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ABSTRACT

In order to develop a comprehensive model of the motor control system,
the time-varying nature of joint dynamics must be addressed However, it has not
previously been possible to quantitatively observe changesin joint dynamics during
a transition of state In this work, a recently developed method for 1duntification of
linear time-varying dynamic systems tfrom ensemble data has been used to obtain
models of neuromuscular dynamics during arapid contraction The method, based
on singular value decomposition, provides a series of nonparametric (impulse re-
sponse function) models of a system's dynamics without a priorr knowledge of its
dynamic structure or time-vanation, thus enabling study ofthe neuromuscular sys-

tem during natural activity

Ag lication of this method to simulated and experimental data have shown
it to be robust and accurate Ankle dynamics have been tracked during voluntary
isometric contraction ot triceps surae, revealing behaviour more complex than sec-
ond-order, characterized by a decrease in the joint's resistance to iow frequency

perturbations



RESUME

Afin de développe' un modele détaillé du systéme de contréle moteur, la na-
ture de la variation tempui elle de la dynamique articulaire doit étre abordée |l ne
i1t cependant pas possible auparavant d’'observer quantitativement les change-
ments de dynamique articulzire lors de la transition d'un état a un autre Dans cette
étude, une méthode d’identiication de systémes dynamiques hnéaires et variant
temporellement a été employé+ pour obtenir des rmodeles de la dynamique neuro-
musculaire lors de contractions rapides La méthode, basée sur la décomposition
des valeurs sitngulieres, fournit ur 2 série de modseles non-paramétriques de la dy-
namique d'un systeme, sous forr & de réponses impulsionnelles, et ce sans con-
naissance a priori de sa structure a,mamique ni de la variation temporelle, permet-

tant ainsi I'étude du systéme neuro-musculaire lors d'activités normales

L'application de cette méthode a des donnés simulées et expérimentales
a démontré sa robustesse et sa précision L'évolution de la dynamique au niveau
de la cheville a été suivie lors de contractions isométriques volontaires du triceps
surae, révélant un comportement plus complexe que celui du deuxiéme ordre, et
caractérisé par une diminution de la résistance de I'articulation a des perturbations

de basse fréquence
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1. INTRODUCTION

Joint dynamics describe the refationship between the angular position of a joint and
the torques developed about it This relationship, expressed as either joint stiffness (posi-
tion considered as input to the joint, torque as the output) or its inverse compliance, is not
only dynamic, but also varies with a number of physiological factors, one of which is the

mean level of torque developed at the joint due to muscular contraction

A knowledge of the way joint dynamics change with the level of muscular activation
is essential to understand how the neuromuscular system controls posture and movement,
and therefore has far-reaching implications in a number of fields, including basic neuro-
muscular research, diagnosis and treatment of neuromuscular disorders, prosthetic con-

trol, and robotics

In many functional actions, the dynamics of a joint change considerably in a short
period of time due to rapid changes in muscular activity It is often the case that the changes
occur on a time scale comparable to the duration of the system's dynamic response In
order to obtain a true representation of a system exhibiting this behavior, it is essential that

an approach recognizing the time-varying nature of the system’s dynamics be employed

Unfortunately, the majority of studies of the dependence of joint dynamics on mus-
cular contraction to date have employed quasi-time-invariant techniques, which assume
that joint dynamics change slowly with time, allowing standard time-invariant system iden-
tification methods to be used These experiments have typically been designed to investi-
gate the dynamics of a joint at distinct, maintained levels of contraction and theretore do
not provide insight into the manner in which joint dynamics change during variations of the

level of muscular contraction
The purpose of this work was two-fold

1 to evaluate the performance of a recently developed methed for identification of ti-

me-varying systems from ensemble data and.

‘._..um!_
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Introduction

2 to employ this method to observe the changes in ankle joint dynamics that occur

during a rapid isometric contraction of the calf muscles.
The body of this thesis has been organized in the following manner:

Chapter 2 provides the necessary background regarding joint dynamics and time-

varying identification

Chapter 3 details the theory and implementation of a recently developed technique
for time-varying identification, and discusses its potential advantages over other methods

with particular reference to studies of joint dynamics

Chapter 4 describes a simulation study in which this technique was employed to
identify the dynamics of a simulated time-varying system having behaviour similar to the
human ankle The performance of the method was evaluated by applying it to data gener-

ated by the simulated system using difterent levels of additive output noise

Chapter 5 presents theresults of an experimentin which the ume-varying dynamics
of the human ankle were identified during an increase in contraction of the calf muscles us-
ing the new methaod. The experimental paradigm, method of analysis, and results are dis-

cussed

Chapter 6 summarizes the major findings of this investigation, and suggests direc-

tions for future work




2. BACKGROUND

This thesis is concerned with identifying how human ankle joint dynamics vary dur-
ing isometric contraction of the calf muscles Two issues are being addressed the dynam-
ics of human joirits, and time-varying system identification This chapter provides a brief

introduction to the aspects of these two topics relevant to this report

2.1. JOINT DYNAMICS

In this section, the factors influencing joint dynamics will be discussed using a sys-
tem identification philosophy The information flow diagram for an experiment designed to
study joint dynamics using system identification techniques is presented in Figure2 1 The
elements of the block diagram indicate the various mechanisms that can affect the ob-

served dynamics Each of these will be discussed separately below
2.1.1. MUSCLE MECHANICS
The mechanical properties of muscle are the result ofthe interaction of the muscle's
contractile mechanics and activation dynamics
CONTRACTILE MECHANICS

Contractile mechanics determine the force generated due to changes of length of
muscle under aconstantlevel of activation. They are the external manifestation of theintrin-
sic process of contraction Therefore, in order to understand the influence of contractile

mechanics, a brief review of the structure and functio:. of skeletal muscle is in order
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SKELETAL MUSCLE STRUCTURE AND FUNCTION

Whole skeletal muscle is comprised of bundles of muscle fibres held together by
connective tissue (Vander, 1985) Atthe ends of each fibre the connective tissue joins to-
gether, forming the tendon of the whole muscle, which is attached to bone or fascia As
shown in Figure 2 2, muscle fibres are formed from bundles of fibres called myofibrils
These typically have diameters of approximately 2 um and extend from one end ofthe fibre
to the other Myofibrils are further subdivided into myofilaments, of which there are two
types thick (12 to 18 nm diameter) and thin (5to 8 nm diameter) Thin filaments are com-
posed mainly of the proteins actin, troponin and tropomyosin, while thick filaments are pri-
marily myosin When viewed under magnification, myofybrils have the appearance of alter-
nating light and dark bands One unit of this periodic structure is called a sarcomere (see
Figure 2 2), and is of length ranging from 1 5t0 3 6 pm, depending on muscle length The
thick and thin filaments are oriented parallel to each other, thin filaments are anchored at
one end of the sarcomere, with the other end overlapping the thick filaments The sliding
flament theory {H E Huxley and Hanson, 1954, A F Huxley and Niedergerke, 1954) pro-
poses that the thick and thin filaments move relative to each other, allowing the sarcomere

length to vary with the degree of overlap of the thick and thin filaments

In the region of overlap, large heads of the myosin protein, known as crossbridges,
are in close proximity to the actin filaments According to the crossbridge theory of muscu-
lar contraction (A F Huxley, 1957), these crossbridges attach to adjacent sites on the actin
molecule, and exert force on the thin filament by rotating through an angle of approximately
45° The crossbridges cycle through a process of attachment, rotation, detachment, and
reattachment at a new position on the thin filament during contraction, so that as the cross-
bridges exert force on the thin filaments, the sarcomere length decreases The collective
effort of the immense number of crossbridges in muscle fibre results in the generation of
considerable force and shortening action observed in comracting muscle fibre Cross-
bridge activity does not necessarily cause muscle shortening, however For isometric con-
tractions, where muscle length is unchanged, force is still generated via crossbridge cycl-

ing
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Figure 2 2 The structural organization of muscle (from Vander, 1985).
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THE LENGTH-TENSION RELATIONSHIP OF ISOLATED MUSCLE FIBRE

The force generated by active muscle is a nonlinear function of muscle length (Gor-
donetal., 1966), as shown in Figure 2 3, which presents the variation of maximum isomet-
ric tension developed in an isolated muscle fibre with muscle fibre length Note that a
muscle fibre also has passive mechanical properties, the length-tension curve of passive
muscle is nonlinear and exhibits behaviour much like a hard spring (McMahon, 1284) This
is not shown in the figure Thetensions developed due to active and passive properties are
additive, so the total length-tension curve 1s somewhat different (Aubertetal , 1951) How-
ever, this section is only concerned with active contractile mechanisms, so Figure 2 3 is
illustrative The crossbridge and sliding filament theories have been used to explain this re-
lationship The premise is that muscle force is dependent on the number of crossbridges
in operation When a muscle fibre is stretched, the degree of overiap of the fibres de-
creases, 50 thatfewer crossbridge attachments are possible, thus diminishing the potential
for force generation Conversely, if muscle shortens beyond a certain length, the force-

generating ability ofthe fibre will be hampered because the thin flaments will begin to over-

JARRLLALLY
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I | l | l
40%  60% 80% 100% 120% 140% 160%
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Figure 2 3 The nonlinear length-tension relationship of 1solated muscle fibre (from Vander, 1985)
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lap, and the thick filaments will begin to butt against the ends of the sarcomere (Gonzélez-
Serratos, 1971) Thisis iilustrated in the figure by the schematic depictions of the thick and
thin fibres of a sarcomere in a muscle fibre at various elongations Note however, that the
range ot length changes that occur in vivo is smaller than the range encompassed by the
curve of Figure 2 3 Then vivo range is between 70 and 130 percent of the length at which

a muscle fibre develops maximum tension (labelled ! in the figure)

THE FORCE-VELOCITY RELATIONSHIP OF ISOLATED MUSCLE FIBRE

The velocity of shortening of muscle fibre is a nonlinear function ot the load on the
muscle Shortening velocity is greatest when the load is zero, and decreases with increas-
ing load, until the load is equal to the maximum possible force of the muscie, at which point

the velocity is zero This is shown in Figure 2 4

The length-tension and force-velocity relationships for isolated muscle are not en-
tirely representative of the situation encountered in vivo. The length and velocity depen-
dence of the force generated by intact muscle in vivo has been determined for different iev-
els of muscular activity (Wilkie, 1950; Joyce et al., 1969; Joyce and Rack, 1969, Rack and
Westbury, 1969) An example of the results of these studies is shown in Figure 2 5 These
curves provide an estimate of the space of possible operating points for the neuromuscutar

system

Nnaxsmum shortening velocity (zero load)

velocity

maximum load
(zero velocity)

load

Figure 2 4 The torce-velocity curve for isolated muscle fibre (from Vander, 1985)
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. As would be expected from the nonlinear nature of the length-tension and rorce-ve-
locity relationships, contractilie mechanisms for isolated muscle are a nonlinear function
of displacement amplitude and direction, velocity of displacement, and other factors (Stein.

1974) Work is underway to model the dynamics of the contractile mechanisms of isolated
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Figure 2 5 The dependence of contractile muscie force on iimb position, its rate of change, and
direction A) Length-tension curves for isometric cat soleus muscle atvarious rates of nonsynchro-

nous supramaximal stimulation B) Muscle force generated during different lengthening and short
ening velocities (from Brooks, 1986)



Background 10

muscle using nonlinear system identification methods (Hunter, 1986), however a compre-
hensive model has yet to be developed

ACTIVATION DYNAMICS

Activation dynamics describe how electrical signals from the neuromuscular sys-
tem relate to the force generated by muscle As with contractile mechanics, activation dy-

namics are the result of the underlying physiology

THE MOTOR UNIT

Muscle fibres are controlled by motoneurons (also known as ov-motoneurons) re-
siding in the anterior horn of the spinal grey matter Each motoneuron innervates a number
of musclefibres, (e g . from 2 in human laryngeal muscles to over 2000 in the medial head
of gastrocnemius (Basmajian and Deluca, 1985)), but each fibre receives neuralinput from
only onemotoneuron Each time the motoneuron fires, the action potential descending the
nerve axon results in the nearly simultaneous contraction of all fibres on whichit terminates
The motoneuron and the muscle fibres it supplies therefore act as asingle entity This entity

is called a motor unit, and is shown schematically in Figure 2 6

All muscile fibres in a muscle are not identicai; their properties span a broad spec-
trum, from highly vascularised, nonfatiguing fibres having slowly rising long twitch contrac-
tions to sparsely vascularised, easily fatigued ones with fast, short twitches However, the

fibres of a single moter unit have nearly identical properties

Motor units in a single muscle have varied numbers of fibres, units with relatively
few fibres have smaller, slower conducting axons, produce slow, low force contractions,
and fatigue slowly Large units have faster conducting axons, and can produce large con-

tractions but fatigue rapidly

RATE CODING

The neuromuscular system controls the force output of whole muscle by two mech-
anisms, rate coding and recruitment Rate coding refers to the adjustment of the firing rate
of motoneurons For single action potentials, a motor unit will respond with a twitch, in

which a rapid increase in force is followed by a slower decrease For multiple action poten-
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Cell body
Nerve fibre of neurone
(axone)

Muscle
fibres

Figure 2 6 The structure of the motor unit (from Basmajian, 1978)

tials, if the period between action potentials is less than the time for the muscle to relax.
there will be supernosition of the twitches, resulting in increased muscular tension When
the firing frequency reaches a critical value, the contributions of the individual action poten-
tials overlap completely, resulting in a smooth sustained tension. calied tetanus, as ilius-

trated in Figure 2 7

The dynamic response of muscle force to changes of stimulus frequency has been
modelled as alow-pass system with corner frequency near 2 Hz (Mannard and Stein, 1973,
Bawa and Stein, 1976) In addition, there is a static nonlinear relation between stimulus fre-
quency and muscle force under conditions of repetitive stimulation at constant rate (Rack

and Westbury, 1969)

RECRUITMENT
Muscle force is also controlled by alterations of the number of active motor units
The majority of investigations have found that motor units are recruited according to the

size principle (Henneman and Olson, 1965) At low levels of contraction, the small. fatigue
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Force

Tetanus

Unfused tetanus

0 } 2 Time (sec)

Figure 2 7 The effect of firing frequency on muscle force (from McMahon, 1984)

resistant units are activated first As contraction leve! increases, the recruitment strategy
proceeds from the small, low force units to larger, faster units until all motor units have been

recruited

Rate coding and recruitment work in concert, with the relative contributions de-
pending on the muscle and level of contraction (Brooks, 1986) It has been reported for
some muscles that recruitment is the primary mechanism at low levels of contraction, at
medium levels of contraction both mechanisms play nearly equal roles, and rate coding

dominates at levels above around 70% of maximum (Basmajian, 1978)

EMG

When muscle contracts, its fibres are activated by a wave of depolarization calied
a motor unit action potential (MUAP) which travels along their external membrane, and can
be detected as a change of voltage, either in a single fibre or on the skin above a muscle
This measure, known as the electromyogram (EMG), gives an indirect measure of muscu-
lar activity A convenient way to detect the electrical activity of muscle is by using an elec-
trode on the skin surface The EMG signal recorded in this way represents the activity of
a number of fibres in a finite volume under the electrode, and is the result of the activity of
a large number of motor units The recorded signal will be the spatio-temporal summation

of the electrical activity of the muscle fibres in the volume from which the electrode is able
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to detect voltage The voltage recorded at the electrode will also be an altered version of

the original myoelectric activity due to filtering by the intervening skin and muscle fibres

