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Abstract 

This thesis presents an analysis of redundantly-actuated robotic systems with 

cmphasis on systems which have a time-varying kinematic structure such as mechanical 

hands, walking machines and multiple manipulators grasping a common object. 

Firstly, graph theory is used to characterize the kincmatic structure of these 

systems and show that they can be decomposcd into two subsystems, each with different 

properties. The contacts which occur between the constituent bodies in the system are 

thcn analyzed in order to determine the systcm's 1110bility (or number of degrees of free­

dom). It is found that this mobility varies during the task and that, at any given time, 

t.hcre will be more actuators active than are necessary. 

The kinematic and dynamic equations governing the motion of these systems 

arc then studied and compared to those of more cOl1ventional robotic systems. Although 

the inverse dynamics equations can be formulated in a number of ways, they always 

constitute an underdetermined system of linear equations. This allows their treatrncnt as 

equality constraints in an optimization problem. In order to account for the limitations 

of passive contacts and actuator capabilities, inequality constraints arc also considered. 

The formulation of the optirnization prohlem is thcn studied with emphasis 

on problems which are solvable in rcal-time and which produce tiJllC-continous solutions. 

Qlladratic programming is found to be a good choicc of problem formulation. A quadratic­

programming algorithm which efficiently include~ bot.h equality and inequality constraints 

is presented. A number of linear and qlladratic objective fllnctions which could be opti­

mizcd are reviewed and the limitations of linear programming are made apparent through 

t.he use of numerical examples. Quadfé1tic objective functiolls which minimize internaI 

force, power consumption and solution discontinuitics arc cxamined. Finally, oiher appli­

cations of redundant aduat,ion are brief)y touchcd upon-the full dynamic balancing of 

linkages and the reduct.ion of impact shocks in robotic syst.ems. 



Résumé 

Cette thèse présente une analyse mécanique des syst.èmes robot.iques à motori­

sation redondante avec un accent particulier sur les organes de préhension, les machines 

à pattes et les ensembles de robots manipulant un obj(,t commun. 

En premier lieu, la théorie des graphes est. appliqul'<' à la classification de leur 

structure cinématique et il est démontré que celle-ci change durant la t.âche, entrdÎnant 

ainsi un changement du nombre de degrés de liberté (ddl) du système. En comparant le 

nombre de ddl avec le nombre de moteurs installés dans le syst('mc, il dcvi('I1t évident qll(, 

ces systèmes disposent de plus de motel1l's actifs qu'il n'est nén'ssair('. 

Les équations cinématiques et dynamiql\(,s de ces syst.è'1I1es font l'ohjet d'Ilne 

étude approfondie. Il est démontré que l'excès de moteurs p('rmet d'optil11iser la distri­

bution des forces dans le système. De ce point de' V\I(', ks équations de la dynamique 

du système deviennent des contraill~es d'égalité dan:-, un prohlè'llle d'optimisation. En 

raison des types de contacts qui peuvent, exister dans les syl-lt,(·(])('s que TlOUS consid~rons, 

il devient essentiel d'inclure des contraintes d 'inégalij,e dans l'optiIlliscltion. 

Les méthodes d'optimisation sont considér(-cs du point. de' vile analyt.ique d, 

numérique, en insistant sur celles qui peuvent être r{'illIs(~('s ('11 t,PlllpS r{>(.J. La program­

mation linéaire, qui est souvent utilisée pour cc genl(' de plohl<'mcs, n'(,st. P;18 appropri{~~ 

dû à la possibilité de solutions multiples. La programmation qlladratique' dcvipnt alors 

la méthode de choix. Un algorithme capahle de r(-soudl e Ip [>l'Ol>lè'1I1(, d(' progrannnatiori 

quadratique avec contraintes linéaires de manière 1 a pide et. PfriCélC(' ('st. dOJlc pn;s(·Ilf.<!. 

Puis, le sujet de la fonction objectif qui d('vrait NIP optiIllis(-(! ('st. ahord(~. 

Plusieurs fonctions sont sugérées telles que la minilllisat.ion cJ(':-' forc('s inf,('f1ws, de la 

consommation cl 'én~rgie et des discontinuités des solut.iolls o1>I.<'IIII('S. Fillal('mml, d'auLf'('s 

applications de la motorisation rcdondante sont considf.I{!(·s, telles que k halancement. 

dynamique complet de mécanismes à quatrc harres et la 1 (~d IH tioll d(·s chocs. 

Il 
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Claim of Originality 

The author daims the originality of certain ideas advanced in this thesis, the 

most significant of these being listed below: 

(i) an explanation of why systems with time-varying topology are redundantly actuated 

and the impact this has on the methods required to control them; 

(ii) a proof that a system is more controllable with a given set of actuators than with 

any su bset of thosej 

(iii) a general framework to provide time-continuous force setpoints in real-time for 

redundantly-actuated robotic devices. This includes an algorithm based on the sym­

bolic preprocessing of equations for equality-constrained optimization problems, as 

weIl as the extension of an existing inequality-constraincd optimization technique 

to efficiently includc equality constraintsj 

(iv) a number of objective functions which may be uscfully optimized in the context of 

redundantly-actuated robotic devices. These includc: the scale-independent mini­

mization of internai forces, the optimization and limiting the non-working constraint 

wrenches, and the minimization of power losses in systems powerccl by dc servomo­

tors; 

(v) a pro of that the power imparted to a redundantly-actuated system of cooperating 

robotic devices cannot. be optimizedj 

(vi) an analysis of cooperating robotic devices at changes in topology and the proposaI 

of policies to smooth the solution discontinuities occurring at those Urnes; and 

(vii) the application ofredundant actuation to the full dynamic balancing of linkages and 

to the reduction of impact shocks effects. 

These contributions have been partly reported in a preliminary form in Nahon 

and Angeles (1989a), (1989b), (1990a), (1990b), (1991a) and (1991b). 

xv 



Chapter 1 

Introduction 

Early work in robotics focused on the devclopment of single-m'Ill anthropo­

morphic computer-control1ed devices which functioncd in isolatioll from olle other. As 

the complexity of tasks evolved, so did the demands on rohotie systems. Mult.iple l'ohot. 

workcells are now becoming commonplacc where Ollce isolctfpd IOhots worked alollC'. As 

these workcells develop, there is an increasing desire ta have I.h(' robot. a!'llIs collaborat<' 

on a single task-e.g., lifting a heavy obj('Ct.. Silllilarly, just as llIall oul,disl,allced Ul<' 

'lower' animaIs by developing a dextrous hancl, he wish<,s to hestow this same ability 011 

his robots. Thus, an increasing amount of roboties l'esearch is aillJ('d al. the dcveloplllcllt 

of multi-fingered dextrous hands. Furthermore, mobility is be«)J1Jillp, ail ill< reasingly dc­

sirable attribute for robots, allowing them to go ta their t.ask ['<\I,h('r t.han have t.hcil t.ask 

come to them. Legged locomotion has long hccn !'('coglli7,C'd as 8111)('1 iD!' 1,0 wl)('c·hl 01' 

tracked locomotion for mobility in rough and unstrllctlll'cd c'lIvil'OlIments (Bc'kkc'r, I!JGO) 

causing legged robots to become the object of considera bIc' aUc'llI,ioll for t1lei!' potential 

utility in military and forestry applications. 

The above is not meant as a whimsical l'pflectioll hlll. rat.ll<'r 1.0 bring 1.0 light 

the importance and relevance of certain seemingly 1I111'<'lat.ed robotic systems: coopcmting 

manipulators, dextrous hands and lcgged roholie vphicles, which are the foeus of the 

present work. Although they may appear lInrelated at first glalJcc, t.J)('s(~ syst.(·ms can he 
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perceived as an assemblage of robotic devices (i.e., arms, fingers or legs) which must work 

cooperatively to achieve the same end-whether that be to lift a load, manipulate a part, 

or walk. The purpose of this thesis is to study certain aspects which tltese systems have 

in common. More specifically, its motivation is to determine the commands which should 

be used to control these systems so that the individual robotic devices work cooperatively 

rather than antagonistically. 

1.1 A Review of Cooperating Robotie Deviees 

Mechanical hands, legged vehicles and cooperating manipulators bclong to a 

class of systems which can be called cooperating robotic de vices. Although these systems 

are different in many respects, they also exhibit certain markcd similarities. IIowever, 

advanccs in their design and control has taken place with relative\y little cross-fertilization. 

A brief overview of the history and present state of these systems is now presented. 

1.1.1 Legged Vehicles 

Legged vehic1es have existed for at least 25 years, though the carly on cs could 

Ilot really be considered roboUe sinee they either had fixcd leg motion or were under human 

rather than computer control. For example, the 4-lcgged 'walking truck' dcveloped at 

Ceneral Eledric (Mosher, 1969) had 3 joints per leg, each of which was directly controlled 

by the human operator seated in the vehicle. The task of simultaneously controlling all 

12 joints was so onerous that cven an experienced operator could only control the vehicle 

for a few minutes at a time (Todd, 1985). It became apparent, flOm this ea.rly experience, 

that a viable legged vehicle would have to make extensive lise of computer control to 

relicve the operator of the low-levcl control tasks and use him (or her) principally as a 

supervisory controller (Orin, 1982). 

Concert cd development and design of modern robotic legged vehicles has been 
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centered at the Ohio State University, starting with the carly OSU Hexapod (MfGh('(' 

and Iswandhi, 1979; Klein and Briggs, 1980) through to the rl'C<'ntly-colllplded six-I('gg('d 

Adaptive Suspension Vehicle (Waldron et al., 1984; 1987). l\lany of t.he analytical ad­

van ces in the area of legged vehicles have also come from that. inst.it.ut.ion-cxalllples 

being the works of McGhee and Pai (1974), Orin and Oh (1981), Waldron (1986) and 

Kumar and Waldron (1988). A nurnber of legged vehicles have b('CJl huilt by other rc­

searchers including: a six-Iegged axisymmetric multi-function platforrn (Hussdl, 198~j), a 

six-legged single-passenger vehicle (Sutherland and UIlner, 198·1), and a s('ries of smaH 

terrain-adaptable quadrupeds (Birose, 1984). FurthC'rrnore, a considC'rahle amount. of rc­

search 011 legged locomotion has been pcrformcd in the Soviet Union (lImllov and Pogrcb­

niac, 1975; Gurfinkel et al., 1981; Popov, 1982; Bcssonov and Umnov, 1983), though t.h(, 

results of this work are less readily accessible. 

The above machines have the commoll t.rait. of \H'ing st,at,jcally st.ahle-i.{'., 

the vertical projection of their centre of mass poslt.ion falls wit.hin the SUppOIt polygon 

(the polygon formed by the connecting the foot/ground cont.act point.s). This allows dl(' 

vehicle to stop at any time during its gait without féllling 0\'('1 Hcu'ntly, dYlwmicaJ/y 

stable legged vehicles have been developed by RélibNt ct. al. (l!)8'1, 1986), Miura and 

Shimoyama (1984), Takanishi et al. (1990). The principal ohjective of Uws(' OIJ('-, t.wo­

or four-Iegged research vehiclcs is t.he devclopnH'llt. of {Ollt roi tc'chlliql\(,s whidl allow 

controllable dynamic stability. Intcrestingly cnough, the dYIléllllicéllly Htc\.hh' lllé\chilIPS 

built until now will fall over if they stop running he'cauHc t.lwy éll(' not, ~tatintlly st".ble. 

No machine has yet, been built which can make t.he t,rall~it iOIl !)('t,w('('1l st.at.ically and 

dynamically stable walks. A more dctailcd ovcrviC'w of t1J(' bbt.ory and c!('VC')OpIIIPllt of 

legged robots is given by Todd (1985). 

1.1.2 Mechanical Rands 

Until recently, the only end effectors availahle fol' l'obotic manipulators were 

simple jaw-grippers and specialized tool-holdcrs dcsigned to hold particlllar took .Jaw 
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grippers have the advantage of being simple and versatile. However, because of their 

simplicity, they are unable to perform any dextrous manipulation-that is, maneuvering 

of an object relative to the end-effector. As a result, robot arms equipped with jaw 

grippers are constrained to do aIl manipulation at the arm levcl and the accuracy of the 

manipulation possible with this arrangement is limited by the usually coarse accuracy of 

the robot arm. 

Dextrous mechanical hands, which allow manipulation to be performed by 

the hand rather than by the arm, have appeared relatively reccntly in the history of 

robotics and are of particular intcrest in tasks requiring finc manipulation. However, 

the development of dextrous hands has been hindcred by their considerablc mechanical 

complexity and the amount of computing power rc<)uircd to control thcm. As computing 

power has come down in ('Ost and experiencc has becn gained with the high-density 

mechanical drive and actuation systems required, sorne mechanical hands have begun to 

appear-though principally as research tools. 

Early work by Salisbury and Craig (1982), Salisbury and Roth (1983), Kerr and 

Roth (1986), Mason and Salisbury (1985) and Cutkosky (1985) laid the grollndwork in this 

field and identified problems which would have to be surmounted for mcd.anical hands to 

bccome viable. Dextrous hands, as opposcd to simple grasping, possibly anthropomorphic, 

hands, were designed by Skinner (1975), Tomovié and Stojiljkovié (1975), Crossley and 

Umholtz (1977), Okada (1979), Salisbury (Mason and Salisbury, 1985), Jacobsen et al. 

(1984; 1986) and Santoso (1987). The Utah/M.LT. haJ1(1 (Jacobscn et al., 1984: 1986), 

which represents the state of the art, is an anthrop::>morphic 4-fingcrcd hand with 4 joints 

pcr finger, an opposed thumb and tactilc sensors. Each joint is actuatcd by two opposing 

tcndons, each of which in turn, is driven by an actuator. There are thercfore 32 actuators 

which are remotely located. 
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1.1.3 Cooperating Manipulators 

Although industrial robotic manipulators have existcd sincc the early 1970's 

they are almost invariably used to perform tasks individually. Reccntly, it has becoll1e 

clear that improvements in productivity would be atlained with workcells in which mul­

tiple robots would collaborate to perform a single task and therdore would, al. limes, 

manipulate the same object. Hayward and Hayati (1988), for exampl(" point out that 

multiple manipulators are weIl suit.ed for tasks such as the transport x)f inertial londs in 

the absence of a gravitational field and the transport of flexible' payloads. 

To date, most of the work dealing with Illultipl(' lllilllipulatOls has foclIs('d 

on their control rather than their mechanical design, 011 the tél ( i t aSslllllptioll that tl)('s(' 

systems would simply be composcd of two separate cxisting lJJilJlipulat.ors. 'l'II(' ('0111.1'01 

problems introduced by the interaction of mult.iple ma n ipula tOI ~ i ncludC' a ('ollsi(l<'ration of 

1. The controller archi tecture and control laws Jl<'cded to (,()Ilsist('n t.Iy contI 01 IlIl1lti l'le 

manipulators (Hayati, 1986; Tarn ct al., 1988; 1111 and C:oldl'nb('lg, 1990), 

2. The more cornplex software envirollmcnt rf'qllir('d to synchroni7,f' Jllultiple J>I'o('('sses 

(Hayward and Hayati, 1988), 

3. The necessity of moving-obstacle avoidance (Toul'llassoud, 1988), and 

4. The sequencing of tasks in the workcell (Ilussaini and .Jakopélc, 198G). 

Among existing control philosophies, sorne (e.g., ZI)('ng dud Lllh, 1!)8(i, 1989 J 

trcat the various manipulators in the workccll Illwqllally hy appointing (>11(' of th('se as 

the 'leader' and the other(s) as 'followel'(s)', thcl'eby simplifyillg t.!l<' I.ask requirellH'llts 

for the individual robots. Other researchers prcfer Ilot to impose t.his art.ificial cOllstraint 

and treat aIl robots as equaIs, but must <lcal wit.h more cOll1plC'x sC'<jII<'llcing prohl(·/Ils. 

Very recentIy, sorne research has emerged which also dC'als with t1l<' 1Il('chanical 

design of rnulti-armed robotic systems. Thus, the fif'ld is \\'(,11 ('Ilough advan(,f'd that sllch 
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systems are now being designed, particularly for space-based applications, on the premise 

that their arms will work together at aH times (Borduas et al., 1989; Iwata et al., 1989; 

McCain, 1990). 

1.2 An Introduction to Sorne Problems 

From the mechanical engineer's perspective, robotics fits into the broader and 

more classical field of the theory of machines and mechanisms (TMM). Figure 1.1 shows 

a cross section of robotic devices and machines: 

(a) A seriaI robotic manipulator Ilot in contact with its environment, 

(b) A parallel robotic manipulator-often used as a flight simulator platf,)rm, 

(c) An oil pumping rig, 

(d) A mechanical hand, 

(e) A walking machine, and 

(f) Two manipulators of the type shown in (a) handling a common payload. 

These systems are aU examples of kinematic chains-or couplings of rigid bod­

ies by means of mechanical constraints (Angeles, 1989). Exccpt for t.he seriaI robotic 

manipulator, aIl these systems bear the similarity that t.hey incorporate kinematic loops­

that is, a path can be traced along successive bodies and joints which starts and ends at 

the same point. As weIl, the first three systems are differeut from the last three in one 

important respect: their kinematic structure does not change with time. Dy kinematic 

st.ructure, or top%gy, we mean the connections bctwcen the bodies which make up the 

kinematic chain-a topic which will be discussed in detail in Chapter 2. 

Most mechanisms and machines have a fixed structure-even though the po­

sition and orientation of their members may change, the connections betwcen them do 
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(a) (b) (c) 

(d) (e) (f) 

Figure 1.1 Robotic Systems, Mdchines and Mechanis111s 

not. As a result, the mobility of the system (Hunt, 1978) (a.k.a., its 1 III 111 ber of degl'ccs 

of freedom)-i.e., the number of independent variables nccdC'eJ to flllly specify the posi· 

tion and orientation of aIl its links-remains constant throughout its operation. At carl! 

joint, an actuator may be instal1ed in order to control the joint variable at that joint. 

Therefore, a machine normally needs a number of actuators cqual to its Illobility in order 

to be fully con trolled j in fact, it is corn mon practice to install as milny actuatol'S as dico 

tated by its mobility. For example, the platform shown in Figure 1.1(b) has a Il10bility 

of six and six actuators. The possibility of installing more actuators than necessary in a 

device of fixed topology is rarely suggested, primaI ily becausc of the ncgative cffcct that 
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rcdl1ndant actl1ators can have if they are not properly coordinated. Other causes for the 

neglect of redundant actuation in fixed-topology devices are their cost, weight and the 

extra complexity they require in their control. An example of the relativcly simple control 

requirements of a non-redundantly act1\ated system is that wc can always uniquely find 

the actuator forces or torques required to effect a prcscribed motion of that system. 

In contrast to fixed-topology systems, the mobihty of systems with time­

varying topology varies during their task, and obvious questions which come to mind 

are therefore: How maay actuators should be installed in these systems? and, how many 

actuators should be driven at any givcn time ? 

1'0 answer the first question, it must be recalled that the individual robotic 

deviccs which make up the systems of interest may aet independently, at times. For 

example, when the nngers of a mechanical hand arc not in contact with each other or 

with a common object, they can move independently. During this part of their task, they 

can be considered as independent systems and each devicc must have installed at least as 

many actuators as required by its mobility. Thus, the number of actuat.ors in the system 

is chosen according to the mobility of its comtituent kinematic subchains, when these act 

illdependently. In the case of the two six-axis manipulatOls shown in Figure 1.1(f), there 

would be a total of twelve actuators installcd in the system, alld ail of them would be 

driven when the manipulat.ors are not grasping the common payload. 

The answcr to the second qu('stion is not as straightforward. When individual 

subchains come into contact with each other directly or through a commonly-grasped 

objcct, closed kinematic chains are formcd and the mobjJjty of the system is dccreased. 

III orcier to keep the system non-redundnlltly actuatcd, a control policy could be adopted 

to turn off the same number of actuators as the reduction in mobility, while keeping 

the corrcsponding joints free to move. Alternativcly, ail actuators could be kept active, 

while ensuring that the control commands to the actuators arc not antagonistic. If the 

commands c.:onflict with each other, large forces may be gcnerated both in the robotic 
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devices and on the common objed-e.g., in the case of a mcehanical hand, the graspcd 

object might be crushed. We can therefore expect to encounter more control prob!ellls if 

we persist in driving too many actuators, and, should wc choose this strategy, wc must 

ensure that there will be compensating benefits. 

The tradeoff between added control complexity and the potcntiai bcncfits of 

redundant actuation touches on a number of related topics in roboties-most not ably, that 

of dynamics. As previously mentioned, the problcm of finding the act.Uéltor eOllllllands 

required to effect a prescribed motion of a non-redundantly actuat,ed syst('m-a prohlcm 

also known as inverse dynamics-is relatively straightfol'ward. This is not. t.he cas!' for Illul­

tiple cûoperating robotic devices which are redunclcUltly act.uated, as thcil' cO!Tesponding 

inverse dynarnics equations are underdcte~'l1inate--thcrc arc fewcr force/lllonlPllt b:tlan('(' 

equations than unknown forces and mome ltS. This impli('s tltc\t thel'C' Me an infinit(· nllltl­

ber of solutions to these equations. Failure tû choos(! a 'good' solut.ion \'0 tll<'s(' equat.iolls 

can result in the generation of excessivc forces m(,!1tÎOIH'd )Hc\·iollsly. In 01 d('r to choos(' 

the 'best' solution, opt imization techniques have' b('('n proposC'd to min illli~(' an oh j('ct. i V(' 

function while satisfying the equations. In this light, t.J)(' for('('/ moment. balance ('((ualions 

can be viewed as constraints in an optimization prohlc'lI1. Once a sct of optimulll forces is 

found, it can be used as a setpoint in a force cOl1trol1cl', such as that sugg<,st,(,d hy lIayat.i 

(1986) to ensure coordinated use of al! the install('d actllatOlS. 

This approach to the control problem can he lcgal'chl as adive compliélflc(' in 

the same sense that this technique is applied to the control of a s('rial robot.ic maniplllat.or 

in contact with its environmmt (sec c.g., Asada <wcl Slot.ine, I!J86). ft can also be COII­

trasted to passive compliance--an approach wlrich has also 1)('('1) proposC'd in the (,OIltext. 

of walking machines and mechanical hands by a small minority or rcs('orc!)('rs (U 1l1ll0V 

and Pogrebniac, 1975; Lallemand, 1988; Gao and Song, HmO). III the latter élpproadl, 

the force distribution in the system is not activcly contlol[l: l, but 1 élt.!)('r a"lsulrH'd to t.c1k(· 

place passively due to structural cornpIiancc in the syf>tcm. lIowcV<'J', just as pa"lsive 

compliance has limited application in the [Of CC cont.rol of s('rial manipulators in conf act. 
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(c) (cl) 

Figure 1.2 Force Indeterminacy, Passive and Active Compliance 

with their environment (Asada and Slotine, 1986), its applicability to multiple cooperat­

ing robotic devices is also restricted. It requires that the structural design of the system 

be compliant enough to obtain desirable force distribution properties. This can, in turn, 

prcclude accu rate motion control which can often prove to be a serious drawback. For 

example, a mechanical hand, whose express purpose is to perform fine manipulation, may 

become limited in this very respect by its structural flexibility. Conversely, if the system 

is relatively rigid, the passive compliance approach can become extremely sensitive to 

configuration errors. In fact, active compliance can be regardcd as an approach in which 

the compliance of the system can be adjusted according to the task, thereby making the 

system less sensitive to (uncontrollcd) structural flexibiIity. 

These concepts are exemplified by the simple system shown in Figure 1.2-a 

bca.m J'csting on three roller supports. The relevant equatiolls for the beam are the vertical 

force balance and the moment bala.nce equations, sinee latcral motion is unconstrained. 

'l'hese two equations are underdetermincd because there are three unknowns: the vertical 

forces acting at each of the three supports. The result of this underdeterminacy is that 

it is impossible to determine the forees acting on each bearing. If the beam is relatively 

rigid, then a. small difference in the size of one of the supporting bcarings will cause a large 
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difference in the resulting force distribution-in Figure 1.2(a), the t,wo outer bearings will 

each support half the load, while in Figure 1.2(b) they will support none of it. On the otller 

hand, if the beam is very flexible, as in Figure 1.2(c), differenccs in the bcarings should Ilot 

cause much variation in the force distribution, but the system will be difficult to control 

accurately. The approach proposed here and by most other researchcrs, iIIustrated in 

Figure 1.2( d), is to assume that the mechanical system is rigid, but introduœ compIiancc 

through the control strategy. This is done by choosing an optimal set of forces-in this 

case, perhaps, such that each bearing supports one third of the load-and slightly move 

the supports vertically to achieve this balance. 

It was previously mentioned that the force/moment balance cquations can be 

viewed as constraints in an optimizat.ior. problem. They arc not the only cOllstraints 

which need be considered, however. Certain systC'ms-most not.ably rncchankal hands 

and walking machines-have unilateral physical const.raints duc to the nature of the con­

tacts involved. These inequality constraints generally arise as a result of passive frictional 

contacts in systems which dt'pend on these for force transmission bctwccn differcnt parts 

of the system. The contact conditions between the fcct and ground in walking machines 

or between the fingertips and manipulated object in a Illechanical hand arC' good cxall1-

pIes of these. For example, Figure 1.1(d) depicts a mecbanicéll hand holding ail object 

where, in addition b the force/moment balance cqllat.iolls, tlwl'c exist furUwr illcquality 

constraints at the fingertipjobject contacts. Normal contact forces cannot be ncgative 

and the magnitude of the tangential force at each fingcrtip cannot ex('('(~d the maximum 

force due to statie friction. Thus, any solution method to the optimi~ation problcm must 

be able to consider inequality eonstraints. As weil, since it is int.ended that the rcsult, 

of the optimization will be used as a controller sct.point, solutions must 1)(' obtaincd in 

real time. Summarizing, t.he real-time control of eooperating l'obolie devices involves the 

solution of an optimization problem subject to both cqllality and ineqllality constrainl.s. 

Another question which must be answered before the optimization problcm is 

solved is quite bdSic: what should we optimize? In fad, when a system is rcdundantly 
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actuated, it becomes possible to optimize the force distribution it exerts on its environ­

ment and/or its internai force distribution. Thus, in the case of a mechanical hand, the 

finger-object contact forces can be reduced and homogenized, reducing chances of slip­

page and crushing, and allowing a lighter structure to be buiIt to carry the same loads. 

Redundant actuation can also allow greater safety in case of breakdown of individual ac­

tuators because a redundantly-actuated mechanism can still be controlled if one or more 

actuators breaks down. Yet another advantage of redundant actuation is that it permits 

us to choose a solution to the inverse dynamics problem which satisfies the inequality 

constraints previously mentioned-which might not be possible in a determinate system. 

Finally, it is interesting to note that the human body makes ample use of 

redundant actuation and of control strategies where certain actuators are turned off du ring 

part of their strok('. For example, the human arm has tluee joints with a total of 7 to 

9 degrees of freedom (Shipman et al., 1985) to position and orient the hand, but uses 

29 muscle groups (Gray, 1985) for actuation of these degrees of freedom. Not aIl muscle 

groups are active at aIl time3, but rather only the ones which have a good mechanical 

advantage. At any given time, there will always be more muscles active th an are absolutely 

necessary but they will always act cooperatively. 

1.3 A Brief Overview of Previous Work 

To the author's knowledge, the first observation that the inverse dynamics 

pl'oblem of cooperating robotic devices admitted mauy solutions was made by McGhee 

L'nd Orin (1976) in the context of walking machines. The work of Williams and Siereg 

(1979) was also notable by being the first to use the term 'redundant actuation'. Orin 

and Oh (1981) adopted a linear-programming approach to solve the inverse dynamics 

pl'oblem while developing a technique to determine forces in the design of walking ma­

chines. Klein et al. (1983) also notcd the problem while obtaining force setpoints for the 

controller of the OSU Hexapod, and used a pscudoinycrse solution. Kerr and Roth (1986) 
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noted the underdeterminacy of the force problem in mechanical hands and proposed a 

more conservative linear-programming approach which stays as far away as possible from 

the inequality constraints. Waldron (1986) and Kumar and Waldron (1988) proposed a 

technique based on 'interaction forces' applicable to systems with zero contact torques 

to solve the problem but neglected to demonstrate the computation al efficiency of this 

scheme. Nakamura et al. (1987) proposed their own inequality-constrained nOlllinear 

programming algorithm to minimize internai forces, but, again, did not consider its po­

tential for real-time implementation. Finally, Zheng and Luh (1989) proposed another 

inequality-constrained nonlinear optimization formulation, but found that comput.at.ional 

complexity and frequent switching of joint torques led t.o problemat.ic solut.ions. 

Until about 1988, the only approaches which SCCIl1C<! t.o be implementable in 

real-time were those based on pseudoinverse solutions which could not consider inequalit.y 

constraints. Cheng and Orin (1989) \'Fere able to greally speed the lincar-programming 

solution by formulating a 'compact dual' problell1, thcrcby allowing rcal-time ill1plemen­

tation of linear programming. However, this approach yields discont.inuous solutions due 

to the peculiarities of linear programming. Klein and Kittivatcharapong (1990) applied 

a nonlinear-programllling algorithm to minimize a linear objective fundion in walking 

machines but were forced to accept suboptimal solut.ions to avoid discont.inuities. 

One aspect which has been neglected by prcvious works is a consideration of 

the behavior of the systems in question upon changC's in t.opology. Very f('w authors even 

consider examples in which changes in the system's topology OCCllI', even though the force 

optimization problem is of interest principally for systems with timc-varying topology, 

The few works which present examples including changes in topology report results which 

exhibit severe discontinuities in their force time histories, 
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1.4 Organization of the Present \\iork 

The present work presents a unified approach to the problem of finding force 

set points for the control of cooperating robotic devices. Chapter 2 presents an analysis of 

the kinematie structure, or topology, of cooperating robotic devices, where graph theory 

is used to classify their structure. The nature of the contacts and joints occurring in these 

systems is then studied with emphasis on the freedom they allow and the constraints they 

impose on the bodies which they couple. These concepts are then brought together to 

dctermine the mobility and connectivity of the syst.ems of interest. Chapter 3 expands 

the kinematic analysis to include not only the effects of kinematic structure, but also the 

geometry and motion of the system. The position, velocity and accelcration kinematics 

of open and closed kinematic chains are reviewed. More comprehensive evaluations of 

the mobility and connectivity of the systems of interest are introduced and the duality 

between kinematics and staties is reviewed. 

The dynamics of cooperating robotic deviccs is important when trying to de­

termine the forces and torques acting on the system during a particular task. Chapter 4 

investigates the formulation of the system's governing equations and shows that the in­

verse dynamics equations are underdetermined when the system is redundantly actuated. 

This allows us to optimize an objective function while searching for a solution to the in­

verse dynamics equations. The effect of time-varying topology on the dynamics equations 

is investigated to show that the coefficients of the motion equations vary discontinuously, 

causing jump discontinuities in the force time histories. Since the actuators are not ex­

pected to be able to respond to discontinuous torque commands, a smoothing of thesc 

discontinuities is presented. Inequality constraints on the solution to the dynamics equa­

tions are also introduced in this chapter to represent the limitations of passive frictional 

contacts, actuator and joint limitations and smoothness constraints on the solution. 

The necessity to optimize having been established, Chapter 5 investigates tech­

niques which can be used to perform the optimization with an emphasis on real-time im-
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plementation. Criteria for the existence and uniqueness of minima are rcvicwcd bccause 

these are useful in comparing linear and quadratic programming. It is dcmonstratcd that 

the latter has superior performance in terms of both the smoothness of its solution, and its 

computational speed. Algorithms are then presentcd for the solution of the optimi~ation 

problem and an existing technique for inequality-constrained quadratic optimization is 

extended to include equality constraints. Chapter 6 then presents sorne Iinear-quadratic 

objective functions which can be minimized while finding a solution. These include 'in­

ternaI force', power losses and solution discontinuities. 

Alternative uses for redundant aduat,ion arc prC's{'nted in Cha pt,C'r 7, for sys­

tems with tirne-varying or constant topology. These includc the full dynamic balancing of 

linkages and the reduction of the effects of shocks in linkages. FinaJly, Chapter 8 concludes 

with recommendations for future work. 
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Chapter 2 

The Kinematic Structure 

A kinematic chain may be defined as a set of bodies, each of which is called a 

link, cou pIed by joints betwecn adjacent bodies. Thus, cooperating robotic devices can be 

c1assified as kinematic chains with particular characteristics in their kinematic structure 

which set them apart from other types of robotic systems. This chapter presents a classifi­

cation of the structure, or topology, of the kinematic chains of interest-i.e., a description 

of the number of links and joints in the system and their interconnections, disregarding 

geometric details such as link lengths and shapes. The grapn repl'esent ation of a kine­

matic chain is introduccd in order to provide a systematic framewùrk for c1assifying and 

analyzing its topology. Graph theory will then allow us to classify the chains of intcrest 

as a subclass of more general kinematic chains. Sin ce the topology of a kinematic chain is 

affected by the constraints imposed by the contacts betwecn its constituent rigid bodies, 

the contacts which occur within the robotic systems of interest will he characterized. 

Kinematic chains may be suhdivided into structures, the purpose of which is 

to transmit forces, and mecllanisms, l the purpose of which is to transmit motion. The 

distinguishing difference betwccn the two is the mobiIity of the chain-the mohility of a 

structure is non-positive, while that of a mechanism is positive. Robotic systems may be 

analyzed as mechanisms or structures, depending on the intent of the analysis. In general, 

1 In the present context, t.he term mechanism includes open kincmatJc dJains 
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their purpose is that of a mechanism, but they can also be inst.antancously considered 

as structures by assuming their actuators to be locked in a certain position. One of the 

important tasks when designing a complex mechanism such as a mechanical hand will he 

to ensure that it has the capability to move an object in as Illany degl'œs-of-frœdom as 

desired and, conversely, that the object will not move when the actuatol's are lockcd. The 

concepts discussed in the t:~rlier sections will therefore be brought togcther to dct.ermine 

the mobility of kinematic chains and the connectivity of any t.wo links in t.he chain. 

2.1 Graph Representation 

Graph theory is a field of applied mathematics (IIal'ary, 1969) which provides 

a useful abstraction for the analysis and classification of the to})ology of kinematic chains. 

The graph representation of kinematic chains has hecn used by, among others, Dobrjan­

skyj and Freudenstein (1967), Baker (1981), Davies (1981), Angeles and Gosselin (1988), 

Gosselin (1988) and T ::,ai and Lee (1989). It consists of a diagram wherc each link is 

represented by a point and each joint by a linc. Thlls, the grélph represcntation of a 

kinematic chain will take the form of a collection of points conncctcd by lines. Sincc the 

terminology of graph theory is not standardized, IJarary (1969) advisC's a c1car definit.ion 

of t.erms before embarking on an analysis making use of graph.thC'oret.ical concepts. Thc 

pertinent definitions for the present purposes are as follows: 

Definition 2.1 A graph Q consists of a fini te nonempty set V = V(Q) of P points togcthcr 

with a prescribed set ,..1.' of Q unordered pairs of distinct point.s of V. Each pair 

x = {u, v} of points in X is a line of Q; x is said to jO;1l u and v, and tt and v are 

said to be adjacent. 

Definition 2.2 The degree of a point u in a graph Q Îs the number of lines incident 

with u. 

Definition 2.3 A subgraph of Q is a graph having ail its points and Iines in Q. 
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Definition 2.4 A walk is an alternating sequence of points and Hnes, beginning and 

ending with points, in which each line is incident with the two points immcdiately 

preceding and following it. 

Definition 2.5 A path is a walk with aIl its points and, necessarily, aIl its lines distinct. 

Definition 2.6 A cycle is a walk heginning and ending at the same point, indu ding at 

least three points, and with ail but its first and last points distinct. 

Definition 2.7 A graph is said to he connected if every pair of point.s is joined by a path. 

Definition 2.8 A tree is a connected graph which has no cycles. 

Definition '>..9 A spanning tree T of a graph 9 is a connected subgraph of 9 which has 

no cycles and contains aU the points in g. 

Definition 2.10 A chord of T is a line of 9 which is not in T. 

Definition 2.11 The cycle basis corresponding to T, and denoted by Z(T) is the set of 

subgraphs of 9 obtained by successively combining T with one chord of T, for aIl 

chords of '[. 

Definition 2.12 The cycle rank of 9 (or number of independent cycles in (i), denoted 

by c, is the cardinality of (or number of elements in) 2(T). The cycle rank is an 

invariant of (i and is not affected by the chosen T. 

Theorem 2.1 Known as Euler's Theorem-If 9 is a connected graph, then 

c=Q-P+l (2.1 ) 

In subsequent sections, eq.(2.1) will be useful to detcrmine the number of inde­

pendent loops in a kinematic chain, allowing the derivation of simple mobility equations. 

To illustrate the above concepts, consider the mechanieal hand shown in Figure 2.1(a). 

Its associated gra!;h cau be drawu as shown in (b), and a spanning tree ean be drawn as 

shown in (c). The spanning tree is not unique and thus, other spanning trees could have 
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Figure 2.1 Graph Representation of a Mechclllicallland 
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been chosen. The chords corresponding to this spanning tree are shown in (d) and finally, 

the resulting cycle basis, which has a cardinality of 3, is shown in (e). 

2.2 Classification of the Kinematic Structure 

The variety of ways in which links and joints can be cou pied results in a wide 

diversity of kinematic chains which can be classified into variolls groups. This classification 

allows us to see where cooperating robotic devices fit in relation to other kinematic chains 

and provides a means to begin theÎr analysis. The concepts of graph theory introduced 

in §2.1 can be used to systematically describe the interconnections bctwccn the clements 

which constitute a kinematic chain. We need only consider systems whose graphs arc 

connected sinee other cases represent the trivial addition of uncoupled kinematic chains 

to the system. This is implicit in the following definitions: 
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(a) (b) 

(e) 

(cl) 

Figure 2.2 Classification of J(jnematic Chains 

Definition 2.13 A simple kinematic chain is one whose graph has aIl points of dcgree 

less than or equal to two. 

Definition 2.14 A complex kinematic chain is one whose graph has at least one point 

of degree greater than two. 

Definition 2.1,) An open kinematic chain is one whose graph has no cycles. 

Definition 2.16 A closed kinematic chain is one whose graph has at least one cycle and 

no points of degree one. Alternatively, it can be defined as one whose graph has no 

points of degree less than two. 

Definition 2.17 A hybrid kinematic chain is one whose graph has at least one cycle and 

at least one point of degree one. A hybrid kinematic chain is al ways complexe 

We can use the above definitions to classify the topology of any kinematic 

chain into the five broad categories shown in Figure 2.2: (a) simple open chain (e.g., a 
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Figure 2.3 Graph Decomposition of Cooperating nohotic Deviees 

seriaI manipulator), (b) simple closed chain (e.g., a four-hal' linkage), (c) compl('x o)Jcn 

chain (e.g., a mechanical hand not grasping an ohject), (<1) colllplc-x closed chain (e.g., a 

Stewart platforrn), and (e) complex hybrid chain (c.g., a walking machine with sOllle of 

its fcet not in ground contact). 

Cooperating robotic systems have gra phs of Lhc f01'l1l shown in Figlll'('s 2.:J( a): 

two poles joined by an arbitrary numbcr of parallel paths and an arbitrary Humher of 

open paths emanating from one of the poles. To illllstrate this, in a lllf'chanÎcal "and, 

the two poles represent the palm of the hand and the gl'aspcd objPd., t!w pal'allel pa1.hs 

repl'esent the fingers in contact with the object, while the 0))<'11 paths 1'C'1)!'('S('llt t.he finppl's 

nOL in contact with the object. Thus, cooperating robotlc systellls Célll be' c1assificd as 

complex hybrid kinematic chains with particlliar f('atllre's Wllich becollw mOI(' apparent 

when we decompose the graph shown in Figure 2.3(a) iuto two subgl'aphs, 

The firs!' of these subgraphs, shown in Figure 2.~J(b), repres('Jlts a paraJ/cl kine­

matic chain-a particular instance of complex c!osed kilH'matic dlain dC'fined as follow8: 

Definition 2.18 A parallel kincmatic chain is a c!oscd kinelllatic ('hain whosc graph has 

two points, called 'poles', of dcgrce p wherc p ~ 2, alld the le/TIlliniJlg points of 

degree two. 
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The second subgraph, shown in Figure 2.3(c), represents a star-a particular 

instance of a tree structure dcfined as follows: 

Definition 2.19 A kinematic star is an open kinematic chain whose graph has one point, 

called the 'pole', of degree q where q ~ 1, q points of degree one and the rcmaining 

points of degree two. 

The above decompositioIJ simplifies the analysis of the hybrid chain because, 

for most purposes, the two kinematic subchains can be analyzed separately. Thus, as 

will become apparent in the following sections, the mobility of the hybrid chain is the 

sum of the mohilities of the parallel and the star suhchains. As weIl, in Chapter 3, the 

kinematics of the parallel and the star subchains will he treated independcntly of each 

oUler. Finally, Chapter 4 will show that the dynamics of the two subchains can also be 

trca,tcd separately. 

