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AB STRA CT 

The formulation of a gen~ral control-volume finite-· 

element method .for the prediction of laminar three-

qimensional parabolic duct flow and heat transfer is 

presented. Consideration is given to straight ducts of 
.' 

arbitrary but constant cross-sections. 

In the proposed method, the calculation domain is 

, first discretized into twelve-node prism macroelements • 
• 

Then each macroelement is divided into four six-node prism 

subelements. Pris~ control volumes of polygonal cross­

sections are then associated wi th the nodes of these elements. 

AlI dependent variables, except pressure, are stored at the 

nodes of the subelements, and they are interpola ted in the 

cross-sectional plane by upwind-type functions. The pressure 

is stored at the vertices of the macroelements and it is 

interpolated linearly in the cross-section of these elements. 

In the axial direction, the downstream values of aIl 

dependent variables are assumed to prevail over the elements. 

The discretized equations are derived by applying integral 

conservation equations to the prism control volumes, and 

they are solved using an iterative scherne akin to SIMPLER. 1 
,>, , 

The proposed method employs a marching integration procedure! 

and an automatic step size algorithm which allow 

cornputational eff iciency. The validity and capabilities 

of the proposed method are established by applying it to 
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developing flow and heat transfer in a square cross-section 

1 J-ft 

dupt and compariI)g its resuJts with published results. 

Satisfactory agreement is found. 

iii 

The proposed rnethod has been applied to longitudinal 

flow and heat transfer over an infinite triangular rod-

bundle array for several pitch-to-diarneter ratios. Both 

.fully-developed and developing regions have been investigated. 

Local and overall results are presented in appropriately 

non-dimensionalized forms. 
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SOMMAIRE 

dl 

Une méthode gén~rale d'~l~ments finis basée sur le 
. 

p~inciple de volume de contrôle est présentée pour résoudre 

les problêmes des écoulements paraboliques; laminaires, 

tridimensionels. La méthode est applicable à des conduits 

droits aux coupes transversalesjde forme arbitraire mais 

constante. 

Dans la méthode iCi-proposée, le domaine de calcul 

est cl' ~or~ divisé en des macro-éléments de douze noeuds. 

Puis, chaque macro-~lément est divis~ en quatre sous-éléments 

de six noeuds. On associe ensuite des volumes de contrôle 

à chacun des noeuds de ces éléments. Les variables 

dépendentes autre que la pression sont mises en mémoire 

aux noeuds des sous-éléments, et elles sont "interpolées dans 

le plan transversal par des fonctions de type "upwind". La 

pression est mise en mémoire aux extrémités des macro-

iv 

éléments et on l'ititerpo~e linéairement dans le plan transversal 

de ces éléments. Dans la direction axiale, on assume que 

les valeurs en amont de toutes les variables dépendentes 

prêyalent dans les éléments. ' On dérive les ~quations de 
( 

discrét,ization en appliquant les équations in~égrales de 

conservation aux volumes. de contrôle, et on les résoud en 

utilisant une méthode itérative similaire à pIMPLER. La 

méthode proposée emploie une procédure d'intégration 

pas-par-pas et un algorithme automatique d'adjustement de 
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pas axial, permettant l'efficacité de calcul. On établit 

la validité et les capacités de la méthode proposée e~ 

appliquant celle-ci au problème des écoul~ients et échanges 

de chaleur dans un conduit carré. La ?Ornparison entre les 

résultats présents et publiés est satisfaisante: 

La,méthode proposée est aussi appliquée a~ problème 
1 

des écoulefnents et échanges de chaleur au lon,g dl un fa4ceau 
1 

triangulai~e infini de cylindres. On étudie le régime des 

écoulements établis ainsi qu'en dévelopernent. Les résultats 

locaux et globaux sont présentés dans des formes non-
G 

dimensionelles appropriées. 
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: CHAPTER l 

INTRODUCTION 

1;1 AIMS OF THE THESIS 

The main objective of this t~esis is the formulation, 

1 

~ computer lmplementation and testlng of a general numerical method 
1 

for the predlction of fluid flow and heié transfer phenornena in 

duct-like geometries. Such phenomena are ~neountered ln an 

endless variety of engineering equipment. For example, fluid 

transport systems, heat exehangers, turbomachines, nuelear 

reactors and aireraft propulsion systems present challenglng 

duct flow and heat transfer problems. Quantitatively accurate 

solutlons to these problems would be extremely useful in the 

design, optimal use and control of such devices. The numerlcal 

method ~resented in this the sis represents an effort to enable 

such solutions. 

A majorlty of praetlcally important duct flow and heat 

transfer problems involve domains with boundarles that do not 

lie along eommonly-used coordinate axes. Therefore, nurnerical 

methods for the solution of such problems should be able to 

handle irregularly-shaped domains. In addition, these 

methods must be designed to work with uniform and non-uniform 

distributions of grid points inside the calculation domain; 
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this capability is necessary for the efficie-nt solution of 

problems in which the dependent variables vary steeply in cer-

tain regions of the domain, near solid boundaries for instance, 

and relatlvely mildly elsewhere. These features are glven 

primary importance ln thls thesis. 

In general, duc t flows could be subsonic, transonic or 

sQ,personlc. Only subsonic flows are considered in this the-

sis; transonic and supersonic flows are not wi thin i ts scope. 

Subsonic flows could be laminar or turbulent, and ~ingle-phase 

or two-phase problems may be encountered. 

flows could involve co~pressible flulds. 

In addition, such 

In this thesis, 

however, only laminar, incompressible fluid flows will be stu-

died. This llmitation of the scope of this work was needed 

50 that attention could be concentrated on the formulation and 

development of the proposed nurnerical method. The testing 

and performance evaluation of general numerlcal methods for 

~luid flow and heat transfer are best don~ by applying them ta ' 

problems with well-established mathernatical rnodels. It lS to 

be noted in this connection, that the proposed method is based 

on the control-volume finlte-element formulation recently pro-

posed by Baliga and Patankar [1,2J. These formulations are 

akin to control-volume finlte-difference procedures WhlCh are 

widely used for the solution of fluid flows in regular-shaped 

domains, but with aIl of the other aforementioned complexities 

[3,4J. Thus it may be deduced that the method presented ln 

this thesis has the potential ta solve at least currently 

available mathematical models of turbulent and two-phase 

1 

\ 
-------------------------------~-
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flows. The actual applicati@n of the method ta such flows ls 

not includeci in the scope of this thesis: rather, the analy-

sis of such flows lS suggested as a possible extension of this 

work. 

steady subsonic flows in ducts can be categorlzed as 

elliptic, parabol ic or partially-parabolic [4,5]. In ellip-

tic flows, the conditions at any point in the flow can influ-

ence conditions at any other pOlnt. The mechanisms that cause 

this interaction are convection, diffusion and pressure trans-

mission [5]. Parabolic duct flows have the following charac-

teristlcs: there exists a predominant flow along the duct, 

and no flow reversaI lS encountered in that direction; diffu-

sional transport in the directlon of "the main flow is negll-

gible compared to the corresponding convective transport and 

the cross-stream diffusional transport; and the downstream 

pressure field has relatively very little influence on the 'up-

stream flow conditions [3,6]. When these conditions are sa-

tisfied, the main flow direction can be regarded as a one-way 

coordinate [3,4]; the upstream candi tians can lnfluence the 

downstream conditions, but not vice-versa. The term partially-

parabolic is used ta describe a class of flows that is inter-

mediate to the parabolic and elliptic categories. They have 

a predominant flow direction along which there is no flow re-

versaI, and diffusional transport in that direction is negli-

gible; in this regard, they are similar to parabolic flows. 

On the other hand, the pressure transmlssion ln partially-

'( 
parabolic flows is similar ta that in elliptic flows, and i t 

-~- - - -~ -- - ~ ------------------ ----.. _- -----------
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is the dominant transmi tter of il)fl uences in the upstrearn 

direction [5]. 

Flow and heat transfer in straight unobstructed portions 

of duct-like geometries can be regarded as parabolic [3,4,6]. 
t 

In curved ducts and in the vicinity of obstructions or con-

tractions, there could be significant turning of the local 

flow with respect ta the mean flow direction. Such flows 

could fall into the partially-parabolic category. If the 

curvature of duct is considerable, or if the size of obstruc-

tion is large compared to the duct cross- section 1 local flow 

reversaI or recirculating flow reg ions rnay be encountered. 

4 

In the se reg ions, the f low and hea t trans fer is fully-elliptic. 

-I~ this thesis, only parabollc flow and heat transfer in 

s~raight unobstructed duct-like geometries are considered. 

The computer implementation and testing of the proposed 

method for:m an important part of the work reported in this 

thesis. The implementation activity involves three main 

groups of tasks: (i) generation and storage of domain discre-

tization information; (ii) generation and storage of the co-

efficients in the discretization equations; and (iii) solution 

of the discretization equations. For the discretization of 

cross-sectional planes in duct-like geometries, a semi-automatic 

domain discretization scheme is formulated according to the fol-

lowing guidelines: (a) there should be no requirement for any 

special geometrical input devices such as computer graphies 

digitlzers, l.ight pens and microcomputers; (b) the scheme 

should be able to generate a;Ll necessary topological information 
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for the asse.mbly and solutions of the discretization equations, 

wi thout requiring excessive computer core storage and cpstly , 
input/output operations; and (c) it should facilitate the use 

of iterative methods for the solution of the discretization 

equations. In the axial direction, the dependent variables 

vary rathe~ severely close ta the entrance of the duct and re-

latively mildly as the fully-developed reglon is approached, 

and the exact nature of this· variation is not known a priori. 

Therefore, an efficient numerical method for parabolic duct 

flows should be capable of autornatically adjusting the axial 

step size according ta the relative magnitudes of gradients 

encountered in the variation of the dependent variables. Such 

an automatic step Slze selector is formulated and incorporated 

in the domain discretization scheme. 

The application of the proposed method to laminar flow 

and heat transfer in rod-bundles is another important part of 

this thesis. Though this problem is commonlyencountered,in 

nuclear reactor cores, stearn generators and heat exchangers, 

ta the best knowledge of the author, no in-depth experirnental 

or numerical investigation of it lS reported in the published 

literature. In this work, flow and heat transfer in an infi-

ni te rod-bundle array are investigated wi th geometric parame-

ters' relevant to the design of nuclear reactor cores. Three 

categories of problems are considereèl in this context: 

(i) fully-developed flow and heat transferi (ii) fully-

developed flow and developing heat transfer; and (iii) simul-

taneously developing flow and heat transfer. Local am 

------ - ~~~- - .- -----------~..,.t-----~--~---
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overall results are presented in suitably non-dimensionalized 

fortus. 

1.2 SYNOPSIS OF AVAILABLE METHODS FOR THREE-DIMENSIONAL 

PARABOLIC FLOW AND HEAT TRANSFER 

, 
Numeraus papers in the published Ilterature deal with 

analytical, semi-analytlcal and numerlcal methods for three-

dimensianal flowand heat transfer in ducts. In this section, 

a few key papers directly relevant ta the present work are re-

vlewed. A more extensive survey of this subject is available 

in [7]. 

The equations governing parabolic flow in ducts are lntrin-

sically non-linear and coupled to each other. Consequently, 

unless drastic simpliflcatlons are introduced, analytical and 

seml-analytical solutions ta these equations are extremely 

difflcult, if not impossible, ta obtain. A commonly-invoked . 
simplification ln studies of this nature canslsts of lineari-

zing the inertia terms in the momentum equatians and neglecting 

the cross-stream pressure gradients [8,91. The major short-

comlng of such methad s lS tha t thEty are liml ted to prob1ems in 

which the cross-stream veloci ty cornponents are ei ther zero <?r 

negligible. Furthermore, even ln the absence of cross-stream 

velocities, analytical and serni-analytical methods usually fail 

when non-lineari ties introduced by non-constant fluid proper-

ties are encountered. 

Numerical methods, on the other hand, enjoy a great deal 

of versatility and are better suited for the solution of 

1 
1 

- - ---~-_--..-:'----------------- ---~--'~---------"!--



· . 

" 

7 

practical problems [4]. As a result, they have received 

considerable attention in the 1ast two decades [7]. It is 

usual to group cu:t:'r~,nt1y available numerical methods for three­

dimensional d~ét flotvs and heat transfer into two main cate-

gories: finite-difference and finite-element methods. This 

categorizartion is adopted in the following discussion. 

F'INITE - DIFFERENCE: METHODS 

Early works in this area concentrated on solving the 

three-dimensional boundary layers equations. The pressure 

gradient ~n one cross-stream direction and the diffusional 

flux in the other are neglected. In this way, only two rnomen-

tum equations need to be '/so1 ved, the third veloci ty component 

'being extracted from contiI:lUi ty requirements. Methods èrnploy-

ing procedures of this kind include those reported in [10, Il]. 

'In general, these methods have a limited range of applicabi-

lity. Furthermore, they cannot easily be adapted to internaI 

flow problems, and they may give rlse ta considerable erro'rs 

ip problems exhibi ting boundary discontinuities and fail com-

pletely in others [12]. 

In the last decade, the pioneering works of Curr et al. 
o 

[13,14] and Patankar and Spalding [6] have led the way to the 

development of more genera~ methods which take full account of 

the fluid stresses, diffusional fluxes and pressure variation 

in the cross-stream plane. Curr et al. [13,14] analyzed 

three-dimensional parabolic flows using two different fini te-

difference schemes: a vortici ty-veloci ty formulation i8 used 

-~'-,--~------------------ -------.--~-------------------
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in one, and the other employs velocity cornponents and pressure 

as the dependent variables. Both these scheme suse nan-

iterative "marching" integration in the direction of the main 

flow. In the method based on the vorticity,Lvelocity formula- , 

tion, Curr et al. used a point-by-point Gauss-Seidel scheme ta 

solve the discretized momenturn and continuity equations. In 

the pressure-veloci ty formula tian, they used a point-by-point 

i te'rati ve solution method based on a SImul taneous-Variable-

Adjustment scheme (SIVA). using these methods, they obtained 

'accurate solutions of the entrance flow in a square cross-

section duct wi th stationary boundaries and also with one wall 

rnoving. 

The method proposed by patankar and Spalding [6] is pro-

bably the most widelyt'f referenced of the currently-available 

finite-difference me;l:.hods for three-dimensional duct flaws. 
~, 

It is based on a pressure-velocity fopnulat.ion, and it uses a 
j 

,\ 

non-iterative marchlng integratian t€)'chnique to advance the 

solution in the downstream direction. The non-iterative 
'te 

nature of this scherne is achieyed by using the upstream values 

of the dependent variables at each axial step ta calculate the 
If 

coeffici'ents in the discretization equations.j At each axial 

station, the pressure-velocity coupling is handled by a Semi-

Implicit-~ethod-for-E.ressure-!:!inked-Equations (SIMPLE). In 

SIMPLE, a tentative velocity field is obtained by solving the 

discretized momentum equations with a guessed pressure field. 

Then the pressure and velocity fields are corrected 50 as to 

sa tisfy the overall and local rnass conservation requirements. 

L 

/. 
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Experience wi th the aforementioned methods has shawn that the 

Patankar-Spalding procedure [6J is superiQr to those advanced 

by Curr et al. [13,14]. Furthermore, the SIMPLE procedure 
, 

advanced in [6] has also been successfully used to handle the 

pressure-ve1oci ty coupling in cornplex two- and three-

dimensional e1liptic flow problerns [3,4]. In subsequent 

papers, Carlso n and Hornbeck [15] and Briley [16 J have proposed 

methods which are variations of the Patankar-Spa1ding rnethod. 

Briley [16] used his method to solve duct flow prob1ems with 

significant cross-stream ve10ci ties. 

In gener a l, the fini te-di f f erenc e methods proposed in 

[6,13-16] have been quite successfu1 in the predlction of 

three-dimensional parabo1ic duct flows. Nevertheless, the y 

suffer from a few shortcomings: (i) they are lirnit-ed to ducts 

of regular-shaped and constant cross-sectl0ns; (ii) the non-

i terative marching integration schemes used in these methods 

necessi tate the use of relatively small axial step sizes; and 

(iii) in cornp1ex f1uid f10w problems involving a large nurnber 

of dependent variables, the overall solution scheme, due to 

its non-iterative' nature, tends to be sensitive ta the sequence 

in which the dependent var iables are solved. 

Flow and heat transfer in irregular-shaped ducts can be 

solved by fini te-difference methods which ernploy coordinate 

transformation techniqu,es. For example, in the works of 

Roberts and Forester [17], flows in irregular-shaped ducts are 1 

handled by a curvilinear boundary-fitted cornputationa1 rneshi 

Ghia and Sathyanàrayana [18] used a non-orthog~nal surface-

I--------~---- -------.~------------------------------------- -----------
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oriented coor~inate system and a ca1cu1ation pr~cedure akin to 

that of Bri1ey [16J ta ana1yze flow development in variable 

cross-sectiona1 area ducts. In these methods, the conserva-

tion equations must be transfonned from the physical domain 

into the computationa1 domain before their finite-di1ference 

analogue scan be formed. This usually complicates the gover-

ning equatiors and makes a physical interpretation of the 

over~l1 formulation quite difficult. Moreover, the se methods 

are not well-suited for prob1ems invo1ving mu1tiply-connected 0 

domain shapes. Such problems are best handled by fini te-

element methods. 

FINI TE-ELEMENT METHODS 

The abili ty '}:-O handle complex irregula~-shaped domains 

represents one of the most important advantages of finite-

element methods over finite-difference methods. Indeed, it is 

rnainly for this reason that, over the la st decade, there has 

been a considerable amount of research on the formulation and 

computer implementation of finite-element rnethods for practical 

fluid flow and hèat transfer problems [19J., In recent years, 

the s~:lution of such problems' by the finite-e1ement method is 

becoming widespread and gaining in popu1arity [19,20J. 

Most currently-available fini te-element methods Éor three-

dimensional parabolic flow and heat transfer are based on the 

Galerkin formulation. Ohe of the ear1iest qttempts to develop 

such methods is that of Baker [21] who proposed a finite-element 

scheme for three-dimensiona1 reacting and compressible 

1--'------ -- -----

1 
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boundary-layer flows. , ln this scheme, aIl governing 

equations are solved simultaneouslYi th~s practice could 

r~quire disproportionally large computer core storage and 

time, especially in complex problems involving several 

coupled governing equations [4J. Furthermore, it cannot be 

adapted to confine;)flow problems., 
/ 

Several fin{_te~element~olution techniques based on 

linearized analyses have been proposed for three-dimensional 

parabolic flow an~_ heat transfer in straight ducts of arbi-
, < 

/ 

trary shape. One such procedure is described by Davids et al._ 

[22] . In a series of paper5 by Del Giudice et al. [23-26], a 

linearized formulation akin to the semi-analytical procedure 

of Sparr'ow et al. [9] i5 merged with a simple finite-element 

"algorithm for Poisson-type equations. They have applied 

these procedures to hydrodynamically fully-developed and ther­

mally developing problems and, also, to flow and heat transfer 

in a number of different duct geometries. It is to be noted, 

however, that the limitations associated with linearized for-

,mulations afflict these methods and restrict their application 

to problems with negligible cross-stream velocities. 

The restricted range of applicability of linearized pro-

cedures has led Del Giudice et al. to consider a more general 

approach that d~als directly with the full three-dimensional 

parabolized Navier-Stokes eguations [27]. In this approach, 

a non-iterative sequential solution of the finite-element 

analogues of the governing eguations is obtained by a proce-
o 

dure akin to that used by Briley [16J. Thus the limitations 

associated with a non-iterative marching integration in the 

, ' . 

'II, - , 
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" mai1 flow direction afflict this. method. In addi_tion, it 
, 

cannot compute the pressure in the cross-section. It aiso 

5eems to experience difficulties in starting the solution. 

Practical fluid flow and heat transfer problems could 

involve 'a wide range of Reynolds and Peclet numbers. Special 

upwind-type numerical schemes are required to solve such pro-

blems ~fficiently [4]. None of the currently-available 
/~ 

finite-element methods for three-dirnensional duct flow and 

heat transfer ernploy such upwind schernes. Thus, when signi-

ficant cross-stream velocities are encountered, these rnethods 

could experience stability problerns unless excessively fine 

grids are used. 

Comments 

From the above discussion, it is seen that a considerable 

amount of research has been devoted to the development of 

numerical rnethods for three-dirnensional parabolic flow and 

heat transfer in ducts. However, there is a need for new and 

better rnethods. The rnethod proposed in this thesis repre-

sents an effort ta fulfill this need~ 

1.3 OVERVIEW OF THE PROPOSED METHOD 

In this section, the main feature~ of the proposed method 

are described in general terrns so as to give the reader a 

synopsis of ~he overall formulation. 
'\ 

Full details are pre-

sented in subsequent chapters. 
{ 
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The method proposed in this thesis may be viewed as an 

extension of the control-volume finite-element method formu-

lated by Baliga and Patankar for two-dimensional elliptic 

situations [1,2J. It is càmposed of four main bUllding 

13 

blocks: (i) domain discretization scheme; (ii) selection of 

suitable interpolation functions for the dependen~ variables; 

(iii) derivation of the discretization equations; and 

(iv) solution of the discretization equations. 

In the domain discretization scheme, the duct is first 

. ~, divided into a s~ies of slabs, each slab being made up of two 

adjacent cross-sectional planes. In each of these cross-

sectional planes, the calculation domain is divided into six-

node triangular macroelements .. Following this, each rnacro-

element is further divided into four three-node sube1ernents. 

AlI dependent variables, except pressure, are stored at ail 

six nodes of the macroelements. Prism-shaped control-

volumes of polygonal cross-section are then associ~ted with 

each node. The procedure used to construct these control 

volumes will be discussed in a later chapter. It suffices 

here to say that the resulting control-volumes do not overlap, 

and collectively they fill up the ca1culation domain completelr: 

This discretizatlon scherne is due to Baliga and patankar [1,2J. 

In the cross-sectional planes, aIl dependent variables, 

except pressure, are interpolated in eac~ subelement by func­

tions which are exponentiai in the direction of an element-

averaged cross-stream velocity vector and linear in the 

direction normal to it. The pressure is linearly interpolated 

, , 
1 

1 

\ 
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in each macroe1ernent. These interpolation functions are 

taken from the works of Ba1iga and Patankar [l,2J. They 

a1low the proposed method to solve fluid flow and heat trans-

fer prob1ems over the whole range of Peclet numbers without 

incurring the false diffusion difficulties that commonly 

afflict upwind finite-difference methods. In the axial 

direction, downstream values are assumed to prevail over the 

control-volume for aIl variables . This is the so-called 

fully-implieit formulation in the numerieal solution of para-

bo~icuproblems [4J. 
't:' \ 

It is used to avoid stability problems 

associated with the axial step size [4J. 

Discretization equations are algebraic approximations of 

the governing equations. In the control-volume approach, an 

integral formulation is arrived at direetly by applying the 

conservation principles for the dependent variables to the 

control-volumes associated with the nodes. Following this, 

the integrals and derivatives of the dependent variables which 

appear in the integral formulation are approximatedGby alge-

braie expressions using the interpolation functions discussed 

in the last paragraphe The control-volume approaeh results 

in a method which has the so-called conservative property [4], 

and it facilitates the physical interpretation of the overa~l 

formula tion. 

The resulting discretization equations are solved by a 

marching integration technique which advances the solution 

step-by-step from the upstream initial conditions ta the down-

stream outflow baundary. At each axi~l station, a sequential 

1--------'-· --. --.--------------------- .--~--
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iterative procedure sirnilar to SIMPLER [4] is ernployed to 

handle the pressure-velocity coupling and the non-linearity 

of the discretization equatlons. An automatic axial step 

size adjustment procedure is incorporated into the marching 

scheme; thus, relatively small axial steps are taken in 

regions where the dependent variables vary steeply, and 

in regions where they vary mildly, larger axial steps are 

used. 

1. 4 SURVEY OF THE THESIS 

This thesis consists of seven chapters which are 

organized as follows. In Chapter II, the equations 

governing larninar 1 three-dimenseional parabolic flow and 

heat transfer in ducts are presented. These equations 

are described for both the developing as weIl as the 

fuIIy-developed regions. Chapter III concentrates'on the 

detailed formulation of the pr~posed numericai method, 
: 

and Chapter IV outlines its computer implementation. 

Chapter V is devoted to the application of the proposed 

method to a few illustrative two- and three-dirnensional 

test problems used to establish the validity and capabil-

ities of the proposed method. In Chapter VI, longitudinal 

~low and heat transfer over an infinite triangular array 

of circular cy'linders are studied: the developing and 

fully-developed regions are investigated, and appropriately 

( non-dimensionalized resu~ts are presented for several 

1 , 
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cylinder spacing ratios. 

Finally, in Chapter VII, the main contributions of 

this thesls are reviewed and sorne suggestions concerning 

possible irnprovements and extensions of this work are 

presented. 

( 

1---------------=--------------------~---..... - / 
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CHAPTER II 

MATHEMATICAL MODELS OF LAMINAR FLUID FLOW 

AND HEAT TRANS FER IN DUCTS 

17 1 

In this chapter, the differentia1 equations which govern 

the duct flow and heat transfer problems considered in this 

thesis are presented. Detai1ed derivations of these equations 

are not wlthin the scope of this chapter; they are avai1ab1e 

in standard text books on fluid f10w and heat transfer [28,29J. 

Instead, commonly used forros of the governing equations are 

presented and their salient featur~s are discussed. 

In the fo1lowing sections of this chapter, a concise des­

cription of the prob1ems of lnterest in this thesis is given 

first. Then the equations which govern the f1uid flow pro-

blems are presented and discussed. Fo11owing that, mathema-

tical descriptions of the heat transfer prob1ems are presented. 

Fina1ly, it is shown that aIl these governing equations have a 

common form, and a general representation of these equations 

lS presented. 

2.1 PROBLEM STATEMENT 

The prob1ems of interest in this thesis involve parabolic, 

laminar f10w and heat transfer in straight uniform ducts. 

The cross-sections of these ducts could be regular- or 

irregular-shaped and singly- or multiply-connectedi four 

.~ 
è--------' --- -------~------------------------________________ .-~~~-------=------------------~ 
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examples are given in Fig. 2-1. 

In aIl problerns consldered in this thesis, the fluid is 

assurned to be incornpre~sible. In addition, though the pro-

posed nurnerical method can handle non-constant fluid proper-

ties with rel~tive ease, these properties are assumed to be 

constant. This is done rnainly to generalize the results 

presented in this thesis. In spirit, this approach is sirni-

lar to that used in the presentation of experimental results: 

actual experiments are done using fluids with variable pro-

perties, but the final results, usually in the form of ernpiri-

cal correlations, are based on bulk-mean or sorne other appro-

pria tely averaged property values. 

In the heat.transfer considerations, two boundary condi-

tions are investigatedi. ln one, the walls of the duct are 

rnaintained at a, constant temperaturei in the other, a uniform 
! 

heat flux is prescribed over the walls of the duct.! 
j 

These 

two thermal boundary conditions represent extreme or bounding 

cases of the conditions encountered in practice [28,30]. 

The work in this thesis is mainly concerned with develo-

ping flow and heat transfer in ducts. Nevertheless, as will 

be discus~d-in later chapters, an inde pendent investigation 

of fully-developed conditions is often useful in the forrnula-

tion of efficient numerical procedures for the predictlon of 

flow and heat transfer in the developing region. In this 

chapter, the equations governing both the developing and fully­

developed regirnes are presented. 

~ 
I-------------"---,-------~~------------------------------------~~----·------·--=---------------------
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2.2 FLUID FLOW ANALYSIS 

In this section, the equations governing the fluid flow 1 

problem are presented. The Cartesian coordinate system 

(X,f?Z) is used in the presentation of these equations. The 

z-axis coincides with the direction of the mean flow in the 

duct, and x and y denote the cross-sectional coordinatesi 
1 

typical calculation domains and their associated coordinate 

systems are shown ln Fig. 2-1. The fluid velocity components 

in the x, y and z directions are denoted by u, v and w, 

respectively. In this thesls, w is cal1ed the maln flow 

velo~ity, and u and v are referred to as secondary or cross-

sectional velocities . 
• 

In the following diSCUSSiin, the equations governing 

deve10ping flow conditions are,discussed first. Then the 

mathematical description of fullJdeveloped flows lS presented. 

2~2.1 Developing Flow Regime 

The equatlons governlng the f1uid flow problem are 

obtalned by an approprlate combination of the laws of conser-

vation of mass and momentum and the equations relating viscous 

stresses to the rate of strain of the fluid [28J. Application 

of these laws to the problems of interest results in the fol-

lowing set of partial differential equations: 

\ 

, 

~ 
I--------------~'------~---,---------------------------------------·~-------------~------------------~ 
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Continuity 

[:X{PUI+ :y(PVI+ :Z(PWI] = 0 (2-1) 

x-momentum 

- ( p uu) + - ( P vu) + 
[
ad 
ax ay 

3P +[ __ a ( au)+ ~( au)+ 3 ( au)] 
ax ax ).lax ay llay aï ~az 

, 

( 2-2) 

y-momentum 

[ a • , ~ ] ap +[l....( av)+ 2-( av) + a av -(puv) + ay(PVV)+ a-z(pwv) = az{llazl ax 'dy 'dx )Jax ay 11ay 

(2-3) 
'" 

• 

z -mornen turn 

[ l....(puwl + a :z (pww) ] 
'dP +[ l....( aw) + _'d_( aw) + a aw] -( pvw) + = az(llaz> ax ay az ax llax ay llay 

(2-4 > 

In the above equations, p and ).l denote the fluid density and 

dynamic viscosity, respectively, and P is the pressure. 

( 

i 
I------------~----~~------------------------------~----------~----------------~ 
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It is to be noted that, though the proposed numerica1 method 

can handle volumetrie source terms in the x, y and z momentum 

equations, these terms are assumed to be negligible. In 

Eqns. (2-2)-(2-4), the terms enelosed in square brackets on 

the left-hand sides of these equations represent the rate of 

convection transport of momentum per unit volume, whereas the 

bracketed express~ons on the right-hand sides of these equa-
t 

tions denote the corresponding transport of momentum ~y 

"diffusion" or viscous action. 

The foregolng set of equations constitutes an elliptic 

system which can be used for the description of most steady, 

laminar fluid flows [4J. In the parabolic fluid flow pro-

blems under consideration, however, it is reasonable to ne-

gleet the viscous stresses in the z-direetion [6 J.' Thus the 

au terms ()J -) a z ' 
av aw 

()J az) and ()J az) ean be dropped from Eqns. (2-2) -
• 

(2-4) . Furthermore, the ,pressure gradient (- ~~) that drives 

the main f low may 

(- ~) and (- ~) ax ay 

sur~ P as follows: 

be decoupled from lts lateral eounterparts 

[6J. This is done by decomposing the pres-

p (x, y, z) = Fi' (z) + P (x, y, z) , (2-5) 

where p is a cross-seetional average pressure defined as 

p(z) = î ~P(X,y,Z}dXdY, (2-6) 

A 

1--------- ----

~ 
l 

1 

1 
f 
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and pean be interpreted as a perturbation pressure. 

Assuming that (~i) « (~), it follows that 

ap ::. ~ 
3z dz 

22 

oP = ~ (2-7) oy ôy 

3P = ~ 
3X ax 

The approximation (2-7) is, in general, reasonable for most 

straight unobstructed duct flows with no' strong cross-

stream velocities [6]. The above method of uncoupling the 

axial and transverse pressure gradients is due to Patankar 

and Spalding [6]; it is essential in keeping downstream in-

fluences from propagating upstream by way of the pressure 

transmission mechanism [5]. 

With the above-mentioned approximations, the equations 

governing fluid flow reduce to the following set of partial 

differential equations: 

Continuity 

[:x(PU)+ : z (pw) ] 
,~ 

a 1rt 

ay(PV)+ = 0 (2-8) 

x-momentum 

.[ ;x (puu) + ;z(PWU)] 
0 lE + _3_( au) + a au ay (pvu) + = - ay{ Il ay) ( 2-9) ax ax llax 

--

j , 
; 

l • 

1· 
J 
1 , 

1 

--=""" 1 
1 
1 

~ 
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y-momentum 

2-(puv) +' _d_(pVV) + ~z (pwv) ax ay \'7... (> 

="'l_ (2-10) 

z-mornenturn 

= ~ ~ + __ d ( aw)+ a ( aw) 
dz élx llax ély llay (2-11) 

In addition, there is a constraint on the total mass f10w 

rate through the duct. For steady flow in a duct with im-

permeable wa11s, this leads to the following equation: 

m - J li wdA - constant (2-12) 

Cross-sectional 
Area 

The se~ of equations (2-8)-(2-12) form a parabe1ic system 

which can he solved by stepwise integration in the 

The unknowns in 'these equations are u, v, w, p and 

z-direction. 
- t 

( -~) and 
dz ' 

thus the total number of unknowns matches the number of equa-

tiens. To specify the problem completely, however, two types 

of aU:5iary equations are required: initial and beunda,ry 

conditions. They are described below. 

t (_ ~) sha1l be treated as unknown here, rather than p it­

self, rnainly for calculation convenience; p can be obtained 

t from (- ~) by a straightforward integration. 
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Initial and Boundary Conditions 

The proposed nurnerical rnethod can handle any commonly 

encountered flow conditions at the duct entrance (z=O). In 

the testingand application of the method, however, uniform 

flow at constant pre'ssure is assumed at the inlet. Mathe-

matically, this can be expressed as follows: 

w(x,y,O) = w 

u(x,y,O) = v(x,y,O) = 0 , (2-13) 
c 

p(x,y,O) ;=: 

, . 
o , p(O) = p. , 

1. 

• 
,where p. is a constant and w is the mean axial velocity 

1. 

defined by 

w = rn/pA. (2-14) 

For steady incompre,ss-ible fluid flow in constant area 

ducts with imperméable walls, w is a constant. 

The no-slip and impermeabi~ity conditions imply that . 

/ 
,/ 

u = v = w = 0, on the duct walls. 

Nondimensionalization 

(2-15) 

The following nondimensional variables are used in the 
h 
~ 

analysis of fluid flow problerns: 

1 
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x* x y* L z* z 
= = = 1 

OH 
, 

DH 
, 

OH Re ~. 

u* 
u' v* v' w* w 

= (\ll~) = ( v/OH) 
, := 

-w 
t, 

E 
p-p. 

p* i?* = l-= 2 
, -=2 

\1 pw 
P (-) 

DH 

• 
where DH is the hydraulic di~eter_defined as 

= 4 (cross-sectional area for flow) = 
DH (Wetted perimeter) 

4A 
p' 

'" 

\1 is the kinernatic viscosity (= ll/P) and Re denotes the 

Reynolds number: 

PWDH 
Re = 

Ji 

25 

(2-16) 

(2-17) 

(2-18 ) 

(2-19) 

Upon substitution of these nondimensional variables into 

Eqns. (2-E)-(2-ll), the governing equations become: 

.Continui ty , 

[a u * + av * -+ ô w*] = 0 
ax* ay* az * (2-20) 

x-mornentum 

\ 2 ~, 2 

[a!*(u*U*l+ a~*(v*u.>+ a;.(w*u*>] = - ~~: + [ô u; + au,;] (2-21) 
./ ax* ay* 

• ,::;; .. 'S. -.;'" 

, 

1 
, 1 

! 

1 
1 
1 
1 

~I 

l 
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y-mpmentum 
.. 
'1 • 

." 2 * ~2 * ~ ~ a _ an... a v 0 v 
[~(u*v*) + _O_(v*v*) + --(w*v*)] = -ay* +r~ + ~] 

a-x * âyir az* ax* -ay* 
(2-22) 

\ 
~ .. 

~~ z-momentum --

d -." 2 * a 2w* 
[ .2.....,.(u*w*)+ _Ô_(v*w*) + _â_(w*w*>] = - ~ +[~ + --J (2-23) 

ax.... ay* âz* dz* ax*2 ay*2 

In terms of the nondimensional variables defined in Eqn. 

(2-17), the initial conditions given by Eqno_ (2-13) can be 

written as fo1lows: 

\\j* (x * ; y * , 0) = l, 

lf*(x*,y*,O) = v*(x*,y*,O) = 0, ( 2-24') , 

and p * = p * = o. 
"-

Similarly, the boundary conditions are 

u* :::; v* = w* = 0, on the duct walls. (2-25) 1 
1-. 
'. 

1 
It is to be noted that, with this nondimensionalization, ~ 1 

the Reynolds nurnber does not appear exp1ici tly in Eqns. 

(2-20) -(2-25). Thus the on1y parameter in the flow problems 

considered in this the sis is the duct ~ geoI\letry. 

.. 4 

\ 
\ 
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2.2 .2 Specialization to the FuIly-Developed Regime 

In a region suff icientIy downstream from the entrance of 

the duct, ~he fluid veloci ty distribution ceases to change 

with the axial distance. ,This veloci ty prof ile is called the 

fully-developed veloci ty 9rofile. 

usuaIIy grouped into two categories: 

FuIIy-developed flows are 

"simple" and fi complex" 

fully-developed flows. In the former, no cross-stream veIo-

cities exist: u=v=O, and w=w(x,y) . Laminar fully-developed 

flows in straight uniform ducts fall into th~s category. 

In complex fully-developed fflows, cross-stream velocities are 

present but are invariant wi th z: u=u(x,y), v=v(x,y) and 

w=w(x,y) . Examples of such flows include fully-developed 

flows in curved ducts and fully-developed flows affected by 

buoyancy forces. In this thesis, attention is focused ex-

clusively on "simple" fully-developed flows. 

For simple fully-developed flows, the continui ty equa­

tion and the x- and y-momepturn equations, Eqns. (2-8)-(2-10), 

are satisfied identicallYi and the' z-momentum equa tion, 

Eqn. (2-11), now becomes 

/ 
( 2-26) 

where is a const~nt. The mean 'pressure p is now the 

same as P since the pressure is constant over the cross-

section in the absence of any secondary flow. Eqn • ( 2 - 26) i s 

a sta tement of the exact balance between viscous forces 

I----~"~----_.----=------------------------------~------~~----------------~, 
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(left-hat;ld side) and pressure forces (right-hand side); it 

has the forro of a standard Poisson equation. 

A cOrlvenient dimensionless forro of Eqn. (2-~6) can be 

obtained by defining a new nondimensional axial velocity W 

as follows: 

28 

w (2-27) 
o 2 
(~) (_ 4E) 

11 dz 

In terms of this nondimensional veloëity and the nondirnensio-

nal ,coordina tes introduced in Eqn. (2...:16), Eqn. (2-26) can be 

written in the following compact forro: 
1 

On the duct walls, the no-slip condition iroplies 

wl duct wails 
= o. 

(2-28 ) 

(2-29) 

It is customary to present simple fully-developed duct 

flow results in terms of the product of a friction factor and 

the Reynolds number [7J. In such flows, this product is only 

a function of the duct geometry. The friction factor is 

defined by 
/ 

/ 

, , 
l 
1 

i 
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/ 
(- ~)D 

dz H 
-2 

~ p w 
(2-30) 

The friction factor - Reynolds number product can then be 

obtained from 

2 
f· Re = 

w 
- , 

where W is the average nondimensional velocity: 

w = 
w 

(2-31) 

( 2-32) 

2.3 HEAT TRANSFER ANALYSIS : PRESCRIBED CONSTANT OU CT 

WALL TEMPERATURE CV 

In this section, the equa~ions which govern laminar 

convection heat transfer in a duct with its walls maintained 

at a constant temperature Tw ~re presented. These equations 

can be derived by an appropriate combinat ion of the law of 

conservation of energy and Fourier's lawof heat conduction 

[28J. It is to be noted that this thermal boundary condition 

of constant duct wall temperature is denoted by the symbol CV 
throughout this thesis. As was done in the description of 

the fluid flow problem, attention ls focused on both the de-

veloping and the fully-developed regions. 

-..- -zu 
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2.3.1 Thermally Developing Regime 

For steady duct flow and heat transfer problems being 

considered in this thesis, the energy equation may be 

written as fol1ows [28]~ 

= 

[L(k!!:) + L(k !!.) + ~(k ~T)] ax ax 'dy 'dy az az (2-33 ) 

where c and k are the specifie heat at constant pressure 
p 

and thermal conducti vi ty of the fluid, respectively, and T 

denotes the fluid temperature. In Eqn. (2-33), the assumption 

has been made that no interna1 heat source or sink exists in 

the duct. The 1eft-hand side of this equation represents 

,the rate of transport of specifie enthalpy per unit volume 

by convection and the bracketed term on the right-hand sidè 

denotes the rate of transport of energy per unit volume by 

conduction. 

In the parabolic problems of interest in this thesis, 

the streamwise heat conduction terre ~z(k ~~) is negligibly 
a( pw c T) 

sma1l in comparison to the convection term p 
élz 

Neglecting this term therefore, Eqn. (2-33) reduces to the 

fol1owing forro: 

.;; 

J 

\ 

1 

1 
l 

i 
l, 

\ 
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[~x(pu C T)+ L(pv c T)+ ~Z(PW c T) ] = 
',! Q P dy P Q P 

[ L(k l!)+ _d (k dT) ] 
(lx 'ax ay ay 

(2-34 ) 

For a complete specification of the problem, thermal 

initial and boundary conditions are required. 

Initial and Boundary Conditions 

The proposed numerical method can handle any cornmonly-

encountered distribution of temperature at the inlet of the 

duct (z :::: 0). In the testing and application of this method, 

however, a uniform temperature distribution is assumed at the 

duct inlet: 

. T(x,y,O) = T. 
~ 

:::: constant. ( 2-35) 

The duct walls are maintained at a constant temperature, 

TWi thus 

T = Tw = constant, on the duct wa11s. (2-36 ) 

Nondimensionalization 

Using the nondimensionalization a1ready introduced in 

Eqns. (2-16) and (2-17), and defining a dimensionless 

temperature for the ® boundary condition as 



( 

( 

T* 

.1 

li 

T - T. 
~ 

T - T. w ~ 

the parabOlized!energy equation (2-34) can he written as 

follows: 

[ _3_(U*T*)+ _ô-(V*T*)+ ---Ê...,..(W*T*) ] = 
ôx* _ ôy* az'" 

where pr is the Prandtl number: 

Pr = 

32 

(2-37) 

(2-38) 

Similarly, the initial and boundary conditions can be 

expressed in nondimensional forro as 

T*(x*,y*,O) = 0, (2-39) 

T* = l , on the duct walls. (2-40) 

An ex~ination of Egn. (2-38) shows that the duct geome­

try and the Prandtl number of the fluid are th~ only parame-

ters in this heat transfer problem. 

The per ipherally-averaged local Nussel t number is 

defined as 

----~-~~--- <~-----------------------------------
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" 
(2-41) 

whe,re qz is the peripherally-ave!aged wall heat flux at 

axial l~cation z; it can be obtained from an energy balance 

oV.er a portion of the duct of length dz: 

(2-42) 

where A repre sents the cross-sectional area for flow, P is 

the heél; ted perimeter of the duct, and Tb is the bu1k tempera­

ture defined by 

= 
f pW c 
A P 

f 
A 

pW C 
P 

T dA 

(2-43) 

dA 

Eqn. (2-42) can be substituted into Eqn. (2-41) to get: 

DH Re Pr dTb 
(r) «T -T ) (dz ) 

w b 

and in terms of the dimension1ess quantities introduced 

earlier, 

1 
4" 

Pr 

(2-44 ) 

(2-45) 

1-------------
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Often; in heat exchanger analysis, a flow length 

average Nusselt number is more useful than the peripherally-

averaged loca l Nus sel t number.' The former is defined as 

z 

34 

l J Nu ifm\T dz . 
Z'I\!:.j 

(2-46) -z 
o 

It can be shown that, for the ® boundary condition, 

(2-4'7) 

, 
where (~T)LMTD is the log-mean temperature difference 

(~T) LMTD 
(T -T.) - (T -T (z» 

w ~ w b 
(2-48) = 

and ~ is the mean duct wall hêat flux from 0 to z. 

2.3.2 Specialization to the Thermally Fully-Developed 

Regime 

In this problem, the fluid temperature T starts from the 

specified initial conditions at the inlet and eventually 

reaches the wall temperature T • w The duct region in which 

T ~ Tw is uninteresting, since the temperature is constant 

everywhere and no heat transfer occurs. However, much before 

.. 
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( 

this uninteresting region is reached, a dirnensionless 

ternperature e defined as 

e 
T ... T 

w 

35 

( 2-49) 

becomes invariant wi th z. The portion of the duct where 

thi s happens is referred to as the thermally f_ully-developed 

region [7]. 

The energy equation under fully-developed flow conditions 

can be written as 

= [~(k dT)+ _Cl (k ClT)]. 
dX dX ây dy ( 2-50) 

• 1 
1 

In terrns of e, x* and y*, this equation becornes 

= ( 2-51) 

An overa1l energy balance over a slice of the duct of 

thickness dz gives 

= 
-qz p 
. 
rn c p 

(2-52) 

Using Eqn. (2-52), the energy equation can be rewritten 

in the fol1owing form: 

(2-53) 

1 

1 

; 
î 

, 
! 

.~ 
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where 

= (2-54) 

In the thermally fully-developed region, e ~ e(x*,y*) and it 

can be shown [7] that À is a constant. 

At this stage, it is·convenient to introduce a scaled 

temperature G ~ e / À [31]. Since À is a constant, the energy 

equation in terms of 8 has thè sarne forro as Eqn. (2-53): 

(2-55) 

The boundary condition for G is 

8 = 0 , on the duct walls. (2-56) 

Subject to this boundary condition, Eqn. (2-55) poses an 

eigenvalue proble~~ with À as the unknown eigenvalue. The 

value of À must be such that the solution 8 is c,?mpatible with 

the definition of bulk temperature. This compatibility cri-

terion leads to the following relation for À: 

, À 
1 
i 

l = f: 8 dA 

( 2-57) 

A 

i -

1 
1 
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\ 
The above treatment of the energy equation in "the thermally , 

fully-developed.regime is due to Sparrow et al. [31]. It 

is to be noted that the Prandtl number pr does .not appear 

in Eqns. (2-55) - (2-57) . Therefore, it is n<1t a parameter in 

the fully-developed reg ime. 

The overall Nussel t mimber in the thermally fully-

developed region is def ined by 

= À 

i 

where h is the average heat transfer coefficient. 

( 2-58) 

2.4 BEAT TRANSFER ANALYSIS: PRESCRIBED UNIFORM . WALL 

BEAT FLUX ® 
l' 

In this section, consideration is gi ven to the situation 

where a constant rate of heat transfer per unit area is im-

posed on the duct walls. This thermal boundary condition is 

denoted by ® in this thesis. As before, the analyses of 

thermally developing and fully-developed regimes are presen-

ted in sequence in this section. 

2.4.1 Therrnally Developing Regime 

since only the thermal boundary condition is different 

from that in the previous section, the same governing 

equation, Eqn. (2-34), applies: o 

1 

, 

1 
~ 
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[.L(k 3T) + ~(k i!)] . 
âx âx 3y 'dy 

(2-34) 

It is again emphasized that any of the conunonly­

encountered initial conditions can be handled by the p;t:"oposed 

numerical rnethod. In the testing and applîcation of this 

method, however, the following initial condition is used: 

T(x,y,O) = T. = constant. 
~ 

The thermal boundary condit~on in this prob1ern' is 

k aT 
an 

wall 

constant, 

(2-59) 

(2-60) 

where n denotes the outward normal to the duct walls anc1 qw 

is the prescribed wall heat flux. 

By defining a dimensionless temperature t* as 

t* 
T - T. 

~ 
(2-61 ) 

and making use of the nondimensional variables introduced in 
, . 

Eqns. (2-16) and (2-17), the fo11owing convenient dimension-

less form of the energy equation can be arrived at: 

'Pl _ c, 

! , 

1 
! 
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'. 

E~(u*t*)+ __ ê"_(V*t*)+ __ d_(W*t*) ] 
êx~ . ay* az* 

, (2-62) 

Examination of Eqn. (2-62) shows that it has the same form as 

Eqn. (2.-38) forthe ® boundary cpndition. Again, the 
, 

Prandtl number and' the geornetry' of the duct are the onl'y para-

meters in this problern. 

In terrns of the dimensionless ternperature t*, the initial 

and boundary conditions May be rewritten as 

and 

t*(x*~y*,O) = 0 

êlt* 
an* 

wall 

= 1 

1 

where n* is ~he norrnalized outward normal (= n/DH). 

(2-63) 

1 (2-64)' 

The local peripherally-averaged Nusselt~~urnber is defined 
:; 

as fol~ows:- ~' 

i .. ! . 
DH l qw ~ 

Nu ' ® ~ z, (T -w 

(2-65) 
T~)k 

r 
) 

where Tw is a peripheral Mean wall tempera~ure.. This Nusselt 

nurnber definition"is consistent with that suggested by Shah 

and London [7]. 

Eqn. (2-6'~) can be rewritten in terrns of the non­

dimensional variables defined earlier.as 

1 • 

j 

1 

fJ 

.----------r-~.~.~----~-~.----------------------------------~--------------------------------=-
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= 1 (2-66), 

A flow length average Nusselt number can be arrived at, 

, as before, by integration of the local peripherally-averaged 

Nusselt number: 

x 

Nu m, ® 

T - T b 

Nu z, ® dz 

(2-69) 

el 

j 
i , 

l . 
,3-" 

'~ 

A 

t , 
, 
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~ using Eqn. (2-68), it can be shown that this nondimensional 

temperature is invariant with z in the thermally'ful1y-

..... 

developed region. Using X and Eqn. (2-68), Eqn. (2,:",50) can 

be nondimensionalized as follows: 

4 (~) = 0, 
W 

• 

where (W/W) is obtained from the solution of the f~lly-

(2-70) 

d~veloped fluid flow analysis. On the walls of the duct, 

= l (2-71) 

Eqn. (2-71) is a Neumann-type boundary condition; it 

determines the shape of the X distribution, but it does not 

fix the level of X uniquely. However, from the definition of 

x in Eqn. (2-69), it follows that: 

= o . (2-72) 

This condition can be used to establish a unique solution. 

for x. 

A peripherally-averaged Nusselt number has already been 
r"· 

defined ~n Eqn. (2-65) for the thermally developing region. 

In the'f~llY-deVeloped region, this reduces to the following 

form: 

~\ 
n: ± 

1 
1 

1 
1 

! 

t 
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Nu = = l (2-73) 

® 

where Xw is the average of X over the periphery. 

2._5 GENERAL FORM OF THE GOVERNING EQUATIONS 

All governing equations presented in thè previous 

sections of this chapter can be cast into the following 

general forro: 

[ ~x(PU~)+ ~y(Pv~)+ ~(Pw~)] = [ __ d cr li)+ ~(r li)] + s 
a a az '\' _ ax dX ély ay 

(2-74) 

where ~ is a general scalar dependent variable, r is the 

corresponding diffusion coefficient and S is interpreted as a 

volumetrie generation or "source" term of ~. 

side of Eqn. (2-74) represents the rate of convection trans-

port of ~ per unit volume and the expression enclosed in 

square braekets on the right-hand side represents the rate of 

transport of ~ per unit volume by diffusion. 

Table 2-1 shows how the various governing eguations 

presented in the previous sections of this chapter can ne 

obtained from Eqn. (2-74) by assigning partioular meanings 

to ~, rand S. It is ta be noted that the velocity compo-

nents u, v, w and the coordinates x,y,z in Eqn. (2-74) are 

'l 

1 
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dimensional or nondimensional depending on whether.~ is 

dimensional or nondimensional. 

The recognition that aIl relevant governing equations 

possess a general common forro offers significant advantages 

in the formulation and computer implementation of a general 

numerical solution procedure [4J . 

2 .6 REMARKS 

J 

In this the sis, three classes of duct flow and heat 

transfer problerns are considered. In one, it is assumed 

43 

that hydrodynamically and thermally fully-developed conditions 

prevail; this situation occurs in regions sufficiently down-

stream from the duct entrance. In the second class of pro-

o blems, the velocity profile is considered to be fully-

developed while the temperature field develops. The last 

class of problems deals with the situation in which both 
// 
~elocity and temperature fields develop simultaneously. 

In aIl the above problems, since the fluid properties 

are assumed to be constant, the solution of the flow field 

can be obtain~d without a knowledge of the ternperature dis-
-~-

tribution. Once the solution of the flow field has been 

obtained, it is used as an input in the energy equation: at 

this stage, the energy equation is a linear convection-

diffusion equation [4J which can be solved to obtain the 

temperature field. 

The developing duct flow and heat transfer problems 

considered in this thesis are parabolic in nature: the 

/ 
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conditions at a point in the flow can influence conditions 

at downstream points but not vice-versa. Thus a marching 

integration procedure can be used to solve these problems: 

starting with a specified set of initial conditions at the 

inlet of the duct, a step-by-step procedure can be used to 

advance the solution downstream. . This feature of the pro-

blerns of interest offers considerable advantages in the formu-

lation and computer implementation of the proposed nurnerical 

method. 

--- --~---"----~--

i 
l 



( 

45 

CHAPTER III 

FORMULATION OF THE NUMERICAL METHOD 

The formulation of a control-volume finite-element rnethod 

for the sol~tion of three-dimensional parabolic flow and heat 

transfer in ducts is presented in this chapter~, In the con-
\' 

struction of this method, sorne key ideas of two existing me-

thods are used: ·a control-volume finite-element method pro-

posed by Baliga and Patankar [1,2J for two-dimensional ellip-

tic situations; and a finite-difference method developed by 

Patankar and Spalding, [6J for three-dirnensional parabolic 
) 

flows. ! 

Standard finite-element methods have the following 

characteristic features: (1) the calculation domain is divi-
1 

ded or discretized into non-overlapping subdomains or elements 

of simple geometric shapes; (2) the dependent variables are 

interpolated in each element by suitably-chosen shape or 
" .' 

interpolation functionsi (3) discretization equations are 

obtained by using a variational method or the Galerkin method 

of weighted residuals; and (4) an element-by-element assem-

bly is used to cornpïle the 'global discretization equations. 

The proposed numerical method has all of these characteristics 

but differs from a standard finite-element formulation in that 

a control volume approach rather than the Galerkin technique 

is used to obtain the discretization equations. Therefore, 

it was decided that the method could be considered as a 

, 
\ 

1 

1 
1 
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finite-element method, with the term 'control-volume' used 

as a qualifier. 

