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ABSTRACT 

Using the technique of Implicit nonlinear Normal Mode Initialization (INMI), we 

consider the extension of this method in a variational framework for initializing NWP 

models. The fact that INMI works in physical space instead of the normal mode space, 

offers the possibility to efficiently reconsider Daley's (1978) original proposal. 

The frrst pan of this study gives the formulation of a variational INMI scheme 

(VINMI) for shallow-water models using Daley's approximation. Applications of VINMI 

to a regional finite elements shallow-water model with a fairly large number of degrees of 

freedom ( - 30,000 ) is first considered. It is shown that the VINMI scheme has the same 

balancing benefits as INMI but also efficiently control the changes that are made to the 

analyzed fields in a way consistent with their estimated error variance. Results of a two day 

forecast also indicate that VINMI has the possibility to significantly affect the slowly 

evolving component of the flow. 

The second pan of this research extends the VINMI scheme to a global spectral 

shallow-water model with triangular truncation at zonal wavenumber 63. Similar 

conclusions as the regional model are obtained in the present context (including a 

reasonable computer cost), thus extending the range of applicability of the method to those 

models which are more commonly used in NWP. Simple connections between INMI and 

quasi-geostrophic theory are also used to asses the convergence problem of the method in 

the context of height-constrained initialization. 

The third aspect of the study shows that the VINMI procedure can be generalized in 

a consistent way to multilevel NWP models. Several tests indicate the efficiency and 

robustness of the scheme in an operational context. 

Finally, a general outlook of possible future developments of the variational scheme 

is presented at the end of the thesis. 

i 



RESUME 

On considere l'extension dans un cadre variationnel de la methode d'initialisation 

implicite ( ou intrinseque ) non lineaire par modes normaux (INMI). La formulation dans 

l'espace physique de 11NMI rend l'idee originale de Daley (1978) plus interessante a 

considerer dans un cadre operationnel. 

La·premiere partie de ce travail offre une formulation variationnelle de l'INMI 

(VINMI) basee sur !'approximation de Daley. La methode est ensuite appliquee a un 

mode le aux elements finis pour les equations de Saint-Venant ayant un assez grand nombre 

de degres de liberte ( - 30,000 ). 11 est demontre que la VINMI peut foumir un equillibre 

dynamique comparable a celui obtenu par l'INMI, mais permet en plus de controler les 

changements faits aux champs d'analyse. Un resultat important dans ce contexte est que la 

VINMI a un impact non negligeable sur les champs prevus apres 48 heures d'integration. 

En seconde partie, on a etendu la VINMI a un modele spectral global des equations 

de Saint-Venant avec une troncature spatiale triangulaire au nombre d'onde zonal63. On y 

a observe le meme type de resultats que pour la version a domaine limite (y inclus un cofit 

informatique abordable ) donnant ainsi un champ d'application plus vaste de la methode, 

etant donne !'utilisation assez repandue de la methode spectrale dans les centres de 

recherche en previsions numeriques. Le probleme de convergence de la VINMI dans un 

contexte de controle du geopotentiel uniquement fut ensuite examine a partir de liens avec la 

theorie quasi-geostrophique. 

La VINMI est finalement consideree dans un contexte barocline. On a etabli une 

formulation generalisee de la VINMI qui opere completement dans l'espace physique mais 

qui conserve l'aspect important de ·· restriction verticale ·· du schema de Machenhauer 

(1977). La methode fut testee dans le contexte d'un modele de prevision operationnel 

Canadien. 

ii 



0 

c 

ACKNOWLEDGEMENTS 

The author would like to thank Dr. Clive Temperton for initiating and supporting 

the present work while he was at the ·· Division de recherche en prevision numerique ·· 

(DRPN) at Dorval. His continuous and kind guidance during the course of this research 

are greatly acknowledged. 

I am also grateful to Drs. Tom Warn (McGill University) and Andre Robert 

(Universite du Quebec a Montreal) who acted as thesis director and advisor respectively. 

The author also greatly benefited from unavoidable daily interactions with Dr. Andrew 

Staniforth at DRPN. 

Thanks are also due to Drs. Harold Ritchie and Jean Cote at DRPN for providing 

the computer code of their spectral shallow-water models used in chapter IV of this thesis. 

I am also grateful to the research staff at DRPN for their interest during the regular 

seminars, and to the "division informatique du RPN" for their expert programming 

support. 

I wish to thank also Drs. Jacques Derome (McGill university) and Michel Beland 

(chef du RPN) who made this type of research feasible. 

Finally, I acknowledge the remarkable assistance ofmycolleagues Pierre Gauthier 

and Sylvie Gravel at RPN during the redaction of this thesis. 

iii 



TABLE OF CONTENTS 

Abstract 

Resume 

Acknowledgements 

Table of contents 

List of Figures 

List of Tables 

Statement of originality 

Manuscripts and authorship 

Chapter I General Introduction. 

1.1 The initialization problem 

1.2 The initialization methods 

1.3 Constrained initialization 

Chapter II Initialization methods for primitive equation models and 

their relationship. 

II.1 The shallow-water model 

11.2 The normal modes of the shallow-water equations 

11.3 The nondimensional form of the shallow-water equations 

II.4 Quasi-geostrophic balancing 

11.5 The Bounded Derivative method 

11.6 Initialization schemes in normal mode space 

a. Baer and Tribbia's initialization method 

b. Lorenz's scheme 

iv 

Page 

1 

ii 

iii 

iv 

vii 

XV 

xvi 

xvii 

1 

3 

8 

11 

13 

16 

17 

21 

23 



. ~. 

ll.7 The Implicit nonlinear Normal Mode Initialization method 

a. Basic formulation 

b. A simple illustration of the methcxl 

c. The relationship between INMI and BDI methods 

Cahpter Ill Variational implicit normal mode initialization for a 

regional finite-element shallow-water model. 

Ill. I Presentation of article 1 

Ill.2 Article 1. 

Variational implicit normal mode initiaJization. 

Monthly Weather Review, 117,2219-2229 . 

Chapter IV Variational implicit normal mode initialization for a 

global spectral shallow-water model. 

IV.l Presentation of article 2. 

IV .2 Article 2 

Variational implicit normal mode initialization on the sphere. 

Monthly Weather Review, 119,631-652. 

Chapter V Variational implicit normal mode initialization for a 

multilevel model. 

V.1 Presentation of article 3. 

V.2 Article 3 

Variational implicit normal mode initialization for a multilevel model. 

Submitted to Monthly Weather Review. 

V 

Page 

28 

34 

36 

48 

49 

72 

73 



0 
Chapter VI Conclusion 

Bibliography 

Corrections to chapter Ill and IV 

vi 

Page 

131 

135 

140 



~ List of Figures 
~ 

Figure Page 

1.1 Time-trace of surface pressure for a point in the Northern-Atlantic as 2 

forecast by the operational Canadian RFE model. Solid line: no init-

tialization. Dashed line: after three iterations of Implicit Nonlinear NMI 

(after Tempenon and Roch 1991). 

1.2 Variational initialization in phase-space. 9 

2.1 The shallow-water model 12 

2.2 Dispersion diagram for (a) f-plane shallow-water models in 15 

normalized frequency and wavenumber coordinates. 

,-,, The nonnalization factors are respectively f and e~»a , and the 

_... Rossby modes are stationary. (b) a global spectral shallow-water 

model with equivalent depths 10 km and 100 m (Daley 1986). 

Article 1 

1 The experimental domain and the nonuniform grid Time traces in 42 

height field given by Figs. 8 and 10 are associated with gridpoints 

denoted A and B respectively. 

2 The uninitialized height field (contour inteiVal 10 dam). 42 

3 Spatial structure of weighting function w • for experiment in section 3a. 43 

4 Difference in height field between unconstrained initialization and no 43 

initialization (contour interval 7 m). 
~ .....,., 

vii 



Figure Page 
~. 

~ 5 Difference in streamfunction field between unconstrained initialization 43 

and no initialization (contour interval4 x lOS m2 s·1
) 

6 Difference in height field between variational adjustment using latitudinal 44 

weights w•, wv and no initialization (contour interval7m). 

7 Difference in streamfunction field between variational adjustment using 45 

latitudinal weights w •, w • and no initialization (contour interval 

4 x IOS m2 s·1
) 

8 Time trace of height field for point A shown in Fig. 1. 46 

Heavy line- no initialization, dashed line- unconstrained initialization 

(2 iterations), light line- variational initialization using latitudinal weights 

(3 iterations) . 

. ~ ._,. 9 Difference in height field between variational initialization using latitude- 46 

longitude weights and variational initialization using latitudinal weights. 

(contour intexval5m). 

10 Time trace of height field for point B shown in Fig. 1. 47 

Heavy line- no initialization, dashed line- unconstrained initialization, 

light line- variational initialization using latitude-longitude weights. 

11 Difference in height field between variational initialization using 47 

latitude-longitude weights and unconstrained initialization. 

Day 0, contour interval 5 m, maximum amplimde 22 m. 

12 As in Fig. 11, but after two days of model integration. 47 

Contour interval 10 m, maximum amplitude 67 m. 

~ 

~ 

viii 



Figure Page 
~ _, 

Arti"l" 2 
1 Variational initialization in phase space. 52 

2 The uninitialized height field (contour intervall 0 dam). 52 

3. Difference in height field between unconstrained initialization and no 53 

·initialization (contour intervallO m). 

4 Difference in height field between variational adjustment (using latitudinal 54 

weights coq,, ~)and no initialization (contour intervallO m). 

5 Latitudinally varying weight ro• 55 

6 Difference in potential function x between unconstrained initialization 56 

and no initialization (contour intervallOxlOS m2 s-1 ). 
-~ 

~ 
7 Difference in potential function X between variational adjustment using 57 

latitudinal weights ffi+. ~ and no initialization. 

(contour intervallOxlOS m2 s-1). 

8 Wind differences between variationally adjusted (using latitudinal 58 

weights) and unconstrained initialized fields. Maximum wind 

modulus= 15ms·1• 

9a Difference in height field between variational initialization using 59 

latitude-longitude weights and variational initialization using 

latitudinal weights (contour intervalS m). 

9b Difference in height field between variational initialization using latitude- 60 

longitude weights and original uninitialized fields (contour interval 10 m). 

~ 
""-' 

ix 



Figure Page 
~ ...... 
~ 9c Wind difference between variationally adjusted (using latitude-longitude 61 

weights) and original uninitialized fields (maximum modulus= 1.5 ms·l). 

10 Same as Fig. 9b. but for the southern hemisphere (contour interval tO m). 62 

11 Difference height field between unconstrained initialization and no 63 

' initialization for the southern hemisphere (contour interval10 m). 

12 a Typical standard deviation of estimated errors of the analyzed 500 mb 64 

height field for a winter case. Contour interval 2 m. 

12b. Typical standard deviation of estimated errors of the analyzed 500 mb 65 

zonal component of the wind field for a winter case. Contour interval 

1 ms·1 
• 

. ~ 12c Difference in height field between variational initialization using known 66 .....,., 
standard deviations of the analyzed fields and unconstrained initialization, 

after 48 hour forecast Contour interval 10 m. 

13. Behaviour of BAL1 as defined in section 4c for INMI and 67 

VINMI (latitudinal weights) as a function of iteration number. 

14 Time trace of height field for point located at (45.700N, 1800 long.). 67 

Heavy line - no initialization, dashed line - unconstrained initialization, 

light line- variational initialization using latitude-longitude weights. 

15 Same as Fig. 14. but for point at (0.93°N, 1800 long.). 67 

16 Same as Fig. 14. but for point at (45.700S, 1800 long.). 67 

........... 17. Height-constrained initialization in phase space. 68 

~ 

X 



Figure 

18. Northern hemisphere distribution of the ellipticity measure M as 

defined by (5.16). For clarity, only the location of the maximum 

values are indicated for positive values of M. 

Page 

68 

19. Behaviour of the quantity BAL1 as a function of iteration for 69 

different values of the weight cov in the context of height-constrained 

initialization. · 

Article 3 

1. 

2. 

3. 

4. 

5. 

The horizontal domain and non-uniform grid. Points 1-4 are 

locations where surface pressure time-traces are stored 

during a model integration. 

The vertical distribution of sigma levels of the RFE model. 

Vertical modes 7-10 of the model. (a) solid line: mode number 7, 

dashed line: mode number 8; (b) solid line: mode number 9, 

dashed line: mode number 10. 

Mean sea-level pressure at 00 UTC, 22 January 1986, 

before initialization. Contour interval 8 mb. 

Root-mean-square expected analysis error. (a) Height-field (m} 

at 850mb, contour interval3 m; (b) Height-field (m} 

at 250mb, contour interval 5 m; (c-d) Zonal component of the 

wind (ms·1) at 850 and 250mb (resp), contour interval 

1 ms·1; (e-t) Temperature (Celsius} at 850 and 250mb (resp), 

contour interval 0.4 ° C. 

xi 

109 

110 

111 

112 

113 



Figure Page 
'~ 

~ s. Root-mean-square expected analysis error. (a) Height-field (m) 114 

at 850 mb, contour interval 3 m; (b) Height-field (m) 

at 250 mb, contour intervalS m; (c-d) Zonal component of the 

wind (ms·1) at 850 and 250mb (resp), contour interval 

1 ms-t; (e-f) Temperature (Celsius) at 850 and 250mb (resp), 

contour interval 0.4 ° C. 

s. Root-mean-square expected analysis eiTOr. (a) Height-field (m) 115 

at 850mb, contourinterval3 m; (b) Height-field (m) 

at 250mb, contour intervalS m; (c-d) Zonal component of the 

wind (ms·1) at 850 and 250mb (resp), contour interval 

1 ms·1; (e-f) Temperature (Celsius) at 850 and 250mb (resp), 

contour interval 0.4 ° C. 

6. The value of BAL as a function of iteration number for the 116 ,.,., 
first three vertical modes of the model for (a) unconstrained 

~ 
(INMI); (b) variational (VINMI-2D) initialization. 

7. Root-mean-square increments of the generalized-geopotential field 117 

(m2 s-2) as a function of the vertical coordinate a for the first three 

iterations of the (a) unconstrained (INMI) scheme; (b) variational 

(VINMI-2D) scheme. 

8. Root-mean-square increments of the modulus of the wind field 118 

(ms-1) as a function of the vertical coordinate a for the first three 

iterations of the (a) unconstrained (INMI) scheme; (b) variational 

(VINMI-2D) scheme. 

9. Height-field differences (m) at a= 0.250 between initialized 119 

and original (analyzed) fields. (a) INMI; (b) VINMI-2D. 

......., Contour interval 5m . ,.,... 
xii 



Figure ,..., 
~ 10. 

11. 

12. 

13. 

~ 

'-' 

13. 

13. 

14. 

Height (m) and wind field differences (ms-1) at a = 0.250 

between varlationally initialized (VINMI-20) and unconstrained 

initialized (INMI) fields. Maximum wind modulus 2 ms-1• Contour 

interval 10 m. 

Surface pressure changes (mb) of the original analyzed field 

done by the initialization schemes. (a) unconstrained INMI; 

(b) variational VINMI-2D Contour interval 0.5 mb. 

Vertical velocity m (J.Lbs-1) at 700mb. (a) before initialization; 

(b) after VINMI-2D. Contour interval2 J.Lbs-1 • 

Time trace of surface pressure at selected grid points (see Fig. 1). 

(a) point 1; (b) point 2; (c) point 3. Solid line: no initialization. 

Dashed line: after three iterations of INMI. Dotted line: after three 

iterations of VINMI-2D. 

Time trace of surface pressure at selected grid points (see Fig. 1). 

(a) point 1; (b) point 2; (c) point 3. Solid line: no initialization. 

Dashed line: after three iterations of INMI. Dotted line: after three 

iterations of VINMI-2D. 

Time trace of surface pressure at selected grid points (see Fig. 1). 

(a) point 1; (b) point 2; (c) point 3. Solid line: no initialization. 

Dashed line: after three iterations of INMI. Dotted line: after three 

iterations of VINMI-2D. 

Temperature changes at a= 0.786 due to (a) unconstrained 

initialization (INMI); (b) variational initialization (VINMI-30). 

Contour interval 0.05 de g. 

xiii 

Page 

120 

121 

122 

123 

124 

125 

126 



Figure Page 
,...,.,. 
~ 15. Root-mean-square changes of the original (analyzed) temperature 127 

field over the North-American region of control as a function of 

levels a. Solid line: unconstrained initialization (INMI). 

Dashed line: variational initialization (VINMI-3D, Experiment 1 ). 

16. Root-mean-square changes of the original (analyzed) 128 

(a) temperature (deg); (b) modulus of the wind (ms·1), over 

the North-American region of control as a function of levels a 
Solid line: unconstrained initialization (lNMI). Dashed line: 

variational initialization (VINMI-3D, Experiment 2). 

17. Time-trace of surface pressure at selected grid points. (a) point 1; 129 

(b) point 4. Solid line: no initialization. Dashed line: 

unconstrained initialization (INMI, 3 iterations). Dotted line: 

~ variational initialization (VINMI-3D, 3 iterations). ,...,., 
17. Time-trace of surface pressure at selected grid points. (a) point 1; 130 

(b) point 4. Solid line: no initialization. Dashed line: 

unconstrained initialization (INMI, 3 iterations). Dotted line: 

variational initialization (VINMI-3D, 3 iterations). 

xiv 



List of Tables 

Table Page 

1. Daley's weights 44 

2. latitude-longitude weights 46 

XV 



STATEMENT OF ORIGINALITY 

The original findings of this thesis are : 

1) The fonnulation and application of an efficient variational implicit nonlinear nonnal 

mode initialization method for 

2) 

a.: a regional finite-element shallow-water model 

b. a global spectral shallow-water model 

a. The fonnulation of a variational implicit nonlinear nonnal mode initialization 

method for a multilevel modeL 

b. Application of the VINMI-30 to an operational regional baroclinic model for 

numerical weather prediction. 

The VINMI method as formulated in the present study allows for the first time in 

the field of nonlinear normal mode initialization for numerical weather prediction models, 

to balance the analyzed fields in a consistent manner with their known statistical error 

distributions in three dimensional space. 
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Chapter I 

Introduction 

1.1 The initialization problem 

One of the earliest problems encountered in the development of numerical weather 

prediction (NWP) with the primitive equation models, concerned the generation of spurious 

fast oscillations during the forecast integration. Since that time, it has been recognized that 

the problem of properly setting the initial data for such models requires special treatment In 

fact when directly inserting initial conditions for mass and wind fields obtained from an 

analysis scheme, it quickly becomes apparent that high frequency oscillations with 

unacceptably large amplitudes are generated during the integration of the model. Figure 1.1 

for example, illustrates this behaviour for a 48 hour forecast using the Canadian regional 

finite-elements model (RFE) operational at CMC (Centre Meteorologique Canadien) 

starting with analyzed fields. Fast oscillations in the surface pressure field are present with 

an amplitude of 2mb, a feature which is rare in the routinely observed surface pressure 

data at weather reporting stations throughout the world. Fast oscillations of the gravity 

wave type are known to exist in the real atmosphere but their associated energy represents a 

small part of the total motion which evolves on much slower timescales. 

Depending on the diffusion properties of the model (i.e. numerical and explicit 

diffusion), these oscillations will persist typically for the first 12-24 hours of a forecast 

unless the initial mass and wind fields are properly adjusted. This initial adjustment is 

referred to as initialization. Since most current operational analysis schemes do not produce 

·balanced .. (to be defined later) initial data, these unrealistic large amplitude oscillations can 

seriously damage the quality of the forecasts during the early stages of integration. A 

classical disastrous aspect of these fast oscillations, is that they have associated with them 

a considerable amount of divergence and vertical motion which can completely obscure the 
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2 



slowly evolving meteorologically significant cloud and precipitation patterns. 

I .2 The initialization methods 

The problem of ·· initial imbalance .. may be attacked by imposing diagnostic 

balancing relationships on the initial data in order to mimic the approximate type of 

.. balance" observed in long term integrations of the model. One of the most widely used 

operational analysis scheme at the present time, .. statistical optimal interpolation (01) .. 

(Gandin 1963), uses geostrophic balance in a multivariate analysis mode (Rutherford 

1972). Ignoring some other well known deficiencies of the OI schemes, geostrophy is 

easily shown to be a too crude approximation. Williamson et al. (1981) examined the 

accuracy of 01 analyses when geostrophy is used to determine covariances between 

analyzed variables. Their study also clearly demonstrated an improved behaviour of the 

slow and fast (transient inertia-gravity) components (based on Tribbia's 1981 axisymmetric 

vortex) when a more accurate nonlinear relationship is used. The earliest attempt to force a 

nonlinear balance between dynamical variables of the model was based on the nonlinear 

balance equation (Charney 1955) obtained by setting D = otD = 0 in the divergence 

equation (where D is the horizontal divergence of the wind field) thereby giving a relation 

between the rotational part of the wind field and the geopotential (see also section 2.4). The 

nonlinear balance equation gives no information on the initial divergent wind field and 

Phillips (1960) pointed out that initial fields with vanishing divergence lead to an imbalance 

with subsequent high frequency oscillations. He proposed that the nonlinear balance 

equation be supplemented by a form of the classical omega equation to obtain a 

divergent initial wind field. Further discussions concerning the use of the balance equation 

are given in chapter II and IV. 

During the period 1968 to 1977, the dynamic initialization method was 

introduced. This consists of integrating the model forward and backward around the initial 

3 
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time to allow the model to adjust before starting a forecast. The procedure used a special 

time integration scheme that selectively damps the amplitude of certain high frequency 

modes. The earliest contributions are those of Miyakoda and Moyer (1968) (using a limited 

area two layer baroclinic model with Euler-backward time integration scheme), Temperton 

(1973) (with the shallow-water equations), and Temperton (1976) (similar to Nitta and 

Hovermale 1969, on a five level hemispheric model). One disadvantage of this method 

relates to the lack of control on the magnitude of the changes to the slow component of the 

analyzed fields during this cycling process. Also, dynamic initialization would seem to 

eliminate fast modes by introducing an artificial numerical diffusion. One consequence 

could be that it leads to a false balance, i.e., an effective dissipative term is added to the 

right-hand side of the fast mode equations which changes the nature of the balance. 

Consequently, it is not clear that this method can be justified in the context of initialization. 

The method does have the advantage that it is easy to apply (even for the non-hydrostatic 

primitive equations, Tanguay et al. 1990). 

Meanwhile, the need to improve our understanding of the type of "balance" 

developped by primitive equation models for weather forecasting forced the development of 

more sophisticated initialization methods. This lead naturally to the normal mode 

initialization (NMI) method. By considering the discretized form of the model 

equations, linearized about a basic state atmosphere, the resulting linearized dynamics 

describes the evolution of a broad spectrum of free modes called normal modes. An 

essential characteristic of this spectrum is the appearence of two widely different groups of 

frequencies referred to as slow (Rossby) and fast (gravity-inertia) modes. Once the 

structure and frequencies of the normal modes has been obtained, the model equations may 

be rewritten in normal mode space (i.e. the linear space spanned by the normal modes). 

Balancing schemes devised to force the fast gravity modes to evolve slowly in time by 

properly specifying their amplitudes in normal mode space at the initial time are termed 

normal mode initialization schemes. A number of NMI techniques for the primitive 

4 
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equations exist at this time and some of them will be considered more precisely in the next 

chapter. 

As mentioned previously, it inevitably turns out that analyzed fields have some 

projection on the fast modes with amplitudes not reflecting the appropriate "balance" 

required by the model itself. Altough this is generally negligible for mean or long term 

forecasts ( > 2 days), the proper initial setting of these modes is a fundamental problem 

when viewed from the point of view of data assimilation. 

Dickinson and Williamson (1972) were the first to use the model's normal modes in 

the initialization problem. Although it required the construction of the normal modes of the 

numerical model, the approach was attractive in that it dealt directly with the spectrum of 

frequencies and structure of the fast modes. This aspect was attractive compared to quasi­

geostrophic theory since it improved the compatibility of the balancing schemes and the 

underlying model. The limited benefit of Dickinson and Williamson's experiments using 

linear NMI (i.e. eliminate the initial amplitude of the fast modes in the analyzed fields ) was 

rapidly improved by considering the nonlinear nature of the dynamical system written in 

normal mode space. Machenhauer (1977) devised his nonlinear balancing scheme by 

observing (i.e by running a spectral shallow-water model) that the nonlinear forcing term 

for the fast modes varied "slowly" (i.e. on a much slower timescale than the amplitude of 

the fast modes). His scheme (as will be discussed in subsequent chapters) thus required the 

vanishing of the time tendency of the amplitudes of the fast modes. 

Baer (1977) and "later" Baer and Tribbia (1977) used a Rossby number expansion 

of the scaled primitive equations in normal mode space to devise a "filtering procedure" of 

the fast oscillations. In operational practice, Machenhauer's scheme was preferred and 

introduced by Andersen (1977), Daley (1979), and Temperton and Williamson (1979) for 

global models. Ballish (1980) analyzed the application ofBaer and Tribbia's initialization 

scheme for the NMC (National Meteorological Centre) global spectral model and found 

similar performance of the scheme as compared to Machenhauer's scheme. Until now, 
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numerical modellers have concentrated their efforts on the application of the nonlinear NMI 

to their models, discovering various limitations of Machenhauer's scheme regarding the 

number of vertical modes to be initialized, the proper treatment of diabatic effects, etc. 

These specific problems are well documented in Temperton and Williamson (1979) and 

Daley (1981) for example. There is also the possibility of examining the behaviour of the 

fast modes that we usually initialize when the model is ·· properly balanced ·· and try to 

assess the degree of accuracy of the preceding initialization methods. This type of 

pioneering work has been done by Errico (1984, 1988 a,b,c, 1989 a,b) for climate models 

and a mesoscale model both using the primitive equations. Further research of this type is 

of crucial importance if the nature of dynamical balance is to be accurately characterized. 

