BIOSORPTION OF URANIUM AND THORIUM

. .

by

Marios Tsezos

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

Department of Chemical Engineering

McGill University

Montreal, Canada,

November, 1980

ABSTRACT

The phenomenon of selective retention of cations from aqueous solutions by microbial biomass has been termed biosorption. Samples of waste microbial biomass, originating from industrial fermentations and biological waste water treatment plants, have been tested for their uranium and thorium biosorption potential. Optimum biosorption Rhizopus arrhizus was identified as conditions have been identified. the biomass presenting the highest U or Th uptake capacity, in excess of 170 mg/g. The effect of solution co-ions (namely Fe^{+2} , Zn^{+2}) on the equilibrium biosorptive uptake capacity of Rhizopus arrhizus has been examined. The study of the rapid kinetics of U and Th biosorption has been initiated. Accumulated experimental and theoretical information led to the formulation of a biosorption mechanism hypothesis for the systems U or Th - Rhizopus arrhizus. Biosorption of both U and Th by Rhizopus arrhizus occurs mainly in the cell wall of the mycelium. Complexation by the cell wall chitin, adsorption, and hydrolysis of the complex are the processes participating in the proposed mechanism hypotheses.

La biosorption est définie comme étant la retention sélective de cations d'une solution aqueuse par une biomasse microbienne. Des échantillons de biomasse, provenant du fermentations industrielles et de traitement biologique d'eaux usées, ont été analysés pour leur potentiel de biosorption de cations d'uranium et de thorium. Des conditions optimales de biosorption ont été identifiées. Le Rhizopus arrhizus a été identifié comme étant la biomasse présentant la plus haute capacité d'adsorption d'uranium et de thorium, soit en excès de L'effet de co-ions (Fe⁺², Zn⁺²) en solution sur·l'équilibre 180 mg/g. biosorptif de Rhizopus arrhizus a été étudié. L'étude cinétique de biosorption d'uranium et de thorium a été initié. L'information théorique et expérimentale obtenu a conduit à la formation d'une hypothèse sur le méchanisme de biosorption pour les systèmes uranium ou thorium-Rhizopus arrhizus. La biosorption d'uranium et de thorium par Rhizopus arrhizus se produit dans l'ensemble dans le mur cellulaire de la mycelle. La formation d'un complexe avec la chitin, l'adsorption et l'hydrolyse du complexe sont les procédés participant au méchanisme proposé.

RESUME

ACKNOWLEDGEMENTS

I would like to thank Dr. B. Volesky for suggesting this project and for providing encouragement and the funds to make it possible; also the members of my research committee: Dr. M.E. Weber, Dr. M.R. Kamal, Dr. J. Vera and Dr. W. Yaphe for their interest and helpful advice.

Thanks are also due to: Mrs. M. Gomershal of the Department of Microbiology and Immunology for patiently assisting the electron microscopic examination of biosorption; Dr. N. Rowlands of the Institution of Occupational Health and Therapy for his help during the X-rays Energy Dispersion Analysis studies; Mr. G. Pouskouleli of the Department of Chemistry for his help in recording IR spectra from the FTIR unit; and the staff of the departmental machine shop for their assistance in the construction of the equipment.

I would like to thank Margaret Treen for reading the manuscript and for contributing to the style of the present dissertation.

Special thanks are due to Athena Kovatsi for her graphic work on the numerous graphs that are part of the present dissertation and her assistance during the final proofreading.

Finally, I would like to express my gratitude to my parents for all they have offered me.

iii.

•		
		0
		iv.
, 		ه_
-		r
v	TADIE OF CONTENTS	
	IRDLE OF CONTENTS	
-		,
•		à
۲	ABSTRACT	i
-		•
•	RESUME /	ii
	ACKNOWLEDGEMENTS	
		ттт
	TABLE OF CONTENTS	iv
	, 0 • • •	-
	LIST OF TABLES	viii
ļ	TET OF FICURES	
•	LIST OF FIGURES	×
ł		1
1	CHAPTER I. INTRODUCTION	. !
;	s m p ti i s s	
ł	-1. Ine Problem	1
į	-2. The Friendmenon of Brosorption -3. General Objectives of the Present Work	9 12
1	-4. Uranium Chemistry	12
r	-5. Thorium Chemistry	14
•	-6. Chitin	15
		1
	-0.1 Unitin-as a Polymer	15
		T',
	0	ł
	CHAPTER, II. EXPERIMENTAL	/19
	-1. Biomass Biosorption Equilibrium Studies	19
	-1.1 Biomass Collection and Prenaration	10
	-1.2 Biosorption Isotherm Determination	19
	Technique	
	-1.3 Uranium Analytical Determination	24
	-1.4 Thorium Analytical Determination	25
	-1.5 Analytical Determination of Iron and Zinc	25
	-2. Pure Cell Wall Sample Preparation	26
	-3. Electron Microscopy	26
	-4. X-rays Energy Dispersion Analysis	27
	-5. Mass Spectroscopy	27
	-0. Intrared Spectroscopy	27
	-8. N-Acetyl-D-Glucosamine Interaction with H of Th	28
	· · ··································	20

ø

,

ð

•

ı.

,	Ì		•	-	
-	Ì	•\	ι.		
-9.	Kinetic Stu	lies		28	
	\			•	
	-9.1 \ Inst	rumentation and Apparatus		28	
	-9.2 \ Exper	rimental Procedure for Kineti	ic Experiments	32	- '
	$\sum_{i=1}^{n}$	(-	,	
			ş		
CHAPTER	III. $\backslash RESU$	JLTS	1	37	
	ITRANTIN			77	
-A.	URANIUM	•	\ _	37	
	-A 1 IImani	um Biosorption Equilibrium I	Intake	- 37	
	Sti	dies	pearle		
-	-A.2 Linea	rization of Biosorption Isot	herms	41	
/	-A.3 Tempe	rature Effect on q	<i>p</i>	46	
	-A.4 Pure	Cell Wall Preparation Uraniu	m Uptake	58	
	-A.5 Elect	ron Microscopy of Tranium Bi	osorption	58	· · ·
	-A.6 Pure	Chitin Uranium Uptake	•	70 。	,
	-A.7 N-Ade	etyl-D-Glucosamine Interactio	n /	73	
	wit	h Uranium 💡 🔪	-		/
· ·	-A.8 Infr	red Spectroscopy of Uranium-	Equilibrated	87	
	<u>R</u> .	arrhizus Cell Walls		<i>•</i> • •	
	-A.9 Co-ic	n Effect on Uranium Biosorpt	ion	98	
	-A.10 Urani	um Biosorption Kinetic Data		108	•
* * * [*]			· · ·		
. р	TUM	• \	-	117	i.
-D.	INUKIUM			11/	1
	-B.1 Thori	um Fouilibrium Untake Studie	is in the second se	117	
	-B.2 Lines	rization of Thorium Biosorot	ion .	125	
	Iso	therms		1 20	
	-B.3 Tempe	rature Effect on g	$\langle \cdot \cdot \cdot \rangle$	125	
	-B:4 Pure	Cell Wall Preparation Thoriu	m\Uptake	138	0
(-B.5 Elect	ion Microscopy of Thorium Bi	osorption	138	k
	-B.6 Pure	Chitin Thorium Uptake	· · ·	152	
· ·	-B.7 N-Ace	ty1-D-Glucosamine Interactio	n with	152	8
•	' Tho	rium			
,	-B.8 Infra	red Spectroscopy of Thorium-	Equilibrated	159	•
	· <u>R</u> .	arrhizus Cell Walls	. \ \		
	-B.9 CO-10	n Effect on Thorium Biosorpt	ion	170	•
	-B.10 1nor1	um Blosorption kinetic Data		170	, -
				·	
CHAPTER		SSTON		188	•
CIEU ILK	IV. DIDCO	551014	- +	100	
-A.	URANIUM			188	1
		·			•
	-A.1 Urani	um Biosorption Equilibrium U	ptake	188	
0 1	Stu	dies	• J		i r
م بر د	107	- ,			•
ن ک د	I	<i>ډ</i>	•	ť	+
	•	•		11	

Ś

Cr.

1

7

Ŕ

	-		. '
			🚜 `~~ ``
		-A 1, 1 pH Effect on o	188
		-A.1.2 Effect of Initial Uranium	191
		Concentration on q	÷
		-A.1.3 Temperature Effect on g	192
		-A.1.4 Comparison of Uranium Biosorption	· 192
		Equilibrium Data with Results	
		-Reported in Literature	· · · ·
'			
	-A.2	Linearization of Biosorption Isotherms \backslash	193
	-A.3	Pure Cell Wall Preparation Uranium Uptake	194
	-A.4	Electron Microscopy of Uranium Biosorption	195
	-A.5	Pure Chitin Uranion Uptake	195
	-A.6	N-Acetyl-D-Glucosamine Interaction with Uranium	197
	-A.7	Infrared Spectroscopy of Uranium-Equilibrated	200
		R. arrhizus Cell Walls	
	-A.8	Co-ion Effect on Uranium Biosorption	203
	-A.9	Uranium Biosorption Kinetic Data	204
	-A.10	Mechanism Hypothesis on Uranium Biosorption	208
	,	by <u>R.</u> arrhizus	16 11
	-A.11	Precision of Uranium Analytical Determination	228
/			// /
	TIODTU	n	070
D .	INUKIU	JM _	. 232
	-B.1	Thorium Biosorption Equilibrium Uptake Studies	232
		-B.1.1 pH Efféct on q	232
		-B.1.2 Effect of Initial Thorium /	233
	•	Concentration on q	
	١	-B.1.3 Temperature Effect on q	233
		-B.1.4 Relation of Thorium Biosorption	L.
		Equilibrium Data to Other	ł
	,	Biosorption Equilibrium Data	1
	D 0		074
	-D.2 D.7	Linearization or inorium Biosorption Isotherms	254
	-D.J.	Floatron Mignessony of Therium Piesentich	254
	-D.4 	Pure Chitin Untere	235
	-D.5 -B.6	N-Acetyl-D-Glucosamine Interaction with	233
	-0.0	Thorium	230
	-B.7	Infrared Spectroscopy of Thorium-Equilibrated	* 237
		R. arrhizus Cell Walls	
	-B.8	Co-ion Effect on Thorium Biosorption	- 238
	-B.9	Thorium Biosorption Kinetic Data	239
	-B.10	Mechanism Hypothesis on Thorium	242
		Biosorption by R. arrhizus	
	-B.11	Precision of Thorium Analytical Determination	., 248
			\backslash

٠,

2

 \bigcirc

vi.~

ِ**ک**]

CHAPTER V. CONCLUSIONS	251
-1. Conclusions	251 253
CHAPTER VI. RECOMMENDATIONS	256
REFERENCES	258
APPENDIX A Uranium Uptake Data	267
APPENDIX B Thorium Uptake Data	277
APPENDIX C Implemented Computer Programs	287
APPENDIX D Co-ion Effect on q Data	289
APPENDIX E Kinetic Data	293
APPENDIX F Additional Information on Biosorption	298

C

0

vii.

LIST OF TABLES

 (\cdot)

ムび第

	• •	
Table	· · · ·	Page
I.1 [']	Chemical and Radioactive Parameters of Uranium Mining and Milling Waste Waters	4 .
II.1	Material Examined in the Present Work for their U or Th Uptake Potential	20
III-A.1	Uranium Biosorption Uptake Capacities	- 38
TII-A.2	S.E.E. Values for Uranium Biosorption Isotherms	42
III-A.3	Adsorption Isotherm Models in a Liquid-Solid System	- 43
III-A.4	Temperature Effect on q. U(VI)	۴ 57
III-Ą.5	Co-ion Effect on Uranium Biosorptive Uptake Capacity of <u>R. arrhizus</u>	99
III-A.6	Sampling System Response Examination	〔109
III-A.7	Typical Experimental Conditions Employed in Uranium Kinetic Experiments	110
III-B.1	Thorium Biosorption Uptake Capacities •	118
III-B.2	S.E.E. Values for Thorium Biosorption Isotherms	126
III-B.3	Temperature Effect on q. Th(IV)	127
III-B.4	Co-ion Effect on Thorium Biosorptive Uptake Capacity of <u>R</u> . <u>arrhizus</u>	171
III-B.5	Typical Experimental Conditions Employed in Thorium Kinetic Experiments	180
IV-A.1	Statistics of Uranium Analytical Determination Absorbance	228
IV-A.2	Absorbance Values Frequency Histogram	229
IV-A.3	U(VI) Concentration Determination Statistics	230
IV- A. 4	Statistics of U(VI) Biosorptive Uptake Capacity Determination	230
•	- -	,

viii.

(

	·	•
Table	· , · · ·	Page
IV-B.1	Outer Orbitals Electron Configuration of Uranium and Thorium	243
IV-B.2	Statistics of Thorium Analytical Determination Absorbance	248
IV-B.3	Absorbance Values Frequency Histogram	248
IV-B.4	Thorium Concentration Determination Statistics	249
IV-B.5	Statistics of Thorium Uptake Capacity Determination	250
	•	- ۱

ήĨ

ø

ð

.

(

ix.

LIST OF FIGURES

· Ö

0

ε

---- 1

x,

Figure		Page
I.1	Schematic Presentation of Current Waste Water Treatment Scheme Employed by the Uranium Mining and Milling Industry	6
II.1	Schematic Presentation of Experimental Set-Up Used for the Execution of Kinetic Experiments	30
11.2	Schematic Presentation of Separate Bottom Piece Assembly	33
III-A.1	Qualitative Comparison of Uranium Biosorption Isotherms of Some Tested Materials	39
III-A.2	R. arrhizus Linearized Uranium Biosorption	44
III-A.3	P. <u>fluorescens</u> and <u>S. niveus</u> Linearized Uranium Biosorption Isotherms	47
III-A.4	Municipal Sludge Linearized Uranium Biosorption Isotherm	· 49
· III-A.5	Industrial Sludge Linearized Uranium Biosorption	51
III-A.6	F-400 and IRA-400 Linearized Uranium Biosorption Isotherms	53 ´
III-A.7	A. <u>niger</u> and <u>P. chrysogenum</u> Linearized Uranium Biosorption Isotherms	55
III-A.8	Virgin <u>R</u> . <u>arrhizus</u> Cell Wall Electron Micrograph	60
III-A.9	R. arrhizus Mycelium Following Uranium Biosorption. Electron Micrograph.	62
III-A.10	R. arrhizus Cell Wall Following Uranium Biosorption. Electron Micrograph.	64
′ · 111-A.11	<u>R. arrhizus</u> Cell Wall Following Uranium Biosorption. Electron Micrograph	66 °

-	•		xi.
× 8.		· · · · · ·	X
\mathbf{O}^{+}	Figure		Page
*	-	•	al and a second s
	III-A.12	Typical X-rays E.D.A. Spectrum. Uranium M Line of <u>R. arrhizus</u> Cell Wall Electron Dense Areas Following U(VI) Biosorption	· 68
- (· III-A.13	Typical X-rays E.D.A. Spectrum Uranium M Line of <u>R</u> . <u>arrhizus</u> Cell Wall Before U(VI) Biosorption	68
	III-A.14	Typical X-rays E.D.A. Spectrum Uranium L Line of <u>R. arrhizus</u> Cell Wall Following U(VI) Biosorption	71
	, III-A.15	Typical X-rays E.D.A. Spectrum Uranium L Line of <u>R</u> . <u>arrhizus</u> Cell Wall Before U(VI) Biosorption	71
	III-A.16	IR Spectrum of Virgin Chitin	74
r F	HII-A.17	IR Spectrum of U(VI) Bearing Chitin	76
-	III-A.18	Mass Spectrum of U(VI) Bearing Chitin	
	III-A.19	P1 Precipitate IR Spectrum Following Vacuum. Drying at 23°C	81
- week	III-A.20	· Pure N-Acety1-D-Glucosamine IR Spectrum · ·	83
	III-A.21	P.1 Precipitate IR Spectrum Following Drying at 90°C for 12 hours o	85
	III-A.22	IR Spectrum of Virgin <u>R</u> . <u>arrhizus</u> Cell Wall's	88
; -	III-A.23	IR Spectrum of <u>R. arrhizus</u> Cell Walls Following Uranium Biosorption	90
• • • • • • • • • • • • • • • • • • •	III-A.24	Comparison of <u>R</u> . <u>arrhizus</u> Cell Wall IR Spectra Before and After Uranium Biosorption	92
-	III-A.25	Far IR Spectrum of <u>R. arrhizus</u> Cell Walls Before Uranium Biosorption	94
	III-A.26	Comparison of <u>R.</u> arrhizus Cell Wall Far IR Spectrum Before and After Uranium Biosorption	97 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	III-A. 27	Fe(II) Effect on U(VI) Biosorption Plateau $pH = 4$	100
	• ,		· · · · · · · · · · · · · · · · · · · ·
	/	· · · · · · · · · · · · · · · · · · ·	

. З

0

5

D

ß

~ e

	c ′	,	ء بر
	Figure	•	Page
1	ÌII-A. 28	Fe(II) Effect on U(VI) Biosorption Plateau pH = 2	102
	, III-A.29	Zn(II) Effect on U(VI) Biosorption Plateau pH = 4	_104
	III-A.30	Zn(II) Effect on U(VI) Biosorption Plateau pH = 2	106
	III-A.31	Uranium Uptake Rate Curves	111
	111-A.32	Uranium Uptake Rate [°] Curves	113
	III-A.33	Uranium Uptake Rate Curves	115
	III-B.1	Qualitative Comparison of Thorium Biosorption Isotherms of Some Tested Materials	-119
	III-B.2	R. arrhizus Linearized Thorium Biosorption	121
	III-B.3	P. fluorescens and S. niveus Linearized Thorium Biosorption Isotherms	123
	III-B.4	A. niger Linearized Thorium Biosorption Isotherm	128
0	III-B.5	IRA-400 and F-400 Linearized Thorium Biosorption Isotherms	130
•	III-B.6	Municipal Sludge Linearized Thorium Biosorption Isotherm	132
	III-B.7	P. chrysogenum Linearized Thorium Biosorption Isotherm	134
	III-B.8	Industrial Sludge Linearized Thorium Biosorption Isotherm	136
	III-B.9 4	Virgin R. arrhizus Cell Walls. Electron Micrograph	139
	III-B.10	$\frac{R."arrhizus}{Electron} Mycelium Following Thorium BiosorptionElectron Micrograph. pH = 4$	142 #
	III-B.11	<u>R.</u> arrhizus Cell Wall Following Thorium Biosorption Electron Micrograph. $pH = 4$	144

xii.

Ċ

0

0

	· · · · · · · · · · · · · · · · · · ·	xiii.
*		4
Figure		Page
III-B.12	R. arrhizus Cell Wall Following Thorium Biosorption. Electron Micrograph. pH 2	146
III-B.13	Typical X-rays E.D.A. Spectrum M Line of <u>R. arrhizus</u> Cell Wall Electron Dense Areas Before Thorium Biosorption	148
III-B.14	Typical X-rays E.D.A. Spectrum Thorium M Line of <u>R. arrhizus</u> Cell Wall Electron Dense Areas Following Thorium Biosorption	148
III-B.15	Typical X-rays E.D.A. Spectrum Thorium M Line of Inner Cell Wall Layers and Interior Before Thorium Biosorption	150
III-B.16	Typical X-rays E.D.A. Spectrum. Thorium M Line of Inner Cell Wall Layers and Cell Interior Following Thorium Biosorption	150
171-В. 1	IR Spectrum of Virgin Chitin	153
III-B.18	IR Spectrum of Th(IV) Bearing Chitin	. 155
III-B.19	Mass Spectrum of Th(IV) Bearing Chitin	157
III-B.20	IR Spectrum of Virgin <u>R. arrhizus</u> Cell Walls	160
III-B.21	IR Spectrum of <u>R</u> . <u>arrhizus</u> Cell Walls Following Thorium Biosorption	162
III-B.22	Comparison of R. <u>arrhizus</u> Cell Wall IR Spectrum Before and After Thorium Biosorption	164-
III-B.23	Far IR Spectrum of <u>R</u> . <u>arrhizus</u> Cell Walls Before Thorium Biosorption	166
JIII-B.24	Comparison of Far IR Spectrum of <u>R. arrhizus</u> Cell Walls Before and After Thorium Biosorption	1_68
III-B.25	Fe(II) Effect on Th(IV) Biosorption, $pH = 4$	172
III-B.26	Fe(II) Effect on Th(IV) Biosorption Plateau, pH = 2	174
III-B.27	Zn(II) Effect on Th(IV) Biosorption, pH = 4	176
III-B.28 "	Zn(II) Effect on Th(IV) Biosorption Plateau, pH = 2	178
•)

	•		/ ÷	
	Figure		۰ <u>-</u> ۲	Page
	III-B.29	Thorium Uptake Rate Curves		182
/	III-B.30	Thorium Uptake Rate Curves	•	184
	JII-B.\31	Thorium Uptake Rate Curves	- 1	186
.'	IV-A.1	Chitin Chain Piles Arrangement in Fungal Cell Wall	, e 	210
	IV-A.2	Chitin Unit Cell 。		213
	IV-A.3	Process A of Proposed Uranium Biosorption Mechanism Hypothesis	ars)	221
	IV-A.4 ;	Process B of Proposed Uranium Biosorption Mechanism Hypothesis	۵ ۲	223
ûkç-	IV-A.5	Process C of Proposed Uranium Biosorption Mechanism Hypothesis	<u>،</u> ۲	225

O.

xiv.

CHAPTER I

1.

INTRODUCTION

I-1 THE PROBLEM

Industrial growth of our civilization has been fostered from its very early years by the use of fossil fuels. In the beginning coal, and in the recent decades oil, thave played a dominant role in production and transportation systems around the world. The limitations in their supply have, however, been realized, and the search for alternative energy schemes has been intensified, especially during the last decade. The advent of knowledge on the structure of the basic unit of matter, the atom, led to the development of the necessary technology for the controlled atomic fission. A new energy source, atomic energy, was thus made available. Uranium, a natural element in reasonable abundance in the earth's crust, emerged as the new fuel. The nuclear fuel brought' with it what many thought of as a blessing and what others thought of as a nightmare; electrical power generated from nuclear power plants on one hand, nuclear arsenals and radioactive environmental pollution on the other.

The arguments for and against nuclear power have been developed by both sides to a considerable extent and depth. What has to be realized, however, is the simple fact that there is already considerable investment in an extended industrial network based on the nuclear fuel cycle, and along with it there is a serious and difficult environmental problem for which the current solutions are inefficient. The realization of the implications and the intensity of the environmental problems associated with nuclear power generation were at the beginning, intentionally or not, underestimated. Our recent awareness of the magnitude of the problems related to nuclear power generation suggests that until these problems have been met in a successful way - further expansion of the sector may not be beneficial.

V.

Canada is actively involved in the area of nuclear fuel mining and processing, as well as in the area of nuclear reactor design and manufacturing (CANDU system). As a result, uranium and thorium are of special interest to Canada, since:

> Both elements present chemical and radiological toxicity.
> Both elements present interest as nuclear fuels in energy production cycles.

(3) Thorium is present in considerable amounts in Canadian uranium ores.¹

(4) Canada is the second largest producer of uranium in the world.¹

During the last two decades the increased demand for uranium fuel has led to the exploitation of lower quality ores as well as further exploration and location of new uranium ore bodies.

The processing of uranium ore results in the need to dispose of large quantities of solid wastes and liquid effluents, as the ore contains as little as 0.85 kg of $U_3 O_8$ per tonne.¹ Low level quantities of uranium decay chain radionuclides are generated during uranium milling. and find their way in the tailings or the process waste waters.² By 1976, in the Elliot Lake area alone, there were 400 hectares of radioactive tailings. In general, approximately 15% of the total radioactivity in the ore leaves in the final product, whereas, the remaining 85% is discharged in the tailings.¹ The tailings ponds may, in some cases, constitute a public nuisance and represent a potential health hazard that may persist for more than 10⁵ years.³

Approximately 90-95% of the uranium is recovered during the milling process. Low concentrations of uranium are, however, present in the waste streams of the uranium mining and milling industry.^{1,4,5} Uranium is also present in concentrations as high as 50 mg/l in certain copper leach dumps, and can be extracted commercially from the acidic waste waters of the phosphoric acid production process whenever uraniumbearing phosphate rock is being used.⁵ In general, uranium-bearing waste waters can be considered as unconventional uranium resources. Table I.1 presents some chemical and radioactive parameters of uranium mining and milling waste waters.

The low concentration of uranium in the waste waters should not lead to the conclusion that uranium removal is of no considerable environmental importance. The environmental effects of a pollutant can be best understood as the result of its accumulation in the environment. This is especially true for non-biodegradable pollutants like uranium and thorium. Consequently, one should not only examine the concentration of the pollutant in a waste stream, but also the total mass rate at which the pollutant is discharged. Given the large volumes

TABLE I.1 Chemical and Radioactive Parameters* of Uranium Mining and Milling Waste Waters Tailing Areas Waste Water Discharge Waste Water рн ($2.0^{(4)} - 2.8^{(4)}$ $2.0^{(4)} - 4.5^{(1)}$ 4180(1) - 13400(4) total solids 2280(1) - 7500⁽⁵⁾ 200⁽¹⁾ - 7500⁽⁵⁾ SO4 7(1) - 200(5) ₇₁₀₀(5) Na 101(1) 50⁽¹⁾ - 600⁽¹⁾ Са 300⁽⁴⁾ - 960⁽¹⁾ $1.0^{(5)} - 3.200^{(4)}$ Fe $0.5^{(1)} - 5.6^{(4)}$ · 3.6⁽⁴⁾ Mn $0.97^{(1)} - 9.4^{(4)}$ $< 0.5^{(1)} - 11.4^{(4)}$ Zn $0.96^{(1)} - 2.2^{(4)}$ $< 0.5^{(1)} - 3.6^{(4)}$ Cu $1.0^{(1)} - 19^{(1)}$ $1.0^{(1)} - 8.0^{(1)}$ U $2^{(5)} - 16.5^{(4)}$ 7.0 pci/1⁽⁴⁾ - 170 pci/1⁽⁴⁾. Th Ra²²⁶ 10 pci/1⁽¹⁾ 300 pci/1⁽¹⁾ 31000 pci/1^(Ĭ) Gross a 13000 pci/1⁽¹⁾ Gross-B

4,

*All values in mg/1 except pH and wherever specified otherwise.

of industrial waste waters the mass rates can be very high. For example, one uranium mine in the U.S. alone disposes of approximately five million gallons of waste water per day, resulting in a mass rate of 10,000 to 15,000 lbs of $U_{3}O_{8}$ per month.⁶ Generally, mine waste water and process waste water combined together result in pumping into the tailings areas one tonne of waste water per each tonne of ore mined.

()

Thorium is present in Canadian uranium ores in ratios usually ranging from $ThO_2/U_3O_8 = 0.15$ to $0.60.^1$ In the Agnew Lake area of Ontario, the amount of thorium in the ore exceeds that of uranium. All 12 known thorium isotopes are radioactive. Thorium presently is not recovered. It is simply discharged with the tailings of uranium milling. As a result, the activity of thorium isotopes is added to that of other radioactive elements unearthed (radium, polonium, etc.) and all end up in the environment. Thorium has been identified as a potential nuclear fuel element for the nuclear breeder reactors that have been developed recently. The interest, therefore, in the removal of thorium from waste waters has extended beyond the area of environmental protection and has approached the area of new energy resources development. Recovery of thorium from the tailings may become a significant element of Canadian economy as for every tonne of uranium ore that has already been mined, 1.0 to 0.35 lbs of ThO, are available in the tailings with the potential of 'being recovered.

The current disposal practices of the uranium mining and milling industry are similar to the ones practiced by other mining and milling operations (Figure I.1). In general, following mining

~

and crushing the ore goes through a leaching-separation protess that selectively removes uranium from the process solutions. The final slurry of the solid and liquid wastes is, following pH neutralization, disposed of in tailings disposal basins.

A controlled water outflow attempts to maintain a desired water level in the tailings pond. Seepage of waste, through the soil or the tailings dam, however, is a troublesome water loss due to the difficulties in detection and control. Water may seep into an aquifer and pollute streams and lakes or even cause the failure of the tailings dam. Seepage flows may be low in volume, compared to the outflow at the decant, but their high concentration of dissolved salts makes them significant.

The low solubility of most metallic ions at neutral pH indicates that neutralization of the waste liquor, followed by sufficient detention time in the tailings pond for sedimentation, may render the waste waters environmentally harmless. The immense abandoned tailings areas generated by the uranium industry have, however, been proven almost detrimental to the environment. Inactive tailings areas containing pyrite (FeS₂), as most Canadian ores do, generate acid regardless of the degree of neutralization at the time of disposal. Oxidation of pyrite is thermodynamically favored and is inevitable in the presence of oxygen and water. Furthermore, pyrite oxidation is accelerated by the microbial action of a group of sulfur utilizing bacteria. Produced sulfuric acid reduces the pH in the tailings pond to approximately two and resolubilizes previously precipitated radioactive and other cations. Waste waters rich in pollutants result from the tailings areas and find

their way initially into natural water bodies and finally into the food chain.

The currently practiced treatment of the uranium nuclear fuel cycle process waste waters is perceived as inefficient and there is a need for more efficient yet economical methods of treatment. The need becomes imperative if one considers treatment of nuclear reactor waste waters that contain lethal concentrations of radioactive isotopes.

I-2 THE PHENOMENON OF BIOSORPTION

Living cells have been known to concentrate cations from their aqueous environment. Microbial biomass has been documented to exhibit a selective retention of high atomic number cations.

Rothstein <u>et al.</u>⁹, in 1948, presented evidence that uranium acts at the yeast cell surface "by complexing with unknown groups associated with glucose metabolism". The complex was reported to have a one-to-one ratio with certain active "groups" on the cell surface. A second complex was later postulated, with "groups not associated with glucose metabolism".

Polikarpov¹⁰, in his study on the radioecology of aquatic organisms, pointed out that radionuclides present in aquatic (sea) environment are accumulated by marine micro**d** ganisms through "direct adsorption from the water". He pointed out that the above property appears mostly independant of the life functions of the cells. A large number of microorganisms exhibited this property, equally well, whether alive or dead.

1.5 80

Tezuka, in 1968¹¹, suggested that the reversible flocculation of activated sludge bacteria with the help of bivalent cations like Ca^{+2} or Mg⁺², is the result of ionic bond bridges formed among negatively charged cell surfaces and cations in solution. This indicated the ability of microbial cells to retain cations from solutions.

Cell walls of both procaryotes and eucaryotes contain different polysaccharides as basic building blocks. The ion exchange properties of certain natural polysaccharides have been studied in detail and it is a well-established fact that bivalent metal ions exchange with counter ions of the polysaccharides as shown in the following example involving alginic acid.^{12,13}

2 NaAlg + $Me^{+2} \neq Me(Alg)_2 + 2 Na^+$

With the help of an enrichment culture, Chiu¹⁴ isolated from sewage certain fungi that could take up uranium from solution. The mycelia were not identified. In his work, Chiu noted that uranium was taken up equally well by both dead and alive mycelia, thereby suggesting. a physical-chemical mechanism of uranium retention by the microbial cell.

Jilek <u>et al.</u>¹⁵ investigated the capacity of "native" and "heat denatured" mycelium to uptake uranium salts from solution, following at the same time the effect of uranium on the growth of the microorganisms. They tested different <u>Aspergilli</u> and <u>Penicillia</u> and suggested that the cell acts as a "multifunctional ion-exchanger". Following a 24-hr "culpure time", their "natural" <u>Penicillum chrysogenum</u> exhibited a

uranium uptake of approximately 175 mg/g, while dry mycelium exhibited an uptake of almost 145 mg/g. Attempting a technical application of the above property, they patented a product claiming to have a uranium uptake of approximately 100 mg/g. Samples of the supposedly marketed product, however, were not supplied when requested.

Beveridge, in 1977^{16,17}, working with pure cell wall preparations of <u>Bacillus subtilis</u>, reported that the microbial cell wall removed and retained ions of high atomic number elements. Chemical reaction among the cations and unknown active cell wall sites was hypothesized as the process responsible for the observed uptake.

Shumate <u>et al</u>.^{18,19}, in 1978 and 1979, reported rapid uptake of uranium from solution by resting <u>Saccharomyces cereviciae</u>, <u>Pseudomonas</u> <u>aeruginosa</u>, and a mixed culture of denitrifying bacteria. Uptake capa-. cities of up to 140 mg/g were reported for uranium.

The above information clearly indicates that microbial cells possess the ability to bind with certain cations and remove them from solution. This potential is expressed even when the microbial cells are not alive. The phenomenon of selective retention of cations from solutions by dead microbial cells has been termed biosorption. The mechanism of biosorption is poorly understood and the information available is fragmented and rather limited.

I-3 GENERAL OBJECTIVES OF THE PRESENT WORK

It is the general objective of the present work to examine the conditions that may allow the application of biosorption for the removal/recovery of uranium and thorium from aqueous solutions.

An increasing number of microbial processes are presently being used by food and pharmaceutical industries. By-products of some of those processes are large quantities of waste microbial mass that is, in most cases, being disposed of by incineration or landfill. Waste microbial biomass may have, howéver, a biosorption potential ` and could be used as an inexpensive material for the development of a waste water scheme for the decontamination of waste streams containing elements such as uranium, thorium, radium, etc. The first stage of the work aims at the collection of different types of waste microbial biomass and their screening with the intention of identifying the biomass with the highest uptake capacity for the two selected elements of uranium and thorium. Following the selection of the biomass, the phenomenon of biosorption itself will be studied on the selected biomass type for the two elements of interest. The study will focus on the biosorption equilibrium for uranium and thorium. The preliminary examination of the kinetics of the process will be carried out and the elucidation of the mechanism of the process will be attempted.

