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ABSTRACT

In this report, we analyzed the data collected during the last 8 years (2010-2018)

through Phylo. Phylo is a game with a purpose (GWAP) designed for solving a funda-

mental problem in bioinformatics: the multiple sequence alignment problem (MSA).

Based on the analysis, we propose an improved architecture for OpenPhylo. We start

by evaluating various machine learning approaches to identify promising regions in

MSA, regions that have not been perfectly aligned via machine. The learning model

is trained by converting segments of MSA into images and feeding it to a convolu-

tional neural network (CNN) based model. The validation accuracy achieved by the

proposed model is 80.67%. We then improve these alignments by crowdsourcing and

collecting imroved solutions from the players through Phylo. While crowdsourcing

these alignments/puzzles we also focus on certain aspects very crucial to any hu-

man computation system. For difficulty prediction of microtasks, we analysed both,

feature based as well as deep learning models. Further, we define a novel routing

algorithm which matches players’ skill level against puzzle difficulty. Aggregation of

solutions received via crowdsourcing is achieved using modified Needleman-Wunsch

algorithm and position weight matrices. The feedback mechanism has been enhanced

by introducing a user profile page which includes: achievement badges, ranking sys-

tem, visual feedbacks, and a live messaging mechanism to notify when players con-

tribute to science. Finally, we develop an enhanced teaching portal analysing the

data received from the classical version with the primary purpose of helping students

in understanding the problem of MSA.
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ABRÉGÉ

Dans ce rapport, nous avons analysé les données collectées au cours des 8 dernières

années (2010-2018) à travers Phylo. Phylo est un jeu avec un but (GWAP) conçu

pour résoudre un problème fondamental en bioinformatique: le problème d’alignement

de séquences multiple (MSA). Sur la base de l’analyse, nous proposons une archi-

tecture améliorée pour OpenPhylo. Nous commençons par évaluer différentes ap-

proches d’apprentissage automatique pour identifier les régions prometteuses dans

le MSA, régions qui n’ont pas été parfaitement alignées par la machine. Le modèle

d’apprentissage est formé en convertissant des segments de MSA en images et en

les alimentant sur un modèle convolutional neural network (CNN). La précision de

la validation obtenue par le modèle CNN proposé est de 80,67 %. Nous améliorons

ensuite ces alignements en faisant du crowdsourcing sur ces segments de MSA et

en collectant des solutions améliorées auprès des joueurs via Phylo. Tout en crowd-

sourcing ces alignements / puzzles, nous nous concentrons également sur certains

aspects très cruciaux pour tout système de calcul humain. Pour la prédiction de la

difficulté des microtâches, nous avons analysé, à la fois, les caractéristiques ainsi que

des modèles d’apprentissage en profondeur. En outre, nous définissons un nouvel

algorithme de routage qui assortit le niveau de compétence des joueurs contre la

difficulté du puzzle. L’agrégation des solutions reçues par crowdsourcing est réalisée

en utilisant l’algorithme de Needleman-Wunsch modifié et les matrices de poids de

position. Le mécanisme de rétroaction a été amélioré en incluant une page de profil

d’utilisateur qui comprend: des insignes de réussite, un système de classement, des
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rétroactions visuelles et un mécanisme de messagerie en direct à notifier lorsqu’ils

contribuent au savoir science. Enfin, nous développons un portail d’enseignement

amélioré analysant les données reçues de la version classique dans le but principal

d’aider les étudiants à comprendre le problème de MSA.
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CHAPTER 1
Introduction and related works

Human computation is a new and evolving research area that centers around har-

nessing human intelligence to solve computational problems that are beyond the

scope of existing Artificial Intelligence (AI) algorithms. It has emerged as a popular

approach to solve large-scale scientific problems in astronomy [68], molecular biology

[15, 34], neuroscience [36], and even quantum physics [43]. Oher ways to utilize hu-

man computers is through games-with-a-purpose or citizen science resourcefulness.

Such processes possess great potential for advancing biomedical science. Games like

Foldit [35], Phylo [34], and Eyewire [36] have been running successfully for several

years. A few other games in this genre include: EteRNA for RNA structure design

[42], The Cure for breast cancer prognosis prediction [26], Dizeez for gene annotation

[47], Ribo for RNA structural alignments [73] and MalariaSpot for image analysis

[50]. Many of these initiatives have succeeded in independently addressing challeng-

ing technical problems through human computation, improving science education,

and generally raising scientific awareness. This has raised wide interest in new ap-

plications of human computation towards science. However, the trail from a good

idea to a successful citizen science game remains highly challenging. Not only the

positives learned from such games should be recognized but also identifying possible

pitfalls and its appropriate human-powered solutions are equally important. There-

fore, such games still need to be ameliorated, need to have better problem solving
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potential, need to be fun, and need to reach a large audience that remain engaged

for a long-term.

With more applications of this technology underway, it is important to identify the

factors that contributed to the successes of this approach, and improve the aspects

that did not work as well as expected. To this end, the analysis of the data collected

by the earliest systems may reveal important patterns that could benefit to the next

generation of scientific games.

In 2010, we released a game-with-a-purpose named Phylo1 , which aims to help in

improving the accuracy of the comparison of DNA data [34, 39]. This problem,

known as the multiple sequence alignment (MSA), is an essential piece of a vast

body of biological studies [21]. A multiple sequence alignment (MSA) requires at

least three homologous nucleotide or amino acid sequences. Two sequence align-

ments are commonly referred to as a pairwise alignment. The alignment, whether

multiple or pairwise, is obtained by inserting gaps into sequences such that the result-

ing sequences all have the same length L. Consequently, an alignment of N sequences

can be arranged in a matrix of N rows and L columns, with a motive to place in

the same column characters that are homologous (i.e. derived from a same common

ancestor), possibly inserting gap characters to account for the presence of insertions

and deletions. MSAs are one best way to illustrate the evolutionary relations among

1 https://phylo.cs.mcgill.ca
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the sequences. It can also be used to reveal conserved and variable sites within dif-

ferent species. MSAs can provide essential information on their evolutionary and

functional relationships. Therefore, it has become an essential prerequisite for ge-

nomic analysis pipelines and many downstream computational modes for homology

modeling, secondary structure prediction, and phylogenetic reconstruction. They

may further be used to derive profiles using hidden markov models [64] that can be

used to identification of distantly related members of the family. As the enormous

increase of biological sequence data has led to the requirement of large-scale sequence

comparison of evolutionarily divergent sets of sequences, the performance and qual-

ity of MSA techniques is now more important than ever. Although the problem of

pairwise sequence alignment can be solved optimally in quadratic time [23], calcu-

lating an optimal MSA is an NP-hard problem [1]. A large number of fast and

efficient heuristics have been developed to align genomic DNA sequences [8], but the

solutions returned by these algorithms are potentially suboptimal. With the rapid

expansion of genome sequencing technologies, the shear quantity of DNA sequences

to be aligned (potentially hundreds of sequences of several billion characters each)

makes the task of producing and maintaining highly accurate MSA intractable for

small groups of experts. Because manual curation is a necessary step to guarantee

the quality of biological sequence alignments, a crowdsourcing solution appears to

be a perfect strategy to address this bottleneck [11].

Phylo aims to improve MSA solutions already pre-calculated by state-of-the-art al-

gorithms. Eventually, in the case a MSA cannot be improved, it can also serve as
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a certificate to validate the input data. Phylo starts from a computationally calcu-

lated MSA of multiple vertebrate genomes [59], identities portions of the alignment

that are potentially sub-optimal, and transforms them into small puzzles that are

dispatched to players (See Figure 1–1). Once a player has completed a puzzle, the

solution found is returned to our server for evaluation. If the alignment found by the

player is deemed superior to the original computer-produced alignment (based on

a parsimony-based scoring scheme [75]), it replaces the segment from where it was

extracted in the global alignment. Phylo thus contributes to improving a resource

(multiple genome alignment) that is used every day by researchers in biology and

genetics (e.g. detection of important DNA motifs associated with a biomolecular

function, inference of ancestral genomes), while being a fun and educational game

for non-experts.

Phylo’s tasks are presented as in a casual tile matching game, where DNA alignment

problems are embedded in a puzzle accessible to any player, including those without

any prior training in biology or computer science. Most importantly, the game is

intuitive and allows the players to play Phylo without understanding the underly-

ing biology, and without completing any tutorial. This broadens the spectrum of

participants and taps into the computing power generated by regular, non-scientist

human computers. Special care is taken to present the puzzles in a fun, exciting,

and accessible manner while retaining the scientific interpretability of the data. Ribo

[73] on the other hand is yet another citizen science game with a difference that it

aims to solve the RNA based multiple sequence alignment problem. It comes with an

4



additional alignment objective of aligning the sequences taking its secondary struc-

ture into consideration as well. Albeit, in the upcoming version, Phylo has Ribo

integrated in it. This was done to utilize the huge count of players playing Phylo

in aligning RNA sequences as well. Figure 1–2 represents the upcoming version of

Ribo which has now been integrated into Phylo game as an option to align RNA

sequences.

Figure 1–1: Interface of Phylo (2017 release). Each row is composed of a sequence
of bricks of 4 different colors representing the 4 nucleotides A, C, G, and T. These
sequences have been extracted from the DNA of different species represented with
a icon on the left of the grid. Participants move the tiles left or right in order to
maximize the number of color matches in each column. Although, the order of the
bricks cannot be changed. Color mismatches and gaps are thus unavoidable and
bring penalties. The phylogenetic tree on the left indicates the priority in which the
rows should be aligned.
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• Game play: Phylo is a single player casual game. The basic game play consists

of moving the tiles horizontally- left or right– on a 10x25 game board such that

the pattern becomes more similar in a column. The objective of the player is

to beat the par score (machine aligned score) and move to the next level.

• Scoring:

– DNA puzzles scoring scheme: We followed up to the scoring scheme of

the classical version of the game. It has to be something that can be used

to compute the score in real time at the same time being very intuitive.

This ensures that the scoring can provide proper feedback to users. To

score an alignment we first need the ancestral sequences based on the

alignemnt’s phylogenetic tree using a maximum parsimony approach [24].

The metric used for DNA puzzle/alignment score calculation: gap open-

ing: -4, gap extension: -1, mismatch: -1, match: +1, trail error: -1. Score

is the calculated as: ((match * 1) + (mismatch * (-1)) + gapOpen*(-4)+

gapExtend*(-1) + trail*(-1)); Trail error attribute in score calculation

was added to ensure gaps across the ends of DNA segments during aggre-

gation.

– RNA puzzle scoring scheme: RNA scoring is the same as proposed in

the citizen science game: Ribo [73]. The scoring scheme that Ribo [73]

uses for evaluating the RNA sequences and structures is based upon the

nucleotide sequence scoring scheme derived using a Markovian transition

model (States et al. 1991). PAM (Point Accepted Mutation, for proteins)
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matrices were derived using the same approach [18]. The match-mismatch

metric used in the Ribo paper is +5 for a match, -4 for a mismatch, -5

for a gap opening and -2 for a gap extend. The overall score is the sum

of all these parameters multiplied to the number of occurrences. This is

a proven scoring scheme [25]. The reason for selecting a relatively low

gap-open and gap-extend penalties was because indels are thought to be

relatively frequent in RNA [49]. Bonuses are given for matching base-

pairs such that it should match exceed the penalty for double mismatch

resulting from structure-neutral variation (e.g. A·U to G·C) as well as

tolerate the indels that are required to explain base-pair conservation.

Therefore a bonus of +12 was selected for aligning base-pairs in Ribo.

