6.5)

Provided the Rossby number € is smaller than unity, G may be developped in a power

series in terms of € as:
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N
G=)YeGm | (2.6.6)

n=0

Directly inserting (2.6.6) into (2.6.5) leads to the appropriate approximation to order €

desired for slow behaviour of the G's. As an example, we get for the lower order
approximations, the sequence

GO(t) =0 (2.6.7)

GO = -iAs QuRO) . (2.6.8)

By R here we mean the slow mode amplitudes given at time t. The nonlinear terms in

(2.6.8) represents interactions between the slow modes only, due to our first order estimate

(2.6.7).

b. Lorenz's scheme

We now exibit a second method of normal mode initialization which involves an
iteration process in order to specify the desired balancing amplitude of the fast mode
components of the system at a given time. The first iterative nonlinear NMI scheme was
introduced by Machenhauer (1977). This scheme can be seen to be a particular case of a
more general higher-order initialization scheme introduced by Lorenz (1980). His

condition of "superbalance” is givén by

that is, the n™ order time tendency of the fast mode components are required to i)e zero,
where " n " should be a large number. Lorenz's method is therefore a special case of BDI
to order “n” (Lorenz 1986). It should be borne in mind that for a given order "n”, one may
encounter non existence or multiple branch solutions. Thaning (1984) gave sirriple
examples of this for the first order scheme (i.e. Machenhauer's scheme). Lorenz applied
his scheme in the context of a 9 component f-plane shallow-water model including forcing,
diffusion and bottom topography. Machenhauer's (1977) and Leith's (1980) iterative

schemes are particular cases of Lorenz's scheme when n = 1, 2 respectively. Tribbia
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(1984) proposed an extension of Machenhauer's scheme (see also Machenhauer 1982) by
expanding the nonlinear terms of the fast mode equations (2.6.5) in a Taylor series about
the initial time. His method of successive approximation is shown to be asymptotically
equivalent to Baer and Tribbia's method but has the advantage of eliminating the need to
compute Frechet derivatives (see also Tribbia 1979). We review in the following the

standard derivation of Machenhauer's scheme.

Due to the nonlinear nature of the dynamical system (2.6.3), simply setting to zero
the initial amplitude of the fast mode components of the initial data is not sufficient to
adequately control the large amplitude oscillations of these components during a model
integration (Williamson 1976).

Machenhauer's (1977) initialization scheme is based on the observation that for the noise
components, their nonlinear forcing term varies "slowly"”. Assuming that (Qg )=cst in

time, then for a given gravity mode component “n”

Go® = | G + Q%] exp (igyt) + 1 Qe (2.6.9)
for the fast mode components with frequency 6,. We may then consider the nonlinear

initialization scheme where one attempts to set

_.; Qak
Gn(o) = -1 O'_n

in order to eliminate the fast oscillations in the system. Since (Qg ), depends on the

amplitudes G_, one defines an iterative procedure where

(W
Gn(u-i-l)(o) = -1 (Q%_ (2.6.10)

where W is the iteration number. Equation (2.6.10) describes Machenhauer's nonlinear
normal mode initialization scheme. Combining (2.6.3) with (2.6.10) gives the standard

form of Machenhauer's iterative scheme as
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AG, o (2.6.11)
where
AG, = G¥ () - GM(0) (2.6.12)
_ dGy
a-nd ath = dt

Further references to AGn and (San) in the text should be understood respectively as the
changes that have to be made to the coefficient of the fast mode of index "n" and the
tendency of the fast mode as evaluated by running the model for one forward timestep.
The following derivation should illustrate clearly the iterative nature of higher order

schemes.
Let's consider the dimensional form of (2.6.5) (i.e.e=1)

G 11 AG = QuR.G) . (2.6.13)
The time derivative of (2.6.13) gives

d?G ,; x dG _ 94Qo
a2 +1Ag el . (2.6.14)

Setting the second order time derivative to zero in (2.6.14) and substituting (2.6.13) into
(2.6.14), we obtain

S dQs .
G (lAO)Z[ i iAe Qo] (2.6.15)

or, using an analogous technique used previously for Machenhauer's scheme, this latter

result may be written as

AG = - (—ii?%%w (2.6.16)

where L is the iteration index as in (2.6.12). The straightforward extension to a n' order

Lorenz's scheme is given by
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AG = %dg—g‘“’ . (2.6.17)

The solution technique for (2.6.17) may be to start with a linear balance GO= 0, then
determining a second estimate i.e. G by iterating the first order scheme (or
Machenhauer's scheme), then from this new estimate a third estimate is obtained by
iterating the second order scheme (2.6.16). This process was used by Lorenz (1980) with
n = 3. Temperton (1988, 1989) showed the benefit of a second order scheme over first
order fo;‘ the refinement of the balance (especially in the tropics, see also Browning et al.,
section 6) in the context of gshallow-water models with a large number of degrees of

freedom in the absence of external forcing.

11.7 The Implicit nonlinear Normal Mode Initialization method

a. Basic formulation
Following Temperton 1988, one iteration of Machenhauer's initialization scheme

described by (2.6.11) may be written as:
Ay = i EGAGEL (3 y)® @2.7.1)

where Ay = y(0)(H+1D) - y(0)(M), and the observed model state tendency (dy) are

expressed in physical space. Also

E=[Er:E] ; A =

AR 0:|
0 Ag

where the columns of Eg and Eg corresponds to the slow (Rossby) and fast (gravity)
modes respectively, and Ag , Agare the low and high frequencies. The time tendency of the
state vector is obtained by running the model for one forward timestep. Temperton's
formulation of a physical space nonlinear NMI scheme (INMI) is based on the following
simple observation. If equation (2.7.1) is multiplied by the matrix A and use is made of

the similarity transformation for A, i.e.
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A = EAET (2.7.2)

then it follows that

A Ay = i EGE{ (8yy) (2.7.3)

or

A Ay = iPg (&) (2.7.4)
where P, acts as a projection matrix which extracts the fast mode component of (8ty) and
is the only unknown in (2.7.4) if no attempt is made to explicitly calculate the normal
modes of matrix A. In practice, there are a number of ways to solve (2.7.4) (see
Temperton 1989, hereinafter noted T89) in physical space. All of which have one thing in
common, that is, the linearization is such that the dynamical system has slow modes which

are all stationary.

Temperton (1988) (hereinafter noted T88) stressed that due to this particular choice
of linear terms forming the matrix A, the latter will be singular and as is well known the
linear system (2.7.4) will have a solution provided that the right-hand-side is orthogonal to
the null space of A. This is guaranteed by the orthogonality of the eigenmodes of A and
the fact that the term PG(Sly) if properly computed, has no component on the slow
subspace spanned by the slow modes. In practical applications, the gravity mode
"projector” P, is not determined explicitly but rather certain basic properties of the slow
and fast modes (i.e. stationary-nondivergent slow modes and zero linearized potential
vorticity for the fast modes) are exploited to ensure unique solutions of (2.7.4). We may
also note that since matrix A is representable as a sum of gravity mode projectors only

(spectral decomposition theorem), we obtain by left multiplying (2.7.4) by A

A?Ay) = iA By . (2.7.5)

Thus (2.7.5) is directly solvable for Ay (belonging to the fast subspace) in terms of known
quantities (see also Juvanon du Vachat, 1989, p.52). The system (2.7.5) being degenerate
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(remember that A is singular here) one has to use the same supplementary condition as the
one used by T88, and T89, that is, the fast gravity modes have zero linearized potential
vorticity in order to close the system of linear equations (i.e. the usual condition to remove
geostrophic degeneracy). Although (2.7.5) has no practical advantages over the methods
of T88, T89 it is helpful when considering the relation between the implicit NMI method
and the real-space bounded derivative method of Browning et al. (1980).

b. A simple illustration of the method
To illustrate the application of (2.7.5), we consider the f-plane shallow-water
equations on a polar stereographic projection true at latitude 6_in differentiated form ( ref.

T88):

K
S =-tD+Ny 27.6)

D - £(-V+Np 2.7.7)

a _

= = -m2OD+N, (2.7.8)

where , D are the vorticity and divergence fields, ¢ is a perturbation geopotential, f is the

Coriolis parameter ( constant here ), and "u.1" is the map scale factor given by:

m = 1 + sin (6,)
1 + sin ()

The nonlinear terms are represented by N ¢ Ny, N 0 Equation (2.7.4) corresponds to

o f o |[[at 5
£ 0 V2|l aD|=]5D (2.7.9)
0 md 0 Ad 0 Jo

where A(, AD, A¢ are changes to be made to the vorticity, divergence, geopotential fields

in physical space and §, = a;. The index G refers to gravitational mode components. The
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straightforward application of (2.7.5) to the present model in order to avoid the necessity of

projecting each vectors appearing in (2.7.9) onto the fast subspace gives:

0 f 0 o £ o |[at 0 f 0 |[8&¢
£ 0 VRl -f o VP||apl=]-f o Vv*||s&D
0 md 0 0 md 0 Ad 0 md 0 3:0
-2 0 £v° AL £8D
0 -2+ V(@ m?) 0 AD | =| -£8+58V%
- £ m? 0 m2 @V Ad m2 @ §D

the first row gives:

VZ(Ad) - fAL = 8D | (2.7.10)

the second row gives:

“f2(AD) + V2 (dm2(AD)) = VX (&0) - £(8L) . (7.11)

From the last matrix expression, it is clear that the first and third row are linearly dependent

(this was to be expected from the dimension of the original operator A). To close system

(2.7.10) and (2.7.11) we recall from section I1.2 that since fast modes are characterized in

the f-plane approximation by zero linearized potential vorticity , so are the changes on these
modes, i.e. |

m2® AL = fA) . (2.7.12)

System (2.7.10) to (2.7.12) is identical to the implicit scheme described in section 4 of T88

and obtained in a slightly different manner.
c. The relationship between INMI and BDI methods

In order to bring the BDI and INMI methods closer together, we make use first of

the continuous form of the shallow-water equations (differentiated form or not) as :
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%‘+Lx + N(x)=0 . (2.7.13)

We now consider the more general case where f is not considered as constant (i.e. models
on the sphere or projected grids for example). For such a case, L will posses slow modes

that are not stationary. However, let us use the following splitting of the linear operator L
L>L+L (2.7.14)

such that I has stationary Rossby modes. Using the continuous form of (2.7.5), one

iteration of Machenhauer's scheme may be written as :

L2(Ax) = L(8x ) (2.7.15)
where the 8l operator includes nonlinear-terms. Using (2.7.14), (2.7.13) becomes
(starting from an initial guess X ):

X0

—a[_ + Exo = -N ( xo) - L'(XO) (2'7'16)
take £(2.7.16):
~ [dx0) . 7 ~ -
L\=p+ L2(xg) = -LN (x9) - LL'(xp) . (2.7.17)
Now use (2.7.15) into (2.7.17) to get
L2 (ax) + L2(xg) = “LN(xo) - L L'(xo) (2.7.18)
thus
L2(xy) = -LN(xo) - LL'(xq) (2.7.19)
where
X; = Xp + AXx

It is also clear that the iteration process involved in Machenhauer's scheme means that the

new estimate X may be inserted on the right-hand-side of (2.7.19) to get x, and so on.

On an f-plane, L' = 0 and iterating (2.7.19) is equivalent to using the bounded
derivative approach described in section II.5. The comparison between these two methods

for the more general case of a variable Coriolis parameter will not be examined here. It is

32



O

O

important to note however that the way INMI proceeds in characterizing slow and fast
mode components in its djagnosﬁc equations ( T88, T89 and Juvanon du Vachat 1988 ) has
given a concrete advantage for extending INMI to a variational version in a form first
suggested by Daley (1978) for explicit nonlinear NMI. This aspect will be considered fully

in subsequent chapters and forms the essential part of the thesis.
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Chapter 1l

Variational implicit normal mode initialization for a regional finite-element

shallow-water model

Ill.1 Presentation of article 1

We now attack the question of the feasibility of Daley's (1978) approximation (see
chapter I) in the context of impicit nonlinear NMI. Temperton's formulation (1988) of
INMI was successfully applied to the Canadian regional finite-element shallow-water
model. The use by the model of a projected variable resolution grid renders the computation
of the model's normal modes intractable. On the other hand, the model has well posed
boundary conditions and Temperton succeeded in formulating well posed boundary
conditions for the nonlinear initialization problem in physical space.

Daley's approximation was first formulated in normal mode space and required the
specific knowledge of the structure of the fast gravity modes to be initialized. Each of these
modal structures enters in the form of an integral constraint (scalar product) imposed as a
strong constraint (Sasaki 1958). The problem here is then clear: ” How can we characterize
these constraints on the slow and fast mode corrections in physical space while at the same
time satisfying a minimization criteria on the total correction fields” . The essential
ingredients will be shown to be clearly identified in the implicit context and putting the
pieces together by the application of the calculus of variations (see the appendix at the end
of chapter V, p101), will lead to a well posed variational problem which is referred to as
VINML.

Before proceeding to the details of the method, it is stressed immediatly here that
based on the close relationship between INMI and BD], a variational extension of the BDI

method would proceed by a similar reasoning as the one presented hereafter. The clear

34



()

O

advantage of INMI here is its natural use of the concepts of slow and fast components of

the flow, thus facilitating the application of Daley's variational procedure.
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OI2 Article 1

Variational implicit normal mode initialization
Monthly Weather Review, 117, 2219-2229.

36



O

B
-

O

Reprinted from MONTHLY WEATHER REVIEW, Vol. 117, No. 10, October 1989
American Meteorological Society

Variational Implicit Normal Mode Initialization

Luc FILLION

Université McGill, Montréal, Québec, Canada.

CLIVE TEMPERTON

Recherche en prévision numérique, Atmaspheric Environment Service, Dorval, Québec, Canada.

(Manuscript received 28 November 1988, in final form 8 May 1989)

ABSTRACT

It is shown that implicit normal mode initialization can be combined with a variational technique, in order
to control the rclative magnitudes of the changes to the analyzed mass and wind fields. Since the initialization
procedure is expressed entirely in physical space, the use of locally varying weights in the variational integral
becomes more straightforward than in previous efforts to combine variational methods with normal mode

initialization.

We present details of the application to a finite-element model of the shallow water equations on a stereographic
projection. It is demonstrated that the use of variational initialization can change the slowly evolving component
of the subscquent forecast, as well as climinate the unrealistic fast component,

1. Introduction

Most data assimilation systems consist of three
components: an analysis step, a nonlinear normal
mode initialization (NMI) procedure, and a short
forecast (typically 6 hours) to provide the background
field for the next analysis. The initialization step ensures
a correct dynamical balance by allowing mutual ad-
justment of the analyzed mass and wind felds. Al-
though these adjustments are generally small (Hol-
lingsworth et al. 1986), the relative magnitudes of the
changes to the mass and wind fields are governed es-
sentially by geostrophic adjustment theory rather than
by the reliability of the mass and wind analyses. In
particular, the initialization stcp may result in changes
to the surface pressure analysis which are locally larger
than seems reasonable in view of the expected analysis
error. _

Daley (1978) first suggested a variational form of
nonlinear normal mode initialization for a barotropic
spectral model. In this scheme the balance implied by
nonlinear NMI was achieved, while simultaneously
minimizing a variational integral incorporating weights
based on the presumed accuracy of the mass and wind
analyses. Daley and Puri ( 1980) studied the impact of
the variational procedure on a simulated data assimi-
lation scheme. Puri (1983) extended the variational
NMI technique to a multilevel spectral model. Tem-

Corresponding author address: Dr. Luc Fillion, Recherche en
prévision numérique, 2121, voie de service nord, Porte 508, Route
Trans-canadienne, Dorval, Québec HIP 1)3, Canada.

perton (1984) developed a variational NMI scheme
for the ECMWF multilevel gridpoint model, and pro-
posed a computationally more efficient approach to
the problem. In all these applications, the horizontal
(and vertical) distribution of the weights were artifi-
cially simple, depending at most on latitude. It was
recognized that a more general specification of the
weights, although clearly desirable in a realistic setting,
would lead to a computationally difficult problem. The
essence of this difficulty is that the weights are naturally
expressed in physical space, while the initialization is
performed in normal mode space. Tribbia (1982 ) suc-
cessfully performed variational NMI with a general
horizontal specification of the weights, but only for a
low-resolution barotropic spectral model; the extension
to models with more degrees of freedom remained ap-
parently intractable.

Recently, an implicit form of normal mode initial-
ization has been introduced ( Temperton 1988). This
scheme was developed in order to allow nonlinear NMI
to be applied in models whose normal modes could
not readily be found, for example, because of nonse-
parability of the underlying linear equations. Although
equivalent to conventional NMI, the implicit form is
expressed entirely in physical space, and thus offers a
way out of the difficulty discussed above in solving the
corresponding variational problem.

In this paper we present a variational form of the
implicit normal mode initialization procedure, which
allows a general specification of the weights in the vari-
ational integral. The scheme is formulated in section
2. Experimaental results are presented in section 3 for
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the same barotropic finite-element regional model as
was used by Temperton (1988). Section 4 contains a
discussion and summary.

