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ABSTRACT

The formulation of a general control-volume finite--

-

element method for the prediction of laminar three-

dimensional parabolic duct flow and heat transfer is

presented. Consideration is given to straight ducts of
arbitrary but constant cross-sections. ‘

In the proposed method, the calqulation domain is
first discretized into twelve-node prism macroelement‘;s.
Then each macroelement is di”vided into four six-node prism
subelements. Prism control volumes of polygon;al Cross-
sections are then associated with the nodes of these elements.
All dependent wvariables, except pressure, are stored at the
nodes of the subelements, and they are interpolated in the
cross~sectional plane by upwind-type functions. The pressure
is stored at the vertices of the macroelements and it is
interpolated linearly in the cross-section of these elements.
In the axial direction, the downstream values of all
dependent variables are assumed to prevail over the elements.
The discretized equations are derived by applying integral
conservation equations to the prism control wvolumes, and
they are solved using an iterative scheme akin to SIMPLER. /
The proposed method employ’s a marching integration procedure/
and an automatic step size algorithm which allow

computational efficiency. The validity and capabilities

of the proposed method are established by applying it to
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dev'viéloping flow and heét ﬁramsfe‘r in a square cross-section -
dul'pt and comparin}g its resx;,its with published results.
Satisfactory agreement is found.

The proposed method has been applied to longitudinal .
flow and heat transfer over an infinite triangular rod- )
bundle array for several pitch—to-diametér ratios. Both
.fully-developed and developing regions have been investigated.

Local and overall results are presented in appropriately

+ non-dimensionalized forms.
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les problédmes des é&coulements paraboliques, laminaires,

® SOMMATRE
¥
Une mééhode générale d'éléments finis basée sur le
principle de volume de contrdle est présentée poﬁr résoudre
tridimensionels. La méthode est applicable 3 des conduits

droits aux coupes transversales de forme arbitraire mais

constante. . "

Dans la méthode ici-proposé€e, le domaine de calcul
est d';bord divisé& en des macro-éléments de douze noeuds.
Puis, chaque macro-él€ément est divis& en quatre sous-&léments
de six noeuds. On associe ensuite des volumes de contrdle
a chacun des noeuds de ces éléments. Les variables
dépendentes autre que la pression sont mises en mémoire ,
aux noeuds des sous-éléments, et elles sont interpolées dans
le plan transversal par des fonctions de type "upwind". La
pression est mise en mé&moire aux extrémités des macro—‘
éléments et on l'iﬁterpo%e linéairement dans le plan traﬁsversal

de ces éléments. Dans la direction axiale, on assume que

”w“les valeurs en amont de toutes les variables dépendentes

pféyalent dans les éléments. On dérive les &quations de
c
discrétization en appliquant les &quations intégrales de

conservation aux volumes de contrdle, et on les résoud en

Iy
.o

utilisant une mé&thode itérative similaire & SIMPLER. La
méthode proposée emploie une procédure 4'inté&gration R

pas-par-pas et un algorithme automatique d'adjustement de

B R R R s v e rn
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pas axial, permettant 1l'efficacit& de calcul. On établ_it
la validité et les capacités de la méthode proposée ep
appligquant celle—ci' au problé&me des écoul?r?ents et &changes
de chaleur dans un conduit c:arré. La comparison entre les
résultats présents et publiés est satisfaisante.

La méthode proposée est aussi appliquée au probléme

)
des écoule;'x/nents et E&changes de chaleur au long d'un fa}.\sceau
triangulaire infini de cylindres. On &tudie le régime des
écoulem;mis &tablis ainsi qu'en dévelopement. Les résultats
locaux et gloobaux sont présentés dans des formes non-

dimensionelles appropriées.
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: CHAPTER I

INTRODUCTION

1.1 AIMS OF THE THESIS

The main objective of this thesis is the formulation,
computer 1mplementation and testing of a general numerical method
for the prediction of fluid flowfand heai transfer phenomena in
duct-like geometries. Such phenomena are éncountered 1n an
endless variety of engineering egquipment. For example, fluid
transport systems, heat exchangers, turbomachines; nuclear
reactors énd aircraft propulsion systems present challenging
duct.flow and heat transfer problems. Quantitatively accurate
solutions to these problems would be extremely useful in the
design, optimal use and control of such devices. The numerical
method presented in this thesis represents an effort to enable
such solutions.

A majority of practically important duct flow and heat
transfe} problems involve domains with boundaries that do not
lie alopg commonly-used coordinate axes. Therefore, numerical
methods for the solution of such problems should be able to
handle irregularly-shaped domains. In addition, these
methods must be designed to work with uniform and non-uniform

distributions of grid points inside the calculation domain;




this capability is necessary for the efficient solution of
problemé in which the dependent variables vary steeply in cer-
tain regions of the domain, near solid boundaries for instance,
and relatively mildly elsewhere. These features are given
primary importance in this thesis.

In general, duct flows could be subsonic, transonic or
‘sypersonic. Only subsonic flows are considered in this the-
sis; transonic and supersonic flows are not within its scope.
Subsonic flows could be 1éminar or turbulent, and single-—phase
or two-phase problems may be encountered. In addilion, such
flows could involve compressible fluids. In this thesis,
however, only laminar, incompressible fluid flows will be stu-
died. This limitation of the scope of th}s Wwork was needed
?so that attention could be concentrated on the formulation and
development of the proposed numerical method. The testing
and performance evaluation of general numerical methods for
Eluid flow and heat transfer are best done by applying them to
problems with well-established mathematical models. It is to

/ be noted in this connection, that the proposed method is based
on the control-volume finite-element formulation recently pro-
posed by Baliga and Patankar [1,2]. These formulations are
akin to control-volume finite-difference procedures which are
widely used for the solution of fluid flows in regqular-shaped
domains, but with all of the other aforementioned complexities
[3,4]. Thus it may be deduced that the method presented in
this thesis has the pgtential to solve at least currently

available mathematical models of turbulent and two-phase
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flows. The a‘ctual applicatien of the method to such flows is
not included in the scope of this thesis: rather, the analy-
sis of such flows 1is suggested as a possible extension of this
work.

Steady subsonic flows in ducts can be categorized as
elliptic, parabolic or partially-parabolic [4,5]. In ellip-
tic flows, the conditions at any point in the flow can influ-
ence congitions at any other point. The mechanisms that cause
this interaction are convection, diffusion and pressure trans-
mission [5]. Parabolic duct flows have the following charac-
teristics: there exists a predominant flow alohg the duct,
and no flow reversal 1s encountered in that direction; diffu-
sional transport in the direction of the main flow is negli-
gible compared to the corresponding convective transport and
the cross-stream diffusional transport; and the downstream
pressure field has relatively very little influence on the ‘up-
stree;m flow conditions [3,6]. When these conditions are sa-
tisfied, the main flow direction can be regarded as a one-way
coordinate [3,4]; the upstream conditions can influence the
downstrean} conditions, but not vice—versa. The term partially-
parabolic is used to describe a class of flows that is inter-
mediate to‘the parabolic and elliptic categories. They have
a predominant flow direction along which there is no flow re-
versal, and diffusional transport in that direction is negli-
gible; in this regard, they are similar to parabolic flows.
On the other hand, the pressure transmission in partially-

parabolic flows is similar to that in elliptic flows, and it
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is the dominant transmitter of influences in the upstream

direction [5].

v

Flow and heat transfer in straight unobstructed portions

of duct-like geometries can be regarded as parabolic [3,4,6].

- In curved ducts and in the vicinity of obstructions or con-

tractions, there CO‘L;ld be significant turning of the local
flow with respect to the mean flow direction. Such flows
could fall into the partially-parabolic¢ category. If the
curvature of duct 1is considerable, or if the size of obstruc-
tion is large compared to the duct cross—-section, local flow
reversal or recirculating flow regions may be encountered,

In these regions, the flow and heat transfer is fully-elliptic.
-In this thesis, only parabolic flow and heat transfer in
straight unobstructed duct-like geometries are considered.

The computer implementation and testing of the proposed
method form an important part of the work reported in this
thesis:. The implementatiorAl activity involves three main
groups of tasks: (i) generation and storage of domain discre-
tization information; (ii) generation and storage of the co-
efficients in the discretization equations; and (iii) solution
of the discretization egquations. For the discretization of
cross—-sectional planes in duct-like geometries, a semi-automatic
domain discretization scheme is formulated according to the fol-
lowing guidelines: (a) there should be no requirement for any
special geometrical input devices such as computer graphics
digitizers, light pens and microcomputers; (b) the scheme

should be able to generate all necessary topological information




for the assembly and solutions of the discretization equations,
without requiring excessive computer core storage and cgstly
input/output operations; and (c¢) it should facilitate the use
of iterative methods for the solution of the discretization
equations. In the axial direction, the dependent variables
vary rathel severely close to the entrance of the duct and re-
latively mildly as the fully-developed region is approached,
and the exact nature of this variation is not known a priori.
Therefore, an efficient numerical method for parabolic duct
flows should be capable of automatically adjusting the axial
step size according to the relative magnitudes of gradients
encounterxed in the wvariation of the dependent variables. Such
an automatic step size selector is formulated and incorporated
in the domain discretization scheme.

The application of the proposed method to laminar flow
and heat transfer in rod-bundles is another important part of
this thesis. Though this problem is commonly encountered. in
nuclear reactor cores, steam generators and heat exchangers,
to the best knowledge of the author, no in-depth experimental
or numerical investigation of it 1s reported in the published
literature. In this work, flow and heat transfer in an infi-
nite rod-bundle array are investigated with geometrié parame-
ters relevant to the design of nuclear reactor cores. Three
categories of problems are considered in this context:

(i) fully-developed flow and heat transfer; {(ii)y fully-

developed flow and developing heat transfer; and (iii) simul-

taneously developing flow and heat transfer. Local and
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overall results are presented in suitably non-dimensionalized

forms.

¥

1.2 SYNOPSIS OF AVAILABLE METHODS FOR THREE-DIMENSIONAL

PARABOLIC FLOW AND HEAT TRANSFER

Numerous papers inlthe published literature deal with
analytical, semi-analytical and numerical methods for three-
dimensional flow and heat transfer in ducts. In this séction,
a few key papers directly relevant to éhe present work are re-
viewed. A more extensive survey of this subject is available
in [7].

The equations governing parabolic flow in ducts are intrin-
sically non-linear and coupled to each other. Consequently,
unless drastic simplifications are introduced, analytical and
semi-analytical solutions to these equations are extremely
difficult, if not impossible, to obtain. A commonly-invoked
simpfification in studies of this nature consists of lineari-
2ing the inertia terms in the momentum equations and neglecting
the cross-stream pressure gradients [8,9]. The major short-
coming of such methods is that they are limited to problems in
which the cross—stream velocity components are either zero or
negligible. Furthermore, even 1n the absence of cross-stream
velocities, analytical and semi-analytical methods usually fail
when non-linearities introduced by non-constant fluid proper-
ties are encountered.

Numerical methods, on the other hand, enjoy a great deal

of versatility and are better suited for the solution of




practical proglems [4]. As a result, they have received
considerable attention in the last two decades [7]. It is
usual to group currently available numerical methods for three-
dimensional duct floWws and heat transfer into two main cate-
gories: finite—difference and finite-element methods. This

categorization is adopted in the following discussion.

FINITE - DIFFERENCE METHODS

Early works in this area concentrated on solving the
three-dimensional boundary layers equations. The pressure
gradient in one cross-stream direction and the diffusional
flux in the other are neglected. In this way, only two moOmen-—
tum equations need to bessolved, the third velocity component
‘being extracted from continuity requirements. Methods employ-
ing procedures of this kind include those reported in [10,11].
'In general, these methods have a limited range of applicabi-
“lity. Furthermore; they cannot easily be adapted to internal
flow problems, and they may give rise to éonsiderable errors
in problems exhibiting boundary discontinuities and fail com-
pletely in others [12].

In the last decade, the pioneering works of Curr et al.
[13,14] and Patankar and Spalding [6] have led the wgy to the
development of more general methods which take full account of
the fluid stresses, diffusional fluxes and pressure variation
in the cross-stream plane. Curr et al. [13,14] analyzed
three-dimensional parabolic flows using two different finite-

difference schemes: a vorticity-velocity formulation is used




in one, and the other employs velocity components andhpressure
as the dependent variables. Both these schemes use non-
iterative "marching" integration in the direction of the main
flow. + 1In the method based on the vorticity*velocity formula- -
tion, Curr et al. used a point-by-point Gauss-Seidel scheme to
solve the discretized momentum and continuity equations. In
the pressure-velocity formulation, they used a point-by—pcsint
iterative solution method based on a SImultaneous-Variable-
Adjustment scheme (SIVA). Using these methods, they obtained
‘accurate solutions of the entrance flow in a sguare cross-
section duct with stationary boundaries and also with one wall
moving.

The method proposed by Patankar and Spalding [6] is pro-
bably the most widelytreferenced of the currently-available
finite-difference me}:hodsa for three-dimensional duct flows.
It is based on a pressure-velocity formulation, and it uses a

j
non-iterative marching integration tefézhnique to advance the
solution in the downstream direction. The non-iterative
nature of this scheme is achieved by using tl}l{e upstream values
of the dependent variables at each axial step /[to calculate the
coefficients in the discretization equations./ At each axial
station, the pressure-velocity coupling is hagxdled by a Semi-
;_mplicit—gethod—for—gressure—_L_inked—Equations (SIMPLE) . In
SIMPLE, a tentative velocity field is obtained by solving the
discretized momentum equations with a gquessed pressure field.
Then the pressure and velocity fields are corrected so as to

satisfy the overall and local mass conservation requirements.
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Experience with the aforementioned methods has shown that the
Patankar-Spalding procedure [6] is superier to those advanced
by Curr et al. [13,14]. Furthermore, the SIMPLE procedure

advanced in [6] has also been successfully used to handle the

\pressure—velocity coupling in complex two- and three-

dimensional elliptic flow problems [3,4]. In subsequent
papers, Carlson and Hornbeck [15] and Briley [16] have proposed
methods which are variations of the Patankar-Spalding method.
Briley [16] used his method to solve duct flow problems with

significant cross-stream velocities.

- In general, the finite-difference methods proposed in .
[6,13-16] have been gquite successful in the prediction of §
three-dimensional parabolic duct flows. Nevertheless, they
suffer from a few shortcomings: (i) they are limited to ducts

of reqular-shaped and constant cross-sections; (4ii) the non-
iterative marching integration schemes used in these methods
necessitate the use of relatively small axial step sizes; and
(iii) in complex fluid flow problems involving a large number
of dependent variables, the overall solution scheme, due to

its non-iterative nature, tends to be sensitive to the sequenc‘e
in which th;a dependent variables are solv?d.

Flow and heat transfer in irregular-shaped ducts can be
solved by finite-difference methods which employ coordinate
transformation techniques. For example, in the works of
Roberts and Forester [17], flows in irregular-shaped ducts are /

handled by a curvilinear boundary-fitted computational mesh;

Ghia and Sathyandrayana [18] used a non-orthogonal surface-

[ Ry
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oriented coorglinate system and a calculation procedure akin to
that of Brilef [16] to analyze flow development ‘in variable
cross-sectional area ducts. In these methods, the conserva-
tion equationé must be transformed from the physical domain
into the computational domain before their finite——d"i"fference
analogues can be formed. This usually complicates the gover-
ning equations and makes a physical interpretation of the
overall formulation guite difficul‘t. Moreover, these methods
are not well-suited for problems involving multiply—corznected .0
domain shapes. Such problems are best handled by finite-

element methods.

FINITE-ELEMENT METHODS

The ability to handle complex irregulag—shaped domains
represents one of the most important advantages of finite-
element methods over finite—difference methods. Indeed, it is
mainly for this reason that, over the last decade, there has
been a considerable amount of research on the formulation and
computer implementation 9f finite—element methods ‘for practical
fluid flow and heat transfer problems [19].. fn recent years,
the 'soﬁ.ution of' such problemsJ by the finite-element method is
becomiilg widespread and gaining in popularity I[19,20].

Most currently-available finite-element méthods for three-
dimensional parabolic flow and heat transfer are based on the
Galerkin formulation. Ohe of the earliest af:tempts to develop

such methods is that of Baker [21] who proposed a finite-element

scheme for three-dimensional reacting and compressible

P A RN S Uinerol Akl ircbes o+ ek o ]

P




11

boundary-layer flows. In this scheme, all governing’
equations are solyed simultaneously; this practice could
require disproportionally large computer core storage and
time, especially in complex probleﬁs involvind séveral

cdupled governing equations [4]. Furthermore, it cannot be

)

adapted to confingdﬂflow problems..

<

Several fingte-elament:solution technigques based on

~

linearized analyses have been proposed for three-dimensional

parabolicaflow and heat transfer in straight ducts of arbi-

trary shape. One such procedure is described by Davids et al..

[22]. In a series of papers by Del Giudice et al. [23-26], a

linearized formulation akin to the semi-analytical procedure

. of Sparrow et al. [9] is merged with a simple finite-element
~algorithm for Poisson-type equations. They have applied

these procedures to hydrodynamically fully-developed and ther-

mally developing problems and, also, to flow and heat transfer

/

,in a number of different duct geometries. It is to be noted,

however, that the limitations associated with linearized for-

mulations afflict these methods and restrict their application

to problems with negligible cross-stream velocities.

‘ The festricted range of applicability of linearized pro-
cedures has led Del Giudice et al. to consider a more general
approach that deals directly with the full three-dimensional
parabolized Navier-Stokes equations [27 ]. In this approach,
a non-iterative sequential solution of the finite-element
analogues of the governing equations is obtained by a proce-
dure akin to that used by Eriley [16]. Thus the limitations

associated with a non-iterative marching integration in the
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main flow diréction afflict this method. In addition, it
canhot compute the pressure in_the cross~-section. It also
" seems to experience difficulties in starting the solution.
Practical fluid flow and heat transfer problems could
involve a wide range of Reynolds and Peclet numbers. Special
upwind-type numerical schemes are required to solve such pro-
blems efficiently [4]. None 0% the currently-available
finite-element methods for three-dimensional duct flow and
heat transfer employ such upwind schemes. Thus, when signi-
ficant cross-stream velocities are encountered, these methods

could experience stability problems unless excessively fine

grids are used.

Comﬁenté

From the above discussion, it ié seen that a considerable
amount of research has been devoted to the development of
numerical methods for three-dimensional parabolic flow and
heat transfer in ducts. However, there is a need for new and
better methods. The method proposed in this thesis repre-

sents an effort to fulfill this need.

1.3 OVERVIEW OF THE PROPOSED METHOD

In this section, the main features of the proposed method
are described in general terms so as to give the reader a
synopsis of the overall formulation. Full details are pre-

sented in subsequent chapters.




The method proposed in this thesis may be viewed as an
extension of the control-volume finite-element method formu-
lated by Baliga and Patankar for two-dimensional elliptic
situations [1,2]. It is cbhposed of four main building
blocks: (1) domain discretization scheme; (ii) selection of
suitable interpolation functions for the dependeng variables;
'(iii) derivation of the discretization equations; and
(iv) solution of the discretization equations.

In the domain discretization scheme, the duct 1is first

*~ divided into a égfies of slabs, each slab being made up of two
adjacent cross-—sectional planes. In each of these cross-
sectional planes, the calculation domain is divided into six-
node triandular macroelements. . Following this, each macro-
element is further divided into four three-node subelements.
All dependent variables, except pressure, are stored atsall
six nodes of thé macroelements. Prism-shaped control-
volumes of polygonal cross-—section are then associgted with
each node. The procedure used to construct these control
volumes will be discussed in a later chapter. It suffices
here to say that the resulting control-volumes do not overlap,
and collectively they fill up the calculation domain completelyf
This discretization scheme is due to Baliga and Patankar [1,2].

In the cross-sectional planes, all dependent variables,
except pressure, are interpolated in each subelement by func-
tions which are exponential in the direction of‘an element-
averaged cross-stream velocity vector and linear in the

A “direction normal to it. The pressure is linearly interpolated

PP—————
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in each macroelement. These interpolation functions are
taken from the works of Baliga and Patankar [1,2]. They
allow the proposed method to solve fluid flow and heat trans-
fer problems over the whole range of Peclet numbers without
incurring the false diffusion difficulties that commonly
afflict upwind finite-difference methods. In the axial
direction, downstream values are assumed to prevail over the
control-volume for all variables. This is the so-called
fully-implicit formulation in the numerical solution of paré—

bolicyproblems [4]. It is used to avoid stability problems

o

!

associated with the axial step size [4]. )

Discretization equations are algebraic approximations of
the governing equations. In the control-volume approach, an
integral formulation is arrived at directly by applying the
conservation principles for the dependent variables to the
control-volumes associated with the nodes. Following this,
the integrals and derivatives of the dependent variables which
appear in the integral formulation are approximatedgby alge-
braic expressions using the interpolation functions discussed
in the last paragraph. The control-volume agproach results
in a method which has the so-called conservative property [4],
and it facilitates the physical interéretation of the overald
formulation.

The resulting discretization equations are solved by a
marching integration technique which advances the solution

step~by-step from the upstream initial conditions to the down-

stream outflow boundary. At each axial station, a sequential

o

25




iterative procedure similar to SIMPLER [4] is employed to.
handle the pressure-velogity coupling and the non-li;earity
of the discretization equations. An automatic axial step
size adjustment procedure is incorporated into the marching
scheme; thus, relatively small axial steps are taken in

regions where the dependent variables vary steeply, and

in regions where they wvary mildly, larger axial steps are

used.

1.4 SURVEY OF THE THESIS

This thesis consi;ts of seven chapters which are
organized as follows. In Chapter II, the eguations
governing laminar, three-dimensional parabolic flow and
heat transfer in ducts are presented. These equations
are described for both the déveloping as well as the
fully-developed regions. Chapter III concentrates'on the
detailed formulation of the prqposed numerical method,
and Chapter I& outlines its computer impleméntation.
Chapter V is devoted to the application of the proposed
method to a few illustrative two- and three-~dimensional
test problems used to establish the validity and capabil-
ities of the proposed method. In Chapter VI, longitudinal
flow and heat transfer over an infinite triangular array
of circular cylinders are studied: the developing and

fully—-developed regions are investigated, and appropriately

non-dimensionalized results are presented for several

Kb ks

s b
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cylinder spacing ratios.
Finally, in Chapter VII, the main contributioné of
this thesis are reviewed and some suggestions concerning

possible improvements and extensions of this work are

presented.

——
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CHAPTER II

MATHEMATICAI, MODELS OF LAMINAR FLUID FLOW

AND HEAT TRANSFER 1IN DUCTS

In this chapter, the differential equations which govern

the duct flow and heat transfer problems considered in this

%

thesis are presented. Detailed derivations of these equations

are not within the scope of this chapter; they are available
in standard text books on fluid flow and heat transfer [28,29].
Instead, commonly used forms of the governing equations are
presented and their salient featufes are discussed.

In the following sections of this chapter, a concise des-
cription of the problems of interest in this thesis is given
first. Then the equations which govern the fluid flow pro-
blems are presented and discussed. Following that, mathema-
tical descriptions of the heat transfer problems are presented.
Finally, it is shown that all these governing equations have a
common form, and a general representation of these equations

1s presented.

2.1 PROBLEM STATEMENT

The problems of interest in this thesis involve parabolic,
laminar flow and heat transfer in straight uniform ducts.
The cross-sections of these ducts could be regular- or

irregular-shaped and singly- or multiply-connected; four

g
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examples are given in Fig. 2-1,

In all problems considered in this thésis, the fluid is
assumed to be incompressible. In addition, though the pro-
posed numerical method can handle non-constant fluid proper-
ties with relative ease, these properties are assumed to be
constant. This is done mainly to generalize the results
presented in this thesis. In spirit, this approach is simi-
lar to that used in the presentation of experimentai results:
actual experiments are done using fluids with variable pro-
perties, but the final results, usually in the form of empiri-
cal correlations, are based on bulk-mean or some other appro-
priately averaged property values.

In the heat transfer considerations, two boundary condi-
tions are investigated;. 1n one, the walls of the duct are
maintained at a. constant temperature; in the other, a uniform
heat flux is prescribed over the walls of the duct./ These
two thermal boundary conditions represent extreme ér bounding
cases of the conditions enéountéred in practice [28,30].

The work in this thesis is mainly concerned with develo-

ping flow and heat transfer in ducts. Nevertheless, as will

be discuggéa in later chapters, an independent investigation
of fully-developed conditions is often useful in the formula-
tion of efficient numerical procedures for the prediction of
flow and heat transfer in the developing region. In this
chapter, the equations governing both the developing and fully-

developed regimes are presented.
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2.2 FLUID FLOW ANALYSIS

In this section, the equations éoverning the fluid flow
problem are presented. The Cartesian coordinate system ’
(x,;bz) is used in the presentation of these equations. The
z—;xis coincides with the direction of the mean flow in the
duct, and x and y denote the cross—sectional coordinates;
typical calculation domains and their associated coordinate
systems are shown 1in Fig. 2-1. The fluid velocity components
in the x, y and z directions are denoted by u, v and w,
respectively. In this thesis, w is called the main flow
velocity, and u and v are referred to as secondary or cross-
sectional velocities.

’ In the following discussi7n, the equations governing

developing flow conditions are;discussed first. Then the

mathematical description of fully-developed flows i1s presented.

2.2.1 Developing Flow Regime

The equations governing the fluid flow problem are
obtained by an appropriate combination of the laws of conser-
vation of mass and momentum and the equations relating viscous
stresses to the rate of strain of the fluid [28]. Application
of these laws to the problems of interest results in the fol-

lowing set of partial differential equations:

\5 .
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Continuity

Stew+ Gy -g-;ww)] =0 (2-1)

xX-momentum

> 2 2 _ _ 3 |3 du 3  duy 5 o du
[EE(QUU)+ 3§(DVU)+ 5E(pwu)] = X +[ax(”ax)+ ay(uay)+ az(“az)

t

+

(2-2)

y-momentum
. b

> > 2 __ 2B |3 vy 3 av 3 9y

[EE(QUV)+ §§(QVV)+ gg(pWV)} = 5y +[ax(“ax)+ ay(“ay)+ az(“az)
(2-3)

Z-momen tum

2 3 2 o - BB |3 w3 dw b dw

[BX(OUW)+ ay(DVW)+ 8z(pww)} 52 +lax(”ax) ay(“ay)+ az(“az)
(2-4)

In the above equations, p and u denote the fluid density and
dynamic viscosity, respectively, and P is the pressure.

'
t
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It is to be noted that, though the proposed numerical method
can handle volumetric source terms in the x, y and z momentum
equations, these terms are‘assumed to be negligible. In
Eqns. (2-2)-(2-4), the terms enclosed in square brackets on
the left-hand sides of these equations represent the rate of
convection transport of momentum per unit volume, whereas the
bracketed expressions on the right-hand sides of these equa-
tions denote the corresponding transport of momentumﬁby
"diffusion" or viscous action.

The foregoing set of equations constitutes an elliptic
system which can be used for the description of most steady,
laminar fluid flows [4 ]. In the parabolic fluid flow pro-

blems under consideration, however, it is reasonable to ne-

glect the viscous stresses in the z-direction [6].. Thus the

a
terms (u 32), (u %%) and (u %%) can be dropped from Egns. (2-2)-
(2-4). Furthermore, the pressure gradient (- gg) that drives

2]

the main flow may be decoupled from 1its lateral counterparts

P . .
(- %;) and (- %g) [6]. This is done by decomposing the pres-

sure P as follows:

P(x,y,2) = p(z) + plx,vy,z2), (2-5)

where p is a cross-sectional average pressure defined as

E(Z) = %fP(X,Y,Z)dXdY, (2-6)
A

RS 4

S e e




e

22

<

and p can be interpreted as a perturbation pressure.

' 3p dp,
Assuming that (az) << (dz)' it follows thaF

32 . dp )

92 dz

.a..g. = _a.B 2-
5y 5y b (2-7)
3 _ 9p

ax ax J

The approximation (2-7) is, in general, reasonable for most
straight unobstructed duct flows with no strong cross-
stream velocities [6]. The above method of uncoupling the
axial and transverse pressure gradients is due to Patankar
and Spalding [6]; it is essential in keeping downstream in-
fluénces from propagating upstream by way of the pressure
transmission mechanism [5]. )

With the above-mentioned approximations, the equations

governing fluid flow reduce to the following set of partial

dif ferential equations:

v e

Continuitz

i
o

[%;(pu)+ %y(pV)+ %;(pw)} (2-8)

X-momentum

4

It
1

8p , 3 8w 3 o duy L, g
+ et syl (2-9)

’[gg(puU)+ %;(pvu)+ %E(DWU)] S

ok ey
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y-momentum *
g;(puv)+'%§(pvzz+ %E(pwv) === %5 %;(u%§)+ %;‘“%5) (2-10)
z-momentum , ;
Seuns tova s Lioww = < B+ 028 olY “2‘?‘1)

In addition, there is a constraint on the total mass flow

rate through the duct.

For steady flow in a duct with im-

permeable walls, this leads to the following equation:

pwdA =

Cross-sectional
Area

constant

(2-12)

The set of equatioﬁs-(2—8)-(2—12) form a parabolic system

which can be solved by stepwise integration in the z-direction.

=t

The unknowns in ‘these equations are u, v, w, p and (- gg) '

and

thus the total number of unknowns matches the number of equa-

tions.

of auif}iary equations are required: initial and boundary

conditions. They are described below.

—

T (- %5) shall be treated as unknown here, rather than p it-

self, mainly for calculation convenience;

p can be obtained

from (- gg) by a straightforward integration.

To specify the problem completely, however, two types

e ——
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Initial and Boundary Conditions e
The proposed numerical method can handle any commonly
encountered flow conditions at the duct entrance (z=0). In o
the testing and application of the method, however, uniform
flow at constant pressure is assumed at the inlet. Mathe~-
matically, this can be expressed as follows:
wix,y,0) =w, p
u(x,y,0) = v(x,y,0) =0, (2-13)
p(x,y,0) =0, p(0) =p, ,
oy P '
-where Py is a constant and w is the mean axial velocity
defined by —
- . B,
w = m/pA. g (2-14)
For steady iﬁcomprqssible fluid flow in constant area
ducts with impermeable walls, w is a constant.
The no-slip and impermeability conditions imply that
u=v =w = 0, on the duct walls. (2=15)

Nondimensicnalization

Thé following nondimensional variables are used in the
fa

i
analysis of fluid flow problems:

l i
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) ' RIS
_ X = X * = Z i 2-16 R
x* = = , LY* = ' z ' ( )
DH DH DH Re
u v W ¥
u* = TS—«, vk = r W ==, (2-17)
. (v QH fv DH) w - ‘
o E'P- E )
p* = B —, ' p* = —5= (2-18)
p (=) P )
Dy
where Dy is the hydraulic diameter defined as .
D =.4(cross—sectional area for flow) _ 4A (2-19)
H (Wetted perimeter) p !

v is the kinematic viscosity (= u/p) and Re denotes the

PN -

Reynolds number:

3 pwD
Re = H .’ ” K - .
m . _

Upon substitution of these nondimensional variables into

o

Eqns. (2-8)-(2-~11), the governing equations become:

Continuity"

Ju* BV*\ Jw* - e . _
ax* T 5y* aZ*] 0 (2-20)

A
e dy

X-momentum

N

3 * * %
[‘a—x-;(u*u*)& 35—*(v*u*)+ a2,,,(w*u*)] = - % + [z ‘:2 + 3 ":,2] (2-21)
- . X 9y
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y-momentum ' )

a

; 3 2 ) ap* azv* azv*
c m vt e (VI e (Wivh] = - gy +[aX*2 ¥ »ayﬁ] (2-22)

S

- ' “
z-momentum - \ L
) ~
P ? * 3 rok | dp* 3 2w 3 2w
['5327:‘(“*‘”*)4’ 3Y*(V*w )+ Fp% (W )] = - JoF +[ax*2 + ay*ZJ (2-23)

t

In terms of the nondimensional variables defined in Eqn.
(2-17), the initial conditions given by Eqn. (2-13) can be

written as follows:

5

w*(x*,y*,0) =1,
g*(x*,y*,0) = v*(x*,y*,0) = 0, - (2-24)
and p* = p* = 0.
Similarly, the boundary conditions are
' u* = v* = w* = 0, on the duct walls. (2-25)

It is to be noted that, with this nondimensionalization,
the Reynolds number does not appear explicitly in Egns.

(2-20)-(2-25). Thus the only parameter in the flow problems

i

considered in this thesis is the duct geometry.

&
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2.2.2 Specialization to the Fully-Developed Regime

In a region sufficiently downstream from the entrance of
the duct, t]:he fluid velocity distribution ceases to change
_with the axial distance. | This velocity profile is called the
fully-developed velocity p’rofile. Fully-developed flows are
usually grouped into two categories: "simple™ and "complex"
fully-developed flows. In the former, no cross-stream velo-
cities exist: wu=v=0, and w=w(x,y) . Laminar fully-developed
flows in straight uniform ducts fall into this category.
In complex fully-developed flows, cross-—stream velocities are
present but are invariant with z: u=u(x,y), v=v(x,y) and
w=w{x,y). f:xa.mples of such flows include fully-developed
_ flows in curved ducts and fully-developed flows affected by
" buoyancy forces. In this thesis, attention is focused ex-
clusively on "simple" fully-developed flows.
For simple fully-developed flows, the continuity equa-
tion and the x- and y-momeptum equations, Eqn'sj. (2-8)-(2-10),
are satisfied identically; and the'z-momentum equation,

Egqn. (2-11), now becomes . :

|

/ 2 2

W 37w d )
/ axi ayz dz ]
where (gg) is a constant. The mean pressure p is now the

same as P since the pressure is constant over the cross-
section in the absence of any secondary flow. Egn. (2-26) is

a statement of the exact balance between viscous forces

A et ARt A 5 e 5
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(left-hand side) and pressure forces (right-hand side); it
has the form of a standard Poisson eguation.
A convenient dimensionless form of Eqn. (2-26) can be

obtained by defining a new nondimensional axial velocity W

as follows:

W A > kil (2-27)
oy pu
“TT‘)“ dz)

*

In terms of this nondimensional veloc¢ity and the nondimensio-
nal coordinates introduced in Egn. (2~<16), Egn. (2-26) can be

written in the following compact form:

3 W, 3 W= o. (2-28)

On the duct wallé, the no-slip condition implies ‘

W = 0. ' (2-29)
duct walls

It is customary to present simple fully-developed duct

.
s

flow results in terms of the product of a friction factor and
the Reynolds number [7]. In such flows, this product is only
a function of the duct geometry. The friction factor is 1

defined by e

WM»— -
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d_.
("' —E) D 1
£ A dz’' "H . (2-30)

T % W

The friction factor - Reynolds number product can then be

obtained from

(2-31)

where W is the average nondimensional velocity:

(2-32)

SR

D ——
H d
21738

2.3 HEAT TRANSFER ANALYSIS: PRESCRIBED CONSTANT DUCT

WALL TEMPERATURE (:)

In this section, the equaLions which govern laminar
convection heat transfer in a duct with its walls maintained
at a constant témperature T, dre presented. These equations
can be derived by an appropriate combination of the law of
conservation of energy and Fourier's law of heat conduction

[28].

of constant duct wall temperature is denoted by the symbol (:)

It is to be noted that this thermal boundary condition
throughout this thesis. As was done in the description of
the fluid flow problem, attention is focused on both the de-

veloping and the fully-developed regions.

b et
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2.3.1 Thermally Developing Regime

For steady duct flow and heat transfer problems being
considered in this thesis, the energy equation may be

written as follows [28]:

3 3 _
T) + §§(pv c_ T+ giipw cp T)]

9
[-a—x-(pu” c p

P

) 3T 3 JT
ok 22+ oxk 27 ] (2-33)

3 T
[Ef(k §§) 9y ay

{ ,
where cp and k are the specific heat at constant pressure

and thermal conductivity of the fluid, respectively, and T

denotes the fluid temperature. In Egqn. (2-33), the assumption

has been made that no intermnal heat source or sink exists in
thg duct. The left-hand side of this equation represents
.the rate of transport of specific enthalpy per unit volume
by convection and the bracketed term on the right-hand side

denotes the rate of transport of energy per unit volume by

-]

conduction. ’

In the parabolic problems of interest in this thesis,

the streamwise heat conduction term %E(k %g) is negligibly
Apw c_ T)

small in comparison to the convection term 52

Neglecting this term therefore, Egn. (2-33) reduces to the

following form:

La
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) 3 ) _
g [ﬁ(pu c_T)+ W(pv c_ T)+ -a—z-(pw cp ™ ] =

P P

o [ 20+ e 2 (2-34)

For a complete specification of the problem, thermal

initial and boundary conditions are required.

Initial and Boundary Conditions

The proposed numerical method can handle any commonly-
encountered distribution of temperature at the inlet of the
duct (z = 0). In the testing and application of this method,
however, a uniform temperature distribution is assumed at the

duct inlet:
- T(x,y,0) = 'I‘i = constant. ( (2-35)

The duct walls are maintained at a constant temperature,

Tw;

thus
T = Tw = constant, on the duct walls. (2-36)

Nondimensionalization

Using the nondimensionalization already introduced in
Egns. (2-16) and (2-17), and defining a dimensionless

temperature for the @ boundary condition as

e e
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T*

[}t

T : (2-37)

the pafabolized energy equation (2-34) can be written as

follows:
D _(urTr) s 2 (yrrH)s D_(yrpr)] = Lo [BZT* ; azT*] (2-38)
[3x=' Ay ” 3z* S Pr b2 W)
: ax Y
where Pr is the Prandtl number: "
u c
Pr = —2£

b3

Similarly, the initial and boundary conditions can be

expressed in nondimensional form as

T*(x*,y*,0) = 0, (2-39) .

T* = 1 , on the duct walls. (2-40)

An examination of Egn. (2-38) shows that the duct geome-
try and the Prandtl number of the fluid are the only parame-
ters in this heat transfer problem.

The peripherally-averaged local Nusselt number is

defined as

kT o i b o b ] oo e

v 4 ¥
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g, D
B Nagz, (@) T TR (2-41)
' w b

where g, is the peripherally—aveg:aged wall heat flux at
axial location z; it can be obtained from an energy balance

over a portion of the duct of length dz:

R) y (2-42)

where A represents the cross-sectional area for flow, P is
the heated perimeter of the duct, and T, is the bulk tempera-

ture defined by

T = - (2_43)

Egn. (2-42) can be substituted into Egn. (2-41) to get:

Re Pr dTb

D
— H

and in terms of the dimensionless quantities introduced

earlier,

1 Pr dry*

Vo, @ T T T & (2-45)
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oftenf in heat exchanger analysis, a flow length
average Nusselt number is more useful than the peripherally-

averaged local Nusselt number. The former is defined as

V4

NuZJCDdZ . (2-46)
o ‘

>

L
z

Nu
m, ()
* It can be shown that, for the (:) boundary condition,

- _ 9 Py .
Num,® = m (2-47)

.

where (AT)LMTD is the log-mean temperature difference
(T -T.) - (T —~T,.(2))
(0T) gy = ———m = Z (2-48)
) : on(—¥ 4

and qm is the mean duct wall héat flux from 0 to z.

2.3.2 Specialization to the Thermally Fully-Developed

Regime
In this problem, the fluid temperature T starts from the
specified initial conditions at the inlet and eventually
reaches the wall temperature Tw. The duct region in which

T = T, is uninteresting, since the temperature is constant

( ’ everywhere and no heat transfer occurs. However, much before
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this uninteresting region is reached, a dimensionless

temperature ¢ defined as

Tw - T
w b
becomes invariant with z. The portion of the duct where

this happens is referred to as the thermally fully-developed

region [7].

The energy equation under fully-developed flow conditions

can be written as

-

3 d T 0 9
[3z(ew ¢ 1 = [3xk 30+ 550 50 1. (2-50)

i
"

In terms of 6, x* and y*, this equation becomes

dr (T ~T.) .2 2
b w b 3™ 9 a” 8
pWe, 93z =- K 7 =+ —=1. (2-31)

* %*
DH X Ay

An overall energy balance over a slice of the duct of

thickness dz gives

aT q
b z
az - , (2-52)

Using Eqn. (2-52), the energy equation can be rewritten

in the following form:

I \

(2-53)

+
+
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[T S

where
D q ,
H z / .
A= A o / (2-54)
. kKT, - Ty /

In the thermally fully-developed region, 8 = 8(x*,y*) and it
can be shown [7] that A is a constant.

At this stage, it is-convenient to introduce a scaled
temperature ¢ 4 6/x [31]. Since A is a constant, the energy

equation in terms of @ has thé same form as Egn. (2-53):

22 2% 80 =0 (2-55)
IxX* ay* W
The boundary condition for o is )
@ = 0 , on the duct walls. ‘ (2-56)

Subject to this boﬁndary condition, Egn. (2-55) poses an
eigenvalue problem, with A as the unknown eigenvalue. The
value of ) must be such that the solution 0 is compatible with
the definition of bulk temperature. This compatibility cri-

terion leads to the following relation for i:

A= (2-57)
¥ an :

ey
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The above treatment of the energy equation in -the thermally

fully-developed regime is due to Sparrow et al. [31]. It

is to be noted that the Prandtl number Pr does .not appear

in Egns. (2-55)-(2-57). Therefore, it is not a parameter in

thé fully-developed regime.

"4

The overall Nusselt nimber in the thermally fully-

developed region is defined by
Nu _ A —2 = A (2-58)
k 4

where H is the average heat transfer coefficient.

2.4 HEAT TRANSFER ANALYSIS: PRESCRIBED UNIFORM  WALL

uear  FLox  (B)

In this section, consideration is given to the situation
where a constant rate of heat transfer per unit area is im-
posed on the duct walls. This thermal boundary condition is
denoted by @ in this thesis. As before, the analyses of
thermally developing and fully-developed regimes are presen-—
ted in sequence in this section.

2.4.1 Thermally Developing Regime

-5

Since only the thermal boundary condition is different
from that in the previous section, the same governing

equation, Egqn. (2-34), applies:

bt mrcara ik e e 5

Gt 4 =
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: 3 T+ 2 3 V1 =
( LG (Pu CP )+ ay(pv c, T) + qaz(pfd °p T) ]
3 9T 9 aT., .
ek 30+ 53k 590 (2-34)

It is again emphasized that any of the commonly-
encountered initial conditions can be handled by the proposed
numerical method. In the testing and application of this

method, however, the following initial condition is used:

- > T(x,y,0) = T, = constant. \ (2-59)

The thermal boundary condition in this problem is

k 2= = q, = constant, (2-60)

where n denotes the outward normal to the duct walls and qy
is the prescribed wall heat flux.

By defining a dimensionless temperature t* as -

T-T,
1

t* A .__-—7___(qw 5.7 K) 2 : (2-61)

and making use of the nondimensional variables introduced in
Eqns. (2-16) and (2—17)', the following convenient dimension-

less form of the energy equation can be arrived at:

C | !
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szl + —1
axX¥* dY ¥

- (2-62)

—xlw*t*) ] =

[ (u*E%)+ y*(v*t*)+ =

Examination of Egn. (2-62) shows that it has the same form as

Egn. (2 38) for° the C) boundary condition. Again, the

Prandtl number and the geometry of the duct are the only para-

meters in this problem.

In terms of the dimensionless temperature t*, the initial

L3

and boundary conditions may be rewritten as

£

t* (x*,y*,0) = 0 (2-63)
Bt* - 4 ) N ' .
?.nd g'n—* =1 . . ) (2-64)
. wall '
_where n* is the normalized outward normal (= n/DH).

The local peripherally-averaged Nusselt¥number is defined

-

”
Q

as follows:

(2-65)

where Tw is a peripheral mean wall temperature.. This Nusselt

number definition ‘is consistent with that suggested by Shah

.
PRt 2

and London [7].

Egn.

(2—65) can be rewritten in terms of the non-

dimensional variables defined earlier.as

&
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(' Nu B —————er (2-66).
— z Th - %
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€
A flow length average Nusselt number can be arrived at,
as before, by integration of the local peripherally-averaged
Nusselt number:
uz \!
s Nu = 2 | dz : (2le7)
SNCIES AN
. 5 .
'2.4.2 Specialization to the Thermally Fully-Developed Regime
The applicable governing equation here is the same as
. that for the (:) boundary condition:
3_ = 3_(x 3Ty, 3 () 3T -
az(pw cp T) ax(k 3x)+ 3Y(k ay) . (2-50)
{
i In the thermally developed region in this problen,
!
g '
; T q_ P
' af b . W = constant. (2-68)
/) 9z dz mc
A
p
A
Let 4
T - T '
b
A ~—
X & Tq, 0/K (2-69)
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» Using Egn. (2-68), it can be shown that this nondimensional
temperature is invariant with z in the thermalfy'fu;ly—
developed region. Using x and Egn. (2-68), Egqn. (2-50) can

be nondimensionalized as follows:

S +2 % -4 = o, . (2-70)
Ix* 3y* W '
where (W/W) is obtained from the solution of the fully-
developed fluid flow analysis. On the walls of the duct, |
’ ’ 4

S X - 3 " (2-71)

Q}
o]
*

’

Egn. (2-71) is a Neumann-type boundary condition; it
determines the shape of the x distribution, but it does not
fix the level of y uniquely. However, from the definition of

X in Egn. (2-69), it follows that:

= 0 . (2-72)

This condition can be used to establish a unique solution

for . , ‘ E -

A peripherally-averaged Nusselt number has already been
l"““
defined %n Eqn. (2-65) for the thermally developing region.
In the ﬁQlly—developed region, this reduces to fhe following

form: .
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) q, D .
Nu = _:ﬂ__ﬁ__ = %_ , L (2=73)
C) (T=Tp) K Xw
where ;@ is the average of x over the periphery. i
2.75 GENERAL FORM OF THE GOVERNING EQUATIONS
All governing equations presented in the previous
sections of this chapter can be cast into the following
general form:
3_ d_ 2 = 3 _(r Ly4 & _(p 22
[5x(Pud)+ g5level+ o(ewe) ] = [GR(T 300+ (v 501 + 8
(2-74)

where ¢ is a general scalar dependent variable, T is the
corresponding diffusion coefficient and S is interpreted as a
volumetric generation or "source" term of . The left-hand
side of Eqn. (2-74) represents the rate of qonvection trans-
port of ¢ per unit volume and the expression enclosed in
square brackets on the right-hand side represents the rate of
transport of ¢ per unit volume by diffusion.

Table 2-1 shows how the various governing equations
presented in the previous sections of £his chapter can be
obtained from Egn. (2-74) by assigning particular meanings
to ¢, I and S. It is to be nboted that the velocity compo-

nents u, v, w and the coordinates x,y,z in Egn. (2-74) are
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dimensional or nondimensional depending on whether .¢ is
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dimensional or nondimensional.

The recognition that all relevant governing equatiqns
possess a general common form offers significant advantages
in the formulation and computer implementation of a general

numerical solution procedure [4].

2.6  CONCLUDING REMARKS
! o

/

'In this thesis, three classes of duct flow and heat
transfer problems are considered. In one, it is assumed
that hydrodynamically and thermally fully-developed conditions
prevail; this situation occurs in regions sufficiently down-
stream from the duct entrance. In the second class of pro-

o blems, the velocity profile is considered to be fully-
developed while the temperature field develops. The last
class of problems deals with the situation in which both
Gélocity and temperature fields develop simultaneously.

In all the above problems, since the fluid properties
are assumed to be constant, the solution of the flow field
can be obtain?d without a knowledge of the temperature dis-
tribution. Once the églution of the flow field has been
obtained, it is used as an input in the energy equation: at
this stage, the energy equation is a linear convection-
diffusion equation [4] which can be solved to obtain the
temperature field. ’ .

( , The developing duct flow and heat transfer problems

considered in this thesis are parabolic in nature: the
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( conditions at a point in the flow can influence conditions
at downstream points but not vice-versa. Thus a marching
integration procedure can be used to solve these problems:
starting with a specified set of initial conditions at the
inlet of the duct, a step-by-step procedure can be used to
advance the solution downstream. This feature of the pro-
‘blems of interest offers considerable advantages in the formu-
lation and computer implementation of the proposed numerical

method.
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CHAPTER III

FORMULATION OF THE NUMERICAL METHOD

\

The formulation of a control-volume finite-element method
for the solution of three-dimensional parabolic flow and heat
transfer in ducts is presented in this chapter, _  In the con-
struction of this method, some key ideas of two existing me-
thods are used: -.a control-volume finite-element method pro-
posed by Baliga and Patankar [1,2] for two-dimensional ellip-
tic situations; and a finite-difference method developed by
Patankar and Spalding [6] for three-dimensional Parabolic
flows. /)

'Staédard finite-element methods have the féllowing
characteristic features: (1) the calculation domain is divi-
ded or discretized into non-overlapping Lubdomains or elements
of simple geometric shapes; (2) the dependent variables are
interpolated in each element by suitably—chosén shape or
interpolation functions; (3) discretization equations éfe
obtained by using a variational method or the Galerkin method
of weighted.residuals; and (4) an element-by-element assem-
bly is used to compile the global discretization equations.
The proposed numerical method has all of these éﬂaracteristics
but differs from a standard finite-element formulation in that
a control volume approach rather than the Galerkin technique

is used to obtain the discretization equations. Therefore,

it was decided that the method could be considered as a

o i
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finite—elément method, with the term 'control-volume' used

as a qualifier.

