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Abstract

This thesis presents an analysis of redundantly-actuated robotic systems with
cmphasis on systems which have a time-varying kinematic structure such as mechanical

hands, walking machines and multiple manipulators grasping a common object.

Firstly, graph theory is used to characterize the kinematic structure of these
systems and show that they can be decomposed into two subsystems, each with different
properties. The contacts which occur between the constituent bodies in the system are
then analyzed in order to determine the system’s mobility (or number of degrees of free-
dom). It is found that this mobility varies during the task and that, at any given time,

there will be more actuators active than are necessary.

The kinematic and dynamic equations governing the motion of these systems
arc then studied and compared to those of more conventional robotic systems. Although
the inverse dynamics equations can be formulated in a number of ways, they always
constitute an underdetermined system of linear equations. This allows their treatment as
cquality constraints in an optimization problem. In order to account for the limitations

of passive contacts and actuator capabilities, inequality constraints are also considered.

The formulation of the optimization problem is then studied with emphasis
on problems which are solvable in real-time and which produce time-continous solutions.
Quadratic programming is found to be a good choice of problem formulation. A quadratic-
programming algorithm which efficiently includes both equality and inequality constraints
is presented. A number of linear and quadratic objective functions which could be opti-
mized are reviewed and the limitations of linear programming are made apparent through
the use of numerical examples. Quadratic objective functions which minimize internal
force, power consumption and solution discontinuitics are examined. Finally, other appli-
cations of redundant actuation are briefly touched upon—the full dynamic balancing of

linkages and the reduction of impact shocks in robotic systems.
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Résumé

Cette thése présente une analyse mécanique des systtmes robotiques & motori-
sation redondante avec un accent particulier sur les organes de préhension, les machines

a pattes et les ensembles de robots manipulant un objet commun.

En premier lieu, la théorie des graphes est appliquée a la classification de leur
structure cinématique et il est démontré que celle-ci change durant la tiche, entrainant
ainsi un changement du nombre de degrés de liberté (ddl) du systéme. En comparant le
nombre de ddl avec le nombre de moteurs installés dans le systeéme, il devient évident que

ces systémes disposent de plus de moteurs actifs qu’il n’est nécessaire.
|

Les équations cinématiques et dynamiques de ces systemes font 'objet d’une
étude approfondie. Il est démontré que l'exces de moteurs permet d’eptimiser la distri-
bution des forces dans le systeme. De ce point de vue, les équations de la dynamique
du systeme deviennent des contraintes d’égalité dans un probleme d’optimisation. En
raison des types de contacts qui peuvent exister dans les systemes que nous considérons,

il devient essentiel d’inclure des contraintes d’inégalite dans Poptimisation.

Les méthodes d’optimisation sont considérées du point de vue analytique et
numérique, en insistant sur celles qui peuvent étre réalisées en temps réel. La program-
mation linéaire, qui est souvent utilisée pour ce genie de problemes, n’est pas appropride
dii & la possibilité de solutions multiples. La programmation quadratique devient alors
la méthode de choix. Un algorithme capable de résoudie le probleme de programmation

quadratique avec contraintes linéaires de maniere rapide et efficace est done présenté.

Puis, le sujet de la fonction objectif qui devrait ¢tre optimisée est abordé.
Plusieurs fonctions sont sugérées telles que la minimisation des forces internes, de la
consommation d’énergie et des discontinuités des solutions obtenues. Finalement, d’autres
applications de la motorisation redondante sont considéiées, telles que le balancement,

dynamique complet de mécanismes & quatre barres et la 1éduction des chocs.
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Claim of Originality

The author claims the originality of certain ideas advanced in this thesis, the

most significant of these being listed below:

(i) an explanation of why systems with time-varying topology are redundantly actuated

(ii)

(iii)

v)

(vi)

(vii)

and the impact this has on the methods required to control them;

a proof that a system is more controllable with a given set of actuators than with

any subset of those;

a general framework to provide time-continuous force sctpoints in real-time for
redundantly-actuated robotic devices. This includes an algorithm based on the sym-
bolic preprocessing of equations for equality-constrained optimization problems, as
well as the extension of an existing inequality-constrained optimization technique

to efficiently include equality constraints;

a number of objective functions which may be uscfully optimized in the context of
redundantly-actuated robotic devices. These include: the scale-independent mini-
mization of internal forces, the optimization and limiting the non-working constraint

wrenches, and the minimization of power losses in systems powered by dc servomo-

tors;

a proof that the power imparted to a redundantly-actuated system of cooperating

robotic devices cannot be optimized;

an analysis of cooperating robotic devices at changes in topology and the proposal

of policies to smooth the solution discontinuities occurring at those times; and

the application of redundant actuation to the full dynamic balancing of linkages and

to the reduction of impact shocks effects.

These contributions have been partly reported in a preliminary form in Nahon

and Angeles (1989a), (1989b), (1990a), (1990b), (1991a) and (1991Db).
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Chapter 1

Introduction

Early work in robotics focused on the development of single-arm anthropo-
morphic computer-controlled devices which functioned in isolation from one other. As
the complexity of tasks evolved, so did the demands on robotic systems. Multiple robot
workcells are now becoming commonplace where once isolated 10bots worked alone. As
these workcells develop, there is an increasing desire to have the robot arms collaborate
on a single task—e.g., lifting a heavy object. Similarly, just as man outdistanced the
‘lower’ animals by developing a dextrous hand, he wishes to bestow this same ability on
his robots. Thus, an increasing amount of robotics research is aimed at the development
of multi-fingered dextrous hands. Furthermore, mobility is becoming an increasingly de-
sirable attribute for robots, allowing them to go to their task rather than have their task
come to them. Legged locomotion has long been recognized as supetior to wheeled or
tracked locomotion for mobility in rough and unstructured environments (Bekker, 1960)
causing legged robots to become the object of considerable attention for their potential

utility in military and forestry applications.

The above is not meant as a whimsical reflection but rather to bring to light
the importance and relevance of certain seemingly unrelated robotic systems: cooperating
manipulators, dextrous hands and legged robotic vehicles, which are the focus of the

present work. Although they may appear unrelated at first glance, these systems can be
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perceived as an assemblage of robotic devices (i.e., arms, fingers or legs) which must work
cooperatively to achieve the same end—whether that be to lift a load, manipulate a part,
or walk. The purpose of this thesis is to study certain aspects which these systems have
in common. More specifically, its motivation is to determine the commands which should

be used to control these systems so that the individual robotic devices work cooperatively

rather than antagonistically.

1.1 A Review of Cooperating Robotic Devices

Mechanical hands, legged vehicles and cooperating manipulators belong to a
class of systems which can be called cooperating robotic devices. Although these systems
are different in many respects, they also exhibit certain marked similarities. However,
advances in their design and control has taken place with relatively little cross-fertilization.

A brief overview of the history and present state of these systems is now presented.

1.1.1 Legged Vehicles

Legged vehicles have existed for at least 25 years, though the early ones could
not really be considered robotic since they either had fixed leg motion or were under human
rather than computer control. For example, the 4-legged ‘walking truck’ developed at
General Electric (Mosher, 1969) had 3 joints per leg, each of which was directly controlled
by the human operator seated in the vehicle. The task of simultaneously controlling all
12 joints was so onerous that cven an experienced operator could only control the vehicle
for a few minutes at a time (Todd, 1985). It became apparent, from this early experience,
that a viable legged vehicle would have to make extensive use of computer control to
relieve the operator of the low-level control tasks and use him (or her) principally as a

supervisory controller (Orin, 1982).

Concerted development and design of modern robotic legged vehicles has been
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centered at the Ohio State University, starting with the early OSU Hexapod (McGhee
and Iswandhi, 1979; Klein and Briggs, 1980) through to the recently-completed six-legged
Adaptive Suspension Vehicle (Waldron et al., 1984; 1987). Many of the analytical ad-
vances in the area of legged vehicles have also come from that institution—examples
being the works of McGhee and Pai (1974), Orin and Oh (1981), Waldron (1986) and
Kumar and Waldron (1988). A number of legged vehicles have been built by other re-
searchers including: a six-legged axisymmetric multi-function platform (Russell, 1983), a
six-legged single-passenger vehicle (Sutherland and Ullner, 1984), and a series of small
terrain-adaptable quadrupeds (Hirose, 1984). Furthermore, a considerable amount. of re-
search on legged locomotion has been performed in the Soviet Union (Umnov and Pogreb-
niac, 1975; Gurfinkel et al., 1981; Popov, 1982; Bessonov and Umnov, 1983), though the

results of this work are less readily accessible.

The above machines have the common trait of being statically stable—i.e.,
the vertical projection of their centre of mass position falls within the suppoit polygon
(the polygon formed by the connecting the foot/ground contact points). This allows the
vehicle to stop at any time during its gait without falling over  Recently, dynamically
stable legged vehicles have been developed by Raibert et al. (1984, 1986), Miura and
Shimoyama (1984}, Takanishi et al. (1990). The principal objective of these one-, two-
or four-legged research vehicles is the development of control techniques which allow
controllable dynamic stability. Interestingly enough, the dynamically stable machines
built until now will fall over if they stop running because they are not statically stable.
No machine has yet been built which can make the transition between statically and
dynamically stable walks. A more detailed overview of the history and development of

legged robots is given by Todd (1985).

1.1.2 Mechanical Hands

Until recently, the only end effectors available for robotic manipulators were

simple jaw-grippers and specialized tool-holders designed to hold particular tools. Jaw
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grippers have the advantage of being simple and versatile. However, because of their
simplicity, they are unable to perform any dextrous manipulation—that is, maneuvering
of an object relative to the end-effector. As a result, robot arms equipped with jaw
grippers are constrained to do all manipulation at the arm level and the accuracy of the

manipulation possible with this arrangement is limited by the usually coarse accuracy of

the robot arm.

Dextrous mechanical hands, which allow manipulation to be performed by
the hand rather than by the arm, have appeared relatively recently in the history of
robotics and are of particular interest in tasks requiring fine manipulation. However,
the development of dextrous hands has been hindcred by their considerable mechanical
complexity and the amount of computing power required to control them. As computing
power has come down in cost and experience has been gained with the high-density
mechanical drive and actuation systems required, some mechanical hands have begun to

appecar—though principally as research tools.

Early work by Salisbury and Craig (1982), Salisbury and Roth (1983), Kerr and
Roth (1986), Mason and Salisbury (1985) and Cutkosky (1985) laid the groundwork in this
field and identified problems which would have to be surmounted for meci:anical hands to
become viable. Dextrous hands, as opposed to simple grasping, possibly anthropomorphic,
hands, were designed by Skinner (1975), Tomovié and Stojiljkovi¢ (1975), Crossley and
Umholtz (1977), Okada (1979), Salisbury (Mason and Salisbury, 1985), Jacobsen et al.
(1984; 1986) and Santoso (1987). The Utah/M.LT. hand (Jacobsen et al., 1984: 1986),
which represents the state of the art, is an anthropomorphic 4-fingered hand with 4 joints
per finger, an opposed thumb and tactile sensors. Each joint is actuated by two opposing
tendons, each of which in turn, is driven by an actuator. There are therefore 32 actuators

which are remotely located.
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1.1.3 Cooperating Manipulators

Although industrial robotic manipulators have existed since the early 1970’s
they are almost invariably used to perform tasks individually. Recently, it has becone
clear that improvements in productivity would be attained with workeells in which mul-
tiple robots would collaborate to perform a single task and therefore would, at times,
manipulate the same object. Hayward and Hayati (1988), for example, point out that
multiple manipulators are well suited for tasks such as the transport of inertial loads in

the absence of a gravitational field and the transport of flexible payloads.

To date, most of the work dealing with multiple manipulators has focused
on their control rather than their mechanical design, on the tadit assumption that these
systems would simply be composed of two scparate existing manipulators. The control

problems introduced by the interaction of multiple manipuiatois include a consideration of

1. The controller architecture and control laws needed to consistently contiol multiple

manipulators (Hayati, 1986; Tarn et al., 1988; Hu and Goldenberg, 1990),

2. The more complex soft ware environment required to synchronize multiple processes

(Hayward and Hayati, 1988),
3. The necessity of moving-obstacle avoidance (Tournassoud, 1988), and

4. The sequencing of tasks in the workcell (Hussaini and Jakopac, 1986).

Among existing control philosophies, some (e.g., Zheng and Luh, 1986, 1989,
treat the various manipulators in the workcell uncqually by appointing one of these as
the ‘leader’ and the other(s) as ‘follower(s)’, thereby simplifying the task requirements
for the individual robots. Other researchers prefer not to impose this artificial constraint

and treat all robots as equals, but must deal with more complex sequencing problems.

Very recently, some research has emerged which also deals with the mechanical

design of multi-armed robotic systems. Thus, the field is well enough advanced that such
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systems are now being designed, particularly for space-based applications, on the premise

that their arms will work together at all times (Borduas et al., 1989; Iwata et al., 1989;
McCain, 1990).

1.2 An Introduction to Some Problems

From the mechanical engineer’s perspective, robotics fits into the broader and
more classical field of the theory of machines and mechanisms (TMM). Figure 1.1 shows

a cross section of robotic devices and machines:

(a) A serial robotic manipulator not in contact with its environment,

(b) A parallel robotic manipulator—often used as a flight simulator platform,
(c) An oil pumping rig,

(d) A mechanical hand,

(e) A walking machine, and

(f) Two manipulators of the type shown in {(a) handling a common payload.

These systems are all examples of kinematic chains—or couplings of rigid bod-
ics by means of mechanical constraints (Angeles, 1989). Except for the serial robotic
manipulator, all these systems bear the similarity that they incorporate kinematic loops—
that is, a path can be traced along successive bodies and joints which starts and ends at
the same point. As well, the first three systems are different from the last three in one
important respect: their kinematic structure does not change with time. By kinematic
structure, or topology, we mean the connections between the bodies which make up the

kinematic chain—a topic which will be discussed in detail in Chapter 2.

Most mechanisms and machines have a fixed structure—even though the po-

sition and orientation of their members may change, the connections between them do
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(d) (e) (f)

Figure 1.1 Robotic Systems, Machines and Mechanisms

not. As a result, the mobility of the system (Hunt, 1978) (a.k.a., its number of degrees
of freedom)—i.e., the number of independent variables needed to fully specify the posi-
tion and orientation of all its links—remains constant throughout its operation. At each
joint, an actuator may be installed in order to control the joint variable at that joint.
Therefore, a machine normally needs a number of actuators equal to its mobility in order
to be fully controlled; in fact, it is common practice to install as many actuators as dic-
tated by its mobility. For example, the platform shown in Figure 1.1(b) has a mobility
of six and six actuators. The possibility of installing more actuators than necessary in a

device of fixed topology is rarely suggested, primarily because of the negative effect that
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redundant actuators can have if they are not properly coordinated. Other causes for the
neglect of redundant actuation in fixed-topology devices are their cost, weight and the
extra complexity they require in their control. An example of the relatively simple control
requirements of a non-redundantly actuated system is that we can aiways uniquely find

the actuator forces or torques required to effect a prescribed motion of that system.

In contrast to fixed-topology systems, the mobility of systems with time-
varying topology varies during their task, and obvious questions which come to mind
arc therefore: How many actuators should be installed in these systems 7 and, how many

actuators should be driven at any given time ?

To answer the first question, it must be recalled that the individual robotic
devices which make up the systems of interest may act independently, at times. For
example, when the fingers of a mechanical hand are not in contact with each other or
with a common object, they can move independently. During this part of their task, they
can be considered as independent systems and each device must have installed at least as
many actuators as required by its mobility. Thus, the number of actuators in the system
is chosen according to the mobility of its constituent kinematic subchains, when these act
independently. In the case of the two six-axis manipulators shown in Figure 1.1(f), there
would be a total of twelve actuators installed in the system, and all of them would be

driven when the manipulators are not grasping the common payload.

The answer to the second question is not as straightforward. When individual
subchains come into contact with each other directly or through a commonly-grasped
object, closed kinematic chains are formed and the mobility of the system is decreased.
In order to keep the system non-redundantly actuated, a control policy could be adopted
to turn off the same number of actuators as the reduction in mobility, while keeping
the corresponding joints free to move. Alternatively, all actuators could be kept active,
while ensuring that the control commands to the actuators are not antagonistic. If the

commands conflict with each other, large forces may be generated both in the robotic
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devices and on the common object—e.g., in the case of a mechanical hand, the grasped
object might be crushed. We can therefore expect to encounter more control problems if
we persist in driving too many actuators, and, should we choose this strategy, we must

ensure that there will be compensating benefits.

The tradeoff between added control complexity and the potential benefits of
redundant actuation touches on a number of related topics in robotics—most notably, that
of dynamics. As previously mentioned, the problem of finding the actuator commands
required to effect a prescribed motion of a non-redundantly actuated system-—a problem
also known as inverse dynamics—is relatively straightforward. This is not the case for mul-
tiple cooperating robotic devices which are redundantly actuated, as their corresponding
inverse dynarnics equations are underdete-minate-—there are fewer force/moment balance
equations than unknown forces and mome its. This implies that there are an infinite num-
ber of solutions to these equations. Failure to choose a ‘good” solution to these equations
can result in the generation of excessive forces mentioned previously. In order to choose
the ‘best’ solution, optimization techniques have been proposed to minimize an objective
function while satisfying the equations. In this light, the force/moment balance equations
can be viewed as constraints in an optimization problem. Once a set of optimum forces is
found, it can be used as a setpoint in a force controller, such as that suggested by Hayati

(1986) to ensure coordinated use of all the installed actuators.

This approach to the control problem can be tegarded as active compliance in
the same sense that this technique is applied to the control of a serial robotic manipulator
in contact with its environment (sce e.g., Asada and Slotine, 1986). It can also be con-
trasted to passive compliance—an approach which has also been proposed in the context
of walking machines and mechanical hands by a small minority or researchers (Ummnov
and Pogrebniac, 1975; Lallemand, 1988; Gao and Song, 1990). In the latter approach,
the force distribution in the system is not actively contiolic I, but rather assumed to take
place passively due to structural compliance in the system. However, just as passive

compliance has limited application in the force control of serial manipulators in contact
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Figure 1.2 Force Indeterminacy, Passive and Active Compliance

with their environment (Asada and Slotine, 1986), its applicability to multiple cooperat-
ing robotic devices is also restricted. It requires that the structural design of the system
be compliant enough to obtain desirable force distribution properties. This can, in turn,
preclude accurate motion control which can often prove to be a serious drawback. For
example, a mechanical hand, whose express purpose is to perform fine manipulation, may
become limited in this very respect by its structural flexibility. Conversely, if the system
is relatively rigid, the passive compliance approach can become extremely sensitive to
configuration errors. In fact, active compliance can be regarded as ar approach in which
the compliance of the system can be adjusted according to the task, thereby making the

system less sensitive to (uncontrolled) structural flexibility.

These concepts are exemplified by the simple system shown in Figure 1.2—a
beam resting on three roller supports. The relevant equations for the beam are the vertical
force balance and the moment balance equations, since lateral motion is unconstrained.
‘L'hese two equations are underdetermined because there are three unknowns: the vertical
forces acting at each of the three supports. The result of this underdeterminacy is that
it is impossible to determine the forces acting on each bearing. If the beam is relatively

rigid, then a small difference in the size of one of the supporting bearings will cause a large
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difference in the resulting force distribution—in Figure 1.2(a), the two outer bearings will
each support half the load, whilein Figure 1.2(b) they will support none of it. On the other
hand, if the beam is very flexible, as in Figure 1.2(c), differences in the bearings should not
cause much variation in the force distribution, but the system will be difficult to control
accurately. The approach proposed here and by most other researchers, illustrated in
Figure 1.2(d), is to assume that the mechanical system is rigid, but introduce compliance
through the control strategy. This is done by choosing an optimal set of forces—in this
case, perhaps, such that each bearing supports one third of the load—and slightly move

the supports vertically to achieve this balance.

It was previously mentioned that the force/moment balance equations can be
viewed as constraints in an optimizatior problem. They are not the only constraints
which need be considered, however. Certain systems—most notably mechanical hands
and walking machines—have unilateral physical constraints due to the nature of the con-
tacts involved. These inequality constraints generally arise as a result of passive frictional
contacts in systems which depend on these for force transmission between different parts
of the system. The contact conditions between the feet and ground in walking machines
or between the fingertips and manipulated object in a mechanical hand are good exam-
ples of these. For example, Figure 1.1(d) depicts a mechanical hand holding an object
where, in addition to the force/moment balance equations, there exist further inequality
constraints at the fingertip/object contacts. Normal contact forces cannot be negative
and the magnitude of the tangential force at each fingertip cannot exceed the maximum
force due to static friction. Thus, any solution method to the optimization problem must
be able to consider inequality constraints. As well, since it is intended that the result
of the optimization will be used as a controller setpoint, solutions must be obtained in
real time. Summarizing, the real-time control of cooperating robotic devices involves the

solution of an optimization problem subject to both equality and incquality constraints.

Another question which must be answered before the optimization problem is

solved is quite basic: what should we optimize? In fact, when a system is redundantly
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actuated, it becomes possible to optimize the force distribution it exerts on its environ-
ment and/or its internal force distribution. Thus, in the case of a mechanical hand, the
finger-object contact forces can be reduced and homogenized, reducing chances of slip-
page and crushing, and allowing a lighter structure to be built to carry the same loads.
Redundant actuation can also allow greater safety in case of breakdown of individual ac-
tuators because a redundantly-actuated mechanism can still be controlled if one or more
actuators breaks down. Yet another advantage of redundant actuation is that it permits
us to choose a solution to the inverse dynamics problem which satisfies the inequality

constraints previously mentioned—which might not be possible in a determinate system.

Finally, it is interesting to note that the human body makes ample use of
redundant actuation and of control strategies where certain actuators are turned off during
part of their stroke. For example, the human arm has three joints with a total of 7 to
9 degrees of freedom (Shipman et al., 1985) to position and orient the hand, but uses
29 muscle groups (Gray, 1985) for actuation of these degrees of freedom. Not all muscle
groups are active at all times, but rather only the ones which have a good mechanical
advantage. At any given time, there will always be more muscles active than are absolutely

necessary but they will always act cooperatively.

1.3 A Brief Overview of Previous Work

To the author’s knowledge, the first observation that the inverse dynamics
problem of cooperating robotic devices admitted many solutions was made by McGhee
and Orin (1976) in the context of walking machines. The work of Williams and Siereg
(1979) was also notable by being the first to use the term ‘redundant actuation’. Orin
and Oh (1981) adopted a linear-programming approach to solve the inverse dynamics
problem while developing a technique to determine forces in the design of walking ma-
chines. Klein et al. (1983) also noted the problem while obtaining force setpoints for the

controller of the OSU Hexapod, and used a pseudoinverse solution. Kerr and Roth (1986)
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noted the underdeterminacy of the force problem in mechanical hands and proposed a
more conservative linear-programming approach which stays as far away as possible from
the inequality constraints. Waldron (1986) and Kumar and Waldron (1988) proposed a
technique based on ‘interaction forces’ applicable to systems with zero contact torques
to solve the problem but neglected to demonstrate the computational cfficiency of this
scheme. Nakamura et al. (1987) proposed their own inequality-constrained nonlinear
programming algorithm to minimize internal forces, but, again, did not consider its po-
tential for real-time implementation. Finally, Zheng and Luh (1989) proposed another
inequality-constrained nonlinear optimization formulation, but found that computational

complexity and frequent switching of joint torques led to problematic solutions.

Until about 1988, the only approaches which scemed to be implementable in
real-time were those based on pseudoinverse solutions which could not consider inequality
constraints. Cheng and Orin (1989) were able to greatly speed the lincar-programming
solution by formulating a ‘compact dual’ problem, thereby allowing real-time implemen-
tation of linear programming. However, this approach yields discontinuous solutions due
to the peculiarities of linear programming. Klein and Kittivatcharapong (1990) applied
a nonlinear-programming algorithm to minimize a lincar objective function in walking

machines but were forced to accept suboptimal solutions to avoid discontinuities.

One aspect which has been neglected by previous works is a consideration of
the behavior of the systems in question upon changes in topology. Very few authors even
consider examples in which changes in the system’s topology occur, even though the force
optimization problem is of interest principally for systems with time-varying topology.
The few works which present examples including changes in topology report results which

exhibit severe discontinuities in their force time historics.
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1.4 Organization of the Present Work

The present work presents a unified approach to the problem of finding force
setpoints for the control of cooperating robotic devices. Chapter 2 presents an analysis of
the kinematic structure, or topology, of cooperating robotic devices, where graph theory
is used to classify their structure. The nature of the contacts and joints occurring in these
systems is then studied with emphasis on the freedom they allow and the constraints they
impose on the bodies which they couple. These concepts are then brought together to
determine the mobility and connectivity of the systems of interest. Chapter 3 expands
the kinematic analysis to include not only the effects of kinematic structure, but also the
geometry and motion of the system. The position, velocity and acceleration kinematics
of open and closed kinematic chains are reviewed. More comprehensive evaluations of

the mobility and connectivity of the systems of interest are introduced and the duality

between kinematics and statics is reviewed.

The dynamics of cooperating robotic devices is important when trying to de-
termine the forces and torques acting on the system during a particular task. Chapter 4
investigates the formulation of the system’s governing equations and shows that the in-
verse dynamics equations are underdetermined when the system is redundantly actuated.
This allows us to optimize an objective function while scarching for a solution to the in-
verse dynamics equations. The effect of time-varying topology on the dynamics equations
is investigated to show that the coefficients of the motion cquations vary discontinuously,
causing jump discontinuities in the force time historics. Since the actuators are not ex-
pected to be able to respond to discontinuous torque commands, a smoothing of these
discontinuities is presented. Inequality constraints on the solution to the dynamics equa-
tions are also introduced in this chapter to represent the limitations of passive frictional

contacts, actuator and joint limitations and smoothness constraints on the solution.

The necessity to optimize having been established, Chapter 5 investigates tech-

niques which can be used to perform the optimization with an emphasis on real-time im-
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plementation. Criteria for the existence and uniqueness of minima are reviewed because
these are useful in comparing linear and quadratic programming. It is demonstrated that
the latter has superior performance in terms of both the smoothness of its solution, and its
computational speed. Algorithms are then presented for the solution of the optimization
problem and an existing technique for inequality-constrained quadratic optimization is
extended to include equality constraints. Chapter 6 then presents some linear-quadratic
objective functions which can be minimized while finding a solution. These include ‘in-

ternal force’, power losses and solution discontinuities.

Alternative uses for redundant actuation arc presented in Chapter 7, for sys-
tems with time-varying or constant topology. These include the full dynamic balancing of
linkages and the reduction of the effects of shocks in linkages. Finally, Chapter 8 concludes

with recommendations for future work.




Chapter 2

The Kinematic Structure

A kinematic chain may be defined as a set of bodies, each of which is called a
link, coupled by joints between adjacent bodies. Thus, cooperating robotic devices can be
classified as kinematic chains with particular characteristics in their kinematic structure
which set them apart from other types of robotic systems. This chapter presents a classifi-
cation of the structure, or topology, of the kinematic chains of interest—i.e., a description
of the number of links and joints in the system and their interconnections, disregarding
geometric details such as link lengths and shapes. The grapn representation of a kine-
matic chain is introduced in order to provide a systematic framework for classifying and
analyzing its topology. Graph theory will then allow us to classify the chains of interest
as a subclass of more general kinematic chains. Since the topology of a kinematic chain is
affected by the constraints imposed by the contacts between its constituent rigid bodies,

the contacts which occur within the robotic systems of interest will be characterized.

Kinematic chains may be subdivided into structures, the purpose of which is
to transmit forces, and mechanisms,' the purpose of which is to transmit motion. The
distinguishing difference between the two is the mobility of the chain—the mobility of a
structure is non-positive, while that of a mechanism is positive. Robotic systems may be

analyzed as mechanisms or structures, depending on the intent of the analysis. In general,

In the present context, the term mechanism includes open kinematic chains
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their purpose is that of a mechanism, but they can also be instantancously considered
as structures by assuming their actuators to be locked in a certain position. One of the
important tasks when designing a complex mechanism such as a mechanical hand will be
to ensure that it has the capability to move an object in as many degrees-of-freedom as
desired and, conversely, that the object will not move when the actuators are locked. The
concepts discussed in the earlier sections will therefore be brought together to determine

the mobility of kinematic chains and the connectivity of any two links in the chain.

2.1 Graph Representation

Graph theory is a field of applied mathematics (Ilarary, 1969) which provides
a useful abstraction for the analysis and classification of the topology of kinematic chains.
The graph representation of kinematic chains has been used by, among others, Dobrjan-
skyj and Freudenstein (1967), Baker (1981), Davies (1981), Angeles and Gosselin (1988),
Gosselin (1988) and Tsai and Lee (1989). It consists of a diagram where cach link is
represented by a point and each joint by a line. Thus, the graph representation of a
kinematic chain will take the form of a collection of points connected by lines. Since the
terminology of graph theory is not standardized, Harary (1969) advises a clear definition
of terms before embarking on an analysis making use of graph-theoretical concepts. The

pertinent definitions for the present purposes are as [ollows:

Definition 2.1 A graph G consists of a finite nonempty sct V = V(G) of P pointstogether
with a prescribed set X' of () unordered pairs of distinct points of V. FEach pair
z = {u,v} of points in X is a line of G; z is said to join u and v, and w and v are

said to be adjacent.

Definition 2.2 The degree of a point u in a graph G is the number of lines incident

with u.

Definition 2.3 A subgraph of G is a graph having all its points and lines in G.
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Definition 2.4 A walk is an alternating sequence of points and lines, beginning and

ending with points, in which each line is incident with the two points immediately

preceding and following it.
Definition 2.5 A path is a walk with all its points and, necessarily, all its lines distinct.

Definition 2.6 A cycle is a walk beginning and ending at the same point, including at

least three points, and with all but its first and last points distinct.
Definition 2.7 A graph is said to be connected if every pair of points is joined by a path.
Definition 2.8 A tree is a connected graph which has no cycles.

Definition 2.9 A spanning tree T of a graph G is a connected subgraph of G which has

no cycles and contains all the points in G.
Definition 2.10 A chord of T is a line of G which is not in 7.

Definition 2.11 The cycle basis corresponding to 7, and denoted by Z(T) is the set of
subgraphs of G obtained by successively combining 7 with one chord of T, for all

chords of 7.

Definition 2.12 The cycle rank of G (or number of independent cycles in G), denoted
by ¢, is the cardinality of (or number of elements in) Z(7). The cycle rank is an

invariant of G and is not affected by the chosen 7.
Theorem 2.1 Known as Euler’s Theorem—If G is a connected graph, then

c=Q-P+1 (2.1)

In subsequent sections, eq.(2.1) will be useful to determine the number of inde-
pendent loops in a kinematic chain, allowing the derivation of simple mobility equations.
To illustrate the above concepts, consider the mechanical hand shown in Figure 2.1(a).
Its associated graph can be drawn as shown in (b), and a spanning tree can be drawn as

shown in (c). The spanning tree is not unique and thus, other spanning trees could have
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~ Figure 2.1 Graph Representation of a Mechanical Iland

been chosen. The chords corresponding to this spanning tree are shown in (d) and finally,

the resulting cycle basis, which has a cardinality of 3, is shown in (e).

2.2 Classification of the Kinematic Structure

The variety of ways in which links and joints can be coupled results in a wide
diversity of kinematic chains which can be classified into various groups. This classification
allows us to see where cooperating robotic devices fit in relation to other kinematic chains
and provides a means to begin their analysis. The concepts of graph theory introduced
in §2.1 can be used to systematically describe the interconnections between the elements
which constitute a kinematic chain. We need only consider systems whose graphs are
connected since other cases represent the trivial addition of uncoupled kinematic chains

to the system. This is implicit in the following definitions:
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Figure 2.2 Classification of Kinematic Chains

Definition 2.13 A simple kinematic chain is one whose graph has all points of degree

less than or equal to two.

Definition 2.14 A complex kinematic chain is one whose graph has at least one point

of degree greater than two.
Definition 2.10 An open kinematic chain is one whose graph has no cycles.

Definition 2.16 A closed kinematic chain is one whose graph has at least one cycle and
no points of degree one. Alternatively, it can be defined as one whose graph has no

points of degree less than two.

Definition 2.17 A hybrid kinematic chain is one whose graph has at least one cycle and

at least one point of degree one. A hybrid kinematic chain is always complex.

We can use the above definitions to classify the topology of any kinematic

chain into the five broad categories shown in Figure 2.2: (a) simple open chain (e.g., a
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(a) (b) (¢)

Figure 2.3 Graph Decomposition of Cooperating Robotic Devices

serial manipulator), (b) simple closed chain (e.g., a four-bar linkage), (c) complex open
chain (e.g., a mechanical hand not grasping an object), (d) complex closed chain (e.g., a
Stewart platform), and (e) complex hybrid chain (e.g., a walking machine with some of

its feet not in ground contact).

Cooperating robotic systems have graphs of che form shown in Figures 2.3(a):
two poles joined by an arbitrary number of parallel paths and an arbitrary number of
open paths emanating from one of the poles. To illustrate this, in a mechamcal hand,
the two poles represent the palm of the hand and the grasped object, the parallel paths
represent the fingers in contact with the object, while the open paths represent the fingers
noy in contact with the object. Thus, cooperating robotic systems can be classified as
complex hybrid kinematic chains with particular features which become more apparent

when we decompose the graph shown in Figure 2.3(a) into two subgraphs,

The first of these subgraphs, shown in Figure 2.3(b), represents a parallel kine-

matic chain—a particular instance of complex closed kinematic chain defined as follows:

Definition 2.18 A parallel kinematic chain is a closed kinematic chain whose graph has
two points, called ‘poles’, of degree p where p > 2, and the remaining points of

degree two.
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The second subgraph, shown in Figure 2.3(c), represents a star—a particular

instance of a tree structure defined as follows:

Definition 2.19 A kinematic star is an open kinematic chain whose graph has one point,

called the ‘pole’, of degree ¢ where ¢ > 1, ¢ points of degree one and the remaining

points of degree two.

The above decomposition simplifies the analysis of the hybrid chain because,
for most purposes, the two kinematic subchains can be analyzed separately. Thus, as
will become apparent in the following sections, the mobility of the hybrid chain is the
sum of the mobilities of the parallel and the star subchains. As well, in Chapter 3, the
kinematics of the parallel and the star subchains will be treated independently of each

other. Finally, Chapter 4 will show that the dynamics of the two subchains can also be

trcated separately.

The topology of a kinematic chain is an instantancous property, which remains
constant for most mechanisms. A characteristic of cooperating robotic devices is that their
topological graph changes discretely during their task. That is, as the task progresses,
some kinematic subchains which were closed are opened, and others whicl, were open are
closed—e.g., when the leg of a walking machine contacts the ground. This is exemplified
by Figure 2.4 which shows tiie topological graph of a three-legged walking machine walking
with a wave gait (Todd, 1985). In fact, the topology will change from parallel to hybrid

parallel/star, and vice versa, as time progresses.

2.3 Classification of Joints and Contacts

The elements which couple the links of a kinematic chain are called joints
or, more formally, kinematic pairs (Angeles, 1982). These can be classified according
to the dimensionality of contact, and by the number of degrees of freedom which they

allow or the number of constraints they impose. A lower kinematic pair is one in which




CHAPTER 2. THE KINEMATIC STRUCTURE 23

(e) (f) (8) (h)

Figure 2.4 Graph of a Planar Three-Legged Walking Machine with Wave Gait

contact between the two links which it couples takes place along a surface, while a higher
kinematic pairis one in which contact takes place along a linc or a point. The six possible
types of lower pairs are shown in Figure 2.5 (from Angeles, 1982): (a) revolute, (b)
prismatic, (c) screw, (d) cylindrical, (e) spherical and (f) planar. Robotic mechanisins
almost invariably make exclusive use of these pairs—usually revolute or prismatic— since
they are fully controllable with a single motor and provide desirable qualities such as a
stable contact, and a large contact area to reduce wear. It should also be noted that
the first two lower pairs—revolute and prismatic—can be used in various combinations to
form the last four lower pairs—e.g., a cylindrical pair is a revolute pair and a prismatic

pair, the axes of which are collinear.
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(d) (f)

Figure 2.5 The Six Possible Types of Lower Kinematic Pairs

If the contact which takes place in the kinematic pair is assumed to be fric-
tionless, each of the above pairs has a unique degree of freedom, N, associated with it
as shown in Figure 2.5. Correspondingly, the contact surfaces will exert 6 — N forces
in the constrained directions—i.e., the directions not corresponding to a degree of {ree-
dom. Kinematic pairs can also be characterized according to whether the forces exerted
in the constrained directions can be bidirectional or unidirectional. Of the kinematic pairs
shown in Figure 2.5, the first five can exert bidirectional forces in all their constrained
directions, while the last one can exert bidirectional forces in two directions but only a
unidirectional force in the vertical direction. It should be noted that the unidirectionality
or bidirectionality of the constraint forces in a particular kinematic pair depends upon its
fabrication—e.g., a prismatic pair which can only sustain a unidirectional vertical force

is shown in Figure 2.6. Since kinematic pairs which do not allow bidirectional forces to
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Figure 2.6 A Prismatic Pair with Unidirectional Vertical Force

be exerted occur frequently in the kinematic chains of interest—usually at the interface
between the individual robotic devices and one of the poles—, considerable effort in later
chapters will be directed toward ensuring that the constraints on the unidirectionslity of

the contact forces are met.

