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Abstract
Mesenchymal cell motility is implicated in numerous physiological processes such as wound healing, embryonic

development or cancer metastis. As such, understanding the molecular mechanisms underlying mesenchymal cell

motility is crucial, but also challenging due to the high complexity of the network of over 200 proteins involved.

Two key members of the Rho-family of GTPases, Rac1 and RhoA, along with the adaptor protein paxillin, are

known to be particularly implicated. Together, they form a key signaling pathway that involves the mutual

inhibition exerted by Rac1 and RhoA on each other and the promotion of Rac1 activation by phosphorylated

paxillin at serine 273 (S273) residue. High concentration of active form of Rac1 (RhoA) can be found at the front

(back) of migrating cells. This asymmetry is what defines cell polarization, generating persistent and directional

migration. Yet, motility patterns appears to go beyond cellular polarization.

In the first part of this thesis, we simplify a pre-existing six-dimensional (6D) reaction-diffusion model de-

scribing the interactions of these three proteins (in their active/phosphorylated and inactive/unphosphorylated

forms). This is done by first ignoring diffusion, thus turning the model into a system of ordinarily differential

equations (ODEs), followed by reducing the dimensionality of the model using linear regression and quasi-steady

state approximation (QSSA). The resulting one-dimensional (1D) ODE model describing Rac1 dynamics is then

expanded phenomenologically, into an excitable 3D model that includes three timescales comprised of one fast

variable: the scaled concentration of active Rac1, one slow variable: the maximum paxillin phosphorylation rate

B (a parameter that is turned into a variable) and a very slow variable: the recovery rate of B to its resting

state kB (also a parameter that is turned into a variable). Using slow-fast analysis, we demonstrate how relax-

ation oscillations (ROs) and mixed-mode oscillations (MMOs) are produced by the model due to delayed Hopf

bifurcation. Reintroducing diffusion in Rac1 dynamics, we show that new spatiotemporal patterns can be gen-

erated. This, as a result, motivated the questions of how such excitable dynamics may impact cell motility and

how the spatiotemporal dynamics produced compare to migration patterns detected in Chinese Hamster Ovary

(CHO-K1) cells.

In the second part of the thesis, we (i) utilize the Cellular Potts Model, a computational model that allows

for the simulation of a virtually migrating cell in the form of a deformable object that can extend or retract,

and move according to an energy-minimization technique; as well as (2) analyze imaging data of migrating

CHO-K1 cells in 2D frames. We use a set of four metrics, instantaneous cell speed, exponent of mean square-

displacement (called α-value), directionality ratio and membrane activity rate, to fully characterize and compare

motility patterns in simulated CPM and CHO-K1 cells. In simulated cells, protrusions in cell membrane change

localization, resulting in membrane oscillations and fast directionality variations similar to those seen in CHO-
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K1 cells. This type of behaviour causes CPM and CHO-K1 cells to display exploratory and stationary motility

phenotypes. When comparing the four different metrics between CPM and CHO-K1 cells, we find that they

exhibit very similar outcomes, highlighting the importance of excitability in defining motility. Variations in

migration patterns induced by mutating paxillin’s S273 residue are also investigated using both the CPM model

and machine learning. Our results reveal that this mutation alters the dynamics of the system through variation

of paxillin phosphorylation sensitivity to the concentration of an active form of an adhesion protein called p21-

Activated Kinase 1 (PAK). Taken together, our study suggests that MMOs and adhesion dynamics on multiple

timescales are key ingredients underlying CHO-K1 cell motility.
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Abrégé
La motilité des cellules mésenchymateuses est impliquée dans de nombreux processus physiologiques tels que la

cicatrisation, le développement embryonnaire ou les métastases cancéreuses. Il est donc crucial de comprendre les

mécanismes moléculaires qui sous-tendent la motilité des cellules mésenchymateuses, mais cela représente aussi

un défi en raison de la grande complexité du réseau constitué de plus de 200 protéines. Deux membres clés de

la famille des GTPases Rho, Rac1 et RhoA, ainsi que la protéine adaptatrice paxillin, sont connus pour être

particulièrement impliqués. Ensemble, ils forment une voie de signalisation clé qui implique l’inhibition mutuelle

exercée par Rac1 et RhoA l’un sur l’autre et la promotion de l’activation de Rac1 par la paxillin phosphorylée

au résidu sérine 273 (S273). Une forte concentration de la forme active de Rac1 (RhoA) peut être trouvée à

l’avant (arrière) des cellules en migration. Cette asymétrie est ce qui définit la polarisation cellulaire, générant

une migration persistante et directionnelle. Cependant, la grande variété des modes de motilité semble aller

au-delà de ce modèle de polarisation cellulaire.

Dans la première partie de ce mémoire, nous simplifions un modèle préexistant de réaction-diffusion à six

dimensions (6D) décrivant les interactions de ces trois protéines (dans leurs formes actives/phosphorylées et

inactives/non-phosphorylées). Pour ce faire, nous commençons par ignorer la diffusion, transformant ainsi le

modèle en un système d’équations ordinairement différentielles (ODE), puis nous réduisons la dimensionnalité du

modèle en utilisant la régression linéaire et l’approximation d’état quasi-stable (QSSA). Le model EDO unidimen-

sionnel (1D) qui en résulte et qui décrit la dynamique de Rac1 est ensuite étendu de manière phénoménologique,

sur la base d’hypothèses physiologiques raisonnables, en un modèle 3D excitable qui comprend trois échelles de

temps et qui est constitué d’une variable rapide : la concentration de Rac1 actif normalisée, une variable lente

: le taux maximal de phosphorylation de la paxillin B (un paramètre qui est transformé en variable) et une

variable très lente : le taux de récupération de B à son état de repos kB (également un paramètre qui est trans-

formé en variable). En utilisant l’analyse lent-rapide, nous démontrons comment les oscillations de relaxation

(ROs) et les oscillations de mode mixte (MMOs), qui combinent des oscillations lentes de grande amplitude avec

des oscillations rapides de petite amplitude, sont produites par le modèle en raison d’une bifurcation de Hopf

retardée. En réintroduisant la diffusion dans la dynamique de Rac1, nous montrons que de nouveaux motifs

spatio-temporels, différents du wave-pinning, peuvent être générés. Nous nous sommes alors demandé comment

une telle dynamique excitable pouvait avoir un impact sur la motilité des cellules et comment la dynamique

spatio-temporelle produite se comparait aux schémas de migration détectés dans des cellules d’ovaire de hamster

chinois (CHO-K1).