Details of the various building blocks of the proposed

method are given in the following sections.

Y
N
~

The calculation domains in the problems of interest in

3.1 DOMAIN DISCRETIZATION

this thesis are straight uniform ducts of regular- or irrequ-
lar-shaped cross-sections; an example is given in Fig.3-1l(a).
In the proposed domain discretization scheme, the duct is
first sectioned into a series of slabs perpendicular to the

[

z—-axls, as shown in Fig. 3-1(b). Each slab can be viewed as
being made up of two adjacent parallel cross-sectional planes.
Different slabs need not have the same thickness; indeed, in
the numerical prediction of developing flows and heat transfer,
the ability to work with a nonuniform distribution of axial
step size Az, which 1s the slab thickness in this case, is
crucial to the formulation of computationally-efficient
methods. !
Following the division of the calculation domain into
slabs, the cross—section of each of the slabs is further
discretized using a four-stage procedure illustrated in Figs.
3-2(a) to 3-2(d): first, it is divided into six-node trian-
gular macroelements; then each six-node element is divided

into four three-node triangular subelements by joining the

midpoints of its sides; following that, all nodes of the

three-node triangular elements are associated with control

I
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volumes of polygonal cross-section; finally, the vertices

of the six-node triangular elements are associated with a
separate set of control volumes of polygonal cross-section.
This cross-sectional discretization is swept through each slab
in the axial direction to generate the .three-dimensional grid.
This péocedure divides each slab into prism-shaped elements of
triangular cross-section and prism-shaped control volumes of

!

polygonal cross-section. In the proposed method, all slabs |

are discretized in the same manner. 2
|

A typical prism macroelement and its four subelements 5

!

are shown in Fig. 3-3(a). In each cross-section, all depen-|

3
dent variables other than the pressure are stored at all six f

nodes of each macroelement; the pressure is stored only at
the vertices of the macroelements. Thus the pressure field
is discretized by a coarser grid than that used to discretize

other dependent variables. This unequa%-order pressure-

>

&
velocity discretization scheme is one way of avoiding physi-

/

cally unrealistic cheékerboard—type pressure fields that
commonly afflict equal-order finite-element methods [32,33].

The polygonal cross-sections of the prism-shaped control-
volumes are generated by joining the centroids of the triangu-
lar elements to the midpoints of the corresponding sides:
application of this procedure to triangular subelements
generates the cross-sections of subelement control volumes
shown in Fig. 3-2(c); the cross-sections of the macroelement

control volumes shown in Fig. 3-2(d) are obtained by applying

this procedure to the $ix-node triangular macroelements.

“
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Typical prism~-shaped subelement and macroelement control
volumes and the ‘associated nomenclature are illustrated in
Figs. 3-3(b) and 3-3(c), respectively. It is to be noted
that this method of generating control volumes can be used
with any triangulation of the duct cross-sectional planes,
including those involving obtuse triangles. Furthermore,
the subelement contrpl volumes do not overlap, their bounda-
ries do not involve interelement surfaces, and collectively,
they f£ill the calculation domain completely. The macro-
element control volumes also possess these desirable features.

In the proposed method, triangular elements are preferred
to quadrilateral elements in the discretization of cross-
sectional planes for the following reasons: general quadri-
lateral elements necessitate the use of isoparametric trans-
éormations [34], but the triangular elements used here are
free from this complication; for the same number of nodes,
triangles provide greater flexibility than quadrilaterals in
the distribution of the nodés inside the calculation domain;
and highly irregular-shaped cross-sections can_be more easily
divided into triangles than into quadrilaterals. If the duct
cross—section is bounded by curved lines, it is approximated
by piecewise-straight lines, and the resulting polygonal region
is assumed to be the calculation domain; a triangulation using
macroelements and subelements is then possible.

The local node numbering and labelling schemes shown in

Fig. 3-3 are used in presenting the formulation of the pro-

posed numerical method. In each cross-sectional plane, the

ok
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A

vertices of a typical six-node macroelement are numbefed

1, 2 and 3, and the mid-side nodes are numbered 4, and 6,

as shown in Fig. 3-3(a). The centroid of the macroelement
123 is denoted by O and that of the subelement 165 is called
o. The same node numbers and labels are used in the upstream
and downstream planes of the typical prism-shaped macroelement

shown in Fig. 3-3(a); this is done mainly to avoid the use of

too many subscripts and superscripts in subsequent discussions.

The values of a dependent variable ¢ at upstream and downstream

nodes are denoted by ¢U and ¢D, respectively; if a dependent
variable is not superscripted, it is to be understood that it
pertains to downstream nodes.

Fig. 3-4(a) shows the different subelement control volume
faces associated with the typical subelement 165. Macro-
element control volume faces aésociated with the typical
macroelement 123 are illustrated in Fig. 3-4(b). The nota-
tion presented in these figures is used in all discussions -

presented in the remainder of this thesis.

3.2 CONTROL-VOLUME CONSERVATION EQUATIONS

'

The differential equations which govern the duct flow
and heat transfer problems being considered in this thesis
were presented in Chapter II. In addition, it was shown that
all these equations can be considered as particular forms of

the following general differential equation:

D
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In vector notation, this equation may be rewritten as follows: '
. >
div{(J) = S5 . (3-1)

where J is the combined convection and diffusion flux of ¢:

F= we - TRIT+ Lve-r B1T 4 pwelR . (3-2)

In Egn. (3-2), f, 3 and kK are unit vectors i; the x: y and z
directions, respectively. It is to be noted that the compo-
nent of J in the z-direction represents only the convection

of ¢ in that direction; in parabolic duct flow and heat
transfer, the diffusion transport of ¢ in the z—dir?ction is .

nLglié&ble compared to the corresponding convection transport,

An integral conservation equation corresponding to Egn.
(3;1) can be obtained by integrating it over a control

volume V and using the Gauss divergence theorem: :

— ,’ M
/3-3 ds - /sav = 0 (3-3)

“\

where 3V is the boundary surface of the control volume énd n

is the unit outward normal to the infinitesimal surface area

3

ds.
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Consider the typica% subelement 165 shown in Figs.
3-3(b) and 3-4(a). When applied to the subelement con%rol
volume associated with node 1, the integral conservation

equation for ¢ can be written as follows:

/3-3ds+ [3-3ds+fﬁ-ﬁds+[§-ﬁds-]5dv
« u ) ) '

1 dy S ¢ Y1

°

similar contributions from -other
subelements associated with node 1

s B [boundary contributioms, if applicable] = 0
(3-4)
The form of Eqn. (3-4) emphasizes that it can be
assembled by using an element-by-element procedure.
.
In the proposed method, the‘momentum conservation

3

equations are also imposed on subelement control volumes.

Thus, the integral momentum equations in the x, y and z .

directions can be obtained from Egqns. (3-2) and (3-4), with
the approbriate interpretations of ¢, I' and S given in
Table Z-f.

’\ In the incompressible duct flow problems being consi-
dered in this thesis, there are no explicit equations which
govern the cross-éectiona} pressure p and the axial gradient
of the cross-sectional average pressure (dp/dz). They are

both indirectly specified: substitution d£ correct values

of p and (dp/dz) into the momentum equations yields a

H epmes e i
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" functions for all dependent variables, the corresponding

velocity distribution that also satisfies the local

§

continuity equation, Eqn. (2-8f, and, the overall continﬁity

i o

rt

equation, Egn. (2-12). In the pfoposed mé&thod, the mass -.

consérvation equation, corresponding tq,t@g integral”form of

TN

Egn. (2-8), is imposed on the macroelement control volumes
shown in Fig. 3-2(d) and Fig. 3-3(c). With reference to _;

S
the macroelt?ent control volume surrounding node 1 in Fig.

3-4(b), this ‘equation can be written as follows:

“ ' . ' if,:
/pv"ﬁl ds +/ﬁ p$-3 ds + /93'3 ds + /‘p{;'ﬁ ds’ i
u D A C )

o similar contributions from other ) . .
macroelements associated with node 1 ‘ '
}]=0.

" + [boeundary contributions, if applicable

(3-59

Eén. (3-5) can be assembled by, using a macroelement-by-

v

macroelement procedure.

~

3.3 INTERPOLATION FUNCTIONS

The derivation of algebraic approximations to the

control-volume conservation equations discussed in the last

section requires the specification of element interpolation
' ]

»

diffusion coefficients and source terms, and the mass density.

These interpolation fungtions approximate the variation of

N




a

the variables of interest: (a) along the duct axis, and
(b) in the duct cross-section. The following discussion is
categorized accordingly.

s a \

3.3.1 . z-Direction Interpolation Functions

In the z-direction, within each element, the downstream
values of all dependent variables (¢,u,v,w,p and dp/dz) and
properties (p, I and S) are assumed to prevail over the axial
step size Az. A graphical rgpresentation of the correspon-
ding interpolation function for the®scalar dependent variable
¢ is shown by the solid 1line in Fig. 3-5.

This interpolation practice is equivalent to the so-"
called fully~implicit formulation used in the nuﬁerical
solution of parabolic problems [4]. The other well-known
erTulations‘for parabolic problems are the so-called Crank-
Nicolson ahd explicit methods [4]. Of the three interpola-
tion functions shown in Fig. 3-5, the one correspanding to
the fully-implicit formulation does not necessarily lead to
the most accurate method for all values of Az and flow condi-
tions. However, the other two interpolation practices
requi}e stability-related limitations on the axial step size
Az, which could get unusually restrictive under certain flow
conditions; but the fully-implicit formulation imposes no
such limitations [4]. It is for this reason that the fully-

implicit formulation is adopted in the proposed method. :
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3.3.2 Cross-Sectional Interpolation Functions

Interpdlation function for o, I and S

In the duct cross-section, the values of »p a}ld r at; the
centroids of the triangular subelements are stored, and they
are ‘assumed to prevail over the corresponding elements.

The source term S is, in general, a function of §; it

can be expressed in the following form [4]:

| S =5.+65_¢ ' (3-6)

If the dependence of S on ¢ is non-linear, \;ppropriate
linearization techniques can be used to cast it in the form‘
given by Egn. (3-6). Such technigques are described and
discussed in [4]. The values of S, and S, are stored at the

centroids of the subelements and assumed to prevail over the

corresponding subelements.

Interpolation functions for the general dependent variable ¢

All integral terms appearing in Egn. (3-4) contain the

dependent wvariable 4. In the derivation of algebraic

approximations to these different integrals, it is not neces-

sary to use the same interpolation function for 4. Indeed,
in the formulation of computationally efficient and stable

numerical methods, it i1s usually necessary to use different

, interpolation functions to approximate the different integral

J
;

|
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terms in the control-volume conservation equations [2,4].
In the proposed method, in the integral involving the source
term S and in the integrals representing the convective trans-

. v
port of ¢ across cross-sectional faces, such as uq and dl

shown in Fig. 3-4(a), the nodal values of ¢ are assumed to
prevail over,their associated subelement control volumes.

In the derivation of algebraic approximations to the
integral terms which represent the convection-diffusion
transport of ¢ across “lateral faces, such as a and ¢ shown
in Fig. 3-4(a), more careful considerations are required in
the choice of a suitable shape function for ¢. In the ab-
sence of crosscstream velocity components (u=v=0), ¢ is
j;nterpolate linearly in each subelement. In the presence
of crosg::i;}:yeam fluid flow, however, the use of linear inter-
polation functions could lead.to physically unrealistic
oscillatory solutions anc['i cause iterative solution methods
to diverge [1,2]. To overcome this difficulty, an elemenﬁ
interpolation function proposed by Baliga and Patankar [1,2]
is used. This function responds to the relative strengths
of convection and diffusion in the cross-stream transport
terms, and it also takes into account the direction of a Al
subelement-averaged cross-section velocity vector.

Consider tl}e subelement 165 shown in Fig. 3-6. The
‘element—averaged cross-sectional velocity vector for this
subelement is denoted by 30. A new subelement coordinate
system (X,Y,2) is introduced at this stage; its origin is

4

loc§ated at the centroid o; the X-axis is aligned with the
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element-averaged cross-sectional velocity vector ?O; and the
Z-axis is aligned with the duct axis or z-direction. Let
2 and k denote unit vectors in the X and Y directions, res-

pectively, and U and Vv the corresponding velocity components.

Then .,
> _ > ' -
v, = Uasy 2 ' (3-7)
where
ul+u5+u6 2 v1+v5+v6 2 %
Upy = [(&=5>—) + (=—=5—) 1 . (3-8)
Let
Xpax™ MaX(X), Xg X )i X .= min(X;,Xg, Xg) (3-9)
and
X - X . .
_ max min -
Pe, = pu,, (-MEX __min (3-10)

where PeA is a subelement Peclet number based on the‘mégni—
tude of the element-averaged cross-sectional velocity vector
30. In terms of these variables, the interpolation function
for 4 in subelement 165 shown in Fig. 3-6 is given by

7

¢ = A E +BY +C (3-11)

where

-
¢

/
/
/
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.nodes, and interpolation functions for these variables are
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max
) -,l.} (3-12)
n

and A, B and C are copstants that can be uniquely determined
from the nodal values of ¢ (Appendix II). The rationale for
using the interpolation functi?n given in Egn. (3-11) has

been extensively discussed.by Baliga and Patankar [1,21.

Briefly, the advantages of this practice are the following:

-

{

/
//
(1) the exponential ﬁﬁnction used in Egn. (3-12)

provides the appropriate amount of "upwinding";

$a R -
(2) the "spinning” of the local (X,Y,Z) coordinate

" system to align it with the direction of the average cross-

sectional velocity, 30, substantially reduces the numerical
or false diffusion difficulty that plagues many of the
currently-available upwind-type finite-difference and finite-

element schemes [2,4];

(3) in the absence of cross-stream velocities (u=v=0), d
Egn. (3-11) reduces to'a linear interpolation function, and %
thus conforms to the standard practice for pure diffusion

situations.

oo 0 St

Interpolation functions for the velocity components u, v and w

- The velocity components u, v and w are stored at all

e 4
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prescribed 'in each subelerent in the calculation domain.
It is again emphasized tqat interpolatioﬁ fqncfions are re-
quired to obtain algebraic approximations to the different
integral transport and source terms present in the control-
volume conservation equations, and it is not necessary to u§e
the same interpolation functions in all these different terms
and equations [4].

In the derivation of algepraic approximations to the
inﬁegral terms which represent conveéctive transport of momen-

tum across cross—sectional faces, such as ul and dl shown in

Fig. 3-4(a) , the nodal values of u, v and w are assumed to
prevail over the surfaces of their associated shbeiement con-
trol volumes. In the derivation of algebraic approximatfons
to the integral terms which represent the convection-diffusion
transport of momentum across lateral faces, such as a and ¢
ghown in Fig. 3-4(a), u, v and w are interpolated by func-
tions similar to -the ¢ interpolation function given in Egn.
(3-11).

In the calculation of mass flow rates across cross-
sectional;faces,dsuch as uy and dl shown in Fig. 3-4(a), nodal
values of w areiassﬁmed to prevail over the surfaces of their
associated subelement control volumes. In the derivation of
algebraic approximations to mass flow rates across lateral
faces, such as a and ¢ in Fig. 3-4(a), u and v are assumed to

vary linearly in the subelements.

L
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( Interpolation function for pressure
N .

The pressure is stored at the vertices of the macro-
elements and interpolated linearly within each macroelement.

Thus, the interpolation function can be expressed as

Pp = ax°+ by + ¢ (3-13)

S

where .a, b and ¢ are constants which can be uniquely deter-

mined from the nodal values of p (Appendix I).

&

3.4 DERIVATION OF THE DISCRETIZATION EQUATIONS

The discretization equations are algebraic approx;ﬁgw\
as

k\
' \
Egn. (3-4). They are obtained by first deriving such k\\k‘\

s

tions to the control-volume conservation equations SUE
- approximations to the corresponding element contributions
and the boundary contributions, if applicable, and then
assembling these contributions appropriately. In the

following discussién, the derivation of the discretization

equation for the general dependent variable ¢ is presented

smrter o

fifst. Then discretization analogues of the x-, y- and z-
momentum equations are presented. Finally, discretized
forms of the continuity and momentum equations are combined
to obtain discretization equations for the pressure p and

the axial pressure gradient (dp/dz).
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3.4.1 Discretization Equations for ¢ J
\ ' / '

-

The following discussion pertains to node 1 of/{’the
subelement 165, shown in Fig. 3-4(a), and its associated
subelement control volume; discfetization equations asso-
Eiated with other subelement nodes are obtained analogously.

éﬂ},

Element contributions

Using the interpolation functions presented earlier, the
integral transport of ¢ across the upstream and downstream

control volun':e faces ul and dl are approximated é;s follows:

L ]

> A U |
/3 +nds = -——%‘—g[pwl q;l] v | (3-14)

A
_  _165 D _
ds = == [owl ;] , . (3-15)

o2

i

- »

where the superscripts U and D refer to the upsti:eam and

~

165 is the area of o

triangle 165. The assumption that the values of ¢ and w at

node 1 prevail over the control volume faces u

1 and d1 has
been employed in deriving Egqns. (3-14) and (3-15).
Simpson's rule and the fully-implicit formulation are

used to approximate the integral transport of ¢ across the

lateral faces @ and c,. Thus the convection-diffusion

———~ e
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transport of ¢-acros$ the lateral surface a is approximated

as follows [2]:

-Y_Az
/3-3 ds = —— [0+ 432 + D]

XaAz D

£ S Lp?

z (3-16)

D D
AT+ Ty ]

where Iy and JY are the components of J in the spuh coordinate
system X and Y, respectively. The interpolation functions

givéﬁ in-Egqn. (3-1l1) are used to approximate Iy and JY:

‘J Z p(U ~ UaV)AE’+ pU(BY + C)} =~ Y%
' . (3—17)

oVAE + pV(BY + C) - IB

‘The subscripts o, r and a in Eqn. (3-16) refer to the locations
shown in Fig. 3-6. U and V are the cross-sectional.velocity
components in the spun X and Y coordinate directions, respec-
tively. The interpolation constants A, B and C can be ex-
pressed in terms of the coordinates of the nodes 1, 6 and 5
and the corresponding nodal values ¢l’ ¢6 and ¢S; the exact

! ' expressions for  these constants are given in Appendix II.

Egn. (3~16) can be compactly written as follows+:

]

( '+ the derivation here is straightforward but quite lengthy;

its details are reported in Appendix II. -

;
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¢

+ > -~ _yqaa D a D a D _
[J'n ds (Al 1 + AS 4>5 + A6 ¢6) (3 18)¢

a

where A%, Ag and Ag'are co&stants that involve the fluid
properties p and I and the nodal coordinates and velocity
components. In Egqn. (3-18), the superscripﬁﬁa pertains to
the integration across the control volume face d.

In a similar manner, the convection-diffusion transport

of ¢ across face ¢ can be expressed as:

+ > _oac ¢ D ¢ D ‘ _
' fJ-n ds = Ay 6, + Ag ¢g *+ Ag ¢ (3-19)
d

' Again, details of this derivation are available in Appendix II.

The integral involving the source term is approximated

as follows:

)

N .
- . 165 D _
/s av = ﬁsc+sP $)AV = =572 82(S*S, ¢7) (3-20)

v v

v

Adding up Egns. (3-14), (3-15), (3-18), (3-19) and (3-20),
the total contribution of subelement 165 to the integral con-

servation equation for the control volume surrounding node 1

is obtained:




tq dl a d vy
" Mles D a , ,c, D
{5— [lowy)" - S, 8z ] - A +A[} ¢,
a J D a ¢ D
T (A5~ Bl og = Ay 7 Ag) ¢
N .
+ Pies v, u_ Pies

{'—3'— AZ /SC} (3-21)

4 h
It can be shown that, if the element contribution to

the mass conservation equation for the control volume asso-
ciated with node 1 is multiplied by ¢]]? and then subtracted

from Egn. (3-21), the result 1is:

CONTL = fﬁ-'ﬁ ds + fj.ﬁds+f3-'ﬁds +f3-ﬁds—fs dav
' d

ul) 1 a c vy
vy )
- ¢? E/‘p§-ﬁ ds + '/Apgo'ﬁ ds + /‘9\7-3 ds + '/‘p;; n ds]
1 | d]_ a c
=A165[(w)U-éAz]+Aa—'A°+A“—Ac} D
{3 CASY p 5 5 6 67 %1
a _ ¢ D - a _ ,C D
_D {AS AS} ¢5 {AG AG} ¢6
-
A A
165 U 4] 165
{ 3 (pwy) } 41 {—3-— Az se} (3-22)

[ E T
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When similar contributions from all other elements.associated

with node 1 are added up, the net contribution from terms
inyolving the mass flow integrals is zero; this is a require-

ment of the law of conservation of mass. Hence, Egn. (3-22)

can\bé regarded as the total centribution of the subelement
165 to the ¢-conservation equation for the control volume
surrqunding node 1.

The motivation for using Egqn. (3-22) instead of (3-21) :

1

is the following [2]. In problems where the source tem 1is
absent (S = 0), if ¢ satisfies the gdverning equatioh, then
(¢ + constant) also satisfies this equation. Since the dis-

this /property. It is seen that in Eqn. (3-22), with SC ;

0, the coefficient of ¢? is the negative sum of the co-
efficients of ¢g, ¢g and ¢g. Thus, Egn. (3-22) has the
rementioned property. Egn. (3-21) also exhibits this
perty, provided that the mass flow field satisfies the

s conservation law for the control volume surrounding

e 1. This may not)always be the case, however, especially

iterative solution of the various sets of discretiza-

Egn. (3-22) can be cast into the following compact

4

b D D u U
€11 *10* C15 ¢5 * Gy 06 * Cpp 01 + By (3-23)

FEEEPELPPTYL T g

I, o kbbb




65
where
‘= = (Cyg * Cygp + CTo)
LT 15 ¥ €16 T C11 !,
_ a _ ,C
C15 = (A5 AS)
= - (a% -at F (3-24
€16 (Ag ~ Rg) , . (3-24)
A
u _ _ 7165 U
€11 = 3 (evy)
A
~__ 165
Bl = 3 AZ SC
]

Similarly, the total element‘ contributions to the dis-
cretization equations for nodes 5 and 6 can be expressed in
the following compact forms: K

_ D D D U .U
CONT5 = CSl ¢’l‘+ C55 ¢5 + C56 ¢6 + C55 ¢5 + B5 .
‘ (3-25)
CONT6 = v

D - D, D u
Cer %1 * Ce5 57 Cgp %6 + Cp6 ¢6 * B

Boundary contriputions

Wwhen a node lies on the boundary, special attention is
required in deriving its discretization equation. The
control volume surrounding a boundary node possesses one or
more domain boundary faces, as illustrated in Fig. 3-7.
The normal fluxes of the dependent variable crossing these

»*

faces need to be integrated and added to the discretization

)\

"t W




¢
E4
4

equation for the corresponding boundary node. Information’ ~

regarding these fluxes is available,frcmlfhe boundary condi-

tions on the variable  of interest.

Typically, three kinds of boundary conditions are commonly

encountered. They are:

R -
(1), specified ¢ at the boundary,

A

(2) no flow, specified diffusion flux at the

L'S

boundary, and

(3 the so-called outflow condition [4].

The procedures for treating such boundary conditions
,J—/ I
are outlined below.

2 r
[

Specified ¢ boundary condition: When the value of ¢ is

specified at the boundary, there is no need to assemble its

discretization equation. Rather, the discqetizgtion equa-

tion for such a boundary node i takes on the following

trivial form:

. = ¢ . .
i specified .
° - | <

v oy ~ o

No flow, specified diffusion flux boundary condition:

LS

Here, there is no flow crossing the boundary and hence the

convection flux component of ¥ is Eeré. The diffusion fldi

component on the other hand, is specified. Usuallf, only

. .y
g

o O N M. 4 N b, AT € Sl i e

T b 2ok 0 e A e iae




\ ‘ ‘ 67

~

/ o the compdnent of this flux normal to the boundary is given:

, |
- (rV ¢+ & =_q (specified) (3-27)
where q is the specified outward normal component of the
diffusion flux. A typical example of this type of boundary
«condition is the specified heat flux boundary symmetry and

adiabatic surfaces are particular cases of this boundary

condition in which g = 0.

©

Referring to Fig. 3-7, the contributiop of the sub-

/ . element 165 to the discretization equation for node 1 can be

expressed as:

u o CONTLl = f?r-ﬁ ds + fﬁgﬁ ds +-';[35E ds + "/‘3-3‘ ds

+
—
= 2%
Do
0n
i

wn
o
<<

la vy
(] ’ "
-9 ['/‘p?/ n ds + —/‘p;/'*-l‘-; ds + "/’p3-r_§ ds + -/p\";-n ds ]
Uy dl a c
! .
{ _ D D D J
= Cll ¢l + C15 ¢5 + ClG ¢6 + CI ¢l + Bl + fq ds

. . 3
SN _ | 3-26)

£ 3
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outflow boundary condition: At an-"outflow" boundary,
AN

where the fluid leaves the calculation domain, it is common

that neither the value of ¢ nor its flux is known. In duct

flow problems, the last downstream plane of the calculation
domain 1is an example of an outflow boundary. The assumption
@

usually made in such situations is that the convection flux .

component of J is large enough to overwhelm its diffusion

counterpart [4]. Thus, it is assumed that
-T V¢ -0 = 0 ’ ©(3-29) O
An outflow boundary could be: (i) a cross-sectional
surface, .or (ii) a lateral face. In the former case, no

special treatment is required: the streamwise transport of )
,by dif fusion has already been neglected in the parabolic
problems of interest here; and the convective transport
across downstream cross-sectional surfaces, such as d in

Fié. 3—-4{(a), has already been included in t'he element contri-
butions discussed earlier. In the latter case, however, the
transport of ¢ by convection across the boundary faces, such
as la and lc in Fig. 3-7(b), must be integrated and included
in the conservation equation for node 1. In a manner similar

to the derivations in Appendix II, it can be shown that

> _la D la . D la D C
[3.n ds = a] b * R5 o5+ AgT o (3-30)

la
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Thus, the total contribution of subelement 165 to the
discretization equation for boundary node 1, shown in Fig.

3-7, is given by the following equation:

CONTL = {f‘j-ﬁds +f3-3ds +f3-ﬁds +f3-ﬁ ds

u dl a ¢
+ 5.3 ds - fs av}
) ] la “ vy |
S
P tfpvf.n ds + fpm ds +.fp:;.a ds +fp¢-.a ds
Uy d1 a ¢
pven ds]
~ ‘ )
_ (Cl(i—Aé la)¢]f + (C15+A5 )¢5 +(Cq et 6a)¢16)
-~ \\T\\
+ cgl ¢[1J + B) \\;\ (3—31)

i

i

!
The boundary contributions to the conservation equations
associated with other boundary nodes are handled in a similar

manner.

Assembly of the discretization equations

-~ The discretization equation for ¢ at a node i is

obtained by adding up the total (internal + boundary)

1
-
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<

contributions of all subelements associated with the control
volume surrounding node 1i. This 1s done by visiting all
subelements one-by-one; in each subelement, the contributions
CONT1l, CONTS and CONT6, discussed earlier,’are calculated and
added to the appropriate nodal discretization equations.

.

The fésulting discretization equation for $ at a node i can

-
N

be cast into the following general form:
+ b, / ' (3-32)

where the summation is done in the downstr?am plane over all
nodes belonging to the subelements associated with node i.
In Egn. (3-32), it is to be noted that the superscript D for
denoting downstream values of ¢ has been omitted for conve-

nience in this presentation.

3.4.2 Momentum Discretization Eguations

The momentum equations, Egns. (2-9), (2-10) and (2-11),

can be integrated over a fixed control volume V to obtain the

following equations:

X-momentum

/A[ﬁu - yYu] - n ds = f(— %ﬁ-)dv ‘ (3-33)

1% v

i
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o X—momentum

“[p¥v - yUv] » B ds = f(— %g)dv (3-34)
av v .
z-momentum . '
[p%w - wIw] - B ds = [(- $Bav (3-35)
v v
In Egns. (5—33) ;7 (3-35), the integral tefms representing

the convection-diffusion transport of u, v and w are similar
to the corresponding integral transport term in the conserva-
tion equatiéz for ¢, Egn. (3-3). The derivation of algebraic
approximatiens to these integral transport terms has already
been deséflbed in previous ;ections of this chapter, and so it
Lwill not be repeated here.
The integrals involving the pressure gradient terms,

(3p/3x) and (3p/3y) can be expressed in terms of nodal pressure
Py

values, using the macroelement interpolation function given in

a

Egqn. (3-13). Thus, within a macroelement:
3p . 3 - | ,
o a , 3y b. (3-36)

Therefore, with reference to Fig. 3-3(a), the contributions
of the macroelement 123 to the .pressure gradient integrals
=

over the subelement control volume surrounding node 1 can be

expressed as follows:

Ww«»
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3 _ _ au 4 u o -
'/‘(-_a%)dv_—Ula—Dlpl+D2p2+D3p3 (3-37)
- .
"1
: \
and \N)
? v v v _
[ (- sg)dv = — v, b\f,Dl\g{+ D, p, + D3 pP3 (3~38)

v

The fully-implicit formulation is used to obtain Egns.
(3-37) and (3-38), so the nodal pressure values in these
equations pertain to the downstream plane of macroelement 123,
It should also be noted that the coefficients DY and DY in

these equations depend only on the geometry of macroelement

2 123. Details of the derivation of Egns. (3-37) and (3-38) are

given in Appendix I. Similar contribytions from other macro-
elements associated with node 1 can be approximated analo-
gously.

The axial gradient of the cross-sectional averaged pres-—

sure, (dp/dz), is assumed to be constant over the axial step

e T e

sizZze aAz. Therefore, for node 1i,

s
[N

Arve b s

dp - dp
:/(— av = ‘- ,,

v,
1

/

where vi is the volume of the subelement control volume'y

associated with node 1i.
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Discretization analogues of the portion of the integral

momentum equations which do not involve the pressure gradient

]

terms are assembled by using the procedure described in the

last subsection. The pressure-gradient integrals are assembled

k)

on a macroelement-by—-macroelement basis, using Eqns. (3<37) -

{3—-39). The resulting u, v and w discretization equations for

a node i can be cast intc the following general forms:

u ~ou u,U U u u
a, u, =3 a u + a u, +b: + I Al p. (3-40)
- i 7i b nb "nb i t 3 J 3
v v v, U _U v v
a, v, =y a., v + a v: +b, +L AL p. (3-41)
i1 oy nb "nb i 3 J 3
/
i
w - w w,0 U w _ dp,. (3-
a. w. b anb wnb + ai ,wi + bi + ui ( dz)v _ (3-42)

where )\IJ’.I and x;’ are constant coefficients containing combina-
tions of Dlj1 and D;’ respectively. In Egns. (3-40) and (3-41),
the summations involving the velocity neighbours are done over

all downstream nodes belonging to the subelements associated

with node 1i. The summations invyolving pressures, however,

pertain to the downstream vertices of the macroelements asso-
ciated with node i. It is again emphasized that the fully-
implicit formulation is used in the de;:ivation of Eagns. (3-40)
to (3-42); nodal velocities and pressures which appear in

the se equations without superscripts are values stored in the

downstream plane.

[P SN
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Representation in terms of pseudovelocities: Egns. (3-40) -

(3-42) can be expressed compactly in terms of pseudovelocities

4, ¥ and W defined as follows: "

u , U U u
+ . .
rzlb anb unb al ul + bl )
i, = (3-43)
i u .
a.
i
[ /l’
b a’ v + aY’U vt.I + by
nb nb i i 1 .
- _ nb
v, = (3-44)
i v
a.
i
w yU U w
I @up Ynp T35 Wy by
~ _ nb .-
w, = ' (3-45)
b aW oy
: i 5

It is to be noted that these pseudovelocities at node i are
defined in terms of upstream and dowﬁstream neighbouring
velocities, k?ut they <:‘10 ‘Tﬁot depend directly on p and (div_/dz) .
Thus, given a velocity field at a downstream cross—sectional
plane, the corresponding pséudovelocities can be calculated
without an explicit knowledge of the'pressure distribution.
Using these pseudovelocities, Egns. (3-40) to (3-42) can

be rewritten as follows:

— u u
u, = ﬁi + z }‘j pj/ai (3-46)
j .
= v v
v, = 0,04 § *j Py/a; _ (3-47)
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_ _dp, , w_— -
Wi =@ty 320 /ay / (3-48)

These compact representations of the discretized momentum

4 !

equations are used in the derivation of the discretiéation
!
equations for p and (dp/dz). ‘ ,
If u, v or w are specified at a boundary node i, the

corresponding momentum discretization equations associated

with that 'node reduce to:
J . ° 3

o - 6 -
1,

i uspecified
Vi . T v"i = Vspecified (3-49)
Wi T OW T wspecified

!

3.4.3 DiscrgLization Equation for Cross—Sectional Pressure p

| /

A discretization equation for the cross~-sectional pressure

p can be obtained by substituting Egns.(3-46) and (3-47) into
a discretized mass conservation equation. tThe,&ey ideas of
this derivation are presented concisely in this section; the
details are presented 1n Appendix III.

Consider the macroelements and control volume surrounding
node 1 in Fig. 3-3(c). With reference to the nothition in
this figqure and to Egn. (3-5), the contribution of macroelement
123 to the integral mass conservation equation associated with ,
node 1 can be approximated using Simpson's rule and the velo-

city interpolation functions described in section 3.3. Thus,

- —




PCONT1 = [f oV-n ds + fﬁ-‘ﬁ ds + fp?;-ﬁ ds + jﬁ-‘ﬁ ds ]
A

= MU, u +MU5u5 + MU

1
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i’v +MVlv +MV1

T MV, Yy 5 Vs 6 Ve

s + MWCONL . (3-50)
where

1 1
MWCONL = MW, w; + MWg wg + MW

- +GMWi'U (3-51)

i

In Egn._ (3-51), all values of w and wU are treated as known
or already calculated.

The subelement control volumes associated with nodes 4,.5
and 6 lie totally within the region enclosed by Ihac.roelement
123 and a maximum of three associated macroelements, as
illustrated in Fig. 3-8. Therefore, the discretization
equations for the velocity components Ugr YUgs Ug, Vg, Vg and

Ve which appear in Egn. (3-—50)0 involve a maximum of four nodal
pressure values each. With reference to Fig. 3-8, the pseudo-~
velocity representations of these discretization equations
are the following:

A u u u u
Uy =ug + Op PpF APy F A3 Pyt gy Pyl /3y (3-52)
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_ u u -’ u u u _
( . ug =ug + (i) Py + A5 Py, + A3 P3 * Aj5 Pyl /3 (3-53)
; N -
] u u u . .u u _
_ug =fug + 0] By + AT ey 03 Py 105 pyy) /2 (3-54)
. ‘and N
_ A v v v v v _
Vg Vg T O Pt APy Y A3 Pyt Ay Pyl Ay (3=53)
A v - v v . v v ) _
Vs = Vs * 0O Pyt Ay Py + 33 Pyt dgn Pyl /a5, (3-56)
S \'2 v v v , v _
Ve =V * (0 Pyt A3 Py * A3 P3 t A 3 Piy) /3 (3=57)
. 4
Egns. (3-52) to (3-57) can be substituted into Egn.
Il
(3-50) to oLtain the following representation of the contri-
bution of macroelement 123 to the integral mass conservation
equation associated with node 1:
_ 1 1 1
PCOI'\ITl = MP] p; + MP) p, + MP3 p,
+ mpt p + mpt p + Mpt + MPCON1
ol Po1 02 Po2 03 Po3
(3-58)

where the term MPCONL is a linear combination of the values of

the pseudovelocity components, {1 and x}, at the nodes 4, 5, and 6




in the downstream cross-sectional plane of macroelement 123,
and the axial velocity component, w,l at the nodes 1, 5 and 6
in the downstream and upstream cross-sectional planes of
macroelement 123. -
[
.Similarly, the contributions of the macroelement 123
to the integral mass conservation equations associated with
nodes 2 and 3 can be expressed in the folldwing forms:
PCONT2 = MPS p, + Mp2 + MP2 p
_ 1P 2 P2 3 P3
+MP2. p . + MP2. p . + MP2_ p_ . + MPCON2  (3-59)
ol ol o2 o2 o3 o3
R 3 3 7 :
PCONT3 = MPy p; + MP) p, + MP3 p, .
+ Mp3 + MP3, p.. + MPO_-p_. + MPCON3. (3=60)
ol Po1 02 o2 o3 Yo3 '

The derivation of these equations is analogous to that of

Eqn. (3-58) presented in Appendix III,

s L o W, Sty e kb, i

PO




Eqgns. (345;9’) and (3-60) repre“ss'ent the total internal
c ntrlbutlons of the macroelement 123 to the integral mass
onservétlon equaftlons assoc:Lated with nodes 2 and 3, res—
ectively. If one or more lateral faces of the macroelement
coincide with the domain boundary, the mass flow rgtes across

these surfaces must be integrated and added to the internal

-~y

macroelement contributions to complete the assembly of the
discretized mass conservation _equations.' In this thesis,
hoyvever, since only ducts with impeéermeable wal'ls; are consi-
dered, the mass flow across the duct wdlls is zero.
The dfscre’éization equations for the n7dal values of the
‘ ’ " /

cross—sectional pressure p are obtained by a macroelement-by- )
N )

§
macroelement assembly of the corresponding integral mass con—/

servation equations: all macroelements are visited one-by-one,

and in .each one, the algebraic expressions for PCONT1, PCONT2
and POONT3, presented earlier, are assembled appropriately.

The complete discretization equation for pressure at a macro-

‘element vertex i can be cast into the following general form:

\
’ P _ p P
aj Py I @y Pnp * P

nb -

N 8 (3-61)

The summation in this equation is taken over all the downstream
vertices of all macroelements and associated-macroelements’
connected with the pressure node i. Collectively, these

neighbour pressure nodes form the star-like cluster shown in

Fig. 3-9.
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The term b?lin Egqn. (3-6l) is a linear combination of the

pseudovelocity components u and v, stored at the velocity nodes
marked with a cross-mark (x) in Fig. 3-9, and the corresponding

axial velocity components w and wU. Therefore, given a velo-

1 city field, the set of pressure equations, such as Eqn. (3-61),

¢

can be assembled and solved to get.the corresponding cross-
sectional pressure field.
If the cross-sectional pressure at a boundary node i is

specified, the corresponding discretization equation reduces to

o
~

p. = (p:) (3-62)
,l“_ 1 specified K / K

3.4.4 Discrétization Equation for (dp/dz): /
/
For steady flow in a duct with impermeable walls, the total

&

mass flow rate crossing any cross-sectional plane of the duct is

a constant:

A

.
it

owd A = constant’ .- (2-12)

cross-sectional
area of the duct

Assuming that the nodal values of w prevail over the polygonal
cross-sections of their associated subelement control volumes,

the mass flow rate m can be approximated as follows:

£

S

m o= o A, w " (3-63)
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where Ai is the total area of the polygonai‘cross—section of
the subelement control volume surrounding node i, and the
summation is taken over all nodes in the duct cross-section of
interest. 1 a

The pseudovelocity representation of the z-momentum equa-
tion associated with node i is given by Egn. (3-48). This

.equation can be substituted .into Egn. (3-63) to obtain:

b

. A _ dp, ,.w _
m —Z. o} Ai {wi + v ( d-—g)/al} 0 (3 64)

1

i
t

This equation can be rewritten as follows:

-

(3-65)

+

At any axial station (z + Az), if the velocity field is known,
the value of (dp/dz) pertéining to the region‘between z and

(z + Az) can be obtained by using Eqgqn. (3-65).

3.5 SOLUTION OF THE DISCRETIZATION EQUATIONS

3.5.1 Marching Integration

As was discussed in earlier chapters, 1in parabolic duct

flow and heat transfer problems, conditions at a point in the

duct can only influence the conditions at a downstream point,

@b e S e RS

e Y e
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not'vice—versa. The discretization equations presented in the
last section possess this characteristic too. Tbus the dis~-
cretization equation associated with a node in any cross-
sectional plane of the duct of interest may depend on and in-
volve values of the dependent variables at nodes in the same
and the adjacent upstream cross-sectional planes, but théy are-
in no way connected to the values of the dependent variables
at downstream nodes. Therefore, the assembly and solution of
the discretiz#kion equations assoclated with the nodes in any
given cross—séctional plane, or axial station, require the
:giuss of dependent variables at the adjacent upstream cross-
‘sectiéhal plane only: once this is done, the same procedure
can be repeated to advance the solution to the next downstream
plane, then the next one, and so on. In other words, starting
with the known dinitial conditions at the inlet cross-secticnal
plane of the duct, a\plane—by—plane marching integration_pro—
cedure can be used to determine the values of the dependent
variables at all nodes of the calculation domain.

An 1terative method similar to the SIMPLER procedure of
Patankar [4] is used to advance the solution from one cross-
.sectional plane to Fhe next downstream one. In this proce-
dure, at the end of each iteration, the calculated velocity
components are corrected via suitable pressure corrections so

tha£ the overall and local mass conservation equations are
satisfied. In addition, to ensure convergence of this pro-
cedure, it is necessary to slow down the changes in the co-

efficients of the discretization equations from iteration to
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iteration by the use of under-reglaxation. These matters are

discussed in the following subsections. A summary of the

overall calculation procedure is presented at the end of this

section.

3.5.2 Velocity and Pressure Correction Equations

At any stage of the aforementioned SIMPLER-type iterative

procedure, upstream values of the dependent variables and guessed, cr

Q

tentative, values of these variables at the nodes in the cross-

sectional plane of interest can be used to calculate the coef-

ficients of the discretized momentum equations. These coeffi-

cients can then be used in Egqns. (3-43) to (3-45) to obtain

the pseudovelocities u, v and w. Then, these pseudovelocities

can be used in Egns. (3-65) and (3-61) to calculate the corres-
ponding values of the axial gradient of the cross-sectional

averaged pressure and the cross-section pressure; they are

# #

denoted by (dp/dz)" and p", respectively. Using (dﬁ/dz)#

and p#, the discretized momentum equations can be solved to

these calculated velocaity

0 #

In general, u , v

obtain the velocity components;

# #

components are denoted by u’, v’ and w

#

and w' will not satisfy the overall and local mass conserva-

tion egquations. One way to ensure that they do satisfy mass

conservation requirements
calculated corrections to

values of these variables

is to correct them via suitably

# #

(dp/dz) " and p'. Let the correct

be given by

=3 g (3-66)

LI SV PP P

Lip
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, i
and
4, 41
o
p = p# + p' -~ (3-67),
o
v
where the superscripts ( )# and ( ) refer to tentative and
correction values, respectively. These corrected values can

be substituted into the discretized momentum equations to ob-

»

-

tain equations for the corresponding velocity corrections w',

u' and v'. ‘These equations can be simplified if the contri-
butions of the neighbour-point velocity corrections, I azb wéb,
u . v . . . L i s
L aly Y and ¥ aly Vap are considered negligible [4]: it is

i to be noted that, as the solution converges, these quantities

‘do indeed become negligible. The resulting velocity correc-

tion equations are:

I _ dp W
w, = W, + Ui { EE) /ai (3-68)
u., = ul + A p'! /aY * ' (3-69)
i i . j 3 i
aJ
‘v = vtV pr /Ay ' (3-70)
i iy Py /724

Egn. (3-68) can be substituted into Egn. (3-63) to obtain an

—

L~

identical to the derivation of the equation for (dp/dz) presen-

equation for (dp/dz)'; the ivation of this equation is

ted earlier. The result is

4

[ss

P ool [— =
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= (3-71)

Similarly, Egn. (3-69) and (3-70) can be used in conjunc-
tion with the macroelement control volume mass conservation

equation to obtain a pressure correction equation; the deri-

vation of this gguation is analogous to the derivation of the

presgure equation presented in an earlier section. The result
is:
aft p! = ¢ aP_p' +bP (3-72)
i Fi ab nb “nb i )

The coefficients in this equation are the same.as those in
Egn. (3-61). However, the term bg in Egn. (3-61) is a func-

tion of the pseudovelocities u and v and the axial velocity

component w, but in Egn. (3-72), 1t is a function of u#,,v#

e~

and w.
If the pressure at a boundary node i is specified, then
Egn. (3-72) for that node is overwritten and reduced fo

p! = 0. ' (3=73)

=

When the calculated velocity field satisfies overall and
local mass conservation equations, as is the case when the *

overall iterative solution procedure converges, (dp/dz)' and §
‘ .
\

' !

p' reduce to zero. |

s
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It is to be noted that the objective of calculating
(dp/dz)' and p' is to use them in Egqns. (3-68) to (3-70) to
correct the velocity field so that it satisfies ovefall and >
local mass conservation requirements;at the start of every
iteration. Thus (dp/dz) and p are not updated or corrected
using Egns. (3-66) and (3-67); rather, they are calculated
in every iterg%&on using Egns. (3-65) and (3-61). Further
discussion on this feature of SIMPLER-like procedures- for
the solution of momentum and continuity equations is

available in [4].

3.5.3 Under-relaxation

As was seen in Chapter II, the partial differential
equativns which govern parabolic duct flows are non-linear
énd coupled. Therefore, their disc;;tization analogues are
also non-linear and coupled. In the proposed SIMPLER-like
iterative solution procedure, the coefficients in these
equations are calculated using guessed values of the dependent
variables or their values from the prévious iteration. To
ensure the convergence of this iterative procedure, it is
often necessary to slé& down the changes in the coefficients
of the discretization equations from one iteration to the
next one. This is done by under-relaxing the dependent
variables, using the implicit under-relaxation technique
proposed by Patankar [4]. Thus, for the general scalar

dependent variable ¢, under-relaxation is introduced by re-

writing its discretization equation as follows:
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a / (1-a )
2L ., = Z a @ aU ¢U + b, + ————ﬁ—-a, b *
o i nb/ nb i i i a i 71
¢ nb ¢ /

(3-74)

where ¢; is a guessed value of ¢, or its value at the end of

the previous iteration, and o, is the corresponding under-

¢
relaxation parameter. The under-relaxation of u, v, w and p
is done similarly. The corrections to the axial pressure

gradient and the cross-sectional pressure, (dp/dz)' and p',
are not under-relaxed; otherwise, the objective of calculating
(dp/dz)' and p', namely the correction of the velocity field‘
so that it satisfies overall and local mass conservation ’
requirements, will be defeated.

The following set of under-relaxation parameters has been
found to be satisfactory in the solution of many duct fiow and

heat transfer problems: 1in the vicinity of the inlet or in

regions where boundary conditions change abruptly:

o, = e, = o =-O.5; ap = 0.8; a¢ =1 (3-75)
L]

and after a few axial steps (>5) downstream of points where
SASAMALICAZ AL

the boundary conditions change abruptly:

a =a = 0.8; a = 1; a = 1; a, =1 (3-76)

A general prescription for the optimum selection of these

under-relaxation parameters is not available. -

\\xwx
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3.5.4 Summary of 'the Overall Calculation Procedure

The details of some of the key ideas of the proposed pro-
cedure for solving the discretization equations were presented
in the last couple of subsections. A summary of the various

operations of this procedure and their e#act sequence 1s given

/

below: / .

(1) Start at the duct inlet; assign all given initial /
conditions to the dependent variables u, v, p, p and other p's,

if applicable.

(2) March one step down the duct: guess all unknown
values of the dependent variables; normally, the known up-

stream values are good guesses.

{3) Calculate the coefficients of the discretization
equation for w, Egn. (3-42), and store them; in a computer

implementation, temporary or scratch disk storage is recommen-

ded for this step. 4

(4) Calculate the{pseudovelocity component &, using
Eqn. (3-45).

(5) Calculate (dﬁ/dz)#, u51né Egqn. (3-65).

(6) Form the complete discretization equation for w,

using the coefficients stored in step (3) and the calculated

value of (dE/dz)#, and solve it to obtain w'.

v~
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(7)  Solve for (dp/dz)', using Egn. (3-71), and then

-»

correct w#, using Egn. (3-68), to obtain w.

(8) Calculate the coefficients of the discretization
equations for u and v, Eqns. (3-40) and (3-41), based oﬁ the
currently-available velocity fiel@ and store these coefficients;
again, scratch disk stbdrage 1s recommended for this step in a

computer implementation.

-~

0
- A

(9) Calculate the pseudovelocity components u and v,

using Egns. (3-43) and (3-44).

{10) Calculate the coefficients of the pressure equation,
#,

Eqn. (3-61),and solve it to obtain p in a computer imple-

mentation, store the coefficients of this equation on a tem-
porary disk unit.