In addition, Phylo also provides scientist’s an open and freely accessible web inter-

face that enables them to crowdsource their sequences. We call this web interface as

OpenPhylo. It also has a teaching portal, which helps instructors to teach multiple-

sequence alignment concepts to students. Essentially, we have worked on the follow-

ing components to enhance both Phylo and OpenPhylo based on our observations

from the classical version of Phylo:

1. Promising puzzle detection: This is the process of identifying regions in

MSA which have some scope of improvement. We have used Convolutional

Neural Networks (CNN) to solve this problem. CNN has greatly enhanced

image recognition tasks and is the prevailing state-of-the-art for such objectives

[69]. In a CNN each neuron is connected in overlapping tiles giving the network

locality in a two-dimensional space. This serves nicely for input datasets that
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can be used as images or grids [69]. Our source of inspiration is from image

recognition tasks since the problem of predicting moves from game states can

be seen as an image recognition problem. This is analogus to our problem

statement where we are finding different states in segments of MSA with some

scope of improvement. Other sources of inspiration include anything related

to machine learning or AI in games. In ImageNet Classification with Deep

Convolutional Neural Networks a large deep convolutional neural network is

trained on millions of high-resolution images substantially improving previous

state-of-the-art in the ImageNet LSVRC-2010 contest [38]. Even though the

objective here is to determine what kind of object is visible in an image it is

similar to our problem since the game board can be seen as an image with 3

channels as for RGB. Likewise, the object we are trying to identify consists of

regions in MSA, therefore such an approach is suitable for our problem as well.

We use the identified region as puzzles in Phylo. We will discuss the proposed

methodology in chapter 3.

2. Difficulty prediction: Crowdsourcing or human computation are popular

means to obtain labeled data at moderate costs, in case of Phylo it is ob-

taining quality solutions, which can then be used in solving the problem of

multiple sequence alignment. To mitigate the problem of low-quality solutions

in this context, multiple human factors must be considered to identify and

deal with players who provide such solutions [71]. However, one aspect that

plays a prominent role is the inherent difficulty of puzzles to be solved and

how this affects the reliability of the solutions that players provide to such
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puzzles. Therefore, we investigate in this preliminary study this connection

using various machine learning approaches. We find that there is indeed a

relationship between the user solutions and the difficulty level of puzzles. We

published our findings in the fifth AAAI conference on Human Computation

and Crowdsourcing [67]. In this report we have tried a different labeling scheme

to further enhance the difficulty predictions. This is used to correctly define

the difficulty level of the extracted puzzles which later helps in routing of tasks

based on its difficulty to rightfully skilled player. The propoed methodology

will be discussed in chapter 5 and 6.

3. Routing: Routing is the process of sending the correct difficulty level of puz-

zles to the rightfully skilled player. This is important to enhance the latency

of the system. Routing is an integration of two unique processes. One to

decide the user expertise level and the other to decide the difficulty level of

microtask and number of times microtasks that have been completed. Vari-

ous analytical approaches have already been evaluated to perform routing of

microtask during croudsourcing. The benefit of analytical techniques to deter-

mine the performance of individuals has been examined and verified in various

applications within several research communities (e.g., [2, 32, 56]). Essentially,

these studies examine the user expertise level in predicting individual differ-

ences with respect to the similar jobs. Human computation based problems

can vary with respect to a mixture of personal factors, behaviour presets, and

the social impact modifications due to the surrounding environment. Hence,

these factors may have critical effect on human functioning, and therefore play
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a key role in human based systems [13]. Several studies within this area have

focused on expertise assessment research, exploring expectation-maximization

for expertise level prediction and using it for job matchmaking. However, this

approach works best when there is a large number of workers as it relies on

cross-examination of as many responses to the tasks as possible to improve

reliability. The theoretical foundations of our study are based on the well-

established explore-exploit dilemma [76]. The current modus operandi in the

majority of crowdsourcing platforms is that the central authority of the system

coordinates the assignment process. However, a number of techniques have

been proposed in literature with the aim of improving task-routing and assign-

ment in crowdsourcing. Previous work, an online crowdsourcing scenario, Ho

et al. [28] explore worker assignment to many heterogeneous tasks based on

a two-phase exploration-exploitation algorithm which aims to define workers

based on their skill levels. Chapter 7 explains the proposed routing process to

be used in the upcoming version of Phylo.

4. Teaching Portal: The portal is designed for instructors to educate their

students the concept of multiple sequence alignments. Educators can set up

assignments in less than a minutes. With teaching portal, they can manage

assignments and track students’ performance in one convenient place. Instruc-

tors can get instant feedback and track a student’s progress. Teaching portal

also helps free up educator time so they can focus on what they do best: teach-

ing. Students just have to play anywhere, anytime, and on any device: web

version or the mobile version of Phylo. This is very important for us as it
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helps us evaluate the performance of casual players against those who play

Phylo knowing its scientific relevance. This helps us evaluate the effectiveness

of Phylo interface. We have discussed the architecture and procedure followed

for teaching portal in chapter 8.

5. User feedback: The need for feedback in human-computer interaction has

long been considered as a required norm. Many authors have published guide-

lines in an attempt to assist application developers in providing relevant feed-

back to the end-user [63, 5]. In spite of this, adequate provision of feedback

proves to be a subtle art. We have all used applications which do not supply ad-

equate feedback, which also acts as a demotivation towrds its actual objective.

This makes it especially difficult for the end users to stay motivated to uphold

the performance in completing the task. With the increase in human-computer

interaction proportionally to the increase in its integration to different domain,

the feedback mechanism has now become even more significant [4]. Human-

computer interaction or crowdsorcing based systems comprise of two level of

interations [30]:

• Crowd-related interactions: Crowd-related interactions are interactions

provided by the crowdsourcing platform between the crowd and the plat-

form. For instance, the interaction of player with the Phylo or OpenPhylo

interface.

11



• Crowdsourcer-related interactions: Crowdsourcer-related interactions are

interactions provided by the crowdsourcing platform between the crowd-

sourcer and the platform which for us is the feedback provided by Phylo/OpenPhylo

to its intended audience. User feedback falls under this category. These

interactions include, but are not limited to [61, 30]:

(a) Visibility of microtasks and its aggregation outcome to the crowd-

workers.

(b) Providing a threshold mechanism for the quantity of the obtained

results to ensure a minimum and/or maximum quantity is met.

(c) The provision of feedback about both immediate and past interaction.

(d) The extension of feedback to provide explanations of system actions,

thus promoting user understanding of the purpose of the application.

(e) The promotion of the use of graphical rather than textual feedback

mechanisms.

In chapter 9 of the report, we discuss about the feedback mechanism used in

Phylo interface.

6. Aggregation: Accomplishing complex tasks efficiently is often a challenge,

especially when the time and resource required for the tasks is limited. Tasks

such as multiple sequence alignment, RNA secondary structure prediction, etc.

are hard to come up with a best possible result because they seem to require ex-

cessive amount of computational power. By using alternatives to solve the same
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problem results in sub-optimal solutions. However, research shows that con-

crete plans with actionable steps enable people to complete their tasks better

and faster [37]. Breaking a large task down into a series of smaller, microtasks

with scoped context results in higher quality [12]. Various approaches to de-

compose tasks into smaller microtasks already exist. It ranges from manual

to algorithmic [7]. It has been shown that microproductivity, or the transfor-

mation of information work into micro-work, will have a significant impact on

when and how people work, enabling individuals to efficiently and easily com-

plete large tasks that currently seem challenging [70]. The rapid developments

in micro-work, micro-volunteering, and micro-learning open up new frontiers

for the future of microproductivity but ends with some unanswered questions:

(a) When and where should microtasks be embedded?

(b) Can microtasks be used to build knowledge?

(c) How can we measure outcomes and contribution towards a large task?

In chapter 10 of this report, we will address all these questions in reference to

Phylo.

The entire OpenPhylo framework combines the effectiveness of human computa-

tion through Phylo with some applications of machine learning. We investigate this

framework for solving Multiple Sequence Alignment problem for DNA and RNA.

Based on the results presented in this report, we find that actively coupling games

with machine learning provides a reliable and scalable approach to solving bioinfor-

matics problems. In addition, this report also mentions the performance analysis
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of these systems: Phylo, OpenPhylo and Ribo. These results will further enable us

to identify patterns that contributed to its successes, and also to diagnose possible

snags. Based on these statistics we further propose new methodologies for Phylo and

OpenPhylo. The proposed architecture is shown in Figure 1–3. Further, the report

will first address the intended audience chapter 2 followed by the puzzle extraction

procedure in chapter 3, then it will individually cover each of the scientific aspect in

the same order as mentioned above.

Given below are the links to both the mentioned products:

Link to Phylo: https://phylo.cs.mcgill.ca

Link to OpenPhylo: https://kovik.cs.mcgill.ca
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Figure 1–2: Interface of RNA version in Phylo (yet to be release). Each row is
composed of a sequence of tiles of 4 different colors representing the letters from the
RNA alphabet: A, C, U and G. These sequences have been extracted from the RNA
families stored in rfam database. Participants move the tiles left or right in order to
maximize the number of color matches in each column. Also, there is an additional
scoring scheme for aligning the secondary structures in RNA alignment. The order
of the bricks cannot be changed, however, you can edit the secondary structure based
on your requirements. Color mismatches and gaps are thus unavoidable and bring
penalties. The orange colored boundries in this figure reflect possible secondary
structure similarity in the RNA puzzle.
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Figure 1–3: Architecture of OpenPhylo. Each annotation represents a module in
OpenPhylo and has been discussed as a chapter in this report.
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CHAPTER 2
Intended audience

In 2013, a new citizen science platform OpenPhylo [39] was developed to ensure

easy access to all. The traditional human computation projects or games with a

purpose (GWAP) are intended to benefit the researchers who designed the system,

i.e. only they can select the problems that are submitted to the community, and

access and analyze the solutions submitted by the players. OpenPhylo is a way to

go against this paradigm and enable the access of human-computing resources to the

whole scientific community. The unique feature of OpenPhylo is that it is not only

computing by the people, but also for the people [74]. In this chapter, we describe

types of intended audience for Phylo. Registering to OpenPhylo gives the audience’s

visualization of their accolades achieved by playing Phylo. We provide recent usage

statistics, and illustrate the scientific impact of this technology on genomic research

based on the type of registration by the user. OpenPhylo offers three different types

of registrations (a refrence to its architecture is shown in Figure 2–1):

1. Users: They are the end users of Phylo game. These players can either register

from OpenPhylo or Phylo. They can use OpenPhylo or the user profile page

in Phylo to visualize their contribution to science and other statistics. They

can use the same user credentials to play Phylo for fun. There are three sub-

categories of users:
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(a) Registered users: The registered users have access to the following

features:

• Visualizing user statistics

• Scientific contributions made whilst playing Phylo

• Feedback on their achievements

• Account conversion from user to scientist

• Quiz to assess their knowledge in bioinformatics

(b) Students: are also a part of registered users except that they have an

added achievement badge in their list of badges. If they complete the

assigned task in Phylo, the assignment completion badge gets enabled.

This architecture is covered in chapter 8 of this report.

(c) Guests: Players who do not register via Phylo/OpenPhylo are considered

as guest players. A unique token id is assigned to them, such that all

their solutions are mapped to the same token id. This token stays valid

for infinite duration such that player playing in different times but using

the same machine still store the solution as the same guest player. Phylo

encourages guest player to ensure a smooth access to the game and later

motivates them to register for Phylo and become a regular contributor to

science. Such users miss out on user feedbacks that is given to registered

players.
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2. Scientists: In addition to all the features that a user enjoys, scientists also have

rights to submit DNA/RNA puzzles. However, such an account needs a prior

approval of their email Id. OpenPhylo provides the following features to the

scientists:

• Submit DNA puzzles using one of the following options:

(a) Gene based DNA puzzle extraction

(b) upload FASTA file for DNA puzzle extraction

(c) copy paste the sequences manually for DNA puzzles extraction

• Submit RNA puzzles using one of the following options:

(a) RNAfamily based puzzle extraction

(b) Stockholm file based puzzle extraction

(c) FASTA file based RNA puzzle extraction

(d) Copy paste the sequences manually for RNA puzzle extraction

3. Instructors: Instructors have discrete rights for teaching portal only. These

users also need authorization of their email Ids. Instructors are actors of the

teaching portal use case scenario. Instructors can use OpenPhylo to assign set

of puzzles to students as a part of their course curriculum. Instructors can

use OpenPhylo to teach the problem of Multiple Sequence Alignment (MSA)

to students. The assignment here refers to puzzle solving in the Phylo game.

