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Abstract
The complex and dynamic three-dimensional genome structure is crucial for regulating

cellular activity. Recent advancements in chromosome conformation capture (3C) meth-

ods and high-resolution imaging techniques allow us to study the 3D genome at unprece-

dented scales. Among these techniques, Hi-C has emerged as a prominent tool over the

past decade. The widespread usage of Hi-C has revealed the hierarchical structures of

the genome, thereby deepening our understanding of the organization and function of

3D genomes. However, analyzing Hi-C data remains a challenging task, mainly due to

the sequencing coverage of data produced in most Hi-C experiments is insufficient.

In this thesis, we proposed a reference panel enabled framework to tackle the data

insufficiency issue in Hi-C data analysis. This pioneering approach represents the first

instance of harnessing the vast amount of existing Hi-C datasets while analyzing a given

study Hi-C dataset. Within this framework, we developed three applications to enhance

a Hi-C contact map, annotate chromatin loops, and identify nested topologically associ-

ating domains (TADs) from insufficiently sequenced Hi-C data. Algorithms developed in

this thesis leverage ideas from attention mechanisms, representation learning, dynamic

programming, and non-parametric statistics. The introduction of a panel of reference

Hi-C samples significantly improved prediction accuracy across three diverse Hi-C data

analysis tasks under a wide spectrum of benchmarking scenarios. Applying our tools to

Hi-C data from various cells deepened our understanding of the formation of TADs and

chromatin loops, unraveling key insights into these essential genomic features. Taken

together, this thesis provides a new paradigm to perform 3D genomics study at high res-

olution.
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Abrégé
La structure tridimensionnelle complexe et dynamique du génome est cruciale pour la

régulation de l’activité cellulaire. Les progrès récents dans les méthodes de capture de

conformation chromosomique (3C) et les techniques d’imagerie à haute résolution nous

permettent d’étudier le génome 3D à des échelles sans précédent. Parmi ces techniques,

Hi-C est devenue un outil important au cours de la dernière décennie. L’application

généralisée du Hi-C a révélé les structures hiérarchiques du génome, approfondissant

ainsi notre compréhension de l’organisation et de la fonction des génomes 3D. Cepen-

dant, l’analyse des données Hi-C reste une tâche difficile, en grande partie parce que les

données produites dans la plupart des expériences Hi-C sont insuffisantes.

Dans cette thèse, nous avons proposé un cadre activé par un panel de référence pour

résoudre le problème de l’insuffisance des données dans l’analyse des données Hi-C.

Cette approche pionnière représente le premier exemple d’exploitation de la grande quan-

tité d’ensembles de données Hi-C existants tout en analysant un ensemble de données Hi-

C d’étude donné. Dans ce cadre, nous avons développé trois applications pour améliorer

une carte de contact Hi-C, annoter les boucles de chromatine et identifier les topologi-

cally associating domains (TAD, domaines d’association topologique) imbriqués à partir de

données Hi-C insuffisamment séquencées. Les algorithmes développés dans cette thèse

exploitent des idées issues des mécanismes d’attention, de l’apprentissage des représenta-

tions, de la programmation dynamique et des statistiques non paramétriques. L’introduction

d’un panel d’échantillons de référence Hi-C a considérablement amélioré la précision des

prévisions dans trois tâches d’analyse de données Hi-C diverses dans un large éventail

de scénarios d’analyse comparative. L’application de nos outils aux données Hi-C de di-

verses cellules a approfondi notre compréhension de la formation des TAD et des boucles
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de chromatine, révélant ainsi des informations clés sur ces caractéristiques génomiques

essentielles. Dans l’ensemble, cette thèse fournit un nouveau paradigme pour réaliser des

études génomiques 3D à haute résolution.
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Chapter 1

Introduction

1.1 Overview

Over the past decades, scientists have increasingly realized the importance of the three-

dimensional (3D) genome architecture in cellular activity [1]. Recent advances in imaging

techniques [2] and in chromosome conformation capture methods [3, 4, 5] have revealed

the complex and dynamic 3D configuration of the genome during cell differentiation and

development, which significantly deepen our understanding of 3D genomics [1, 6]. Al-

though these new techniques are widely used in 3D genomics studies, analyzing these

experimental outputs is still in its infancy.

The human genome is very tiny but contains billions of base pairs. We are unable

to use a microscope to visualize the whole genome at high resolutions [2]. The most

widely used technology in 3D genome study is Hi-C [3], which is a sequencing-based

technique. In a Hi-C experiment, DNA fragments in close proximity are ligated and

identified through massively parallel sequencing, and the number of ligated fragments

spanning two genomic regions reflecting loci proximity are stored in a matrix known as a

contact map. Due to the unavoidable high sequencing cost in carrying out high-coverage

Hi-C experiment, most published Hi-C experiment only captures hundreds of millions of

contact pairs, which is small in comparison to the number of contact pairs that need to be
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used to accurately estimate the whole genome level contact frequency in a Hi-C contact

map. A typical Hi-C experiment only produces a very sparse Hi-C contact map, which

represents a significant barrier in the downstream analyses.

Since the introduction of the original Hi-C protocol (i.e., dilution Hi-C) [3], researchers

have developed improved protocols of the chromosomal conformation capture experi-

ment, such as in-situ Hi-C [4] and micro-C [5]. These improved protocols are still ineffi-

cient in producing a high-coverage Hi-C contact map. We anticipate that this challenge

will remain at least until the sequencing cost drops significantly. Hence, the processing

and analysis of Hi-C raw data, characterized by its sparse and large volume, will continue

to require sophisticated algorithms and models.

Current tools in computational genomics focus on the analysis of individual Hi-C data

sets of interest, without taking advantage of the fact that several hundred Hi-C contact

maps are publicly available. Their performance is limited by the sequencing coverage of

the Hi-C data in the analysis. Although several tools [7, 8, 9] have been proposed to han-

dle very low coverage Hi-C contact maps, there is still room for improvement. In this the-

sis, we introduce a reference-panel enabled data analysis framework into computational

3D genomics and develop three applications for different tasks using this framework.

Each application outperformed alternative tools at the time of publication.

This chapter begins with an overview of the biological background on the 3D genome

and wet lab experiments involved in capturing 3D genome conformation. We then pro-

vide an extensive review of existing tools in computational 3D genomics. Last, we recap

bioinformatics applications in other domains that motivate our research and essential

machine learning background for this thesis.
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Figure 1.1: The hierarchical organization of the 3D genome. This figure is reproduced from Hansen
et al. [10].

1.2 Multiscale 3D genome organization

The DNA sequences (i.e., chromosomes) of the human genome would span approxi-

mately 2 meters if stretched end-to-end. As illustrated in Fig. 1.1, these linear pieces need

to undergo extensive packaging to fit within the micron-scale nucleus and are folded at

multi-scales. At the small scale, nucleotides are folded into a double helix. The first con-

densation level happens when 147 base pairs (bps) of nucleotides wrap around a histone

octamer to form a 11 nm nucleosome. At the intermediate scale of 10 kb to several Mb,

chromosomes can fold into topologically associating domains (TADs), chromatin loops,

and A/B compartments [1].

TADs are kilo- to mega-scale genomic regions with strong interactions among DNA

fragments within the same domain, accompanied by weaker interactions across adjacent

domains [11, 4]. These domains manifest as square-shaped regions with enriched interac-

tion frequencies along the main diagonal of Hi-C contact maps generated through Hi-C
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experiments (Section 1.4, Fig. 1.2a). TADs are first identified as mega-scale regions from

low resolution Hi-C contact maps [11, 4]. As high-resolution Hi-C contact maps and im-

proved computational tools become available, it is now clear that smaller subTADs, span-

ning sub-megabase scales and characterized by higher interaction frequencies, are nested

within the TADs in mammalian genomes [6]. This hierarchical organization highlights the

intricate and multi-scale nature of chromosomal architecture [1]. Although mechanisms

underpinning TAD formation and their functional roles remain poorly understood, a pre-

vailing hypothesis suggests that some TADs are created by the loop extrusion mechanism

(which will be introduced in a later paragraph) [12]. Other mechanisms such as compart-

mentalization can also contribute to TAD formation [6].

Chromatin loops are defined as pairs of genomic loci that are sequentially distant but

come into spatial proximity through a mechanism hypothesized to be loop extrusion [1].

These loops manifest as blob-shaped patterns associated with increased interaction fre-

quencies in the off-diagonal region of Hi-C contact maps (Fig. 1.2b). This long-range in-

teraction can be mediated by various proteins, including CTCF and cohesin, which play

essential roles in loop formation. The occurrence of convergent CTCF binding motifs

leads to the termination of the loop extrusion process. Thus, pairs of loop anchors of-

ten colocalize with convergent CTCF binding sites [1]. Additionally, CTCF motif pairs in

other directionality are also observed at loop anchors [4]. Some loops that occur at TAD

corners contribute to the formation of TADs, which are referred to as "loop TADs" [6].

Two types of compartment, denoted as A and B, were initially identified as mega-

scale structures based on both spatial proximity and epigenomic features of chromatin

at 1 Mb resolution [3]. Within these compartments, genomic fragments in one type of

compartment tend to interact more often with other fragments belonging to the same type

of compartment. Thus, a plaid pattern emerges if we transform a Hi-C contact map into

a correlation matrix by defining entry (i, j) as the Pearson correlation between column i
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(a) (b) (c)

Figure 1.2: Examples of Hi-C contact map annotated with (a) TADs, and (b) chromatin loops. (c) a
correlation matrix transformed from a Hi-C contact map.

and j of the Hi-C contact map (Fig. 1.2c). A compartments ("active" compartments) often

associate with open chromatins and are gene-rich and transcriptionally active regions.

In contrast, B compartments ("inactive" compartments) are gene-poor, transcriptionally

inactive regions characterized by more condensed chromatin [3]. More recently, higher-

resolution Hi-C data suggested that A/B compartments can be further subdivided into a

minimum of six subcompartments [4, 13].

At the largest scale, each chromosome tends to occupy a particular region within the

nucleus to form chromosome territories [3, 10]. These chromosome territories enable ge-

nomic regions of one chromosome to interact more frequently with regions from the same

chromosome than from other chromosomes.

Despite the hypothesis of how DNA polymer organized in 3D space was described at

early as in 1882 [15], and many computational [16, 17, 18, 19, 20] and wet-lab experiments

[3, 4, 5, 21] have been developed to study this question, the way chromatin folds within

the nuclei remains poorly understood. Several hypotheses have been proposed to model

3D genome structures, among which, the loop extrusion model (Fig. 1.3) [12, 22, 19] is

the most widely accepted hypothesis. Though the loop extrusion model is still unproven,

this model succeeds in explaining the formation of TADs and loops identified from Hi-C
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Figure 1.3: An overview of the cohesin-mediated loop extrusion model. This figure is reproduced
from Zhang et al. [14].

experiments [22]. In the loop extrusion model, a cohesin complex (composed of SMC1,

SMC3 and RAD21) binds to a DNA molecule and start to reel flanking regions of the

binding site into a loop. Conseqently, the formation of loops is a dynamic process and the

size of a chromatin loop would gradually increase as the cohesin complex progressively

extrude more nucleotides into the loop. The loop extrusion process terminates when the

cohesin complex reaches convergently oriented CTCF [14].

1.3 Biological Importance of 3D genome organization

These multi-scale structures play a vital role in gene-gene interaction and gene regula-

tion, both within cells and throughout cellular differentiation [1]. The primary functions

of TADs are self-interaction and insulation. They restrict chromatin interactions, such

as enhancer-promoter interactions, within their respective domains (i.e., self-interaction)

[23]. their boundaries are barriers that inhibit enhancers within one TAD from establish-

ing interactions with promoters situated outside of their designated domain (i.e., insu-

lation). In addition, TAD boundaries correlate with many linear genomic features. For

example, they are enriched for CTCF (CCCTC-binding factor), transcription factors, and
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histone marks such as H3K4me3 and H3K36me3 [1]. Chromatin loops can also facilitate

the regulation of gene expression. They enable enhancer and promoter interactions by

bringing distant genomic elements into close contact.

Apart from controlling transcription, the spatial arrangement of the genome is vital

in cell development and disease, such as DNA replication, cell division, [24] and cancers

[25]. Aberrations in chromatin folding, modifications in interactions among regulatory

elements can result in the misregulation of crucial genes linked to cell growth, differen-

tiation, and apoptosis and can cause the development of diverse cancers [26, 25, 27]. For

instance, specific TAD fusion or the inversion of a piece of DNA fragment around specific

TAD boundaries can cause interactions between enhancers and non-target promoters and

consequent impact gene expression [28].

1.4 Capturing Chromosome Conformation

Most early studies of genome organization rely on the combination of fluorescent in-situ

hybridization (FISH) and imaging experiments to assess the spatial position of several

genomic loci inside the nuclei [30]. While this remains an excellent tool for the direct

measurement of spatial locations of genomic fragments, and throughput and resolution

has been improved in recent years [2, 31], most studies in the past decade are conducted

with chromosome conformation capture (3C) [32] and a series of subsequent approaches

including 4C [33], 5C [34], Hi-C [3], micro-C [35], ChIA-PET [36], and HiCHiP [37] (Fig.

1.4). The development of these capture techniques is a major breakthrough in 3D genome

study and their applications have deepen our understanding of 3D genome organization.

These approaches allow us to study a 3D genome at different scale (i.e., chromatin seg-

ments, whole genome, etc.) under various resolutions (from several Kb to several Mb).

This section provides an overview of these capture-based approaches.
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Figure 1.4: The hierarchical organization of the 3D genome. This figure is reproduced from
Jerkovic & Cavalli [29].
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Hi-C [3] is a tool to capture spatial interactions of DNA fragments at the scale of the

entire genome (i.e., all versus all). It and its derivatives have become the most influential

techniques in 3D genome organization research in the past decade. Hi-C was initially

introduced by Lieberman-Aiden et. al. in 2009 [3] and has been improved several times

[4, 38]. It is widely used in identifying topologically genome structures including com-

partments, topologically associating domains, and chromatin loops. Generally, a Hi-C

library preparation involves the following six steps: (1) Crosslinking spatially close chro-

matin segments with formaldehyde; (2) Digesting chromatin with a restriction enzyme.

This step is usually performed with a 4-cutter enzyme to achieve a high resolution; (3)

Filling the 5’-overhangs of digested fragments with nucleotides including one nucleotide

marked with biotin (i.e., biotinylated residue), and ligating the blunt-end fragments; (4)

fragmenting all samples by sonication and reversing the crosslinking; (5) Isolating and

selecting biotinylated ligation junctions with streptavidin beads; (6) Amplifying selected

samples to generate a Hi-C library. The amplified Hi-C library is finally subjected to se-

quencing. The first three steps are performed in solution in the original Hi-C protocol

(i.e., dilution Hi-C) [3], but are performed in intact nuclei (i.e., in situ Hi-C)[4] now.

The in situ protocol enhances the efficiency of capturing true contacts; however, the

resolution is constrained by the choice of restriction enzyme in use. The average length of

fragments produced by a 4-cutter enzyme is 256 bp, so no matter how we increase the se-

quencing coverage of a Hi-C experiment, the finer-scale structures that we can study are

restricted by the distribution of the enzyme-cutting sites. To overcome the limitation in-

troduced by restriction enzyme digestion, we can perform a micro-C experiment [35]. As

illustrated in Fig. 1.4, micro-C differs from Hi-C in the first two steps. It performs double

cross-linking and uses micrococcal nuclease (MNase) to digest chromatins. This mod-

ification allows micro-C to capture more cis-interactions and produce more uniformly

distributed fragments with a length as short as ∼147 bp.
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To study genome-wide chromatin interactions mediated by a protein of interest, we

can perform enrichment-based experiments such as HiCHIP (Hi-C Chromatin immuno-

precipitation) [37] and ChIA-PET (Chromatin Interaction Analysis with Paired-End Tag

sequencing) [36]. HiCHIP differs from the Hi-C protocol by introducing immunoprecipi-

tation after fragmentation. ChIA-PET combines ChIP-based enrichment and chromosome

conformation capture (3C) techniques to produce results that are similar to a HiCHIP ex-

periment. To study the fine-scale genome organization at specific regions (i.e., promoter,

etc.), techniques such as Capture-C [39] have been developed to capture contacts in spe-

cific genomic regions. These approaches can produce very high coverage Hi-C contact

map at genomic regions of interest. The above-described techniques are now widely used

to study 3D genome conformation at the whole genome level, interactions mediated by a

protein of interest, or predefined genomic regions [29].

Recently, several single-cell Hi-C (scHi-C) technologies have emerged for the exam-

ination of 3D genome features [40, 41, 42, 43]. These methodologies enable researchers

to investigate cell-to-cell variability and the dynamics of chromatin conformation at the

single-cell level. Nevertheless, it is noteworthy that contact maps generated through these

scHi-C approaches exhibit a high degree of sparsity with a substantial fraction of missing

interactions [44].

Meanwhile, other approaches such as GAM [45], SPRITE [46] and GPSeq [47] have

also been developed in recent years. Hi-C fails at detecting high-order interactions as

well as long distance interactions. In contrast, these non-capturing based approaches

do not rely on proximity ligation and overcome these limitations as observed in a Hi-C

experiment.
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1.5 Processing, storage and visualization of chromatin con-

tact maps

These sequencing-enabled capture approaches generate a tremendous number of reads

that require additional steps to create a Hi-C contact map. Although this procedure is so-

phisticated and computationally intensive. Mature pipelines [48, 49, 50] exist for creating

contact maps. Most of these pipelines are built for processing Hi-C data but can be used

to analyze other capture-based data with minimal adaption.

The raw output of a Hi-C experiment is a set of read pairs. A typical workflow in

Hi-C data analysis involves quality control, aligning reads to a reference genome with

short read alignment algorithms [51, 52], contact (i.e., read pair) filtering, splitting the

whole genome into fixed-size bins, and counting the number of read pairs spanning two

given bins. These read counts indicate pairwise proximity among chromatin fragments.

We represent them as a matrix known as a contact map. Several formats exist to store a

contact map [49, 48]. Among these formats, .cool [49] is most widely used in recent years.

Due to the existence of various biases in a Hi-C experiment, the contact map is only

a poor estimation of chromatin interactions. An essential step is to normalize the Hi-C

contact map to infer an unbiased estimation of the interaction frequencies from the read

count matrix. There are three widely used approaches: Removing bias in the contact map

via loci coverage normalization [4]; Modelling bias in a generalized linear model and

finding the bias by solving a Poisson or negative binomial regression [53]; Removing bias

implicitly via matrix balancing such that sums of each row and column are equal [4]. At

least one of these data normalization procedures is included in most Hi-C data analysis

pipelines.

In practice, Hi-C contact maps are visualized as heatmaps. For example, Fig. 1.5 shows

several Hi-C contact maps with and without normalization at different resolutions (i.e.,
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Figure 1.5: Hi-C contact map examples. a, a whole genome Hi-C contact map. b, Hi-C contact
maps for small regions at different resolutions with and without data normalization.

different bin sizes). Hi-C contact map visualization tools such as HiGlass [54], Juicebox

[55], and HiCExplorer [56] allow user to visualize Hi-C contact maps (with and without

normalization) with annotations (i.e., chromatin loops, TADs, etc.). In addition, tools such

as WashU Epigenome Browser [57] and Nucleome Browser [58] allow users to visualize

Hi-C contact maps, imaging data, and 3D genome structures simultaneously.

1.6 Computational Tools and Challenges in 3D genomics

data analysis

We can classify existing bioinformatics tools for Hi-C (or Hi-C like) data analysis into two

categories, basic tools for Hi-C data processing and analysis tools for Hi-C contact maps.

This thesis focuses on the second category. A typical coverage (i.e., containing 200M-

300M valid read pairs) Hi-C contact map is large and sparse. For example, a genome-

wide Hi-C contact map contains more than 600, 000 rows and columns with most of its

entries being zero at 5kb resolution. Thus, the analysis of Hi-C contact maps is challeng-

ing. There are several tools that exist to analyze Hi-C contact maps. However, in the con-

text of high resolution Hi-C data analysis, most of them only perform well in analyzing
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high-coverage (i.e., containing billions of valid read pairs) Hi-C contact maps. Although

several approaches have been introduced to address the issue of insufficient sequencing

depth [7, 59, 60], there is still room for improvement. In the following paragraphs of this

section, we provide an overview of existing tools for three different Hi-C data analysis

tasks.

1.6.1 Chromatin loop annotation

Chromatin loops that bring distant loci into close contact play essential roles in biological

processes, for example, they permit the interaction between enhancers and promoters. In

3D genome studies, the most widely used approach to study chromatin loops is using

a Hi-C experiment. The sequential distance between two loci involved in a chromatin

loop ranges from tens to thousands of kilobases. In a Hi-C contact map, a chromatin loop

appears as a blob-shaped pattern with more interactions than its surrounding area in

off-diagonal regions of the matrix (Fig. 1.2a). There are global enrichment approaches, lo-

cal enrichment approaches, and non-enrichment approaches that exist for loop detection

from Hi-C contact maps. (i) In a global enrichment approach, we define loops as statisti-

cal significant chromatin contacts. Existing tools, such as Fit-Hi-C [61] and HiC-DC [62],

usually fit a global model to estimate the background distribution of the interaction fre-

quency and identify statistically significant contact pairs by comparing observed values

to expected values from the fitted model. The global models are usually defined as gen-

eralized linear models with variables including genomic distance between contact pairs,

GC content, and mappability of contact pairs, etc. Global enrichment methods assume

contact pairs are independent and identically distributed. They do not take surrounding

patterns into consideration, thus they identify loop clusters instead of discrete loops. (ii)

In contrast, a local enrichment approach takes local patterns into consideration. Most
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of the recently developed loop annotation tools are local enrichment approaches. Pio-

neer tools such as HiCCUPS [4] compare each contact pair to surrounding regions and

identify a contact pair with a significantly larger value than its surrounding regions as a

loop. These approaches usually require users to set several data coverage sensitive pa-

rameters and can only detect loops that satisfy a set of user-defined filtering criteria. (iii)

Recently, some researchers started treating loop annotation as a special type of pattern

detection problem. They use computer vision or supervised machine learning techniques

to detect loops. For example, Mustache [18] treats loop recognition as a blob-shaped

object detection problem. Chromosight [16] defines a generic kernel to represent loops

and uses this kernel to scan for loops from a Hi-C contact map. These generic pattern-

based approaches work well on data with sufficient contact pairs but underperform at

low sequencing depths [17]. More recently, several data-driven approaches have been

developed to detect loops. For instance, Peakachu [17] is a supervised learning approach

trained to recognize loops using data from orthogonal experiments as target values. These

data-driven approaches learn loop patterns from data. Although several tools exist for

loop annotation, their performances are limited by the sequencing depth of the sample in

the study.

1.6.2 Topologically associating domain annotation

TAD annotation has attracted the most attention among all tasks in computational 3D ge-

nomics in recent years. TADs are regions with an increasing level of interactions among

loci within the same region. The most widely used approach to detect TADs is to use

a Hi-C experiment [63]. We can annotate TADs from a Hi-C contact map by detecting

squares along the diagonal that associate with more contact pairs than neighboring re-

gions (Fig. 1.2b) [6]. Initially, researchers annotated TAD from Hi-C datasets at low reso-

lution and identified TADs as megabase-scale structural elements [11]. As more and more
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high-coverage Hi-C contact maps became available, it became clear that TADs are hierar-

chically organized and can actually range from tens to hundreds kilobases in mammalian

chromosomes [64].

Existing tools [65, 66, 67, 4, 68, 7, 11, 69, 70] for TAD annotation can be classified as

either one-dimensional (1D) score-based and or matrix-based approaches. The former,

such as TopDom [65], Insulation Score (IS) [69], OnTAD [71] assign each locus a score

representing the strength of a potential TAD boundary. Subsequently, these tools detect

TAD boundaries by identifying local peaks among these scores. Matrix-based methods

directly utilize Hi-C data in two-dimension. For instance, Arrowhead [4] transforms the

Hi-C contact map into an arrowhead-shaped feature map and detects TADs by search-

ing for corners in the transformed map. Despite the numerous TAD annotation tools

available, the detection of TAD hierarchy and the precise location of TAD boundaries at

high resolution remains challenging. Most TAD callers are designed for dense contact

maps. As reviewed in previous studies [63, 72, 73, 74], many TAD callers are sensitive

to variations in resolution and sequencing coverage. Furthermore, TAD predictions often

demonstrate limited consensus among different tools.

1.6.3 Contact map enhancement

Due to sequencing costs, we usually perform Hi-C experiments at the coverage of con-

taining 200M-300M valid read pairs. However, Hi-C data analysis usually requires Hi-

C contact maps to contain 500M or even billions of read pairs. To fill the gap, we can

produce an in silico enhanced contact map using a low-coverage Hi-C contact map as in-

put. This procedure is known as contact map enhancement or super-resolution inference.

Several tools exist for contact map enhancement. Contact map enhancement is primar-

ily driven by deep learning algorithms. Most of the existing contact map enhancement
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tools are inspired by research in image super-resolution and adopt models originally pro-

posed for image analysis. However, there are significant differences between contact map

enhancement and image super-resolution. First, we define resolution as Pixels Per Inch

(PPI) in image analysis. The size of the input (i.e., low-resolution image) is smaller than

the size of the output (i.e., high-resolution image) in the image super-resolution analy-

sis. In contrast, we define resolution as the number of nucleotides in each fixed bin in

the Hi-C contact map. The size of the input and the output in contact map enhancement

analysis are equivalent. Both the input and the output are at the same high resolution.

Moreover, image super-resolution aims at producing a realistic image that is similar to

the low-resolution input; contact map enhancement aims at enhancing signals (i.e., TAD,

loop, compartment, etc.) in a Hi-C contact map to facilitate downstream analysis.

Most of existing deep learning tools for contact map enhancement such as HiCPlus

[75], HiCNN [76], HiCGAN [9], DeepHiC [8], and DeepLoop [59] are convolutional neu-

ral networks. During contact map enhancement, these tools split contact maps into non-

overlapping blocks, enhance each block separately, and assemble the enhanced blocks

into whole genome predictions. The first tool, HiCPlus [75], only contains one hidden

layer and is trained from low-coverage and high-coverage contact map pairs by minimiz-

ing the mean square error (MSE) loss. Later, several improved models with more layers

and residual connections are proposed [76, 59, 77, 9, 8]. As reviewed in Liu et al. [9],

HiCPlus’s training procedure leads to trained models that overly smooth contact maps.

Some of the recent approaches introduced the generative adversarial training loss [9, 8]

to alleviate the over-smoothness issue. However, these generative adversarial networks

(GAN) tend to introduce artifacts in predictions.

In addition to deep learning tools, several conventional tools [78, 79] also exist. They

treat contact map enhancement as imputation and enhance Hi-C signals by fitting a Markov

Random Field or performing a random walk on a graph induced from a Hi-C contact
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map.

1.7 Reference panel enabled analysis in biology

A common strategy in analyzing biological data, especially for data of insufficient cover-

age, is to complement the input with external data. This strategy is known as reference

panel enabled analysis and plays an important role in analyzing different types of data

in bioinformatics [80, 81, 82]. Even though hundreds of Hi-C contact maps have been

produced, this strategy was absent in computational 3D genomics prior to the work pre-

sented in this thesis. This section presents several motivating examples of reference panel

enabled analysis in other biological domains.

1.7.1 Genotype imputation

Genotype imputation [83, 80] is the most well-known reference panel enabled application

in bioinformatics. It infers unobserved genotypes for a set of samples. It is an important

step in genome-wide association study (GWAS) and population genetics. We achieve im-

putation by using existing haplotypes as a reference panel. Among a group of (unrelated)

individuals, the haplotypes of one individual over a DNA segment are related to other

haplotypes by being identical by descent (IBD). We can model IBD with a genealogical

tree. This tree is segment specific due to recombination. Although different imputation

methods vary in detail [83, 80], the general idea is to identify or utilize the underlying

IBD segments between study samples and reference haplotypes and use IBD segments to

impute missing alleles in study samples.
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1.7.2 Genome resequencing

Resequencing is a special case of the reference panel enabled analysis as its reference

panel only contains a single reference genome. Genome sequencing plays an essential

role in biology research in the 21st century. To know the genome sequence of a given

sample, we can perform de novo sequencing, or resequencing [84]. The de novo sequenc-

ing is computational and memory intensive and expensive. When reference genomes for

the species of interest exist, we prefer to perform genome resequencing. Instead of as-

sembling the complete genome from short reads, we can align short reads to a reference

genome in resequencing and readout the genome sequence for the sample of interest from

the alignment profile [51]. It is sufficient to include a single sample in this reference panel

as genome sequences are highly conserved within species. However, using multiple ref-

erence genomes (i.e., pangenome) can improve variant detection [85].