2. Theoretical aspects
a. Daley’s approximation

Daley’s (1978) procedure will serve as the starting
point for the formulation of the variational algorithm.
His basic idea can be summarized in symbolic form
as seen below. Suppose we have preconstructed the
whole set of model (linear) orthonormal modes de-
noted by { H; }i1.. .. ~ Where N is the dimension of the
linear space H spanned by these modes. Assuming
completeness of that space (within the model) any state
vector can be uniquely represented. Given a scalar
product on that space, a correction vector will be rep-
resented by

N
Ax = X Ax;H;, (2.1)

i=1
where
Ax; = (Ax, H,-). (2.2)

Now on the basis of some selection criteria, suppose
we can identify each eigenmode as belonging to a slow
or a fast subspace of H. Then for each clement of the
fast subspace H;, nonlinear NMI will ascribe to it a
specific amplitude. We thus have

M

(Ax)g = 2 (Axi)sHi, (2.3)

i=]

where M is the dimension of Hg.

These changes to the initial ficlds may be uncom-
fortably large in certain geographical regions compared
with the expected analysis error known a prioni for
these fields. [t is then possible to take into account this
expected error by defining a “fidelity metric J which
is a function of these correction fields, and which when
minimized permits us to stay closer to the observations.

Daley (1978) first introduced the idea that it should
be possible to control the adjustment process for
achieving the balance between Rossby and gravity
modes in such a way as to minimize J. Given a “‘slave”
relation of the form

X = G(xr), (2.4)

which expresses the total dependence of the amplitude
of the gravity modes upon Rossby modes in a nonlinear
initialization scheme, we may express formally our
function in terms of these two sets of modes by

J = J((Ax)g, (8X)R). (2.5)

In fact, because of the relation (2.4) we must recognize
that the tuning amplitudes are ultimately those of
Rossby modes. However, the nonlinear nature of the
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relation (2.4), and the need to build a variational al-
gorithm that is efficient for practical applications, sug-
gests an iterative procedure for approximating the so-
lution. This procedure can be summarized as follows:

(i) Given an initial state x° generate a correction
vector ( Ax); where the new state

x! =x%+ (Ax)g

is in approximate balance.
(ii) Alter thc Rossby part of the initial statc to min-
imize Jin (2.5).

Relation (2.4) then indicates a need to readjust the
amplitude of the gravity modes. The iteration loop with
steps 1 and 2 can thus be used to approximate the
original problem. As Tribbia (1982) indicated, this
procedure is not completely equivalent to directly
minimizing (2.5) under the strong constraint (2.4).
Each iteration of Daley’s scheme solves a new mini-
mization problem, with (Ax)s and (Ax)z in (2.5) re-
lating only to the increments during that iteration,
rather than to the accumulated changes made to the
original fields. However, the results of Tribbia (1982)
suggested that Dalcy’s procedure provides a very good
approximation to the solution of the full minimization
problem,

Thus Daley determines

Ax = (Ax)g + (AX)G

by a constrained variational problem where each of
these constraints is of the isoperimetric (integral) type
and can be written in symbolic form as (2.2) for cach
element of f{;. This variational problem is iterated
until stopping criteria (to be discussed later) are
achieved.

Daley’s approach (using intcgral constraints) has the
undesirable eflect of producing a large linear system of
equations to be solved if the variational problem is
attacked by Euler-Lagrange equations, since the di-
mension of this linear system is directly proportional
to the number of Lagrange multipliers ( or constraints)
present. This dimensionality can be reduced by certain
restrictions on the spatial variability of the control pa-
rameters present in the variational problem but there
is a clear limitation for applications.

b. The implicit form of variational NM1

It is the purpose of this paper to reconsider Daley’s
approach in relation to the newly developed implicit
normal mode initialization scheme presented by Tem-
perton (1988). hereinafter referred to as T(88). We
summarize herc the salient fcatures of this procedure
and refer the reader to T(88) for further details.

First, if an appropriate choice is made for the lin-
earized model equations which determine the normal
modes, two fundamental properties come out con-
cerning slow and fast eigenmodes:
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Property 1. Slow modes are stationary and nondi-
vergent, and

Property 2. Fast modes have zero linearized potential
vorticity.

Let Ax represent a model correction vector. We can
express Machenhauer’s (1977) scheme, for example,
with the previously mentioned special form of the linear
operator, denoted by A4, as

AAX = [P5(8,X),

where P is the projection operator onto Hg, and (§,x),
is an observed model-state tendency. It is then possible
with property.| and 2, and also requiring that Axefg,
to specify Ax uniquely without having to know the
structure of the eigenmodes of 4. In the case of Daley’s
variational approach, we need fo know the structure
of each gravity mode being initialized since they appear
explicitly in each constraint of the form (2.2). The
following will show how to circumvent this difficulty
using the implicit form of nonlinear NML.

Since variational initialization is intended to be a
special procedure for controlling changes being made

during initialization, the controlled variables taken here -

will be the same as those used for the implementation
of the unconstrained initialization scheme. In order to
introduce our variational algorithm, we have chosen
the regional finite-element barotropic model of Stan-
iforth and Mitchell (1977, 1978) as a reference. Con-
sequently, the vector of controlled variables will be

Ax = (AY, AX, Ad)

where use has been made of Helmholtz’s decomposi-
tion theorem for the wind field

d(AyY)  a(AX) =8(A\0) a(AX)
6y+6x’AV Ax+ay'

Here U, and V are wind images related to the v and v
components of the wind vector by

AU =

u _v

m m

where “m” is the map-scale factor and is given at lat-
itude “6” by

_ 1 +5in(60°)
1 + sin(0)
for a polar stereographic projection, true at 60°N.

Property 1 thus takes the simple form for each cor-
rection vector

(AX)r =0, (AX) = (&X)g;

that is, the gravitational part of the divergent wind-
field correction is governed by unconstrained initial-
ization. The geopotential and streamfunction are then
the only fields to be controlled by the following func-
tion,
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w, .
7= J; f T8 (8) + @w V(&9 dxdy  (26)

where “ D™ is the physical domain, “m™ is the map
scale factor for projected grids and ¢ represents the
domain average of geopotential. This function is qua-
dratic in the geopotential and the rotational part of the
wind field. It incorporates weighting factors for each
of these two fields, which are allowed to vary in both
spatial directions. Setting these factors between zero
and 1 will permit a mutual adjustment between ¢ and
Y. They must also be specified in such a way as to
produce acceptable changes of the controlled fields
where we know something about the expected ampli-
tude of these changes. This information can, in prin-
ciple, be extracted from an objective analysis scheme.
At the same time, it should be borne in mind that
certain choices of the weights may lead to unrealistic
results; for example, setting w, too close to zero in the
tropics may lead to ellipticity problems (Daley 1978;
Tribbia 1981; Temperton 1984).

It should be mentioned here that the functional given
in (2.6) is simply a choice and is not the only one
possible. Other forms are possible including, for ex-
ample, the gradient of geopotential which has been used
previously by Daley (1978). Now, from the uncon-
strained scheme we know

(Ax)g = {(Ad)g. (A¥)g, (AX)G}.

During step 2, we look for a correction vector on slow
modes, :

(Ax)r = {(Ad)r, (AY)r, 0}
that will make J a minimum. To be consistent with
the implicit scheme [T(88)], property | must be the
required contraint on (A¢ ), (AY)r
V(Ad)r = F(AY)R (2.7)
where
a9
2 _ 7 —_
v ax? + ay?

0-20r2)+203)

together with its appropriate boundary condition

d
5;<Ac§).=fa—";<4¢)n on T (28)

where T represents the boundary of D, f(x, y) is the
Coriolis parameter, and the derivative with respect to
“n" is an outward normal derivation on T'.

Following T(88), the gravitational part of the con-
trolled correction fields satisfies a linear relation of the
same form as (2.7) given by

Vi(Ad)s — F(M)g = (57°X), + B(AX)s (2.9)
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where

] d /] 3
2-5lz) -5 s
with boundary conditions

a3 d ad
<9—x(A¢)G_ f&(AW)G'*‘ fa(AX)a onT,

aJ a ad
a—y(A¢)G =f ‘5};(15\")6 - f(‘.’;(AX)c on I,
(2.10)
where
I =T,UT,

Since the correction fields present in the function con-
cern the Rossby part as well as the gravitational part,
it is preferable to work with a constraint written in
terms of these fields. Since (2.7) and (2.9) are linear
equations, a unique constraint can be formed by adding
(2.7) to (2.9) and forming its associated boundary
condition by adding (2.8) to (2.10). The differential
constraint is thus

M(A¢, &Y)
= V3(A¢) — F(&¢) = (8V°x), — B(AX)G =0

ad ad ;]
a(Atb)—fa(A\l/)"‘fa—;(Ax)a onT,

;] a a
a_x(A¢) = fa—y‘(A‘P)‘ fg;(AX)G on .
(2.11)

In addition to constraint (2.11), conservation of mass
over D is required which implies

f (29) yedy =0 (2.12)

m
D

so that the mean value of the geopotential is not
changed.

Thus our variational problem is to minimize J given
by (2.6) under the differential constraint (2.11), and
the integral constraint (2.12). Using classical theorems

~ of the calculus of variations (Smirnov 1964 ) our prob-

lem is equivalent to the minimization of the new func-
tion given by

- We 2 , 2
J J;flmz(AqS) + dwy(V(4AY))

(a¢)

+ 2NM(A9, A¢) + 20 3

] dxdy

where A is a variable Lagrange multiplier and A* is a
constant multiplier.

40

YoLUME 117

This variational problem can be solved either by an
optimization algorithm (see Le Dimet and Talagrand
1985; Navon and Legler 1987, for example) or with
Euler-Lagrange equations. We chose the latter because
the linear equations to be solved are rather simple, and
to show the connection with unconstrained initializa-
tion. Since we use as a reference, the limited-area finite
element barotropic model of Staniforth and Mitchell
(1977, 1978), a wall boundary condition restricts the
streamfunction on I' to zero,

V= 0 onT.
Thus, variations must be performed with
Ay =0 onT.

Taking into account this latter boundary condition,
together with the boundary conditions specified by
(2.11) when making variations on the limited domain
D, this forces a natural boundary condition of a specific
form for the variable multiplier X. The reader will find
the essentials of the required manipulations in Smir-
nov’s (1964) book (chapter II).

It is thus clear that the following variational set of
equations have been formulated to be fully compatible
with the numerical model being initialized.

The Euler-Lagrange equations are as follows:

*

W, A
Vi = ;1!, (36) + —

:—:%=o onT, (2.13)
V. (&, V(AY)) = F(A)
Ay =0 onT, (2.14)
Vi(Ag) = F(A¢) + B(AX)g + (8,9%X),
%(Ad’) = fa%mwnfa%mx)c onT,,

and

a a a
a—y(Aé) = fa‘f(-w) - f;\_(AX)o' on Iy (2.15)

f (39) =0, (2.16)
1]

¢. Unconstrained implicit NMI

An immediate conscquence of this sct of equations
is thatif we sct w, = u; = const, then (2.13)and (2.16)
together with the consistent solving of (2.13) imposes
A* = 0 and we may write in symbolic form

A= w,V,,':(A—d’-)

m?
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where ¥, 2 is the linear operator which inverts the La-
placian with homogeneous Neumann boundary con-
ditions.

Equation (2.14) gives

= Ve g gy -2 A%
= 2w o (24)

I _ _ _,fAd
= gvd 29'V,, 2(?) (2l7)

where V% is the lincar operator which inverts the La-
placian with homogencous Dirichlet boundary con-
ditions. Inserting this result into (2.15) gives

TiAg) - (—;; ﬂvd'zgvn‘z(%)

= B(AX)g + (8,V%X),. (2.18)

Equations (2.17) and (2.18) are exactly the same as
those derived by T(88) for unconstrained initialization.
Since we also use AX = ( AX)g, this special form of the
variational problem reduces to unconstrained initial-
ization (with Machenhauer’s scheme), a result found
previously by Daley (1978 ) and Temperton (1984) in
different contexts.

This fact has also been used by Ballish ( 1980, chapter
1V) for closing his system of equations in the context
of the bounded derivative initialization method. Ig-
noring beta effects, it is easily shown that Ballish’s
scheme of non-normal mode initialization is a special
case of implicit nonlinear NMI considered by Tem-
perton (1989). As a consequence, the present varia-
tuonal scheme encompasses the variational form of
non-normal mode initialization proposed by Ballish
( 1980, pp. 54-55) which has not been exploited (sur-
prisingly enough) since its early formulation.

d. The numerical procedure

The numerical method used to solve the Euler-La-
grange equations (2.13)-(2.16) is very similar to that
used in T(88) for the unconstrained case. The equa-
tions may be combined into a single equation for A¢:

»
T(Ag) ~ é :7.(:;'7v,,‘2(% Ad + %)

= B(AX) + (§,V%x), (2.19)

where the linear (but varniable-coefficient ) operator L
is defined by

£=V'W¢V.

In (2.19), the operator £ is to be inverted using ho-
mogeneous Dirichlet boundary conditions.

To solve (2.19), we use the algorithm of Concus
and Golub (1973), accelerated by a conjugate-gradient
technique (Concus et al. 1976). For the kernel of the
Concus-Golub scheme we take the constant-coefficient
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Helmbholtz operator V2 — ), where ) is a suitably
chosen average value of

,
1 /7w,
& miw,’

Compared with the unconstrained case, the only ad-
ditional problem is the inversion of the operator .L.
This was achieved by an inner iteration, itself based
on the Concus~Golub scheme with conjugate-gradient
acceleration. .

The whole vanational algorithm may be summa-
rized as follows for one iteration:

(i) Run part of the unconstrained initialization
scheme to obtain (AX)g. This step is identical to step
1 and 2 of T(88) and does not interact with the (A¢)
and (Ay) fields.

(ii) Given (AX)g, (8,9°x). Solve (2.13) to (2.16)
to get (A¢) and (Ay¢). (This step replaces step (3) and
(4) of T(88).) The next steps are identical to T(88)
(steps 5 and 6) which are

(iii) Find (AU), (AV) from (AY), (AX).

(iv) Add increments (AU), (AV), (A¢) to model
fields.

3. Experimental results

In order to test the variational algorithm, we illustrate
in this section an implementation into the regional fi-
nite element model of Staniforth and Mitchell (1977,
1978). A number of experiments were run to examine
the effects of varying the weighting functions w,, w,.

In the present case, the domain of initialization was
chosen to be a square of side 20 000 km centered at
the North Pole using a polar stereographic projection
true at 60°N. This domain is illustrated in Fig. 1. The
boundary is a solid wall in the vicinity of the equator.
The grid has a uniform resolution of 100 km in the
region of interest (61 X 61 points) and relaxes uni-
formly outside that region until the whole grid gets
completed by a set of 101 X 101 points.

As compared to previous experiments on variational
initialization for shallow-water models, the problem
faced here can be considered a fairly large one, since
we deal with 30 000 variables to be adjusted for the
streamfunction, velocity potential and geopotential
fields.

All experiments were run with the same initial con-
ditions as those used by T(88). The mean depth for
the uninitialized height field shown in Fig. 2 was 5600
m. Unless otherwise stated. all other features of the
model to be prescribed before starting the integration
are implicitly assumed to be the same as those specified
in T(88).

For each experiment to he presented below, we look
at the behavior of the three following values for both
unconstrained and variational schemes:
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FIG. 1. The experimental domain and the nonuniform grid. Time traces in height field
given by Figs. 8 and 10 are associated with gridpoints denoted A and B respectively.

= 2.‘. 2 2
J J;j mz(AQ + &w, (V(AY)*)dxdy

where A¢, Ay are the instantaneous correction fields
cormputed at a given iteration for both schemes;

Jr= ff % (8d)7 + dwy(V(AY)r) dxdy
: D

where the index “T " refers to the total correction ap-
plied to the uninitialized original fields at a given it-
eration for both schemes; and

BAL,

2
= ff [(5::2)0’ + P[(8,U)c* + (GIV)GZ]]dxdy.
D

This value can be computed entirely in physical space
and is a measure of the convergence of the uncon-
strained (Machenhauer) scheme. The reader will find
the details of the computation of BAL, in T(88).
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FIG. 2. The uninitialized height field (contour interval 10 dam).
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In the present context, BAL, will simply serve as a
measure of gravity wave activity and will be given for
comparison of unconstrained versus constrained ini-
tialization schemes. Note that the way that our varia-
tional problem has been formulated, we have no guar-
antee a priori that J; will be smaller for the variationally
adjusted field when compared to its value in the un-
constrained scheme. Each scheme follows a different
path as they attempt to reach a dynamical balance.

a. Latitudinally varying weights

This first experiment concerns latitudinally varying
weights w,, w,. The structure of these weights is taken
from Daley (1978) and takes the simple form for a
latitude 6

it

wy = (1 —u?)* where u =sind

Once projected onto the polar-stereographic grid
these weights are variable in both “x” and *‘ y” direc-
tions. Figure 3 shows w, on the calculation grid. From
the chosen form of the function J(2.6), the variational
scheme will tend to adjust the rotational part of the
wind ficld to the initial mass ficld at higher latitudes
and conversely at lower latitudes.

In the following, changes due to unconstrained or
constrained initialization are represented by subtracting
the uninitialized fields from the adjusted fields. Figures
4 and 5 show these changes for the height and stream-
function fields for the case of unconstrained initializa-
tion. Comparing these to the results obtained by vari-

LUC FILLION AND CLIVE TEMPERTON 2225

G

Q=

F1G. 4. Difference in height field between unconstrained
initialization and no initialization (contour interval 7 m).

ational adjustment (given by Figs. 6 and 7 for A¢ and
Ay respectively), it is apparent that the major differ-
ences are latitudinal in character. The increasing weight
on mass with latitude strongly forces the retention of
mass at higher latitudes. For both unconstrained and
variational schemes the structure of the height field
corrections are somewhat similar although with differ-
ent amplitude at lower latitudes.