For instance, instructors can create a assignment that includes n-number of
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puzzles, so each student enrolled in that assignment has to play/solve those

many puzzles in Phylo. Instructors can perform following operations using the

teaching portal:

(a) Create new assignments

(b) Edit or view created assignments

(c) Check student progess

(d) Download the selected assignment results as a csv file

A more detailed information is available in chapter 8 where we discuss primarily

about the teaching portal of OpenPhylo.
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Figure 2–1: This is a static representation of registration process in OpenPhylo. The
diagram represents attributes, operations (or methods), and the relationships among
the various actors/registration classes of OpenPhylo. The register package consists of
all the registration related classes. User and Scientist extend an abstract class with
mandatory attributes for all registration process. User account can be converted to
scientist account and Guest user can also convert their account to a registered user
account without losing any progress. Instructor registration has been kept discrete
and independent of other actor registration.
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CHAPTER 3
Puzzle extraction

Puzzle extraction in OpenPhylo is the pipelined process of generating puzzles/alignments

for the Phylo game. This feature is available only to scientists. OpenPhylo supports

both DNA and RNA based puzzle extraction.

3.1 DNA based puzzle extraction

OpenPhylo has the following options for scientists for DNA based puzzle extraction:

1. Gene based puzzle extraction

2. FASTA file based puzzle extraction [51, 39]

3. Sequence based puzzle extraction

The same is shown in Figure 3–1. Currently, the grid of the game supports up to

10 sequences. Thus, we aim to improve MSA of similar height. Puzzle extraction

is capable of producing alignments with 3 or more sequences. Gene-based puzzle

extraction for DNA is achieved employing Ensembl Compara API [72] where we take

the first 2000 nucleotides (promoter region in DNA sequence) for puzzle extraction via

gene. FASTA file puzzle extraction takes the FASTA file and associated information

like disease name, disease category and phylogenetic tree as the optional inputs.

OpenPhylo first aligns these sequences using T-Coffee [54] before translating them

into puzzles. If the phylogenetic tree is not available then the application uses the tree
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human gene name

which will
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with other

vertebrates.

Select this for DNA sequences

Figure 3–1: Puzzle generation options available to scientists for DNA alignments.

produced by T-Coffee. T-Coffee generates the phylogenetic tree in Newick format.

We transform this tree into a binary tree because of the game’s compatibility to

binary phylogenetic trees only. Sequence-based puzzle extraction follows the same

steps as FASTA file based puzzle extraction. Newline character is the delimiter used

to differentiate between various sequences. The phylogenetic tree is compulsory for

sequence-based upload since the species for the puzzles are obtained from it. We

have used CNN based machine learning model for finding regions with some scope

of enhancement in the Multiple Sequence Alignments (MSAs) produced via state-

of-art algorithms like MUSCLE, T-Coffee, etc. Therefore, we first take an MSA

section as input and transform it into an image. This image is further fed to the

trained CNNmodel which predicts whether the selected puzzle is promising or not.

This model for promising segment detection performs well with an accuracy of 81%.

The algorithm is explained in chapter 4 of this report. If a puzzle is claimed to be
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Figure 3–2: Puzzle generation in game using segments of MSA

promising, it is further passed to difficulty prediction algorithm which decides of the

selected puzzle. Difficulty prediction is explained in chapter 5 of this report.

Further, each selected DNA alignment is assigned to a disease category. These cat-

egories enable us to promote the puzzles to Phylo players based on their interest in

disease categories. Available categories are still the same in the upcoming version as

well: ”Blood and immune system diseases”, ”Brain and nervous system”, ”Cancers”,
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”Heart and muscles diseases”, ”Infectious disease”, ”Digestive and respiratory sys-

tems diseases”, and ”Metabolic disorders”. If your sequences do not belong to one

of these categories, or simply are not related to any disease, you can use the ”other

category” option. Gene to disease mapping is done based on this systematic anal-

ysis, comparison, and integration of disease based human genetic association data

and mouse genetic phenotye information [77].

The puzzles extracted are stored in Phylo database and are crowdsourced to generate

better results. Later, we merge the solutions received from the users to enhance the

original MSA from which the puzzle was extracted. This is known as the aggregation

and is explained in chapter 11.

3.2 RNA based puzzle extraction

Here, we evaluate Ribo and integrate it to the Phylo interface, a human-computing

game that aims to improve the accuracy of RNA alignments already stored in Rfam.

The Rfam database maintains alignments, consensus secondary structures, and corre-

sponding annotations for RNA families. Its primary purpose is to automate and store

accurate annotation of non-coding RNAs in genomic sequences [10]. However, the

alignments stored in this database often have some scope of improvement. In fact, the

Rfam consortium has released a open call for participation, asking its users to submit

new or improved RNA alignments ( http://rfam.sanger.ac.uk/submit alignment).

OpenPhylo provides the following RNA submission options for puzzle extraction to

scientists:

1. RNA family based puzzle extration
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2. FASTA file type puzzle extraction [51]

3. Stockholm type puzzle extraction [53]

4. Sequence based puzzle extraction

Figure 3–3 reflects all the above listed categories. For RNA, the grid of the game

Figure 3–3: Puzzle generation options available to the end users for RNA alignments.

supports larger as well as more number of sequences. Puzzle extraction process for

RNA is capable of producing alignments with 3 or more sequences. RNA family-

based puzzle extraction is achieved by employing Rfam database [31, 27] which stores

alignments of homologous RNAs. We selected those RNA sequences where the av-

erage similarity is less than 50% and contains at least 10% of gaps. This metric

is important because sequences with low sequence similarity are hard to align as

mentioned in the citizen science game for RNA alignment: Ribo [73]. Because the
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experimentally determined structure may not always be available, therefore, we ig-

nored the consensus structure available in the original Rfam database. Instead, we

used RNAfold to predict the secondary structure using the maximum expected ac-

curacy (MEA)[48, 29] for every sequence. Therefore, it is important to keep in mind

that in this study, the Rfam alignments benefit of an information not used by the

players. We removed all the empty columns (i.e. columns containing only gaps)

from the sub-alignments, and extracted all continuous regions of 20 columns for the

classic version of the game. We store the entire alignment for the expert version.

We further removed from each region the base-pairs that were not included within

this region. In other words, if a nucleotide has a predicted interaction with another

nucleotide outside of the region of interest, this base-pair is not included in the ex-

tracted RNA puzzle. In case of the expert version of the game, if the user provides

the secondary structure along with the alignment, we use the same secondary struc-

ture. If the secondary structure is not provided by the users then, we generate one

using RNAfold.

In addition, each RNA puzzle extracted via rnafamily is also mapped to a short de-

scription available in rfam database. Rnafamily consists of grouped sequences with

conserved sequence or secondary structure. This conservation is determined by a

covariation models build by rfamseq. Initially we crawl through all the rnafamilies

names available in the database. We further use the rfam api (documentation:

https://rfam.readthedocs.io/en/latest/api.html )to extract the sequences from

its Stockholm file stored in rfam db. This Stockholm file also contains additional in-

formation about the rnafamily. We map this information to the rnafamily so as to

27



provide better feedback to the users of Phylo. This however is not simulated for RNA

sequences submitted via fasta files or sequences. We expect the scientists to submit

such information for FASTA/Stockholm/sequence based submissions. Due to insuffi-

cient data for RNA alignments collected via Ribo, the difficulty level of RNA puzzles

is decided by the length of the sequence: puzzles with length <=20 is considered as

easy puzzles whilst those with larger and longer sequences are categorised as hard

puzzles. In the research and build up process towards an accurate difficulty predic-

tion of RNA alignments, we experimented with several methodologies which did not

make it to our final product. The insights of which are mentioned in Appendix B of

this report.

Secondary structure for RNA alignments are optional but recommended. In the

absence of a secondary structure, RNAfold is used to produce one based on the

input alignments. Although the phylogenetic tree for RNA sequences are unknown

[40], but we allow users to submit one in OpenPhylo.
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CHAPTER 4
Promising puzzles

Identifying segments of sequences having some scope of improvement is one of the

prominent task to solve the problem of MSA. Here, we propose a novel way to

transform identify promising puzzles in MSA. The process involves transforming the

MSA into a 3-dimensional tensor which could be utilized by Convolutional Neural

Networks (CNNs) for images to decide such regions in MSA.

CNNs emerged from the study of brain’s visual cortex, and they can be used in images

since the 1980s. In the past few years, due to an increase in amount of computational

power and training data availability has resulted in superhuman performance of

CNNs in certain visual tasks [66, 62]. We have used CNNs for finding regions with

some scope of enhancement in the Multiple Sequence Alignments (MSA) produced

via state-of-art algorithms like MUSCLE [20], T-Coffee [54], etc.

The use of CNN is the right fit for achieving the objective because human’s visual

perception is capable of identifying such segments of MSA, and CNN has its roots

in working of human visual system. Similar problems have already been studied us-

ing multiple methods, ranging from statistical learning to machine learning methods

where CNNs have proved to be very effective in image classification tasks. Deep

neural networks form the most recent class of methods used for DNA sequence clas-

sification [57]. But, only a few other works aim to perform this task from sequence
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and those which do the approach focuses more on the feature extraction rather than

the problem itself. The main difference is the format of input which is the data ob-

tained via crowdsourcing through Phylo and the network used to identify segments

of MSA with the scope of improvement. This chapter of the report deals more with

the studies that suggest there practical benefits of mapping sequences to 3D-tensors

or images.

4.1 Objective

The central idea is to find segments of MSA with some scope of improvement. This is

a binary classification problem where the goal is to predict whether a selected section

of MSA will be interesting for users or not. Puzzles are promising to users only if

there is some scope improvement i.e. if the section of alignment is already perfectly

aligned by the machine then the players will find it impossible to beat the machine.

Therefore, it is very important to find segments of MSA that are misaligned by the

machines or state-of-art algorithms like MUSCLE [20], T-Coffee [54], etc.

4.2 Dataset

We analyzed data collected by the classical version of Phylo for over 7 years. The

complete dataset consists of 147814 unique alignments or puzzles (solutions). These

solutions were submitted by the players while playing puzzles using the game Phylo.

The input puzzles were extracted from 575 genomic regions (alignment blocks). Each

puzzle comprises a set of 3 to 12 DNA sequences from vertebrate species, including

human, of length 10 to 21. The puzzles were played on by different players, and

a total of 443018 puzzle solutions were received. Out of this 443018 solution we
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choose 147814 unique solutions to avoid skewness in data and also to consider only

the unique solutions; 54% positive class and 46% negative class. This dataset was

further split into train, validation and test data. 70% of data was used for training

the model, 15% as the validation split and the remaining 15% as the test split.

Table 4–1: Number of data points in each class.

Dataset Total +ve -ve
Sequences 147814 80719 67095

Table 4–2: Train, test and validation split of dataset.

Dataset Total Train Validation Test
Sequences 147814 103469 22172 22172

Label creation

The difference between a puzzle’s highest score and its original machine aligned score

gives us the measure of improvement scope. An improvement scope of less than and

equal to 9 means that the puzzle is not very promising to users and is labeled as 0.

An improvement scope of more than 9 represents an interesting or promising puzzle

which is labeled as 1.

4.3 Methodology

Puzzle representation

A DNA sequence is a string of letters from the DNA alphabet {A,C,G, T,−}. Each

puzzle is first transformed into a 3D-tensor or images of size 3 × 25 × 10. Selected

dimensions of the image is due to the board size of Phylo. We prefer not to rescale the

image as it reduces the original quality of the image [19]. The next step is to assign
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a color to each letter in DNA alphabet. Following the same color code each puzzle

is processed and transformed into an image. Uniformly separate values of colors

were chosen to proper separation of each letter. Highest color value of 16777215 (the

websafe version of #FFFFFF which represents white color) was given to ’-’ (gaps)

because of its significance in puzzles (analysed in chapter 6). Likewise we placed

similar values of ’G’ and ’C’ due to their importance in DNA structure prediction.

Sample puzzle to image conversion is shown below:

Figure 4–1: Sample DNA puzzle processed into an image.

CNN model used

We chose to use a convolutional neural network since our game board has a grid struc-

ture and CNN [41] models has had great performance on other grid based games such

as Go [65] or Candycrush [22]. We tested different number of convolutional layers

and found that more than two convolution layers do not improve validation accuracy

instead increases overfitting. Therefore, we used only two convolution layers. We

decided to use (1,1) as the subsample size to avoid any loss of information. The CNN

model takes images generated from DNA based MSA sequences. The model used is

32



shown in Figure 4–2. This is a typical CNN architecture used in image classifica-

tion. Input for the porposed model is an image of dimension 3X25X10. The entire

architecture of the proposed model is shown clearly in Figure 4–2. Relu activation

function [41] is to avoid any vanishing gradient problem. This is followed by a linear

activation function [45] to convert the problem into a regression problem in the intial

layers. Output layer of this model uses Softmax function for the classification task.