1.7.3 Homology modeling

Before deep learning achieved great success in protein structure modeling [86, 87], ho-

mology modeling was the most accurate approach for inferring protein structures. Pro-

tein structures are more conserved than sequences, thus, proteins with similar sequences

often have similar structures [88, 89]. Homology modeling relies on this observation and

predicts structures with the use of known homologous structures [88]. It begins with com-

paring the target sequence to a database of proteins with known structures (i.e., reference

panel) to search for all proteins related to the target sequence and selecting protein tem-

plate(s) from the searching result. One widely used approach to achieve this is to perform

pairwise sequence-sequence comparison [90]. Both a single optimal or multiple templates

can be used to perform homology modeling with different applications [88, 86]. Then, the

target-template alignment is performed to detect regions well-aligned with the template

[91]. With the target-template alignment, the 3D modeling step interactively builds the 3D



Chapter 1. 19

structures for well-aligned regions with the template’s structural information. Unaligned

regions are usually built by other techniques such as loop modeling and side-chain op-

timization. Next, model optimization might be performed to refine the initial structure.

The above steps may be repeated several times before reporting and evaluating the final

structure [88]. Homology modeling is less popular in recent years, but the idea of using a

reference panel of homologous data to improve protein modeling is widely used in many

deep learning applications [92, 93, 87].

1.7.4 Reference panel enabled framework in computational 3D genomics

The successful application of each reference panel-enabled approach in these motivat-

ing examples is due to the conservation of sequences or structures at different levels.

The increase in the size of the reference panel generally leads to improve performance

in all examples. 3D genome conformations are cell-type specific, but similar structures

may be observed in different cells at specific loci. In addition, previous studies have

demonstrated that some of the topological structures are conserved across cells [1, 94,

11]. In this thesis, we proposed a reference panel enabled framework for computational

3D genomics and developed three different applications to solve different tasks in the

3D genome study. This framework takes advantage of the facts that (i) several hundred

human Hi-C contact maps are publicly available, and (ii) the vast majority of topological

structures are conserved across many cell types. In this framework, we define a collection

of existing Hi-C contact maps as a reference panel. In a given region, we combine the

study sample and reference samples that display similar structures as the study sample

to make predictions.
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1.8 Attention mechanism in deep learning

This section provides a brief introduction to the attention mechanism in deep learning

neural networks. Two of our reference panel enabled applications in computational 3D

genomics rely in part on this mechanism to select samples that are similar to the study

sample from the reference panel. We assume that the reader is already familiar with in-

troductory notions in deep learning, which are covered in textbooks such as Deep Learn-

ing [95]. The attention mechanism in deep learning was initially introduced to improve

encoder-decoder RNNs (recurrent neural networks) for sequence-to-sequence tasks [96].

This mechanism allows the decoder to focus on different parts of the input sequence at

different decoding steps. This mechanism was soon introduced to other domains [97, 98]

and became the key component of transformers [99]. Although we express the attention

mechanism as a weighted sum of a set of vectors, different formulas for the attention

mechanism exist in the literature. This thesis follows Vaswani et al. [99] to define the

attention mechanism in terms of key (K), value (V), and query (Q) as follows:

Attention(Q, K, V) = softmax(
QKT
√

dk
)V (1.1)

This is known as the Scaled Dot-Product Attention. dk is the dimension of query and key

vectors. 1√
dk

is the scaling factor. For large dk, the dot product QKT could be very large;

this scaling factor is used to stabilize the gradient computation.

Given a set of input embeddings X (i.e., embeddings for all words in a sequence-to-

sequence model, etc.), and an embedding Z (i.e., the output of the previous decoding

step in a sequence-to-sequence model, etc.), the Scaled Dot-Product Attention seaks to

compute a transformation of X such that different Z leads to different transformations.

To achieve this, we first convert X to (K,V) pair, and Z to Q. This step can be defined as

network layers of any type. Then, we use the Scaled Dot-Product Attention to compute



Chapter 1. 21

such transformation. The Scaled Dot-Product Attention assigns more weights to values

that associate with keys more similar to the query. There is no restriction on how to

specify K, V, and Q. In self-attention [99], we derive K, V, and Q from the same set of

embeddings. In multimodal learning [100], we can derive K, and V from one type of data

(e.g., image), and Q from other modalities of data (e.g., text). We can also compute K

and Q in the same way, which allows us to select instances that are similar to the query

instance from the key-value pairs in a soft manner.

The attention mechanism selectively focuses on more important and relevant features

from many features. Thus, it enables a network layer to have a very large receptive field

to capture long range interactions [101].

In biological data analysis, many applications have been developed using the atten-

tion mechanism [102]. For example, in protein structure prediction, deep learning tools

such as Alphafold [92] and models inspired by Alphafold [103, 104, 105] are transform-

ers with the attention mechanism. In gene expression prediction, tools such as Enformer

[106] are also attention models. In single cell data analysis, attention mechanism is also

frequently used to perform different tasks [107, 108, 109]. In computational 3D genomics,

this mechanism has already been used in applications such as Higashi [60], C.Origami

[110], and GrapHiC [111].

1.9 Thesis roadmap

The remaining chapters of this thesis are organized as follows.

In Chapter 2, we propose a novel deep learning approach, RefHiC, that uses a ref-

erence panel of Hi-C samples to improve topological structure (TADs, and loops) an-

notation from a study sample. It is the first application of our reference panel enabled

framework in computational 3D genomics. It is also the first tool that can leverage in-

formation from additional Hi-C contact maps to facilitate the analysis of a given sample
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of interest. We demonstrated that the introduction of a reference panel of Hi-C samples

significantly improves TAD and chromatin loop annotations from both low- and high-

coverage Hi-C contact maps, with the most striking improvement observed in handling

very low-coverage Hi-C data.

In Chapter 3, we explore how to apply our reference panel enabled framework to

address other challenges in Hi-C data analysis. Here we focused on the contact map

enhancement task. We want to balance local and global information when predicting

per-pixel value of the Hi-C contact map. Our approach, called RefHiC-SR, adopts the

U-Net [112] as the backbone architecture. We extensively modified the original model

to incorporate a reference panel into the computational graph. We demonstrate that the

introduction of a reference panel of Hi-C samples can also improve contact map enhance-

ment significantly.

In Chapter 4, we propose RobusTAD, a non-parametric approach to detect nested TAD

from a study sample while leveraging information from a reference panel of Hi-C data.

We demonstrate that the introduction of a reference panel of Hi-C samples allows Robus-

TAD to better annotate TADs from a low-coverage Hi-C contact map.

Last, in Chapter 5, we summarize our findings and discussed future directions in com-

putational 3D genomics.

1.10 Author contributions

This thesis includes the full text and figures of three scientific articles, each of which has

been published, or is currently under review, in a peer-reviewed journal or conference

proceeding. These articles are listed below in the order they appear in this thesis. I am

the first author of each one.

Chapter 2
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Chapter 2

Reference panel guided topological

structure annotation of Hi-C data

Yanlin Zhang, and Mathieu Blanchette *

School of Computer Science, McGill University, Montréal, Québec, H3A 0E9, Canada

Preface

The Hi-C approach to mapping chromosome conformation within the nucleus of cells

and identifying topological structures (i.e. loops and TADs) is rapidly gaining popular-

ity. It has a significant impact in the fields of 3D genomics, gene regulation, and cancer.

Indeed, several high-quality bioinformatics tools have been published recently, aiming to

annotate chromatin loops and/or TADs from a given HiC data set. Yet, the precise and

reliable identification of these spatial patterns at high resolution remains inadequately re-

solved. Existing tools only take the sample of interest as input, so their performance is

limited by the sequencing coverage of the study sample.

In this chapter, we introduce RefHiC, an attention-based deep learning framework

that leverages a reference panel of Hi-C datasets to annotate topological structure from

a given study sample. To our knowledge, RefHiC is the first tool to take advantage of
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the paradigm of reference-panel aided analysis, which has proved very powerful in a

variety of other types of genomics data analyses. Compared to existing approaches, we

show RefHiC provides greatly improved accuracy for loop and TAD annotation across

different cell types and sequencing depths.

The rest of this chapter is the entire text from the following article:

Zhang, Y., & Blanchette, M. (2022). Reference panel guided topological structure annota-

tion of Hi-C data. Nature Communications, 13(1), 7426.
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2.1 Abstract

Accurately annotating topological structures (e.g. loops and topologically associating do-

mains) from Hi-C data is critical for understanding the role of 3D genome organization

in gene regulation. This is a challenging task, especially at high resolution, in part due

to the limited sequencing coverage of Hi-C data. Current approaches focus on the anal-

ysis of individual Hi-C data sets of interest, without taking advantage of the facts that

(i) several hundred Hi-C contact maps are publicly available, and (ii) the vast majority of

topological structures are conserved across multiple cell types. Here, we present RefHiC,

an attention-based deep learning framework that uses a reference panel of Hi-C datasets

to facilitate topological structure annotation from a given study sample. We compare

RefHiC against tools that do not use reference samples and find that RefHiC outperforms

other programs at both topological associating domain and loop annotation across differ-

ent cell types, species, and sequencing depths.

2.2 Introduction

Chromosome conformation capture assays such as Hi-C [3], and micro-C [5] have been

developed to measure the spatial proximity between DNA fragments in genomes as av-

erage pairwise contact frequency in cell populations. These approaches have revealed a

hierarchical spatial organization of topological structures of the genome inside nuclei.

Among them, topological associating domains (TADs) are kilo- to mega-scale regions

with strong interactions between DNA fragments within the same domain and weaker

interactions across domains [6]. Loops bring into contact distant loci such as promoters

and enhancers [4]. These topological structures are dynamic both within cells [113] and

during cellular differentiation [1]. They are essential components of gene regulation.
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While Hi-C and its variants remain the most popular approaches to map chromatin

contacts on a genome-wide scale, the analysis of the data they produce is challenging,

in large part due to the moderate sequencing depth (typically 200-500 Million valid read

pairs) compared to the size of the contact frequency matrices that need to be estimated.

Numerous TAD annotation tools exist that rely on various statistical significance tests

[63, 72, 114]. This includes the popular Insulation score (IS) [69], a widely used approach

for TAD boundary detection, and more robust variants such as RobusTAD [115]. Still,

the performance of all of these approaches is relatively poor, especially at low cover-

age, due to stochastic noise and biases [63]. Loop detection is even more challenging [4,

17] due to their small size in contact maps. Fit-Hi-C [61] and HiC-DC [62] fit a global

model to estimate the background distribution of the contact frequency and identify sta-

tistically significant contact pairs by comparing observed values to expected values from

the fitted model. These global enrichment approaches evaluate each contact pair inde-

pendently without modelling neighboring patterns and identify loop clusters instead of

discrete loops. In contrast, HiCCUPS [4] compares each contact pair to surrounding re-

gions and identifies locally enriched contact pairs as loops. It requires users to set several

sequencing depth sensitive parameters and can only detect loops that satisfy the user de-

fined filtering criteria. Both loop and TAD predictions have been shown to benefit from

prior smoothing of Hi-C matrices, e.g. using HIFI [78].

Recent approaches tackle topological structure annotations using computer vision and

machine learning techniques. For instance, Mustache [18] treats chromatin loop recog-

nition as a blob-shaped object detection problem. Chromosight [16] employs expert-

designed templates to represent each type of topological structures. These generic pattern-

based approaches work well on data with sufficient contact pairs but underperform at low

sequencing depth. In contrast, Peakachu [17] is a supervised learning approach trained

to recognize loops using data from orthogonal experiments as target values.
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Many approaches have been introduced to address the issue of insufficient sequencing

depth. Grinch [7] proposed a graph-regularized non-negative matrix factorization algo-

rithm to smooth sparse Hi-C contact map while detecting TADs. DeepLoop [59] identifies

significant interactions from sparse Hi-C contact maps by denoising and enhancing loop

signals with a neural network. Higashi [60], a single cell Hi-C data analysis tool, rep-

resents a cohort of scHi-C data as a hypergraph, learns to predict missing hyperedge to

impute missing interaction, and then performs structural annotation on imputation.

A common strategy in analyzing biological data is to complement data about the sam-

ple of interest with data of the same type obtained previously for other samples. This

strategy has proven effective for genotype imputation [80] and phasing [81], as well as

protein structure prediction [116], among others. Even though hundreds of Hi-C experi-

ments have been conducted, they have never been analyzed jointly for topological struc-

ture annotation. Here we introduce RefHiC, a reference panel informed deep learning ap-

proach for topological structure (loop and TAD) annotation from Hi-C data. RefHiC uses

a reference panel that contains high-quality Hi-C data of different cell types. For each po-

tential contact in the study sample, it uses an attention mechanism [117] that determines

which of the reference samples are most relevant, and then makes a prediction based on

the combined study sample and attention-weighted reference samples. We demonstrate

that RefHiC enables significant accuracy and robustness gains, across cell types, species,

and coverage levels.
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Figure 2.1: RefHiC architecture. Overview of the RefHiC neural network for loop and TAD
boundary scoring, followed by clustering or peak finding algorithm for discrete loop and TAD
predictions (shown as blue circles).

2.3 Results

2.3.1 Overview of RefHiC

RefHiC takes as input a Hi-C contact map for a study sample and a reference panel of Hi-

C contact maps (provided with the tool). It produces highly reliable loop or TAD bound-

ary annotations for the study sample. RefHiC is based on two components (Fig. 2.1 and
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Methods): (i) a neural network predicts loop (resp. TAD boundary) scores for every can-

didate pair (resp. locus) based on the local contact sub-matrix, combining information

from the study sample and the reference panel; (ii) a task-specific component selects one

representative loop/TAD boundary from each high-scoring cluster. For human, the ref-

erence panel contains 30 uniformly processed Hi-C contact maps, each with at least 350

million contact pairs (Table 2.1). For mouse, it consists of 20 such maps (Table 2.2). Nor-

malization of reference Hi-C samples is unnecessary as the network automatically learns

to handle batch effect and coverage differences from the training data.

To obtain a loop or TAD boundary score for bin pair (i, j) (with i ̸= j for loops and i = j

for TAD boundaries), an encoder projects the sub-matrices centered at (i, j) in both the

study sample and reference panel to low-dimensional embeddings. An attention mod-

ule [117] computes a combined representation of all reference samples as a weighted sum

of their embeddings, with weights based on their local similarity to the study sample’s

embedding. Finally, a multi-layer perceptron predictor computes loop or TAD boundary

score from the concatenation of the study sample’s embedding and the attention output.

The process is repeated for every pair (i, j) to obtain a scoring matrix (resp. vector), from

which discrete loop (resp. TAD boundary) predictions are extracted.

Training RefHiC (i.e. choosing the weights of the encoder, fully connected layers in

attention module, and head) is achieved using a variety of downsampled versions of a

high-coverage Hi-C data set for GM12878 [4]. Following Salameh et al. [17], we used as

prediction targets a set of long-range loops identified at 5 kb resolution by either ChIA-

PET on CTCF [118] or RAD21 [119], as well as by HiCHIP on SMC1 [37] or H3K27ac [120].

Using multiple experimental data sets ensures a broad coverage of various types of loops.

Importantly, although RefHiC is trained on GM12878 data, the model learned is not

cell-type specific, and we will demonstrate in later sections that the same model can be

used to annotate structures in many other cell types without retraining and with similar
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accuracy. The same trained model can also be used to make predictions on mouse Hi-C

data, based on our reference panel for that species.

In our experiments, we used human chromosomes 11 and 12 for validation, chromo-

somes 15-17 for testing, and the rest of the autosomes for training. To prevent potential

data leakage, all results reported here pertain only to the three test chromosomes.

2.3.2 RefHiC accurately detects chromatin loops from Hi-C contact maps

We first assessed the loop prediction accuracy of RefHiC on a downsampled Hi-C data set

(500M valid read pairs) for human GM12878 cells [4]. We then applied Chromosight [16],

Peakachu [17], Mustache [18], and HiCCUPS [4] to annotate loops from the same data

with default parameters. For all tools, we set the same 5% FDR cutoff whenever possible.

The sets of predicted loops are quite different among tools, with RefHiC making the

largest number of unique predictions (Fig. 2.2a and Fig. 2.7). Aggregate peak analysis

(Fig. 2.2b) shows that loops detected by Chromosight, RefHiC, and Mustache had a more

diffuse loop center compared to those identified by Peakachu and HiCCUPS. Finally,

the distribution of distances between loop anchors predicted by RefHiC and Mustache

most closely resembled that of ChIA-PET/HiCHIP-supported loops (Fig. 2.2c), whereas

Peakachu, HiCCUPS, and Chromosight predicted more short-range interactions.

We then evaluated predicted loops by comparing them to loops revealed by loop-

targeting experimental data, allowing up to 5 kb shift. To facilitate interpretation, we

considered the top 1700 predictions from each tool by adjusting the FDR or loop score

cutoff. Fig. 2.2d-f, and Fig. 2.8a show that RefHiC produced 1250 CTCF-supported loops,

784 RAD21-supported loops, 588 SMC1-supported loops, and 213 H3K27ac-supported

loops. In contrast, other tools yielded 20-52% fewer validated loops. Comparison against

DeepLoop [59] reveal similar numbers (Section 2.11.1 and Fig. 2.9). Finally, to delineate

the impact of using a reference panel, we evaluated a version of RefHiC that operates
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Figure 2.2: Comparison of RefHiC, Chromosight, Peakachu, HiCCUPS, and Mustache on
GM12878 Hi-C data (500M valid read pairs). a, Venn diagram of loops predicted by different
tools. b, Aggregate peak analysis profiles for target (ChIA-PET and HiCHIP identified) and an-
notated loops. c, Cumulative distance distributions of predicted loops. RefHiC’s predicted loop
distance distribution closely resembles that of ChIA-PET/HiCHIP-supported loops (target). d-f,
Number of ChIA-PET/HiCHIP-supported loop predictions, among the top 1700 predictions made
by RefHiC and other tools, for test chromosomes chr15, chr16, and chr17, compared against CTCF
ChIA-PET (d), RAD21 ChIA-PET (e), and SMC1 HiCHIP (f). RefHiC’s loop predictions matches
those experimental data better than predictions made by other tools on test chromosomes. g,
Occupancy of ChIP-seq identified CTCF binding site as a function of distance to predicted loop
anchors. h, Orientation of CTCF motifs at predicted loops. i, Transcription factor (TF) occupancy
at predicted loops (RefHiC and Chromosight only). Each dot is a TF or histone modification
(based on 133 ENCODE ChIP-seq data sets for GM12878), whose x-coordinate is the fraction of
loop anchors containing a binding/modification site and the y-axis is the fold enrichment against
genome-wide frequency. Most TFs are more strongly enriched at RefHiC loop predictions than at
Chromosight loop predictions.

exclusively based on the study sample (Section 2.11.2); while this reference-free predictor

obtains state-of-the-art performance (or better), it is far from the reference panel based

RefHiC (Fig. 2.10). As shown in Fig. 2.2g, predicted loop anchors detected by RefHiC

were strongly enriched with the CTCF binding motifs. TAD-forming loops have been

previously shown to be associated with the presence of convergent CTCF binding sites
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at loop anchors [113]. Indeed, 50% of RefHiC’s loop predictions are associated with such

pairs of sites; significantly more than for other tools (Fig. 2.2h).

Among loops detected by each tool, 46% of RefHiC, 39% of Chromosight, 50% of

Peakachu, and 9% of Mustache were not detected by other tools (Fig. 2.2a). Fig. 2.11

shows that RefHiC-specific predictions are not only more numerous but also more accu-

rate when evaluated against CTCF/RAD21 ChIA-PET, and SMC1 HiCHIP data, though

slightly less accurate than Chromosight and Peakachu on H3K27ac HiCHiP data. Chro-

mosight and Peakachu were slightly better than RefHiC when being evaluated against

H3K27ac HiCHiP data. A deeper analysis of the properties of loops predicted by each

tool is presented in Section 2.11.3 and Figs. 2.12-2.14.

To further study the properties of loops predicted by each tool, we performed tran-

scription factor (TF) and histone modification enrichment analysis around loop anchors.

Fig. 2.2i and Fig. 2.8b,c show enrichment for known loop-mediating proteins (SMC3,

RAD21, YY1, TRIM22, CTCF, and ZNF143) was strongest for RefHiC compared to Chro-

mosight and Peakachu, and comparable to Mustache.

Combined, these results demonstrate the overall superior prediction accuracy of RefHiC

on GM12878 data (500M read pairs) compared to other approaches.

2.3.3 RefHiC performs well across cell types and species

Although RefHiC is trained on human GM12878 data, we demonstrate here that the

same trained model performs well across other human and mouse cell types. We ap-

plied RefHiC and other tools (5% FDR) to Hi-C data from human K562, IMR90 [4], and

cohesin-depleted HCT-116 [121] cell lines (test chromosomes 15-17 only), as well as mouse

embryonic stem cells (mESC) [122] (all chromosomes). Since the IMR90 data set has twice

the sequencing coverage of the K562 data set, all tools identified more loops in the for-

mer, with Chromosight and RefHiC making the largest number of predictions (Fig. 2.3a).
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Figure 2.3: Loop detection in Hi-C data from human K562, IMR90, and cohesin-depleted HCT-
116 cells, as well as mouse ESC. a, Number of loops identified in Hi-C datasets obtained in each
data set (human data: test chromosomes 15-17 only; mouse data: all autosomes). Note that in
HCT-116, one would not expect any cohesin-mediated loops. b,c, Number of ChIA-PET/HiCHIP-
supported loop predictions, among the top predictions made by RefHiC and other tools on K562
Hi-C data, for test chromosomes chr15-17, compared against CTCF (b) and RAD21 ChIA-PET
(c) data. d, Occupancy of ChIP-seq identified CTCF binding sites in K562 cells as a function of
distance to predicted loop anchors. e,f Same as (b,d), but for data obtained in IMR90 cells. g,h,
Same as (b,d), but for data obtained in mESC (all autosomes).

However, RefHiC is notably more robust to sequencing depth, with a decrease of only

22% from IMR90 to K562, compared to 34-66% for other tools.

Cohesin-depleted HCT-116 cells are expected not to contain any loop. Indeed, RefHiC,

Peakachu, and Mustache made fewer than 24 loop predictions on this data, whereas Chro-

mosight and HiCCUPS had many more likely false positives.

For the mESC data, which contains only 124M valid read pairs, we used the same

RefHiC model trained from human GM12878, but with a mouse reference panel made of

20 mouse Hi-C data sets (Table 2.2). Applied to the complete set of autosomes, RefHiC

identified more than twice as many loops as any other tool, indicating that it is much

more sensitive than other tools on low-coverage data.

We then assessed these tools’ accuracy using loops revealed by orthogonal experi-

ments. As before, we included the top 1700 predictions on test chromosomes from each

tool by adjusting FDR or loop score cutoff. For K562 data, as shown in Fig. 2.3b,c, RefHiC

outperformed other tools as it identified more CTCF- and RAD21-supported loops. The
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pileup analysis of CTCF binding sites around predicted loop anchors (Fig. 2.3d) shows

occupancy 25% higher for RefHiC than for Peakachu and Mustache, and 51% higher than

for Chromosight and HiCCUPS. Similar results are obtained on IMR90 data (Fig. 2.3e,f),

although its very high coverage enables competing approaches to get somewhat closer

to RefHiC’s performance. For the mESC data, Fig. 2.3g,h indicates that RefHiC outper-

formed alternative tools significantly as it detected as twice as many CTCF-supported

loops as alternative tools and its loop anchor predictions are more strongly enriched for

CTCF binding sites than other tools. To further study the ability of RefHiC to identify

loops in samples that are very different from those present in its reference panel, we

generated reference panels excluding samples that are closely related to study sample

GM12878, or even entirely unrelated (e.g. from the incorrect chromosome). Section 2.11.4

and Fig. 2.20 show that RefHiC performs comparably or better than other tools even un-

der this less favourable scenario. Together, the results show that RefHiC achieves superior

performance across both human and mouse cell types.

2.3.4 RefHiC is robust to sequencing depths

To benchmark RefHiC’s ability to detect loops from Hi-C data at different sequencing

depths, we produced downsampled versions a high-coverage GM12878 Hi-C combined

contact map [4] and applied different loop prediction tools (default parameters; FDR

cutoff 0.05 when possible). Although lower sequencing depths led to fewer loop predic-

tions for all tools (Fig. 2.4a), RefHiC was most robust to sequencing depths. For example,

RefHiC identified 731 loops from low coverage Hi-C data (62.5M contact pairs) – 32%

of the results obtained from 2,000M contact pairs. In contrast, other tools are largely

unable to make sensitive loop predictions at this low sequence depth. Fig. 2.4b shows

that RefHiC detected highly concordant sets of loops across sequencing depths: ∼85% of
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Figure 2.4: Detection of loops at lower sequencing depths. a, Number of loops predicted by
different tools at 5% FDR, for decreasing number of valid intra-chromosomal read pairs. b, Venn
diagram of loops predicted from Hi-C data of different sequencing depths by RefHiC. c-f, Number
of RefHiC loop predictions supported by experimental GM12878 ChIA-PET/HiCHIP data (test
chromosomes chr15-17) at different levels of sequencing coverage: CTCF ChIA-PET (c), RAD21
ChIA-PET (d), SMC1 HiCHIP (e), H3K27ac HiCHIP (f).

loops annotated from Hi-C data containing 1,000M, 500M, and 250M contact pairs over-

lapped those annotated from the 2,000M contact pairs data set. This percentage was even

higher (90%) on low-depth Hi-C data (i.e. 125M, and 62.5M contact pairs). This shows

that not only is RefHiC capable of detecting a good number of loops in low coverage data,

but it also does not introduce significantly more false positives. Fig. 2.4c-f confirm that

RefHiC predictions on low depth data sets maintain a very high level of accuracy when

evaluated against loops mediated by CTCF, RAD21, SMC1 and H3K27ac. In short, this

means that predictions made on low coverage data are nearly as specific as those made

on the full data, but are simply less sensitive. At all sequencing depths, RefHiC achieved

higher accuracy than alternative tools (Fig. 2.10). This superior robustness, accuracy, and

reliability is attributable to the use of reference panel.
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Figure 2.5: Comparison of tools’ ability to identify rare and common loops. Loop frequency
within the reference panel is assessed based on Mustache and Chromosight’s predictions on indi-
vidual reference Hi-C data sets.

2.3.5 RefHiC identifies both rare and common loops

Since RefHiC uses a reference panel to complement data from the study sample, one may

expect that it performs best on common loops (i.e. those present in a large number of cell

types from our reference panel). To determine the prevalence of each loop, we ran Mus-

tache and Chromosight on our reference samples and merged their predictions (allowing

a 2-bin shift; the two tools failed on 10 of the 29 samples as one or both detected less

than 10 loops, leaving a total of 19 samples annotated). We then assessed the frequency

at which loops predicted by RefHiC on GM12878 were found in the 19 reference sam-

ples. The distribution of reference panel frequencies among loops predicted by RefHiC

resembled that of Peakachu, Mustache, and Chromosight (Fig. 2.5). For all these tools,

the majority of highest-scoring loops were found to be present across nearly all samples,

suggesting that constitutive, non-cell-type specific loops have features that make them

easily predictable. Still, more than 20% of loops predicted by RefHiC are rare (found in
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at most 5 of the panel data sets), and 4% are specific to GM12878, demonstrating that

the use of a reference panel does not strongly bias the results in favor of common loops.

Still, those proportions are slightly lower than those obtained with the three other tools,

which could be explained by a combination of a weak bias toward common loops for

RefHiC, and an increased false-positive rate (which usually will appear as cell-type spe-

cific loops) for the other tools. Indeed, the number of GM12878-specific loop predictions

that are supported by experimental data is actually comparable across tools (Fig. 2.15).

Peakachu identified more cell-type specific validated loops than other tools, but with a

lower specificity than RefHiC. Among loops found to occur at least once in the panel,

RefHiC gets more ChIA-PET/HiCHIP-supported predictions than alternative tools (Fig.

2.15e,g-t), except that Peakachu identified more H3K27ac HiCHIP supported loops (Fig.

2.15f). Finally, loops predicted by HiCCUPS were very different, containing more of what

looks like GM12878-specific loops (i.e. loops absent from the reference panel), many of

which are likely false-positives.

2.3.6 RefHiC accurately detects TADs

RefHiC is a versatile framework for topological structure annotation. Here we show that

RefHiC can detect TADs once trained using as target values RobusTAD TAD bound-

ary scores obtained on a high-coverage HiC data set (see Methods). We first compared

RefHiC’s performance on downsampled versions of a GM12878 Hi-C contact map to that

of two established TAD boundary predictors (RobusTAD [115] and insulation score [69]).