Esroy (1976) provides a comprehensive catalogue of 40 possible higher kine-
matic pairs. Some of these are shown in Figure 2.7, with emphasis on the ones that are
likely to appear in cooperating robotic devices: (a) non-rolling point contact, (h) & (c)
rolling point contact, (d) non-rolling line contact, and (¢) & (f) rolling-line contact. Once
again, the degree of freedom, N, associated with each frictionless upper kinematic pair
is shown in Figure 2.7. This type of coupling will almost invariably occur at the inter-
face between the individual robotic devices and their payload or the ground. Often, the
treatment of higher pairs tends to be more complex than that of lower kinematic pairs
because: a) they usually cannot sustain bidirectional forces, b) they are inherently less
stable than lower pairs since contact takes place along a point or line, and ¢) they of-
ten involve nonholonomic constraints—i.e., the constraints which they impose cannot be
written in terms of gencralized coordinates, but rather in terms of generalized velocities.

The coupling shown in Figure 2.7(c) is a good example of a nonholonomic coupling.

The number of degrees of freedom allowed by each kinematic pair may be

reduced when frictional contact is present. If friction is assumed to be present in o
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Figure 2.7 Some Possible Types of Upper Kinematic Pairs

particular direction of a kinematic pair, then that will be a constrained direction whenever
magnitude of the force or torque along it is smaller than a certain critical value called the
breakaway force or torque. Once the breakaway force or torque is exceeded, the ensuing
motion adds to the degree of freedom of the kinematic pair. Figure 2.8(a) shows that
the eflect of the presence of friction on a fixed-point contact is a reduction in N of 2, as
compared to the same contact without friction in Figure 2.7(a). Similarly, Figure 2.8(b)
shows a ‘soft-finger’ contact (Mason and Salisbury, 1985) which has its degree of freedom
further reduced to N = 2. Once again, because frictional contacts are widespread in
the systems of interest, some eflort will be directed toward ensuring that the constraints

inherent in these contacts are satisfied.
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(a) (b)

Figure 2.8 Reduced Degree of Freedom Due to Friction

2.3.1 Rolling Contact

Some of the kinematic pairs shown in Figure 2.7 involve a rolling contact point
or line, and the constraints which they impose are nonholonomic (see e.g., Angeles, 1989).
The analysis of these contacts tends to be more involved than that of non-rolling contacts
since the constraint equations must be formulated in terms of contact velocities rather
than positions. Furthermore, a nonholonomic constraint reduces the number of degrees
of freedom of motion allowed at the contact but does not affect the dimension of the
configuration space of the contact. This is in contrast to a holonomic constraint, which
reduces both the number of degrees of freedom of motion allowed at the contact and the
dimension of the configuration space. Cai (1988) presents a study of these contacts in

which the motion of the contact point or line is analyzed in considerable detail.

In the present work, the position of the contact point at the fingertip/object
or foot/ground contact is assumed to be known at all times and the distinction of whether
the contact is rolling or not is therefore irrelevant. However, it is emphasized that if rolling
contact exists, the techniques required to determine the position of the contact point will

be substantially more complex than for non-rolling contacts.

We can now proceed to find how the coupling of links and joints affects the

capacity of motion of the system as a whole.
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Actuated Joints 6 Actuated Joints 3
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Figure 2.9 A Planar Three-Legged Walking Machine

2.4 Mobility

The mobility of a kinematic chain (Hunt, 1978) can be defined as the minimum
number of independent variables necessary to specify the location of all links in the chain
relative to a reference link. The choice of reference link does not affect the resulting
mobility. A preliminary evaluation of the mobility of a kinematic chain can be found
from the general mobility formula, generally attributed to Chebyshev, Griibler and/or
Kutzbach (see e.g., Hunt, 1978):

M=db-g-1)+3 7. (22)

=1
where M is the mobility of the kinematic chain, d is the degree-of-freedom of each uncon-
strained individual body (6 in 3-D; 3 in 2-D), b is the number of rigid bodies in the chain,
¢ is the number of joints, and f, is the number of degrees of freedom allowed by the i-th
joint. For the machine in Figure 2.9(a), d = 3, b = 8, g = 9, since revolute joints have
one degree of freedom f; = ... = fg = 1, and if the foot/ground contacts are modeled as

revolute joints f; = fa = fo = 1—yielding M = 3.

The results of §2.1 to 2.3 are now applied to find particular forms of eq.(2.2)
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for systems with a hybrid parallel/star topology. This is done by first decomposing the
system into its constituent parallel and star subchains and finding the mobility of cach of
these. Firstly, we know that there are no cycles in the graph of the star subchain. Thus,
writing eq.(2.1) in terms of b, and g,, the number of bodies and the number of joints in
the star subchain, we have:

ga"ba+1=0 (2.3)

If we let g, = 392, fu where f,, is the number of degrees of {freedom allowed

1=

by the i-th joint in the star subchain, and substitute eq.(2.3) into eq.(2.2), we obtain

which clearly shows that the mobility of the star subchain is nothing but the total number
of degrees of freedom allowed by its joints. Turning our attention now to the parallel
subchain, we can rewrite eq.(2.1) in terms of b, and g,, the number of bodies and joints

in the parallel subchain, as:

c=g,—b+1 (2.5)

where ¢ is now the number of independent loops in the subchain.

Once again, if we let g, = % [ where fp, is defined analogously to fy,, and

substitute eq.(2.5) into (2.2), we obtain:

M, = —dc+g, (2.6)

For kinematic chains with topological graphs of the form shown in I'igure
2.3(a), we can relate the number of independent loops in the chain to p, the number of

paths between the two poles in the parallel subchain:
which, when substituted into Equation (2.6) yields:

M, =d(1 -p)+g, (2.8)
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The total mobility of the hybrid kinematic chain can now simply be found as

the sum of the mobilities of its constituent subchains, i.e.,
M =M+M,
=g,+d(l1-p)+g,
=d(1-p)+g' (2.9)

where ¢’ = g; + g,, the total number of degrees of freedom allowed by all the joints in the

system.

Equation (2.9) has some interesting implications regarding how the system
mobility is affected by the number of joint degrees of freedom of the individual robotic
devices involved. Consider the 3-D example of a system of three manipulators with
mobilities of 4, 5 and 6, respcctively, all grasping the same object (i.e., d = 6, p = 3,
g' = 15). Equation (2.9) shows that this system has a mobility of 3. That is, for each
decgree of freedom of less than d in each manipulator, the system’s mobility is decreased
by one, and for each degree of freedom greater than d in each manipulator, the system’s
mobility is increased by one. Thus, if d = 6, the system must have ¢’ = 6p in order to
have a mobility of six. Figure 2.10 shows a graphical representation of eq.(2.9) for d = 6.
However, as pointed out by Waldron (1966), the relative mobility between two particular
links—called their connectivity ini the present work—is often of greater importance than

the mobility of the kinematic chain as a whole, and this will be treated in §2.5.

In a system with time-varying topology, the number of constituent bodies
remains constant while the number of joints varies as contact is made or broken between
the various bodies in the chain. Referring to eq.(2.9), it is apparent that if the number
of paths between the two poles is increased by onc—e.g., a leg, which was previously
lifted, comes into contact with the ground—, the only way for the system’s mobility to
remain unchanged is for g’ to be increased by d as a result of the new contact (i.e., the
foot/ground contact must have d degrees of freedom). Since any non-trivial contact must

have at most 5 degrees of freedom, the system’s mobility will be reduced whenever a
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Figure 2.10 Mobility of Cooperating Robotic Devices

new path is formed in its parallel subchain. Converscly, whenever an existing path is
broken, the system’s mobility will be increased. Thus, we can conclude that a system

with time-varying topology will also have a time-varving mobility.

It should be noted that the presence of frictional contacts can also cause a
time-varying mobility of the system, this time without a change in the system’s topology.
More specifically, in §2.3 we showed that the number of degrees of [reedom of a contact can
vary depending on whether or not the breakaway force or torque is exceeded. Referring

to eq.(2.9), this would correspond to a situation where p stays constant while ¢’ varies.

The preceding treatment of a kinematic chain’s structure and mobility has been
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based solely on its topology. In fact, the kinematic chain’s geometry can also have an
effect on its mobility. More specifically the mobility of kinematic chain with a prticular
geometry (i.e., link lengths and joint axes orientations) may be greater than that predicted
by the equations previously given. Using Hervé’s (1978) classification, these kinematic
chains are termed paradoxical—Bennett’s mechanism (Hunt, 1978) probably being the
most common example. Angeles and Gosselin (1988) have proposed a more comprehensive
technique based on the kinematic chain’s Jacobian matrix to determine its mobility. This

approach will be applied to cooperating robotic devices in the next chapter when we deal

with geometry and motion.

2.5 Connectivity

The connectivity of two bodies in a kinematic chain (Hunt, 1978) can be defined
as the minimum number of independent variables necessary to specify the location of one
body relative to the other. In practical terms, it may be of greater importance than the
kinematic chain’s mobility since it allows us to determine whether a given combination of
robotic devices will be able to move their payload as desired. To illustrate this, consider
the planar three-fingered hand shown in Figure 2.11(a) which has p = 3 and ¢' = 9 (the
6 planar revolute joints have one degree of freedom cach, as do the 3 revolute contacts).
Using eq.(2.9), we find that M = 3, which would appear to be sufficient to position and
orient the object relative to the palm. However, due to the small number of joints in the
left finger, the object only has a connectivity of 2 relative to the palm—since, if the angles
of the joint and contact of the the left finger are specificd, the object is fixed relative to
the palm. Only the compensatingly large number of joints in the right finger allows the
mobility of the system to be 3. By contrast, the planar hand shown in Figure 2.11(b)
also has p =3 and ¢’ = 9 resulting in M = 3, but the homogeneous distribution of joints
among the fingers in this case allows the connectivity of the object relative to the palm
to be 3. Since, in general, we are interested in designing a system of cooperating robotic

devices with a prescribed connectivity between the two poles, the determination of this
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(b)

Figure 2.11 Two Planar Three-Fingered Ilands with M = 3

quantity will be at least as important as that of the system’s mobility

The relationship between mobility and connectivity is intuitive: the M inde-
pendent variables necessary to specify the location of all links in the chain relative to a
reference link can be partitioned into 2) the independent variables necessary to specify the
location of a second link relative to the reference link, and b) the independent variables
necessary to specify the location of all other links relative to the reference link, once the
second link has been fixed. The number of independent variables in (a) is the connec-
tivity, while the number of variables in (b) is the mobility of the new kinematic chain
formed when the reference link and the second link are considered as a single link. This
relationship was noted in the context of mechanical hands by Salisbury and Craig (1982),
but extends to more general chains. A suitable equation to determine the connectivity of

two links would therefore be

C=M-M (2.10)

where M’ is the mobility of the kinematic chain formed when the two links in question

are treated as one.

Figure 2.12 shows the application of this procedure to the poles of the hybrid

kinematic chain whose graph is shown in (a) to obtain the graph shown in (b). Considering
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(a) (b)

Figure 2.12 Finding the Connectivity of a Hybrid Kinematic Chain

the poles as one link results in a set of p uncoupled simple closed chains and ¢ uncoupled
simple open chains—where p and ¢ are the number of paths between the two poles and
the number of uncoupled serial chains in the original system, respectively. For each of the
simple closed chains, the mobility can be found from eq.(2.6) with ¢ = 1. Therefore we
can write the following equation for the connectivity of the poles in a hybrid chain
2 q

C=M—§max(0, —nd+g;,')——1}_:;g;] (2.11)
where g,, is the number of degrees of {reedom allowed by all the joints of path 7 in tk:
parallel subchain, while g;, is the number of degrees of freedom allowed by all the joints in
serial subchain j. The function max(0,...) is required to ensure that the ‘negative degrees
of freedom’ which can be obtained from Chebyshev-type formulae are not included. The

connectivity has two upper limits:

C<M, c<d (2.12)

Equation (2.11) is useful in determining the dimensionality of relative motion
possible between two links, and is of particular importance when considering the two poles
of cooperating robotic systems. Thus, if we want to design a mechanical hand which can

manipulate an object with six degrees of freedom relative to the palm, we must design it
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such that C = 6. Another important use of eq.(2.11) is to determine the connectivity of

the two poles when the actuators are driven. This will be addressed in §2.6.

Finally, it must be emphasized that eq.(2.11) is subject to the same limitations
mentioned in the §2.4 for Chebyshev-type mobility equations since it considers only the
topology of the chain and not its geometry. The next chapter will introduce other, more
reliable, connectivity equations which consider the kinematic chain’s geometry as well as

its topology.

2.6 Actuation

The preceding discussion of mobility and connectivity implicitly assumed that
all kinematic pairs in the kinematic chain were free to move according to their degree of
freedom discussed in §2.3. In practice, some or all of the joints will be actuated in order
to control the motion of the mechanism. The effect of an actuator at a joint, when it is
powered, is to instantly specify that joint’s position and remove the corresponding degree
of freedom. If g, actuators are installed, the mobility of the kinematic chain when these

actuators are locked is denoted by M, and found as

M,=M~-g, (2.13)

Analogously, a minimum of C actuators is nccessary to fix the position and
orientation of one pole relative to the other, and the connectivity of the two poles when

the actuators are locked is denoted by C, and found from

ES

P
Cﬂ =M - Zmax(O, —-m + g;l - .qpm Z qv_) - anJ (2']4)

=1 1=1
where g, and g;,, are the number of actuated joint degrees of ficedom in the i-th path

between the two poles and in the j-th serial subchain, respectively.

The purpose of installing actuators in the kinematic chain is to control its

configuration; we therefore want AM,, the mobility of the actuated chain, to be reduced
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to zero when the actuators are powered. From eq.(2.13), this implies that a minimum
of g, = M actuators are needed to fully fix the position and orientation of all links in a
kinematic chain. Furthermore, since M > C, it is sufficient to reduce M, to zero to also

reduce C, to zero.

It is therefore conventionally accepted to install M actuators in a kinematic
chain since this will reduce its mobility to zero when the actuators are powered. In §2.4, we
showed that kinematic chains with time-varying topology also have time-varying mobility.
Thus, the approach taken for these systems is to install a number of actuators equal to the
maximum mobility of the system. This maximum mobility occurs when all the subchains
act as simple open chains—e.g., when the fingers of a hand are not grasping an object. As
some of these subchains are closed, the mobility of the system will be reduced (c.f., §2.4)

and, if all actuators remain powered, the system becomes redunaantly actuated with a

redundancy r of
r=g,— M (2.15)

2.6.1 Redundant Actuation

If we substitute eq.(2.9) into eq.(2.15), we find that

r=g,—d(l1-p)—¢ (2.16)

Since ¢' = ¢, + gu, where g, is the number of unactuated joint degrees of

frcedom in the kinematic chain, we can write
r=d(p—1)— g, (2.17)

which shows that the actuation redundancy increases when there are fewer unactuated
joint degrecs of freedom. For example, if three manipulators rigidly grasp an object, we
will have d = 6,p = 3, g, = 0 yielding r = 12. By contrast, if three fingers hold an object,
and we assume that the fingertip/object contacts are non-rolling contacts with friction,

we find that d = 6,p = 3,9, = 9, yielding r = 3.
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As was just noted, redundant actuation will occur when the number of ac-
tuators in the system is chosen to satisly requirements such as the degree of freedom
required by the kinematic subchains within the larger chain—e.g., the fingers of a hand
or the legs of a walking machine. Because the system has a time-varying topology, the
individual subchains can form closed loops which have the potential to become redun-
dantly actuated. As will be seen in greater detail in Chapter 4, onc of the resulis of
redundant actuation is that it causes the equations of motion of the system to become
underdeterminate, and this is usually cited as the reason for needing to optimize the force
distribution. In fact, the system could more easily be made determinate by ‘feathering’
the redundant actuators—i.e, not powering the redundant actuators while leaving the cor-
responding joint free to move—thereby avoiding the need to perform force optimization

(such a technique is proposed in §2.5).

However, there are a number of benefits to be drawn from persisting in diiving
all available actuators. A glimpse of these advantages can be found in the field of structural
engineering where the concept of static indeterminacy is closely related to reduudant
actuation. The principal difference between the two is that structural analysis usually
deals with kinematic chains whose mobility is nonpositive- -i.e., structures as opposed
to mechanisms. One of the advantages of a statically indeterminate structure over a
statically determinate onc is that its internal forces and moments are reduced (see e.g.,
West, 1980). This allows a lighter structure to be built to carty the same loads since the

stresses in the structure tend to be lower.

In fact, these benefits can be readily translated to redundantly actuated robotic
systems. A brief example of this is given by the three-legged planar walking machine with a
mobility of three shown in Figure 2.9. The particular geometry shown allows a decoupling
of the vertical and lateral force systems. In Figure 2 9(a), whete six actuators are driven,
the machine has an actuation redundancy of three (g, = 6; M = 3). In Figuie 2.9(h), the
machine has three driven actuators and is therefore not redundantly actuated (g, = 3;

M = 3). There is only one set of actuator torques and foot-ground contact forces which
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Figure 2.13 Vertical Forces on the Legs of a Planar Walking Machine

can satisfy the force balance equations of the non-redundantly-actuated walking machine.
By contrast, the foot-ground contact forces of the redundantly-actuated walking machine
can be reduced and homogenized, thus reducing chances of foot slippage. Figure 2.13(a)
shows the variation of the vertical forces on the three legs using a solution which minimizes
the norm of the vector of vertical contact forces as a load of 1000 N is moved along the
body. Figure 2.13(b) shows the same forces when only actuators 1, 3 and 5 are driven. In
both cases, negative foot/ground contact forces are generated because their non-negativity
has not been accounted for. Other combinations of three driven actuators yield similar
results.  Furthermore, with the geometry shown, the machine is not controllable with
certain combinations of only three actuators (e.g., 1, 2 and 3) because the actuated
system will then be in a singular pose in which the geometry causes an increase in its

mobility—a situation which will be analyzed in greater detail in Chapter 3.

Redundant actuation also allows greater safety in casec of breakdown of indi-
vidual actuators. If the mechanism is redundantly actuated, it can still be controlled
if one or more actuators breaks down—up to the degree of actuation redundancy. Re-
dundant actuation may also be applied to fixed-topology parallel-architecture robots in
order to make them lighter and faster, though the advantage obtained through redundant

actuation might be offset by the weight of the extra actuators.




Chapter 3

Kinematics and Statics

While the previous chapter dealt primarily with the kinematic structure of
cooperating robotic devices, this chapter deals with their motion. The motion analysis
serves as the underlying foundation for the dynamic analysis which follows in the next
chapter. A large body of research exists relating to the kincmatics of more conventional
robotic systems such as the serial and parallel manipulators shown in Figure 3.1, and
analogies may be drawn between the kinematics of those systems and the ones of present
interest. This is particularly true of parallel manipulators, the kinematic structure of
which bears a strong resemblance to that of the parallel subchain of cooperating 1obotic
devices, with the important difference that it is not time-varying. Emphasis in this chapter
is placed on the analysis of the parallel subchain since the star subchain can be simply

analyzed using conventional techniques for serial manipulators.

The motion analysis which follows is decomposed into thiee parts. In §3.1, the
position kinematics of serial and parallel manipulators is reviewed and that of cooperating
robotic devices is analyzed. Sections 3.2 and 3.3 do the same for velocity and aceeleration
kinematics. Section 3.4 introduces mobility and connectivity criteria which consider not
only the structure (as in Chapter 2), but also the gcometry of the system. Finally, §3.5
extends the discussion begun in Chapter 2 regarding the number of actuators which need

to be driven in order to control a system of cooperating robotic devices.
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End-Effector

Figure 3.1 A Serial and a Parallel Manipulator

3.1 Position Analysis

A robotic manipulator composed of rigid links which are coupled by joints is
characterized by two features: its architecture and its configuration. The architecture,
normally quantified by the manipulator’s Hartenberg-Denavit parameters (Hartenberg
and Denavit, 1964), describes the fixed characteristics of the links’ dimensions and ge-
ometry. The configuration, normally quantified by a set of independent joint coordinates
denoted by the vector q, describes the time-varying joint angles or lengths. Another
commonly-used description of a manipulator’s configuration is the pose (position and
orientation) of a reference frame fixed to its end-effector relative to an inertial reference
frame, denoted by the vector x. The dimension of x, which is always greater than or
cqual to the dimension of the task space—i.e., 6 for general 3-D motion—, depends on
the method used to describe rotations (Spring, 1986). For example, the use of Euler pa-

rameters or linear invariants results in a vector x of dimension 7. However, irrespective
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of the method chosen, x will only have as many independent components as the dimen-
sion of the task space. The mapping between the two descriptions of the manipulator’s
configuration, which is not necessarily one-to-one, is the focus of attention in position

kinematics. Thus, the following topics will be addressed:

1. Forward Kinematics: Given the joint coordinates, q, find the Cartesian coordi-

nates of the end-effector, x,

2. Inverse Kinematics: Given the Cartesian coordinates of the end-effector x, find

the joint coordinates, ¢, and

3. Number of Solutions: The number of solutions which exist for the forward and

inverse kinematics problems.

3.1.1 Fforward Kinematics

The joint coordinates of a serial manipulator, denoted by the vector q, of
dimension M, are the joint variables of its M joints, all of which are actuated (recall
that the mobility of a serial manipulator is equal to its total number of joint degrees of
freedom). If these are specified, the corresponding unique set of Cartesian coordinates for
the end-effector, denoted by the vector x, which has six independent components, can be

found from a system of equations of the form:

X, = fs(qs) (3])

This problem is straightforward and requires little computation.

In the case of parallel manipulators, the joint coordinates, denoted by the
vector q, of dimension M, normally refer to the M actuated joint variables-—c.g., the six
leg lengths of the platform shown in Figure 3.1(b). This forward kinematics problem is
considerably more complex than that for a serial manipulator since only one joint variable

on each path between the two poles is usually actuated. For a parallel manipulator of
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Figure 3.2 A Parallel Manipulator with Coincident Pairs of Spherical Joints

general architecture, this amounts to solving a system of nonlinear equations of the form:
fo(dp, Xp) = 0 (3.2)

for x,, the vector of Cartesian coordinates of the parallel manipulator’s end-effector. In
general, this problem can only be solved using itcrative methods, such as a Newton-
Raphson technique (Press et al., 1986), but for some particular architectures, closed-form
solutions may be found. The number of solutions to this problem has only been determined
for these particular architectures. For example, the parallel manipulator with coincident
pairs of spherical joints shown in Figure 3.2 is known to have 16 solutions to its direct

kinematics problem (Merlet, 1990).

It is emphasized that the joint coordinates of both serial and parallel manip-
ulators are a set of M independent, actuated joint variables. By contrast, cooperating
robotic devices contain more than M actuated joints, and so, the actuated joint variables
are not independent. For clarity, the precise statement of the forward kinematics problem

in cooperating robotic devices can be stated as follows:

Given q., the vector of actuated joint variables, find the pose of a reference frame

fixed in the moving pole, denoted by its vector of Cartesian coordinates X..
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The constraints which the dependent actuated joint variables must satisfy in
order to be a valid set are called the loop closure equations. These equations can be
written in terms of the forward kinematics problem for each of the individual robotic

devices as
fsl(qal) =eee = sp(qsp) (3'3)

where f,, and q,; represent the forward kinematics functions and the joint coordinates of
the i-th robotic device, respectively. The closure equations specify that the pose of an
arbitrary reference frame in the moving pole is the same, irrespective of the path used to
obtain it. It should be apparent that all the joint variables in cooperating robotic devices
are actuated except for those at the contact between the individual robotic devices and
a grasped object or the ground, when that contact is passive. For clarification, Figure
3.3(a) shows a three-legged planar walking machine with passive foot-ground contacts.
The joint angles 6y,...,0s are known, while 07, 0 and 0y arec not. A similar statement
holds for the joint angles of the three-fingered planar mechanical hand shown in Figure
3.3(b). However, the three planar cooperating manipulators shown in Figure 3.3(c) have
no passive contacts—all the joints are actuated, and all the joint variables can be assumed
known. Thus, the forward kinematics problem of cooperating robotic devices is consider-
ably easier than that for a parallel manipulator since most, if not all the joint variables

along each path, are prescribed.

In the case of cooperating manipulators where all the joints are actuated, the
Cartesian coordinates of the reference frame in the moving pole can be found by simply

solving the forward kinematics of any one of the p paths between the two poles, ie.,

Xe = fu(qs ), t=1,...,p (3.4)

Since eq.(3.4) yields a unique x., the solution to the forward kinematics prob-

lem of cooperating manipulators is unique.

In the case of mechanical hands and walking machines, where some of the
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® = Actuated Joint

Figure 3.3 Joint Variables of Some Planar Cooperating Robotic Devices

contacts are passive, the position of the finger/object contact points or the foot/ground

contact points can be found using the forward kinematics equations of the individual

robotic devices of the form

P = sx(q”)’ i = 1)' RNy 4 (35)

where q,, denotes the vector of actuated joint variables in the i-th path. Equation (3.5)
will yield a unique solution for the positions of the contact points. Once the positions of
three noncollinear points are known, the pose of the reference frame in the moving pole
can be calculated uniquely using, for example, the method outlined by Angeles (1986).
Thus, we can say that the solution to the direct kinematics problem of cooperating robotic

manipulators is unique.
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3.1.2 Inverse Kinematics

The inverse kinematics problem for a serial manipulator consists of rewriting
eq.(3.1) as
fa(qa) - x,’ = 0 (3-6)

and solving this system of nonlinear equations for q, with x, prescribed.

For serial manipulators of general architecture, eq.(3.6) cannot be solved in
closed form—iterative routines must be used—and there may be up to 16 different so-
lutions (Tsai and Morgan, 1985). When the manipulator has particular features in its
architecture, solution of the problem in closed form may be possible--e.g., a manipulator
with three consecutive joint axes intersecting at a point has, al most, 8 solutions to its
inverse kinematics problem which can be found in closed form (Pieper, 1968). Finally, the
simpler the architecture of a robot, the fewer distinct solutions to its inverse kinematics

problem will exist.

In the case of parallel manipulators, when x,,, the Cartesian coordinates of the
end-effector reference frame are known, the Cartesian coordinates of reference frames at
the p attachment points at which the legs are attached to the end-effector can be ecasily
calculated since all frames are in the same rigid body. If we assume that the Cartesian
coordinates of the end-effector are composed of the vector p which describes the position
of the origin of the end-effector reference frame relative to an incrtial frame, and the
elements of the rotation matrix Q which represents the orientation of the end-effector

frame relative to the inertial frame, we can write
p.=p+s, t=1,...,p (3.7a)

Q. =QQ], t=1,...,p (3.7b)
where s, denotes a vector from the end-effector frame to the 7-th attachment point and

Qr is the rotation matrix which represents the orientation of the attachment point frame

relative to the end-effector frame. The Cartesian coordinates of the -th attachment
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point, X;, consist of the vector p, and the elements of the rotation matrix Q,, where
the former represents a vector from the inertial frame to the attachment point while
the latter represents the orientation of the attachment point frame relative to the inertial
frame. Once these are known, the inverse kinematics problem for a parallel manipulator is
nothing but p independent serial inverse kinematics problems—one for each path between
the two poles. As mentioned above, this solution is straightforward when the legs have
particular architectural features, and complex when the legs have a general architecture.
Thus, the usual claim that the inverse kinematics problem for a parallel manipulator is
straightforward (Merlet, 1990) implicitly assumes that the leg geometry is simple. For
all common parallel manipulators, this assumption is verified and the inverse kinematics
problem reduces to

@ = Gi(X.), t=1,...,p (3.8a)

where gy, is the i-th component of q,. Equation (3.8a) can be written vectorially as

G = g(x:) = Bp(Xp) (3.8b)
and has a unique solution. For manipulators which have a solution to their inverse kine-
matics problem of this form, eq.(3.2) for the direct kinematics problem can therefore be

rewritten as

fo(dpy Xp) = Bp(Xp) —qp = 0 (3.9)

Since, when the leg architecture is genecral, there may be up to 16 inverse
kinematic solutions for each parallel path between the two poles and the solution for
each path is independent of that for the other paths, there may be up to 16” solutions
(Gosselin, 1988) to the inverse kinematic problem of a parallel manipulator with a general

leg architecture.

The inverse kinematics problem of the parallel subchain of cooperating robotic

devices is similar to that for parallel manipulators, and can be stated as follows:

Given the Cartesian coordinates, x., of a reference frame fixed in the moving pole

find the joint coordinates of the p parallel paths.
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In the case of cooperating manipulators, the inverse kinematics problem entails
rewriting eq.(3.4) as
fai(qsn)"‘xc=0, 1= 1,...,}) (310)

and solving for q,; with x. prescribed. As such, this problem is nothing but p times the
inverse kinematics problem of a serial manipulator, and its complexity will be dependent
on the architecture of the manipulators, as discussed above. For a system of manipulators

with fully general architecture, there will again be, at most, 16” possible solutions.

In the case of mechanical hands, the position vector p, of the i-th finger/object

contact point can be found from
P:=P+Sn i'—‘-la---‘P (311)

where p is the position vector of the origin of the frame in the moving pole, while s; is a
vector from the origin of that frame to the :-th finger/object contact point. From p,, the

inverse kinematics problem is solved for each parallel path by solving
f.(qe) — p. =0, i=1,...,p (3.12)

for q,. For walking machines, the analysis is identical except that the finger/object
contact points become the foot/ground contact points and the moving pole becomes the
fixed pole. Since eq.(3.12) represents only a positioning inverse kinematics problem, it
can be solved in closed form as the solution of, at most, a quartic polynomial having 4
distinct roots. The inverse kinematics problem of a mechanical hand or walking machine

with fingers or legs of a general architecture therefore has, at most, 47 possible solutions.

3.2 Velocity Analysis

The velocity analysis of robotic devices entails a determination of the mapping

between the joint rates, q, and the twist of the end effector, t, which is defined as

t= [‘:] (3.13)
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where w is the angular velocity vector and v is the translational velocity vector; both of
dimension 3. These mappings are considerably simpler than the functions used in position
kinematics since they are linear. Once again, we are concerned with a forward and an
inverse problem, depending on which of the two vectors (q or t) is prescribed and which

is unknown.

The forward velocity kinematics problem for serial manipulators entails finding

the manipulator’s Jacobian which maps actuated joint rates into end-effector twist, i.e.,

ts = Jsda (3.14)
where
ot
J,=J,(q,) = — 3.15
(@)= 5 (3.15)

When the i-th joint of the manipulator is revolute, the corresponding column

of the Jacobian is (Whitney, 1972)

. e,
Js = [e' X P,] (3.16&)

where e, represents a unit vector aligned with the i-th joint axis, while r, represents a
vector from the origin of a reference frame fixed to the i-th link to the origin of a reference
frame fixed to the end-effector. It should be noted that j,, is nothing but the vector of
Pliicker coordinates of the i-th joint axis and origin as seen from the origin of the end-
effector reference frame. If the i-th joint is prismatic, the corresponding column of the

Jacobian is

. 0
Joe = [e,] (3.16Db)

The manipulator’s Jacobian can be useful when solving the inverse position
kinematics problem iteratively. The latter problem consists of solving eq.(3.6) which can

be rewritten as follows:

ga(q.nxa) = fa(Qs) -X,=0 (317)
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A Newton-Raphson technique solves eq.(3.17) using the iterative formula

ag, -1
qs|n+l =q,|, — ('5(;)

where q,|, is the i-th iterate for the solution. Thus, in order to use eq.(3.18), we require

6g,) (af, )
G, == = |-
|n (aqa . aq’

where the matrix G, is nothing but a linear transformation of J,. Anderson and Angeles

g:(a./, ,x.) (3.18)

(3.19)

n

(1989) have shown that, when x, is the vector of dimension 7 consisting of the three
components of the translational position of the end-effector and the four components of
the linear invariants of Q, the rotation matrix of the end-effector, this transformation can

be written as

G, =HJ, (3.20a)
Litr(Q)-Q 0y

H=| vet(Q) 07 (3.20b)
03 13

where 03 and 13 are the 3x3 zero and identity matrices, respectively, and 0 is a zero

vector of dimension 3.

There is much less consistency in the literature regarding the definition of
the Jacobian of parallel manipulators. One approach is to proceed analogously to the
convention used for serial manipulators. That is, the vector q, represents the vector of

actuated joint velocities, while the matrix J, maps g, into t, as follows

tp = 3,4, (3.21)

A second convention often encountered (Gosselin, 1988) defines the manipula-

tor's Jacobian, J;, to satisfy

qp =3¢, (3.22a)

where,

aq —1 1)
J; = —2 = J (322]))
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This second definition of the Jacobian is useful when solving the direct position
kinematics problem of parallel manipulators using the Newton Raphson technique. If
we follow a procedure analogous to that for the inverse position kinematics of serial

manipulators, the iterative solution of eq.(3.9) will require the use of a matrix

)
ool = (52)
P

which is a linear mapping of the Jacobian matrix J;,. That mapping will of course change

(3.23)

n

depending on the convention used to describe the rotations in the vector x,.

Finally, a third convention has been found useful when determining the mobil-
ity of kinematic chains with closed loops, such as parallel manipulators (Angeles, 1989).

This Jacobian, denoted by J7, satisfies
3¢, =0 (3.24)

where q;, is a vector of all the joint rates rather than just the actuated ones.

We can now proceed to define certain conventions for cooperating robotic de-
vices. In these systems, neither the forward nor the inverse position kinematics problem
requires iterative solution, and so, there is no reason to prefer a Jacobian of the form given
by eq.(3.22a) over one of the form given by eq.(3.21). We thercfore define the Jacobian

of a system of cooperating robotic devices to satisfy
t. =J.q. (3.25)

where q. is the vector of the actuated joint rates, while t. is the twist of a reference frame
in the moving pole. Equation (3.25) allows us to solve the forward velocity kinematics
problem--i.e., given the actuated joint rates, find the end-effector twist. Just as the
actuated joint coordinates were dependent, so are the actuated joint rates, which must
satisfy

JaQa=...=3,4, (3.26)
where q,; represents all the joint rates in path ¢ and J,, is the serial Jacobian of the i-th

path. In the case of cooperating manipulators, it is straightforward to relate J. to the
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serial Jacobians of the individual paths between the twe poles. If we consider cach path

as a serial manipulator, we can write eq.(3.14) for each path as
tchstq.n, t= L...,p (3'27)

If we add all these equations, we find

14
ZJ.’I(‘]&I = Ptc (328)

=1

In matrix notation, this can be written in the form of eq. (3.25) with

1 q.sl
Jc = ;;[Jsl J32 Jsp]’ ('lc = (329)
by

When solving the inverse velocity kinematics problem (i.e., given the twist of
the moving pole, t, find the vector of actuated joint rates, q.), it is important not to
attempt to solve eq.(3.25) for q. since J. is not square. The inverse velocity kinematies

problem is better solved using

do = I3t i=1,...,p (3.30)

where the inversion shown is used strictly for notational simplicity and need not be per-
formed explicitly. The vector of actuated joint rates can then ke obtained as
o1 \
=P | =P |t (3.31)
Asp 35
where P is a matrix which projects the vector of all joint rates into the vector of actuated

joint rates. It consists of columns whose entries are either all zeros (corresponding to the

unactuated joint rates) or all zeros except for one unity entry.