(11) Compile the complete discretization equations for u

and v, using the coefficients calculated in step (8) and the
#

pressure p computed in step (10), and solve them to obtain
p# and v#.
(12) Assemble the pressure correction équation, Eqgn.

ﬁ(3—72), using the coefficients calculated in step (10) and a

recalculated value of bf based on u# and v#, and solve it to

obtain p'.

H

(13) correct u' and v', using the p' field in Egns.

(3-69) and (3-70), to obtain u and v.




(14) Assemble and solve the discretization equations

for all ¢'s .coupled to the flow equations.

(15) With the currently-available values of u, v, w and
¢ as new guessed values, return to step (3), and repeat steps

(3) to (15) until some suitably chosen convergence criterion

is satisfied.

(16) At this point, the values of u, v, w, p and (dﬁ/dz/
can be considered as converged. Assemble the discretization

equations for other ¢'s and solve them. ¢

(17) Do all other auxiliary computations, such as

calculations of friction factor, bulk température and Nusselt

number.

(18) .Go back to step (2) and repeat this plane-by-plane

marching integration procedure until the entire calculation

domain has been "swept".

b e s
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' CHAPTER IV ‘ : 5

- |
COMPUTER IMPLEMENTATION QF THE PROPOSED METHOD

/. . .
] R ~:

/

The formulation of a control volume finite-element method
for three-dimensional parabolic flow and heat éraﬁsfer in ducts
. was presented in the previous chapter. In order to test the
validity of the proposed method and to apply it to practical
problems, 1t has to be incorporated into an effic}ent computer
program. Some of the major tasks iﬁ the development of this
program are presented in this chapter.

The numerical prediction of three-dimensional parabolic
flows in ducts 1s not an inexpensive task. Therefore, the
emphasis 1n the computer implementation of the proposed method
is on efficiency rather than complete generality. Furthermore,
the computer program described in this chapter is not intended
to be used as a "black-box" by persons who are not familiar with
the formulation of the proposed method. Rather, it i? a user- ;
oriented program designed for persons with an understanding of
the key ideas of the proposed method and the physics of the
problems it is formulated to solve.

The computer implementation of a general finite-element
method involves four major tasks: (i) domain discretization
and node numbering or labelling schemes; (ii) calcﬁlation of
the local contributions from each element to the discretiiation

equations for the corresponding nodes; (iii) assembiy of all

¥




indiviflual element contributions into a global matrix form;

and 4iv) solution of the élobal discretization equatiéns.

" Each of these tasks in the computer implementation of the.-:
’propésed control-volume finite-element method i‘s d§§cri5éd.in
the following discussion. The corresponding computer code and.

'its description are presented in Appendix‘IV.

4.1 DOMAIN DISCRETIZATION, NODE NUMBERING AND LABéLLINé

.

SCHEMES

H

Discretization schemes could be manual or automatic.
Manual schemes are usually extremely tedious and error-prone
+

and, therefore, unfit for general applications. In this

»

thesis, an automatic scheme is employed to discretize the duct

in the axial direction, and a semi-automatic technique is used

L

to discretize the duct cross-section.

4.1.1 Discretization of the Duct Axis: Automatic Step-Size

Selector

As was stated in earlier chapters, in the duct flow and
heat transfer problems of interest in this thesis, the dependent
variables change significantly with the axial coordinate 2z in
the vicinity of the entrgggs region of the duct, apd they become
progressively invariant with z as the fully—developed‘region is
approached+i Typical variations of the axial velocity compo-

T The temperature T will keep changing, even in the thermally
fully-developed region; however, the similarity variables o

and y as defined in Chapter II are invariant with 2z in the

f.d. region, and they can be treated as dependent variables.

e
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nent and the local Nusseit number with z are shown in Fig. 4-1.
Tt is desirable, therefore, to start computations with a very

small axial step size, and adjust it appropriately in response

-

to the relative rate of change of the dependent variables as
the solution is advanced downstream. A procedure to automa-

tically adjust the step size in this manner is described in this

13

section. v

v

Referring .to Fig. 4-1(a), it is aimed to obtain an esti-
mated IDEAL number of marching steps, where IDEAL is related to

the desired change in the value of Whax in each axial step by

the following equation: .

o~

7 - f.d. .
desired IDEAL

<

[a

A\
B max

- (4-1)

SN @ 2

The numerator in Eqn. (4-1) represents the total change of Woax

in the developing flow region. The slope‘(dwmax/dz) at axial

station z = z(ISTEP) can be approximated by:

.+ oedw . w__ (ISTEP) - w._  (ISTEP-1)

dz - . (4-2)
*z(ISTEP) - . z(ISTEP-1)

- o

»

Using linear extrapolation and the élope given by Egn.

(4-2), the axial step size required to produce (Aw )
) max .

5 desired
is given by ' f

epe




L’r Fig. 4-2. . This difficulty is handled by adjusting (Aw)

94

Az = Z(EISTEP+l)‘ - 2 (ISTEP)
z(ISTEP) - z(ISTEP-1) (v )
- - max .
wmax(ISTEP) wmax(ISTEP 1) desired

(4~3)
As is illtastrated in Fig. '131—2, the actual c¢hange in Woax’
T ' . ) s
) { , produced by Az would always be smaller than

MaX actual )
(Awma}\{) , if Woax and its axial derivative change monoto-
degsired .
nically with z. Therefore, when this condition is met, the

step size calculated in Egqn. (4-3) is a conservative one.
o
The entire scheme is started by prescribing a very small

value of Az for the first three steps. Then, from the fourth
step onwar,as, Az 1is calculated according to Egp. (4-3). As
the fully-developed region,

n ’

can' give rise to disproportionately large step sizes since the

is approached, however, Egn. (4-3)

variation\of Vhax with z is nearly flat there, as shown in

desired
and Az as follows:

. (Aw)desired = mj'n[(m")desired’ ((wmax)f a - wmax(ISTEP) )]

- - ‘ (4-4)

§7

4

Yy

H

ty

Az = min [(az obtained from Egn. (4—3)),(Az)max] © (4-5)

where Mz)fuax is a prescribed maximum step size.

-

s

'
B 20 Lring

i e
4




TN

95

The step-by—-step marching integration procedure is stopped when

the following flow condition is satisfied: ' :

e W o (ISTER) > 0.99(w ) (4-6)

max" ¢ d.

This criterion for determining the exter;t of the developing
. flow regime is éue to Shah and London [7].

So far, for convenience, the change of Voax between two
consecutive steps has been used in w‘::he automatic calculation of
the axial stgp size. It should be no:/g{ear, however, that the
corresponding change in any pther suitlé’gle flow variable, such
as (dp/dz), could have been /used for the same purpose as well.

When the flow is hydrodynamically fully-developed but
thermally developing, the change~ in the local peripherally-
averaged Nusselt number is used in the automatic axial step
size selector. For the two thermal boundary conditions con-

" sidered in this thesis, namely @ and @ , it can be
shown that the Nusselt number starts off at a relatively high
value (z + 0, Nuz + =), and drops off quite rapidly towards a
fully-developed value, as shown in Fig. 4-2(b). For this

case, the "ideal" change in Nu, between steps is defined as

Ny (
(ANuz) — £.4. z
desired IDEAL

—

ISTEP=3)

(4-7)

'and the corresponding est/imated step size is
- {
/

i

T e xm e

e o P I T
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T~ _ __ z(ISTEP) - 2 (ISTEP-1)

Az = Nu_ (ISTEP) - Nu, (ISTEP-I) (alu,,) (4-8)

desired

~.as the thermally fully-developed region is approached,

care must e

_exercised to ensure that (Az) does not get too

large. This "?;{zip\\be done by setting:
AN

~ -

“~desired
N 3

—

desired /

(4-9)

-

(0z) = min [(Az) calculated in Eqn. (4-8); (az) o ]

(4-10)

In Egn. (4-9), the maximum is taken since all values in the
square bracket are negative. The marching integration proce-
dure is halted when the following thermal condition is reached:

Nu, (ISTEP) < 1.05 Nu (4-11)

£.4.

In problems where fluid flow and heat transfer dévelop
simultaneously, the automatic axial step size selector could

be tied to the change in Y or Nu, between steps. Al terna-

ax
tively, the minimum of the steps calculated by Egns. (4:3) and
( (4-8) could be used to march ahead. The choice of one alter-

native or the other depends on the problem being solved.

N ~
y = mbx [(aNu ; 1S h
u (ANuz) = m#lx [(A L Z) ’ (Nuf.d,._ NuZ( TEP)) > \

et o

o mewn

- mmrn Aan

o ot
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The requirements, in this connection, are that the final

results should beuihsensitive, within tolerances, to the axial
step sizes used, and, at the same time, the axial step sizes
should not be too small in order to keép the method from getting
prohibitively expensive. In Chapter VI, numerical experiments
are carried out in order to determine the "best" of the above-
mentioned alternatives for the problem of simultaneously

developing flow and heat transfer in rod-bundle geometries.

4.1.2 Discretization of the Duct Cross-Section

¢ The discretization of the duct cross-section involves its
division ainto six-node triangular macroelements, and then the
sub-division of each macroelement into four three-node trian-

gular subelements, as was described in Chapter IITI. Here, a

N
$imple semi-automatic domain discretization scheme, proposed by

Baliga [2] is employed for this purpose. In this procedure,
consideration is first given to a unit square which is sub-

divided into (LPl—l)+ b4 (MF1-1)+ smaller squares, as shown in

e

Fig. 4-3(a). Following this, each small square is further
divided into two triangles by joining the lower left-hand

corner node to the one in the upper right-hand corner. The
unit square is then manually distorted so as to fit the duct

cross—-section shape. The original grid lines could be bent

t the variable names employed here correspond to those used

\\

~~._ in the FORTRAN computer code given in Appendix IV.

AN

T L M. . e e
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in this operation but they are kept piecewise-linear, and they
are adjuséed in order to obtain the desired density of nodes.
The resulting grid is composed of triangular elements which
are regarded as macroelements. The subelements are obtained
by joining the midpcints of the sides of each macroelément to-
ge;her. Fig. 4-3 illustrates the application of this‘dis—

cretization technique to three different irregular duct cross-—
sections. 7 i
P

4.1.3 Node and Element Numbering Schemes

As can be seen from Fig. 4-3, in each cross-sectional
plane of the domain discretization, every pressure node can
be uniquely addressed to by two integer ipndices (IP,JP):
Ip=1,2,... LPl; JP=1,2...,MP1l. In a similar manner, each
velocity node can be uniquely identified by two integer indi-
cgs'(I,J): I=1,2,...,L1; J=1,2,...,ML. At the vertices of
the macroelements, the (IP,JP) and (I,J) sets of indices are

interrelated via N

2 *Ip -1

/
[}
it

. (4-12)
2 *Jp -1 . *

[a]
i

Te

Typical macroelements and subelements, along with their
pressure and velocity nodes and their respective addresses
are illustrated in Fig. 4-4.

Each pair of (IP,JP) indices can also be used to uniquely

identify the guadrilateral formed by nodes (IP,JP), (IP+1,JP),




99

(IP+1,JP+1), (IP,JP+1). As illustrated:in Fig. ﬁ—4(a), e&ery
such quadrilateral is divided into two types of triangular
macroelements: the macroelement formed by nodes (IP,JP),
(IP+1,JP) and (IP+1,JP+1l) is called a "type-1" macroelement;
and the macroelement formed by nodes (IP,JP), (IP+1l,JP+1) and
(IP,JP+1l) is termed "type-2" macroelement. Thus the complete
address of a macroelement consists of the three indices (IP,JP,
type) . Similarly, a subelement is identified by the set of

indices (I,J,type), as illustrated in Fig. 4-4(b).

4.1.4 Geographic Node Labelling Scheme

The line-by-line structure of grid points produced by
the present domain discretization scheme enables easy identi-
flcation of all neighbours to any nodal point. All the
possible neighbours of a pressure node (IP,JP) form a star-
like cluster displayed in Fig. 4-5(a). Each pressure
neighbour is named according to its geographic position with
respect to the central pressure node (IP,JP). Thus, refer-
ring to Fig. 4-5(a), "N" is the "north" neighbour, "NE" is
the "north-east" neighbour, and "NNE" is the "north of north-
east" neighbour, and so on. In totdl, up to twelve pressure
neighbours could be ihvolved in the pressure discretization
equation for node (IP,JP).

All the possible neighbours of a velocity node (i,J)

are displayed in Fig. 4-5(b). They too are labelled accor-

i et S =

ding to their geographic positions with respect to the

central node (I,J). As 1s seen in Fig. 4-5(b), up to six

s
v
o
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neighbours could appear in the momentum and ¢ discretization |

equations for node (I,J).

4.1.5 Comments

The aforementioned node and element addressing schemes
have been made possible by the arrangement of grid points in
simple and consistent line—byn-:-line patterns in the proposed
discretization scheme. This arrangement o©of grid points
eliminates the need for elaborate node numbering‘ schemes and
neilghbour-node directories usually encountered in general
finite-element computer codes. The geographic nodal label-
ling scheme presented in the previous section is also made
possible by the line-by-line arrangement of grid points.

The proposed discretization scheme yields a maximum of
twelve neighbours i1n each of the discretization equations
for pressure and pressure correction, and the momentum and
¢ discretization eguations have a maximum of six neighbours
each. Therefore, for each of these sets of discretization
_equations, computer storage is only required for the coeffi-
cients corresponding to these neighbours. As a result,
significant economy in core storage can be achieved.
Furthermore, as will be shown in a subsequent section, the
grid line arrangement of nodes also allows the use of power-—
ful iterative line-by-line methods for the solution of the

discretization equations [4].

J
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The proposed semi-automatic scheme to discretize the .
duct cross-section is suitable for simple irregular geometries
and singly-connected domains: the unit square shown in Fig.
4-3 (a) cannot be conveniently distorted to £it highly irreqular
and multip;ly-connected domains. Furthermore, the recommended
triangulation of the calculation domain obtained 'by first di=~
viding the domain into quadrilaterals and then subdividing
each quadrilateral into triangles may not always allow the
optimum distribution of the nodes [2]. The se drawbacks ‘can
be considerably alleviated by the merging of the present dis-
cretization scheme with a recently-developed patch—by-patch
procedure [35]. Such an approach, however, 1is left as a

possible extension of the present work.

4.2 CALCULATION OF ELEMENT CONTRIBUTIONS AND ASSEMBLY

OF DISCRETIZATION EQUATIONS

The derivation of the discretization equations has
already been presented in Chapter III. In this section, the
computer implementation of the procedures to calculate and

assemble the coefficients in these equations is outlined.

4.2.1 Discretization Equations for 4

]
Consider the type-l prism subelement shown in Fig. 4-6(a).

In Chapter III, it was shown that the contribution of this

[P

element to the discretization equation associated with node 1

can be compactly written as follows:
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o (3-23)

Using the (I,J) node addressing scheme, this equation can be

. \
rewritten as

CONT1 = C (1,J3) + C15¢(I+1,J)+’Cl6¢(I+1,J+l)

114

U u
+ Cyyp (I,J9) + B (4-13)

1

In the FORTRAN computer language, the complete discre-
tization equation for node (I,J), Egn. (3-32), can be
expr essed as
AC(T,J)*¢(XI,J) = AE(I,J)*¢(I+1,J)+ ANE(I,J)*¢ (I+1,T+1)
+ AN(I,J)*¢ (I, J+1)+ AW(I,J)*¢ (I-1,T)
+ ASW(I,J)*¢(I-1,J-1)+ AS(I,J)*$(I,T-1)

+ ACON(I,J)
(4-14)

where thé coefficient names correspond to the geographic node
labelling scheme illustrated in Fig. 4-5(b). It 1s to be
noted that, in Egn. (4-14), the term involving ¢U(I,J) has
been included in the non-homogeneous term ACON(I,J); this
can be done in the marching integration scheme employed here
"because ¢U(I,J) is known or available from calculations at

the previous axial step.
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Comparing Egqns. (4-13) and (4-14), the contribution of
the subelement under consideration to the discretization equa-

tions can be assembled as follows:

- with respect to node (I,J)

AC(I,J) = AC(I,J) + cll
AE(I,J) = AE(TI,J) - clS
(4-15)
ANE(I,J) = ANE(I,J) - C16 ’
U U
ACON(I,J) = ACON(I,J) - cll¢ (1,J3) - Bl

Similarly, the contribution of subelement (I,J,1) to the
discretization equations for nodes (I+1,J) and (I+1,J+1l) can

be assembled i1n the following manner:

- with respect to node (I+1,J)

AC(I+1l,J) = AC{(I+1,J) + C55
AN(I+1,J) = AN (I+1,J) - C56

(4-16)
AW(I+1,J) = AW(I+1l,J) - C51

il

ACON (I+1,J)
™

u.u
ACON(I+1,J) - C I+1,J) - B
( ) s ) 5




. with respect to node (I+1,J+1)

AC{I+1,J+1)
ASW(I+1,J+1)

AS(I+1,J+1)

ACON (I+1,J+1)

A similar procedure is used to assemble the contributions

of type-2 subelements.

such as Eqn.

104

= AC(I+1,J+1) + C66
= ASW(I+1,d+1) - C61
(4-17)
= AS(I+1,J+1) - C65 )
8 U
= ACON(I+1l,J+1) =~ C66¢ (I+1,J+1) - B6

The complete discretization equations,

(4-14), are obtained when alll elements have been

visited and their internal contributions and boundary con-

tributions,

1f applicable, are assembled appropriately.

Further details on this assembly procedure are available in

the Subroutine COEFF of the computer code presented in

Appendix IV.

4.2.2 Discretization Equation for Pressure

~

Attention is now directed to a typical macroelement of

type~1l, shown in Fig. 4-6 (b). As was discussed in Chapter

III, the contribution of this macroelement to the macro-

element control volume surrounding node (IP,JP) can be ex-

pressed as:

PCONTL

- wpl 1 1
= MP] p, + MP} p,

1 1 1
+ MPol pol + MP02 Pso + MPO3 po3

+ MPCON1

.

(3-58)

P

s e b
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In terms of the (IP,JP) node addressing-scheme shown in Fig.

4

4—-6(b), Eqn. (3-58) can be rewritten as: ’ A

PCONTL = Mpi p (IP,JP) + Mpé p(IP+1,JP)

+ Mb% p(IP+1,JP+1) + MPél p(IP+2,JP+1)

1 1
+ MP_, p(IP,JP+2) + MP_, p(IP,JP-1)

+ MPCONL a ' (4-18)

With reference to the node addressing and labelling schemes
shown in Fig. 4-5(a), the complete pressure discretization’ )

equation can be written as follows:

APC (IP,JP)* p(IP,JP) = [APE(IP,JP)* p(IP+1,JP)
+ APNE(IP,JP) *p(IP+1,JP+1)
+ ADN(IP,JP)*p (IP,JP+l) + APNW(IP,JP) *p(IP—-1,JP+1)
. :
+ APW(IP,JP)*p(IP-1,JP) + APSW(IP,JP) *p(IP-1,JP-1)
+ APS(IP,JP)*p (IP,JP~-1) + APSE(IP,JP) *p(IP+1,JP-1)
+ APENE (IP,JP) *p(IP+2,JP+1) + APNNE(IP,JP)*p(IP+1,JP+2)
+ APWSW(IP,JP) *p(IP-2,JP-1) + APSSW(IP,JP)*p(IP-1,JP-2)]

+ APCON(IP,JP) (4-19)

where the expression in sguare brackets is the full form of the
term (% aib pﬁb) in Egn. (3-61). Comparing Egqns. (4-18)

1 nb
and (4-19), the contribution of macroelement (IP,JP,1) to

[l
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the discretized continuity equation for node (IP,JP) can be

\

assembled in the following manner:

with respect to node (IPL,JP) - ' ol
APC(IP,JP) = APC(IP,JP) + MP:]L- " e

i APE(IP,JP) = APE(IP,JpP) - MP:JZ' _ q : |
APNE(IP,JP) = APNE (IP,JP) - MP3
APENE(IP,JP) = APENE (IP,JP) - MPél (4-20) J
APN(IP,JP) = APN(IP,JP) - Mpcl)z
APS (IP,JP) = APS(IP,Jp) - Mp(l)3 b ”

‘ APCON(IP,JP) = APCON (IP,JP) - MPCONL

The contributions of the macroelement under consideration to
the pressure equations for nodes (IP+1,JP) and (IP+1,JP+1) .
are assembled in a similar way. In order to avoid repeti-
tions, the details are omitted here,

It is to be noted that all the coefficients in the pres-
sure discretization equation, except the non—homogeneous term
APCON(IP,JP), are the same és those appearing in the discre-
tization equation for pressure correction. Consequently,
in each iteration during the computational proc:ass, they are
stored on an external disk storage unit and reloaded back
into core storage when the time comes to compile the pressure
correction equation. Further details on the assembly of the
pressure and pressure correction equations are available in

» \

the subroutine PAPC of the computer code presented in Appendix

Iv.

\
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4.3 SOLUTION OF THE DISCRETIZATION EQUATIONS

As was described .in Chapter III, a step—by-step marching
\integration is used to obtain the velocity, pressure and ¢
distributifons in the duct flow problems of interest. At
each axial step, the values of these dependent variables at
gzhe nodes in the cross-sectional plane being considered are i
Jabtained by using an iterative solution procedure akin to
SIMPLER [4]. In each iteration of this procedure, it is
necessary to obtain a sequential solutiqn of nominally linear
sets of algebraic equations which govern (dp/dz), w, p, u, v,
p' and . In this section, the method used to solve these
nominally linear sets of discretization equations is
described.

Several methods for the solution of a set of linear

algebraic equations are available in the literature. They

‘can be classified into two main categories: direct and itera-

tive methods. Experience with numerical methods for multi-

dimensional fluid flow and heat transfer has shown that
iterative methods, if applicable, are simpler and more econo-
mical than direct methods,ﬂ in terms of programming effort and
computing costs [4]. In this thesis, an iterative line-by-
line method [3,4] is employed for solving nominally linear
sets of discretization equations. It is to be noted that
the use of this particular method is possible because the
domain discretization scheme described in dection 4-—1 yields
a line—by;line arrangement of the nodes in each cross-

sectional plane of the duct.

PR I
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4.3.1 _ Solutior of the Discretization Equations for

su, v, wand ¢ .

»

Nominally linear and decocupled discgetization equations
for u, v, wand ¢ have'the same genegal forms, so the same me-
thod can be used to solve, them. For convenience in the
following discussion, the descriptioh of this method is pre-
sented with reference to the general scalér dependent variable

.

At the start, the whole ¢-field in the cross-section

of interest is assigned guessed values. Then, attention is

focussed on one particular grid line, line 'I' for example.

» Referring to Figs. 4-3 and 4-5, if the values of ¢ on the

neighbouring grid lines (I+l) and (I-1) are treated as known,
with the latest available values of ¢ assigned to the nodes
on these lines, then each unknown value ¢(I,J) on the 'I'
line under consideration is connected to a maximum of two
unknown neighbours ¢ (I,J+1) and ¢(I,J-1). Collectively,
therefore, the ¢ discretization equations for the nodes on
the 'I' line fgrm a trid}agogar matrix system which can be
solved by the étandard zrléiagonal Matrix Algorithm (TDMA)
[4]. oOnce the nodal values of ¢ on line 'I' are calculated
in this manner, the procedure is repeated for line 'I+l',
then' line 'I+2' and so on, until the whole cross-sectional
domaiﬁ has been 'swept' line-by-line. In an analogous
manner, the cross-sectional calculation domain is then 'swept'
o ;

using 'J' grid lines. In the computer implementation of

the proposed method, if no information is available to

T ke 4 A ew e o = e
T
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4
ascertain an optimum or preferred sweep direction, back-and-

forth I- and.J-sweeps ame used alternately.’ Each iteration

of this procedure is assumed to consist of four such alterna-

3
|

ting~direction sweeps of the calculation domain.

~

Several of the aforementioned iterations may be required‘

to obtain an adeguately ,converged solution of .the nominally

» linear set of discretization eguations. In this connection,

Lo

_it should be noted thét;ﬁdufing tﬁé;éolution of non-linear
flow problems, it is not necessary to solve nominally linear
and decoupled sets of discretization equations to complete
convergence. Indeed, substantial savings of computer time
are possible if such intermediate solutions are carried to
only partial convergence [4]. Currently, however, no cri-
terion is available for determining the optimum degree of
convergence in the solution of nominally linear and decoupled
sets of discretization equations encountered in each itera-

}A\
.tion of the overall SIMPLER-like procédure.

4.3.2 Solution of the Pressure and Pressure Correction

Eggations

The pressure and pressure correction are stored only at
the vertices of the macroelements. The macroelement node
addressing scheme and the geographic node labelling scheme
associated with the neighbours of a pressure node are illus-

trated in Figs. 4-3 and 4-5(a).

-
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A line-by-line iterative procedure similar to one
described in the last sub-section is used to 6 solve the sets
of aiscretization equations for p and p'. Consider a parti-
cular macroelement grid line, say liné 'Ip'. The values of
P (Q; p', whichever is appropriate) on this line are treated
as unknowns and the corresponding values at nodes lying on
neighbouring lines (IP+1l), (IP+2), (IP-1l) and (IP-2) are
regarded as known.“ﬂ The unknown nodal values of p (or p')

on the line 'IP' are then calculated by using the TDMA.

This procedure is then repeated for the 'IP+l' line, then

.the (IP+2) line, and so on, until the entire calculation

domain 1is 'swept'. A similar 'sweep' of the calculation
domain is then done using 'JP' lines. Two 'IP'-sweeps

(back~and-forth) and two 'JP'-sweeps are performed in each

wraq,

iteration cycle. The iterations are continued until a

1

suitable convergence criterion is satisfied.

4.3.3 Comments -

The convergence of the aforementioned line-by-line
iterative methods is guaranteed only if the coefficient ma-
trix of the set of nominally linear discretization equations
exhibits diagonal dominance [4]; this is the Scarborough
criterion. In the proposed control volume finite-element
ﬁethod, this criterion is not always satisfied, especially

in the case of pressure and pressure correction equations

. obtained with highly nonuniform grids. The lack of diago-

nance results if negative coefficients are encountered in

¢

L1 o
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the coefficient matrix. In the testing of the computer code
iﬁébrporating the propoéé@ method, negative coefficients were
encountered; but in all the test and application problems
inﬁeggiééted so far, the negative coefficient difficulty was
not serious enough to cause divergence of the proposed line-
by-line iterative methods. Thus, it may be concluded that,
while the convergence of these line-by-line iterative methods
cannot be ensured for all possible situations, divergence is
unlikély.

4.4 CLOSING REMARKS |

In this chapter, the main tasks in the computer
implementation of the proposed control volume finite-element
method have been described. The complete computer code
written in the FORTRAN computer language, its flow diagram,
and brief descriptions of its various subroutines are given
in Appendix IV. To validate the computer code and demon- ’
strate its capabilities, several test problems have been
solved; some of these problemé are presented in Chapter V.
In addition, the proposed method has been successfully
applied to the problem of laminar fluid flow and heat trans-
fer in rod-bundle geometries; the results are presented in

Chapter VI.

-
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CHAPTER V

APPLICATION OF THE METHOD TO SOME TWO- AND

THREE-DIMENSIONAL TEST PROBLEMS

The validity and capabilities of the proposed
control-volume finite-element method (CVFEM), and iEs
computer implementation, are demonstrated in this Chapter
by the presentation of its application to three different
test problems. Whenever possible, the reshiﬁg éfoduced by
the proposed CVFEM are compared with the results of
independent numerical and experimental investigations
availlable in the literature.

As was described in Chapter I&I, the proposed CVFEM
incorporates a step-by-step marching integration procedure
which advances the solution in the main stream direction.
At each axial step, the discretization analogues of the
governing equations, which are paraboiic'ln the mqin flow
direction and elliptic 'in the cross-sectional plane, are
solved by a procedure akin to SIMPLER [4]. Thus, the
solution of three-dimensional parabolic duct flows resembles
the solution of a series of two-dimensional elliptic
problems. This feature of the proposed CVFEM was téken
advantage of in the development and construction of its
computer implementation. First, a general computer program

incorporating a CVFEM for two-dimensional elliptic flows

[1,2] was developed and tested‘thorouéhly. This computer

112
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program was then extended to handle three-dimensional
parabolic flows and applied to test problems. This twp—
stage program development and testing procedure provided
considerable convenience and cost savings.

In the remainder of this Chapter, the formulation, .
objectives, computational details and results of three
different test problems are presented. The first problem
involves two-dimensional natural convection in a vertically-
oriented rectangular cavity. Two-dimensional natural
convection in a trapezoidal cavity is investigated in the

second problem. Fully-developed and developing flow and

—

heat/transfer in a duct of square cross-section are studied
in the third problem. The first two two-dimensional problems
were used in the first stage of the aforementioned two-
stage procedure for the development and testing of the
computer implementation of the proposed CVFEM. 1In this
connection, it should be noted that the proposed computer
program for three-dimensional parabolic flows can be
adapted for the solution of two-dimensional flows by simply
dropping the terms pertaining to the axial, or z-direction,
derivative. With reference to the discretization equations
presented in Chapter III, this can be achieved by setting
the axial step size to a very large value, Az - o,

All three test problems presented in this chapter
were simulated on an AMDAHL V7 computer using a FORTRAN-H E

extended compiler.

w;m Bk n M
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5.1 NATURAL CONVECTION IN A RECTANGULAR CAVITY

5.1.1 Problem Statement

Steady, laminar, natural convection in an enclosed
rectangular cavity of aspect ratio 5 (height—to;width ratio)
is investigated in this problem, which is depicted in
Fig. 5.1(a). The two horizontal walls are insulated, the
left vertical wall is maintained at a conséant temperature
Tc' and the right vertical wall is maintained at a uniform
temperature Ty i Th > Tc' The fluid inside the cavity 1is

Newtonian and its density decreases linearly with temperature.

-
¥

The acceleration due to gravity is directed vertically
downwards.

This problem has been the subject of several in-depth
investigations [36-39]. In particular, Jones [39] has
studied this problem by employing a finite-difference method
based on the so-called stream function-vorticity formulation
and has compared his results with experimental data of
Duxbury [39]. Both Jones's and Duxbury's results are used

to check the results of this investigation.

5.1.2 Analysis -

The Boussinesqg approximation [28] is used in this
analysis. Thus the mass density of the fluid is treated as
' e

a constant in all terms except the buoyancy term. In/;hé////

buoyancy term, the density is assumed to vary linearly with




temperature:

p = Oo[l"B(T-TC)]
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(5.1)

where p_ is the density at T = T,, and 8 is the thermal

volumetric expansion coefficient.
. . . . t
The following non-dimensional variables

this analysis:
g = x/L; n=y/L; A =H/L
X = . * =
u u/(u/oOL), v V/(u/pOL)

8.= (D-T_)/(T, =T ); p* = p/o_(u/p L)°

where Gr is the Grashof number, Pr is the Prandtl

and Ra is the Rayleigh number. In terms of these

are used in

(5.2)

number,

non-

dimensional variables, the governing equations can be written

as follows:

+

It is to be noted that these non-dimensional variables are ;

defined for the natural cohvection problems presented in this
section and Section 5.2 only. For the 3D parabolic duct flow
problems presented in Section 5.3 and in Chapter VI, the

definitions presented in Chapter II apply.
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X-momentum:

O (kg O (oxnky = _ OP* _ J_u*
ag(u u*) + an(v u*) = Gro + +

y—momentum:

é%(u*v*) + é%(v*v*) = - 22 4 +

continuity:

i
enerqgy:

2

Fr(uk8) + - (vre) = (i + 2
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{5.3)

(5.4)

(5.5)

(5.6)

- The boundary conditicons are u* = 0 and v* = 0 on all walls;

® = 0 on the n = 0 wall, 6 =1 on the n =1 wall; and (36/3¢)

= 0 on the £ = 0 and { = A walls.

Once the solution for 68 has been cbtained, the local

Nusselt numbers on the hot wall can be evaluated:

k(3T/3y) ,_

o Y=L _ _a_e_
Nu = { (Th_TC) } (L/k) = )

(5.7)

St =
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Then the average Nusselt number for the hot wall can be

calculated:

ag {5.8)

In this problem, the total heat transfer from the hot wall
to the fluid 1s equal to that gained by the cold wall from
the fluid. Thus the avefage Nusselt number for the hot wall
1s equal to that for the cold wall.

Another quantity of interest which can be computed
after the solution of Egs. (5-3)-(5.6) is the non-dimensjional

stream function Y

Y _ gx. ¥ _ _
a_g_u*, L= - vk (5.9)

Using the continuity equation, -

\2 2 . .
a—-g+9-—‘zf%=sz (5.10)
3E an '

where Q@ is the non-dimensional vorticity:

au* av* (5.11)

Ed T —

é S~
In this analysis, the stream function ¢ is obtained by solv%hg
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the conduction-type problem posed by Eqn. (5-10) subject to

the boundary condition ¢ = 0 on the walls.

5.1.3 Computation Details

A 13x9 uniform macroelement grid, corresponding to
a 25x17 subelement grid, was used to discretize the
calculation domain, as shown in Fig. 5.1 (b). This grid
corresponds to a total of 768 triangular subelements.

In accordance with previous investigations [39],

three values of Rayleigh number were considered:

Ra = 2.49x10°, 1.49x10% and 1.36x10°.

In all cases, the Prandtl number was maintained at 0.7.

The solution procedure was started by assigning

initial, or guess, values to the velocity and temperature fields.

These were obtained from a previous, or lower Rayleigh number
sclution; in the lowest Rayleigh number case, a pure conduction
solution with no flow was used to start the computations.

In all cases considered in this problem, the following

set of under-relaxation parameters were used:

The iterations in the SIMPLER-type solution procedure were

terminated when the average Nusselt number, Nuav' had converged

1

o

g
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to at least five significant figures.

5.1.4 Results

Average Nusselt numbers for the three cases studied

are presented in Table 5.1. The corresponding numerical
results of Jones [39], obtained using a stream function—‘
vorticity formulation and a finite-difference method,_and
the experimental results of Duxbury [39] are also presented
in Table 5.1. Jones used a uniform 32x16 node grid in his
computations. The results of the present analysis match
those of Jones very well. The comparison with Duxbury's
experimental results is not as good. However, it should be
noted that Duxbury's Nusselt numbers on the cold face are
consistently higher than those on the hot face; this
indicates that there could be unaccounted heat losses in his
experimental data. Furthermore, the mean values of his hot

and cold face Nusselt numbers, shown in the last column of

Table 5.1, agree guite well with the present results and

.
those of Jones.

Computed temperature distributions across the

rectangular cavity, for five different locations along its

height (£ = 0.5, 1.5, 2.5, 3.5 and 4.5) are presented in Figs.
3

+5.2(a)~(c); these three figures pertain to Ra = 2.49x107,

l.67x104, and l.36x105, respectively. Also presented in these
graphs are the numerical results of Jones [39], plotted in

dashed lines, and the experimental resdits of Duxbury [39];

' \' P N
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Jones's and Duxbury's results were obtained by digitizing
the corresponding temperature graphs in [39].
For Ra = 2.49x103, the temperature profile in the
centre, of the cavity is almost linear. Conduction is there-
fore the dominant mechanism for heat transfer, and the
Nusselt number for this case is very clqse £o 1. For Ra =
l.67x104, the temperature profiles tend to become flat
in the central region and vary steeély near the vertical walls.
This is the so-called "boundary layér regime" [39]: most
of the heat is transferred by convection through the ‘
boundary layers and very little of it is transfereed across
the cavity, in the central region. Agreement betweeg the
present results and those of Jones and Duxbury is very
satisfactory for these two Rayleigh numbers. - ;
For Ra = l.36x105, the results of the present
analysis, shéwn by solid lines in Fig. 5.2(c), exhibit small
negative temperature gradients in the central region of the
cavity, and these indicate that some heat in this region

is being transferred in the positive y-direction. Jones's

trar n o A ARy i

results show similar trends, although there are considerable

departures from the present profiles for £ = 0.5 and 4.5.

However, both Jones's and the present results do not quite
match Duxbury's experimental results so that no definite

assessment can be made here. It is to be also noted that
R ]&‘)’ //\

for this high value of Rayleigh n

T, Ehiie could be
considerable heat losses through the insilated surfaces in

‘Duxbury's ex eriments, as was previbusly discys
Yy P Y e
- 2
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Nevertheless, there is qualitative agreement between the
results of the present analysis and those of Jones and

Duxbury. . ‘ -

o

Isotherm contours are presented in Figs. 5.3(a)-(c)
®

for Ra = 2.49x10°, 1.67x10%, and 1.36x10°, respectively.

As expected, at the lowest Rayleigh number, the isotherms
 deviate only slightly from the vertical and are fairly evenly
spaced over much of the rectangular enclosure; this indicates
that conduction is the dominant mode of heat transfer. As
the Rayleigh number is incréased, convection becomes the
dominant mode of heat transfer and the isotherms become
increasingly wavy and get crowded in the vicinity of the

hot and cold walls. In all cases, there is a considerable
concentration of the isotherms in the lower right and the
ubper left corners of the enclosﬁre. Heat transfer is
therefore highest in these regions.

T

Streamline plots are presented in Figs. 5.4(a)-(c)

for Ra = 2.49x103, l.67x;04, and l.36x105, respectively.

In all figures, ¥ increases from a minimum value of zero

on the walls to a maximum value in the central region of the

[P

enclosure. These results are in good qualitative agreement
with the numerical results of Jones [39] and the flow

visualization data of Duxbury (39].
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“15° with the horizontal and are considered to be adiabatic.
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5;2‘ NATURAL CONVECTION IN A TRAPEZOIDAL CAVITY -7

~

5.2.1 Problem Statement

In this problem, steaQy, laminar natural convection
in an enclosure of trapezoidal cross section is investigated,
A schematic illustration of the problem is given in Fig. 5.5(a).

The top and bottom walls of the enclosure make an angle of

“

The left and right walls are vertical and are maintained

at constant temperatures of Th and Tc, respectively; Th > Tc'
The height of the left, or hot, wall is H i 0.0254 m, ana
the perpendicular distance between the left and right walls
is L = 0.0768 m. The acceleration due to gravity 3 is
dirécted vertically downwards. ‘

This problem is used to demonstrate the capability
of the proposed CVFEM to solve recirculatin crosg—sectional
flows in irregqular-shaped calculation domaips. Iyican et al.

[40,41] have studied this problem experimentally. Their

results are used to check those of this analysis. ) 1

5.2.2 Analysis

e

Egquations (5-1) to (5-6)}, which were used in the
mathematic; description of the last test problem, apply to ,
this problem too. The boundary conditions are u* = Y* = 0
on all wallsy 8 = 0 and 6 = 1 on the right and left walls,

respectively; and the normal derivative of the temperature is

°

BASE s pirmromr =7 2 e
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Zero on the top and bottom adiabatic walls.

Once the solution for 6 has been 'obtain‘e'ii, the .

average Nusselt number for the hot wall can be calculated using
_ L2 |
Nus, = & UGGRael ot wana (5.12)

Another quantity of interest is the stream function ¢ defined
by Eq. (5.9). It is obtained by solving Egq. (5.10), subject

to the boundary condition ¢ = 0 on the walls of the enclosure.

5.2.3 Computation Details

I3

All computations were done usin’g a grid consisting
of 288 six—-node triangular macroelements; the corresponding
subeleme;it grid, composed of 1152 three—node‘ triangular
elements, (is illustrated in Fig. 5.5'(b) .

Four different Rayleigh numbers were considered in
this problem: Ra\= 103, 104, 105, and 106. The Prandtl
number was maintained constant at 0.7 in all comp{ltations.

As in the previous test problem, initial, or guess, values

of the velocity and temperature distributions, required to
start the computations, were obtained from the previous,

or lower, Rayleigh number case; for the lowest Rayleigh number,
the conduction solution was used as the initial distribution.

In all computations, the following set of under-

relaxation parameters was used:

- ARt -
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The iterations in the SIMPLER-type solution procedure [4]

, wWofe terminated when the values of Nu_  had converged to

at least five significant figures.

5.2.4 Results

The variation of the average Nusselt number with

Rayleigh number is presented in Fig. 5.6. Also presented
in this figure are the experimeﬁtal results of Iyican et al.
[41] and a graph of a correlation proposed by the same
authors. It is seen that the agreement between the results
| of this analysis and those of Ivican et al. 1is very good
over the entire range of Rayleigh number considered.
Isotherm contours are presented in Figs. 5.7(a)-(d)

for Ra = 103, 104, 105, and 106, respectively. For Ra = 103,

conduction is the dominant mode 'of heat transfer, and the
isotﬁerms in Fig. 5.7(a) are almost parallel’to the vertical
walls. A’s the Rayleigh number is increased, convection
starts contributing significantly to the overall heat
transfer, and it is the dominant mode at Ra = 106. For all

Rayleigh numbers, there is a higher concentration of ;
isotherms in the vicinity of the left wall than that adjacent
to the rright wall. This is because the area of the left

wall is less than that of the right wall. Thus for the same

“total heat transfer, the temperature gradients in the vicinity

3

L
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of the left wall have to be higher than those adjacent to
the right wall:

The corresponding streamline plots are given in
\

Figs. 5.8(a)-(d) . In all the figures, the stream function y
decreases from a maximum value of zero on the walls to a
minimum value in the central region of‘the cavity. As is

to be expected, the strength of the recirculating flow
increases with increasing Rayleigh number. At Ra = 106, the

flow displays a multicellular structure in the central

portion of the trapezoidal enclosure.

5.3 LAMINAR FLUID FLOW AND HEAT TRANSFER IN DUCTS OF

SQUARE CROSS~-SECTION
‘

In this section, the complete CVFEM for three-
dimensional parabolic flows is used to study steady, laminar,
forced convection in a straight duct of square cross-section.
It is assumed that the fluid is Newtonian and its properties
are constant. Two thermal boundary ccndition; are
investigated in this study: (i) constant wall temperature
(), and (ii} uniform wall heat flux ().

% detailed mathematical description of this problem
has already been presented in Chapter II, so it is not
repeated here. In the subsections that follow, only the
computational details and results are presented. First, a

study is undertaken of fully-developed flow and heat transfer

in square ducts. Then, attention is focused on the thermally-
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developing situation under fully-developed flow conditions.
Lastly, simultaneously developing flow and heat transfer in

a duct of sgquare cross-—-section are investigated.

5.3.1 Fully-Developed Flow and Heat Transfer

This problem has been studied extensively by a
number qf researchers; a rev?ew of these works has been
compiled by Shah and London [7]. The results reported in
[7] are used in this subsection to check the results of
this analysis. The fluid flow results are presented first.

Then, the heat transfer results are discussed.

A, Fluid Flow

The fullv-developed flow in this problem is governed
by Egq. {(2.28). This eguation can be solved by the CVFEM
described in Chapter III by settingu=v =w =20, ¢ =W,

' =1, S="1and Az » ». Once the W-field has been obtained,
the mean velocity, W, can be computed. It can then be

used to obtain the friction factor - Reynolds number product
(f.Re) and the normalized velocity field (W/W). The latter
is stored and used as an input to the heat transfer problems.

A flowchart outlining the above operations is given in Fig. 5.9.

Computational Details

e e

Figure 5.10 shows the geometry of the problem considered.

AR NP STV PR
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Due to symmetry, only one-quarter of the duct cross-section,

shown by the shaded area in Fig..5.10(a),

analyzed.

needs to be

A non-uniform macroelement grid of 6x6 pressure

nodes, corresponding to an 1llxll node subelement grid, was

employed to discretize this domain for all runs, except

those made to examine the effect of grid size.

used is shown in Fig. 5.10(b).

The grid

The positions of the I- and

J~lines in this grid are given by the following equations:

3, 5 .o,

-For T =1, 3, 5 ..., L1, and J = 1, M1 \
X(1,5) = [(1-1)/(@1-1) 17" (1y2)
P (5.13)
Y(1,3) = [(J-1)/(M1-1)]1F"ER, (1/2)
«+For 1 =2, 4, 6 ..., (L1-1), and J =2, 4, 6 ..., (M1-1)
X(I,J) = 0.5% (X (I+1)+X(I-1))
. (5.14)
Y(I,J) = 0.5% (Y(I+1)+Y(I-1))

where L1 and Ml are the

total number of nodes in the x- and

y-directions, respectively, and POWER is a number which can

be adjusted so as to obtain the desired density of grid

lines in the wicinity of the walls.

to a uniform grid.

POWER = 1 corresponds

A value of POWER greater than 1 is

desirable since the fully-developed velocity profile is
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expected to change more rapidly near the wall than in the
central region of the duct. 1In this study, POWER = 1.4
was used in all runs, except those made to test the effect

of POWER on the results.

Results

Fully-developed velocity profiles along a symmetry

line and along a diagonal are shown in Figs. 5.11(a) and (b).
The rexperimental results of Goldstein and Kreid [42] are also
shown in these figures. The agreement between the computed
and experimental results is very good. The computed maximum
velocity, (W/W)max, which occurs at the duct centerline,
is 2.123. This compares favorably with the value of 2.0962
computed by Lundgren et al. [7, p. 198]. iy

The friction factor - Reynolds number product, f.Re,

3
is a constant for fully—devgloped laminar flow in a square

duct. The calculated value here is £.Re = 57.092; the
corresponding value calculated analytically by Shah and
London [7] is ‘56.9‘08'. This corresponds to a relative error
of 0.32%.

The aforementioned results were obtained using a
subelement grid of 11x11 nodes and a value of POWER of 1l.4.
The effects of refining the grid size and varying the value
of POWER, which determines the distribution of gErid lines,
are shown in Table 5.2. As is to be expectediy—successive

refinement of the grid systematically decreases the percentage

B
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error. For the 19x19 node subelement grid and PGWER = 1.4,
the error in f£.Re is as small as 0.01%. For a /f/ixed
number of nodes, there is an optimum value Qf POWER for
which the percentage error is a minimum. (;I‘his appears to
correspond to POWER = 1.4 for the three g\;ids tested. On

the basis of the results presented in Tab/])e 5.2, it was

concluded that a subelement grid of 11x1l nodes with POWER =

1.4 is sufficiently accurate for this problem.

B. Heat Transfer: @ Boundary Condition

v

The governing equation in this case is Eg. (2.55).
This can be considered as an eigenvalue problem, with A as
the eigenvalue and the dimensionless temperature © as the
eigenfunction. An iterative solution procedure was used to
solve this problemn. Firsi;;, initial, or guessed, values of
0 were assigned to all nodes inside tile calculation domain.
Then, X was calculated using Eq. (2.57). Eguation (2.55)
was then solved numerically, using the proposed CVFEM with
u=v=w=0, ¢=0, T =1,8=AWWE®O, and 4z » @, This
yielded a new distribution of © which, in turn, was used
to recalculate a new value of A. This sequence of operations
was repeated until convergence. This iterative procedure is

outlined in Fig. 5.12.

Computation Details

As in the fluid flow analysis, an 11x11 node sub-

~

T —
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element grid with POWER = 1.4 was employed. The aforementioned

iterative procedure was repeated until the relative change

in )} between two successive iterations was less than 0.001%.

Results

The overall Nusselt number,lh;(), computed iq this
study is 2.9386. This agrees to within 1.26% with the
value of 2,976 reported by Shah and London [7].

The effect of grid size on Nu(:> is shown in Table
5.3. Successive grid refinementldrives NuC:) closer to the
value obtained by Shah and London [7]. The accuracy
proviéed by an 11x11 node grid with POWER = 1.4 is considered |
adequate in this study.

3

cC. Heat Transfer, (:) Boundary Condition

The governing equation in this problem is Eq. (2.705.
This equation was solved numerically using the proposed
CVFEM withu=v=w=0, ¢ =%, T =1, S = (-4W/W), and
Az + ., The solution procedure is outlined in the flowchart
shown in Fig. 5.13. Again, a subelement grid of 1llxll nodes

with POWER = 1.4 was employed in the computations.

Results

The overall Nusselt number,thCD, for this case

was computed to be 3.0475. This agrees to within 1.4% with
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the value of 3.091 obtained by Shah and London [7].

The effect of grid size on Nu(:) is shown in Table

5.3. Again, the computed value of Nu(:> approaches the
analytical result of Sh%h and London, [7] as the grid is

refined.

The wall temperature distribution around the periphery

of the duct cross-section is not uniform in the present case.

The maximum temperature occurs at the duct corners, and the
minimum temperature occurs at the mid-points of the sides.

Shah [7] computed normalized maximum and minimum temperatures .

which are defined as follows: —

Ty, max Te T min Tc
* = NReR X ook _—t = (5.15)
r
w,max 7 w,min 7 - )
w c W

where Tc is the temperature at the centerline and iw is the
peripheral average wall temperature. In Table 3.4, the
results of this analysis are compared with those of Shah.

Agreement within 0.5% is found.

¢

-

5.3.2 Hydrodynamically Fully-Developed and Thermally
¥

Developing Flow

In this subsection, consideration is given to the
problem in which the velocity profile is fully-developed
and remains fixed while the temperature profile develops.