Fig. 2.6a,b and Fig. 2.21 show that at 500M valid read pairs, RefHiC and RobusTAD suc-

ceed at identifying a similar total number of CTCF-supported TAD boundaries, although

RefHiC’s specificity is much higher considering that its total number of predictions (at

5% FDR) is approximately 40% less than with RobusTAD. Figs. 2.16 and 2.17 show that at
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Figure 2.6: Detection of TAD boundaries and TADs on GM12878 Hi-C data. a, TAD bound-
ary pileups for left boundaries predicted by RefHiC. b, Number of predicted left TAD bound-
aries supported by ChIP-seq identified CTCF binding sites (positive strand only), for RefHiC,
RobusTAD, and Insulation score. c-i, Benchmarking RefHiC against 13 other TAD callers on TAD
annotation. c, Number of TADs predicted by different tools, and proportion of predicted TAD
boundary pairs that are supported by CTCF ChIA-PET data. Size (d), and mean interaction fre-
quency (observed/expected) (e) of TAD predictions. The number of TADs used to generated box
plots are provided in c. In each box, the upper edge, central line and lower edge represent the
75th, 50th and 25th percentile, respectively. Upper whiskers represent 75th percentile+1.5× in-
terquartile range (IQR), lower whiskers represent minimum values, and dots represent samples
above the 75th percentile+1.5×IQR. f, Enrichment of CTCF, RAD21, and SMC3 peak signals at
TAD boundaries. g, Fraction of TADs predicted by each caller with a significant (high or low)
H3K27me3/H3K36me3 log10-ratio (FDR < 0.1). Jaccard index of predicted TAD boundaries (h)
and Concordance between TADs (i) predicted on high-coverage GM12878 data (2B valid read
pairs) compared to those predicted on downsampled Hi-C data. Note: a-g are based on a down-
sampled GM12878 Hi-C data set that containing 500M valid read pairs).

very low coverage (125M and 62.5M valid read pairs), RefHiC achieves both higher sen-

sitivity and specificity. In all cases, both RefHiC and RobusTAD outperform Insulation

score.

We then benchmarked RefHiC against 13 TAD callers (TopDom [65], Armatus [66],
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deDoc [67], Arrowhead [4], HiTAD [123], EAST [124], OnTAD [71], CaTCH [68], Grinch

[7], Domaincall [11], GMAP [125], HiCSeg [126], and IC-Finder [127]) on test chromo-

somes 15-17. Because there is no universally accepted gold-standard TAD annotation to

compared against, we evaluated various aspects of the predictions made by the different

tools. We first compared the number and size of TADs identified by each tool (Fig. 2.6c,d).

Although the number varies from 347 to 3,499, most tools (including RefHiC) identified

1,000-1,500 TADs, with median TAD size around 130 kb for RefHiC. TADs are domains

with high levels of internal interaction, so one measure of TAD annotation quality is the

average observed/expected ratio within TADs (Fig. 2.6e). RefHiC’s TAD predictions are

among the densest in interaction frequencies. We then calculated the enrichment for

ChIP-Seq signals of structural proteins known to be associated with TAD boundaries

(i.e. CTCF, RAD21, and SMC3)[72] at predicted TAD boundaries and nearby (Fig. 2.6f

and Fig. 2.22). Based on this metric, RefHiC is only outperformed by Arrowhead, which

identifies 3 times fewer TADs. Histone marks usually correlate with regulatory activ-

ity, and most TADs are typically enriched for either activation (H3K36me3) or repres-

sion (H3K27me3) marks, but rarely both. We calculated the ratio between H3K27me3

and H3K36me3 within each TAD prediction and counted the fraction of TAD predictions

where this ratio was particularly large or small (see Methods). RefHiC is among the top

three TAD callers under this metric (Fig. 2.6g), only bested by tools that predict a much

smaller number of TADs (Arrowhead and CaTCH). Many TADs in mammalian genomes

exhibit a strong contact between their left and right boundary loci, forming a visible TAD

corner; they are often referred to as loop domains. We compared predicted TAD cor-

ners against CTCF ChIA-PET data (Fig. 2.6c). RefHiC is the best-performing tool, with

556 (36.5%) TADs corners supported by CTCF ChIA-PET data (allowing 1-bin mismatch).

Finally, we evaluated the prediction reproducibility at both the boundary and full TAD

levels when TAD callers are applied to Hi-C data containing different numbers of valid
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read pairs. RefHiC proved much more robust than other tools at the TAD boundary pre-

diction task (Fig. 2.6h) and better than most (but slightly worse than GMAP and HiCSeg)

at the full TAD prediction task (Fig. 2.6i). This last observation is likely is due to the fact

that pairing predicted TAD boundaries to obtain full TAD predictions is a step that does

not currently take advantage of RefHiC’s reference panel.

2.4 Discussion

Here we present RefHiC, a deep learning framework that utilizes a reference panel to

guide the annotation of topological structure from a given study sample. In contrast, ex-

isting topological structure detection algorithms are study-sample based (i.e. reference-

free) detectors and hence their ability to reliably detect topological structures from typi-

cal sequencing depth Hi-C data is limited. Our extensive evaluation demonstrated that

RefHiC outperforms existing tools for both TAD and loop annotations, in data sets rang-

ing from very high to very low sequencing coverage, with the most striking improve-

ments observed in the latter case. This benefit comes at little cost in terms of RefHiC’s

ability to identify cell-type specific loops.

Importantly, although RefHiC is a machine-learning based model trained primarily on

GM12878 Hi-C data, the same trained model is effective on different cell types, at different

levels of coverage, and across human and mouse. Indeed, all results reported here for

loop prediction were obtained with the same trained model, which is available in our

GitHub repository. This model can be used for mammalian Hi-C data analyses without

retraining. Retraining would only be needed if other types of structures are sought, or if

the experimental protocol used to generate the study sampled differed significantly from

the standard in situ Hi-C protocol. In such cases, RefHiC would require retraining but

would still be able to take advantage of our Hi-C reference panel, i.e. the reference panel

does not need to be of the same type as the study sample. However, applying RefHiC to
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Hi-C data obtained from other species might be more challenging, due to the lacking of

reference samples, than reference-free alternative tools.

Our method has several methodological contributions. The key innovation of RefHiC

is the introduction of a Hi-C reference panel. Our attention-based framework enables

RefHiC to identify and take advantage of the reference samples that exhibit similar local

structures as the study sample at the locus pair of interest. This approach based on local

similarity significantly outperformed an analogous approach based on global similarity

(Section 2.11.5). Besides, we introduced contrastive pretraining [128] and data augmen-

tation by downsampling Hi-C contact map techniques to train a single model capable of

handling Hi-C data of different sequencing depths. We believe this training procedure

can improve many machine learning applications for Hi-C data analysis [75, 17, 76, 129].

In principle, reference-based approaches such as RefHiC have the potential of becom-

ing increasingly accurate as larger compendia of high-quality Hi-C data sets obtained

from diverse cell types become available and get included in the panel. However, our

analyses (Fig. 2.18) suggest that limited benefits for the analysis of GM12878 data are ob-

tained beyond a panel consisting of 10 high-coverage data sets. However, we expect that

this observation is dependent on the origin of the study sample of interest, and RefHiC’s

performance on study samples that are divergent from the cell types represented in the

panel would certainly benefit from additional, closer reference samples.

RefHiC could potentially be improved in several directions. Expanding the reference

panel could improve prediction accuracy, but this is challenging memory-wise with our

current implementation. In addition to further software optimization, we will develop

high-diversity panels that will aim to capture most of the structural diversity through a

moderate number of Hi-C data sets. In addition, we can potentially extend RefHiC to

analyze data at an even higher resolution (e.g. 1 kb), although this too would require

optimizing data handling to limit the memory footprint and IO time.
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Across the different sub-fields of data-driven biology, major leaps forward have taken

place when researchers have developed approaches that enabled the analysis of one data

set to benefit from the availability of other published data sets. RefHiC is an approach

to enable this type of reference-panel based analysis of 3D genomics data. It enables

high-accuracy annotation of Hi-C data sets even at moderate sequencing coverage, and

boosts the accuracy of the analysis of even the most deeply sequenced data sets. RefHiC

and other approaches of its kind have the potential to become an essential method for

topological structure annotation from Hi-C contact maps, paving the way to further our

understanding of 3D genome organization and functional implications. With the increas-

ing availability of high-quality Hi-C data sets from diverse cell types, we anticipate that

the power of RefHiC will further develop.

2.5 Methods

2.5.1 RefHiC model architecture

The RefHiC network consists of three parts (see Fig. 2.1 and Fig. 2.19): (i) an encoder, (ii)

an attention module, and (iii) a task-specific head. The encoder takes an input of dimen-

sion (2×w+ 1)× (2×w+ 1)× 2, where w is the window size (w = 10 in loop annotation,

w = 20 in TAD boundary annotation) and projects the input to a d-dimensional embed-

ding (d = 64). It is built with one ReLU-activated convolution layer with kernel size

three and two ReLU-activated fully connected layers with d hidden units in each layer.

In forward pass, the encoder an computes embedding es ∈ R1×d for the study sample

and [e1, e2, . . . , en] ∈ Rn×d for the n reference samples. The attention module takes as in-

put the embeddings for both the study and reference samples and outputs a ∈ R1×d that
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contains topological structural information learned from the reference panel. The layer-

normalized study sample’s embedding is used as query (Q ∈ R1×d) against the layer-

normalized reference samples’ embeddings, which are used as both keys (K ∈ Rn×d) and

values (V ∈ Rn×d). We define the attention weights ff =softmax(QKT) ∈ R1×n, where αj

represents the relative amount of attention paid to sample j in our reference panel when

analyzing the study sample. The attention output a is computed as,

a = softmax(QKT)V + MLPattn(softmax(QKT)V) (2.1)

where MLPattn has ReLU-activated fully connected layers with two hidden layers, and

each layer contains d hidden units. Finally, the head is a task-specific predictor (either for

loop or for TAD boundary prediction) with 2 hidden layers containing 2d and d hidden

units. It has one sigmoid-activated output unit for loop prediction and two tanh-activated

output units for TAD boundary prediction. Both tasks use the concatenation of the study

sample’s embedding es and attention output a as input. For loop prediction, it outputs

a value indicating loop probability. For TAD boundary prediction, it outputs two values

corresponding to left and right boundary scores. To make predictions, we apply RefHiC

to each entry in the upper triangular contact matrix to compute loop probabilities, and

each entry on the main diagonal to compute TAD boundary scores.

2.5.2 Detecting loops by density-based clustering

Applied to the window centered around each bin pair (i, j) (a.k.a pixel), RefHiC produces

a loop probability score L(i, j). Pixels where L(i, j) > 0.5 are called loop candidates. Can-

didate (i, j) is called an isolated prediction if there are less than six candidates within a

5-bin by 5-bin square centered at (i, j). We excluded all isolated predictions as they are

likely to be false positives. We then grouped the remaining candidates into clusters us-

ing a density-based clustering algorithm [130]. We first computed local density ρ(i, j) for
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candidate (i, j) by convolving scores with a Gaussian kernel over candidates (i′, j′) where

min{|i′ − i|, |j′ − j|} ≤ 5. We then calculated δ(i, j) as the minimum Chebyshev distance

between candidate (i, j) and any candidate (i′, j′) with higher density. For candidates

(i, j) with the highest local density, we defined it as δ(i, j) = δmax, where δmax is a large

constant. We used a KD-tree data structure to facilitate the fast computation of δ(i, j). We

discarded candidates with δ smaller than five since they were more likely to be redundant

annotations. Among the remaining candidates, we then used a target-decoy search ap-

proach to find cluster centroids by identifying candidates with high local density. Given

a study sample Hi-C contact map, we created a decoy contact map by permuting inter-

action frequencies diagonal-wise, applied RefHiC to detect loop candidates in the decoy

contact map, and calculated ρ and δ for loop candidates in the decoy contact map. We

then sorted candidates predicted from the study and decoy samples based on local den-

sity (ρ) and selected the top candidates while keeping the false discovery rate (FDR) at

α = 0.05. Last, we assigned the remaining candidates to their nearest clusters and chose

as a loop the highest local density candidate in each cluster.

2.5.3 Detecting TAD boundary by peak finding

RefHiC annotates right and left TAD boundaries separately. To annotate discrete right

boundaries, we represented right boundary scores produced by RefHiC as sequential data

and annotated boundaries by finding peaks using the find_peak function in SciPy [131].

When selecting TADs, we used the target-decoy search approach to find the height (i.e.

score cutoff) parameter in find_peak. We also set the minimum distance between peaks

to 5 to exclude locally redundant TAD boundaries. We applied the same steps to annotate

left boundaries from left boundary scores. Like TopDom and GMAP, we annotate a region

starting from a left boundary li and ending at a downstream right boundary rj (rj is on

the left of or identical to li+1) as a TAD. We allow a left boundary pairs with multiple right



Chapter 2. 46

boundaries. This produces nested TADs.

2.5.4 Feature vector and training data

RefHiC’s feature vector is defined as a tensor with two channels (observed interaction

frequency and observed/expected ratio) in the shape of 2 × (2 × w + 1) × (2 × w + 1),

corresponding to the window of size 2w + 1 centered at the pixel of interest. w is a hyper-

parameter set to w = 10 for loop annotation and w = 20 for TAD boundary annotation

at 5kb resolution. We trained RefHiC with Hi-C contact maps downsampled from the

combined GM12878 Hi-C contact map [4].

For loop annotation, following Salameh et al. [17], we used as gold-standard (i.e. posi-

tive training cases) a set of long-range loops identified by either ChIA-PET on CTCF [118]

or RAD21 [119], as well as by HiCHIP on SMC1 [37] or H3K27ac [120]. Using multiple

experimental data sets ensures a broad coverage of various types of loops. We binned in-

teractions at 5kb resolution and removed duplicates and any contact pairs with a distance

shorter than 50 kb or longer than 3 Mb, resulting in 74,855 interactions used as positive

cases for loop annotation. We created the negative set by selecting non-loop pairs of dif-

ferent types: (i) We randomly drew 50,000 contact pairs, excluding contact pairs with

Chromosight scores greater than 0, while preserving the distance distribution between

positive loop anchors, (ii) to increase the representation of long range negative exam-

ples, we randomly selected 10,000 long range (1 ∼ 3Mb) pairs, most cases of (i) and (ii)

are non-loop pairs in all samples. The negative set does not contain enough data repre-

senting pairs of loci that do not form a loop in the study sample, but do in some of the

reference samples. Thus, we select examples (iii) from pairs identified as loops in one or

more reference samples: we applied Chromosight and Mustache with default parameters

on all samples in the reference panel to annotate loops, merging annotations while ex-

cluding duplicates (allowing 1-bin mismatch). Last, we merged the loop annotations of
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all reference panel samples (allowing 2-bin mismatches) and kept only annotations that

(i) were present in at least 5 reference samples, but (ii) were absent (Chromosight score

less than 0) in GM12878, obtaining 170,283 negative pairs. Overall, the entire set contains

74,855 unique positive and 256,609 unique negative examples.

For TAD boundary annotations, we first applied RobusTAD on the combined GM12878

Hi-C contact map and reference samples to obtain TAD boundary scores and identified

boundaries. By merging TAD boundaries that were identified from all samples while

excluding duplicates (allowing a 2-bin shift), we collected 48,945 loci. We then selected

another 54,464 loci by picking one locus every five bins along every autosome. We define

the targets for the 103,409 examples as RobusTAD scores from the combined GM12878

Hi-C data. In addition, we created another 103,409 examples at the same loci by using

features from a shuffled GM12878 Hi-C contact map and the corresponding RobusTAD

scores as targets. In total, there are 206,818 examples.

2.5.5 Model training and evaluation

The model was trained, evaluated, and tested on contact maps downsampled from the

combined GM12878 Hi-C data. During model development, we used chr11 and chr12

for validation, chromosome 15-17 for testing, and the rest of autosomes for training. For

loop prediction, the dataset contains 260,940 training, 34,174 validation, and 36,350 test

examples. For TAD prediction, the dataset contains 164,458 training, 22,449 validation,

and 19,911 test examples. RefHiC takes feature vectors from the study and reference

samples as input in the forward pass. To reduce training computation, we sampled 10

reference samples for each example in each epoch independently. During evaluation, we

used all samples in the reference panel. For both TAD and loop models, we trained mod-

els with a batch size of 1,024 for 1,000 epochs on an RTX6000 GPU and used AdamW

optimizer [132] (weight_decay=0.1; learning rate=1e-3). We selected the learning rate that
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yields the highest validation accuracy in our grid search and used early stopping to pre-

vent overfitting. In the first 5 training epochs, we warmed up the learning rate from 0

to the initial learning rate (i.e. 1e-3) and then reduced the learning rate to 1e-6 in the

first 95% epochs using the cosine annealing learning rate scheduler. In addition, we used

dropout (rate=0.25), batch normalization, and layer normalization to regularize network

training. We trained the TAD boundary model with MSE loss, and the loop model with

focal loss −(1 − pt)γlog(pt) (γ = 2) [133]. To handle various sequencing depths in a sin-

gle model, which many existing machine learning applications in Hi-C data analysis are

unable to do [75, 76], we performed data augmentation by downsampling Hi-C contact

maps during training. This transformation preserves topological structures in Hi-C data.

However, a Hi-C contact map is too large, and downsampling on the fly is infeasible. We

downsampled Hi-C training data and stored them on disk in advance. During training,

we randomly selected one contact map from these downsampled contact maps for each

training example in each epoch independently. This operation seamlessly worked as a

data augmentation by downsampling Hi-C contact map operator during training.

2.5.6 Contrastive Pretraining

We pre-trained the encoder by supervised contrastive learning [128] using Hi-C contact

maps downsampled from the combined GM12878 Hi-C data. For each training example,

we defined items extracted from the downsampled contact maps at the sample locus as

similar items and all Hi-C contact map submatrices in the same batch with different labels

as negative items. We aimed to train the encoder such that the distances of embeddings

for a training example and its similar items are as close as possible while of embeddings

between a training example and its negative items are as far as possible. Following [128],

we defined the loss for training instance i as cross-entropy with in-batch negatives
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li = −log
esim(hi,h+

i )/τ

∑j ̸=i esim(hi,h−
j )/τ

(2.2)

where hi, h+
i , and h−

j are embeddings: hi represents item i, h+
i represents one of item i’s

similar items, h−
j represents an item with a label different from i (i.e. negative item). τ is

a temperature that controls training, and we set it as 1. We pre-trained the encoder for 20

epochs with the LARS algorithm [134] using Adam as a base optimizer. We set batch size

to 512 and learning rate to 0.1 during training.

2.5.7 Hi-C data downsampling

We downloaded the combined Hi-C contact map (.mcool file) for GM12878 cells from

4DN Data Portal (https://data.4dnucleome.org). We downsampled the combined Hi-

C contact map to train RefHiC and evaluate sequencing depths’ impact on annotating

topological structures. We did bilinear downsampling with the downsample function

provided in FAN-C [135] from the combined Hi-C contact map to get a series of down-

sampled data until reaching at ∼62M valid read pairs.

2.5.8 Loop detection with Chromosight, Peakachu, Mustache and HiC-

CUPS

We used a variety of loop prediction tools to benchmark against RefHiC. They are exe-

cuted as follows. Chromosight: We applied the program to each Hi-C contact map with

parameters ‘detect -p 0.2’ to detect loops, sorted detected loops according to scores and

selected the top loops from our test chromosomes. Peakachu: We trained different models

for different sequencing depths on GM12878 Hi-C data using our training and validation
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examples. To match RefHiC, we set the width parameter to 10 and other parameters as de-

fault values. We applied the trained models to Hi-C contact maps, adjusted the probabil-

ity threshold in its pool function to identify loops, sorted loop annotations and included

top loops from test chromosomes as its predictions. Mustache: We used the program by

adjusting ‘-pt’ and ‘-st’ to detect at least 1700 loops on our test chromosomes, sorted and

selected top loops according to FDR. HiCCUPS: We converted .mcool to .hic files at 5Kb

resolution using the ‘pre’ function provided in Juicer [48]. We applied HiCCUPS by ad-

justing the ‘-f’ parameter to detect at least 1700 loops on our test chromosomes, sorted

and selected top loops according to FDR (obtained as the product of FDR for different fil-

ters) as HiCCUPS’ prediction. To evaluate the performance of the recommended setting

of each tool, we also applied them to annotate loops with their recommended parameters

and set FDR as 5% whenever possible.

2.5.9 TAD detection with alternative tools

We used a variety of TAD callers to benchmark against RefHiC. All tools take .mcool file

or files coverted from .mcool file as input. We ran TopDom, Armatus, Arrowhead, EAST,

CaTCH, Domaincall (DI), GMAP, ICFinder and HiCSeg as suggested in [72]. We have

updated parameters to reflect that we were analyzing data at 5kb resolution, as needed.

We ran HiTAD and deDoc with their default settings. OnTAD: We set maxsz=600 to allow

OnTAD to detect TADs as large as 3Mb. Grinch: following Lee and Roy [7], we detected

TADs by setting the expected TAD length as 2Mb, 1Mb, and 500Kb in three runs and

combined all results. Table 2.4 contains parameters that we used to execute each TAD

caller.

We also compared RefHiC’s boundary prediction to two boundary prediction tools.

We reimplemented RobusTAD [115] in Python and used Insulation score (IS) function

in cooltools [136] in our study. Both take a .mcool file as input. We used RobusTAD
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to calculate TAD boundary scores and identified boundaries with default parameters.

We ran IS with win=10 to detect TAD boundaries. As IS only detected insulating bins,

to assign boundary orientation (i.e. left vs right), we used RobusTAD’s left and right

boundary scores to classify IS annotations.

2.5.10 Enrichment analysis of structural proteins and Histone-3 marks

at predicted TADs

To compare the performance of TAD callers, we used an established TAD caller bench-

marking scripts [72] to study Histone-3 marks and structural proteins enrichment in-

side TADs or at TAD boundaries. Briefly, we downloaded ChIP-Seq peak files for CTCF

(ENCFF796WRU), RAD21 (ENCFF662DRZ), SMC3 (ENCFF887CRE), H3K36me3 (ENCFF171MDW),

and H3K27me3 (ENCFF039JOT) from ENCODE [119]. For structural protein enrichment,

we counted the average number of peaks per 5-kb intervals within the regions flanking

predicted TAD boundaries (± 500 kb). Next, we computed the fold-change as the average

peaks in a narrow interval surrounding a boundary (±10kb) over the average peaks cov-

erage at distant flanks (±400-500kb). For Histone-3 marks enrichment analysis, we split

TADs into 20kb intervals, summed ChIP-Seq signals inside each interval, computed the

log10-ratio of H3K27me3 and H3K36me3 signals (LR), and obtained the average LR for

each TAD. We then shuffled the LR values ten times to compute an empirical p-value for

within-TAD LRs and corrected the p-value with the Benjamini-Hochberg procedure to se-

lect TADs with significant preference for high or low ratios (FDR≤0.1). To compare TAD

partitions, following Zufferey et al. [72] , we used the Measure of Concordance (MoC),

which ranges from 0 (absence of concordance) to 1 (full concordance) and is defined as

follows,
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MoC(P, Q) =


1 if NP = NQ = 1

1√
NP NQ−1

(∑NP
i=1 ∑

NQ
j=1

|Fi,j|2
|Pi||Qj|

− 1) otherwise
(2.3)

where P = {Pi}, and Q = {Qi} are sets of TADs including NP and NQ TADs, Fi,j is the

overlap region between Pi and Qj, and | · | represents cardinality. MoC does not handle

nested TADs, thus we only included TADs without any smaller TAD in this analysis.

2.5.11 Enrichment analysis of transcription factors and histone modifi-

cations at loop anchors

We downloaded ENCODE ChIP-Seq peak files for 122 TFs and 11 histone modifications

in the GM12878 from the UCSC genome browser [119, 137] and calculated occupancy

fold changes for each TF at loop anchors. We first created a list of unique loop anchors

inferred by each tool. For each TF, we counted the number of anchors that overlapped

with at least one binding site. We denoted this value as the target. For each chromosome,

we randomly created 100 control sets of anchors from the whole genome excluding black-

listed regions [119]. The number of anchors in each control set equals the number of loop

anchors in the target set. We then computed the expected overlaps as the mean of over-

laps between each control set and the TF’s binding sites. Last, we computed fold change

as the ratio between the target and the expectation calculated based on control sets.

2.5.12 Hi-C reference panel

Human reference panel: We downloaded Hi-C sequencing data from the GEO repository

and processed them with distiller (https://github.com/open2c/distiller-nf). Briefly, we

used bwa mem [51] to map reads to hg38 with option ‘-SP’ and processed the aligned

reads with pairtools (https://github.com/open2c/pairtools) to remove duplicates and
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low-quality read pairs (MAPQ<10). We then created and normalized contact matrices

at 5 kb resolutions using cooler [49] and saved contact maps in .mcool files. Last, we

converted these .mcool files into the .bcool file format using cool2bcool function provided

in RefHiC. The .bcool format represents a Hi-C contact map as a band matrix and enables

fast random access to square submatrices. Table 2.1 lists all Hi-C data sets included in the

human reference panel. Mouse reference panel: We downloaded 20 Hi-C contact maps

from 4DN Data Portal (https://data.4dnucleome.org) and processed them as for human.

Table 2.2 lists all Hi-C data sets included in the mouse reference panel. Our distributed

reference panels contain the aforementioned reference samples. In our experiments, we

excluded samples that belong to the study sample’s cell type from the reference panel to

prevent potential data leakage.

2.5.13 RefHiC implementation

RefHiC is a Python program available at https://github.com/BlanchetteLab/RefHiC. We

implemented the neural network with the PyTorch library [138], and the filtering com-

ponents for TAD and loop selection with libraries including Pandas [139], SciPy, and

NumPy [140]. Using RefHiC to predict loops or TAD boundary scores requires load-

ing data from the study and reference Hi-C contact maps. To reduce memory usage,

we extended the Cooler [49] library by implementing a band matrix representation for

a contact map and a square function to fetch contact pairs in a given square region and

used it to read Hi-C contact maps. ReHiC can make predictions on both CPU and GPU,

but is much faster on the latter. RefHiC requires at least 3GB free space for saving refer-

ence panel data and at least 12GB RAM for loading reference samples during prediction.

We tested RefHiC to annotate TAD boundaries and loops using 20 CPU threads and an

RTX6000 GPU. RefHiC calculated TAD boundary scores for whole genome annotation at

5 kb resolution in 30 min. It is impractical and unnecessary to calculate loop scores for all
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pairs of loci. RefHiC only computes loop scores at bin pairs located within 3 Mb and for

which at least one read pair is observed. Thus, the loop annotation running time depends

on the study contact map. For instance, it annotates Hi-C data containing 500M valid

read pairs in 275 min and Hi-C data containing 250M valid read pairs in 180 min.

2.6 Data Availability

The data that support this study are available from the corresponding author upon rea-

sonable request. All data used in this study are publicly available and their reference

numbers are listed in Table 2.1, 2.2, and 2.3. Hi-C contact maps were obtained from 4DN

data portal with the following accession code: 4DNFIXP4QG5B (GM12878), 4DNFI4DGNY7J

(K562), 4DNFIJTOIGOI (IMR90), 4DNFILP99QJS (HCT-116), and 4DNFIDA2WGV8 (mESC).

ChIP-Seq data were obtained from the ENCODE portal with the following accession code:

ENCFF796WRU (GM12878 CTCF), ENCFF039JOT (GM12878 H3K27me3), ENCFF662DRZ

(GM12878 RAD21), ENCFF171MDW (GM12878 H3K36me3), ENCFF887CRE (M12878 SMC3),

ENCFF508CKL (mESC CTCF), ENCFF203SRF (IMR-90 CTCF), ENCFF119XFJ (K562 CTCF).

The CTCF ChIA-PET for IMR-90 were obtained from ENCODE with accession code ENCFF682YFU.

The CTCF ChIA-PET for mESC were obtained from ENCODE with accession code ENCFF550QMW.

The RAD21 ChIA-PET for GM12878 were obtained from ENCODE with accession code

ENCLB784HEF. The CTCF ChIA-PET for K562 were obtained from ENCODE with ac-

cession code ENCFF001THV. The RAD21 ChIA-PET for K562 were downloaded from

the GEO repository with accession code GSM1436264. The H3k27ac HiChIP data for

GM12878 were obtained from [120]. The SMC1 HiCHIP data for GM12878 were obtained

from [37]. The CTCF ChIA-PET data for GM12878 were obtained from [118]. Experiment

results and intermediate data generated in this study have been deposited in the zenodo

repository with DOI 10.5281/zenodo.7133194.
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2.7 Code availability

Software and documentation available at https://github.com/BlanchetteLab/RefHiC or

at this DOI:10.5281/zenodo.7324669. All scripts required to reproduce figures and analy-

ses are available at DOI:10.5281/zenodo.7133194.