Dans la deuxième partie du mémoire, nous (i) utilisons le Cellular Potts Model (CPM), un modèle de calcul
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qui permet de simuler une cellule virtuelle en migration sous la forme d’un objet déformable qui peut s’étendre ou

se rétracter, et se déplacer selon une technique de minimisation de l’énergie ; ainsi que (2) analysons les données

d’imagerie de cellules CHO-K1 en migration. Nous utilisons un ensemble de quatre mesures, la vitesse instantanée

des cellules, l’exposant du déplacement quadratique moyen (appelé valeur α), le rapport de directionnalité et le

taux d’activité membranaire, pour caractériser et comparer entièrement les modèles de motilité des cellules

simulées CPM et CHO-K1. Dans les cellules simulées, les protrusions de la membrane cellulaire changent de

localisation, ce qui entrâıne des oscillations de la membrane et des variations rapides de la directionnalité similaires

à celles observées dans les cellules CHO-K1. Ce type de comportement amène les cellules CPM et CHO-K1 à

présenter des phénotypes de motilité exploratoire et stationnaire. En comparant les quatre métriques différentes

entre les cellules CPM et CHO-K1, nous constatons qu’elles présentent des résultats très similaires, ce qui souligne

l’importance de l’excitabilité dans la définition de la motilité. Les variations des modes de migration induites par

la mutation du résidu S273 de la paxillin sont également étudiées à l’aide du modèle CPM et de l’apprentissage

automatique. Nos résultats révèlent que cette mutation modifie la dynamique du système par une variation de

la sensibilité de la phosphorylation de la paxillin à la concentration d’une forme active d’une protéine d’adhésion

appelée p21-Activated Kinase 1 (PAK). Dans l’ensemble, notre étude suggère donc que les MMO et la dynamique

d’adhésion à plusieurs échelles de temps sont des ingrédients clés qui sous-tendent la motilité des cellules CHO-K1.
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Contributions of Authors
This thesis is comprised of three main chapters, Chapters 2 and 3 are based on an article that I co-authored.

Chapters 2 and 3 have been submitted in peer reviewed journals: Bulletin of Mathematical Biology and Scientific

Reports respectively. They are already available on bioRxiv: [1] and [2]. Chapter 1 is a literature review of the

general mechanisms related to cell motility and of mathematical modelling in this field and as such does not

contain significant contributions to original knowledge. Below I have briefly summarized my contributions to

original work by chapter.

Chapter 2

• I simplified a pre-existing molecularly-explicit model for cell motility that describes the dynamics of active

and inactive Rac, based on its interaction with other proteins including Rho and paxillin by applying a

series of steps comprised of quasi-steady states approximations and linearization.

• I subsequently refined the model to include multiples timescales and to account for slow dynamics in

adhesion and paxillin phosphorylation. I analytically solved its ODE version, demonstrating how it is

capable of producing mixed-mode oscillations and relaxation oscillations, in addition to bistability seen in

the original model.

• This analysis required the use of slow-fast analysis, and led me to consider the layer and the reduced

problems in the 3D ODE model. Based on this analysis, I concluded that MMOs are due to both canard

explosion and delayed Hopf bifurcation.

Chapter 3

• I implemented the refined model using the CPM to produce computer simulated migrating cells, and

quantified their migratory patterns with a set of metrics which cover many aspects of cell motility, including

speed, directionality, membrane activity and number of events detected in their migration tracks.

• I showed that the CPM cells exhibited three migratory patterns that were heavily influenced by not only

the mutual inhibition of Rac and Rho, but also by the combination of slow large amplitude and fast small

amplitude oscillations detected within MMOs. Our investigation revealed that the oscillatory and inactive

modes of migration in CPM cells were consistent with the migratory patterns of active and inactive CHO-K1

cells.
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1 Introduction and literature review

1.1 Cell motility

Cell motility refers to the spontaneous movement of a cell by energy consumption. The migration of neutrophils

from the bone marrow to sites of infections during the process of wound healing [3], cell rearrangement in the

early stages of embryonic development [4], creation of new blood vessel in the context of angiogenesis [5] or

axonal growth during development [6] are a few example of key physiological processes where cell migration is

involved. Although it is very critical for ensuring communication between the many tissues and organs regulating

essential physiological processes, cell motility is also implicated in diseases such as cancer metastasis [3, 7] and

thrombosis [8].

The wide variety of processes through which a cell can initiate and maintain a motion have for long been

studied, and can be divided into two broad categories: amoeboid and mesenchymal motility. Amoeboid migration

is a mode of rapid motility that is driven by actin-rich pseudopods (extention of the cell membrane) and a highly-

contractile uropod (hind part of polarized cells), and is characterized by weak or absent adhesion to the substratum

or extracellular matrix (ECM) [9,10]. In this mode, cells are highly deformable and exert very low traction force

on the environment. Mesenchymal cell migration, on the other hand, is a mode of motility characterized by cell

polarization to form a leading edge that extends actin-rich protrusions (such as lamellipodia), leading to adhesive

interactions with the substratum and proteolytic extracellular matrix remodelling, followed by retraction of the

contractile cell rear to achieve cellular movement [11].

In both of these modes of motility, there is a clear cell phenotype associated with them, namely, the formation

of polarized cells with two distinct regions of activity: a front where the membrane is pushed outward by the

growth of the actin cytoskeleton, and a back whose retraction is dynamically driven by the myosin molecular

motor. In other words, the actin cytoskeleton is a key modulator of cell polarity and cell motility [12].