Details of the various building blocks of the proposed 

method are given in the following sections. 

3.1 DOMAIN DISCRETIZATION 

The calculation domains in the problerns of interest in 

this the sis are straight uniform ducts of regular- or irregu-

lar-shaped cross-sections; an example is given in Fig.3-1(a). 

In the proposed domain discretization scherne, the duct is 

first sectioned into a series of slabs perpendicular to the 

z-axis, as shown in Fig. 3-l(b). Each slab can be viewed as • 

being made up of two adjacent parallel cross-sectional planes. 

Different slabs need not have the same thickness; indeed, in 

the numerical prediction of developing flows and heat transfer, 

the ability to work with a nonuniform distribution of axial 

step size ~z, which ~s the slab thickness in this case, is 

crucial to the formulation of computationally-efficient 

methods. 

Following the division of the calculation domain into 

slabs, the cross-section of each of the slabs is further 

discretized using a four-stage procedure illustrated in Figs. 

3-2(a) to 3-2(d): first, it is divided into six-node trian-

gular macroelementsi then each six-node elernent is divided 

into four three-node triangular subelements by joining the 

( midpoints of its sides; following that, aIl nodes of the 

three-node triangular elements are associ~ted with control 
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volumes of polygonal cross-section; finally, the vertices 

of the six-node triangular elements are associated with a 

separate set of control volumes of polygonal cross-section. 

This cross-sectional discretization is swept through each slab 

in the axial direction to generate the .three-dimensional grid. 

This procedure divides each slab into prism-shaped elements of 

triangular cross-section and prism-shaped control volumes of 

polygonal cross-section. In the proposed method, aIl slabs 1 

are discretized in the sarne manner. 

A typical prism macroelement and its four subelements 

are shown in Fig. 3-3 (a). In each cross-section, aIl depen-,: 
\ 
( 

dent variables other than the pressure are stored at aIl six 

nodes of each macroelement; the pressure is stored only at 

the vertices of the macroelements. Thus the pressure field 

is discretized by a coarser grid than that used to discretize 

other dependent variables. This unequal-order pressure-
~ 

velocity discretizati~n scheme is one way of avoiding physi-

cally unrealistic che~kerboard-type pressure fields that 

commonly afflict equal-order finite-element methods [32,33]. 

The polygonal cross-sections of the prism-shaped control-

volumes are generated by joining the centroids of the triangu-

lar elements to the midpoints of the corresponding sides: 

application of this procedure to triangular subelements 

generates the cross-sections of subelement control volumes 

shown in Fig. 3-2(c)i the cross-sections of the macroelernent 

control volumes shown in Fig. 3-.2 (d) are obtained by applying 

this procedure to the §i~-node triangular macroelements. 

" 



48 

( 
, 1 

Typical pr~sm-shaped subelement and macroeleme~t control 

volumes and the'associated nomenclature are illustrated in 

Figs. 3-)(b) and 3-3(c), respectively. It is to be noted 

that this method of generating control volumes can be used 

with any triangulation of the duct cross-sectional planes, 

including.those involving obtuse triangles. Furtherrnore, 

the subelement control volumes do not overlap, their bounda-

ries do not involve interelement surfaces, and collectively, 

they fill the calculation domain completely. The macro-

element control volumes also possess these desirable features. 

In the proposed method, triangula+ elements are preferred 

to quadrilateral elements in the 9iscretization of cross-

sectional planes for the following reasons: general quadri-

lateral elements necessitate the use of isoparametric trans-

formations [34J, but the triangular elements used here a~e 

free from this complication; for the same number of nodes, 

triangIes provide greater flexibility than quadrilaterals in 

the distribution of the nodes inside the calculation domain; 

and highly irregular-shaped cross-sections can_be more easily 

\ divided into triangles than into quadrilaterals. If the duct 

cross-section is bounded by curved lines, it is approximated 

by piecewise-straight lines, and the resulting polygonal region 

is assumed to be the calculation domain; a triangulation using 

macroelements and subelernents is then possible. 

The local node numbering and labelling schemes shown in 

( 
Fig. 3-3 are used in presenting the formulation of the pro-

posed numerical method. In each cross-sectional plane, the 

" , , 

I---------------~~--------------------------~------~------------ ~---------
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vertices of a typical six-node macroelement are numbered 

1, 2 and 3, and the mid-side nodes are numbered 4, ~ and 6, 

as shown in Fig. 3-3(a). The centr6id of the macroelement 

123 is denoted by 0 and that of the subelement 165 is called 

49 

o. The same node numbers and labels are used in the upstream 

and downstream pl9nes of the typical prism-shaped macroelement 

shown in Fig. 3-3 (a) i this is done mainly to avoid the usE:l, of 

too man y subscripts and superscripts in subsequent discussions. 

The values of a dependent variable ~ at upstream and downstream . ' 

nodes are denoted by ~U and ~D, respectivelYi if a dependent 

variable is not superscripted, it is to be understood that it 

pertains to downstream nodes. 

Fig. 3-4(a) shows the different subelement control volume 

faces associated with the typical subelement 165. Macro-

element control volume faces associated with the typical 

macroelement 123 are illustrated in Fig. 3-4(b). The nota-

tion presented in these figures is used in aIl discussions 

presented in the remainder of this thesis. 

3.2 CONTROL-VOLUME CONSERVATION EQUATIONS 

The differential equations which govern the duct flow 

and heat transfer problems being considered in this thesis 

were presented in Chapter II. In addition, it was shown that 

aIl these equations can be considered as particular forms of 

the following general differential equation: 

-:J 

... - ~ 
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.. 
= [.L(r It)+ .L(r l!.>] + s 3x ax ay ay (2-74) 

In vector notation, this equation may be rewritten as follows: 

(3-1) 

where ~ is the cornbined convection and diffusion flux of ~: 
1 

j = [pu~ - r l.t] ax i + [p v ~ - r l1] j + [p w 4> ] '~ 
ay 

In Eqn. 
-+-+ =+- / ~ 

(3-2), 1, J and k are unit vectors in the x, 

(3-2) 

y and z 

directions, respectively. It is to be noted that the compo-

nent of j in the z-direction represents only the convection 

of ~ in that direction; in parabolic duct flow and heat 

transfer, the diffusion transport of ~ in the z-direction is . 
n~gligible compared to the corresponding convection transport. 

An integral conservation equation corresponding to Egn. 

(3-1) can be obtained by integrating it over a control 

volume V and using the Gauss divergence theorem: 

f -+-+ 
J·n 

aV 
ds - fSdV 

V 

) 

= 0 (3-3) 

where aV is the boundary surface of the control volume and rt 

is the unit outward normal ta the irtfinitesimal surface area 

ds. 

1 

1 
1 
i 
i 
1 

1 

1 : . 
! 

" " , 

. ~J 
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Consider the typica~ subelement 165 :s ho wn- in Figs. 

3-3 (b) and 3-4 (a) • When applied to the subelement cont~ol 

vo'lume associated wi th node 1, the integral conservation 

equation for $ can be written as foÎlows: 

ds 

[
Similar contributions from-other 

+ subebements associated with node 

+ [boundary contributioas, if applicable] = 0 

51 

( 3-4) 

The form of Eqn~ (3-4) ernphasizes that it can be 

assernbled by using an elernent-by-elernent procedure. 
-,,--

In the proposed method, theC~ornenturn conservation 

equations are also imposed on subelernent control volumes. 

Thus, the integral momentum equations in the x, y and z 

directions can be obtained from Eqns. (3-2) and (3-4), with 

1 • 

the approprlate interpretations of ~, rand S given in 
1 

Table 2-1. 

In the incompressible duct flow problems being consi-

dered in this the sis, ~here are no explicit equations which 

govern the cross-sectiona,l pressure p and the axial gradient 

of the cross-sectional average pressure (dp/dz). They are 

both indirectly specified: substitution ct correct values 

of p and (dp/dz) into the rnornentum equations yields a 

--~--~-------------------------------------
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velocity distribution that also satisfies the local 

continuity equation, Eqn. (2-8), and. the overa11 contin?ity 

equa tiC> n, Eqn. ( 2 -12) . In the proposed m~thod, the mass 

cons~rvation equation, cortesponding ta the integral <form of 
1 r. ' 

Eqn. (2-8), is imposed on the macroelement control volumes 
t' -, 

shawn in Fi~ 3-2(d) and, Fig. 3-3(c). with reference to 
~ 

the macroel~ent control volume surrounding node l in Fig. 

3-4 (b), this ~equation can be written as follows: 

,-

ds ] J ~ + pv·n 

A 
J + + pv·n 

C 

ds + dg + 

[
Similar contributions from other 1 

+ macroelements associated with node l 

+ [b0undary contributions, if applicable] = 0 . 
~ 

• 

(3-5-) 

} 
Eqn. (3-5) can be assembled by, using a macroelement-by-

macroelement procedure. 

3.3 INTERPOLATION FUNCTIONS . ., 

The derivation of algebraic approximations to the 

control-volume conservation equations discussed in the last 

section requires the specification of element interpolation 
1 

functions for aIl dependent variables, the corresponding 

diffusion coefficients and source terms, and the mass density. , 

These interpolation functions approxirnate the variation of 
( -,' -

~ 

I------------~h--__ .~~~ __ ---
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the variables of interest: (a) along the duct axis, and , , 

(b) in the duct cross-section. 

categorized accordingly. 

~ 

The following discussion is 

3.3.1 . z-Direction Interpolation Functions 

l1l 
In "the ~-direction, w1thin each element, the downstream 

values of aIl dependent variables (~,u,v,w,p"and dp/dz) and 
: 
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prdperties (p, rand S) are assumed to prevail over the axial 

step size t::.z. A graphical representation of the correspon-

ding interpolation function for the'scalar dependent variablé 

4> is shown by the solid line in Fig. 3-5. 

This interpolation -practice is equivalent to the so-

called fully-irnplicit formulation used in the numeriçal 

solution of parabolic problerns [4]. The other well-known 

fQr~ulations· for parabolic problems are the so-called Crank-

Nicolson and explicit methods [4]. Of the three interpola-

tion functions shown in Fig. 3-5, the one corresPQnding to 

the ~ully-implicit formulation does not necessarily lead to 

the most accurate method for aIl values of t::.z and flow condi-

tions. However, t~e other two interpolation practices 

require stability-related limitations on the axial step size 

t::.z, which could get unusually restrictive under certain flow 

cO,nditions; but the fully-implicit formulation imposes no 

such limitations [4J. It is for this reason that the fUlly-

implicit formulation is adopted in the proposed method. 

,. 

~ ~ 

--------------,_.----~-----------~~-------------------------.--------~-------------------------
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( 
3.3 .2 cross-Sectional Interpolqtion Functions 

InterpSÏ'a:tion function for p, rand S 

In the duct cross-section, the values of p and r at the 

centroids of the triangular subelements are stored, and they 

are "assumed to prevail over the corresponding elements. 

The source term sis, in general, a function of~; it 

be expressed in the following form [4] : can 

1 ( 3-6) 

, .. 
If the dependence of S on ~ is non-linear, appropriate 

linearization techniques can be used to cast i t in the form 

given by Eqn. (3-6). Such techniques are described and 

discussed in [4]. The values of Sc and Sp are stored at the 

centroids of the subelements and assumed to prevail over the 

corresponding subelements. 

Interpolation functions for the general dependent variable ~ 

AlI integral terms appearing in Eqn. (3-4) contain the 

dependent variable ~. In the derivation of algebraic 

approximations to these different integrals, it is not neces-

sary to use the same interpolation function for ~. Indeed, 

in the formulation of computationally efficient and stable 

numer ical methods, it is usually necessary to use dif ferent 

( 1 interpolation functions to approximate the different integral 

1 

1 ", 
. ____ .:-.' -----~-+G-".G~-_-=-_=_-_-_ _=_-_-_ ....,~ _________ =----=-_______ --_··_-=---..::l;.......· -
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terms in the control-volume conservation equations [2,4] • .. 
In the proposed method, in the integral involving the source 

term S and in the integrals representing the convective trans-

\J 
port of <p across cross-sectional faces, such as u l and dl 

shown in Fig. 3-4 (a), the nodal values of ~ are assumed to 

prevail over,their associated subelement control volumes. 

In the der i vation of algebraic approximations to the 

integral terms which represent the convection-diffusion 

transport of <p across -iateral faces, such as a and c. shown 

in Fig. 3-4(a)·, more careful conslderations are required in 

the choice of a sui table shape function for cp. In the ab-

senee of crr..strearn ve10city components (u=v=oO), cp is 

~nterpo~ated) linearly in each subelement. In the presence 

of cross- stpeam fluid flow, however, the use of 1 inear lnter-
'--~ 

pola tion functions could lead. to physically unreal i stic 

oscillatorFY solutions and cause iterative solution methods 
1 

ta diverge [1,2J. To overcome this difficulty, an element 

interpola tion function proposed by Baliga and Patankar [l, 2] 
1 

is used. This function responds to the relative strengths 

of convection and diffusion in the cross-stream transport 

terms, and it also takes into account the direction of a 

subelemen t-averaged cross-section ve10ci ty vector. 

Consider the sube1ement 165 shown in Fig. 3-6. The 

e1ement-averaged cross-sectional ve10ci ty vector for this 

subelement is denoted by "0. A n~w sube1ement coordina te 

system (X,Y,Z) is introduced at this stage: its origin is 

10Jated at the centroid 0; the x-axis is a1igned ';ith the 

I----------~~~,---_··------------------------~------------~,,~-----------------------------------------------
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e1ementLaveraged cross-sectiona1 ve10city vector vo; 

z-axis is a1igned wi th the duct axis or z-direction. 

and the 

Let 

-+ ! and k denote unit vectors in the X and Y directions, res-

pectively, and U and V the corres~onding ve10city components. 

Then 

= ..... 
Uav ~ 

where 

Let 

and 

r 

x . 
m~n) 

(3-7) 

(3-8) -

(3-9) 

'. 

(3-10) 

where pe~ is a subelement Pec1et number based on the,magni­

tude of the elernent-averaged cross-sectiona1 ve10city vector 

+ 
v o' In terms of these variables,,, the interpolation function 

for $ ±n sube1ement 165 shown in Fig. 3-6 is given by 

= lA ~ + BY + C (3-11) 

where 

-. -+ 

, 
1 
f l-

L 
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/ 
1 

1 

/ 
/ 

1 (X-X ) 
Pe max 

- ,l .} r 
{exp ( à ) (3-12) ç = PUav X - X max min 

and A, Band C are copstants that can be uniquely deterrnined 

from the nodal values of 4> (Appendix II). The rationale for 

using t~e interpolation functi?n given in Eqn. (3-11) has 

been exteI'l:si vely discussed. by Baliga and Patankar [1,2]. 

Briefly, the advantages of this practice are the following: 

1 
( 

l' 
. (1) the exponential ~hnction used in Eqn. (3-12) 

provides the appropriate amo~t of "upwinding" ~ 
ç. 

(2) the "spinning" of the local (X,Y,Z) coordinate 

system to align it with the d~rection of the average cross-

• + 
. sectional veloclty, v , substantially reduces the nurnerical 

o 

or false diffusion difficulty that plagues many of the 

currentIy-available upwind-type finite-difference and finite­

el ement scheme s [2, 4] i 

(3) in the absence of cross-stream vèIocities (u=v=O), 

Eqn. (3-11) reduces tola linear interpolation function, and 
o 

thus conforms to the standard practice for pure diffusion 

si tua tiens. 

Interpolation functions for the velocity components· u, v and w 

r The velocity components u, v and w are stored at aIl 
, 

,nodes, and interpolation functions for these variables are 

, 

1 

~ 1 

f 
1 

1 

\ 
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prescribed 'in each sUbel:rent in the calculation domaine 

It is again emphasized that interpolation functions are re­
l 

quir'ed to obtain algebraic approximations to the different 

integral transport and source terrns present in the contrbl-

58 

volume conservation equations, and it is not necessary to use 

the sarne interpolation f.unctions in aIl these different terms 

and equations [4]. 

In the derivation of algepraic approximations to the 

integral terms which represent convéctive transport of momen-

tum across cross-sectional faces, such as u l and dl shown {n 

Fig. 3-4(a) , the nodal values of u, v and w are assurned to 

prevail over the surfaces of their associated subelement con-

trol volumes. 
if 

In the derivation of algebraic approximations 

to the integral terms which represent the convection-diffusion 

transport of momenturn across lateral faces, such as a. and c. 

shown in Fig. 3-4(a), u, v and w are interpolated by func-

tions similar to "the ~ interpolation function given in Eqn. 

(3-11) . 

In the calculation of mass flow rates across cross-
, 

sectional,faces, such as ul and dl shown in Fig. 3-4(a), nodal 

values of w ar~ assumed ta prevail over the 'surfaces of their 

associated subelement control volumes. In the derivation of 

algebraic approximations to mass flow rates across lateral 

faces, such as' a and c. in Fig. 3-4 (a), u and v are assumed to 

vary linearly ~n the subelements. 

\ 
\ 

I--------~--- --------------~-------------------------------~~~--------------------------------~ • l .. t _____________________ ...L. _________________ ............ ~ ___ ~-- - -- - -----~----
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Interpolation function for pressure 
-~-:q , 

The pressure ~s stored at the vertices of the macro-

elernents and interpolated linearly w}thin each macroelement. 

Thu's, the interpoJ,-g.tion function can be expressed as 
( 

59 

p = ax + by + C (3-13 ) 

where ,a, band c are constants which can be uniquely deter-

m,ined from the nodal values of p (Appendix I). 

3.4 DERIVATION OF THE DISCRETI ZA'1'ION EQUATIONS 

The discretization equations are algebraic approxi~ 

the control-volume conservation equations ~H.iêJ( ap \.\ 
~.. ( ....."...~ tions to 

Eqn. (3-4). They are obtained by first deriving suCh' ~~) 
approximations ta the corresponding element contributions 

and the boundary contributions, if applicable, and then 

assembling these contributions appropriately. In the 

following discussion, the derivation of the discretization 

equation for the general dependent variable ~ is pre sented 

first. Then discretization analogues of the X-, y- and z-

momentum equations are presented. Finally, discretized 

forms of the continuity and momentum equations are combined 

to obtain discretization equations fGr the pressure p and 

the axial pressure gradient (dp/dz). 

I------------··--~·~·~------------------------------------~-~------------~----------------------



3.4.1 Discretization Equations for p / 

The following discussion pertains to node l of; the 

subelement 165, shawn in Fig. 3-4(a), and its associated 

subelement control volume; discretization equations asso-

ciated with other subelernent nodes are obtained analogously. 
~:i(., 

Element contributions 

60 

using the interpolation functions presented ear1ier, the 

integral transport of Ij> across the upstrearn and downstream . 
control volume faces ILl and dl are a pprox irna ted as fol1ows: 

• , 
',' .. 

j . n ds == 

j . il ds == , (3-15 ) 

\ 
. 

where the sy.p ..... ersèripts U and D refer to the upstream and 
" 

downs.tream planes, respectively, and A
165 

is the area of 

triangle 165. The assumption that the values of ~ and w at 

node l prevail over the control volume faces lil and dl has 

been employed in deriving Eqns. (3-14) and (3-15). 

Simpson 15 rule and the fully-implicit formulation are 

used to appraximate the integral transport of cp across the 

lateral faces a and c... Thus the convection-diffusion 

I--______________ ·o _____ <---__________________ --______ ------___ ,-"~, ________ _ 
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transport of cp acros~ the lateral surface a. ts approximated 

as follows [2]: 

fJon -y t.J.Z 
[ (Jx ) ~ + 4 (JX) ~ (Jx)~] ds - a + 6 

a. 

Xat.J.z 
[(Jy)~ + 4(Jy')~ + (Jy ) ~J (3-16) + -6-

where J x and J y are the components of j in the spun coordinate 

system X and Y, respectively. The interpolation functions 

giv~n inoEqn. (3-11) are used to approximate J x and J y: 

J X 
- peU - U ) ASI + pU (BY + C) rA 

} (3-17) 
av 

J - pVA~ + pV(~y + C) - rB y 

-', 

The subscripts 0, r and a in Eqn. (3-16) refer to the locations 

shown in Fig. 3-6. U and V ,are the cross-sectionaL velocity·"" 

components in the spun X and Y coordinate directions, respec-

tively. The interpolation constants A, Band C can be ex-

pressed in terms of the coordinates of the nodes l, 6 and 5 

and the corresponding nodal values ~1' ~6 and ~5; the exact 

expressions for- these constants are given in Appendix II. 

Eqn. (3-16) can be compactly written as follows t : 

t the derivation here is straightforward but quite ~engthy; 

its details are reported in Appendix II • 

~~ 
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Ir.;; ds - -lAt ~~ + A~ ~~ + At ~~) (3-18) 

a. 

where Af, A~ and A: are constants that involve the fluid 

properties p and r and the nodal coordinates and velocity 

components. In Eqn. (3-18), the superscript('a. pertains to 

the integration across the control volume face a. 

In a sirnilar manner, the convection-diffusion transport 

of $ across face e can be expressed as: 

p.;; ds ,,; A~ ~~ + A~ .~ + A~ .~ (3-19) 

c 

! Again, 'details of this der ivation are availab1e in Appendix II. 

,~ The integral involving the source terrn is approxirnated 

as follows: 

(3-20) 

v v 

Adding up Eqns. (3-14), (3-15), (3-18), (3-19) and (3-20), 

the total contribution of subelement 165 to the integral con-

servation equation for the control volume surrounding node 1 

is obtained: 

l 

î 

l 
1 
J 
l' 
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J j.ft ds + J j.ft ds + Jj.ft ds + Ir. ri ds - fs dV 

, u al a. C VI l 

A165 D a· + AC} <pD = {-- [(PWI ) - Sp flz]- Al 3 l l 

_ {A a. 
. 5 

_ AC} 
5 

~D _ 
5 

{Aa. _ 
6 

AC.} 
6 <p~ 

r\ '> 

Al65 U <pU A165 
~z BC} (3-21) {-- (pw

l
) } {-3-3 l 

1. 

It can be shown that, if the element contribu~ion to 
, 

the mass conservation equation for the control volume asso-

ciated with node l is multiplied by ~~ and then subtracted 

from Eqn. (3-21), the resul t is: 

CONTI ds + j;.ri 
C 

ds - fs dV] 
VI 

<pD if pv.ri ds + f + + ds f+ + ds + f+ + 0SJ pv·n + p~.n pv·n 1 " 

u
1 dl ct C 

Al65 
[(pwl)U - Sp llZ] + Act ....: AC. + Aa. AC} <pD = {--

3 5 5 6 6 l 

_ {A a _ AC} 
• 5 5 q,~ {Act. 

6 
_ AC} 

6 <p~ 

A165 A '" U ~O { 165 6z Se} - '{-3- ( PYl
1

) } 
l 3 (3-22) 

1 . 

" 

I~ _________________ 1 
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When similar contributions from ai~ other elements~ associated 
( 

wi~h'node lare added up, the net contribution from terrns 

i ~olving the mass flow integrals is zero; this is a require-

me t of the law of conservation of masse Renee, Eqn. (3-22) 

can bë regarded as the total centribution of the subelernent 

165 to the ~-conservation equation for the control volume 

und ing node 1. 

The motivation for using Eqn. (3-22) instead of (3-21) i 

is following [2]. In problems where the source terrn is 

-
(5 = 0), if <p satisfies the governing equation, then 

onstant) also satisfies this equation. Since the dis-

ation equations are algebraic approximations to the 

ning equation, it is desirable tha-t" they too possE7sS 

this It is seen that in Eqn. (3-22), with Sc = 

0, the coefficient of t~ is the negative sum of the co-

D D U 
eff cients of <PS' cfJ 6 and CP10 Thus, Eqn. (3-22) has the 

rementioned property. Eqn. (3-21) also exhibits this 

pert y, provided that the mass flow field satisfies the 

s conservation law for the control volume surrounding 

1. This rnay not a1ways be the case, however, especia11y 

iterative solution of the various sets of discretiza-

t'on equations. 

Eqn. (3-22) can be cast into the fOllowing compact 

( 
= c .. 'b, + C .. DS + C D + CU .. U B 

Il "'1\ 15 '1' 16 iJl 6 Il '1'1 + l (3-23 ) 

1 
/ 
" 
J 

1 -
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where 
( 

4 CIl 
1 = (C

15 + C16 + u 
CIl) 

a. AC.) C15 = - (A --5 5 

C16 = - (Aa. - AC.) 
6 6 " 

(3-24) 

U A165 U 
CIl = - -r- (pw l ) 

BI 
Al65 

f:lZ Sc = - -3- , 
Similarly, the total e1ement contribu tians ta the dis-

cretizatian equations for nodes S and 6 can be expressed in 
'-

the following compact forms: \ 

~D + ~D ~~ U ~u 

1 
CONTS = C5l css + CS6 + css + BS l' 5 5 

(3-25) 

CONT6 ~D C65 ~~' + C66 
~D U ~u + B6 = c 6l + + c66 , . 1 6 6 

Boundary contributions 

When a node lies on the boundary, special attention.is 

required in deriving its discretization equation. 'Thè 

controi volume surrounding a boundary node possesses one or 

more domain boundary faces, as illustrated in Fig. 3-7. 

( 
The normal fluxes of the dependent variable crossing these 

faces need to be integrated and added to the discretization 

-- i,,_ - - -
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equation for the corresponding baundary node. Information' 

regarding these fluxes is available,? from ~he boundary candi-, 

tians on the variable-of interest. 

Typically, three kinds of baundary conditions are commonly 

encauntered. They are: 

G '-
( 1) spec if ied <p a t the baunda:r;:y, 

(2) no flow, specified diffusion flux at the 

boundary, and 

(3)' the so-called ,outflaw candi tian [4]. 

The procedures fOl1· treating such boundary conditions 
-~ 

are outlined below. 

Speci fied cp boundary candi tion: When the value of <p is 

-
specified at the boundary, there is no need to assemble i ts 

discretiza tian equation. Rather, the discrftizé}tion .equa-

tian for such a boundary nade i takes on the following 

trivial farIn: 

= 
<P specified 

, 

~( 3-26) 
<. 

No flaw, specified diffusion ,flux boundary condition: , 
, ~ 

Here, there is no flow crossing the bou..nd~ry and· hence the 

convection flux compopent of j ~s "zer6. The diffusion- fl~ 

component on the other hand, is "specified. usually, only 

n': if 

f' 

j , 
l 

j 
1 
j 
1 

J 
" 

1 

J 
l 

! , 
t 
'j 
~ 
a 
1 
• 

-
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the component of this flux. normal' to the boundary is giv~n: 

- (f ~ cp) • ~ = q (specified) ( 3-27) 
'-

where q is the specified outward normal êomponent of the 

/ 

diffusion flux. A typical example of this ty~e of boundary 

;~ondi tion is the specified heat flux boundary 1 symmetry and 

adiabatic surfaces are particular cases of this' boundary 

condi tion in which q == o. 

Referring ta Fig. 3-7, the contributiop of the sub-

element 165 to the discretization equation for node l can he 

expressed -as: 

c 

CONTI [ J jon ds J Ji;' dB i j ~ ds + Ijo~ds = + +- . ~n 

UI ~l a c. 

+ j:lon ds j S dV l-
Ia VI 

,{ -+ + f ~~ f~~ J~+ ds] - CPI [ pv·n ds '+ pv·n ds + pV' n ds + pv·n 

ul dl a. c. 

jq .. 
D CIS 

<pD + C16 
cjID c~ ~u BI + ds = CIl ~l + + + 5 6 l 1 

la 

(3-28) 

... ; 

1 

~ 

,1 
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Outflow boundary condition: At an·"outflow" boundary, 

where the fI uid leaves the calculation domain, i t is canmon 

that neit~er the value of <1> nor its flux is known. .. In duct 

flow problems, the last downstream plane of the calculation 

domain is an example of an outflow boundary. The as sumption 

usually made in such situations is that the convection flux 

component of j i8 large enough to overwhelm·· its diffusion. 

counterpart [4]. Thus, i t is assurned that 

-+ + - r 'il <1> • n,_ = 0 . (3-?9) " 

An outflow boundary could be: (i) a cross-sectional 

surface, cor (ii) a lateral face. In the former case, no 
~ 

special treatment is required: the streamwise transport of <t> 

by diffusion has already been neglected in the parabolic 

problems of interest here; and the convective transport 

across aownstream cross-sectional surfaces, such as d in . ' 

Fig. 3-4 (al, has already been included in the e'lement contri-

butions discussed earlier. In the latter case, however, the 

transport of cp by convection across the boundary faces, such 

as la and le in Fig. 3-7 (b), must be integrated and included 

in the conservation equa tion for node 1. In a manner similar 

to the derivations in Appendix II, it can be shawn that 

f j.~ ds = Ai
a ;~ + A~a. $~ + A~a ;~ (3-30) 

la 

1-----"°-,- ,~------------------

1 

1 

l 
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Thus, the total contribution of subelement 165 to the 

discreti zation equa tion for boundary node l, shown in Fig. 

3-7., is given by the following equation: 

CONTl = ds + ds + 

+ f j.ri ds - f S dV) 

la 

- j~ [Jp~.ï\ ds + 

ILl 

+ fp~·ri ds] 

la 

a 

ds + 

f -+ -+ + pv·n 

C. 

ds 

(3-31) 

1 

The boundary contributions to the conservatipn equa tions 

associated with other boundary nodes are hand1ed in a sirnilar 

rnanner. 

Assembly of the discretization equations 

The dlscretization equation for 4> at anode i is 

obtained by adding up the total (internal + boundary) 

I--·-~--------- .~------------------ .---~---
1 • 
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contributions of all subelements associated with the control 

volume surrounding node i. This is done by visiting aIl 

subelernents one-by-one,i in each subelement, the contributions 

CONTI, CONT5 and CONT6, discussed earlier, are calculated and 

added to the'appropriate nodal discretization equations. 
< 

The resulting discretization equation for ~ at anode i can 

be cast in to the following general form: 

a. ~. 
J. J. 

(3-32) 1 = 

1 

where the surnrnation is done in the downstr1am plane over aIl 

nodes belonging to the subelernents associated with node i. 

In Eqn. (3-32), it is to be noted that the sup~rscript D for 

denoting downstream values of ~ has been ornitted for conve-

nience in this presentation. 

3.4.2 Momentum Discretization Equations 

The momentum equations, Eqns. (2-9), (2-10) and (2-11), 

can be integrated over a fixed control volume V ~o obtain the 

following equations: 

x-rnomentum 

-+- + 
- )..1 Vu ] • n ds = ~)dV 

3x 

.--------~------------------------------------~-----------

(3-33) 
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1 
1 

lJ y-mornentum 

J [p"v - ll~VJ • 
-+ ds je- l.E.)dV (3-34) n = ay 

aV V 

z -mornen tum 

j [pVw ~vwJ -+ ds je- 9Ë)dV (3-35) n = dz 

aV V ' 

In Eqns. (3-33) -
j 

(3-35), the integral ternls representing 

the convection-di ffusion transport of u, v and w are similar 

to the corresponding integral transport term in the conserva-
", 

tion equation for <p, Eqn. (3 - 3) . The derivation of algebraic 

approximatüms to these integral transport terms has already . 
been descrlbed in previous sections of this chapter, and so it 

":·will not be repeated here. 

The integrals involving the pressure gradient terms, 

(ap/ax) and (ap/ay) can be ex.pressed in terms of nodal pressure 

values, using the macroelement interpolation function given in 

Eqn . ( 3 -13) • 

~ 
ax = a , 

Thus, wi thin a macroelement: 

le 
ay = b. (3-36) 

Therefore, with reference to Fig. 3-3 (a), the contributions 

of the macroelement 123 to the~pressure gradient integrals 
~ 

over the subelement control volume surrounding node l cah be 

expressed as follows: 
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f (- iE)dV = - v a = OU Pl +' 
nU 

P2 + OU 
P3 (3-37) 

~x l l 2 3 

v 
'1 

"-
and ~,~) 

f (-!..E)dV v DV OV (3-38) = ~=:,Dl ~l + P2 + P3 dy 2 3 
" ',,:\ VI ? .... ~ 

The fUlly-irnplicit formulation is used to obtain Eqns. 

(3 -37) and (3-38'), 50 the nodal pressure value~ in these 

equations pertain to the downstrearn plane 0 f macroelemen t 123. 

It should also be noted that the coefficients D~ and D': in 
J J 

thesa equations depend only on the geometry , of macroelement 

123. Details of the derivation of Eqns. (3-37) and (3-38) are 

g i ven ln Appendix I. Similar contribv.tions from other macro-

elements associated with node l can be approxirnated analo-

gously. 

The axial gradient of the cross-sectional averagèd pres­

sure, (dp/dz), is assumed to be constant over the axial step 

size t:.z. Therefore, for node i, 
"':;-... '" 

f (- ~)dV = v, (- ~) 
dz ~ dz 

v. 
1. 

where v. is the volulne of the -subelement: control volume' 
1. \ 

as soc ia ted wi th node i. 

n:?'IT ................ ' 
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Discretization analogues of the portion of the integral 

momentum equations wh:i:ch do no,t involve the pressure gradient 
} 

te'rms are assemltled by using the procedure described in the 

last subsection. The pressure-gradient integrals are assembled 

on a macroelement-by-macroelement basis, using Eqns. (3~37) 

(3-39) . The resulting u, v and w discretization equations for 

anode i can be cast into the following gen.eral forros: 

u a. 
1 

v a. 
1 

U. 
1 

V. 
1 

a"! w. 
1 1 

= u + u , U U + bU, + '" "\ U l: a nb u nb ai u i ~ l.o 1'\, p, 
nb '" j J J 

= aV + aV, U U + bV. + " "\ V [ nb' V nb . v ' l.o 1\. p. 
nb 1 1 ~ j J J 

(_ dp). 
dz 'l" 

( 3 -4 0) 

(3-41) 

(3-42) 

'U v 
where ~j and Àj 

tions of D~ and 
J 

are constant coefficients containing cornbina­

V 
Do, respecti vely. In Eqns. (3-40) and (3-41), 

J 

the summations involving the velocity neighbour~s are done over 

all downstream nodes belong ing ta the subelements assoc iated 

wi th node i. The swnma tians inv.olving pres sures, however, 

pertain to the downstream vertices of the macroelements asso-

cia ted wi th nod e i. It is aga in emphasized that the fully-

impticit formulation is used in the derivation of Eqns. (3-40) 

to (3-42); nodal velocities and pressures which appear in 

the se e'1uations without superscripts are values stored in the 
1 

downstr.eam plane. 
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Representation in terms of pseudoveloci ties: Eqns. (3 -40) -
(3-42) can be expressed cornpactly in terms of pseudoveloci tie s 

Û, v and W defined as follows: ",,' 

E 
u + U, U U + b~ a 
nb u nb 

a. u. 
nb ~ ~ 1 

Û. = (3-43) 
l. U a. 

1 

~ 
V + v, U U + b~ a nb v nb a. v. 

nb ~ ~ 1 .. 
V. = (3-44) 

1 V a. 
1 

E 
w + w, U U + bV: a nb wnb a. w. 

nb ~ ~ 1 
W. = (3-45) 

l w , 
}), a. 

1 

. 
It is to be noted that these pseudovelocities at node i are 

def ined in terms of' upstream and downstream neighbouring 
• S1.I -

veloci tie s, but they do not depend directly on p and (dp/dz). 

Thus, given a velocity field at a downstream cross-sectional 

plane, the corresponding pskudovelocities can be calculated 

without an explicit knowledge of the'pressure distribution. 

Using these pseudovelocities, Eqns. (3-40) to (3-42) can 

be rewri tten as follows: 



If'. (_ dp) /a~. w. = w. + v· d 1. 1. l.Z ~ 

) 
(3-48) 
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These compact represent~tions of the discretized morn~ntum , 
equations are used in the derivation of the discreti~ation 

equations for p and (dp/dz). 

If u, v or w are specified at a boundary node i, the 

corresponding momentum discretization equations associated 

with that 'node reduce to: 

. 
u. = ûJ = u specified 1. 

J 

v. = "'i == v specified 1. (3 -4 9) 

w. = w. == w specified 1. ~ 

3.4.3 Discr tization E uation for Cross-Sectional Pressu~ 

A discretization equation for the cross-sectional pressure 
1 

p can be obtained by substituting Eqns. (3-46) an4 '(3-47) into 
1 

a discretized mass conservation equation. The ~ey ideas of 

this derivation are presented concisely in this section; the 

detail sare presented ~n Appendix III. 

Consider the rnacroelements and control volume surrounding 

With reference ta the not'âtion in n,od e l ~ n Fig. 3 - 3 (c) • 

/

thiS f1.gure and ta Eqn. 

123 to the integral mass conservation equ~tion associated with . 

(3-5), the contribution of macroelement 

node l can be approximated using Sirnpson's rule and the velo-

( city interpolation functions described in section 3.3. Thus, 

". . 
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J + + J -+ -+ 
PCONTI = [ pv·n ds + pv·n ds + f + + pv·n ds + J + + pv·n dS]/ 

Ul VI A C 

= MU l 
4 u 4 

+ MU
l 
5 Us + MU1 

6 
u 6 

l MVl 
+ MV4 v

4 + 5 Vs + MVl 
6 v 6 

+ MWCONl, 

J 

(3-50) 

where 

MWCQNl = MWl 
l w l + MWl 

5 Ws + MW1 
6 w6 

i , 1,U U MW1 ,U U MWl, U U 
i + MWl wl + Ws + w6 
! 

5 6 
(3-51) 

In Eqn. ~ (3-51), all values of w and wU are treated as known 

or a)ready calcula ted. 

The subelement control volumes associated with nodes 4", S 

and 6 lie totally within the region enclosed by macroelement 

123 and a maximum of three associated macroelements, as 

illustrated ~n Fig. 3-8. Therefore, the discretization 

equations for the veloci ty component s u 4 , uS' u 6 , v 4' v 5 and 

. v 6 wh~ch appear in Eqn. (3-50) involve a maximum of four nodal 

pressure values each. With reference to Fig. 3-8, the pseudo-

veloci ty representa tions of these discretization equations 

are the following: 

(3-52) 

.. 

". 

/ 

/' 

\ 

;, 1 
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(3-53) u.u + À ~ À
U u U 

Us = Us + Pl P2 + P3 + >'02 P02) laS 1 2 3 

,. 
1 

(3-54) =) ~6 (À Ù À
U 

À
U + >.U U 

u 6 + Pl + P2 + P3 P03) la6 l 2 3 03 
" 

and 

(3-55) pV À
V 

À
V v v v 4 = v4 + Pl + P2 + P3 + >'01 Pol) la4 l 2 3 

" Vs = Vs + ().V 
l Pl + À

V 
2 (3-56) )..V v v 

P2 + P3 + À02 po2 ) /aS; 3 

(3-57) " + ().V Pl + À
V + )..V + À

V P~3) /a~ v 6 = v6 P2 P3 l 2 3 03 

Eqns. (3-S2) ta (3-57) can be substituted into Eqn. 

(3-50) to ftain the foHowing representation of the contri­

bu tian of tacroelement 123 ta th.e integral rnass conservation 

equation associated with ll9de 1: 
" 

+ Mp l Mp l Mpl MP 1 01 Pol + 02 Po2 + 03 Po3 + CON 

(3-58 ) 

where the term MPCONI is a linear combination of the values of 

the pseudovelocity components, u and v, at the nodes 4, S, and 6 

1 

1 
1 

.' 
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in the downstrearn cross-sect iona1 plane of rnacroelement 1.23, 

and the axial ve10city cornponent, w, at the nodes 1,5 and 6 

J
in the downstream and upstrearn' cross-sectional planes of . 

macroelement 123. 1,1-

! . 
. Sirni1arly, the contributions df the rnacroelernent 123 

to the in tegral mass conservation equations associated wi th 

nodes 2 and 3 can be expressed in the fo1lowing forros: 

78 

( 3-59) 

, 
··1 

The derivation of these equations is ana1ogous to that of 

Eqn. (3-58) presented in Appendix' III. 

II! 
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Eqns. (3-59) and (3-60) represent the total internal 

c ntributions of the macroelement 123 to the integral rnass 
, , 

onserv~tion equations associated with
f 

nodes 2 and 3, res-

rf one or more lateral facep of the macroelernent 

coinc ide wi th the domain boundary, the rnass flow rates acro ss 

these surfaces must be integrated and added to the internaI 
-- .. J 

macroelement contributions' to complete the assembly of the 

discret;ized mass conservation .equa tions. In this th~sis, 

hO;-.'èver, since only duct'S with imperrneable wal'ls are consi­

dered, the mass flow across the duct w~lls is zero. 
1 

- ' The discretization equations for the nodal values of the 

79 

r 1 u 

c!r'oss-sectional pressure pare obtained by a macroelement-by- / . . / 
~ 1 

macroelernent assembly of the corresJ;>onding integral rnass con-/ 

serva'tion equations: all macroelements are visited one-by-one, 

and in oeach one, the algebraic expressions for PCONTl, PCONT2 

and l'CCNr3, presented earlier, are assembled appropria tely. 

The complete discretiza tion eguation for pressure at a rnacro-

°element vertex i can be cast into the following general form: 

p a. p. 
~ 1. 

= " 

\ 
'. 

(3-61) .. 
.' 

The suÎnmation in this equation is taken over aIl the downstream 

vertices of aU mac.r;oelernents and associated-macroelernents~ 

connected wi th the pressUl;e node i. Collect;i vely, these 
. 

neighbour pressure nodes form the star-like cluster shown in 

Fig. 3-9. 

1 

1 
i 

J 
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h b
p . 

T e term i" ~n Eqn. (3-61) is a linear cornbination of the 
A 

ps?udovelocity components u and v, stored at the velocity nodes 
.. 

marked with a cross-mark (x) in Fig. 3-9, and the corresponding 

U axial velocity components w and w. Therefore, given a velo-

city field, the set of pressure equations, such as Eqn. (3-61), 

can be assembled and solved to get,"the corresponding cross-

sectional pressure field. 

If the cross-sectional pressure at a boundary node i is 

specified, the corr~sponding discretization equation reduces to 

3 •. .(.4 

p. 
1 

= 

. \.. . f (-Id DJ.scretJ.zat10n Equatlon or dp z)" 

(3-62) 
" 

/ 
f 
1 

For steady flow in a duct with irnpermeable walls, the total 

.. mass flow rate crossing any cro~s-sectional plane of the duct is 

o 

a constant: 

. 
m = . J pw d A = constant" 

cross-seçtional 
area of the duct 

p-12 ) 

Assuming that the nodal values of w prevail over the polygonal 

cross-sections of their associated subelement control volumes, 

the mass flow rate ID can be approximated as follows: 

. 
rn = 

i 
E pA. J. w. 

~ 
o 

(3-63) 

q 

1 r 

I------------,---,-~--~-~~-----------------------------------.~=---------~=--------------------~-
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where A. 1s the total area of the polygonal cross-section of 
l. 

the subelement control volume surrounding,node i, and the 
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su~ation is taken over alJ nodes in the duct cross-section of 

interest. 

The pseudovelocity representation of the z-momentum equa-

tion associated with node i is given by Eqn. (3-48). 

equation can be substituted.into Eqn. 13-63) to obtain: 

. 
m = t pA. {w. + V • 

). ). ). 
i 

(- ~)/a~} dz ).. 

• 

This equation can be rewritten as follows: 

(_ di?) = 
dz 

. 
m -

E p 
i 

E pA. w. 
• ). 1. 
). 

A. I,)./a~ 
). 1. 1. 

, . 

This 

(3-64 ) 

(3-65 ) 

At any axial station (z + 6z) 1 if the velocity field is known, 

the value of (dp/dz) pertaining to the region 'between z and 

(z + 6z) can be obtained by using Eqn. (3-65). 

3.5 SOLUTION OF THE DISCRETIZATION EQUATIONS 

3.5.1 Marching Integration 

As was discussed in earlier chapters, in parabolic duct 

flow and heat transfer problems, conditions at a point in the 

duct can only influence the conditions at a downstrearn point, 
(,,! 

,~ 
j 
~ 
i 
i 

" 

... - 1 
l 

.' 
\ 

i 

1 
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t 
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not vice-versa. The discretization equations presented in the 

last section possess this characteristic tao. Thus the dis-

~retization equation associated with a node in any cross-

sectional plane of the duct of interest rnay depend on and in-

volve values of the dependent variables at nodes in the Saroe 

and the adjacent upstream cross-sectional planes, but they are 

in no way connected to the values of the dependent variables 

at downsbrearn podes. Therefore, the assembly and solution of 
o 1 

the discretiz1tion equations associated with the nodes in any 
1 
1 

given cross-sectional plane, or axial station, require the 

~~es of dependent variables at the adjacent upstream cross­

" '''\ 
sectional plane only: once this is done, the same procedure 

can be repeated to advance the solution to the next downstream 

plane, then the next one, and sa on. In other words, starting 

with the known ~nitial conditions at the inlet cross-sectional 

plane of the duct, a plane-by-plane rnarching integration pro-

cedure can be used ta deterrnine the values of the dependent 

variables at aIl nodes of the calculation domaine 

An lterative method sirnilar to the SIMPLER procedure of 

Patankar [4] is used to advance the solution from one cross-

·sectional plane to the next downstream one. In this proce-

dure, at the end of each iteration, the calculated velocity 

camponents are corrected via suitable pressure corrections sa 

that the overall and local mass conservation equations are 

satisfied. In addition, to ensure convergence of this pro-

cedure, it is necessary to slow down the changes in the co-

efficients of the discretization eguations from iteration to 

1 

1 
1 
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iteration by the use of under-r~laxation, These matters are 

discussed in the following subsectio~s. A summary of the 

overall calculation procedure is presented at the end of this 

section. 

3.5.2 Velocity and Pressure Correction Equations 

At any stage of the aforernentioned SIMPLER-type iterative 

procedure, upstream values of the dependent variables and guessed, or 

tentative, values of these variables at the nodes in the cross-

sectlonal plane of interest can be used to calculate the coef-

ficients of the discretized rnornenturn equations. These coeffi-

cients can then be used in Eqns. (3-43) to (3-45) to obtain 

the pseudoveloclties u, v and w. Then, these pseudovelocities 

can be used in Eqns. (3-65) and (3-61) to calculate the corres­

ponding values of the axial gradient of the cross-sectional 

averaged pressure and the cross-section pressure; they are 

(dp/dz) # denoted by (dp/dz)# and p#, respectively. Using 

and p#, the discretized rnomentum equations can be solved to 

dbtain the velocity componentsi these calculated veloclty 

cornponents are denoted by u#, v# and w#, 

and w# will not satisfy the overall and local rnass conserva-

tion equations. One way to ensure that they do satisfy mass 

conservation requ±rements is to correct thern via suitably 

calculated corrections to (dp/dz) # and p#, Let the correct 

values of these variables be given by 

~ 
dz = + (3-66) 

~ : . 

1 

1 
! 

I---------------~·~-----~·---------------------------------------- -----------~ ----------------------
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and 
" 

p = p# + pl 

where the superscripts ) # and 

correction values, respectively. 

1 

1 
1 
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(3-67 L 
à 

refer ta tentative and 

These corrected values can 

be substituted into the discretized rnomenturn equations ta ob-

tain equations for the corresponding velocity corrections w',' 

u' and v' . "These equations can be simplifled if the contri-

w butions of the nelghbour-polnt velocity correctlons, Z a nb w~b' 

L a~b u~b and L a~b v~b are considered negligible [4J: it is 

to be noted that, as the solution converges, these quantltles 

do indeed become negligible. The resulting velocity correc-

tion equations are: 

w~ (- dp) w 
(3-68) w. = + v, la. l l l dz l 

, 

= 
. # 

+ E À~ p~ la';1- ( 3 -6 9) u. U. l l 
.. j 

J J l 

v~ À": p~ 
v v. = + E la. (3-70) l l 

j J J l 

Eqn. (3-68) can be substituted into Eqn. (3-63) to obtain an 

equation for (dp/dz) li ~lvati~n of this equation is 
// 

identical to the derivation of the equation for (dp/dz) presen­
~ 

ted earlier. The resul t lS 

...,,~ 

'''~ 
l.; 

" 

.' -

, . 
--_ ~ __________________ ~r-____ ~-__________ ~ 
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. A. w~ m - E p 
1. 1 

dp) i • (- = ( 3-71) 
dz w 

E P A. v./a. 
i 1. 1 1. 

Similarly, Eqn. (3-69) and (3-70) can be used in conjunc-

tion with the rnacroe1ement control volume mass conservation 

... equation to obtain a pressure correction equation; the deri-

vation of this ~quat1.on is ana1ogous to the derivation of the 
1 

presJure equation presented in an earlier section. The resu1t 

is: 

p 
a. p~ 

l. l. 
= E 

nb 
a P pl + bl? 

nb nb l. 
(3-72) 

The coefficients in this equation are the same,· as those in 

Eqn . ( 3 - 61) . However, the term bP in Eqn. (3-61) is a func­
:1. 

tion of the pseudove1ocities u and v and the axial ve10city 

component w, but in Eqn. (3-72), 1.t is a function of u*, ,v# 

and w. 

If the pressure at a boundary node i is specified, then 

Eqn. (3-72) for that node is overwritten and reduced to 

p ~ = O. 
l. 

(3-73) 

when the calcu1ated ve10city field satisfies overall and 

local mass conservation ~quations, as is the case when the 

overall iterative solution procedure converges, (dp/dz) 1 and 

pl reduce ta zero. 

~---->~~------------------------------------



( 

It is to be noted that the objective of calculating 

(dp/dz) 1 and pl is to use them in Eqns. (3-68) to (3-70) to 
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correct the velocity field so that it satisfies overall and ~ 

local mass conservation requirementsat the start of every 

iteration. Thus (dp/dz) and pare not updated or corrected 

using Eqns. (3-66) and (3-67); rather, they are calculated 

Further in every iter~on using Eqns. (3-65) and (3-61). 

discussion on this feature of SIMPLER-like procedures' for 

the solution of momentum and continuity equations is 

available in [4]. 

3.5 .3 Under-relaxation 

As was seen in Chapter II, the partial diff~rential 

equati~ns which govern parabolic duct flows are non-linear 
'\, 

and coupled. Therefore, their discretization analogues are 

also non-linear and coupled. In the proposed SIMPLER-like 

iterative solution procedure, the coefficients in these 

equations are calculated using guessed values of the dependent 

variables or their values from the ptevious iteration. To 

ensure the convergence of this iterative procedure, it is 

often necessary to slow down the changes in the coefficients 

of the discretization equations from one iteration to the 

next ·one. This is done by under-relaxing the dependent 

variables, using the irnplicit under-relaxation techniq~e 

proposed by Patankar [4]. Thus, for the general scalar 

dependent variable ~, under-relaxation is introduced by re-

writing its discretization equation as follows: 
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! 
a. i u ~~ 

(l-a</» 
~ 

~. L I~nb + + b. + rp'l;< = a a. a. 
atp ~ nb nb ~ ~ ~ atp ~ ~ 

1 

(3-74) 

where ~'I;< is a guessed value of <p'~, or its value at the end of 
l 

the previous iteration, and a~ is the corresponding und~r-

relaxation parameter. The under-re-laxation of u, v, w and p 

is done similarly. The corrections to the axial pressure 

gradient and the cross-sectional pressure, (dp/dz) 1 and p', 

are not under-relaxed; otherwise, the objective of calculating 

(dp/dz) 1 and p', namely the correction of the velocity field~ 

so that it satlsfies overall and local mass conservation 

requirements, will be defeated. 

The following set of under-relaxation parameters has been 

found to be sat~sfactory in the solution of many duct flow and 

heat transfer problems: in the vicinity of the inlet or in 

regions where boundary condltions change abruptly: 

a 
U 

= a 
v 

= Cl = 0.5; 
w 

a 
p 

= 0.8; = l (3-75) 

and after a few axial steps (>5) downstream of points where 

the boundary conditions change a~~uptly: 

a = Cl = 0.8; 
u v 

a = 1; 
P 

(3-76) 

A general prescription for the optimum selection of these 

under-relaxation parameters is not available. 

----- - - ~~ ----~------------------ ------
. 
\. 
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3.5.4 Surmnary of "the Overall calculation Procedure 

The details of sorne of the key ideas of the proposed pro-

cedure for solving the discretization equations were presented 

in the last couple of subsectlons. A summary of the various 

operatlons of this procedure and their e1act sequence lS given 

below: / 

(1) start at the duct inlet; assign aIl given initial 

conditions to the depend~nt variables u, v, p, p and other ~'s, 

if applicable. 

(2) March one step down the dli'ct: guess aIl unknown 

values of the dependent variablesi normally, the known up-

stream values are good guesses. 

(3) Calculate the coefficlents of the discretization 

equation for w, Eqn. (3-42), and store therni in a computer 

lrnplernentation, temporary or scratch disk storage is recommen-

ded for this step. 

(4) Calculate the pseudovelocity cornponent w, using 

Eqn. (3-45). 

(5) Calculate (dp/dz)#, uSlng Eqn. (3-65). 

(6) Form the complete discretization equation for w, 

using the coefficients stored in step (3) and the calculated 

value of (dp/dz)#, and solve it to obtain w#. 

J 

t \ 
--------------------
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(7) Solve for (dp/dz)', using Eqn. (3-7-1), and then . 
.,. 

# - E correct w , uSlng qn. (3-68), to obtain w. 

(8) Calculate the coefficients of the discretization 

equations for u and v, Eqns. (3-40) and (3-41), based on the 

currently-available velocity field and store these coefficients; 

again, scratch dlSk st6rage lS recommended for this step in a 

computer implementation. 

(9) Calculate the pseudovelocity components u and v, 

using Eqns. (3-43) and (3-44). 

(10) Calculate the coefficients of the pressure equatlon, 

Eqn. (3-61) ,and solve it to obtain p#; in a computer lmple-

mentation, store the coefficients of this equation on a tem-

porary disk unit. 

(11) Compile the complete discretization equations for U 

and v, uSlng the coefficients calculated in step (8) and the 

pressure p# computed in step (10), and solve them to obtain 

U
# # and v . 

(12) Assemble the pressure correction équation, Eqn. 

~ (3-72), using the coefficlents calcu~~ted in step (10) and a 

recalculated value of b P based on u# and v#, and solve it to 
l 

obtain p'. 

(13) Correct u# and v#, using the p' field in Eqns. 