The topology of a kinematic chain is an instantancous property, which remains 

constant for most mechanisms. A charactcristic of coopcrating l'obotie devices is that their 

topological graph changes discretely dUl'ing their task. That is, as the task progresses, 

some kinematic subchains which were closed are opencd, and othcrs whicll were open are 

closed-e.g., when the leg of a walking machine contacts the ground. This is exemplified 

by Figure 2.4 whieh shows t!le topological graph of a threc-Icgged walking machine walking 

with a wave gait (Todd, 1985). In fact, the topology will change from parallel to hybrid 

parallel/star, and vice versa, as time progresses. 

2.3 Classification of Joints and Contacts 

The clements which couple the links of a kincmat.ic chain are callcd joints 

or, more formally, kinematic pairs (Angeles, 1982). These ean be classified according 

to the dimensionality of contact, and by the number of degrccs of freedom which they 

allow or the number of constraint.s t.hey impose. A lowcr kincmatic pail' is one in which 
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(a) (b) (c) (cl) 
--------------------------------------------------

(e) (f) (g) (h) 

Figure 2.4 Graph of a Planar Tllrce-Leggcd \Vé'llkillg J\rI;H'lIinc wit,h WaY(> Gail, 

contact hetween the two lin~s which it couples takes place along a slIrfaœ, whilp il higJwr 

kinematic pair IS one in which contact takes place along a Jinc or a }HJint. The six pm;sihle 

types of lower pairs are shown in Figure 2.5 (from Ang(·IC's, 1982): (a) rcvolllf.p, (1)) 

prismatic, (c) screw, (d) cylindrical, (e) spherical and (f) plaual'. Hobof.ic rncchanisllls 

almost illvariably rnake exclusive use of these pairs-usually n·volut.e 01' prismatic-- sillCP 

thcy are fully controllable with a single motor and pl'ovide dcsil'ôble <{ualities sllch ilS a 

stable contact, and a large contact area to recluce wear. Jt should also be not(·<1 that 

the first two lower pairs-revolutc and prismatic-can he lIscd in various combillat.iolls t.o 

form the last four lower pairs-c.g., a cylindl'ical pair is a revolut.e pair and a pri,;rnatic 

pair, the axes of whic.h are collinear. 
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N=l N= 1 N=l 

(b) 

N=3 

(cl) (e) (f) 

Figure 2.5 The Six Possible Types of LOlVer l\inematic Pairs 

If the contact which takes place in the kinematic pair is assumed to be fric­

tionless, each of the above pairs has a Unil{UC degree of freedom, N, associated with it 

as shown in Figure 2.5. Corrcspondingly, the contact surfaces will excrt 6 - N forces 

in the constrained directions-i.e., the directions not corresponding to a dcgrce of frec­

dom. Kinematic pairs can also be charaderized according to whether the forces exerted 

in the constrained directions can be bidirectional or unidirectional. Of the kinematîc pairs 

shown in Figure 2.5, the first five can exert bidirectional forces in ail their constraincd 

dircctions, while the last one can exert bidirectional forces in two directions but only a 

unidirectional force in the vertical direction. It should be notcd that the unidirectionality 

or bidirectionality of the constraint forces in a particular kincmatic pair depends upon its 

fabrication--e.g., a prisrnatic pair which can only sustain a ullidirectional vertical force 

is shown in Figure 2.6. Since kincmatic pairs which do not allow bidirectional forces to 
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Figure 2.6 A Prismatic Pair with Unidirectional Vcrtical Force 

he exerted occur frequently in the kinematic chains of intcrest-usually at the interface 

between the individual rohotic devices and one of the poles-, considerable effort. in lat.('I' 

chapters will he directed toward ensuring that the constraints on the unidirectiolH' lit.y of 

the contact forces are met. 

Esroy (1976) provides a comprehensive ('atalogue of 40 possible high(,I' kine­

matic pairs. Sorne of these are shown in Figure 2.7, with cmphasis on the ones that arc 

likely to appear in cooperating robotic deviccs: (a) non-rolling point contact, (h) & (c) 

rolling point contact, (d) non-rolling line contact, and (c) & (f) rolling-line contact. On('e 

again, the degree of frcedom, N, associated with each frictionlc'ss upper kincmat.ic pair 

is shown in Figure 2.7. This t.ype of coupling will almos!' invariably occur at the in1,{'r­

face between the individual robotic devices and their payload or the gWllnd, Oftcn, the 

treatment of higher pairs tends to he more complex than that. of lower kUlCmatic pairs 

hecause: a) they usually cannot sustain bidirectional fones, IJ) they arc inhC'l'('ntly lc'ss 

stable than lower pairs sinee contact takcs place along a point. or lille, and c) they of­

ten involve nonholonomic constraints-i.e., the constraints whi( Il thcy impose cannot. he 

\Vritten in terms of gencralized coordinates, but rat her in tel'll1S of gClwralized vdocities. 

The coupling shown in Figure 2.7(c) is a good example of a nonholonoll1ic cOllpling. 

The number of degrees of freedom allowed hy eé\ch kincmat.ic pair rnay he 

reduced when frictional contact is present. If friction is assllll1ed t.o he present in cl 
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(a) (b) (c) 

N=4 N=4 

(d) (e) (f) 

Figure 2.7 Sorne Possible Types of Upper Kinernatic Pairs 

particular direction of a kinernatic pair, then that will be a constrained direction whenever 

magnitude of the force or torque along it is srnaller than a certain critical value called the 

breakaway force or torque. Once the hreakaway force or torquc is exceeded, the ensuing 

motion adds to the degree of freedorn of the kinematic pair. Figure 2.8(a) shows that 

the effect of the presence of friction on a fixed-point contact is a rcduction in N of 2, as 

cornpared to the sarne contact without friction in Figure 2.7(a). Similarly, Figure 2.8(b) 

shows a 'soft-finger' contact (Mason and Salisbury, 1985) which has its degree of frcedom 

further reduced to N = 2. Once again, hecause frictional contacts are widesprcad in 

the systems of interest, sorne effort will he directed toward ensuring that the constraints 

inherent in these contacts are satisfied. 
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N=2 

(a) (b) 

Figure 2.8 Reduced Degree of Freedom Due to Friction 

2.3.1 Rolling Contact 

Sorne of the kinematic pairs shown in Figure 2.7 involve a rolling contact point 

or Hne, and the constraints which they impose are nonholonomic (sec e.g., Angeles, 1989). 

The analysis of these contacts tends to be more involved than that of non-rolling contacts 

since the constraint equations must be formulated in tenns of contact vclocities rather 

than positions. Furthermore, a nonholonomic constraint l'edllces the Illllnbel' of dcgrccs 

of freedom of motion allowed at the contact but does not affect the dimension of the 

configuration space of the contact. This is in contrast to a holonomie constraillt, which 

reduces both the num~er of degrecs of freedom of motion allowed al. th<> contact and the 

dimension of the configuration space. Cai (1988) presents a study of Ou'sc contacts III 

which the motion of the contact point or line is anaJyzed in considerahle ddail. 

In the present work, the position of the contact point al, the fing<>rtip/objed 

or foot/ground contact Îs assumed to he known at ail till1<'s and the distillction of wlwther 

the contact is rolling or not is therefore in'elevant. Ilowever, il, ii'> ('mphasized t.hat if rolling 

contact exists, the techniques required to determine the position of the contact point will 

he suhstantially more complex than for non-roIling contacts. 

We can now proceed to find how the coupling of links and joints affects the 

capacity of motion of the system as a whole, 
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Figure 2.9 A Planar Three-Legged lValking Machine 

2.4 Mobility 
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The mobility of a kinematic chain (Hunt, 1978) can be defined as the minimum 

Ilumber of independent variables necessary to specify the location of aIl links in the chain 

relative to a reference link. The choice of reference link does not affect the resulting 

mobility. A preliminary evaluation of the mobility of a kinematic chain can be found 

from the general mobility formula, generally attributed to Chebyshev, Grübler and/or 

Kutzbach (see e.g., Hunt, 1978): 

9 

M = d(b - 9 - 1) + L f. (2.2) 
.=1 

whcre M is the mobiIity of the kincmatic chain, dis the dcgrcc-of-frecdom of each uncon­

strained individual body (6 in 3-D; 3 in 2-D), bis the number of rigid bodies in the chain, 

9 is the number of joints, and J. is the number of degrccs of frcedom allowed by the i-th 

joint. For the machine in Figure 2.9(a), d = 3, b = 8, 9 = 9, sinee rcvolute joints have 

one dcgree of frœdom ft = ... = /6 = 1, and if the foot/ground contacts are modeled as 

revolute joints /7 = J8 = 19 = l-yielding M = 3. 

The results of §2.1 to 2.3 are now applied to find particular forms of eq.(2.2) 
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for systems with a hybrid parallel/star topology. This is done by first decomposing the 

system into its constituent parallel and star subchains and finding the mobility of cach of 

these. Firstly, we know that there are no cycles in the graph of the star subchain. Thus, 

writing eq.(2.1) in terms of b6 and 96' the number of bodies and the number of joints in 

the star subchain, we have: 

96 - b6 + 1 = 0 (2.3) 

If we let 9~ = E~':'l lai where 1., is the number of degrccs of freedom allowed 

by the i-th joint in the star subchain, and substitute eq.(2.3) into eq.(2.2), we obtain 

(2.4) 

which clearly shows that the mobility of the star subchain is nothing but the total number 

of degrees of freedom allowed by its joints. Turning our attention now to the parallel 

subchain, we can rewrite eq.(2.1) in terms of bp and 9p, the number of hodies and joints 

in the parallel subchain, as: 

c = 9p - bp + 1 (2.5) 

where c is now the number of independent loops in the subchain. 

Once again, if we let 9~ = L:~;'l Ip, where Ipr is defilled analogollsly to lm and 

substitute eq.(2.5) into (2.2), we obtain: 

Mp = -dc+ 9~ (2.6) 

For kinematic chains with topological graphs of the form shown in Figure 

2.3(a), we can relate the number of independent loops in the chain to p, the Humher of 

paths between the two poles in the parallcl subchain: 

c=p-l (2.7) 

which, when substituted into Equation (2.6) yields: 

(2.8) 
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The total mobility of the hybrid kinematic chain can now sim ply be found as 

the SUffi of the mobilities of its constituent subchains, i.e., 

= g~ + d(l - p) + g~ 

= d(l - p) + 9' (2.9) 

where g' = g~ + g~, the total number of degrees of freedom allowed by ail the joints in the 

system. 

Equation (2.9) has sorne interesting implications regarding how the system 

mobility is affected by the number of joint degrees of fl'eedom of the individual robotie 

devices involved. Consider the 3-D example of a system of tluee manipulators with 

mobilities of 4, 5 and 6, respt:ctively, aIl grasping the same object (i.e., d = 6, p = 3, 

g' = 15). Equation (2.9) shows that this system has a mohility of 3. That is, for each 

degree of freedom of less than d in each manipulator, the systcm's mobility is decreased 

by one, and for each degree of freedom greater than d in each manipulator, the system's 

mobility is increased by one. Thus, if d = 6, the system must have g' = 6p in order to 

have a mobility of six. Figure 2.10 shows a graphical l't'presentation of eq.(2.9) for d = 6. 

However, as pointed out by Waldron (1966), the l'elat.ive mobility betwcen two particular 

links-callcd their connectivity in the present work-is often of grcater importance than 

the mobility of the kinematic chain as a whole, and this will he treated in §2.5. 

In a system with time-varying topology, the number of constituent bodies 

remains constant while the number of joints varies as contact is made or broken bctween 

the various bodies in the chain. Referring to eq.(2.9), it is apparent that if the number 

of paths between the two poles is increased by one-c.g., a lcg, which was previously 

lifted, cornes into contact with the ground-, the only way for the system's mohility to 

rcmain unchanged is for g' to be increased by d as a l'esult of the new contact (i.e., the 

footjground contact must have d degrces of freedom). Sincc any non-trivial contact must 

have at most 5 degrees of frcedom, the system's mobi\ity will be reduced whcnevcr a 
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Figure 2.10 Mobility of Cooperatil1g Ro/)oUe Deviees 
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new path is formed in its parallel subchain. Convcrscly, wh<'ncvcr an cxisting path 18 

broken, the system's mohility will be increascd. Thus, we can concludc that a system 

with time-varying top%gy will also have a time-val'ying mo/Jility. 

It should be noted that the presence of frictional contacts can also cause a 

time-varying mobiIity of the system, this time WitJlOUt a change in the syst.em's topology. 

More specifically, in §2.3 we showed that the numhcr of degr('('s of freedolll of a contact can 

vary depending on wh ether or not the brcakaway force or t.orque is excœd('d. Hefcrring 

to eq.(2.9), this would correspond to a situation whcrc 1/ f>tays constallt. while yi varies. 

The preceding treatment of a kincmatic chain's structure and mohility has bccn 
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based solely on its topology. In fact, the kinematic chain's geometry can al80 have an 

effect on its mobility. More specifically the mobility of kinematic chain with a p trticular 

geometry (i.e., link Jengths and joint axes orientations) may be greater than that pt:edicted 

by the equations previously given. Using Hervé's (1978) classification, these kinematic 

dlains are termed paradoxical-Bennett's mechanism (Hunt, 1978) probably being the 

most common example. Angeles and Gosselin (1988) have proposed a more comprehensive 

technique based on the kinematic chain's Jacobian matrix to deterrnine its mobility. This 

approach will be applied to cooperating robotic devices in the next chapter when we deal 

with geometry and motion. 

2.5 Connectivity 

The connectivity oftwo bodies in akinematic chain (Hunt, 1978) can be defined 

as the minimum number of independent variables necessary to specify the location of one 

body relative to the other. In practical terms, it may be of greater importance than the 

kinematic chain's mobility sinee it allows us to determine whether a given combinat ion of 

rohotic devices will be able to move their payload as desired. To illustrate this, consider 

the planar three-fingered hand shown in Figure 2.11(a) which has p = 3 and g' = 9 (the 

6 planar revolute joints have one degree of freedom each, as do the 3 revolute contacts). 

Using eq.(2.9), we find that M = 3, which wou Id appear to be sufficient to position and 

orient the object relative to the palm. However, due to the small number of joints in the 

lcft finger, the object only has a connectivity of 2 relative to the palm-sinee, if the angles 

of the joint and contact of the the left finger are specificd, the object is fixed relative to 

the palm. Only the compensatingly large number of joints in the right finger allows the 

mohility of the system to be 3. By contrast, the planar hand shown in Figure 2.11(b) 

also has p = 3 and g' = 9 resulting in M = 3, but the homogeneous distribution of joints 

among the fingers in this case allows the connectivity of the object relative to the palm 

to he 3. Since, in general, we are interested in designing a system of cooperating robotic 

dcvices with a prescribed connectivity between the two poles, the determination of this 
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(a) (b) 

Figure 2.11 Two Planar Thrce-Fingercd lIallds with AI = 3 

quantity will be at lcast as important as that of the system's mobility 

The relationship betwecn mobiIity and conncctivity is intuitive: the Al inde­

pendent variables necessary to specify the location of ail links in the chain relative to a 

referencc link can he partitioned into a) the independent variables neC('ssary to sp<>cify the 

location of a second link relative to the refercncc link, and h) the i/ldcpcndcnt variables 

necessary to specify the location of aIl other links relative to the rcfel'encc link, once the 

second link has been fixed. The number of independcnt variahles in (a) is the connec­

tivity, white the number of vanahles in (b) is the mobility of the new kincmatic chain 

formed when t.he reference link and the second link arc considercd as a single link. This 

relationship was noted in the context of mechanical hands hy Salisbllry and Craig (1982), 

but extends to more general chains. A suitahle equation to dderminc the connedivity of 

two links would therefore be 

C = AI - Al' (2.10) 

where M' is the mobility of the kinematic chain formcd whcn the two links in question 

are treated as one. 

Figure 2.12 shows the application of this procedure to the poles of the hybrid 

kinematic chain whosegraph is shown in (a) to obtain the graph shown in (1)). Considcring 
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(a) (b) 

Figure 2.12 Finding the Connectivity of a, Hybrid IGnematic Chain 

the poles as one link results in a set of p uncoupled simple c10sed chains and q uncoupled 

simple open chains-where p and q are the number of paths between the two poles and 

the number of uncoupled seriaI chains in the original system, respectively. For each of the 

simple c10sed chains, the mobility can be found from eq.(2.6) with c = 1. Therefore we 

can write the following equation for the connectivity of the poles in a hybrid chain 

p q 

C = M - Lmax(O, -d + g;J - Lg~J (2.11) 
1=1 )=1 

where g~1 is the number of degrees of freedom allowed by ail the joints of path i in tl:.: 

parallel subchain, while g~J is the number of degrees of freedom allowed byaIl the joints in 

seriaI subchain j. The function max(O, ... ) is required to cnsure that the 'negative degrees 

of frcedom' which can be obtained from Chebyshev-type formulae are not includcd. The 

connectivity has two upper limits: 

C:5 M, C5:d (2.12) 

Equation (2.11) is useful in determining the dimensionality of relative motion 

possible between two links, and is of particular importance whcn considering the two poles 

of cooperating robotic systems. Thus, if we want to design a mechanical hand which can 

manipulate an object with six degrees of freedom relative to the palm, wc must design it 
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such that C = 6. Another important use of eq.(2.l1) is to determine the connectivity of 

the two poles when the actuators are driven. This will be addresscd in §2.6. 

Finally, it must be emphasized that eq.(2.11) is subj('ct to the same' limitations 

mentioned in the §2.4 for Chebyshev-type mobility equations sinee it ronsidcrs only the 

topology of the chain and not its geometry. The n('xt chapter will introdllcc oth('r, more 

reliable, connectivity equations which consider the kinematic chain 's gromctry as well as 

its topology. 

2.6 Actuation 

The preceding discussion of mobility and conncctivity implicitly asslilIlcd that 

aIl kinematic pairs in the kinematic chain were free to move according to t.hcir dC'grcc of 

freedom discussed in §2.3. In practice, sorne or aIl of the joints will \)(' act.llated in or<!er 

to control the motion of the mechanism. The effcct of an aduat.or at (t joint., wh('11 it is 

powered, is to instantly specify that joint's position and rem ove thc corresponding degree 

of freedom. If ga actuators are installed, the mobility of the kincmatic chain w}wn t.llcsc· 

actuators are locked is dC'noted by Ma and found as 

Ma = At -ga 

Analogously, a minimum of C actuators is neccssary to fix the position and 

orientation of one pole l'dative to the other, and th(' conllcctivity of the two POk8 when 

the actuators are locked is de'noted by Ca and found from 
p q 

Ca = M - L max(O, -rn + g~1 - g~(ll) - LCq~J - g~aJ) (2.11) 
1=1 )=1 

where g~al and g~aJ are the number of actllated joint dcgrccs of flCCdoIll in the i-th path 

between the two poles and in the j-th seriaI subchain, respcctivcly. 

The purpose of installing actuators in the kil1cmatic chain is to cC)JlLrol iLs 

configuration; we therefore want Afa, the mobility of the adual,ed chain, to be reduced 
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to zero when the actuators are powered. From eq.(2.13), this implies that a minimum 

of 9a = M actuators are nceded to fully fix the position and orientation of ail links in a 

kinematic chain. Furthermore, sinee M ~ C, it is sufficicnt to reduee Ma to zero to also 

reduce Ca to zero. 

It is therefore conventionally accepted to install M actuators in a kincmatic 

chain sinee this will reduee its mobility to zero when the actuators are powered. In §2.4, we 

showed that kinematic chains with time-varying topology also have time-varying mobility. 

Thus, the approach taken for these systems is to install a number of actuators cqual to the 

maximum mobility of the system. This maximum mobilit.v occurs whcn aIl the subchains 

art as simple open chains--e.g., when the fingers of a hand are not grasping an object. As 

sorne of thcse subchains arc closed, the mobility of the system will be reduced (c.f., §2.4) 

and, if ail actuators remain powered, the system becomes redundantly actuated \Vith a 

rcdundancy r of 

r == 9a - Af 

2.6.1 Redundant Actuation 

If we substitute eq.(2.9) into eq.(2.15), we find that 

r = ga - d(l - p) - g' 

(2.15) 

(2.16) 

Since g' = ga + gu, where gu is the number of unactuated joint degrees of 

frccdom in the kincmatic chain, wc can write 

r = d(p - 1) - 9u (2.17) 

which shows that the actuation redundancy increascs whcn thcre are fewer unactuated 

joint degrccs of frecdom. For cxamplc, if three man:pulators rigidly grasp an object, wc 

will have d = 6, p = 3,9u = 0 yielding r = 12. By contrast, if three fingcrs hold an object, 

and we assume that the fingertipjobject contacts are non-rolling contacts with friction, 

wc find that d = 6, p = 3,9u = 9, yielding r = 3. 
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As was just noted, redundant actuation will oecur when the number of ac­

tuators in the system is chosen to satisfy requircllwnts such as the degrc·c' of fn'Cdom 

required by the kinematic subchains within the larger chain-e.g., the fillgers of a halld 

or the legs of a walking machine. Because the system has a tillle-varying topology, the 

individual subchains can form closed loops which have the potcntial to bccome l'edllll­

dantly actuated. As will be seen in greater detail in Chapte! 4, olle of the rc'snlts of 

redundant actuation is that it causes the equations of motion of tlH' syst.em t.o bCC0111<' 

underdeterminate, and this is usually cited as the rcason fOl needing t.o optimize t.h(' force 

distribution. In fact, the system could more easily be made detcrminatc by 'feat.hering' 

the redundant actuators-i.e, not powering t.he redllndant. actllat.ol'S while Ic'aving t.he cor­

responding joint free to move-thereby avoiding the need t.o perfol'm forc(' opt.imizat.ion 

(sueh a technique is proposed in §~.5). 

However, there are a numbcr of bcnefit.s io \)(' clrawll from J)(,l'sist.ing in cl! iving 

ail available actuators. A glimpse ofthese advant.agc's can he found in t.he fi('ld of st.ructural 

engineering where the concept of stat.ic indeterminacy is c1mwly n'lat,C'd t.o l'C'c1ililclant 

actuation. The principal difference bctwccn the two is that ~t.rlldural analysis llsllally 

cleals with kinematic chains whose mobility is nonpositiv('- -i.e., 1itnlct.1Ir(,S as opposed 

to mechanisms. One of the advanta,çcs of a sta1.icrllly inc!c1.C'rl1linal.e structure OV<'I' a 

statically determinate one is that its internaI forcC's and mOIllC·IIt.S are rc'dllced (see e.g., 

\Vest, 1980). This allows a lighter structure 1.0 be built 1.0 cany the same loads silice the 

stresses in the structure tend to be lower. 

In fact, these hcnefits can be rcadily translated t.o redllnclantly actllatpd robotic 

systems. A brief example of this is given by the thrC<'-I('gg('c\ planaI' walking machinc with a 

mobility of thrce shown in Figure 2.9. The particlllaf g('ornetry ~howll allows ét dc·collpling 

of the vertical and lateral force systems. ln Figure 2 9(a), wh('!e six actllators arc' driw'n, 

the machine has an actuation rcdundaney of thrcc (ga = G; !If = ~l). III Figlllc 2.!J(b), the 

machine has three driven actuators and is thereforc 1101, lCdlllldéllltly artllat.ed (fla = ~J; 
Iv! = 3). There is only one set of actuator torqucs and foot-gl'OlIlld cont.act. [ofn's which 
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Figure 2.13 Vertical Forces on the Legs of a Planar Walking Machine 
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can satisfy the force balance equatiom. of the non-redundantly-actuated walking machine. 

By contrast, the foot-ground contact forces of the redundantly-actuated walking machine 

can be reduced and homogenized, thus reducing chances of foot slippage. Figure 2.l3(a) 

shows the variation of the vertical forces on the three legs using a solution which minimizes 

the norm of the vector of vertical contact forces as a load of 1000 N is moved along the 

body. Figure 2.13(b) shows the same forces when only actuators 1, 3 and 5 are driven. In 

both cases, negative foot/ ground contact forces are generated because their non-negativity 

has not been accounted for. Other combinations of tluce driven actuators yield similar 

results. Furthermore, with the geometry shown, the machine is not controllable with 

certain combinations of only three actuators (e.g., l, 2 and 3) because the actuated 

system will then be in a singular pose in which the geomctry causes an increasc in its 

mobiIity-a. situation which will be analyzed in greater detail in Chapter 3. 

Redundant actuation also allows greater safety in case of breakdown of indi­

vidual actuators. If the mechanism is redundantly actuated, it can still be controlled 

if one or more actuators breaks down-up to the degrce of actuation rcdundancy. Re­

dundant actuation may also be applied to fixed-topology parallel-architedure robots in 

order to make them lightcr and faster, though the advantage obtained through redundant 

actuation might be offset by the w('ight of the extra actuators. 
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Chapter 3 

Kinematics and Statics 

While the previous chapter dealt primarily with the kinemat.ic st,l'I1ct./Jrc of 

cooperating robotic devices, this chapter deals with their mot.ion. The motion étnalysis 

serves as the underlying foundation for the dynamic analysis wllich follows in the next 

chapter. A large body of research exists relating to the kincmatics of more conYelltional 

robotic systems such as the seriaI and parallel manipulators shown in Figure :1.1, and 

analogies may be drawn between the kinematics of those syst('rns and the ones of present 

interest. This is particularly true of parallcl manipulators, the kinematic structure of 

which bears a strong resemblance to that of the paralld slIbchain of cooperating IObotic 

devices, with the important difference that it is not tinw-varying. Emphasis in this chaptl'r 

is placed on the analysis of the parallel subchain since the star suhchain can be' simply 

analyzed using conventional techniques for seriaI maniplllatOls. 

The motion analysis which follows is decomposed illto thlc(' parts. ln ~i;l.I, the 

position kinematics of seriaI and parallel manipulators is l'('viewf'd alld that. of coo/)('rating 

robotic devices is analyzed. Sections 3.2 and 3.3 do the sallie for v('locity and ac('('l('ration 

kinematics. Section 3.4 introduces mobility and cOfllwd ivity crit.eria which consider not 

only the structure (as in Chapter 2), but also the gcornetry of the system. Finally, §3}) 

extends the discussion begun in Chapter 2 regarding thc nlllIlber of aduators which n('cd 

to be driven in order to control a system of cooperating ro\'otic deviœs. 
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Figure 3.1 A SeriaI and a ParaJJcl ~lanipl1Iator 

3.1 Position Analysis 

A robotic manipulator composed of rigid links which are coupled by joints is 

chalacterized by two features: its arcllitecture and its configuration. The architecture, 

normally quantified by the manipulator's Hartenbcrg-Denavit parameters (Hartenberg 

and Denavit, 1964), describes the fixed characteristJcs of the links' dimensions and ge­

ometry. The configuration, normally quantified by a set of inc/epClldent joint coordinates 

dcnoted by the vector q, describes the time-varying joint allgles or lcngths. Another 

commonly-used description of a manipulator's configuration is the pose (position and 

orientation) of a reference frame fixed to its end-effeclor relative to an inertial reference 

frame, denoted by the vector x. The dimension of x, which is always greater than or 

cqual to the dimension of the task space-i.e., 6 for gcneral 3-D motion-, depends on 

the method used to describc rotations (Spring, 1986). For example, the use of Euler pa­

rameters or linear invariants results in a veetor x of dimension 7. However, irrcspective 
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of the method chosen, x will only have as many jndependent, components as the dimen­

sion of the task space. The mapping between the two descriptions of the manipulator's 

configuration, which is not necessarily one-to-one, is the focus of attention in position 

kinematics. Thus, the following topies will be addressed: 

1. Forward Kinematics: Given the joint coordinates, q, find the Cartesian coordi­

nates of the end-effector, x, 

2. Inverse Kinematics: Given the Cartesian coordinates of the end-effedor x, find 

the joint coordinates, q, and 

3. Number of Solutions: The number of solutions which cxist for the forward and 

inverse kinematics problems. 

3.1.1 Forward Kinematics 

The joint coordinates of a seriai manipulator, denoled hy t.he vcdOl' q! of 

dimension M, are the joint variables of its M joints, aIl of which are actuated (recall 

that the mobility of a seriai manipulator is equal to its total Il um!>{'r of joillt degrC'cs of 

freedom). If these are specificd, the corresponding unique set of Cart('siall cool'dillal,C's for 

the end-effector, denoted by the vector x! which has six ind<,[>('ndcnl, cornpollcnts, cali h(' 

found from a system of equations of the form: 

(3.1 ) 

This problem is straightforward and requires little computation. 

In the case of parallcl manipulators, the joillt coordinates, denoted by the 

vector qp of dimension AI, normally refer to the At aïf.uat,C'd joillt variahles---e,g., the six 

leg lengths of the platform shown in Figure 3.1 (1)). This fOI ward kirlC'lTlat.ies pl'Ohlern is 

considerably more complex than that for a seria} manipulal.or sill(,(' ol1ly 01)(' joillt val'iabl(· 

on each path between the two poles is usually actuat.cd. For a parallC'j manipulator of 
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Figure 3.2 A Parallel Manipulator with Coincident Pairs of Spherical Joints 

general architecture, this arnounts to solving a system of nonlinear equations of the forrn: 

(3.2) 

for xp , the vector of Cartesian coordinates of the parallel manipulator's end-effector. In 

general, this problcrn can only be solved using itcrative methods, sueh as a Newton­

Raphson technique (Press et al., 1986), but for sorne particular architectures, closcd-forrn 

solutions rnay be found. The number of solutions to this problern has only bren determincd 

for these particular architectures. For example, the parallcl manipulator with coincident 

pairs of spherical joints shown in Figure 3.2 is known to have 16 solutions to its direct 

kinematics problem (Merlet, 1990). 

It is emphasizcd that the joint coordinatcs of both seriaI and parallel manip­

ulators are a set of AI in dcpen den t, aetl1ated joint variables. Dy contrast, cooperating 

robotic devices contain more than AI aduated joints, and so, the actuatcd joint variables 

are not independent. For clarity, the precise staternent of the forward kinematics problem 

in cooperating robotic devices can be stated as follows: 

Given qc, the l'cetOl" of actuated joint variables, find the pose of a refel'ence frame 

fixed in the mOl'ing pole. denoted by its l'cetOl' of Cartesian coordinates XC' 
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The constraints which tht' dependent actuated joint variables must satisfy in 

order to he a valid set are called the loop closure equations. These equations ean be 

written in terms of the for ward kinematics problem for each of the individual l'obotie 

devices as 

(3.3) 

where f., and q.i represent the forward kinematics functions and the joint eoordinates of 

the i-th rohotic device, respeetively. The closure equations specify that the pose of an 

arbitrary reference frame in the moving pole is the same, irrespective of the path tlsed to 

obtain it. It should be apparent that all the joint variables in coopcrating rohotic devic('s 

are actuated except for those at the contact between the individual rohotic devices and 

a grasped object or the ground, when that contact is passive. Fol' clarification, Figure 

3.3(a) shows a three-Iegged planar walking machine with passive foot-groulld wntacts. 

The joint angles Ob"" 06 are known, while 07 , Os and 09 are BOt. A sirnilar statell1<'nt. 

holds for the joint angles of the threc-fingel'ed planar nlC'chanical hand shown in Figure 

3.3(b). However, the three planaI' cooperat.ing rnanipulc\tors shown in Figure a.a(c) have 

no passive contacts-all the joints are actuated, and ail t1J<' joint val iables can he' étSSllllWd 

known. Thus, the forward kinematics problem of eoop('rating loholie dcviees is considcr­

ably easier than that for a parallcl rnanipulator since most, if not ail tll<' joint. variahl('s 

along each path, are preseribcd. 

In the case of cooperating manipulators whcl'<' ail the joint.s are actllflt.ed, the 

Cartesian coordinates of the reference frame in the moving POil' ('an he found by sirnply 

solving the forward kinematics of any one of the p paths hdw('('11 t.he two poles, i.e., 

i = 1, ... ,p (3.1) 

Since eq.(3.4) yields a unique Xc, the solution to tll<' for ward kincrnatics prob­

lem of cooperilting manipulators is unique. 

In the case of mechanical hands and walking machines, whcre sorne of the 
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• == Actuated Joint 

(a) (b) 

(c) 

Figure 3.3 Joint Variables of Sorne Planar Cooperating Robotic Deviees 

contacts are passive, the position of the finger/object contact points or the footjground 

contact points can be found using the forward kinematics equations of the individual 

robotic devices of the Corm 

i = l, .. . ,p (3.5) 

whcre q." denotes the vector of actuated joint variables in the i-th path. Equation (3.5) 

will yield a unique solution for the positions of the contact points. Once the positions of 

three noncollinear points are known, the pose of the rcference frame in the moving pole 

can be calculated uniquely using, for example, the method outlined by Angeles (1986). 

Thus, we can say that the solution to the direct kinematics problem of cooperating robotic 

manipulators is unique. 



1 

1 

CHAPTER 3. KINEMATICS AND STATICS 45 

3.1.2 Inverse Kinematics 

The inverse kinematics problem for a seriaI manipulator consists of rewriting 

eq.(3.1) as 

(3.6) 

and solving this system of nonlinear equations for qa with X a prescribed. 

For seriai manipulators of general architecture, eq.(3.6) cannot be solvcd in 

closed form-iterative routines must be used-and there may be up to 16 (Iiffcrent so­

lutions (Tsai and Morgan, 1985). Whcn the manipulator has particular fcat.ures in if,;; 

architecture, solution of the problem in closed form may be possiblc--c.g., a manipulator 

with three consecutive joint axes intcrsccting at a point has, aL most., 8 solut.ions t.o its 

inverse kinematics problem which can be found in c10scd form (Picper, L968). Finally, the 

simpler the architecture of a robot, the fewer distinct solutions to its inV<'rse kincll1atics 

problem will exist. 

In the case of parallcl manipulators, whcn xp , the Cartesian coordinates of the 

end-effector reference frame are known, the Cart{'sian coordinafcs of rdcrcncc frames at. 

the p attachment points at which the legs are aUachcd to the end-cfrector can he easily 

calculated since aU frames are in the same rigid body. If wc assumc that tl)(\ Cart.esian 

coordinates of the end-effector are composed of the vcdor p which d{'scril)('s th{' position 

of the origin of the end-effector refer{'llcc frame r{'lative t.o an incrt.ial framp, and tllP 

elements of the rotation matrix Q which rcprescnt.s the oric'Iltation of t.he end-effecLor 

frame relative to the inertial frame, we can write 

P. = P+SI' 

Q. = QQ~, 

z=l, ... ,p 

i = 1, ... ,p 

(3.7a) 

(:1. 7h) 

where s. denotes a vector from the end-cffcdor frame to the 7-t.h attachment poillt and 

Qi is the rotation matrix which represcnts the oripllfation of t.ltc~ attachnJ('nt. poillt frame 

relative to the end-effedor frame. The Cartesian coordillat.c~s of thc' 7-th at.t.dchrr\{,lIt 
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point, Xi, consist of the vector p, and the elements of the rotation matrix QI' where 

the former represents a vector from the inertial frame to the attachment point while 

the latter represents the orientation of the attachment point frame relative to the inertial 

frame. Once these are known, the inverse kinematics problem for a parallel manipulator is 

nothing but p independent seriaI inverse kinematics problems-one for each path between 

the two poles. As mentioned above, this solution is straightforward when the legs have 

particular architectural features, and complex when the legs have a general architecture. 

Thus, the usual claim that the inverse kinematics problem for a paraUcl manipulator is 

straightforward (Merlet, 1990) implicitly assumes that the leg geometry is simple. For 

ail common parallel manipulators, this assumption is verified and the inverse kinematics 

problem reduces to 

qPI=g.(x,), i=l, ... ,p (3.8a) 

where qPI is the i-th component of qp' Equation (3.8a) can be written vectorially as 

(3.8b) 

and has a unique solution. For manipulators which have a solution to their inverse kine­

matics problem of this form, eq.(3.2) for the direct kinematics problem can therefore be 

rewritten as 

(3.9) 

Since, when the leg architecture is general, there may be up to 16 inverse 

kinematic solutions for each parallel path between the two poles and the solution for 

each path is independent of that for the other paths, thcl'e may be up to 16P solutions 

(Gosselin, 1988) to the inverse kim'matie problcm of a parallcl manipulator with a general 

leg architecture. 

The inverse kinematics problem of the parallel subchain of cooperating robotic 

devices is similar to that for parallel manipulators, and can be stated as follows: 

Given the Cartesian coordinates, Xc, of a re[erencc frame fixed in the moving pole 

find the joint coordina tes of the p parallcl pa t.J1S. 
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In the case of cooperating manipulators, the inverse kincmatics problem entails 

rewriting eq.(3.4) as 

i=l, ... ,p (3.10) 

and solving for q"j with Xc prescribed. As such, this problem is nothing but p timcs the 

inverse kinema.tics problem of a. seriai manipulator, and its complexity will be dcpendent 

on the architecture of the manipulators, as discussed above. For a system of manipulators 

with fully general architecture, there will again be, at most, 16P possible solutions. 

In the case of mechanical hands, the position vector PI of the i-th finger/object 

contact point can be found from 

p, = P + s" i=l, ... ,p (3.11 ) 

where P is the position vector of the origin of the frame in the moving pole, while Si is a 

vector from the origin of that frame to the z-th finger/object contact point. From Pl) the 

inverse kinematics problem is solved for each parallel path by Holving 

i=l, ... ,p (3.12) 

for Q61' For walking machines, the analysis is idcntical cxccpt that thc fingcl'/objcd 

contact points become the foot./ground contact points and the moving pok bccornes t.he 

fixed pole. Since eq.(3.12) represents only a posit.io1li1lg illv(,I'~r' kilH'lllaticH pl'oblclTI, il, 

can be solved in closed form as the solution of, at mosl, a quartic polynomial havillg " 

distinct roots. The inverse kincmatics problcm of a J1I('chanical hand or walking lIIachine' 

with fingers or legs of a general architecturc thcl'cforc has, at Illost., 1') pOHfiible fiolllt.ioIlS. 

3.2 Velocity Analysis 

The velocity analysis of l'obotie deviccs ('nt.ails a dekrlllinat.ion of the mapping 

between the joint rates, q, and the twist of the end cffectol', t, which is cldinccl as 

(3.13) 
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where w is the angular velocity vector and v is the translation al velocity vectorj both of 

dimension 3. These mappings are considerably simpler than the functions used in position 

kinematics sinee they are linear. Once again, we are concerned with a forward and an 

inverse problem, depending on which of the two vectors (cl or t) is preseribed and whieh 

is unknown. 

The forward velocity kinematics problem for seriaI manipulators entails finding 

the manipulator's Jacobian which maps actuated joint rates into end-effector twist, i.e., 

where 

t" = J"q" 

( ) 8t" 
J"=J"q,, =-8' 

q" 

(3.14) 

(3.15) 

When the i-th joint of the manipulator is revolute, the eorresponding column 

of the Jaeobian is (Whitney, 1972) 

(3.16a) 

where e, represents a unit vector aligned with the i-th joint axis, while rI represents a 

vector from the origin of a reference frame fixed to the i-th link to the origin of a reference 

frame fixed to the end-effector. It should be noted that jSI is nothing but the vector of 

Plücker eoordinates of the i-th joint axis and origin as ~een from the origin of the end­

effector reference frame. If the i-th joint is prismatic, the corresponding column of the 

Jaeobian is 

(3.16b) 

The manipulator's Jacobian ean be uscful when solving the inverse position 

kinematies problem iteratively. The latter problem consists of solving eq.(3.6) whieh can 

be rewritten as follows: 

g" (q" , x,,) = f,,(q,,) - Xs = 0 (3.17) 
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A Newton-Raphson technique solves eq.(3.17) using the iterative formula 

(3.18) 

where qal, is the i-th iterate for the solution. Thus, in order to use eq.(3.l8), we rcquire 

(3.19) 

where the matrix G. is nothing but a linear transformation of J". Anderson and Angeles 

(1989) have shown that, when x" is the vector of dimension 7 consisting of t,he three 

components of the translation al position of the end-effectol' and the four mmponents of 

the linear invariants of Q, the rotation matl'ix of the end-cffector, this transformation can 

be written as 

Ga = HJ s (3.20a) 

[ 

13tr(Q) - Q 
H = vcct(Q) 

03 

(3.20b) 

where 03 and 13 are the 3x3 zero and identity matrices, rcspcctivcly, and 0 is a ZCI'O 

vector of dimension 3. 

There is much less consistency in the litcraturc rC'garding the definition of 

the Jacobian of parallel manipulators. One approach is to procced analogously t.o the 

convention used for seriai manipulators. That is, the vcctOI' 41' rcpl'csf'nts the' vcctor of 

actuated joint velocities, while the matrix J p maps qp int.o t p as follows 

(3.21 ) 

A second convention often encountel'cd (Gossclin, )!)88) define's the manipula­

tor's Jacobian, J~ to satisfy 

(:1.22a) 

where, 

J' = ôqp = J-t 
P ôt P 

P 

(3.22b) 
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This second definition of the Jacobian is useful when solving the direct position 

kinematics problem of parallel manipulators using the Newton Raphson technique. If 

we follow a procedure analogous to that for the inverse position kinematics of seriaI 

manipulators, the iterative solution of eq.(3.9) will require the use of a matrix 

G 1 == (ôgp
) p n ôx 

p n 

(3.23) 

which is a linear mapping of the Jacobian matrix J~. That mapping will of course change 

depending on the convention used to describe the rotations in the vector xp' 

Finally, a third convention has been found useful when determining the mobil­

ity of kinematic chains with c10sed loops, sueh as parallel manipulators (Angeles, 1989). 