The recorded voltages are low amplitude, typically in the microVolt range, so the
signal must be considerably amplified Because background noise will have power compa-
rable to that of the surface EMG. it 1s common to record using two electrodes in a bipolar
configuration oriented parallel to the direction of the fibres in the muscle The signals from
the electrodes are difierentially amplified. so that any signals picked up simultaneously by
both electrodes are rejected The noise removal performance of differential amplifiers 15
evaluated in terms of their ability to remove the signal content common to both channels.
and is called the common mode rejection ratio (CMRR) CMRR s defined as the ratio of
the differenval gan to the common gain A CMRR between 100 and 120 dB is effective for
removal of most background noise in the majonty of EMG applications (Basmajian and De-
Luca, 1985) However, the bipolar recording scheme distorts the EMG signal further, be-
cause the MUAP will travel under the electrodes at different times This introduces a con-
stant lag between the signals picked up by the two electrodes which is a function of
inter-electrode distance and conduction velocity (the velocity of the MUAP) The distortion
will have a high-pass frequency response similar to a comb filter, having frequencies of at-
tenuation occurring at intervals proportional to the ratio of the conduction velocity of the
MUAP and the inter-electrode distance (Lindstrom, 1970) Thus the recorded signal will
be an altered version of the true EMG due to the spatial and temporal filtering caused by

the bipolar recording scheme

The EMG signal is typically further processed arter recording by high-pass filtering
the signal with a corner frequency in the netghborhood of 10 Hz to remove movement and
other low frequency artifacts In many applications this is followed by full-wave rectification
and change of polarity to distinguish between agonist and antagonist EMG andlow-pass
filtering at high frequency to remove the high frequency components of the signal intro-

duced by other noise sources

1tis evident that the electrical signal that is the final result of recording and process-

ing the surface EMG is very different from the electrical activity of a single muscle fibre. or
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a group of fibres from a single motor unit Still, the surface EMG signal is useful, and is typi-
cally interpreted as a noise signal whose amplitude is modulated by the number of active
motor units in the volume under the electrode, and the rate at which they fire A signal to
noise ratio of less than 30 dB 1s common for surtace EMG (Parker and Scott, 1984, Basma-
jilan and Del_uca, 1985, Zhang et al., 1989) therefore is it is difficult to extract meaningful
amplitude inforrnation from a single EMG trace In practice EMG is recorded for a number
of repetitions of the same task and the traces ensemble averaged to diminish the effects
of atypical variations in amplitude Under time-invanant conditions, mean rectified EMG
Increases monotonically with level of contraction (Milner-Brown and Stein, 1975) Foriso-
metric contractions, the relationship between voluntary force levels and rectified EMG has
been found to be well modelled by a linear, second-order transtfer function (e g Genadry

etal , 1988)

CO-CONTRACTION

In order to provide force in flexion and extension, muscles have an agonist - antag-
onist orientation, contraction of one muscle group will oppose contraction of a muscle
group on the opposite side of the joint (Smuth, 1981) The dynamics of a joint wiil therefore
depend upon the level of contraction of agonist and antagonist muscles When the oppos-
ing muscle groups co-contract, the mean torque developed at the ankle will be the vector
sum of the two torques, and therefore will be diminished Stifiness, however, increases with
force under static conditions, and adds in paraliel on opposite sides of ajoint, so the overall
stiffness of the joint will increase during co-contraction This has important ramifications
in this experiment If during the course of the increase of contraction of the calf muscles
there is co-contraction of tibialis anterior, then the observed dynamics wili refiect this

change

INTERACTION OF CONTRACTILE MECHANICS AND ACTIVATION DYNAMICS

In order to effect limb motion, or to compensate for load disturbances, changes in
firing rate and recruitment of motoneurons are regulated by the motor control system to
provide appropriate muscular forces The behaviour of the muscles of a joint will be deter-

minad by thejoint’s position, as well as the direction and rate of change of positionbecause
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muscle has length-tension and force-velocity relationships that change with the firing rate
and recruitment pattern (Brooks, 1986). During the development of the motion or reguiat-
ing force, the mechanical characteristics of the muscle will change Thisis illustrated in Fig-
ure 2.5 for differentlevels of stimulation of cat soleus muscie Thus, the dynamics of a joint

will depend upon the motion or load compensation being performed

2.1.2. PERIPHERAL CONTROL DYNAMICS

The peripheral nervous system utilizes feedback signals of joint position and its de-
rivatives as well as muscle force to control .ie dynamicresponse of a jointto external distur-
bances. Each mechanism ofthis system has its own receptor and neural patiway as shown

in Figure 2 8.

MUSCLE SPIN!

Joint pos: d its derivatives are sensed via spindle receptors They are small,
spindle-shaped capsules situated parallel to the muscle fibres, attached at both ends to
the muscle, they therefore experience the same changes in length as the muscle Inside

the spindle are intrafusal muscle fibres, differentiated into bag and chain fibres according
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1 - tratfic
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gonglion {sensory). »—7
>

Skeitio}

\
2 S/} 7
{ muscle e s o
\ {extrofusol) \t:;:g::m / / !
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Golg! ending ending
tendon \

ofgon Muscle Spindie Organ

Figure 2 8 The anatomy of the reflex system (from McMahon, 1984)
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to the arrangement oftheir nuclei Nuclear bag fibres, the longer and larger of the two, have
closely packed nuclei grouped near the centre of thefibre Nuclear chain fibres are half the
diameter and length of the bag fibres, and have a singie row of nuclei The fibres are ori-
ented parallel to each other, with the ends of the nuclear chain fibres attached to the bag
fibre Typically, spindles have a length of 2 to 3 mm, are about 0 15 mm in diameter, and

contain two nuclear chain fibres and three to five nuclear bag fibres (McMahon, 1984)

Spindles receive both afferent and efferent innervation. The term afferent fibre is
synonymous with sensory fibre, and therefore applies to neurons which carry information
from the spindle to the spinal cord There are two types of afferent fibres primary and sec-
ondary Primary fibres have large group la myelinated axons which, after losing their myelin
sheath, coil around the intrafusal fibres Secondary endings are comprised of smaller
group |l fibres which terminate mainly on the chain fibres Elongation of the spindle is
thoughtto result in distortion ofthe endings ofthe fibres, generating action potentials (Houk

and Henneman, 1974)

Linear system identification techniques have been applied to determine the dynam-
ic response of the primary and secondary endings to position inputs (Jansen and Mat-
thews, 1962, Alnaes, 1967, Matthews and Stein, 1969, Poppele and Bowman, 1970) These
studies have foind that the respnnses are high~pass, having a corner frequency at approx-
imately 1 Hz, but \hat spindle pnmary afferents are more sensitive to small displacements,
and have a smaller linear range of amplitude than secondary fibres Primary afferents also

exhibit acceleration sensitvity at high frequencies, whereas secondary afferents do not.

Intrafusal fibres are innervated by y-motoneurons, as opposed to the larger «-mo-
toneurons which supply extrafusal muscle fibres These cause contraction of the intrafusal
fibres, and may have the purpose of adjusting the stiffness of the intrafusal fibres, which
in effect would alter the sensitivity of the spindle endings to displacements When y-moto-
neurons are stimulated electrically, two different effects are observed, related to their influ-
ence on the sensitivity of the spindle to ramp displacements Stimulation of dynamicy-mo-

toneurons increases the response of the: primary afferents to the velocity component of
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ramp stretches Static y-motoneurons increase the response of primary and secondary

spindle afferents at a constant length (Crowe and Matthews, 1964)

GOLGI TENDON ORGANS

Located in terndons are small capsules, called Golgi tendon organs, which trans-
duce muscle force A large Ib afferent fibre terminating in many small branches within the
capsule senses distortions in the capsule due to stretching of the tendon, caused by forces
exerted by the muscle fibres to which it attaches Tendon organs attach to relatively few
muscile fibres, and are therefore extremely sensitive to active contraction of muscle, but rel-
atively insensitive to passive forces on the muscle, which are divided throughout the numer-

ous fibres comprising the whole muscle

The response of tendon organs to sinusoidal stretch has been observed in situ (Al-
naes, 1967, Houk and Simon, 1967, Rosenthal et al , 1970, and Anderson, 1974) and in
isolated preparations (Wilkinson and Fukami, 1983) The majority of these studies have
found the dynamic response of Golgi tendon organs to have high-pass characteristics with

corner frequency at approximately 1 Hz

PERIPHER/ L REFLEX EFFECTS

Signals from spindle afferents have an excitatory effect on motoneurons belonging
to the same muscle Spindle primary afferents are the only receptor to have a monosynap-
tic connection with c-motoneurons The majority of primary afferents synapse with moto-
neurons of the same muscle, fewer have monosynaptic pathways to synergist muscles
Secondary spindle afferents have fewer monosynaptic connections than primary afferents,
and have less of a depolarizing effect on the motoneuron (30 uV compared to 65 nV, Sten,
1980) Both primary and secondary afferents have inhibitory influences on antagonist
muscles via interneurons, therefore they cause reciprocal inhibition. i e , they excite syner-

gistic contraction while inhibiting antagonistic contraction

Signals from the lb afferents of Golgi tendon organs have an excitatory effect on
smallinterneurons in the spinal grey matter These interneurons have an inhibitory connec-

tion with a-motoneurons of the same muscle Thus there is negative feedback of the mus-
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cularforce signal As mentioned previously, Golgi tendon organs are very sensitive to small
increases in force generated by small numbers of muscle fibres, therefore they may play

an important role in regulation of muscle force at all levels of contraction

A block diagram of the peripheral control system is presented in Figure 2 9. A cen-
tral command signal to generate muscular force is transmitted to the motoneuron pool,
whereas by the size principle, the smallest motor units are recruited first In the sorna of
the a-motoneuron there is an integration of the collective influences of the central com-
mand signal, excitatory signals from the spindle primary afferents, inhibitory signals from
the golgi tendon organs of the motor unit as well as influences from more complex polysyn-
aptic pathways If the sum total of the signals exceeds the motoneuron's threshold, an ef-
ferent signal is transmitted, causing the muscle fibres in the motor unit to contract (Houk

and Henneman, 1967)

The contributions of the various neural pathways to the excitement or inhibition of
the ae-motoneurons is influenced by the central nervous system via pathways from higher
centres which synapse directly on -motoneurons, y-motoneurons, or interneurons in re-
flexloops There are a number of centres which have descending projections onto ae-moto-
neurons in the spinal column |tis postulated that they control voluntary actions, but may
also be involved in altering the sensitivity of the motoneuron to reflex signals (Baldissera

etal , 1981) Granit and Kaada (1952) found that stimulation of many areas of the reticular
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Figure 2 9 Block diagram representation of the peripheral contro! system (from Brooks, 1986)
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formation in the brainstem of cats activated y-motoneurons, providing evidence that sensi-
tivity of spindles is determined supraspinally Stein and colleagues have observed the mag-
nitude of spindie-mediated responses to be modulated considerably during different
phases oflocomotion (Akazawaetal , 1982, Capaday and Stein, 1986) Theseresearchers
have proposed that the modulation 1s due to y-motoneuron drive or changes in the state

of spinal interneurons, leading to alterations of the gamn of the position feedback loop

Central control of the effect of signals from Golgi tendon organs via interneurons
has been observed by many groups (e g . Eccles and Lundberg, 1959, Hongoetal , 1969,
Houk etal , 1970, Rymer and Hasan, 1979) There are monosynaptic connections fromthe
brainstemto y-motoneurons which have been proposedto be closely inked to the actions
of the same regions on ce-motoneurons (Grillneret al , 1969) These factors make it appar-
ent that peripheral refiex pathways are under direct control of the central nervous system,
viadirect projections of descending pathways to ®-motoneurons, spinal interneurons, and

y-motoneurons

INFLUENCE ON JOINT DYNAMICS

The dynamics of ajoint may therefore strongly depend on the strength ofthe periph-
eral feedback signals received by the @-motoneurons controlling the joint's muscles, how-
ever this remains to be seen It is possible that joint stiffness may increase when the signals
from the position feedback pathways become stronger, and joint stiffness may decrease

when signals from the force sensing pathway increase in strength

The strength of these signals depends upon the potency of the stimulus received
by the receptors, and can also be adjusted through the influence of higher centres Thus
peripheral control mechanisms may potentially be important contributors to the changes

in joint dynamics that may occur during changes in muscular contraction

2.1.3. ARTICULAR MECHANICS

The structures associated with the articulation, namely viscoelastic properties ot the
joint surface, ligaments and other connective tissue will contribute to the overall joint dy-

namics However, in the middle of the joint's range of motion, these effects are small in
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comparison to the other contributors, but are more important near the limits of the range

(Gottlieb and Agarwal, 1978, Weiss et al , 1986a)

2.1.4, LIMB DYNAMICS

The limb can be considered to be a rigid body rotating about the joint, and can
therefore be modelled as apure rotational inertia It should be noted, however, that the rota-
tion of the limb about the joint is unlike the classical revolute joint of mechanics, there is
usually sliding of the joint surfaces, causing the centre of rotation to vary with joint position

(e g Sammarco etal , 1973)

2.1.5. JOINT KINEMATICS

T-n length of a muscle at a given joint position is governed by the kinematics of the
joint,i e, the insertion and origin points of the muscle and the geometry of the articulation
In addition, the contribution of the tendon to overall muscle length must be considered
Muscle and tendon are connected in seres, so that length changes between origin and in-
sertion are the resuit of the cascade of muscle and tendon stiffness properties This interac-
tion is complex, tendon has a nonlinear stress-strain relation (Rack and Westbury, 1984,
Proske and Morgan. 1987) and the mechanical properties of muscle are nonlinear and ti-

me-varying (Hunter and Kearney,1987)

2.1.6. ACTUATOR AND FIXATION DYNAMICS

In experiments investigating joint dynamics using system identification techniques,
the joint is perturbed in a controlled fashion, and the subsequent response of the joint re-
corded Typically, the mechanical actuating device used to impart the perturbations will
have dynamics which will determine the character of the perturbations For system identifi-
cation purposes, the perturbation must contain power over the bandwidth of the system
beinginvestigated Skeletal muscle has dynamics thatare low-pass, with acorner frequen-
cy inthe neighborhood of 2 Hz (Stein, 1974, Baratta and Solomonow, 1990), however ankle
joint stiffness is high-pass with a corner frequency as high as 25 Hz (Hunter and Kearney,
1982) Thus ankle dynamics will have significant components to rather high frequencies

In orderto resolve theimportantfeatures ofthe stiffnessresponses (i e , the corner frequen-
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cy) from the effects of background noise, an actuator for identification of ankle dynamics
should provide a paosition signal with power resolvable from background noise for frequen-

cies up to at least 50 Hz

To impart perturbations to the joint, one of its segments must be attached to the ac-
tuator. The ideal fixation device would have infinite stiffness, zero inertia, and provide a se-
cure attachment between the actuator and imb However, in reality no fixation device has
these properties, and its effects on the observed dynamics must be considered Finite stif-
fness and non-zero inertia of the fixation will introduce additional dynamic effects to the

observed joint dynamics

In order to avoid corruption of the results by the dynamics of the actuator and fixa-
tion, their effects are generally removed from the output data prior to analysis by subtraction
of their contribution to the observed output (Doeblin, 1983) The effects of relative motion
between the limb and actuator are less quantifiable, therefore fixation devices should be

designed to provide as uncompromising a hold as possible
2.2. ANATOMY

The gross skeletal and muscular structure of the ankle joint are shown in Figure
2 10. The ankle joint connects three bones the tibia, the fibula, and the talus This study
is concerned with movements of the ankle in flexion-extension (i e , in the saggital plane)
There are two muscle groups responsible for these movements The gastrocnemius and
soleus muscles comprise the triceps-soleus group (Ts) which causes plantarfiexion (rota-
tion of foot away from the head), and the tibialis anterior (TA) causes dorsiflexion (rotation
of foot upward) By convention, all recorded variables (position, torque, EMG) associated

with dorsiflexion are positive, while those associated with plantarflexion are negative

2.3. VARIATION OF JOINT DYNAMICS WITH MEAN JOINT TORQUE

Joint dynamics are known to be influenced by a number of factors, including mean
jointtorque (Agarwal and Gottlieb, 1977, Hunter and Kearney, 1982), joint position (Gottlieb
and Agarwal, 1978, Weiss et al., 1986a, b). and amplitude of perturbation (Kearney and
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Figure 2.10. Major skeletal and muscular anatomical features of the lower limb.