(3-69) and (3-70), to obtain u and v. 
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/ 

/ 

(14) Assemble and solve the discretization equations 

for aIl ~'s ,coupled to the flow ~quations. 

(15) With the currently-available values of u, v, w and 

~ as new guessed values, return to step (3), and repeat steps 

(3) to (15) until sorne suitably chosen convergence criterion 

is satisfied. 

90 

(16) At this point, the values of 1.1, v, w, p and (dP/dzj 

can be considered as converged. Assemble the discretization 

equations for other ~'s and solve them. 

(17) Do all other auxiliary computations, such as 

calculations of friction factor, bulk temperature and Nusselt 

number. 

(18) _Go back to step (2) and repeat this plane-by-plane 

marchlng integration procedure until the entire calculation 

domai n ha s been "swept". 

.. 

/ 

- - .----..- ~---------------------
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CHAPTER IV 

COMPUTER IMPLEMENTATION THE PROPOSED METHOD 

1 
The formulation of a control volume finite-element method 

for three-dimensional parabolic flow and heat transfer in ducts 

was presented in the prev10us chapter. In order to test the 

validity of the proposed method and to apply it ta practical 

problems, 1t has to be incor~orated into an efficient computer 

program. Sorne of the maJor tasks in the development of this 

program are presented in this chapter. 

The numerical predict10n of three-dimensional parabolic 

flows 1n ducts 1S not an inexpens1ve task. Therefore, the 

emphasis 1n the computer implementation of the proposed method 

is on eff1ciency rather than complete generality. Furthermore, 

the computer program described in this chapter is not intended 

to be used as a "black-box" by persons who are not fall1iliar with 

the formulation of the proposed rnethod. Rather, it is a user-
1 

oriented program des1gned for persons with an unaerstanding of 

t~e key ideas of the proposed method and the physics of the 

problems it is formulated ta solve. 

The computer implementation of a general finite-element 

method involves four major tasks: (i) dpmain discretization 

and node numbering or labelling schemes; (ii) calculation of 

the local contributions from each element to the discretization 

equations for the corresponding nodes; (iii) assembly of aIl 

.... ~ ... ; 

• , 



( 

" 

--~ 

indiv' ual elernent contributions into a global matrix forro: 

and "Civ) 
, 

solution of the global discretization equatiQns. 

Each of these tasks in the computer irnplernentation of the---· 

'proposed control-volume finite-element rnethod i~ described in 

the following discussion. The-corresponding computer code and. 

its description are presented in Appendix IV. 

, d' 

4.1 DOMAIN DISCRETIZATION, NODE NUMBERING AND LABELLING 

SCHEMES 

Discretization schemes could be manùal or autornatic. 

Manual schemes are usually extremeLy tedious and error-prone 
• 
and, therefore, unfit for general applications. In this 

thesis, an automatic scheme i5 employed to discr~tize the duct 

in the axial direction, and a semi-autom~tLc technique is used 

to discretize the duct cross-section. 

4.1.1 Discretization of the Duct Axis: Automatic Step-Size 

Selector 

As was stated in earlierchapters, in the duct f~ow and 

heat transfer problerns of interest in this thesis, the dependent 

variables change significantly with the axial,coordinate z in 

the vicinity of the entra~ region of the duct, an~ they become 
~ '" 

progressively invariant with z as the fully-developed region is 

approached t .. Typical vari~tions of the axial velocity cornpo-

t The temperature Twill keep changlng, Even in the thermally 

fully-developed region: however, the sirnilarity- variables 0 
" and X as defined in Chapter II are invariant with z in the 

f.d. region, and they can be treated as dependent variables. 

,'" 

~ 
1 
1 
l 

1 

1 
1 
1 

1 
1 
1 
1 
1 
1 , 
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nent and the local Nuss~lt number with z are shown in Fig. 4-1. 

It is desirable, therefore, to start computations with a very 

small axial step size, and aqjust it appropriately in response 

to the relative rate of change of the dependent variables as 
. 

the solution is advanced downstream. A procedure to automa-

tically adjust the step size in this manner is described in this 

section. 

Referring,to Fig. 4-l(a), it is aimed ta obtain an esti-

mated IDEAL number of marching steps, where IDEAL is related ta 

the desired change in the value of w in each axial step by max 

the follawing equation: 

• 

[Àw J, = 
max d . d 

es~re 

• 

- w 

( 4-1) 
IDEAL 

The numer a tor in Eqn. (4-1) represents the total change af w max 

in the developirtg flow region. The slope' (dw jdz) at axial max 

station z ='Z(ISTEP) can be approximated by: 

-dw max 
dz 

.::. 
w (ISTEP) max w' (ISTEP-l) 

max " 

'z(ISTEP) -,z(ISTEP-l) 
. (4-2) 

Using linear extrapolation and the slope given ,by Eqn. 

(4-2), the axial step size required to produce (~w ) 
c- max desired 

is given by 

r 

I------------·---·-~--------------~--------------------------~-~--------------------------------
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,", 

z (ISTEP+l) - Z (ISTEP) flz :; 

z'( IS'l'EP) - z (ISTEP-l) 
\q 

= (flw , ) 
w (ISTEP) - w (ISTEP-l) max desired 

max max 

(4-3) 

./ 
As is i!l:1istrated in Fig. '"4,-2, the aetual Change i: wmax ' 

(flw ) (, produeed by ~z would always be smaller than 
m~! aetual . 

(L'lw 1) , if w and its axial derivati ve change manoto-
max de$ired max 

nically with z. Therefore, wh~n this candi tion is met, the 

step size calculated in Eqn. (4-3) is a conservativ.e one. 
.f 

The en tire scheme is started by preseribing a very small 

valu.,e of !J. z for the f ir st three steps. Then, from the faurth 

step oDwar,ds, !J.Z i5 calculated according to Eql{o (4-3) 0 As 

the fully-de~eloped regionfis approached, however, Eqn. (4-3) 

ean' give rise to disproportionately large step sizes sinee the 

variatiom .. of w with z is nearly flat there, as shown in 
~ max 

,Fig. 4-2. This diffieulty is handled by adJ'usting (!J.w) desired 

and ~z as follows: 

(flw) desired = min ( ( 6w) desired' ( (wmax ) 
f .d. 

w (ISTEP' ) ] max J 

(4-4 ) 

• <-

~z = min [(!J.z obtained from Eqn. (4-3», (!J.z) ] 
max 

(4-5) 

where (!J.z) , is a preseribed maximum step size. max 

" 

1-------- -- ~-_..._....._'l__._.._. ________________ _ 
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The step-by-step marching integration procedure is stopped when 

the fo}-lowing flow condition i·s satisfied: 

w (ISTEP) 
max > O.99(w ) 

max f.d. 
(4-6 ) 

This criterion for determining the extent of the developing 

flow regime is due to Shah and London [7]. 

50 far, for convenience f the change of w between two 
max 

consecutive steps has been used in the automatic calculafion of 

the axial step size. It should be no~, however, that the 

correspondin~ change in any ~ther sUit~ble flow variable, such 

as (dp/dz), could have been lused for the sanTe purpose as weIl. 

When the flow is hydrodynamically fully-developed but 

thermal l'y developing, the change in the local per ipherally-

avèraged Nusselt number is used in the automatic axial step 

size selector. For the two thermal boundary conditions con-

, sidered in this thesis, namely ® and ® , it can be 

shawn that the Nussel t number starts off at a relatively high 

value (z -+ 0, Nu -+ 00), and drops off qui te rapidly towards a 
z 

fully-developed value, as shown in Fig. 4 -2 (b) . For this 

c.ase, the Il ideal" chang.e in NU z between steps is defined as 

(~NUZ) 
desired 

= 
Nu "\t,. Nu (ISTEP=3) 

f.d. z 

IDEAL 

and the corresponding esJirnated step size is 

(4-7 ) 

1----~ -,..~ -----~- ~"-"''-' -----------------
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f,Z = 
z (ISTEP') - z (ISTEP-I) (4-8) ( 6NU

Z
) 

desired NU
Z 

(ISTEP) NU z (ISTEP-1) 

Aga' 1 as the therrnally fully-developed region is approached, 

(lIZ) does not g'et too 

(lIz) = min [(llZ) calculated in Eqn. (4-8); (6Z)max] 

( 4-10) 

In Eqn. (4-9), the maximum is taken since aIl value s in the 

square bracket are negative. The marching integration proce-

dure is halted when the following thermal condition is reached: 

Nu (ISTEP) z < 1.05 NU f . d. ( 4-11) 

In problems where fluid flow and heat transfer dèvelop 

simul taneausly, the autQmatic axial step size selector cauld 

be tied ta the change in w max 
1 or NU z between steps. Alterna-.. 

ti vely, the mlnimum of the steps calculated by Eqns. (4- 3) and 

(4 - 8) cou Id be used ta mrrch ahead. The chaice af one al ter-

depeFdS on the problem being solved. na ti ve or the other 

\ 
j 

1 

~ 
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The requirements 1 in this connection, are that the final 

results should be"'Insensitive, within tolerances, to the axial 

step sizes used, and, at the same time, the axi,al step sizes 

should not be tao small in order to keep the method from getting 

prohibiti vely expensi ve. In Chapter VI, numerical experiments 

are carried out in order to determine the "best" of the above-

mentioned alternatives for the problem of sirnultaneously 

developing 'flow and hea t transfer in rod-bundle geometries. 

4.1.2 Discretization of the Duct Cross-Section 

The discretization of the duct cross-section involves its 

division lnto Slx-node triangular mac.coelements, and then the 

sub-divislon of each rnacroelement into four three-node trian-

gu1ar subelemen ts, as 

~le semi-automatic 

Ba1iga [2J is employed 

was described in Chapter III. Here, a 

domain d~scretization scheme, proposed by 

for this pur.pose. In this procedure, 

"-

consideration i8 first glven to a unit square which i8 8ub­

divided into (LP1-1) t x (MPl-l) t smaller squares, as shown in 

Fig. 4-3(a): Followlng th18, each sma~l square is further 

divided into two triangles by joining the lower l~ft-hand 

corner node to the one in the upper .right-hand corner. The 

unit square i8 then rnanual1y distorted so as to fit the duct 

cro s5-section shape. The orlginal grid lines could be bent 

t 
the variable names employed here correspond to those used 

"~,~n the FORTRAN computer code given in Appendix IV. 

~ 
'.;:,., 

-----,-- --._,--~-----------~-------~ -------
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in this operation but they are kept piecewise-linear, and they 

are adjusted in order to obtain the desired density of nodes. 

The resulting grid is composed of triangular elements which 

are regarded as macroe1ements. The subelements are obtained 

by joining the midpoints of the sides of each macroelement to-

gether. Fig. 4-3 illustrates the application of this dis-

cretizatlon technique to three different irregu1ar duct cross-

sections. 

4.1.3 Node and Element Numbering Schemes 

As can be se en from Fig. 4-3, in each cross-sectional 

plane of the dama in discretizatlon, every pressure node can 

be uniquely addressed to by two lnt~ger ifdices (IP,JP): 

l P = l , 2, . •. LP l ; JP=l, 2 ... ,MPl. In a simllar manner, each 

velocity node can be uniquely identified by two lnteger indi-

ces" (I,J): I=l,;2, ... ,Lli J=l,2, ... ,Ml. At the vertices of 

the"macroelements, the (IP,JP) and (I,J) sets of indices are 

interrelated via 

l = 2 * IP - l 
(4-12 ) 

J = 2 * JP - l 

Typical macroelements and sube1ements, along with their 

pressure and velocity nodes and their respective addresses 

are illustrated ln Fig. 4-4. 

Each pair of (IP,JP) indices can also be used to uniquely 

ident,,lfy !:he quadrilç.teral formed by nodes (IP,JP), (IP+l,JP), 

1------- .. - ...-.~~ - ,. 
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(IP+l,JP+l), (IP,JP+l). As illustrated' in Fig. 4-4 (a), every 
( 

such quadrilateral is divided into two types of triangular 

macroelements: the macroelement formed by nodes (IP,JP), 

(IP+l,JP) and (IP+l,JP+l) is called a "type-l" macroelement; 

and the macroelement formed by nodes (IP,JP), (IP+l,JP+l) and 

(IP, JP+l) is termed "type-2" macroelement. Thus the complete 

address of a macroelement consists of the three indices (IP ,.JP, 

type) . Similarly, a subelement is identified by the set of 

indices (l, J ,type) , as illustra ted ln Fig. 4-4 (b) . 

4.1.4 Geographie Node Labelling Scheme 

The line-by-line structure of grid points produced by 

the present domain discretization scheme enables easy identi-

flcation of ail neighbours to any nodal point. Ali the 

possible neighbours of a pressure node (IP,JP) form a star-

like cluster displayed ln Fig. 4-5 (a) . Each pressure 

neighbour is named according to its geographic positlon with 

respect to the central pressure node (IP,JP). Thus, refer-

ring to Fig. 4-5 (a), "N" is the "north" neighbour, "NE" is 

the "north-east" nelghbour, and "NNE" is the "north of north-

east" neighbour, and so on. In total, up to twelve pressure 

neighbours could be ihvolved in the pressure dlscretizatlon 

equatlon for node (IP,JP). 

Ali the posslble neighbours of a velocity node (I,J) 

are dl splayed in Fig. 4 -5 (b) . They too are labelled accor-

( ding to their geographic positions with respect to the 

central node (I,J). As is se en in Fig. 4 -5 (b), up to six 

" 

t ---- ---------------------- -------_.--- ------------------



neighbours could appear in the rnomentum and ~ 

17 
discretization 1 

equations for node (1, J) • 

4.1. 5 Comments 

The aforementioned node and element addressing schemes 

have been made poss ible by the arrangement of gr id points in 

simple and consistent line-by-line patterns il1. the proposed 

discretlzation scheme. This arrangement of gr ld points 

eliminates the need for elaborate node numbering schemes and 

neighbour-node directories usually encountered in general 

flnite-element computer codes. The geographic nodal label-

llng scheme presented in the previous section is also made 

possible by the line-by-line arrangement of grid points. 

The proposed discretization scheme yields a maximum of 

twelve neighbours ln each of the discretization equations 

for pressure and pressure correction, and the momentum and 

~ discretization equations have a maximum of six neighbours 

each . Therefore, fo:r each of these sets of discretization 

. equations, computer storage is only :r::equired for the coeffi-

cients corresponding to these neighbours. As a resul t, 

significant economy in core storage can be achieved. 

Furtherrnore, as wlll be shown in a subsequent section, the 

grid line arrangement of nodes also allows the use of power-

fuI iterative line-by-line methods for the solution of the 

discretizatioo equations [4]. 

( 

------------------------------------ ------------~---------------------
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The proposed semi-automatic scheme to dlscretize the 

duct cross-section i S SUl table for simple irregular geornetries 

and singly-connected domalns: the unit square shown in Fig, 

4-3 (a) cannot be conveniently distorted to fit highly irregular 

and mul tiply-connected domains. Furthermore, the recommended 

trlangulation of the calculation domain obtained 'by first di-

viding the domaln into quadrilaterals and then subdividing 

each quadrilateral into triangles may not always allow the 

optlmum distrlbution of the nodes [2]. The se drawbacks can 

be considerably alleviated by the merging of the present dis-

cretization scheme Wl th a recently-developed patch-by-patch 

procedure [35]. Such an approach, however, is left as a 

posslble extension of the present work. 

4.2 CALCULATION OF ELEMENT CONTRIBUTIONS AND ASSEMBLY 

OF DISCRETIZATION EQUATIONS 

The derivation of the discretization equations has 

already been presented in Chapter III, In this section, the 

computer implementatlon of the procedures to calculate and 

assemble the coefficients in these equations is outlined. 

4,2.1 Discretization Equations for cp 

1 

Consider the type-l pr ism subelement shown in Fig. 4-6 (a) • 

In Chapter III, i t was shown tha t the contribution of this 

element to the discretization equation associated with node l 

can be compactly written as follows: 

-t' 
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( 3-21) 

Using the (l,JI) node addressing scheme, this equation can be 

rewritten as 

u U + C11~ (I,J) + BI (4-13) 

In the FORTRAN computer language, the complete discre-

tization eguat1..on for node (I,J), Egn. (3-32), can be 

expressed as 

AC ( l , J) * ~ (l, J) = AE (l, J) * ~ (1 + l, J) + ANE ( l , J) * 1> (1 + l, J + 1) 

+ AN ( l , J) * 1> (1 , J + 1) + AW ( l , J) * 1> (1 -1 , J) 

, 
+ ASW ( l , J) * 4> (1 -1 , J -1) + AS (1 , J) * 4> ( l , J -1) 

+ ACON (1 ,J) 

(4-14) 

where thé coefficient names correspond to the geographic node 

1abelling scheme illustrated ln Flg. 4-;-5 (b) . It 1..S ta be 

U noted that, in Egn. (4-14), the term invo1ving ~ (I,J) has 

been included in the non-homogeneous term ACON(I,J); this 

can be done in the marching Integration scherne employed here 

- U 
because 1> (I,J) is known or avallable from calculat1..ons at 

the prevlous axial step. 

-----~- - - ----
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Comparing Eqns. (4-,13) and (4-14) 1 the contribution of 

the subelement under consideration to the discretization equa-

tions can be assembled as fo11ows: 

'\ . wi th respect to node (1, J) 

AC (1, J) = AC(I,J) + CIl 

t 
AE(I,J) AE(I,J) - C

15 
(4-15) 

ANE (1, J) = ANE (1, J) - C
16 

ACON (1, J) ACON (I,J) 
U U = - Cl1~ (I,J) - B 

1 

Simi1ar1y, the contribution of subelement (I,J,I) to the 

discretization equations for nodes (I+1,J) and (I+l,J+l) can 

be assemb1ed ln the fo11owing manner: 

. with respect to node (J+l,J) 

AC (1+1, J) ::: AC (1+1, J) + CSS 

.. 
AN(I+1,J) ::: AN (I+1, J) C S6 

(4-16) 
AW (1+1, J) ::: AW (1+1, J) - C 51 

ACON(I+1,J} =: ACON (1+1, J) - CU ~l](I+l,J) - B 
55 5 --, 

( 

-----,--- __ ~_~ .... _.""'"";-:r ~ ________ _ 



• 

( 

. 104 

• with respect ta node (I+l,J+1) 

AC(I+l,J+l) = AC(I+l,J+l) + C66 

ASW(I+l,J+l) = ASW(I+l,J+1) - C61 
(4-17) 

AS (1 + 1 , J + l ) = AS (1+1, J+1) 

ACON(I+l,J+1) 
u u 

= ACON (1 + l, J + 1) ... C 66 cP (1+1, J + 1) - B 
6 

\ 

A similar procedure lS used to assemble the contr ibutions 

of type-2 subelements. The complete discretiza tian equations, 

such as Eqn. (4-14), are obtained when a~l.l elements have been 

visi ted and their internaI contributions and boundary con-

tributions, lf app11cable, are assembled appropr iately. 

Furtl1er detalls on thlS assembly procedure are availab1e in 

the Subroutine COEFF of the computer code presented in 

--Appendix IV. 

4.2.2 Discretlzation Equation for Pressure 

Attention is now directed to a typica1 macroelement of 

type-l, shown in Fig. 4-6 (b) . As was discussed in Chapter 

III" the contributlon of this macroelement ta the macro-

e1ement control volume surrounding node (IP,JP) can be ex~ 

pressed as: 

PCONTI 

(3-58 ) 
j 
! , 
1 

1 

1----- - ---'--" -.------------------~,-----------------!~ 
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In terms of the (IP, JP) node addresslng 'scheme shown in Fig. 

4-6 (b), Eqn. (3-58) can be rewritten as: 

PCONTI = MPi P (IP',JP) + MP; p(J;P+1,JP) 

+ MP~ p(IP+I,JP+I) + MP;l p(IP+2,JP+l) 

+ MP 1 p ( l P , JP + 2 ) + MP 
1 

P ( l P , JP -1 ) 
02 03 

+ MPCON1 (4-18) 

Wi th reference to the node addressing and labe11ing schemes 

shown in Fig. 4-5 (a), the complete pressure discretization i> 

equation can be wri t ten as fo1lows: 

APC(IP,JP)* p(IP,JP) = [APE(IP,JP)* p(IP+l,JP) 

+ APNE(IP,JP) *p(IP+I,JP+1) 
. 

+ APN(IP,JP)*p(IP,JP+l) + APNW(IP,JP) *p(IP-1,JP+1) 
\ 

+ APW(IP,JP)*p(IP-l,JP) + APSW(IP,JP) *p(IP-1,JP-l) 

+ APS(IP,JP)*p(IP,JP-l) + APSE(IP,JP) *p(IP+1,JP-l) 

+ APENE(IP,JP) *p(IP+2,JP+1) + APNNE(IP,JP)*p(IP+1,JP+2) 

+ APWSW(IP,JP) *p(IP-2,JP-1) + APSSW(IP,JP) *p(IP-1,JP-2) ] 

+ APCON ( l P , JP ) (4-19) 

where the expression in square brack~ts is the full forro of the 

term (E a~b Pnb) in Eqn. (3-61). Comparing Eqns. (4-18) 
, nb 

and (4-19), the contt"ibution of macroelement (IP,JP,l) to 

" 

': 
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l, 

the discretized continuity equation for node (IP,JP) can be 

assernbled in the following manner: 

with respect to node (IP, JP) 

APC (IP, JP) = APC (IP ,JP) + Mp 1 
l 

APE (IP, JP) = APE (IP ,JP) Mp 1 
2 

APNE (IP, JP) = APNE ( IP , JP ) - Mp l 
3 

106, 

APENE (IP , JP) = APENE (IP , JP) _ Mp1 
01 ( 4-20) 

APN (IP, JP) = APN(IP,JP) Mp1 
02 

APS (IP, JP) = APS (IP ,JP) Mp l 
03 

APCON(IP, JP) = APCON (IP ,JP ) - MPCONI 

The contributions of the macroelement under consideration to 

the pressure equations for nodes (IP+l,JP) and (IP+l,JP+l) 

are assembled in a sirnilar way. In order to avoid repeti-

tians, the deta~ls are omitted here. 

It is to be noted that aIl the coefficients in the pres-

sure discretization equatiqn, except the non-homogeneous term 

APCON(IP, JP), are the same as those appearing in the discre-

tiza tion equation for pressure correction. Consequently, 

in each i teratior; dur ing the comput~tional process, they are 

stored on an external disk storage unit and reloaded back 

into core storage when the time cornes to compile the pressure 

correction equa tion. Further details on the assembly of the 

pressure and pressure correction equations are available in 

the subroutine PAPe of the computer code presented in Appendix 

IV. 

1----------------· .. ------~~,-------------------------------------
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4.3 SOLUTION OF THE DISCRETIZATION EQUATIONS 

As was described ,in Chapter III, a step-by-step marching 

integration is used to obtain the veloci ty 1 pressure and cp 

distributIons in the duct flow problems of interest. At 

each axial step 1 the values of these dependent variables at 

~e nodes in the cross-sectional plane being considered are 

_ ~btained by using an i terati ve solution procedure akin ta 

ISIMPLErl [4]. h 't t' f th' d 1.' t l' S .K In ~ac 1 era lon 0 lS proce Ure, 

necessary to ob tain a sequential solution of nominally linear 

sets of algebraic equati<:ms which govern (dp/dz) 1 w, P, u, V, 

pl and </>. In this section, the method usedto solve these 

nominally linear sets of discretizat;ion equations is 

described. 

Several methods for tq.e solution of a set of linear 

algebraic equation"s are available in the literature. They 

,çan be c'lassified into two main categories: direct and itera-

ti ve rnethod s. Exper ience wi th numerical methods for mul ti-

dimensional fl,uid flow and heat transfer has shown that 

iterative methods, if applicable, are sirnpler and more econo-

mical than direct methods , in terms of programming effort and 

compu ting costs [4]. In this 1:hes).s, an iterative line-by-

line method [3,4] is employed for sOlving nominally linear 

sets of discretization equations. It is to be noted that 

the use of this particular method is possible because the 

domain discretization scheme described in section 4-1 yields 

a line-by-line arrangement of the nodes in each cross-

sectional plane of the duct. 

I __ '"_i _____________ ~,--------~----------------------______________ ~~ ____ ----__ ~ __________________ ~i~ 
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4.3.1 Solutio~ of the Discretization Equations for 

" "u , v, w and cp 

Norninally l~near and decoupled discretization equa~ions 

1 for u, 'v, w and cp have the same general forms, sa the same me-
\ 

thod can be used ta solve, them. For convenience in the 
l ' 

following discussion, the description of this method is pre-

sented with reference to the general scalar dependent variable 

q, • 

At the start, the whole cp-field in the cross-section 

of interest is assigned guessed values. Then, attention is 

focussed on one particular grid Ilne, line 'l' for example. 

~:. Referring to Figs. 4-3 and 4-5, if the values of cp on the 
, 

neighbouring grid 1ines (1+1) and (1-1) are treated as known, 

with the latest available values of cp assigned ta· the nodes 

bn these lines, then each unknown value ~(1,J) on the 'l' 

line under consideration is connected ~o a maximum of two 

unknown neighbours ~(I,J+l) and ~(I,J-l). Collectively, 

therefore" the cp discretization eguations for the nodes on 

the 'l' line f~rrn a trid"iago~:t matrix system which can be 
'r ..... .....---'-

solved by the ~tandard ~riQiagonal ~atrix ~lgorithm (TDMA) 

[4J. Once the nodal values of cp on line 'l'are ca1culated 

in this manner, the procedure is repeated for line '1+1', 

then'line 'I+2~ and 50 on, until the whole cross-sectional 

"'-, domain has been 'swept" line-by-1ine. In an ana1ogous 

manner, the cross-sectional calcu1ation domain is then 'swept' 
o 

( using 'J' gr id lines. In the computer implementation of 

the proposed method, if no information is available to J 
1 

,{ 
1 

i 
1 
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,\ 

ascertain an optimum or preferred sweep direction, back-and-

fprth 1- andc_J-sweeps a:te used alternately." Each iteration 

of this procedure is assumed to consist of four such alterna-

ting-direction sweeps of the calculation domaine 
,-

Several of the aforementioned Iterations may be required 

ta obtain an ad~~ately.converged solution of~the nominally 
" 

1 linear set of ~iscreti zation', equations. In this connection, 

,_it should be noted that,''Ïduring tlie.";Solution of non-linear 

flow problems, it is not necessary to solve nominally linear 

and decoupled sets of discretization equations ta complete 

convergence. Indeed, substantial savings of computer time 

are possible if such intermediate solutions are carried to 

only partial convergence [4J. Currently, however, no cri-

terion is available for determining the optimum degree of 

éonvergence in the solution of nominally linear and decoupled 

sets of discretizatlon equations encountered in each itera-
'<, 

~tion of the overall SIMPLER-like procedure. 

4.3.2 Solution of the Pressure and Pressure Correction 

Equations 

The pressure and pressure correction are stored only at 

the vertices of the macroelements. The macroelement node 

addressing scheme and the geographic node labelling scheme 

associated with the neighbours of a pressure node are illus-

trated in Figs. 4-3 and 4-5(a). 

. 
J 
~ ., 

, 1 
1 
1 
4 

1 
! 



( 

110 

A line-by-line iterative procedure sirnilar to one 

described in the last sub-section is used to.solve the sets 

of discretization equations for p and p' . Consider a parti-

cular macroelement grid line, say lirte 'IP'. The values of 

p (or p', whichever is appropriate) on this line are treated 
" 

as unknowns and the correspondlng values at nodes lylng on 

neighbouring lines (IP+l), (IP+2), (IP-l) and (IP-2) are 

regarded as known. The unknow'n nodal values of p (or p') 

on the line 'IP' are then calculated by using the TDMA. 

This procedure is then repeated for the 'IP+l' line, then 

,the (IP+2) line, and so on, until the entire calculation 

domain lS 'swept'. A similar 'sweep' of the calculation 

domain is then done uSlng 'JP' lines~ Two 'IP' -sweeps 

._.,(back-and-forth) and two 'JP' -sweeps are performed in each 

iteration cycle. The iterations are continued untll a 

suitable convergence criter-ion is satisfied. 

4.3 .3 Comments 

The convergence of the aforementioned line-by-line 

iterative methods is guaranteed only if the coefficient ma-

trix of the set of nominally llnear discretization equations 

exhibits diagonal dominance [4]; this is the Scarborough 

criterion. In the proposed control volume finite-element 

method, this criterion is not always satisfied, especially 

in the case of pressure and pressure correction equations 

obtained with hlghly nonuniform grids. The lack of diago-

nance results if negative coefficients are encountered in 

I----...;......---~-- -.,..-~.-.--~----------~-------
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the coefficient matrix. In the testing of the computer code 

-
incorporating the proposed method, negative coefficients were 

encountered; but in aIL the test and application problems 

investigà~ed so far, the pegative coefficient dlfficulty was 

not serious enough to cause divergence of the proposed line-

by-line iterative methods. Thus, it rnay be concluded that, 

while the convergence of these line-by-line iterative rnethods 

cannot be ensured for aIL possible situations, divergence is 
. 

unlikely. 

4.4 CLOSING REMARKS 

In this chapter, the maln tasks in the computer 

implementation of the proposed control volume finite-element 

method have been described. The complete computer code 

written in the FORTRAN computer language, its flow diagram, 

and brief descriptions of its various subroutines are given 

in Appendix IV. To validate the computer code and dernop-

strate its capabilities, sever al test problerns have been 

solved; sorne of these problerns are presented in Chapter V. 

In addition, the proposed method has been successfully 

applied to the problem of lamlnar fluid flpw and heat trans-, 

fer in rod-bundle geometries; 

Chapter VI. 

the results are presented in 

1 , 

1 

1 

1 
! , 
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CHAPTER V 

APPLICATION OF THE METHOD TO SOME TWO- AND 

THREE-DIMENSIONAL TEST PROBLEMS 

The validity and capabilities of the proposed 

control-volume fin\te-element method (CVFEM), and its 

computer ~mplementation, are demonstrated in this Chapter 

by the presentation of its applicatlon to three different 

test problems. Whenever possible, the results produced by 

the proposed CVFEM are compared with the results of 

independent numerical and experimental investigations 

avallable in the literature. 

As was described in Chapter III, the proposed CVFEM 

incorpora tes a step-by-step marching integration prOcédure 

which advances the solution in the main stream direction. 

At each axial step, the discretization analogues of the 

governing equations, which are parabolic in the main flow 
7 

direction and elliptic ~in the cross-sectional plane, are 

solved by a procedure akin to SIMPLER [4]. Thus, the 

solution of three-dimensional parabolic duct flows resembles 

the solution of a series of two-dimensional elliptic 

problems. This feature of the proposed CVFEM was taken 

advantage of in the development and constructlon of its 

computer implementation. First, a general computer program 

incorporating a CVFEM for two-dimensional elliptic flows 

( , 
[1,2] was developed and tested thoroughly. This computer 

1 
l-

I 
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program was then extended to handle three-dimensional 

parabolic flows and applied to test problems. This two-

stage program development and testing procedure provided 

considerable convenience and cost savings. 

In the remainder of this Chapter, the formulation,. 

objectives, computational details and results of three 

different test problems are presented. The first problem 

involves two-dirnensional natural convection in a vertically-

oriented rectangular cavity. Two-dirnensional natural 

convection in a trapezoidal cavity is investigated in the 

second problem. Fully-developed and developing flow and 
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heat/transfer in a duct of square cross-section are studied 

in the third problem. The first two two-dimensional problems 

were used in the first stage of the aforernentioned two-

stage procedure for the developrnent and testing of the 

computer implementation of the proposed CVFEM. In this 

connection, it should be noted that the proposed computer 

program for three-dimensional parabolic flows can be 

adapted for the solution of two-dimensional flows by simply 

dr~pping the terms pertaining to the axial, or z-direction, 

derivat~ve. With reference to the discretization equations 

presented in Chapter III, this can be achieved by setting 

'tne axial step size to a very large value, 6z ~ 00. 

AlI three test problems presented ïn this chapter 

were simulated on an AMDAHL V7 computer using a FORTRAN-H 

extended compiler. 

---------------------------------------------- l 
--------.--~~-------------------~ 
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5.1 NATURAL CONVECTION IN A RECTANGULAR CAVITY 

5.1.1 Problem Statement 

Steady, laminar, natural convection in an enclosed 

rectangular cavity of aspect ratio 5 (height-to-width ratio) 

is investigated in this problem, which is depicted in 

Fig. 5.1(a). The two horizontal walls are insulated, the 

left vertical wall is maintained at a constant temperature 

TC' and the right vertical wall is maintained at a uniform 

tempe rature Th; Th > Tc' The fluid inside the cavity is 

Newtonian and its density decreases linearly with temperature. 

The acceleration due to gravit y is directed vertically 

downwards. 

This problem has been the subject of several in-depth 

investigatLons [36-39]. In particular, Jones [39] has 

studied this problem by employing a finlte-difference method 

based on the so-called stream function-vorticity for~ulation 

and has compared his results with experimental data of 

Duxbury [39]. Both Jones's and Duxbury's results are used 

to check the results of this investigation. 

5.1. 2 Analysis 

The Boussinesq approximation [28] is used in this 

analysis. Thus the mass density of the fluid is treated as 

---------------------- -a constant in aIl terms except the buoyancy term. In ___ :thê 

buoyancy term, the density is assumed to vary linearly with 



( 

temperature: 

P = P [1 - (3 (T-T )] 
o c 

where Po is the density at -T = Tc' and S is the thermal 

volumetrie expansion coefficient. 
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(5.1 ) 

The following non-dimensional variables t are used in 

this analysis: 

~ = x/L; n = y/Li A = H/L 

(5.2) 

]JC 

Pr = ~; Ra = GrPr 

where Gr is the Grashof number, Pr is the Prandtl number, 

and Ra is the Rayleigh number. In terms of th~se non-

dimensional variables, the governing equations can be written 

as follows: 

tlt is to be noted that these non-dimensional variables are 
defined for the natural cofivection problems presented in this 
section and Section 5.2 only. For the 3D parabolic duct flow 
problems presented in Section 5.3 and in Chapter VI, the 
definitions presented in Chapter II apply. 

! 
i 
i 
! , 
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x-momentum: 

a Cl 
~(u*u*) + an(v*u*) (5. 3) 

y-momentum: 

Cl Cl 
at(u*v*) + an(v*v*) (5.4) 

continuity: 

(5.5) 

energy: 

JL(u*e) + ~(v*e) 
Cl~ Cln 

(5.6) 

The boundary conditions are u* = 0 and v* = 0 on all wallsi 

e = 0 on the n = 0 wall, 8 = l on the n = l wall; and (ae/a~) 

= 0 on the ~ = 0 and ~ = A walls. 

Once the solution for e has been obtained, the local 

Nusselt numbers on the hot wall can be evaluated: 

Nu 
k (dT/ay) y=L 

= { (T -T) } (L/k) = 
h c 

de 
(an) n=l (5.7) 

( 

, 

1 
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Then the average Nusselt nurnber for the hot wall can be 

calculated: 

Nu av 

In this problem, the total heat transfer from the hot wall 

ta the fluid 1S equal ta that gained by the co Id wall from 
, 
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(5.8) 

the flu1d. Thus the average Nusselt number for the hot wall 

1S equal ta that for the co Id wall. 

Another quantity of interest which can be computed 

after the solution of Eqs. (5-3)-(5.6) is the non-dimensiona~ 

stream functian ~ 

u*; - v~ (5.9) 

Using the continuity eguation, 

(5.10) 

where ~ is the non-dimensional vorticity: 

dU* dV* 
~=aïï"-3T (5.11 ) 

.. -"""'---"',..-...., 
/ "-

In this analysis, the stream function ~ is obtained by solVUhg 
, 1 

~ 
( "', 

;' 
7 
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the conduction-type problem posed by Eqn. (5-10) subject to 

the boundary condition ~ = 0 on the walls. 

5.1.3 Computation Details 

A 13x9 uniform macroelement grid, corresponding to 

a 2Sx17 subelement grld, was used to discretize the 

calculation domain, as shown in Fig. 5.1(b). This grid 

corresponds to a total of 768 triangular subelements. 

In accordance with previous investigatlons [39], 

three values of Rayleigh number were considered: 

Ra = 2.49xl0 3 , 1.49xl0 4 and 1.36xlO S . 

In aIl cases, the Prandtl number was maintained at 0.7. 

The solution procedure was started by assigning 
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initial, or guess, values to the velocity and temperature fields. 

These were obtained from a previous, or lower Raylelgh number 

solutioni ln the lowest Rayleigh number case, a pure conduction 

solution with no flow was used to start the computations. 

In aIl cases considered in this problem, the following 

set of under-relaxation parameters were used: 

The iterations in the SIMPLER-type solution procedure were 

terminated when the average Nusselt nUmber, NUav ' had converged 

-------~,_.------------------------------------~----~------ -----------------------



to at least five significant figures. 

5.1.4 Results 

Average Nusselt numbers for the three cases studied 

are presented in Table 5.1. The corresponding numerical 

results of Jones [39], obtained using a stream function-

vorticity formulation and a flnite-difference method, and 

the experimental results of Duxbury [39] are also presented 

-~ in Table 5.1. Jones used a uniform 32x16 node grid ln his 

computations. The results of the present analysis match 

those of Jones very weIl. The comparison with Duxbury's 

experimental results is not as good. However, it should be 

noted that Duxbury's Nusselt numbers on the cold face are 

consistently higher than those on the hot face; this 

indicates that there could be unaccounted heat losses in his 

experimental data. Furthermore, the mean values af his hot 

and cald face Nusselt numbers, shown in the last column of 

Table 5.1, agree quite weIl with the present results and 

those of Jones. 

Computed temperature distributions across the 

rectangular cavity, for five different locations along its 

119 

height (ç = 0.5, 1.5, 2.5, 3.5 and 4.5) are presented in Figs. 

5.2(a)-(c); these three figures pertain ta Ra = 2.49xl0 3 , 

4 5 1.67xlO , and 1.36xlO ,respectively. Aiso presented in these 

graphs are the numerical results of Jones (39], plotted in 

dashed lines, and the experimental reSlULts of Duxbury [39]; 

~ 

J 

t , 
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Jones's and Duxbury's results were obtained by digitizing 

the correspondi~g temperature graphs in [39]. 

For Ra = 2.49xl0 3 , the temperature profile in the 

centre,of the cavity is almost linear. Conduction is there­

fore the dominant mechanism for heat transfer, and the 

Nusselt number for this case is very close to 1. For Ra = 
4 1.67x10 , the temperature profiles tend to become fIat 

j 
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in the central region and vary steeply near the vertical walls. 
1 

This is the so-call~d "boundary lay~r regime" [39]: mos~ 

of the heat i5 transferred by convection through the 

boundary layers and very little of it is transfereed acr05S 

the cavity, in the central region. Agreement between the 

present results and ~hose of Jones and Dùxbury is very 

satisfactory for these two Rayleigh number5. 

5 For Ra = 1.36x10 , the results of the present 

analysis, shown by solid lines in Fig. 5.2{c), exhibit smaii 

negative temperature gradients in the central region of the 

cavity, ~nd these indicate that sorne heat in this region 

is being transferred in the positive y-direction. Jonesls 

results show similar trends, aithough there are considerable 

departures from the present pr~f1les for ~ = 0.5 and 4.5 . 

.II 
However, both Jonesls and the present results do not quite 

match Duxburyls experimental results so that no definite 

assessment can be made here. It 1s to be aiso noted that 
~,I ;\\ .... .-.,."'\ 

for this h1gh value of Rayleigh n ~,~~ere could be 

considerable heat lasses througn the ins ~~ed surfaces in 

Duxbury's experiments, as was previbusly dise ,~--'." .... ,.,. 
u~ 
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Neverthe1ess, there is qualitative agreement between the 
~ 

resu1ts of the present ana1ysis and those of Jones and 

Duxbury. 

Isotherm contours are presented in Figs. 5.3(a)-(c) 

3 4 5 • -, 
for Ra = 2.49x10 , 1.67x10 , and 1.36X10 , respectively. 

As expected, at the lowest Rayleigh number, the isotherms 

,deviate only slightly from the vertical and, are fairly even1y 

spaced over much of the rectangular enclosure; this indicates 

that conduction is the dominant mode of heat transfer. As 

the Rayleigh nurnber is incr~ased, convection becomes the 
c 

dominant mode of heat transfer and the isotherms become 

increasin~ly wavy and get crowded in the vicinity of the 

hot and cold walls. In aIl cases, there is a considerable 

concentration of the isotherms in the lower right and the 

upper left corners of the enclosure. Heat transfer is 

therefore highest in these regions. 
t 1 

Streamline plots are presented in Figs. 5.4(a)-(c) 

345 for Ra = 2.49xlO , 1.67x~O , and 1.36x10 , respectively. 

In aIl figures, ~ increases from a minimum value of zero 

on the walls to a maximum value in t4e central region of the 

enclosure. These results are in good qualitative agreement 

with the numerical results of Jones (39) and the flow 1 _ 

visualization data of Duxbury [39}. 

1------.-,-""',,--

, . 



( 

Q' 

, " 

'u 

,122 

5.2, NATURAL CONVECTION IN A TRAPEZOIDAL CAVITY 

5.2.1 Problem Statement 

In this problem, steady, larninar natural convectiOn 
\I~ 

in an enclosure of trapezoidal cross section is investigated. 

A schematic illustration of the problem is given in Fig. 5.5 (a) . 

The top and bottom walls of the ?n.closure rnake an angle of 

.15 0 with the hor~zontal and are considered to be adiabatic. . . 
" The left and right walls are vert~ca1 and are maintained 

at constant temperatures of Th and Tc' respectively; Th > Tc' 

The height of the 1eft, or hot, wall i5 H ,g 0.0254 m, and 

the perpendicular distance between the left and right walls 

is L = 0.0768 m. 
+ . 

The acceleration due ta gravit y g lS 

directed vertically downwards. 

This problem i5 used to demonstrate the capabi1ity 

of the proposed CVFEM to solve reCirculatinr cro;s-sectional 

flows in irregular-shaped calcula tion domaips. Iyican et aL 

[40,41] have studied this problem experimentally. Their 

resul ts are used to check those of this analysis. 

5.2.2 Analysis 

Equations (5-1) to (5-6), which were used in the 

mathematica description of the la st test problem, apply to 

this proble too. The boundary conditions are u* = v* = 0 

on aIl wall . 8 = 0 and e = 1 on the right and 1eft walls, 

respectively and the normal derivative of the tempe rature is 

, 

l 
\ 
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zero on the top and bot tom adiabatic walls. 
..., j",-~"'­

. _t~-

Once thé solution for e has been obtained, the • 
average Nusse1t number for the hot wall can be calculated using 

l J ae 
Nuav = A [ (3Tï) dt;:] hot wall (5.12) 

Another quantity of interest is the stream function l./J defined 

by Eq: (5.9). It is obtained by solving Eq. (5.10), subject 

to the boundary condition \}J = 0 on the walls of the enclosure. 

5.2.3 Computation Details 

AlI computations were done using a grid consis'ting 

of 288 six-node triangular macroelements i the corresponding 

subelem~rlt grid, composed of l152 three-node triangular 

elements, is illustrated in Fig. 5.5(b). 

Four different Rayleigh numbers were considered in 

345 6 this problem: Ra = 10 , 10 , 10 , and 10 . The Prandtl 

number was maintained constarrt- at O. 7 in aIl computations. 

As in the previous test problem, initial, or guess, values 

of the velocity and temperature distributions, required to 

start the computations, were obtained from the previo'us, 

or lower, Rayleigh number case i for the lowest Rayleigh nurnber, 

the conduction solp.tion was used as the initial distribution. 

In all computations, the following set of under-

relaxa tion parameters was used: 

\ , 
\ 
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The iterations in- the SIMPLER-type solution procedure. [4] 

r,( wre terminated when the values of 

a least five significant figures. 

5.2.4 Resul ts 

Nu had converged to av 

The variation of the average Nussel t number wi th 

Rayleigh number is presented in Fig. 5.6. Also presented 

in this figure are the experimental resul ts of Iy ican et al. 

[41] and a graph of a correlation proposed by the same 

authors. It is seen that the agreement between the results 

of this analysis and those of Iyican et al. is very good 

over the entire range of Rayleigh number considered. 

Isotherm contours are presented in Figs. 5.7 (a) - (d) 

for Ra = 10
3

, 10
4

, 105 , and 10 6 , respectively. FoL' Ra, = 10 3 , 

conduction is the dominant mode lof heat transfer, and the 

isotherms in Fig. 5. 7 (a) are almost parallel to the vertical 
", 

walls. As the Rayleigh number is increased, convection 

starts contributing signif icantly to the overall heat 

6 transfer " and it is the dominant mode at Ra = 10 . For aIl 

Rayleigh numbers, there is a higher concentrat~on of 

isotherms in the vicinity of the left wall than that adjacent 

to the r ight wall. This is because the area of the left 

wall is less than that ôf the right wall. Thus for the same 
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--total heat transfer, the temperature gradients in the vicinity 

J 

1 
) 

1: 
1 • .. 
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of the left wall have to be higher than those adjacent to 

the right wall. 

The corr~sponding streamline plots are given in 
\ 

Figs. 5.8(a)-(d). In aIl the figures, the stream function 1jJ 

decreases from a maximum value of zero on the walls to a 

minimum value in the central region of the cavity. As is 

ta be expected, the strength of the reclrculating flow 

increases with increaslng Rayleigh number. 6 At Ra = 10 , the 

flow displays a rnulticellular structure in the central 

portion of the trapezoidal enclosure. 

5.3 LAMINAR FLUID FLOW AND HEAT TRANSFER IN DUCTS OF 

SQUARE CROSS-SECTION 

In this section, the complete CVFEM for three-

dimensional parabo1ic floW5 i5 used ta study stead~, 1aminar, 

forced convection in a straight duct of square cross-section. 

It is assumed that the fluid is Newtonian and, its properties 

are constant. Two thermal boundary conditions are 

investigated in this study: (i) constant wall temperature 

@, and (ii) uniform wall heat flux ®. 
A detai1ed mathematical description of this prob1em 

has already been presented in Chapter II, so i t is not 

repeated here. In the subsections that follow, only the 

computational details and results are presented. First, a 

study is undertaken of fu1ly-deve1oped flow and heat transfer 

125 

( in square ducts. Then, attention is focused on the therrnally-

/ 
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developing situation under fully-developed flow conditions. 

Lastly, simultaneously developing flow and heat transfer in 

a duct of square cross-section are investigated. 

5.3.1 Fully-Developed Flow and Beat Transfer 

This problem has been studied extensively by a 

number of researchers; a review of these works has been 

compi"led by Shah and London [7]. The results reported in 

f7] are used in this subsection ta check the results of 

this an~lysis. The fluid flow results are presented first. 

Then, the heat transfer results are discussed. 

A. Fluid Flow 

The fully-developed flow in this problem is governed 

by Eq. (2.28). This equation can be solved by the CVFEM 

described in Chapter III by setting u = v = w = 0, ~ = W, 

r = l, S :"::".. land b. z ~ co Once the W-field has been obtained, 

the mean velocity, W, can be Gomputed. It can then be 

used to obtain the friction factor - Reynolds number product 

(f.Re) and the normalized velocity field (W/W). The latter 

is stored and used as an input to the heat transfer problems. 

A flowchart outlining the ab ove ?perations is giv~n in Fig. 5.9. 

) 

Comeutational Details 

· ( Figure 5.10 shows the geometry of the problem considered. 

._~---
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Due to symmetry, only one-quarter of the duct cross-section, 

shown by the shaded area in Fig.,5.10(a), needs to be 

analyzed. A non-uniform macroelement grid of 6x6 pressure 

nodes, corresponding to an llxll node subelement grid, was 

employed ta discretize this domain for aIl runs, except 

those made to examine the effect of grid size. The gr id 

used is shawn in Fig. 5.10(b). The positions of the 1- and 

J-lines in this grid are given by the following equations: 

. For l :;:: -l, 3, 5 ... , LI, and J = l, 3, 5 •.. , Ml 

x (1, J) = [(I-I)/(LI-l) ]POWER*(L/2) 

1 (5.13) 

Y{I,J) = [(J-I)/(MI-I) ]POWER*(L/2) 

• For l = 2, 4, 6 ... , (LI-I), and J = 2, 4, 6 .•. , (MI-I) 

X(I,J) = O.5*(X(I+I)+X(I-l» 

1 (5 .14) 
Y(I,J) :;:: O.5*(Y(I+I)+Y(I-l» 

where LI and Ml are the total nurnber of nodes in the x- and 

y-directions, respectively, and POWER is a nurnber ~hich can 

be adjusted sa as to obtain the desired density of grid 

lines in the vicinity of the walls. POWER = 1 corresponds 

to a uniforrn grid. A value of POWER greater than 1 is 

desirable sinee the fully-developed velocity profile is 1 

---..-.' '- ~-~-~--------------------- ---------~-.-
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expected to change more rapidly near the wall than in the 

central region of the duct. In this study, POWER == 1.4 

was used in aIl runs, except those made to test the effect 

of POWER on the results • 

Resui ts 

Fu~ly-developed velocity profiles along a synunetry 

line and along a diagonal are shown in Figs. 5.11 (a) and (b) 
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The Experimental results of Goldstein and KlZeid [42] are also 

shown in these figures. The agreement between the computed 

and Experimental results is very good. The computed maximum 

velocity, (W!W)max' which occurs at the duct centerline, 

is 2.123. This compares favorably with the value of 2.0962 

computed by Lundgren et a Z. [7, p. 198]. 

The friction factor - Reynolds number product, f. Re, 
\, 

is a constant for ful1y-deve1oped 1arninar flow in a square 

duct. The calculated value here is f.Re = "57.092; the 

corresponding value calculated analytically by Shah and 

London [7] is '56.908. This corresponds to a relative error 

of 0.32%. 

The aforementioned results were obtained using a 

subelement grid of llxll nodes and a value of POWER of 1. 4. 

The effects of refining the grid size and varying the value 

of POWER, which deterrnines the distribution of grid lines, 

are shown in Table 5.2. As is to be expectêd,-.successive 

refinement of the grid systematica11y decreases the percentage 

1 

L 
\ 
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error. For the 19x19 node subelemènt grid and PqWER = 1. 4, 
/ 

the error in foRe is as small as 0.01%. For a if ixed 

number of nodes, there is an, optimum value ~f POWER for 

which the percentage error is a minimum. (ThiS appears 

correspond to POWER = 1.4 for the three g'çids tested. 

the basis of the resu1ts presented in Tab;Je 5.2, it was 

to 

On 

conc1uded that a sube1ement grid of ,11xl1 nodes with POWER = 
/./ -- -----

1.4 is sufficiently accurate for this problem. 

B. Heat Transfer: @ Boundary Condition 

The governing equa tion in this case is Eq. (2.55). 

This can be considered as an eigenvalue problem, with À as 

the eigenvalue and the dimensionless temperature 0 as the 

eigenfunction 0 An i terati ve solution procedure was used to 

sol ve this problem. Firs~, initial, or guessed, values of 

o were assigned to aIl nodes inside the ca1cu1ation domain. 

Then, À was calculated using Eqo (2.57). Equation (2.55) 

was then solved numerically, using the pr6posed CVFEM with 

u = v = w = 0, <p = 8, r = l, S = ~ (W/W) 8, and ~ z -+ en. This 

yielded a new distribution of 8 which, in turn, was used 
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to recalculate a new value of À. This sequence of operations 

was repeated until convergence. This iterative procedure is 

outlined in Fig. 5.12. 

Computation Details 

As in the fluid flow analysis, an llxl1 node sub-

, 
! 

1 
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element grid with POWER = 1.4 was employed. The aforementioned 

iterative procedure was repeated until the relative change 

in À between two successive iterations was less than 0.001%. 

Results 

The overall Nussel t number, Nu ®, computed ir: this 

study is 2.9386. This agrees to within 1.26% with the 

val ue 0 f 2. 976 reported by Shah and London ( 7] • 

The effect of grid size ~n Nu ® is shown in Table 

5.3. Successive grid refinement drives NUe!) claser ta the 

value obtained by Shah and London (7]. The accuracy 

provided by an !lxll node grid with POWER = 1.4 is considered 

adequate in this study. 

C. Heat Transfer 1 @ Boundary Condition 

The governing equation in this problem is Eq. (2.70). 

This equation was solved nurnerically using the proposed 

CVFEM with u = v = w = 0 , cp = X, r = l, S = (-4W/W), and 

6.z + 00. The solution procedure is outlined in the flowchart 

shown in Fig. 5.13. Again, a sube1ement grid of llxll ~odes 

wi th POWER = 1.4 was employed in the computations. 

Results 

The overall Nussel t number 1 Nu ®' for this case 

was computed to be 3.0475. This agrees to within 1. 4% with 

1------- - ---- ---~--------------------
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the value of 3.091 obtained by Shah and London [7J. 

The effect of grid size on Nu ® 
5.3. Again, the computed value of NU® 

analytical result of Shth and London; [7J 

refined. 

is shawn in Table 

approaches the 

as the gr id is 
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The wall tempe rature distribution around the periphery 

of the duct cross-section is not uriiform in the present case. 

The maximum temperature occurs at the duct corners, and the 

minimum temperature occurs at the mid-points of the sides. 

Shah [7] computed normalized maximum and minimum ternperatures 

which are defined as follows: 

. T* 
w,max = 

T -T w,max C 
1 T* . 

w,m~n 
= 

T .-T 
w,ml.n c 

T - T w c 

(~.15) 

where T is the temperature at the centerline and T is the c -w 

peripheral average wall ternperature. In Table 5.4,. the . 
results of this analysis are compared with those of Shah. 

Agreement within 0.5% is founC. 

5.3.2 
J, 

Hydrodynarnically Fully-Developed and Thermally 

Developing Flow 

In this subsection, consideration is given to the 

problem in which the veloci ty prof ile is fully-develop,ed 

and remains fixed while the temperature profile develops. 

Though solutions to such problems strictly apply only to 

J 
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si tuations where a hydrodynamic starting length is provided, 

so that the velocity profile is fully-established before 

heat transfer starts, they are excellent approximations to 

entrance flows of high Prandtl nwnber fluids [28]. They 

have, therefore, received considerable attention in the 

li terature [7,28]. The published results· pertainïng to 

flow in a square cross-section duct are used in this sub-

section to check the results of this investigation. 