FiG. 3. Spatial structure of weighting function w,
for experiment in section 3a.
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FI1G. 5. Difference in streamfunction field between unconstrained
initialization and no initialization (contour interval 4 X 10> m2?s™').
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FiG. 6. Difference in height field between variational adjustment
using atitudinal weights w,, w; and no initialization (contour interval
m).

Changes made to the streamfunction field are com-
pletely different for the variational and unconstrained
cases. The variational scheme presents a correction field
which acts in the desired way as regards mutual ad-
justment with the mass field previously described. On
the other hand, unconstrained initialization has pro-

- FiG. 7. Difference in streamfunction field between variational ad-
justment using latitudinal weights w,, wy and no initialization { con-
tour interval 4 X 10° m2s™').
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TaBLE 1. Daley's weights.

Value of functional  Value of functional

Iteration J Jr BAL,
Unconstrained
0 — — 2.8 x 10"
1 1.136 x 10" 1.136 X 10'* 20x10°

1.282 x 10** 1.144 x 10"* 7.7 x 107
Variational

0 —_ — 2.8 x 10"

1 4.264 X 10V 4.264 X 10" 1.0 X 10'°

2 1.086 x 10" 6.016 x 10" 2.0 x 10°

3 1.161 x 10" 5.975 x 10" 1.5 % 10

4 2.986 x 10" 5979 x 107 7.2x 10

duced a smoothly varying correction field distributed
over D.

Table | gives the behavior of J, Jrand BAL, at each
iteration of the unconstrained and variational schemes.
Note that in the unconstrained case, Jand Jrare purely
diagnostic quantities computed for the sake of com-
parison with the variational experiment. The solution
of the unconstrained problem is of course totally in-
dependent of w, and wy. It is seen that the value of
BAL, decreases more rapidly than the variational case
as a function of iteration. The convergence of the vari-
ational scheme can be judged by the gradual decrease
of J and a stabilizing value of Jr as a function of it-
eration. Note that at the final stage of the initialization
process, the value of Jy for the variational case is ef-
fectively lower than that obtained with the uncon-
strained scheme.’

- It is worth mentioning that in the present context
of a shallow-water model, it has been observed that
iterating Machenhauer's scheme more than twice
(starting with the uninitialized felds) gives no im-
provement on the balance of the resulting fields [see
also T(88), p. 1025]. Further reference to uncon-
strained initialization will always refer though to two
iterations of this scheme. For both variational and un-
constrained experiments. we present in Fig. 8 the time
trace of the height field for point (A) of Fig. 1. The
model was integrated for 48 hours. Initial conditions
from the variational scheme are obtained using three
iterations. For the uninitialized case, high frequency
gravity-inertia waves are present at the initial stage of
integration of the model (heavy line) with large initial
amplitudes that diminish as the integration proceeds.
In both nonlinearly adjusted initial-condition cases, the
degree of balance as judged from the smoothness of
the associated height traces are comparable. Although
the initial states (in the height field) of the model at
this particular grid point are separated by a small dif-
ference, the variational scheme has clearly changed the
slow Rossby modes present initially and forced a sig-
nificant departure from its unconstrained analogue.
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52440.

5220.

5200.

5180.

5160.

Height (m)

5140.

5120.
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2100012 74T 56, 48,
Hours
FiG . 8. Time trace of height field for point A shown in Fig. I.
Heavy line—no initialization, dashed line—unconstrained initial-

ization (2 itcrations), light line—variational initialization using lat-
iudimal weights (3 iterations).

b. Latitude-longitude varying weights

We now describe another experiment dealing with
both latitude and longitude variability of the weighting
functions w,, w,. Clearly this longitudinal variability
is crucial for discriminating between the reliability of
oceanic and continental analysis data within the ini-
tialization process. As mentioned previously, the op-
timal determination of these weights can be obtained
in conjunction with the objective analysis scheme.

For illustrative purposes however, we will examine
the behavior of the variational scheme under the fol-
lowing longitudinal structure. We simply cut the do-
main D by straight lines originating from the North
Polc so as to isolate occans (an abrupt version of Trib-
bia’s. 1982, longitudinal structure). The lines are lo-
cated by the following angles and with them the as-
sociated ocean domains:

Atlantic Ocean ( 15°W, 65°W).
Pacific Ocean (125°W, 135°E).

For comparison, the latitudinal structure of w,, w,
are gaven the same form as Daley’s weights discussed
in the preceding experiment. '

On er both oceanic sectors, a reducing factor of 102
was applied to w, and a factor of 107" to w.

As we have scen previously, over the continents (in
the extratropical regions) the pure latitudinal structure
of w,. wy will force the rotational part of the wind ficld
to adjust strongly to the height. In the present case, the
chosen reducing factors on both weights simulate the
effect of higher confidence in wind field data relative
to the mass ficld over oceanic regions. Consequently,

LUC FILLION AND CLIVE TEMPERTON 2227

as one goes from continents to oceans, the wind field
becomes less strongly forced to adjust to the original
mass field. :

Subtracting the adjusted height field obtained from
Daley's weights from the height field obtained with the
present set of weights (afier three iterations), the lon-
gitudinal effect is clearly seen in Fig. 9 which displays
the resulting height-field changes. The sharp longitu-
dinal delimitations are clearly represented here and a
more elongated north-south pattern could be obtained
by a judicious choice of the weighting functions.

Table 2 summanizes the behavior of the variational
scheme for the present set of weights. Values of J and
Jr have also been recomputed for the unconstrained
initialization scheme using the new set of weights. Once
again, the value of Jr for the variational case is less
that of the unconstrained case, and three iterations are
found to be sufficient for providing an acceptable degree
ol balance. To show this we choose point (B) on the
calculation grid of Fig. 1 to monitor the height trace
during integration of the model. This point lies pre-
cisely where most of the difference in the height field
is observed relative to the first experiment.

Heavy, light, and dashed lines shown in Fig. 10 are
associated once again with uninitialized, variationally
adjusted, and unconstrained initial conditions. Judging
from the light curve, the addition of the longitudinal
effect in the weighting functions has not inhibited the
ability of the scheme to achieve a dynamical balance
initially, while still taking into account the hypothetical
oceanic weaknesses of the initial data given by the ob-
jective analysis.

S o [
% 'g (e

L/
I

\.d

FI1G. 9. Diffcrence in height ficld between variational initialization
using latitude-longitude wesghts and variational initialization using
latitudinal weights (contour interval $ m).
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TABLE 2. Latitude-Longitude weights.

Value of functional  Value of functional
Iteration J Jr BAL,

Unconstrained

0 — — 2.8 x 10"
1 7.358 x 10" 7.358 x 10" 20x 10°
2 1.563 x 10" 7.439 x 10" 7.1 x 107
Variational
0 — — 2.8 x 10"
1 3.809 x 10V 3.809 x 10"’ 8.0 X 10°
2 2.238 X 10' 3.758 x 10" 5.8 x 10*
3 3.308 X 10" 3.831 x 10" 3.2 x 108
4 1.584 x 10" 3.811 x 10V 2.7 x 10

Finally, an interesting point to consider is whether
this variational scheme has the potential ability to sig-
nificantly change a model forecast as compared to
standard unconstrained initialization, To consider this
point, a two-day integration of the model using un-
constrained initialization served as a reference for
comparison. Using the latter specification of the
weighting functions w,, w,, the variational initializa-
tion scheme (using three iterations) provided the initial

* conditions for a second forecast. Fig. 11 presents the

initial height departure at intervals of 5 m with a max-
imum of 22 m. The oceanic departures are clearly rep-
resented and the emphasis is on the possible amplifi-
cation of this pattern as time goes on. After running
the model for two days, the resulting pattern of height-

5380. ¢

5350.

5320.

5280.

Height (m)

5260.

5230.

520001777436 48.
Hours

Fi1G. 10. Time trace of height field for point B shown in Fig. 1.

Heavy line—no initialization, dashed line—unconstrained initial-

ization, light line—variational initialization using latitude-longitude
weights.
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1 O 4

FiG. 11. Difference in height field between variational initialization.
using Latitude-Longitude weights and unconstrained initialization.
Day 0, contour interval 5 m. maximum amplitude 22 m.

field departures is given in Fig. 12. Differences are given
at intervals of 10 m and in particular there has been a
" steady increase in the height field difference between
the two forecasts associated with the southward move-
ment of the low center (see Fig. 2), reaching a maxi-
mum absolute value of 67 m. We might thus expect
that for initial departures in the initial data which ex-

F1G. 12. Asin Fig. |1, but after two days of model integration.
Contour interval 10 m, maximum amplitude 67 m.

46



O

)

()

OCTOBER 1989 LUC FILLION AND
ceed those used here (generated by using suitable
weights w,, w, with respect to expected analysis error)
we would obtain even larger differences in forecasts as
compared to standard unconstrained initialization.

4. Conclusions

In this paper, we have shown that the implicit normal
mode initialization technique can be generalized by
combining it with a variational procedure. The result-
ing fields satisfy the balance condition required by
nonlincar normal-mode initialization, while the
changes to the analyzed fields are controlled through
minimization of a variational integral. Since the whole
procedure is expressed in physical space, the weights
in this integral can be varied in the horizontal in a
more or less arbitrary manner, to reflect local variations
in the presumed reliability of the mass and wind field
analyses. Some of the difficulties encountered in pre-
vious efforts to combine normal-mode initialization
with variational techniques are thereby avoided.

We have also demonstrated the potential of varia-
tional normal-mode initialization to change the slowly
evolving component of the resulting forecast. The next
stage of this study will clearly be to extend the technique
to a multilevel model, and to test it in the context of
a full-fledged data assimilation scheme.
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Chapter IV
Variational implicit normal mode initialization for a global spectral

shallow-water model

IV.1 Presentation of article 2.

Recently, Temperton (1989) showed that the concepts of implicit nonlinear NMI
could be of some use even in the context of spectral models. The degree of departure of the
implicit technique with respect to the standard “explicit” nonlinear NMI technique is more
easily examined in the spectral context due to the separability of the linéar system for each
zonal wavenumber (Kasahara 1976). It turns out that for a mean equivalent depth of 5600
m. (i.e. between the external and first internal depth values), the differences between the
“de luxe” version of the implicit NMI scheme (i.e. scheme B of Temperton 1989) and the
conventional explicit NMI scheme, are limited to the very largest horizontal scales. Further
studies on this poiht are yet to come. There is no doubt however that for the next generation
of variable resolution models, the implicit nonlinear NMI as described in Temperton (1989)
will impose itself as much as the implicit NMI for regional models.

The usefulness of VINMI for spectral models is however highly interesting even
for the current applications of this model. The variational form of nonlinear NMI was first
considered by Daley (1978) in the spectral context. The size of the nonseparable linear
system involved in his algorithm was a limiting factor for its operational use in a multilevel
context.

We present in the following, the application of VINMI to a global spectral shallow-
water model. Similar tests as those cbnsidered in chapter III indicate the robustness of the

scheme when operated at triangular truncation 63.

48



8

()

()

IV.2 Article2

Variational implicit normal mode initialization on the sphere
Monthly Weather Review , 119, 631-652
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Variational Implicit Normal Mode Initialization on the Sphere

Luc FILLION
Recherche en prévision numérique, Atmospheric Environment Service, Dorval, Québec, Canada
(Manuscript received 19 January 1990, in final form 4 September 1990)

ABSTRACT

Due to it's prohibitive computational cost, variational nonlinear normal mode initialization as first suggested
by Daley has received little interest during the last 10 years. Recently, soon after the introduction of the famework
now called implicit nonlinear normal mode initialization, an efficient reformulation of variational nonlinear
normal mode initialization using the implicit technique was demonstrated by Fillion and Temperton in the
context of a barotropic finite-element regional model. This scheme allowed full variation of the variational
weights at a low computational cost. To complement this previous work, the same varistional approach for a
global spectral shaliow-water model is presented here. Similar results regarding the controlling and balancing
aspects of the scheme are illustrated. The special form taken by the variational scheme in the coatext of height-
constrained initialization is reconsidered after establishing the relationship between the implicit schemes and
quasi-geostrophic theory on an f plane. Possible extensions of the method are mentioned at the end of

the paper.

1. Imtroduction

The nonlinear normal mode initialization technique
(nonkinear NMI) as a mean of controlling the ampli-

tude of the high-frequency gravity-inertia waves in a

primitive equation model has benefited from several
improvements during the last decade. Stimulated by
the development of an initialization method in physical
space called the “bounded derivative initialization
method™ (BDI) due to Browning et al. (1980) (based
on the bounded derivative principle of Kreiss 1979,
1980 ), a physical space formulation of nonlinear NM1
has gradually emerged. Ballish’s (1980) results were
gradmally set into a rigorous framework during the
1980s and culminated in what is now called “implicit
nonkknear NMI” (Temperton 1988, 1989) or “non-
normal mode initialization” (Ballish 1980; Juvanon
du Vachat 1988). As in Fillion and Temperton ( 1989)
(bereafier referred to as FT89) this new method will
be referred 10 as Implicit nonlinear normal mode ini-
tialization technigue (INM1). Implicit NMI schemes
are formulated in physical space but are still charac-
terized by slow and fast mode components of the flow.
This characterization turns out to be important for the
formulation of a variational INMI (VINMI) in the

spirit of Daley’s work (1978), and has recently been .

expladted by FT89 in the context of a barotropic finite-
element regional model. Their variational procedure
was shown to efficiently minimize changes to the an-

Corvesponding author address: Dr. Luc Fillion, Recherche en

prévision numérique, Atmospheric Environment Service, 2121 Trans-

Canacdia Highway, Dorval, Quebec HIP U2, Canada.
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alyzed fields while at the same time maintaining a de-
gree of balance comparable to the unconstrained im-
plicit scheme. Based on Kasahara's work (1982a), it
is expected that a variational extension of the BDI
method would be very similar to VINMI.

Although implicit nonlinear normal mode initial-
ization was largely stimulated by the desire to apply
the normal mode technique to limited area models, it
is also recognized to be a more useful approach than
the standard explicit technique for initializing very high
resolution spectral models. This paper presents what
may prove to be a still greater benefit of applying the
implicit initalization technique to global spectral
models; that is, the feasibility of variationally initial-
izing such models. Indeed, t0 date the problem of vari-
ational normal mode initialization when formulated
in normal mode space has been recognized to be a
problem of gargantuan size and consequently not viable
for use in an operational data assimilation scheme. It
is the purpose of this paper to show that a variational
extension of INMI is feasible at a reasonable cost with
present day computers in the coatext of a global spectral
shallow-water model. The technique to be presented
is based on the formulation of VINMI by FT89 and
incorporates full horizontal variations of the weights.

Section 2 gives a setting of the dynamical model
together with a quick review of the “implicit scheme
B” developed by Temperton (1989). The variational
form of INMI is presented in section 3 and results of
its application are discussed in section 4. Section §
briefly addresses the relationship between INMI and
quasi-geostrophic theory (for an £plane model ) which
is related to the problem of the divergence of the height-
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consorained normal mode initialization iterative
scherne. Finally, section 6 gives a summary and possible
future extensions of the method.

2. Immplicit nonlinear normal mode initialization

In order to describe the variational scheme, the fol-
lowimg section presents the essential ingredients that
are needed. Following FT89, these are the models to
be inmtialized, and the differential constraints charac-
terizing the specific implicit NMI scheme considered
in thas paper.

a. The model

The governing equations are the shallow-water

equazions on the sphere, in their differentiated form as

used by Temperton (1989) (hereafter referred to as
T89) and Daley (1978):

o _ oo 20 ax

x 29 sind P (—ax+coso-—ao)+Q, (2.1)
D s singt - 23 —coss ¥ + X o2

= 2Q sind¢ a,( cos0w+-a,\) Ve + Qo

(2.2)
%= -¢D+Q, (2.3)

the quantities Q;, Op, Q, are the nonlinear (advective
and metric) terms. The symbol & refers to the mean
geopotential depth of the original analyzed field, and
the symbol ¢ is a geopotential departure from $. The
other symbols have their standard meaning. Setting
Q:, Op, Q, to zero obtains the linear spectral form of
the previous system by using a spherical harmonic ex-
pansaon of the dependent variables, where for example,

M M
S(N8,0)= 2 X §&H"™(1)P,"(sind) exp(im))

me-~A Aa=im|
for traangular truncation, and

m = zonal (east-west) wavenumber
P,™ = associated Legendre function of the first kind
of order m and degree n
{a™ = spectral component of the vorticity field.

The final system can be put in standard symmetric
form by introducing the following change of variables

Em=aln(n+ D]7V%" (24)
D, = i[a[n(n + 1)]""2D,"™ (2.5)
$ =o' 2," (2.6)
which gives

df."
dt

= i(b ™ + "D, + f2DRy)  (2.7)

“3; = (D" + fER + ST + Ca™a™)

(2.8)
B s o)
where
- 20m
On mns 1) (2.10)
fm= 2—:3(:.2 - 1)12,m (2.11)
Qn/z
c,."=7[n(n+ 19) & (2.12)
and
‘ . (nP— P\
= (4n=— 1) '
In matrix form, this system is written as
& - iax

where the state vector X for a given zonal wavenumber

mis
X=|D
¢

and each component of the state vector contains its -
spectral components; for example

Em(Sm™ eyt
The preceding derivation is common to both explicit
and implicit nonlinear NMI schemes but they depant
from each other at this point.

b. INMI constraint_{

Recently, T89 has examined various possible per-
turbations of the matrix A (which defines the normal
modes of the system) all having the effect of producing
stationary nondivergent Rossby modes. His conclusion
about these possible variants was that the “ B scheme™
was the most natural to choose since it is based on the
least drastic modification of the linear system and is
closest to explicit NML. As a consequence, the present
study is based on the vanational extension of T89's
“scheme B.” Given here is 3 resumé of the essential
elements of this scheme and the interested reader is
referred to T89 for further details and basic terminol-
ogy.