Ballish (1980) was the ftrst to show that the main benefits of nonlinear NMI (i.e. 

balancing the highest frequency gravity-inertia oscillations of the model) could be obtained 

by neglecting the .. beta terms .. in his linearized system used to determine the normal 

modes, a technique which he called non-normal mode initialization. This reasoning was 

based on the ideas of the bounded derivative initialization (BDI) method of Kreiss 

(1979, 1980). This latter initialization method was frrst used in the meteorological context 

by Browning et al. (1980). The BDI method has a firm mathematical sounding, and deals 

with the specification of initial data (including boundary conditions if necessary) for 

ordinary or partial differential (hyperbolic) systems having different time scales. 

The practical use of nonlinear NMI in regional models received more attention at the 

beginning of the 1980's . The nonseparability of the linearized equations due to the 

appearence of the horizontally variable map scale factor and Coriolis parameter (for 

projected grids) render the determination of the normal modes of the model intractable. 

Briere (1982) and Bourke and McGregor (1983) reexamined Ballish's results and 

succeeded in applying the ideas of nonlinear NMI for their regional models using specific 

assumptions to eliminate the beta terms in their linearizations. Their results together with 

Ballish's results pointed out an interesting direction of research in the domain of 
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initialization, that is: "what is the least drastic approximation in the linearization of the 

primitive equations that permits the physical space formulation of nonlinear NMI ? ··. 

Temperton (1985) was the first to establish a general formulation for what he called 

implicit nonlinear NMI using a simple algebraic reformulation of the standard .. explicit 

·· nonlinear NMI procedure. It was later shown by Temperton (1988, 1989, 1991) and 

Juvanon du Vachat (1986, 1988) that implicit normal mode initialization is also feasible by 

including most of the beta-terms of the usuallinearization considered in explicit NMI. The 

technique has been extended successfully to the operational Canadian RFE model 

(Temperton and Roch 1991) an to the operational global spectral model at the European 

Centre for Medium Range Weather Forecasts (ECMWF) (Temperton 1990). We finally 

note that the BDI method may give some answers to the previously stated question. The 

connections between the BDI and nonlinear NMI methods were examined in part by 

Kasahara (1982a). We note however that in order to characterize the complicated type of 

adjustment required for the various normal modes of the model, the explicit knowledge of 

the structure of certain of these modes is important. An example of this is given by the 

treatment of equatorially trapped modes characterizing the tropical circulations. On the 

other hand, the very high frequency gravity modes may simply be considered as noise and 

treated with a physical space initialization. Considering the future demands of the ··next 

generation" models (i.e. global models with very high and variable resolution), the 

treatment of the latter group of modes by such a scheme will become highly desirable. As 

it stands presently, the application of the BDI method on the sphere results in two different 

balancing schemes due to the separate scaling of the dynamical equations in the tropics and 

extratropics. These schemes were formulated by Browning et al. (1980) whereas Kasahara 

(1982) extended these schemes for the multilevel case. · On the sphere, some sort of 

combination of these two schemes would be required. 
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1.3 Constrained initialization 

The preceding sections have discussed the problem of dynamic imbalance and 

various initialization methods to remedy this problem. We now indicate two issues relating 

to initialization schemes of the form M(R,G} = 0 (where R is a given vector of the 

amplitude of the slow modes at the initial time, and G is the vector of gravity modes to be 

specified by the nonlinear constraint M), i.e. nonuniqueness and accuracy. The question of 

nonuniqueness may be stated as "Even if we know the location of the manifold 

characterizing balanced states accurately, what do we change to ensure that M = 0 , G, R or 

both ? .. . This nonuniqueness is linked with the accuracy problem since current balancing 

schemes for NWP models are only approximations of the type of balance developped by 

the model after a certain period of time. Moreover, the errors introduced by the inherent 

limitations of the analysis scheme when determining the Rossby mode amplitudes, also 

introduces inaccuracies which may result in large changes on the reliable data (e.g. surface 

pressure). Variational methods allow one to make unique corrections based on error 

statistics, thus complementing the balancing scheme. The pioneering work ofDaley (1978) 

dealt precisely with this aspect of the analysis-initialization problem. His .. variational 

nonlinear NMI .. scheme forced the initialized state to be as "close" as possible to the 

analyzed fields by minimizing a functional of the weighted changes of the analyzed fields. 

The essential features of Daley's scheme may be illustrated by using Leith's (1980) 

diagram (see Fig. 1.2). In phase space, each model state may be represented by a unique 

point having both slow and fast mode components (R,G). This is also valid for the original 

analyzed fields which is represented in Fig. 1.2 by point 0. Balanced model states are 

. located on a manifold described by M. Starting from the analyzed state 0, successive 

application of the initialization scheme (i.e. adjustment of the fast mode amplitudes G) and 

the minimization algorithm (i.e. alteration of the slow mode amplitudes R) leads to the 

"optimal" balanced state I. This process was originally formulated in normal mode space for 

a spectral shallow-water model and its operational use could not be envisaged due to 
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Figure 1.2. Variational initialization in phase space. 
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prohibitive computational cost. Some attempts to render the variational extension of 

nonlinear NMI schemes tractable were considered by Tribbia (1982) and Temperton 

(1984). Their schemes suffered from restrictions on the choice of weight functions used to 

limit the changes. 

It is precisely the pwpose of this thesis to reconsider Daley's variational proposal of 

nonlinear NMI using the implicit formulation. Chapter ll includes a review of the principal 

initialization schemes applicable for NWP models and discusses briefly their relationships. 

In chapter m and IV the feasibility of variational INMI ( VINMI ) schemes for shallow­

water models ( regional and global ) with present typical horizontal resolution of NWP 

models is demonstrated. The extension of the VINMI scheme to multilevel models is 

considered in chapter V. The method is then tested in the context of the presently 

operational regional finite-elements Canadian (RFE) model. Finally, chapter VI 

summarizes the essential findings of this research together with possible future 

developments of the method. 
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Chapterll 

Initialization methods for primitive equation models and their relationship 

The purpose of this chapter is to briefly review and clarify the theoretical and 

practical aspects of various initialization methods. The reader will fmd a more complete and 

detailed discussion of each of these methods in references cited in the text. For simplicity 

we restrict considerations to an f-plane shallow-water model without external forcing (i.e. 

orographic and thermal forcing). Further discussion of the relation between implicit normal 

mode initialization and quasi-geostrophic theory will be given in chapter IV. We begin by 

describing the basic shallow-water system. 

11.1 The shallow-water model 

The discussion to follow will be based on the shallow-water model which describes 

the hydrostatic motion of an homogeneous fluid with a free upper surface, although the 

concepts can be extended to more complicated baroclinic models. The shallow-water model 

may be termed then kernel problem 11 since as will be shown in chapter V, initialization of 

baroclinic models can in a certain sense be reduced to the initialization of a set of shallow­

water models differing only in their associated equivalent depths. The momentum and 

continuity equations are 

where 

av at + v· Vv + V <j) + fkxv = 0 

0<1> - + v· V<j) + <j) V·v = 0 at 

<j) = ~ + q,' where q,' is the geopotential deviation about~ 

~ = mean geopotential depth 

11 

(2.1.1) 

(2.1.2) 
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g = acceleration due to graVity 

p = constant density of the fluid 

J.1 = viscosity of the fluid : taken to be zero here (i.e. inviscid fluid) 

0 = angular speed of the earth 

L = typical horizontal length scale characterizing shallow-water perturbations 

x,y,z = east-west (north-south, vertical) spatial coordinates 

v = (u,v) = zonal and meridional wind components. 

In this chapter, we will concentrate on the dynamical equations themselves while ignoring 

the effects of lateral boundaries. Figure 2.1 shows the essential parameters characterizing 

the model. 

.n 

P= CONSTANT 
;.t=o 

z,w 

, , , 

,•" y,v 

L 

I 
f' ( x,y,l) 

J he (x,y) 

x,u 

Figure 2-1. The shallow-water model. 

Equations (2.1.1) and (2.1.2) may be written in the compact form 

. 12 

T 
~ 

1 



x1 + L x + N (x) = 0 (2.1.3) ,.,.,. 
~ where 

I 
0 - f 

L 5 f 0 

Cl> dx Cl> dy 
; ] xal;] 

- [ ::] I U Ux +V Uy l 
N = U Vx +VVy 

U $x + V $y + cp ( Ux + Vy ) 

l/2 The normal modes of the shallow-water equations 

(2.1.4) 

(2.1.5) 

We now briefly discuss the nature of the linear normal modes of the shallow-water 

system. There are two classes; low-frequency quasi-geostrophic modes generally 

associated with the meteorologically significant part of the motion and high-frequency 

inertial-gravity modes which carry a small portion of the overall energy of the flow. This is 

most easily seen by considering small disturbance to a motionless background state (u,v,cp) 

= (0,0,<1>). The motion is then described by the linear operator L to leading order. For 

periodic solutions characterized by a wavevector k = (k , k ) and frequency a of the form 
ll y 

x = xo exp ( ik x + ik y - im ) 
X y 

(2.2.1) 

where xo represents the amplitude of the perturbation. Substituting (2.2.1) into the 

linearized fonn of (2.1.3) (i.e. where f and cp are replaced by f0 and Cl> resp.), the 

eigenfrequencies are obtained by requiring that 

-iCJ -f0 ikx 

-fo -ia ik = 0 y 

iCl>kx i<l>ky -iCJ 

The eigenvalues a are real for a given set of (k , k ) and are given by: 
X y 

CJ=CJR=O 

13 
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Thus, on an f-plane, the slow ( Rossby ) modes are stationary while the fast 

(gravity-inertial) modes appear as a pair of modes traveling in the k and -k directions 

Further, the vorticity-divergence (~. D) fonn of the momentum equations linearized about a 

resting basic state are 

~ + fD = 0 

where 

CJD 2 • 
at-f~=-Vcp 

Ou Ov D=-+­CJx oy 

Using the previous results, it is clear that gravity-inertial waves possess both divergence 

and vorticity due to coupling by rotation. Rossby modes however, are divergence free due 

to the assumption of constant f. Further, the principle of conservation of potential vorticity 

for the full nonlinear shallow-water equations reduces, in the present linear context, to 

conservation of the linearized potential vorticity q (normalized by~). i. e. 

aq . at = 0 where q = <1> ~ - f cp 

For plane waves, the previous result implies that gravity-inertial waves have zero linearized 

potential vorticity. The vanishing of the frequency of the slow modes implies that the 

evolution is determined by the nonlinear terms. 

The dispersion diagi'am in this case is represented in figure 2.2a. When strong 

variations of the Coriolis parameter are considered, as in the case of global or equatorial 

models for example), the frequency separation is less clear-cut as some modes have 

intennediate frequencies. One then has to use arbitrary selection criteria (principally on the 

frequency cif these modes) to define the eigenfrequencies as fast or slow. In multilevel 
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Fig. 2..1 Dispersion diagram for (a) f-plane shallow-water models in normalized frequency 
and wavenumber coordinates. The normalization factors are respectively f and ct-112 

, and the 
Rossby modes are stationary. (b) a global spectral shallow-water model with equivalent 
depths 10 km and 100 m. (Daley 1986 ) 
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models, the frequency separation also depends on the vertical structure or "equivalent 

depth" (see chapter V). As an example of this, Fig. 2.2b shows the dispersion diagram for 

two vertical modes of equivalent depth 10 km and 100 m. The lowest frequency .. band" 

characterizes slow modes while the highest (eastward-westward) inertia-gravity frequency 

band characterizes modes that are initialized in nonlinear NMI schemes. Intermediate 

modes (Kelvin and mixed Rossby-Gravity) can be regarded as fast or slow depending on 

the wave-number domain considered. These last modes generally are much more difficult 

to initialize. The detailed structure of the normal modes of the linearized shallow-water 

equations on the sphere may be found in Longuet-Higgins (1968), Kasahara (1976), and 

more recently in Miiller (1989). 

113 The nondimensional form of the shallow-water equo.tions 

It will be usefull for later comparison of various initialization methods to deal with 

the nondimensionalized form of the model. Let us scale the variables as 

x* =X · y• =I. · t* = ..l · v* = .'!.. • 
L' L' T' V' 

(2.3.1) 

where L, T, and V are typical values of the length, time, and velocity scales of the problem. 

The Coriolis parameter f will be set to a constant value of (,. If we introduce an advective 

time scale 

T=L 
V 

and a geostrophic scaling of the geopotential perturbation <j>·. i.e. 

. * 
<)> = <l>s<l> where <l>s = f0 VL 

then 

where 
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0 
Fr = fo 

2
L

2 = Rotational Froude number 
<I> 

e = i[ = Rossby number 

If the horizontal length scale is fixed by requiring Fr = 1, i.e. if 

1/2 

L = LR = 1;- = Rossby radius of deformation 

then, (2.1.1) and (2.1.2) become on dropping asterisks 

which may also be written as 

e 1i- + kxv = -V cj> 

dcj> 
£- = -(1+e<j))V·v 

dt 

x: + e-1L *x* + N (x*) = 0 

(2.3.4) 

(2.3.5) 

(2.3.6) 

(2.3.7) 

C where the linear operator L • is the same as L in (2.1.4) with f and <I> replaced by unity, 

and x• is the nondimensional state vector. 

c 

11.4 Quasi-geostrophic balancing 

Historically, the quasi-geostrophic balancing method was the first to be applied 

operationally in numerical weather prediction. It has since been replaced by other more 

sophisticated schemes. The common basis of initialization methods is to limit the amplitude 

of the high-frequency oscillations (gravity-inertia) largely characterized by their associated 

divergence field. Obviously, a flow evolving in such a way that the divergence field is 

identically zero for all times is free from high-frequency gravity-inertia waves since the 

principal mechanism for producing them is absent. This would be the case for example 

with the non-divergent barotropic vorticity equation. In the special context envisaged in this 

chapter, the shallow-water equations do posses these high-frequency linear free modes ( 
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see section II.2). One might intuitively expect that setting the initial amplitude of the flow to 

be non-divergent and further that the time tendency of the divergent field be zero initially 

i.e. D = atD = 0 when t = 0, should be sufficient to remove (at least for a certain period 

of time) these high-frequency oscillations. It is nevertheless quite clear that this is at best 

approximate if one is to allow for a slow, weakly divergent meteorologically significant 

Rossby wave type of motion. 

Since the divergence of synoptic-scale disturbances is small in comparison with the 

vorticity field, it is convenient to separate the wind into rotational and divergent parts using 

Helmholtz's decomposition theorem. Since the divergence is small according to (2.3.6) 

(i.e. is zero to O(e)), we may write 

v = vv + e vx, vv = kxVv, vx = Vx (2.4.1) 

where 'If and X are the dimensionless streamfunction and velocity potential. Applying the 

horizontal divergence operator to (2.3.5) and using (2.4.1), we get: 

e2 {a~ +V ·(vv· Vvx,) + V ·(vx· Vvw)} + e3 V ·(vx· Vvx) + 

+ e V ·(vw· Vvw) + (v2q,- d = 0 

where D = V·Vx and~= k·VxVx . 

Thus to order e2 we get 

V
2

cp - ~ + e V -(vv· Vvw} = 0 

or in a more familiar form (Charney 1955) as 

V2 2 J( ) -- V2"' 'If - E Uw, V 'I' 'I' 

(2.4.2) 

(2.4.3) 

which is the classical nonlinear balance equation relating the rotational part of the 

wind field with the geopotential field 

A diagnostic equation for the divergent part of the wind field may be obtained to the 

same order of approximation as (2.4.3), i.e. by neglecting terms of order en where n > 1. 
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At this order of approximation, we write the vorticity and continuity equations (using 

(2.4.1), (2.3.5), and (2.3.6)) as 

e acp + e V,~,· Vcp + e D = 0 at .,. (2.4.4a) 

(2.4.4b) 

By taking the Laplacian of (2.4.4a) and combining with (2.4.3) and (2.4.4b), the desired 

diagnostic equation is 

This is the usual quasi-geostrophic divergence equation on an f-plane (see Haltiner 

and Williams 1980, chapter 3). Using a simple linearized shallow-water model on an f­

plane, Phillips (1960) demonstrated that both the quasi-geostrophic divergence and balance 

equations are required to suppress gravity-inertia oscillations in the system. He further 

suggested a more general quasi-geostrophic set of divergence and balance equations to 

balance primitive equation models. 

The balance equation (2.4.3) can be used in two different ways to initialize a 

primitive equation numerical model. One can determine the initial rotational part of the wind 

from the "observed" (or analysed) geopotential field. This is known as the direct balance 

equation. One can also attempt to determine geopotential from the observed wind. This 

method is referred to as solving the reverse balance equation. Apart from the obligation to 

specify consistent boundary conditions to solve (2.4.3), one faces a special problem of 

solvability with the direct balance equation. 

For the reverse balance equation, (2.4.3) is an elliptic partial differential equation 

for 4> and the resulting Poisson problem is well-posed (i.e. it has a unique solution which 

depends continuously on the data) provided one specifies the values of the streamfunction 
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or its derivative (i.e. Dirichlet or Neumann) at the boundaries of the domain of integration 

of the model. For the global problem no such boundary conditions are required. 

The direct equation is of the " Monge-Ampere " type. As a boundary value 

problem, the nonlinear equation (2.4.3) admits at most two solutions if its coefficients and 

the right-hand-side of (2.4.3) (owing to the nonlinearity of the equation) are sufficiently 

well behaved. Equation (2.4.3) may be written as 

E('lfxx'Vyy- 'l'iy) + A'lfxx + 2B'Ifxy + C\Vyy- D = 0 , (2.4.5) 

and it can be shown that (as an elliptic boundary value problem) it admits at most two 

solutions (Courant and Hilbert 1962, Vol. 2) provided the criterion 

AC-B2 -DE>O 

is satisfied everywhere in the interior domain (Rellich 1934). Here we have 

A = C = _l B = 0 D = -1V2
"- E = e 2' • 2 'I'• 

while (2.4.6) becomes 

eV2cp + 1 > 0 
2 

If 'V is a solution of (2.4.5), then using (2.4.6) we have the inequality 
(E 'l'xx + C) (E 'lfyy + A) - (E 'l'yy - B)2 > 0 . 

(2.4.6) 

(2.4.7) 

(2.4.8) 

It follows that both <E'I'xx +C) and (E'Ifyy +A) are either always greater than or always less 

than zero in the domain of interest. This means that there are two types of solutions of 

(2.4.5), one yielding (1 + eV2 '1f < 0) and the other yielding (1 + eV2'1f > 0) in the domain. 

In dimensional form, this means that we have negative (resp. positive) absolute vorticity 

everywhere in the domain. The meteorologically significant solution retained for (2.4.5) is 

characterized by the requirement that in the Northern Hemisphere we have 

i + £ 'l'xx > 0 and i + £ 'Vyy > 0 

and in the Southern Hemisphere 

t + £ 'l'xx < 0 and i + £ 'lfyy < 0 . 
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By continuity we must let both 'l'xx and ljfyy vanish at the equator since f = 0 there. 

It is however quite clear that the ellipticity condition is violated only when the scaling fails. 

Kasahara (1982b) examined the appearence of non-elliptic geopotential regions based on 

level Illb FGGE data and found that the breakdown of (2.4.8) was frequent in the tropics. 

In the past, the ellipticity problem was avoided by altering the mass field. It is important to 

stress here that for reasons of consistency, the violation of the ellipticity criteria implies that 

the basic assumptions used to derive the balance equation do not apply. This point will be 

reexamined in the context of height-constrained implicit normal mode initialization in 

chapter IV. It should also be noted that important divergent circulations in the tropics were 

not taken into account in the previous derivation of the nonlinear balance equation. 

II .5 The Bounded Derivative method 

Browning et al. (1980) were the first to introduce the application of the·· Bounded 

Derivative Initialization method (BD I) ··for initializing the primitive equations model. The 

basic principle of this method was formulated by Kreiss (1979,1980) for systems governed 

by ordinary or partial differential equations. An interesting aspect of Kreiss's principle is 

that it may be used either in normal mode or physical space. The bounded derivative 

method can also be applied to systems with open boundaries (Browning and Kreiss 1982) 

where NMI is hardly applicable. Kreiss examined the requirement on the initial data to 

ensure slow time scale evolution of a given dynamical system for a certain period of time 

(to be defined). In order to simply express Kreiss's principle, let us call x(t) the state vector 

of the nondimensionalized dynamical system having a number of degree of freedom of the 

model (not necessarily the normal mode components). Kreiss then used the following 

observation for systems having slow and fast time scales: ifx(t) varies slowly, then its first 

few time derivatives must satisfy 
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dnx(t) = 0(1) 
dtn 

where p > 0 and t is a slow timescale. 

n = 1, ... , p 

Applying this principle at the initial time t = 0 constrains the initial state to allow a 

slow time variation of x( t) for a given period of time where 0 < t < T = 0(1 ). Note that it is 

not necessary to bound all derivative up to order p, this is automatic once the pth order 

derivative has been bounded. Applications of this principle to ordinary differential 

equations are discussed in Kreiss (1979). The reader will also find in Kasahara (1982a) a 

simple application of the bounded derivative principle in the context of the normal mode 

form of the shallow-water equations and a comparison with Baer and Tribbia's (1977) 

filtering procedure. Also, Kasahara (1982a) examined (using the beta-plane approximation) 

the relationship between the BDI, nonlinear NMI and quasi-geostrophic theory for 

baroclinic primitive equations. To add to Kasahara's work, we establish the BDI method in 

physical space in a form appropriate to compare with the recent formulation of implicit 

nonlinear NMI (Temperton 1988, 1989 and Juvanon du Vachat 1986, 1988). We restrict 

the present analysis to the f-plane approximation. 

We proceed in an analogous manner as in Browning et al. (1980) to derive the BDI scheme 

for the shallow-water equations. From (2.3.7), the first-order derivative is unity if and only 

if (dropping the "star" notation) L x/ e is order unity, i.e., if and only if 

Lx =er (2.5.1) 

and r is 0(1). Second, to compute the second order time derivatives, we rewrite system 

(2.3.7) by using (2.5.1), i.e. 

Xt + r + N (x) = 0 (2.5.2) 

therefore, the second order time derivative of xis of the order of unity if and only if rt is of 

the order of unity. Using (2.5.1) and (2.5.2), it follows that 

- e ft = -L Xt = L r + LN (x) 

Combining (2.5.1) and (2.5.3) yields 
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(2.5.4) 

Dropping the £2 term in (2.5.5) and setting e = 1 to get a dimensional relation, we get 

L 2 x = - LN (x) (2.5.5) 

to 0(£2) and L. is given by (2.1.4). As mentioned in Browning et al., an iterative 

procedure can be used to solve (2.5 .5) and it is also shown that it is related to the classical 

nonlinar balance equation. Our interest will however be to directly compare the preceding 

result (2.5.5) with the balancing constraint from Machenhauer's scheme in the context of 

implicit NMI as described in section II. 7. 

l/.6 Initialization schemes in normal mode space 

This class of initialization schemes operates in normal mode space. They differ from the 

bounded derivative method in that they are usually applied to a subset of the fast modes 

only. In some sense they are more controllable and may be more usefull for systems for 

which the scaling assumptions are not very well satisfied. As a preliminary requirement for 

applying the initialization schemes to be presented in later sections of this chapter, we 

introduce the formal procedure to get the normal mode form of the governing dynamical 

equations. The selected finite set of basis functions ( e.g. spherical harmonics, finite­

elements, etc. ) or grid points discretization, transform the shallow-water equations into a 

set of ordinary differential equations in time usually called a dynamical system. The 

model equations may then be written as 

: + i Ay = N(y) 

The state vector y will represents the vector of predictive variables, A is a (real and 

symmetric) constant coefficient matrix. The normal mode decomposition of A is 

(2.6.1) 
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where A is a diagonal matrix of eigenvalues of A, E is an orthogonal matrix whose 

columns corresponds to the eigenvectors of A. We further assume that the eigenvalues of 

A which are real, can be split into slow (Rossby) or fast (gravity) parts. This splitting can 

be represented for A as: 

A = [ AR 0 ] 
0 AG 

The normal mode decomposition of the dynamical system is given by 

or 

dz. + iAz=Q 
dt 

(2.6.2) 

(2.6.3) 

where z = (R,G) i.e. the state vector in normal mode space having both Rossby and 

gravity-inertia components, while Q now represents the projected nonlinear terms. R and 

G are vector amplitudes of the slow and fast mode of the system respectively. 

a. Baer and Tribbia's initialization method 

The starting point for this scheme (first derived by Baer and Tribbia 1977 using a 

somewhat different approach where fast and slow time scales were introduced) is the 

nondimensional form of the shallow-water equations (2.3.7) which is written on a slow 

(advective) timescale. Noting that the time tendncy and nonlinear terms in (2.3.7) are 0(1) 

and that we may write Ao is 0(1) and AR is O(e), we get 

dd~ + iAR R = Qa(R,G) (2.6.4) 

e~+ iAoG = eQo(R,G) (2.6.5) 

Provided the Rossby number e is smaller than unity, G may be developped in a power 

series in terms of e as: 
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G = L enG(n) (2.6.6) 

n=O 

Directly inserting (2.6.6) into (2.6.5) leads to the appropriate approximation to order E 

desired for slow behaviour of the G's. As an example, we get for the lower order 

approximations, the sequence 

G<0>( t) = 0 
GO>(t) = -i ~1 

Qo(R,O) 

(2.6.7) 

(2.6.8) 

By R here we mean the slow mode amplitudes given at timet. The nonlinear terms in 

(2.6.8) represents interactions between the slow modes only, due to our first order estimate 

(2.6. 7). 

b. Lorenz 's scheme 

We now exibit a second method of normal mode initialization which involves an 

iteration process in order to specify the desired balancing amplitude of the fast mode 

components of the system at a given time. The first iterative nonlinear NMI scheme was 

introduced by Machenhauer (1977). This scheme can be seen to be a particular case of a 

more general higher-order initialization scheme introduced by Lorenz (1980). His 

condition of "superbalance" is given by 

~=0 
dtn 

that is, the nth order time tendency of the fast mode components are required to be zero. 

where " n " should be a large number. Lorenz's method is therefore a special case of BDI 

to order ··n" (Lorenz 1986). It should be borne in mind that for a given order .. n .. , one may 

encounter non existence or multiple branch solutions. Thaning (1984) gave simple 

examples of this for the first order scheme (i.e. Machenhauer's scheme). Lorenz applied 

his scheme in the context of a 9 component f-plane shallow-water model including forcing, 

diffusion and bottom topography. Machenhauer's (1977) and Leith's (1980) iterative 

schemes are particular cases of Lorenz's scheme when n = 1, 2 respectively. Tribbia 
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(1984) proposed an extension of Machenhauer's scheme (see also Machenhauer 1982) by 

expanding the nonlinear terms of the fast mode equations (2.6.5) in a Taylor series about 

the initial time. His method of successive approximation is shown to be asymptotically 

equivalent to Baer and Tribbia's method but has the advantage of eliminating the need to 

compute Frechet derivatives (see also Tribbia 1979). We review in the following the 

standard derivation of Machenhauer's scheme. 