Single-cell migration enables cells to move towards and between tissue compartments [13], but cells may also

form cohesive ensemble and mobilize as a collective [14]. Collective cell migration is defined as the coordinated

movement of multiple cells that retain cell–cell contacts while coordinating their actin dynamics and intracellular

signalling [15]. It implies, in addition to integrin-based adhesion dynamics (explained in detail in the next

section), the formation of cadherin adhesion structures. Cadherin are cell–cell adhesion molecules expressed in

many different cell types that are required for proper cellular function and maintenance of tissue architecture [16].

It is important for the formation of junctions that allow cells to adhere to each other.

The purpose of this thesis is to focus mainly on single-cell mesenchymal migration, by studying one particular
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cell type: Chinese Hamster Ovarian cells (also referred to as CHO-K1 cells). We will therefore restrict ourselves

now to the molecular mechanisms involved in single-cell mesenchymal migration.

1.1.1 Rac and Rho

The two members of the Rho family of GTPases, RhoA and Rac1 (referred to as Rac and Rho for the remainder

of this study), along with their interactions with a third signal transduction protein named paxillin, are known to

be key modulators of cell motility [17,18]. They have been identified in the 1990’s as key players responsible for

generating cellular polarity and cell migration [19–22]. Rac and Rho transition from being inactive (guanosine

diphosphate (GDP)-bound) to active (guanosine triphosphate (GTP)-bound) forms, via Guanine nucleotide

Exchange Factors (GEFs), and vice versa, via GTPase-Activating Proteins (GAPs) [20]. Their activation is

also inhibited by the active form of the other protein, generating a cross-talk between the two proteins (i.e.,

they mutually inhibit each other). Together these two processes of activation and deactivation form the key

signaling pathways for producing cellular polarization [20]. Active Rac is responsible for actin polymerization,

causing membrane protrusion [21–24] and formation of lamellipodia (cytoskeletal projection of the membrane

at the leading edge of the cell). Rho, on the other hand, is known to induce the formation of actin stress

fibers and large stable focal adhesions [17, 20, 25], and is responsible for the actomyosin-driven contractions at

the rear of a cell required for membrane retraction towards the nucleus [26]. This thesis mainly focuses on the

study of the two members of the Rho family of GTPases Rac and Rho and on the molecular processes involving

paxillin, that control the activation of these proteins. Regulation of cell migration involves changes in protein

activities through complex signalling cascades that imply various signal-transduction proteins. The total number

of effectors of the Rho family of GTPases is not yet known, but it is sufficiently high that accounting for all the

signalling pathways is not a reasonable approach to study the system. Instead, in this thesis, we focus on one

particular pathway: the GIT-PIX-PAK signalling cascade (described in details in the next section) which causes

the elevation in active Rac concentration through the binding of this molecular complex to paxillin subsequent

to its phosphorylation [27,28].

In the early stages of cell motility research, the Cdc42 protein, a third small GTPase of the Rho family, was also

shown to be implicated in the reorganization and regulation of cell adhesion, migration, and invasion [29]. The

many signalling pathways involved in defining cell motility are nevertheless known for their redundancy, intricacy

and multiple feedback loops. This makes the task of identifying the key regulatory mechanism underlying

cell motility even more challenging, and motivate the effort of pursuing other approaches (e.g., computational

modelling) to understand cellular motility. Because of the redundancy of the chain of actions with Rac, Cdc42

has been typically ignored and the main focus has shifted towards Rac and Rho only [30].
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1.1.2 Adhesion and paxillin

Cell adhesion molecules (CAMs) are a subset of cell surface protein complexes that allow the binding of cells

with other cells or with the extracellular matrix (ECM) [31]. They are typically divided into four families:

the immunoglobulin superfamily cell adhesion molecules, the cadherins, the integrins and the Superfamily of

C-type of lectin-like domains proteins (CTLDs) [32]. Integrins are transmembrane adhesion molecules that are

involved in both cell-cell adhesion and cell adhesion to the ECM. They play an important role in modulating cell

signaling pathways of transmembrane protein kinases which can subsequently mediate cell adhesion dynamics

(including assembly and disassembly), cell spreading and migration; mesenchymal cell motility primarily relies

on integrin-based adhesions.

Integrin-based adhesions are protein complexes that provide a mechanical link between the extracellular

environment and the actin cytoskeleton; they create a bio-mechanically regulated force transmission point between

a cell’s actin-cytoskeleton and its environment [33]. Therefore, the properties of these dynamic structures can

heavily influence the nature of cell migration.

Adhesion sites are known to be composed of more than 900 proteins, whose spatiotemporal arrangement is

of high complexity and dependent both on external and internal cues [34]. The adhesion lifecycle is typically

initiated in protrusive regions of the cell, which are in the context of cell motility, found at the leading edge

of the cell. Small clusters of integrin, called nascent adhesions (NAs) initially form [35, 36]. Although the

majority of these NAs quickly disassemble - they are characterized by a turnover rate of less than one minute -

a small fraction do not and are instead stabilized through increased association with actin filaments and become

enlarged [37,38]. These adhesions are termed focal complexes (FCs). The transition from a NA to a FC requires

both Rac-dependent increases in traction force and proper organization of the actin network adjacent to the

aforementioned depolymerization zone [39]. Focal complexes have a turnover rate on the order of one minute,

and can eventually mature into relatively large, stable focal adhesions as the junction between adhesions and the

ECM tightens and more molecular components are recruited. Focal adhesions typically have a life span of a few

minutes to an hour. [38]. Spatial organization of adhesion sites in a migrating cell is summarized in Fig. 1.