I-4 URANIUM CHEMISTRY

Naturally occuring uranium is a mixture of three isotopes $(U^{238}, U^{235} \text{ and } U^{234})$ in proportions 99.28%, 0.71% and 0.006%,

respectively. It has been classified as a member of the actinides.²⁰

In solution, uranium can be present as ions corresponding to four states of oxidation: +3, +4, +5 and +6. Trivalent uranium reduces water to free H₂, while being oxidized to U(IV). Tetravalent uranium appears more stable, but it also can oxidize to U(VI), the reaction being appreciably accelerated by light. Pentavalent uranium solutions readily disproportionate with the formation of U(IV) and U(VI). Hexavalent uranium is the most stable oxidation state. Uranium is, in general, a fairly strong reducing agent, and has a strong complex formation ability with a variety of organic and inorganic ligands 20,23 The uranyl ion, $U0_2^{+2}$, is the basic form in which U(VI) exists in solution or even in crystal lattices. It possesses a linear configuration: O-U-0. 21,22 Oxide ions cannot be displaced from the uranyl ion even by concentrated HF. 22 The stability of the O-U-O structure is remarkable. Numerous oxides and hydroxides are known and $U0_2(OH)_2 \cdot H_2^0$ is the stable phase at $25^{\circ}C.^{22}$

Hydrolysis of uranium is complicated and the available information in literature is not in complete agreement. Below pH = 2.5uranium (VI) exists in solution exclusively in the form of the uranyl ion UO_2^{+2} .

At higher pH values a complex simultaneous equilibria system establishes.¹¹ Mononuclear and polynuclear ions appear as hydrolysis products. The most probable mononuclear UO_2^{+2} hydrolysis species is $UO_2(OH)^+$. In the dinuclear complex ion the uranium atoms are joined by two hydroxy bridges. In the trinuclear complex ion the uranium atoms

form an equilateral triangle. The monomer $UO_2(OH)^+$ tends to dimerize yielding $(UO_2)_2(OH)_2^{+2}$. The trinuclear $(UO_2)_3(OH)_5^+$ is another important hydrolysis product.²² Other species like $(UO_2)_3(OH)_4^{2+}$, $(UO_2)_4(OH)_6^{+2}$ or even $U_3O_8(OH)_3^{-1}$, have been proposed but their presence has not been proven.

Uranium solubility diminishes rapidly as pH increases, presenting a minimum between pH = 4 and pH = 6.22

I-5 THORIUM CHEMISTRY

۲. ۲.

Thorium is a fairly abundant but dispersed element in the earth's crust. Thorium has been assigned to the actinides although no definite conclusion has been reached on its electron configuration.²⁴

Although the tetravalent state is the only stable oxidation state for thorium ions, it has been shown that under certain conditions thorium may exist in the bivalent and trivalent states.²⁴ All known thorium isotopes are radioactive, with Th^{232} being the most abundant natural isotope. Thorium ions are characterized by high charge (+4), a relatively small ionic radius (0.99 Å) and colorless aqueous solutions. Thorium shows a strong tendency for complex formation with coordination number generally of 6 or $8.^{24,25}$

Hydrolysis of Th(IV) becomes detectable in solutions of ordinary concentrations between pH = 2 and pH = 3.²² The hydroxyl number of the hydrolysis products increases rapidly with increasing pH reaching a maximum near pH = 4. Hydrolysed solutions of Th(IV) are

extensively supersaturated with respect to precipitation of the hydrous oxide and, expecially, the oxide. Available thermochemical data suggest that only about 5.10^{-6} M Th⁺⁴ would remain in a saturated solution at pH = $3.^{22}$ The hydrolysis of Th(IV) has been studied extensively. The complexity of the hydrolysis process, however, explains the absence, up to the present time, of unanimous consent on the mechanism of the process. A number of probable hydrolysis products have been suggested, among which are the following: Th⁺⁴, Th(OH)⁺³, Th₂(OH)₂⁺⁶, Th₄(OH)₈⁺⁸.^{21,22} Hydrolysis most likely is mainly described by the formation of a solid phase of thorium hydroxide:

 $\text{Th}(\text{OH})_4 \neq \text{Th}^{+4} + 4 \text{ OH}^{-1}$

with particles below 300 $\stackrel{0}{\text{A}}$.²¹ The suggestion of the solid thorium hydroxide formation is also supported by the very low solubility of Th(IV).

Thorium hydrolysis products have been documented to exhibit increased adsorptivity.^{21,26,27}

I-6 CHITIN

I-6.1 Chitin as a Polymer

The term chitin currently refers to a polymer of N-Acety1-D-Glucosamine, where a minority of the acety1 groups has been lost. Deacety1ated chitin is called chitosan. The official name of chitin is $(1 \rightarrow 4)$ -2-acetamido-2-deoxy- β -D-glucan.

Chitin occurs in three polymorphic forms which differ in the arrangement of the molecular chains within the crystal cell. X-ray diffraction spectra have identified α -chitin as the tightly compacted most crystalline form, where the chains are arranged in an antiparallel fashion; β -chitin as the form where the chains are parallel and γ -chitin as the form where two chains are "up" to every one "down". By far the most abundant form is α -chitin. Intersheet and intrasheet hydrogen bonds confer peculiar macroscopic physicochemical properties to the polymer. The three forms of chitin may co-exist.³³

Most of the research work carried out on chitin concerns the amino group, which is the most important function of the macromolecule. The greater effectiveness of the alephatic amino group of chitin as compared to aromatic amino groups has been documented in literature. The alphatic amino group acts as a Lewis base and complexes cations. Substituted anhydroglucosides, like aminoethylcellulose containing relatively few amino groups (9.5-1.5% nitrogen), have been documented as complexing agents for transition metals.

Chitin, a completely substituted polysaccharide carrying one amine or amide group per glucose ring (9% nitrogen), exhibits higher metal uptake. 35,36 Metals like iron, zinc, lead, mercury, uranium, etc. have been documented as being taken up by chitin. 33,34,35 The formation of a coordination complex between the metal and the chitin nitrogen has been suggested. Metal uptake by chitin is dependent on solution pH and is optimum between pH = 3 and pH = 4. 33,35,36,37 Alkali metals, ammonium, magnesium, calcium, barium are not collected by chitin and

do not prevent collection of transition metals by chitin. Ion exchange has also been suggested as a process that may be active in certain metals uptake by chitin or chitosan.^{33,37} When two or more transition metal ions are present in solution together, with a quantity of polymer insufficient for the complete collection of both, the cation that forms the most stable complex with the polymer will be preferentially collected leaving most of the other cation in solution.³³ In general, the preference of chitin for transition metals follows the Irving-Williams series^{33,37}.

I-5.2 Chitin in Fungi

In living systems chitin occurs in the form of microfibrils or microcrystallites. Chitin is a structural polymer of the fungal cell wall. In general, fungal cell walls can be regarded as a two-phase system; one phase consisting of chitin microfibrils embedded in an amorphous polysaccharidic matrix.³⁸ As much as 90% of the dry matter of fungal cell walls may be composed of homo- and heteropolysaccharides.

Fungal cell walls present multilaminate architecture consisting of chitin stratified crystallites and polysaccharidic filling material. A cell wall model clearly showing the above stratification has been reported by Beran <u>et al.</u>⁴⁰ A more recent study on the cell wall chitin architecture of <u>Penicillium crysogenum</u> has suggested that the inner sections of the fungal cell wall contain an isotropic arrangement of chitin fibrils, while the external wall appears to contain axially oriented chitin fibrils.⁴¹

_17.

The presence of chitin in the fungal cell wall has been detected and measured by X-ray diffraction and microchemical techniques. ^{38,42,43} The chitin content of the fungal cell wall varies considerably from one species to another.^{44,45-48} It can be as low as 2.6% of the cell wall dry weight (<u>Neurospora crassa</u>), to 53% of the cell wall dry weight (<u>Rhizopus nigricans</u>).^{38,48} In certain cases, structural cell wall aminopolysaccharides may be present in the form* of chitosan as in the case of <u>Mucor rouxii</u>.³⁸ It has been suggested that the chitin content of the fungal cell wall may change during the growth of the mycelia.^{39,49}

18.

Chitin is the only crystalline component of the fungal cell wall.⁴¹ Chitin is, in general, widely distributed not only in fungi but also in animals and less evolved taxonomic groups such as Protozoa.⁵² CHAPTER II

II-1 BIOMASS BIOSORPTION EQUILIBRIUM STUDIES

II-1.1 Biomass Samples Collection and Preparation

Samples of waste microbial biomass originating from industrial scale fermentations were requested from major fermentation industries in Canada and the U.S. Concurrently, return activated sludge was collected from two waste water treatment installations in the Montreal area; the municipal waste water treatment plant of Vaudreuil, Quebec, and the industrial waste water treatment plant at the Gulf Refinery in Montreal. Fermentation waste biomass was supplied in a dry form by the manufacturers.

All waste biomass samples that were supplied by the industry were indicated as sterile and were washed with distilled water as soon as they were received. Filtrasorb-400, a widely-used activated carbon (Calgon Co.), and IRA-400, an anionic ion exchange resin used by most uranium mills in the yellow cake production process, were also compared with the collected biological origin materials. Table II.1 presents the materials tested in the course of the present work.

II-1.2 Biosorption Isotherm Determination Technique

The standard method used for the determination of activated carbon adsorption isotherms was applied for the evaluation of uranium and thorium biosorption isotherms. 50

	f • • •	
	· · · · · · · · · · · · · · · · · · ·	
1;	Aspergillus niger	Pfizer Inc., Groton, Con.
2.	Aspergillus terreus	Pfizer Inc., Groton, Con.
3.	Streptomyces niveus	UpJohn Co., Kalamazoo, Michigan
4.	Penicillium chrysogenum	Wyeth Laboratories Inc., West Chester, P
5.	Pseudomonas fluorescens	Pfizer Inc., Groton, Con.
6.	Rhizopus arrhizus	Canada Packers, Toronto, Ontario
7.	Municipal return activated sludge (VSS = 59.8%)	Vaudreuil Municipal W.W.T.P.
8.	Industrial (phenolic) return activated sludge (VSS = 99%)	Gulf refinery, Montreal, Quebec ?
9.	Filtrasorb 400 activated carbon	Calgon, Co.
0.	IRA-400, anionic exchange resin	B.D.H. Chemicals, Poole, U.K.

а.

٠_

٩

TABLE II.1

Uranium and thorium solutions of desired concentration were prepared by dissolving $UO_2(NO_3)_26H_2O$ and $Th(NO_3)_44H_2O$ in distilled deionized water.

Uranium and thorium solutions contacted the biomass samples in 500 ml ground glass-stoppered Erlenmeyer flasks. Suspension volume was always 100 ml unless otherwise specified.

Solutions were mixed at 230 RPM on a New Brunswick Scientific G10 Gyrotory Shaker capable of accommodating up to 40, 500 ml Erlenmeyer flasks.

The biomass was contacted with the U or Th solutions for 16 hrs at 23^oC, except for the "extreme" tests carried out at 5^oC and 40^oC. Those "extreme" temperatures represented, respectively, the upper and lower limits expected in the actual solution process applications.

Contact time was determined by running preliminary kinetic experiments using the same shake flask mixing system as the one applied for the biosorption isotherm determinations. In all preliminary kinetic experiments the contact time necessary for equilibrium attainment was no longer than six hrs. The 16 hrs contact time applied was chosen with a substantial safety margin to ensure equilibrium.

Initial uranium solution concentrations ranged from 50 mg/l U^{+6} to 1000 mg/l U^{+6} ; while thorium initial solution concentrations ranged from 30 mg/l to 100 mg/l, all below the solubility limits set by the solution pH values.¹

21,
Uranium and thorium biosorption isotherms were determined within the range of initial concentrations described above and at three different pH values; namely those of pH = 2, pH = 4 and pH = 5. The selection of the pH values was based on the chemistry of the hydrolysis of uranium and thorium aqueous solutions respectively. Values above pH = 5 were not tested because of the very low solubility of both U(VI) and Th(IV).

[]

Microbial biomass increased the solution pH following initial contact (Appendix F). A similar observation has been reported in literature.^{18,19} Solution pH affects significantly the composition of uranium and thorium solutions, consequently the examined biosorption systems were buffered at the desired pH values. Potassium bipthalate was used as a buffering agent for the pH = 4 and pH = 5 range; while HCl-NaCl buffer was employed for pH = 2. The significance of maintaining a constant solution pH, during biosorption, will become evident in Sections IV-A.10 and IV-B.10, which deal with the mechanism of U or Th biosorption by Rhizopus arrhizus.

Bipthalate and HC1/NaC1 buffer solutions were tested for possible interference with the spectrophotometric uranium and thorium analytical determinations. Uranium or thorium solutions of a known U or Th concentration and different buffer content were analyzed. The absorbance values of buffer-containing solutions were equal to the absorbance values of the unbuffered solution indicating that the employed buffering agent did not interfere with the Arsenazo III analytical determination method.

The employed buffering systems were also tested for possible interference with the U or Th uptake capacity of <u>R. arrhizus</u>. The equilibrium U or Th uptake capacity was determined for buffered and unbuffered biosorption systems, under the same conditions of initial U or Th concentration and biomass dosage. The pH of the non-buffered system was maintained constant with the help of dilute HCl or NaOH solutions. There was no appreciable difference observed between the U or Th uptake capacities determined in the presence of or in the absence of the bipthalate buffering agent (Appendix A, Appendix B).

Following the 16 hours contact period, the biomass was separated from the solution. Separation was accomplished by vacuum filtration using 0.45 μ m Sartorius membrane filters, which present the least washable T.O.C.⁵¹ Each filter membrane, before being used, was washed with 250 ml of distilled deionized water. The first 10 ml of the filtrate were also discarded in order to minimize possible change of the U or Th equilibrium concentration of the filtrate due to possible retention of U or Th by the filter membrane. The equilibrium U or Th concentration of the filtrate (C_{eq}) was determined (I-A.3), and the respective uptake was calculated by a uranium mass balance as follows:

$$q = \frac{V.(C_o - C_{eq})}{M}$$

where

. 🕞

- sample volume, 1.

 C_0 = initial U or Th concentration, mg/1.

- C_{ea} = equilibrium U or Th concentration, mg/1.
 - M = biomass dosage, g.
 - u = U or Th uptake capacity, mg/g.

II-1.3 Uranium Analytical Determination

Uranium was determined spectrophotometrically with the Arsenazo III method.^{23,28,29} Additional information on the method is given in Appendix F. The following procedure was followed:

> A sample containing no more than 80 μ g uranium was transferred in a test tube and mixed with approximately 10 ml of 4 N HC1.

Four pellets of zinc were added and allowed to react with the mixture for no less than 15 min.

The solution was transferred quantitatively to a 50 ml volumetric flask. The zinc was washed with 4 N HC1.

2.5 ml of freshly prepared 0.05% Arsenazo IHI solution were added.

. The solution was diluted to volume (50 ml) with 4 N HCl, and the absorbance was measured at

665 nm in a 1 cm light path length cuvette.

For calibration purposes a 1000 mg/l standard U(VI) solution was prepared and standardized according to the procedure described by Marcenko.²⁸ Arsenazo III solution was also prepared following the procedure suggested by Marcenko.²⁸

Absorbance values were recorded from a Bausch and Lomb Spectronic 70 single beam spectrophotometer employing a digital readout for better reading accuracy.

17

24.

1

II-1.4 Thorium Analytical Determination

Thorium concentration was determined anlytically using the Arsenazo III spectrophotometric method.^{25,28,29} The method is similar to the one used for the spectrophotometric determination of uranium. Appendix F contains additional information on the employed method.

The following procedure was followed:

- A sample containing no more than 30 μ g Th(IV) was transferred to a 25 ml volumetric flask.

25.

- 6 ml of concentrated-HCl were added and mixed well.

2.5 ml of 0.05% Arsenazo III solution were added and the mixture was diluted with distilled water to the mark (25 ml).
The absorbance was measured at 655 nm in a 1 cm path length cuvette.

The molar absorptivity of the complex is 1.15×10^5 in 3 M HC1.

A° 500 mg/1 Th(IV) standard solution was prepared for calibration purposes following the procedure suggested by Marcenko.²⁸ A Bausch and Lomb Spectronic 70 spectrophotometer was used to record absorbance values.

II-1.5 Analytical Determinations of Iron and Zinc

Iron was determined spectrophotometrically using the 0-Phenanthroline standard method.

Zinc was determined by atomic absorption spectroscopy using a Perkin Elmer 403 Atomic Absorption unit.

Fisher Scientific Co. atomic absorption standard solutions were employed for calibration of the Spectronic 70 spectrophotometer (Fe) and the atomic absorption unit (Zn).

II-2 PURE CELL WALL SAMPLE PREPARATION

The procedure described by Stagg and Feather was followed for the disruption of <u>R. arrhizus</u> mycelia.⁴⁴ 1400 mg of biomass were mixed with 50 g of 0.25-0.30 mm glass beads, previously cleaned with HC1, and 15 ml distilled water. The mixture was inserted in a Bronwill cell homogenizer for 21 min at 10°C. Following cell disruption the mixture was washed with 4% Sodium Dodecyl Sulfate (S.D.S.) solution. The glass beads were separated by gravity settling and the unbroken cells by centrifugation at 500 g in a J2-21 Beckman ultracentrifuge. The suspension was washed once more with S.D.S. solution and rinsed eight times with distilled water. Cell walls were collected at 14000 g, and immediately freeze-dried. Electron microscopic examination of the preparation revealed completely broken cell walls.

II-3 ELECTRON MICROSCOPY

Electron micrographs were made on a Phillips model 300 electron microscope at an accelerating voltage of 40 kv. Samples were fixed with a 2.5% solution of glutaraldehyde (E.M. grade), in 0.1 m cacodylate buffer (pH = 7.2) for two days at room temperature. Subsequently they

were dehydrated with a series of ethyl alcohols and embedded in Spurr epoxy resin. Sections (800 Å thick) were cut with an LKB Microtome III and mounted on copper grids.

II-4 X-RAYS ENERGY DISPERSION ANALYSIS

X-rays energy dispersion spectra were recorded, using the thin sections previously prepared for transmission electron microscopy. The system employed consisted of a JEOL JEM-100 CX electron microscope, an EDAX J-100 C-154-10 detection unit and a 707-A EDAX X-rays Energy Dispersive Analysis unit.

The microprobe was focussed at a magnification of 100,000 at 80 kV acceleration voltage.

II-5 MASS SPECTROSCOPY

Mass spectra were recorded from an LKB 9000 mass spectrometer, at an ion source energy of 70 eV, at 290° C and a current of 60 μ A. Direct inlet temperature was 143° C.

11-5 INFRARED SPECTROSCOPY

Infrared spectra were recorded from a NICOLET 6000 FTIR unit equipped with a digital plotter. Some spectra were recorded on the Perkin. Elmer 297 infrared spectrometer. All infrared spectra were obtained using KBr discs.

II-7 CHITIN U OR TH UPTAKE

Poly N-acetylglucosamine (chitin), purified powder from crab shells (Sigma Chemicals C-3641), was used to determine the chitin U and Th uptake capacity. Optimum biosorption pH was employed (pH = 4). Initial concentrations of 12, 20, 100 mg/l U(VI) and 12, 18, 100 mg/l Th(IV) were tested. Additional information on the chemical properties and the structure of chitin polymer is available in Section I.6.

II-8 N-ACETYL-D-GLUCOSAMINE INTERACTION WITH U OR TH

N-Acety1-D-Glucosamine from BDH-Biochemicals (#38001) was used to study further the complexation of U or Th and chitin. N-Acety1-D-Glucosamine is water soluble and was reacted with U or Th solutions at optimum biosorption pH (pH = 4). The infrared spectrum of the BDH product corresponded well to the IR spectrum of the compound published in literature.³¹ Information on the N-Acety1-D-Glucosamine meta1 complexation ability is available in Appendix F.

11-9 KINETIC STUDIES

II-9.1 Instrumentation and Apparatus

Preliminary kinetic information on biosorption of uranium and thorium by <u>Rhizopus arrhizus</u> has indicated that the process is very rapid. Similar information was also reported very recently for uranium biosorption by <u>Pseudomonas aeruginosa</u>.³² Because of the rapidity of U or Thbiosorption process, minimum time should be spent for the separation of biomass from the liquid, following a sample withdrawal. Immediate separation would be ideal. Having the above objective in mind, the experimental reactor shown in Figure II.1 was designed and fabricated.

The fabricated reactor vessel was temperature controlled by a stream of water from a temperature control system consisting of a NESLAB U-Cool bath cooler and a TAMESON TX-3150 thermostatically controlled water bath.

The reactor mixture temperature was monitored by a CORE-PARMER 8502-20 digital thermometer.

Mixing was provided by a four-blade propeller driven by a ZERO-MAX electrical motor equipped with a ZERO-MAX POWER BLOCK capable of continuous adjustment of the RPM delivered to the propeller shaft. Propeller shaft RPM was monitored with a TAK-ETTE digital RPM meter capable of measuring RPM with an accuracy of ± 1 RPM. Propeller shaft RPM was also checked periodically with an adjustable frequency stroboscopic light source. Inside the reactor five baffles 145 mm long by 11 mm wide prevented vortex formation.

The reactor interior was either pressurized or evacuated through a three-way solenoid-valve connected to a WELCH DUO-SEAL vacuum apump and a N₂ cylinder. The solenoid was activated by a programmable timer switch governing the duration and frequency of the liquid sample withdrawal from the reactor.

The reactor bottom was slightly tapered and was threaded so that a separate bottom piece could be attached. The separate bottom piece housed a 0.45 µm Sartorius membrane filter of 4 cm diameter. The

filter membrane was sandwiched between a perforated plexiglass and a Millipore 4 cm stainless steel filter support plate. A 1 mm thick Teflon flange was also inserted between the membrane filter and the steel filter support plate. The space below the filter support formed a funnel for the collection of the filtrate. The perforated (12 x ϕ 12 mm holes) plexiglass plate was flush with the reactor bottom once the bottom piece was fitted on the reactor. Figure II.2 presents a section of the separate bottom piece.

II-9.2 Experimental Procedure for Kinetic Experiments

Under normal operating conditions the reactor interior was maintained under mild vacuum. The vacuum was strong enough to prevent the reactor liquid from leaking out through the bottom filtration assembly. Whenever a liquid sample was to be withdrawn the solenoid valve was activated, switching the reactor interior to 20 psi pressure, thus forcing the liquid out through the filtration system into the receiving container. Approximately 5 ml of sample (filtrate) were collected within 5 to 10 seconds. An almost immediate separation of the biomass from the sample solution was achieved permitting withdrawal of the first sample within the first 60 seconds of initial contact of biomass with the U or Th solution. The sample was collected in two separate 10 ml volumetric cylinders. The first 2 to 3 ml of sample were collected in the first cylinder and tested for solution pH only. The second part of the sample was analyzed for U or Th concentration. A "flushing" of the sampling system was thus performed each time a sample was withdrawn; while solution pH was not tested in the same sample that would be analyzed

for U or Th concentration, avoiding possible concentration changes.

35.

Because of the already mentionned (II-1.2) ability of the <u>Rhizopus arrhizus</u> biomass to raise the solution pH and the decision not to use buffer during the kinetic experiments, the following pH control technique was adopted, which resulted in good pH stability throughout all kinetic experiments:

In a 21 separatory funnel, 980 ml of the U or Th contact solution, with the appropriate pH, were prepared. In a second 250 ml separatory funnel the exactly weighed biomass dosage was mixed with 20 ml of distilled water, the pH of the suspension adjusted with HC1/KOH solution to the desired experimental pH value. The U or Th solution and the biomass suspension were brought to the temperature desired for the experiment. Meanwhile, the reactor temperature control system was also brought to the desired temperature equilibrium. The U or Th solution was first introduced in the reactor from the top port, while the reactor was maintained under mild vacuum.

The mixing system was started and the 20 ml of the biomass suspension were subsequently introduced in the reactor marking "time zero" or the beginning of the biosorption process. The loading port was immediately closed and the first sample was withdrawn within 60 seconds. A complete volume balance was possible at any point during the experiment as all volumes of solutions inserted or withdrawn from the reactor were carefully monitored. Because of the small sample size (3 to 5 ml), as compared to the 1000 ml initial volume of reaction mixture, no volume correction was used for the data. The maximum total sample volume removed by the end of any experiment never exceeded 45 ml or 4.5% of the initial reaction mixture volume.

The response of the sampling system that was employed was examined ras follows:

The reactor was filled with 1 l of Zn^{+2} solution of known concentration. The Zn^{+2} concentration in the reactor was increased by predetermined increments by injection of exact volumes of a concentrated standard Zn^{+2} solution. Following each injection, two consecutive samples were withdrawn from the reactor and analyzed for their Zn^{+2} concentration. The analytically determined Zn^{+2} concentration was compared to the calculated one.

Ç,

36,

CHAPTER III

RESULTS

III-A URANIUM

III-A.1 Uranium Biosorption Equilibrium Uptake Studies

The equilibrium uranium uptake capacities of all tested materials were determined and are summarized in Table III-A.1. The table presents equilibrium loadings in mg of U per g of biomass or other material at three selected equilibrium solution concentrations (C_{eo}) in mg/1.

The biomass of <u>Rhizopus</u> <u>arrhizus</u> not only exhibited the highest uranium loading, in excess of 180 mg/g, but also reduced the equilibrium uranium concentration to zero at approximately q = 60 mg/g, indicating a desirable steep biosorption isotherm (Figure III-A.1). <u>Rhizopus arrhizus</u> was, therefore, the biomass that was selected to be used for more in-depth investigation which is reported in the subsequent parts of the present work. Initial uranium concentration did not have an appreciable effect on observed biosorption isotherms. However, solution pH affected the uranium uptake considerably. In general, lower uptake was observed at pH = 2 (Figure III-A.2) than at pH = 4. No discernible difference was observed between the uranium uptake of any material at pH = 4 and pH = 5 (Figure III-A.2).

MATERIAL Residual incentration mg/l <u>A. terreus A. niger P. fluerescens S. niveus</u> Act. Sludge Act. Sludge <u>P. chrysogenum</u> , <u>R. arrhizus</u> IRA-400 F-400 F-400	Material Material Act. Sludge P. chrysogenum R. arrhizus Ionex Act. Cari Imag/I A. terreus A. niger P. fluerescens S. niveus Act. Sludge P. chrysogenum R. arrhizus IRA-400 F-400 5 1 7 - 11 5 9 28 50 26 15 30 1 12 6 17 11 24 60 118 45 34 700 1 35 6 40 45 79 164 > 180 (210) 90 160	· ·			1	L.			y '	L	
	5 1* 7 - 11 5 9 28 50 26 15 30 1 12 6 17 11 24 60 118 45 34 700 1 35 6 40 45 79 164 > 180 (210) 90 160	Residual icentration mg/l A	A. torreus	<u>A. 'niger</u> ' <u>I</u>	P. <u>flueresc</u>	ens <u>S</u> . niveus	MATI Municipal Act. Sludge	ERIAL Phenolic e Act. Sludge	<u>P</u> . <u>chrysoge</u>	num. <u>R. arrhizus</u>	Ionex Act IRA-400

41

ł

. .. · .\

: .

()

ŕ.

III-A.2 Linearization of Biosorption Isotherms

Table III-A.2 summarizes the fitting of two widely accepted and easily linearized adsorption isotherm models, namely those of Langmuir and Freundlich, to the uranium biosorption isotherm data. The two models are briefly described in Table III-A.3.

Both models describe the available biosorption isotherm data well. In most cases, the Freundlich model appeared marginally better than the Langmuir model as the standard errors of estimate were lower. The Freundlich equation was linearized by taking the natural logarithm of both sides of the equation:

 $q = k C_{eq}^{1/n}$

 $\ln q = \ln k + 1/n \ln C_{eq}$

Appendix C presents a printout of the program employed for the estimation of the model parameters and the respective standard error of estimate (S.E.E.) for each set of biosorption isotherm data.

Linearized uranium biosorption isotherms for tested materials are presented in Figures III-A.2 to III-A.7. The effect of solution pH on uranium biosorptive uptake is shown clearly by the linearized biosorption isotherms. Reduced uptake was exhibited by <u>R. arrhizus</u>, <u>S. niveus</u>, "Phenolic" sludge, F-400, IRA-400 and <u>A. niger</u> at pH = 2, as compared to the uptake of the same material at pH = 5 (Figures III-A.2,

TABLE	III-A.2	
-------	---------	--

*S.E.E. Values for Uranium Biosorption Isotherms

<u> </u>		1	·	······
	pH ·	- 4;5	рН	- 2
Material	Langmuir	Freundlich (Q; n)	Langmuir	Freundlich (Q; n)
<u>A. niger</u>	6.388	6.330 (2.09; 1.75)	1.17 ₁	1.12 (6.92; 73.7),
<u>A.</u> terreus	-	· -	-	- `
P. fluorescens	1.311	1.307 (2.26; 5.26)	1.31	1.30 (3.00; 30.24)
S. <u>niveus</u>	2.587	2.233 (_5.72; 2.88)	1.09	0.91 (5.62; 3.37)
Municipal . sludge	3.300	1.733 (3.17; 2.50)	3.30	1.73 · (10.75; 37.17)
"Phenolic" sludge	2.443	2.523 (5.33; 2.36)	1.61	1.79 (8.52; 53.28)
R. arrhizus	13.831	13.488 . (14.25; 1.37)	13.83	13.49 (14.25; 1.37)
P. chrysogenum	13.521	14.067 (33.52; 5.36)	13.52	14.06 (33.52; 5.36)
IRA-400 🕤	5.525 .	6.102 (9.36; 2.14)	. –	- -
F-400	1.841	2.088 (8.15; 2.56)	-	-

*Overall S.E.E. values.

۶**ر**

6

 \mathbf{O}

· •,

43.

Adsorption Isotherm Models in a Liquid-Solid System

Model	Equat	tion -	 \	Assumptions
Langmuir (1918)	$q - q_0 \frac{bC_e}{1+b}$	eq oC _{eq}	<i></i>	Limiting adsorption loading q ₀ , refers to monolayer formation.
	0. 		2.	Homogeneous surface of adsorbant.
_	*	q _o , b - ct	3.	No lateral interaction among adsorbed molecules
Freundlich (1926)	$q = kC_{eq}^{1/n}$		1.	Exponential distribution of surface sites energies.
۰.	• • • • • • • • • • • • • • • • • • • •	k,n = ct	2.	b constant of the Langmuir model is a function of q.

ct = constant.

()

ŧ

FIGURE III A.2

Linearized uranium biosorption isotherm of <u>Rhizopus</u> <u>arrhizus</u>, whole cells and cell walls. Temperature <u>effect</u>. (1): $q = 25.16 \ e^{1/2.25} (23^{\circ}C)$; (2): $q = 121.25 \ C^{1/11.60} (23^{\circ}C)$; $q = 98.79 \ C^{1/5.75} (40^{\circ}C)$; $q = 65.61 \ C^{1/4.35} (5^{\circ}C)$. All at pH 4, 5:

III-A.3, III-A.5, III-A.6 and III-A.7). Similar uranium uptake was exhibited at all examined pH values by <u>P. fluorescens</u>, municipal sludge, P. chrysogenum (Figures III-A.3, III-A.4 and III-A.7).

The linearized biosorption isotherms of <u>S</u>. <u>niveus</u> (Figure III-A.3), <u>P</u>. <u>fluorescens</u> (Figure III-A.3), <u>A</u>. <u>niger</u> (Figure III-A.7) and <u>P</u>. <u>chrysogenum</u> (Figure III-A.7) do not accurately describe experimental data at equilibrium uranium concentrations above 600 mg/l. The above materials were saturated with uranium at these high solution concentrations and the observed uranium uptake, q, did not change when the solution uranium concentration was reduced. On a non-linearized isotherm the above points would represent a straight line parallel to the C_{eq} axis. The uranium biosorption isotherm of <u>A</u>. <u>terreus</u> has not been plotted because this biomass type exhibited negligible uranium uptake.

Detailed isotherm data for all materials tested are available in Appendix A.

III-A.3 Temperature Effect on q

<u>R. arrhizus</u> was the microorganism used for the examination of the effect of temperature on the biosorption loading (q) (Figure III:A.2).

A small increase in uranium biosorptive uptake was observed when the temperature increased from 5° C to 40° C. Table III-A.4 summarizes the differences in uranium biosorptive uptake within the examined

()

!

L

FIGURE III-A.3 Linearized uranium biosorption isotherms for <u>Pseudomonas fluorescens</u> (q = 6.77 C^{1/3.61}) and <u>Streptomyces niveus</u> (q = 6.77 C^{1/3.61}, pH = 4,5; q = 4.76 C^{1/3.43}, pH = 2).

47, }

 \mathcal{A}_{F}^{r}

, 8.5.

÷,

V,

1. 1

 C_{r}

12

)

FIGURE III-A.6 Linearized uranium uptake isotherms for F-400 $(q = 6.76 C^{1/2.09})$, pH = 4,5) and IRA-400. (1) $q = 6.50 C^{1/0.99}$; (2) $q = 20.59 C^{1/4.58}$. 53.

<u>م</u> م

> ر جنہ

2 7

Ċ

 \bigcirc

· .

(.)

Linearized uranium biosorption isotherms for Aspergillus niger, $(q = 2.57C^{1/2.10}; p = 4, 5; q = 2.10C^{1/2.88}; pH = 2),$ and <u>Penicillium chrysogenum</u> $(q = 18.09C^{1/2.72}; pH = 4.5)$

-

6.4

•••

b.			1		
		*		\	
				ζ.	5
	۰ ١		, —	•	
ι)		•	,	/
		,	Ť.		
* ** ***		、 、		• • •	
١			 1		• • •
	, ,				
· ~ ^ /					
	¥	•			
		te -	•	/	
	N	-		3	
, * \$. •	TABLE	111-A.4		
- · · · · · · · · · · · · · · · · · · ·		Cemperature Eff	ect on q . U(VI)	_	
<u> </u>				ŋ	-
	-		~	• /	
١				-	·
	,		Ac.*	,	
			Δ ų		
,	6		,	τ ÌC	
	Ceq	Temperatu	re increase (1 ₂	$\rightarrow 1_1$, c	
	mg/1 U ⁺⁶	5 → 23	23 → 40	5 → 40	
•			, 		-
	50 .	- 11	+ 36	+ 21	
			+ 97	+ 10	
, •	65	- 0	+ 27	+ 19	
	80 ·	- 2	. + 20	+ 18	
·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	,
•	*q _m - values calo	ulated from reg	gression equatio	ns,	
x	^{1}i $^{9}T_{2} - ^{9}T_{1}$		y		
	$\Delta q = \frac{q_{T_1}}{q_{T_1}}$	x 100.	,	-	
-		-1			-
			•	- • • •	
	1	X X		• • • • •	
	•				
				`	
`					
•	,	- _+	Ţ	۰ ۲	
			· / - ·		
•	-		· · · ·	· .	
-	1	Ŀ		· .	
•		J		1	
temperature range exhibited by <u>R</u>. <u>arrhizus</u> at different C_{eq} values. Observed differences can be considered significant for temperature changes from 23°C to 40°C and from $5^{\circ}C_{2}$ to 40°C.