Hunter, 1982) This study is concerned with the changes in joint dynamics that occur while
the level of mean joint torque increases due to voluntary contraction The perturbations
used in this study were small, centred about a constant mean position, and of uniform am-
plitude probability distribution Therefore, the effects related to changes of mean position
and perturbation amplitude were likely small in this experiment, so that any changes in dy-

namics were related to the increase of mean joint torque

Numerous studies have observed changes in joint dynamics with changes in the
level of muscular contraction Transient perturbations of either torque or position have been
imparted to joints to measure their elastic and viscous parameters at different levels of mus-
cular contraction Allum (1975) used ramp torque disturbances having 100 ms duration to
investigate the stretch reflex response ¢t human shoulder muscles The static stiffness of
the joint was estimated by calculating the slope of the force response at maximum arm dis-

placement (with inertial effects removed) versus the size of the disturbance The viscous
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parameter was also estimated as the siope of the force response in its first constant velocity
phase (where the response was assumed to be due to passive muscle properties) The
static stiffness was found to increase linearly with muscle force, while the viscous parame-

ter varied nonlinearly

Akazawa and colleagues (1983) performed similar experiments on the human
thumb, applying transient torque stimuli, and measuring the subsequent change in thumb
position for three different kinds of voluntary contraction' force control, position control,
and position control of an unstable load Different amplitudes of stretch were applied for
various discrete levels of voiuntary contraction Thumb stiffness was found to linearly in-

crease with level of contraction

Direct measurement of the dynamics in terms of frequency response has also been
accomplished. Agarwal and Gottlieb (1977a, b) investigated ankle joint compliance at dif-
ferent levels of voluntary contraction of the muscles associated with the ankle using sinu-
soidal (1977a) and stochastic (1977b) torque inputs In both studies joint comphance was
found to behave as a second order underdamped system having difterent static stiffness
and viscous parameters (or equivalently, gain and natural frequency) at the different levels
of contraction They found the elastic and viscous parameters to increase linearly with mus-
cular activation in the stochastic input study, and in the sinusoidal input study found reso-
nant frequency and gain to increase monotonically Similar results for stochastic perturba-
tions have been reported for the forearm (Cannon and Zahalak, 1982) and ankle joint
(Hunter and Kearney, 1982; Weiss et a/ , 1988), and for sinusoidal perturbations of the

thumb (Brown et al , 1982) and ankle (Evans et al , 1983)

All these studies have taken a quasi-time-invariant approach to obtain piece-wise
stationary representations of joint stiffness at distinct levels of muscular activity Unfortu-
nately, these models provide no insight to the time course of stiffness changes as the level
of muscular contraction changes This is an important consideration for studies of joint dy-
namics which endeavor to characterize neuromuscular control of movement or other func-
tional activity Levels of muscular contraction change considerably and rapidly during

many functional actions, identification of the subsequent changes n joint dynamics may
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provide a greater understanding of the underlying neural control mechanisms Therefore,
it is essential that an analysis method capable of tracking rapid changes in joint dynamics

be employed

One possible means of determining the changes ot dynamics is to employ a time-
varying system identification approach In the next section, an overview of the different

methods of time-varying system identification is given

2.4. TIME-VARYING IDENTIFICATION

How joint dynamics vary throughout a continuous change of muscular contraction
is unknown The dynamics may change significantly over short periods of timein a complex
manner Any method suitable for studies of joint dynamics must be capable of tracking rap-
id changes in dynamics withouta priori assumptions regarding the form the dynamics may
take (e g , the form and order of an analytical model) or the manner in which the dynamics
change withtime With these criteria established, the different methods available for time-
varying identification will be evaluated in terms of their applicability to the study of joint dy-

namics

Methods for identification of time-varying systems can be divided into four main

classes M rnarelis, 1987a)

2.4.1. QUASI-TIME-INVARIANT METHODS

These methods applv time-invariant identification techniques over finite record
segments under the assumption that the system’s dynamics do not change substantially
in this period Many researchers have employed this approach, for example, Hunter and
Kearney (1982) and Weiss et a/ (1988), who used it to characterize ankle joint dynamics
for a range of constant levels of muscular activation. These methods provide representa-
tions of the system at discrete operating points, thus they cannot identify a system whose
operating point changes significantly in a period of time comparable to the duration of the

p system’s impulse response function (up to 200 ms in the case of ankle complianceimpulse

response functions (e g . Weiss et a/ . 1986a))
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2.4.2. ADAPTIVE METHODS

Adaptive methods use recursive algorithms to minimize the output error of a para-
metric system model whose parameters change with time (Kalman, 1960, Mayne, 1963,
Ljung and Soderstrom, 1983, Lai and Wei, 1986, Moser and Graupe,1983a) These meth-
ods have been used extensively in process control and target tracking applications, and
have been used in neuromuscular research, for example, to develop myoelectric prosthetic
controllers (Moser and Graupe, 1989b) However, adaptive methods are inappropriate for
identification of systems whose structure cannot be assumed a priori, severely limiting the
method's applicability for identification of systems having unknown structure Forexample,
the method proposed by Moser and Graupe (1989a) to identify the time-varying coeffi-
cients of an ARMA (autoregressive, moving average) model through the use of Kalman fil-
tering requires the order of the model to be selected prior to identification Another scheme
presented by Chen and Guo (1989) requires only the upper bound of the model be spec!-

fied, but the model is still restricted to be of one particular form

2.4.3. TEMPORAL EXPANSION METHODS

Temporal expansion methods describe the time-varying characteristics of a system
by a series expansion whose coefficients are treated as additional parameters to be esti-
mated (Hall et a/ ,1977, Marmarelis, 1981 and 1987b, Grenier, 1983, Sharman and Fried-
lander, 1984) The various implementations ofthis method can only be successfully applied
if the system's time-variations are known in advance. or are periodic, or almost periodic
(Gardner, 1983), thus rendering themincapable of identifying systems whose changes with

respect to time are unknown

2.4.4. ENSEMBLE METHODS

Ensemble methods evaluate time-varying system behaviour from ensembies of re-
sponses, each of which exhibits the same time-varying behaviour In general, ensemble
methods use standard time-invariant system identification techniques, but the data used
forinput and output are chosen across the ensemble of responses at the same pointin the
time-varying behaviour, rather than over the time course of a single response These meth-

ods have the advantage of not requiring a prion knowledge of the system's behaviour or
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its form of time-variation, and can be used where the changes in dynamics are of the same

tirne scale as the dynamics themselves

2.4.5. DISCUSSION

The guasi-time-invariant, adaptive and temporal expansion methods are widely
applied in situations where only a single sample path of data is available However, they
can only be used successfully in situations where the variation of the system's dynamics
with timeis slow, periodic, or of aknown torm Consequently, these methods are notappro-
priate for the study of the neuromuscular system, whose dynamics are not only unknown,

but can also undergo rapid unpredictable changes

The most promising of the four techniques for studies of joint dynamics is therefore
the ensemble method Nevertheless, it has not been used extensively, most likely because
general purpose algorithms for this approach have not yet been formulated, and due to dif-
ficulties associated with acquiring. storing, and analysing multiple repetitions of an experi-
ment Many system identification experiments can be desig .ed to record numerous input
- output realizations of the system in question under statistically similar conditions Conse-
quently this method has potential for identification of time-varying systems encountered
in a broad spectrum of applications, one in particular is the study ofthe neuromuscular sys-

tem

Lawrence and Dawson (1977) first used a correlation-based ensemble method to
identify the time-varying dynamics of a rotating naval antenna A similar method was sub-
sequently used by Soechting and co-workers to evaluate the time-varying myotactic re-
sponse (Soechting et a/ , 1981) and dynamic compliance (Lacquaniti et al , 1982) of the
human elbow Both methods are limited in their applicability because of the assumptions

necessary for proper applicaticn of correlation functions to identify time-varying systems

First, the method requires that strict timing exist between input and output, to en-
sure that the occurrence of the system'’s time variation is shifted by one sampling interval
with respecttothe inputfor successive realizations If thisis possiblethe input - outputtem-

poral characteristics at any time across the ensemble and along a given realization will be
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the same This essentially freezes time by enabling theinput - output crosscorrelation func-
tion to be calculated across the ensemble at a particular instant Crosscorrelation will only
provide an accurate estimate of the impulse response function of the system at the instant
in time if two conditions are met The input must be a repetitive pseudorandom binary se-
quence shifted by one sample for consecutive realizations, and the time-varying impulse
response must ne periodic with a period cne sample increment greater than the duration

of one repetition of the input sequence

There are many situations where secure timing between input and output cannot
be ensured, and non-stereotypical time-variations are commonplace in many experi-
ments In these cases, if the realizations are arranged in ensemble form according to the
temporalrequirements of the correlation-based technique, there will not be the same time-
varying behaviour across the ensemble This will result in inaccurate estimates of the dy-
namics because the timing of the variations between repetitions will not be consistent For
example, aperiodic variations will occur in experiments requiring voluntary actions of a sub-
ject, because jitter will be introduced by randomness of the subject’s reaction time Also,
some of the time-vanations will not have the required trajectory In these cases, itis desir-
able to be able to remove atypical time-variations, and to align the realizations so that the
time-variation occurs over the same interval with respect to the ensemble The inflexible
structure imposed by correlation-based methods does not allow these operations to be
performed, thereby rendering them inapplicable to experiments where the above-men-

tioned situations arise (Hunter and Kearney, 1986)

Second, a white input spectrum is necessary for correlation functions to provide ac-
curate estimates of the dynamics In practical conditions, this 1s not always possible An
actuator used to impart perturbations to the system will have limited bandwidth over which
its input can te considered white For example, the hydraulic actuator used in this study
has a flat position frequency response to 20 Hz, followed by a third- or higher-order attenu-
ation of frequencies above 20 Hz Non-white input will have a non-impulsive autocorrela-
tion, so that the contribution of the input will be convolved with the dynamics estimated by

correlation methods (Eykhoff, 1974)
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Third, the correlation-based method is founded on the assumption that the system
being identified is linear This is certainly not the case for imany systems, especially those
encountered in physiology (Marmarelis and Marmarelis, 1978) Itis essential that a tool for
analysis of physiological systems be able to identify nonlinear systems, unfortunately, cor-

relation-based methods cannot do so

2.4.6. APPLICATION TO JOINT DYNAMICS

There have been three previous studies of time-varying joint dynamics which have
employed ensemble methods Two have been performed by Soechting and associates,
the one most relevant to this thesis is the one conducted by Laquaniti et a/. (1982), in which
the compliance of the elbow was identified during a change in contraction level of the
muscles of the upper arm In addition to having questionable results due to the use of the
correlation method, this study suffered from the use of a linear second-order parametric
model to characterize the compliance dynamics, thereby ignoring the possibility of other
dynamic behaviour This caused unreliable estimates of the dynamics during the time-vari-

ation, where the dynamics were of the greatest interest

A new approach to ensemble identification has been developed which employs sin-
gular value decomposition (SVD) of a matrix equationrelating input and output via convolu-
tion to provide models of time-varying systems (Kearney and Hunter, 1987) The SVD-
based method does not restrict the input to be of a specific structure, thus it avoids the
problems of the correlation-based scheme This study has used this method to identity the
changes in ankle joint dynamics during an increase of muscular contraction The details

of the method are presented in the next chapter.

The other study of time-varying joint dynamics to use an ensemble method (Ben-
nett et al., 1990) has employed SVD to identify the time-varying compliance of the human
elbow during a voluntary movement However, the same difficulty encountered by Laqua-
niti et al. (1982) arises in this study, because alinear second-order ARMA model was used
to represent the time-varying dynamics in terms of the changes of the three parameters

of the model
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In the present study, the SVD method has been formulated to provide nonparamet-
ric models of time-varying joint dynamics Thus, this version of the SVD method has the
advantage of not requiring a priori assumptions regarding the form the dynamics may
have. The use of this method may therefore allow more faithful representation of joint dy-
namics under time-varying conditions Thus it has the potential to be a powerful tool for

studying the neuromuscular system during functional activity




3. THEORY

This chapter describes the theory and implementation of a new method for identifi-
cation of time-varying systems This method uses an ensemble identification approach,
and therefore requires the collection ofa number of input - output realizations, eachrealiza-
tionrepresenting the system's response as itundergoes andentical time-variation Singu-
lar value decomposition (SVD) 1s used to find a series of nonparametric models of a sys-

tem's dynamics at discrete instances throughout the system's time-variation

3.1. DERIVATION Or THE SVD METHOD FOR ENSEMBLE IDENTIFICATION

The following derivation is for linear time-varying systems |t should be noted that
this method can deal with nonlinear time-varying systems by replacing the linear convolu-
tion of equation (3 1) below by the more general Volterra functional series (Neilsen et al.,
1989) However, the nonlinear identification algorithm requires an enormous amount of
data, and is extremely computationally intensive, therefore it was not employed in this in-

vestigation

The output y(t) of alinear, time-varying system can be represented by the convolu-
tion of a time dependent impulse response function (IRF, kernel, fiiter, or weighting func-

tion), h(t,7) with an input x(t) (Bendat and Piersol, 1986)

oc
y(t) = j h(t.7) x(t - 7)dr @ 1)
v o}

The ensemble method requires the collection of a number of input-output realiza-
tions, each realization representing the dynamics of the system as it undergoes a similar
variation with time For a single realization in the ensemble, denoted asrealization k, input

and output are related by the convolution integral

yr(t) = f h(t.7) x(t —7)dr (3.2)
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Underthe assumption thatthe system'simpulse responseis finite and two-sided, equation

(3.2) becomes

To

yi(t) = fh(t, T) Xt — 7)dt : (33)

=T,

whereh(t, 1) = 0forT > | 7| For digital data with sampling interval at, equation (3 3) can

be approximated by the discrete convolution sum (Hunter and Kearney, 1983)
n
yi.k) = At > h(i.j) x(i-j.k) . (3 4)
j=-n
where i is the index of discrete time, and n = 7,/At

Therefore, the IRF will be 2n + 1 points long For convenience, let the length of the
IRF be denoted by q If there are m realizations in the ensemble, there will be a system of

m linear equations, each relating input and output for a particular trial in the ensemble

y(i, 1) = At [h(i,=n) x(i + n, 1) + ... + h(i,n) x(i-n, 1)]

(3 5)
y(i.m) = At [h(i,-n) x(i + n,m) + ... + h@i.n) x(i-n, m)|
which may be expressed in matrix notation as
Y, = At XH, : (2 6)

where
Y; is a vector of length m with kh element y(i k),
H;is a vector of length g with jt element h(i,j),
and X; is an q x m matrix with j.k!" element x(i-j.k)

Therefore, the IRF at cross-sectional time i (H;), may be found by solving (3 6), knowing

the system input and output (X;and Y, respectively) Under ideal conditions, this can be
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accomplished by choosing the number of realizations (m) to be equal to the length of the
IRF (q) H;could then be determined by standard methods (e.g , by Gaussian elimination
(Strang, 1980)) In practice, however, noise will be introduced to the system’s output, there-
fore it will be desirable to record more realizations than points in the IRF (m > q), so that

the matrix X; will be overdetermined, and a unique solution of (3 6) will not exist