The adhesion plaque is the multi-molecular dynamic scaffold that links integrins to the actin cytoskeleton; its

formation involves the recruitment of adhesion proteins including talin, focal adhesion kinase (FAK), vinculin, and

paxillin [40]. Paxillin is a 68-kDa adaptor protein found in the adhesion plaque. Through the interactions of its

multiple protein-binding modules, many of which are regulated by phosphorylation, paxillin serves as a platform

for the recruitment of numerous regulatory and structural proteins that together control the dynamic changes in

cell adhesion [41,42]. Paxillin is also involved in control of cytoskeletal reorganization and gene expression that are

necessary for cell migration and survival [43]. In particular, paxillin plays a central role in coordinating the spatial
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Figure 1: The components of a migrating cell. The polarized cell has a front (top-left) and a back (bottom-
right), display various adhesions sites (nascent, focal complexes, focal adhesions), that are used to anchor to the
extra-cellular matrix and allow the cell to apply forces resulting in its motion. Adapted from [38]

and temporal action of the Rho family of small GTPases, which regulate the actin cytoskeleton [42]. Paxillin

can get phosphorylated at its serine 273 (S273) residue by the active form of the protein p21-Activated Kinase

1 (PAK) when bound to RacGTP (PAK-RacGTP), and subsequently promote Rac activation as a GEF [41,44].

The binding of the protein complex (GIT-PIX-PAK), formed by the G protein-coupled receptor kinase InteracTor

1 (GIT), beta-PAK-Interacting eXchange factor (PIX), and PAK, to phosphorylated paxillin allows this entire

complex to act as a GEF [41].

1.1.3 Cell Polarity

A hallmark of cell motility is cell polarity: the presence of a stable front and back whose internal architectures in

term of actin cytoskeleton are deeply different, but that also show differences in the type of proteins found, their

binding to the membrane and their activity/phosphorylation status [17]. It has been shown that Rac activity is

mainly restricted to the leading edge of the cell [21], whereas Rho activity happens at the back [18, 45]. Suche

spatial localization is consistent with their antagonistic role (Rac promoting actin polymerization, Rho promoting

membrane retraction) and their mutual inhibition of each other [20]. This provides an other way to characterize

cell motility, by the presence of this cell-wide gradient in concentrations of Rac (highly active at the front) and
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Rho (highly active at the back).

1.2 Mathematical modelling of cell motility

Understanding the underlying molecular mechanisms that lead to cell migration is a challenging task due to

the number of different proteins involved (over two hundred), and the complexity of the biological signalling

pathways. They involve multiple non-linearities, complex feedback interactions and stochastic processes that lead

to heterogeneous migratory phenotypes. This explains the very widespread use and popularity of mathematical

models to understand the mechanisms regulating cell migration [46]. This approach allows, by building simplified

models, to isolate, reduce and fully characterize the roles of key proteins, such as Rac and Rho, and to understand

the implications of the various parameters in different conditions.

Several types of mathematical models dealing with cell motility have been previously developed. Each one of

these models decipher the dynamics of a given phenomenon such as the physical process involved in the protrusion

of a filopodia [47], the importance of membrane flexibility [48] or the F/G-actin branched network [49]. Some of

these models follow a more holistic view of cell movement, and discuss the degree of adhesion strength and the

mechanical properties of the cell itself can have on general cell migration [50, 51]. This second approach is the

one that will be adopted in this thesis.

1.2.1 Schematic of cell motility

The general framework to tackle cell motility was first given by Abercrombie in his Croonian lecture [52] in

1980 where he presented the knowledge of the machinery of cell movement at that time, and gave a schematic

model of cell movement. Although the model was not mathematical, it suggested the various functions the cell

performs. This general approach has since been the most exclusively used when analyzing cell motility. The

model summarizes motility pattern and steps that govern mesenchymal migration as follows. First, the cell

membrane at the front, i.e., the lamellipod, stretches and is pushed outward by the action of the cytoskeleton.

Then, it attaches to the extracellular matrix through maturing focal adhesions. Third, the adhesion sites at the

extreme back of the cell detaches, loosening the back membrane. Finally, this membrane is pulled by the myosin

molecular motor acting over the filaments that connect the back to the nucleus, causing the retraction of the

trailing edge of the cell.

1.2.2 Reaction-diffusion models

Rac and Rho are diffusive proteins that can be found throughout the cytoplasm; in their active forms, however,

these proteins are bound to the membrane, and as a result, their diffusion is reduced compared to their inactive
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cytosolic forms [53]. Paxillin, on the other hand, doesn’t show significant differences in its diffusion in its

phosphorylated and unphosphorylated forms [54].

This explains the use of partial differential equation models in cell motility. Such models have to account

for the spatial variability that should result from the diffusion of the G-proteins and the various mechanisms

involved in their activation.

In the work of Marée et al (2006) [55], the three GTPases Rac, Rho and Cdc42 were considered; their

activations and mutual interactions of each other were studied in a PDE reaction-diffusion model. The molecular

crosstalks captured here are the Cdc42-mediated activation of Rac, which then triggers the activation of Rho. In

addition, Rho and Cdc42 feedback onto each other through a mutual inhibition that does not involve Rac. The

active form G of each protein’s dynamic is dictated by the following equation

∂G

∂t
= IG(G

′, G′′)
Gi

Gtot
− dGG+DG∆G (1)

Here G = C,R or ρ representing Cdc42, Rac and Rho respectively. IG is the activation rate that depends

on the active forms of two other proteins denoted by G′ and G′′. The inactive form of G is denoted by Gi.

This dependence can be expressed linearly ( IR(C) = (IR + αCC) ), as a Hill function ( IC(ρ) = ( IC
1+( ρ

βρ
)n ),

Iρ(R,C) =
(Iρ+αRR)

1+( C
βC

)n
) to indicate cooperativity, or as a simple Michaelis-Menten kinetic (which corresponds to a

Hill function modelling with a Hill coefficient of n = 1). Note here that Cdc42 and Rho are mutually inhibiting

each other whereas Rac activation is promoted by Cdc42.

Assuming conservation of matter, the inactive form’s equation can be deduced

∂Gi

∂t
= −IG(G

′, G′′)
Gi

Gtot
+ dGG+DGi

∆Gi (2)

Marée et al incorporated the system in a model of the cell which specified a Rho-dependent contraction force

and the branching of the actin network at the edge of the cell. This framework was used to eventually draw

conclusion on the ability of fish keratocytes to polarize, in response to a stimulus, and on the various shapes they

can maintain throughout the migration process. They showed that polarity is triggered by interactions of Cdc42,

Rac and Rho, while maintenance and robustness of polarity is due to the rapid cytosolic diffusion of the inactive

forms of the small GTPases.