2.8 Acknowledgements

The authors thank Dr. Yue Li, Dr. Jacek Majewski and members of M.B.’s laboratory

Audrey Baguette, Zichao Yan, and Elliot Layne for useful discussions in this project, and

Audrey Baguette for testing RefHiC. This work was funded by Genome Quebec/Canada

and a Genome Quebec/Oncopole/IVADO grants to M.B., and FRQNT Doctoral (B2X)

Research Scholarships to Y.Z..

2.9 Contributions

Y.Z. and M.B. conceived the study and designed models. Y.Z. implemented models, per-

formed data analysis, and wrote the manuscript. M.B. supervised the project and wrote

the manuscript. All authors read and approved the final paper.

2.10 Competing interests

The authors declare no competing interests.



Chapter 2. 56

2.11 Appendix

Supplementary Information

2.11.1 Comparison with contact map enhanced approach

Hi-C contact map enhancement has been intensively explored in recent years [76, 9, 59, 75,

78]. We can perform contact map enhancement for Hi-C contact maps and then use loop

detection tools to detect loops. Here we compared RefHiC with tools that predict loops

from DeepLoop [59] enhanced contact maps. DeepLoop is a deep learning approach for

Hi-C contact map enhancement. It enhances or denoises loop signals from Hi-C contact

maps. It outputs a list of pairs (i.e. loop clusters) with a value named LoopStrength. Al-

though Zhang et al. [59] suggest selecting the highest LoopStrength pairs as loops, the

results are still loop clusters. We called loops from DeepLoop’s output by selecting loops

with RefHiC’s clustering method (minDelta=5 and minScore=0). Due to the absence of

essential input files for running DeepLoop for contact maps aligned to hg38, we were

unable to duplicate DeepLoop’s result with our data (hg38), so we used DeepLoop’s out-

put (GSE167200, hg19) produced by Zhang et al. [59] for Rao’s GM12878 Hi-C data. We

executed RefHiC on the same data but aligned to hg38. To facilitate comparison, we lifted

RefHiC’s predictions over to hg19 using liftOver (https://github.com/dphansti/liftOverBedpe).

Fig. 2.9 shows RefHiC identified more ChIA-PET/HiCHIP-supported loop predictions

than all DeepLoop-based approaches when evaluated using CTCF ChIA-PET, H3K27ac

HiCHIP, and SMC1 HiCHIP data.
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2.11.2 Comparison with a baseline deep learning model

Although we demonstrated that RefHiC outperformed HiCCUPS, Mustache, Chromosight,

and Peakachu, these results do not imply that these gains can necessarily be attributed to

the use of a reference panel. To address this question, we built a deep learning model

named Baseline. The model architecture is similar to RefHiC’s but without using the ref-

erence panel as input. It consists of (i) an encoder that is identical to RefHiC’s and (ii) four

fully connected layers with [d, d/2, d/2, 1] units. All hidden layers are ReLU activated.

Like RefHiC, we used batch normalization and dropout to regularize our model. The

training data and procedure are identical to RefHiC’s. We applied Baseline model to sev-

eral downsampled GM12878 Hi-C contact maps and compared it with all other tools. Fig.

2.10 shows that RefHiC outperformed Baseline and other tools at all sequencing depths.

This result suggests RefHiC benefits from the introduction of a reference panel.
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2.11.3 Additional analysis of the properties of loop predictions

To understand the specific properties of the loops predicted by each tool, we studied

local interaction frequency ranks and radii of predicted loops. We found the interac-

tion frequencies for 17− 36% of loops predicted by Chromosight, RefHiC, Peakachu, and

Mustache were local maxima in a 3 × 3 region centered at loop predictions. In contrast,

75% of loops predicted by HiCCUPS were local maxima in the same region (Fig. 2.12).

Loops predicted by HiCCUPS had smaller radii than alternative tools (Fig. 2.13). These

two observations explained the diffuse loop center in Fig. 2.2b. Although we define loops

as locally enriched significant interactions, they are not necessarily local maxima in terms

of interaction frequencies. To demonstrate the validity of non-locally-optimal loops, We

moved all non-locally-maximal loop predictions to locally maximal contact pairs in the

surrounding 3 × 3 region. Fig. 2.14 shows that for all comparisons excepts the HiC-

CUPS/RAD21, revised predictions are worse than the original predictions.

Loop size estimation

Loops form blob-shaped patterns in Hi-C contact matrices, and we can approximately

represent them as circles with a minimum radius of 0.5 bin. To estimate a predicted loop’s

size (radius), we utilized the scale space representation [18] in computer vision by treat-

ing Hi-C contact maps around a loop prediction as an image. Briefly, for a given loop

prediction at contact bins (i, j), we extracted the 21 × 21 Hi-C sub-matrix centred at (i, j)

and used the ‘blob_dog’ function in scikit-image [141] to compute the radius of the blob

that covers (i, j). As not all loops could be detected by ‘blob_dog’, we only included loops

with radii found by ‘blob_dog’ in our analysis.
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2.11.4 Applying RefHiC to novel cell types

Although we demonstrated that RefHiC does not produce more false-positive predic-

tions than alternative tools in analyzing cohesin-depleted Hi-C data (Fig. 2.3a), we did

not benchmark RefHiC in analyzing distant study samples. To evaluate it, we performed

two different experiments (i.e. method 1, and 2). We applied both methods to detect loops

from test chromosomes (chromosomes 15-17) on a downsampled GM12878 Hi-C contact

(500M valid contact pairs). Method 1 uses the default human reference panel and as-

sumes that all test chromosomes correspond to chromosome 2 in the reference panel. For

instance, when computing the loop score for the pair (chr15:100000-105000, chr15:180000-

185000), we extracted data for (chr2:100000-105000, chr2:180000-185000) from the refer-

ence panel. In this case, all loops in our study sample are novel. Method 2 uses a new

reference panel containing eight samples. This new reference panel does not contain any

samples that come from the same developmental lineage as the study sample or samples

such that the similarity [142, 143] between it and the study sample is larger than 0.7. Fig.

2.20 shows that RefHiC with input data configured as Method 1 performed equally well

as conventional tools. At the same time, worse than RefHiC (with default reference panel)

and our deep learning baseline model. RefHiC with reference panel defined as Method 2

is equally well as RefHiC (with default reference panel).
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2.11.5 RefHiC outperforms a global similarity based approach

RefHiC’s superior performance is achieved by its deep learning module using local in-

formation from the study sample and reference samples for topological structure anno-

tation. It is interesting to evaluate the performance of a simple approach that uses only

reference data similar to the study sample to make predictions. We first compared the

study sample against each reference sample with HiCRep [142, 143] and selected 5 ref-

erence samples most similar to the study sample. We then performed Mustache and our

baseline deep learning model (Section 2.11.2) to detect loops from the five reference sam-

ples. We evaluated four different alternative approaches: Mustache top-1, predict loops

as loops predicted from the most similar reference sample by Mustache, Mustache top-5,

predict loops as the ensemble of loops predicted from the five reference samples by Mus-

tache, DL-Baseline top-1, predict loops as loops predicted from the most similar reference

sample by our deep learning baseline, DL-Baseline top-5, predict loops as the ensemble

of loops predicted from the five reference samples by our deep learning baseline. Apply-

ing both tools to the five samples identified 19,890 (Mustache), and 32,520 (DL-Baseline)

unique loops, and many of them are nearby loops within 5 bins each other (i.e. a cluster

of loops) within each set. Each cluster may correspond to a single true loop. We thus

used RefHiC’s pooling algorithm to select a represent loop for each cluster while using

the loop occurrence in the five samples as loop score. We selected 2,962 (Mustache top-5)

and 3,060 (DL-Basele top-5) loops at the end (a simple voting ensemble does not work

as most loops only occur once among the five samples). Fig. 2.23 shows RefHiC outper-

formed all other approaches significantly, and some of the four proposed approaches are

slightly worse than applying the corresponding tool directly to the study sample.
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ID Sample Valid read pairs Source
HIC00001 22Rv1 (prostate cancer cell line) 685096962 [144]
HIC00002 293TRex-Flag-BRD4-NUT-HA 1660296754 [145]
HIC00007 BLaER (lymphoblastic leukemia cell line) 406322404 [146]
HIC00041 HCT-116 (colorectal cancer cell line) 603179292 [147]
HIC00067 HeLa Kyoto cell, MboI G1 sync control 1045885928 [148]
HIC00090 HepG2 (hepatocellular carcinoma cell line) 1759654311 [119]
HIC00091 HL60/S4 (neutrophil-like Myeloid leukemia cell line) 478434139 [149]
HIC00113 Nalm6 (B cell precursor leukemia cell line) 816274711 [150]
HIC00168 WI38_RAF (WI-38hTERT/GFP-RAF1-ER) 602556180 [151]
HIC00172 Embryonic stem cell, Cardiomyocyte differentiation : hESCs (day 0) 1914642484 [152]
HIC00183 teloHAEC (endothelial cell line) 911486437 [153]
HIC00200 Naïve human embryonic stem cells 731906045 [154]
HIC00203 GM23248 (primary skin fibroblasts) 1797370277 [155]
HIC00221 MDM (monocyte-derived macrophages) 590449106 [156]
HIC00269 Astrocytes of the cerebellum primary cell 430822244 [119]
HIC00273 HAP1 (near-haploid cell line) 413436528 [157]
HIC00280 Purified human germinal center B cells 426222299 [158]
HIC00287 Liver 447028100 [159]
HIC00295 Thymus 507309033 [159]
HIC00296 H1 Embroynic Stem Cell 989388439 [160]
HIC00310 A549 00h 100 nM dexamethasone 1548684355 [119]
HIC00318 HUVEC 438880295 [161]
HIC00319 IMR90 1053932182 [161]
HIC00320 K562 880877579 [161]
HIC00321 KBM7 877658969 [161]
HIC00322 NHEK 653628335 [161]
HIC00337 Gastric tissue 426476775 [162]
HIC00343 Left Ventricle 547477074 [162]
HIC00354 Spleen 490487515 [162]
HIC00360 GM12878 1994319522 [161]

Table 2.1: Human reference panel
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ID Sample Valid read pairs Source
4DNFIKK3QG34 46C with Sox1-GFP 5370123882 [122]
4DNFIHBTUDO9 Olfactory receptor cells 2024307320 [163]
4DNFIAVHP5AV B cell derived cell line 1869747094 [164]
4DNFIMV54HXI Olfactory receptor cells 1585896942 [163]
4DNFI5QJNFAT F123-CASTx129 (Tier 2) 1072601088 [165]
4DNFIS5ZK13C CH12 1163734014 [164]
4DNFI3M6726I Olfactory receptor cells 1202229560 [163]

4DNFIPNP9H9T B cell derived cell line 1125298567 [164]
4DNFI3QLT3KJ B cell derived cell line 1203634092 [164]
4DNFI6RG9TXL ES-E14 812429482 [166]
4DNFIJLJIRKT CH12.LX 770649212 [4]

4DNFIB8NZIAK F123-CASTx129 with Sox2 tags and RMCE site between Sox2 and its SE 770655888 [167]
4DNFITSJBJ9G F123-CASTx129 with Sox2 tags and RMCE site between Sox2 and its SE 759678776 [167]

4DNFIASQYF5S CH12 915292686 [164]
4DNFI4LH8RMQ ES-E14 with Flo/Flox deletion of Mll3 and Mll4 genes 717826154 [166]
4DNFIOPKGMBL ES-E14 576226710 [166]
4DNFIB7RFFBB Sertoli cell 589079877 [168]
4DNFIX524X88 ES-E14 with Flo/Flox deletion of Mll3 and Mll4 genes 693626370 [166]

4DNFI37GAU3L ES-E14 with Flo/Flox deletion of Mll3 and Mll4 genes 579214478 [166]
4DNFIC453HVL F123-CASTx129 (Tier 2) 514097723 [165]

Table 2.2: Mouse reference panel

Experiment Training Evaluation Figure Identifier
GM12878 CTCF ChIP-Seq ✓ Fig. 2.2g,h, 2.6b,f, 2.16, 2.17, 2.21b, 2.22 ENCFF796WRU

GM12878 H3K27me3 ChIP-Seq ✓ Fig. 2.6g ENCFF039JOT
GM12878 RAD21 ChIP-Seq ✓ Fig. 2.6f, 2.22 ENCFF662DRZ

GM12878 H3K36me3 ChIP-Seq ✓ Fig. 2.6g ENCFF171MDW
GM12878 SMC3 ChIP-Seq ✓ Fig. 2.6f, 2.22 ENCFF887CRE
IMR-90 CTCF ChIA-PET ✓ Fig. 2.3e ENCFF682YFU

mESC CTCF ChIP-seq ✓ Fig. 2.3h ENCFF508CKL
mESC CTCF ChIA-PET ✓ Fig. 2.3g ENCFF550QMW
IMR-90 CTCF ChIP-Seq ✓ Fig. 2.3f ENCFF203SRF

GM12878 RAD21 ChIA-PET ✓ ✓ Fig. 2.2e, 2.4d, 2.10, 2.11, 2.14, 2.15, 2.18, 2.20, 2.23 ENCLB784HEF
GM12878 H3k27ac HiCHIP ✓ ✓ Fig. 2.4f, 2.8a, 2.9-2.11, 2.14, 2.15, 2.18, 2.20, 2.23 [120]

GM12878 SMC1 HiCHIP ✓ ✓ Fig. 2.2f, 2.4e, 2.9-2.11, 2.14, 2.15, 2.18, 2.20, 2.23 [37]
GM12878 CTCF ChIA-PET ✓ ✓ Fig. 2.2d, 2.4c, 2.6c, 2.9-2.11, 2.14, 2.15, 2.18, 2.20, 2.23 [118]

K562 CTCF ChIA-PET ✓ Fig. 2.3b ENCFF001THV
K562 RAD21 ChIA-PET ✓ Fig. 2.3c GSM1436264

K562 CTCF ChIP-seq ✓ Fig. 2.3d ENCFF119XFJ

Table 2.3: Different datasets used in this study
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Tool Configuration (Parameters)
CaTCH default (resol=5000)
EAST EAST2, default (resol=5000)
HiTAD default (resol=5000)
GMAP default (resol=5000)
Armatus -m -N -r 5000 -g 0.5 -s 0.05 -n 100
deDoc default (resol=5000)
Grinch -e 1000000,2000000,500000 (resol=5000)
OnTAD -maxsz 600 (resol=5000)
Arrowhead default (resol=5000)
DomainCall default (resol=5000)
TopDom default (resol=5000)
ICFinder default (resol=5000)
HiCSeg 6 TADs per 1MB region, Gaussian distribution, block-diagonal model (resol=5000)

Table 2.4: TAD callers and parameters used in this study

32.0M 32.0M
chr17

32.0M

32.0M

ch
r1
7

Target
Peakachu
Mustache
HiCCUPS
Chromosight
RefHiC

Figure 2.7: Comparison of loops predicted by RefHiC, Chromosight, Peakachu, HiCCUPS, and
Mustache on a small region of GM12878 HiC data (500M valid read pairs). Target annotations
are loops revealed by experimental data including CTCF ChIA-PET, RAD21 ChIA-PET, SMC1
HiCHIP, and H3K27ac HiCHIP.
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Figure 2.8: Additional comparison of RefHiC, Chromosight, Peakachu, HiCCUPS, and Mus-
tache on GM12878 HiC data (500M valid read pairs). a, Same as Fig. 2.2d, but compared
against H3K27ac HiCHIP data. b, Same as Fig. 2.2i, but for RefHiC’s and Peakachu’s predictions.
Though most transcription factors are more strongly enriched at Peakachu’s loop predictions than
at RefHiC’s loop predictions, the TFs involved in loop formulations are more strongly enriched at
RefHiC loop predictions. c, Same as c, but for RefHiC’s and Mustache’s prediction. The TF are
enriched similarly at both types of loop predictions.
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Figure 2.9: Comparison of loops predicted by RefHiC and DeepLoop on GM12878 HiC data
(2000M valid read pairs). Number of ChIA-PET/HiCHIP-supported loop predictions, among
predictions made by RefHiC and DeepLoop for test chromosomes 15-17 compared against CTCF
ChIA-PET (a), H3K27ac HiCHIP (b), and SMC1 HiCHIP (c). RefHiC’s loop predictions matches
all data better than predictions made by DeepLoop.
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Figure 2.10: Comparison of RefHiC, Chromosight, Peakachu, HiCCUPS, Mustache, and Base-
line (Section 2.11.2) on GM12878 HiC data of lower sequencing depths. Number of ChIA-
PET/HiCHIP-supported loop predictions, among the top predictions made by RefHiC and other
tools, for test chromosomes chromosomes 15-17, compared against CTCF or RAD21 ChIA-PET,
as well as H3K27ac or SMC1 HiCHIP. The Baseline model, which does not use a reference panel,
does not perform as well as RefHiC.
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Figure 2.11: Comparison of unique loops predicted by RefHiC, Chromosight, Peakachu, HiC-
CUPS, and Mustache on GM12878 HiC data (500M valid read pairs). Number of ChIA-
PET/HiCHIP-supported loop predictions, among the top predictions made by RefHiC and other
tools, for test chromosomes chr15-17, compared against CTCF ChIA-PET (a), RAD21 ChIA-PET
(b), SMC1 HiCHIP (c), and H3K27ac HiCHIP (d). Only loops uniquely predicted by one of the
four tools are being considered.
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Figure 2.12: For each prediction tool, the heatmap shows the fraction of predicted loops where
the locally maximum interaction frequency is observed at the site of the predicted loop itself
(central pixel) or at one of the 8 neighboring pixels. HiCCUPS tends to predict local maximas as
loops. In contrast, only 17-36% of predicted loops produced by other tools, including RefHiC, are
local maxima in terms of read counts.
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Figure 2.13: Radius of loops predicted by RefHiC and other tools. The cumulative distribution
of loop radius shows that HiCCUPS predicted more narrow loops than other tools, including
RefHiC. In contrast, the distribution of loop sizes in Chromosight’s, Peakachu’s, RefHiC’s, and
Mustache’s predictions are similar.
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Figure 2.14: Comparison of the performance of different prediction tools, compared to a modi-
fied version (labeled "revised") where each loop prediction is "corrected" to the local maximum
(in terms of read count) in the 3 × 3 sub-matrix around each original prediction.
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Figure 2.15: Comparison of tools’ ability to identify rare and common loops. Number of ChIA-
PET/HiCHIP-supported loop predictions, among the top predictions of loop frequencies 0 (a-d),
1-5 (e-h), 6-10 (i-l), 11-15 (m-p), and 15-19 (q-t), made by RefHiC and other tools, for test chromo-
somes chr15, chr16, and chr17, compared against CTCF or RAD21 ChIA-PET, as well as H3K27ac
or SMC1 HiCHIP. RefHiC’s loop predictions matches those experimental data better than predic-
tions made by other tools or equally well for both rare and common loops.
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Figure 2.16: Comparison of RefHiC, robusTAD, and Insulation score on detecting left TAD
boundaries from GM12878 HiC data at lower sequencing depths. Number of predicted TAD
boundaries for Hi-C data containing 2,000M (a), 1,000M (b), 250M (c), 125M (d), and 62.5M (e)
vaild read pairs supported by CTCF ChIP-seq data (test chromosomes chr15, chr16, and chr17).
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Figure 2.17: Comparison of RefHiC, robusTAD, and Insulation score on detecting right TAD
boundaries from GM12878 HiC data at lower sequencing depths. Number of predicted TAD
boundaries for Hi-C data containing 2,000M (a), 1,000M (b), 250M (c), 125M (d), and 62.5M (e)
vaild read pairs supported by CTCF ChIP-seq data (test chromosomes chr15, chr16, and chr17).
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Figure 2.18: RefHiC Detects loops using reference panel with different samples for GM12878
Hi-C data (500M valid read pairs). Number of ChIA-PET/HiCHIP-supported loop predictions
among the top predictions made by RefHiC using reference panels containing 5, 10, 20, 20 low
coverage, and 29 Hi-C samples for test chromosomes (chr15, chr16, and chr17), compared against
H3K27ac HiCHIP (a), SMC1 HiCHIP (b), RAD21 ChIA-PET (c), and CTCF ChIA-PET (d) data.
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Figure 2.19: Details of the encoder and head modules. The task-specific head has different output
activation functions for TAD boundary (Tanh) and loop (Sigmoid). w is a hyperparameter for
square size, and d is embedding dimension.
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Figure 2.20: Evaluating RefHiC’s ability to identify loops from novel cell types by using
GM12878 Hi-C data (500M valid read pairs) as input. Number of ChIA-PET/HiCHIP-supported
loop predictions, among the top predictions made by RefHiC and other tools, for test chro-
mosomes chromosomes 15-17, compared against CTCF (a) or RAD21 (c) ChIA-PET, as well as
H3K27ac (b) or SMC1 (d) HiCHIP. The Baseline model is explained in Section 2.11.2. Method 1
and 2 as explained in Section 2.11.4 are used to evaluate RefHiC’s ability to identify loops from
novel cell types.
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Figure 2.21: Detection of TAD boundaries on GM12878 Hi-C data (500 valid read pairs). a,
TAD boundary pileups for right (c) boundaries predicted by RefHiC. b Number of RefHiC, Ro-
busTAD, and Insulation score predicted right TAD boundaries supported by ChIP-seq identified
CTCF binding sites on the reverse (CTCF-) strand.
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Figure 2.22: ChIP-seq peak signals for CTCF, RAD21, and SMC3 around TAD boundaries an-
notated by each tool.
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Figure 2.23: Comparison of loops predicted by RefHiC, baseline, Mustache, and four reference
only approaches described in Section 2.11.5 on GM12878 HiC data (500M valid read pairs).
Number of ChIA-PET/HiCHIP-supported loop predictions, among predictions made by each tool
for test chromosomes 15-17 compared against CTCF ChIA-PET (a), H3K27ac HiCHIP (b), RAD21
ChIA-PET (c), and SMC1 HiCHIP (d). RefHiC’s loop predictions matches all data better than
predictions made by alternative methods.
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Chapter 3

Reference panel guided super-resolution

inference of Hi-C data

Yanlin Zhang, and Mathieu Blanchette *

School of Computer Science, McGill University, Montréal, Québec, H3A 0E9, Canada

Preface

In the previous chapter, we developed RefHiC to annotate chromatin loops and topo-

logically associating domains from a Hi-C contact map of interest. We demonstrated

that the introduction of a panel of reference samples improves TADs and loops annota-

tions. Although we can adapt RefHiC to detect other spatial features such as architectural

stripes or significant interactions, solving these one by one is not straightforward and te-

dious. In this chapter, we focus on solving a more fundamental and challenging problem,

contact map enhancement, using the reference panel enabled framework. Contact map

enhancement aims at predicting a super-resolution contact map that is equivalent to a

very high coverage Hi-C contact map from the coverage input. Existing tools are exclu-

sively study sample based and perform poorly at enhancing low-coverage contact maps.

Here, we developed RefHiC-SR, a reference panel enabled deep learning application, for
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contact map enhancement. Compared to existing approaches, we show that RefHiC-SR

improves the accuracy of contact map enhancement, and leads to more accurate topolog-

ical structure annotation. There are various off-the-shelf tools for topological structure

annotation, structure inference, differential analysis, etc. They perform well in handling

high-coverage Hi-C data. We believe integrating RefHiC-SR into the stack of computa-

tional 3D genomics will allow researchers to fully benefit from the reference panel enabled

framework in this field.

The rest of this chapter is the entire text from the following article:

Zhang, Y., & Blanchette, M. (2023). Reference panel-guided super-resolution inference of

Hi-C data. Bioinformatics, 39(Supplement_1), i386-i393.
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3.1 Abstract

Motivation: Accurately assessing contacts between DNA fragments inside the nucleus

with Hi-C experiment is crucial for understanding the role of 3D genome organization

in gene regulation. This challenging task is due in part to the high sequencing depth of

Hi-C libraries required to support high resolution analyses. Most existing Hi-C data are

collected with limited sequencing coverage, leading to poor chromatin interaction fre-

quency estimation. Current computational approaches to enhance Hi-C signals focus on

the analysis of individual Hi-C data sets of interest, without taking advantage of the facts

that (i) several hundred Hi-C contact maps are publicly available, and (ii) the vast major-

ity of local spatial organizations are conserved across multiple cell types.

Results: Here, we present RefHiC-SR, an attention-based deep learning framework that

uses a reference panel of Hi-C datasets to facilitate the enhancement of Hi-C data res-

olution of a given study sample. We compare RefHiC-SR against tools that do not use

reference samples and find that RefHiC-SR outperforms other programs across different

cell types, and sequencing depths. It also enables high accuracy mapping of structures

such as loops and topologically associating domains.

Availability: https://github.com/BlanchetteLab/RefHiC

Contact: blanchem@cs.mcgill.ca

3.2 Introduction

Technologies such as Hi-C [3], and micro-C [5] capture spatial contacts between DNA

fragments in genomes, enabling the inference of various aspects of 3D genome organi-

zation. These approaches have revealed a hierarchical spatial organization of topological

structures of the genome inside nuclei and spatial patterns such as topologically associat-

ing domains (TADs), loops, and compartments. These structures are of vital importance
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to gene regulation and are dynamic within cells [113]. Identifying these spatial patterns,

especially at high resolution, requires the availability of high-coverage Hi-C sequencing

data. The investigation of fine-scale structures would even require ultra-high coverage

contact maps [5].

While Hi-C and its variants remain the most popular approaches to map chromatin

contacts on a genome-wide scale, the analysis of the data they produce is challenging,

in large part due to the moderate sequencing depth (typically 200-500 Million valid read

pairs) compared to the size of the contact frequency matrices that need to be estimated.

The majority of TAD and loop annotation tools are primarily optimized for high-coverage

data and may not provide satisfactory results when applied to typical low- to medium-

coverage data, though tools like Grinch [7] have been proposed to analyze low-coverage

data. To close the gap, many efforts have been undertaken to perform in silico enhance-

ment of Hi-C contact maps [78, 76, 9, 75]. Given a low-coverage Hi-C data set, contact

map enhancement tools seek to predict a dense, high-resolution version of the contact

map aiming to reproduce the map that would be obtained through very deep coverage

sequencing of the same library. Super-resolution enhancement could in theory enable

high-resolution analysis of low-coverage Hi-C data, e.g. through the application of third-

party analysis tools to enhanced maps.

Most existing contact map enhancement tools are deep learning (DL) approaches and

are inspired by super-resolution algorithms in image processing. As a high-resolution (5

kb per bin) contact map for a single human chromosome contains 10,000-50,000 bins, ex-

isting applications usually split contact maps into non-overlapping blocks and enhance

each block iteratively. HiCPlus [75] was the first DL-based tool proposed for this type

of tasks. It is a convolutional neural network (CNN) that contains one hidden layer and

is trained from low-coverage and high-coverage contact map pairs (respectively the in-

put and target values) by minimizing the mean square error (MSE) loss. Later, Liu et
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al. proposed a deeper CNN with residual connections – HiCNN [76] and trained it fol-

lowing the strategy used in HiCPlus. Similar to super-resolution analysis in computer

vision, the MSE loss leads both models to produce blurry predictions [9]. To alleviate the

issue of over-smoothness, more recent approaches utilize generative adversarial (GAN)

frameworks in model training. For example, HiCGAN [9] is a CNN built upon a gener-

ator containing five residual blocks and a discriminator containing three residual blocks.

The generator is trained to produce enhanced contact maps from downsampled contact

maps, and the discriminator is trained to distinguish high-coverage contact maps from

enhanced contact maps. Liu et al. trained HiCGAN with GAN loss and used the gener-

ator for prediction. DeepHiC [8] furthers model performance by introducing additional

terms to the loss function (i.e., MSE, perceptual loss, and total variance) into training.

In contrast, conventional tools [78, 79] usually treat contact map enhancement as imputa-

tion. They enhance Hi-C signals by fitting a Markov Random Field or performing random

walk on a Hi-C graph.