One solution of Equation (3.6) can be found by minimizing the squared error be-

tween the observed and predicted outputs
n 2

m
s =5 | vi,r) - At Y x(i-p,r) hii,p)| (3.7)
r=1

=-n

where ﬁ( i, p) represents the coefficients of the IRF estimated for time i In matrix notation,

for each time increment we wish to find the IRF estimate, fl, , which minimizes

Y.~ AtX,H, | ©8

The vector minimizing (3 8) in the least-squares sense may be found by performing the

singular value decomposition (SVD) (Strang, 1980) of X; Thus,
X, = UDV, : (39)
where
U, isanm x q column-orthojonal matrix corresponding to time i,
Viis aqg x q column-orthogonal matrix corresponding to time i, and
D, is aq x q diagonal matrix of the singular values of X;
These matrices are orthogonal in the sense that their columns are orthonormal, i.e ,
U'U = 1 , (310)

vy = | . (311)

and, since V is square, itis also row-ortt cnormal, i e.,



vl =1 @ 12)

Continuing with the derivation substitution of (3 9) into (3 8) gives

| Y, - AtU;D;V{'H, || (3 13)
This has a minimum value in the least-squares sense when

Y; = AtUD,V]'H, : (3 14)

where the subscript Is denotes the least-squares solution Rearranging

-1 _
Hy, = E[U,D,vi [y, (3 15)

-1
The quantity [U;’ AA ] is known as the pseudoinverse of the rectangular matrix X,. and

is denoted X;* Therefore,
x‘-}- — VID1+ UlT (316)

The matrix D, * is a diagonal matrix whose diagonal elements are assigned values accord-

ing to the following

fori=j
.1
df = — if d; =0 (317)
dii
df =0 if dy=0 . (3 18)
forisj
di =0 (3 19)

Therefore, for a particular time i in the input - output ensembile, the least-squares approxi-

mation of the system’s instantaneous impuise response function is

H, = — XY, (320)
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3.2. IMPLEMENTATION

An algorithm employing the theory of the SVD method has been implemented in
the operator TVFILin NEXUS, alanguage for signal and system analysis (Hunter and Kear-
ney, 1984) This operator requires three channels of data the input and output data, con-
structed as concatenations of the individual input and output realizations, and a third chan-
nel consisting of the indices representing the times when the system’s dynamics
correspond to the same operating point in the time-variation for each realization The third
channel provides the means to generate uniform input and output ensembles by aligning
the individual realizations, as well as enabling th2 user to effectively eliminate unwanted
trials fromthe originalensembles For a particular ensembie cross-sectionaltime, the anal-
ysis proceeds by generating the input matrix X, and output vector Y,, with ensembie aver-
age removed to remove offset bias and linear trends The estimated IRF is then determined
using the NAG singular value decomposition subroutine FO4JGF (Numerical Algorithms

Group Limited, 1988) The code for the implementation is provided in Appendix A

3.3. DISCUSSION

Ensemble methods canidentify rapidly time-varying systems because they identify
the dynamics in terms of the input - output response across an ensemble of realizations
By performing the cross-ensemble identification over the time-span of the variation of the
dynamics, a series of representations is obtained which describes the variation of the sys-

tem’s dynamics with time.

The SVD method is a very powerful tool for ensemble identification of t', \e-varying
systems It provides nonparametric models of the time-varying dynamics of a system,
therefore it does not require assumptions regarding the form of the system’s dynamics.
Furthermore, the time-variation of the system can be of any form, and is not required to
occur inregular intervals In addition, as mentioned at the onset of this chapter, the method

can be formulated to identify nonlinear time-varying systems

Singular value decomposition of a matrix is always possible and is not affected by

the matrix’ singularity or overdetermination In the case of an overdetermined set of equa-
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tions, he solution found via SVD will be the most accurate one in the least-squares sense
(Press etal., 1986) Forleast-squares applications, the only requirement imposed by SVD
on the input matrix is that its rows be independent for best results (Eykhoff, 1974, Strang,
1980). The solution is not dependent upon the input sequence having a white frequency
spectrum, thus the SVD method is not hindered by the dynamic limitations of actuators

used to input test signals to the system being investigated

The SVD method offers a significant advantage over the correlation-based meth-
ods used by Lawrence and Dawson and Soechting and colleagues by virtue of its less strict
input requirements The SVD method does not require an input ensemble having a special
structure, therefore it enables alignment of the realizations with respect to a cross-en-
semble reference point to reduce the effects of variability of the onsettime of the time-vari-
ation Bythesametoken,the SVDmethod allows the removal oftrials which do notconform
to the desired trajectory, thereby providing the facility for identification using an ensemble
of records having as uniform a time-variation as desired Nevertheless the method is ad-
versely affected if the variation between trials is large Thus, a considerable number of input
- output realizations may be required by the SVD method to obtain accurate estimates from
noisy data The eftects of additive output noise on the performance ofthe SVD method were
evaluated by applying it to identify the time-varying dynamics of a simulated system in the
presence of different output signal to noise ratios The results of the simulation study are

given in the next chapter



4. TIME-VARYING ANKLE DYNAMICS:
SIMULATION STUDY

This chapter des<ribes a simulation of human ankle joint dynamics undergoing a
time-variation of the level of contraction ot the calf muscles, and the subsequent identifica-
tion of the time-varying dynamics through the use of the SVD method for various levels of
additive output noise The results indicate the new method to be capable of tracking
changes in system dynamics on a time-scale comparable to that expected in the physio-

logical situation, and to be robust in the presence of the additive output noise

4.1. METHOD OF SIMULATION

The strategy used for the simulation is presented schematically in Figure4 1 In this
study, an experiment was simulated in which a stochastic torque signal was imparted to
a hypothetical human ankle during repeated contractions of the calt muscles, induced by
periodic neural activation The position output signal was generated by convolving the
torque signal with a second-order low-pass filter whose parameters changed with time,
representing the time-varying ankle compliance dynamics during the contraction The pa-
rameters of the filter varied as a function of the mean torque produced by the cali muscles,
in agreement with the observations of previous studies using quasi-time-invariant meth-
ods The mean torque was considered to be the result of the convolution of the neural acti-

vation signal and a filter representing the activation dynamics of skeletal muscle

One technical note the simulation has been generated with joint dynamics de-
scribed in the low-pass compliance formulation as opposed to the high-pass stiffness for-
mulation used in the experimental study A low-pass system is much easier to simulate
than a high-pass system because simulation of a high-pass second order system involves
two numerical differentiations, which will iead to an artificial amplification of any noise pres-

ent in the original input signal, thus corrupting the estimates of the dynamics
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4.1.1. JOINT DYNAMICS
Jointdynamics were modelled as a linear, second-order, time-varying systern hav-

ing the transfer function

o) _ G(a)w}(a)

= , (4 1)
TQ()  s% + 2a)wy(a)s + wi(a)

where
TQ(s) is a wide-sense stationary, controlled input torque signal,
©(s) is a nonstationary position output,
G(a) is the compliance gain,
{{x) is the damping parameter,
the parameter wy(w) is the natural frequency, and
the variable o represents the time over which the change in dynamics occurs

This model of time-varying joint dynamics is based on the resuits of previous inves-
tigations using quasi-time-invatiant methods (Agarwal and Gottlieb, 1977a, b, Hunter and
Kearney, 1982, Weiss et al , 1988) These studies have shown that joint dynamics are well
modelled by a second-order dynamic system for constant levels of contraction. For the
sake of simplicity, the piece-wise time-invariantresults of the quasi-time-invariant studies
have been assumed to be representative of the manner in which joint dynamics change

during a continuous change in level of muscular contraction

The time-varying dynamics were simulated by varying the parameters G, {, and vn,
as afunction of & The variation of these parameters was chosen to agree with the results
of previous investigations of the human ankle (Hunter and Kearney, 1982; Weiss et a/.,
1988) These studies revealed that at distinct levels of muscular contraction,compliance
gain was proportional to the inverse of the resultant mean torque, and natural frequency

varied in such a way as to maintain a constant damping parameter

The time-varying mean joint torque signal was a function of a square wave gener-

ated to simulate a series of periodic step increases of neural activation The square wave
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had a period of 2.00 s, and was modulated between 0 and 1 arbitrary units of activation

This neural activation signal was convolved with a filter with characteristics similar to the
dynamic EMG - torque relationship of the human ankle observed by Genadry eta/ (1988),
.e., a second-order low-pass filter with a comer frequency of 2 Hz, and a damping param-
eter of 0 4 The result of the convolution was the mean joint torque signal used to generate
the time-varying parameters of equation (4 1) The resulting time variations of the parame-

ters over one cycle of contraction are shown in Figure 4.2
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Figure 4 2 Vanation of the parameters of the simulated time-varying system for a single contraction

cycle Independent variable &« represents the ensemble time, o« = 0 01s the time at which the step
increase in neural activation occurred
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The torque input signal was a pseudo-random binary sequence (PRBS) having
peak to peak amplitude of 10 0 Nm, zero mean, and 0 01 s sampling interval This se-
quence was composed of individual realizations having 2 00 s duration, each realization
being independent of the others to ensure the nonsingularity of the input matrix, thus pro-

viding the best situation for the least-squares SVD algorithm to operate

The position signal was generated by the discrete convolution of the torque pertur-

bation input with the time-varying convolution kernel representing ankle compliance

n
6i) = At Y hi,j) tqi- j) , @2)
p=0
where the limits of summation are for a causal kernel because of the compliance formula-

tion used in the simulation

The kernel h(ij) was generated for each discrete time using the appropriate values
of G, {. and w, The convolution of the input with the time-varying kernel resulted in a non-
stationary output signal whose statistics were a function of @ The input and output records

for a single sample path are shown in Figure 4 3, for zero additive noise

4.1.2. EFFECT OF ADDITIVE OUTPUT NOISE

In practice, inherent noise in the recorded signals and variability between trials will
corrupt the data The least~squares solution obtained by SVD will depend on the number
of observations of the time-variations of the system, which will determine the degree of
overdetermination of the system of equations to be solved The higher the degree of over-
determination is, the greater the possibility that the least-squares solution will be an accu-

rate representation of the dynamics

To determine the robustness of the SVD algorithm in the presence of additive Gaus-
sian, white, output noise, ensembles of input and output were generated for different output
signal to noise ratios (S/N). ranging from nfinite S/N (no additive noise) to a S/N of 1 (vari-
ance ot additive noise equal to that of the output) For each data set, the dynamics were

identified using different ratios of ensemble width to IRF length, i.e , the degree of overde-
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Figure 4 3 Simulated input and output records representing the time-variation of ankle joint dynam-
ics for a single realization with no adaitive output noise.

termination of the system of equations (p) The IRF length was held constant at 50 points,
i e, the IRFs had a support spanning 500 ms, which was sufficient for the response to die
outtozero The number oftrials in the ensemble ranged from 100 to 500, sothat the degree

of overdetermination of the system of equations varied from 2 to 10

4.2. RESULTS

For each simulated condition, the series of input-output realizations was arranged
in ensemble form, with each realization aligned sothatthe step increase of neural activation
occurred at the same time across the ensemble A series of impulse response functions
representing the change in system dynamics was determined in 10 ms intervals over the
periodfrom 1 0 s before the step increase in neural activationto 1 0s after Figure 4 4 shows
IRF estimates obtained for a data set with infinite signalto noiseratio Thevarations of gain
and natural frequency of the simulated joint with contraction level are reflected in the

changes in the amplitude of the first peak and the lag of the first overshoot of the IRFs
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Figure 4 4 Series of compliance impuise response functions (IRF) estimated for simulated data with
no additive noise Each IRF represents the dynamics of the simulated system at an instant in the
time-course of its variatron with time

The accuracy of the estimated IRFs was quantified in terms of the percentage of the
variance of the actual system output predicted by convolving the system input with the se-
ries of estimated IRFs This quantity is called the variance accounted for (VAF) of the series

of estimated IRFs, and is formulated as

Z (YI_);I)Z
>y

o
t

VAF =1| | - (4 3)

where y is the actual system output caused by a given input signal, and y is the output pre-

dicted by the convolution of the input signal with the series of IRFs This measure does not
reflect the accuracy of the individual IRFs, but itis still useful for evaluation of differences
inaccuracy betweenwhole series of IRFs This issue will be addressed further in the discus-
sion section of the next chapter Figure 4 5 shows the VAF as a function of signal to noise
ratio (S/N) and degree of overdetermination (p) The accuracy of the estimates increased
proportionally with signal to noise ratio and degree of overdetermination Accurate esti-

mates were obtained in the presence of considerable additive output noise provided that
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the degree of overdetermination was suitably large For example, for a signal to noise ratio

of 1, the method provided estimates having greater than 80% VAF for p greater than 5 5

4.3. DISCUSSION

Although the simulated system was chosen to have properties similar to those ob-
served for the ankle join under quasi-time-invariant conditions (Hunter and Kearney, 1982,
Weiss, et al., 1988), this should not be interpreted as an accurate representation of the dy-
namics of the joint The simulation does not address the influence of factors such as the
properties of the central command signal, reflex mediated effects, motor unit recruitment,
or cross-bridge related effects, which have profound influence on joint dynamics It does.

however, demonstrate the power and robustness of the analytical technique
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Figure 4 5 Varniance accounted for (VAF) by the estimated impulse response functions as a function
of degree of overdetermination (p), and output signal to ncise ratio (SIN)
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The simulation does not explicitly take the effects of inter-trial variability in the
change of level of contraction’s trajectory or onset time into account Because the SVD
method affords the ability to remove nonuniform contractions from the ensemble and to
align trials in the ensemble so that the change in level of contraction is uniform across the
ensemble, it has been assumed that these two effects can be minimized by a preprocess-
ing procedure prior to the analysis This preprocessing technique will be detailed in the next
chapter Nevertheless, some degree of variability between trials will exist after the prepro-
cessing, which will lead to decreased accuracy of the estimates As a first approximation,
this simulation has been formulated under the assumption that the etfect of onset time vari-
ability can be made neghgible by alignment of the ensemble prior to analysis Therefore,
in the simulation study, the factors most liable to introduce poor estimation quality will be

poor signal to noise properties of tne recorded signals, and variability between trials