Such general framework was used in many motility studies, yet variations around the expression of the

activation rate functions were proposed. In Jilkine et al (2007) [25], each of the three possible forms was

considered for each GTPase, and they showed that linear terms result in monostability for Rac and Cdc42,

inconsistent with cell polarization. They showed in addition, that assuming Michaelian terms for inhibition and
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linear terms for activation do not allow for bistability. This supports the idea that cooperation and inhibition in

protein activation are necessary for cell polarity. Important to note here that, the authors of this study assumed

constant concentration in the inactive forms.

In Holmes et al (2017) [56], the formulation and strength or level of cooperativity of the multiple feedbacks

loops were also analyzed, along with their implication on motility. They eventually showed that Hill functions

are the kinetics terms that best capture cell motility with their modelling assumption. In addition, they showed

that conservation of matter allows for complex oscillatory dynamics in the proteins concentration to arise and

play an important role in the competition between lamellipods, a behavior which is not reproductible when mass

concervation is not enforced.

In Marée et al (2012) [57], the work of Marée et al (2006) was extended by including the effects of the feedback

between small signalling molecules, namely, the phosphoinositides (PIs), and Rho family GTPases. This was done

by modulating the activation rates of the GTPases with the concentration of the PIP3, and used to demonstrate

how Cdc42 activity zones can benefit from the PIs feedback. They showed an increase in amplitude and extension

of zones of Cdc42 activity in the cytoplasm, which they suggested it facilitated global communication between

competing cell “fronts”. This showcases how the comprehension of general GTPases temporal dynamic can be

refined by accounting for additional signalling molecules.

In more recent studies [58–60], the Cdc42 GTPase was ignored and Rac was taken to be the sole inhibitor

of Rho. This mutual inhibition pathway is known to be the necessary ingredient of cell motility and cellular

polarization as far as the Rac/Rho subsystem is concerned. The models are all shown in these studies to produce

bistability and to allow for a cell-wide gradient with inverse orientation between Rac and Rho to stabilize.

Still, these studies only modelled the cell signalling pathways and how internal dynamics can control cell

motility and/or generate cell polarity. Recently, Rens et al (2021) [58] studied how cell deformation and adhesions

can feedback onto the extracellular matrix (ECM) and how motility patterns (that they classified into three

categories: oscillatory, persistent and random) may vary based on the type of forces applied to the ECM through

adhesion sites. They considered the coupling between external and internal cues, by keeping the model simple,

with few variables (Rac, Rho in active and inactive forms, and the ECM). They simulated cells using a Cellular

Potts Model (CPM) numerically. This allowed them to observe a variety of patterns and cell behaviours, including

persistent polarity, flipped front-back cell polarity oscillations, spiral waves, and random protrusion-retraction.

With their CPM simulations, they also showed that the observed spatial patterns depend on the cell shape, and

vice versa.

As such, cell motility has been extensively studied in the past twenty years. Yet, there is no denying that the

majority of signalling pathways and motile behaviours remain to be explained.
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1.2.3 Wave-pinning

In a one-dimensional or two-dimensional spatial domain, the wave-pinning phenomenon describes a travelling

wave in chemical concentration that is pinned in space, generating a concentration gradient that remains stable

at steady state, preventing homogenization of the spatial domain. It was shown that a simple two-dimensional

reaction-diffusion model of two mutually-inhibiting and conserved molecules can produce this phenomenon of

wave-pinning [61]. A hallmark of cell motility is cell polarity: the presence of a stable front and back. Active Rac

is highly localized at the leading edge and active Rho is highly localized at the back of the cell. The wave-pinning

pattern is believed to be responsible for generating cell polarity, and spatially localizing Rac and Rho to the front

and back, respectively. This pattern was generated in several Rac/Rho models [56,58,62].

1.3 Study objectives

Adhesion and protrusion are the two main processes involved in cell motility. They need to coordinate and

exchange signals in order to initiate and maintain migration. In this thesis, we will study the interactions

between, the Rac/Rho subsystem, responsible for the formation of lamellipodium, for membrane protrusion,

retraction, and for actin polymerization, as well as paxillin, known to be a key player in the formation and

growth of adhesion sites. This study aims at providing insights on the consequences of this dialogue on cell

motility.

Also, while CHO-K1 cell movement occurs on a timescale of hours, formation of protrusion and assembly of

adhesion sites only take minutes, and activation and/or phosphorylation of proteins occur in seconds. In other

words, cell migration can be studied on multiple timescales. In this thesis, we want to emphasize the importance

of this time-scale separation in guiding the dynamics of cells, and to decipher the mechanisms that can allow

processes acting on different timescales to get organized as a whole. Despite their lack of significant polarity,

CHO-K1 can dynamically protrude, retract, and explore their surrounding environment when they are placed on

glass coverslips coated with extracellular matrix (ECM) proteins [63]. They display complex migratory patterns

that go beyond the simple unidirectional motility that result from wave-pinning. In these patterns, protrusion

dynamically change localization, allowing for wavy movement of the membrane to form and frequent changes of

direction to occur thoughout the trajectory of the cells.

This study aims to shed new light onto the dynamic interactions between Rac and paxillin in an integrative

manner that includes mathematical modelling, computer simulations and finally the use of experimental data to

further validate model predictions. By leveraging our understanding of the temporal evolution of protein activity,

we aim to provide a simple way to address the question of cell motility that may yet provide an explanation for
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the complex patterns observed in CHO-K1 cell migration.