The governing equation for this problem is Eq. (2.34). 

In this equation, the velocity ffeld is treated as known, 

and it is obtained from the analY~is of fully-developed flow 

presented in the last subsection. Two thermal boundary 

conditions are considered: (i) constant wall temperature CV, 
and (ii) uniform wall heat flux ®. At the inlet of 

the duct, the temperat:ure of the fluid is assumed to be 

uniform, T = T .• 
1. 

The proposed CVFEM was used to solve this problem. 

The complete developing tempera ture field was obtained by 

marching plane-by-plane in the direction pf the primary flow. 

At each axial station, except for the fist three, the 

automatic step size selector described in Chapter IV was 

employed to adjust the step size I1z; this step-size 

adjustment was based on a specified desired change in the 

local Nusselt number and on the z-direction slope of this 

Nusselt number at the previous upstream station. A very 

small value of I1z was used for the first three axia~. steps 

so as to accommodate the expected steep variation of Nusselt 

1------,.·-----
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number in the vicinity of the duct entrance. Figure 5.14 

gives an overview of the solution procedure employed. 

The treatment of the initlal condition in this problem 

deserves special mention, since for the Ci) boundary condition, 

the initial condition is singular at the duct wall. The 

singularity resul ts from the assumption that the inlet 

t~rnperature profile possess an infinite gra.dient at the wall, 

as is illustrated in Fig. 5.15. Obviously, the present 

rnethod with its finite mesh spacing cannot handle such a 

severe variation of temperilture wi~hout incurring large 

errors near the singulari ty. Fortunately, numer ical 

experirnents t have shown that these "initial errors tend to 

near the wall, and (ii) taking very srnall initial step 

sizes, it is believed that the se starting errors do not 

have any appreciable effect on the results, except in the 

irnmedia te vicini ty of the entr ance. 

Computation Details 

Table 5.5 shows three different sets of grid and 

step sizes used for calculating the developing ternperature 

field. The basic g:;-id is the same as that employed in the 

analysis of the fully-developed regirne, narnely, a subelement 

grid of llxll nodes with POWER = 1.4; this grid is show~ in 

t Ta be described in the discussion of resul ts. 

------,.~,~---, 
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Fig.5.10(b). With reference to the automatic step-size 

'se1ector descr ibed in Chapter IV, a value of IDEAL = 25 was 

chosen; IDEAL represents the estimated ideal number of steps 

needed to produce an accurate 'solution over the region 

inbetween z = 0 to a location where fully-developeJ cond"itions 

h d 3 
6 

are reac e. A];)out 9 axial steps are actually required 

to attain the fully-developed situation for both @ and ® 
boundary condi tions . Two other sets of grid and step sizes 

(Runs Band C in Table 5.5) were employed for checking 

the accuracy of the computations with the basic gr id. In 

aIl runs, the marching scherne was started by ùsing !Jz' 'V 10-7 

for the f irst three axial steps. 

At each axial station, after the calculation of 

the tempe rature field, the local and surface-averaged values 

of Nussel t nurnber were evaluated as follows: 

t.z 

For both @ and ® boundary conditions: 

l JZ = NUz dz = 
z 0 

1 z-t.,.z 
[f Nu dz + Nu z 0 z Z 

~z] 

4 " " 

i 

\ 
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where "the superscripts U -and D denote values stored at 

upstream and downstream stations, respect~vely . It is ta 

be noted that the above expressions for calculating NUz 

and NUm are cons istent with the profile -assumptions used .in 

the fully-implicit formulation of the proposed method; in 

the main flow direction, downstream values of the dependent 

variables are assurned to prevail over the interva1 ~z. 

Results 

A. Constant Wall Tem erature Boundar T 

Figure 5.16 shows the variation of local Nusselt 

number, NU z 1 @' with axial distance for different sets of 

grid and step sizes. As expected, NUz , @ has a maximum 
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" 

at the inlet plane anÇi decreases as z 1 (= z/DHRepr) increases; 
i 

Nu' fT' is less than 1.05 times the fully-developed value, 1 

" z, \..::) 
NU® 1 at z l '" 0.066. In the mathematical problem, NUz , ® 
should approach infini ty as z 1 -+ o. This is because for 

the presc,;ribed initial condition, the temperature gradient 

at the wall is infinite at z 1 ;:: 0, as mentioned bef,ore. In 

the numerical problem, however" due to the fini te mes-h 

spacing used, Nu z , ® asymptotes to a finite value as z 1 + O. 

This lir~üting value increases as the grid and step sizes 

are refined, and this observation is consistent with 

expectations. Furthermore, i t is to be noted that for 

-5 - t7:\ ® z 1 > 6xlO -T the difference between the curves ~, B, and 

© in Fig. 5.16 is almost indistinguishable. This indicates 

. 
L 
! 

1 
1 
! 

\ 
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that the results generated by the basic llxll node with 

POWER = 1.4 are aeeurate and reliable fory z' greater than 

6xl05
. 

The local Nusselt number, NUz , @' and surfaee­

avera~ed Nusselt number, NUm,G)' as funetions of z' are 
"l 

sho~n in Fig. 5.17. For cheeking these results, the 

eorresponding computed results of Chandru~atla and Sastri 

[43] are aiso shown in Fig. 5.17. As can be seen in the 

. ' 

figure, agreement between these results is very satisfactory. 

B. Uniforrn Wall Heat Flux Boundary Condition: GY 

The axial '(ariation of local Nusselt number, NU z , ® ' 
for different gr id and step sizes is illustrated in Fig. 

5.18. As in the ® conditJ.on, NU z ,@ starts with a high 

value and gradually decreases to within 1.05 times its 
l' -5 fUlly-deve loped value at z' - 0.07. For z' > 5xl,O , the 

'-,' 

Nu 
z,@ 

vs z' curves for the three sets of grid and step 

sizes used are virtually the same, so the results obtained 

wi th the bas ie . gr id (®) can be regarded as adequa te. For 

z' < -4 5xl0 , however, each curve asymptotes to a different 

limiting value _~s z' + O. Mathematieally, the value of 

NU
Z

, ® at z 1 = 0 should be infini te: this is because 

- ~-
(Tw-Tb ) = 0 at z' = 0 ~nd 'NUz ,@ = (qwDHl![k(Tw-Tb)]. In 

the numerical solution, however, 

the f1rst axial step is based on 

the value of Nu z , ® for 

(T -T ) at zr = ~z', and w b 
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this value 16 assumed to prevail over the region 0 ~ z' ~ ~z'. 

\ 
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Therefore, aIl three curves in Fig. 5.18 give finite values 

o~" NU z , ® at z' = O. As is to be expected, when the grid 

is" refined, and 11 z' is reduced, the value of Nu z , ® for the 

first axial step increases. 

The variation of local and mean Nusselt numbers, 

NUZ,Q!)' and NUm,~' with non-dimensional axial distance 

z' are displayed in Fig. 5.19, and are compared with the 

corresponding results of Chandr~patla and Sastri [43]. It 
c 

can be seen that good agreement is obtained for NUz , ® . 
The values of NUm, ® computed by Chandrupatla and Sas tri 

are higher than those obtained in this investigation, but 

this difference tends to decrease as z' is increased. 

Mareover, i t is to be noted that in both analyses, Nu ~ ® m, H 

using is obtained from the computed values of Nu ® by , z, 

the_following equation: Nu ® ~ [fZ'Nu ® dz']/z'. 
~ m,oz, 

Therefore, the difference betwee~ the present results and 

those in [43] is probably due te the differences in the 

numerical integration schemes and the number of data points 

used ta approximate the integral in the aforementioned 
, 

equation for NUm, ®. 

5.3.3 Simultaneously Developing Flow and Heat Transfer 

In this subsection, simultaneously developing 

ste"ady, laminar fluid flow and heat transfer in a sqU9-re 

cross-section duct are investigated. At the inle~of the 

duct, the velocity and ternperature distributions are assumed 

I ____ ~~. ~·~_"',...,l 1,..". ........ _________________ _ 
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-to be uniform across the duct cross-section: w ;::: w, u;;:: v ;::: 0 

and T = T.. The duct walls are considered to be irnpermeable 
~ 

and the no-slip condition applies: therefore, u = v = w ;;:: 0 

on the duct walls. Two thermal boundary conditions are 

considered: (i) constant duct wall ternperature G) and (ii) 

uniform wall heat flux ®. 
The equations governing this problem are the 

continuity equation, Eq. (2.8), the x-, y- and z-rnornenturn 

equations, Eqs. (2.9) to (2.11), and the energy equation, 

Eq. (2.34). The equations governing the flow are non-linear 

and coupled. The energy equation is linear, but it needs 

the f1uid flow solution as an input. Therefore, this problem 

tests aIl features of the proposed step-by-step marching 

solution procedure for three-dirnensional parabolic flows. 

A flow chart outlining the step-by-step solution 

procedure ernployed to obtain the ~veloping velocity and 

--temperature.fields is given in Fig. 5.20. At each axial 

step, the fiow field is solved for first, and then the. 

energy equation is solved. An iterative procedure akin to 

SINPLER is used to handle the solution of the co'ntinui ty and 

momenturn equations. After the first three steps, the step 
, 

sizes are internally calculated using the autornatic step 

siz,e algorithm discussed in Chapter IV; in the first three 
1 

steps, very small step sizes are used to account for the 

steep changes in the dependent variables. .Over most of the 

solution" procedure, the automatic step-size selection is 

based on the specified change in the ,value of the centerline 

1 

.-

, l 
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axial velocity component; however, once the flow is fully-

developed, a specified desired change in Nusselt nurnber is 

used to calculate the step size. The marching integration 

proced~re is terminated when both velocity and ternperature 

distributions are fully-developed; the velocity field is 

considered to be fully-developed when the centerline axial 

velocity component is larger than 99% of its fully-developed 

value, and the temperature field is assurned to be fully-

----------------­,~ 

developed when the Nusselt number is lower than 1.05 times 

its fully-developed value. 

Special attention is reguired in the treatment of 
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initial conditions, since they are singular at the duct walls. 

The singularity is a result of thé assumptions that (i) 

-the inlet axial velocity changes suddenly from w to zero at 

the walls of the duct, as shown in Fig. 5.21(a), and, (ii) 

there is a steep change in the initial ternperature 

distribution fram Tito Tw in the case of the ® condition, 

shown in Fig. 5.15. Clearly, such severe changes in the 

dependent variables cannot be handled by the proposed GVFEM 

without incurring relatively large errors near the 

singularity. However, as was shown in the analysis of 

therrnally developing flow in the la st subsection, these 

initial errors tend to decay rather g~ickly'~nd, at a small 

distance from the inlet) the y may be regarded as negligible. 

Moreover, the magnitudes, and effects of these starting 

errors are significantly alleviated in the present analysis 

by the use of: (i) higher density of nodes in the wall 

'1 
l 
l 
l 
! 

1 
1 
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region than in the central regian, and (ii) small initial 

step sizes. 

Computation Details 

In the proposed numerical method, the aforementioned 

singularity in the specified axial velocity distribution at 

the inlet du ct cross-section cannat be modelled exactly. 

As was stated in Chapter III, in any given duct cross-section, 
J 

the nodal values of the axial velocity are assumed ta 

prevail over their cor~esponding control volume surfaces. 

Thus at the duct inlet, if the axial velocity is set equal 

to w at internaI nodes and assigned the value of zero at 

nodes on the duct walls, as shawn by the da shed lines in 

Fig. 5.21(b), the numerically calculated mass flow rate in 

the duct will be less than the desired, or specified, mass 

flow rate. Furthermore, the errors caused by thi~ mass 

flow rate deficit will persist in aIl of the computed 

results. Ta overcome this problem, the foilowing procedure 

is used to assign axial velocity values at the nodes in the 
\ 

inlet plane. First, these values are set according to 

-w if j is an internaI node 

w. = 
] 

o if j is a node on the duct walis 

o 
Then a correction factor FAC is calculated as foilows: 

I-_______ .. ~..r_.:l"_~ __ 
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FAC = 
w Ep .A. 

j J J 
Ep .A.w. 

J J J 

where A. is the portion of the control volume surface 
J 

associ~ted with node j that lies in the inlet plane of the 

duct. This correction factor is then used to augment aIl 

inlet nodal values of w: 

(wj)corrected = W. x FAC 
J ( 

This corrected in let axial velocity distribution is shown 
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in Fig. 5.2l(b) by the solid line. The resulting numerically 

calculatedcmass flow rate is exactly equal to the desired 

value. 

The choice of a grid that is satisfactory, both from 

an accura9Y viewpoint and with respect to computational cost 

and storage requirements, is more important in this problem 

than in those discussed earlier. This is because the 

computational effort involved in .the sol;ution of simultaneously 

developing f10w and heat transfer is substantial1y greater 

than that required ta solve hydrodynamically fu1ly-developed 

and therma11y deve10ping flow. In this study, on the basis 

of several numerical trial runs, a macroe1ement grid of 6x6 

nodes, which corresponds to an llxll no de subelement grid, 

was choseni with reference to Eqs. (5.13) and (5.14), the 

corresponding grid distribution yie1ded by setting POWER = 1.4 

was cansidereq satisfactory. The first three axial steps 

.'. 

) 
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were executed with 6z* ~ 10-7 . Following that, the automati~ 

step selector discussed in Chapter IV was used with IDEAL = 25; 

in the actual computations, this resulted in about 34 steps 

from the inlet to a position where fully-developed flow 

and heat transfer conditions were attained. 

At each axial step, for the first 15-20 steps, the 
\ 

it\\rations 

ter\nated 

of U,\ v, w 

across~he 

in the SIMPLER-type solution procedure were 

when the maximum relative changes in the values 
\' 

and (dp/dz), at four selected nodes distributed 

-5 çuct cross-section, were aIl less than 10 • 

After the first 15-20 steps, this convergence criterion 

was applied only to the relative changes in the values of 

wand (dp/dz); this was because the values of the cross-

sectional velocities, u and v, approach zero in the vicinity 

of the fully-developed region. 

The Prandtl number is a parameter in this problem. 

In aIl computations, this parameter was maintained at a 

constant value: Pr = 0.72. 

Fluid Flow Results 

The variation of the mean pressure with axial distance 

is shown in Fig. 5.22. In the vic~inity of the duct inlet', 

the-axial pressure gradient is very high. This high pressure 

gradient is required to overcome the high wall shear stresses 

caused by the very steep velocity gradients at the wall, 

close to the inlet plane. As the flow proceeds downstream, 

1-------- ----~ 
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the pressure gradient approaches a constant fully-developed 

value. The results of this study are in excellent agreement 

with the measurements made by Beavers et al. 144], as seen 

in Fig. 5.22. 

In Fig. 5.23, the predicted variation of the center-

line axial velocity with axial distance, and the corresponding 

experimental results of Goldstein and Kreid [42] are 

presented. In the entrance region, continuity requirements 

cause a rapid increase in the axial velocity of the fluid 

at the duct centerline in'response to the sudden deceleration 

of the fluid néar the duct walls. At larger z*, the 

centerline axial velocity asymptotes to a constant fully-

developed value. Once again, the agreement between the 

calculated and experimental results is very good. 

Figure 5.24 shows the development of the axial 

velocity profile along a syrnrnetry line and along a diagonal. 

Aiso superimposed on these graphs are the measurernents of 

Goldstein and Kreid [42]. The satisfactory agreerne~'t. between 

these results establishes the validity of the proposed 

CVFEM and the accuracy of the present computations. 

The cross-sectional flow field at various axial 

locations is displayed in Fig. 5.25. It can be seen that 

the cross-stream flow is quite significant initially, but 

it dies out rather quickly as the main flow proceeds down-

stream. Additional evidence of the consistency of th~QPosed 

CVFEM is provided by the observed symmetry in the distribZ:ion 

of the cross-sectienal velocities with respect te the dia~nal. 
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Heat Transfer Results: Ci) Boundary Condition 

The Nussel t numbers, NU z 1 ® and NUm, ®' as functions 

of axial distance z* are displayed in Fig. 5.26. The 

relatively high starting values are due to the very steep 
, 

gradients of the in let temperature profile at thé walls . 
. 

For comparison purposes, the solution of NUm, @ computed 

by Montgomery and Wilbulwas [45] and those of Chandrupatla 

and Sastri [46] are also included in Fig. 5.26. Montgomery 

and Wibulwas [45] neglected the cross-stream velocities in 

their analysisi therefore, their mean Nusselt numbers are 

significantly lower than the present values, especially 

near the entrance. Excellent agreement is found between the 

present results and those of Chandrupatla and Sastri [46] 
, 

who took full account of the cross-stream flow. 

The temperature contours given in Fig. 5.27 illustrate 
41' 

the development of the thermal problem. In this figure, 

Contour no. 1 represents the edge,of the thermal boundary 

layer, or the location where T = 1.01 Ti' It is seen that 

the thermal boundary layers on the duct walls merge rnuch 

before the flow becomes thermally fully-developedi as was 

stated earlier, the thermally fully-developed region is 

characterized by a constant value of NUz , @ . 

Heat Transfer Resuits: @ Boundary Condition 

1 
The variation of local and mean Nusselt numbers, 

NU
Z

, ® and N~, ® 1 with.. axial distance z* is shown in 

---'--,~._----------------- ------~~-__r-------
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Fig. 5.28. No published resu1ts pertaining to this case 

could be found in the li terature, so t'he predicted values of 

Nusselt numbers presented in Fig. 5.28 may be regarded as 

new results. Based on the demonstrated accuracy attained 

in the previous subsections, the results in Fig. 5.28 may 

also be considered as reliable data. 

Other thermal results for this problem displayed 

~'-',---, ~ trehds similar' to those of the corresponding results discussed 
....... --.- .... ' 

\ 

in the last sub~eètion in the context of the @ boundary 

. condition. 

5.4 CLOSING REMARKS 

In this Chapter, the proposed numerical rnethod has 

been applied to a nurnber of two- and three-dimensional test 

problems, and the computed results have been compared with 

published datai Agreement is, in general, very satisfactory. 

This establishes the validity and accuracy of the proposed 

numerical method, and its computer irnplementation, and 

warrants its use in the investigation of new problerns for 
" 

which no published results are available. One such problem, 

inyolving steady, longitudinal, larninar flow and heat transfer 

in an infinite rod-bundle, is investigated in the next 

Chapter. 

i 
i 

1 
l 
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CHAPTER VI 

APPLICATION OF THE METHOD TO LONGITUDINAL, LAMINAR, FL W 

AND HEAT TRANSFER IN ROD-BUNDLE GEOMETRIES 

• 
Longitudinal, laminar fluid flow and heat transfer' 

in the interstices of an inf~nite array of rods arranged in 

an equilateral triangular pattern are investigated in this 

Chapter. A schematic illustration of this problern is given 

in Fig. 6.1. Attention is limited to the flow of an 

incompressible, constant property, Newtonian fluid and two 

thermal boundary conditions: (a) prescribed constant 
" 

ternperature of the rods @ 1 and (b) prescribed uniform heat 

flux on the surface of the rods ®. These boundary 
-

conditions represept extrerne or bounding cases of those 
,-

encountered in practical problems [7,30]. Hydrodynamically 

and thermally fully-developed and developing conditions 

are studied in this Chapter. In the developing flow and 

heat transfer problems, uniform distributions of axial 

velocity and ternperature are assurned at th€ inlet cross-

S€otion. 

The discussion in this Chapter is divided into 

four main parts: (i) considerations regarding the 

calculation domain, computational grids and problem parameters; 

(ii) investigation of hydrodynamically and thermally fully­

developed conditions~ (iii) study of hydrodynarnically 

fully-developed but thermally developing cases; and (iv) 

1------- -----~ . .."..-----------------~ 
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investigation of simultaneously developing fluid flow and 

heat transfer. Most of the details pertaining to the 

( mathema tical formulation of the se problem,s have already 

been presented in Chapters II and V; therefore" to avoid 

\ 

repetition, appropriate sections an~ equations in these 

earlier,Chapters will be referenced, whenever necessary. 

AlI aspects of the formulation and solution methodology 

which have not already been discussed in earlier chapters 

will be discussed in detail in this Chapter. 

Longitudinal, larninar fluid flow and heat transfer 

in rod-bundle geometries is encountered in nuclear power-

generation equipment and in shell-and-tube heat exchange:s. 

Despite its practical importance, however, there are not 

tao many papers on this topic in the published literature 

[7,47]. Sorne analytical and numerical results for the 

hydrodynamically and thermally fully-developed situations 

are available [7] and will be used to check the results of 

this investigation. However, ta the best knowledge of the 

author, there has been no in-depth investigation of the 

hydrodynamically and therrnally developing situat'ions. Thus, 

many of tffe results presented in this Ch~ter are new.and 

they augment the collection of heat transfer data in the 

li tera ture .. 

AlI computations in this investigation were done on 

an AMDAHL V7 computer using an IBM FORTRAN-H extended compiler. 

.. 

---"-:-. -----------------~ ._--~-~~--------~ 
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) . 
6.1 CONSIDERATIONS PERTAINING TC THE CALC~TION DOMAIN, 

COMPUTATIONAL GRID AND PRCBLEM PARAMETERS 

Figure 6.2(a) shows a cross-sectional view of an 

array of rods a~ranged in an equilateral triangular pattern; 
" <P 

the primary flow is in the direction normal to the plane of 

the paper. The diameters of the rods is d and the centre~ 
, 

to-centre spacing between any two neighbouring rods is, 

denoted by s. Due to the symmebry of the Infinite rOd,-array 

configuration, conside~ation need be given to only a --, 

representative subdomain, sueh as the shaded region in Fig. 
f 

1 -6.2(ai. Once the solution is obtained in such a calculation 
,~ 

domain, the solution in the rest of the problem geometry 

ean be obtained by an appropriate repetition of the basic 
. 

solution. An enlarged view of the ealculation domain used 

in this study is shown in Fig. 6.2(b), along with the 
(I~ 

appropriate boundary!eonditions. On the syrnrnetry surfaces, 

the normal derivatives of the dependent variables are equal 

to zero. 

In the selection of a suitable discretization of the 

calculation domain shown in Fig. 6.2(b), use is made of 

the experienee gained in the computationstperformed for the 

square dU?t geometry diseussed in the last Chapter. It was 

shown there that for a given number of grid points, ~t is 

eomputationally efficiént to concentrate more grid points 

,in the region near the wall than in the central part of the 

flow passage; this allows an adequate handling, at a reasonable 

" 

1 
~ 
l 

i 

I-------------=--.. '----------~~---------------------------------- ~--~~-------------------------~-



," 

( 

, t 

computing cost, of the high gradients of the dependent 

variables in the wall regions. In this study, therefore, a 

non-uniform subelement grid of (LI x Ml) nodes if employed 

to discretize the calculation domaine The (x,y) coordinates 

of a typical grid point (I,J) are determined ai follows: 

~" 

<' 

·~rt~ces of Macroelements 

\ 
l = l, 3, 5 ... , LI 

= l, 3, 5 ... , Ml 
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1 (6.1) 

where 

and' 

X(I,J) = R (1 ,J) * COS (e (J) ) 

y (1 ,J) = R(I,J) * SIN (e (J) ) 

9(J)' == (J,-l) ~ (rr/6)/(Ml-l) 
\ 

J 

R(I,J) = 

'-. Mid-Side Nodes of Macroelements 

l = 2, 4, 6 

J = 2, 4, 6 

. . . , 

... , 
(Ll-l) 

(MI-l) 

X(I,J) = 0.5* (X(I+l,J)+X(I-l,J» 

Y(I,J) == 0.5 * (Y(I,J+l) + Y(I,J-l» 

(6'.2) 

1 

• 

• 

~ 
I----____ ~ ___ =~·q=a" ____ "~ __ ----------________________ --__ ~I~··,-------------------------------~ 



( 

---

( 

, , 

• 
a 

where POWER is a user-specified constant for determining 

the, grid line distribution. In aIl cases, the grid lines 

are uniformly spaced in the 8-direction. Aval ue of POWER 

equal to un~ yields a uniform distribution of grid points 

along each ra~iallY oriented grid line; for values of POWER 

greater than l, more grid points are employed near the 

surface of the rod than in the central region of the 

interstices. A typical discretization at the subelement 

level, using LI = Ml = Il and POWER = 1.4, for a calcula tion 

domain with a pitch-to-diarneter ra·ldo (s/d) = 1.5 is shawn 
. 

in Fig. 6.3 i the approximation of the curved rod-boundary 

by a piecewise-linear grid line is clearly"evident in this 

figure. 

The geometry of the flow passage in this problem 

~ is characterized by the pi tch-to-diameter ratio (s/d),. 

Anothef non-dimensional parameter, which is encountered 

150 

in simultaneously developing flow and heat transfer situations 

is the Prandtl number (Pr = llC /k), The present investigation 
p 

, 
) is limited to twelve different values of (s/d) in the range 

1.05 to 2.0; this range of (s/d) values is relevant to the 

" 
design of nuclear reactor cores. In the analysis of 

simultaneously developing flow and heat transfer, attention 

is focused on two values of Prandtl nurnbers: Pr = 0.72 and 3, 

which are representative of air and water, respectively. 

In addition, lirniting cases in which the Prandtl number 

approaches zero and infinity are aiso investigated. 

"'" f=q. OIS L .. .. 
,. 
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6.2' FULLY-DEVELOPED FLUID FLOW AND HEAT TRANSFER 

Longitudinal, fully-developed, laminar flow and 

heat transfer is studied in this section. As was stated 

earlier, this problem has been the subj ect of previous 

investigations [7] i the resul ts cornpiled by Shah and London 

[7] will be used here for cornparison-purposes. 

Analysis 

The applicable governing' equations are the axial 

momenturn equation, Eq. (2.28), and the modified forms of 
" 

the energy equation, Eqs. (2.55) and (2.70) 1 for the G) 
and ® heat trans fer problems 1 respecti vely. The nurnerical 

procedure for the solution of these equations has already 

been described at length in Section 5.3.1 in connection 

with the analysis of the hydrodynamically and thermally 

fully-developed flow in a square duct. The solution to the 

flow field is obtained in terrns of a non-dimensional axial 

v~locity Wi tI:e ® heat transfer problem is formulated and 

solved to obtain a non-dimensional temperature 0; and the 

solution to the ® heat transfer problem is obtained in 

terms of a non-dirnensional ternperature x; these non-

dimensional variables are defined in Eqs. (2.27) 1 (2.55) 

and (2.69),. The boundary conditions are the following: 

on the surface of the rod in Fig. 6.2 (b), W = 0, e = 0 and 

(aX/an) = li on other boundaries, aIl of which are symmetry 

sur,faces 1 the normal derivatives of W, e and X are zero. 

- , 1 
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The flow field w~s solved first, and the normalized afial 

velocity (W/W) was stored on external disk devices to serve 

as an input to the heat transfer problems. Auxiliary 

computations were done to obtain overall results such as 

the friction factor - Reynolds number product, f.Re, and 

the averag,e Nusselt rumbers, NU@ and NU®. 

Computational Details 

The final computations were performed with a macro-

e-lement grid of 6x6 nodes, which corresponds to a subelement 

grid of llxll nodes; the distribution of grid points was 

based on the relations given in Eqs. (6.1) and (6.2), Q 

wi th POWER = 1. 4. This grid was chosen based on the 
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experience gained in the analysis of the square duct geometry 

and i ts adequacy was established by doing sample computations 

with finer gtids and different values of POWER. The 

calcuJ:ations were carried out for values of pi tch-to-

diameter ratio of 1.05, 1. 07, and ,LI to 2 in steps of 0.1 

The ® heat transœr problem requires the solution 

to aR eigenvalue problem posed by Eq. (2.55). The iterative 

procedure descr ibed in Section 5. 3.1 was used to solve this 

problem. The i terations in this procedure were terminated 

when the change in t,he eigenvalue À between successive 

iterations was less than 0.001%. 

For each value of (s/d) , the typical ,computer tirne 

requ'Îred to obtain the W, 0 and X fields and do aIl necess~ry 
\ 

, ' 

1 

j 
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1 
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auxiliary computations was about 30 execute units t . 

Fluid Flow Results 

The friction factor - Reynolds number product, f.Re, 

as a function of (s/d) is given in Fig. 6.4. The sol id 

line represents the re~ults of this analysis and the dashed 

line denotes the analytical results reparted in [7]. It 

can be seen that agreement between these r~sults is·very 

good threughaut the range of (s/d) investigated. The f. Re 

product increases monotanically with the pitch-to-diameter 

ratio. This variation of f.Re with (s/d) refle~ts the . 
simultaneous influences of the pressure gradient and the 

magnitude of the hydraulic diameter: 
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f.Re = 
(-dp/dz)D

H 

~pw2 
(6.3) 

For a fixed mass flow rate and constant rod diameter, as 

the intercylinder spacing increases, the axia1 a pressure 

gradient decreases but the hydraulic diameter increases. 

These opposing tendencies lead te the trend displayed in 

Fig. 6.4. For large values of (s/d) , f.Re tends to ~pfinity 

because DH tends ta infinity. 

The,effects of the number and distribution of grid 

points on the f.Re product for different pitch-to-diameter 

f One execute unit on an AMDAHL V7 is the machine ti~e required 
to perfo.;-m one million operations. 
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ratios are summarized in Table 6.1. For POWER = 1.4, 

successive refinernents of the grid size drive the f.Re factor 

closer to the ana1ytica1 value reported in [7]. This trend 

is observed for the three spacing ratios presented in Table 

6.1, and it is in accord with expectations. The effect of 

varying the value of POWER is illustrated in Table 6.1 for 

s/d = 1.05 and a. subelernent grid of llxll nodes. It appears 

there that a uniforrn grid (POWER = 1) yields the rnost 

accurate solution if the analytical value of [7] is taken as 

a reference. It is te be noted, however, that in the fully-

developed regirne, the velocity gradients at the rod surface 

are not as steep as thos~ encountered in the developing 

region, especially in the vicinity of the inlet. As was 

discussed in Chapter V, the fully-deve1oped results serve as 

reference values in the automatic axial step size selection 

algorithrn used in the analysis of the developing region. It 

is, therefore, desirable to devise an optimum grid that 

provides adequate accuracy of the results in the fully-

deve10ped and in the developing flow regimes. with this 

consideration in mind, 'the value of POWER = 1.4 was retained 

for determining the distribution of grid lines in aIl 

subsequent" comput ations. 

Heat Transfer Results 

The average Nusselt nurnbers, Nu ® and NU®, are 

presented in Fig. 6.5 as functions of the pitch-to-diameter 

, 

----0 ----~-- -.....;;;.{:------------------<------------------.'-
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ratio (s/d). Both NU@ and Nu ® increase with increasing 

intercylinder spacingi this is a consequence of the 

dependence of the Nusselt numbers on the hydraulic diameter. 
f 

For (s/d) ~ 1.17, it can be seen that the average Nusselt 

number for the ® boundary condition is consistently higher 

th an that for the ® boundary ,condition. This trend can be 

explained on physical grounds as follows: for large (s/d) 

and the ® boundary ~ondition, the rod surface temperature 

distribution along its periphery is not influenced much by 
\ 
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the presence of neighbouring rods and it tends to be uniforme 

Thus, for large values of (s/d), the QD boundary condition 

approaches a condition of constant axial wall heat flux 

and uniform peripheral wall temperaturei it can be shown, 

Shah and London [7], that the Nusselt number under such 

condi tions is always higher than that for the (!) boundary 

condition. For small (s/d) values, however, the rod surface 

temperature varies markedly along its periphery. The highest 

~- t 
value of Tw occurs at the points where the lines joining 

the centers of adjacent cylinders intersect the rod surface. 

These "hot spots" increase the value of the surface-averaged 

temperature Tw which, ,in turn, decreases NU®. Thus, 

for s/d ~ 1.17, the peripheral temperature distribution on 

the rod surface is highly non-uniform and NU® is smaller 

than NUG),' 

In..:ig. 6. S, the values of NU® tabulated in [7] 

are plotted as a dashed line. As is evident, they match the 

t This discussion is based on the viewpQint that the cylinder 
-surface 15 hotter than the fluide 
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present resul ts extremely weIl. No published results for 

NU® are available in the literature; therefore, the cornputed 

values reported here rnay be considered as new results. 

The effects of the number and distribution of grid 

points on the values of .,NU ® and. Nu ®' for three values 

of (s/d), are shown in Table 6.1. On the basis of these 

results, it was concluded that a subelernent grid of llxll 

no~es v:;/th POWER = 1.4 yields adequate accuracy while not 

dem~d~ng an excessive amount of computer time. 

6.3 HYDRODYNAMICALLY FULLY-DEVELOPED AND THERMALLY 

DEVELOPING FLOW 

, Attention in this section is focused on laminar 

flow which is hydrodynamically fully-developed and thermally 

developing. This situation ïs typically encounter74 in 
• - 1 

pr.oblerns invol ving f luids with very large Prandtl numbers 

(Pr ~ co). The velocity distribution remains invariant 

throughout the calculation domain; the fUlly-developed flow 

sol ution discussed in the last section is used as an input 

to this problem. The ternperature distribution is assurned to 

be uniforrn in the inlet cross-section of the calculation 

~main, 

bu9dle . 

and i t deve lops as the f low proceeds down the rod 

Analysis 

A detailed mathematical formulation of this problem 

, 
! 

l' 
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has already been presented in Chapter II. Therefore, only 

the applicable gckerning- equations and boundary conditions 

are stated in this subsection. The development of the 
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temperature field is governed by the energy equation, Eg. (2.34). 

Tl)e corresponding boundary condition"s, with reference to 

the calculation domain shown in Fig. 6,.2 (bl, are the following: 

on the surface of the rod, T =lfw = constant in the ® 
problem, and (-k~) = qw = constant in the ® problemi on 

aIl other boundaries of the calculation doma.in, which are 

symmetry surfaces, the normal derivati ves of T are zero. 

At the inlet cross-section of the calculation domain, the 

temperature distribution is taken as uniform. 

The numerical procedure employed to solve the present 

problem is, analogous to that described in Section 5.3.2 for 
ri 
'/'-

the square duct( geometry, 50 it is not repeated in this 

section. Furthermore, the discussion in Section 5.3.2 
\ 

regarding the Itreatment of the initial condition also applies 

to this problem. 

Computation Details 

The fina'1"'computations were conduçted wi th a sub-

element grid of llxll nodesi Eqs. (6.1) and (6.2) with 

POWER = 1.4 were used to ob tain the desired distribution 

of the grid points. For the first three 'marching steps, a 

step size 6.z' 'V 10-7 was used so as to accommodate the large 

gradients o~ the dependent variables encountered in the 
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vicinity of the inlet cross-section. Th~ step sizes at 

subsequent axial stations were determined using the autematic 

step size selection algorithm discussed in Section 4.1.1; 

the value of IDEAL was set equal ta 25. In the actual 

computations, about 50 axial steps were required te attain 

fully-developed candi tians. Additional runs with a sub-

element grid of 19x19 nades, POWER = 1.4 and IDEAL = 50 steps 

were made ta check the valicÙty and accuracy of the results 

obt.ained with the aforementianed basic grid. In Gl.ll :j:'uns, 
;;~~ 4' • 

the· velocity distributions needed for the thermal solutions 

were abtained from the fully-developed flow analysis 

~~esented previously. 

For each af the final runs, the computer times 

needed for a complete solution of the thermal ehtrance region 

averaged around 100 execute units. 

Results: G2 Boundary Condi tion 

Local Nusselt nwnber, NU z , @' results for (s/d) = 

1.05 and 2, and for two different grid and step size 

combinations, are shown in Fig. 6.6. In the vicini ty of 

the inlet cross-section, the discrepancy between the results 

obtained with,the two different grids is large; this reflects 

the inability of the nurnerical method, with its finite nUItll::1er 

and spacing of grid points, to adequately handle the 

singularity in tempe;rature distribution at the inlet, as 
(,1 

was discussed in Chapter V. However, it can be seen that 

1 , 
, 

I----___________ .-______ --~------------------~---------------------------------------------------



( 

( 

159 
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the differences in the resu1ts of the two grids decay quite 

rapid1y and they can be regarded as negligible for z' > 10- 4 . 

Thus, the Nusselt number resu1ts obtained with the 11xll 

sube1ement grid with POWER = 1. 4 and IDEAL = 25 may be 

considered as grid-independent for z' > 10-4. 

The local Nusse1 t nurnber, NUz , ®' is defined by 

Eq. (2.41): 

(2.41) 

where qz, is the average rod surface heat flux and Tb is the 

fluid bulk temperature. In the vicinity of, the duct inlet, 

q is relatively high, but it decreases rapidly with axial z 

distance; the fluid bulk temperature increases with axial 

distance, sa (T
w 

-Tb) decreases. The heat transfer coefficient 

h, which is the ratio qZ/(TW-Tb ), decreases in the developing 

region and asymptotes to a constant value in the fully-
~ 

developed region. This behaviour is evident in the NUz,~ 

vs z' curves presented in Fig. 6.6. 

Also of interest in Fig. 6.6 is the difference in 

trends 'displayed by the axial variation of NU z , <!) for 

small and large spacing ratios. For (s/d) = 1.05, the NUz,GD 

vs z' curve experiences a change in its rate of,decrease 

around z' = 10-3 , before asymptoting to the fully-developed 

value. On the other hand, this behaviour is not observed 

for (s/d) = 2. This difference in trends is caused by the 

" 

J 
i 

1 , 

i , , 

I _____________ ~~ ______ ---~L----------------------------------- ________________________________ '.' __ 
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disparity in the fully-developed velocity distributions for 

small and large spacing ratios, and the corresponding 

differences in the variations of qz and (Tw -Tb) with axial 

distance. The fully-developed velocity profile is non-uniform ;10 

across the cross-section of the calculation' domain, and 

this non-uniformity is more pronounced for (s/d) = 1.05 than 

for s/d = 2.0. With reference to the calculation domain 

shown in Fig. 6.2 and i-E~ discreti~ation presented in Fig. 

6.3, the fluid ve-locity is zero on the rod surface and maximum 

at the grid point (1 = LI, J = cMI); furthermore, as the fluid 

seeks the path of least re'sistance, its velocity in the 

vicinity of e = 0 is lower than that adjacent to e = n/6. 

The fluid ,bulk temperature rises steeply very close to the 

inlet, because of the high values of qz and the rapid heating 

of the fluid adjacent to e = O. However, once the low 

velocity fluid around e = 0 heats uJ? ta temperaturès close 

to T , the rate of rise of Tb decreases because the high w ' 

veloci ty fluid around e = n/6 heats up rela tively slowly. 
ç~ 

This change in the rate of rise of Tb with axial distance 

j.s stronger for (s/d) = 1.05 than for (s/d) = 2. O. The 

corresponding effect on the rate of decrease of qz with axial 

distance is not as pronounced because qz is an -area-averaged 

quantity, whereas Tb is a flow rate averaged quantity. 

These differences in the axial variations of qz and Tb for 

(s/d) = 1.05 and (s/d) = 2.0 are reflected in the correspond- j 
ing NUz • ® vs z' curves in Fig. 6.6. .q" 

Figure 6.7 shows the variation of the local Nusselt 
----------------------------------

• 

1 

\ 

~ 
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number NUz , ® with axial distance z' for twelve different 

pitch-to-diameter ratios in the range 1.05 < (s/d) ~ 2. O. 
" 

The aforementioned difference in trends displayed by the 
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a~ial var i.ô:tion of NUz , ® for large and small spacing ratios 

is also evident in Fig. 6. 7, although not as clearly as in 

Fig. 6.6. To the best knowledge of the author, these are 

new resul ts. 

Results: @ Boundary Condition 

Figure 6.8 illustrates how the local Nusselt number, 

NUz , ®' varies with axial distance for (s/d) = 1. 05 and 

2:0; the resul ts obtained with two different grids are 

presented. These results show tHat for z' > 10- 4 , the 

results obtained with the basic grid (llxll subelement 

vertices and IDEAL = 25) are essentially g,rid independent. 

At smaller z l"~ there are relatively large discrepancies 

between the results of the two grids usedi this is. because 

the thermal boundary layer thickness is very smal! for 

-4 z' . < la , and a very fine grid in the vicinity of the rod 

surfaçe is required' for accurate computations, as was 

discussed in Section 5.3.2 . 
.. 

The Nusselt number curve for (s/d) = 1.05 in Fig. 6.8 

portrays a behaviour qu~te different from that for (s/d) = 2.0. 

As in the ® problern, this difference is caused by the 

disparity in tl1e velocity distributions across the cross­

section for different intercylinder spacings and the 

II 
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consequent differences in the axial variations of Tb.' In 

the present case, the local Nusselt number is defined by 

Eq. (2.65) 
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) 

~ qwDH 
(2.65) 

(Tw -Tb) k 

where q is the Spef=:ifJed constant heat flux at the rod w 

the ave4age surface, Tw is rod wall temperature and Tb is 
C'> 

the fluid bulk tempera ture in the cross-section of intere st. 

The temperature difference (Tw-T
b

) rises in 'f-the developing 

region and eyentually asymptotes to a constant value in 

~ the fully-developed region .'For small spacing ratios, (s/d) 

'" 1. 05, the highly non-uniforrn velocity distribution in the 

" calculation domain could lead to ,significant differences in 

the axial variations of Tw and Tb in the developing region. 

These differences, in turn, lead to the change in the rate 

of decrease of the NU z 1 ® vs Z 1 curve for (s/d) = 1.05 in 

Fig. 6.8. The detailed exp1anation is very similar to that 

advanced in the last subsection for the ® problem, 50 it 

is not repeated here. 

NU z , ® vs Z 1 curves for twelve different (s/d) 

ratios in the range 1. 05 ~ (s/d) < 2.0 are presented in 

Fig. 6.9. Similar results are not avai1able in the published, 

literature, so the results of this investigation may be 

considered to be new. 

1 
1 , 

, , 

1 

1 
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6.4 SIMULTANEOUSLY DEVELOPING ,FLUID FLOW AND HEAT TRANSFER 

Attention is now turned to the situation in which .. 
both velocity and temperature profiles are uniform at the 

entrance and develop sirnultaneously. There are only a few - , 

papers in the li terature which dea l with simul taneously 

developing laminar flow and heat transfer in infini te rod-
l' ~ 

bundle geometries. The only warks knawn ta the autho~ are 

those of Del Giudice et al. [24-26] who solved the hydro-

dynamic and thermal en try prablems using a linearized , 

l'procedure akin ta that proposed by Sparrowet al. [8,9]. 

pel Giudice et a l. have repo~ted resuits for spacing ratios 

(s/d) = 1. 5 and 2, and Pr = 1. A~ the Pr = l case. is not 

treated here, on1y the hyd:ijodynamic resu1ts of [24] will be 
-~ 

used for comparison purpases in this study. 

Analysis 

Details a f the eguations which govern this problem 

have already been presenteÇl in Chapter II: the )fluia. flow.: 

problern is governed by the continuity equation, Eg. (2.8), 

- . 
and the momentum eguations, Eqs. (2.9)-(2.11); and the 

" ~ 

te~perature is governed by the energy equation, Eg. (2.34). 

~ 
As noted before, the momentum equation~ are non"'Unear an~ 

c9upled to each othuer and the continuity equationi the energy 
, . . 

equation i5 linear, put it requires the solutiqn to the flow 
... 

problern as an input. 
, , 

With regard to bound~ry conditions, reference -is 

o 

, 
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, made to the enlarged view of the sub-channel of interest 
. r 

pictured in Fig. 6.2(b). As shown there, fOr'fluid fl.ow, 

the no-slip condition prevails over the impermeable rod surface: 

'U = v = w = O. Over the other surfaces of the calculation 
, 

. domain, all of which are symmetry surfaces, the following 
---" ". 

\ 
conditions apply: the velocity component normal to the·, 

surface is zero and the normal derivatives of the tangen~ial. 

velocity components are zero. Using th~ coordinat~ syste~s 

shown in Fig. 6.2 (b), these! conditions can be exprfssed 

" as foll.ows: at y = 0, (âujay) = 0, v = ~ and (àw/ay) = 0; 

at x = s/2, u = 0, (av/àx) = D, (aw/ax) = Di at e ::: 30°, 

v n = 0, (av t/.an) = 0 and (âw/ an) = 0, where n and t denote 

the norI(lal and tangential directions to the face at 0' = 30~, 

~espectively. The thermal boundary conditions, on the other 

hand, can be written as .follows: on the wall surface, 

T = Tw = constant for the @ condition, and (-k aT/ôr) = qw = 

constant fOr the ® condition i on t~e symmetry s~rfaç:es '. 

the normal derivative of the temperature (aT/an) = O. 

Adaptation of the Proposed Solution Method 

In Section 5.3.2, the use of the proposed rnethod for 

the solution of simultaneously developing velocity and 

\:empera'ture fields was described in' the context of fluid 

flow and heat transfer in a duct of square cross-section. 

AlI the details presented there are applicable ta the present 

problem too, aiid~~ they are not repeated here. There i5, 

, , 

) 

( 

\ J 
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however, one specific aspect of the rod-bundle problem which 
\ 

deserves special mention. It relates to the imposition of 
\ 

appropriate boundary conditions on the cross-sectiona1 
• 

velocity components at the inc1ined symmetry surface a = 
.,; 

These conditions are: 
"\ 

dVt d --= m(u cos 30° + v sin 30°) = 0 ân 

. 
v n = - u sin 30° + v cos 30° =. 0 

Thus; i t can be seen 

indirectly specified 

that the boundary condition for U!iS 
through v, and vice-versa. This 

in4irect specif iCéftion is corn~utationallY inconvenient 

b,ecause the momentum equations for u and v are sol ved 

30°. 

(6.4a) 

(6.4b) 

sequentially in the overàll iterative solution procedure used 

in the proposed method. Hence t explici t boundary èonditions 

for u and v on the inclined sYkmetry boundary are required. 

Explicit boundary conditions on u and v at e = 30° 

can be obtél.ined by rewriting Eqs. (6.4a) and (6.4b) as 

follows: 

âu 
a~ = 0 

v = u tan 30° 

In each iteration of the overall solution procedure, Eq. 

(6. Sa) 

(6. Sb) 

(6.5a) 

1------'-" ---
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and the boundary condi tiens at the remaining faces of the 

" ca.lculation domain allow a unique and computationally 

convenient solution of the u-field. Once this is do ne , 
::. 

Eq._-(6.Sb) can be used to obtain an explicit boundary 
-;-

cë>Ildi tion for v. The iterations in the overall solution 

procedure are continued till convergence. Since Eqs. (6. Sa) 

anq (6.Sb) are equivalent to Eqs. (6.4a) and (6.4b), the 

resulting cross-sectional velocities satisfy both Eqs. (6.4) 

and (6.5). 

It is ta be noted that in the implementation of the 

( boundary conditions given by Eqs. (6. Sa) and (6. Sb), special 

care must be exercised in the calculation ef the pseudo­

velocity v at the inclined synunetry boundary. Equation 

(6. Sb) implies that 

166 - ' 

= {û.f + (1: À ~ p. ) la ~} tan 30 0 

J.. j ) J ) 
(6.6) 

Therefore, 

and 

V. 
1. 

'" = u. tan 30° 
1. 

= v. + I: (À ';l tan 30 0
) P . 1 a ~ 

1. j J J 1. 

For anode i located on the inclined s~etry boundary, 

Eqs. (6.7) and (6.8) replace Eqs. (3.44) and (3.47), 

(6.7) 

(6.8) 

respectively. AlI other details of the proposed calculation 

1---_-._-~1 __________________ ~~ _ ___. ___ _ 
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proqedure are as described in Chapter III. 

Cornputational Details 

The results presented in Chapter V and in the 

previous sections of this Chapter have sha~ that the basic 

grid employed so far, a subelement grid of llxll nodes with 

POWER = 1.4 and IDEAL = 25 steps, yields adequate accuracy, 
J ~ 
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except in the regiOn very close to the entrance; where st,arting 

errors dominate. This basic grid was also used in the 

investigation of this problem. At each axial step after the 

first three, the step size for marching ahead was deterrnined 

by the automatic step-size algorithm discussed in Section 

4.2.1; a specified desired change in the maximum axial 

velocity ~w was used to deterrnine jthe appropriate values max 

of ~z. A constant value of ~z* = 10-6 was used for the 

first three steps. 

Flow and heat transfer resules were obtained with 

the basic grid for the following pitcp-to-diarneter ratios: 

(s/d) = 1.05,1.07,1.1,1.2,1.3,1.4,1.5 and 2. Two 

values of Prandtl nurnbers were used in the computations: 

Pr = 0.72 and 3, which are representative of air and water, 

respectively. Additional computations with different 

grids and step sizes were also done for (s/d) = 1.05 and 1.5 

in order to check the accuracy of the basic grid computations. 

Since the equations governing the flow field-are 

non-linear and coup1ed, it was necessary ta use under-

-" ..... 

J 
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relaxation in the computations for u, v, w and p. For the 

first three axial steps, the following under-relaxation 

parameters were used: a = a = 0.5, a = 0.8, a = 0~8. u v w p 
-

Following that, they were changed to a = a = 0.8 a = a = 1. uv' w P 

At each axial step, the iterative solution procedure 

for calculating the flow field was stopped when the maximum 

"of the relative changes in u, v, w and dp/dz between 

consecutive iterations was 1ess tnan 0.001%; the ch?nges in 
1 

u, v and w were calculated at four selected nodes in the 

calculation domaine The changes in u and v were! not included 
j 

in this convergence criterion in the vicinity of the fully-

developed region where these cross-sectional velocity 

components approach zero. ,., 

Typically, about 50 axial steps and 2000 execute 
• 

o 

uni ts of computing time on an AMDAHL V7 wer..e n,èeded to obtain 
/ 
/ . ' the complete hydrodynamic and thermal solut~ons for each 

spacing ratio considered. 

! 
1 

/ / 

Fluid FloJ Results 

The presentation and discussion of results in this 

subsection is done in three parts. The first part is devoted 

to the effects of grid and step size details on the results. 

In the second part, attention is turned to the comparison 

of the present solutions with those reported by Del Giudice 

et aZ. [24]. The third part i~ concerned with the 

presentation and discussion of detailed solutions for the 

various pitch-to-diameter ratios investigated. 
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/ 
Since no bench-ma;rk entry-flow solutions exist for 

1 

the rod-bundle geometry,! special care was taken to ensure 

that the final results of this investigation, obtained with 
\ 

169 

, "--
a s/Gbelement grid of llxll noèles, POWER = 1.4 and IDEAL = 25, 

1 
are, for aIl practical purposes, grid independent. This 

was achieved by doing additional computations with fine 

grids and small step sizes and comparing the results with 

those of the basic grid. Unfortunately, as noted earlier, 

the computational effort involved in the calculation' of the 

developing flow is relatively high. Therefore, the extent 

to whichigrid and step size effects were explored was 

limited by the avai1able resources. As a result, the grid 
! 1 

vJrification.' computations were only do ne for two. represent-
1 

a,~ive spacing ratios: (s/d) = 1. 05 and 1. 5. Furthermore, 

the calculations were carried out only in the initial part 

of the developing regioni it is to be noted that .the 

solutions near the entrance are a more stringent test of the 

accuracy and grid independence of the resul ts than those in 

the remainder of the calculation ~omain. The effects of 

changing the axial step sizes were studied by varying the 

value of IDEAL, which determines the minimum, number of steps 

required for attaining fully-developed conditions. In 

addition, the effects of tying the automatic step size 

selection to a specified change in the Nusselt nurnber 

(6NU
Z

, ®) between successive axial step.s, rather than the 

corresponding change in maximum axial velocity t.wrnax ' were 

also studied. 

-- • - ----__________ ....1.1.... ______ - __ ~~ _________ _ 
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Figures 6.10 and 6.11 show the resu1ts of the 

aforementioned grid checks for (s/d) = 1.05 and 1.5, 

respective1y, in the form of the axial variatdon of the 

maximum velocity, (w/w) i with reference to the grid shown - max 

in Fig. 6.3, the maximum velocity occurs at the point 
, 

(:r = LI, J = Ml) • As is evident from Figs., 6.10 and 6.11, 
! 
1 

the (w/w) resu1ts obtained with the basic grid are, for max 

aIl practical purposes, grid independent. The corresponding 

axial distributions of the mean pressure are not presented 

here, but they support this conclusion. It is to be noted 

that the grid check results in Figs. 6.10 and 6.11 apply 

only to a relati vely small range of z*, but an indication 

on hpw weIl the basic grid performs at highe;c z* can be 

readily obtained from an inspection of the fully-deve1oped 

results presented'in Table 6.1.\ ,'Thus, it may be, conc1uded 

that sufficiently accurate, grid independent results can be 

obtained with the basic grid over the en tire developing 

flow regime. 

The focus of the discussion is now directed to the 
,J 

comparison of the present solutions with published data. 

As was noted in the introduction of this section, only the 

results of Del Giudice et al. [24-26] are available. Here, 

the data for (s/d) = 2.0, read-off from graphs in [24], are 

used. 

The resul ts of this investiqation are compared wi th 

the corresponding results of [24] in Figs. 6.12 and 6.13. 

The variation of the mean pressure with axial distance is 

• 
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disp1ayed by the curves in Fig. 6.12, and those in Fig. 6.13 

show the axial variation of (w/w) . The results of max 

Del Giudice et al. [24 ] are based on a 1inearized formulatiqn ,.,.. 

of the inertia terms in the axial momentum equati?n, and 

their computations were done with a ISx5 grid. Furthermore, 

as was discussed in Section 6.3, the sihgularities in the 

initial conditions at the duct!inlet cross-section and 
/ 
l ' 

the extremely th in boundary layers in the immediate vicinity 
1 

of the in jet make it very difficult and costly, if not 

imposs~b;e' to get accurate n~erical solutions. With these 

considerations in m~d, it may be conc,luded, that the results 
\ 

of this investigation and those of Del Giudice et aL. [24] 

agree quite weIl. 

Attention is now turned to the presentation of 

detai1ed results in Figs. 6.14 and 6.15, for eight different 

(s/d) values in the 'range 1.05 ~ {s/d) < 2.0. The axial 

variation of mean pressure is given by the curves in Fig. 6.14. 