The noise signal was created to beindependent betweentrials, so that the probabil-
ity distribution of the noise was similar across the ensemble and along a single realization
Thus the additive output noise signal can be considered to represent the combined effects
of cross-ensemble variation and the inherent signal to noise charactenstics of the output
signal The contnbution of these two effects to the variability of the ensemble data will de-
pend upon the system being investigated f, for example, the data recorded in anidentifica-
tion experiment has high signal to notse quality, then the largest source of varnability in the
ensemble will be across the ensemble, in terms of deviations of the individual realizations
from anideal trajectory Onthe other hand, it1s concervable that the system being identified
may produce an output signal with poor signal to noise qualities, e g , an EMG signal (see
the treatrnent on EMG in the background) In this situation, the inherent noise of the output

signal may dominate the variabilty of the output

This simulation study has shown the SVD method to be a viable method for identifi-
cation of systems whose dynamics change under conditions comparable to those encoun-
tered in joint dynamics In light of the success of the method's application to simulated
data, it was used to analyze experimental data obtained under conditions similar to those

used in the simulation study This work is presented in the next chapter



5. TIME-VARYING ANKLE DYNAMICS:
EXPERIMENTAL RESULTS

This experiment was designed to investigate the changes in dynamics of the ankle
during a rapid increase of contraction of the calf musc'es,corresponding to a change in
mean joint torque from 10% to 25% of the subject’s maximal plantarflexion torque The hu-
man ankle was investigated in this study because it plays an important role in posture and
locomotion, and may be representative ot the dynamics of other joints under similar condi-
tions Also, from apractical standpoint, the ankle 1s easily constrained to rotation in a single
plane, and, being the most distal joint in the limb. it can be studied independently of other

limb segments

In the experiment, subjects executed a large number of contractions of triceps-su-
rae while the ankle was stochastically displaced about a mean positton The SVD method
was used to determine the dynamic stiffness of the ankle throughout the tme-variation of
contraction level The results, in terms of a series of stitiness impulse response functions
representing ankle dynamics at 2 ms intervals, provide a nonparametric representation of
the changes in joint dynamics that accompany a change in leve' of muscular activation
They reveal that during the transition of contraction level, ankle dynamics deviate from the
second-order dynamic behaviour reported by previous studies employing quasi-time-in-

variant approaches

5.1. APPARATUS

During the experiment, the subject and all the apparatus associated with input and
recording of the experimental responses were located on an experimental table (Kearney
et al., 1983) Subjects lay supine on the table with their left foot attached to an electrohy-
draulic rotary actuator (Rotac Model RN-32-1V) by means of a custom-fitted fibreglass
boot (Morier et al., 1990) The subject was held in place by wide straps over the waist and
left knee Ankle position was determined by the actuator, which was controlied via a servo

valve (Moog Model 73-104) operating under position feedback control In this configura-
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tion, a position reference signal was generated digitally (DEC VAXStation II/GPX) and con-
verted to analog form by a 12 bit D/A converter (DEC, model AAV11-A) Actuator position
was transduced by a rotary potentiometer (Beckman Helipot, Model 6263-R5K-L 50) lo-
cated on the axis of the actuator (he signal from the potentiometer was used both to close
the control loop, and to represent joint position This control system had a frequency re-
sponse thatwas flat to 25 Hz, and was capable of applying suitable power for systemidenti-

fication purposes to greater than 50 Hz

Thetorque resulting from rotary displacements of the foot, its boot, and the actuator
was recorded via a torque transducer (Lebow, Model 2110-5k, stiffness = 50 000 Nm/rad)

located on the shaft of the actuator between the actuator and the foot fixation device

Disposable Ag-AgCl surface electrodes (Hewlett-Packard, Model 14445a),
mounted in a bipolar configuration oriented parallei to the muscle fibre direction, were used
to detect EMG activity from the soleus (TS) and tibialis anternor (TA) muscle groups of the
leftleg The bipolar signal was difterentially amplified by custom-built preamplifiers incor-
porating an instrumentation amplifier (Burr-Brown, Model 3620, common mode rejection
ratio of 100 dB at 100 Hz, 80 dB at 1000 Hz), vanable gain and oftset control, and current
isolation switches (Ohmic Instruments Model I1IS-100) The resulting signals were high-
pass filtered (corner frequency 10 Hz, 2-pole Butterwort!" filters (Frequency Devices, Model
772BT-2)), full wave rectified (TA EMG positive, TS EMG negative), and low-pass filtered
(cutoff frequency 1 kHz, 4-pole Bessel filters (Datel Systems, Model FLT-LP4L5K))

The position, torque, TS EMG and TA EMG signals were anti-alias filtered at 100
Hz by 8-pole Bessel filters (Frequency Devices, Model 902 LPF) prior to sampling at 500
Hz by a 16 bit A/D converter having = 10 V dynamic range (Data Translation, Model
DT2757)

5.2. METHODS

5.2.1. MAXIMUM VOLUNTARY CONTRACTION
Dorsiflexion and plantarflexion maximum voluntary contraction (MVC) were re-

corded prior to the experimental trials Withthe ankle held in its rest position by the actuator,
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the subject was required to execute a maximal contraction in response to a step change
in a tracking stimulus displayed on the oscilloscope A dorsiflexor MVC was executed for
5 s followed by a 5 s plantarflexor MVC after a period of 120 s The 5 s interval of maximal
contraction was divided into five 1 s partitions, the largest torque averaged over a single

partition was designated the maximum torque

5.2.2. POSITION PERTURBATION

A 2000 point pseudo-random binary sequence (PRBS) was repeatedly displayed
at 500 Hz by the D/A converter This signal drove the actuator’s servo valve, resultingin sto-
chastic displacements having peak to peak amplitude of 0 05 rad about the ankle's rest

position, with power suitable for system identification up to 50 Hz

5.2.3. PARADIGM

The paradigm was chosen because the task required of the subject was relatively
simple and stereotyped, while at the same time representative of the rapid and significant
changes in joint dynamics that occur during natural limb motion In order to iniiate the de-
sired time-varying behaviour, two signals were displayed on an oscilloscope (Kikusui,
Model C0OS5020) mounted above the subject’s head One was a square wave target signal
calibrated to represent the torque required to elicit a change of plantarflexor contraction
from 10% to 25% MVC The other was a low-pass filtered version of the signal from the

torque transducer which provided visual feedback of the torque generated by the subject

While the ankle was stochastically perturbed by the actuator, the subject was
trained to track the target signal by changing the level of TS contraction using the feedback
signal as a guide After the subject became adept at this task, the sets of input - outputtrials
were recorded Each set of trials consisted of -2 contractions occurring at approximately
4 s intervals (the contractions were not initiated at the sarme time with respect to the target
signal due to variations in the subject's reaction time) Up to 28 sets were collected. with
afive minute rest between sets In addition, the subject was allowed a longer rest near the
midway point of the experiment, during which the restraining belts were released and the

subject given the opportunity to sit up During this time the subject’s foot remained in the
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fibreglass cast, attached to the actuator, so that the ankle's position relative to the actuator
was not compromised The experiment was continued until the subject began to experi-
ence discomfort or slight fatigue Input an output records for a single realization from the

data of one of the subjects are presented in Figure 5 1

5.2.4. SUBJECTS
Three healthy male subjects, denoted S1, S2, and S3, were studied They ranged

in age from 23 to 43, and had no known abnormalities.

5.3. ANALYSIS

5.3.1. REMOVAL OF ACTUATOR AND BOOT DYNAMICS

The observed torque was not only due to dynamics associated with the ankle, but
also the result of the dynamics of the actuator and the foot fixation device In order to deter-
mine the torque solely due to ankle dynamics, the other non-ankle influences were identi-
fied and removed in the following manner. After completion of the trials, the subject was

re'zased from the apparatus, and a calibration was performed to identify the dynamics of
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Figure 5 1 Position tinput and torque output records for a single reahzation from the ensemble of
subyect S2
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the apparatus with the boot attached to the actuator A PRBS test signal of the same ampli-
tude and frequency content as the experimental input was used to obtain an IRF represent-
ing these dynamics The position record obtained during the entire course of the trials was
then convolved with this IRF, and the resulting estimate of the contribution of the apparatus
was subtracted from the observed torque, resulting in a corrected torque signal, represent-

ing the contribution of the ankle alone In the following text, all references to torque are to

this corrected torque
5.3.2. ALIGNMENT OF TRIALS

In order for proper application of the SVD method. it was necessary for each of the
individual realizations in the ensembles of input and output to be the result of identical time-
variations Therefore, the subject was required to execute the contractions exactly in the
same manner for each experimental trial 1n practice, however, this was difficult to achieve
fortwo reasons First, there was variation in the latency between tne onset of the target sig-
nal and the initiation of the change in level of voluntary contraction Second, aithough most
contractions demonstrated a stereotyped trajectory, there were occasional anomalous
contractions Prior to the application of the identification procedure, these effects were

minimized by processing the torque records in the following manner

1 The torque record was low-pass filtered (511 point FIR filter, Hamming window. 2

Hz cutoff) to remove the torque variations associated with the PRBS position input

2 Areference point was defined for each torque realization, indicating the time at
which the level of torque was half-way between the two targetlevels The tnals were

aligned to this reference point which was assigned the cross-ensemble time « =

00s

3 The ensemble mean and standard deviation were determined with respect to the

reference point

4 Individual trials whose trajectories lay outside one standard dewviation of the en-

semble mean were rejected
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Figure 5 2 illustrates the results of the application of this procedure to data for one
of the subjects Part A of the figure shows the unfiltered torque ensemble prior to process-
ing The filtered, unaligned ensemble is presented in part B In part C, the ensemble has
been aligned to the mid-way point between the two target levels of torque The final
screened ensembleis presentedin part D The unfiltered version of this ensemble was used

in the identification

The results of the screening procedure are tabulated for the three subjects in Table
5 1 Note that in all cases, more than half the original number of trials were rejected by the

screening procedure

Subject Initial Number of Trials Number of Trials After
Screening Procedure
S1 960 337
s2 800 297
S3 800 258

Table 5 i Change in number of tnials in the ensemble as a result of the application of the screening
procedure to the data for the three subjects

5.3.3. ESTIMATION OF TIME-VARYING DYNAMICS

For each subject, the SVD method was applied to the preprocessed ensemble data
Two sided, 47 pointlinear impulse response functions representing joint stiffness were esti-
mated for each sample interval in the time spanning + 0 4 s relative to the midway point
inthe increase intorque Therefore, a series 0t401 IRFs was obtained in which each individ-
ual IRF represented the dynamics at instances in time separated by 0 002 s The series of
IRFs as a whole represented the time-variation of the dynamics of the ankle throughout

the increase of muscular contraction

5.4. RESULTS

5.4.1. ENSEMBLE AVERAGE TORQUE

The range over which the dynamics were identified is indicated by the dotted lines

in Figure 5 3, which presents the ensemble average torque for the three subjects over a
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A B

Figure 5 2 Stages of preprocessmng for the torque ensemble of one of the subjects A) Unfiltered,
unaligned torque ensemble B) Low-pass filtered version of the unaligned torque ensemble C) En

semble in B after aignment D) Ensemble after removal of trials outstde of one standard deviatron of
the ensemble mean
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time spanning +1 0 s of the reference pont It is evident that this time-span encompasses
the dynamics of the ankle from before to after the increase in contraction Also indicated
in Figure 5 3 is the variability of the torque records used in the analysis, interms ofa +1 0

ensemble standard deviation envelope
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Figure 5 3 Ensemble average torque records + 1 0standard deviationfor each subject The dotted
/Iines indicate the tme-span over which the dynamics were 1dentified
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The reference point @ = 0 0 s denotes the midway point in the change of level of
contraction, negative values of « correspond to pre-mid-transition, and positive to post-

mid-transition This convention will be used to present the results throughout this chapter

5.4.2. ACCURACY OF RESULTS

A good measure of how well the results of an identification procedure represent the
actual dynamics is the extent to which they can account for variation of the output given
the actual system input This quantity is known as variance accounted for, or VAF In this
study, VAF has been calculated in terms of the ability of the individual impulse response
functions to predict the cross-ensembie output corresponding to the time in the ensembie
represented by the IRF In this way, the time-varying model’s ability to represent the dy-

namics is quantified for each sampling interval in the time-span of the identification

Consider the other possible means of assessment of the model’s accuracy.ie . 1in
terms of the ability of the entire series of IRFs to predict the output of a single realization
given the realization’s input In this measure, the presence of poor estimates of the dynam-
ics over a smail segment of the time-span of the realization (e g.. the transition phase of
contraction in this experiment) may be masked by better estimates of the dynamics else-
where in the course of the realization For this reason, itis advisable to evaluate the accura-
cy of estimates resulting from ensemble time-varying identification by determining the
cross-ensemble VAF of individual estimates as opposed to calculating the VAF by consid-

ering the series of estimates as a whole

The variance accounted for (VAF) by the stiffness IRFs determined for the three sub-
jectsis shown in Figure 5 4 Each point in the VAF records represents the ability of the indi-
vidual IRF corresponding to that time to predict the cross-ensemble output at that instant
It is evident that in all cases the linear IRFs provide an excellent representation of ankle dy-
namics throughout the variation of muscular activity, for two of the three subjects (51 and
S3) the VAF exceeded 80% across the ime-span, while the VAF of subject S2 had a mini-
mum value of 73 4% Possible reasons for the lower VAF of S2 will be discussed later in

this chapter
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Figure 5 4 VAF of the Iinear stiftness IRFs for the three subjects studied

5.4.3. STIFFNESS IMPULSE RESPONSE FUNCTIONS

54

The ensemble of stiffness IRFs for subject S1 is presented in Figure 5 5 The sam-

pling rate of this experiment was 500 Hz, with an anti-alias cutoff frequency of 100 Hz, how-

ever the input signal only had resolvable power for frequencies up to 50 Hz Thus, the esti-

mated IRFs had frequency components above 50 Hz which did not contribute significant

information regarding the dynamics of the ankle For presentation purposes, these effects

were removed by low-pass filtering the series of IRFs (3 point FIR, 3 dB point at 125 Hz).

resulting in the series of IRFs shown in the figure Both sides of the the filtered IRFs die out

to zerointhe 0 094 s (47 point) support, thus all the significant dynamics of the ankle occur

in the time span of the filters
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5.4.4. FREQUENCY RESPONSES

Stiffness IRFs, being representative of a high-pass, non-causal system, are diffi-
culttointerpretvisually However, when presented in terms of their frequency domain repre-
sentations, a clearer picture of the changes in dynamics results Figures 5 6a, b andc shew
the gain and phase parts of the stiffness frequency response obtained by Fourier transfor-
mation of zero-padded versions of the stiffness IRFs for the three subjects (zero padding
provides an interpolated transform having a smoother appearance, however it does notim-

prove the inherent resolution (Marple, 1937))

These resuits show a smooth change of ankle dynamics from the pre-transition
phase to the post-transition phase The variations in the shape of the frequency responses
reflect changes in ankle dynamic that occur as the subjects increased the level of torque
developed at the ankle In each case, it 1s evident from the responses that the dynamics
during the transition behave differently than those observed in the pre- and post-transition
phases Theresponsesbefore and after transition were similar to those of an underdamped
second-order high—-pass system, the gain response was flat at low frequencies, with an
attenuated response at frequencies near resonance, followed by monotonically increasing
gain at frequencies above resonance Similarly, the phase part of the frequency responses
exhibited a rapid increase in phase lead centred about the resonant frequency which

asymptotically approached a lead of 180° greater than at low frequencies

During transition, the dynamic behaviour exhibited a marked deviation from sec-
ond-order behaviour At low frequencies, the gain response was not flat, but was atte-
nuated, the degree of attenuation decreasing as the frequency increased Also, the phase
response demonstrated a larger phase lead than would be expected for a second-order
system At higher frequencies the responses during the increase in contraction exhibited
a behaviour much like the responses before and after the increase The differences be-
tween the dynamic behaviour of the ankle before during and after the increase are shown
in Figure 5 7, which presents the gain and phase responses of subject S1 in the three re-

gimes
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Figure § 7 Gatn and phase responses of subject S1 for the pre-, transition, and post- regimes of the
change of level of contraction

5.4.5. SECOND-ORDER MODEL

In order to determine the change in dynamic behaviour during the transition phase

IN a more quantitative manner, a second-order dynamic model of the form shown below

was fit to each of the stiffness IRFs

TO(s) 57 + 20w, + o (5 1)

Os) Guw;
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Figure 5 8 VAF by second-order fits to the series of stiffness IRFs obtained for each subject