In the context of Machenhauer’s (1977) initializa-
tion, the following algebraic system must be solved for
the correction state vector AX,

A(AX) = EEGT(8X ) (2.13)
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FIG. 1. Variational initialization in phase space.
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where E; is the matrix whose columns are the cigen-
vectors of A associated with a chosen set of gravity
modes to be initialized. These matrices act on (3, X )
which is the “observed” time rate of change of the state -
vector computed from a single forward time step. In
matrix form this system is written as

B F o]fat (88)c
F B c|laD|=il(aD)s| (2.14)
O C OJ]la (50)

where the submatrices B, F, and C have matrix cle-

" ments defined by (2.10) to (2.12) and their precise

structure may be found in T89’s Appendix. The matrix
Q has only zero elements.

Scheme B is characterized by constricting the slow
modes to be stationary and nondivergent [in order to
be able to solve the system of equations (2.14) for AX
belonging to the fast subspace]. This constriction is
achieved by neglecting the b,™{,™ term (beta term)

.- appearing in (2.7) for the vorticity tendency. Thus, A

is replaced by Ao, ie.,

FIG. 2. The uninitialized height field (contour interval = 10 dam).
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where the matrices B, C, F have matrix elements 5,”,
¢, 1™, respectively, [defined in (2.10)-(2.12)] and
are the same as in the original system. The matrix A
admiss slow modes which are stationary, nondivergent,
and cxaracterized by the linear balance relationship

Dr=0, Cér=—Ffr (2.15)

where the lower index stands for Rossby modes.

Due to the approximation of matrix A, the physical
space chiagnostic equation for the divergence field cor-
rectioe: is given by namely, Eq. (4.15) of T89;

(F* + C)AD = iF(5 ) + iC(8,0). (2.16)

Notz that AD is completely determined from the
moded endency of the vorticity and geopotential fields.
This &agnostic form for AD can be shown to be related
to quasi-geostrophic theory and this aspect is examined

in secoion S.

The last ingredient which is needed for the varia-
tional scheme comes from the second equation of the
algebraic system (2.13) (using Ay), i.c.,

FAf + BAD + Cad = i(8D)g.  (2.17)

Equations (2.15)~(2.17) constitute the desired con-
straints on slow and fast mode components in physical
space needed by the vaniational scheme. Although
higher-order nonlinear balancing could be envisaged
within a variational framework, the present paper is
concerned only with first-order noolinear balancing.
We now proceed to describe the specific form of the
variational scheme.

3. Variational formulation

The implicit form of the variational scheme pre-
sented here is the spectral analogue of the scheme in-
troduced by FT89. The main features of this iterative
approach are given by the following steps;

(i) Given an initial state vector X °, generate a cor-
rection state vector ( AX ); where the new state

" PG. 3. Difference in height field between unconstrained initializatios and
no initialization (contour interval = 10 m).
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' X'=X%+(AX)g
is in approximate balance.
(ii) To return *closer” to X° (a metric has to be
defined here), alter the slow Rossby part of the state
vector X °.

The nonlinear coupling between the slow and fast
components of X can be taken into account by iterating
steps (1) and (ii).

A phase space diagram is very helpful when dis-
cussing different constrained initialization algorithms.
The present iterative scheme is illustrated in Fig. |,
and will later be used in the special context of height-
constrained initialization. Each iteration of the com-
bined steps (i) and (ii) are indicated, where points |

- and 2 indicate the first and second iterations, respec-

tively. Point O indicates the original analyzed fields
and point I indicates the balanced state obtained with
VINML

In practical situations, it is found (Daley 1978;
FT89) that three iterations are sufficient to achieve a
balanced state I. It is worth noting at this point the

005

 slight departure of steps (i) and (ii) from Daley’s orig-

inal suggestion. Machenhauer’s initialization procedure
involves an iterative scheme in order to get (X)g in
balance with the slow modes of X°. Incrementing the
new state X with (AX )¢ generates (assuming conver-
gence of the scheme) a state vector X such that
(8,X ) == O. Thus (2.13) ensures that (AX)" =~ O
(where n is the iteration count), i.e., a first-order bal-
anced state has been achieved. In the formulation and.
implementation of the variational algorithm, the ap-
proximate balancing correction vector (AX ); men-
tioned in step (i).is given by (2.13) for each iteration
of steps (i) and (ii). This approach has been taken
previously by Temperton (1984) and FT89. Tribbia
(1982) however used five iterations of Machenhauer’s
scheme (2.13) to obtain (AX )g for each cycle of his
variational initialization scheme. Figure | illustrates
the approach where the nonlinear manifold M repre-
sents states where (5, X ) = O. However in operational
practice using analyzed data, only a few iterations of
the unconstrained scheme are made; this generally re-
sults in a significant reduction of (§,X ). Further con-

PIG. 4. Difference in beight fickd between variational adjustment (using latitudinal weights
w,, wy and no initialization (contour interval 10 m).
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sideration on this point will be given in section 4c.
Ahthoogh not essential, the approach taken here permits
a dirext coupling of steps (i) and (ii) in physical space
and gives rise to a variational problem with a strong
differential constraint in the sense of Sasaki (1958).

As m FT89, (2.15) expressed in terms of the cor-
rection state AX is

(AD)r =0, C(A@)r = —F(Af)r. (3.1)

For an fplane shallow-water model, the characteriza-
tion of the Rossby mode corrections with the linear
balance equation (3.1) is exact and the variational
scheme would be identical to Daley’s (1978 ) variational
scheme. On the sphere, however, this characterization
of the slow modes ceases to be an exact relation due
to the presence of the beta term in (2.2). In the light
of presious studies (Burger 1958; Moura 1976; Wiin-
Nielsen 1979), constraint ( 3.1) remains accurate except
for the largest scale modes. Combining (2.17) with
(3.1) gives the desired constraint on (AX):

M(AL, Ad)
= FAL + B(AD)g + CA$ — i(8D)g = 0. (3.2)

Also, since (AD )x = 0 and considering what has been
mentioned previously for (AD ) in (2.16), the follow-
ing functional is selected to be minimized on the sphere

12 200
7= [ [ odasr + suwantiar costas

/2
(3.3)

where w, and w, are weights attributed to the reliability
of the mass and rotational components of the wind
field, respectively. _

Functional J, for the special case where w, = w,
= constant, represents a truncated form of the linear-
ized energy of the shallow-water equations in the sense
that the divergent part of the wind field is absent. In
continuous form, (2.17) can be shown to be

M(AY, Ag) = V-[/V(A9)] — V*(A¢)
_203(8X)g
a: a

We still require that the mean depth of the fluid remain
unchanged (mass conservation ) which implies a further
- integral constraint

+(8D) =0. (3.4)

2

' Fo. 5. Latitudinally varying weight u,.
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r 12 do (A¢)dX cosdd = 0. (3.5)

The variational problem is thus to minimize functional
Junderthestrongoonsumntsﬂ 4)and (3.5). Asusual,
the minimization problem thus posed is applied to the
cwrrert fields in the initialization loop defined by steps
(i) and (ii) (see also FT89). This aspect is not illustrated
in Frg 1.

The system of Euler-Lagrange equations to be solved
are given by (3.5) and

y = wlde) + v* (3.6)
V- [0V(A¥)] = V- (S Vy) 3.7)
M(ay, 4¢) =0 (3.8)

where vy and ¥* are (as in FT89) Lagrange multipliers
(y® is a constant to be determined) associated with
the constraints (3.4) and (3.5), respectively.

As a particular case, this system admits the same
solution as the unconstrained implicit scheme for a
choice of weights given by w, = w, = constant (see

)
1
e
v
A
o~
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appendix A). On the basis of FT89 this result is to be
expected.

The numerical procedure for solving (3.6)-(3.8) is
essentially the same as the finite-clement algorithm de-
scribed in FT89. For one iteration, the following steps
summarize the variational initialization scheme:

(1) Run part of the unconstrained implicit scheme
to obtain (AD )g, following T89:

(i) Run the model for one forward time step to ob-
© tain the time tendencies of the spectral coeffi-
cients (§,"™, Da", #a™)-
(ii) Scale the tendencies according to (2.4) to (2.6).
(iii) Solve (2.16) for (AD ).

(2) Compute the “forcing™ term:

'—mimx)a +(8,D%

where (AX)g is obtained from (AD)g usmg (2.5) and
the inverse Laplacian.
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P10. 6. Difference in potential function X between unconstrained initialization ind
no initialization (contour interval 10 X 10° m? s~*).
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(3) Solve the Euler-Lagrange equations (3.6)-(3.8)
for the spectral components of (Ay), (A¢).

(4) Add increments (Ay), (AX), (A¢) to obtain
initialized spectral coefficients.

(5) Generate new values of ({, D, ¢) on the Gaus-

sian grid.
4. Resalts of VINMI

a. The model and data used

To facilitate the comparison between INMI (based
on “scheme B” of T89) and VINMI described in sec-
tion 3 this study uses the same model and data pre-
sented in T89. A global barotropic spectral model with
triangular truncation at wavenumber 63 is also used.
The iritial data are from a FGGE analysis of heights
and winds at 500 mb for 0000 UTC 21 December 1978.
All other features of the model not mentioned here are
implicitly assumed to be the same as in T89. Figure 2
shows the initial height field. The mean equivalent
depth H, (® = gH where g is the acceleration due to
graviry ) used in this study is 5600 m.

b. The controlling aspect of the scheme

The interest in this subsection is the effective control
of changes on the rotational part of the wind field and
to the mass field by the variational scheme. The effect
of varying the weights w, and w, is both spatial direc-
tions (A, #) are examined. For all experiments reported
in this section, this study always refers to two iterations
for the INMI case and three iterations for VINMIL.
However in subsection 4c, the effect by using more
than three iterations is investigated. In all experiments
the original fields are those previously described in
subsection 4a. The typical CPU time for the VINMI
resuits to be presented is approximately 80 s on a
Cray-XMP.

Figure 3 shows the difference between INMI and the
original uninitialized height fields. This difference field
may be obtained by adding Figs. 6a,b of T89. Figure
3 is to be compared with Fig. 4, which shows the dif-
ference between the VINMI and original uninitialized -
height fields. The weights used for this experiment have
only a latitudinal structure (see Fig. 5) and are given
by (Daley 1978):

b‘ \
I 19T a

F1G. 7. Difference in potential function X between variational adjustment using latitudinal
weights w,, «y and o initialization (contour interval 10 X 10° m?s'),
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wp = (1= )% = sind (4.1)
we = 1= wy. (4.2)

This choice of weighting forces the wind field (ro-
tational part) to adjust to the original height field anal-
ysis at high latitudes and vice versa at lower latitudes.
The strong retention of mass information north of 40°
latitude is a consequence of (4.1) and (4.2) and is
clearty seen in Fig. 4. One feature of the variational
scheme of section 3 is that the divergent part of the
flow s not explicitly controlled within each iteration
ofteps 1 t0 §. :

Comparing Figs. 6 and 7 obtained by using VINMI
(Dalexy’s weights) and INMI, respectively, it is seen that
both schemes lead to almost identical departures from
the original uninitialized velocity potential function X.
The implication of these results is discussed in section
6. To show the effect of VINMI on the rotational part
of the wind field, Fig. 8 shows the difference ( vector)
of VINMI and INMI wind fields. These differences are
mainly to the rotational part of the flow as discussed
previously. The structure of the wind field correction
in Fig. 8 agrees with the latitudinal structure of w,

009

specified previously; that is, retention of the rotational
part of the original flow at low latitude and adjustment
to the original height field at higher latitudes. The
maximutln wind modulus of the difference vectors is
I.Sms™.

We now examine the behavior of the variational
scheme using a fully variable structure of the weights
in the horizontal. The following choice of weights w,
and w, will simply serve to illustrate the ability of the
scheme to discriminate between the reliability of the
analyzed fields over continents and oceans. The specific
form of the weights for this experiment are:

w=wp for AEA
= {[60°W, 130°W] U [135°E, 15°W]}
@w=10"2wp? for AEA (4.3)

where w stands for both w, and w,, and ¢, is defined
by (4.1) and (4.2). With such a choice of weights, one
expects that the largest differences between two fields
initialized using weights (4.1) and (4.2) and initialized
using weights (4.3) should be found over the ocean
sectors deduced from (4.3). One clearly sees (Fig. 9a)

F10. 8. Wind differences between variationally adjusted (using latitudinal weights) and
uncoastrained initialized fields. Maximum wind modulus = 1.Sms~',
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the effiect of “‘ocean discrimination,” the elongated
north—south pattern of differences over the oceans
being obrained due to the use of wp? in (4.3). This last
choice was made for illustration purposes only in order
to demonstrate the feasibility of such corrections. The
overall effect of the variational scheme on the original
analyzed height and wind fields is depicted in Figs.
9b,c. The European continent is the typical type of
correctwons obtained by allowing the weights to vary
horizoestally. Assuming higher reliability of the ana-
lyzed height and wind fields over the continent as com-
pared o the adjacent North Atlantic Ocean, the result
of Fig. 3 (i.e., unconstrained INMI) may be considered
to be undesirable. Forcing the initialization scheme to
recogmze the weaknesses of the analyzed height and
wind fiedds over the oceans would be greatly preferable.
For the same region considered above, Figs. 9b,c illus-
trate chearly this aspect where the height and wind fields
mutually adjusted over the ocean without damagmg
the anatvzed fields over the European continent. It is
also imxportant to notice that this behavior of VINMI
was feasible due to the possibility of using full hori-
zontal variability of the weights. It is however clear

that the proper specification of weights must be related
to the estimation of the statistical error distribution of
the analyzed fields. Since the model is global this study
now considers the Southern Hemisphere results of
VINMI. Note here that symmetric weights were used
about the equator in (4.3), the reality of such specifi-
cation being immaterial here. Figure 10 gives the dif-
ferences between VINMI using (4.3) and the original
uninitialized analysis. In these quadrants, one first
identifies the southern equivalent of the North Amer-
ican continental sector where retention of mass is
maximal (southwest of Argentina for example). The
other continental sector located southwest of Australia,
is associated (south of 40°) with a strong increase in
the retention of the mass field. In Fig. 11 (which is the
analogue of Fig. 10 but using INMI), the previously
described southern “land™ regions [i.e., as defined by
¢4.3)] bear important height corrections reaching 53
meters in one case. The variational scheme has elim-
inated these strong corrections, a result which illustrates
the robustness of the scheme. -
Finally, the effect of constrained versus uncon--
strained initialization schemes on a 2 day forecast may

anblmmha;htmnmuom mmhnuonun;lamude—loumde
and varistional initialization using latitudinal weights (contour interval = $ m).
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be examined by using a more realistic set of weights.
This set may be obtained by extracting typical standard
deviations of the estimated height and wind analysis

errors at 500 mb produced by the operational objective

anahsis scheme at CMC (Centre Météorologique
Canadien ) (Mitchell et al. 1990) for a winter case. Fig-
ure 12a shows the estimated 500-mb height analysis
error « m). We first note that the amplitude of ~3 m
over the northern continents increases to approxi-
matehy 15 m over the oceans and the tropics. The con-
tinents are clearly distinguishable by a strong gradient
in the field of standard deviations along the coasts. This
effect was considered in the previous experiment by
using a reducing factor for the ocean sectors (see also
FT89 ). Also note that no attempt was made to smooth
the local minima over the Pacific Ocean where upper-
air dara were available to the analysis (e.g., Hawaii).
Similar features can be observed in Fig. 12b for the
standard deviation of the zonal component of the wind
analysis error field (the meridional component is not
shown but has a similar structure) with a minimum
deviation of 2.5 m s~! over the continents ( extratrop-
ics) increasing to ~5 m s~! elsewhere. The model is

ot

now integrated for 48 h using variationally initialized
fields with '

Py = 1/e,% Wy = l/av.z

where o, and o, are the standard deviations as previ-
ously described. Figure 12¢ shows the difference in the
height field between VINMI (using the latter specifi-
cation of weights) and INMI after 48 h. As in FT89
(Fig. 12), most of the differences are found in midlat-
itudes where the RMS value is approximately 20 m. It
is possible that other cases would show larger differ-
ences, particularly after five days for example. VINMI
might be expected to produce a cumulative improve-
ment of the analysis when employed in a data assim-
ilation cycle by improving the quality of the 6-h forecast
used as a first guess in the data assimilation scheme.