Although deep learning models have achieved significant successes in contact map

enhancement, there is still room for improvement, particularly in the enhancement of

very low-coverage contact maps. First, most existing tools are trained on data containing

250M valid read pairs (typically a 16-fold downsampled version of a very high-coverage

Hi-C data set produced for human GM12878 cells data by Rao et al. [4]), and can only be

effectively used to enhance contact maps containing 200-300M valid read pairs. In addi-

tion, similar to super-resolution analysis in computer vision, contact map enhancement

is an ill-posed problem as a single low-coverage contact map may correspond to mul-

tiple potential high-coverage contact maps. While existing tools can infer high-fidelity

predictions, these may not necessarily be correct predictions, especially in sparse regions,

potentially leading to false-positives in downstream annotation tasks.
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To address the issue of ill-posedness in single-image super-resolution, computer vi-

sion researchers have introduced additional images to assist with the prediction task. For

example, some studies have created databases of image patches and used them to im-

prove prediction accuracy [169, 170]. In recent years, incorporating external data has be-

come a popular research direction and has been shown to lead to better models with fewer

parameters [171]. Within Hi-C data analysis, our recent approach – RefHiC [172] achieves

superior performance in annotating topological structures (loops and TADs) from a study

sample while using a reference panel of other Hi-C data sets as complement. In reference-

based image super-resolution, the reference database is assumed to contain a diverse set

of images, regardless of their relationship to the test image. In 3D genome analysis, the

conformation of a small region in one cell type may be observed in another cell types

[172]. Therefore, to improve the resolution of a small region of a Hi-C contact map, we

use contact maps of the same region as a reference.

Here, we introduce RefHiC-SR, a model for enhancing Hi-C contact maps. While

RefHiC [172], our model for topological structure annotation, is limited in its ability to

learn features from large patches required in a super-resolution task, RefHiC-SR over-

comes these limitations by redesigning the encoder as a modified U-net architecture [112],

and introducing a multiscale attention mechanism. This novel model allows RefHiC-SR

to handle large patches in Hi-C matrices while still benefiting from a reference panel.

3.3 Materials and Methods

3.3.1 RefHiC-SR model architecture

The RefHiC-SR network follows the U-net architecture [112] (Fig. 3.1), originally intro-

duced for image segmentation, to enhance the expressiveness of latent features produced



Chapter 3. 85

study sample

reference panel

attention w
eights

softmax

Convolution block

Reference only flow

Attention flow

Other flow

Down-sample

Up-sample

F E1

E2

E3

A1

A2

P2

P1

D1

D2 O

V1

V2

Q

K

Figure 3.1: RefHiC-SR architecture. Overview of the RefHiC-SR neural network for enhancing
Hi-C contact maps.

by encoding blocks and enable effective handling of large patches (i.e, 200×200). It con-

tains (i) a low-level feature extraction block (F) that transforms a Hi-C matrix to multi-

channel features, (ii) an output block (O) that transforms multi-channel features to an

enhanced Hi-C matrix, (iii) multiscale encoding blocks (E1, E2, and E3) that transform

low-level features to high-level features at different scales (i.e. keys, values, and query

in attention equations 1 and 2), (iv) multiscale decoding blocks (D1 and D2) that trans-

form features at different scales, and (v) attention convolutional blocks (A1 and A2) and

projecting layers (P1 and P2) that increasing the model complexity and reduces hidden

feature dimensions. To inject information from reference samples into the U-net compu-

tation graph, in the forward pass, blocks F and E1-E3 compute multiscale embeddings for

the study sample and for the n reference samples. We denote parts of these embeddings

as V1 and V2 (values), K (keys), and Q (query). We then compute combined multiscale

representations of all reference samples from these embeddings with an attention mech-

anism. Last, we replace skip connections in U-net [112] with a concatenation of the study

sample’s embedding and a transformed attention output at the same scale.

F takes an input of dimension w × w, where w is the window size (w = 200 at 5 kb
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resolution) and projects the input to a w × w × d embedding (d = 24). It is built with one

ReLU-activated convolution layer with d 9× 9 filters. E1, E2, and E3 are three consecutive

encoding blocks linked by a max pooling operator with a 2× 2 kernel and a stride of 2 (i.e.

downsampling by 50%). E1, E2, and E3 extract multi-scale features from the input contact

maps. E1 is built with two ReLU-activated convolution layers with d 3 × 3 filters and a

dropout layer with rate=0.2 between convolution layers. It takes an input of dimension

w×w× d and produces an output of the same dimension. E2 is built with the same layers

as E1, but it takes an input of dimension w
2 × w

2 × d and produces an output of the same

dimension. E3 starts with a batch normalization layer and ends with a flatten layer. It

contains three convolution layers: The first two contain d 3× 3 filters, and the last contains

one 3 × 3 filter. The first convolution layer in E3 is followed by a dropout layer with rate

0.2 and a max pooling operator with a 2× 2 kernel and a stride of 2. We did not use batch

normalization in blocks F, E1, and E2 as we observed it introduces artifacts in enhanced

contact maps. E3 takes as input the downsampled output of E2 and produces embedding

of dimension 1× (w
8 )

2. The attention module (i.e., purple module) takes as query (Q) and

keys (K) the outputs of E3, uses as values (V1 and V2) the outputs of E1 and E2 for the n

reference samples. We define the attention weights ff =softmax(QKT) ∈ R1×n, where αj

represents the relative amount of attention paid to sample j in our reference panel when

analyzing the study sample. The attention output a1 and a2 at two levels are computed as,

a1 = softmax(QKT)V1 + A1(softmax(QKT)V1) (3.1)

a2 = softmax(QKT)V2 + A2(softmax(QKT)V2) (3.2)

where A1 and A2 are convolution blocks for attention outputs configured similarly to

E1 and E2 but preceded by layer normalization. P1 and P2 are built with one ReLU-

activated convolution layer with one 3×3 filter. They project the concatenation of study

sample embeddings (produced by E1 and E2) and attention embeddings (i.e., a1 and a2)
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to embeddings with d channels. D1 and D2 are built similarly to E2 and E1. D1 takes as

input the output of P2; meanwhile, D2 takes as input the concatenation of the output of P1

and the upsampled output of D1. O is built with two ReLU-activated convolution layers

with 3×3 filters. It projects the concatenation of the output of F for the study sample and

the output of D2 to an enhanced contact map.

3.3.2 Hi-C data and preprocessing

RefHiC-SR’s input for an individual sample (i.e., study or reference samples) is defined

as a matrix in the shape of w × w, corresponding to the region of interest with a win-

dow of size w. w is a hyperparameter set to w = 200 at 5kb resolution. We trained

RefHiC-SR with ICE-normalized Hi-C contact maps. RefHiC-SR can also take raw data

as input, but using raw data directly can lead to worse prediction due to systematic bias.

For model training, we used Hi-C data downsampled from the combined GM12878 Hi-C

contact map [4]. The length of topologically associating domains and the distance be-

tween chromatin loop anchors are usually within 3Mb. Thus, we restricted our analysis

to contact pairs separated by at most 3Mb. For inference of an entire chromosome, we will

first split a contact map into partially overlapping squares Xi,j with width w indicated by

top-left corner (i, j) and step w − 20 where j ≥ i. We then apply the trained model to

enhance each square. The width of the predicted squares is also w. Last, we extract a

(w − 20)× (w − 20) matrix by trimming each side to address discontinuity between adja-

cency matrices. The full-chromosome super-resolution contact map is obtained by tiling

the super-resolution sub-matrices.
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3.3.3 Model training

We trained, evaluated, and tested RefHiC-SR on contact maps downsampled from the

combined GM12878 Hi-C data. We used chr11 and chr12 for validation, chromosome 15-

17 for testing, and the rest of autosomes for training. After preparing the input data as

mentioned above, we collected 6,918, 798, and 813 200 × 200 blocks for training, valida-

tion, and testing. RefHiC-SR takes sub-matrices from the study and reference samples as

input in the forward pass. To reduce training computation, we sampled 10 reference sam-

ples for each example in each epoch independently. During evaluation, we used all sam-

ples in the reference panel. We trained models with a batch size of 46 for 2,000 epochs on

an RTX6000 GPU and used AdamW optimizer [132] (weight_decay=0.1; learning rate=1e-

3). We also used early stopping to prevent overfitting. In the first 5 training epochs, we

warmed up the learning rate from 0 to the initial learning rate (i.e. 1e-3) and then reduced

the learning rate to 1e-6 in the first 95% epochs using the cosine annealing learning rate

scheduler. Following RefHiC [172], we performed data augmentation by downsampling

Hi-C contact maps during training. This transformation preserves topological structures

in Hi-C data. Briefly, we downsampled Hi-C training data and stored them on disk in ad-

vance. During training, we randomly selected one contact map from these downsampled

contact maps for each training example in each epoch independently. We used L1 loss to

train RefHiC-SR. It is simple and less prone to be over-smooth.

3.3.4 Contrastive Pretraining

We pre-trained low-level feature extraction block (F) and encoding blocks (E1-E3) by su-

pervised contrastive learning [128] using Hi-C contact maps downsampled from the com-

bined GM12878 Hi-C data. For each training example, we defined items extracted from

the downsampled contact maps at the same region as similar items and all Hi-C contact

map submatrices in the same batch at other regions as negative items. We aimed to train
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these layers such that the distances of embeddings produced by E3 for a training exam-

ple and its similar items are as close as possible while of embeddings between a training

example and its negative items are as far as possible. Following [128], we defined the loss

for training instance i as cross-entropy with in-batch negatives

li = −log
esim(hi,h+

i )/τ

esim(hi,h+
i )/τ + ∑j ̸=i esim(hi,h−

j )/τ
(3.3)

where hi, h+
i , and h−

j are embeddings: hi represents item i, h+
i represents one of item i’s

similar items, h−
j represents an item with a label different from i (i.e. negative item). τ

is a temperature that controls training, and we set it as 1. We pre-trained the encoder for

20 epochs with the LARS using Adam as a base optimizer. We set batch size to 46 and

learning rate to 1e-3 during training.

3.3.5 Evalution metrics

We extensively compared the performance of RefHiC-SR with alternative tools using dif-

ferent metrics, including mean squared error (MSE), mean absolute error (MAE, a.k.a.

L1), Pearson correlation coefficient (PCC), Spearman rank correlation coefficient (SRCC),

and widely used metric in super-resolution image analysis, including structural similar-

ity index measure (SSIM) score and peak signal to noise ratio (PSNR) score [8] for each of

the 200×200 sub-matrix predicted by each tool.

We compared super-resolution to high-resolution Hi-C contact maps with HiCRep

[143]. HiCRep measures the reproducibility of two Hi-C experiments by computing a

stratified correlation coefficient (PCC) for two contact maps. Its score ranges from -1 to 1

where a high value indicates high reproducibility. In addition to using PCC to compute

HiCRep scores, we also computed HiCRep scores with SRCC.
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3.3.6 Hi-C data downsampling and Hi-C reference panel

We used the original and 6-level downsampled data of the combined Hi-C contact map

for GM12878 cells obtained from Rao et al. [4] to train RefHiC-SR. The reference panel

that contains 30 human Hi-C contact map are used to train and evaluate RefHiC-SR. We

excluded samples that belong to the study sample’s cell type from the reference panel to

prevent potential data leakage.

3.3.7 Hyperparameter tuning

We first evaluate the performance of different convolution blocks in RefHiC-SR by ad-

justing convolution layer numbers in each block and adding residual connections. We

configured most blocks with two convolution layers. Following [75, 8], we used 3 × 3

filters in all internal convolution layers, but tested different filter sizes (i.e., 3 × 3, 5 × 5,

9× 9 and 13× 13) for the first and last convolution layers. We compared validation errors

and determined the optimal filter size as 9× 9 for both layers. We also compared RefHiC-

SR trained with MSE and L1 loss. We observed the model trained with MSE loss overly

smooth predictions.

3.3.8 Contact map enhancement with alternative tools

We re-trained HiCPlus, HiCCNN, and DeepHiC with the same data as we used to train

RefHiC-SR. Following previous work [75, 76, 8], we trained each model by splitting Hi-C

contact maps into 40× 40 blocks. To train HiCPlus and HiCNN, we adjusted learning rate

and used early stopping to prevent overfitting and set other hyperparameters as default.

We trained HiCPlus [75] for 30,000 epochs with a learning rate of 1e-3 and a batch size

of 256. We trained HiCNN [76] and DeepHiC [8] for 1000 epochs with a learning rate of

1e-4 and a batch size of 256. The maximum training epochs we used are much larger than

their original setting, and training losses indicated all models were converged. DeepHiC’s
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discriminator is too strong to provide gradients to the generator with its original training

procedure in our experiment. We changed the discriminative loss weight to 0.0001 and

updated the discriminator every ten epochs. Once trained, we applied each model to

200×200 overlapped blocks to enhance a whole contact map. Same as RefHiC-SR, we

cropped the prediction into a matrix of 180 × 180.

3.4 Results

We introduce RefHiC-SR, a reference panel-informed deep learning approach for enhanc-

ing Hi-C contact maps. Similar to RefHiC [172], it utilizes a reference panel containing

30 high-quality Hi-C data sets from multiple human cell types (Table 3.3) and employs

an attention mechanism to determine which reference samples are most relevant for a

given w × w region of the contact map of the study sample. The enhanced contact map

at a given region is then inferred based on a combination of the study sample and the

attention-weighted reference samples. RefHiC-SR takes as input a typical ICE normal-

ized [173, 49] moderate-coverage (sparse) Hi-C contact map and outputs a high-coverage

(dense) contact map prediction. Both input and output contact maps are at high resolu-

tion (i.e., 5 kb bins). The resulting prediction is referred to as enhanced or super-resolution

contact maps. We divided the human autosomes into a training set (chromosomes 1-10,

13, 14, and 18-22), a validation set (chromosomes 11 and 12), and a test set (chromosomes

15-17). All results reported here pertain only to the three test chromosomes. Although

we trained RefHiC-SR on GM12878 cells, the model learned is not cell-type specific. We

will demonstrate in a later section that we can use the same model to enhance Hi-C data

of other cells.

RefHiC-SR’s neural network takes as input a matrix of 200 bins by 200 bins, and

outputs a super-resolution matrix of the same dimension. When applying a trained
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model to full-chromosome contact map enhancement, we extract from the output ma-

trix a 180× 180 matrix by trimming each side to address discontinuity between adjacency

matrices. The full-chromosome super-resolution contact map is obtained by tiling the

super-resolution sub-matrices. Other super-resolution tools were applied in the same

manner.

3.4.1 RefHiC-SR accurately enhances low-coverage contact maps

PCC SRCC
chr15 chr16 chr17 chr15 chr16 chr17

RefHiC-SR 0.898±0.001 0.865±0.001 0.877±0.003 0.845±3e-4 0.845±3e-4 0.824±0.001
DeepHiC 0.884±6e-4 0.842±0.001 0.863±0.004 0.833±5e04 0.830±4e-4 0.820±9e-4
HiCNN 0.888±6e-4 0.847±0.001 0.867±0.003 0.844±4e-4 0.844±3e-4 0.830±8e-4
HiCPlus 0.865±4e-4 0.823±0.001 0.845±0.003 0.807±5e-4 0.804±5e-4 0.792±0.001

Low coverage (input) 0.643±0.001 0.632±0.002 0.661±0.002 0.559±5e-4 0.564±4e-4 0.558±6e-4

Table 3.1: HiCRep scores between high-coverage and 1
16 downsampled (low coverage)/enhanced

contact maps of GM12878 cells. HiCRep scores are computed with PCC and SRCC metrics. We
computed the standard deviations by repeating the analysis 5 times on data downsampled with
different random seeds.

We first assessed the contact map enhancement performance of RefHiC-SR, in com-

parison to three approaches: HiCPlus, HiCNN, and DeepHiC on test chromosomes 15-17

of GM12878 cells. Each model represents one of the three types of deep learning models

in contact map enhancement (i.e., shallow model, deep model, and GAN), with DeepHiC

featured as the state-of-the-art model in several studies. We used as input a 5-kb reso-

lution Hi-C dataset produced from 250M valid read pairs, obtained by downsampling a

Hi-C data set for human GM12878 cells [4]. This is equivalent to a 1
16 downsampling

that most existing tools were trained and evaluated at. As existing models are trained

from data at 10kb resolution and with different normalization approaches, it is impracti-

cal to benchmark trained models on the same data at 5kb. Thus, we retrained HiCPlus,

HiCNN, and DeepHiC with the same set of training data as we used to train RefHiC-SR

(see Methods). The accuracy of the enhanced contact maps is assessed by comparing it to

the full-coverage contact map, using seven metrics: (i) Mean-Squared Errors (MSE), (ii)
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Figure 3.2: Comparison of RefHiC-SR and other tools on GM12878 Hi-C data (250M valid read
pairs, test chromosomes 15-17). a. Examples of full coverage, low coverage, and enhanced contact
maps on a 1 Mb genomic region (chr17:5000000-6000000) and a zoom in portion. Diagonal-wise
PCC (b) and SRCC (c). Boxplots of MSE (d), MAE (e), PSNR (f), and SSIM (g) between full coverage
and enhanced contact maps.

Mean-Absolute Error (MAE), (iii) Peak Signal-to-Noise Ratio (PSNR) [9], (iv) the Struc-

tural Similarity Index Measure (SSIM) [8], (v) the diagonal-wise Pearson Correlation Co-

efficient (PCC), (vi) the diagonal-wise Spearman rank correlation coefficient (SRCC), and

(vii) the HiCRep score [142] for Hi-C data comparison.
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Fig. 3.2a and 3.5 illustrate the full-coverage (target), low-coverage (input), and en-

hanced contact maps and their differences on a typical 1-Mb genomic region (chr17:5000000-

6000000). We observed that all enhanced contact maps better match the full coverage con-

tact map than the low coverage contact map does, with a slightly advantage for RefHiC-

SR. RefHiC-SR and DeepHiC are better capturing fine-scale structures such as loops. We

then compared the prediction quality on test chromosomes 15-17. The diagonal-wise PCC

and SRCC between the enhanced and full-coverage contact maps (Fig. 3.2b,c, 3.14), show

that RefHiC-SR is comparable to or outperforms existing tools across all distance ranges.

We then compared RefHiC-SR with existing tools at individual 180×180 submatrices. The

distributions of MSE (Fig. 3.2d), MAE (Fig. 3.2e), PSNR (Fig. 3.2f), and SSIM (Fig. 3.2g)

show that all tools achieve similar performance, with a slight advantage for RefHiC-SR.

Last, we compared the similarity of super-resolution and full-coverage contact maps at

the whole-chromosome level with HiCRep [142]. Table 3.1 shows HiCRep scores for test

chromosomes. It indicates that RefHiC-SR is among the best across test chromosomes.

3.4.2 RefHiC-SR is robust to sequencing depths
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Figure 3.3: Average HiCRep scores from test chromosomes 15-17 from the GM12878 cell line across
downsampling ratios 1

2 , 1
4 . . . 1

64 . HiCRep scores are computed with PCC (a) and SRCC (b) metrics.
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To benchmark RefHiC-SR’s ability to enhance contact maps from Hi-C data at dif-

ferent sequencing depths, we produced downsampled versions (i.e, 1
2 ,1

4 ,. . . , 1
64 , where

1
64 = 62.5M valid read pairs) of the same GM12878 contact map [4] and applied RefHiC-

SR and other tools to enhance contact map resolutions for test chromosomes. We evalu-

ated the accuracy of enhanced contact maps by comparing them against the full-coverage

contact maps using HiCRep. Although lower sequencing depths led to less accurate en-

hancement for all tools (Fig. 3.3), RefHiC-SR was most robust to low sequencing depths,

clearly outperforming other tools at very low coverage ( 1
32=125M and 1

64=62.5M). For Hi-

C data containing less than 250M valid read pairs, RefHiC-SR can produce predictions

comparable to the second best tool using only half of the read pairs. To study the perfor-

mance of each tool at the most extreme case (i.e., 1
64 downsampled data), we repeated the

battery of tests originally performed at 1
16 = 250M downsampled data (Fig. 3.6, 3.14). We

observed RefHiC-SR performed the best on all metrics.

3.4.3 RefHiC-SR performs well across cell types

IMR90 K562
chr15 chr16 chr17 chr15 chr16 chr17

RefHiC-SR 0.868 0.850 0.878 0.813 0.817 0.825
DeepHiC 0.858 0.839 0.866 0.799 0.810 0.812
HiCNN 0.861 0.842 0.870 0.802 0.804 0.811
HiCPlus 0.858 0.840 0.866 0.812 0.817 0.824

Low coverage (input) 0.716 0.697 0.722 0.788 0.787 0.806

Table 3.2: HiCRep scores between high-coverage and low-coverage/enhanced contact maps of
IMR-90 and K562 cells. HiCRep scores are computed with PCC metrics.

Next, we aimed to assess the performance of RefHiC-SR and other tools, which were

all trained on Hi-C data obtained from GM12878 cells, on data from other cell types.

We applied each model to the enhancement of Hi-C data from IMR90 and K562 [4] cell

lines (test chromosomes 15-17 only). We used HiCRep, MAE, MSE, PSNR, and SSIM

to evaluate model performance. Table 3.2 shows that RefHiC-SR outperformed other

tools by achieving the highest HiCRep scores in both cells. Fig. 3.12 and 3.13 show that
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RefHiC-SR outperformed or was comparable to other tools in both cells as evaluated by

super-resolution image analysis metrics.

3.4.4 RefHiC-SR enables improved loop and TAD boundary annota-

tion
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Figure 3.4: Comparison of loops and TADs annotated from low coverage, full coverage, and en-
hanced contact maps. (a) Number of loop annotations. (b-e) Number of ChIA-PET/HiCHIP-
supported loop predictions compared against CTCF ChIA-PET (b), SMC1 HiCHIP (c), RAD21
ChIA-PET (d), and H3K27ac HiCHIP (e). Occupancy of ChIP-seq identified CTCF binding site as
a function of distance to left (g) and right (h) boundary annotations.

RefHiC-SR and other resolution enhancement tools are meant to ease downstream

analyses, such as TAD and loop annotation, by imputing missing signals in contact maps.

Here we show that RefHiC-SR facilitates annotating TAD and loop with off-the-shelf an-

notation tools, without introducing many false positives.

We first assessed the ability of RefHiC-SR to produce enhanced maps that enable high-

accuracy loop prediction. We applied Mustache [18] to annotate loops from the original

full-coverage GM12878 contact map, the 1
16 downsampled contact map, and enhanced

contact maps produced by different tools. For each analysis, we set the same Mustache 5%
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FDR cutoff, keeping other parameters as default, and sorted loops by Mustache-reported

FDR. We also included predictions made by RefHiC [172] for comparison. The number

of predicted loops is quite different among different inputs, with DeepHiC leading to the

largest number of predictions (Fig. 3.4a). We then evaluated predicted loops by com-

paring them to loops identified by loop-targeting experimental data (ChIA-PET on CTCF

[118] and RAD21 [119], and HiCHIP on SMC1 [37] and H3K27ac [120]), allowing up to

a 5 kb shift (Fig. 3.4b-e). When applied to enhanced contact maps, Mustache produced

1,245 CTCF-supported loops, 761 RAD21-supported loops, 512 SMC1-supported loops,

and 197 H3K27ac-supported loops from RefHiC-SR enhanced contact maps. These num-

bers exceed those obtained on enhanced maps produced by other tools by 25%-550%,

and even those obtained on the full-coverage data itself. The accuracy of loop annotated

from RefHiC-SR enhanced contact maps is comparable to annotating loops from the full-

coverage data. In contrast, contact maps enhanced by alternative tools introduced a large

number of false positive loop predictions. The combination of RefHiC-SR and Mustache

was only beat by RefHiC slightly. We next evaluated the extent to which RefHiC-SR facil-

itates loop annotation from Hi-C contact maps containing different numbers of valid read

pairs. Unexpectedly, coverage reduction leads to an increase in the number of loops being

predicted on most tools’ enhanced maps (including RefHiC-SR enhanced, Fig. 3.7). Fig.

3.8 shows that as the coverage drops from 256M to 62.5M valid read pairs, the number

of experimentally-supported predicted loops remains similar when Mustache is applied

to RefHiC-SR enhanced contact maps, but drops significantly using enhanced maps pro-

duced by other super-resolution tools.

To evaluate RefHiC-SR’s usefulness for facilitating TAD annotation, we used Robus-

TAD [115] to annotate TAD boundaries from the same set of contact maps as above. We

also included predictions made by RefHiC [172] for comparison. RefHiC made the least
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predictions. The number of predicted TAD boundaries is similar among full-coverage Hi-

C data and super-resolution inputs (Fig. 3.4f). Fig. 3.4g,h show that RobusTAD identified

a similar total number of CTCF-supported TAD boundaries from RefHiC-enhanced and

full-coverage contact maps. In contrast, contact maps enhanced by alternative tools lead

to fewer CTCF-supported TAD boundaries. Annotating TAD boundaries from contact

maps enhanced from low-coverage data shows that boundary annotation is robust to se-

quencing coverage (Fig. 3.9,3.10). Fig. 3.10 shows that at very low coverage, RefHiC-SR

can still help to identify a large number of CTCF-supported TAD boundaries.

We then repeated the analysis on Hi-C datasets for K562 and IMR-90 cells. Fig. 3.16

and 3.17 show RefHiC-SR outperformed alternative methods in both loop and TAD an-

notations.

3.4.5 RefHiC-SR implementation

RefHiC-SR is a Python program available at https://github.com/BlanchetteLab/RefHiC

with scripts to reproduce our experiments. We implemented the neural network with

the PyTorch library [138]. RefHiC-SR can run on either a CPU or GPU, but it performs

three times faster on GPU. RefHiC-SR requires at least 3GB of storage space for saving

reference panel data and at least 15GB RAM for loading reference samples during predic-

tion. RefHiC-SR is efficient and can process the longest human chromosome within three

minutes when run on a GPU.

3.5 Discussion and Conclusion

Here we present RefHiC-SR, a deep learning framework that utilizes a reference panel

to facilitate enhancing Hi-C data resolution for a given study sample. In contrast, exist-

ing contact map enhancement algorithms are exclusively study-sample based, and hence

https://github.com/BlanchetteLab/RefHiC
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their ability to reliably enhance contact maps from typical sequencing depth Hi-C data

is limited. Our extensive evaluation demonstrated that RefHiC-SR outperforms existing

tools in data sets ranging from very high to very low sequencing coverage, with the most

striking improvements observed in the latter case. RefHiC-SR also outperformed a sim-

ple global similarity based baseline (Section 3.9.2), indicating the necessity of designing

this model to incorporate the reference panel. Although RefHiC-SR is a machine-learning

model trained primarily on GM12878 Hi-C data, the same trained model is effective on

different cell types, and at different levels of coverage. Comparison between RefHiC-SR

and a Baseline model similar to RefHiC-SR but lacking a reference panel shows RefHiC-

SR’s superior to the introduction of a reference panel (Section 3.9.1). The super-resolution

contact maps predicted by RefHiC-SR are ready for downstream analysis and do not in-

troduce a significant number of false positives. In contrast, other enhancement tools often

introduce false positive annotations in downstream analysis.