This Jacobian, denoted by J~, satisfies 

J"q" = 0 
Tl P 

where q~ is a vector of all the joint rates rather than just the actuated ones. 

(3.24 ) 

We can now proceed to define certain conventions for cooperating robotic de­

vlees. In these systems, neither the forward nor the inverse position kinematics problem 

requires iterative solution, and so, there is no reason to prefer a Jacobian of the form given 

by eq.(3.22a) over one of the form given by eq.(3.21). We therefore define the Jaeobian 

of a system of cooperating robotic devices to satisfy 

(3.2.5 ) 

where clc is the vector of the actuated joint rates, while te is the twist of a reference frame 

in the moving pole. Equation (3.25) allows us to solve the forward velocity kinematies 

problem--i.e., given the actuated joint rates, find the end-effector twist. Just as the 

actuated joint coordinat.es were dependent, so are the aduated joint rates, whieh must 

satisfy 

(3.26) 

where clsi represents aIl the joint rates in path i and J SI is the seriaI Jaeobian of the i-th 

path. In the case of cooperating manipulators, it is straightforward to relate Je to the 
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seriaI Jacobians of the individual paths between the two poles. If we considcr cach pat.h 

as a seriaI manipulator, we can write eq.(3.l4) for each path as 

If we add aIl these equations, we find 

i = l, ... ,p 

JI 

EJ",q", = pte 
,=1 

In matrix notation, this can be written in the form of eq. (3.25) with 

. - [4:'1] qe - : 

qsp 

(3.27) 

(3.28) 

(3.29) 

When solving the inverse velocity kinematics problem (i.e., givcn the twist of 

the moving pole, te, find the vector of actuated joint rates, 4e), it is import.ant not to 

attempt to solve eq.(3.25) for qe sinee Je is not square. The inverse vdocity kiJlC'lIlatics 

problem is better solved using 

. J-1t q", = 3' e i=l, ... ,p (3.30) 

where the inversion shown is used strictly for notational simplicity and ncccl not be per­

formed expIicitly. The vector of actuated joint rates can thcll be obtained as 

[
4Sl

] [J;11] 
<te = P . : = p ~ l te 

qsp J"p 

(3.31 ) 

where Pis a matrix which projects the vector of ail joint rates illto the vedor of act.uated 

joint rates. It consists of columns whose entries are cit.hcr ail zeros (,ol'l'C'spondillg lo the 

unactuated joint rates) or aIl zeros except for onc unily cntry. 

The second dcfinition of the manipulatol's .Jacobian, which will be mdul to 

determine the mobility of cooperating robotic dcvices, is olle which is idelltical ÎII fonn to 

the third definition for parallel manipulators outlincd abovc, narnely 

J~CÏ: = 0 (3.32) 
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where q~ is the vector of all the joint rates in the parallel subchain. It is straightforward 

to relate J~ to the seriai Jacobians of the individual paths between the two poles. Taking 

the differenee of eq.(3.27) for i and i + 1: 

i=l, ... ,p-l (3.33) 

If we assemble these pairs in matrix form, we obtain eq.(3.32) with 

r'l -J.2 0 0 

o ] ., [~I] , 0 J t•2 -Ja3 0 0 
Je = : . , q = . (3.34) e . 

0 0 0 J',v-1 -j,v q,v 

3.3 Acceleration Analysis 

The aeceleration kinematics of cooperating robotic devices is obtained from the 

mapping hetween joint rates and end-effector twist in a straightforward manner. Taking 

the time derivative of eq.(3.25), we obtain 

(3.3.5) 

where Wc and ve are vectors of dimension 3 denoting the angular and translational accel­

erations of the rcference frame in the moving pole. Equation (3.35) can he used to solve 

tllP forward acceleration kim'maties problem-i.e., gi\'en the actuated joint accclerations 

qe, find the twist rate te of the end-effcctor. Once again, the actuated joint accelerations 

are not independent sinee they must satisfy 

(3.36) 

In the case of cooperating manipulators, eq.(3.29) can be used to obtain a 

rclationship between je and the time derivative of the constituent seriaI path Jacobians: 

. 1· 
Je = - [JS1 

P 

whcrc j"l ean he found by differentiating J". as givpn by cqs.(3.l6a) and (3.16b). 

(3.37) 
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Once again, sinee Je is not square, no attempt should be made to solve eq.(3.35) 

for (je when solving the inverse acceleration kinematics problr,m-i.e., givcll thc end­

effector twist rate, ie, find the vector of actuated joint accelcrations, qe. This prohlem is 

better solved using 

i=l, ... ,p (3.38) 

where, once again, the inversion shown should not be performed explicitly. The vedor of 

actuated joint accelerations can then be obtained as 

(3.39) 

3.4 Mobility and Connectivity Revisited 

In §2.4, where wc dcalt with the mobility of coopcrating rohotic deviC<'s, it was 

noted that eq.(2.2) only treats the topology of the kincmat ie chain wit.h 110 colIsid<'ration 

of its geometry. However, gcometrical considerations Illa)' affprt a systpm's llIohility and 

must be considered. t\l1geles (] 989) desCi i bC's Hwt hods t 0 detPl'IJlIl)(' th!' mohi lit.y of 

kinematic chains which consider both the chain's topology clIId it~ g(·ollH't.ry. For ('xampl(', 

the mobility of a simple open kincmatic chain such dS olle of Ill<' q s(,J'ial chaim, which 

make up the star subchain would he found from: 

Af~1 = dim[rangc(J.91 )] 

The mobility of the complete star s\lbchain wOllld tlwll he rOllud from 

q 

M5 = LA/ 51 

1=1 

(:~.40) 

(:lAI) 

The mobility of complex c10sed kincmatic chainlo sudl as tlJ(' parallellollhchain 

of a system of cooperating robotic deviccs is then given as (Angf'lf's, 1!J8!J) 

AI p = dirn[N(J~)l 
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whcre J~ was defined by eq.(3.32) and N( *) represents the nullspace of the matrix in the 

brackets. In most cases, the mobility found from eq.(3.42) will be the same as that found 

from eq.(2.8) (i.e., Jlp = Mp ). However, when J~ becomes rank deficient, the parallel 

subchain gains a degree of freedom, and we find that M p > Mp. Angeles and Gosselin 

(1988) show a number of examples in which this this technique is applied to complex 

c10scd kinematic chains. In the next section, this method will be useful in determining 

whether or not a certain set of actuators can control a given kinematic chain in a prescribcd 

orientation. 

The mobility of the complete hybrid kinematic chain can be found by adding 

the mobilities of its constituent star and parallel subchains-i.e., 

(3.43) 

This concept of a mobility which includes geornetric effccts can be extended 

to formulate an equation for the connectivity of the two poles of a system of cooperating 

l'obotic devices which also includes geometl'ic effcds-i.e., modified to l'ead 

(3.44 ) 

where M' is the mobility of the kinematic chain formed when the two poles are treated 

as a single link. 

3.5 Controllability of a Kinematic Chain 

In §2.6, wc found that a kinematic chain would he controllablc if it had at 

Icast as many driven artuators as its mobility. This implied that when the actuatol'S were 

driven, the mobility of th(' act uated system, Ma, was reduccd to zero. In order to find 

th(' mobility of the actuated system including gcornetric effcds, wc considcr the Jacobian 

given by eqs.(3.32) and (3.34) to he partitioned as 

(3.4.5) 
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Actuated Joints 

System Mobihty 

3 
3 

Actuatlon Redundancy 0 

• Actuated 

o Unactuated L 
Figure 3.4 PlanaI' ThI'cc-Lcggcd Walking Machin(' 
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where J a is composed of the columns of J~ corrcsponding to !.Il(' actuatpd joint degre'('s 

of freedom, and is of dimension cd x g~a' whcre c is the nUIlIIH'r of cyclc's in tl\(' parallcl 

subchain, dis the degree of frpcdom of an unconst.rained body and g~(1 is the nllllll)('r of 

actuated joint degrees of fleedom in the paI'allcl subchain. Simildl'ly, J" is composcd of 

the columns of J~ corresponding to the unactuatpd joillt dc·gu·ps of fn·pd 0 III , aJl(I is of 

dimension cd x g~u' where g~u is dcfined analogously {,o g~fl' The Illobility of tl\(' élctuat.c·d 

parallel subchain is given by 

(:JA6) 

This mcthod is now applicd 1,0 the planaI' t.hree-Ic'ggc·d walkillg machinc' showlI 

in Figure 3.4 with actuators 1, 2 and 3 active to show that ('('l'tain ~illglllal' ('ollditions 

cannot be controlled with this set of actuators. 

The Jacobian J~ is a 6 x 9 matrix since thc're' arc' !) joints, 2 cycles alld li = :1. 

According to eq.(3.34) J~ can b(' fOl'mcd from thc' Jambialls of t!H' illdividual legs as 
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follows 

(3.47) 

For motion in a plane, the 3-dirnensional cross product, denoted bye x fi, can 

be written in 2-dirnensional vector form as a linear mapping of the 2-dirncnsional vector 

f •. This rnapping is denoted as Ef., with the 2 x 2 rnatrix E defined as 

[0 -1] 
E == 1 0 (3.48) 

sa that the black elements of J~ can be written as 

J _[ 1 1 1] 
al - Er1 Er4 Er) , [ 

1 1 
J"2 = E E fg fs 

where vector r. is direded from the centre of joint l ta a rcference point on the body of 

the walking machine. 

Thus, if wc assume that the leg links are each 1 unit long, the body is 2 units 

long, the body is parallcl ta the ground and J2 units above it and the refer('nce point on 

the body is at the centre of joint 2, we obtain 

1 1 1 -1 -1 -1 0 0 0 
-V2 -V2/2 0 V2 V2/2 0 0 0 0 

J'- -1 -(1tf1) -1 0 V2/2 0 0 0 0 
c- O 0 0 1 1 1 -1 -1 -1 

(3.50a) 

0 0 0 -V2 -..;2/2 0 .;2 v'2/2 0 
0 0 0 0 -V2/2 0 -} -e-/2

) -1 

q~ = [Ô7 04 0) Og Os O2 09 06 ô3 f (3.50b) 

If joints 1, 2 and 3 are actuated, we rcmove the corresponding colurnns from 

J~ to obtain 

1 1 -1 -1 0 0 
-V2 -.;2/2 J2 V2/2 0 0 

Ju = -1 -(~) 0 V2/2 0 0 
(3 .. 51) 

0 0 1 1 -1 -1 
0 0 -\1"2 -.;2/2 v'2 v'2/2 
0 0 0 -.;2/2 -1 _( 2-/2) 
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which is rank deficient and has a nullspace with a dimension of one. Thus, it is apparent 

that if only three actuators are used to drive this system, there exist configurations in 

which it cannot he controlled. 

The dimension of the nullspace, or nuIlity, of .lu is the differcncc betw('cn it,s 

numher of columns and its rank. Hence, whenever the numher of columns in J u excc('ds it.s 

rank, the actuated system will become mobile. Obviously, if J u has no columns---i.c., ail 

joints are actuated-, the actuated system is bound to be controllable. Whcn the systC'1ll 

does have unactuated joints, we may want to compare its controllahility with diffcrent. 

sets of actuators active. Thig can be done by comparing the condit.ion J1Ilmb(·l' of the 

corresponding Ju's-the higher the condition number, the doser J u is 1.0 becorning rank 

deficient. The condition number of a rcctangular matrix can be found as (Golub and Van 

Loan, 1983): 

~(Ju) = (7max 

(7man 

where (7max and Umm arc the maximum and minimum sillgulal' valtU's of J". 

As was noted in §2.6, a kim'matie chain with a llIobility of !If nominally l1('ed8 

only M actuators to be active. Thcre arc 1\ eomhination8 of AI actuat.ors whieh cOlllcl he 

driven without yielding a rcdundantly aduaf,cd syst.f'll1, wlw\(' 1\- is giwtl hy 

1 r _ ga' 
\ - AI!(gll - AI)! 

The condit.ion numhf'rs of the' J u '8 COI'l<'SpOlldillg 1.0 ('ach candidctt.(· S(·t of 

driven actuators could be cOlllpa/'f'd to dde/'milH' wllich ~d wOIIl<l J)(·sl. control t.!1(' syst.em. 

IIowcver, for a 6-legged walking machin(' with thm' ad IlcltOI'S JH'/' leg cl/HI all six I('gs ill 

ground contact (9a := 18 and AI = 6), thi~ would ('111 ail 1 II<' (·vctllldl iOIl of tll(' cOllditioll 

number of 1856~ 30 x 30 mat ricC's--ekarly Ilot f('a~ij,le III cl 1('(d-1,I/l)(, W/lt('xt 

But more importantly, Golul> and Van Loan (J m~:~) ~h()w that I).y addiug a 

co/umn to a matrix, the lal'gcst singulal' va/ue ill('/'f'aS('s ami I/If' ,"Illal/l'sl, sil/gll/al' va/Ill' 

is diminished. This implies that the cOlldition 1I1111l!wr of J ll wrll II(' il\('f('é\s('d wl)(,ll<'v(,/' 
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a column is added to it-i.e., we deactivate an actuator-, thereby bringing Ju doser 

to rank deficiency. We can therefore conclude that a redundantly-actuated system will 

be more controllabJe with a given set of actuators active than with any subset of those 

actuators active. Finally, it beeomes evident that, from this perspective, it is desirable to 

keep as man y actuators as possible active. 

3.6 KinematicjStatic Duality 

Because there exists a duality between the kincmaties and staties of robotic 

manipulators, it is appropriate to discuss the statics of the cooperating rohotic deviccs 

at this point, as a transition between their kinematics and dynamics. Kinematicjstatic 

duality ean be derived by eonsidering the power input to and output from a system which 

can neither store nor dissipate energy, namely, a system in whidl kindic energy, strain 

energy, friction and damping are aIl absent and wherc gravitational forces are cOllsidered 

as external forces applied to the system. In this case, the principle of conservation of 

energy allows us to conclude that the power input to the system is equal to the power 

output from the system. 

The principle of conservation of energy il' first applied to seriaI manipulat.ors 

in order to demonstrate the analogy between the kinematic and static relations-a result 

usually ohtained through the principle of virtual work (see e.g., Asada and Slotinc, 1986). 

The power supplied to the actuators can he written as 

(3.54) 

where r if is a vector of the actuator torques applied at each joint. If wc assume that no 

gravitational forces ad on any of the intermediate links, the power output to a load at 

the end-effector is 

(3.55) 

whcre w .. is a vector composed of forces and moments (hereafter called wrench) applied 
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hy the end-effector. Equating these two powers, we obtain 

(3.56) 

Suhstituting eq.(3.14) into eq.(3.56) yields 

(3.57) 

Since this equation must he satisfied for all ét., we can say 

(3.58) 

This equation tells us how a general wrench w. will be mappC'd into a set of 

actuator torques T •• On the other hand, if Til is known, wc ean solve the system given by 

eq.(3.58) to obtain w. sinee J II is usually square. The similarity of eq.(3.58) and ('q.(3.14) 

leads us to say that the velocity kinematics and the staties pl'Oblem are dllal to ('ad, other. 

A similar procedure is now applied to syst('ms composed of eoop<,ratillg l'Ohot.ic 

devices. In exactly the same way, we equate the power input to the system and t.h(' power 

output from the system: 

(3.59) 

where <Je is the vector of actuated joint rates, Tc is a vcctor of the act.uator torques in the 

system, W e is the wreneh applied by the moving pole 011 it.s ellvironnwnt., while te is t,J1(' 

twist of the moving pole. Equation (3.31) can be suhst.itut.('d iut.o eq.(3.59) to ohtain 

(3.60) 

Equation (3.60) must be satisfied for ail te, thereby yiclding 

with matrix A defined as 

T T T A = [J';; ... J;p jP (3.(ilb) 



c 

t 

CliAPTER 3. KINEMATICS AND STATICS 60 

Equation (3.61a) specifies how a general set of actuator torques Tc will be 

mapped into a wrench at the moving pole WC' On the other hand, we might he interested 

in determining the actuator torques Tc required to exert a prescrihcd wrcnch at the moving 

pole Wc, as was done previously for seriaI manipul~tors. This wouid he straightforward if 

the system given by eq.(3.61a) were determinate, i.e., if matrix A were square. However, 

when the system is redundantly-actuated, the system is underdetermined, i.e., matrix A 

has fewer rows than columns, and therefore does not have a unique solution. A general 

procedure for resolving this underdeterminacy will he detailed in Chapters 5 and 6. For 

the time heing, it is only important to note that this non-uniqueness of the solution exists. 

The next chapter will show that even when the effect of dynamic forces are considered, 

the resulting system of equations will remain underdetermined. 
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Chapter 4 

Dynamics 

A number of software packagcs exist to find thc ùynamic force's acting in /I1cch­

anisms in motion (e.g., IMP, ADAMS, DADS). II 0 We V<' l' , t.hes(' packag<'s arC' primal'ily 

aimed at systems with fixed topology and are Ilot able to allalyze sysl('llls which cU'C re­

dundantlyactuated. This chapter is thcrcforc intcnd('ù ta dCéll \Vil h tlH' formulat.ion of the' 

dynamics equations of redundantly aduated rohotic systelll::;. 'l'hi::; will a lIow Il::; 1,0 det.cr­

mine the forces which accompany the motions disclIsscd in t.h/' previolls chapt.(·I'. BJ'Oadly 

speaking, there exist two possible problems in the dynamics of lohot mélnip\llatol's: 

1. Forward Dynamics-given the init.ial condition of th<, systelll, the pxt.(·l'IIal w!'('nclH's 

acting on the system and the actuator torquf,'s, find t.lw corr('spOluling t.ill1(· Itistol'il'S 

of the joint ;.,rI/ùr CartC'sian coordinates of t.hC' 1lIé1l1ipulatol'. This ('ntails solving 

the motion equations for the relevant accd<'rat iOlls alld illl,<'gl at.ing t 1\(':-,(' 1.0 oht,ain 

velocities and positions. Solution of the forwélld dY"illllic:-, 1>101,1('111 is palticularly 

useful when it is desired to simulate a sysl.<'m fol' design or anillldt.ion pmpo:-,es. 

2. Inverse Dynamics--givcn the motion of the sysl.c·lll, fine! tI\(· act.uat.or ellld COI1-

straint wrenches acting in the syst.em. This probl('lIl nt et y 1)(· forlllllla!.<·c1 as a set 

of simultaneous \incar equations which must bc solv<·d for a( tuator ,tIId (ollstl'aint 

wrenches. Solution of the prohlem is usdul for design alld control p1lrpos(':,. Whcn 

used in control applications, such as a 'computcd torqu(" scll('IIl(' (s('(' ('.g., /\sada 

and Slotine, 1986), it is imp<,rative that the problem he solvabl<' ill r('al-tillle. 
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Since the present work focuses on the control of redundantly-actuated robotie 

systemf.>, we will deal primarily with the real-time solution of the inverse dynamics prob­

lem. The desired motion of the system is therefore assumed to be prescribed, while the 

actuator torques required to achieve this motion must be found. It will be shown that, as 

was found when we dealt with statics in §3.6, the inverse dynamics problem is underdeter­

mined. This willlead us to treat the dynamics equations as constraints in an optimization 

problem. However, these are not the only constraints which must be imposed on the solu­

tion to the optimization problem-other ones being necessary to account for limitations 

of passive contacts and actuator capabilities. This chapter will therefore also deal with 

these latter unilateral constraints on an allowable solution. 

4.1 Dynamics of Open Kinematic Chains 

The dynamics equations of open kinematic d1ains consisting of rigid bodies are 

weil understood. The most recently-developed solutions to the fOl'wal'd dynamics pl'Ob­

lem lead to efficient O(n) algorithms, whel'e n is the number of links in the kinematic 

chain. A good example of these is the method recently devcloped by Rodl'igucz et al. 

(1989)-applicable to both open and closcd kinematic chains-which applies optimal fil­

tering techniques to the solution of the forward dynamics pl'Oblem. The inverse dynamics 

pl'oblem of these syst('ms \Vas the subjed of intensive investigation in the carly 1980's 

and solution techniques were developed which are computationally efficient. For cxample, 

the work of Luh et al. (1980) presents a recursiv(' Newton-Euler technique to calculate 

actuator torques from prescribed joint positions, vclocities and accelerations with roughly 

1500 floating point operations) for a six-link robot. Further work in this area has yiclded 

techniques which consume as little as 950 floating point operations (Angeles et al., 1989). 

Since modern workstations can easily perform 1.5 Mflops (i.e., 1.5 million ftoating point 

operations pel' second), one evaluation of the inverse dynamics modcl can be performed 

in less than 1 ms--a rate which will easily accommodate real-time operation. 

1 Any slllgie multiphcat.lOn, diVision, addit.ion or subtractlOll betwccn two realllumhers 
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Appendix A gives a recursive inverse dyna.mics algorithm for seriaI manipula­

tors which is essentially that of Luh et al. (1980). This algorithm can be used to calculate 

the actuator and constraint wrenches acting in any seriaI sllbchain within the syst.em of 

cooperating robotic devices which is uncoupled from the remaindcr of the system-c.g., 

a finger of a mechanical hand which is not in contact with the grasped object. It will also 

be used in certain of the inverse dynamics formulations of multiple-loop linkages which 

follow. The algorithm is made up of two phases which can be described as follows: 

1. Outward recursion from the manipulator's base to its tip to calculak the motion of 

each link in Cartesian space. That is, given the mot.ion of the hase link and ail t.he 

joint angles, joint rates and joint accelerations, thc Cartcsian llIotion of t1J(' other 

links is calculated by starting at thc base and working OlltWélld 1.0 t.he last link. 

2. Inward recursion from the manipulatol"s tip 1.0 the bas(' to ca\culal.<' t,1l(' wrenclH's 

acting on each link, inclllding both constraint. hnd actuatol" wl'('lIches. 

4.2 Dynamics of Closed Kinematic Chains 

It is useful to partition the wrcnches in the system inLO: 

1. Contact Wrenches, which act at the interface hetwœn the individual rohotie 

devices in the system and one of the poles. 

2. Actuator Wrenches, which are the forces and/or moments supplied by the actu­

ators at the actuated joints in the system; 

3. Constraint Wrenches, which are the non-working wl'('nches acting at t.lu' joints 

in the constrained directions; and 

4. External Wrenches, which may aet at any point in the system dlle to externaJ 

loads. 
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In the context of the inverse dynamics problem, wrenches of the first three 

typ<.>s are unknown, while wrenches of the last type are assumed to be prescribed. 

The inward recursion of the inverse dynamics algorithm developed by Luh et 

al. (1980) relies on having a single unknown wrench acting on the last link in the chain 

(that bpjng the wrench exerted by the second-to-Iast link) and is therefore not applicable 

to closed kinematic chains sinee they have no 'last link' with a single unknown wrench. 

Researchers in robotics have only reeently approached the inverse dynamics problem of 

manipulators containing kinematic loops. Luh and Zheng (1985) proposed the 'virtual eut' 

rnethod which involves 'cutting' each kinematic loop in the system at an unactuated joint 

to produce a kinematic chain with a tree structure. Using a seriaI-chain algorithm and 

explicit calculation of a set of Lagrange multipliers, the torques required at the actuated 

joints can be found. Nakamura and Ghodoussi (1989) later improved the virtual cut 

method by avoiding the explicit calculation of the Lagrange multipliers. The virtual eut 

technique was primarily intended for seriai manipulators with local planar doscd loops for 

which the explicit formulation of the kinematic constraint equations is tractable. However, 

these closed-chain constraint equations can be tedious to construct in the case of multiple 

3-dimensionalloops. 

In the present analysis, it is presumed that ail the joint coùrdinates, velocities 

and accelerations are known. If only the motion of one of the poles is known, the inverse 

kinematics problem described in Chapter 3 must first be solved. Given these inputs, there 

are a number of ways in which the dynamics equations of the system can be written, each 

of which reduces to a system of linear equalities of the fonn 

AIX = hl (4.1) 

where Al is a matrix of dimension m x n, X is a vector of dimension n which contains 

the wrenches acting in the system, while hl is a vector of dimension m which represents 

the motion of the system. The numerical values of m and 11 dcpend on the mcthod used 

to formulatc the dynamics cquations. The following sections will discuss three ways in 
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which this can be done-each differing in complexity, cornputational requirements, and 

amount of information generated. It will be shown that no matter how the equations art' 

formulated, if the system is redundant~y actuated, n will always he greater than ln by an 

amount r, the degree of actuation redundancy. In this case, the fad that the lincar systt'rn 

given by eq.( 4.1) contains more unknowns than equatiolls implies t.hat there exist man y 

solutions which will satisfy the equations This allows us to formulate an optimization 

problem in order to find the 'best' solution in a pre-established sense. ln this light, we 

say that eq.(4.1) constitutes a set of constraints to an optirnization probl('lll in which we 

minimize a certain objective function, f(x), of vector x of design variables (a.k.a. (lf'cision 

variables) . 

4.2.1 The Complete Formulation 

The first and most comprehensive rncthod for writing the dynamics c<Juations 

of the system explicitly considers aIl wrenchcs acting in the system. Th(~ fOfre and I\\OIl\<'IIt. 

balance equations are written for each link in the chain resulting in a large syst.em of 

equations, where vector X contains the contact, actuator and constraint wrendH's. 

The system is first broken clown into its individual rigid bodies as shown in 

Figure 4.1(b). The prescribed motion of the base of path i is givcn by w~, w~ and a~-­

its angular velocity and acceleration and its translational acccleration, resp<,ctively-n.h. 

the translational velocity of the base link is not cxplicitly rcquircd. A forward lecursion 

is performed from the base link to each of the pend lillks-fing('rtips, ('nd-df(·ctors or 

feet-by recursively solving the following vector equatiolls fol' j = 1 1,0 bli " where bpI is 

the number of links in path i: 

When joint j is a revolute: 

( 4.2a) 

(-1 .2b) 
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(a) 

Figure 4.1 Decomposition of tllC Parallcl SubciJain 

a' = a' + w' x r' + ",' x (",' x ri) ] ]-1 ] J J J ] 

When joint j is prismatic: 

, .. ' - , .. ' 
-J - -J-l 

w' -,:.' ] - -J-I 

66 

(4.2c) 

(4.3a) 

(4.3b) 

(4.3c) 

wherc, for eaeh path l, "'; den otes the angular veloeity of link J, a; dcnotcs its translational 

accelcration at the origin of frame j which is attached to link j, Cf; is the J-th joint variable, 

e; is a vector aligned wit.h the j-th joillt axis and r; reprcsCllts the vector from the origin 

of frame (j - 1) to the origin of frame). 
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For both types of joints: 

( 4.4) 

where a~J is the translational acceleration of link j at its centroid, and c~ is a vcct.or fmm 

the origin of frame j to the centroid of the link j. 

We can now write the Newton-Euler equations for link j in parallcl path las: 

( 4.51'1) 

(-l.5b) 

where fÎc,k+l and nk,k+l are, l'espectively, the force and Jl101llPllt clpplil'c1 by lillk 1.. of path 

i to link k + 1 in the same pal.h, and êk.1 repl'<,sen ts a v('dor l'rolll t!H' n'II troid of li Il k 1.. to 

the origin of frame 1. T~c ccntroid moment of inert ia and llIass of lillk J are <1<'1101,(·(\ hy 

I~ and m~, respectivc1y. Finally, f~J and n~J are the external force c\lId 1II0rlWIll. appli('d t,o 

link j, while c~) represcnts a vcctor from thr centroid of lillk J 10 IIH' point. of application 

of f;). 

For notational conveniencc, we assign a sp(·cial sYlllbol t,o the' wn'lIch act.ing 

at the distal end of the las!' link of each path. 

f = f' ,- bp"bp,+l' n =n' 
1 - bp"b,,,+I' i = l, ... , l' 

where p is the number of paths bctwccn the two poles. 

Using this notation, the e<]uations of mol iOIl of t1H' /Ilovi ng pole arp writ.l.(·n as 

p 

L: fi = 111 0 (ao + g) - fe 
1=1 

11 

L)n, + C, x fi) = lowo + INo X lowo - (B" + Cc X fr) 
1=1 

( 1.7a) 

(1.71> ) 

where mo and la represent the moving poIe's mass and centroid IIIOITWllt of ilw/'tia, w() 

and a o are its angular velocit,y and translational accd('ratioll, alld C, i~ the vedol' from 



f 

CIlAPTER 4. DYNAMIC8 68 

the moving polc's centroid to contact point i. Furthermore, fe is the veclor of the nct 

external applied force on the moving pole, of dimension 3, De is the vector of net external 

applied torques, also of dimension 3 and Ce is the veclor from the object's centroid to the 

point of application of the external force. 

Equations (4.5a) and (4.5b) are written for each link in each path of the system, 

while eqs.(4.7a) and (4.7b) are written for the moving pole. Once these veclor equations 

arc expressed in a single frame, they can be assembled into a single system of simultaneo!ls 

cquations of the form given by eq.( 4.1) with 

0 1 0 1 0 0 0 0 0 0 
1 CI 1 Cp 0 0 0 0 0 0 
0 0 0 0 0 1 0 -1 0 0 

AI = 0 0 0 0 1 
~ 1 
C t .o -1 

~I 

-CI,t 0 0 

0 0 0 -1 0 0 0 0 0 1 
0 0 -1 êp 

- bpp,bpp 0 0 0 0 1 êp 
bpp,bpp-I 

(4.8a) 
DI 

fi 

op 
fp 
1 

x= 
no,l 
rd,l (4.8b) 

1 n l,2 
ff,2 

wherc C k is the 3 x 3 matl'ix defined by 

C 
- 8(Ck X v) 

k = 8v (4.8c) 

while êi. 1 is the 3 x 3 matrix defined by , 

~ 8(êi., x v) 
Cl, == 8' , v (4.8d) 
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for any 3-dimensional vector v. 

This system of equations eonsists of m = 6(1 + L~=I bpI) eqllations with, at 

most, n = 69" unknowns, where 91' is the number of joints in the parallel sllbehain. The 

number of unknowns, 11, will be reduced by 9~u' the number of unactllat(·d joint d('gl'('('s 

of freedom in the parallel subehain sinee we know the fOlce or 1II01ll('nt correspollding t.o 

an unacluated degree of freedom is zeI'O, We also know that thprp are !Jp = 2 + L:'=I b,II 

bodies in the system-the 2 poles and ail the links in each path Iwl,w('('n the t,WO poles, 

The degree of underdeterminaey of this system-i.e., the numbcr of ('olllmns minus tll<' 

number of rows in At-is thercfore 

Substituting eq.(2.5) into eq.(4.9), wc obtain 

11 - m = 6c- y' pu 

into whieh we ean substitute eq.(2.6) (with d = 6) to fine! 

b . , " ' ut smee 9" = 9"a + 9 pu ' we can wnte 

(4.!l) 

(1.11 ) 

(4.12) 

Since the numbcr of actuated joint degrccs of frc('dolll in the st.al' subclléLin is 

always equal to its mobility, we have 

(1.1:!) 

whieh allows eq.(4.12) to be rewritten as 

=Ya -M (1.11) 
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This difference in turn, is nothing but the actuation redundancy r as defined 

byeq.(2.l5). Thus, it becomes clear that the system given by cqs.( 4.1), (4.8a) and (4.8b) 

lias r more cotumns than rows. That is, the degree of underdetcrminacy of the system 

of inverse dynamics equations of a redundantly-actuated system is equal to its actuation 

rcdunda.ncy. 

4.2.2 A Formulation Using Superposition 

The system of equations obtained in §4.2.1 gives acccss to ail the wrenches 

acting in thC' system and is thcrcforc weil suited to dC'sign applications. IIowever, the large 

dimensionality of the formulation makes it unsuitahle for implementation in a leal-time 

controller for most rC'alistic 3-D systems. VVe can assume that, while the computation 

of thc constraint wrel1ches is usdul for design purposes, it i!> less esscntial for control 

purposes. Use of the princÎple of superposition allows us to avoid compllting the constraint 

wrenàes and conccntrate exclllsively on the variabks of interC's": the act.uator and contact 

wrenches. 

The parallcl kinematic subchain has the structure shown in Figure 4.2(a)­

two poles joined by p paths. An t'dSy way to obtain the cfJlIiva/cIlt trce structure is to 

rcmovc one of the poles-for cxample, lJl the case of a hand-objcd syst.em, wc sepal'ate 

the grasped object from the hand, as shown in Figure 4.2(b). For edch of the p resulting 

seriai subchains, we can write 

(4.15 ) 

where w, and v, arc vectors of dimension 3 representing the angular and translational 

\'C'locities of contact point ij J 31 is the 6 X9~, Jacobian of the arising i-th seriai manipulatorj 

Ct, is the vector of dimension 9~, of joint rates for path ij and g~, is the number of joint 

degrees of freedom in path i. 

The torques acting in each path of the c\osed chain, T" can be separatcd into 

two componcnts: 1) T~, the component associatcd with the inel'tial forces in that subchain 
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(a) (1)) 

Figure 4.2 A Boiller Decomposi t,jOli of t,!te l'ara 1 ici Sil /)ella j Il 

acting as a seriai chain, and 2) r:', the componcnt. élssoriat('d wit.h W Il t.!w wrellcll ('xprt.<>d 

by the tip of subchain l duc 1.0 contact with the rCllv)\wl poil'. TIH'l'doJ'(" w(' cali wl'it.e 

T = T' + Til 
1 1 1 (4.16) 

V1here TI is a vector of dimension g~l' 

The recursive algorithm given in Ap!)('lIdix A nlll \)(' wwd 1.0 calculat.C' r: ---the 

torques acting in the i-th seriai subchain in the ahse'llc(' of a cOIlt.act wf'('lIch. In orcier 1.0 

find T:', we formulate the following expressions for the' powpr prodllcC'd hy T:' alld by W I 

1/ = q' TT" 
71'1 1 1 (4.17a) 

(-1.171» 

These two powers are equal in the absence of dissipation. If wc Sil hstituf.e' eq.( 4.1!)) inl.o 

eq.(4.17b) and equate eqs.(4.17a) and (4.17b), we obtain 

·r" 'TJT q, TI = q, .!IWr (4.18) 
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Since eq.(4.18) must apply for any qi, we can write 

( 4.19) 

and eq.(4.l6) becorncs 

(4.20) 

It is interesting to note that this is nothing but an extension of the result 

obtained in eq.(3.58) to include the effect of the inertia of the manipulator. If the joints 

in the seriai paths are not ail actuated eq.( 4.20) can be partitioned as 

(4.21) 

wherc Tai is a vcctor of dimension g~al' the number of actuatcd joint dcgrecs of freedom 

in path ij and T UI is a vector of dimension g~u., the number of unactuatcd joint dcgrecs of 

frcedom in path i. Since the joint dcgrccs of frecdom concsponding to T UI are unactuated, 

T UI = 0 and we can expand eq.(4.21) as 

JT 1 
"aI W ' - Tai = -Ta. ( 4.22a) 

( 4.22b) 

Equations (4.22a) and 4.22b) can be compactly written as 

A.x,=b, ( 4.23a) 

where 

-1, 1 [W ] [n ] [ TI] gpa. 1 1 - - al 

O ' X, = , W I = f ' hl = _ 1 
g' Xg' Tai 1 Tua 

pUt pal 

(4.23b) 

wherc fi is the vector of contact forces of dimension 3, ni is the vector of contact torques, 

also of dimension 3, lk denotes the k x k identity matrix, and Okxl denotes thc k x l zero 

matrix. 

The complete cqnations governing the motion of the system can now be formed 

by combining eqs.(4.7a) and (4.7b) for the abject, with eq.(4.23a) for each seriai subchain 
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in the equivalent tree structure. This yields an augrnented system of the forlll giv.en by 

eq.(4.1) with 

BI Bp TTto(ao + g) - fc 

Dl Dp 

x= [} 

Iowo + W o x Iowa - (ne + Ce X fe) 
At= Al 0 , hl = bl 

0 Ap bp 

(4.2,ta) 

B, == [03X3 13 03Xg~a.] , D, = [13 C, 0Jxg' ] pa. 
(,1.2,1 b) 

The linear system representcd by eqs.('l.l), ('1.21c\) alld (4.2,11» il' (,()Il\p()~;('d 

of m = (6 + E~=dg~al + g~UI]) equations in, at most., 1/ == (6p + L:;=I .fI;JaI) IInknowns- -Î.('., 

p contact wrcnches of 6 clements ('ach, plus g~al actuatol' t.orqu(·s in ('ach pat.h. Whell a 

general wrench eannot he excrted at the 1-th contact, the' 1I11lllh('r of Il Il kllowlls is J'('cl u('(·<1 

by c,-the number of COll tact degrecs of fl'eedom. Thus, t I\(' dq~J'('e of UII<l('1 dd,('llIli lléH'y 

can he ealculated as 

p P l' 

n - m = 6p + Lg~a, - Le, - 6 - L)9~(j1 + 9~1tI) 
,=1 1=1 ,=1 

p 

= 6(p - 1) - ~) C, + g~ul ) (4 .2!») 
1=1 

Using eq.(2.7), and the fact E;=l(CI+g~u,) = g~!t' where 9~u is the t.ot.al Ilumh('l' 

of unactuated joint degrees of freedom in the parallel slIhchain, wc find t.hat. (·q.(4.25) cali 

he rewrit ten as 

n - m == 6c - ,q~u ( 4.:Ul) 

which is identical to eq.(4.10). Thus, the degrec of underdef.(·rminacy lIsing t.his formula­

tion is once again equal to r, t.he degrœ of aduation rcdundallcy in t.he system. 

4.2.3 The Most Compact Formulation 

The third, most compact and most commonly uscd lJIdhod of forrnlliating t.he 

dynamics equations-sec e.g., Nakamura ct al. (1987), IIsu et al. (HJ88), Alberts and 
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Soloway (1988), Cheng and Orin (1989)-considers only a single body in the system. This 

has the advantage that the size of the resulting set of linear equations is greatly reduccd 

and permits a fast solution. However, it only includes the contact wrenches in the vector 

of design variables, x. In the case of mechanical hands and cooperating manipulators, the 

single body for which the equations of motion are written is the grasped object, while in 

the case of walking machines, that body is the complete machine considered as a single 

rigid body-i.e., neglecting the internaI joints of the machine. Because the vector of design 

variables includes only the contact wrenches, there is an attendant loss in gcncrality which 

may be cÏrcumvented by calculating the actuator and con~ltraint wrenches as functions of 

the coutact wrcnches. This will be shown in §4.2.4. 

Referring to Figure 4.2(b), the vector equations of motion of the moving pole 

arc given by eqs.(4.7a) and (4.7b). These can be written more compactly in the form of 

eq.(4.1) with 
nI 

Al _ [0 1 0 1 0 ~J, 
fI 

- 1 Cl 1 C2 1 x= 
np 

( 4.27a) 

fp 

(4.27b) 

with C k defined by eq.(4.8c). Using eqs.(·1.27a) and (4.27b), cq.(4.l) now reprcsents 6 

scalar equations in, at most, 6p unknowns-i.e, p contact wrcnches of 6 elements each. 

Once again, wh en a general wren ch cannot be exerted at the i-th contact, the number 

of unknowns is reduccd by cI-the numbcr of contact degrccs of freedom. As weIl, if 

the i-th path contains g~ul unactuated joints, it loses the ability to independently exert 

that number of contact forces or torques. Thus, the degree of underdcterminacy can be 

calculated as 

p 

n - m = 6p -2)cl + g~ul) - 6 
1=1 

p 

= 6(p - 1) - ~:)c; + g~ul) (4.28) 
i=l 
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which is identical to eq.( 4.25), and, once again, the underdcterminacy of the system of 

equations is r. Matrix Al is of dimension 6 x 6p when a general grasping wl'ench of 

dimension 6 can he exerted, rendering the system underdetermined wh(,l\('ver p > 1. This 

will usually he the case for multiple manipulators handling a common payload. If contact 

torques cannot he exerted-i.e., the contact wren ch is of dimension 3--, the mat.rix Al 

is of 6 x 3p, and the system is underdetermined whenever p > 2. This situat.ion lIol'!Ilal1y 

arises in walking machines and mechanical hands sinee thcy cannot usually exel't torques 

at the footfground or fingertipfobje\'t contact. 

4.2.4 Calculating Actuator and ConstraÎnt Wrenches 

It is possible to use the most compact formulaI ion of the dYllamics equations 

which includes only the contact wrenches as unknowns, and yet, st.ill cakulatl' t.he cor­

responding actuator and constraint wl'cnches. For example, once the contact wl'('ncl)('s 

are solved for in eqs.(4.1), (4.27a) and (4.27h), the actuator tOlqups can b(· foulld llsing 

eq.( 4.20). Since thel'e are many possible solutions to these equatiolls, w(' c-an cOlldudp 

that there also exist many sets of actuator torques which will yield the saille payload 

motion. 