¢. The balancing aspect of the scheme

As previously shown, the variational scheme has the
flexibility of allowing full variability in the weighting
functions w, and w,, which may represent the initial
state of the atmosphere more realistically than the un-

IG. 9b. Difference in height field between variational initialization using latitade-longitude
weights and original uninitialized fields (contour interval = 10 m).
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constrxined case. The main benefits of the latter being
to eficaently control the excitation of high-frequency
gravirv-inertia waves, this aspect of the variational
scheme should also be observed in order to be a viable
generalization. This point will be considered here as a
final comparison between INMI and VINMI schemes.
" Stamdard monitoring of Machenhauer’s initialization
scheme is based on the evaluation of the BAL, value,
for each iteration of the scheme, which is defined as

dG;f?
AL - 2 |

where 4G/ dt is the time tendency of a particular grav-
ity mode. We proceed in the same way as T89 for the
evaluanion of BAL, in physical space. The remarks
given m FT89 also apply here, in the sense that the
usefulness of monitoring the value of BAL, in uncon-
strained NMI is based on the fact that Machenhauer's
scheme attempts to set BAL, to zero. VINMI proceeds
in a &xferent way since the amplitude of the slow modes
are changed for each iteration of the scheme. The re-
tentiom of information on the initial data in physical

space is a potential barrier for the vanishing of BAL,,
a consequence which i absent in unconstrained
schemes. This aspect of YINMI is clearly represented
in Fig. 13 where both variational and unconstrained
schemes have been tested using five iterations. As noted
in T89, scheme B (which is represented by the uncon-
strained scheme here) has a2 monotonic decrease of
BAL, even after 10 iterasions (see his Fig. 3). Tem-
perton stressed that “this latter convergence may how-
ever be towards a state w'nch is not appropriate as an
initial condition for the model.” This latter remark,
together with the previous discussion characterizes the
saturation value of BAL,. Further, once the variational
scheme has attained it’s sararation value of BAL, which
is associated with three nerations of the scheme (see
Fig. 13), a comparison of model integrations can be
done using this initial staie and the initial state obtained
with the unconstrained scheme using two iterations.
We note immediately that these two initial states have
approximately the same value of BAL,.

The variational scheme used the latitude-longitude
specification of weights which are described in section
4b. In ecach integration, the model was run for 48 h

Fic. %WMMMMWHHY“)W(MQWW' y )
and original uninitialized felds (maximum modulus = §.5 m s°').
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and the height- traces were stroed for three different
locations on the sphere. These traces are shown in Figs.
14-16 corresponding to the points (45.70°N, 180°),
(0.93°N, 180°), (45.70°S, 180°), respectively, and
these points were chosen to represent the typical degree
of batance achieved at those latitudes. The quality of
the balance attained can be judged by further com-
parison with a model integration using uninitialized
initial conditions. This latter integration shows high-
frequency oscillations with an initial amplitude of ap-
proximately 50 m for the Northern Hemisphere case.

013

For both initialized model integrations, these oscilla-
tions are considerably reduced and a comparable bal-
ance is observed. It is found that further iterations of
the unconstrained scheme does not produce a better
balancing even though the corresponding values of
BAL, are dramatically different; second-order initial-
ization (T89) is therefore needed for a refinement of
the balance. Figures 14 and 16 clearly illustrate the
effect of the variational scheme on the slow mode be-
havior. In one case (46°S) a small departure in the
height field between unconstrained and variational run

;’lo. lO.Suﬁean; 9b but t:ortheSouthem Hemisphere (contour interval = 10 m).
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is mairtained for the first 15 h but significantly diverges
in the ensuing forecast reaching a 50 m difference at
48 h

It is concluded from these last experiments that the
variational extension of implicit NMI does maintain
a balance in the initial data to a degree comparable to
the unconstrained scheme and allows the possibility of
significantly altering the slow evolving part of the signal.
It is therefore quite clear that a proper specification of
the wezzhts w, and w, is crucial for a refinement in the
anahvsis and forecast of these slow modes.

5. VINMI and the ellipticity coadition

In the early applications of variational normal mode
initialization in the context of realistic data and model
of the atmosphere, it was realized that in some cases,
Machenhauer’s initialization scheme failed to specify
a balanced initial wind field given a particular distri-
bution of mass field. Daley (1978) first observed an
approximate correspondence of “nonelliptic” regions
and regions where the NMI balancing process was di-
verging; that is, one could not find a flow which bal- -

—
]

|40

FIG. 11. Difference height field between unconstrained initialization and no initialization for the

Southern Hemisphere (contour interval = 10 m).
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ancec the mass field over those regions. Tribbia (1981)
darified this point by analyzing the relationship be-
tween the results of a local £~plane model (where the
anah=ic balanced flow is known ) and a global spectral
moded with rhomboidal truncation 20. Once again a
strong correlation was noted between the appearence
of noaelliptic geopotential regions and the breakdown
of the nteration scheme used in nonlinear normal mode
initakization.

Beiore discussing the “ellipticity problem” in the
context of height constrained initialization, it will be
sufficsent for this purpose to relate INMI with quasi-
geostrophic theory in the context of shallow-water
models on an fplane.

a INMI and the classical nonlinear balance eguation
Leith (1980) (hereinafter noted L80) showed that,

on a periodic fplane Boussinesq model, the first-order -

Baer-Tribbia (1977) estimate or one “iterate” of

015

Machenhauer’s scheme (starting from geostrophic ini-
tial conditions) was equivalent to solving the quasi-
geostrophic balance equations. In terms of total geo-
potential and streamfunction ¢,, ¥,, respectively, L80
found a related version of the classical nonlinear bal-
ance equation given by:

Vg, = £V, ~ M(éy) (5.1)
where ~

2 62% 2 62% 62%
M%) = 7 [(axay) (%)% )]
Here the index “0™ concerns the rotational part of
the initial geopotential field while index “1* indicates
the resulting fields after one iteration of Machenhauer's
scheme (not to be confused with L80’s notation). The
same results as (5.1) may be obtained by using the
implicit form of nonlinear NMI. This process starts
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'FI. 128 Typical standard deviation of the estimated errors of the analyzed S00-mb height Seid
for a winter case. Contour interval = 2 m. .
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first wixh a linear initialization step which (due to the
Jf-planpe approximation) is the requirement of geostro-
phy. Note here that all the implicit schemes discussed
by Texperton (1988, 1989) reduce to the same implicit
schemae when dealing with an fplane model. In that
case, imaplicit and explicit NMI are exactly the same
and the corresponding slow modes are all stationary
and nondivergent. The result of the first implicit step
is thus

Vo
Yo’[xo]; Vo= do/fi Xo=0. (5.2)
do

Second, starting from Y, integrate the nonlinear
modei for one time step to get the value of (§,D). Note

that in order to avoid confusion, the index “o’* accom- -

panyimg the §, operator [as defined in (2.13)] will be
omitted in the following derivations. This latter quan-
tity is required in order to solve one of the balancing
constraints (analogous to the one used as a strong con-
straint in section 3) on (A¢), (A¢) given by

V3(4a$) =fV3(&¥) + §,D. (5.3)
The time tendency of the divergence field appearing
in (5.3), using as initial conditions the previous linear
step, is given by

(8,D) = =Vigo + o — V+(Vp-VV,) (5.4)
where
v° = kXVWo.

Using Helmbholtz’s decomposition of the wind field to-
gether with (5.2), the last term on the right-hand side
of(5.4)maybemwﬁttenas-M(¢o). Putting the pieces
together a “balance equation™ can be written in terms -
of total geopotential and streamﬁmcuon {given by ¢,
=¢o+ b, Y1 =¥o + 4¢)as

Vi, = [V — M(dy). (5.5)

Thus L80’s result (5.11) is recovered as expected from
the exact equivalence between explicit and implicit
NMI for an fplane model. As mentioned by L80, if
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FIG. 12b. Typical standard deviation of the estimated errors of the analyzed $00-mb 20nal component
of the wind field for a winter case. Contour interval = I m s~
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term M were evaluated in terms of ¥, (5.5) would be  and (5.6) reduces to
the classical nonlinear balance equation of Charney
(1955). Passing to the divergence field required by
INML, its connection with quasi-geostrophic theory is
also straightforward to obtain. In the present context,
Eq. (4.15) of T89 reduces to: Using the geostrophic relation between the wind field
I ! and vorticity field with the geopotential ¢, the quasi-f
2 - === 2 geostrophic divergence equation is recovered on an

VHAD) - F (AD) = G [-S8(VY) + VI6)]. LT Haltiner and Williams 1980, chapter 3) for the
(5.6) total divergence D (remember that Dp = 0so AD =D

2
v(aD) - & (ap) = £ v, v,

here):
For the nonlinear case, the nonlinear tendencies of { 2 {
and ¢ are given by | V}(AD) - & (AD) = ﬁ(m%)'v(vz%)-
(88) = Vo Vo — (S + $0) Do
(34) = =Vo+Véo — ¢Do. |, b. Height constrained initialization
Using (5.2) (i-¢., a geostrophic initial step): paftrg?thttew‘;nd field 0’3.?‘,’,"3,?3&“;‘{2' e instal :::l-
Dy=0, Vy:-VoomO potential field via VINMI is susceptible to produce the

b« )
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estimated height and wind analysis errors, and unconstrained initialization for a 48-h forecast. Contour interval
= § m. Maximum amplitude = 26 m. :
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Iterations

" PG 13. Bebavior of BAL, as defined in section 4c for INMI and

VINMI (latitudinal weights) as a function of iteration number.

same type of convergence problem as one faces with
the iterative solution of the classical nonlinear balance
equation. This process of height-constrained initializa-
tion can be represented in phase space as in Fig. 17.
By this procedure, one attempts to force the wind field
1o balance a given height field without restrictions on
the representativeness of the latter. This can be accom-

£650.

46
£608.

£567.

£525.

Height «m»

£483.¢

€442. 1

S400.g 1772458, 48.
Hours

FIG. 14. Time trace of height field for point located at (45.70°N,

180°). Heavy line—no initialization, dashed line—unconstrained

initialization, light line—variational initialization using latitude-
longitude weights,

_ adopted. ([T

58920.

5888.

5856.

5824.

Height (m»

5792. ¢

ST60. g — 132456, 48B.
Hours
FIG. 15. Same as Fig. 14, but for poiot at (0.93°N, 180°).

plished in the framework of section 3 by setting w, = 1
and wy a “small” value. Strictly setting w, = O creates

" a degeneracy of the Euler-Lagrange equations. For this

extreme case, as independent formulation must be
formulation is given in appendix B. It
should be mentioned here that what is really mean-
ingful is the relative value of these weights (refer to the
functional being minimized ) and in this sense the van-
ishing of weights can always be avoided. This study

5650.

5580.

5510.

5440.

Height (m)

5370.

S300. g T334 56 48.
Hours
" F10. 16. Same as Fig. 14, but for point at (45.70°S, 180°).
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F)G. 17. Height-constrained initialization in phase space.

now examines the applicability of the variational
scheme described in section 3 for small values of w,
and it’s relation with the ellipticity condition for the
nonlinear balance equation. Houghton (1968) has

019

given the correct form of the ellipticity condition for
spherical coordinates and it’s approximate form is given
by
2
g4 L _BN
M-V¢+2 aao>0 (5.7)

where

B8 =df/db.

Condition (5.7) must be satisfied over the sphere for
a solution of the nonlinear balance equation to exist.
Kasahara (1982b) examined the observational evi-
dence of nonelliptic regions in the atmosphere using
the FGGE level IIIb giobal analyses of the ECMWF.
He found that nonelliptic regions are widespread in
the tropics. For the dataset mentioned in section 4a,
Fig. 18 gives the regions where the ellipticity condition
(5.7) is violated (i.e., regions of negative values of M).
The tropics are indeed a typical region for failure of
(5.7) and some negative regions at midlatitudes which
are located in regions of anticyclonic flow are also
noted. In order to test the behavior of the variational

PIG. 18. Northern Hemisphere distribution of the ellipticity measure A as defined by (S.7).
For clarity, only the location of the maximum values are indicated for positive values of Af.
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scheme in the context of height-constrained initializa-
tion, we choose the same initial conditions as in section

4a. It is noted there that Machenhauer’s iterative

scheme was converging and that the quantity BAL,
could be reduced by 16 orders of magnitude after 10
iterations (see also T89). The unconstrained experi-
ment will be used as a reference for comparison be-
tween the behavior of BAL, and height-constrained
experiments using different values of w, . As previously
noted in Fig 18, setting w, sufficiently low in order to
force the rotational part of the wind field to adjust to
the geopotential field might cause convergence prob-
lems in the tropics. To show that this is indeed the case
here, the following specification of weights on the
sphere were tested:

we=1, wy=e

Figure 19 gives the behavior of BAL, as a function
of iteration number for ¢ set to 0.1 and 0.01, respec-
tively. It is clear that setting w, too low in the tropics
does cause a divergence of the iterative scheme. The
damaging effect on the wind field in the tropics as ¢ is
reduced is not shown here but it can be said that a real
“blow up” is observed in this region as the iteration
progresses.

6. Summary and discussion

This paper has extended the application of varia-
tional implicit normal mode initialization (VINMI),
developed by Fillion and Temperton (1989), to the
context of a global spectral shallow-water model. The

Iterations

PG 19. Behavior of the quantity BAL, as a function of iteration
for different values of the weight w, in the context of height-con-
strained initialization.

implicit “ B scheme” considered by Temperton ( 1989)
for the fast gravity modes was coupled as a strong con-
straint with a linear balance relationship for the slow
modes. This scheme is the spectral analogue of the
variational scheme developed by Fillion and Temper-
ton (1989) for a barotropic finite-clement regional
model. Standard tests illustrated the robustness of the
scheme to control the changes made to the analyzed
fields using prescribed weights which are allowed to
vary horizontally. The balance achieved by such a pro-
cess was shown to be comparable to standard INMI.
As illustrated in FT89, the VINMI method has the
possibility of significantly altering the slowly evolving
component of the forecast.

Present implicit NMI techniques impose a funda-
mental requirement, the stationarity of the slow modes
in the retained linear system. This restriction on the
slow modes was maintained in the variational frame-
work developed here (see also FT89) and was shown
to result in very similar changes on the divergent part
of the analyzed flow during the balancing process. The
question of whether or not a controlling procedure for
the divergent part of the flow is feasible was not ex-
amined in this paper. This aspect of VINMI (if desir-
able) would depend on the feasibility of implicit NMI
schemes in the case of nonstationary slow modes. Ju-
vanon du Vachat (1988) examined this latter aspect
_ and the characterization in physical space of the slow
~ modes by the linear balance relationship [i.e., (2. 15)]
appears unavoidable for implicit schemes to be possi-
ble, thus, excluding the possibility to control explicitly
the divergence field.

The question of height constrained adjustment using
a special form of VINMI was considered here on the
basis of the relationship between INMI and quasi-geo-
strophic theory on an f plane. The VINMI scheme
proposed in this study was shown to diverge when the
height field was given too strong a reliability over the
wind field. For such a case, large changes to the wind
field in the tropics are observed, which is related to the
cllipticity condition for the nonlinear balance equation
{see Tribbia 1981).

The present variational initialization technique may .
also be useful for variable resolution giobal spectral
models (Courtier and Geleyn 1988 ). A future extension
of the present work is to apply an analogous approach -
to multilevel models. These results will be preseanted
in a subsequent paper.
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APPENDIX A
Unconstrained Initialization

Let w, = wy, = constant in the system (3.6)~(3.8),

thea write

VH(aV) = Af = 2 V-(fTy).
wy

Since V2y = w,(Ad), [v* = 0dueto(3.5)] it follows

that for every spectral component,

2Qw,[(n+ 1)
n

Q(d' & (Ad)as

AL =
n
+( +1) e,...(A¢)H|]
Used scaled variables (2.4)-(2.6), it follows that
. - " a 20 2
A= Tatn + l)]"’( )( n )(" t e

2\m ﬂ 2Q -
X (Ad)a1 + oA D) fnl]

na -
X ntn+ D72 2 (ad)n

___22 me 02 _ 172
w[ﬂ‘n (n 1)

X (Ad)m, +

“-1/2
[n(n - l)]l/Z)
20
md’i:[(" + 1) -1
a
(n+ 1)(n+2))"7

Thus,

(Af)= = —[fn"'(C 1) (Ad)

+ [ 2(CR)7(Ad)n] (AL

where the matrix elements f,™ and ¢,™ are given by
(2.11) and (2.12), respectively. In matrix form (A. l)

is given by

Af = 32 FC'(Ad). (A2)

fw, = wy is used, (A.2) is identical to (4.18) of T89
of unconstrained initialization. Further, the differential
constraint (3.2) has exactly the same form as (4.16)
of T89. Summarizing, whenever w, = w, = constant,
the present variational scheme and the implicit (un-

coastrained ) B scheme of T89 are identical.

é""(A&)::.] :
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APPENDIX B
Height-Coustrained Initialization with

0’-0,0.‘1

For this special choice, the basic steps represented
on Fig. 17 are summarized by:

1) Obtaining the balancing correction state vector
on fast modes '
(AX)g = [(A¥)s, (AX)g, (Ad)G].

2) Altering the slow mode amplitudes so as to reset
oto ¢,, where ¢, ls the mma! umnmahzed height field.

The starting point of the schcmc may be the initial
state given by an analysis scheme or it’s projection on
the rotational part of the analyzed fields. In the frame-
work of section 3, steps 1) and 2) can be done by the
following procedure. First, step 1) generates a (Ad)g
that step 2) must cancel exactly to reset ¢ to ¢;:

(Ad)n = —(Ad)g. (B.1)

Here the slow modes satisfy a linear balance relation-
ship

V(Ad)e = V- [fV(A¥ ) (B.2)

and the following relation for fast mode components _
(i.e., the constraint from INMT) is shown:

20 O(Ax)g

V(8o = V- [/ W(AV)e] = 23 =52 + (6D

(B.3)

Equations (B.2), (B.3) correspond to their discre-
tized versions (3.1), (3.2). Combining (B.1) to (B.3)
gives for (Ay):

V-[9aN)] = 23 2 (ax)o - (D%, (B4)

The strict height constrained algorithm, for one it-

eration of the implicit NMI scheme may thus be sum-
marized for the present spectral model as:

1) Operatmg steps 1 and 2 of the VINMI scheme
described in section 3 to obtain (AD) and the right-
hand side of (B.4).