Due to the nonlinear nature of the dynamical system (2.6.3), simply setting .to zero 

the initial amplitude of the fast mode components of the initial data is not sufficient to 

adequately control the large amplitude oscillations of these components during a model 

integration (Williamson 1976). 

Machenhauer's (1977) initialization scheme is based on the observation that for the noise 

components, their nonlinear forcing term varies "slowly". Assuming that (Q0 ) = est in 

time, then for a given gravity mode component ··n·· 

Gn (t) = [ Gn(O) + i (Qo)n ] exp ( iO'nt ) + i (Qo)n 
on O'n 

(2.6.9) 

for the fast mode components with frequency O'n. We may then consider the nonlinear 

initialization scheme where one attempts to set 

in order to eliminate the fast oscillations in the system. Since (Q0 )n depends on the 

amplitudes G , one defines an iterative procedure where 
n 

QUL+l)(O) = - i (Qo)~w 
n O'n 

(2.6.10) 

where 1..1 is the iteration number. Equation (2.6.10) describes Machenhauer's nonlinear 

nonnal mode initialization scheme .. Combining (2.6.3) with (2.6.10) gives the standard 

form of Machenhauer's iterative scheme as 
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(2.6.11) 

where 

(2.6.12) 

and ~a = dGn 
Ut n - • dt 

Further references to L\G and (0 G ) in the text should be understood respectively as the n t n 

changes that have to be made to the coefficient of the fast mode of index "n" and the 

tendency of the fast mode as evaluated by running the model for one forward timestep. 

The following derivation should illustrate clearly the iterative nature of higher order 

schemes. 

Let's consider the dimensional form of (2.6.5) (i.e. E = 1) 

~+iAoG = Qa(R,G) (2.6.13) 

C The time derivative of (2.6.13) gives 

c 

d2G +iAo dG = dQa 
dt2 dt dt 

(2.6.14) 

Setting the second order time derivative to zero in (2.6.14) and substituting (2.6.13) into 

(2.6.14), we obtain 

G = -_l_ [ dQa - i Ao Qo] 
(iAaf dt 

(2.6.15) 

or, using an analogous technique used previously for Machenhauer's scheme, this latter 

result may be written as 

L\G = -_L_ ~ U1> 
(iAof dt2 

(2.6.16) 

where Jl is the iteration index as in (2.6.12). The straightforward extension to a nth order 

Lorenz's scheme is given by 
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AG = (-1)'1-1 ~<1-1> 

(iAor dtn 
(2.6.17) 

The solution technique for (2.6.17) may be to start with a linear balance G(O) = 0, then 

determining a second estimate i.e. Gel) by iterating the first order scheme (or 

Machenhauer's scheme), then from this new estimate a third estimate is obtained by 

iterating the second order scheme (2.6.16). This process was used by Lorenz (1980) with 

n = 3. Temperton (1988, 1989) showed the benefit of a second order scheme over first 

order for the refinement of the balance (especially in the tropics, see also Browning et al., 

section 6) in the context of shallow-water models with a large number of degrees of 

freedom in the absence of external forcing. 

Il.7 The Implicit nonlinear Normal Mode Initialization method 

a. Basic formulation 

Following Temperton 1988, one iteration of Machenhauer's initialization scheme 

described by (2.6.11) may be written as: 

lly = i EoAcfEl; (8tY)(tJ.) (2.7.1) 

where lly = y(o)(J.l+l)- y(o)(Jl), and the observed model state tendency (8y) are 
t 

expressed in physical space. Also 

A=[A
0
a ,:] 

where the columns of ER and Ea corresponds to the slow (Rossby) and fast (gravity) 

modes respectively, and AR , Aa are the low and high frequencies. The time tendency of the 

state vector is obtained by running the model for one forward timestep. Temperton's 

formulation of a physical space nonlinear NMI scheme (INMI) is based on the following 

simple observation. If equation (2.7.1) is multiplied by the matrix A and use is made of 

the similarity transformation for A, i.e. 
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A = EAET (2.7.2) 

then it follows that 

Ally = i EoEd (StY) (2.7.3) 

or 

A lly = i Po (Sty) (2.7.4) 

where P 0 acts as a projection matrix which extracts the fast mode component of (Sty) and 

is the only unknown in (2.7.4) if no attempt is made to explicitly calculate the normal 

modes of matrix A. In practice, there are a number of ways to solve (2.7.4) (see 

Temperton 1989, hereinafter noted T89) in physical space. All of which have one thing in 

common, that is, the linearization is such that the dynamical system has slow modes which 

are all stationary. 

Temperton (1988) (hereinafter noted T88) stressed that due to this particular choice 

of linear terms forming the matrix A, the latter will be singular and as is well known the 

linear system (2.7.4) will have a solution provided that the right-hand-side is orthogonal to 

the null space of A. This is guaranteed by the orthogonality of the eigenmodes of A and 

the fact that the term P 0 (Sty) if properly computed, has no component on the slow 

subspace spanned by the slow modes. In practical applications, the gravity mode 

"projector" P 0 is not determined explicitly but rather certain basic properties of the slow 

and fast modes (i.e. stationary-nondivergent slow modes and zero linearized potential 

vorticity for the fast modes) are exploited to ensure unique solutions of (2.7.4). We may 

also note that since matrix A is representable as a sum of gravity mode projectors only 

(spectral decomposition theorem), we obtain by left multiplying (2.7.4) by A 

(2.7.5) 

Thus (2.7.5) is directly solvable for lly (belonging to the fast subspace) in terms of known 

quantities (see also Juvanon du Vachat, 1989, p.52). The system (2.7.5) being degenerate 
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(remember that A is singular here) one has to use the same supplementary condition as the 

one used by T88, and T89, that is, the fast gravity modes have zero linearized potential 

vorticity in order to close the system of linear equations (i.e. the usual condition to remove 

geostrophic degeneracy). Although (2.7.5) has no practical advantages over the methods 

of T88, T89 it is helpful when considering the relation between the implicit NMI method 

and the real-space bounded derivative method of Browning et al. (1980). 

b. A simple illustration of the method 

To illustrate the application of (2.7.5), we consider the f-plane shallow-water 

equations on a polar stereographic projection true at latitude 6 in differentiated form ( ref. 
0 

T88): 

a~ =- fD +N r at .., 
an 2 at= f~- V <j>+No 

d<j> 
- = -m2<I> D + N"' at 'I' 

(2.7.6) 

(2.7.7) 

(2.7.8) 

where~. Dare the vorticity and divergence fields, <1> is a perturbation geopotential, f is the 

Coriolis parameter ( constant here ), and · lll .. is the map scale factor given by: 

1 +sin (60 ) m = __ _...;,.-=.;... 

1 +sin (6) 

The nonlinear terms are represented by N~, N0 , N41 . Equation (2.7.4) corresponds to 

0 f 0 

-r o v2 

0 m2c;I> 0 

(2.7.9) 

where d~, ®, d<j> are changes to be made to the vorticity, divergence, geopotential fields 

in physical space and ~ = at . The index G refers to gravitational mode components. The 
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straightforward application of (2.7 .5) to the present model in order to avoid the necessity of 

projecting each vectors appearing in (2.7.9) onto the fast subspace gives: 

0 f 0 

-f o V2 

0 m2fb 0 

-fl 
0 

- f Cl> m2 

the frrst row gives: 

the second row gives: 

0 f 0 

- f o v2 

0 m2fb 0 

0 f 0 

-f o v2 

0 m2fb 0 

fato 

-fat~+ atV
2

<!> 

m2 Cl> ~D 

(2.7.10) 

(2.7.11) 

From the last matrix expression, it is clear that the first and third row are linearly dependent 

(this was to be expected from the dimension of the original operator A). To close system 

(2. 7.1 0) and (2. 7.11) we recall from section II.2 that since fast modes are characterized in 

the f-plane approximation by zero linearized potential vorticity , so are the changes on these 

modes, i.e. 

(2.7.12) 

System (2.7.10) to (2.7.12) is identical to the implicit scheme described in section 4 ofT88 

and obtained in a slightly different manner. 

c. The relationship between INMI and BDI methods 

In order to bring the BDI and INMI methods closer together, we make use frrst of 

the continuous form of the shallow:. water equations (differentiated form or not) as : 
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at+Lx +N(x)=O (2.7 .13) 

We now consider the more general case where f is not considered as constant (i.e. models 

on the sphere or projected grids for example). For such a case, L will posses slow modes 

that are not stationary. However, let us use the following splitting of the linear operator L 

L ~ L + L' (2.7.14) 

such that L has stationary Rossby modes. Using the continuous form of (2.7.5), one 

iteration of Machenhauer's scheme may be written as : 

L2 ( Ax ) = L( Otx )o (2.7.15) 

where the ot operator inc~udes nonlinear-terms. Using (2.7.14), (2.7.13) becomes 

(starting from an initial guess x0 ): 

take L(2.7.16): 

axo + L Xo = - N ( Xo ) - L '(xo) at 

l (0~0 ) + l2 (x0) = -LN (xo) - LL'(xo) 

Now use (2.7.15) into (2.7.17) to get 

· L2 (Ax) + L2{xo) = -LN(xo)- LL'(xo) 

thus 

where 

Xt = xo + Ax 

(2.7 .16) 

(2.7.17) 

(2.7.18) 

(2.7.19) 

It is also clear that the iteration process involved in Machenhauer's scheme means that the 

new estimate x
1 

may be inserted on the right-hand-side of (2.7.19) to get x
2 

and so on. 

On an f-plane, L' = 0 and iterating (2.7.19) is equivalent to using the bounded 

derivative approach described in section II.S. The comparison between these two methods 

for the more general case of a variable Coriolis parameter will not be examined here. It is 

32 



0 

important to note however that the way INMI proceeds in characterizing slow and fast 

mode components in its diagnostic equations ( T88, T89 and Juvanon du V achat 1988 ) has 

given a concrete advantage for extending INMI to a variational version in a form first 

suggested by Daley (1978) for explicit nonlinear NMI. This aspect will be considered fully 

in subsequent chapters and forms the essential part of the thesis. 
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Chapter Ill 

Variational implicit normal mode initialization for a regional finite-element 

shallow-water model 

/11.1 Presentation of article 1 

We now attack the question of the feasibility ofDaley's (1978) approximation (see 

chapter I) in the context of impicit nonlinear NMI. Temperton's formulation (1988) of 

INMI was successfully applied to the Canadian regional finite-element shallow-water 

model. The use by the model of a projected variable resolution grid renders the computation 

of the model's normal modes intractable. On the other hand, the model has well posed 

boundary conditions and Temperton succeeded in formulating well posed boundary 

conditions for the nonlinear initialization problem in physical space. 

Daley's approximation was first formulated in normal mode space and required the 

specific knowledge of the structure of the fast gravity modes to be initialized. Each of these 

modal structures enters in the form of an integral constraint (scalar product) imposed as a 

strong constraint (Sasaki 1958). The problem here is then clear: ··How can we characterize 

these constraints on the slow and fast mode corrections in physical space while at the same 

time satisfying a minimization criteria on the total correction fields" . The essential 

ingredients will be shown to be clearly identified in the implicit context and putting the 

pieces together by the application of the calculus of variations (see the appendix at the end 

of chapter V, p101), will lead to a well posed variational problem which is referred to as 

VINMI. 

Before proceeding to the details of the method, it is stressed immediatly here that 

based on the close relationship between INMI and BDI, a variational extension of the BDI 

method would proceed by a similar reasoning as the one presented hereafter. The clear 
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advantage of INMI here is its natural use of the concepts of slow and fast components of 

the flow, thus facilitating the application of Daley's variational procedure. 
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m.2 Article 1 

Variational implicit normal mode initialization 

Monthly Weather Review, 117,2219-2229. 
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ABSTRACT 

1t is shown that implicit normal mode initialization can be combined with .a variation~) techni~u~: i~ o~er 
to control the relative magnitudes of the changes to the analyzed mass a~d wm~ fiel~s. Smce t~e.mttta~tzauon 
procedure is expressed entirely in physical space, the use of local~y varymg_ wetghts m the v~nauonal mtegral 
becomes more straightforward than in previous efforts to combme vanattonal methods wtth normal mode 
initialization. · . . 

We present details of the application to a finite-element model of the shallow water cquattons on .a stereographtc 
projection. 1t is demonstrated that the use '?fvariational initialization can change the slowly evolvmg component 
of the subsequent forecast, as well as climmatc the unrcahsllc fast component. 

I. Introduction 

Most data assimilation systems consist of three 
components: an analysis step, a nonlinear normal 
mode initialization ( NMI) procedure, and a short 
forecast (typically 6 hours) to provide the background 
field for the next analysis. The initialization step ensures 
a correct dynamical balance by allowing mutual ad­
justment of the analyzed mass and wind nelds. Al­
though these adjustments are generally small (Hol­
lingsworth et al. 1986 ), the relative magnitudes of the 
changes to the mass and wind fields are governed es­
sentially by gcostrophic adjustment theory rather than 
by the reliahility of the mass and wind analyses. In 
particular, the initialization step may result in changes 
to the surface pressure analysis which are locally larger 
than seems reasonable in view of the expected analysis 
error. 

Daley ( 1978) first suggested a variational form of 
nonlinear normal mode initialization for a barotropic 
spectral model. In this scheme the balance implied by 
nonlinear NMI was achieved, while simultaneously 
minimizing a variational intcgnd incorporating weights 
based on the presumed accuracy of the mass and wind 
analyses. Daley and Puri ( 1980) studied the impact of 
the variational procedure on a simulated data assimi­
lation scheme. Puri ( 1983) extended the variational 
NMI technique to a multilevel spectral model. Tem-

Corresponding amhor address: Dr. Luc Fillion, Recherche en 
prevision numerique, 2121, voie de S~:rvice nord, Pone 508, Route 
TranS<anadienne, Dorval, Quebec H9P IJ3, Canada. 
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perton ( 1984) developed a variational NMI scheme 
for the ECMWF multilevel gridpoint model, and pro­
posed a computationally more efficient approach to 
the problem. In all these application~ the horizon~al 
(and vertical) distribution of the we1ghts were artifi­
cially simple, depending at most on ~atit~de. It was 
recognized that a more general ~pec1fica.u~n of _the 
weights, although clearly desirable m a reahsuc settmg, 
would lead to a computationally difficult problem. The 
essence of this difficulty is that the weights are naturally 
expressed in physical space, while the initialization is 
performed in normal mode space. Tribbia ( 1982) suc­
ceSsfully performed variational NMI with a general 
horizontal specification of the weights, but only f<!r a 
low-resolution barotropic spectral model; the extens1on 
to models with more degrees of freedom remained ap-
parently intractable.. . · . . . 

Recently, an imphc1t form of normal mode amt•a!­
ization has been introduced (Temperton 1988). Thts 
scheme was developed in order to allow non linear NMI 
to be applied in models whose normal modes could 
not readily be found, for example, because of nonse­
parability of the underlying linear equa_tion~. ~lthoug.h 
equivalent to conventional NMI, the amphc1t form IS 

expressed entirely in physical space, and thus offers a 
way out of the difficulty discussed above in solving the 
corresponding variational problem. 

In this paper we present a variational form of the 
implicit normal mode initialization procedure, which 
allows a general specification of the weights in the vari­
ational integral. The scheme is formulated in section 
2. Experir.1ental results are presented in section 3 for 
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the same barotropic finite-element regional model as 
was used by Temperton ( 1988). Section 4 contains a 
discussion and summary. 

2. Theoretical aspects 

a. Daley 's approximation 

Daley's ( 1978) procedure will serve as the starting 
point for the formulation of the variational algorithm. 
His basic idea can be summarized in symbolic form 
as seen below. Suppose we have preconstructed the 
whole set of model (linear) orthonormal modes de­
noted by { H; };.1 ••• ·.Nwhere Nis the dimension of the 
linear space H spanned by these modes. Assuming 
completeness of that space (within the model) any state 
vector can be uniquely represented. Given a scalar 
product on that space, a correction vector will be rep­
resented by 

where 

N 

ax = L ax;H;, 
i•l 

ax; = (Ax, H;). 

(2.1) 

(2.2) 

Now on the basis of some selection criteria, suppose 
we can identify each eigenmode as belonging to a slow 
or a fast subspace of H. Then for each element of the 
fast subspace HG, nonlinear NMI will ascribe to it a 
specific amplitude. We thus have 

AI 

(Ax)o = L (Ax;)GH;, (2.3) 
i•l 

where M is the dimension of HG. 
These changes to the initial fields may be uncom­

fortably large in certain geographical regions compared 
with the expected analysis error known a priori for 
these fields. lt is then possible to take into account this 
expected error by defining a .. fidelity metric" J which 
is a function of these correction fields. and which when 
minimized permits us to stay closer to the observations. 

Daley ( 1978) first introduced the idea that it should 
be possible to control the adjustment process for 
achieving the balance between Rossby and gravity 
modes in such a way as to minimize J. Given a "slave" 
relation of the form 

(2.4) 

which expresses the total dependence of the amplitude 
of the gravity modes upon Rossby modes in a nonlinear 
initialization scheme, we may express formally our 
function in terms of these two sets of modes by 

J = J((ax)a, (ax}R). (2.5} 

In fact, because of the relation (2.4) we must recognize 
that the tuning amplitudes are ultimately those of 
Rossby modes. However, the nonlinear nature of the 
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relation (2.4 ). and the need to build a variational al­
gorithm that is efficient for practical applications, sug­
gests an iterative procedure for approximating the so­
lution. This procedure can be summarized as follows: 

(i) Given an initial state x0, generate a correction 
vector (ax)G where the new state 

x 1 =x0 +(Ax)G 

is in approximate balance. 
( ii) Alter the Rossby part of the initial state to min­

imize J in (2.5 ). 

Relation ( 2.4) then indicates a need to readjust the 
amplitude of the gravity modes. The iteration loop with 
steps I and 2 can thus be used to approximate the 
original problem. As Tribbia ( 1982) indicated, this 
procedure is not completely equivalent to directly 
minimizing ( 2.5) under the strong constraint ( 2.4). 
Each iteration of Daley's scheme solves a new mini­
mization problem, with (Ax)aand (ax)R in (2.5) re­
lating only to the increments during that iteration, 
rather than to the accumulated changes made to the 
original fields. However, the results ofTribbia ( 1982) 
suggested that Daley's procedure provides a very good 
approximation to the solution of the full minimization 
problem. 

Thus Daley determines 

ax = (dX)R + (AX)G 

by a constrained variational problem where each of 
these constraints is of the isoperimetric (integral) type 
and can be written in symbolic form as ( 2.2) for each 
element of IIG. This variational problem is iterated 
until stopping criteria (to be discussed later) are 
achieved. 

Daley's approach (using integral constraints) has the 
undesirable effect of producing a large linear system of 
equations to be solved if the variational problem is 
attacked by Euler-Lagrange equations, since the di­
mension of this linear system is directly proportional 
to the number of Lagrange multipliers (or constraints) 
present. This dimensionality can be reduced by certain 
restrictions on the spatial variability of the control pa­
rameters present in the variational problem but there 
is a clear limitation for applications. 

b. The implit:itjorm of variational NMI 

lt is the purpose of this paper to reconsider Oaley's 
approach in relation to the newly developed implicit 
normal mode initialization scheme presented by Tem­
perton ( 1988), hereinafter referred to as T(88). We 
summarize here the salient features of this procedure 
and refer the reader to T( 88) for further details. 

First, if an appropriate choice is made for the lin­
earized model equations which determine the normal 
modes, two fundamental properties come out con· 
cerning slow and fast eigenmodes: 
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Property I. Slow modes are stationary and nondi· 
vergent, and 

Property 2. Fast modes have zero linearized potential 
vorticity. 

Let Ax represent a model correction vector. We can 
express Machenhauer's ( 1977) scheme, for example, 
with the previously mentioned special form of the linear 
operator, denoted by A, as 

AAx = iPG(o,x)o 

where PG is the projection operator onto HG. and ( o1x)0 

is an observed model-state tendency. lt is then possible 
with property.! and 2, and also requiring that AxEHG, 
to specify A x uniquely without having to know the 
structure oftheeigenmodes of A. In the case ofDaley's 
variational approach, we need to know the structure 
of each gravity mode being initialized since they appear 
explicitly in each constraint of the form ( 2.2). The 
following will show how to circumvent this difficulty 
using the implicit form ofnonlinear NMI. 

Since variational initialization is intended to be a 
special procedure for controlling changes being made 
during initialization, the controlled variables taken here 
will be the same as those used for the implementation 
of the unconstrained initialization scheme. In order to 
introduce our variational algorithm, we have chosen 
the regional finite~element barotropic model of Stan­
iforth and Mitchell ( 1977, I 978) as a reference. Con­
sequently, the vector of controlled variables will be 

Ax =(AI/;, AX, Ac/>) 

where use has been made of Helmholtz's decomposi· 
tion theorem for the wind field 

AV= o(AI/;) + o(AX) AV= o(AI/;) + o(AX) 
ay ax ' Ax ay 

Here V, and V are wind images related to the u and v 
components of the wind vector by 

u 
V=-, 

m 
V 

V=­
m 

where "m .. is the map-scale factor and is given at lat· 
itude .. 8" by 

I + sin(60°) 
m= 

t + sin(8) 

for a polar stereographic projection, true at 60°N. 
Property I thus takes the simple form for each cor­

rection vector 

(AX)R = 0, (AX) = (AX)G; 

that is, the gravitational part of the divergent wind· 
field correction is governed by unconstrained initial­
ization. The geopotential and streamfunction are then 
the only fields to be controlled by the following func­
tion, 

39 

J =I I :•2 (d(/))2 + 4_)w#(V(AI/;))2d.xdy (2.6) 
D 

where •• D" is the physical domain, "m" is the map 
scale factor for projected grids and 4_) represents the 
domain average of geopotential. This function is qua­
dratic in the geopotential and the rotational part of the 
wind field. lt incorporates weighting factors for each 
of these two fields, which are allowed to vary in both 
spatial directions. Setting these factors between zero 
and 1 will permit a mutual adjustment between cf> and 
Y,. They must also be specified in such a way as to 
produce acceptable changes of the controlled fields 
where we know something about the expected ampli­
tude of these changes. This information can, in prin­
ciple, be extracted from an objective analysis scheme. 
At the same time, it should be borne in mind that 
certain choices of the weights may lead to unrealistic 
results; for example, setting w# too close to zero in the 
tropics may lead to ellipticity problems ( Daley 1978; 
Tribbia 1981; Temperton 1984). 

It should be mentioned here that the functional given 
in ( 2.6) is simply a choice and is not the only one 
possible. Other forms are possible including. for ex­
ample, the gradient of geopotential which has been used 
previously by Daley ( 1978 ). Now, from the uncon­
strained scheme we know 

( Ax)G = { ( Ac/> )G, ( A!f)G, (AX)G}. 

During step 2, we look for a correction vector on slow 
modes, 

(Ax)R = {(Acf>)R, (.:'11/;}R, 0} 

that will make J a minimum. To be consistent with 
the implicit scheme [T(88)), property 1 must be the 
required contraint on (Acf>)R, (AI/;)R 

where 

V2(A(/))R = <J(AI/;)R (2.7) 

02 ij2 
V2=-+­. ax2 1Jy2 

<J = .! (1 .!) + .!. (1 .!) ax ax oy a1 • 

together with its appropriate boundary condition 

(j . {J 
an (Acf>)R ... I an (A!f).R on r (2.8) 

whe.re r represents the boundary of D,/(x, y) is the 
Conolis parameter, and the derivative with respect to 
.. n" is an outward normal derivation on r. 

Following T(88), the gravitational part ofthe con­
trolled correction fields satisfies a linear relation of the 
same form as ( 2. 7) given by 

V 2(Acf>)G- <J(At/I)G = (11V2X)0 + .fi(AX)G (2.9} 
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where 

~ =.!. (1 !..) -.!. (1 .!.) ax ay ay ox 
with boundary conditions 

a a a 
- (A<P)a =I- (Al/l)a +I- (AX)a on ry ax ox ay 
a a a 

- (A<P)a =I- (Al/l)a- I- (AX)a on rx oy ay ax 
(2.10) 

where 

r = rxUry. 
Since the correction fields present in the function con­
cern the Rossby part as well as the gravitational part, 
it is preferable to work with a constraint written in 
terms of these fields. Since ( 2. 7) and ( 2.9) are linear 
equations. a unique constraint can be formed by adding 
( 2. 7) to ( 2. 9) and forming its associated boundary 
condition by adding ( 2.8) to ( 2.10). The differential 
constraint is thus 

M(A<P, AI/I) 

= \i'2(A<P)- <J(Al/1)- (o,V'2X)0 - ~(AX)a = 0 

a a a 
ox (A<P) =I ox (AI/I)+ I oy (llX)a on ry 

a a a 
- (A<P) =I- (AI/I)- I- (AX)a on rx. ox oy ax 

( 2.11 ) 

In addition to constraint ( 2.11 ) , conservation of mass 
over D is required which implies 

I I < !~ > dxdy = o ( 2.12) 
D 

so that the mean value of the geopotential is not 
changed. 