In general, the effect of temperature on uranium biosorptive uptake of <u>R. arrhizus</u> was not very pronounced.

III-A.4 Pure Cell Wall Preparation Uranium Uptake

Following the selection of <u>Rhizopus arrhizus</u> as the microbial biomass to be used for further detailed study, cell walls of this culture were isolated for examination (II.2). The uranium biosorptive uptake capacity of the cell wall sample was determined at pH = 4 and at $23^{\circ}C$.

The pure cell wall preparation presented marginally higher uranium uptake capacity than whole mycelia under the same conditions (Figure III-A.2).

Higher uptake capacity by the pure cell wall preparation might be interpreted as indicating that the cell wall is the biosorptively active part of the <u>R</u>. arrhizus mycelium, but confirmation was mandatory.

III-A.5 Electron Microscopy of Uranium Biosorption

Following the initial indication (III-A.4) that the cell wall might be the biosorptively active part of the fungal cell, further evidence was supplied by the examination of thin sections of uraniumequilibrated <u>R</u>. <u>arrhizus</u> mycelia under a transmission electron microscope. Figure III-A.8 presents a typical electron micrograph of a <u>R</u>. <u>arrhizus</u> mycelium cell wall before exposure to a uranium-containing solution. Uranium uptake is obvious on the typical electron micrographs of uranium-exposed mycelium taken at three different magnifications (Figures III-A.9 to III-A.11). The uranium uptake of the specific sample presented on the electron micrographs was 186 mg/g at pH = 4.

Upon biosorption of uranium, the electron scattering ability of discrete inner layers of the cell wall increased (Figures III-A.9 to III-A.11). No other part of the mycelium appeared to take up uranium as was indicated by the absence of electron dense areas in other regions of the cell following exposure to the uranium solution (Figure III-A.9).

In order to confirm the identity of the electron dense material that concentrated in the fungal cell wall upon its exposure to uranium solution, X-ray Energy Dispersion Analysis was implemented. Spectra of the cell wall, the cell interior and the thin section background were recorded before and after uranium uptake. The instrument microprobe (II.4) was first focussed on the electron dense areas that appeared after biosorption of uranium. Figures III-A.12 to III-A.15 present typical examples of the recorded X-ray. Energy Dispersion Analysis (E.D.A.) spectra.

Figure III-A.12 presents the X-ray E.D.A. spectrum of uraniumequilibrated <u>R. arrhizus</u> cell walls. The section of the spectrum containing the uranium M spectral line is shown. The exact positionof the line is indicated by the white marker line. An energy level

59

 (\cdot)

60.

FIGURE III-A.9 R. arrhizus mycelium following uranium biosorption. Electron micrograph (19,750 X).

 \mathbf{O}

62.

•

 \mathcal{O}

64.

FIGURE III-A.10 R. arrhizus cell wall following uranium biosorption. Electron micrograph (41,000 X).

(

«

()

FIGURE III-A.12 Typical X-rays E.D.A. spectrum. Uranium M line of R. arrhizus cell wall electron dense areas following U(VI) biosorption.

5

÷

27.5

 $\mathbf{O}_{\mathbf{A}}$

()

68. - .

FIGURE III-A.13 Typical X-rays E.D.A. spectrum. Uranium M line of <u>R. arrhizus</u> cell wall before biosorption and of cell wall interior before and after U(VI) biosorption.

75 3240EV N 252 U V5: 250 H5:100EV/CH

ţ

Sel. a

92 FDAY

69,

considerably higher than the background was observed, at the M uranium line. This revealed the presence of uranium in the analysed sample. Figure III-A.14 presents the section of the spectrum containing the uranium spectral line following uranium uptake. Again, an energy level significantly higher than the background was observed. The combined identification of energy levels significantly exceeding the background at the L and M uranium spectral lines confirmed that the electron dense areas of the uranium-equilibrated <u>R</u>. <u>arrhizus</u> cell walls contained uranium. A scan of the spectrum did not indicate the presence of another new element in the cell wall.

Figures III-A.13 and III-A.15 present typical X-ray E.D.A. spectra at the L and M uranium lines position that were recorded when the microprobe examined the background and the cell interior of <u>R</u>. <u>arrhizus</u> before and after uranium uptake. The cell wall of unreacted <u>B</u>. <u>arrhizus</u> cells was also examined. Both spectral lines were at background energy levels. The absence of uranium from the unreacted cell walls confirms the hypothesis that all uranium detected in the uranium-equilibrated <u>R</u>. <u>arrhizus</u> mycelia was the product of biosorption. The absence of detectable uranium from the cell interior and the background confirmed that biosorptive uptake of uranium by <u>R</u>. <u>arrhizus</u> is a phenomenon occurring mainly in the cell wall of the microorganism.

III-A.6 Pure Chitin Uranium Uptake

Chitin is an insoluble natural aminopolysaccharide. The equilibrium uranium uptake capacity of chitin was determined according.

11

Ċ

FIGURÉ III-A.14 Typical X-rays E.D.A. spectrum. Uranium L line of R. arrhizus cell wall electron dense areas following U(VI) biosorption. ٦.

"Ç.

FIGURE III-A.15

Typical X-rays E.D.A. spectrum. Uranium L line of R. arrhizus cell walls before uranium bio-sorption and of cell wall; interior before and after U(VI) biosorption.

ą,

Ci

72.

 \odot

to the method described in Section II.7. The uranium uptake capacity of chitin at pH = 4 and in absence of other cations was determined to be 6 mg/g (Appendix A). Following uranium uptake, a sample of the polymer was separated by filtration and washed with distilled water. The infrared (IR) and mass spectra of the reacted chitin were recorded. Figures III A.16 and III-A.17 present the chitin infrared spectra before and after uranium uptake. The recorded infrared spectrum of pure chitin corresponds to that published in the literature. Discernible differences were not observed between the chitin spectra recorded before and after uranium uptake. The range where the characteristic urany1 v_3 absorbance band (931 cm⁻¹ to 908 cm⁻¹) was expected, is occupied by deep absorbance bands of the chitin spectrum (Figures III-A.16, III-A.17). The characteristic absorbance band of urany1 ion (v_3) was not observed.

The mass spectra of chitin before and after uranium uptake were also recorded (II-5). The mass spectrum of the U-chitin complex did not show any species with $Z \ge 130$. In other words, it did not indicate the presence of uranium (Figure III-A.18).

III-A.7 N-Acetyl-D-Glucosamine Interaction with Uranium

As N-Acety1-D-Glucosamine (NAGI) is the basic building block (monomer) of the chitin molecule, the interaction of NAGI with uranium was investigated (II-8). The effort was focussed towards isolating a uranium-NAGI complex.

73.

635

()

FIGURE III-A.16 Infrared spectrum of virgin chitin.

50

 \bigcirc

FIGURE III-A.18 Mass spectrum of U(VI) bearing chitin.

٦,

Ø

78.

n

Reaction between uranium and NAGI at 1:1 molar ratio was carried out at pH = 4 `for a short period of approximately 20 min under conditions of mild stirring. It yielded a precipitate insoluble in water, absolute ethanol, or acetone. The precipitate (P1) was left to settle for 48 hours. The solution was filtered (through a 0.45 um filter paper) and left standing. Two hours later new precipitate was observed (P2). The solution was filtered again and was left standing. Additional precipitate appeared much later (P3). The two control solutions containing only NAGI or uranyl nitrate under the same experimental conditions did not exhibit precipitate formation. Twelve days later 20 mg of NAGI were introduced into the uranyl nitrate control. solution and the system was left standing. Approximately 48, hours later the precipitate appeared again, confirming that the observed precipitate was the result of the interaction between the uranyl ion and the NAGI. molecules. The experiment was repeated with different concentrations of $U0_{2}^{\dagger}$ ² and NAGI (0.1 M, 0.03 M, 0.003 M), always yielding similar results.

1.57

The infrared spectra of the precipitates were recorded in an effort to obtain information on their chemical composition.

All precipitates gave similar infrared spectra indicating similar chemical composition. Figure III-A.19 presents a typical IR spectrum of the precipitate Pl after drying under vacuum at an ambient temperature (23°C). Figure III-A.21 presents the infrared spectrum of the same precipitate following oven drying at 90°C for 12 hours. Comparing both spectra with the pure NAGI IR spectrum (Figure III-A.20), it can be seen that NAGI moieties were not present in the precipitate as, for

ار به

0

FIGURE III-A.19 P.1 precipitate infrared spectrum following vacuum drying at 23°C.

81.

Q, ها

example, all amide bands are not present. A simple inorganic rather than organic, chemical composition is suggested, showing that the examined precipitate was not a uranium-NAGI complex. The presence of uranium in the precipitate was confirmed by the positive result of the Arsenazo III test on a solution containing precipitate (P1) dissolved in HC1.

III-A.8 Infrared Spectroscopy of Uranium Equilibrated <u>R. arrhizus</u> Cell Walls

In the preceeding sections the data were presented which led one to the conclusion that the cell wall of <u>R</u>. <u>arrhizus</u> is the part of the mycelium responsible for biosorption of uranium. The infrared spectra of <u>R</u>. <u>arrhizus</u> cell walls before (Figures III-A.22 and III-A.25) and after uranium uptake (Figures III-A.23 and III-A.26) were recorded with the intention of acquiring information on the nature of the chemical interaction between uranium and the cell wall.

A comparison of the 4000 cm⁻¹ to 400 cm⁻¹ range of the IR spectra (Figure III-A.24), while revealing no discernible shifts in the characteristic absorbance bands, exhibits one new peak at 908 cm⁻¹, on the uranium-exposed cell wall spectrum (Figure III-A.23). This new peak was assigned to the v_3 uranyl ion characteristic frequency. A detailed discussion of the recorded 4000 to 400 cm⁻¹ IR spectra is presented in Chapter IV.

The 400 to 340 cm⁻¹ range of the cell wall IR spectrum before and after uranium uptake is presented in Figures III-A.25 and III-A.26, respectively. After uranium biosorption a new peak appeared at 374 cm⁻¹

. . .

·*

FIGURE III-A.24 Comparison of the infrared spectrum of <u>R</u>. <u>arrhizus</u> cell walls before (1) and after (2) uranium bio-sorption.

1

 (\cdot)

(`)

92.

()

 \bigcirc

(Figure III-A.26). This new peak and the 908 cm⁻¹ shifted v_3 uranyl ion peak provide evidence of the coordination of uranium with the chitin nitrogen. Relevant discussion of the cell wall IR spectra in, the range from 400 to 340 cm⁻¹ is also presented in Chapter IV.

III-A.9 Co-ion Effect on Uranium Biosorption

The effect of the presence of the co-ions Fe^{+2} and Zn^{+2} in solution on the uranium biosorptive uptake capacity of <u>R</u>. <u>arrhizus</u> was examined. The percentage changes of uranium uptake are presented in Table III-A.5. At pH = 4 and constant initial uranium concentration (80 mg/l), bivalent iron suppressed the uranium biosorptive uptake capacity of <u>R</u>. <u>arrhizus</u> in direct proportion to the initial iron concentration in solution (Figure III-A.27).

Zinc caused similar suppression of uranium biosorptive uptake capacity for the two initial $Zn^{\pm 2}$ concentrations examined at pH = 4 and the same initial uranium concentration (Figure III-A.29).

The mechanism through which Zn^{+2} and Fe^{+2} suppress the uranium biosorptive uptake capacity of <u>R</u>. <u>arrhizus</u> will be discussed in Section IV-A.10.

At pH = 2, neither Zn^{+2} nor Fe⁺² had an appreciable effect on <u>R</u>. <u>arrhizus</u> uranium uptake capacity, regardless of the initial coion concentration (Figures III-A.28 and III-A.30).

The co-ion uptake by <u>R</u>. <u>arrhizus</u> was determined, for either Fe⁺² or $-Zn^{+2}$, to be between 5 mg/g and 9 mg/g.

98.

, , , , , , , , , , , , , , , , , , ,				TABLE I	[I-A.5		- - -	-v ²			ι	` <u> </u>
	Co-Ion Eff	fect on	Uranium Bio	sorptiv *	ve Upta	ake Capa	city	of <u>R</u> .	<u>arrh</u>	<u>ízus</u>	, , ,	' ' ' '
Conditions		* *	pH = 4, 8	0 mg/1 '	u ⁺ 6 - *	``	~	рН, =	2, 8	0 mg/	'ì U ⁺⁶	1
Co-ion present		Fe ⁺²	· · ·	1	Zn ⁺²	,		Fe ⁺²			Zn ⁺²	•
Co-ion concentration mg/1	ø -	30]	100 1000	i se	20	50	ø	30	500	·ø	, 20	50
U ⁺⁶ uptake capacity . mg/g*	170	133	73 45	.170	118	118	88	92	88	88	90	90
<pre>% change of U⁺⁶</pre>		26% - !	59% -`75%		\$ 34%	- 34%	-	- 4%	Str.	-	+ 2%	+ 29
	+6	د ت	· · · · · · · · · · · · · · · · · · ·	<u> </u>		0				<u>F</u>		.

 $C_{eq} = 70 \text{ mg/l U}^{+}$

r.** 3.#

. .

- 99

 \bigcirc

Ē

FIGURE III-A.27 Fe(II) effect on U(VI) biosorption plateau, pH = 4.

, (4

la service service service service to service service service service service service service service service s

III-A.10 Uranium Biosorption Kinetic Data

The instrumentation and the experimental techniques that were employed during the preliminary investigation of the kinetics of uranium biosorption by <u>R</u>. <u>arrhizus</u> have been described in Section II-8.

The response of the sampling system is summarized in Table "III-A.6 where the analytically determined Zn^{+2} concentration of the sample is compared to the known Zn^{+2} concentration in the reactor solution. The data in the table clearly indicate that the sample concentration represented the reactor solution concentration accurately. Sample cross-contamination was not observed either as a step increase of the reactor solution Zn^{+2} concentration was accurately represented by respective samples withdrawn.

Table III-A.7 briefly presents the parameters under which typical kinetic experiments were executed. Kinetic experiments,#3 and #4 were considered reference experiments. The effects of solution pH, temperature, initial uranium concentration and biomass dosage, may be seen in experiments #8, #7, #4 and #6, respectively.

All uranium biosorption kinetics curves determined at pH = 4 share common characteristics (Figures III-A.31 to III-A.33). Within the first 60 seconds of contact, the U(VI)-biomass system reached an initial equilibrium plateau that corresponded to approximately 66% of the total uranium uptake capacity of R. arrhizus. The biosorption

TABLE III-A.6

Sampling System Response Examination

1

()

0

Sample Number	Calculated Concentration C _c , mg/l	Measured Concentration C _m , mg/l	^۲ C _m /C _c
1	نو 10.0	10.0	100
2	. 12.0	12.0	100
3	13.9	14.1 .	102
4	17.9	17.8	99
5	21.9	21.5	98
6	23.9	24.0	100

TABLE III-A.7

्र

110.

Typical Experimental Conditions Employed in Uranium Kinetic Experiments

.,,

Ċ

,						•		
Experiment Set #	· 1	2	3	4	5	6	7	8
Agitation Rate RPM	800	1100	- 1300	1300	1300	1300	1300	1300
Initial U ⁺⁶ Concentration mg/1	<u>ہ</u> 50	37	39	20	79	40	[،] 42	42
Biomass mg	150	120	148	, 148	143	77	149	135
Reaction Mixture Volume ml	995	989	990	997	, 1015	1000	1010	985
рН	4.0	4.0	4.0	- 4.0	4.0 [*]	4.0	4.0	2.0
ͳ ^ͺ οϲͺͺ	23	23	23	23 [°]	23	23	6	23 -

· *

X

FIGURE III-A.33 Uranium uptake rate curves.

;

system remained stable at this initial plateau for approximately 0.5 hours. Within the next half-hour the biosorption system gradually reached the final equilibrium plateau corresponding to 100% of the uranium uptake capacity of the biomass. Solution pH strongly affected the rate of uranium uptake. At pH = 2 the uranium uptake rate was significantly lower (Figure III-A.33). Detailed experimental kinetic data for the experiments presented are available in Appendix E. A discussion of the kinetic results is available in Chapter IV.

III-B THORIUM

III-B.1 Thorium Equilibrium Uptake Studies

The experimentally determined thorium equilibrium uptake capacities of all tested materials are summarized in Table III-B.1. The thorium uptake capacities (mg/g) are presented at three selected thorium equilibrium solution concentrations.

<u>Rhizopus arrhizus</u> exhibited the highest thorium uptake capacity of approximately 170 mg/g, and a steep biosorption isotherm with high loadings at low equilibrium Th(IV) concentrations (Figure III-B.1). The biomass of <u>Rhizopus arrhizus</u> was, therefore, selected to be used for a more in-depth investigation of thorium biosorption.

Initial thorium concentration did not have a discernible effect on the observed thorium biosorption isotherms. Solution pH affected thorium biosorptive uptake. In general, lower thorium uptake was observed at pH = 2 than at pH = 4 or pH = 5 (Figures III-B.2, III-B.3). No difference in thorium biosorptive uptake was observed between pH = 4and pH = 5 (Figure III-B.2). The effect of solution pH and initial

-	1	້	ſ	; · · //			•		· · ·
	- 0	r.	· ·		بر ۱ ۱	•		۰ ۲ ۲ ۲ ۲ ۲	-1
	, ,		Thorium Bioson	TABLE II	I-B.1 cities, q (mg/g) .	<u>рн — 4,5</u>	° T	~ (-
			¢.	×	MATERIALS	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
tesidual acentration mg/l	<u>À.</u> terr	eus A. niger	r P. fluorescens	Mumic: <u>S. ňiveus</u> Act. S	ipal Phenolic ludge Act. Sludge	P. chrysogenum	<u>R. arrhizus</u>	Ionex IRA-400	Act. Carbon F-400
5. , 30	5	10.	8 13	10 36 17 48	27 غر 46	118 145		3	29
100	8	25	19	25 (50)) (46)	(160)	(210)	(13)	(147)
-		, t	- '	ب ر		,			•
?	t.	2 1		• 1	• • *	o			~
-	~ -	** **,	۲			• ,	·		•
•		-	•		•	• • •			118.
	۰ ب	•	,` ^	× ,	•	ı			

. .

FIGURE III-B.3

<! ` }

Linearized 1	thorium bios	orption	isother	ms for	
Pseudomonas	fluorescens	(q = 2.	54 $C^{1/2}$.82, pH	- 2;
$q = 4.83 C^{1/2}$	3.3/ pH =	4,5) and	Strept	omyces n	iveus
(q = 10.30)	21/4.26, pH	= 2; q =	- 10.22	<u>C173.36</u>	<u>рН —</u>
4,5).	C	-	,	0	

Ċ3

Th(IV) concentration on q are discussed in Chapter IV.

III-B.2 Linearization of Thorium Biosorption Isotherms

The same methods as the ones described in Section III-A.2 were applied to linearize the thorium biosorption isotherm data and fit them to the adsorption isotherm models presented in Section III-A.2.

The S.E.E. values that resulted from the fitting of the Langmuir and Freundlich adsorption isotherm models to the experimentally determined thorium biosorption isotherm data are summarized in Table III-B.2. Both models successfully describe the biosorption isotherm data. Figures III-B.2 to III-B.8 present linearized thorium biosorption isotherms for the materials tested.

For some of the materials tested the Freundlich model was somewhat more successful in describing the experimental isotherm data; its S.E.E. values were slightly lower. All experimentally determined thorium biosorption isotherms were linearized according to the Freundlich model. Detailed data for all thorium biosorption isotherms are available in Appendix B.

III-B.3 Temperature Effect on q

The biomass of <u>R</u>. <u>arrhizus</u> was used to examine the effect of temperature on the thorium biosorptive uptake capacity, q (Figure III-B.2).

A small increase in thorium uptake was observed when the temperature increased from $5^{\circ}C$ to $40^{\circ}C$. Table III-B.3 summarizes the

G

S.E.E.* Values for Thorium Biosorption Isotherms

· · · ·	рН	 4,5	pH == 2			
Material	Langmuir	Freundlich (Q; n)	Langmuir	Freundlich (Q; n)		
A. niger	0.84	1.29 (5.63; 3.14)	0.84	1.29 (5.63; 3.14)		
A. tefreus	3.46	4-06 (5.82; 76.04)	; _	-		
P. fluorescens	2.21	0.77 (6.68; 5.61)	0.14	1.30 (_3.79; 77.78)		
S. <u>niveus</u>	3.38-	2.39 (10.37; 3.50)	3.38	2.39 (10.76; 3.76)		
Municipal sludge	. 9.98	8.29 (16.34; 2.74)	• 9.98	8.30 (19.31; 3.27)		
"Phenolic" sludge	2.52	5.79 (7.81; 2.74)	4.06	3.37 (21.44; 5.05)		
R. arrhizus	47.44	22.09 (63.84; 3.05)	18.18	18,18 (52.42; 5.43)		
P. chrysogenum	15.34	16.01 (107.27; 9.48)	8.93	10.65 (92.08; 28.68)		
IRA-400	1.85	1.08 (1.31; 1.92)		-		
F-400	12.56	12.82 (10.68; 1.87)	1.12	1.10 (0.30; 1.29)		

* Overall S.E.E.

 $\langle \cdot \rangle$

)

126,

•

à

E. .

FIGURE III-B.4 Linearized thorium biosorption isotherms for Aspergillus niger (q = 6.08 $C^{1/3.23}$, pH = 2,4,5).

A second seco

observed changes in thorium biosorptive uptake with temperature at three selected equilibrium thorium concentrations. Observed differences were significant for temperature changes from 23° to 40° C and from 5° C to 40° C.

The effect of temperature on the thorium biosorptive uptake capacity of R. arrhizus was not very pronounced.

-HII-B.4 Pure Cell Wall Preparation Thorium Uptake

The thorium uptake capacity of the <u>R</u>. <u>arrhizus</u> cell wall preparation was determined at pH = 4 and at $23^{\circ}C$. As in the case of uranium (III-A.4), the cell wall sample presented marginally higher thorium uptake than the whole mycelia under the same conditions (Figure III-B.2). This indicates that the cell wall of the <u>R</u>. <u>arrhizus</u> mycelium is mainly responsible for the biosorptive uptake of thorium. Confirmation of this indication was, however, necessary.

III-B.5 Electron Microscopy of Thorium Biosorption

In order to further investigate the indication that thorium is mainly taken up by the <u>R</u>. <u>arrhizus</u> cell wall, electron microscopic examination of <u>R</u>. <u>arrhizus</u> mycelia before and after thorium biosorption was undertaken. The same method as the one applied for uranium (II-3 and III-A.5) was employed. Figure III-B.9 presents a typical electron micrograph of a <u>R</u>. <u>arrhizus</u> mycelium cell wall before thorium biosorption. The absence of any electron-dense material is obvious. Thorium uptake is evident, as there are electron-dense regions, on the typical electron micrographs of thorium-exposed R. arrhizus mycelium cell walls

taken at two different magnifications (Figures III-B.10 to III-B.11). The thorium uptake of the specific sample presented on the micrographs was 168 mg/g at pH = 4. Figure III-B.12 presents an electron micrograph of R. arrhizus cell wall following thorium uptake at pH = 2.

Following thorium biosorption by <u>R</u>. <u>arrhizus</u> at pH = 4, a strongly electron dense area appeared on the outer section of the cell wall (Figure III-B.10). The appearance of this band indicated that the outer section of the mycelium cell wall had retained most of the biosorbed thorium.

The observed electron dense area can be considered to contain most of the biosorbed thorium as no other parts of the cell increased their electron scattering ability following thorium uptake.

Conclusive determination of the identity of the electron dense material as thorium was achieved through X-ray Energy Dispersion analysis of the thin sections that were examined under the electron microscope. Thorium was only detected in the outer, electron dense areas of the cell wall. Figures III-B.13 and III-B.14 present typical X-ray E.D.A. spectra of the outer region of the <u>R. arrhižus</u> cell.wall before and after thorium uptake. The section of the spectrum containing the M thorium spectral line is shown. The white marker line indicates the exact position of the thorium spectral line. An energy level considerably above the background was observed following thorium uptake (Figure III-B.14). Figures III-B.15 and III-B.16 present typical x-ray E.D.A. spectra recorded when the probe was focussed on the inner cell wall region, the cytoplasmic region and the background. Before thorium uptake (Figure III-B.15) and after thorium biosorption (Figure III-B.16)

 (\cdot)

FIGURE III-B.10 R. arrhizus mycelium following thorium biosorption. $\overline{Electron\ micrograph}$, (14,000 X). pH = 4

1

÷.,

 (\cdot)

; () 146.

, **f**

4

FIGURE III-B.13 Typical X-rays E.D.A. spectrum. Thorium M line of <u>R. arrhizus</u> cell wall electron dense areas before thorium biosorption.

FIGURE III-B.14

()

Typical X-rays E.D.A. spectrum. Thorium M line of R. arrhizus cell wall electron dense areas following thorium biosorption.

2

 (\cdot)

FIGURE III-B.15 Typical X-rays E.D.A. spectrum. Thorium M line of inner cell wall layers and cell interior before thorium biosorption.

\$ \$

Typical X-rays E.D.A. spectrum. Thorium.M line of inner cell wall layers and cell interior FIGURE III-B.16 2007. following thorium biosorption.

()

2

0 , . . .

the energy level at the thorium M spectral line remained at background levels, clearly demonstrating the absence of detectable thorium from these regions of the mycelium.

III-B & Rure Chitin Thorium Uptake

The thorium uptake capacity of pure chitin was determined at pH = 4 in the absence of other cations. The thorium chitin loading was 8 mg/g (Appendix B).

Following thorium uptake, a sample of the polymer was separated by filtration and rinsed with distilled water. The infrared and mass spectra of the reacted chitin were recorded. Figures III-B.17 and III-B.18 present the reacted and unreacted chitin IR spectra. No discernible shifts were observed on the chitin spectrum following thorium uptake.

The presence of thorium on the reacted chitin was not indicated by the recorded mass spectra (Figure III-B.19).

The recorded IR and mass spectra are discussed in Chapter IV.

III-B.7 N-Acety1-D-Glucosamine Interaction with Thorium

The interaction between thorium and NAGI was investigated in the same way as for uranium and NAGI (II-8, III-A.6). Unlike uranium, thorium interaction with N-Acety1-D-Glucosamine did not produce a precipitate that could be interpreted as an indication of either insoluble complex formation or of complex hydrolysis. It is possible that a NAGI-thorium complex would be water soluble and not easily hydrolysable.

 \bigcirc

FIGURE III-B.18 Infrared spectrum of Th(IV) bearing chitin.

III-B.8 Infrared Spectroscopy of Thorium Equilibrated <u>R. arrhizus</u> Cell Walls

The infrared spectra of virgin and thorium-equilibrated <u>R. arrhizus</u> cell walls were recorded in an effort to acquire some information on the nature of the interaction between thorium and the mycelium cell wall. Figures III-B.20 and III-B.21 present the 4000 to 400 cm⁻¹ range of the IR spectra of the <u>R</u>. arrhizus cell wall before and after thorium uptake.

Following thorium biosorption some changes in the texture of some absorbance bands were obvious. However, discernible shifts were not observed (Figure III-B.22). The 4000 to 400 cm⁻¹ range of the IR spectrum of the <u>R. arfhizus</u> cell walls did not provide information on the nature of the interaction between the <u>R. arrhizus</u> cell wall and thorium.

Figures III-B.23 and III-B.24 present the 400 to 340 cm⁻¹ part of the infrared spectrum of virgin and thorium-equilibrated <u>R. arrhizus</u> cell walls. A new absorbance band that appeared following uptake by the cell wall at 362 cm^{-1} has been assigned to thoriumnitrogen bond strech vibrations. The new peak indicates the coordination of thorium with the chitin nitrogen (Figure III-B.24)-*

÷.

Discussion of the recorded infrared spectra is available in Chapter IV.

st . Ť

Ò.

FIGURE III-B.24 Comparison of far (400-350 cm⁻¹) infrared spectra of <u>R. arrhizus</u> cell walls before (1) and after (2) Th(IV) biosorption.

y sza A

· ""ei

 (\cdot)

Fight Tobins .

III-B.9 Co-ion Effect on Thorium Biosorption

The effect of the co-ions Fe^{+2} and Zn^{+2} on the thorium biosorptive uptake of <u>R</u>. <u>arrhizus</u> was examined. The percentage changes of thorium uptake at the examined co-ion initial concentrations are presented in Table III-B.4... The results clearly indicate that neither Zn^{+2} nor Fe⁺² had any appreciable effect on the thorium uptake capacity of <u>R</u>. <u>arrhizus</u> under any of the conditions examined. Figures III-B.25 to III-B.28 present <u>R</u>. <u>arrhizus</u> thorium biosorption isotherms determined in the presence of different co-ion concentrations and solution pH values.

The co-ion uptake of <u>R</u>. <u>arrhizus</u> was determined to be approximately 5 to 9 mg/g for both Fe^{+2} and Zn^{+2} at pH = 4.

III-B.10 Thorium Biosorption Kinetic Data

The instrumentation and the experimental techniques employed in the preliminary examination of thorium biosorption kinetics by R. arrhizus have been described in Section II-9.

Table III-B.5 summarizes the average values of the main parameters of the kinetic experiments. All experimental thorium biosorption rate curves that were determined at pH = 4 exhibited common characteristics. The thorium-<u>R</u>. <u>arrhizus</u> biosorption system reached equilibrium within the first 60 seconds of contact and remained stable thereafter. Thorium uptake calculated for the biomass in the reactor at equilibrium was similar to that indicated by the biosorption isotherm at the same equilibrium Th(IV) concentration.

	Γ.	AB	LE	I	I	Ŀ	- B	•	4
--	----	----	----	---	---	---	-----	---	---

f f r

Co-Ion Effect on Thorium Biosorptive Uptake Capacity of R. arrhizus

Æ

Conditions	pH = 4, 30 mg/1 Th ⁺⁴					$pH = 2, 30 \text{ mg/1 Th}^{+4}$							
Co-Ion Present		Fe	+2	1.		Zn ⁺²			Fe ⁺	2		Zn ⁺²	``````````````````````````````````````
Co-Ion Concentration mg/l	18	30	100	1000	ø	20	50	ø	30	500	ø	- 20	50
Th ⁺⁴ Uptake Capacity at 20 mg/ 1 Th ⁺⁴	170	162	170	174	170	172	173	89	87	• , 90	89	102	93
⁵ Change of Th ⁴⁴ Uptake Capacity	-	- 7%.	0%	+ 2%	-	+ 1%	+ 2%	-	ø\$	÷ 1%	-/	+ 14%	+ 4%

2

1

្រឡំង

.1-

171

172, 1 FIGURE III-B.25 Fe(II) effect on Th(IV) biosorption, pH = 4.

Ô

٠ ا-

TABL	E II	I-B	.5
------	------	-----	----

, **š**

Typical	Experime	ental Co	nditions	Employed
In	Thorium	Kinetic	Experime	ents

Experimental Set #	, 1	2	3	- 4	5	, 6	7
Agitation Rate RPM	1000	1300	1300	1300	1300	1300	1300
Initial Th ⁺⁴ Concentration mg/1	· 21	17	15	16	30 .	17	14 _
Biomass mg	. 80	35	ົ40	21	40	40	38
Reaction Mixture Volume ml	1100 •	1008	1000	1000	998	1005	1000
pH	4.0	3,9	3.9	4.0	4.0	2.0	4.0
T O C	23	23	23	23	23	23	8

13

 $(^{)}$

180._.

¢

忌

Temperature change within the range of .8°C to 23°C did not affect the observed thorium uptake rate. Within the range examined neither initial thorium concentration nor biomass dosage change (Table III-B.5) had a discernible effect on the thorium uptake rate (Figures III-B.29, III-B.30, III-B.31). Solution pH, however, appeared to significantly affect the overall thorium uptake rate (Figure III-B.31). Detailed data for the presented kinetic experiments are available in Appendix E.

· ()

 (\hat{r})

5.4.

181.-

13

Ų,

 (\cdot)

) , , , , ,

CHAPTER IV

DISCUSSION

IV-A URANIUM

IV-A.1 Uranium Biosorption Equilibrium Uptake Studies

Sections III-A.1 and III-A.2 presented the uranium biosorption isotherms of all the materials that were tested. The effects of solution pH, initial uranium concentration and solution temperature on q will be discussed in the following section.

-31

IV-A.1.1 pH Effect on q

The examined biomass types can be separated into two groups. The first group was comprised of the biomass types that did not exhibit a significant difference in uranium uptake between pH = 2 and pH = 4. The biomass of <u>Pseudomonas fluorescens</u> (Figure III-A.3), <u>Aspergillus terreus</u>, and municipal waste activated sludge (Figure III-A.4) belong to this group, which, in general exhibited low uranium uptake capacities.

The second group exhibited significantly lower uranium uptake at pH = 2 than at pH = 4. Industrial waste activated sludge (Figure III-A.5), the ion exchange resin IRA 400 (Figure III-A.6), the activated carbon F-400 (Figure III-A.6) and <u>R. arrhizus</u> (Figure III-A.2) exhibited such behaviour. No discernible difference in uranium uptake was observed between pH = 4 and pH = 5 for all materials tested (Figures III-A.2 to III-A.6).