10-fold cross validation was used for the accuracy prediction.
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Figure 4–2: CNN model for image classification to decide the scope of improvement

in MSA.

Hyperparamters used in the proposed model are listed in table 4–3. The choice of

hyperparameters was made using grid search.
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Table 4–3: Hyperparameter values for the CNN model used.

Hyperparameters Value
# Epoch 10
Batch size 32
Loss function Categorical-crossentropy
Optimizer Adam
Learning rate 0.001
Epsilon 1e-08
Decay 0.5

Computational statistics

Primary computation resource used for this analysis: Tesla GPU K80 12GB.

Computational statistics using the above GPU:

• Total time: 16hrs 21 min

• Average processing speed: 1446.77 samples per second

• Average epoch speed: 334.00 seconds per epoch

• Avegare GPU load: 80.0%

• Free memory in GPU during processing: 6.78GB

• CPU utilization: 100%

4.4 Results

In this chapter we developed a CNN model that can predict the interesting MSA

segments for the Phylo puzzle creation. The approach is novel as it the first to solve

this problem using filtered data via HCI. The good performance of model is because
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of the application of CNN to the problem statement and this is also a typical example

where we can use crowdsourcing for label creation.

Table 4–4 shows the accuracy obtained in different data splits.

Table 4–4: Accuracy obtained using the proposed model.

Data split Accuracy

Training data 85.46%

Validation data 80.67%

Test data 81.01%

Figure 4–3: Average training accuracy of the proposed CNN model. The graph
shows the training curve for 10-fold cross validation. The spikes are an unavoidable
consequence of mini-batch Gradient Descent in Adam (batch size=32).

The results suggest that we can use crowdsourcing data to solve one of the biggest

concerns in solving the problem of Multiple Sequence Alignment(MSA) which is to
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Figure 4–4: Average training loss of the porposed CNN model. The graph shows the
loss curve for 10-fold cross validation. The spikes are an unavoidable consequence of
mini-batch Gradient Descent in Adam (batch size=32).

indentify region with some scope of improvement. This approach is not limited to

puzzle extraction for Phylo, but can be utilized for indentifying regions or segments

in MSA that has some scope of improvement.
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Figure 4–5: Average validation accuracy of the proposed model.

Figure 4–6: Average validation loss of the proposed CNN model.

38



CHAPTER 5
Difficulty prediction

A key step in Phylo is to assess the difficulty of a puzzle in order to route it to

players with the appropriate skill level. Ideally, the difficulty should be estimated

automatically, before any player has tried the puzzle. Here, we study how a difficulty

level (assessed retrospectively based on the ability of players to improve the alignment

score) can be predicted by machine learning algorithms. The puzzles which are

considered as interesting are further passed to the difficulty prediction algorithm.

We analysed two different machine learning appraoches: one that follows up from

the promising puzzle algorithm and the other that uses feature based algorithms.

5.1 Dataset

The dataset used is the same as mentioned in section 4.2.

5.2 Approach 1: Difficulty prediction using feature extraction

5.2.1 Label creation

Each puzzle and alignment block was aligned computationally using several tools

(Multiz [9], T-coffee [54], MAFFT [33]). The highest scoring of the machine-computed

alignments is called the machine-computed alignment. This score is used as a ”par”

score that players are challenged to beat. For each puzzle, each solution submitted

39



by a player is evaluated and the highest scoring solution is retained. Its score is

called the human-computed alignment score.

Difference between an alignments’ best score and its original score is referred as the

scope of improvement. We use this difference to obtain the normalized scores for

each puzzle or alignment. Puzzles with the least possibility of improvement were

considered as difficult puzzles, so if the average normalized scores of puzzles were

less than or equal to 0.33 and greater than 0, then they were considered as difficult

to align. Similarly, a normalized score value between 0.33 and 0.66 was considered

as medium difficulty, whereas, a value greater than 0.66 represents easy puzzles.

5.2.2 Methodology

In order to train a machine learning predictor to recognize difficult puzzles, these

puzzles need to be represented using a vector of features. We extracted and eval-

uated the following 11 features calculated from the machine-computed MSA: (1-4)

proportions of A, C, G, and T in S, (5) proportion of gaps, (6) mean GC content

(this relates to the structural properties of DNA), (7) mean entropy of alignment

columns, i.e. entropy of the frequency distribution of the four nucleotides and gaps,

(8) average length of sequences, (9) number of sequences, (10) tree-entropy based on

depth of the leaves of phylogenetic tree of S, calculated by creating a vector of depth

of all the leaf nodes in a tree and then calculating its entropy; we used tree-entropy as

feature to account for phylogenetic tree information, (11) score of machine-computed

alignment.

40



For each puzzle, we also compared the score of the best human-computed alignment

to the score of the machine-computed alignment and defined the score gain as the

difference between the two. Positive score gains correspond to alignments that were

better aligned by (some) humans than by algorithms. We further subdivided puzzles

based on the value of score gains to get two equal size classes. The puzzles with a

score gain greater or equal to 17 were assigned to the positive class (i.e. the class of

puzzles where humans have produced significantly improved alignments). The rest

were assigned to the negative class (little or no improvement). Figure 5–1 shows the

comparison of different features used for difficulty prediction. One very important

observation is that the correlation is indeed very strong between number of sequences

and tree depth. This is reflected as an upward trend in the plot and also the points

are not very dispersed. Figure 5–2 reflects the pearson correlation for the same set

of features. However, this coefficient only measures linear correlations and it may

completely miss non-lienar relationships. The correlation coefficient ranges from 1 to

-1. When the value is close to 1, it means that there is a strong positive correlation.

When the value is close to -1, it means there is a string negative correlation [52].
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Figure 5–1: Feature comparison between positive and negative class. The blue dots

represent negative cases, whereas the green dots represent positive cases.
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Figure 5–2: Pearson correlation of features selected for difficulty prediction. These
correlation coefficients only measure linear correlations.

We trained and benchmarked multiple binary classification algorithms: logistic re-

gression, neural network, extra tree classifier, random forest classifier, Ada boost

classifier, gradient boost classifier and decision tree classifier (all implemented in

scikit-learn). We partitioned the dataset into 60% training set to learn model pa-

rameters and 40% testing set to evaluate the learned models. The hyperparameters

were selected using 10-fold cross-validation on the training data. Area Under the

Curve of the Receiver Operating Curve (AUC ROC) on testing set was used to

measure models accuracy In many cases, it can be useful to go beyond a binary

classification problem and instead predict the expected value of the alignment score

gain that can be expected for a given alignment. This can, for example, be used to
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properly assign puzzles to users with the right level. We experimented with different

machine learning regression models to attempt to predict the score gain from the

set of 11 features and eventually selected neural networks because of their superior

performance.

5.2.3 Results

A key step in Phylo is to assess the difficulty of a puzzle in order to route it to

players with the appropriate skill level. Ideally, the difficulty should be estimated

automatically, before any player has tried the puzzle. Here, we study how a difficulty

level (assessed retrospectively based on the ability of players to improve the alignment

score) can be predicted by machine learning algorithms.

Figure 5–3 shows the distribution of the improvement of alignment scores (as cal-

culated in the game) produced by human players over the machine-computed align-

ments. Although in many cases improvements are modest, the tail of this distribution

highlights a significant number of puzzles with very large improvements. It shows

that puzzles are of unequal difficulty – a phenomenon we study further in this section.

We labeled the puzzles as easy or hard based on the player’s success rate (See Section

5.2.2). Then, we trained different types of machine learning classifiers to predict a

puzzle’s label based on a variety of features (see Methods). Figure 5–5 shows the

classification accuracy. For each predictor, we calculated the Area Under the ROC

Curve (AUC), based on 10-fold cross-validation, using a single feature at a time.

As anticipated, we observe that the most informative features are those capturing

the number of sequences to be aligned, but also their dissimilarity (tree-entropy and
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Figure 5–3: Histogram plot of the improvement in the score for 1556 puzzles, where
improvement is measured as the difference between the best score produced by a
human player and the initial computer-based alignment.

mean entropy of column-wise residues). Then, we trained and evaluated multi-feature

models by incrementally adding features in decreasing order of their value (Figure

5–4). Remarkably, it is the inclusion of the feature corresponding to the score of

the initial computer-calculated alignment that provides the largest improvement in

prediction accuracy. This is not unexpected, as alignments whose initial scores are

already high are difficult to improve.

We then considered the regression version of the problem, where the goal is to pre-

dict the quantitative improvement in score one can expect for a given puzzle. The

best predictions, with R2 value of 72% were obtained using a neural network regres-

sion model whose hyper parameter values with L2-norm regularization regularization

(weight of 10−3) and 300 nodes in each of the two hidden layers. This significantly
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outperformed other predictors such as a ridge regression model with L2-norm reg-

ularization, which obtained an R2 value of only 56%. This is because none of the

predictor variables used in the regression model are highly correlated.

The last and the most important step is to analyze the efficiency of the proposed

model with respect to the current scheme that uniformly distributes the puzzles based

on the number of solutions collected. The preliminary step for this comparison is

to obtain the number of times a puzzle in each category should be sent to get good

alignments. To obtain an accurate estimate of this, we identified the top 25% of the

puzzles in each category which took maximum attempts to reach to its highest score

and calculated their average. Top 25% were taken to ensure significant number of

spare attempts for achieving good alignments. We obtained these values (n0) as 150,

170 and 192 for easy, medium and difficult puzzles respectively.

Next, we calculate the efficiency as (Nu−Nw)
Nopt

, where Nu is the total number of puzzles

sent in the uniform model (all puzzles have the same weight), Nw is the total number

of puzzles sent using labels produced by our classifier, and Nopt is the minimum

number of puzzles that has to be sent to obtain all high scores. Nw is calculated

as the product of the number of puzzles in a particular category, and the expected

number of solutions we need to collect to obtain the highest score (n0). Table 5–1

shows the gain in efficiency obtained for each category of puzzles (i.e. easy, medium,

or hard). The data sets used is already described in the begining of this chapter.

In the research and build up process towards an efficient OpenPhylo, we experimented

with several methodologies which did not make it to our final product. The results
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Table 5–1: Estimate of the total number of solutions that needs to be collected to
obtain the highest score in the uniform (Nu), weighted (Nw) and optimal (Nopt)
routing schemes. Puzzles are sorted in 3 categories (easy, medium, and difficult)
representing the observed difficulty for players to achieve the highest score.

Difficulty Number of Puzzles Nu Nw Nopt Gain of Efficiency
Easy 14 4123 2100 1752 115.4%
Medium 80 19653 13600 12501 48.4%
Difficult 466 121531 89472 63205 50.7%

and insights gained from these experiments were highly influential towards guiding

us to the chosen solution. We do not go over detail about these other experiments.

However, we have provided a brief discussion about them in the Appendix A.

5.3 Approach 2: Difficulty prediction using convolutional neural net-
works

5.3.1 Label creation

Out of a total of 1907 puzzles, there were 1622 puzzles which were played more than

20 times. We used these input puzzles for difficulty predictions. Label creation for

such puzzles is based on play count and fail count. Labels were created for all the

input puzzles using the formula shown below:

success rate =
played count− fail count

played count

All the puzzles were placed in one of these classes: easy, medium or hard. A success

rate less than 80% represents difficult puzzles, whereas if the success rate is between

80% and 90% it is considered as medium difficulty puzzles and finally if the success

rate is greater than 90% then such puzzles were considered as easy puzzles. Since,
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most machine learning algorithm perform better with numbers, so we converted these

text labels to numbers: [0,1,2] for [easy, medium, hard] respectively.

Table 5–2: Data partition for type one difficulty prediction

Difficulty level Success rate # of puzzles

Difficult puzzles <= 80% 435

Medium puzzles >80% && <= 90% 389

Easy puzzles >90 % 798

Figure 5–6: Lebeling of puzzles based on its success rate. X-axis represents the

success rate and y-axis represents the number of puzzles for with respect to success

rate.