For à1l spacing ratios, the pressure gradients are higher 
, , 

near the entrance than in the developed flow region because 

of two effects: (i) the increase in the momentum of the 

fluid as the velocity field changes from a uniform to a non-

uniform distribution; and (ii) the higher wall shear stress 

caused by higher transverse velocity gradients in the 

vicinity of the inlet. For a fixed z*, i t can be seen that 

the slopes of the curves in Fig. 6.14 increase rnonotonica1ly 

with spacing ratio. This, however, is because the hydraulic 

diameter increases with (s/d) , and z* is inversely proportional 

} 

" 
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to the square of the hydraulic diameter J It does not 
1 

1 

represent an increase in pressure drop w~th (s/d). Ind~ed, 

, ) 
if a fi vs z cu'rve were plotted for a fixed w and rod 

diameter, it would show a decrease in the axial pressure 

/gradient wi th an increase in (s/d). 

The axial variation of (w/W)max for eight different 

values of tS/d) ranging from 1.05, to 2.0 are plotted in 

Fig. 6.15. Inspection of this figure indicates that the 
o • 
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hydrodynamic development is very rapid near the inlet and 

then proceeds ~ore Slol,lY with increasirg dawn'stream distance. 

The fully-developed value ,bf (w/w) ïncreases with 
1 max 

decreasïng cylinder spaci~gs because higher velocities are 

required for keeping the mass flow rate constant as the 

dimensions of the flow p,assage are reduced. As is evident 

from Fig. 6.15, in terrns of z*, the fully-developed 

conditions are reached earlier for increasing (s/d) ratios. 

This iS,because z* is inversely proportional to P~ an~-----~ ____ 

does not irnply shorter physical development lengths for 

larger spacing ratio. Indeed, for fixed values of the mean 

axial velocity w and rod diameter d, the physical develop-

ment length increases with increasing spacing between 

adj acent rods. 

The cross-sectional flow fields at three different 

axial locations for (s/d) = 1.5 are illustrated in Fig. 6.16 

in the forrn of vector plots of the cross-sectional velocity 

at the subelement grid points. At z* = 1.7xlO-7 , there is 

significant transverse flow near the wall because of the 
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sudden decrease in the axial ve1ocit,y in this region, and the 

associated increase in this ve1.ooity in the central region 

of the spa ce between rods~ These cross-sectional velocities 

decay quite rapidly away from the inlet. A~l the cross­

sectional velo city ve10rs shown point away from the rod 
'~ 

surface, and, as is t be expected, there is no evidence of 

any recirculation zones in the cross-sectional planes. 

Beat Transfer Results: @ Boundary Condition 

.' Heat - t,:z;ansfer results for the ® condition are 

presented in this subsection in three parts. In the first 

part, the effects of grid details are examined, and the 

second pa'rt is devoted to the presentation and discussion 

of- detaîled results for several spacing ratios, and two 

values of Prandtl numbers. In the third part, attention is 

focused' on the effects of the Prandtl number. 

In aIl c~~putations presented so far in this Chapter, 
, 

an llxll node subelement grid with POWER = 1.4 yielded 

satisfactory solutions in both the developed and developing 

regions. _ So this grid was chosen for aIl computations ,f 

presented in this subsection. The grid checks were limited 

to an investigation of the effect of different axial step 
~ 

size combinationsl> 

In Figs. 6.l7(a) and (b), the axial variation.of 

Nu ® for (s/d) = 1.5 and 1.05, respectively, are presentedi -z, T 

the Prandtl number in these computations was set equal to 

• 

1 
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0.72. The different curves Jin this figure correspond to the 
1 

resu1ts of grid checks made with various values of IDEAL 

and with the automatic step size algorithm tied to a 

specified -tralue of llNu ® rather than 6.w 
'Z, max In aIl cases, 

,the calculations were not carried out till the fully-developed 

conditions. As is evident in Fig. 6.17, the ~discrepancies 

,in the results obtained wi th the different grids diminish 

rapidly with axial distance, and they may be regarded as 

t negligible for z* > 5xlO-4 • Thus the results of the basic 

grid rnay be considered as grid independent, for aIl practical 

" -4 
purposes, for z* > 5xlO 

Attention' is now focused on the Nusselt nurnber 

solutions ~or eight different values of (s/d) in the range 

1.05 ~ (s/d) ~ 2.0. These results àre presented in Figs. 

6.18 and 6.19. Figure 6.18 exhibi ts the axial var iation of 

Nu rm\T for Pr = O. 72, and the corresponding resul ts for -z , \::,) 

Pr = 3.0 ,are displayed in Fig. 6.19. The Nusselt number 

variations below z* = 10-3 are not shown because they rnay 

not be very accurate and they rnay be influenced by starting 

errors, as was discussed in the earlier sections of this 

Chapter and in Chapt,er V. 

An inspection of Figs. 6.18 and 6.19 reveals that 

-
the Nusse1 t number solutions for simul taneously developing 

flow and heat transfer are similar in rnany respects to the 

thermal entry solutions presented in Fig. 6.7. Therefore, 

many of the remarks made in the discussion of Fig. 6.7 are 

also valid here. However 1 there are a couple of in teresting 

• 
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aspects of the results in Figs. 6.18 and 6.19 which deserve 

a, separate discussion. 

It is observed that for values of z* < 10-2 in Figs. 

6.18 and 6.19, the curves corresponding ta different spacing 
, 

:r;atios are closer to one another than they are in Fig. 6.7. 

The explanation for this result is that the hydrodynamic 

and thermal boundary layers on the r~urface are very t'hin 

in the immédiate _ vicinity of the inlet cross-section; so 

for a fixed w, Tw and d, the surface heat f~ux is relatively 

insensiti ve to the spacing between the rads. Nevertheless, 

the Nussel t number curves for the different (s/d) ratios 

do not merge as z* is decreased because of the dependence 

of the Nusselt number on the hydraulic diameter. 
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AÎlOther aspect of interest is the difference in trends 

Nusbelt number distributions for small and l:arge 
! 

spacing r~tios. Each of the curves for (s/d) < 1.2 exhibits 
! 

an inflection point. The rnechanisms that cause this 

behaviour are be ;I.ieved to be of the sarne nature as those 

discussed in Section 6.3 in the context of hydrodynamically 
. 

. ' developed but thermally developing flow. It was argued . 
there that the significant dispari ty that exists in the 

(> 

fU11y-developed velocity profiles for' small and large spacings 1 
caused the aforementioned differences in the axial variation , 

1 <> 
An examination"of Figs. 6.18 and 6.19 of Nussel t number. 

shows that the inflection points in the Nu r.;;'\T vs z* curves 
, Zt\!J 

for (s/d) < 1. 2 occur at axial locations that are not in the 

immediate vicinity of the entrance. It seems reasonable, 

1 
1 
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/ t- .. ~~ 
therefore, oto assume that the velocity profiles are 

relati vely non-uniform at the locations of the inflection 

points, and the ~xplanation put forth in Section 6.3 applies ," 

here too. e 

Figure 6.20 provides furthe:a/ insight r~gard±ng the 
/ 

growth of tl:e thermal boundary l~yef>. In this figure, 
/ 

suitabrY non-dirnensionalized temperature profiles at six 

different axial locations are presented in the forrn of 
, 1 

isotherms or contour plots i they correspond to (s/d) = 1. 5 

and Pr = O. 72. The edge of the thermal boundary layer 
fr-........ . , 

(taken as the position where T ;; 1.01 T.) is represented 
~ ./ 

by con tour 1. 
~- -7 -~ 

At z*'.;=_1:..6B5xlO , the th.e'fmal boundary is - --""_._----~ . 
very thin and' there is a high concentration of isotherrns 

nea'r the wall, corresponding to the 

gradients there. At z* = 5.2xlO- 4 , 

alrnost concentric with the circular 

high wall tempera ture 
l ' 
1 

the i so'therms are 
1 

surface of the rod, 

indicating that the boundary layers on adj acent rod surfaces 

have not yet merged, and the interaction between neighbdur ing 

rods is minimal. -3 At z* = 1. 6. xl 0 ,the thermal boundary 

layers on adj acent rods have ml'trged 1 b,ut there still exists 
, 

a srnall pocket of unheated fluid around the upper right-

hand corner of the calculation domain where (w/w) is a 

maximum. The development of the temperature field after the 

thermal effect of the wall has been felt throughout the 

fluid flow is displayed" in the remaining contour plots in 

Fig. '6.20. 

Attention is now directed to the effect of Prandtl 

1 

1 

< 
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Prandtl nurnber determines the rate of 

As i~ weIl known, the 

de~opment of the 

number on theoheat transfer resu1ts. 

\ 
th~ ve10city field. ... temper~ture field relative ta that of 

Thus, for a ,f1uid with a large Prandtl nurnber, the velocity 

field develops much faster than the tempe rature field; 

in the limit, as Pr + 00, it may be assumed that hydro-

dynamical1y fully-developed conditions prevail as the f10w 
, 

develops thèrmally. The other extreme, pr + OJ pertains 

. ta thJ situation where t~e ve10city profile may be assumed 
1 
/ 

ta be' uniform over the entire cross-section of the duct 
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as ~he f10w develops thermally. Such a (1 situation is common1y ( , 

referred to as "~lug flow". \' ~ 

In this d..nvestigation, the ef'fect of Prandtl number 

on the axial variation' of Nusselt number was,examined for 

three different spacing ratios: (s/d) = 1.05, 1.5 and 2.0. 

~",_For each spacing ratio, four d1fferent values of Prandtl 

1 

! 
1 

number were considered: Pr + 0, Pr = 0.72 and 3, and Pr +~. 

The results are presented in Figs. 6.21 to 6.23 in terms of 
(.) 

NUm, @ vs z 1 curveSi NUm, ® is th~ length-averaged m~an 

Nusse1t number defined by Eg. (2.46). The me an Nusselt 

n~er NUm, (!) rather than the local Nusselt number 1,'Juz , ® 
is used in the presentation of these resu1ts because the 

NU
Z

, ® results for Pr = 0.72 and 3 have already been 

presented in Figs. 6.18 and 6.19 and discussed in this 

subsection. 

.. 

As is evident in Figs. 6.21 to 6.23, which correspond 

to (s/d) = 1.05, 1.5 and 2.0, respectively, NUm, ® at a 

--~_.-----
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i 
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fixed z,t increases with decreasing Prandtl number. This can 

be explained as follows: for a fixed spacing ratio and at 
l 

any given z', the axial velocity distribution becomes 

increasingly uniform over the cross-section of the calculation 

domain as the Prandtl number is decreased; this causes the 

transverse velocity gradient at the wall to be steeper, 

thereby enhancing the convection rate. For a fixed spacing 
" 

ratio, aIl NUm, ® vs z' curves asymptote to the same 

thermally developed value because the Prandtl number ceases 

to be a pararneter in the fully-developed region; the curve 

corresponding to the slug-~low situation reaches the 

thermally fully-developed value much later (z' + 00) th an 

the other curves. 

Heat Transfer Results: @ Boundary Condition 

The discussion in this part will be kept brief 

because most of the results obtained for the ® condition 

are gualitatively similar to those discussed in the last 

subsection for the @ condition. Checks to' establish the 

grid independence of the results are presented first. 

Detailed solutions pertaining to the axial variation of 

the Nusselt number for several spacing ratios and two 

different Prandtl numbers are presented next. Finally, 

results illustrating the effect of Prandtl number on the 

developing temperature field are presented. 

Based on the results already presented in earlier 

. + .'" Note that for compar~ng thermal entry solutions, the abscissae 
coordinate z' (= z/(DHRePr)) has been used instead of z*. 

-------_.-... ,- - --._-----------------, 
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sections of this Chapter, the basic grid of llxll subelement 

. nodes and POWER = 1.4 was chosen for aIl computations in 

this study. Grid checks were limited ta an ex~oration 

179 

of the effects of various parameters used in the automatfc 

step size ~election algorithme The results of t~ese 1 
computations are presented in Figs. 5.24 (a) and ~b) for! (s/d) 

= 1.5 and 1.05, respectively. These restiits Sh~~ that for 

values of z* > 10-3 , the solutions obtained with the basic 

grid can be considered to be grid inde pendent , for aIl 

practical purposes. 

Axial variations of the local Nusselt number, NUz , ® ' 
for eight different values of spa·cing ratios, in the range 

1.05 ~ (s/d) ~ 2.0, and two values of Prandtl numbers, Pr = 

0.72 and 3, are shawn in Figs. 6.25 and 6.26. The trends 

displayed by these curves are qualitatively similar to those 

displayed by the corresponding results for the @ condition. 

Therefore, the discussion presented in the last subsection 

applies here too. 

The effects of Prandtl number on the axial variation 

of NUrn , ® for spacing ratios of 1. 05, 1. 5 and 2 are displayed 

in Figs. 6.27 to 6.29, respectively. Again, the results 

for Pr + 0 pertain to the so-called slug flow condition, 

and the results for Pr + 00 apply to situations where the flow 

is hydrodynarnically fully-developed and thermally developing. 
1 

The discussion presented in the last subsection in the context 

of the ~ condition is qualitatively applicable to these 

results too. 

I-----~--,-------------------------..-._--._--
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CHAPTER VII 

CONCLUSION 

In the preceding chapters, a control-volume fini te-

element method for three-dimensional parabolic duet flows 

has been formulated r tested and applied to longitudinal 

laminar flow and heat transfer in an infinite array of 

circutar c~oss-section rods arranged in an equilateral 

triadgUlar pattern. In this chapter, first, the main features 
1 

of the proposed method and the principal achievements of this 

thesis are briefly reviewed and commented uponi then, 

suggestions for possible improvements and extensions of 

this work are presented. 

7.1 REVIEW OF THE THESIS 

The method proposed in this thesis was formulated 

by merging and extending several key ideas of the finite-

difference method of Patankar and Spalding [6] for three-

dirnensional parabolic flows and the control-volume finite-

element method of Baliga and Patankar [2] for two-dimensional 

elliptic flows. The following steps are involved in the 

formulation of the proposed method: the calculation domain 

is first divided into prism-shaped macroelements and sub-

elements of triangular cross-section; then, each node is 

associated with prism-shaped control volumes of polygonal 

cross-section; integral conservation equations are theno 

1 

1 
~ 
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(' written for each of the control volumes; following that, 

appropriate element interpolation functions are prescribed 

for each of the dependent variables; using these interpolation 

functions, algebraic approximations to the integral 

conservation equations are derived and solved iteratively. 

The control-volume finite-element method employed 

here allows the discretization of straight ducts with 
'-

regular- or irregular-shaped cross-sections. A semi-

automatic discretization scheme is used to generate the 

cross-sectional domain discretizations. This scheme leads 

to considerable ease in the assembly of discretization 

equations and enables efficient use of available computer 

storage. It also allows the use of a line-by-line iterative 

procedure based on the !ri-Qiagonal-~atrix-~lgorithm [4] 

for the solution of the discretization equations at each 

axial step. However, it can handle only singly-connected 

domains. Thus, the present computer implementation of the 

proposed methog is not suitable for the solution of duct 

flow problems involving complex multiply-connected domains. 

In the derivation of the discretization equations, 

downstream values of the dependent variables are assumed to 

prevail over the axial step. This formulation, which ïs 

analogous to the fully-implicit formulation employed in the 

numerical solution of parabolic problems [4], is used for 

avoiding stability-related restrictions on the axial step 

( sizes. In the cross-sectional planes, aIl the dependent 

l 

1 

\J 
----------------------"-------------~-------------~--------------------~ 



( 

( 

/ 

182 

variables, except pressure, are interpolated in each sub-

e~ement by functions which are exponential in the direc~ion 

of an element-averaged cross-flow velocity vector and 

linear in the directipn normal to it~ the pressure is 

interpolated linearly in each macroelement. This inter-

polation practice allows the proposed method to solve problems 

involving significant cross-stream flows, without incurring 

(i). the stability difficulties that could plague standard 

finite-element methods based on the Galerkin formulation, 

and (ii) the false-diffusion problems that commonly afflict 

upwind-type finite-difference and finite-element methods [1,4]. 

The proposed method uses a step-by-step marching 

integration scheme to advance the solution from the given 

conditions at the inlet of the duct to the downstream outlet 

cross-section. At each axial step, the SIMPLER calculation 

procedure of Patankar [4] is used to handle the velociJY­

pressure coupling which exists between the continuity and 

cross-stream momentum equations. Another velocity-pressure 

coupling which eXists/between the overall mass continuity , 
. 

and the streamwise momentum equab10ns is handled by a new . 
scheme akin to SIMPLER. rhese it~rative solution procedures 

have worked well in aIl problems tested in this thesis. 

Another key feature of the proposed method is an 

automatic step-size selection algorithm. This algorithm 

provides considerable ease and efficiency in the computations 

by automatically adjusting the axial step size in response 

------------------------------~-------------------------
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to the prevailing axial gradients of the dependent variables: 

in portions of the duct where steep axial gradients are 

encountered, very small step sizes are used; and relatively 

large step sizes are used in regions where mild gradients 

are encountered. 

The proposed method and its computer implernentation 
1 

have been successfully applied to many two- and three-
" , 1 

dimensional test problems. The results of several test 

problems, including laminar flow and heat transfer in ducts 

of square cross-section, were presented in Chapter V. These 

results compare very weIl with corresponding analytical, 

numerical and experimental results in the published 

literature, and they serve to establish the validity and 

capabilities of the proposed method. 

The "present solution method has been adapted and 

applied to laminar incompressible fluid flow and heat transfer 

in an infinite equilateral triangular array of circular 

cross-section rods. Several pitch-to-diameter ratios ranging 

from ,1.05 to 2.0 were investigated. 
~; -J 

The thermal boundary 
>, 

conditions considered were: (1) constant wall tempe rature 

both peripherally and 1 axially @; and (2) constant axial 
1 

and peripheral wall heat flux- ®. Three categories of 

this problem were extensively studied: (1) fully-developed 
" 

flow and heat transfer; (2) hydrodynamically fully-developed 

and thermally developing flow; ano (3) simultaneously 

developing flow and heat transfer. Numerous preliminary 

/ 
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computations were done ta ensure that the final results 

would be grid-independent, for aIl practical purposes. 0 

Results of the fully-developed fluid flow problem and the 

thermally fully-developed problem pertaining ta the Q9 
boundary condition were cornpared with the corresponding 

analytical results presented in [7] i the agreement between 

these results' was found to be very good. The results of 

the fully-developed problern wi th the @ thermal boundary 

condition and rnost of the results pertaining to the develop-

ing flow and heat transfer problems are new, in that they 

are not available in the published literature. A "detailed 

discussion of aIl these results was presented in Chapter VI. 

In addition to augmenting the currently available repertoire 

of published heat transfer data, these results demonstrate 

that the proposed rnethod can be successfully applied to 

laminar flow and heat transfer in straight ducts of 

irregular-shaped but uniform cross-sections. 

7.2 SUGGESTIONS FOR IMPROVEMENTS AND EXTENSIONS OF THIS 

WORK 
, { 
L 

.) 

The work presented in this' thesis could be improved 

and extended in several ways. Sorne suggestions infuis 

regard are presented in this section. 

The numerical method proposed in this thesis is based 

on a primitive-variables formulation. AS was described in 

earlier chapters, if the velocity cornponents and pressure are 
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stored at the same grid points and interpolated by similar 

functions, the resulting discretization equations could 

ad~it physically unrealistic checkerboard-type pressure 

fields as solutions.! This difficulty is avoided in the 

proposed method by using unequal-order pressure-velocity 

interpolations: the cross-sectional planes of duct-like 

calculation domains are discretized into six-node triangular 
\ 

macroelements and three-node subelements; the velocity 

components are stored at aIl nodes and interpolated by 

special upwind-type functions in each subelement; and the 

pressure is stored only at the vertices of the macro-

elements and lnterpolated linearly in each macroelement. 

A commonly-used argument for the mathematical justification 
1 

of this unequal-order interpolation practice is that the 

momentum equations lnvolve second-order derivatives of the 

velocity components in the viscous terms and only first-

order derivatives of the pressure. This is a valid 

argument in the computation of parabolic flows because the 

cross-sectional velocity components are usually not too 

large; therefore, the convective transport of momentum in 

the cross-sectional planes does not overwhelm the correspond-

ing viscous transport. 

Although the aforementioned unequal-order inter-

polation of pressure and velocity can be mathematically 

justified in parabolic-flows, it does have sorne shortcomings. 

For the sarne number of nodes, six-node triangular macro-

185 , 
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elements do not a1lo~ as accurate a representation of 
! 

cross-sections involving curved boundaries as that provided 
\ 

by three-node triangu1ar elernents. Another difficulty is 

that rnethods using unequal-order interpolations us~ally 
, 

lead to a'large number of neighbours in the discretization 

equations for pressure and pressure correction; as a result, 

the converge~ce of iterative procedures for the solution 

186 

of these equations could be rather slow. A related difficu1ty 

is that the presence of a large nurnber of coefficients in 

the discretization equations complicates the coding and book-

keeping in the corresponding computer implementations. These 

difficulties have stimulated renewed interest in equa1-order 

formulations which avoid checkerboard-type pressure 

distributions. Schneider et al. [33] have proposed and 
. 

critically examined several equal-order f~nite-element 

formulations for two-dimensional elliptic flows. The 

deve10pment and lncorporation of a suitable equal-order 

formulation in the proposed method is highly desirable 

and recommended. 

The computer program developed in this thesis 

incorpora tes a serni-automatic domain discretization scheme. 

This scheme has many advantages, but it only a1lows the 

discretization of sing1y-connected duct cross-sections. The 

other key ldeas of the proposed method, however, are not in 

any way limited to singly-connected domains. Furthermore, 

the corresponding computer code has been developed 50 that: 

-- -- - .~--- ----- ----------------
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it can be easi1y ~itted into a patch-by-patch proce~ure [35] 

for domain discretization, equation assembly and solution 

which a110ws the investigation of prob1ems with mu1tip1y-

connected domains. The incorporation of such a patch-by-

patch procedure into the computer implementation of the 

proposed method wou~d enhance its capabi1ities considerably; 

" The proposed rnethod has been forrnu1ated for the 

analysis of three-dimensional parabo1ic duct flows. The 

extension of its key ideas te partially-parabolic [5] and 

fully-elliptic flows weuld be a worthwhile undertaking. 

Such extensions would enable the analysis of flows in curved 

ducts, ducts with obstacles, and expanding and contracting 

ducts. Further research along these lines would greatly 

enhance the available tools for the numerical prediction of 

practical fluid flow and heat transfer phenomena. 

Only laminar fluid flow problems were considered 

in this work. This restriction was imposed because the 

testing and performance evaluation of new numerical rnethods 

is best done by applying them to problems with well-established 

rnathematical models. Nevertheless, the proposed control-

volume finite-element rnethod;~oes not have any intrinsic 

limitations which would prevent the incorporation of 

currently available mathematical models for turbulent flows 

and two-phase flows in its formulation. The dernon~tration 

of this capability is suggested as an extension of this work. 

The proposed method has been successfully applied to 
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several test problems and to the problem of longitudinal 

laminar flow and heat transfer in a rod-bundle. The results 

are encouraging enough to warrant the application of the 

method to other practicàl fluid flow problerns, including, 

as was suggested in the previous paragraph, turbulent and 

two-phase flows. Experimental verification of the results 

of selected test proqlem~ is necessary to further e~tablish 
1 

the validity and capabilities of the proposed method. The 

possibilities seem to be limited only by the imagination 

and ingenuity of the researcher. 

\ 
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Fig. 2.1: Examp1es of three-dimensiona1 parabo1ic f10ws in straight ducts of 
irregular-shaped cross-section. 
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Fig. 3.1: Three-dimensional parabolic flow in a straight 
duct of irregular-shaped cross-section; 
(a) calculation domain: (b) discretization of 
the duct into slabs. 
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(a) 

(c) 

• Pressure node 

o Velocity node 

(b) 

(d) 

Fig. 3.2: Steps in the discretization of the duct cross­
section: generation of (a) six-node triangular 
macroelernents; (b) three-node triangular 
subelernents; (c) subelement control volumes; 
and (d) rnacroelernent control volumes. 
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Fig. 3.3: 
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1 
,2 
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( a) 

downstream 
plane 

(b) 

(c) 

Local node numbering and labelling schemes for 
(a) a typical prïsm macroelement and its four 
associated subelements; (b) a typical subelement 
control volume surrounding node 1; (c) a typical 
macroelement control volume surround~ng node 1. 

198 

. - --- --------------- -----------~ -------------------



( 

1 

Y~ 

tige 3.4: 

( 

. 
--------~ - - ------

199 

~ 
\ 

\ 

. \ 
[LI' dl = area laoc in the 

5 
upstream and down-
stream planes, 
respectively 

[LS,dS == area Scob in the U 
and D planes 

[L6 ' d 6 == area 6boa in the U 
and D planes 

a == area (oa)x/j.z 
b = area (ob) x/j.z 1 

c. == area (oc) x/j.z 

6 
~ 

:z ~ downstrearn 

(a) upstream 

3 

UI,V l = area 1506 in the 
, U and D planes 

U3' V3 = area 3504 in the 
U and D planes 

U
2

, V
2 = area 2604 in the 

U and D planes 
A = area (06)x/:"z 
B = area (04)x/:"z 
C = area (05)x/:.,z 

(b) 

Details of the control volume faces and related 
nomenclature: (a) a typical subelement control 
volume; (b) a typical macroelement control 
volume . 
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'----r--- fully-implicit 

z z+6z z 

Fig. 3.5: Three different z~direction interpolation 
functions. 

x 

Fig. 3.6: A typical triangular subelement, the global 
(x,y) and local (X,Y) coordinate systems and 
related nomenclature. 
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la == area (la) x I::.z 
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Fig. 3.7: A boundary node with its three associated sub­
elements. 

Fig. 3.8: 

02 

01 

03 

x 

Momentum control vol~es associated with the 
mid-sides nodes of an internaI macroelernent. 
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Fig. 3.9: An internaI pressure no de i and its cluster of 
neighbour nodes. 
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Deve10ping 
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F.D. 
Region 
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Nu 

Nu=1.05 NUfd 
1 

Therma11y : Thermally 
Deve10ping Reg. F.D. Region 

z 
(b) 

Fig. 4.1: Flow and heat transfer in ducts: (af ,hydrodynamically 
developing and fully-developed regions; (b) therma11y 
deve10ping and fully-deve1oped regions. 
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Fig. 4.2: Automatic step size selector algorithm based 
on: (a) (~wmax/tl z); (b) (6Nu/lIz) . 
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Fig. 4.4: (a) Typical macroelements of typ~s land 2, and associated (IP',jP)-
• node addressing scheme; (b) corresponding subelements of types 
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Fig. 5.1: NaturaL convection in a rectangular enclosure: 
(a) problem schematic; (b) domain discretization. 
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08 1.0 

Natural convection in a rectangular enclosure: 
temperature profiles for (a) Ra = 2.49xl0 3 
(b) Ra = 1.67xl04 , and (c) Ra = 1.36xl05 . Solid 
lines represent results produced by the CVFEM, 
dashed lines represent numerical results from 
Jories [39], and the syrnbols represent experirnental 
results from Duxbury [39]. 
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Fig. 5.3: 
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(b) (c) 

Natural convection in a rectangular enclosure: 
isotherrn contours for (a) Ra = 2.49xl0 3

t 
(b) Ra = 1.67x10 4 , and (c) Ra = 1.36x10~. 
The isotherm levels start with 81 = 0.1 and 
increase to 89 = 0.9 in equal steps of 0.1. 
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Fig. 5.4: 
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(b) (c) 

Natural convection in a rectangular enclosure: 
strearnline plots for (aj Ra = 2.4 9xlO 3 and 
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1J! = 0, 1.08, 2.17, 3.26, 4.35, 5.43, 6.50, 7.22, 
7.5; (b) Ra = 1.67xl04 and ljJ = 0, 4.95,9.89, 
14.83,19.78

5 
24.7,28.9,29.4,29.7; (c) 

Ra = 1. 36x10 and ljJ = 0, 9.86,19.71,29.57,39.42, 
44.35, 46.67, 48.06, 48.44. 

1 

\; 
----~. ---" - -----------------~-- -------------~ 



r 1 ! 1 

i 1 

1 ~ 

T 
H 

1 

~,ç.~ ........ ~-

-.,... 

·î 
Th Tc ]u 

L- L r- .----- -..J 
--J 

Îi 

(a) (b) 

Fig. 5.5: Natural convection in a trapezoidal enclosure: (a) problem schematici 
(b) dornain discretization. 
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Fig. 5.6; Natural convection in a trapezoidal enclosure: 
variation of average Nusselt number with 
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Fig. 5.7: Natural convection in a trapezoidal enclosure: isotherm contours 
for ( a ) Ra = 10 3 ; (b) Ra = 10 4 ; ( c ) Ra = 105; ( d) Ra = 106. 
The isotherm levels start with 81 = 0.1 and increase to 8 9 = 0.9 
in equal steps of 0.1. 
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(c) (d) 

Natural convection in a trapezoidal enclosure: streamline plots for 
(a) Ra = 10 3 and ~ = 0, -0.04, -0.81, -0.12, -0.16, -0.20, -0.24, 
-0.28, -0.32; (b) Ra = 10 4 and ~ = 0, -0.35, -0.69, -1.04, -1.39, 
-1.73, -2.08, -2.44, -2.77; (c) Ra = 105 and ~ = 0, -2.22, -3.33, 
-4.44, -5.55, -6.66, -7.77, -8.22, ~8.44, -8.66, -8.88; (d) Ra = 10 6 
and ~ = 0, -2.39, -7.17, -9.56, -11.94, -13.89, -15.00, -15.89, 
-16.22, -16.33, -16.67. 
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Fig. 5.9: Flowchart outlining the procedure used to solve 
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Laminar flow and heat transfer.i~.a duct of 
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Fig. 5.14 : Flowchart outlining the procedure used to solve 
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section rods arranged in an equilatera1 
triangular array: problem schematic. 
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Thermally-developing flow over a rod-bundle 
with the ® condition: local Nusselt number 
va'riation with axial distance, for two grid 
and step sizes. 
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Table 2.1 

i 
1 

Interpretation of <P, rand S 

Descr iption <P r s 

Continuity 1 0 0 

x-mornentum u \.l 
_2...2 

(lx' 
r 

y-mornentum v \.l - 2...2 
1 3y 
1 

z-mornéntum w \.l 
_3Ë 

dz 

continuity 1 0 0 

. 
~ x-mornentum u* l - 8x* 

y-mornentum v* 1 - ~ 8y* 

z-mornentum w* 1 
_ dp* 

dz* 

z-rnornentum W 1 1 

energy T k/c p 0 

energy T* l/Pr 0 

energy El 1 
W 

À El 
W 

" , 

energy t* l/Pr 0 

, 
W 

energy X 1 - 4 -
W 

--------- - ---------
J 
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Table 5.1 

Laminar Natural Convection in a Rectangular Enclosure of Aspect Ratio 5: 

Average Nusselt Nurnbers 

~-~ 

0 

Rayleigh Nu Nu Hot-face Nuav Co1d-face Nu Mean Nu 
Number av av _ av av 

CVFEM Jones[38,391 Duxbury[39] Duxbury[39] Duxbury[39] 
, 

c 

3 .1. 261 1. 25 - -~J::-;--6-.. 1.1 1.4 2.49xlO -
- \ 

1. 67xl0 
4 

2.266 2.'26 2.3 1.9 2.1 . 

1.36xlO 5 3.756 3.8 5.0 3.6 4.3 

~ ---~_ .. _--- ~._ .. _- ------- - ---- . --- --- --_L.....- --- --- -
é 

....." 

.......... _----

---------

1 

1 

-------

) 

l'V 
0'1 
\0 

" 



-

( 

} 

Table 5.2 

Larninar Ful1y-Oeveloped Flow in a Square Duct: 

Friction Factcjr Results for Various Grid Sizes and 

!Grid-Line' Distributions 
, 8 

SUbe,lernent POWER f.Re 
f.Re Error 

. _Grid (Shah [7] ) 

11xll 1.0 57.146 56.908 0.42 
) 

11xll 1.2 57.093 0.33 

11x11 1.4 57.092 ./ 
0.3-2 

11xll 1.6 57.107 0.35 

11x11 
, 

1.8 57.133 0.40 

11xll 2 .0 57.160 0.44 

lSx15 1.0 56.991 0.15 , 

15x15 1.2 56.969 0.11 

lSx15 1.4 56.976 0.12 

15x15 1.6 56.991 0.15 

15x15 1.8 57.003 \,.. 0.17 

15x15 2.0 57.023 0.20 

19x19 1.0 56.890 O. 01 

19x19 1.2 56.901 O. al 

19x19 1.4 
L 

56.912 o ~ al 

19x19 1.6 56.923 0.03 

19x19 1.8 56.941 0.0-6 

19x19 2.0 56.952 . 0.08 

<1 
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t 

Square Duct Problem: Ful1y-Developed Nussel t Nunlbers 

for Various Grid Sizes 

Sube1ement Grid POWER NU@ NU@, 

llxll - 1.4 2.9386 3.0475 
\ 

è{ 
15x15 1.4 2.9578 3.0670 

, , 
\ 

19x19 1.4 2.9650 3.0743 , 
, 

1 

Shqh and London [ 7] - 2.976 3.091 
b 

, , 

! 
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Table 5.4 
" 

Square Duct Problern: Norrnalized Min-!-mum and 

Maximum Temperature on the Periphery 

T* , 
w, rna'x Cl T* . 

w,mln 

CVFEM 
( 

1. 3919 0.7722 

, 

Shap [7] 1. 39 o. 769 

Error (% ) 0.14 0.42 

~ 

, 

, . 

-

1 

1 272 
1 
J 

i 
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Table 5,5 -----------
\ 

Hydrodynamically Developed apd Thermally Developing Flow in a Square Duct:' 
Discretization Details 

" 
0 

0' 

Actual NÙmber of Steps Required 

Subelement Initial 7 for Reaching F-D S.ituationt 
Run' POWER Grid !::,.z' IDEAL 

~ 0 

@ ® 
, . 

A' 
(basl.c llxll 1.4 7xlO-7 
grid) 25 39 39 

, 
~ - 0 

~ 

15x15 7xlO- 7 " 
B 1.4 50 66 67 

0 \ 
c , -

C 19x19 1.4 7xlO:-7 50 67 
1 

68 

- - --- --- --- -_ .. - - - ---- -L-.. - --- -- ---- -

tF,D', situation is regarded as reached when Nu < 1,05 NU
f 

d ' z , , 

'Jo 
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Rod-Bundle Problem: 

s/d Sube1ement 
Grid 

1. 05 11x11 

~ 
15x15 

1 

19x19 

1.5 6x6" 

~ 8x8 

10x10 

2.0 6x6 

~ 
~ 

8x8 

10x10 

-- ----' 

,.--.. 

Table 6.1 

. 
Full~~eveloped Friction Factor and Nusselt Numbér Results 

POWER f.Re f.Re 
NU® NU® 

Nu 
[7 ] [7 

1 
1.0 62.659 61. 912 2.0045 1.0680 1. 06 
1.2 62.670 2.0019 1. 0684 
1.4 62.685 1. 9980 1.068 
1.6 62.721 (1 1. 9934 1.0676 
1.8 62.755 1.9882 1.0668 

' < 

~ 

1.4 _ 62.286 2.0249 1. 0625 

1.4 62.104 "2.0348 1.0599 , 
. 

, 

1.4 
<: 

124.72 124\.14 -10.190 3.1.195 11.22 

1.4 124.440 

~ 10.127 11. 215 

~ 1.4 124.322 10.228 11. 223 
. 

1.4 158.366 157.536 14.33 15.25 15.26 

• l ~ 
1.4 157.962 14.344 15.256 . . 
1.4 157.783 14.348 15.263 

~J 

-

l'V 
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( APPENDIX l 

J 0 

ALGEBRAIC EXPRESSIONS FOR THE 

PRESSURE GRADIENT INTEGRALS 

Consider the following linear interpolation function 

for the pressure p: 

Op = ax + by + c \ (1.1) 

with the nodal conditions: 

= 

(1. 2) 

ax~ + bY3 + c 

The set of simultaneous linear eguations (1.2) can be easily 

solved for the interpolation constants a, ob and c, using 

the well-known Cramer's rule. Thus, let the deterrninant 

of the system of equations (1.2) be 

DET = (I.3) 

It follows that 
( 

I----~ ___ ·-'·~ .. -a-.-~---------________ , ~ ..... --,------------



( 

( 

, . 
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a = I 
DET [(.Y2-Y3)PI '+ (y 3-YI-) P2 ~ (YI-Y2 )P3] (I. 4) 

1 

b 
I • 

+.- (x l -x3 ) P2 (x2-x l )P
3

] (I. 5) == DE'l\ [ (x,3 -x2 ~.PI + 

(I. 6) 

Since Eqn. (1.1) is Iinear in x and y, the pressure gradients 

in the x- ànd y-direction are constant within a macro-

element 123. Hence, 

2E 
ôX == a 

== b 

~ 

Let vI denote the contribution of the rnacroelement 123 to 

the subelement control volume surrounding node 1. Then, 

Let 

(- ~) dV 
dX 

(- ~) dV 
dY = 

-v a 
1 

-v b 
1 

(I. 7) 

(I. 8) 

,(1.9) 

(I .10) 

-----------" --,_._-----------------
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(1.11) 

(1.12) 

(1.13) 

, 
DV (x2-~3) 

(1.14 ) = vI I DET , 

DV 

2 = v
l 

' (x3-x
1

) 
(I.1S) 

DET 

(1.16) 

Then, using Egns .. (1.4)1 to (1.6), Egns. (I.9) and (I.IO) can 

be rewri tten as ... follows: 

-{li 

f (- ~) u u u dV (1.17) 
, 

= D1P1 + D2P 2 + D3P 3 dX 

) 
vI 

r, 

f (- F) dV v v v (1.18 ) = D1P1 + D2P 2 + D3P 3 
vI 
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APPENDIX II / 

ALGEBRAIC EXPRESSIONS FOR THE CONVECTION-DIFFUSION TRANSPORT 

OF P ACROSS LATERAL CONTROL-VOLUME SURFACES 

The combined convection and d~ffusion flux of ~ 

across the lateral ~ontrol surface a in Flg. 3.4(a) cad 

be written as follows [2]: 

where 

with 

f 
-+ -+ 
J.n ds 

a 

= 

= 

pU~ - r 2..1. ax 

pVcp - r ~ ay 

The element interpolation function for cp is: 

~ = A~ + BY + C 

= 

(;~I.I) 

(11.2) 

(11.3) 

(II. 4) 

(II. 5) 



/ 

( 

- ~ 

The interpolation constants A, Band C can be expressed in 

terms of the nodal values of ~ as follows: 

A = 

B = 

C = 

where 

l 
DET 

.... . , 

JSubstitution of Eqn. (1I.4) into Eqns. (1I.2) and (II.3) 

yields: 

= 

= 

p(U-U )As + pU(BY+C) - rA av 

pVAs + pV(BY+C) - rB 

Substltuting the expressions for A, Band C, Eqns. 

(II.6) to (II.8), into Eqns. (II.9) and (II.IO) 1 and re-

arranging the resulting expresslons gives: 

280 

(II. 7) 

(II.8) 

(II. 9) 

(II.IO) 
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( 

, 
,/ 

j 
, 

where 

Let 

f 1 = (U - U a v) (Y 5 - Y 6 ) ç' + u ( ~ 6 - ~ 5 ) Y + U ( i; 5 Y 6 - ç 6 Y 5 ) 

~~ 

f~ 1 { (fll a + 4 (f . ) + (f .) .}; = 6' l l r l 0 

a 1 
{ (gila 4 (g. ) (g. ) }; i l, 5, 6 g. = + + = l 6 l r l 0 

281 

(IL11f 

(IL12) 

(II.13) 

(IL14 ) 

- -- ------------..;........ ----~--- -----~--------
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Then, Eqns. (11.11) and (11.12) can be substituted into 

Eqn. (11.1) to obtain the following equation: 

f J.~ ds (11.15) 
a 

where 

, '\ 
" ' 

(11.16) 

Similarly, the convection-diffusion flux of ~ across 

the lateral-surface e in Fig. 3.4(a), can be approximated by: 

f j.~ ds 
e 

(TI. 17) 

Let 

( (II.18) 

g; = 61 {(g.) +4(g.)t+ (g.) }i i=1,5,6 .... ~ c J... ~ 0 

~----- - ~._-~-



Then Eqn. (11.17) can be rewritten as fo11ows: 

where 

( 

( 

----- ---,.- -- -----

f 
-+ + 
J.n ds 

c. 

, 

1 
"j 

1 

(A~ ~l + A~ <1>5 + A~ <1>6)( . 

283 

(11.19) 

(11.20) 
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APPENDIX III 

ALGEBRAIC EXPRESSIONS FOR THE MACROELEMENT CONTRIBUTION 

TO THE ,INTEGRAL MASS CONSERVATION EQUATION 

) 
'­

Consider the macroelements and control volume 

surrounding no de l in Fig. 3.3(c). The contribution of 

284 

, ) 

macroelement 123 to the integral mass conservation equation 

associated with node 1 can be written as follows: 

f -+-+ f -+-+ -+-+ -+-+ PCONTI = [ p v.n ds + p v.n ds + f p v.n ds + f p v.n ds] 
Ul Dl A C 

(111.1) 

'usi~g Jthe interpolation functions for velocity introduced 

( 

1-------- -

in Chapter III, the different integral terms in the above 

equation can be approximated as-follows: 

f p 
A 

-+ -+ 
p v.n ds 

-+ -+ 
v.n 

-+ -+ 
v.n ds 

ds 
A

123 
-3- [pwl ] 

(111.2) 

(III.3) 

(III.4) 
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-+ -+ 
p v.n d,s 

. r 
(III.5) 

, . 
With reference to Fig. 3.8, the pseudovelocity represent-

ation of the discretization equations for the velocity 

cornponents u 4 ' uS' u 6 ' v 4 ' 'vS and v 6 have the foltowing 

forms: 

= 

= 

= 

and 

= 

= 

= 

Let 

(II 1. 6) , 

(II1.7) 

(111.8) 

(111.9) 

(111.10) 

(111.11) 

---'-j-"'- ----------
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, , , 

,} 
Il À';l À~ 
~ [ (y -y ) (.2:. + 2 + 
660 u u 

a 4 aS 
= 

(III.12) 

ami 

B~ = 
~ 

.. 
~ (III.l3) 

with i = l, 2, and 3; and 

\ 

u v 
À l 1.. 01 = ~ [(y -y ) (~) - (x -x ) (-) ] 

6 60 u 60 v 
a 4 ~ a 4 

(III.14) 

(III.IS) 

= (III.16) 

( 

(III.17) 



( 

( 

,..~ 

= 

• ,_,,:l' 
~. 

, " 

Further, let 

'J' 

ÀV 
02 - (x -X' ) (-) ] 

5 <-., V 

" 

, A p~z [(Y6-;O) (û4+ûS+4û6 ) (x6- x Ol' (v 4 +v S+4v 6) .J G = -

and \ 
, c 

, p~z [(ys-YO) (û4+4û
S

+û
6

) 
• 

G- = +' (xS-xO) (v4 +4vS+:V6 )] 

Then Eqrts. (ItI.6) to' (l:ILll) can be substituted into 

Eqns.,'.W(III.4) and (III.5), and the resultant expression 

can be regrranged to yield: 

f p 
-+ + A A A v.n ds = [BlP1 + B2P 2 + B3 P 3 

A 

+ BO}POI 
A 

+ B0 2Po 2 + 
'A " 

B03Po 3 + GA] 
Q 

and 

f p 
-+ + 

ds 
C C C v.n = [BlP1 

+ B2P2 + 8 3P 3 
C 

+ C 
BOlPol + C 

B02Po2 
C 

+ 1303Po3 + Ge] 

" 

a 
1 
287 
! 
1 

JIII.18) 

(II1.19) 

(III.20) 

(111.21) 

J 

(II1.22) 

1 

'"0 
(III.23) 

i 
1 

. 
" 
'! 

1'>- • ,. .. . ~~. 
~~ 

-

II-

, " 

l' 
~ 
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( 

Sùmming up th'e different integral terms, given in 

Eqns .. '(III.2), (III.3), (111.22) and (III.23), ti; total 

contribution of macroeleme'nt 123,to the integral mass 

çonservation equation associated with node l can b,e 

cpmpactly expresse~ as: 

PCONT1' = ;\ 
1 

1 1 1 ' 
+ MP 01 ~ol +1 MP(l)2 P o2 + MPo3Po3 + MPCONl 

( 
\ 

\ 
i , 

where 

Û' Mpl = 1 
BA 

1 + BC 
-1 

~ 

Mpl, = _BA + BO 
2 ,,) 2 2 

MP l = _BA + BC 
3 3 3 

= 

Mp1 ,. = 03 
-BoA 

3 + BO
C 

. 3 

• / 
, 1 PA123 U 

MPCONI _GA Ge + = + 3 Jw1-wl ) 

--~--~ .. ---
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(III.24) 

,,, 
of 

'(III. 25) 

• l 

t 
~ 

* 



( The total contributions of rnacroe'lement 123 to the 

integral mass conservation equations associated with nodes 2 .. 
and 3 can be deri ved in a similar manner • 

• 

( 

-------------------------------
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APPENDIX IV 

SHORT DESCRIPTION AND LISTING OF THE COMPUTER PROGRAM 

The computer program developed in this work has 

been given the name CVFEM3DP. In its present form, it 

can solve three-dirnensional parabolic flow and heat transfer 

ei ther in a rectangular duct or over an in fin;Lte triangular 

rod-bundle array; details of these problems can be found 

in Chapters V and VI. 

A short description of CVFEM3DP and the main 

functions of its various subroutines are given below: 

MAIN 

USER 

Controis the program operations. It incorporates 

a duinp/restart facility whereby the user may save 

the results of intermediate iterations, or steps, 

on external disk files. The impending operations can 

th en be resumed Iater by retrieving the saved data. 

This subroutine allows the user to specify the 

details of the problem of interest. It is composed 

of the following entry points: 

GRID 

START 

Generates the duct cross-sectional g:r:id and 
aIl other topological" information. 

Specifies all contro---l parameters and ~he 
ini tial conditions. 

OUTPUT Prints out the intermediate and final results. 

,} 

-- ._-- -----------------
J 



( DENSE 

GAMSOR 

BOUND 

BTSVEL 

NUCALC 

RESET 

Specifies the fluid density in the 
calculation domain. 

Specifies the diffusion coefficient rand 
the source term coefficients Sc and Sp. 

Specifies the boundary conditions for aIL 
dependent variables. 

Spec ifies the boundary conditions for the 
pseudovelocities û, v and w. 
Computes NUz , ® and NUz , ® 
Allows the user ta reset the values of sorne 
control parameters when using the restart 
option. 

SUPPLY Set of utili ty algorithms. 

COEFF General subroutine which calculates tpe subelement 

PAPe 

SOLVE 

contributions and assembles them to form the sets 

of discretization equations for u, v, w, T and cp. 
1 

General subroutine which calculates the macroelement 

contributions and assembles th~to.Jform the sets 

of discretization equat.ions for the pressure p and 

the pressure correction p'. 

General. subroutine which solves the sets of 

discretization equa tions for u, v, w, T and ~. 

PSOLVE General. subroutine which solves the sets of 

( discretization equations fdr p and p' . 

------------------------------------------------
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TEST Allows the printing of coefficients and intermediate 

results for testing purposes. 

A complete listing of CVFEM3DP is given in the 

following pages. The program is written in the FORTRAN IV 

language and designed to be compiled by a FORTRAN-H extended 

compiler. 

( 

.. 
------ - .. -----.- .... - ... 
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/ /ME68THRD JOB (ME68 ,000,040,0200,0000,30, ,1), 'TRI PHAM' 
/ / EXEC FORTXCG 
//FORT.SYSIN DD * 
C----- ------ - ---- - ----- ------ - ----- ------- ---- ------ - ------ ------------C 
C C 
C C O' N T R 0 L - VOL UME C 
C C 
C FI NITE-ELEMENT METHOD C 
C C 
C F O· R C 
C C 
C THRE ENSIONAL C 
C C 
C PARAB IC FLOWS C 
C \ C 
C A, N 'D C 
C C 
C HEAT TRAN C 
C C 
C C 
C C 
C (CYFEM3DP) COMPLETED AT MCGILL UNIVERSITY 1983 C 
C C 
C :.;. C 
C--------------------------------------~-------------------------------C 

C ********************** 
C PROGRAM MAI N (CONTROL) 
C ********************** 
C 

IMPLICIT REAL*8(A-H~-Z) 
LOGICAL LSOLVE,LCPRIN,LPRINT,LPPRIN 

C----- - --- - ----- ------- - ----- ------- ----- - ----- ------ ------ ----- - ------
COMMON ASTORE ( 3528 ) , X (2 1 ,21 ) , y ( 21 , 2 1 ) , F ( 2 1 ,21 , 7 ) , FU ( 2 1 ,21 , 7 ) , 

1 FP ( 1 1 , 1 1 , 2) , RHO ( 2 1 ,21 ) ,GAM ( 2 1 ,21 ) , 
2 SC (21 ,21 ) , SP (21 ,21 ) ,ACU (21 ,21 ) , UHAT (21,21 ) , 
3 DIT 1 ( 1 0, 10, 2 ) , D2T 1 ( 10, 1 0,2) ,0 3T 1 ( 10, 10, 2 ) , 
4 D1T2(10,10,2),D2T2(10, 10,2),03T2(10,10,2) 

COMMON /THRD/Z, DZ , DPDZ, DPDZC, PBAR, SPMF, WFD, CNUFD (4) : LSTEP, l STEP, 
1 ITMAX, ISTART, IPROB 

COMMON /PARM/RELAX ( 7 ) , PRELAX 
COMMON /MONIT/LSOLVE(7) ,LCPRIN,LPRINT(7) ,LPPRIN 
COMMON /LABEL/TI TLE ( 7) , HDG (9 ) 
COMMON /INDX/NSWP(7) ,NPSWP(2) ,Ll,L2,L3,Ml ,M2,M3, 

1 LPI ,LP2,LP3 ,MP1 ,MP2,MP3 ,NFS,NFSMAX,NPS,NUME,IMONIT,LAST, 
2 LMID, MMID, LPMID, MPMID, l PREF, JPREF, l TER, lC (3) ,JC (3) , IDEAL, 
3 IR, l RP 1 , l RM 1 , JR, JRP 1 , JRM 1 , l PR , l PRP 1 , l PRP 2 , l PRM 1 , l PRM2 , JPR , J PRP 1 , 
4 JPRP2,JPRM1,JPRM2,NITMAX(7),NPITMX(2) 

COMMON /CONV /TOL ( 7 ) , PTOL ( 2) , DWDES, FCK ( 3,2) , DPDZCK 1 CHGTOL, CHGCK 
COMMON /RODBUN/S, RAD, SDR, WBAR, FAREA, PERIM, PHY ,DH, DHDR, XL, YL, TANPSI 

1 , PSI, FBU4 , FBU6, FB, FWAV , RHOA, CP 1 , DK 1 , DKDCP 1 , CP2 , DK2, DKDCP2 , 
2 RPOW,XPOW, YPOW,DMUA,REY ,QW, TAUW(21) ,TW,TI 

COMMON /RESULT /TABLE ( 200 , 7 ) 
C------ ----- ------ ----- ------- - ---- - ------------ ----- ------ - ----- - ------

DIMENSION W(21,21) ,WCK(3) 
DI MENS ION P ( 1 1 , 1 J ) , PC ( 1 1 r 1 1 ) 
EQUI VALENCE (F ( 1 , 1 , 3) , W ( 1 ) ) , (F P ( 1 ) , P ( 1 ) ) , (FP ( 1 , 1 , 2) , PC ( 1 ) ) 

C----- - ----- ------ ------ ------ ------ ------- ----- ----- - ---- - -::.'----- ------
C 

---------------- -----."-- -_._-------
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C RESTART FACILITY ISTART = 1 -----> START FROM STEP 1, ITER 1 
C 2 -----> START FROM STEP=I STEP 
C l TER=I TER+ 1 
C 3 -----> START FROM STEP=ISTEP+l, 
CITER 1 

C 
C---
C 
22 

C 

READ(5, 5) ISTART 
GOTO (20,22,22),lSTART 

READ PREVIOUS ANALYSES DATA ON DISK (CHANNEL 9) 

READ( 9) X, Y, F , FU,FP, D1Tl , D2Tl ,D3Tl ,D 1 T2,D2T2 ,D3T2 , RELAX, PRELAX, 
1 Z, DZ, DPDZ, PBAR, SPMF , XL, YL , TI TLE, TOL , PTOL, DWDES, CHGTOL , PR, ODPR, 
2 FBU4,FBU6,ZNM2,ZNMl ,WNM2,WNMl ,RHOA,CP1,DKl ,DKDCPl ,DMUA,REY,QW, 
3 CP2 ,DK2 , DKDCP2,S, RAD ,SDR, FAREA , PERIM, PHY, DH ,DHDR, HDG, WFD, CNUFD, 
4 DNUDES, TW, TI , TABLE, PSI, TANPSI , l PROB, NSWP, NPSWP, L 1 ,L2, L3 ,Ml, M2 ,M3, 
5 L Pl, LP 2 1 LP 3 , MP 1 , MP 2 , MP 3 , NF SMAX , l MON l T , LAS T , LMI D, MMI D, 
6 LPMID, MPMID, l TER, l PREF, JPREF, l STEP, l TMAX, LSTEP, le ,JC, IDEAL, 
7 IR,IRP1 ,IRM1,JR,JRP1,JRMl ,IPR,IPRPl ,IPRP2,IPRMl , IPRM2,JPR, 
8 J PRP 1 , JPRP2 , JPRMl , JPRM2 , NI TMAX , NPI TM.x, NFSMT , 
9 LSOLVE p LCPRIN, LPRI NT ,LPPRIN 

C--- RESET CONTROL PARAMETERS 
C 

C 
C--­
C 
20 

CALL RESET 
CALL PRTINP 
IF ( l ST ART. EQ e 3) GOTO 9 
GOTO 10 

NEW START (I STEP= 1 ; l TER= 1 ) 

CALL DEFVAL 
CALL GRID 
CALL START 
CALL PRTINP 

C------- ------ ------ ------ ----- ------- ----------- ------ ------ ----------
C 
C--- START NEW STEP 
C 
9 
C 

l STEP=I STEP+ 1 

c--- SOLVE FOR THE FLOW FIELD FIRST 
C 

c 

NF SMT=NF SMAX 
NFSMAX=3 

C--- REDUCE P AND PC BY THEIR AVERAGE VALUE 
C 

18 

PAV=O.DO 
PCAV=O.DO 
DO 1 8 J P = 1 , MP 1 
DO 18 l P= 1 , LP 1 
PAV=PAV+P(IP,JP) 
PCAV=PCAV+PC ( I P, Jp) 
PAV=PAV/DFLOAT (LPl *MP1) 
PCAV=PCAV/DFLOAT(LPl *MP1) 
DO 70 J P = 1 , MP 1 
DO 70 I P= 1 , LP 1 
p( l P,JP) =p(Ip, JP)-PAV 

- ---------------- ---------~~,--------------



( 

70 PC(IP,JP)=PC(IP,JP)-PCAV 
C 

DO 8 NF= 1 ,NFSMT 
DO 8 J= l ,MI 
DO 8 1=1 , LI 

8 FU(I,J,Nt:')=F(I,J,Nf) 
C 
C--- DZ STEP SELECTOR 
C 

IF (1 STEP • GT • 3) CALL D2SEL 
Z= Z+DZ . 