Activated carbon and IRA-400 presented the highest difference in q between pH = 2 and pH = 4. More specifically, IRA-400 exhibited zero uptake at pH = 2 and a loading of about 80 mg/g at pH = 4. IRA-400 is an anionic resin and at pH = 2 uranium ions exist in the form of the simple uranyl cation UO_2^{+2} , which explains the observed zero uptake of uranium²². However, negatively charged hydrolysed complex uranium ions that exist between pH = 4 and $pH = 5^{20}$, can be retained by IRA-400. Hydrolysis products are in simultaneous dynamic equilibria and consequently the resin could reduce the solution uranium concentration down to zero (Figure III-A.1).

Filtrasorb 400 also exhibited zero loading at pH = 2 and a maximum uptake of approximately 150 mg/g at pH = 4. The activated carbon showed a preference for the adsorption of the hydrolysed uranium ions that exist above pH = 2.5, rather than the simpler uranyl-ion. The reduced solubility of uranium ions at pH = 4 or pH = 5 and the narrow overall pore volume distribution of this activated carbon may have resulted in the \sim observed behaviour⁵⁰, 51, 52

The UO_2^{+2} hydrolysis products distribution curves available in the literature²² suggest that for low total U(VI) concentrations and for pH below 5, UO_2^{+2} continues to be one of the predominant uranium ionic species in solution. The following equations most probably describe

U(VI) hydrolysis in non-complexing media. 20,22

 $\mathbf{O}_{\mathbb{Z}}$

$$UO_{2}^{+2} + H_{2}O \stackrel{K_{1}}{\Rightarrow} UO_{2}(OH)^{+1} + H^{+} (\log K_{1} = -5.8)$$

$$2UO_{2}^{+2} + 2H_{2}O \stackrel{K_{2}}{\Rightarrow} (UO_{2})_{2}(OH)_{2}^{+2} + 2H^{+} (\log K_{2} = -5.62)$$

$$3UO_{2}^{+2} + 5H_{2}O \stackrel{K_{3}}{\Rightarrow} (UO_{2})_{3}(OH)_{5}^{+1} + 5H^{+} (\log K_{3} = -15.63)$$

. One can assume that the above reactions approximate the hydrolysis equilibria in the dilute uranium aqueous solutions used in the present A uranium mass balance along with the three equilibrium expressions work. yield a system of four equations, the numerical solution of which allows estimation of the distribution of U(VI) among the principal hydrolysed uranium ionic species. For a total U(V1) concentration of 100 mg/1, about 80% of U(VI) exists in the form of UO₂⁺² at pH=4, while at pH = 5 the UO_2^{+2} percentage drops to about 9%. At pH = 2, UO_2^{+2} is the dominant species present. It is evident from this analysis that the 20% reduction in UO, $^{+2}$ content of the solution, when solution pH changes from pH = 2 to pH = 4, does not account for the large difference in uranium uptake observed for some of the microorganisms, such as Rhizopus arrhizus (Figure In addition, the major decrease in UO_2^{+2} concentration between III-A.2). pH = 4 and pH = 5 was not accompanied by a discernible change in uranium. Therefore the concentration of the UO_2^{2+} ions in solution uptake capacity. does not appear to be a main factor influencing the uranium biosorptive wptake capacity of the biomass.

Uranium solubility diminishes significantly with increasing The difference in solubility is much greater between pH = 2 and ъH pH = 4 than between pH = 4 and pH = 5. Consequently, there appears to be a qualitative correlation between observed biosorptive uptake capacity and solubility. A further increase in solution pH, beyond pH = 6, ^ohas been reported to significantly reduce uranium biosorptive uptake¹⁵. This reduction in uptake coincides with an increase of uranium solubility in the form of uranates, and is in line with the indicated correlation of urânium solubility with uranium biosorptive uptake. Solution pH appears as a parameter that can affect considerably the uranium biosorptive uptake through the control of uranium solubility. The effect of uranium solubility on q will be discussed further in Section IV-A.10 which deals with the hypothesized mechanism of uranium biosorption.

IV-A.1.2 Effect of Initial Uranium Concentration on q

(b)

Initial uranium concentration had no discernible effect on the determined uranium biosorption isotherms (III-A.2). Starting with different conditions of initial uranium concentration and biomass dosage, the same isotherm curve was derived. This observation, coupled with the reproducibility of experimental results, indicate that the observed equilibrium uptake capacities can be considered to represent true equilibrium of the biosorption systems examined independent of the experimental conditions. In addition, it can be concluded that the equilibrium curves are independent of the samples used in each individual experiment and that

the biomass types examined behaved like uniform materials; the particle configuration (e.g. agglomerated mycelia) had no apparent effect on observed equilibrium uptakes,

° IV-A.1.3 Temperature Effect on q

()

The effect of temperature on uranium biosorptive uptake of <u>R</u>. <u>arrhizus</u> was not very pronounced (II-1.2, III-A.3). In terms of process application this conclusion is significant as it indicates that the biosorptive uptake capacity of <u>R</u>. <u>arrhizus</u> does not change significantly within the 5°C-40°C temperature range that covers most actual waste water operations.

IV-A.1.4 Comparison of U Biosorption Equilibrium Data with Results Reported in the Literature

Some experimental data on biosorption of uranium by <u>Penicillium</u> <u>chrysogenum</u> were reported by Jilek <u>et al</u>.¹⁵. Their results indicated that, at pH = 3, "dried" <u>P. chrysogenum</u> mycelium was capable of maximum uranium uptake of approximately 145 mg/g, while "natural" mycelium took up approximately 175 mg/g, both results referring to a 24 hrs "culture time"¹⁵ Reinforced <u>Penicillium chrysogenum</u> biomass containing approximately 35% reinforcing inactive agents, has also been reported by the same research group as exhibiting uranium uptake capacity of approximately 100 mg uranium per gram of dry biosorbent (pH not reported).

The above result's correspond well with the uranium biosorptive uptake capacity of about 165 mg/g (at pH = 4 and Ceq of about 700 mg/l) determined for P. chrysogenum in the present work.

(

Chiu¹⁴ also reported uranium uptakes by dry dead mycelia of unidentified species in the range of 160 mg/g. Results by Chiu cannot be compared directly with the results of the present work since his microorganisms were not identified. However vague his observations were, they can serve as an indication of the order of magnitude of uptake capacities that may be expected from some mycelia, and in that sense they correlate well with data obtained during the present work.

Shumate <u>et al.</u>^{18, 19} have indicated uranium uptake capacity of 140 mg/g for a mixed living culture of denitrifying bacteria (pH = 3 to pH = 4). A temperature change from $25^{\circ}C$ to $50^{\circ}C$ had no discernible effect on the uranium distribution coefficient between the solution and the culture. Microorganisms grown independently over a period of 14 months yielded the same uranium biosorption isotherm, indicating the uniformity of their culture and the stability of the respective biosorption characteristics. All information reported by Shumate <u>et al.</u> corresponds well with data obtained in the course of the present work regarding the possible uranium biosorptive uptake capacities, temperature effect on q and the uniformity of the biomass in general (III-A.1.2).

IV-A.2 Linearization of Biosorption Isotherms

Section III-A.2 has shown that both Langmuir and Freundlich adsorption isotherm models describe uranium biosorption isotherm data

reasonably well (Table III-A.3). Higher S.E.E. values were determined for certain biosorption isotherms, as for example for <u>R</u>. <u>arrhizus</u> (Table III-A.3). In such cases the respective biosorption isotherm comprised a few points of different loadings at zero residual concentration. Points of that nature, $(q_i, 0)$ obviously cannot be described by either of the two models, resulting in higher S.E.E. values.

(

For some of the examined materials, linearization of the data was best fitted by two intersecting lines, (e.g. Figure III-A.2 or Figure III-A.5), indicating a change in the response of the biosorption system below a certain equilibrium concentration. Similar behavior is sometimes noticed with activated carbon adsorption isotherms.

The good fit of both physicochemical adsorption isotherm models to all available biosorption isotherm data may be interpreted as anindication that adsorption is involved in the phenomenon of uranium biosorption. This subject is discussed further in section IV-A.10 that deals with the uranium biosorption mechanism hypothesis.

IV-A.3 Pure Cell Wall Preparation Uranium Uptake

In Section III-A.4 it was suggested that the higher uranium uptake exhibited by the pure cell wall preparation may be interpreted as . indicating that the <u>R</u>. <u>arrhizus</u> cell wall is the biosorptively active part of the mycelium. Indeed, cell walls make up a considerable fraction of the total cell dry weight 41-44. Assuming that the same average

Sp!

194.

15 15 quantity of uranium is taken up by each cell wall, regardless of whether the wall is part of a mycelium or has been separated in a cell wall preparation, then a somewhat higher q should be expected by the cell wall preparation since the same uranium quantity is taken up by a lesser weight of biosorbent.

IV-A.4 Electron Microscopy of Uranium Biosorption

The available electron micrographs (III-A.5) of virgin <u>R</u>. <u>arrhizus</u> cell walls (Figure III-A.8) indicate that the cell wall architecture exhibits a multilaminate or stratified architecture. This observation agrees well with the extensive information published in the literature on the composition and architecture of the fungal cell wall^{3L}, 38, 39, 41-44, 47-49

Biosorbed uranium appears to concentrate in discrete layers within the cell wall which is apparently the biosorptively active part of the <u>R</u>. <u>arrhizus</u> mycelium. Together the determination of the uranium uptake . capacity of the pure cell wall preparation and the electron microscopy - Xrays E.D.A. study of <u>R</u>. <u>arrhizus</u> thin sections confirmed the above suggestion.

IV-A.5 Pure Chitin Uranium Uptake

Œ

As already mentioned (III-A.6), the infrared and mass spectra of uranium-equilibrated chitin did not reveal any information on the nature of the interaction between them. Virgin chitin IR spectrum masked the areas that could reveal such information. The very low

volatility of uranium precluded useful information from the mass spectra. Usually a volatile organometallic compound is formed whenever high atomic number elements are to be studied by mass spectroscopy. The mass spectrometer employed (II.5) uses a small sample size of approximately 50 µg. As a result, the total uranium mass present in the sample, given the low (6 mg/g) uranium uptake capacity of chitin, was approximately 0.3 µg. The very low quantity of uranium in the sample, the low uranium volatility and the fact that any ion contributing less than 1% to the total ionic current is not detected by the instrument, may have resulted in the inability of the method to detect the presence of uranium in the complex.

The ability of chitin to form a uranium complex is supported, however, by the direct experimental data as well as by similar results reported in the literature $^{33-37}$, 53 , 54 . As for the uranium uptake capacity of chitin, Andreyev <u>et al.</u> 36 have reported the value of 4.5 mg/g (pH = 3), which corresponds well to the 6 mg/g uranium uptake capacity of chitin determined in the present work.

The observed 6 mg/g loading means that, on the average, 1 out of every 180 glucosamine rings has a coordinated uranium ion on it. The competition between uranium and H_30^{-1} ions for coordinations with the chitin nitrogen (IV-A.10) is probably one of the factors responsible for the calculated 1:180 ratio of uranium bearing to uranium free rings. As a result of the competition only some of the glucosamine nitrogens become available to hydrolysed uranium ions for coordination. The equilibrium is influenced by solution pH.

IV-A.6 N-Acety1-D-Glucosamine Interaction with Uranium

In Section III-A.7, an inorganic precipitate, the product of the interaction between uranium and NAG1, was described. The precipitate contained uranium and exhibited a simple IR spectrum (Figures III-A.19 to III-A.21).

The assignment of the observed absorbance bands has been based on published information.

The broad band at 1630 cm⁻¹ has been assigned to H_2O bending vibrations in accordance with similar assignments in the literature^{57,58,64}. This explains the significant weakening of the band upon drying the precipitate in an oven at 90°C for 12 hours (Figure III-A.21).

The deep band at 922 cm⁻¹ has been assigned to the uranyl ion antisymmetric stretch (v_3) vibrations, following similar assignments in the literature. More specifically, the v_3 vibration of the uranyl nitrate hexahydrate is centered at 950 cm⁻¹ 58, 59. In a crystalline compound the U-O distance in the linear O-U-O ⁶⁰ group depends on the structure of the crystal lattice in question, or, more specifically, on the symmetry of the site occupied by the U(VI) atom and the extent to which it is bound to the nearest neighbour atom^{61, 62}. The length of the U-O band and the resulting v_3 position on the spectrum have been correlated in the following formula developed by Veal <u>et al.</u>^{61, 62}.

$$R = 81.2 V^{-2/3} + 0.895$$

where:

 $R = U-0 \text{ bond length in } A^{\circ}$ $V = v_3 \text{ frequency in } \text{cm}^{-1}$

The examination of a series of organic and inorganic uranyl complexes by Bullock⁵⁹ showed a range from 900 cm⁻¹ to 1000 cm⁻¹ for the v_3 vibration of the uranyl ion, while in certain uranate compounds v_3 wibrations in the 784 cm⁻¹ to 964 cm⁻¹ range have been reported^{61, 62}. It is felt, therefore, that the assignment of the 922 cm⁻¹ absorbance band to the antisymmetric vibrations of the uranyl group in the precipitate P1 is justified.

()

The weak or very weak symmetric stretching frequency of the uranyl ion, v_1 , is usually centered around 850 cm⁻¹, but could not be definitely identified on the recorded IR spectra^{57-59, 63}. Similar experience has, however, been reported for a large number of uranyl complexes by Bullock⁵⁹ as well as by Addison <u>et al.</u>⁶³

The broad band at 720 cm⁻¹ has been assigned to coordinated water molecules rocking, according to similar assignments reported in the literature^{57, 64}. The assignment is also supported by the simultaneous presence of the 1630 cm⁻¹ H₂O band vibrations, as well as the disappearance of the 720 cm⁻¹ band and the weakening of the 1630 cm⁻¹ band upon drying the precipitate at 90°C for 12 hrs (Figure III-A.21).

The wide double band at 3160 cm⁻¹ and 3500 cm⁻¹ can be assigned to H₂O molecules' stretch vibration, more specifically to hydroxyl antisymmetric and symmetric stretching vibration^{57, 64}. Upon drying of the precipitate, the above bands became less intensive, while the v_3 uranyl frequency shifted to 908 cm⁻¹.

The weakening of the water absorbance bands upon drying indicates a partial dehydration of the precipitate. The remaining water is held in the lattice of the crystal more firmly, as can be seen from the difficulty in evaporating it completely and the disappearance of the water rocking molecular vibrations. The IR spectrum of the precipitate suggests the chemical composition of a hydrated uranyl hydroxide. This suggested chemical composition is supported by the fact that $UO_2(OH)_2$. H_2O has been suggested as the stable phase of the U(VI) hydroxide, at $25^{\circ}C$.²²

The observed shift of the v_3 uranyl frequency upon further drying of the precipitate suggests that the U-O bond length changed. Applying the Veal formula, an actual change can be calculated from $1.752A^{O}$ to 1.761 A^{O} . The change is not very large; nevertheless, it indicates some rearrangement within the precipitate with the uranyl ion appearing less free as indicated by the elongation of the U₂O bond⁶¹.

The results of the analysis of the precipitate indicate that the end-product of the reaction between uranyl nitrate and N-Acetyl-D-Glucosamine is uranyl hydroxide.

The initial objective of isolating the U-NAG1 complex was not met. The complex under examination appeared to be water soluble along with the excess reagents.

The difficulty experienced during the present work in the attempt to isolate the uranium-NAG1 complex is not uncommon. Some metalglucosamine complexes investigated in the literature presented similar

problems^{65, 66}. The ability of glucosamine, however, to form metal complexes by coordination to the amine nitrogen, has been confirmed^{33, 65, 67}. The stability and equilibrium constants of seven metal complexes of glucosamine have been reported in the literature⁶⁶. Usual composition of complexes are 1:1 and 2:1 of glucosamine to the metal ion. Certain complexes are susceptible to hydrolysis⁶⁶. The end-product of the hydrolysis of glucosamine-metal complexes has been suggested as being the metal hydroxide⁶⁰.

In short, the above-cited literature information, the results of the IR analysis of the precipitates observed during the present work, and the fact that the observed precipitate is the product of the uranium-NAG1 interaction, indicate that the isolated uranyl hydroxide is the hydrolysis product of the water-soluble and easily-hydrolysable U(VI)-NAG1 complex.

IV-A.7 Infrared Spectroscopy of Uranium-Equilibrated R. arrhizus Cell Walls

Band assignments of the recorded spectra were based on published information.

The broad band centered at approximately 3480 cm⁻¹ has been assigned to the hydroxyl group stretching vibrations^{55, 56, 57, 68}. Polysaccharides constitute up to 90% of the dry cell wall weight so the observed strong -OH absorbance should be expected. At about 3260 cm⁻¹, N-H stretching vibrations absorb as well, but in that range the O-H and N-H bands overlap, and their separate identification is not possible.

The medium band at approximately 2930 cm⁻¹ has been assigned to-CH₃ and-CH₂ stretching vibrations, while the double peak close to 2350 cm⁻¹ has resulted from the atmospheric CO₂ that was not purged completely⁶⁰⁻⁶³.

(

The strong band at 1650 cm⁻¹ has been characterized as the amide 1 band of the spectrum. The band is also present in the pure chitin spectrum (III-A.5)⁵⁵. The absorbance exhibited by the amide I band is considered 64 to be the combined effect of the carbonyl (-C = 0) stretch mode, the C-N stretch, and to some extent the N-H band⁶⁴. The presence of the band on the cell wall spectrum was expected because chitin contains the -N-C^{≈ 0} -CH_z group. Primary amides exhibit a second band of weaker intensity, very close to the main carbonyl absorption band, in the $1650-1620 \text{ cm}^{-1} \text{ range}.$ The intensity of this second band (amide II) is usually approximately one half to one third that of the carbonyl absorption band, and is the product of N-H bond vibrations. The peak centered at approximately 1550 cm⁻¹ on the recorded spectra fulfils the above characteristics.

4.5

In the light of similar assignments in the literature^{55, 56, 69}, it has been assigned as the amide II band of the spectrum.

The strong, wide band centered at around 980 cm⁻¹ covers the range where C-O stretching vibrations, primarily of the alcohol groups, absorb (1000-1100 cm⁻¹) as well as the range where the oxygen bridge stretching modes absorb (1110, 1155 cm⁻¹)⁵⁵. The band is common in the
infrared spectra of the cell walls of fungi and is attributed to the polysaccharides of the cell wall⁴⁰, ⁶⁹. The band is also present in the IR spectra of polysaccharides⁴⁰.

The sharp peak at 640 cm^{-1} has been assigned to out-of-plane bending of the hydroxyl groups, following similar assignments in the literature⁵⁷, ⁵⁸.

The new peak at 908 cm⁻¹ that appears in the IR spectrum after biosorption of uranium has been assigned to the v_3 stretch vibration of the uranyl ion following the reasoning presented in Section III-A.6.

The infrared spectra of the cell walls indicate a situation similar to the one encountered during the study of the uranium-chitin complex IR spectrum. No discernible shifts, for example in the amide bands, can be observed. However, the presence of the v_3 uranyl absorbance band shifted to 908 cm⁻¹ indicates that uranium is mostly retained by the cell wall in a form similar to the one in which it exists in the NAG1-U complex hydrolysis product, which also exhibited the v_3 uranyl peak shifted to 908 cm⁻¹ (III-A.6).

The 400 cm⁻¹ to 340 cm⁻¹ range of the cell wall IR spectrum before and after uranium uptake is presented in Figures III-A.21 and III-A.22. A new, moderate peak at 374 cm⁻¹ appeared after uranium biosorption (Figure III-A.26). In the IR spectra of coordination compounds, the 300-500 cm⁻¹ range has generally been assigned to the metal-nitrogen stretch vibrations⁵⁷. A large number of metal-amine complexes exhibit absorbance bands within that range as a result of the M-N bond stretching vibrations^{57, 70}. Metal-nitrogen band stretching absorbance bands have also been reported at 358-367 cm⁻¹ for complexes of thorium (a metal similar to uranium) with heterocyclic amines⁷¹. This justifies assigning the new 374 cm⁻¹ peak to the uranium-nitrogen bond stretching vibrations. The new peak provides evidence for the proposed uranium coordination to the chitin nitrogen of the cell walkl.

The infrared spectra of pure cell wall preparations of different fungi reported in the literature present remarkable similarities among themselves as well as to the spectra obtained during the present work^{40, 69}. This similarity can be understood if one considers the fact that polysaccharides dominate the chemical composition of the cell wall of fungi^{38, 39} and therefore impose the common characteristics of their infrared spectra on the fungal cell wall infrared spectra^{40, 69}.

IV-A.8 Co-ion Effect on Uranium Biosorption

The results in Table III-A.5 indicate that both Zn^{+2} and Fe^{+2} inhibit uranium biosorption even at low initial co-ion concentrations. Zinc appears to be more effective than iron. An initial zinc concentration of 20 mg/l resulted in a uranium uptake decrease of approximately 34%, while even higher iron concentration produced somewhat smaller U uptake inhibition (26%). It is also interesting to note that zinc is ahead of iron in the Irving-Williams series of complex stability.

The uncertainty in the determined co-ion uptake capacity resulted from the very small change observed in the co-ion concentration . following biosorption. The measured co-ion concentration difference was very small and close to the accuracy of the analytical techniques employed.

IV-A.9 Uranium Biosorption Kinetic Data

The values of the main parameters that characterized the kinetic experiments have been presented in Table III-A.7.

The 40-80 mg/1 U^{+6} initial concentration range was selected because:

a) In that range sample processing and U^{+6} concentration determination were direct, without any intermediate dilution step that would introduce additional experimental error. The recorded absorbance values also fell within optimum range²⁸, thus improving the accuracy of U^{+6} concentration determination.

b) Similar uranium concentrations were also employed in the uranium biosorption equilibrium studies.

Following the selection of the initial and final uranium concentrations, the biomass dosage was calculated on the basis of a uranium uptake capacity of approximately 160 mg/g. A dosage of 135 mg biomass resulted in approximately 30% to 20% reduction of the initial U(VI) concentration.

It was decided to determine experimentally the agitation rate necessary to obtain kinetic data independent of the mixing rate in the reactor. The kinetic processes involved in biosorption reactions can be envisioned in a way similar to those of ion-exchange or activated carbon adsorption. The observed initial uranium biosorption uptake rate (III-A.10) depends upon the relative rates of the following steps:

1. Transport of uranium ions from the bulk solution to the external surface of the boundary film around the microbial cell.

2. Transport of uranium ions through the boundary film to the cell surface.

3. Transport of the uranium ions inwards, through the cell wall, to the active sites of biosorption.

4. Actual biosorption of the ion in the microbial cell.

It has been confirmed that uranium ions are biosorbed throughout the cell wall in distinctive layers. The slowest of the four steps would control the overall rate of uranium uptake observed in the reactor. In a well-mixed batch reactor such as the one used in the present work, step 1 is not expected to limit the removal rate. Concentration of the biosorbate is uniform in the bulk liquid phase. Actual biosorptive retention of the uranium ions (step 4) is also a rapid process as discussed in section III-A.10.

The kinetics of biosorption is therefore determined by either of steps 2 or 3. Film diffusion processes are generally dependent on stirring rate, while intraparticle diffusion processes are essentially

ŀ

unaffected by agitation rates⁷⁵. After the experimental runs 1, 2 and 3 were completed, the mixing rate of 1300 RPM was selected for the subsequent kinetic experiments. At 1300 RPM the observed biosorption rate was very rapid and there was no discernible increase of the uranium uptake rate when mixing increased from 1100 RPM to 1300 RPM. Biosorption rates observed in subsequent runs (4 to 8) are, for all practical purposes, not dependent on the diffusion through the particle boundary film.

The common characteristics of the determined uranium concentration rate curves have been presented in Section III-A.10. The shape of the concentration curves suggests that at least two different phenomena contribute to the observed overall uranium biosorptive uptake by <u>R</u>. <u>arrhizus</u>. The first phenomenon is very rapid, reaching equilibrium very rapidly, while the second appears slower and takes place at a later time. Final equilibrium was reached within approximately 1 hour. The relation of the suggested two phenomena to the uranium biosorption mechanism is discussed in Section IV-A.10.

Within the range examined, uranium and biomass concentrations had no apparent effect on U^{+6} uptake rate (Figure III-A.32). Initial equilibrium plateau was consistently reached within 60 seconds. Solution pH, however, strongly affected the initial uranium removal rate, (Figure III-A.33). At pH = 2, initial uranium uptake was very slow. In addition, the two distinct equilibrium plateaus as observed at pH = 4 were not apparent (Experiment #8). Acidic pH is unfavourable to uranium equilibrium uptake capacity of R. arrhizus as well as to the rate of uranium

removal. However, the total time necessary for attainment of final equilibrium at pH = 2 was approximately 60 minutes, similar to the total time necessary to attain final equilibrium at pH = 4.

()

Kinetic data on biosorption of uranium by <u>R</u>. <u>arrhizus</u> are not available in the literature. There is, however, some information on uranium uptake rates by different mycelia. Chiu¹⁴ reported kinetic data on uranium uptake by uncharacterized living mycelia obtained from a shake-flask system. An approximate 15 minute equilibrium time was determined. Shumate <u>et al.</u>¹⁹ also reported uranium uptake by living <u>Saccharomyces cerevisiae</u> and <u>Pseudomonas aeruginosa</u>, again using a shakeflask system. The respective equilibrium times were reported as 60 minutes and 10 minutes, and exhibited strong dependency on pH, temperature and initial uranium concentration. The pH of the contact system was not controlled and shifted during the contact period.

The data of Chiu¹⁴ and Shumate <u>et al.</u>¹⁹ cannot be directly correlated to the presently reported uranium biosorption rate data, for the following reasons:

(i) The microorganisms used in both studies were different, and were living.

(ii) Experimental conditions were not controlled. Mixing rate was most likely inadequate, and the pH, whose strong effect on biosorption has been documented, was not constant.

Hradkova <u>et al.</u>⁷², however, have reported data on uranium uptake rate by reinforced dead <u>Penicillium chrysogenum</u>. They indicate a very rapid attainment of equilibrium within the first 90 seconds of contact. Their results correspond well to the results obtained in the course of the present work.

Rothstein and Larrabee⁹ have reported a very high initial rate of uranium uptake by live yeast cells. Within the shortest time possible for sample withdrawal (120 seconds), their system approached equilibrium, removing 48% of the uranium in solution.

Similarly, Stramberg <u>et al</u>.³² have reported uranium uptake rate data by resting <u>Pseudomonas</u> <u>aeruginosa</u> cells, indicating attainment of equilibrium within the shortest period possible for sample withdrawal (40 seconds).

Although the results of both Rothstein <u>et al</u>. and Stramberg <u>et al</u>. were derived from different biosorption systems, they support the validity of the kinetic rates determined in the present work as they indicate that uranium biosorptive uptake can be very rapid.

The general conclusion that can be drawn is that biosorption of uranium appears to be a very rapid process.

IV-A.10 Mechanism Hypothesis on Uranium Biosorption by Rhizopus arrhizus

The information discussed in the previous Sections IV-A.1 to IV-A.9 allows the formation of a hypothesis regarding the mechanism of

retention of uranium by the mecelium of <u>R</u>. <u>arrhizus</u>. The proposed uranium biosorption mechanism consists of three processes that are described below:

Process A

Process A involves a complex formation between dissolved \Box uranium ionic species and the chitin chains of the <u>R</u>. <u>arrhizus</u> cell wall. Uranium coordinates to the amine nitrogen of the chitin crystallites, and is retained within the cell wall of the mycelium.

Supportive evidence for the proposed process A is:

1. It was concluded in Section IV-A.4 that biosorbed uranium is retained by the <u>R</u>. arrhizus cell wall.

2. Cell walls of fungi present a multilaminate architecture 38, 39, 40. In general, the cell wall can be regarded as a two-phase system consisting of a chitin skeletal framework embédded in an amorphous polysaccharidic matrix 38,39 , 40, 41 (Figure IV-A.1). Chemical analysis of the cell wall of <u>Rhizopus nigricans</u> has confirmed a high content of chitin (58%) 48 . Chitin has also been confirmed in <u>Rhizopus</u> by Frey 38 through the application of X-ray diffraction. The transmission electron micrographs of <u>R</u>. <u>arrhizus</u> mycelia before uranium uptake, presented in this work, confirmed the expected stratification of the chitin in the <u>R</u>. <u>arrhizus</u> cell wall.

3. The ability of chitin to form complexes with metal ions has been well documented in the literature 28 , 29 , 30 , 31

A Chitin chain piles G Givcan

()

C

 \Rightarrow

2<u>11</u>.

In Section I.6 the general metal uptake capacity of chitin was presented. Chitin is carrying one linear amino-group per glucose ring (Figure IV-A.2). The amino group has an electron pair available for coordination and behaves like a strong Lewis base 33 , 36 , 53 . Other Lewis bases present in the cell wall are the hydroxyl groups of the polysaccharides. Their complex formation ability, however, has been reported to be quite small or negligible 36 , 65 , 66 , 67 . Chitin emerges as the main reactive site in the cell wall of <u>R</u>. <u>arrhizus</u> for the coordination of uranium. It is therefore reasonable to expect the formation of a coordination complex between uranium and the nitrogen of the cell wall chitin.

4. The uranium uptake capacity of pure chitin was experimentally confirmed during the present work (Section III-A.6). The formation of ' a chitin-uranium coordination complex has been reported in the literature^{35,36}.

5. The electron micrographs of uranium-equilibrated <u>R</u>. <u>arrhizus</u> thin sections have indicated a stratification of biosorbed uranium inside the cell wall (Figures III-A.10 to III-A.12). The observed stratification of biosorbed uranium is similar to the chitin stratification in the cell wall (Figure III-A.9), providing additional indirect evidence of an association between biosorbed uranium and chitin.

6. The infrared spectrum of uranium-equilibrated <u>R</u>. <u>arrhizus</u> pure cell walls presented a new absorbance band at approximately 372 cm⁻¹. As discussed in Section IV-A.7, this new band has been considered the result of the uranium-nitrogen bond vibrations. The presence of the band supports the proposed coordination of some of the biosorbed uranium to the chitin nitrogen.

Oxygen

 (\cdot)

- 0 Nitrogen
 - Hydrogen bonds

7. Some data on the complex formation between uranium and the chitin monomer N-Acety1-D-Glucosamine have been presented in Sections III-A.7 and IV-A.6. Although the complex itself was not isolated, its hydrolysis product, uranyl hydroxide, was observed (IV-A.6), providing additional evidence of the proposed complexation of uranium by chitin.

No. The infrared spectrum of uranium-equilibrated <u>R</u>. <u>arrhizus</u> cell walls presented a new strong absorbance band at 908 cm⁻¹. This band has been assigned to the v_3 characteristic frequency of the uranyl ion that has shifted from the original 950 cm⁻¹ position in the UO₂(NO₃)₂. 6H₂O-spectrum (IV-A.7). The new position of the v_3 uranyl ion frequency in the <u>R</u>. <u>arrhizus</u> cell wall is the same as the one observed in the IR spectrum of the NAG1-uranium complex hydrolysis product (IV-A.6). Consequently the complexation of uranium by the cell wall can be postulated, as part of the biosorbed uranium is present in the cell wall in the form of the complex hydrolysis product.

9. Iron and zinc complexation by chitin-has been documented in the literature³³⁻³⁷. The stability of the chitin-metal complexes follows, as for most ligands, the Irving-Williams series^{33,37}. Both iron and zinc compete with uranium for complexation by chitin. As a result of the competition reduced uranium uptake was observed (III-A.9, IV-A.8). The reduction of uranium uptake by <u>R</u>. <u>arrhizus</u> due to possible competition of the co-ions for the cell-wall chitin sites constitutes additional indirect evidence of the proposed uptake of uranium by complexation.

7. Some data on the complex formation between uranium and the chitin monomer N-Acety1-D-Glucosamine have been presented in Sections III-A.7 and IV-A.6. Although the complex itself was not isolated, its hydrolysis product, uranyl hydroxide, was observed (IV-A.6), providing additional evidence of the proposed complexation of uranium by chitin.

()

8. The infrared spectrum of uranium-equilibrated <u>R</u>. arrhizus cell walls presented a new strong absorbance band at 908 cm⁻¹. This band has been assigned to the v_3 characteristic frequency of the uranyl ion that has shifted from the original 950 cm⁻¹ position in the UO₂(NO₃)₂. 6H₂O spectrum (IV-A.7). The new position of the v_3 uranyl ion frequency in the <u>R</u>. arrhizus cell wall is the same as the one observed in the IR spectrum of the NAG1-uranium complex hydrolysis product (IV-A.6). Consequently the complexation of uranium by the cell wall can be postulated, as part of the biosorbed uranium is present in the cell wall in the form of the complex hydrolysis product.

9. Iron and zinc complexation by chitin has been documented in the literature ${}^{33-37}$. The stability of the chitin-metal complexes follows, as for most ligands, the Irwin-Williams series 33 , 37 . Both iron and zinc compete with uranium for complexation by chitin. As a result of the competition reduced uranium uptake was observed (III-A.9, IV-A.8). The reduction of uranium uptake by <u>R</u>. <u>arrhizus</u> due to possible competition of the co-ions for the cell-wall chitin sites constitutes additional indirect evidence of the proposed uptake of uranium by complexation.

Process B

Process B of the hypothesized uranium biosorption mechanism involves the adsorption of additional uranium by the chitin network, close to the complexed by chitin nitrogen. The following experimental results provide evidence supporting the proposed adsorption process.

1. The experimentally determined uranium uptake capacity of chitin at pH = 4 is 6 mg/g. <u>R</u>. <u>arrhizus</u> uranium uptake capacity, under the same conditions, is 180 mg/g. Uranium taken up by <u>R</u>. <u>arrhizus</u> is concentrated in the cell wall of the mycelium which contains less than 100% w/w chitin. Uranium taken up by complexation alone can only account for a very small fraction (<6 mg/g) of the determined overall uranium biosorptive uptake capacity of <u>R</u>. <u>arrhizus</u>. Consequently, additional process(es) must contribute to the observed overall uranium uptake by biosorption.

2. All biosorbed uranium has been located within the cell wall of the mycelium (IV-A.4). Biosorbed uranium exhibits a stratification that coincides with the chitin stratification.

3. The available biosorption isotherm data fit the common adsorption isotherm models very well (III-A.2), indicating the adsorptive uptake of uranium by the R. arrhizus cell wall.