The results, shown in Figure 5 8, reinforce the observations from the frequency responses
before and after the transition phase. the dynamics are well described by the second-order
parametric model The dynamics during the iransition do not have a second-order beha-

viour, indicated by the low VAFs of the fits during those periods

5.4.6. CHANGES IN LOW FREQUENCY GAIN AND RESONANT FREQUENCY

Had the dynamics behaved in a second-order manner throughout the change of
level of contraction they could have been presented as variations in the parameters of the
analytical representation given above However this is notthe case Therefore in order to

represent the changes of dynamics more parsimoniously two salent features were ex-
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tracted from the frequency responses the system’s gain at low frequency, and resonant
frequency The resonant frequency was considered to be the frequency at which the gain
partof the frequency response was minimum (in the neighborhood of the resonant dip, ap-
parentin Figure 5 7) The gain at low frequency was taken to be the value of the gain part
ot each of the frequency responses at 0 6 Hz The variation of these parameters with the
change of contraction level is presented in Figures § 9 and § 10 The resonant frequency
increases monotonically as the level of activation increases, while the low frequency gain

decreases significantly during the transition
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Figure 59 Variation of resonant frequency (w) of ankle stiffness with change of level of contraction
for the three subjects
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Figure 5 10 Vanation of low frequency gain (Gir)of ankle stiffness over the change of level of con
traction for the three subjects

5.4.7. EMG RESULTS

The ensemble average EMGs representing mean TS and TA activity are presented
i Figure 5 11 The TA EMG record for subject S1 was not available due to problems en-
countered during sampling The ensemble average EMGs disclose the presence of a large

increase of TS activity, and negligible change of TA activity, corresponding to the change

in level of contraction

5.4.8. SUMMARY
Figures 5 12a, b, and c provide a summary of the results for the three subjects The
ensemble average torque, as well as its rate of change (obtained by numerical different:-

ation of a highly smoothed version of the ensemble average torque). are presented with
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Figure 5 11 Ensembie average EMG for the three subjects The top trace 1s TA EMG, the bottom
traces TS EMG By convention, TA EMG was postitively rectified, and GS EMG was negatively recti-

fred The TA EMG record for subject S1 was not recorded

the other teatures of the results, on a subject by subject basis The timing of the events dur-
ing the contraction can be inferred from the figuies For each of the subjects, the increase
ot TS EMG activity preceded the onset of the increase of contraction level by approximately
50ms This is likely due to the low-pass nature of activation dynamics, as discussed in the
background chapter The changes in low frequency stiffness and resonant frequency be-
gan at approximately the same time as the increase of joint torque The non-second-order
behaviour and the decrease in low frequency stiffness occurred during the transient phase

of contraction, when the rate of change of the ensemble average torque was near maxi-

mum
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The records of ensemble average torque and its rate of change show that subjects
used different strategies to accomplish the increase of contraction The ensemble average
torque of S2 had the lowest maximum rate of change, and the longest time to attain the
higher torque level, in contrast to the record of S3, which had the greatest maximum rate
of change, but exhibited an overshoot before finally settling at the target level Subject S1
used a moderate rate of change of contraction to attain the final torque level without over-

shooting the target

The differences in strategy correlate well with the different patterns of changes in
low frequency stiffness and TS EMG observed for the three subjects The low frequency
gain trace of S3 showed the deepest modulation in terms of a decrease during transition.
concurrent with the maximum rate of increase of torque In addition, there was an increase
oflowfrequency stiffness above the final stiffness coincident with the overshoot of the target
level Subject S2 exhibited the slowestincrease intorque, and the smallest decrease of low
frequency gain of the three subjects The ensemble average TS EMG trace of subject S2
differed from the traces of S1 and S3 The increased TS activity in S1 and S3 occurred In
single bursts, while the increase in TS activity of S2 was of longer duration, and displayed
a second peak approximately 150 ms after the maximum of the first burst of activity This
may be indicative of an extra effort exerted by S2 to attain the target level of torque. and
1S supported by the tentative manner in which S2 reached the higher level of contraction

shown in the traces of ensemble average torgue and its derivative
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5.5. DISCUSSION

The phenomena of non-second-order behaviour and decreased joint stiffness at
low trequencies during increasing muscular contraction have not been previously re-
ported However, this study has employed a relatively unused time-varying identification
method, which has allowed accurate measurement of joint dynamics throughout the
change Additionally, the phenomena have been observed in all three subjects studied
Thus it seems probable that the phenomena are real However, before discussing the impli-
cations the results of this experiment may have on the study of joint dynamics, their validity

must be addressed

5.5.1. ACCURACY OF RESULTS
MODEL VALIDITY

Examination of Figures 5 12a, b, and c reveals that the non-second-order beha-
viour and decreased stiffness at low frequencies was closely linked to the phase in which
the rate of change of muscular contraction is highest This suggests the possibility thatthe
identification method may not have been able to track the most rapid variations of the dy-
namics ltis evident from the simulation study that the SVD method can track changes of
dynamics ot the same magnitude and time-scale as the one:'s encountered in the exper-
imental study, even in the presence of considerable output noise, but this may not be true
under more realistic conditions However, in the experimental study, the VAF records of the
estimated IRFs remained high during the epoch of increased torque rate of change Thus
the estimates of the dynamics are valid representations of the vanation of the data, and the

SVD procedure itself can be ruled out as a possible source ot the observed dynamics

A more likely possibility is that the observed change n dynamics was somehow re-
lated to an artifact caused by the alignment procedure The trials were aligned so that the
time at which the change in mean joint torque was at its midpoint coincided across the en-
sembles of input and output This may have affected the cross-ensemble data in such a
way as to introduce low frequency attenuation of the torque with respect to the position
resulting in reduced stiffness at low frequencies This possibility was investigated by per-

forming a second analysis of the data of subject S1 after reaignment of the ensembles to
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a reference point 75 ms prior to the original one If the alignment procedure was the cause
of the decreased stiffness phenomenon, then significant differences between the results
of the two analyses would occur In order to compare the results of the two analyses, the
low frequency stiffness records from the two were examined The results are presented in
Figure 5 13, in which the traces have been aligned so that the reference point of the second
analysis occurs 75 ms prior to the reference point of the first analysis The two records are
nearly identical. the small differences between the two results are likely due to differences
in inter-tnial variability between the two analyses This result strongly suggests that the
alignment procedure was not the cause of the observed attenuation of stiffness and con-

comitant non-second-order behaviour

Subject Minimum VAF
(%)
S1 834
S2 734
S3 795

Table 5 2 Mimimum VAF 1n the series of stiffness impulse response functions for the three subjects

Table 5 2 shows the minimum VAF across the time span of the identification of the
three subjects tested Examination of Table 5 2 and the VAF traces for the stiffness IRFs
indicates that the results of subjects S1 and S3 account for at least 80% of the output vari-
ance, while the estimated dynamics for subject S2 are not as accurate This may be be-
cause S2 was required to produce a larger absolute torque than the other two subjects,
which may have led to greater difficulty in tracking the target stimulus. Indeed, S2 reported
experiencing fatigue near the midway point in the experiment, while the other two subjects
did not The presence of fatigue may be the cause of the higher ensemble standard devi-

ation of the torque recorded for S2 (see Figure 5 3).

LINEARITY OF DYNAMICS

The time-varying dynamics were well described by a linear nonparametric model,
as evidenced by the high VAF obtained for the stiffness IRFs. The linear approach was valid

in this investigation because conditions of isometric contraction and invariant amplitude
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Figure 5 13 Low frequency stiffness records obtained from two analyses of the data of subject S1
Points marked by asterisks represent the results of the original analysis Points markedby circles are
the result of an analysis in which the reference point for alignment of the ensemble datawas 0 075s
prior to the reference point of the original analysts

probability distribution were imposed, thereby ehminating changes in mean joint position,
the cause of significant nonlinearities 1n addition, the range of contraction level may have
fallen within a linear range of the generally nonlinear contraction - stiffness relationship

This may be an explanation for the lower VAF of the estimates ¢ the dynamics 0t S2, whose
tracking task was more intensive in terms of the absolute torque that was required of him,
and therefore may have caused the dynamics of S2 to be in a more nonlinear region ot the

relationship than S1 or S3
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5.5.2. COMPARISON WITH PREVIOUS STUDIES

QUASI-TIME-INVARIANT STUDIES

This study has shown that during a change of muscular activation, joint stiftness has
a behaviour that is more complex than second-order, characterized by a decrease in joint
stiffness at low frequencies These results ar 2 somewhat surprising in light of the results
of previous studies in which the influence of muscular activation on ankle dynamics was
investigated using a quasi-time-invariant apprnrach These studies have reported the dy-
namics to be consistently second-order, and that jcint stiffness increases monotonically
as the level of muscular contraction increases (e g . Agarwal and Gottheb, 1977b, Hunter
and Kearney, 1982, Weiss et al., 1988) This differenceis dueto the imitation of quasi-time-
invariant methods to step-wise invariant models 1o represent the change in dynamics The
dynamics of the joint change on far too rapid a time scale for the piece-wise models to be
able to depict the changes, because they can only represent the dynamics of the joint at
anumber of distinct operating poiits Therefore, they are unable to identify the dynamics
as they change between static operating points Through the use of a time-varying identifi-
cation scheme, the dynamics of the ankie have been tracked as they change, thereby pro-
viding information regarding aspects of ankle dynamic behaviour unattainable by quasi-ti-

me-invariant methods

TIME-VARYING STUDIES

There are two opposing schools of thought that can be followed when identifying
the dynamics of an unknown system One choice is to assume a parametric model of the
system a priori, thereby reducing analysis requirements by restricting the model to be of
a single dynamic form, or at best a limited number of forms, which can be described by
arelatively small number of parameters For example, a number of studies of joint dynam-
ics have assumed joint dyne.mics to be of a second-order dynamic form, and have identi-
fied the dynamics in terms of three parametars The other choice is to allow the model to
assume any dynamic form by formulating the identification algorithm to identify nonpara-
metric models of the dynamics This approach is more computationally intensive because

it involves the solution of equations having a large number of unknowns, e g the points
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in an impulse response function, as compared to parametnc identification but it has the
advantage of being able to identify systems having any dynamic form Most importantly
for this study, it also enables the identification of systems whose dynamic form changes

during the identification

Two studies of the dynamics of a ioint under time-varying conditions have been per-
formed using parametric techniques Inthe study of time-varying compliance of the human
forearm conducted by Lacquaniti and co-workers (1982), linear time-varying modets of
joint compliance were estimated using the correlation-based technique described in chap-
ters 2 and 3 Along with the difficulties associated with this method, the authors compro-
mised the effectiveness of their analysis by assuming the model to be a valid description
of the dynamics, and fit second-order parametric models to the impulse response func-
tions they obtained The authors do not state explicitly the accuracy with which the para-
metric models represented the dynamics, but plots showing both the original IRFs and
IRFs representing the second-order model at selected instances are presented The sec-
ond-order model does not compare favorably with the actuai dynamics in five of the eight
cases shown Therefore the reliability of the second-order parametric models in this case

must be questioned

The other study was conducted by Bennett et a/ , (1990), who used SVD to obtain
the time-varying parameters of an ARMA model fr ym ensemble data This study used an
SVD-based ensembie method to identify the compliance of the human elbow during a re-
peated motion The task was executed with aperiodic and nonuniform time-variations
thus the SVD method was well-suited 1o this problem However, by assuming a second-
order parametric model a priori, the models obtained for the dynamics may not have accu-

rately represented joint compliance

Consider the ramifications the assumption of a second-order parametrnc model
would have on the results of the investigation presented in this report In Figure 5 8, the
variance accounted for by second-order fits to the nor.parametric impulse response tunc-
tions obtained in this study show that a second-order model would not be able to accurate-

ly identify the dynamics ofthe joint during the time period where the dynamics are changing
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with the level of muscular contraction This is precisely the time period of interest, however
Obwviously, the results obtained from such a parametric approach would be uninformative,
and probably misleading

5.5.3. POSSIBLE MECHANISMS RESPONSIBLE FOR THE OBSERVED
DYNAMICS

The results of this study have revealed a higher-order dynamic response of a joint
than previously seen during an increase of muscutar contraction It is evident that the re-
sults are not due to an artifact of the analysis, and that the results of this study are a valid
depiction of the changes in joint dynamics that occur during an increase of isometric con-
traction Thus, it appears that changes in the underlying physiological mechanisms are the
cause of the changes in dynamics All the elements of the neuromuscular system have dy-
namic responses. Presumably a change in the torque generated at a joint could lead to
higher-order Jlynamics because of the sensitivity of the components to factors associated
with therate of change of jointtorque However, the experimental and analytical procedures
used in this investigation do not permit the individual factors influencing joint dynamics to
be determined Nonetheless, a few speculative explanations regarding the mechanisms

underlying the results of this investigation may be appropriate

CO-CONTRACTION

One physiological mechanism that couid cause the decreased static stiffness dur-
ing the increase of contraction is decreased coactivation of agonist and antagonist
muscles Recall from the background chapter that co-contraction can lead to an increase
of joint stiffness for a given level of mean joint torque. if TA was initially activated and then
deactivated during the increase in TS level of contraction, there would be a high stiffness
prior to the increase of cantraction, followed by a decrease during the transition phase and
return to a higher stiffness afterwards due to increased TS activity However the ensemble
average EMG traces shown in Figure 5 11 do not supportthis TA activity is negligible com-
pared to TS for the two subjects whose TA traces were available Indeed, if anything, there
was a shghtincrease in TA activity during the transition phase, providing further argument

against the possibility of co~contraction as a potential mechanism

HEMIE ATTO Y 0 Ty
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MUSCLE MECHANICS

The processes underlying muscular contraction may influence joint dynamics dur-
Ing changes in level of activation A ditference has been observed between the ime course
of muscle force and static stiffness in studies of isolated and intact whole muscle (Stein and
Parmiggiani, 1979, Bressler and Dusik, 1984, Stein and Gordon, 1986, Bagniet a/ . 1988)
None of these studies has reported static stiffness decreasing during anincrease in muscle
contraction, however Therefore itis improbabie that contractile mechanisms are solely re-
sponsible for the decrease in low frequency stiffness observed during the increase of
torgue at the ankle Note that these studies investigated the force - stiffness relation tor
electrically stimulated muscle, and therefore do not give an indication of the degree to

which reflex and higher neural centres influence muscular contraction

REFLEX MEDIATED EFFECTS

PERIPHERAL MECHANISMS

Despite the intensive effort to investigate the regulation of motor function by the pe-
ripheral nervous system, the role of reflex mechanisms in the control movement remains
unclear Nevertheless, reflexes may be involved in the changes in dynamics dunng an in-
crease of isometric contraction The tendon organ and spindle transducers are dynamic
systems (Jansen and Mathews, 1962, Alnaes, 1967) but their interactions have not been
satistactorily characterized as yet Itis conceivable that during voluntary increases of mus-
cular activity, these two systems may have an effe_t on the dynamics of a joint that could
lead to the observation of non-second-order behaviour accompanied by a decrease in low

frequency stiffness

Supraspinal centres may also influence the behaviour of the pernpheral nervous
system to bring aboutthe phenomena The sensitivity of thereflex pathways may be altered
during voluntary contr. ction via changes of the state of interneurons However, whether
peripheral mechanisms can cause joint stiffness to decrease during an increase of muscu-

lar force remains unclear
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MUSCLE TENDON INTERACTIONS