Across the different sub-fields of data-driven biology, researchers have developed

many reference panel enabled approaches to aid the analysis of a study sample. RefHiC-

SR is the first approach to enable this type of reference panel based analysis of 3D contact

map enhancement. In addition, RefHiC-SR is the only contact map enhancement model

that is robust to low sequencing coverage. We believe RefHiC-SR has the potential to

become an essential method for enhancing Hi-C contact maps, paving the way to fur-

ther our understanding of 3D genome organization and functional implications at a finer

scale.
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3.9 Appendix

Supplementary Information

3.9.1 Comparison with a U-Net Baseline

We built a U-Net model named Baseline to demonstrate the superior performance achieved

by RefHiC-SR is attributed to the use of a reference panel. This Baseline model is similar

to RefHiC-SR but does not use a reference panel. We followed RefHiC-SR’s training pro-

cedure to train Baseline. Fig. 3.8,3.10,3.11 show that RefHiC-SR outperformed Baseline in

enhancing contact maps containing different numbers of valid read pairs. These results

suggest that RefHiC-SR benefits from the introduction of a reference panel.
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3.9.2 RefHiC-SR outperforms a simple top-K averaging baseline

Although RefHiC-SR has demonstrated outstanding performance when evaluated by

various methods, it remains uncertain whether this superiority is attributable to the pro-

posed local similarity-based U-Net model. It is interesting to investigate the performance

of predicting as the average of the study sample and top-K most similar Hi-C reference

samples. To establish a baseline for comparison, we employed a method, Baseline (top 5),

based on the top 5 most similar reference samples, which were identified by comparing

the study sample against each reference sample using HiCRep. Subsequently, we calcu-

lated the average interaction frequency of the study sample and the selected reference

samples to make our prediction. Fig. 3.15 shows that Baseline (top 5) is much worse than

RefHiC-SR.
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ID Sample Valid read pairs Source
HIC00001 22Rv1 (prostate cancer cell line) 685096962 [144]
HIC00002 293TRex-Flag-BRD4-NUT-HA 1660296754 [145]
HIC00007 BLaER (lymphoblastic leukemia cell line) 406322404 [146]
HIC00041 HCT-116 (colorectal cancer cell line) 603179292 [147]
HIC00067 HeLa Kyoto cell, MboI G1 sync control 1045885928 [148]
HIC00090 HepG2 (hepatocellular carcinoma cell line) 1759654311 [119]
HIC00091 HL60/S4 (neutrophil-like Myeloid leukemia cell line) 478434139 [149]
HIC00113 Nalm6 (B cell precursor leukemia cell line) 816274711 [150]
HIC00168 WI38_RAF (WI-38hTERT/GFP-RAF1-ER) 602556180 [151]
HIC00172 Embryonic stem cell, Cardiomyocyte differentiation : hESCs (day 0) 1914642484 [152]
HIC00183 teloHAEC (endothelial cell line) 911486437 [153]
HIC00200 Naïve human embryonic stem cells 731906045 [154]
HIC00203 GM23248 (primary skin fibroblasts) 1797370277 [155]
HIC00221 MDM (monocyte-derived macrophages) 590449106 [156]
HIC00269 Astrocytes of the cerebellum primary cell 430822244 [119]
HIC00273 HAP1 (near-haploid cell line) 413436528 [157]
HIC00280 Purified human germinal center B cells 426222299 [158]
HIC00287 Liver 447028100 [159]
HIC00295 Thymus 507309033 [159]
HIC00296 H1 Embroynic Stem Cell 989388439 [160]
HIC00310 A549 00h 100 nM dexamethasone 1548684355 [119]
HIC00318 HUVEC 438880295 [161]
HIC00319 IMR90 1053932182 [161]
HIC00320 K562 880877579 [161]
HIC00321 KBM7 877658969 [161]
HIC00322 NHEK 653628335 [161]
HIC00337 Gastric tissue 426476775 [162]
HIC00343 Left Ventricle 547477074 [162]
HIC00354 Spleen 490487515 [162]
HIC00360 GM12878 1994319522 [161]

Table 3.3: Human reference panel
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Figure 3.5: Pairwise difference among low-coverage, full-coverage, and enhanced contact maps
on a 1 Mb genomic region (chr17:5000000-6000000). We clipped values to the range of [-0.5,0.5] for
better visualization.
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Figure 3.6: Comparison of RefHiC-SR and other tools on GM12878 Hi-C data (62.5M valid read
pairs, test chromosomes 15-17). a. Examples of low-coverage, full-coverage and enhanced contact
maps on a 1 Mb genomic region (chr17:5000000-6000000). Diagonal-wise PCC (b) and SRCC (c).
Boxplots of MSE (d), MAE (e), PSNR (f), and SSIM (g) between full-coverage and enhanced contact
maps.
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Figure 3.7: Number of called loops predicted from data across different downsampling rates.
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Figure 3.8: Comparison of loops annotated from low-coverage, full-coverage, and enhanced con-
tact maps. This figure is similar to Fig. 3.4b-e but for contact maps at different downsampling
rates.



Chapter 3. 107

1
2

1
4

1
8

1
16

1
32

1
64

Downsampling rate

750

1000

1250

1500

1750

2000

2250

2500

Nu
m
be

r o
f c
al
le
d 
le
ft 
bo

un
da

rie
s

Full coverage

RefHiC-SR
Baseline
DeepHiC
HiCNN
HiCPlus
Low coverage
RefHiC

(a)

1
2

1
4

1
8

1
16

1
32

1
64

Downsampling rate

750

1000

1250

1500

1750

2000

2250

2500

Nu
m
be
r o

f c
al
le
d 
rig

ht
 b
ou
nd

ar
ie
s

Full coverage

RefHiC-SR
Baseline
DeepHiC
HiCNN
HiCPlus
Low coverage
RefHiC

(b)

Figure 3.9: Number of called left (a) and right (b) boundaries predicted from data across different
downsampling rates.
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Figure 3.10: Comparison of TADs annotated from low-coverage, full-coverage, and enhanced con-
tact maps. This figure is similar to Fig. 3.4g,h but for contact maps at different downsampling
rates.
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Figure 3.11: Comparison of RefHiC-SR and Baseline on GM12878 Hi-C data (250M valid read
pairs, test chromosomes 15-17). These figures are similar to Fig. 3.2 but compared RefHiC-SR
against Baseline (Section 3.9.1).
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Figure 3.12: Comparison of RefHiC-SR and other tools on IMR-90 Hi-C data (test chromosomes
15-17). Boxplots of MSE (a), MAE (b), PSNR (c), and SSIM (d) between full-coverage and enhanced
contact maps.
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Figure 3.13: Comparison of RefHiC-SR and other tools on K562 Hi-C data (test chromosomes 15-
17). Boxplots of MSE (a), MAE (b), PSNR (c), and SSIM (d) between full-coverage and enhanced
contact maps.
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Figure 3.14: Comparison of RefHiC-SR and other tools on GM12878 Hi-C data (test chromosomes
15-17, within 3Mb distance). Diagonal-wise PCC between the full coverage contact map and a
contact map enhanced from a Hi-C dataset that containing 250M valid read pairs (a), and 62.5M
valid read pairs (b). These are the same figures as Fig. 3.2b and 3.6b, but including more long
range interactions.
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Figure 3.15: Comparison of RefHiC and Baseline (top 5) described in Section 3.9.2 on GM12878
HiC data (500M valid read pairs). Diagonal-wise PCC (a) and SRCC (b). Boxplots of MSE (c),
MAE (d), PSNR (e), and SSIM (f) between full coverage and enhanced contact maps.
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Figure 3.16: Comparison of loops and TADs annotated from low coverage, full coverage, and
enhanced contact maps for human IMR-90 cells. (a) Number of loop annotations. (b) Loop predic-
tions compared against CTCF ChIA-PET. (c) Number of TAD boundary annotations. Occupancy
of ChIP-seq identified CTCF binding site as a function of distance to left (d) and right (e) boundary
annotations.
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Figure 3.17: Comparison of loops and TADs annotated from low coverage, full coverage, and
enhanced contact maps for human K562 cells. (a) Number of loop annotations. Loop predictions
compared against CTCF ChIA-PET (b) and RAD21 ChIA-PET (c). (d) Number of TAD boundary
annotations. Occupancy of ChIP-seq identified CTCF binding site as a function of distance to left
(e) and right (f) boundary annotations.
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Chapter 4

RobusTAD: Reference panel based

annotation of nested topologically

associating domains

Yanlin Zhang, Rola Dali, and Mathieu Blanchette *

School of Computer Science, McGill University, Montréal, Québec, H3A 0E9, Canada

Preface

Emerging evidence shows that chromatin is hierarchically organized, with topologically

associating domains (TADs) playing a crucial role within this hierarchy. Consequently,

TADs themselves are organized hierarchically. However, the development of tools for

detecting such TAD hierarchies is still in its infancy. Existing tools often struggle to pre-

cisely identify TAD boundaries and/or hierarchies, particularly when dealing with low-

coverage Hi-C data. Although we demonstrate that the RefHiC introduced in Chapter 2

significantly improved TAD annotation, it cannot produce TAD hierarchies.

In this chapter, we introduced RobusTAD 1 to infer TAD hierarchies from Hi-C data.

1The RobusTAD that we used in Chapter 3 is an old version [115] which only support annotating boundary and does not use a
reference panel.
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We demonstrated its effectiveness in accurately detecting TAD hierarchies using both low

and high coverage Hi-C data. We attribute this success to the incorporation of an ex-

tensive reference panel comprising additional Hi-C contact maps. As elucidated in the

previous chapters, our approach capitalizes on the conservation of local structures (in-

cluding contacts, loops, and domain boundaries) among the study sample and our refer-

ence panel, benefiting the analysis of these features in samples of interest. However, it is

important to note that TAD hierarchies are global structures and are specific to individ-

ual cells. To harness the benefits of introducing a panel of reference sample in detecting

TAD hierarchies, we divide the annotation of TAD hierarchies into two steps: (i) Annota-

tion of potential domain boundaries based on Hi-C contact maps. (ii) Pairing of left and

right domain boundaries to form TAD hierarchies. To facilitate domain boundary anno-

tation, we introduce a reference panel of samples. We perform stratified rank-sum tests to

score domains and boundaries in both steps. The pairing of left and right boundaries are

achieved through dynamic programming. Our contributions in this chapter are twofold.

Firstly, we have substantially enhanced the accuracy of domain boundary annotation and

the inference of TAD hierarchies. Moreover, we highlight the versatility of our reference

panel-enabled methodology, showcasing its potential integration into both deep learning

and conventional applications.

The rest of this chapter is the entire text from the following article:

Zhang, Y., Dali, R & Blanchette, M. (2023). RobusTAD: Reference panel based annotation

of nested topologically associating domains. Submitted to Genome Biology
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4.1 Abstract

Topologically associating domains (TADs) are fundamental units of 3D genomes and play

essential roles in gene regulation. Hi-C data suggests a hierarchical organization of TADs.

Accurately annotating nested TADs from Hi-C data remains challenging, both in terms

of the precise identification of boundaries and the correct inference of hierarchies. While

domain boundary is relatively well conserved across cells, few approaches have taken

advantage of this fact. Here, we present RobusTAD to annotate TAD hierarchies. It in-

corporates additional Hi-C data to refine boundaries annotated from the study sample.

RobusTAD outperforms existing tools at boundary and domain annotation across several

benchmarking tasks.

4.2 Background

The hierarchical organization of mammalian chromosomes within the nucleus has been

increasingly identified as an essential factor for cellular functions such as gene regulation,

cell fate determination, and evolution [1]. Though the multi-scale chromosomal folding

revealed by chromosome conformation capture techniques - such as Hi-C - are frequently

studied [3, 4, 5, 11], understanding its structural and functional roles is still in its infancy.

Moreover, identifying spatial elements such as TADs and loops from Hi-C data is chal-

lenging, particularly due to the relatively low resolution permitted by Hi-C datasets of

typical sequencing depth (200-500M valid read pairs) [114, 63].

TADs are self-interacting regions along the chromosome, manifesting as squares along

the diagonal of Hi-C contact maps [6]. Researchers used to perform TAD annotations

from Hi-C datasets at low resolution (i.e., 40 kb), and define TADs as megabase-scale

structural elements [11]. Later, researchers observed that TADs can be much smaller (i.e.,

tens to hundreds kilobases) in mammalian chromosomes by investigating high-coverage
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and high-resolution Hi-C contact maps [4]. This observation led researchers to detect

TADs at high resolutions [64, 6, 1]. In addition, the study of sequence-encoded factors,

such as CTCF (CCCTC-binding factor), that influence TAD formation also requires re-

searchers to annotate TADs at much higher resolutions. Meanwhile, TAD-within-TAD

(or subTAD) organization also gathered significant attention in recent years [6].

Many computational tools for TAD annotation have been proposed [65, 66, 67, 4, 123,

124, 71, 68, 7, 11, 125, 126, 127, 174, 69, 70]. These approaches can be classified as ei-

ther one-dimensional (1D) score-based and or matrix-based approaches. Score-based ap-

proaches, such as TopDom [65], Insulation Score (IS) [69], OnTAD [71], etc. assign each

locus a score representing the strength of a potential TAD boundary and subsequently

detect TAD boundaries by identifying local optima among the list of scores. Matrix-

bases approaches directly utilize two-dimensional (2D) data instead of transforming it

into a 1D statistic. For example, Arrowhead [4] transforms the Hi-C contact map into

an arrowhead-shaped feature map and subsequently identifies TADs by searching for

corners in the transformed matrix. Chen and colleagues formulated TAD annotation as

graph segmentation [70], viewing a Hi-C contact map as an adjacency matrix to model a

chromosome as a graph and identified TADs through graph Laplacians.

Despite the numerous TAD annotation tools available, the identification of TAD hier-

archy and the precise location of TAD boundaries at high resolution remains challenging.

Most TAD annotation tools are designed for high-coverage contact maps, or operate at

low-resolution. As reviewed in previous studies [63, 72, 73, 74], these tools are not robust

to resolutions and sequencing coverages. Additionally, the predictions of TADs and do-

main boundaries show limited agreement across tools. Finally, most existing algorithms

only use the contact map of the sample of interest to annotate TADs. Their performance

is thus limited by the sequencing depth of the Hi-C data from that study. Most Hi-C data

sets produced to date are in the range of 200M to 500M valid read pairs, with only a slow
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increase over time. We anticipate that this situation remains until sequencing costs drop

dramatically.

The issue of insufficient data coverage also exists in many other biological data anal-

ysis tasks. Researchers often address this issue through introducing data from samples

other than the sample under study [88, 175]. For example, though a SNP array typically

covers only a few hundreds of thousands of loci, it is routine to infer unobserved geno-

types through imputation with a reference panel containing a larger spectrum of geno-

typed variants [80, 83]. Similarly, homology modelling for protein structure prediction

exploits a database of known structures [88]. Conversely, the vast amount of published

Hi-C datasets are seldom employed to annotate TAD. We hypothesize that since TADs are

determined by genome sequence, epigenetics, and cellular dynamics, the vast majority of

TADs present in a given cell-type/condition are also present in multiple other samples.

Given the large number of Hi-C datasets in public depositories (e.g. [176]), the stage is

set to develop TAD annotation approaches that better utilize existing Hi-C data sets. Re-

cently, we introduced RefHiC [172], a reference panel enabled approach for TADs and

chromatin loops annotation. Although we demonstrated that the introduction of a Hi-C

reference panel enables RefHiC to significantly outperform alternatives in TAD annota-

tion, RefHiC suffers from several limitations: (i) RefHiC does not predict TAD hierarchies;

(ii) the computationally intensive process of projecting Hi-C samples onto the latent space

impedes including more samples into the reference panel.

Here, we introduce RobusTAD. RobusTAD is a TAD annotation algorithm that pro-

vides accurate and robust TAD annotation at high resolution. It improves TAD bound-

ary annotation by leveraging publicly available Hi-C data and achieves superior per-

formance by exploiting locally matched chromosome conformations (LMCC). Following

TAD boundary annotation, it uses non-parametric tests and a dynamic programming al-

gorithm to obtain the optimal nested TAD structure. RobusTAD outperforms existing
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TAD callers in a variety of contexts. We further demonstrated that RobusTAD is robust to

low sequencing coverage and can produce high-resolution TAD annotations from Hi-C

data of typical sequencing depth (250-300M reads). Finally, we show that applying Ro-

busTAD to predict TAD at high resolution facilitates dissecting TADs according to tran-

scription factor binding site profiles around TAD boundaries and consequently probe

TAD formation.

4.3 Results

4.3.1 Overview of RobusTAD

RobusTAD takes a normalized Hi-C contact matrix as input and calls TADs in three steps

(Fig. 4.1): (i) Low-accuracy TAD boundary identification based on the study sample; (ii)

Refinement of TAD boundary locations based on locally-matched chromosome confor-

mations from a reference panel of Hi-C data sets; (iii) Pairing of left and right boundaries

into an optimal nested domain hierarchy.

Study sample based boundary identification is based on seeking local maxima in a

vector of 1D nonparametric TAD boundary scores. RobusTAD assigns separate left and

right TAD boundary scores to each locus by performing genomic distance stratified rank-

sum test between upstream/downstream inter- and intra-domain interactions.

RobusTAD refines boundary calls made on the study sample by utilizing selected Hi-

C samples from a reference panel. For a given candidate TAD boundary at position p,

we define locally matched chromosome conformations LMCC(p) as a collection of Hi-C

samples in which a predicted TAD boundary occurs within 25 kb (i.e. five 5-kb bins) of p.

It then computes refined boundary scores for the 50 kb region by combining the boundary

scores from LMCC(p) and the study sample itself; the position that reaches the maximum

score is the final high-resolution boundary prediction.
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Figure 4.1: Overview of the RobusTAD algorithm. RobusTAD detects TAD boundaries in three
steps (i, ii, and iii). First, approximate left and right TAD boundaries are identified based on
the study sample. Second, RobusTAD identifies locally matched chromosomal conformations
(LMCCs) from a panel of reference data sets, and uses those LMCCs to refine the position of each
TAD boundary. Finally (step iii), refined left and right boundaries are paired to form an optimal
nested TAD hierarchy.

In the third step, RobusTAD assembles a hierarchy of nested domains by pairing left

and right boundary candidates using a dynamic programming algorithm, inspired by

the Nussinov algorithm for RNA secondary structure prediction [177], that maximizes

the full chromosomal TAD score (i.e. the sum of TADs scores). RobusTAD computes the

TAD score with the distance-stratified rank-sum statistic of interactions between intra-

and inter-domain in both upstream and downstream. To avoid the TAD score inflation
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caused by the presence of sub-TADs within a given region, lower-level domains previ-

ously identified during the execution of the algorithm are excluded from a region’s TAD

score calculation. The algorithm is guaranteed to produce the globally optimal nested

TAD hierarchy.

4.3.2 Comparison with existing TAD callers

We compared the performance of RobusTAD to 14 other TAD callers: TopDom [65], Ar-

matus [66], deDoc [67], Arrowhead [4], HiTAD [123], EAST [124], OnTAD [71], CaTCH

[68], Grinch [7], Domaincall [11], GMAP [125], HiCSeg [126], RefHiC [172] and IC-Finder

[127]. We tried to include hierarchical TAD callers TADtree [178], TADpole [73] and Su-

perTAD [179] in our benchmarking, but they could not complete within a week of running

time and hence we had to exclude them. Since RobusTAD and some other TAD callers de-

tect nested TADs, we define TADs that do not contain any smaller TADs as level 0 TADs,

and TADs that contain one or multiple smaller TADs as level 1+ TADs. We performed

the benchmark evaluation experiments proposed by Zufferey et al. [72] on chromosomes

15-17 of Hi-C data for human GM12878 cells [4], down-sampled to 250 Million valid read

pairs. We conducted all studies at 5kb resolution and employed iterative normalized

[173, 49] Hi-C contact maps as input. The running time varies significantly among tools

in annotating TADs from all three chromosomes. OnTAD and callers that do not produce

nested TADs are able to annotate the three chromosomes within 20 minutes. RobusTAD

took a total of 1.5 hours to annotate the three chromosomes. Most of other nested TAD

callers also require a similar amount of time.

We first compared the number and size of TADs identified by each tool. Interest-

ingly, the number of TADs varies greatly, with Arrowhead identifying less than 500 TADs

and OnTAD identifying around 3,800. Most of the tools, including RobusTAD identified

1, 000 − 2, 000 TADs (Fig. 4.2a). Tools that identify more TADs naturally produce smaller
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Figure 4.2: Comparison of RobusTAD, and 14 other TAD callers on a GM12878 Hi-C data set of
250M valid read pairs. a, Number of TADs predicted by different tools, and proportion of pre-
dicted TAD boundary pairs that are supported by CTCF ChIA-PET data. b, Size distribution of
predicted TADs. c, U-MAP analysis performed on the Pearson’s correlation matrix of the matrix
of pairwise MoC between TADs identified by all callers. Comparison of the quality of TADs pre-
dicted by different tools using RobusTAD’s TAD score (d), and TAD mean interaction frequency
(observed/expected) (e). f, Fold change of structural protein peak signals at TAD boundaries for
CTCF, RAD21, and SMC3. Number of left (g) and right (h) boundaries that contain at least one
CTCF ChIP-seq peak. i, Fraction of TADs with significant log10 ratio between H3K27me3 and
H3K36me3. Note: Panels c,f-i are generated with benchmarking code created by Zufferey et al.
[72].

TADs (Fig. 4.2b). RobusTAD identified TADs of a wide range of sizes, with a median

size of 170 kb. UMAP embedding [180] on Measure of Concordance (MoC) [72] values
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among pairwise callers identifies three major caller groups. Among all callers, Robus-

TAD, RefHiC, Domaincall, GMAP, Armatus and HiTAD form a cluster with an average

within-cluster MoC of 0.47 (Fig. 4.2c).

We then examined the quality of the TAD annotations produced by each tool. Fig.

4.7 shows an example genomic region (chr16:10.2 Mb – 12 Mb), with TADs annotated by

RobusTAD and other TAD callers. TADs lack ground-truth annotation, so it is impossible

to calculate the accuracy of TAD predictions. Thus, we used three metrics to evaluate each

predicted TAD’s quality. i) RobusTAD’s TAD score (see Methods, on the full coverage

data), ii) mean interaction frequency (Observed over Expected, on the full coverage data)

inside a TAD, and (iii) agreement with CTCF ChIA-PET data. The TAD score measures

the enrichment of interaction frequencies inside a TAD by using its neighbouring regions

as the background. It ranges from -1 to 1; positive values indicate higher interactions

within the TAD than across its boundaries. RobusTAD ranks second based on mean TAD

score (Fig. 4.2d); only Arrowhead, a tool that predicts approximately 5 times fewer TADs,

reaches a higher mean TAD score. Similar results are obtained when assessing predicted

TADs based on average observed/expected ratios (Fig. 4.2e).

Loop TADs in mammalian genomes are TADs that exhibit a strong contact between

their boundary loci [6]. We assessed TAD annotations by comparing predicted TAD

boundary pairs with CTCF ChIA-PET data (allowing up to one 5-kb bin mismatch). Fig.

4.2a shows that 582 (38%) TAD predictions made by RobusTAD match ChIA-PET data.

This is both the largest number and the largest proportion of supported TAD predictions

across all tools.

We also studied the performance of TAD annotations at the level of individual TAD

boundaries. We first calculated the enrichment for ChIP-Seq signals of structural proteins

(CTCF, RAD21, and SMC3) associated with predicted TAD boundaries (Fig. 4.2f and 4.8).
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TAD boundaries predicted by most tools are enriched for these architectural proteins. Ro-

busTAD ranked 3rdfor the mean fold-change enrichment of the three structural proteins.

Fig. 4.2g,h compare left and right boundaries to CTCF ChIP-seq data (allowing 1-bin

mismatch) separately; RobusTAD ranked 3rd for both left and right boundary predictions,

slightly outperformed by Arrowhead, and the other reference panel enabled tool, RefHiC.

Histone marks usually correlate with regulatory activity, and TADs are typically consis-

tently enriched for either activating (H3K36me3) or repressive (H3K27me3) marks. We

calculated the ratio between H3K27me3 and H3K36me3 within each TAD prediction and

counted the fraction of TAD predictions where this ratio was particularly large or small

(see Methods). Fig. 4.2i shows RobusTAD ranked 4th, slightly outperformed by TopDom,

RefHiC, and ArrowHead.

We then conducted a visual examination of TAD predictions made by all tools. We per-

formed this analysis using rescaled pileup plots generated by Coolpup.py [181], with the

’--local’ and ’--rescale’ options. Fig. 4.3, and 4.9 show most tools, including RobusTAD,

identified TADs as square regions with increased interaction frequency, dot-corners, and

well-defined domain borders. In contrast, tools such as Domaincall, deDoc, and Armatus

yielded TAD predictions with less distinct domain borders. TAD predicted by Grinch and

HiCSeg are less enriched for Hi-C contacts. In addition, we observed clear vertical and

horizontal stripes with increased interaction frequencies at the boundaries of TADs pre-

dicted by RobusTAD, HiCTAD, RefHiC, TopDom, and GMAP. The two stripes indicate

these TAD callers can identify both TADs and sub-TADs.

Taken collectively, these results suggest that RobusTAD is the most accurate TAD

caller, as it is the only tool ranking among the top four TAD callers in all accuracy metrics.
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RobusTAD Arrowhead EAST HiTAD IC-Finder

OnTAD RefHiC GMAP TopDom Armatus

Domaincall CaTCH deDoc Grinch HiCSeg

Figure 4.3: Visual comparison of TADs predicted by RobusTAD and 14 other tools from
GM12878 Hi-C data. The rescaled pileup plots aggregate areas around TAD predictions in the
full-coverage Hi-C contact map. TAD predictions were annotated against a downsampled Hi-C
contact map containing 250M valid read pairs.

4.3.3 RobusTAD is robust to low sequencing coverage Hi-C data

TAD annotation is typically sensitive to sequencing depth. Many TAD callers do not per-

form well when the sequencing depth is low, and boundaries detected from contact maps

of differing sequencing depths have been reported to lack reproducibility [114, 63]. We

evaluated how RobusTAD and other tools performed on Hi-C contact maps of varying

sequencing depths (generated from the combined Hi-C data set for GM12878 [4]), from

data set of 4B valid read pairs down to downsampled versions with as few as 62.5M valid

read pairs. As illustrated in fig. 4.4a, different tools react differently to reduced coverage:
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Figure 4.4: Comparison of RobusTAD, and other 14 TAD callers on dowmsampled GM12878 Hi-
C data. a, Number of TAD predicted from downsampled Hi-C data. Jaccard index of predicted
TAD boundaries (b) and Concordance between TADs (c) predicted on full data (4B valid read
pairs) compared to those predicted on the downsampled Hi-C data. d Number of TADs predicted
from downsampled data, and proportion of predicted TAD boundary pairs that are supported by
CTCF ChIA-PET data.

some (including RobusTAD) conservatively reduce their predictions, while others are un-

affected or even increase their number of predictions. These results suggest that tools like

RobusTAD can mitigate false-positive identifications effectively.

We then assessed the tool’s robustness by measuring the similarity between the pre-

dictions made on the highest coverage data set to those made on downsampled data, both

at the levels of TAD boundaries (fig. 4.4b, using the Jaccard index) and TADs (fig. 4.4c,
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using the Measure of Concordance). RobusTAD and RefHiC, the two reference panel

based approaches, exhibit the highest levels of consistency at TAD boundaries level. Fol-

lowing Zufferey et al., we used the Measure of Concordance (MoC) [72] to compare two

sets of TAD predictions. MoC does not handle overlapping TADs, thus we only included

TADs that do not include any smaller TADs in this analysis. Fig. 4.4c shows RefHiC,

HiCSeg, and RobusTAD outperformed other tools at most levels of coverage. Last, we

evaluated TAD and domain boundary prediction accuracy by comparing predictions to

CTCF ChIA-PET (fig. 4.4d) and CTCF ChIP-Seq (Fig. 4.10,4.11) data. For contact maps

containing more than 250M valid read pairs, RobusTAD performed the best. On data

containing fewer valid contact pairs, RobusTAD is only slightly outmatched by RefHiC.

Although OnTAD, Armatus, and TopDom also identified more CTCF supported TADs

from data containing few valid read pairs, they were less accurate than our tools, as they

identified many more TADs that were not supported by CTCF data.

4.3.4 RobusTAD performs well across cell types

Here, we demonstrate that RobusTAD performs well across cell types. We applied Ro-

busTAD and five other TAD callers (GMAP, HiTAD, Arrowhead, OnTAD, and RefHiC),

to annotate TADs from Hi-C contact maps derived from IMR-90 and K562 cell lines [4].

The rescaled pileup plots show that all tools successfully identified TADs as squares with

increased interaction frequencies and dot-corners (Fig. 4.5a). In addition, TAD predic-

tions made by all tools contain vertical and horizontal stripes with increased interaction

frequency at its boundary locations. These stripes indicate these tools accurately detect

TADs and subTADs from Hi-C contact maps. The number of TAD predicted by different

tools from the two contact maps ranges from 500 to 3500, with RobusTAD detecting 2630

and 1710 TADs from the two contact maps (Fig. 4.5b). The mean expectation normal-

ized interaction frequency (O/E) within a TAD further confirms that all tools, including
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Figure 4.5: Comparison of RobusTAD, and other five TAD callers on Hi-C data derived from
IMR-90 and K562 cell lines. a, Rescaled pileup plots over predicted domains. b, Number of TADs
predicted by different tools, and proportion of predicted TAD boundary pairs that are supported
by CTCF ChIA-PET data. c, TAD mean interaction frequency (observed/expected). Occupancy of
ChIP-seq identified forward and reverse CTCF binding site as a function of distance to left (d) and
right (e) boundary annotations.

RobusTAD, successfully identified TADs as a region with increased cis-contact pairs (Fig.

4.5c). Next, we compared boundary pairs to CTCF ChIA-PET data (Fig. 4.5b). The ChIA-

PET data for IMR-90 contains 4957 contact pairs and the ChIA-PET data for K562 contains

2168 contact pairs. RobusTAD identified the most ChIA-PET supported TADs from both

contact maps. Last, we evaluated boundary prediction accuracy by comparing predicted

boundary to forward and reverse CTCF binding sites identified by ChIP-Seq experiment.