Another relationship which is of particular int.<,rest. is one which allows us 

to find the constraint wrenches from a given set of contact wrenches. The vedor VII 

containing the constraint and actuator wrenches in the i-th parallel path can he found in 

a manner analogous to that used for the actuator torqucs ollly. 'l'hat tH, 

1 Rt 
o 1 

( 1.2f)a) 

F; = (1.2gb) 

n C9p• 1 RgpI 

f cgp• 0 1 

where w: contains the wrenchcs duc only to the weight and incrtia of suhchain i. This Lerm 

is calculated by the inverse dynamics algorithm of seriaI chaim, rOIlJld in App('ndix A. Tlw 
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L 

~ 
(a) (b) 

Figure 4.3 A Planar Two-Fingered /land Grasping an Object 

second term on the right-hand side of eq.(4.29a) is the contribution due to the contact 

wrench acting at the tip of the i-th path. The components ne) and rC] arc vectors of 

dimension 3 which represent the moments and forces acting at the )-th joint of the i-th 

path, respcctively. Matrix F; maps the contact wrcnch into joint wrenches, while matrix 

Rk is defined analogously to C k in eq.( 4.8c) but with Ck replaccd by rk, the vector from 

the k-th joint of the i-th path ta the tip of that path. Finally, gpl is the number of joints 

in the i-th parallel path. 

4.2.5 Example 

The three methods of formulating the dynamics equations are now applied 

to the two-fingered planar mechanical hand shown in Figure 4.3 in order ta highlight 

their differences. The first mdhod involves writing the three force and moment balance 
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equations for each of the 5 moving bodies in the system. Using the notation shown in 

Figure 4.3, we have 

If + ff = mo(a~ + g) 

I x y + f" x fX 11 + f" Xl' - 1 Cl 1 Cl - 2 C2 2 C2 = oWo 

,Iii flY 1( 1" ) 
JO,I - 1,2 = ml al + 9 

f lY fV 1 (l y ) 
1,2 - 1 = m z (lz + 9 

r 2y f2 Y 2 ( 2y + ) 
./0,1 - 1,2 = 7nl al 9 

f 2x fX 2 2r 
12 - 2 = 7rL2aZ , 

j 2Y lY 2 ( Zy + ) 1,2 - 2 = 17t 2 ll2 9 

( 4.30a) 

(·t.30b) 

( 4.30e) 

(4.3Ia) 

(4.3Ih) 

(tl.3Ie) 

(/1.32a) 

( 4.32b) 

( 4.32c) 

(4.33a) 

(4.3:lb) 

( 4.:J:k) 

(4.:Ha) 

(4.:Hh) 

( 4.:l4c) 

These equations must be solved for 16 unknowlls: <1 cOlllporlC'nts of the contact 

forces, If, If, fi and If; 4 actuator torques, n~,l' nL2' n6,1 and nL; and 8 illternal 

t · f t (lx rly flx jlX (Zx r2:r j2X 1 j2x 'fi . tl " t, reac Ion oree componen s, JO,I' JO,I' 1,2' 1,2' JO,I' JO,I' 1,2 an< 1,2' II1S,)( sys cm 

has one more unknown th an equations, which concurs with the [ad that it has a IIIohiiity 

of three, controlled by 4 actuators-i.c., an actuatioTl r('dundancy of one. 
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The second mcthod entails writing the three force and moment bd,lance equa­

tions for the grasped object and the equations governing the motion of each finger acting 

independently. The Jacobian of each two-link finger is required and can be written as 

Jal = ~!1 [ '1 

hl 
jh ] 
'1 

h2 
(4.35a) 

where 

'1 l" (JI ë' ((JI (JI ) lu = 1 sm 1 - 2 sm 1 + 2 (4.35b) 

j;2 = - 1; sin(O; + (J;) (4.35c) 

j~1 = I~ cos (J; + I~ cos( 0; + 0;) ( 4.35d) 

j;2 = 1; cos(O; + 0;) (4.35e) 

and 1; is the length of link j in finger i, while 0; is the joint angle of joint j in finger i, as 

shown in Figure 4.3(a). Thus, we obtain the following set of equations 

If + Pi = mo(a~ + g) 

l x 11+111 x jXlI+fllx J' - 1 Cl 1 Cl - 2 C2 2 C2 = oWo 

( 4.36a) 

( 4.36b) 

( 4.36c) 

(4.37a) 

(4.37b) 

(4.38a) 

(4.38b) 

where n~:k is the actuator torque duc only to incrtial effects applied by link j on link k 

in finger i. These equations must be solved for 8 unknowns: 4 components of the contact 

forces, If, If, 12 and R; and the 4 actuator torques, n6.1, nL2' n5.1 and n~.2· 
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Finally, using the third method, we need only write the tlucc force and mOllwnl 

balance equations for the grasped object: 

(4.39a) 

If + 1~ = mo(a~ + g) ( 4.39h) 

l x y + fY x fX Y + fY rI' - 1 Cl 1 CI - 2 C2 2 C2 = oWo ( 4.39c) 

and solving for the 4 unknown contact force componcnts: ft, Ji, 1{ and f~. 

It should be apparent that no matter which formulation is llSCU for the dy­

namics pquations of the system, the resulting m x 11 matrix AI will he rcct.angular with 

n - m = r. Thus, in ail three of the abovc cases, the numbcr of unknowns exceeus t.he 

number of equations by one-t.he actnation redundancy in the system. 

It should also be apparpnt that the matrÎx Al Îs a fundÎoll of t.he g<'olll('try of 

the system. Thereforc, in gcneral, this matrix is t.ime-varying, alt,hough, wit.h cert.ain for­

mulations of particular problcms, it is constant for (,âch constant topology of tl\(' sys/'('m. 

In the case of a walking machine for which the cquatiolls of motion hav(' Iwen fOllllula!.('d 

using the method of ~1.2.3, tll<' entrics of matrix AI will vary whellcver motioll is presC'llt. 

since the location of the footjground contact points will vary in relation to the Illclchinc's 

mass centre. On the other hand, if the same formulat.ion of the dynamics equatiolls is 

used for multiple arms manipulating a common object, matrix AI will stay cOllstant. as 

long as the contact points do Ilot move on the graspcd object. Thus, in the lattel case, if 

the desired solution is one which minimizcs a norm of x, it ll('cd ollly be found ollce eél('!J 

time a new set of contact points is cstablishcd. 

4.3 The Effect of Changes in Topology 

It is usetul to investigate in more dctail the (hallg<'s whidl OCClll' in t.he syst,"rn, 

c.g., as given by eqs. (4.1 ) and (<1. 21a) to (1.21 h), 11 PO!! ('hélllg<'H ill t.opology. III tJ)(' l'n'violls 
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sections, we dealt solely wit}> the dynamics of the parallel kinematic subchain. In fad, 

the systems under study are made up, at any given instant, of the parallcl and the stê.r 

subchainsj where the latter represent the fingers, legs or manipulators which are not in 

contact with the common object or ground. In the discussion which follows, it is assumcd 

that any given path can be open, in which case that path aets as:.. seriai chain, or c1osed, 

in which case the path becomes part of the parallel chain. It is also assumcd that the 

system of dynamical equations describes ... 11 kinematic chains in the system, including 

open and closed ones. Thus, the vector of forces iJ written as follows 

x = [Xl (4.40) 

where x, contains w" the contact wrench at the tip of subchain l, and Tai, the vcctor 

of actuator torques in subchain i. When a subchain is open, e.g., a finger is not m 

contact with the object, the corresponding w, is forccd to be zcro by zcro entrics m 

the corresponding columns of Al' Furthermore, for each open subchain there will be 

a corresponding subsystem of equations within the system given by eq.(4.24a) which 

will be decoupled from the remaining equations in the system. Whcn one of the open 

subchains becomes part of the closed chain, there is an increase in the number of lion-zero 

colttact wrenches in the system-i.e., the contact wrench now acting at the tip of the 

previously-open subchainj the correspondillg columns of Al will no longer be zero; and 

the corresponding subsystem of equations beconlP cou pIed to the l'est of the system. After 

the change in topology, the system of inverse dynamics equations becomes 

(4.41 ) 

If we assume that the change in topology i8 one wherc the previously open I-th 

subchain cornes into contact with the object, the form of the Al and A~ matrices will be 
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BI 0 Bp 
DI 0 Dp 

Al 0 0 
G = [~9~QIX6 -1, 1 A t = g,.al (4.42a) 0, , 

0 G 0 g,. .. 1 x6 gpul X9pal 

0 0 Ap 

.ij. 

BI B, Bp 
Dl D, D" 
Al 0 0 - [J;., -1, 1 A~= A,= T 

91'01 (4.42b) 
J.m , 0, , 

0 A, 0 9"ul X9pal 

0 0 Ap 

It becomes clear that, wht.:n a change in topology occurs, the system of inverse 

dynamics equations changes discontinuously, thereby causing a discontinuous change in its 

solution. Furthermore, sinee this is a characteristic of the dynamics of the system, and not 

of the optimization technique, it will occur irrespective of tl1e type of optimization being 

performed on the system. It should be noted that the system given by eq.( 4.42a) has been 

written as such to point out the transition which occurs upon changes in topology. In fact, 

the system corresponding to the open subchain 1 in Al can be solved independently, white 

this is not the case with A~. Practically spcaking, when the larger system decouples into 

two smaller systems as in this case, it is always computationally more efficient to solve 

the two systems independently. 

4.3.1 Reduction of Solution Discontinuities Upon Changes in 
Topology 

The preceding section showed that the solution to the system of dynamics 

cquations will tend to change discontinuously upon changes in the topology of the system. 

This will, in turn, result in discontinuous commands being sent to the actuators in the 
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system. The actuators are not expected to he able to respond to these discontinuous 

commands and a method of reducing the solution discontinuities is required. The following 

method for doing this makes use of the fact that any solution to the system gi ven by 

eq.( 4.42a) is also a solution to eq.( 4,42h )-that is, a solution in which no wrench is 

exerted at the tip of the I-th suhchain. If we denote the optimal solutions to AIx = hl 

a:ld A~x = b l as Xl and X2, respectively, we can write: 

( 4.43) 

Taking a convex combination (Roberts and Varberg, 1973) of Xl and X2 and 

premultiplying it by A~, we find 

( 4,44a) 

where 

(4.44b) 

Thus, any convex combination of two solutions is also a solution. A sequence of 

suboptimal convex combinations of Xl and X2 which Ilever excccds a maximum Euclidcan 

norm of the rate of change of x can be found as follows: 

II~Xkllmax = LIM(II~xkll) 

k k-l II~xkllmax ~ k 

xout = Xout + II~Xkll x 

(4.45a) 

(4.45b) 

( 4,45c) 

where the superscript k denotes a value at the pr('sent time step, while k - 1 denotc's 

a value at the previoub time step. The function LIM(*) serves to Iimit. thc valuc of the 

scalar in the hrackets to a prcdetermined value. The solut.ion vcct.ors XI and X2 and the 

series of intermediate solutions are shown graphically in Figure 4.4. 

The principal problem with this method of srnoothing the solution is that it 

is only applicable as long as the entries of Al and hl do not change whilc thc smoothing 
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Figure 4.4 Geometrie Interpretation of Seheme for Reduction of Diseontinuities 

operation is occurring other than the change represented by eqs.( 4.42a) and (4.42b). Thus, 

the system would have to be brought to a stop and held immobile whenever a change in 

topology occurred. 

4.4 Inequality Constraints 

Any solution to eq.(4.1) must obviously satisfy that system of equations. How­

ever, in many systems composcd of redundantly-actuated robotic devices, it is important 

that the sobtion also satisfy certain additionaJ constraints. The following sections discuss 

a number of important considerations which include: 

1. The limitations of kinematic pairs which cannot sustain bidirectional forces (sec 

§2.3)j 

2. The maximum l!lteral forces which can be resisted by passive frictional contactj 

3. The maximum torque output limitations of the actuatorsj 

4. The maximum force and moment capabilities of the joints; and 
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5. Limits on the time-discontinuity which is permitted of the solution . 

AlI these constraints can be formulated mathematically as linear incqualities, 

rather than as equalities. These inequalities can then be assemblcd and writtcn compactly 

as 

(4,46) 

where this equation represents a short-hand notation for a componcnt-wise system of 

inequalities. Namely, each component of the vector on the left-hand side must he greatcr 

than the corresponding component on the right-hand-side. 

4.4.1 Unilateral Contacts 

Wh en multiple manipulators handle a common payload, t.heir (>nd-cffcct.ors arc 

assumed to grasp the payload, and be capable of exerting a fully g('ll('ral \Vrellch 011 it. 

There are no constraints implicit in this type of contact. By cont.rast, (wtain kincmat.ic 

pairs discussed in §2.3 require sorne components of the wlench CXC'I'!.('d across tlJ('FW pairs 

to be unidirectional. A characteristic of mechanical hands and wéllking machines is that. 

these types of pairs frequcntly exist at the interface bctwccn t.h(' individllal rohotic syst.c>ms 

(i.e., fingers or legs). Thus, whereas an active, grasping end crfC'ctor can push or pull an 

object, a fingertip can only push. By including this limitatioll i1l t.he optimization as a 

simple bound on IN" the normal force at the z-th contact point: 

(4.47) 

we can guarantee that, if a solution is found, it will sat.isfy force closure 011 the sys!.f'nI 

(Salisbury and Roth, 1983). 

4.4.2 'The Friction Cone and Pyramids 

A consideration of the limitations of passive frictional contact is rdatcd to 

the above discussion. Whereas the active grip in multiple-robot systems is asslllTwd to 
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he strong enough to generate any desired tangential force through the contact and resist 

~lippage, this assumption cannot be made with the passive contact found in mechanical 

hands and walking machines. ,~ these systems, we must ensure that the magnitude of 

the tangential force does not exceed the product of the normal force by the coefficient 

of static friction, J.l. This limitation has been graphically described as the requirement 

to stay within a friction cone (Orin and Oh, 1981; Kerr and Roth, 1986) with its apex 

at the contact point, and its axis normal to the contact surface. Since the cone is a 

quadratic surface, including this constraint exactly would require the use of a quadratic 

inequality. However, since the optimization problem is eased considerahly by considering 

only linear constraints, we follow the suggestion of Orin and Oh (1981) and Kerr and Roth 

(1986) to replace the friction cone by a piecewise lincar k-sided friction pyramid which 

can be descrihed by linear incqualities. Two obvious choiccs for this pyramid are: one 

which circumscribes the friction co ne or one which is inscribed by the friction conc, shown 

graphically in Figure 4.5. Thus for the case of k = 4, this constraint can be includcd as: 

( 4.48a) 

(4.48b) 

which can be expanded into the following four inequality constraints: 

Il'IN, + Ixi;::: 0 ( 4.49a) 

Il'IN,- Ix,?: 0 ( 4.49b) 

Il'IN, + Iyi ;::: 0 ( 4.49c) 

/l'INI - IYI ;::: 0 ( 4.49d) 

where fXI and fyi are the tangential forces acting at the i-th contact point, Il' = Il for the 

circumscribed pyramid, 1/ = V2lt/2 for the more conservative inscribed pyramid, and Il is 

the radius of the friction cone. The friction cone may also he more accurately representcd 

by the k-sided pyramid, with k > 4. 
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Figure 4.E Graphical Representation of the Friction Cone 

4.4.3 Actuator Limitations 

A further source of inequality constraints which applies equally to multiple­

robot workcells, mechanical hands and walking machines, is the consideration of Iimits on 

the torque that can be exerted by an actuator. The cons~raint on the actuator torques 

can be included as: 

( 4.50) 

where Thm is the vector of maximum torques which the actuators can produce. Equation 

(4.50) can be expanded Înto t '\'0 linear inequalities as follows: 

- TI ~ - rlim 

(4 .• 51a) 

(4.51 b) 
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The foem given by eqs.(4.51a) and (4.51b) is sufficicnt if the actuator torques 

arc included in the veetor of design variables, as in the first two methods of formulating the 

dynamics equations. If the actuator torques are not includcd in this vector, eqs.( 4.51a) 

and (4.51 b) must be transformed into limits on the contact wreneh by substituting in 

cq.(4.20) to obtain 

(4.52a) 

(4.52b) 

Thus, the mcthod of formulating the dynamics equations given in §4.2.3 would 

rcquire the use of the incqualitics given by eqs.( 4.52a) and (4 .52b) rather than thos(' given 

by cqs.(4.51a) and (4 .. 51b). 

4.4.4 Limits on the Constraint Wrenches 

In addItion to limiting the actuator torques, we may wish to limit the constl'aint 

wrenches acting at aIl Ule joints. This can be donc by limiting the "cctor of actuator and 

constraint wrenchcs W. as follows: 

(4.53) 

where Wl1m is the veetol' of maximum wrenches which the joints can sustain. Equa­

tion (4.53) can be expandcd into two linear inequalities as follows: 

(4.54a) 

(4.54b) 

The form given by eqs.( 4.54a) and (4.54b) is suffieient if the constraint wl'enehes 

arc included in the veetor of design variables, as in the first method of formulating the dy­

namies equations. If the eonstraint wrenehes are not included in this vectol', eqs.(4.54a) 
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and (4.54b) must also be transformed into limits on the contact wrench, this timc by 

substituting in eq.( 4.29a) to obtain 

FT. [ Dr.'] > ~ 1 ~ _ -W,-Whm ( 4.55a) 

( 4.551» 

Thus, the last two methods of formulating the dynamics equations wOllld n'­

quire the use of the inequalities given by eqs.(4.55a) and (4.55b) rat,h('r than those given 

by eqs.( 4.54a) and (4.54b). 

4.4.5 Limiting Solution Discontinuities Upon Changes in Topol­
ogy 

It was found in §4.3 that changes in th(' topology an' discn't(' and faUS(' discon­

tinuous changes in the coefficients of the dynamics equat iOIl~, <lS i<'(>1 ('S('lIt(,c1 by ma trix AI' 

These invariably lead to discontinuous chang('s in tlJ(' ~ollltioll to the' forn' dist.l'ihlltioll 

problem found with any optimization technique, unl('ss tilt' opl.illlizal.lOll probl('111 is llIod­

ified to prevent them. The actuators in the syst('nJ arC' Ilot ('X)('cl.('d 1.0 Iw a bl(' t,o l'('spond 

to these discontinuous commands and a method of H'duClng t!H' wlut iOIl disnmtilllliti('s 

is required. Section 4.3.1 proposed a technique for smoot.hing t.J)(' force ~OIIlt.i()11 which 

requires the system to remain immobile while the ~lIlo()thillg trtkf'~ pla«' an ('x«'ssiv('ly 

restrictive requirement. The following method makes IlS(' of iJl('<jlléllil.y «)1I~t.réliJlts 1.0 lilllit. 

the rate of change of the actuator torqu('s and IS IIltKh I('~s n'stl i< t ive' O!l tlJ(' ,dlowahl(' 

motion of the system. Since t.he optimizatioll probl('1ll IlllIst 1)(' ~olV('d al, ('Mil II1~taJlt in 

time, at any givcn instant the solution from the pH'viollS in~télllt i~ élvailrtb](' alld (clll b(, 

denoted as x-, where the superscript (-) indicatcs va]u('s al, t 1)(' pl('viollS illstallt. Ld, ilS 

dellote one element of x by XI and the corresponding ('1('11)('111, of x- by .1';. The diff('l'cl\(,(' 

between XI and x; can be limitcd by imposing t}w followlIIg Illnit 01\ t,J)(' magllitlld(, of 

the change in this component of the solution: 

(4.56 ) 
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If the actuator torques are components of the vector x, the rate of change of 

cach component. of x which represents an actuator torque can be limited by expanding 

eq.( 4.56) into the following linear inequality constraints 

- x > -,6 - x-a _ a a ( 4.57a) 

( 4.57b) 

Sin ce these inequalities are of the form given by eq.( 4.46), they can be simply 

appended t.o that system as follows: 

where 

-1 
1 

o 
o 

o 
o 

o 
o 

Aix> h' 2 - 2 

o 
o 

o 
o 

( 4.58a) 

(4.58b) 

-~t - xl 
-~! + Tl 

( 4.58c) 

-~q - x; 
-~ -\.. x-q 1 q 

where q is the total number of clements in x on which hmits in discontinuity are imposed. 

If the formulation of the inverse dynamics equations presented in §4 .2.3 is used, 

vcctor x does not includc the actuator torques. In this case, if it is desir«:d to impose 

limits on the discontinuity allowed in the t.orque commanded from a given actuator, we 

must proceed as follows: 

( 4.5'l) 

where Ta) represents actuator torque J in path i, whilc TI; rcprcsents that same actuator 

torque at the previous time step. If wc expand this inequality as was done in eq.( 4 .57a) 

and (4.57b), and substitute in eq.(4.20), wc obtain 

.T [DI] > ~ - 1 - J,) fI - - 1) - TI) + TI) ( 4.60a) 

·T [Da] > ~ - 1 
JI) fI - - 1) + Ta) - TI} (4.60b) 
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where j'J is the )-th colurnn of J,,, the Jacobian of the palh which conlrlins Ih(' adual.ol" 

in question, and T:
J 

is the port.ion of TIJ due only to irH'rtial ('[('ds. Tlws(' iIH't)lIalit.i('s an' 

again in the form given by eq.(4.46), and thcy can he simply apppnd('d lo Ihat. sysl('1l1 1.0 

obtain eqs.(4.58a) and (4.58b) with 

"T 0 0 0 l -~\l - rjj + T;\ -J11 
"T 0 0 0 -~11 + T1ï - T;, Jl1 l, - b2 = A 2 = (/UB) 

0 0 0 "T J -~P" - T;;;' + r;r -:~r 
0 0 0 Jpr -~P" + r;;;. - T;rJ 

where r is the numher of act.uators in cacI. path. 

This method for smont hing discontinuil i('s in li\(' fOI cC' solut ion is mon' gC'IH'l"al 

than the one proposed in §.t.:l.l silice il do('s not H'qll in' t1)(' ~yst ('Ill 1,0 n'lIIain illllllobil(' 

upon changes in topology. It also fils weil into th<, ('xi~t ing fl'i1Il W\\'dl k of optimizatioll 

sincc it simply involvcs apP<'llding furthel" incqllaliti('" t 0 t 1)(' ('xi ... t illp, OI)(,~, Sill«' th(' CP1J 

time of the solution mct.hod for ineqllality-collstraill!'d qllcldl ,III( opl IIIIIZed iOll wl,ich will 

be presented in §5.4.2 dep<'I)(!s only OI\ the th(' nllllll)('r of (Oll~t 1",11 Il t ~ wIll< h M(' eH'/,iv(' at 

the solution-i.e., satisficd as c(jllalities--, tl)(' additioll of IWW 1I1<'qllclhtws will 1 1 1<'I'<,as(' 

the CPU time only whcn these arc active---i.('., at di~colII illlliti('~. At dlscolltllllliti(·s, only 

one of these will be active at any giv(,11 im,tant--tl)(' 01\(' COII<'~pol\dillg to t.!J<' ('1('1))('1\1. 

of x which undergoes the largesl change at th(' discontinuily ,dncl t.\)(' CPlJ til11C' will 

therefore only he slightly incr('ascd. 

The fJrimary limitation of this techniqm' is that ~, and ~'J Cé111l10!. IH' c\tosC'n 

arbitrarily small-if they arc too r('st.rictivc, the II('W ill('qllélltty con~tlaillt,s will camU' 

the optimization problem 1,0 hecollw infeasihle. That is, 110 ~oJlIljoll will ('xist whic\t can 

satisfy the dynamics cquations while having the pr('scrilH'd dq?;I('(' of ~l1loothrl<'~s. Fil 1'­

thermore, the values of ~, and ~'J which callse tl)(' optilllizatioll problPlI1 1,0 !)('come 

infeasihle cannot be known a priori. This is particllléllly tfl\(, wll<'l1 Il1lpact~ O( (IIr. Actllal 

use of t Hs technique TTlight illvolve an itcrative procc'ss of irnp()~llIg il «'rt ain lilllit; ~('('ing 

if thE' problem is feasihle; rclaxing the lirnit if il, is Ilot; and rqH'atlJlg 1,11<' proc('~s. Since 
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this would be highly inefficient in a real-time implernentation, yet another rnethod was 

devcloped to srnooth the discontinuities. This last rnethod will be presented in §6.2.8, 

along with a numerical exarnple applying both smoothing techniques to smooth the solu­

tion discontinuity occurring when the foot of a walking machine cornes into contact with 

the ground. 
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Chapter 5 

Optirrlization Techniques 

In the preceding chapter, the eqllations of motion for r<'dlllldantly-aduated 

robotic systems were formulated. It was found that, if the motion of t.he syst.f'm is pn'­

scribed and the wrenches required to achieve this motion must be cakuldU'd, tl\(' syst.c'Ill 

of !inear equations which must he solved is underd('ü'rmill<'d, thcr<';)y admittillg a lIlulti­

p!icity of solutions. In any problem which allows a choiœ of solut.ioIlS, it. il' ollly llc\tural1.o 

want to choose the 'best' olle-opt mization techniques provide d mélt.!wmatÎeal frall\('work 

for doing this. 

The most geueral optimization problem is one in which we wish to opt.imiw an 

arbitrary objective function while respectillg certain spf'cifi('d constrdints. The eOllst.raint.s 

are usually easily formulated mathematically bccéluse t1l<'y alf' irnpos('d by quant.ifiable 

physical phenomena. For example, the cquations of llIotion discllss('d in t.he preœding 

chapter constitute equality constraints to the optimizatioll plOblc'lTI which will 1I0W tH' 

formulated. Dy contrast, the choicc of the objectivf' [ulldion is III 0 1'<' éll hit.lclry silllply 

because man y different criteria are desirable. The choire of I>oth obje·ct.ivl' and «)J)st.raint. 

functions must also be made in view of the tf'clllliqu('s which will 1)(' reCjuirC'c! 1.0 solve 

the resulting problem. For example, if the exact mathe'rnatical staterrl<'llt of a «)Ilst.raint 

or objective function is complex, it will necessItate the lise of cumbersome optilllÎzation 

techniques which, iu turn, are less iikcly to converge and require 1I10n' cOlllputing powpr. 
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When this latter resource is Jimited, as in on-board control units in walking machines, it 

is desirable to simplify the function in question by choosing a simpler but more restrictive 

expression which, if satisfied, wiU guarantee that the original expression is also satisfied. 

In the context of optimization, the goal of the designer is to formulate a reason­

ably accurate mathematical representation of a physically significant problem which can 

be solved using the avaiJable resources. It will be shown in this chapter that quadratic pro­

gramming is well adapted to this task as it allows the optimization of physically meaningful 

objective functions. Furthermore, when the constraints are linear, numerical techniques 

exist to solve the optimization problem in real-time using present-day hardware. 

Section 5.1 will describe the mathematical framework and terminology of opti­

mization, with emphasis on the characterization of optimality conditions. These concepts 

will be particularly useful when we later compare the behavior of the solutions provided 

by various optimization techniques. Section 5.2 will investigate the features of particular 

optimization problems which we can expect to solve in real-time-linear and quadratic 

programs. In §5.3, the concept of duality will be briefty reviewed sinee it plays a significant 

role in the most efficient numerica~ techniques which exist both in linear and quadratic 

programming. Finally, §5.4 will introduee the various numerical techniques which were 

implemented in the present work. 

5.1 Optimality-General Objective Functions 

The mathematical statement of a general constrained optimization problem is 

mm x 

subject to 

f(x) 

h.(x) = 0 i = 1, ... ,meq 

j = meq + 1, ... , m 

(5.1a) 

(.5.1h) 

(5.1c) 

where x is an n-dimensional vector of design variables. Function f(x) is normally called 
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the objective function, while eq.(5.1b) represents a set of equality constraints and eq.(5.1c) 

represents a set of inequality constraints. Maximization of a function F(x) can he p('r­

formed in the above framework by minimizing -F(x). Similarly, an inequality of the form 

Gi(X) :5 0 can be included as -G,(x) ~ O. For convenience, we will limit our discussion 

to objective functions which are twice-continuously differentiahle throughout the region 

of interest. 

Our goal is to find a minimum point, denoted by x*, in the space of ail values 

of the vector x (called the design space) which is the solution to the problem stated in 

eqs.(5.1a) to (5.1c). It is therefore useful to review the optimality conditions which this 

point must satisfy in order to be a minimum. This will be donc by starting with the 

optimality conditions for an unconstrained objective function-i.e., eq.(5.1a) atone-and 

then introducing the equality and inequality constraints. This sequence c\osely follows 

that used by Gill et al. (1981). 

Since conditions for the existence and uniqueness of optima arc most. conve­

niently written in terms of derivatives of functions, it is userul to define t.he gradient of a 

function f ( x) as 

[

âf(X)/DXt] 
Vf(x) = : 

âf(x)/8xn 

and the Hessian matrix of that function as 

82 J(x)/âx t 8x2 

82 J(x)/âx~ 
... 8

2 
!(X)/fJxlôxnj 

... 82 f(X)/ ÔX2ÔXn 

. . . . . . 

... ô2J(x)/â.T,~ 

\'Ve can categorize minima into global and local ones as follows: 

(5.2) 

(5.3) 

1. A global minimum is one where the value of the objective fu net ;on at x* is less than 

or equal to that at every point in its h-neighborhood of the design spacc, for a11 

positive values of é. 
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2. A local minimum is one where the value of the objective function at x* is less than 

or equal to that at every point in its 6-neighborhood of the design space, for sorne 

positive values of b. 

We can also categorize minima as strong and weak ones: 

1. A strong minimum is one where the value of the objective function at x* is strictly 

less t.han that at every other point in its b-neighborhood. 

2. A weak minimum is a local or global minimum which does not qualify as a strong 

mmJmum. 

It can be inferred from these definitions that a strong global minimum will 

have a unique minimum value of the objective function at a unique point in the design 

space. By contrast, a weak global minimum will have a unique value of the objective 

at many points in the design space. The optimality conditions which follow aIl relate to 

local minima but it wiH be shown in §5.2 that, for certain probJems, a local minimum is 

guaranteed to be the global minimum. 

5.1.1 Unconstrained Optimization 

Sufficient conditions for a point x* to be a strong local minimum of an uncon­

strained objective function are: 

1. Vf(x*) = 0 

2. H(f(x*)) is positive-definite 

Item (1) above is a first-order condition, known as the normality condition, 

which specifies that x* must be a stationary point in the design space. Item (2) is a second­

order condition, known as the convexity condition, which ensures that the stationary point 

is neither a maximum nor a saddle point. 
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5.1.2 Constrained Optimization 

The constraints given by eqs.(5.1b) and (5.1c) are nonlinear in general. How­

ever, in Chapter 4, we found that almost aU the constraints of interest in the present 

physical problem are tinear-the only exceptions being the friction cone constraints which 

are quadratic. It was also shown that these latter constraints can be approximated by 

piecewise-tinear friction pyramids, and that, as the nurnber of sides used for these pyra­

mids is increased, they form a doser approximation to the cone. Furthermore, the numer­

ical techniques required to solve linearly-constrained optimization problerns are suhstan­

tially less cvrnputationally intensive than those required to solve Ilon-Iinearly-constmincd 

problerns. It was therefore decided to concentra te the present investigat.ion on Iinearly­

constrained optimization prohlems sinee a) the neccssary approximation uscd is minor, 

and b) the numerical methods aVéLilable allow real-time execut.ioIl. 

Assurning that we limit ourselves to linear constraints, the general optirnization 

problern given by cqs.(5.1a) to (5.1c) reduces to 

mm 
x 

subject to 

J(x) (5.4a) 

(5.4b) 

(.5.4c) 

where Al is a matrix of dimension meq x n, while A 2 is a matrix of dimension mm X n 

and m eq +mm = m. 

5.1.2.1 Linear Equality Constraints 

The equality-constrained optimization problem is that given by cqs.(.5.4a) and 

(5.4b). The presence of the equality constraints partitions the design spacc i nt.o two 

orthogonal suhspaces-one feasible, the other infeasible. The former consists of ail the 

points in the design space which satisfy eq.(5.4 h )-denoted as fcasiblc poinis--, while 
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the latter consists of ail points which violate the equation-denoted as infeasible points. 

Si mi larly, a feasible direction in the design space is one which, if taken from a feasible 

point will neœssarily lead to another feasible point. Aigebraically, it can be defined as a 

vector which lies in the nullspace of the constraint matrix Al' If we let Z denote a matrix 

whose columns form a basis for the nullspace of Al! i.e., Z is an orthogonal complement 

of At, we can write every feasible direction as a linear combination of the columns of Z. 

Under linear equality constraints, the sufficient conditions for a point x* in the 

design space to be a strong local minimum are (Gill et al., 1981): 

1. It must satisfy Alx* = hl! 

2. ZTV f(x*) = 0, or equivalently, V f(x*) must lie in the range of Ai-i.e., a vector 

,\ of Lagrange multipliers of dimension m eq must exist so that V' f(x*) = Ai>/, 

3. ZTH(f(x*))Z is positive-definite. 

The first item simply states that x* must satisfy the constraints. The second 

item is directly ana!ogous to the stationarity condition in an unconstrained optimization 

problem: ZTV f(x*), known as the projected gradient, is nothing but the projection of 

the gradient of the objective function onto the feasible subspace and it must vanish for 

x* to be a constrained stationary point. We are not concerned with the gradient in the 

infeasible directions, sinee we cannot move in those directions without violating the first 

item. 

The third item is analogous to the second-order condition in the unconstrained 

optimization problem: ZTH(J(x*))Z, known as the projected llessian matrix, is noth­

ing but the projection of the Hessian matrix of the objective function onto the feasible 

suhspace and it must he positive-definite in order to guarantee that the constrained sta­

tionary point is not a maximum or a saddle point. Once again, we are unconcerned with 

the sign definition of the Hessian along the infeasible directions, sinee we cannot move in 

those directions without violating the first item. 
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It is also important to gain a good understanding of the significance of the 

Lagrange multipliers À" i = 1, ... , m eq in the optimization problem and its solution. 

Essentially, if we think of each equality constraint as a 'bi-directional wall'-a wall on 

which we can push and pull-in the design space, the corresponding Lagrange multipliC'r 

tells us how much we are pushing or pulling on that wall. An alternate interpretation, 

is that the magnitude of the Lagrange multiplier tells us how much the solution wOlild 

change if its corresponding constraint were removed (Haftka and Kamat, 1985). 

5.1.2.2 Linear Inequality Constraints 

The inequality-constrained optimization problem is that given by eqs.(5Aa) 

and (5.4c). The presence of the inequality constraints partitions the design spacc into 

leasible and inleasible regions. The former consists of ail the points in the design spare 

which satisfy eq.(5.4c)-denoted as leasible points-, while the latter consists of ail points 

which violate the inequality-denoted as infeasible points. Each inequality constraint can 

be thought of as defining a hyperplane in the the design spacc which separates the fcasible 

from infeasible regions. 

If we denote the i-th row of A 2 bya l and the i-th componcnt of b 2 by b" then at 

each feasible point, the i-th constraint is said to be active if a; x = bl; inactive if a; x > bl' 

This distinction is important because, if an inequality constraint is actiw~, wc can trcat it. 

as an equality constraint. The geometrical interprctation of an actiV<' cOllstraint is that., 

if a feasible point lies on the i-th bounding hyperplane, the i-th collstraint is actiV<'. 

Any direction is a feasible direction with respect to an inactiv(. constl'aint, sinee 

it is possible to move a small distance in any direction without violat.ing the col1straint. 

In the case of active cOl1straints, there are two types of f('asihlc <Iirect.ions, denoted by 

p: the first being J, binding direction which satisfiC's a?,p = 0, i.e., the i-th const.raint 

remains active; the second being a non-binding direction whirh satiftfics a?,p > 0, i.e., the 

i-th constraint becomes inactive. 
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The q active constraints at a given feasible point are denoted by A2x = b2, 

where A2 and 62 are subsets of Al and b 2 , respectively. As in the preceding section, we 

let Z denote a matrix whose columns form a basis for the nullspace of A2 • Any binding 

direction can therefore be written as a linear combination of the columns of Z. 

Under linear inequality constraints, the sufficient conditions for a point x* in 

the design space to be a strong local minimum are (Gill et al., 1981): 

1. It must satisfy A 2x* ~ h2 , with A2x* = h2 , 

2. ZTV f(x*) = 0, or equivalently, \7 f(x*) must lie in the range of Af-i.e., a vector 

~ of Lagrange multipliers of dimension q must exist so that V f(x*) = :Af..\*, 

3. ": > 0, i=1, ... ,q, 

4. ZTH(f(x*))Z is positive-definite. 

Once again, the first item states that x* must satisfy the constraints. The 

second item has the same interpretation as the second optimality condition under equality 

constraints-that the projected gradient of the objective function vanish at the solution. 

As was the case under equality cOl1straints, no importance is placed on the gradient of 

the objective fundion in the constrained directions, even though we can now move off the 

constraint, i.e., in a non- binding direction. The reason for this is that, if the constraint 

is active and its corresponding Lagrange multiplier is positive, then the gradient of the 

objective function in the non-binding direction is guaranteed to be positive, a proof of 

which is given in Gill et al. (1981). A move in this direction could therefore only lead to 

an increase in the objective function. 

The third item, which is new, specifies that aIl Lagrange multipliers corre­

sponding to active constraints must be positive, the ones corresponding to inactive con­

straints being zero or non-existent, depending on the convention. This is a reflection 

of the fact that the inequality constraints represent 'uni-directional waHs' in the design 

space, i.e., a wall we can push, but not pull, on. Whf'n dealing with inequality-constrained 
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optirnization problem, the first-order optimality conditions, i.e., items (2) and (3) abovt\ 

are often referred to as the J(uhn-Tucker conditions (Kuhn and Tucker, 1951). 

Finally, the fourth item is analogous to the third optimality condition undcl' 

equality constraints-a requirement that the projected Hessian of thc objectivc function 

be positive definite at the solution. 

5.2 Optimality-Particular Objective Functions 

In general, we are not only interested in finding a local minimum, but a global 

one. For general objective functions, we must usually content oursclves with a local 

minimum because a global minimum is so difficult to find (Gill ct, a.1., 1981). 1I0wevcr, 

the form of certain objective functions can guarantec that if a minimum is round, il. 

will be global and unique-i.e., it will be a strong global minimum. As will be SCCII in 

the following sections and the next chapter, these properties ale highly dcsirable in the 

physical problem under study. In this section, optimality conditions for two particular 

forms of the objective function, linear and quadratic, will he diHcusHcd. Furthcrmor<:, 

these forms will also allow us to use numerical solution techniques which can hc expcctcd 

to be executed in real-time. 

5.2.1 Convex Functions 

A convex function f(x) is one which satisfics the condition that (Rolwl'ts élJHl 

Varberg, 1973): 

O<a,(3<I, a+fi=l (5.5) 

for any two values Xl and X2 of the independent variable. The onc-dimensional inter­

pretation of this is shown in Figure 5.I-the straight linc joining any two points on the 

curve al ways lies on or above the curvc. Another fcalme of a convex, twicc-colltillllollsly 

differentiable function is that its Hessian matrix is positive semi-definitc. 
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-4------L-----------~----~x xl X2 

Figure 5.1 A Unidimensional Convex FunctioIl 

A strictly convex function satisfies the condition that: 

o < 0:,/3 < 1, 0:+/3=1 (5.6) 

Finally, the Hessian matrix of a strictly convex, twice-continuously differen­

tiable {unction is positive-definite. 

5.2.2 Linear Programming 

A linear objective function is an example of a particular function which is 

convex (though not strictly convex): 

(5.7) 

The gradient of this function is V' f = ", j.e., a constant vector, and its Hessian 

matrix is identically the zero matrix As weIl, the t.:.nconstrained function is unbounded 

and so we must impose constraints in order to find a finite minimum. Because the Hessian 

matrix of this function is not positive-definite-it is positive-semidefinite-, the second 

order optimality condition, which requires the projected IIessian matrix to be positive­

definite, cannot 1 atisfied. A point which satisfies the first order optimality conditions 
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Figure 5.2 Non-unique Minimum in Lincar Programming 

and has a positive-semidefinite Hessian nlatrix qualifies as a weak minimum. This implies 

that the minimum value of the objective function may be reached at many cOlltiguous 

points in the design space-a situation which occurs when the rank of the mat.rix of active 

constraints is less than n, the dimension of the vector of design variables (Gill et al., 1981). 

Geometrically speaking, this situation correspoll(ls to a case whNe an active 

constraint becomes parallel to the objective function. This is exemplifi('d in Figure .1.2 

where the following two-dimensional minimization of a lillear objective function 1S p<,r­

formed subject to one !inear equality and two linear ineqllalit.y constraints: 

(5.8a) 

subject to ax} + X2 = a + 1 (.5.Sb) 

(5.Sc) 

The slope of the equality constraint (-0) is varied; wh('Jl it becornes eqllal to 

that of the objective function (a = 1), neither of the non-n<'gativity constraints given 

by eq.(5.8c) is active and the rank of the matrix of active constraints becomes Jess than 
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two. At this value of a, a unique minimum value of the objective function is reached 

(Xl + X2 = 2) at a non-unique set of design variablps; namely, any non-negative Xl and 

X2 which satisfy Xl + X2 = 2. As shown in Figure 5.3, when the components of the 

solution are plotted as a function of a, they exhibit severe discontinuities. This is known 

as the phenomenon of 'alternate optima' in linear programming whereby the solution to 

an n-dimensionallinear-programming prohlem can touch up to n vertices of t.he feasible 

region simultaneously (Wilde and Beightler, 1967). Furthermore, in higher-dimensional 

problems, alternate optima, and hence, non-uniqueness of the solution, are the rule rathcr 

than the exception (Wilde and Beightler, 1967; Freund, 198.5). Although in the context 

of force optimization in rcdundantly-actuated robotic systems this problem has only very 

recently been discovered (Cheng, 1989; Klein and Kittivatcharapong, 1990), the study 

of the effect of changes in a programming problem's coefficients is known as 'sensitivity 

analysis' and is a well-rl'searched area. Freund (1985) presents a thorough analysis of 

the behavior of linear-programming problems during changes in the coefficients of the 

constraint matrix. 