Though solutions to such problems strictly apply only to

FarTEIepe

T s ot 1 T T
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situations where a hydrodynamic starting length is provided,
so that the velocity profile is fully-established before
heat transfer starts, they are excellent approximations to
entrance flows of high Prandtl number fluids [28]. They
have, therefore, received considerable attention in the
literature [7,28]. The published results»pertainfing to
flow in a square cross-section duct are used in this sub-
section to check the results of this investigation.

The governing equation for this problem is‘ Eq. (2.34).
In this equation, the velocity ft;’eld is treated as‘ known,
and it is obtained from the analyslis of fully-developed flow
presented in the last subsection. Two thermal boundary
conditions are considered: (i) constant wall temperature @ ’
and (ii) uniform wall heat flux @ At the inlet of
the duct, the temperature of the fluid is assumed to be
uniform, T = Ti’

The proposed CVFEM was used to solve this problem.
The complete developing temperature field was obtained by
marching plane-by-plane in the direction of the primary flow.
At each axial station, except for the fist three, the
automatic step size selector described in Chapter IV was
employed to adjust the step size Az; this step-size
ad justment was based on a specified desired change in the
local Nusselt number and on the z-direction slope of this
Nusselt number at the previous upstreém station. A very

small value of Az was used for the first three axial steps

so as to accommodate the expected steep variation of Nusselt
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number in the vicinity of the duct entrance. Figure 5.14
gives an overview of the solution procedure employed.

The treatment of the initial condition in this problem
deserves special mention, since for the @ boundary condition,
the initial condition is singular at the duct wall. The
singularity results from the assumption that the inlet
temperature profile possess an inffinite gradient at the wall,
as 1s illustrated in Fig. 5.15. Obviously, the present
method with its finite mesh spacing cannot handle such a
severe variation of temperature wi@:hout incurring large
errxors near the singularity. Fortunately, numerical
experiments+ have shown that these 'i.nitial errors tend to
decay rather rapidly as the solution. is advanced downstream.
Furthermore, by (i) having a high concentration of grid lines
near the wall, and (ii) taking very small initial step
sizes, it is believed that these starting errors do not
have any appreciable effect on the results, except in the

immediate vicinity of the entrance.

Computation Details

Table 5.5 shows three different sets of grid and
step sizes used for calculating the deve_loping temperature
field. The basic grid is the same as that employed in the
analysis of the fully-developed regime, namely, a subelement

grid of 11xl11l nodes with POWER = 1.4; this grid is shown in

+To be described in the discussion of results.

g et
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Fig. 5.10(b). With reference to the automatic step-size
‘selector described in Chapter IV, a value of IDEAL = 25 was
chosen; IDEAL represents the estimated ideal number of steps
needed to produce an accurate solution over the region
inbetween z = 0 to a location where fully-—developecf conditions -
are reached. About 39 axial steég)s are actually required

to attain the fully~-developed éituation for both @ and ®
boundary conditions. Two other sets of grid and step sizes
(Runs B and C in Table 5.5) were employed for checking

3

the accuracy of the computations with the basic grid. Imn ¥
all runs, the marching scheme was started by using Az' ~ 10-7
for the first three axial steps.

At each axial station, after the calculation of

the temperature field, the 1local and surface—averaged values

of Nusselt number were evaluated as follows:

seD.  dn #e.D (rP-rY) )

‘Nu 4 p i b . p H b b (5.16)
2, (T " Pk(T,T,) dz T -10)

4 WP %P (5.17)

Nu =
z, (® (% -, )k ("I-‘W-Tg) k

For both @ and @ boundary conditions:

~

n

_ 1 z 1 z-Az
Nu == ;o Nu, dz . [jo Nu, dz + Nu Az] (5.18)

p—
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where ‘the superscripts U and D denote values stored at
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"upstream and downstream stations, respectively. It is to

be noted that the above expressions for calculating NuZ

and Num are consistent with the profile -assumptions used in

the'fully—implicit formulation of ;:he proposed method; in

the main flow direction, downstream values of the dependent

variables are assumed to prevail over the interval Az. L s

Results

A. Constant Wall Temperature Boundary €qondition: @

(S
¢

—

Figure 5.16 shows the variation of local Nusselt

number, NuZ @, with axial distance for different sets of
I

grid and step sizes. As expected, Nuz @ has a maximum
14

at the inlet plane and decreases as z' (= z/DHRePr) increases;

|

1

Nuz- @ is less than 1.05 times the fully-developed value, |
o [4

Nu® , at z' =2 0.066. In the mathematical problen, Nuz,@

should approach infinity as z' » 0. This is because for

the prescribed initial condition, the temperature gradient

at the wall 1is infinite at z' = 0, as mentioned before. In

the numerical problem, however, due to the finite nesh

spacing used, NuZ @ asymptotes to a finite value as z' + 0.
r

5

4

This limiting value increases as the grid and step sizes

are refined, and this observation is consistent with

expectations. Furthermore, it is to be noted that for

z' > 6x10‘5, the difference between the cur{res @, , and

(© in Fig. 5.16 is almost indistinguishable.

This indicates

€k k.

e et I A A a5
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that the results generated by the basic llxil node with

POWER = 1.4 are accurate and reliable for, z2' greater than

6x105.

The local Nusselt number, NuZ (:D' and surface-
r

averaged Nusselt number, Nu

0 <:>, as functions of z' are
! .

D
shown in Fig. 5.17. For checking these results, the
corresponding computed results of Chandrupatla and Sastri
[43]) are also shown in Fig. 5.17. As can be seen in the

figure, agreement between these results is very satisfactorf.

B. ' Uniform Wall Heat Flux Boundary Condition: GD

The axial variation of local Nusselt number, NUZ'CD'
for different gridland step sizes is illustrated in Fig.
5.18. As in the @ conditdon, Nuz,® starts with a high
value and gradually decreases to within 1.05 times its
fully-developed valuéﬁat z' 2 0.07. For z' > SX%Q—S, the
NuZ:C) vs z' cgryes'for the three sets~of grid and step
sizes used are virtually the same, so the results obtained
with the basic‘grid ((:)) can be regarded as adequate. For
z' < 5x10-4, however, each curve asymptotes to a different
limiting value as z' - 0. Mathematically, the value of
Nuz’<> at z' = 0 should be infinite: this is because
(Tw-Tb) =0 at z' =0 énd'NuZ,(:> & (quH)/[k(Tw—Tb)]. In
the numerical solution, however, the value of Nuz’(:) for

the first axial step is based on (fw-Tb) at z' = Az', and

this value is assumed to prevail over the region 0 < z' £ Az',
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Therefore,'all three curves in Fig. 5.18 give finite values
of‘NuZICD at z' = 0. As is to be expected, when the grid
ig’refined, and Az' is reduced, the value of Nuzlc:) for the
first axial step increases.

The variation of local and mean Nusselt numbers,

Nuz’(:), and Num’<:>, with non-dimensional éxial distance
z' are displayed in Fig. 5.19, and are compared with the
corre§ponding results of Chandruypatla and Sastri [43). It
can be seen that good agreement is obtained for NuZ,(:)'
The values of Num’<:> computed by Chandrupatla and Sastri
are higher than those obtained in this investigation, but
this difference tends to decrease as z' is increased.
Moreover, it is to be noted that in both analyses, Nua'c)
is obtained from the computed values of Nuz'(:) by using
t/he/gollowing equation: Num’® 4 [./'Oz'Nuz,® dz'l/z"'.
Therefore, the difference betweeg the present results and

those in [43] is probably due to the differences in the

numerical integration schemes and the number of data points
used to approximate the integral in the aforementioned

vation for Nu .
equa r m,(:>

Mt tas n e By

5.3.3 Simultaneously Developing Flow and Heat Transfer

In this subsection, simultaneously déveloping
steady, laminar fluid flow and heat transfer in a square
crosgss~section duct are investigated. At the inlet_of the ——

duct, the velocity and temperature distributions are assumed
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3
1

to be uniform across the duct cross-section: w =w, u=v = 0 Q\
and T = Ti. The duct walls are considered to be impermeable
and the no-slip condition applies: therefore, u = : =y =0
on the duct walls. Two thermal boundary conditions are
considered: (i) constant duct wall temperature (:) and (ii)
uniform wall heat flux (:).

The equations governing this problem are the
continuity equation, Eq. (2.8), the x-, y- and z-momentum
equations, Egs. (2.9) to (2.11), and the energy equation,

Eg. (2.34). The egquations governing the flow are non—li;ear
and coupled. The energy equation is linear, but it needs

the fluid flow solution as an input. Thefefore, this problem
tests all features of the proposed step-by-step marching
solution procedure for three-dimensional parabolic flows.

A flow chart outlining the step-by—stép solution
procedure employed to obtain the ﬁiveloping velocity and
temperature .fields is given iﬁ-fzé. 5.20. At each axial E

step, the flow field is solved for first, and then the,

energy equation is solved. An iterative procedure akin to

P

SIMPLER is used to handle the solution of the cdntinuity and

momentum equations. After the first three steps, the step

L% i dn s s

sizes are internally calculated using the automatic step
size algorithm discussed in Chapter IV; in the first three
steps, very small step sizes are used io account for the
steep changes in the dependent variables. Over most of the

solution procedure, the automatic step-size selection is

based on the specified change in the wvalue of the centerline v
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axial velocity component; however, once the flow is fully-
developed, a specified desired change in Nusselt number is

used to calculate the step size. The marching integration
procedg&e is terminated when both velocity and temperature
distributions are fully-developed; the velocity field is
considered to be fully-developed when the centerline axial
velocity component is larger than 99% of its fully-developed \

value, and the temperature field is assumed to be fully-

//

deﬁéioped when the Nusselt number is lower than 1.05 times
its fully-developed value.

Special Attention is required in the treatment of
initial conditions, since they are singular at the duct walls.\
The singularity is a result of the assﬁmptiéns that (i)
the inlet axial velocity changes suddenly from w to zero at
the walls of the duct, as shown in Fig. 5.21(a), and, (ii)
there is a steep change in the initial temperature
distribution from Ti to Tw in the case of the (:) condition,
shown in Fig. 5.15. Clearly, such severe changes in the
dependent variables cannot be handled by the proposed GVFEM
without incurring relatively large errors near the
singularity. Howeéer, as was shown in the analysis of
thermally developing flow in the last subsectidn, these
initial errors tend to decay rather quickly”gﬁd, at a small
distance from the inletl they may be regarded as negligible.
Moreover, the magnitudes and effects of these starting

errors are significantly alleviated in the present analysis

by the use of: (i) higher density of nodes in the wall
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~

region than in the central region, and (ii) small initial

step sizes. ‘

Computation Details

~

In the proposed numerical method, the aforementioned
singularity in the specified axial velocity distribution at
the inlet duct cross-section cannot be modelled exactly.

As was stated in Chapter III, in any given duct cross~section,
the nodal valuesjof the axial velocity are assumed to
prevail over their corresponding control volume surfaces.
Thus at the ductiinlet, if the axial velocity is set equal
to w at internal nodes and assigned the value of zero at
nodes on the duct walls, as shown by the dashed lines in
Fig. 5.21(b), the numerically calculated mass flow rate in
theoduct will be less than the desired, or speéified, mass
flow rate. Furthermore, the errors caused by this mass
flow rate deficit will peréist in all of the computed
results. To overcome this problem, the following procedure

is used to assign axial velocity values at the nodes in the

inlet plane. First, these values are set according to
w if j is an internal node
0 if j is a node on the duct walls

.

Then a correction factor FAC is calculated as follows:

et et
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w Ip.A,

e o 333
) AC = TP .A.W.
J 33

where Aj is the portion of the control volume surface
associlited with node j that lies in the inlet plane of the
duct. This correction factor is then used to augment all

inlet nodal values of w:

(Wj)corrected = Wj x FAC //l

(
This corrected inlet axial velocity distribution is shown
in Fig. 5.21(b) by the solid line. The resulting numerically
caléulatedumass flow rate is exactly equal to the desired
value.

The choice of a grid that is satisfactory, both from
an accuracy viewpoint and with respect to computational cost
and storage requirements, is more important in this problem
than in those discussed earlier. This is because the
computational effort involved in .the solution of simultaneously
developing flow and heat transfer is substantially greater
than that required to solve hydrodynamically fully-developed
and thermally developing flow. In this study, on the basis
of several numerical trial runs, a mécroelement grid of 6x6
nodes, which corresponds to an 11x1l node subelement grid,
was chosen; with reference to Egs. (5.13) and (5.14), the
correspondipg grid distribution yielded by setting POWER = 1.4

was considered satisfactory. The first three axial steps

a7,
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were executed with Az* ~ 10_7. Following that, the automatig
step selector discussed in Chapter IV was used with IDEAL = 25;
in the actual computations, this resulted in about 34 steps
from the inlet to a position where fully-developed flow
and heat transfér conditions were attained.

At each axial step, for the first 15-20 steps, the
ig rations in the SIMPLER-type solution procedure were
terminated when the maximum relative changes in the values
of uA\v, w and (dp/dz), at four selected nodes distributed
across \the duct cross-section, were all less than 10_5.
After the first 15-20 steps, this convergence criterion
was applied only to the relative changes in the values of
w and (dp/dz); this was because the values 6f the cross-
sectional velocities, u and v, approach zero in the wvicinity
of the fully-developed region.

The Prandtl number is a parameter in this problem.

In all computations, this parameter was maintained at a

constant value: Pr = 0.72.

Fluid Flow Results — 3

The variation of the mean pressure with axial distance

is shown in Fig. 5.22. In the vicinity of the duct inlet,
the -axial pressure gradient is very high. This high pressure
gradient is required to overcome the high wall shear stresses
caused by the very steep velocity gradients at the wall,

close to the inlet plane. As the flow proceeds downstream,
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the pressure gradient appfoaches a constant fully-developed
value. The results of this étudy are in excellent agreement
with the measurements made by Beavers et al. [44], as seen
in Fig. 5.22.

In Fig. 5.23, the predicted variation of the center-

line axial velocity with axial distance, and the corresponding

experimental results of Goldstein and Kreid [42] are
presented. In the entrance region, continuity requirements
cause a rapid increase in the axial velocity of the fluid
at the duct centerline in-response to the sudden deceleration
of the fluid near the duct walls. At larger z*, the
centerline axial velocity asymptotes to a constant fully-
developed value. Once again, the agreement between the
calculated and experimental results 1s very good. -
Figure 5.24 shows the development of the axial

velocity profile along a symmetry line and along a diagonal.

Also superimposed on these graphs are the measurements of
Goldstein and Kreid [42]. The satisfactory agreement, between
these results establishes the validity of éhe proposed

CVFEM and the accuracy of the present computations.

The cross-sectional flow field at various axial

locations is displayed in Fig. 5.25. It can be seen that

the cross-stream flow is quite significant initially, but

it dies out rather quickly as the main flow proceeds down-

stream. Additional evidence of the consistency of the proposed
CVFEM is provided by the observed symmetry in the distribgiion

of the cross-sectional velocities with respect to the diagonal.

N
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Heat Transfer Results: (:2 Boundary Condition

The Nusselt numbers, Nuz’@ and Num’® , as functions
of axial distance z* are displayed in Fig. 5.26. The
relatively high starting values are due to the very steep
gradients of the inlet temperature profile at thé walls.

For comparison purposes, the solution of Numlc:) computed
by Montgomery and Wilbulwas [45] and those of Chandrupatla
and Sastri [46] are also included in Fig. 5.26. Montgomery
and Wibulwas [45] neglected the cross-stream velocities in
their analysis; therefore, their mean Nusselt numbers are
significantly lower than the preseﬂt values, especially
near the entrance. Excellent agreement is found between the
present results and those of Chandrupatla and Sastri [46]
who took full account of the cross-stream flow.

The temperature contours given in Fig. 5.27 illustrate

K4
the development of the thermal problem. In this figure,

Contour no. 1 represents the edge, of the thefmal boundary
layer, or the location where T = 1.01 T,. It is seen that
the thermal boundary layers on the duct walls merge much
Sefore the flow becomes thermally fully-developed; as was
stated earlier, the thermally fully-developed region is

characterized by a constant value of Nuz C:).
’

Heat Transfer Results: (:) Boundary Condition

The variation of local and mean Nusselt numbers,

. . . * i .
Nuz'® and Num'® , with. axial distance z* 1is shown in
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Fig. 5.28. No published results pertaining to this case
could be found in the literature, so the predicted values of
Nusselt numbers presented in Fig. 5.28 may be regarded as
new results. Based on the demonstrated accuracy attained

in the previous subsections, the results in Fig. 5.28 may
also be considered as reliable data.

, Other thermal results for this problem displayed

*k;\\\\trehds similar to those of the corresponding results discussed

T -

in the last subsection in the context of the (:) boundary

"condition.

5.4 CLOSING REMARKS

In this Chapter, the proposed numerical method has
been applied to a number of two- and three-dimensional test
problems, and the computed results have been compared with
published datat4 Agreement is, in general, very satisfactory.
This establishes the validity and accuracy(of the proposed
numerical method, and its computer implementation, and
warrants its use in the investigation of new problems for
which no published results are available. One such problem,
involving steady, léngitudinal, laminar flow and heat transfer
in an infinitg rod-bundle, is‘investigated in the next

Chapter.

N o T ek MR A G e g e = T
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CHAPTER VI

APPLICATION OF THE METHOD TO LONGITUDINAL, LAMINAR, FLbW

¥

\

AND HEAT TRANSFER IN ROD-BUNDLE GEOMETRIES

) ' N

Longitudinal, laminar fluid flow and heat transfer’
in thé interstices of an infinite array of rods arranged in
an equilateral triangular pattern are investigated in this
Chapter. Alschematic illustration of this problem is given
in Fig. 6.1. Attention is limited to the flow of an
incompressible, constant property, Newtonian fluid and two
thermal boundary conditions: (a) prescribed constant
temperature of the rods (:), and (b) preééribed uniform heat
flux on the surface of the rods C). These houndary
conditions ;epresepﬁ extreme or bounding cases of those
encountered in praétical problems [7,30]. Hydrodynamically
and thermally fully-developed and developing conditions
are studied in this Chapter. In the developing flow and
heat transfer problems, uniform distributions of axial
velocity and temperature are assumed at the inlet cross-
section.

The discussion in this Chapter is divided into
four main parts: (i) considerations regarding the
calculation domain, computational grids and problem parameters;
(ii) investigation of hydrodynamically and thermally fully-

developed conditions; (iii) study of hydrodynamically

fully-developed but thermally developing cases; and (iv)

e

L My b oat s, oA




investigation of simultaneously developing fluid flow and
heat transfer. Most of the details pertaining to the
mathematical formulation of these problems have alreédy
been presented in Chapters II and V; therefore, to avoid
repetition; appropriate sections and equapions in thesé
earlier .Chapters will be referenced, whenever necessary.
All aspects of the formulation and solution methodology
which have not already been discussed in earlier chapters
will be discussed in detail in this Chapter. |

Longitudinal, laminar fluid flow and heat transfer
in rod-bundle geometries is encountered in nuclear power-
generation equipment and in shell-and-tube heat éxchange;s.
Despite its practical importance, however, there are not
too many papers on this topic in the published literature
[7,471. Some analytical and numerical results for the
hydrodynamically and thermally fully-developed situations
are available [7] and will be used to check the results of
this investigation. However, to the best knowledge of the
author, there has been no in-depth investigation of the
hydrodynamically and thermally developing situations. Thus,
man& of the results presented in this Chapter are new. and
they augment the collection of heat transfer data in the
literature, .

All computations in this investigation were done on

an AMDAHL V7 computer using an IBM FORTRAN-H extended compiler.

a
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6.1 CONSIDERATIONS PERTAINING TO THE CALCULATION DOMAIN,

-

COMPUTATIONAL GRID AND PROBﬁEM PARAMETERS

Figure 6.2(a) shows a cross-Sectional view of an

[

array of rods axranged in an equilateral triangular pattern;

O
the primary flow is in the direction normal to the plane of

the paper. The diameters of the rods is d@ and the centre-
to—-centre spacing between any two neighboufing rods is-
denoted by s. Due to the symmetxy of the infinite rqg—array
. )

configuration, cgnsideggtion need be given to’only a
representative fubdomain, such as the shaded region in Fig.
6.2(a). Once the solution is obtained in such a calculation
domain, the solution in the rest of the problem geometry
can be obtained by an appropriate repetition of the basic
solution. An enlarged view of the calculation domain used
in this study is shown in Fig. 6.2(b), along with the
appgbpriate boundary |conditions. On the symmetry surfaces,
the normal derivatives of the dependent variables are equal.
to zero.

In the selection of a suitable discretization of the
calculation doﬁain shown in Fig. 6.2(b), use is made of
the experience gained in the computations:performed for the
square duct geometry discussed in the last Chapter. It was
shown there that for a given number of grid points, it is
computationally efficient to concentrate more grid points

in the region near the wall than in the central part of the

flow passage; this allows an adequate handling, at a reasonable
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computing cost, of the high gradients of the dependent

.(’ variables in the wall regions. In this stgdy, therefore, a
non-uniform subelement grid of (L1 xMl) n;des i? employed . “
to discretize the calculation domain. The (x,y) coordinates

of a typical grid point (I,J) are determined a¥ follows:

- h& 95 -
. ‘¥ertices of Macroelements LN
- . I = 1, 3, 5 ..., L1
/i=l,3,5...,Ml. \ _—
, ' (6.1)
) X(I,3) = R(I,J) *COS(6(J))
Y(I,J) = R(I,J) *»SIN(B(J))
where
¢
/ a 0W@) = (I-1) % (/6)/(M1-1)
R and . ' , .
R(I,J) = ((I-1) /(L1-1)) **POWERx0.5% (s*SEC(8(J))-q4)
"*Mid-Side Nodes of Macroelements
i} ' I = 2,4, 6 ..., (L1-1)
J = 2' 4’ 6 . ey (Ml-l) . -
(6.2)
( X(I,J) = 0.5%* (X(I+1,J) +X(I-1,J))
' . Y(I,J) = 0.5% (Y(I,J+1) +Y¥Y(I,J-1))




. 150

-~

, . 3
- where POWER is a user-specified constant for determining

( the grid line distribution. In all cases, the grid lines
are uniformly spaced in the 0-direction. A value of POWER
equal to unity yields a uniform distribution of grid points
along each ;Eially oriented grid line; for values of POWER
greater than 1, more grid points are employed near the
surface of tﬂe rod than in the central region of the
interstices. A typical discretization at the subelement
level, using L1 = Ml = 11 and POWER = 1.4, for a calculation
domain with a pitch-to-~diameter ratio (s/d) = 1.5 is shown
in Fig. 6.3; the approximation of the curved rod-boundary
by a piecewise-linear grid line is clearly-evident in this
figure. ‘ —
The geometry of the }iéw passage in this problem -
. A~ is characterized by the pitch-to-diameter ratio (s/d).
Another non-dimensional parameter, which is encountered
in simultaneousiy developing flow and heat transfer situations
is the Prandtl number (Pr = ucp/k), The present investigation
- ) " is limited to twelve differeht values of (é/d) in the range
1.65 to 2.0; this range of (s/d) wvalues is relevant to the
~‘design of nuclear reactor cores, In tﬁé analysis of
: ;imultaneously developing flow and heat transfer, attention
is focused on two values of Prandtl numbers: Pr = 0.72 and 3,
\which are representative of air and water, respectively.
In addition, limiting cases in which the Prandtl number

approaches zero and infinity are also investigated.

« :
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6.2 FULLY-DEVELOPED FLUID FLOW AND HEAT TRANSFER

’Longitudinal, fully-developed, laminair flow and
heat transfer is studied in this section. As was stated
earlier, this problem has been the subject of previous
investigations [7]; the results compiled by Shah and London

(7] will be used here for comparison-purposes.

Analzsis

The applicable governing' equations are the axial
momentum equation, Eq. (2.28), and the modified forms of
the energy equatio;l, Egs. (2.55) and (2.70), for the @
and @ heat transfer problems, respectively. The numerical
procedure for the solution of these equations has already
been described at length in Section 5.3.1 in connection
with the analysis of the hydrodynamically and thermally
fully—-developed flow in a square duct. The solution to the
flow field is- obtai‘ned in terms of a non-dimensional axial
vélocity W; thue @ heat transfer problem is formulated and
solved to obtainua non—-dimensional temperature ©; and the
solution to the @ heat transfer problem is obtained in
terms of a non-dimensional temperature y; these non-
dimensional variables are defined in Egs. (2.27), (2.55)
and (2.69)'. The boundary conditions are the followinc;;:
on the surface of the rod in Fig. 6.2(b), W= 0, ©@ = 0 and
(3x/9n) = 1; on other boundaries; all of which are symmetry

surfaces, the normal derivatives of W, © and X are zero.

j
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The flow field was solved first, and the normalized axial
velocity (W/W) waos stored on external disk devices to| serve
as an input to the heat transfer problems. Auxiliary
computations were done to obtain overall results such as

the friction factor - Reynolds number product, f.Re, and

the average Nusselt \numbers, Nu@ and Nu@ .

Computational Details

The final computations were performed with a macro-
element grid of 6x6 nodes, which corresponds to a subelement
grid of 11xll nodes; the distribution of grid points was
based on the relations given in Egs. (6.1) and (6.2), -
with POWER = 1.4. This grid was chosen based on the
experience gained in the analysis of the square duct geometry
and its adequacy was established by doing sample computatiofas
with finer grids and different values of POWER. The
calculations were carried out for values of pitch-to-
diameter ratio of 1.05, 1.07, and 1.1 to 2 in steps of 0.1

The @ heat transfer problem requires the solution
to an eigenvalue problem poéed by Eq. (2.55). The iterative
procedure described in Section 5.3.1 was used to solve this
problem. The iterations in this procedure were terminated
when the change in the eigenvalue A between successive
iterations was less thaqn 0.001s%.

For each value of (s/d), the typical computer time

required to obtain the W, © and X fields and do all necessary
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auxiliary computations was about 30 execute unitsf.

Fluid Flow Results

The friction factor - Reynolds number product, f.Re,
as a function of (s/d) is given in Fig. 6.4. The solid
line represents the results of this analysis and the dashed
line denotes the analytical results reported in [7]. It
can be seen tﬁat agreement between these results is:very
good throughout the range of (s/d) investigated. The £f.Re
product increases monotonically with the pitch~-to-diameter
ratio., This variation of f.Re with (s/d) reflects the
simultaneous influences of the pressure gradient and €he

magnitude of the hydraulic diameter:

(-dp/dz) Dy pv‘:DH
f.Re = . (6.3)
1l =2 M
i '

For a fixed mass flow rate and constant rod diameter, as

-

- the intercylinder spacing increases, the axial-pressure

gradient decreases but the hydraulic diameter increases.
These opposing tendencies léad to the trend displayed in
Fig. 6.4. For large values of (s/d), £.Re tends to ;nfinity
because DH tends to infinity.

The ef fects of the number and distribution of grid

points on the f£.Re product for different pitch-to-diameter

+One execute unit on an AMDAHL V7 is the machine time required
to perform one million operations.

N,
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ratios are summarized in Table 6.1. For POWER = 1.4,
successive refinements of the grid size drive the f.Re factor
closer to the analytical valué reported in [7]. This trend
is observed for the three spacing ratios presented in Tab%g
6.1, and it is in accord with expectations. The effect of
varying the value of POWER is illustrated in Table 6.1 for
s/d = 1.05 and a. subelement grid of 11lxll nodes. It appears
there that a uniform grid (POWER = 1) yields the most
accurate solution if the analytical value of [7] is taken as

~

a reference. It is to be noted, however, that in the fully-
developed regime, the velocity gradients at the rod surface
are not as steep as those encountered in the Qeveloping
region, especially in the vicinit& of the inlet. As was
discussed in Chapter V, the fully-developed results serve as
reference values in the automatic axial step size selection
algorithm used in the analysis of the developing region. It
is, therefore, desirable to devise an optimum grid that
provides adequate accuracy of the results in the fully-
developed ané in the developing flow regimes. With this
consideration in mind, the value of POWER = 1.4 was retained

for determining the distribution of grid lines in all

subsequent - comput ations. :

Heat Transfer Results

The average Nusselt numbers, Nu® and Nu@ , are

presented in Fig. 6.5 as functions of the pitch-to-diameter

o L e ot pard #38
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ratio (s(d). Both Nu<:) and Nu(:) increase with increasing
intercylinder spacing; this is a consequence of the
dependepce of the Nusselt numbers on the hydraulic diameter.
For (s/d) < 1.17, it can be seen that the average Nusselt
number for the (:) boundary condition is consistently higher
than that for the (:) boundary condition. This trend can be
explained on physical grounds as follows: for large (s/d)
and the (:) boundary gondition, the rod surface temperature
distribution albng its periphery is not influenced much by
the presence of neighbouring réds and it tends to be uniform.
Thus, for large values of (s/d), the (:) boundary condition
approaches a condition of constant axial wall heat flux
and uniform peripheral wall temperature; it can bg shown,
Shah and London [7], that the Nusselt number under such
conditions is always higher than that for the (:) boundary
condition. For small (s/d) wvalues, however, the rod surface
temperature varies markedly along its periphery. The highest
value of Tw+ occurs at the points where the lines joining
the centers of adjacent cylinders intersect the rod surface.
These "hot spots" increase the value of the surface-averaged
temperature TW which, .in turn, decreases Nu(:). Thus,
for s/d < 1.17, the peripheral temperature distribution on
the r?d surface is highly non-uniform and Nu(:) is smaller
than Nu()f

In‘Fig. 6.5, the values of Nu@ tabulated in [7]

are plotted as a dashed line. As is evident, they match the
1

Trhis discussion is based on the viewpoint that the cylinder
.surface is hotter than the fluid.
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present results extremely well. No published results for
Nu@ are available in the literature; therefore, the computed

values reported here may be considered as new results.

Th,e effects of the number and distribution of grid
points on ’the values Oanu® and‘Nu® , for three values
of (s/d), are shown 1in Table 6.1. On the basis of these
results, it was concluded that a subelement grid of 11x11
no(%es V{;,th POWER = 1.4 yields adequate accuracy while not
dem\and,gng an excessive amount of computer time.

6.3 HYDRODYNAMICALLY FULLY-DEVELOPED AND THERMALLY

DEVELOPING FLOW

Attention in this section is focused on laminar
flow which is hydrodynamically fully-developed and thermally
developing. This situation is typically encountere;e% in

.

problems involving fluids with very large Prandtl numbers |
(Pr + »). The velocity distribution remains invariant

throughout the calculation domain; the fully-developed flow :
solution discussed in the last section is used as an input
_to this problem. The temperature distribution is assumed to
be uniform in the inlet cross-section of the calculation

dle. °

A

omain, and it develops as the flow proceeds down the rod
f}q

Analysis

A detailed mathematical formulation of this problem
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has already been presented in Chapter II. Therefore, only -
the applicable go(/erninq equations and boundary conditions

are stated in this subsection. The development of the
temperature field is governed by the energy equation, Eg. (2,34).
The corresponding boundary condition,é, with reference to

the calculation domain shown in Figqg. 6.2(b), are the following:

on the surface of the rod, T =‘§j§‘w = constant in the @
problem, and (-k g—g) = g, = constant in the @ problem; on
all other boundaries of the calculation domain, which are
symmetry surfaces, the normal derivatives of T are zero.
At the inlet cross-section of the calculation domain, the
temperature distribution is taken as uniform.

The numerical procedure employed to solve the present
problem is_analogIouS to that described in Section 5.3.2 for
the square duct(géametry, so it is not repeated in this
section. Furthermore, the discus:sion in Section 5.3.2

3
regarding the treatment of the initial condition also applies

to this problem.

Computation Details x’

The fina\l*computations were conducted with a sub-
element grid of 1llxl11 nodes; Egs. (:S.l) and (6.2) with
POWER = 1.4 were used to obtain the 'desired distribution
of the grid points. For the first three marching steps, a
step size Az' 10_7 was used so as to accommodate the large

gradients of the dependent variables encountered in the
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vicinity of the inlet cross-section. The step sizes at
subsequent axial stations were determined using the automatic
step size selection algorithm discussed in Section 4.1.1;
the value of IDEAL was set equal to 25. 1In the actual
computations, about 50 axial steps were required to attain
fully-developed conditions. Additional runs with a sub-
element grid of 19x19 nodes, POWER = 1.4 and IDEAL = 50 steps
were made to check the validity and accuracy of the results

obtained with the aforementioned basic grid. 1In all runs,

LAY

the velocity distributions needed for the thermal solutions
were obtained from the fully-developed flow analysis

presented previously. ' .
: For each of the final runs, the computer times
needed for a complete solution of the thermal ehtrance region

averaged around 100 execute units.

Results: @ Boundary Condition

Local Nusselt number, Nuz,®, results for (s/4) =
1.05 and 2, and for two different grid and step size
combinations, are shown in Fig. 6.6. In the vicinity of
the inlet cross-section, the discrepancy between the results
obtained with the two different grids is large; this reflects
the inabilit; of the numerical method, with its finite number
and spacing of grid‘ points, to adequately handle the

singularity in temperature distribution at the inlet, as

2
was discussed in Chapter V. However, it can be seen that

5 —————————
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the diff;rences in the results of the two grids decay quite
rapidly and they can be regarded as negligible for z' > 10—4.
Thus, the Nusselt numﬁer results optained with the 11x1l
suﬁelement grid with POWER = 1.4 and IDEAL = 25 may be
considered as grid-independent for z' > 10—4.

The local Nusselt number, Nuz’(:), is defined by

Eq. (2.41):

D
A 92"y

< 3 2.4
. Nu ,® T -T)Kk ( 1)

where q, is the aveiage rod surface heat flux and Tb is the
fluid bulk temperature. 1In the vicigity of, the duct inle%,
a, is relatively high, but it decreases rapidly with axial
distance; the fluid bulk temperature increases with axial
distance, so (Tw-Tb) decreases. The heat transfer coefficient
h, which is the ratio qz/(Tw-Tb), decreases in the developing
region and asfmptotes to a constant value iq}the fully-
developed region. This behaviour is evident in the Nuz'C)
vs 2z' curves presented in Fig. 6.6.

Also of interest in Fig. 6.6 is the difference in
trends displayed by the axial variation of Nuz'(:) for
small and large spacing ratios. For (s/d) = 1.05, the Nuzlc)
ve z' curve expefiences a change in its rate of. decrease
around z' = 10_3, before asymptoting to the fully-developed
value. On the other hand, this behaviour is not observed

for (s/d) = 2. This difference in trends is caused by the
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o
disparity in the fully-developed velocity distributions for
small and large spacing ratios, and the corresponding
differences in the variations of q, and (Tw-Tb) with axial
distance. The fully-developed velocity profile is non-uniform
across the cross-section of the calculation domain, and

this non-uniformity is more pronounced for (s/d) = 1.05 than
for s/d = 2.0. With reference to the calculation domain
shown in Fig. 6.2 and J:t‘s discretigation presented in Fig.
6.3, the fluid velocity is zero on the rod surface and maximum
at the grid point (I = L1, J =°Ml); furthermore, as the fluid
seeks the path of l!east resistance, its velocity in the
vicinity of 6 = 0 is lower than that adjacent to 6 = /6,

The fluid,bulk éemperature rises steeply very close to the
inlet, because of the high values of q, and the rapid heating
of the fluid adjacent to 6 = 0. However, once the low
velocity fluid around 60 = 0 heats up to temperaturés close

. to Tw' the rate of rise of Tb decreases: because the high
velocity ffi_uid around 6 = 7n/6 heats up relatively slowly.
This cha}xge in the rate of rise of T with axial distance

is stronger forv (s/d) = 1.05 than for (s/d) = 2.0. The
corresponding effect on the rate of decrease of g, with axial
distance is not as pronounced because q, is an area-averaged

guantity, whereas Ty, is a flow rate averaged quantity.

These differences in the axial variations of q, and Ty for

(s/d) = 1.05 and (s/d) = 2.0 are reflected in the correspond-

. . . .
ing Nuz’® vs 2' curves in Fig. 6.6. -

Figure 6.7 shows the variation of the local Nusselt

I . o e st .« o R~
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number Nuz,® with axial distance z' for twelve differ?nt
pitch-to-diameter ratios in the range 1.05 < (s/d) < 2.0.
The aforementioned difference in trends displayed by the
axial variation of Nuz,® for large and small spacing ratios
is also evident in Fig. 6.7, although not as clearly as in
Fig. 6.6. To the best knowledge of the author, these are

new results.

Results: @ Boundary Condition

A}

Figure 6.8 illustrates how the local Nusselt number,

Nuz’® , varies with axial distance for (s/d) = 1.05 and ‘ f
2.0; the results obtained with two different grids are

presented. These results show that for z' > 10_4, the

results obtained with the basic grid (11lxll subelement | .
vertices and IDEAL = 25) are essentially grid independent.
{&t smaller z', there are relatively large discrepanciés
between the results of the two grids used; this is. because
the thermal boundary layer thickness is very small for

4

z'.< 1007, and a very fine grid in the vicinity of the rod

e B et e s Mot e
‘

surface is required for accurate computations, as was
discussed in Section 5.’3'2' ‘

The Nusselt number curve for (s/d) = 1.05 inﬁFig. 6.8 ‘
portrays a behaviour quite different from tﬁat for (s/d) = 2.0.
As in the @ problem, this difference is caused by the

disparity in the velocity distributions across the cross-

section for different intercylinder spacings and the

o
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consequent differences in the axial variations of Ty-  In

the present case, the local Nusselt number is defined by

Eq. (2.65) :
“ ]
, @D
Nu, (B L__wH (2.65)

¢

where g is the spepif:’,)ed constant heat flux at the rod
surface, "I"w is the avelllage rod wallmtemperature and Tb is
the fluid bulk temperature in the cross—secticn of interest.
The temperature differencé (‘Tw—Tb) rises in‘the developing
region and eventually asymptotes to a constant value in

the fully~developed region. ‘For small spacing ratios, (s/d)
v~ 1.05, the highly non-uniform velocity distribution in the
calculation domain could lead to é,significant differences in
the axial variations of 'fw and T, in the developing region.
These differences, in turn,t lead to the change in the rate
of decrease of the Nuz'® ves z' curve for (s/d) = 1.05 in \
Fig. 6.8. The detailed explanation is very similar to that

advanced in the last subsection for the @ problem, so it

is not repeated here,.

M e e e e i v e A

1:1_1:1_Z’® vs z' curves for twelve different (s/d)
ratios in the range 1.05 < (s/d) < 2.0 are presented in ¢
Fig. 6.9. Similar results are not available in the publisheld,
literature, so the results of this investigation may be

considered to be new.
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6.4 SIMULTANEOQOUSLY DEVELOPING ‘-FLUID FLOW AND HEAT TRANSFER

Attention is now turned to the situation in which
both velocity and temperature profiles are ur?iform at the
entrance and develop simultaneously. There are only a few
papers in the literature which deal with simultaneously
devélogi»ng laminar flow and heat transfer in infinite rod-
bundle/ geometries. T?e only works known to the author are
those of Del)Giudice et al. [24-26] who solved the hydro-
dynﬁamic and thermal entry problems using a linearized
procedure akin to that proposed by Sparr(;w et al. [8,9].
QDel Giudice et al. have reported results for spacing ratios
(s/d) =1.5 and 2, and Pr = 1. As the Pr =1 case 1is not
treated here, only the hydyodynamic results of [24] will be

S
used for comparison purposes in this study.

i
f

”

Analzsis
3

Details of the equations which govern this problem
have already been presented in Chapter II: the [fluié flow
problem is gox}erned by the continuity equation, Eq. (2.8),
and the momentum equations, Egs. (2.9)—(2.}1) ; and ?:wh‘e
temperature is governed by the energy eguation, Eq. (2.34).
Asl noted before, the momentum equations are non-linear andc&

coupled to each other and the continuity equation; the enexgy
equation is linear, but it requires the solutio,‘ri to the flow

problem as an input. .

L

With regard to boundary conditions, reference "is

'




ﬁi:empera'ture fields was described in the context of fluid
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'made to the enlarged view of the sub-channel of interest

-

pictured in Fig. 6.2(b). As shown there, for f£luid flow,

the no—-slip condition prevails over the impermeable rod surface:

[

‘U“=v =w-= 0. Over the other surfaces of the calculation

-domain, all of which are symmetry surfaceé, the gpllowin_g \ /

conditions apply: the velocity component normal to the-
surface is zero and the normal deri-vative's of the tangential
velocity components are zero, Using thé coordinate} syste}ns
shown in Fig. 6.2(b), these} conditions can be expr ssed

as follows: aty = 0, (Ju/dy) =0, v =20 and (aw/3y) = 0;

at x = s/2, u =0, (3v/3x) =0, (dw/3x) = 0; at 6 = 30°,

Vh = 0, (th/.Bn) = 0 and (9w/on) = 0, where n and t denote
the normal and tangential directions to the face at 6 = 30°h,
respectively. The thermal boundary conditions, on the other
hand, can be written as follows: on the wall surface,

T = Tw = constant for the @ condition, and (~k 9T/dr) = Ay =
constant for the @ condition; on the symmetry S}Jrfaces,. :

the normal derivative of the temperature (9T/dn) = 0.

Adaptation of the Proposed Solution Method
¢

¢

In Section 5.3.2, the use of the proposed method for

the solution of simultaneously developing velocity and

flow and heat transfer in a duct of square cross-section.
All the details presented there are applicable to the present

problem too, aﬁ&\g\o they are not repeated here. There is,




however, one specific aspeét of the rod-bundle problem which

\
deserves special mention. It relates to the imposition of

appropriate bounda‘ry conditions on the cross-sectional

velocity components at the inclined symmetry surface 8 = 30°.
e

These conditions are:

<

Ve

n o gﬁ(u cos 30° + v sin 30°) =0 (6.4a)
(6.4b)

v =-L;lsii'130°+vcos 30 = 0

Thus, it can be seen that the boundary condition for u/is

indirectly specified through v, and vice-versa. This
ind/}irect specificgtion is computationally inconvenient

because the momentum equations for u and v are solved
sequentially in the overdll iterative solution procedure used

in the proposed method. Hence, explicit boundary conditions

for u and v on the inclined symmetry boundary are required.
Q’Nﬂ

Explicit boundary conditions on u and v at 6 = 30°

can be obtained by rewriting Egs. (6.4a) and (6.4b) as

- follows: o
u _ ‘ .
= =0 ] (6.5a)
@‘ °
v = u tan 30° (6.5b)
In each iteration of the overall solution procedure, Eq. (6.5a)

et Sz

T
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and the boundary conditions at the remaining faces of the
cai\culation domain allow a unique and computationally
convenient solution of the u-field. Once this ﬁis done,

Eq. (6.5b) can be used to obtain an explicit boundary
céfiaition for v. The iterations in the overall solution
procedure are continued till convergence./ Since Egs. (6.5a)
and (6.5b) are equivalent to Egs. (6.4a) and (6.4b), the
resulting cross-sectional velocities satisfy both Egs. (6.4)
and (6.5).

’It is to be noted that in the implementation of the
boundary conditions given by Egs. (6.5a) and (6.5b), special
care must be exercised in the calculation of the pseudo-
velocity v at the inclined symmetry boundary. Equation
(6.5b) implies that

v, =u, tan 30° = {{ + (§ k;-l pj)/a‘jl} tan 30° (6.6)
Therefore,

Gi = ﬁi tan 30° (6.7)
and
v.=Y, o+ ;(AS‘ tan 30°)pj/a‘i1 (6.8)

J

~

For a node i located on the inclined symmetry boundary,
Eqs'. (6.7) and (6.8) replace Egs. (3.44) and (3.47),

respectively. All other details of the proposed calculation

Bl T

B b w8 AR € % 4

m e ok




\\\

167

‘proqedure are as described in Chapter III. '

Computational Details

The results presented in Chapter V and in the
previous sections of this Chapter have shown that the basic
grid employed so far, a subelement grid of 1lxll nodes with
POWER = l.% and IDEAL = 25 steps, yields adequate accuracy,
except in the region very close to the entrance/where starting
errors dominate. This basic grid was also used in the |
investigation of this problem. At each axial step after the
first three, the step size for marching ahead was determined
by the automatic step-size algorithm discussed in Section
4.2.1; a specified desired change in the maximum axial
velocity Awmax was used to determine,fhe appropriate values
of Az. A constant value of Az* = lO"6 was used for the

first three steps. .
Flow and heat transfer results were obtained with
the basic grid for the following pitch-to—diameter ratios:
(s/d) = 1.05, 1.07, 1.1, 1.2, 1.3, 1.4, 1.5 and 2. Two
values of Prandtl numbers were used in the computations:
Pr = 0.72 and 3, which are representative of air and water,
respectively. Additional computations with different
grids and step sizes were also done for (s/d) = 1.05 and 1.5
in order to check the accuracy of the basic grid computations.
Since the equations governing the flow field are

‘non-linear and coupled, it was necessary to use under-
.’.} 1
o
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relaxation in the computations for u, v, w and p. For the
first three axial steps, the following under-relaxation

parameters were used: o, =,aV = 0.5, Oy = 0.8, ap = 0.8.

Following that, they were changed to o, = 9, = 0.8, a, = ap

At each axial step, the iterative solution procedure

.

for calculating the flow field was stopped when the maximum

‘of the relative changes in u, v, w and dp/dz between

consecutive iterations was less than 0.001%; the changes in

u, Vv and w were calculated at four selected nodes in the

168

calculation domain. The changes in u and v weres not included

4
in this convergence criterion in the vicinity of the fully-

developed region where these cross-sectional velocity

L4

components approach zero.

Typically, about 50 axial steps and 2000 execute
units of computing time on an AMDAHL V7 were néeded to obtai

the complete hydrodynamic and thermal solutions for each
’ L4

spacing ratio considered.

!
|
/

/

[ {
Fluid Flow Results

The presentation and discussion of results in this
subsection is done in three parts. The first part is devote
to the effects of grid and step size details on the results.
fn‘the second part, attention is turned to the comparison
of the present solutions with those reported by Del Giudice
et al. [24]. The third part is concerned with the
presentation and discussion of detailed solutions for the

various pitch-to-diameter ratios investigated.

n
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{
~ Since no bench-ma%k entry-flow solutions exist for

.the rod-bundle geometry,, special care was taken to ensure

that the final results of thés investigation, obtained with
a subelement grid of 1lx11 nodes, POWER = 1.4 and IDEAL = 25,
ar;, for all practical purposes, grid independent. This
was achieved by doing additional computations with fine
grids and small step sizes and comparing the results with
those of the basic grid. Unfortunately,‘as noted earlier,
the computational effort involved in the calculation' of the
developing flow is relatively high. Therefore, the extent
to which:grid and step size effects were explored was
li?ited by the available resources. As a result, the grid
vgrificationfcomputations were only done for two. represent-
%éive spacing ratios: (s/d) = 1.05 and 1.5. Fugthermore,
the calculations were carried out only in the initial part
of the developing region; it is to be noted that the
solutions near the entrance are a more stringent test of the
accuracy and grid independence of the results than those in
the remainder of the calculation domain. The effects of
changing the axial step sizes were studied by varying the
value of IDEAL, which determines the minimum number of steps
required for attaining fully-developed conditions. In
addition, the effects of tying the automatic step size
selecﬁion to a specified change in the Nusselt number
(ANuz’<:)) between successive axial steps, rather than the

corresponding change in maximum axial velocity Aw were

max’

also studied.




Figures 6.10 and 6.11 show the results of the
aforementioned grid checks for (s/d) = 1.05 and 1.5,

respectively, in the form of the axial wvariation of the

maximum velocity, (w/ﬁ)max; with reference to the grid shown

in Fig. 6.3, the maximum velocity occurs at the point
(I = L1, J =ML). As is evident from Figs. 6.10 and 6.11,
the (w/&_v)max results obtained Qiph the basic grid are, for
all practical purposes, grid independent. The corresponding
axial distributions of ﬁhe mean pressure are not presented
here, but they support this conclusion. It is to be noted
that éhe grid check results in Figs. 6.10 and 6.11 apply
only to a relatively small range of z*, but an indication
on hpw well the basic grid performs at higher z* can be
readily obtained from an inspection of the fully-developed
results presented in Table 6.1. 'Thus, it may be concluded
that sufficiently a;curate, grid independent results can be
obtained with the basic grid over the entire developing
fiow regime.

The focus of the discussion is now directed to the
comparison of the present solutions with published data.
As was noted in the introduction of this section, only the
results of Del Giudice et al. [24-26] are available. Here,
the data for (s/d) = 2.0, read-off from graphs in [24], are
used. |

The results of this investigation are compared with
the corresponding results of [24] in Figs. 6.12 and 6.13.