The second definition of the manipulator’s Jacobian, which will be useful to
determine the mobility of cooperating robotic devices, is one which is identical in form to

the third definition for parallel manipulators outlined above, namely

34, =0 (3.32)
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where ', is the vector of all the joint rates in the parallel subchain. It is straightforward

to relate J. to the serial Jacobians of the individual paths between the two poles. Taking

the difference of eq.(3.27) for i and ¢ + 1:
Jalq:l' - Ja,l+l£la,|+l =0, i = L,... Y 1 (333)

If we assemble these pairs in matrix form, we obtain eq.(3.32) with

J, -3, o0 ... 0 0 Q
o J, -Jsz ... O 0 51

¥=|, : U . q;=[ ] (3.34)
o o0 o .. 3, -1, Der

3.3 Acceleration Analysis

The acceleration kinematics of cooperating robotic devices is obtained from the
mapping between joint rates and end-effector twist in a straightforward manner. Taking

the time derivative of eq.(3.25), we obtain

i = [‘;’] = 3.4 + 1.4, (3.35)

c
where w. and v, are vectors of dimension 3 denoting the angular and translational accel-
erations of the reference frame in the moving pole. Equation (3.35) can be used to solve
the forward acceleration kinematics problem—i.e., given the actuated joint accelerations

dc, find the twist rate t. of the end-effector. Once again, the actuated joint accelerations

are not independent since they must satisfy
jsldal + Jslq.ql =l = jqu.sp + Jspflsp (336)

In the case of cooperating manipulators, eq.(3.29) can be used to obtain a

relationship between J. and the time derivative of the constituent serial path Jacobians:
.1, .
ch;[Jsl R oy (3.37)

where J,, can be found by differentiating J,, as given by cgs.(3.16a) and (3.16b).
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i Once again, since J. is not square, no attempt should be made to solve eq.(3.35)
for §. when solving the inverse acceleration kinematics problem-—i.e., given the end-
effector twist rate, t., find the vector of actuated joint accelerations, gc. This problem is
better solved using

Q. = I (¢ - T,.49,,) i=1,...,p (3.38)

where, once again, the inversion shown should not be performed explicitly. The vector of

actuated joint accelerations can then be obtained as

dal J;ll(tc - jslq.sl)
Q=P : | =P : {(3.39)
é.lap Jq_pl (tc - vaq”))

3.4 Mobility and Connectivity Revisited

In §2.4, where we dealt with the mobility of cooperating robotic devices, it was

i noted that eq.(2.2) only treats the topology of the kinematic chain with no consideration
of its geometry. However, geometrical considerations may affect a system’s mobility and

must be considered. sngeles (1989) desciibes methods to determine the mobility of

kinematic chains which consider both the chain’s topology and its geometry. For example,

the mobility of a simple open kinematic chain such as one of the ¢ serial chains which

make up the star subchain would be found from:

M, = dim[range(J,, )] (3.40)

The mobility of the complete star subchain would then be found from

q
M,=>_M, (3.41)
=1

The mobility of complex closed kinematic chains such as the parallel subchain

of a system of cooperating robotic devices is then given as (Angeles, 1939)

] M, = dim[A(J0)) (3.42)
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where J/ was defined by eq.(3.32) and A/(x) represents the nullspace of the matrix in the
brackets. In most cases, the mobility found from eq.(3.42) will be the same as that found
from eq.(2.8) (i.e., M, = M,). However, when J’ becomes rank deficient, the parallel
subchain gains a degree of freedom, and we find that M, > M,. Angeles and Gosselin
(1988) show a number of examples in which this this technique is applied to complex
closed kinematic chains. In the next section, this method will be useful in determining

whether or not a certain set of actuators can control a given kinematic chain in a prescribed

orientation.

The mobility of the complete hybrid kinematic chain can be found by adding

the mobilities of its constituent star and parallel subchains—i.e.,

M =",+M, (3.43)

This concept of a mobility which includes geometric effects can be extended
to formulate an equation for the connectivity of the two poles of a system of cooperating

robotic devices which also includes geometric effects—i.e., modified to read
C=M-31 (3.44)

where M’ is the mobility of the kinematic chain formed when the two poles are treated

as a single link.

3.5 Controllability of a Kinematic Chain

In §2.6, we found that a kinematic chain would be controllable if it had at
least as many driven actuators as its mobility. This implied that when the actuators were
driven, the mobility of the actuated system, M,, was reduced to zero. In order to find
the mobility of the actuated system including geometric effects, we consider the Jacobian

given by eqs.(3.32) and (3.34) to be partitioned as

Je=[J. ] (3.45)
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Actuated Joints 3
System Mobility 3
Actuation Redundancy 0

® Actuated y
0 Unactuated X

Figure 3.4 Planar Three-Legged Walking Machine

where J, is composed of the columns of J, corresponding to the actuated joint degrees
of freedom, and is of dimension cd x g,,,, where c is the number of cycles in the parallel
subchain, d is the degree of frecedom of an unconstrained body and g7, is the number of
actuated joint degrees of fieedom in the parallel subchaiu. Similarly, J, is composed of
the columns of J corresponding to the unactuated joint degiees of freedom, and is of
dimension cd x g,,, where g;, is defined analogously to g;,. The mobility of the actuated

parallel subchain is given by

M, = dim[N(J,)] (3.46)

This method is now applied to the planar three-legged walking machine shown
in Figure 3.4 with actuators 1, 2 and 3 active to show that certain singular conditions

cannot be controlled with this set of actuators.

The Jacobian J. is a 6 x 9 matrix since there are 9 joints, 2 cycles and d = 3.

According to eq.(3.34) J. can be formed from the Jacobians of the individual legs as
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follows

éIal
= 3 5] d=|aa (3.47)
¢ 0 Ja2 '—133 .
qs3
For motion in a plane, the 3-dimensional cross product, denoted by e x r;, can

be written in 2-dimensional vector form as a linear mapping of the 2-dimensional vector

r,. This mapping is denoted as Er,, with the 2 x 2 matrix E defined as

_[0 -1
E= [1 . ] (3.48)
so that the block elements of J can be written as
J_[lll J__[lll J__[111
a1 = El",' Er4 El'l ! 2= El's Er5 Er2 ! 8= El'g EI'G El'3
(3.49)

where vector r, is directed from the centre of joint 2 to a reference point on the body of

the walking machine.

Thus, if we assume that the leg links are each 1 unit long, the body is 2 units
long, the body is parallel to the ground and /2 units above it and the reference point on

the body is at the centre of joint 2, we obtain

-1 1 1 -1 -1 -1 0 0 0
-VZ =V2/2 0 V2 V22 0 0 0 0
bl -1 =2 -1 0 V32 0 0 0 0
T=lo 0" 0o 1 1L 1 a 2 o 50
0 0 0 —v2 -Vv2/2 0 V2 V272 0
L 0 0 0 0 —Vv2/2 0 -1 —(54) -1)
q.=[0: 0, 6 0s 05 0, 0y b5 03] (3.50D)

If joints 1, 2 and 3 are actuated, we remove the corresponding columns from

J/ to obtain

1

1

-
——

V2

_\/5/2

~1

10
0
0

—(

2

0
0

0

2_4:_@)

-1 -1
V2 V2/2
0 V22
1 1

V2 —-V2/2
0 —v2/2

0 0
0 0
0 0
-1 -1
V2 V2/2
-1 _(2-2

-

2)J

(3.51)
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which is rank deficient and has a nullspace with a dimension of one. Thus, it is apparent
that if only three actuators are used to drive this system, there exist configurations in

which it cannot be controlled.

The dimension of the nullspace, or nullity, of J, is the difference between its
number of columns and its rank. Hence, whenever the number of columns in J,, exceeds its
rank, the actuated system will become mobile. Obviously, if J, has no columns-—i.e., all
joints are actuated—, the actuated system is bound to be controllable. When the system
does have unactuated joints, we may want to compare its controllability with different
sets of actuators active. This can be done by comparing the condition number of the
corresponding J,’s—the higher the condition number, the closer J, is to becoming rank
deficient. The condition number of a rectangular matrix can be found as (Golub and Van
Loan, 1983):

w(3,) = Tmas (3.52)

dmm

where Omar and op,,, are the maximum and minimum singular values of J,,.

As was noted in §2.6, a kinematic chain with a mobility of M nominally needs
only M actuators to be active. There are K' combinations of M actuators which could be

driven without yielding a redundantly actuated system, whete IV is given by

!
Ja: (3.53)

K= 3. —an

The condition numbers of the J,’s cortesponding to cach candidate set of
driven actuators could be compared to determine which set would best control the system.
However, for a 6-legged walking machine with three actuators per leg and all six legs in
ground contact (g, = 18 and M = 6), this wounld entail the evaluation of the condition

number of 18564 30 X 30 matrices—clearly not feasible i a 1eal-time context

But more importantly, Golub and Van Loan (1983) show that by adding a
column to a matrix, the largest singular value increases and the smallest singular value

is diminished. This implics that the condition number of J, will be increased whenever
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a column is added to it—i.e., we deactivate an actuator—, thereby bringing J, closer
to rank deficiency. We can therefore conclude that a redundantly-actuated system will
be more controllable with a given set of actuators active than with any subset of those
actuators active. Finally, it becomes evident that, from this perspective, it is desirable to

keep as many actuators as possible active.

3.6 Kinematic/Static Duality

Because there exists a duality between the kinematics and statics of robotic
manipulators, it is appropriate to discuss the statics of the cooperating robotic devices
at this point, as a transition between their kinematics and dynamics. Kinematic/static
duality can be derived by considering the power input to and output from a system which
can neither store nor dissipate energy, namely, a system in which kinetic energy, strain
energy, friction and damping are all absent and where gravitational forces are considered
as external forces applied to the system. In this case, the principle of conservation of
energy allows us to conclude that the power input to the system is equal to the power

output from the system.

The principle of conservation of energy is first applied to serial manipulators
in order to demonstrate the analogy between the kinematic and static relations—a result
usually obtained through the principle of virtual work (see e.g., Asada and Slotine, 1986).

The power supplied to the actuators can be written as
To=T1q, (3.54)

where T, is a vector of the actuator torques applied at cach joint. If we assume that no
gravitational forces act on any of the intermediate links, the power output to a load at
the end-effector is

To = W_t, (3.55)

where w, is a vector composed of forces and moments (hereafter called wrench) applied
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by the end-effector. Equating these two powers, we obtain
T 4, =W, t, (3.56)
Substituting eq.(3.14) into eq.(3.56) yields
(rT-wll)g, =0 (3.57)
Since this equation must be satisfied for all q,, we can say

r,=3Tw, (3.58)

This equation tells us how a general wrench w, will be mapped into a set of
actuator torques T,. On the other hand, if 7, is known, we can solve the system given by
eq.(3.58) to obtain w, since J, is usually square. The similarity of ¢q.(3.58) and ¢q.(3.14)

leads us to say that the velocity kinematics and the statics problem are dual to cach other.

A similar procedure is now applied to systems composed of cooperating robotic
devices. In exactly the same way, we equate the power input to the system and the power
output from the system:

7. = wlt, (3.59)

c

where q. is the vector of actuated joint rates, 7. is a vector of the actuator torques in the
system, w, is the wrench applied by the moving pole on its environment, while t. is the
twist of the moving pole. Equation (3.31) can be substituted into eq.(3.59) to obtain

i o

(FTP| : | —whit,=0 (3.60)

I
Equation (3.60) must be satisfied for all t., thereby yiclding

w, = AT, (3.61a)

with matrix A defined as
A=[3" ... 3 TP (3.61h)
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Equation (3.61a) specifies how a general set of actuator torques 7. will be
mapped into a wrench at the moving pole w.. On the other hand, we might be interested
in determining the actuator torques 7. required to exert a prescribed wrench at the moving
pole w., as was done previously for serial manipulators. This would be straightforward if
the system given by eq.(3.61a) were determinate, i.e., if matrix A were square. However,
when the system is redundantly-actuated, the system is underdetermined, i.e., matrix A
has fewer rows than columns, and therefore does not have a unique solution. A general
procedure for resolving this underdeterminacy will be detailed in Chapters 5 and 6. For
the time being, it is only important to note that this non-uniqueness of the solution exists.
The next chapter will show that even when the effect of dynamic forces are considered,

the resulting system of equations will remain underdetermined.




Chapter 4

Dynamics

A number of software packages exist to find the dynamic forces acting in mech-
anisms in motion (e.g., IMP, ADAMS, DADS). However, these packages are primarily
aimed at systems with fixed topology and are not able to analyze systems which are re-
dundantly actuated. This chapter is therefore intended to deal with the formulation of the
dynamics equations of redundantly actuated robotic systems. This will allow us to deter-
mine the forces which accompany the motions discussed in the previous chapter. Broadly

speaking, there exist two possible problems in the dynamics of 10bot manipulators:

1. Forward Dynamics—given the initial condition of the system, the external wrenches
acting on the system and the actuator torques, find the corresponding time histories
of the joint -»d/or Cartesian coordinates of the manipulator. This entails solving
the motion equations for the relevant accelerations and integrating these to obtain
velocities and positions. Solution of the forward dynamics problem is particularly

useful when it is desired to simulate a system for design or animation purposes.

2. Inverse Dynamics—-given the motion of the system, find the actnator and con-
straint wrenches acting in the system. This problem may be formulated as a set
of simultaneous lincar equations which must be solved for actuator and constraint
wrenches. Solution of the problem is useful for design and control purposes. When
used in control applications, such as a ‘computed torque’ scheme (see c.g., Asada

and Slotine, 1986), it is imperative that the problem be solvable in real-time.
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Since the present work focuses on the control of redundantly-actuated robotic
systems, we will deal primarily with the real-time solution of the inverse dynamics prob-
lem. The desired motion of the system is therefore assumed to be prescribed, while the
actuator torques required to achieve this motion must be found. It will be shown that, as
was found when we dealt with statics in §3.6, the inverse dynamics problem is underdeter-
mined. This will lead us to treat the dynamics equations as constraints in an optimization
problem. However, these are not the only constraints which must be imposed on the solu-
tion to the optimization problem—other ones being necessary to account for limitations
of passive contacts and actuator capabilities. This chapter will therefore also deal with

these latter unilateral constraints on an allowable solution.

4.1 Dynamics of Open Kinematic Chains

The dynamics equations of open kinematic chains consisting of rigid bodies are
well understood. The most recently-developed solutions to the forward dynamics prob-
lem lead to efficient O(n) algorithms, where n is the number of links in the kinematic
chain. A good example of these is the method recently developed by Rodriguez et al.
(1989)—applicable to both open and closed kinematic chains—which applies optimal fil-
tering techniques to the solution of the forward dynamics problem. The inverse dynamics
problem of these systems was the subject of intensive investigation in the early 1980’s
and solution techniques were developed which are computationally efficient. For example,
the work of Luh et al. (1980) presents a recursive Newton-Euler technique to calculate
actuator torques from prescribed joint positions, velocities and accelerations with roughly
1500 floating point operations! for a six-link robot. Further work in this area has yiclded
techniques which consume as little as 950 floating point operations (Angeles et al., 1989).
Since modern workstations can easily perform 1.5 Mflops (i.e., 1.5 million floating point
operations per second), one evaluation of the inverse dynamics model can be performed

in less than 1 ms-—a rate which will easily accommodate real-time operation.

! Any single multiphcation, division, addition or subtraction between two real numbers
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Appendix A gives a recursive inverse dynamics algorithm for serial manipula-

" o

tors which is essentially that of Luh et al. (1980). This algorithin can be used to calculate
the actuator and constraint wrenches acting in any serial subchain within the system of
cooperating robotic devices which is uncoupled from the remainder of the system—e.g.,
a finger of a mechanical hand which is not in contact with the grasped object. It will also
be used in certain of the inverse dynamics formulations of multiple-loop linkages which

follow. The algorithm is made up of two phases which can be described as follows:

1. Outward recursion from the manipulator’s base to its tip to calculate the motion of
each link in Cartesian space. That is, given the motion of the base link and all the
joint angles, joint rates and joint accelerations, the Cartesian motion of the other

links is calculated by starting at the base and working outward to the last link.

2. Inward recursion from the manipulator’s tip to the base to calculate the wrenches

acting on each link, including both constraint and actuator wrenches.

-

4.2 Dynamics of Closed Kinematic Chains

It is useful to partition the wrenches in the system inlo:
1. Contact Wrenches, which act at the interface between the individual robotic

devices in the system and one of the poles.

2. Actuator Wrenches, which are the forces and/or moments supplied by the actu-

ators at the actuated joints in the system;

3. Constraint Wrenches, which are the non-working wrenches acting at the joints

in the constrained directions; and

4. External Wrenches, which may act at any point in the system due to external

loads.

€
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In the context of the inverse dynamics problem, wrenches of the first three

types are unknown, while wrenches of the last type are assumed to be prescribed.

The inward recursion of the inverse dynamics algorithm developed by Luh et
al. (1980) relies on having a single unknown wrench acting on the last link in the chain
(that being the wrench exerted by the second-to-last link) and is therefore not applicable
to closed kinematic chains since they have no ‘last link’ with a single unknown wrench.
Researchers in robotics have only recently approached the inverse dynamics problem of
manipulators containing kinematic loops. Luh and Zheng (1985) proposed the ‘virtual cut’
method which involves ‘cutting’ each kinematic loop in the system at an unactuated joint
to produce a kinematic chain with a tree structure. Using a serial-chain algorithm and
explicit calculation of a set of Lagrange multipliers, the torques required at the actuated
joints can be found. Nakamura and Ghodoussi (1989) later improved the virtual cut
method by avoiding the explicit calculation of the Lagrange multipliers. The virtual cut
technique was primarily intended for serial manipulators with local planar closed loops for
which the explicit formulation of the kinematic constraint equations is tractable. However,

these closed-chain constraint equations can be tedious to construct in the case of multiple

3-dimensional loops.

In the present analysis, it is presumed that all the joint coordinates, velocities
and accelerations are known. If only the motion of one of the poles is known, the inverse
kinematics problem described in Chapter 3 must first be solved. Given these inputs, there
are a number of ways in which the dynamics equations of the system can be written, each

of which reduces to a system of linear equalities of the forn
Alx = b] (41)

where A; is a matrix of dimension m x n, x is a vector of dimension n which contains
the wrenches acting in the system, while by is a vector of dimension m which represents
the motion of the system. The numerical values of m and n depend on the method used

to formulate the dynamics equations. The following sections will discuss three ways in
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which this can be done—each differing in complexity, computational requirements, and
amount of information generated. It will be shown that no matter how the equations are
formulated, if the system is redundantiy actuated, n will always be greater than m by an
amount r, thc degree of actuation redundancy. In this case, the fact that the lincar system
given by eq.(4.1) contains more unknowns than equations implies that there exist many
solutions which will satisfy the equations This allows us to formulate an optimization
problem in order to find the ‘best’ solution in a pre-established sense. In this light, we
say that eq.(4.1) constitutes a set of constraints to an optimization problem in which we
minimize a certain objective function, f(x), of vector x of design variables (a.k.a. decision

variables).
4.2.1 The Complete Formulation

The first and most comprehensive method for writing the dynamics equations
of the system explicitly considers all wrenches acting in the system. The {orce and moment
balance equations are written for each link in the chain resulting in a large system of

equations, where vector x contains the contact, actuator and constraint wrenches.

The system is first broken down into its individual rigid bodies as shown in
Figure 4.1(b). The prescribed motion of the base of path ¢ is given by wy, wy and aj—
its angular velocity and acceleration and its translational acceleration, respectively—n.b.
the translational velocity of the base link is not explicitly required. A forward recursion
is performed from the base link to ecach of the p end links—Afingertips, end-effectors or
feet—by recursively solving the following vector equations for j = 1 to b,, where b, is

the number of links in path ¢:

When joint j is a revolute:

w, =w,_ | +q¢e_; (4.2a)

@ o=@ e W x el (4.2b)
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Figure 4.1 Deccomposition of the Parallel Subchain

a) =a,_,+w,xr,+w)x(w),xr) (4.2c)

When joint j is prismatic:

w; — w;—l (4.3&)
W, =w_, (4.3b)
a, =a)_;+w, Xr)+w) x (W, xr))+ge_; +2w!_ x g,e)_, (4.3¢)

where, for each path ¢, w! denotes the angular velocity of link 7, a), denotes its translational
acceleration at the origin of frame j which is attached to link j, q; is the j-th joint variable,
e) is a vector aligned with the j-th joint axis and r; represents the vector from the origin

of frame (j — 1) to the origin of frame ;.
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For both types of joints:
al, =a)+ W) X +w) x(w xcl) (4.4)

where aj, is the translational acceleration of link j at its centroid, and c} is a vector from

the origin of frame j to the centroid of the link j.

We can now write the Newton-Euler equations for link j in parallel path z as:

] 3 — 1t
fJ_I'J — f“+1 = m](ac] +g)— fe'J (4.5a)
: i Al § At ' T, t 1, .1 ' ' 1
N1y~ My + €1 X% f—le =Gy % fJ.J+1 - IJwJ tw, X IJ"‘"J - (neJ + Ce; X f‘-’J)

(-1.5b)

where f}, ., and n} ., are, respectively, the force and moment applied by link & of path
¢ to link k41 in the same path, and &}, represents a vector from the centroid of link 4 to
the origin of frame {. The centroid moment of inertia and mass of link j are denoted by
I} and m}, respectively. Finally, f; and n;, are the external force and moment applied to
link j, while c¢, represents a vector from the centroid of link j to the point of application

of f,.

For notational convenience, we assign a special symbol to the wrench acting

at the distal end of the last link of each path.
=™ f,=f =n! i=1 ) (4.6)
W=l 1= b bt D= bt = 1] b

where p is the number of paths between the two poles.

Using this notation, the equations of motion of the moving pole are written as

P
Y fi=nola, +g) —f (1.7a)
1=1

P

Yon +e xf)=Lw, +w, x Lw, — (0, + ¢, xf,) (4.7h)

1=1

where m, and I, represent the moving pole’s mass and centroid moment of inertia, w,

and a, are its angular velocity and translational acceleration, and ¢, is the vector from
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the moving pole’s centroid to contact point i. Furthermore, f. is the vector of the net
external applied force on the moving pole, of dimension 3, n, is the vector of net external
applied torques, also of dimension 3 and ¢, is the vector from the object’s centroid to the

point of application of the external force.

Equations (4.5a) and (4.5b) are written for each link in each path of the system,
while eqs.(4.7a) and (4.7b) are written for the moving pole. Once these vector cquations
arc expressed in a single frame, they can be assembled into a single system of simultancous

cquations of the form given by eq.(4.1) with

[0 1 0 1 0 o0 0 0 0 0
1 C 1 C, 0 0 0 o0 0 0
0 0 0 0 0 1 0 -1 0 0
A, =|0 0 0 o 1 &, -1 -¢, 0 0
0 0 0 -1 0 0 0 0 1
014
| 0 0 -1 _Cb,,,,,b,,,, 0 o0 0 0 o 1 Cf:w_bpp_l(_i1 8a)
r n] -
fi
n: ] mo(ao + g) - fe
f” Lw,+w, x Lw,—(n,+c, xf,)
nlp my(al +g) -}
X = fé)': ; b, = L) +wi x Tiw] — (n}, + ¢!y x £}) (4.8b)
nfﬂ p (a” E ) — £7
f], my, @y, t8)— 1
: pr(d: P + wg X Igppwﬁﬂp - (nfbmn + cgbpﬂ X ffbpp)"
p
ngpp‘lvbpp
- bPP_l'bPP
where Cy is the 3 X 3 matrix defined by
(e xv
Ci = _(“’é“;_) (4.8¢)
while C}C', is the 3 x 3 matrix defined by
o~ o, xv
Ci = 9y x V) (4.8d)

av
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for any 3-dimensional vector v.

This system of equations consists of m = 6(1 + Y_I_, b,,) equations with, at
most, n = 6¢g, unknowns, where g, is the number of joints in the parallel subchain. The
number of unknowns, n, will be reduced by g/, the number of unactuated joint degrees
of freedom in the parallel subchain since we know the foice or moment corresponding to
an unactuated degree of freedom is zero. We also know that there are b, = 2 + ¥0_, b,
bodies in the system—the 2 poles and all the links in each path between the two poles.
The degree of underdeterminacy of this system—i.e., the number of columns minus the

number of rows in A;—is therefore
n—m =6y, — g, — 6(b, — 1)

= 6(gp ~ by + 1) — g, (4.9)
Substituting eq.(2.5) into eq.(4.9), we obtain

n—m =6c—g,, (4.10)
into which we can substitute eq.(2.6) (with d = 6) to find

n—m=—-M,+g,—g,, (4.11)

but since g, = g;, + g, We can write

n—m=g, — M, (4.12)

Since the number of actuated joint degrees of freedom in the star subchain is

always equal to its mobility, we have
Goa = M, (4.13)
which allows eq.(4.12) to be rewritten as

n—m= gy, + gy~ My~ M,

=ga—M (4.14)
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This difference in turn, is nothing but the actuation redundancy r as defined
by eq.(2.15). Thus, it becomes clear that the system given by eqgs.(4.1), (4.8a) and (4.8b)
has r more columns than rows. That is, the degree of underdeterminacy of the system

of inverse dynamics equations of a redundantly-actuated system is equal to its actuation

redundancy.

4.2.2 A Formulation Using Superposition

The system of equations obtained in §4.2.1 gives access to all the wrenches
acting in the system and is therefore well suited to design applications. However, the large
dimensionality of the formulation makes it unsuitable for implementation in a recal-time
controller for most realistic 3-D systems. We can assume that, while the computation
of the constraint wrenches is useful for design purposes, it is less essential for control
purposes. Use of the principle of superposition allows us to avoid computing the constraint

wrenches and concentrate exclusively on the variables of interest: the actuator and contact

wrenches.

The parallel kinematic subchain has the structure shown in Figure 4.2(a)—
two poles joined by p paths. An easy way to obtain the cquivalent tree structure is to
remove one of the poles—for example, m the case of a hand-object system, we separate
the grasped object from the hand, as shown in Figure 4.2(b). For each of the p resulting

serial subchains, we can write

t, = [“’] = 1,4, (4.15)

v,
where w, and v, are vectors of dimension 3 representing the angular and translational
velocities of contact point z; J,, is the 6 X gy, Jacobian of the arising i-th serial manipulator;
q, is the vector of dimension g, of joint rates for path ¢; and 9y is the number of joint

degrees of freedom in path 3.

The torques acting in each path of the closed chain, 7,, can be separated into

two components: 1) T, the component associated with the inertial forces in that subchain
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(b)

Figure 4.2 Another Decomposition of the Parallel Subchain

acting as a serial chain, and 2) 7/ the component associated with w,, the wrench exerted

by the tip of subchain 2 due to contact with the remaved pole. Therefore, we can write
=7 +71 (4.16)
where T, is a vector of dimension g;,.

The recursive algorithm given in Appendix A can be used to caleulate 7/—the
torques acting in the i-th serial subchain in the absence of a contact wrench. In order to

find T/, we formulate the following expressions for the power produced by 7" and by w,
=4 T (1.17a)

7 =t w, (4.17D)

These two powers are equal in the absence of dissipation. I we substitute eq.(4.15) into

eq.(4.17b) and equate eqgs.(4.17a) and (4.17b), we obtain

g =q 1w, (4.18)
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Since eq.(4.18) must apply for any q;, we can write

T = 3w, (4.19)
and eq.(4.16) becomes
ro=7+JTw, (4.20)

It is interesting to note that this is nothing but an extension of the result
obtained in eq.(3.58) to include the effect of the inertia of the manipulator. If the joints
in the serial paths are not all actuated eq.(4.20) can be partitioned as

[7e]= (] [ a2
where T, is a vector of dimension g,,,, the number of actuated joint degrees of {reedom
in path ¢; and 7, is a vector of dimension g,,,, the number of unactuated joint degrecs of

frcedom in path . Since the joint degrees of freedom coriesponding to 7, are unactuated,

7., = 0 and we can expand eq.(4.21) as

T w, -1, =1, (4.22a)
I w, = -7, (4.22D)
Equations (4.22a) and 4.22b) can be compactly written as
K,X, = B, (4.23a)
where
e TR L B I (o RTESS
[ M JZ;“ Og' xg! ) 2 T ’ | f, ’ [ N —T:“ ’
pur I pas

where f, is the vector of contact forces of dimension 3, n, is the vector of contact torques,
also of dimension 3, 1 denotes the k x k identity matrix, and 0,4; denotes the & x [ zero

matrix.

The complete equations governing the motion of the system can now be formed

by combining eqs.(4.7a) and (4.7b) for the object, with eq.(4.23a) for each serial subchain
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in the equivalent tree structure. This yields an augmented system of the form given by

eq.(4.1) with

B, - B, mo(a, +8) — £,
D, -+ D, X L, + wo X Liw, — (Re + €, x f.)
A1 = Al 0 y X = , b| = bl
Xp :
0 Xp EP
(4.24a)
B, = [03)(3 13 Osxg;m] , D, = [13 C, Ong;m,] (‘1241))

The linear system represented by eqs.(4.1), (4.21a) and (4.24h) is composed
of m = (6 + X1-1[gha + 9pue)) cquations in, at most, n = (6p + 1., ¢;,,) unknowns- -i.c.,
p contact wrenches of 6 elements cach, plus g/, actuator torques in cach path. When a
general wrench cannot be exerted at the :-th contact, the number of unknowns is reduced
by ¢,—the number of contact degrees of freedom. Thus, the degree of underdeterminacy
can be calculated as

P P p
n—m= 6P + Zg;,m: - ZC, -6- Z(g;’"' +y;"“)
= =1

1=1

b~

Z G + gpu: (425)

Using eq.(2.7), and the fact 10 (¢, + gpus) = Gpur Where gy, is the total number

of unactuated joint degrees of freedom in the parallel subchain, we find that ¢q.(4.25) can
be rewritten as

n—m=6c—g,, (1.26)

which is identical to eq.(4.10). Thus, the degree of underdeterminacy using this formula-

tion is once again equal to r, the degree of actuation redundancy in the system.

4.2.3 The Most Compact Formulation

The third, most compact and most commonly used method of formulating the

dynamics equations—sce e.g., Nakamura et al. (1987), llsu ct al. (1988), Alberts and




P
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Soloway (1988), Cheng and Orin (1989)—considers only a single body in the system. This
has the advantage that the size of the resulting set of linear equations is greatly reduced

and permits a fast solution. However, it only includes the contact wrenches in the vector

of design variables, x. In the case of mechanical hands and cooperating manipulators, the

single body for which the equations of motion are written is the grasped object, while in
the case of walking machines, that body is the complete machine considered as a single
rigid body—i.e., neglecting the internal joints of the machine. Because the vector of design
variables includes only the contact wrenches, there is an attendant loss in generality which
may be circumvented by calculating the actuator and constraint wrenches as functions of

the coutact wrenches. This will be shown in §4.2.4.

Referring to Figure 4.2(b), the vector equations of motion of the moving pole

are given by eqs.(4.7a) and (4.7b). These can be written more compactly in the form of

cq.(4.1) with
[n; ]
0 1 0 1 0 1 fi
A‘=[1 G 1C - 1 c,,]’ x=|: (4.27a)
np
£,
— nzo(ao'*‘g)—'fe ]
b, = [Iocbo +w, x Lw, — (n,+c, xf.) (4.27b)

with Cy defined by eq.(4.8c). Using eqs.(4.27a) and (4.27b), cq.(4.1) now represents 6
scalar equations in, at most, 6p unknowns—i.e, p contact wrenches of 6 elements each.
Once again, when a general wrench cannot be exerted at the i-th contact, the number
of unknowns is reduced by ¢,—the number of contact degrces of frecedom. As well, if
the i-th path contains g, unactuated joints, it loses the ability to independently exert

that number of contact forces or torques. Thus, the degree of underdeterminacy can be

calculated as

p
n-—m=6p—Z(c.+g,’,m)—6

1=1
p

1=1
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which is identical to eq.(4.25), and, once again, the underdeterminacy of the system of
equations is r. Matrix A, is of dimension 6 X 6p when a general grasping wrench of
dimension 6 can be exerted, rendering the system underdetermined whenever p > 1. This
will usually be the case for multiple manipulators handling a common payload. If contact
torques cannot be exerted—i.e., the contact wrench is of dimension 3—-, the matrix A,
is of 6 x 3p, and the system is underdetermined whenever p > 2. This situation normally
arises in walking machines and mechanical hands since they cannot usually exert torques

at the foot/ground or fingertip/object contact.
4.2.4 Calculating Actuator and Constraint Wrenches

It is possible to use the most compact formulation of the dynamics equations
which includes only the contact wrenches as unknowns, and yet still calculate the cor-
responding actuator and constraint wrenches. For example, once the contact wrenches
are solved for in eqs.(4.1), (4.27a) and (4.27b), the actuator torques can be found using
eq.(4.20). Since there are many possible solutions to these equations, we can conclude
that there also exist many sets of actuator torques which will yicld the same payload

motion.

Another relationship which is of particular interest is one which allows us
to find the constraint wrenches from a given sct of contact wrenches. The vector W,
containing the constraint and actuator wrenches in the i-th parallel path can be found in

a manner analogous to that used for the actuator torques only. That is,

W, =W +F' ['f’] (4.29a)
r ncl i -1 R] )
fcl 0 1
w,=1| : |, F'=]: (1.29b)
ncgp. 1 R!]pl
| ey, 01 ]

where W' contains the wrenches due only to the weight and inertia of subchain ¢. This term

is calculated by the inverse dynamics algorithm of serial chains found in Appendix A. The
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Figure 4.3 A Planar Two-Fingered Hand Grasping an Object

second term on the right-hand side of eq.(4.29a) is the contribution due to the contact
wrench acting at the tip of the i-th path. The components n., and f,, arc vectors of
dimension 3 which represent the moments and forces acting at the j-th joint of the i-th
path, respectively. Matrix FT maps the contact wrench into joint wrenches, while matrix
R; is defined analogously to Cy in eq.(4.8¢) but with ¢, replaced by ry, the vector from
the k-th joint of the i-th path to the tip of that path. Finally, g,, is the number of joints

in the i-th parallel path.

4.2.5 Example

The three methods of formulating the dynamics equations are now applied
to the two-fingered planar mechanical hand shown in Figure 4.3 in order to highlight

their differences. The first method involves writing the three force and moment balance
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equations for each of the 5 moving bodies in the system. Using the notation shown in

Figure 4.3, we have

ft + f7 = moaj (4.30a)
N+ ff =my(a} +9) (1.30b)
—fidd + fid = fic + fic; = L, (4.30¢)
o5 — [15 = mjaf® (4.31a)

f f12 = m{(a:y+g) (43”))

1 1 lxhly 1y -1z lely lyAlz l .
ngy — Mo — fo1Cio + fo1io + f12612 — fiaGie = Liw (1.31¢)

15— JF = myay® (4.32a)
8- =mi(ey +g)  (4.32b)

Al 1y~ ~1 Y .
— 1584 + [seh + fieh — 165 = Ly (1.32¢)

o3 — i3 = mial® (4.33a)
f 12 = m?(a?y +9) (4.33b)

2 2 2z A2y 2y'~2$ 2:~2y 2y»~2 722 Q.
Moy — Ny — 01clo+f01 10+f 12¢2 ~ 11262 = [wy (4.33¢)

— fF = mia (1.34a)

~ f§ = mj(a3’ + g) (4.34h)

2 "2 2 ~, A2 Yy .
7112 fiach + fl%chl f3eh — [3e = 1307 (4.34¢)

These equations must be solved for 16 unknowns: 4 components of the contact
forces, f¥, fi, ff and fj; 4 actuator torques, n},, n},, ni; and n?,; and 8 internal
reaction force components, f}73, o 1%, fi5, £33, S8, 15 and f75. Thus, the system
has one more unknown than equations, which concurs with the fact that it has a mobility

of three, controlled by 4 actuators—i.e., an actuation redundancy of one.
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The second method entails writing the three force and moment balance equa-
tions for the grasped object and the equations governing the motion of each finger acting

independently. The Jacobian of each two-link finger is required and can be written as

s 2
where
3ty = I sin @} — L sin(6} + 65) (4.35b)
Jiy = — Iisin(6} + 65) (4.35¢)
sy = I3 cos 0} + 15 cos(8} + 0) (4.35d)
33, = I cos(0: + 6) (4.35¢)

and [j is the length of link j in finger 7, while ) is the joint angle of joint j in finger ¢, as

shown in Figure 4.3(a). Thus, we obtain the following set of equations

£+ 5 =mea (4.36a)

S+ = mo(e + g) (4.36b)

- lxclll'*'flycf“ 2EC!21+f'gC§= oWo (4.36¢)
1 rx ‘1 ey 1 _ 1

St +infi = No1 = — Mg (4.37a)

]112f1I +j212f1y - "1,2 = - nifz (4.37b)

Jl21f2x +j§1fg - n(2),1 = - ngfl (4.38a)

J%zf; + ngfg - "?,2 = - nf’z (4.38b)

where 7}, is the actuator torque due only to inertial effects applied by link j on link &
in finger ¢. These equations must be solved for 8 unknowns: 4 components of the contact

forces, f¥, fi, f§ and f3; and the 4 actuator torques, ng, n},, nd; and n},.
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Finally, using the third method, we need only write the three force and moment

balance equations for the grasped object:

J{+ f7 = mea] (4.39a)
fi + f3 = me(al + g) (4.39h)
~fid + fid - i+ fics = L, (4.39¢)

and solving for the 4 unknown contact force components: f;, f, f5 and f}.

It should be apparent that no matter which formulation is used for the dy-
namics ~quations of the system, the resulting m x n matrix A, will be rectangular with
n —m =r. Thus, in all three of the above cases, the number of unknowns exceeds the

number of equations by one—the actuation redundancy in the system.

It should also be apparent that the matrix A, is a function of the geometry of
the system. Therefore, in general, this matrix is time-varying, although, with certain for-
mulations of particular problems, it is constant for each constant topology of the system.
In the case of a walking machine for which the equations of motion have been formulated
using the method of §4.2.3, the entries of matrix A, will vary whenever motion is present
since the location of the foot/ground contact points will vary in relation to the machine’s
mass centre. On the other hand, i{ the same formulation of the dynamics equations is
used for multiple arms manipulating a common object, matrix Ay will stay constant as
long as the contact points do not move on the grasped object. Thus, in the latter case, if
the desired solution is onc which minimizes a norm of x, it need only be lound once each

time a new set of contact points is established.