5.3.2 Methodology

We restrict ourselves to Phylo game, well know game in citizen science. The model

that we used is shown in Figure 5–7. We have used the same CNN model, only
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the dimensions have been affected because we are using the input puzzles only for

which the dimentions have been restricted to 10 rows, 20 columns and 3 channels

(RGB). We did not rescale the image, since the input dimensions are already very

small, rescaling them or adding unnecessary gaps at the end will either increase the

computational cost or will not provide the best possible results. For now our main

objective is to produce a model with best possible accuracy.
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(None, 3,20,10) 

MAXPOOLING2D 
(None,64,10,5) 
Strides: (2,2) 

Pool size: (2,2) 
Dimension ordering: th 
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Dimension ordering: th 
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Filter rows: 2 
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Activation fx: Linear 
Dimension ordering: th 

FilterColumns: 2 
Filter rows: 2 
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Activation fx: RELU 
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MAXPOOLING2D 
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Strides: (2,2) 

Pool size: (2,2) 
Dimension ordering: th 

FLATTEN 
(None,320) 

DENSE 
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(None,1024) 
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Figure 5–7: Proposed CNN model for difficulty prediction.
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Hyperparameter values of the model have been selected using grid search approach

and is very different from those that we are using in the proposed promising puzzle

algorithm in chapter 3. This is because of the less number of input puzzles compared

to all the unique output puzzles used in the promising puzzle algorithm. We received

the best accuracy using the hyperparameter values listed in table5–3.

Table 5–3: Hyperparameter values for the CNN based difficulty prediction model.

Hyperparameters Value
# Epoch 50
Batch size 512
Loss function Categorical-crossentropy
Optimizer Adam
Learning rate 0.001
Epsilon 1e-08
Decay 0.5
Rho 0.95
Regularization None
Initial weights 0.1

We choose to use a convolutional neural network since our game board has a grid

structure and CNN models has had great performance on other grid based games such

as Go [65] or Candycrush [22]. We tested different number of convolutional layers

and found that more than two convolution layers do not improve validation accuracy

instead increases overfitting. Therefore, we used only two convolution layers. We

decided to use (1,1) as the subsample size to avoid any loss of information.

Evaluation criteria

We split the dataset into training and validation sections using stratified sampling.

Stratified 10-fold cross validation was used since the input data contains more class
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Table 5–4: Dataset split for difficulty prediction

Type of dataset # of data points
Training 1459
Validation 162

3 puzzles as the dataset is slightly skewed towards the easy puzzles. Therefore, we

wanted to produce folds that contain a representative ratio of each class. Strati-

fiedKfold is available to use in the sklearn library in python [55]. At each iteration,

the code creates a clone of the classifier, trains that clone on the training folds, and

makes predictions on the validation fold. We evaluated the proposed CNN model

using the validation accuracy achieved via 10-fold cross validation.

5.3.3 Results

Figure 5–8 represents training accuracy for each fold in 10-fold cross validation.

Multiple lines in Figure 5–10 shows the average performance of the CNN model

during validation. The overall accuracy achieved using this model is 75.15%.
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Figure 5–8: Average learning accuracy in difficulty prediction. The 10 different

colored lines shows ten unique learning curve generated using 10-fold cross validation.

The learning accuracy achieved by the CNN model is 96%.
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Figure 5–9: Average learning loss in difficulty prediction. The ten lines generated

represents each iteration of 10-fold cross validation.
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Figure 5–10: Average validation accuracy in difficulty prediction. 10 different colored

lines represents each iteration of 10-fold cross validation. The validation accuracy

received 75.15%
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Figure 5–11: Average learning loss in difficulty prediction. The 10 lines generated

represents each iteration of 10-fold cross validation.

Our results suggests that the difficulty of puzzles can be relatively well predicted.

These predictions can be used to significantly improve the routing of puzzles (i.e.

tasks), and thus the number of task to complete to obtain the best answer.

5.3.4 Correlation between promising puzzles and their difficulty esti-
mates

Table 5–5 illustrates the correlation between the promising puzzles and its difficulty

level.
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Table 5–5: Correlation between promising diffculty and promising puzzles

Promising Puzzles

Difficult 0.12969377

Medium -0.00338985

Easy -0.024694445

The correlation coefficient value between difficult and promising puzzles is 0.129

which is a weak positive correlation. We conclude that, higher difficulty puzzle is

more likely to be an interesting one.

The correlation coefficient between medium difficulty level puzzles and the promising

ones is -0.003. Although a negative correlation, this value suggest to have no linear

relationship or a very weak linear relationship.

Likewise, in case of correlation between easy and promising puzzles we notice a

negative correlation, the relationship between the variables is only weak (the nearer

the value is to zero, the weaker the relationship).
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CHAPTER 6
Dynamic change in difficulty

Chapter 5 deals with defining the initial difficulty level to different puzzles. However,

this is not the best possible accuracy and might provide us a fit only for the initial

difficulty prediction for each puzzle. To give a more accurate prediction, we need to

update the difficulty based on the user success rate for different puzzles. Therefore, in

this chapter we propose an online system that can update the difficulty of puzzles, if

needed, whilst we receive new solutions from the game. We track number of attempts

made and successful submissions to decide the success rate for a puzzle. Based on

this success rate, the difficulty level of various puzzles gets validated/updated (iff,

the success rate is not in line with the initial difficulty level of the puzzle predicted

by the proposed difficulty prediction model). For this to work we also needed the

latency (number of submissions required to ensure a quality result) of each puzzle.

We have provided a brief discussion and result on this in Appendix D of this report.

Based on our observations, we considered 93 as the count of solutions needed before

we can decide the success rate of puzzles. A value of 93 was chosen based on our

obervation of Phylo dataset [67]. Therefore, after receiving these many solutions for

a puzzle, OpenPhylo validates the difficulty predicted by the algorithm proposed in

chapter 5.
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6.1 Dataset

The dataset used in this chapter is from puzzles generated for the new release of

Phylo. The table 11–2 in the appendix C of this report contains data from puzzles

of different categories. Phylo is being played actively since its deployment at the

Canada Science and Technology Museum, Ottawa, Ontario on November 17, 2017.

Recently, it has been a part of the successful endeavors like CitSciDay hero event,

DNA day and Science Odyssey. Overall we have gathered over 5000 solutions for 200

puzzles as of May 27, 2018. We have used the top 100 puzzles for this observation

to ensure significant results.

6.2 Methodology

We model this probability considering this as a Bernoulli process [46]; a binary

outcome - win or lose– characterized by a single parameter pwin which represents the

probability of winning the puzzle in single attempt. It is represented by the following

equation:

pwin =

∑
win∑

attempts

Win illustrates a scenario where a user successfully completes the entire puzzle.

Fail presents a scenario where a player starts with a puzzle but is unable to align the

puzzle completely; he is unable to align all the sequences in the puzzle and therefore

we do not receive a complete solution from such an attempt.
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Now, let’s compute the difficulty pwin separately for each of the 5 levels. Calculating

the probability of solving a puzzle(pwin) of a predefined difficulty level as a Bernoulli

process is a simplified version of a multidimensional problem. We know that this

probability will also depend on the skill of each player and the player could learn

from past attempts and play better every time. Hence, to further refine this process,

we have addressed this scenario in the routing section of this report where we consider

user expertise during the routing of puzzles.

6.2.1 Computing Uncertainty

Here we have a used a StandardError as the measure of uncertainty which is cal-

culated as:

σerror ≈
σsample√

n

For a Bernoulli process, the sample standard deviation is:

σsample =
√
pwin(1− pwin)

Therefore, we can calculate the standard error like this:

σerror ≈
√
pwin(1− pwin)

n

6.3 Results

From the Figure 6–1, we can conclude that the difficulty estimates are precise as you

can see a lower success rate for difficult puzzles. However we see some discrepencies as

well. There are certain puzzles in easy category for which the success rate is low and

vice versa. For instance, looking at the data enclosed in appendix C the success rate
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Figure 6–1: Identifying the true difficulty of puzzles based on the player’s success
rate. Vertical bar represents the overall error rate of all the puzzles corresponding
to that difficulty level.

of Infectious disease for difficulty level 4 is lower than 80%, hence its difficulty can

be increased and such puzzles can be moved to difficult category. Another example

easily visible is that of category - Brain, nervous and sensory system diseases – for

which the difficulty level of 10 has a very high success rate. Therefore, this puzzle

can be moved to easy category. We also notice high error rates for some puzzles

and this is because of less attempts made at these puzzles and these error rates will

reduce after such puzzles are played more times.

We conclude that difficulty level of the puzzles can be validated/updated dynamically

based on its success rate. We check for validity/update the difficulty of puzzles after

93 attempts are made for a puzzle (refer appendix D) [67]. If a puzzle has a success
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rate greater than or equal to 90%. Such puzzles will be moved to easy category,

whereas, for puzzles with success rate less than equal to 80%, such puzzles will be

moved in difficult category. Puzzles with success rate between 80% and 90% will be

placed in medium category. But, this should be done only after we have significant

number of solutions which will further reduce the error rate. In the upcoming version

of Phylo we choose this number to be 80 based on our observations published in paper

[67].

If we consider the top 100 played puzzles in the latest version of Phylo, we notice

that the difficulty levels are predicted correctly for 71 puzzles. Coincidently, this is

very close to be the accuracy of our feature based difficulty prediction model which

is 72%. Hence, we expect that by using this approach we can further enhance the

difficulty prediction of puzzles. This will play a major role in producing quality

results in the game.
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CHAPTER 7
Routing

Routing is the process of assigning the right difficulty level of puzzles to the right

players based on their skill level. This ensures better results and a more entertaining

experience for the game players. Routing is a multidimensional problem which must

address the following parameters: player’s expertise level, success rate of puzzle, and

number of times each puzzle is played.

In human computation, to account for user expertise, often users are given the same

task and then take the majority response to get the correct answer. Luckily, Phylo has

a proven scoring scheme which is capable of separating the better solutions against

the good ones. This scoring scheme can be further used for collective assessment

using expectation maximization. The objective of this task is to jointly estimate

player expertise level and consensus answer. Each puzzle in Phylo is considered as a

single problem with an unknown solution to the problem. We calculate a parameter

Pw(r|a) for each player p with correct response a and the incorrect response as r;

where r!=a. Phylo ensures that each player submits his/her own solution and these

solutions are independent of how other players play the same puzzle. David and Skene

in their paper [17] use an iterative expectation-maximization approach to estimate

which answers are correct and at the same time find the accuracy of worker expertise

level. We here perform a similar operation with a minor difference that we have used
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the relative score of solutions for each puzzle as a measure of solution accuracy. Any

score that lies above the 50th percentile with respect to its score is considered as

a good solution whereas a percentile of below 50 is considered as a failed attempt.

Expectation maximization then scores each player based on how many good solutions

were submitted by that player. The process repeats itself every time a puzzle is sent

to a player.

7.1 Routing algorithm

Goal 1: Determine the user/ player expertise:

Given {r} responses from all the players for a puzzle;

while true do

if new submission then

Step 1: Percentile for each submission is calculated based on all the

available submissions also known as relative score;

Step 2: Adjust Pw(r|a) by taking the average of all the relative scores;

else

Return the Pw value to goal 2 of this routing algorithm;

end

end

Algorithm 1: User expertise prediction algorithm

Note: We initialize the value of Pw(r|a) to 0.5 (for new players). In the original

paper [17] this was set to a random value. However, we start with a value of 0.5

which ensures that the user is neither a rookie nor an expert player.
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Goal 2: Routing of puzzles based on user expertise (calculated in goal 1),

difficulty of puzzles and consensus achieved in puzzles.

Assumptions:

Puzzles with difficulty level between 1 to 5 are considered as easy puzzles

whereas those with the difficulty between 6 to 10 are considered as difficult;

Initialization:

1. failure rate of a puzzle is initially set to 1 if the puzzle has been played

less than 20 times;

Algorithm:

Step 1: based on the user expertise select the either all the easy puzzles or

all the difficult puzzles.

Step 2: Retrieve the mean failure rate of all these puzzles from the

database. Failure rate for a puzzle is calculated as:

failureRatep = 1−
∑
solutionPercentileV aluesp
NumberOfSolutions

Step 3: calculate the upper confidence bound for all the selected puzzles in

step1 above.