This has senous implications in the physical problem under study because 

the presence of a continuously-varying constraint matrix 1S particularly relevant. As 

was shown in Chapter 4, matrix Al represents the configuration, or geometry, of the 



-.. 

... 

CHAPTER 5. OPTIMIZATION TECl/NIQUES 104 

system, and hence, its entries will vary smoothly as the gcometry of a given grasp or walk 

changes, even if the topology of the system does not change. Recall t.hat the solution to 

the optimization problem is meant to be used as a setpoint for a force controller. It would 

be highly undesirable for the controller to receive discontinuous sct.points-particularly if 

these discontinuities occur strictly due to the optimization t.echnique used, and not as a 

result of a discontinuity inherent in the physical system. 

In a less general formulation of the dynamies equations sueh as that consid­

ered in §4.2.3, Alberts and Soloway (1988) have noted that the equality constraints remain 

constant for a given topology of the system. It might then he conclud('d that the qupstion 

of continuity of the solution under continuous changes in th(' matrix Al would he lpss 

critical in this situation. However, evcn in this casp, lin('ar programming yi('lds discon­

tinuous solutions due to its non-unique solution. The rpsllits obtailJ('d by Ch('ng (1989), 

which will be reviewed in the next chapter, offer good evidell(,(' of t.ltis. 

It is thercfore important to investigate other rnethods which will yicld bdter­

behaved solutions under the conditions of present int(·rest. 

5.2.3 Quadratic Programming 

The quadratic objective function 

with positive-definite W is an example of a strictly mnvc'x function. Its gradient is 

V f(x) = Wx + c, while its Hessian matrix is the constant llIatrix W. 

An important feature of this objective functioJl, whetlH'r wJlstrairH'd or not 

by linear functions, is that it is guaranteed to have a rmiCJl1C glohal minimulJl. For the 

unconstrained problern, it is trivial to show that the stational'ity condition is hatisfi('d at 

x* = - W-1c. Under equaIity constraints, the location nf that minillllllll GIll tH' fOlllld in 
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c10sed form by using the stationarity condition found in §5.1.2.1 as follows: 

v f(x*) = Wx* + c = Ar~* (5.10) 

or, equi valently, 

(5.11) 

If we multiply both sides of eq.(5.11) by A., we obtain 

(5.12) 

Since eq.(5.4b) must be satisfied, the left-hand-side of eq.(5.12) can he replaced by hl to 

yield: 

which can, in turn, he rewritten as 

Finally, suhstituting eq.(5.14) into eq.(5.11), we obtain: 

which can also he written as: 

x* = Xl - X2 

(5.13) 

(5.14) 

(5.15 ) 

(5.16a) 

(5.16h) 

(5.16c) 

(5.16d) 

The matrix operations shown in eqs.(5.15) to (5.16d) should not be performed 

cxplicitly because they are slow and lead to ill-conditioning of the prohlem. Section 5.4 

will present quick and efficient techniques to solve this problem numerically. 

The solution to the incquality-constrained quadratic optimization prohlem can 

be found in the sar.1C way using A2 instead of Al and b2 instead of hl. Of course, the 
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difficult part of thi& prohlem is to first find A2 and h2-i.e., to find whidl of the inC'qual­

ity constraints are active at the solution, while taking into account that alI Lagrange 

multipliers must he non-negative. 

Finally, it is now shown that the second-order conditions spC'cificd in §5.1.1 

and 5.1.2 are satisfied in the case of the quadratic objective function specificd byeq.(5.9). 

Clearly, when the objective function is unconstrained, the I1cssian malrix of J(x) is 

positive-definite by definition and the second-order optimality condition given in §5.1.1 is 

satisfied. In the case of linearly-constrained optimization, the positive-dcfinitencss of Ule 

projected Hessian is demonstrated as follows: 

where 

z =Zy 

(5.17a) 

(5.17b) 

(5.l7c) 

Since the expression given by eq.(5.17b) must be positive for any vect.or z, 

so must the expression given by eq.(5.17a) for any vector y. Thercfore, the projccted 

Hessian, ZTWZ, is positive-definite. 

From the above, we can conclude that tbe strictJ)' convcx quadratic prngram 

has a unique global optimum. To show the geometric significancc of this, cOllsider the 

strictly convex quadratic programming problem illustrated ill Figure .1..1 and described 

as: 

mm x~ + x~ (.5.18a) 
XI,X2 

subject to aXI + X2 = a + 1 (.5.18b) 
:... 

Xl ~ 0, X2 ~ 0 (.J.I8c) 

Ab was done for the linear-programming problem, the slope of the equality 



( 

( 

CHAPTER 5. OPTIMIZATION TECHNIQUES 

-- ..... .. .. .. .. .. 

.... xl + x~ = Constant 

........ 

.. 
\ , , 

.. .. , .. 
'\ .. 

'\ 
\ 

\ 
\ 
\ 
\ 

Figure 5.4 Unique Minimum in Quadratic Programming 
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constraint varied. Since the constraint can no longer become parallel to the objective 

function, the solution can no longer jump discontinuously when the constraints are varied 

smoothly. Figure 5.3 shows the variation in the solution to this problem as a: is varied. 

The sensitivity analysis performed by Boot (1964) shows that the design variable solution 

is continuous with continuous changes in the constraint coefficients for a strictly convex 

quadratic programming problem with linear constraints. 

Of course, when the topology ofthe kinematic chain changes, changes in matrix 

Al are no longer continuous (c.f., §4.3). At those instants, a discontinuous change in the 

optimal solution will OCCUT, even with quadratic programming, unless specifie measures 

are taken to avoid it (c.f., §4.3.1, 4.4.5,6.2.8). 

5.3 Duality 

In certain cases, the optimization problem, or primal problem, has a corr('­

sponding dual problem which is formulated in terms of the Lagrange multipliers of the 
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primai problem. The space formed by the Lagrange multipliers is dual to the space of the 

design variables. If the dual prohlem is solved, it can provide the &olution to the primaI 

through simple transformations. For certain forms of the primaI problem, it may he more 

efficient to find the solution to the dual problem and perform thcse transformations to 

obtain the minimum value of the design variables. Thus, the dual problems to the linear 

and quadratic problems of present interest will be reviewed as they play a role in sorne of 

the numerical techniques to be studied in §5.4. 

However, before presenting the dual problems, it is useful to show that an 

optimization problem with equality and inequality constraints can be transformed into 

one with only inequality constraints. 

5.3.1 Removing the Equality Constraints 

Any solution to the underdetermined system of linear cquations given by 

eq.(5.4h) can he written as (Lawson and Hanson, 1974) 

x= x+ +Ny (5.19) 

where the first and second terrns on the right-hand side are the particular and a homo­

geneous solutions to the system given by eq.(5.4b). In rnost works, x+ is takcn to he the 

minirnum-norm solution of eq.(5.4b)-i.e., 

(5.20a) 

where 

(5.20h) 

Matrix At is the right-generalized inverse, or pseudoinverse, of Al (Rao and 

Mitra, 1971), while the columns of matrix N span the nulIspacc of Al and y i~~ an 

arbitrary vector whose dimension depends upon the number of columns in N. As ';hown 

by Angeles et al. (1987), Householder reflections can he used Lo obtain a matnx N whosc 
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columns form an orthogonal basis for the nullspace of Al, The elimination of the equality 

constraints proceeds by substituting eq.(5.19) into eqs.(5.4a) to (5.4c) to ohtain 

mm g(y) 
f 

subject to AI(X+ + Ny) = hl 

A2(x+ + Ny) ~ h2 

where 

if f(x) = CT x, while 

(5.21a) 

(5.21b) 

(5.21c) 

(5.21d) 

(5.21e) 

Rearranging these equations and recalling that a) sinee N is an orthogonal 

complement of Al, AIN = 0, h) Atx+ = hl, and c) a constant term in the objective 

does not affect the solution to the optimization problem and can therefore be dropped; 

the following equivalent minimization prohlem is obtained: 

where 

if f(x) = cT x, and 

mm 
y 

subject to 

h(y) (5.22a) 

(5.22b) 

(5.22c) 

(5.22d) 

The reduced optimization problem given byeqs.(5.22a) to (5.22c) contains no 

equality constraints. An important feature of these equations is that they are of reduced 
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dimension when compared to eqs.(5.4a) to (5.4c) if N is composed of linearly independent 

columns. In this case, matrix N is of dimension n x r, and vector y is of dimension r, 

where r is the nullity of Al (and r = n - meq if Al is of full rank). As pointed out by 

Cheng and Orin (1989), this reduction in dimensionality helps to speed the numerical 

solution of the problem. 

5.3.2 Linear Programming 

The dual problem corresponding to the primaI problem given by eqs.(5.22a) 

to (5.22c) is given by Cheng and Orin (1989) as 

max 
.\ 

subject to 

(5.23a) 

(5.23b) 

(5.23c) 

The primai problem had r unknowns and mm inequality constraints, while 

the dual problem has mm unknowns and r equality constraints, not including the non­

negativity constraints on.\. As will be discussed in more detail in §5.4.1, Cheng and 

Orin (1989) used this latter feature to obtain substantially Caster solutions to the un­

derdetermined force distribution problem than had previously been possible with linear 

programmmg. 

5.3.3 Quadratic Programming 

The dual problem corresponding to the primai given by eqs.(.5.22a), (.5.22b) 

and (5.22d) is given by Goldfarb and Idnani (1983) as 

max 
.\ 

subject to 

(62 + A 2 w-1cf.\ - ~.\T A 2 W- 1 A~·.\ 

.\ ~ 0 

(5.2.1a) 

(5.24b) 
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(5.24c) 

(5.24d) 

As in the linear-programming case, the primai problem had r unknowns and 

man inequality constraints. By contrast, however, the dual of the quadratic programming 

problem has min unknowns and no constraints other than the non-negativity constraints 

on the Lagrange multipliers. The method of Goldfarb and Idnani, based on the solution 

of this dual problem, provides solutions even more quickly than the linear-programming 

approach proposed by Cheng and Orin (1989). 

5.4 Methods of Solution 

Methods for solving the linear and quadratic programming problems outlined 

in §5.2 are numerous, but few of them are amenable to real-time implementation. For 

example, the IMSL (1987) library includes routines caUed DLPRS for linear programming 

and QPROG for quadratic programming. Although these were investigated, they were 

found to be excessively slow when compared to the in-house-written routines. Further­

more, the QPROG routine, bcing relatively new in IMSL 's arsenal, is not fully debugged 

and failed to find solutions to certain problems where a solution existed, as verified by 

the in-house-written routine. The long execution times of the IMSL routines are at least 

partly due to extensive error checking and verification of the input data which would not 

be justifiable in a real-time application. A comparison of the execution speeds of these 

algorithms will be given in the numerical examples of Chapter 6. The following sections 

present a summary of the numerical techniques which were implemented in the present 

work. 
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5.4.1 Linear Programming 

The general linear-programming problem of interest in the present work can 

be stated as follows: 

mm x 

subject to 

(5.25a) 

(5.25b) 

(5.25c) 

where x is a vector of design variables of dimension n, c is a weighting vedor of dimension 

n, Al is an m~q x n matrix of coefficients for the cquality constraints, hl is a vedor of 

dimension m eq , A2 is an mm X n matrix of coefficients for the inequality constraints and 

h 2 is a vector of dimension mm' Finally, it is assumed that meq < n and m eq + mm = m. 

This problem is most commonly solved using the simplex melhod (Strang, 

1976). A number of variations of this method exist but the one chosen for implemcntation 

was that found in Press et al. (1986). It consists of the following three steps: 

1. lntroducing 'slack variables' to convert the problem into normal (orm (a Corm which 

has no inequality constraints other than non-negativity constraints), 

2. Finding an initial feasible solution, and 

3. Stepping from one vertex to another of the feasible rcgion to find the optimal feasihle 

solution. 

There are two relevant points which must be considered in this or any other 

implementation of the simplex method: 

1. The 'standard' linear-programming problem includes non-negativity constraillts on 

aIl the design variables. As proposed by Orin and Oh (1981), these can he cÎrcum­

vented by splitting aIl variables on which we do not want the constraint into two 
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parts, one positive and the other negative, i.e., 

+ -XI = XI - XI 
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(5.26) 

Thus, the problem is reformulated in terms of a new set of variables which is up 

to twice as large as the original set. This unfortunately leads to an increase in the 

computation time required to find a solution because of the increased dimensionality 

of the problem. 

2. The number of steps taken in item (3) above determines how long the execution of 

the simplex method will take. A rule of thumb is that this number tends to be equal 

to meq + mm (Strang, 1976; Press et al., 1986). Therefor~, the larger the dimension 

of the dynamics equations we formulate and the more inequality constraints we 

include on the solution, the slower the execution will be. 

Cheng and Orin (1989) recently proposed a 'compact-dual' linear programming 

(LP) formulation as a way of overcoming sorne of these obstacles and obtaining a real­

time optimal solution to the force optimization problem in c10sed kinematic chains. The 

technique preconditions the problem by 

1. Removing the equality constraints from the 'original' formulation to obtain the 

'compact-primaI' formulation. This technique, optailed in §5.3.1, is commonly used 

in optimization circles and was proposed by Kerr and RoH. (1986) in the context 

of redundantly-actuated robotic systems. Rather than using the method outlined 

in §5.3.1 to find x+, the particular solution to eq.(5.25b) and N, the matrix whose 

columns span the nullspace of Ah Cheng and Orin (1989) partitioned the design 

variables into 'free' and 'basic' variables and used Gaussian elimination to obtain x+ 

and N. This technique is not recommended, as it treats the variables unequally and 

tends to introduce ill-conditioning into the problem. Rather, Householder reflections 

should be used to efficiently find the particular solution given by eqs.(5.20a) and 

eqs.(5.20b) and an orthogonal basis for the nullspace of Al' as shown by Angeles et 

al. (1987). 
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2. Formulating the dual problem which corresponds to the primai problem given by 

eqs.(5.22a) to (5.22c) to obtain the 'compact-dual' formulation as given by eqs.(5.23a) 

to (5.23c). The significant features of these latter equations is that a) the problcm 

is aIready in normal form, thereby eliminating the need for item (1) of the simplex 

algorithm, b) the equations include non-negativity constraints even though the orig­

inal problem did not, thereby circumventing the problem of having to double the 

dimension of the vector of design variables, and c) assuming the primai problcm 

had more constraints than variables, the number of constraints is reduccd. 

Using these features of the 'compact-dual' problem to good advantage, Cheng 

and Orin (1989) showed that the linear-programming problem could be solved in real­

time. However, this ingenious formulation does not overcomc the problem of discontinuous 

solutions, as will be evident in the numerical examples shown in Chapter 6. 

5.4.2 Quadratic Programming 

The generallinear-quadratic programming problem of present interest can be 

stated as: 

mm 
x 

subject to 

1 
cTx + -xTWx 

2 

AIX = hl 

(5.27a) 

(5.27b) 

(.5.27c) 

where W is an n x n weighting matrix and the remaining vcctors and matriœs arc as 

defined in §5.4.1. In order to solve this problem, a nurnber of rncthods wcre invcstigatcd. 

Sorne of these methods are intended to solve thl' quadratic optimization problem in the 

absence of inequality constraints and are presented in §5.4.2.1 and compared in §5.4.2.2. 

The method suggested by Goldfarb and Idnani (1983) for quadratic optimil'.at.ion in the 

presence of inequality constraints only is then presented in §.5.4.2.~3. These mcthods are 

then combined in §5.4.2.4 to obtain a technique which will solve the quadratic optimÎl'.ation 

problem with linear equality and inequality constraints. 
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5.4.2.1 Solving the Equality-Constrained Problem 

When the inequality constraints given hy eq.(5.27c) are absent, the problem 

IS considerably easier to solve. From the discussion of inequality constraints given in 

§4.4, it should be apparent that an important case in which inequality constraints are 

absent is that of cooperating manipulators where there are no constraints on the con­

tact wrench and we are not interested in imposing limits on the actuator torques. For 

this simplified problem, solutions can be obtained in substantially less time than wh en 

inequality constraints are present. As weIl, certain techniques are available to efliciently 

solve this problem which are not practical when inequality constraints are present. In the 

present work, the following techniques were investigated to solve the equality-constrained 

linear-quadratic optimization problem: 

1. Closed-form solution using a) explicit inversion, or b) orthogonal decomposition, 

2. Explicit Lagrange multipliers, 

3. Direct substitution. 

The closed-form solution is conceptual1y the simplest of the techniques con­

sidered. It entails finding the solution to eqs.(5.27a) and (5.27b) using eq.(5.15). When 

c = 0, this is nothing but the weighted pseudoinverse solution to eq.(5.27b). When 

c = 0 and W = 1, it corresponds to the unweighted pseudoinverse solution. Kumar 

and Waldron (1988) have shown that, in the absence of contact moments, the unweighted 

pseudoinverse solution corresponds to one which has zero 'interaction force' components, 

i.e., a solution which has no force components along the line joining any two contact 

points. Thus, the contact force field is a helicoidal vector field which is homologous to 

the velocity field for points in a single rigid body. 

The W-I term in eq.(5.15) often does not need to be calculated in real-time 

since it usually remains constant. This is not the case when the method of calculating 

the dynamics equations given in §4.2.3 is used and it is desired to minimize the actuator 
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wrenches. It will be shown in §6.2.4 that, when this is the case, the weighting matrix is 

modified by the time-varying Jacobian matrices of the individual robotic devices. 

There exist many ways in which the solution given by eq.(5.15) can be found. 

One of these is to explicitly perform the matrix multiplications and inversions shown 

in that equation. This has two disadvantages: it is computationally slow and prone 

to ill-conditioning (Golub and Van Loan, 1983). The computational complexity and 

stability of the other inversion in eq.(5.15) can he greatly improved by using an orthogonal 

decomposition with Householder transformations (Lawson and Hanson, 1974). A further 

advantage of the orthogonal decomposition technique i8 that it can be extcnded to inc\udc 

inequality constraints using the method of Goldfarb and Idnani (1983). This will be 

treated in §5.4.2.3 and 5.4.2.4. 

As shown hy eq.(5.16a), the solution x* is composed of two parts, namcly, XI 

and Xl' It is noted that x., as given by eq.(5.16b), is the solution to AIx = h' which 

minimizes xTWx. Th~ procedure start.s by finding t.his solution: 

1. Use Cholesky decomposition (Golub and Van Loan, 1983) to obtain a lowcr-triangular 

matrix L where W = LLT
• 

2. Use a sequence of n Householder re:~ections to bring L -1 Ar into upper-triangular 

form, i.e., 

(5.28) 

where R is a m eq x m eq upper-triangular matrix, 0 is a zero matrix of dimension 

(n - m eq ) x m eq and Q is the orthogonal n x n product of 11 Householder rcflections. 

3. Now let 

y = [;:] = QTLTx (.5.29) 

where Ya and Yb are meq - and (n - meq)-dimensional vcctors, respcctivcly. 

4. AIX = b' can he rewritten as: 

(5.30) 
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which, after substituting in eqs.(5.28) and (5.29), can be rewritten as 

[RT 
OT] [~:] = b' (5.31) 

5. The minimum-norm solution of the system given by eq.(5.31) is: 

YI = [~:L = [R-;b'] (5.32) 

This minimizes yT Y = xTLQQTLT X = xTWx. 

6. Since the solution YI is unique, eq.(5.29) can be used to obtain the corresponding 

XI which minimizes x 7'Wx as 

(5.33) 

7. Now that Xl has been found, we complete the solution by finding X2 as 

L -TL-1 
X2 = C (5.34) 

and then fin ding x* as given byeq.(5.16a). 

A second method to find the solution of the equality-constrained quadratic op­

timization problem involves the explicit use of Lagrange multipliers (Wilde and Beightler, 

1967). These are added as variables in the optimization problem to obtain a determinate 

system of equations as follows: 

1. Write the Lagrangian of the equality-constrained optimization problem given by 

eqs.(5.27a) and (5.27b) as 

(5.35) 

2. Set the derivatives of the Lagrangian with respect to the design variables and with 

respect to the Lagrange multipliers to zero, i.e., 

- -0 aLI ax x* - , 
- -0 aLI a). ).* -

(5.36) 

thereby enforcing the stationarity of the Lagrangian at the solution. 

3. Equation (5.36) can be rewritten as a determinate system of n+meq linear equations 

in n + m eq unknowns. This system is then solved for x* a Id >.". 
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Whereas the closed-form solution technique deals with matrices of order meq 

or n, the use of explicit Lagrange multipliers transforms the problem into one of order 

(meq+n). As will he shown in the next section, this leads to suhstantially longer cxcrution 

times than for the closed-form solution. Therefore, although this rncthod can be cxtended 

to handle inequality constraints through the use of slack variables (Wildc and Bcightlcr, 

1967), it was not pursued further. 

The last technique is based on symbolic pre-processing of eqs.(5.27a) and 

(5.27b) in order to recluce the real-time computationalload. In sorne scnsc, this approach 

is similar to that proposed by Klein et al. (1983), who solvcd eq.(5.15) symbolically, with 

c = 0 and W = 1, off-Hne and stored the solution as a compact algcbraic equation to 

be solved in real-time. Although their approach was possible in thc simplificd case thcy 

investigated, it is not feasible for a more general system-i.c, with c =1= 0, W :f. 1 or 

coupled vertical and horizontal force/moment equations. More sp<,cifically, finding the 

inverse in eq.(5.15) syrnbolically is impossible except for the simplest of systems, evcn if 

a powerful symbolic manipulation package such as MACSYMA (198:3) is us<,d. lIowcv('r, 

direct substitution (Beveridge and Schechter, 1970) can be llscd to good advantage to 

reduce the amount of numerical computations required in rcal-time. 

Direct substitution entails performing sorne of the optimization off-line sym­

bolically and storing the results in the form of simple algcbraic relations. THis rncthod is 

applicable to more complex systems than Klein et al. 's, but also has c('rt.ain disadvantages. 

The following steps are performed off-line with MACSYMA (1983): 

la) Partition the system of equation (5.27b) into 

(5.37) 

such that Aaxa = hl - AbXb is a square system (i.e., Aa is m cq x m eq ), 



j .. 

i 

ClIAPTER 5. OPTIMIZATION TECHNIQUES 119 

le) Substitute Xa(Xb) into the objective function, differentiate the objective function 

symbolically with respect to Xb and equate the result to O. Since the objective 

function is quadratic, this will yield the coefficients of an (n - meq ) x (n - meq ) 

system of linear equations in Xb. 

The ab ove need only be performed once for each possible topology of the 

system and the following steps must be implemented numerically in real-time: 

2a) Calculate the coefficients from the algehraic equations found in step (lc), 

2h) Solve the (n - meq ) x (n -- m eq ) linear system for Xb, 

2c) Use the relations found in step (lb) to obtain Xa. 

The principal disadvantage of this method is that by partitioning x into X a and 

Xb, it treats the various components unequally and can lead to ill-conditioning. Thus Aa 

can become rank-deficient even wh en Al is not. Physical considerations must therefore 

be taken into account when choosing the partition of x. Another precautionary measure 

is to store more th an one solution, with each solution solving a different partition, and 

use the best-conditioned one. Finally, it is noted that the direct substitution method is 

unable to handle inequality cOllstraints. In situations where these are unimportant, t.his 

method is recommended as long as it is applied with care. 

5.4.2.2 An Equality-Constrained Example 

The various techniques outlined in the preceding section were used to solve the 

underdetermined force distribution in the three-Iegged planar walking machine shown in 

Figure 2.9(a). The machine was assumed to he static and its equations of motion were 

formulated using the method proposed in §4.2.2. This rcsulted in a system of 9 equations 

in 12 unknowns-i.e., the system had three redundant actuators. 

The inequality constraints which should normally be satisfied at the footjground 
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CPU Time per Iteration CPU Time per Iteration 
Method with Diagonal Weighing with General Positive-Definite 

(ms)a Wcighing (ms)a 

Closed Form Using 
Explicit Inversion 46.6 58.6 

Closed Form U sing 
Orthogonal Decomposition 15.3 29.2 

Explicit Lagrange 
Multipliers 64.6 6.5.9 

Direct Substitution 
Using MACSYMA 2.5 7.5 

Table 5.1 CPU Times far an EquaJjty-Canstrained Problem 

contact were ignored, therehy resulting in an equality-constrained problem. The problcm 

was solved with c = 0 and two cases for W: one in which W was diagoTlal, and the other 

in which W was a more general positive-definite matrix. 

Table 5.1, shows the execution times required for one solution of the under­

determined force distribution problem. The explicit use of Lagrange multipliers is sub­

stantially slawer than the other methods because it results in a system af order n + m eq , 

and is therefore not recommendeù for real-time applications. The closcd-form solution 

with explicit inversion deals with matrices of order n and m pq , alld is thercfore faster than 

the use of Lagrange multipliers. Orthogonal dt-composition allowed a two- tü thrce-fold 

increase in computation speed over explicit inversion. Finally, direct substitution, which 

deals in real-time only with matrices of order n - m eq , was bctwccn 4 and 26 timcl-l raster 

than the other techniques. For the present example the partition chosen causes Au to 

become rank-deficient, even though Al is not, when the ground contact points of the first 

aUsing double-precisIOn on a Sun 3/60 Workstation with 68881 floatwg-point co-proccs~or 
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and last legs are coïncident-an unlikely occurrence. Thus, this technique is worthy of 

Curther investigation Cor systems where inequality constraints are unimportant. 

5.4.2.3 Solving the Inequality-Constrained Problem 

A number of methods were investigated in order to solve the problem with 

inequality constraints but the one that proved rnost promising was that proposed by 

GoldCarb and Idnani (1983). They and Powell (1983, 1985) have demonstrated the speed 

and numerical stability of this algorithrn on sorne benchmark optirnization problerns, 

and compared its performance to that of existing techniques. This method can be sren 

as an extension of the orthogonal-decomposition algorithm introduced in the previous 

section. In fact, as will be seen in the next section, the latter algorithm can be used as 

the initialization step when both equality and inequality constraints are considered. The 

method also has the added advantage that no initial guess is required to start the search 

for a solution. 

The method of Goldfarb and Idnani (1983) deals with the solution of the 

primai problem given by eq.(5.27a) subject to the inequality constraints of eq.(5.27c). In 

accordance with eqs.(5.24a) and (5.24b), the primaI has a corresponding dual problcm 

which is given by 

max 
.x 

subject to 

(b2 + A2W-1c)T.x - ~.\T A2W-1Af.\ 

.\ ~ 0 

(5.38a) 

(5.38b) 

An algorithm which steps through the n-dimensional space of x is called a 

primaI method, while one which steps through the q-dimensional space of .\ is called 

a dual method. The method of Goldfarb and Idnani is a dual active set method. At 

each step, it minimizes f(x) givcn by eq.(5.27a) subject to an active set, A, which is a 

subset of q active constraints in eq.(5.27c). The objective is to find the x which minimizes 

f(x), while satisfying eq.(5.27c). The algorithm's stability is enhanced by dealing with 
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inherently stable decompositions of the matrices involved: the Cholesky decomposition of 

W (W = LLT where Lis lower-triangular), and the QR decomposition of L-l AT, i.e., 

(5.39) 

where A is comprised of the rows of A 2 corresponding to the active constraints. Sin ce 

matrix Q always appears in conjunction with L -T in the algorithm, JT is stored inst.ead of 

Q, where JT = QTL-l. The speed of the algorithm is enhanced by making use of matrix 

updating techniques to modify the above QR decomposition as A changes when a con­

straint is added or dropped, rather than recalculating it ab initio. The method prcsentcd 

by Goldfarb and Idnani (1983) for quadratic optimization with inequality constraints is 

made up of the following steps (minor changes have been included to speed execution or 

rectify omissions in the original reference): 

Da) Find Land L-t, where W = LLT and Lis lower-triangular-Cholcsky decomposi­

tion of the weighting matrix. 

Ob) Set x = -L-TL-1c (the unconstrained minimum); A = 0 (null active set); A = [] 

(no Lagrange multipliers)j q = 0 (no active inequalities)j JT = L -1. Note that, 

since equality constraints are not considered, meq = 0, Al = [ J. 

1) Evalnate Si = a: x -b" the residual for aU inactive constraints, where a'[ is the z-th 

row of A 2 and bl is the i-th component of b 2• If aIl residuals are ~ 0, the optimum 

has been found. Otherwise, choose the 'most violated constraint', p, to be added to 

the active set. Set n+ = a p (the normal of the constraint to be addcd)j ..\+ = [~]. 

2) If q = 0 (no active constraints), set ..\ = [ ] (no Lagrange multipliers). 

3) Compute d = JT n+j Z = J 2d2 (the step direction in primai spacc)j If q > 0, compute 

r = R-Id l (the negative of the step direction in dual spaCC')j Where d = [~~], 

JT = [~r], dl and d2 are q- and (n - q)-dimensional vectors rcspectivcly, while Ji 
and Jr are q x n and (n - q) x n matrices, respectively. 
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4) Set 0'1 = L (0'1 is the maximum step length in dual space without violating dual 

feasibility, and L is the largest number which can be represented by the computer). 

5) Set 
. {>.j(X)} >.t(x) 

0'1 = mIn = 
J=I ...... q rJ ri 

subject to rJ > 0 

6) If IIzli = 0, set 0'2 = Lj Otherwise, set 0"2 = -Sp(x)/zTn + (0"2 is the step length in 

prirnal space necessary to satisfy constraint pl. 

7) 0" = min(0"1'0"2) (the step to be taken). 

8) If 0" = L, the problem is not feasible, STOP. 

H) If 0"2 = L, take a step in dual space only: Set l+ = .\+ + 0" [~r]j Drop element 

1 from .\ +; Update JT and R (see §5.4.2.5); Drop constraint 1 from A; q = q - Ij 

Evaluate the residual, Si, for each inactive constraint; Go to step 2. 

10) If 0' = 0"2, take a full step in both primaI and dual spaces to satisfy constraint p: 

Set x = x + O"Zj l+ =.\+ + 0" [~r]; .\ = .\+; Update JT and R (see §5.4.2.5); Add 

constraint p to A; q = q + 1; Go to Step 1. 

11) If 0" = 0"], take a partial step in both primai and dual spaces to a point on the 

boundary of the dual feasibility region: Set x = x + O"Z; .\ + = l + + 0" [ ~r]; Drop 

element 1 from .\+; Update JT and R (see §5.4.2.5); Drop constraint 1 from Aj 

q = q - 1; Evaluate the residual, s" for each inactive constraint; Go to step 2. 

Since Goldfarb and Idnani (1983) provide a detailed description of their tech­

nique, the remainder of this discussion will concentrate on highlighting the changes made 

in the present implementation, namely, its modification to include equality constraints. 
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5.4.2.4 Combining Equality and Inequality Constraints 

The combined presence of equality and inequality constraints ib now addressed 

by combining the techniques presented in the preceding sections. Equality constraints 

were not considered in the optimization technique presented by Goldfarb and Idnani 

(1983); therefore, their method had to be extended to include these efficiently. One 

possible solution would have been to write the equivalent minimization prohlcm with 

inequality constraints only as shown in §5.3.1. Instead, it was found mure efficient to 

alter the algorithm's initialization procedure to include the equality constraints. 

Goldfah and Idnani (1983) initialize the algorithm at the unconstraincd mini­

mum because the equality constraints of eq.(5.27b) are not considered. In order to modify 

the method to include equality constraints, Powell (1983) proposed adding them one at 

a time. Although this approach works, it was round computationally intensive. The 

conceptual problem lies in treating the equality similarly to the inequality constraints. 

Since the equalities are known, by definition, to be active at the solution, they should 

be included from the outset, i.e., they should he included directly at initialization rather 

than iteratively in the body of the algorithm. 

The approach taken here is to initialize the algorithm at the cquality-constrained 

minimum-i.e., the solution of eqs.(5.27a) and (5.27b). It was previously shown that this 

minimumcan be found from eqs.(5.16a) to (5.l6d) using the technique outlined in §5A.2.1. 

This technique proved to be compatible with the original algorithm for subsequent pro­

cessing of the inequality constraints. 

The search is then allowed to proceed in a spacc of reduccd dimensions n-meq • 

Once the equalities are part of the active set, they should not be' droppcd. This constrains 

the search for a solution in the (n - me'l )-dimensional su bspace ralher than letting it 

proceed in the full n-dimensional space-an inherently more efficicnt procedure. 

In order to implement the above technique, changes were made to Stcps (0) 
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and (5) of the algorithm presented in §5.4.2.3. The modifications to Step (0) cause the 

equality constraints to be included directly at initialization, while the modification to 

Step (5) prevents removal of the equality constraints in the body of the algorithm. 

Oa) As before. 

Ob) Evaluate X2 = L -TL -le and b ' = hl + AIX2' 

Oc) Using Householder reflections, find Cl and R to satisfy eq.(5.28). 

Od) Find YI using eq.(5.32). 

Oe) Find Xl using eq.(5.33). 

Of) Set x = Xl - X2 (the equality-constrained minimum); Evaluate JT = QTL-lj Set 

q = m eq ; Evaluate lIa,ll, i = meq + 1, ... ,m for use in evaluating the 'most violated 

constraint' in Step (1); The contents of A and ..\ need not be set for the equality 

constraints. 

1) to 4) As before. 

5) Set 
. {,x;-(X)} -'t(x) 

0'1=, mm -- =--
J=meq+l, .... ,q rJ ri 

subject to rJ > 0 

6) to 11) As before. 

The measure for choosing which of the violated constraints to add at Step (1) 

is not clearly specified by Goldfarb and ldnani (1983). They suggest choosing the 'most 

violated constraint' without specifying how to measure constraint violation-presumably 

using the value of the residual: 

mm 
i=meq+l, ... ,m 

(5.40a) 
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Powell (1983) suggests using the value of the residual normalizcd by the norm 

mm 
i=m .. q+l •...• m 

a;x - b, 

11a.11 
(5.40b) 

Both approaches were tried and Powell's was found to be more efficient and 

therefore adopted. Using this technique, it was found that inequality constraints were 

rarely added to the active set if they were not also in the final active set. Addcd con­

straints therefore rarely had to be dropped, and the time to find a solution was incrcascd 

only proportionally to the number of inequalities in the final active set. This is advan­

tageous in our application as it implies that the friction cone can be approximatcd by a 

pyramid with a large number of sides without affecting the spced of the solution, sinee 

only one of these constraints can be active at a given contact point.. This is in contrast to 

linear programming, where the addition of further inequality constraints leads to slower 

execution. 

The quadratic-programming algorithm dcscribcd above was implemented as a 

Fortran subroutine whose listing is given in Appendix B. This routine was used to solve 

a number of numerical examples which will be shown in Chapters 6 and 7. 

5.4.2.5 Updating JT and R 

The technique used to update JT and R outlined by Goldfarb and Idnani 

(1983) was not modified in principle. However, instead of Civens rotations, Householder 

reflections were used to perform aIl orthogonalizations, duc to thcir superior computa-

tional efficiency (Golub and Van Loan, 1983). 

When adding a constraint, the updated matrices, denotcd here by JT+ and 

R +, are found as follows: 

JT+ [J[] 
= Q'JI 

(.5.41 ) 
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where dl, d2, J[ and Jf are defined in Step (3) of §5.4.2.3, and Q' is the (n -q) x (n - q) 

product of (n - q) Householder reflections, which satisfies 

(5.42) 

where el is the unit vector el = [1 0 0 ... f of dimension (n - q). In eqs.(5.41) and 

(5.42), the positive sign is chosen when the first component of d 2 is negative, otherwise 

the negative sign is usoo. 

Wh en removing the I-th constraint, the updated matrices, denoted here by 

JT- and R-, are found as follows. Remove the l-th column from R and partition it as: 

[
RI S] R,= 0 T (5.43) 

where RI is an (1 - 1) x (1 - 1) upper-triangular matrix, S is an (1 - 1) x (q - 1) matrix 

and T is a (q - 1 + 1) x (q - 1) upper-Hessenberg matrix (Strang, 1976). Find the 

(q - 1 + 1) x (q - 1 + 1) matrix product of Householder reflections Q such that 

... - [R2] QT-- 0 (5.44) 

where R 2 is (q -/) x (q -/) upper-triangular. Finally, the updated matrices are 

R- _ [RI S] 
- 0 R2 ' [ 

J[a ] 
JT- = ~r~ (5.45) 

where Jia and Jib are matrices of dimension (1 - 1) x n and (q - 1 + 1) x n, respectively, 

which make up a f(lW partition of J[. Note that, when the constraint to be dropped is 

the last one added (l = q), R- is obtained by simply dropping the 1ast row and column 

of R, and JT is unchanged. As suggested by Golub and Van Loan (1983) for economy 

of operations, the Householder matrices Q, Q' and Q are never explicitly calculated, but 

rather stored in a fadored form and applied as needed. 

5.4.2.6 Projected Gradient Methods 

Klein and Kittivatcharapong (1990) recently suggested that gradient-projection 

algorithms could be used to solve the force optimization problem in the context of walk-
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ing machines. They applied Rosen's (1960) gradient projection method to solve two 

formulations of the force optimization problem-an 'interior formulation' and an 'exterior 

formulation'-and obtained quasi-real-time solutions for a six-Iegged walking machine. 

Although the gradient projection method Can handle a general objective func­

tion, Klein and Kittivatcharapong (1990) chose to use a linear objective function, thcreby 

resulting in solution discontinuity problems. In order to resolve this, the 'interior formula­

tion' stops its search for a solution at a sub-optimal point in the space of design variables, 

thereby avoiding jumping from one vertex of the constraint polygon to another. By con­

trast, the 'exterior formulation' continues to a true optimum but includes a term in the 

solution which tends to smooth the solution. Given that the desired objective function is 

linear, both methods are sub-optimal. As will be shown by the numerical results in the 

next chapter, solution discontinuities could be avoided altogether by choosing a quadratic 

objective function. 

One inherent disadvantage of gradient search techniques is that they require a 

good initial guess in order to converge quickly to a solution. The dependence of the method 

on a good initial guess is not problematic when the solution is continuous in time hecause 

the solution at the previous instant can be used as a guess for that at the present instant 

(a strategy used by Klein and Kittivatcharapong). However, as prC'viollsly mlmtioncd, 

redundantly-actuated robotic systems tend to suffer from discontinuons changC's in their 

topology. As shown in §4.3, this leads to discontinuous changes in the const.raint mat.rix AI 

.vhich, in turn, causes discontinuous changes in the solution to the opt imization problcm. 

Therefore, the solution at the previous time may not he a good initial guess for the solution 

when changes in topology occur. The example used by Kl<'in and Kittivatcharapong 

(1990) does not consider this situation. 
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Chapter 6 

Objective Functions 

In the preceding chapter, the particular cases of linear and quadratic programming 

were investigated in considerable detail, sinee they allow a computationally more eco­

nomical solution to the problem at hand than more general objective functions. This 

chapter will study sorne of the objective functions which have been suggested and which 

the present work proposes to use. Section 6.1 will review the linear objective functions put 

forward by Orin and Oh (1981), Kerr and Roth (1986) and Cheng and Orin (1989). The 

drawbacks of linear programming outlined in the previous chapter will becorne apparent 

when the numerical exarnples are presented. Section 6.2 will then review sorne quadratic 

objective functions which have been proposed-rnost notably those of Klein et al. (1983), 

Nakamura et al. (1987), Nakamura (1988a, 1988b), Kopf (1988a , 1988b) and Pfeiffer 

et al. (1990). Sorne new objective functions will also be presented and the solutions 

produced by quadratic optirnization will be shown to be superior to those produced by 

linear programming. 

6.1 Linear Objective Functions 

When considering optirnization with linear inequality constraints, linear pro­

gramming cornes naturally to mind. Thus, it is not surprising that most of the previous 

works found dealing with optimization of underdeterminate systems in the presence of 
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inequality constraints adopted a linear-programming approach (Orin and Oh, 1981; Kerr 

and Roth, 1986; Cheng and Orin, 1989; Cheng, 1989). In the preceding chapter, wc found 

that the generallinear-programming problem could be stated as 

mm 
x 

subject to 

(6.1 a) 

(6.1b) 

(6.lc) 

where x is an n-dimensional vector of design variables and c is a vector of weights of 

dimension n. 

It was also shown that there are certain disadvantages inherent to the use of 

linear objective functions. Among these, the question of whether this problem can be 

solved in real-time has been put to rest by the 'compact-dual' formulation of Cheng and 

Orin (1989). However, even this method has not resolved concerns rcgarcling continuity 

of the solution. The work of Klein and Kittivatcharapong (1990) was rdmarily conccrned 

with developing formulations with hetter continuity of the solution, but persisted in rnin­

imizing a linear objective function, and hence, had to seule for sub-optimal solutions to 

avoid discontinuities. 