Thus our variational problem is to minimize J given 
by ( 2.6) under the differential constraint ( 2.11 ), and 
the integral constraint (2. 12). Using classical theorems 
of the calculus of variations ( Smirnov t 964) our prob­
lem is equivalent to the minimization of the new func­
tion given by 

J =I J { :i (ll<P)2 + +wt(V(Al/1))2 
D 

+ 2>..A/(A<P, ill/!)+ 2>.• (AI/J
2
)}dxdy 

m . 

where .>.is a variable Lagrange multiplier and .>.• is a 
constant multiplier. 

This variational problem can be solved either by an 
optimization algorithm (sec Le Dimet and Talagrand 
198S; Navon and Lcgler 1987, for example) or with 
Euler-lagrange equations. We chose the latter because 
the linear equations to be sol\·ed are rather simple, and 
to show the connection with unconstrained initializa­
tion. Since we use as a reference, the limited-area finite 
element barotropic model of Staniforth and Mitchell 
( 1977, 1978), a wall boundary condition restricts the 
streamfunction on r to zero, 

~ = 0 on r. 
Thus, variations must be performed with 

AI/I= 0 on r. 
Taking into account this latter boundary condition, 
together with the boundary conditions specified by 
( 2.11 ) when making variations on the limi.ted domain 
D, this forces a natural boundary condition of a specific 
form for the variable multiplier .>.. The reader will find 
the essentials of the required manipulations in Smir­
nov's ( 1964) book (chapter 11). 

It is thus clear that the following variational set of 
equations have been formulated to be fully compatible 
with the numerical model bcing initialized. 

The Euler-lagrange equations are as follows: 

w. .>.• 
V 2.>. =- (.141) +-ml ml 

a>. 
- = 0 on r 
iJn • 

V· ( 4>w~ V(lll/1)) = ::1(.>.) 

(2.13) 

ill/< = 0 on r. ( 2. 14) 

\i' 2(A<P) =~(Ill/<)+ ~(~X)a + (O,V2X)., 

a a a 
- ( ll<P) = I - ( AI/I) + I -;-- ( AX )a on r Y• ox ox uy 

and 

a a a 
- ( 4<P) = I - ( ~ot-) - f - ( Ax )c; on r.( ( 2.1 s) ay a.r iJx 

( 2.16) 

c. Unconstraim•d implit:it N.\11 

An immediate consequence of this set of equations 
is that if we set w. = u·, = const. then ( 2.13) and ( 2.16) 
together with the consistent solving of ( 2.13) imposes 
.>.• = 0 and we may write in symbolic form 
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~'here V ,-2 is the linear operator which inverts the La­
placian with homogeneous Neumann boundary con­
ditions. 

Equation ( 2.14) gives 

Al/1 = w. v,-2:Jv,-2(At/>) 
+w~ m2 

=! vd-2:JV -2(At;) + " m2 
(2.17) 

where V 11-
2 is the linear operator which inverts the La­

pbcian with homogeneous Dirichlet boundary con­
ditions. Inserting this result into ( 2.1 S) gives 

'2(114>)- i ;~vd-2:Jv,-2( ~) 
= Z(AX)o + (3,V2X)0 • (2.18) 

Equations ( 2.17) and ( 2.18) are exactly the same as 
those derived by T ( 88) for unconstrained initialization. 
Since we also use AX = (AX)a,thisspecial form of the 
"ariational problem reduces to unconstrained initial­
ization (with Machenhauer's scheme), a result found 
previously by Daley ( 1978) and Temperton ( 1984) in 
different contexts. 

This fact has also been used by Ballish ( 1980, chapter 
IV) for closing his system of equations in the context 
of the bounded derivative initialization method. Ig­
noring beta effects, it is easily shown that Ballish 's 
~he me of non-normal mode initialization is a special 
case of implicit nonlinear NMI considered by Tem­
penon ( 1989). As a consequence, the present varia­
tional scheme encompasses the variational form of 
non-normal mode initialization proposed by Ballish 
{ 1980, pp. 54-55) which has not been exploited (sur­
prisingly enough) since its early formulation. 

d. The numerical procedure 

The numerical method used to solve the Euler-La­
grange equations ( 2.13 )-( 2.16) is very similar to that 
used in T(88) for the unconstrained case. The equa­
tions may be combined into a single equation for Ill/>: 

'2(AI/>)- i :~.cd-•;~v,-2(;i At;+ ~·2) 

= Z(AX) + (O,V2X)0 (2.19) 

~here the I i near (but variable-coefficient) operator .£ 
is defined by 

.£=V ·w.,V. 

In ( 2.19 ), the operator .£ is to be inverted using ho­
mogeneous Dirichlet boundary conditions. 

To solve (2.19), we use the algorithm ofConcus 
and Golub ( 1973 ), accelerated by a conjugate-gradient 
technique (Cone us et al. 1976). For the kernel of the 
Concus-Golub scheme we take the constant-coefficient 
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Helmholtz operator V2 - Aa. where ~ is a suitably 
chosen average value of 

1 /
2w• --,-. 

+m·w~ 

Compared with the unconstrained case, the only ad­
ditional problem is the in\·ersion of the operator .£. 
This was achieved by an inner iteration, itself based 
on the Concus-Golub scheme with conjugate-gradient 
acceleration. 

The whole variational algorithm may be summa­
rized as foJJows for one iteration: 

( i) Run part of the unconstrained initialization 
scheme to obtain (.lX)0 • This step is identical to step 
1 and 2 ofT ( 88) and does not interact with the (At;) 
and (Ill/!) fields. 

(ii) Given (AX)o, U1V2X). Solve (2.13) to (2.16) 
to get ( At;) and ( ll!J;). (This step replaces step ( 3} and 
(4) ofT(88).) The next stepS are identical to T(88) 
(steps S and 6} which are 

(iii) Find (AV), (AV) from (Al/1), (AX). 
(iv) Add increments (ol.U), (AV}, (At;) to model 

fields. 

3. Experimental results 

In order to test the variational algorithm, we illustrate 
in this section an implementation into the regional fi­
nite element model of Staniforth and Mitchell ( 1977, 
1978). A number of experiments were run to examine 
the effects of varying the -.'eighting functions w., w •. 

In the present case, the domain of initialization was 
chosen to be a square of side 20 000 km centered at 
the North Pole using a polar stereographic projection 
true at 60°N. This domain Is illustrated in Fig. 1. The 
boundary is a solid wall in the vicinity of the equator. 
The grid has a uniform resolution of I 00 km in the 
region of interest (61 X 61 points) andrelaxes uni­
formly outside that region until the whole grid gets 
completed by a set of 101 x 101 points. 

As compared to previous experiments on variational 
initialization for shallow-water models, the problem 
faced here can be considen:d a fairly large one, since 
we deal with 30 000 variables to be adjusted for the 
streamfunction. velocity potential and geopotential 
fields. 

All experiments were run with the same initial con­
ditions as those used by Tc88). The mean depth for 
the uninitialized height field shown in Fig. 2 was 5600 
m. Unless otherwise stated. all other features of the 
model to be prescribed before starting the integration 
are implicitly assumed to be the same as those specified 
in T(88). 

For each experiment to be presented below, we look 
at the behavior of the three following values for both 
unconstrained and variational schemes: 
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DOMAIN AND NONUNIFORM GRID 

FIG. I. The experimental domain and the nonuniform grid. Time traces in height field 
given by Figs. 8 and 10 are associated with gridpoints denoted A and 8 respectively. 

J = f f :•2 (At/1) 2 + ~w;,(V(Aif) 2 )dxdy 
D 

where AI/I, AlP are the instantaneous correction fields 
computed at a given iteration for both schemes; 

Jr = f f :; (At/l)l + ~w;,(V(Aif)r)2dxdy 
D 

where th~ index "T .. refers to the total correction ap­
plied to the uninitialized original fields at a given it· 
eration for both schemes; and 

BAL1 

= J J { (li;:;a
2 

+ 4>[(8,U)a2 + (o,V)a2
] }dxdy. 

D 

This value can be computed entirely in physical space 
and is a measure of the convergence of the uncon· 
strained ( Machenhauer) scheme. The reader will find 

VOLUME 117 

the details of the computation of BAL1 in T( 88). FIG. 2. The uninitialized height field (contour intervaiiO dam). 
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In the present context, BAL1 will simply serve as a 
measure of gravity wave activity and will be given for 
comparison of unconstrained versus constrained ini­
tialization schemes. Note that the way that our varia­
tional problem has been formulated, we have no guar­
antee a priori that h will be smaller for the variationally 
adjusted field when compared to its value in the un­
constrained scheme. Each scheme follows a different 
path as they attempt to reach a dynamical balance. 

a. l.atiflldilwll.l• WlrJ'illg weights 

This first experiment concerns latitudinally varying 
weights w9 , w~. The structure of these weights is taken 
from Daley ( 1978) and takes the simple form for a 
latitude 0 

Wtt- = (I - ~t 2 ) 4 where 11 = sinO 

w• = 1- w~. 

Once projected onto the polar-stereographic grid 
these weights are variable in both •• x .. and "y" direc­
tions. Figure 3 shows w9 on the calculation grid. From 
the chosen form of the function J ( 2.6 ), the variational 
scheme will tend to adjust the rotational part of the 
wind field to the initial mass field at higher latitudes 
and conversely at lower latitudes. 

In the following, changes due to unconstrained or 
constrained initialization are represented by subtracting 
the uninitialized fields from the adjusted fields. Figures 
4 and 5 show these changes for the height and stream­
function fields for the case of unconstrained initializa­
tion. Comparing these to the results obtained by vari-

FIG. l. Spatial structure of weightin& function w• 
for experiment in section 3a. 

FIG. 4. Difference in height fteld between unconstrained 
initialization and no initialization (contour interval 7 m). 

ational adjustment (given by Figs. 6 and 7 for 4~ and 
AI/I respectively), it is apparent that the major differ­
ences are latitudinal in character. The increasing weight 
on mass with latitude strongly forces the retention of 
mass at higher latitudes. For both unconstrained and 
variational schemes the structure of the height field 
corrections are somewhat similar although with differ­
ent amplitude at lower latitudes . 

FIG. S. Difference in streamfbnction fteld between unconstrained 
initialization and no initialization (contour interval4 X 105 m 1 s-I). 
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FIG. 6. Difference in height field between variational adjustment 
using latitudinal weights w., w* and no initialization (contour interval 
; m). 

Changes made to the streamfunction field are com­
pletely different for the variational and unconstrained 
cases. The variational scheme presents a correction field 
~·hich acts in the desired way as regards mutual ad· 
justment with the mass field previously described. On 
the other hand, unconstrained initialization has pro-

.I 

FIG. 7. Dilference in stre:~mfunction field between variational ad· 
justiDC'IIt using latitudinal weights ~~"•• u·* and no initialization (con· 
tour i.Dterval4 X 10' m2 s- 1). 

TABLE I. Daley's weights. 

Value or functional Value of runctional 
Iteration J Jr BAL1 

Unconstrained 

0 2.8 X 1011 

I 1.136 X 1011 1.136 X 10'1 2.0 X 109 

2 1.282 X to'' 1.144 X 1011 7.7 X 107 

Variational 

0 2.8 X 1011 

I 4.264 X 1011 4.264 X 1011 1.0 X 1010 

2 1.086 X 1011 6.016 X 1011 2.0 X 109 

3 1.161 X 1016 S.97S X 1017 I.S X 10' 
4 2.986 X 101J 5.979 X 1017 7.2 X 107 

duced a smoothly varying correction field distributed 
over D. 

Table I gives the behaviorof J, JTand BAL1 at each 
iteration of the unconstrained and variational schemes. 
Note that in the unconstrained case, J and )Tare purely 
diagnostic quantities computed for the sake of com­
parison with the variational experiment. The solution 
of the unconstrained problem is of course totally in­
dependent of w• and ...-~. It is seen that the value of 
BAL1 decreases more rapidly than the variational case 
as a function of iteration. The convergence of the vari­
ational scheme can be judged by the gradual decrease 
of J and a stabilizing value of Jr as a function of it­
eration. Note that at the final stage ofthc initialization 
process, the value of Jr for the variational case is ef­
fectively lower than that obtained with the uncon­
strained scheme. 

It is worth mentioning that in the present context 
of a shallow-water model, it has been observed that 
iterating Machenhauer·s scheme more than twice 
(starting with the uninitialized fields) gives no im­
provement on the balance of the resulting fields [see 
also T( 88 ), p. 1025]. Further reference to uncon­
strained initialization will always refer though to two 
iterations of this scheme. For both variational and un­
constrained experiments. we present in Fig. 8 the time 
trace of the height field for point (A) of Fig. I. The 
model was integrated for 48 hours. Initial conditions 
from the variational scheme arc obtained using three 
iterations. For the uninitialized case, high frequency 
gravity-inertia waves are present at the initial stage of 
integration of the model (heavy line) with large initial 
amplitudes that diminish as the integration proceeds. 
In both nonlinearly adjusted initial-condition cases, the 
degree of balance as judged from the smoothness of 
the associated height traces arc comparable. Although 
the initial states (in the height field) of the model at 
this particular grid point are separated by a small dif· 
ference, the variational scheme has clearly changed the 
slow Rossby modes present initially and forced a sig· 
nificant departure from its unconstrained analogue. 
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5240. 

5220. 

5200. 

E 
5180. 

-' ..c 
tlll 5160. ·-CIJ 

:X: 
5140. 

5120. 

i. 2 . 2 4'.' . 3 6 : . 4 8. 
Hours 

FIG. 8. Time trace of height field for point A shown in Fig. I. 
Hea\' line-no initialization, dashed line-unconstroined initial­
izati~ ( 2 iterations), light line-variational initialization using lat­
itudi mal weights ( 3 iterations). 

b. Latilllde-longilllde var}•ing wdghts 

We now describe another experiment dealing with 
both latitude and longitude variability of the weighting 
functions w., wll-. Clearly this longitudinal variability 
is crucial tor discriminating between the reliability of 
oceanic and continental analysis data within the ini­
tialization process. As mentioned previously, the op­
timal determination of these weights can be obtained 
in conjunction with the objective analysis scheme. 

For illustrative purposes however, we will examine 
the behavior of the variational scheme under the fol­
lowing longitudinal structure. We simply cut the do­
main D by straight lines originating from the North 
Pole so as to isolate oceans (an abrupt version ofTrib­
bia 's. 1982, longitudinal structure). The lines are lo­
cated by the following angles and with them the as­
sociated ocean domains: 

Atlantic Ocean ( I5°W, 65°W). 
Pacific Ocean ( 125°W, 135°E). 

For comparison, the latitudinal structure of w., w1 
are gi .. cn the same form as Daley's weights discussed 
in the preceding experiment. 

0' er both oceanic sectors, a reducing factor of 10 -l 

was applied to w.p and a factor of 10- 1 to wll- • 
. -\s we have seen previously, over the continents (in 

the e:\lr.atropical regions) the pure latitudinal structure 
of w •• u·~ will force thl! rotational part of the wind field 
to adjust strongly to the height. In the present case, the 
chosen reducing factors on both weights simulate the 
efft."Cl of higher confidence in wind field data relative 
to the mass lield over oceanic regions. Consequently, 

as one goes from continents to oceans, the wind field 
becomes less strongly forced to adjust to the original 
mass field. 

Subtracting the adjusted height field obtained from 
Daley's weights from the height field obtained with the 
present set of weights (after three iterations), the lon­
gitudinal effect is clearly seen in Fig. 9 which displays 
the resulting height-field changes. The sharp longitu­
dinal delimitations are clearly represented here and a 
more elongated north-south pattern could be obtained 
by a judicious choice of the weighting functions. 

Table 2 summarizes the behavior of the variational 
scheme for the present set of weights. Values of J and 
Jr have also been recomputed for the unconstrained 
initialization scheme using the new set of weights. Once 
again, the value of Jr for the variational case is less 
that of the unconstrained case, and three iterations are 
found to be sufficient for providing an acceptable degree 
of balance. To show this we choose point (B) on the 
calculation grid of ng. I to monitor the height trace 
during integration of the model. This point lies pre­
cisely where most of the difference in the height field 
is observed relative to the first experiment. 

Heavy, light, and dashed lines shown in Fig. 10 are 
associated once again with uninitialized, variationally 
adjusted, and unconstr:lined initial conditions. Judging 
from the light curve, the addition of the longitudinal 
effect in the weighting functions has not inhibited the 
ability of the scheme to achieve a dynamical balance 
initially, while still taking into account the hypothetical 
oceanic weaknesses ofthe initial data given by the ob­
jective analysis. 

FIG. 9. Difference in hei&flt field between variational initialization 
using latitude-longitude wcpiS and variational initialization using 
latitudinal weights (contour interval S m). 
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TABLE 2. Latitude-Longitude weights. 

Value of functional Value of functional 
Iteration J Jr BAL1 

Unconstrained 

0 2.8 X 1011 

I 7.358 X 1011 7.358 X 1017 2.0 X 109 

2 1.563 X 101) 7.439 X 1017 7.7 X 107 

Variational 

0 2.8 X 1011 

I 3.809 X 1017 3.809 X 1017 8.0 X 109 

1 2.238 X 1015 3.758 X 1017 5.8 X 101 

3 3.308 X 1014 3.831 X 1017 3.2 X 101 

4 1.584 X 1014 3.811 X 1017 2.7 X 101 

Finally, an interesting point to consider is whether 
this variational scheme has the potential ability to sig­
nificantly change a model forecast as compared to 
standard unconstrained initialization. To consider this 
point, a two-day integration of the model using un­
constrained initialization served as a reference for 
comparison. Using the latter specification of the 
weighting functions w •• w~, the variational initiali7.a­
tion scheme (using three iterations) provided the initial 
conditions for a second forecast. Fig. 11 presents the 
initial height departure at intervals of 5 m with a max­
imum of22 m. The oceanic departures are clearly rep­
resented and the emphasis is on the possible amplifi­
cation of this pattern as time goes on. After running 
the model for two days, the resulting pattern of height· 

E 
..... 
..c: 
CD ..... 
iU 
::I: 

5380. 

5350. 

53 2 0. 

5290 • 

52 6 0. 

52 30. 

5 2 0 0 . 0 '-• ...._._-t-1-;!;-2-'-. --'--;21:;-4-':--'--. ~3-=6 ....... --4~8 • 

Hours 
FIG. 10. Time trace of height field for point B shown in Fig. I. 

Heavy line-no initialization, dashed line-unconstrained initial­
iza~on, light line-variational initialization usinalatitude-longitude 
we~ghts. 

FIG. 11. Difference in height field between variational initialization 
using Latitude-Longitude weights and unconstrained initialization. 
Day 0, contour interval 5 m. maximum amplitude 22 m. 

field departures is given in Fig. 12. Differences are given 
at intervals of I 0 m and in particular there has been a 
steady increase in the height field difference between 
the two forecasts associated with the southward move­
ment of the low center (see Fig. 2 ), reaching a maxi­
mum absolute value of 67 m. We might thus expect 
that for initial departures in the initial data which ex-

FIG. 12. As in Fia. 11, but after two days or model intepalion. 
Contour interval 10 m, maximum amplitude 67 m. 
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ceed those used here (generated by using suitable 
weights w_., wy. with respect to expected analysis error) 
we would obtain even larger differences in forecasts as 
compared to standard unconstrained initialization. 

4. Conclusions 

In this paper, we have shown that the implicit normal 
mode initialization technique can be generalized by 
combining it with a variational procedure. The result· 
ing fields satisfy the balance condition required by 
nonlincar normal-mode initialization, while the 
changes to the analyzed fields are controlled through 
minimization of a variational integral. Since the whole 
procedure is expressed in physical space, the weights 
in this integral can be varied in the horizontal in a 
more or less arbitrary manner, to reflect local variations 
in the presumed reliability of the mass and wind field 
analyses. Some of the difficulties encountered in pre· 
vious efforts to combine normal-mode initialization 
with variational techniques are thereby avoided. 

We have also demonstrated the potential of varia­
tional normal-mode initialization to change the slowly 
evolving component of the resulting forecast. The next 
stage of this study will clearly be to extend the technique 
to a multilevel model, and to test it in the context of 
a fuii-Oedged data assimilation scheme. 
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Chapter IV 

Variational implicit normal mode initialization for a global spectral 

shallow-water model 

W.l Presentation of article 2. 

Recently, Temperton (1989) showed that the concepts of implicit nonlinear NMI 

could be of some use even in the context of spectral models. The degree of departure of the 

implicit technique with respect to the standard "explicit" nonlinear NMI technique is more 

easily examined in the spectral context due to the separability of the linear system for each 

zonal wavenumber (Kasahara 1976). It turns out that for a mean equivalent depth of 5600 

m. (i.e. between the external and frrst internal depth values), the. differences between the 

"de luxe" version of the implicit NMI scheme (i.e. scheme B of Temperton 1989) and the 

conventional explicit NMI scheme, are limited to the very largest horizontal scales. Further 

studies on this point are yet to come. There is no doubt however that for the next generation 

of variable resolution models, the implicit nonlinear NMI as described in Temperton (1989) 

will impose itself as much as the implicit NMI for regional models. 

The usefulness of VINMI for spectral models is however highly interesting even 

for the current applications of this model. The variational form of nonlinear NMI was first 

considered by Daley (1978) in the spectral context. The size of the nonseparable linear 

system involved in his algorithm was a limiting factor for its operational use in a multilevel 

context. 

We present in the following, the application ofVINMI to a global spectral shallow­

water model. Similar tests as those considered in chapter liT indicate the robustness of the 

scheme when operated at triangular truncation 63. 
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IV .2 Article 2 

V ariationat implicit normal IIJ.Ode initialization on the sphere 

Monthly Weather Review, 119,631-652 
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V arladoaallmp6cit Normal Mode Initializadon on the Sphere 

LUCFlwON 

Rechlrchl en prbisi011 numlrilp.te, A.llfiOip/wric EM~1'01'l1Mnl s,;c,, Dorrtll. Qu/11«, Ctllllllitl 

(M.a.aWICript received 19 Jauuary 1990, in &.nal form 4 Sepccmbcr 1990) · 

1. l.aoducdoa 

T'l:ll: nonlioeat normal mode initialization technique 
(nonlinear NMI) as a mean ofcontrollina the ampli­
tude of the hi&h-frequency pavity-inertia waves iD a 
primitive equation model bas benefited from several 
improvements durina the last decade. Stimulated by 
tbe ~opment of an initialization method iD physical 
space called the ''bounded derivative initialization 
method" (BDI) due to Brownina et al. ( 1980) (based 
on the bounded derivative principle of Kreiss 1979, 
1980 l. a physical space formulation of nonlinear NMl 
bas .,.adually emei'Jed. Banish's ( 1980) results were 
padaally set into a riaorous framework durina the 
19805 and culminated in wbat is now called "implicit 
noali:near NMI" (Temperton 1988, 1989) or "non­
normal mode initialization" ( Ballisb 1980; Juvanon 
du V acbat 1988). As in F'tllion and Temperton ( 1989) 
( bcreaftcr referred to as FT89) this new method will 
be n:fc:J1ed to as Implicit nonlinear normal mode ini­
tiiJ/i::mion technique (INMl). Implicit NMl schemes 
are formulated iD physical space but are still cbarac­
terizc:d by slow and fast mode components of the ftow. 
1bis characteriiation turns out to be important for the 
formulation of a variational INMI ( VINMI) in the 
spirit of Daley's work ( 1978), and has recently been. 
exploited by FT89 in the context of a barotropic finite­
element resional model. Their variational procedure 
was shown to efficiently minimize cbanaes to the an-
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alyzed fields while at the same time maintainina a de­
arec of balance companblc to the unconstrained ~­
plicit scheme. Based on K.asaban's work ( 1982a), at 
is expected that a variational extension of the BDI 
method would be very similar to VINMI. 

Althougb implicit nonlinear normal mode initial­
ization was laraeJy stimulated by the desire to apply 
the normal mode technique to lilnited area models, it 
is also recognized to be a more usefUl approach than 
the standard explicit teclm.ique for initia!izina very hiab 
resolution spectral models. This paper presents what 
may prove to be a· still pater beDefit of applyina the 
implicit initialization technique to alobal spectral 
models; that is., the feasibility of variationally ini~· 
izing such models. Indeed. to date the problem ofvan­
atiooal oormal mode iDitialization wbell fonnuJated. 
in normal mode space has been m:opiud to be a 
problem of prpntuan size aDd coascquently DOt viable 
for use in an operational data assimilation scheme. It 
is the purpose of this paper to sbow that a variatio~ 
extension of INMI is feasible at a n:asonable cost With 
present day computers iD the contat of a alobal spectral 
shallow-water model Tbc technique to be presented 
is based on the formulation of VINMI by FT89 and 
incorporates fuU horizontal variations of the weiabts. 

