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Abstract 

In this thesis, resource allocation problems relevant to multicarrier DSL environ­

ments are considered. The resources in a multicarrier DSL environment are bandwidth 

(i.e., subcarriers), the power allocated, the bits loaded and possibly the coding scheme 

used on each subcarrier. The major impairments in DSL environments are crosstalk and 

external noise. Crosstalk (predictable & controllable) is the interference caused by other 

DSL users sharing the same medium. External Noise (unpredictable and uncontrollable) 

consists of relatively high energy bursts due to electromagnetic interference from physi­

cal phenomena, electrical switches, motors and home appliances which are invariably 

present in the close vicinity of DSL modems. 

In current DSL applications, Crosstalk is kept in control by specifying a fixed peak­

power constraint (based on the worst-case) which each user has to obey - a technique 

known as Static Spectrum Management (SSM). This simplifies the resource allocation to 

a single-user optimization problem. But the worst-case peak power constraint is overly 

restrictive and results in poorer rates. Recently Dynamic Spectrum Management (DSM) 

techniques which dynamically vary the multiuser power allocation for crosstalk control 

instead of using fixed peak power constraint have proven to provide much better rates. 

This improvement however cornes at the cost of dealing with a more complicated multi­

user optimization problem. 

On the other hand, due to its unpredictability, external noise (and RF! pickup) has 

been combated with the use of a suitable safety margin. 

Based on application and scenario, Resource Allocation is either performed with the 

objective of Rate maximization (at a fixed margin) or Margin maximization (at a fixed 

rate) since each of the quantities indirectly imposes a cap on the other. 

But in both rate maximizing and margin maximizing resource allocation algorithrns 

available in literature the bits loaded were always constrained to integers because most 

scalable modulation schemes such as QAM or PSK support integer bitlsymbol. It was 

initially believed that most (not all) of the granularity losses (due to the integer bit con­

straint) could be recovered through 'bit-rounding' and 'energy re-scaling'. But this was 



observed only for the total power constrained case. With the advent of peak power con­

straint, we show that the room for optimization in the energy domain is severeiy re­

stricted and granularity los ses constitute a significant percentage of the achievable data 

rate. To recover these losses, we propose the Adaptive Reed Solomon aided Fine Granu­

larity Loading (ARSFGL) scheme - a scheme that jointly optimizes the power, bit and 

code allocation. For achieving near-continuous rate adaptation, the family of Reed­

Solomon (RS) codes has been used for their low redundancy, high flexibility in correc­

tion capability and highly programmable architecture. Simulation results with realistic 

VDSL-DMT systems with the currently standardized SSM framework show more than 

20% improvement in rate achieved for most cases. 

The extension of ARSFGL technique to multiuser (DSM) scenarios results in a 

purely distributed scheme which provides rates better or equal to the rates achieved by 

the centralized, optimal (much more complicated) multiuser integer-bit loading scheme. 

Further in this work a multiuser margin maximization algorithm is developed. Near­

continuous rates provided by the ARSFGL scheme allow continuous bit loading assurnp­

tion for simplicity. Prior to this work, no multiuser margin maximization algorithm ex­

isted, even though the importance of margin maximization is well-recognized. Most ex­

isting single-user margin maximization algorithms rely on a fixed crosstalk assurnption. 

But in multiuser (DSM) scenarios each user's power allocation dynamically deterrnines 

other user' s crosstalk. With direct extension of single-user algorithms in multiuser (DSM) 

scenarios, one user's margin maximization can lead to the failure of other users in meet­

ing their target rates. 

We begin by exploring the favorable monotonicity and fairness properties that multi­

user margin exhibits over a multiuser rate region and use them to forrnulate a box­

constrained non-linear least squares (NLSQ) problem that can be solved by using a scaled 

gradient trust region approach with Broyden Jacobian update. This algorithm efficiently 

converges to a solution providing the best common equal margin to aH users while ex­

plicitly guaranteeing that each user's target rate requirement is satisfied. The algorithm 

requires only minimal coordination among users, which makes it suitable for practicaI 

implementation. 
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Sommaire 

Dans ce mémoire nous allons considérer la problématique de l'allocation de 

ressources dans l'environnent DSL à multi-porteuse. Les ressources à considérer dans cet 

environnent sont la largeur de bande (onde sous-porteuse), l' assignement de puissance, 

l'allocation de bits et possiblement le système de codage utilisé sur chaque onde sous­

porteuse. Les obstacles majeurs présents dans l'environnement DSL sont la diaphonie et 

le bruit externe. La diaphonie (prévisible et contrôlable) représente l'interférence causée 

par d'autres utilisateurs DSL partageant le même médium. Le bruit externe (non-· 

prévisible et non contrôlable) est le résultat de décharge énergétique provenant de 

l'interférence électromagnétique créée par des phénomènes physiques, interrupteurs 

électriques, moteurs et appareils ménagers à proximité des modems DSL. 

Dans les systèmes DSL actuels, la diaphonie est contrôlée en spécifiant une 

contrainte que doit obéir chaque utilisateur, et déterminée par le sommet maximum de 

puissance (basée sure un scénario du pire cas). Cette technique, communément appelée 

Aménagement Statique de Ressources (ASR), simplifie le problème d'allocation de 

ressources à un problème d'optimisation à un utilisateur unique. Cependant, elle est très 

restrictive et résulte en de faibles taux de transmission. Récemment, l'utilisation de 

techniques d'Aménagement Dynamique de Ressources (ADR), qui assigne 

dynamiquement la puissance multi-utilisateur avec comme but de contrôler la diaphonie, 

ont démontré la possibilité de fournir de meilleurs taux de transmission. Cette 

amélioration crée cependant un problème d'optimisation à multi-utilsateurs plus 

compliqué. 

D'autre part, grace à son caractère non-prévisible, le bruit externe est combattu en 

utilisant une marge de sécurité. 

Basée sur les besoins de l'application particulière, l'allocation de ressources est 

implémentée soit avec l'objectif de maximiser le taux de transmission (avec une marge 

fixe), soit avec l'objectif de maximiser la marge (avec un taux de transmission fixe) car 

chacune de ces deux mesures impose indirectement une limite sur l'autre. 
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Pour les deux algorithmes d'allocation de ressources, la maximisation du taux et la 

maximisation de la marge, les bits chargés ont jusqu'à présent toujours été un nombre 

entier, car la majorité de méthodes de modulation, comme le QAM ou le PSK, supportent 

que des nombres entiers de bits par symbole. Il était originalement cru que la majorité des 

pertes granulaires (causées par la contrainte de nombre de bits entiers) pourraient être 

compensés avec l'arrondissement de bits ou le ré-échelonnage énergétique. Ceci n'a été 

cependant observé que pour le cas de contrainte de puissance totale. Avec l'arrivée des 

techniques basées sur le sommet maximum de puissance, nous démontrons que la 

possibilité d'optimiser dans le domaine énergétique est sévèrement réduite et les pertes 

granulaires constituent un pourcentage significatif du taux de transmission réalisable. 

Pour combattre ces pertes, nous proposons la méthode de Support de Granulité Fine 

utilisant les codes Adaptifs Reed-Solomon (SGF ARS), une méthode qui optimise 

conjointement l'allocation de puissance, de bits et de codes. Pour obtenir une adaptation 

de taux quasi-continue, la famille de codes Reed-Solomon (RS) est utilisée à cause de 

leur faible redondance, haute flexibilité en capacité de correction et architecture 

hautement programmable. Des résultats de simulation avec des systèmes VDSL-DMT 

réalistes, utilisant le standard SSM, démontrent des augmentations de taux de plus de 

20% dans la majorité des cas. 

L'extension de la méthode SGFARS au scénario multi-utilisateur résulte en un 

système purement distribué, avec des taux de transmission meilleurs ou égaux à ceux 

obtenus par la méthode centralisée et optimale de chargement de bits entiers (beaucoup 

plus compliquée). 

Nous développons aussi dans ce travail un algorithme de maximisation de la marge 

multi-utilisateur. Les taux quasi-continus permis par la méthode SGF ARS permettent 

d'assumer le chargement continu de bits. Avant ce travail, il n'existait pas d'algorithme 

de maximisation de la marge multi-utilisateur, même si l'importance de la maximisation 

de la marge est un fait communément reconnu. La majorité des algorithmes existants de 

la maximisation de la marge pour un utilisateur unique assument une diaphonie fixe. 

Cependant, dans le cas multi-utilisateur, la distribution dynamique de puissance pour 

chaque utilisateur détermine dynamiquement la diaphonie perçue par les autres 

utilisateurs. Avec une extension directe des algorithmes mono-utilisateurs à mutli-
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utilisateurs, l'augmentation de la marge d'un utilisateur pourrait empêcher un autre 

utilisateur d'atteindre son taux désiré. 

Nous débuterons par explorer les propriétés de monotonicité favorable et de fidélité 

que fa marge multi-utilisateur démontre sur une région multi-utilisateur, et nous les 

utiliserons pour formuler un problème non-linéaire de moindres-carrées (NLMC). Celui­

ci sera résolu avec une approche à région de gradient proportionné avec une mise à jour 

de Jacobiens Broyden. Cet algorithme converge vers une solution avec une meilleure 

marge commune et égale pour tous les utilisateurs, et simultanément garantit que tout le 

taux désiré pour tous les utilisateurs est obtenu. Cet algorithme requiert seulement une 

coordination minimale entre utilisateurs, ce qui le rend approprié pour les applications 

pratiques. 

v 



Acknowledgements 
First 1 would like to thank my supervisor, Dr. Tho Le-Ngoc for his invaluable 

guidance and support throughout my graduate studies at McGill University. 1 also 

acknowledge a NSERC CRD Grant with Laboratoires Universitaires Bell for partial 

tinancial support. 

1 am deeply grateful to Dr. Fabrice Labeau who has constantly encouraged me to 

perform better. 1 thank Dr. loannis Psaromiligkos, who patiently answered my questions 

on everything from Random Processes to CDMA each time 1 knocked his door without 

appointment. 1 also thank Dr. Harry Leib (course-Information Theory), Dr. Jan Bajcsy 

(course-Digital Communications II) and Dr. Sanjo Zlobec (course-Optimization) for 

many insightful discussions during and after class hours. 

1 thank Matrino and Nestor for indispensable help in DSL simulator construction. 

Martino, Hamid and Mohammad further showed me guiding examples of hard work, 

dedication and perseverance and their opinion both technical and otherwise helped me on 

many occasions. The greatest amount of cooperation that 1 have enjoyed is with Yang. 

We worked together in multiuser channel model construction. Our daily discussions 

helped me understand many subtle concepts of Optimization and Game Theory which led 

to conception of sorne ideas in this thesis. Further 1 am grateful to Yang, Ping and Navid 

for providing unconditional support and encouragement to me in every positive and 

negative situation that 1 have faced. 1 thank Li, Bharatram and Mohammad for proof­

reading my thesis and Eugene and Nestor for the French translation ofmy abstract. 

r thank my parents, my family and aIl my friends from McGill University, SGI 

Montreal and those back in India for their steady stream of love, support and faith. 

Lastly the poem "If' by Rudyard Kipling has encouraged me and provided me 

direction in many situations, a few lines ofwhich are presented below. 

"If you can dream--and not make dreams your master, 
If you can think--and not make thoughts your aim; 

If you can meet with Triumph and Disaster 
and treat those IWo impostors just the same; 

If you can fill the unforgiving minute 
With sixty seconds' worth of distance run, 

Yours is the Earth and everything that's in it, 
And--which is more--you'll be a Man, my son!" 

VI 



Table of Contents 

List of Figures ..................................................................................................................... x 

List of Tables ..................................................................................................................... xi 

List of Symbols and Notation ........................................................................................... xii 

Mathematical Notation ...................................................................................... xii 

Fixed Symbols .................................................................................................. xii 

Acronyms and Abbreviations .......................................................................... xiv 

Chapter 1 Introduction ..................................................................................................... 1 

1.1 Megabits over Copper Wires - DSL ......................................................................... 1 

1.2 Discrete Multitone Modulation ................................................................................. 3 

1.3 Capacity Limiting Noise ........................................................................................... 6 

1.4 Performance Limiting Noise ..................................................................................... 8 

1.5 Contributions and Thesis Outline ............................................................................. 9 

Chapter 2 Literature Review .......................................................................................... 12 

2.1 DSL Channels ......................................................................................................... 12 

2.2 Single User Loading Algorithms ............................................................................ 14 

2.2.1 Rate Adaptive Loading Aigorithms ................................................................. 15 

2.2.1.1 Rate Adaptive Water-Filling ..................................................................... 15 

2.2.1.2 Integer-Bit Constraint ............................................................................... 17 

Hughes Hartogs Aigorithm ............................................................................... 18 

Bit-Rounding Aigorithms ................................................................................. 19 

2.2.1.3 Peak Power Constraint .............................................................................. 20 

Peak Power Constraint with Integer-bit Constraint .......................................... 25 

2.2.1.4 Granularity Loss ........................................................................................ 27 

2.2.2 Margin Adaptive Loading Aigorithms ............................................................. 29 

2.2.2.1 Convex Reformulation of TPO Margin Maximization Problem .............. 30 

2.2.2.2 Margin Adaptive Water-Filling ................................................................ 31 

2.2.2.3 Integer-Bit Constraint ............................................................................... 34 

Vll 



2.2.2.4 Protection of other users sharing the medium ........................................... 36 

2.3 Multiuser Loading Aigorithms ............................................................................... 37 

2.3.1 Worst Case Interference Modeling - SSM ....................................................... 38 

2.3.2 True Interference Modeling - DSM ................................................................. 40 

2.3.2.1 Iterated Water-Filling ................................................................................ 41 

2.3.2.2 Optimum Spectrum Management (OSM) ................................................. 43 

2.3.3 Multiuser Margin Adaptation .......................................................................... 45 

2.3.4 Granularity Loss ............................................................................................... 47 

Chapter 3 Fine Granularity Loading .............................................................................. 48 

3.1 Power, Integer-Bit Constraints and Granularity Loss ............................................. 48 

3.2 Quantification of Granularity Loss ......................................................................... 49 

3.3 Adaptive Reed-Solomon-based Fine Granularity Loading Scheme ....................... 51 

3.3.1 Rate Allocation ................................................................................................ 53 

3.3.2 Energy Allocation ............................................................................................ 56 

3.4 Illustrative Examples for Application to VDSL-DMT Systems ............................. 57 

3.4.1 Evaluation ofPPO case .................................................................................... 58 

3.4.2 Evaluation ofTPP cases ................................................................................... 60 

3.4.3 Evaluation ofTPO case ................................................................................... 64 

3.5 Application to Dynamic Spectrum Management (DSM) ....................................... 65 

3.5.1 Adaptive RS aided IWF (ARS-IWF) ............................................................... 6é 

3.5.2 Integer-Bit IWF (IB-IWF) ............................................................................... 67 

3.5.3 Integer-Bit OSM (IB-OSM) ............................................................................. 67 

3.5.4 DSM ARSFGL Simulation Results ................................................................. 68 

3.6 Chapter Summary ................................................................................................... 69 

Chapter 4 Enlightened Margin Maximization ............................................................... 71 

4.1 Problem Formulation and Margin Basics ............................................................... 72 

4.2 Behavior of Margin over a Rate Region ................................................................. 74 

4.3 Enlightened Margin Maximization ......................................................................... 81 

4.3.1 Bound Constrained NLSQ Formulation .......................................................... 82 

4.3.2 Trust Region Reflective Newton Methods ...................................................... 83 

Vll~ 



4.303 Implementation in Current DSL Scenario ....................................................... 85 

4.4 Perfonnance and Convergence ............................................................................... 88 

4.5 Practical Viability ofEMM ............................................................... 91 

Chapter 5 Conclusions ................................................................................................... 94 

Appendix A Aggressive Loading in Bit-Rounding Aigorithms ................................... 97 

A.1 Introduction ............................................................................................................ 97 

A.2 Problem Fonnulation ............................................................................................. 98 

Ao3 Aggressive Loading in Bit-Rounding Aigorithms ................................................. 99 

A.3.1 Energy Rescaling Factor Problem ................................................................. 101 

A.3.2 Aggression due to SNR Gap Rate Function .................................................. 102 

A.4 A Moderate Aigorithm with Biased Round-Off ............................................... 103 

A.5 Simulation Results ............................................................................................... 105 

A.5 Summary .............................................................................................................. 108 

Appendix B Karush-Kuhn-Tucker (KKT) Conditions ............................................... 109 

References ....................................................................................................................... 111 

IX 



List of Figures 

Figure 1-1: Typical DSL Loop Layout Scenario ................................................................ 2 

Figure 1-2: Generic DMT system model ............................................................................ 4 

Figure 2-1: Sample DSL Channel Transfer Functions ..................................................... 13 

Figure 2-2: Illustration of Rate-Adaptive Water-Filling ................................................... 17 

Figure 2-3: Effect of Peak Power Constraint.. .................................................................. 23 

Figure 2-4: Illustration of Margin Adaptive Water-Filling ............................................... 33 

Figure 2-5: Rate Region Boundary ................................................................................... 43 

Figure 3-1: Functional Diagram ofPMD and PMS-TC layer in CUITent VDSL-DMT 

System ....................................................................................................................... 52 

Figure 3-2: Subcarrier Transmission Model ..................................................................... 54 

Figure 3-3: ARSFGL rate function: Rate vs SNR ............................................................ 55 

Figure 3-4: ARSFGL Performance for PPO Case ............................................................ 59 

Figure 3-5: ARSFGL Performance for TPP case ............................................................. 61 

Figure 3-6: Performance ofvarious schemes for TPP ...................................................... 63 

Figure 3-7: Power and Rate allocation for TPO Case - 2400 ft. loop .............................. 64 

Figure 3-8: Performance ofvarious schemes for TPO case ............................................. 65 

Figure 3-9: 8 user VDSL upstream scenario ..................................................................... 68 

Figure 3-10: Rate Region Boundary of ARS-IWF ........................................................... 68 

Figure 4-1: Relationship between Rate Region and Margin ............................................. 75 

Figure 4-2: Behavior of Margin on Rate Region .............................................................. 79 

Figure 4-3: Spread of Target Rate points on the Rate Region .......................................... 89 

Figure 4-4: Margin Contours and EMM Trajectory ......................................................... 90 

x 



List of Tables 

Table 2-1: Hughes Hartogs Aigorithm ............................................................................. 18 

Table 2-2: SubAlgorithm Iterated Water-Filling (IWF) ................................................... 42 

Table 3-1: Power Constraint Qualifications ..................................................................... 48 

Table 3-2: Example of Rate Look-Up Table .................................................................... 55 

Table 3-3: ARSFGL Energy Allocation ........................................................................... 57 

Table 3-4: Occurrence of PPO and TPP cases in VSDL-DMT ........................................ 58 

Table 3-5: Simulation Parameters ..................................................................................... 58 

Table 3-6: Adaptive RS aided IWF (ARS-IWF) .............................................................. 67 

Table 4-1: SubAlgorithm NRME (Newton Raphson Margin Estimation) ....................... 77 

Table 4-2: SubAlgorithm SGTRNLSQ: SG Trust Region method for NLSQ ................. 84 

Table 4-3: Aigorithm EMM: Enlightened Margin Maximization .................................... 86 

Table 4-4: Performance and Convergence ofEMM ......................................................... 88 

Xl 



List of Symbols and Notation 

Mathematical Notation 

{x)~=] 

LxJ 
fxl 
round(x) 

Vector consisting of the N scalar elements x] ,x2 , •• , X N 

Floor of x = Largest integer not greater than x 

Ceiling of x = Smallest integer not less than x 

f x l iflx-f x 11 ~ 0.5; Lx J otherwise. 

N n Cardinality or the number of elements in a set n 
x ~ U [ a, b 1 X is a random variable uniformly distributed between [a,b] 

max(x,y) 
min(x,y) 

fxT 
Lx Jb 
[ xl: 
[xr 
diag(x) 

(x); 

H 
11-11 

min J(x) 
f'(x)$O 
f2(x)$O 

maximum of x and y 
minimum ofx and y 

min (x, a) 

max(x,b) 

max(b,min(x,a)) 

max(x,O) 

diagonal matrix with vector x as the diagonal 
ith element of vector x 

Absolute value of a scalar 

Euclidean or L2 norm of a vector 

Minimize the objective functionj{x) over the design variable(s) x which 
satisfy the constraintsj(x):::;O and/(x):::;o. 

Fixed Symbols 

5' 
} 

HII 

} 

HI' 
} 

P~ 

Power Spectral Density used by User i on Subcarrierj 

KxN matrix whose (iJ)th element is 5~ 

Direct channel coefficient for User i on Subcarrierj 

Crosstalk coefficient from User i to User 1 on subcarrierj 

(Direct Squared Channel gain) to (Interference+Noise Ratio) for User i on 
Subcarrier j 
=5~ P~ ;Received Signal-to-(Interference+Noise) ratio on User i, Subcarrierj 

Number of Subcarriers 

XlI 



N 

K 
R 

T 
T 

P' 
P 

P' max 

c max 

J 

I1f 

Pre,dec 

iR ALG 

iR ALG 1 

• 

• 

• 

Number of users 
Total Rate (summed across subcarriers) achieved by User i 

Total Rate V ector -N length vector whose ith element is Ri 
Target or demanded rate of User i. 

Target Rate Vector-N length vector whose lh element is T 
Total Power (summed across subcarriers) utilized by User i 

Total Power Vector- N length vector whose i h element is T 
Total Power Constraint for User i. pi ~ P~ax 

Total Power Constraint Vector - N length vector whose ith element is P~ax 
Performance or SNR Margin of User i 

Spectral Mask or PSD constraint on subcarrier j 

Inter-carrier spacing in the multicarrier system 
code rate(number of information bits per coded bit) on subcarrier j. 

SNR-Gap to Shannon capacity on subcarrierj. 

Code word length in a RS(n,k) 
Number of information words in a RS(n,k) code 
Probability ofbit-error after demodulation(before or without error correction 
decoding) 
Probability ofbit-error after error correction decoding 

Granularity Loss in bits on subcarrier j 

Total Granularity loss(summed across subcarriers) 
Rate function 

Rate Region - Set of achievable rate combinations by an algorithm ALG 

Rate Region Boundary - outermost set of achievable rate combinations by an 
algorithm ALG. 

Unless otherwise specified, single letter (lower case) subscripts refer to subcarrier 
number, and single letter superscript refers to User number 
In the above context, when distinguishing among users is not required the super­
script is dropped. 
In the above context, when distinguishing among subcarriers is not required the 
subscript is dropped. 

Xll1 



Acronyms and Abbreviations 

ADSL 
ANSI 
ARSFGL 
AWG 
AWGN 
DMT 
DS . 
DSL 
DSLAM 
DSM 
EMM 
FEQ 
FEXT 
FFT 
IFFT 
ISI 
IWF 
MA 
NEXT 
OFDM 
OSM 
OTBI 
PPO 
PSD 
PSK 
QAM 
RA 
RFI 
RS 
SCM 
SMC 
SNR 
SP 
SSM 
TPO 
TPP 
US 
VDSL 

Asymmetric Digital Subscriber Loops 
American National Standards Institute 
Adaptive Reed Solomon aided Fine Granularity Loading 
American Wire Gauge 
Additive White Gaussian Noise 
Discrete Multi-tone 
Downstream 
Digital Subscriber Loop 
Digital Subscriber Line Access Multiplexer 
Dynamic Spectrum Management 
Enlightened Margin Maximization 
Frequency Domain Equalizer 
Far-End Crosstalk 
Fast Fourier Transform 
Inverse Fast Fourier Transform 
Inter Symbol Interference 
Iterated Water Filling 
Margin Adaptive (Loading Aigorithm) 
Near-End Crosstalk 
Orthogonal Frequency Division Multiplexing 
Optimum Spectrum Management 
Optimum Transmit Bandwidth Identification 
Peak Power (constraint) Only 
Power Spectral Density 
Phase Shift Keying 
Quadrature Amplitude Modulation 
Rate Adaptive (Loading Algorithm) 
Radio Frequency Interference 
Reed-Solomon 
Single Carrier Modulation 
Spectrum Management Center 
Signal to interference + noise ratio 
Service Provider 
Static Spectrum Management 
Total Power (constraint) Only - cases when peak power constraint is absent. 
Total and Peak Power (constraint) 
Upstream 
Very high-speed Digital Subscriber Line 

XIV 



Chapter 1 
Introduction 

The increase in demand for higher rates and reliability in data transmission during 

the last three to four decades, coupled with the development of more efficient integrated 

circuits, has led to the development of increasingly sophisticated and high performance 

communication systems. Since late 1980's Multicarrier Modulation (MCM) has attracted 

a lot of interest as a modulation choice for communication systems. This is because it has 

the ability to provide variable data services, more efficient usage of resources and simpler 

receiver structures to deal with Inter-Symbol Interference (ISI) than Single Carrier Modu­

lation (SCM). The two most common forms ofMCM are Orthogonal Frequency Divisior.. 

Multiplexing (OFDM) and Discrete Multi-tone Modulation (DMT). OFDM has been 

used in applications such as Digital Audio Broadcasting (DAB) and accepted for Wire­

less Local Area Network (WLAN) standards such as IEEE802.11a. DMT has been se­

lected for Asymmetric Digital Subscriber Loop (ADSL) [1] and is currently being con­

sidered for Very high speed DSL (VDSL) [3]. 

Following the terminology in [4][5], OFDM and DMT are distinguished as follows. 

OFDM assigns the same number of bits to each sub-channel. However DMT goes one 

step further in exploiting the degrees of freedom inherent in MCM by varying the number 

of bits on each sub-channel. For this kind of differential assignment the transmitter needs 

the channel state information. This requirement makes DMT best suited for almost time­

invariant channels such as Digital Subscriber Loop (DSL) channels over twisted pair 

copper wmngs. 

1.1 Megabits over Copper Wires - DSL 

Twisted copper wires connecting homes for plain old telephone service since a very 

long time had been a mammoth existing infrastructure. But when used for analog speech, 

only up to 3 kHz of the bandwidth was used. It was in late 1980's that the effort was 

made for the tirst time to exploit bandwidths higher beyond 3 kHz for data transmission 

in twisted copper pairs. This effort has led to tremendous research activity into and aIso 
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generated huge revenues from DSL technologies which use the copper wires to provide 

broadband access to residences and businesses by harnessing the complete bandwidth 

usable in the copper wires. Over the last decade, this 'usable' bandwidth has increased 

with advancements in the fields of digital communications and signal processing, so 

much so that currently standardized VDSL-DMT systems use all the way up to 12MHz 

bandwidth and VDSL2 systems propose to go even further. The success has been demon­

strated through the massive deployment of ADSL for example which can provide up to 

5Mbps through a single copper pair. VDSL sets its aim much higher. 