Left and right boundaries predicted by RobusTAD are more enriched by CTCF binding

sites than boundaries identified by alternative tools.
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4.3.5 RobusTAD reveals multiple types of TADs

Building upon the high accuracy and resolution of RobusTAD, we used it to perform a

study of TADs functionalities. We focused on TAD predictions made on the full set of

autosomes for a combined Hi-C data set obtained from the GM12878 cell line [4]. We

characterized a TAD as a binary vector of dimension 2 × 116 = 232, representing the

ChIP-seq derived occupancy of 116 transcription factors [119] at its left and right domain

boundaries. We identified six TAD groups by applying the UMAP algorithm [180] to

project TADs onto a 2D space, followed by K-Means clustering [182] (Fig. 4.6a). The

symmetric pattern observed in the UMAP projection (Fig. 4.6a) and the group-averaged

occupancy vectors (Fig. 4.6b) indicate that left and right domain boundaries play similar

functional roles. Chromatin structural proteins such as ZNF143, CTCF, YY1 and subunits

of cohesin complex (SMC3, and RAD21) are the most enriched proteins in all six groups.

We also observed TRIM22 highly enriched at domain boundaries in all groups (Fig. 4.6b).

The distribution of transcription factors at TAD boundaries (Fig. 4.6b) and the chro-

matin accessibility quantified as the average count of ATAC-seq peaks at domain bound-

aries (Fig. 4.6f) motivate us to interpret group assignments by investigating transcrip-

tional activity and chromatin accessibility.

Groups 3 is characterized by having both boundaries exhibiting evidence of transcrip-

tional activity, with high TF occupancy (Fig. 4.6b) and chromatin accessibility (Fig. 4.6f),

often involving pairs of regions annotated as active enhancers or promoters (as anno-

tated by ENCODE’s combined Segway ChromHMM segmentations [119]) (Fig. 4.6c,e).

This is confirmed this by comparing boundary pairs to Enhancer-Promoter links iden-

tified by a POLR2A ChiA-PET experiment [119] (Fig. 4.6d). Additionally, we observe

that Enhancer-Promoter pairs can mediate TAD formation even in the absence of CTCF

binding sites, with 14.5% of Group-3 TADs corresponding to such links but lacking CTCF

occupancy.
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Figure 4.6: Applying RobusTAD to Hi-C data for GM12878 cells reveals TAD groups. a, a
two dimensional UMAP projection of TADs based on the occupancy of transcription factors at
domain boundaries. b, occupancy of transcription factors in each group of TADs. c, two dimen-
sional distributions in the UMAP projected space of TADs associated with different features. d,
occupancy different pairs of directional CTCF binding sites at domain boundaries. E-P links are
domains supported by POLR2A ChiA-PET data. e, Proportion of annotated TADs with different
regulatory element combinations at domain boundaries. Enrichment of ATAC-seq peaks (f), and
insulation scores (g) at domain boundaries for each TAD group. h, Rescaled pileup plots over
TAD predictions for each TAD group.
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Groups 1 and 2 only display evidence of transcriptional activity at one of their two

boundaries, with the inactive boundary showing reduced TF occupancy. Although those

three groups are quite different in terms of their activity profiles, their insulation profiles

(Fig. 4.6g) and pile-up plots (Fig. 4.6h) are nearly identical.

Groups 4, 5, and 6 are characterized by TADs whose both boundaries are located in

repressive chromatin (Fig. 4.6c) with low TF occupancy (Fig. 4.6b) and chromatin accessi-

bility (Fig. 4.6f), and little overlap with active enhancers/promoters (Fig. 4.6e). Group-4

TADs have both boundaries occupied by CTCF and associated structural proteins; these

TADs’ boundaries also display the highest level of convergent CTCF binding sites (Fig.

4.6d) and have sharper corner dots than domains in other groups (Fig. 4.14), probably

because of the reduced level of interactions in surrounding regions. On the contrary,

Group-5 and 6 TADs lack CTCF at one or the other of their boundaries. They also exhibit

weak insulation scores at the CTCF-free boundary (Fig. 4.6g, 4.12a, 4.13), and weak dot

corners (Fig. 4.14).

Among all groups, domain boundaries in active regions are sharper than in repressed

regions (Fig. 4.6g, 4.12a, and 4.13). Domains in active regions are more enriched by Hi-C

contacts than domains in repressive regions (Fig. 4.12b).

We observe that domain boundaries shared by multiple TADs are more enriched for

CTCF bindings sites and activated promoters (Fig. 4.15). We further studied the hierar-

chy structure of these TADs by classifying them into singleton TADs (isolated TADs that

do not overlap with others), TADs (non-singleton TADs that do not reside within other

TADs), and sub-TADs (non-singleton TADs found within larger TADs) (Section 4.12.2

and Fig. 4.16). We found TADs frequently associated with boundaries marked by con-

vergent CTCF motifs, and subTADs playing an important role in gene regulation, with a

substantial portion being E-P links.
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4.4 Discussion

Hi-C experiments and their derivatives have become routine in studying 3D genome or-

ganization at the genome-wide scale. Many Hi-C studies have been carried out in the

past decade, and hundreds of Hi-C datasets have been published. Though this type of

data has enabled the discovery of several key levels of 3D genome organizations (e.g.

loops, TADs, and compartments), accurately identifying TAD boundaries and the ways

in which they assemble to form a TAD hierarchy remain challenging with existing tools,

especially for Hi-C data with typical sequencing coverage. To deepen our understanding

of 3D genome organization, high-resolution annotations of TAD hierarchy are required.

RobusTAD annotates high-resolution TAD boundaries and TAD hierarchy from Hi-

C contact maps, taking advantage of a reference panel of high-quality Hi-C data sets.

Including more reference samples improves annotation accuracy (Fig. 4.17, and 4.18), so

one can expect that RobusTAD will continue to get better as its reference panel grows.

RobusTAD is based on a novel nonparametric statistic to score both domain boundaries

and TADs. It is a distribution-free test to evaluate TAD and TAD boundaries. Thus, it

is robust to changes in observation, such as those due to noise and sparsity. In addition,

RobusTAD’s separate scoring of left and right boundaries eases the dissection of domain

boundaries. In contrast, most existing TAD callers do not quantify domain boundaries or

amalgamate left and right boundaries as a single insulation locus.

RobusTAD overcomes the statistical challenges caused by high sparsity and signal-to-

noise ratio limitation in a Hi-C contact map of typical coverage by identifying and com-

bining many locally matched Hi-C data. At moderate sequencing depths, existing tools

often fail at maintaining a low level of false identifications and identify many inaccurate

TADs. Although a user can adjust parameters to limit the number of identified TADs in

most tools, adjusting parameters is challenging and not necessarily effective at reducing
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false identification. Within RobusTAD, we use a simple and statistically sound target-

decoy search strategy to select TAD boundaries from a list of candidate boundaries. A

user only needs to specify the desired False Discovery Rate (FDR) threshold (α) to ensure

that the final predictions to contain at most α expected false-positive boundaries.

Our tools outperformed many TAD callers in accuracy and reproducibility in identi-

fying high-resolution TAD from multiple Hi-C contact maps. For instance, both CTCF

ChIA-PET and CTCF occupancy data highlight the superiority of RobusTAD at both

boundary detection and TAD assembly. The benefits of RobusTAD were shown to be

particularly significant in typical moderate-to-low coverage Hi-C data. As demonstrated

in fig. 4.4a,d, RobusTAD can reduce false-positive identifications by identifying slightly

fewer TAD boundaries from low-coverage Hi-C contact maps. In contrast, false-positive

boundaries increased dramatically in predictions made by most other TAD callers when

applied to low-coverage Hi-C contact maps. While RobusTAD was bested by RefHiC in

terms of the accuracy of boundary annotation from very low coverage Hi-C data, it out-

matched even that tool in terms of predicting CTCF ChIA-PET supported TADs. This

advantage of RobusTAD over RefHiC is attributed to the newly developed dynamic pro-

gramming algorithm for pairing TAD boundaries in RobusTAD. In addition, RobusTAD

guarantees full interpretability without a loss of accuracy. When a boundary only ap-

pears in the study sample, RobusTAD will usually annotate it without using additional

data from its reference panel. LMCC based boundary refinement makes mistake only if

the boundary in the study sample is very close (i.e., within 50 kb) to another boundary in

the reference panel. Given the superior performance achieved by RobusTAD, we believe

this case rarely occurs.

Despite its advantages, RobusTAD has several limitations. First, given RefHiC slightly

outperformed RobusTAD in some aspects of TAD boundary annotation, we believe Ro-

busTAD does not fully capitalize on the advantages offered by the reference panel. It
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might be due to some weak boundaries that cannot be identified in the first step of Ro-

busTAD. We can overcome this by replacing the first step with the deep learning model in

RefHiC, at the cost of losing efficiency and interpretability. Second, the dynamic program-

ming is time consuming, in part due to we need to compare two large sets of interaction

frequencies to evaluate the score of a large candidate domain. We are planning to im-

prove the running time by sampling a fraction of elements from the two sets to estimate

the score of large candidate TADs.

4.5 Conclusion

RobusTAD allows for precise, high-resolution TAD annotation from Hi-C data of a wide

range of sequencing depths, all the way down to only 62.5 million contact pairs. Ro-

busTAD improves the performance of TAD boundary annotation by exploiting locally

matched contact maps in a reference panel. By enabling high-resolution and robust anal-

yses of topological domains from standard coverage Hi-C data, RobusTAD paves the way

to gaining biological insights that had until now could only be possible from ultra-high

coverage (and cost) data.

4.6 Methods

4.6.1 Notations

Consider an intra-chromosomal contact map M = {mij}, where mij represents (normal-

ized) interaction frequency between bin i and j at fixed resolution r. RobusTAD aims to

detect TAD boundaries B = {BL, BR} and TADs D = {(BL
i , BR

i′
)}, where BL and BR are

lists of left and right boundaries respectively, (BL
i , BR

i′ ) indicates that the ith left and i′th
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right boundaries form a TAD. Define M[a,b] as the submatrix corresponding genomic re-

gion [a, b], and S[a,b], SL
[a,b], and SR

[a,b] as the domain score, left and right boundary scores

for TAD (a, b).

4.6.2 Boundary and domain scores

To calculate domain and boundary scores for (a, b), we compared interactions for bins

within [a, b] and between bins in [a, b] and its left and right flanking regions. Our null

hypothesis in the nonparametric test assumes that, for each diagonal of the contact ma-

trix, there are no differences between the distribution of within-TAD and across-TAD-

boundary interactions. To quantify TAD, we performed a distance stratified (i.e. diagonal-

wise) rank sum test between the two types of interactions. Define Dk(a, b) = {(i, i + k) :

i ≥ a, i + k ≤ b}. We denote the TAD score evaluated from the kth diagonal as Sk
[a,b], and

compute it using within-stratum ranks as follows:

Sk
[a,b] =

∑(i,j)∈Dk(a,b) ∑(i′,j′)∈Dk(2a−b,a−1)∪Dk(b+1,2b−a) 1(mi,j > γmi′,j′)− 1(mi,j <
1
γ mi′,j′)

∑(i,j)∈Dk(a,b) ∑(i′,j′)∈Dk(2a−b,a−1)∪Dk(b+1,2b−a) 1(mi,j > γmi′,j′) + 1(mi,j <
1
γ mi′,j′)

(4.1)

where γ ≥ 1 controls the minimum gap allowed between the two types of interactions.

Setting γ = 1 is equivalent to the Wilcoxon rank sum test. The overall TAD score for

region [a, b] is a weighted sum of the per-stratum scores:

S[a,b] =
2

3(1 + b − a)(b − a)

k=b−a

∑
k=1

(b − a + k + 1)Sk
[a,b] (4.2)

.
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b− a+ k+ 1 is the number of values used for comparison on the kth diagonal, 3(1+b−a)(b−a)
2

is the total number of values used for comparison. S[a,b] falls between -1 and 1, where

S[a,b] = −1 indicates all interactions inside the TAD are smaller than all interactions across

TAD boundaries by a factor at least 1
γ , S[a,b] = 0 indicates no difference existed between

the two types of interactions, S[a,b] = 1 indicates all interactions inside the TAD exceed

all interactions across TAD boundaries by a factor of at least γ. Note that if a nested TAD

(a′, b′) was already determined to occur within (a, b) (with a ≤ a′ < b′ ≤ b), we exclude

interactions belonging to (a′, b′) from the calculation.

We define left and right boundary scores SL
[a,b] and SR

[a,b] similarly but only using inter-

actions across the corresponding boundary as the background.

4.6.3 Identifying candidate TAD boundaries

To identify domain boundaries from a normalized intra chromosomal contact map, we

first compute a left boundary score La = maxw∈{wmin,...,wmax} SL
[a,a+w] for each bin a along

the whole chromosome. Right boundary scores are computed similarly:

Ra = maxw∈{wmin,...,wmax} SR
[b−w,b]. For our analyses at 5 kb resolution, we use wmin =

50, wmax = 250.

To identify left and right boundaries from boundary scores, we use find_peak function

in SciPy [131] to identify local peaks. We assume the minimum distance between two

domain boundaries is 25 kb (i.e. five 5-kb bins) and set distance=5 in find_peak. The set of

putative boundaries this identifies usually contains false positives. We use FDR control to

select a subset of high confidence boundaries. Briefly, we produced a decoy contact map

by shuffling interactions diagonal-wise. The shuffling strategy destroys all domains but

maintains the interaction frequency decay pattern. We identify domain boundaries from

this decoy contact map and compare scores for boundaries identified in the original and

decoy Hi-C contact maps. We select the top boundaries at a FDR of α (α = 0.05 for data
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containing more than 300M valid read pairs, α = 0.1 for data containing less than 300M

valid read pairs).

4.6.4 Refining boundary annotation by identifying locally-matched chro-

mosome conformations from the reference panel

Putative TAD boundaries predicted by the single-sample non-parametric test described

above are often off by one or more bins, due to the noisy nature of the data. For a given

left or right putative TAD boundary predicted at bi, we define LMCCs as the subset of

the Hi-C samples from our reference panel that have a predicted boundary with 25 kb

(5 bins) of bi. We then update the study sample’s boundary scores for the 10-bin region

centered at bi as the mean boundary scores of the study sample and all selected reference

samples (Section 4.12.1). Last, we update the boundary call as the peak position among

the refined boundary scores.

4.6.5 Assembly of nested TADs from predicted boundaries

Given an intra-chromosomal contact map M = {mij} and sets BL and BR of previously

identified left and right boundaries, we sought to pair left and right boundaries to form

hierarchical domains. Similar to OnTAD [183], we do not allow partial overlaps between

domains in TAD predictions. While this assumption may inadequately address heteroge-

neous regions, as illustrated in previous work [183], it remains applicable to the majority

of the genome. Moreover, this fully nested TAD hierarchy assumption allows us to use

a dynamic programming algorithm to find a globally optimal solution. Our dynamic

programming algorithm is inspired by the Nussinov algorithm [177] for RNA secondary

structure prediction.

We denote the ordered multi-set of TAD boundaries as (b1, b2, . . . , bn−1, bn), where

bi ∈ BL ∪ BR. We define the globally optimal solution as the nested TAD hierarchy that
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maximizes the sum of scores of all TADs in the hierarchy, subject to the TADs’ left and

right boundaries being selected (potentially with repetition) from BL and BR. We create

the dynamic programming table T of size n× n, where Tij stores the maximum sum of do-

main scores for all nested domains within region [bi, bj]. The forward pass of the dynamic

programming fills the upper triangular portion of T, using the following recursion:

Tij = max
i<k<j

Tik + Tkj + δ(i, j) (4.3)

δ(i, j) =


S[bi,bj]

if bi ∈ BL and bj ∈ BR and S[bi,bj]
≥ λ

0 otherwise
(4.4)

λ defines the minimum score for pairing bi and bj as a domain (we set λ=0.2). The eval-

uation of δ(i, j) depends on k in the recursion function of Tij as S[bi,bj]
requires excluding

nested TADs within [bi, bj] which are identified with the dynamic programming algo-

rithm in previous steps. We sequentially fill entries in T from the first to the furthest

diagonals. To start, we initialize the first upper diagonal as

Ti,i+1 =


S[bi,bi+1]

bi ∈ BL, bi+1 ∈ BR, and S[bi,bi+1]
≥ λ

0 otherwise
(4.5)

Last, we select the optimal set of domains that maximize the sum of TAD scores for ge-

nomic region [b1, bn] by backtracking from T1n. Some domain boundaries in b may be

absent from the TAD hierarchy. They are treated as false positive domain boundaries or

involved in partial overlap domains, which does not satisfy our assumption.
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4.6.6 Curating Hi-C reference panel

We downloaded 177 published human Hi-C datasets (Table 4.1) from the GEO database

and uniformly processed them with distiller [184]. Reads were mapped against hg38

and we discarded reads with a mapping quality < 10. This produced Hi-C contact maps

at fixed resolutions and stored processed contact maps in multi-resolution cooler format

(.mcool). Lastly, read count matrices were normalized using Cooler’s iterative correction

algorithm [49, 173]. We applied the single-sample version of robusTAD with default

parameters to calculate boundary scores for all of these Hi-C samples at 5 kb resolution

and saved boundary scores and boundary calls as a reference database, to be used for the

reference-panel based version of RobusTAD.

4.6.7 Enrichment analysis and Measure of Concordance

We followed Zufferey et al. [72] to analyze enrichment of H3K36me3 and H3K27me3 hi-

stone marks and CTCF, SMC3, and RAD21 structural proteins within TADs or at their

boundaries. For structural protein enrichment, we calculated the fold-change by compar-

ing peak counts in a narrow interval around a boundary to those in distant flanks (Fold

change= peak
background -1). For histone marks, we calculated the average log10-ratio in small

intervals within TADs and obtained empirical p-values using ten shuffles.

To compare TAD partitions, we used the Measure of Concordance (MoC) [72], which

ranges from 0 (absence of concordance) to 1 (full concordance) and is defined as follows,

MoC(P, Q) =


1 if NP = NQ = 1

1√
NP NQ−1

(∑NP
i=1 ∑

NQ
j=1

|Fi,j|2
|Pi||Qj|

− 1) otherwise
(4.6)

where P = {Pi}, and Q = {Qi} are sets of TADs including NP and NQ TADs, Fi,j is the

overlap region between Pi and Qj, and | · | represents cardinality. We only included TADs
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without any smaller TAD in this analysis.

4.6.8 Alternative approaches

This study compared RobusTAD to 14 other TAD callers. We ran TopDom, Armatus,

Arrowhead, EAST, CaTCH, Domaincall (DI), GMAP, ICFinder and HiCSeg as suggested

in [72]. As we performed the analysis at 5kb resolution, we have updated parameters

related to resolutions accordingly. We ran HiTAD, RefHiC, and deDoc with their default

settings. OnTAD: We set maxsz=600 to allow OnTAD to detect TADs as large as 3Mb.

Grinch: following Lee and Roy [7], we detected TADs by setting the expected TAD length

as 2Mb, 1Mb, and 500Kb in three runs and combined all results. We observed tools such

as Grinch reported invalid TAD annotations of length less than three bins and excluded

these invalid annotations from further investigation. In addition, the convention of TAD

definition often varies from tool to tool (with ±1 bin shift). We converted them to the con-

vention used in RobusTAD (i.e., boundary refers to the start of the left/right furthermost

bin inside the TAD).
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4.12.1 Refined boundary score is a stratified rank-sum test

In RobusTAD, to refine score of a putative domain boundary bi, we select samples in the

reference panel that have domain boundaries within a 50 kb region around bi. TAD are

relatively conserved across cells. Thus, we assume domain boundaries inside this 50 kb

region are identical among all samples (i.e., study sample and selected reference sam-

ples), and compute refined boundary scores as the mean boundary scores for the study

sample and all selected reference samples. Here, we show that a mean boundary score

is equivalent to a stratified rank-sum test score where each stratum contains all interac-

tion frequencies of a particular genome distance that comes from a particular sample.

This stratified rank-sum test evaluates the strength of a putative boundary using interac-

tion frequencies from all samples that exhibit similar local structures in our study. Each

sample is an observation of the same local structure. To simplify, we consider refined

boundary scores as the mean of two samples’ scores S1 and S2 computed with a window

of size w. Boundary scores evaluated from the kth diagonal are S1,k and S2,k respectively.

Following our definition of the boundary score, we have

S1 =
1

w × w

w

∑
k=1

wS1,k

S2 =
1

w × w

w

∑
k=1

wS2,k

thus,

mean(S1, S2) =
1
2
(S1 + S2)

=
1
2
(

1
w × w

w

∑
k=1

wS1,k +
1

w × w

w

∑
k=1

wS2,k)

=
1

2 × w × w

2

∑
i=1

w

∑
k=1

wSi,k
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is a stratified rank-sum test, where 2×w×w is the total number of interaction frequencies

and w is the number of interaction frequencies in each stratum.

4.12.2 A comparison of singleton TADs, TADs, and subTADs

RobusTAD detects TAD hierarchies from Hi-C contact maps, allowing us to classify TAD

predictions into distinct categories. These categories include singleton TADs, which are

isolated TADs that do not overlap with others; TADs, which are non-singleton TADs

that do not reside within larger TADs; and sub-TADs, which are non-singleton TADs

found within larger TADs. Sub-TADs are further divided into three groups: sub-TAD

A, with left boundaries being left TAD boundaries; sub-TAD B, with right boundaries

being right TAD boundaries; and sub-TAD C, encompassing other subTADs. Rescaled

pileup plots in Fig. 4.16a show that within-domain interactions in predicted TADs of all

groups are larger than their surroundings. Notably, we observe dot-corners displaying

increased interactions across all groups, with the strongest dot-corner pattern associated

with TADs. Singleton TADs exhibit relatively weak domain boundaries and less involve-

ment in transcription. These boundaries also show lower enrichment of CTCF binding

sites and RAD21. In contrast, TAD boundaries (including right boundaries of subTAD A

and left boundaries of subTAD B) serve as robust insulating regions compared to other

types of domain boundaries. They are more enriched for architectural proteins such as

CTCF and RAD21 and more actively involved in transcriptional processes (as indicated

by TSS and ATAC-seq signals around these boundaries). Sub-TAD boundaries (including

both boundaries of sub-TAD C, right boundaries of sub-TAD A, and left boundaries of

sub-TAD B) are relatively weaker and less enriched for architectural proteins. The pres-

ence of Tss at sub-TAD boundaries falls between that of TAD boundaries and singleton

TAD boundaries. Additionally, both boundaries of sub-TAD C display greater accessibil-

ity than domain boundaries of any other type, as measured by ATAC-Seq. Furthermore,
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We studied Enhancer-Promoter links by comparing TAD boundary pairs against polII

ChIA-PET data (Fig. 4.16b). We found that 5% of TADs are E-P links; 15%-20% of sin-

gleton TADs, sub-TADs A and B are E-P links; and more than 28% of sub-TADs C are

E-P links. Fig. 4.16c illustrates that TAD boundary pairs are notably enriched in con-

vergent CTCF motifs compared to other boundary pairs, with singleton TADs showing

less enrichment in convergent CTCF motifs. In summary, these observations show the

importance of TAD hierarchies in facilitating gene expression and regulation, with TADs

frequently associated with boundaries marked by convergent CTCF motifs, and subTADs

playing an important role in gene regulation, with a substantial portion being E-P links.
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Figure 4.7: TAD identification for an example genomic region (chr16:10.2 Mb – 12 Mb) of
GM12878 cells. a, TAD identified by RobusTAD on GM12878 cells. Note how TAD predictions
are supported by the CTCF ChIA-PET data and consistent with gene annotation and epigenetic
features. b, Comparison of TADs detected by different tools. RobusTAD annotated two nested
sets of TADs. Every gene in this region is included entirely within a TAD. Most predicted TAD
boundaries are collocated with ChIP-seq peaks, and loops identified by CTCF ChIA-PET support
many TAD predictions; both support the conclusion that RobusTAD produces accurate TAD an-
notations. We also observed that TADs annotated by RobusTAD are either enriched for either ac-
tivation (H3K36me3) or repression (H3K27me3) marks, but rarely both. ChIA-PET data suggests
that a weak TAD (chr16:10.25Mb-10.7Mb) is missed by RobusTAD because it partially overlaps
other TADs. Among all tools, only CaTCH detected this weak TAD.
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Figure 4.8: ChIP-seq peak signals for CTCF, RAD21, and SMC3 around TAD boundaries anno-
tated by each tool.
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Figure 4.9: Visual comparison of TADs predicted by RobusTAD and 14 other tools from a
GM12878 Hi-C data. These plots are created by aggregating regions over a Hi-C contact map
containing 250M valid read pairs. The regions are TAD predictions used in Fig. 4.3.
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Figure 4.10: Number of left TAD boundaries predicted by different tools, and proportion of
predicted boundaries that are supported by CTCF ChIP-Seq data.
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Figure 4.11: Number of right TAD TAD boundaries predicted by different tools, and proportion
of predicted boundaries that are supported by CTCF ChIP-Seq data.
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Figure 4.12: RobusTAD score at domain boundaries (a) and domains (b) of the six groups of
TADs predicted from the combined Hi-C data for GM12878 cells.
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Figure 4.13: Insulation score and RobusTAD score around domain boundaries of the six groups
of TADs predicted from the combined Hi-C data for GM12878 cells. a, Left boundary. b, Right
boundary.
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Figure 4.14: Aggregate peak analysis (APA) at TAD corners for each TAD group identified from
the combined GM12878 Hi-C data.
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Figure 4.15: Enrichment of CTCF binding sites and activated promoters around domain bound-
aries. We classify a boundary into one of five groups based on the number of times it acts as a
domain boundary for different TADs.
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Figure 4.16: A comparison of singleton TADs, TADs, and subTADs. a, rescaled pileup plots
around TADs, and distributions of insulation scores, ATAC-Seq peaks, Tss, RAD21, and CTCF
binding sites around domain boundaries. b, Proportions of domains being E-P links. c, Orienta-
tion of CTCF motifs at TAD boundary pairs.
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Figure 4.17: An accuracy comparison of domain boundaries identified by RobusTAD with and
without LMCC boundary refinement. a-f show the occupancy of ChIP-seq identified CTCF bind-
ing site as a function of distance to domain boundaries that predicted from Hi-C data containing
various number of contact pairs.
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Figure 4.18: An accuracy comparison of domain boundaries identified by RobusTAD with dif-
ferent number of reference samples. The two plots show the occupancy of ChIP-seq identified
CTCF binding site as a function of distance to domain boundaries that predicted from Hi-C data
containing 250M valid read pairs using various samples as a reference panel.
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Table 4.1: Reference Panel

Accession numbers Sample Source

GSM3358191, GSM3358192 22Rv1 (prostate cancer cell line) [144]

GSM3901271, GSM3901272 293TRex-Flag-BRD4-NUT-HA, treat 1 µg/mL

tetracycline for 8 hours

[145]

GSM2631393, GSM2631395 786-M1A cell line (renal cancer cell line) [185]

GSM2631392, GSM2631394 786-O cell line (renal cancer cell line) [185]

GSM4198752, GSM4198762 BLaER (lymphoblastic leukemia cell line),

CEBPA fused with the estrogen receptor (ER)

hormone-binding domain, induced 120hour

[146]

GSM4198753, GSM4198763 BLaER (lymphoblastic leukemia cell line),

CEBPA fused with the estrogen receptor (ER)

hormone-binding domain, induced 144hour

[146]

GSM4198749, GSM4198759 BLaER (lymphoblastic leukemia cell line),

CEBPA fused with the estrogen receptor (ER)

hormone-binding domain, induced 48hour

[146]

GSM4198750, GSM4198760 BLaER (lymphoblastic leukemia cell line),

CEBPA fused with the estrogen receptor (ER)

hormone-binding domain, induced 72hour

[146]

GSM4198751, GSM4198761 BLaER (lymphoblastic leukemia cell line),

CEBPA fused with the estrogen receptor (ER)

hormone-binding domain, induced 96hour

[146]

GSM4198746, GSM4198756 BLaER (lymphoblastic leukemia cell line),

CEBPA fused with the estrogen receptor (ER)

hormone-binding domain, induced 9hour

[146]
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Table S4.1 continued from previous page

GSM4198768, GSM4198772 BLaER (lymphoblastic leukemia cell line),

CTCF-auxin inducible degradation, treat DMSO,

168hour

[146]

GSM3967131, GSM3967132 CUTLL1 (T-ALL cell lines), 1µM DMSO treat ev-

ery 12h for 72h treat, Arima

[186]

GSM3967126, GSM3967127 CUTLL1 (T-ALL cell lines), 1µM DMSO treat ev-

ery 12h for 72h, HindIII

[186]

GSM3967129, GSM3967130 CUTLL1 (T-ALL cell lines), 1µM γSI treat every

12 h for 72h

[186]

GSM3967124 Early T-lineage progenitor acute lymphoblastic

leukemia (ETP-ALL)