Section 2 aives a settiDa of the dynamical model 
toacther with a quick review of the .. implicit scheme 
B .. developed by Tempcnon ( 1989). Tbc variational 
form of INMI is pn:sented iD leCtion 3 and results of 
its application arc discussed iD leCtion 4. Section 5 
briefty addn::sses the relationship between INMII.Dd 
quasi-seostroPbktheory (for an }plane model) wbicb 
is related to tbe problem ofthe di'11e1JeDCe oftbe heiglu-
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COI"'.ft11""li normal mode initialization iterative 
!Jdvme f"mally, section 6 &ives a swnmary and possible 
fu.tun: extensions of the method. 

l. J.plidt aonliDar normal mode iaitialb:adoa 

In .order to describe the variational scheme. the fol­
lowiJ:Ic section presents the essential ingredients that 
are Dll!lC'.ded. Following FT89, these are the models to 
be initia.li.zed. and the differential constraints cbarac­
terizi:ll& the specific implicit NMl scheme considered 
in this paper. 

o. 11¥model 

1"be &averning equations are the sballow-water 
equations on the sphere, in their differentiated form as 
used by Temperton ( 1989) (hereafter referred to as 
n9) and DaJey ( 1978 ): 

ar = -20 siniD-
20 (a.;+ cos8 8X) + Qr (2.1) 

at a2 dA 88 

oD - 20 sinBr -
20 

( -cosB a.; + ~) - V2• + a, 
8t a2 88 8A 

~ 
-"'" -+D+Q. 
Dt 

(2.2) 

(2.3) 

the quantities Q,, Q.o, Q. are the nonlinear (advective 
and metric) terms. Tbe symbol+ refers to the mean 
fiCOP(Rential depth of the original analyzed field. and 
the symbol f> is a geopotential departure from +. The 
other symbols have their standard meaning. Settina 
Qr. Q.,,. Q. to zero obtains the linear spectral form or 
the previous system by using a spherical harmonic ex­
pansion of the dependent variables, where for example. 

M M 
f(A.. I, I) • ~ ~ f,."'(t)P,.111(sinl)exp(imA) 

for triangular truncation. and 

m • zonal (east-west) wavenumber 
P,. ... - associated l...eaeadre function ofthe first kind 

of order m and dqree n 
r ..... - spectra) component of the vorticity field. 

The 6na1 system can be put in standard symmetric 
form by introducing the following cbanae of variables 

f,.• ... a[n(n + or''"r,."' (2.4) 

D,."' • i[a[n(n + l))-112D,."' (2.S) 

..... -1/2 •• "' (2.6) 

wbicb Jives 
~~-Ill 

~ - i(b,."'f,."' + /."'D':-, + J:.. • .D:..,> (2.7) 

dD• "' 
" ·<b "'D."' ""'r·· +/"' r·"' + •.4.. "'> --;,;;- - ' " 11 + Jlt .... 11+1 11+1 c,. .... 

(2.8) 
.... Ill 

ut;,. . "'D"' T•u:,. " (2.9) 

where 

b,.• = n(!O:l) (2.10) 

20 .!."'- -<•"- 1)112«,."' (2.11) • .t/2 
c,."'•-;-[n(n+ I)Ji12 (2.12) 

and 

"'- (":z- ""')1/2 
t,. 4 • I . ,.. -

In matrix form. this sysaan is written as 

dX- iAX 
dt 

where the state vector X for a pven zonal wavenumber 
m is 

x-[f] 
and each component of 1be state vector contains its · 
spectral components; for aample 

t • (f."', • • • • tM"')T. 

Tbe precedina derivatioll is common to both explicit 
and implicit uonlinear NMJ schemes but they depart 
from each other at this point. 

b. INMI constraints 
. -·- ---- -----~- -· 

Recently. T89 bas eu.miJled various possible per· 
turbations of the matrix A ( wbicb defines the normal 
modes of the system) all baviq the eft'ect of producinc 
stationary nondiveraent RGIIby modes. His conclusion 
about these possible variaats was that the .. B scheme" 
was tbe most natural to c:boose siDce it is bued on tbe 
least drastic moc:Wicatioo of the liuear system and is 
closest to explicit NMI. As a consequence. the present 
study is bued oa the variatioaal extensioa of T89's 
.. scheme B. •• Given here is a resume of the esseatial 
elements of this scheme and the interested reader is 
referred to T89 for funhcr details and basic terminol-
OIY· 

In the context or MICbca.bauer's ( 1977) initializa-
tion, the foUowina aJaebnic system must be solved for 
the correction state vector AX. 

A(AX) • il(;a(;r(I,:X)o (2.13) 
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wbere Eo is the matrix wboee columns are the eipn­
vectors of A associated with a cbosen set of p-avity 
modes to be initialized, Tbese malrices act on (&,X )o 
which is tbe "observed" time rate of cbanse oftbe state 
vector computed from a sinsJe forward time step. In 
matrix form this system is written as 

[8 F 0][4f] [(i,l')o] 
F 8 C ~ • i (i~)c; 
0 c 0 ~ (i,4))c; 

(2.14) 

where the submatrices B. F, and C bave matrix ele· 
· ments defined by ( 2.10) to ( 2.12) and their precise 

structuR may be found in T89's Appendix. The matrix 
Q bas only zero elemenu. 

Scheme B is cbaracterized by constrictina the slow 
modes to be stationary ud nondiveqcnt [in order to 
be able to solve the system ofequations(2.14) for &X 
belonsina to the fast subspace 1.: Tbis constriction is 
achieved by nealcctin& tbe b."'t. • term (beta term) 

. · appearina in ( 2. 7) for the vorticity tendency. Thus, A 
is replaced by Ao. i.e .• 

F'lo. 1. The uoioitialiud beiaht fteld (contour iDtcrtal • 10 dam). 
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where me matrices a, C, F have matrix elements b,,., 
c. • . .r; •, respectively, [defined iD (2.10)-(2.12)1 and 
are the same as iD the original system. The matnx Ao 
admi:s slow modes which are stationary, nondivergent, 
a.oc1 d:.aracterized by the linear balance relationship 

D.~t = 0, c4-.~t = -Ft.~t (2.1S) 

when: the lower index stands for Rossby modes. 
O.X to the approximation of matrix A. the physical 

space diapostic equation for the divergence field cor­
rectioc is given by namely, 'Eq. ( 4.1 S) of T89; 

(F2 + cl)AD = iF(&J)o + iC(IJ,.)o. (2.16) 

Nc:R that 46 is completely determined from the 
IDOdd tendency of the vort!city and aeoPOtentiallields. 
This c!iapostic form for 4D can be shown to be related 
to quasi..geostrophic theory and this aspect is examined 
iD seaSon S. , 

The last inpedient which is Deeded for the varia­
tional scheme comes fiom the second equation of the 
alsebraic S)'SieiD ( 2.13) ( usiq Ao ). i.e., 

F4( +BAD+ C~ • i(I,D)o. (2.17) 

Equations ( 2.1 S )-( 2.17) constitute the desired COD· 

straints on slow and fast mode components in physical 
space needed by the variational scheme. Althouah 
hiaher-order nonlinear balanciq could be envisa&ed 
within a variational framework. the present paper is 
concerned only with first-order noolinear balancinJ. 
We now proceed to descnbe the specific form of the 
variational scheme. 

3. V ariatloaalfOl'Dlulatioll 

The implicit form of the variational scheme pre­
sented here is the spectral analogue of the scheme in­
troduced by fT89. The main features of this iterative 
approach are given by the followin& stepS; 

( i) Given an initial state veC:tor X 0 , aenerate a cor­
rection state vector ( 4X )o where the new state 

·-. . -
Flo. 3. Difereoce ill beiabt 6cld betwecll ~ iairi•!izatioe IDd 

80 illitializatioll ( C:Oiltoul' illtemJ • 10 ID), 
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X I - X. + ( AX )G 

is iD approximate balance. 
( ii) To mum "closer .. to X 0 (a metric bas to be 

deined here), alter the slow Rossby pan of the state 
vc:ctor X 0 • 

'Tbe DOnlinear couplina between the slow and fast 
compooents of X can be taken into account by iterati.n& 
stepS(i ~and (ii). 

A phase space d.ia&ram is very helpful when dis­
cussi.na ~erent constrained initialization algorithms. 
The pn::sent iterative scheme is illustrated in Fig. 1, 
and will later be used iD the special context of beigbt­
coD.Stl"ained initialization. Each iteration of the com­
bined 51ep1 ('i) and ( ii} are indicated. where points 1 
and 2 i:Ddicate the fi.nt and second iterations. respec­
tively. Point 0 indicates the original analyzed &elds 
and pi::li:nt I indicates the balanced state obtained with 
V1NML 

In practical situations. it is found (Daley 1978; 
Ff89 ) tbat three iterations are sufficient to achieve a 
bal.a.nad state I. It is worth notina at this point the 

oos 
stiabt departure of stepS ( i) and ( ii) l'rom Daley's ofi&. 
iDal PJ.,ation. Macbenhauer's iDitiaJization procedure 
involves an iterative scheme in order to act (X )c; in 
balance with the slow modes ofX 0• Incrementiq the 
new state X with (4X )c; senerates (assuming conver­
,ence of the scheme) a state vector X such that 
(8,X)c;- 0. Thus (2.13) ensures that (4X)"- 0 
(where n is the iteration count), i.e .. a fi.nt-order bal­
anced state has been ac:bie-.·ed. In the formulation and. 
implementation of the variational algorithm, the ap­
proximate balancina correction vec:tor ( AX )G men­
tioned in step (i ).is liven by ( 2.13) for each iteration 
of steps ( i) and ( ii). This approac:b has been taken 
previously by Tempertoa ( 1984) aad FT89. TnDbia 
( 1982) however used &ve iterations ofMac:benhauer's 
scheme ( 2.13) to obtain ( AX )o for each cycle of his 
variational initializanoa scheme. rtpUe 1 illustrates 
the approach where the aoalinear manifold M repre. 
sents states where (&,X )o • 0. However iD operational 
practice using analyzed data. only a few iterations of 
the unconstrained scheme are made; this generally re­
sults in a sip.ijicant reduction of(8,X )o. Further con-

------· -~· . . ---
Fio. 4. Ditl'ema iD be1abt &del betweea VlriaUoallldjUitmeDt ( ..... latitudilall ...... 

W.• w.IDd ao illitializadoa (CODUIUr iDrcrv.IIO ID). 
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sidenllion on this point will be siven in section 4c. 
AbborJah not essential, the approach taken berc permits 
a diter:l coupli.Da of stepS ( i) and ( ii) in physical space 
and Ji:ves rise to a variational problem with a stroq 
ditf'ere::ltial coastraint in the sense ofSasaki ( 19S8). 

As in FT89, ( 2.1S) expressed in terms of the cor· 
rectioa. state ll X is 

(3.1) 

For an f plane sballow·watcr model, the characteriza. 
tion or the Rossby mode corrections with the linear 
balai'IC'e equation ( 3.1) is exact and the variatiooal 
scheme would be identical to Daley's ( 1978) variational 
scbeme. On the sphere, however, this characterization 
of the slow modes ceases to be an exact relation due 
to the presence of the beta term in ( 2.2). In the liaht 
ofpre"rious studies (Buraer 1958; Moura 1976; Wiin· 
Nldsc:D 1979 ), coastraint ( 3.1) remains acauatc except 
for tbe largest scale modes. Combiniq ( 2.17) with 
( 3.1 ) pves the desired constraint on ( AX): 

Also, siDc:e (AD ).tt • 0 and consideri.Da what bas been 
mentioned previously for (AD )o in ( 2.16 ), the foUow· 
iD& functional is sdccled to be minimiyd on the spberc 

1. ['" fm (I)JA4)" + +~(A~)]2dA cosiJdiJ 
•1'1 Jo 

(3.3) 

where (I)• and (I)• are weipus attributed to the reliability 
of the mass and rotational components of the wind 
field, respectively. · 
· Functiooal I, for the special case wbere (I)• • ~ 
• constaDt, represeau a lrUilcatcd form of the linear· 
ized eDerJY of the sballow-water equations in the sense 
that the diverpnt put of the wind 6eld is absent ID 
continuous form, (2.17) can be shown to be 

M(ll~. ~)- V•[JV(~)]- V2(~) 

- 20 cJ(IlX)o +(I D}o • 0 (3.4) 
a1 8A ' • 

M(llf'~ A~) We still require that the mean depth of the 8uid remain 
unchanpd (mass conservation) which implies a further 

• Fllt + B(®)o + C~- i(IJ))o • 0. (3.2) intepal constraint 

. - ·--· ~ - - ... -
FIG. s. Latitudioally VIIYilll weiPt .... 
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(At; )d'A cosldl • 0. 
.. ,2 0 

(3.S) 

The "'Wiatiooal problem is thus to minimize functional 
J under the strona constraints ( 3.4) aod ( 3.S ). As usual., 
the minimization problem thus posed is applied to the 
currrn~ fields in the initialization loop defined by steps 
( i) aod ( ii) (see also Fr89). This aspect is not illustrated 
in F11- I. 

The system ofEuler-Lagrange equations to be solved 
are pven by (3.5) and 

V2")' • Cll.{~) + ")'* (3.6) 

V· [·"'~V(Af')) =V ·(/V")') (3.7) 

M(Af', ~) • 0 (3.8) 

~ "r and y* are (as in FT89) Laaranae multipliers 
( y* is a constant to be determined) associated with 
the constraints (3.4) and (3.5), respectively. 

As a paniculat case, this system admits the same· 
solution as the unconstrained implicit scheme for a 
cboic::e of weiabts given by (I)• • ~ • constant (see 

007 

appendix A). On the basis of Fr89 this result is to be 
expected. 

The numerical procedure for solvina ( 3.6 )-( 3.8) is 
essentially the same as the fini~leinent algorithm de­
scribed in FT89. For ooe iteration, the following steps 
summarize the variatiooal initialization scheme: 

( I ) Run ~ of the unconstrained implicit scheme 
to obtain ( !:J5 )G, following T89: 

( i) Run the model for one forward time step to ob­
tain the time teDdencies of the spectral coeffi­
cients <r. "',D. •, ••"'). 

(ii) Scale the tendencies aca>rdi.D& to (2.4) to (2.6). 
(iii) Solve (2.16) for (AD )G. 

( 2) Compute the .. fon:in1" term: 

-20 a 7 a'A (AX)G + (&,D)o 

where (AX)G is obtained from (AD)G using (2.S) and 
the inverse Laplacian. 

Flo. 6. Dil'emlce iD poteratial func:tioa X betMICD ~ iDitillizldoe Del 
DO iaitializatioa (COiltour iatcn'lll 10 X 10' W a·1). 
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( 3) Solve the Euler-l..agranse equations ( 3.6 )-( 3.8) 
for lbc spectral components of ( 4,; ), ( ~ ). 

(4) Add ioaements (4,;), (4X), (4•) to obtain 
initialized spectral coetlicients. 

( s) Generate new values of ( r. D • • ) OD the Gaus-­
sian lrid-

.C. ReAits of VINMI 

a. 11-..t' model and dala used 

To facilitate the comparison between INMI (based 
oo ... sc:beme B" of T89) and VINMI described in sec­
tioo 3 this study uses the same model and data pre­
sented in T89. A global barotropic spectral model with 
uia..Da'..lla.r truncation at wavenumber 63 is also used. 
T'be i.c.itial data are fiom a FOOE analysis of heishts 
and winds at SOO mb for 0000 UTC 21 December 1978. 
All ocher features of the model not mentioned here are 
implicitly assumed to be the same as in T89. Ftpre 2 
shows the initial beigllt field. The mean equivalent 
depth H. ( • = gH where g is the acceleration due to 
pavit)·) used in this study is 5600 m. 

b. TIN controlling aspt!Ct of tM scherM 

The intetest in this subsection is the effective oonttol 
of cbaqes on the rotational part of the wind field and 
to the mass &eld by the variational scheme. The effect 
of varyiq the weigllts "'f and w• is both spatial diJ"ec.. 
lions (A, I) are examined. For all experiments reported 
in this section, this study always ref'crs to two iterations 
for the INMI case and three iterations for VINMI. 
However in subsection 4c, the efcct by usina more 
than three iterations is investipted. In all experiments 
the original fields are those pRViously described in 
subsection 4a. The typical CPU time for tbe VINMJ 
results to be presented is approximately 80 s on a 
Cray-XMP. 

FtpUC 3 shows the dif'crence between INMJ and the 
original uninitialized bei&bt fields. This difFerence &eld 
may be obtained by addina FIIJS. 6a.b of T89. Ftp.re 
3 is to be compared with FJ&. 4, which shows the dif. 
ference between the VlNMI and original uninitialized 
beisht fields. The weiab1S used for tbis experiment have 
only a latitudinal strudUre (see F"~~o S) and are given 
by (Daley 1978): . 

·--....-----· ~- -
Fkl 7. Dift'emxe iD potcDtial fUDCtioD X betweco vwialioDII tcljUIIIDcld llsill&luirudiJIII 

Miabts ••• lllf IDd DO initializalioa (COiltoul' iDter\'11 10 X 10' W s-1), 
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"'-' • (I - ,.2 )"; " • sinll ( 4.1) 

(11. - 1 - "'-#· ( 4.2) 

This choice of weighting forces tbe wind field ( ro­
tational part) to adjust to tbe original height field anal· 
ysis u hish latitudes and vice versa at lower latitudes. 
1be sr:rong retention of mass information north of 40° 
lati:tude is a consequence of ( 4.1 ) and ( 4.2) and is 
clearly seen iD rtg. 4. One feature of tbe variational 
scheme of section 3 is that tbe divergent part of tbe 
Oow is not explicidy controlled within each iteration 
of step~ 1 to S. 

Comparing r~&L 6 and 7 obtained by using VINM1 
(Daky·s weights) and INMI, respectively, it is seen that 
both sc::bemes lead to almost identical depanures from 
tbe oriainal uninitialized velocity potential function x. 
1be implication of these results is discussed in section 
6. To sbow tbe efFect ofVINMI on the rotational pan 
of tbe •ind field, rtg. 8 shows tbe difFerence (vector) 
ofVL' "'Ml and INMI wind fields. These difFerences are 
~- to the rotational part of the Oow as discussed 
previocsly. The structure of the wind field correction 
in rJI. 8 agrees with the latitudinal structure of ""' 

. \ 

, , 

j . . ' ' 
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specified previously. that is, retention of tbe rotational 
part of the oricinal flow at low latitude and adjustment 
to tbe original height 6dd at higher latitudes. The 
maximum wind modulus of tbe difFerence vectors is 
l..Sms-•. 

We now examine the bebavior of tbe variational 
scheme using a fully variable structure of the weights 
in the horizontal. The following choice of weights w• 
and w. will simply serve to illustrate tbe ability of tbe 
scheme to discriminate between tbe reliability of tbe 
analyzed fields over continents and oceans. The specific 
form of the weiahts for this experiment are: 

W • WD for A e A 

• {[60•w, uo•w] u [13s•E, ts•wn 
w • 10-2 wo2 for A~ A ( 4.3) 

where w stands for both w. and "'-'• and •D is defined 
by ( 4.1) and ( 4.2). With sucb a choice of weights, one 
expects that tbe laqest differences between two fields 
initialized using weights ( 4.1 ) and ( 4.2) and initialized 
using weiabts ( 4.3) should be found over the ocean 
sectors deduced &om ( 4.3 ). One clearly sees (FIS- 9a) 

----~--- . 
Flo. 1. WiDd dil'ereac:a ~ ~Y ldjusted (usiaaladtudiDII-.IIIi) IDII 

uiiCOIIIIIniDed iaitilliled 6elds. Mu.imum wiDd modulus • U m ,-a. 
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tbe di:ct of "ocean discrimination," the elonpted 
nortb-trouth pattern of difl'erences over the oceans 
beina otained due to the use of 4MD2 in ( 4.3 ). This laSt 
cboic:e •'35 made for illustration purposes only in order 
to de!:Donstrate the feasibility of sucb corrections. The 
overall etfect of the variational scbeme on the original 
anal~ beipt and wind &elds is depicted in rip. 
9b,c. The European continent is the typical type of 
c:orrec.t.)..')ns obtained by allowing the weipts to vary 
borizoatally. Assuming higber reliability of the ana­
lyzed bc:igbt and wind &elds over tbe continent as com· 
pared ID the adjacent North Atlantic Ocean, the result 
ofF'JI. 3 (i.e.. uoconsuained INMJ) may be considered 
to be tmdesirable. Forcing the initialization scbeme to 
l't(.'05I1i:ze the weaknesses of the aaalyzed beipt and 
wind fic::lds over the oceans would be peatly preferable. 
For t.1:1c same rqion considered above, rip. 9b,c illus­
trate dearly this aspect where tbe beisbt and wind &elds 
mutually adjusted over the ocean without damasioa 
tbe analyzed &elds over the European continent. It is 
also ira:;)onant to notice that this bebavior of VINMl 
was feasible due to tbe possibility of using full bori· 
zontal ''lriability of tbe weipts. It 'is however clear 

that the proper specific:ation of weiab1J must be related 
to the estimation of the statistical error distribution of 
the aaalyzed &elds. Since tbe model is alobal this study 
now considers the Soutber'D Hemisphere results of 
VINMI. Note here that symmetric weiabts were used 
about the equator in ( 4.3 ), tbe reality of such speci&. 
cation beiq immaterial here. F'Jpre 10 pvcs the dif. 
ferences between VINMl usiq ( 4.3) and the oripnal 
uninitialized analysis. ID these quadrants, one &rst 
identities the sou them equivalent of the North Amer· 
ican continental sector where retention of mass is 
maximal (southwest of Araentioa for example). Tbc 
other continental sector located southwest of Austratia. 
is associated (south of 40•) with a suooa inaase in 
tbe retention of the mass field. ID F'J&. 11 (which is tbe 
analogue of F'J&. 10 but usiq INMJ), the previously 
descn'bed southern "1aod" resi.oos [i.e., as defined by 
(4.3)] bear important beiabt corrections reacbioa SJ 
meters in one case. The variational scheme has eJim.. 
inated these strona conectioos, a result which illustrates 
the robustness of the scheme. 

Finally, the eff'ect of constrained versus unc::oa:.= 
strained initialization schemes on a 2 day forecast may 

.... --·- ______ .. _____ -- - . ~- . 
FIG. 9a. OOiimlce iD beicbt betweeD variacioall iaidllizatioo ... ~ ...... 

aad nrillioul iaidalizatioe utiaalatitudiDII Milb11 (colltOW' ia..- • sa). 
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be a:.amined by usin& a more realistic set of weisbts. 
'Ibis ws may be obtained by extradina typical staDdard 
devitiDons of the estimated heiaht and wind analysis 
errors at SOO mb produced by the operational objective 
analysis scheme at CMC (Centre Metiorolosique 
Canadien) ( MitcheU et al. 1990) for a winter case. F'11· 
ure I~ shows the estimated 500-mb heiaht analysis 
error t m). We first note that the amplitude of -3 m 
over me northern continents increases to approxi­
m.au:h 1 S m over the oceans and the tropics. The con· 
tineD:IS are clearly distinJU,ishable by a strona aradiaat 
in the fldd of standard deviations alona the ooasts. 'Ibis 
effect •v considered in the previous experimaat by 
usin& a reducing factor for the ocean sectors (see also 
FI19 ) . Also note that no attempt was made to smooth 
the local minima over the Pacific Ocean where upper· 
air data were available to the analysis (e.g., Hawaii). 
Similar features can be observed in F'11- 12b for the 
sta.Ddard deviation of the zonal compoDeDt of the wind 
anah."Si:s error field (the meridional component is not 
sbowD but has a similar structure) with a minimum 
de'vial::ion of 2.5 m s -• over the continents ( extratrop.. 
ics) iDc:reasina to -s m s'"'1 elsewhere. The model is 

011 

now integrated for 48 b usi.na variatioaally initialized 
fields with · 

~- 11•.2., t.~,.. 11•.2 

where •· and •• are the a.ndard deviations u previ· 
ously described. F'IJW'C 12c shows the diJI'crence in the 
height field between V1NMJ ( usins the latter speciD­
cation of weights) and INMI after 48 b. As in FT89 
(Fig. 12), most of the dift'crenc:es are found in midlat­
itudes where the RMS value is approximately 20 m. It 
is possible that other cases would show laqer diB'er· 
enc:es, particularly after &Ye days for example. VINMI 
might be expected to produce a cumulative improve­
mat of the analysis wbea employed in a data assim· 
ilation cydc by improvina die quality of the 6-b forecast 
used u a first auess in the data assimilation scheme. 

c. The balancing aspect of the schmre 

As previously shown, die variational scheme has the 
flexibility of allowina fuD variability in the wcightina 
functioas t.~-1 and t.~,., wbicb may represent the initial 
state of the atmosphere more realistically than the ua· 

.. - -
FJO. 9b. lUerace ia heiabt field bctweea VlriatioD&I iailializatioD usit~~latitude-loqinade 

weiabta aad ori&iul uaiaitillized leJds ( coatour iaterval • 10 mt. 
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CX»A* ained case. Tbe main benefits of the latter beiDa 
to dlk::io:ntly conttol the excitation of bip-ftequeocy 
pa~ertia waves, tbis aspect of the variational 
sc::be1De should also be observed in order to be a viable 
~tion. This point will be considered here as a 
final comparison between INMI and VINMI schemes. 