4.3 The Effect of Changes in Topology

It is usetul to investigate in more detail the changes which occur in the system,

c.g., as given by egs.(4.1) and (4.21a) to (4.24b), upon changes in topology. In the previous
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sections, we dealt solely with the dynamics of the parallel kinematic subchain. In fact,
the systems under study are made up, at any given instant, of the parallel and the star
subchains; where the latter represent the fingers, legs or manipulators which are not in
contact with the common object or ground. In the discussion which follows, it is assumed
that any given path can be open, in which case that path acts as = serial chain, or closed,
in which case the path becomes part of the parallel chain. It is also assumed that the
system of dynamical equations describes ull kinematic chains in the system, including

open and closed ones. Thus, the vector of forces {5 written as follows
X=X .. X ... %]° (4.40)

where x, contains w,, the contact wrench at the tip of subchain :, and 7, the vector
of actuator torques in subchain i. When a subchain is open, e.g., a finger is not in
contact with the object, the corresponding w, is forced to be zero by zero entries in
the corresponding columns of A;. Furthermore, for each open subchain there will be
a corresponding subsystem of equations within the system given by eq.(4.24a) which
will be decoupled from the remaining equations in the systein. When one of the open
subchains becomes part of the closed chain, there is an increase in the number of non-zero
coutact wrenches in the system—i.e., the contact wrench now acting at the tip of the
previously-open subchain; the corresponding columns of A; will no longer be zero; and
the corresponding subsystem of equations become coupled to the rest of the system. After

the change in topology, the system of inverse dynamics equations becomes

Alx = b, (4.41)

If we assume that the change in topology is one where the previously open I-th

subchain comes into contact with the object, the form of the A; and A} matrices will be
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B, 0 - B,
D, 0 ... D,
A‘ A | 0 0 1
A= . |, G= [ Spai*6 Spat ] (4.42a)
o G 0 g;ml x6 g;zul x-q;:al
0 0 - A,
4
B, B, B, ]
D, D, n,
Al o o -.-. 0
~ JT -1,
A'l = , A= [J;al o Ipat ] (442b)
0 X‘ 0 sul 9,',,,‘ XQ,',,,,
|0 0 A,

It becomes clear that, when a change in topology occurs, the system of inverse
dynamics equations changes discontinuously, thereby causing a discontinuous change in its
solution. Furthermore, since this is a characteristic of the dynamics of the system, and not
of the optimization technique, it will occur irrespective of the type of optimization being
performed on the system. It should be noted that the system given by eq.(4.42a) has been
written as such to point out the transition which occurs upon changes in topology. In fact,
the system corresponding to the open subchain ! in A, can be solved independently, while
this is not the case with Aj. Practically spcaking, when the larger system decouples into
two smaller systems as in this case, it is always computationally more efficient to solve

the two systems independently.

4.3.1 Reduction of Solution Discontinuities Upon Changes in
Topology

The preceding section showed that the solution to the system of dynamics
equations will tend to change discontinuously upon changes in the topology of the system.

This will, in turn, result in discontinuous commands being sent to the actuators in the
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system. The actuators are not expected to be able to respond to these discontinuous
commands and a method of reducing the solution discontinuities is required. The following
method for doing this makes use of the fact that any solution to the system given by
eq.(4.42a) is also a solution to eq.(4.42b)—that is, a solution in which no wrench is
exerted at the tip of the [-th subchain. If we denote the optimal solutions to A;x = b,

and Ajx = b, as x; and X3, respectively, we can write:

A'lx, = b], A,IX2 = b1 (4.43)

Taking a convex combination (Roberts and Varberg, 1973) of x; and x; and

premultiplying it by A}, we find
Alfax; + (1 — a)x2] = aAjx; + (1 — @)Alxs = aby + (1 — a)b; = by (4.44a)
where

0<a<l (4.44b)

Thus, any convex combination of two solutions is also a solution. A sequence of
suboptimal convex combinations of x; and x; which never exceeds a maximum Euclidean

norm of the rate of change of x can be found as follows:

Ax* = (x; — xtoN)/At (4.45a)

[|AXF||mee = LIM(||AX*]]) (4.45b)
Ax*||

xk, = xk1 4 L—ﬂAx* 4.45¢

out t HAx“H ( )

where the superscript k denotes a value at the present time step, while & — 1 denotes
a value at the previous time step. The function LIM(%) serves to limit the value of the
scalar in the brackets to a predetermined value. The solution vectors x; and x; and the

series of intermediate solutions are shown graphically in Figure 4.4.

The principal problem with this method of smoothing the solution is that it

is only applicable as long as the entries of A, and b, do not change while the smoothing
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”Ax"] Jmaz k
T Ax

Figure 4.4 Geometric Interpretation of Scheme for Reduction of Discontinuities

operation is occurring other than the change represented by egs.(4.42a) and (4.42b). Thus,

the system would have to be brought to a stop and held immobile whenever a change in

topology occurred.

4.4 Inequality Constraints

Any solution to eq.(4.1) must obviously satisfy that system of equations. How-
ever, in many systems composed of redundantly-actuated robotic devices, it is important
that the solution also satisfy certain additional constraints. The following sections discuss

a number of important considerations which include:

1. The limitations of kinematic pairs which cannot sustain bidirectional forces (see

§2.3);
2. The maximum lateral forces which can be resisted by passive frictional contact;
3. The maximum torque output limitations of the actuators;

4. The maximum force and moment capabilities of the joints; and
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5. Limits on the time-discontinuity which is permitted of the solution.

All these constraints can be formulated mathematically as linear inequalities,
rather than as equalities. These inequalitics can then be assembled and written compactly
as

A;x > b, (4.46)

where this equation represents a short-hand notation for a component-wise system of
inequalities. Namely, each component of the vector on the left-hand side must be greater

than the corresponding component on the right-hand-side.

4.4.1 Unilateral Contacts

When multiple manipulators handle a common payload, their end-effectors are
assumed to grasp the payload, and be capable of exerting a fully general wrench on it.
There are no constraints implicit in this type of contact. By contrast, certain kinematic
pairs discussed in §2.3 require some components of the wiench exerted across these pairs
to be unidirectional. A characteristic of mechanical hands and walking machines is that
these types of pairs frequently exist at the interface between the individual robotic systems
(i.e., fingers or legs). Thus, whereas an active, grasping end effector can push or pull an
object, a fingertip can only push. By including this limitation in the optimization as a

simple bound on fu,, the normal force at the 2-th contact point:
fve 20 (4.47)

we can guarantee that, if a solution is found, it will satisfy force closure on the system

(Salisbury and Roth, 1983).

4.4.2 'The Friction Cone and Pyramids

A consideration of the limitations of passive frictional contact is related to

the above discussion. Whereas the active grip in multiple-robot systems is assumed to
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be strong enough to generate any desired tangential force through the contact and resist
slippage, this assumption cannot be made with the passive contact found in mechanical
hands and walking machines. '~ these systems, we must ensure that the magnitude of
the tangential force does not exceed the product of the normal force by the coefficient
of static friction, g. This limitation has been graphically described as the requirement
to stay within a friction cone (Orin and Oh, 1981; Kerr and Roth, 1986) with its apex
at the contact point, and its axis normal to the contact surface. Since the cone is a
quadratic surface, including this constraint exactly would require the use of a quadratic
inequality. However, since the optimization problem is eased considerably by considering
only linear constraints, we follow the suggestion of Orin and Oh (1981) and Kerr and Roth
(1986) to replace the friction cone by a piecewise linear k-sided friction pyramid which
can be described by linear inequalities. Two obvious choices for this pyramid are: one
which circumscribes the friction cone or one which is inscribed by the friction cone, shown

graphically in Figure 4.5. Thus for the case of k = 4, this constraint can be included as:
|f:m| < ”,th (4.48&)

|furl <0/ fn (4.48b)

which can be expanded into the following four inequality constraints:

Wine+ fzi 20 (4.49a)
Win—fa >0 (4.49h)
B+ fi=>0 (4.49¢)
Wine = fu 20 ' (4.49d)

where f;, and f,; are the tangential forces acting at the 7-th contact point, p' = pu for the
circumscribed pyramid, u’ = v/2j1/2 for the more conservative inscribed pyramid, and p is
the radius of the friction cone. The friction cone may also be more accurately represented

by the k-sided pyramid, with k > 4.
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Figure 4.5 Graphical Representation of the Friction Cone

4.4.3 Actuator Limitations

A further source of inequality constraints which applies equally to multiple-
robot workcells, mechanical hands and walking machines, is the consideration of limits on
the torque that can be exerted by an actuator. The constraint on the actuator torques

can be included as:
ITxl S Thm (450)

where T, is the vector of maximum torques which the actuators can produce. Equation

(4.50) can be expanded into two linear inequalities as follows:

T, 2 — Thm (451&)

- T, 2 = Tlim (451b)
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The form given by egs.(4.51a) and (4.51b) is sufficient if the actuator torques
arc included in the vector of design variables, as in the first two methods of formulating the
dynamics equations. If the actuator torques are not included in this vector, eqgs.(4.51a)

and (4.51b) must be transformed into limits on the contact wrench by substituting in

¢q.(4.20) to obtain

A R (4.52a)
JT[“'] > 7y 4.52b
) f’ = 1 lim ( . )

Thus, the method of formulating the dynamics equations given in §4.2.3 would

require the use of the incqualities given by eqs.(4.52a) and (4.52b) rather than those given
by egs.(4.51a) and (4.51b).

4.4.4 Limits on the Constraint Wrenches

In addition to limiting the actuator torques, we may wish to limit the constraint
wrenches acting at all the joints. This can be done by limiting the vector of actuator and

constraint wrenches w, as follows:
W] < Wi (4.53)

where W,,,,, is the vector of maximum wrenches which the joints can sustain. Equa-

tion (4.53) can be expanded into two linear inequalities as follows:

ﬁ’l Z - Wltm (4.54&)
- W, > — Whm (4’54b)

The form given by eqs.(4.54a) and (4.54b) is sufficient if the constraint wrenches
are included in the vector of design variables, as in the first method of formulating the dy-

namics equations. If the constraint wrenches are not included in this vector, eqs.(4.54a)
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and (4.54b) must also be transformed into limits on the contact wrench, this time by

substituting in eq.(4.29a) to obtain

F7 [';]> &' = R (4.55a)
~FT ['}] W' = Wi (4.55b)

Thus, the last two methods of formulating the dynamics equations would re-
quire the use of the inequalities given by eqs.(4.55a) and (4.55b) rather than those given
by eqs.(4.54a) and (4.54b).

4.4.5 Limiting Solution Discontinuities Upon Changes in Topol-
ogy

It wasfound in §4.3 that changesin the topology are discrete and cause discon-
tinuous changes in the coeflicients of the dynamics equations, as represented by matrix A .
These invariably lead to discontinuous changes in the solution to the force distribution
problem found with any optimization technique, unless the optimization problem is mod-
ified to prevent them. The actuators in the system are not expected to be able to respond
to these discontinuous commands and a method of reducing the solution discontinuities
is required. Section 4.3.1 proposed a technique for smoothing the force solution which
requires the system to remain immobile while the smoothing takes place  an excessively
restrictive requirement. The following method makes use of inequality constraints to limit
the rate of change of the actuator torques and 1s much less restiictive on the allowable
motion of the system. Since the optimization problem must be solved at cach instant in
time, at any given instant the solution from the previous instant is available and can be
denoted as x~, where the superscript (-) indicates values at the previons instant. Let us
denote one element of x by x, and the corresponding element of x™ by r;7. The difference
between z, and z; can be limited by imposing the following limit on the magnitude of

the change in this component of the solution:

o — 27| < A (1.56)
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If the actuator torques are components of the vector x, the rate of change of
cach component of x which represents an actuator torque can be limited by expanding

€q.(4.56) into the following linear inequality constraints
-z, 2 —A, —z] (4.57a)

zr, 2 —-A +z; (4.57b)

Since these inequalities are of the form given by eq.(4.46), they can be simply

appended to that system as follows:

Alx > b), (4.58a)
where
r __ ;A\z] r [!?2]
A, = A, b; = b, (4.58b)
-1 0 ... 0 0] YR
1 0 ... 0 O ) AN
A, = b, = : (4.58¢)
0 0 ... 0 -1 ——Aq -
0 0 ... 0 1] AV

where ¢ is the total number of elements in x on which limits in discontinuity are imposed.

If the formulation of the inverse dynamics equations presented in §4.2.3 is used,
vector x does not include the actuator torques. In this case, if it is desired to impose

limits on the discontinuity allowed in the torque commanded from a given actuator, we

must proceed as follows:

ITU - Tx;l <4, (4.5%)

where 7,; represents actuator torque j in path i, while 7] represents that same actuator
torque at the previous time step. If we expand this inequality as was done in eq.(4.57a)

and (4.57b), and substitute in eq.(4.20), we obtain

. n; - [}
— i [f' ] > -8, -1+, (4.60a)

ir [‘;] >-A,+7, -1, (4.60b)
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where j,, is the j-th column of J,,, the Jacobian of the path which contains the actuator
in question, and 7, is the portion of 7,; due only to inertial effects. These inequalitics are
again in the form given by eq.(4.46), and they can be simply appended to that system to

obtain egs.(4.58a) and (4.58b) with

-—jTl 0o ... 0 0 ] --—A“—Tl“l-f"T“‘

_ i, o ... 0 o X A+ -1
A; = ) b; = : (4.61)

.T - [

0O o ... 0 o ——Ap,—rp_,+'r,,,,

. 0 0 ... 0 j, | _—A,,r+rp,—rprj

where r is the number of actuators in each path.

This method for smoothing discontinuities in the force solution is more general
than the one proposed in §1.3.1 since it does not 1equire the system to remain immobile
upon changes in topology. It also fits well into the existing framework of optimization
since it simply involves appending further inequalities to the existing ones. Since the CPU
time of the solution method for inequality-constrained quadratic optinmization which will
be presented in §5.4.2 depends only on the the number of constramts which are active at
the solution—i.e., satisfied as equalitics—, the addition of new mequahties will inerease
the CPU time only when these are active—i.e., at discontinuities. At discontinuities, only
one of these will be active at any given instant-—the one cotresponding to the element
of x which undergoes the largest change at the discontinuity | and the CPU time will

therefore only be slightly increased.

The primary limitation of this technique is that A, and A,; cannot be chosen
arbitrarily small—if they are too restrictive, the new inequality constiaints will cause
the optimization problem to become infeasible. That is, no solution will exist which can
satisfy the dynamics equations while having the prescribed degiee of smoothness, Fur-
thermore, the values of A, and A,; which cause the optimization problem to become
infeasible cannot be known a priori. This is particulatly true when impacts occur. Actual
use of this technique might involve an iterative process of imposing a certain limit; seeing

if the problem is feasible; relaxing the limit if it is not; and 1epeating the process, Since
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this would be highly ineflicient in a real-time implementation, yet another method was
developed to smooth the discontinuities. This last method will be presented in §6.2.8,
along with a numerical example applying both smoothing techniques to smooth the solu-

tion discontinuity occurring when the foot of a walking machine comes into contact with

the ground.




Chapter 5

Optimization Techniques

In the preceding chapter, the equations of motion for redundantly-actuated
robotic systems were formulated. It was found that, if the motion of the system is pre-
scribed and the wrenches required to achieve this motion must be calculated, the system
of linear equations which must be solved is underdetermined, thereby admitting a multi-
plicity of solutions. In any problem which allows a choice of solutions, it is only natural to
want to choose the ‘best’ one—opt mization techniques provide a mathematical framework

for doing this.

The most general optimization problem is onc in which we wish to optimize an
arbitrary objective function while respecting certain specified constraints. The constraints
are usually easily formulated mathematically because they are imposed by quantifiable
physical phenomena. For example, the equations of motion discussed in the preceding
chapter constitute equality constraints to the optimization problem which will now be
formulated. By contrast, the choice of the objective function is more atbitiary simply
because many different criteria are desirable. The choice of both objective and constraint
functions must also be made in view of the techniques which will be required to solve
the resulting problem. For example, if the exact mathematical statement of a constraint
or objective function is complex, it will necessitate the use of cumbersome optimization

techniques which, in turn, are less likely to converge and require more computing power.
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When this latter resource is limited, as in on-board control units in walking machines, it
is desirable to simplify the function in question by choosing a simpler but more restrictive

expression which, if satisfied, will guarantee that the original expression is also satisfied.

In the context of optimization, the goal of the designer is to formulate a reason-
ably accurate mathematical representation of a physically significant problem which can
be solved using the available resources. It will be shown in this chapter that quadratic pro-
gramming is well adapted to this task as it allows the optimization of physically meaningful
objective functions. Furthermore, when the constraints are linear, numerical techniques

exist to solve the optimization problem in real-time using present-day hardware.

Section 5.1 will describe the mathematical framework and terminology of opti-
mization, with emphasis on the characterization of optimality conditions. These concepts
will be particularly useful when we later compare the behavior of the solutions provided
by various optimization techniques. Section 5.2 will investigate the features of particular
optimization problems which we can expect to solve in real-time—linear and quadratic
programs. In §5.3, the concept of duality will be briefly reviewed since it plays a significant
role in the most efficient numericai techniques which exist both in linear and quadratic
programming. Finally, §5.4 will introduce the various numerical techniques which were

implemented in the present work.

5.1 Optimality—General Objective Functions

The mathematical statement of a general constrained optimization problem is

min f(x) (5.1a)
subject to  A,(x)=0 t=1,...,m¢ (5.1b)
gJ(X)ZO j=m8q+19~--,m (5-1(:)

where x is an n-dimensional vector of design variables. Function f(x) is normally called
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the objective function, while eq.(5.1b) represents a set of equality constraints and eq.(5.1c)
represents a set of inequality constraints. Maximization of a function F(x) can be per-
formed in the above framework by minimizing —F(x). Similarly, an inequality of the form
Gi(x) <0 can be included as —G,(x) > 0. For convenience, we will limit our discussion
to objective functions which are twice-continuously differentiable throughout the region

oi interest.

Our goal is to find a minimum point, denoted by x*, in the space of all values
of the vector x (called the design space) which is the solution to the problem stated in
egs.(5.1a) to (5.1c). It is therefore useful to review the optimality conditions which this
point must satisfy in order to be a minimum. This will be done by starting with the
optimality conditions for an unconstrained objective function—i.e., eq.(5.1a) alone—and
then introducing the equality and inequality constraints. This sequence closely follows

that used by Gill et al. (1981).

Since conditions for the existence and uniqueness of optima are most conve-
niently written in terms of derivatives of functions, it is uscful to define the gradient of a

function f(x) as

af(x)/ 0z,
Vf(x)= [ : } (5.2)
af(x)/ 0z,
and the Hessian matrix of that function as
282f(x)/(?zf 82f2(x)/6x182x2 (')zf(x)/ax,azn
H(f (%)) = 7] f(x)/:(')argazl 0 f(x)/@:r:2 7] f(x)/saxg('):cn (53)
& f(x)/0z,0z, O*f(x)/0z,0z, ... O*f(x)/Ox?

We can categorize minima into global and local ones as follows:

1. A global minimum is one where the value of the objective function at x* is less than
or equal to that at every point in its §-neighborhood of the design space, for all

positive values of é.
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2. A local minimum is one where the value of the objective function at x* is less than

or equal to that at every point in its é-neighborhood of the design space, for some

positive values of §.

We can also categorize minima as strong and weak ones:

1. A strong minimum is one where the value of the objective function at x* is strictly

less than that at every other point in its é-neighborhood.

2. A weak minimum is a local or global minimum which does not qualify as a strong

minimum.

It can be inferred from these definitions that a strong global minimum will
have a unique minimum value of the objective function at a unique point in the design
space. By contrast, a weak global minimum will have a unique value of the objective
at many points in the design space. The optimality conditions which follow all relate to
local minima but it will be shown in §5.2 that, for certain problems, a local minimum is

guaranteed to be the global minimum.

5.1.1 Unconstrained Optimization

Sufficient conditions for a point x* to be a strong local minimum of an uncon-

strained objective function are:
1. Vf(x*)=0

2. H(f(x*)) is positive-definite

Item (1) above is a first-order condition, known as the normality condition,
which specifies that x* must be a stationary point in the design space. Item (2) is a second-
order condition, known as the convexity condition, which ensures that the stationary point

is neither a maximum nor a saddle point.
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5.1.2 Constrained Optimization

The constraints given by egs.(5.1b) and (5.1c) are nonlinear in general. How-
ever, in Chapter 4, we found that almost all the constraints of interest in the present
physical problem are linear—the only exceptions being the friction cone constraints which
are quadratic. It was also shown that these latter constraints can be approximated by
piecewise-linear friction pyramids, and that, as the number of sides used for these pyra-
mids is increased, they form a closer approximation to the cone. Furthermore, the numer-
ical techniques required to solve linearly-constrained optimization problems are substan-
tially less computationally intensive than those required to solve non-lincarly-constrained
problems. It was therefore decided to concentrate the present investigation on linearly-
constrained optimization problems since a) the necessary approximation used is minor,

and b) the numerical methods available allow real-time exccution.

Assuming that we limit ourselves to linear constraints, the general optimization

problem given by egs.(5.1a) to (5.1c) reduces to

min f(x) (5.4a)
subject to Ax=Db, (5.4b)
Azx Z b2 (54(‘)

where A, is a matrix of dimension m., x n, while A; is a matrix of dimension m,, x n

and mg, + m,,, = m.

5.1.2.1 Linear Equality Constraints

The equality-constrained optimization problem is that given by egs.(5.4a) and
(5.4b). The presence of the equality constraints partitions the design space into two
orthogonal subspaces—one feasible, the other infeasible. The former consists of all the

points in the design space which satisfy eq.(5.4b)—dcnoted as feasible points-~, while
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the latter consists of all points which violate the equation—denoted as infeasible points.
Similarly, a feasible direction in the design space is one which, if taken from a feasible
point will necessarily lead to another feasible point. Algebraically, it can be defined as a
vector which lies in the nullspace of the constraint matrix A;. If we let Z denote a matrix
whose columns form a basis for the nullspace of A,, i.e., Z is an orthogonal complement

of A,, we can write every feasible direction as a linear combination of the columns of Z.

Under linear equality constraints, the sufficient conditions for a point x* in the

design space to be a strong local minimum are (Gill et al., 1981):

1. It must satisfy A;x* = b,

2. ZTV f(x*) = 0, or equivalently, V f(x*) must lie in the range of AT—i.e., a vector

A of Lagrange multipliers of dimension m,, must exist so that V f(x*) = ATA*
3. ZTH(f(x*))Z is positive-definite.

The first item simply states that x* must satisfy the constraints. The second
item is directly analogous to the stationarity condition in an unconstrained optimization
problem: ZTV f(x*), known as the projected gradient, is nothing but the projection of
the gradient of the objective function onto the feasible subspace and it must vanish for
X* to be a constrained stationary point. We are not concerned with the gradient in the

infeasible directions, since we cannot move in those directions without violating the first

item.

The third item is analogous to the second-order condition in the unconstrained
optimization problem: ZTH(f(x*))Z, known as the projected Hessian matrix, is noth-
ing but the projection of the Hessian matrix of the objective function onto the feasible
subspace and it must be positive-definite in order to guarantee that the constrained sta-
tionary point is not a maximum or a saddle point. Once again, we are unconcerned with
the sign definition of the Hessian along the infeasible directions, since we cannot move in

those directions without violating the first item.
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It is also important to gain a good understanding of the significance of the
Lagrange multipliers A,,i = 1,...,m,, in the optimization problem and its solution.
Essentially, if we think of each equality constraint as a ‘bi-directional wall’—a wall on
which we can push and pull—in the design space, the corresponding Lagrange multiplier
tells us how much we are pushing or pulling on that wall. An alternate interpretation,
is that the magnitude of the Lagrange multiplier tells us how much the solution would

change if its corresponding constraint were removed (Haftka and Kamat, 1985).

5.1.2.2 Linear Inequality Constraints

The inequality-constrained optimization problem is that given by eqs.(5.4a)
and (5.4c). The presence of the inequality constraints partitions the design space into
feasible and infeasible regions. The former consists of all the points in the design space
which satisfy eq.(5.4c)—denoted as feasible points—, while the latter consists of all points
which violate the inequality—denoted as infeasible points. Fach inequality constraint can
be thought of as defining a hyperplane in the the design space which separates the feasible

from infeasible regions.

If we denote the i-th row of A; by a, and the z-th component of b, by b,, then at
each feasible point, the i-th constraint is said to be active if aTx = b,; inactiveif a”x > b,.
This distinction is important because, if an inequality constraint is active, we can treat it
as an equality constraint. The geometrical interpretation of an active constraint is that,

if a feasible point lies on the i-th bounding hyperplane, the i-th constraint is active.

Any direction is a feasible direction with respect to an inactive constraint, since
it 1s possible to move a small distance in any direction without violating the constraint.
In the case of active constraints, there are two types of feasible directions, denoted by
p: the first being a binding direction which satisfies aTp = 0, i.c., the i-th constraint
remains active; the second being a non-binding direction which satisfies a’p > 0, i.c., the

t-th constraint becomes inactive.
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The ¢ active constraints at a given feasible point are denoted by A,x = b,
where A; and b, are subsets of A, and by, respectively. As in the preceding section, we
let Z denote a matrix whose columns form a basis for the nullspace of A,. Any binding

direction can therefore be written as a linear combination of the columns of Z.

Under linear inequality constraints, the sufficient conditions for a point x* in

the design space to be a strong local minimum are (Gill et al., 1981):

1. It must satisfy A;x* > by, with ng* = 82,

2. ZTVf(x*) = 0, or equivalently, V f(x*) must lie in the range of Kg'—i.e., a vector

A of Lagrange multipliers of dimension ¢ must exist so that V f(x*) = ng\*,
3. A >0, i=1,...,q

4. ZTH(f(x*))Z is positive-definite.

Once again, the first item states that x* must satisfy the constraints. The
second item has the same interpretation as the second optimality condition under equality
constraints—that the projected gradient of the objective function vanish at the solution.
As was the case under equality constraints, no importance is placed on the gradient of
the objective function in the constrained directions, even though we can now move off the
constraint, i.e., in a non-binding direction. The reason for this is that, if the constraint
is active and its corresponding Lagrange multiplier is positive, then the gradient of the
objective function in the non-binding direction is guaranteed to be positive, a proof of
which is given in Gill et al. (1981). A move in this direction could therefore only lead to

an increase in the objective function.

The third item, which is new, specifies that all Lagrange multipliers corre-
sponding to active constraints must be positive, the ones corresponding to inactive con-
straints being zero or non-existent, depending on the convention. This is a reflection
of the fact that the inequality constraints represent ‘uni-directional walls’ in the design

space, 1.e., a wall we can push, but not pull, on. When dealing with inequality-constrained
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optimization problem, the first-order optimality conditions, i.e., items (2) and (3) above,

are often referred to as the Kuhn-Tucker conditions (Kuhn and Tucker, 1951).

Finally, the fourth item is analogous to the third optimality condition under
equality constraints—a requirement that the projected Hessian of the objective function

be positive definite at the solution.

5.2 Optimality—Particular Objective Functions

In general, we are not only interested in finding a local minimum, but a global
one. For general objective functions, we must usually content ourselves with a local
minimum because a global minimum is so difficult to find (Gill et al., 1981). However,
the form of certain objective functions can guarantee that if a minimum is found, it
will be global and unique—i.e., it will be a strong global minimum. As will be seen in
the following sections and the next chapter, these properties aie highly desirable in the
physical problem under study. In this section, optimality conditions for two particular
forms of the objective function, linear and quadratic, will be discussed. Furthermore,
these forms will also allow us to use numerical solution techniques which can be expected

to be executed in real-time.

5.2.1 Convex Functions

A convex function f(x) is one which satisfies the condition that (Roberts and

Varberg, 1973):
f(ax1+ﬂx2)Saf(x1)+ﬂf(x2), 0<O’,ﬂ<1, G+ﬂ=l (55)

for any two values x; and x; of the independent variable. The one-dimensional inter-
pretation of this is shown in Figure 5.1—the straight line joining any two points on the
curve always lies on or above the curve. Another feature of a convex, twice-continuously

differentiable function is that its Hessian matrix is positive semi-definite.
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Figure 5.1 A Unidimensional Convex Function

A strictly convex function satisfies the condition that:

flaxi + Bxz) < af(xi) + Bf(x2), O<af<1l, a+f=1 (5.6)

Finally, the Hessian matrix of a strictly cenvex, twice-continuously differen-

tiable function is positive-definite.

5.2.2 Linear Programming

A linear objective function is an example of a particular function which is

convex (though not strictly convex):

flx) =cTx (5.7)

The gradient of this function is V f = ¢, i.e., a constant vector, and its Hessian
matrix is identically the zero matrix As well, the unconstrained function is unbounded
and so we must impose constraints in order to find a finite minimum. Because the Hessian
matrix of this function is not positive-definite—it is positive-semidefinite—, the second
order optimality condition, which requires the projected Ilessian matrix to be positive-

definite, cannot ' atisfied. A point which satisfies the first order optimality conditions
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Figure 5.2 Non-unique Minimum in Lincar Programming

and has a positive-semidefinite Hessian niatrix qualifies as a weak minimum. This implies
that the minimum value of the objective function may be recached at many contiguous
points in the design space—a situation which occurs when the rank of the matrix of active

constraints is less than n, the dimension of the vector of design variables (Gill et al., 1981).

Geometrically speaking, this situation corresponds to a case where an active
constraint becomes parallel to the objective function. This is exemplified in Figure 5.2
where the following two-dimensional minimization of a lincar objective function is per-

formed subject to one linear equality and two linear inequality constraints:

;1111213 Ty + 13 (5.8a)
subject to ar1+=a+1 (5.8b)

Ty Z O’ ] Z 0 (5'8(‘)

The slope of the equality constraint (—a) is varied; when it becomes equal to
that of the objective function (@ = 1), neither of the non-negativity constraints given

by eq.(5.8¢) is active and the rank of the matrix of active constraints becomes less than
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Figure 5.3 Discontinuity in the Linear-Programming Solution

two. At this value of a, a unique minimum value of the objective function is reached
(z1 + 13 = 2) at a non-unique set of design variables; namely, any non-negative r, and
r, which satisfy z; + ¢, = 2. As shown in Figure 5.3, when the components of the
solution are plotted as a function of a, they exhibit severe discontinuities. This is known
as the phenomenon of ‘alternate optima’ in linear programming whereby the solution to
an n-dimenstonal linear-programming problem can touch up to n vertices of the feasible
region simultaneously (Wilde and Beightler, 1967). Furthermore, in higher-dimensional
problems, alternate optima, and hence, non-uniqueness of the solution, are the rule rather
than the exception (Wilde and Beightler, 1967; Freund, 1985). Although in the context
of force optimization in redundantly-actuated robotic systems this problem has only very
recently been discovered (Cheng, 1989; Klein and Kittivatcharapong, 1990), the study
of the effect of changes in a programming problem’s coeflicients is known as ‘sensitivity
analysis’ and is a well-researched area. Freund (1985) presents a thorough analysis of
the behavior of linear-programming problems during changes in the coefficients of the

constraint matrix.

This has serious implications in the physical problem under study because
the presence of a continuously-varying constraint matrix is particularly relevant. As

was shown in Chapter 4, matrix A, represents the configuration, or geometry, of the

-
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system, and hence, its entries will vary smoothly as the geometry of a given grasp or walk
changes, even if the topology of the system does not change. Recall that the solution to
the optimization problem is meant to be used as a setpoint for a force controller. It would
be highly undesirable for the controller to receive discontinuous setpoints— particularly if
these discontinuities occur strictly due to the optimization technique used, and not as a

result of a discontinuity inherent in the physical system.

In a less general formulation of the dynamics equations such as that consid-
ered in §4.2.3, Alberts and Soloway (1988) have noted that the equality constraints remain
constant for a given topology of the system. It might then be concluded that the question
of continuity of the solution under continuous changes in the matrix A; would be less
critical in this situation. However, even in this case, linear programming yields discon-
tinuous solutions due to its non-unique solution. The results obtained by Cheng (1989),

which will be reviewed in the next chapter, offer good evidence of this.

It is therefore important to investigate other methods which will yield better-

behaved solutions under the conditions of present interest.
5.2.3 Quadratic Pregramming

The quadratic objective function
T 1 7
f(x)=c'x+ 5% Wx (5.9)

with positive-definite W is an example of a strictly convex function. Its gradient is

Vf(x) = Wx + ¢, while its Hessian matrix is the constant matrix W.

An important feature of this objective function, whether constrained or not
by linear functions, is that it is guaranteed to have a unique global minimum. For the
unconstrained problem, it is trivial to show that the stationarity condition is satisfied at

x* = —~W-1lc. Under equality constraints, the location of that minimum can be found in



E o

CHHAPTER 5. OPTIMIZATION TECHNIQUES

closed form by using the stationarity condition found in §5.1.2.1 as follows:

Vf(x*) = Wx*+c=ATA"

or, equivalently,

x* = WIATA - w-1¢c
If we multiply both sides of eq.(5.11) by A,, we obtain

A]x* = AIW—IA{A* - A1W‘lc

105

(5.10)

(5.11)

(5.12)

Since eq.(5.4b) must be satisfied, the left-hand-side of eq.(5.12) can be replaced by b; to

yield:
b; = A,WIATA — A, W-'c

which can, in turn, be rewritten as
A= (A, W IAT)-1(b, + A, W-1¢)
Finally, substituting eq.(5.14) into eq.(5.11), we obtain:
x* = WIAT(A,WATY1(b; + A, W lc) - W-lc

which can also be written as:

X' = X1 - Xz

x; = WIAT(A, WA
b, = b] + A1X2

x, = W-lc

(5.13)

(5.14)

(5.15)

(5.16a)
(5.16b)
(5.16¢)

(5.16d)

The matrix operations shown in egs.(5.15) to {5.16d) should not be performed

explicitly because they are slow and lead to ill-conditioning of the problem. Section 5.4

will present quick and efficient techniques to solve this problem numerically.

The solution to the inequality-constrained quadratic optimization problem can

be found in the same way using Kz instead of A; and b, instead of b,. Of course, the
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difficult part of this problem is to first find A, and b;—i.e., to find which of the inequal-
ity constraints are active at the solution, while taking into account that all Lagrange

multipliers must be non-negative.

Finally, it is now shown that the second-order conditions specified in §5.1.1
and 5.1.2 are satisfied in the case of the quadratic objective function specified by eq.(5.9).
Clearly, when the objective function is unconstrained, the Hessian matrix of f(x) is
positive-definite by definition and the second-order optimality condition given in §5.1.1 is
satisfied. In the case of linearly-constrained optimization, the positive-definiteness of the

projected Hessian is demonstrated as follows:

YyITZTH(f(x*))Zy =y ZTWZy (5.17a)
=2TWz (5.17h)

where
z = Zy (5.17¢)

Since the expression given by eq.(5.17b) must be positive for any vector z,
so must the expressicn given by eq.(5.17a) for any vector y. Thercfore, the projected

Hessian, ZTWZ, is positive-definite.

From the above, we can conclude that the strictly convex quadratic program
has a unique global optimumn. To show the geometric significance of this, consider the

strictly convex quadratic programming problem illustrated in Fignure 5.4 and described

as:
min 2} + 2l (5.18a)

T1,%2
subject to azy + z, = a+ 1 (5.18b)

T

x> 0, 220 (5.18¢)

As was done for the linear-programming problem, the slope of the equality
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Figure 5.4 Unique Minimum in Quadratic Programming

constraint varied. Since the constraint can no longer become parallel to the objective
function, the solution can no longer jump discontinuously when the constraints are varied
smoothly. Figure 5.3 shows the variation in the solution to this problem as « is varied.
The sensitivity analysis performed by Boot (1964) shows that the design variable solution
is continuous with continuous changes in the constraint coefficients for a strictly convex

quadratic programming problem with linear constraints.

Of course, when the topology of the kinematic chain changes, changes in matrix
A, are no longer continuous (c.f., §4.3). At those instants, a discontinuous change in the
optimal solution will occur, even with quadratic programming, unless specific measures

are taken to avoid it (c.f., §4.3.1,4.4.5, 6.2.8).

5.3 Duality

In certain cases, the optimization problem, or primal problem, has a corre-

sponding dual problem which is formulated in terms of the Lagrange multipliers of the
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primal problem. The space formed by the Lagrange multipliers is dual to the space of the
design variables. If the dual problem is solved, it can provide the solution to the primal
through simple transformations. For certain forms of the primal problem, it may be more
efficient to find the solution to the dual problem and perform these transformations to
obtain the minimum value of the design variables. Thus, the dual problems to the linear
and quadratic problems of present interest will be reviewed as they play a role in some of

the numerical techniques to be studied in §5.4.

However, before presenting the dual problems, it is useful to show that an
optimization problem with equality and inequality constraints can be transformed into

one with only inequality constraints.