[186]

GSM2825105, GSM2825106 G-401 (kidney cancer cell line) [187]

GSM3258551 HCC1954 (Breast cancer cell line) [188]

GSM2809575, GSM2809576,

GSM2809577, GSM2809578

HCT-116 (colorectal cancer cell line), RAD21 alle-

les were tagged with an AID domain and a fluo-

rescent mClover, 6hour axin treat, 180min with-

drawal

[147]

GSM3898435, GSM3898437 HCT116 cell, auxin-inducible degron (AID) tag

fused to STAG1, auxin treat

[189]

GSM3898434, GSM3898436 HCT116 cell, auxin-inducible degron (AID) tag

fused to STAG1, no auxin treat

[189]

GSM3898439, GSM3898441 HCT116 cell, auxin-inducible degron (AID) tag

fused to STAG2, auxin treat

[189]

GSM3898438, GSM3898440 HCT116 cell, auxin-inducible degron (AID) tag

fused to STAG2, no auxin treat

[189]
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GSM3489420 HeLa F2 cell, treated for 24 hours with 1000 U/ml

of recombinant human IFNg

[190]

GSM2747750 HeLa Kyoto [191]

GSM4106788 HeLa Kyoto cell, HindIII G1 sync control [148]

GSM4106796 HeLa Kyoto cell, HindIII G1 sync control, CTCF

and ESCO1 siRNA depleted

[148]

GSM4106802 HeLa Kyoto cell, HindIII G1 sync control, CTCF

and STAG1 siRNA depleted

[148]

GSM4106795 HeLa Kyoto cell, HindIII G1 sync control, CTCF

and STAG2 siRNA depleted

[148]

GSM4106794 HeLa Kyoto cell, HindIII G1 sync control, CTCF

siRNA depleted

[148]

GSM4106797 HeLa Kyoto cell, HindIII G1 sync control, ESCO

siRNA depleted

[148]

GSM4106792 HeLa Kyoto cell, HindIII G1 sync control, STAG1

siRNA depleted

[148]

GSM4106793 HeLa Kyoto cell, HindIII G1 sync control, STAG2

siRNA depleted

[148]

GSM4106789 HeLa Kyoto cell, MboI G1 sync control [148]

GSM4106799 HeLa Kyoto cell, MboI G1 sync control, auxin-

inducible degron (AID) tag fused to STAG1,

auxin treat

[148]

GSM4106798 HeLa Kyoto cell, MboI G1 sync control, auxin-

inducible degron (AID) tag fused to STAG1, no

auxin treat

[148]
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GSM4106801 HeLa Kyoto cell, MboI G1 sync control, auxin-

inducible degron (AID) tag fused to STAG2,

auxin treat

[148]

GSM4106800 HeLa Kyoto cell, MboI G1 sync control, auxin-

inducible degron (AID) tag fused to STAG2, no

auxin treat

[148]

GSM4106790 HeLa Kyoto cell, MboI G1 sync control, STAG1

siRNA depleted

[148]

GSM4106791 HeLa Kyoto cell, MboI G1 sync control, STAG2

siRNA depleted

[148]

GSM2747751 HeLa Kyoto, CTCF-auxin inducible degradation,

0min

[191]

GSM2747752 HeLa Kyoto, CTCF-auxin inducible degradation,

120min

[191]

GSM2747740 HeLa Kyoto, Pds5SA/B depleted by RNA infer-

ence

[191]

GSM2747745, GSM2747748 HeLa Kyoto, Scc1-auxin inducible degradation,

0min

[191]

GSM2747749 HeLa Kyoto, Scc1-auxin inducible degradation,

120min

[191]

GSM2747746 HeLa Kyoto, Scc1-auxin inducible degradation,

15min

[191]

GSM2747747 HeLa Kyoto, Scc1-auxin inducible degradation,

180min

[191]
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GSM2747753 HeLa Kyoto, Scc1-auxin inducible degradation,

WAPL and Pds5SA/B depleted by RNA infer-

ence, 0min

[191]

GSM2747754 HeLa Kyoto, Scc1-auxin inducible degradation,

WAPL and Pds5SA/B depleted by RNA infer-

ence, 15min

[191]

GSM2747755 HeLa Kyoto, Scc1-auxin inducible degradation,

WAPL and Pds5SA/B depleted by RNA infer-

ence, 180min

[191]

GSM2747738 HeLa Kyoto, synchronized at G1 [191]

GSM2747744 HeLa Kyoto, synchronized at G2 [191]

GSM2747743 HeLa Kyoto, synchronized at S [191]

GSM2747741 HeLa Kyoto, WAPL and Pds5SA/B depleted by

RNA inference

[191]

GSM2747739 HeLa Kyoto, WAPL depleted by RNA inference [191]

GSM2825569, GSM2825570 HepG2 (hepatocellular carcinoma cell line) [187]

GSM3304262, GSM3304264 HT1080 (fibrosarcoma cell line) [192]

GSM2597682, GSM2597683 IMR90 (Lung fibroblast-derived myoblast), con-

trol vector

[193]

GSM2597686, GSM2597687 IMR90 (Lung fibroblast-derived myoblast), TET-

inducible MYOD, differentiation media

[193]

GSM2597684, GSM2597685 IMR90 (Lung fibroblast-derived myoblast), TET-

inducible MYOD, Growth media

[193]

GSM3967128 Jurkat (T-ALL cell lines), 1µM DMSO treat every

12h for 72h

[186]
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GSM2599093, GSM2599094 MCF10AT1 (hyperplastic breast cell) [194]

GSM2599095, GSM2599096 MCF10CA1a (fully malignant breast cancer cell) [194]

GSM3336890, GSM3336891,

GSM3336892

MCF-7 (endocrine-sensitive breast cancer cells),

endocrine-sensitive ER+ cell

[195]

GSM3336896,

GSM3336897,GSM3336898

MCF-7 (endocrine-sensitive breast cancer cells),

Fulvestrant-resistant cell

[195]

GSM3756151, GSM3756152 MCF-7 (endocrine-sensitive breast cancer cells),

grown without exposure to endocrine therapy,

culture 3month

[195]

GSM3756153, GSM3756154 MCF-7 (endocrine-sensitive breast cancer cells),

grown without exposure to endocrine therapy,

culture 6month

[195]

GSM3756149, GSM3756150 MCF-7 (endocrine-sensitive breast cancer cells),

grown without exposure to endocrine therapy,

culture start

[195]

GSM3336893, GSM3336894,

GSM3336895

MCF-7 (endocrine-sensitive breast cancer cells),

Tamoxifen-resistant (TAMR) cell

[195]

GSM3211391 Nalm6 (B cell precursor leukemia cell line) [150]

GSM3258552 OE33 (Esophegeal adenocarcinoma cell line) [188]

GSM3967114 Peripheral blood T cells [186]

GSM4119020, GSM4119025 Primary CD4+ T-cells [196]

GSM4119022, GSM4119027 Primary CD4+ T-cells, CD3/CD28 stimulated,

1hr

[196]

GSM4119021, GSM4119026 Primary CD4+ T-cells, CD3/CD28 stimulated,

20min

[196]
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GSM4119024 Primary CD4+ T-cells, CD3/CD28 stimulated,

24hr

[196]

GSM4119023, GSM4119028 Primary CD4+ T-cells, CD3/CD28 stimulated,

4hr

[196]

GSM3392701, GSM3392702 RMG1 (Ovarian clear cell adenocarcinoma cell

line), ARID1A Knock Out

[197]

GSM3392703, GSM3392704 RMG1 (Ovarian clear cell adenocarcinoma cell

line), NCAPH2 knock Down

[197]

GSM3327706 SNU16 (gastric cancer cell line) [198]

GSM3258550 SNU-C1 (Colorectal cancer cell line) [188]

GSM4594449 SW480 (Colorectal cancer cell line), treated with

siRNA targeting TCF7L2, 72hour elapsed

[199]

GSM3399745 SW480 (Colorectal cancer cell line) [188]

GSM3399746 SW480rep1 (Colorectal cancer cell line) [188]

GSM3258549 SW480rep2 (Colorectal cancer cell line) [188]

GSM3333325 T2000877 (gastric cancer cell line), CCNE1-

rearranged gastric cancer cell line

[198]

GSM3044586, GSM3044588,

GSM3044590

T-47D (ductal carcinoma cell line) [200]

GSM3044586, GSM3044588,

GSM3044592

T-47D (ductal carcinoma cell line), treat 110 mM

NaCl, 1hour

[200]

GSM3356360 T990275 (gastric cancer cell line), CCNE1-

rearranged gastric cancer cell line

[198]

GSM3735784, GSM3735785 WI38 Primary Fibrolabsts, replicative senescence

- proliferative

[151]
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GSM3735786, GSM3735787 WI38 Primary Fibrolabsts, replicative senescence

- senescence

[151]

GSM3735782, GSM3735783 WI38 RAF (WI-38hTERT/GFP-RAF1-ER), Onco-

gene induces senescence day10

[151]

GSM3735776, GSM3735777 WI38 RAF (WI-38hTERT/GFP-RAF1-ER), Onco-

gene induces senescence day2

[151]

GSM3735778, GSM3735779 WI38 RAF (WI-38hTERT/GFP-RAF1-ER), Onco-

gene induces senescence day4

[151]

GSM3735788, GSM3735789 WI38 RAF (WI-38hTERT/GFP-RAF1-ER), Onco-

gene induces senescence day5, treat siDNMT1

[151]

GSM3735790 WI38 RAF (WI-38hTERT/GFP-RAF1-ER), Onco-

gene induces senescence day5, treat siNT1

[151]

GSM3735780, GSM3735781 WI38 RAF (WI-38hTERT/GFP-RAF1-ER), Onco-

gene induces senescence day6

[151]

GSM3735774, GSM3735775 WI38 RAF (WI-38hTERT/GFP-RAF1-ER), unin-

duced

[151]

GSM3417098 MCF10 cell line (ER-/PR- fibrocystic disease) [201]

GSM3262956, GSM3262957 Embryonic stem cell, Cardiomyocyte differentia-

tion : hESCs (day 0)

[152]

GSM3262962, GSM3262963 Embryonic stem cell, Cardiomyocyte differentia-

tion : cardiac progenitors (day 7)

[152]

GSM3262964, GSM3262965 Embryonic stem cell, Cardiomyocyte differentia-

tion : primitive cardiomyocytes (day 15)

[152]

GSM3262966, GSM3262967 Embryonic stem cell, Cardiomyocyte differentia-

tion : ventricular cardiomyocytes (day 80)

[152]
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GSM3263085, GSM3263086 Embryonic stem cell [152]

GSM3263087, GSM3263088 Embryonic stem cell, HERV-H1 Knock-Out,

HERV-H elements located TAD boundaries were

deleted using CRISPR?Cas9

[152]

GSM3263089, GSM3263090 Embryonic stem cell, HERV-H2 Knock-Out,

HERV-H elements located TAD boundaries were

deleted using CRISPR?Cas9

[152]

GSM3734958, GSM3734959 Embryonic stem cell, HERV-H2-insertion clone1 [152]

GSM3734960, GSM3734961 Embryonic stem cell, HERV-H2-insertion clone2 [152]

GSM3593256, GSM3593257 teloHAEC (endothelial cell line) [153]

GSM3593258, GSM3593259 teloHAEC (endothelial cell line), TNFα treated,

4hour

[153]

GSM3560407, GSM3560408 primary white blood cell -

GSM3560409 primary neutrophil cell -

GSM3438650, GSM3438651 HUVEC (umblical vein endothelial cells) [202]

GSM3438652, GSM3438653 HUVEC (umblical vein endothelial cells), treated

10 ng/ml TNF-α, 1hour

[202]

GSM2973922, GSM2973923 ASCs (Adipose-Derived Stem Cells), 0 day of dif-

ferentiation induction

[203]

GSM2973924, GSM2973925 ASCs (Adipose-Derived Stem Cells), 1 day of dif-

ferentiation induction

[203]

GSM2973928, GSM2973929 ASCs (Adipose-Derived Stem Cells), 2 days be-

fore induction of differentiation

[203]

GSM2973930, GSM2973931 ASCs (Adipose-Derived Stem Cells), 1 day after

neuronal induction

[203]
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GSM2973932, GSM2973933 ASCs (Adipose-Derived Stem Cells), 3 day after

neuronal induction

[203]

GSM2410309, GSM2410310 Naïve human embryonic stem cells, growth con-

dition: GSKi + MEKi (2i), Lif, IGF1, FGF

[154]

GSM3506961, GSM3506962,

GSM3506963, GSM3506964,

GSM3506965, GSM3506966,

GSM3506967, GSM3506968,

GSM3506969, GSM3506970

GM23248 (primary skin fibroblasts) [155]

GSM3112369, GSM3112370 HTBE (human tracheobronchial epithelial cells),

infect active H5N1 influenza, infection time

12hour

[156]

GSM3112371, GSM3112372 HTBE (human tracheobronchial epithelial cells),

infect UV-inactived H5N1 influenza, infection

time 12hour

[156]

GSM3112373, GSM3112374 HTBE (human tracheobronchial epithelial cells),

infect mock, infection time 12hour

[156]

GSM3112375, GSM3112376 HTBE (human tracheobronchial epithelial cells),

infect active H5N1 influenza, infection time

18hour

[156]

GSM3112377, GSM3112378 HTBE (human tracheobronchial epithelial cells),

infect UV-inactived H5N1 influenza, infection

time 18hour

[156]

GSM3112379, GSM3112380 HTBE (human tracheobronchial epithelial cells),

infect mock, infection time 18hour

[156]
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GSM3112381, GSM3112382 HTBE (human tracheobronchial epithelial cells),

infect active H5N1 influenza, infection time

6hour

[156]

GSM3112383, GSM3112384 HTBE (human tracheobronchial epithelial cells),

infect UV-inactived H5N1 influenza, infection

time 6hour

[156]

GSM3112385, GSM3112386 HTBE (human tracheobronchial epithelial cells),

infect mock, infection time 6hour

[156]

GSM3112387, GSM3112388 MDM (monocyte-derived macrophages), infect

active H5N1 influenza, infection time 12hour

[156]

GSM3112389, GSM3112390 MDM (monocyte-derived macrophages), infect

UV-inactived H5N1 influenza, infection time

12hour

[156]

GSM3112391, GSM3112392 MDM (monocyte-derived macrophages), infect

mock, infection time 12hour

[156]

GSM3112395, GSM3112396 MDM (monocyte-derived macrophages), infect

UV-inactived H5N1 influenza, infection time

18hour

[156]

GSM3112397, GSM3112398 MDM (monocyte-derived macrophages), infect

mock, infection time 18hour

[156]

GSM3112399, GSM3112400,

GSM3111878, GSM3111879

MDM (monocyte-derived macrophages), infect

active H5N1 influenza, infection time 6hour

[156]

GSM3112401, GSM3112402 MDM (monocyte-derived macrophages), infect

UV-inactived H5N1 influenza, infection time

6hour

[156]
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GSM3112403, GSM3112404,

GSM3111876, GSM3111877

MDM (monocyte-derived macrophages), infect

mock, infection time 6hour

[156]

GSM3111880, GSM3111881 MDM (monocyte-derived macrophages), infect

H5N1-dNS1 influenza, infection time 6hour

[156]

GSM3111882, GSM3111883 MDM (monocyte-derived macrophages), treat

IFNb, 6hour

[156]

GSM2816609, GSM2816610 H9 human Embryonic Stem Cell Line, Heat

shock condition

[204]

GSM3110157, GSM3110158 MCF10a (epithelial cell line), arrested in G1 [205]

GSM3110159, GSM3110160 MCF10a (epithelial cell line), arrested in G1 and

transfected STAG1 siRNA

[205]

GSM3110161, GSM3110162 MCF10a (epithelial cell line), arrested in G1 and

transfected STAG2 siRNA

[205]

GSM2595581 HUVEC (Human umbilical vein endothelial

cells), donor1

[206]

GSM2595583 HUVEC (Human umbilical vein endothelial

cells), donor3

[206]

GSM2595584 IMR90 (fetal lung fibroblast cell), I10 [206]

GSM2595585 IMR90 (fetal lung fibroblast cell), I79 [206]

GSM2595586 MSC (mesenchymal stromal cells) [206]

GSM2595587 HUVEC (Human umbilical vein endothelial

cells), donor1, Oncogenic induced senescence

[206]

GSM2595588 HUVEC (Human umbilical vein endothelial

cells), donor2, Oncogenic induced senescence

[206]
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GSM2595592 MSC (mesenchymal stromal cells), Oncogenic in-

duced senescence

[206]

GSM2845448, GSM2845449 RUES2 (Embryonic stem cells), cardiac differen-

tiation stage : Embryonic stem cells (ESC)

[207]

GSM3452717, GSM3452718 WTC-11 (iPSCs), cardiac differentiation stage :

pluripotent stem cells (PSC)

[207]

GSM2627219, GSM2627220 RWPE1 (prostate cell line) [208]

GSM2828874, GSM2828875 endothelial of hepatic sinusoid primary cell [187]

GSM2824366, GSM2824367 astrocyte of the cerebellum primary cell [187]

GSM2247305, GSM2247308 primary epidermal keratinocyte, Differentiation

Day 0

[209]

GSM2247306, GSM2247309 primary epidermal keratinocyte, Differentiation

Day 3

[209]

GSM2247307, GSM2247310 primary epidermal keratinocyte, Differentiation

Day 6

[209]

GSM2494290, GSM2494294,

GSM2494298

HAP1 (near-haploid cell line) [157]

GSM2494291, GSM2494295,

GSM2494299

HAP1 (near-haploid cell line), WAPL knock Out [157]

GSM2494292, GSM2494296,

GSM2494300

HAP1 (near-haploid cell line), SSC Knock Out [157]

GSM2494293, GSM2494297,

GSM2494301

HAP1 (near-haploid cell line), WAPL and SSC

Knock OUT

[157]

GSM2225739, GSM2225740 purified human naïve B cells [158]

GSM1267198, GSM1267199 H1 Mesendoderm Cell [160]
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GSM1267200, GSM1267201 H1 Mesenchymal Stem Cell [160]

GSM2437834, GSM2437835,

GSM2437836, GSM2437837,

GSM2437838, GSM2437839,

GSM2437840, GSM2437841

A549 00h 100 nM dexamethasone [187]

GSM2437749, GSM2437750,

GSM2437751, GSM2437752,

GSM2437753, GSM2437754,

GSM2437755

A549 01h 100 nM dexamethasone [187]

GSM2437783, GSM2437784,

GSM2437785, GSM2437786,

GSM2437787, GSM2437788,

GSM2437789, GSM2437790

A549 04h 100 nM dexamethasone [187]

GSM2437857, GSM2437858,

GSM2437859, GSM2437860,

GSM2437861, GSM2437862,

GSM2437863, GSM2437864

A549 08h 100 nM dexamethasone [187]

GSM2437806, GSM2437807,

GSM2437808, GSM2437809,

GSM2437810, GSM2437811,

GSM2437812, GSM2437813

A549 12h 100 nM dexamethasone [187]

GSM1551629, GSM1551630,

GSM1551631

HUVEC, in-situ MboI -
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GSM1551599, GSM1551600,

GSM1551601, GSM1551602,

GSM1551603, GSM1551604,

GSM1551605

IMR90, in-situ MboI -

GSM1551618, GSM1551619,

GSM1551620, GSM1551621,

GSM1551622, GSM1551623

K562, in-situ MboI -

GSM1551624, GSM1551625,

GSM1551626, GSM1551627,

GSM1551628

KBM7, in-situ MboI [161]

GSM1551614, GSM1551615,

GSM1551616

NHEK, in-situ MboI [161]

GSM2297252, GSM2297253,

GSM2297254, GSM2297255

H1-derived Mesenchymal Stem Cell [162]
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Chapter 5

Discussion and conclusion

5.1 Summary of contributions

In this thesis, we introduced a reference panel enabled framework to computational 3D

genomics, revolutionizing the analysis of chromatin structures based on Hi-C contact

maps. This is a paradigm shift in 3D genome studies. Although the usage of a refer-

ence panel is a common strategy in biological data analysis, its application to Hi-C data

analysis remains unexplored. Different cells have different 3D genomes, but often share

local sub-structures. The existence of such shared local sub-structures is the foundation

of introducing a panel of reference Hi-C samples to facilitate the analysis of a given study

sample. However, detecting which reference sample is locally similar to a portion of the

study sample is made difficult by the low coverage and systematic bias of both study and

reference samples. Within this framework, we have developed three tools that address

various challenges in computational 3D genomics. Specifically, we have improved topo-

logical structure annotations and contact map enhancement by incorporating a panel of

reference Hi-C contact maps into our tools.

In Chapter 2, we introduced RefHiC, the first reference panel enabled application in

Hi-C data analysis. It detects topological structures from a Hi-C contact map of interest.
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RefHiC combines the encoding-decoding framework and the scaled dot product atten-

tion to incorporate a study sample and a reference panel in an end-to-end fashion. This

model only extracts information from reference samples that are highly related to the

study sample as it learned to assign more weight to reference samples that are more sim-

ilar to the study sample. In addition, the SHAP values [210] show this model actually

focuses more on horizontal and vertical central strips as well as central regions in each

patches during prediction. By utilizing a panel of reference Hi-C samples, RefHiC can ac-

curately annotate TADs and chromatin loops from very low-coverage Hi-C contact maps.

In our study, we showed that RefHiC significantly outperformed existing tools in anno-

tating TADs and loops under different conditions. As the first reference panel enabled

application in Hi-C data analysis, we performed extensive studies to learn the behavior

of RefHiC. Our results showed that RefHiC is applicable to any type of cell from species

for which a sufficiently large reference panel is available (currently human and mouse).

Both rare and common structures can benefit from the introduction of a reference panel.

The major contribution of this work includes the introduction of a novel reference panel

enabled framework to computational 3D genomics, together with the development of a

pretraining and training strategy for deep learning applications in Hi-C data analysis.

In Chapter 3, we proposed RefHiC-SR, a reference panel enabled model for contact

map enhancement. This model uses the U-net [112] architecture as a backbone. This

backbone allows RefHiC-SR to balance local and global information to predict per-pixel

values of a contact map. To integrate a panel of reference samples into the computa-

tion graph, we extensively modified the U-net architecture. Briefly, RefHiC-SR projects a

study sample and reference samples to embeddings at different scales with its encoding

blocks and uses the dot product attention and embedding concatenation to combine in-

formation of the study sample and reference samples. Existing contact map enhancement

tools are exclusively study sample based and use image super-resolution algorithms to
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enhance Hi-C contact maps. They have limited power in enhancing very low coverage

Hi-C data and often introduce artifacts in prediction. In contrast, the introduction of a

reference panel allows RefHiC-SR to accurately enhance sparse Hi-C contact maps. The

major contribution of this work is through developing RefHiC-SR to address a funda-

mental task (i.e., contact map enhancement), we allow a wide range of downstream tools

to directly benefit from the reference panel enabled framework.

In Chapter 4, we demonstrated that the proposed reference panel enabled computa-

tional 3D genomics framework is a generic computational framework instead of a deep

learning model. We developed RobusTAD using this framework to statistically identify

TAD hierarchies from Hi-C contact maps. In detail, we proposed a stratified rank-sum test

for scoring and detecting domain boundaries, domains, and nested TADs. Benchmarking

evaluation indicates that RobusTAD outperformed existing tools in accurately detecting

domain boundaries and entire domains from low to high-coverage Hi-C contact maps.

In summary, this thesis aims to leverage a panel of reference Hi-C samples to address

the data insufficiency issue in Hi-C data analysis and consequently improve TAD anno-

tation, loop annotation, and contact map enhancement. Throughout this thesis, we have

shown the effectiveness of our reference panel enabled framework. Furthermore, the su-

perior performance achieved by both deep learning and statistical inference applications

indicates the proposed framework is a generic strategy for Hi-C data analysis.

5.2 Impact

We anticipate that our framework and applications will have a broad and significant im-

pact in the field of 3D/4D genomics, enabling the analysis of chromatin architecture at

unprecedented resolutions and accuracy. As illustrated in previous chapters, applying

tools introduced in this thesis allow researchers to identify topological structures more

precisely, and investigate 3D genome organization in finer detail even from Hi-C contact
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maps with very low sequencing coverage. Our tools enable researchers to investigate 3D

genome organization in greater detail, whether by analyzing existing Hi-C data sets or

conducting low-coverage Hi-C experiments, thereby substantially reducing sequencing

costs and potentially broadening the application of Hi-C technology to other domains.

Given that our tools provide accurate high-resolution annotations for topological struc-

tures, we anticipate that researchers will better understand the formation and functional

roles of TADs and chromatin loops in 3D genome studies. Within this thesis, we have

developed applications for annotating TADs and loops from Hi-C contact maps, as well

as enhancing Hi-C contact maps. The reference panel based framework can also be em-

ployed for other tasks, including developing tools for stripe detection and single-cell Hi-C

data analysis.

5.3 Future Work

Despite the significant efforts in developing the framework and applications, there is

room for improvement in tools described in this thesis. Applying RefHiC to detect chro-

matin loops from the entire genome requires 2-3 hours. In contrast, the fastest alternative

tool only requires several minutes. The intensive computation involved in loop predic-

tion is in part due to that we evaluate each pixel in a contact map separately. As we

consider a (2 × w + 1) × (2 × w + 1) submatrix centered at (i, j) when analyzing pixel

(i, j), a large portion of regions are overlapped when we evaluate neighboring pixels. We

expect to reduce running time by predicting loops of multiple pixels (i.e., 2×2, 3 × 3, etc.)

around the center of the submatrix instead of a single pixel in the center. Although we

have conducted different experiments to demonstrate that our reference panel enabled

framework can annotate structures being absent from the reference panel (i.e., rare loop,

TAD, etc.), it only confirms our approach can annotate structures that significantly differ
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from structures in the reference panel. If there is a loop in the study sample that dif-

fers from another loop in the reference panel by only a few bins, our framework might

misidentify its location. We did not observe such an issue in practice, but this issue is

worth investigating if we have ultra-high coverage data to support this analysis. It can

be performed by first comparing loops identified from ChIA-PET experiments and more

recent ultra-high coverage Hi-C [211] and micro-C [5] experiments for different cell types

at the whole-genome level to collect a list of such differing loops. We can subsequently

assess whether our tool can accurately detect them or not. In this thesis, we focused on

annotating topological structures purely from Hi-C contact maps and significantly im-

proved model performance. Another direction worth exploring is to integrate Hi-C and

other biological data such as sequence motifs and gene expression to comprehend the

formation and functional roles of chromatin structures [212, 213, 19]. This type of study

can be explored in several ways. First, since epigenetics and sequence grammar such as

motifs also dictates TAD boundaries and downstream gene regulation [106], we can im-

prove models proposed in this thesis by taking one dimensional sequence information as

additional input to further improve both loop and TAD annotations. This can be achieved

by applying multi-modal learning and data integration techniques. Indeed, researchers

already combined DNA sequences and Hi-C contact maps to annotate CTCF-medicate

loops and achieved more accurate annotations [214]. Second, the correlation between the

spatial features of the genome and its functionality still lacks comprehensive understand-

ing. By leveraging our tool to enhance the precision of structural annotations through

its application to various Hi-C datasets, we gain the ability to investigate the sequence

determinants underlying these structural features. This involves training a deep learn-

ing model to predict structures, as identified by our tools, by relying on DNA sequences
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or other types experimental data (such as ChIP-Seq, ATAC-Seq, etc.). Subsequently, em-

ploying explainable machine learning techniques facilitates the dissection and interpreta-

tion of these predictions. We can also represent DNA sequences as graphs induced from

RefHiC-annoated loops to design new models to capture long-range interactions in tasks

such as gene expression prediction [215].

Finally, despite our methodologies developed in this thesis focus on bulk Hi-C data,

this reference panel enabled framework is not limited to performing bulk Hi-C data anal-

ysis. We can expand this method to analyze other biological data. In single-cell Hi-C

data analysis, applications such as Higashi [60] already improved various single-cell Hi-

C analysis tasks by exploiting shared contacts between cells at each contact loci inde-

pendently. We expect our framework can further improve single-cell Hi-C data analysis

as it differs from existing tools by taking both spatial neighboring information within a

cell and shared contacts between cells into consideration. A single single-cell Hi-C experi-

ment already produces hundreds to thousands of Hi-C contact maps. The reference panel

will be extremely large and our attention approach can be time-consuming. We need to

design a new way to define the reference panel as well as integrate the study sample

and the reference panel. We anticipate that such an application possesses the potential

to better enhance single-cell Hi-C contact maps and improve the accuracy of annotating

TAD-like structures and loops from single-cell Hi-C data.
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