6.1.1 Orin and Oh's Objective Function 

The earliest proposed solution to the inverse dYllarnics of redundantly actuated 

systems seems to he that found in the work of Orin at Ohio State University in the context 

of walking machines (McGhce and Orin, 1976; Orin and Oh, 1981). In tho~e works, linear­

programming was used as an off-line design tool to obtain an optimllm solution. This 

formulation was quite general, as it included a consideration of inequality (,ollstraints 

on a number of the design variables. However, the inefficiency of tlte 'original' Iinear­

programming prohlem, coupled with the slowness of computers of that time resulted in 

this technique being dismissed out-of-hand by most authors interestcd in real-time control. 
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The objective function proposed by Orin and Oh minimizes a weighted sum 

of the walking machine's energy consumption and the maximum verticalload on its legs. 

When there are p legs in ground contact, this objective function can be written as 

p 

f(x) = PfN,mru; + E(Ci + 9,d,f T, (6.2) 
,=1 

where p is the weight placed on minimizing the maximum normal force relative to that 

placed on reducing the energy consumption. Vectors c, and d, represent the characteristics 

of the drive motors and transmission system, as detailed by McGhee and Orin (1976), 

while B, is a diagonal matrix whose entries are the joint rates in the i-th leg. Finally, 

fN,maz: is the maximum normal force on any of the legs. This last variable is appended 

to the vector of design variables and the following constraints are added to the original 

system of inequality constraints: 

fN, - fN,max ~ 0, i=l, ... ,p (6.3) 

thereby ensuring that the normal forces Oi. aIl the legs, which are constrained to be 

positive, will not exceed fN,max' 

This objective function represents one of the more detailed approaches which 

has been suggested to date. !ts drawback, however, is that the second term in eq.(6.2)­

the expression for the energy consumption of the system-is specifie to the series-wound 

motors and non-backdrivable worm-gear drive system used in the OSU Hexapod. AI­

though this objective function appHes weIl to that type of system, man y present-day 

robotic systems tend to he driven hy de servomotors through backdrivable reducdon 

gearing. It will he shown in §6.2. 7.2 that the power consumption of the latter type of sys­

tem is beUer minimized using a quadratie objective function. Thus, this linear objective 

function was not implcmented in the present work. 

It should be noted, however, that the suggestion of introducing fN,max as an 

additional design variable to be minimized is significant, and can also be performed using 

a quadratic objective function. 
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6.1.2 Kerr and Roth's Objective Function 

While considering the force distribution problem in the context of mechanical 

hands, Kerr and Roth (1986) proposed a more conservative linear programming approach 

which maximized the 'distance' from the solution to the inequality constraints. They first 

reduced the problem to one with only inequality constraints, as shown in §5.3.l, resulting 

in a minimization problem with y as the vector of design variable (c.f., eqs.(5.22a) to 

(5.22c)). The inequality constraints of this problem are 

(6.4) 

If we define the residual of an inequality constraint to he 

(6.5) 

where â; is the i-th row of A 2 N and b, is the i-th component of (b2 - A 2x+), then 

the method of Kerr and Roth maximizes the minimum residual of the inequality con­

straints. This is done by appending a new element, d, to the vccwr of design variables 

and modifying the inequality constraints of eq.(6.4) as follows: 

(6.6) 

where d is a vector of dimension n - m eq whose elements are ail d. 

As explained in greater detail by Kerr and T!,0th (1986), maxirnizing d will 

result in a solution which is 'as far away as possible' from ail the constraints. The only 

item overlooked by this technique is that the constraints llIust be llormalized h('for(' flny 

meaningful 'distance' can be formulated. Thus Kerr and Roth 's formulatioll suff('rs the 

drawback that the solution can he changed sim ply hy rIlultiplyillg 01)(' of the illeqllality 

constraints hy a scaling factol. This problem is easily rectified by redpfining the rcsiclual 

as 

(6.7) 
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1%1 

Figure 6.1 Kerr and Roth 's Example 

and rewriting eq.(6.6) as 

(6.8) 

where the i-th row of (A2N) is given by â; /lIâill, the i-th element of (b2 - A2x+) IS 

b./lIâ.11 and ([ is a vedor of dimension n - me'l whose elements are aH d. 

The numerical example chosen to illustrate the optimization technique pre­

sented above is the one used by Kerr and Roth (1986), as shown in Figure 6.1. The 

grasped body is free to move in thrœ dimensions, but the fingers are constrained to move 

in the plane of the papel'. The fingers are considered to make 'soft finger contact' with 

the body, so that three forces and one torque about the surface normal can be generated, 

and the vector of contact wrenches can be written as 

(6.9) 

where In and IT2 are the torques exerted by the fingertips on the object. The force/moment 
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balance equations are written in the forhl of eq.(6.1b) with 

o 1 0 0 
o 0 1 0 
1 0 0 0 

-1 0 0 0 
o 0 0 1 
o 1 0 0 

1 0 0 0 
o 0 -1 0 
o 1 0 0 
o 1 0 0 
o 0 0 -1 

-1 0 0 0 

o 
-1 
-1 

hl = 0 

o 
o 
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(6.10) 

The inequality constraints originate from limits on tangential and torsional 

friction forces which can be generated at the contacts, as weil as limits on the actuator 

torques which can be produced. These are written in the form of eq.(6.1c) with 

o 
o 

-1 
o 
o 
1 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 1 
o 0 
o Il 

-1 J1 

o J1t 

o J1 

1 Jl 
o J1t 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o -1 
o 0 
o 0 
o 1 
o 0 
o 0 

o 
o 
o 
o 

-1 
o 
o 
1 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 
-1 
o 
o 
1 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 
o 

-1 
o 
o 
1 
o 
o 

-1 
-1 
o 
1 
1 

where Jl = 0.25, Jlt = 0.5 and Tm = 5.0 N-m. 

o 
1 
o 
o 
o 
o 
o 
o 
Jl 
Jl 
Jlt 
Jl 
Jl 
Jlt 
o 
1 
o 
o 

-1 
o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
-1 

o 
o 
1 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

(6.l1a) 

Since Al is of dimension 6 x 8 and of full rank, its nullity is (n - me,,) = 2, 

and vector y is of dimension 2. Kerr and Roth's linear formulation, which maximi:.::cs !.he 

minimumcomponent in the residual vector (A2Ny-[b2 -A2x+]), was implcmcnl('d. The 

solution to this linear-programming problem happens to touch two verticcs of the fea..'iihlc 

set and the solution is therefore not unique. Any convex comhination of the following two 
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Figure 6.2 The Solutions to ](err and Roth's Example in y-space 

vectors 

x* = [-0.5 0 3.2 1.3 0 -0.5 4.2 1.3 f 
x* = [-0.5 0 3.2 -1.3 0 -0.5 4.2 _1.3]T 
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(6.12a) 

(6.12b) 

which optimize the objective function, yield the same optimum value of the objective 

function. 

These solutions are represented in y-space by the dotted tine passing through 

point A in Figure 6.2. The relevant inequality constraints which bound the feasible y-space 

are shown, where the infeasihle side of each constraint is cross-hatched. The feasihle region 

is shown by the shaded area. As should be apparent from this figure, the solution round 

does not truly maximize the minimum 'distance' to the constraints sinee it is doser than 

ft should he to the inequality constraint on the right side of the figure. If the constraints 

are normalized as suggested above, any point on the dotted line passing through point B 

optimizes the objective function. This solution does maximize the minimum distance to 

the constraints, but, unfortunately, is neither unique. 
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Aigorithm Kerr & Roth Quadratic 
LP Programming 

IMSL Routine CPU Time (ms)/I 586.7 55.0 
In-House Routine CPU Time (ms)/I 38.0 19.5 
Number of Unknowns 5 8 
N umber of Equality Constraints 0 6 
Number of Inequality Constraints 20 20 

Table 6.1 CPU Times (or Kerr and Roth's Example 

Quadratic programming was then used to minimize an objective function of 

the form f(x) = ~XTX. As wiJl be discussed later in this chapter, this objective function 

yields the minimum contribution of the nullspace o~ Al, and hence, minimizes thc 'intc1'llal 

forces'. Since vedor x contains both forces and torques, it is important to notice that this 

optimization will weigh 1 N-m of torque and 1 N of force equally. Thc unique solution to 

this problem is then found to be 

x* = [-0.5 0 2.0 0 0 T -0.5 3.0 0] (6.13) 

Since Kerr and Roth's (1986) formulation stays 'as far away' as possible from 

the boundaries of the inequality constraints, it yields a more conservative solution with 

Iarger 'internaI force'. The CPU times reqllired to obtain a solution for linear and 

quadratic programming using both IMSL routines and thc l'Outin('s dcvclop('d in th<' 

present work are shown in Table 6.1. 

Two conclusions can be drawn from this table: 

1. Quadratic programming is appreciably faster than linear programming for this 

example1 j 

2. The routines developed in the present work are substaJltially more efficicnt than 

aUsing double-precision on a Sun 3/80 Workstation with 68881 floating-point co-proccssor 
1 n.b., the formulation used by Kerr and Roth corresponds to th/' 'compact-prImai' formulatlOlI of 

Cheng and Orin (1989) 
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those provided by IMSL. 

Finally, it is emphasized that quadratic programming deIivers a unique solu­

tion, whereas linear-programming does not. 

6.1.3 Cheng and Orin's Objective Functions 

The linear-programming formulation developed by Cheng and Orin (1989) was 

described in §5.4.1. In their terminology, the original linear-programming formulation 

is referred to as the 'original LP', the problem obtained after the equality constraints 

are removed is called the 'compact-primaI LP' and finally, the problern obtained after 

reformulation in the dual space is called the 'compact-dual LP'. 

Cheng and Orin (1989) and Cheng (1989) proposed a nurnber of objective 

functions which could be minimized in a task involving a hand grasping an object: 

1. 'Minimum effort'-minimize the sum of the normal forces applied to the grasped 

object; 

2. 'Load balance'-minimize the maximum normal force exerted on the object (i.e., as 

discussed in §6.I.1); possibly cornbined with item 1; 

3. 'Safety margin on friction constraints'-minimize the distance to the sides of the 

friction pyrarnid using the same technique as proposed by Kerr and Roth (1986). 

Note that this rncthod suffers from the same drawback of non-invariance noted in 

§6.I.2 and should be modified accordinglYi and 

4. 'Temporal continuity'-in an effort to circumvent the discontinuities obtained by 

Cheng (1989), the sign of the lateral contact forces is constrained to rernain the 

same throughout the task while, at the same time, minimizing the 'load balance' 

objective function. 

There are several problems inherent in the approach proposed in item 4: a) as 
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Figure 6.3 The Ohio State DIGITS System 

acknowledged by Cheng (1989), it is arbitrary and may not work in a more gcneral task, 

b) constraining the sign of the lateral force only works when optimizing the 'Ioad balance' 

objective function, i.e., it does not work when minimizing the sum of the contact forces, 

therehy limiting the generality of the objective function which can be uscd with this 

formulation, and c) even in the case where this approach does work, closer cxamination 

of the results obtained hy Cheng (1989) shows that the fingers arc fight.ing agaillst each 

other in their efforts to rotate the bail. In fact, the technique proposed in §4.4.5 rnight 

weB be a better remedy to the problem of discontinuous solutions obtaincd with linear 

programming. This was not investigated in the present work sinee quadratic programming 

was found to he superior to linear programming in aIl respects. Thus, it was fclt preferable 

to focus on a technique which is inherently continuous rather than try to find 'patches' 

for one which is not. 

Cheng and Orin (1989) and Cheng (1989) evaluated their proposcd techniques 

on a simulation of the Ohio State DIGITS system shown in Figure 6.3 using two- and four-
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fingered grasps. The two-fingered grasp is shown diagrammatically in Figure 6.4. Hard 

finger point contact is assumed so that there are three unknown forces at each contact 

point. The prescribed task is one where a baIl of mass 0.91 kg and 51 mm diameter is 

rotated sinusoidaHy about its vertical axis with an amplitude of 30° and a frequency of 

2 Hz. Further details of the apparat us and the task can be found in Cheng and Orin 

(1989) and Cheng (1989). The linear objective function to be minimized is the sum of the 

normal contact forces on the ob ject (caIIed 'minimum effort' by Cheng and Orin). Friction 

constraints and maximum actuator torque constraints, neglecting the inertial torques T', 

arc imposed. Since the object cannot be rotated about an axis passing through the two 

contact points, the problem can be formulated with five scalar equations of motion and six 

unknown contact forces, yielding an underdeterminacy of one. Throughout the task, one 

of the friction constraints is active (i.e., satisfied as an equality), thereby consurning the 

redundancy in the problcm, and making the solution unique. The rcsulting contact forces 

at the tip of Finger #1 are shown in Figure 6.5(a), while the corresponding actuator 

torques are shown in Figure 6.5(b). The contact forces are shown as components in a 

'contact coordinate frame' defined in Cheng (1989). In this frame, the z-component is 

the negative of the normal contact force defined in the present work, the x-component is 

upward, and the y-component completes a right-handed coordinate frar.le. 

Quadratic programming was also implemented to minimize the 'internaI force' 

in this system, as was done for the Kerr and Roth example. Again, the same friction 

constraint was active throughout the task, thereby yielding the same solution as linear 

programming, shown in Figures 6.5(a) and 6.5(b). 

The execution times taken to obtain the optimal solution using the various 

formulations and algorithms are shown in Table 6.2. These figures confirm the results of 

Cheng and Orin (1989) and Cheng (1989), who cite speedups of over 30 times when solving 

the 'compact-dual LP' formulation as compared to the 'original LP' formulation, using 

IMSL routines. As shown in that table, quadratic programming was marginally slower 

than linear programming due to the low dimensionality of this cxample. ft was found that 
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Finger # 1 

Top View 

Front View 

Figure 6.4 Diagrammatic Representation of Two-Fingcrcd Grasp 

the higher the dimensionality of the problem, n - meq , the greater the speed advantagc 

of the quadratic-programming algorithm over the linear-programming algorithm. 

The substantial differences between !inear and quadl'atic programming becomc 

apparent in the four-fingered grasp example. A diagram of this arrangement is shown in 

Figure 6.6. The task is the same as previously dcscribcd for the two-fing<,red grasp. 

This example has six equations of motion and 12 unknown contact forn's, resllJting in 

an underdeterminacy of six. For a !inear objective functioll ddir)('d as the sum of Hw 

normal contact forces (called 'minimum effort' by Cheng and Ol'ill), the f('sults arc shown 

in Figures 6.5( c) and 6.5( d). The solution exhihits severe discoutirJ1lities, du(' to its 

non-uniqueness. In fad, all the various combinations of !incal' programming fOl'lllulation 

and algorithm gave diffcl'cnt, discontinuous results fol' this exarnple. It is therefof(~ not 

apparent that linear programming can yield acceptable rcsllits for problems with a highcr 

dimensionality. 
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Algorithm Original Compact Compact Quadratic 
LP PrimaI LP DllalLP Programming 

IMSL Routine CPU Time (ms)O 1232.1 443.1 32.4 58.3 
In-House Routine CPU Time (ms)O 102.5 15.7 11.3 I:U 
Number of Unknowns 12 2 20 6 
Number of Equality Constraints 5 0 1 5 
Number of Inequality Constraints 20 20 0 20 

Table 6.2 CPU Times {or Cheng & Orin 's Two-Fingcr Examplc 

Aigorithm Original Compact Compact Quadratic 
LP Primai LP Dual LP Programming 

IMSL Routine CPU Time (ms)O 7200 2932 :161 177 
In-House Routine CPU Time (ms)O 600 193 128 88 
Number of Unknowns 24 12 40 12 
Number of Equality Constraints 6 0 6 6 
Number of Inequality Constraints 40 40 0 40 

Table 6.3 CPU Times (or Cheng's FOllr-Fingf'I' Examplc 

Once again, quadratic programming was llscd to minirnizc thc 'intcrual force' 

in this system. Three inequality constraints werc active throughout the task. The slllooth 

results shown in Figures 6.5(e) and 6.5(f) wcre obtaincd for thc contact forces and joint 

torques at Finger #1. The timing rcsults for the 4-finger grasp examplc are shown in Tahle 

6.3. For this problem of higher dimensionality, quadratic progralmning is substantially 

faster than linear programming. It should he notcd, as weil, that t.he spcf'd of t.he Sun 

3/80 used for these simulations can alrcady he greatly and cheaply ~urpassed hy newcr 

RISC-based workstations. This example makes the advantag<'s of <juadratic prograllllTling 

over linear programming most apparent. 

aUsing double-precision on a Sun 3/80 Workstation with 68881 floating-polIJt co-procpssor 
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Top View 

Front View 

Figure 6.6 Diagrammatic Representation of Four-Fingered Grasp 

6.2 Quadratic Objective Functions 

In the preceding chapter, it was found that the generaI convex linear-quadratic 

objective function can be stated as: 

min 
x 

subject to 

cTx + !xTWx 
2 

A 1x = bl 

(6.14a) 

(6.14b) 

(6.14c) 

where x is an n-dimensional vector of design variables, W is an n x n positive-definite 

weighting matrix, and c is a weighting vector of dimension n. The objective function 

given by eq.(6.14a) allows the optimization of the wrenches in x or any other quantitics 

which can be reduced to a linear-quadratic function of x. As was shown in Chapter 5, 

the condition that W be positive-definite ensures that the solution to the problem will be 

unique and continuous in time, in the absence of changes in the topology of the system. 
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Quadratic objective functions have been frequently proposed to solve the un­

derdeterminate force distribution problem, but almost always in the form of the minimum­

norm solution to eq.(6.14b), i.e., neglecting the inequality constraints. Klein ct al. (1983) 

were amongst the earliest proponents of this solution. They were able to find a sym­

bolic expression for the pseudoinverse solution to generate vertical force setpoints for the 

controller of the OSU Hexapod. As discussed in §5.4.2.1, this symbolic solution is compu­

tationally very efficient but has severe limitations, namely, a) it can only be performed for 

extremely simple systems, e.g., when the vertical and lateral force systems arc decoupled, 

and b) it cannot handle inequality constraints. The first objection can be overcome by 

performing a numerical pseudoinverse solution, as outlined in §5.4.2.l--whd.her w<,ighted 

or unweighted and whethe1' using explicit inversion or, prcfcrably, Householder 1'('O('c­

tions (Golub and Van Loan, 1983). This method appea1's to be the one m08t rommonly 

proposed by other researchers, e.g., Hayati (1986), Zheng and Luh (1986), Alberts and 

Soloway (1988), Park and Starr (1989) and Kumar and Waldron (1989). The second 

objection is more difficult to overcome, particularly if real-time solutions are rcquired. In 

fad, the method outlined in §5.4.2.4 can be viewed as an extension of the pseudoinvcrse 

solution to include inequality constraints, and it is a natural method to use for syskms 

where inequality constraints ar~ important. 

A number of other techniques have becn suggestcd to millimi~e a quadratic 

objective function with linear equality and inequality constraints, though numerical re­

sults are almost never shown and the feasibility of implementing t.hese tt'chlliques in 

real-time is never discussed. Waldron (1986) proposed a technique, applicahle 1,0 systems 

with zero contact torques, using 'interaction forces', which r('duces to HI<' pseudoinvcl'se 

solution when Al is of full rank (Kumar and Waldron, 1988). The importance of in­

equalities was noted, and a solution was proposed whereby t1l<' problp!Il would \><, solved 

successively up to 15 times, for the case when six legs arc in grolllld cont.act, and t.IH' 

best solution selected from among these. No timing re~ults were given to indicatc that 

these computations would be manageable in real time. N akarnllra ct, al. (1987) proposed 
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an inequaJity-constrained nonlinear-programming approach to minimize internaI forces in 

multiple robotic mechanisms subject to quadratic inequality constraints. They presented 

two algorithms to solve this problem, but again, with no indication that they would be 

feasible for real-time control. Finally, Luh and Zheng (1988) suggested the method of 

'direct approximate programming' to find the force distribution in multiple manipula tors 

handling a common payload but did not provide any numerical results. 

6.2.1 Minimum InternaI Force 

The minimization of 'internaI force' in redundantly-actuated systems has been 

proposed by numerous authors, the earliest and most consistent proponent being Naka­

mura (Nakamura et al., 1987). This approach minimizes f(x) = ~xT x, i.e., the norm of 

the vector of contact wrenches, assuming that the dynamics equations are written in the 

form outlined in §4.2.3. If the dynarnics equations are formulated using the mcthods of 

§4.2.1 or 4.2.2, the solution obtained when !xT x is minimized will be different, since in 

each case, the vector x contains different elements. This serves to highlight the fact that 

there may be more than one interpretation to the 'minimum internaI force solution'. 

The geomctrical interpretation of this technique is that it minirnizes the solu­

tion contribution lying in the nullspace of Al, i.e., that which satisfies AIX = O. Since 

b l represents the desired motion of the system, as weil as the external applied loads-see 

e.g., eq.(4.8b)-and the component in the nullspace of Al contributes nothing to it, the 

internaI force is often interpreted as the cornponent of the solution which tends to crush 

or tear apart a grasped object or grip the ground. 

A solution with zero internai force is obtailli'd by minirnizing eq.(6.14a) with 

c = 0 and W = 1 subject to the equality constraints of eq.(6.14b). This is nothing but the 

pseudoinverse solution commonly used to solve the underdeterrnined force problem. It will 

now be shown that the addition of the incquality constraints, eq.(6.14c), to the problem is 

equivalent to rninimizing the solution component in the nullspaceof Al, Equation (6.14a) 
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becomes: 

ml'n l 'r 
x i X x 

Any solution to eqs.(6.14a) to (6.14c) can be wrïtten as 
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(6.15) 

(6.16a) 

(6.16b) 

(6.16e) 

where x+ is the minimum-norm solution of eq.(6.14b), At is the right generalized inverse 

of Al (Rao and Mitra, 1971), and x- is the eomponen t of the solution lying in the 

nullspaee of Al, Substituting eqs.(6.15) and (6.16a) to (6.16e) into eqs.(6.14a) to (6.l4e) 

yields the following equivalent minimization prohlem: 

mm 
x-

subject to 

1 
2'(x+ + x-f(x+ + x-) 

Atx- = 0 

Expanding the objective funetion of eq.(6.17a), we obtain: 

(6.17a) 

(6.171> ) 

(6.17c) 

(6.18) 

Sinee X+T x+ is constant, it can be droppcd from the objectivc fUllctioll. Fur­

thermore, x+T x- = 0 sinee the two solution componcnts are orthogonal. Thlls, cqs. 

(6.17a) to (6.17e) reduce to 

mm 
x-

subject to 

1 -T _ 
-x x 
2 

(6.19a) 

(6.19b) 

(6.Hk) 

From the equivalent minimization problem givclI hy eqs.(6.19a) to (G.1ge), 

it becomes apparent that solving the system givcn by eqs.(6.15), (6.14b) and (G.J4e) 

minimizes the norm of the solution component in the I1ullspace of At. 
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Equation (6.19b) specifies that x- lies in the nullspace of Al, Kerr and Roth 

(1983) have shown that this constraint can be included implicitly by letting 

where the columns of N form a basis for the nullspace of Al and y is an arbitrary vector of 

dimension n - meq' This approach then becomes identical to that used in §5.3.1 to remove 

the equality constraints from the optimization problem, and the minimization problem 

of eqs.(6.19a) to (6.19c) then reduces to an inequality-constrained problem of the form 

given by eqs.(5.22a), (5.22b) and (5.22d). 

'J'h.e technique of minimizing internai forces has already been applied to a 

number of examples in §6.1.2 and 6.1.3 in order to compare its results to those of linear­

programming. A further example is now shown which considers the three-fingered hand 

depicted in Figure 6.1(a) raising and pouring a glass of water. The three fingers are 
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al (mm) 20 35 25 
bi (mm) 0 0 0 
ai (deg) -90 0 0 
ml (g) 21.6 37.8 27.0 
Ire (g_mm2 ) 1440 2520 1800 
ItJ (g_mm2 ) 1440 5120 2310 
Ir (g_mm2 ) 1440 5120 2310 

Table 6.4 Hartenberg-Denavit Parameters and Inertia Propcrtics of Link i of Bach 
Finger 

identical and have the kinematic parameters and inertia properties given in Table 6.4 The 

task geometry is shown in Figures 6.7(b), 6.8(a) and 6.8(b). From t = 0 1.0 1 s, the glass, 

of 60 mm diameter and 120 mm height, is raised vcrtically upwal'd over a distance of 200 

mm, and from t = 1 to 2 s, the glass is tiltcd through 90 degrccs, thcn'by ('mpt.ying ils 

contents. 

The combined mass of the glass and water is assumcd la dccrcasc from 0.4 kg 

before the water is poured to 0.15 kg when it is fully tipped. The cOl'responding moments 

of inertia are calculated assuming that the glass ~nd water arc a unifonn cylindrica.l 

solid before the water is poured, and a cylindrical shdl wllC'n il. is fully pOl1l'cd. Ali 

transitions between the cxtreme values are done as lincar functions of the tilt angle. liard 

point contact is assumed so that each contact wrcnch consists of lhn'(' forn's Thus, 

there are nine unknown contact forces and six scalar cqllalion5 of motion, resllltiIlg in 

a redundancy of threc. Frictif)I1 constraints arc imposcd 011 the cOIltad forces with a 

coefficient of friction Il' = 0.5, while maximum .. ctuator torques of 0.2:' N-m are allowed. 

Quadratic programming was implemented for this prohlelll 1.0 minillli?c the' 'intcfIlal forcc', 

as defincd by eq.(6.15). Threc incquality constraints were activc throughout. t.he task. The 

contact forces and actuator torques obtaincd for Finger #1 arc showlI in FiglJl'('s 6.8(<:) 

and 6.8(d), and for Finger #3 in Figures 6.R(e) and 6.8(f). The reslllts for Fingc·1' #2 are 
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Algorithm Quadratic 
Prograrnming 

IMSL Routine CPU Tirne (ms)O 88.3 
In-House Routine CPU Time (ms)G 38.0 
N umher of U nknowns 9 
N urnher of Equality Constraints 6 
N urnher of Inequality Constraints 33 

Table 6.5 CPU Times for the Three-Finger Pick-and-Pour Example 

not shown, but are very similar to those for Finger #3. The CPU times required to solve 

the optimization problem at one instant are shown in Table 6.5. 

This simulation shows that quadratic programming yiclds results which are 

continuous in time and can be obtained fast enough to be supplied as setpoints for a force 

controller. Once again, it should he noted that the speed of the Sun 3/80 can already he 

greatly and cheaply surpassed by more recent RISC-hased workstations. 

6.2.1.1 Achieving Invariance 

Although the conceJ.1t of 'intcrnal force' is an appealing physical interpretation 

of the nullspacc componcnt of the solution, it has certain flaws. For example, the solution 

to a given problem will dcpend on the units used to dcscribe it because the vector x 

contains clements which arc not dimensionally homogeneous, i.e., sorne have units of 

torque, while others have units of force. Since the minimization of !xT x depends on 

the relative numerical magnitude of its component forces and moments, and this relative 

magnitude can be changed simply depending on the units used, the solution will not he 

invariant with respect ~o units. 

°Using double-precision on a Sun 3/80 Workstation with 68881 floating-point co-processor 
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It is therefore important to homogenize the units of the components of x. This 

can be done by multiplying ail forces by a characteristic length of the system denoted by 1. 

Obviously, the solution obtained with the foregoing formulation will depend on the choice 

of 1. Sinee x con tains contact forces and torques, a logical characteristic length might be 

the root-mean-square length of the vectors from the object 's centroid to the configuration­

dependent contact points. Thus, we would minimize the function f(x) = ~XTWx where 

1 0 
12 1 1 JI 

W= 1= - L IIc.1I2 (6.20) 
1 P .=1 

0 Pl 

where 1 is the 3 x 3 identity matrix and CI is a vector from the object's eentroid to contact 

point i. This method wiJJ yield a solution invariant with changes in units which may still 

be interpreted as one whicil .:loes not contribute to the motion of the object. If we let 

X = LT x, where L is the lower-triangular factor of the Cholesky decomposition of W 

(W = LLT), then minimizing f(x) = txTWx subject to eqs. (6.14b) and (6.14c) can be 

rewritten as 

mm 
x 

subject to 

1 ~T~ '2x X 

AIX = hl 

(6.21a) 

(6.21b) 

(6.21c) 

- T - T where Al = AIL- and A 2 = A 2L- . The solution of this problem will minimize 

the solution contribution in the nullspaee of Al which can also be interpreted as that 

component of the solution contributing nothing to the payload's motion, included in hl' 

Including a non-identity weighting matrix W will cause an increase in the 

computational load duc to the Cholesky decomposition that must now be performed. 

Il owever , sinee W is only a function of the grasp points, its Cholesky decomposition 

nced only be performed when these change. Furthcrmore, sinee W is diagonal, the cost 

incurrcd will be minimal. 
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It should be apparent from the above manipulations that 'the solution which 

contrihutes nothing to the motion of the object' is not unique, and sorne care must be 

exercised when attempting to attribute a physical interpretation to the internai forc('. 

Finally, an example in which the invariant internai force is minimized is given in §6.2.7.4 

where it is compared to the minimization of power losses in the system. 

6.2.2 Distributing the Load 

In the early stages of comparing various cost functions for walking machines, 

it appeared that it wou Id be dctrimental to minimizc the vertical and lat.cral foot cont.act 

forces together. It was felt that minimizing an objective fundion J(x) which cont.ained 

the sum of squares of aH these forces would result in a system where' lowcr vC'rtical forces 

would he generated at the expcnse of large lateral forces. Intuitiv('ly, tlH' i<!f>al distribution 

would have the vertical force on each lcg equal to lV/p, whe'l'<' W i~ tl\{' weight of t.hc 

machine and p is the number of legs in ground contact, and tll<' lat<,ral forn' ('quai to 

zero. A second objective function g(x) which minimized the square of tll<' d<'pal turc of 

the vertical force on each leg from 'l'/p was thercforc formulatC'(1. Yd" wlH'1I t.he two 

solutions were comparcd, thcy \Vere found to be idcntical. 111 the following ('xplanation 

to this phenomenon, iNt is the component of x repre'scnting the v('rtical fore<' on the Z-tJI 

leg, L~=l IN. = W and g(x) is that part of the objective which is not depClldC'llt OH the 

vertical contact forces. 
p 

J(x) = L I~, + g(x) (6.22) 
1=) 

P 

g(x) L(JNI - W/p)2 + g(x) (6.23a) 
.=1 

p 

- L(/~, - 2~V 1 Nt/r + ~V21T?) + g(x) (6.231> ) 
i=1 

p 

= J(x) - 2W/p L JN. + W2/p (6.23c) 
1=1 

= J(x) - W2/p (6.23d) 
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Since the two objective functions differ only by the constant second term in 

eq.(6.23d), the rninimization of either of these two objective functions wi1l yield the same 

result. 

The approach considered above can be generalized to the case where it is 

desired to minirnize the departure of the vector of design variables x from a desired value 

X O ' For example, minimizing the normal forces exerted on the object could result in a 

weak grasp which would still satisfy the constraint equations. 1t may be more appropriate, 

in this case, to rninimize the departure from a desired normal force which would depend 

on the particufar task at hand. When grasping an egg, for example, the desired normal 

force would be lower than whcn grasping a steel ob ject of the same size, shape and weight. 

Under thcse conditions, the objective function might be 

(6.24) 

which, after expansion and dropping constant terms, yields the equivalent objective func­

tion belo~': 

(6.25a) 

where 

(6.25b) 

6.2.3 Minimizing a Norm of the Actuator Torques 

Among others, Zheng and Luh (1989) and Danowski (1989) have proposed 

minimizing the norm of the actuator torques by using the objective function 

(6.26a) 

where T denotes a vector composed of all the actuator torques in the system, i.e., 

(6.26b) 



CHAPTER 6. OBJECTIVE FUNCTIONS 154 

Equation (4.20) can he written for each path hetween the two polcs, which 

yields, upon assembling of the whole system of equations, 

(6.27a) 

where 

(6.27b) 

Substituting eq.(6.27a) into eq.(6.26a) and dropping the constant tcrm T 'T T', 

we ohtain the equivalent objective function given by 

(6.28a) 

where 

_ [J"~T~] 
C - : , 

J"pT~ 

W = diag [J"tJ;l (6.28b) 

where each block element J ",J~ is of dimension 6 x 6. 

Since eq.(6.28a) is formally identical to eq.(6.l4a), the opt.imizat.ion problem 

is left unchanged in principle and can be solved using the linear-qlladratic progralllllling 

techniques detailed in Chapter 5. As weil, sinee ail matricC's in t.h(' lIew prohlcllI at'(' of 

the same dimension as the original problcm, we can cxpect. that t!H' ill('n'as(' in t1H' CPU 

time required to solve this optimization problem will be that required t.o p('rforlll a) tlJ(' 

matrix multiplications in eq.(6.28b), and b) the Cholcsky decomposition of W al. each 

time step. Furthermore, minimization of a combination of the actllilt,or torqlH's dlld tlte 

contact wrenches can be easily performed by adding a term ~x1'x to C'q.((;,28a), 

Alberts and Soloway (1988) claim that minimizing the' norIll of x, the contact 

wrenches at the interface between multiple manipulators and t1l1'ir COIllJJlon payload, is 

equivalent to minimizing the actuator torques acting in the syst.('Il1. lIow('v('r, ('qs.((i.28a) 

and (6.28b) c1early show that the t wo are not cquivalcllt siJlc(~ the relative weighting 
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between the eJements of x wjIJ be aJtered by the configuration of the manipuJator, as 

givcn by its Jacobian. 

6.2.4 Minimizing a Norm of the Joint Constraint Wrenches 

The joint constraint wrenches can aJso he minimized by adopting a simiJar 

approach to that used in §6.2.3. If we let w denote the vector composed of the actuator 

and constraint wrenches at a11 the joints in the system, i.e., 

(6.29a) 

then we arc intcrested in minimizing 

J( ~) I_T ~ 
W =-w w 

2 
(6.29b) 

Equation (4.29a) can be written for each path bctween the two poles. Upon assembling 

of ail the arising cquations, one ohtains: 

w= w'+FTx (6.30a) 

wherc 

[ -, ] w1 
~, . 
w = ~~ , F = diag [ FI' .. F pl (6.30b) 

Once again, eq.(6.30a) can be substitutcd into eq.(6.29b). If the constant term 

w'T w' is dropped, we obtain the equivalent objective function given by 

where _ [Fl~~J c- : 
F -, 

pWp 

(6.31a) 

(6.31b) 

where each block clement FIF: is of dimension 6gp, x 6gpI and gPI is the number of joints 
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in the i-th path between the two poles. 

Equation (6.31a) is formally identical to eq.(6.14a), and the optimization prob­

lem is again left unchanged in principle. The same comments apply regarding the in­

creased computational load as were made in §6.2.3. Minimization of a combination of the 

constraint and contact wrenches would be performed by adding a term ix1'x to eq.(6.31a). 

6.2.5 Nakamura's Strain Energy Objective Function 

Nakamura (1988b) has proposed a technique to minimize the strain cnergy 

stored in an object which is grasped by multiple robotic devices. The elastic strain 

energy is written for the object as 

1 T U = -x Wx 
2 

where x represents the vector of contact wrenches applied to the object and 

W = diag[W1 

w. = diag [k~ 
no 

1 
iÇ. 

1 
iT nI 

1 1 
P ;;v-

/1 /1 

(6.32a) 

(6.32b) 

(6.32c) 

The scalars k~" k~. and k~. represent the object's torsion al stifrncss in the x, 

y and z directions, respectively, while kJ" k~. and kj. rcp1'eS('llt its transla.tiollal stifrllcss 

in those same directiolls. Nakamura evaluatcd these stiH'ncsses hy a) assmning that the 

object behaved as a cylindrical solid from ail directions, and b) assllllling that. the contact 

force and torque vectors werc both aligned with the principal axis of the cylinder. No 

numerical results were shown by Nakamura. 

Since the effecl of this method is simply to add a w('ighting matrix to the more 

usual internai force minimization and, as was shown in §6.2.).), a w('ight.ing rnatrix should 

be added anyways to achieve invariance, this mcthod is not exp('cted to signifkalltly in­

crease the computationalload to solve the optimization problem. This, of course, lH'glects 
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the additional time required to ca1culate the object stiffnesses. Dcpending on the geo­

metrical complexity of the !;rasped object and the technique used to estimate iLs stiffness, 

this may or may not be a reasonable a.'5sumption. 

6.2.6 Danowski's and Pfeiffer et al. 's Objective Functions 

Danowski (1989) and Pfeiffer et al. (1990) analyze the dynamics of carausius 

morosus, an insect popularly known as the walking stick, and present a mathematical 

model to simulate its motion. They model the insect as consisting of a single central 

body and six legs, each of which is made up of three links, the model thus consisting of 

19 bodies in aIl. The insect is modeled to move with an alternating tripod gait. The 

form of the resulting equations is very similar to that given in §4.2.2-it is composed of 

six cquations for the main body and three equations for each 3-link leg. This rcsults in a 

system of 24 scalar equations with 36 unknowns, the latter being the contact force vector 

f with 3 components at each of six legs, and the 18 components of the actuator torque 

vector T. The degree of actuation redundancy is therefore 12 when aIl six legs are on the 

ground. 

In order to resolve this underdeterminacy, Danowski (1989) proposed to mini­

mize a quadratic objective function of the form givcn by eq.(6.14a) with c = O. The nccd 

to satisfy the inequality constraints usually considered important in walking machines 

was neglected on the premise that the insect can grasp the ground. The numerical solu­

tion method adopted was that of explicit Lagrange multipliers outlincd in §5.4.2.1. This 

formulation results in a dctcrminate system of equations of order 60 (= n + nleq ). When 

only 3 legs are in ground contact, the order of the sy!'\tem solved is incrcased to 69 since 

further equalities were uscd to cons train the contact forces at the non-contacting legs to 

be zero. As was shown in §4.3, when certain legs arc no longer in ground cont.act, their 

dynamics are decoupled from the rest of the system and should be solved independently 

to improve computing efficiency. 



1 

t 
~ 

" . 
, 
t 
r 

;, 
:; 
< 

t , 
j 
~ 

CHAPTER 6. OBJECTIVE FUNCTIONS 158 

The particular objective {unctions implemented by Danowski (1989) are: 

1. Minimum norm of C, the vector of foot contact forces. It is claimed that this solution 

"yields high active torques in the outer leg joints" and evokes human expcl'iellcc to 

imply that this is not realistic-that it is more natural for a biological system to 

resist external loads using forces than torques. 

2. Minimum norm of T, the vector of aIl actuator torques in the system, as given in 

§6.2.3. 

3. Minimization of the elastic bending energy in the legs. It is contended that this 

yields a more 'natural' solution since it takes the bending load of the legs into 

account, thereby resulting in low actuator torques and bendillg loads cspccially in 

the outer, thin leg segments. Each leg link is modeled as a beam of uniform circular 

cross-section. The bending en erg y is therefore 

4. 

_ fi M(x)2 
U - Jo El dx (6.33) 

where M(x) is the bending moment at any point x along the link. Since this 

objective function places no penalty on tht' lateral contact forces, it is bOllnd to 

come closer to foot slippage. 

A combination of (1) and (3) which minimizcs the bending load in ail the legs, a.'i 

weil as the contact forces on the two front legs, on the prcmise that. thcsc front legs 

are used as 'feelers' and should not be heavily loadcd. 

The results shown by Danowski (1989) lead to the following conclusions: 

1. Although the foot contact-force time histories arc significantly differ('JJt for thc dif­

ferent objective functions, the actuator torques are ilOt. The technique with the 

lowest contact forces is that which minimizcs the norrn of the contact-force vedor. 

The techniques with the highest contact forces are those with the hcndillg ellergy 

term in the objective function. 
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2. Ali techniques exhibit greater or lesser discontinuities when the feet cc me iuto con­

tact or break contact with the ground (i.e., at changes in topology). The technique 

which shows the least severe discontinuities is that which minimizes the contact 

forces. The ones with the worst discontinuities are the on es with the bending en­

ergy term in the objective function. 

Since the benefits of the objective function proposed by Danowski (1989) and 

Pfeiffer et al. (1990) were not apparent, their technique was not pursued further. 

6.2.7 Minimum Power Consumption 

The minimization of power can be important, particularly in situations where 

the installed power is restricted such as in space- based robotic applications. Techniques 

which daim to minimize power have been proposed by Carignan and Akin (1989), Kopf 

(1988a, 1988b), Zheng and Luh (1989) and Orin and Oh (1981). With the exception 

of Orin and Oh (1981), these works daim the power to be proportional to the square 

of actuator torques, though no justification is given for this assumption. The objective 

function proposed by Orin and Oh (1981), which is justified in that work, was reviewed 

in §6.1.1 and was concluded to be suitable for the particular mcchanical construction of 

the OSU Hexapod. 

The previous chapters have dearly shown that a system composed of multi­

ple cooperating rohotic deviccs admits an infinity of solutions to its inverse dynamics 

e<!uations. In the following section, it will be shown that the power imparted to the 

system cannot be optimized sinee this is strictly a function of the prescribed motion. 

lIowever, assuming certain loss characteristics for the dc servomotors commonly used in 

robotic manipulators (Armstrong et al., 1986; Leahy and Saridis, 1989), it is shown that 

the minimization of power losses can be cast as a linear-quadratic optimization problem. 