5.3.1 Removing the Equality Constraints

Any solution to the underdetermined system of linear equations given by

€q.(5.4b) can be written as (Lawson and Hanson, 1974)
x=x*+Ny (5.19)

where the first and second terms on the right-hand side are the particular and a homo-
geneous solutions to the system given by eq.(5.4b). In most works, x* is taken to be the

minimum-norm solution of eq.(5.4b)—i.e.,
x* = Atb, (5.20a)

where

At = AT(A,AT)? (5.20b)

Matrix A7 is the right-generzalized inverse, or pscudoinverse, of A; (Rao and
Mitra, 1971), while the columns of matrix N span the nullspace of A, and y is an
arbitrary vector whose dimension depends upon the number of columns in N. As shown

by Angeles et al. (1987), Householder reflections can be used to obtain a matrix N whose
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columns form an orthogonal basis for the nullspace of A;. The elimination of the equality

constraints proceeds by substituting eq.(5.19) into egs.(5.4a) to (5.4c) to obtain

min 9(y) (5.21a)
subject to A ;(x* +Ny) = b, (5.21b)
Ag(x+ + NY) 2 b2 (521C)
where
9(y) = ¢"(x* + Ny) (5.21d)
if f(x) = c¢Tx, while
1
g(y) = T (x* + Ny) + 5(x* + Ny)"W(x* + Ny) (5.21e)

if f(x) = cTx + IxTWx.

Rearranging these equations and recalling that a) since N is an orthogonal
complement of A;, AJN = 0, b) A;x* = by, and c) a constant term in the objective
does not affect the solution to the optimization problem and can therefore be dropped;

the following equivalent minimization problem is obtained:

rrgn h(y) (5.22a)
subject to  A;Ny > (b; — Axt) (5.22b)
where
h(y) = ¢c'Ny (5.22¢)
if f(x) = cx, and
h(y) = (7 +x*TW)Ny + %yTNTWNy (5.22d)

if f(x) = cTx + IxTWx.

The reduced optimization problem given by eqs.(5.22a) to (5.22c) contains no

equality constraints. An important feature of these equations is that they are of reduced
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dimension when compared to eqs.(5.4a) to (5.4c) if N is composed of linearly independent
columns. In this case, matrix N is of dimension n x r, and vector y is of dimension r,
where r is the nullity of A; (and r = n — m, if A, is of full rank). As pointed out by
Cheng and Orin (1989), this reduction in dimensionality helps to speed the numerical

solution of the problem.

5.3.2 Linear Programming

The dual problem corresponding to the primal problem given by eqs.(5.22a)
to (5.22c) is given by Cheng and Orin (1989) as

max (by — Agx*)TA (5.23a)
subject to  NTATA =N7¢c (5.23b)
A>0 (5.23¢)

The primal problem had r unknowns and m,, inequality constraints, while
the dual problem has m,, unknowns and r equality constraints, not including the non-
negativity constraints on A. As will be discussed in more detail in §5.4.1, Cheng and
Orin (1989) used this latter feature to obtain substantially faster solutions to the un-
derdetermined force distribution problem than had previously been possible with linear

programming.
5.3.3 Quadratic Programming

The dual problem corresponding to the primal given by eqs.(5.22a), (5.22b)
and (5.22d) is given by Goldfarb and Idnani (1983) as

m'{zx (b, + A, W1E)TA - %ATKZW‘IXZ'A (5.24a)

subject to A> 0 (5.24b)
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where

§=NT(c+Wxt), W=NTWN (5.24c)
b, —

A, =A;N, b= A x*t (5.24d)

As in the linear-programming case, the primal problem had r unknowns and
m,n inequality constraints. By contrast, however, the dual of the quadratic programming
problem has m;, unknowns and no constraints other than the non-negativity constraints
on the Lagrange multipliers. The method of Goldfarb and Idnani, based on the solution
of this dual problem, provides solutions even more quickly than the linear-programming

approach proposed by Cheng and Orin (1989).

5.4 Methods of Solution

Methods for solving the linear and quadratic programming problems outlined
in §5.2 are numerous, but few of them are amenable to real-time implementation. For
example, the IMSL (1987) library includes routines called DLPRS for linear programming
and QPROG for quadratic programming. Although these were investigated, they were
found to be excessively slow when compared to the in-house-written routines. Further-
more, the QPROG routine, being relatively new in IMSL’s arsenal, is not fully debugged
and failed to find solutions to certain problems where a solution existed, as verified by
the in-house-written routine. The long execution times of the IMSL routines are at least
partly due to extensive error checking and verification of the input data which would not
be justifiable in a real-time application. A comparison of the execution speeds of these
algorithms will be given in the numerical examples of Chapter 6. The following sections

present a summary of the numerical techniques which were implemented in the present

work.
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5.4.1 Linear Programming

The general linear-programming problem of interest in the present work can

be stated as follows:

min cTx (5.25a)
subject to A;x = b, (5.25b)
Azx Z bg (5250)

where x is a vector of design variables of dimension n, ¢ is a weighting vector of dimension
n, A, is an m,, X n matrix of coefficients for the equality constraints, b; is a vector of
dimension m.q, A2 is an m,, X n matrix of coefficients for the inequality constraints and

b, is a vector of dimension m,,. Finally, it is assumed that m., < n and m., + m,, = m.

This problem is most commonly solved using the simplex method (Strang,
1976). A number of variations of this method exist but the one chosen for implementation

was that found in Press et al. (1986). It consists of the following three steps:
1. Introducing ‘slack variables’ to convert the problem into normal form (a form which
has no inequality constraints other than non-negativity constraints),

2. Finding an initial feasible solution, and

3. Stepping from one vertex to another of the feasible region to find the optimal feasible

solution.

There are two relevant points which must be considered in this or any other

implementation of the simplex method:

1. The ‘standard’ linear-programming problem includes non-negativity constraints on
all the design variables. As proposed by Orin and Oh (1981), these can be circum-

vented by splitting all variables on which we do not want the constraint into two
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parts, one positive and the other negative, i.e.,

pe

T, =z} —z; (5.26)

Thus, the problem is reformulated in terms of a new set of variables which is up
to twice as large as the original set. This unfortunately leads to an increase in the

computation time required to find a solution because of the increased dimensionality

of the problem.

2. The number of steps taken in item (3) above determines how long the execution of
the simplex method will take. A rule of thumb is that this number tends to be equal
to m., + m,, (Strang, 1976; Press et al., 1986). Therefore, the larger the dimension
of the dynamics equations we formulate and the more inequality constraints we

include on the solution, the slower the execution will be.

Cheng and Orin (1989) recently proposed a ‘compact-dual’ linear programming
(LP) formulation as a way of overcoming some of these obstacles and obtaining a real-
time optimal solution to the force optimization problem in closed kinematic chains. The

technique preconditions the problem by

1. Removing the equality constraints from the ‘original’ formulation to obtain the
‘compact-primal’ formulation. This technique, detailed in §5.3.1, is commonly used
in optimization circles and was proposed by Kerr and Rotl (1986) in the context
of redundantly-actuated robotic systems. Rather than using the method outlined
in §5.3.1 to find x*, the particular solution to eq.(5.25b) and N, the matrix whose
columns span the nullspace of A;, Cheng and Orin (1989) partitioned the design
variables into ‘free’ and ‘basic’ variables and used Gaussian elimination to obtain x*
and N. This technique is not recommended, as it treats the variables unequally and
tends to introduce ill-conditioning into the problem. Rather, Householder reflections
should be used to efficiently find the particular solution given by eqs.(5.20a) and
€gs.(5.20b) and an orthogonal basis for the nullspace of A,, as shown by Angeles et

i al. (1987).
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2. Formulating the dual problem which corresponds to the primal problem given by
egs.(5.22a) to (5.22c) to obtain the ‘compact-dual’ formulation as given by cqs.(5.23a)
to (5.23c). The significant features of these latter equations is that a) the problem
is already in normal form, thereby eliminating the need for item (1) of the simplex
algorithm, b) the equations include non-negativity constraints even though the orig-
inal problem did not, thereby circumventing the problem of having to double the
dimension of the vector of design variables, and c¢) assuming the primal problem

had more constraints than variables, the number of constraints is reduced.

Using these features of the ‘compact-dual’ problem to good advantage, Cheng
and Orin (1989) showed that the linear-programming problem could be solved in real-
time. However, this ingenious formulation does not overcome the problem of discontinuous

solutions, as will be evident in the numerical examples shown in Chapter 6.

5.4.2 Quadratic Programming

The general linear-quadratic programming problem of present interest can be

stated as:
min c’x + %xTWx (5.27a)
subject to Ax = b, (5.27b)
Ax > b, (5.27¢)

where W is an n x n weighting matrix and the remaining vectors and matrices are as
defined in §5.4.1. In order to solve this problem, a number of methods were investigated.
Some of these methods are intended to solve the quadratic optimization problem in the
absence of inequality constraints and are presented in §5.4.2.1 and compared in §5.4.2.2.
The method suggested by Goldfarb and Idnani (1983) for quadratic optimization in the
presence of inequality constraints only is then presented in §5.4.2.3. These methods are
then combined in §5.4.2.4 to obtain a technique which will solve the quadratic optimization

problem with linear equality and inequality constraints.
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5.4.2.1 Solving the Equality-Constrained Problem

When the inequality constraints given by eq.(5.27c) are absent, the problem
is considerably easier to solve. From the discussion of inequality constraints given in
§4.4, it should be apparent that an important case in which inequality constraints are
absent is that of cooperating manipulators where there are no constraints on the con-
tact wrench and we are not interested in imposing limits on the actuator torques. For
this simplified problem, solutions can be obtained in substantially less time than when
inequality constraints are present. As well, certain techniques are available to efficiently
solve this problem which are not practical when inequality constraints are present. In the
present work, the following techniques were investigated to solve the equality-constrained

linear-quadratic optimization problem:

1. Closed-form solution using a) explicit inversion, or b) orthogonal decomposition,
2. Explicit Lagrange multipliers,

3. Direct substitution.

The closed-form solution is conceptually the simplest of the techniques con-
sidered. It entails finding the solution to eqs.(5.27a) and (5.27b) using eq.(5.15). When
c¢ = 0, this is nothing but the weighted pseudoinverse solution to eq.(5.27b). When
c =0 and W = 1, it corresponds to the unweighted pseudoinverse solution. Kumar
and Waldron (1988) have shown that, in the absence of contact moments, the unweighted
pseudoinverse solution corresponds to one which has zero ‘interaction force’ components,
i.e., a solution which has no force components along the line joining any two contact
points. Thus, the contact force field is a helicoidal vector field which is homologous to

the velocity field for points in a single rigid body.

The W-! term in eq.(5.15) often does not need to be calculated in real-time
since it usually remains constant. This is not the case when the method of calculating

the dynamics equations given in §4.2.3 is used and it is desired to minimize the actuator
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wrenches. It will be shown in §6.2.4 that, when this is the case, the weighting matrix is

modified by the time-varying Jacobian matrices of the individual robotic devices.

There exist many ways in which the solution given by eq.(5.15) can be found.
One of these is to explicitly perform the matrix multiplications and inversions shown
in that equation. This has two disadvantages: it is computationally slow and prone
to ill-conditioning (Golub and Van Loan, 1983). The computational complexity and
stability of the other inversion in eq.(5.15) can be greatly improved by using an orthogonal
decomposition with Householder transformations (Lawson and Hanson, 1974). A further
advantage of the orthogonal decomposition technique is that it can be extended to include
inequality constraints using the method of Goldfarb and Idnani (1983). This will be
treated in §5.4.2.3 and 5.4.2.4.

As shown by eq.(5.16a), the solution x* is composed of two parts, namely, x,
and x,. It is noted that x,, as given by eq.(5.16b), is the solution to A;x = b’ which

minimizes XT Wx. The procedure starts by finding this solution:

1. Use Cholesky decomposition (Golub and Van Loan, 1983) to obtain a lower-triangular
matrix L where W = LL”.

2. Use a sequence of n Householder re!lections to bring L='AT into upper-triangular

form, i.e.,

L'AT = Q [}0‘] , (5.28)

where R is a m., X m,, upper-triangular matrix, 0 is a zero matrix of dimension

(n-mgy) x mey and Q is the orthogonal n x n product of n Householder reflections.

3. Now let

y = [?J = Q"L7x (5.29)

where y, and y; are m.q- and (n — m,,)-dimensional vectors, respectively.

4. A;x = b’ can be rewritten as:

ALTQQTL™x = b’ (5.30)
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which, after substituting in eqs.(5.28) and (5.29), can be rewritten as

[RT oT][y“] =1 (5.31)
Yo
5. The minimnum-norm solution of the system given by eq.(5.31) is:
- (3], - 153 z
" vsl, 0 (5.32)

This minimizes yTy = xTLQQTLTx = x"Wx.

6. Since the solution y; is unique, eq.(5.29) can be used to obtain the corresponding

x; which minimizes xTWx as
x; =L TQy, (5.33)

7. Now that x; has been found, we complete the solution by finding x; as
x; =L TL ¢ (5.34)

and then finding x* as given by eq.(5.16a).

A second method to find the solution of the equality-constrained quadratic op-
timization problem involves the explicit use of Lagrange multipliers (Wilde and Beightler,
1967). These are added as variables in the optimization problem to obtain a determinate

system of equations as follows:

1. Write the Lagrangian of the equality-constrained optimization problem given by
egs.(5.27a) and (5.27b) as
1

2xTWx - AT(A;x - by) (5.35)

L=c"x+

2. Set the derivatives of the Lagrangian with respect to the design variables and with

respect to the Lagrange multipliers to zero, i.e.,

oL oL
-a; - =0, ‘a'j\' A =0 (5'36)

thereby enforcing the stationarity of the Lagrangian at the solution.

3. Equation (5.36) can be rewritten as a determinate system of n+m,, linear equations

in n + m,, unknowns. This system is then solved for x* a1d )",
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Whereas the closed-form solution technique deals with matrices of order m,,
or n, the use of explicit Lagrange multipliers transforms the problem into one of order
(meg+n). As will be shown in the next section, this leads to substantially longer execution
times than for the closed-form solution. Therefore, although this method can be extended
to handle inequality constraints through the use of slack variables (Wilde and Beightlecr,
1967), it was not pursued further.

The last technique is based on symbolic pre-processing of eqs.(5.27a) and
(5.27b) in order to reduce the real-time computational load. In some sense, this approach
is similar to that proposed by Klein et al. (1983), who solved eq.(5.15) symbolically, with
¢ = 0 and W = 1, off-line and stored the solution as a compact algebraic equation to
be solved in real-time. Although their approach was possible in the simplified case they
investigated, it is not feasible for a more general system—i.e, with ¢ # 0, W # 1 or
coupled vertical and horizontal force/moment equations. More specifically, finding the
inverse in eq.(5.15) symbolically is impossible except for the simplest of systems, even if
a powerful symbolic manipulation package such as MACSYMA (1983) is used. However,
direct substitution (Beveridge and Schechter, 1970) can be used to good advantage to

reduce the amount of numerical computations required in real-time.

Direct substitution entails performing some of the optimization off-line sym-
bolically and storing the results in the form of simple algebraic relations. This method is

applicable to more complex systems than Klein et al.’s, but also has certain disadvantages.

The following steps are performed off-line with MACSYMA (1983):

la) Partition the system of equation (5.27b) into
xa.
(A A [%] =b, (5.37)
Xp
such that A;x, = b; — AyX, is a square system (i.c., A is My X Meq),

1b) Symbolically perform x, = A;!(b; ~ Ayx,) thus yiclding x,(x5),
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1c) Substitute x,(xs) into the objective function, differentiate the objective function
symbolically with respect to x;, and equate the result to 0. Since the objective
function is quadratic, this will yield the coefficients of an (n — m.,) x (n — me,)

system of linear equations in X;.

The above need only be performed once for each possible topology of the

system and the following steps must be implemented numerically in real-time:

2a) Calculate the coefficients from the algebraic equations found in step (1c),
2b) Solve the (n — m¢y) X% (n — mg,) linear system for x,,

2¢) Use the relations found in step (1b) to obtain x,.

The principal disadvantage of this method is that by partitioning x into x, and
X;, it treats the various components unequally and can lead to ill-conditioning. Thus A,
can become rank-deficient even when A, is not. Physical considerations must therefore
be taken into account when choosing the partition of x. Another precautionary measure
is to store more than one solution, with each solution solving a different partition, and
use the best-conditioned one. Finally, it is noted that the direct substitution method is
unable to handle inequality constraints. In situations where these are unimportant, this

method is recommended as long as it is applied with care.

5.4.2.2 An Equality-Constrained Example

The various techniques outlined in the preceding section were used to solve the
underdetermined force distribution in the three-legged planar walking machine shown in
Figure 2.9(a). The machine was assumed to be static and its equations of motion were
formulated using the method proposed in §4.2.2. This resulted in a system of 9 equations

in 12 unknowns—i.e., the system had three redundant actuators.

The inequality constraints which should normally be satisfied at the foot/ground
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CPU Tine per Iteration CPU Time per Iteration
Method with Diagonal Weighing | with Gencral Positive-Definite
(ms)® Weighing (ms)®

e e,

——

Closed Form Using
Explicit Inversion 46.6 58.6

Closed Form Using
Orthogonal Decomposition 15.3 29.2

|
| Explicit Lagrange I
Multipliers 64.6 65.9

Direct Substitution
Using MACSYMA 2.5 7.5

Table 5.1 CPU Times for an Equality-Constrained Problem

contact were ignored, thereby resulting in an equality-constrained problem. The problem

was solved with ¢ = 0 and two cases for W: one in which W was diagonal, and the other

in which W was a more general positive-definite matrix.

Table 5.1, shows the execution times required for one solution of the under-
determined force distribution problem. The explicit use of Lagrange multipliers is sub-
stantially slower than the other methods because it results in a system of order n 4 me,,
and is therefore not recommendeu for real-time applications. The closed-form solution
with explicit inversion deals with matrices of order n and m.4, and is therefore faster than
the use of Lagrange multipliers. Orthogonal decomposition allowed a two- to three-fold
increase in computation speed over explicit inversion. Finally, direct substitution, which
deals in real-time only with matrices of order n — m.,, was between 4 and 26 times faster
than the other techniques. For the present example the partition chosen causes A, to

become rank-deficient, even though A, is not, when the ground contact poinis of the first

4Using double-precision on a Sun 3/60 Workstation with 68881 floating-point co-processor
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and last legs are coincident—an unlikely occurrence. Thus, this technique is worthy of

further investigation for systems where inequality constraints are unimportant.

5.4.2.3 Solving the Inequality-Constrained Problem

A number of methods were investigated in order to solve the problem with
inequality constraints but the one that proved most promising was that proposed by
Goldfarb and Idnani (1983). They and Powell (1983, 1985) have demonstrated the speed
and numerical stability of this algorithm on some benchmark optimization problems,
and compared its performance to that of existing techniques. This method can be seen
as an extension of the orthogonal-decomposition algorithm introduced in the previous
section. In fact, as will be seen in the next section, the latter algorithm can be used as
the initialization step when both equality and inequality constraints are considered. The

method also has the added advantage that no initial guess is required to start the search

for a solution.

The method of Goldfarb and Idnani (1983) deals with the solution of the
primal problem given by eq.(5.272) subject to the inequality constraints of eq.(5.27¢). In
accordance with eqs.(5.24a) and (5.24b), the primal has a corresponding dual problem

which is given by
mf.x (b + A2W‘1c)TA - -;'ATAQW—IAZ‘A (5.38a)

subject to A>0 (5.38b)

An algorithm which steps through the n-dimensional space of x is called a
primal method, while one which steps through the ¢g-dimensional space of A is callea
a dual method. The method of Goldfarb and Idnani is a dual active set method. At
each step, it minimizes f(x) given by eq.(5.27a) subject to an active set, A, which is a
subset of ¢ active constraints in eq.(5.27c). The objective is to find the x which minimizes

f(x), while satisfying eq.(5.27c). The algorithm’s stability is enhanced by dealing with
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inherently stable decompositions of the matrices involved: the Cholesky decomposition of

W (W = LLT where L is lower-triangular), and the QR decomposition of L-1AT, i..,
LAT = Q [f:] (5.39)

where A is comprised of the rows of A, corresponding to the active constraints. Since
matrix Q always appears in conjunction with L7 in the algorithm, J7 is stored instead of
Q, where JT = QTL-!. The speed of the algorithm is enhanced by making use of matrix
updating techniques to modify the above QR decomposition as A changes when a con-
straint is added or dropped, rather than recalculating it ab initio. The method presented
by Goldfarb and Idnani (1983) for quadratic optimization with inequality constraints is
made up of the following steps (minor changes have been included to speed execution or

rectify omissions in the original reference):

0a) Find L and L~!, where W = LL7 and L is lower-triangular—Cholesky decomposi-

tion of the weighting matrix.

0b) Set x = —L~TL~!c (the unconstrained minimum); A = @ (null active sct); A =[]
(no Lagrange multipliers); ¢ = 0 (no active inequalities); J7 = L~!. Note that,

since equality constraints are not considered, m., = 0, A; = [].

1) Evalnate s; = aTx —b,, the residual for all inactive constraints, where a7 is the «-th
row of A, and b, is the ¢-th component of b,. If all residuals are > 0, the optimum
has been found. Otherwise, choose the ‘most violated constraint’, p, to be added to

the active set. Set n* = a, (the normal of the constraint to be added); A" = [3]

2) If ¢ = 0 (no active constraints), set A = [ ] (no Lagrange multipliers).
3) Computed = J'nt; z = J,d, (the step direction in primal space); If ¢ > 0, compute
r = R71d,; (the negative of the step direction in dual space); Where d = [g' ],
2

T
JT = [gé], d, and d; are ¢- and (n — ¢)-dimensional vectors respectively, while J7

and JT are ¢ x n and (n — ¢) x n matrices, respectively.
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4) Set 0y = L (0, is the maximum step length in dual space without violating dual

feasibility, and L is the largest number which can be represented by the computer).

5) Set

oy = min
1=l,...9

(100} 2w

subject to r, >0

6) If ||z|| = O, set o, = L; Otherwise, set 03 = —s,(x)/z"n* (o is the step length in

primal space necessary to satisfy constraint p).
7) o = min(oy,02) (the step to be taken).
8) If 0 = L, the problem is not feasible, STOP.

9) If o, = L, take a step in dual space only: Set At = At + o [—lr]; Drop element
I from A*; Update JT and R (see §5.4.2.5); Drop constraint ! from A; ¢ = ¢ — 1;

Evaluate the residual, s;, for each inactive constraint; Go to step 2.

10) If ¢ = o3, take a full step in both primal and dual spaces to satisfy constraint p:
Setx=x+4+0z; At =2t 4o [-lr]; A = At; Update 37 and R (see §5.4.2.5); Add
constraint p to A; ¢ = ¢+ 1; Go to Step 1.

11) If ¢ = oy, take a partial step in both primal and dual spaces to a point on the
boundary of the dual feasibility region: Set x = x + 0z; At = At + o [—lr]; Drop
element [ from A*; Update JT and R (see §5.4.2.5); Drop constraint ! from A;

q = q — 1; Evaluate the residual, s,, for each inactive constraint; Go to step 2.

Since Goldfarb and Idnani (1983) provide a detailed description of their tech-
nique, the remainder of this discussion will concentrate on highlighting the changes made

in the present implementation, namely, its modification to include equality constraints.
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5.4.2.4 Combining Equality and Inequality Constraints

The combined presence of equality and inequality constraints is now addressed
by combining the techniques presented in the preceding sections. Equality constraints
were not considered in the optimization technique presented by Goldfarb and Idnani
(1983); therefore, their method had to be extended to include these efficiently. One
possible solution would have been to write the equivalent minimization problem with
inequality constraints only as shown in §5.3.1. Instead, it was found mcre efficient to

alter the algorithm’s initialization procedure to include the equality constraints.

Goldfab and Idnani (1983) initialize the algorithm at the unconstrained mini-
mum because the equality constraints of eq.(5.27b) are not considered. In order to modify
the method to include equality constraints, Powell (1983) proposed adding them one at
a time. Although this approach works, it was found computationally intensive. The
conceptual problem lies in treating the equality similarly to the inequality constraints.
Since the equalities are known, by definition, to be active at the solution, they should
be included from the outset, i.e., they should be included directly at initialization rather

than iteratively in the body of the algorithm.

The approach taken here is to initialize the algorithm at the equality-constrained
minimum-—i.e., the solution of eqs.(5.27a) and (5.27b). It was previously shown that this
minimum can be found from eqs.(5.16a) to (5.16d) using the technique outlined in §5.4.2.1.
This technique proved to be compatible with the original algorithm for subsequent pro-

cessing of the inequality constraints.

The search is then allowed to proceed in a space of reduced dimensions n—m,,.
Once the equalities are part of the active set, they should not be dropped. This constrains
the search for a solution in the (n — m,,)-dimensional subspace rather than letting it

proceed in the full n-dimensional space—an inherently more efficient procedure.

In order to implement the above technique, changes were made to Steps (0)



i

CHAPTER 5. OPTIMIZATION TECHNIQUES 125

and (5) of the algorithm presented in §5.4.2.3. The modifications to Step (0) cause the
equality constraints to be included directly at initialization, while the modification to

Step (5) prevents removal of the equality constraints in the body of the algorithm.

0a) As before.

0b) Evaluate x; = L-TL-'cand b’'=b; + A;x;.

0c) Using Householder reflections, find Q and R to satisfy eq.(5.28).
0d) Find y, using eq.(5.32).

0e) Find x, using eq.(5.33).

0f) Set x = x; — X2 (the equality-constrained minimum); Evaluate J7 = QTL~?; Set
q = mey; Evaluate ||a,||,i = me, +1,...,m for use in evaluating the ‘most violated

constraint’ in Step (1); The contents of A and A need not be set for the equality

constraints.

1) to 4) As before.

5) Set

o= min

J=megtl,g r, T

{Af(x)} _ M)
subject to r, >0

6) to 11) As before.

The measure for choosing which of the violated constraints to add at Step (1)
is not clearly specified by Goldfarb and Idnani (1983). They suggest choosing the ‘most
violated constraint’ without specifying how to measure constraint violation—presumably

using the value of the residual:

min alx - b, (5.40a)
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Powell (1983) suggests using the value of the residual normalized by the norm

of a;:
X alx —b,
min

i=MQq+lv'"'"‘ ”a'“

(5.40b)

Both approaches were tried and Powell’s was found to be more efficient and
therefore adopted. Using this technique, it was found that inequality constraints were
rarely added to the active set if they were not also in the final active set. Added con-
straints therefore rarely had to be dropped, and the time to find a solution was increased
only proportionally to the number of inequalities in the final active set. This is advan-
tageous in our application as it implies that the friction cene can be approximated by a
pyramid with a large number of sides without affecting the speed of the solution, since
only one of these constraints can be active at a given contact point. This is in contrast to
linear programming, where the addition of further inequality constraints leads to slower

execution,.

The quadratic-programming algorithm described above was implemented as a
Fortran subroutine whose listing is given in Appendix B. This routine was used to solve

a number of numerical examples which will be shown in Chapters 6 and 7.

5.4.2.5 Updating J” and R

The technique used to update J7 and R outlined by Goldfarb and Idnani
(1983) was not modified in principle. However, instead of Givens rotations, Houscholder

reflections were used to perform all orthogonalizations, due to their superior computa-

tional efficiency (Golub and Van Loan, 1983).

When adding a constraint, the updated matrices, denoted here by JT+ and

R, are found as follows:

R d JT
+= 1 T+= 1 0.41
R =1o i||d2||]’ = i (5.41)
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where d, d;, JT and J7 are defined in Step (3) of §5.4.2.3, and Q' is the (n —¢) x (n —¢)

product of (n — ¢) Householder reflections, which satisfies
Q'dg = :f:”dg”ﬁl (5.42)

where e, is the unit vectore; =[1 0 0 ...]7 of dimension (n — g). In egs.(5.41) and

(5.42), the positive sign is chosen when the first component of d; is negative, otherwise

the negative sign is used.

When removing the [-th constraint, the updated matrices, denoted here by

JT- and R-, are found as follows. Remove the I-th column from R and partition it as:

R, = [}(‘)‘ ,i] (5.43)

where R, is an (I — 1) x (I — 1) upper-triangular matrix, S is an (I — 1) x (¢ — !) matrix
and T is a (¢ — [ + 1) x (¢ — I) upper-Hessenberg matrix (Strang, 1976). Find the
(g—1+41) x (¢ =1+ 1) matrix product of Householder reflections Q such that

QT = [%2] (5.44)
where R; is (¢ — l) x (¢ — !) upper-triangular. Finally, the updated matrices are
I
R™ = %‘ If ] , J7- = | QI (5.45)
2 Jg'

where JT and J%, are matrices of dimension (I - 1) x n and (¢ — { + 1) x n, respectively,
which make up a row partition of JT. Note that, when the constraint to be dropped is
the last one added (I = ¢), R~ is obtained by simply dropping the last row and column
of R, and JT is unchanged. As suggested by Golub and Van Loan (1983) for economy
of operations, the Householder matrices Q, Q' and a are never explicitly calculated, but

rather stored in a factored form and applied as needed.

5.4.2.6 Projected Gradient Methods

Klein and Kittivatcharapong (1990) recently suggested that gradient-projection

algorithms could be used to solve the force optimization problem in the context of walk-
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ing machines. They applied Rosen’s (1960) gradient projection method to solve two
formulations of the force optimization problem—an ‘interior formulation’ and an ‘exterior

formulation’—and obtained quasi-real-time solutions for a six-legged walking machine.

Although the gradient projection method can handle a general objective func-
tion, Klein and Kittivatcharapong (1990) chose to use a linear objective function, thereby
resulting in solution discontinuity problems. In order to resolve this, the ‘interior formula-
tion’ stops its search for a solution at a sub-optimal point in the space of design variables,
thereby avoiding jumping from one vertex of the constraint polygon to another. By con-
trast, the ‘exterior formulation’ continues to a true optimum but includes a term in the
solution which tends to smooth the solution. Given that the desired objective function is
linear, both methods are sub-optimal. As will be shown by the numerical results in the
next chapter, solution discontinuities could be avoided altogether by choosing a quadratic

objective function.

One inherent disadvantage of gradient search techniques is that they require a
good initial guess in order to converge quickly to a solution. The dependence of the method
on a good initial guess is not problematic when the solution is continuous in time because
the solution at the previous instant can be used as a guess for that at the present instant
(a strategy used by Klein and Kittivatcharapong). However, as previously mentioned,
redundantly-actuated robotic systems tend to suffer from discontinuous changes in their
topology. Asshown in §4.3, this leads to discontinuous changes in the constraint matrix A,
~hich, in turn, causes discontinuous changes in the solution to the optimization problem.
Therefore, the solution at the previous time may not be a good initial guess for the solution
when changes in topology occur. The example used by Klein and Kittivatcharapong

(1990) does not consider this situation.
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Chapter 6

Objective Functions

In the preceding chapter, the particular cases of linear and quadratic programming
were investigated in considerable detail, since they allow a computationally more eco-
nomical solution to the problem at hand than more general objective functions. This
chapter will study some of the objective functions which have been suggested and which
the present work proposes to use. Section 6.1 will review the linear objective functions put
forward by Orin and Oh (1981), Kerr and Roth (1986) and Cheng and Orin (1989). The
drawbacks of linear programming outlined in the previous chapter will become apparent
when the numerical examples are presented. Section 6.2 will then review some quadratic
objective functions which have been proposed—most notably those of Klein et al. (1983),
Nakamura et al. (1987), Nakamura (1988a, 1988b), Kopf (1988a , 1988b) and Pfeiffer
et al. (1990). Some new objective functions will also be presented and the solutions

produced by quadratic optimization will be shown to be superior to those produced by

linear programming.

6.1 Linear Objective Functions

When considering optimization with linear inequality constraints, linear pro-
gramming comes naturally to mind. Thus, it is not surprising that most of the previous

works found dealing with optimization of underdeterminate systems in the presence of
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inequality constraints adopted a linear-programming approach (Orin and Oh, 1981; Kerr
and Roth, 1986; Cheng and Orin, 1989; Cheng, 1989). In the preceding chapter, we found

that the general linear-programming problem could be stated as

min c’x (6.1a)
subject to Aix = b, (6.1b)
Ax > b, (6.1¢)

where x is an n-dimensional vector of design variables and ¢ is a vector of weights of

dimension n.

It was also shown that there are certain disadvantages inherent to the use of
linear objective functions. Among these, the question of whether this problem can be
solved in real-time has been put to rest by the ‘compact-dual’ formulation of Cheng and
Orin (1989). However, even this method has not resolved concerns regarding continuity
of the solution. The work of Klein and Kittivatcharapong (1990) was primarily concerned
with developing formulations with better continuity of the solution, but persisted in min-
imizing a linear objective function, and hence, had to settle for sub-optimal solutions to

avoid discontinuities.
6.1.1 Orin and Oh’s Objective Function

The earliest proposed solution to the inverse dynamics of redundantly actuated
systems seems to be that found in the work of Orin at Ohio State University in the context
of walking machines (McGhee and Orin, 1976; Orin and Ok, 1981). In those works, linear-
programming was used as an off-line design tool to obtain an optimum solution. This
formulation was quite general, as it included a consideration of inequality constraints
on a number of the design variables. However, the inefficiency of the ‘original’ linear-
programming problem, coupled with the slowness of computers of that time resulted in

this technique being dismissed out-of-hand by most authors interested in real-time control.
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The objective function proposed by Orin and Oh minimizes a weighted sum
of the walking machine’s energy consumption and the maximum vertical load on its legs.
When there are p legs in ground contact, this objective function can be written as

»

f(x) = pfumaz + §(c.- +6,d,)"r, (6.2)
where p is the weight placed on minimizing the maximum normal force relative to that
placed on reducing the energy consumption. Vectorsc, and d, represent the characteristics
of the drive motors and transmission system, as detailed by McGhee and Orin (1976),
while @, is a diagonal matrix whose entries are the joint rates in the i-th leg. Finally,
SNmaz is the maximum normal force on any of the legs. This last variable is appended
to the vector of design variables and the following constraints are added to the original

system of inequality constraints:
th"‘fN.mar SO, i=17"'7p (63)

thereby ensuring that the normal forces ci. all the legs, which are constrained to be

positive, will not exceed fn maz-

This objective function represents one of the more detailed approaches which
has been suggested to date. Its drawback, however, is that the second term in eq.(6.2)—
the expression for the energy consumption of the system—is specific to the series-wound
motors and non-backdrivable worm-gear drive system used in the OSU Hexapod. Al
though this objective function applies well to that type of system, many present-day
robotic systems tend to be driven by dc servomotors through backdrivable reduc:ion
gearing. It will be shown in §6.2.7.2 that the power consumption of the latter type of sys-
tem is better minimized using a quadratic objective function. Thus, this linear objective

function was not implemented in the present work.

It should be noted, however, that the suggestion of introducing fy m.- as an

additional design variable to be minimized is significant, and can also be performed using

a quadratic objective function.
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6.1.2 Kerr and Roth’s Objective Function

While considering the force distribution problem in the context of mechanical
hands, Kerr and Roth (1986) proposed a more conservative linear programming approach
which maximized the ‘distance’ from the solution to the inequality constraints. They first
reduced the problem to one with only inequality constraints, as shown in §5.3.1, resulting
in a minimization problem with y as the vector of design variable (c.f., eqs.(5.22a) to

(5.22c)). The inequality constraints of this problem are

AgNy - (b2 - A2x+) __>_ 0 (6.4)

If we define the residual of an inequality constraint to be
s, =aly — b, (6.5)

where &7 is the :-th row of A;N and b, is the i-th component of (b, — Ayxt), then
the method of Kerr and Roth maximizes the minimum residual of the inequality con-
straints. This is done by appending a new element, d, to the veccor of design variables

and modifying the inequality constraints of eq.(6.4) as follows:
AgNy — (b2 - A2X+) __>_ d (66)
where d is a vector of dimension n — m,, whose elements are all d.

As explained in greater detail by Kerr and Roth (1986), maximizing d will
result in a solution which is ‘as far away as possible’ from all the constraints. The only
item overlooked by this technique is that the constraints must be normalized before any
meaningful ‘distance’ can be formulated. Thus Kerr and Roth’s formulation suffers the
drawback that the solution can be changed simply by multiplying one of the inequality
constraints by a scaling factor. This problem is easily rectified by redefining the residual

as

~

AT Al

(6.7)
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le

Figure 6.1 Kerr and Roth’s Example

and rewriting eq.(6.6) as

(AQN)}’ - (b2 - A2X+) _>_ H (68)

where the i-th row of (A;N) is given by a7/||a;||, the i-th element of (b; — Azx¥) is

b,/]|a,|| and d is a vector of dimension n — m,, whose elements are all 4.