Both muscle and tendon have different nonlinear elastic properties Thus, when a
joint 1s displaced, the two structures absorb different amounts of the length change The
relative distnibution will be a function of the displacement amplitude and its derivatives, as
well as the displacement frequency and the mean level of muscular force Also, the struc-
tures may vibrate at frequencies other than those of the perturbation It is possible that at
certamn perturbation frequencies, some frequency components of the vibrations of part of
one of the structures will be matched to the loop delay of its constituent proprioceptive
transducers Thus the refiex force elicited by the receptor would be timed such that it would

not resist imposed movements at those frequencies, but in fact would assist them

This scenario has been proposed by Rack et a/ (1983) to explain decreased stif-
fness to sinusoidal stretch of the ankle observed in the 6-8 Hz range In that study, this be-
haviour was only found in subjects with a highly sensitive stretch reflex, and primarily during

changes in stretch frequency

This may provide an explanation for the observation of the present study that the
stiffness of the ankle at low frequencies is attenuated only during the change of contraction
level ltis possible that during the change of contraction, the reflex gain increased to alevel
sufficient for the proprioceptive signal to induce a low frequency modulation of force that
was somewhat in phase with the low frequency components of the imposed movements
It follows from this argument that during the transition phase a decreased resistance to the
low frequency components of the position perturbation would have resulted, but during pe-
riods of invariant contraction tte reflex gain v ould not have been as enhanced, so that the

decreased resistance to low frequency movements would not occur

Reflex mediation therefore appears to be the most probable cause underlying the
changes in dynamics |dentification of the changes in reflex dynamics (torque - EMG rela-
tionship) accompanying a change in level of contraction could allow evaluation of this hy-
pothesis However, considerably more trials than the number recorded in this experiment
are necessary to obtain accurate estimates of refiex dynamics As mentioned inthe discus-

sion of the resuits of the simulation study, the muscular activity information obtained from
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surface EMG is contained in the modulations of signal that 1s highly corrupted with noise
{signal to noise ratio of less than 30 dB) In contrast, the position and torque signals re-
corded in this experiment had very low levels ot noise associated with them (signal to noise
ratio approaching 90 dB) The degree of overdetermination of the ensemble data needed
for accurate estimation in the present study was therefore determined by the variability be-
tweentrials However, the poor signal to noise qualities of the EMG signal will add consider-
ably more noise to the ensemble than merely the inter-tnal variability that existed in this
study, thus significantly decreasing the accuracy of the estimation procedure tor a given

degree of overdetermination

5.5.4. CLOSING COMMENTS

The observations of this study have provided new information regarding the control
of muscular contraction However, the mechanisms responsible for the observed changes
in joint dynamics are not obvious It1s probable that there are several additional factors in-
fluencing joint dynamics that have not been mentioned The interactions between the
mechanisms underlying joint dynamics have not been explicitly studied Therefore. further
investigation of the processes underlying joint dynamics must be undertaken to determine
the cause of the phenomena Some of these issues will be addressed in the directions for

future research section of the next chapter




6. CONCLUSIONS

6.1. SUMMARY

A method for identification of linear time-varying systems from ensembie data us-
Ing singular value decomposition has been presented in this thesis This technique, which
provides a series of nonparametric impulse response function representations of the sys-
tem as it varies with time, is capable of tracking rapid changes in dynamics without a priori
assumptions regarding the system's dynamic structure, or the nature of its time-varying
behavior The results of the application of this method to simulated and experimental data
have shown it to be robustin the presence of additive output noise, andto be a viable meth-
od for accurately representing the time-varying dynamics of the neuromuscular system
This technique may allow a major advance in the study of the neuromuscular system. in
which the mostinteresting behaviour,i e |, the transition from one state to another, has been

previously beyond the capabilities of quantitative study

By virtue of the linear, nonparametric, time-varying models provided by the SVD
method. this study has accurately tracked the changes in joint dynamics that occur during
avoluntary isometric contraction. Theresults haverevealed two phenomena During atran-
sition of contraction level, the ankle joint does not behave as a second arder dynamic sys-
tem, and the joint’'s resistance to low frequency perturbations decreases These effects
were not foreseen, and additional work 1s required to understand their origin and signifi-

cance

6.2. DIRECTIONS FOR FUTURE RESEARCH

This investigation has generated a number of questions regarding the physiological
mechanisms responsible for the changes in joint dynamics observed in this study There
are four factors which are mostlikely to be at the root of the dynamics' central control mech-
anisms, reflex control mechanisms, intrinsic muscle mecharics and muscle-tendon inter-
actions It may be feasible to investigate the influences of these mechanisms through care-

ful expernmental design as follows
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The effect of voluntary control on joint dynamics during changes in level of contrac-
tion can be removed by electrical stimulation of muscle to elicit contraction A two-part ex-
periment in which similar muscular contractions are first brought about by electrical stimu-
lation and subsequently under voluntary control could be performed The differences
between the time-varying dynamics observed for the two paradigms may provide insight

to some of the centrally mediated influences on in vivo muscular contraction

The nonlinear formulation ot the SVD method has other potential areas of applica-
tion The nonlinear time-varying dynamics of isolated single muscle fibres and whole
muscle, as well as intact muscle preparations can be identified and compared, thereby es-
tablishing the contributions of muscle contractile mechanics, activation dynamics and re-

flex dynamics to the dynamics of muscle

The hypothesis that muscle-tendon interaction is the source of the observed dy-
namics might be evaluated by performing tests on isolated whole muscle using prepara-
tions which include intact tendon However, it will be difficult to quantify the interaction of
the two structures because of the intimate relationship between the active and passive
components of muscle as a whole The structures contributing to the passive mechanical
properties of tendon and muscle tissue are widely dispersed to varying degrees within
whole muscle, and the state of activity of the crossbridges will vary spatially and temporally
Therefore the muscle-tendon complex must be considered to be a distributed, time-vary-
ing. nonlinear system In order to obtain a qualitative appraisal of the interactions of the
components of this system, a finite element investigation could be performed However,
a study of this type will require very accurate models of the dynamics of the constituents

as well as the histology of whole muscile to be valid

The experiment performed in this work can be readily adwpted to investigate time-
varying reflex dynamics (the torque - EMG relatonship) under the same conditions as this
study, as well as for electrical stimulation and movement stu dies The results of these ex-
periments may provide concrete evidence regarding the role of reflex mechanisms in

movement
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Other investigations of the time-variations of joint dynamics under various operat-
ing conditions will also provide important contributions to the understanding of motor con-
trol Aninvestigation in which joint dynamics are identified during contractions havi-  liffer-
ent variations of level of contraction may give an indication of the existence of a
torce-dependent nonlinearity |f the existence of a nonlinearity was established a morefor-
mal identification of the nonlinear time-varying dynamics could be performed using the
nonlinear formulation of the SVD method (Nielsen etal , 1989) The hypothesis that differ-
ent strategies exist in the motor control system for different levels of muscular effort could

then be tested by observing the variations of the dynamics over awide range of contraction

Another possible extension of the present research would be the study of the
changes in joint dynamics during imposed and voluntarily produced large motions Anin-
vestigation of joint dynamics under these conditions must address the time-varying and
nonlinear behaviour which will most certainly be exhibited by thejoint Thetechniques pres-
ented in this thesis will therefore allow quantitative evaluation of motor control of natural

activity, and may thus contribute significantly to the study of the neuromuscular system



APPENDIX A:
IMPLEMENTATION OF THE SVD METHOD

This section presents the ASF code for the NEXUS operator TVFIL, which estimates a se-
ries of impulse response functions representing the variation of a system’s dynamics over

a period of time The theory of the algorithm and details of ts implementation are given in

chapter 3
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TVFIL V02-01 REK and .JBM Time Varying Filter determination
Description
TVFIL determines the filter (impulse response function)
between an input and output channel (time series) using ensemble
data
Author
R E Kearney
BioMedical Engineering Unit.
McGall University,
Montreal. Quebec
CANADA
Usage
Y = TVFIL( X1, X2, [X3] , P1, P2, )
where Y = filter between X1 and X2
X1 = system input data
X2 = system output data
X3 = starting points for trials [opticnal]
P1, .Pn = various parameters
variables created
VAF = variance accounted for by the filter
Notes
1 Copyright 1981, Hunter & Kearney
2  The input channel lengths must be <= 500,000 for VMS
<= 2048 for RSX and <= 1024 for RT-11
3 The filter timpulse response function) 1s then calculated
by solving a matrix equation using pseudoinversion and
singular value decomposition
5 The resulting filter values are the least-squares estimates
for the filter length chosen Note that with another filte~
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Revisions

V02-01 14 nov 1984 JUBM modified TVFIL to ge. longer filter lengths

length different filter values will be obtained Thus the
resulting filter should be inspected to verify that with the
filter length used the filter has decayed to zero

The filter should be convolved with the original input

to get the predicted output This output should then be
compared with the original output

The user 1s given the option of calculating either a

1 or 2 sided filter. The right side (positive time) of the
filter is the memory component The left side (negative
time) of the filter, 1f 1t has been calculated (1 e 2
sided filter), 1s the anticipatory component

Further details on the theory and algorithm used are given
in Hunter & Kearney, Med & Biol Eng & Comput, 1983, 21 203-209
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# INCLUSIONS
INCLUDE nx2_'NEXDEF
INCLUDE nx2_:SYSDEF
#
# DEFINITIONS

DEFINE _MAXNUMTRIALS, 1000)
DEFINE _FILTERLENMAX., 201)
DEFINE _WORKSIZE, 5000)
DEFINE _NUMINPUTCHANS, 3)
DEFINE _NUMOUTPUTCHANS, 1)

(
(
(
¢
DEFINE ( _INPUTCHANLEN, 2000000)
(
(
(
(
(
¢

DEFINE _OUTPUTCHANLEN, 256)
DEFINE _RECORDSIZE, 128)
DEFINE _FILENAMEMAX, 32}
DEFINE _CHANNAMEMAX, 16)
DEFINE __COMMENTMAX, 80)
DEFINE _REAL4, 4)

#

# Declarations for trace

#
BYTE OPER_NAME (13)
STRING OPER_NAME “TVFIL V02-01°

#

# DECLARATIONS
#
COMMON /RATCOM/JTEMP

BYTE INPUT_FILE NAME( FILENAMEMAX, _NUMINPUTCHANS)
BYTE OUTPUT_FILE_NAME( FILENAMEMAX, _NUMOUTPUTCHANS)
INTEGER IANS

INTEGER TERM_LUN

INTEGER VAR _LUN, VAF LUN

INTEGER INPUT_LUN(_ NUMINPUTCHANS)

INTEGER OUTPUT_LUN

INTEGER OLUN

INTEGER OPEN_FLAG, STOP_FLAG

INTEGER CHAN

INTEGER* 4 REC_NUM

INTEGER NUM_INPUT_CHANS

INTEGER NUM_OUTPUT _CHANS

INTEGER* 4 1. J

INTEGER* 4 INPUT_CHAN_LEN(_NUMINPUTCHANS)

INTEGER* 4 START_INDEX

INTEGER*4 STOP_INDEX

INTEGER TRIAL LEN,NUM_TRIALS.FILTER_LEN

INTEGER OFFSET. OFFSET_START. OFFSET_END, OFFSET INCREMENT
REAL WINDOW(4), PORT (4)

REAL*4 INPUT_CHAN (_INPUTCHANLEN, _NUMINPUTCHANS)
REAL*4 OUTPUT_BUFFER (_RECORDSIZE)

REAL*4 VAF_BUFFER (_RECORDSIZE)

A4
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#

INTEGER
INTEGER
INTEGER

REAL*4
REAL*8

BYTE
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL*8
REAL*E
REAL*4
INTEGER*4
REAL*8

REAL*4
REAL*8
INTEGER
LOGICAL

REAL*8
REAL*8
REAL*4
REAL*8
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

OUTPUT_COUNTER, VAF_COUNTER
OUTPUT_CHAN_LEN, VAF_CHAN_LEN
OUTPUT_REC_NUM. VAF_REC_NUM

X1 (_INPUTCHANLEN), X2 (_INPUTCHANLEN)
IMPULSE (_OUTPUTCHANLEN)

TYPE(2)

INFO

TWO_SIDES

DATA_LEN

LAG_MAX

LAG_MIN

I_MEAN

O_MEAN,0_VAR,R_MEAN,R_VAR

START (_MAXNUMTRIALS)

START_LEN

A (_MAXNUMTRIALS, FILTERLENMAX). B (_MAANUMTRIALS)
C(_MAXNUMTRIALS) ,D(_MAXNUMTRIALS) .
X_AVG(_FILTERLENMAX), Y_AVG(_FILTERLENMAX)
X_MIN, X _MAX, Y_MIN, Y_MAX

WORK (_WORKSIZE)

IRANK,LWORK, IFAIL

SVD, ERROR_FLAG

TOL

SIGMA

VAF

SUM

(INFUT_CHAN(1.1) X1)
(INPUT_CHAN(1.2), X2)
(INPUT_CHAN(1.3) START(1))

# FILELB Definations

#

BYTE
BYTE

INTEGER*2
INTEGER*2
INTEGER*2

INTEGER*4
REAL*4
REAL*4
REAI *4
REAL*8

CHAN_NAME (_CHANNAMEMAX )
COMMENT (_COMMENTMAX)

NUM_VERSIONS
NUM_CHANS
CHAN_FORMAT

CHAN_LEN
CHAN_START
CHAN_STOP
CHAN_INCR
CHAN_TYPE
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# PROGRAM CONTROL
#

EXECUTE GET_PIPE_DATA

IF (STOP_FLAG == _YES) |
EXECUTE TERMINATE_PROGRAM

|

EXECUTE GET_STARTING_INDICES

EXECUTE GET_INPUT_DETAILS

EXECUTE GET_CONTROL_PARAMETERS

EXECUTE CHECK_ARRAY_REFERENCES

EXECUTE GET_OUTPUT_DETAILS

EXECUTE GET_INPUT_DATA

DO OFFSET = OFFSET_START, OFFCFT_END, OFFSET_INCREMENT |
EXECUTE COMPUTE_ENSEMBLE_AVERAGES
EXECUTE GENERATE_OUTPUT_DATA
EXECUTE GENERATE_PREDICTED_OUTPUT
EXECUTE STORE_OUTPUT_DATA

]

EXECUTE FLUSH_OUTPUT_BUFFERS

EXECUTE STORE_OUTPUT_DETAILS
CALL NEWL (‘EXIT’,ANSWER)

EXECUTE TERMINATE_PROGRAM
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PROCEDURE GET_PIPE_DATA |

]

OPEN_FLAG = _YES
I = - NUMINPUTCHANS
J = _NUMOUTPUTCHANS
CALL PIPE (I, NUM_INPUT_CHANS,
INPUT_FILE_NAME, INPUT_LUN,
J. NUM_OUTPUT_CHANS,
OUTPUT_FILE_NAME, OUTPUT_LUN,
VAR_LUN, TERM_LUN, OPEN_FLAG, STOP_FLAG, OFER_NAME)
IF (STOP_FLAG == _YES ) [
TYPE *, Pipe error’
STOP ° PIPE error’

# END OF PROCEDURE GET_PIPE_DATA

A7
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y PROCEDURE GET_STARTING_INDICES {

IF (NUM_INPUT_CHANS .NE 3 )

LEAVE
#
# Get input details
#

READ (INPUT_LUN(3) ° 1) NUM_VERSIONS, NUM_CHANS,
CHAN_LEN, CHAN_FORMAT, CHAN_TYPE, CHAN_INCR,
CHAN_START, CHAN_STOP, (CHAN_NAME(I), I = 1, _CHANNAMEMAX) ,
(COMMENT(I), I = 1, _COMMENTMAX)

START_LEN = CHAN_LEN

IF (START_LEN > _MAXNUMTRIALS )|
TYPE *, ** TVFIL - too many trials-

TYPE *,’ Using first °,_MAXNUMTRIALS,  trials’