1 5 WR 1 TE ( 6 , 35) l 5 TEP, Z , D 2 
TABLE(rSTEP,l )=2 
ITER=O 

C 
10 CONTINUE 

l TEftdI TER+ 1 
WRITE(6,30) ITER 

" 

C , 
C--- OVERALL LOOP CONVERGENCE MONITOR 
C 

DO 12 NF= 1,2 
DO 12 N= 1 ,3 

12 FCK(N,NF)=F(IC(N),JC(N),NF) 
DO 16 N= l ,3 

16 WCK(N)=F(IC(N) ,JC(N) ,3) 
DPDZCK=DPD2 

C 
C--- FORM DISCRETIZATION EQUATIONS AND SOLVE 
C 

C 
C 

CALL COEFF 

C--- CONVERGENCE CHECK (BASED ON THE MAXIMUM 
C CHANGE l NU, V, W AND OP /DZ ) 
C 

l F ( l STE P • EQ. 1 • AND. 1 TER. BQ • 1) GOTO 50 
CHGCK=O.DO 
DO 700NF=I,2 
DO 700 N= 1,2 
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700 CHGCK=DMAXI (CHGCK,DABS( (F (IC(N) , JC(N) ,NF)-FCK(N,NF) )/FCK(N,NF») 
DO 710 N= 1,3 

710 

C 

C 
50 

C 
C---
C---
C 
14 

CHGCK=DMAXI (CHGCK, DABS( (F ( 1 C (N) , JC (N) ,3 )-WCK (N» /WCK (N) ) ) 
CHGCK=DMAX 1 (CHGCK, DABS ( (DPDZ-DPDZCK) /DPDZCK) ) 
WRI TE ( 6, 300) CHGCK, W ( LI, Ml) 

IF (CHGCK • LE. CHGTOL ) GOTO 1 4 

IF (ITER.LT.ITMAX) GOTO 10 
GOTO 25 

AT THIS POINT, THE FLOW FI ELD AT ISTEP MAY BE CONSIDERED CONVERGED 
TACKLE THE HEAT TRANSFER PROBLEMS NOW 

CONTINUE 
PBAR=PBAR+DPDZ *DZ 
TABLE (I STEP, 2) =PBAR 
TABLE(rSTEP,3)=W(Ll ,Ml) 



( 

( 

l c. 

c, 
C---
C 

c 

NFSMAX=NFSMT 
LSOLVE( 1) = .FALSE. 
LSOLVE (2) =. FALSE. 
LSOLVE (3) = .FALSE. 

1 

MONITOR THE TEMPERATURE PROBLEM 

IMONTT=IMONIT 
IMONIT=l 

C--- FORM THE DISCRETIZATION EQUATIONS FOR TEMPERATURE AND SOLVE 
C 

C 

CALL COEFF 
IMONIT=IMONTT 

C--- CALCULATE THE NUSSELT NUMBER CORRESPONDING TO THE DIFFERENT 
C--- TEMPERATURE PROBLEMS' 
C 

CALL NUCALC 
C 

CALL OUTPUT 
C 
C--- RESET CONTROL PARAMETERS FOR NEXT STEP • SOLVE FOR THE 
C--- FLOW FI ELD FI RST - THEN THE FOUR HEAT TRANSFER PROBLEMS 
C 

c 

LSOLVE ( 1 ) = • TRUE • 
LSOLVE (2) = . TRUE. 
LSOLVE ( 3) = . TRUE • 
IF (W(Ll ,Ml) .GE. (.99DO*WFD») GOTO 27 
IF (I STEP. LT. LSTEP) GOTO 9 

C--- DUMP DATA ON DISK (CHANNEL 10) 
C 

296 

fi 

27 WRITE( 10) X, Y, F, FU ,FP, Dl Tl ,D2Tl ,D3Tl ,01 T2 ,D2T2 ,D3T2 , RELAX, PRELAX, , 

C 
C--­
C--­
C 
25 

1 Z, DZ ,OPDZ , PBAR, SPMF, XL, YL, TITLE, TOL, PTOL,DWDES ,CHGTOL, PR ,ODPR, 
2 FBU4 ,FBU6, ZNM2, ZNMl , WNM2, WNMl , RHOA,CP 1 , OK 1 , DKDCPl " A, REY ,QW, 
3 CP2, DK2, DKDCP2 , S, RAD, SDR, F AREA, PERIM,'PHY ,DH, DHDR, HDG WFD ,CNUFD, 
4 DNUDES,TW,TI,TABLE,PSI,TANPSI,IPROB,NSWP,NPSWP,Ll ,L2, 3,M1,M2,M3, 
5 Lp 1 , LP2, LP3, MP 1 , MP2, MP3 ,NFSMAX, I MONIT, LAST, LMID,MMID, 
6 LPMID,MPMID, ITER,IPREF ,JPREF, ISTEP, ITMAX,LSTEP,IC, JC, l, EAL, 
7 IR, IRP1 ,IRMl ,JR,JRPl ,JRM1, IPR,IPRP1 ,IPRP2,IPRM1 ,IPRM2,JPR, 
8 JPRP1 ,JPRP2, JPRM1 ,JPRM2 ,NI TMAX, NPITMX, NFSMT, 
9 LSOLVE, LCPRIN, LPRINT, LPPRI N 

WRITE (6,40) ISTEP,ITER 
STOP 

AFTER ITMAX ITERATIONS, THE FLOW FIELD HAS NOT CONVERGED 
DUMP IMPENDING DATA ON DISK FOR RESTART WITH MORE l TERATI ONS 

WRITE(6,100) ITMAX 
GOTO 27 

C-- -- ----- - ----- ----- -- --- - - - ---- - --- -- - ---------- - ----- - ----- - ----- - ---
C 
C--- FORMAT STATEMENTS 
C 
5 
30 

FORMAT ( Il) 
FORMAT(///, 3X,' ******************' ,/3X, 

\ 
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'*', 16X,'*' ,/3X, '* ITERATION' ,14,' *', 
2 /3X,' *', 16X, '*' ,/3X, 18 ('*'» 

35 FORMAT(//////,lX,131('='),//3X,'ISTEP = ',I3,//3X,'Z =' 
1 1 PO 1 5 • 7 , / / , 3 X, , D Z = " 1 PD 1 5 • 7 , / /) 

40 FORMAT (/ / / /4 5X, 44 ( , *' ) , 
1 /, 45X , , *' ,4 2X, , *' , 
2 /,45X, '*', 'DATA DUMPED ON RECORD 10 FOR ISTEP = ',I3,2X,'*', 
3 /, 45X , , *, , l TER = " l 3 , 2X, , *' , 
4 /,45X,'*',42X,'*' ,/,45X,44('*'» 

1 00 FORMAT (/ / /7X, 'MAXIMUM NUMBER OF ITERATIONS = " I 3,' EXCEEDED') 
300 FORMAT (/3X, 'MAX. CHANGE IN (U, V,W , OP/DZ) = ',lP01S.7, 

1 2X,' CENTRE POINT W = " 1 PD15. 7) 
END 

C****** ***** ***** * ************ ***** ****** * ***** ****** ***** * ****** ***** ** 
SUBROUTINE DZSEL 

C***** ****** ***** * ****** ****** * **** * ****** ***** * ***** ****** ****** ***** ** 
IMPLICIT REAL*a(A-H,O-Z) 
LOGICAL LSOLVE ,LCPRIN ,LPRIN',r, LPPRIN 

C - - - - - - - - - - - - - - - - - - - - - - - - -,- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
COMMON ASTORE ( 352 B ) , X ( 2 1 , 21 ) , y ( 2 1 , 2 1 ) , F ( 2 1 , 21 , 7 ) , FU ( 2 1 , 21 , 7 ) , 

1 FP (11 1 1 1 ,2) , RHO ( 2 1 ,21 ) , GAM( 21 ,21 ) , 
2 SC ( 2 (, 21 ) , S P (21 , 2 1 ) , ACU ( 21 ,2 1 ) , UHAT ( 21 ,21 ) , , 
3 Dl T 1( 1 0 r 10, 2) , D2T 1( 10, 1 0,2) , D 3T 1( 1 0 , 10,2) , 
4 D1T2( 10}.-rO, 2),D2T2(10, 10,2),D3T2( 10, 10,2) 

COMMON /THRD/Z ,DZ , DPDZ, DPDZC, PBAR, SPMF 1 WFD, CNUFD (4) , LSTEP, l STEP, 
1 l TMAX , l START , l PROB 

COMMON /PARM/RELAX ( 7 ) , PRELAX ( 
COMMON /MONIT/LSOLVE(7) ,LCPRIN ,LPRINT(7) ,LPPRIN 
COMMON /LABEL/TI TLE ( 7 ) , HDG ( 9) , 
COMMON /INDXjNSWP( 7) ,NPSWP(2), Ll ,L2, L3,Ml ,M2,M3, 

1 LPl ,LP2,LP3 ,MPl ,MP2,MP3 ,NFS,NFSMAX,NPS,NUME,IMONIT,LAST, 
2 LMI D, MMI D, L PMI D, MPMID , l PREF , J PREF , l TER, r C ( 3) , JC ( 3) , IDEAL, 
3 IR, l RP 1 , l RM 1 , JR, JRP 1 , JRM 1 , l PR , r PRP 1 , l PRP2 , l PRM 1 , l PRM2 , JPR, JPRP 1 , 
4 JPRP2,JPRMl ,JPRM2,NITMAX(7),NPITMX(2) 

COMMON /CONV JTOL (7) , PTOL (2) , DWDES, FCR (3,2) , DPDZCK, CHGTOL 1 CHGCK 
COMMON /RODBUN/S, RAD, SDR , WBAR , F AREA , PERI M, PHY , DH , DHDR , XL, YL , TAN PS l 

l,PSI ,FBU4,FBU6,FB,FWAV,RHOA,CPl ,DKl ,DKDCPl ,CP2,DK2,DKDCP2, 
2 RPOW, XPOW, YPOW,DMUA,REY , QW, TAUW( 21 ) , TW, TI 

COMMON /RESULT/TABLE(200,7) 
C 
C--- DZ SELECTION USING A LINEAR EXTRAPOLATION 
C 

ZNM1=TABLE(ISTEP-l, 1) 
ZNM2=TABLE(ISTEP-2, 1) 
WNMl =TABLE (1 STEP-l ,3) 
WNM2=TABLE ( l STEP- 2, 3) 
Cl=(WNM2-WNMl )/(ZNM2-ZNM1) 
C 2=WNM2 -C 1 * ZNM2 
IF «WNM1+DWDES).GT.WFD) DWDES=WFD-WNMl 
DZ= (WNM 1 +DWDES-C2) /C l-ZNM 1 
RETURN 
END 

C****** ****** ***** ******* ***** * ***** ****** * ***** ******* ***** ***** * ****** 
SUBROUTINE USER 

C****** ****** *********** * ***** * ***** ******* **** * *********** * ***** * ****** 
C 
C 
C 

USER SPECIFI ED PROGRAM 

1\ 

- - --------- -------- ~----_.- ----------
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

NAME 

GRID 
START 

OUTPUT 
DENSE 
GAMSOR 

BOUND 
BTSVEL 

PBOUND 
FLUX 

DESCRI PTI ON 

GRID SPECIFICATION 
INPUT CONTROL PARAMETERS 
AND INITIALIZATION OF DEPENDENT' VARIABLE 
ARRAYS (+I NI TIAL CONDI TIONS) 
PRI NTS OUTPUT 
SPECIFIES DENSITY VALUES FOR EACH SUBELEMENT 
SPEeI FIES VALUES FOR GAMMA AND SC AND SP 
FOR EACH SUBELEMENT 
SPECIFIES THE BOUNDARY CONDITIONS 
TREATMENT OF PSEUDOVELOCITIES AT THE 
BOUNDARY 
BOUNDARY CONDITIONS FOR PRESSURE 
CALCULATES THE FLUX AT WALL BOUNDARIES 

C----- ------ - ------ ----------------------- ----------------- - ------------
IMPLICI T REAL*S (A-H ,O-Z) \-
LOGICAL LSOLVE,LCPRIN, LPRINT, LPPRIN 
COMMON ASTORE(3528) ,X(21 ,21 ) ,Y (21,21) ,F(21 ,21,7) ,FU(21 ,21,7), 

1 FP( 11 , 11,2) , RHO( 21 ,21) , GAM( 21 ,21) , 
2 SC (21 , 21 ) , S P (21 , 2 1 ) , ACU ( 21 ,21 ) , UHAT ( 21 ,2 1 ) , 
3 D1Tl( 10,10,2),D2T1 (10,10,2),D3TH10,10,2), 
4 D1T2( iO,10,2),D2T2(10,10,2),D3T2(10,10,2) 

COMMON /THRD/Z ,DZ, DPDZ ,DPDZC, PBAR, SPMF, WFD, CNUFD (4) , LSTEP, l STEP, 
1 l TMAX , l START , l PROB 

COMMON /PARM/RELAX ( 7) , PRELAX 
COMMON /MONI T /LSOLVE (7) ,LCPRI N , LPRI NT (7) , LPPRI N 
COMMON /LABEL/TI TLE (7) , HDG (9) 
COMMON /1 NDX/NSWP ( 7 ) , NPS WP ( 2) , L l' , L 2 , L 3 , Ml, M2 , M3 , 

1 LPl ,LP2,LP3 ,MP1 ,MP2,MP3 ,NFS,NFSMAX,NPS,NUME,IMONIT,LAST, 
2 LMID,MMID, LPMID,MPMID, l PREF ,JPREF, l TER, le (3) ,JC (3) , IDEAL, 
3 IR,IRP1,IRM1 ,JR,JRPl ,JRMl ,IPR, IPRP1 , IPRP2, IPRMl , IPRMZ ,JPR,JPRP1, 
4 JPRP2,JPRM1,JPRM2,NITMAX(7),NPITMX(2) 

COMMON /CONV /TOL ( 7 ) , PTOL ( 2) , DWDES , FCK ( 3 , 2 ) , DPDZCK , CHGTOL, CHGCR 
COMMON /RODBUN/S, RAD, SDR , WBAR, F AREA , PERI M, PHY , DH , DHDR T XL, YL , TANPS l 

1 ,PSI,FBU4,FBU6,FB,FWAV,RHOA"CPl ,DK1 ,DRDCPl ,CP2,DK2,DKDCP2, 
2 RPOW, XPOW, YPOW ,DMUA,REY ,QW, TAUW( 21 ) ,TW, TI 

COMMON /RESULT /TABLE (200, 7) 
C--- DIMENSION AND EQUIVALENCE STATEMENTS 
C 

DIMENSION AC(21,21) ,AE(21 ,21),ANE(21 ,21),AN(21,21), 
1 AW (21 , 21 ) ,ASW (21 , 2 1 ) ,AS ( 21 ,21 ) , ACON ( 21 ,21 ) 
DI MENS ION APC ( 11 , 1 1 ) , APE ( 1 1 , 1 1 ) , APNE ( 1 1 , 1 1 ) , APN ( 1 1 , 1 1 ) , 

1 APNW{ 11,11) ,APW( 11,11) ,APSW( 1 i ,11) ,APS( 11,11 f,APSE( 11 ,11 l', 
2 APENE ( 1 1 , 1 1 ) , APNNE ( 11 , 1 1 ) , APWSW ( 1 l , 1 1 ) ,APS SW ( 1 l , 1 1 ) , APCON ( 1 1 , 1 1 ) 
DI MENS ION U ( 2 1 ,21 ) , V (21 , 2 1 ) , W ( 2 1 ,21 ) , WU ( 21 , 21 ) , P ( 1 1 , 1 1 ) , PC ( t 1 , 11 ) , 

1 VHAT ( 2 1 , 2 1 ) , A CV ( 2 1 , 2 1 ) , WHAT ( 2 1 , 2 1 ) 
EQUIVALENCE (ASTORE ( 1 ) , AC ( 1 ) ) , (ASTORE (442) f AE ( 1 ) ) , (ASTORE ( 883), 

1 ANE ( 1 ) ) , (ASTORE ( 1 324) ,AN ( 1 ) ) , (ASTORE ( 1765 ) , AW ( 1 ) ) , 
2 (ASTORE(:2206) ,ASW( 1», {ASTORE (2641) ,AS( 1) ), (ASTORE( 3088), 
3 ACON( 1 ) ) 

EQUIVALENCE (ASTORE ( 1 ), APC (1) ) , (ASTORE( 122) , APE ( 1 ) ), (ASTORE (243) , 
1 APNE( 1», (ASTORE( 364) ,APN( 1» , (ASTORE(485) , APNW ( 1», 
2 (ASTORE (606) , APW( 1 ) ) , (ASTORE( 727), APSW( 1 ) ), (ASTORE ( 84'8), 
3 APS( 1) ) , (ASTORE( 969) ,APSE( 1) ) , (ASTORE( 1090) ,APENE( 1) ) , 
4 (ASTORE ( 1 21 1 ) , APNNE ( 1 ) ) , (ASTORE ( .1 332 ) , APWSW ( 1 ) ) , 

~~ ____ --________________________________ ---_______ ~ ________________ ~i 



( 

1 
1 

C 

./ 

5 (ASTORE(1453) ,APSSW(l», (ASTORE(1574),APCON(l» 
EQUI VALENCE (F ( 1 ) , tH 1 ) ) , (F ( 1 , 1 , 2) , V ( 1 ) ) , (F ( t , 1 ,3 ) , W ( 1 ) ) 
EQUIVALENCE (FU(l,1 ,3),WO( 1» 
EQUIVA~ENCE (FP(I),P(l», (FP(l, 1,2),PC(1» 
EQUI VALENCE (SC ( 1 ) , VHAT ( 1 ) ) , (SP ( 1 ) , ACV ( 1 ) ) , (SC ( 1 ) , WHAT ( 1 ) ) 

C--- ADDITIONAL DIMENSION AND EQUIVALENCE STATEMENTS 
C 

DI MENS l ON ACB ( 21 ) ,AEB ( 2 1 ) , ANEB ( 2 1 ) ,ANB ( 2 1 ) , 
1 ASB(21) ,ACONB(21) 
DIMENSION CVAREA(21 ,21) 
EQUIVALENCE (ACU( 1) , CVAREA (1» 

299 

r ---::: :::::::------------r ----T -------------------------------.--
ENTRY GRID 

C ********** 
C r 
C--- READ PROBLEM AND GRID SPECIFICATIONS (CHANNEL 5) 
C 

C 

READ ( 5 , 1 0 1 0) HDG 
READ ( 5 , 1 020) I PROB, L Pl, MP 1 
IF (I PRO B • EQ. 1) READ ( 5, 1 030) XL, YL, XPOW , YPOW 
IF (I PRO B • EQ. 2) READ ( 5 , 1 030) RAD, SDR , PS l , RPOW 
READ( 5,1040) (TITLE (NF) ,NF= 1,7) 

C--- CONVERT PSI TO RADIANS 
C 

C 

PHY=DATAN ('1 • ODO) *4. OnD 
PSI =PSI/l 80.DO*PHY 
CALL GRI DCT 
CALL DEFGRD 

C--- GENERATE THE VELOCITY NODES ANO n COEFFICIENTS 
C 

CALL DCALC 
RETURN 

C- - ------ ----- - ----- - ----- - ----- ----- - ------ ------ ----------::- ----- - -----
C *** ***** * ** 

ENTRY START 
~ 

C *********** 
C 
C--- PROBLEM SPECI FI CATION 
C 

WFD=2.123DO 
REY= 1.03 
DMU A = 2,0 • D - 6 
WBAR=l.DO 
RHOA=REY*DMUA/WBAR/DH 
DK 1 = 0 • 026 5DO 
OK2=0.0651D0 
CP 1 =OK 1 *0. 72DO/DMUA 
CP2=DK2* 3 • DO/DMUA 
DKDCP 1 =DK 1 /Cp, 
DKDCP2=DK2/CP2 
QW=200.DO 
SPMF=RHOA *FAREA 

+---~ - ----~ 

, , 
~; 



3.00 

,1 
tl l 

TW=60.DO 
TI=20.DO 

( C 
C--- INI TIAL STEP SI ZE 
C 

DZ= 1.751 1905D-5 
IDEAL=25 
Z=O .DO 
ISTEP=O ' , 

C, 
'C--- CONTROL PARAMETERS 
C 

LSTEP=l 
ITMAX=10 
LSOLVE( 1) =.TRUE. 
LSOLVE ( 2 ) = • TRUE. 
LSOLVE ( 3 ) = • TRUE • 
LSOLVE (4) =. TRUE. 
LSOLVE (5) =. TRUE. 
LSOLVE (6) =. 'l'RUE. 
LSOLVE(7) =.TRUE. 
NFSMAX=7 
!:.PR l NT ( 1 ) = . TRUE • ~ " 
LPRINT( 2) =. TRUE. 
LPRINT( 3) =. TRUE. 
LPRINT(4) =.TRUE. 
LPRINT( 5) =. TRUE. 
LPRINT( 6) =. TRUE. 
LPRINT( 7) =. TRUE. 
LPPRIN=. TRUE. 
LCPRIN=. TRUE. 

C 
RELAX( 1) =0. 5DO 
RELAX(2) =0.,5DO 
RELAX( 3) =0. 7DO 
RELAX ( 4 ) = 1 • DO 
RELAX(5) = 1 .DO 
RELAX(6) = 1 .DO 
RELAX ( 7 ) = 1 • DO 
PRELAX=O • 8DO \-1$ 
IMONIT=l 
CALL MONCON 

C 
CHGTOL= 1 0 D-4 
DWDES=(WFD-l .00) /DFLOAT(IDEAL) 

c , 
NITMAX(4) =30 1 
NI TMAX( 5) =30 

1 
NITMAX(6) =30 
NITMAX( 7) =30 

<, NSWP ( 1 ) = 1 

l NSWP (2) = 1 

( 
NSWP (3) = 1 1 
NSWP (4)=5 1 
NSWP (5)=5 

l 

NSWP (6)=5 
NSWP (7) =5 
NPSWP ( 1) = 1 

II ---



( 

( 

c 

NPSWP( 2)=5 
NPITMX( 1 )=1 0 
NPITMX(2)=20 
TOL ( 4 ) = 1 ;0- 1 2 
TOL ( 5 ) = 1 .0- 1 2 
TOL ( 6 ) = 1 .0- 1 2 
TOL ( 7 ) = 1 .0- 1 2 
PTOL( 1 )=I.D-6 
PTOL( 2 )=I.D-6 
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! 
C--- INITIAL CONDITIONS AND INITIALIZATION'OF DEPENDENT VARIABLE!g 
C· 

100 
C 
C---
C 

DO 100 1=1, L 1 
DO 100 J=l,Ml 
UO,J) =0,.00 
FU ( l , J , 1 ) =0 • DO 
V (I , J ) = 0 • 00 
FU ( l , J , 2) =0 • DO 
CONTINUE 

ASSIGN INITI AL W-VALOES 

DO 50 J=l,Ml 
DO 50 I=2,L 1 

! 
f 

50 WU(I,J)=1.DO· 
DO 70 J=I,Ml 

70 WU(l,J)=O.DO 
C 
C--- INITIAL CONDITION FOR THE RECTANGULAR OUCT 
C 

85 
C 
c--­
C 
80 

1 10 

1 1 2 

IF (IPROB.NE. 1) GOTO 80 
DO 85 I=I,Ll 
WU(I,l)=O.DO 

CORRECTION OF THE W-VELOCITIES TO YI ELO THE CORRECT MASS FLUX 

CALMF == 0 .00 
DO 1 la J=1,M2 
JPl =J+ 1 
DO 110 1=I,L2 
IP1=I+l 0 

DET=X( l ,J)*Y (IP1,J ~+X.(IPl ,J)*Y{IPI ,JPl )+X( IPI ,JPl )*y( l ,J) 
1 -y( l ,J)*X( IP1,J )'-Y(1Pl ,J)*X(IPI ,JPl )-y( IPI ,JPl )*X( l ,J) 

EVOL=DIABS (DET) /6. DO " 
CALMF=CALMF,+ (WU( l , J) +WU ( l Pl ,J) +WU (1 Pl ,JPl ) ) *EVOL 
DET=X( l ,J)*Y (IPI ,JPl )+X( IPI ,JP 1 )*y( l ,JP1) +x(I ,JPl )*y( l ,J) 

1 -y( l ,J)*X( IP1 ,JPl )-y( IPI ,JPl )*X(I ,JPl )-Y(I,JPl )*X{ l ,J) 
EVOL=DABS (OET) /6. DO 
CALMF=CALMF+ (WU(1 ,J)+WU( IPI ,JPl l+wu( l ,JP1) )*EVOL 
CALMF = CALMF* RHOA 
F AC=SPMF /CALMF ' 
WRITE ( 6 , 112) CALMF, SPMF , FAC 
FORMAT(//3X, 'CALMF.= ',lPDI5.7,//3X, 'SPMF =",lPDI5.7, 

1 / / 3X, , F AC = " 1 PD 1 5.7) 

.. 

..... DO 120 J=l,Ml 

120 
DO 1 20 1= 1 , L 1 
WU(I,J) =WU(I , J)*FAC 
DO 130 J=I,Ml 

, ' • , 
! 

~ l . 
l 

-'- -- .. _-~--------------~----~ .~--------.;-



( 

/' 

( 

130 
e 
e---
'e 
e 

150 

154 

156 
158 

1 

160 1 

C 
e---
C 

105 

'" 
'~~ 

o • 

DO 130I"",Ll 
W (I , J ) =WU ( l , J ) 

l 

HEAT TRANSFER PROBLEM 

DO 150 J= l,Ml 
DO 150 1="2, L 1 
FU (I , J , 4 ) =TI 
FU CI , J , 6 } =TI 
DO 154 J= l,MI 
FU ( 1 , J , 4 ) =TW 

~. 

FU ( 1 , J , 6 ) = TW 
IF ( l PROB • NE. 1 ) GOTO 158 
DO 156 l = l,LI 

. FU ( l , 1 ,4 ) =TW 
FU CI , 1 ,6) =TW 
DO 160 J= l,Ml _ 0 

0 

DO 160 I=1,L 1 
F(I,J,4)=FU(I,J,4) 
F(I,J,6)=FU(I,J,6) 
FU{I,J,5)=TI 

. FU ( l , J , 7 ) =TI û 

F (I , J , S) =TI 
F ( l , J , 7) =TI 

BULl' TEMPERATURE CALCULATION 

DO 175 NFS=4,6,2 
CALL BULK 
IF (NFS.EQ.4) FBU4=FB 
IF (NFS.EQ.6) FBU6=FB 
CONTINUE 
DO 105 JP=l,MPI 
DO 105 IP=l,LPI 
P (I P , Jp) =0. DO 
PC ( l P , J P ) = 0 • DO 
PBAR=O.DO 
RETURN 

• 
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, 

" 

C-----------------------------~-----------------------------------------
e ************ 

ENTRY OUTPUT 
C ************ 

205 

210 

220 
230 

CpcLL PRINT 
ZSTAR=Z/DH/REY 
PBSTAR=PBAR/(0.5DO*RHOA) 
WRITE(6,20S) ZSTAR,RBSTAR 
FORMAT(/3X, 1 ZSTAR = 1 ,lPD1S.7,/3X,'PBSTAR = ',lPD1S.7) 
WRITE(6,210) 
FORMAT(/ 1 l' l ' , 1 3X, 'SUMMARY OF RESULTS 1 /, () 

1 2X, 1 l STEP 1 , 7X, 1 Z/DH/REY 1 , Q-." 

1 6X, 1 PBARSTAR " 6X,' W (L 1 , Ml) " 6X, 1 NUSSELT (4 J', 6X, 
1 'NUSSELT(5) ',6X,'NUSSELT(6) ',6X,'NUSSELT(7)'/,2X,lc25('-'» 
DO 220 IS=l,ISTE~ 
ZSTAR=TABLE(IS,l)/DH/REY 
PBSTAR=TABLE(IS,2)/0.SDO/RHOA 
WRITE (6,230) l S, ZSTAR, PBSTAR, (TABLE( l S, JT) , JT=3, 1') 
FORMAT(2X,I5,3X,7(lPD15.7,2X» 

" 1 

, 1 

j 

1 
1 
! 
!-

'1 

---------~------------------
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( 

" 'b 
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RETURN' 
c-------------------------------------------------------------------~---
c *********** 

ENTRY DENSE 
C *********** 

DO 300 1=1 ,L2 
DO 300 J= 1 ,M2 
RHO( l ,J)=,RHOA 

300 CONTI NUE 
REWW, ~ 

C-------------------------------------------~--------------------~------
C ************ 

ENTRY GAMSOR 
C ************ 

DO 400 J=1,M2 
DO 400 l = 1 , L 2 
scO ,J)=O.DO 

400 SP(I,J)=O.DO 
IF (NFS.GE.4) GOTO 410 
DO 420 J=1,M2 
DO 420 1=' , L2 

420 GAM(I,J}=DMUA 
RETURN 

410 <Q DRDCP=DKDCP 1 
IF (NFS.GE.6) DKDCP=OKDCP2 
DO 430 J=l ,M2 

G DO 4 30 1 = 1 , L 2 
430 GAM(I,J}=DKDCP 

RETURN 
C-----------------------------------------------------------------------
C *********** 

ENTRY BOUND 
C *********** 

503 

C 

502 
505 

500 

520 

IF (IPROB.EQ.l) GOTO 570 
GOTO (505,505,503,503,552,503,554),NFS 
DO 502 J = 1 , Ml' 
ACB ( J ) =AC ( 1 , J ) 
AEB(J)=AE( 1 ,J) 
ANEB(J}=ANE(l,J) 
ANB ( J ) =AN ( 1 , J) 
*** NOTE THAT AWB(J) AND ASWB(J) ARE NOT INCLUDED HE RE *** 
ASB ( J ) =AS ( 1 , J) 
ACONB(J)=ACON(l,J) 
1=1 
DO 500 J= l,Ml 
AC (1 , J ) = 1 • DO 
AE(I,J)=O.DO 
ANE (I , J) =0 • DO 
AN(I,J)=O.DO 
AW(I,J}=O.DO 
ASW(I,J)=O.DO 
AS(I,J)=O.DO 
ACON(I,J)=F(I,J,NFS) 
IF (NFS-2) 520,530,5~0 
I=Ll 
DO 525, J=l ,Ml 
AC (1 , J ) = 1 • DO 
AE (1 , J) =0. DO 

J 

~_.- -'--" -.. _-----------....---~._,-----

, , 
J 



( 

( 

ANE (I , J ) = 0 • DO 
AN(I,J)=O.DO 
AW(I,J)=O.DO 
ASW (r , J ) = 0 • DO 
AS(I,J)=O.DO 

525 ACON(I,J)=F(I,J,NFS) 
RE TU RN 

530 J= 1 
DO 535 I=2,Ll 
AC (I , J ) = 1 • DO 
AE(I,J)=O.DO 
ANE(I,J)=O.DO 
AN (I , J) =0. DO 
AW(I,J)=O.DO 
ASW(I,J)=O.DO 
AS(I,J)=O.DO 

535 ACON(I,J)=F(I,J,NFS) 
C 

304 
\, 

C SPECIAL PROCEDURE TO IMPLEMENT THE ZERO NORMAL VELOCITY CONDITION 
C AT THE TOP SYMMETRY LINE 
C 

537 

540 
552 

554 
550 

560 

C 
C--­
C 
570 
730 

732 
710 

DO 537 I=2,LI 
AC (I "M 1 ) = 1 • DO 
AE(I ,Ml )=O.DO 
ANE(1,Ml)=O.DO 
AN (I , Ml) =0. DO 
AW(I ,Ml )=O.DO 
ASW ( l , Ml) = 0 • DO 
AS(I ,Ml )=O.DO 
ACON(1,Ml)=TANPS1*F(I,Ml,l) 
RETURN 
RETURN 
CPC=CPI 
GOTO 550 
CPC=CP2 
DO 560 J= 1 ,M2 
JP1=J+l 
BFLUX=QW/CPC*0.5DO*DSQRT«X(1 ,JP1)-X(I,J)J**2+(Y(I,JP1)-Y(1,J» 

1 **2) 
ACON(1 ,J)=ACON(1 ,J)+BFLUX 
ACON(I,JPl )=ACON(l,JPl )+BFLUX 
RETURN 

RECTANGULAR DUCT BOUNDARY CONDITIONS 

GOTO (710,710,730,730,750,730,770) ,NFS 
DO 73 2 J = 1 , M 1 
ACB (J ) =AC ( 1 , J ) 
AEB(J)=AE( 1 ,J) 
ANEB ( J) =ANE ( 1 , J ) 
ANB (J ) =AN ( 1 , J ) 
ASB (J ) =-AS ( 1 , J,) 
ACONB(J)=ACON(l,J) 
1=1 
DO 712 J=l ,Ml 
AC (I , J) = 1 • DO 
AE(I,J)=O.DO 
ANE (r , J ) = 0 • DO 

~ - . ---- - ,. .. _-------------.----

) 



( 

( 

712 

714 

720 

722 

AN (I , J) =0. DO 
AW(I,J)=O.DO 
ASW(I,J}=O.DO 
AS (I , J) =0. DO 
ACON(I,J)=F(I,J,NFS) 
J=l ' 
DO 714 I=2,Ll 
AC (I , J ) = 1 • DO 
AE (r , J ) =0. DO 
ANE(I,J)=O.DO 
~N(I,J)=O.DO 
AW(I,J)=O.DO /-­
ASW(I,J)=O.DO 
AS (I , J) =0. DO 
ACON(I,J)=F(I,J,NFS) 
IF (NFS-2) 720,740,760 
l =L1 
DO 7 2 2 J = 1 " M 1 
AC ( l , J ) = 1 . DO 
AE(I,J)=O.DO 
ANE (I , J) =O\~~DO 
AN (1 , J) =0. DO 
AW(I,J)=O.DO 
ASW(I,J)=O.DO 
AS(I,J)=O.DO 
ACON(I,J)=F(I,J,NFS) 
RETURN 

740 J=Ml 

745 
760 
750 

DO 745 I=2,L1 
AC ( l , J ) = 1 . DO 
AE(I,J)=O.DO 
ANE (r , J ) = 0 . DO 
AN ( l , J ) =0 . DO 
AW(r,J)=O.DO 
ASW(I,J)=O.DO 
AS(I,J)=O.DO 
ACON(I,J)=F(I,J,NFS) 
RETURN 
CPC=CP 1 
GOTO 752 

770 CPC=CP2 
752 DO 754 J=1,M2 

JP1=J+l 
BFLUX=QW/CPC*0.5DO*(Y(1,JP1)-Y(1,J» 
ACON(1,J)=ACON(1,J)+BFLUX 

754 ACON(1,JP1)=ACON(1,JP1)+BFLUX 
DO 756 1=1,L2 
IP1=I+l 
BFLUX=QW/CPC*O.5DO*(X(1Pl,1)-X(I,1» 
ACON(1,l)=ACON(I,l)+BFLUX 

756 ACON(IP1,1)=ACON(IP1,1)+BFLUX 
RETURN 

305 

C-----------------------------------------------------------------------
C ************ 

ENTRY BTSVEL 
C ************ 
C 
C--- BOUNDARY TREATMENT OF PSUEDO VELOC1TIES . 

-_._---------------~ ----
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( 

, 

c 
IF (IPROB.EQ.1) GOTO 650 
IF (NFS-2) 600,610,620 

600 DO 602 1=1 ,L1 ,L2 
DO 602 J= l,Ml 
ACU(I ,J)=l .D30 

602 UHAT(1,J)=U(1,J) 
RETURN 

610 J=l 
DO 6 1 2 l = 1 , L 1 
ACV ( l , J)::; 1 . D30 

612 VHAT(1,J)=V(I,J) 
1=1 
DO 6 1 4 J = 2 , Ml 
ACV(I ,J)=l .0.30 

614 VHAT(1,J)=V(I,J) 
J=Ml 
DO 616 I=2,L1 
ACV (I , J ) ::; - 1 00. DO 

616 VHAT(I,J)=UHAT(I,J)*TANPS1 
RETURN 

620 DO 622 J=l ,Ml 
WHA T ( 1 , J ) = 0 • DO 

622 CVAREA(l,J)=O.DO 
RETURN 

c 
C--~ 

C 
650 
660 

662 

664 

670 

672 

674 

680 

682 

684 

RECTANGULAR DUCT GEOMETRY 

IF (NFS-2) 660,670,680 
DO 662 1=1 ,Ll ,L2 
DO 662 J= l,Ml 
ACU(I,J)=1.D30 
UHAT(I,J)=U(I,J) 
J=l 
DO 664 1=l,Ll 
ACU ( l , J ) = 1 • D 3 0 
UHAT(I,J)=U(I,J) 
RETURN 
DO 672 J = 1 , Ml, M2 
DO 672 I=l,Ll 
ACV ( l , J ) = 1 • D 3 0 
VHAT(I,J)=V(I,J) 
1=1 
DO 6 74 J = 2 , M 1 
ACV ( l , J ) = 1 • D 3 0 
VHAT(I,J)=V(I,J) 
RETURN 
DO 6 8 2 J = 1 , M 1 
WHA T ( 1 , J ) = 0 • DO 
CVAREA(l,J)=O.DO 
DO 684 I=2,Ll 
WHA~T ( l , 1 ) = 0 • DO 
CVAREA(I,l)=O.DO 
RETURN 
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, , 
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C-----------------------------------------------------------------------
C ************ 

ENTRY PBOUND 
c ************ , 

--------------------------------------
j; ., 

--------~~----------------~ 
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RETURN 
C-----------------------------------------------------------------------
C ************ 

C 
C 
C--­
C 

914 

916 

918 

940 

C 
915 

917 
920 
C 
C--­
C 

ENTRY NUCALC 
************ 

CALCULATION OF NUSSELT NUMBER 

DO 910 NFS=4,7 
CALL BULK 
GOTO (27,27,27,914,915,916,917),NFS 
FBU=FBU4 
FBU4=FB 
DKDCP=DKDCPI 
GOTO 918 
FBU=FBU6 
FBU6=FB 
DKDCP=DKDCP2 
CNU=RHOA*FAREA/DKDCP*DH/PER1M*(FB-FBU)/DZ/(TW-FB) 
WR1TE(6,940) NFS,FB,CNU,ISTEP 
FORMAT(/3X,'NFS = ',12,' BULK TEMPERATURE = ',lPD15.7, 
l' NU = ',1 PD 1 5. 7 " FOR l STEP = " l 3 ) 
TABLE(ISTEP,NFS)=CNU 
GOTO 910 

DK=DKI 
GOTO 920 
DK=DK2 
FWAV=O.DO 

AVERAGE WALL TEMPERATURE 

DO 950 J= l ,M2 
JP1=J+l 

950 FWAV=FWAV+0.5DO*(F(I,J,NFS)+F(1,JP1,NFS» 
1 * D S QRT ( ( X ( 1 , J PI) - X ( 1 , J) ) * * 2 + ( y ( 1 , J Pl) - y ( 1 , J) ) * * 2 ) 
IF (IPROB.NE.l) GOTO 954 
DO 9 52 l = 1 , L 2 
IP1=I+l 

952 FWAV=FWAV+O.5DO*(F(I, 1 ,NFS)+F(IP1, 1 ,NFS»* (X(IPl, 1 )-xU, 1» 
954 FWAV=FWAV/PERIM 

CNU=QW*DH/(FWAV-FB)/DK 
TABLE(isTEP,NFS)=CNU 
WRITE(6,940) NFS,FB,CNU,ISTEP 

910 CONTINUE 
RETURN 

27 STOP 
C------------------------------f---------------------------------------
C *********** 

ENTRY RESET 
C *********** 
C 
C--- RESET THE CONTROL PARAMETERS SET IN PREVIOUS ANALYSES 
C 

ITMAX=20 
LSTEP=3 
RELAX ( 1 ) = 0 • 7DO 
RELAX ( 2 ) = 0 • 7DO 

-----------~~----------------



RELAX ( 3 ) = 0 • 7 DO 
PRELAX= 1 .ODO 
LCPR1 N= . F ALSE. 

,308 

( LPPR1N=.FALSE. 

( 

IMON1T=O 
RETURN 

C----------------------------------------------------------------------
C 
C--- FORMAT STATEMENTS 
C 
1010 FORMAT(9AS) 
1020 FORMAT(3Il0) 
1030 FORMAT(4Dl0.0) 
1040 FORMAT(7(A8,2X» ,.. 
C 

END 
C***********************************************************~*********** 

SUBROUTINE SUPPLY 
C*********************************************************************** 

IMPLICIT REAL*a(A-H,O-Z) 
LOGICAL LSOLVE,LCPRIN,LPRINT,LPPRIN 
COMMON ASTORE ( 3528 ) , X ( 2 1 , 21 ) , y ( 2 1 , 2 1 ) , F ( 2 1 , 2 1 , 7 ) , FU ( 2 1 , 2 1 , 7 ) , 

1 FP ( 1 1 , 11 ,2) , RHO ( 21 ,21 ) , GAM ( 2 1 ,21 ) , 
2 SC ( 2 1 , 21 ) , 5 P ( 2 1 , 2 1 ) , ACU ( 2 1 , 2 1 ) , UHAT ( 2 1 , 2 1 ) , 
3 DIT 1 ( 10, 10,2) , D2T 1 ( 10, 10,2) , D3T 1 ( 10, 10,2) , 
4 Dl T2 ( 10, 10,2) , D2T2 ( 10, 10,2) , D3T2 ( 10, 10,2) 

COMMON /THRD/Z,DZ,DPDZ,DPDZC,PBAR,SPMF,WFD,CNUFD(4) ,LSTEP,ISTEP, 
1 1 TMAX, 1 START, 1 PROB 

COMMON /PARM/RELAX(7),PRELAX 
COMMON /MONIT/LSOLVE(7) ,LCPR1N,LPRINT(7) ,LPPR1N 
COMMON /LABEL/TITLE(7),HDG(9) 
COMMON /INDX/NSWP(7) ,NPSWP(2) ,LI ,L2,L3,Ml,M2,M3, 

1 LP1,LP2,LP3,MP1,MP2,MP3,NFS,NFSMAX,NPS,NUME,1MONIT,LAST, 
2 LMID,MMID,LPMID,MPMID,1PREF,JPREF,ITER,IC(3),JC(3),IDEAL, 
3 1 R , 1 RP 1 , 1 RM 1 , JR , JRP 1 , JRM 1 , 1 PR, 1 PRP 1 , 1 PRP 2 , 1 PRM 1 , 1 PRM2 , JPR , JPRP 1 , 
4 JPRP2,JPRMI ,JPRM2,NITMAX(7),NPITMX(2) 

COMMON /CONV/TOL(7),PTOL(2),DWDES,FCK(3 r 2),DPDZCK,CHGTOL,CHGCK 
COMMON /RODBUN/S,RAD,SDR,WBARrFAREA,PERIM,PHY,DH,DHDR,XL,YL,TANPSI 

1 rPSI,FBU4,FBU6,FB,FWAV,RHOA,CP1,DK1,DKDCP1,CP2,DK2,DKDCP2, 
2 RPOW,XPOW,YPOW,DMUA,REY,QW, TAUW(21),TW,TI 

C----------------------~------------------------------------------------
LOG I CAL LPR ( 9 ) \ 
DIMENSION W(21,21) 
DIMENSION FPR(21, 21,9) ,FPPR( 11,11,3) ,TITFPR(9) ,TITPPR(3) 
EQUIVALENCE (W( 1) ,F( 1,1,3» 
DATA T1TFPR(l)/'X-COORD '/,T1TFPR(2)/'Y-COORD '/ 
DATA T1TPPR/'XP-COORD', 'YP-COORD' ,'PRESSURE'/ 
EQUIVALENCE (FPR( 1) ,X( 1», (FPPR( 1) ,FP( 1» 

C *********** 

C 
10 
20 
21 
30 
3 1 
40 
50 

ENTRY PRINT 
*********** 
FORMAT(25X,26( '*' ) ,4X,A8 ,4X,26( '*'» 
FORMAT(SX, 3HI =,16,10111) 
FORMAT(7X,4HIP =,16,10111) 
FORMAT ( IX, 3HJ =) 
FORMAT ( lX,4HJP =) 
FORMAT(6X,I2,3X,IPllDl1.3) 
FORMAT (IH ) 

---------------------------------- ------~--



( 

309 

C-----------------------------------------------------------------------
LPR(l )=LCPRIN 
LPR(2)=LCPRIN 
DO 5 l = 1 ,NFSMAX 
LPR(I+2)=LPRINT(I) 

5 TITFPR(I+2)=TITLE(I) 
NPRMAX=NFSMAX+2 
DO 100 NPR=l,NPRMAX 
IF (.NOT.LPR(NPR» GOTO 100 
WRITE(6,50) 
WRITE(6,10) TITFPR(NPR) 
IBEG=-10 

110 CONTINUE 
IBEG=IBEG+l1 
IEND=IBEG+l0 
IF (IEND.GT.Ll) IEND=Ll 
WR l TE ( 6 , 50 )' 
WRITE(6,20) (I,I=IBEG,IEND) 
WR l TE ( 6 , 30 ) 
DO 1 20 J J = 1 , Ml 
J=Ml+1-JJ 
WRITE(6,40} J,(FPR(I,J,NPR),I=IBEG,IEND) 

120 CONTI NUE 
IF (IEND,LT.Ll) GOTO 110 

1 00 CONT l NUE 
IF (.NOT,LPPRIN) RETURN 
IF (.NOT,LCPRIN) GOTO 200 
DO 2 1 0 JP= 1 , MP 1 
J=2*JP-l 
DO 2 1 0 l P= 1 , LP 1 
I=2*IP-l 
FPPR(IP,JP,3)=X(I,J) 

210 FPPR(IP,JP,2)=Y(I,J) 
200 CONTI NUE 

LPR(3)=LPPRIN 
DO 300 NPR=1,3 
NPPR=4-NPR 
IF (.NOT.LPR(NPR» GOTO 300 
WRITE(6,50) 
WRITE(6,10) TITPPR(NPR) 
l BEG=-1 0 

3 10 CONTI NUE 
l BEG= l BEG+ 1 1 
IEND=IBEG+l0 
IF (IEND.GT.LP1) IEND=LPI 
WRITE(6,50) 
WRI TE (6,21) ('I P, l P= l BEG, l END) 
WR l TE ( 6 , 3 1 ) 
DO 320 JJ= 1 ,MPI 
JP==MP 1 + l-JJ 
WRITE(6,40) JP,(FPPR(IP,JP,NPPR),IP=IBEG,IEND) 

320 CONTINUE' 
IF (IEND,LT.LP1) GOTO 310 

300 CONTI NUE 
WRITE(6,330) PBAR,DPDZ 

330 FORMAT(//3X,'PBAR = ',1PDI5.7,//3X,'DP/DZ = ',lPD15.7,j) 
RETURN 

C-----------------------------------------------------------------------

- ------------------------------- ----~~-----------------



., 
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C 

C 
C 
C---
C 

C 
C---
C 
C 

************ 
ENTRY DEFGRD 
************ 

DEFAULT GRID 

IF ( l PROB . EQ • 2 ) 

IPROB=1 -----> 

DO 810 JP= 1 , MP 1 
J=2*JP-l 
DO 8 lOI P = 1 , L P 1 
I=2*IP-l 

GOTO 850 

RECTANGULAR DUCT 

X(I,J)=(DFLOAT(IP-l )/DFLOAT(LP2»**XPOW*XL 
810 Y(I,J)=(DFLOAT(JP-l )/DFLOAT(MP2) )**YPOW*YL 

RETURN 
C 
C--­
C 
850 

IPROB=2 -----> ROD-BUNDLE ARRAY 

S=RAD*SDR 
PHY=DATAN(1.DO)*4.DO 
OPSI=PSI/DFLOAT(MP2) 
TANPSI=DTAN(PSI) 
DO 860 JP= 1 ,MP 1 
J=2*JP-l 
PSIP=DFLOAT(JP-l)*OPSI 
RFINAL=S/OCOS(PSIP) 
RD1FF=RFINAL-RAD 
DO 860 l P= 1 , LP 1 
1=2*IP-l 

310 

860 
X(1,J)=(RAD+RDIFF*(DFLOAT(IP-l)/DFLOAT(LP2»**RPOW)*DCOS(PSIP) 
Y(I,J)=(RAD+ROIFF*(DFLOAT(IP-l)/DFLOAT(LP2»**RPOW)*DSIN(PSIP) 
RETURN 

C- - - - --- - --- - - - - - - -- - -- - - - - - -- - - - -- - - -- --------- - - -'-- - - --- - -- - --- - - - -- --
C *********** 

ENTRY DCALC 
C *********** 
C 
C VELOCITY NODES 
C 

410 

DO 410 l P= 1 , LP2 
I=2*IP-l 
IP1=I+l 
IP2=I+2 
DO 410 JP= 1 , MP2 
J=2*JP-l 
JP1=J+l 
JP2=J+2 
X(1Pl,J)=(X(I,J)~X(1P2,J»*0.5DO 
Y(IP1,J)=(Y(I,J)+Y(1P2,J»*0.5DO 
X (I Pl, JP 1 ) = (X (I , J) +X (I P2, JP2) ) *0.500 
y(IPl ,JPl )=(Y(1 ,J)+y(IP2,JP2) )*0.500 
x(I ,JPl )=(x(I ,J)+X(1 ,JP2) )*0.5DO 
Y(I,JP1)=(Y(I,J)+Y(I,JP2»*0.500 
DO 430 1=2,L2,2 
IP1=I+l 

t 
1----- - ---------~~.------------------~ 
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IM1=I-l 
x(I ,Ml )=(X(IMl ,Ml )+X(IPl ,Ml) )*0.500 

430 y(I ,Ml )=(Y(IMl ,Ml )+Y(IPl ,Ml) )*0. 5DO 
DO 440 J=2,M2,2 
JP1=J+l 
JM1=J-l 
X(Ll ,J)=(X(Ll ,JPl )+X(Ll ,JM1) )*0. SDO 

440 Y(Ll ,J)=(Y(Ll ,JPl }+Y(L1 ,JM1} }*O. 5DO 
C 
C CALCULATION OF THE COEFFICIENTS D FOR EACH TRIANGULAR ELEMENT 
C 

DO 420 JP= 1 ,MP2 
J=2*JP-l 
JP2=J+2 
DO 420 IP= 1 ,LP2 
·I=2*IP-l 
IP2=I+2 

C ****** 
C TYPE 1 
C ****** 

DET=X(I,J)*Y(IP2,J)+X(IP2,J)*Y(IP2,JP2)+X(IP2,JP2)*Y{I,J) 
1 -Y{I,J)*X(IP2,J)-Y(IP2,J)*X(IP2,JP2)-Y(IP2,JP2)*X(I,J) 
FAC=DABS(DET)/DET/24.DO 
Dl Tl (IP ,JP, 1 ) = (y( IP2 ,JP2) -y(IP2,J) ) *FAC 
D1Tl(IP,JP,2)=(X(1P2,J)-X{1P2,JP2»*FAC 
D2Tl (IP,JP, 1 )=(Y(1 ,J)-Y(IP2,JP2) )*FAC 
D2T 1 (1 P, JP ,2) = (X (1 P2 , JP2) -X (1 , J) ) *FAC 
D3Tl (IP,JP, 1 )=(Y(IP2,J)-Y(I ,J) )*FAC 
D3Tl (IP,JP,2)=(X(I ,J)-X(IP2,J) )*FAC 

C ****** 
C TYPE 2 
C ****** 

DET=X(I,J)*Y(IP2,JP2)+X(IP2,JP2)*Y(I,JP2)+X(1,JP2)*Y(I,J) 
1 -Y(I,J)*X(IP2,JP2)-Y(IP2,JP2)*X(I,JP2)-Y(I,JP2)*X(I,J) 
FAC=DABS(DET)/DET/24.DO 
D1T2(IP,JP,1)=(Y(I,JP2)-Y(1P2,JP2»*FAC 
D1T2(IP,JP,2)=(X(1P2,JPZ)-X(I,JP2»*FAC 
D2T2(IP,JP,1 )=(Y(1 ,J)-Y(I ,JP2) )*FAC 
D2T2(IP,JP,2)=(X(I,JP2)-X(I,J»*FAC 
D3T2(IP,JP, 1 )=(Y(1P2,JP2)-Y(I ,J) )'*FAC 
D3T2(IP,JP,2)'=(X(I ,J)-X(rP2,JP2) )*FAC 

420 CONTINUE 
C 
C 

311 

C--- CALCULAT10N OF FLOW AREA, PERIMETERS AND HYDRAUL1C D1AMETERS 
C 

FAREA=O.DO 
DO 450 J= 1 ,M2 
JP1=J+l 
DO 450 1=1 ,L2 
IP1=1+1 
FAREA=FAREA 

1 +DABS(XO ,J)*Y(IPl ,J)+X(IPl ,J)*Y(IPI ,JPl )+X(IPl ,JPl )*Y(I ,J) 
2 -y(I ,J)*X(IPl ,J)-Y(IPl ,J)*X(IPl ,JPl )-y(IPl ,JPl )*x(I ,J) )/2.DO 
3 +DABS(X(I ,J)*y(IPl ,JP1 )+X( IP1 ,JPl )*Y(I ,JPl )+x(I ,JPl )*YO ,J) 
4 -Y(I ,J)*X(IPl ,JPl )-Y(1Pl ,JPl )*X(I~JP1 )-y(I ,JPl )*xO ,J) )/2.DO 

450 CONTINUE 
C 

---- - ,---- ~------------------ ----~--------------------
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c--- WETTED PERIMETER 
C 

c 
PERIM=O.DO 

DO 470 J=l ,M2 
JPl =J+ 1 

470 PERIM=PERIM+DSQRT( (X( 1 ,JPl )-X( 1 ,J) )**2+(Y( 1 ,JPl )-y( 1 ,J') )**2) 
IF (IPROB.EQ.l) PERIM=XL+YL 
DH=4.DO*FAREA/PERIM 
RETURN 

C-----------------------------------------------------------------------
C ************ 

ENTRY DEFVAL 
c ************ 
C 
C SPECIFICATION OF DEFAULT VALUES 
C 

DO 500 NF= 1 , 7 
LSOLVE(NF)=.FALSE. 
LPRINT(NF)=.FALSE. 