Standard monitorina ofMachenbauer's initialization 
sc:beu:l.e is based on the evaluation of the BAL1 value, 
for ca::::h iteration of the scheme, which is defined as 

BALt = 71~r 
where dGi/ dt is the time tendency of a particular srav­
ity mode. We proceed in the same way as T89 for the 
evah.-ion of BAL1 in physical space. The remarks 
sivm iD FT89 also apply here, in the sense that the 
usefuJ:Dess of monitoring the value of BAL1 in uncon­
suai.Dai NMI is based on the fact that Machenhauer's 
sc::be1De attempts to set BAL1 to zero. VINMI proceeds 
in a di&rent way since the amplitude of the slow modes 
are changed for each iteration of the scheme. The re­
tentic:m of information on the initial data in physical 

' -. , , 
J 

' 

-

space is a potential barrier for the vanishing of BAL1, 

a consequeDCe wbic:h is absent in unconstrained 
tchemes. This aspect of \1NMI is dearly represented 
in f".. 13 where both .....national and unconstrained 
schemes have been tested ll!iq five it.e:ratioos. As noted 
in 119, scheme 8 ( wbic:b is represented by the UDCOD· 

strained scheme here) ba:s a monotonic decrease of 
BAL1 even after 10 itereons (see his riJ. 3 ). Tem­
pef19n stressed that "this liner conversence may bow­
ever be towards a state •'!licb is not appropriate as an 
initial condition for the model." This latter remark, 
tosetber with the previous discussion cb.aracterizcs the 
saturation value ofBAL,. Further, oace the variational 
scheme bas aaained it's SIIDI'3tion value ofBAL1 wbicb 
is associated with· three ilaations of the scheme (see 
rJ&. 13),. comparison cl model intepations can be 
done using this initial stiR and the initial state obtained 
with the unc:onstraiDed s:fleme usina two iterations. 
We note immediately thll these two initial states have 
appromnatdy the same 'fl1ue of BAL,. 

Tbe variational scheme used the latitude-lonptude 
specifi.catioa of weiabts w1Dcb are described in section 
4b. In each integration, me model was rua for 48 b 

. , , 
• 

I ~ / 
, / 

I ' I i 

·~. - ~ 

flo. 9c. Wmd dil'tre~~Ce betweeD Vlriatioully IJdjusled (UiiD& ~ ...... ) 
aDd oriliDal Wliaidalizeclleldl (maximum modul• • 1.5 • 1 ·•). 
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aDd the hciabt· traces were stroed for three di.ft"erent For both initialized model intep'llions. these osciiJa. 
~ on the spbcn:. These traces ue sbown in rJSS. tions are considerably red:uced and a comparable bal· 
14-16 correspondina to the points (4S.70°N, 180°), anc::e is observed. It is fOUDd tbat fUrther iteratiotis of 
(0.93•s. a so•), < 4S.7o•s, 180°), respectively, and the unconstrained scheme does not produce a better 
tbese points were chosen to represent the typical degree balancina even though tbe COJ"''eSPPndin& values of 
ol ha.ta.Dce achieved at those latitudes. The quality of BAL1 are dramatically di1ferent; second-order initial­
tbe bl.l.anc::e attained can be judged by further com- ization ( T89) is therefore needed for a refillement of 
(:8risoc:1 with a model intepation usina uninitiali.z.ed the balanc::e. F"18URS 14 aDd 16 dearty illustrate the 
initial conditions. This latter integration sbows hi&b· eft"cct of the variational sc:beme on the slow mode be­
fi'equency oscillations with an initial amplitude ofap- havior. In one case (46°S} a small departure in the 
proximately SO m for the Northern Hemispbcre case. height field between unconstrained and variational run 

. 
FIG. 10. Same u F'~&o 9b but for tbe Soutbcra Hemispbm (CODtGur iDtcmll• 10 ID). 
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is IDIIil:tained for the first 1 S h but significantly divet'JII=S 
iD tbe CDSUina forecast reachin& a SO m difference at 
48b. 

h is concluded from these last experiments that the 
va.ri~J;.i.:)nal extension of implicit· NMI does maintain 
a t.lar.:e in the initial data to a dqree comparable to 
the Wl\.-.onstrained scheme and allows the possibility of 
significantly altering the slow evolving part of the sianaL 
It is tbe::refore quite clear that a proper specification of 
the we::ghts ~. and 4llj is crucial for a refinement in the 
~'Sis and forecast of these slow modes. 

In the early applicatioas of variational normal mode 
initialization iD the coatext of realistic data and model 
of the atmosphere, it was realized that ill some cases. 
Machenbauer's initiali:zation scheme failed to specify 
a balanced initial wind field liven a particular distri· 
bution of mass field. Daley ( 1978) first observed an 
approximate correspondence of .. nonelliptic" resioos 
and resions where the SMI balancing process was di· 
vergins; that is. one could not 6nd a ftow which bal-

. - . 
FIG. 11. Differcoce beiabt leld betweeD uDCODIItrUed iDitia.lizatioa IDd DO initit'iZidoD 11r * 

Soutllenl HelllispheN (CODtour in~ • 10 ID). 
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IDCI:d the mass field over those n:Pons. Tribbia ( 1981) 
clarifacd this point by analyz:ina the relationship be­
tweeD the results or a loc:alfoplane model (where the 
~-:ic balanced ftow is known) and a sJobal spectral 
modl:l with rbomboidal truncation 20. Once apin a 
suoaa correlation was noted between the appearence 
rX ooaclliptic gcopotcntial n:Pons and the breakdown 
rX the iteration scheme used in nonlinear normal mode 
i.nitiatization. 

Bc!.:>re discussina the .. ellipticity problem .. in the 
contl::l:t of beisJ.tt constrained initialization, it will be 
suffic:icnt for this purpose to relate INMI with quasi­
FJISUOPbic theory in the context of shallow-water 
models on an I plane. 

a. V. M/ and the classical nonlinear balance equation 

Lenb ( 1980) (hereinafter noted L80) showed that. 
oa a periodic j.plane Boussinesq model, the first-order 
Baer-Tribbia (1977) estimate or one "iterate" of 

OIS 

M.acbenhauer's ICheme ( stai1:ina liom aeostropbic ini· 
tial conditions) was equivalent to solvina the quasi­
postropbic balance equations. In terms of total aeo­
potential and streamfuDCiion .,.,, ~ •• respectively, L80 
found I related version of the classical DODliDear bal· 
ance equation pven by: 

V2
• 1 • fV~1 - M(~) (S.l) 

where 

2 [ ( az.., )z (a"..,) ( azt/lo)] M(~)· p axay - ax2 ay2 • 

Here the index "0" concems the rotational pan of 
the initial aeopotential field wbile index ..... indicates 
the resultina fields after one iteration ofM.acbenhauer's 
scheme (not to be confused with LSO's notation). The 
same results as ( S.l ) may be obtained by usina the 
implicit form of nonlinear NMl This process starts 

~ ~ ----· ., . 

F'lo. 12a. TypicaiiWidard deviatioD ol tbe atiaWas emn ol tbe aDIIyzed SOO..b beipt leld 
lbr • wiater c.& Coatour iDterval - 2 .. . 
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6nt .a a linear initia.liza.tion step wbk:h (due to tbe 
f-PiaDt: approximation) is the requirement of aeosuo­
phy. ~ bere tbat all the implicit scbemes discussed 
by TCCCJUtOD ( 1988, 1989) reduce to the same implicit 
scllea:ilr wben dea.li.Da witb an jplane model. lD tbat 
case. i:r!:lplicit and explicit NMI are exactly tbe same 
and 1!:11: correspondina slow modes are all stationary 
and ~vergent. The result of the first implicit step 

- . 
1bc time tendency of tbe diveq.ence field appeiuina 
iD ( S.3 ), usina as initial conditions the previous liDear 
step, is pven by 

(&,D) • -V:z41o+ fro- V•(Vo•VVo) (S.4) 

is thus: V0 • txVtf0 • 

[
tfol Usi.na Helmholtz's decomposition oftbe wind field to-

Yo • ~ ; tfo • fiG//; Xo • 0. (S.2) &ether witb (S.2), the lal term on the riabt-band side 
'"' of( S.4) may be rewritteD as -M(.,). PuttiDa tbe pieces 

tosethcr a ••balaDc:e equarion" can be written iD terms · 
Sec:cDd, stattina from Y0 , integrate the nonlinear of tal tial aDd sueamfu. · ( · by 

mode! foronetimesteptoaettbevalueof(&,D). Note to aeopoten ncuon JlveD •• 
that m order to avoid confusion, tbe index .. o .. acx:om- . • ., + ~. -;, • fo + 61;) as 
panyi:lc tbe &, operator [as defined iD (2.13)] will be v2., • JV"f1- M(.,). (S.S) 
omina::t iD the foUowina derivations. This latter quan-
tity is nquired in order to solve one of tbe balancina Thus L80's result ( S.ll ) is RaJVered as expected from 
consr::raiDts ( analoaous to the one used as a strona con· the exact equivalence betweeD ex~t and implicit 
straiDt in section 3) on ( A• ), ( 4tf) pven by NMI for an f.plane model. As mentioned by L80, if 

- . - -~ -
Ao. 12b. Typiad IIIDdard devWioD of tbe estimated enon oftbe aaalyaed -..1101111 compoan& 

of till wind leld for a winter Clle. Coatour iDter¥111• 1 as-•. 
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term .V were evaluated in terms of t/11, ( S.S) would be 
tbe c.fassica1 noa.linear balance equation of Cbarney 
( 1955). Passina to the divergence &eld required by 
INML its connection with quasi-aeostropbic theory is 
also straiabtforwanl to obtain. In the present context, 
Eq. ( 4.1 S) of T89 reduces to: 

V2(W)- ~(AD) • i [-/81(V~) + V2(8,.P)]. 

(5.6) 

For tbe nonlinear case, the nonlinear tendencies of t 
and • are pven by 

(8,S) • -Vo• Vl'o- (/ + l'o)Do 

(8,.) • -Vo•Vti>o- .Do. • 
Uri.Dc (5.2) (i.e., a JeOSfl'Opbic initial step): 

Do • 0, Vo ·V t1>o • 0 

·L •• 
5.81 

__ ...,-• /l 

\ ( , .... ..... 
• ,-L;~-,~ J ·~ .. -'r.: ,,.,, 

I • 
' .,. 

. -

017 

and (5.6) reduces to 

Using the gcostropbic relation between the wind &eld 
and vorticity &eld with the geopotential t;o, the quasi­
geostropbic diveraence equation is recovered on an f 
plane ( Haltiner and Williams 1980, chapter 3) for the 
total divergence D (remember that Do • 0 so llD • D 
here): 

V2(A.D)- ~ (W) • ~~ (kx:Vt/>o)• V(V2t;o). 

b. Height constrained initializiJlion 

From the preceding results, adjustina the rotational 
pan of the wind &eld compulsively to the initial gee> 
potential &eld via VINMI is susceptible to produce the 

. 
.. ~ 

Fl1 12c. Dil'ereDcc iD bciabt 6eld bctweeD variatioaal iDitWizalioa -· bowa I&IDdud de¥illiolas ol tile 
alimalld beiabt ud wind ualysis erron. ud UGCOIISU'aiaed iaitializatioa ror a ..... ronc.t. Coatour iDteMI 
• 5 IlL Maximum amplitude • 26 111. 
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same type of converaence problem as one faces with plisbed in the f'nmewort of section 3 by settiDc "'• • I 
the iterative solution of the classical nonlincar balance and ~a "small" value. Strictly settina ~ • 0 crates 
equation. This process ofheiabt-constrained initializa- · a deaeneracy oftbe Eulcr ... I..aaraale equations. For this 
tion cu be represented in phase space as in F'~~o 17. extreme case, as independent formulation must be 
By this procedure. one auempts to fon:e the wind field . adopted.(!'ij)formulaDon is Ji.ven in appendix B. It 
to balance a pven beiaht field without restrictions on should be mentioned bere that wbat is really mean­
the representativeness of the latter. This can be accom· insful is the relatiY' value of these weiahts (refer to the 
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functional beiq minimiud) and io this sense the van· 
isbina of weiabts am always be avoided. This study 
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aivcn the coirect form of tbe eUipdc:ity coDdition for 
spberical coordiDates aad n·s approximate form is pvcn 
by 

where 

fJ,. df/d8. 

Condition ( S. 7) must be satisfied over the sphere for 
a solution of the nonlineat balaDce equation to exist. 
Kasabara ( 1982b) namjned the observational evi­
dence of noneUiptic resioDS in the atmosphere using 

R the FOOE level ltlb alobal aaalyses of the ECMWF. 
He found that nonelliptic rqioas are widespread in 

·- f.o. 11. Hci&bt~~Ded initializaJioa iD pbasc IJ*C. the tropics. For the dataset mentioned iD section 4a. 
rJI. 18 aives the reaioDS wbc:re the ellipticity CODdition 
(5.7) is violated(i.e •• reaioosofneptive values of M). 

now examines the applicability of the variational The tropics are indeed a typical rqion for failure of 
sc:beme described in section 3 for small values of ~ ( S. 7) and some neptive Rlioas at midlatitudes which 
and it's relation with the ellipticity condition for the are located iD reaioas of anticyclonic flow are also 
nonlinear balance equation. Houpton ( 1968) has noted. In older to test the bebavior of the variational 

·- ,,. . 
f'lo. 11. Nortbem Hemispbere distribulioo of' the elliptic:ity measure M a dcbed bp (S.7). 
For clarity. oaly the lociOoa of' the muimum val1111 ue iadic:ated for pclliti'lfe ._of' M. 
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ICbeme in the context ofheilht-constrained initiali.za.. 
tion. 1111111: choose the same initial conditions as in secdon 
4a. 1t is noted there that Machenbauer's iterative 
sc:betDe was conveqpng and that the quantity BAL1 
could be reduced by 16 orders of mapitude after 10 
iteratioos (see also T89). The unconstrained experi­
ment will be used as a reference for comparison be­
t.ween the bebavior of BAL1. and beipt-constrained 
experiments using ditferent values of~- As previously 
noted iD Fig. 18, setting ~ sufticiendy low in order to 
force the rotational part of the wind field to adjust to 
the gcopotential field misht cause converaence prob­
lems iD the tropics. To show that this is indeed the case 
here. the foDowina specification of wei&bts on the 
sphere were tested: 

F'l&W'C 19 pves the behavior ofBAL1 as a fUnction 
of iteration number fore set to 0.1 and 0.01, respcc­
ti,dy. It is clear that settina ~ too low iD the tropics 
does cause a diveraence of the iterative scheme. The 
damaa;ing effect on the wind field in the tropics as e is 
redua:d is not shown here but it can be said that a real 
... blow- up" is obsetved in thia reaion as the iteration 
progx c:sses. 

implicit" B scheme" coasidered by Temperton ( 1989) 
for the fist ll'l&vity modes was coupled as a stroaa con­
straint with a linear bal•na: relationship for the slow 
modes. This scheme is the spectral aaalope of the 
variational scheme developed by FiDion and Temper­
ton ( 1989) for a barotropic finite-element reaional 
model. Standard tests illustrated the robustness of the 
scheme to control the ch.a.Dps made to the analyzed. 
fields usina prescribed weiahts which are allowed to 
vary horizontally. The balance achieved by such a pro­
cess was shown to be comparable to standard INMI. 
As illustrated iD Fr89, the VJNMI method has the 
possibility of significtmdy alteriaa the slowly evolvina 
component of the foRCUL 

Present implicit NMI techniques impose a funda-
mental requin:ment. the stationarity of the slow modes 
iD the retained J.iDear system. This restriction OD the 
slow modes was maintained iD the variational frame­
work developed here (see abo Fr89) and was shown 
to result in very similar c:hanaes on the diveraent part 
of the analyzcd tlow duri.Da the baJanciDa process. The 
question of whether or not a controlliq procedure for 
the diverpnt part of the low is feasible was not ex­
amined iD this paper. This aspect of VINMI (if desir­
able) would depend OD the feasibility of U,.plicit NMI 
schemes iD the case of nODSWiooary slow modes. Ju­
vanon du Vachat ( 1988) examined this latter aspect 
and the chataderization iD physical space of the slow 

This paper has extended the application of varia- - modes by the linear baJaDce relationship [ ie., ( 2.1 S) 1 
tional implicit normal mode initialization (VINMI), · appears unavoidable for implicit schemes to be possi­
developcd by F'illion and Tempcrton ( 1989), to the ble, thus, excludiaa the possibility to control explicidy 
context of a pobal spectral shallow-water model. The the diverpnce field. 

The question ofbei&bt CODSiraiDcd adjustment usiDa 

10-4 

10 .... 

0.01 

a special form of VJNMI was considered ·here on the 
basis of the relationship between INMl and quasi-po­
strophic theory on an f plane. Tbe VINMI scheme 
proposed in this study was shown to diverae when the 
beipt field was pven too stroaa a reliability over the 
wind field. For sucb a case, 1aqe dtanaes to the wind 
field in the tropics are observed. wbieb is related to the 

- - - - - - dlipdcity condition for cbc DODiiDcar baJaDcc equation 
(see Tribbia 1981 ). 

The praent variational initialization teclmique may . 
also be useful for variable resolution aJobll spectral 
models (Courtier and Oeleyn 1988). A fUture extea.sion 
of the present work is to apply an anaJoaous approacb . 
to multilevel models. These resuhs will be presented 
in a subsequent paper. 
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APPENDlXA 

UacoastralDed IDidaU.zadoa 

Let -'• • w.; • constant in the system ( 3.6 )-( 3.8 ), 
tbc:D write 

1 
V2(~ljl) = 4t == +w.; V•(/V"'f). 

smce V2'Y • V~.{~t/> ), [ ..,• = 0 due to ( 3.S)] it follows 
thl1 for every spcctraJ component, 

.. ,.. 2llfM•[<n+ 1) "'(A..~o.)"' 
lool)a • .-.... E11 lool"f' 11-l 

-~ n 

+ (n= I) E:!..t(At/>):!..•]· 

Used scaled variables ( 2.4 )-( 2.6 ), it follows that 

• • · a (,.,•)(20 "') -112 ar. • [n(n + I)) 112 w.; ne,. (n + 1)+ 

x <~>='-• +::[en~ 1) '='+•] 

x na · •-Ill( A.l)"' 
[n(n + I)] Ill .._ ~~+I 

,.,. w Ill 2 1/2 -{2n ( --1/:Z ) 
- w.; ne" (n -I) [n(n- 1)] 112 

X(~·):'-t + (n~l) t='+l[(n+ 1)2- Ul/2 

a ·-•Ilea"'>"' } 
((n + I )(n + 2)] 112 "" '"'

1 
• 

Thus. 

Clf>.• • ,.,., [J,."'(C:'- 1 )- 1 (~·):'- 1 w,. 
+ /:...cc:..,>-·<~•>:..d (A. a> 

AI'PE.'l>IX I 

Helaht-Coastraiaelllnitlallzadoa witb 

~-'""··· 
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For this special choice. the basic steps represented 
on rll- 17 are summarized by: 

1 ) Obtainina the ba.lancins correction state vector 
on fast modes 

( ~x )G ... [(~.-)G. ( ax)G. < 11t/>)G] . 

2) Alterina the slow mode amplitudes so as to reset 
If» to 1/»1, where tl>t is the ini1ial uninitialized beisht field. 

The startina point of the scheme may be the initial 
state pven by an analysis scheme or it's projection on 
the rotational part of the analyz.ed tields. In the frame­
work of section 3, steps I) and 2) can be done by the 
following procedwe. rust. step 1 ) generates a ( dt/> )o 
that step 2) must caDCel euctly to reset 4> to t/>1: 

(~)Jt • -(~)o. (B.I) 

Here the slow modes satisfy a linear balance relation­
ship 

(B.2) 

= 

and the foUowina relatioo for fast mode components _ 
(i.e., the constraint &om lNMI) is shown: 

V2(11t/>lG • v • vvcat~-)GJ- !~ ac::)G + (6,D)o. 

(B.3) 

Equations (8.2). (8.3) correspond to their discre­
tized versions (3.1 ). (3.2). Combining (B. I) to (8.3) 
Jives for (6#'): 

20 a 
V•[/V(6JJ-)] • a:zaA (6X)G-(I,D)o. (B.4) 

-
v.here the matrix elements f,."' and. c,."' are pven by The strict heiabt coDSU'IiDcc:l alaoritbm, for one it· . 
(2.11) and. (2.12), respectively. In matrix form (A. I) eration ofthe implicit NMI scbeme may thus be sum-

- is JiveD by · marized for the present spr:ctral model as: 

If f.l:• • ~is used. (A.2)is identical to( 4.18)ofT89 
of wx:onstrainod initialization. Further, the difFerential 
coastraint (3.2) has exactly the. same form as (4.16) 
of T89. Summarizina. whenever ,.,., • w.; • constant, 
the present variational scheme and the implicit ( un­
coastraincc:l) B scheme of T89 are identical. 

1 ) Operatina steps t aad 2 of the VJNMI scheme 
described in sectioo 3 to obtain ( t:.D ) and the riaht· 
band side of(8.4). 

2) Solving (8.4)for (.).#). 
3 > Addina inaements < .lt/1 >. c AX >o to set initialized 

spectral coefficients. Note that the mass t\eld is left un· 
changcc:l here. 

4) Generatina new values of( t. D, 1/») on tbe Gaus­
sian arid 
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Chapter V 

Variational Implicit Normal Mode Initialization for a multilevel model 

/l/.1 Presentation of article 3. 

The complete extension of variational nonlinear nonnal mode initialization to fully 

three dimensional weights has never been attained. Previous efforts to examine the problem 

were essentially those of Temperton (1984). Temperton's scheme was fonnulated for a 

global grid point primitive equation model and his fonnulation allowed latitudinal variation of 

the weights (longitudinal variation could be included but with much reduced efficiency). Due 

to these limitations, Temperton's conclusion on the usefulness of variational NMI are of 

limited utility. Purrs (1983) study was also seriously limited to latitudinally varying 

weights. His choice of vertically separable weights is inappropriate for a full three 

dimensional treatment of analysis errors during the balancing process. Consequently, no 

reliable conclusion could be made concerning the usefulness of variational NMI in a context 

of operational data assimilation on the basis of these previous works. Using the fonnulation 

of INMI, Temperton's (1984) work is reconsidered. The following chapter is the 

culminating point of this study where it is shown that VINMI is feasible for multilevel 

models and includes a full horizontal and vertical treatment of the analysis error in a 

consistent manner. We present the application of the technique to the Canadian operational 

regional finite-element model. The fonnulation is general enough to be applied to other 

models where the vertical structure differs from the one used here. The fonnulation of the 

initialization scheme and results of applications follow. 
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ABSTRACT 

Recent studies have demonstrated that variational nonlinear normal mode initialization 

can be efficiently implemented in the context of shallow-water models provided one uses a 

physical space fonnulation. The Implicit nonlinear Nonnal Mode Initialization (INMl) 

technique provides essentially the same balancing benefit as standard " explicit " nonlinear 

NMI but does not require the explicit computation of the linear free modes of the model. 

This allows variational initialization with arbitrary horizontal variation of the weights which 

specify the changes to the analyzed fields during initialization. As a consequence, land-sea 

contrast in the reliability of analyzed fields can be taken into account in the initialization step, 

an advantage for data assimilation for weather prediction. 

The purpose of this paper is to demonstrate the feasibility of Variational Implicit 

Nonnal Mode Initialization (VINMI) for multilevel models. This new scheme is illustrated 

on the presently operational Canadian baroclinic Regional Finite-Element (RPE) modeL It is 

shown that the VINMI scheme efficiently controls the relative magnitude of the changes to 

the analyzed mass and wind fields during the balancing (initialization) process. A 

comparison is also made of the impact of the VINMI scheme versus that of the presently 

operational unconstrained version of the initialization scheme (INMI). Future development 

and applications of the method are discussed at the end of the paper. 
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1. Introduction 

Nonlinear normal-mode initialization (nonlinear NMI) schemes are now widely used 

in operational practice to control the excitation of spurious gravity-inertial oscillations. The 

application of these techniques in assimilation sc.hemes for weather prediction permitted better 

assimilation of new data on a regular basis without creating subsequent imbalance of the 

model. On the other hand, systematic deficiencies of these initialization techniques were 

gradually isolated during the last decade in an attempt to improve the schemes. In fact, it 

appears that the main difficulties encountered in operational practice when the analysis· 

initiaUzation schemes are used in sequence may be identified as a two-fold problem. The fJrSt 

aspect pertains to the general idea of balance in a model. Machenhauer's (1977) initialization 

scheme for example must be restricted to a subset of vertical modes of the model in order to 

avoid false characterization of this kind of "balance" in a baroclinic model (Errico 1989, 

Errico and Williamson 1988, Ko et al 1989). The second aspect of the problem is that the 

inherent inaccuracies in the analysis schemes i.e., errors in the slow mode components, 

which feed the initialization should be taken into account. 

One way to face the latter problem in the analysis-initialization scheme was 

considered by Daley (1978). The essence of his variational approach is to permit slow and 

fast mode alteration of the analyzed fields during the nonlinear normal mode balancing 

process. This approach renders the initialization scheme flexible with respect to analysis 

errors. Daley's technique (also considered by Tribbia 1982) suffers from computational 

problems related to its dimensionality ( i.e. the dimension of the linear system to be solved ) 

which renders the method inapplicable in an operational context. For multilevel models, Purl 

(1983) examined the application of Oaley's variational initialization in the context of data 

assimilation. Temperton (1984) reconsidered the variational initialization approach in the 

context of a multilevel gridpoint model but still had to restrict the weights to vary only 

latitudinally in older to render the problem tractable. It was then realized that the variational 
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form of nonlinear NMI including fully three-dimensional variation of the weights in the 

context of explicit nonlinear NMI would remain problematical due essentially to the normal 

mode space fonnulation of the approach. Originally, Daley (1978) proposed his variational 

scheme in order to bound the changes made by the initialization using the expected analysis 

eiTOrS. A much simpler procedure of ''initialization-insertiQn" was examined by Machenhauer 

( 1977) and Temperton and Williamson ( 1979). A similar type of reinsertion of uninitialized 

fields was tested for surface pressure by Bourke and McOregor (1983). Machenhauer 

(1977) first suggested that it may be appropriate to iterate the analysis-initialization procedure 

until some convergence is attained in order t~ remain faithful to the observations. As an 

alternative to variational initialization, Machenhauer's iterative procedure was fonnulated and 

tested by Williamson and Daley (1983) in the context of a shallow-water model. Various 

methods of combining analysis and balancing schemes may also be found in Lorenc (1986). 