A simplified but typical DSL loop layout scenario is presented in Figure 1-1. For 

each user (or subscriber), a 'DSL modem' is installed the customer premises (e.g., The 

houses in 'Residential Neighborhood' in Figure 1-1) and another corresponding 'DSL 

modem' Îs installed at the central office which in turn is connected to a backbone net­

work. Notice that the copper wires connecting these modems are already present in most 

cases due to plain old telephone service and the only additional investment is the modems 

and the network infrastructure at the central office. However the layout also shows the 

many challenging problems that megabit transmission in the DSL scenario presents. 

NEXT 

DSL modem 

Coupling Length 

FEXT 

LOOP PLANT or 
BUNDLE 

User 1 

Twisted Copper Pair 

Figure 1-1: Typical DSL Loop Layout Scenario 

Downlown 

Firstly each copper wire individually presents a highly frequency selective channel. 

In other words the 'Direct Channel Attenuation' in Figure 1-1 increases rapidly with fre-
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quency. This high frequency selectivity corresponds to severe ISI in time domain at rea­

sonably high signaling rates. Secondly since a number of users share the same 'Loop 

Plant or Bundle' for a certain 'Coupling Length' the transmission on one copper wire 

causes interference into another user' s copper wires. This interference is commonly re­

ferred to as crosstalk (XT). The crosstalk as displayed in Figure 1-1 is of two types -

Near End Crosstalk (NEXT) and Far-End Crosstalk (FEXT). Thirdly the DSL bundles as 

weIl as the modems themselves exist in close vicinity of other external sources of inter­

ference 1. The noise (in the broad sense, i.e., including interference) in DSL environments 

is classified into 2 types - capacity limiting and performance limiting [22]. NEXT, 

FEXT, background noise and external interferences can be classified into these catego­

ries. This is discussed in Section 1.3 and 1.4. 

Thus not only is the direct channel highly frequency selective, the noise also is col­

ored, ·i.e., frequency dependent. Due to these reasons SCM implementations of DSL mo­

dems involve a very expensive equalizer (for dealing with ISI) and possibly noise­

whitening filters. A much more economical design to deal with the above impairments is 

Discrete Multitone (DMT) modulation. Further, as we shall see, the degrees of freedom 

in terms of design provided by DMT enable us to suit transmission parameters to keep 

crosstalk in control and maintain robustness against external interference while meeting 

different users' rates (in Mbps) and performance (quality of service in terms of probabil­

ity of error) based on channel state information. 

1.2 Discrete Multitone Modulation 

A general DMT transmitter/receiver structure is presented in Figure 1-2. In this sec­

tion we provide a brief overview of the DMT structure. A more detailed introduction car.. 

be found in pp. 3-8 in [5]. The entire available bandwidth say Fis divided into K parallei 

subchannels. Even if the channel as weIl as the noise might have been frequency selective 

over the original bandwidth F, K is chosen large enough so that over the intercarrier spac­

ing l'1f=F/K, the channel and noise experienced by each of K subcarriers appears nearly 

flat (or frequency non-selective). 

1 A rigorous treatment and characterization ofDSL channels is presented in Chapter 2. 
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The input bit stream is first passed though a channel encoder. The encoded bits are 

then buffered and modulated onto the K sub-carriers. The modulation operation on each 

sub-channel is independent of other subchannels and is determined based on the channel 

state information. The 'Modl' to 'ModK' blocks perform this operation and output com­

plex numbers corresponding to a baseband signal point in a 2-dimensional constellation 

which is generally chosen to be Quadrature Amplitude Modulation (QAM). 

Inputbil 
stream 

Output 
bit 

stream 

Bil Buffering 
and seriai to 

parallel 

Bit Buffering 
and parallel 

10 seriai 
FEQ FFT 

Parallello 
seriai and 

Cyclic prefix 
Insertion 

Cyclic Prefix 
stripped and 

seriai to 
parallel 

Figure 1-2: Generic DMT system model 

A K-point IF FT operation is performed to generate the discrete time domain version 

of a single DMT symbol. Following this a guard interval, of length greater than the im­

pulse response of the channel (see [5]) in the form of a cyclic prefix is introduced. Strip­

ping this guard interval at the receiver ensures zero ISI between adjacent DMT symbols 

and that the linear convolution of the channel can be treated as a circular convolution, 

which in tum ensures a one tap frequency domain equalizer (FEQ) at the receiver. Other 

receiver blocks are inverses of operations in the transmitter. 

Thus there are 3 key design parameters which can be varied based on channel state 

information and can be viewed as degrees of freedom offered by MCM. 
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• Energy Allocation - Each of the subcarriers can be allocated a portion of the 

total transmit power budget. This energy allocation might be further constrained 

due to spectral masks or peak power constraints used to control crosstalk among 

users. The energy allocated together with the channel state information on a par­

ticular subcarrier decides the final SNR which in tum indirectly decides the rate 

and performance. The energy allocation of one user also affects the interference 

profile to other users due the crosstalk coupling among copper wires sharing the 

bundle. 

• Bit Allocation - Based on the channel state information and the results from the 

energy allocation problem, the number of bits (fractional or integer) to be allo­

cated to each sub-carrier is decided. In reference to Figure 1-2, this amounts to 

choosing the QAM size in 'Modl '-'ModK' blocks. This bit-allocation summed 

across the subcarrier gives the overall rate of a user. Further the particular bit al­

location also decides the overall BER of the system and hence must be con­

ducted with a minimum BER or performance constraint in mind. 

• Coding Scheme - The coding scheme is generally chosen to translate the BER 

from the vicinity of 10-3 to 10-7 (which is standard BER requirement for DSL 

applications). The co ding gain that the code provides can be viewed as an in­

crease in the energy allocated to each subcarrier which in tum allows us to load 

more bits and hence increase the information rate. As shown in Figure 1-2, in 

most schemes in practice and in literature today the coding scheme is a singular 

structure independent of the sub-carrier energy, bit allocation and channel state 

information. Hence it has been treated a one-time design decision rather than (! 

degree of freedom. However throughout this thesis we shall exploit this degree 

of freedom as weIl and show its benefits. 

The family of algorithms which varies these available degrees of freedom based on chan­

nel state information while respecting power constraints, medium constraints and system 

design constraints towards the objective of maximizing the rate at a specific performance 

(quality of service) or the objective of maximizing performance or robustness while satis­

fying a target demanded rate is known as loading algorithms. The channel state informa­

tion needed for this purpose involves knowing, not only the direct channel attenuation, 
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but also the noise (and interference) affecting the channel. The noise in DSL environ­

ments is classified into 2 types - capacity limiting and performance limiting [22]. 

1.3 Capacify Limifing Noise 

Thermal noise and crosstalk fall into the category of capacity limiting noise [22] be­

cause these limit the best achievable rate by the system. The existence of 20-50 twisted 

copper cables within the same bundle, cause significant crosstalk into each other's chan­

nels. Crosstalk is typically 10-20 dB higher than the background thermal noise [27]. 

Loading algorithms which have the objective of maximizing the rate achieved at a 

specific performance requirement are known as rate adaptive loading algorithms. Given a 

static noise and interference profile the capacity achieving (or rate maximizing) energy 

allocation has long been known to be the 'water-filling' solution (see pp. 383-390 in [7]). 

However this solution tacitly assumes infinite granularity in bit allocation, e.g., it as­

sumes that something like 3.1415 bits/symbol can actually be sent on a carrier. This is 

very difficult to implement in practice because most of the known modulation schemes 

(e.g., PSK or QAM) support integer bit constellations and hence is a system-design con­

straint. It was initially observed in [30] and [9] that most of the integer-bit granularity 

losses could be recovered by rounding off the bit-allocation to integers and scaling ener­

gies accordingly after starting with a water-filling [9] or flat [30] energy distribution. 

However the freedom for such re-scaling is considerably reduced in the presence of peak­

power constraint [2][38]. Peak-power constraint (maximum power that can be allocated 

to a subcarrier) arises from spectrum compatibility requirements to enable co-existence 

among diverse services. When the peak-power constraint is far stricter than the total­

power constraint, as is often the case in VDSL-DMT, there is hardly any room left for 

maneuverability (or rescaling) in the energy domain (to compensate for unavailability of 

non-integer choices in bit-domain) and significant losses (known as granularity losses) in 

achievable data rates of integer-bit algorithms are observed. But we note that among the 

degrees of freedom stated in Section 1.2, the coding scheme has not yet been exploited. 

We shall show in Chapter 3 that through the exploitation of these additional degrees of 

freedom, most of the granularity losses can be recovered. 
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Crosstalk being the major impairment, spectrum management is essential to enable 

co-existence among multiple users and diverse services sharing the bundle. For example 

in Figure 1-1, a typical near-far scenario is visible. The 'Downtown' user's signal will he 

severely attenuated by the time it reaches the central office due to the greater attenuation 

of the direct channel. However since the residential users are closer to the central office, 

they will encounter less attenuation and also the FEXT they induce into the copper wires 

corresponding to the 'Downtown' users will be higher. Thus the downtown users will al­

ways be in a lose-Iose situation due to the extremely strong 'Residential' users and will 

be able to afford much lower rates or performance than them. This scenario is definitely 

not desirable. Customers would like to receive rates in accordance with the service they 

pay for and not their geographical location. This necessitates spectrum management. In 

the currently standardized and implemented forms of DSL, admissible spectral masks 

(i.e., peak power constraint discussed above) [2] have been specified for each user (This 

way the damage the stronger 'Residential' users do to 'Downtown' users is controlled). 

These spectral masks however being based on worst case crosstalk scenario resulted in 

the aforementioned Static Spectrum Management (SSM) techniques to be unduly restric­

tive and thereby led to conservative rates. This realization has recently motivated signifi­

cant research activity in Dynamic Spectrum Management (DSM) [23] - which seeks to 

jointly optimize transmit spectra towards minimizing crosstalk and has led to very re­

warding improvements in achievable rates. Based on level of centralized control and co­

ordination necessary, DSM schemes are graded from Level 1 to Level 3 [24]. Level 1 

represents the most distributed control which is desirable in a practical situation because 

more than one service providers (e.g., SPI and SP2 in Figure 1-1) often share the same 

bundle. Expecting a high level of coordination among diverse service providers is unreal­

istic. 

In DSM techniques, the peak power constraint is either not present or much less 

strict when present, than in SSM schemes. However the rate demanded by a certain user 

indirectly restricts the maximum interference that other users can cause to it, thus acting 

as implicit peak power constraint. Hence DSM techniques also suffer from granularity 

losses. As we shall see in Chapter 3 an adaptive Reed Solomon scheme can be used to 

exploit the degrees of freedom in co ding scheme described in Section 1.2 to recover these 
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losses. We end this section with 2 reminders. 1. Though DSM techniques are fast gaining 

popularity SSM is still the standardized and implemented version. 2. DSM techniques 

(and rate adaptive algorithms in general) present a promising solution to capacity limiting 

nOIse: 

1.4 Performance Limiting Noise 

The other major form of noise that affects DSL systems is performance limiting 

noise. Performance limiting noise is constituted by impulse noise and Radio Frequency 

Interference (RFI) which are non-stationary, geographically variable and unpredictable. 

Impulse noise consists of relatively high energy bursts due to electromagnetic interfer­

ence from physical phenomena, electrical switches, motors and home appliances which 

are invariably present in the close vicinity of DSL modems. In addition to interleaving, 

which has the disadvantage of being the primary contributor of end-to-end delay undesir­

able for interactive applications [37]; the primary defense against this form of noise is 

performance margin of the system. With VDSL system bandwidth going up to 12MHz 

(and higher in VDSL2) and increased antenna efficiency of network cables at these fre­

quencies RFI pickup becomes an issue [22] and amateur radio interference appearing out­

side reserved RF bands (due to circuit nonlinearities, imperfect filtering [37]) can make 

interference duration weIl above what interleaving and error correction can handle [37]; 

thus leaving margin as the only defense. Further since most DSL applications are con­

stant bit rate applications; maximizing the margin (which is equivalent to minimizing the 

system probability of error as proven in lemma 4.1 in [30]) while satisfying a certain bit­

rate demand is desirable [4], [30]-[36]. Further an adequate margin allows error free 

transitions (when certain modems change their mode from passive to active). 

The importance of margin maximization due to the above reasons, has led to the de­

velopment a number of margin adaptive loading algorithms [30]-[36]. One of the first 

solutions [31] to the margin maximization problem was based on reaching the solution by 

iterating over the margin and using the SNR-gap rate function (defined in Section 2.2.1). 

In [3?], the authors approached the problem directly in terms of minimizing probability 

of error by maximizing the SNR profile leading to slightly improved results. In [34], the 

equivalence of the margin maximization problem and the energy minimization problem 
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was established. This equivalent reformulation being convex (unlike its original counter­

part) was used to develop optimal margin maximization algorithms in [35] and [36]. The 

energy saved by solving the energy minimization problem could be directly transferred 

into gain in margin by multiplying all subcarrier energies with the ratio of the total en­

ergy constraint to the total utilized energy, i.e., optimal value of energy minimization 

problem and this ratio itself was the final margin of the system. 

However all of these algorithms having been developed in the SSM era, have an in­

herent fixed crosstalk and noise profile assumption and hence are essentially single-user 

algorithms. Thus no direct extensions to the new DSM scenario are possible, where each 

user's power allocation decides other users' crosstalk profiles. Furthermore the duality 

between the margin maximization problem and energy minimization problem is more 

involved in a DSM scenario. The energy saved by solving the energy minimization prob­

lem cannot be converted into gain in margin by any simple multiplication because any 

such multiplication would destroy the stationarity or equilibria that exist between the 

crosstalk profiles of different users due to the DSM algorithm, e.g., IWF; and this in turn 

can result in other users loosing rate or margin or both2. Hence the multiuser margin 

maximization problem deserves an independent study instead of extensions from single 

user margin. 

In chapter 4, we show that margin possesses certain favorable fairness properties 

over a multiuser rate region which can be exploited to design a Level 1 coordination mul­

tiuser margin maximization algorithm to ensure the best margin in the min-max sense to 

all users while guaranteeing their target (demanded) rate satisfaction. 

1.5 Contributions and Thesis Outline 

Chapter 2 begins with a characterization of the DSL direct and interference channels. 

Subsequently a near exhaustive review of various optimization problems3 that have been 

solved in literature in the context of loading algorithms, solution properties and practical 

implementations is presented. The review begins with the simplest theoretical water-

2 Due to this reason there is sorne skepticism about modems working in Margin Adaptive (MA) in DSM 
scenario [29] which used to be very popular during SSM phase [31 ]-[36]. 
3 The concept of Karush Kuhn Tucker conditions from classical optimization theory are utilized in this 
chapter. A briefreview ofthese conditions is presented in Appendix B. 
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filling problems and progressively addresses problems of increasing difficulty with addi­

tional constraints until the true problem encountered by loading algorithms in practical 

DSL modems. The various problems are c1assified based on their objective function (the 

cost they intend to minimize), the constraint they address, complexity of implementation 

and optimality of result achieved. The motivations towards a fine-granularity scheme and 

the absence of a multiuser margin maximization algorithm are outlined. 

Chapter 3 begins with a theoretical quantification of granularity loss. This further 

justifies the c1aim that granularity losses due to integer bit constraint are substantial in 

CUITent DSL scenarios4
. To recover these losses the Adaptive Reed Solomon aided Fine 

Granularity Loading (ARSFGL) scheme is proposed4
,5. The performance of this scheme 

is compared with integer bit algorithms in both SSM and DSM cases with phenomenal 

results. In SSM cases ARSFGL schemes result in 20% improvement in rate achieved in 

most scenarios. The extension of ARSFGL scheme to DSM cases results in a purely dis­

tributed scheme which can give better or equal rate as compared to the centralized opti­

mal integer-bit scheme6
• 

In the process of comparing the ARSFGL scheme developed in Chapter 3 with vari­

ous integer-bit algorithms in use today for various DSL scenarios, we discovered that bit­

rounding algorithms [30][9] which are very popular loading algorithms load bits aggres­

sively leading to minimum performance requirement violation. We found the causes of 

these violations and suggested repairs7
• This is presented in Appendix A. In Chapter 3, 

we compare the ARSFGL scheme with these repaired versions of the bit-rounding algo­

rithms described in Appendix A along with other algorithms described in Chapter 2. 

4 Saswat Panigrahi and Tho Le-Ngoc, "Fine-Granularity Loading Schemes using Adaptive Reed-Solomon 
Coding for xDSL-DMT Systems," EURASIP - Journal on Applied Signal Processing, to appear 4th quarter 
2005. 

5 Saswat Panigrahi and Tho Le-Ngoc, "Fine-Granularity Loading Schemes using Adaptive Reed-Solomon 
Coding for Discrete Multitone Modulation Systems", IEEE International Conference on Communications 
(ICC), May 2005. (5 pp. - proceedings to be published) 

6 Saswat Panigrahi, Yang Xu and Tho Le-Ngoc, "Enhanced Multiuser Resource Allocation using near­
continuous loading algorithms with Adaptive coding for Digital Subscriber Loops", IEEE Canadian Con­
ference on Electrical and Computer Engineering, pp. 132-135, May 2005. 

7 Saswat Panigrahi and Tho Le-Ngoc, "Total Power Constraint Equality in Integer Bit Loading Aigorithms 
for Multicarrier Systems", IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 
pp. 116-119, May 2005. **** Received 'Student Paper Prize Award' at CCECE 2005. **** 
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Chapter 4 addresses the problem of multiuser margin maximization. Due to the near­

continuous results of the ARSFGL scheme developed in Chapter 3, throughout this chap­

ter continuous bit loading is assumed which definitely simplifies the problem. We dis­

coyer certain faimess properties that multiuser margin exhibits over a multiuser rate re­

gion. We exploit these properties to develop a Level 1 coordination algorithm which 

achieves the best common equal margin for all users. The faimess properties discovered 

and demonstrated here are entirely new and the developed algorithm is the first multiuser 

margin maximization algorithm in a DSM scenari08
. 

Chapter 5 summarizes the conclusions of the thesis. 

8 Saswat Panigrahi, Yang Xu and Tho Le-Ngoc, "Enlightened Margin Maximization in Multiuser Interfer­
ence Digital Subscriber Line Channel s," accepted at IEEE Global Communications (GLOBECOM) Confer­
ence,2005. 
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Chapter 2 
Literature Review 

2. 1 DSL Channels 

In Figure 1-1 we presented a simplified DSL loop layout scenario and Section 1.3 

gave a qualitative overview of crosstalk and direct channel attenuation. In this section we 

examine the crosstalk and direct channel attenuation in greater detail. Consider the gen­

eral scenario of N users (twisted pairs) sharing a bundle. In Figure 1-1 e.g., N=7. In real 

life DSL scenarios N can vary between 20 and 50. The channel transfer function (of 

crosstalk) from User i to User 1 with 1 ::j:. i is denoted by H il 
(/). Similarly the direct 

channel transfer function for User i is H ii 
(/). H ii 

(/) depends on the length of the 

loop, source impedance, load impedance, and the characteristic impedance of the loop 

(see Section A.2.1 in [2]). The absolute value of H il (1) is modeled in terms of H ii 
(/) 

and the coupling length9 le as (see FEXT models in [2] and [3]): 

(2.1) 

where KFEXT is a constant. A simpler scenario (than Figure 1-1) of 2 loops, as shown in 

Figure 2-1 (a), one ofwhich is at 1000 ft. (User 1) from the central office and the other at 

3000ft. (User 2) from the central office is considered. Notice that le=1000ft. in this case. 

The 'corresponding direct channel transfer functions IHII (/)1
2

, IH22 (/)1
2 

and the 

crosstalk transfer functions IHI2 (/)1
2 

and IH21 (/)1
2 

are plotted in Figure 2-1(b). 

Ce ntra 1 Office 1 OOOft 

!\ 1 
User1 1 

\ \J 
User2 1 

3000ft. 

(a) Setup 

9 Coupling length is the distance for which the N twisted pairs travel within the same bundle. 

12 



Channel Transfer Functions 
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(b) Transfer Functions 

Figure 2-1: Sample DSL Channel Transfer Functions 

The following important observations from Figure 2-1 (b) will be useful throughout this 

thesis: 

• The channel is asymmetric, i.e., IHl2 (/)1
2 

:t; IH2l (/)1
2

• 

• The User closer to the CO (User! in this case) has a much better direct channel, 

i.e., IHII (/)1
2 

» IH22 (/)1
2 

and causes strong crosstalk (see IHl2 (/)1
2

) to User 2; 

which already has a poor or weak direct channel. 

• If we consider either IHII (/)1
2 

or IH22 (/)1
2 

individually, the direct channel of 

both users exhibits a similar trend. The attenuation is low at low frequencies and 

rapidly increases towards higher frequencies. 

• DSL channels exhibit very high frequency selectivity, e.g., IH22 (/)1
2 
changes by 

more than 100dB over the 18MHz bandwidth. Thus if SCM is used at reasonably 

high signaling rates, the high frequency selectivity will lead to severe inter­

symbol interference (ISI). To counter such ISI, a very expensive equalizer would 

be required. Multicarrier methods [5] have proved to an efficient alternative to 
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deal with frequency selective channel. In this case, the entire bandwidth is divided 

into K subcarriers with a uniform inter-carrier spacing of !1f Note that the typical 

value of K for ADSL is 256 and VDSL is 4096. For !1f small enough each subcar­

rier will experience a nearly fiat or frequency non-selective channel, i.e., nearly be 

ISI free. Further since the lower subcarriers are expected to have much betler 

SNRs, it would seem natural to vary the bits or QAM-size along with the energy 

allocation in order to achieve higher rates or betler performance at fixed rate. 

OF DM is a widely used multicarrier scheme. In [5] and [9] an OFDM scheme that 

does not keep the bit allocation equal across subcarriers is called DMT and we 

shall use the same terminology. 

The generic class of algorithms, which allocate energy and bits with the objective to 

maximize rate, performance or robustness given energy constraints, system-design con­

straints and performance requirements, are known as loading algorithms. We first discuss 

single user loading algorithms in Section 2.2 and then multiuser loading algorithms (or 

DSM) in Section 2.3. 

2.2 Single User Loading Algorithms 

Loading algorithms require channel state information to be available at the transmit­

ter to optimize the energy and bit-allocation. Since DSL channels are quasi-static in time, 

this requirement is satisfied much more easily than say in wireless channels. The rich 

dividends in terms of overall system performance, obtained from loading algorithms, the 

number of possibilities and the practical feasibility of their implementation has led to in­

tense research in the field over the last decade [8]-[11],[25],[27],[30]-[36],[38]. 

Let us consider a multicarrier system of K subcarriers. Let &j be the controllable 

transmit Power Spectral Density (PSD) and Pj be the normalized received SNR when 

&)=1 over the/h sub-carrier. The inter-carrier spacing t:J.fis assumed to be small enough 

and the cyclic prefix is assumed to be larger than the delay spread of the channel so that 

each subcarrier can be treated as an independent AWGN channel. Thus the channel of the 

/h subcarrier can be completely characterized by Pj and the received SNR is a) = &jPj . 
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The rate-function b(fJ) is defined as the maximum information rate in bits that can be 

supported at SNR of fJ while keeping the conceded error probability lower than or equal 

to a specified target error probability [38]. Clearly, the rate function contains the sum­

mary of the behavior ofthe modulation and coding scheme in use. 

Loading algorithms with the objective of maximizing rate are known as Rate Adap­

tive (RA) loading algorithms and those with the objective of maximizing the performance 

margin are known as Margin Adaptive (MA) loading algorithms. We discuss single user 

RA algorithms in Section 2.2.1 and single user MA algorithms in Section 2.2.2. 

2.2.1 Rate Adaptive Loading Aigorithms 

The simple st rate-maximizing optimization problem is stated as follows. The objec­

tive function is the total supported rate, 

K 

R = 2)( B)p) ). (2.2) 
)=1 

The traditional total power constraint and the constraint of non-negative power distribu-

tion can be expressed as 

K 

111· l B) ~ Pmax and B) ~ 0, 1 ~ j ~ K. (2.3) 
)=1 

2.2.1.1 Rate Adaptive Water-Filling 

The tirst solution for this type of total power constrained is the Orthodox Water-

Filling solution for the capacity of parallel A WGN channels by Gallager (see pp.383-390 

in [7]). However in [7] b(fJ) was assumed to be the Shannon capacity, i.e., log2(1 +fJ) be­

cause the objective was to determine capacity. But in reality we never truly operatc at 

Shannon capacity. To account for this non-ideality the concept of SNR-gap r was intro­

duced [5][4]. r is a single parameter characterization of the distance from Shannon ca-

pacity in terms of SNR 10
• Thus the SNR -gap rate function is bGAP ( CT ) = log2 (1 + CT Ir) . 

10 The value of f depends on the target symbol error probability. For example, for uncoded QAM, and a 
target SER of 10-7

, f=9.8dB [5][31] and while for a target symbol error probability of 10-3
, f=5.48dB [11]. 
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Thus the SNR-gap based rate maximization11 problem is 

p1Ï~ (-tlog2 (1 + Bj;j JJ. 
"'t~:>J-Pmax J-

(2.4) 

j=1 

&j~O 

In the above problem, the objective function is a sum of negative of logarithms which is 

easily proven to be convex. The constraints are also affine (i.e., linear and hence convex). 

Thus we have a convex optimization problem. The Lagrangian corresponding to the 

above problem is: 

( K K) K (BPJ (K P J K L {Bj }J=l;À,{,uj}J=l =-Llog2 1+--L-L +À LBj-~ -L,ujBj . 
J=l r J=l /).1 J=l 

(2.5) 

For a convex optimization problem with differentiable objective and constraints, we 

know that the KKT conditions (see Appendix B) are necessary and sufficient conditions 

of optimality [41]. Thus the optimal power allocation {B~(=l must satisfy the KKT con­

ditions corresponding to the above Lagrangian are stated in (2.6)-(2.8) for sorne À, ~ 0 

d >0·1 < . < K an ,uj - , - J - . 

aL(.) -1 1 
--=--. * +Â-f1j =0; l"5J·5:K 
aBj In2 Bj +rj Pj 

(2.6) 

,ujB; =0; 15,j5,K (2.7) 

(2.8) 

Note that between (2.6)-(2.8), there are 2K + 1 unknowns and 2K + 1 equations. For the 

constraints we know that B; ~ 0; 15, j 5, K. For alll such that B; > 0, from (2.7) we have 

,ut = o. If ,ut = 0 , (2.6) for j=l simplifies to B; = 1/ À, ln 2 - r j p, . Now using the assump-

tion Pl > 0; 15, j 5, K , we obtain the following 'water-filling' conditions for the SNR­

gap rate function with total power constraint. 