The variation of the mean pressure with axial distance is

170
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displayed by the curves in Fig. 6.12, and those in Fig. 6.13
show the axial variétion of (w/ﬁ)max. The results of |
Del Giudice et al. [24] are based on a linearized formulat%gm
of the inertia terms in the axial momentum equation, and
their computations were done with a 15x5 grid. Furthermore,
as was discussed in Section 6.3, the singularities in the
initial conditions at the duct /inlet cross-section and
the extremely thin boundary l§§ers in the immediate vicinity
of the inlet make it very difficult and costly, if not
imposs;bl , to get accurate numerical solutions. With these
considerations in q}é&, it mayAbe conc}uded,that the results
of this inveétigation and those of Del Giudice et\al. [24]
agree quite well.

' Attention is now turned to the presentation of

detailed results in Figs. 6.14 and 6.15, for eight different

(s/d) values in the range 1.05 < (s/d) < 2.0. The axial

variation of mean pressure is given by the curves in Fig. 6.14.

For all spacing ratios, the pressure gradients are higher
near the entrance than in the déveloped flow region because
of two effects: (i) the increase in the momentum of the
fluid as the velocity field changes from a uniform to a non-
uniform distribution; and (ii) the higher wall shear stress
caused by higher transverse velocity gradients in the
vicinity of the inlet. For a fixed z*, it can be seen that
the slopes of the curves in Fig. 6.14 increase monotonically
with spacing ratio. This, however, is because the hydraulic

diameter increases with (s/d), and z* is inversely proportional
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to the square of the hydraulic diameter., It does not

N

. {
represent an increase in pressure drop with (s/d). 1Indeed,

i

- i . -
if a p vse z curve were plotted for a fixed w and rod
diameter, it would show a decrease in the axial pressure

/gradient with an increase in (s/d).

¢

The axial variation of (w/w) for eight different

max

values of (s/d) ranging from 1.05.to 2.0 are plotted in

Fig. 6.15.‘ Inspection of this figure indicates that the
hydrodynamic developm;ﬁt is very rapid near the inlet and
then proceeds ﬁore sloLly with increasing downstream distance.
The fully-developed value ﬁf (w/wTv)max increases with
decreasing cylinder spaci#gs because higher velocities are
required for keeping the mass flow rate constant as the
dimensions of the flow passage are reduced. As is evident
from Fig. 6.15, in terms of z*, the fully-developed

«

conditions are reached earlier for increasing (s/d) ratios.

This is. because z* is inversely proportional QS‘SENEHE%EE\““\\~‘~W;\

does not imply shorter physical development lengths for
larger spacing ratio. Indeed, for fixed values of the mean
axial velocity w and rod diameter d, the physical develop-
ment length increases with increasing spacing between
adjacent rods. 5
The cross-sectional flow fields at three different

axial locations for (s/d) = 1.5 are illustrated in Fig. 6.16
in the form of vector plots of the cross-sectional velocity
at the subelement grid points. At z* = 1.7x1077, there is

significant transverse flow near the wall because of the

i e e

—_—
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sudden decrease in the axial velécity in this region, and the
assoéiated increase in this velocity in the central region
of the space between rods. These cross-sectional velocities-
decay quite rgpidly away from the inlet. All the cross-
sectional velocity vectors shown point away from the rod
surface, and, as is td be expected, there is no evidencé of

any recirculation zones in the cross-sectional planes.

Heat Transfer Results: (:) Boundary Condition

. Heat -transfer results for the C) condition are
presented in‘this subsection in three parts. In the first
part, the effects of grid details are examined, and the
second part is devoted to the presentation and discussion
of detailed results for several spacing ratios, and two
values of Prandtl numbers. In the third part, attention is
focused  on the effects of the Prandtl number.

In all cqpputations presented so far in this Chapter,
an 11x11 node subelement grid withlPOWER = 1.4 yvielded
satisfactory solutions in both the developed and developing
regions. .So this grid was chosen for all computations 4
presented in this subsection. The grid checks were limited
to an investigation of the effect of different axial step
size combinations..

In Figs. 6.17(a) and (b), the axial variation.of

NuZ <:) for (s/d) = 1.5 and 1.05, respectively, are presented;
- 1

the Prandtl number in these computations was set equal to

-
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0.72. The different curves/in this figure correspond to the
/

results of grid checks made with various values of IDEAL
and with the automatic step size algorithm tied to a <

specified {Jalue of ANuz,® rather than Awmax. In all cases,

.the calculations were not carried out till the fully-developed
conditions. As is evident in Fig. 6.17, the "discrepancies

in the results obtained with the different grids diminish

rapidly with axial distance, and they may be regarded as

negligible for z* > 5x10_4. Thus the results of the basic

grid may be considered as grid independent, for all practical
purposes, for z* > 5x107%.

] Atten‘tion‘ is now focused on the Nusselt number . .
solutions for eight different values of (s/d) in the range
1.05 < (s/d) < 2.0. These results are presented in Figs.

6.18 and 6.19. Fiqure 6.18 exhibits the axial variation of

Nuz @ for Pr = 0.72, and the corresponding results for
- 14

Pr = 3.0 are displayed in Fig. 6.19. The Nusselt number
variations below z* = 10"3 are not shown because they may

not be very accurate and they may be influenced by starting

errors, as was discussed in the’earlier sections of this
Chapter and in Chapter V.

An inspection of Figs. 6.18 and 6.19 reveals that
the Nusselt number solutions foi simultaneously developing
flow ana heat transfer are similar in many respects to the
thermal entry soluti‘ons presented in‘ Fig. 6.7. Therefore,
many of the remarks made in the discussion of }E‘ig. 6.7 are

also valid here. However, there are a couple of interesting
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aspects of the results in Figs. 6.18 and 6.19 which deserve
a separate discussion.

It is observed that for values of z* < 10”2 in Figs.
6.].&8“ and 6.19, the curves corresponding to different spacing
ratios are closer to one another than they are in Fig. 6.7.
The explanation for this ;esult is that the hydrodynamic
and thermal boundary layers on the r?(:surface are very t'hin
in the immediate vicinity of the inlet cross—section; so
for a fixed /5':, Tw and d, the surface heat flux is relatively
insensitive to the spacing between the rods. Nevertheless,
the Nusselt number curves for the different (s/d) ratios
do not \merge as z* is decreased because of the dépendence
of the Nusselt number on the hydraulic diameter.

Another aspect of interest is the difference in trends
of the NusSelt number distributions for small and large
spacing r;’:{tios. Each of the curves for (s/d) < 1.2 exhibits
an inflection point. The mechanisms ‘that cause this
behaviour are believed to be of the same nature as those
discussed in Section 6.3 in the context of hydrodynamically
’ dev‘elopeci but thex:mally developing flow. It was arguedﬂ
there that the significant disparity that exists in the

o ' )
fully-deve loped velocity profiles for small and large spacings
caused the aforementioned differences inothe axial wvariation /
of Nusselt number. An examinatign' of Figs., 6.18 and 6.19
shows that the inflection points‘ in the Nuz, @ vs z* cuxrves

for (s/d) < 1.2 occur at axial locations that are not in the

immediate wvicinity of the entrance. It seems reasonable,
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thefefore, to assume that the velocity profiles are

i

relatively non-uniform at the locations of the inflection

points, and the explanation put forth in Section 6.3 applies s

®

here too.- |
Figure 6.20 provides furthe:g," insight regarding the
’\/ <
growth of the thermal boundary layer. In this figure,

suitabl¥ non-dimensionalized temperature profiles at six

different axial locations are presented in the form of
isotherms or contour plots; they correspond to (s/d) = 1.5

and Pr = 0.72. The edge of the thermal boundary ldyer

(taken as the position where T = 1.01 T,) is rgﬁrésented

-~

——

- —~
by contour 1. At z*s=_1.685x10 7, thal boundary is

very thin and- there is a high concentration of isotherms

. near the wall, corr‘eSponding to the high wa}l temperature
gradients there. At z* = 5.2x10_4, the isc/>'/therms are

almost concentric with the circular surface of the rod,
indicating that the boundary layers on adjacent rod surfaces
have not yet merged, and the interaction between neighbduring
rods is minimal. At z* = 1.6x10">, the thermal boundary
layers on adjacent rods have mgrged, but there still exists
a small pocket of unheated fluid around the upper right-
hand corner of the calculation domain where (w/w) is a - -
maximum. The development of the temperature field after the
thermal effect of the wall has been felt throughout the
fluid flow is displayed’ in the remaining contour plots in

¢

Fig. '6.20.

Attention is now directed to the effect of Prandtl

!

/

¥
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number on the -heat transfer results. A%y:E)well known, the

Prandtl number determines the rate of dewy€lopment of the

temperature field relative to that of tﬁk;yelocity field.
Thus, for a .fluid with a largé Prandtl number, the velocity
field develops much faster than the temperature field;

in the limit, as Pr » «, it may be assumed that hydro-
dynamically fully-developed condit%ons prevail as the flow
develops theérmally. The other extreme, Pr =+ 0, perEaiﬁs

to thé situation where the velocity profile may be assumed
/

/ -
to be uniform over the entire cross—sectionAof the duct

as the flow develops thermally. Such a%situation is commonly

. {
referred to as "slug flow". b

€
»

In this investigation, the effect of Prandtl number

on the axial variation of Nusselt number was. examined for

three different spacing ratios: (s/d) = 1.05, 1.5 and 2.0.
For each spacing ratio, four different values of Prandtl

number were considered: Pr =+ 0, Pr = 0.72 and 3, and Pr + =,

The results are presented in Figs. 6.21 to 6.23 in terms of

( ‘D}

Nu ve z' curves; Nu is the length-averaged mean
n, (@D m, (D > leng ged me

'Nusselt number defined by Eg. (2.46). The mean Nusselt

number Nu rather than the local Nusselt number Nu
m, (D) z, (D)

is used in the presentation of these results because the

' Nuz (:) results for Pr = 0,72 and 3 have already been
4

presented in Figs. 6.18 and 6.19 and discussed in this

subsection.

+

to (s/d) = 1.05, 1.5 and 2.0, respectivelyy Num (:) at a
4

As is evident in Figs. 6.21 to 6.23, which correspond

R

JR% TR
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fixed z'+ increases with decreasing Prandtl number. This can
( be explainéd as follows: for a fixea spacing ratio and at
any giveh z', the axial velocity distribution becomes .
increasingly uniform over the cross-section of the calculation
domain as the Prandtl number is decreased; this causes the
transverse velocity gradient at the wall to be steeper,
thereby enhancing the convection rate, For a fixed spac%ng
ratio, all Num’(:) vs z' curves asymptote to the égme
thermally developed value because the Prandtl number ceases
to be a pérameter in tbe fully-developed region; the curve
correqunding to the slug-flow situation reaches the

thermally fully-developed value much later (z' -+ «) than

the other curves.

Heat Transfer Results: C) Boundary Condition

The discussion in this par£ will be kept brief
because most of the results obtained for the (:} condition
K are qualitatively similar to those discussed in the last
subsection for the (:) condition. Checks to establish the
grid independence of the results are presented first.

Detailed solutions pertaining to the axial variation of

the Nusselt number for several spacing ratios and two
different Prandtl numbers are presented next. Finally,
results illustrating the effect of Prandtl number on the
developing temperature field are presented.

‘(" Based on the results already presented in earlier

)

~ [y .
+Note that for comparing thermal entry solutions, the abscissae
coordinate z' (= z/(DHRePr)) has been used instead of z*.

. e
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sections of this Chapter, the basic grid of 1l1lxll subelement
nodes and POWER = 1.4 was chosen for all computations in
this study. Grid checks were limited to an exploration

of the effects of varioué parameters used in the automatﬂc

step size sgelection algorithm. The results of these

1

computations are presented in Figs. 5.24(a) and (b) for (s/d)

[I
= 1.5 and 1.05, respectively. These res&its show that for
values of z* > 10_3, the solutions obtained with the basic
grid can be considered to be grid independent, for all

practical purposes.

Axial variations of the local Nusselt number, Nuz (:),
14

for eight different values of spacing ratios, in the range
1.05 < (s/d) £ 2.0, and two values of Prandtl numbers, Pr =
0.72 and 3, are shown in Figs. 6.25 and 6.26. The trends
displayed by these curves are qualitatively similar to those
displayed by tﬁe corresponding results for the (:) condition.
Therefore, the discussion presented in the last subsection
applies here too.

The effects of Prandtl number on the axial variation

of Num,<:> for spacing ratios of 1.05, 1.5 and 2 are displayed
in Figs. 6.27 to 6.29, respectively. Again, the results

for Pr ~ 0 pertain to the so-called slug flow condition,

and the results for Pr - « apply to situations where the flow

is hydrodynamically fully—developeq and thermally developing.

The discussion prefented in the last subsection in the context
of the (:) condition is qualitatively applicable to these

results too.

Tt e Al
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CHAPTER VII

CONCLUSION

In the preceding éhapters, a control-volume finite—-
element method for three-dimensional parabolic duét flows
has been formulated, testea and applied to longitudinal
laminar flow and heat transfer in an infinite array of
circular cgoss—section rods arranged in an equilateral
tria/gular pattern. In this chapter, first, the main features
of the proposed method and the principal achievements oflthis
thesis are briefly reviewed and commented upon; then,
suggestions for possible improvements and extensions of

this work are presented.

7.1 REVIEW OF THE THESIS

The method proposed in this thesis was formulated
by merging and extending several keay ideas of the finite-
difference method of Patankar and Spalding [6] for three-
dimensional parabolic flows and the control-volume finite-
element method of Baliga and Patankar [2] for two-dimensional
elliptic flows. The following steps are involved in the
formulation of the proposed method: the calculation domain
is first divided into prism-shaped macroelements and sub-
elements of triangular cross-section; then, each node is

associated with prism—-shaped control volumes of polygonal

cross-section; integral conservation equations are then,

b e baw o drm
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£
written for each of the control volumes; following that,

appropriate element interpolation functions are prescribed
for each of the dependent variables; using these interpolation
functions, algebraic approximations to the integral
conserﬁation equations are derived and solved iteratively.
The control-volume finite-element method employed
here allows.;he discretization of straight ducts with v
regular- or irregular—shaﬁed cross—sections. A semi-
automatic discretization scheme is used to generate the
cross-sectional domain discretizations. This scheme leads
to considerable ease in the assembly of discretization
equations and enables efficient use of available computer
étorage. It also allows the use of a line-by-line iterative
procedure based on the Tri-Diagonal-Matrix-Algorithm [4]
for the solution of the discretization equations at each
axial step. However, it can handle only singly-connected
domains. Thus, the present computer implementation of the
proposed method is not suitable for the solution of duct
flow problems involving complex multiply-connected domains.
In the derivation of the discretization equations,
downstream values of the dependent variables are assumed to
prevail over the axial step. This formulation, which is
analogous to the fully-implicit formulation employed in the
numerical solution of parabolic problems [4], is used for
avoiding stability-related restrictions on the axial step

sizes. 1In the cross—-sectional planes, all the dependent

5 et
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variables, except pressure, are interpolated in each sub-
element by functions which are exponential in the direction
of an element-averaged cross—-flow wvelocity vector and ]
linear in the direction normal to it; the pressureuis
interpolated linearly in each macroelement. This inter-
polation practice éllows the proposed method to solve problems
involving significant cross-stream flows, without incurring
(i), the stability difficulties that could plague standard
finite-element methods based on the Galerkin formulation,
and (ii) the false-diffusion problems that commonly afflict
upwind-type finite-difference and finite-element methods [1,4].
The proposed method uses a step-by-step marching
integration scheme to advancé the solution from the given
conditidns at the inlet of the duct to the downstream outlet
cross-section. At each axial step, the SIMPLER calculation
procedure of Patankar [4] is used to handle the velociYy—
pressure coupling which exists between the continuity and
cross-stream momentum equations. Another velocity-pressure
coupling which exists/between the overall mass continuity -
and the streamwise momentum eéuat&ons is handled by é new
scheme akig to SIMPLER. These iterative solution procedures
have worked well in all problems tested in this thesis.
Another key feature of the proposed method is an
automatic step-size selection algorithm. This algorithm

provides considerable ease and efficiency in the computations

by automatically adjusting the axial step size in response
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to the prevailing axial gradients of the dependent variables:

in portions of the duct where steep axial gradients are

encountered, very small step sizes are used; and relatively

large step sizes are used in regions where mild gradients
are encountered. ,

The proposed method and its computer implefentation
have been successfully app}ied to many two~- and three-
dimensional test problems. The results of several test
problems, including laminar flow and heat transfer in ducts
of square cross-section, were presented in Chapter V. These
results compare very well with corresponding analytical,
numerical and experimental results in the published
literature, and they serve to establish the validity and
capabilities of the proposed method. \

The ‘present solution method has been adapted and
applied to laminar incompressible fluid flow and heat transfer
in an infinite equilateral triangular array of circular
cross-section rods. Several pitch-to-diameter ratios ranging
frgp‘l.OS to 2.0 were investigated. The thermal boundary
conditions considered were: (1) constant wall temperature

both peripherally and axially C); and (2) constant axial

' |
and peripheral wall heat flux‘(:). Three categories of

this problem were extensively studied: (1) fully-developed
flow and heat transfer; (2) hydrodynamically fully-developed
and thermally developing flow; and (3) simultaneously

developing flow and heat transfer. Numerous preliminary




184

computations were done to ensure that the final resulté
would be grid-independent, for all practical purposes. D
Results of the fully-developed fluid flow problem and the
thermally fully-developed problem pertaining to the C)
boundary condition were compared with the corresponding
analytical results presented in {7]; the agreement between
these results' was found to be very good. The results of

the fully-developed problem with the (:) thermal boundary
condition and mo;t of the results pertaining to the develop-
ing flow and heat transfer problems are new, in that they
are not available in the published literature. A ‘detailed
discussion of all theéé results was presented in Chapter VI.
In addition to augmenting the currently available repertoire
of published heat transfer data, these results demonstrate
that the proposed method can be successfully applied to
laminar flow and heat transfer in straight ducts of

irreqular-shaped but uniform cross-sections.

7.2 SUGGESTIONS FOR IMPROVEMENTS AND EXTENSIONS OF THIS

WORK H

The work presented in this‘tpesis‘could be improved
and extended in several ways. Some suggestions in this
regard are presented in this section.

The numerical method proposed in this thesis is based
on a primitive-variables formulation. As was described in

earlier chapters, if the velocity components and pressure are
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stored at the samé grid points and interpolated by similar
functions, the resulting discretization equations could
admit physically unrealistic checkerboard-type pressure
fields as solutions., This difficulty is avoided in the
proposed method by using unequal-order pressure-velocity
interpolations: the cross-sectional planes of duct-like
calculation domains are disgretized into six-node triangular
macroelements and three—nodé subelements; the velocity
components are stored at all nodes and interpolated by
special upwind-type functions in each subelement; and the
pressure is stored only at the vertices of thelmacro—
elements and interpolated linearly in each macroelement. &
A commonly-used argument for the mathematical justification
of this unequal-order interpolation practice is that the
momentum equations involve second—-order derivatives of the
velocity components in the wviscous terms and only first-
order derivatives of the pressure. This is a valid
argument in the computati;n of parabolic flows because the
cross-sectional velocity components are usually not too
large; therefore, the convective transport of momentum in
the cross—-sectional planes does not overwhelm the correspond-
ing viscous transport. @

Although the aforementioned unequal-order inter-
polation of pressure and velocity can be mathematically

justified in parabolic-flows, it does have some shortcomings.

For the same number of nodes, six-node triangular macro-
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! '
elements do not allow as accurate a representation of

cross-sections invofving curved boundaries as that provided
by three-node tri;ngular elements. Another difficulty is
that methods using unequal-order interpolations usually
lead to a’'large number of neighbours in the discretizétion

equations for pressure and pressure correction; as a result,

the convergence of iterative procedures for the solution

53
a

of these equations could be rather slow. A related difficulty

isuthat the presence of a large number of coefficients in

the discretization equations complicates the coding and book-

keeping in the corresponding computer implementations. These

difficulties have stimulated renewed interest in equal-order

formulations which avoid checkerboard-type pressure

distributions. Schneider et al. [33] have proposed and

critically examined several equal-order finite-element

formulations for two-dimensional elliptic flows. The

development and incorporation of a suitable egqual-order

formulation in the proposed method is highly desirable -

and recommended. "
The computer program developed in this thesis

incorporates a semi-automatic domain discretization scheme.

This scheme has many advantages, but it only allows the |

discretization of singly-connected duct cross-sections. The

other key 1deas of the proposed method, however, are not in

any way limited to singly-connected domains. Furthermore,

-

the corresponding computer code has been developed so that”
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it can be easily gitted into a patch-by-patch procedure [35]
for domain discretization, equation assembly and solution
which allows the investigation of problems with multiply-
connected domains. The incoréoration of such a patch-by-
patch procedure into the computer implementation of the
‘prop05ed method would enhance its capabilities considerably:

The proposed method has been formulated fo; the
analysis of three-dimensional parabolic duct flows. The
exténsion of its key ideas to partially-parabolic [5] and
fully-elliptic flows would be a worthwhile undertaking.
Such extensions would enable the analysis of flows in curved
ducts, ducts with obstacles, and expanding and contracting

'

ducts. Further research along these lines would greatly
enhance the available tools for the numerical prediction of
practical fluid flow and heat transfer phenomena.

Only laminar fluid flow problems were considered
in this work. This restriction was imposed because the
testing and performance evaluation of new numerical methgds !

is best done by applying them to problems with well-established

EE PRI

mathematical models. Nevertheless, the proposed control-

PN

volume finite—element method :does not have any intrinsic
limitations which would prevent the incorporation of
currently available mathematical models for turbulent flows

and two-phase flows in its formulation. The demonstration

ATl eI 4. i 4 PR e

of this capability is suggested as an extension of this work.

The proposed method has been successfully applied to
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several test problems and to the problem of longitﬁdinal
laminar flow and heat transfer in a rod-bundle. The results
are encouraging enough to warrant the application of the
method to other practical fluid flow problems, including,
as was suggested in the previous paragraph, turbulent and
two-phase flows. Experimental verification of the results
of selected test problem; is necessary to further e§tablish
the validity and capabilities of the proposed methoé. The
possibilities seem to be limited only by the imagination

and ingenuity of the researcher.
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Fig. 2.1: Examples of three-dimensional parabolic flows in straight ducts of
irreqgular-shaped cross-section.
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(a) |

TTre—
¢

Three-dimensional parabolic flow in a straight
duct of irregular-shaped cross-—section; .

(a) calculation domain; (b) discretization of
the duct into slabs. .
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Fig. 3.2: Steps in the discretization of the duct cross
s ion: generation of (a) six-node triangular
macroelements; (b) three—node triangular
subelements; (c) subelement control volumes;
and (d) macroelement control volumes.




Fig. 3.3:

(a)

downstream
plane

upstream
plane

(b)

(c)

Local node numbering and labelling schemes for
(a) a typical prism macroelement and its four
associated subelements; (b) a typical subelement
control volume surrounding node 1; (c) a typical
macroelement control volume surrounding node 1.
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\ ul,dl = area laoc in the

' upstream and down-—
stream planes,
respectively

d5 = area 5cob in the U

Ug
and D planes

u6’d6 = area 6boa in the U
and D planes
a = area (oa)xAz
; b = area (ob)xAz
¢ = area (oc)xAz

downstream

= area 1506 in the
U and D planes

= area 3504 in the
U and D planes

= area 2604 in the
U and D planes

area (06)xAz
area (04)xAz
area (05)xAz

(b)

fig. 3.4: Details of the control volume faces and related

nomenclature: (a) a typical subelement control
volume; (b) a typical macroelement control
volume.
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Fig., 3.5: Three different z-direction imrterpolation
functions. .

Fig. 3.6: A typical triangular subelement, the global
. (x,y) and local (X,Y) coordinate systems and
related nomenclature.




Fig. 3.7:

Fig. 3.8:

la = area (la) x Az

/

A boundary node with its three associated sub-
elements.

Momentum control volumes associated with the
mid-sides nodes of an internal macroelement.
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Fig. 3.9:

An internal pressure node i and its cluster
neighbour nodes.

of

202

e - A ar

s
s L

G e s




Fig. 4.

———— - - - - -

g Y Qe
W 7

Nu (ISTEP-1)

LZ(ISTEP+1)
z (ISTEP)
z (ISTEP-1)
(a)

4,2
on: (a)

Z

(Aw

/D7) (b)

A'g‘

‘203

Nu=1l.05 Nufd

Thermally ! fThermally

Developing Reg. F.D. Region

z
(b)

(a)” hydrodynamically
(b) thermally

(ANu) actual

|
l
= Nu
. |
}
A 1
max ]
]
I
1 -
- ]
w |
_ ; Nugq
Developing | F.D.
~— . Region ! Region
. ! -
z
(a)

Fig. 4.l1: Flow and heat transfer in ducts: (
developing and fully-developed regions;
developing and fully-developed regions.
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(c)

Mapping of a unit square onto irregular-shaped domains,

Fig. 4,3:
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Fig. 4.4: (a) Typical macroelements of types 1 and 2, and associated (IPi,J‘P)-
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type 2 /
type 1 type 1
IP+1,JP (I,3) (I+1,J)  (I+2,3)
(a) (b) :

node addressing scheme; (b) corresponding subelements of types

1 and 2 and (I,J) node addressing scheme.
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Fig. 4.6: Node addressing scheme for (a) a typical prism subelement of type-1; ~
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5.1: Natural convection in a rectangular enclosure:

(a) problem schematic; (b) domain discretization.
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(b)

5.2:

Fig.

02 0.4 0.6 o8 10

Natural convection in a rectangular enclosure~
temperature proflles for (a) Ra = 2.49x103

(b) Ra = 1.67x104, and (c) Ra = 1.36x105. "Solid
lines represent results produced by the CVFEM,
dashed lines represent numerical results from

Jones [39], and the symbols represent experimental
results from Duxbury [39].
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- Fig. 5.3:

(b) (c)

Natural convection in a rectangular enclosure:
isotherm contours for (a) Ra = 2.49x103

(b) Ra = 1.67x104, and (c) Ra = 1.36x105.

The isotherm level$ start with 6; = 0.1 and
increase to 6g = 0.9 in equal steps of 0.1.
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(a)

Fig. 5.4:

(b) (c)

Natural convection in a rectangular enclosure:
streamline plots for (aJ Ra = 2.49x103 and

Y =0, 1.08, 2.17, 3.26, 4.35, 5.43, 6.50, 7.22,
7.5; (b) Ra = 1.67x104 and ¥ = 0, 4.95, 9.89,
14.83, 19.78, 24.7, 28.9, 29.4, 29.7; (c)

Ra = 1.36%x105 and y = 0, 9.86, 19.71, 29.57, 39.42,
44.35, 46.67, 48.06, 48.44.
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Fig. 5.6: Natural convection in a trapezoidal enclosure:
variation of average Nusselt number with

Rayleigh number.
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(d)

Fig. 5.7: Natural convection in a trapezoidal enclosure: isotherm contours
for (a) Ra = 103; (b) Ra = 104; (c) Ra = 105; (d) Ra = 106.
The isotherm levels start with 67 = 0.1 and increase to Bg = 0.9
in equal steps of 0.1.
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Fig. 5.8: Natural convection in a trapezoidal enclosure: streamline plots for
(a) Ra = 103 and ¢y = 0, -0.04, -0.81, -0.12, -0.16, -0.20, ~0.24,
-0.28, -0.32; (b) Ra = 104 and ¢ = 0, -0.35, -0.69, -1.04, -1.39,
-1.73, -2.08, -2.44, -2.77; (c) Ra = 105 and y = 0, -2.22, -3.33,
-4.44, -5.55, -6.66, -7.77, -8.22, -8.44, -8.66, -8.88; (d) Ra = 106
and y = 0, -2.39, -7.17, -9.56, -11.94, -13.89, -15.00, -15.89,
-16.22, -16.33, -16.67.
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eCALCULATE f.Re USING
EQN. (2.31)
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STORE W/W
ON DISK FILE

END
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F.D.
VELOCITY
FIELD

Fig. 5.9: Flowchart outlining the procedure used to solve
- the fully-developed flow problem
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(a)
« A
L1 = 11
| Ml = 11
A
""POWER = 1.4
(b)

Laminar flow and heat transfer.in a duct of
square cross-section: (a) problem geometry with
the shaded area indicating a typical cross-—
section of the calculation domain; (b) discret-
ization of the calculation domain cross-—-section.
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Pig. 5.11: Sqguare duct problem:
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Flowchart outlining the iterative procedure used

to solve the problem of the
flow in a square duct with boundary

condition:
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"RELATED TOPOLOGICAL
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FIELD

BOUNDARY

Ry

INITIALIZE
o VARIABLES

y

SOLVE EQN. (2.69)
TO OBTAIN ¥

CONDITIONS

( » the proble

CALCULATE Nu@
73),

USING EQN. (2.
AND DO ALIL OTHER
AUXILIARY COMPUTATIONS

END

Fig. 5.13: Flowchart outlining the procedure used to solve"

of thermally developed flow in a square

duct with boundary condition.
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CONDITIONS

F.D.
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FIELD
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INITIALIZE
»- VARIABLES

- |

*CHOOSE SUITABLE ’
AXIAL STEP SIZE Az;

+SET z = z+0z

)

» T WITH BOUNDARY

CONDITION

BOUNDARY

SOLVE EQN, (2.34) FOR
co»@mlon

J

. [First 3 steps:
Otherwise, 4z’

CALCULATE Nuz @ AND Num @ ’
1 ’
USING EQNS. (2.44) AND (2.4 ’
AND DO ALL OTHER AUXILIARY
COMPUTATIONS

T WITH BOUNDARY

CONDITION

Pa

Fig. 5.14:

SOLVE EQN@(Z.JM FOR

CONDITION

[ |

CALCULATE Nuz @ and Num @,
' ’
USING EQNS. (2.65) AND (2.6 ’
AND DO ALL OTHER AUXILIARY
COMPUTATIONS

FULLY-DEVELOPED*
?

8z'=7x10"

adjusted
by Automatic Step Size
Selector

*This condition .
is true when

Nuz’@<1.05 Nu@

and

Nuz, @<1.05 Nu@

7

e

Flowchart outlining the procedure used to solve
the problem of hydrodynamically developed and
thermally developing flow in a square duct.
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Fig. 5.15:
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fully
developed

Sqguare duct problem: developing temperature
profile for the @ condition.
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Fig. 5.17: Laminar fu ly-developed flow in a square duct
with the condition:
number variation with axial distance.
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Fig. 5.18: Laminar fully-developed flow in a square duet
with the condition: local Nusselt number
variation with axial distance for various grid
and step sizes,
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with the condition: local and mean Nusselt
number variation with axial distance.
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Fig. 5.20: Flowchart outlining the procedure used to solve
the problem of simultaneously developing flow

and heat transfer in a square duct.
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Fig. 5.22: Laminar developing flow in a square duct:
variation of mean pressure with axial distance.
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Fig. 5.23: Laminar developing flow in a square duct:
variation of centerline axial velocity with

axial distance.
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Laminar developing flow in a square duct:
axial velocity distributions along (a) a symmetry
line; and (b) a diagonal.
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Fig. 5.26: Simultaneously developing flow arid heat transfer
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6.1:

Longitudinal flow between circular cross-
section rods arranged in an equilateral
triangular array: problem schematic.
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Fig. 6.3: Rod-bundle problem: discretization of the
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Fig. 6.4: Fully-developed flow over a rod-bundle:
variation of friction factor-Reynolds number
product with pitch-to-diameter ratio.

Q

&

e

M 4




240

Nu

1 1.2 1.4 1.6 1.8 2
s/d

Fig. 6.5: Fully-developed flow and heat transfer over a
’ rod-bundle: variation of-average Nusselt number
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Thermally-developing flow over a rod-bundle
with the condition: local Nusselt number
variation with axial distance, for two grid
and step sizes.
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Fig. 6.7: Thermally-developing flow over a rod-bundle
with the condition: 1local Nusselt number

variation with axial distance, for twelve
pitch-to-diameter ratios.
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Del Giudice et al. [24]
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Fig. 6.13: Developing flow over a rod-bundle: variation
of maximum axial velocity with axial distance.
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Fig. 6.14: Dpeveloping flow over a rod-bundle: variation of mean pressure with

axial distance for eight pitch-to-diameter ratios.
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Fig. 6.15: Developing flow ovefza rod-bundle: variation of maximum axial

velocity with axial distance for eight pitch-to-diameter ratios.
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Fig. 6.17(a): Simultaneously developing flow and heat
transfer over a rod-bundle with the @
condition: grid check for s/d = 1.5.
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Fig. 6.17(b): Simultaneously de\}eloping flow and heat

transfer over a rod-bundle with the

condition: grid check for s/d = 1.05.
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Simultaneously developing flow and heat transfer
over a rod-bundle with the @ condition:
variation of mean Nusselt number with axial
distance for four Prandtl numbers and s/d = 1.05.
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variation of mean Nusselt n er with axial
distance for four Prandtl numbers and s/d = 1.5.
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Fig. 6.23: Simultaneously developing flow and heat transfer
over a rod-bundle with the condition:
variation of mean .Nusselt number with axial
distance for four Prandtl numbers and s/d = 2.0.
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Fig. 6.26: Simultaneously developing flow and heat transfer
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Fig. 6.28: Simultaneously developing flow and heat transfer
over a rod—bundle with the @ condition:
variation of mean Nusselt number with axial
distance for four Prandtl numbers and s/d = 1.15.
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Fig. 6.29: Simultaneously developing flow and heat transfer
over a rod-bundle with the condition:
variation of mean Nusselt number with axial
distance for four Prandtl numbers and s/d = 2.0.
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Tal?le 2.1

Interpretation of ¢, I' and S

.

Equation

number Description ¢ r S
(2.8) Continuity 1 0 0
(2.9) x~-momentum u W - %E
(2.10) y—rriomex)tum v U - %5
(2:11) z-momentum W U - g
z
(2.20) continuity 1 0 0
) 9p*
(2.21) X-momentum u* 1 e
x I9p*
(2.22) y-momentum v 1 T
*
(2.23) z-momentum w 1 - ‘dis—*-
(2.28) z-momentum W 1 1
(2.34) energy T k/cp 0
~
(2.38) energy T* 1/Px 0
W
(2.55) energy S} 1 W A0
(2.62) energy t* l/Px 0
X W
(2.70) enexrgy X 1 -4 =
: w
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Table 5.1

Laminar Natural Convection in a Rectangular Enclosure of Aspect Ratio 5:

Average Nusselt Numbers

S

Rayleigh Nu Nu Hot-face Nu Cold-face Nu Mean Nu
N ber av av av N av av
CVFEM Jones[38,39] Duxbury[39] Duxbury [39] Duxbury[39]
2.49x10° | -1.261 1.25 I S 1.1 . 1.4
- - N
1.67x10% 2.266 2.26 2.3 1.9 2.1
1.36x10° 3.756 3.8 5.0 3.6 4.3

692
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Table 5.2 !

) Laminar Fully-Developed Flow in a Square Duct:
Friction Factc?"r Results for Various Grid Sizes and
/Grid-Line Distributions

%

Subelenent | powWER f.Re (Sh;'lR‘?m Error (%)
11x11 1.0 57.146 56.908 0.42
11x11 1.2 57.093 " 0.33
11x11 1.4 57.092 P 0.32
11x11 1.6 57.107 0.35
11x1l £ 1.8 57.133 0.40
11x11 2.0 57.160 0.44
15x%15 1.0 56.991 0.15
15x15 1.2 56.969 0.11
15x15 1.4 56.976 0.12
15x15 1.6 56.991 _ 0.15
15x15 1.8 57.003 |\ , 0.17
15x15 2.0 57.023 0.20
19x%19 | 1.0 56.890 0.01

) 19x19 1.2 56.901 0.01
19x19 1.4 | 56.912 0.01
19x19 1.6 56.923 0.03
19x19 1.8 56.941 0.06
19x19 2.0 56.952 Y 0.08

' 7




Square Duct Problem:

o

~ Table 5.3

]

Fully—-Developed Nusselt Numbers

for Vvarious Grid Sizes

™ Subelement Grid

POWER Nu @ Nu @
. 11x11 1.4 2.9386 3.0475
Vi
15x15 1.4 2.9578 3.0670
[
19x19 1.4 2.9650 3.0743
Shah and London [7] - 2.976 3.091

—— s




Table 5.4

4

Square Duct Problem: Normalized Minimum and

Maximum Temperature on the Periphery

-

T* \ *
W , max w,min
CVFEM 1.3919 0.7722
Shah [7] 1.39 0.769 °
Error (%) 0.14 0.42
e

——

ey BT
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Table 5.5

Y

R ! ¥

Hydfodynamically Developed and Thermally Developing Flow in a Square Duct:

Discretization Details

Actﬁal Number of Steps Required
for Reaching F-D Situationt

Run Subgiige“t POWER Inzz}al IDEAL
t-4 - .
—
‘giié‘f 11x11 1.4 7%x10”7 25 39 39
B 15x15 1.4 7%x1077 50 66 67
b )
c 19x19 1.4 7x10°7 50 67 : 68

TP.D. situation is regarded as reached when

Nuz < 1.05 Nu

f.d.°

€Le

My



Table 6.1

Rod-Bundle Problem: Full?}-‘Developed Friction Factor and Nusselt Numbér Results

’ Subelement f.Re Nd
s/d Grid POWER f.Re (7] Nu@ Nu® [7@
{
1.05 11x11 1.0 62.659 61.912 2.0045 1.0680 1.06
1.2 62.670 2.0019 1.0684
1.4 62.685 1.9980 1.068
1.6 62.721 / 1.9934 1.0676
1.8 62.755 / 1.9882 1.0668
15x15 1.4 62.286 2.0249 1.0625 |
Y 19x19 1.4 62.104 Y "2.0348 1.0599 *
1.5 6X6:' 1.4 124%72 124v.14 -10.190 11.195 11.22
l 8x8 1.4 124.440 l 10.127 11.215
10%10 1.4 124.322 10.228 11.223
2.0 6x6 1.4 158.366 157.536 14.33 15.25 15.26
l 8x8 1.4 157,962 14.344 15.256 l
10x10 1.4 157.783 14.348 15.263

vLz
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APPENDIX T

ALGEBRAIC EXPRESSIONS FOR THE

- PRESSURE GRADIENT INTEGRALS

» 2t ! (

Consider the following linear interpolation function

p = ax + by + ¢ N , (1.1) /j7

with the nodal conditions:

for the pressure p:

= h
Py ax, + byl + c 1
’ [
p, = ax, + by, +c b (I.2)
Py = axj + by3 + c J

The set of simultaneous linear equations (I.2) can be easily
solved for the interpolation constants a, b and ¢, using - s
the well-known Cramer's rule. Thus, let the determinant

of the system of equations (I.2) be
. DET = X ¥, + Xy¥3 + X3¥y - Y1X, = Y,X3 T ¥YqaXg (I.3)

It follows that

i

R,

2 3 B TN~ 0 cinimar IS Aot ™
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L ,
( a = g5 LY,my3)py + (y3-vylp, + (y)-¥,)p;] (I.4)
— l -' — ’ - 1
b = BET\[(XQ lepl +o (% x3)pz + (%, xl)p3] (I.5)
{
= L - - -
¢ “\PET [(xyy3=%X3y,)Py + (X3¥)=%173)p, + (%1¥,"%X,¥,)P,]
(I.6)

2

Since Eqn. (I.l) is linear in x and y, the pressure gradients
in the x- and y-direction are constant within a macro-

element 123. Hence,

P _ .

5 a | ) (1.7)
ap = °

5 b (I.8)

1o

] :
Let ul denote the contribution of the macroelement 123 to

the subelement control volume surrounding node 1. Then,

f -3®)av = -v a (1.9)
1
<]
{ (- %5) av = -v, b (I.10)
Vv
1

( Let




o

D? = vr

) Dg = Ul

, bg d; Y1

’ ‘ D = v

| Dg = Ul
Dg = Y

Then, using Egns. (I.4): to (X.6), Egns.

be rewritten asﬁfollows:

- %
[ axf av

/ ’

3
(- £8) av
j"l 3

(Y3_Y2)

DET

(yl—y3)

DET

(Yz-yl)

DET

(xy-x%3)

DET

(x37x)
DET

(xl-xz)

DET

u u
P1Py * DoPy

v

v
DiPy * DyPy

278

(r.11)

(r.12)

(I.13)

(I.14)

(I.15)

(I.16)

and (I.10) can

(I.17)

(I.18)

a
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" f
APPENDIX ITI J

o

ALGEBRAIC EXPRESSIONS FOR fhE CONVECTION-DIFFUSION TRANSPORT

OF ¢ ACROSS LATERAL CONTROL-VOLUME SURFACES

The combined convection and diffusion flux of ¢
across the lateral control surface a in Fig. 3.4(a) can

be written as follows [2]:

Y Az
T r . _ _a D D D
{IJ.n ds = 3 [(JX)O + 4(Jx)r + (Jx)a]
X Az
a D D D
+ — [(JY)O + 4(JY)r + (JY)a] (}I.l)
where ?
- _r 3¢
Iy pUD I X (IT.2)
\ *
= - 2%
Jy PV r 3y (Ir.3)
The element interpolation function for ¢ is:
$ = AL + BY + C . (II.4)
with
r X_Xma:n:
E = o0 {exp[PeA(i———:i—f~)]~l} (IT.5)
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{ The interpolation constants A, B and C can be expressed in

terms of the nodal values of ¢ as follows:

v

-~ 1 _ - _
A o= pEm LYY )y + (Y=Y )oc, + (Y;-Yc) o] (II.6/
’ - 1 - _ -
1 ' e
C = per [(5s¥e786¥5) 0y * (8¥y7E %) 05
where .
DET = & ¥ + E5¥p + £g¥y = Yg65 = Ygbg = Yg&y
o
! ‘Substitution of Eqn. (II.4) into Egns. (II.2) and (II.3)
yields:
JX = p(U—UaV)Ag + pU(BY+C) - TA (I1.9)
JY = pVAE + pV(BY+C) - I'B (IT.10)

Substituting the expressions for A, B and C, Egns.
(I1.6) to (IX.8), into Egns. (II.9) and (II.10), and re-

( arranging the resulting expressions gives:

/>
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= [ 0 ‘
Iy = { pgp [£10) + fgo5 + el )
; r. )
’! U pgp [ Yg)ey + (Y=Y ) + (Y=Y )] 3 (II.11)
Iy = { pg7 (9198 + 9505 + Ggo¢)

r

where
£ = (U-U.) (Yg=Y()E + U(Eg=E5)Y + U(EgY £ YL)
»’\‘.\
5 = (U-U_ ) (Y=Y )E + U(E =8 )Y + U(EY =5 Y,)
fo = (U-U_ ) (Y=Y )E + U(Eg=E))Y + U(E Y =E.Y)
" (II.13)
9] = V(¥g=Y)E + VIEg=Ec)Y + VI(EgYc—E Y]
_ _ I
Let
a  _ 1’ .
£r 0= 7 U (£ + 4(E) _ + (£ };
(1T.14)

\Q
=]

]
N} =
1]
}-.l
-

[8,]
o))

{ (g + 4(g) . + (g }; 4

/

v m— e —_—
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* Then, Egqns. (II.1l1) and (II.12) can be substituted into

Egn. (ITI.l) to obtain the following eguation:

x > - _ a a a
faJ.n ds = (A &1 + Ag ¢5 + A bg) (I1.15)
' o
where
a _ pAz A_yv 4@ LAz _ - _
Ay = pEr (YaE17%.97) * pprpi¥a (Y ¥s) - X (E5-E¢) )

v
A

Az

a _ phz a_ a
A (Y £5-X,95) + pEp

5 ~ DET '"a {y (Y;=Yg) - X (5.-E))} (II.16)

T'Az
DET

a _ phz a_ a
A (Yaf6 Xag6) +

6 ~ DET (Y, (vg-vy) = X, (5850}

Similarly, the convection-diffusion flux of ¢ across
the lateral®surface ¢ in Fig. 3.4 (a), can be approximated by:

9

! Y Az

=z > - o] D D D
[CJ.n ds = —— [T 0 + 4300 + (I ]
' X Az
C D D D
- % [(JY)O + 4(JY)t + (JY)C] (T1.17)
Let
£ =L (£.) +4(f ;
i 8 i'e ( i)t + (fi)o }i

(IT1.18)

Q
It
N
=

. (gi)c + fl(gi)t + (qi)O }; i=1,5,6




Then Eqn.
where

d

Ay

/ C

Ag

ac

e —T ———

S —.—

(IT.17)

piz
DET

pAz
DET

pAz
DET

=23

can be rewritten as follows:

ds

= (Al ¢ + Ag ¢ + A

(Yc l'-X gl) +

(Y

(Y

C
Xch) +

c
Xch) +

I'Az

DET{Y (Y -Y¢ )
TAz
BETL e (Y1-Y¢)
I'Az
DET{Y (Yg-¥,)

-

¢¢)

et 1)

- X (Ey=E5))
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(IZ.19)

(IT.20)
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APPENDIX IIIXI

ALGEBRAIC EXPRESSIONS FOR THE MACROELEMENT CONTRIBUTION

TO THE INTEGRAL MASS CONSERVATION EQUATION

)

\
Consider the macroelements and control volume

surrounding ncde 1 in Fig. 3.3(c). The contribution of
macroelement 123 to the integral mass conservation equation

associated with node 1 can be written as follows:

PCONTL = [[ pov.nds + | pv.nds + [ o v.nds + | p v.n ds]
u C .

1 " A

(II1I.1)

.Using the interpolation functions for velocity introduced
in Chapter IIT, the different integral terms in the above

equation can be approximated as-follows:

A

[ pv.nds = - —%?3 [pwl]U (III.2)
u

1

b A

[ pv.n ds = %53 (pw, ] (ITI.3)
)

1
v.n ~ - pPAZ -

{ pv.n ds = T [(yg=yg) (u,+us+dug)

(xs—xo)(v4+v5+4v6)] (ITI.4)




With reference to Fig. 3.8, the pseudovelocity represent-

5
&
2

plhz

—g~[(y5‘yo)(u4+4u5+u6)

- (xs-xo)(v4+4v5+v6)]

ation of the discretization equations for the velocity

components Uyr Ugs Ugy v4,‘v5\and Ve have

forms:
u, = 1,
ug = Ug
Yg T Yg
and
vy =Yy
Vg = Vg
Ve = Vg

Let

1P1

u

(A1Py

1P1

APy

(A

1P1

v
(A1py

u
RIS

u
+ A2p2

u

+ A2p2

v

+ szz

+ Ay

v
* APy

2P2

A3P3

3P3

A3Py

3P3
A

3P3

3P3

the following

ia ’ u
Ao1Po1) /24

u
>‘0213,02)/‘315

u
A03P03) /26

v v
>\olpol)/atl
v

A02po2)/a5

v v
A03po3)/a6
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(TII.5)

2

(II1.6)"

(ITT.7)

(I11.8)

(IIT.9)

(ITXI.10)

(ITT.11)




and

BO

N

w o

A A
_ Az - i
ay
. AY
- 1
(xg=%5) (— +
a4
C A
= pbz - i
a
et
}\V
i
(x5 xo)( = +
ay
and 3; and
* u
= ebzp oy lot,
6 -6 Yo u
ag
u
A
= pAz - _o2
c [(y6 yo)( u)
ag
: : 44
= paz - o3
€ [(y6 yo)( ” )
ag
P u
A
= DpAz - _ol
a4

4x§ A?
et
u

ag ag

}\V

(xs—xo)(—%%)]
.94

)\V

o2
(XG-XO)(—jr)]
ag

v
4l03

(x6-xo)( v

)1

286

(III.12)

n

(IIT.13)

(ITT.14)

(III.15)

(III.16)

(IIT.17)

e eem
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/
i

Y 4, Vo 4
BO, = PEllysyg) (—o2) - (xgmxg) (21 .. (11.18)

a 5 | ‘K

AU AV .
C _ ° pAz N o3, _ _ o3
BO4 = e Llyg yo) (—.u ) (xg xo) (= V)] (IT1.19)
a a
.o 6 - 6.
.g;f"

Further, let

‘ A, EAZ ? A ~ ~ CeA A A ’
G = ; [(y6 yo)(u4+u5+4u6) (x6 xo)(v4+v5+4v6)J (III.?Q)
and \
N
' C - Az - A ~ A - X - o, A A
G = aEE—[(ys yo)(u4+4u5+u6) + (x5 xo)(v4+4v5fv6)] (II1.21)
|
Then Eqis. (III1.6) to (III.11) can be substituted into
Eqns.**(ITI.4) and (IIT.5), and the resultant expression
can be rearranged to yield: ,
- > A A A : :
fA pv.nds = - [Bjp; +B,p, + B3p3 ) | .
' A AT A
+ BOJp_, + BOhp, + BOSp . + G (III.22)
f . . e
and '
° C | C~ C !
5> > 1
fc p v.n ds = [l?lpl + B2P2 + B3P3 2
5
' ~ ¢ c C c, . f
* + BOJp_q + BO,p o + "Bo3po3 +G7] 7 (IIT.23)

4
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Sdmming up the different integral terms given in
Egns. '(IIX.2), (III.3), (III.22) and (IXI.23), t&s total
contribution of macroelement 123 .to the integral mass

conservation equation associated with node 1 can be

compactly expressed as:

1 1 1 /1 '
F— i
PCONTL ' = MPp; + MP,p, + MP3p, ;
+upl p . + Ml p .+ mpt ia“ + MPCO;‘Il (IIT.24)
“o0l%ol 02 02 0303 ( -
|
where
¢
f -
1 . _ AL C
. MP] = B] + B]
)
1o )
1 A c
MP; = -Bj + Bj
1 _ - oA C- : ,_
w MP_, = '-BO] + BO; (I1I.25)
1 A c ;
MPozl = -BO, + BO,
i A C
; MP_, = -BO; + BO,
/
' ¥ pA
meconl =" -6" + o+ —123(y ) ’

Ve B e e

N

e T




-
j21]
.