In this thesis, we adapt a previously developed Rac, Rho, and paxillin reaction-diffusion model to pursue the

objectives of this study. The added value of our models will be to take into account the dynamics of these proteins

in different timescales and parameter regime. The goal is to provide information about how cell motility manifest

itself in new parameter regimes not related to wave-pinning. Finally, modelling efforts should aim to reproduce

classical features of cell motility (such as the wave-pinning phenomenon) but also to provide a new perspective

on motility, by illustrating how slow dynamics can impact motility. By employing the same approach that in [25],

we will first analyzed an ODE version of our models. The experimentally-observed spatial segregation of active

Rac and Rho in polarized cells indicates that the cell can be thought as a multi-compartment entity where the

proteins concentration are locally homogeneous but can globally differ between localizations. The separation

between these various zones are actually fronts that are pinned in space (due to wave-pinning); they can be

neglected when studying the dynamics of the proteins in each zone because they are very narrow. To ensure

distinct values at (potentially multiple) front versus back, this system of ODEs should have multiple steady

states, i.e., it should exhibit bistability once appropriate cross-talk terms are included in the model.
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Abstract

Mesenchymal cell motility is mainly regulated by two members of the Rho-family of GTPases, called Rac

and Rho. The mutual inhibition exerted by these two proteins on each other’s activation and the promotion

of Rac activation by an adaptor protein called paxillin have been implicated in driving cellular polarization

comprised of front (high active Rac) and back (high active Rho) during cell migration. Mathematical modeling

of this regulatory network has previously shown that bistability is responsible for generating a spatiotemporal

pattern underscoring cellular polarity called wave-pinning when diffusion is included. We previously developed

a 6D reaction-diffusion model of this network to decipher the role of Rac, Rho and paxillin (along with other

auxiliary proteins) in generating wave-pinning. In this study, we simplify this model through a series of

steps into an excitable 3D ODE model comprised of one fast variable (the scaled concentration of active

Rac), one slow variable (the maximum paxillin phosphorylation rate - turned into a variable) and a very

slow variable (a recovery rate - also turned into a variable). We then explore, through slow-fast analysis,

how excitability is manifested by showing that the model can exhibit relaxation oscillations (ROs) as well as

mixed-mode oscillations (MMOs) whose underlying dynamics are consistent with a delayed Hopf bifurcation.

By reintroducing diffusion and the scaled concentration of inactive Rac into the model, we obtain a 4D PDE

model that generates several unique spatiotemporal patterns that are relevant to cell motility. These patterns

are then characterized and their impact on cell motility are explored by employing the cellular potts model

(CPM). Our results reveal that wave pinning produces purely very directed motion in CPM, while MMOs

allow for meandering and non-motile behaviours to occur. This highlights the role of MMOs as a potential

mechanism for mesenchymal cell motility.

25



2.1 Introduction

Excitability is a very frequently observed phenomenon in many physiological systems including, but not limited

to, cellular and molecular biology, neurophysiology [A1, A2] and immunology [A3]. It typically refers to the

ability of a system to exhibit large excursions in their main variables when a small stimulus is applied. Such large

excursions could occur singularly, or could occur periodically in a cyclic fashion [A2]. It is usually manifested

in four different ways, referred to in the literature as type I, II, III and IV excitability [A4]. Type I and II are

periodic in nature and are generated by homoclinic and Hopf bifurcations, while type III and IV are singular

generated by perturbations away from a stable steady state with the former (the latter) depending on differences

in time scales (on crossing the stable manifold of a saddle fixed point) to generate the excursion [A5–A7]. These

basic dynamics become significantly more complex when multiple time scaled are involved.

Cell motility, the spontaneous movement of a cell by energy consumption, is an essential process by which many

physiological (e.g., embryonic development, wound healing, inflammation) [A8,A9] and pathophysiological (e.g.,

cancer metastasis) [A10,A11] systems depend on. It is generated by the asymmetric polarization of migrating

cells with a front (or the leading edge) and a back (or the rear edge) along an axis roughly parallel to the path

of migration [A12]. The molecular networks regulating cell motility are very prominent examples of systems

that exhibit diverse types of excitability properties that can range in complexity and impact. Indeed, some

of these molecular networks may be able to exhibit multitude of these excitability properties simultaneously

when perturbing one parameter [A13]. One example of such behaviour was seen in a molecularly-explicit model

describing the dynamics of lamellipodium in fish keratocytes [A14]. In this latter system, several migration

patterns, including waving, traveling wave pulse and smooth motility, were observed [A14] and three types of

excitabilities were detected in parameter space: type I, III and IV [A14,A15].

Mesenchymal cell motility, similar to that seen in Chinese hamster ovary (CHO-K1) cells, is regulated by a

network of over 200 proteins (also called adhosome). It is characterized by the formation of protein complexes,

called adhesions [A16–A18], that allow motile cells to anchor on a substrate and to link the extracellular matrix

(ECM) to the actin-cytoskeleton network. Although the molecular network governing adhesion dynamics and

motility is very complex in these cells, three key proteins have been implicated in regulating both of them. This

includes two members of the Rho family of GTPases, namely, Rac1 and RhoA (referred to as Rac and Rho for

the remainder of this study) [A19–A22], as well as an adhesion and adaptor protein called paxillin [A23]. This

trimolecular regulatory network involves Rac and Rho cycling between their inactive (GDP-bound) to active

(GTP-bound) forms, via Guanine nucleotide Exchange Factors (GEFs), and vice versa, via GTPase-Activating

Proteins (GAPs) [A24], as well as the mutual inhibition that the active forms of these two proteins exert on

each other [A24]. Active Rac and Rho are membrane bound, making their diffusion coefficients significantly
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lower than those associated with their inactive forms which happen to be cytosolic. The adhesion protein

paxillin, on the other hand, can get phosphorylated at its serine 273 (S273) residue by the active form of the

protein p21-Activated Kinase 1 (PAK) when bound to RacGTP (PAK-RacGTP), and subsequently promote

Rac activation as a GEF [A23, A25]. The binding of the protein complex (GIT-PIX-PAK), formed by the G

protein-coupled receptor kinase InteracTor 1 (GIT), beta-PAK-Interacting eXchange factor (PIX), and PAK, to

phosphorylated paxillin allows this entire complex to act as a GEF [A23]. A molecularly explicit reaction-diffusion

model of this protein regulatory network was developed in the form of a six-dimensional (6D) partial differential

equation (PDE) model [A26]. The model described the spatiotemporal dynamics of the scaled concentrations of

active/phosphorylated and inactive/unphosphorylated forms of the proteins involved, as well as those auxiliary

ones (i.e., GIT, PIX and PAK) that were set to steady states. The model was nondimensionalized, to reduce the

number of parameters, and its steady state dynamics were analyzed in the absence of diffusion, demonstrating

that it possessed two different time scales. In the presence of diffusion, the model was shown to exhibit wave

pinning, a phenomenon in which a travelling wave is pinned in space, generating a concentration gradient in Rac

and Rho responsible for forming cellular polarization.