Il In this thesis ail maximization problems will be changed into minimization by adding a negative sign to 
the objective function which is a common practice in most optimization texts. This is because there is no 
loss of generality in this process and in optimization theOl"y most theorems and algorithms are stated for 
minimization problems and hence treating maximization problems as minimizations problems enables more 
direct \lsage ofthese available tools. 
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(2.9) 

where [x r = max ( x, 0) and Je is obtained by solving 

~f·t[_I __ ~]+ =Pmax' 
j=1 /Lln2 Pj 

(2.10) 

Note the appearance of r in (2.9) as compared to the orthodox water-filling. The water­

filling level is 1/ /L ln 2 and is illustrated in Figure 2-2. 

1/ ,,un 2 

frequency (j) frequency (j) 

(a) (b) 

Figure 2-2: Illustration of Rate-Adaptive Water-Filling 

Understanding of water-filling is vital to form an intuitive understanding of loading. 

But notice that after we obtain the optimal energy allocation {c;} ;=1 from (2.9), the final 

bit allocation on the/h subcarrier will be log2(I+c;p)r) which is a real number. But 

most practical modulation schemes such as M-PSK or M-PAM or M-QAM can support 

only integer bits/symbol. Thus water-filling though theoretically attractive and intuitively 

usefu!, assumes continuous bit loading and hence cannot be implemented practically. 

2.2.1.2 Integer-Bit Constraint 

Integer-bit constraint arises out of the fact that most known generic M-ary modula-

tion schemes can support only integer-bits/symbols. Thus we need that the final bit­

allocation to be integer-bit over each subcarrier. This significantly complicates the prob­

lem. This is because, instead of having a convex smooth nonlinear optimization problem, 

we now have an integer programming problem. Based on the SNR-gap method we now 
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have the following step function as our rate function: b~~p = llog2 (1 + o-/r) J. The floor 

operation follows from the definition of rate function and guarantees integer bit distribu­

tion. Thus we now have the following problem: 

A~~J -t.l10g, (1 + 81;1 ) J) (2.11) 

J=I 

8 j "'-0 

The above being an integer programming problem, the optimal solution is a greedy 

search based method [8] proposed by Hughes-Hartogs. 

Table 2-1: Hughes Hartogs Algorithm 

1. b
j

=O'&j=O;I5:j5:K;P=O,R=O 

2. Repeat 

3. 

4. 

5. 

6. 

7. 

8. 

for j= 1 to K 

/).&j = (2bj
+I _ i j 

). ri Pj 

End 

Determine J where /).&j is minimum over 1 5: j 5: K 

until ((P ~ P.nax)or(R ~ T)) 

Hughes Hartogs Algorithm 

The HH algorithm is presented in Table 2-1. At each iteration, HH algorithm gener-

ates a table of incremental energies /).&j required to transmit one additional bit on each of 

the subcarriers (see steps 3-5). Then the subchannel with the minimum incremental en­

ergy requirement is chosen and one bit is loaded and the energy assignment &j and the 

total utilized power Pare updated accordingly (see steps 6, 7). The process is repeated till 

the target rate l2 T is met or the total power constraint Pmax is violated. 

12 Since in this section we are studying only RA algorithms, T can be set to a very high value so that HH 
algorithm stops only when the total power constraint is violated thus ensuring rate maximization. 
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The HH algorithm is the optimal solution for the integer-bit total power constrained 

problem (2.11) and hence is an important benchmark for other algorithms13
• But note 

that, at each iteration, only 1 bit is added and the extensive sorting and searching make-g 

the algorithm's complexity grow exponentially with the total number of bits loaded and 

the total number of subcarriers. Due to this reason, Hughes-Hartogs algorithm is imprac­

tical for usage in DSL applications in which both number of bits and number of subchan­

nels is large. This led to slightly sub-optimal but more efficient bit-rounding algorithms. 

Bit-Rounding Algorithms 

Bit-rounding algorithms [4][9][30] are practically attractive because they are rela-

tively computationally efficient (as opposed to greedy methods such as HH) and imple­

mentàtionally realizable because they ensure integer-bit distribution (unlike water­

filling). The algorithms proposed by Chow in [30] (Sec. 4.3.4), [4] (Sec. 7.2.3.1) and by 

Leke in [9] start with an Optimum Transmit Bandwidth Identification (OTBI) procedure 

(which determines the subcarriers to be used). This identification is done through a costly 

iterative procedure in Chow's algorithm [4][30] which is presented in Table A-l. In 

Leke's algorithm [9] a non-negative energy assignment criterion was introduced, by vir­

tue of which the identification is achieved in a single iteration over the subcarriers. The 

OTBI procedure of Leke's algorithm is presented in Table A-2. Furthermore, while initial 

energy distribution is fiat in Chow's algorithm [4] [30], Leke's algorithm [9] starts with a 

water-filling distribution. At the end of the OTBI procedure, the total power constraint is 

satisfied with equality I1f· 2:;;1 Bj = Pmax ' but the bits allocated are non-integer. 

The common aspect of both algorithms is that following the OTBI, the bits allocated 

to each of the N subcarriers, {bj } ;;1 obtained from the usage of SNR -gap function, 

bGAP ( (j ) = log2 (1 + (j Ir) , are rounded to integers, i.e., 

bj =round{bj }; 15:j5:K (2.12) 

and energy allocated to each subcarrier {Bj} ;;1 is adjusted to make the BER nearly equal 

in the sub-carriers, leading to the saw-tooth energy distribution [30], i.e., 

13 To understand the optimality of greedy HH algorithm for (2.11), notice that the problem is a Separable 
Convex Discrete Resource Allocation (SC DRA) problem. See Chapter 2 in [33] for more details. 
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- -Ib-I (b
A

) _ -1 (2b j 1). r &) - p) GAP J - p) - . (2.13) 

However, foUowing this adjustment of energies in (2.13), the total utilized energy 

P = 111· I~=1 &) is no longer equal to the total energy constraint of the system Pmax. To 

re-achieve this equality, in the final step of both the algorithms, {&j} ;=1 are multiplied by 

an energy re-scaling factor, i.e., 

&) = &j x &RF; where &RF = Pmax/ P. (2.l4) 

Leke's algorithm [9] is computationally more efficient that Chow's algorithms 

[4][30], due to an efficient OTBI procedure. In terms of rate achieved, Leke's algorithms 

are better than Chow' s algorithms, but only by a very minor degree. In our simulations 

for DSL channels (see Section 3.4.3) we observed this improvement to be less than 1% 

for most cases, and a similar observation of approximately 2% percent was made in [9]. 

Both Chow's and Leke's algorithms are much more computationaUy efficientl4 than the 

optimal HH algorithm, but at same time they are very close in achieved ratelS to the op­

timal.rate achieved by HH algorithm. In our simulations for DSL channels (see Section 

3.4.3) we observed this improvement to approximately 1 % for aU tested cases. 

For reference purposes we shall refer to aIl the cases without peak power constraint 

discussed so far as Total Power Only (TPO) cases. While the algorithms discussed in this 

section can handle the total power constraint and the integer-bit constraint, they cannot 

handle the peak power constraint. 

2.2.1.3 Peak Power Constra;nt 

Peak power constraints arise out of spectral compatibility requirements which ensure 

a minimum rate or performance for aIl the users sharing a medium. Reconsider, for ex­

ample the scenario discussed in Section 2.1 (see Figure 2-1). If we have only the total 

power constraint, then going by a water-filling type approach User 1 will utilize most of 

this total power budget in the lower subcarriers, because H l1 
(/) is best in the lower 

fIeqneneies. Now User 2, by itselfhas a weak direct channel H 22 
(/) and hence most of 

14 Ordër ofComplexity comparisons for HH, Chow's and Leke's algorithms is found in Table 1 in [Il]. 
15 These bit-rounding algorithms have one weakness though. The rounding procedure (2.12)-(2.13) is in­
herently biased which leads to aggressive loading which in turn results in the BER constraint violation (see 
Appendix A). 
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quencies. Now User 2, by itselfhas a weak direct channel H 22 
(/) and hence most ofits 

higher frequencies will be unusable. So the only usable subcarriers would be the lower 

frequencies, but these very frequencies would be swamped with interference arising from 

the water-filling approach of User 1. Thus User 2 in Figure 2-1(a) or the downtown users 

in Figure 1-1 will be denied a basic minimum rate. This is known as 'hogging' in DSL. 

Recognizing the gravit y and frequent occurrence of this problem, apart from the total 

power constraint 1'1/·2:;;] cj ~ Pmax ' admissible spectral masks c max 
(/) are also speci-

fied for each modem by standardization bodies. Examples of cmax 
(/) in case of CUITent 

DSL .standards are SMClassl - SMClass9 in [2] and MIFTTCab, M2FTTCab in [3]. 

This spectral mask acts as the peak power constraint cj ~ c;ax; 1 ~ j ~ K, where 

The peak and total power constrained problem is defined as follows: 

(2.15) 

j=l 

BJ $.Ejna ... 

EJ2!O 

To gain insight into the solution structure of the above problem, let us temporarily drop 

the integer bit constraint and assume that the rate function b(o) is a continuously differen­

tiable, strictly increasing and strictly concave function. Note that the SNR-gap rate func­

tion satisfies aIl these properties. Due to the strict concavity assumption the objective 

function in the above problem -2:;;] b (cjPj) is convex and the constraints are affine 

(i.e., linear and hence convex). Thus (2.15) is a convex optimization problem, and hence 

once more the optimal energy allocation must satisfy the KKT conditions [41]. This 

analysis is carried out in [38]. The Lagrangian in addition to (2.5) must include multipli­

ers vj to account for the peak power constraint. Thus the Lagrangian is 

L({Cj}K ;À,{fJp Vj}K ) = 
. J;] J;] 

(2.16) 
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Applying the KKT conditions, as in Section 2.2.1.1, the following general result can be 

obtained about the optimal energy allocation [38]: 

K 

If f..f· l é:;max ::; Pmax ' then é: ~ = é:;ax . 
;=1 

K 

If I1f l é:;max > Pmax ' then 
;=1 

é:7X, if J::;pjbq(pjé:;ax) 

é:~ =é:~(J)= _1 b:1(~J, if pjbq(pjé:;ax)::;J::;pjbq(O), 
Pl Pj 

0, 

(2.17) 

(2.18) 

where bq(a)=8b(CT)/8CT and b:1
(.) is the inverse of bq(.). The parameter J is the 

KKT multiplier corresponding to the total power constraint and is the solution to: 

K 

I1f· Ié:~ (J) = Pmax· (2.19) 
j=1 

Notice the remarkable result in (2.17) that if I1f· I;=1 é:;ax ::; Pmax ' the optimal energy 

allocation é:~ is independent of the rate-function b(o) and is equal to the peak power con-

straint é:;ax. We refer to this scenario as the Peak Power Only (PPO) scenario henceforth. 

First we discuss the cause of this result and then its implications. In the problem defini­

tion (2.15), we have 3 constraints. The peak power constraint requires that é:
l 

::; c;ax and 

the total power constraint requires that I1fIj é:j ::; Pmax. Note that if the condition of 

(2.17) is satisfied i.e., I1f· l ;=1 é:;ax ::; Pmax ; then in (2.15), satisfying the peak power con­

straint guarantees that the total power constraint is satisfied. So in this case, the total 

power constraint can be dropped. But this in turn simplifies the problem, because the total 

power constraint was the only thing that was 'coupling' the optimization. Once this is 

removed, we have the problem can be solved per subcarrier, e.g., on the /h subcarrier 
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·< = arg min-b( BjPj)' 
OS,Cj$.EjX 

But since b( BjPj) is monotonically increasing in Bj by assumptions of the rate function, 

we have the final solution as B~ = B;ax . The implication of this resuIt is that in the PPO 

case, no matter what is the rate function (i.e., what coding and modulation is being used) 

and what is the method or loading algorithm being used, the solution is the same. Further 

we shaH see in chapter 3 that, in the PPO case, the granularity loss resulting from the in-

teger bit restriction is the highest. When !l!. L ;=1 B;ax > Pmax ' we refer to this scenario 

henceforth as the Total and Peak Power (TPP) case, because here unlike in PPO where 

peak power constraint completely dominates, both total power constraint and peak power 

constraint play a role. 

For the special case of the SNR-gap rate function bGAP (0') = 10g2 (1 + 0'/1), the re­

suit for PPO case, i.e., (2.17) stays exactly the same as discussed above, but for TPP case 

(2.18),(2.19) simplify to 

frequency (j) 

. [1 1 ]&jX 
Bj = Â ln 2 - Pj 0 ' 

!lf.t [_1_ -~]&j' = Pmax . 
j=1 Âln2 Pj 0 

1 

À1n2 

frequency (j) 

Figure 2-3: Effect of Peak Power Constraint 

(2.20) 

(2.21) 

A graphical interpretation (for the same channel as considered in Figure 2-2) of the 

TPP case is presented in Figure 2-3. In the figure we have assumed that B;ax is fiat (or 
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constant acrossj) for simplicity of illustration. Figure 2-3(a) illustrates (2.20) and particu­

lady :Region A' displays the role of the peak power constraint. In Figure 2-3(b), the en­

ergy allocation corresponding to (2.20) and the one corresponding to water-filling (Figure 

2-2) is shown for comparison. Notice that the catastrophic interference that would be 

caused to other users due to high power allocation in 'Region A' is now contained due to 

&;ax . Further the energy saved here is redistributed among the other subcarriers, e.g., in 

'Region B'. Previously in the case of water-filling there was not enough power, but now 

due to the energy saved in Region A, Region B can be loaded. Of course, if we consider 

only this single user, this redistribution does not mean that we can achieve the same rate 

as we did in water-filling. By applying peak power constraint the rate for a particular user 

can only reduce from the water-filling solution. But when viewed from the multiuser per­

spective, avoiding 'Region A' type of sharp allocations, every user can be guaranteed a 

basic minimum rate which was the objective of the peak power constraint. 

While (2.20) and (2.21) might look deceptively simple due to their closed fonn, 

reaching the solution algorithmically is not a straightforward task because of the 2 caps, 

[.]~7"x . A very efficient method to reach this solution was proposed in Table l in [38]. 

This follows the observation that the key equation to be solved is (2.21), because once À 

obtained from (2.21), evaluating (2.20) for the optimal &~ is easy. Let B=lI Àln2 and 

I(B)= L11· t[B_~]&jX -Pmax. 
}=J Pi ° 

(2.22) 

It is easy to see that solving (2.21) is equivalent to finding a zero of the functionj{B), i.e., 

B* such thatj{B*)=O. It was observed in [38] that this B* must lie in the interval [xo'xJ ] , 

j{B) is a continuous function and in the interval [xo, xJ ] it is monotonically increasing. 

Thus. there exists only one zero of j{B) in [xo'xJ ] which can found by any one-

16 This can be proven by contradiction, e.g. assume that B* < xo. This implies B* - r / Pi < 0, Vj which 

implies in turn that L [ B* - r / Pi J:7'" = 0 => 1 ( B* ) = - Pmax but by definitionj(B*)=O. Similarly if 

we assume B* > XI ' we obtain L1IL &;ax = Pmax but by definition ofTPP case L1fI &;ax > Pmax 
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dimensional search technique, e.g., bisection or secant. In [38], a secant method is pro­

posed which converges very fast. A modified version of this algorithm will be discussed 

in Chapter 3. Also note that the solution for TPO, i.e., water-filling can also be reached 

by this algorithm as a special case by setting s;ax = Pmax / !:lI; 1 ::5 j ::5 K . 

However the problemjust as in the case ofwater-filling is that even after we find the 

optimum energy allocation s~, the corresponding bit-allocation by the SNR-gap nmctioll 

assuI1.lption would be log2 ( 1 + S ~ Pi Ir) which is non-integer and hence cannot be imple­

mented in practice since most known modulation families like M-PSK and M-QAM cor­

respond only to integer bit allocations. Hence we must consider the peak power cOl1straint 

along with the integer-bit constraint for practical reasons. 

Peak Power Constraint witb Integer-bit Constraint 

Now we are in a position to define the complete rate adaptive problem faced by prac-

tical modems at this stage which encounter total power constraint, peak power constraint 

and integer bit constraint together. 

lfli.n (-t llOg2 (1 + Si Pi JJJ 
""8"/' J=l r ~ L... J ma'\: 

Ej$.E;av. 

8 j ?O 

(2.23) 

Just like in the continuous rate function case considered above, for a PPO scenario, the 

optimal energy allocation even in the presence of integer-bit constraint is s~ = s;ax . The 

reasoning behind this is the same as in the continuous case. In recollection, when 

!:lf· Li s;ax ::5 Pmax (by definition of PPO), the total power constraint in (2.23) can be 

dropped altogether. But since this was the only coupling constraint, (2.23) can now de­

composed to a per-subcarrier problem of the form o<~~ma, -llog2 (1 + Si Pi Ir) J to which 
- J- } 

a global solution which obeys all constraints is easily seen to be s~ = s;ax and the corre­

sponding bit allocation is llog2 (1 + s;ax Pi Ir) J. 
The allocation for the TPP case, i.e., when !:lf· Lis;ax > Pmax ' is more involved. Just 

as in the TPO case, the integer bit constraint makes the rate-function a step function i.e., 
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b:;~p == llog2 (1 + o-/r) J which is clearly not differentiable, and non-linear optimization 

theory cannot be applied directly and hence the closed form expression for the optimal 

energy allocation like (2.21) is not possible. Theoretically speaking a greedy algorithm of 

the form ofHH (see Table 2-1) could be designed to reach the optimum, but as discussed 

in Section 2.2.1.2, greedy algorithms require extensive searching and sorting which 

makes them impractical in DSL scenarios. Thus bit-rounding methods remain the only 

practical alternative just as in the TPO case. However the bit-rounding, now has to make 

sure that the peak power constraint does not get violated. 

Note that due to the peak power constraint 8;ax , we can define the maximum integer 

number of bits that might be loaded on the lh subcarrier as: 

b~ +Og, (1+ E~Pj JJ (2.24) 

This is because 8) will always have to be less than (or equal to) 8;ax , irrespective of how 

strict or loose the total power constraint is. Hence the bit allocated (integer) will have to 

be less than (or equal to) b;ax . 

In section 4.3.4 in [30], Chow presented an extension of his flat-power TPO integer 

bit algorithm, which we discussed in Section 2.2.1.2 by replacing the bit round off by a 

b;ax constrained round-off. Thus the equations (2.12)-(2.14) are replaced as follows. 

b) = min {round (b) ),b;ax}; 15: j 5: K 

8) =pjlb;~p(b))=pjl(i;j -1).r 
A 

(2.25) 

(2.26) 

Note that as a result of (2.25) we are guaranteed that b) is an integer (due to round opera-

A 

tion) and further due to the min(.) operation b) 5: b;ax. When the energy allocation is 

A 

done in (2.26), b) 5: b;ax due to (2.24) ensures that 8) 5: 8;ax , thus satisfying the peak 

power constraint. 

In Table IV in [38], Baccarelli extended his secant based algorithm (which could 

handle peak power constraint but not integer bit constraint) to handle the integer bit con­

straint. The algorithm begins with solving for the zero of the functionj{B) in (2.22), i.e., 

B* such thatj{B*)=O, by the secant method described earlier. From this B*, 8~ is obtained 
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using (2.20) and bj = log2 (1 + &; Pj Ir) which is a real number. After this, to ensure the 

integer bit constraint, the following (similar to) round-off procedure is conducted: 

(2.27) 

where rp is a scalar parameter between 0 and 1 which is adjusted using a bisection 

method to bring the integer bit allocation throughput i.e., L/}) as close to the continu-

ous-bit optimal throughput Ljb) as possible without violating the constraints. Note that 

Chow's bit rounding in (2.25) is a special case of (2.27) with rp=0.5. Since Baccarelli 

uses a bisection method to obtain the best rp instead of fixing it at rp =0.5, the rate 

achieved by Baccarelli's integer bit algorithm is generally higher than Chow's peak 

power constrained algorithm for TPP cases which we demonstrate in Chapter 3. The su­

perior rate of Baccarelli is also because of the fact that Chow starts with an ad-hoc as­

sumption of flat power allocation but Baccarelli starts with the optimum continuous-bit 

energy allocation from(2.20). 

The common aspect of both of the approaches is that both are sub-optimal, since af­

ter all, bit rounding is a heuristic technique. Aiso comparing (2.25) and (2.27) to (2.12), 

we notice that the freedom to do bit rounding and energy rescaling is reduced in the pres­

ence of peak power constraint in TPP cases. In the PPO cases this freedom is minimized 

because &; = &)nax and hence the only integer bit allocation is the floor operation i.e., 

llog2 (1 + &;ax Pj Ir) J, thus there is no rounding up, there is only rounding down. As we 

shall see in Chapter 3, this lack offreedom to round up leads to high granularity losses. 

2.2.1.4 Granularity Loss 

Granularity loss is defined as the loss in rate incurred due to the practical integer-bit 

constraint in bit loading (when compared with continuo us bit loading). For example in 

the TPO case granularity loss is the difference between the rate achieved by solving (2.4) 

and (2.11). Similarly in TPP and PPO cases the granularity loss is the difference in rate 

achieved by solving (2.15) and (2.23). 

We discussed bit-rounding strategies for TPO cases in Section 2.2.1.2. It was ini­

tiaIly observed, only for the TPO case, in [9][30][31] that most (not aIl) of the integer-bit 
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granularity losses could be recovered by bit-rounding (2.12) and scaling energies accord­

ingly (2.13). The intuitive explanation (loosely speaking) for this is that when an arbitrary 

set of continuous bj is rounded (2.12), sorne will be rounded up to the higher integer 

(e.g., when 3.8 is rounded we get 4) and sorne will be rounded down (e.g., when 5.2 is 

rounded we get 5) and the gain in rate due to rounding up will sorne how compensate for 

most of the loss in rounding down (when summed over allj) and hence the overall granu­

larity loss will be low. 

However the freedom for such bit-rounding and energy re-scaling is considerably re­

duced in the presence of peak-power constraint c;ax, i.e., in TPP and PPO cases which 

we discussed in Section 2.2.1.3. In TPP cases, due to the min(.) operation in (2.25) or 

(2.27), on many subcarriers, b
J 

cannot be rounded-up due to the presence of b;ax (result-

ing from &~nax , see (2.24)). In such a situation only rounding-down or doing the floor op­

eration is possible. Thus the number of subcarriers where rounding-down happens will be 

much higher than the rounding up cases. Further in PPO cases, there is absolutely no sub­

carrier where b
J 

can be rounded-up without violating the peak power eonstraint. Thus aIl 

subearriers will have to be rounded-down. This leads us to suspect that granularity losses 

will be higher in TPP cases and mueh higher in PPO cases than TPO cases. Certain spo­

radie results in other works (listed below) when viewed together also strengthen this 

analysis. 

The granularity loss in [38] is reported to be between 6-12% of rate conveyed for 

ADSL-TPP case. This is significant when eompared to the variation of only 0.2-4% in the 

aehievable rates of most existing integer bit algorithms for TPO case (see Fig. 4 in [11 D. 
It is also higher than what would be expected from the 0.2dB margin differenœ due tu 

granularity reported for the ADSL-TPO case in [30][31]. This leads us to believe that 

granularity losses would grow with inereasing strietness in the peak -power eonstraint. 

Hence, we examine granularity losses in detail in the presence of peak power constraint 

in Chapter 3. 
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2.2.2 Margin Adaptive Loading Aigorithms 

All predictable impairment sources such as interference from other users or thermal 

AWGN noise, referred to as capacity limiting noise (discussed in Section 1.3) can be 

modeled within the framework of {Pi} ~=l • However modems invariably encounter per-

formance limiting noise (discussed in Section 1.4) which consist of geographically vari­

able and temporally and spectrally unpredictable non-stationary noise, e.g., impulse 

noise, RFI pickup, electric switches etc., the primary defense against which is margin. 

Further in many applications, e.g., tele-conferencing instead of maximizing rate, a fixed 

target rate is required to be satisfied with the best performance (BER) and best immunity 

against performance limiting noise. 

Margin is physically defined as the amount by which the noise can be uniformly in­

creased across all subcarriers, without violating the target rate requirement or the system 

BER requirement (which is embedded in the rate function b(lJ) definition). 

Stated mathematically, for an energy allocation {eJ ~=l' a channel {Pi} ~=l and a tar-

get (demanded) rate T, the margin r M is defined as the solution to the equation, 

(2.28) 

It is expected from the physical definition of margin and is apparent from (2.28) that r M 

is common across the subcarriers. The rationale behind this assumption, which is com­

mon to all works on margin [30]-[36], is that margin is the defense against unpredictable 

and non-stationary noise sources. Hence absolutely no apriori information is available as 

to which frequency or subcarrier is more likely to be affected by the noise burst. Thus the 

common approach is to provide the same margin to all subcarriers since they are equally 

likely to be affected. Since margin denotes that factor by which noise power can be in­

creased without violating the BER requirement, it naturally appears as a denominator to 

the SNR a j = EjPi in (2.28). This is why it is sometimes referred to as SNR margin or 

performance margin. Thus maximizing margin is equivalent to maximizing the robust­

ness against performance limiting noise. It can also be viewed as maximizing the per­

formance (or minimizing BER) at a fixed target rate (see Lemma 4.1 in [30] for details), 
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because now at an SNR of a) = G)p), instead ofloading b( a)) bits we are only loading 

b ( a) / r M) bits, thus reducing the BER. Since r M is common across the subcarriers, the 

overall system BER will also be reduced in proportion. 