The numerical example chosen to illustrate the optimization technique pre-
sented above is the one used by Kerr and Roth (1986), as shown in Figure 6.1. The
grasped body is free to move in three dimensions, but the fingers are constrained to move
in the plane of the paper. The fingers are considered to make ‘soft finger contact’ with
the body, so that three forces and one torque about the surface normal can be generated,

and the vector of contact wrenches can be written as

X={for fa fo fr1 feo Fo fn2 fr)” (6.9)

where fry and fr; are the torques exerted by the fingertips on the object. The force/moment
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balance equations are written in the foria of eq.(6.1b) with

0 1 00 1 0 0 0] F 0]
0 010 0 0 -1 0 -1
1 000 0 1 0 0 —1
Ai=| 1000 01 0 ol B =] (6.10)
0 001 0 € 0 -1 0
0 1 00 -1 0 0 O] 0 |

The inequality constraints originate from limits on tangential and torsional
friction forces which can be generated at the contacts, as well as limits on the actuator

torques which can be produced. These are written in the form of eq.(6.1¢) with

- .-

0o 0 1 0 0 0 0 0 0]
6 0 0 0 0 0 1 0 0
-1 0 x 0 0 0 0 0 0

0 —i g 0 0 0 0 0 0

0 0 m -1 0 0 0 0 0

i 0 x4 0 0 0 0 0 0

0 1 4 0 0 0 0 0 0

0 0 @ 1 0 0 0 0 0

0 0 0 0 -1 0 u 0 0

0 0 0 0 0 -1 0 0

Az=10 9 0 0 0 o ;2 il P2 g (6-11a)

0 0 0 0 1 06 4 0 0

0 0 0 0 0 1 4u 0 0

0 0 0 0 0 0 g I 0

0 0 -1 0 0 0 0 0 T
0 0 0 0 0 -1 1 0 o
5 0 0 0 0 -1 0 0 .
0 0 1L 0 0 0 0 0 T
0o 0 0 0 0 1 -1 0 T
(0 0 0 0 0 1 0 O] N

where u = 0.25, g, = 0.5 and 7, = 5.0 N-m.

Since A; is of dimension 6 x 8 and of full rank, its nullity is (n — m,,) = 2,
and vector y is of dimension 2. Kerr and Roth’s linear formulation, which maximizes the
minimum component in the residual vector (A;Ny —[b, — A;x*]), was implemented. The
solution to this linear-programming problem happens to touch two vertices of the feasible

set and the solution is therefore not unique. Any convex combination of the following two
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Figure 8.2 The Solutions to Kerr and Roth’s Example in y-space

vectors
x*=[-05 0 32 13 0 —05 42 1.3 (6.12a)

x*=[-05 0 32 -1.3 0 -05 42 -13)7 (6.12b)

which optimize the objective function, yield the same optimum value of the objective

function.

These solutions are represented in y-space by the dotted line passing through
point A in Figure 6.2. The relevant inequality constraints which bound the feasible y-space
are shown, where the infeasible side of each constraint is cross-hatched. The feasible region
is shown by the shaded area. As should be apparent from this figure, the solution found
does not truly maximize the minimum ‘distance’ to the constraints since it is closer than
it should be to the inequality constraint on the right side of the figure. If the constraints
are normalized as suggested above, any point on the dotted line passing through point B
optimizes the objective function. This solution does maximize the minimum distance to

the constraints, but, unfortunately, is neither unique.
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Algorithm Kerr & Roth | Quadratic
LP Programming
IMSL Routine CPU Time (ms)* 586.7 55.0
In-House Routine CPU Time (ms)® 38.0 19.5
Number of Unknowns 5 8
Number of Equality Constraints 0 6
Number of Inequality Constraints 20 20

Table 6.1 CPU Times for Kerr and Roth’s Example

Quadratic programming was then used to minimize an objective function of
the form f(x) = 1xTx. As will be discussed later in this chapter, this objective function
yields the minimum contribution of the nullspace of A;, and hence, minimizes the ‘internal
forces’. Since vecior x contains both forces and torques, it is important to notice that this
optimization will weigh 1 N-m of torque and 1 N of force equally. The unique solution to

this problem is then found to be

x*=[-05 0 20 0 0 0.5 3.0 0] (6.13)

Since Kerr and Roth’s (1986) formulation stays ‘as far away’ as possible from
the boundaries of the inequality constraints, it yields a more conservative solution with
larger ‘internal force’. The CPU times required to obtain a solution for lincar and
quadratic programming using both IMSL routines and the routines developed in the

present work are shown in Table 6.1.

Two conclusions can be drawn from this table:

1. Quadratic programming is appreciably faster than lincar programming for this

example?;

2. The routines developed in the present work are substantially more efficient than

¢Using double-precision on a Sun 3/80 Workstation with 68881 floating-point co-processor
1n.b., the formulation used by Kerr and Roth corresponds to the ‘compact-primal’ formulation of

Cheng and Orin (1989)
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those provided by IMSL.

Finally, it is emphasized that quadratic programming delivers a unique solu-

tion, whereas linear-programming does not.
6.1.3 Cheng and Orin’s Objective Functions

The linear-programming formulation developed by Cheng and Orin (1989) was
described in §5.4.1. In their terminology, the original linear-programming formulation
is referred to as the ‘original LP’, the problem obtained after the equality constraints
are removed is called the ‘compact-primal LP’ and finally, the problem obtained after

reformulation in the dual space is called the ‘compact-dual LP’.

Cheng and Orin (1989) and Cheng (1989) proposed a number of objective
functions which could be minimized in a task involving a hand grasping an object:
1. ‘Minimum effort’—minimize the sum of the normal forces applied to the grasped

object;

2. ‘Load balance’—minimize the maximum normal force exerted on the object (i.e., as

discussed in §6.1.1); possibly combined with item 1;

3. ‘Safety margin on friction constraints’—minimize the distance to the sides of the
friction pyramid using the same technique as proposed by Kerr and Roth (1986).
Note that this method suffers from the same drawback of non-invariance noted in

§6.1.2 and should be modified accordingly; and

4. “Temporal continuity’—in an effort to circumvent the discontinuities obtained by
Cheng (1989), the sign of the lateral contact forces is constrained to remain the
same throughout the task while, at the same time, minimizing the ‘load balance’

objective function.

There are several problems inherent in the approach proposed in item 4: a) as
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Figure 6.3 The Ohio State DIGITS System

acknowledged by Cheng (1989), it is arbitrary and may not work in a more gencral task,
b) constraining the sign of the lateral force only works when optimizing the ‘load balance’
objective function, i.e., it does not work when minimizing the sum of the contact forces,
thereby limiting the generality of the objective function which can be used with this
formulation, and c) even in the case where this approach does work, closer examination
of the results obtained by Cheng (1989) shows that the fingers are fighting against each
other in their efforts to rotate the ball. In fact, the technique proposed in §4.4.5 might
well be a better remedy to the problem of discontinuous solutions obtained with linear
programming. This was not investigated in the present work since quadratic programming
was found to be superior to linear programming in all respects. Thus, it was felt preferable

to focus on a technique which is inherently continuous rather than try to find ‘patches’

for one which is not.

Cheng and Orin (1989) and Cheng (1989) evaluated their proposed techniques

on a simulation of the Ohio State DIGITS system shown in Figure 6.3 using t wo- and four-
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fingered grasps. The two-fingered grasp is shown diagrammatically in Figure 6.4. Hard
finger point contact is assumed so that there are three unknown forces at each contact
point. The prescribed task is one where a ball of mass 0.91 kg and 51 mm diameter is
rotated sinusoidally about its vertical axis with an amplitude of 30° and a frequency of
2 Hz. Further details of the apparatus and the task can be found in Cheng and Orin
(1989) and Cheng (1989). The linear objective function to be minimized is the sum of the
normal contact forces on the object (called ‘minimum effort’ by Cheng and Orin). Friction
constraints and maximum actuator torque constraints, neglecting the inertial torques 7/,
are imposed. Since the object cannot be rotated about an axis passing through the two
contact points, the problem can be formulated with five scalar equations of motion and six
unknown contact forces, yielding an underdeterminacy of one. Throughout the task, one
of the friction constraints is active (i.e., satisfied as an equality), thereby consuming the
redundancy in the problem, and making the solution unique. The resulting contact forces
at the tip of Finger #1 are shown in Figure 6.5(a), while the corresponding actuator
torques are shown in Figure 6.5(b). The contact forces are shown as components in a
‘contact coordinate frame’ defined in Cheng (1989). In this frame, the z-component is
the negative of the normal contact force defined in the present work, the z-component is

upward, and the y-component completes a right-handed coordinate frar.e.

Quadratic programming was also implemented to minimize the ‘internal force’
in this system, as was done for the Kerr and Roth example. Again, the same friction
constraint was active throughout the task, thereby yielding the same solution as linear

programming, shown in Figures 6.5(a) and 6.5(b).

The execution times taken to obtain the optimal solution using the various
formulations and algorithms are shown in Table 6.2. These figures confirm the results of
Cheng and Orin (1989) and Cheng (1989), who cite speedups of over 30 times when solving
the ‘compact-dual LP’ formulation as compared to the ‘original LP’ formulation, using
IMSL routines. As shown in that table, quadratic programming was marginally slower

than linear programming due to the low dimensionality of this example. It was found that
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Finger # 1

Front View

Figure 6.4 Diagrammatic Representation of Two-Fingered Grasp

the higher the dimensionality of the problem, n — m,,, the greater the speed advantage

of the quadratic-programming algorithm over the linear-programming algorithm.

The substantial differences between linear and quadratic programming become
apparent in the four-fingered grasp example. A diagram of this arrangement is shown in
Figure 6.6. The task is the same as previously described for the two-fingered grasp.
This example has six equations of motion and 12 unknown contact forces, resulting in
an underdeterminacy of six. For a linear objective function defined as the sum of the
normal contact forces (called ‘minimum effort’ by Cheng and Orin), the results are shown
in Figures 6.5(c) and 6.5(d). The solution exhibits severe discontinuities, due to its
non-uniqueness. In fact, all the various combinations of linear programming formulation
and algorithm gave different, discontinuous results for this example. It is therefore not
apparent that linear programming can yield acceptable results for problems with a higher

dimensionality.
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Figure 6.5 Contact Forces and Joint Torques for Finger #1
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Algorithm Original | Compact | Compact | Quadratic
LP Primal LP | Dual LP | Programming

IMSL Routine CPU Time (ms)® 1232.1 443.1 324 58.3
In-House Routine CPU Time (ms)® | 102.5 15.7 11.3 13.1
Number of Unknowns 12 2 20 6
Number of Equality Constraints 5 0 1 5
Number of Inequality Constraints 20 20 0 20

Table 6.2 CPU Times for Cheng & Orin’s Two-Finger Example

Algorithm Original [ Compact | Compact | Quadratic
LP Primal LP | Dual LP | Programming

T e

——— S ——————

IMSL Routine CPU Time (ms)® 7200 2932 361 177

In-House Routine CPU Time (ms)* 600 193 128 88
Number of Unknowns 24 12 10 12
Number of Equality Constraints 6 0 6 6
Number of Inequality Constraints 40 40 0 40

Table 6.3 CPU Times for Cheng’s Four-Finger Example

Once again, quadratic programming was used to minimize the ‘internal force’
in this system. Three inequality constraints were active throughout the task. The smooth
results shown in Figures 6.5(e) and 6.5(f) were obtained for the contact forces and joint
torques at Finger #1. The timing results for the 4-finger grasp example are shown in Table
6.3. For this problem of higher dimensionality, quadratic programming is substantially
faster than linear programming. It should be noted, as well, that the speed of the Sun
3/80 used for these simulations can already be greatly and cheaply surpassed by newer
RISC-based workstations. This example makes the advantages of quadratic programming

over linear programming most apparent.

= 9Using double-precision on a Sun 3/80 Workstation with 68881 floating-point co-processor
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Finger # 1

Top View

Front View

Figure 6.6 Diagrammatic Representation of Four-Fingered Grasp

6.2 Quadratic Objective Functions

In the preceding chapter, it was found that the general convex linear-quadratic

objective function can be stated as:

min c’x + %xTWx (6.14a)
subject to  A;x = by (6.14b)
Agx Z b2 (6140)

where x is an n-dimensional vector of design variables, W is an n x n positive-definite
weighting matrix, and c is a weighting vector of dimension n. The objective function
given by eq.(6.14a) allows the optimization of the wrenches in x or any other quantitics
which can be reduced to a linear-quadratic function of x. As was shown in Chapter 5,
the condition that W be positive-definite ensures that the solution to the problem will be

unique and continuous in time, in the absence of changes in the topology of the system.



CHAPTER 6. OBJECTIVE FUNCTIONS 144

Quadratic objective functions have been frequently proposed to solve the un-
derdeterminate force distribution problem, but almost always in the form of the minimum-
norm solution to eq.(6.14b), i.e., neglecting the inequality constraints. Klein et al. (1983)
were amongst the earliest proponents of this solution. They were able to find a sym-
bolic expression for the pseudoinverse solution to generate vertical force setpoints for the
controller of the OSU Hexapod. As discussed in §5.4.2.1, this symbolic solution is compu-
tationally very efficient but has severe limitations, namely, a) it can only be performed for
extremely simple systems, e.g., when the vertical and lateral force systems are decoupled,
and b) it cannot handle inequality constraints. The first objection can be overcome by
performing a numerical pseudoinverse solution, as outlined in §5.4.2.1-—whether weighted
or unweighted and whether using explicit inversion or, preferably, Houscholder reflec-
tions (Golub and Van Loan, 1983). This method appears to be the one most commonly
proposed by other researchers, e.g., Hayati (1986), Zheng and Luh (1986), Alberts and
Soloway (1988), Park and Starr (1989) and Kumar and Waldron (1989). The sccond
objection is more difficult to overcome, particularly if real-time solutions are required. In
fact, the method outlined in §5.4.2.4 can be viewed as an extension of the pseudoinverse
solution to include inequality constraints, and it is a natural method to usc for systems

where inequality constraints are important.

A number of other techniques have been suggested to minimize a quadratic
objective function with linear equality and inequality constraints, though numerical re-
sults are almost never shown and the feasibility of implementing these techniques in
real-time is never discussed. Waldron (1986) proposed a technique, applicable to systems
with zero contact torques, using ‘interaction forces’, which reduces to the pseudoinverse
solution when A; is of full rank (Kumar and Waldron, 1988). The importance of in-
equalities was noted, and a solution was proposed whereby the problem would be solved
successively up to 15 times, for the case when six legs arc in ground contact, and the
best solution selected from among these. No timing results were given to indicate that

these computations would be manageable in real time. Nakamura ct al. (1987) proposed
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an inequality-constrained nonlinear-programming approach to minimize internal forces in
multiple robotic mechanisms subject to quadratic inequality constraints. They presented
two algorithms to solve this problem, but again, with no indication that they would be
feasible for real-time control. Finally, Luh and Zheng (1988) suggested the method of
‘direct approximate programming’ to find the force distribution in multiple manipulators

handling a common payload but did not provide any numerical results.

6.2.1 Minimum Internal Force

The minimization of ‘internal force’ in redundantly-actuated systems has been

proposed by numerous authors, the earliest and most consistent proponent being Naka-

mura (Nakamura et al., 1987). This approach minimizes f(x) = 1x7x, i.e., the norm of

the vector of contact wrenches, assuming that the dynamics equations are written in the
form outlined in §4.2.3. If the dynamics equations are formulated using the methods of
§4.2.1 or 4.2.2, the solution obtained when %xTx is minimized will be different, since in
each case, the vector x contains different elements. This serves to highlight the fact that

there may be more than one interpretation to the ‘minimum internal force solution’.

The geometrical interpretation of this technique is that it minimizes the solu-
tion contribution lying in the nullspace of A,, i.e., that which satisfies A;1x = 0. Since
b; represents the desired motion of the system, as well as the external applied loads—see
e.g., eq.(4.8b)—and the component in the nullspace of A; contributes nothing to it, the
internal force is often interpreted as the component of the solution which tends to crush

or tear apart a grasped object or grip the ground.

A solution with zero internal force is obtained by minimizing eq.(6.14a) with
c = 0and W = 1 subject to the equality constraints of eq.(6.14b). This is nothing but the
pseudoinverse solution commonly used to solve the underdetermined force problem. It will
now be shown that the addition of the inequality constraints, eq.(6.14c), to the problem is

equivalent to minimizing the solution component in the nullspace of A;. Equation (6.14a)
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becomes:
] 1
min 3X X (6.15)

Any solution to eqgs.(6.14a) to (6.14c) can be written as

x =xt+x” (6.16a)
x* = Alb, (6.16b)
A} = AT(A,AT)! (6.16¢)

where x* is the minimum-norm solution of eq.(6.14b), A7 is the right generalized inverse
of A; (Rao and Mitra, 1971), and x~ is the component of the solution lying in the
nullspace of A;. Substituting eqs.(6.15) and (6.16a) to (6.16¢c) into eqs.(6.14a) to (6.14c)

yields the following equivalent minimization problem:

, 1
min 5()(Jr + x7)T(xt 4+ x7) (6.17a)
subject to A;x™ =0 (6.17b)
Agx_ 2 (b2 - A2x+) (6.17C)

Expanding the objective function of eq.(6.17a), we obtain:

fx) =3

(xtTxt +2x*Tx™ + x7Tx7) (6.18)

Since x*Tx* is constant, it can be dropped from the objective function. Fur-
thermore, xt*Tx~ = 0 since the two solution components are orthogonal. Thus, eqs.

(6.17a) to (6.17c) reduce to

1
min -xTx~ (6.19a)

x- 2
subject to Ax =0 (6.19b)
Agx— > (b2 — A2X+) (619(,)

From the equivalent minimization problem given by ecqgs.(6.19a) to (6.19¢),
it becomes apparent that solving the system given by eqs.(6.15), (6.14b) and (6.14c)

minimizes the norm of the solution component in the nullspace of A;.
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Daistance
Raised

Figure 6.7 A Three-Fingered Hand and its Task

Equation (6.19b) specifies that x~ lies in the nullspace of A,. Kerr and Roth

(1983) have shown that this constraint can be included implicitly by letting

where the columns of N form a basis for the nullspace of A, and y is an arbitrary vector of
dimension n—m,,. This approach then becomes identical to that used in §5.3.1 to remove
the equality constraints from the optimization problem, and the minimization problem

of egs.(6.19a) to (6.19c) then reduces to an inequality-constrained problem of the form

given by eqs.(5.22a), (5.22b) and (5.22d).

‘rhe technique of minimizing internal forces has already been applied to a
number of examples in §6.1.2 and 6.1.3 in order to compare its results to those of linear-
programming. A further example is now shown which considers the three-fingered hand

depicted in Figure 6.7(a) raising and pouring a glass of water. The three fingers are
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Parameter i1 =1|:=2}|:=3

a, (mm) 20 35 25
b; (mm) 0 0 0
a; (deg) -90 0 0
m, (g) 21.6 | 37.8 | 27.0

I7* (g-mm?) || 1440 | 2520 | 1800
I (g-mm?) || 1440 | 5120 | 2310
17 (g-mm?) | 1440 | 5120 | 2310

Table 6.4 Hartenberg-Denavit Parameters and Inertia Properties of Link ¢ of Each
Finger

identical and have the kinematic parameters and inertia properties given in Table 6.4 The
task geometry is shown in Figures 6.7(b), 6.8(a) and 6.8(b). From ! = 0 to 1 s, the glass,
of 60 mm diameter and 120 mm height, is raised vertically upward over a distance of 200
mm, and from ¢ = 1 to 2 s, the glass is tilted through 90 degrees, thereby emptying its

contents.

The combined mass of the glass and water is assumed to decrease from 0.4 kg
before the water is poured to 0.15 kg when it is fully tipped. The corresponding moments
of inertia are calculated assuming that the glass and water are a uniform cylindrical
solid before the water is poured, and a cylindrical shell when it is fully poured. All
transitions between the extreme values are done as linear functions of the tilt angle. Hard
point contact is assumed so that each contact wrench consists of three forces  Thus,
there are nine unknown contact forces and six scalar equations of motion, resulting in
a redundancy of three. Frictinn constraints are imposed on the contact forces with a
coefficient of friction y' = 0.5, while maximum ¢ ctuator torques of 0.25 N-m are allowed.
Quadratic programming was implemented for this problem to minimize the ‘internal foree’,
as defined by eq.(6.15). Three incquality constraints were active throughout the task. The
contact forces and actuator torques obtained for Finger #1 are shown in Figures 6.8(c)

and 6.8(d), and for Finger #3 in Figures 6.8(e) and 6.8(f). The results for Finger #2 are
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Quadratic
Programming

Algorithm

IMSL Routine CPU Time (ms)®

In-House Routine CPU Time (ms)® 38.0
Number of Unknowns 9
Number of Equality Constraints 6
Number of Inequality Constraints 33

Table 6.5 CPU Times for the Three-Finger Pick-and-Pour Example

not shown, but are very similar to those for Finger #3. The CPU times required to solve

the optimization problem at one instant are shown in Table 6.5.

This simulation shows that quadratic programming yields results which are
continuous in time and can be obtained fast enough to be supplied as setpoints for a force
controller. Once again, it should be noted that the speed of the Sun 3/80 can already be
greatly and cheaply surpassed by more recent RISC-based workstations.

6.2.1.1 Achieving Invariance

Although the concept of ‘internal force’ is an appealing physical interpretation
of the nullspace component of the solution, it has certain flaws. For example, the solution
to a given problem will depend on the units used to describe it because the vector x
contains elements which are not dimensionally homogeneous, i.e., some have units of
torque, while others have units of force. Since the minimization of %xTx depends on
the relative numerical magnitude of its component forces and moments, and this relative
magnitude can be changed simply depending on the units used, the solution will not be

invariant with respect ‘o units.

4Using double-precision on a Sun 3/80 Workstation with 68881 floating-point co-processor
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It is therefore important to homogenize the units of the components of x. This
can be done by multiplying all forces by a characteristic length of the system denoted by /.
Obviously, the solution obtained with the foregoing formulation will depend on the choice
of l. Since x contains contact forces and torques, a logical characteristic length might be
the root-mean-square length of the vectors from the object’s centroid to the configuration-

dependent contact points. Thus, we would minimize the function f(x) = 3x7Wx where

1 0]
1’1 T
W = , = ,'-Z“c,n? (6.20)
1 p|=l
0 11

where 1 is the 3 x 3 identity matrix and c, is a vector from the object’s centroid to contact
point ¢. This method will yield a solution invariant with changes in units which may still
be interpreted as one whicn does not contribute to the motion of the object. If we let
% = LTx, where L is the lower-triangular factor of the Cholesky decomposition of W
(W = LL”), then minimizing f(x) = 1x7 Wx subject to egs. (6.14b) and (6.14c) can be

rewritten as

min liTi (6.21a)

X 2
subject to A;X =b, (6.21b)
A% > b, (6.21c)

where A; = A,L-T and Kz = A,;L-T. The solution of this problem will minimize
the solution contribution in the nullspace of A, which can also be interpreted as that

component of the solution contributing nothing to the payload’s motion, included in b;.

Including a non-identity weighting matrix W will cause an increase in the
computational load due to the Cholesky decomposition that must now be performed.
However, since W is only a function of the grasp points, its Cholesky decomposition
need only be performed when these change. Furthermore, since W is diagonal, the cost

incurred will be minimal.
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It should be apparent from the above manipulations that ‘the solution which
contributes nothing to the motion of the object’ is not unique, and some care must be
exercised when attempting to attribute a physical interpretation to the internal force.
Finally, an example in which the invariant internal force is minimized is given in §6.2.7.4

where it is compared to the minimization of power losses in the system.

6.2.2 Distributing the Load

In the early stages of comparing various cost functions for walking machines,
it appeared that it would be detrimental to minimize the vertical and lateral foot contact
forces together. It was felt that minimizing an objective function f(x) which contained
the sum of squares of all these forces would result in a system where lower vertical forces
would be generated at the expense of large lateral forces. Intuitively, the ideal distribution
would have the vertical force on each leg equal to W/p, where W is the weight of the
machine and p is the number of legs in ground contact, and the lateral force equal to
zero. A second objective function g(x) which minimized the square of the depatture of
the vertical force on each leg from W/p was therefore formulated. Yet, when the two
solutions were compared, they were found to be identical. In the following explanation
to this phenomenon, fy, is the component of x representing the vertical force on the o-th
leg, ¥F_, fne = W and g(x) is that part of the objective which is not dependent on the

vertical contact forces.

f(x)= Xj: fh+9(x) (6.22)

o(x) = (fwn — W/p) +9(x) (6.23)
1=]

= f,(ffv. —2W fn/p+ W %) + g(x) (6.23b)

= f(x) - 2"1’/p‘if~. + W?/p (6.23c)

= f(x) - W?/p (6.23d)
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Since the two objective functions differ only by the constant second term in

€q.(6.23d), the minimization of either of these two objective functions will yield the same

result.

The approach considered above can be generalized to the case where it is
desired to minimize the departure of the vector of design variables x from a desired value
X,. For example, minimizing the normal forces exerted on the object could result in a
weak grasp which would still satisfy the constraint equations. It may be more appropriate,
in this case, to minimize the departure from a desired normal force which would depend
on the particular task at hand. When grasping an egg, for example, the desired normal
force would be lower than when grasping a steel object of the same size, shape and weight.

Under these conditions, the objective function might be
f(x)=cT(x~-x,)+ %(x - %,)TW(x = x,) (6.24)

which, after expansion and dropping constant terms, yields the equivalent objective func-

tion below:
Flx) = &x + %xWx (6.252)

where
T =cT4+xTW (6.25b)

6.2.3 Minimizing a Norm of the Actuator Torques

Among others, Zheng and Luh (1989) and Danowski (1989) have proposed

minimizing the norm of the actuator torques by using the objective function
1 T
f(r) = 5T T (6.26a)

where 7 denotes a vector composed of all the actuator torques in the system, i.e.,

T = { l:l (6.26b)

Tp
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Equation (4.20) can be written for each path between the two poles, which

yields, upon assembling of the whole system of equations,

r=7+J3"x (6.27a)
where ,
T

r'=1|:], J=diag[J,, ... J.,] (6.27b)
2

Substituting eq.(6.27a) into eq.(6.26a) and dropping the constant term 777,
we obtain the equivalent objective function given by
1
g(x)=c"x + §xTWx (6.28a)
where
J,l T'l
c= , W= diag [J,IJZ; cea J_,,,JZ;, (6.281))
J ,p‘r;

where each block element J,,J7 is of dimension 6 x 6.

Since eq.(6.28a) is formally identical to eq.(6.14a), the optimization problem
is left unchanged in principle and can be solved using the lincar-quadratic programming
techniques detailed in Chapter 5. As well, since all matrices in the new problem are of
the same dimension as the original problem, we can expect that the increase in the CPU
time required to solve this optimization problem will be that required to performm a) the
matrix multiplications in eq.(6.28b), and b) the Cholesky decomposition of W at cach
time step. Furthermore, minimization of a combination of the actuator torques and the

contact wrenches can be easily performed by adding a term %x7'x to cq.(6.28a).

Alberts and Soloway (1988) claim that minimizing the norm of x, the contact
wrenches at the interface between multiple manipulators and their common payload, is
equivalent to minimizing the actuator torques acting in the system. However, eqs.(6.28a)

and (6.28b) clearly show that the two are not equivalent since the relative weighting
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between the elements of x will be altered by the configuration of the manipulator, as

given by its Jacobian.

6.2.4 Minimizing a Norm of the Joint Constraint Wrenches

The joint constraint wrenches can also be minimized by adopting a similar
approach to that used in §6.2.3. If we let W denote the vector composed of the actuator

and constraint wrenches at all the joints in the system, i.e.,

w1
w=1: (6.29a)
ﬁp
then we are interested in minimizing
. 1 _r.
f(w) = VW (6.29b)

Equation (4.29a) can be written for each path between the two poles. Upon assembling

of all the arising equations, one obtains:

w=w+FTx (6.30a)

where

wi
W':[ J, F=diag[F\ ... F,] (6.30Db)

[
wP

Once again, eq.(6.30a) can be substituted into eq.(6.29b). If the constant term

w'TW' is dropped, we obtain the equivalent objective function given by
1
g(x)=cTx+ ExTWx (6.31a)

where
F,w|
F,w

where each block element F,F7 is of dimension 6g,, x 6g,, and g, is the number of joints
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in the :-th path between the two poles.

Equation (6.31a) is formally identical to eq.(6.14a), and the optimization prob-
lem is again left unchanged in principle. The same comments apply regarding the in-
creased computational load as were made in §6.2.3. Minimization of a combination of the

constraint and contact wrenches would be performed by adding a term 1x”x to eq.(6.31a).
6.2.5 Nakamura’s Strain Energy Objective Function

Nakamura (1988b) has proposed a technique to minimize the strain cnergy
stored in an object which is grasped by multiple robotic devices. The elastic strain

energy is written for the object as

1
U= ExTWx (6.32a)

where x represents the vector of contact wrenches applied to the object and

W = diag[W, ... W,] (6.32b)
W, =disg|®x & & & & B (6.32¢)

The scalars k%, kY

z, k), and kZ, represent the object’s torsional stiffness in the z,

y and z directions, respectively, while kf,, &}, and k7, represent its translational stiffness
in those same directions. Nakamura evaluated these stiffnesses by a) assuming that the
object behaved as a cylindrical solid from all directions, and b) assuming that. the contact
force and torque vectors were both aligned with the principal axis of the cylinder. No

numerical results were shown by Nakamura.

Since the effect of this method is simply to add a weighting matrix to the more
usual internal force minimization and, as was shown in §6.2.1.1, a weighting matrix should
be added anyways to achieve invariance, this method is not expected to significantly in-

crease the computational load to solve the optimization problem. This, of course, neglects
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the additional time required to calculate the object stiffnesses. Depending on the geo-
metrical complexity of the grasped object and the technique used to estimate its stiffness,

this may or may not be a reasonable assumption.
6.2.6 Danowski’s and Pfeiffer et al.’s Objective Functions

Danowski (1989) and Pfeiffer et al. (1990) analyze the dynamics of carausius
morosus, an insect popularly known as the walking stick, and present a mathematical
model to simulate its motion. They model the insect as consisting of a single central
body and six legs, each of which is made up of three links, the model thus consisting of
19 bodies in all. The insect is modeled to move with an alternating tripod gait. The
form of the resulting equations is very similar to that given in §4.2.2—it is composed of
six equations for the main body and three equations for each 3-link leg. This results in a
system of 24 scalar equations with 36 unknowns, the latter being the contact force vector
f with 3 components at each of six legs, and the 18 components of the actuator torque

vector 7. The degree of actuation redundancy is therefore 12 when all six legs are on the

ground.

In order to resolve this underdeterminacy, Danowski (1989) proposed to mini-
mize a quadratic objective function of the form given by eq.(6.14a) with ¢ = 0. The need
to satisfy the inequality constraints usually considered important in walking machines
was neglected on the premise that the insect can grasp the ground. The numerical solu-
tion method adopted was that of explicit Lagrange multipliers outlined in §5.4.2.1. This
formulation results in a determinate system of equations of order 60 (= n +m.,). When
only 3 legs are in ground contact, the order of the system solved is increased to 69 since
further equalitics were used to constrain the contact forces at the non-contacting legs to
be zero. As was shown in §4.3, when certain legs are no longer in ground contact, their
dynamics are decoupled from the rest of the system and should be solved independently

to improve computing efficiency.
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The particular objective functions implemented by Danowski (1989) are:

1. Minimum aorm of f, the vector of foot contact forces. It is claimed that this solution
“yields high active torques in the outer leg joints” and evokes human experience to
imply that this is not realistic—that it is more natural for a biological system to

resist external loads using forces than torques.

2. Minimum norm of 7, the vector of all actuator torques in the system, as given in

§6.2.3.

3. Minimization of the elastic bending energy in the legs. It is contended that this

yields a more ‘natural’ solution since it takes the bending load of the legs into
account, thereby resulting in low actuator torques and bending loads especially in

the outer, thin leg segments. Each leg link is modeled as a beam of uniform circular

cross-section. The bending energy is therefore

;

¢ ! M(z)?

’ - U= dz 6.33
g ) o FEI (6.33)
: where M(z) is the bending moment at any point 2 along the link. Since this
f objective function places no penalty on the lateral contact forces, it is bound to
; come closer to foot slippage.

¥

: 4. A combination of (1) and (3) which minimizes the bending load in all the legs, as
k

) well as the contact forces on the two front legs, on the premise that these front legs
& are used as ‘feelers’ and should not be heavily loaded.

E‘

§ The results shown by Danowski (1989) lead to the following conclusions:

:‘g’ 1. Although the foot contact-force time histories are significantly different for the dif-
;

% ferent objective functions, the actuator torques are not. The technique with the
i

: lowest contact forces is that which minimizes the norm of the contact-force vector.

The techniques with the highest contact forces are those with the bending energy

term in the objective function.

Wmu;‘,—n W g A T v
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2. All techniques exhibit greater or lesser discontinuities when the feet ccme into con-
tact or break contact with the ground (i.e., at changes in topology). The technique
which shows the least severe discontinuities is that which minimizes the contact

forces. The ones with the worst discontinuities are the ones with the bending en-

ergy term in the objective function.

Since the benefits of the objective function proposed by Danowski (1989) and

Pfeiffer et al. (1990) were not apparent, their technique was not pursued further.

6.2.7 Minimum Power Consumption

The minimization of power can be important, particularly in situations where
the installed power is restricted such as in space-based robotic applications. Techniques
which claim to minimize power have been proposed by Carignan and Akin (1989), Kopf
(1988a, 1988b), Zheng and Luh (1989) and Orin and Oh (1981). With the exception
of Orin and Oh (1981), these works claim the power to be proportional to the square
of actuator torques, though no justification is given for this assumption. The objective
function proposed by Orin and Oh (1981), which is justified in that work, was reviewed

in §6.1.1 and was concluded to be suitable for the particular mechanical construction of

the OSU Hexapod.

The previous chapters have clearly shown that a system composed of multi-
ple cooperating robotic devices admits an infinity of solutions to its inverse dynamics
equations. In the following section, it will be shown that the power imparted to the
system cannot be optimized since this is strictly a function of the prescribed motion.
However, assuming certain loss characteristics for the dc servomotors commonly used in
robotic manipulators (Armstrong et al., 1986; Leahy and Saridis, 1989), it is shown that
the minimization of power losses can be cast as a linear-quadratic optimization problem.
A model of the dc servomotors is derived and the losses which can be minimized are

identified. These are then written in the form of eq.(6.14a). Local and global perfor-
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mance indices are then proposed to allow comparison of the minimum power loss and the
minimum internal force approaches. An example of two Puma 560 robotic manipulators
handling a payload is shown to demonstrate the proposed technique. Various objective
functions are compared for the same trajectory: minimum internal force, minimum power

using the present formulation and minimum power using the formulation proposed by

Kopf (1988a, 1988b).

6.2.7.1 On the Constancy of Power Imparted to The System

The power supplied to the actuators is consumed in a number of ways, the
most useful being that component which is imparted to the system, i.e., the manipulators

and the grasped object.

The power supplied by the actuators to the system is
p -
T=Y 779, (6.34)
1=1

where 7, is the vector of actuator torques in the :-th manipulator, and 8, is the corre-
sponding vector of joint rates. It was shown in §4.2 that there exists many sets of actuator
torques which will result in the same prescribed motion of the manipulator/payload sys-
tem. Thus, it would appear that we should be able to minimize 7. However, it will now
be shown that = cannot be optimized by varying the 7, while also satisfying the inverse

dynamics equations given by eq. (6.14b).
Substituting eq.(4.20) into eq.(6.34), we obtain

=+ ['}l‘])Téi

=1

= i(ﬂT@n +[n] £7]3..6.) (6.35)

=1
where 7! is uniquely determined by the payload motion for manipulators which are not

kinematically redundant. We now recall that the expression J,.0, is nothing but the twist,
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t,, at the tip of subchain ¢, which is defined as
)
¢ = [ " (6.36)

where w, and v, are the angular velocity of the i-th manipulator’s end link and the
translational velocity of a point P, of this link, respectively. Substituting this expression
into eq.(6.35), we obtain
T = zp:(rﬁTé. +nTw, +£Tv))
i=1

P . p P
=377, +> nTw, + 3 £Tv, (6.37)
=1

=1 =1

Since the end links of all the subchains are rigidly attached to the same rigid

object, we can write

WiSWy=...=W, =W (6.35)
Furthermore, we can write all the translational tip velocities, v,, in terms of

the velocity v, of a reference point on the payload as
V,=V,+wXc, (6.39)

where c, is a vector from the reference point to the i-th grasping peint. Substituting

eqs.(6.38) and (6.39) into eq.(6.37) yields

P , P P P
=3 70+ (3 nNw+ )V, + 3 fT(w xc) (6.40)
1=1 =1 1=1 =1
Using
fTwxe,)=(c, xf)Tw (6.41)

we can obtain

P . p p P
r= Ym0+ (0w + (X )V, + D (e x £)Tw
i=1 1=1 =1 =1

14

= Zp: r:TO, + (zp: f,)Tv, + (Z[n, +c, X f,])Tw (6.42)

1=1 1=1
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Comparing the last two terms of eq.(6.42) to the right-hand-sides of eqs.(4.7a)
and (4.7b), we find that eq.(6.42) can be rewritten as

14
=Y 778, + [m.(a, + ) - £)TV, + (Lwo + w, x Lw, —n,—c, x ) w  (6.43)
=1

It is apparent that all the variables in eq.(6.43) are strictly functions of the
prescribed motion, and so, cannot be modified. Thus, since none of the terms in 7 can
be altered by changing the grasping wrench, the power imparted to the system cannot be

optimized by choosing f, and n, forz = 1,...,p.