XUCB−p = Xp +

√
2
lnN

Np

Xp is themean failure rate for puzzle
′p′

Np is the total number of solutions for the puzzle
′p′

N is the total number of solutions for all the selected puzzles in step 1
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If Np is zero then initialize it to a small value of 0.1.

Step 4: Select the one with the highest upper confidence bound value. In

case of a tie, we select one at random.

Step 5: Send the selected puzzle in step 4 to the user.

We start by using the user skill level (derived in Goal 1) to chose the kind of puzzles

to be routed to the players. Upper Confidence Bound (UCB) is based on the principle

of optimism in the face of uncertainty, which is to choose your puzzles as if all the

puzzles are equally nice. However, uncertainty on overdose is not recommended;

when played decent number of times we don’t need to be optimistic, instead can rely

on its true values. When acting optimistically, either the selected puzzle justifies

it or, the optimism shown towards its selection is not justified. In the latter case a

puzzle is picked based on the belief of getting a large reward when in fact it does not.

If this happens sufficiently often, then the learner will learn what is the true payoff of

this action and not choose that puzzle in the future. Intuitively, we know that failure

rate of a puzzle calculated from a mean of 10 iterations is less accurate than failure

rate calculated for that same puzzle using 1000 iterations. Therefore, if we were to

draw a confidence bound around each mean, we will get a much wider bound on the

10 puzzle case and a much skinnier bound around the 1000 puzzle mean. Using this

approach we are optimistic for a puzzle in the beginning when the bound is wider,

we become more certain of that puzzle’s failure rate. Failure rate is defined as the

ratio between the number of times players achieve less than 50th percentile to the
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total number of times that puzzle is played. Failure rate for a puzzle is constant 1 if

the number of times that puzzle played is < 20.

This is like a greedy strategy. Key here is the ratio between two parameters: N which

is the total number of times you have played, and Np which is the total number of

solutions for puzzle p. Therefore, if a puzzle is played less number of times (which

means Np is small) whereas overall other puzzles have been played many times,

then this ratio will be large. This will make the upper confidence bound higher. A

higher confidence bound for a player will mean an better UCB value for that puzzle.

Therefore, the algorithm will pick that puzzle and route it tothe players. At the same

time if Np is larger on an average when compared to other puzzles then the ratio

will be smaller than the other selected puzzles. Then the upper confidence bound

will shrink for such puzzle, hence such a puzzle will not be selected over others.

Therefore, chosing UCB in our routing approach will ensure a fair chance to all the

input puzzles.

According to Chernoff-Hoeffding [6] bound, the confidence bound changes exponen-

tially with the number of samples we collect.

P
{
|X − µ| > ξ

}
6 2exp

{
−2ξ2N

}
The equation says that the absolute difference between the sample mean and the

true mean is greater than or equal to epsilon(ξ) is less than two times the exponent

of -2 times epsilon squared N , where N is the number of puzzles played and ξ is a
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random small number. Here, we take the upper confidence bound using,

XUCB−p = Xp +

√
2
lnN

Np

where, N is the total number of solution for based on the type of puzzle selected

for the user: easy, medium, and difficult, and Np is the number of solutions for

the puzzle ’p’. This is equivalent to, choosing an ξ equal to the square root and

everything inside it. [Note: The proposed algorithm has been recently simulated for

Phylo, therefore we do not have results for this.]

In layman’s terms, we are using the following steps to emulate routing in Phylo:

1. Calculate the expertise level of registered players of Phylo as explained in goal

1 of the routing algorithm.

2. If user expertise is less than 0.5, we select all the puzzles with difficulty level

less than 5, otherwise we select puzzles with difficulty between 6 to 10.

3. Calculate the failure rate of all the selected puzzles as mentioned in step 2 of

algorithm 2.

4. Now use UCB to route one puzzle to the player ensuring the following con-

straints:

• If the selected puzzle has never been played then initialize it with a small

value

• in case of a tie we pick one at random from the selected set of puzzles in

point 2 above.
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CHAPTER 8
Teaching Portal

Crowdsourcing that is gathering information about best practices from a variety of

people is an essential way to enhance the way education is conducted by instructors

and received by pupils. One of the most fascinating aspects of modern educational

technology involves the ability to both teach and crowdsource information at the

same time. As an illustration, the Spectral Game Platform was created using open

source spectral data, and challenges students to match the spectrum data with the

relevant chemical structure. Not only does this allow students to learn the material

and receive real-time correction, but it also provides a crowdsourced check to the

open source data. Both the students and the scientific community win with crowd-

sourcing. For the purpose of this project, we will first review the existing Phylo

Educational Platform and comment on what modifications would need to be done.

A new model would then be proposed with the aim to improve the existing plat-

form and introduce the crowdsourcing techniques. The focus will be to design it in

such a way that it improves the usefulness of Phylo in classrooms and introduces

important educational concepts during the gameplay. Link to the teaching portal:

https://kovik.cs.mcgill.ca/#/loginInstructor
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8.1 Classical educational platform

The classical educational platform of Phylo is simple in design and operation. It has

been divided into the following categories:

• Home: It begins by introducing Phylo and also contains links for instructor

and student log-in.

• Manual: Step-by-step instructions for using Phylo as a teaching portal. It

also contains instructions for instructors and students.

• Students: Student log-in link given. Once logged in, students can register

for an event (exam) which will be active for some duration. During this time,

the games played by the student is recorded and posted to the instructor as a

report once the event ends.

• Instructors: Instructors can log-in giving their username and password. After

getting logged-in, they can file their exam, specifying a unique event id and

can download the report once the event ends.

• Resources: This page gives resources which students/teachers can benefit if

they wish to know more about the concepts.

• List of Puzzles: Returns a list of puzzles available for the students. Classified

as per diseases and displays the initial score, best score and submission count

of each of the puzzle.

• Contact: Contact information provided.
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We will now analyze the results from the classical teaching portal using the datasets

generated over the past 5 years. This information allows us to study the impact of a

prior knowledge of the multiple sequence alignment problem on the quality of solu-

tions submitted. It also tells us the pros of the existing teaching portal and possible

scope of improvements. We analyze the performance of casual gamers and educa-

tional players; casual gamers, who play just for fun, and educational players,

who play in the context of a high-school or university biology/bioinformatics course

through our educational interface. Since its launch in 2010, Phylo has now 35,913

registered users (Note: participants can also play anonymously without registration

- observed ratio is 1:10), for which we recorded the number and difficulty of puzzles

played. We analysed a total of 170 puzzles which were played by both types of users,

which we used to assess the performance of each group. We observe a P-value of

0.47 while performing T-test on the dataset of educational players and casual play-

ers. It shows that the benefit of background knowledge toward better alignment

production is difficult to assess. In Figure 8–1, we show the performance achieved

by educational players playing for education against casual on puzzles with various

difficulties. Although educational users seem to benefit from their background knowl-

edge, the difference disappears when the difficulty increases. Based on the existing

educational interface we conclude that a prior introduction to the principles of the

game (i.e. here a multiple sequence alignment) does not seem to provide a long-term

advantage. This confirms the importance of design techniques in GWAPs.

However, we do notice that a lot is expected of the students to complete the assign-

ment. This induces the students to make mistakes not regarding academics but in
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Figure 8–1: Average performance of casual (no prior training) and educational users
(benefiting of background knowledge) on easy, medium, and hard puzzles. The black
dots above the box represent outliers more than 3/2 times of the upper quartile while
the ones below represent outliers less than 3/2 times of the lower quartile.
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misreading the procedure to complete the assignment. Hence, the aim of making the

assignments fun for the students is lost and it results in chaos and complexity. The

instructors should be allowed to create the assignment accessing the teaching portal

while the students should play the game without worrying about anything else. All

they need is to do is play the game within the assignment completion deadline as set

by the instructor. Also, there is no system in place which checks students progress

and notifies them once they complete the assignment.

8.2 Upcoming Teaching Portal

Teaching portal will now be used only by the instructors. Students are expected to

just enjoy the game. They will be notified with an assignment completion badge

once they finish the assigned task. This is to make the students focus more on the

knowledge and game aspect of Phylo rather than reading directions to complete the

homework. We consider three actors that covers all the use cases of teaching portal:

• Instructors

• Students

• Admin

There are four primary components in the teaching portal of OpenPhylo for

instructors :
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Figure 8–2: Sequential flow of instructor registration.

8.2.1 Instructor

Instructor registration/login module

The homepage of the Phylo Educational Interface will describe the principles of Phylo

and the motivations for the interface. There will be a link which instructors can use

to login or register into the system. Instructors will have to provide a username,

password, course name and its description. Every registration request is associated

with a token with a lifeline of one day/24hours. Instructor’s information is further

sent to the Phylo admin for approval along with the token. If the request is approved

within a day then the registered data stays in Phylo database. If the request is not

approved in 24 hours token loses its validity and instructors details are removed

from the database. This is to ensure that only the real instructors register for the

educational portal. Instructors can login to the teaching portal using their username

and password.
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Figure 8–3: Abstract flow of assignment registration.

About

Gives an introduction to Teaching portal of OpenPhylo and roles and responsibilities

for Instructor.

Assignment creation

Only approved instructors may access this component. It is simplified to an extent

that instructors just have to follow the sequence of pipelined steps to finish the

assignment creation. The interface for the assignment creation is very intuitive and

does not require a manual. Figure 8–3 shows an abstract flow of assignment creation.

After the assignment creation is complete, all the students included in the assignment

receive an email with the details of the assignment and its instructor.
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:Database
Instructor

loop      [req.emails.split().length>i]

:Student

Server:Assignment

Student

i : = i+1

i :=0

PUT:assignment(Assignment)

ACK

PUT: student(Student)

email(req.courseInfo)

createStudent(req.emails[i],
req.course_code)

POST:
assignment(req,res)

assignment(course_code,
username_instructor,

token,num_of_puzzles,
course_description,
emails,start_date,

end_date)

Figure 8–4: Sequence flow of assignment creation.

Viewing/Editing assignment

When an instructor selects the assignment option from the sidebar, two flashcards

are displayed. One of them represent the new assignment creation option while the

other represents viewing and editing of assignment. Requirements of each of these

tasks are already listed in the cards. The assignment once submitted can be viewed or

edited by the same instructor before the set deadline. This allows any late additions

or entries to the assignment. Following options are editable in the already existing

assignment:

• Start date of the assignment

• End date of the assignment

• Course description
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• Add more students to the assignment

Any modifications in the assignment are notified to the students. However, if the

only chnage is in terms of addition of students then only the new students will be

notified.

Result generation

Results is made available based on the course code. It can also be downloaded in

the form of a csv file. Each course code will show the following statistics:

• Each students email address,

• each students’ assignment status,

• number of highest score achieved by each student,

• number of puzzles played by each student,

• total score achieved,

• percentage, and

• rank of each student.

8.2.2 Students

Assignment completion

Students do not have to access the teaching portal, they can directly register on

Phylo game (if they haven’t already) and start playing. Each student will receive

the same set of puzzles based and also in the same order. This is to avoid any
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Figure 8–5: Badge received after completing the assignment.

possible bias while grading the students. They will first receive the puzzles staged in

the assignment for which they are enrolled. Once they have completed the homework

puzzles, they can see the assignment badge being enabled in the badges section of

Phylo. The badge received in Phylo is shown in Figure 8–5.

Quiz for students

Each student during his enlistment by the instructor in the assignment will receive

an email with all the course and assignment information. In addition, this email will

also contain a link to the quiz. Students can check their learning of bioinformatics

subjects are in context with Phylo by writing a quiz. It is available for the following

categories: (i) multiple-choice questions, (ii) single answer questions, and (iii) free

text-based questions. Every question carries one point each, however, the free text

based questions are not scored. It has multiple categories: (i) DNA, (ii) RNA, (iii)

Motifs, (iv) Multiple Sequence Alignments (MSA), (v) Mutations, and (vi) Human-

Computation. The players can choose one of these categories to start the quiz.