500 RELAX(NF)=l.DO 
PRELAX= 1 • DO 
2=0.DO 
DZ=1.D-5 
PBAR=O.DO 
DPDZ=O.DO 
IMONIT=O 
ISTEP=O 
ITER=1 
ITMAX=10 
LAST=1 
LSTEP=l 
LCPRIN=.FALSE. 
LPPRIN=.FALSE. 
IPREF=l 
JPREF=l 
DO 5 1 0 NF = 1 , 7 
NSWP(NF)=l 
NI TMAX ( NF ) = 5 

"510 TOL(NF}=1.D-6 

C 
C--­
C 

C 

NPSWP ( 1 ) = 1 
NPSWP(2)=5 
NPI TMX ( 1 ) = 1 0 
NPITMX(2)=20 

DEFAULT MONITORING POINTS 

IC(1}=10 
IC(2}=6 
IC(3)=11 
JC ( 1 ) = 1 0 
JC(2)=6 
JC(3)=11 
IR=6 
JR=6 

DO 520 NP-l,2 
520 PTOL(NP)=1.D-6 

~---- ------------------------------------.-----



IDEAL=25 
CHGTOL= 1 .D-4 
RETURN 

) 
313 

C-----------------------------------------------------------------------
C ************ 

ENTRY GRIDCT 
C ************ 

LP2=LP1-1 
LP3=LPl-2 
MP2=MP1-1 
MP3=MP 1-2 
Ll=2*LP1-l 
L2=Ll-1 
L3=Ll-2 
Ml =2*MP1-l 
M2=Ml-1 
M3=Ml-2 
LMID=L1/2+1 
MMID=Ml/2+1 
LPMID=LPI/2+1 
MPMID=MPI/2+1 
RETURN 

C-----------------------------------------------------------------------
C 

ENTRY MON CON 
C 
C--- MONITORING CONSTANTS 

l RP1 =1 R+ 1 

C 

IRM1=IR-l 
JRPl =JR+ 1 
JRM1=JR-l 
l PR=LPMID 
IPRP1=IPR+l 
IPRP2=IPR+2 
l PRM 1 = l PR- 1 
IPRM2=IPR-2 
JPR=MPMID 
JPRP 1 =JPR+ 1 
JPRP2=JPR+2 
JPRM 1 =JPR- 1 
JPRM2=JPR-2 
RETURN 

C----------------------------------------------------------------------
C ********** . 

C 
C 
C 

C· 
C 
C 

ENTRY BULK 
********** 
BULK TEMPERATURE CALCULATION 

FB=O.DO 
DO 900 J= 1 ,M2 
JP1:=J+l . 
DO 900 1=1,L2 
IP1=1+l 

TYPE 1 .J 

EVOL=DABS(X<~I ,J)*Y(IPI ,J)+X(IPI ,J)*Y(IPI ,JPl )+X(IPI ,JP1 )*Y(I ,J) 



( 

( 

C 
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1 -y(1 ,J)*XOPl ,J)-y(IPl ,J)*X(IPl ,JPl )-Y(1Pl ,JPl )*x(1 ,J) )/6.DO 
FB=FB+(F(1,J,NFS)*W(I,J)+F(IP1,J,NFS)*W(IP1,J) 

1 +F(1Pl,JP1,NFS)*W(1Pl,JP1»*EVOL 

C TYPE 2 
C 

EVOL=DABS(X{I ,J)*Y(IPl ,JPl )+X(1Pl ,JPl )*Y(1 ,JPl )+X<r ,JPl )*YO ,J) 
1 - Y ( l , J ) * X ( l Pl, J Pl) - Y ( l Pl, J Pl) * X ( l , J Pl) - y (I , J Pl) * X ( 1 , J) ) /6 • DO 
FB=FB+(F(I ç J,NFS)*W(I,J)+F(IP1,JP1,NFS)*W(IP1,JP1) 

1 +F(I,JP1,NFS)*W(I,JP1»*EVOL 
900 CONTINUE 

FB=FB/FAREA 
RETURN 

C-----------------------------~-----------------------------------------
C ************ 

ENTRY PRTINP 
C ************ 
C 
C--- PRINT INPUT PARAMETERS 
C 

WRI TE (6, 1010) 
WRITE(6,1020) 
WRITE(6,1030) 
WRITE(6,1040) 
WRITE(6,1050) 
NP=l 

HDG,IPROB 
ISTEP,ITER . 
LP1,MP1,NFSMAX,IPROB,LSTEP,ITMAX,IDEAL 

WRITE(6,1060) NP,NPSWP(1),NPITMX(1),PTOL(1),PRELAX 
NP=2 
PRELA2= 1 . DO 
WRITE(6,1060) NP,NPSWP(2),NPITMX(2),PTOL(2),PRELA2 
WRITE(6,1070) 
DO 1500 NF=l,NFSMAX 
WRITE(6,1060) NF,NSWP(NF),NITMAX(NF),TOL(NF),RELAX(NF) 

1500 CONTINUE 
WRITE(6,1080) 
RETURN 

C-------------------------------------~---------------------------~----
C ' 
C--- FORMAT STATEMENTS 
C 
1010 

1020 

1030 
1040 

1050 

1060 
1070 

FORMAT ( , 1 ' , / / , 1 3X, 88 ( , *' ) , /, 1 3X, , *' ,8 6X, , * , , /, 
1 13X,'*' ,2X,'C 0 N T R 0 L - VOL UME FIN l T E - E L E' 
2 ,'MENT METHOD *',/,13X,'*',86X,'*',/, 
3 13X,'* FOR T H R E E - D 1 MEN S ION A L PAR A B' 
4 " 0 L l C F L 0 W S *',/13X,'*',86X,'*',/,13X, 
5 ' * AND H E AT' l'T R ANS FER', SIX, , *' , /1 3X, , *, ,8 6X, 
6 ' *' / 13X 88 ( , *, ) / / /) ", . 

FORMAT(7X,'TEST CASE' ,T31,':' ,T37,9A8,/7X,'---------' ,// 
1 7X,' l PROB = " Il) 
FORMAT(//7X,'STARTING FROM ISTEP = ' ,I3,//20X,'ITER = ',13//) 
FORMAT(//7X,'INPUT PARAMETERS :' ,//,7X,'----------------', 

1 //,T12,'LP1' ,T27,'MP1' ,T42,'NFSMAX' ,T57,'IPROB', 
2 /T12,13,T27,I3,T43,Il ,T59,Il, 
3 //,T12,'LSTEP' ,T27,'1TMAX' ,T42,'IDEAL' ,/,T13,13,T28,13,T43,13) 

FORMAT(//T12,'NP' ,T27,'NPSWP' ,T42,'NPITMX' 1 

1 T57,'PTOL' ,T72,'PRELAX') 
FORMAT(T12,12,T28,13,T43,13,T56,lPD9.2,T71,lPD9.2) 
FORMAT(//T12,'NF',T27,'NSWP' ,T42,'NITMAX' ,T57,'TOL' ,T72,'RELAX') 

I-~-~--'-' 
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1080 FORMAT ( 1H' ) 
END , 

C*********************************************************************** 
SUBROUTINE COEFF ~ 

C*********************************************************************** 
IMPLICIT REAL*8(A-H,O-Z) 
LOGICAL LSOLVE,LCPRIN,LPRINT,LPPRIN 
COt.fl·.!QN ASTORE ( 3528) , X (21 ,21 ) , y (21 ,21 ) , F (21 ,21 ,1) , FU (21 ,21 ,1) , 

1 F P ( 1 1 , 1 1 , 2) , RHO ( 2 1 , 2 1 ) 1 GAM ( 2 1 , 2 1 ) , 
2 SC(21 ,21) ,SP(21 ,21) ,ACU(21 ,21) ,UHAT(21 ,21), 
3 D 1 T 1 ( 10, , 0,2) , D2T 1 ( 10, 10, 2) , D3T 1 ( 10, 10,2) , 
4 D 1 T 2 ( 1 0 , , 0 , 2 ) , D 2T 2 ( 1 0 , 1 0 , 2 ) , D 3 T 2 ( 1 0, 1 0 , 2 ) 

COMMON /THRD!Z,DZ,DPDZ,DPDZC,PBAR,SPMF,WFD,CNUFD(4),LSTEP,ISTEP r 
1 I TMAX, I START, I PROE 
COMMON /PARM!RELAX(7),PRELAX 
COMMON /MONIT/LSOLVE(7),LCPRIN,LPRINT(7),LPPRIN 
COMMON /LABEL/TITLE(7),'HDG(9) 
COMMON /INDX/NSWP(7),NPSWP(2),L1,L2,L3,Ml,M2,M3, 

" LP 1 , LP2, LP3 ,MPl ,MP2 ,MP3, NFS ,NFSMAX, NPS , NOME, IMONI T, LAST, 
2 LMID,MMID,LPMID,MPMID,IPREF,JPREF,ITER,IC(3),JC(3),IDEAL, 
3 IR,IRP1,IRM1,JR,JRP1 ,JRM1,IPR,IPRP1,IPRP2,IPRM1,IPRM2,JPR,JPRP1, 
4 JPRP2,JPRMl ,JPRM2,NITMAX(7) ,NPITMX(2) • 

COMMON /CONV/TOL(1),PTOL(2),DWDES,FCK(3,2),DPDZCK,CHGTOL,CHGCK 
COMMON /RODBUN/S,RAD,SDR,WBAR,FAREA,PERIM,PHY,DH,DHDR,XL,YL,TANPSI 

1 ,PSI,FBU4,FBU6,FB,FWAV,RHOA,CP1,DK1,DKDCPl ,CP2,DK2,DKDCP2, 
2 RPOW,XPOW,YPOW,DMOA,REY,QW, TApw(21),TW,TI 

C-----------------------------------------------------------------------
DIMENSION AC (21 ,21 ) , AE (21 ,21 ) , ANE (21 ,21 ) , AN (21 ,21 ) , 

1 AW ( 21 ,21 ) , ASW ( 2 1 , 2 1 ) , AS ( 2 1 , 21 ) , ACON ( 2 1 , 2 1 ) 
DI MENS I ON U ( 2 1 r 2 1 ) , V ( 2 l , 2 1 ) , W ( 2 1 , 2 1 ) , WU ( 2 1 , 2 1 ) , p ( 1 1 , 1 t ) , PC ( 1 1 , 1 1 ) , 

1 VHA T ( 2 1 , 2 1 ) ,~ ACV ( 2 1 , 2 1 ) , WHAT ( 2 1 , 2 1 ) 
EQUIVALENCE. (ASTORE( 1) ,AC( 1», (ASTORE(442) ,AE( 1», (ASTORE( 883), 

1 ANE ( 1 ) ) , {ASTORE ( 1 324) , AN ( 1 ) ) , (ASTORE ( 1 765) , AW ( 1 ) ) , 
2 (ASTORE(2206),ASW(1»,(ASTORE(2647),AS(1»,(ASTORE(3088), 
3 ACON( 1» 

EQUI VALENCE (F ( 1 ) , U ( 1 ) ) , (F ( 1 , 1 ,2) , V ( 1 ) ) , (F ( 1 , 1 , 3) , W ( 1 ) ) 
EQUI VALENCE (FU ( 1 , t , 3 ) , WU ( 1 ) ) 
EQUI VALENCE (FP ( 1 ) , P ( 1 ) ) , '( FP ( 1 , 1 , 2) , PC ( 1 ) ) 
EQUIVALENCE (SC( 1) ,VHAT( 1», (Sp( 1) ,ACV( 1», (SC( 1) ,WHAT( 1» 

C-----------------------------------------------------------------------
DIMENSION XE( 3), YE( 3) ,XXP( 3) ,XPM( 3) ,XM( 3), m( 3) ,XIM( 3) ,XIH( 3)," , 

1 XI ( 3 ) , FO ( 3 ) , FM ( 3 ) , FH ( 3 ) , YMUL ( 3 ) , X 1 MOL ( 3 ) , UE ( 3 ) , VE ( 3 ) , UM (3 ) , VM~ 3') , 
2 CC ( 3 , 3 ) , BCC ( 3 ) , lE ( 3 ) , JE ( 3 ) ~ ::c-.=:-::r' \.J 

DIMENSION CVMASS(21,21),CVAREA(21 ,21) 
EQUIVALENCE (UHAT'( 1) ,CVMASS( 1», (ACU( 1) ,CVAREA( 1» 
DIMENSION NFSORD(7) l '. 

DATA NFSORD/3,1,2,4,5,6,7/ , 
C-----------------------------------------------------------------------
C 
C 
C 
C 
C· 

***************************************************** 
* CON V E C T l O~· - D I F FUS ION PAR T * 
******************~******************************** , J 

REWIND 8 
DO 1 00 NFT= 1 , NFSMAX 
NF=NFSORD (NFT) 
IF(LSOLVE(NF» GOTO 110 
GOTO 100 " 

I--------~~---- ----------------__ - __ _ 
lJ 
~ --_ .. _~,---------~ 
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110 CONTINUE 
C *********************************w**************************** 
C CALCULATION OF ALL COEFFICIENTS (CONVECTION-DIFFUSION PROBLEM) 
C ************************************************************** 

DO 105 J=l ,Ml 

105 

108 
107 
C 

DO 105 l = 1 , L 1 
AC (I , J ) = 0 • DO 
AE (I , J) = 0 • DO 
ANE (I , J ) = 0 • DO 
AN (I , J ) = 0 • DO 
AW (I , J) =0. DO 
ASW(I , J) =O.DO 
AS(I,J)=O.DO 
ACON(I,J)=O.DO 
IF ( NF • NE • 3) GOTO 1 07 
DO 1 08 J = 1 , Ml 
DO 108 l = 1 , L 1 
CVMASS(I,J)=O.DO 
CVAREA(I,~)=O.DO 
DO "1 20 NUME = 1 , 2 

i 
1 • 

C 
C 

SPECIFICATION OF THE DENSITY, GAMMA AND SOURCE TERMS 

NFS=NF 
CALL DENSE 
CALL GAMSOR 
DO 1 30 l = 1 , L 2 
DO 130J=1,M2 
RHOE=RHO ( l , J) 
GAME=GAM ( l , J) 

C 
C ASSIGN INDICES FOR EACH KIND OF TR'IANGLE 
C 

IP1=I+1 
JP1=J+1 
IE(l)=I 
JE ( 1 ) =J 
IF ( NOME. NE • 1 ) 

~ ****** 
C TYPE 1 
C ****** 

IE(2)=IPl 
~2)=J 
"-.!E{3-)=IP1 

JE (3) =JP 1 
GOTO 150 

C ****** 
C TYPE 2 
C ****** 
140 IE(2)=IP1 

C 

JE (2) =JP 1 
IE(3)=I 
JE(3)=JPl 

GOTO 140 

C COMPUTE THE CQORDINATES OF ORIGIN 0 
C 
150 XO= (X ( l E ( 1 ) , JE ( 1 ) ) +x ( lE (2) , JE ( 2) ) +X (I E ( 3) , JE ( 3 ) ) ) /3 • DO 

YO= ( y ( lE ( 1 ) 1 JE ( J ) ) + y ( l E ( 2) , JE ( 2) ) + y ( lE ( 3 ) , JE ( 3 ) ) ) /3 • DO 

- ~---- -----------------~- -----

_ i 
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c 
C SH I FT (ELEMENT) COORDS TO 0 
C 1 

c 
c 
C 
160 
C 
C 
C 

c 

DO 160 N=J ,3 
XE (N) =X ( I E (N) , JE (N) ) - XO 
YE(N) =y( l E (N), JE (N» -YO 

/ 
1 

ASSIGN VALUES FOR Z FOR THE CASE OF PURE DI FFUSI ON 

XI (N ) =XE (N ) 

AVERAGE VELoe 1 TY COMPONENTS IN ELEMENT 

UAV= (F (I E ( 1 ) , JE ( 1 ) , 1 ) + F (I E ( 2 ) , JE ( 2) , 1 ) + F ( IE ( 3 ) , JE ( 3) , 1 ) ) /3. DO 
VAV= ( F ( lE ( 1 ) , JE ( 1 ) , 2 ) + FOE ( 2 ) , JE ( 2) ,2) + F (I E ( 3 ) , JE ( 3 ) , 2) ) /3. DO 

C AREA OF ELEMENT (VOLUME WITH UNIT DEPTH)/3.DO 
\ C 

162 
C 

EVOL=DABS (XE( 1) *YE(2) +XE(2) *YE( 3) +XE( 3) *YE( 1 ) 
1 -XE ( 1 ) *YE ( 3) -XE ( 2) *YE ( 1 ) -XE ( 3 ) *YE ( 2) ) /6. DO 

RHOOD Z =RHOE/DZ * EVOL 
RS=-EVOL*SP (I , J) 
ASC=EVOL*SC (l, J) 
IF ( NF • NE • 3) GOTO 1 6 1 
DO 162 N= 1 ,3 
CVAREA (IE (N) ,JE (N) )=CVAREA (lE (N) , JE(N) ) +EVOL 
CVMASS (lE (N) ,JE (N) )=CVMASS (l E (N) , JE(N) ) +EVOL*RHOE 

C AVERAGE VELOC l TY IN ELEMENT 
C 
161 
C 

AVEL=DSQRT (UAV** 2+VAV** 2) 

C ELEMENT "PECLET NUMBER" 
C 

FAC=RHOE*AVEL/GAME 
IF (FAC .LE. 1.0-15) GOTO 170 

C 
C SPIN COORDS 
C 

1 

180 

190 

C 

COSA=UAV/AVEL 
SINA=VAV lA VEL L-

OO 1 80 N= 1 ,3 
XT=XE(N) 
YT=YE(N) 
XE (N ) =XT*COSA+YT* SINA 
YE(N) =YT*COSA-XT*SINA 
UE(N) =F OE (N) ,JE (N), 1 ) *COSA+F (IE(N) ,JE (N) ,2) *SlNA • 
VE (N ) =F (I E ( N') , JE ( N) ,2) * COS A - F ( lE ( N) , JE (N) , 1 ) * S 1 NA 
XMAX = DMAX 1 {XE ( 1 ) , XE ( 2 ) , XE ( 3 ) ) . 
DO 190 N= 1 , 3 
XXP (N) =DEXP (FAC* (XE(N) -XMAX) ) 
XPO==DEXP( -FAC*XMAX) 

C EXPONENTlAL FOR MIDDLE POINTS 
C 

XPM( 1 )=DSQ-RT(XXP( 2)*XXP(3» 
XPM( 2) =DSQRT(XXP ( 1 )*XXP (3» 
XPM( 3) =DSQRT(XXP ( 1 )*XXP (2» 

\ 



( 

\ 

( 

C 
C CALCULA TE Z (X I) AT NODES, MI DDLE AND HALF PO l NTS 
C 

DO 200 N=I,3 
XI (N) = (XXP (N) -1 • DO) /FAC 
XIM(N)=(XPM(N)-I.DO)/FAC 

200 XIH (N) = (DSQRT(XPM(N) *XPO) -1 • DO) /FAC 
170 CONTI NUE 
C 
C DETERMINANT 
C 

DET=XI ( 1 ) *YE (2) +XI (2) *YE (3) +XI (3) * YE ( 1 ) 
1 -XI (1 )*YE(3)-XI (2)*YE( 1 )-XI (3)*YE(2) 

FAC=-GAME/OET 
C ... 
C X-Y COORDS FOR MIDDLE POINTS 
C 

C 

XM ( 1 ) = (XE ( 2 ) + XE ( 3 ) ) /2 • 00 
YM( 1 ) = (YE ( 2 ) +YE ( 3 ) ) /2. DO 
XM(2)=(XE( 1 )+XE(3»/2.00 
YM ( 2 ) = ( YE ( 1 ) + YE ( 3 ) ) /2 • DO 
XM(3)=(XE( 1 )+XE(2»/2.00 
YM(3 )=(YE( 1 )+YE(2) )/2.00 
YMUL( 1 )=YE( 2)-YE( 3) 
YMUL ( 2 ) = YE ( 3 ) - YE ( 1 ) 
YMUL ( 3) =YE ( 1 ) -YE ( 2) 
XIMUL( 1 )=XI (2)-XI (3) 
XIMUL(2)=XI (3)-XI (1) 
XIMUL ( 3 ) =XI ( 1 ) -XI (2) 

C CONDUCTION PART OF THE COEF,FICIENTS (A) 
C 

DO 2 1 0 NN = 1 , 3 
DO 210 N= 1 , 3 

210 
C 

CC(NN, N) =FAC* (YM( N) *YMUL (NN) +XM(N) *XIMUL (NN» 

C TEST ELEMENT "PECLET NUMBER" 
C 

FAC=RHOE*AVEL/GAME 
IF (FAC .LE. 1.0-15) GOTO 220 

C 
C CALCULATE THE CONVECTION PART 
C 

.C 

\ 

C VELOCITIES COMPONENT (SPON) AT MIDDLE POINTS 
C 

UM(1 )=(UE(2)+UE(3),)/2.DO 
VM(1 )=(VE(2)+VE(3) )/2.DO 
UM(2)=(UE(1 )+UE(3) )/2.00 
VM(t2)=(VE(1 )+VE(3) )/2.DO 

- UM(3)=(UE(1 )+UE(2) )/2.00 
VM (,3 ) = (VE ( 1 ) + VE ( 2 ) ) /2 • DO 

C 
C CALCULATE FO/O (ALSO = GO/V) 
C 

FO(1)=XI(2)*YE(3)-Xt(3)*YE(2) 
FO( 2) =XI (3) *YE( 1 ) -XI ( 1 ) *YE( 3) 
FO ( 3 ) =XI ( 1 ) *YE (2) - XI ( 2 ) * YE ( 1 ) 

r 
( 

318 
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L 

( 

( 

RDDET=RHOE/DET 
DO 230 N= 1,3 
UH= (UM(N) +AVEL) /2. DO 
VH=VM(N)/2.DO 
YH=YM (N) /2. DO 
UXIAV=«UM(N)-AVEL)*XIM(N)+4.DO*(UH-AVEL)*XIH(N»/6.DO 
VXIAV= (VM(N)i*XIM(N)+4.DO*VH*XIH(N) )/6.DO 
UYAV=(UM(N)*YM(N)+4.DO*UH*YH)/6.DO 
VYAV=(VM(N)*YM(N)+4.DO*VH*YH)/6.DO 
DO 2 30 NN = 1 1 3 
FAV=UH*FO(NN)-UYAV*XlMUL(NN)+UXIAV*YMUL(NN) 
GAV=VH*FO(NN)-VYAV*XIMUL(NN)+VXIAV*YMUL(NN) 

230 CC (NN, N) =RDDET* (YM (N) *FAV-XM(N) *GAV) +CC (NN , N) 
e 
e ********************** 

- e BOUNDARY CONTRI BUTIONS 
e ********************** 

319 

e THESE ARE REMOVED SINCE THEY ARE ZERO IN THE CASE OF DUCT FLOWS 
e WI THOUT LEAKAGE 
2 20 I F ( NUME • NE. 1) GOTO 240 
e *************************************** 
e GENERAL ASSEMBL Y FOR TRI ANGLE OF TYPE 1 
e *************************************** 
e WRT (r,J) 

AC (l, J) =AC (I , J) +RS +CC (2,3) +CC (3,3) -CC (2,2) -CC (3,2) 
, +RHODDZ*WU(I,J) 

AE ( l , J ) =AE (I , J) +ec ( 2 , 3 ) -CC ( 2 , 2 ) 
ANE(I,J)=ANE(~,J)+CC(3,3)-CC(3,2) 
ACON(I,J)=ACON(I,J)+ASC+RHODDZ*WU(I,J)*FU(I,J,NF) 

C WRT (r +'1 , J ) 
AC ( l Pl, J ) =AC ( I P' , J ) + RS +CC ( 1 , , ) +CC ( 3 , 1 ) -CC ( 1 , 3) -CC ( 3 , 3 ) 

, +RHODDZ*WU(IP',J) 
AN(IP' ,J)=AN(IP1,J)+CC(3,' )-CC(3,3) 
AW ( l Pl, J ) =AW ( I Pl, J ) +CC ( 1 , 1 ) -CC ( 1 ,3) 
ACON(IPl ,J)=ACON(IPl ,J)+ASC+RHODDZ*WU(IPl ,J)*FU(IPl ,J,NF) 

C WRT (I + 1 ,J + 1 ) 
AC ( l Pl, JP 1 ) =AC (I P' ,JP 1 ) + RS+CC ( 1 , 2) +CC ( 2 , 2 ) -CC ( 1 , 1 ) -CC ( 2 , 1 ) 

, +RHODDZ*WU( 1 Pl ,JP 1 ) 
ASW( l l? 1 , JPl ) =ASW(r Pl, JP 1 ) +CC ( 1 ,2) -CC ( 1 ,1) 
AS (r Pl, JP 1 ) =AS ( l Pl, JP 1 ) +CC ( 2 , 2) -CC ( 2 , 1 ) 
ACON( I Pl , JPl ) =ACON (IPl ,JPl ) +ASC+RHODDZ*WU ( 1 Pl ,JP 1 ) *FU( 1 Pl ,JPl ,NF) 
GOTO 130 

C *************************************** 
C GENERAL ASSEMBLY FOR TRIANGLE OF TYPE 2 
C ********************** ***************** 
C WRT (I ,J) 
240 AC (I , J) =AC (I , J) +RS+CC (2,3) +CC (3, 3) -CC (2,2) -CC ( 3 ,2 ) 

1 +RHODDZ*WU( l ,J) 
ANE (I , J ) =ANE ( 1 , J) +ec ( 2 , 3 ) -CC ( 2 , 2 ) 
AN ( l , J ) =AN (I ,J) +CC ( 3 ,3) -CC ( 3 , 2 ) 
ACON(I,J)=ACON(I,J)+ASC+RHODDZ*WU(I,J)*FU(I,J,NF) 

C WRT (I + 1 , J + 1 ) 
At(IPl ,JPl )=AC(IPl ,JPl )+RS+CC( 1,1 )+ccC3, 1 )-CC( l,3)-CC(3,3) 

1 + RHODD Z *WU ( 1 Pl, JP 1 ) 
AW(IPl ,JPl )=AW(IPl ,JPl )+CC(3, 1 )-CC(3, 3) 
ASW (r Pl, JP 1 ) =ASW(r Pl, JP 1 ) +CC ( 1 , 1 ) -CC ( 1 ,3) 
ACON(r P 1 ,JPl ) =ACON (I Pl ,JPl )+ASC+RHODDZ*WU( 1 Pl ,JPl ) *FU( 1 Pl ,JP l,NF) 

C WRT (l, J + , ) 

---- - - <--, " -----------------~ ---,--- ------.----'--



1 

( 

AC (I , JP 1 ) =AC (I , JP 1 ) +RS+CC ( 1 ,2) +CC (2,2) -CC ( 1 , 1 ) -CC (2, 1 ) 
1 +RHODOZ*WU(I,JP1) 

AS ( l , JP 1 ) ::::AS ( l , JP 1 ) +CC ( 1 ,2) -CC ( 1 , 1 ) 
AE (I , JP 1 ) =AE (I , JP 1 ) +CC (2,2) -CC (2, 1 ) 
ACON(1,JP1}=ACON(I,JPI)+ASC+RHOOOZ*WU(I,JPl )*FU(I,JPl ,NF) 

130 CONTINUE 
120 CONTINUE 
C **************** 
C 
C 

UNDER RELAXATION 
**************** 

00 260 J== l,Ml 
00 260 1:::: 1 , L 1 
AC(I,J)==AC(1,J)/RELAX(NF) 

260 ACON(I ,J)=ACON(I ,J)+AC(I ,J)*( 1 .OO-RELAX(NF» *F(I ,J,NF) 
C 

IF (NF-2) 300,400,500 

320 

C- -- --- - --"-- - - -- --- - -- ---- - ----- - --- - - ------------------- -- - - -- - --- - ----
C UHAT COMPUTATION 
C----------------------------------~------------------------------------
C 
C BOUNOARY POINTS 
C 
300 

310 

320 

UHAT(l,l )=(AE(l,I)*U(2,1)+ANE(1 ,1)*U(2,2)+AN(l,I)*U(I,2) 
1 +ACON(l,l»/AC(l,l) 
UHAT ( LI, 1 ) == (AN ( LI, 1 ) * U ( LI, 2 ) + AW ( L 1 , 1 ) * U ( L 2 , 1 ) 

1 + ACON ( LI, 1 ) ) / AC ( LI, 1 ) 
UHAT(LI ,Ml )=(AW(LI ,Ml )*U(L2,Ml )+ASW(Ll ,Ml )*U(L2,M2) 

1 +AS(Lt\.Ml )*U(LI ,M2)+ACON(LI ,Ml) )/AÇ(LI ,Ml) 
UHA T ( 1 , Ml) :::: (AS ( 1 , Ml) * U ( 1 , M 2 ) + AE ( 1 , Ml) * U ( 2 , Ml) 

1 + ACON ( 1 , Ml) ) / AC ( 1 , Ml) 
00 3 1 0 1:::: 2 , L 2 
IPI=I+l 
IM1=1-l 
UHAT ( l , 1 ):::: (AE ( l , 1 ) *U ( l Pl, 1 ) +ANE ( l , 1 ) *U ( l PI, 2 ) 

1 +AN(I, 1 )*U(1, 2)+AW( I, 1 )*U(IMI, 1 )+ACON(I, 1) )/AC(I, 1) 
UHAT(I ,Ml )=(AW(I ,MI )*U(IM1,Ml )+ASW(I ,MI )*U(IM1,M2) 

1 +AS(I ,Ml )*uO ,M2)+AE(I ,Ml )*U(IPI,Ml )+ACON(I ,Ml) )/AC(I ,MI) 
DO 320 J::::2,M2 
JP1=J+l 
JMl =J-l 
UHAT ( 1 , J ) = (AS ( 1 , J) *U ( 1 , JM 1 ) + AE ( 1 , J ) *U ( 2 , J) +ANE ( 1 , J ) *U ( 2 , JP 1 ) 

1 + AN ( 1 , J ) * U ( 1 , JP 1 ) + ACON ( 1 , J ) ) / AC ( 1 , J ) 
UHAT(Ll,J)=(AN(Ll,J)*U(Ll,JP1)+AW(Ll,J)*U(L2,J) 

1 +ASW(LI ,J)*U(L2,JMl )+AS(LI ,J)*t.:r(Ll ,JMI )+ACON(LI ,J) )/AC(LI ,J) 
C \ 
C INTERNAL POINTS 
C 

DO 330 J == 2 , M2 , 2 
JPl =J+l 
JMl =J-l 
DO 330 1==2, L2 
IPI=I+I 
IM1=I-l 
UHA T (I , J ) == ( AE ( l , J ) * U ( l PI, J ) + ANE (I , J ) * U (I PI, J Pl) 

1 +AN(I,J)*U(I,JP1)+AW(1,J)*U(IM1,J) 
2 + ASW (1 , J ) *U ( lM 1 , JM 1 ) + AS ( l , J ) *U (I , JM 1 ) 
3 +ACON(I ,J) )/AC(I ,J) 

330 CONTINUE 
. . 



( 

340 

350 

. 
DO 340 J=3,M3,2 
JP1=J+l 
JM1=J-l 
DO 340 I=2,L2,2 

.t'JPl =1+1 
tMl=1-l 
UHAT ( l , J ) = (AE (1 , J) *U ( l PI, J ) + ANE ( l , J ) *U ( l Pl, JP 1 ) 

1 +AN(1,J)*U(r,JP1)+AW(I,J)*U(IM1,J) 
2 +ASW(I ,J)*U(IM1,JMl )+AS(I ,J)*U(1 ,JM1) 
3 +ACON(I,J»/AC(I,J) 

CONTINUE 
DO 350 J= l,Ml 
DO 350 l = 1 , L 1 
ACU(I,J)=AC(1,J) 
NFS= 1 
CALL BTSVEL 
WR1TE(8) ASTORE 
GOTO 100 
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C-----------------------------------------------------------------------
C VHAT COMPUTATION 
C-----------------------------------------------------------------------
C 
C BOUNDARY POINTS 
C 
400 

410 

420 

C 
C 
C 

VHA T ( 1 , 1 ) = ( AE ( 1 , 1 ) *V ( 2 , 1 ) + ANE ( 1 , 1 ) *V ( ~ , 2 ) + AN ( 1 , 1 ) *V ( 1 , 2 ) 
1 +ACON ( 1 , 1 ) ) lAC ( 1 , 1 ) 

VHA T ( LI, 1 ) = (AN ( LI, 1 ) * V ( LI, 2 ) + A W ( LI, 1 ) *V ( L 2 , 1 ) 
1 +ACON(LI,I»!AC(LI,I) 

VHAT (L 1 , Ml) = (AW (L 1 , Ml) *V (L2 , Ml) +ASW (L 1 , Ml) *V ( L 2 , M2 ) 
1 +AS(LI ,Ml )*V(Ll,M2)+ACON(Ll ,Ml) )/AC(LI ,MI) 

VHAT ( 1 , MI) = (AS ( 1 , Ml) *V ( 1 , M2 ) + AE ( 1 , MI) *V ( 2 , Ml) 
1 +ACON( l,Ml) )/AC( l,Ml) 

DO 410 1=2,L2 
IP1=1+l 
IMI=1-l 
VHA T ( l ,J ) = (AE ( l , 1 ) *V ( l Pl, 1 ) + ANE (1 , 1 ) *V ( l Pl, 2 ) 

1 +AN(r, 1 )*V(I ,2)+AW(I, 1 )*V( IM1, 1 )+ACON(I, 1 »/ACO, 1) 
VHAT(I ,Ml )=(AW(I ,MI )*V(IMI ,Ml )+ASW(I ,Ml) *V(IMI ,M2) 

1 +AS(r ,MI )*V(I ,M2)+AE( l,MI )*V(IPI ,MI )+ACON(I ,Ml) )!AC(I ,Ml) 
DO 420 J=2,M2 
JPI=J+1 
JM1=J-I 
VHAT ( 1 , J ) = (AS ( 1 , J ) *V ( l ,JM 1 ) + AE ( 1 , J ) *V ( 2 , J ) + ANE ( 1 , J ) * V ( 2 , J Pl) 

1 +AN( l ,J)*V( I,JPI )+,b.'CON( 1 ,J) )/Ac( l ,J) 
VHAT(LI ,J)=(AN(LI ,J)*V(LI ,JPI )+AW(LI ,J)*V(L2,J) 

1 +ASW(LI ,J)*V(L2,JMI )+AS(LI ,J)*V(LI,JMI )+ACON(LI ,J) )/AC(LI ,J) 

l NTERNAL POl NTS 

DO 430 J=2,M2,2 
JP1=J+l 
JMl =J-l 
DO 430 1=2,L2 
IP1=1+l 
IM1=1-1 
VHAT (I , J ) = (AE ( l , J) *V (I Pl, J ) + ANE (I , J ) *V ( l Pl, JP 1 ) 

1 +AN(I,J)*V(I,JPI)+AW(I,J)*V(IM1,J) 
2 +ASW(I ,J) *V(IMI ,JMl )+AS(I ,J)*V(I ,JMI) 

J - - "-~-------------- ------- ---------
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3 + ACON (I , J) ) / AC (I , J ) 
430 CONTINUE 

DO 440 J = 3 , M 3 , 2 
JPl =J+ 1 
JMl =J- 1 
DO 440 I=2,L2,2 
IP1=I+l 
IM1=I-l 
VHAT(I ,J)=(AE(I,J)*V(rPl ,J)+ANE(I ,J)*V(IPI ,JP1) 

1 +AN(I ,J)*V(I ,JPl )+AW(I ,J)*V(IMI ,J) 
2 +ASW ( l , J) *V (lM1 , JM 1 ) +AS ( l ,J) *V (I ,JM 1 ) 
3 +ACON(I,J»/AC(I,J) 

440 CONTINUE 
DO 450 J=l,MI 
DO 4 50 I = l ,L 1 

450 ACV (I ,J) =AC ( l ,J) 
NFS=2 
CALL BTSVEL 
WRITE( 8) ASTORE 

C ************************** 
C COMPUTE THE PRESSURE FIELD 
C ************************** 

CALL PRES 
C *** ******* *********** ****** ***** 
C CALCULATE THE VELOCITIES U AND V 
C *** ******* *********** ****** ***** 

REWIND 8 
DO 1000 NFV= l ,2 
IF (.NOT.LSOLVE(NFV) )GOTO 1000 
RE AD ( 8) ASTORE 
DO 101 0 JP= l ,MP2 
JPP1=JP+I 
J=2*JP-l 
JP1=J+l 
JP2=J+2 
DO 101 0 l P= 1 , LP2 
IPP1=IP+l 
I=2*IP-l 
IP1=I+l 
IP2=I+2 
PGRADI =D 1 Tl (1 P ,JP, NFV)*P (IP ,JP) +D2T 1 (Ip ,JP ,NFV) *p( 1 PP l ,JP) 

322 

1 +D3Tl (IP,JP,NFV)*P(IPPI ,JPP1) 
PGRAD2=D1T2(IP,JP,NFV)*P(IP,JP)+D2T2(IP,JP,NFV)*P(IPPl ,JPP1) 

1 +D3T2 (IP,JP,NFV)*P(IP,JPP1) . 
ACON(I,J)=ACON(r,J)+PGRADI+PGRAD2 
ACON (I P 1 ,J) =ACON( l P 1 ,J) + 3 .DO*PGRAD 1 
ACON (I P2,J) =ACON( l P2,J) +PGRAD 1 
ACON (I , JP 1 ) =ACON( l ,JPl ) + 3 .DO*PGRAD2 
ACON (I Pl, JP 1 ) =ACON ( I Pl ,JP 1) +3. DO* (PGR,ADI +PGRAD2 ) 
ACON( I P2 ,JP 1 ) =~CON ( I P2 ,JP 1 ) +3. DO*PGRADI 
ACON (I , JP2 ) =ACON ( 1 , JP2) + PGRAD2 
ACON (r Pl, JP2) =ACON ( 1 Pl ,JP2) +3. DO*PGRAD2 

1010 ACON( I P2 ,JP2) =ACON (1 P2,JP2) +PGRADI +PGRAD2 
NFS=NFV 
CALL BOUND 
CALL SOLVE 

1000 CONTINUE 
C 

---------------------~----------



1 
, 

( 

C PRESSURE: CORRECTION COMPUTATION 
C 

CALL PCORR 
C 
C CORRECT! ON OF VELOC! TI ES 
C 
C CORRECT! ON OF U 
C 

IF (.NOT.LSOLVE(I» GOTO 2100 
QO 2010 JP=I,MP2 
JPP1=JP+l 
J=2*JP-l 
JP 1 =J+ 1 
JP2=J+2 
DO 2010 ! P= 1 , LP2 
l PPI =! P+ 1 
l =2*!P-l 
IP1=!+1 
l P2=! +2 
I?GRAD 1 =D 1 TI ( l P, JP, 1 ) *PC ( l P, Jp) +D2T 1 ( l P, JP, 1 ) *PC ( l pp 1 , Jp) 

1 +D3T1(IP,JP,1)*PC(IPP1,JPP1) 1 

PGRAD2=D1T2 (I P,JP, 1 ) *PC( l P ,JP) +D2T2 (I P ,JP, 1 ) *PC (1 PPI ,JPPI ) 
1 +D3T2 ( l P, JP , 1 ) *PC (I P ,JPP 1 ) 
U ( l , J) =U (! ,J) + (PGRAO 1+PGRAD2) /ACU( l ,J) 
U(IPI ,J)=U(IPI ,J)+3.DO*PGRAD1/ACU(IPl ,J) 
U (IP2, J) =U( l P2 ,J) +PGRADI IACU( 1 P2,J) 
U (1 ,JPl ) =U( l , JP1) +3 .DO*PGRAD2/ACU( l ,JPl ) 
U( IPI ,JPl )=U( IPI ,JPl )+3.DO*(PGRAD1+PGRAD2) IACU(I Pl ,JPl ) 
U (IP2, JPl )=U (I P2,JPl )+3. DO*PGRADI/ACU( IP2, JP1) 
U (1 ,JP2) =U( l , JP2) +PGRAD2/ACU( l , JP2) 
U ( l Pl, J P 2 ) = U ( l Pl, J P 2 ) + 3 • DO * PGRAD 2 / ACU ( 1 Pl, J P 2 ) 

20 1 0 U ( l P 2 , J P 2 ) = U (I P 2 , J P 2 ) + ( PG RAD 1 + PGRAD 2 ) / ACU ( l P 2 , J P 2 ) 
C 
C CORRECT! ON OF V 
C 
2 1 00 DO 21 1 0 JP= 1 , MP2 

JPPI =JP+ 1 
J=2*JP-l 
JP1=J+l 
JP2=J+2 
DO 2110 ! P= l ,LP2 
IPP1=IP+l 
l =2*!P-l 
IP1=I+l 
IP2=!+2 
PGRAD 1 =D 1 Tl ( l P , JP, 2 ) *PC (I P , Jp) +D2T 1 ( I P , JP , 2 ) *PC ( l pp l ,JP) 

1 +03Tl (IP,JP,2)*PC(IPP1,JPPl) 
PGRAD2=D 1 T2 ( l P , JP, 2 ) *PC (1 P, Jp) +D2T2 ( l P, JP, 2 ) *PC ( 1 PP 1 , JPPI ) 

1 +D3T2(IP,JP,2)*PC(IP,JPP1) 
V ( l ,J) =V (! , J) + (PGRAD 1 +PGRAD2) /ACV( l, J) 
V ( IPI ,J) =V( l Pl ,J) +3. DO*PGRADI /ACV( IP 1 , J) 
V ( l P2, J) =V( l P2,J )+PGRADI IACV( l P2,J) 
V( l ,JPl ) =V(I ,JPl )+3 • DO*PGRAD2/ACV(I ,JP1} 
V ( l Pl, J Pl) = V ( I Pl, J Pl) + 3 • DO * ( PG RAD 1 + PG RAD 2 ) 1 ACV ( 1 PI, JP l ) 
V( IP2,JPl )=gV( IP2,JPl )+3.DO*PGRAD1/ACV( IP2,JP1} 
V ( l ,JP2 ) =V( l , JP2) + PGRAD2/ACV ( 1 , JP2) '-
V( IPI ,JP2)=V( IPI ,JP2 )+3.DO*PGRAlJ2/ACV(IPl ,JP2) 

2 1 1 0 V ( l P2 , J P 2 ) = V ( l P 2 , J P 2 ) + ( PG RAD 1 + PGRAD 2 ) / ACV ( l P 2 , J P 2 ) 

323 

----------~------------------ ---------~------------------



\ 

C 
C ** SPECIAL PROCEDURE FOR SYMMETRY LINE 
C 

l F (I PRO B • EQ. 1) GOTO 2 1 1 4 
DO 2 1 1 2 l = 2 , L 1 

2 1 1 2 V ( l , MI) = U (I ,M 1 ) * TAN PSI 
C ** TESTING ** 
21 14 CONTINUE 

C 
500 
C 
C 
C 
C 
C 

510 

NFS=1 
CALL PTVEL 
NFS=2 
CALL PTVEL 
GOTO 100 

IF (NF.NE.3) GOTO 650 

WHAT COMPUTATION 
, 

BOUNDARY pal NTS 

WHAT ( 1 , 1 ) = (AE ( 1 , 1 ) *W ( 2 , 1 ) + ANE ( l , 1 ) *W ( 2 , 2 ) + AN ( 1 , 1 ) *W ( 1 , 2 ) 
1 + ACON ( l , 1 ) ) lAC ( l , 1 ) 
WHA r ( LI, 1 ) = ( AN ( LI, 1 ) *W ( LI, 2 ) + A W ( LI, 1 ) *W ( L 2 , 1 ) 

1 +ACON(Ll, 1) )/AC(Ll, 1) 
WHAT(LI ,MI )=(AW(LI ,MI )*W(L2,MI )+ASW(LI ,MI )*W(L2,M2) 

1 + AS (L l ,M 1 ) *W ( LI, M2 ) +ACON (L 1 , Ml) ) lAC (L 1 , MI) 
WHAT ( 1 , MI) = ( AS ( 1 , MI) *W ( 1 , M2 ) + AE ( 1 , Ml) *W ( 2 , Ml) 

1 +ACON( l,MI) }/AC(l ,Ml) 
DO 5 1 0 l = 2 , L 2 
IPI=I+l 
IM1=I-l 
WHA T ( l , 1 ) = (AE (I , 1 ) * W (I Pl, 1 ) + ANE (I , 1 ) *W ( l PI, 2 ) 

1 + AN (I , 1 ) * W (I , 2 ) + AW (I , 1 ) * W (I MI, 1 ) + ACON (I , 1 ) ) lAC ( l , 1 ) 
WHAT (1 , Ml) = (AW (I , Ml) *W ( l Ml, MI) + ASW (1 , MI) *W ( lM 1 , M2 ) 

1 +AS (1 , Ml) *W ( l , M2) +AE (I , Ml) *W (I PI, Ml) +ACON ( l,MI) ) lAC (I , MI ) 
DO 520 J=2,M2 
JP1=J+l 
JMl =J-I 
WHAT(I ,J)=(AS( 1 ,J)*W(l ,JMl )+AE( 1 ,J}*W(2,J)+ANE( l ,J)*W(2,JP1) 

1 +AN(I ,J)*W(l ,JP1)+ACON(1 ,J»/AC(l,J) 

324 

WHAT(LI ,J)=(AN(LI ,J)*W(LI ,JPI )+AW(LI,J}*W(L2,J) 
1 +ASW(LI ,J\L~W(L2,JMI )+AS(LI ,J}*W(LI ,JMI )+ACON(LI ,.J) )/AC(LI ,J) 

---- '-

520 

C 
C 
C 

INTERNAL POINTS 

DO 530 J=2,M2 
JP1=J+I 

-' JMI =J-l 
DO 530 I:= 2 "L2 
IPI=I+1 
IMI=I-I 
WHAT(I,J)=(AE(I,J)*W(IPI,J)+ANE(I,J)*W(IPI,JP1) 

r) 1 +AN(I,J)*W(I,JPI)+AW(I,J)*W(IM1,J) 
( 2 +ASW(I,J)*W(IMI,JMI)+AS(I,J)*W(I,JM1) 

3 +ACON(I ,J) )/ACO ,J) 
530 CONTI NUE 

NFS=NF 
CALL BTSVEL 

----------------.----~------ ---------~----------------
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( 

• .. 