In understanding the margin maximization problem, let us first assume that we have 

only the total power constraint, i.e., TPO case. Then the margin maximizing problem can 

be stated as, 

K min (-rM)· 
T - Lj=lb(EjPj Ir,1/ )$0 

(2.29) 

, K 
tJ,f'Lj=/j-Pma.x so 

-Ej$O 

2.2.2.1 Convex Reformulation of TPO Margin Maximization Problem 

The objective in (2.29) is to maximize the margin r M. The first constraint, 

T - L~=I ~ lijPj /YM ) ~ 0, denotes that in the process of providing this r M' we still satisfy 

the target rate requirement17
• Notice that in (2.29), we have a K+l dimensional problem 

since our design variables are {Gj } ;=1 and r M • The objective function and the second and 

the third constraint are convex, but the first constraint T - L~=I ~ lijPj /YM ) ~ 0 is concave 

in r M and convex in {G)} ;=1. Thus (2.29) is not a convex optimization problem, and 

hence KKT conditions or any of the convex optimization methods cannot be applied. 

This complication can be circumvented by reformulating the margin maximization prob­

lem as an energy minimization problem, 

(2.30) 

Notice that in (2.30), there are only K design variables, namely {Gj } ;=1 and both the ob­

jective and the constraints are convex in these variables. Suppose that {8)} ;=1 is the set 

17 Note that we could have loaded b( GjPj) bits on thelh subcarrier without violating the BER criterion, 

but we provide a safety margin by loading less bits i.e., loading only b ( Gj Pj / r M ) . 

30 



optimal energy allocation which solves the energy minimization problem in (2.30); and 

that {8~}K=1 and r~ solve the K+l dimensional original margin maximization problem in 
J__ _ 

(2.29). Then the aforementioned quantities are related as follows. 

(2.31) 

• A • 

8) = 8) . rM (2.32) 

The proof of and discussion on the above relationships can be found in Chapter 1 in [33] 

and [10][36][35] respectively. This equivalence of the margin maximization problem and 

the energy minimization problem arises from the fact that r M by its definition is a con-

stant (across the subcarriers) scaling of energies {8)} ;=1 in (2.29). Since the final solution 

must satisfy the total power constraint Pmax ' the highest scaling factor (see denominator 

in (2.31)) can achieved by minimizing the total power consumed as stated in (2.30). 

The advantages of this equivalence are immense. As we noticed, the direct formula­

tion in (2.29) is not convex, thus making both analysis and algorithm formulation diffi­

cult. But (2.30) on the other hand is convex and hence easier to solve. Further (2.30) has 

one less variable and one less constraint than (2.29). Lastly after solving (2.30), convert­

ing the solution to the solution of the original problem involves trivial complexity, as 

shown in (2.31) and (2.32). Due to this reason almost all margin maximization algorithms 

and analysis focus on solving only (2.30), e.g., [33][35][36] and then converting the solu­

tion using (2.31) and (2.32). 

Let us begin by analyzing the solution for (2.30) when the rate function is our famil-

iar continuous-bit SNR-gap rate function, bGAP (0') = 10g2 (1 + O'jr) . 

2.2.2.2 Margin Adaptive Water-Filling 

Since now we have a convex problem, we shall use our familiar KKT conditions. For 

problem (2.30) and the special usage of the continuous SNR-gap rate function, the La-

granglan IS 

(2.33) 
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Notice in comparison with (2.5), that loosely speaking, the objective function and the 

constraint have changed roles. À in (2.5) represented the KKT multiplier for the total 

power constraint (and we were maximizing rate); here it represents the KKT multiplier of 

the target rate constraint (and we are minimizing the total power consumed). The KKT 

conditions corresponding to (2.33) must be satisfied at the optimal solution {Ê}K for J J=I 
sorne A, ~ 0 andp

j 
~ 0;1 ~ j ~ K ,i.e., 

8L(')=1_~ 1 
8&j In2 ÊJ +r/ Pj 

(2.34) 

Pj &; = 0; 1 ~ j ~ K, (2.35, 

J(T- tIOg,(I+ Ei;i )} (2.36) 

Simplifying (2.34)-(2.36) in a similar way as we simplified (2.6)-(2.8), we obtain the fol­

lowing margin adaptive water-filling conditions. 

(2.37) 

where À is obtained by solving 

l [10g2 (l:EL)]+ = T . 
j=1 rln2 

(2.38) 

But this solves only (2.30). To obtain the solution to (2.29), i.e., to obtain {&;} ;=1 and 

r ~ , the operations in (2.31) and (2.32) must be performed on {Êj} ;=1 which in turn is ob­

tained by solving (2.37) and (2.38). 

A graphical illustration of the above is presented in Figure 2-4. Figure 2-4(a) repre-

sents the relationship between {Êj} ;=1 and {Pj} ;=1 and Figure 2-4(b) represents the re1a-

tionship between {Êjr=1 and {&;r=l' The {pjr=1 used here is the same as that consid-

ered in Figure 2-2 and Figure 2-3. Note that the water filling leve1 here is À/ln2 and 

though the À here denotes an altogether different quantity, we can say in general that the 

leve1 in Figure 2-4(a) should be lower than that in Figure 2-2(a) since {Êj} ;=1 here is the 
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solution to the energy minimization problem. From Figure 2-4(b) it becomes clear that 

while {Bj r=1 satisfies the water-filling condition, {&~} ;=1 does not. {BJ ;=1 by virtue of 

satisfying the water-filling condition in (2.37), naturally loads high power on the better 

channels e.g., 'Region A' in the figure. As long as only one user used a medium this 

would not be a problem, but in reality this is never the case. Recall that in Section 2.2.1.3, 

we discussed how unrestricted water-filling could cause excessive interference to other 

users sharing the medium, in regions such as 'Region A'. This effect is further aggravated 

when &~ is used. As indicated by (2.32), in Figure 2-4(b) we see that < is a constant 

scaling of Bj by a constant scaling factor which is the optimum margin r~. Thus &~ fur-

ther magnifies the opportunistic loading of {Bj} ;=1' Note that (due to the r~ scaling), 

'Region B' which was not loaded by Bj' remains unloaded by &~; but 'Region A' which 

was allocated the highest energy is further boosted. We shall revisit this problem of pro­

tection of other users in Section 2.2.2.4 and 2.3. The immediate concern is to accommo­

date the integer-bit constraint considering only one user. 

frequency (j) frequency (j) 

Figure 2-4: Illustration of Margin Adaptive Water-Filling 

Thus in a single user optimal solution to (2.29) with continuous-bit SNR-gap rate 

function, we allocate energy to the .th 
J subcarrier and load 

33 



log2 (1 + &~PJ J = log2 (1 + Bj Pj Ir) bitsls. But this tenn is a real number while most im­
YMr 

plementable modulation schemes support only integer bits/symbol. Thus we must intro­

duce the integer bit constraint to develop implementable algorithms. 

2.2.2.3 Integer-Bit Constraint 

The integer bit version of the energy minimization refonnulation in (2.30) for the 

SNR-gap rate function is: 

(2.39) 

Notice that the floor operation L.J in the first constraint ensures that the target (de­

manded) rate T is met by loading integer bits on each subcarrier. Just like the integer bit 

rate maximization problem in (2.11), (2.39) is an integer programming probleml9 whose 

optimal solution is a greedy algorithm. In fact the HH algorithm in Table 2-1 can be di­

rectly used to reach the optimal solution for (2.39). To see why, recall that in the HH al-

gorithm in Table 2-1, at each iteration, we added one bit on the subcarrier J, where it 

was the cheapest in tenns of additional or incremental energy required t1&j (see step 6). 

We continued adding one bit, at each iteration in this fashion, till the target rate T was 

met. Since while adding each bit we chose the cheapest option in tenns of energy, the 

overall savings in energy is highest, i.e., the total energy LJ&j is minimized. There is 

howeyer one key difference while using the HH algorithm in the Rate-Adaptive (RA) 

mode (discussed in Section 2.2.1.2) and when using it to solve (2.39). In the RA mode, 

the target rate T in the stopping condition (see Step 8 in Table 2-1) had no physical mean­

ing since we were maximizing the rate, and hence we had set the T to a very high value 

so that the HH algorithm keeps loading till it reaches Pmax' But here we wish to minimize 

18 We could have loaded log, (1 + c; P, Ir) = log, (1 + Êl PJ:, Ir) bits. This would have given us a higher 

rate but no margin. Instead we used a r:/ factor of energy on each subcarrier as margin while achieving the 

target rate T. 
19 To be more precise it is actually a Separable Convex Discrete Resource Allocation (SC DRA) just like the 
problem in (2.11). For discussions on SC DRA see chapter 1 and 2 in [33]. 

34 



the energy utilized while satisfying the actual demanded target rate T. Thus for RA mode, 

the active stopping condition (see Step 8 in Table 2-1) is the total power constraint, where 

as here the active stopping condition is the target rate constraint. Thus at the end of the 

HH algorithm we will have the {ii} ;=1' which is the optimal solution to the energy mini­

mization problem in (2.39). But to obtain the solution to our original margin maximiza­

tion problem in (2.29), we must evaluate r ~ as in (2.31) and then boost each ii by this 

factor to obtain &~ as in (2.32). 

While HH algorithm provides the optimal solution to (2.39), due to adding just one 

bit at each iteration and extensive searching and sorting, it is slow in converging to the 

optimal solution. This motivated the works (stated in chronological order) in [31] by 

Chow et al., in [36] by Krongold et al and in [35] by Campello. In [31], Chow proposed a 

bit-rounding based sub-optimal (close to optimal HH rate), efficient approach for margin 

maximization. As with all bit-rounding approaches, this started with an infinite granular­

ity assumption to estimate an approximate margin and then did bit-rounding and energy 

rescaling to ensure an integer bit distribution. On the other hand [35][36] guarantee opti­

mality like HH. 

The approach in [35], a greedy like method is used but it loads bits on multiple sub­

carriers in a single iteration, rather than only one, thus making itself faster than HH. The 

approach in [36] is based on the realization that unlike the margin adaptive water-filling 

solution (for continuous bit loading) discussed in Section 2.2.2.2 where we had a unique 

À across all subcarriers, when we have integer-bit constraint, there will be a range of À for 

each subcarrier. An algorithmic implementation is presented based on storing the bounds 

ofthis range in a look-up table and doing a bisection search which converges much faster 

than HH. Though both [35] and [36] involve completely different approaches they both 

reach the same optimal solution {ii} ~=1 for (2.39) as the HH algorithm, but do so much 

faster. However both approaches just like HH need to boost ii by a constant factor r~ 

obtained from (2.31) to obtain &~ as in (2.32) to obtain the solution to the original margin 

maximization problem. As explained in Section 2.2.2.2, this boosting of energy could be 

tolerable ifthere had been only one user, but in most scenarios including DSL, such boost 
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would cause severe narrowband interferences to other users in subcarriers such as 'Re-

gion A' in Figure 2-3 and Figure 2-4. 

2.2.2.4 Protection of other users sharing the medium 

While single user algorithms described above can provide varying degrees of opti-

mality in terms of margin to one user, in most realistic scenarios, the medium is shared 

by multiple users. As an example recall the DSL scenario discussed in Figure 1-1. Recall 

that we had encountered this same problem, of one users 'optimal' allocation bt"ing too 

harmful for the other users and vice-versa, while doing rate maximization in Section 

2.2.1.3 because of the opportunistic nature of water-filling. As explained in the above 

paragraph, margin adaptive algorithms further aggravate this problem due to a unilateral 

energy boost (2.32) by a user in the process of margin maximization. Now, in the rate 

adaptive case, we were able to contain the damage caused to other users by employing a 

peak power constraint {e;ax r=1 as discussed in Section 2.2.1.3. Theoretically speaking, 

we could incorporate the peak power constraint into the energy minimization problem 

(2.30) and analyze the resulting convex problem using KKT conditions similar to the way 

we did with the peak power constrained rate maximization problem in (2.15). 

But unfortunately after introduction of this new constraint the energy minimization 

problem is no longer equivalent to the original margin maximization problem (2.29) with 

peak power constraint. Recall from section 2.2.2.1 that this equivalence is what led to the 

development of most analysis and algorithms for margin maximization, because (2.30) is 

convex while (2.29) is not. But if this equivalence does not hold any more, there is very 

little point in solving the energy minimization problem, because we cannot guarantee any 

margin for protection against performance limiting noise or performance and robustness 

guarantee for applications that require a fixed (demanded) rate which was the objective 

we started out with. The reason why this equivalence does not hold is not difficult to see. 

In the TPO case (when peak power constraint does not exist) the proportion of energy 

(r: calculated in (2.31)) saved in the process of solving the energy minimization problem 

could be directly converted into the maximized margin of the system by the boosting the 

energy allocated to each subcarrier by the factor r: as in (2.32). But in the presence of 

peak power constraint this boost will violate the peak power constraint on many if not aU 
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subcarriers. So let alone the question of optimal, we will not even get a feasible solu­

tion20 
.. A similar problem occurs in multiuser loading algorithms as weIl (discussed in 

Section 2.3.4). 

2.3 Multiuser Loading Algorithms 

We noted in previous sections that most algorithms discussed therein are essentially 

single user and a single user's channel can be completely characterized by {Pi} ;=1 . As-

suming that {Pi} ;=1 is available at the transmitter and is fixed, we had developed the en­

tire discussion in Section 2.2 and 2.3 thus making the entire optimization single-user. But 

in reality most mediums are multiuser and the opportunistic loading resulting from the 

single-user optimization is not healthy for the system as a whole and as illustrated in Sec­

tion 2.2.1.3 and 2.2.2.4. 

With this realization, in motion towards algorithms which keep multiuser concems in 

mind, let us begin by understanding the structure of {Pi r=1 . For the single-user case we 

defined Pi in Section 2.2 as the normalized received SNR on thelh subcarrier, i.e., when 

Ei = 1. In adding the user specification, let us calI the received SNR on the lh of the ith 

user as P~ and similarly the energy allocation is E~ where 1:::; j :::; K and 1:::; i :::; N . In the 

context of the multiuser channel model developed in Section 2.1, the interference power 

that User i will receive from User! is IHJI2 
E~. Now, say that every user among the Nus­

ers sharing the medium except the ith fix their power allocation, Le., E~ is fixed at sorne 

value for aIl 1:::; j:::; K and 1:::;!:::; N;!"* i. Then in retaining our normalized SNR defini-

tion, 

. IH ii
l

2 

P~ - i "N J 1 1 li 12 ; 1:::; j :::; K . 
ni + L.1=l,/~iEi Hi 

(2.40) 

Note that the numerator denotes the direct channel attenuation of lh user. The denomina-

tor denotes the sum of background noise and interference from other users. Thus, c1early 

20 A solution which obeys the constraints is called a feasible solution. 
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if our chosen User i allocates c~ to itslh subcarrier, and other users do not change their 

power allocation c~, then the received SNR for User i on subcarrierj is O'~ = <P~ which 

was intended in the definition of p~. But the assumption that other users do not change 

their power allocation is not a realistic assumption, so though at any instant, (2.40) holds, 

P~ is not a fixed quantity and changes with other users' power allocation. Nevertheless 

P~ or sorne estimate of it is required at the transmitter of each User i for any power or bit 

allocation. This leaves us with 3 options: 

• Assume the worst case interference that might result from other users in defining P~ 

for any User i and consider this fixed. This is sometimes referred to in DSL specific 

literature as Static Spectrum Management (SSM) and is discussed in Section 2.3.1. 

• Each User i measures through sorne SNR estimation routine P~ (repeatedly) each 

time it expects or is notified that other users have changes their power allocation. This 

approach leads to what is sometimes referred to in DSL specific literature as distrib­

uted Dynamic Spectrum Management (DSM). An example of this is presented in Sec­

tion 2.3.2. 

• One central authority obtains the estimate of all IH~ 1 and aIl n~. This central authority 

also controls every single user' s and every single subcarrier' s power allocation < 
and hence has complete knowledge P~ at all times. This approach leads to centralized 

DSM. An example ofthis is presented in Section 2.3.3. 

2.3.1 Worst Case Interference Modeling - SSM 

Recollect from Section 2.2.1.3 that presence of peak power constraint, 

c;ax; 1::;; j ::;; K , controls the extent to which opportunistic loading of one user causes ex-

cessive interference to other users. Note that c;ax changes only with the subcarrier num­

ber j. It is the same for any user, since generally c;ax is specified by a standards body 

such as ANSI in [2][3] and is common for all users sharing the medium and further c;ax 
is always fixed (with respect to time). Thus irrespective ofindividual user-specific alloca-
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tion strategies, < ~ s7ax
; 1 ~ i ~ N; 1 ~ j ~ K will always hold. Thus comparing with 

(2.40), we can say that, 

IH
U

I

2 

pi~ ) ; l~j~K (2.41) 
) i ~ N max 1 li 1

2 

nj + L..J1=I,I*i Sj Hj 

with equality only in the unlikely scenario when s~ = s7ax
; Vj; VI,," i. While the right 

hand si de in (2.41) is only a lower bound for the true p~, it is very convenient to cal cu-

late at any user's transmitter or receiver because s7ax is fixed and already known to each 

user and other quantities IH~i 1
2 

and n~ characteristic of the DSL channel are quasi-static. 

Further the right hand side in (2.41) does not change when other users change their allo­

cation, since each user always obeys < ~ s7ax 
• Due to these advantages even though it 

weIl known that (2.41) is an inequality, equality is assumed in SSM methods to avoid 

complication of repeated estimation and coordination required for (2.40). With the 

assumption that p~ is equal to the right hand si de in (2.41), we essentially have a single­

user peak power constrained problem like (2.15) once again, because now our allocation 

would not change with other users changing their allocation. Thus all the analysis and 

algorithms discussed in Section 2.2.1.3 directly applies. 

But in the process of simplifying the implementation, we assumed more interference 

than there actually is. This leads each user to load conservatively while they could have 

loaded more (bits) and hence achieved more rate or margin if they had the true p~ based 

on (2.40). This realization has motivated significant research in truly multiuser algo­

rithms which base themselves on (2.40) instead of the simplification stated above, and the 

huge improvements obtained justify [24] the additional complication due to repeated 

estimation of (2.40). They are collectively referred as DSM techniques (which we discuss 

next)·and have secured recognition in industry and standardization bodies. But at the time 

of writing of this thesis, still the only standardized and widely deployed method is SSM 

through the application of peak power constraint [2][3][23][24]. 
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2.3.2 True Interference Modeling - DSM 

DSM techniques [23][24] adaptively vary power allocation towards maximizing each 

user's performance (rate/margin) in recognition of the presence and needs of other users. 

The recognition of presence of other users is facilitated through measurement of the true 

interference caused, i.e., by estimating P~ in (2.40) instead of assuming the worst case 

crosstalk (SSM). As explained before the implementation of any such technique would 

require sorne form of coordination among users, assistance from a centralized agent or 

complete centralized control over transmit spectra. Based on amount of coordination and 

centralized control necessary, DSM techniques are classified from Level 0 to Level 3 

[24][29]. 

Level 0 coordination essentially implies the SSM case discussed in the previous sec­

tion. In Level 1 coordination of DSM, only macro parameters such as data rates, total 

transmit power and margin are reported and controlled centrally and other micro Parame­

ters such as actual subcarrier specific power and rate allocation are done autonomously 

(i.e., in a distributed manner); an example is [25]. Level 2 denotes the scenario when 

even micro parameters such as each user's subcarrier specific power allocation are re­

ported and partially or completely controlled by a central agent21
; an example is [27]. 

Level 3 is highest level of coordination, where not only power and bit allocation is jointly 

controlled and coordinates, but also the actual signal sent is jointly transmitted and/or re­

ceived; an example is [28]. We believe this level should rather be classified as Interfer­

ence Cancellation techniques rather than DSM which primarily deals with allocation is­

sues. Level 1 schemes are the most popular among DSM techniques because they have 

the minimum time ta market. This is because in current DSL deployment scenarios, mul­

tiple service providers share the same bundle, a phenomenon referred to as unbundling, 

see e.g., Figure 1-1. In such a scenario expecting more than Level 1 coordination is less 

realistic. Among Level 1 DSM techniques, Iterated Water Filling (IWF) [25] is the most 

popular [23][29], due to its predominantly distributed nature and significant rate en­

hancement from SSM techniques. 

21 The central agent could be the central office, SMC or DSLAM depending on the nature of DSL cleploy­
ment [23][24]. 
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2.3.2.1 Iterated Water-Filling 

In a search for a distributed power allocation scheme for the multiuser DSL scenario, 

modeling it as a non-cooperative game was natural. This led to the Iterated Water-Filling 

algorithm [25]. In a pure strategy non-cooperative game, each player's (user's) strategy is 

to respond optimally to the information available to it at any stage. When, say User i 

plays, the information that is estimated is P~ which is dependent on other user's power 

allocation as stated in (2.40) and the strategy is the power allocation &~ • Now if during 

the play of User i, other users do not change their allocation, then the optimal response to 

this P~ from the perspective of this single User i, is obviously the simplest water-filling 

discussed in Section 2.2.1.1. It was proven in [25] for a 2-user case and later for aN-user 

case in [26] that for DSL channels a Nash equilibrium exists and further that if the each 

User! plays in the aforementioned way, the algorithm converges to a Nash equilibrium. 

In game theory, the Nash equilibrium is defined as a point where no player has an incen-

tive to deviate from the CUITent strategy (in our case &~). This happens of course when 

each player decides after observing its information that its strategy is a1ready the best it 

can do. In our case this corresponds to the case when aIl users simultaneously satisfy the 

water-filling condition, i.e., for N users which use total power (summed across subcarri·· 

ers) pi at the Nash equilibrium the following conditions (water-filling conditions - com­

pare with (2.9)(2.10)) are satisfied for each User i: 

(2.42) 

where the user specific KKT multiplier 11/ is obtained by solving: 

4f.f 1 ~ =p'. 
[ ]

+ 

}=1 l' ln2 P~ 
(2.43) 

This solution can be reached algorithmically as summarized in Table 2-2. 

The sufficient conditions for uniqueness of this Nash equilibrium is found in 

[25][26] and it is proven that the above algorithm converges to this Nash equilibrium. 

Note that in any iteration of the game (i.e., steps 2-7 in Table 2-2) each User i first meas-

ures P~ at that stage and then performs a water-filling. This power allocation results in a 

41 



SNR profile O'~ in step 5 and hence a rate Ri in step 6. This process is repeated till no 

user' s power allocation changes significantly. Note that all of the steps 2-7 could be per­

formed by User i alone as if it were a single user optimization, thus making the IWF 

purely distributed. When other constraints such as an integer-bit constraint is present then 

step 4 instead of being the orthodox water-filling would correspond to the energy alloca­

tion reach by the algorithms in Section 2.2.1.2. The key idea is that due to the game­

theoretic modeling, at each iteration, we have to solve only a single user problem and 

hence all discussions of Section 2.2 apply and this is what makes the IWF algorithm dis­

tributed. 

1. 
2. 
3. 

4. 

5. 

6. 

7. 
8. 

Table 2-2: SubAlgorithm Iterated Water-Filling (IWF) 

repeat 
for i = 1 to N 

Estimate 

end 

P l = IHil I2/{ni + ~N e'IH"12 ).1 ~ J. ~ K } } } L..J1;\,l~i } } ' 

Set {<} ;;\ to the water-filling corresponding 

to noise spectrum { ri P~ } ;;\ and total power pi . 

Store O'~ = <p~;1 ~ j ~ K 

Ri = I~;\log2 (1 + O'~ Ir) 

until the desired accuracy is reached 

Two important questions arise here. Even if we reach a Nash equilibrium, at this 

equilibrium due to step 6, each user will have an achieved rate Ri, referred collectively 

as the rate tuple R. From the uniqueness of the Nash equilibrium for a given total power 

vector P, this R is unique. But in reality at different times, different users might demand 

different rates and hence having just one rate combination is not sufficient. So how do we 

generate multiple rate tuples R? Aiso how good is this R? Just knowing that it is a Nash 

equilibrium does not tell us anything about whether it is close or far from the optimal or 

the SSM performance. 

Since for a given power combination P, the rate combination R is unique. So the 

only way to generate different R is to vary the P. This must be done by a loop which runs 

outside the SubAlgorithm IWF and tries to reach the P that achieves a certain required R 
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(see Aigorithm 1 in [25]). Of course the set of achievable R or the rate-region is bounded 

since the each user's total power pi is restricted by a total power constraint p~ax just as 

in the single user case22
• 

In tenns of comparative perfonnance the rate region generated by IWF is far larger 

than generated by any SSM technique [25][29][23][24]. This coupled with its predomi­

nantly distributed nature makes IWF very popular and a good candidate for future stan­

dardization in DSL. But a question of theoretical interest and for future research is that 

though IWF is spectacularly better than any SSM technique, how much better than it (if 

at aH) is possible. 

maxR···· 
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IWF Rate Region Boundary 

Interior of IWF rate region 

Rate of User 2 

Figure 2-5: Rate Region Boundary 

2.3.2.2 Optimum Spectrum Management (OSM) 

OSM Rate Region 
Boundary 

One way of comparing different multiuser loading algorithms is the rate region 

boundary. Rate region boundary is the boundary of the achievable rates by an algorithm 

and hence is a representation of the best capability of an algorithm. This is illustrated in 

Figure 2-5 for a two user case. 

22 Note that pimax is specified by standardization bodies and must be respected by ail modems under ail cir­
cumstances. But P' on the other hand is in a user's control. In a DSM scenario, one user might choose to 
use a total power P' less than its constraint out of compassion for other weaker (channel) or more needy 
(rate/margin) users. 
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For two methods IWF [25] and OSM [27], we give an illustration of the typical rate 

region boundary23. Clearly from the figure since OSM can achieve an outer rate-region 

boundary, it can achieve higher rates than IWF. Stated mathematically, the rate region 

boundary is a solution to the following problem: 

max R' subject to constraints on power. 
R' ?cl" ;i=2,3, .. ,N 

(2.44) 

In other words we maximize the rate of one of the users, while constraining the other us­

ers' rates to sorne target rates T 2 ,T3 
, •• ,TN 

• By solving (2.44) for a set of T 2 ,T3 
, •• ,TN 

, 

we would get one point on the rate region boundary; but by varying these and solving 

(2.44) repeatedly the entire rate region boundary can be generated. This is illustrated the 

2-user case in Figure 2-5. Notice that by solving (2.44) for the constraint R 2 ~ T 2a we 

obtain the point A on the rate region boundary and by solving (2.44) for the constraint 

R2 ~ T 2b we obtain point B on the rate region boundary. IWF, which we discussed in the 

previous section, can be used to generate both its rate region boundary and also the inte­

rior of its rate region. But for OSM on the other hand, the only objective is to generate the 

rate region boundary for comparison purposes. Thus OSM's objective is to find the glob-

ally optimal solution, i.e., the optimal <; 1 ~ i ~ N; 1 ~ j ~ K to the following problem 

which is a more detailed statement of (2.44). 

subject to "K b(Cipi) > T; i = 2,3, ... ,N 
~j=' J J -

(2.45) 

and ~f'L;=,c~ ~P~ax; 1=1,2, ... ,N. 