1

#

# Read in starting indices
#
DO REC_NUM = 2,
STOP_INDEX = MIN (_RECORDSIZE,
START_LEN - (REC_NUM - 2) * _RECORDSIZE)
J = (REC_NUM-2)* RECORDSIZE
READ (INPUT_LUN(3) °~ REC_NUM) §
(INPUT_CHAN(J+I,3), I = 1, STQP_INDNEX)

) #End of procedure GET_STARTING_INDICES

¢

(START_LEN - 1) , _RECORDSIZE + 2 |
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PROCEDURE GET_INPUT_DETAILS |{

DO CHAN = 1, 2 |
READ (INPUT_LUN(CHAN) ° 1) NUM_VERSIONS, NUM_CHANS,
CHAN_LEN, CHAN_FORMAT, CHAN_TYPE, CHAN_INCR,
CHAN_START, CHAN_STOP, (CHAN_NAME(I), I = 1, _CHANNAMEMAX),
(COMMENT(I), I = 1, _COMMENTMAX)
INPUT_CHAN_LEN(CHAN) = CHAN_LEN
]
.IF DF _VMS {
CHAN_LEN = MIN (INPUT_CHAN_LEN(1},
INPUT_CHAN_LEN(2))
IF {CHAN_LEN > _INPUTCHANLEN) ({
TYPE $FORM, _INPUTCHANLEN
(° **** WARNING Input channel too long. Using first °,16,  points’)
}
]
INPUT_CHAN_LEN (1)
INPUT_CHAN_LEN(2)
DATA_LEN = CHAN_LEN

CHAN_LEN
CHAN_LEN

] # END OF PROCEDURE GET_INPUT_DETAILS

iy
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PROCEDURE GET_CONTROL_PARAMETERS |

IF (START_LEN == 0 ) [
CALL NEWJ (°Trial length’ TRIAL_LEN, 1, CHAN LEN)
NUM_TRIALS = CHAN_LEN/TRIAL_LEN
CALL NEWJ (’Number of trials to use’ ,NUM_TRIALS.
1, NUM_TRIALS )
TYPE $FORM,NUM_TRIALS: (° Number of trials = I
IF (NUM_TRIALS > _MAXNUMTRIALS)
STOP ‘Too many trials”’
DO I = 1,NUM_TRIALS |
START(I) = (I-1)*TRIAL_LEN

Cal Tk e

et S TR = e

]
ELSE IF (START_LEN > 0 )} [
NUM_TRIALS = START_LEN
]
TYPE *,NUM_TRTALS
CALL NEWJ (°Offset start’ ,OFFSET_START, -CHAN_LEN,CHAN_LEN}
CALL NEWJ (Offset end’,OFFSET_END,OFFSET_START,CHAN_LEN)
CALL NEWJ (°Offset increment’, OFFSET_INCREMENT,
1,CHAN_LEN/NUM_TRIALS)
LAG_MAX = MIN (TRIAL_LEN, _FILTERLENMAX)
CALL NEWJ (‘Filter length °, LAG_MAX, 2,
MIN (_FILTERLENMAX, CHAN_LEN / 2))
TWO_SIDES = _YES
CALL NEWL (’Two-sided filter’, TWO_SIDES)
LAG_MIN = 0
IF (TWO_SIDES == _YES) [
LAG_MAX = LAG_MAX/2
LAG_MIN -LAG_MAX

P B R

]
FILTER_LEN = LAG_MAX - LAG_MIN + 1
IF (FILTER_LEN > FILTERLENMAX)
STOP ‘Filter too long~
CHAN_START = LAG_MIN*CHAN_INCR
CHAN_STOP = LAG_MAX*CHAN_INCR
XTOL = 5.0E-4
CALL NEWX (’Tolerance’ ,XTOL._VSR4,_VLR4)
TOL = XTOL

] #End of procedure GET_CONTROL_PARAMETERS
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PROCEDURE CHECK_ARRAY_REFERENCES [

TYPE *, “check array references’
REPEAT [
IF ((START(1) + OFFSET_START - LAG_MAX) <= 0 )|
TYPE *,° ARRAY REFERENCE TOO SMALL - DROPPING TRIAL~-
START_LEN = START_LEN - 1
NUM_TRIALS = START_LEN
DO I = 1,START_LEN |
START(I) = START(I+1)

)
ELSE

BREAK
)
REPEAT |
IF ((START(NUM_TPIALS) + OFFSET_END - LAC MIN) >= CHAN_LEN) |
NUM_TRIALS = NUM_TRIALS - 1
START_LEN = START_LEN -1
TYPE *,’ ARRAY REFERENCE TOO LARGE - DROPF.ING TRIAL’

]
ELSE

BREAK

)
TYPE *,’Array references o.k -

] #END OF PROCEDURE CHECK_ARRAY_ REFERENCES
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PROCEDURE GET_OUTPUT_DETAILS |

é CHAN_TYPE = ‘LAG sec”
E CALL ICCS (CHAN_NAME, 1, _CHANNAMEMAX, ‘AMPLITUDE’. EOS)
DO I = 1, FILENAMEMAX [
IF (INPUT_FILE_NAME(I, 1) == ° ) [
INPUT_FILE_NAME(I, 1) = _EOS
BREAK

]
DO I = 1, _FILENAMEMAX |

IF (INPUT_FILE NAME(I, 2) == y I
INPUT_FILE_NAME(I, 2) = _EOS
BREAK
]
; ]
; CALL ICCS (COMMENT, 1. _COMMENTMAX, ‘FILTER BETWEEN °. $
INPUT_FILE_NAME(1,1)., ° AND °, _EOS )

CALL ICCS (COMMENT LLEN(COMMENT)+1, COMMENTMAX, §
INPUT_FILE_NAME(1,2),_EOS |}
’: #
: # Open output file for VAF
: #
VAF_LUN = QUTPUT_LUN + 1
OPEN (UNIT = VAF_LUN, NAME = "VAF.NXC’, STATUS = 'NEW’,
ACCESS = °'DIRECT’, RECORDSIZE = RECORDSIZE,
t FORM = “UNFORMATTED’ ,$ERR=ERROR_FLAG )
IF (ERROR_FLAG)
f STOP ‘Error opening output file’
E #
# Initialize output counters
#

I i AR

OUTPUT_COUNTER = 1
VAF_COUNTER = 1
OUTPUT_CHAN_LEN = 0
VAF_CHAN_LEN = 0
OUTPUT_REC_NUM = 2
VAF_REC_NUM = 2

] # END OF PROCEDURE GET_OUTPUT_DETAILS
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PROCFDURE. GET_INPUT_DATA [

PN

DO CHAN = 1, 2 |

CHAN_LEN = INPUT_CHAN_LEN (CHAN)

DO REC_NUM = 2, (CHAN_LEN - 1) / _RECORDSIZE + 2 |
STOP_INDEX = MIN (_RECORDSIZE,
CHAN_LEN - (REC_NUM - 2) * _RECORDSIZE)
J = (REC_NUM-2)*_RECORDSIZE
READ (INPUT_LUN(CHAN) ° REC_NUM) §

(INPUT_CHAN(I + J, CHAN), I = 1, STOP_INDEX)

] # END OF PROCEDURE GET_INPUT_DATA

|
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PROCEDURE COMPUTE_ENSEMBLE_AVERAGES |

DO I = ),FILTER_LEN [
X_AVG(T) = O
Y_AVG(l) ~ O.

)

X_MIN = INPUT_CHAN ( START (1) + OFFSET, 1)
X_MAX = X_MIN
Y_MIN = INPUT_CHAN ( START (1) + OFFSET. 2)

Y_MAX = Y_MIN
DO I = 1,NUM_TRIALS |[
J = START(I) + OFFSET
K=1
DO LAG = LAG_MIN,LAG_MAX [
X_MIN = MIN (X_MIN, INPUT_CHAN (J+LAG.11)
X_MAX = MAX (X_MAX, INPUT_CHAN (J+LAG.1))
X_AYG(K) = X_AVG(K) + INPUT_CHAN(J+LAG.1)
Y MIN = MIN (Y_MIN, INPUT_CHAN (J+LAG 2))
Y MAX = MAX (Y_MAX, INPUT_CHAN (J+LAG.2))
Y _AVG(K) = Y_AVG(K) + INPUT_CHAN(J+LAG,2)
K=K+ 1

1

DO I = 1,FILIER_LEN |
X_AVG(I) = X_AVG(I)/NUM_TRIALS
Y AVG(I) = Y_AVG(I)/NUM_TRIALS

[

[l

} #End of procedure COMPUTE_ENSEMBLE_AVERAGES

Al4




#

#

L}

DO 1
J

1.NUM_TRIALS |

]

K =1

K=K+ 1

)
LWORK = WORKSIZE

NRA = _MAXNUMTRIALS
IFAIL =1
#

#

IF (IFAIL == 0) [
TYPE *, Offset

1
ELSE [

TYPE *, 'Offset

] # END OF PROCEDURE

e
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PROCLDURE GENERATE_OUTPUT_DATA [

K_MAX = LAG_MAX - LAG_MIN + 1
O_MEAN = 0
I_MEAN = 0

# Remove ensemble mean values

START(I)} + OFFSET

B(I) = INPUT_CHAN(J,2) - Y_AVG(1-LAG_MIN)

DO LAG = LAG_MIN,LAG_MAX [
AtI,K) = INPUT_CHAN (J-LAG.1l} - X_AVG(K)

FILTER_LEN = LAG_MAX - LAG_MIN + 1
# Compute Singular Value Decomposition
CALL FO4JGF ( NUM_TRIALS, FILTER_LEN, A, NRA, B, TOL, SVD,
SIGMA, IRANK, WORL,
*.Success’

" OFFSET,

GENERATE_OUTPUT_DATA
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PROCEDURE GENERATE_PREDICTED_OUTPUT |

O_MEAN = O
O_VAR = 0
R_MEAN = 0
R_VAR = 0
Y_MIN = INPUT_CHAN (OFFSET,2)
Y_MAX = Y_MIN
DO I = 1,NUM_TRIALS |
J = START(I) + OFFSET
C(I) = 0.
K =1
DO LAG = LAG_MIN,LAG MAX [
C(I) = C(I) + INPUT_CHAN(J-LAG.1) * B(K)
K=K=+1

D(I) = INPUT_CHAN(J,2)
O_MEAN = O_MEAN + D(I)
R_MEAN = R_MEAN + C(I)
]
O_MEAN = O_MEAN/NUM_TRIALS
R_MEAN = R_MEAN/NUM_TRIALS
DO I = 1,NUM_TRIALS [
C(I) = C(I) - R_MEAN
D(I) = D(I) - O_MEAN
O_VAR = O_VAR + D(I)**2
R_VAR = R_VAR + (D(I) - C(I))**2

]

O_VAR = O_VAR/NUM_TRIALS
R_VAR = R_VAR/NUM_TRIALS
VAF = (1 - R_VAR/O_VAR)*100

It

]

] #End of procedure GENERATE_PREDICTED_OUTPUT

A16
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¥

PROCEDURE TRANSFORM_DATA_TO_ZERO_MEAN [

# Input channel

"

#

L =20
DOI =
SuM

1. NUM_TRIALS |
=00

DO J = LAG_MIN,LAG_MAX [
K = START(I) + OFFSET - J

SuM
L

]
I_MEAN
DO I =

SUM + INPUT_CHAN(K,1)
+ 1

L}
[ond '}

= SUM/L
1 NUM_TRIALS |

DO J = LAG_MIN,LAGMAX |
K = START(I) + OFFSET - J
INPUT_CHAN(K.1) = INFUT_CHAN(K.1l) - I_MEAN

# OCutput channel

#

SUM = O
DO I =
SUM
]
O_MEAN
DO 1
J =

0
1., NUM_TRIALS |
SUM + INPUT_CHAN(OFFSET + START(I).2)

]

= SUM / NUM_TRIALS
1. NUM_TRIALS |
OFFSET + START(I)

INPUT_CHAN(J.2) = INPUT_CHAN(J.2) - O_MEAN

] # END OF PROCEDURE TRANSFORM_DATA_TO_ZERO_MEAN

A7
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PROCEDURE STORE_OQUTFUT_DATA |

#
# Store filter
#
DO I = 1 ,FILTER_LEN [
OUTPUT_BUFFER (OUTPUT_COUNTER) = B(I)/CHAN_INCR
OUTPUT_COUNTER = OUTPUT_COUNTER + 1
IF (OUTPUT_COUNTER > _RECORDSIZE) |
WRITE (OUTPUT_LUN ° OUTPUT_REC_NUM) §
OUTPUT_BUFFER
OUTPUT_COUNTER = 1

OUTPUT_REC_NUM = OUTPUT_REC_NUM + 1

]

OUTPUT_CHAN_LEN = QUTPUT_CHAN_LEN + FILTER_LEN
4

# Store VAF
#
VAF_BUFFER (VAF_COUNTER) = VAF
VAF_COUNTER = VAF_COUNTER + 1
VAF_CHAN_LEN = VAF_CHAN_LEN + 1
IF (VAF_COUNTER > _RECORDSIZE ) |
WRITE (VAF_LUN ° VAF_REC_NUM ) VAF_BUFFER
VAF_COUNTER = 1
VAF_REC_NUM = VAF_REC_NUM + 1

1# END OF PROCEDURE STORE_OUTPUT_DATA
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PROCEDURE FLUSH_OUTPUT_BUFFERS [

IF (OUTPUT_COUNTER > 1 ) |
DO I = OUTPUT_COUNTER, _RECORDSIZE |
OUTPUT_BUFFER(I) = O
]
WRITE (OUTPUT_LUN ° OUTPUT_REC_NUM) OUTPUT_ BUFFER
]
IF (VAF_COUNTER > 1 ) |
DO I = VAF_COUNTER, _RECORDSIZE [
VAF_BUFFER(I) = 0

]
WRITE (VAF_LUN ° VAF_REC_NUM) VAF_BUFFER

] #End of procedure FLUSH_OUTPUT_BUFFERS

A19
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PROCEDURE STORE_QUTPUT DETAILS [

CHAN_FORMAT = _REAL4
#
# Store filter details
#
CHAN_START = LAG_MIN*CHAN_INCR
CHAN_STOP = CHAN_START + (OUTPUT_CHAN_LEN -1)*CHAN_INCR
WRITE (OQUTPUT_LUN ° 1) NUM_VERSIONS, NUM_CHANS,
OUTPUT_CHAN_LEN, CHAN_FORMAT, CHAN_TYPE, CHAN_INCR,
CHAN_START, CHAN_STOP, (CHAN_NAME(I), I = 1, _CHANNAMEMAX),
(COMMENT(L), I =1, _COMMENTMAX)
CHAN_LEN = FILTER_LEN

#
# Store VAF details
#
CALL ICCS (CHAN_NAME, 1, _CHANNAMEMAX, °VAF’, EOS)
CALL ICCS (COMMENT,1,_COMMENTMAX, ‘VAF’,_EOS)
CHAN_START = OFFSET_START*CHAN_INCR
CHAN_INCR = OFFSET_INCREMENT*CHAN_INCR
CHAN_STOP = OFFSET_END*CHAN_INCR
WRITE (VAF_LUN ° 1) NUM_VERSIONS, NUM_CHANS,
VAF_CHAN_LEN, CHAN_FORMAT, CHAN_TYPE, CHAN_INCR,
CHAN_START, CHAN_STOP, (CHAN_NAME(I), I = 1, _CHANNAMEMAX),
(COMMENT(I), I = 1, _COMMENTMAX)
CHAN_LEN = FILTER_LEN

)} #End of procedure STORE_OUTPUT_DETAILS
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PROCEDURE TERMINATE_PROGRAM |
CALL EXIT

] # END OF PROCEDURE TERMINATE_PROGRAM

| END
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