C 
C COMPUTATION OF DP/DZ 
C 

CALMF=O.DO ' 
CALM=O.DO 
DQ 580 J= l,Ml 
DO 580 l = 1 , L 1 
CALMF=CALMF+CVMASS(I,J)*WHAT(I,J) 

580 CALM=CALM+CVMASS(I,J)*CVAREA(I,J)/AC(I,J) 
DPDZ=-(SPMF-CALMF)/CALM 
WRITE(6,585) DPDZ 

585 FORMAT(/3X,'DP/DZ CALCULATED = ',lPD15.7) 
DO 59q J= l,Ml 
DO 590 l = 1 , L 1 

590 ACON(I,J)=ACON(I,J)-DPDZ*CVAREA(I,J} 

325 

C (NOT~ THAT THE INCONSISTENCY IN TREATING ACON BY HAVING CVAREA=O 
C FOR SPECIFIED W B.C. 15 OVERCOMED IN THE CALLING TO BOUND) 
C 

C 

600 

C 
C 
C 
C 

610 

650 

100 

CALL BOUND 
CALL SOLVE 

CALMF=O.DO 
DO 600 J= l,Ml 
DO 600 1= l,LI 
CALMF=CALMF+CVMASS(I,J)*W(I,J) 
DPDZC=- (SPMF-cCALMF)I/CALM 

CORRECTION OF W 

DO 610 J=l ,Ml 
DO 610 1=1 ,LI 
W(I,J)=W(I,J)-CVAREA(I,J}*DPDZC/AC(I,J) 
GOTO 100 
NFS=NF 
CALL BOUND 
CALL SOLVE 
CONTINUE 
RETURN 
END 

C*********************************************************************** 
SUBROUTI NE PAPC 

C*********************************************************************** 
IMPLICIT REAL*a(A-H,O-Z) 
LOG l CAL ,r,SOLVE, LCPRIN, LPRINT, LPPRI N 
COMMON AS TORE ( 3528 ) , X ( 2 1 , 2 1 ) , y ( 2 1 , 2 1 ) ,F ( 2 1 , 2 l , 7 ) , FU ( 2 1 , 2 1 , 7 ) , 

1 FP ( 1 l , 1 1 , 2) , RHO ( 2 1 , 2 1 ) , GAM ( 21 , 2 1 ) , 1 

2 SC ( 2 1 , 2 1 ) ,S P ( 2 1 , 2 1 ) , A CU ( 2 1 , 2 1 ) , UHA T ( 2 1 , 2 1 ) , 
3 DIT 1 ( 10, 10,2) , D2T 1 ( 10, 10,2) ,D3T 1 ( 10, 10,2) , 
4- D1T2( 10,10,2) ,D2T2( 10, 10,2) ,D3T2( 10, 10,2) 

COMMON /THRD/Z,DZ,DPDZ,DPDZC,PBAR,SPMF,WFD,CNUFD(4),LSTEP,ISTEP, 
1 ITMAX, l START, l PROB 

COMMON /PARM/RELAX(7),PRELAX 
COMMON /MONIT/LSOLVE(7),LCPRIN,LPRINT(7),LPPRIN 
COMMON /LABEL!TITLE(ï),HDG(9) 
COMMON !INDX!NSWP(7),NPSWP(2),Ll ,L2,L3,Ml,M2,M3, 

1 LP1,LP2,LP3,MP1,MP2,MP3,NFS,NFSMAX,NPS,NUME,IMONIT,LAST, 
2 LMID~MMID,LPMID,MPMID,IPREF,JPREF,ITER,IC(3),JC(3),IDEAL, 



( 
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3 IR, l RP 1 , l RM 1 , JR , JRP 1 , JRM 1 , l PR, l PRP 1 , l PRP 2, l PRM 1 , l PRM2 , JPR , JPRP 1 , 
4 JPRP2,JPRM1,JPRM2,NITMAX(7),NPITMX(2) 

COMMON ICONV ITOL (7) , PTOL (2) , DWDES, FCR (,3 ,2) , DPDZCR, CHGTOL, CHGCK 
COMMON IRODBUN/s, RAD, SDR, WBAR ,FAREA, PERIM,PHY, DH,DHDR,XL, YL, TANPS,I 

1 , PSI JF'BU4, FBU6, FB , FWAV , RHOA, CP1 , OK 1 ,DKDCP1 ,CP2 ,DK2, DKDCP2, 
2 RPOW,XPOW,YPOW,DMUA,REY,QW, TAUW(21),TW p TI 

C---------------------------------------------------------------------~-
DIMENSION APC( 11,11) ,APE( 11,11) ,APNE( 11,11) ,APN( 11,11), 

1 APNW ( 1 1 , 1 1 ) , APW ( 1 1 , 1 1 ) , APSW ( 1 1 , 1 1 ) , APS ( 1 1 , 11 ) , APSE ( 1 1 , 1 1 ) , 
2 APENE ( 11 , 1 1 ) , APNNE ( 11 , 11 ) , APWSW ( 1 1 , 11 ) , APSSW ( 1 1 , 11 ) , APCON ( 1 1 , 1 1 ) 

DI MEN SION U ( 2 1 , 2 1 ) , V ( 2 1 , oZ 1 ) , W ( 2 1 , 2 1 ) , WU ( 2 1 , 21 ) , P ( 1 1 , 1 1 ) , PC ( 1 1 , 1 1 ) , 
1 VHAT (21 ,21 ) , ACV ( 21 ,21 ) 

EQUIVALENCE (ASTORE( 1) ,APC( 1) ), (ASTORE{ i 22) ,APE{ 1», (ASTORE(243), 
1 APNE(I», (ASTORE(364) ,APN(l) ),(ASTORE{485),APNW(1», 
2 (ASTORE ( 606) , APW ( 1 ) ) , (ASTORE ( 727), APSW ( 1 ) ) , (ASTORE ( 848), 
3 APS ( 1 ) ) , (ASTORE ( 969), APSE ( 1 ) ) , (ASTORE ( 1090) , APENE ( 1 ) ) , 
4 (ASTORE( 1211) ,APNNE( 1», (ASTORE( 1332) , APWSW( 1», 
5 (ASTORE( 1453) ,APSSW( 1», (ASTORE( 1 574) ,APCON( 1» 

EQU l V ALEN CE ( F ( 1 ) , U ( 1 ) ) , (F ( 1 , 1 , 2) , V ( 1 ) ) , {F ( 1 , 1 , 3 ) , W ( 1 ) ) 
-EQUIVALENCE (FU(1 ,I,3),WU(1}) 

EQUIVALENCE (FP( 1) ,P( 1», (FP( 1,1,2) ,PCc 1» 
EQUIVALENCE (SC(1),VHAT(1», (SP(1) ,ACV(1» 

C-----------------------------------------------------------------------
DIMENSION AC1 (2) ,AC2(2) ,AC3(2) ,FAC(3,2) ,G(3),CP(3,3), 

1 CPO ( 3 , 3 ) , B ( 3 , 3 ) , BO ( 3 , 3 ) 
DIMENSION DRWDZ(l 1,11) 
EQUIVALENCE (GAM(I),DRWDZ(I» 
DIMENSION Cl (3) ,C2(3) ,C3(3) , 

C-----------------------------------------------------------------------
C ********** 

ENTRY PRES 

c ********** 
C 
C INITIALIZE ALL COEFFICIENTS 
C 

DO 10 JP= 1 , MP 1 
DO 1 0 l P= 1 , LP 1 
APC (1 P , Jp) =0. DO 
APE ( l P , J P ) = 0 • DO 
APNE ( l P , JP ) = 0 • DO 
APN(IP ,JP) =O.DO 
APNW(IP,JP}=O.DO 
APW ( l P , Jp) =0 • DO 
APSW( l P ,JP) =O.DO 
APS ( l P , JP ) = 0 • DO 
APSE( l P,JP) =O.DO 
APENE(IP,JP)=O.DO 
APNNE (I P, Jp) =O.DO 
APWSW(IP,JP)=O.DO 
APSSW(IP,JP)=O.DO 
APCON(IP,JP)=O.DO 
DRWDZ(IP,JP)=O.DO 

10 CONTINUE 
NUME= 1 
DO 1 1 0 NUMPE= 1 , 2 
IF (NUMPE.EQ.2) CALL DENSE 

C 
C BOUNDARY CONTRIBUTIONS 

-------- ~------_._--------------



( 

C (REMOVED FOR THIS VERSION-NO LEAKAGE AND NO OUTFLOW) 
C 
C INTERNAL CONTRIBUTIONS 
C 
50 DO 120 JP= 1 , MP2 

JPPl =JP+l 

C 

JPMI =JP-l 
J=2*JP-l 
JPl =J+ 1 
JP2=J+2 
DO 120 I P= 1 , LP2 
IPP1=IP+l 
l PM1 =1 P-1 
I;::;2*IP-l 
IP1=I+l 
IP2=I+2 
IF (NUMPE.EQ.2) GOTO 130 

C TYPE 1 PRELIMINARIES 
Il=IP2 
I 2=1 P 1 
13=IPl 
J 1 =JP 1 
J2=JPl 
J3=J 
DET=X(I l,JI }*Y(r2,J2)+X(I2,J2}*Y(I3,J3)+X(I3,J3)*Y(I1 ,J1) 

1 -Y(I l,JI )*X(I2,J2)-Y(I2,J2}*X(I3,J3)-Y(I3,J3)*X(rl ,JI) 
AREA=DABS (DET) /6. DO 
RHOE=RHO (I PI, J) 
RHOD2=RHOE*O.5DO 

327 

DRWDZ (I P, Jp) =DRWDZ (I P, Jp) + (WU ( l , J) -W ( l , J) + (WU (1 Pl, J) -W (1 PI, J) 
1 +WU(IPl ,JPl )-W(IPl ,JP1) )*1.5DO)*RHOE*AREA/DZ 

C 

DRWDZ (1 PPI ,JP }=DRWDZ (IPP 1 ,JP) + (WU( l P2 ,J) -wC IP2,J) 
1 +(WU{IP2,JPl }-W(IP2,JPl )+WU(IP1,J)-W(IPl ,J»*1.5DO) 
2 *RHOE*AREA/DZ 

DRWDZ (1 PPI , JPPI ) =DRWDZ (1 PPI ,JPP 1) + (WU (1P2, JP2) -W(IP2, JP2) 
1 +(WU(IPI ,JPl )-W(IPI ,JPl )+WU(IP2,JPl )-W(IP2,JP1) )*1.5DO) 
2 *RHOE*AREA/DZ 

GOTO- 140, 

C TYPE 2 PRELIMINARIES 
C 
130 Il=IPl 

ItI l =IPI 
J =JP2 
J2=JPl 
J 3=JPl 
DET=X(Il ,JI )*Y{I2,J2)+X{I2,J2)*Y{I3,J3)+X(I3,J3)*Y(rl ,JI) 

1 -Y(11 ,JI )*X{I2,J2)-Y(I2,J2)*X{I3,J3)-Y(I3,J3)*X(Il ,JI) 
AREA=DABS(DET)/6.DO 
RHOE=RHO (I , JP 1 ) 
RHOD2=RHOE*O.5DO 
DRWD Z ( l P , J P ) = DR~ Z (I P, JP ) + (WU (1 , J) - W ( l , J ) + (WU ( l Pl, JP 1 ) - W (I Pl, JP 1 ) 

1 +WU(I ,JPl )-w(I ,JP1) )*1.5DO)*RHOE*AREA/DZ 
DRWDZ(IPPI ,JPPl )=DRWDZ(IPPl ,JPPl )+(WU(1P2,JP2)-W(rP2,JP2) 

1 +(WU(IPI ,JP2)-W(IPI ,JP2)+WU(IPl ,JPl ) .... W(IP1,JP1) )*1.5DO) 
2 *RHOE* AREA/DZ 

1 
!, 
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o ù 

C 
140 

C 

ORWDZ (IP, ~PP 1 ) =ORWDZ (IP,JPPI )+ (WU(I, JP2 )-W{ I ,JP2) 
1 + (WU (I , JPl ) -W (I , JP 1 ) +WU ( I PI ,JP2 ) -W( I PI, JP2 ) ) * 1 • 5DO) 
2 *RHOE*AREA/DZ 

AC 1 (1 )=ACU(I l,JI) 
AC 2 ( 1 ) =ACU (12 , J 2 ) 

, AC 3 ( 1 ) =ACU (13, J 3) 
AC' (2)=ACV(r l,JI) 
AC2(2)=ACV(r2,J2) 
AC 3 (2) =ACV (13 , J 3 ) 
YQ= (y ( 1 1 , JI) + y (I 2 , J 2 ) + y ( 1 3 , J 3) ) /3 • DO 
FAC ( 1 , 1 ) = (y (1 , , J t ) - YO) *RHOD2 
F AC ( 2, 1 ) = (y ( 1 2 , J 2) - YO) *RHOD2 
FAC ( 3 , 1 ) = (y ( 1 3 , J 3) - YO) *RHOD2 
XQ= {X (II, JI) + X ( 12, J 2 ) +x (I 3 , J 3) ) /3'. DO 
F AC ( 1 , 2 ) = (XO-X ( 1 1 , J' ) ) *RHOD2 
F AC ( 2 , 2 ) = (XO- X ( I 2 , J 2 ) ) *RHOD2 
FAC (3, 2) = (XO-X( 13 ,J3) )*RHOD2 

C, CALCULA TI ON OF G 
C -

C 

G ( , ) = ( FA C ( 1 , 1 ) * ( 4 • DO * UHA T ( 1 1 , J, ) + UHA T ( 1 2 , J 2 ) + UHAT ( 1 3 , J 3 ) ) 
1- +F AC ( 1 , 2 ) * (4 • DO*VHAT ( 1 1 , J 1 ) +VHAT (I 2, J 2) +VHAT (r 3, J 3) ) } /3 • DO 
G ( 2 ) = (F AC ( 2, 1 ) * (UHAT (II, J' ) +4. DO *UHAT (I 2 , J2 ) +UHAT ( 13 , J 3 ) ) 1 

1 + FAC ( 2,2) * (VHAT (Il , JI) +4. DO*VHAT (I 2, J 2) +VHAT{r 3, J 3) ) } /3 .bo 
G ( 3 ) = ( FA C ( 3 , 1 ) * (UHA T (I t , J' )+ UHA T (I 2 , J 2 ) + 4 • DO * UHA T ( 1 3 , J 3 ) ) 

1 + F AC ( 3 1 2 ) * (VHAT (II, JI) + VHA T ( 1 2 , J 2 ) + 4 • DO *VHA T ( 1 3 , J 3 ) ) } /3 • DO 

, C INITIALIZE THE MATRICES BAND BO 
C 

DO 1 50 J J = 1 , 3 
DO , 50 I I = 1 , 3 
B ( 1 1 , J J ) = 0 • DO 

150 BO (II ,JJ) =O.DO 
C 
C CALCULATION OF THE COEFFICIENTS 0 (FOR U AND FOR V) 
C 

DO 160 NFV= 1 , 2 (;> 

IF (NUMPE.EQ.2) GOTO 170 
C 
C TRI ANGLE OF TYPE 1 
C 

C 

D 1 = D 1 T 1 ( I P , J P , NFV) 
D2=D2T1 (IP,JP,NFV) 
D3=D3Tl (I P ,JP, NFV) 
IF (IPPl .EQ.LP1) GOTO 162 
011 =D2T2( IPPl ,JP,NFV) 
DI2=D1T2(IPP1,JP,NFV) 
D13=D3T2( IPPl ,JP,NFV) 
GOTO 164 

C RIGHT-HAND SIDE BOUNDARY 
C 
162 Dl1 =O.DO 

D12=O.DO· 
D13=O.DO 

C 
164 D21=D1T2(IP,JP,NFV} 
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c 

D22=D3T2 (I P, JP, NFV) 
023=D2T2 (IP,JP,NFV) 
IF (JP.EQ.l) GOTO 166 
031 =D3T2 (IP,JPMl ,NFV) 
032=D2T2 (IP,JPMI ,NFV) 
033=D1T2 (IP,JPMI ,NFV) 
GOTO 180 

C BOTTOM SI DE BOUNDARY 
C " 
166 031 =0.00 

032=0.00 
033=0.00 
GOTO 180 

C 
C TRI ANGLE OF \ TYPE 2 
C 
170 01=D1T2(IP,JP,NFV) 

C 

02=D2T2 ( l P ,JP, NFV) 
D3=D3T2 (1 P ,JP, NFV) 
IF (JPP1. EQ.MPI ) -GOTOd 172 
Dl 1 =D3Tl (IP,JPPI ;NFV) 
DI2=D2T~1 (IP,JPPI ,NFV) , 
Dl 3=D1Tl (IP,JPPI ,NFV) 
GOTO 174 

C TOP-SIDE BOUNDA'RY 
C 
172 Dl1 =0.00 

D12=0.00 
013=0,00 

C 
1 7 4 l F ( l P • EQ • 1) GOTO 1 76 

D21 =D2Tl (IPMI , JP,NFV) 
D22=D1Tl (IPMI , JP,NFV) 
D23=D3Tl (IPMI ,JP,NFV) 
GOTO 178 

C 
C LEFT-HAND SI DE BOUNDARY 
,C 
176 D21=0.DO 

C 

D22=0.00 
D23=0.00 

178 D31=D1Tl(IP,JP,NFV) 

C 

D32=D3Tl (IP,JP,NFV) 
D3-3=D2T1 (IP,JP,NFV) 

C CALCULATION OF CPU AND CPV (BOTH HERE DENOTED BY CP) 
C 
180 "Cl ( 1 )=Dl IACI (NFV) 

C2( 1 )=(01 +D21 )/AC2(NFV) 
C3 ( 1 )=(01 +D31 ) IAc3 (NFV) 
Cl (2)=(02+D12)/ACl (NFV) 
C2 (2)=D2/Ac2(NFV) 
C3 (2)= (02+D32) IAC3 (NFV) 
Cl (3)=(03+D13)/ACl (NFV) 
'C2( 3)=(03+D23)/AC2(NFV) 
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C 
C 
C 

182 

184 

C 

C3(3)=D3/AC3(NFV) 

** SPECIAL PROCEDURE FOR TOP SKEWED SYMMETRY LINE 

IF (NFV.NE.2 .OR. NUMPE.NE.2 .OR. JP.NE.MP2.0R.IPROB.EQ.l) 
1 GOTO 182 

CJ ( 1 ) =D fT2 (J P ,MP2, 1 ) *TANPSI/AC 1 ( 1 ) 
Ci (2)=D2T2(IP,MP2, 1 )*TANPSI/ACl (1) 
Cl (3)=D3T2(rP,MP2, 1 )*TANPSI/AC1 (1) 
DO 184 11=1,3 

"CP ( 1 , l l ) =4 .DO*C 1 (1 I ) +C2 (I I) +C3 (I 1) 
CP(2,II)=Cl(II)+4.DO*C2(II)+C3(II) 
CP(3,II)=Cl(II)+C2(II)+4.DO*C3(II) 
Cl ( 1 ) =D Il/AC 1 (NFV) 
C2(2)=D22/AC2(NFV) 
C3(3)=D33/AC3(NFV) 
CPO( 1,1 )=4.DO*Cl (1) 
CPO ( 2, 1 ) =C 1 ( 1 ) 
CPO ( 3 , 1 ) =C 1 ( 1 ) 
CPO ( 1 ,2 ) =C2 ( 2 ) 
CPO(2,2)=4.DO*C2(2) 
CPO ( 3,2) =C2 (2) 
CPO ( 1 ,3) =C3 ( 3 ) 
CPO (~, 3 ) =C3 (3) ~ 
CPO(3,3)=4.DO*C3(3) 

~j 

'C CALèuLATION OF THE COEFFICIENTS BAND BO 
C 

DO 190 11=1,3 
DO 190 JJ=1,3 
B(II,JJ)=B(I1,JJ)+FAC(II,NFV)*CP(II,JJ) 

1 90 BO (II, J J ) =BO ( l l , JJ ) + F AQ,{ 1 1 , NFV) *CPO (II, J J ) 

330 

160 CONTINUE 'd 

C---------------------------------------------------~------------------
C ASSEMBLY , 
C-------------------------~[--------------------------------------------

IF (NUMPE.NE. 1) GOTO 200 
C ****** 
C TYPE 1 
C ****** 
C WRT (I P , JP ) 

APC (1 P, Jp) =APC (1 P, Jp) +B ( 2 , 1 ) -B ( 3,01 ) ~ 
APE (1 P, Jp) =APE (r P, Jp) +B ( 3,2) -B ( 2,2) , 
APNE(IP,JP)=APNE(IP,JP)+B(3,3)-B(2,3) 
APENE(IP,JP)=APENE(IP,JP)+BO(3,1)-BO(2,I) 
APN(IP,JP)=APN(IP,JP)+BO(3,2)-BO(2,2) 
APS(IP,JP)=APS(IP,JP)+BO(3,3)-BO(2,3) 
APCON(IP,JP)=APCON(IP,JP)+G(3)-G(2) 

C WRT (IP+l,JP) 
APC(rPPl ,JP)=APC(IPPI ,JP)+B(3,2)-B(1 ,2) 
APW(IPPI ,JP)=APW(IPPI ,JP)+B( 1,1 )-B(3, 1·) 
APN(IPPI ,JP)=APN(IPPI ,JP)+B(1 ,3}-B(3,3} 
APNE ( 1 PP 1 , Jp) =APNE ( I PP 1 , Jp) + BO ( 1 , 1 ) - BO ( 3 , 1 ) 
APNW(IPPI ,JP)=APNW(IPPI ,JP}+BO( 1 ,2)-BO(3,2) , 
APSW(I PP 1 , Jp) =A~W( I PPI ,JP) +BO( 1 ,3) -BO (3,3 ) 
APCON ( l pp 1 , JP )'=APCON ( 1 PP 1 , JP ) +G ( 1 ) -G ( 3 ) 

C WRT (1 P+ 1 , JP+ 1 ) 
APC ( l PP 1 , JPP 1 ) =APC ( 1 PP 1 , JPP 1 ) + B ( 1 , 3) - B ( 2 , 3 ) 

I--~----~-- - --~ -, 
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C 

APSW(IPPl ,JPPl )=APSW{IPPI ,JPPI )+B(2, 1 )-B( 1,1) 
APS(IPP1,JPP1)=APS(IPP1,JPP1)+B(2,2)-B(I,2) 
APE(IPPI ,JPPI )=APE(IPPI ,JPPI )+BO(2, 1 )-BO( 1,1) 
APW(IPP1,JPP1)=APW(IPP1,JPP1)+BO(2,2)-BO(I,2) 
APSSW(IPPI ,JPPI )=APSSW(IPPI ,JPPI )+BO(2,3)-BO( 1 ,3) 
APCOl\( l pp 1 , JPP 1 ) =APCON ( 1 pp 1 , JPP 1 ) +G ( 2 ) -G ( 1 ) 
GOTO 120 

C /ASSEMBLY FOR TRIANGLE OF TYPE 2 
C ! 
C ,. WRT (1 P, Jp) 
200 APC (I P, Jp) =APC (I P, Jp) +B (2, 1 ) -B ( 3 , 1 ) 

APNE( IP î JP )=APNE(IP,JP)+B(3,2)-B(2,2) 
APN (I P, Jp) =APN (1 P, Jp) +BJ 3 , 3) -B (2, 3) . 
APNNE(IP,JP)=APNNE(IP,JP)+BO(3,1 )-~0(2,1) 
APW(IP,JP)=APW(IP,JP)+BO(3,2)-BO(2,2) 
APE(IP,JP)=APE(IP,JP)+BO(3,3)-BO(2,3) 
APCON(IP,JP)=APCON(1P,JP)+G(3)-G(2) 

C WRT (1 P+ 1 , JP+ 1 ) 
APC(IPPI ,JPPI )=APC(IPPI ,JPPI )+B(3 ,2)-B( 1 ,2) 
APSW(IPPI ,JPPI )=APSW(IPPI ,JPPI )+B(I, 1 )-B(3, 1) 
APW(IPPI ,JPPI )=APW(IPPI ,JPPI )+B( 1 ,3)-B(3,3) 
APN(IPPI ,JPPI )=APN(IPPI ,JPPI )+BO( 1,1 )-BO(3, 1) 
APWSW(IPP1,JPPl )=APWSW(IPPI ,JPPI )+BO(1 ,2)-BO(3,2) 
APS (I PP 1 , JPP 1 ) =APS (I pp 1 , JPP 1 ) +BO ( 1 ,3) - BO (3,3 ) 
APCON(IPP1,JPPl )=APCON(IPPI ,JPP1)+G(I)-G(3) 

C WRT (I P , JP+ 1 ) 0 

APC ( 1 P , JPP 1 ) =APC (I I? , JPP 1 ) +B ( 1 , 3) - B ( 2 ,3 ) 
APS(IP,JPP1)=APS(IP,JPP1)+B(2,1)-B(I,1) 
APE(IP,JPP1)=APE(IP,JPP1)+B(2,2)-B(I,2) 
APNE (1 P, JPP 1) =APNE (1 P , JPP 1 ) +BO (2, 1 ) -BO ( 1 ,1) 
APSW(IP,JPP1)=APSW(1P,JPPl )+BO(2,2)-BO(I,2) 
APSE (I P, JPP 1 ) =APSE (r P , JPP'I ) +BO ( 2 , 3) -BO ( 1 ,3) 
APCON(IP,JPP1)=APCON(IP,JPP1)+G(2)-G(1) 

120 CONTINUE 
110 CONTINUE 

WRITE(B) ASTORE,DRWDZ 
C 
C UNDERRELAXATION OF PRESSURE . 

331 

C (ALSO THE TERM DRWDZ IN THE CO~TINUITY EQUATION 1S ADDED TO APCON) 
C 

DO 1 1 rr JP= 1 ,MP 1 
DO 1 1 5 1 P= 1 , LP 1 
APC(IP,JP)=APC(IP,JP)/PRELAX 

115 APCON(1P,JP)=APCON(IP,JP)+APC(IP,JP)*(1 .DO-PRELAX)*P(IP,JP) 
1 +DRWDZ ( 1 P , JP ) 
NPS=1 
CALL PBOUND "-. 
CALL PSOLVE 
RETURN 

t-----------------------------------------------------------------------
ENTRY PCORR c 

C-----------------------------------------------------------------------
READ (B), ASTORE, APCON 
NUME=2 
DO 410 NUMPER=I,2 
NUMPE= 3 - NUMPER 
1 F (NUMPE. EQ. 1) CALL DENSE 
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C 
C 
C 

. C 
C 
C 
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c 

BOUNDARY CONTRIBUTIONS 
(REMOVED) 

1NTERNAL CONTRIBUTIONS 

DO 415 JP= 1 ,MP2 
JPPl =JP+ 1 
J=2*JP-l 
JP1=J+l 
JP2=J+2 
DO 4 1 5 l P= 1 , LP2 
l PPI =1 p+ 1 
1=2*IP-l 
IP1=I+l 
l P2=I +2 
IF (NUMPE.EQ.2) GOTO 420 

C TYPE 1 PRELIMINAR1ES 
C 

C 

11=IP2 
12=1 P 1 
13=1 P 1 
Jl=JPl 
J2=JPl 
J3=J 
RHOD2=RHO(IP1,J)*O.5DO 
GOTO 430 

C TYPE 2 PRELIMINAR1ES 
C 
420 11=IPI 

C 

12=1 
I3=1Pl 
JI =JP2 
J2=JPl 
J3=JPl 
RHOD2=RHO{I,JP1)*O.5DO 

430 yo= ( y (II, J 1 ) + Y ( l 2 , J 2 ) + y ( l 3 , J 3 ) ) /3 • DO 
FAC(I,I)={Y(II,Jl)-YO)*RHOD2 
FAC(2,1)=(Y(12,J2)-YO)*RHOD2 
FAC(3,1)={Y{13,J3)-YO)*RHOD2 

C 
C 
C 

XO= (X (II, J 1 ) +X (1 2 , J2) +X.(I 3, J 3) ) /3. DO 
FAC(1,2)={XO-X(Il,Jl»*RHOD2 
FAC(2,2)={XO-X(I2,J2»*RHOD2 
FAC(3,2)=(XO-X(I3,J3»*RHOD2 

CALCULATION OF G 

G( 1 )=(FAC( 1,1 )*(4.DO*UO 1 ,J1 )+U(I2,J2)+U(I3,J3» 
1 + F AC ( 1 , 2 ) * ( 4 . DO *V (I 1 , JI) + V ( l 2 , J 2 ) + V ( l 3 , J 3 ) ) ) /3 • DO 
G(2)=(FAC(2,1)*(U(Il,Jl)+4.DO*U(I2,J2)+U(I3,J3» 

1 +FAC(2,2)*(V(11 ,JI )+4.DO*V{I2,J2)+V(I3,J3) »/3.DO 
G ( 3 ) = ( F AC ( 3 , 1 ) * {U (II, JI) +U (12, J2 ) +4 • DO*U (I 3 ,J 3) ) 

1 +FAC( 3,2)*(V(Il,Jl )+V(I2,J2)+4.DO*V(I3,J3» )/3 .DO 
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C---------------T----------------------------------------~-------~------
IF (NUMPE.EQ.2) GOTO ~40 

*- ----------_._------~._---



( 
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C 
C ASSEMBLY FOR TRIANGLE OF TYPE 
C 

APCON(IP,JP)=APCON(IP,JP)+G(3)-G(2) 
APCON ( I pp 1 , Jp) =APCON (I PP 1 , Jp) +G ( 1 ) -G ( 3 ) 
APCON (I pp 1 , JPP 1 ) =APCON (I PP 1 , JPP 1 ) +G ( 2) -G ( 1 ) 
GOTO 415 

ASSEMBLY FOR TRIANGLE OF TYPE 2 

APCON(IP,JP)=APCON(IP,JP)+G(3)-G(2) 
APCON( IPP1 ,JPPI )=APCON(IPPI ,JPP'1 )+G( 1 )-G( 3) 
APCON(IP,JPP1)=APCON(IP,JPP1)+G(2)-G(I) 

4 1 5 CONTI NUE 
410 CONTINUE 
C-----------------------------------------------------------------------

510 

520 

NPS=2 
CALL PBOUND 
CALL PSOLVE 
SSUM=O.DO 
SMAX=O.DO 
DO 51 0 JP= 1 , MP 1 
DO 510 I P= 1 , LP 1 
SOURCE=DABS(APCON(IP,JP» 
SSUM=SSUM+SOURCE 
SMAX=DMAX1(SMAX,SOURCE) 
CONTINUE 
SAV=SSUM/DFLOAT(LP1*MP1) 
WRITE(6,520) SAV,SMAX 
FORMAT (//3X, 'SAV = ',lPD15.5,//,3X, 'SMAX = ',lPD15.7) 
RETURN" 
END 

C*********************************************************************** 
SUBROUTINE PSOLVE 

C*********************************************************************** 
IMPLICIT REAL*8(A-H,O-Z) 
LOGICA4 LSOLVE,LCPRIN,LPRINT,LPPRIN 
COMMON - AS TORE ( 3528 ) , X ( 2 1 , 2 1 ) , y ( 2 1 , 2 1 ) , F ( 2 1 , 2 1 , 7 ) , FU ( 2 1 , 2 1 , 7 ) , 

1 F P ( 1 1 , 1 1 , 2) , RHO ( 2 1 , 2 1 ) , G AM ( 2 1 , 2 1 ) , 
2 SC (21 ,21 ) , SP (21 ,21 ) , ACU (21 ,21 ) , UHAT (21 ,21 ) , 
3 D1Tl(10,10,2),D2Tl(10,10,2),D3Tl(10,10,2), 
4 DI T2 ( 10, 10,2) , D2T2 ( 10, 10,2) , D3T2 ( 10, 10,2) 

COMMON /THRD/Z,DZ,DPDZ,DPDZC,PBAR,SPMF,WFD,CNUFD(4),LSTEP,ISTEP, 
1 ITMAX,ISTART,IPROB. 

COMMON /PAHM/RELAX(7),PRELAX 
COMMON /MONIT/LSOLVE(7),LCPRIN,LPRINT(7),LPPRIN 
COMMON /LABEL/TITLE(7),HDG(9) 
COMMON /INDX/NSWP(7),NPSWP(2),Ll,L2,L3,Ml ,M2,M3, 

1 LP1,LP2,LP3,MP1,MP2,MP3,NFS,NFSMAX,NPS,NUME,IMONIT,LAST, 
2 LMID,MMID,LPMID,MPMID,IPREF,JPREF,ITER,IC(3),JC(3),IDEAL, 
3 1 R, l RP 1 , I HM 1 , JR, JRP 1 , JRM 1 ,1 PR , I PRP 1 , I PRP 2 , l PRM 1 , I PRM2 , JPR, JPRP 1 , 
4 JPRP2,JPRMI ,JPRM2,NITMAX(7),NPITMX(2) 

COMMON /CONV/TOL(7) ,PTOL(2),DWDES,FCK(3,2),DPDZCK,CHGTOL,CHGCK 
COMMON /RODBUN/S,RAD,SDR,WBAR,FAREA, PERIM, PHY,DH,DHDR,XL,YL,TAN PSI 

1 ,PSI,FBU4,FBU6,FB,FWAV,RHOA,CP1,DKl ,DKDCP1,CP2,DK2,DKDCP2, 
2 RPOW,XPOW,YPOW,DMUA,REY,QW, TAUW(21 ),TW,TI 

C--------------------------------------------~--------------------------
DI MENS ION APC ( Il , 1 1 ) , APE ( 1 l , 1 1 ) , APNE ( 1 1 , 1 1 ) , APN ( 1 1 , 1 1 ) , 

~ 

"--- -"--------------------------------------~--~--------------------



( 
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1 APNW( 11', 11) ,APW( 11,11) ,APSW( 11,11) ,APS('11 ,11) ,APSE( 11,11), 
2 APENE(11,11 ),APNNE(11,11 ),APWSW(11, 1 l),APSSW(l 1 ,11),APCON(1 1,11) 
EQUIVALENCE (ASTORE(1),APC(1»,(ASTORE(122),APE(1 »,(ASTORE(243), 

1 APNE( 1», (ASTORE( 364) ,APN( 1», (ASTORE(485) ,APNW( 1», 
2 (ASTORE(606) ,APW(l »,(ASTORE( 727),APSW(1 »,(ASTORE( 848), 
3 APS(l»,(ASTORE( 969),APSE(1 »,(ASTORE(1090),APENE(1», 
4 (ASTORE (121 1 ) ,APNNE (H ) , (ASTOR~ ( 1332) ,APWSW( 1) ) , 
5 (ASTORE(1453),APSSW(1»,(ASTOR~(1574),APCON(1» 

C-----------------------------------------------~-----------------------

C 
C---
C 

10 

316 
C 
C---
C 

DIMENSION PTe 11) ,QT( 11) 
**** 
TDMA 
**** 
IF (IMONIT.EQ.l) WRITE(6, 10) NPS 
FORMAT(//3X, 'CONVERGENCE MONITOR FOR NPS = ',11//, 

1 3X,' SWEEP' , 4X, 'CENTRE' , 1 2X, , SW' , 16X, , SE' , 1 6X, 'NW' , 1 6X, 'NE' , 
2 16X,'REsrDUAL'/) 
N'ITER= 1 
DO 1 10 l NDEX= 1 ,2 

l -SWEEP 

DO 1 20 l l = 1 , L P 1 
1=1 l 
IF (INDEX.EQ.2) I=LP1+1-I1 
IP1=I+1 
IM1=I-l 
D=APCON (I ,1) 
l F (1. EQ. 1) GOTO 1 3 0 
D = bH A PW ( l , 1 ) * F P ( lM 1 , 1 , NP S ) + APNW ( l , 1 ) * F P ( lM 1 , 2 , NP 5 ) 
IF (I.EQ.LP1) GOTO 140 

130 D=D+APE(I,1)*FP(IP1,1,NPS)+APNE(I,1)*FP(IP1,2,NPS) 
1 +APNNE(I,l )*FP(IP1 ,3,NPS) 
IF (I.EQ.LP2) GOTO 140 
D=D+APENE(I,1 )*FP(I+2,2,NPS) 

140 PT ( 1 ) =APN (I , 1 ) IAPC ( l , 1.> 
QT ( 1 ) =D/APC ( l , 1 ) 
D=APCON (1 L2J-
IF (I.EQ:T~GOTO 142 
D=D+APNW(I,2)*FP(IM1,3,NPS) 

1 +APW(I,2)*FP(IM1,2,NPS)+APSW(I,2)*FP(IM1,1,NPS) 
IF_(I.EQ.2) GOTO 142 
D=D+APWSW(I,2)*FP(I-2,1,NPS) 
IF (I.EQ.LP1) GOTO 145 

142 D=D+APSE(I,2)*FP(IP1,1,NPS)+APE(I,2)*FP(IP1,2,NPS) 
1 +APNE(I,2)*FP(IP1 ,3,NPS)+APNNE(I,2)*FP(IP1 ,4,NPS) 
IF (I.EQ.LP2) GOTO 145 
D=D+APENE(I,2)*FP(I+2,3,NPS) 

145 DENOM=APC(I,2)-APS(I,2)*PT(1) 
PT(2)=APN(I,2)/DENOM 
QT(2)=(APS(I,2)*QT(1 )+D)/DENOM 
DO 150 J-=3,MP3 
D=APCON (1 ,J) 
l F (r. EQ. 1) GOTO 1 60 
D=D+APW(I,J)*FP(IMl ,J,NPS)+APNW(I,J)*FP(IMl ,J+l,NPS) 

1 +APSW(I,J)*FP(IM1,J-1,NPS) 
2 +APSSW(I ,J)*FP(IMl ,J-2,NPS) 
IF (I.EQ.2) GOTO 160 ' 



( 

D=D+APWSW(I,J)*FP(I-2,J-l,NPS) 
IF (I.EQ.LP1) GOTO 170 

160 D=D+APE(I,J)*FP(IPl ,J,NPS)+APNE{I,J)*FP(IPl ,J+l,NPS) 
1 +APSE(I,J)*FP{IP1~J-l,NPS) 
2 +APNNE(I,J)*FP(IP1,J+2,NPS) 

IF (I.EQ.LP2) GOTO 170 
D=D+APENE(I,J)*FP(I+2,J+l,NPS) 

170 DENOM=APC(I,J)-APS(I,J)*PT(J-l) 
PT{J)=APN(I,J)/DENOM 

150 QT{J)=(APS(I,J)*QT(J-l)+D)/DENOM 
D=APCON(I,MP2) 
l F (I. EQ. 1) GOTO 1 52 
D=D+APNW(I ,MP2) *FP (lM 1 ,MP 1 ,NPS) +APW(I , MP2) *FP(IMl , MP2, NPS) 
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1 +APSW(I ,MP2)*FP(IM1 ,MP3,NPS)+APSSW(I ,MP2)*FP(IM1 ,MP2-2,NPS) 
IF (I.EQ.2) GOTO 152 
D=D+APWSW(I,MP2)*FP{I-2,MP3,NPS) 
IF (I.EQ.LP1) GOTO 155 

152 D=D+APSE(I,MP2)*FP(IP1,MP3,NPS)+APE(I,MP2)*FP(IP1,MP2,NPS) 
1 +APNE(I,MP2)*FP(IPI ,MP1,NPS) 
IF (I.EQ.LP2) GOTO 155 
D=D+APENE(I,MP2)*FP(I+2,MP1,NPS) 

155 DENOM=APC(I,MP2)-APS{I,MP2)*PT(MP3) 
PT(MP2)=APN(I,MP2)/DENOM 
QT(MP2)=(APS(I,MP2)*QT(MP3)+D)/DENOM 
D=APCON(I ,MPI) 
IF (I.EQ.I) GOTO 180 
D=D+APW( l , MPI ) *FP (rM 1 ,MP 1 , NPS) +APSW(I , MPI ) *FP(IMI , MP2, NPS) 

1 +APSSWO,MP1)*FP(IM1,MP3,NPS) l_\ 
l F (I. EQ • 2 ) "GOTO 1 8 0 
D=D+APWSW(I,MP1)*FP(I-2,MP2,NPS) 
IF (I.EQ.LP1) GOTO 190 

180 D=D+APE(I,MP1)*FP(IPl ,MPI,NPS)+APSE(I,M~1)*FP(IPI,MP2,NPS) 
190 PT(MP1)=0.DO , 

QT(MP1)=(APS(I,MP1)*QT(MP2)+D)/(APC(I,MP1)-APS(I,MP1)*PT(MP2» 
C--- BACK SUBSTITUTION 

FP(I ,MPl ,NPS)=QT(MP1) 
DO 200 JJ= 1 ,MP2 
J=MP1-JJ 

200 FP(I,J,NPS)=PT(J)*FP{I,J+l,NPS)+QT(J) 
120 CONTINUE 
C 
C--- J-SWEEP 
C 

DO 2 20 J J = 1 , MP 1 
J=JJ 
IF (INDEX.EQ.2) J=MP1+1-JJ 
JPl =J+l 
JM1 =J-l 
D=A.,PCON(l,J) 
IF (J.EQ.1J GOTO 230 
D=D+APS( 1 ,J)*FP( 1 ,JMI ,NPS)+APSE( 1 ,J)*FP(2,JM1 ,NPS) 
IF (J.EQ.MP1) GOTO 240 

230 D=D+APN( 1 ,J)*FP( 1 ,JPI ,NPS)+APNE( 1 ,J)*FP(2,JPl ,NPS) 
1 +APENE{l ,J)*FP(3,JPl ,NPS) 
IF (J.EQ.MP2) GOTO 240 
D=D+APNNE(1,J)*FP(2,J+2,NPS) 

240 PT(1 )~APE{l ,J)/APC(l ,J) 
QT ( 1 ) =D/APC ( 1 , J ) 

---- - -- -- '-- - .. ----------------
------------------~ 



t 

( 

D=APCON ( 2 , J) 
IF (J,EQ~l) GOTO 242 
D=D+APSW(2,J)*FP(l,JM1,NPS)+APS(2,J)*FP(2,JM1,NPS) 

1 +APSE{2,J)*FP(3,JM1,NPS) 
IF (J,EQ.2) GOTO 242 
D=D+APSSW(2,J)*FP(l,J-2,NPS) 
l F ( J ,EQ • MP 1) GOTO 24'5 

242 D=D+APNE(2,J)*FP(3,JP1,NPS)+APN(2,J)*FP(2,JP1,NPS) 
l +APNW(2,J)*FP(1,JPl ,NPS)+APENE(2,J)*FP(4,JP1,NPS) 
IF (J .EQ .MP2) GOTO 245 , 
D=D+APNNE(2,J)*FP(3,J+2,NPS) 

245 DENOM=APC(2,J)-APW(2,J)*PT(1) 
PT(2)=APE(2,J)/DENOM 
QT(2)=(APW(2,J)*QT(1)+D)/DENOM 
DO 250 I=3,LP3 
D=APCON(I,J} 
IF (J .EQ. 1) GOTO 260 \' 
D=D+APS(I,J)*FP(I,JM1,NPS)+APSW(I,J)*FP(I-l,JM1,NPS) 

1 +APSE(I,J)*FP(I+l/JM1,NPS)+APWSW(I/J)*FP(I-2/JM1,NPS) 
IF (J.EQ.2) GOTO 260 
D=D+APSSW(I,J)*FP(I-l,J-2,NPSl 
IF (J,EQ.MP1) GOTO 270 

260 D=D+APN(I,J)*FP(I,JPl ,NPS)+APNW(I,J)*FP(I-l ,JP1,NPS) 
1 +APNE(L,J)*FP(I+l,JP1,NPS) 
2 +APENE,I ,J)*FPCI+2,JPl ,NPS) 

IF (J.EQ.MP2l GOTO 270 
D=D+APNNE(I,J)*FP(I+l,J+2,NPS) 

270 DENOM=APC(~,J)-APW(I,J)*PT(I-l) 
PT ( l ) =APE ( l', J) /DENOM 

250 QT(I)=(APW(I,J)*QT(I-l)+D)/DENOM 
D=APCON (LP2,J) 
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l F (J. EQ. 1) GOTO 252 
D=DjAPSW(LP2,J)*FP(LP3,JM1,NPS)+APS(LP2,J)*FP(LP2,JM1,NPS} 

1 +APSE(LP2/J)*FP(LPl ,JM1/NPS}+APWSW(LP2,J)*FP(LP2-2,JM1,NPS) 
IF (J.EQ.2) GOTO 252 
D=D+APSSW(LP2,J)*FP(LP3,J-2,NPS) 
IF (J.EQ.MP1) GOTO 255 

252 D=D+APNW(LP2,J)*FP(LP3,JP1,NPS) 
1 +APN(LP2,J)*FP(LP2,JP1,NPS)+APNE(LP2,J)*FP(LP1,JPl ,NPS} 
IF (J.EQ.MP2) GOTO 255 
D=D+APNNE(LP2,J)*FP(LP1,J+2,NPS) 

255 DENOM=APC(LP2,J)-APW(LP2,J)*PT(LP3) 
PT(LP2)=APE(LP2~J)/DENOM 
QT(LP2)=(APW(LP2,J)*QT(LP3)+D)/DENOM 
D=APCON(LP1,J} 
IF (J.EQ.l) GOTO 280 ~ 
D=D+APS(LP1/J)*FP(LPl ,JM1,NPS}+APSW(LPl ,J}*FP(LP2,JM1,NPS) 

1 ~APWSW(LP1,J)*FP(LP3,JM1,NPS) 
IF (J.EQ.2) GOTO 280 

'D=D+APSSW(LP1,J)*FP(LP2,J-2,NPS) 
IF (J.EQ.MP1) GOTO 290 

280 D=D+APN(LPl ,J}*FP(LPl ,JPl ,NPS)+APNW(LPl ,J)*FP(LP2,JPl ,NPS) 
290 PT(LPl )=O.DO 

QT(LP1)=(APW(LP1,J)*QT(LP2)+D)/(APC(LPl ,J}-APW(LP1,J)*PT(LP2» 
c 
C--- BACK SUBSTITUTION 
C 

FP(LPl ,J,NPS}=QT{LP1) 

-----------------------------~---------



" 

( 

DO 300 II::1,LP2 
I=LP1-I1 
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300 FP (1 , J , NPS) = PT <r ) *FP <r + 1 , J , NPS ) +QT (I ) 
220 CONTINUE 
1 1 0 CONTI NUE 

R=APC(IPR,JPR)*FP(IPR,JPR,NPS)-APE(IPR,JPR)*FP(IPRP1,JPR,NPS) 
1 -APNE(IPR,JPR)*FP(IPRP1 ,JPRPl ,NPS)-APN(IPR,JPR)*FP(IPR,JPRP1,NPS) 
2 -APNW(IPR,JPR)*FP(IPRM1 ,JPRPl ,NPS) 
3 -APW(IPR,JPR)*FP(IPRMI ,JPR,NPS)-APSW(IPR,JPR)*FP(IPRM1,JPRM1,NPS) 
4 -APS(IPR,JPR)*FP(IPR,JPRMI ,NPS)-APSE(IPR,JPR)*FP(IPRP1,JPRM1,NPS) 
5 -APENE(IPR,JPR)*FP(IPRP2,JPRP1,NPS)-APNNE(IPR,JPR)* 
6 FP(IPRP1,JPRP2,NPS)-APWSW(IPR,JPR)*FP(IPRM2,JPRM1,NPS) 
7 -APSSW(IPR,JPR)*FP(IPRM1,JPRM2,NPS)-APCON(IPR,JPR) 

IF(IMONIT.EQ.O) GOTO 100 
WRITE(6,310) NITER,FP(LPMID,MPMID,NPS),FP(2,2,NPS),FP(LP2,2,NPS), 

1 FP(2,MP2,NPS),FP(LP2,MP2,NPS),R 
310 FORMAT(3X,I4,5X,6(IPDI5.B,3X» 
C 
C CONVERGENCE TEST 
C 
100 NITER=NITER+l 

IF (NITER.LE.NPSWP(NPS» GOTO 316 
IF (DABS(R).LT.PTOL(NPS» RETURN 
IF (NITER.LE.NPITMX(NPS» GOTO 316 
WR I TE (6, 3 1 4 ) 

314 FORMAT(//3X,'MAXIMUM NUMBER OF ITERATIONS EXCEEDED') 
RETURN 
END 

C*********************************************************************** 
SUBROUTINE SOLVE ' 

C**********************************************************************~ 
IMPLICIT REAL*S(A-H,O-Z) 
LOGICAL LSOLVE,LCPRIN,LPRINT,LPPRIN 
COMMON ASTORE ( 3528 ) , X ( 2 1 , 21 ) , y (21 ,21 ) , F ( 2 1 ,21 , 7 ) , FU ( 2 1 ,21 ,7 ) , 

1 FP ( 1 1 , 1 1 , 2 ) , RHO ( 2 1 , 21 ) , GAM ( 2 1 , 2 1 ) , 
2 SC (21 ,21 ) , SP (21 ,21 ) , ACU (21 ,21 ) , UHAT (21 ,21 ) , 
3 D1Tl (10,10,2) ,D2Tl (10,10,2) ,D3Tl (10,10,2), 
4 D1T2( 10,10,2) ,D2T2( 10, 10,2) ,D3T2( 10, 10,2) 

COMMON /THRD/Z,DZ,DPDZ,DPDZC,PBAR,SPMF,WFD,CNUFD(4),LSTEP,ISTEP, 
1 ITMAX,ISTART,IPROB 

COMMON /PARM/RELAX(1),PRELAX 
COMMON /MONIT/LSOLVE(7),LCPRIN,LPRINT(7),LPPRIN 
COMMON /LABEL/TITLE(7),HDG(9) 
COMMON /INDX/NSWP(7),NPSWP(2),Ll,L2,L3,M1 ,M2,M3, 

1 LP1,LP2,LP3,MP1,MP2,MP3,NFS,NFSMAX,NPS,NUME,IMO~T,LAST, 
2 LMID,MMID,LPMID,MPMID,IPREF,JPREF,ITER,IC(3),JC(3),IDEAL, 
3 IR,IRPI ,IRMl ,JR,JRPI ,JRMI ,IPR,IPRPI ,IPRP2,IPRMI ,IPRM2,JPR,JPRP1, 
4 JPRP2,JPRM1 ,JPRM2,NITMAX(7) ,NPITMX(2) / 

COMMON /CONV /TOL ( 7 ) , PTOL ( 2) , DWDES , FCR ( 3 , 2 ) , DpDZCR, CHGTOL, CHGCK "~( 
COMMON /RODBUN/S,RAD,SDR,WBAR,FAREA,PERIM,~HY,DH,DHDR,XL,YL,TANPSI 

1 ,PSI,FBU4,FBU6,FB,FWAV,RHOA,CP1,DK1,DKDCP1,CP2,DK2,DRDCP2, 
2. RPOW,XPOW,YPOW,DMUA,REY,QW, TAUW(21),TW,TI 

C - - - - - ~~ ~~;~ ~~; -~~"(; ~~; ~)~ ~~"(; ~~; ~)"~.~;~"(; ~ ~;'~)" ~~;"(; ~~; ~ )"~- - - - - - - - - - - - -- - ) 

1 AW ( 2 l , 2 1 ) , ASW ( 2 1 , 2 1 ) ,AS ( 2 l , 2 1 ) , ACON ( 2 1 , 2 1 ) 
EQUI VALENCE ( ASTORE ( f) ,AC ( 1 ) ) , (ASTORE ( 442 ) , AE ( 1 ) ) , (ASTORE ( 883), 

1 ANE ( 1 ) ) , (ASTORE ( 1 324) ,AN ( 1 ) ) , (ASTORE ( 1 765) ,AW ( 1 ) ) , 
2 (ASTORE (2206) ,ASW( 1» , (ASTORE (2647) ,AS ( 1 ) ) , (ASTORE( 3088), 

-------_.- ----. -------------------- ------
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3 ACON ( 1 ) ) 
C-----------------------~-----------------------------------------------

DIMENSION PT(21),QT(21) 
C **** 
C TDMA 
C **** 

10 

316 
C 
C 
C 

1 30 

140 

160 

170 

150 

180 

,190 

C 

200 
120 
C 

IF (IMONIT.EQ.l) WRITE(6,10) NFS 
FORMAT (//3X, 'CONVERGENCE MONITOR FOR NFS = ',11//, 

1 3X,' SWEEP' , 4X, , CENTRE' , 1 2X, , SW' , 16X, , SE ,- , 1 6X, , NW' , 1 6X, 'NE' , 
2 16X,'RESIDUAL'/) 

NITER= 1 
DO 1 1 0 l NDEX= 1 , 2 

I-SWEEP 
~ 

DO 1 20 II = 1 , L 1 
1=11 
IF (INDEX.EQ.2) I=Ll+1-I1 
IP1=I+l 
IM1=I-l 
D=ACON (I , 1 ) 
IF (l.EQrl) GOTO 130 
D=D+AW(r, 1 )*F(IM1, 1,NFS) 
IF (I.BQ.Ll) GOTO 140 
D=D+AE ( l , 1 ) *F (I PI, 1 , NFS) +ANE (I , 1 ) *F (I PI, 2, NFS) 
PT ( 1 ) =AN (I , 1 ) /AC (I , 1 ) 
QT( 1 )=D/AC(I, 1) 
DO 150 J=2,M2 
D=AGON (r , J) 
IF (l.BQ.I) GOTO 160 
D=D+AW(I,J)*F(IM1,J,NFS) 

1 +ASW(I,J)*F(IM1,J-l,NFS) 
IF (I.BQ.Ll) GOTO 170 , 
D=D+AE(I,J)*F(IP1,J,NFS)+ANE(I,J)*F(IP1,J+liNFS ) 
DENOM=AC(I,J)-AS(I,J)*PT(J-l) " 
PT(J)=AN(I,J)/DENOM 
QT(J)=(AS(I,J)*QT(J-l)+D)/DENOM 
D=ACON (I ,Mt) 
IF (l.BQ.I) GOTO 180 
D=D+AW(I,Ml)*F(IMl ,Ml,NFS)+ASW(I,Ml)*F(IMl ,M2,NFS) 
IF (I.EQ.Lt) GOTO 190 
D=D+AE<r ,Mt )*F(IPI ,Ml ,NFS) 
PT (M t ) = 0 • DO 
QT(Ml)=(AS(I,Ml)*QT(M2)+D)/(AC(I,MI)-AS(I,Ml)*PT(M2» 

BACK SUBSTITUTION 
F(I,Ml,NFS}=QT(MI) 
DO 200 JJ=1,M2 
J=Ml-JJ 
F(I,J,NFS)=PT(J)*F(I,J+l,NFS)+QT(J) 
CONTINUE o' -

C J-SWEEP 
C 

DO 220 JJ=l,MI 
J=JJ 
IF (INDEX.EQ.2) J=MI+I-JJ 
JP1::::J+l 
JMl =J-l 

---~~ -- ---- --~----------_._-----
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1 

D=ACON ( 1 , J ) 
'IF(J.EQ.l) GOTO 230 
D=D+AS(l ,J)*F(l,JMl ,NFS) 

230 IF (J.EQ.Ml) GOTO 240 
D=D+AN(l ,J)*F(l ,JP1,NFS)+ANE(1,J)*F(2,JP1,NFS) 

240 PT(l)=AE(l,J)/AC(l,J) 
QT ( 1 ) =D/AC ( 1 , J) 
DO 250 I=2,L2 
D=ACON (I , J) 
IF (J.EQ. 1) GOTO 260 
D=D+AS(I,J)*F(I,JM1,NFS)+ASW(I,J)*F(I-1,JM1,NFS) 

260 IF (J.EQ.M1) GOTO 270 
D=D+AN(I,J)*F(I,JP1,NFS) 

1 +ANE(I ,J)*F(I+l ,JPl ,NFS) 
270 DENOM=AC(I,J)-AW(I,J)*PT(I-l) 

PT(I)=AE(I,J)/DENOM 
250 QT(I)=(AW(I,J)*QT(I-l )+D)/DENOM 

D=ACON(Ll,J) 
IF (J.EQ.1) GOTO 280 
D=D+AS(Ll ,J)*F(L1 ,JMl ,NFS)+ASW(L1 ,J)*F(L2,JM1,NFS} 

280 1 F ( J . EQ . M 1) GOTO 290 ' 
D=D+AN(L1 ,J)*F(L1 ,JP1 ,NFS) , 

290 PT(L1)=0.DO 
QT(L1)={AW{L1,J)*QT(L2)+D)/(AC(L1,J)-AW(L1,J)*PT(L2» 

C BACK SUBSTITUTION 
l F ( L 1 , J , NF S ) =QT ( L 1 ) 

DO 300 II=1,L2 
1 =L 1 -1 I 

300 F(I,J,NFS)=PT(I)*F(I+1,J,NFS)+QT(I) 
220 CONTINUE 
110 CONTINUE 

R=AC(IR,JR)*F(IR,JR,NFS)-AE(IR,JR)*F(IRP1,JR,NFS) 
1 -ANE(IR,JR)*F(IRP1,JRP1,NFS)-AN(IR,JR)*F(IR,JRPl ,NFS) 
2 -AW(IR,JR)*F(IRML,JR,NFS)-ASW(IR,JR)*F(IRMl ,JRMl ,NFS) 
3 -AS(IR,JR)*F(IR,JRM1 ,NFS)-ACON(IR,JR) 

IF(IMONIT.EQ.O) GOTO 100 
WRITE(6,310} NITER,F(LMID,MMID,NFS),F(2,2,NFS),F(L2,2,NFS), 

1 F(2,M2,NFS),F(L2,M2,NFS),R 
310 FORMAT(3X,I4,5X,6(IPD15.8,3X» 
C 
C CONVERGENCE TEST 
C 
100 NITER=NITER+l 

IF (NITER.LE.NSWP(NFS» GOTO 316 
IF (DABS(R).LT.TOL(NFS» RETURN 
IF (NITER.LE.NITMAX(NFS» GOTO 316 
WRITE (6,3f4) 

31.4 FORMAT(/ /3X, 'MAXIMUM NUMBER OF ITERATIONS EXCEEDED') 
RETURN 
END 

C 

339 

, SUBROUTI NE TEST 1· 
C*********************************************************************** 

IMPLICIT REAL*S(A-H,O-Z) 
LOGICAL LSOLVE,LCPRIN,LPRINT,LPPRIN 
COMMON ASTORE ( 3528) , X (21 ,21 ) , y (21 ,21 ) , F (21 ,21 ,7) , FU (21 ,21 ,7) , 

1 FP { 1 1 , 1 1 , 2} , RHO ( 2 1 , 2 1 ) , GAM ( 21 ,2 1 ) , 
2 SC (21 , 21 ) , SP ( 2 1 ,21 ) , ACU ( 2 1 ,21 ) , UHAT ( 21 ,21 ) , . 

1----- ,-' -~--'" 



( 

3 D1Tl (10,10,2) ,D2Tl (10,10,2) ,D3Tl (10,10,2), 
4 Dl T2 ( 10, 10,2) , D2T2 ( 10, 10,2) , D3T2 ( 10, 10,2) 
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COMMON /THRD/Z,DZ,DPDZ,DPDZC,PBAR,SPMF,WFD,CNUFD(4},LSTEP,ISTEP, 
1 tTMAX,ISTART,IPROB 

COMMON /PARM/RELAX(7),PRELAX 
COMMON /MONIT/LSOLVE (7 }SLCPRIN, LPRINT( 7) ,LPPRIN 
COMMON /LABEL/TITLE(7),HDG(9} 
COMMON /INDX/NSWP(7),NPSWP(2},Ll,L2,L3,Ml,M2,M3, 

1 LP 1 , LP2 , LP3 ,MP 1 ,MP2 , MP3, NFS ,NFSMAX, NPS ,NUME, IMONIT ,.LAST, 
2 LMID,MMID,LPMID,MPMID,IPREF,JPREF,ITER,IC(3},JC(3),IDEAL, 
3 IR,IRPl ,IRM1,JR,JRPl ,JRM1,IPR,IPRP1,IPRP2,IPRM1,IPRM2,JPR,JPRP1, 
4 JPRP2,JPRM1,JPRM2,NITMAX(7),NPITMX(2) . 

COMMON /CONV/TOL(7),PTOL(2),DWDES,FCK(3,2),DPDZCK,CHGTOL,CHGCK 
COMMON /RODBUN/S,RAD,SDR,WBAR,FA~EA,PERIM,PHY,DH,DHDR,XL,YL,TANPSI 

1 ,PSI,FBU4,FBU6,FB,FWAV,RHOA,CP1,DK1,DKDCP1,CP2,DK2,DKDCP2, 
2 RPOW,XPOW,YPOW,DMUA,REY,QW, TAUW(21},TW,TI 

C--------------------------------------------------------------------~--
30 FORMAT(//3X,'CORRECTED VALUE FOR NFS = ',11//, 

1 3X,' , , 4X, 'CENTRE' , 1 2X, , SW' , 1 6X, , SE' , 1 6X, 'NW' , 1 6X, , NE' /} 
35 FORMAT ( 3X, 4X, 5X, 5 ( 1 PD 15.8, 3X) ) . 1 

C----------------------------------------------------t------------------

1/ 

ENTRY PTVEL 
WRITE(6,30} NFS 
WRITE(6,35) F(LMID,MMID,NFS),F(2,2,NFS},F(L2,2,NFS}, 

1 F(2,M2,NFS),F(L2,M2,NFS) 
RETURN 
END 

-------_-.._-.~------------------