In the above, P~ is calculated as in (2.40). It is easy to see that due to p~, even 

though the rate function b(.) is concave, the objective function will be non-convex in aIl 

and a similar argument holds for the constraints 

L ;=1 b ( c~P~ ) ~ T; i = 2,3, ... , N . Thus we have a highly non-convex problem and indeed 

this problem has many local minima [27]. Hence traditional gradient based methods of 

optimization which guarantee only local minimum cannot be used to find the global op-

23 This' figure is just an example. Actual simulation results for practical DSL scenarios are provided in 
Chapter 3. 
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timum of (2.45). Exhaustive search is simply intractable because we have NK variables 

< ' each having many possibilities and N and K are very large in DSL applications (e.g., 

N is between 20 and 100 and K is close to 1200 for VDSL upstream. In VDSL total num­

ber of subcarriers is 4096, about 1200 are for upstream [3]). To make the problem tracta­

ble dual decomposition is used in OSM. Using dual decomposition the problem is de­

coupled to a per-subcarrier problem. But within each such per-subcarrier problem an ex­

haustive search has to be conducted for each user's power allocation which still keeps 

OSM far too complex (though tractable) for practical consideration. For more details on 

the technique see [27] and for complexity comparisons see [42]. However following this 

dual decomposition and exhaustive search, OSM guarantees the globally optimal solution 

for (2.45) both in the case when the rate-function is continuous bit and when it is integer­

bit [27]. 

Both the requirement of complete centralized control and coordination and the huge 

complexity resulting from the exhaustive search make OSM impractical under CUITent 

DSL scenarios. But the rate region boundary generated by OSM is of important value in 

'bench-marking' other rate-maximizing multiuser loading algorithms and hence this an­

swers the question ofhow much better than IWF we can do. 

2.3.3 Multiuser Margin Adaptation 

DSM techniques are able to provide much better rates than SSM techniques because 

they model the true crosstalk and are able to 'jointly' (relative to SSM) optimize the 

transmit spectra towards dynamically controlling the crosstalk among users which is the 

dominant capacity-limiting impairment in DSL. Thus DSM is a promising solution to ca­

pacity limiting noise discussed in Section 1.1 and most existing DSM techniques are rate 

adaptive. But as discussed in Section 1.2 and Section 2.2, the causes of performance lim­

iting noise are not crosstalk and hence still persist. Margin remains the primary defense 

against this form of noise. Further margin maximization is desirable for constant bit rate 

services. Though this was realized early and many single user margin adaptive algo­

rithms (discussed in Section 2.2) were proposed, no multiuser margin adaptive algorithm 

has been developed in literature to date. This is because of the following reason. 
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In the SSM scenario (i.e., in the presence of peak power constraint), we had noted in 

Section 2.2.2.4 that the energy minimization problem (convex) is no longer equivalent to 

the margin maximization problem and further the unilateral energy boost of (2.32) woulà 

viola~e the peak power constraint, thereby rendering most of the single user MA algo­

rithms unusable. A similar effect occurs in the DSM scenario. Though one might argue 

that one could solve the multiuser energy minimization problem (in the context of (2.30) 

), the energy saved as a result of solving this problem cannot be converted to gain in mar­

gin as it could be in the single user case, see (2.31) and (2.32). This is because the final 

solution to the multiuser energy minimization problem will be sorne form of equilibrium 

(e.g., by agame theoretic approach) or sorne stationary point (e.g., by a traditional 

optimization approach). At this point the various users' energy allocations 8~ will be in a 

delicate balance with each other. But in order to convert the saving of energy into a gain 

in margin, if one user unilaterally boosts its energy as was done in (2.32) for the single 

user case; it will simultaneously boost the crosstalk to aIl other users (i.e., will break the 

equilibrium or the stationary that exists between various users). This in turn will result in 

other users failing to meet their target rate or margin or both24
. 

Thus we find ourselves at the following paradox. As discussed in Chapter 1, we have 

two forms of impairment performance limiting noise and capacity limiting noise. To 

counter performance limiting noise, we need margin adaptation. But aIl available margin 

adaptation methods due to their energy boost feature will sharply increase capacity limit­

ing noise to other users which in turn results in certain users being rendered incapable of 

meeting their target rate requirement or margin or both. On the other extreme, SSM 

methods to sorne extent and DSM methods to a large extent can effectively deal with ca­

pacity limiting noise by keeping crosstalk in control, but they cannot provide (till now) 

margin adaptation required for constant bit rate services and robustness against perform­

ance limiting noise. So the question is: Is it possible to effectively deal with both capacity 

limiting noise and performance limiting noise at that same time? The answer is affirma­

tive and we shall see in Chapter 4 that with if we stop relying on the convex reformula­

tion of Section 2.2.2.1 and conduct an independent study of margin in a multiuser sce-

24 Due to this reason there is sorne skepticism about modems working in Margin Adaptive (MA) mode in 
DSM scenario [29]. 
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nario, we find certain faimess properties which can be exploited to develop strategies 

which when conjugated with existing multiuser rate maximizing loading algorithms to 

effectively deal with both forms of noise effectively. 

2.3.4 Granularity Loss 

In the SSM scenario there is always an explicit peak power constraint &;ax . As dis­

cussed in Section 2.2.1.4, this peak power constraint restricts the freedom in bit-rounding 

and energy rescaling and we expect that due to this reason there will be significant granu­

larity loss in the TPP and PPO cases which we investigate in Chapter 3. In DSM scenar­

ios, a~ discussed above, the peak power constraint is either not present or much less strict 

when present than SSM schemes. However in (2.44) or (2.45), when Ti; i '* 1 increases, 

the maximum power that User 1 Can put on its 'good' subcarriers (i.e., where direct chan­

nel attenuation is low) gets increasingly restricted. This is the case because the 'good' 

subcarriers of various users are very similar frequencies as discussed in Section 2.1, 

2.2.1.3 and illustrated in Figure 2-1. Hence the rate demand of one user Ti implicitly acts 

as a strict peak power constraint for the other users, which in tum opens the room for 

granularity losses. This daim is corroborated by sorne sporadic results in other works. 

For example, in [26] it was observed that, for a 24-AWG scenario consisting of 4100ps of 

600m and 4 loops of 1200m, when the 1200m loops are constrained to achieve a mini­

mum of 5Mbps, the 600m loops using Iterated Water Filling (lWF) [25] can achieve 

3.4Mbps and 7.7Mbps with integer-bit loading and ideal continuous bit-loading, respec­

tively. When Optimum Spectrum Management (OSM) is used in the same scenario, the 

600ni loops achieve 13Mbps and 15Mbps with integer bit loading and ideal continuous 

bit loading, respectively. Thus granularity losses are expected to be huge. 

Therefore, in Chapter 3, after investigating the granularity losses for TPP and PPO 

cases arising from the currently standardized SSM scenarios, we shaH also investigate 

granularity losses in DSM scenarios. 
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Chapter 3 
Fine Granularity Loading 

3. 1 Power, Integer-Bit Constraints and Granularity Loss 

The primary indicator of performance and loss will be in terms of rate achieved by a 

modem. Thus the objective function of the overall rate maximization problem is the total 

supported rate, 

K 

R= Lb(p)s)). (3.1) 
)=1 

The traditional total power constraint applied across the subcarriers is, 

(3.2) 
)=1 

In addition, many practical systems have limitation on the maximum transmit PSD. This 

implies the peak-power constraints: 

co. < co
max

• 1 < J' < K CI) - CI) , _ _ (3.3) 

where {s;ax} ~=1 is specified by the admissible transmit PSD mask, e.g., SMClass3 in [2] 

or MIFTTCab in [3]. The power constraint qualifications TPO, PPO and TPP which 

were discussed in Chapter 2 are summarized in Table 3-1 because they are fundamental 

to the discussion on granularity loss in this chapter. 

Table 3-1: Power Constraint Qualifications 

Condition Constraint Qualification Comments 
Granularity loss observed to be 

s;ax =oo,l5,j5,K Total Power Only (TPO) negligible. Refer:- Section 
2.2.1.1, 2.2.1.2 

K Granularity loss expected to be 
!1f . L s;max 5, Pmax Peak Power Only (PPO) high. Refer:- Section 2.2.1.3, 

;=1 2.2.1.4 
K Granularity loss expected to be 

L\f. Lsmax > P Total and Peak Power (TPP) high. Refer:- Section 2.2.1.3, 
1 max 

;=1 2.2.1.4 

Recall that for the PPO case, the optimal power allocation does not depend on the 

rate function b((J) and is equal to the peak power constraint. For TPO and TPP cases 

however, the energy allocation depends on the rate function. Due to the fact that most 
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practical modulation schemes are integer-bit, this constraint is also to be taken into ac­

count. We saw in Chapter 2 that most practical methods of handling this constraint rely 

on bit-rounding and energy re-adjustment. For the TPO case, it was observed that this bif­

rounding and energy-readjustment could recover most (not aU) of the granularity losses. 

But we noted that the freedom to do this energy re-adjustment (corresponding to the bit­

rounding) is drastically reduced in the presence of peak power constraint which willlead 

to high granularity losses in TPP and PPO cases. We quantify this qualitative daim in the 

next section. 

3.2 Quantification of Granularity Loss 

Let ° represent the set of non-triviaUy loaded subcarriers and 01 be the set of sub­

carriers in which ceiling (or rounding-up) the non-integer bit b (p)s)) would cause the 

corresponding energy allocation to violate the peak power constraint, i.e., s) > s;ax . 

Mathematically, we can say ° ~ U E {1,2, .. ,K}: s) > o} = 0) uQ2 where Q) nQ2 = 0, 

r x l represents the ceiling operation (i.e., r x l =n where n is the smallest integer such that 

x~n). It follows that Nn = Nm +Nm , whereNn , Nm and Nm are the cardinality of the 

sets Q, 0) andQ2' respectively. The only possibility to satisfy both the integer·bit and 

peak power constraints for subcarriers in Q) is to use the floor (or rounding-down) op­

eration lb ( a) ) J. Hence the granularity loss for the lh subcarrier, if it belongs to Q) is 

(3.4) 

For subcarriers, where rounding is possible without violation of peak power constraint 

(3.5) 

In both cases ab~ can be treated as a quantization error with a quantization step of 1. 

Since the variable to be quantized, b((J), has a much larger range (up to 15 bits/symbol) 

than the quantization step, the granularity loss ab~ can be considered as a uniformly dis­

tributed random variable (see p.194 in [12]), 
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ob~ ~ U[O,l); Vj E nI and 

ob~ ~ U[-l/2,l/2]; Vj E 0.2. 
(3.6) 

The random variable representing the total granularity loss is obG = " . ob,G with its 
L.../EO 

average being 

obG = E( obG) = I E( ob;G) + I E( obi
G

) = NOl ·l/2+Nm ·0 = NOI/2 
iEO, iE02 

(3.7) 

where E(.) in (3.7) represents the stochastic expectation operator. The ratio 17 can be es­

timated as follows. 

• TPO Case: In this case, by definition, there is no peak power constraint or 

B;ax = 00; Vj, i.e., QI = 0 and NOl =0, 17 = o. Also, due to the denominator being 00, 

• 

Pmax /111· I:I Bjmax = O. Thus the average granularity loss is nearly zero, as observed 

in [9][30][31]. 

PPO Case: In this case, Bj = B;ax; Vj En, i.e., nI = 0. and 0.2 = 0. Thus NOl = No 

and ob~po = No /2, 17 = 1. No is fairly large in xDSL applications (e.g., more than 

1000 in VDSL-DMT). Also from the definition of PPO (see Table 3-1), we have 

K 

Pmax / 111 . I B;max ~ 1 . 
;=1 

• TPP Case: For the TPP case, the analysis of 17 is more involved and depends on the 

specifie scenario. However, observing the values of 17 in TPO and PPO cases, which 

act as the boundaries of the TPP case and its monotonie nature, we can consider the 

following approximation 

17 "",fLV .fs,-1
1

; where IX li ~min(x,l) 
'EO 

(3.8) 

" represents the relative strictness of the total-to-peak power constraint and we can 

expect that as 17 increases due to stricter peak power constraint, granularity losses will be 

higher. It is worthwhile to note that for a general TPP case, as channel conditions worsen 

Q shrinks thereby reducing the denominator of 17. Eventually 17 will increase to 1 and the 
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TPP case will reduce to a PPO case and aIl previous inferences shaIl apply. In VDSL­

DMT scenarios, 17 is seen to be fairly close to 1 in most cases, and No. is large. Thus the 

granularity loss is expected to be a fairly significant percentage of the supported rate. 

But this high granularity loss does not have to be accepted as a necessary evil be­

cause of the constraint that we can load only integer bits/ symbols. By using adaptive 

Reed Solomon coding, most of the granularity losses can be recovered while still using 

integer bits/symbol. 

3.3 Adaptive Reed-Solomon-based Fine Granularity Loading 

Scheme 

In a general setting the sub-carrier specific rate function can be expressed as 

(3.9) 

where rj is the coding rate and rj is the SNR-gap determined by the performance of the 

modulation and co ding schemes in use. The floor operation (i.e., Lx J =m for the largest 

integer m~) arises from the integer bit constraint, since we try to find the largest integer 

number of bits/symbol that would satisfy the error rate target at SNR of (Jj. When the 

same FEC coding is applied for aIl sub-carriers, i.e., rj=r, this floor operation restricts the 

sub-carrier rate to have steps at nr where n is integer (i.e., integer-bit constraint) and 

In the current VDSL25 system [3], as shown in Figure 3-1, there is only one fixed­

rate RS (n,k) encoder with n=255 and k=239 in the Physical Media Specific Transmission 

Convergence (PMS-TC) layer and the bit and energy allocation are carried out only in the 

Physical Medium Dependent (PMD) layer. 

25 ADSL has a similar structure. 
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Figure 3-1: Functional Diagram ofPMD and PMS-TC layer in current VDSL-DMT System 

The RS(255,239) coding is applied to bits that can be transmitted in various sub­

carriers. The coding channel is assumed to be a binary symmetric channel with the cross­

over bit error probability Pre ,ch , which represents the BER averaged over aH K sub-carrier 
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DMT modem. The final system performance Pre,dec is represented by the post-decoding 

bit-error probability of the RS(n,k) code over GF(2m
) [13] 

2
m

-
1 

n i + t (nJ. _. 
Pre,dec (Pre,ch,n,k)~~ I- . pr'(l-prf 1 

2 1 ;=1+1 n 1 
(3.10) 

where Pr = 1-( 1- Pre,ch rand t = l n; k J. The above upper bound is less than 0.1 dB 

away from the exact BER [18]. 

For RS(255,239) with m=8, n=255, k=239, t=8, to achieve Pre,dec ~1O-7, we need 

Pre,ch <10-\5.65 x 10-4 to be precise). This is ensured indirectly and approximately using 

the SNR-gap method. Since only M-QAM is used, the uncoded SNR-gap for Pe,dec ~1O-7 

is nearly 9.75dB for a large range of M. The RS(255, 239) code is assumed to provide a 

uniform coding gain Yc= 3.75dB. Thus fj = f= 9.75-yc [6] and the code rate rj = r = 

239/255 in (3.9). 

In the proposed Adaptive RS aided Fine-Granularity Loading (ARSFGL) scheme, 

instead of using a fixed-rate RS (n,k) code for all sub-carriers, we assume a variable rate 

RS(n,k;) code for each sub-carrier #i. This can be implemented by replacing the fixed-rate 

RS codec in Figure 3-1 with a single programmable RS (255,k) codec [20][21], which 

operates on a per-subcarrier basis. Framing and buffering in MUXlDEMUX (Figure 3-1) 

will be modified accordingly to support this per-subcarrier RS codec operation aIid illter­

leaving may not be required since independence of error patterns is maintained before 

decoding unlike in [3]. The loading algorithm provides the allocated rates (Le., ki, and the 

number of QAM bits/symbol M;) and power as follows. 

3.3.1 Rate Allocation 

Figure 3-2 depicts the equivalent model representing the transmission operation for 

each subcarrier. The complex symbol output of the M-QAM modulator is scaled to an 

input PSD level of €j to achieve the overall received SNR, Uj=€jPj' Corresponding to the 

~-QAM demodulator and RS (n,~) decoder, the bit error probabilities are Pre,ch(~, fIj) 

and Pre,dec[Pre,ch(~, fIj), nh], respectively. Our optimization problem is formulated as 

follows: 
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Figure 3-2: Subcarrier Transmission Model 

Objective: 

(3.11) 

Constraints: 

k = 1,3,5 .... n, log2 Mj = 1,2,3,... Pre.deJPre.ch(Mj' a), n,kj] ~ 10-7 (3.12) 

Pre.dec[Pre,ch(~, (J), n,~] is obtained from (3.10) with k=~ and Pre,ch= Pre,ch(~, (Jj). 

Pre,ch(~', (Jj) is the BER of ~-QAM in A WGN channels, i.e., for odd log2~' with cross­

QAM using impure Grayencoding [17], 

Prech(M, Œ)~ Gp,MN
M ·Q(fa J 

. log2 M Cp,M 
(3.13) 

where Gp,M' NM and Cp,M represent the Gray penalty, number of nearest neighbors and 

packing coefficients, respectively. For validation purposes, we simulated cross­

constellations constructed from the above scheme and we observe that (3.13) gives arJ. 

accurate estimate of BER for aIl cross-constellations from 25
, 27

, ... 215 for BERs below 

0.07. 

For even 10g2~ with square-QAM using perfect Gray encoding [16], the expression 

for Pre.ch(M, Œ) obtained from [15] as 

2 log2 JM 
Pre.ch(M, Œ) = L Pr(s,Œ) 

log2 M s=1 

(3.14) 

1 (l-rs)JM-I lj~lj [ l2S
-
I . IJ] ( ~) 

where Pr(s,O") = t.-; L (-1) 2s
-

1 
- ~ +- erfc (2i + 1) Œ • 

"M ;=1 "M 2 2(M -1) 

Note that b«(Jj) is a monotonically increasing with kj and ~. Pre,ch(~, (Jj) and 

Pre,dec[Pre,ch(~, (Jj), n,l9], on the other hand, are monotonically increasing with ~ and ~ 

respectively. Thus we can search for ~ and ~ in a sequential manner. At tirst, ~ is 

found to be within the limits specitied by the uncoded case and the ideal Shannon limit, 
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1.e., r 10g2 (1 + Œi Ir) l ~ 10g2 Mi ~ llog2 (1 + Œi ) J. We then search for ~ in descending 

order, i.e., from n to (n-2), (n-5), ... until Pre.dec[Pre.ch(~, (Jj), nhl ~1O-7. The optimum 

values for ~ and ~ for given (Jj can also be pre-calculated and stored in a table such as 

Table 3-2, so that the search for ~ and ~ can be done by table look-up technique during 

actual modem operation. 

Table 3-2: Example of Rate Look-U p Table 

a Optimum kj Optimum 
(dB) (1-255) log2(M) 

30.0 245 8 
30.5 247 8 
31.0 249 8 
31.5 251 8 
32.0 229 9 
32.5 235 9 
33.0 239 9 
33.5 223 10 
34.0 229 10 
34.5 235 10 
35.0 239 10 

18,---,----,---,----,---,----r---,----,---,,---, 

16 

UNACHIEVA8LE REGION 
14 

12 

'00 10 ..-
e 
Dl .. -_ .. 

111 8 1 .---, 
• ,-_ .. 

6 • ("'--~ 
__ J 
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- Shannon Capacity 
2 - ARSFGL Rate 

--- Int. Bit VDSL rate 

o--w-~--~----~--~--~----~--~--~----~--~ o 5 10 15 20 25 30 
SNR(dB) 

35 40 

Figure 3-3: ARSFGL rate function: Rate vs. SNR 
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The optimized rate-function (3.11) of the proposed ARSFGL is plotted along with 

that of the integer-bit loading for VDSL in Figure 3-3. The finer granularity and inherent 

gains26 in rate can be clearly seen. The gains stem from the fact that while k and hence, 

Pre, ch are fixed in the existing VDSL schemes, the proposed ARSFGL scheme varies 

Pre,ch(~, (Jj), jointly optimizing the adaptive coding and modulation schemes to achieve 

the maximum information rate. The gain in rate offered by the proposed ARSFGL is lar­

ger at higher SNR due to the fact that the proposed ARSFGL uses the bit-error probabil­

ity (BER) criterion while the existing VDSL loading scheme is based on symbol-error 

probability [5]. As SNR increases, higher M can be used and the difference between BER 

and symbol error probability becomes significant. Hence the BER-based ARSFGL is 

closer to the constraint Pre,dec ~1O-7. Another reason for choosing the BER based scheme 

is that for the choice of RS(255,~) on each subcarrier, the input BER Pre,ch(~, (Jj) is a 

more meaningful quantity than the ~-ary symbol error probability (see (3.10». 

3.3.2 Energy Allocation 

As can be seen from Figure 3-3, the ARSFGL rate-function is non-decreasing and 

can provide near-continuous rate adaptation. These conditions are sufficient for (2.17) to 

be satisfied21
• Thus, for the PPO case, the optimal power allocation will be the PSD con­

straint. For the TPP case, however, the energy allocation depends on the rate function. 

Note that the solution for a continuously differentiable, strictly increasing and strictly 

concave rate-function is already available in (2.18) and (2.19). Furthermore, the 

ARSFGL rate function is close to obeying the above properties. Therefore, we consider 

the rate function approximated by 

he (a) = alog2 (Pa + r). (3.15) 

The approximation28 is achieved by curve-fitting and the values of a=0.9597, fJ=0.2736 

and y=0.8232 yield a mean squared error ofless than 0.0076 bits. 

26 Based on [3], no other code than RS is assumed in Figure 3-3. When additional or higher-performance 
coding is used, the gap between the Shannon limit and both curves in Figure 3-3 would be reduced by the 
same amount due to the additional coding gain. However, the granularity loss would remain the same. 
27 It is straightforward to verity (2.17) to ho Id for a continuous and increasing case. For the continuous and 
non-decreasing case, the only change is that (2.17) is no longer the unique optimum and solutions with 
smaller total energy might exist. 
28 The approximation is done only for the purpose of energy allocation so that (2.17)-(2.18) can be directly 
used. However, the rate allocation following this energy allocation is done using the look-up table. 
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From (2.18)-(2.19) with be(a) as the rate-function, the final solution to the TPP en­

ergy allocation problem is: 

(3.16) 

where B is the solution to: 

K ma, 

~/·I[B-r/fJpJ:J =Pmax' (3.17) 
}=I 

Here B relates to À, in (2.18) and (2.19) as B=alÀ,In2. Thus the energy allocation problem 

reduces to the evaluation of B. This is done by using the low cost secant-based search 

method proposed in [38], with minor changes to suit our usage of (3.15), instead of the 

traditional SNR-gap function. These changes, when incorporated into the secant algo­

rithm presented in Table 1 in [38], results in the algorithm described in Table 3-3. 

Table 3-3: ARSFGL Energy Allocation 

1. Xo = minl';,';K {r / fJp, }; XI = maxl,;',;K {G,max + r / fJp, } 

2. fo=-pi; J;=~/'I:I&,max_pi; I=J; 

3. while III> eps 

4. B = (1; ,xo - 10 .xl)/(J; - 10) 

5. 1=~/'I:JB-r/fJp,]~/nuL'_pi 

6. if(/>O) XI =B; J; =1 
7. else Xo = B; 10 = 1 
8. End 

9. G, =[B-r/fJp,]~/ma,; (I, =G,p,; 1=1,2, .... ,K 

It is worthwhile to note that by virtue of providing near-continuous rate adaptation, 

in the ARSFGL energy allocation, a secondary iterative procedure characteristic to inte­

ger-bit algorithms (e.g., bit-rounding and energy-adjustment in [30] [9] or bisection 

search in [38]) is not necessary. Thus the energy allocation for ARSFGL is simpler. 

3.4 Illustrative Examples for Application to VDSL-DMT Systems 

We consider the four transmit PSDs specified for VDSL-DMT (see Section 7.1.2 in 

[3]) in both upstream (US) and downstream (DS) and total power budget (see Table 7-1 

in [3]) over the same band to classify the case as PPO or TPP based on Table 3-1. As 

shown in Table 3-4, all five shaded sections which include all upstream cases and the 
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Ml FTTCab downstream case represent PPO cases and the remaining three cases repre­

sent TPP cases. The TPO case does not occur in practice because most applications have 

peak power constraint [2][3], but has been presented here for the sake of completeness. 

Table 3-4: Occurrence ofPPO and TPP cases in VSDL-DMT 

UPSTREAM DOWNSTREAM 

PSD I!!.f·LEi
max 

Pmax I!!.f·LEi
max 

P.nax 

(dBm) (dBm) (dBm) (dBm) 

Ml FTT Cab 6.94 14.5 8.39 11.5 

M2FTTCab 13.26 14.5 14.47 11.5 

Ml FTTEx 6.94 145 20.54 14.5 

·M2FTTEx 13.26 14.5 21.52 14.5 

3.4.1 Evaluation of PPO case 

For PPO cases, (2.17) indicates that the energy allocation is independent of the rate­

allocation function. Thus aIl existing algorithms would result in the same solution be­

cause they strive for optimization in the energy domain and in this case the energy distri­

bution is completely decided by the peak-power constraint. The received SNR profile as a 

result of any loading algorithm would be a j = E;ax Pj • 

Table 3-5: Simulation Parameters 

Number of Subcarriers: 4096 

Cyclic Prefix Length: 640 samples 

Upstream carriers: Band1: 870-1205, Band2: 1972-2782 

Downstream carriers: Band1: 33-869, Band2: 1206-1972 

Loop & Basic Noise: Loop 1 with AWGN(-140dBmlHz) + 20 VDSL xTalkers 

PPQ TPP 
Direction: Upstream Downstream 

Total Power Constraint: 14.5dBm Il.5dBm 

Transmit PSD Constraint: M1FTTCab M2FTTCab 

Additional Noise: + Alien Noise A [3] + Alien Noise F [3] 
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The general simulation parameters and those specifie to the PPO case are presented 

in Table 3-5. This configuration resembles Test Case -1 in [19] except that we do not fix 

the data rate at 10Mbps, and study its variation over a wide range of loop lengths. The 

received SNR profile {ai }:1 and rate allocation over the subcarriers for this configura­

tion at 2400ft are presented in Figure 3-4(a) and (b), respectively. The resulting data rates 

offered by the integer-bit loading and proposed ARSFGL schemes are 10.94 Mbps and 

13.41 MbpS29, respectively. In other words, the proposed ARSFGL scheme provides an 

increase in rate of 22.6% (=13.41/10.94-1). The rate-reach curves for different schemes 

are presented in Figure 3-4( c). Any integer-bit loading algorithm would result in this 

same .distribution as shown for the coded and uncoded cases. The proposed ARSFGL of­

fers a much better rate-reach curve than the integer-bit loading algorithm. The "theoreti-

cal expectation" curve is generated by adding ab~PO ,i.e., (3.7) with 17 = 1, to the rate­

reach curve of the integer-bit loading algorithm for coded case at each reach value. The 

ARSFGL curve closely follows the "theoretical expectation" for distances larger than 

1800ft. However, for distances shorter than 1800ft, it is noticeable that the ARSFGL 

curve is better due to the improvements arising from a BER-based loading. Shorter dis­

tances allow higher SNR and hence higher M.J. Therefore, the BER-based improvement is 

more pronounced as previously discussed (Figure 3-3). The improvements offered by the 

proposed ARSFGL are 23.6% and 27.5% and 70% at loop lengths of 2500ft., 3600ft. and 

4000 ft. respectively. 