“

The total contributions of macroelement 123 to the

«

integral mass conservation eguations associated with nodes 2
]

and 3 can be derived in a similar manner.

£

[
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APPENDIX IV

SHORT DESCRIPTION AND ]:ISTING OF THE COMPUTER PROGRAM

The computer program deveioped in this work has
been given the name CVFEM3DP. In its present form, it
can solve three-dimensional parabolic flow and heat transfer
either inna rectangular duct or over an infinite triangular
rod-bundle array; details of these problems can be found
in Chapters V and VI.

A short description of CVFEM3DP and the main

functions of its various subroutines are given below:

MAIN Controls the program operations. It incorporates kot

a dump/restart facility whereby the user may save
the results of intermediate iterations, or steps,
on external disk files. The impending operations can

then be resumed later by retrieving the saved data.

USER This subroutine allows the user to specify the

details of the problem of interest. It is composed

of the following entry points:

GRID Generates the duct cross-sectional grid and

all other topological information.

START Specifies all control parameters and the
initial conditions.

OUTPUT Prints out the intermediate and final results.




SUPPLY

COEFF

PAPC

SOLVE

PSOLVE

e e e et e - v e

DENSE

GAMSOR

BOUND

BTSVEL

NUCALC

RESET

Set of
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Specifies the fluid density in the
calculation domain.

Specifies the diffusion coefficient I' and
the source term coefficients SC and SP'

Specifies the boundary conditions for all
dependent wvariables.

Specifies the boundary conditions for the
pseudovelocities i, ¢ and %.

Computes Nuz,@ and Nuz,@ .

Allows the user to reset the values of some
control parameters when using the restart
option.

utility algorithms.

General subroutine which calculates the subelement

contributions and assembles them to form the sets

of discretization equations for u, v, w, T and ¢.

/

General subroutine which calculates the macroelement

contributions and assembles them tovform the sets

of discretization egquations for the pressure p and

the pressure correction p'.

General subroutine which solves the sets of

discretization eguations for u, v, w, T and ¢.

General subroutine which solves the sets of

discretization equations for p and p'.




292

{ TEST Allows the printing of coefficients and intermediate

results for testing purposes.

A complete listing of CVFEM3DP is given in the
following pages. The program is written in the FORTRAN IV
language and designed to be compiled by a FORTRAN-H extended

compiler.
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%
//ME68THRD JOB (MEG68,000,040, 0200 0000,30,,1),"TRI PHAM'

// EXEC FORTZXCG .
//FORT.SYSIN DD *

v e - - — - — e e e e e e o e R T R W map G e e MM T e e WmE T e Am S S e W e e A A A e m— . ——

COONTROL-VOL UME
FINITE-ELEMENT METHOD
7 FOR
THREE-DJANMENSIONAL
PARABO \\1 C FLOWS
AN D ) T

HEAT TRANS FER

(CVFEM3DP) COMPLETED AT MCGILL UNIVERSITY 1983

eEeloNoNoNoRoNoNeNoNeNeNoNeXe ke koo ke ke Xe X o)

hkkKkhkhkhkhkhhkhkhkkkkhhkhkhkkkk

PROGRAM MAIN (CONTROL)
ARAAAXRAKIEIXARAAAAAAKA A KA AKX

OO0O000000O00000000000a000NnN

IMPLICIT REAL*8(A-H,0-2)
LOGICAL LSOLVE,LCPRIN,LPRINT, LPPRIN

COMMON ASTORE(3528),X(21,21),¥(21,21),F(21,21,7),Fu(21,21,7),
1 FP(11,11,2),RHO(21,21),GAM(21,21),
2 sc(21,21),sp(21,21),ACU(21,21),UHAT(21,21),
3 pDiT1(10,10,2),D2T1(10,10,2),D3T1(10,10,2),
4 piT2(10,10,2),D02T2(10,10,2),D3T2(10,10,2)
COMMON /THRD/Z DZ ,DPDZ, DPDZC PBAR, SPMF WFD,CNUFD (4) LSTEP ISTEP,
1 ITMAX,ISTART, IPROB
COMMON /PARM/RELAX(7),PRELAX
COMMON /MONIT/LSOLVE(7) ,LCPRIN,LPRINT(7),LPPRIN
. COMMON /LABEL/TITLE(7),HDG(9)
COMMON /INDX/NSWP(7),NPSWP(2),L1,L2,L3,M1,M2,M3, '
1 LP1,LP2,LP3,MPi,MP2,MP3,NFS,NFSMAX, NPS,NUME,IMONIT,LAST,
2 LMID,MMID,LPMID,MPMID,IPREF,JPREF,ITER,IC(3),JC(3),IDEAL,
3 IR,IRP1,IRM1,JR,JRP1,JRMI,IPR,IPRP!,IPRP2,IPRM1,IPRM2,JPR, JPRP1,
4 JPRP2,JPRM1,JPRM2,NITMAX(7),NPITMX(2)
COMMON /CONV/TOL(7) ,PTOL (2),DWDES,FCK(3,2),DPDZCK,CHGTOL, CHGCK
COMMON /RODBUN/S,RAD,SDR,WBAR, FAREA , PERIM, PHY,DH,DHDR, XL, YL, TANPS1I
1 ,PSI,FBU4,FBU6,FB,FWAV, RHOA,CP1,DK1,DKDCP1,CP2, DK2,DKDCP2,
2 RPOW, XPOW,YPOW,DMUA,REY ,QW, TAUW(21),TW,TI
COMMON /RESULT/TABLE(200,7)

DIMENSION W(21,21),WCK(3)
DIMENSION P(11,11),PC(11,11
EQUIVALENCE (F(1,1,3),Ww(1))
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C RESTART FACILITY ISTART = | —-----> START FROM STEP 1, ITER 1
C 2 -—-=---> START FROM STEP=ISTEP
C ' ITER=I TERH1
C 3 ———-- > START FROM STEP=ISTEP+1,
o ITER 1

READ(5,5) ISTART

GOTO (20,22,22),1START
o
C--- READ PREVIOUS ANALYSES DATA ON DISK (CHANNEL 9)
C

22 READ(9) X,Y,F,FU,FP,DIT1,D2T1,D3T1,D1T2,D2T2,D3T2,RELAX ,PRELAX,
' 2,D2,DPDZ,PBAR,SPMF ,XL,YL,TITLE,TOL, PTOL, DWDES, CHGTOL , PR,ODPR,
2 FBU4,FBU6,ZNM2,ZNM1 ,WNM2 , WNM!, RHOA,CP1,DK1 ,DKDCP1,DMUA ,REY, OW,
3 CP2,DK2 ,DKDCP2,5,RAD,SDR , FAREA , PERIM, PHY, DH ,DHDR , HDG, WFD, CNUFD,
4 DNUDES, TW,TI, TABLE, PSI,TANPSI, IPROB, NSWP,NPSWP,L1,L2,L3 ,M1 M2, ,M3,
5 LP1,LP2,LP3,MP1,MP2,MP3, NFSMAX , IMONIT,LAST, LMID , MMID,
6 LPMID,MPMID,ITER,IPREF,JPREF,ISTEP,ITMAX,LSTEP,IC,JC,IDEAL,
7 IR,IRP1,IRM!,JR,JRP1,JRM1,IPR, IPRP1, IPRP2, IPRMI , IPRM2, JPR,
8 JPRP1,JPRP2,JPRM!, JPRM2, NITMAX , NPITMX NFSMT,
9 LSOLVE, LCPRIN,LPRINT,LPPRIN

C
C--~- RESET CONTROL PARAMETERS
o N
CALL RESET
CALL PRTINP ’
IF (ISTART.EQ.3) GOTO 9
GOTO 10
C .
C--~- NEW START (ISTEP=1;ITER=1)
C - B
20 CALL DEFVAL
CALL GRID
CALL START
CALL PRTINP
C ______________________________________________________________________
C
C-—-- START NEW STEP
o
9 ISTEP=ISTEP+1
C
C--- SOLVE FOR THE FLOW FIELD FIRST
C
NF SMT=NF SMAX
NF SMAX=3
o
C--- REDUCE P AND PC BY THEIR AVERAGE VALUE
C
PAV=0.DO
PCAV=0.DO

DO 18 JpP=1,MP1
DO 18 IP=1,LP1
PAV=PAV+P (IP,JP)

18 PCAV=PCAV+PC(IP,JP)
PAV=PAV/DFLOAT (LP1*MP1)
PCAV=PCAV/DFLOAT(LP1*MP1)
DO 70 JP=1,MP1
DO 170 IP=1,LP1
P(IP,JP)=P(IP,JP)-PAV
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PC(IP,JP)=PC(IP,JP)-PCAV

DO 8 NF=1,NFSMT
DO 8 J=1,Mi

DC 8 I=1,LI ) .
FU(I,J,NF)=F(I,J,NF)

DZ STEP SELECTOR

IF (ISTEP.GT.3) CALL DISEL
Z=2+DZ )
WRITE(6, 35) ISTEP,Z,DZ
TABLE(ISTEP, 1)=2
ITER=0 \
CONTINUE (
ITER=ITER+! )
WRITE(6, 30) ITER A

OVERALL LOOP CONVERGENCE MONITOR

DO 12 NF=1,2
DO 12 N=1,3

FCR(N,NF )=F(IC(N),JC(N),NF)
DO 16 N=1,3
WCK(N)=F (IC(N) ,JC(N) ,3)
DPDZCK=DPDZ

FORM DISCRETI ZATION EQUATIONS AND SOLVE

CALL COEFF

CONVERGENCE CHECK (BASED ON THE MAXIMUM
CHANGE IN U, V, W AND DP/D2Z)

1F (ISTEP.EQ.1.AND,ITER.EQ.1) GOTO 50

CHGCK=0.DO

DO 700 NF=1,2

DO 700 N=1,2

CHGCK=DMAX1(CHGCK,DABS((F{IC(N),JC(N) ,NF)-FCK(N,NF))/FCK(N,NF)))
DO 710 N=1,3 :
CHGCK=DMAX1(CHGCK,DABS((F(IC(N),JC(N), 3)-WCK(N))/WCK(N) ))
CHGCK=DMAZX!{(CHGCK,DABS((DPDZ-DPDZCK) /DPDICK) )

WRITE(6, 300) CHGCK,W(L1,M1)

IF (CHGCK.LE.CHGTOL) GOTO 14

IF (ITER.LT.ITMAX) GOTO 10
GOTO 25

AT THIS POINT, THE FLOW FIELD AT ISTEP MAY BE CONSIDERED CONVERGED
TACKLE THE HEAT TRANSFER PROBLEMS NOW

CONTINUE Py
PBAR=PBAR+DPDZ*DZ
TABLE(ISTEP,2)=PBAR
TABLE(ISTEP,3)=W(L1,M1)
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NFSMAX=NF SMT

LSOLVE(1)=.FALSE. '
LSOLVE(2)=.FALSE.

LSOLVE(3) =.FALSE.

a

MONITOR THE TEMPERATURE PROBLEM

IMONTT=IMONIT
IMONIT=1 ‘

FORM THE DISCRETIZATION EQUATIONS FOR TEMPERATURE AND SOLVE

CALL COEFF
IMONIT=IMONTT

CALCULATE THE NUSSELT NUMBER CORRESPONDING TO THE DIFFERENT
TEMPERATURE PROBLEMS 3

°

CALL NUCALC
CALL OUTPUT

RESET CONTROL PARAMETERS FOR NEXT STEP . SOLVE FOR THE
FLOW FIELD FIRST - THEN THE FOUR HEAT TRANSFER PROBLEMS

LSOL.VE(1)=.TRUE.

LSOLVE(2)=.TRUE.

LSOLVE(3)=.TRUE.

IF {(W(L1,M1).GE.(.99DO*WFD) ) GOTO 27
IF (ISTEP.LT.LSTEP) GOTO 9

DUMP DATA ON DISK (CHANNEL 10)

WRITE(10)X,Y,F,FU,FP,DI!1T1,D2T!,D3T1,D1T2,D02T2,D3T2, RELAX , PRELAX,"
Z,DZ,DPDZ ,PBAR, SPMF, XL, YL, TITLE, TOL, PTOL,DWDES,CHGTOL, PR,0DPR,
FBU4 ,FBU6 , INM2, ZNM1 , WNM2,WNM1,RHOA,CP 1 ,DK1, DKDCP1 , DNUA, REY,QW,
CP2 ,DK2,DKDCP2,S,RAD, SDR, FAREA, PERIM,PHY,DH, DHDR, HDG\WFD ,CNUFD,
DNUDES,TW,TI , TABLE, PSI ,TANPSI,IPROB,NSWP ,NPSWP,L1, L2,
LP1,LP2,LP3,MP1,MP2,MP3 NFSMAX, IMONIT, LAST, LMID,MMID,
LPMID,MPMID, ITER,IPREF,JPREF,ISTEP, I TMAX, LSTEP,IC, JC,IDEAL,
IR, IRP1,IRM!,JR,JRP1,JRMI1, IPR,IPRP!,IPRP2,IPRM],I PRM2,JPR,
JPRP1,JPRP2,JPRM!,JPRM2,NI TMAX ,NPITMX , NFSMT,

LSOLVE,LCPRIN, LPRINT, LPPRIN

WRITE (6,40Q0) ISTEP,ITER

STOP

AFTER ITMAX ITERATIONS, THE FLOW FIELD HAS NOT CONVERGED
DUMP IMPENDING DATA ON DISK FOR RESTART WITH MORE I TERATIONS

WRITE(6,100) ITMAX
GOTC 27
FORMAT STATEMENTS

FORMAT(11)
FORMAT(/// , 3%, ' ***kkkkkkhhxxkkkkx* /3%
|
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1 "%, 16X%,'*' , /3K, '* ITERATION ',I4,' *',
2 /3X,'*',16X,'*",/3X,18("'*'))
35 FORMAT(////// 1k, v31('="),//3X,"ISTEP = ',13,//3%,'Z = ',
1 1pD1S5.7,//,3%,'D2 = ',1PD15.7,//)
40 FORMAT (////u5BX,44 ('*'),
1 /,45X,"*" 42%X,'*",
2 /,45X,'*", '"DATA DUMPED ON RECORD 10 FOR ISTEP = ',I3,2X,'*',
3 /,u5X,'*", ! ITER = ',6I3,2X,'*",
4 /45X ,"*" 42X,'*' ,/ 45X, 44("%*"))
100 FORMAT(///7X,'MAXIMUM NUMBER OF ITERATIONS = ',I3,' EXCEEDED')
300 FORMAT (/3X,'MAX. CHANGE IN (U, V ,w , DP/DZ) = ',1PD15.7,
1 2X,'CENTRE POINT W = ', 1PD15.7)
END
C***********************************************************************
SUBROUTINE DZSEL
C***********************************************************************
IMPLICIT REAL*8(A~H,0-Z)
LOGICAL LSOLVE,LCPRIN,LPRINT,LPPRIN
C _________________________ i o = e i o e T P s s o e T - —
COMMON ASTORE(3528),X(21,21),¥Y(21,21),F(21,21,7),FU(217,21,7},
1 FP(11,11,2) ,RHO(21,21) ,GAaM(21,21),
2 Sc(2t,21),sp(21,21),ACU(21,21),UHAT(21,21), "
3 DiT1(10,10,2),D2T1(10,10,2),D3T1(10,10,2),
4 D1T2(1oho’,2),nz'r2(10,10,2),D3T2(1o,1o,2)
COMMON /THRD/Z,DZ,DPDZ,DPDIC,PBAR,SPMF ,WFD,CNUFD(4),LSTEP,ISTEP,
1 ITMAX, ISTART,IPROB
COMMON /PARM/RELAX(7),PRELAX .
COMMON /MONIT/LSOLVE(7),LCPRIN,LPRINT(7),LPPRIN /
COMMON /LABEL/TITLE(7),HDG(9) '
COMMON /INDX/NSWP(7),NPSWP(2),L1,L2,L3,M1,M2,M3,
1 LP1,LP2,LP3,MP1,MP2,MP3,NFS,NFSMAX, NPS,NUME, IMONIT,LAST,
2 LMID,MMID,LPMID,MPMID, I PREF,JPREF,ITER,IC(3),JC(3),IDEAL,
3 IR,IRP1,IRM1,JR,JRP!,JRM1,IPR,IPRP1,IPRP2,IPRM1,IPRM2,JPR, JPRP1,
4 JPRP2,JPRM1 ,JPRM2,NITMAX(7),NPITMX(2)
COMMON /CONV/TOL(7),PTOL(2),DWDES,FCK(3,2) ,DPDZCK,CHGTOL, CHGCK
COMMON /RODBUN/S,RAD,SDR,WBAR, FAREA , PERIM, PHY,DH ,DHDR , XL, YL, TANPSI
1 ,PSIl,FBU4,FBU6,FB,FWAV,RHOA,CP1,DK1 ,DKDCP1,CP2,DK2,DKDCP2,
2 RPOW, XPOW, YPOW,DMUA,REY,QW, TAUW(21),TW,TI
COMMON /RESULT/TABLE(200,7)
C
C--- DZ SELECTION USING A LINEAR EXTRAPOLATION
C
ZNM1=TABLE(ISTEP-1,1)
ZNM2=TABLE(ISTEP-2,1)
WNM1=TABLE(ISTEP-1, 3)
WNM2=TABLE (I STEP-2, 3)
Ci=(WNM2-WNM1)/(ZNM2-ZNM1)
C2=WNMZ-C1*ZNM2
IF ((WNM1+DWDES).GT.WFD) DWDES=WFD-WNMI
DZ=(WNM1+DWDES-C2) /C1-ZNM1
RETURN
END
C***********************************************************************
SUBROUTINE USER
C***********************************************************************
C
C USER SPECIFIED PROGRAM

- e . ———— r m ——  —— — o —




L

i 298

NAME DESCRIPTION
GRID GRID SPECIFICATICN .
START INPUT CONTROL PARAMETERS .
AND INITIALIZATION OF DEPENDENT VARIABLE
ARRAYS (+INITIAL CONDITIONS)
oUTPUT ~ PRINTS OUTPUT
DENSE SPECIFIES DENSITY VALUES FOR EACH SUBELEMENT .
GAMSOR , " SPECIFIES VALUES FOR GAMMA AND SC AND SP
FOR EACH SUBELEMENT
BOUND SPECIFIES THE BOUNDARY CONDITIONS
BTSVEL TREATMENT OF PSEUDOVELOCITIES AT THE
BOUNDARY
PBOUND BOUNDARY CCNDITIONS FOR PRESSURE
FLUX CALCULATES THE FLUX AT WALL BOUNDARIES

OOO0O0O0O000O00O0000N0ON0n

e o . O — o ks kot A o o — i S o Sh D e o e an v ] N o A . i G - A O e =R e et e o e S o e —

IMPLICIT REAL*8(A-H,0-2) -
LOGICAL LSOLVE,LCPRIN,LPRINT,LPPRIN )
COMMON ASTORE (3528) ,X(21,21),Y(21,21),F(21,21,7),FU(21,21,7),
1 FP(11,11,2),RH0(21,21),GAM(21,21),
2 SC(21,21),sp(21,21),AcU(21,21),UHAT (21,21),
3 DITI(10,10,2),D2T1(10,10,2),D3T1(10,10,2),
4 D1T2(10,10,2),D2T72(10,10,2),D3T2(10,10,2)
COMMON /THRD/2,DZ,DPDZ,DPDZIC,PBAR,SPMF,WFD,CNUFD(4),LSTEP,ISTEP,
1 ITMAX, ISTART,IPROB
COMMON /PARM/RELAX(7),PRELAX
COMMON /MONIT/LSOLVE(7),LCPRIN,LPRINT(7),LPPRIN
COMMON /LABEL/TITLE(7),HDG(9)
COMMON /INDX/NSWP(7),NPSWP(2),L1,L2,L3,M1,M2,M3,
t LP!,LP2,LP3,MP1,MP2,MP3,NFS,NFSMAX , NPS,NUME,IMONIT, LAST,
2 LMID,MMID,LPMID,MPMID,IPREF,JPREF,ITER,IC(3),JC(3),IDEAL,
3 IR,IRP1,IRM!,JR,JRP1,JRM1,IPR,IPRP1,IPRP2,IPRM1 ,IPRM2Z2,JPR, JPRP1,
4 JPRP2, JPRM1, JPRM2,NITMAX(7) ,NPITMX(2)
COMMON /CONV/TOL(7) ,PTOL(2),DWDES,FCK(3,2) ,DPDZCK,CHGTOL,CHGCK
COMMON /RODBUN/S,RAD,SDR,WBAR, FAREA, PERIM, PHY,DH , DHDR, XL, YL, TANPSI
1 ,PSI,FBU4,FBU6,FB,FWAV, RHOA,CP1,DK1,DKDCP1,CP2, DK2,DKDCP2,
2 RPOW, XPOW, YPOW,DMUA,REY,QW, TAUW(21) ,TW,TI
COMMON /RESULT/TABLE(200,7)

C--- DIMENSION AND EQUIVALENCE STATEMENTS

C
DIMENSION AC(21,21),AE(21,21),ANE(21,21),AN(21,21),
1t AW(21,21),ASW(21,21),A5(21,21) ,ACON(21,21)
DIMENSION APC(11,11),APE( 11, 11) APNE(H,H) APN(1I,1
1 APNW(1 1,1!),APW(H,H),APSW( 1) ,APS(11,11), APSE(
2APENE(11,11),APNNE(H,H),APWSW(H,11),APSSW(H 11),
DIMENSION U(21,21),Vv(21,21),w(21,21),WU(21,21), P(H,
1 VHAT(21,21),ACV(21,21),WHAT(21,21)
EQUIVALENCE (ASTORE(1),AC(1)), (ASTORE(442) ,AE(1)),(ASTORE( 883),
1 ANE(1)),(ASTORE(1324),AN(1)), (ASTORE(1765) ,AW(1)),
2 (ASTORE(2206) ,ASW(1)),(ASTORE( 2647) ,AS(1)),(ASTORE(3088),
3 ACON(1))
EQUIVALENCE (ASTORE(1),APC(1)), (ASTORE(122) ,APE(1)),(ASTORE( 243),
! APNE(1)),(ASTORE(364),APN(1)), (ASTORE(485) ,APNW (1)),
2 (ASTORE(606) ,APW(1)),(ASTORE( 727),APSW(1)),(ASTORE( 848),
3 APS(1)),(ASTORE( 969),APSE(1)},(ASTORE(1090),APENE(1) ),
4 (ASTORE(1211) ,APNNE(1)), (ASTORE(1332) ,APWSW(1)),

)
1
A
1
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J— = e i v

5 (ASTORE (1453) ,APSSW TORE(157u),APCON(1))
EQUIVALENCE (F(l) U(

EQUIVALENCE (FU(1,1,
EQUIVALENCE (FP§1; =

EQUIVALENCE (SC

(
1
3
(

ADDITIONAL DIMENSION AND EQUIVALENCE STATEMENTS

DIMENSION ACB(21),AEB(21) ,ANEB(21),ANB(21),
1 ASB(21) ,ACONB(21)

DIMENSION CVAREA(21,21)

EQUIVALENCE (ACU(1),CVAREA (1))

e e e e A —— ..._---—._....T _______________________
* ke hkkkk k Kk /

ENTRY GRID
ko & K kK ok %k
Y

READ PROBLEM AND GRID SPECIFICATIONS (CHANNEL 5)

READ(5,1010) HDG

READ(5,1020) IPROB,LP1!,MP!

IF (IPROB.EQ.1) READ(5,1030) XL, YL,XPOW,YPOW
IF (IPROB.EQ.2) READ(5,1030) RAD,SDR,PSI,RPOW
READ(5,1040) (TITLE(NF),NF=1,7)

CONVERT PSI TO RADIANS

PHY=DATAN (1.0DO)*4.0DO
PSI=PSI/180.DO*PHY
CALL GRIDCT

CALL DEFGRD

GENERATE THE VELOCITY NODES AND D COEFFICIENTS

CALL DCALC
RETURN

% e & Kk k ok ok de Kok

ENTRY START

x ok de ok hkkk A kKX

PROBLEM SPECIFICATION

WFD=2.123D0
REY=1.D3

DMUA=20.D-6

WBAR=1.DO
RHOA=REY* DMUA /WBAR/DH
DK 1=0.0265D0
DK2=0.065 1DO
CP1=DK1*0.72D0/DMUA
CP2=DK2* 3 .DO/DMUA
DKDCP1=DK 1/CP1
DKDCP2=DK 2/CP2
QW=200.DO

SPMF =RHOA *FAREA

Z

1,2),v(1)),(F(1,1,3),W(1))

, (SC(1) ,WHAT (1))
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TW=60,DO
TI=20,DO

INITIAL STEP SIZE

DZ=1.7511905D—-5
IDEAL=25

2=0.D0

ISTEP=0

CONTROL PARAMETERS

LSTEP=1

ITMAX=10

LSOLVE(1 ) =.TRUE.
LSOLVE(2 ) =.TRUE.
LSOLVE(3) =.TRUE.
LSOLVE(4 ) =,TRUE.
LSOLVE(5 ) =,TRUE.
LSOLVE(6 ) =.TRUE.
LSOLVE(7 ) =.TRUE.
NFSMAX=7

LPRINT(1 ) =.TRUE.
LPRINT(2) =.TRUE.
LPRINT(3 ) =.TRUE.
LPRINT(4 ) =.TRUE.
LPRINT(5) =,TRUE.
LPRINT(6) =.TRUE.
LPRINT(7)=.TRUE.
LPPRIN=, TRUE,
LCPRIN=, TRUE,

RELAX(1)=0.5D0
RELAX(2)=0.5D0
RELAX(3)=0.7D0
RELAX(4)=1.D0
RELAX(5)=1.D0
RELAX(6)=1.D0
RELAX(7)=1.D0O
PRELAX=0. 8D0O
IMONIT=1

CALL MONCON

CHGTOL=1 ,D-4

DWDES=(WFD-1,D0O ) /DFLOAT(IDEAL)

NITMAX(4) =30
NITMAX(5) =30
NITMAX(6) =30
NITMAX(7) =30

“NSWP(1)=1

NSWP(2)=1
NSWP (3)=1
NSWP (4)=5
NSWP (5)=5
NSWP (6)=5
NSWP(7)=5

NPSWP(1)=1

W
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100

C_.._

112

120

ASSIGN INITIAL W-VALUES

1

1

1

NPSwP ( 2)=5
NPITMX(1)=10
NPITMX (2)=20
TOL(4 )=1,D-12
TOL(5)=1,D-12
TOL(6)=1.D-12
TOL(7)=1.D-12
PTOL(1)=1,D—6
PTOL(2)=1.D—6
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INITIAL CONDITIONS AND INITIALIZATION OF DEPENDENT VARIABLES

DO 100 I=1,L1
DO 100 J=1,M1
U(1,J)=0.D0

FU(I,J,1)=0.D0

v(I1,3)=0.DO

FU(1,J,2)=0.D0

CONTINUE

DO 50 J=1,M1
DO 50 I=2,L1
WU(1,J3)=1.DO"
DO 70 J=1,M1
WU(1,J)=0.DO

INITIAL CONDITION FOR THE RECTANGULAR DUCT

IF (IPROB,NE.1) GOTO 80

DO 85 I=1,L1
wu(1,1)=0.DO

CQRRE‘.CTION OF THE W-VELOCITIES TO YIELD THE CORRECT MASS FLUX

CALMF=0.D0
DO 110 J=1,M2
JP1=J+1

DO 110 I=1,L2
IPI=I+1

DET=X(I,J)*Y (IP1,J)+X(IP1 ,J)’:Y(IP1 ,JP1)+X(IP1,JP1)*Y(1,J)
~Y(I,N*X(1P1,J)-Y(I1P1,J)*X(IP1,JP1)-Y(IP1,JP1)*X(1I,J)

EVOL=DABS(DET) /6.DO
CALMF=CALMF+ (WU(I , J)+WU(IP1,J)+WU(IP1,JP1) )*EVOL

DET=X(I ,J)*Y (IP1,JP1)+X(IP1,JP1)*Y(I ,JP1)+X(I,JP1)*Y(1,J)
~Y(I,J)*X(IP1,JP1)-Y(IPI,JP1)*X(I ,JdP1)~-Y(I,JP1)*X(1,J)

EVOL=DABS(DET)/6.DO
CALMF=CALMF+ (WU(I , J)+WUO(IPI,JP1)+WU(I,JP1) )*EVOL
CALMF=CALMF* RHOA
FAC=SPMF /CALMF

WRITE(6,112)

//3%, 'FAC =

¢ _DO 120 J=1,M1

DO 120 I=1,L1

CALMF , SPMF , FAC
FORMAT( //3X, "CALMF .= ', 1PDI15.7,//3X, ' SPMF

', 1PD15.,7)

WU(1,J3)=wu(1 , J)*FAC

DO 130 J=1,M1

I

1

9-

', 1PDI15.7,

q

L.
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: DO 130 I=1,LI
130 w(1,J)=wU(1,J)

C--~ HEAT TRANSFER PROBLEM

DO 150 J=1,M1 ' Lo
DO 150 I=2,Li = ’ -
FU(I,J,4)=TI ’
150 FU(1,J,6)=T1 )
DO 154 J=1,M1
FU(1,J,4)=TW
154 FU(1,J,6)=TW
IF (IPROB.NE,1) GOTO 158
DO 156 I=1,L1
"FU(I,1,4)=TW
156 FU(I,1,6)=TW
158 DO 160 J=1,M1 _-
DO 160 I=1,L1
F(I,J,4)=FU(I,J,4) . \
F(1,J,6)=FU(1,J,6) ) - .
FU(I1,J,5)=TI .. . :
. FU(1,J,7)=T1I ¥ :
. F(1,J3,5)=TI
160 ' F(I1,J,7)=TI

[

C--— BULK TEMPERATURE CALCULATION

DO 175 NFS=4,6,2

CALL BULK

IF (NFS.EQ.4) FBU4=FB .

IF (NFS.EQ.6) FBU6=FB X : ‘ '
ﬂ75 CONTINUE

DO 105 JP=1,MP1

DO 105 IP=1,LP1

P(IP,JP)=0.D0O
105 PC(1P,JP)=0.D0O

PBAR=0.DO
RETURN
c ————————————————————————————— i ————— —— T - " ——— — o W— - _— " S = _ fun S L Wep = . G e A A —
C I Z X E XX EEE L X X ]
ENTRY OUTPUT )
C 22 R 22 E & & 8. &4
CALL PRINT

ZSTAR=Z/DH/REY -
PBSTAR=PBAR/(0.5DO*RHOA)

) WRITE(6,205) ZSTAR,PBSTAR ¢
205  FORMAT(/3X,'ZSTAR = ',1PD15.7,/3X,'PBSTAR = ',1PD15.7)
. WRITE(6,210) ‘
210 FORMAT(///'1',13X,' SUMMARY OF RESULTS' /, ¢
1 2X,'ISTEP',7X,'Z/DH/REY ',

! 6X,' PBARSTAR ',6X,' W(L1,MI) ', 6X, 'NUSSELT (45" , 6%,

1 'NUSSELT(5) ',66X,'NUSSELT(6) ',b6X,'NUSSELT(7)'/,2X,125('-"))
DO 220 IS=1 ISTEP

ZSTAR= TABLE(IS 1) /DH/REY

PBSTAR= TABLE(IS 2)/0.5D0/RHOA

220 WRITE(6,230) 1S,2STAR,PBSTAR, (TABLE(IS,JT),JT= 3 T) -

230 FORMAT(ZX 15, 3%, 7(1PD15.7 2x)) :

n -




Ty

RETURN
g * ok g K % ok K X
ENTRY DENSE
C Akkkhkkkkkkk*k
DO 300 I=1,L2 ‘
DO 300 J=1,M2 .

RHO(I,J)=RHOA
300 CONTINUE ;
RETURN ‘ -

C _______________________________________________________________________
C 2T ST EY

ENTRY GAMSOR
o Khkkhkhkhkhkkk

DO 400 J=1,M2 ’
DO 400 I=1,L2
Sc(1,J)=0.D0 .
400 Sp(I1,J)=0.D0 E
IF (NFS.GE.4) GOTO 410
DO 420 J=1,M2
DO 420 I=1,L2 ’ )
420 GAM(I,J)=DMUA -
RETURN
410 ¢« DKDCP=DKDCP1
. IF (NFS.GE.6) DKDCP=DKDCP2
DO 430 J=1,M2
< DO 430 I=1,L2
430 GAM(1I,J)=DKDCP

RETURN
C _______________________________________________________________________
C &k de de e gk gk ok ok K

ENTRY BOUND ~
C kkkXkkhkkhkk Xk

IF (IPROB.EQ.1) GOTO 570
GOTO (505,505,503,503,552,503,554) ,NFS
503 DO 502 J=1,M1
ACB(J)=AC(1,J)
AEB(J)=AE(1,J)
ANEB (J)=ANE(1,J)
ANB(J)=AN(1,J)
o *** NOTE THAT AWB(J) AND ASWB(J) ARE NOT INCLUDED HERE *#*%*
ASB(J)=AS(1,J)
502 ACONB(J)=ACON(1,J)
505 I=1
DO 500 J=1,M!
AC(1,J)=1.DO
AE(I,J)=0.DO
ANE(I,J)=0.D0
AN(I ,J)=0.DO
AW(I ,J)=0.DO ~
ASW(I,J)=0.D0O
AS(I,J)=0.DO
500 ACON(1,J)=F(1,J,NFS)
IF (NFS-2) 520,530,540
520 I=L1
DO 525. J=1,Mt1 >
AC(I,J)=1.DO 3
AE(I,J)=0.D0O ’ .




525

530

535
C
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ANE(I,J)=0.D0

AN(I,J)=0.DO

AW(I,J)=0.DO

ASW(I,J)=0.DO

AS(I,J)=0.DO

ACON(I,J)=F(I,J,NFS)

RETURN

J=1

DO 535 I=2,L1 )
AC(I,J)—I.DO

AE(I,J)=0.DO

ANE(I,J)=0.DO

AN(I,J)=O.DO

W(I,J)=0.D0 .
ASW(I,J)=0.DO \
AS(I, J) 0.DO

ACON(I J)=F(I,J, NFS)

C SPECIAL PROCEDURE TO IMPLEMENT THE ZERO NORMAL VELOCITY CONDITION
C AT THE TOP SYMMETRY LINE

C

537

540
552

554
550

560

C-__

570
130

732
710

DO 537 I=2,L1

AC(I,M1)=1.D0

AE(I ,M1)=0.DO

ANE(I,M1)=0.D0

AN(I,M1)=0.DO

AW(I,M1)=0.D0

ASW(I ,M1)=0.D0

AS(I,M1)=0.D0

ACON(I,M1)=TANPSI*F(I , M1,1)

RETURN

RETURN .
CPC=CP1

GOTO 550 -

CPC=CP2

DO 560 J=1,M2

JP1=J+1

BFLUX=QW/CPC*0.5DO*DSQRT ((X(1,JP1)-X(1,J))**2+(¥(1,3P1)~-Y(1,J))
**2)

ACON(1,J)=ACON(1,J)+BFLUX

ACON(1,JP1)=ACON(1,JP1)+BFLUX

RETURN

RECTANGULAR DUCT BOUNDARY CONDITIONS

GOTO (710, 710 730 730,750,730,770) ,NFS
DO 732 J=1,

ACB(J)= AC(1, )

AEB(J)=AE(1,J)

ANEB(J)=ANE(1,J) .
ANB(J)=aAN(1,J)

ASB(J)=AS(1,J)

ACONB(J)= ACON(!,J)

I=1

DO 712 J=1,MI1

AC(I,J)=1.D

AE(I,J)=0.D0O

ANE(I ,J)=0.DO

PRPEp Sera




o,

712

T14

720

122

740

745
760
750

770
752

754

AN(I,J)=0.DO
AW(I,J)=0.DO
ASW(I,J)=0.DO
AS(I,J)=0.DO
ACON(I,J)=F(I1,J,NFS)
J=1 -

DO 714 I=2,L1
AC(I1,J)=1.D0
AE(I,J)=0.D0O
ANE(I,J)=0.DO
AN(I,J)=0.DO
AW(I,J)=0.DO0 ¢
ASW(1,J)=0.DO
AS(I,J)=0.D0O
ACON(I,J)=F(1,J,NFS)
IF (NFS-2) 720,740,760
I=L1

DO 722 J=1,M1
AC(I,J)=1.DO
AE(I,J)=0.D0O
ANE(I,J)=0%DO
AN(I,J)=0.DO ;
AW(I,J)=0.DO \
ASW(I,J)=0.DO .

AS(I,J)=0.DO

ACON(I,J)=F(I,J,NFS)

RETURN
J=M]

DO 745 I=2,L1

AC(I,J)=1,DO P

AE(1,J)=0.DO

ANE(I,J)=0.DO

AN(1,J)=0.DO

AW(1,J)=0.DO v

ASW(I,J)=0.DO

AS(I,J)=0.DO .
ACON(1I,J)=F(I1,J,NFS)

RETURN

CPC=CP1

GOTO 752

CPC=CP2

DO 754 J=1,M2

JP1=J+1

BFLUX=QW/CPC*0.5D0*(Y(1,JP1)-Y(1,J)) |
ACON(1,J)=ACON(1,J)+BFLUX
ACON(1,JP1)=ACON(1,JP1)+BFLUX

DO 756 I=1,L2

IP1=I+1 q
BFLUX=QW/CPC*0.5D0* (X(IP1,1)-X(1,1))

ACON(I, 1)=ACON(I,1)+BFLUX
ACON(IP1,1)=ACON(IP1t,1)+BFLUX '
RETURN °

hkhkhkhkkkhkkkk

ENTRY BTSVEL
kKKK ARKhk*

BOUNDARY TREATMENT OF PSUEDO VELOCITIES .
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o
) IF (IPROB.EQ.1) GOTO 650 :
{ IF (NFS-2) 600,610,620 .
- 600 DO 602 I=1,L1,L2

DO 602 J=1,M1
ACU(1,J)=1.D30
602 UHAT(I,J)=U(1,J)

RETURN
610 J=1

DO 612 I=1,L1

ACV(I,J)=1.D30 ) ;
612  VHAT(I,J)=v(I,J) //

I=1 :

DO 614 J=2,M1
ACV(I,J)=1.D30

614  VHAT(I,J)=V(I,J)
J=M1
DO 616 I=2,L1
ACV(I,J)=-100.D0O

616 VHAT(I,J)=UHAT(I,J)*TANPSI
RETURN

620 DO 622 J=1,Mi
WHAT(1,J)=0.DO

622 CVAREA(1,J)=0.DO

RETURN
c
C--- RECTANGULAR DUCT GEOMETRY
C

650 IF (NFS-2) 660,670,680
660 DO 662 I=1,L1,L2 \
DO 662 J=1,MI1
ACU(I,J)=1.D30
662 UHAT(I,J)=U(I,J)
J=1
DO 664 I=1,L1
ACU(I,J)=1.D30 .
664 UHAT(I,J)=U0(1,J) j 0
RETURN
670 DO 672 J=1,M1,M2
DO 672 1I=1,L1
ACV(I,J)=1.D30
672 VHAT(I,J)=V(I,J)
I=1
DO 674 J=2,Mt
ACV(I,J)=1.D30
674 VHAT(I,J)=v(1,Jd)
RETURN
680 DO 682 J=1,M1
WHAT(1,J)=0.DO
682 CVAREA(1,J)=0.D0O
DO 684 I=2,L1
WHAT(I,1)=0.DO

%]

(' 684 CVAREA(I, 1)=0.D0
RETURN '
C _______________________________________________________________________
C [ T2 2 EZ LT E L XX 8
4 ENTRY PBOUND
C (22 & 22 2.5 8. K 5. % 1

il




RETURN

C _______________________________________________________________________
C AhkkkRkA KA hRK
ENTRY NUCALC
C AkkRhhk kKR Kk
c - .
C--—- CALCULATION QF NUSSELT NUMBER
c

DO 910 NFS=4,7
CALL BULK
GoTo (27,27,27,914,915,916,917) ,NFS
914 FBU=FBU4
FBU4=FB
DKDCP=DKDCP1
GOTO 918
916 FBU=FBU6
FBU6=FB
DKDCP=DKDCP2
918 CNU=RHOA*FAREA /DKDCP*DH/PERIM* (FB~FBU) /DZ/(TW-FB)
WRITE(6,940) NFS,FB,CNU,ISTEP

940 FORMAT(/3X,'NFS = ',12,' BULK TEMPERATURE = ', 1PD15.7,
1 NU = ',1PDi15.7,' FOR ISTEP = ',13)
TABLE(ISTEP,NFS)=CNU
GOTO 910

C

915 DK=DK 1
GOTO 920 !

917 DK=DK2
920 FWAV=0.DO

C~-— AVERAGE WALL TEMPERATURE

DO 950 J=1,M2
JP1=J+1
950 FWAV=FWAV+0.5D0*(F(1,J,NFS)+F(1,JP1,NFS))
1 *DSQRT((X(1,JP1)-X(1,3))**2+(Y(1,JP1)~-Y(1,J))**2)
IF (IPROB.NE.!) GOTO 954
DO 952 I=1,L2
IP1=I+1
952 FWAV=FWAV+0,.5D0* (F(I,1,NFS)+F(IP1,1,NFS))* (X(1P1,1)-X(I,1))
a5y FWAV=FWAV/PERIM
CNU=QW*DH/(FWAV-FB) /DK
TABLE(ISTEP,NFS ) =CNU
WRITE(6,940) NFS,FB,CNU,ISTEP
910 CONTINUE :

RETURN
27 STOP
Cmmmmmm oo e
C Khkkkhkhkhkkkkk .
ENTRY RESET : .
C khkhkAXhkhkhkk kR
C .
C--- RESET THE CONTROL PARAMETERS SET IN PREVIQUS ANALYSES
C
ITMAX=20
LSTEP=3

RELAX(1)=0.7D0O
RELAX(2)=0.7D0
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RELAX(3)=0.7D0
PRELAX=1,0DO

LCPRIN=,.FALSE,
LPPRIN=,FALSE,

IMONIT=0
RETURN
e e e e o e e e e o e e e e
C
C--- FORMAT STATEMENTS
C

1010 FORMAT(9A8)
1020 FORMAT(3110)
1030 FORMAT(4D10.0)
1040 FORMAT(7(A8,2X)) a
C
END
C***********************************************************************

SUBROUTINE SUPPLY
C***********************************************************************

IMPLICIT REAL*8(A-H,0-2)

LOGICAL LSOLVE,LCPRIN,LPRINT, LPPRIN

COMMON ASTORE(3528),X(21,21),¥(21,21),F(21,21,7),FU(21,21,7),

1 FP(11,11,2),RHO(21,21) ,GAM(21,21),
2 sC(21,21),spP(21,21),ACU(21,21),UHAT(21,21),
3 piT1(10,10,2),D2T1(10,10,2),D3T1(10,10,2),
4 pit2(10,10,2),D2T2(10,10,2),D3T2(10,10,2)

COMMON /THRD/Z,DZ,DPDZ,DPDZIC, PBAR, SPMF,WFD,CNUFD(4) ,LSTEP, ISTEP,
1 ITMAX,ISTART,IPROB \

COMMON /PARM/RELAX(7),PRELAX

COMMON /MONIT/LSOLVE(7) ,LCPRIN, LPRINT(7) LPPRIN

COMMON /LABEL/TITLE(7), HDG(Q)

COMMON /INDX/NSWP(7), NPSWP(Z) L1,L2,L3, M1 ,M2,M3,

1 LPt,LP2,LP3,MPt,MP2,MP3,NFS, NFSMAX NPS , NUME, IMONIT, LAST,

2 LMID,MMID,LPMID,MPMID,IPREF,JPREF,ITER,IC(B),JC(3),IDEAL,

3 IR,IRP1,IRM!,JR,JRP!,JRMI,IPR,IPRP1,IPRP2,IPRM1,IPRM2,JPR,JPRP1,
4 JPRP2,JPRMI1,JPRM2,NITMAX(7),NPITMX(2)

COMMON /CONV/TOL(7),PTOL(2),DWDES,FCK(3,2),DPD2ZCK,CHGTOL, CHGCK
COMMON /RODBUN/S, RAD,SDR,WBAR, FAREA,PERIM, PHY,DH,DHDR, XL, YL, TANPSI
1 ,PSI ,FBU4,FBU6,FB,FWAV,RHOA,CP1,DK1,DKDCP1,CP2,DK2, DKDCP2,

2 RPOW XPOW, YPOW, DMUA REY ,OW, TAUW(21) W, TI

LOGICAL LPR(9)
DIMENSION W(21,21)
DIMENSION FPR(21,21,9),FPPR(11,11,3),TITFPR(9),TITPPR(3)
EQUIVALENCE (W(1),F(1,1,3))
DATA TITFPR(1)/'X~-COORD '/,TITFPR(2)/'Y-COORD '/
DATA TITPPR/'XP-COORD', 'YP-COORD', 'PRESSURE'/
EQUIVALENCE (FPR(1),X(1)),(FPPR(1),FP(1))
C kkkAkkXxkkkxk

ENTRY PRINT
C khkkkhkhkhkkkkk
10 FORMAT (25X,26('*' ) ,uX,A8,4X,26('*"'))
20 FORMAT(8X, 3HI =,16,10I11) -

21 FORMAT(7X,4HIP =,16,10I11) I
30 FORMAT(1X, 3HJ =)
31 FORMAT (1X,4HJP =)

40 FORMAT(6X,I2,3X,1P11D11,3)
50 FORMAT(1H )




LPR(1)=LCPRIN
LPR(2)=LCPRIN )
{ DO 5 I=1,NFSMAX
LPR(I+2)=LPRINT(I)
5 TITFPR(I+2)=TITLE(I)
NPRMAX=NFSMAX+2
DO 100 NPR=1,NPRMAX
IF (.NOT.LPR(NPR)) GOTO 100
WRITE(6,50)
WRITE(6,10) TITFPR(NPR)
IBEG=-10
110 CONTINUE
IBEG=IBEG+11
IEND=IBEG+10
IF (IEND,GT.L1) IEND=L1
WRITE(6,50)
WRITE(6,20) (I,I=IBEG,IEND)
WRITE (6,30)
DO 120 JJd=1,M1
J=M1+1~-3JJ
WRITE(6,40) J,(FPR(I,J,NPR),I=IBEG,IEND)
120 CONTINUE
IF (IEND,LT.L1) GOTO 110
100 CONTINUE
IF (.NOT.LPPRIN) RETURN
IF ( .NOT,LCPRIN) GOTO 200
DO 210 JP=1,MP1
J=2*JP-1
DO 210 IP=1,LP1
I=2%IP~1
FPPR(IP,JP,3)=X(1,J)
210 FPPR(IP,JP,2)=Y(1,J)
200 CONTINUE
LPR(3)=LPPRIN
DO 300 NPR=1,3
NPPR=4—-NPR
IF (.NOT.LPR(NPR)) GOTO 300
WRITE(6,50)
WRITE(6,10) TITPPR(NPR)
IBEG=-10
310 CONTINUE
IBEG=IBEG+11
IEND=IBEG+10
IF (IEND.GT.LP1) IEND=LPI
. WRITE(6,50)
WRITE(6,21) (I1P,IP=IBEG,IEND)
WRITE(6,31)
DO 320 JJ=1,MP1
JP=MP1+1-JJ
WRITE(6,40) JP, (FPPR(IP,JP,NPPR),IP=1BEG, IEND)
320 CONTINUE '
IF (IEND.LT.LP1) GOTO 310

( 300 CONTINUE
WRITE(6,330) PBAR,DPDZ
330 FORMAT(//3X,'PBAR = ',1PD15,7,//3%,'DP/DZ = ',1PD15.7,/)
RETURN
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C_.__.