In fact, this result is intuitively obvious. If we consider a manipulator/payload
system and assume the payload motion to be completely known, we can uniquely find the
motion of the manipulators through inverse position, velocity and acceleration kinematics.
Thus, the motion of the complete system is known and the energy contained in that system
is also known at every instant. If the energy is known at every instant, the power being
imparted to the system is uniquely known as well. Therecfore, if we do not take into
account any losses in the system and the motion of the system is prescribed, then the
power which must be supplied to the system by the actuators is unique and cannot be

optimized.

6.2.7.2 Minimization of Power Losses

Although the power imparted to the system cannot be optimized by changing
the grasping wrench, the power input to the actuators may be reduced by minimizing the
losses in the drivetrain. These losses can be substantial, particularly in geared systems.
In order to do this, certain actuators characteristics must be assumed. For example, if
the actuators are electric motors, we can model the 2-th motor as shown in Figure 6.9,

where the symbols are defined as follows:
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Figure 6.9 Representation of an Electric Motor and its Gear Train

i; = armature current J, = rotor inertia

v; = armature voltage ¢, = rotor viscous damping constant

R; = armature resistance  w, = rotor angular velocity

L, = armature inductance n, = gear ratio

b, = bach emf 0, = link angular velocity about joint axis
T, = motor torque f, = break-away torque

7, = load torque as found from eq.(4.20)

The constitutive relations for the electromechanical coupling are
Ti=Ka b =Buw, (6.44)

where K; and B; are the motor’s torque constant and back-emf constant, respectively,
and are equal if consistent units are chosen for T, i,, b, and w,. The governing equations

for this system are

v, = t,R, + L,% + Bw, (6.45a)
. . fl Tl
Ki, = Juw, + quw, + sgn(w,-);z— + - (6.45b)

Since we are more interested in writing the relevant equations in terms of the
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rates on the link side of the gear train, we can use the relations
W, = @, = n,b; (6.46)

and substitute them into eq.(6.45b) to obtain

n K, = n?J b, + n2ch, + sgn(0,)f, + T, (6.47a)
or
) 1 ) . .
iy = = (n{di + nlcid, + sgn(b) fi + 7.) (6.47b)

For the dc servomotors used in robotic applications, the armature inductance
can be neglected (Leahy and Saridis, 1989; Electro-Craft Corporation, 1980), so that

eq.(6.45a) can be rewritten as

v, = i,R, + Bw, = i,R, +n,B,0, (6.48)

On the other hand, the power consumed by the motor can be written as

T = 1,0,

= i?R, +1,n,B,0, (6.49)

Substituting eq.(6.47b) into the secoud term of eq.(6.49), we obtain
o g ) o . : .
=1, R+ [niJ.0,0, + nct] + sgn(0,)f.0, + 1.0, (6.50)

where B;/K, 1s equal to 1 and hence, was omitted. The first term in eq.(6.50) represents
the winding resistive loss; the second term is the rate of change of the kinetic encigy of
the rotor; the third and fourth terms are the velocity-dependent losses; while the last
term is the power imparted to the system. It was previously shown that the last term
summed over all the actuators cannot be optlimized, since it is strictly a function of the
motion of the system. The rate of change of the kinetic energy of the 1otor cannot be

minimized either because it is also strictly a function of the system motion. Similarly, the
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velocity-dependent losses cannot be minimized once the system motion and the actuator
characteristics (c; and f,) are known. However, we can minimize the component of the

winding resistive losses which is dependent on the load torques. If we substitute eq.(6.47b)

into this term, we obtain

2K2[n2J0 + n; 2¢.6, +sgn( ) fe +1'.]2

[n‘Jz()2 + n c?ﬂf + fi4 7t

2K2
+2n Jc,00 +2sgn( )n J0f.+2n J.0,,

+ 2sgn(é,)n?c,é,f, + 2n?c,0,7’, + 25gn(0,)f,1',] (6.51)

Of the above terms, only the ones which are functions of 7, can be minimized,
the rest being strictly fuactions of the prescribed motion. Collecting the terms which
are functions of the load torque and summing them over all the actuators, we obtain the
objective function which must be minimized as

f(r) = Zn:[ 5,2 (n2J.6, + n2c,6, + sgn(0,) fr, + nzlzzrz] (6.52)

1

where n is the total number of actuators in the system. This objective function can be
rewritten as

Jir)=c"r+ -;—TTWT (6.53a)

where

Ry(n2Jy0; + n2c 6, + sgn(6,)fy)/niK? ]
c= : (6.53b)

Ra(n2J.6, +n2cab, + sgn(én)fn)/nﬁ](,fj

(B T R]/Tl?l\’f N 0
relil=|:], w= (6.5%¢)
T T 0 ... Ru/niK?

This optimization problem differs from that proposed by Kopf (1988a, 1988b)
due to the presence of the linear term, ¢¥ in the objective function which includes the

effects of motor inertia, viscous damping and dry friction losses. Because of this omission,
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that approach will not yield a solution with minimum power losses. Upon substituting
€q.(4.20) into eq.(6.53a) and dropping terms which are not dependent on the grasping

wrenches, the objective function can be rewritten as
<T | r&
g(x) = ¢'x + X Wx (6.54a)

E=Jc+Wr) W=JwJ7 (6.54b)

where 7' and J were previously defined in eq.(6.27b).

This objective function can be minimized subject to the constraints given by
egs.(6.14b) and (6.14c), in order to obtain the solution which results in the minimum

power losses in the system.

6.2.7.3 Comparison to Internal Force Minimization

The minimization of power losses is important in certain circumstances, such
as space-based robotics. Proposals for multiple-arm space robotic systems are becoming
increasingly common, and the installed power in these situations is very limited. A
reduction of the power requirements for these systems would be beneficial, but because the
payloads to be considered in that context (e.g., satellites) are often fragile and expensive,

it is also undesirable to exert large unnecessary forces on them.

As discussed in §6.2.1, the ‘internal force’ can be viewed as the component of
the solution which tends to crush or tear the payload apart, and the present approach of
minimizing power losses makes no attempt to reduce these forces, we can expect that they
will be generated. Furthermore, since in general it is not desirable to exert unnccessary
loads on the payload, we must determine whether the benefit obtained by imposing these

forces, i.e., the power saved, outweighs their detrimental effect.

For the purposes of this section, the minimization of internal force implies

the minimization of -;-iTSE, where X was defined in §6.2.1.1. The solution obtained when
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minimizing power losses can be compared to the minimum internal force solution by
evaluating the following ‘internal force index’:

(iTi)mt.force
—(iTi),,ow" (6.55)

where the subscripts indicate what is being minimized. Since the internal force is always

Ny =

positive and ()’ETSE).,.,. force < (XTRX)power, this ratio is bound to lie between 0 and 1. A
value of this index close to 1 will indicate that power minimization has not increased the

internal force by much from the minimum possible.

The reduction of power losses obtained can be determined from the ‘power

index’:
= (Tpouer_ (6.56)

7’ =
P (W)mt.farce
This index is bound to be less than 1 when (7 )¢ force is positive. It may exceed 1 when

both (7)int.sorce and (T)power are negative, i.e., when the actuators are used to extract
cnergy from the system. If (7). sorce remains positive, we would like 7, to remain as low
as possible. By comparing #; and 7,, we can determine which of the two optimization
approaches is more desirable. If 5y stays close to 1 while 7, stays small throughout a given
trajectory, we could safely say that the power minimization approach has yielded better

results. On the other hand, if the reverse is true, we would tend to favor the internal force

minimization approach.

The indices described above have a drawback: they are local—that is, they
provide information on the sclution at one point in the trajectory, while it may be desired
to compare the performance over the complete trajectory with global indices. In order
to form these, we can integrate the quantities used to form the local indices—the power
consumed by the motors and the internal force applied to the object—over the duration
of the task. Thus, we define the following global indices:

Jig RTR)unt forcedt ;i (Tpouerdt (6.57)

1
Ny = Tr =
! to](xTx)powerdt ’ P fttoj(n-)mt forcedt

where to and t; are the times at which the task starts and ends, respectively. If we

assume that the manipulators and payload are at rest at ¢ = #y, these indices will always
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Figure 6.10 Two Puma 560 Robots Rotating a Payload

lie between 0 and 1. Similar to the local indices, if 7, were close to 1 while !, were close
to zero for a prescribed maneuver, this would indicate that a power minimization strategy
should be adopted; while if the reverse were true, an internal force minimization strategy

should be adopted.

6.2.7.4 Numerical Example

An example is now considered to compare the minimization of power loses and
the minimization of internal force. Two Puma 560 robots, shown in Figure 6.10, rotate
a common payload about a horizontal axis in the absence of a gravitational ficld. Puma
manipulators were chosen as they have been studied extensively by other researchers, so
that all the values needed in the present exercise are known. The Hartenberg-Denavit
parameters were taken from (Armstrong et al., 1986), as were the link masses, moments
of inertia and centroid locations used in the dynamic equations of motion. The remaining

parameters, shown in Table 6.6, quantify the dc servomotors used in the Puma.

The payload was a solid aluminum bar 1 m long, with a rectangular cross-
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Joint #
Parameter 1 2 3 4 5
n® 62.61 | 107.36 | 53.69 | 76.01 | 71.91

n?J; (kg-m?)® || 1.14 | 4.71 | 0.83 | 0.2 |0.179
nlc, (kg-m?/s)® || 400 | 3.5 | 3.5 [ 0.48 | 0.55
£, (N-m)® 595 | 6.82 [ 3.91 | 1.07 | 0.89
Tt (N-m)° 97.6 | 186.4 | 89.4 | 24.2 | 20.1
R, ()¢ 16 | 1.6 [ 1.6 | 39 [ 3.9

K, (N-m/amp)° || 0.26 | 0.26 | 0.26 | 0.09 | 0.09

Table 6.6 Puma 560 Motor Parameters

section 50 mm high and 100 mm deep. Its mass was therefore 13.5 kg and its moment
of inertia about the relevant horizontal axis through its centroid was 1.128 kg-m?. The
payload, initially at an angle of 45° counterclockwise from the horizontal, was rotated
through 90° clockwise in two seconds. Periodic splines (Angeles et al., 1988) were used

to ensure that the payload followed a smooth trajectory that began and ended with zero

velocity and acceleration.

The underdetermined system of equations given by eq.(6.14b) was solved for

this system with the following objectives:

xTx;

B

1. Minimum internal force, i.e., minimum
2. Minimum power losses, as derived in the present work; and

3. Minimum power losses, as derived by Kopf (1988a, 1988b)

The resulting components of the grasping wrench and actuator torques for
manipulator #1, on the left in Figure 6.10, are shown in Figures 6.11 and 6.12 for the
three objective functions. The results are not shown for the second manipulator due to

their similarity to those shown. The total winding resistive power loss for all the motors is

2Armstrong et al., 1986
bLeahy and Saridis, 1989
‘Daneshmend, 1990
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Objective Function | Sl(m)dt | £ (xTx')dt Y n,
Being Minimized (W-s) (N?m?2s)

Internal force 77.51 0.972
Power 75.90 117.2 0.00825

Power (Kopf) 76.88 18.16 0.05300

Table 6.7 Global Performance

shown in Figure 6.13(a), while n; and 7,, the internal force and power indices, are shown
in Figure 6.13(b). It should be noted that 7, actually exceeds 1 for the objective function
proposed by Kopf during part of the trajectory duc to the approximations inherent in
that approach. Table 6.7 shows the total energy consumed by the motors, the integral of

the internal force over the complete trajectory, as well as the global performance indices

7y and 7,

It is apparent from Table 6.7 and Figures 6.11, 6.12 and 6.13 that, for the
example considered, the minimum internal force approach yiclds the best compromise.
The winding resistive loss is 2bout 20-25% higher for this approach than for the minimum
power loss approach, but since these are only part of the losses - c.f., eq.(6.50)-- , the effect
on the total energy used during the maneuver is only about 2%. By contrast, the internal
force is two orders of magnitude less with the minimum internal force approach than
with the minimum power losses approach. The method proposed by Kopf (1988a, 1988b)
to minimize power does not minimize power for the reasons stated earlier, but yields a

solution somewhere between the two approaches proposed here.

6.2.8 Smoothing of Jump Discontinuities Upon Changes in
Topology

Solution of the optimization problem given by eqgs.(6.14a) to (6.14¢c) yiclds a

setpoint for the controller at a given instant, for a given topology. As was shown in
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Figure 6.11 Grasping Forces and Moments for Manipulator #1
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Figure 6.13 Winding Resistive Losses and Local Performance Indices

Chapter 4, if the topology does not change, continuous changes in configuration of the
system, i.e., changes of the joint variables, result in continuous changes of the cocfficients
of A; and by, which, in turn, result in continuous changes in the optimal solution vector
X. Thus, as long as there are no changes in topology, we can expect the optimal force

solution to be continuous.

As was also shown in Chapter 4, when the topology of the system changes,
the entries of A; change discontinuously. When this occurs, the solution to equations
(6.14a) to (6.14c) will also change discontinuously, thercby causing an abrupt change
in the commanded actuator torques. The actuators will be unable to respond to these
commands and the system will not follow the prescribed motion. Two techniques were
proposed in Chapter 4 for alleviating this problem. This section presents a third technique

to do this, which places less restrictions on the allowable motions.

Rather than imposing a hard limit on the amount by which the solution can
change from one instant to the next, it is more desirable to impose a penalty on large
changes in the solution. This can be accomplished by modifying the objective function

given in eq.(6.14a) as follows:

fx)=cTx + %xTWx + %(x —x~)TW(x —x) (6.58)
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where W is a positive-semidefinite weighting matrix, and x~ was previously defined as
the contact wrench solution vector at the previous instant. The new term in the objective
function will tend to minimize the difference between the solution at the present time
step and that at the previous time step, thus smoothing the time history of the contact

wrench. This new objective function can be expanded as follows
f(x) =c"x + ExTWx + é-xTWx —(x7)TWx + -2-(x‘)TWx“ (6.59)
At the present instant, x~ is known and fixed. Therefore, the last term in
eq.(6.59) is constant, and can be dropped from the objective function without affecting
the solution. The objective function can be rewritten in the same form as eq.(6.14a),
namely,

g(x) =¢Tx + %xTWx (6.60a)

where

e~ o~

W=W4+W, &=c-Wx" (6.60b)

The formulation given by eqs.(6.60a) and (6.60b) allows us to smooth disconti-
nuities in the variables contained in vector x. If this vector does not irclude the actuator
torques, e.g., if the method of §4.2.3 was used to formulate the dynamics equations, we

can specify the following objective function to smooth these:

1 .
h(x) = cTx + -12-xTWx + 5(1‘ —r ) W(r-77) (6.61)

where 7 denotes a vector composed of all the actuator torques in the system, as defined

in eq.(6.26b), while 7~ is the same vector at the previous instant.

Substituting eq.(6.272) into eq.(6.61) and dropping all terms which are con-

stant, we obtain an equivalert objective function of the form of ¢q.(6.60a) with

W=W+IWIT, E=c+IW(HE'—77) (6.62)

Since eq.(6.60a) is formally identical to eq.(6.14a), the optimization problem

is left unchanged in principle and the same solution technique can be used to solve the
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problem. As well, since all matrices in the new problem are of the same dimension as the
original problem, we can expect that there will be no increase in the CPU time required to
find a solution. Therefore, this technique also fits well into the existing framework of the
optimization problem as it only requires the alteration of certain weighting parameters
in the objective function. Furthermore, this technique does not have the disadvantage of

the one proposed in §4.4.5, i.e., having to choose A, or A,;, perhaps iteratively.

Since the intent of the proposed technique is to smooth the force time histories
upon changes in topology, it is desirable to ensure that the force solution is not affected
when the topology does not change. This can be accomplished by sctting W # 0 only
when changes in topolcgy are expected, and ramping it linecarly down to W = 0 within

some time T following the change in topology.

6.2.8.1 Numerical Example—A Four-Legged Walking Machine

This numerical example is intended to show that a) discontinuities will occur
in the solution produced by eqs.(6.14a) to (6.14c), upon changes in the topology of the
system, even when the motion is continuous, and b) the techniques presented in §4.4.5
and 6.2.8 can be used to smooth these discontinuities. The four-legged walking machine
shown in Figure 6.14(a) is supported by three of its legs while its centre of mass moves
forward as shown in Figure 6.15; its fourth leg is lowered to contact the ground at ¢ = 0.5
s with zero contact velocity. The inertia of the legs is assumed to be negligible, allowing

us to write the dynamical equations for the body of the machine as follows:

f
_ f; . nlo(ao + g) ]
x=lel b= e . (6.63)
£,

where f, is the 3-dimensional vector of foot contact forces, if we assume that moments
cannot be generated at the foot /ground contact. Furthermore, vectors a, and w, represent

the acceleration of the centre of mass and the rotational velocity of the body, vespectively.
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Figure 6.14 Four-Legged Walking Machine

Therefore, matrix A; will undergo a discontinuous change at ¢t = 0.5 s as follows
0 1 1 1
a=[o 6 ¢ ol
Y (6.64)
[ 1 1 1 1 ]
C, C C Cy
where 0 denotes the 3 x 3 zero matrix, 1 denotes the 3 x 3 identity matrix, matrices C,

are defined by eq.(4.8c) and the ¢, vectors are defined as follows:

15—z 1.5~ Tom —Zem ~Tem
C; = -0.5 y €= 0.5 , €C3= -051|, cu= 0.5 (665)
=0.7 -1.0 -0.6 -0.7

The objective function appearing in egs.(6.60a) and (6.60b) was minimized
withec =0, W =1and W = pl, i.e., placing a weight of p on the continuity of the
contact forces. Contact constraints are imposed on the system to ensure non-negativity of
the normal contact forces between the feet and the ground, and foot friction forces within

the friction pyramid with a coefficient of friction g = 0.5. Furthermore, the inequality
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Figure 6.15 X-position of the Centre of Mass

constraints given by eq.(4.58c) are included to limit all contact force discontinuities to

Ay =...= A, = A Newtons per time step of 10 ms.

Three cases were investigated: a) no effort is made to smooth the solution to
the optimization problem (p = 0, A = o0); b) inequality constraints are used to limit the
rate of change of each contact force to 20 N/step (p = 0, A = 20); and ¢) a penalty is
imposed on discontinuities in the contact forces through the objective function (p = 10,
T =055, A =o00). Figure 6.16 shows the resulting norm of the contact forces at each
of the four feet (all forces at foot #1 are zero until ¢ = 0.5 s). Both of the proposed

techniques result in considerably smoother force time histories of the foot contact forces.
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Chapter 7

Further Applications of Redundant
Actuation

Until now, redundant actuation has been treated as being intrinsically coupled
to mechanical systems with time-varying topology. The implicit justification for this has
been that systems whose topology varies are always redundantly actuated during some
part of their task, while systems whose topology does not change arc very unlikely to
be redundantly actuated. However, redundant actuation can also be applied to fixed-
topology systems in order to smooth or homogenize the force distribution within them,

as will be shown in this chapter.

Perhaps the earliest work dealing with redundantly actuated fixed-topology
systems was that of Williams and Seireg (1979) who observed that the human muscu-
loskeletal structure was redundantly actuated and allowed many inverse dynamics solu-
tions. Nakamura (1988a) was among the first to suggest redundant actuation in the con-
text of mechanical linkages with fixed topology when he proposed a two-degree-of-freedom
planar five-bar linkage driven by three actuators as a subassembly of the finger of a me-
chanical hand. Haywa:d (1988), in designing a three-degrec-of-freedom parallel wrist,
found that the use of one redundant actuator would allow the wrist to avoid kinematic
singularities. Soon thereafter, Nakamura and Ropponen (1989) proposed a three-degree-

of-freedom spatial linkage driven by four actuators, while Gardner ¢t al. (1989) suggested
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a two-degree-of-freedom parallel robotic manipulator driven by four actuators. Other

than these few works, no proponents of redundant actuation of fixed-topology linkages

are apparent,

In most existing works, redundant actuation of fixed-topology linkages is put
forward as a way of reducing the actuator and constraint wrenches acting in the system—
just as this was done in the case of systems with time-varying topology. However, once the
force distribution problem of a redundantly-actuated system is formulated as an optimiza-
tion problem, the objective functions which may be minimized are virtually unlimited.
This chapter presents two less conventional applications of redundant actuation in an at-
tempt to show the range of possibilities which exist. In §7.1, redundant actuation is used
to achieve the full dynamic balancing of linkages—i.e., linkages which exert no dynamical
forces at their supports. In §7.2, it is shown that redundant actuation can be used to

reduce the effects of shocks in mechanisms.

7.1 Dynamic Balancing of Linkages

The dynamic balancing of linkages is a classical problem in the theory of ma-
chines and mechanisms, and is of practical importance wherever linkages must run at
high speeds (Berkof and Lowen, 1969; Berkof, 1973; Bagci, 1979; Kochev, 1988; Feng,
1989). For example, the four-bar linkage shown in Figure 7.1(a), when in motion, will
exert forces and moments on the frame on which it is mounted. The free-body diagram
of each link of this linkage is drawn as shown in Figure 7.1(b), where we denote the net
force which acts on the frame as f; — f5. Berkof and Lowen (1969) have shown that a
four-bar linkage can be constructed with f; — f; = 0 by keeping the centre of mass of the
linkage motionless. They accomplished this by writing an equation for the position of the
centre of mass and setting all the coefficients of the time-dependent terms to zero. The

conditions which must be satisfied in order to achieve this are:

[
m||enl| = m2||c22||7l (7.1a)
2
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Figure 7.1 Four-Bar Linkage

l
ma||cag|| = m2”021||i (7.1b)

Y = g, Yaa=vYn+7 (7.1¢)

When these conditions are met, the force f; is equal and opposite to f; at all
times, so that, when added, the two forces cancel each other. However, as noted by Ku
in the commentary on the work of Berkof and Lowen (1969), certain problems remain

unresolved with this approach:

o Although the net force f; — f4 is zero for the balanced linkage, the individual cyclic
forces f; and f, still exist and may be large. Thus, each of the linkage supports at

the frame is subjected to a cyclic shaking force.

o A cyclic rocking moment acting on the frame due to the equal but opposite forces

acting at the two linkage supports (i.e., s x f;) still exists and may be large.

The latter of these two criticisms was addressed by Berkof (1973) for the

particular case of ‘in-line linkages’—i.e., where the centre of mass of each link lies along
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the line joining the link’s two pivots. In that work, other members such as flywheels
and pendulums were added to the linkage to cancel the inertia of the primary links. The
purpose of this section is to show that redundant actuation can be used to correct the

two above-mentioned problems without limiting the analysis to particular linkages.

7.1.1 Dynamics

In order to treat the four-bar linkage problem, we first write the dynamics
equations which must be satisfied by any set of actuator torques which is used to control
the system. We write the equations assuming that there is an actuator installed at each
joint. If a given joint is not actuated, its corresponding actuator torqué need only be set

to zero. These equations take on the form

~f, +f, =m,a, (7.2a)
—f5 + f3 = maa, (7.2b)
— 54y = maa; (7.2¢)
n—"7+ clTlEf, - csz& = luy (7.2d)
Ty — T3+ cleEfz - cfZEfg, = LW, (7.2¢)
73 — T4 + ¢ Efy — cLEf, = I, (7.2f)

where the moment equations are written about the respective centre of mass of each link,

and I, is the moment of inertia of link 7 about its centre of mass. Matrix E is defined as
0 -1
E= [1 0 ] (7.28)
Equations (7.2a) to (7.2f) can be written more compactly in the form

Aix=b, (7.3&)
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where the 9 x 12 matrix A, is defined as

-1 1 0, 0, 02,4 ]
02 -1 1 02 02x4
_ 0, 0, -1 i 02,4
Ar = ¢ E -cLE o7 o’ dr (7.3b)
o cJE -cLE o7 df
| of of cE -cLE dTI |

1 represents the 2 x 2 identity matrix, 0, is the 2 x 2 zero matrix, 0,,, is the 2 X 4 zero

matrix, O is the zero vector of dimension 2 and the other arrays are

[ 1 0 n
-1 1 0
d, = 0| d; = 1l d; = 1 (7.3¢)
[ 0 0 —1
£, [, a,; ]
£, T1 maas
T maa
x= 131}, T = ‘r: , b, = Ili.)ls (7.3d)
£, .
74 I,
L T .
| fw; |

If only one actuator is active (e.g., 7y # 0 and 7, = 73 = 74 = 0), three columns
can be removed from matrix A;, and the system of equations has a unique solution once
the motion is prescribed. However, if all four actuators are active, the system of equations
is underdetermined. As in the case of systems with time-varying topology, optimization

techniques may be applied to find the optimum solution to the underdetermined case.
7.1.2 Forces Acting on the Frame

In this section, we start by showing that the net force on the frame f;, — f,
can only be changed by linkage design and not through redundant actuation. Adding

eqs.(7.2a), (7.2b) and (7.2c), we obtain:

—fi + f4 = mya, + maa, + maag (7.4)

It is apparent that the left-hand side of eq.(7.4) is the net external force acting
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on the three moving links of the four-bar linkage and so we can write
~fi+fy=Mac (7.5)

where ac is the acceleration of the centre of mass of the three moving links, while M =
my + mg + m3. It is noted that the right-hand-side of eq.(7.5) is determined strictly by
the motion of the linkage and the masses of the moving links and is independent of the

actuator torques 7; to 74. Thus, the net force acting on the frame cannot be altered
by redundant actuation. This implies that redundant actuation alone cannot be used to

make f] = f4 =\

However, if we design a linkage to satisfy the conditions given by eqs.(7.1a)
through (7.1c), we find that ac = 0 and therefore f; — f; = 0. We can now use redundant

actuation to cancel both f, and f;. This can be done by minimizing the objective function

[ defined as
J= IRl +[Ifall? (7.6)

under the equality constraints given by eq.(7.3a), and checking whether a minimum exists

which renders f zero, which would obviously mean that f; = f; = 0.

We can verify the existence of this minimum by setting f; = 0 in eqs.(7.2a)
to (7.2c). Once this is done, the other forces in the system can be found uniquely, from
which fy = 0, and we are left with a smaller underdetermined system of three equations,
¢qs.(7.2d) to (7.2f), in four unknowns, 7y to 74. This underdeterminacy could be resolved
by deactivating one of the actuators, thereby setting the corresponding torque to zcro, or

by finding an optimum solution to the reduced system.

It is therefore apparent that we require at least three actuators, two of which
would be redundant, to ensure that the forces acting on the frame, f; and -f4, will be
zero. As well, since these forces have been reduced to zero, the shaking moment due to
the reaction forces has also been eliminated, thereby solving the two criticisms leveled at

Berkof and Lowen’s balancing method.
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7.1.3 Moments Acting on the Frame

Berkof (1973) showed that an in-line four-bar linkage, which was defined in
7.1, could be fully force- and moment-balanced by adding flywheels to it. However, it is
physically impossible to cancel the reaction moments of more general four-bar linkages.
The net moment exerted by a force-balanced linkage on its frame, which is the same
irrespective of the reference point used to calculate it, is —7, + 74 + sTEf,, where s is
indicated in Figure 7.1(a). Just as it was impossible to alter the net force acting on
the frame, the net moment acting on the frame cannot be altered through redundant
actuation This is again shown by manipulating the dynamics equations. We start hy

adding eqs.(7.2d), (7.2e) and (7.2f), to obtain:
71— T+ €L Ef + (ca1 — €12) Efy + (¢3) ~ €22) Efy — ¢LBfy = Ly + Loy + I3y (7.7)
For a balanced linkage, we substitute f; = f; into eqs.(7.2a) and (7.2¢) to obtain:
fo =, + ma,, fa =f; —maay (7.8)
Substituting eq.(7.8) into eq.(7.7) and simplifying yiclds
T — T4+ (€11 — €12 + €21 — €22 + €31 — €32)" Ef)
= L6n + Dan + I3s + my(ciz — ¢) Eay + ma(ca — ¢2) Eag  (7.9)

Noting that the term in brackets on the left-hand-side of the equation is just the vector

directed from the right-hand support to the left-hand support, we can write
Ty — T4 — STEfl = 11(4')1 + Igd)Q + Igd);; + ml(clg — Caj )TEa| + 7”3((:';] — C')g)TEag (7.]0)

The left-hand-side of the equation is nothing but the net moment acting on the moving
links while the right-hand-side is, once again, purely a function of the motion of those
links and their inertial properties. Thus, it is apparent that the net moment on the frame

is determined strictly by the prescribed motion and the inertial properties of the linkage.

We have already shown that through proper design and redundant actuation,

we can produce a linkage for which f; = f; = 0. Furthermore, we have shown that this
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can be accomplished with only two redundant actuators. If we choose the fourth joint to

be unactuated, i.e., 7, = 0, we are left with
7 = Ly + g + Iads + my(cy2 — en)TEa, + ma(ca; — €22)TEay (7.11)

and —7; will be the only reaction acting on the frame.

7.1.4 Numerical Example

A sample linkage will now be introduced in order to clarify the techniques
discussed above. The linkage chosen is that treated by Angeles and Lee (1989), the
dimensions of which are shown in Table 7.1. This is an unbalanced linkage which therefore

exerts a non-zero net force and moment on its support frame. The input link is rotated

through the cycloidal maneuver given by

0,(t)[rad] = 57t — %sin 207t 0<t<0.l1s (7.12)

This maneuver, which has zero initial and final velocity and acceleration, was
taken from Angeles and Lee (1989) and is shown in Figure 7.2. When only one actuator
is used to drive the linkage, the resulting inverse dynamics equations are determinate.
Figure 7.3(a) shows the magnitude of the forces acting in the linkage when only 7 is

used to drive the linkage. The corresponding actuator torque required is shown in Figure

7.3(b).

When all four actuators are active, the system becomes redundantly actuated
and the objective function f = ||fi||? + ||f4]|> can be minimized. The resulting magnitude
of the forces in the linkage are shown in Figure 7.4(a), while Figure 7.4(b) shows the
required actuator torques. The magnitudes of f; and f, are equal, but they act in differing
directions, thereby resulting in a net force on the support frame which is identical to that
when only one actuator was driven. It is apparent that the forces f; to f; have been

reduced and homogenized by the redundant actuation but they have not been reduced to

Zzero.
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Parameter || Unbalanced | Balanced [ Parameter || Unbalanced | Balanced
ﬂ “ Linkage Linkage L Linkage Linkage H
l; (m) 1 1 P11 (deg) 0 45
l; (m) 2v2 2v2 Y21 (deg) 0 10
I3 (m) 2 2 V22 (deg) 180 45
8% (m) 3 3 V31 (deg) 0 190
8 (m) 0 0 [lera]] (m) 0.5 0.656
m, (kg) 3x 104 Ix107* | |lesz]] (m) 0.5 0.709
my (kg) | 6.5x 107 | 6.5x 104 | |lcz1[] (m) 1.414 3.487
m; (kg) 5x 104 5x107% | |lczz]| (m) 1.414 0.856
I (kg-m?) | 0.75 x 107* [ 0.75 x 10~* || ||ca1]| (m) 1 5.186
I (kgm?) || 4.16 x 101 | 4.16 x 10~* || ||c32|| (m) 1 3.205

I3 (kgm?) || 5x 101 5x 104

Table 7.1 Four-Bar Linkage Parameters

A balanced linkage with the same dimensions but with the location of its link
centres of mass altered as shown in Table 7.1 is now introduced. The same mancuver is
used and the results obtained with only 7; active are shown in Figure 7.5. In this case, the
magnitudes of f; and —f; are equal but they act in opposite dircctions so that f; — f; = 0.
Figure 7.6 shows the forces and actuator torques acting in the linkage when 7, 7, and
73 are active and f = [|f|]* + [|[fs]|* is minimized. We find that f; = f; = 0, and the
only reaction acting on the frame is —7;. With all four actuators active and the same
objective function being minimized, the results shown in Figure 7.7 are obtained. Once
again, f, and f; have been reduced to zero, this time with the net reaction on the frame
being 74 — 7. Obviously, with all four joints actuated, the individual torques are smaller

than with only three actuated joints.
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7.2 Smoothing Impact Shocks

In Chapter 4, the dynamics equations of redundantly actuated robotic systems

_ were studied with some emphasis on the behavior of these equations upon changes in the

topology of the system. It was found that the equations of motion could be written as
A]X = b] (713)

where b, could be interpreted as representing the motion of the system, while A, repre-
sented its kinematic structure and configuration. It was shown that, when the topology
of the system changed, the entries of matrix A, would change discontinuously, and a
number of techniques were proposed in Chapters 4 and 6 to smooth the ensuing disconti-
nuities in the solution to the optimization problem. Thus, the work of those chapters was
concerned primarily with the reduction of discontinuities due tu changes in the topology
of the system and it was implicitly assumed that vector b; would not change discontin-
uously during the task. Physically, this corresponds to the situation where, for example,
the foot of a walking machine contacts the ground with zcr;) relative velocity, so that the
motion is continuous and there is no shock. It is important to realize that shocks are not
intrinsically tied to changes in topology, although they often occur together. Here, it is

emphasized that the two should be viewed as distinct phenomena.

But now, what of the second phenomenon whick has not yet been addressed
and may be of interest—the smoothing of solution discontinuities due to si:ocks? A shock,
or mild impact, consists of finite forces applied abruptly to the system, either between
two of its constituent bodies or to a single body by an external influence. A shock results
in a discontinuous change in vector b, of eq.(7.13), which may be accompanied by a
discontinuous change in A, if the topology of the system changes at that instant. In this
section, we are interested in determining whether the smoothing techniques presented in
§4.4.5 and 6.2.8 could be used to reduce discontinuities due to shocks, just as they were

used to smooth discontinuities due to changes in topology.
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7.2.1 Reducing the Effects of Shocks

The underlying idea is as follows: given that there are many solutions to the
force distribution problem in a redundantly actuated system, it is desired to find the
solution which minimizes solution discontinuities. A shock is reflected in vector b; in one
of two ways: as a jump discontinuity in the external wrench-w. = [nT {7]7, or as a
jump discontinuity in the motion variables in b;. The present work assumes that these
jumps can be modeled, and that the time history of w, and the motion of the system can
be calculated and measured, even during the shock. The smoothing techniques developed

previously can therefore be applied to cancel the shock forces as much as possible.

Shocks are similar to impacts in that they represent abrupt changes in the
motion and forces applied to the system. However, whereas impacts normally involve the
generation of infinitely large forces over infinitesimally short time intervals, the forces and
time intervals of shocks are assumed to be finite. A large body of work exists regarding the
modeling of impacts in general mechanical systems (e.g., Kane, 1968; Wittenburg, 1977;
Lotstedt, 1984; Haug ~t al., 1986, Pfeiffer, 1991). Some of this work has been adapted
to robotic systems in the works of Zheng and Hemami (1985), Zheng (1987) and Wang
and Mason (1987). Finally, the works of Johnson (1958), Parker and Paul (1985), Kahng
and Amirouche (1987) and Youcef-Toumi and Gutz (1989) arc better classificd as dealing
with shocks since make an effort to model and measure the finite forces and time duration

of the shock.

Most of the above works apply energy methods to a model of two colliding
bodies. They assume the motion, and hence, the kinetic encrgies of the two bodies, to
be known immediately before the collision. At one instant during the collision, the two
bodies have zero relative velocity and their kinetic energy has been completely transformed
into strain encrgy. Finally, as the bodies recover their initial shapes, part of the strain
energy is recovered as kinetic energy, while part is lost as heat, the relative proportion

being referred to as the coeflicient of restitution. Using certain assumptions about the
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elastic properties of the colliding materials, i.e., the force produced as a function of the

material’s deformation, the maximum force between the two bodies can be estimated

(Johnson, 1958).

In the present work, it is assumed that we are provided with an external force
fo, which represents the shock force applied to the common pole. This shock force may
either be due to a collision between the pole and the j-th serial chain, or between the
pole and an external object. The shock force can be introduced into the dynamic analysis
presented in Chapter 4 by modifying the equations of motion of the moving pole given

by egs.(4.7a) and (4.7b) to reflect the shock as follows

P
Y fi=my(a,+g)-f. — (7.14a)

1=1

P P
an' + Z(C, X f,) = Iod’o + w, X Iowo —Ne — Ce X fe — Cg X fo (714b)
i=1 1=1

where ¢y denotes a vector directed from the centroid of the pole to the point of collision.