3.4.2 Evaluation of TPP cases 

In TPP cases, the peak-power constraint is less stringent than the PPO case, and 

hence there is sorne room for maneuverability in the energy domain to recover sorne of 

the granularity losses. 

29 It is worth noting that to achieve this increased rate with the integer-bit loading algorithm, a coding gain 

of 8.6dB would be required, assuming 1 bit redundancy per subcarrier characteristic of ITeM schemes 

[14]. 
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Figure 3-5: ARSFGL Performance for TPP case 

The simulation parameters specifie to the TPP case are presented in Table 3-5. This 

configuration resembles Test Case -25 in [19] except that we do not fix the data rate at 

22Mbps, and study its variation over a wide range of loop lengths. The channel SNR Pj 

for the above configuration and a loop length of 2100ft. is shown in Figure 3-5(a). In 
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Figure 3-5(b), the PSD constraint in the form of M2FTTCab mask is presented along 

with the transmit PSD allocated by the ARSFGL scheme and integer-bit scheme by Bac­

carelli [38]. The integer-bit scheme leads to the characteristic saw-tooth distribution, 

which deviates on both sides of the smooth distribution of the ARSFGL scheme. In 

Figure 3-5(c), the resulting bit-distributions are presented. Unlike in the PPO case (where 

02 = 0), here we observe sets of subcarriers (belonging to °2 ), where the integer-bit 

scheme is able to allocate more bits than the ARSFGL scheme due to the saw-tooth na­

ture of the energy distribution. This is what we have referred to as recovery of gra.rmlarity 

loss through energy re-adjustment in earlier parts of the chapter. It can be seen that, in 

the subcarriers 33-300 where the M2 mask is particularly stringent at -60dBrnlHz, the 

ARSFGL scheme always is able to allocate more bits just like in PPO cases. These sub­

carriers form a part of set 01 . 
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Figure 3-6: Performance of various schemes for TPP 

The rate-reach curves are presented in Figure 3-6(a). For easier comparison of 

schemes, the percentage improvements over Chow's algorithm have been presented in 

Figure 3-6(b). From Figure 3-6(a), we can see that on an average, the ARSFGL scheme 

provides about 2Mbps improvement over the integer bit schemes for loops shorter than 

5500ft. As expected from (3.8), for loops longer than 4700ft., 17 becomes 1 and this case 

reduces to a PPO case as shown in Figure 3-6(b), with bOth Chow's and Baccarelli's 

schemes giving exactly the same performance. As reach increases, both granularity loss 

(that depends onNn), and rate are reduced. However, the reduction in rate is much faster 

than that in Nn(and hence granularity loss). Since the proposed ARSFGL draws most of 

its improvement from the granularity loss, its percentage of improvement increases with 

reach as shown in Figure 3-6(b). The theoretical curves are generated by adding 8bG 

from (3.7), (3.8) to the rate provided by the integer-bit Baccarelli's algorithm at different 

reach.values. It is observed that the rate-reach curve of the ARSFGL follows the theoreti­

cal expectations c10sely and thereby the assumption on 17 in Section 3.2 is validated. 
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3.4.3 Evaluation of TPO case 

Though the TPO case does not occur in practice, it has been presented here for the 

sake of completeness. The hypothetical TPO scenario is constructed by removing the 

PSD constraint from the TPP configuration shown in Table 3-5. 
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Figure 3-7: Power and Rate allocation for TPO Case - 2400 ft. loop 

The power and rate allocation results of the Leke's algorithm [9] and proposed 

ARSFGL scheme are shown in Figure 3-7(a) and (b), respectively, for a 2400ft.loop. 

Figure 3-8 shows the percentage increase in rate as compared to Chow's algorithm 

[30] versus loop lengths offered by the Leke [9], Baccarelli [38], optimal (greedy) inte­

ger-bit Hughes-Hartogs (HH) [8] algorithms and proposed ARSFGL scheme. It indicates 

that the rate increase offered by the Leke, Baccarelli, and Hughes-Hartogs algorithms is 

less than 1 % while the proposed ARSFGL scheme can provide 4%-6% rate improvement 

for distances up to 7000ft. This improvement is explained by the fact that though in Sec-
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tion 3.2, we have assumed bit-rounding to be an unbiased operation for simplifying the 

analy~is, rounding up a bit always costs more in terms of energy than rounding down for 

the same difference due to the logarithmic (concave) nature of the rate function. This bias 

leads to the granularity loss being positive even for the TPO case due to 02 set of sub­

carriers. However in PPO and TPP case, as we observed, this effect is strongly dominated 

by loss due to 01 . 

o 0 0 0 0 --- Chow[8j r - -----~----- .. -T--- -----r--------,---
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Figure 3-8: Performance ofvarious schemes for TPO case 

3.5 Application to Dynamic Spectrum Management (DSM) 

The above results and analysis have been presented for the case when spectrum man­

agement is performed through specification of spectral masks for aU users, which is the 

currently standardized form of spectrum management in ADSL [1][2] and VDSL [3], 

known as static spectrum management. In Dynamic Spectrum Management (DSM) 

which was discussed in Section 2.3.2, the interference modeling is not worst case and the 

peak power constraint E
rnax is either not present or much less strict when prest;ut tharl 

SSM schemes. We had also noted in Section 2.3.2 that one of the ways to compare multi­

user schemes is by plotting the rate-region boundary (RecaU the discussion on Figure 

2-5). The rate region boundary was noted to be the solution to the foUowing problem: 
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min ( - l ;=1 b ( &~ P~ ) ) 
subject to I;=lb( <P~) ~ Ti; i = 2,3, ... ,N (3.18) 

and~f·I;=I&~ ~P~ax; 1=1,2, ... ,N. 

Though the peak power constraint is absent, in (3.18), when Ti increases, the maxi­

mum power that User 1 can put on its 'good' subcarriers is restricted. This is the case be­

cause in DSL all users have low attenuation at low frequencies. So the 'good' subcarriers 

of various users are very similar frequencies (recall discussion on Figure 2-1) and hence 

the rate demand of one user T j implicitly acts as a strict peak power constraint for the 

other users which opens the room for granularity losses as discussed in this chapter. 

That' s why we would once more expect the ARSFGL scheme to provide significant im­

provements if molded into the DSM cast. 

To illustrate this, we conduct the comparison between 3 schemes the integer-bit ver­

sion of IWF, integer bit version of OSM and the adaptive Reed-Solomon aided version of 

IWF by plotting their rate region boundaries. 

3.5.1 Adaptive RS aided IWF (ARS-IWF) 

This paragraph recalls the IWF discussion in Section 2.3.2.1. IWF considers the 

DSL channel as an interference channel and models the power allocation problcm as e 

non-cooperative game theoretic problem with each user being a player. At each tum each 

player implements the optimal response to the sum of noise and interference profile, it 

observes at that stage, which is the traditional water-filling. A sequence of such moves 

eventually converges to a unique Nash Equilibrium point for each P. The rate region is 

generated by varying P within the constraints. 

IWF can be combined with the ARSFGL scheme by making each user implements 

its response power allocation to the effective sum of noise and interference profile p; 
using Table 3-3. At the end of the IWF procedure (i.e., after convergence) each user has 

its SNR profile a; stored from Step 9 of Table 3-3. This is used to do the bit and code 

allocation from the look-up table similar to Table 3-2. This is summarized in Table 3-6. 

In comparing ARS-IWF in Table 3-6 with the original IWF Table 2-2, it should be noted 
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that the above changes preserve the purely distributed nature of IWF, since both 

ARSFGL power allocation and the look-up table reading can be carried out autono­

mously by the users. 

Table 3-6: Adaptive RS aided IWF (ARS-IWF) 

1. repeat 
2. for i = 1 to N 

3. Find {C;}K , {U;}K from {p;}K ,pi using Table 3-3. 
1=1 1=1 1=1 

4. end 
5. until the desired accuracy is reached 
6. User i loads MrQAM and RS ( n, k, ) corresponding to u: from the 

ARSFGL lookup-table. 

3.5.2 Integer-Bit IWF (IB-IWF) 

IB-IWF is currently implemented by at least four companies [29]. The key step is 4 

in Ta:ble 2-2. When this step is replaced by an integer bit approximation of WF e.g., 

Leke's algorithm [9] we have IB-IWF. We choose the integer bit loading algorithm in 

Table IV in [38] for this purpose. Notice that in such a scenario, no final step, like step 6 

in Table 3-6, would be required since integer bit allocation would already have been done 

during the energy allocation. But the step 3 itself, for integer bit case, takes more itera­

tions, due to the additional bisection search [38] or bit-rounding [9], than the ARSFGL 

scheme. 

3.5.3 Integer-Bit OSM (IB-OSM) 

OSM [27] uses dual decomposition to transform the total power constraint into a 

subcarrier-specific problem. But within each subcarrier still an exhaustive search has to 

be carried out for aIl integer bit allocations. The inversion of the SNR-gap function is 

used in OSM; see Section Ile in [27]. While the IB-OSM needs centralized control it en­

sures -that it is the true optimum that can achieved by any integer bit DSM scheme. 
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3.5.4 DSM ARSFGL Simulation Results 

We consider the 8 user upstream VDSL-DMT scenario similar to [25] as shown in 

Figure 3-9. Each of the lines is 26 A WG. For each user P~ax =11.5dBm [3] and K=4096. 

Crosstalk Noise Model A is assumed and the FEXT transfer functions and upstream fre­

quency band specifications are chosen as specified in [3] and the optional band is not 
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used. For each ofthese scenarios the 3 schemes are ARS-IWF, IB-IWF and IB-OSM are 

tested. IB-OSM generates the rate region boundary by varying the weights in the 

weighted rate sumo The ARS-IWF and IB-IWF rate region boundaries arè generated by 

keeping pi = P,.~ax for at least one of the 2 groups and executing Table 3-6 and Table 

2-2(with integer bit loading). The rate region boundaries are plotted in Figure 3-10. The 

ARS-IWF curve is significantly above the IB-IWF rate region. More importantly, on 

most occasions ARS-IWF provides greater rate (on other occasions it is nearly equal) 

than even IB-OSM which represents the best any integer bit DSM scheme can do. Further 

the number of IWF loops for the Nash equilibrium to be reached in case of ARS-IWF 

took 3.018 iterations on an average and the maximum was 4 iterations (measured over 

167 realizations). But the IB-IWF took 5.359 iterations on an average and a maximum of 

15 iterations. In each such iteration of IWF, each user will have to measure the sum noise 

and interference profile at its receiver front-end, which is a costly and lengthy procedure. 

3.6 Chapter Summary 

We examined the granularity loss due to the integer-bit restriction that can contribute 

in a significant percentage in reducing the achievable data rates, especially in peak power 

constrained cases, and developed a fine-granularity BER-based loading scheme to re­

coyer these losses. This is done by jointly optimizing the coding rate of a programmable 

RS (n,k) code and the bit and energy allocation on each sub-carrier. Illustrative examples 

of applications to VDSL-DMT systems indicate that the proposed scheme outperforms 

various existing integer-bit loading algorithms with an increase in rate of about 20% in 

most cases. This is a large rate increase as compared to the variation in achievable rates 

of less than 4% between various existing integer-bit loading algorithms. This improve .. 

ment is in a good agreement with the theoretical estimates developed to quantify the 

granularity loss. The theoretical estimates also present an insight into how the granularity 

losses increase with rising strictness in peak power constraint, in comparison to the total 

power constraint and with the number of subcarriers in use. 

We also observed that in the DSM scenario when a peak power constraint is not ex­

plicitly present, the demanded rates of other users implicitly act as peak power constraint 

which leads to granularity loss. ARSFGL applied to the DSM scenario also gives very 
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encouraging results. When combined with IWF it results in ARS-IWF - a purely distrib­

uted scheme which can provide data rates as high as the centralized and optimal integer 

bit scheme. Further the convergence of IWF is faster when used with this technique than 

with integer bit loading. 

Throughout this chapter, rate achieved was used as the indicator of performance and 

loss. ,Rate functions summarize the capability of one's modulation and coding. Clearly 

having a better rate-function (like we do in the ARSFGL scheme) implies that both RA 

algorithms and margin adaptive algorithms can or have the potential to pro duce better 

results. We have demonstrated this for RA algorithms, in this chapter and were able to 

combine and adapt various rate-adaptive loading scenarios with the ARSFGL scheme 

which led to good results. But from the perspective of margin adaptation, there is a more 

fundamental problem to be addressed. 

As explained in Section 2.2.3, a multiuser margin adaptation algorithm currently 

does not exist. Thus the possession of ARSFGL scheme from the perspective of margin 

adaptation is analogous to a having a pond full of fish but not having a fishing net (i.e., 

the means to harness the resource)30. Even viewed independently of ARSFGL scheme, as 

explained in Section 1.4 and Section 2.3.4, a multiuser margin adaptation is required to 

answer the fundamental question of whether or not it is possible to deal with capacity 

limiting noise and performance limiting noise effectively at the same time. Thus filling 

this void is the primary objective of the next chapter. 

30 Please note that this comment is only from the perspective ofmargin adaptation. ARSFGL even without 
margi,! adaptation has been proven to be valuable enough for rate adaptive applications in this chapter. 
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Chapter4 
Enlightened Margin Maximization 

Margin maximization is desirable for constant bit rate applications and provides pro­

tection against non-stationary and bursty noise sources (impulse noise), radio frequency 

interference pickup, mode transition of other modems, switching of electric devices etc. 

The definition of margin, assumptions involved therein, the rationale behind those as­

sumptions, motivation behind margin maximization and existing margin maximization 

algorithms were discussed in Section 2.2.2. In this chapter we develop algorithms for 

multiuser margin optimization for usage in multicarrier Digital Subscriber Loop (DSL) 

systems employing Dynamic Spectrum Management (DSM). 

As we saw in Sections 2.2.2 and 2.3.3, most single-user margin maximization algo­

rithms rely on a fixed crosstalk assumption. But in DSM, each user's power allocation 

dynamically determines the other users' crosstalk. Thus, with direct extension of single­

user algorithms in DSM scenarios, one user's margin maximization can lead to the failure 

of other users in meeting their target rates. 

Hence in this chapter31
, we conduct an independent study of multiuser margin which 

we observe to possess certain favorable monotonicity and faimess properties. We use 

these properties to develop a box-constrained Nonlinear Least Squares (NLSQ) formula­

tion which is efficiently solved using a scaled gradient trust region approach with Broy­

den Jacobian update. This algorithm converges to a solution providing the best common 

equal margin to aIl users while explicitly guaranteeing that each user's target rate re­

quirement is satisfied. The algorithm is also practically viable because it can be imple­

mented in CUITent DSL-DSM scenarios with only Level 1 coordination. Levels of coordi­

nation were discussed in Section 2.3.2. 

31 Throughout the chapter a continuous SNR-gap based rate-function is assumed. This assumption is gener­
ally made in many DSM algorithms [25], for simplicity. No doubt this makes our analysis simpler as weil. 
But in our case, we actually have a method to implement a near-continous rate function. As stated in Chap·· 
ter 3, the ARSFGL scheme can provide near-continuous rates (see Figure 3-3). Thus the results presented 
here have more accurate physical meaning and algorithms are closer to reality, since the developed algo­
rithms can actually be implemented in conjunction with the ARSFGL scheme. 
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4.1 Problem Formulation and Margin Basics 

Let us consider the DSL interference channel [25] of N users (Le., N transmitters and 

N receivers). Each of the N users is a multicarrier system with K subcarriers. Throughout 

this thesis, unless otherwise specified, superscripts refer to user number and subscripts to 

subcarrier number. The channel from User i to User 1 on the /h subcarrier is denoted by 

HJ. For User ion Subcarrierj the controlled transmit power spectral density (PSD) used 

is denoted by < and the background noise PSD encountered is n~. The set of all < is 

denoted by E = { < } ~:;i,~~N. The inter-carrier spacing !1f is assumed to be small enough 

for the aforementioned PSDs to be nearly flat. The total utilized power by User i is pi, 

(4.1) 

The total utilized power vector for the N users is denoted by P = { pi}:1 . The total power 

constraint on User i is P~ax and together for the N users P max = { P~ax }:1 . It is important to 

note that P~ax is specified by standards e.g., in [3] P~ax =11.5Bm for upstream. But P' in e 

certai? scenario depends on the particular DSM algorithm in use, e.g., a user might 

choose pi < P~ax out of compassion for more needy users. However, independent of the 

allocation method in use the following must hold: 

O~P~Pmax 

where the above vector inequality is component-wise. 

(4.2) 

The available received signal-to-noise ratio (SNR) ifwe use other users' interference 

as noise is O'~ and is evaluated as: 

(4.3) 

The maximum rate achievable Ri given a SNR profile {O'~} ;=1 is: 

(4.4) 
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where r is the SNR -gap [4] [31] and R = { Ri }:I' The rate region is defined as the set of 

achievable rate combinations by a particular algorithm ALG; in ALC = {R : 3& reachable by 

ALG satisfying (2), (3) and (4)} and the boundary of the rate region is defined 

as in ALC 1 = {R : REin ALG 1\ R + ~ ~ in ALG V ~ > o} , the inequality being component -wise. 

At any stage, each of the N users has a target (demanded) rate r referred together as 

T = {r} :1 . The performance or SNR margin of the ;th user denoted by r~ is defined32 as 

the factor by which the noise can be increased before the system error-rate rises above 

acceptable threshold (specified implicitly in r). Mathematically r~ is the solution to: 

r - I;)og2(1+0'~/r~r)=o. (4.5) 

For a given T' and {O'~} ~=l ; the left hand side of (4.5) is monotonically increasing in 

r~ (and obviously continuous); hence (4.5) uniquely (though implicitly) specifiesr~. 

Noticing the similar equations (4.4) and (4.5), one might be tempted to think that a; can 

be eliminated and an expression for r~ can be obtained only in terms of Ri and r . Such 

an expression would make the margin independent of the particular algorithm in use and 

would remain the same for single-user or multiple users. While no such exact expression 

is possible, an approximation is available [4], 

. 2R'IK_I 
1 

rM ~ 2TilK -1 . (4.6) 

Reliability of (4.6) is discussed in Section 4.2. Further using the monotonicity of (4.5), 

the continuity of (4.4) and (4.5), and a few operations, the following 3 conclusions can be 

proven about r~ , R' and r irrespective of the {O'~} ~=l that generated them (i.e., inde­

pendent of algorithm and scenario). 

(CI) r~=1 if and only if Ri=r. 

(C2) r~ >1 ifand only if Ri>T. 

32 The subscript Mhere indicates margin and is not a subcarrier number. Margin is a single positive scalar 
for a user, i.e., it is a user-specifie quantity and not subcarrier-specific. 
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(C3) r~ <1 if and only if Ri <T . 

Margin by its nature is a safety margin [37] and simultaneously a performance (in 

error rate terms) enhancer [32]. Thus going by the philosophy of distributed DSM 

whereby our concem is each user's well-being and not sorne single overall system metric, 

it is natural to model the problem as a min-max problem. Our objective will be to maxi-

mize the minimum margin among r~; 1 ~ i ~ N by varying E while respecting the total 

power constraint (4.2) and the target rate constraints (4.5) in as distributed a manner as 

possible. Stated formally we have: 

Objective Function: min(max{-r~}N ) 
E 1 1=1 

Constraints: 111·2::1 E; ~ P~ax; 1 ~ i ~ N 

[ 

·1 .. 1

2 J K E' H" 2: log2 1 + )) = T ; 
)=1 ri r(d + "N E'IH"12) 

m ) L..J1=1,f,#'i) ) 

(PI) 

l~i~N 

By explicitly accounting for the target rate constraint in (PI) we guarantee that the 

luxury of margin maximization does not come to any user at the unacceptable cost of 

failure of meeting target rate for any other user. One might suspect from the min-max 

formulation that the users closer to the central office will always dominate and get a bet-

ter r~ at the solution to (PI). But we observe in Section 4.2 that for a convex rate region 

iR ALG; the solutions r~ to (P 1) have the beautiful property of r~ = r~ = ... = r~ thus in-

herently guaranteeing faimess among users. 

4.2 Behavior of Margin over a Rate Region 

In an cases where the approximation in (4.6) holds accurately the following intui­

tively obvious conclusion can be made for DSL channels:-

(C4) r~ is monotonically increasing in Ri for any RE iR ALG for fixed T . 

(C4) follows directly from the functional form in (4.6). Consider the 2-user rate region in 

Figure 4-1 (a). Point A represents T . For any TE iR ALG ' it is possible to find 2 points B, 

CE iR Aiii 1. B represents the maximum rate achievable for user 2 when user 1 has a mini-
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mum rate of Tl. C represents the analogous situation for user 1. First of all it is important 

to understand that once T is specified the entire rate region 9i ALG is transformed into a 

margin region M. This is because by definition of 9i ALG each point in 9i ALG specifies a 

corresponding E which in tum translates into N user margin r~ by (4.3) and (4.5). 

rate of User 2 

B(Tl,R2) 

x 

A(f1,T2) (Rl,T2) 

z y 

rate of User 1 

(a) 2-user Case 

rat 

rate of 
User 2 

(b) 3-user case 

Figure 4-1: Relationship between Rate Region and Margin 

Optimum 

,TI) 

rate of 
User 1 

By (Cl), for any point taken on the straight line AB; User l's margin is zero (dB). 

For any other point which is not on AB, User l's margin is not zero (dB). An analogom: 

statement for User 2 and straight line AC can be made. By (C2), the region demarked by 

A, B, C and 9i ALG 1 (exc1uding points on AB and BC) represents the subset of M where 

all the users are guaranteed to have positive (dB) margin. Let us calI this region and its 

c10sure as M+. Finally by (C3), all other points represent negative (dB) margin for at 

least one of the users and hence cannot contain the solution to (Pl); e.g., X has negative 

margin for user 1, but positive margin for User 2, Y has the reverse situation and Z has 

negative margin for both users. Thus the solution must exist in M+. For any point 

( RI, R2) in M+ and not on 9i ALC; l, it is possible to find a point (RI, R2) on M+ n 9i ALG 1 

such that RI >RI;R2 >R2. Hence due to (C4), (RI,R2)will have a greater minimum 

margin than (RI, R2
). Thus the solution must exist in M+ n 9i ALG 1 represented by BC in 
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Figure 4-1 (a). At point B, the margin achieved by User 1 and User 2 is (O,r~max), where 

r~max is the maximum margin User 2 can have while User 1 having a non-negative mar-

gin. Similarly at point C, the margin achieved is (r~max, 0) . If the 9i ALG is concave; as we 

move from B to C along 9i ALG l, r~ monotonically decreases from r~max to 0 and r~ 

monotonically increases from 0 to r~max . Thus by continuity arguments, there must exist 

a point R* between Band C on 9i ALG 1 (labeled as 'Optimum' in Figure 4-1(a)) with the 

margin (r: ,r: ); i.e., equal margin for both users and 0 < r: < min(r~max ,r~max). For 

any point between 'Optimum' R* and B, r~ < r: and hence R* is a better solution to the 

min-max in (Pl). Similarly for any point between R* and C, r~ < r~. Thus R* is the 

uniq~e global solution to (P 1) over 9i ALG • 

The argument is easily extended step by step for N>2. As an example see Figure 

4-1 (b) for a 3-user case. Here the argument would begin by the identification of 3 points 

that demarcate M+ instead of the 2 points B and C in the 2 user case and in the general 

N user case there would be N such points. Thus we have the following conclusion: 

(CS) For every TE 9i ALG' 3 a unique point R* E M+ n 9i ALG 1 which is the solution to 

(Pl) and further at this pointr~ = r~ = ... = r~ = r~ . 

In summary we have the following mapping R ALG ) E 

a rate point on the rate region to the margin for a given algorithm ALG and target rate T . 

The mapping from E to r~ is inherently distributed (as we shall shortly see). For ALG 

the best available distributed choice is IWF (see Table 2-2). As discussed in Sectior. 

2.3.2.1 from the uniqueness of the Nash equilibrium, IWF further has the convenient 

property that the total power tuple has a one to one correspondence with the rate tuple, 

i.e., P ( /WF ) R. Thus by adjusting P alone we can span entire 9i ALG and control r~. 

The Step 4 in Table 2-2 is the one which depends directly on the choice of P and the wa­

ter filling can be implemented using Table 1 in [38]. Step S ensures that at the end of the 
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IWF, each User i has its own SNR profile available, i.e., {an~=1 which it would anyway 

need to ca1culate implicitly or explicitly for Step 6. 