2) Solving (B.4) for (AY).

3) Adding mcremcnts(M).(Ax)atogetlmuahzed
spectral coefficients. Note that the mass field is left un-
changed here.

4) Generating new values of ({, D, ¢) on the Gaus-
sian grid.
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Chapter V

Variational Implicit Normal Mode Initialization for a multilevel model

IIl.] Presentation of article 3.

The complete extension of variational nonlinear normal mode initialization to fully
three dimensional weights has never been attained. Previous efforts to examine the problem
were essentially those of Temperton (1984). Temperton's scheme was formulated for a
global grid point primitive equation model and his formulation allowed latitudinal variation of
the weights (longitudinal variation could be included but with much reduced efficiency). Due
to these limitations, Temperton's conclusion on the usefulness of variational NMI are of
limited utility. Puri's (1983) study was also seriously limited to latitudinally varying
weights. His choice of vertically separable weights is inappropriate for a full three
dimensional treatment of analysis errors during the balancing process. Consequently, no
reliable conclusion could be made concerning the usefulness of variational NMI in a context
of operational data assimilation on the basis of these previous works. Using the formulation
of INMI, Temperton's (1984) work is reconsidered. The following chapter is the
culminating point of this study where it is shown that VINMI is feasible for multilevel
models and includes a full horizontal and vertical treatment of the analysis error in a
consistent manner. We present the application of the technique to the Canadian operational
regional finite-element model. The formulation is general enough to be applied to other
models where the vertical structure differs from the one used here. The formulation of the

initialization scheme and results of applications follow.
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ABSTRACT

Recent studies have demonstrated that variational nonlinear normal mode initialization
can be efficiently implemented in the context of shallow-water models provided one uses a
physical space formulation. The Implicit nonlinear Normal Mode Initialization (INMI)
technique provides essentially the same balancing benefit as standard " explicit " nonlinear
NMI but does noi require the explicit computation of the linear free modes of the model.
This allows variational initialization with arbitrary horizontal variation of the weights which
specify the changes to the analyzed fields during initialization. As a consequence, land-sea
contrast in the reliability of analyzed fields can be taken into account in the initialization step,
an advantage for data assimilation for weather prediction.
- The purpose of this paper is to demonstrate the feasibility of Variational Implicit
Normal Mode Initialization (VINMI) for multilevel models. This new scheme is illustrated
on the presently operational Canadian baroclinic Regional Finit&Element (RFE) model. Itis

shown that the VINMI scheme efficiently controls the relative magnitude of the changes to

the analyzed mass and wind fields during the balancing (initialization) process. A

comparison is also made of the impact of the VINMI scheme versus that of the presently
operational unconstrained version of the initialization scheme (INMI). Future development

and applications of the method are discussed at the end of the paper.
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1. Introduction

Nonlinear normal-mode initialization (nonlinear NMI) schemes are now widely used
in operational practice to control the excitation of spurious gravity-inertial oscillations. The
application of these techniques in assimilation schemes for weather prediction permitted better
assimilation of new data on a regular basis without creating subsequent imbalance of the
model. On the other hand, systeniatic deficiencies of these initialization techniques were
gradually isolated during the last decade in an attempt to improve the schemes. In fact, it
appears that the main difficulties encountered in operational practice when the analysis-

initialization schemes are used in sequence may be identified as a two-fold problem. The first

| aspect pertains to the general idea of balance in a model. Machenhauer’s (1977) initialization

scheme for example must be restricted to a subset of vertical modes of the model in order to
avoid false characterization of this kind of "balance" in a baroclinic model (Errico 1989,
Errico and Williamson 1988, Ko et al 1989). The second aspect of the problem is that the
inherent inaccuracies in the analysis schemes i.e., errors in the slow mode components,
which feed the initialization should be taken into account.

One way to face the latter problem in the analysis-initialization scheme was
considered by Daley (1978). The essence of his variational approach is to permit slow and
fast mode alteration of the analyzed fields during the nonlinear normal mode balancing
process. This approach renders the initialization scheme flexible with respect to analysis
errors. Daley's technique (also considered by Tribbia 1982 ) suffers from computational
problems related to its dimensionality ( i.e. the dimension of the linear system to be solved )
which renders the method inapplicable in an operational context. For multilevel models, Puri
(1983) examined the application of Daley's variational initialization in the context of data
assimilation. Temperton (1984) reconsidered the variational initialization approach in the
context of a multilevel gridpoint model but still had to restrict the weights to vary only
latitudinally in order to render the problem tractable. It was then realized that the variational
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form of nonlinear NMI including fully three-dimensional variation of the weights in the
context of explicit nonlinear NMI would remain problematical due essentially to the normal
maode space formulation of the approach. Originally, Daley (1978) proposed his variational
scheme in order to bound the changes made by the initialization using the expected analysis
errors. A much simpler procedure of “initialization-insertion™ was examined by Machenhauer
(1977) and Temperton and Williamson (1979). A similar type of reinsertion of uninitialized
fields was tested for surface pressure by Bourke and McGregor (i983). Machenhauer
(1977) first suggested that it may be appropriate to itérate the analysis-initialization procedure
until some convergence is attained in order to remain faithful to the observations. As an
alternative to variational initialization, Machenhauer's iterative procedure was formulated and
tested by Williamson and Daley (1983) in the context of a shﬁllow-water model. Various
methods of combining analysis and balancing schemes may also be found in Lorenc (1986).

Using Tempertqn's (1988) formulation of INMI (see also Juvanon du Vachat 1988),
variational initialization becomes more attractive than before due to the physical space
formulation of the balancing constraints on the fast modes and the approximate
characterization of the slow modes. The variational extension of INMI schemes has been
successfully implemented in the context of shallow-water models by Fillion and Temperton
(1989) (hereinafter noted FT89) for a regional finite-element model and Fillion (1991) for a
global spectral model. It became possible with VINMI to deal with fully variable weights in
the variational algorithms at a reasonable cost which indicated a potential usefulness for
operational practice. In the present paper, we basically reconsider Temperton's (1984)
approach in order to extend the VINMI scheme of FT89 to the multilevel version of the
Canadian Regional Finite-Element (RFE) model.

Section 2 gives a quick review of the INMI scheme for the RFE model as described

in Temperton and Roch (1991) (hereinafter noted TR91). The formulation and special

characteristics of the VINMI scheme are discussed in Section 3. The flexibility of the

variational scheme as compared to INMI is illustrated in Section 4. Finally Section 5
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includes a summary and an outlook regarding future use of the method in a data assimilation

scheme .
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2. A review of the implicit NMI scheme

The governing equations of the RFE model are based on the hydfostatic primitive
equations on a polar stereographic projection. Details of the spatial discretizations may be
found in Staniforth and Daley (1979) and more recently in Tanguay et al. (1989) which also
includes a description of the semi-Lagrangian version of the model. The parameterization of
physical processes (taken into account during the forecast integration) are described in Benoit
et al. (1989). Figure 1 illustrates the horizontal extent of the}calculavtion grid (125 X 101
points) and the variable horizontal resolution used in this study. The uniform resolution on
the subdomain is 100 km. Also shown are selected grid points where the time-traces of
specific fields are stored during the model integration. The RFE model has a wall boundary
condition at the horizontal boundaries which forces the fluid to move inside a square region
D, of side 20,000 km center'ed at the North Pole. This solid wall I' is placed in the vicinity

of the equator and the condition of no normal flow across I may be satisfied by requiring
y=0 on I'

nVy =0 on I
where y and Y are the Helmholtz streamfunction and velocity potential respectively.

In the vertical, the model uses 6-coordinates and has 19 levels as shown in Fig. 2.
Throughout the rest of the paper we will refer to D, and (D ) as the horizontal (resp. three
dimensional) domain of the model. The vertical boundary conditions are obtained by
imposing the condition of no outflow at the top and bottom of the model. This dynamical

requirement is characterized by

6=0 a o=0;,1 where 6;=0050 . (2.1)
Following TR91, the differentiated form of the primitive equations (at each level k"

in the vertical) used for the formulation of the unconstrained implicit initialization scheme is
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20 = -F + Q@ (2.28)
%(szk) = Fyg + Byx - V2Pk + (Qpk (2-2b)'

oTy -

S - x'r*(%l)k = (Qrk (2:20)

SEEE
S

.9,

V2 = 9
dx2 9dy?

The generalized geopotential P, is defined here as ¢, + RT* Inp, where p, is the surface
pressure, and T is the isothermal reference temperature profile. The variable W is related to
the divergence field (see Tanguay et al. 1989, equation (29)). The hydrostatic equation

% _ RT
do c
is vertically discretized as
G-t = TR M+ Tl &) | 1<k, @3)
k

where ¢y = 05 and N is the number of levels of the model. Note that the By, term normally
appeaxing in the vorticity equation (2.2a) has been incorporated into the nonlinear terms
(Q\v)k for the formulation of the implicit initialization scheme. We also introduce the

integrated tendency equation for the surface pressure

Linp,) - Wy = Qup) - @4

The nonlinear terms are represented by the symbol Q, the other variables have their usual
meaning (see Tanguay et al. 1989, and FT89).

80



O

O

O

vertical mode decomposition. These modes are determined by diagonalizing the matrix C
which appears in the matrix/vector form of the prognostic equation for the generalized

geopotential (equation (2.16) of TR91), i.e.

%)+CD = Qp . 2.5)

The detailed structure of matrix C may be found in TR91. The decomposition of matrix C is
C = EQE! (2.6)

where @ is a diagonal matrix whose entries are the geopotential depths, and the columns of

E are the eigenvectors of C. Using these vertical normal modes as a basis for vertical

representation of the dependent variables, the prognostic system (2.2a-b), and (2.5) may be

written as
Py w20, V5, + (O @78)
(723 = - B + @k 2.7b)
2(v%) = P+ BRa - Va + (Qh @.7¢)

for each vertical mode “n ”. System (2.7) has the same form as the shallow-water version of
the RFE model if the geopotential ¢ is replaced with the generalized geopotential P, and the
mean geopotential deptﬁ is associated with a particular eigenvalue of matrix C. This form of
the equations is consistcrit with the splitting of the linear and nonlinear terms considered by
Temperton (1988) for the derivation of his improved INMI scheme.

The way to implement the unconstrained implicit initialization scheme for the
baroclinic RFE model is clear ; for each vertical mode, apply the INMI scheme as described
in Temperton (1988) for the shallow-water version of the RFE model.
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3. Variational formulation

Nonlinear NMI schemes for multilevel models are basically formulated in terms of the
variable P, which couples fhe temperature and surface pressure fields. The variational
formulation that follows will thus be considered within the framework of the initialization
scheme itself which explicitly makes use of the generalized geopotential P.

Using the considerations of Section 2, we now introduce a variational extension of
this scheme where the constraint and the functional to be minimized are successively
introduced. The variational formulation of the implicit initialization technique for shallow-
water models is as described in FT89 and Fillion (1991).

a. The constraint
The analog of the barotropic constraint on the fast modes (see (2.9) and (2.10) of
FT89) is that, for each vertical mode, for one iteration of Machenhauer's scheme, the linear

constraint 6n (Aﬁg and (A\T’B is given by

Vi(aP)4 = F (AW) +B (ADB + GV 03 (3.1a)
with boundary conditions:
AAP)E _ . 9AWE . . AAYE |
=~ f a’i + f a}', on Iy (3.1b)
AP _ . OAWE . 3(A8
3y = f 3y f 3 on Iy (3.1¢c)

where I'=T U I‘y , and the index "G" indicates a gravity mode component. The time
tendency term appearing in (3.1a) is obtained as usual by integrating the model forward for

onc timestep.

Since we are concerned here with the extension of the INMI scheme of TR91, we
restrict the application of (3.1) to the first three vertical modes of the model, say Q, as is

presently done operationally with the INMI scheme. As mentioned in Section 1, the
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adjustment of the gravity modes using Machenhauer's scheme must be restricted to a subset
of vertical modes.
In a manner similar to that in FT89, for a given vertical mode of the multilevel model

and for one iteration of the initialization scheme, we make use of the linear balance

relationship
VAP = F(apiR (3.28)
with boundary conditions
1 R )
J@P)R _
I f 3 on Iy (3.2b)
AP)R AV
_&a(ay) -t (a‘}"’)“ on Ty (3.20)

to characterize the slow mode corrections. It is important to note at this point that the
correction of the divergent part of the wind field appearing in (3.1), for each iteration, is
diagnosed in the same way as for the unconstrained INMI scheme. This is due to the fact
that the slow modes characterized by (3.2) are djéergence free. Thus, for each iteration,
(A%) projects only onto the restricted class of vertical modes Q. While the same restriction is
applied to (Ay) and (AP) for the INMI scheme, this is no longer the case within the present
variational framework. The j)hysical space translation of the latter statement is obtained by
coupling the linear equations (3.1) and (3.2) to form the constraint in three dimensional

physical space, i.e.

M(AP, Ay) = - VXAP) + F (Ay) + B (Ag)g + (&:Vg)e = 0 (3.3)
with boundary conditions

AAP) _ AW . . AAg

- = 5 on Iy (3.3b)
oAP) _ 0Ay) . HAX)g
5 - 5y f = on I, . (3.3c)
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Note that the terms (AY), and (Stvzx) , only have components in the class Q of vertical
modes which is used in unconstrained INMI. With this last proviso, (3.3) is taken as a

strong constraint in physical space.

b. The functional
The choice of a cost-functional in the context of three-dimensional (3-D) VINMI
proceeds as follows. It is known in the context of shallow-water theory (see Daley 1978,

Temperton 1984, Fillion and Temperton 1989), that each iteration of Machenhauer's

inidalization scheme minimizes a functional J, which is proportional to the energy of the

linearized system, and given by

Jo = f [(VA\Trn)’+(VA2,.)2+ é—(A?)n’] dxdy (3.4)
Dn n

where @_ is an equivalent geopotential depth. The VINMI scheme as formulated by FT89,
does not take into account the divergent part of the wind due to the use of nondivergent slow

modes. For the multilevel model used in the present study, the energy functional (3.4) is

(see Staniforth et al. 1985):
1 _q__a(m
m? {Ry" do

AER=J
D

. f [E}_;z—(l-cl)(AP)z]

2
} + (V(A\v))zl dx dy do

dx dy

o=1

where the geometry and boundary conditions of the RFE model were taken into account.
The basic state static-stability ¥ is given by T/ and the subscript “R" indicates that only
the rotational part of the kinetic energy changes are considered in the minimization process.
For multilevel models, it is natural to choose as the functional to be minimized, the
generalized energy-consistent functional associated with the linearized baroclinic primitive
equations (see Temperton, 1984). By properly adjusting the energy functional AE;, we
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show in the Appendix that the correct functional to be minimized, which includes weighting

functions and maintains (as a special case, see Section 3d) the natural property described
previously, is

J = f 91{41_(3(‘31’)
, m? {Ry" 00

The weighting functions W, and o are associated with the rotational part of the wind and

2
}+ oy (VAy)?+ —2r(ap),? ]dx dydos . (3.5)
RT 'm?

mass fields respectively and can vary horizontally and vertically within D. The functional J

can also be written as

- st

+ oy (V(A\v))z] dx dy do

. _
« | RTOr (A1np)2axay - | [@r9lo=o (ap)2 gx gy
o T RTm’
A Dy

The solution of the variational problem is however formulated in terms of AP from which

temperature and surface pressure changes are obtained (see Subsection 3c).

c¢. The variational problem
The variational problem to be solved thus becomes the minimization of functional J

given by (3.5) subject to the constraint (3.3) together with the vertical boundary conditions

dAP) | Y(0)
oo ™

@AP)y =0 ato=011 . (3.6)

The vertical boundary conditions (3.6) at the top and bottom of the model, are natural
boundary conditions for the minimization of (3.5) and correspond to the boundary conditions
which are consistent with the determination of the vertical normal modes of the model.
Using the standard procedure of the calculus of variations (see the Appendix), the Euler-

Lagrange equations are given by :

2 _ -1 9 |orcd(Aap)
VA 23 [R v % (3.7a)
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oA
(a_nr =0 (3.7b)
V-(wy V(Ay)) = F(A) (3.82)
(Ay)r =0 ‘ (3.8b)

together with (3.3) and (3.6).

d. Particular cases
We first note that if the weights @, and ,, are assumed to be independent of the

vertcal coordinate G, the right-hand side of (3.7a) can be written as

_or 0 | g 9AP)) _ o
m?2 0G|Ry* 06 |  m? G2 3.9

where the vertical structure operator V is defined by (A4). The expansion in terms of

vertical normal modes for the correction state vector AX and the Lagrange multiplier A is

given by
Ay A\Tfn , .
AX ={ Ay | = 2 { A%, [E(@) 5 and A =) A&, (3.10)
n ~ n )
AP - | AP, '

where &y is a given vertical mode of the model. Using the fact that the weights are
independent of g, (3.3), (3.6), (3.7) and (3.8) are separable for each vertical mode " n " and

may be written as:

Vi, = —9T_ (aAB), (3.11a)
Amz O,

(an =0 (3.11b)

V- (0yV (A¥n) = F(Aa) (3.122)

((A\v)n)r =0 . (3.12b)
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The natural boundary conditions (3.6) are automatically satisfied by the vertical mode
decomposition. Note also that the solution of the Euler-Lagrange equations is restricted to
the subset € due to the vertical mode restriction discussed in Section 3a. The preceding set
of equations is analogous to the set of Euler-Lagrange equations obtained for the shallow-
water version of the model. Equations (3.11) and (3.12) can formally be obtained by

minimizing a variational integral of the form

To = I —Or_ (APY + %[V(A\Tr),.]z] dx dy
oy L M2

By multiplying J, by ®_ (which does not affect the solution) we obtain the same type of
functional used by FT89 and Fillion (1991) for shallow-water models. By further restricting
the weights to be constant and equal, &, = ,, = constant, we obtain the INMI scheme for a
multilevel model as described by TR91.

e. The numerical procedure |
The numerical procedure characterizing the VINMI scheme in general, for one
iteration, consists of the following steps,

1) A forward timestep is done to compute the tendencies

aVy) AV’Y) oT Alnpy -
ot ’ oo ‘o' ot )

2) For the restricted set Q of vertical modes (see Section 3a), compute

AV AV 0B, |

ot a7 oot !