As was shown in Chapter 4, these equations are underdetermined and the
contact wrenches, f, and n,, for = 1,...,p, can be chosen according to an optimality
criterion. The goal is therefore to choose these contact wrenches to offset the effect of
fo as much as possible. The smoothing techniques presented in §4.4.5 and 6.2.8 are used
to find this solution. The first of these imposes inequality constraints on the solution to
ensure that the actuator torques at a given instant do not differ from those at the previous
instant by more than a prescribed amount, while the second method alters the objective
funtion to penalize large changes in the actuator torques. Once again, the latter approach

is favored since it cannot cause the optimization problem to become infeasible.

7.2.2 Numerical Example

This example shows the behavior of the smoothing techniques presented in
§4.4.5 and 6.2.8 for a shock during which there is no change in topology. This is done to

ensure that the shock effects observed in the example are not confused by the eflects of a
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Figure 7.8 Two Puma 560 Manipulators Rotating a Payload

change in topology. The two Puma 560 robots shown in Figure 7.8 are used to perform
the same maneuver as in §6.2.7.4. All relevant data regarding the manipulators and their

task were given in that section.

However, at t = 1.0 s in the present example, an external force is imposed in
the z-direction of f§ = 100N at the centre of mass of the payload (i.c., cg = 0), thereby

representing a collision between it and the environment.

The objective function given by eqs.(6.60a) and (6.62) was minimized with
c=0,W =1and W = pl, i.e., placing a weight of p on the continuity of the actuator
torques. The only inequality constraints included in this problem arc those given by
eq.(4.61) to limit all actuator torque discontinuities to Ay; = ... = A, = A Nm per
time step of 10 ms. Three cases were investigated: a) no effort is made to smooth the
solution to the optimization problem (p = 0, A = 00); b) incquality constraints are used
to limit the rate of change of each actuator torque to 11 Nm/step (p = 0, A = 11); and
c) a penalty is imposed on discontinuities in the actuator torques through the objective

function (p =10, T = 1.0s, A = 00).
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For case (), the actuator torques for manipulators #1 and #2 are shown in
Figures 7.9 and 7.10, respectively. Since the maneuver takes place in a plane, two of the

wrist actuators in each manipulator arc not active, as is apparent from the figures.

The results for case (b), where the discontinuities are smoothed using inequal-
ity constraints, are shown in Figures 7.11 and 7.12. The same two actuators which were
inactive in case (a) remain inactive. However, the discontinuity in actuator # 3 is reduced,
while that in actuators # 2 and 5 is increased.! In effect, the inequality constraints have
distributed the discontinuity more evenly over the active actuators, thereby decreasing
the largest disconti, “ity. This is desirable, assuming that all the actuators are equally
able to withstand discontinuities. If they are not, the A,,’s can be made more restrictive
for the more sensitive actuators. It should be noted that, for the present example, with

equal A,;’s on all the actuators, a value of A lower than 11 will cause the problem to

become infeasible.

The results for case (c), where the actuator torques are smoothed using a new
objective function, are shown in Figures 7.13 and 7.14. This time, the two previously-
inactive actuators become active. As well, the discontinuities in actuators # 1 and 3 are
reduced, while those in actuators # 2, 4, 5 and 6 are increased. Once again, the largest
discontinuity has been decreased by distributing the shock more evenly, this time over
all the actuators. For the present example, a further increase in p, the weight on the
actuator torque discontinuities, will not smooth the results any more, but will not cause
the problem to become infeasible. The second method for reducing the discontinuities thus
has two advantages over the first: it cannot cause the optimization problem to become
infeasible and it distributes the discontinuities evenly over all the actuators, rather than
just the active ones. Finally, if the actuators were not all equally able to withstand
discontinuities, the weighting matrix W could be modified to penalize discontinuities in

the more sensitive actuators more heavily.

1n.b., the plot scales are different for the various actuators
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Chapter 8

Conclusions

The fingers of mechanical hands, the legs of walking machines and multiple
manipulators handling a common payload were treated in the present work as ‘cooperating
robotic devices’. One of the characteristics of these systems was found to be that their
kinematic structure, or topology, varies with time. Since the number of actuators installed
in these systems is chosen to ensure the controllability of its constituent robotic devices
when they act independently, the system will tend to have mote actuators than necessary

at other times. This situation was therefore described as redundant actuation.

The number of actuators required in a mechanical system is dependent on
its number of degrees of freedom. The determination of this property was therefore
investigated in detail, as was the freedom allcwed and constraint imposed by the interbody
joints in the system. This analysis of kinematic structure was followed by an analysis of
the motion of the systems in question, where analogies were diawn between them and

serial and parallel manipulators.

The dynamic equations of motion of these systems were then studied and it
was found that the relationship between the motion of the system and the wrenches
acting within it can be written in a number of ways. In all cases, the inverse dynamics
problem—that of finding the wrenches acting in the system for a known motion- could be

formulated as an underdetermined system of linear equations. Furthermore, this system of
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equations was found to be underdetermined by an amount equal to the degree of actuation
redundancy existing in the system. When studying the behavior of these equations upon
changes in the topology of the system, it was found that the left-hand side matrix of
cocfficients suffered discontinuous changes at these times. Other constraints were imposed

in the solution to account for the limitations of passive contacts, actuator capabilities and

interbody joint strength.

In order to find an ‘ideal’ solution to the underdetermined problem mentioned
above, optimization techniques were investigated. In this context, the inverse dynamics
equations were treated as linear squality constraints, while the friction forces, actuator
torque bounds and joint limits were treated as inequality constraints. The characteristics
of various optimization problems were investigated with emphasis on two considerations:
1) the speed with which the algorithm could provide a solution (since the optimization
must be performed in real time in order to provide force setpoints for the controller), and
2) the uniqueness and continuity of the solution. Quadratic programming appeared to be
preferable, particularly in the latter respect. Numerical techniques for solving the opti-
mization problem were then investigated. In the case of a problem which could be written
with only equality constraints, a technique which included symbolic preprocessing of the
problem was developed. For more general problems, an existing inequality-constrained
quadratic optimization algorithm was modified to efficiently include equality constraints.
This method may be viewed as an extension of the pscudo-inverse solution commonly

used for these systems to include inequality constraints.

Any optimization problem must optimize an objective function but the choice
of this function can be difficult. A number of objective functions were compared for linear
and quadratic programming and it became more apparent that the continuity properties of
the latter were far superior. As well, the quadratic programming algorithm implemented
in the present work proved to be faster for all but the lowest-dimensional problems.
Various objective functions were discussed, namely, minimum ‘internal force,” minimum

norm of the actuator torques, minimum-norm of the joint constraint wrenches, minimum
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power losses and minimum solution discontinuities upon changes in the topology of the
system. It was found that there are a number of possible interpretations for the minimum
‘internal force’ approach, and that it would be useful to include a weighting matrix to
ensure that its results are invariant with changes in units. As well, it was found that
although the minimization of power losses may appear to be an attractive objective, it

may result in excessive stresses being imposed on a grasped object.

Finally, the utility of redundant actuation in systems with fixed topology was
outlined. It was shown that redundant actuation could be used to perform the complete
dynamic balancing of a four-bar linkage. This, when performed on a linkage which was
initially force-balanced, resulted in a linkage which exerted no dynamical forces at either
of its frame supports. Redundant actuation was also used to reduce the effects of shocks
on mechanisms. Although this approach has certain limitations, it may warrant further

i.vestigation.

8.1 Recommendations for Future Work

In the course of the research performed for the present work, a number of

interesting avenues were noted which warrant further investigation.

Although the present work delved into a number of interesting objective func-
tions, it is the opinion of the author that a universal choice for this objective function
which would apply equally well to walking machines, mechanical hands and multiple ma-
nipulators handling a common payload is not possible. Rather, the choice of objective
function wiil be governed by the particular characteristics of the system and, perhaps,
its task. For example, Nakamura’s minimization of strain energy might be well suited
to delicate payloads while power loss minimization might be well suited to space-based
systems with limited energy availability. Therefore, a series of more specific investigations

would be useful to identify the ‘ideal’ objective functions for particular systems and tasks.
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Throughout this work, it was assumed that the bodies which make up the
systems under consideration were rigid. However, space-based robotic systems are known
to have links with significant structural flexibility, while joint flexibility is acknowledged
to be a major concern for industrial robotic systems. The effect of flexibility in the
bodies and joints in a redundantly-actuated system would therefore be a useful topic
to investigate. Conceptually, one of the effects of flexibility is the introduction of new
degrees of freedom in the system. Since actuation redundancy is a result of having more
actuators than degrees of freedom, it is possible that the flexibility could be controlled by
the redundant actuators, or that the actuation redundancy would be reduced by flexibility.

This is closely related to the passive compliance approach suggested by certain authors.

Another pervasive assumption in this thesis was that the robotic devices mak-
ing up the system were not kinematically redundant. If the system were kinematically
redundant, the motion of all its members would not be fully specified by specifying the
motion of its moving pole. Two approaches could be taken: 1) the kinematic redundancy
could first be resolved using existing techniques (e.g., minimum condition number of the
Jacobian), and the force optimization problem could then be resolved independently, or
2) the two problems could be treated as one larger force optimization problem. The latter

approach deserves some investigation.

The present work was primarily concerned with finding setpoints for a force-
motion controller assumed to be installed in the system. No consideration was given to
the manner in which these force setpoints could be combined with motion setpoints to
achieve stable, consistent control. Although this is by no means a neglected research
topic, certain concerns have been expressed about the validity of existing methods of
combining setpoints. It should be apparent from the present work that the subspaces in
which internal force and motion can be controlled are orthogonal. It is conjectured that
two independent controllers could be designed in these subspaces rather than attempting

to couple the setpoints in a single task space controller.
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The fact that redundant actuation can be useful for systems with fixed topology
is little acknowledged. Further work could be done in the complete dynamic balancing of
linkages to extend this technique to more complex mechanisms. As well, an evaluation
of redundant actuation in systems with fixed topology from a more global perspective is
required. For example, redundant actuators add weight to the system, while they allow
a lighter structure to be constructed by reducing the forces. It would be of practical

importance to compare the trade-offs between these two effects.
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Appendix A

Inverse Dynamics of Serial
Manipulators

A number of inverse dynamics algorithms for serial manipulators have becen
proposed in the literature. One of the most efficient of these is the recursive Newton-Euler
~ algorithm put forward by Luh et al. (1980). 1t is presented here not because it is the most

cfficient of the existing algorithms, but rather because it is relatively easy to understand.

In cases where the available computational power is restricted, the reader is encouraged

to investigate more efficient algorithms such as that of Angeles et al. (1989).

Luh et al’s algorithm is composed of two recursive procedures

1. An outward recursion from the manipulator’s base to its tip in which the motion of
each link of the manipulator in Cartesian space is determined as a function of the

motion of the preceding links and joints.

o

An inward recursion from the manipulator’s tip to its base to calculate the actuator

and constraint wrenches acting on each link.

The equations which are implemented to accomplish this will first be presented
in vector form, and will then be given in component form where the transformations

> necessary during numerical implementation are more apparent.
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A.1 Vector Form of the Equations

The algorithm starts by specifying the motion of the base of the manipulator—
wo, wo and ag—where wy and &g are the angular velocity and translational acceleration
of the base link, respectively. The outward recursion then consists of (for i = 1 to n,

where n is the number of links in the manipulator):

When joint i is revolute:

W, = w1+ g€ (A.la)
W, = w,1+ Giei-1 +wi1 X ¢,€i1 (A.1b)
a;, = a1 +w, Xr+w, X (w; X l'.') (A.lc)

When joint ¢ is prismatic:

W, = W;1 (A2a)
Wi = W1 (A.2b)
a =a,_ ) +w; xr+w; x(w xr)+de; + 2w,y X e, (A.2¢)

where w; denotes the angular velocity of the i-th link, a, denotes the translational accel-
eration of the :-th link at the origin of the i-th frame, ¢, is the i-th joint variable, e, is
a vector aligned with the z-th joint axis and r, represents the vector from the origin of

frame (i — 1) to the origin of frame 3.

For both types of joints, the translational acceleration of the i-th link at its centroid, a,,
is given by:

an =2, +Ww; X ¢, +w; X (w, X ¢,,) (A.3)

where c,, is a vector from the origin of frame ¢ to the centroid of link .

This completes the outward recursion procedure. The inward recursion makes

use of the Cartesian motions of all the links found during the outward recursion (w,, w,
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and a,, for i = 1,...,n) and the fact that the external wrench acting on link n is known
(and denoted by the force vector f, .41 and the moment vector n, n4;). The inward

recursion therefore consists of (for ¢ = n to 1):

fii1i =i + mia, (A.4a)

Do = Niggr — € X fipr + oy X fimg + L, + w, x Liw; (A.4b)

where f;_, ; and n,_;; are, respectively, the force and moment applied by link ¢ — 1 to
link ¢, m; is the mass of link ¢, I, is its centroid moment of inertia, while c;_, ; is a vector

from the origin of frame i — 1 to the centroid of link z.

The final equation to be implemented is simply one which picks the component

of f,_;; or n,_;; which corresponds to the actuator force or torque at that joint.

When joint 1 is revolute:

T, = e,T_In.'_l,. (A.5a)

When joint ¢ is prismatic:

r=el fi (A.5b)

Note that the remaining components of f;_;; and n;_;; constitute the con-

straint wrench acting at that joint.

A.2 Component Form of the Equations

The preceding equations were given in frame-invariant form. When they are
implemented numerically, each vector must be resolved into its components in a particular
frame. Of course, whenever an operation is performed between two vectors, they must
both be expressed in the same frame. The equations of the preceding section are now given

explicitly in compouent form along with all transformations which must be performed

during the recursions.
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The motion of the base of the manipulator is assumed to be given as compo-
nents in frame 0 (the base frame)—|[wog)o, [Wo]o and [aglo—where the notation [+], implies
that the vector inside the square brackets is expressed as components in frame i. Grav-
itational effects are most efficiently included in this model by adding the acceleration of

gravity to the base acceleration [ag)o. The outward recursion is described below:

For: =1 to n,

When joint i is revolute:

[wili = Q?-'-I,t([wl—lll-l + qlei-1]i-1) (A.6a)
[@ili = QL,,([Weaa)icr + diletlica + [wica)ica X Gilen—1]ia (A.6b)
[a)i = QL laica]ior + [@ii x [r]i + [wili x ([wile x [r],) (A.6c)

When joint ¢ is prismatic:

[wil; = Q.T_x,i[“’--lli-l (A.7a)
[@)i = QLylwi-1)iaa (A.7b)
[ai], = QL ([Bi-1)i-1 + Gleic1)im1 + 2wi—1]i-1 X di[€s_1])ic1)

+ [@.]s x [, + [w,]s x ([w]s x []) (A.T¢)

The orthogonal rotation matrix QT | transforms components in frame i — 1
into components in frame ¢. It represents the composite rotation about the joint angle 6;
and about the link’s twist angle o, (Hartenberg and Denavit, 1964), and can be written

as

cos 0, sind, 0
iT_l‘,- = | —cosa,sin; cosa,cosf, sina, (A.8)
sing,sinf, —sina,cosf, cosaq,

Since QT ; is orthogonal, its inverse is equal to its transpose. Therefore, the

matrix which transforms components in frame i into components in frame ¢ — 1 is nothing
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but Q;.;;. Furthermore, it should be noted that the vector e; expressed as components
in frame ¢ is nothing but [e;; =[0 0 1]7 thereby making any operation in which e, is

involved trivial.

For both types of joints,

[as)i = [l + [Wi]s x [ei)i + [wi]i % ([wi]s x [e5,]) (A.9)

The component form of the inward recursion equations are (for i = n to 1):

[fi-l.t]i—l = Ql—l,i([fl,l+l]t + mt[act]l) (AlOa)
[ni-l,i]i—l = Qt-l,i([nl,:+1]i - [cl,t]i X [fl,t+]]t + [ci-l.l'll X Q;T_L;[fl—l,t]l'—-l
+ L@ + [wi]i x [L]i{w.):) (A.10b)

Finally, when joint ¢ is revolute:
7= (e 1Ji-a[mim1aliaa (A.11a)
and when joint 1 is prismatic:

7 = [el ]icalfic1a)ica (A.11b)

When the above equations are implemented for a six-link manipulator (n = 6),
and the operations involving [e,], are appropriately reduced due to the particular form
of that vector, the complete inverse dynamics problem can be solved with 810 scalar

multiplications and 684 scalar additions.



Appendix B

The Quadratic-Programming
Algorithm

This appendix gives the listing of the quadratic-programming algorithm devel-
oped in the present work. The first subroutine—quad—is called by a main program with

the following arguments:

¢ The vector ¢ in eq.(5.9) of dimension n,

a The composite matrix [::1] in egs.(5.4a) and (5.4b) of dimension m x n,
2

b The composite vector [:;] in eqs.(5.4a) and (5.4b) of dimension m,
x  The vector of design variables x of dimension n,
n  The dimension of the vector of design variables,
m  The total number of equality and inequality constraints,
meq The number of equality constraints,
ia  The row dimension of a and Linv in the calling program, and

Linv Then x n Cholesky decomposition of the weighting matrix W in eq.(5.9).
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Subroutine quad will make use of the 10 subroutines which follow it in the
listing. The last subroutine given in the listing performs the Cholesky decomposition of
a matrix and can be used by the main program to obtain the matrix Linv which would

subsequently be passed to subroutine quad.

The listing is included in the following pages.
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quad.f

Page 1

1 Nov 1990 12:00 quad.f Page 2
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c

c

subroutine quad (c, a, b, x, n, m, meq, la, Linv)

Routine for quadratic programming using the method of Goldfarb
and Idnani (1983), modified to include equality constraints.
n.b. Some local arrays are dimensioned 100. If either mor n
1s larger than 100, these must be redimensioned.

Calling arguments:

c Linear welghting vector of dimension n {input)

Matrix of constraints of dimension m X n (input)

The flrst meq rows correspond to equality constraints;

The last (m-meq) rows correspond to inequality constraints
Vector of rhs of constralnt equations of dimension m (input}
Vector of design variables of dimension n (output)
Dimension of vector of design variables (input)

Total number of constraints fequallty + lnequality) (input)
Number of equality constraints (input)
Row dimension of a and Linv in calling program (input)
Matrix inverse of Cholesky decomposition of quadratic
welighting matrix of dimenslion n X n (input)

IAl11, b=
| A2 |

a

LI I I I

¢ =c, a = | b 1|
i b 2|
implicit undefined ta-z)

real*8 Linv(ia,n), u(l109), up(100), s(100), a(tia,n), x(n), bim)
real*8 np{100), z(100), d(100), rr(100,100), c(n), x2(100)
real*8 jt(100,100), temp(100,100), r(100), norm({100), uu({l00)
real*”8 nn(100,100), Linvc(100), Linvt(100,100)

real*8 t1, t2, t, ztnp, test, eps, sum

integer*d ia, iloc, m, n, p, g, 1, 3, 1, aa(l100), meq, dummy
integer*q ier

logical active(100), found

data 1loc/100/ , eps/1.d-20/

c Initiallze—--do only at start of each new problem (Step 0):
¢ Transpose A to get N and premultiply 1t by Linv:

call transp (a, 1la, nn, lloc, :eg, n)
call mult (Linv, ia, nn, 1loc, rr, iloc, n, n, meq)
call multvec (Linv, la, ¢, Linve, n, n)
call transp (Linv, 1a, Linvt, iloc, n, n)
call multvec (Linvt, iloc, Linvc, x2, n, n}
do 22 1 = 1, meqg
sum = 0.d0
do 23 j =1, n
23 sum = sum + a(i, 1) *x2(3)
22 df1) = sum + b(l)

c Perform Householder reduction on N to get R, and find min-norm soln:

call hhred2? (rr, iloc, n, meq, uu, ler)
1f (ier.ne.0@) write (*,*) 'ler = ’, ler
call trfor2 (rr, iloc, meq, d, ler)
if (ler.ne.0) write (*,*) ’ler = ’, ler
do 31 =meq + 1, n

3 dfi) = 0.d0
call hhbak2 (rr, iloec, n, meq, uu, dj
call multvec (Linvt, iloe, d, x, n, n)
do¢1=1,n

4 x(1) = xti) - x2(1)
if (m.eq.meq) return

c Store v*(-1) in jt and premultiply 1t by 0T to get J*T:

do 51 =1, n
do 6 1 =1, n
6 jtti,3) = Linv(i,})
5 continue
do 71 =1, n

7 call hhfor2 (rr, floc, n, meq, uu, Jt(l1,1})
€ Put zeroes in below the main diagonal of R:

8 rr{i,3) = 0.d0
do 9 I = meq+l, n
do 8 1 = 1, meq
s rr{il,3) = 0.d2
do 10 1 = meq+l, m
ufi) = 0.d0
10 upf{l) = 0.adf
do 30 {1 = meq+l, m
aaf(i) =0
30 active(i)} = .false.
q = meq
do 40 i meg+l, m

= me
sum = 0.d0
do 45 1 =1, n

45 sum = sum + a{i,})*a(1,3)

40 norm(1) = 1.d0/sqrt (sum)
c

¢ Check inactive constraints {(Step 1):

1000 call check (a, 1a, x, b, s, m, n, meq, active, found, p, norm)
if (.not.found) then

do 50 1 =1, n
50 npl(l) = alp,1)
do 60 i = meq+l, q
60 up(l) = u(l)
upfg+l) = 0.d0

c

¢ Determine a new S-palir (Step 2):
c (Step 2a):

2000 1f {q.eq.0) then
do 70 1 = meq+l, m
70 ufi) = 0.do
endif
do 80 i =1, n
sum = 0.d0
do 85 31 =1, n
85 sum = sum + jt(i,§)*np(])
80 dfi) = sum
do 80 1 =1, n
sum = 0.d0
do 85 § = g+1, n
95 sum = sum + jt(f,1)*d(})
380 z(1) = sum
if {q.gt.0) then
do 100 i = q, 1, -1
sum = 0.d0
do 110 3 = i+1, g
110 sum = sum + rrfi,3)*rt3)
100 r(i) = (df{i1) - sum)/rr(i,i)
endif
c
c (Step 2bi):
tl = 1.d60
do 120 j = meq+l, q
if (r(1).9t.0.d0) then
test = up(})/rc(}}
if (test.lt.tl) then
1=173
tl = test
endif
endif
120 continue

[~
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c (Step 2bii): * call remove (rr, tloc, jt, temp, iloc, 1, n, Q)
sum = 0.d0 activefaa(l)) = .false.
do 1301 =1, n do 230 1 = 1, g-1
130 sum = sum + z(i)*z(1) 230 aafl) = aa(i+1)
1f (sum.lt.eps) then aafg) = 0
t2 = 1.d60 =q -1
else call check (a, la, x, b, s, m, n, meq, active, found,
ztnp = 0.d0 * dummy, norm)
do 140 1 =1, n go to 2000
140 ztnp = ztnp + z(i)*np(i) endlif
t2 = - s(p)/ztnp c
endif ¢ Solution Found:
c else
c (Step 2biii}: return
1f (el.1t.t2) then endif
t =¢tl1 c
else end
t = t2 c
endif c.t'lﬁ"'nt..'tt'.ttt'..tll.t.'.t.'.'.t.'.l'..t'ﬂi.t.ﬁ.'t......'.l...'ﬁt

c (Step 2c¢i)
1f (t.eq.l1.d60) then
write (*,*) ’The QPP Is not feasible’
stop
endif

c (Step 2c¢ii):
1f (t2.eq.1.d60) then
do 150 1 = meg+l, 1-1
up(i) = upfi) - t*r(l)
do 160 1 = 1+1, q
up(1-1) = up{i) -~ t*r(i)
upf{q} =t
1f (l.ne.q)
* call remove (rr, 1loc, jt,
active(aa(l)) = .false.
do 170 i = 1, g-1
aafl) = aa(i+1)
aalq) =0
q=qg-1
call check (a, ia, x, b, s, nm,
* dummy, norm)
go to 2000
endif

150
160

170

n, meqg, actlve,

c (Step 2ciii):
do 180 {1 =1, n
180 x(1) = x(1) + t*z(1)
if {t.eqg.t2) then
do 180 1 = meq+l, q
upfi) = upfi) - t*r(i)
upf{g+l) =t
do 200 1 = meqg+l, g+l
ufi) = upfi)
call adjoin (d, rr, iloc, 3it, iloc, n, q)
q=qg+1
active(p) =
aafq) = p
go to 1000
else
do 210 { = meg+l, 1-1
up(l) = up(i} = t*r(i)
do 220 1 = l+1, q
upfi-1) = up(l) ~ t*r(l)
upfq) = ¢t
1f (l.ne.q)

130

200

.true.

210
220

temp, 1loc, 1, n, q)

found,

c
subroutine check (a, ila, x, b, s, m, n,
b norm)

meq, active, found, p,
c

¢ Routine to check the 1lnequality constraints:

implicit undefined fa-z)

real*8 a(ia,*), x(*}), b(*), s(*), norm(*)
real*8 eps, smallest, test, sum
integer*d m, n, meq, 1, 3, la, p

logical activef*), found

data eps/-1.d-06/

found = .true.
smallest = eps
do 10 1 = meq+l, m
if (.not.active(l)) then
sum = ~b(l)
do 20 3 =1, n
20 sum = sum + af{i, 3)*x(})
s({l) = sum
test = sum*norm(1)
1f (test.lt.smallest) then
found = .false.
smallest = test
p =1
endif
endif
10 continue

return
end

c
c.'.'.'..ﬁﬁ..t.."l"llﬁ..l'..'..".....'."........l.’.l'..'....'.".'.

c
subroutine adjolin (d, rr, 1ic, jt, 1a, n, g9)

(=4

¢ Routine to add an active constralint

c

¢ l1nputs:

c d Previous vector d used to update rr

c rr Previous upper-triangular reduction of constraints--updated
c je Transpose of previous matrix J--updated on output
c ic Row dimension of rr in calling program

c ia Row dimension of it in calling program

c n order of 3t

c q Previous number of active constralnts

WHLIHOODTV ONININVYDOUd-DLLVUAVND AL, "8 XIANAddV

LCC




S

)

1 Nov 1990 12:00

quad.f Page 5

1 Nov 1990 12:00

quad.f Page 6

c
implicit undefined (a-z)
real*8 rriic,*), jtfia,*), d(*)
real*d beta, delta, u(l100), t, gamma
integer*4 ic, 1a, n, q, 1, 1
c
c Perform Householder reduction on vector d2:
delta = 0.d0
do 10 1 =1, n-q
ufrl) = dii+q)
10 delta = delta + ufi) * ufi)
delta = sqrt(delta)
1f (ufl).1c.0.d0) delta = —-delta
ufl) = ufl) + delta
beta = delta*u(l)
df{q+l) = -delta
1f (beta.eq.0.d0) write (*,*) "ler = ’, =1

4

non

Update R:
do 20 £ =1, g

20 rr(i,q+l) = d(i)
rr(q+l,q+l) = ~delta

an

update J*T by applyling the reduction matrix to J_2°T:
do 30 1 = 1, n
t = d(q+l)
1f (t.ne.0.d0) then
beta = u(l)*t
d(q+1) = uf(l)
gamma = 0.d0
do 40 § = g+1, n
40 gamma = gamma + d(}) * ft(4,1)
gamme = gamma/beta
do 50 § = gq+1, n
50 jtt3.1) = jt(1,1) + gamma * d()
endif
df{g+l) = ¢
30 continue

return

end
c
C.nt’t.'t'ﬁtttt.ﬁ.tt'.ntﬁ.tttt.tt.ttlt!i.""ttﬁ't.l’tﬁt'l'.t!!l!!li!ltt
c

subroutine remove (rr, ic, jt, temp, 1a, 1, n, q)

(=4
¢ Routline to remove an active constralnt
(=4
c l1nputs:
c rr Previous upper-triangular reduction of constralnts--updated
c jt Transpose of previous matrix J--updated on output
c temp Work matrix at least n x n.
< 1c Row dimension of rr in calllng program
c la Row dimension of }jt and temp 1in calling program
c 1 Index of the constraint to be removed
c n order of jt
c q Previous number of active constraints
c

implicit undefined (a-z)

real*8 rr(ic,*), jt(ia,*), temp(ia,*), u(100}

integer*4 ic, {a, 1, n, q, 1, 3, ler
c

do 10 1 =1, g-1+1

do 10 ) = 1, g-1
10 temp(i,3) = rr(i+1-1, J+1)

c

call hhred2 (temp, 1a. q-1+1, g-1, u, ler)
If (ler.ne.0) write (*,*) ?ler = *, ier

c
¢ Update R:
do 20 1 =1, 1-1
do 20 1 =1, g-1
20 rcrf(l,3) = rr(l, §+1)
c
do 30 1 =1, g-1
do 30 3 = 1, g-1
30 rr{i, j) = temp(i-1+1,1-1+1)
c

¢ Update J:
do 40 1 =1, n
40 call hhfor2 (temp, la, q-1+1, gq-1, u, Jt(l1,3))
c
return
end
[=4
C’tln'll'l'i'ﬂ!t'..l't.tt.t'.ltttﬂtt.tltiiﬂil.l'....'.!Qt.t"..t'.t.l'.'
c
subroutline mult (a, ma, b, mb, c, mc, m, nn, n)
implicit undefined (a-z)
real*8 a(ma,*), b(mb,*), cimc,*), sum
integer*4 ma, mb, mc, m, nn, n, 1, j, k

c
do 101 =1, m
do 20 § =1, n
sum = 0.d0
do 30 k = 1, nn
30 sum = sum + afl,k)*btk,])
c(i,]) = sum
20 continue
10 continue
c
return
end
c

c..tlt'ﬁli.lli.tt..t...'..D!’t.l".'.'ﬁlll!..l'ﬁ.'.l.t.ll.'l.'...)'.....
c
subroutine multvec (a, ma, b, ¢, m, n)

[ o4
c Subroutine to multiply a matrix times a vector
c
implicit undefined (a-z)
real*8 afma,*), b(*), c(*), sum
integer*4 ma, m, n, i,
c
do 101 =1, m
sum = 0.d0
do 20 } =1, n
20 sum = sum + af{i,})*b(})
c(l) = sum
10 continue
c
return
end
c

cl"l.ﬂ“.tt!t!li..ll""i'i’.tﬁ'.t.tl RRRRRRAN SRS R R R RARR R SRR RN ARRR RN RN
c

subroutine transp (a, ma, b, mb, m, n)

implicit undefined (a-2z)

real*8 afma,*), bimb,*)

integer*4 ma, mb, m, n, i, 3

do 101 =1, m
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do 10 § = 1, n c 1th component of jth reflection vector for { > }
b(i,1) = a(i,3) c 1a row dimension of a as declared in the calling segment
10 continue c n order of matrix a
c c ut jth component of jth reflection vector for j =<n
return c b1y ith element of jth b-vector I < n and j < p
end c
c ¢ Outputs: -1
ci.‘.t'.ﬁﬂ!tl."ﬂl.lllt"t.k..'t'i.lltﬁttt!ltlﬁ...Qﬁﬂﬁﬁl'l.ﬁl.'ﬁl'.ttt't c bij lch element of Jth h b -vector 1 < n and J < p
c
subroutine hhred2? (a, ia, m, n, u, lerr) implicit undefined (a-z)
c real*8 atia,*), 4(*), b(*), t, betan, gamma
c Matrix Householder Decomposition integer*4 ia, m, n, 1, k
c c
¢ linputs: do 10 k =1, n
c a m by n matrix for which the householder decomposition t = afk, k)
c 1s required (destroyed) i1f (t.ne.0.d0) then
c la row dimension of a as declared in the calling segment betan = ufk)*t
c m, n dimensions of matrix a atk, k) = utk)
c gamma = 0.d0
c outputs: do 20 1 =k, m
c lerr error flag (-1 if a is singular) 20 gamma = gamma + a(i,k) * b(i)
c atlj upper-triangular reduction of a (ie. u) for 1 =< } gamma = gamma/betan
c ith component of jth reflection vector for 1 > } do 30 { = k, m
c uj jth component of jth reflection vector for j =< n 30 b(i) = b(l1) + gamma * a(1i,k)
c end1if
implicit undefined (a-z) atk, k) = ¢t
real*8 a(ia,*), u(*), alpha, beta, gamma 10 continue
integer*4 ia, m, n, ierr, 1, 31, k c
c return
lerr = 0 end
do 100 k = 1, n
alpha_—.o_do cnnntﬁntﬂtntnntntﬁnntn.tt.ttlnnn.ntntnttnnt.'nnnp'Qn.'nlnn.ott.p.:tﬂnn:n
do 101 = k, m
ufl) = afi, k) subroutine hhbak2 ta, ta, m, n, u, b)
10 alpha = alpha + ufi) * u(l) c -t
alpka = sqrt(alpha) c Matrix Householder Backwards Multiplication h b
1f (ufk).lt.0.d0) alpha = -alpha c
ufk) = utk) + alpha c Inputs:
beta = alpha*u(k) c alj upper-triangular reduction of a (le. u) for 1 =< J
afk,k} = ~alpha c ith component of jth reflection vector for 1 > }
if (beta.eq.0.d0) then c 1a row dimension of a as declare. in the calling segment
lerr = -1 c n order of matrix a
go to 100 c u} jth component of jth reflection vector for J =< n
endif c bij ith element of jth b -vector 1 < n and § < p
1f (k.ne.n) then c
do 20 } = k+1, n ¢ Qutputs: -t
gamma = 0.d0 c bi} ith element of jth h b -vector 1 < n and j <p
do 30 1 =k, m c
30 gamma = gamma + ufi) * a(i,}) implieit undefined (a-z)
gamma = -gamma/beta real*g afia,*), uf*), bf*), t, betan, gamma
do 20 1 = k, m integer*4 ia, m, n, k, 1
20 afi,j) = gamma * ufi) + afz.}) c
endif do 10 k = n, 1, -1
100 continue t = afk,x)
¢ if (t.ne.0.d0) then
return betan = ufk)*t
end atk,k) = utk)
c gamma = 0.d9
CHRAR AR R AR AR R AR AR SR A S AR R RN AR ER SR AR RS VR AR SRR AR ARNR RIS R RA RN R R AR do 201 = k, m
< 20 gamma = gamma + afl,k) * b(l)
subroutine hhfor2 (a, ia, m. n, u, b) gamma = gamma/betan
c -1 do 30 1 =k, m
c Matrix Householder Forwards Muitiplication h b 30 bfl) = bfl) + gamma * a(l, k)
c endif
c Inputs: afk, k)=t
c aiy upper-triangular reduction of a fle. u}) for 1 =< 3} 10 continue
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c b¢i,1) = a(i,1)sbt(1,1)
return 10 continue
end

CRARAEIARARAARRRRA R AR ARAA AR A S ASR AN RAAR AR RARARARRARRARARAR R AR I AR RN 2R AR

subroutine trfor2 ta, ta, n, b, lerr)
-t
Upper Triangular Matrix Forwards Elimination u b
Inputs:
atlj upper-triangular matrix a for 1 =< }
fonly the upper triangle need be given)

ia row dimension of a as declared in the calling segment
order of matrix a

n
bij ith element of jth b -vector { < n and J < p

Cutputs: -t

bij ith element of jth u b -vector 1 < n and f < p
lerr error flag (-1 1f a singular)

naannoaonnNannNO0n

implicit undefined (a-z)
real»g8 a(ia,*), b(*), t
integer*4 ia, n, lerr, 1, k, kml

lerr = -1
do 10 k =1, n
kml = k - 1
1f (a(k,k).eqg.0.d0) return
t = 0.d0
1f (kml.ne.0) then
do 20 1 =1, kml
20 t =t + afi,k) * b(l)
endif
b(k) = (b(k) = t)/alk, k)
10 continue
lerr = 0

return
end

ct’ﬁ.ﬂﬁ'ﬁﬁ.ﬂﬁ""i.'.i.ﬁ..“.tl.ﬂillt...’.ﬁi*ﬁﬂﬁi'ﬁliﬂﬁ"*ﬁﬁ.ﬁltt.tiﬁ'ﬁ'

[
subroutine decomp (a, b, ia, m)

Cholesky Decomposition Algorithm :

If (a) 1s a positive definite mxm matrix, then (a) has a
factorization of the form a = bbt({t = transpose),where b
is a lower-triangular matrix.

Input : matrix (a) dimension mxm

anNOonNONnNnNnnao

OQutput : matrix (b) dimension mxm (lower-triangular)

impliclt undefined (a-z)
real*8 a(ia,*), b(ia,*), g, gg. £, ff
integer ia, m, i, 3, k, ii, cl

do 51 =1, m
do 5 1 =1, m
bti,1) = 0.d0
5 continue

b(l,1) = sqrt(af(l,1))
do 10 1 = 2, m

o4
i1 = 3
do15 31 =2, nm
cl -1

gg = 0.d0

do 20 k = 1, cl
g =bfl,k)*bli,k}
99 = g3 + g

20 continue

b(}1,3) = sqrttatl, 3) - ggl
if (j.ne.m) then
do 25 1 =11, m
£ff = 0.d0
do 30 k =1, cl
f =bfi,k) * bfi, k)
ff = £f +
30 continue
bti,j) = (a(i,j) - ££)/b(3,])
25 contlnue
11 = 11 + i
endif
15 continue

return
end
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