Table 4-1: SubAlgorithm NRME (Newton Raphson Margin Estimation) 

function YM = NRME( {ai }~=I;T) 
1. R = I;)Og2 (1 + ai Ir) 
2. YM =(2RIK _1)/(2T1K -1) 
3. Repeat 
4. T"ew = I;=Jog2(1+ai IYMr ) 

5. -1 IK 1 
V = YM In2 i=11 + YMr lai 

6. MO=YM 
7. YM = YM -(Tnew - T)/V 
8. if YM < 0 
9. YM = MO/10 
10. End 
11. until ITnew - TI > eps NRME 

The approximation in (4.6) follows from the representation of the entire SNR profile 

{ (j~ } ;=1 by its geometric mean. This single parameter representation is seen to be fairly 

accurate when we have a nearly continuous SNR profile, e.g., in ADSL. But in VDSL, 

since upstream bands sandwich a downstream band in between and vice-versa, there is a 

sharp discontinuity in the SNR profile. The geometric mean being a single parameter 

cannot reflect properties of both bands. In such a situation, the only alternative is an itera­

tive approach to solve (4.5). Since (4.5) has continuous first derivative and a unique solu­

tion; and a reasonable good starting point is available in (4.6), we propose the usage of 

Newton Raphson method which is one of the fastest methods to solve nonlinear equa­

tions. This is presented in SubAlgorithm NRME in Table 4-1. Note that in the algorithm 

aU user-related superscripts are dropped because, once the SNR profile is available, the 

margin ca1culation does not need to distinguish between users. The V in step 5 denotes 

the differentiation of (4.5) with respect to y M • Step 7 is the Newton Raphson update step. 
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Steps 8-10 are required while measuring very small r M (close to zero), to prevent an am-

bitious Newton Raphson step from pushing the margin to negative (not in dB), which is 

unacceptable. The algorithm was tested in many different scenarios and reached the solu-

tion in less than 4 iterations in most cases for epsNRME = 0.1 bits. 

It is now our objective to verify (C4) and (C5). Reconsider (from Section 3.5) the 

scenario of 8 VDSL 26 A WG lines (similar to [25]), 4 of which are at a distance of 

1500ft. (collectively referred to as User 1) from the Central Office and the other 4 at a 

distance 3000ft. (collectively referred to as User 2) as shown in Figure 3-9. Now we con­

duct an extensive experiment by analyzing every power combination of User 1 and User 

2 from -60dBm to 11.5dBm at a step size of 0.5dBm; where P~ax =11.5dBm [3] in the 

upstream direction. Crosstalk noise model A is assumed and the FEXT transfer functions 

and upstream frequency band specifications are chosen as specified in [3]. 
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CONTOUR PLOTS OF MARGINS OVER ENl1RE RATE REGION 
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With each power combination we execute SubAlgorithm IWF in Table 2-2 and each 

resulting unique rate pair is plotted as dots in Figure 4-2(a) and thus span entire 91 ALG' 

The target (demanded) rate vector is 4 Mbps for each of the 1500ft. lines and 1Mbps for 

each of the 3000ft. lines. This point is shown in Figure 4-2(a) and corresponds to point A 

in Figure 4-1(a) and the straight lines correspond to lines AB and AC in Figure 4-1(a). 

Now for each of these points in 91 ALG' we evaluate the r~ for each user by using SubAI-

gorithm NRME of Table 4-1. The constant margin contours over 91 ALG for both users are 

plotted in Figure 4-2(b). We plot only the positive margin (in dB) contours. The nearly 

horizontal contours represent the contours for User 2 and the nearly vertical ones are for 

User 1. The contours are labeled with the margin value in dB that they represent. We can 

see that the 0 dB margin contours are perfect straight lines following from (Cl) and the 

zero margin boundaries predicted in Figure 4-2(a). The region where the horizontal and 

vertical contours intersect represent M+ .We see that the contour values of User 2 keep 

increasing with R2 and the same effect is observed for User 1. Thus (C4) holds. For veri­

fying (C5), we highlight the contour representing 14.96dB for User 1 and User 2. As we 

can see, both these contours intersect on 91 ALG 1 at R *. For any point like P above this 

point it can be seen that (vertical contour) r~ <14.96dB, any point below like L 

r~ <14.96dB, and any point to the interior like K both r~ and r~ <14.96dB. The behav­

ior of r~ and r~ is very important particularly on M+ ri 91 ALG 1. This is plotted in Figure 

4-2(c). The lower x-axis denotes the RI set for which r~ and r~ are positive (in dB) 

and the upper x-axis denotes the corresponding R 2 on the rate-region boundary, i.e., 

91 ALG 1· r~, r~ and min(r~, r~) are plotted. Recall that min(r~, r~) is the function we 

want to maximize in (Pl). We can clearly see the display of (C4), in that r~ increases 

with RI (lower x-axis) and r~ increases with R2 increases with R2 (upper x-axis). Fi­

nally, as noticed in Figure 4-2(b), min(r~, r~ ) has a unique maximum at R * at which 

r~ =r~ =14.96 dB. Thus (C5) is verified. Also in other examples presented in Section 
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4.4 and many others that we tested (C4) and (CS) are always seen to hold for DSL chan­

nels. 

4.3 Enlightened Margin Maximization 

Given SubAlgorithm IWF and SubAlgorithm NRME, we now have the following 

mapping from the design variable P to the objective function: 

P{R) lWF H: (4.3» O"~ NRME) r:W (4.7) 

P and R have one to one mapping in IWF; however P is naturally easier to control. 

In the last step of the mapping the usage of SubAlgorithm NRME causes a simplification 

of (P 1). The termination condition in Step Il of Table 4-1 SubAlgorithm NRME ensures 

that the target rate constraints are met; thus we can eliminate this constraint from (P 1) as 

long as we use NRME to evaluate r:W . This is similar in optimization to the substitution of 

one of the constraints within the objective function, e.g., consider the 2 equivalent prob­

lems: 

min(x2 + l) == min(x2 +(l-xr) 
x+y=1 x<!O 
x<!O 

With the removal of the target rate constraint we are left with the constraint 0 ~ p ~ P max • 

These forms of constraints are much simpler than general nonlinear constraints and are 

referred to as 'bound constraints' or 'box constraints'. Significant research has been done 

for nonlinear minimization with box constraints [39][40]. The min-max problem (Pl), 

while being the most natural modeling of the situation, cannot directly apply these meth­

ods. Further, the trust region methods in [39][40] require the Jacobian and the Hessian. In 

our case the margin is a very complicated multi-stage mapping from P for which even the 

Jacobian, let alone the Hessian, is impossible to obtain in closed form. Nonlinear Least 

Squares (NLSQ) problems present a convenient class of problems whereby dependence 

on Hessian of component functions is minimized under certain conditions. Further, the 

techniques in [39][40] have been implemented with good results for NLSQ with bound 

constraint; and (C4) and (CS) help us reformulate our problem into such a problem. 
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4.3.1 Bound Constrained NLSQ Formulation 

We know from (CS) that at the optimal point r~ = r~ = ... = rZ = r~. In other words 

the variance of the vector of margins will be zero. Further, from (CS), this optimal point 

lies on M+ (191 AU; 1. So we would want the iterates to be always on 91 ALG 1. This can be 

ensured by maximizing the mean of the vector from (C4) because the mean has continu­

ous growth radially towards 91 ALG 1. Thus we have the following NLSQ formulation: 

(P2.a) 

where P (P) = (r~ / i l ;=1 r~ -1 ) (P2.c) 

In the above formulation F (p) is the variance of the margin vector divided by the 

square of its mean. r~ in (P2.c) is a function of P through (4.7). Clearly at the optimal 

point R*, by (CS), F(P)=O. This is sometimes called the residual of the NLSQ problem. 

which is zero in our case. The Jacobian J (P) is an NxN matrix with the (iJ) component 

(J(p))ij = ap /apJ . From this the gradient and the Hessian of F(.), i.e., F'(P) and 

F" (p) are calculated as: 

F'(P) = J(pf f(P) 

F"(p)=J(pf J(P)+ I:IP (P)fi" (P) 

(4.8) 

(4.9) 

wher~ f'" (p) is the Hessian of the component function P (P) . Due to our problem being 

a zero-residual problem, the P (P) in the summation in (4.9) will be very small near R* 

and hence F" (p) can be approximated by J (p ) T J (p ). The functional dependence on P 

is dropped henceforth in notation whenever obvious from context. Thus, we need to only 

form an estimate of J (p) or J. This could be done using finite-differencing. But finite­

differencing would increase the number of objective function evaluations by N at each 

iteration. Since in our case each objective function evaluation in (P2.a) will require an 

82 



IWF operation due to (4.7), doing this at each iteration is unaffordable. Instead we use a 

secant method known as Broyden' s rank one update, which is stated below: 

J = J prev +uh
T (4.10) 

where h = x -xprev ' U = h;h (f{x)-f( x prev )-Jh). 

This leaves the problem of getting an initial estimate of the Jacobian. For the first es­

timate we could use finite-differencing once, but from (C4) and (C5) a good initial guess 

is also possible, which we discuss little later. The above NLSQ problem with bounds is a 

special case of algorithms in [39][40] and is also solved in many optimization packages 

including lsqnonlin in MATLAB Optimization Toolbox, which uses [40] discussed be­

low. 

4.3.2 Trust Region Reflective Newton Methods 

In any unconstrained trust region method we try to define a simple quadratic model 

and define the neighborhood where this model can be trusted; i.e., portray the more com­

plicated nonlinear objective function reasonably weIl. Thus the 4 key requirements are 

the (t) gradient and (2) the Hessian, which are used to define the model and (3) the scal­

ing matrix and (4) the trust region size, which define the neighborhood. At each iteration 

solving the above problem yields a step update and then both the model and the 

neighborhood are updated. For a constrained trust region method, at each iteration, a con­

strained version of the above problem would have to be solved. One of the primary con­

tributions of [39] was being able to define a special scaling matrix for the bound con­

strained case for which, at each iteration, the quadratic problem to be solved was uncon­

strained. We define this for our problem as follows: 

and the bounds in (P2.a). 

(JTf)i <0 

(JTf)i ~o 

(4.11) 

using (4.8) 

At any iteration let the power vector used be P and let D = D{P), Vi = Vi (p) and so 

on. Thus at any iteration the quadratic subproblem to be solved is: 
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min { If ( s ) : IIDsl12 ~ /).} (4.12) 

where 'I/(s) = ST JTf +tSTns, C = Ddiag( JTf)JVD, TI = JT J +C and JV is the Jaco­

bian of v(.). At each iteration all the above quantities are updated. In [40], the authors 

primarily focus on solving (4.12). It is proposed to choose among the 'best of 3' possible 

solutions: - (i) original solution to (4.12); (ii) scaled gradient solution (both (i) and (ii) is 

truncated when necessary to remain strictly feasible) (iii) retlected solution, where the 

solution component, which violates the bound, is reversed in bound. Both (i) and (iii), 

being complicated, the authors proposed subspace based preconditioned conjugate gradi­

ent techniques. The 'best of 3' approach is currently implemented in MATLAB Optimi­

zation Toolbox. While in the option (ii), the scaled gradient i.e., _D-2 JT f converges to 

zero and thus tirst order optimality; it is observed in [40] that predominantly (iii) and (i) 

lead to much faster convergence for large scale problems. However, we choose to use 

only the Scaled Gradient (SG) method rather than the 'best of 3' approach. Firstly we 

must notice that the SG method is far simpler (in terms of complexity and computation) 

and guarantees convergence to first order optimality (see p. 8 in [40]). The simplicity of 

the SG method arises from the fact that the step direction is already determined to 

be-D-2JTf. The only operation to be performed is determining the optimum step size 

(along the above direction), which is a one dimensional problem. The operations involved 

are summarized in SubAlgorithm SGTRNLSQ in Table 4-2. 

Table 4-2: SubAlgorithm SGTRNLSQ: SG Trust Region method for NLSQ 

h = SGTRNLSQ(P,f,J) 

1. r' = arg min, {'I/ ( -rD-2 JT f) : IlrD-] JTfl1 ~ /).} 

2. 
. { { p' p' -p~" } 1 . N} 

a=mm max (D-2JTf)j '(D-2JTf)j : ~l~ 

3. h = -min( r' ,a). D-2JTf 

The problem in step 1, with a few operations, is easily seen to be a one-dimensional 

problem of the form arg rn}n { a]x + t a2x
2 

: -TC ~ X ~ TC} , where each of the quantities is a 
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scalar. As is well known, the solution is -al / a2 if laI / a21 ~ K else it is either -K or K • 

Thus. --/ in step 1 is obtained in less than 3 evaluations of a 1-D quadratic. The subse­

quent steps 2 and 3 ensure that the step results in a strictly feasible P+h, i.e., 

0< P + h < Pmax' As we shall see in section 4.4, the choice of SG method will cost us be­

tween 5-10 iterations only. In most cases the 'best of3 approach' gives the same number 

of iterations and only rarely better by 1-2 iterations. This can be because of the cumula­

tive of 3 reasons. 

• The number of variables for which [40] showed the great improvements of (i) and 

(iii) was in hundreds and thousands, in DSL N is much smaller. 

• The 'best of 3' approach can have faster convergence with exact Jacobian avail­

ability, while in our problem, we can only have approximate Jacobian. 

• The accuracy or tolerance for the stopping condition in [39][40] is 10-12
• For DSL 

application the maximum accuracy in margin is 10-2 [31] or at best 10-4 [30]. 

Thus while the 'best of 3' approach is very good for many problems, for our problem 

the usage of SG method more than satisfies our needs and the minor improvement on rare 

occasions does not justify the much higher computational requirement of the 'best of 3' 

approach at each iteration. Thus the primary utility of the trust region method for our 

problem is the scaling matrix D, which ensures appropriate behavior of SG around "cor­

rect" and "incorrect" bounds [40]. Also at each step of solving for T' we deal with a sim­

ple I-D quadratic rather than having to evaluate r~ after using SubAlgorithm IWF and 

SubAlgorithm NRME. 

4.3.3 Implementation in Current DSL Scenario 

Now we have all the tools required and the complete algorithm is presented in algo­

rithm EMM in Table 4-3. The shaded regions denote the operations taking place at the 

center which could be the central office in VDSL upstream, or a spectrum managemeni: 

center (SMC) or the DSLAM depending on the nature of deployment, see [23]. The un­

shaded regions denote the autonomous operation of the N modems. As is easily seen, the 

only exchange between the center and the modems is of macro-parameters such as r~ 
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and pi. The assignment of micro-parameters such as PSD and bit allocation over subcar­

riers is done autonomously and hence the level of coordination [24] is only Level 1. 

Table 4-3: Algorithm EMM: Enlightened Margin Maximization 

o. P = Pmax;J = Jo .lter =0. 

1. repeat 

1. Read P' from center 

2. Run SubAlgorithm IWF 

3. for i = 1 to N 

4. Report r~ = NRME ( { (j~ } ~=l ; Ti ) to center. 

5. end 

8. Evaluate f, where JI= r~/ p,-1 

9. if Iter>O 

10. u = b~b (f -fprev -.Jh);J = J +uhT 

11. end 

12. h = SGTRNLSQ(P,f,J};P=P + h 

13. fprev = f;lter = lter + l 

14. until {rr f > eps EMM and IIb l12 > eps EMM } 

AlI modems initially start at their maximum power constraint Pmax as in [25]. This is 

the most natural starting point. Further, in our case we know that the optimal solution is 

on m /WF l, so it is suitable to start with P max ' which is guaranteed to be a point on m /WF 1. 

The estimation of the initial Jacobian Jo is a non-trivial task. Finite-differencing could be 

used as a first step, which would involve N iterations of EMM to estimate Jo. But with 

experience, a reasonable 'guess' is also possible. For aIl our results in Section 4.4, we 

chose J o =l1xI N -IN ,where IN isthe NxNidentitymatrixand IN istheNxN matrix 
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of aIl ones. This results in a Jo where aIl diagonal elements are 10 and aIl off-diagonal 

terms are -1. This choice is (loosely) explained by the fact that each user's margin is in­

creasing in its own power and decreasing in other users' power (hence -1). Nothing is 

special about the number 10; it is chosen for diagonal dominance because the DSL chan­

nel matrix by itself is diagonal dominant (recall from Figure 2-1 that HII(f) > H I2 (f) 

and H 22 (f) > H 21 (f)), whereby pi has more effect on r'u than pi . Though heuristic" 

this choice (motivated primarily by numerical experiments) gives good results in aIl 

tested cases (Section 4.4) and saves the N iterations that would be required for finite­

differencing. 

At each lter (see Table 4-3) each user reads pi to be used from the center and then 

performs IWF after which 8~ and a~ are known to each User i for aIl its subcarriers. Ob-

viously each user knows its T . From this, using NRME, r'u for each user is determineô 

autonomously and reported to the center. Once the center receives the r'u from aIl N us­

ers, it computes the NLSQ component functions (P2.c) and updates the Jacobian using 

the Broyden update (4.10). Following this, an appropriate scaled gradient step for P is 

ca1culated. This new set of pi is read by the users and IWF is conducted and so on. The 

stopping condition is determined by the value fT f (the residual), which we know must go 

to zero at R* by (C5) and section 4.3.1 and also the Euclidean norm of the step h. At the 

end of the EMM, each users' margin is expected to reach an equal r:. At this point the 

PSD allocation 8~ is decided by the last Iter's IWF process and the bit loaded b~ is de-

termined during the NRME process to be log2 (1 + a~ /r:r). At each iteration (and hence 

at the last) the usage ofNRME guarantees that Ti of each user is met as explained in Sec­

tion 4.3. Thus the margin maximization does not come at a cost of anY of the u.;ers not 

meeti,ng their T and the common equal margin r: ensures no user looses margin due to 

another. 
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4.4 Performance and Convergence 

We consider the 4x1500ft. (User!) and 4x3000ft. (User2) upstream scenario de­

scribed in Section 4.2 with P~ax =11.5dBm. We consider 6 target tuples fairly weIl dis-

persed over 91/WF as shown in Table 4-4 (shaded columns) and Figure 4-3. For each of 

these target rates we run the EMM algorithm and the results are reported in Table 4-4. 

The ~aximized common equal margin r ~ is reported in dB. The number of iterations 

taken corresponding to Iter in EMM algorithm is reported next. (rT r)' denotes the value 

of the residual of the NLSQ function in (P2.a) at the end of EMM. This is the stopping 

condition in EMM and used to test if r ~ is truly the common equal margin among aIl 

users. Next the vector of total power that achieves the optimal point p* is reported in 

dBm. Lastly R * denotes the actuallocation of the optimal point on the rate region. As de­

noted by (4.7), the energy allocation used E, corresponds to this point. Aiso R* verifies 

that the optimal point lies on 91/WF 1. 

The (4,1) Mbps target rate example was discussed in Section 4.2 and we had noticed 

that a unique optimum existed in Figure 4-2(b), where the 14.96 dB margin contours of 

both users intersected on 91/WF 1. Table 4-4 confirms that EMM actually reached this op-

tim~ point with r~ = 14.96 in 7 iterations. The R* of (21.07,4.87) corresponds to the 

actuallocation of the optimal point on 91/WF 1 as seen in Figure 4-2(b) as weIl. 

Table 4-4: Performance and Convergence of EMM 

T (Mbps) 
r~ (dB) Iter (rTfr 

p* (dBm) R* (Mbps) 

User! User2 User! User2 Userl User2 

4 1 14.96 7 1.0486e-6 -0.077 Il.500 21.07 4.87 

8 6 3.79 10 2.8807e-7 -14.28 Il.500 12.30 7.85 

10 4 6.38 8 8.2651e-8 -6.918 11.499 18.37 6.71 

14 3 5.04 6 2.6253e-7 0.026 Il.500 21.09 4.84 

20 5 0.54 6 6.3448e-6 -1.232 Il.500 20.78 5.23 

15 1 5.15 5 5.6057e-6 Il.500 2.0403 22.30 1.21 
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Figure 4-3: Spread of Target Rate points on the Rate Region 

For the next two target rate pairs i.e., (8,6) and (10,4) we display the contour plots of 

both users' margins similar to Figure 4-2(b) in Figure 4-4(a) and Fig. Figure 4-4(b) re­

spectively. A survey of the contour values shows that there is an intersection of 3.79dB 

margin contour lines for both users in Figure 4-4(a) on ffi/WF 1 and the same is observed 

for 6.38dB margin contours in Figure 4-4(b). A quick survey of the contours in the 

neighborhood of these intersection points in both figures shows that, for each feasible 

point around this intersection at least one of the margins drops and hence cannot be the 

solution to (P 1), thus establishing the unique optimality of the intersection of equal mar-

gin on ffi/WF l, as expected from (C5). The trajectory of EMM in both figures shows how 

EMM approaches and eventually converges to this optimal solution, which is also con­

firmed by Table 4-4 with r~ =3.79 and 6.38 dB respectively. One more important obser-

vation from Figure 4-4 is that not only is the final solution on 9l IWF l, but also each itera­

tion in the trajectory of EMM corresponds to a point on ffi IWF 1. Recollect that this is what 

we had aimed for in the NLSQ reformulation in (P2), because from (C5) we knew that 

the solution R* lies on theffi/WF 1 and hence restricted the search to only that set. 
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For each of the target rates in Table 4-4 we can see that the EMM algorithm con­

verges in 5-10 iterations. A study of the p' column reveals that for each target rate pair 

the EMM algorithm converges to p' with at least one of the two users using their maxi­

mum power constraint of 11.5dBm, which itself guarantees that the solution point is on 

~ IWF 1 [25]. The positive value of r: verifies that the optimal point lies in M+ n ~ ALG 1 

and lastly, the low value of (fT f)* in each case below eps EMM =10-5 ensures that this point 

indeed provides a common equal margin to aIl users. Thus aIl features of (C5) are satis­

fied. We further observe that, loosely speaking, the value of optimum r: depends on 

how far the target rate point T is from the ~IWF 1 or equivalently, the area of M+. We 

Can see in the Figure 4-3 that the (4,1) target point is the inner most among T considered 

and has a r: =14.96dB. On the other hand, for the (20,5) target point, which is very close 

to the ~IWF l, the corresponding area of M+ is minimum and r: =0.54. A similar order­

ing of r: for intermediate points can be explained based on corresponding area of M+. 

However, irrespective of how close or how far T is from ~ IWF l, the EMM algorithm 

is seen to behave weIl and reach the unique optimum, which ensures the best equal mar­

gin for aIl users, while guaranteeing each users' target rate requirement due to NRME. 

4.5 Practical viability of EMM 

In the multiuser margin maximization problem considered in this chapter, the multi­

user scenario directly leads to a constrained min-max optimization problem. Ho\vcver, ir. 

general, algorithms which are available for constrained min-max optimization are more 

complicated than those for constrained nonlinear minimization problems33
. Among gen­

eral constrained nonlinear minimization problems, algorithms for constrained NLSQ 

minimization problems converge faster and require less computation because the Hessian 

33 This is because in min-max, the objective we are minimizing is already a max of more than one compo­
nent function. This makes the objective non-differentiable at sorne points (even if the individual component 
functions are differentiable). Hence the objective function is more difficult to minimize than in the case of 
simple minimization where the objective function is differentiable. 
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does not need explicit calculation (see Section 4.3.1). Finally, among general constrained 

NLSQ problems, for the ones with bound or box constraints, efficient (in terms of num­

ber of iterations to converge to solution) algorithms are available in literatüre [39][40]. In 

this chapter we discovered properties (C4) and (C5) of margin which helped us simplify 

the original min-max problem to a NLSQ minimization with bound constraints. Further, 

we used a simplified version of the algorithm in [40] by reducing the trust region problem 

to a I-D step size problem (as explained in Section 4.3.2) and thereby avoiding the com­

putationallY expensive sections of the algorithm in [40]. Hence we believe the EMM al­

gorithm is an economical solution to the multiuser margin maximization problem. 

A rigorous characterization of the computational complexity of the EMM algorithm 

will be an interesting task for future work. At this point, loosely speaking, we can say that 

among the various components of the EMM algorithm, SubAlgorithm IWF is the most 

computationally expensive. This is because, in a single execution of SubAlgorithm IWF, 

on an average 3Nto 4Nwater-filling operations are performed [25]. For each ofthese wa­

ter-filling operations the complexity will be similar to that of the algorithm presented in 

Table 3-3. This is clearly much more taxing computationally than the SubAlgorithm 

NRME and Broyden Jacobian update. Thus the number of executions of SubAlgorithrr. 

IWF is a suitable indicator of overall algorithm complexity. The EMM algorithm only 

required 5-10 executions of SubAlgorithm IWF. But sorne implementations of DSM 

power control, e.g., with the outer power loop in [25] can use up to 20-30 executions of 

SubAlgorithm IWF. Since at least 4 companies have produced implementations [29] of 

the power minimization algorithm in [25], we believe that the EMM algorithm with only 

5-10 executions of SubAlgorithm IWF will definitely be practically acceptable. 

In the discussed multiuser DSL scenario, what is more critical than low computa­

tional complexity for the practical viability of a multiuser algorithm is whether or not it 

renders itself in a predominantly distributed implementation (Level 1 coordination in 

DSM terminology). This is because, multiple competing service providers share the same 

bundle currently (see Figure 1-1). As we have demonstrated throughout this chapter, the 

EMM algorithm can be implemented with only Levell coordination. Further, since at the 

end of EMM algorithm, each user will have equal margin, it will be acceptable to aIl ser-
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vice providers, who share the bundle, as a fair scheme. Hence the EMM algorithm is a 

practically viable method for multiuser margin maximization. 
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Chapter 5 
Conclusions 

In this work, we have highlighted that the granularity loss arising out of the integer­

bit restriction is non-negligible. Particularly with the peak power constraint, these losses 

turn out to be a significant percentage of the supported data rate. We developed a fine­

granularity BER-based loading scheme called ARSFGL to recover the se losses. This is 

done by jointly optimizing the co ding rate of a programmable RS (n,k) code and the bit 

and energy allocation on each sub-carrier. Illustrative examples of applications to VDSL­

DMT systems in (currently standardized) SSM scenarios indicate that the proposed 

scheme outperforms various existing integer-bit loading algorithms with an increase in 

rate of about 20% in most cases. This is a large rate increase as compared to the variation 

in achievable rates of less than 4% between various existing integer-bit loading algo­

rithms. This improvement is in a good agreement with the theoretical estimates devel­

oped to quantify the granularity loss. The theoretical estimates also present an insight into 

how the granularity losses increase with rising strictness in peak-power constraint, in 

comp'arison to the total-power constraint and with the number of subcarriers in use. 

W'e then developed extensions of the ARSFGL scheme for the DSM case (not yet 

standardized, but very popular in research and industry). This technique, combined with 

IWF results in a purely distributed scheme which can provide data rates as high as the 

centralized and optimal integer bit scheme. Further the convergence of IWF is faster 

when used with this technique than with integer bit loading. 