In the absence of diffusion and by taking into account conservation of matter, the model was turned into

a 3D ODE model (referred to hereafter as the original ODE model). This original ODE model was shown to

possess two timescales and to exhibit a bistable switch. Bistability was defined by the coexistence of two steady

states, one corresponding to elevated scaled concentration of active Rac (or low scaled concentration of active

Rho) and another corresponding to the low scaled concentration of active Rac (or elevated scaled concentration

of active Rho), and was delimited by saddle-node bifurcations. Beyond the saddle-node bifurcations, the model

was monostable. The effects of bistability on the dynamics of the 6D PDE was then explored to show that it

was responsible for generating wave-pinning with active Rac accumulating in the ”front” of the one-dimensional

spatial domain, and active Rho accumulating in the back. This phenomenon of wave-pinning produced by the

Rac-Rho system was heavily investigated dynamically using a method called local perturbation analysis [A27],

in which the large difference in diffusion coefficients between the active and inactive forms of Rac and Rho [A28]

allowed the PDE model to be simplified into an ODE model that can provide insights into how the spatial

patterns exhibited by the PDE model after a perturbation is formed. These analyses were helpful in determining

the effects of different parameter regimes in defining dynamics.

It is important to point out that other complex models of the Rac-Rho system were also developed by

coupling them to the ECM to generate oscillatory dynamics in the absence of diffusion [A29]. The amplitude

of the oscillations in such models were typically uniform or changed minimally, allowing the PDE models to

produce interesting spatiotemporal patterns. Implementing these models using the cellular potts model (CPM),
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a computer-based discrete grid-based simulation technique that involves the modelling of the ECM as a mesh

upon which simulated cells are superimposed [A30], typically produced migrating cells that were either purely

directional or do not migrate significantly (depending on the amplitude of the oscillations), but not both. These

oscillations were consistent with type II excitability through a Hopf bifurcation. In the presence of two competitive

ECMs, the oscillations became more ”random” (due to the presence of a period doubling bifurcation), but the

amplitude of such oscillations did not change significantly change. As a result, the migration patterns produced by

this model typically did not succeed in combining both exploratory and stationary behaviours in one simulation

typically seen in mesenchymal cell motility [A31].

Here, we will expand on these studies by considering series of simplified models of the Rac-Rho-paxillin

system capable of producing oscillatory dynamics with nonuniform amplitudes. The models will possess at least

two timescales and are excitable in nature, allowing them to exhibit what is known as mixed-mode oscillations

(MMOs) [A32–A34] that combine fast small amplitude oscillations with slow large amplitude oscillations. Because

MMOs are more complex dynamically than relaxation oscillations (ROs) and because they are quite frequently

observed in models of many physiological systems [A32,A35], we will investigate in this study how MMOs impact

the spatiotemporal dynamics of the models considered here, especially in comparison to ROs. This will be done

numerically by simulating the PDE models whose dynamics are regulated by MMOs and ROs, as well as by

employing the CPM to simulate migrating cells.

2.2 The original spatiotemporal 6D PDE model

To understand quantitatively the behaviour of the regulatory network involving Rac, Rho and paxillin, a 6D

reaction-diffusion mathematical model describing the dynamics of inactive (GDP bound) and active (GTP bound)

forms of Rac and Rho as determined by paxillin S273 phosphorylation was developed [A26]. The model consisted

of two main modules: the mutual inhibition exerted by Rac and Rho on each other, as well as the indirect positive

feedback loop exerted by active Rac on itself through paxillin phosphorylation at S273 (Fig. 2A). The resulting

spatiotemporal model over one spatial domain was comprised of 6 PDEs characterizing the interactions of the

active and inactive forms of the two proteins Rac (R,Ri) and Rho (ρ, ρi) along with the phosphorylated and

unphosphorylated forms of paxillin (P, Pi) at S273 residue. Rescaling the model into its nondimensionalized form
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Figure 2: Schematic of the 6D model involving the Rac, Rho and paxillin regulatory network. Diagram of the
signalling pathways of the 6D model showing the two proteins Rac and Rho cycling between inactive (GDP
bound) and active (GTP bound) forms, and the active form of each protein inhibiting the activation of the other
through GTPase-specific GEFs inactivation. It also shows how active Rac participates in paxillin phosphorylation
at serine 273 (S273) residue which in turn promotes Rac activation in a positive feedback loop.
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∂x2
(3c)

∂ρi
∂t

= −Iρ

(
Ln
R

Ln
R + (R+ γK)

n

)
ρi + δρρ+Dρi

∂2ρi
∂x2

(3d)

∂P

∂t
= B

(
Kn

Ln
K +Kn

)
Pi − δPP +DP

∂2P

∂x2
(3e)

∂Pi

∂t
= −B

(
Kn

Ln
K +Kn

)
Pi + δPP +DPi

∂2Pi

∂x2
, (3f)

where n is the Hill coefficient, Lρ (LR) is the Rho-dependent (Rac-dependent) half maximum inhibition of Rac

(Rho), LK represents the half-maximum phosphorylation of paxillin, IR is the basal Rac activation rate, Iρ is

the Rho activation rate, B is the maximum paxillin phosphorylation rate, δρ (δR) is the GAP-dependent Rho

(Rac) inactivation rate, δP is the paxillin dephosphorylation rate, γ is the ratio of total PAK to total Rac, Dx