A model of the de servomotors is derived and the los ses which can be minimized are 

idcntified. These are then written in the form of cq.(6.14a). Local and global perfor-
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mance indices are then proposed to allow comparison of the minimum powel' loss and the 

minimum internai force approaches. An ex ample of two Puma 560 robotie manipulators 

handling a payload is shown to demonstrate the proposed technique. Various objective 

functions are compared for the same trajectory: minimum internai force, minimum power 

using the present formulation and minimum power using the formulation proposed by 

Kopf (1988a, 1988b). 

6.2.7.1 On the Constancy of Power Imparted to The System 

The power supplied to the actuators is consumed in a number of ways, the 

most useful being that component which is imparted to the syst.em, i.e., the manipulators 

and the grasped object. 

The power supplied by the actuators to the system is 

(6.31) 

where TI is the vcctor of actuator torques in the z-t.h manipulator, and (JI is t.he corrc­

sponding vector of joint rates. 1t was shown in §4.2 that. th('re ('xists many sds of act.uatol' 

torques which will result in the same pl'cscribcd motion of the Illalliplliatorjpayioad sys­

tem. Thus, it would appear that we should be able to minirniz<, 7r. Il OW('V('f, it will now 

be shown that 'Ir cannot. be optimized by varying the TI whil(' also satisfjing t.h(' invers(~ 

dynamics equations givcn byeq. (6.14b). 

Substituting eq.(4.20) into cq.(6.34), wc ohtain 

p 

_ ~)T:TiJl + ln; (6.35) 
1=1 

where Ti is uniquely determined by the payload mot.ion for manipulat.ors whicIJ ar(' not 

kinematically redundant. \Ve now recall that the expression J ~liJl is nothing but the' twist, 
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t" at the tip of subchain i, which is defined as 

(6.36) 

where w. and v, are the angular velocity of the i-th manipulator's end link and the 

translational velocity of a point p. of this link, respectively. Substituting this expression 

into eq.(6.35), we obtain 

JI JI JI 
"fT' "T "T = L..J T, 8, + L.Jn, w, + L..J f, V, 
.=1 ,=1 ,=1 

(6.37) 

Sinee the end links of aIl the subchains are rigidly attached to the same rigid 

object, we can write 

(6.38) 

Furthermore, we can write ail the translational tip velocities, v" in terms of 

the velocity Vr of a ref<>rcnce point on the payload as 

v, = V r + w XC, (6.39) 

where c, is a vector from the referenee point to the i-th grasping p(l,int. Substituting 

eqs.(6.38) and (6.39) into eq.(6.37) yields 

(6.40) 
,=1 ,=1 ,=1 ,=1 

Using 

(6.41 ) 

wc can obtain 

JI JI JI JI 

'Ir = LT:TiJ, + (L n?')w + (L f,)T V r + ~)CI x fI? W 
i=1 ,=1 ,=1 .=) 

JI JI JI 

= LT:TiJ, + (Lf.? V r + (2)n, + CI x f,lf w (6.42) 
.=1 .=1 1=1 

" . , , 
> 
; 
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Comparing the last two ter ms of eq.(6.42) to the right-hand-sides of eqs.(4.7a) 

and (4.7h), we find that eq.(6,42) can he rewritten as 

P 

1r = E T~TiJ. + [mo(ao + g) - fe]T V r + (Iowo + W o x Iow o - ne - Ce X fe)T w 
Î=l 

(6.43) 

It is apparent that an the variables in eq.(6.43) are strictly functions of the 

prescribed motion, and so, cannot he modified. Thus, sinee none of the terms in 7r can 

he altered hy changing the graspi~g wrench, the power imparted to the system cannot be 

optimized hy choosing f, and n, for i = 1, ... ,p. 

In fact, this result is intuitivcly ohvious. If we l,onsider a manipulatorfpayload 

system and assume the payload motion to he complet.ely known, wc ran uniqucly find the 

motion of the manipulators through inverse position, vclocity and arcclerat.ion kincmatics. 

Thus, the motion of the complete system is known and the energy contained in that systpm 

is also known at every lllstant. If the energy is known at cvery instant, the pOW('r bcing 

imparted to the system is uniquely known as weil. Thercfore, if wc do Ilot tc\.ke int.o 

account any losses in the system and the motion of the syst\'m is prescribcd, thclI the 

power which must be supplied to the system hy the act.uators is unique and cannot he 

optimized. 

6.2.7.2 Minimization of Power Losses 

Although the power imparted to the system cannot be optimized hy rhanging 

the grasping wrench, the power input to the actuators may he rpduœd hy minimizing the 

losses in the drivetrain. These losses can be substantial, particularly in g<,ared systems. 

In order to do this, certain actuators characteristics must he assullI('d. For cxarnplc, if 

the actuators are electric motors, we can mode! the z-th mot.or as shown in Figure 6.9, 

where the symbols are defined as follows: 



CH.4PTER 6. OBJECTIVE FUNCTIONS 

+ fi;'\ 

bi 

Figure 6.9 Representation of an Electric Motor and its Gear Train 

ii = armature current 
Vi = armature voltage 

JI == rotor inertia 
CI == rotor viscous damping constant 
w, == rotor angular vclocity 
n. == gear ratio 
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Ri = armature resistance 
L, = armature inductance 
bl = bac~ cmf 
Ta = motor torque 

O. == link angular velocity about joint axis 
f. == break-away torque 
'T. == load torque as found from eq.( 4.20) 

The constitutive relations for the electromechanical coupling are 

(6.44) 

where Hi and Bi are the motor's torque constant and back-emf constant, respectively, 

and are equal if consistent units are chosen for T" il! b. ami w •. The governing equations 

for this system are 

. R L di. B v, = l. • + . dt + .w. (6.45a) 

l( . J . ( ) f. 'T. 
l' i7. = .w. + c.w. + sgn wi - + -

n. n. 
(6.45b) 

Since we are more interested in writing the relevant equations in terms of the 
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rates on the Iink side of the gear train, we can use the relations 

(6.46) 

and substitute them into eq.(6.45b) to obtain 

• 2" 2' • n,/<,z, = nJ,O, + n,c,O, + sgll(O,)f, + T, (6.47a) 

or 

(6.47b) 

For the de servomotors used in robotic applications, the armature illductanc<, 

can be neglected (Leahy and Saridis, 1989; Electro-Craft Corporation, 1980), so that. 

eq.(6.45a) can be rewritten as 

(6.48) 

On the other hand, the power consumed hy the mat.or can hc writt('11 as 

71'j = Z, VI 

(6.49) 

Substituting eq.(6.47b) inta the secoud term of cq.(6A9), wc oht.ain 

(H.!JO) 

where Bd /<1 1S equal 1.0 1 and hence, was omitted. The first 1.('1'111 in ('q.((j}jO) f('prc'M~IIb, 

the winding resistive loss; the second term is the rat<' of c!t.lllg(' of t 1)(' kilJ('t.ic ('111'1 gy of 

the rotor; the third and fourth terms are the velocity-dq)('lIdl'lIt I{)s~(':,; whil(' t,J1<' lasl. 

term is the power imparted 1.0 the system. II. was prcvlollsly showlI that t II<' Irlst. t.c'ml 

summed over aU the actuators cannot he optimizcd, sinn~ it. i!ot !ott ric t Iy (l fil Il( t iOIl of t.h(' 

motion of the system. The rate of change of the kilwtic Cll<'l'gy of t,J)(' lot.or CétllTlot 1)(' 

minimized either becausc il. is also strictly a function of the system lIlotioIl. Si milady, the 
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velocity-dependent losses cannot be minimized once the system motion and the actuator 

characteristics (Ci and f.) are known. However, we can minimize the component of the 

winding resistive los ses which is dependent on the load torques. If we substitute eq.(6.4 7b) 

into this term, we obtain 

'2 R. 2 M 2' • 2 
'. R. = 2K2 [nt J.O. + n. c.O. + sgn(O.)J. + T.] 

n. • 

R. [ " 2 "2 "2 '2 2 2 = 2K2 n. J. 0, + n. c. O. + J. + T. 
ni • 

" M • • 2" 2" + 2n. J.c.O.O. + 2sgn(0.)n. J.O.f. + 2n. J.O.T. 

(6.51 ) 

Of the above terms, only the ones which are functions of T, can be minimized, 

the rest being strictly fUilctions of the prescribed motion. Collecting the terms which 

are functions of the load torque and summing them over ail the actuators, we obtain the 

objective function which must be minil11ized as 

( ~[R. 2" 2' • 1 RI 2] 
f T) = L..J 2J'2 (n, J.O. + n. c.O. + sgn(O.)f,TI + 7) 21:'2 TI 

,= 1 71, \. - n, 1\, 
(6.52) 

where n is the total number of actuators in the system. This objective function can be 

rewritten as 

where 
c = [ R, (np.~, + nie, 8,: + sgn (Ô,.)f.) ln lKl 1 

Rn(n~JnOn + n~CnOn + sgn(On)fn)/n~J(~ J 

(6.53a) 

(6.53b) 

(6.53c) 

This optimization prohlem differs from that. proposed by Kopf (1988a, 1988b) 

due to t.he prespnce of the linear term, cT T in the objective function which includes the 

effects of motor inertia, viscous damping and dry friction losses. Because of this omission, 
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that approach will Dot yield a solution with minimum power losses. Upon substituting 

eq.(4.20) into eq.(6.53a) and dropping terms wh;ch are not dependent on the grasping 

wrenches, the ohjt:ctive function can be rewritten as 

(6.54a) 

c = J(c + Wr') (6.Mb) 

where ri and J were previously defined in eq.(6.27b). 

This objective function can he minimized subject to the constraints given by 

eqs.(6.l4b) and (6.14c), in order to obtain the solution which results in t.he minimum 

power losses in the system. 

6.2.7.3 Comparisûn to Internai Force Minimization 

The minimization of power losses is important ill n'l'tain cirClIll1stal\(,('s, sueh 

as space-based robotics. Proposais for multiple-arm sparc robotir syst.<'llIs al'e b('comittg 

increasingly common, and the installed power in thcse situat.iolls il> v<'ry lilllit<'d. A 

reduction of the power requirements for these &ystcms wOllld 1)(, 1H'I\('ficial, bill. t)('calls<~ th(' 

payloads to be considcred in that context (e.g., satC'llitcs) are of tell fragil<' and ('X IH'lIsi ve, 

it is also undesirable to exert large unncccssary forCl's on U\('Ill. 

As discussed in §6.2.1, the 'internai force' can 1)(' vi('w('d as the rompOlH'nt of 

the solution which tends to crush or tear the payload apart., and tlH' pn>sC'lIt approach of 

minimizing power losses makes no attempt to redure thes{' forn's, we can ('xp('ct that they 

will he generat.ed. Furthermorc, sinee in general it is not dcsirable to ('x('rt Ullllèc<'ssary 

loads on the payload, we must determine whcthcr the hem·fit. obtailH'd by impmiillg t.lwse 

forces, i.e., the power saved, outweighs their detrimC'ntal ('[[pct.. 

For the purposes of this section, the minimization of int.ernal force irnplies 

the minimization of !5èT5è, where 5è was defined in §6.2.1.1. The solution obtained whcn 
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minimizing power losses can be compared to the minimum internai force solution by 

evaluating the following 'internai force index': 

(-T-) x x tnt./orce 
'1/ = (-T-) x x ,ower 

(6.55) 

where the subscripts indicate what is being minimized. Since the internai force is always 

positive aud (iTx)"'t./orce < (iTi),owen this ratio is bound to lie between 0 and 1. A 

value of this index close to 1 will indicate that power minimization has not increased the 

internai force by much from the minimum possible. 

The reduction of power losses ohtained can be determined from the 'power 

index': 

'1p = (1r)power (6.56) 
(1r )tnt./orce 

This index is bound to he less than 1 when (1r)"'t force is positive. It may excecd l when 

both (1r )mt./orce and (1r )power are negative, i.e., when the actuators are used to cxtract 

ellergy from the systpm. If (1r)",t./orce remains positive, wc would like Tlp to remain as low 

as possible. By comparing 71! and 71p, we can dctermine which of the two optimization 

approaches is more desirable. If 71/ stays close to 1 while 71p stays sm ail throughout a given 

trajectory, wc could safely say that the power minimization approach has yieldcd hctter 

results. On the other hand, if the r<.:verse is true, we wou Id tend to favor the int(>rnal force 

minimization approach. 

The indices described above have a drawback: they are local-that is, they 

provide information on the solution at one point in the trajectory, white it may be desired 

to compare the performance over the complete trajcctory with global indices. In order 

to form these, we can integrate the quantities used to form the local indices--the power 

consumed by the mot.ors and the internai force applied to the object-over the duration 

of the task. Thus, wc define the following global indices: 

rt'(-T~' dt rt,,) dt 
1 Jto X X)mt./orce 1 Jto l1r power 

fI/ = rt'(-T~) d' 71p = f t ,( ) d 
Jto X X power t Jto 1r mt force t 

(6.57) 

where to and t / are the times at which the task starts and ends, respectively. If we 

assume that the manipulators and payload are at rest at l = to, these indices will always 
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z 

k:x 

Figure 6.10 Two Puma 560 Robots Hotatillg a l'ay/oad 

lie between 0 and 1. Similar to the local indices, if 111 were close to 1 whilp 7/~ wcrc c1os(' 

to zero for a prescribed maneuver, this would indicate that a power minilllization st.rat.cgy 

should be adopted; while if the reverse were truc, an internai force Illinillli",at.ioll stratcgy 

should he adopted. 

6.2.7.4 Numerical Example 

An example is now considered to compare the minirnir.atioll of power loses and 

the rninimization of internaI force. Two Puma 560 robots, shown in Figllfe 6.10, rot.at.e 

a corn mon payload about a horizontal axis in the abs('!lcc of a gravit.ational fi(·ld. Puma 

manipulators were chosen as they have been studicd cxt('nsive'ly hy otll<'r f('sparcll<'rs, so 

that aIl the values nceded in the present cxercise arc known. The lIart.('1I1><,rg-lklléLvit 

pararneters were takell from (Armstrong ct al., 1986), as w('rc th(' link mass('s, moments 

of inertia and centroid locations used in the dynamic equations of motion. The I('rnailling 

parameters1 shown in Table 6.6, quantify the de scrvomotors l1s('d ill the Puma. 

The payload was a soHd aluminum bar 1 m long, with a rcctangular cr088-
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Il Parameter 

na 62.61 107.36 53.69 76.01 71.91 76.73 
n~Ji (kg_m2)a 1.14 4.71 0.83 0.2 0.179 0.193 
n~c. (kg_m2/s)b 4.00 3.5 3.5 0.48 0.55 0.65 

f. (N-m)b 5.95 6.82 3.91 1.07 0.89 0.94 
Thm (N-m)a 97.6 186.4 89.4 24.2 20.1 21.3 

RI (n)C 1.6 1.6 1.6 3.9 3.9 3.9 
KI (N-m/amp)' 0.26 0.26 0.26 0.09 0.09 0.09 

Table 6.6 Puma 560 Motor Paramctcrs 

section 50 mm high and 100 mm dcep. Its mass was therefore 13.5 kg and its moment 

of inertia about thc relcvant horizontal axis through its ccntroid \Vas 1.12R kg-m2• The 

payload, initially at an a.ngle of 45° counterclockwise from thc horizontal, was rotated 

through 90° clockwise in two seconds. Periodic splines (Angdcs ct al., 1988) wcre used 

to ensure that the payload followed a smooth trajectory that bcgan and ended with zero 

velocity and acceleration. 

The undcrdetermined system of equations given by eq.(6.14b) was solved for 

this system with the following objectives: 

1. Minimum internaI force, i.e., minimum txTx; 

2. Minimum power losses, as derived in the present work; and 

3. Minimum power losses, as derived by Kopf (1988a, 1988b) 

The resulting components of the grasping wrench and actuator torques for 

manipulator #1, on the left in Figure 6.10, are shown in Figures 6.11 and 6.12 for the 

three objective functions. The results are not shown for the second manipulatol' due to 

thcir similarity to those shown. The total winding resistive power loss for all the motofs is 

Il Armstrong et al., 1986 
bLeahy and Saridis, 1989 
cDaneshmend, 1990 
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Objective Function 1:1 (7r)dt ft:! (X'T x')dt TI! '1~ 
Being Minimized (W-s) (N2m2s) 

Internai force 77.51 0.972 - -

Power 75.90 117.2 0.00825 0.979 
Power (Kopf) 76.88 18.16 0.05300 0.992 

Table 6.7 Global Performance 

shown in Figure 6.13(a), while TIl and TI", the internai force and power indices, are shown 

in Figure 6.13(b). It should be noted that Tl1' actually excccds 1 for the objective fundion 

proposed by Kopf during part of the trajectory duc to the approximations inl!('('cnt ill 

that approach. Table 6.7 shows the total energy consumed by the Illotors, t.he' illt.('gral of 

the internaI force over the complete trajectory, as weil as the' global p('rforlllanc<' indices 

1 d 1 11, an TI,,· 

It is apparent from Table 6.7 and Figures 6.11, 6.12 and 6.13 that, for the 

example considered, the minimum internai force approach yi ('Ids the l)('st compromise. 

The winding resistive loss is ('hout 20-25% highcr for titis approad. than for the minimum 

power lo&s approach, but sinee these are only part of th(' loss('s - c.f., ('<I.((UiO)-- , tll<' {·(fpct 

on the total energy used during the maneuver is only about 2%. By <ontrclst., t.1J(' int.<'l'Ilal 

force is two orders of magnitude I('ss with the minimum int<'rnal fore<' approaclt t.ltan 

with the minimum power losses approach. The method propos(·d hy l\opf (1!)88a, 1 !)88b) 

to minimize power does not minimize power for t1H' rpasolls st.al,('d ('arli('I', hut. yi('lds a 

solution sornewhere bctw{'cn the two approaches propmi('d I}('f(·. 

6.2.8 Smoothing of Jump Discontinuities Upon Changes in 
Topology 

Solution of the optimization problem given hy eqs.(G.14a) to (6.14c) yields a 

setpoint for the controller at a given instant, for a givcn top%gy. As was shown in 
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Figure 6.11 Grasping Forces and lWoments for Manipulator #1 
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Figure 6.13 Winding Resistive Losses and Local Performance Indices 

Chapter 4, if the topology does not changr, continuous changes in configuration of the 

system, i.e., changes of the joint variables, result in continuous changes of the coefficients 

of Al and hl! which, in turn, result in continuous changes in the optimal solution vector 

x. Thus, as long as there are no changes in topology, we can expect the optimal force 

solution to be continuous. 

As was alRo shown in Chapter 4, when the topology of the system changes, 

the entries of Al change discontinuously. Wh en this occurs, the solution to equations 

(6.14a) to (6.14c) will also change discontinuously, thereby causing an abrupt change 

in the commanded actuator torques. The actuators will be unable to respond to these 

commands and the system will not follow the prescribed motion. Two techniques were 

proposed in Chapter 4 for alleviating this problem. This section presents a third technique 

to do this, which places less restrictions on the allowable motions. 

Rather than imposing a hard limit on the amount by which the solution can 

change from one instant to the next, it is more desirable to impose a penalty on large 

changes in the solution. This can be accompli shed by modifying the objective function 

given in eq.(6.14a) as follows: 

(6.58) 
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where W is a positive-semidefinite weighting matrix, and x- was previously defillcd as 

the contact wrench solution vector at the previous instant. The new tcrm in the obj(>ctive 

function will tend to minimize the difference hetween the solution at the prest'Ilt time 

step and that at the previous time step, thus smoothing the time history of tlt<' cont.act 

wrench. This new objective function can he expanded as follows 

T 1 T 1 T- T- 1 T~ 
f(x) = C x + '2x Wx + '2x Wx - (x-) Wx + '2(x-) Wx- (6.59) 

At the present instant, x- is known and fixed. Thcrefore, the last term in 

eq.(6.59) is constant, and can be dropped from the objectiv(' fllllction withollt. afrecting 

the solution. The objective function can be rewritten in the SilIlW fOlln as cq.(i. Ha), 

namely, 

(G.60a) 

where 

-c = c - Wx- (6.60b) 

The formulation given by eqs.(6.60a) and (G.GOh) allows us to smooth discollti­

nuities in the variables contained in vector x. If this vcctor cloes Ilot indude tll(' actuator 

torques, e.g., if the mcthod of §4.2.3 was ust'd to formulat.c t.h(\ dynamics <'quittions, wc 

can specify the following objective fundion to smoot,h thcse: 

(6.61 ) 

where r denotes a vector cornposed of ail the actuator torqu('s in t.he syst('m, as defincd 

in eq.(6.26b), while r- is the same vector at the previous inst.ant. 

Substituting eq.(6.27; .. ) into eq.(6.61) and dropping ail tcrms which are con­

stant, we obtain an equivalef't objective function of the forrn of eq.(6.ôOa) witl! 

- - T W=W+JWJ, (6.62) 

Since eq.(6.60a) is formally identical to eq.(6.14a), the optimizatioll problem 

is left unchanged in principle and the sarne solution technique can he used to solve the 
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problem. As weil, sinee ail matrices in the new problem are oC the same dimension as the 

original problem, we can expect that there will be no increase in the CPU time required to 

find a solution. Therefore, this technique also fits weil into the existing framework oC the 

optimization problem as it only requires the alteration of certain weighting parameters 

in the objective Cunction. Furthermore, this technique does not have the disadvantage oC 

the one proposed in §4.4.5, Le., having to choose ~I or ~IJ' perhaps iteratively. 

Since the intent oC the proposed technique is to smooth the force time histories 

upon changes in top%gy, it is desirable to ensure that the force solution is not affected 

when the topology does not change. This can be accomplished by setting W -1 0 only 

when changes in topolcgy are expected, and ramping it linearly clown to W = 0 within 

sorne time T Collowing the change in topology. 

6.2.8.1 Numerical Example-A Four-Legged Walking Machine 

This numerical example is intended to show that a) discontinuities will occur 

in the solution produced by eqs.(6.l4a) to (6.14c), upon changes in the topology oC the 

system, even when the motion is continuous, and b) the techniques presented in §4.4.5 

and 6.2.8 can be lIs('d to smooth these discontinuities. The four-legged walking machine 

shown in Figure 6.14(a) is supported by thrœ of its legs while its centre of mass moves 

for ward as shown in Figure 6.15; its fourth Ieg is lowered to contact the ground at t = 0.5 

s with zero contact vclocity. The inertia oC the legs is assumcd to be negligible, allowing 

us to write the dynamieal equations for the body of the machine as follows: 

(6.63) 

where fI is the 3-dimensional vector of foot contact forces, if wc assume that moments 

cannot begenerated at. the footjground contact. Furthermore, vcctors a o and W o represent 

the acceleration of the centre of mass and the rotationa.l velocity of the body, respectively . 
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Figure 6.14 Four-Legged Walking Machine 

Therefore, matrix Al will undergo a discontinuous change at t = 0.5 s as follows 

where 0 denotes the 3 x 3 zero matrix, 1 denotes the 3 x 3 idcntity rnatrix, matrices Ct 

are defined by eq.(4.8c) and the CI vectors are defined as follows: 

[

1.5 - Xcm 1 
Cl = -0.5 , 

-0.7 [

1.5 - X
cm 1 

C2 == 0.5 , 
-1.0 [ 

-Xcm 1 [-x cm 1 
C3 == -0.5 , C4 == 0.5 

-0.6 -0.7 
(6.6.5) 

The objective function appearing in cqs.(6.60a) and (6.60b) was lJIinimi~ed 

with c = 0, W == 1 and W = pl, i.e., placing a weight of p OII the contilluity of the 

contact forces. Contact constraints are imposed on the system to ellsure nOIl-negativity of 

the normal contact forces betwecn the fect and the ground, and foot friction forces within 

the friction pyramid with a coefficient of friction 'l == 0 .. 1). Furthermore, the irwquality 
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Figure 6.15 X-position of the Centre of Mass 
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constraints given by eq.( 4.58c) arc included to limit aIl contact force discontinuities to 

~1 = ... = ~q = ~ Newtons per time step of 10 ms. 

Three cases were investigated: a) no effort is made to smooth the solution to 

the optimization problem (p = 0, ~ = (0); b) inequality constraints are used to limit the 

rate of change of each contact force to 20 Njstep (p = 0, ~ = 20); and c) a penalty is 

imposed on discontinuities in the contact forces through the objective fundion (p = 10, 

T = 0.5 s, ~ = 00). Figure 6.16 shows the resulting norm of the contact forces al each 

of the four feet (aIl forces at foot #1 are zero until t = 0.5 s). Both of the proposea 

techniques result in considerably smoother force time histories of the foot. contact. forces. 
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Chapter 7 

Further Applications of Redundant 
Actuation 

Until now, redundant actuation has been treated as being intrinsically cou pied 

to mechanical systems with time-varying topology. The implicit justification for this has 

been that systems whose topology varies are always redunrlantly actuated dmillg SOIne 

part of their task, while systems whose topology docs not change arc very unlikcly to 

be redundantly actuated. However, redundant actuation can also be applied to fixed­

topology systems in order to smooth or homogenize the force distribution within them, 

as will be shown in this chapter. 

Perhaps the earliest work dealing with redundantly acluatcd fixed-topology 

systems was that of Williams and Seireg (1979) who observed that the human muscu­

loskeletal structure was redundantly actuated and allowed many inverse dynamics solu­

tions. Nakamura (1988a) was among the first to suggest redundant actuat.ion in the COIl­

text of mechanicallinkages with fixed topology when he proposcd a t,wo-d<'grœ-of-frccdom 

planar five-bar linkage driven by three actuators as a subassembly of the (jnger of a me­

chanica} hand. Haywal::l (1988), in designing a three-dcgrcc-of-freedom parallcl wrist., 

found that the use of one redundant actuator would al\ow tll(' wrist. to avoid kinematic 

singularities. Soon thereafter, Nakamura and Ropponen (1989) proposed a thrcc-degrcc­

of-freedom spatial linkage driven by four actuators, while GardllC'r ct al. (1989) suggcsted 
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a two-degree-of-freedom parallel robotic manipulatQr driven by four actuators. Other 

than these few works, no proponents of redundant actuation of fixed-topology linkages 

are apparent. 

In most existing works, redundant actuation of fixed-topology linkages is put 

for ward as a way of reducing the actuator and constraint wrenches acting in the system­

just as this was done in the case of systems with time-varying topology. However, once the 

force distribution problem of a redundantly-actuated system is formulated as an optimiza­

tion problem, the objective functions which may be minimized are virtually unlimited. 

This chapter presents two less conventional applications of redundant actuation in an at­

tempt to show the range of possibilities which exist. In §7.1, redundant actuation is used 

to achieve the full dynamic balancing of linkages-i.e., linkages which exert no dynamical 

forces at their supports. In §7.2, it is shown that redundant actuation can be used to 

reduce the effects of shocks in mechanisms. 

7.1 Dynamic Balancing of Linkages 

The dynamic balancing of linkages is a classical problem in the theory of ma­

chines and mechanisms, and is of practical importance wherever linkages must run at 

high speeds (Berkof and Lowen, 1969; Berkof, 1973; Bagci, 1979; Kochcv, 1988; Feng, 

1989). For example, the four-bar linkage shown in Figure 7.1(a), when in motion, will 

exert forces and moments on the frame on which it is mounted. The free-body diagram 

of each link of this linkage is drawn as shown in Figure 7.1(b), where we denote the net 

force which acts on the frame as f} - f4' Berkof and Lowen (1969) have shown that a 

four-bar linkage can be constructed with f} - f4 = 0 by keeping the centre of mass of the 

linkage motionless. They accompli shed this by writing an equation for the position of the 

centre of mass and setting aU the coefficients of the time-dependent terms to zero. The 

conditions which must be satisfied in order to achieve this are: 

(7.1a) 
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(a) (b) 

Figure 7.1 Four-Bar Linkage 

(7.1b) 

(7.1c) 

When these conditions are met, the force fi is equal and opposite to f4 at all 

times, so that, when added, the two forces car!cel each other. However, as noted by Ku 

in the commentary on the work of Berkof and Lowen (1969), certain problclTls relTlain 

unresolved with this approach: 

• Although the net force fi - f4 is zero for the balanccd linkage, the individual cyclic 

forces fI and f4 still exist and may be large. Thus, each of the linkage supports at 

the frame is subjected to a cyclic shaking force . 

• A cyclic rocking moment acting on the frame due to the equal but opposite forces 

acting at the two linkage supports (i.e., s x ft) still exists and lTlay he larg(', 

The latter of these two criticisms was addressed by Bcrkof (1973) for the 

particular case of 'in-line linkages'-i.e., where the centre of mass of cach link lies along 
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the line joining the link's two pivots. In that work, other members such as Bywheels 

and pendulums were added to the linkage to cancel the inertia of the primary links. The 

purpose of this section is to show that redundant actuation can be used to correct the 

two ahove-mentioned problems without limiting the analysis to particular linkages. 

1.1.1 Dynamics 

In order to treat the four-bar linkage problem, we first write the dynamic& 

equations which must be satisfied by any set of actuator torques whiclt is used to control 

the system. We write the equations assuming that there is an actuator installed at each 
.. 

joint. If a given joint is not actuated, its corresponding actuator torque need only he set 

to zero. These equations take on the form 

(7.2a) 

(7.2b) 

(7.2c) 

(7.2d) 

(7.2e) 

(7.2f) 

where the moment equations are written about the respective centre of mass of each link, 

and l, is the moment of inertIa of link i about its centre of mass. Matrix E is defined as 

[0 -1] 
E = 1 0 (7.2g) 

Equations (7.2a) to (7.2f) can be written more compactly in the form 

('7.3a) 
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where the 9 x 12 matrix Al is defined as 

-1 1 O2 O2 02x4 
O2 -1 1 O2 02X4 

AI = O2 O2 -1 1 02x4 (7.3b) 
ciIE -ci2E OT OT dT 

1 
OT criE -cf2E OT dT 

2 
OT OT crIE -CI2E dT 

3 

1 represents the 2 x 2 identity matrix, O2 is the 2 x 2 zero matrix, 02>'4 is the 2 x 4 zero 

matrix, 0 is the zero vector of dimension 2 and the other arrays are 

(7.3c) 

r
fl 711lal 

f2 

T= [~J 
m2 a 2 

x= l f3 
hl = m'3 a 3 , 

IlwI f4 
12w2 

T 
13wJ 

(7.3d) 

If only one actuator is active (e.g., TI i=- 0 and T2 = T3 = T" = 0), three columns 

can he removed from matrix Ab and the system of cquations has a unique solution once 

the motion is prescrihed. However, if ail f!)ur actuators are active, the syst.C'm of cquations 

is underdetermined. As in the case of systems with time-varying topology, optimization 

techniques may he applicd to find the optimum solution to t,!\C' ulld('rddermincd case. 

7.1.2 Forces Acting on the Frame 

In this section, we start hy showing that the Het force on the frame fi - f4 

can only he changed hy linkage design and not through redl1ndant adl1ation. Adding 

eqs.(7.2a), (7.2h) and (7.2c), we obtain: 

(7.'1) 

It is apparent that the leCt-hand side of eq.(7.4) is the net external force acting 
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on the three moving links of the four-bar linkage and so we can write 

(7.5) 

where Be is the acœleration of the centre of mass of the three moving links, while M = 
m) + m2 + m3. It is noted that the right-hand-side of eq.(7.5) is determined strictly by 

the motion of the linkage and the masses of the moving links and is independent of the 

actuator torques Tl to T... Thus, the net force acting 011 the frame cannot be altered 

by redundant actuation. This irnplies that redundant actuation alone cannot be used to 

make f) = f4 = \1. 

However, jf we design a linkage to satisfy the conditions given byeqs.(7.1a) 

through (7.1c), we find that Be = 0 and therefore fI - f4 = O. We can now use redundant 

actuation to cancel both fI and f ... This can be done by minimizing the objedive function 

J defined as 

(7.6) 

under the equality constraints given by eq.(7.3a), and checking whether a minimum exists 

which renders f zero, which would obviously mean that fI = f4 = O. 

Wc can verify the existence of this minimum by setting fi = 0 in eqs.(7.2a) 

to (7.2c). Once this is done, the other forces in the system can be found uniqucly, from 

which f4 = 0, and wc arc left with a smaller underdctermincd system of three equations, 

eqs.(7.2d) to (7.2f), in four unknowns, T) to T4. This underdeterminacy could be resolvcd 

by deactivating one of the actuators, thereby setting the rorresponding torque to zero, or 

by finding an optimum solution to the reduced system. 

It is therefore apparent that we require at least three actuators, two of which 

would be redundant, to ensure that the forces acting on the frame, f) and -( .. , will be 

zero. As weIl, sinee these forces have been reduced to zero, the shaking mowent due to 

the reaction forces has also bren eliminated, thereby solving the two criticisms leveled at 

Berkof and Lowen's balancing rncthod. 
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7.1.3 Moments Acting on the Frame 

Berkof (1973) showed that an in-line four-bar linkage, which was ddilled in 

7.1, could he fully force- and moment-balanced by adding ftywhccls to il. 1I0WCV('f, il is 

physically impossible to cancel the reaction moments of more gcneral four-bar linkages. 

The net moment exerted by a force-balanced linkage on ils frame, which is the' same 

irrespechve of the refercnce point used to calculate it, is -Tl + T4 + sTEf., w)}('rc s is 

indicated in Figure 7.1(a). Just as it was impossible to alte'r thc net force acting on 

the frame, the net moment acting on the frame cannot he altcrcd through rcdundanl 

actuation This is again shown hy manipulating thc dynamics equat.ion~. W<, start hy 

adding cqs.(7.2d), (7.2e) and (7.2f), to obtain: 

For a halanced linkage, wc substitute f. = f4 into eqs.(7 .2a) and (7.2c) to ohtain: 

(7.8) 

Substituting eq.(7.8) into eq.(7.7) and simplifying y.dds 

Noting that the term in brackets on th<, left-hand-sidc of the equation is just !J)(' vector 

dirccted from the right-hand support to thc Idt-hand support, w(' can writ(· 

The left-hand-side of thc cquation is nothing but the' net mOTJwnt a<..ti ng on t,JJ(' lTloving 

links while the right-hand-side is, once again, purely a fUllctioll of th(' motioll of thosp 

links and their incrtial propertics. Thus, it is apparent that tll(' Ilrt 1lI0rn('llt 011 tlJ(' framr 

is determined strictly by the prescribed mution and the irwrtial prOI)('rtjrs of 1.11<' linkagr. 

We hë.ve already shown that through proper d('sigll al/d f(·dulldallt. actuatio!1, 

wc can produce a linkage for which f. = f4 = O. Furthcrm,)rr, wc hav<! showlI !'hal. this 
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can be accomplishpd with only two redundant actuators. If we choose the fourth joint to 

be unactuated, i.e., T4 = 0, we are left with 

(7.11) 

and -Tl will be the only reaction acting on the frame. 

7.1.4 Numerical Example 

A sample linkage will now be introduced in order to clarify the techniques 

discussed above. The linkage chosen is that treated by Angeles and Lee (1989), the 

dimensions of which are shown in Table 7.1. This is an unbalanced linkage which therefore 

exerts a non-7ero net force and moment on its support frame. The input link is rotated 

through the cycloidal maneuver given by 

o < t ::; D.1s (7.12) 

This maneuver, which has zero initial and final velocity and acceleration, was 

taken from Angeles and Lee (1989) and is shown in Figure 7.2. When only one actuator 

is used to drive the linkage, the resulting inverse dynamics equations are determinate. 

Figure 7.3(a) shows the magnitud", of the forces acting in the linkage whcn ouly Tl is 

used to drive the linkage. The corresponding actuator torque required is shown in Figure 

7.3(b ). 

When ail four actuators are active, the system becomes redundantly actuated 

and the objective fundion f = Ilfl W + IIf4 11 2 can be minimized. The resulting magnit,ude 

of the forces in the linkage are shown in Figure 7.4(a), whilc Figure 7.4(b) shows the 

required actuator torques. The magnitudes of fI and f4 are equal, but they act in differing 

directions, thereby resulting in a net force on the support frame which is identical to that 

when only one actuator was driven. It is apparent that the forces fI to f4 have been 

reduccd and homogenizcd by the redundant actuation but they have not been reduced to 

zero. 
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Parameter Unbalanced Balanced Parameter Unbalanced Balanccd 
Linkage Linkage Linkage Linkage -

1) (m) 1 1 tPl1 (deg) 0 45 

12 (m) 2V2 2V2 tP21 (deg) 0 10 

13 (m) 2 2 tP22 (deg) 180 45 
sr (m) 3 3 tP31 (deg) 0 190 
Sil (m) 0 0 Ilcul! (m) 0 .. 5 0.656 

ml (kg) 3 x 10-4 3 X 10-4 IIcI211 (m) 0.5 0.709 
m2 (kg) 6.5 x 10-4 6.5 X 10-4 IIc2111 (m) 1.414 3.487 
m3 (kg) 5 x 10-4 5 X 10-4 IIc2211 (m) 1.414 0.856 

Il (kg-m2) 0.75 x 10-4 0.75 X 10-4 IIC3111 (m) 1 5.186 
12 (kg-m2) 4.16 x 10-4 4.16 X 10-4 IIC3211 (m) 1 3.205 
13 (kg_m2) 5 x 10-4 .5 X 10-4 

Table 7.1 Four-Bar Linkage Paramctcrs 

A balanced linkage with the same dimensions but with the location of its link 

centres of mass altered as shown in Table 7.1 is now introduccd. The same maneuver is 

used and the results obtained with only TI active are shown in Figure 7 .. 5. In this case, the 

magnitudes of f1 and -f4 are equal but they ad in opposit.e directions so that f1 - f.1 = o. 

Figure 7.6 shows the forces and actuator torques acting in the linkage when T1, T2 and 

T3 are active and f = IIfd P + IIf4 W is minimized. Wc find that f 1 = f.1 = 0, and the 

only reaction acting on the frame is -T). \Vith ail four actuators active and the same 

objective function being minimizl'd, the results shown in Figure 7.7 are obtained. Once 

again, f 1 and f4 have bcen reduced to zero, this time with tbe net reaction on the frame 

being T4 - TI' Obviously, with aIl four joints actuated, the individual torques are smaller 

than wit.h only threc actuatcd joints. 
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7.2 Smoothing Impact Shocks 

In Chapter 4, the dynamics equations of redundantly actuated robotic systems 

. were studied with sorne emphasis on the behavior of these equations upon changes in the 

topology of the system. It was found that the equations of motion cou Id be written as 

(7.13) 

where hl could be interpreted as representing the motion of the system, while Al repre­

sented its kinematic structure and configuration. It was shown that, when the topology 

of the system changed, the entries of matrix Al would change discontinuously, and a 

number of techniques were proposed in Chapters 4 and 6 to smooth the ensuing disconti­

nuities in the solution to the optimization problem. Thus, the work of those chapters was 

concerned primarily with the reduction of discontinuities due tv changes in the topology 

of the system and it was implicitly assumed that vector hl would not change discontin­

uously during the task. Physically, this corresponds to the situation where, for example, 

the foot of a walking machine contacts the ground with zero relative velodty, so that the 

motion is continuous and there is no shock. It is important to realize that shocks are not 

intrinsically tied to changes in topology, although they often occur together. Hefe, it is 

emphasized that the two should be viewed as distinct phenomena. 

But now, what of the second phenomenon which has not yet been addressed 

and may be of interest-the smoothing of solution discontinuities due to Silocks? A shock, 

or mild impact, consists of finite forces applied abruptly to the system, either between 

two of its constituent bodies or to a single body by an external influence. A shock results 

in a discontinuous change in vector hl of eq.(7.13), which may be accompanied by a 

discontinuous change in Al if the topology of the system changes at that instant. In this 

section, we are interested in determining whether the smoothing techniques presented in 

~4.4.5 and 6.2.8 could be used to reduce discontinuities due to shocks, just as they were 

used to smooth discontinuities due to changes in topology. 
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7.2.1 Reducing the Effects of Shocks 

The underlying idea is as follows: given that there are many solutions to the 

force distribution problem in a redundantly actuated system, it is desircd to find the 

solution which minimi7,es solution discontinuities. A shock is reflected in vector b l in one 

of two ways: as a jump discontinuity in the external wrench 'We = [n; f;]T, or as a 

jump discontinuity in the motion variables in bl' The present work assumes that these 

jumps can be modeled, and that the time history of W e and the motion of the system can 

be calculated and measured, even during the shock. The smoothing techniques devcloped 

previously can therefore be applied to cancel the shock forces as much as possiblc. 

Shocks are similar to impacts in that they represcnt abrupt changes in the 

motion and forces applied to the system. However, whereas impacts normally involve the 

generation of infinitely large forees over infinitesimally short timc intervals, the forccs and 

time intervd.is of shocks are assumed to be fini te. A large body of work exists regarding the 

modeling of impacts in general mechanical systems (e.g., I<anc, 19G8; Wittenburg, 1977; 

Lotstedt, 1984; Haug ,~t al., 1986, Pfeiffer, 1991). Sorne of this work has becn adapted 

to robotic systems in the works of Zheng and Hernami (1985), Zheng (1987) and Wang 

and Mason (1987). Finally, the works of Johnson (1958), Parker and Paul (198.5), I<ahng 

and Amirouche (1987) and Youcef-Toumi and Gutz (1989) arc bcttcr c1assified as dealing 

with shocks sinee make an effort to model and measure the finit(, forces and tirnc durat.ion 

of the shock. 