Through our review in Chapter 2, we noticed that although many single user margin 

maximization algorithms exist, they all rely on a convex reformulation of the problem. 

This convex reformulation does not hold in the multiuser case and hence any extensions 

of the se single user algorithms to multiuser scenarios will lead to one user' s margin 

maximization leading to other users' failure in meeting their rate or margin requirement. 

This motivated us to devote an independent study into the multiuser margin ma'Cimiza­

tion theory which has not been developed in the literature yet. 
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We studied the problem of multiuser margin maximization in the min-max sense. 

We discovered and demonstrated certain monotonicity and faimess properties that mar­

gin exhibits over the rate region. Based on these properties we remodeled the problem as 

a NLSQ problem. This problem is efficiently solved using a scaled gradient trust region 

method and Broyden Jacobian update. For estimation of margin and subcarrier bit alloca­

tion, at each iteration, a Newton Raphson method is used. For subcarrier power alloca­

tion, the game-theoretic IWF technique is used. The combination of these leads to the 

Enlightened Margin Maximization (EMM) algorithm. Due to the near-continuous per­

formance of the ARSFGL scheme developed in Chapter 3, we are able to assume con­

tinuous bit loading in development of the EMM algorithm, which however can be ex­

tended to purely integer bit loading as well. This algorithm reaches the best common 

equal margin for all users. This common equality does not follow from a compromise by 

any user; rather is an inherent faimess property that margin possesses. Further by using 

the Newton Raphson margin estimation as a SubAlgorithm, EMM explicitly guarantees 

that all users meet their target rate requirements. The method is verified to converge to 

unique min-max optimal point in 5-10 iterations for a variety of cases. Further the 

method can be implemented in CUITent DSL-DSM scenario with only Level 1 coordina­

tion. Level 1 coordination, which allows for a distributed implementation, is desirable 

because in CUITent DSL scenarios multiple service providers share the same cable and 

coordination higher Level 1 is unrealistic to expect among competing service providers. 

Suggested Future Research Topics 

In this thesis, one layer of adaptive Reed-Solomon coding was used to recover the 

granularity losses. But still, there is a gap between the smoother rate-SNR curves we 

achieved from the Shannon capacity curve (see Figure 3-3). In recent years, the turbo 

code concept, initially proposed for recursive convolutional codes, has been extended to 

block codes and these are known as turbo product codes. In our case as well an addi­

tional RS code across the frequency can be employed in conjunction with the proposed 

ARSFGL scheme. Turbo product codes have been devised specifically for RS codes as 

well, but in existing designs the 2 RS codes that are used in product along the 2 dimen­

sions are fixed rate. The problem here however is that in our case one of the dimensions 
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of RS code will be variable rate. Designing a good turbo product code for such a scenario 

while keeping complexity practical will be challenging. But it will undoubtedly have the 

potential of reaching doser to the capacity of a frequency selective channel (not just an 

AWGN channellike existing turbo codes). This will be an interesting area to look into 

from the perspective of transmission. 

From the perspective of resource allocation, we saw that for the multiuser case, a 

competitive game theoretic approach for power allocation (and interference balancing) 

has provided encouraging results. However, the rate region is still inferior to the optimal 

multiuser rate region. We believe this sub-optimality can be combated using two ap­

proaches, while still retaining the merits of a game-theoretic approach (distributed and 

simpler implementation). The cause of suboptimality is that, given that the Nash equilib­

rium point is unique for a given set of total power constraints, the only way the rate com­

binations are varied is by varying the total power constraints of users. We have observed 

that this form of generating multiple rate combinations (i.e., multiple Nash equilibria) 

often results in significant portions of unused resources (power and bandwidth). This Cati 

be prevented by grouping users, and conducting games among these groups in sequenced 

stages to reuse these resources. Initial results of this approach have been very encourag­

ing and are reported in [42]. The second approach is, instead ofbeing purely competitive 

in the games, users can be slightly compassionate to other users. Competitive games im­

ply that each user makes the best possible move (i.e., power allocation) in response to 

other users' moves (i.e., their power allocations which is seen as interference). We can 

add compassion by each user knowingly performing a slightly less than its best possible 

move in response to other users. When this is done in a controlled and intelligent manner, 

it prevents deadlocks in the game, just like being open-minded prevents deadlocks among 

groups of people. This approach has shown the potential of betler utilization of resources 

and hence betler rates. 
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AppendixA 
Aggressive Loading in Bit-Rounding Algorithms 

Bit-rounding algorithms are practically attractive because they are relatively compu­

tationally efficient and implementationally realizable since they ensure integer-bit distri­

bution. However, due to the concave nature of the rate-energy relationship, these algo­

rithms often tend to load bits aggressively, which leads to the system BER constraint vio­

lation. To counter this violation we propose an efficient moderate algorithm based on bi­

ased bit round-off, which ensures BER fidelity and total power constraint equality, essen­

tial for rate optimality. 

A.1 Introduction 

Rate adaptive loading algorithms [4] for multicarrier systems [5] have the objective 

of maximizing the rate conveyed, while satisfying two main constraints - the total power 

constraint (TPC) and the performance or bit error rate (BER) constraint. The optimal 

power allocation for parallel independent Gaussian channels has long been known to be 

the 'water-filling' solution [7]. The Lagrange multiplier that leads to the water-filling so­

lution explicitly ensures that the TPC is satisfied with equality. Since the rate is a mono­

tonically increasing function of power, this equality is a necessary condition for rate op­

timality. However, while the water-filling method assumes infinite granularity, most 

known modulation schemes support only integer number of bits/symbol. With the inte­

ger-bit constraint, we now have an integer-programming problem, the optimal solution 

for which is a greedy-search approach [8]. But the extensive searching and sorting char­

acteristic of greedy methods renders them computationally impractical for usage as load­

ing algorithms in CUITent scenarios such as Digital Subscriber Loops (DSL) [31]. Hence 

popular methods involve heuristic approaches, which start with an 'infinite granularity' 

assumption for computational efficiency as their first step [4][9][30][31]. As a second 

step, they round these fractional bits off to the nearest integers, and adjust the energy ac­

cordingly to ensure BER constraint satisfaction. Though after the first step, the TPC is 

satisfied with equality, the equality is almost certainly violated in either direction after the 
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second step. Most algorithms deal with this problem by an ad-hoc rescaling of all subcar­

rier energies, by a common factor (which is treated as margin of the system) to re-ensure 

the TPC equality. This final rescaling factor or margin generally turns out to be negative 

(in dB). We point out that the negative margin leads to the unacceptable BER constraint 

violation. We identify the source of the problem to be the biased nature of the bit round­

off operation (resulting from the concavity of the rate-energy relationship). To rectify this 

problem, we propose an efficient algorithm to estimate the optimum biasing parameter 

for round-off operation. 

The remainder of this appendix is organized as follows. Section A.2 presents the 

overall optimization problem formulation and introduces the notation. Section A.3 pro­

vides a unifying review of bit-rounding algorithms and identifies the causes of the ag­

gression, which lead to BER constraint violation. Based on these causes, a computation­

ally efficient algorithm is proposed in Section A.4. Section A.5 presents the results ob­

tained in diverse VDSL-DMT scenarios and concluding remarks are made in Section A.6. 

A.2 Problem Formulation 

Consider a multicarrier system of K sub-carriers. Let ei be the controllable transmit 

power spectral density (PSD) and Pi be the normalized received SNR when ejl over the 

/h sub-carrier. The inter-carrier spacing /'if is assumed to be small enough for aIl the 

aforementioned PSDs to be nearly flat over each sub-carrier. The rate-function b((J) is 

defined as the maximum information rate in bits that can be supported at SNR of (J keep­

ing the BER below a certain target. b((J) is generally assumed to be the SNR-gap func­

tion. 

b ( (Y ) = bGAP ( (Y ) = log2 ( 1 + ~ ) (A.1) 

where f is the SNR-gap [4][5]. For QAM schemes f=9.8dB for a target BER of 10-7 [31]. 

The object function is the total supported rate, 

K 

R= ~)(p}8}). (A.2) 
}=1 

The traditional constraints of total power, P max, and integer bit constraint can be ex­

pressed as follows: 
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N 

power distribution: ~fL Ej :$; Pmax ,Ej ~ 0, 1 :$; j :$; K j:1 

integer-bit restriction: b (PjEj ) E W, 1:$; j :$; K 

where W is the set of non-negative integers. 

A.3 Aggressive Loading in Bit-Rounding Aigorithms 

(A.3) 

00 

(A.4) 

The Rate Adaptive (RA) loading algorithms (by Chow et al.) proposed in [4][30] and 

(by Leke et al.) in [9] start with an Optimum Transmit Bandwidth Identification (OTBI) 

procedure. This identification is done through a costly iterative procedure in [4] [30] (pre­

sented in Table A.l). In [9] a non-negative energy assignment criterion by virtue of 

which the identification is achieved in a single iteration over the subcarriers is introduced 

(presented in Table A.2). Furthermore, while initial energy distribution is flat in [4][30], 

algorithm in [9] starts with a water-filling distribution. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
9. 

Table A-l: OTBI Procedure for Chow's Aigorithms 

Sort {p)} ;:1 in descending order and save the index 

mappmg m Pindex 

bo1d = 0, i = K 

{e)o}i = ~nax /i~f and {e)o}K = 0 
):1 1+1 

{bj};:1 = log2(1 + ejpjjr) 

beurr = L~:lb) 
if beurr < bo1d 

Unsort {p)} ;:1' {ej } ;:1 and {bj } ;:1 using Pindex 

else 
i = i -1, bo1d = beurr 

10. GOTO Step 3. 
Il. end 
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1. 

2. 

3. 

4. 

5. 

6. 
7. 

8. 

9. 

10. 

Table A-2: OTBI Procedure for Leke's Aigorithm 

Sort {Pi} ~=I in descending order and save the in­

dex mapping in Pindex 

i=K 

NSR =~.( ~n~x + I-l J 
1 I1f r J=I Pj 

if Pi <ljNSR 

NSR=-.l_.(i.NSR-~J 
1-1 Pi 

i = i -1 , GOTO Step 4 

The common aspect of both algorithms is that following the OTBI, the bits allocated 

to each of the K subcarriers, {bi } ~=I obtained from the usage of SNR-gap function in (Al) 

are rounded to integers, i.e., 

(AS) 

and energy allocated to each subcarrier {Bj} ~=I is adjusted to make the BER nearly equal 

in the sub-carriers, leading to the saw-tooth energy distribution, i.e., 

- -Ib-I (b
A

) - -1 (2b) l)r Bi - Pi GAP i - Pi - . (A.6) 

However, following this adjustment of energies in (A.6), the total utilized energy is 

no longer equal to the total energy constraint of the systemPmax. To re-achieve this equal-

ity, in the final step of both the algorithms, {Bi } ~=I are multiplied by an energy re-scaling 

factor, 

(A7) 
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The energy re-scaling factor, GRF, can be treated as the additional perfonnance mar­

gin of the system. When G RF = l , it is truly the optimum point for the rate-maximization 

problem. However, given the integer bit constraint, this would be a rare occurrence. 

When G RF > 1, it is sub-optimal in tenns of rate-maximization, because the remaining 

{P max-l1flh} could have been used to load additional bits rather than enhancing the per­

fonnance margin using (A.7). 

A.3.1 Energy Rescaling Factor Problem 

The problem occurs whenGRF < 1. Due to (A.6), following the energy adjustment, the 

SNR on each loaded subcarrier is already at a bit transition boundary, i.e., at the mini-
A 

mum SNR required to satisfy the error rate constraint for the specifie hj loaded on that 

subcarrier. Thus, whenGRF < 1, each e} being reduced by (A.7), the BER constraint on 

each subcarrier will be violated. As a result, though the loading algorithm predicts that 

L hl bits can be supported, this bit distribution will violate the error-rate criterion. This 

effect is illustrated in the following example. For the sake of illustration, we consider the 

following simplified parameters: 

N = 4,r = 1,l1f = I,Pmax = l,pl = 40,P2 = 30,P3 = 20,P4 = 20. 

The values of the involved parameters for 4 sub-carriers are computed and recorded as 

follows: 

After OTBI After Bit 
After Rescaling 

j Procedure Rounding 

G
l 

hl hj Gj (A.6) Gj GjPj 

1 0.25 3.4594 3 0.1750 0.1579 6.3158 
2 0.25 3.0875 3 0.2333 0.2105 6.3158 
3 0.25 2.5850 3 0.3500 0.3158 6.3158 
4 0.25 2.5850 3 0.3500 0.3158 6.3158 
~ 1 Il.72 12 1.11 1 

After OTBI procedure, the TPC is satisfied with equality. But after rounding, the bit 

loading is aggressive and L Gj = 1.11 > P max= 1. Thus, the energy is finally rescaled by 

GRF =1I1.11=0.9. This reduces each G
l 

and causes the final SNR on each subcarrier to be 

101 



6.3158 < b~~p (3) = 23-1 =7. Thus on each subcarrier, the SNR being lower than the re­

quired threshold, the BER constraint will be violated and thereby so will the overall sys­

tem BER. 

A.3.2 Aggression due to SNR Gap Rate Function 

The function b~~p (x), '\Ix E W is supposed to provide the minimum SNR required to 

support 2x-QAM at a certain error rate requirement. In Figure A-1 we plot the minimum 

SNRs for various QAM constellations obtained from exact or near-exact formulae b~~R(') 

and b~~p(.) for 10-7 BER. For the exact minimum SNR calculation, we assume perfect 

gray encoded square QAM constellations [15] for even number of bits per symbol and 

impure gray encoded QAM cross-constellations for odd number ofbits per symboi [17]34. 

For most QAM constellations the SNR predicted by SNR-gap function is slightly more 

than the exact value. This is safe since in many practical situations perfect gray encoding 

is not used, e.g., in VDSL [3]. 

6or-'-~--r-'-~--r-.--.--rr~~========~~1 : : 1_ From SNR Gap 1: 
: 0 Exact 

11 -- ---!-- 1 

1 1 1 1 1 1 : :: : 

0:: 50 1.5~3 '-~---"'----~---i----T----:----~----:---- ----,---
~ 10 .... .. .. ~.... : :: ::: 

1 1 1 1 1 
1 1 1 1 1 1 

: 1 : 19 ---_ .. _ .. ,---- : 

! 40 - -r-T--~ ::~ :::::::t:: ~----:-----
§- ::: 182 ~ ___ -t ___ _ 

~ 30 : : : : : : /' 
~ .. --:----r- --:-- -:----:----7 --
:e. :::::/ 
et: : 1 : :/ 

zoo 
CIJ 20 - -~--- ~-- ~-r' 
E 
:::J 

E 
'c 
~ 10 --

2 3 4 5 6 7 B 9 10 11 12 13 14 15 
Number of bits/symbol in QAM constellation 

Figure A-l: Accuracy ofSNR-GAP Approximation 

--

--

--

--

--

34 For 8-QAM neither a square nor a cross-constellation is possible. However, a perfectly gray encoded 
rectangular QAM constellation [15] gives lower BER than the constellation in [3] for a given SNR. 
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The major problem occurs for 8-QAM and BPSK, where the SNR-gap function pre­

dicts 0.8328 and 1.5583dB less than what is exactly obtained. It is important to note that 

this negative margin of -1.5583dB sharply moves the BER from 10-7 to 0.7xlO-5
• This 

problem would affect any loading algorithm that relies on the SNR-gap rate function and 

the BER constraint would be violated whenever 8-QAM and/or BPSK are predominantly 

loaded. 

A.4 A Moderate Aigorithm with Biased Round-Off 

The case of SRi" < 1 occurs because the round-off process is inherently biased in 

terms of energy. The additional energy required to send 4 bits instead of 3.51 bits is pro­

portional to 24 
- 2351 = 4.6076; however, the energy saved by sending 3 bits instead of 

3.49 bits is proportional to 23
.
49 

- 23 = 3.2356. In other words, due to the logarithmic na­

ture of the SNR-gap function, rounding up by the same fractional amount of bits always 

costs more energy than rounding down. Thus, just after the OTBI, the equality 

!:J..fjj:jPmax is satisfied, but, due to its inherent bias, the rounding process generally makes 

!:J./i,t:j> P max, and hence S Rf· < 1 . To overcome this problem, we propose to negatively bias 

the round-off procedure by a parameter a E [0,0.5], which will make the SRF ~ 1, i.e., 

(A. 8) 

While a > 0 is essential to avoid the cases of S RF < 1, choosing an unreasonably 

large a (e.g., 0.3) will cause significant loss in rate. Hence, we select a that would make 

SRF approach 1. The pseudo-code to do this iteratively is presented in Table A-3. The 

OTBI in the first step can be performed using Table A-l or Table A-2. Bisection search is 
~ 

employed to find the optimuma. From (A.8) and (A.6), we can see that bj and Sj are 

monotonically decreasing functions of a, Vj: 1 ~ j ~ N;sj > O. Thus, (!:J.f.Lh) is aiso a 

monotonically decreasing function of a and due to (A.7) and Pmax being a constant, sRF 

is a monotonically increasing function of a. For a = 0.5, (A.8) is equivaient to 

b
J 

= l b
J 
J ~ b

J 
~ bj . Therefore, if Bj and Sj are the corresponding energy allocations, 
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the TPC is satisfied with equality after OTBI IJ./I;=I cj = Pmax andêj ~ c}ij E {1,2 .. K}; 

I::,flj:j'5.Pmax =:>C
RF 

~1. Ata=O,ER}< <1 (otherwise, the loop breaks in Table A-3): 

Fora = 0.5, ERF ~ 1 is guaranteed and in the intervala E [0,0.5], cRF is a monotonically 

increasing function ofa. Thus, there exists a unique aE[0,0.5] where ERr' =1 is estab­

lished and hence the convergence of the bisection search in Table A-3 is proven. This 

solves the energy rescaling factor problem in Section A.3 .1. 

Table A-3: Pseudocode for Moderate Aigorithm 

1. Perform OTBI which provides {bj } ;=1 

2. CRF = 0.9 ,amin = -0.5 , amax = 0.5 

3. while ICRF -II > 0.01 

4. a = (amin + amax }/2 
5. for j = 1 to K 

6. bj = round {b j -a} 

7. Allocate Ej using (A.9) 

8. end 

9. ERr' = Pmax/ I::,/I;=I Ej 

10. if ERr' < 1 

a max =a 

else 
a min =a 

end 
11. end 

To counter the aggression due to the SNR gap function anomaly for BPSK and 8-

QAM cases explained in Section III.B, we specifically identify the sets 

JI ={jE{I,2, .. ,K}:bj =1} and J3 =VE{1,2, .. ,K}:bj =3} and perform the following 

energy allocation and thereby guarantee BER fidelity: 

c j = b~bR(i)/ Pj,j E Jj,i = 1,3 or b;~p (bj )/ Pj,j fi. JI uJ3 (A.9) 
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A.5 Simulation Results 

We consider a VDSL-DMT system [3] with the parameters stated in Table A-4. In 

Figure A-2(a), the rate-reach curves for the algorithms in [30]-Sec. 4.3.4 and [4]-Sec. 

7.2.3.1 are presented. The bit rounding is conducted within the framework of the OTBI in 

[30], and after OTBI in [4]. For easier comparison in Figure A-2(b), the percent decrease 

of rate of various schemes with reference to algorithm in [30] is plotted. In the worst 

case, the rate reduction is only 4%. In Figure A-2(c) the BER achieved by the ioading 

resulting from various schemes is plotted. In most cases, the aggressive bit loading of 

[30] and [4] results in a significant system BER violation. In contrast, the BER of the 

proposed moderate algorithm (Table A-3) stays nearly flat and consistently below the tar·· 

get BER of 10-7
• 

Number of Subcarriers: 
Length of Cyclic Prefix: 

Upstream carriers: 

Downstream carriers: 
Transmit PSD constraint: 
Direction 
Loop Typel Length 
Noise Type 
Total Power Constraint 

Table A-4: Simulation Parameters [3][19] 

4096 
640 samples 
U1: 870-
1205 
Dl: 33-869 
None 
Downstream 

U2: 1972-2782 

D2: 1206-1972 

Loop 21 1500-9000ft. at steps of 100ft. 
AWGN(-140dBmlHz) + 20 VDSL xTalkers + Alien Noise F 
Il.5dBm 
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Figure A-2: Performance of Algorithms in Tables A-l and A-3 

Similar results for algorithm in [9] are presented in Figure A-3. Again, the moderate 

algorithm (Table A-3) can guarantee a nearly flat BER profile consistently below 10-7 

with a rate loss of less than 4% from the aggressive algorithm. Also we notice in Figure 

A-3( c) that the BER violations of algorithm in [9] have higher magnitude than algorithms 

in [30] and [4], e.g., at 5400ft., algorithm in [9] results in a BER of 10-6. This occurs be­

cause algorithm in [9] is based on water-filling. The energy allocation slowly approaches 

zero for higher frequency, thus a higher percentage of subcarriers load BPSK, which 
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causes the violations due to the anornaly explained in Section A.3.2. Due to the gray en­

coding, the BER results are slightly optirnistic. 
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Figure A-3: Performance of Algorithms in Tables A-2 and A-3 

9000 

In applications such as VDSL-DMT, where the constellation labeling does not fol­

low gray coding [3], aH the BER curves would shift slightly higher. Thus BER violations 

of the aggressive algorithms would be higher and at particular points will be drastic, e.g., 

at 2600ft. in Figure A-2 or 5400ft. in Figure A-3. However for the rnoderate algorithms, 

Figure A-2(c) and Figure A-3(c) show that there is sorne rnargin to absorb the effects of 

non-gray coding while still keeping the BER below 10-7
• In addition, the nearly fiat na-
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ture would ensure that no drastic violations occur at any point. If we consider the testing 

procedure in [19], when the measured BER is within the range of the 0.85xlQ-7 to 

1.15xlQ-7, the test case is declared as 'marginal'. But any BER above 1.15xlQ-7 would b~ 

declared certain failure. Thus most of the cases resulting from the aggressive algorithms 

shown in Figure A-2 and Figure A-3 would fail. 

In Figure A-2(d) and Figure A-3(d), the GRF in dB, is presented. As expected from 

Section A.3.1, for the aggressive algorithms GRF < 1 (and notGRF ~ 1) is the predomi­

nantly occurring case. As aimed in Table A-3, GRF for the moderate algorithms stay close 

to 1 (or OdB). 

The average number of additional iterations taken by Table A-3 is 4.8 for algorithm 

in Table A-l, and 4.6 for algorithm in Table A-2 averaged over 75 channel realizations. 

A.5Summary 

In this appendix, we have highlighted the fact that bit-rounding algorithms tend to be 

aggressive in loading bits due to the concave nature of the rate-energy relationship. This 

problem and the SNR gap function anomaly for BPSK and 8-QAM cause significant 

BER violation for the 75 different VDSL-DMT channel realizations that were tested. We 

proposed a moderate algorithm with biased bit rounding coupled with the explicit han­

dling of BPSK and 8-QAM. The proposed algorithm was seen to require only 4-5 addi­

tional iterations on an average and with only 4% reduction in rate in the worst-case was 

able to guarantee BER below the target for aH 75 tested cases when compared to its ag­

gressive counterparts. 
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Appendix B 
Karush-Kuhn-Tucker (KKT) Conditions 

Consider the following general optimization problem: 

,<min /(x) 
f (x)_O;/E{I,2, ... ,QI 

(P) 

where XE IRv and the Q+ 1 functions /(.),/ (.),/2 (.), ... ,/Q (.) are differentiable map-

pings from IRv to IR. j(x) is the objective function to be minimized and 

/ (.),/2 (.), ... ,/Q (.) are the Q inequality constraints of the problem. The problem in (P) 

is called a convex pro gram ifall the functions i.e., /(.),/1 (.),/2 (.), ... ,/Q (.)are convex. 

o 
The Lagrangian of the above problem is: L ( x, u]' u2' •. , uQ ) = / ( x) + L UJi ( X ) • 

i=1 

Then we have the following theorem which characterizes the optimality of a point x *. 

THEOREM: Consider the pro gram (P) where /(.),/ (.),/2 (.), .. ,/Q (.) are assumed to 

be convex and differentiable. Also assume that the constraints satisfy Slater's condition35
• 

Then a point x * is globally optimal if and only if: 

1. x* is feasible, i.e., /1 (x') ~ 0,/2 (x') ~ O, ... ,/Q (x') ~ O. 

2. There exists a set of multipliers uI ' u2 ' ••• , uQ ; such that the following hold: 

Y'xL( x· ,up u2 , •• ,uQ ) = 0 

UJi (x') = O;Vi E {1,2, .. ,Q} 

u; ~ 0; Vi E {1,2, .. ,Q} 

Proof: The proofis available in almost every book on optimization, e.g., [41]. 

(KKT) 

35 A set of constraints / (x) ::; 0; i E {l, 2, ... , Q} is said to satisfy Slater' s condition, if there exists a Slater 

point x' such that / (x') < 0; Vi E {l, 2, ... , Q} . 
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The equations in (KKT) system are known as KKT conditions. We provide an example 

below ofhow these can be used, to find an optimal point: 

Example: 

Consider the above convex problem. Given the notation above, here in this example, we 

have V = 2; Q = 1; x = [xl' x2 f ; f (x) = x; + x~ ; / ( x ) = x] + x2 + S. The constraint satisfies 

Slater's condition because x' = [-S, -sf is a Slater point, i.e., / (x') < o. Th\:: corre-

sponding Lagrangian is L ( x] , x2 ' u] ) = x; + x~ + u] (x] + x2 + S) . 

For an optimal x*, the KKT conditions have to be satisfied. 

8L(x' ,u]) 2' 0 --'--'----'.:... = x] + u] = 
ax-] 

8L( x' , u]) = 2x; + u] = 0 
8x2 

u] (x; + x; + S) = 0 
u] ~o 

The only feasible solution to the above system is x' = [-2.S, 2.Sr and the corresponding 

Remarks: 

• I( aH the conditions stated in the above theorem are satisfied and further the objective 

functionj(.) is STRICTL y convex, then x' is not only the global optimum it is also 

the unique global optimum. Notice that all the continuous rate functions we have con­

sidered in this thesis are STRICTL y convex36
• 

• For aH the problems considered in this thesis it is always easy to find a Slater point 

and hence repeated references are avoided in discussions. We state here that aH the 

constraints in the optimization problems considered in this thesis satisfy Slater's con­

dition. 

36 A twice continuously differentiable function is strictly convex ifand only if the Hessian of the function is 
positive definite. 
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