850

860

410

310

% Kk Kk ko kkkkk

ENTRY DEFGRD
dod ok koK ok kK Kk koK

DEFAULT GRID
IF (IPROB.EQ.2) GOTO 850

IPROB=1 —---— > RECTANGULAR DUCT

DO 810 JP=1,MP1
J=2*JP-1

DO 810 IP=1,LP1

I1=2%1P-1
X(I,J)=(DFLOAT(IP-1)/DFLOAT(LP2) )**XPOW*XL
Y(I,J)=(DFLOAT(JP-1)/DFLOAT(MP2) )**YPOW*YL
RETURN

IPROB=2 —----— > ROD~BUNDLE ARRAY

S=RAD*SDR
PHY=DATAN(1.DO)*4.DO

DPSI=PSI/DFLOAT(MP2)

TANPSI=DTAN(PSI)

DO 860 JP=1,MP!

J=2*JP-1

PSIP=DFLOAT(JP-1)*DPSI

RFINAL=S/DCOS(PSIP)

RDIFF=RFINAL-RAD

DO 860 IP=1,LP1

I=2%IP-1

X(I,J)=(RAD+RDIFF*(DFLOAT(IP-1)/DFLOAT(LP2) )**RPOW)*DCOS(PSIP)
Y(I,J)=(RAD+RDIFF*(DFLOAT(IP-1)/DFLOAT(LP2) )**RPOW)*DSIN(PSIP)
RETURN

hkEkkhkkdk ki

ENTRY DCALC

* Kk Kk kdkkkkkkk

VELOCITY NODES

DO 410 IP=1,LP2
I=2*IP-1

IP1=I+1

IP2=I+2

DO 410 JP=1,MP2

J=2*JP~1

JP1=J+1

JP2=J+2
X(1P1,J)=(X(1,J)+X(1P2,J))*0.5D0
Y(IP1,J)=(¥(1,3)+Y(1P2,J))*0.5D0
X(IP1,JP1)=(X(1,J)+X(1P2,JP2))*0.5D0
Y(IP1,JP1)=(Y(1,J)+Y(IP2,JP2))*0.5D0
X(I,JP1)=(X(1,J)+X(1,JP2))*0,5D0
Y(I,JP1)=(Y(1,J3)+Y(1I,JP2))*0.5D0

DO 430 I=2,L2,2

IP1=I+1

v

Hﬁf” .
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IMi=I-1
X(I,M1)=(X(IM1 ,M1)+X(IP1,M1))*0.5D0
430  Y(I,Mt1)=(Y(IM1,M1)+Y(IP1,M1))*0,.5D0
DO 440 J=2,M2,2
JP1=J+1
IM1=J-1
X(L1,3)=(X(L1,JP1)+X(L1,JM1))*0.5D0
440  Y(L1,J3)=(Y(L1,JP1)+Y(L1,JM1))*0.5D0
C
C CALCULATION OF THE COEFFICIENTS D FOR EACH TRIANGULAR ELEMENT
C .

r——,

DO 420 JP=1,MP2

J=2*JP-1

JP2=J+2

DO 420 IP=1,LP2

I=2%IP-1

IP2=1I+2 ]
kkkkkk

TYPE 1

* % %k ke k ,
DET=X(I,J)*Y(IP2,J)+X(IP2,J)*Y(IP2,JP2)+X(IP2,JP2)*Y(I,J)
1 -¥(1,J)*X(1P2,J)~-Y(I1P2,J)*X(1P2,JP2)-Y(IP2,JP2)*X(I,J)
FAC=DABS (DET)/DET/24 .D0O
DIT1(IP,JP,1)=(Y(IP2,JP2)-Y(IP2,J))*FAC
DIT1(IP,JP,2)=(X(1P2,J)-X(1P2,JP2))*FAC
D2T1(1P,JP,1)=(Y(1,J)~-¥Y(IP2,JP2))*FAC
D2T1(IP,JP,2)=(X(IP2,JP2)-X(1,J))*FAC
D3T1(IP,JdP,1)=(Y(IP2,J)-Y(I,J))*FAC
D3T1(IP,JP,2)=(X(1,J)-X(1P2,J))*FAC

C s %k k ¥k k%

C TYPE 2

C ikkkkk
DET=X(1,J)*Y(IP2,JP2)+X(IP2,JP2)*Y(1,JP2)+X(I,JP2)*Y(1,J)
1 -Y(1,J)*X(1P2,JP2)-Y(IP2,JP2)*X(1,JP2)-Y(I,JP2)*X(1,J)
FAC=DABS(DET)/DET/24.D0
D1T2(1P,JP,1)=(¥Y(I,JP2)-Y(IP2,JP2))*FAC
D1T2(IP,JP,2)=(X(1P2,JP2)-X(1,JP2))*FAC
D2T2(IP,JdP,1)=(¥(1,J)~-Y(I,JP2))*FAC

€I,JP2)—X(I,J))*FAC

(

e NeXy!

D2T2(IP,JP,2)=(X
D3T2(1P,JP,1)=(¥(IP2,JP2)-¥(I,J) )*FAC
D3T2(IP,JP,2)=(X(1,J)-X(IP2,JP2))*FAC
420 CONTINUE
C
o
C--- CALCULATION OF FLOW AREA, PERIMETERS AND HYDRAULIC DIAMETERS
C
FAREA=0.DO
DO 450 J=1,M2
JP1=J+1
DO 450 I=1,L2
IP1=1+1

FAREA=FAREA
1 +DABS(X(I,J)*Y(IP1,J3)+X(IP1,J)*Y(IP1,JP1)+X(IP1,JP1)*Y(I,Jd)
2 ~Y(I1,J)*X(1P1,J)~-Y(IP1,J)*X(1P1,JP1)-Y(IP1,JP1)*X(1,J))/2.DO
3 +DABS(X(I,J)*Y(IP1,JP1)+X(IP1,JP1)*Y(I,JP1)+X(I,JP1)*Y(I,J)
4 -¥(I,3)*X(1P1,JP1)-Y(IP1,JP1)*X(I,JP1)-Y(I,JP1)*X(1,J))/2.D0
450 CONTINUE
C




312
C--- WETTED PERIMETER
C >
{ PERIM=0.DO
C

DO 470 J=1,M2
JP1=J+1 ,

470 PERIM=PERIM+DSQRT ((X(1,JP1)-X(1,J) ) **2+(Y(1,JP1)-Y(1,J))**2)
IF (IPROB.EQ.1) PERIM=XL+YL
DH=4 .DO*FAREA/PERIM
RETURN

e - o — o~ —— = i = - i o = A — W - - e T - e A M M e e M e A - G iy T e T e e A - - A

Akkkkrhkhkhhhk
ENTRY DEFVAL

X hkkkAARLR KX

SPECIFICATION OF DEFAULT VALUES

DO 500 NF=1,7
LSOLVE(NF)= ,FALSE.
LPRINT(NF)=,FALSE.
500 RELAX (NF)=1.DO
PRELAX=1.DO
2=0,D0
DZ=1.D~-5
PBAR=0.DO ' -
DPDZ=0.D0
IMONIT=0
ISTEP=0
ITER=1
ITMAX=10
LAST=1
LSTEP=1
LCPRIN=,.FALSE.
LPPRIN=.FALSE.
IPREF=1
JPREF =1
DO 510 NF=1,7
NSWP(NF ) =1
NITMAX(NF)=5 ,
+ 510 TOL(NF)=1.D-6
NPSWP(1)=1
NPSWP(2)=5
NPITMX(1)=10
NPITMX(2)=20

C--- DEFAULT MONITORING POINTS

(o]

wowon oo

o —

1

DO 520 NP=1,2
520 PTOL(NP)=1.D-6
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IDEAL=25
CHGTOL=1.D-4
RETURN

C hkkhkrkhkihkikit

ENTRY GRIDCT
C KRhRAkkEAhkhkdkkrk

LP2=LP1-1 :

LP3=LP1-2 A

MP2=MP 1~ 1

MP3=MP1-2

L1=2*LP1-1

L2=L1-1 ‘

L3=L1-2 )

M1=2%MP1-1

M2=M1-1

M3=M1-2

LMID=L1/2+1

MMID=M1/2+1

LPMID=LP1/2+1

MPMID=MP1/2+1

RETURN

ENTRY MONCON

C--- MONITORING CONSTANTS
IRP1=IR+1
IRMI=IR-1
JRP1=JR+1 - .
JRM1=JR-1
IPR=LPMID
IPRP1=1PR+1
IPRP2=IPR+2
IPRM1=IPR-1
IPRM2=IPR-2
JPR=MPMID
JPRP1=JPR+1
JPRP2=JPR+2
JPRM1=JPR-1
JPRM2=JPR-2
RETURN

* %k de kK ek okk

ENTRY BULK

 T2IITT T T
BULK TEMPERATURE CALCULATION

a0 Qa0

FB=0.DO
DO 900 J=1,M2
JP1=J+1
DO 900 I=1,L2
IP1=1+1

c’ ,
C TYPE 1 J
c

EVOL=DABS(X(I,J)*Y(IP1,J)+X(IP1,J)*Y(IP1,JP1)+X(IP1,JP1)*Y(I,J)
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1 -Y(1,3)*X(1P1,3)-Y(IP1,J)*X(IP1,JP1)~Y(IP1,JP1)*X(1,J))/6.D0
FB=FB+(F(I,J,NFS)*W(1,J)+F(IP1,J,NFS)*W(IP1,J)
. 1 +F(IP1,JP1,NFS)*W(IP1,JP1))*EVOL
o]
C TYPE 2

- C

EVOL=DABS(X(I,J)*Y(IP1,JP1)+X(IP1,JP1)*Y(I,JP1)+X(I,JP1)*¥(I,J)
1 -Y(1,J3)*X(IP1,JP1)-Y(IP1,JP1)*X(I,JP1)-Y(I,JP1)*X(1,J))/6.D0O
FB=FB+(F(I,J,NFS)*W(1,J)+F(IP1,JP1,NFS)*W(IP1,JP1)
t +F(1I,JP1,NFS)*W(I,JP1))*EVOL

900 CONTINUE
FB=FB/FAREA

RETURN
C _______________________________________________________________________
C AkhkkkhkXhkkhs
ENTRY PRTINP . .
C FEkhKKET K KRR K
c
C--- PRINT INPUT PARAMETERS
C

WRITE(6,1010)

WRITE(6, 1020) HDG,IPROB

WRITE(6,1030) ISTEP ITER

WRITE(6, 1040) LP1,MP1,NFSMAX,IPROB,LSTEP, ITMAX IDEAL

WRITE(6, 1050)

NP=1

WRITE(6, 1060) NP,NPSWP(1),NPITMX(1),PTOL(1),PRELAX

NP=2 :

PRELA2=1.D0O

WRITE(6, 1060) NP,NPSWP(2),NPITMX(2),PTOL(2),PRELA2

WRITE(6,1070)

DO 1500 NF=1,NFSMAX g

WRITE (6, 1060) NF,NSWP(NF), NITMAX(NF) TOL {NF) ,RELAX(NF)
1500 CONTINUE

WRITE(6,1080)

RETURN
C _____________________________________ a—_—_______—7____~_—-__———__$——__
C '
C--- FORMAT STATEMENTS
o
1010 FORMAT('1',//,13%,88('*"'),/,13X,'*',86X,'*',/,
1 13X,'*",2X,' CONTROL-VOLUME FINITE-ETLTE'
2 ,MENT METHOD *' /,13X,'*',86X,'*',/,
3 13X, FOR THREE-DIMENSIONAL PARAB'
4 ," OLIC FLOWS ,/13X,'*' Bg6X,'*',/,13%,
5 '* AND HEAT TRANGSFER',S51X,'*",/13%,'*',86X,
6 '*' ./, 13%, 88('*')///)
1020 FORMAT(?X TEST CASE',T31,':',T37,9A8, /71X, ' --——————- '/
1 7X,' IPROB = ',I1)
1030 FORMAT(//7X,'STARTING FROM ISTEP = ',13,//20X,'ITER = 13//)

1040 FORMAT(//1X,'INPUT PARAMETERS :',//,7x,' ————————————————
1 //,T12,'LP1',T27,'MP1',T42, ' NFSMAX',T57, 'IPROB',
2 /T12,13,T27,13,T43,11,T59,11,
3 //,T712,'LSTEP',T27,'ITMAX',T42,'IDEAL',/,T13,13,T28,13,T43,13)
1050 FORMAT(//T12,'NP',T27, 'NPSWP',Tu42, 'NPITMX',
1 T57,'PTOL',T72,'PRELAX')
1060 FORMAT(T12,12,T28,13,T43,13,T56,1PD9.2,T71,1PD9.2)
1070 FORMAT(//T12,'NF',T27,'NSWP', T42,'NITMAX',T57, 'TOL',T72, 'RELAX')
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1080 FORMAT(1H1)
END
C***********************************************************************

SUBROUTINE COEFF ?
C***********************************************************************

IMPLICIT REAL*8(A-H,0-2)

LOGICAL LSOLVE,LCPRIN,LPRINT,LPPRIN

COMMON ASTORE(3528),X(21,21),¥(21,21),F(21,21,7),FU(21,21,7),

t FP(11,11,2),RHO(21,21),GAM(21,21),

2 sc(21,21),8P(21,21),ACU(21,21),UHAT(21,21),

3 piTri1(10,10,2),D271(10,10,2),D3T1(10,10,2),

4 pi1T2(10,10,2),D272(10,10,2),D3T72(10,10,2)

COMMON /THRD/Z,DZ,DPDZ,DPDZC,PBAR, SPMF,WFD,CNUFD(4) ,LSTEP, ISTEP,

1 ITMAX,ISTART,IPROB

COMMON /PARM/RELAX(7),PRELAX

COMMON /MONIT/LSOLVE(7),LCPRIN,LPRINT(7),LPPRIN

COMMON /LABEL/TITLE(7),HDG(9)

COMMON /INDX/NSWP(T), NPSWP(Z) L1,L2,L3,M1,M2,M3,

- LP1,LP2,LP3,MP1,MP2,MP3,NFS, NFSMAX NPS NUME IMONIT LAST,

2 LMID MMID LPMID MPMID IPREF JPREF, ITER IC(3) Jc(3), IDEAL

3 IR, IRP1 IRM1 JR,JRP1, JRM1 IPR IPRP1 IPRP2 IPRMI IPRMZ JPR JPRP1,

4 JPRPZ JPRM1 JPRMZ NITMAX(7) NPITMX(Z)

COMMON /CONV/TOL(?) PTOL(2), DWDES FCK(3,2),DPD2CK, CHGTOL CHGCK

COMMON /RODBUN/S,RAD, SDR, WBAR FAREA PERIM PHY DH, DHDR XL, YL, TANPSI

1 ,PSI,FBU4,FBU6,FB,FWAV,RHOA,CP1,DK1,DKDCP1,CPZ,DKZ,DKDCPZ,

2 RPOW,XPOW,YPOW,DMUA,REY,QW, TAUW(21),TW,TI

DIMENSION AC(21,21),AE(21,21),ANE(21,21),AN(21,21),

1 AW(21,21) ,ASW(21,21),A8(21,21) ,ACON(21,21)

DIMENSION U(21,21),v(21,21),W(21,21),wu(21,21),P(11,11),PC(11,11),
1 VHAT(21,21) ,ACV(21,21),WHAT(21,21)

EQUIVALENCE. (ASTORE(1),AC(1)),(ASTORE(442),AE(1)), (ASTORE( 883),

1 ANE(1)), (ASTORE(1324),AN(1)),(ASTORE(1765),AW(1)),

2 (ASTORE(2206),ASW(1)),(ASTORE(2647),AS(1)), (ASTORE(3088),

3 ACON(1))

EQUIVALENCE (F(1),U0(1)),(F(1,1,2),v(1)),(F(1,1,3),W(1))
EQUIVALENCE (FU(1,1,3),WU(1)) .

EQUI VALENCE (Fp(1),P(1)),TFP(
EQUIVALENCE (SC(1),VHAT(1)),(

m<—
—_—
—

DIMENSION XE(3),YE(3),XXP(3),XPM(3),XM(3),¥YM(3),XIM(3),XIH(3),

1 X1(3),FO0(3), FM(3) FH(3) YMUL(3) XIMUL(3) UE(3), VE(3) UM(3) VM43)

2 cc(s3, 3) BCC(3) IE(3) JE(3) = w
DIMENSION CVMASS(ZI 21) CVAREA(21,21) : ;
EQUIVALENCE (UHAT(t) CVMASS(1)) (ACU(T),CVAREA(I)) :
DIMENSION NFSORD(7) ‘ "

DATA NFSORD/3,1,2,4,5,6,7/ o Do

C ARKKKKRAKR KKK AR KARKRAk AKX khkhhkhkhkRkhkhkkhkhkkhkhkhkkkkhkhkhkkkkkkkkkkk

C *CONVECTION-DIFFUSION PART®*
Kkhkhkkhkhrkhkhrkki 22T T T T P T T T T PP

C

c- , B
REWIND 8 .
DO 100 NFT=1,NFSMAX *
NF=NFSORD(NFT) . .
IF(LSOLVE(NF)) GOTO 110
GOTO 100 ) '

empne
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110 CONTINUE ’
o T2 TR I I s T a2 IR 2T S L L

C CALCULATION OF ALL COEFFICIENTS (CONVECTION-DIFFUSION PROBLEM)
C KEKKKRKEKKEAEKAKKKE KR KAKKAER R KX RREA A KK A T AKX A AR AR AR AR ARk hddkhkkk kkiX

DO 105 J=1,M1

DO 105 I=1,L1

AC(1,J)=0.D0

AE(I,J)=0.DO

ANE(I,J)=0.D0 . .

AN(1,J)=0.DO ) N

AW(I,J)=0.,DO

ASW(I,J)=0.D0

AS(I,J)=0,D0O : -
105 ACON(I,J)=0.DO

IF (NF,NE.3) GOTO 107

DO 108 J=1,Mi

DO 108 I=1,L1

CVMASS(I,J)=0.DO . .

108 CVAREA(I ,J)=0.DO

107 DO 120 NUME=1,2 . ,
o ,
C SPECIFICATION OF THE DENSITY, GAMMA AND SOURCE TERMS
C

NFS=NF

CALL DENSE

CALL GAMSOR

DO 130 I=1,L2

DO 130 J=1,M2

RHOE=RHO(I,J) ,

GAME=GAM(1I,J)

o
C ASSIGN INDICES FOR EACH KIND OF TRIANGLE
C . .
IP1=1I+1 )
JP1=J+1
IE(1)=1
JE(1)=yg

IF (NUME.NE.1) GOTO 140
C *hkkkx

C TYPE 1
C AAKXkkk*k
IE(2)=1IP1 .
(2)=g .
1 )=1IP1 , . -
JE(3)=JP1
GOTO 150
C * KKk kRr
C TYPE 2
C * % K k%X
140 IE(2)=IP1 \\~
JE(2)=JP1
IE(3)=I !
JE(3)=JP1
o
C COMPUTE THE COORDINATES OF ORIGIN O
o

150 X0=(X(IE(1),JE(1))+X(IE(2),JE(2) )+x(1E(3),JE(3)))/3.D0
YO=(Y(IE(1),JE(1))+Y(IE(2),JE(2))+Y(IE(3),JE(3)))/3.DO

At e O . AP AL Lo o e Sk

s




i

C

C SHIFT (ELEMENT) COORDS TO O

C
DO 160 N=1,3
XE(N)=X(IE(N),JE(N))-XO
YE(N)=Y(IE(N),JE(N))—YO

g ASSIGN VALUES FOR Z FOR THE CASE OF PURE DIFFUSION

sso XI(N)=XE(N)

g AVERAGE VELOCITY COMPONENTS IN ELEMENT

‘ UAV=(F(IE(1),JE(1),1)+F(IE(2),JE(2),1)+F (1E(
VavV=(F(IE(1),JE(1),2)+F(IE(2),JE(2),2)+F (IE(

g AREA OF ELEMENT (VOLUME WITH UNIT DEPTH)/3.D0

EVOL=DABS ( XE(1) *YE(2) +XE(2) *YE(3) +XE(3 ) *YE(1)

1-XE(1)*YE(3)-XE(2)*YE(1)-XE(3)*YE(2))/6.D0

RHODDZ=RHOE/DZ*EVOL
RS=-EVOL*SP(I,J)
ASC=EVOL*SC(1,J)

IF (NF.NE.3) GOTO 161
DO 162 N=1,3

CVAREA(IE(N),JE(N))=CVAREA(IE(N), JE(N) ) +EVOL
162 CVMASS(IE(N),JE(N))=CVMASS(IE(N), JE(N) ) +EVOL*RHOE

C
C AVERAGE VELOCITY IN ELEMENT
C

161 AVEL=DSQRT (UAV* * 2+VAV* *2)
C

C ELEMENT "PECLET NUMBER"

C

FAC=RHOE*AVEL/GAME
IF (FAC .LE. 1.D-15) GOTO 170

C

C SPIN COORDS

C -,
COSA=UAV/AVEL
SINA=VAV/AVEL —
DO 180 N=1,3
XT=XE(N)
YT=YE (N)

XE(N)=XT*COSA+YT*SINA
YE(N)=YT*COSA~-XT*SINA

, UE(N)=F(IE(N),JE(N),1) *COSA+F (IE(N) ,JE(N) ,2)*SLNA _
180 VE(N)=F(IE(N),JE(N),2)*COSA-F (IE(N),JE(N),1)*SINA

XMAX=DMAX1 (XE(1) ,XE(2) ,XE(3))
DO 190 N=1,3

190 XXP(N)=DEXP(FAC* (XE(N) —-XMAX))
XPO=DEXP(-FAC*XMAX)

C

C EXPONENTIAL FOR MIDDLE POINTS

C
XPM(1)=DSQRT(XXP ( 2)*XXP (3))
XPM(2)=DSQRT(XXP ( 1)*XXP (3))
XPM( 3)=DSQRT(XXP ( 1)*xxXP(2))
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C

C CALCULATE 2 (XI) AT NODES,MIDDLE AND HALF POINTS

( C

200
170
C
C
C

a

s NeXKe!

C
C
C

\ 210

C
C
C

oXeNoNeXeXe!

c
( C
‘ C

PNE————— - U S SRS S

DO 200 N=1,3
XI(N)=(xXxXP(N)-1.D0)/FAC
XIM(N)=(XPM(N)-1.D0)/FAC
XIH(N)=(DSQRT(XPM(N)*XPO)~-1.D0)/FAC
CONTINUE

DETERMI NANT
DET=XI(1)*YE(2)+XI(2)*YE(3)+XI(3)*YE(1)
1 -XI(1)*YE(3)~-XI(2)*YE(1)-XI(3)*YE(2)
FAC=-GAME/DET

X~Y COORDS FOR MIDDLE POINTS

XM(1)=(XE(2)+XE(3))/2.DO0O
¥M(1)=(YE(2)+YE(3))/2.D0O
XM(2)=(XE(1)+XE(3))/2.D0O
¥M(2)=(YE(1)+YE(3))/2.D0O
XM(3)=(XE(1)+XE(2))/2.DO0O
YM(3)=(YE(1)+YE(2))/2.DO
YMUL(1)=YE(2)-YE(3)
YMUL(2)=YE(3)-YE(1)
YMUL (3)=YE(1)-YE(2)
XIMUL(1)=xI (2)~XI (3)
XIMUL(2)=XI (3)-XI (1)
XIMUL(3)=xI (1)-X1I(2)

CONDUCTION PART OF THE COEFFICIENTS (A)

DO 210 NN=1,3
DO 210 N=1, 3

CC(NN,N)=FAC*(YM(N)*YMUL (NN ) +XM(N) *XIMUL ( NN) )

TEST ELEMENT "PECLET NUMBER"

FAC=RHOE*AVEL/GAME
IF (FAC .LE. 1,D-15) GOTO 220

CALCULATE THE CONVECTION PART

VELOCITIES COMPONENT (SPUN) AT MIDDLE POINTS

UM(1)=(UE(2)+UE(3),)/2.DO
vM(1)=(VE(2)+VE(3))/2.DO
UM(2)=(UE(1)+UE(3))/2.DO
VM(2)=(VE(1)+VE(3))/2.DO
T UM(3)=(UE(1)+UE(2))/2.DO
VM(3)=(VE(1)+VE(2))/2.DO

CALCULATE FO/U (ALSO = GO/V)

FO(1)=XI(2)*YE(3)~-X1(3)*YE(2)
FO(2)=XI(3)*YE(1)~XI(1)*YE(3)
FO(3)=XI(1)*YE(2)-XI(2)*¥E(1)
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RDDET=RHOE /DET

DO 230 N=t,3

UH=(UM(N)+AVEL)/2.D0

VH=VM(N)/2.DO

YH=YM(N)/2.DO

UXIAV=( (UM(N)-AVEL ) *XIM(N)+4 ,DO* (UH-AVEL) *XIH(N) ) /6.DO
VXIAV= (VM(N)*XIM(N)+4 ,DO*VH*XIH(N))/6.DO

UYAV= (UM(N)* YM(N)+4 ,DO*UH*YH) /6.D0

VYAV=(VM(N)*YM(N)+4 ,DO*VH*YH) /6 .DO

DO 230 NN=1,3 .
FAV=UH*FO(NN ) -UYAV*XIMUL (NN) +UXIAV* YMUL(NN)
GAV=VH*FO(NN ) -VYAV*XIMUL (NN) +VXIAV* YMUL(NN)

230 CC(NN,N)=RDDET* (YM(N)*FAV-XM(N) *GAV)+CC (NN ,N)
C

C I E X E E 2 EE SR RS L R &S RTE R 4

C BOUNDARY CONTRI BUTIONS

C KA AR KEAAAXARAAA A AAAkA Lk X ’

C THESE ARE REMOVED SINCE THEY ARE ZERO IN THE CASE OF DUCT FLOWS
C WITHOUT LEAKAGE

220 IF (NUME.NE.1) GOTO 240

C KEKARIEEAERAKAAREA R ARRRAKX X AR AAA T RAKR AR A KRR A%

C GENERAL ASSEMBLY FOR TRIANGLE OF TYPE 1

c AAKXAKKXRKEAAARKREAAKKRRA A RREkkAkARkhkkhkARKkRk%k %k

C WrT (I,J)

AC(I,J)=AC(1I,J)+RS+CC(2,3)+CC(3,3)-CcC(2,2)-CC(3,2)
1 +RHODDZ*WU(I,J)
AE(1,J)=AE(1,J)+cc(2,3)-CC(2,2)
ANE(I,J)=ANE(I,J)+CC(3,3)-CC(3,2)
ACON(I,J)=ACON(I,J)+ASC+RHODDZ*WU(I,J)*FU(I,J,NF)
C WRT (I+t1,J)
AC(IP1,J)=AC(IP1,J)+RS+CC(1,1)+CC(3,1)-cc(1,3)-CC(3,3)
1 +RHODDZ*WU(IP1,J)
AN(IP1,J)=AN(IP1,J)+CC(3,1)-CC(3,3)
AW(IP1,J)=AW(IP1,J)+CC(1,1)-CcC(1,3)
ACON(IP1,J)=ACON(IP1,J)+ASC+RHODDZ*WU(IP1,J)*FU(IP1,J,NF)
C WRT (I+1,J+1)
AC(IP1,JP1)=AC(IP1,JP1)+RS+CC(1,2)+CC(2,2)-CC(1,1)-CcC(2,1)
1 +RHODDZ*WU(IP1,JP1)
ASW(IP1,JP1)=ASW(IP1,JP1)+CC(1,2)-CC(1,1)
AS(IPt,JP1)=AS(IP1,JP1)+CC(2,2)-CC(2,1)
ACON(IP1,JP1)=ACON(IP1,JP1)+ASC+RHODDZ*WU(IP1,JP1)*FU(IP1,JP1,NF)
GOTO 130

khkkhhhkdkhhhkhhkhhhhkhhhhkhhhhkhkhkAXhkhkhkxhkkkhkk

GENERAL ASSEMBLY FOR TRIANGLE OF TYPE 2
AAKRAAKEAAAARAAEAARARAKA A AR AA AR RAA A A AN KAA X
WRT (I,J)
40 AC(1,J)=AC(I,J)+RS+CC(2,3)+CC(3,3)-cC(2,2)~-CC(3,2)
1 +RHODDZ*WU(I,J)
ANE(I,J)=ANE(I,J)+CC(2,3)-CC(2,2)
AN(I,J)=AN(I,J)+CC(3,3)-CC(3,2)
ACON(I,J)=ACON(I,J)+ASC+RHODDZ*WU(I,J)*FU(I,J,NF)
C WRT (I+1,J+1)
AC(1P1,JP1)=AC(IP1,JP1)+RS+CC(1,1)+CC(3,1)-CC(1,3)-CC(3,3)
1 +RHODDZ*WU(IP1,JP1)
AW(IP1,JP1)=AW(IP1,JP1)+CC(3,1)-CC(3,3)
ASW(IP1,JP!)=ASW(IP1,JP1)+CC(1,1)~-CcC(1,3)
ACON(IP1,JP1)=ACON(IP1,JP1)+ASC+RHODDZ*WU(IP1,JP1)*FU(IP1,JP1,NF)
C WRT (I,J+1)

NOOOO
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AC(I,JP1)=AC(I,JP1)+RS+CC(1,2)+CC(2,2)-CC(1,1)~CC(2,1)
1 +RHODDZ*WU(I ,JP1)
AS(1,JP1)=AS(I,JP1)+CC(1,2)-CC(1,1)
AE(I,JP1)=AE(I,JP1)+CC(2,2)-CC(2,1)
ACON(I,JP1)=ACON(I,JP1)+ASC+RHODDZ*WU(I,JP1)*FU(I,JP1,NF)
130 CONTINUE
120  CONTINUE
C AhkkkhkhkRhkkkkkkkkkk

C UNDER RELAXATION
C khhkhkhkhkhkkhkhhhkhkik

DO 260 J=1,MI

DO 260 I=1,LI

AC(1,3)=AC(1,J)/RELAX(NF) .
260  ACON(I,J)=ACON(I,J)+AC(I,J)*(1.DO-RELAX(NF))*F(I,J,NF)

IF (NF-2) 300,400,500

C UHAT COMPUTATION

(e e e e e e ———— e

C BOUNDARY POINTS
C
300 UHAT(1,1)=(AE(1,1)*U(2,1)+ANE(1,1)*U(2,2)+AN(1,1)*U(1,2)
1 +ACON(1,1))/aC(1,1)
UHAT(L1,1)=(AN(L1,1)*U(LY, 2)+AW(L1,1)*0U(L2,1)
1 +ACON(L1,1))/AC(L1, 1)
UHAT(L1,M1)=(AW(L1,M1)*U(L2,M1)+ASW(L1 ,M1)*U(L2,M2)
1 +AS(Lty,M1)*U(L1,M2)+ACON(L1,M1))/AC(L1,M1)
UHAT(1,M1)=(AS(1,M1)*U(1,M2)+AE(1 ,M1)*U(2,M1)
1 +ACON(1,M1))/AC(1,M1)
DO 310 I=2,L2 -
IP1=I+1
IMI=1I-1
UHAT(I,1)=(AE(I,1)*U(IP1,1)+ANE(I,1)*U(IP1,2)
1 +AN(I,1)*U(1,2)+AW(I ,1)*U(IM1,1)+ACON(I,1))/AC(I,1)
310  UHAT(I,M1)=(AW(I,M1)*U(IM1,M1)+ASW(I ,M1)*U(IMI1,M2)
1 +AS(I,M1)*U(1I ,M2)+AE(I,M1)*U(IP1,M1)+ACON(I M1))/AC(I, M1)
DO 320 J=2,M2
JP1=J+1
JM1=3-1
UHAT(1,J3)=(AS(1,3)*U(1,IJM1)+AE(1,J)*U(2,J)+ANE(1,J)*U(2,JP1)
1 +AN(1,3)*U(1,JP1)+ACON(1,J))/AC(1,J)
320 UHAT(L1,J)=(AN(L1,J)*U(L1,JP1)+AW(L1,J)*U(L2,J)
1 +ASW(L1,J)*U(L2,IM1)+AS(L1,J)*U(L1,JM1)+ACON(L1,J))/AC(L1,J)

\ ,
INTERNAL POINTS ’

DO 330 J=2,M2,2
JP1=J+1

JM1=J-1

DO 330 I=2,L2

IP1=1+1

IM1=1-1
UHAT(I,J)=(AE(I,J)*U(IP1,J)+ANE(I,J)*U(IP1,JP1) -
1 +AN(I,J)*U0(1,JP1)+AW(I ,J)*U(IM1,J)

2 +ASW(I,J)*U(IM1,JM1)+AS(I,J)*U(I,IM1)

3 +ACON(I,J))/AC(1,J)

330 CONTINUE
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DO 340 J=3,M3,2
JP1=J+1
IM1=J-1
DO 340 I=2,L2,2
LIP1=I+1
IMI=1-1
UHAT(I,J)=(AE(I,J)*U(IP1,J)+ANE(I,J)*U(IP1,JP1)
1 +AN(I,3)*U(I,JP1)+AW(I,J)*U(IM1,J)
2 +ASW(I,J)*U(IM1,JIM1)+AS(I,J)*U(1,IM1)
3 +ACON(I,J))/Ac(1,J)
340 CONTINUE
DO 350 J=1,M1
DO 350 I=1,L1
350 ACU(1,J)=acC(1,J)
NFS=1 ,
CALL BTSVEL
WRITE(8) ASTORE

GOTO 100
C _______________________________________________________________________
C VHAT COMPUTATION
C _______________________________________________________________________
c
C BOUNDARY POINTS
C ,
400 VHAT(1,1)=(AE(1,1)*V(2,1)+ANE(1,1)*V(2,2)+AN(1,1)*V(1,2)
1 +ACON(1,1))/AC(1,1)
VHAT(L1,1)=(AN(L1,1)*V(L1,2)+AW(L1,1)*V(L2,1)
1 +ACON(L1,1))/AC(L1,1)

VHAT(L1,M1)=(AW(L1,M1)*V(L2,M1)+ASW(L1,M1)*V(L2,M2)
1t +AS(L1,M1)*V(L1,M2)+ACON(L1,M1)) /AC(L1,M1)
VHAT(1,M1)=(AS(1 ,M1)*V (1 ,M2)+AE(1,M1)*V(2,M1)
1 +ACON(1,M1))/AC(1,M1)
DO 410 I=2,L2
IP1=I+1
IMi=I-1
VHAT(I,1)=(AE(I,1)*V(IP1,1)+ANE(I,1)*V(IP1,2)
1 +AN(I,1)*V(I,2)+AW(I,1)*V(IM1,1)+ACON(I,1))/AC(I,1)
410 VHAT(I,M1)=(AW(I M1)*V(IMI,M1)+ASW(I M1 )*V(IM1 ,M2)
1 +AS(I,M1)*V(I ,M2)+AE(I ,M1)*V(IP1,M1)+ACON(I ,M1))/AC(I, M1)
DO 420 J=2,M2
JP1=J+1
JIM1=J-1
VHAT(1,J)=(AS(1,J)*v(1,IM1)+AE(1,J)*V(2,J)+ANE(1,J)*V(2,JP1)
1 +AN(1,J)*V(1,JP1)+ACON(1,J))/AC(1,J)
420 VHAT(L1,J3)=(AN(L1,J)*V(L1,JP1)+AW(L1,J)*V(L2,J)
1 +ASW(L1,J)*V(L2,JM1)+AS(L1,J)*V(L1,JM1)+ACON(L1,J)) /AC(L1,J)

C

C INTERNAL POINTS

C .
DO 430 J=2,M2,2
JP1=J+1
IM1=J-1
DO 430 I=2,L2
IP1=1+1
IMI=I-1

VHAT(I,J)=(AE(I,J)*V(IP1,J)+ANE(I,J)*V(IP1,JP1)
1 +AN(I,J)*V(I,JP1)+AW(I ,J)*V(IM1,J)
2 +ASW(I,J)*V(IM1,JIM1)+AS(I,J)*V(I b JM1)
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3 +ACON(I,J))/Ac(1,J)
430 CONTINUE

5’ DO 440 J=3,M3,2
% JP1=J+1
JM1=J~1
DO 440 I=2,L2,2
IPI=I+1
IMI=I-1 '
VHAT(I ,J)=(AE(I,J)*V(IP1,J)+ANE(I,J)*V(IP1,JP1)
1 +AN(I ,J)*V(I,JP1)+AW(I ,J)*V(IM1,J)
2 +ASW(I,J)*V(IM1,JM1)+AS(I,J)*V(I,JM1)
3 +ACON(I,J))/AC(1,J)
440  CONTINUE
DO 450 J=1,M1
DO 450 I=1,L1
450 ACV(I,J)=AC(I,J)
NFS=2
CALL BTSVEL
WRITE(8) ASTORE
C 2 R S EEFEI X S XSS ERELEE E X REEE
C COMPUTE THE PRESSURE FIELD
C AKX KKERAkAXKrkhkAhkRkkkkkkkkik
CALL PRES i _
C KKK AKAKAAEKAEAKRKEKRAAKR R KRRk XXk dk
C CALCULATE THE VELOCITIES U AND V
C (32 R XSS 2 F F E XSRS AT LR EEEESE X R LT
REWIND 8
DO 1000 NFV=1,2
IF (,NOT.LSOLVE(NFV))GOTO 1000
READ(8) ASTORE
DO 1010 JP=1,MP2
JPP1=JP+1
J=2*JP-1
JP1=J+1
JP2=J+2
DO 1010 IP=1,LP2
IPPI=IP+1
I=2*%IP-1
IP1=1+1
IP2=1+2 :
PGRAD1=DIT1 (IP,JP,NFV)*P (IP,JP)+D2T1(IP,JP,NFV)*P(IPP1,JP)
1 +D3T1(IP,JP,NFV)*P(IPP1,JPP1)
PGRAD2=D1T2(IP,JP,NFV)*P (IP,JP)+D2T2(1P,JP,NFV)*P(IPP1,JPP1)
1t +D3T2(IP,JP,NFV)*P(IP,JPP1)
ACON(I,J)=ACON(I,J)+PGRAD1+PGRAD2
ACON(IP1,J)=ACON(IP1,J)+3.DO*PGRAD1
ACON(IP2,J)=ACON(IP2,J)+PGRADI
ACON(I,JP1)=ACON(I ,JP1)+3.DO*PGRAD2
ACON(IP1,JP1)=ACON(IP1,JP1)+3.D0*(PGRADI+PGRAD2)
ACON(IP2,JP1)=ACON{IP2,JP1)+3,DO*PGRAD!
ACON(I,JP2)=ACON(I,JP2)+PGRAD2
ACON(IP1,JP2)=ACON(IP1,JP2)+3.DO*PGRAD2
1010 ACON(IP2,JP2)=ACON(IP2,JP2)+PGRAD!+PGRAD2
( NFS=NFV
CALL BOUND
CALL SOLVE
1000 CONTINUE
C

P P e




PRESSURE CORRECTION COMPUTATION

CALL PCORR

C
C
C -
C CORRECTION OF VELOCITIES
C
C CORRECTION OF U
C
IF (.NOT.LSOLVE(1)) GOTO 2100
DO 2010 JP=1,MP2
JPP1=JP+1
J=2*JpP-1
JP1=J+1
JP2=J+2
DO 2010 IP=1,LP2
IPP1=IP+1
I=2%I1p-1
IP1=I+1
IP2=1+2
PGRAD1=DIT1(IP,JP, 1)*PC(IP,JP)+D2T1(IP,JP, 1)*PC(IPP],JP)
1 +D3T1(1IP,JP,1)*PC(IPP1,JPP1)
PGRAD2=DI1T2(1P,JP, 1 )*PC(IP,JP)+D2T2(1IP,JP, 1)*PC(IPP!,JPPI1)
1 +D3T2(1IP,JP,1)*PC(1IP,JPP1)
U(1,3)=0(1,J)+(PGRAD1+PGRAD2)/ACU(I,J)
u(1pt1,J3)=U(1P1,J)+3.D0O*PGRADI/ACU(IP1,J)
Uu(1pP2,J3)=U(1P2,J)+PGRAD1 /ACU(IP2,J)
Uu(1,JpP1)=U(1,JP1)+3.DO*PGRAD2/ACU(I,JP1)
Uu(1P1,JP1)=0(IP1,JP1)+3,DO*(PGRADI+PGRAD2) /ACU(IP1,JP1)
U(IP2,JP1)=U(IP2,JP1)+3,DO*PGRADI/ACU(IP2,JP1)
U(1,JpP2)=0(1I,JP2)+PGRAD2/ACU(I ,JP2)
U(IP1,JP2)=U(IP1,JP2)+3,DO*PGRAD2/ACU(IP1,JP2)
2010 U(1P2,JP2)=U(IP2,JP2)+(PGRADI+PGRAD2)/ACU(IP2,JP2)
C .
C CORRECTION OF V
o
2100 DO 2110 JP=1,MP2
JPP1=JP+1
=2%Jp-1
JP1=J+1
JP2=J+2
DO 2110 Ip=1,LP2
IPPI=IP+1
I=2%Ip-1
IP1=I+1
IP2=I+2
PGRAD1=D1T1(IP,JP,2)*PC(IP,JP)+D2T1 (1P, ,JP, 2)*pC(IPP1,JP)
1 +D3T1(IP,JP,2 *PC(IPP1 JPP1)
PGRAD2= D1T2(IP JP, 2)*PC(IP JP)+D2T2(1IP,JP,2)*PC(IPPI,JPPI1)
1 +D3T2(IP,JP,2)*PC(IP,JPP1)
v(I1,3)=Vv(1,J)+(PGRAD1+PGRAD2)/ACV(I,J)
v(1P1,J)=V(IP1,J)+3.DO*PGRADI/ACV(IP1,J)
v(IP2,J)=V(IP2,J)+PGRADI/ACV(IP2,J)
v(I,JP1)=V(1,JP1)+3.DO*PGRAD2/ACV(I ,JP1)
v{(IP1,JP1)=V(IP1,JP1)+3.DO*(PGRADI+PGRAD2) /ACV(IP1,JP1)
Vv(I1P2,JP1)=V(IP2,JP1)+3.DO*PGRADI/ACV(IP2,JP1)
v(I, JPZ)-V(I JP2)+PGRAD2/ACV(I , JP2)
v(IP1 JP2)'~V(IP1 JP2)+3, DO*PGRADZ/ACV(IP1 JPZ)
2110 v(1Ip2, 'JP2)= v(1ip2, JP2)+(PGRAD1+PGRAD2)/ACV(IP2 Jp2)
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C E3
C ** SPECIAL PROCEDURE FOR SYMMETRY LINE
C
IF (IPROB.EQ.1) GOTO 2114
DO 2112 I=2,L1
2112 V(I ,M1)=U(I,M1)*TANPSI
C ** TESTING **
2114 CONTINUE
NFS=1
CALL PTVEL
NFS=2
CALL PTVEL
GOTO 100
o
500 IF (NF.NE.3) GOTO 650

o
C WHAT COMPUTATION
c ’ .
C BOUNDARY POINTS
o
WHAT(1,1)=(AE(1,1)*W(2,1)+ANE(1,1)*W(2,2)+AN(1,1)*W(1,2)
1 +ACON(1,1))/AC(1,1)
WHAT(L1, 1)=(AN(L1,1)*W(L1,2)+AW(L1, 1) *W(L2,1)
1 +ACON(L1,1))/AC(L1,1)
WHAT(L1 ,Mt)=(AW(L1 ,M1)*W(L2,M1)+ASW(L1,M1)}*W(L2,M2)
1 +AS(L1,MI)*W(L1,M2)+ACON(L1,M1))/AC(L1,M1)
WHAT(1,M1)=(AS(1,M1)*W(1,M2)+AE{(1,M1)*W(2,M1)
1 +ACON(1,M1))/AC(1,M1)
DO 510 I=2,L2
IP1=I+1
IM1=I-1
WHAT(I,1)=(AE(I,1)*W(IP1, 1)+ANE(I,1)*W(IP1,2)
1 +AN(I,1)*W(I,2)+aW(I,1)*W(IM1,1)+ACON(I,1))/AC(TI, 1)
510  WHAT(I,M1)=(AW(I,M1)*W(IM1 ,M1)+ASW(I M1)*W(IMI M2)
1 +AS(I,M1)*W(I ,M2)+AE(I ,M1)*W(IP1,M1)+ACON(I M1))/AC(I, M1)
DO 520 J=2,M2
JP1=J+1
JM1=J-1
WHAT(1,J)=(AS(1,3)*W(1,IJM1)+AE(1,J)*W(2,J)+ANE(1,J)*W(2,JP1)
1 +AN(1,J)*W(1,JP1)+ACON(1,J))/AC(1,3)
520 WHAT(L1,J)=(AN(L1,J3)*W(L1,JP1)+AW(L1,J)*W(L2,J)
1 +ASW(L1,J)*W(L2,JM1)+AS(L1,J) *W(L1,JM1)+ACON(L1,J))/AC(L1,J)
N~

=

INTERNAL POINTS

(eEe e

DO 530 J=2,M2
JP1=J+1
JIM1=J-1 -
DO 530 I=2,L2 . \
IP1=I+1 \
IM1=I-1
WHAT(I,J)=(AE(I,J)*W(IP1,J)+ANE(I,J)*W(IP1,6JP1)
1 +AN(I,J)*W(I,JP1)+AW(I,J)*W(IM1,J)
2 +ASW(I,J)*W(IM1,IM1)+AS(I ,J)*W(I,IM1)
3 +ACON(1,J))/AcC(1,J)

530 CONTINUE
NF S=NF
CALL BTSVEL
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C COMPUTATION OF DP/DZ

C

580

585

590

CALMF=0.DO
CALM=0.DO

DO 580 J=1,Mt

DO 580 I=1,L!I

CALMF=CALMF+CVMASS(I ,J)*WHAT(I,J)
CALM=CALM+CVMASS(I,J)*CVAREA(1,J)/AC(1,J)
DPDZ=-(SPMF-CALMF)/CALM

WRITE(6,585) DPDZ

FORMAT(/3X,'DP/DZ CALCULATED = ', 1PD15.,7)
DO 590 J=1,M!

DO 590 I=1,L!I
ACON(I,J)=ACON(I,J)-DPDZ*CVAREA(I,bJ)

C (NOTE THAT THE INCONSISTENCY IN TREATING ACON BY HAVING CVAREA=0
C FOR SPECIFIED W B.C. IS OVERCOMED IN THE CALLING TO BOUND)

c

600

[eXeXesXe]

610

650

100

CALL BOUND
CALL SOLVE

CALMF=0.DO -~
DO 600 J=1,MI

DO 600 I=1,LI!

CALMF=CALMF+CVMASS(I,J)*W(I,J)

DPDZC=- (SPMF-CALMF ) /CALM

CORRECTION OF W

DO 610 J=1,Ml
DO 610 I=1,L1

W(1,J)=W(I,J)-CVAREA(I, J)*DPDZC/AC(I J)
GOTO 100

NFS=NF

CALL BOUND

CALL SOLVE

CONTINUE

RETURN .