4. Adsorption is a very fast phenomenon when it is not limited by mass transfer⁷⁴, ⁷⁵. The fungal cell wall can be viewed as a porous structure because it allows the passage of intracellularly manufactured enzymes and other macromolecules³⁹, ⁴¹. The kinetic data on

uranium biosorption by <u>R</u>. <u>arrhízus</u> presented in Section III-A.10 clearly indicate that the initial equilibrium plateau is established within 60 seconds. The processes involved in the first equilibrium plateau must, therefore, be very rapid. Chemical complexation and adsorption are both rapid processes and can therefore account for the observed rapid establishment of initial equilibrium.

5. Chiu¹⁴, in his work on uranium uptake by unidentified penicillia, also indicated that adsorption is one of the processes in-volved in uranium biosorptive uptake by fungal mycelia.

6. Chitin nitrogen confers basic characteristics to this aminopolysaccharide. Representing the chitin monomer as GN, the dissociation equation of the amide would be:

 $GN^+:H + H_20 \ddagger GN: + H_20^+$

The equilibrium is obviously a function of solution pH. Moieties GN^+ :H and GN: are both available on the chitin chain indicating that during process Å uranium has to compete with H_0 for the complexation sites on chitin (IV-A.5). When other co-ions are also present in solution. chemical equilibria become more complex. Blocking of chitin complexation sites by the co-ions reduces the quantity of chitin-complexed uranium The reduction of uranium uptake by Fe^{+2} or Zn^{+2} extends, (IV-A.8). however, beyond the 6 mg/g limit of total U(VI) uptake by complexation, as well as the additional 45 mg/g of Process C (IV-A.10). Table III-A.5 clearly shows a 125 mg/g decrease of q at 1000 mg/1 Fe⁺² initial solution concentration. This strong U uptake suppression can be accounted for

when we consider that a reduction of the quantity of complexed uranium is followed by a reduction of the adsorbed uranium as well. A relation is clearly indicated between complexed and adsorbed uranium. In a recent presentation on uptake of metals by the cell wall of <u>B</u>. <u>subtilis</u>, Beveridge⁷⁶ suggested that chemically retained metals may act as nucleation sites for further "deposition" of metal in the cell wall. The co-ions' effect on q suggests a similar role played by the chitin coordinated uranium in the biosorptive uptake of uranium by R. arrhizus.

7. In IV-B.10, where the mechanism of thorium biosorption is discussed, the experimental evidence available indicates that adsorption is involved in the thorium biosorption mechanism. Thorium adsorption by the outer layers of the <u>R</u>. <u>arrhizus</u> cell wall indicates the general ability of the cell wall to function as an adsorbant. It is the same adsorption potential of the cell wall that is considered responsible for the proposed process B of the uranium biosorption mechanism.

Process C

Process C of the uranium biosorption mechanism by <u>R</u>. <u>arrhizus</u> involves the hydrolysis of the uranium-chitin complex formed during Process A and the precipitation of the hydrolysis product (uranyl hydroxide) in the cell wall. Upon hydrolysis the freed chitin nitrogen may reengage in uranium complexation until the accumulation of hydrolysis products inhibits the complexation-hydrolysis-precipitation cycle. At such a time the biosorption system arrives at final equilibrium.

Representing by GNU the chitin-uranium complex, Process C may be presented schematically as follows:

219.

 $\begin{array}{ccc}
H_{2}O\\
GNU & \stackrel{H_{2}O}{\leftarrow} & GN + UO_{2}(OH)_{2} \\
GN & \stackrel{U}{\neq} & GNU \\
H_{2}O\\
GNU & \stackrel{H_{2}O}{\neq} & GN + UO_{2}(OH)_{2} \\
\end{array}$

()

Experimental evidence supporting the proposed Process C is discussed below:

1. The examined U-<u>R</u>. <u>arrhizus</u> biosorption system reached an initial equilibrium plateau within the first 60 seconds of contact (III-A.10). This plateau represented approximately 66% of the total biosorptive uranium uptake and is the cumulative result of the proposed Processes A and B. The secondary increase in U(VI) uptake observed approximately 0.5 hours later clearly indicates the presence of an additional process. The new process is distinct from the first two as it takes place at a considerably later time.

2. The U-NAG1 hydrolysis product appeared at a later time following the initial complex formation (III-A.7). NAG1 is the dominant monomer unit of chitin. Both uranium coordination to the amine-nitrogen and the subsequent hydrolysis of the complex are independent of the glucosidic linkage of the NAG1 units in chitin. It is therefore reasonable to accept that the uranium-chitin complex hydrolysis is similar to that of the NAG1-U complex, resulting in the precipitation of $UO_2(OH)_2$ in the cell wall. 3. The infrared spectra of the uranium-equilibrated <u>R. arrhizus cell</u> walls and the NAG1-U hydrolysis product presented the same v_3 characteristic frequency of the uranyl ion (908 cm⁻¹). The presence of U-chitin hydrolysis product in the cell wall (Process C) is therefore indicated by the IR spectra.

4. Hydrolysis of complexes is not usually associated with low solution pH values. Consequently, biosorption of uranium at pH = 2should not exhibit the secondary uranium uptake increase that has been attributed to the hydrolysis of the U-chitin complex. The uranium uptake kinetic curve at pH = 2 (Figure III-A.29) confirmed the above prediction, thus supporting the proposed Process C.

5. The precipitation of metal hydroxide as a product of the hydrolysis of the glucosamine-metal complexes has been reported in the literature⁶⁶, and supports the proposed Process C of the uranium bio-sorption mechanism hypothesis.

Figures IV-A.3 to IV-A.5 present schematically the proposed mechanism of uranium biosorption by <u>R</u>. <u>arrhizus</u>.

Three processes have been proposed for the uranium biosorption mechanism hypothesis. Process A appears to contribute the least (<6 mg/g or <3%). The significance of Process A, however, if judged exclusively by the initial contribution to the total biosorptive uptake, would be miscalculated. Processes B and C are closely related to Process A. There appears to be a strong interaction among the three processes.

5

()

 (\mathbf{k})

ېر<u>د.</u> بر در

.1

.

 \bigcirc

2

· · ·

()

 $\left(\hat{\boldsymbol{x}}_{1}^{n} \right)$

FIGURE IV-A.5 Process C of proposed uranium biosorption mechanism hypothesis.

Complexation of uranium by chitin (Process A) triggers Process C and assists Process B. On the other hand, the accumulation of the adsorbed uranium by Process B affects the equilibrium of Process C. All three processes are important as they are interrelated and affect the overall equilibrium uptake capacity of the mycelium.

A decrease in solution pH has been confirmed to result in a reduction of the total U uptake capacity. Solution pH affects:

(i) Hydrolysis of the chitin amine. Low solution pH increases H_30^+ concentration and intensifies the competition among H_30^+ and uranium ions for the chitin complexation sites.

(ii) Uranium adsorption which is a process that depends significantly on the physical and chemical characteristics of the adsorbate⁵¹. At pH below 2.5 uranium exists in solution in the simple UO_2^{+2} form, while at pH ≥ 2.5 it hydrolyses extensively (I.4)^{20,22;77,78}. Hydrolysis is accompanied by significant reduction in solubility. Lower solubility promotes adsorption. Higher solution pH, therefore, favours Process B by reducing uranium solubility and also by favouring uranium . complexation by chitin (in the absence of other co-ions).

(iii) Hydrolysis of the uranium-chitin complex which is a strong function of pH (Process C)

In terms of technical application, it is important to note that, at pH = 4, the described uranium biosorption system approaches 66% of equilibrium within the first 60 seconds of contact. This partial equilibrium is maintained for some time (III-A.10). High rate contact processes such as fluidized bed reactors could therefore be implemented efficiently. The utilization of even 66% of the equilibrium capacity provides an available equilibrium loading in excess of 120 mg/g which is still very attractive compared to other materials (Table III-A.1). It becomes even more attractive if we consider the rapid kinetics of the uptake. Solution pH should be close to 4 as at that pH value the uptake rate and the loading are optimum. At that pH, attention should be paid to the co-ions present in solution which can impare the overall process performance.

IV-A.11 Precision of Uranium Analytical Determination

An estimate of the precision of the uranium analytical method was obtained by analysing a uranium standard solution 16 times. The data are presented in Appendix A. Table IV-A.1 summarizes the statistical evaluation of the repeated tests.

2

<3

TABLE IV-A.1

Statistics of Uranium Analytical

Determination, Absorbance

Variable	<u>Mean (Ā)</u>	Std. Deviation(s)	Range	Sample Size(n)
Absorbance .	0.263	0.004	0.013	16 -
1 2		\sim	-	-

A frequency histogram of the determined absorbance values is also presented in Table IV-A.2 below:

1

TABLE	IV-A.2

Absorbance Values Frequency Histogram Frequency 5 2 2 7 $\eta = 16$ 7 * * * * * 6 *

The 95% confidence limits computed from the data above give the following range:

Lower limit = $\overline{A} - t_a S/\sqrt{\eta} = 0.261$ Upper limit = $\overline{A} + t_a \cdot S/\sqrt{\eta} = 0.265$

The 95% confidence limits range extends to approximately 2% of the mean value, indicating good precision of the analytical technique. An estimate of the accuracy of the technique was obtained by comparing the mean concentration calculated from the absorbance precision data above, (Appendix A) to the actual uranium concentration (30 mg/l) of the standard solution used. Table IV-A.3 presents a statistical evaluation of the U(VI) concentration determination.

229'.

TABLE IV-A.3

U(VI) Concentration Determination Statistics

Variable	-	<u>Mean (C)</u>	Std. Deviation(s)	Range	Error
C, mg/1 U ⁺⁶	,	28.9	0.49	1.43	1. 1

The difference (error) between the mean concentration value and the standard solution concentration was not smaller than 1 mg/1. The relative error is expected to increase at very low or high absorbance values; a characteristic inherent to all spectrophotometric techniques²⁸.

An estimate of the precision of the overall experimental technique used for the determination of the uranium biosorptive uptake capacity (q) was obtained by preparing and analysing 8 separate samples, all with identical initial U(VI) concentrations, pH, temperature, sample volume and, as close as possible, biomass dosage (Appendix A).

Table IV-A.4 presents a summary of the statistics concerning the experimental accuracy of q determination.

, TABLE IV-A.4

Statistics of U(V1) Biosorptive Uptake

Capacity Determination

<u>Variable</u>	Mean (q)	Std. Deviation(s)	Range	Sample Size (n)
q (mg/g)	. 144	7.9	21	8
ķ	~ •*		37 1	

Ť.

IV-B. THORIUM

IV-B.1 Thorium Biosorption Equilibrium Uptake Studies

Sections III-B.1 and III-B.2 presented all thorium biosorption isotherm data obtained in this work. The effects of solution pH, initial thorium concentration and solution temperature on q are discussed in the sections that follow.

IV-B.1.1 pH Effect on q

- 72. -

With the exception of <u>Aspergillus niger</u> and the municipal waste activated sludge, all materials examined exhibited lower thorium uptake at pH = 2 than at pH = 4 or 5.

One of the profound effects of solution pH on the <u>R</u>. <u>arrhizus</u>thorium biosorption system is the rapid decrease of thorium solubility with increasing pH²². Thorium hydrolysis is more complicated than uranium hydrolysis²¹, ²², ²⁶, ²⁷. Thorium starts hydrolysing at pH = 2, and at pH \geq 4 exists in solution mainly in the form of the hydroxide, Th(OH)₄, occurring as colloidal particles below 300A^o in diameter²¹. Thorium solutions are supersaturated at pH = 3, at as low concentrations as 10⁻⁵ M Th⁺⁴ ²². There appears to be a qualitative correlation between a reduction in thorium solubility and an increase in q. This correlation will be discussed further in Section IV-B.10. It is similar to the correlation suggested in Section IV-A,1.1 for uranium.

The ion exchange resin IRA-400 exhibited, as expected, poor thorium uptake. Activated carbon F-400, following the known correlation of adsorptive uptake with the solubility of the adsorbate, exhibited higher uptake (over 60 mg/g) at pH = 4 than at pH = 2 (5 mg/g).

IV-B.1.2 Effect of Initial Thorium Concentration on q ...

Initial thorium concentration had no effect on the thorium biosorption isotherms of all materials tested. The same equilibrium curve was approached from different combinations of initial thorium concentration and biosorbent dosage, thus indicating, as in the case of uranium (III-A.1.2), true equilibrium results independent of the specific sample used.

IV-B.1.3 Temperature Effect on q

()

As with uranium, thorium biosorptive uptake by <u>R</u>. arrhizus was not strongly influenced by temperature changes in the $5^{\circ}C$ to $40^{\circ}C$ range. In terms of process application, the significance of this conclusion is the same as that suggested in IV-A.1.3.

IV-B.I.4 <u>Relation of Th Biosorption Equilibrium Data to Other</u> <u>Biosorption Equilibrium Data</u>

Data on thorium biosorption are almost non-existent in the literature so as to compare with the results determined in the course of the present work. However, in the light of the chemical similarities between uranium and thorium, the knowledge on uranium since the serves as an indirect indication of the potential of thorium biosorption.

Comparing the results reported in Table III-A.1 and III-B.1, uranium and thorium biosorptive uptake data correspond reasonably well for all materials tested.

IV-B.2 Linearization of Thorium Biosorption Isotherms

The higher S.E.E. values observed for some thorium biosorption isotherms may have been in part due to the presence of zero equilibrium concentration points $(q_i, 0)$ on the isotherm that cannot be described successfully by either model. A similar observation has been made in Section IV-A.2 regarding the uranium biosorption isotherms.

The good fit of both physicochemical adsorption isotherm * models to all available thorium biosorption isotherm data was interpreted as an indication that the process of adsorption is involved in the phenomenon of thorium biosorption. This is discussed further in Section IV-B.10.

IV-B.3 Pure Cell Wall Preparation Thorium Uptake

 (\cdot)

Following reasoning similar to that presented in Section IV-A.3, the higher thorium uptake exhibited by the <u>R</u>. arrhizus pure cell wall'

preparation suggested that the mycelial cell wall of <u>R</u>. <u>arrhizus</u> was mainly responsible for thorium biosorption.

IV-B.4 <u>Electron Microscopy of Thorium Biosorption</u>

()

().*

The data presented in Section III-B.5 confirmed that thorium biosorption is concentrated in the cell wall of R. arrhizus. ^ The conclusion reached in Section IV-A.4 is not similar. Biosorbed uranium was distributed throughout the R. arrhizus cell wall in discrete strata similar to the chitin layers (Figure III-A.10). Thorium, on the contrary, was deposited on the outer surface of the R. arrhizus cell wall in a single layer (Figure III-B.10). This difference is significant as it indicates that there is some difference between the biosorptive uptake mechanisms of uranium and thorium by R. arrhizus. Figure III-B.12 presents a typical thin section electron micrograph of R. arrhizus following thorium uptake at pH = 2. The electron dense layer that appears on the outer surface of the cell wall when thorium is taken up at pH = 4 does not form when thorium is taken up at pH = 2. This difference is discussed in Section IV-B.10.

IV-B.5 Pure Chitin Thorium Uptake

Mass spectroscopy was unable to reveal the presence of thorium in reacted chitin probably for the same reasons it failed to indicate the presence of uranium in the uranium-chitin complex (III-A.6).

Information on the thorium uptake by chitin is unavailable in the literature. The experimental determination of the 8 mg/g uptake capacity of thorium by chitin is the only available direct evidence of thorium binding by chitin. Metal-chitin complex formation, however, has been studied extensively, and reports abound in the literature. There is strong evidence for the formation of coordination complexes between metal cations and the chitin nitrogen (Appendix F). The data presented in this work on uranium uptake by chitin (III-A.6), the general information in Appendix F.4 and the experimentally determined 8 mg/g thorium uptake by pure chitin suggests that thorium forms a coordination complex with chitin in a manner similar to that of uranium.

The observed uptake of thorium by chitin (8 mg/g) means that, on the average, 1 out of 130 glucosamine monomers has a coordinated thorium ion on it. The competition between thorium and H_30^+ ions for coordination with the chitin nitrogen is probably one of the factors responsible for the calculated 1:130 ratio of thorium-bearing to thorium-free glucosamine monomers (IV-A.5). All nitrogen electron pairs . do not appear to be available for thorium coordination, the equilibrium being influenced by solution pH (IV-A.10).

IV-B.6 N-Acety1-D-Glucosamine Interaction with Thorium

The observed ability of chitin to take up thorium allows the suggestion that NAG1, the chitin monomer unit, also interacts with thorium. However, the NAG1-Th complex appeared water soluble and not
easily hydrolysable (III-B.6). Similar cases of water soluble and not easily hydrolysable glucosamine-metal complexes have been reported in the literature for some transition metals^{65, 66, 67, 79}. These cases support the proposed existence of the chitin-Th complex.

<u>(</u>,

IV-B.7 Infrared Spectroscopy of Thorium-Equilibrated R. arrhizus Cell Walls

Thus far, the cell wall of <u>R</u>. <u>arrhizus</u> has been confirmed as the part of the mycelium that is responsible for the observed biosorptive uptake of thorium. Chitin has also been confirmed as capable of retaining thorium, most likely by coordination of thorium with the chitin nitrogen (IV-B.5).

The band assignments of the recorded $4000-400 \text{ cm}^{-1}$ IR spectra are the same as the ones presented in Section IV-A.7 and will not be repeated in the present Section.

In the 400 to 340 cm⁻¹ section of the IR spectrum, absorbance bands centered at 397 cm⁻¹, 391 cm⁻¹, 368 cm⁻¹, 352 cm⁻¹ and 341 cm⁻¹ have been considered to be due to the presence of water vapour, and due to metal-water vibrations that occur in the 700-350 cm⁻¹ range⁵⁷. The 341 cm⁻¹ and 368 cm⁻¹ bands, for example, are also present in the gaseous H_20 IR spectrum⁵⁷, ⁶⁴. The new band that was identified at 362 cm⁻¹ was assigned to the thorium nitrogen bond stretch vibrations. This assignment is supported by the following literature information:

i. Absorption in the range of 358 cm⁻¹ to 367 cm⁻¹ in the spectra of quinoline and isoquinoline-thorium complexes, absent in the IR spectra of the free bases, has been assigned to thorium-nitrogen bond stretch vibrations⁷¹.

ii. The 362 cm⁻¹ new absorption band lies within the range generally assigned to the metal-nitrogen bond stretch vibrations. (III-A.7) 57, 70

iii. A similar case was observed following uranium uptake by the cell wall. The new peak at 374 cm⁻¹ has been assigned to the uranium-nitrogen coordination bond stretch vibrations (IV-A.7).

The proposed assignment of the 362 cm^{-1} absorbance band to the metal-nitrogen bond stretch vibrations supports the suggested coordination of thorium by the chitin nitrogen (IV-B.5).

IV-B.8 Co-ion Effect on Thorium Biosorption

Table III-B.4 suggests that, in contrast to the case of uranium biosorption, competition of other cations for the chitin complexation sites does not have an appreciable effect on the overall thorium biosorptive uptake. This, in turn, suggests that a mechanism different from the one presented in Section IV-A.10 for uranium is responsible for the biosorptive uptake of thorium. Section IV-B.10 will present the thorium uptake mechanism hypothesis, and will discuss further the observed co-ion effect on q.

In terms of process application, the results in Table III-B.4 are encouraging as they point out that, unlike uranium biosorption, in the case of thorium biosorption there was little effect of co-ions present in solution, namely Fe^{+2} and Zn^{+2} , on the overall thorium biosorptive uptake capacity of <u>R</u>. <u>arrhizus</u>.

IV-B.9 Thorium Biosorption Kinetic Data

Table III-B.5 presented the experimental conditions employed during the thorium uptake kinetic experiments.

The 15-30 mg/1 Th⁺⁴ initial concentration range was selected for the following reasons:

a) Thorium hydrolyses in solution. Hydrolysed solutions of thorium are extensively supersaturated with respect to precipitation of the hydrous oxide or the oxide. Low thorium concentrations were therefore used to ensure the stability of the solutions, especially at pH = 4 (1.5).

b) Sample processing and the determination of Th⁺⁴ concentration are easier, as within this concentration range there is no need for sample dilution. The elimination of sample dilution increases the accuracy and the precision of the analytical procedure.

Following the selection of the initial thorium concentration, biomass dosage was calculated as explained in Section III-A.9.

The agitation rate was also selected following the same considerations as in Section IV-A.9, drawing also experience from the uranium experiments. The kinetic processes involved in thorium

E)

biosorption can be regarded in a way similar to that described for uranium (IV-A.9). The overall rate of thorium uptake depends upon the limiting one of the following steps:

()

(~?)

1. Transport of biosorbing thorium ions from the bulk solution to the external surface of the boundary film around the microbial

2. Transport of thorium ions through the boundary film to the microbial cell surface.

3. Actual biosorption of thorium by the external section of the cell wall.

4. Transport of thorium ions through the cell wall to internal active sites (IV-B.10).

5. Biosorption of transported thorium ions by the internal active sites.

The slowest of the previous processes controls the overall rate of thorium uptake. In a well-mixed batch reactor, as the one used in the present work, step 1 does not represent any limitation. Thorium concentration is uniform in the bulk liquid phase. Biosorption of thorium by internal cell wall active sites is independent of the uptake by the external cell wall (IV-B.10), and contributes insignificantly to the overall biosorption uptake capacity of <u>R</u>. <u>arrhizus</u>. Steps 4 and 5 therefore are not expected to affect significantly the overall biosorption uptake rate. Actual biosorption by the external cell wall (Step 3) is also considered to be a rapid process (IV-B.10), thus leaving step 2 as the process that most likely influences significantly thorium biosorption uptake rate. The mixing rate emerges as an important parameter that may considerably affect the observed overall biosorption uptake rate. Following the experience with uranium biosorption, agitation rates of 1000 RPM and 1300 RPM were tested (Figure IFI-B.25). At 1300 RPM the thorium uptake rate was not limited by film diffusion as equilibrium was attained within the first 30-60 seconds of contact (the shortest time possible for sampling). An agitation rate of 1300 RPM was therefore used for all subsequent kinetic experiments.

The common characteristics of the thorium biosorption rate curves have been presented in Section III-B.10. Unlike the case of uranium biosorption, the equilibrium plateau attained within the first 60 seconds of thorium biosorption remained stable thereafter. The plateau corresponded to the thorium equilibrium uptake capacity of <u>R. arrhizus</u> indicated by the biosorption isotherm for the respective thorium equilibrium concentration in the reactor.

Ţ£

Solution temperature, biomass dosage and initial thorium concentration did not have a discernible effect on the determined thorium uptake rate within the range examined. Solution pH, however, appeared to affect significantly the overall thorium uptake rate (Figure III-B.27). Acidic pH does not enhance either the equilibrium thorium uptake capacity of <u>R</u>. <u>arrhizus</u> (III-B.1) or the respective rate of thorium biosorption. The reasons for the effect of pH on thorium

241,

biosorption uptake will be discussed in Section IV-B.10.

Kinetic data on biosorption of thorium by <u>R</u>. <u>arrhizus</u> are not available in the literature for comparison with the experimental data obtained in the course of the present work. However, uranium uptake rate data can be considered relevant information in support of the thorium biosorption kinetic data determined. Both uranium and thorium biosorption uptake rates appear equally rapid at the beginning of the process. Thorium, however, does not exhibit the slower secondary increase in uptake as was apparent with uranium. This will be discussed further in Section IV-B.10. Solution pH and agitation rate appear to be the parameters that, within the examined range, influence more effectively uranium and thorium uptake rates.

IV-B.10 Mechanism Hypothesis on Thorium Biosorption by Rhizopus arrhizus

The information accumulated on biosorptive uptake of thorium by <u>R</u>. <u>arrhizus</u> allows the formation of a mechanism hypothesis on the biosorptive sequestering of thorium by the mycelium. The proposed mechanism involves two separate processes that are described below.

Process A

Process A of the proposed mechanism hypothesis involves the formation of a coordination complex between thorium and the nitrogen of the cell wall chitin. This is similar to the formation of the uranium chitin complex (IV-A.10).

Thorium coordinates with the cell wall chitin nitrogen and is retained by the cell wall of the mycelium. Evidence supporting the proposed Process A is supplied by the following experimental results.

(-')

1. In Section III-B.5 it was concluded that all biosorbed thorium is concentrated in the R. arrhizus cell wall which contains chitin.

2. The ability of chitin to retain thorium was experimentally confirmed in the present work. At pH = 4 pure chitin exhibited a thorium uptake capacity of 8 mg/g & Although not exclusively conclusive, this fact is a strong indication of the chitin role.

3. Both uranium and thorium have empty 6f orbitals and partially filled 5f orbitals⁷³ (Table IV-B.1). The 5f orbitals are more likely to engage in bonding, and there is some evidence of this behaviour⁶⁰.

TABLE IV-B.1

Outer Orbitals Electron Configuration of U and Th

		/	
Orbital Element	5f	6d	7s
U .	3 -	1	2
Th	0	2	2

The electron configuration suggests a considerable similarity in the chemical behaviour of U and Th^{20, 24}. The similarity between the

243.

Ś

chemical behaviour of U and Th suggests that, like uranium, thorium may coordinate with the chitin nitrogen (IV-A.10). As can be expected because of the similarities in the chemical behaviour of the two elements, the thorium uptake by chitin determined at 8 mg/g is close to the chitin-uranium uptake (6 mg/g).

4. Following thorium uptake, a new absorbance band appeared at 362 cm^{-1} on the IR spectrum of the <u>R</u>. <u>arrhizus</u> cell walls (Figure III-B.20). The 362 cm^{-1} absorbance peak has been assigned to the thorium-nitrogen bond vibrations (IV-B.7). The presence of the peak supports the proposed coordination of thorium with the cell wall chitin nitrogen.

Process B

A.

Process B of the proposed thorium biosorption mechanism involves the adsorption of hydrolysed thorium ions by the outer layers of the <u>R</u>. <u>arrhizus</u> cell wall. The following experimental results support this hypothesis:

1. Thorium uptake by pure chitin has been determined to be only 8 mg/g. Chitin constitutes a fraction of the cell wall dry weight. Consequently, thorium uptake by mycelial cell walls by chitin complexation accounts for less than 8 mg/g. The experimentally determined overall biosorptive uptake of thorium by R. <u>arrhizus</u> is much greater (170 mg/g), suggesting the presence of a second process other than complexation by chitin. This second process contributes the major part (\geq 95%) of the overall thorium biosorptive uptake observed.

244,

2. Thorium biosorption isotherms were successfully described by the well accepted adsorption isotherm models of Langmuir and Freundlich (III-B.2). This indicates that adsorption is one of the processes involved in thorium biosorptive uptake by <u>R. arrhizus</u>.

5

3. Thorium starts hydrolysing at pH = 2 and above pH = 4exists in solution mainly in the form of fine hydroxide particles of Th(OH)₄²¹. Thorium hydrolysis follows complicated simultaneous equilibria. Thorium hydrolysis products exhibit a strong tendency to adsorb, as documented in the literature^{21, 26, 27}. This tendency supports the proposed adsorption of thorium by the fungal cell wall.

4. The rate of biosorptive uptake of thorium by <u>R</u>. <u>arrhizus</u> was discussed in Sections III-B.10 and IV-B.9. The experimental results indicated that thorium biosorption is a very rapid process. Consequently, the processes proposed to participate in the thorium biosorption mechanism must be rapid. Adsorption in the absence of mass transfer limitations has been documented as a rapid process⁷⁴. The proposed adsorption of hydrolysed thorium ions by the <u>R</u>. <u>arrhizus</u> cell wall is therefore compatible with the observed experimental kinetic results.

5. Adsorption of thorium hydrolysis products by the external cell wall appears to be unrelated to the thorium which is complexed by the stratified chitin microfibrils in the inner layers of the cell wall. The presence of co-ions like $\tilde{F}e^{+2}$ or Zn^{+2} (IV-B.8) results, as already discussed, in competition among the cations for the chitin complexation

sites. Any reduction in the quantity of thorium taken up by complexation because of co-ion competition would only constitute a small proportion of the overall biosorptive uptake. Consequently, the presence of co-ions in colution should have an insignificant effect on the observed overall thorium uptake by <u>R. arrhizus</u>. The experimental results confirmed this as a fact.

(📳

Unlike the case of uranium biosorption, where the proposed three processes appear to be interacting (IV-A.10), thorium biosorption processes (A and B) appear unrelated. Thorium biosorption by <u>R</u>. <u>arrhizus</u> at pH = 4 is dominated by the adsorption of thorium hydrolysis products. As a result, the observed effect of pH on thorium uptake can be better understood. A reduction in solution pH would affect:

i. The hydrolysis of the chitin amine, resulting in an increased competition by H_30^+ for the complexation sites (III-A.10).

ii. The adsorptivity of thorium ions. The configuration as well as the solubility of thorium hydrolysis products is a strong function of solution pH. Reduction of solution pH results in increased solubility and consequently in reduced adsorptivity. Reduced adsorptivity diminishes the biosorptive uptake capacity of the biomass, as was observed at pH = 2.

No thorium uptake kinetic curve, at pH = 4, exhibited the secondary increase in uptake that was a common characteristic of all uranium kinetic curves at the same pH. As a result, it is reasonable to accept that process C of the uranium biosorption mechanism hypothesis is not applicable to the case of thorium biosorption. This

is supported by the information in Section IM-B.6 which indicates that the chitin-thorium complex is water soluble and not easily hydrolysable.

Unlike uranium, thorium was adsorbed by the outer layers of the R. arrhizus cell wall, probably because of the size of the hydrolysed thorium ion at pH = 4, This hypothesis was supported by the thin section electron micrographs of R, arrhizus cell wall taken at pH = 2following thorium uptake (Figure III-B.12). The distinct electron dense At pH = 2 thorium exists in solution layer was not formed at pH = 2. mainly in the form of Th⁺⁴, which is considerably smaller than the The smaller Th⁺⁴ ions $Th(OH)_A$ particles that predominate at pH = 4. penetrate and absorb within the cell wall. The low contrast on the electron micrographs is probably due to the lower thorium uptake exhibited by R. arrhizus at pH = 2 (90 mg/g) than at pH = 4' (170 mg/g) and the increased dispersion of the electron dense thorium within the cell wall at pH = 2. Confirmation of thorium presence through Xray-E.D.A. was not possible because thorium concentration was below the detection limits of the technique.

It is significant for the process application of thorium biosorption that the examined thorium biosorption system reached final equilibrium very quickly. Consequently, the implementation of high rate contact processes (e.g. fluidized bed reactors) appears possible. The understanding of the processes involved in thorium biosorption by <u>R. arrhizus</u> should lead to the rational design of new technical applications for thorium biosorption.

IV-B.11 Precision of Thorium Analytical Determination

An estimate of the precision of the employed thorium analytical method was obtained by analysing a thorium standard solution 10 times. The data are available in Appendix B. Table IV-B.2 summarizes the statistical evaluation of the test of precision.

TABLE IV-B.2

Statistics of Thorium Analytical Determination Absorbance

Variable	Mean (A)	Std. Deviation(s)	Range	Sample Size (n)
Absorbance	0.067	0.004	0.011	10

A frequency histogram of the determined absorbance values is presented in Table IV-B.3.

TABLE IV-B.3

Absorbance Values Frequency Histogram

• Frequency:		3	, Ø	5 ر	2	n = 10,
6 5 4 3 2 1	- -	` * °	•	* * *	*	
	0.0	60 , 0.	063 0.	066 0.0	069 0.	.072

The 95% confidence limits computed from the above data are

-1 430

249.

 $\overline{A} \pm t_a \cdot S \cdot / \sqrt{n} = 0.167 \pm 0.003$

The range of the 95% confidence limits is equivalent to approximately 4% of the sample mean absorbance value.

An estimate of the accuracy of the thorium concentration determination technique can be obtained by comparing the mean concentration calculated from absorbance precision data above (Appendix A) to the actual thorium concentration, 20 mg/1 \cdot Th⁺⁴, of the standard solution used. Table IV-B.4 summarizes the statistical evaluation of the thorium concentration determination test.

TABLE IV-B.4

, 1101.	tum concentra	acton Deceminación o	catistics	
-		/		•
		,		
Variable	Mean (C)	Std. Deviation(s)	Range	Error
C, $mg/1$ Th ⁺⁴	18.7	0.464	1.23	1.3

The difference between the mean concentration and the known standard solution concentration, error, is not smaller than 1 mg/1, and is very close to the value estimated for the analytical determination of uranium concentration.

(?)

An estimate of the precision of the overall experimental procedure used for the determinations of the thorium biosorptive uptake capacity, q, was obtained by preparing and analysing 7 separate samples. All samples had identical initial thorium concentration, pH, temperature, sample volume, and, as close as possible, biomass dosage (Appendix B). Table IV-B.5 presents a summary of the statistical evaluation of the test.

TABLE LV-B.5

Statistics of Thorium Biosorptive

Uptake Capacity Determination -

<u>Variable</u>	Mean (q)	-Std. Deviation(s)	Range	Sample Size (n)
q (mg/g)	141	5.96	15	7
		- ,		

The 95% confidence limits calculated from the above information, (Table III-B.10), are:

 $q \pm t_a \cdot s/\sqrt{\eta} \simeq 141 \pm 6$

The calculated 95% confidence limits range encompasses approximately $\pm 4\%$ of the mean, \overline{q} , value.

CHAPTER V

CONCLUSIONS

V-1 CONCLUSIONS

(* *)

In the previous chapters the materials, methods and experimental results of the present work were presented. The information accumulated in the course of the present study leads to the following conclusions:

1. It is possible to remove uranium and thorium from aqueous solutions using the phenomenon of biosorption.

2. Microbial biomass of <u>R</u>. <u>arrhizus</u> is an effective biosorbent for both uranium and thorium, with uptake capacities from respective pure solutions of approximately 180 mg U^{+6}/g and 170 mg Th⁺⁴/g.

3. Optimum biosorption pH lies in the range of pH = 4 to pH = 5. Reduced biosorptive uptake is exhibited by <u>R</u>. arrhizus, as well as by most of the tested biomass types, at lower solution pH (pH = 2).

4. Solution temperature changes in the range of $5^{\circ}C$ to $40^{\circ}C$ have little effect on <u>R</u>. <u>arrhizus</u> uranium and thorium biosorptive uptake capacity.