Using Temperton's (1988) formulation of INMI (see also Juvanon du Vachat 1988), 

variational initialization becomes more attractive than before due to the physical space 

formulation of the balancing constraints on the fast modes and the approximate 

ch3:racterization of the slow modes. The variational extension of lNMI schemes has been 

successfully implemented in the context of shallow-water models by Fillion and Temperton 

(1989) (hereinafter noted FI'89) for a regional fmite-element model and Pillion (1991) for a 

global spectral model. It became possible with VlNMI to deal with fully variable weights in 

the variational algorithms at a reasonable cost which indicated a potential usefulness for 

operational practice. In the present paper, we basically reconsider Temperton's (1984) 

approl\Ch in order to extend the VINMI scheme of FT89 to the multilevel version of the 

Canadian Regional Finite-Element (RFE) model. 

Section 2 gives a quick review of the INMI scheme for the RFE model as described 

in Temperton and Roch (1991) (hereinafter noted TR91). The formulation and special 

characteristics of the VINMI scheme are discussed in Section 3. The flexibility of the 

variational scheme as compared to INMI is illustrated in Section 4. Finally Section S 
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includes a summary and an outlook regarding future use _of the method in a data assimilation 

scheme. 
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2. A review of the implicit NMI scheme 

The governing equations of the RFE model are based on the hydrostatic primitive 

equations on a polar stereographic projection. Details of the spatial discretizations may be 

found in Staniforth and Daley (1979) and more recently in Tanguay et al. (1989) which also 

includes a description of the semi-Lagrangian version of the model. The parameterization of 

physical processes {taken into account during the forecast integration) are described in Benoit 

et al. (1989). Figure 1 illustrates the horizontal extent of the calculation grid (125 X 101 

points) and the variable horizontal resolution used in this study. The uniform resolution on 

the subdomain is 100 km. Also shown are selected grid points where the time-traces of 

specific fields are stored during the model integration. The RFE model has a wall boundary 

condition at the horizontal boundaries which forces the fluid to move inside a square region 

Dh of side 20,000 km centered at the North Pole. This solid wall r is placed in the vicinity 

of the equator and the condition of no normal flow across r may be satisflCd by requiring 

'lf=O on r 

n·Vx = 0 on r 
where 'If and X are the Helmholtz streamfunction and velocity potential respectively. 

In the vertical, the model uses a-coordinates and has 19 levels as shown in Fig. 2. 

Throughout the rest of the paper we will refer to Dh and (D ) as the horizontal (resp. three 

dimensional) domain of the model. The vertical boundary conditions are obtained by 

imposing the condition of no outflow at the top and bottom of the model. This dynamical 

requirement is characterized by 

i:s = 0 at a = a1 , 1 where a1 = O.OSO (2.1) 

Following TR91, the differentiated form of the primitive equations (at each level "k" 

in the vertical) used for the formulation of the unconstrained implicit initialization scheme is 
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(2.2a) 

a 2 2 
~V Xt> = F 'Ilk + B Xt - V Pt + (Qx)k (2.2b) 

a~k _ 1C ~ (~l = (Qrl: (2.2c) 

and 

F = ~(f~)+~{f~) ax ax ay ay 

B = ~(f~)-~(f~) ax ay ay ax 

v2 = az + az 
()x2 ()y2 

The generalized geopotential Pt is defmed here as ~ + RT lnp. where p. is the ·surface 

pteSsure, and T is the isothermal reference temperature profile. The variable W is related to 

the divergence field (see Tanguay et al. 1989, equation (29)). The hydrostatic equation 

is vertically discretized as 

~+1- ~ = ..l R <Tt+l + Tt)ln (.!!k±l.) , 1 !S k S N-1, (2.3) 
2 Ot 

where cPN = «h and N is the number of levels of the model. Note that the B'lft term normally 

appearing in the vorticity equation (2.2a) has been incorporated into the nonlinear terms 

(Q'I')k for the formulation of the implicit initialization scheme. We also introduce the 

integrated tendency equation for the surface pressure 

(2.4) 

Tbe nonlinear terms are represented by the symbol Q, the other variables have their usual 

meaning (see Tanguay et al. 1989, and Ff89). 
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In order to apply the implicit initialization scheme, it is still necessary to make use of a 

vertical mode decomposition. These modes are determined by diagonalizing the matrix C 

which appears in the matrix/vector form of the prognostic equation for the generalized 

geopotential (equation (2.16) of 1R91 ), i.e. 
()p 
at+ CD = Qp . (2.5) 

Tbc detailed sttucture of matrix C may be found in TR91. The decomposition of matrix C is 

C = E~E-1 (2.6) 

where ~ is a diagonal matrix whose entries are the geopotential depths, and the columns of 

E are the eigenvectors of C. Using these vertical normal modes as a basis for vertical 

representation of the dependent variables, the prognostic system (2.2a-b), and (2.5) may be 

written as 

dPn 2"" ("" \ at == · m2 ~n V Xn + QpJn 

~ (v2vn) = - Fin + (6.~ 
~ (V2in) = Fvn + B Xn - v2pn + (6x~ 

(2.7a) 

(2.7b) 

(2.7c) 

for each vertical mode·· n ... System (2.7) has the same form as the shallow-water version of 

the RFE model if the geopotential ' is replaced with the generalized geopotential P, and the 

mean geopotential depth is associated with a particular eigenvalue of matrix C. This form of 

the equations is consistent with the splitting of the linear and nonlinear terms considered by 

Temperton {1988) for the derivation of his improved INMI scheme. 

The way to implement the unconstrained implicit initialization scheme for the 

baroclinic RFE model is clear ; for each vertical mode, apply the INMI scheme as described 

in Temperton {1988) for the shallow-water version of the RFE modeL 
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3. V arlatlonal formulation 

Nonlinear NMI schemes for multilevel models ue basically formulated in terms of the 

variable P, which couples the temperature and surface pressure fields. The variational 

formulation that follows will thus be considered within the framework of the initialization 

scheme itself which explicitly makes use of the generalized geopotential P. 

Using the considerations of Section 2, we now introduce a variational extension of 

this scheme where the constraint and the functional to be minimized are successively 

introduced. The variational formulation of the implicit initialization technique for shallow­

water models is as described in Ff89 and Fillion (1991). 

a. The constraint 

The analog of the barotropic constraint on the fast modes (see (2.9) and (2.10) of 

FI'89) is that, for each vertical mode, for one iteration of Machenhaucr's scheme, the linear 

constraint on {l1P)j and (Av)j is given by 

V
1
(AP)& = F (A~)& + B (AX)8 + (8,VZX>S (3.1a) 

with boUndary conditions: 

on fy (3.1b) 

on fx (3.1c) 

where r = r ll u r y ' and the index ··o·· indicates a gravity mode component. The time 

tendency term appearing in (3.1a) is obtained as usual by integrating.the model forward for 

ODC timestep. 

Since we are concerned here with the extension of the INMI scheme of TR91, we 

restrict the application of (3.1) to the first three vertical modes of the model, say n, as is 

presently done operationally with the INMI scheme. As mentioned in Section 1, the 
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adjustment of the gravity modes using Machenhauer's scheme must be restricted to a subset 

of vertical modes. 

In a manner similar to that in FT89, for a given vertical mode of the multilevel model 

and for one iteration of the initialization scheme, we make use of the linear balance 

relationship 

(3.2a) 

with boundary conditions 

on r, (3.2b) 

(3.2c) 

to characterize the slow mode corrections. It is important to note at this point that the 

correction of the divergent part of the wind field appearing in (3.1), for each iteration, is 

diagnosed in the same way as for the unconstrained INMI scheme. This is due to the fact 

that the slow modes characterized by (3.2) are divergence free. Thus, for each iteration, 

(A X) projects only onto the restricted class of vertical modes Q. While the same mstriction is 

applied to (AV) and (A.P) for the INMI scheme, this is no longer the case within the pmsent 

variational framework. The physical space translation of the latter statement is obtained by 

coupling the linear equations (3.1) and (3.2) to form the constraint in thtee dimensional 

physical space. i.e. 

M(A.P, AV) = -V
2
(AP) + F (AV) + B (AX)o + (&t V2X)0 = 0 (3.3a) 

with boundary conditions 

o<AP> 
OX 

o<AP> 
ay 

on r, (3.3b) 

(3.3c) 
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Nocc that the tenns (AX>o and (8,V2X)
0 

only have components in the class Q of vertical 

modes which is used in unconstrained INMI. With this last proviso, (3.3) is taken as a 

strong constraint in physical space. 

b. Thejunctional 

The choice of a cost-functional in the context of three-dimensional (3-D) VlNMI 

proceeds as follows. It is known in the context of shallow-water theory (see Daley 1978, 

Temperton 1984, Pillion and Temperton 1989), that each iteration of Machenhauer's 

initialization scheme minimizes a functional 111 which is proportional to the energy of the 

linearized system, and given by 

(3.4) 

where et n is an equivalent geopotential depth. The VINMI scheme as formulated by FT89, 

does not take into account the divergent part of the wind due to the use of nondivergent slow 

modes. For the multilevel model used in the present study, the energy functional (3.4) is 

(see Staniforth et al. 1985): 

~R = f. [;!i{Rt(a:>J} (V(A'V)Jl] dxdyda 

+ 1 [· i 2 ( 1- Gt)(AP}
2

] I dxdy 
Dra R m o•t 

where the geometry and boundary conditions of the RFE model were taken into account. 

Tbe basic state static-stability t is given by «I a and the subscript "It' indicates that only 

the rotational part of the kinetic energy changes are considered in the minimization process. 

For multilevel models, it is natural to choose as the functional to be minimized, the 

generalized energy-consistent functional associated with the linearizcd baroclinic primitive 

equations (see Temperton, 1984). By properly adjusting the energy functional AEa, we 
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show in the Appendix that the correct functional to be minimized, which includes weighting 

functions and maintains (as a special case, see Section 3d) the natural property described 

previously, is 

J = 1 [.m:r. ( tT {a(aM>>)2} + rov (V(~'If))2 + roT (AP~ z ] dx dy do • (3.5) 
0 

m2 if' 0' RT*m2 

The weighting functions rov and O>r are associated with the rotational part of the wind and 

mass fields respectively and can vary horizontally and vertically within D. The functional J 

can also be written as 

J = i [~ (?iAT) 2j + eo,. (V(Aiji))Zl dx dy da 

+ 1 RT*~T {~lnps)2dxdy _ 1 [roTo]la;o1 (~P}ci dxdy . 
o" m o,. RT*m 

The solution of the variational problem is however formulated in terms of M> from which 

C temperature and surface pressure changes are obtained (see Subsection 3c). 

c. The variational problem 

The variational problem to be solved thus becomes the minimization of functional J 

given by (3.5) subject to the constraint (3.3) together with the vertical boundary conditions 

a(M>) + y*(o) (M>) = 0 at 0" = 0"1,1 • 
ao T* s 

(3.6) 

The vertical boundary conditions (3.6) at the top and bottom of the model, are natural 

boundary conditions for the minimization of (3.5) and correspond to the boundary conditions 

which are consistent with the determination of the vertical normal modes of the model. 

Using the standard procedure of the calculus of variations (see the Appendix), the Euler­

Lagrange equations are given by : 

vzA. = .:.L.!..[~ a(M>)] 
m2 dO' R 1• dO 

(3.7a) 

85 



together with (3.3) and (3.6). 

d. Particular cases 

V·( COv V( 6'1f) ) = F (A.) 
(A 'If >r = 0 

11 

(3.7b) 

(3.8a) 

(3.8b) 

We frrst note that if the weights roT and m, are assumed to be independent of the 

vertical coordinate 0', the right·hand side of (3.7a) can be written as 

• ~ ~[ 0: o(AP)] e -~ '(AP) (3.9) 
m2 oa R"t 00' m2 

where the vertical structure operator t,J is defined by (A4). The expansion in terms of 

vertical normal modes for the correction state vector dX and the Lagrange multiplier A. is 

given by 

6X = ( ~= l = ~ ( :~ l ~(0') ; and A. = ~ Ac ~n 
AP . 6Pn 

(3.10) 

where ~n is a given vertical mode of the model. Using the fact that the weights are 

independent of a, (3.3), (3.6), (3.7) and (3.8) are separable for each vertical mode " n " and 

may be written as: 
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The natural boundary conditions (3.6) are automatically satisfied by the vertical mode 

decomposition. Note also that the solution of the Euler-Lagrange equations is restricted to 

the subset 0 due to the vertical mode restriction discussed in Section 3a. The preceding set 

of equations is analogous to the set of Euler-Lagrange equations obtained for the shallow­

water version of the model. Equations (3.11) and (3.12) can formally be obtained by 

minimizing a variational integral of the .form 

In = 1 [ t:Or 
2 

(M)i + ~[ V(AV>J 2] dx dy . 
or.. ~nm 

-

By multiplying Iu by ~ n (which does not affect the solution) we obtain the same type of 

functional used by Ff89 and Fillion (1991) for shallow-water models. By further restricting 

the weights to be constant and equal, COr= cov = constant, we obtain the INMI scheme for a 

multilevel model as described by TR91. 

e. The nwnerical procedure 

The numerical procedure characterizing the VINMI scheme in general, for one 

iteration, consists of the following steps, 

1) A forward timestep is done to compute the tendencies 

o(V2v> o(V2x> aT o(lnp,) . 
at t at ' at ' at • 

2) For the restricted set 0 of vertical modes (sec Section 3a), compute 

; n = 1, 2, 3 • 

..... 
3} For each vertical mode ··n··, determine AXn from Temperton's 1988 INMI scheme 

for the shallow-water version of the RFE model 

4) Use the inverse vertical transform to determine the vertically filtettd fields AX and 

a v2 
• t X , t.e. 
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S) Solve the Euler-Lagrange equations, i.e. (3.3), (3.6), (3.7) and (3.8) for AV and 

AP in physical space. 

6) Compute AU and A V from AV and Ax using the same procedure described in 

Section 2b of Fr89. 

7) Use the procedure described in TR91 to determine A(lnp.) and AT from AP. 

We note that the VINMI scheme formulated here implicitly controls the changes to the 

temperature and pressure fields. Daley's (1979) variational inversion procedure to obtain AT 

and Alnp, from AP was not considered here but we rather used the procedure described by 

TR91 (where the last vertical mode is excluded in the inversion). This latter procedure as 

will be shown in Section 4, does not destroy the implicit control on T and lop, fon:ed by the 

~ scheme. From (3.5), we note that the same weight COr is used for temperature and 

surface pressure changes at the lowest level of the model. This point will be discussed 

further in Section 4. 

The numerical procedure for solving the Euler-Lagrange equations is based on the 

strategy adopted for shallow-water models. The idea is to form a single equation to be 

solved for (AP). This equation is obtained by combining (3. 7), (3.8) and (3.6) in that 

order, and is written as 

V\AP) -. F Ld,1 F V~2 I (AP) = B(AX)o + (BtV~o (3.13) 

where the vertical operator I is defined as 

The coefficient K is given by 

I a - .!..(K d(AP)l 
d<J·d<J 

K • eoro 
R y• m2 
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or using the definition of "t (considering the chosen isothermal basic state temperature 

profile) as 

Ke coral 
m2R 1eT* 

The linear (but variable-coefficient ) operator Lis defined as in FI'89, i.e. 

where the indices "n" and "d" appearing in (3.13) refer to an inversion using homogeneous 

Dirichlet or Neumann boundary conditions on r. The operators L and I have the form of 

horizontal and vertical diffusion operators with variable diffusion coefficients eo, and K 

respectively. This is due to the fact that we attempt to minimize the square of the horizontal 

and vertical gradient of AV and AP respectively, based on the principle of minimization of 

the linearized ··energy·· functional (3.5). Generalizing the iterative approach taken by FI'89, a 

suitable (vertically separable) kernel operator for (3.13) is 

v2 + A! .!_ 1.-iL. .!_) aa R··t aa 
where 

The minimax value A! is evaluated over D. Each iteration of the numerical algorithm used to 

solve (3.13) requires 

a) the computation in finite-element space of 

V2(AP)(k) - F Ld1 F V~2 I (AP)(k) 

for a given estimate (AP)OO at iteration '1C. 

b) a vertical mode decomposition of the result of step (a). 
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c) the solution of the kernel problem by inverting the constant coeftlcient Helmholtz 

OperatOr 

2 'l2 
V - !!it. 

Cl)n 

for each vertical mode, excluding the last one since this mode is degenerate, i.e. 

Cl)11 = 0 for n = 19. In practice, due to the vertical mode projection (onto 0) of 

the right-hand side terms of (3.13), it is found that using only the first 10 vertical 

modes to solve (3.13) is enough to approximate accurately the solution obtained 

using the full18 vertical modes. The structure of the first 6 vertical modes of the 

model may be found in TR91. Figures 3a-b show the structure of vertical modes 

7-10 of the model. 

The iterative scheme for solving (3.13) is accelerated by a conjugate-gradient 

technique (Concus et al. 1976). 
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4. Results 

We now illustrate the results obtained with the variational scheme described in 

Section 3. The model itself uses a semi-Lagrangian time integration scheme (Tanguay et al. 

1989) with a timestep of 20 minutes while the initialization scheme uses a timestep of 2 

mir.utes to compute the time tendencies required during the iteration cycle. The initialization 

is performed on the variable resolution: grid shown in Fig. 1. The experiments of this section 

(i.e. INMI or VINMI) used three iterations and used three vertical modes to alter the gravity 

modes. The initialization schemes are adiabatic, i.e. without physical processes. In terms of 

the percentage of the computer time required to integrate the model for 48 hours, the INMI 

and VINMI schemes require approximately 2 % and 8 % respectively. 

a. Initial conditions 

The initial conditions for the following experiments came frOm the interpolation of 

analyses done on an hemispheric Gaussian grid to the variable resolution grid of the RFE 

model. We note that in the present version of the model. (the immediate successor of the 

version used by TR91), no smoothing procedure is applied on the height and wind fields 

near the boundaries (i.e. south of 200 latitude). The condition of no outflow mentioned in 

Section 2 is still imposed on the analyzed wind Figure 4 shows the mean sea level pressure 

for 00 UTC 22 January 1986 before initialization. 

b. Spatial distribution of analysis e"ors 

Altough the present study does not address the problem of the optimal use of the 

available error statistics (variances and covariances) of the analyzed fields within a VINMI 

procedure, it is instructive to examine the spatial structure of the root-mean-square expected 

analysis error. These fields indicate the expected level of accuracy of the analyses and serve 

as a basis of comparison for the changes done to the analysis by the initializatim. 
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Figures Sa-f give the root-mean-square analysis error for the height, zonal wind 

component, and temperature over the domain Da at 850 and 250 mb. These fields are 

available from the statistical interpolation procedlR used at CMC (Centre Mc!t6orologique 

Canadien) (Mitchell et al. 1990) to do operational data assimilation. As expected, for all 

these fields, the land-sea contrast in the expected analysis error is clearly ~vident. 

The following parts of this section will focus on the ability of the variational scheme 

to respond adequately to spatially varying weights even if this happens to be in a region 

where the INMI scheme already produces absolute changes below the expected analysis error 

variance. A coherent specification of the vari~tional weights using analysis error statistics 

must be performed prior to the application of VINMI in a complete operational data 

assimilation scheme. 

c. Horizontal control 

We fU'St examine the application of the variational scheme when the weights Cl\ and 

eo. are independent of the vertical·· a .. coordinate. It was shown in Section 3d that the 

VINMI scheme for that case reduces to the VINMI scheme of Fr89 for each vertical mode 

considered We will refer to this particular form as VINMI-2D in the following discussion. 

We begin by giving a simple illustration of the behaviour of the scheme when the same set of 

1atitude-longitude" weights as those used in FI'89 in a shallow-water context are used for the 

multilevel version of the model. These weights are useful to illustrate without ambiguity the 

relative changes done to the mass and wind fields by the V1NMI-2D scheme as compared to 

the INMI scheme. 

These weights are expressed as 
mv = H~ cos8 (8) 
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ror = H~[l- cos8 (8)] 

where JP. T and JP. • are set to unity except when the longitude A. is over ocean where they 

change abruptly to 0.01 and 0.1 respectively. These delimiting longitudes aie the same as in 

Fr89, i.e. 

Atlantic Ocean (150W, 650W) 

Pacific Ocean (1250W, 135a:B) • 

Using these weights, we expect that the mass field will adjust to the wind field over 

the tropics and vice-versa over extratropical continental regions. The abrupt horizontal 

change will serve to test the robustness of the VINMI-20 scheme while at the same time 

force the initialization scheme to recognize the different level of accuracy of the analyzed 

fields over the continents and oceans. The need for such a distinction is evident from Figs. 

Sa-f. 

We start by discussing the convergence characteristics of both unconstrained and 

constrained iterative initialization schemes, leaving the details of the controlling aspect of the 

VINMI-20 scheme to the end of this sub-section. To exhibit the reduction of the time­

tendencies of the fast modes for both INMI and VINMI-20 schemes, we show in Figs. 6a 

and 6b the reduction in the value of BAL for each vertical modes of n as a function of the 

iteration number. The value of BAL (computed in physical space) is a sum of squares of the 

tendencies of the fast mode coefficients (ref. Temperton 1988). For the external and first 

internal modes, the reduction rate of BAL is essentially the same for both schemes. For the 

second internal mode however, the reduction rate is slightly slower for the constrained 

experiment As will be shown later, this results in imperceptible imbalances during the 

ensuing forecast when compared to the balance resulting from the unconstrained INMI 

scheme. Another diagnostic measure of the convergence of both initialization schemes is 

now given in terms of root-mean-square increments computed for each iteration. Figures 7a-
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b show these increments in terms of the variable P for both INMI and VINMI-20 schemes, 

for each sigma level of the model, while Figs. 8a-b exhibit the rms increments of the win4 

field. It is seen that both schemes converge quite rapidly with rms increments of P and wind 

at the end of the third iteration less than 10m2 s·2 and 0.2 ms·l respectively. 

We now examine the controlling aspect of the VINMI-20 scheme. Height field 

changes will be shown at a = 0.25, which is typical. The changes at other levels are similar 

but with a reduced amplitude at lower levels due to the absence of vertical variation of the 

weights. Figure 9a shows the differences in height field between INMI and no initialization 

for an area including the uniform high-resolution grid. We observe relatively uniform height 

change magnitudes (- 20 metres) over continental and ocean regions. Assuming the 

previously defined weights, i.e. a highly reliable analyzed height field over the continent and 

low reliability over oceans, the VINMI-20 scheme produces the changes shown in Fig. 9b. 

Essentially the analyzed extratropical height field has been maintained over the continents and 

changes forced preferentially over the adjacent oceans. It is also important to look at the 

wind changes. Figure 10 shows the height and wind field differences between VINMI-20 

and INMI initialized fields. These fields are clearly in quasi-geostrophic balance and 

essentially limited to the north-American continental region. This indicates that the VINMI-

20 scheme has also changed the slow modes of the analysis in order to retain the analyzed 

mass field over the continent. Due to the constraint imposed by the present specification of 

weights, the variational scheme maintained the analyzed mass field at the expense of the 

rotational part of the wind field over the extrattopical continents. Together with our choice of 

~ in the functional (3.5), this implies that the initialized surface pressure field should be 

closer to the analysis when the VINMI-20, rather than the INMI scheme is used. Of course, 

with the INMI scheme there is no such control of the surface pressure changes. TR91 's 

inversion procedure is used in the VINMI algorithm to deduce ~T and Alnp. from~. and 

this procedure does not destroy the control operated implicitly on the former fields via~. 

This is particularly evident for surface pressure (convincing results for temperature changes 
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are shown in the next sub-section) when Fig. 11a (INMI case) and Fig. 11b (VINMI-20 

case) are compared. These figures show the surface pressure changes made by each 

initialization scheme. The latitudinal variation of the weights over the continent strongly 

forces the retention of the mass field north of 400 latitude. This effect is observed in Fig. 

11 b. At lower latitudes, over the continents, the constraint on the mass field is gradually 

relaxed in favor of the rotational part of the wind field. 

We now show the impact of the VINMI-20 scheme on the vertical velocio/ field. 

Figure 12a shows the field of vertical velocity co at 700 mb before initialization. This freld is 

noisy over the Rocky mountains and Greenland. Elsewhere the structure of the field of eo is 

synoptically unacceptable. For example consider the low pressure system over the Great 

Lakes, with a trough extending northward to Hudson bay (see Fig. 4). The value of co is 

positive (i.e. downward motion) in this region and negative (i.e. upward motion) over the 

ridge associated with the high system over the Northwest Territories. After initialization 

(VINMI-20), the co field is synoptically acceptable as judged from Hg. 12b. Note also the 

narrow band of upward vertical motion west of Alaska, a feature noticeable before 

initialization but refined by the initialization scheme. The co field for INMI is not shown 

since it is essentially identical to the VINMI-20 case (see also Fr89 and Pillion 1991 

concerning the initialized divergent circulation). In Figs. 13a-c, we show the evolution of the 

surface pressure at points 1, 2, and 3 respectively (see Fig. 1 for the location of these 

points). The variational scheme has eliminated the high-frequency oscillations just as well as 

the unconstrained scheme. Point 3 lies within the region of control of the mass field, and this 

is apparent in Fig. 13c where the initial surface pressure field for the uninitialized and 

variationally initialized cases are the same. The evolution of the surface pressure at this point 

exhibits the familiar behaviour already noted for the height field traces with shallow-water 

models (see Fig. 8 of FT89 and Fig. 16 of Pillion 1991). This characteristic signature 

reflects fast oscillations around a slowly-evolving meteorologically-significant state. The 
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variationally initialized case however shows a slow evolution which differs from the 

unconstrained case. 

d. Three dimensional control 

Purl (1983) studied the impact of variational initialization in the context of data 

assimilation using a multilevel spectral model. His study was severely restricted to 

latitudinally varying weights thus ignoring the very sharp variation in analysis accuracy 

between oceans and continents seen in Figs. Sa-f. The VINMI-2D scheme described in the 

preceding sub-section does not have this limitation. Also, an important result reported by 

Purl (1983) is the improvement of the assimilation cycle by allowing the weights to vary in 

the vertical. This was achieved in his study by assigning lower weights to the higher vertical 

modes initialized. As mentioned by Purl, this kind of specification of the weights is 

inappropriate in order to reflect the availability of data and analysis reliability in the vertical. 