The quiz interface provides you with the option of setting the time-limit, number of
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questions, and also the category of quiz. Users can go through the quiz using the

right and left arrow keys. Upon the quiz completion, the players receive a feedback

in terms of percentage of accuracy. The user can play the same category of questions

as often as they want. The questions sent to the users are randomized, so that they

don’t receive the same set of questions in the same order. This was done to enhance

the user-experience.
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CHAPTER 9
User feedback

The need of feedback in Human-Computer Interaction (HCI) or citizen science is

known to everyone. However, the nature, quality and effect of feedback has no

consensus. It is the best way to communicate with the end users. All strategies

require feedback to observe and adjust performance. Feedback usually compares

current performance with fixed goals and returns back information specifying the

divergence between current and expected performance. This is true for humans as

well. It influences the future behavior of the end-user and keeps them motivated.

Considering the importance of feedback, we made some major enhancement in the

new version of Phylo and OpenPhylo.

In addition, the efficiency of human-computing systems depends heavily on the ex-

pertise of participants. We know this from the results that we received from the

classical version of the game. Figure 9–1 reflects the same.
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Figure 9–1: Average performance of rookies (≤ 20 puzzles) and expert players (≥ 40

puzzles) on easy, medium, and hard puzzles. The black dots above the box represent

outliers with more than 3/2 times of the upper quartile. The black dots below

represent outliers with less than 3/2 times of the lower quartile.

Characterizing the precision of answers from their level of expertise and background

knowledge is thus essential to understand the capacity and behavior of the system.

One best way to transform a rookie into an expert player is by proving a proper

feedback that motivates the users .

A feedback should encompass the following characterstics [58]:

1. Feedback about both past as well as the immediate interaction.

2. Development of feddback that affects the future behaviour of the user.
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3. Extending the feedback to provide the understanding of the computer applica-

tion.

4. Use of graphic rather than textual feedback.

9.1 Feedback to users

Phylo covers all these characterstics which is covererd via the following feedbacks to

the users:

1. Achievement Badges: A unique badge for each of the following achieve-

ments:

(a) Citizen Science: A badge for creating an official account on Phylo

(b) Master: Complete a puzzle with three stars

(c) Scientist: Complete one puzzle per disease category

(d) Master: Completed 25 puzzles

(e) Weekly Contributor: Reach the top 10 of the weekly ranking

(f) Monthly Contributor: Reach the top 10 of the monthly ranking

2. Event based badges: in additon to the above badges, Phylo also provides

event based badges to help support the community:

(a) DNA day/ 15 for 15: Complete 15 puzzles during the DNA day

(b) Assignment completion: This badge is for students who finsih their as-

signment created by the instructor via the teaching portal.
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(c) Science Odyssey: Played a puzzle duing the science odyssey celebrations.

(d) Museum: Played a puzzle in the Canada Science and Technology Museum,

Ottawa.

3. Live messages: Immediate informative messages showing user’s contribution

to science.

4. Line graph: representing the comparitive analysis of their scores with respect

to the other players.

5. Doughnut graph: that tell the users the number of 1, 2 and 3 stars received.

6. Pie chart: that keeps the players informed about the number of puzzles palyed

in each category.

7. Quiz: to facilitate user assess their knowledge in bioinformatics for subjects

close to Phylo.

8. Statistics table: that displays all the solutions submitted by the logged in

user besides the scientific knowledge conforming to each puzzle, like the disease

linked to that puzzle, the gene name from which the puzzle was obtained, name

of the scientist who submitted that puzzle, score and also the percentile score

of that solution, etc.

9. Ranking: weekly, monthly and overall ranking of all the users. Phylo comes

with a leaderboard where users can rank against one another and compete for

their rank on that list. In addition, it also provides weekly, monthly or yearly

ranking.
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10. Tutorial: to walk the user through the instruction of the game.

Figure 9–2 provides a snapshot of feedback provided to users in Phylo.

9.2 Feedback to scientist

Scientists receive all the feedback that a casual Phylo player receives. In addition,

scientist can also view their puzzle submissions in Phylo and number of times those

puzzles were played in Phylo. They will get the overall aggregated results and also

a comparitive analysis of the T-Coffee score associated with the machine aligned

sequences and enhanced sequences post replacing the user aligned sequences in the

original MSA via aggregation. Aggregation is further explained in chapter 10.

9.3 Conclusion

An application or a game that can leverage volunteer human activity can escalate

dramatically better because of the non-conservative nature of the reward. We believe

that generally-relevant designs for data-oriented games could radically change the

essence of our problem. Phylo provides gratification and reward as well as stoking

competition among volunteers. Metrics like percentile score of tasks are readily

visible and provide the judges a sense of reward in completion of the task. The

most concrete way we reward our players is by giving them a contribution message

that expresses their contribution in the best possible way. We attribute every user

contribution in the database to the scientist responsible for producing that puzzle.
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Figure 9–2: User profile page. Annotations are in the same order as mentioned in
section 10.1.
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CHAPTER 10
Aggregation

Due to the restraints of Phylo, i.e., its capacity of processing and aligning up to 10

sequences, meaning that large scale multiple sequence alignment problems cannot be

directly aligned by Phylo. This brings us to the motivation of aggregation. Aggrega-

tion is the process of using the quality solutions received via the game and merging

it back in the original larger genomic sequences in a way that it enhances the overall

accuracy of the solutions received via state-of-art algorithms. It aims to help reveal-

ing conserved patterns across different species that may have a functional role. In

addition, it also does the pipeline filtering and assembling the solutions from users,

and quantify the magnitude of improvement. Figure 10–1 provides a very abstract

overview of aggregation process followed in Phylo.
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Figure 10–1: Phylo crowd-sourcing system for local improvement of multiple genome

alignments.

10.1 Classical approach of aggregation

The solutions from classical Phylo was evaluated by selecting those alignment solu-

tions from puzzles with the best score and least entropy. Then the selected align-

ments were reinserted and compared with the entropy of revised alignment block

to the entropy of the original alignment block. Since there is no gold standard to

measure the performance of aggregated solutions, we used entropy as a measure of

87



Figure 10–2: Change of entropy after aggregation of user aligned puzzles to the
initial alignment. The x-axis represents the difference between the entropy of the
machine aligned sequences and user aligned sequences. Positive values indicate an
improvement of the alignment.

accuracy. We performed this test on 429 genome blocks that were used to generate

input puzzles for the classical version of Phylo. We did observe that aggregation of

solutions selected through a basic (simplified) scoring scheme available to users, is

sufficient to yield significant improvements of a global problem (i.e. alignment).

10.2 Upcoming version of aggregation

10.2.1 Methodology

Pairwise sequence alignment methods seek to find the best alignment for two query

sequences and are limited by the number of sequences to be aligned. This means

that when aggregating multiple sequences to an alignment, only one sequence can

be added at a time. On the other hand, multiple sequence alignment algorithms

will align all the sequences present in a given query set. Implementing a multiple
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sequence alignment could be more efficient in terms of run-time, but, multiple se-

quence alignment is accompanied with numerous challenges. These algorithms are

computationally complex, expensive in terms of the runtime as well as space, and of-

ten lead to NP-complete combinatorial optimization problems. Furthermore, while

pairwise sequence alignment is used to show similarities between two nucleotides

sequences which may indicate biological relationships between the two; multiple se-

quence alignments seek to highlight weak signals which may represent protein families

or conserved biological domains. In the upcoming version of OpenPhylo the length

of the longest sequence is limited to 2000 nucleotides and a file size limitation of

5MB. Also, due to the added complexity of multiple sequence alignment algorithms

and differences in primary goal, pairwise alignment algorithms were chosen to be

implemented in this aggregation approach.

In an effort to perform aggregation, we have used Position Weight Matrices (PWMs)

[14] and Needleman-Wunsch algorithm [44].

Position weight matrices:

are frequently used in computational biology as a key component to represent pat-

terns in biological sequences. We started by calculating the position frequency matrix

(PFM) by measuring the position-dependent frequency of each nucleotide in a DNA

sequence. A PFM can be converted to a position weight matrix by calculating the

log likelihoods.

Wb,i = log2
p(b, i)

p(b)
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Wb,i represents the weight of nucleotide ’b’ at index ’i’,

p(b, i) probabilty of ’b’ at index ’i’,

p(b) overall probability of ’b’

Modified Needleman-Wunsch algorithm

The Needleman–Wunsch algorithm is a pairwise multiple sequence alignment algo-

rithm used in bioinformatics to align protein or nucleotide sequences [44]. It is an

aplication of dynamic programming to compare biological sequences. It aims to

achieve global alignment throughout the entire input. The used algorithm for aggre-

gation is the modified version of the Needleman-Wunsch algorithm. A matrix D(i,j)

indexed by the residues of each sequence is built recursively. First we initialize the

matrix: D(m+1,n+1)=0

such that

D(i, j) = max


D(i− 1, j − 1) + s(xi, yj)

D(i− 1, j) + g

D(i, j − 1) + g

s(i,j) is the substitution score for residues i and j

g is the gap penalty

The algorithm implementation in aggregation produces an aligned sequence from a

position weight matrix of the and a to-be-aligned sequence. We use a modified version

of the Needleman-Wunsch algorithm which will derive a representative sequence from
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the position weight matrix which is then used in the pairwise alignment process. The

alignment makes use of a dynamic programming which generates a table to keep a

track of the alignment score at each position depending on if the two nucleotides are

a match, mismatch, deleted or inserted nucleotide. The function then backtracks

through the table to produce the aligned sequence by finding the sequence alignment

with the maximal score. The scores are assigned using a similar scoring scheme as

used in Phylo:

• If there is a nucleotide mismatch: -1,

• If there is a nucleotide match: +1,

• If there is a gap (insert/delete): -5

The entire aggregation process is orchestrated to takes as input a list of user-aligned

sequences from Phylo and a list of unaligned sequences. It will then map the in-

put puzzle (machine aligned) to the unique set of solutions (solutions submitted by

the users via Phylo). Further, it will calculate a new position weight matrix and

produce a new representative sequence every time a new sequence is aligned. This

process continues until all the sequences are aligned with respect to the user aligned

sequences.

10.2.2 Evaluation metric

In order to evaluate the effectiveness of multiple sequence alignment, we have used

T-coffee score. The T-Coffee score (TCS) is an alignment evaluation score based on
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the T-Coffee framework which uses libraries of pairwise alignments to evaluate third-

party multiple sequence alignments to produce structurally accurate phylogenetic

trees. The other primary reason as to why we are using T-Coffee is because all the

the unaligned sequences uploaded by the users are intially scored and aligned by

T-Coffee. Therefore the system will be most competitive in the case where it can

challenge the one that actually produced the input alignments.

10.2.3 Results

We analysed the aggregation results using the solutions that we have received through

the new version of the game. During our experimentation we found a gene: TLR4

for which the TCS for user aggegrated solution is 982, which is comparitively better

than the origin score for the T-coffee aligned solutions: 981. With time we expect

the count of genes to increase, however with the limited amount of data, a single

instance is good enough to showcase the validity of the proposed methodology.
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CHAPTER 11
Conclusion

Multiple sequence alignments play essential role in illustrating the evolutionary re-

lations among the sequences. It has become a prerequisite for genomic analysis

pipelines and many downstream computational modes for homology modeling, sec-

ondary structure prediction, and phylogenetic reconstruction [21]. For this reason

MSA have become an important research area. However, the state-of-art algorithms

provide potentially suboptimal solution to this problem. Because manual curation is

a necessary step to guarantee the quality of biological sequence alignments, a crowd-

sourcing solution appears to be a perfect strategy to address this bottleneck. Phylo

provides the right interface to crowdsource this problem as microtasks to the players

and thereby enhance the sequenced alignments.

Our study provides all the tools necessary to fulfill the purpose of Phylo [34, 39].

Starting with detection of regions in MSA that have some scope of improvement, we

achieved a 10-fold cross validation accuracy of 81%. These promising regions were

extracted from MSA and routed to the game players using a novel routing approach.

We also proposed a CNN based machine learning model to predict the difficulty of

routed tasks with an accuracy of 75.15%.

In addition, we also studied various human computation aspects of Phylo that are

crucial for the system to perform efficiently. This includes user feedback mechanism,
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teaching portal, and aggregation. Phylo provides reward as well as stoking competi-

tion among volunteers. Metrics like percentile score of tasks are readily visible and

provide the judges a sense of reward in completion of the task. The most concrete

way we reward our players is by giving them a contribution message that expresses

their contribution in the best possible way. We attribute every user contribution in

the database to the scientist responsible for producing that puzzle. For aggregation

of solutions to microtasks, we have used modified Needleman-Wunsch and position

weight matrix which can effectively solve the original problem of MSA.