5. Changes in initial uranium or thorium concentration and biomass dosage had no discernible effect on <u>R</u>. <u>arrhizus</u> biosorptive^{*} uptake capacity of either of the two elements within the examined range.

6. The presence of other cations in solution may, at pH = 4 as indicated by the examined cases of Fe⁺² and Zn⁺², reduce significantly the uranium biosorptive uptake capacity of <u>R</u>. <u>arrhizus</u>. Fe⁺² and Zn⁺² have no effect on the thorium biosorptive uptake capacity of <u>R</u>. <u>arrhizus</u>.

7. Biosorption of U and Th by <u>R</u>. <u>arrhizus</u> are rapid processes. Uranium uptake reaches approximately 66% equilibrium within 60 seconds, attaining final equilibrium within approximately 60 minutes. Thorium biosorption by <u>R</u>. <u>arrhizus</u> reaches final equilibrium within the first 60 seconds of contact. Reduction of solution pH to pH = 2 significantly, reduces the rate of uptake of both uranium and thorium.

8. Biosorption of uranium is concentrated in the cell wall of <u>R. arrhizus</u> and involves three separate but interacting processes:

(A) Coordination of U(VI) by the primary amine nitrogen of the <u>R</u>. <u>arrhizus</u> cell wall chitin.

(B) Adsorption of uranium by the cell wall chitin network,

(C) Hydrolysis of the uranium-chitin complex and microprecipitation of uranyl hydroxide in the cell wall chitin network.

9. Biosorption of thorium is a phenomenon concentrated in the cell wall of <u>R</u>. <u>arrhizus</u> and involves two separate processes:

(7

(A) Coordination of thorium by the primary amine nitrogen

(B) Adsorption of thorium hydrolysis products by the (external) surface of the mycelium cell wall.

10. The proposed mechanism hypotheses for biosorption of uranium and thorium by <u>R</u>. <u>arrhizus</u> are not identical. It is therefore reasonable to accept that biosorption is not a phenomenon with one single mechanism. Each biosorption system investigated should be examined . separately, perhaps in a way similar to the one followed in the present work. Some of the individual processes involved in biosorption (e.g. adsorption) appear to be common. Their interactions, however, in a specific biosorption system are not common, as they depend on the physical and chemical characteristics of both the biosorbent and the biosorbate.

V-2 ORIGINAL CONTRIBUTIONS

The present study constitutes the first systematic examination of the phenomenon of biosorption. As a result, several elements of the present study are considered to be original contributions to the advancement of knowledge:

1. Testing of the uranium and thorium biosorbent properties of the following biomass types:

Aspergillus niger Aspergillus terreus Streptomyces niveus Pseudomonas fluorescens 253,

Penicillium chrysogenum

Rhizopus arrhizus

Municipal waste activated sludge

Industrial waste activated sludge ("Phenolic")

2. The determination of the uranium biosorption isotherms for the above materials under controlled conditions and at pH values of 2, 4 and 5.

3. The determination of the thorium biosorption isotherms for the above materials under controlled conditions and at pH values of 2, 4 and 5.

4. Comparison of the uranium and thorium biosorption isotherms of the above materials to the uranium and thorium uptake isotherms of activated carbon Filtrasorb 400 and the ion exchange resin IRA-400.

5. The examination of the effect of the presence of Fe^{+2} and Zn^{+2} upon the uranium and thorium biosorption uptake capacity of the bio-mass of R. arrhizus.

6. The design and construction of a special reactor assembly for the study of the kinetics of uranium and thorium biosorption.

7. The determination of the rate of uptake of uranium and thorium by <u>R</u>. <u>arrhizus</u> biomass under controlled conditions.

8. The formulation of a mechanism hypothesis for uranium biosorption by <u>R</u>. <u>arrhizus</u>. The mechanism hypothesis is consistent with available experimental data.

9. The formulation of a mechanism hypothesis for biosorption of thorium by <u>R</u>. arrhizus. The hypothesis is consistent with available experimental data.

10. Examination of the <u>R</u>. <u>arrhizus</u> cell wall sequestering pattern of uranium and thorium deposition by transmission electron microscopy and X-rays Energy Dispersion Analysis.

11. Infrared spectroscopic analysis of uranium and thorium `biosorption by the <u>R</u>. <u>arrhizus</u> cell wall.

In general, the work resulted in a better understanding of the phenomenon of biosorption and the constituent mechanisms.

()

4

CHAPTER VI

RECOMMENDATIONS

The present work has indicated the potential of developing novel sequestering agents, biosorbents, for the removal and recovery of high atomic number cations from solution. At least five industrial scale applications appear feasible:

1. Recovery of nuclear fuel elements from process solutions.

2. Decontamination of radioactive waste waters originating from uranium ore mining and processing operations.

3. Recovery of elements from sea water.

4. Decontamination of radioactive waste waters from nuclear power reactors.

5. Recovery of radionuclides from nuclear reactor waste waters.

Future research in the subject of biosorption may be directed towards providing information that will facilitate the proposed[°] industrial applications of biosorption.

The general objectives of the proposed research should aim at the expansion of available biosorption data to include more elements and more types of biomass. More specifically, the following objectives may be pursued:

1. Testing of new biomass types for their biosorption uptake capacity.

2. Investigation of the potential of biosorption of selected elements other than uranium and thorium, identified in the nuclear fuel cycle solutions.

3. Testing of selected biomass types with actual process waste waters containing a mixture of elements.

4. Examination of different methods to impart desirable mechanical properties to the biosorbing biomass to be used in actual processes.

In parallel to the application-oriented research objectives described above, additional research is also recommended towards further examination of the kinetics of biosorption as well as the elucidation of the mechanism involved in the biosorptive uptake of elements by other types of biomass.

A more complete understanding of the phenomenon of biosorption is desirable for further efforts towards the manipulation of it for improved selectivity and efficiency.

REFERENCES

258

- Moffett, D., "The Disposal of Solid Wastes and Liquid Effluents from the Milling of Uranium Ores", CANMET publication # M38-13176-19, 1976.
- Hans, M.J., and Eadie, G.G., "Environmental Contamination from Uranium Mill Tailings Piles", E.P.A. Las Vegas facility report, Las Vegas, NV, 1975.
- 3. Goldsmith, W.A., "Radiological Aspects of Inactive Uranium Milling Sites: An Overview", Nuclear Safety, 17, 6, 1976.
- 4. E.P.S., "Mine and Mill Waste Water Treatment", Report EPS 3-WP-75-5, 1975.
- Reed, A., Meeks, H.C., Pomeroy, S.E., and Hale, V., "Assessment of Environmental Aspects of Uranium Mining and Milling", N.T.I.S. PB 266413, Washington, D.C., 1976.
- 6. Richard, R.J., "Recovery of Uranium from Natural Mine Waters by Counter-current Ion Exchange", U.S. Department of Interior, Bureau of Mines, TN 23, U7, # 7471, 1971.
- Eadie, G.G., Kaufmann, R.F., "Radiological Evaluation of the Effects of Uranium Mining and Milling Operations on Selected Ground Water Supplies in the Grants Mineral Belt, New Mexico", Health Physics, 32, pp.231-241, 1977.
- 8. Sears, M.B., "Radiqactive Waste Treatment Costs and Environmental Impact for Milling of Uranium Ores", American Nuclear Society, Transactions, 24, 94-95, 1976.
- 9. Rothstein, A., Frenkel, A. and Larrabée, C., "The Relation of the Cell Surface to Metabolism", J. Cell. and Comp. Physiol, 32, 261.
- Polikarpov, G.G., "<u>Radioecology of Aquatic Organisms</u>", North Holland Publishing Co., Reinhold Book Division, NY, 1966.
- Tezuka, Y., "Cation Dependant Flocculation in a <u>Flavobacterium</u> Species Predominant in Activated Sludge", Appl. Microbiol., pp.222-226, Feb. 1969.
- Tanaka, Y., Skoryna, S.C., "Organic Macromolecular Binders of Metal Ions", from "Intestinal Absorption of Metal Ions, Trace Elements and Radionuclides", Pergamon Press, NY, 1970.

Ų

Paskins-Hurlburt, A.J., Tanaka, Y., and Skoryna, S.C., "Carrageenan 13. and the Binding of Lead", Botanica Marina, 19, pp.59-60, 1976, Chiu, Y.S., "Recovery of Heavy Metals by Microbes", Ph.D. Thesis, 14. University of Western Ontario, London, Ont., 1972. Jilek, R., Fuska, J. and Nemec, P., "Biologicky Sorbent Pro 15. Dekontaminac, Vod Od Uranu", Biologia (Bratislava), 33, 3, pp. 201-207, 1978. 16. Beveridge, T.J. and Murray, R.G.E., "Uptake and Retention of Metals by Cell Walls of Bacillus subtilis", Journal of Bacteriology, . pp. 1502-1518, Sept. 1976. Beveridge, T.J., "The Response of the Cell Walls of Bacillus subtilis 17. to Metals and to Electron Microscopic Stains", Can. J. Microbiol., 24, pp.89~104, 1978. **∘18.** Shumate II, S.E., Strandberg, G.W. and Parrott, J.R. Jr., "Biological Removal of Metal Ions from Aqueous Process Streams", Biotechnology-Bioengineering Symposium No. 8, pp.13-20, 1978.

259.

- Shumate II, S.E., Strandberg, G.W., Parrott, J.R. Jr. and Locke, B.R., "Separation of Uranium from Process Waste Waters using Microbial Cells as Sorbents", Paper presented at the CIM Hydrometallurgy meeting held in Toronto, Canada, Nov. 11-13, 1979.
- 20. Palei, P.N., "Analytical Chemistry of Uranium", Ann Arbor-Humphrey
- Pershin, A.S., "Hydrolysis of Thorium Nitrate", Radiokhimiya, <u>14</u>, 1, pp.88-94, 1972.
- 22. Baes, C.F. Jr., and Mesmer, R.E., "The Hydrolysis of Cations", Wiley-Interscience, J. Wiley and Sons, N.Y., 1976.
- 23. "Encyclopedia of Industrial Chemical Analysis", Uranium, Volume 17, J. Wiley and Sons, N.Y., 1974.

24. Ryzbchikov, D.I. and Gol'braikh, E.K., "<u>Analytical Chemistry of Thorium</u>", Ann Arbor-Humphrey Science Publishers, Ann Arbor, London, 1969.

25. "Encyclopedia of Industrial Chemical Analysis", Thorium, Volume 17, J. Wiley and Sons, N.Y., 1974.

 Abramson, M.B., Jaycock, M.J. and Ottewill, R.H., "The Adsorption of Cations at the Silver Lodide-Solution Interface, Part II, Thorium", J. Chem. Soc., pp.5041-5045, 1964. 27. Abramson, M.B., and Ottewil, R.H., "The Interaction of Myristic Acid Monolayers with Thorium and Lanthanum Solutions", Journal of Colloid Science, <u>17</u>, pp. 883-894, 1962.

28. Marczenko, Z., "Spectrophotometric Determination of Elements", J. Wiley and Sons, N.Y., 1976.

- Savvin, S.B., "Analytical Use of Arsenazo III, Determination of Thorium,
 Zirconium, Uranium and Rare Earth Elements", Talanta, <u>8</u>, pp. 673-685, 1961.
- 30. "Standard Methods for the Examination of Water and Waste Water", APHA, AWWS, WPCF, Fourteenth Edition, 1975.
- 31. Pouchert, C.J., "The Aldrich Library of Infrared Spectra", Aldrich Chemicals Col, Wisconsin, 1975.
- 32. Strandberg, G.W., Shumate II, S.E., Parrott, J.R., Jr., and McWhirter, D.A., "Microbial Uptake of Uranium, Casium and Radium", Paper presented at the Second Chemical Congress of ACS, August 24-29, Las Vegas, 1980.
- 33. Muzzarelli, R.A.A., "Chitin", Pergamon Press, 1972.
- 34. Masri, M.S., Reuter, F.W., and Friedman, M., "Binding of Metal Cations by Natural Substances", J. of Applied Polymer Science, <u>18</u>, pp. 675-681, 1974.

35. Muzzarelli, R.A.A., and Tubertini, O., "Chitin and Chitosan on Chromatographic Supports and Adsorbents for Collection of Metal Ions from Organic and Aqueous Solutions and Sea Water", Talanta, <u>16</u>, pp. 1571-1577, 1969.

- 36. Andreyev, P.F., Plisko, E.A., and Rogozina, E.M., "Reaction of Dilute Solutions of Uranyl Salts with Chitin and Some Cellulose Esters", Geokhimiya, 6, pp. 536-639, 1962.
- 37. Subramanian, Y., Yoshinari, T., and d'Anglejan, B., "Studies on the Formation of Chitin-Metal Complexes", Marine Sciences Centre, McGill University, Report 27, November 1974.
- 38. Ainsworth, G.C., and Sussman, A.S., "The Fungi. An Advanced Treatise", Academic Press, N.Y., 1965.
- 39. Farkas, V., "Biosynthesis of Cell Walls of Fungi", Microbiol. Rev., pp. 117-141, 1980.
- 40. Beran, K., Rehacek, J., and Seichertova, O., "Infrared Spectral Analysis of the Cell Wall. The Application of the Method in the Study of Chitin in the Cell Wall of the Yeast <u>Saccharomyces</u> <u>cerevisiae</u>", Acta. Pac. Med. Proc. 2nd Intern. Symp. on Yeast Protoplast, 1968.

Troy, A.E., and Koffler, H., "The Chemistry and Molecular Architecture of the Cell Walls of <u>Penicillium chrysogenum</u>", The Journal of Biological Chemistry, <u>244</u>, 20, 1969.

- 42. Ruiz-Herrera, J., "Chemical Components of the Cell Wall of <u>Aspergillus</u> Species", Arch. of Biochem. and Biophys., <u>122</u>, pp. 118-125, 1957.
- 43. Hamilton, P.B., and Knight, S.G., "An Analysis of the Cell Walls of <u>Penicillium chrysogenum</u>", Arch. of Biochem. and Biophys., 99, pp. 282-287, 1962.
- 44. Stagg, C.M., and Feather, M.S., "The Characterization of a Chitin-Associated D-Glucan from the Cell Walls of <u>Aspergillus</u> <u>niger</u>", Biochimica et Biophysica Acta, 320, pp. 64-72, 1973.
- 45. O'Brien, R.W., and Ralph, B.J., "The Cell Wall Composition and Taxonomy of Some Basidiomycetes and Ascomycetes", Annals of Botany, N.S., <u>30</u>, 120, 1966.
- Crook, E.M., and Johnston, I.R., "The Qualitative Analysis of the Cell Walls of Selective Species of Fungi", Biochem. J., <u>83</u>, pp. 325-331, 1962.
- 47. Horikoshi, K., and Arima, K., "X-ray Diffraction Patterns of the Cell Wall of <u>Aspergillus oryzae</u>", Biochm. Biophys. Acta, <u>57</u>, pp. 392-394, 1962.
- 48. Miyazaki, T., and Irino, T., "Studies on Fungal Polysaccharides. IX. The Acidic Polysaccharide from the Cell Wall of <u>Rhizopus nigricans</u>", Chem. Pharm. Bull., <u>19</u>, 12, pp. 2545-2550, 1971.
- 49. Blumenthal, H.J., and Roseman, S., "Quantitative Estimation of Chitin in Fungi", J. Bacteriol., <u>74</u>, pp. 222-224, 1957.
- 50. Benedek, A., "Carbon Evaluation and Process Design", Proceedings of the P.C.T. Activated Carbon Adsorption in Pollution Control, sponsored by Environment Canada, Ottawa, Ontario, 1974.
- 51. Tsezos, M., "Adsorption of Bioresidual Organics in a Fluidized Bed Biological Reactor", M.Eng. Thesis, McMaster University, Hamilton, Ont., 1978.
- 52. (Then, W., "The Effect of Surface Curvature on the Adsorption Capability /of Porous Adsorbants", Ph.D. Thesis, University of South Carolina, 1969.
- 53. 'Muzzarelli, R.A.A., and Sipos, L., 'Chitosan for the Collection from Sea Water of Naturally Occurring Zinc, Cadmium, Lead and Copper", Talanta, 18, pp. 853-858, 1971.
- 54. Glowacka, D., and Popowicz, J., "Zastosowanie Chityny do Chromatograficznego Rozdziału UO₂⁺od Fe⁺³, Ca²⁺, Mg⁺²", Rocz-i. Akad. Med. Białyst., <u>11</u>, pp. 47-51, 1965.

- 55. Pearson, F.G., Marchessault, R.H., and Liang, C.Y., "Infrared Spectra of Crystalline Polysaccharides. V. Chitin", J. of Polymer Science, <u>43</u>, pp. 101-116, 1960.
- Marchessault, R.H., and Liang, C.Y., "Infrared Spectra of Crystalline Polysaccharides. III. Mercerized Cellulose", J. of Polymer Science, 43, pp. 71-84, 1960.
- 57. Nakamoto, K., "Infrared Spectra of Inorganic and Coordination Compounds", Wiley Interscience, N.Y., 1969.
- 58. Ferraro, J.R., and Walker, A., "Comparison of the Infrared Spectra of the Hydrates and Anhydrous Salts in the Systems $UO_2(NO_3)_2$ and $Th(NO_3)_4$ ", J. of Chemical Physics, <u>45</u>, 2, 1966.
- 59. Bullock, J.I., "Infrared Spectra of Some Uranyl Nitrate Complexes", J. Inorg. Nucl. Chem., 29, pp. 2257-2264, 1967.
- 60. Parish, R.V., "The Metallic Elements", Longman Ltd., London, 1977.
- 61. Allen, G.C., and Griffiths, A.J., "Vibrational Spectroscopy of Strondium Uranate (U1) Compounds", J. of Chemical Society, Dalton, pp. 1144-1148, 1977.
- Allen, G.C., and Griffiths, A.J., "Vibrational Spectroscopy of Alkalineearth Metal Uranate Compounds", J. of Chemical Society, Dalton, pp. 315-319, 1979.
- 63. Addison, C.C., Champ, H.A.J., Hodge, N., and Norbury, A.H., "Anhydrous Uranyl Nitrate and Its Complexes with Some Oxygen and Nitrogen Donors", J. of Chemical Society, pp. 2354-2360, 1964.
- 64. Bellamy, L.J., "<u>The Infrared Spectra of Complex Molecules</u>", Chapman and Hall, London, 1975.
- 65. Sahu, C.R., and Mitra, A.K., "Fundamental Studies on the Interaction of Transition Metals with Carbohydrate Derivatives as Ligands. I. Reaction of 2-Deoxy-2-Amino-D-Glucopyranoside with Salts of Iron, Cobalt and Nickel", J. Indian Chem. Soc., <u>48</u>, 9, 1971.
- 66. Tamura, Z., and Miyazaki, M., "Metal Complexes of D-Glucosamine and its Derivatives. IV. Determination of Stability and Equilibrium Constants of Metal Complexes of D-Glucosamine by pH Titration Method", Chem. Pharm. Bull., <u>13</u>, 3, 1965.
- 67. Tamura, Z., Miyazaki, M., and Suzuki, T., "Metal Complexes of D-Glucosamine and its Derivatives. III. Determination of Acid Dissociation Constants of D-Glucosamine and its Three O-Methyl Derivatives", Chem. Parm. Bull., 13, 3; 1965.

68. Zhbankov, R.G., <u>"Infrared Spectra of Cellulose and its Derivatives"</u>, Consultants Bureau, N.Y., 1966.

()

- 263.
- 69. Michell, A.J., and Scurfield, G., "Composition of Extracted Fungal Cell Walls as Indicated by Infrared Spectroscopy", Archives of Biochemistry and Biophysics, <u>120</u>, pp. 628-637, 1967.

()

- 70. Nagakawa, I., and Shimanouchi, T., "Far Infrared Spectra and Metal Ligand Force Constants of Metal Ammine Complexes", Spectrochimica Acta, 22, pp. 759-775, 1966.
- Srivastava, T.N., Tandon, S.K., and Bhakru, N., "Complexes of Zirconium and Thorium Perchlorates with Some Heterocyclic Bases", J. Inorg. Nucl. Chem., 40, pp. 1180-1181, 1977.
- Hradkova, B., Jilek, R., Stamberg, K., and Slovak, Z., "Sorpce Uranu Biosorbents", Symposium Pracorniku Banskeho Prumyslu, 215, 1975.
- 73. Bell, C.F., and Lott, K.A., "Modern Approach to Inorganic Chemistry", Butterworths, London, 1972.
- Furusawa, T., and Smith, J.M., "Fluid Particle and Intraparticle Mass Transport Rates in Slurries", Ind. Eng. Chem. Fund., <u>12</u>, 2, 1973.
- 75. Weber, W.J., Jr., <u>"Physicochemical Processes"</u>, Wiley-Interscience, N.Y., 1972.
- 76. Beveridge, T.J., "Metal Uptake by Bacterial Walls", Paper presented at the Second Chemical Congress of ACS, August 24-29, Las Vegas, 1980.
- 77. Hearne, J.A., and White, A.G., "The Heat of Solution of Uranium Tetrachloride and the Hydrolysis of the Uranium (IV) Ion", J. of Chemical Society, pp. 2081-2085, 1957.
- 78. Hearne, J.A., and White, A.G., "Hydrolysis of the Uranyl Ion", J. of Chemical Society, pp. 2168-2174, 1957.
- 79. Tamura, Z., and Miyazaki, M., "Metal Complexes of D-Glucosamine and its Derivatives. V. Spectrophotometric Investigation on Copper (II), Nickel (II), and Cobalt (II). Complexes of D-Glucosamine and the Preparation of Glucosamine-Copper Complex", Chem. Pharm. Bull., <u>13</u>, 3, 1965.
- 80. Ferraro, J.R., and Walker, A., "Far Infrared Spectra of Anhydrous Metallic Nitrates", J. of Chemical Physics, 42, 4, 1965.
- Walker, A., and Ferraro, J.R., "Infrared Spectra of Anhydrous Rare-Earth Nitrates from 4000-100 cm⁻¹", J. of Chemical Physics, <u>43</u>, 8, 1965.
- Terrassé, J.M., Poulet, H., and Mathieu, J.P., "Spectres de Vibration et Fréquences Fundamentales de Composés de Coordination Hexamminés", Spectrochimica Acta, 20, pp. 305-315, 1964.

玩

pp. 793-797, 1978.

83.

- Hill, R.J., and Rickard, C.E.F., "Complexes of Thorium (IV) and Uranium (IV) with Some Schiff Bases", J. Inorg. Nucl. Chem., 40,
- 84. Elsabee, M.Z., Mattar, M., and Habashy, B.M., "Bonding Between Cu(II) Complexes with Celluloses and Related Carbohydrates", J. of Polymer Science, <u>14</u>, pp. 1773-1781, 1976.
- 85. Gatehouse, B.M., Livingstone, S.E., and Nyholm, R.S., "Infrared Spectra of Some Nitrato-coordination Complexes", J. of Chemical Society, pp. 4222-5226, 1957.
- 86. Johnstone, R.A.W., "Mass Spectrometry for Organic Chemists", Cambridge Chemistry Texts, U.K., 1972.
- 87. Davies, O.L. and Goldsmith, P.L., "Statistical Methods in Research" and Production", Oliver and Boyd, Edinburgh, 1972.
- 88. Geissman, T.A., "Principles of Organic" Chemistry", W.H. Freeman and Co., San Francisco, 1976.
- 89. Parker, F.S., "Infrared Spectroscopy in Biochemistry Biology and Medicine", Plenum Press, N.Y., 1971.
- 90./ Moller, K.D. and Rothschild, W.G., "Far Infrared Spectroscopy", Wiley-Interscience, N.Y., 1971.
- 91. Kay, D.H., "Techniques for Electron Microscopy", Blackwell Scientific Publications, Oxford, 1965.
- 92. Muzzarelli, R.A.A., Ferrero, A. and Pizzoli, M., "Light-scattering, X-ray Diffraction, Elemental Analysis and Infrared Spectrophotometry Characterization of Chitosan, a Chelating Polymer", Talanta, <u>19</u>, pp.1222-1226, 1972.
- 93. Bond, W.D., Clairborne, H.C. and Leuze, R.E., 'Methods for Removal of Actinides from High Level Wastes", Nuclear Technology, <u>24</u>, pp. 362-370, 1974.
- 94. Clark, D.A., "State of the Art: Uranium Mining, Milling, and Refining Industry", N.T.I.S. PB-235 557, 1974.

:)

- 265.
- 95. Anonymous, "Evaluation of the Impact of the Mines Development, Incorporated Mill on Water Quality Conditions in the Cheyenne River", N.T.I.S. PB-255 270, 1971.
- 96. Anonymous, "Stream Surreys in Vicinity of Uranium Mills. II. Area of Moab, Utah, August 1960", N.T.I.S. PB-260 277, 1961.
- 97. Anonymous, "Stream Surveys in Vicinity of Uranium Mills, I. Area of Grand Junction, Colorado, August 1960", N.T.I.S. PB-260 276, 1961.
- 98. Baker, M. Jr., "Inactive and Abandoned Underground Mines. Water Pollution Prevention and Control", N.T.I.S. PB-258 263, 1975.
- 99. Updegraff, D.M. and Douros, J.D., "The Relationship of Microorganisms for Uranium Deposits", Develop. Industr. Microbiol., <u>13</u>, pp.76-90, 1972.

1 25

100. Vydra, F. and Galba, J., "Sorption von Metallokomplexen an Silicage1' III. Sorption von Hydrolysen produkten des Th⁺⁴, Fe⁺³, Al⁺³ und Cr⁺³", Collection Czechoslov. Chem. Commun., <u>32</u>, pp.3530-3536, 1967.

APPENDICES

1.

· 266.

24

APPENDIX A

0

URANIUM UPTAKE DATA

A.1 Uranium Biosorption Isotherms

r

1. <u>Rhizopus arrhizus</u>

4

()

()

•	•			I.		v	
	Biomass g	C _{eq} ,U ⁺⁶ mg/1	ΔC,U ⁺⁶ mg/1	q,U ⁺⁶ mg/g	т °С	pH	-
		7 00				•	
	0.1015	780	220	216	23	4	
	0.3009	391	609 /	202	23	4	
	0.5009	. 101	899	179/	23	4	
	0.6143	54	946	154	23	4	
	1.0017	20	980	98	23	4	
	0.0039	88	/	180	23	4	
	0.0104	78	. 17	164	23	4	r
	0.0109	77	18	165	23	.4	
	0.0198	62	33	167	23	4	
	0.0399	40	55	138	23	4	
	0.0514	11	39	76	23	5	
	0.1015	4	46	45	23	5	r
	0.2044	1	49	24	23	5	
	0.4049	· . 1	49	13	23	5	
	0.5903	1	49	8	23	5	
	0.7194	1	49	7	23	5	
	1.0313	1	49	5	23	5	
•	0.0106	76	17	. 160	23	5	
	0.0501	11 `	36	72	23	2	
	0.1031	3	44	43	23	2	2
*	0.1987	2	46	23	23	2	
	0.4002	1	46	. 11	23	2	/
	0.0611	35	/ 55	90	23	2	, ,
	0.0465	50	/ 40	86	23	2	1
	0.0292	64	/ 26	89 -	23	2	i
	0.0300	49	45	150	23	4	/
	0.0327	42	49	150	23	4	1
	0.0297	46 /	′ 48	162	23	4 /	
	0.0303	60	34	112	23	4	

....(cont'd.)

()

£

.(cont'd.)

· : ,

ż.

	Biomass g	C _{eq} , U ⁺⁶ mg/1	ΔC,U ⁺⁶ mg/1	q,U ⁺⁶ mg/g	рН	L
3.	Aspergilus n	iger (23°C)				
	0.3037	863	93	31	4	
	0.5086	795	161	32	4	
	0.7128	707	/ 249	35	4	
	0.9324	663	293	31	4	
	0.0484	47	8	17	4 1	
	0.1003	38	.18	18	4	
	0.2068	31	25	12	4	-
	0.5997	12	44	7	4	
	0.7976	. 10	• 46	6	4	
	1.2199	3	53	4	4 `	
	0.0270	51	5	19	5	
	0.0610	46	10	• 16	5	
	0.1240	40	16	13	5	
	0.5795	7	49	8 ່	5.	
	0.7191	5	51	7	5	
	0.1765	34 🐃	22	12	5	
	0.0059	, 50	1	17	5	
	0.0494	47	4	8 /	2	
	0.1126	42	9	8	2	
	0.4965	19	32	6	2	9
	0.6958	13	38 .	5	2	
	0.0339	48	7 3 · · ·	9	2 `	"Trang
	0.2027 .	36	15	7	2	v
•	Aspergilus to	erreus (<u>2</u> 3 ⁰ C)		. ,		
	0.0502	935	0	0	34	
	0.1031	732 023	3 12	3	4	,
	0.5101	525 035	12	4	4 1	
	0.6548	890	45	7	4) /	
	1/0237	930	40 1	7	4	•
	0.0306	. 46	1	ں ۲	4,	*
	0.0510	46	^_ 1	2	4	
-	0.1095	45 9	1	2	- 4 - 7 / /	-
	0.2977	· 42 %	-7 5 *	2 /	· 4	
	0.4990	38	<u>چ</u> و	2	4	
		47 /	. 0.		Δ	
	0.7118	• • /			7	
	0.7118 0.9189	*47	0	0	л	
	0.7118 0.9189 1.0972	*47 45	0	0.	4	
	0.7118 0.9189 1.0972 0.0568	*47/ 45 46	0 2 0	0 - 0 - 0	4 4 5	
	0.7118 0.9189 1.0972 0.0568 0.1029	*47/ 45 46 46	0 2 0	0 - 0 4 0	4 4 5 5	
	0.7118 0.9189 1.0972 0.0568 0.1029 0.2051	*47/ 45 46 46 43	0 2 0 0 3	0 - 0 - 0 1	4 5 5 5 √	-

Ċ

.....(cont'd.)

("

.()

	Biomass, g	C _{eq} ,U ⁺⁶ mg/1	∆C,U ⁺⁶ mg/1	q,U ⁺⁶ , mg/g	рН	•
	0.6095	40	, 6	1	、 5	f
	0.7952	38	8	ī	5	
	1.0400	35	11	1	5	
	0.0299	47	0	0.	2	. ,
	0.0504	47	0	0	2	
	0.0918	46	. 1	1	, 2	
	0.3228	45	2	1	ົ 2	
	0.5353	44	3	1	2	۰.
	0.7389	43	4 ′	1	2	*
	0.9171	41	- 6	1	2 ^	•
	1.0836	41	6	1	2	
 5.	Strephomyces	<u>niveus</u> (23 ⁰ C)			
	0.0485	936	20	41	4	
-	0.1092	913	43	39	4	
	0.2996	848	108	36	4	
	0.4999	758	198	40	4	
	0.7029	683	273	, 39	4.	5
	0.9590	586	370	39	4	
	0.0537	45	11	21	4 、	
	0.1125	34	22	[.] 19	4	
	0.1996	23	33	17	4 .	
	0.4027	8	48	· 12	4	
	0.6000	3	53	9 🔨	4	
	0.8090 -	2,	54 ·	. 7 (4	
	0.0069	54	2	22	5	
	0.0541	46	10	18	5	•
	0.1204	35	20	17	5	
	0.3526	8	48	13	- 5	
	0.5700	2	56	9	5	ノ
	0.6900	2	56	8	5	r
	0.0131	47	2	15	2	_
	0.0580	41	8	14	` 2	
	0.0972	35	14	14	2	
	0.3247	15	34	10	2	
~1	0.4540	9	40	9	2,	
	0.7804	2	47	Ó	2	

1.

.....(cont'd.)

١

271.

J	Biomas's g	C _{eq} ,U ⁺⁶ mg/1	ΔC,U ⁺⁶ mg/1	q,U ⁺⁶ mg/g	рН	~ ,
6.	Pseudomonàs	fluoréscens (23 ⁰ C)	¢		,
•	0. 0 156	4 6	. 1	6	4	
	0.0474	45	2° .	4	4	
	0.1103 [°]	42	5	5	4	
	0.3130	28	19	, ` 6	4	
	0.4985 .	21	26	5	4	υ '
	0.7325	1,8	29	4	4	
	0.9716	16	∘ 31 [`]	3	4	
	1.1979	15	31 .	3	4	
	0.0503	967	3 `	6	4	*
	0.1001	964	6	6	_ 4	-
	°0.2009	955	15	7	4	7
2	0.4149	937 È °	3 3 ´ ຶ	[`] 8	4	3
	0.7191	915	55	7	4	
	1.0261	∞ 873 [´]	97	9	4 °	69
-	0.0209	46	1	5	2	
	0.0410	45	2	5	2	۰. ۲
	0.0999	41	6 ``	6	· 2	,
	0.3075	29	18	6	2	
, ,	0.5006	24	23	5	2	
	0.6690	20	27	4	2	
	0.9487	18/	29	3 1	2	-
,	1.7489	12	35	2	2	,
	0.1023	42	7	7	5	
~ •	0.2158	. 36	13	6	້ 5	·
	0.4119	26	23	6	5	
	0,5896	22	27	• 5	´ 5	
~	0.8426	19	30	4	5	, a
	1.0460	17	32	3	5	· /
,	Municipal Was	ste Activated	Sludge (23 ⁰ C)	,	,
				,		3 '
	0.0308	52	4	13	4	·
	0.0507	49	7	14	4	•
	0.1004	42	14	14 .	4	ſ
	0.2004	34	22	11	4 "	
	0.3967	24	32	8	4	
-	0:5953	15	41	7	4	
	0.0471	956	⁷ 24	51	- 4	
	0.0996	928	52	52	4	
	0.2017	877	103	51	4	
	0.3072	832	148	48	4	·
	0.5020	748	232	46	4	t j
	0.8375	624	356	43	4	1.1
	0.0731	45	11	15	5	
	0 0	¥				

().