The VINMI scheme developed in Section 3 resolves this problem and allows a full variation 

of the weights in the vertical. . 

We now examine the behaviour of the VINMI-3D scheme when vertical variation of 

the weights is introduced. For this purpose, we defme 

ror = H~ H¥ [1. cos8 (9)] 

where H\ is defined as before. We perform two experiments as follows 

Experiment 1 : H,Y = 1 

= 0.1 

for 0.5 < 0' < 1 

for o S0.5 

Experiment 2 : H¥ = 1 for o S 0.5 
= 0.1 for 0.5 < o < 1 . 

and eo. is as before. Note that at a = 1, for both experiments, 8T and 8lnp, are jointly 

constrained in the same manner as for the INMI case, i.e. (3.6) is applied, and we set COr = 1 

at o = 1 for a maximum retention of the surface pressure information. This latter choice 

together with the formulation retained for VINMI as discussed in Section 3 (see (3.5)) forces 

0 the retention of the analyzed temperature field at a= 1, which is not as accurate as the surface 

96 



22 

pressure field. Results concerning this point are discussed at the end of this sub-section. 

Tbe present choice of HaT creates (as in the horizontal case) a clear distinction between the 

reg:lon of control for the VINMI-30 scheme as compared to the standard unconstrained INMI 

scheme. 

Figures 14a-b show the temperature changes after initialization using the INMI and 

VISMI-30 schemes respectively for Experiment 1, for the level 0' = 0.786 i.e. within the 

region of control of the temperature changes. It is clear that the analyzed temperature field 

over the continent has been maintained by the variational scheme. We also note that outside 

the horizontal region of control, the structure of temperature field changes is comparable for 

bodl schemes. Figure 15 gives therms temperature changes over the North· American region 

of control as a function of the vertical coordinate a, for both INMI and VINMI-30 schemes. 

Clearly the variational scheme has forced temperature changes in the desired way, i.e., 

retention of the analyzed temperature field in the lower half of the vertical domain and 

relaxation of the constraint in the upper domain (i.e. a < 0.5). The ttansition zone near a = 

0.5 is also evident, indicating the robustness of the scheme. The s~ remark applies to the 

results of Experiment 2 shown in Fig.l6. The structure of the temperature changes in the 

lower half of the domain (a> 0.5) for the VINMI-30 scheme are now closer to the changes 

forced by the unconstrained scheme. However, in the upper domain. the variational scheme 

clearly forced the retention of the analyzed temperature field whereas the unconstrained 

scheme produced significant temperature changes. As in the case of the VINMI-20 scheme, 

this retention of the temperature field over the continents is done at the expense of the wind 

field. This is shown in Fig. 16b for Experiment 2 for the nns changes of the wind field over 

the horizontal region of control as a function of the vertical cocm1inate 0'. As mentioned at the 

beginning of this sub-section, in order to limit the changes to the surface pressure field, COr at 

a = 1 was set to unity for both experiments. This choice appears to be more consistent for 

Experiment 1 where the temperature changes are controlled in the lower half of the model 
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domain. The temperature changes at the top and bottom of the model are very small for both 

constrained and unconstrained experiments. The effect of constraiaing the initialization 

scheme to produce small changes in the temperature and surface pressure fields at a = 1 (at 

the expense of the rotational part of the wind field) has forced changes to the wind field 

(Experiment 2) which produce an increased rms value near a= 1 (see Fig. 16b). We note 

however that even for these extreme situations where strong retention ci the temperature field 

(i.e. Experiment 1 and 2) is forced by the variational scheme, the associated changes to the 

wind (not shown) were still smaller than the expected analysis ell'01'S. Finally, Figures 17a-b 

show the surface pressure traces for Experiment 2 for point 1 (i.e. within the tropics) and 

point 4, and indicate the ability of the VINMI scheme to cope with such extreme weights 

specification (in the horizontal as well as in the vertical) and produce balanced initial 

conditions. The resulting surface pressure traces for Experiment 1 (not shown) are similar. 
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5. Summary and discussion 

The technique of variational implicit nonlinear NMI (VINMI) is here extended to a 

mulrllevel operational model where {a) .the weights vary horizDntally and vertically and {b) the 

required computer time is maintained below 10% of the CPU time needed for a 48 h 

forecast. By using VINMI, it is now possible to envisage controlling the initialization 

scheme to respect the degree of accuracy of the analyzed fields produced by operational data 

assimilation procedures. Results of VINMI in the context of horizontally vaeying weights 

(VINMI-2D) indicate that it is possible to maintain the same degree of balance in the initial 

fields as that produced by the INMI scheme and to take into account the very sharp variation 

in mass and wind field analysis accuracy between continents and oceans. Also, by allowing 

the weights to vary abruptly in the vertical, it was possible to demonstrate the ability of 

VISMI-30 to operate efficiently in cases of strong variations of the weights in the vertical 

Variational initialization, however, does not resolve the inherent deficiency of the 

analysis or the initialization schemes. Rather, it tills the need fm- abrupt variations in physical 

space in the changes caused by initialization to mass and wind fields, permitting horizontal 

and vertical variation that is consistent with expected analysis errors and is basically different 

than the one used by INMI in order to reach a balanced initial state. In this study, an efficient 

and robust scheme to force this constrained adjustment was developed. For practical 

purposes, the real test of any modifications to the initialization scheme is the improvement of 

the quality of the short-range forecast {typically 6 hours) which serves as a trial or first guess 

for the analysis. The next goal will be to examine whether VINMI can lead to such an 

improvement in the context of data assimilation. The optimal specification of the variational 

weights will have to be considered as a prerequisite to that study. 

Finally, we note that a more coherent approach to the analysis-initialization problem 

for data assimilation may be to use either a Kalman filtering (Ghil et al., 1982) or optimal 

control (Talagrand 1988, Courtier and Talagrand 1988) technique. By combining the model 
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and approximate balancing constraints, these techniques can produce balanced initial 

cooditions which make ··optimal .. use of the available data during the assimilation period. 

However, at present, both of these techniques :require prohibitive computer :resources which 

limits their use in an operational context. Variational initialization in the context of an 

operational data assimilation scheme should help (if properly used) to lessen some of the 

negative impact of unconstrained nonlinear NMI schemes on the analyzed fields. This 

should allow for a better evaluation of the sequential analysis-initialization techniques 

currently used for numerical weather prediction. 
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Calculus of variations in tbe vertical 

a. Boundary conditions for tM verti(:a/ normal-modu 

During the initialization process, it is required to specify the appropriate vertical 

boundary conditions on Pin a manner which is consistent with the derivation of the vertical 

normal modes of the model. To avoid repetition, we refer the reader to B6land and Beaudoin 

(1985, Section 2), for the basic: derivation. Note however the misprint in their equation 

(2.10). The corrcc:t form which applies at a= a1 , 1 is 

!.[(_.a_)aP + _a_p•] , -= [-av ·Vq- LJI 
at Ry• aa RT: o•ot.l t o-o •• t 

(Al) 

Setting the right-hand side of (AI) to zero (i.e. neglecting nonlincar terms), the 

appropriate vertical boundary conditions for the linearized system about a resting and 

isothcnnal basic state is 

dP + y•(a) P
1 

= 0 at a = a1 , 1 aa T* 
(A2) 

where 

'Y·=~. K•Jl 
a ' c:p ' 

and we take T = 300 K. The constants R and c:,. are respectively the specific gu constant 

and heat capacity for dry air. Successive use of the continuous form of (2.2c), the 

hydrostatic: equation, and the definition of P, leads to the following equation 

(A3) 

where D = V· V, Q, represents a combination of nonlinear terms, aDd 

(A4) 
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is referred to as the vertical structure operator. We note that (2.S) iJ the analogue of (A3) 

obtained from the same set of equations but in a discretizcd form. Prom (2.5) and (A3) 

(nonlinear terms set to zero) it follows that the eigenvectors of the consistent discretization of 

1-' and the eigenvectors of matrix Care the same but the eigenvalucs of» satisfy the relation 

where •· is an eigenvalue and ~ an eigenvector of matrix C. 

b. Euler-IAgrange equations 

We consider the minimization of the functional 

• f. Lt dx dy da <A') 

under the constraint M defmed by (3.3a) and the boundary conditions (3.3b,c). The 

barotropic case has been discussed by Ff89, therefore we need only consider the new form 

of potential energy. For this purpose, we set to zero the first variation of the Laarangian J. 

defined by 

:1. • f. (L 1 + 2l. M) dx dy do • L L dx dy da 

with respect to AP, (ref. Smimov 1964) where A is a variable Lapange multiplier. It 

follows that 
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. .-.... 0 • f. [ L C4Pl" (:C,L (AP).l + ~2L (4Plu. + ::aL (411),] 6 (M') dx dy da + 

[ { f [ 6 (AP).L (AP).. - 6 (41'} it- (AP)..l dy -

r 

[ 3 (4i')y L CAP>, - 8 (AP) ~ L (APl, l dx } da 

+ L. [F(4Plo6(4P)]I::~ dxdy + L [ ~~8(APJ]a•l dxdy 

+ L [.I\Ar,6(AP)]Ia•a. dxdy • 

F (x, y, 0') • .Qb:__a:_l~>r 
m2Ry• 

0 (x, y, 0') • :!;:!') (4P)
2 

Vie inttoduced the notation 

az 
~o·­

at 

28 

Since the normal derivative of (4P) on r is fixed when (4\f) is fixed (sec (3.3b-c)), 

tbe extrcmum condition is satisfied provided that on the boundary of r we have the same type 

of natural boundary conditions as specified in the barotropic vcrsiCG, i.e. (3.7b). The Euler- · 

Lagrangc equation for (4P) must be satisfJ.Cd for an extrcmum, i.e. 

L <APl - (!L (AP)ol + ~2L (AP).. + ~2L (411), • 0 . 

·1bercfore it follows that 
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(A6a) 

(A6b) 

We have not yet introduced the vertical boundary conditions thal must be imposed on t\P. 

The natural vertical boundary conditions are 

Assuming COr > 0, (A 7) becomes 

io<t\P) + ~ (t\P) = 0 at a = 1 

(A7) 

(AS) 

which has the same form as the lower boundary condition of (A2). Also, condition (AS) 

gives the same form as the upper boundary condition of (A2), i.e. 

:a (AP) + y• ~t) (t\P), = 0 at a = <Jt 

Thus, the introduction of the term involvin& H in the functional J generates tbe same vertical 

boundary conditions as for the unconstrained 1NMI scheme. We show in subsection 3d that 

the IRsent constrained minimization problem reduces to the INMI scheme when the weights 

COr and eo, arc constant and equal. Finally, we note that for models with the top at a = 0, the 

usual boundary condition used to defme the vertical normal modes, i.e 

a 
()a (AP) = 0 at a = 0 

is the natural boundary condition that appears in order to minimize the energy functional. and 

for that case, the term involvin& H vanishes as a1 -+ 0. 
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-· npre captions 

Fi&- 1. The horizontal domain and non-uniform grid. Points 1-4 aJe locations where surface 
pressure time-traces aJe stored during a model integration. 

Fig. 2. The vertical distribution of sigma levels of the RFE model 

FiJ. 3. Vertical modes 7-10 of the model. (a) solid line: mode number 7, dashed line: mode 
number 8; (b) solid line: mode number 9, dashed line: mode number 10. 

Fia. 4. Mean sea-level pressure at 00 UTC, 22 January 1986, before initialization. Contour 
interval 8 mb. 

Fig. 5. Root-mean-squ&Je expected analysis Cll'Ol'. (a) Height-field (m) at 850mb, contour 
interval 3 m; (b) Height-field (m) at 250mb, contour intervalS m; (c-d.) Zonal 

. component of the wind (ms·1) at 850 and 250mb (resp), contour interval I ms-•; (e­
f) Temperature (Celsius) at 850 and 250mb (resp), contour interval 0.4• C. 

FiJ.6. The value of BAL as a function of iteration number for the first three vertical modes 
of the model for (a) unconstrained (INMI); (b) variatiooal (VINMI-2D) initialization. 

Fia. 7. Root-mean-square increments of the generalized-geopotential field (m:& s-2) as a 
function of the vertical coordinate a for the fnt three iteration of the (a) 
unconstrained (INMI) scheme; (b) variational (VINMI-2D) scheme. 

Fia. 8. Root-mean-square increments of the modulus of the wind field (ms-1) as a function 
of the vertical coordinate o for the fmt three iterations of the (a) unconstrained 
(lNMl) scheme; (b) variational (VINMI-2D) scheme. 

Fia.9. Height-field differences (m) at o = 0.250 between initialized and original (analyzed) 
fields. (a) INMI; (b) VINMI-20. Contour interval Sm. 

Fig. 10. Hei$ht (m) and wind field differences (ms-1) at a= 0.250 between varlationally 
initialized (VINMI-2D) and unconstrained initialized (INMI) fields. Maximum 
wind modulus 2 ms·•. Contour interval tO m. 

Fig. 11. Surface pressure changes (mb) of the original analyzed field done by the 
initialization schemes. (a) unconstrained INMI; (b) variational VINMI-2D 
Contour interval O.S mb. 

Fig. 12. Vertical velocity m (JJ.bs·1) at 700mb. (a) before initializaticm; (b) after VJNMI-2D. 
Contour interval 2 ~bs·1 • 

Fia. 13. Time trace of surface pressure at selected grid points (sec Fis. 1). (a) point I; (b) 
point 2; (c) point 3. Solid line: no initialization. Dashed tine: after three iterations 
of INMI. Dotted line: after three iterations of VINMI·2D. 

Fia. 14. Temperature changes at a • 0.786 due to (a) uncoaatrained initialization (INMI); 
(b) variational initialization (VINMI·3D). Contour iDteMI 0.05 dea. 
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Fig. lS. Root-mean-square changes of the original (analyzed) tcmperatme field over the 
North·Amencan region of control as a function of levels a. Solid line: 

. unconstrained initialization (INMI). Dashed li:ne: variaJional initialization (VINMI· 
3D, Experiment 1). 

Fig. 16. Root-mean-square changes of the original (analyzed) (a) tcmperatme (deg); (b) 
modulus of the wind. (ms·•), over the North-American re~~ J>f control as a 
function of levels CJ. Solid line: unconstrained initializatioo (INMI). Dashed line: 
variational initialization (VINMI-30, Experiment 2). 

Fig. 17. Time-trace of surface pressure at selected grid points. (a) point 1; (b) point 4. 
Solid line: no initialization. Dashed line: unconstrained initialization (INMI, 3 
iterations). Dotted line: variational initialization (VINMI-30, 3 iterations). 

108 



Q 
0 --11 
cc 

.,_.. 
~f 

HORIZONTAL GRID CONFIGURATION 
100 km A=1.109 (125 X 101) 

90 

es 

eo 
75 
70 
65 
GO 
55 
50 
45 
40 
35 
30 
25 
20 
15 

10 

5 

5 10 15 25 40 5!5 70 85 105 11!5 lZO 1Z5 

A=1.108 

Fia. 1. The horizontal domain and non-uniform &rid. Points l-411'C locations wbele swface 
pressure time-traces arc stored durina a model integration. 

109 

> 
11 ..... . ..... 

..... .... 



~' ....._, 
RFE: 19 LEVELS 

o. (j . 0.050 
0.080 

100. 0.110 

0. 180 
200. 

0.2!50 

300. 
0.320 

400. 
0.390 

,... 
P2 
t: 0.460 
..... 

500. 
Ill 0.530 
~ 
::::» 
VI 600. 0.600 
VI 
Cd 
Ill( 0.667 a.. 

700. 
........... 0.729 

~, 0.786 
800. 

0.838 

900. 
o. 894 

0.924 

0.959 

1000. ~:888 

1100. 
o. 100. zoo. 300. 400. 500. 

DISTANCE ClctU 

Fia. 2. 'I'he vcnical disaibution of sigma levels of the RFB model. 

110 



~ c.; ..... 
CIJ 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 
-0.5-0.3 -0.1 0.1 0.3 

a) 

-~ 
c.; ..... 
CIJ 

0.5 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

Fig. 3. Vertical modes 7 ·10 of the model. (a) solid line: mode number 7, dashed line: mode 
number 8; (b) solid line: mode number 9, dashed line: mode number 10. 

lll 

b) 



--

Fig. 4. Mean sea-level p~ssure at 00 UTC. 22 January 1986. before initialization. Contour 
interval 8 mb. 
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a) 

b) 

Fig. S. Root-mean-square expected analysis error. (a) Height-field (m) at ISO mb, contour 
interval 3 m; (b) Height-field (m) at 2SO mb, contour interval S m; (c-d) Zonal 
component of the wind (ms·1) at 8SO and 250mb (resp), contour intervall ms-'; (e· 
f) Temperature (Celsius) at 8SO and 2SO mb (resp), contour interval 0.4 • C. 
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c) 

d) 

Fig. S. Root-mean-squm expected analysis em>r. (a) Height-field (m) ac 850 mb, contour 
interval3 m; (b) Height-field (m) at 250mb, contour intervalS m; (c-d) Zonal 
component of the wind (ms·1) at ISO and 250mb (resp), contour intervaltmr•; (e­
f) Temperature (Celsius) at 8SO and 250mb (resp), contour interval 0.4' C. 
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e) 

f) 

Fig. S. Root-mean-square expected analysis error. (a) Height-field (m) at 8SO mb, contour 
interval 3 m; (b) Height-field (m) at 2SO mb, contour intervalS m; (c-d) Zonal 
component of the wind (ms·•) at 8SO and 2SO mb (resp). contour interval I ms-'; (ea 
f) Temperature (Celsius) at 8SO and 2SO mb (resp), contour interval 0.4• C. 
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a) 

b) 

Fia.9. Heipu·tield differences (m) at a • 0.250 between inideUml end oripnal (enalyzcd) 
· fields. (a) INMI; (b) VINMI·2D. Contour intervl1 5m. 
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Fia. 10. Heiaht (m) and wind field differences (ms-t) at a • 0.2SO between variationally 
initialized (VINMI-20) and unconsttaincd initialiml (INMI) fields. Maximum 
wind modulus 2 ms·1• Contour intcrvallO m. 
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a) 

b) 

Fig. 11. Surface pressure changes (mb) of the oririnal analyzec:l field done by the 
initialization schemes. (a) unconstrained fNMI; (b) variational VINMI-20 
Contour interval O.S mb. 
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a) 

-
b) 

Fi&. 12. Venical velocity eo ijlbs-') at 700mb. (a) before inidaUzadCII; (b) after VINM1·2D. 
Contour interval 2 Jlbs-1 • 
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a) 

b) 

Fie. 14. Tcmperatuse chances at er • 0.786 due to (a) unconstrained Initialization (INMI); 
(b) variational initialization (VJNMI-30). ConlOUI' intcrVIl 0.05 dea. 
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Chapter VI 

Conclusion 

The idea of including the level of accuracy of analyzed fields (produced by optimal 

intetpolation) into the nonlinear normal mode initialization procedure for numerical weather 

prediction was considered We first investigated the applicability of a variational framework 

for INMI within simple shallow-water models. We were interested by the necessity to take 

into account the sharp distinction in reliability Qf analyzed fields over land and ocean within 

the nonlinear adjustment process between mass and wind fields. The extension to the 

multilevel case also appeared as a desirable aspect of the scheme since there is a known 

variation of reliability of analyzed fields with respect to the vertical. 

Daley (1978) was the first to suggest a variational extension of nonlinear NMI. The 

essential difficulty associated with Daley's scheme is due to the dimensionality of the 

resulting variational problem due to the inherent .. normal mode·· space formulation. The 

emergence of an approximation of the ··explicit ·· nonlinear NMI technique called .. Implicit 

nonlinear NMI (INMI)" (Temperton 1988) which is formulated in physical space, was the 

basis for reconsidering Daley's proposal. By combining INMI with a given minimization 

criteria, the resulting problem could be studied in the context of horizontally and vertically 

varying weights to fully reflect the analysis accuracy. 

The feasibility of variational explicit nonlinear NMI has already been demonstrated in 

the past for the spectral form of the shallow-water equations (Daley 1978, Tribbia 1982). To 

be considered as an original development, the present study needed to adress the feasibility 

and efficiency of VINMI for shallow-water models first. The efficiency problem was 

considered as an important practical aspect since it is essentially that point which limited the 

usefulness of variational .. explicit" nonlinear NMI. 
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In chapter Ill, Machenhauer's scheme expressed in physical space was imposed as a 

strong constraint for the minimization of an energy type functional. Conservation of mass 

was further imposed to close the variational problem. Also, consistent boundary conditions 

were formulated for the model's fast and slow modes. The formulation allowed a strong 

variation of the weights in the horizontal in order to reflect the ocean-continents contrast in 

the analysis reliability. The INMI scheme developped by Temperton (1988) was shown in 

the present study to be a special case of VINMI when the weights on the rotational part of the 

wind and mass fields are set equal and constant. One important aspect distinguishes INMI 

and VINMI, that is VINMI has the ability to alter the evolution of the slow modes (to remain 

closer to the analysis) thus VINMI does generally lead to a different forecast of synoptic scale 

systems as compared to an uninitialized forecast. This aspect is not present in unconstrained 

explicit or implicit nonlinear NMI schemes since the slow modes of the analysis are left 

unchanged. One clearly sees here the importance of the specification of the variational 

weights in order to improve the performance of a data assimilation scheme. This aspect was 

not considered in the present study but will have to be examined carefully in the future. 

VINMI as formulated here does not control explicitly the changes on the divergent part of the 

analyzed flow. This restriction was not present in Daley's or Tribbia's variational scheme 

mentioned previously. As for INMI, VINMI is also unable to distinguish (in terms of 

frequency) which fast modes should be balanced. This latter aspect is the most serious one 

when this scheme is considered in a baroclinic context where (as shown by Errico 1989) the 

accuracy of Machenhauer's scheme rapidly diminishes when applied to gravity modes with 

resonant periods greater than 10 hours say. On a practical point of view, the VINMI scheme 

considered in chapter Ill deals with a variational adjustment of 30,000 variables in a very 

efficient way using an iterative procedure accelerated with a conjugate-gradient technique. 

The VINMI scheme may also be used to improve the rather 'brute" force adjustment 

imposed on the initial wind field near the wall boundary in order to satisfy the "no cross-

0 boundary" mass flux necessary to integrate the RFE model. When directly applied, i.e. by 
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zeroing the normal component of the wind field on the wall boundaries, and without an ,..... 
'-" appropriate adjustment of the mass field, this results in a local dynamical imbalance between 

the mass and wind fields which excites essentially the equatorially trapped gravity-inertia 

modes of the model. Applying the initialization scheme (INMI) on these modified fields will 

result in a redistribution of this original local imbalance throughout the horizontal domain. 

To limit the impact on midlatitude fields, VINMI could be used to explore the degree of 

flexibility of the method to control this problem. This aspect of the "initialization problem" 

for limited area models was not considered in the present work. 

In the second part of this study, we extended in chapter N the variational approach of 

chapter Ill to global spectral models. Using a triangularly truncated spherical harmonics 

representation up to zonal wavenumbers 63, similar results as those for the barotropic RFE 

model were obtained. Also, using an f-plane approximation, Leith's (1980) result was 

recovered due to the exact equivalence between explicit and implicit nonlinear NMI for that 

case. The familiar problem of divergence of the height-constrained initialization (a special 

case of VINMI where the weight on the rotational part of the wind field is much less than the 

weight on the mass field) was then put into evidence and related to the ellipticity condition for 

the nonlinear balance equation (see Charney 1955, Tribbia 1981). 

The fact that the estimated errors of the analyzed fields have in addition to a strong 

horizontal contrast (see chapter IV) a vertical structure, asked for a consistent generalization 

of the VINMI method for multilevel models. This problem was faced in chapter V and it was 

shown that VINMI could naturally be extended to multilevel models using a known property 

of Machenhauer's scheme vis-a vis the linearized form of energy. The numerical procedure 

developed in chapters III and IV could also be naturally extended into three dimensional 

space without requiring excessive computer resources in terms of additional memory and 

computer time as compared to the operational version of the RFE model. The VINMI-3D 

scheme requires - 8% of the total computer time needed for a 48 hour forecast and compares 

favourably to the 2% required by the unconstrained INMI scheme. It is still possible to 
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c improve this computer time but this has not been further considered in this study. Using two 

simple weight specification cases, the VINMI-3D scheme was shown to respond adequately 

to known structures of the variational weights. The horizontal and vertical structure of the 

changes on the analyzed fields were diagnosed for each cases. The adjustment process in 3D 

space requires an estimation of the error distribution of error variance of the analyzed fields in 

order to adequately set the initial state. The ensemble of weights used principally in this 

study were specified in order to demonstrate the potential and robustness of the VINMI 

scheme in extreme situations (altough still quite realistic, see chapter IV). 

Future research based on the present work could be to extend the technique to 

Global variable resolution models of the atmosphere 

Mesoscale models. 

Finally, the precise structure of the optimal weights to be used by the VINMI scheme 

has not been adressed in this study. This part is crucial in order that VINMI be beneficial for 

data assimilation. 
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Corrections to chapter Ill and IV 

1) p.37 Dr. Luc Pillion should be Luc Pillion. 

2) p.50 Dr. Luc Pillion should be Luc Pillion. 

3} equation (2.5} 
..... m 1 
Dn = i a[n(n+1)]2:r:>'J: 

4} p. 53 ... algebraic system (2.13} should be algebraic system (2.14}. 

5} p. 58 4>o should be COo • 
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