3) For each vertical mode "n", determine AXn from Temperton's 1988 INMI scheme
for the shallow-water version of the RFE model.

n=123.

4) Use the inverse vertical transform to determine the vertically filtered fields Ay and
2
&V, ie.
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3 ~ 2 3 2~
Ay = 3 ATy (o) ; 8V = 3 8(VH) a0
n=1 i

n=1

5) Solve the Euler-Lagrange equations, i.e. (3.3), (3.6), (3.7) and (3.8) for Ay and
AP in physical space.

6) Compute AU and AV from Ay and AY using the same procedure described in
Section 2b of FT89.

7) Use the procedure described in TR91 to determine A(Inp,) and AT from AP.

We note that the VINMI scheme formulated here implicitly controls the changes to the
temperature and pressure fields. Daley's (1979) variational inversion procedure to obtain AT
and Alnp, from AP was not considered here but we rather used the procedure described by
TR91 (where the last vertical mode is excluded in the inversion). This latter procedure as
will be shown in Section 4, does not destroy the implicit control on T and Inp, forced by the
VINMI scheme. From (3.5), we note that the same weight @y is used for temperature and
surface pressure changes at the lowest level of the model. This point will be discussed
further in Section 4. |

The numerical procedure for solving the Euler-thrangc eﬁuations is based on the
strategy adopted for shallow-water models. The idea is to form a single equation to be
solved for (AP). This equation is obtained by combining (3.7), (3.8) and (3.6) in that

order, and is written as
VXAP) - FLE FVZI(AP) = B(Ay)g + (Vo (3.13)

where the vertical operator I is defined as

. .2 [ 2P
= ao(K ao)

The coefficient K is given by
K = _wl‘o_

*

Ry m?
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or using the definition of ¥* (considering the chosen isothermal basic state temperature
profile) as

K = _wl'cz_
m?RxT'

The linear (but variable-coefficient ) operator L is defined as in FT89, i.e.
L =V.a,V

where the indices "n" and "d" appearing in (3.13) refer to an inversion using homogeneous
Dirichlet or Neumann boundary conditions on I. The operators L and I have the form of
horizontal and vertical diffusion operators with variable diffusion coefficients w, and K
respectively. This is due to the fact that we attempt to minimize the square of the horizontal
and vertical gradient of Ay and AP respectively, based on the principle of minimization of
the linearized “energy” functional (3.5). Generalizing the iterative approach taken by FT89, a

suitable (vertically separable) kernel operator for (3.13) is

v endfed)
86 Ry'ao

where

22 = L|[(for +(@r_
2m2(°vax m2Wy /Min

The minimax value 7\3 is evaluated over D. Each iteration of the numerical algorithm used to

solve (3.13) requires

a) the computation in finite-element space of

v}ap® - FLP FV21(ap®

for a given estimate (AP)® at iteration k.

b) A vertical mode decomposition of the result of step (a).
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¢) the solution of the kernel problem by inverting the constant coefficient Helmholtz
operator
V.
D,
for each vertical mode, excluding the last one since this mode is degenerate, i.c.
@, =0 forn=19. In practice, due to the vertical mode projection (onto €2) of
the right-hand side terms of (3.13), it is found that using only the first 10 vertical
modes to solve (3.13) is enough to approximate accurately the solution obtained
using the full 18 vertical modes. The structure of the first 6 vertical modes of the
model may be found in TR91. Figures 3a-b show the structure of vertical modes
7-10 of the model.

The iterative scheme for solving (3.13) is accelerated by a conjugate-gradient

technique (Concus et al. 1976).
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4. Results
We now illustrate the results obtained with the variational scheme described in

Section 3. The model itself uses a semi-Lagrangian time integration scheme (Tanguay et al.
1989) with a timestep of 20 minutes while the initialization scheme uses a timestep of 2
mirutes to compute the time tendencies required during the iteration cycle. The initialization
is performed on the variable resolution grid shown in Fig. 1. The experiments of this section
(i.e. INMI or VINMI) used three iterations and used three vertical modes to alter the graviry
modes. The initialization schemes.are adiabatic, i.e. without physical processes. In terms of
the percentage of the computer time required to integrate the model for 48 hours, the INMI
and VINMI schemes require approximately 2 % and 8 % respectively. '

-a. Initial conditions

The initial conditions for the following experiments came from the interpolation of
ahalyses done on an hemispheric Gaussian grid to the variable resolution grid of the RFE
model. We note that in the present version of the model (the immediate successor of the
version used by TR91), no smoothing procedure is applied on the height and wind fields

near the boundaries (i.e. south of 20° latitude). The condition of no outflow mentioned in

Secton 2 is still imposed on the analyzed wind. Figure 4 shows the mean sea level pressure

for 00 UTC 22 January 1986 before initialization.

b. Spatial distribution of analysis errors

Altough the present study does not address the problem of the optimal use of the
available error statistics (variances and covariances) of the analyzed fields within a VINMI
procedure, it is instructive to examine the spatial structure of the root-mean-square expected
analysis error. These fields indicate the expected level of accuracy of the analyses and serve

as a basis of comparison for the changes done to the analysis by the initialization.
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Figures 5a-f give the root-mean-square analysis error for the height, zonal wind
component, and temperature over the domain D, at 850 and 250 mb. These fields are
available from the statistical interpolation procedure used at CMC (Centre Météorologique
Canadien) (Mitchell et al. 1990) to do operational data assimilation. As expected, for all
these fields, the land-sea contrast in the expected analysis error is clearly evident.

Thg following parts of this section will focus on the ability of the variational scheme
to respond adequately to spatially varying weights even if this happens to be in a region
where the INMI scheme already produces absolute changes below the expected analysis error
variance. A coherent specification of the variational weights using analysis error statistics
must be performed prior to the application of VINMI in a complete operational data

assimilation scheme.

¢. Horizontal control

We first examine the application of the variational scheme when the weights o, and
w, are independent of the vertical ~ ¢ ~ coordinate. It was shown in Section 3d that the
VINMI scheme for that case reduces to the VINMI scheme of FT89 for each vertical mode
considered. We will refer to this particular form as VINMI-2D in the following discussion.
We begin by giving a simple 'illustration of the behaviour of the scheme when the same set of
“latitude-longitude” weights as those used in FT89 in a shallow-water context are used for the
multilevel version of the model. These weights are useful to illustrate without ambiguity the
relative changes done to the mass and wind fields by the VINMI-2D scheme as compared to
the INMI scheme.

These weights are expressed as ,
Wy = H.}, cos8 (6)
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or = H-Hl - cos® (0)]
where H*  and H"v are set to unity except when the longitude A is over ocean where they

change abruptly to 0.01 and 0.1 respectively. These delimiting longitudes are the same as in |
FT89, i.e.

Atlantic Ocean (15°W, 65°W)
Pacific Ocean (125°W, 135°E)

Using these weights, we expect that the mass field will adjust to the wind field over
the tropics and vice-versa over extratropical continental regions. The abrupt horizontal
change will serve to test the robustness of the VINMI-2D scheme while at the same time
force the initialization scheme to recognize the different level of accuracy of the analyzed
fields over the continents and oceans. The need for such a distinction is evident from Figs.
Sa-f.

We start by discussing the convergence characteristics of both unconstrained and
constrained iterative initialization schemes, leaving the details of the controlling aspect of the
VINMI-2D scheme to the end of this sub-section. To exhibit the reduction of the time-
tendencies of the fast modes for both INMI and VINMI-2D schemes, we show in Figs. 6a
and 6b the reduction in the value of BAL for each vertical modes of  as a function of the
iteration number. The value of BAL (computed in physical space) is a sum of squares of the
tendencies of the fast mode coefficients (ref. Temperton 1988). For the external and first
internal modes, the reduction rate of BAL is essentially the same for both schemes. For the
second internal mode however, the reduction rate is slightly slower for the constrained
experiment. As will be shown later, this results in imperceptible imbalances during the
ensuing forecast when compared to the balance resulting from the unconstrained INMI
scheme. Another diagnostic meésﬁre of the convergence of both initialization schemes is

now given in terms of root-mean-square increments computed for each iteration. Figures 7a-
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b show these increments in terms of the variable P for both INMI and VINMI-2D schemes,
for each sigma level of the model, while Figs. 8a-b exhibit the rms increments of the wind
field. Itis seen that both schemes converge quite rapidly with rms increments of P and wind
at the end of the third iteration less than 10 m?s-2 and 0.2 ms*! respectively.

We now examine the controlling aspect of the VINMI-2D scheme. Height field
changes will be shown at 0 = 0.25, which is typical. The changes at other levels are similar
but with a reduced amplitude at lower levels due to the absence of vertical variation of the
weights. Figure 9a shows the differences in height field between INMI and no initialization
for an area including the uniform high-resolution grid. We observe relatively uniform height
change magnitudes (~ 20 metres) over continental and ocean regions. Assuming the
previously defined weights, i.e. a highly reliable analyzed height field over the continent and
low reliability over oceans, the VINMI-2D scheme produces the changes shown in Fig. 9b.
Essentially the analyzed extratropical height field has been maintained over the continents and
changes forced preferentially over the adjacent oceans. It is also important to look at the
wind changes. Figure 10 shows the height and wind field differences between VINMI-2D
and INMI initialized fields. These fields are clearly in quasi-geostrophic balance and
essentially limited tb the north-American continental region. This indicates that the VINMI-
2D scheme has also changed the slow modes of the analysis in order to retain the analyzed
mass field over the continent. Due to the constraint imposed by the present specification of
weights, the variational scheme maintained the analyzed mass field at the expense of the
rowational part of the wind field over the exm@picd continents. Together with our choice of
oy in the functional (3.5), this implies that the initialized surface pressure field should be
closer to the analysis when the VINMI-2D, rather than the INMI scheme is used. Of course,
with the INMI scheme there is no such control of the surface pressure changes. TR91's
inversion procedure is used in the VINMI algorithm to deduce AT and Alnp, from AP, and
this procedure does not destroy the control operated implicitly on the former fields via AP.

This is particularly evident for surface pressure (convincing results for temperature changes
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are shown in the next sub-section) when Fig. 11a (INMI case) and Fig. 11b (VINMI-2D
case) are compared. These figures show the surface pressure changes made by each
initialization scheme. The latitudinal variation of the weights over the continent strongly
forces the retention of the mass field north of 40° latitude. This effect is observed in Fig.
11b. At lower latitudes, over the continents, the constraint on the mass field is gradually
miaxed in favor of the rotational part of the wind field.

We now show the impact of the VINMI-2D scheme on the vertical velocity field.
Figure 12a shows the field of vertical velocity o at 700 mb before initialization. This field is
noisy over the Rocky mountains and Gl'eenland. Elsewhere the structure of the field of @ is
synoptically unacceptable. For example consider the low pressure system over the Great
Lakes, with a trough extending northward to Hudson bay (see Fig. 4). The value of o is
positive (i.e. downward motion) in this region and negative (i.e. upward motion) over the
ridge associated with the high system over the Northwest Territories. After initialization
(VINMI-2D), the o field is synoptically acceptable as judged from Fig. 12b. Note also the
narrow band of upward vertical motion west of Alaska, a feature noticeable before
inidalization but refined by the initialization scheme. The ® field for INMI is not shown
since it is essentially identical to the VINMI-2D case (see also FT89 and Fillion 1991
concerning the initialized divergent circulation). In Figs. 13a-c, we show the evolution of the
surface pressure at points 1, 2, and 3 respectively (see Fig. 1 for the location of these
points). The variational scheme has eliminated the high-frequency oscillations just as well as
the unconstrained scheme. Point 3 lies within the region of control of the mass field, and this
is apparent in Fig. 13c where the initial surface pressure field for the uninitialized and
variationally initialized cases are the same. The evolution of the surface pressure at this point
exhibits the familiar behaviour already noted for the height field traces with shallow-water
models (see Fig. 8 of FT89 and Fig. 16 of Fillion 1991). This characteristic signature

reflects fast oscillations around a slowly-evolving meteorologically-significant state. The
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variationally initialized case however shows a slow evolution which differs from the

unconstrained case.

d. Three dimensional control

Puri (1983) studied the impact of variational initialization in the context of data
assimilation using a multilevel spectral model. His study was severely restricted to
latitudinally varying weights thus ignoring the very sharp variation in analysis accuracy
between oceans and continents seen in Figs. 5a-f. The VINMI-2D scheme described in the
preceding sub-section does not have this limitation. Also, an important result reported by
Puri (1983) is the improvement of the assimilation cycle by allowing the weights to vary in
the vertical. This was achieved in his study by assigning lower weights to the higher vertical
modes initialized. As mentioned by Puri, this kind of specification of the weights is
inappropriate in order to reflect the availability of data and analysis reliability in the vertical.
The VINMI scheme developed in Section 3 resolves this problem and allows a full variation
of the weights in the vertical.

We now examine the behaviour of the VINMI-3D scheme when vertical variation of

the weights is introduced. For this purpose, we define
or = HYHE [1 - cos® (9)]

where H* . is defined as before. We perform two experiments as follows

Experiment1 : HY = 1 for 0.5<o0<1
=01 for 005

Experiment2 : HY =1 for 0<0.5
= 0.1 for 0.5<06<1

and ®, is as before. Note that at ¢ = 1, for both experiments, AT and Alnp, are jointly
constrained in the same manner as for the INMI case, i.e. (3.6) is applied, and we set w; = 1
at ¢ = 1 for a maximum retention of the surface pressure information. This latter choice
together with the formulation retained for VINMI as discussed in Section 3 (see (3.5)) forces

the retention of the analyzed temperature field at ¢ = 1, which is not as accurate as the surface
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pressure field. Results concerning this point are discussed at the end of this sub-section.
The present choice of He_ creates (as in the horizontal case) a clear distinction between the
region of control for the VINMI-3D scheme as compared to the standard unconstrained INMI

scheme.

Figures 14a-b show the temperature changes after initialization using the INMI and
VINMI-3D schemes respectively for Experiment 1, for the level 0 = 0.786 i.e. within the
region of control of the temperature changes. It is clear that the analyzed temperature field
over the continent has been maintained by the variational scheme. We also note that outside
the horizontal region of control, the structure of temperature field changes is comparable for
boch schemes. Figure 15 gives the rms temperature changes over the North-American region
of control as a function of the vertical coordinate o, for both INMI and VINMI-3D schemes.
Clearly the variational scheme has forced temperature changes in the desired way, i.e.,
retention of the analyzed temperature field in the lower half of the vertical domain and
relaxation of the constraint in the upper domain (i.e. 6 < 0.5). The transition zone near ¢ =
0.5 is also evident, indicating the robustness of the scheme. The same remark applies to the
results of Experiment 2 shown in Fig.16. The structure of the temperature changes in the
lower half of the domain (¢ > 0.5) for the VINMI-3D scheme are now closer to the changes
forced by the unconstrained scheme. Howevei', in the upper domain, the variational scheme
clearly forced the retention of the analyzed temperature field whereas the unconstrained
scheme produced significant 'temperatum changes. As in the case of the VINMI-2D scheme,
this retention of the temperature field over the continents is done at the expense of the wind
field. This is shown in Fig. 16b for Experiment 2 for the rms changes of the wind field over
the horizontal region of control as a function of the vertical coordinate 6. As mentioned at the
beginning of this sub-section, in order to limit the changes to the surface pressure field, wy at
G = 1 was set to unity for both experiments. This choice appears to be more consistent for

Experiment 1 where the temperature changes are controlled in the lower half of the model
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domain. The temperature chgnges at the top and bottom of the model are very small for both
coastrained and unconstrained experiments. The effect of constraining the initialization
scheme to produce small changes in the temperature and surface pressure fields at ¢ =1 (at
the expense of the rotational part of the wind field) has forced changes to the wind field
(Experiment 2) which produce an increased rms value near ¢ = 1 (see Fig. 16b). We note
however that even for these extreme situations where strong retention of the temperature field
(i.e. Experiment 1 and 2) is forced by the variational scheme, the associated changes to the
wind (not shown) were still smaller than the expected analysis errors. Finally, Figures 17a-b
show the surface pressure traces for Experiment 2 for point 1 (i.e. within the tropics) and
point 4, and indicate the ability of the VINMI scheme to cope with such extreme weights
specification (in the horizontal as well as in the vertical) and produce balanced initial

conditions. The resulting surface pressure traces for Experiment 1 (not shown) are similar.
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S. Summary and discussion
The technique of variational implicit nonlinear NMI (VINMI) is here extended to a

multilevel operational model where (a) the weights vary horizontally and vertically and (b) the
required computer time is maintained below 10 % of the CPU time needed for a 48 h
forecast. By using VINMLI, it is now possible to envisage controlling the initialization
scheme to respect the degree of accuracy of the analyzed fields produced by operational data
assimilation procedures. Results of VINMI in the context of horizontally varying weights
(VINMI-2D) indicate that it is possible to maintain the same degree of balance in the initial
fields as that produced by the INMI scheme and to take into account the very sharp variation
in mass and wind field analysis accuracy between continents and oceans. Also, by allowing
the weights to vary abruptl'y in the vertical, it was possible to demonstrate the ability of
VINMI-3D to operate efficiently in cases of strong variations of the weights in the vertical.