 (\cdot)

Biomass g	C _{eq} ,U ⁺⁶ mg/1	[^] _∆C,U ⁺⁶ mg/1	q,U ⁺⁶ mg/g	рН	
•		,		,	. *
0.3423	19	37	, 11	5	
0.5792	12	44	8	5	r
0.6907	8	48	7	5	لام
1.3260	3	53	4	· 5	
0.0188	44	2	11 •	2	
0.0445	. 40	6 `	13	2	
0.0988	34	11.	11	2	
0.3037	13	32	. 10	. 2	
0.3970	το δ το το τ	48	12 ~	4	
0:7650	4	51 52	9 7	4	
0.5976 0.7650 1.0781 0.0510	4 2 928	51 52 54 40	9 7 5 78	4 4 4 4	
0.5976 0;7650 1.0781 0.0510 0.0999	4 2 928 894	51 52 54 40 75	9 7 5 78 75	4 4 4 4 4	
0.5976 0,7650 1.0781 0.0510 0.0999 0.2988	4 2 928 894 733	51 52 54 40 75 236	9 7 5 78 75 79	4 4 4 4 4 4	, 4
0.5976 0;7650 1.0781 0.0510 0.0999 0.2988 0.5069	4 2 928 894 733 594	51 52 54 40 75 236 375	9 7 5 78 75 79 74	4 4 4 4 4 4 4	_ ધ્
0.5976 0;7650 1.0781 0.0510 0.0999 0.2988 0.5069 0:6976	4 2 928 894 733 594 476	51 52 54 40 75 236 375 493	9 7 5 78 75 79 74 71	4 4 4 4 4 4 4 4 4	. 4
0.5976 0;7650 1.0781 0.0510 0.0999 0.2988 0.5069 0:6976 0.9319	4 2 928 894 733 594 476 351	51 52 54 40 75 236 375 493 618	9 7 5 78 75 79 74 71 °66	4 4 4 4 4 4 4 4 4 4 4	. ų
0.5976 0;7650 1.0781 0.0510 0.0999 0.2988 0.5069 0:6976 0.9319 0.0192	4 2 928 894 733 594 476 351 51	51 52 54 40 75 236 375 493 618 5	9 7 5 78 75 79 74 71 ≈66 26	4 4 4 4 4 4 4 5	. ų
0.5976 0(7650 1.0781 0.0510 0.0999 0.2988 0.5069 0.6976 0.9319 0.0192 0.0507	4 2 928 894 733 594 476 351 51 42	51 52 54 40 75 236 375 493 618 5 14	9 7 5 78 75 79 74 71 °66 26 28	4 4 4 4 4 4 4 5 5	- 4
0.5976 0;7650 1.0781 0.0510 0.0999 0.2988 0.5069 0:6976 0.9319 0.0192 0.0507 0.1203	4 2 928 894 733 594 476 351 51 42 * 26	51 52 54 40 75 236 375 493 618 5 14 0 30	9 7 5 78 75 79 74 71 °66 26 28 25	4 4 4 4 4 4 5 5 5 5	
0.5976 0;7650 1.0781 0.0510 0.0999 0.2988 0.5069 0.6976 0.9319 0.0192 0.0507 0.1203 0.5102	4 2 928 894 733 594 476 351 51 42 ≈ 26 5	51 52 54 40 75 236 375 493 618 5 14 ∞ 30 51	9 7 5 78 75 79 74 71 °66 26 28 25 10	4 4 4 4 4 4 5 5 5 5 5 5	- 4
0.5976 0;7650 1.0781 0.0510 0.0999 0.2988 0.5069 0:6976 0.9319 0.0192 0.0507 0.1203 0.5102 0.5680	4 2 928 894 733 594 476 351 51 42 ≈ 26 5 1	51 52 54 40 75 236 375 493 618 5 14 0 30 51 55 47	9 7 5 78 75 79 74 71 66 26 28 25 10 10	4 4 4 4 4 4 5 5 5 5 5 5	. 4
0.5976 0;7650 1.0781 0.0510 0.0999 0.2988 0.5069 0.6976 0.9319 0.0192 0.0507 0.1203 0.5102 0.5680 0.6876	4 2 928 894 733 594 476 351 51 42 ≈ 26 5 1 1 1	51 52 54 40 75 236 375 493 618 5 14 0 51 55 55	9 7 5 78 75 79 74 71 66 26 28 25 10 10 10	4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5	. 4
0.5976 0;7650 1.0781 0.0510 0.0999 0.2988 0.5069 0.6976 0.9319 0.0192 0.0507 0.1203 0.5102 0.5680 0.6876 1.0947 0.0245	4 2 928 894 733 594 476 351 51 42 ∞ 26 5 1 1 1 1	51 52 54 40 75 236 375 493 618 5 14 0 51 55 55 55	9 7 5 78 75 79 74 71 66 26 28 25 10 10, 10, 5	4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	. 4
0.5976 0;7650 1.0781 0.0510 0.0999 0.2988 0.5069 0:6976 0.9319 0.0192 0.0507 0.1203 0.5102 0.5680 0.6876 1.0947 0.0945 0.3037	4 2 928 894 733 594 476 351 51 42 ≈ 26 5 1 1 1 61, 37	51 52 54 40 75 236 375 493 618 5 14 55 55 55 55 10 27	9 7 5 78 75 79 74 71 °66 26 28 25 10 10 10 ° 4 8 5 11	4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- 4
0.5976 0;7650 1.0781 0.0510 0.0999 0.2988 0.5069 0:6976 0.9319 0.0192 0.0507 0.1203 0.5102 0.5680 0.6876 1.0947 0.0945 0.3037 0.4531	4 2 928 894 733 594 476 351 51 42 ≈ 26 5 1 1 1 61, 37 20	51 52 54 40 75 236 375 493 618 5 14 0 51 55 55 10 33 51	9 7 5 78 75 79 74 71 66 26 28 25 10 10 10 * 8 5 11 11 *	4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- 4 - - - -
0.5976 0;7650 1.0781 0.0510 0.0999 0.2988 0.5069 0:6976 0.9319 0.0192 0.0507 0.1203 0.5102 0.5680 0.6876 1.0947 0.0945 0.3037 0.4531 0.7756	4 2 928 894 733 594 476 351 51 42 ≈ 26 5 1 1 1 61, 37 20 6	51 52 54 40 75 236 375 493 618 5 14 55 55 55 55 10 33 51 65	9 7 5 78 75 79 74 71 ~66 26 28 25 10 10 8 5 11 11	4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	- ų

 $\left(\cdot \right)$

ç

5
١

273.

•	g	mg/1	mg/1	mg/g	рН	
9.	Activated	Carbon: Filtra:	sorb 400 (23	°C)	<u> </u>	۲ ۲
	0.0159	41	6	38	4 -	
	0.0530	30	17	32	4	
	0.1022	20	27	26	4	
	·0.3081	4	43	14	4	-
	0.5038	2	45	9	4	,
	0.1010	815	154	152	4	
	0.1931	- 662	307	159	4	
	0.3685	474	495	134	4	
	0.5034	350	619	123	4	
	0.0117	42	5	43	, 5	
	0.0548	29	18	33	5	^
	0.0992	19	28	28	5	
	0.2978	4	43	15	á 5	
	0.5040	10	31	19	5	
	0.4533	48	÷ 0 ~	• 0	2	
•	0.0991	48	0	0	2	
	0.3003	46	2	1	2	
	0.5012	45	3	1	ີ 2	
	0.6935	12	6	1	2	
	0.0000	74	0	*	4	
	0.9031	39	9	1	2	
	0.9031	39	9	1	2	
 10.	0.9031	39 nge Resin: IRA-	9 .400 (23 ⁰ C)	1	2	
 10.	0.9031 <u>Ion Exchar</u> 0.0439	39 nge Resin: IRA- 27	9 -400 (23 ⁰ C) 20	1 45	2 2 	
10.	0.0031 <u>Ion Exchar</u> 0.0439 0.0642	39 nge Resin: IRA- 27 .23	9 - <u>400 (23⁰C)</u> 20 24	1	2 2 	
 10.	0.9031 <u>Ion Exchar</u> 0.0439 0.0642 0.1618	39 nge Resin: IRA- 27 .23 4	9 - <u>400 (23⁰C)</u> 20 24 43	1 	2 2 4 4 4	
 10. Ľ	0.0439 0.0642 0.0642 0.1618 0.3430	39 nge Resin: IRA- 27 23 4 2	9 -400 (23 ⁰ C) 20 24 43 45	1	2 2 4 4 4 4 4	
10. Ľ	0.9031 <u>Ion Exchar</u> 0.0439 0.0642 0.1618 0.3430 0.5327	39 nge Resin: IRA- 27 23 4 2 0	9 <u>400 (23⁰C)</u> 20 24 43 45 47	45 37 26 13 9	2 2 4 4 4 4 4 4 4	
10. U	0.0439 0.0642 0.1618 0.3430 0.5327 0.7448	39 nge Resin: IRA- 27 23 4 2 0 0	9 400 (23 ⁰ C) 20 24 43 45 47 47 47	45 37 26 13 9 6	2 2 4 4 4 4 4 4 4 4 4 4 4	
10. <i>U</i>	0.9031 <u>Ion Exchar</u> 0.0439 0.0642 0.1618 0.3430 0.5327 0.7448 0.0619	39 nge Resin: IRA- 27 23 4 2 0 0 900	9 <u>400 (23⁰C)</u> 20 24 43 45 47 47 56	45 37 26 13 9 6 90	2 2 4 4 4 4 4 4 4 4 4 4 4	
ـــَــ 10. ی	0.9031 <u>Ion Exchar</u> 0.0439 0.0642 0.1618 0.3430 0.5327 0.7448 0.0619 0.3224	39 age Resin: IRA- 27 23 4 2 0 0 900 666	9 <u>400 (23⁰C)</u> 20 24 43 45 47 47 56 290	45 37 26 13 9 6 90 90	2 2 4 4 4 4 4 4 4 4 4 4 4	
10. v	0.9031 <u>Ion Exchar</u> 0.0439 0.0642 0.1618 0.3430 0.5327 0.7448 0.0619 0.3224 0.5205	39 age Resin: IRA- 27 23 4 2 0 0 900 666 548	9 <u>400 (23⁰C)</u> 20 24 43 45 47 47 56 290 408	45 37 26 13 9 6 90 90 78	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	. ۲
10. (')	0.9031 <u>Ion Exchar</u> 0.0439 0.0642 0.1618 0.3430 0.5327 0.7448 0.0619 0.3224 0.5205 0.8643	39 age Resin: IRA- 27 23 4 2 0 0 900 666 548 325	9 <u>400 (23^oC)</u> 20 24 43 45 47 47 56 290 408 631	45 37 26 13 9 6 90 90 90 78 73	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	• ۲
10. 	0.9031 0.9031 0.0439 0.0642 0.1618 0.3430 0.5327 0.7448 0.0619 0.3224 0.5205 0.8643 0.0913	39 age Resin: IRA- 27 23 4 2 0 0 900 666 548 325 12	9 <u>400 (23^oC)</u> 20 24 43 45 47 47 56 290 408 631 34	45 37 26 13 9 6 90 90 78 73 37	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 8	, "Ĵ.
10. 	0.9031 0.9031 0.0439 0.0642 0.1618 0.3430 0.5327 0.7448 0.0619 0.3224 0.5205 0.8643 0.0913 0.1100	39 nge Resin: IRA- 27 23 4 2 0 0 900 666 548 325 12 9	9 <u>400 (23^oC)</u> 20 24 43 45 47 47 56 290 408 631 34 37	45 37 26 13 9 6 90 90 78 73 37 33	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 8	
10. v	0.9031 0.9031 10n Exchar 0.0439 0.0642 0.1618 0.3430 0.5327 0.7448 0.0619 0.3224 0.5205 0.8643 0.0913 0.1100 0.3254	39 age Resin: IRA- 27 23 4 2 0 0 900 666 548 325 12 9 2	9 20 20 24 43 45 47 47 56 290 408 631 34 37 44	45 37 26 13 9 6 90 90 78 73 37 33 13	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 8 5 5	یر . ۲.
10. v	0.9031 <u>Ion Exchar</u> 0.0439 0.0642 0.1618 0.3430 0.5327 0.7448 0.0619 0.3224 0.5205 0.8643 0.0913 0.1100 0.3254 0.5087	39 age Resin: IRA- 27 23 4 2 0 0 900 666 548 325 12 9 2 0	9 20 20 24 43 45 47 47 56 290 408 631 34 37 44 46	45 37 26 13 9 6 90 90 78 73 37 33 13 9	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 5 8 5 5 5	~~. `~.
10. <i>u</i> , , , , ,	0.9031 0.9031 1on Exchar 0.0439 0.0642 0.1618 0.3430 0.5327 0.7448 0.0619 0.3224 0.5205 0.8643 0.0913 0.1100 0.3254 0.5087 0.0360	39 age Resin: IRA- 27 23 4 2 0 0 900 666 548 325 12 9 2 0 47	9 400 (23 ⁰ C) 20 24 43 45 47 47 56 290 408 631 34 37 44 46 0	45 37 26 13 9 6 90 90 78 73 37 33 13 9 0	2 2 4 4 4 4 4 4 4 4 4 4 5 8 5 5 5 5 5 2	~
10. ('	0.9031 0.9031 1on Exchar 0.0439 0.0642 0.1618 0.3430 0.5327 0.7448 0.0619 0.3224 0.5205 0.8643 0.0913 0.1100 0.3254 0.5087 0.0360 0.0360 0.0820	39 age Resin: IRA- 27 23 4 2 0 0 900 666 548 325 12 9 2 0 47 47	9 400 (23 ^o C) 20 24 43 45 47 47 56 290 408 631 34 37 44 46 0 0 0	45 37 26 13 9 6 90 90 78 73 37 33 13 9 0 0	2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	·
10. c'	0.9031 <u>Ion Exchar</u> 0.0439 0.0642 0.1618 0.3430 0.5327 0.7448 0.0619 0.3224 0.5205 0.8643 0.0913 0.1100 0.3254 0.5087 0.0360 0.0820 0.1330	39 age Resin: IRA- 27 23 4 2 0 0 900 666 548 325 12 9 2 0 47 47 47 47	9 400 (23 ⁰ C) 20 24 43 45 47 47 56 290 408 631 34 37 44 46 0 0 0 0 0	45 37 26 13 9 6 90 90 78 73 37 33 13 9 0 0 0 0	2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 8 5 5 5 5 5 2 2 2 2	
10. ¢	0.9031 <u>Ion Exchar</u> 0.0439 0.0642 0.1618 0.3430 0.5327 0.7448 0.0619 0.3224 0.5205 0.8643 0.0913 0.1100 0.3254 0.5087 0.0360 0.0360 0.1330 0.3194	39 age Resin: IRA- 27 23 4 2 0 0 900 666 548 325 12 9 2 0 47 47 47 47 47	9 400 (23 ^o C) 20 24 43 45 47 47 56 290 408 631 34 37 44 46 0 0 0 0 0 0 0	45 37 26 13 9 6 90 90 90 78 73 37 33 13 9 0 0 0 0 0 0	$ \begin{array}{c} 2\\ 2\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 5\\ 5\\ 5\\ 5\\ 5\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2 \end{array} $	٠ <u>٠</u>
10. <i>v</i> ²	0.9031 0.9031 0.0439 0.0642 0.1618 0.3430 0.5327 0.7448 0.0619 0.3224 0.5205 0.8643 0.0913 0.1100 0.3254 0.5087 0.0360 0.0360 0.1330 0.3194 0.5247	39 age Resin: IRA- 27 23 4 2 0 0 900 666 548 325 12 9 2 0 47 47 47 47 47 47 47	9 400 (23 ^o C) 20 24 43 45 47 47 56 290 408 631 34 37 44 46 0 0 0 0 0 0 0	45 37 26 13 9 6 90 90 90 78 73 37 33 13 9 0 0 0 0 0 0 0 0	$ \begin{array}{c} 2 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	·
10. <i>v</i> , , , ,	0.9031 0.9031 0.0439 0.0642 0.1618 0.3430 0.5327 0.7448 0.0619 0.3224 0.5205 0.8643 0.0913 0.1100 0.3254 0.5087 0.0360 0.3294 0.5087 0.0360 0.1330 0.3194 0.5247 0.6862	39 nge Resin: IRA- 27 23 4 2 0 0 900 666 548 325 12 9 2 0 47 47 47 47 47 47 47 47 47 47	9 400 (23 ^o C) 20 24 43 45 47 47 56 290 408 631 34 37 44 46 0 0 0 0 0 0 0	45 37 26 13 9 6 90 90 78 73 37 33 13 9 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5	·

6

 \bigcirc

 (\cdot)

A.2 Chitin Uranium Uptake

()

 $\binom{1}{r}$

The table that follows summarizes the four experiments executed in order to determine the uranium uptake capacity of pure chitin.

Experiment #	Chitin mg	U ⁺⁶ uptaken mg	g mg/g	рН	b _C . ⟨ −
 1	5.0	0.018 .	5	4	23
2	18.0	0.108	6	4	23
3	30.0	0.190	6 ,	4 /	23
4	30.6	0.180	6	4,	23

A.3 Precision-accuracy of U(VI) Analytical Determination

Microorganum: Rhizopus arrhizus (pH = 4)

•	Analysis #	Absorbance	Concentration (mg/1) .
	<u>.</u>	o 0	יין אראין איז	
	1 '	0.258	28.301	
	2	0.256	28.082	I
	3	0.,257	28.192	,
	4	0.260	28.521	~
	5	0.259	28,411 *	
	6	.0.259	28,411	
	. 7	0.267	29.289	
	8	0.267	29.289	
•	9	0.267	29.289	
-1	[^] 10	0.267	29.289	
	11	0.261	28.630	<i>,</i>
	12	0.265	· 29.069	
	13	0.265	29,069	
	14	0.269	29,508	
~	15	0.267	29,289	
V	· 16	0.267	- 29.289	•
,				

274.

Ð

The correlation coefficient of the calibration curve was r = 1.000, the standard error of the regression coefficient 0.967 and the standard error of estimate was 0.483. The following data were used for the determination of the calibration curve:

0
0.085
0.183
0.269
0.369

A.4 Precision of Uranium Biosorptive Uptake Capacity (q) Determination

Microorganism: <u>Rhizopus arrhizus</u> (pH = 4)

	Biomass g	C _{eq} ,U ^{+6⁻¹ mg/1}	ΔC,U ⁺⁶ mg/1	q mg/g	
	0.0309	~ 5 9	41 \	133	
	0.0313	55	45	144	
	0.0300	55	45 🕅	150	
	0.0309 -	54	46	149	
	0.0300	54	46 ·	153	
•	0.0293	60	- 40	135	
	0.0300	59	41	° 137	
	0.0305	53	47	154	,

A.5 Bipthalate Effect on q, Uranium

· · · ·

مرد

¢

()

 (\cdot)

÷

Biomass g	C _{eq} ,U ⁺⁶ , mg/1	C,U ⁺⁶ mg/1	q mg/g	q mg/g	q from Biosorption Isotherm
0.0295 0.0300 0.0303	48 49 48	46 45 46	156 150 152	153	148
	1		- <u>, y</u>		
	, (•				
			. *	•	, , , , , , , , , , , , , , , , , , ,

Č

O

licroorganism Rhizopus arrhizus (pH == 4, 23°C)

APPENDIX B

THORIUM UPTAKE DATA

Л

B.1 Thorium Biosorption Isotherms

1. <u>Rhizopus arrhizus</u> (23°C)

. _ '

(.

		~ ~ •	,		·	_
	Biomass mg	C _{eq} ,Th ⁺⁴ mg/1	ΔC, Th ⁺⁴ mg/1	∕q mg∕g	рН	-
-	0.0112	14	16	143	4	•
	0.0507	0 /	30	59	4	-
	0.0981	0	30	31	4	
	0.0048	• 22	8 7	166	5	
	0.0152	9	21	138	5	
	0.0317	2 (28	88	5 4	
	0.0353 -	<u>ه</u>	. 30	85	5`	
	0.0154	69	28	182	4	
	0.0402	31	66	. 164	4	
	0.0696	5 、	92	132	4	
	0.0096	33	17	177	4	
	0.0201	17	23	164	4	
	0.0291	9	41	141	4	
	0.0050	30	8	160	4	
	0.0049	30	8	163	4	
	0.0076	25	13	171	4	
	0.0180	14	16	89	2	
	0.0274	. 7	23	56	2	
	0.0174	14	16	92	2	
	0.0051	34	5	98	2	
	0.0098	21	9	92	2.	
	0.0043 🕔	35	. 4	93	2	
	0.0084	° 33 –	7 `	83	2	
,	0.0166	25	15	90	2 .	
	0.0299	15	43	144	4	
	0.0303	14	44 [`]	´ 145	4	
	0.0298	15	43	144	4	,
	0.0297	16	42	141 _Jr	4	
	0.0309	15	43	139	4 ·	
	0.0301	13	45	146	4	

.....(cont'd.)

631

	,	· (_))	Ŧ	(
1	Biomass	-C _{eq} , Th ⁺⁴	ΔC, Th ⁺⁴	, q		
	mg	ntg/ 1	mg/1 \	mg/g	рН	
ç	0.0246	1	32	130	4	
	0.0117	- 30	19	162	• 4	4
	0.0163	25	24 -	°147	4	
	0.0218	19	30 ັ	, 137	4	
	0.0260	. 18	31	119	4	
	0.0305	10	38	125	4	
	0.0101	31	17	• 168	4	
	0.0201	20	28	139	4	
1.	(40 ⁰ C)	•	-		·	
3	0.0101	28	21	208	4	1
	0.0153	18	31	203	4	
	0.0205	13	236	176	4	•
	0.0301	4	45	150	4	
	0.0201	28⁄	21	»20 4	4	
	0.0103	13	36	177	4	•
	0.0203	15	1 42	170		
	0.0079 0.0037 0.0038 0.0065	18 26 25 13	32 14 16 27	202 189 210 207	4 4 4 4	,
2.	Penicillium cl	nrysogenum (23	^o C)	, ,		``
	Biomass mg	C _{eq} mg/1	۵C mg/1	q mg/g	, pH	<u></u>
	0.0081	46	13	160	^ ^ Д	
	0.0248	25	34	• 137	4	
	0.0399	8	51	128	4	
	0.0595	1	50	· 07	т А	,
	0 0200	יד בט	33 .	150	4. A	1
	0.0400	JU J	30 70	120	н / Л	ľ
	0.0201	10	70	112	4 / A	
	0.0091	2	/ð	112	4	•
					,	
	1					cont'
	_^^	ı		-	(cont!

()

()

279.

2. (cont'd.)

(

()

•	Biomass mg	C _{eq} mg/1	ΔC mg/1	q mg/g	, рН	· ·
	0.0196		30	153	5	<u>*</u>
	0.0158	10	20	126 ·	5	
	0.0452	0	30	66	5	
	0.0194	58	34	175 ~	5	,
1 /	0.0494.2	20	72	146 -	5	
	0.0722	7	85	118	5	
\$/	0.1312	0	92	70	5	
48.	0.0215	- 68	36	167.	4	
	0.0510	30	64	. 125 .	4	. t
	0.0714	11 -	83	116	4	
	0.0941	` 0	94	100	4	· ·
	0.0214	.71	20	93	2	-
	0.0499	43	48	96	2	
r	0.0694	23	67	96	2	•
S i	0.0902	· 7	82	91	2	3
\leq	0.0412	19	41	99	2	
	0.0150	46 [′]	15	100	2	
	0.0257	36	25	97	2	
	0.0413	17	44	106	2	
	0.0496	្ញា7	44	89	2	
3. <u>A</u>	spergillus niger	(23 ⁰ C)				9. <u> </u>
	Luci		,	•		-
	0.0215	27	<u>ٌ</u> 3	14	. 4	
	0.0524	22	8	15	4	
	0.1046	15	15	14	4	
	0.3021	3	27	9	4	
	0.5014	1	29	6	4	
,	0.0545	`80	14	26	4	
	0.0710	77	17	24	4	
	0.1106	68	26	23	4	
•	0.2358	50	44	19	4	
	Q.4440	21	73	16	4	,
	0.0509	21	8	16	5	
	0,1012	14	15	15	5	
	0.1981	7	22	11	5	
D						

....(cont'd.)

Biomass g	Ceq, ^{Th⁺⁴ mg/1}	$\Delta C, Th^{+4}$ mg/1	q , mg/g	рН
	· · · · · · · · · · · · · · · · · · ·	28 -	. 5	5
<pre>0.5300 <0.6817</pre>	1	20	, J 4	5
0.0509	32	8	16	2
0.0687	28	12 -	17 °	2 .
0.0900	25	15	17	2
0.1041	18	12	· 12 ´	2
0.6160	Q., .	30	. 5	2 、
4. Aspergillus te	rreus (23 ⁰ C)	· · · · · · · · · · · · · · · · · · ·	, a	د. د
0.0499	27	(3)	, 6	4
0.1031	25	» 5 ′	5	4 •
° 0.3000/	15	15	5	4
0.5014	Ĩ1 , j	19	· 4	4
0.0529	89	5	9	4
0.0722	~ 9 2	2	. 3	4
0.1195	85	9.	7	4
0.2019	78	15	7	4
• 0.4943	64	30 、	6	4
0.0506	26	3	6	5
0.0997	21	· " 8	·8	5
0.2013	18	11	5	5
0.4073	12	- 17	4	5
0.5900	9	20 07	3 7	/)
0.0977	70	23	2, 0, ⁄	5
. U.U220	30	- 01	0	2 2
0,0484	20		1	2 1
0 2010	29	1	1	2
0.2010	23	2	1	2
0.5811	26	3	.1	2
0.7365	ِ 25 ُ	5	Ĵ	2
5. Streptomyces	niveus (23 ⁰ C)			
° 0.0213 ′	24	6	28	4
0.0508	17	· 13	25	4
0.1011	8	22	21	4
0.3023	1	30	10	4
0.5032	0	30	6	4
0.0528	76	18	34	4
∞ 0.0702	67	27	38	4
	1			

280.

2

2.

۵.

 $\left(\cdot \right)$

()

5. (cont'd.)

()

2. 7

.

	(conc cr)	/	*		• •
	" Biomass	C _{eq} ,Th ^{±4} mg/1	$\Delta C, Th^{\pm 4}$ mg/1	q mg/g	pH
	0.1007	- 59	35	35	4
	0.2082	35	59	28	4
	0.4144	9	85	16	4
	0.0500	• 17	12	24	5
	0.1015	9	20	20	5
	0.1973	2	27	13	5
	0.4102	1	28	7	5
	0.5064	0	29	6	5
	0.0304	24	6	20	2
	0.0494	19	11	22	2
	0.1005	11	19	19 ~	2
	0.2028	3 518	27	13	2
	0.3831 🖉	0	30	8	2,
	0.5532	0	30	5	2 .
	0.0199	35	5	25	2
	0.0297	33	7	23	· 2
	0.0401	31	9	22	2
6:	Pseudomonas f	fluorescens (23 ⁰	C)	•	
	0.0228	27	3	_13	4
	0.0469	24	6	13	4
	0.1008	17	13	13 _	4
	0.3008	6	24	8	4
	0.5028	1	29	6	- 4
	0.0721	83	13	18	4
	0.1001	71	18	1/	4
	.0.1989	63	35	10	4
	0.4385	24	62 72	14	4
		· 24	12	12	4 5
	0.0508	<i>2:3</i> 19	11	12	5
	0.0890	10	10 /	77	5
	0.2020	1	28	, 7	5
/	0.3539	1	20		5
	0.7034	28	27		2
	0.0507	26	4	8	2
	0.1103	22	8	' 7	2
	0.1982	16	14	7	2
	0.3971	8	22	5	2
	0.5912	, [′] 4	26	4	2
	0.7467	3	27	4	2
	•	۵	_	ۍ	<u>.</u>

N. Sr

· 12

0

281.

۰,

, ř., .

Biomass	C _{eq} , Th ⁺⁴ mg/1	$\Delta C, Th^{+4}$ mg/1 ·	q _mg/g	рН	
0.0100	24	5	50	4	
0.0546	5	24	44	4	
0.1093	2	27	25	4	
0.2040	1	4 28	14	4	
0.3937	1	28	7	4	
0.0410	· 58 ·	20	49	4,	
0.1314	13	65	49	4	
. 0.0806	35	43	53	4	
0.2014	4	74	37	4	
0.4046	[,] 1	77	19	4 .	
0.0305	14	15	49	5	
0.0692	7	22	- 31	5	
0.1019	3	26	26	` 5 `	
0.1953	0 🕞	28	` <u>14</u>	5	
0.3956	0	· 29	7,	5-	
0.0263	20	10	38	2	
0.0984	. 0	30	3 0 ′	2	
0.0100	33	4	40	2 ໍ	
0.0200	27	10 ,	50 .	. 2	
0.0239	29	· 8	- 33 _/	2	
Industrial Wa	sto Activated SI		^ _		
Industriar na	Ste Activated 5	ludge (Phenoli	<u>c)</u> (23 ⁰ C)		
0.0201	19	ludge (Phenoli 9	<u>c)</u> (23 ⁰ C) 45	4	
0.0201 0.0532	19 10	ludge (Phenoli 9 18	c) (23 ⁰ C) 45 34	4	
0.0201 0.0532 0.1012	19 10 4	9 18 24	c) (23 ⁰ C) 45 34 24	4 4 4	
0.0201 0.0532 0.1012 0.1730	19 10 4 2	9 18 24 26	<u>c)</u> (23 ⁰ C) 45 34 24 15	4 4 4 4	
0.0201 0.0532 0.1012 0.1730 0.3547	19 10 4 2 0	9 18 24 26 28	c) (23 ⁰ C) 45 34 24 15 8	4 4 4 4	
0.0201 0.0532 0.1012 0.1730 0.3547 0.0398	19 10 4 2 0 60	udge (Phenoli 9 18 24 26 28 18 77	c) (23 ⁰ C) 45 34 24 15 8 45 45	4 4 4 4 4	
0.0201 0.0532 0.1012 0.1730 0.3547 0.0398 0.0788	19 10 4 2 0 60 41	100 ge (Phenoli 9 18 24 26 28 18 37	c) (23 ⁰ C) 45 34 24 15 8 45 47 47	4 4 4 4 4 4	
0.0201 0.0532 0.1012 0.1730 0.3547 0.0398 0.0788 0.1236	19 10 4 2 0 60 41 22	ludge (Phenoli 9 18 24 26 28 18 37 56	c) (23 ⁰ C) 45 34 24 15 8 45 47 45 36	4 4 4 4 4 4 4	
0.0201 0.0532 0.1012 0.1730 0.3547 0.0398 0.0788 0.1236 0.1986 0.3707	19 10 4 2 0 60 41 22 7	ludge (Phenoli 9 18 24 26 28 18 37 56 71 76	c) (23 ⁰ C) 45 34 24 15 8 45 47 45 36 20	4 4 4 4 4 4 4 4 4	
0.0201 0.0532 0.1012 0.1730 0.3547 0.0398 0.0788 0.1236 0.1986 0.3703	19 10 4 2 0 60 41 22 7 2	ludge (Phenoli 9 18 24 26 28 18 37 56 71 76 14	c) (23 ⁰ C) 45 34 24 15 8 45 47 45 36 20 47	4 4 4 4 4 4 4 4 4 4	
0.0201 0.0532 0.1012 0.1730 0.3547 0.0398 0.0788 0.1236 0.1236 0.1986 0.3703 0.0326	19 10 4 2 0 60 41 22 7 2 14	ludge (Phenoli 9 18 24 26 28 18 37 56 71 76 14 20	<u>c)</u> (23 ⁰ C) 45 34 24 15 8 45 47 45 36 20 43 7	4 4 4 4 4 4 4 4 5	·
0.0201 0.0532 0.1012 0.1730 0.3547 0.0398 0.0788 0.1236 0.1236 0.1986 0.3703 0.0326 0.0642 0.1091	19 10 4 2 0 60 41 22 7 2 14 8 4	ludge (Phenoli 9 18 24 26 28 18 37 56 71 76 14 20 24	c) (23°C) 45 34 24 15 8 45 47 45 36 20 43 31 22	4 4 4 4 4 4 4 5 5	
0.0201 0.0532 0.1012 0.1730 0.3547 0.0398 0.0788 0.1236 0.1986 0.3703 0.0326 0.0642 0.1091 0.1973	19 10 4 2 0 60 41 22 7 2 14 8 4	ludge (Phenoli 9 18 24 26 28 18 37 56 71 76 14 20 24 27	c) (23°C) 45 34 24 15 8 45 47 45 36 20 43 31 22 14	4 4 4 4 4 4 4 4 5 5 5 5	
0.0201 0.0532 0.1012 0.1730 0.3547 0.0398 0.0788 0.1236 0.1986 0.3703 0.0326 0.0642 0.1091 0.1973 0.3872	19 10 4 2 0 60 41 22 7 2 14 8 4 1	ludge (Phenoli 9 18 24 26 28 18 37 56 71 76 14 20 24 27 29	c) (23°C) 45 34 24 15 8 45 47 45 36 20 43 31 22 14 7	4 4 4 4 4 4 4 5 5 5 5 5 5 5	- -
0.0201 0.0532 0.1012 0.1730 0.3547 0.0398 0.0788 0.1236 0.1986 0.3703 0.0326 0.0326 0.0642 0.1091 0.1973 0.3872 0.0199	19 10 4 2 0 60 41 22 7 2 14 8 4 1 0 22	ludge (Phenoli 9 18 24 26 28 18 37 56 71 76 14 20 24 27 28 7	c) (23°C) 45 34 24 15 8 45 47 45 36 20 43 31 22 14 7 35	4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5	•
0.0201 0.0532 0.1012 0.1730 0.3547 0.0398 0.0788 0.1236 0.1986 0.3703 0.0326 0.0642 0.1091 0.1973 0.3872 0.0199 0.0490	19 10 4 2 0 60 41 22 7 2 14 8 4 1 0 22 13	ludge (Phenoli 9 18 24 26 28 18 37 56 71 76 14 20 24 27 28 7 17	c) (23°C) 45 34 24 15 8 45 47 45 36 20 43 31 22 14 7 35 35	4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 2 2	•
0.0201 0.0532 0.1012 0.1730 0.3547 0.0398 0.0788 0.1236 0.1236 0.1986 0.3703 0.0326 0.0642 0.1091 0.1973 0.3872 0.0199 0.0490 0.0490	19 10 4 2 0 60 41 22 7 2 14 8 4 1 0 22 13 5	ludge (Phenoli 9 18 24 26 28 18 37 56 71 76 14 20 24 27 28 7 17 25	<u>c)</u> (23 ⁰ C) 45 34 24 15 8 45 47 45 36 20 43 31 22 14 7 35 35 36	4 4 4 4 4 4 4 4 5 5 5 5 5 5 2 2 2 2	·
0.0201 0.0532 0.1012 0.1730 0.3547 0.0398 0.0788 0.1236 0.1986 0.3703 0.0326 0.0642 0.1091 0.1973 0.3872 0.0199 0.0490 0.0695 0.1478	19 10 4 2 0 60 41 22 7 2 14 8 4 1 0 22 13 5	ludge (Phenoli 9 18 24 26 28 18 37 56 71 76 14 20 24 27 28 7 17 28 7 17 25 30	<u>c)</u> (23 ⁰ C) 45 34 24 15 8 45 47 45 36 20 43 31 22 14 7 35 35 36 20	4 4 4 4 4 4 4 4 5 5 5 5 5 2 2 2 2 2 2 2	•
0.0201 0.0532 0.1012 0.1730 0.3547 0.0398 0.0788 0.1236 0.1986 0.3703 0.0326 0.0642 0.1091 0.1973 0.3872 0.0199 0.0490 0.0695 0.1478 0.2970	19 10 4 2 0 60 41 22 7 2 14 8 4 1 0 22 13 5 0	ludge (Phenoli 9 18 24 26 28 18 37 56 71 76 14 20 24 27 28 7 17 25 30 70	<u>c)</u> (23 ⁰ C) 45 34 24 15 8 45 47 45 36 20 43 31 22 14 7 35 35 36 20 10	4 4 4 4 4 4 4 4 4 5 5 5 5 5 2 2 2 2 2 2	•
0.0201 0.0532 0.1012 0.1730 0.3547 0.0398 0.0788 0.1236 0.1986 0.3703 0.0326 0.0642 0.1091 0.1973 0.3872 0.0199 0.0490 0.0695 0.1478 0.2970 0.0198	19 10 4 2 0 60 41 22 7 2 14 8 4 1 0 22 13 5 0 0 31	ludge (Phenoli 9 18 24 26 28 18 37 56 71 76 14 20 24 27 28 7 17 25 30 30 30	c) (23°C) 45 34 24 15 8 45 47 45 36 20 43 31 22 14 7 35 35 36 20 10 35	4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 2 2 2 2 2	•
0.0201 0.0532 0.1012 0.1730 0.3547 0.0398 0.0788 0.1236 0.1986 0.3703 0.0326 0.0642 0.1091 0.1973 0.3872 0.0199 0.0490 0.0695 0.1478 0.2970 0.0198 0.0301	19 10 4 2 0 60 41 22 7 2 14 8 4 1 0 22 13 5 0 0 22 13 5 0 0 31 27	udge (Phenoli) 9 18 24 26 28 18 37 56 71 76 14 20 24 27 28 7 17 25 30 30 7 11	c) (23°C) 45 34 24 15 8 45 47 45 36 20 43 31 22 14 7 35 35 36 20 10 35 37	4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 2 2 2 2	•

State of Street

5.80

Ð

. (

(`)

282.