Most of the above works apply energy rnethods 1.0 a model of two colliding 

bodies. They assume the motion, and hence, the kinetic encrgies of the two bodies, to 

be known immediately before the collision. At one instant du ring thc collision, thc two 

bodies have zero relative velocity and their kinetic energy has been cornpletcly transforrned 

into strain en_:rgy. Finally, as the bodies recover thcir init.ial shapcs, part of the strain 

energy is recovered as kinetic energy, while part is lost as hcat, the relative proportion 

being referred to as the coeflicient of restitution. Using certain assurnptions about the 
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elastic properties of the colliding materials, i.e., the force produced as a function of the 

material's deformation, the maximum force between the two bodies can be estimated 

(Johnson, 1958). 

In the present work, it is assumed that we are provided with an external force 

fo, which represents the shock force applied to the common pole. This shock force may 

either be due to a collision between the pole and the j-th seriaI chain, or between the 

pole and an external object. The shock force can be introduced into the dynamic analysis 

presented in Chapter 4 by modifying the equations of motion of the moving pole given 

by eqs.( 4. 7a) and (4.7b) to reftect the shock as follows 

" Lfi = mo(ao+g)-fe -fo (7.14a) 

JI JI 

L Di + 2) c, x f,) = Iowo + W o x Iow 0 - ne - Ce X fe - Co X fo (7.14b) 
Î=1 ,=1 

where Co denotes a vector directed from the eentroid of the pole to the point of collision. 

As was shown in Chapter 4, these equations are underdetermined and the 

contact wrenches, f, and n" for i = 1, ... ,p, can be chosen according to an optimality 

criterion. The goal is therefore to choose these contact wrenches to offset the effect of 

fo as much as possible. The smoothing techniques presented in §4.4.5 and 6.2.8 are used 

to find this solution. The first of these imposes inequality constraints on the solution to 

ensure that the actuator torques at a given instant do not differ from those at the previous 

instant by more than a prescribed amount, while the second method alters the objective 

funtion to penalize large changes in the actuator torques. Once again, the latter approach 

is favored sinee it cannot cause the optimization problem to become infeasible. 

7.2.2 Numerical Example 

This example shows the behavior of the smoothing techniques presented in 

§4.4.5 and 6.2.8 for a shock during which there is 110 change in topo~ogy. This is done to 

ensure that the shock effects observed in the example are not confused by the effects of a 
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z 

k:x 

Figure 7.8 Two Puma 560 ManipuJators Rotating a Payload 

change in topology. The two Puma 560 robots shown in Figure 7.8 arc used to perform 

the same maneuver as in §6.2.7.4. Ali relevant data regarding the manipulators and their 

task were given in that section. 

However, at t = 1.0 s in the present examplc, an external force is im)Joscd in 

the x-direction of Jô = lOON at the centre of mass of the payload (i.e., Co = 0), thcreby 

representing a collision between it and the environ ment. 

The objective function given by eqs.(6.60a) and (6.62) was minimizcd with 

c = 0, W = land W = pl, i.e., placing a weight of p on the continuity of the actuator 

torques. The only inequality constraints included in this problem arc those given by 

eq.(4.61) to limit aIl actuator torque discontinuities to ~1l = ... = ~pr = ~ Nm per 

time step of 10 ms. Three cases were investigated: a) no effort is made to smoot,h the 

solution to the optimization problem (p = 0, ~ = oo)j b) inequality constraints are llsed 

to limit the rate of change of each actuator torque to 11 Nm/stcp (p = 0, ~ = l1)j and 

c) a penalty is imposed on discontinuities in the actuator torques through the objective 

function (p = 10, T = 1.0 s, ~ = 00). 
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For case (,.~.), the actuator torques for manipulatol's #1 and #2 are shown in 

Figures 7.9 and 7.lO, respectively. Since the maneuver takes place in a plane, two of the 

wrist actuators in each manipulator ar.: not actj ve, as is apparent from the figures. 

The results for case (b), where the discontinuities are smoothed using inequal­

ity constraints, are shown in Figures 7.11 and 7.12. The same two actuators which were 

inactive in case (a) rernain inactive. However, the discontinuity in actuator # 3 is reduced, 

white that in actuators # 2 and 5 is increased.1 In effect, the inequality constraints have 

distributed the discontinuity more evenly over the active actuators, thereby decreasing 

the largest disconti. -ity. This is desirable, assuming that aIl the actuators are equally 

able to withstand discontinuities. If they are not, the Â.) 's can be made more restrictive 

for the more sensitive actuators. It should be noted that, for the present example, with 

equal f1.j 's on aIl the actuators, a value of f1 lower than Il will cause the problem to 

become infeasible. 

The results for case (c), where the actuator torques are smoot.hed using a new 

objective function, arc shown in Figures 7.13 and 7.14. This time, the two previously­

inactive actuators become active. As weIl, the discontinuities in actuators # 1 and 3 are 

reduced, white those in actuators # 2, 4, 5 and 6 are increased. Once again, the largest 

discontinuity has been decreased by distributing the shock more evenly, this time over 

aIl the actuators. For the present example, a further increase in p, the weight on the 

actuator torque discontinuities, will not smooth the results any more, but will not cause 

the problem to hecome infeasible. The second method for reducing the discontinuities thus 

has two advantages over the first: it cannot cause the optimization problem to hecome 

infeasible and it distributes the discontinuities evenly over aIl the actuators, rather than 

just the active ones. Finally, if the actuators were not aIl equally able to withstand 

discontinuities, the weighting rnatrix W could he modified to penalize discontinuities in 

the more sensitive actuators more heavily. 

ln.b., the plot seales are different for the various actuators 
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Chapter 8 

Conclusions 

The fingers of mechanical hands, the legs of walking machines and mult.iple 

manipulators handling a common payload were treated in the present work as 'cooperating 

robotic dev!ces'. One of the characteristics of these systems was found to \)(' that. their 

kinematic structure, or topology, varies with time. Since the 1111I111)('r of actuators inst.all('d 

in these systems is chosen to ensure the cont.rollability of its cOl1stitl(('llt robot.ic d('vices 

when they act independently, the system will tend to have mOl(' act.ua.t.ors t.han necessary 

at other times. This sit.uation was thercforc dcscrihed a.s n'dundant. aduat.ioll. 

The number of actuators requircd in a me'chanical systC'1I1 is depPlld('IIt. on 

its number of degrœs of freedom. The determinat.ion of this propNty was t.h<'J'dore 

investigated in detail, as was the frcedom allcwed and const.raint illlposC'd hy t})(' int.erbody 

joints in the system. This analysis of kincmatic structure was foJ1owt'd hy an analysis of 

the motion of the systems in question, wherc analogie's were' dlélwn het w('('n t.}l('rn and 

seriaI and parallel manipulators. 

The dynamic equations of motion of these systems were U)('n st.udi('d and it 

was found that the relat.ionship between the motion of the syst<'rn and the wrenches 

acting within it can be written in a number of ways. In all casps, thl' inverse' dynamics 

problem-that of finding the wrenches acting in the syste'm for a kllown TIlot.ion- muId bc 

formulated as an underdetcrmined system of lincar eqllat.ions. FlII'thermor<" t.his system of 
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equations was found to be underdetermined by an amount equal to the degree of actuation 

redundancy existing in the system. Wh en studying the behavior of these equations upon 

changes in the topology of the system, it was found that the left-hand sicle matrix of 

coefficients suffered discontinuous changes at these times. Other constraints were imposed 

in the solution to account for the limitations of passive contacts, actuator capabilities and 

interbody joint strength. 

In order to find an 'ideal' solution to the underdetermined problem mentioned 

above, optimization techniques were investigated. In this context, the inverse dynamlcs 

equations were treated as linear eqllality constraints, while the friction forces, actuator 

torque bounds and joint limits were treated as inequality constraints. The characteristics 

of various optimization problems were investigated with emphasis on two considerations: 

1) the speed with which the algorithm could provide a solution (sincc the optimization 

must be performed in real time in order to provide force setpoints for the controIler), and 

2) the uniqlleness ('.nd continuity of the solution. Quadratic programming appeared to be 

preferable, particularly in the latter respect. Numerical techniques for solving the opti­

mization problem were then investigated. In the case of a problem which could be written 

wit.h only equalit.y constraints, a technique which included symbolic preprocessing of the 

problem was dcvelopcd. For more gcncral problcms, an existing inequalit.y-constrained 

quadratic optimizatioll algorithm was modificd to efficiently include cquality constraints. 

This mcthod may be viewed as an extension of the pseudo-inverse solution commonly 

used for these systems to inclllde ineqllality constraints. 

Any optimization problem must optimize an objective function but the choice 

of this function calI be difficult. A number of objective functions were compared for !inear 

and quadrat.ic programming and il. became more appétfent that the continuity properties of 

t.he latter were far supcrior. As weIl, the quadratic programming algorithm implemented 

in the present work proved to be faster for aIl but the lowest-dimensional problems. 

Various objective functions were discussed, namely, minimum 'internai force,' minimum 

norm of the actuator torques, minimum-norm of the joint constraint wrenches, minimum 
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power losses and minimum solution discontinuities upon changes in the topology of the 

system. It was found that there are a number of possible interpretations for the minimum 

'internaI force' approach, and that it would be useful to include a weighting matrix to 

ensure that its results are invariant with changes in units. As weIl, it was found that 

although the minimization of power losses may appear to be an attractive objective, it 

may result in excessive stresses being imposed on a grasped object.. 

Finally, the utility of redundant aduation in systems with fixed topology was 

outlined. It was shown that redundant actuation could be used to perform the complete 

dynamic balancing of a four-bac linkage. This, when performed 011 a linkage which was 

initially force-balanced, resulted in a linkage which exerted no dynamical forces at cither 

of its frame supports. Redundant actuation was also used to redllcc the effeds of shocks 

on mechanisms. Although this approach has certain limitations, it may warrant further 

il. vestigation. 

8.1 Recommendations for Future Work 

In the comse of the research performed br the present work, a numher of 

interesting avenues were noted which warrant further investigation. 

Although the present work delved into a numbcr of illtcrcsting objective func­

tions, it is the opinion of the author that a universal choicc for this objective f\lnction 

which would apply equally weIl to walking machines, meehanical hands and multiple ma­

nipulators handIing a common payload is not possible. Rather, the ehoice of objective 

function will be governed by the particular charaetcristics of the system and, perhaps, 

its task. For example, Nakamura's minimization of strain en(>rgy lTlight he weil suitcd 

to delicate payloads while power loss minimization might he weil su it.('d 1.0 spacp- bas('d 

systems with limited energy availability. Theleforc, a series of more specifie invest.igations 

would be useful ta identify the 'ideal' objective functions for partieular systems and ta.qks. 
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Throughout this work, it was assumed that the bodies which make up the 

systems under consideration were rigid. However, space-based robotic systems are known 

to have links with significant structural flexibility, while joint flexibility is acknowledged 

to be a major COll cern for industrial robotic systems. The effect of flexibility in the 

bodies and joints in a redundantly-actuated system would therefore be a useful topie 

to investigate. Conceptually, one of the effects of flexibility is the introduction of new 

degrees of frecdom in the system. Since actuation redundancy is a result of having more 

actuators than degrees of freedom, it is possible that the flexibility could he controIled by 

the redundant actuators, or that the actuation redundancy would he reduceJ by flexibility. 

This is closely related to the passive compliance approach suggested by certain authors. 

Another pervasive assumption in this thesis was that the robotic devices mak­

ing up the system were not kinematically redundant. If the system were kinernatieally 

redundant, the motion of aIl its members would not be fully specified by specifying the 

motion of its rnow'ing pole. Two approaches could be taken: 1) the kinematic redundancy 

could first be resolved using existing techniques (e.g., minimum condition number of the 

Jacobian), and the force optirnization problem could then he resolved independently, or 

2) the two prohlems could he treated as one larger force optimization problem. The latter 

approach deserves sorne investigation. 

The present work .vas primarily concerned with finding setpoints for a force­

motion controller assumed to be installed in the system. No consideration was given to 

the rnanner in which these force set points could he cornhined with motion setpoints to 

achieve stable, consistent control. Although this is by no means a neglected research 

topic, certain concerns have been expressed about the validity of existing methods of 

combining setpoints. It should he apparent frorn the present work that the suhspaces in 

which internai force and motion can he controlled are orthogonal. It is conjectured that 

two indepcndent controllers could he designed in these subspaces rathcr than attempting 

to c~uple the setpoints in a single task space controller. 
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The fact that redundant actuation can be useful for systems with fixed topology 

is little acknowledged. Further work could he done in the complete dynamic halancing of 

linkages to extend this technique to more complex mechanisms. As weil, an evaluation 

of redundant actuation in systems with fixed topology from a more global perspective is 

required. For example, redundant actuators add weight to the system, white they allow 

a lighter structure to be constructed by reducing the forces. It wou Id be of practical 

importance to compare the trade-offs between these two effects. 
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Appendix A 

Inverse DynaIDics of SeriaI 
Manipulators 

A number of inverse dynamics algorithms for seriaI manipulators have been 

proposed in the literature. One of the most efficient of these is the recursive Newton-Euler 

algorithm put fOl'ward by Luh et al. (1980). 1t is presented here not because it is the most 

efficient of the existing algorithms, but rather because it is relatively easy to understand. 

In cases where the available computational power is restricted, the reader is encouraged 

to investigate more efficient algorithms such as that of Angeles et al. (1989). 

Luh et al.'s algorithm is composed of two recursive procedures 

1. An out ward recursion from the manipulator's base to its tip in which the motion of 

each link of the manipulator in Cartesian space is determined as a function of the 

motion of the preceding links and joints. 

2. An inward recursion from the manipulator's tip to its base to calculate the actuator 

and constraint wrenches acting on each link. 

The equations which are implemented to accomplish this will first be presented 

in vector form, and will then be given in component form where the transformations 

necessary during numerical implementation are more apparent. 
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A.1 Vector Form or the Equations 

The algorithm starts by specifying the motion of the base of the manipuJator­

wo, cA70 and ao-where Wo and Bo are the angular veJocity and transJational acceJeration 

of the base Jink, respectively. The outward recursion then consists of (for i = 1 to n, 

where n is the number of links in the manipulator): 

When joint i is revolutc: 

When joint i is prismatic: 

w. = W.-l 

(A.la) 

(A.lb) 

(A. le) 

(A.2a) 

(A.2b) 

(A.2c) 

where Wi denotes the angular veJocity of the i-th link, a, denotes the transJationaJ accel­

eration of the i-th Jink at the origin of the i-th frame, ql is the i-th joint variable, el is 

a vector aJigned with the i-th joint axis and r, represents the vector from the origin of 

frame (i - 1) to the origin of frame i. 

For both types of joints, the transJationaJ acceleration of the i-th link at its centroid, a CII 

is given by: 

a ca = al + Wi x C.,i + Wi X (w. x CI,.) (A.3) 

where CI,I is a vector from the origin of frame i to the centroid of link i. 

This completes the outward recursion procedure. The inward recursion makes 

use of the Cartesian motions of ail the links found during the outward recursion (wII wi 
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and Be, for i = 1, ... , n) and the lact that the external wrench acting on link n is known 

(and denoted by the force vedor rn,nH and the moment vector Dn,nH)' The inward 

recursion therefore consists of (for i = n to 1): 

(A.4a) 

(A.4b) 

where r i - 1•i and Di-l,i are, respectively, the force a.ld moment applied by link i - 1 to 

link i, mi is the mass of link i, 1. is its centroid moment of inertia, while Ci-l,i is a vector 

from the origin of frame i - 1 to the centroid of link i. 

The final equation to be implemented is simply one which picks the component 

of r'-l,i or D'-l,i which corresponds to the actuator force or torque at that joint. 

When joint i is revolute: 

(A.5a) 

When joint i is prismatic: 

(A.5b) 

Note that the remaining components of ri-l,i and Di-l.i constitute the con­

straint wrench acting at that joint. 

A.2 Component Form of the Equations 

The preceding equations were given in frame-invariant form. Whcn thcy are 

implemented numerically, each vector must be resolved into its components in a particular 

frame. Of course, whenever an operation is performed betwccn two vcctors, they must 

both be expressed in the same frame. The equations of the prcccding section arc now given 

explicitly in compouent form ~long with aIl transformations which must he perforrncd 

during the recursions. 
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The motion of the base of the manipulator is assumed to be given as compo­

nents in frame 0 (the base frame)-[wo]o, ["'0]0 and [8o]o-where the notation [*]. implies 

that the vector inside the square brackets is expressed as components in frame i. Grav­

itational effects are most efficiently included in this model by adding the acceleration of 

gravit y to the base acceleration [80]0' The outward recursion is described below: 

For i = 1 to n, 

When joint i is revolute: 

[wdi = Q:-t,.([w.-t].-t + q.[e.-d.-d 

[Wi]i = Q;_l,.([W.-l]i-I + q.[e.-di-l + [Wi-l].-l x Qi[e.-l].-1 

When joint i is prismatic: 

[Wi]i = Q;_t,i[W.-l]i-t 

[Wi]i = QL1,i["'i-l].-1 

[Iii]. = Q;_l,.([ai-l].-1 + q.[ei-l].-1 + 2[W.-1J.-l x Q.[e.-l].-d 

+ [WIll x [rd. + [w.]. x ([",,], x [r.].) 

(A.6a) 

(A.6b) 

(A.6c) 

(A.7a) 

(A.7b) 

(A.7c) 

The orthogonal rotation matrix Q?'-I,. transforms components in frame i - 1 

into components in frame i. It represents the composite rotation about the joint angle (Ji 

and about the link's twist angle a. (Hartenberg and Denavit, 1964), and can be written 

as 

(A.8) l
,. cos O. sin (J. 0] 

QL1,i = - cos a. sin (Ji cos 0'. cos O. sin a. 
sin 0'. sin O. - sin a. cos O. cos a. 

Since Q?'-I,i is orthogonal, its inverse is equal to its transpose. Therefore, the 

matrix which transforms components in frame i into components in frame i -1 is nothing 
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but Qi-l,i. Furthermore, it should be noted that the vector e, expressed as components 

in frame i is nothing but [ei]i = [0 0 1 ]T thereby making any operation in which e. is 

involved trivial. 

For both types of joints, 

(A.9) 

The component form of the inward recursion equations are (for i = n to 1): 

(A.1Oa) 

(A. lOb) 

Finally, when joint i is revolute: 

(A.Ua) 

and when joint i is prismatic: 

(A.llb) 

When the above equations are implemented for a six-link manipulator (n = 6), 

and the operations involving [e,]. are appropriately reduced due to the particular form 

of that vector, the complete inverse dynamics problem can be solvcd with 810 scalar 

multiplications and 684 scalar additions. 
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Appendix B 

The Quadratic-Programming 
Aigorithrn 

This appendix gives the listing of the quadratic-programming algorithm devel­

oped in the present work. The first subroutin~uad-is called bya main program with 

the following arguments: 

c The vector c in eq.(5.9) of dimension n, 

a The composite matrix [!:] in eqs.(5.4a) and (5.4b) of dimension m x n, 

b The composite vector [~:] in eqs.(5.4a) and (5.4b) of dimension m, 

x The vector of design variables x of dimension n, 

n The dimension of the vector of design variables, 

m The total number of equality and inequality constraints, 

meq The number of equality constraints, 

ia The row dimension of a and Linv in the calling program, and 

Linv The n x n Cholesky decomposition of the weighting matrix W in eq.(5.9). 
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Suhroutine quad will make use of the 10 suhroutines which follow it in the 

listing. The last subroutine given in the liJting performs the Cholesky decomposition of 

a matrix and can be used by the main program to obtain the matrix Linv which would 

subsequently he passed to subroutine quad. 

The listing is included in the following pages. 



~ 

1 Nov 199012:00 quad.f 
subroutlne quad (c, a, b, x, n, m, meq, la, Llnv) 

c 
c Routine for quadcatic pcogramming using the method of Goldfarb 
C and Idnani (1983), modified to Include equallty constraints. 
c n.b. Some local accays are dimensloned 100. If either m or n 
c 1s larger than 100, these must be redimensioned. 
c 
c Calling argu~ents: 
c c Linear weighting vector of dimension n (input) 
c a Matcix of constraints of dimension m X n (input) 
c The first meq rows correspond to equallty constralnts; 

Pag.1 

c The last (m-meq) rows correspond to inequality constralnts 
c b '" Vector of rhs of constralnt equations of dImension m (Input) 
c x Vector of design vaclables of dimension n (output) 
c n Dimension of vector of design vaciables (input) 
c m Total number of constraints (equality + inequallty) (input) 
c meq Number of equality constraints (input) 
c la Row dimension of a and Linv in calling program (Input) 
c Linv a Matrix Inverse of Cholesky decomposition of quadratic 
c weighting matcix of dimension n X n (lnput) 
c 
ccc, 
c 

a = Ali, 
A:2 1 

b b l 
b:2 

C 

c 

c 

implicit undeflned (a-z) 
real·8 Linv(ia,n}, u(lOO}, up(100), s(lOO), a(ia,n}, x(n), b(m} 
ceal·8 np(IOO), z(IOO}, d(IOO), rr(100,100), c(n), x2(100} 
ceal·S Jt(100,100), temp(lOO,lOO), c(lOO}, norm(lOO}, uu(lOO} 
real·8 nn(lOO,lOO}, Linvc(lOO), Linvt(100,100) 
real·8 tl, t2, t, ztnp, test, eps, sum 
Integer·4 ia, 110c, m, n, p, q, 1, J, l, aa(lOO), meq, dummy 
integer·4 iec 
logical active (100), found 

data lloc/IOO/ , eps/l.d-20/ 

c Initlallze--do only at start of each new pcoblem (Step 0): 
c Transpose A to get N and pcemultiply it by Linv: 

calI transp (a, ia, nn, iloe, ~eq, n) 
calI mult (Linv, ia, nn, iloc, rr, 11oc, n, n, meq) 
calI multvec (Linv, la, c, Llnvc, n, n) 
calI transp (Llnv, la, Llnvt, iloc, n, n) 
calI multvec (Linvt, iloc, Linvc, x2, n, nI 
do 22 i = l, meq 

sum - O.dO 
do 23 J - l, n 

23 sum = sum + a(i,j)·x2(j} 
22 d(i) = sum + br!} 

c Perform Householder ceduction on N to get R, and find mln-norm soIn: 
calI hhred2 (rr, lloc, n, meq, uu, ier) 
if (ler.ne.O) wciCe (.,.) 'ier = ',1er 
calI trfor2 (rr, 110c, meq, d,1er) 
lf (ler.ne.O) wrlte (.,.) 'ier ',ier 
do 3 i = meq + 1, n 

3 d(i) = O.dO 
calI hhbak2 (rr, lloc, n, meq, uu, d) 
calI multvec (Linvt, iloc, d, x, n, n) 
do 4 i - l, n 

4 x(i) z x(i) - x2(i) 
if (m.eq.meq) return 

c store V~(-l} in Jt and premultiply it by QAT to qet J~T: 
do 5 i = l, n 

do 6 J = l, n 
6 Jt(i,J) LlnvU,J) 
5 continue 

do 7 1 - l, n 

~ 

1 Nov 199012:00 quad.f 
7 

e Put 

c 

8 

9 

10 

30 

45 
40 

calI hhfor2 (rr, 11oc, n, meq, uu, jt(l,i)} 
zeroes ln below the main diagonal of R: 
do 8 i = 2, meq 

do 8 J = l, i-1 
rc(i,j) = O.dO 

do 9 1 = meq+l, n 
do 9 J = 1, meq 

rr(i,J) = O.dO 
do 10 i = meq+l, m 

U (i) = O.dO 
upU) = O.dO 

do 30 i = meq+l, m 
aa U) = 0 
active{i) = .faise. 

q = meq 
do 40 i = meq+l, m 

sum = O.dO 
do 45 j = l, n 

sum = sum + a (i,J}"a (i,J) 
norm(~) = 1.dO/sqrt(sum} 

c Check inactive constraints (Step lI: 

,. 
Paga2 

1000 calI check (a, ia, x, b, s, m, n, meq, active, found, p, norm) 
if (.not.foundJ then 

do 50 i 1, n 
50 np (i) a (p, i) 

do 60 i meq+1, q 
60 upU) u(1) 

up(q+1) O.dO 
c 
c Detecm~ne a new S-pair (Step 2): 
c (Step 2a): 

2000 if (q.eq.O) then 

c 

do 70 i = meq+l, m 
70 url) = O.dO 

endif 
do 80 1 = l, n 

sum = O.dO 
do 85 J = l, n 

85 sum = sum + Jt(i,J)*np(J) 
80 d(i) = sum 

do 90 i = 1, n 
sum = O.dO 
do 95 J = q+1, n 

95 sum = sum + Jt(J,1)*d(J) 
90 z(l} = sum 

if (q. gt. 0) then 
do 100 i = q, 1, -1 

sum = O.dO 
do 110 J = 1+1, q 

110 sum = sum + cr(i,JJ·r(J) 
100 c(i) = (d(i) - sumJ/rr(i,iJ 

endif 

c (Step 2bi): 

c 

t1 = l.d60 
do 120 J = meq+l, q 

if (c(J).gt.O.dO) then 
test = up(J}/c(J} 
if (test.lt.tl} Chen 

l = J 
t1 = test 

endlf 
endif 

120 continue 
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c (Step 

130 

140 

c 
c (Step 

c 
c (Step 

c 
c (Step 

c 

150 

160 

170 

,. 

c (Step 

1 Ba 

190 

200 

210 

220 

2bl1) : 
sum - O.dO 
do 130 1 = l, n 

sum = sum + z(i}·z(i} 
jf (sum.It.eps) then 

t2 - l.d60 
eise 

ztnp = O.dO 
do 140 i - l, n 

ztnp # ztnp + z(i}*np(!) 
t2 = - s(p)/ztnp 

endlf 

2b1111 : 
If (tl.lt.t2) then 

t = tl 
else 

t = c2 
endlf 

2el) 
If (t.eq.l.d60) then 

wrlte ('",") 'The QPP ls not feaslble' 
stop 

endlf 

2ell) : 
If (t2.eq.l.d60) then 

do 150 1 = meq+l, 1-1 
up(l) = up(l) - t*r(l) 

do 160 1 = 1+1, q 
up (1-1) = up (l) - t'"r (j) 

up(q) = t 
If (l.ne.q) 

calI remove (rr, 110c, jt, temp, 110c, 1, n, q) 
active(aa(l)) = .false. 
do 170 i = 1, q-l 

aa (1) = aa (1+1) 
aalq) = 0 
q = q - l 
call check (a, ia, x, b, s, m, n, meq, actlve, found, 

dummy, norm) 
go to 2000 

end!f 

2c1i1) : 
do 180 i = 1, fi 

xCi) • xU) + t"z(i) 
if (t.eq.t2) then 

do 190 1 = meq+1, q 
up ( 1) = up ( i ) - t * r ( i ) 

uplq+l) = t 
do 200 i - meq+l, q+I 

u (1) = up (i) 
calI adjoln (d, rr, 11oc, jt, 11oc, n, q) 
q = q + 1 
actlvelp) = .true. 
aa (q) - p 
go to 1000 

else 
do 210 i = meq+1, 1-1 

up (1) - up (i) - t" r (1) 
do 220 1 - 1+1, q 

up(1-1) - up(l) - t*rfl) 
up(q) = t 
If (l.ne.q) 
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* 

230 

" 

c 

calI remove (rr, 110c, jt, cemp, 11oc. 1, n, q) 
actlve(aa(l)) = . taIse. 
do 230 i = 1, q-l 

aa (1) = aa (1+1) 
aa (q) = 0 
q = q - 1 
calI check (a. ia, x, b, s, m, n, meq. actlve, found. 

dummy, nonn) 
go to 2000 

endif 

c Solution Found; 
else 

c 

c 

return 
endlf 

end 

Page 4 

c**·················****·****·**··********·****·****** **** •• ***.*.****** 
c 

subroutlne check (a, la, x, b. s, m, n, meq. actlve, found, p, 
* noern) 

c 
c Routine to check the inequality constraints: 
c 

c 

c 

c 

Implic!t undeflned (a-z) 
rea l '" 8 a (i a, "), x ( • ). b (" ), s ( * ), noern ( " ) 
real.o8 eps, smallest, test, sum 
Integer.o4 m, n, meq, 1, J, ia, p 
Iogical active(.o}, found 
data eps/-l.d-06/ 

found = • true. 
smallest = eps 
do la i = meq+1. m 

if (.not.active(i}) then 
sum = -b (l) 
do 20 j = 1, n 

2() sum = sum + a(l,j) "x(j) 
s(l) = sum 
test = sum"norm(i) 
if (test.lt.smal1est) th en 

found = .faise. 
smailest = test 
p '" 1 

end!f 
end!f 

la continue 

return 
end 

c·*****················*·******·**····***···***······· ••••••• ** ••• * ••••• 
c 

subroutine adjoln (d, rr, le, jt, ia, n, q) 
c 
c Routine to add an active constraint 
c 
c inputs: 
c d 
c rr 
c jt 
c lc 
c ia 
c n 
c q 

Previous vector d used ta update rr 
Previous upper-triangular reduction of constralnts--updated 
Transpose of previou$ matrlx J--updated on output 
Ro~ dimension of rr ln calling program 
Ro~ dimension of Je ln calling program 
arder of je 
Previous number of active constra!nts 

). 
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~ 
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c 

c 

Impllclt undeflned (a-z) 
realoS rrllc,O}, Jt (ia, .), d(O} 
real"S beta, delta, u(lOO}, t, gamma 
Integec*4 le, la, n, q, 1, J 

c perfo~ Householder reductlon on vector d2: 
delta 2 O.dO 

c 

do la 1 z 1, n-q 
u(1) - d(l+q} 

10 delta - delta + u(1) " u(l) 
delta 2 sqrt(delta) 
If (u(l).le.O.dO) delta = -delta 
url) = url} + delta 
beta - delta*u(l) 
d(q+l) = -delta 
If (beta.eq.O.dO) IoIrite (",,o) '1er ',-1 

c update R: 

c 

do 20 1 = 1, q 
20 rr(l,q+l) d(i) 

rr(q+l,q+l) = -delta 

c update JAT by appIylng the reduction matrix to J 2 AT: 
do 30 1 2 1, n -

c 

c 

t = d(q+l} 
If (t.ne.O.dO) then 

beta • u(l)*t 
d(q+l) = url) 
gamma = O.dO 
do 40 j = q+l, n 

40 gamma = gamma + d(j) • jt(j,l) 
gamme = gammalbeta 
do 50 J = q+1, n 

50 jt(j,l} = jt(j,i) + gamma • d(J] 
endlf 
d(q+l) = t 

30 continue 

return 
end 
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c·····***··*·········································· * •• -** ••••• ******* 
c 

subroutlne remove (rr, le, jt, temp, ia, 1, n, q) 
c 
c RoutIne ta remove an actIve constraint 
c 
c inputs: 
c rr 
c jt 
c temp 
c le 
c ia 
c l 
c n 
c q 
c 

Previous upper-triangular reduction of constraints--updated 
Transpose of previous matrix J--updated on output 
Work matrix at least n x n. 
Rolol dimension of rr ln calling program 
Rolol dimension of je and temp in calling program 
Index of the constraint to be removed 
order of jt 
Previous number of active constraints 

Impliclt undefined (a-z) 

c 

10 
c 

real*S cr(ic,"), jt(ia,*), temp(ia,O), u(lOO) 
integer*4 le, la, 1, n, q, 1, j,1er 

do la 1 = 1, q-l+l 
do 10 j = 1, q-I 

temp(l,j} 2 rr(l+l-l, j+l} 

A 
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c 

calI hhred2 (temp, ia, q-l+l, q-I, u, 1er) 
if (ler.ne.O] velte (O,O) 'ier = '. ier 

c Update R: 

c 

c 

do 20 1 = l, 1-1 
do 20 j = 1, q-l 

20 rr(i,j) = rr(l,j+l} 

do 30 i = 1. q-l 
do 30 J = i, q-I 

30 rrfi,J) = temp(i-l+l,j-l+l} 

c Update J: 

c 

c 

do 40 :1 = 1. n 
40 calI hhfor2 (temp, ia, q-l+l, q-l, u, jt(l,j)) 

return 
end 

A 

PIIge6 

c***************************************************** ******.***** •••••• 
c 

c 

c 

c 

subroutlne mult (a, ma, b, mb, c, ~c. m. nn. n) 
impilcit undefined (a-z) 
realOS a (ma, "), b (mb, O). c (me, "), sllm 
integec04 ma, mb, me, m, nn, n,l, j, k 

do 10 1 2 1. m 
do 20 j = 1, n 

sum = O.dO 
do 30 k = l, nn 

30 sum = sum + a (i.k)*b(k,J) 
c(i.j) = sum 

20 continue 
10 continue 

cetucn 
end 

c****************************·*·*******************··· ••••• *.** ••••••••• 
c 

subcoutine multvec (a, ma, b, c. m, n) 
c 
c Subcoutine to multlply a matrix tlmes a vector 
c 

c 

c 

c 

lmplicit undetined (a-z) 
cealog a(ma,*], b("], cIO), sum 
integec04 ma, m, n, i, J 

do 10 l = 1, m 
sum = O.dO 
do 20 J = 1, n 

20 sum = sum + a(i,J]Ob(J} 
cri} = sum 

10 continue 

cetucn 
end 

c····***···········**********··············**···*·*··· ..• * •••••••••••••• 
c 

c 

subcoutlne transp fa. ma, b, mb, m, n) 
impliclt undefined (a-z) 
cealOS a(ma,O), b(mb."} 
Integec*4 ma, mb, m, n. 1, j 

dolOl1,m 
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c 

c 

do 10 j a 1, n 
b(j,1} =a(1,j} 

10 continue 

return 
end 
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c··,·················································· •.•...•..•.•...... 
c 

subroutlne hhred2 (a, ia, m, n, u, Ierr) 
c 
c Matrlx Householder Decomposition 
c 
c Inputs: 
c a m by n matrix for which the householder decompositlon 

is required (destroyed) c 
c ia row dimension of a as declared in the calling segment 

dimensions of matrix a c m, n 
c 
c outputs: 
c ierr error flag (-1 if a 1s singular) 
c aij upper-triangular reduction of a (ie. u) for i =< j 

Ith component of jth reflection vector for 1 > j 
jth component of jth reflection vector for j =< n 

c 
c uj 
c 

c 

c 

c 

implicit undefined (a-z) 
real~S a(ia,-), u(-}, alpha, beta, gamma 
integer04 ia, m, n, ierr, i, J, k 

ierr = a 
do 100 k = 1, n 

alpha=O.dO 
do 10 i = k, m 

u(l) - • (i,k) 
10 alpha a alpha + uri) ° uri) 

alpt.a = sqrt(alpha) 
if (u(k).lt.O.dO) alpha = -alpha 
u(k) = u(k) + alpha 
beta = alpha-u(k) 
a (k,k) = -alpha 
if (beta.eq.O.dO) then 

ierr = -1 
go ta 100 

endif 
if (k.ne.n) then 

do 20 j = k+l, n 
gamma = O.dO 
do JO i = k, m 

JO gamma = gamma + u (i) ° a (1, j) 
gamma = -gammalbeta 
do 20 i = k, m 

20 a fi, J) = gamma • u (l) + a (l, j) 
end!f 

100 continue 

return 
end 

c············································_········ •••••.•.•••..•••.. 
c 

c 
c 
C 
c 
c 

subroutine hhfor2 (a, ia, m, n, u, b) 
-1 

Matrix Householder Forwards Multiplication h b 

Inputs: 
aij upper-triangular reduction of a (le. u) for 1 a< J 

li mA { :J. lb l, tuJ,i Z K. &lllltt 120 ; X: [ j 5; : Us.: Li 22Li • 

... ~ 

t Nov 1990 12:00 quad.f Pagea 

c Ith component of 1th reflectlon vector for 1 > 1 
c 
c 

la 
n 

row dimension of a as declared in the calling segment 
order of matrix a 

c 
c 
c 
c 
c 
c 

c 

c 

c 

uj 
bij 

jth component of jth reflection vector for j =< n 
ith element of jth b-vector 1 < n and j < p 

Outputs: -1 
blj ith element of jth h b -vector 1 < n and j < p 

implicit undelined (a-z) 
realoS a(ia,-), J(-), b(-), t, betan, gamma 
integer-4 la, m, n, i, k 

do10k=1,n 
t = a (k,k) 
if (t.ne.O.dO) then 

betan = u(k)Ot 
a (k, k) = u (k) 
gamma = O.dO 
do 20 i = k, m 

20 gamma = gamma + a (l,k) .. bO) 
gamma = gammalbetan 
do 30 i = k, m 

30 b(i) =b(i} + gamma fta(i,k} 
endif 
a(k,k) = t 

10 continue 

return 
end 

c*""""""-""""""""""""""""""'" •••••••••••••••••• 
c 

subrout1ne hhbak2 ra, ia, m, n, u, b) 
c -t 
c Matrix Householder Backwards Multiplication h b 
c 
c Inputs: 

upper-triangular reduction of a (ie. u) for i =< j 
lth component of jth reflection vector for 1 > j 

c aij 
c 
c ia row dimension of a as declare. in the calling segment 

arder of matrix a c n 
c uj Jth component of jth reflection vector for J x< n 

~th element of Jth b -vector 1 < n and J < p c bij 
c 
c Outputs: -t 

ith element of jth h b -vector i < n and j < p c bi) 
c 

c 

impl1clt undeflned (a-z) 
real-8 a(ia,-), u(-), b(-}, t, betan, gamma 
integer04 ia, m, n, k, l 

do la k = n, l, -1 
t = a(k,kJ 
if (t.ne.O.dO) then 

betan = u(k)Ot 
a (k,k) = u (k) 
gamma = O.dO 
do 20 1 = k, m 

20 g~a = gamma + a(l,k) ° brl) 
gamma = gammalbetan 
do 30 l = k, m 

30 b(l) = bU) + gamma ° a(l,k) 
endif 
a (k,k)=t 

10 contInue 
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c 

c 

return 
end 
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c········_-_·······*··****··**························ .•••.............. 
c 

c 
c 
C 

subroutlne trtor2 (a, la, n, b, lerr) 

Upper Triangular Matrix For"ards Elimination Il 

-t 
b 

c Inputs: 
c aiJ upper-triangular matrix a for 1 =< J 

(only the upper triangle need be g1ven) c 
c ia ra" dimension of a as declared ln the calling segment 

arder of matrix a c n 
c blJ Ith element ot Jth b -vector 1 < n and J < p 
c 
c Outputs: -t 
c blJ ith element of jth u b -vector i < n and j < p 

error flag (-1 if a slngu1ar) c ierr 
c 

c 

c 

c 

lmp1icit undefined (a-z) 
real-S a(la,~, br-), t 
lntegec-4 la, n, lerr, i, k, kml 

ip.rr = -1 
do 10 k = l, n 

kml - k - l 
1t (a (k,k) .eq. O.dO) return 
t = O.dO 
if (km1.ne.0) then 

do 20 1 =1, kml 
20 t = t + a(l,k) - b(i} 

endlf 
b(k) = (b(k) - t)/a (k,k) 

10 continue 
ierr = 0 

return 
end 

c~·······*····················~···*···**·**·**·*·*·*** ...• * ••••••••••• *. 
c 

c 
c 
::: 
c 
c 
c 
c 
c 
c 
c 
c 

c 

5 
c 

subroutlne decomp (a, b, la, m) 

Cho1esky Decomposition Algorithm 

If (a) 15 a posltive definite mxm matrix, Chen (a) has a 
factorization of the form a = bbt(t = transpose),,,here b 
ls a lower-triangular matrlx. 

Input matrlx (a) dimension mxm 

Output matrlx (b) dlmension mxm (lower-triangular) 

impliclt undefined (a-z) 
real-8 a(ia,*), b(ia,*), g, gg, f, ft 
integer la, m,l,l, k, 11, cl 

do 5 i = 1, m 
do 5 1 - 1, m 

b(i,J) = O.dO 
continue 

b (1, 1) = sqrt (a (l,l)) 
do 10 i '" 2, m 

A 
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la 
c 

20 
c 

25 

15 
c 

30 

b(i,lJ 
contlnue 

a(i,IJ/b(l,l) 

11 z 3 
do lS J .. 2, m 

cl = J - l 
gg = O.dO 
do 20 k = 1, cl 

9 = b(J,k} "b(l,k) 
gg = gg + 9 

continue 

b(j,j} = sqrt(a(j,j} - gg} 
If (j.ne.m) then 

do 25 1 = 11, m 
ft = O.dO 
do 30 À ~ l, cl 

t = b(l,k} • b(j,k} 
ft = ff + f 

continue 
brl,j} = (aU,J) - ff}/bU,J} 

continue 
11 = il + l 

endit 
continue 

return 
end 

~~ 
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