Variational initialization, however, does not resolve the inherent deficiency of the
analysis or the initialization schemes. Rather, it fills the need for abrupt variations in physical
space in the changes caused by initialization to mass and wind fields, permitting horizontal
and vertical variation that is consistent with expected analysis errors and is basically different
than the one used by INMI in order to reach a balanced initial state. In this study, an efficient
and robust scheme to force this constrained adjustment was developed. For practical
purposes, the real test of any modifications to the initialization scheme is the improvement of
the quality of the short-range forecast (typically 6 hours) which ‘serves as a trial or first guess
for the analysis. The next goal will be to examine whether VINMI can lead to such an
improvement in the context of data assimilation. The optimal specification of the variational
weights will have to be considered as a prerequisite to that study.

Finally, we note that a more coherent approach to the analysis-initialization problem
for data assimilation may be to use either a Kalman filtering (Ghil et al., 1982) or optimal
control (Talagrand 1988, Courtier and Talagrand 1988) technique. By combining the model
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and approximate balancing constraints, these techniques can produce balanced initial
conditions which make “optimal” use of the available data during the assimilation period.
However, at present, both of these techniques require prohibitive computer resources which
limits their use in an operational context. Variational initialization in the context of an
operational data assimilation scheme should help (if properly used) to lessen some of the
negative impact of unconstrained nonlinear NMI schemes on the analyzed fields. This
should allow for a better evaluation of the sequential analysis-initialization techniques

currently used for numerical weather prediction.
Acknowledgments. The authors wish to thank Clive Temperton and Andrew

Staniforth for useful suggestions and Herschel Mitchell and Jean COté for their useful
reviews of the paper. We also thank Sylvie Gravel for help with some figures.
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APPENDIX

Calculus of variations in the vertical

a. Boundary conditions for the vertical normal-modes

During the initialization process, it is required to specify the appropriate vertical
boundary conditions on P in a manner which is consistent with the derivation of the vertical
normal modes of the model. To avoid repetition, we refer the reader to Béland and Beaudoin
(1985, Section 2), for the basic derivation. Note however the misprint in their equation

(2.10). The correct form which applies atc=0;,1 is

2 [(_a_ Pk, —!Lp.] A1)

RY' /90  RT,

- Setting the right-hand side of (A1) to zero (i.e. neglecting nonlinear terms), the

v

c=01,1 o=01,1

appropriate vertical boundary conditions for the linearized system about a resting and

isothermal basic state is
*(o
%4-71(_‘—)& =0 a =011 , (A2)
where

and we take T* = 300 K. The constants R and c; are respectively the specific gas constant
and heat capacity for dry air. Successive use of the continuous form of (2.2c), the
hydrostatic equation, and the definition of P, leads to the following equation

dP
v§'°D=QP ’ (A3)

where D = V-V, Q; represents a combination of nonlinear terms, and

9 g 9 :
V3% (Rv'(o)“’ “9
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is referred to as the vertical structure operator. We note that (2.5) is the analogue of (A3)
obtained from the same set of equations but in a discretized form. From (2.5) and (A3)
(nonlinear terms set to zero) it follows that the eigenvectors of the consistent discretization of

V and the eigenvectors of matrix C are the same but the eigenvalues of V satisfy the relation

V &(0) = L-&y(0)
D,
where @, is an eigenvalue and &, an eigenvector of matrix C.

b. Euler-Lagrange equations
We consider the minimization of the functional

j=| | a(Al")
A m?2 |R: 90

}+wv(V(A\y))2+ —r—(AP).2 dxdydc -

= f L, dxdydo : (AS)
D

under the constraint M defined by (3.3a) and the boundary conditions (3.3b,c). The
barotropic case has been discussed by FT89, therefore we need only consider the aew form
of potential energy. For this purpose, we set to zero the first variation of the Lagrangian %
defined by

1= f (L;+22M) dxdydo -j L dxdyds
D

{4
with respect to AP, (ref. Smirnov 1964) where A is a variable Lagrange multiplier. It
follows that
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) ) 32 a2 ]
= - |5aE @] + SL aprat SL AP) dx dy d
0 ID [L (aP) (ao (aPY%| Ix2 (AP)-"' ayz (AP)yy 8( ) y do +

f {f[S(AP),Lm_ - 8P 2L | 0 -
a

r

o=l
+ I [Fapy, 8 4P)] |25, dxdy + ] [ Gar) 8 (AP)) 61 dx dy
- Y D

+ ] [Hap) 5 @P))[ o, dxdy .
[

Ql_o_m)’ . @) upr?
F(X,Y,O') = m2R‘Y. oc ’ G(X.}',O’)’ mZRT. (AP) '

S1 Or(x,,01) &Py .

H(X, 00) 8 -
»e m?RT’

We introduced the notation

oz
Zy 3

Since the normal derivative of (AP) on I' is fixed when (Ay) is fixed (see (3.3b-¢)),

‘the extremum condition is satisfied provided that on the boundary of I" we have the same type

of natural boundary conditions as specified in the barotropic version, i.c. (3.7b). The Euler-
Lagrange equation for (AP) must be satisfied for an extremum, i.e.

2 ? >
L ap) - (&‘-(AP).) *oxa- @Pat 33l amy, = 0

“Therefore it follows that
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2 - :19 |0rodAP)
via m? 00 [R ¥y do (Aa)
%.’})r =0 . (AGb)

We have not yet introduced the vertical boundary conditions that must be imposed on AP.
The natural vertical boundary conditions are
Fapp +Gapy =0 at o =1 (AT

F(Ap)o - H(AP) =0 at o=07 . (As)
Assuming oy > 0, (A7) becomes

0 Y o _
WAPHF(AP)-O at ¢6=1 |,

which has the same form as the lower boundary condition of (A2). Also, condition (A8)
gives the same form as the upper boundary condition of (A2), i.e.

¥ (o1)
T

Thus, the introduction of the term involving H in the functional J generates the same vertical

’a%.(Ap)\t AP =0 a o=o0

boundary conditions as for the unconstrained INMI scheme. We show in subsection 3d that
the present constrained minimization problem reduces to the INMI scheme when the weights
oy and ©, are constant and equal. Finally, we note that for models with the top at ¢ =0, the
usual boundary condition used to define the vertical normal modes, i.e

d

sa(Ap) =0 at =0

is the natural boundary condition that appears in order to minimize the energy functional, and

for that case, the term involving H vanishes as o, — 0.
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Figure captions

- Fig. 1. The horizontal domain and non-uniform grid. Points 1-4 are locations where surface

pressure time-traces are stored during a model integration.
Fig. 2. The vertical distribution of sigma levels of the RFE model.

Fig. 3. Vertical modes 7-10 of the model. (a) solid line: mode number 7, dashed line: mode
number 8; (b) solid line: mode number 9, dashed line: mode number 10.

Fig. 4. Mean sca-level pressure at 00 UTC, 22 January 1986, before initialization. Contour
interval 8 mb.

Fig. 5. Root-mean-square expected analysis error. (a) Height-field (m) at 850 mb, contour
interval 3 m; (b) Height-field (m) at 250 mb, contour interval S m; (c-d) Zonal
- component of the wind (ms-!) at 850 and 250 mb (resp), contour interval 1 ms; (e-

f) Temperature (Celsius) at 850 and 250 mb (resp), contour interval 0.4° C.

Fig.6. The value of BAL as a function of iteration number for the first three vertical modes
of the model for (a) unconstrained (INMI); (b) variational (VINMI-2D) initialization.

Fig. 7. Root-mean-square increments of the generalized-geopotential field (m?s-2) as a
function of the vertical coordinate ¢ for the first three iteration of the (a)
unconstrained (INMI) scheme ; (b) variational (VINMI-2D) scheme.

Fig. 8. Root-mean-square increments of the modulus 'of the wind field (ms) as a function
of the vertical coordinate G for the first three iterations of the (a) unconstrained
(INMI) scheme; (b) variational (VINMI-2D) scheme.

Fig.9. Height-field differences (m) at ¢ = 0.250 between initialized and original (analyzed)
fields. (a) INMI; (b) VINMI-2D. Contour interval Sm.

Fig. 10. Height (m) and wind field differences (ms!) at ¢ = 0.250 between variationally
initialized (VINMI-2D) and unconstrained initialized (INMI) fields. Maximum
wind modulus 2 ms!. Contour interval 10 m.

Fig. 11. Surface pressure changes (mb) of the original analyzed field done by the
initialization schemes. (a) unconstrained INMI; (b) variational VINMI-2D
Contour interval 0.5 mb.

Fig. 12. Vertical velocity @ (ubst) at 700 mb. (a) before initialization; (b) after VINMI-2D.
Contour interval 2 pbs-! .

Fg. 13. Time trace of surface pressure at selected grid points (see Fig. 1). (a) point 1; (b)
point 2; (c) point 3. Solid line: no initialization. Dashed line: after three iterations
of INMIL. Dotted line: after three iterations of VINMI-2D. ‘

Fig. 14. Temperature changes at ¢ = 0.786 due to (a) unconstrained initialization (INMI);
(b) variational initialization (VINMI-3D). Contour interval 0.05 deg.
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Fig. 15. Root-mean-square changes of the original (analyzed) temperature ficld over the

- North-American region of control as a function of levels 6. Solid line:
-~ v unconstrained initialization (INMI). Dashed line: variational initialization (VINMI-
- 3D, Experiment 1). :

Fig. 16. Root-mean-square changes of the original (analyzed) (a) temperature (deg); (b)
modulus of the wind (ms!), over the North-American region of control as a
function of levels 6. Solid line: unconstrained initialization (INMI). Dashed line:
variational initialization (VINMI-3D, Experiment 2).

Fig. 17. Time-trace of surface pressure at selected grid points. (a) point 1; (b) point 4.

Solid line: no initialization. Dashed line: unconstrained initialization (INMI, 3
iterations). Dotted line: variational initialization (VINMI-3D, 3 iterations).
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Fig. 5. Root-mean-square expected analysis error. (a) Height-field (m) at 850 mb, contour
interval 3 m; (b) Height-field (m) at 250 mb, contour interval S m; (c-d) Zonal
component of the wind (ms!) at 850 and 250 mb (resp), contour interval 1 ms; (e-
f) Temperature (Celsius) at 850 and 250 mb (resp), contour interval 0.4° C,
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Fig. 13. Time trace of surface pressure at selected grid points (see Fig. 1). (a) point 1; (b)
point 2; (c) point 3. Solid line: no initialization. Dashed line: after three iterations
of INMIL Dotted line: after three iterations of VINMI-2D.
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point 2; (c) point 3. Solid line: no initialization. Dashed line: afier three iterations
of INMI. Dotted line: after three iterations of VINMI-2D.
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Chapter VI
Conclusion

The idea of including the level of accuracy of analyzed fields (produced by optimal
interpolation) into the nonlinear normal mode initialization procedure for numerical weather
prediction was considered. We first investigated the applicability of a variational framework
for INMI w1thm simple shallow-water models. We were interested by the neceSsity to take
into account the sharp distinction in reliability of analyzed fields over land and ocean within
the nonlinear adjustment process between mass and wind fields. The extension to the
multilevel case also appeared as a desirable aspect of the scheme since there is a known
variation of reliability of analyzed fields with respect to the vertical.

Daley (1978) was the first to suggest a variational extension of nonlinear NMI. The
essential difficulty associated with Daley's scheme is due to the dimensionality of the
resulting variational problem due to the inherent “normal mode™ space formulation. The
emergence of an approximation of the “explicit " nonlinear NMI technique called “Implicit
nonlinear NMI (INMI)" (Temperton 1988) which is formulated in physical space, was the
basis for reconsidering Daley's proposal. By combining INMI with a given minimization
criteria, the resulting problem could be studied in the context of horizontally and vertically
varying weights to fully reflect the analysis accuracy.

The feasibility of variational explicit nonlinear NMI has already been demonstrated in
the past for the spectral form of the shallow-water equations (Daley 1978, Tribbia 1982). To
be considered as an original development, the present study needed to adress the feasibility
and efficiency of VINMI for shallow-water models first. The efficiency problem was
considered as an important practical aspect since it is essentially that point which limited the

usefulness of variational “explicit” nonlinear NML.
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In chapter III, Machenhauer's scheme expressed in physical space was imposed as a
strong constraint for the minimization of an energy type functional. Conservation of mass
was further imposed to close the variational problem. Also, consistent boundary conditions
were formulated for the model's fast and slow modes. The formulation allowed a strong
variation of the weights in the horizontal in order to reflect the ocean-continents contrast in
the analysis reliability. The INMI scheme developped by Temperton (1988) was shown in
the present study to be a special case of VINMI when the weights on the rotational part of the
wind and mass fields are set equal and constant. One important aspect distinguishes INMI
and VINMI, that is VINMI has the ability to alter the evolution of the slow modes (to remain
closer to the analysis) thus VINMI does generally lead to a different forecast of synoptic scale
systems as compared to an uninitialized forecast. This aspect is not present in unconstrained
explicit or’implicit nonlinear NMI schemes since the slow modes of the analysis are left
unchanged. One clearly sees here the importance of the specification of the variational
weights in order to improve the performance of a data assimilation scheme. This aspect was
not considered in the present study but will have to be examined carefully in the future.
VINMI as formulated here does not control explicitly the changes on the divergent part of the
analyzed flow. This restriction was not present in Daley's or Tribbia's variational scheme
mentioned previously. As for INMI, VINMI is also unable to distinguish (in terms of
frequency) which fast modes should be balanced. This latter aspect is the most serious one
when this scheme is considered in a baroclinic context where (as shown by Errico 1989) the
accuracy of Machenhauer's scheme rapidly diminishes when applied to gravity modes with
resonant periods greater than 10 hours say. On a practical point of view, the VINMI scheme
considered in chapter III deals with a variational adjustment of 30,000 variables in a very
efficient way using an iterative procedure accelerated with a conjugate-gradient technique.

The VINMI scheme may also.be used to improve the rather “brute” force adjustment

" imposed on the initial wind field near the wall boundary in order to satisfy the “no cross-

boundary” mass flux necessary to integrate the RFE model. When directly applied, i.e. by

132



0O

O

zeroing the normal component of the wind field on the wall boundaries, and without an
appropriate adjustment of the mass field, this results in a local dynamical imbalance between
the mass and wind fields which excites essentially the equatorially trapped gravity-inertia
modes of the model. Applying the initialization scheme (INMI) on these modified fields will
result in a redistribution of this original local imbalance throughout the horizontal domain.
To limit the impact on midlatitude fields, VINMI could be used to explore the degree of
flexibility of the method to control this problem. This aspect of the “initialization problem”
for limited area models was not considered in the present work.

In the second part of this study, we extended in chapter IV the variational approach of
chapter III to global spectral models. Using a triangularly truncated spherical harmonics
representation up to zonal wavenumbers 63, similar results as those for the barotropic RFE
model were obtained. Also, using an f-plane approximation, Leith's’ (1980) result was
recovered due to the exact equivalence between explicit and implicit nonlinear NMI for that
case. The familiar problem of divergence of the height-constrained initialization (a special
case of VINMI where the weight on the rotational part of the wind field is much less than the
weight on the mass field) was then put into evidence and related to the ellipticity condition for
the nonlinear balance equation (see Charney 1955, Tribbia 1981).

The fact that the estimated errors of the analyzed fields have in addition to a strong
horizontal contrast (see chapter IV) a vertical structure, asked for a consistent generalization
of the VINMI method for multilevel models. This problem was faced in chapter V and it was
shown that VINMI could naturally be extended to multilevel models using a known property
of Machenhauer's scheme vis-a vis the linearized form of energy. The numerical procedure
developed in chapters III and IV could also be naturally extended into three dimensional
space without requiring excessive computer resources in terms of additional memory and
computer time as compared to the operational version of the RFE model. The VINMI-3D
scheme requires ~ 8% of the total computer time needed for a 48 hour forecast and compares

favourably to the 2% required by the unconstrained INMI scheme. It is still possible to
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improve this combuter time but this has not been further considered in this study. Using two
simple weight specification cases, the VINMI-3D scheme was shown to respond adequately
to known structures of the variational weights. The horizontal and vertical structure of the
changes on the analyzed fields were diagnosed for each cases. The adjustment process in 3D
space requires an estimation of the error distribution of error variance of the analyzed fields in
order to adequately set the initial state. The ensemble of weights used principally in this
study were specified in order to demonstrate the potential and robustness of the VINMI
scheme in extreme situations (altough still quite realistic, see chapter IV).

Future research based on the present work could be to extend the technique to

- Global variable resolution models of the atmosphere

- Mesoscale models.
Finally, the precise structure of the optimal weights to be used by the VINMI scheme

has not been adressed in this study. This part is crucial in order that VINMI be beneficial for

data assimilation.
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S Corrections to chapter III and IV
1) p.37 Dr. Luc Fillion should be Luc Fillion.
2) p.50 Dr. Luc Fillion should be Luc Fillion.
3) equation (2.5)
By = ialn(m+1)] 7 Dp (2.5)
4) p.53 ... algebraic system (2.13) should be algebraic system (2.14).
5) p. 58 ¢p should be wy .
-
-
-
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