.

	Dosage mg	C _{eq} ,Th ⁺⁴ mg/1	$\Delta C, Th^{+4}$ mg/l	. q mg∕g	рН
	0.0209	. 18	10 /	48 -	4
	0.0509	11	18	35	4
	0.0942	7 »	22	23	4
	0.2009	3	26	13	4
	0.4090	1	28	7	4
	0.1435	17 `	63 _	44	4
	0.2156	10	.70	32	4
	0.2921	6	74	25	4
	0.4005	- 4	76	- 19 ,	- 41
•	0.0298	15	14	47	5
	0.0695	8	20	29	5
	0.1053	6	22	21	5
	0.2022	2	26	13	5
	0.4083	1	27 🎽	7	5
	0.5276	0	28	5	5
٠	0.0328	28	2	6	2
	0.0587	27	· _ 3	5	2
	0,1086	25 -	5	5	2
	0.2132	22	8	4	2
	0.3565	19	11	3	2
	"0, 4604	17	13	3	2
	0.6219	14	16	2 * •	2
,	Ion Exchange	Resin IRA-400	(23 ⁰ C)	s.	~
	0.0465	27	3	6	4 ~
	0.0959	24	6	6	4
	0.2500	17	14	6	4
	0.4733	11	ູ 19 ະ	4	• 4
	0.7576	25	53	7	4
	0.3886	54 -	24	6	4
	0.0278	26.	2	7	5
	0.0439	25	3	7	5
	0.0934	21	7	7	5
	-	10	16	6	_ / 5
	ð 0.2777 🚬	12 .	10		
	₹0.2777 0.5532	- 7	21	4 /	5
	0.2777 0.5532 0.8139	- 7 5	21 23	4 / a 3	5 5
	0.2777 0.5532 0.8139 0.0622	7 5 29	21 23 1	4 	5 5 2

9. Activated Carbon Filtrasorb 400 (F-400) (23°C)

()

()

Q'

.....(cont'd.)

.ont. u. j			•	£ '
o Dosage mg	C _{eq} ,Th ⁺⁴ mg/l	$\Delta C, Th^{+4.9}$ mg/1	q mg/g	рН
•		+		
-0.3185	· 30	0	0 ′	2
Ó. 3892	30	0	0	2
0.6162	29	1	0	2
0.5400	36	54	10	4
0.1866	72	- 28	15	4
	·.	•	1	

B.2 Chitin Thorium Uptake

()

The table that follows summarizes the experimental determination of pure chitin thorium uptake capacity.

Experiment #	Chitin Dosage g	Th(IV) Uptaken mg	∘q ¹ mg/g	рН	T °C	
~			•			
1	0.0050	0.04	8	4	23	
2	0.0193	0.15	8	4	23	
3	0.0300	0.24	8	4	23	
4	0.0300	0.24	8	4	23	

B.3 Precision-Accuracy of Thorium Analytical Determination

Microorganism: <u>Rhizopus arrhizus</u>, pH = 4, 23^oC

,	Analysis #	Absorbance	Calculated Th(IV) mg/1	Concentration
	 1.	0.167	18.72	
	2 .	0.162	18.16	,
	3	0.167	18.72	
	4	0.172	19.28	
	5	0.169	18.94	س _
	6	• 0.161 •	- 18.05	
	-		,)(cont'd.)

ঁল

Analy #	/sis Absorbance	Calculated Th ⁴ mg/l	Concentration
7 8 \$ 9 10	0.167 0.169 0.161 0.172	18.72 18.94 18.05 19.28	- - -
calibratic	Concentration values	were computed from	the following

(cont'd.)

B.3

	Concentration $(mg/1 Th^{+4})$	Absorbance
 	``````````````````````````````````````	-
,a	0	_ <b>0</b>
	10	0.080
	20	0.178
	30 `	<b>0.273</b> c
	40	0.35 ⁴ **
 _		, 

The correlation coefficient of the calibration curve was r = 0.999. The standard error of the regression coefficient was 1.267 and the standard error of estimate 0.618.

B.4 Precision of Thorium Biosorptive Uptake Capacity (q) Determination Microorganism: <u>Rhizopus arrhizus</u>, pH = 4,  $23^{\circ}C$ 

....(cont'd.)

B,4 (cont'd.)

(* *)

	Biomass 'g	C _{eq} , Th ⁺⁴ mg/1	ΔC, Fh ⁺⁴ mg/l	q mg/g	
	0.0299	15	43	144	
¢	0.0300	14	44	147	
	0.0298	15	43	143	
r.,	0.0297	16	42	140	
	0.0304	18	40	133	
	0.0302	14	44	146	
	.0.0304	( <u>1</u> 5/···	40	132	
		3 1	·	- D	

# B.5 Bipthalate Effect on q. Thorium

Microorganism: <u>Rhizopus</u> arrhizus, pH = 4, 23^oC

Data with no biphalate buffer present:

	Biomass ' g	C _{eq} ,Th ⁺⁴ mg/1	ΔC,Th ⁺⁴ mg/1	mg/g	q mg/g	q from Siosorption Isotherm	
- n	0.0303	<b>4</b> '	• 36	119	,	6 , <i>O</i>	
-	0.0293	. 4	* 36 36	123 128	123	120	•
•	0.0294	<b>4</b> -	36,>	°122	Å	ىت	

#### APPENDIX C

#### IMPLEMENTED COMPUTER PROGRAMS

287.

#### C.1 Biosorptive Uptake Capacity (q) Calculation

(

The following program was used to calculate the biosorptive uptake capacity (q) at different equilibrium concentrations. The regression coefficients  $A_0$ ,  $A_1$ , ...  $A_n$  were supplied, as constants, following a separate regression through the calibration points. A calibration curve was not accepted unless the correlation coefficient was better than 0.995.

	-		0	3				,	
			••••••••••••••••••••••••••••••••••••••		1		-		
		WAIF		E = 50, NOE X T .	NOWARN		•	<b>`</b>	;
Ť.			DIMENSION BIDW	1(20) +810W2(3	CO), BIONT(2	0), V9(20) 0	•		1
1			DIMENSION CEUT	201.0060(201	08105(20)	ULUAD(AU)			
			AD=0.0	•	-	• ~			
4			A1=509.62231	1					
5			A2=0.0	· 4			•		
, 5			A3=0-0						
С. <u>С</u> .			VUBL =0, 197	/	• •		1		
8			N1212=4			/	1.1		
- NJ	•		SAMVULE				- Second		
-10			DU 100 I=1,N	OD	· <b>- •</b> - • · · · ·		~		
11			READ (5+40) B	IDW1(I). BIOW	(2(1)		•		
12		୍ୟୁତ୍	FORMAT (F10.5.F	10.5)	,				
13			BIONT(I)=619W2	(1) - BIOW1(1)	1	1		·	~
14		100	CUNTINUE						
15		. *	BLNK = A3* (VOBL*	*3)+A2*(VOBL*	-*2)+A1 *VOB	L+AO		í	
16			DØ 150 I=1,NOP						-
17			READ(5,120) VO	(1)					,
18		129	FCRMAT(F10.5)					、 <b>,</b>	
19			CEQ(I) = AZ*(VC)	I)**3)+A2*(VC	) <b>(])**2)+</b> Al:	*V0(I)+AC	æ		
20			DCEQ(I) = ELNK-C	EQ(1)		,	•	1	
21			UBIDS(I)=DCEC(	I)*SAMVOL		-	-		<u>,</u> -
22			ULOAD(I) = UBIOS	(1) /BLONT $(1)$			3	1	
23	•	150	CONTINUE		•	>	· ·	1	
24			WRITE(6.520)	. , .	e l	×		•	
25	1	520	FORMAT(15X.1HI	.3X . 5HBIGNT.B	X. JACEQ. 8X	4 HDCEQ. 8X5H	UB 105 .7 x	. SHULCA	40)
-26	•		DOK650 I=1,NOD						
27			WHITE(6,600) I.	BIONT(I) CEG	VII DCEQII	),UBIOS(1),	GLOAD (I)		•
<b>59</b>		600	FORMAT(15x,12,2	5X , F7 • 4 • 5 ( 5 X •	F7.2))				
29		550	CONTINUE			e mark	, //		
ני (			STOP	) -		u t		i	
4 31	•		END			P			
•		•	•	and the second se		•		<b>t</b>	
			• 1 -	<i>. .</i>				•	
				le l		0	*		+
		ι.		A COLORING COLORING	9			)	
	· _							í	
>	,	ν.		e 1		· /		1	
		•		<b>D</b> (/		,		1	

#### C.2 Biosorption, Isotherm Model Fitting

0001

0011

0029 0030

0037

0054

 $(\mathbf{k})$ 

The following program, developed at the University of Toronto and kindly supplied by Dr. Lou's office, was used to estimate the model parameters and the respective standard error of estimate for a given / . UN 1 24 set of Biosorption isotherm data. OPTIMIZATION BY DIRYCT SEARCH AND REGION CONTRACTION IMPLIT REAL+8(A-H, 0-Z) DIMENSION Y(101.20), XP(8), X(8), REG(8), XS(8) DIMENSION 0(30),CEQ(30) C 0002 N09=18 0004 0005 0005 0007 0008 N=2 KI = 5 KO = 6 N=2 KI = 5 KO = 6 NIT=200 NC = 0 KX = -1 DO 50 L=1.ND8 READ(K1:11) Q(L),CEG(L) CONTINUE FORMAT(2F10.2) DO 93 J=1:101 READ(K1:41) (Y(J,1).I=1.20) OO 69 K=1.20 Y(J,K) = Y(J.K)(- 0.5 CONTINUE FORMAT(20FA.3) SPECIFICATION OF INITIAL CONDITIONS AND SIZE OF SEARCH REGION XP(1)=66. XP(2)=.07 XP(1)=66. XP(2)=.07 XP(1)=66. XP(2)=.12 XP(1)=10. REG(1)=10. REG(1)=10. REG(1)=10. REG(1)=10. REG(1)=10. REG(1)=10. REG(1)=10. REG(2)=2. YOU FORMAT(1:*,'ITERATION NO',2X,*NO OF FNCS',3X,*FUNCTION',4X,*VA_ IOF VAR(ABLES ...*/) DO 100 J=1.NIT KX = XK + N IF(KN,GT.20) KX=0 DO 09 4 K=1.101 0007 0012 0013 0014 0015 0015 0017 50 0018 89 93 41 0020 C 0021 0022 0023 0025 0025 0025 0025 0033 0033 00 34 00 35 00 35 27 JES 00 39 28 0040 0041 0042 0043 KN = KK + N 1F(KN.GT.20) KK=0 D0 94 K=[.10] D0 42 I=1.N K(I) = X^D(I) + V(K.I+KK)*REG(I) I^P(X(2).LT..2) GDTD 30 F=0. D0 84 (mt.MC 0044 0045 0045 0047 42 0048 0049 0050 0051 0052 DO 99 L=1+NO8 F=F+{Q{L}-K (1)+CEQ{L}++(1+/X (2))++2 CONTINUE NO # ND + 1 IF(F.GT.TEST) G3T3 TEST = F 99 30 0033 THE BIST VALUE OF THE FUNCTION AND THE CORRESPONDING VALUES OF X FM # F DO 43 I=1.N XS(I) = X(I) Continue Continue WRITE(KO,96) J. NO. FM. (XS(I).I=1.N) FORMAT(IX.I7,II4.FI4.S.8FI1.S) Ê ARE KEPT 0055 0056 0057 0058 0059 43 30 94 0060 96 1000 THE REGION IS REDUCED BY THE QUANTITY ABC DEFINED IN STATEMENT 6 DO 95 I=1.N Reg(1) = Reg(1)*ABC XP(1) = XS(1)Continue ç 0062 0063 0064 0065 0055 95 100 CONTINUE ç CALCULATE THE STANDARD SDV=(FM/NDB)#+.5 WRITE(KD,2001 SJV FORMAT(////,SX,'STANDARD STOP ERROR OF ESTIMATE THE STANDARD 0067 0058 0069 0070 0071 =* .F10.6} S RROR OF ESTEMATE 200 END

PAPPENDIX D

# CO-ION EFFECT ON q

å

# D.1 Effect of Fe⁺² on Uranium Uptake of <u>R</u>. arrhizus

 $\bigcirc$ .

 $\bigcirc$ 

15

ł

	-	~					
	Biomass mg	C _{eq} ,U ⁺⁶ mg/1	ΔĊ,U ⁺⁶ mg/1	q,U ⁺⁶ mg/g	Initial, Fe ⁺² mg/1	рН	ñ.
	0.0152	72	~ 7	46	1000	4	
	0.0103	74	5	48	1000	4	
	0.0046	77	2	43	1000	4	
	0.0208	70	9	43	1000 -	4	
	0.0317	\ 65	- 14	44	1000	4	· ·
	0.0674	50	29	43	1000	4	
	0,0121	71	- 9	74	100	4	
	0.0212	65	15	71	100	4	
	0.0309	58	22	71	100	<b>´</b> 4	
	0.0463	46	34	73	100	4	
	0.0072	35	45	· 71	100	4	
	0.0310	58	22	71	100 .	4	
	0.0118	65	16	135	30	4	+
	0.0159	60	21	132	30	4 -	1
	0.0254	47	34	135	30	4	
	0.0306	41	40	131	30	4	
	0.0408	31	<b>50</b> ⁻	123	30	4	
	0.0497	25	57	115 .	['] 30	4	
	0.0300	40	41	137	ʻ 30	4	
	0.0156	65	15	96	30	2	
	0.0259	. 56	24	93	-30	2	
~ '	0.0356	45	35	98	30 ຶ	2	
	0.0454	37	43	95	30	`2	
	0.0577	27	53	92	30	2	
	0.0208 "	. 61	19. 🤺	91	500	2	
	0.0308	56	24	78	500	2	
,	0.0400	45 [°]	35	88 ~	500	2	
	0.0301	53	27 -	- 90	500	/ <b>2</b>	
	0.0549	30	50	91	500	2	
, <i>r</i>	-		•		-		

289.

Ф

Biomass mg	C _{eq} ,U ⁺⁶ mg/1	∆C,U ⁺ 6 mg/1	q,U ⁺⁶ mg/g	Initial Zn ⁺² mg/1	2 рН
0.0160	60	20	125	.50	
0.0100	00 ( E1	20	123	50	4
0.0255	· 21 °	29	.110	50	4
0.0304	40	40	100	50	4
0.0414	35	45 50	103	50	4
0.0409	/ 74	ວບູ ເ	110	· 20	· 1
0.0042	/4 69	11	115	20	
0.0095	67	16	- 117	~ 20	
0.0141	03 57	22	110	20	4
0.0200	57	* 66 76	110	20	4
0.0303	43	, 30 E	119	50	
0.0052	13	5	90 /	50	2
0.0150	• 00 61	10	93 .	50	2
0.0209	47	19	90	30 50	2
0.0552	4/	33 20	99 00	50,	. 2
0.0422	44		90 02	20 4	- 2
0.0070	12 \	7.4	<i>32</i> 00	20 20	2
0.0360	45	34	100	20	2
0.0190	0U 55	19	100	20	2
0.0200	55	24	92	20	2
0.0201	52	<i>∠1</i>	90	40	4

D.2 Effect of Zn⁺² on Uranium Uptake by R. arrhizus

3

÷,

. \.

D.3 Effect of Fe⁺² on Thorium Uptake by R. arrhizus

 Biomass mg	C _{eq} ,Th ⁺⁴ mg/1	$\Delta C, Th^{+4}$ mg/1	q,Th ⁺⁴ mgyg	Initial Fe ⁺² mg/1	рН	
 0.0046	22	8	174	1000	4	
0.0095	16	14	147	1000	4	
0.0097	16	14	144	1000	`4	
0.0149	10	19	. 127	1000	4	
0.0268	1 `	29	108	1000	4	
0.0330	ī	29	. 88	1000	4	
0.0097	16	15	155	100	4	
0.0139	9	21	151	100	4	
0.0202	3	27	134	100	4	
	-		•			

.....(cont'd.)

÷.,

290,

×:

291.

D.3 (cont'd.)

,	Biomass mg	C _{eq} ,Th ⁺⁴ mg/1	$\Delta C, Th^{+4}$ mg/1	q,Th ⁺⁴ mg/g	Initial Fe ⁺² mg/1	рН
	0.0299	·····	20	07	100	A 1
	0.0136	° <u>°</u> , '	21	154	100	4
	0.0112	13	16	143	30	
	0.0157	7	22	140	30	4 4
	0.0203	3	26	128	30	4
	0.0258	ĩ	28	108	30	4
	0.0068	19	11	162	30	4
	0.0215	. 9	21	98	500	2
	0.0204	12	18	, 50	500	2
	0.0044	26	~ <u>4</u>	90	500	2
	0.0100	21	9	90	500	2
	0.0079	23	7	88	500 /	2
	0.0212	9	21	99	500	2 .
	0.0115	20	10	87	30	2
	0.0178	16	14	79	30	2
	0.0240	10	20	83	30	2
	0.0306	-0	28	92	30	2
	0.0046	26	, _0	86	30 /	2

D.4 Effect of  $Zn^{+2}$  on Thorium Uptake by <u>R</u>. arrhizus:

۰,	2	Initial Zn ⁺²	q,Th ⁺⁴	$\Delta C, Th^{+4}$	$C_{eq}, Th^{+4}$	Biomass
	рн	mg/1	mg/g	mg/1	mg/1	mg _
	4	50	160	8	22	0.0050
	1	50	150	12	18	0.0080
	4	50	129	21°	9	0.0163
,	4	50	113	29	° 1	0.0257 👡
	4	50	83	30~	0	0.0360
	4	.50	75	30	Q	0.0400
	4	50	142	18	12	0.0127
	4	20	170	<b>9</b>	21	0.0053
-	4	20	157 -	11	19	0.0070
	4	20	144	17 `	. 13	0.0118
	4	20	128	23 .	7	0.0180
	4	20	112	29	1	0.0259
•	4	20	159	11	19	0.0069
	2	50	93	5	24	0.0054

D.4 (cont'd.)

()

 $\left( \right)$ 

4	Biomass mg	C _{eq} ,Th ⁺⁴ mg/1	$\Delta C, Th^{+4}$ mg/1	q,Th ⁺⁴ mg/g	Initial Zn ⁺² mg/1	рĦ	
	0.0082	21	8	98	50 .	2	
	0.0146	14	15	103	50 50	2	ж.
•	0.0228	8	21	92 [°]	50	2	
	0.0260	4	25	<b>,96</b>	50	2	
	0.0050	24-	5	100	20	2	
	0.0088	20	. 9	102 V	20	2	
	0,0163	13	16	98	20	2	्र
	0.0211	7	22	104	20	2	7
	0.0288	້ ໌ 3	26	90	20	2	

292.

0

APPENDIX E

3

Appendix E presents the numerical values of the data points reported on the typical kinetic curves of Chapter III.

E.1 Uranium Uptake Kinetic Data

- <u></u>	Time min. •	C _o ,U ⁺⁶ mg/1	C _t ,U ⁺⁶ mg/1	q _t ,U ⁺⁶ mg/g	e . 1
<b>≠</b> Experim	ent #1, pH	<u>4</u> ,	· ·	d, .	
	· 0	50	-	-	
	05	50	36	63	
	3	50	33	. 113	
٥	5.5	50	34	107	
· ·	16.5	50	• 29	140	
	30	50	28	147	
	60	50	24	173	
	120	50	23	180	,
	240	50	24	173	
Experim	ent'#2. pH	4			•
		÷ .		<i>f</i> †	
	0	37 .	/ <b>-</b> ,	, <del></del>	
7	1	- 37	29 °	67 ,	
$\mathcal{A}_{\mathcal{P}}$	5	37	27	84	3/
	. 15	37	26	92	
	30	37	27	83	
<b>`</b> •	<b>60</b> ′	37	23	117	
	120	37 /	22	125	* *
٢	180	37	22	125	
	360	37	23 [°]	· 117 ·	
				105	

.....(cont'd.)

293.

t;

Ð	* <i>a</i>		ب ۲ ۲		294
		, 	•	Ň	
()	E.1 (cont'd.)	e G			,
, , , , , , , , , , , , , , , , , , , ,	Time min.	C ₀ ,U ⁺⁶ mg/1	/C _t ,U ⁺⁶ mg/1	q _t ,U ⁺⁶ mg/g	E.
,	Experiment #3, pH == 4		2 4	7	
c	0 0.5	39 39	- 29	67	· ·
•	2 5 7	39 39 39	28 29 29 29	74 * 67 67	• * * *
	22 `~~35 65	39 39 39	29 \ 30 25	67 61 \$ 95	- ' '
	120 180 300	39 39 39	24 25 24	101 ⁄95 101	
	420	39	24	101	, Ko
	Experiment #5, $pH = 4$	-	1		
۰ ۲	0 0.5 2	79 79 79	- 64 64	- 105 105	
	3	79 79	64 / 64	105	A .)
, -	· 10 L'	79 70	64	105	
۰ ۲ ۱ ۲	50 40	79 79	60 <u>-</u>	133	/
	50	79 70	57 56 '	154	<i>,</i>
	120	79 79	50 57	154	
1	240 7 360	79 79	° 57 56 ₃	154 161	-
	Experiment #6, pH = 4				-
	0	40	• • •	-	
	3	40 40	33 38	26	
- Us	5	· 40	33-	91 ,	
	10	40 40	33 32	104	•
• D · ·	25	40	32	104	
· · · · · · · · · · · · · · · · · · ·	f o		1	(cont	t'd.)
(  )	· ~ ~ ~	,	, , ,		

÷

E.1 (cont'd.)

Time . min.	C _o ,U ⁺⁶ mg/1	C _t ,U ⁺⁶ mg∕1	q _t ,U ⁺⁶ mg/g	
Experiment #6 (cont'd	.)		3	¥ ,
er 40	40	30	130 -	s f
45	40	<b>3</b> 0	130	
5,0	40	30*	130	
55	40 <del>.</del>	30	130	
60	40	29	143	
120 .	<b>40</b>	29	143	
240	<b>40</b> /	30	130	e)
~ 360	40 °	29 ,	143	
Experiment #7, $pH = 4$				
0.	42	` <b>-</b>	-	-
0.5	42	27	101	
1.5	-42	27	101.	<u>ب</u>
3 '	42	27	101	
· 5 ,	42 `	∗ 26	107	
• 10	42	26	107	u
15	42 -	25	114	
30	42 🧹	23	128	
35	42	24	121	
40	42	23	128	
- 45	ୖ ^୦ 42	24	121	
50	42 。	23	128 ,	```
60	42	24	, 121	`
90	42	23	128	
120	42	23	128	**
240	- 42	23	128 ·	,
Experiment #8, pH = 2		5		
0	42	-	· 	
° <b>`0.5</b>	42	42	0	1
1	42 ,	40 ُ	15	5
3 %	42	39	22	3
່ 5 ່	42	39	22	
. 10	42	38 .	30	
15	42	36	53	
<b>30</b> ⁽	42	ຸ 35	52	
45	42	33	67	
60 - •	. 42	33	67	
90	42 `	32	74 。	
· <b>120</b>	42	• 31 🔪	81	
			- · · ·	

295.

Ç

()

<u> </u>			J	4
Time min.	C ₀ , Th ⁺⁴ mg/1	C, Th ⁺⁴ mg/1	q,Th ⁺⁴ mg/g	đ
Experiment #1, pH - 4		-	ε	
0	21	- 12	ר - 112	4
5	21	. 9	150	
× 11	21	8	162	
16 7	21	° , 7-,1	175	
31	21	.7	175	
. 40	21	- \ 7	175	
60 `	21	6	1/5	
360	21	7	175	
Experiment #2, pH = 4	•		t	
· · · · ·	17	-		
0.5	_ 17	13	114	
1	17	12	143	
3	17	13		``.,
10	17	12	143	·
15	17	13	114	-
30	17	11	171	<i>,</i>
50	17	12	143	
60	·^ 17	12	143	
· 90	17	12	143	
120	17	12	143 #	
	<b>*</b> /	**		
Experiment #4, $pH = 4$			~	,
0	16	يد موجع	-	-
0.5	·16	1,3/ -	143	
' 1.5 z	16	13 14	90	
5	16	13	143	
* 10	16	13	143	
_ 17	16	14	· 96	
	16	13	143	•
47	16 .	13	143 /	
60	16	13	143	
120	10	13	145 。	

É.2 Thorium Uptake Kinetic Data

 $C_{i}$ 

 $(\cdot)$ 

296.

· ;

Time min.	C _o ,Th ⁺⁴ mg/1	C _t ,Th ⁺⁴ mg/l	q,Th ⁺⁴ mg/g
Experiment #5, pH - 4		4	, , ,
0 0.8 1.5 3 5 10 15 30	30 30 30 30 30 30 30 30 30	- 23 22 23 23 23 23 23 23 24	175 200 175 175 175 175 175 200
60 . 120 Experiment #6. pH == 2	30 30	, 23 , 23	175 175
0	17	41 ⁴⁴	<u>_</u>
1 · 2	17 17	16 15	25 50
5 10	´ 17 17	14 15	75 50
15 30	17 17	13	100 100
45	17	14	75
120	17 17	13	100
360	17	13	100
Experiment #7, pH = 4		Ą	•
) 0	14	· -	-
3	14 14	9	132
5	14	10	105
30	14	9	132
50	14	10 🕹	105
120	14	9	132

(:

 $( \ )$ 

297.

K)

ħ

#### APPENDIX F

#### Additional Information on Biosorption of Uranium and Thorium

#### F.1 Co-ion Effect on U and Th Biosorption

Actual waste waters contain a variety of anions and cations. Table I.1 in Chapter I has summarized the most important chemical and radioactive parameters for the uranium mining-milling process waste waters. Iron, zinc, lead, copper and manganese appear as common cations in most waste waters. Iron is present in the highest concentrations.¹ Waste water pH ranges from pH = 2 to almost neutral, depending on whether the tailings area is active or inactive and on whether the waste water is a surface runoff or seepage flow.¹

It was decided to select the two co-ions most abundant in usual waste waters and examine their effect on <u>R</u>. arrhizus U and Th biosorptive uptake capacity. Initial co-ion concentrations were selected according to their respective expected concentrations in waste waters. As a result initial iron concentrations of up to 1000 mg/l were tested, while zinc initial concentrations were limited to a maximum of 50 mg/l.

Two different solution pH values were tested, pH = 2 and pH = .4. Idle tailings areas, because of the acid generation process, generate acidic waste water with pH values from pH = 2 to pH = 6.5.^{1,4} The proposed U and Th biosorptive mechanism hypotheses have indicated that solution pH affects strongly the overall U and Th biosorptive uptake capacity

of <u>R</u>. <u>arrhizus</u> (III-A.10, III-B.10). The significance of solution pH and the wide range of actual waste water pH values dictated the need to test the co-ion effect on the U and Th biosorptive uptake capacity at the values of pH = 2 and pH = 4. The same buffering systems as the ones described in Section II.1.2 were applied. The buffering systems did not interfere with the applied analytical methods, as it was indicated after following the procedure described in Section II.1.2.

#### F.2 Uranium Analytical Determination

As already described in Section II.1.3. the Arsenazo III spectrophotometric method developed by Savvin was employed.²⁹ Arsenazo III, a reagent developed in 1959, reacts with uranium (IV) in a strongly acidic medium and gives a violet complex.²⁸ This method is the most sensitive of all spectrophotometric methods capable of determining uranium. The method gives the best results with a two to five molar excess of the reagent. The color appears instantaneously and remains stable for at least two hours. Absorbance depends on the acidity of the medium and is constant over the acidity range of 4 N to 8 N HC1.²⁰ The fairly narrow peak of the complex absorbance curves and the high stability of the complex raise the sensitivity of the reaction. The influence of anions and cations, with the exception of Zr and Th, is very small. Zirconium can be masked when oxalic acid is introduced in the sample. Thorium, however, "presents a serious problem and needs to be separated from uranium before the U(IV) determination.  20 

Uranium (VI) can, also, be determined with the help of Arsenazo III. The sensitivity and the selectivity of the method, however, are reduced. Iron zirconium, thorium and other elements interfere strongly. Uranium (VI) can be effectively determined by reducing U(VI) to U(IV) with the help of granular zinc in 4 N HC1.

The molar absorptivity of the Arsenazo III-U(IV) complex in 4-8 N HCl, with at least three-fold molar excess of Arsenazo III; is approximately  $1.27 \times 10^5$  at  $\lambda = 665$  nm,

#### F.3 Thorium Analytical Determination

The Arsenazo III spectrophotometric method for the analytical determination of thorium was used, as outlined in Section II.1.4. Arsenazo III reacts with thorium in strongly acidic solution to form a grey-green water soluble complex.²⁸ With excess of Arsenazo III, a 2:1 complex with thorium is formed. The method is very sensitive and the absorbance varies only slightly with change in HCl concentration between 1 and 10 N.

The Arsenazo III method has a high selectivity for thorium. With oxalic acid as a masking agent, thorium can be determined in 2.5 to 3.5 N HCl in the presence of zirconium, hafnium and niobium.²⁸ Aluminum and rare earths do not interfere. Uranium, however, presents a problem.

The molar absorptivity of the complex at 3 N HCl is  $1.15 \times 10^5$ t/ $\lambda = 655$  nm.²⁸

F.4 N-acety1-D-glucosamine-metal Complexes

 $\hat{N}_{acety1-D-glucosamine}$  ( $C_{g}H_{1d}O_{6}N$ ) is the chitin monomer unit. The complex formation ability of D-glucosamine has been confirmed in literature for a large number of metal ions.^{66,67,79} In general, the compound behaves like a Lewis base. The complex formation ability may be the result of either the oxygen (hydroxyl groups) or the nitrogen atoms. The complex formation ability of the -OH groups has, however, been suggested as quite small or negligible 66, thus leaving the amine nitrogen on the active complexation site. The stability constants of nine metal complexes have been reported in literature. ^{66,67} The suscesibility of the D-glucosamine-metal complexes to hydrolysis is not uniform. Easily hydrolysable complexes have been suggested on yielding metal hydroxide as the final hydrolysis product.⁶⁶ The complexes have been suggested as being susceptible to dimerization. Certain D-glucosaminemetal complexes have been isolated as precipitates (Cu); others, however, have not (Co,Fe).^{65,66} Complex formation preference follows, in general, the Irving-Williams series.

F.5 Effect of Biomass on Solution pH

In earlier sections (II-1,2, II-9.2), it was noted that upon contact biomass raised solution pH and necessitated the use of a buffering system during the equilibrium and the kinetic studies. In view of the information reported in the present work, this behavior may be considered as the result of uptake of  $H_30^+$  ions by certain cell wall active sites like the chitin nitrogen, as described qualitatively below:

301

Once equilibrium is established no further change of solution pH should be observed as a result of the biomass presence. Such a behavior was experienced during the kinetic experiments and was implemented as the necessary pH control method (11.9.2).

 $GN:H + H_20$ 

н₃0⁺ ∓

GN :

()

Ć