In sum, the cognitive and motivational dimensions of human-computation which have

been explored using Phylo as the exemplification can be used in broad spectrum of

domains, ranging from games with a purpose (GWAP) to crowdsourcing frameworks

in general. We believe that simulating the same in other applications will help

establish common metrics of success, and give rise to new opportunities for research.
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Appendix A

Feature based approaches to predict the promising puzzles:

The results shown below determines the promising puzzles using the feature extrac-

tion process. Labeling apprach is same as used in section 5.2.

Promising puzzle detection using LSTMs:

Figure 11–1: Promising puzzle prediction using LSTM. The graph was created us-

ing 480 LSTM cells, mae loss function and adam optimizer. Validation accuracy

achieved: 69.4%.

Promising puzzle detection using kNN [3]:

95



Figure 11–2: Average confusion matrix for promising puzzle prediction using kNN.

Promising puzzle detection using SVM [16]:
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Figure 11–3: Average confusion matrix for promising puzzle prediction using SVM.
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Appendix B

Difficulty prediction for RNA:

The dataset used here is the one produced via ribo game [73]. A total of 27 puzzles

were used for Ribo which were played 673 times as of December 2017. Although this

is insufficient data for most of the machine learning algorithms, but, we still tried to

predict RNA difficulty with whatever data we had. Following features were expected

for difficulty prediction of RNA:

1. Total number of base-pairs,

2. total number of gaps,

3. height of the puzzle (number of sequences in the input puzzle),

4. length of the sequence,

5. average structural entropy,

6. number of A,

7. number of C,

8. number of G,

9. number of U,

10. average structural entropy,

11. average expected energy, and
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12. average free energy of the sequence.

Using backward elimination we observed that only total number of base-pairs, num-

ber of gaps, number of sequences, average structural entropy, average expected en-

ergy, and average free energy of the sequence.

Label creation: Score of each submission is the sum of the score structural and se-

quencial score. Difference between an alignments’ best score and its original score

is referred as the scope of improvement. We use this difference to obtain the nor-

malized scores for each puzzle or alignment. Puzzles with the least possibility of

improvement were considered as difficult puzzles, so if the average normalized scores

of puzzles were less than or equal to 0.5 and greater than 0, then they were considered

as difficult to align. Similarly, a normalized score value greater than 0.5 represents

easy puzzles. Table 11–1 shows feature values along with the labels for all 27 RNA

puzzles. The results and insights gained from this experiments were highly influential

towards our objective mainly die to bare minimum data. However, using the huge

player base of Phylo game, we can expect this appraoch to work and be a part of

difficulty prediction for RNA based puzzles.
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Table 11–1: Feature values for RNA puzzles used in Ribo game.

Difficulty Base pair Gaps Height
Sequence
length

Average
structural
entropy

Average
expected
energy

Average
free energy
of sequence

0 34 5 4 25 2.02 -0.74 -3.28
0 28 13 4 25 2 -0.46 -1.67
1 36 1 6 25 1.55 0.26 -0.69
1 61 4 6 25 1.01 -7.39 -8.01
0 27 5 8 25 1.46 0.28 0.62
1 61 2 8 25 1.26 -6.52 -7.3
1 31 5 10 25 1.67 -1.68 -2.7
0 40 6 10 25 1.4 -4.5 -5.3
0 37 1 4 35 2.66 -2.68 -4.31
0 55 1 4 35 2.61 -5.95 -7.56
0 39 6 6 35 3.05 -2.7 -4.58
0 44 8 6 35 1.82 -8.53 -9.66
1 30 1 8 35 2.47 -2.37 -3.89
1 38 18 8 35 2.04 -4.32 -5.58
1 35 4 10 35 2.9 -2.19 -3.99
1 47 4 10 35 2.59 -7.75 -9.35
0 32 25 4 25 1.34 -0.79 -1.62
0 40 12 4 25 1.53 -3.56 -4.5
0 46 11 6 25 2.24 -1.04 -2.42
0 33 6 6 25 1.5 -5.8 -6.73
0 32 8 4 25 2.4 -1.1 -2.58
0 37 19 4 35 2.2 -4.04 -5.4
0 38 11 6 35 1.8 -5.45 -6.13
1 32 22 8 35 1.94 -1.39 -2.88
1 40 11 8 35 3.15 -2.02 -3.96
0 34 6 10 35 1.76 -1.57 2.65
1 38 8 10 35 1.79 -6.7 -7.82
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Appendix C

Table 11–2: Dataset of puzzles for dynamic difficulty

change

puzzle id category #Solution difficulty #attempt P win

1 Cancers 150 1 154 0.974

2 Infectious diseases 87 1 89 0.968

3 Infectious diseases 4 1 4 0.963

4 Heart and Muscles 180 1 186 0.966

5 Metabolic Diseases 15 1 15 0.971

6
Brain, nervous and

sensory system diseases
279 1 284 0.980

7
Blood and immune

system diseases
1 1 1 0.978

8
Digestive and respiratory

system diseases
338 1 351 0.962

9 Other diseases 19 1 19 0.980

10 Other diseases 114 1 121 0.939

11 Cancers 151 1 164 0.920

12
Blood and immune

system diseases
110 1 114 0.965
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Table 11–2 continued from previous page

13 Metabolic Diseases 60 1 61 0.969

14 Cancers 111 2 115 0.958

15 Infectious diseases 43 2 44 0.969

16 Other diseases 33 2 37 0.880

17 Heart and Muscles 47 2 49 0.958

18 Metabolic Diseases 8 2 8 0.936

19
Brain, nervous and

sensory system diseases
60 2 64 0.930

20
Blood and immune

system diseases
76 2 77 0.980

21
Digestive and respiratory

system diseases
85 2 86 0.979

22 Heart and Muscles 50 2 53 0.931

23 Other diseases 56 2 58 0.955

24
Brain, nervous and

sensory system diseases
55 2 56 0.980

25 Metabolic Diseases 39 2 40 0.974

26
Blood and immune

system diseases
71 2 75 0.939

27
Digestive and respiratory

system diseases
74 2 83 0.884
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Table 11–2 continued from previous page

28 Cancers 62 3 66 0.937

29 Infectious diseases 91 3 92 0.987

30 Other diseases 14 3 14 0.982

31 Heart and Muscles 65 3 66 0.976

32 Metabolic Diseases 24 3 31 0.768

33
Brain, nervous and

sensory system diseases
87 3 106 0.818

34
Blood and immune

system diseases
14 3 16 0.860

35
Digestive and respiratory

system diseases
14 3 16 0.825

36 Other diseases 42 3 54 0.767

37
Blood and immune

system diseases
38 3 49 0.772

38 Metabolic Diseases 33 3 39 0.831

39
Digestive and respiratory

system diseases
30 3 35 0.852

40 Cancers 82 4 87 0.941

41 Infectious diseases 32 4 48 0.667

42 Other diseases 4 4 4 0.922

43 Heart and Muscles 25 4 26 0.935
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Table 11–2 continued from previous page

44 Metabolic Diseases 19 4 19 0.953

45
Brain, nervous and

sensory system diseases
5 4 5 0.948

46
Blood and immune

system diseases
40 4 44 0.893

47
Digestive and respiratory

system diseases
22 4 26 0.838

48
Digestive and respiratory

system diseases
40 4 42 0.945

49
Blood and immune

system diseases
37 4 37 0.976

50
Brain, nervous and

sensory system diseases
32 4 32 0.973

51 Cancers 16 5 18 0.875

52 Infectious diseases 32 5 34 0.923

53 Other diseases 9 5 9 0.952

54 Heart and Muscles 31 5 33 0.925

55 Metabolic Diseases 8 5 8 0.934

56
Brain, nervous and

sensory system diseases
30 5 30 0.971
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Table 11–2 continued from previous page

57
Blood and immune

system diseases
33 5 34 0.963

58
Digestive and respiratory

system diseases
18 5 18 0.963

59 Other diseases 5 5 5 0.983

60 Other diseases 15 5 15 0.982

61 Cancers 36 5 38 0.943

62 Metabolic Diseases 13 5 13 0.935

63 Cancers 23 6 24 0.925

64 Infectious diseases 30 6 35 0.846

65 Other diseases 24 6 25 0.949

66 Heart and Muscles 29 6 33 0.872

67 Metabolic Diseases 33 6 38 0.849

68
Brain, nervous and

sensory system diseases
16 6 18 0.880

69
Blood and immune

system diseases
24 6 26 0.913

70
Digestive and respiratory

system diseases
16 6 18 0.889

71 Cancers 35 7 38 0.921

72 Infectious diseases 26 7 74 0.348
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Table 11–2 continued from previous page

73 Other diseases 13 7 13 0.989

74 Heart and Muscles 25 7 28 0.872

75 Metabolic Diseases 12 7 12 0.927

76
Brain, nervous and

sensory system diseases
22 7 23 0.939

77
Blood and immune

system diseases
21 7 22 0.935

78
Digestive and respiratory

system diseases
91 7 105 0.861

79 Cancers 4 8 5 0.712

80 Infectious diseases 23 8 27 0.825

81 Other diseases 13 8 17 0.726

82 Heart and Muscles 2 8 2 0.850

83 Metabolic Diseases 29 8 36 0.803

84
Brain, nervous and

sensory system diseases
14 8 22 0.627

85
Blood and immune

system diseases
2 8 2 0.885

86
Digestive and respiratory

system diseases
49 8 51 0.944

87 Cancers 9 9 11 0.773
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Table 11–2 continued from previous page

88 Infectious diseases 17 9 23 0.722

89 Other diseases 20 9 27 0.718

90 Heart and Muscles 11 9 13 0.825

91 Metabolic Diseases 9 9 10 0.825

92
Brain, nervous and sensory

system diseases
13 9 16 0.773

93
Blood and immune

system diseases
10 9 14 0.712

94
Digestive and respiratory

system diseases
15 9 21 0.708

95 Cancers 239 10 281 0.850

96 Other diseases 249 10 371 0.671

97 Metabolic Diseases 223 10 306 0.729

98
Brain, nervous and

sensory system diseases
209 10 229 0.911

99
Blood and immune

system diseases
215 10 252 0.850

100 Other diseases 49 10 97 0.505
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Appendix D

Latency and robustness of solutions

One important aspect to guarantee the efficiency of human-computing systems at

solving an optimization problem, is to make the best possible estimate of the number

of solutions that needs to be collected to offer some confidence in the quality of the

solution returned by the system. In particular, we need to identify the parameters

that influence these estimates. Figure 11–4 shows that with an average of 320 puzzles

solved per day (average over the last 6 years) most of the improvements in alignment

scores are obtained relatively quickly, within the first ≈ 100 days. Past this age, the

accumulation of solutions appears to be redundant and the puzzle can be retired.

Then we investigate the impact of the difficulty of puzzles on these statistics. Table

11–3 shows the number of attempts taken to get to the highest score. In other words,

the number of solutions we need to collect to get one that is not further improved by

players. On an average, the ranks of the highest scoring alignment are comparable,

albeit a slight (expected) increase of the rank is observed on the most difficult puzzles.

The length of the period during which we collected solutions enables us to offer some

guarantees on the robustness of these estimates. In average, the highest scores got

reached after collecting only ≈ 30% of the total number of solutions. These statistics

allow us to estimate the volume of data that can be treated by our system per. With

an average of 320 solutions collected per day, we can currently envision to solve 2-

4 puzzles per day depending of their complexity and the target level of confidence
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Table 11–3: Number of puzzles collected and rank of highest scoring alignments.

Difficulty Number of
Puzzles

Number of
Solutions

Rank of highscore
µ Q3

Easy 25 2075 83 150
Medium 255 21678 85 170
Difficult 1117 103635 93 192

in the results. Thus, a typical genomic bloc within a week. Of course, regular or

occasional growth of the traffic will increase these numbers [60].

Figure 11–4: Progression of high scores. The orange line shows the normalized high

scores since the release of the puzzles. The blue curve plots the number of solutions

collected.
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