END

C***********************************************************************

SUBROUTINE PAPC

CrAAXTA AKX T IAKKARAKI AKX I XAKRARAXKAA A KA R KA AIAARA KA AL A AIAA A KA AR AR AR A XA AL A%

IMPLICIT REAL*8(A-H,0-2)

LOGICAL sLSOLVE,LCPRIN, LPRINT ,LPPRIN

COMMON ASTORE(3528),X(21,21),¥Y(21,21), F(21 21,7),FU(21,21,17),

1 FP(11,11,2),RHO(21,21),GAM(21, 21)

2 SC(21,21),SP(21,21),ACU(21,21) UHAT(ZI,ZI),

3 D1T1(10,10,2),D2T1(10,10,2),D3T1(10,10,2),

4 piT2(10,10,2),D2T2(10,10,2),D3T2(10,10,2)

COMMON /THRD/Z,DZ,DPDZ,DPDZC,PBAR, SPMF ,WFD,CNUFD(4) ,LSTEP, ISTEP,
! ITMAX,ISTART,IPROB

COMMON /PARM/RELAX(7),PRELAX

COMMON /MONIT/LSOLVE(7),LCPRIN,LPRINT(7),LPPRIN

COMMON /LABEL/TITLE(7) ,HDG(9)

COMMON /INDX/NSWP(7),NPSWP(2),L1,L2,L3,M1,M2,M3, !
1 LP1,LP2,LP3,MP1,MP2,MP3,NFS,NFSMAX,NPS,NUME, IMONIT, LAST,

2 LMID,MMID,LPMID,MPMID, IPREF ,JPREF,ITER,IC(3),JC(3),IDEAL,
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3 IR, IRP1,IRM1,JR,JRP1,JRM!,IPR,IPRP1,IPRP2,IPRM!,IPRM2,JPR,JPRP1,
4 JPRP2,JPRM1!,JPRM2,NITMAX(7) , NPITMX(2)
COMMON /CONV/TOL (7),PTOL(2),DWDES, FCK(3,2),DPDZCK,CHGTOL, CHGCK
COMMON /RODBUN/S,RAD,SDR,WBAR ,FAREA,PERIM,PHY, DH,DHDR, XL, YL, TANPSI
t ,PSI JFPBU4 ,FBU6,FB,FWAV,RHOA,CP1,DK1,DKDCP1,CP2,DK2, DKDCP2,
2 RPOW,XPOW, YPOW,DMUA,REY,QW, TAUW(21),TW,TI

C _______________________________________________________________________
DIMENSION APC(11,11),APE(11,11),APNE(11,11),APN(11,11),
1 APNW(11,11) pr(11,11) APSW(11,11) APS(11 11) APSE( 1,11),
2 APENE(11 11) ,APNNE(11, 11) APWSW(11,11), APssw(11 11) ,APCON(11,11)
DIMENSION U(21,21),v(21,z1),w(21,21),wu(21 21), P(11, 1),PC(11,11),
1 VHAT(21,21),ACV(21,21) ‘ v
EQUIVALENCE (ASTORE(1),APC(1)),(ASTORE(122),APE(1)), (ASTORE(243),
1 APNE (1)), (ASTORE(364) ,APN(1)),(ASTORE(485) ,APNW(1)),
2 (ASTORE(606),APW(1)), (ASTORE( 727),APSW(1)),(ASTORE( 848),
3 APS(1)), (ASTORE( 969) ,APSE(1)),(ASTORE(1090),APENE( 1)),
4 (ASTORE(1211),APNNE(1)),(ASTORE(1332),APWSW(1)),
5 (ASTORE(1453),APSSW(1)), (ASTORE(157&) APCON(1))
EQUIVALENCE (F(1) U(I)),(F( ' 2), v(1)) (F(1,1,3),Ww(1))
- EQUIVALENCE (FU(1,1 3),WU (1))
EQUIVALENCE (FP(1), P(1)) (FP(1,1,2),PC(1))
EQUIVALENCE (Sc(1),VvHAT(1)),(S (1) ACV(1))
C _______________________________________________________________________
DIMENSION AC1(2),AC2(2),AC3(2),FAC(3,2),G(3),CcP(3,3),
1 CpPO(3,3),B(3,3),B0(3,3)
DIMENSION DRWDZ(11,11)
EQUIVALENCE (GAM(1),DRWDZ(1))
DIMENSION C1(3),C2(3),C3(3) "
c _______________________________________________________________________
C khkhkkhkkkkkk
ENTRY PRES
C ok ok kg kKKK K
c .
C INITIALIZE ALL COEFFICIENTS
o

DO 10 JP=1,MP1
DO 10 IP=1,LP1 .
APC(1IP,JP)=0.D0
APE(IP,JP)=0.D0
APNE(IP,JP)=0.DO
APN(IP,JP)=0.D0
APNW(IP,JP)=0.DO
APW(IP,JP)=0.D0
APSW(IP,JP)=0.DO
APS(1P,JP)=0.D0
APSE(IP,JP)=0.D0O
APENE (IP,JP)=0.D0
APNNE (IP,JP)=0.DO
APWSW(IP,JP)=0.D0
APSSW(IP,JP)=0.DO
APCON(1IP,JP)=0,DO
DRWDZ (IP,JP)=0.DO

10 CONTINUE
NUME= 1
DO 110 NUMPE=1,2
IF (NUMPE.EQ.2) CALL DENSE

c )

C BOUNDARY CONTRIBUTIONS
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C (REMOVED FOR THIS VERSION-NO LEAKAGE AND NO OUTFLOW)

C
{ C INTERNAL CONTRIBUTIONS
' C

50 DO 120 JP=1,MP2
JPP1=JP+1
JPM1=JP~1
J=2*JpP~1
JP1=J+1
JP2=J+2
DO 120 IP=1,LP2 ’
IPP1=IP+1
IPMi=IP-1 '
I=2%1p—1
IP1=I+1
IP2=1+2
IF (NUMPE.EQ.2) GOTO 130 .

C .

C TYPE 1 PRELIMINARIES .o
I11=IP2
I12=1P1
I13=IP1
J1=JP1
J2=JP1 u
J3=J -
DET=X(I1,J1)*Y(12,J32)+x(I2,J2)*Y(13,J3)+X(13,33)*Y(11,J1)
1 -Y(11,J1)*x(12,J2)-Y(12,J2)*X(13,J3)-¥(13,J3)*X(11,J1)
AREA=DABS(DET)/G.DO \
RHOE=RHO(IP1,J) : )
RHOD2=RHOE*0 . 5D0 t
DRWDZ(IP,JP)=DRWDZ(IP,JP)+(WU(I,J)-W(I,J)+(WU(IP1,J)-W(IP1,J)
1 +WU(IP1,JP1)-W(IP1,JP1))*1,5D0)*RHOE*AREA /D2
DRWDZ(IPP1,JP)=DRWDZ(IPP1,JP)+ (WU(IP2,J)-W(IP2,J)
1 +(WU(IP2,JP1)-W(IP2,JP1)+WU(IP1,J)~-W(IP1,J))*1.5D0)
2 *RHOE*AREA/DZ :
DRWDZ(IPP1!,JPP1)=DRWDZ(IPP!,JPP1)+(WU(IP2,JP2)-W(IP2,JP2)
1 +(WU(IP1,JP1)-W(IP1,JP1)+WU(IP2,JP1)-W(IP2,JP1))*1,5D0)
2 *RHOE*AREA/DZ
GOTO 140.

C

C TYPE 2 PRELIMINARIES

C

130 11=IP1
1271
1?2191
J1=JP2
J2=JP1
J3=JP1

DET=X(I1,J1)*Y(12,32)+X(12,J2)*Y(13,J3)+X(13,J3)*Y(11,J1)
1 ~Y(I1,J31)*X(12,32)-Y(12,J2)*X(13,33)-Y(13,J3)*X(11,31)
AREA=DABS(DET)/6.DO
RHOE=RHO(I,JP1)
RHOD2=RHOE*0 . 5D0
( DRWDZ(IP,JP)=DRWDZ(IP,JP)+(WU(I,J)-w(I,J)+(WU(IP1,JP1) W(IP1
- 1 +WU(1, JPt)—W(I Jp1))*1 5DO)*RHOE*AREA/DZ
DRWDZ(IPP1,JPP1)=DRWDZ(IPPI,JPP1)+(WU(IP2,JP2)-W(IPZ,JP2)
1 +(WU(I1P1,JP2)-W(IP1,JP2)+WU(IP1,JP1)=W(IP1,JP1))*1,5D0)
2 *RHOE*AREA/DZ

JP1)
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DRWDZ(IP,JPP1)=DRWDZ (IP,JPP1)+(WU(l,JP2)-W(I,JP2)
1 +(WU(1,JP1)-W(I,JP1)+WU(IP1,JP2)-W(IP1,JP2))*1,.5D0)
2 *RHOE*AREA/DZ

140 AC1{(1)=ACU(11,J1)
AC2(1)=ACU(12,J2)
"AC3(1)=ACU(13,J3)
AC1(2)=ACV(I1,d1)

AC2(2)=ACV(I2,J2) _
AC3(2)=ACV(I3,J3) - ‘, :
YO=(¥(I1,J1)+¥(12,32)+¥(13,J3))/3.D0 . _
FAC({1,1)=(¥(11,J1)-YO)*RHOD2 - 7 : .

FAC(2,1)=(¥(12,J2)-YO)*RHOD2
FAC(3,1)=(Y(13,J3)-Y0)*RHOD2

XO={(X(11,J1)+X(12,32)+X(13,33))/3.D0

FAC(1,2)=(X0-X(I1,J1))*RHOD2 .
FAC(2,2)=(X0-X(I12,J2))*RHOD2 '
FAC(3,2)=(X0-X(13,J3))*RHOD2 :

C

C. CALCULATION OF G - - e

c~ :
G(1)=(FAC(1,1)*(4.DO*UHAT(I1,J1)+UHAT(I2,J2)+UHAT(13,33))
1-+FAC(1,2)*(4 .DO*VHAT(I1,J1)+VHAT(I2,J2)+VHAT(I13,J3)))/3.D0
G(2)=(FAC(2,1)*(UHAT(I1,J1)+4 . DO*UHAT(I2,J2)+UHAT(I3,J3))
1 +FAC(2,2)*(VHAT(11,J1)+4 . DO*VHAT(12,J2)+VHAT(I13,J3)))/3.D0
G(3)=(FAC(3,1)*(UHAT(I1,J1)+UHAT(12,J2)+4,DO*UHAT(1I3,33))
1 +FAC(3,2)*(VHAT(11,J1)+VHAT(12,J2)+4 .DO*VHAT(I13,J3)))/3.D0

C :

C INITIALIZE THE MATRICES B AND BO

C

®

DO 150 JJ=1,3
DO 150 1I=1,3
B(II,JJ)=0.DO
150 BO(II,JJ)=0.DO
C
C CALCULATION OF THE COEFFICIENTS D (FOR U AND FOR V)
C
DO 160 NFV=1,2 o ‘
IF (NUMPE.EQ.2) GOTO 170 s

TRIANGLE OF TYPE 1

[oNeXe]

D1=D1T1(IP,JP,NFV)

D2=D2T1(IP,JP, NFV)

D3=D3T1(IP,JP,NFV)

IF (IPP1.EQ.LP1) GOTO 162
Dt1=D2T2(1PP1,JP,NFV)
D12=D1T2(1PP1,JP,NFV)
D13=D3T2(1PP1,JP,NFV) )

GOTO 164 -

e s = e e

RIGHT-HAND SIDE BOUNDARY

- M0

62 D11=0.D0 .
D12=0.D0’ 0
D13=0.DO

o
164 D21=D1T2(IP,JP,NFV)

o - -
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D22=Dp3T2(I1P,JP,NFV)
D23=D2T2(I1P,JP,NFV) ~ -
IF (JP.EQ.1) GOTO 166

D31=D3T2 (IP,JPM! ,NFV)
D32=D2T2(IP,JPMI NFV)
D33=D1T2(IP,JPM! NFV)

GOTO 180

BOTTOM SIDE BOUNDARY ' .

- 0000

66 D31=0.DO
D32=0.DO
D33=0.DO
GOTO 180

TRIANGLE OF TYPE 2

- 000

70 D1=DiT2(1IP,JP,NFV)
D2=D2T2(1IP,JP,NFV)
D3=D3T2(IP,JP,NFV)

- IF (JPP1.EQ.MP1).GOTO-172
D11=D3T1 (IP,JPP1,NFV)
D12=D2T1 (IP,JPP1,NFV) -
D13=Di1T1 (IP,JPP1 ,NFV)
GOTO 174

TOP-SIDE BOUNDARY

<

- Q00

72 D11=0.DO
D12=0.DO
D13=0.DO

174 IF (IP.EQ.!1) GOTO 176 S
D21=D2T1 (IPM1,JP,NFV) .

D22=D1T1 (IPM1,JP,NFV) I

D23=D3T1 (IPM1,JP,NFV)

GOTO 178

LEFT-HAND SIDE BOUNDARY
76 D21=0.DO
D22=0.DO
- D23=0.DO
178 D31=Di1T1(1IP,JP,NFV)
D32=D3T1 (IP,JP,NFV)
D33=D2T1 (1P,JP,NFV)

CALCULATION OF CPU AND CPV (BOTH HERE DENOTED BY (CP)

- 0N

80 - Ci1(1)=D1/AC1{(NFV)
C2(1)=(D1+D21) /AC2(NFV)
C3(1)=(D1+D31) /AC3(NFV)
C1(2)=(D2+D12) /AC1(NFV)
C2(2)=D2/AC2(NFV)
C3(2)=(D2+D32) /AC3(NFV)
C1(3)=(D3+D13) /ACI1(NFV)
'c2(3)=(D3+D23) /AC2(NFV)
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C3(3)=D3/AC3(NFV)
ks C
( C ** SPECIAL PROCEDURE FOR TOP SKEWED SYMMETRY LINE
C -
IF (NFV.NE.2 .OR, NUMPE.NE.2 .OR. JP.NE.MP2.0R,IPROB.EQ.1)
1 GOTO 182 -
C3(1)=D1T2(IP,MP2, 1)*TANPSI/AC1(1)
ci(2)=D2T2(1P,MP2, 1) *TANPSI/AC1(1)
C1(3)=D3T2(IP,MP2,1)*TANPSI/AC1(1)
182 DO 184 II=1,3
.CP(1,I1)=4.,DO*C1(II)+C2(II)+C3(I1)
CP(2,I1)=C1(I1)+4,DO*C2(11)+C3(1II)
184 CP(3,I1)=C1(1I1)+C2(I1)+4.D0*C3(I1)
C1{(1)=D11/AC1(NFV)
C2(2)=D22/AC2(NFV)
C3(3)=D33/AC3(NFV)
- CPO(1,1)=4.DO*C1(1) .
CPO(2,1)=C1(1)
CPO(3,1)=C1(1) —
CPO(1,2)=C2(2)
CPO(2,2)=4.D0*C2(2)
. CPO(3,2)=C2(2)
CPO(1,3)=C3(3)
CPO(2,3)=C3(3)
: CPO(3,3)=4.DO*C3(3)

‘C  CALCULATION OF THE COEFFICIENTS B AND BO

DO 180 II=1,3
DO 190 JJ=1,3
@ B(II,JJ)=B(II,JJ)+FAC(II,NFV)*CP(II,JJ) ,
190 BO(11,JJ)=BO(II,JJ)+FAC{II NFV)*CPO(II,JJ)
160 CONTINUE

——— i — ——_———— T " — T —— —— " - ——— .y - — T —— T ——— i —— S = N e e W M W W M G G G a  We -

IF (NUMPE.NE.1) GOTO Eoo
kkk ok kk

C

C TYPE 1
C *kkk%xk
c

WRT (IP,JP)

APC(IP,JP)=APC(IP,JP)+B(2,1)-B(3,1) ~

APE(IP,JP)=APE(IP,JP)+B(3,2)-B(2,2)
APNE(IP,JP)=APNE(IP,JP)+B(3,3)-B(2,3)
APENE(IP,JP)=APENE(IP,JP)+BO(3,1)-B0(2,1)
APN(IP,JP)=APN(IP,JP)+BO(3,2)-BQ(2,2)
APS(IP,JP)=APS(IP,JP)+BO(3,3)-BO(2,3)
APCON(IP,JP)=APCON(IP,JP)+G(3)-G(2)

C WRT (IP+1,JP)
APC(IPP1,JP)=APC(IPP1,JP)+B(3,2)-B(1,2)
APW(IPP1,JP)=APW(IPP1,JP)+B(1,1)~B(3,1)
APN(IPP1,JP)=APN(IPP1,JP)+B(1,3)~B(3,3)

(’ APNE(IPP1,JP)=APNE(IPP1,JP)+BO(1,1)-BO(3,1)

APNW(IPP1,JP)=APNW(IPP1,JP)+BO(1,2)-BO(3,2)
APSW(IPP1,JP)=APSW(IPP1,JP)+BO(1,3)~-BO(3,3)
APCON(IPP1,JP)=APCON(IPP1,JP)+G(1)-G(3) .
C WRT (IP+1,JP+1) :
APC(IPP1,JPP1)=APC(IPP!,JPP1)+B(1,3)-B(2,3)

— m——

T )
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APSW(IPP1,JPP1)=APSW(IPP!,JPP1)+B(2,1)-B(1,1)

APS (IPP1,JPP1)=APS(IPP1,JPP1)+B(2,2)-B(1,2)
APE(IPP1,JPP1)=APE(IPP1,JPP1)+BO(2,1)-B0O(1,1)
APW(IPP1,JPP1)=APW(IPP1,JPP1)+B0O(2,2)-B0O(1,2)
APSSW(IPP1,JPP1)=APSSW(IPP1,JPP1)+B0(2,3)-B0O(1,3)
APCON(IPP1,JPP1)=APCON(IPP1,JPP1)+G(2)-G(1)

GOTO 120 .
c
C |ASSEMBLY FOR TRIANGLE OF TYPE 2
c '

/

C | WRT (IP,JP)

200 APC(IP,JP)=APC(IP,JP)+B(2,1)-B(3,1)

APNE(IP; JP)=APNE(IP,JP)+B(3,2)-B(2,2)
APN(IP,JP)=APN(IP,JP)+B(3,3)-B(2,3).
APNNE(IP, JP)=APNNE(IP,JP)+BO(3,1)~B0(2,1)
APW(IP,JP)=APW(IP,JP)+B0O(3,2)-B0O(2,2)
APE(IP,JP)=APE(IP,JP)+B0O(3,3)-B0O(2,3)
APCON(IP,JP)=APCON(IP,JP)+G(3)~-G(2)

C WRT (1P+1,JP+1)

APC (IPP1,JPP1)=APC(IPP1,JPP1)+B(3,2)-B(1,2)
APSW(IPP1,JPP1)=APSW(IPP1,JPP1)+B(1,1)-B(3,1)
APW(IPP1,JPP1)=APW(IPP1,JPP1)+B(1,3)~B(3,3)

APN (IPP1,JPP1)=APN(IPP1,JPP1)+BO(1,1)-BO(3,1)
APWSW(IPP1,JPP1)=APWSW(IPP1,JPP1)+B0O(1,2)-B0O(3,2)
APS (IPP1,JPP1)=APS(IPP1,JPP1)}+BO(1,3)-B0O(3,3)
APCON(IPP1,JPP1)=APCON(IPP1,JPP1)+G(1)-G(3)

C WRT (IP,JP+1) .
APC(IP,JPP1)=APC(IP,JPP1)+B(1,3)-B(2,3)
APS(IP,JPP1)=APS(IP,JPP1)+B(2,1)=-B(1,1)

APE (IP,JPP1)=APE(IP,JPP1)+B(2,2)-B(1,2)
APNE(IP,JPP1)=APNE(IP,JPP1)+B0O(2,1)-BO(1,1)
APSW(IP,JPP1)=APSW(IP,JPP1)+B0O(2,2)-B0O(1,2)
APSE(IP,JPP1)=APSE(IP,JPP1)+B0O(2,3)-BO(1,3)
APCON(IP,JPP1)=APCON(IP,JPP1)+G(2)-G(1)

120 CONTINUE

110  CONTINUE

WRITE(8) ASTORE,DRWDZ

C
C UNDERRELAXATION OF PRESSURE .

C (ALSO THE TERM DRWDZ IN THE CONTINUITY EQUATION IS ADDED TO APCON)
C

DO 115 JP=1,MP1
DO 115 IP=1,LP1
APC(IP,JP)=APC(IP,JP)/PRELAX
115 APCON(IP,JP)=APCON(IP,JP)+APC(IP,JP)*(1.DO-PRELAX)*P(IP,JP)
" 1 +DRWDZ(IP,JP) '
NPS=1
CALL PBOUND ~
CALL PSOLVE

READ (8). ASTORE,APCON
NUME=2

DO 410 NUMPER=1, 2
NUMPE=3-NUMPER

IF (NUMPE.EQ.1) CALL DENSE
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Cc

BOUNDARY CONTRIBUTIONS
(REMOVED) :

INTERNAL CONTRIBUTIONS

DO 415 JpP=1,MP2
JPP1=JP+1
J=2*Jp-1
JP1=J+1

JP2=J+2

DO 415 IP=1,LP2
IPP1=1IP+1 ‘
I=2*%1Pp~-1
IP1=I+1

IP2=I+2

IF (NUMPE.EQ.2) GOTO 420

TYPE 1 PRELIMINARIES

I1=IP2

I2=1IP1

I13=1P1

J1=JP1

J2=JP1

J3=J
RHOD2=RHO(IP1,J)*0.5D0
GOTO 430

TYPE 2 PRELIMINARIES

I1=1IP1

I2=1

I3=IP1

J1=JP2

J2=JP1

J3=JP1
RHOD2=RHO(I,JP1)*0.5D0

YO=(¥Y(I1,J1)+¥(12,J32)+¥(13,33))/3.D0
FAC(1,1)=(Y(I1,J1)-Y0)*RHOD2
FAC(2,1)=(¥(I2,J2)-Y0)*RHOD2
FAC(3,1)=(¥(13,J3)-Y0)*RHOD2
XO=(X(I1,J1)+X(12,J2)+X(13,J3))/3.DO
FAC(1,2)=(X0-X(11,J1))*RHOD2
FAC(2,2)=(X0~-X(I2,J2))*RHOD2
FAC(3,2)=(X0-X(13,J3))*RHOD2

C CALCULATION OF G

C

1

1

G(1)=(FAC(1,1)*(4.DO*U(I1,J1)+U(12,32)+U(13,33))
+FAC(1,2)*(4.D0*V(I1,J1)+Vv(12,J2)+Vv(13,33)))/3.D0

G(2)=(Fac(2,1)*(u(11,J1)+4,D0*U(12,J32)+U(13,J3))
+FAC(2,2)*(V(I1,J1)+4.DO*V(12,32)+V(13,33)))/3.D0

G(3)=(FAC(3,1)*(u(11,J1)+0(12,J2)+4.D0*U(13,33))
+FAC(3,2)*(Vv(I1,J1)+v(12,J2)+4.,D0*V(13,J3)))/3.D0 .

R it b et e e L L T ———

IF (NUMPE.EQ.2) GOTO 440
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C
. C ASSEMBLY FOR TRIANGLE OF TYPE 1
& C
L APCON(IP,JP)=APCON(IP,JP)+G(3)-G(2)
APCON(IPPt,JP)=APCON(IPP1,JP)+G(1)-G(3)
APCON(IPP1,JPP1)=APCON(IPP1,JPP1)+G(2)-G(1)
GOTO 415
C
C ASSEMBLY FOR TRIANGLE OF TYPE 2
C 3
440  APCON(IP,JP)=APCON(IP,JP)+G(3)-G(2)
\ APCON(IPPt,JPP1)=APCON(IPP1,JPP1)+G(1)-G(3)

APCON(IP,JPP1)=APCON(IP,JPP1)+G(2)-G(1)
415 CONTINUE
410 CONTINUE

NPS=2

CALL PBOUND

CALL PSOLVE

SSUM=0.D0

SMAX=0.D0O

DO 510 JP=1,MP1

DO 510 IP=1,LP1

SOURCE=DABS (APCON(IP,JP))

SSUM=SSUM+SOURCE

SMAX=DMAX1 (SMAX, SOURCE)
510 CONTINUE

SAV=SSUM/DFLOAT(LP1*MP1)

WRITE(6,520) SAV,SMAX
520 FORMAT(//3X,'SAV = ',1PD15.5,//,3X,"'SMAX = ',1PD15,7)

RETURN* N

END '
C***********************************************************************

SUBROUTINE PSOLVE
C***********************************************************************

IMPLICIT REAL*8(A-H,0-2)

LOGICAL, LSOLVE,LCPRIN,LPRINT, LPPRIN

COMMON "ASTORE(3528) ,X(21,21),Y(21,21),F(21,21,7) ,FU(21,21,7),

' 1 FP(11,11,2) ,RHO(21,21) ,GAM(21,21), .

2 SC(21,21),8P(21,21),ACU(21,21),UHAT(21,21),

3 DIT1(10,10,2),D2T1(10,10,2),D3T1(10,10,2), }
4 D1T2(10,10,2),D2T72(10,10,2),D3T2(10,10,2)

COMMON /THRD/Z,DZ,DPDZ,DPDIC, PBAR,SPMF,WFD,CNUFD(4),LSTEP, ISTEP,
1 ITMAX,ISTART,IPROB ,

COMMON /PARM/RELAX(7),PRELAX

COMMON /MONIT/LSOLVE(7),LCPRIN,LPRINT(7),LPPRIN

COMMON /LABEL/TITLE(7),HDG(9)

COMMON /INDX/NSWP(7),NPSWP(2),L1,L2,L3,M1,6M2,M3,

1 LP1,LP2,LP3,MP1,MP2,MP3,NFS,NFSMAX ,NPS, NUME, IMONIT,LAST,
2 LMID,MMID,LPMID,MPMID, I PREF, JPREF,ITER,IC(3),JC(3),IDEAL,
3 IR,IRP1!1,IRM1,JR,JRP1,JRMI1,IPR,IPRP1,IPRP2,IPRM1,I1PRM2,JPR, JPRPI,
4 JPRP2,JPRM1,JPRM2,NITMAX(7),NPITMX(2)

COMMON /CONV/TOL(7) ,PTOL(2),DWDES,FCK(3,2),DPDZCK, CHGTOL,CHGCK

( B COMMON /RODBUN/S,RAD,SDR,WBAR, FAREA, PERIM, PHY,DH, DHDR, XL, YL , TANPSI

1t ,PSI,FBU4,FBU6,FB,FWAV,RHOA,CP1,DK1,DKDCP1,CP2,DK2,DKDCP2,
2 RPOW, XPOW, YPOW,DMUA,REY,QW, TAUW(21),TW,TI

©
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1 APNW(11,11),APW(11,11) APSW(11,11),APS(11,11),APSE(11,11),

2 APENE(11,11) ,APNNE(11,11),APWSW(11,11),APSSW(11,11),APCON(11,11
EQUIVALENCE (ASTORE(1),APC(1)), (ASTORE(122),APE(1)), (ASTORE(243)

1 APNE(1)),(ASTORE(364) ,APN(1)),(ASTORE(485) ,APNW(1)),

2 (ASTORE(606) ,APW(1)),(ASTORE( 727),APSW(1)),(ASTORE( 848),

3 APS(1)),(ASTORE( 969),APSE(1)),(ASTORE(1090),APENE(1)),

4

5

)

(ASTORE(1211) ,APNNE(1)), (ASTORE(1332) prsw(1))
(ASTORE(1453) ,APSSW(1)), (ASTORE(1574), APCON(1))

DIMENSION PT(11),QT(11)
* J k%

TDMA
* & k%

IF (IMONIT.EQ.1) WRITE(6,10) NPS

FORMAT(//3X, ' CONVERGENCE MONITOR FOR NPS = ',I1//,

1 3X,'SWEEP',4X,'CENTRE', 12X,'SW',16X,'SE', 16X,'NW',16X,'NE",
2 16X, 'RESIDUAL'/)

NITER=1 ,

DO 110 INDEX=1,2

I —SWEEP

DO 120 II=1,LP!
I1=11

IF (INDEX.EQ.2) I=LP1+1-I1

IP1=I+1

IM1=I-1

D=APCON(I, 1)

IF (I.EQ.1) GOTO 130
D=D+APW(I,1)*FP(IM1,1,NPS)+APNW(I,1)*FP(IM1,2,NPS)
IF (I.EQ.LPt1) GOTO 140
D=D+APE(I,1)*FP(IP1,1,NPS)+APNE(I,1)*FP(IP1,2,6NPS)
1 +APNNE(I,1)*FP(IP1,3,6NPS)

IF (I.EQ.LP2) GOTO 140

D= D+APENE(I 1)*FP(1+2,2,NPS)

PT(1)=APN( 1)/APC(I 1)

QT(1)= D/APC(I 1)

D=APCON(I,2).

IF (1.EQ.1) GOTO 142

D=D+APNW(I,2) *FP(IM1,3,NPS)

1 +APW(I,2)*FP(IM1,2,NPS)+APSW(I,2)*FP(IM1,1,NPS)
IF_(I.EQ.2) GOTO 142

D=D+APWSW(I,2)*FP(I-2,1,NPS)

IF (I.EQ.LP1) GOTO 145

D=D+APSE(I,2) *FP(IP1,1,NPS)+APE(I,2)*FP(IP1,2,NPS)
1 +APNE(I,2)*FP(IP1,3,NPS)+APNNE(I,62)*FP(IP1,4,6NPS)
IF (I.EQ.LP2) GOTO 145
D=D+APENE(I,2)*FP(I+2,3,NPS) .
DENOM=APC(I,2)-APS(I,2)*PT(1)

PT(2)=APN(I,2)/DENOM

QT (2)=(APS(I,2)*QT(1)+D)/DENOM

DO 150 J=3,MP3

D=APCON(I1,J)

IF (I.EQ.1) GOTO 160 .
D=D+APW(I,J)*FP(IM1,J,NPS)+APNW(I,J)*FP(IM1,J+1,NPS)

t +APSW(I,J)*FP(IM1,J-1,NPS)

2 +APSSW(I, J)*FP(IMI J- 2 NPS)

IF (I.EQ. 2) GOTO 160
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D=D+APWSW(I,J)*FP(I-2,J-1,NPS)
IF (I1.EQ.LP1) GOTO 170
160 D=D+APE(I,J)*FP(IP1,J,NPS)+APNE(I,J)*FP(IP1,J+1,NPS)
1 +APSE(1,J)*FP(IP1,J~1,NPS)
2 +APNNE(I,J)*FP(IP1,J+2,NPS)
IF (I.EQ.LP2) GOTO 170
D=D+APENE(I,J)*FP(I+2,J+1,NPS)
170  DENOM=APC(I,J)-APS(I,J)*PT(J~-1)
PT(J)=APN(I,J)/DENOM
150 QT(J)=(APS(I,J)*QT(J~1)+D)/DENOM
D=APCON(I , MP2) ~
IF (I.EQ.1) GOTO 152
D=D+APNW(I ,MP2)*FP(IM1 ,MP1,NPS)+APW(I ,MP2)*FP(IM1,MP2,NPS)
t +APSW(I,MP2)*FP(IM1,MP3,NPS)+APSSW(I ,MP2)*FP(IM1,MP2-2,NPS)
IF (I.EQ.2) GOTO 152
D=D+APWSW(I MP2)*FP(I-2,MP3,NPS)
IF (I.EQ.LP1) GOTO 155
152 D=D+APSE (I ,MP2)*FP(IP1,MP3,NPS)+APE(I ,MP2)*FP(IP1,MP2,NPS)
1 +APNE(I,MP2)*FP(IP1,MP1,NPS)
IF (I.EQ.LP2) GOTO 155
D=D+APENE(I ,MP2)*FP(I+2,MP1,NPS)
155  DENOM=APC(I,MP2)-APS(I,MP2)*PT(MP3)
PT(MP2)=APN(I,MP2)/DENOM
QT(MP2)=(APS(I ,MP2)*QT(MP3) +D)/DENOM
D=APCON(I, MP1)
IF (I.EQ.1) GOTO 180
D=D+APW(I ,MP1)*FP(IM1,6MP1, NPS)+APSW(I,MPI)*FP({M1,MPZ,NPS)
1 +APSSW(I MP1)*FP(IM1,MP3,NPS) AN
IF (I.EQ. 2) ‘GOTO 180
D=D+APWSW(I MP1)*FP(I~2,MP2, NPS)
IF (1.EQ. LP1) GOTO 190
180  D=D+APE(I,MP1)*FP(IP1,6MP1 NPS)+APSE(I MP1)*FP(IPt,MP2,NPS)
190 PT(MP1)=0.DO
QT(MP1)=(APS(I ,MP1)*QT(MP2)+D)/(APC(I ,MP1)-APS(I, MP1)*PT (MP2) )
C--- BACK SUBSTITUTION
FP(I ,MP1,NPS)=QT(MP1)
DO 200 JJ=1,MP2
J=MP1-JJ
200 FP(I,J,NPS)= PT(J)*FP(I J+1,NPS)+QT(J)
120 CONTINUE

C
C--- J-SWEEP
C
DO 220 JJ=1,MP1
J=JJ
IF (INDEX.EQ.2) J=MP1+1-JJ
JP1=J+1
JM1=J-1

D=APCON(1,J)
IF (J.EQ.1) GOTO 230
D=D+APS(1,J)*FP(1,JM1 ,NPS)+APSE(1,J)*FP(2,JM1,NPS)
IF (J.EQ.MP1) GOTO 240

230 D=D+APN(1,J)*FP(1,JP1,NPS)+APNE(1,J)*FP(2,JP1,NPS)
1 +APENE(1,J)*FP(3,JP1,NPS)
IF (J.EQ.MP2) GOTO 240
D=D+APNNE(1,J)*FP(2,J+2,NPS)

240 PT(1)=APE(1,J)/APC(1,J)
QT(1)=D/APC(1,J)

.
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D=APCON(2,J)

IF (J.EQ.1) GOTO 242
D=D+APSW(2,J)*FP(1,JM1,NPS)+APS(2,J)*FP(2,JM1,NPS)

1 +APSE(2,J)*FP(3,JM1,NPS)

IF (J.EQ.2) GOTO 242

D=D+APSSW(2,J) *FP(1,J-2,NPS)

IF (J.EQ.MP1) GOTO 245
D=D+APNE(2,J)*FP(3,JP1,NPS)+APN(2,J)*FP(2,JP1,NPS)

1 +APNW(2,J)*FP(1,JP1,NPS)+APENE(2,J)*FP(4,JP1,NPS)

IF (J.EQ.MP2) GOTO 245 .

D=D+APNNE(2,J) *FP(3,J+2,NPS)
DENOM=APC(2,J)~-APW(2,J)*PT(1)

PT(2)=APE(2,J) /DENOM

OT(2)=(APW(2,J)*QT(1)+D)/DENOM

DO 250 I=3,LP3

D=APCON(1I,J)

IF (J.EQ.1) GOTO 260 N
D=D+APS(I,J)*FP(1,JM1,NPS)+APSW(I ,J)*FP(I-1,JM1,NPS)

1 +APSE(I ,J)*FP(I+1,JM1,NPS)+APWSW(I,J)*FP(I-2,JM!1,NPS)

IF (J.EQ.2) GOTO 260

D=D+APSSW(I,J)*FP(I-1,J-2,NPS)

1F (J.EQ.MP1) GOTO 270
D=D+APN(I,J)*FP(I,JP1,NPS)+APNW(I 6 J)*FP(I~-1,JP1,NPS)

1 +APNE(I.,J)*FP(1I+1,JP1,NPS)
2 +APENE(I,J)*FP(1+2,JP1,NPS)

IF (J.EQ.MP2) GOTO 270

D=D+APNNE(I,J)*FP(I+1,J+2,NPS)
DENOM=APC (I ,J)-APW(I,J)*PT(I-1)

PT(I)=APE(I,J)/DENOM

QT(1)=(APW(I,J)*QT(I~-1)+D)/DENOM

D=APCON(LP2,J)

IF (J.EQ.1) GOTO 252
D=D+APSW(LP2,J)*FP(LP3,JM1,NPS)+APS(LP2,J)*FP(LP2, JM1 ,NPS)
| +APSE(LP2,J)*FP(LP1,JM1,NPS)+APWSW(LP2,J)*FP(LP2~2,JM1 ,NPS)
IF (J.EQ.2) GOTO 252

D=D+APSSW(LP2,J)*FP(LP3,J-2,NPS)

IF (J.EQ.MP1) GOTO 255

D=D+APNW(LP2,J)*FP(LP3,JP1,NPS) ‘

1 +APN(LP2,J)*FP(LP2,JP1,NPS)+APNE(LP2,J)*FP(LP1,JP1,NPS)
IF (J.EQ.MP2) GOTO 255

D=D+APNNE(LP2,J)*FP(LP1,J+2,NPS)
DENOM=APC(LP2,J)-APW(LP2,J) *PT(LP3)
PT(LP2)=APE(LP2,J)/DENOM
QT(LP2)=(APW(LP2,J)*QT(LP3)+D)/DENOM

D=APCON(LP1,J)

IF (J.EQ.1) GOTO 280 - |
D=D+APS(LP1,J)*FP(LP1,JM1,NPS)+APSW(LP1,J)*FP(LP2,JM1,NPS)
1 +APWSW(LP1,J)*FP(LP3,JM1 NPS)

IF (J.EQ.2) GOTO 280

"D=D+APSSW(LP!,J)*FP(LP2,J-2,NPS)

IF (J.EQ.MP1) GOTO 290
D=D+APN(LP1,J)*FP(LP1,JP1,NPS)+APNW(LP1,J)*FP(LP2,JP1,NPS)
PT(LP1)=0.D0
QT(LP1)=(APW(LP1,J)*QT(LP2)+D)/(APC(LP1,J)~-APW(LP1,J)*PT(LP2))

BACK SUBSTITUTION

FP(LP1,J,NPS)=QT(LP1)
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DO 300 II=1,LP2

I=LP1-I1

FP(1,J,NPS)=PT(I)*FP(I+1,J,NPS)+QT(I)

CONTINUE

CONTINUE

R=APC(IPR,JPR)*FP(IPR,JPR,NPS)~-APE(IPR,JPR)*FP(IPRP1,JPR,NPS)
~-APNE (IPR,JPR)*FP(IPRP1,JPRP1,NPS)~-APN(IPR,JPR)*FP(IPR,JPRP1,NPS)
~-APNW(IPR,JPR)*FP(IPRM1,JPRP1 ,NPS)
-APW(IPR,JPR)*FP(IPRM1,JPR,NPS)-APSW(IPR,JPR)*FP(IPRM1,JPRM1,NPS)
-APS(IPR,JPR)*FP(IPR,JPRM1,NPS)-APSE(IPR,JPR)*FP(IPRP1,JPRM1, NPS)
~-APENE(IPR,JPR)*FP(I1PRP2,JPRP1,NPS)-APNNE(IPR, JPR)*
FP(IPRP!{,JPRP2,NPS)-APWSW(IPR,JPR)*FP(IPRM2,JPRM!, NPS)
-APSSW(IPR,JPR)*FP(IPRM1,JPRM2,NPS)-APCON(IPR, JPR)

IF(IMONIT.EQ.0) GOTO 100

WRITE(6,310) NITER,FP(LPMID,MPMID,NPS),FP(2,2,NPS),FP(LP2,2,NPS),

1 FP(2,MP2,NPS),FP(LP2,MP2,NPS) ,R

FORMAT (3X,I4,5X,6(1PD15.8,3X))

SN O EWN -

C CONVERGENCE TEST

C
100

314

C***********************************************************************

C***********************************************************************

NITER=NITER+ 1
IF (NITER.LE.NPSWP(NPS)) GOTO 316

IF (DABS(R).LT.PTOL(NPS)) RETURN

IF (NITER.LE.NPITMX(NPS)) GOTO 316

WRITE (6,314)

FORMAT (//3X, "MAXIMUM NUMBER OF ITERATIONS EXCEEDED')
RETURN

END

SUBROUTINE SOLVE

IMPLICIT REAL*8(A-H,0-2)

LOGICAL LSOLVE,LCPRIN,LPRINT,LPPRIN

COMMON ASTORE(3528),X(21,21),Y(21,21),F(21,21,7),FU(21,21,7),

1 FP(11,11,2),RHO(21,21),GAM(21,21), ‘
2 SC(21,21),8P(21,21),ACU(21,21) ,UHAT(21,21),

3 pITi(10,10,2),D271(10,10,2),D3T1(10,10,2),
4 Di1T2(10,10,2),D2T2(10,10,2),D3T2(10,10,2)

COMMON /THRD/Z,DZ,DPDZ,DPDZC,PBAR,SPMF,WFD,CNUFD(4),LSTEP,ISTEP,
1 ITMAX, ISTART,IPROB

COMMON /PARM/RELAX(7),PRELAX

COMMON /MONIT/LSOLVE(7),LCPRIN,LPRINT(7),LPPRIN

COMMON /LABEL/TITLE(7),HDG(9)

COMMON /INDX/NSWP(7),NPSWP(2),L1,L2,L3,M1,6M2,M3,

1 LP1,LP2,LP3,MP1,MP2,MP3,NFS, NFSMAX NPS NUME IMONyT LAST,

2 LMID MMID LPMID MPMID IPREF JPREF, ITER IC(3) Jc(3), IDEAL

3 IR, IRP1 IRMl JR,JRP1, JRMI IPR IPRP1 IPRPZ IPRM1 IPRMZ JPR JPRP1,
4 JPRPZ JPRM1 JPRMZ NITMAX(?) NPITMX(Z)

COMMON /CONV/TOL(7) PTOL(2), DWDES FCK(3,2) ,DPDZCK,CHGTOL,CHGCK “—
COMMON /RODBUN/S,RAD, SDR, WBAR FAREA PERIM PHY ,DH, DHDR XL, YL, TANPSI
1 ,PSI,FBUQ,FBUG,FB,FWAV,RHOA,CP1,DK1,DKDCPi,CPZ,DKZ,DKDCPZ,

2. RPOW, XPOW, YPOW,DMUA ,REY ,QW, TAUW(21),TW,TI

Crmmmm— e e e e e —————— -

DIMENSION AC(21,21),AE(21,21),ANE(21,21),AN(21,21),

1 AW(21,21),ASW(21,21),AS(21,21) ,ACON(21,21)

EQUIVALENCE (ASTORE(1),AC(1)), (ASTORE(442) ,AE(1)),(ASTORE( 883),
1 ANE(1)),(ASTORE(1324),AN(1)), (ASTORE(1765) ,AW(1)),

2 (ASTORE(2206),ASw(1)),(ASTORE(2647),AS(1)), (ASTORE(3088),

)

E




P
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3 ACON(1))
C _______________________________________________________________________
. DIMENSION PT(21) QT(21)
e C  kkk%
C TDMA
C % kK % -
IF (IMONIT.EQ.1) WRITE(6,10) NFS
10 FORMAT (//3X%, 'CONVERGENCE MONITOR FOR NFS = ',I11//,
1 3X,'SWEEP',4X,'CENTRE', 12X,'SW',16X,"'SE",16X,'NW',16X,'NE",
2 16X, 'RESIDUAL'/)
NITER=1
316 DO 110 INDEX=1
C .
C I-SWEEP
C X
DO 120 II=t,L1
I=II
IF (INDEX.EQ.2) I=L1+1-I1 ,
IP1=I+1 .
IMi=I-1

D=ACON(I,1)
IF (I.EQ.1) GOTO 130
D=D+AW(I,1)*F(IM1,1,NFS)
130 IF (I.EQ.L1) GOTO 140
D=D+AE(I,1)*F(IP1,1,NFS)+ANE(I,1)*F(IP1,2,NFS)
140  PT(1)=AN(I,1)/AC(I,1) ’
QT(1)=D/AC(1I,1)
DO 150 J=2,M2
D=AGON(I,J)
IF (I.EQ.1) GOTO 160
D=D+AW(I,J)*F(IM1,J,NFS)
1 +ASW(I,J)*F(IM1,J-1,NFS)
160 IF (I.EQ.L1) GOTO 170
D=D+AE(I,J)*F(IP1,J,NFS)+ANE(I,J)*F(IP1,J+1 ,NFS)
170  DENOM= AC(I J) As(I J)*PT(J 1)
PT(J)=AN(I J)/DENOM
150 QT(J)=(AS(I,J)*QT(J-1)+D)/DENOM
» D=ACON (I ,M1)
IF (I.EQ.1) GOTO 180
D=D+AW(I , M1)*F(IM1 , M1 ,NFS)+ASW(I M1)*F(IM1,6M2,6NFS)
180 IF (I.EQ.L1) GOTO 190
D=D+AE(I,M1)*F(IP1,M1,NFS)
190 PT(M1)=0.D0
QT(Mt)=(AS(I M1)*QT(M2)+D)/(AC(I M1)-AS(I, M1)*PT(M2))
C BACK SUBSTITUTION
F(I,M1,NFS)=QT(M1)
DO 200 JJ=1,M2
J=M1~-3J
200 F(1,J,NFS)=PT(J)*F(I,J+1,NFS)+QT(J)
120 CONTINUE

o
C J-SWEEP
c
Jf DO 220 JJ=1,M!
J=JJ
IF (INDEX.EQ.2) J=M1+1-JJ
JP1=J+1

JM1=J-1 !

hal
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D=ACON(1,J)
"IF(J.EQ.1) GOTO 230
D=D+AS(1,J)*F(1,JM1,NFS)
230 IF (J.EQ.M1) GOTO 240
D=D+AN(1,J)*F(1,JP1,NFS)+ANE(1,J)*F(2,JP1,NFS)
240 PT(1)=AE(1,J)/AC(1,J)
QT(1)=D/AC(1,J)
DO 250 I1=2,L2
D=ACON(I1,J)
IF (J.EQ.1) GOTO 260
D=D+AS(1,J)*F(I,JM1 , NFS)+ASW(I,J)*F(I-1,JM1,NFS)
260 IF (J.EQ.M1) GOTO 270
D=D+AN(I,J)*F(I,JP1,NFS)
1 +ANE(I,J)*F(I+1,JP1,NFS)
270 DENOM=AC(I,J)-AW(I,J)*PT(I-1)
PT(I)=AE(I,J)/DENOM
250 QT(1)=(AW(I,J)*QT(I-1)+D)/DENOM
D=ACON(L1t,J)
IF (J.EQ.1) GOTO 280
D=D+AS(L1,J)*F(L1,JIM1 ,NFS)+ASW(L1,J)*F(L2,JM! ,NFS)
280 IF (J.EQ.M1) GOTO 290
D=D+AN(L1,J)*F(L1,JP1 ,NFS)
290 PT(L1)=0.D0O
QT(L1)=(AW(L1,J)*QT(L2)+D)/(AC(L1,J)~-AW(L1,J)*PT(L2))
C BACK SUBSTITUTION
¢ F(L1,J3,NFS)=QT(L1)
DO 300 I1=1,L2
I=L1-11
300 F(I1,J,NFS)=PT(I)*F(I+1,J,NFS)+QT(I)
220  CONTINUE
110 CONTINUE
R=AC(IR,JR)*F(IR,JR,NFS)-AE(IR,JR)*F(IRP!,JR, NFS)
1 -ANE(IR,JR)*F(IRP1,JRP1,NFS)-AN(IR,JR)*F(IR,JRP1,6NFS)
2 -AW(IR,JR)*F(IRM!,JR,NFS)-ASW(IR,JR)*F(IRMI1,JRM1 NFS)
) 3 -AS(IR,JR)*F(IR,JRM1,NFS)-ACON(IR,JR)
IF(IMONIT.EQ.0) GOTO 100
WRITE(6,310) NITER,F(LMID,MMID,NFS),F(2,2 NFS) F(L2,2,NFS),
1 F(2,M2,NFS),F(L2, M2 NFS),R
310 FORMAT(3X I14,5X, 6(1PD15 8,3X))
o
C CONVERGENCE TEST
C
100 NITER=NITER+1
IF (NITER.LE.NSWP(NFS)) GOTO 316
IF (DABS(R).LT.TOL(NFS)) RETURN
IF (NITER.LE.NITMAX(NFS)) GOTO 316
WRITE (6,31t4)
314 FORMAT(//3X, 'MAXIMUM NUMBER OF ITERATIONS EXCEEDED')
RETURN
END
o
.SUBROUTINE TEST L .
C**************************************************** AKAKAARRKAXR Ak kAKX AX%k Xk
IMPLICIT REAL*8(A-H,0-2)
LOGICAL LSOLVE,LCPRIN,LPRINT,LPPRIN
COMMON ASTORE(3528),X(21,21),¥(21,21),F(21,21,7),FU(21,21,7),
1 FP(11,11,2),RHO(21,21),GAM(21,21),
2 SC(21,21),8P(21,21),ACU(21,21),UHAT(21,21), .




’

340

3 piT1(10,10,2),D2T1(10,10,2),D3T1(10,10,2),
4 piT2(10,10,2),D2T2(10,10,2),D3T2(10,10,2)
COMMON /THRD/Z,DZ,DPDZ,DPDZC,PBAR, SPMF,WFD,CNUFD(4) ,LSTEP,ISTEP,
1 ITMAX,ISTART,IPROB
COMMON /PARM/RELAX(7),PRELAX
COMMON /MONIT/LSOLVE(7)45LCPRIN,LPRINT(7),LPPRIN \
COMMON /LABEL/TITLE(7),HDG(9) ‘
COMMON /INDX/NSWP(7), NPswp(z) ,L2,L3,M1 ,M2,6M3,
1 LP1,LP2,LP3,MP1,MP2,MP3,NFS, NFSMAX NPS NUME IMONIT LAST
2 LMID MMID LPMID MPMID IPREF JPREF, ITER, IC(3) Jc(3), IDEAL
3 IR,IRP1,IRM1,JR,JRP1,JRM1,IPR,IPRP1,IPRPZ,IPRM1,IPRMZ,JPR,JPRP1,
4 JPRP2,JPRM1,JPRM2,NITMAX(7) ,NPITMX(2) ‘
COMMON /CONV/TOL(7),PTOL(2) ,DWDES,FCK(3,2),DPDZCK,CHGTOL, CHGCK
COMMON /RODBUN/S,RAD, SDR,WBAR,FAREA,PERIM, PHY,DH,DHDR, XL, YL, TANPSI
1 ,PSI,FBU4,FBU6,FB,FWAV,RHOA,CP1,DK1,DKDCP1,CP2,DK2,DKDCP2,
2 RPOW,XPOW,YPOW,DMUA ,REY,QW, TAUW(21),TW,TI

|

C _______________________________________________________________________
30 FORMAT(//3X,'CORRECTED VALUE FOR NFS = ',11//,
1 3%, ',4X, 'CENTRE',12X,'SW',16X,'SE', 16X, 'NW', 16X, 'NE'/)
35 FORMAT(3X,4X,5X,5(1PD15.8, 3X)) . ;
G o e e e e e D e L L L LT

ENTRY PTVEL

WRITE(6,30) NFS

WRITE(6,35) F(LMID,MMID,NFS),F(2,2,NFS),F(L2,2,NFS),
1 F(2,M2,NFS),F(L2,M2 NFS)

RETURN

END
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