(x = R,Ri, ρ, ρi, P, Pi) is the diffusion coefficient of each molecular species, K is the scaled concentration of active
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PAK ([PAK∗]), given by

K =
[PAK∗]

[PAK]tot
= αRR (1 + kx[PIX] + kGkXkC [GIT ][PIX][Paxtot]P ))K∗

i (4)

and I∗K is the GIT − PIX − PAK complex-dependent Rac activation rate, given by

I∗K = IK (1−K∗
i (1 + αrR)) , (5)

with

K∗
i = {(1 + kX [PIX] + kGkXkC [GIT ][PIX][Paxtot]) (1 + αRR) + kGkX [GIT ][PIX]}−1. (6)

The parameters in Eqs. (4) and (5) represent the association constant for PIX − PAK binding (kX), the

association constant for GIT − PIX binding (kG), the association constant for Paxp − GIT binding (kC), the

concentration of GIT and PIX ([GIT ] and [PIX]) and the affinity constant for PAK −RacGTP binding (αR).

The first (second) terms in Eqs. (3a), (3c) and (3e) represent Rac, Rho activation (inactivation) and pax-

illin phosphorylation (unphosphorylation), respectively, whereas the third term represents the diffusion of these

proteins. The terms in Eqs. (3b), (3d) and (3f) are defined similarly for the inactive/unphosphorylated form of

these three proteins. Notice how the activation term of Rac (Rho) is a decreasing Hill function of Rho (Rac)

to reflect the mutual inhibition exerted by the two proteins on each other, whereas the phosphorylation term of

paxillin is an increasing function of Rac through K. The derivations of this highly nonlinear model are detailed

in [A26,A36]. For the complete list of parameter definitions and values, see Table 1.

2.3 Model reduction and simplification into 1D ODE model

Due to the high dimensionality of the original 6D spatiotemporal PDE model (3) and the difficulty in interpreting

its underlying dynamics, Tang et al [A26] simplified the model and reduced its dimensionality. This was done by

first ignoring the diffusion terms, turning the PDE model into an ordinary differential equation (ODE) model,

followed by assuming that protein biosynthesis in the cell is slow enough, implying that the total amount of each

protein is conserved (i.e., constant). This produced the following system of ODEs

dR

dt
= (IR + I∗K)

(
Ln
ρ

Ln
ρ + ρn

)
(1−R− γK)− δRR (7a)

dρ

dt
= Iρ

(
Ln
R

Ln
R + (R+ γK)

n

)
(1− ρ)− δρρ (7b)

dP

dt
= B

(
Kn

Ln
K +Kn

)
(1− P (1 + kGkCkX [GIT ][PIX][PAKtot]K

∗
i (1 + αRR)))− δPP, (7c)
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Parameter Description Value Unit References
IR Basal Rac activation rate 0.0035 s−1 [A26]
δR Rac inactivation rate 0.025 s−1 [A26]
Lρ Rho-dependent half-maximum inhibition of Rac 0.34 unitless [A26]
Iρ Basal Rho activation rate 0.016 s−1 [A26]
δρ Rho inactivation rate 0.016 s−1 [A26]
LR Rac-dependent half-maximum inhibition of Rho 0.34 unitless [A26]
γ Ratio of total PAK to total Rac 0.3 unitless [A26]
δP Paxillin dephosphorylation rate 0.00041 s−1 [A26]
n Hill coefficient 4 unitless [A26]
LK Active PAK-dependent half-maximum activation of paxillin 5.77 unitless [A26]
IK Additional Rac activation due to paxillin 0.009 s−1 [A26]
kG Association constant for GIT-PIX binding 5.71 s−1 [A26]

[GIT ] Concentration of GIT 0.11 µM [A26]
kX Association constant for PIX-PAK binding 41.7 s−1 [A26]

[PIX] Concentration of PIX 0.069 µM [A26]
kC Association constant for Paxp-GIT binding 5 s−1 [A26]

[Paxtot] Total concentration of paxillin 2.3 µM [A26]
αR Affinity constant of PAK-RacGTP binding 15 unitless [A26]

Table 1: Parameter values associated with the original spatiotemporal model given by Eqs. (3).

where Ri = 1−R, ρi = 1− ρ and Pi = 1− P
(
1 + kGkCkX [GIT ][PIX][PAKtot]K

∗
i (1 + αRR)

)
.

To further simplify this ODE model without modifying its underlying dynamics, several simplifying steps

have been implemented here to reduce its dimensionality. In the first step, we apply linear regression on K∗
i ,

defined by Eq. (6), using the values of paxillin at steady state; this generates the following simplified expression

1− P
(
1 + kGkCkX [GIT ][PIX][PAKtot]K

∗
i (1 + αRR)

)
≈ 1− αPP,

where αP is a parameter (see Table 2). Second, since the dynamics of active Rho (ρ) and phosphorylated paxillin

(P ) occur at a faster timescale compared to active Rac (R), one can use quasi-steady state approximation (QSSA)

to express ρ and P as functions of R. This is done by setting Eqs. (7b) and (7c) to zero to obtain

ρ =
IρL

n
R

IρLn
R + δρ (Ln

R + (R+ γK)
n
)

(8)

P =
B Kn

Ln
K+Kn

αPB
Kn

Ln
K+Kn + δP

. (9)

Finally, at steady state, K defined by Eq. (4) can be approximated (through fitting) using an expression that
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purely depends on R. This fitted expression is given by

K ≈ αRR

(1 + αRR) + kGkX [GIT ][PIX]

1+kX [PIX]+ 3
1+R

.

The same can be done for I∗K , defined by Eq. (5), to obtain a simplified expression in terms of R only, given by

I∗K ≈ IK ×
(
1− 1

1.5 + kX [PIX] + kGkXkC [GIT ][PIX][Paxtot]P

)
,

where P is at steady state defined by Eq. (9).

Taking all these approximations into consideration, including QSSA, produces a 1D ODE model for R, given

by

dR

dt
= (IR + I∗K)

(
Ln
ρ

Ln
ρ + ρn

)
(1−R− γK)− δRR, (10)

where ρ, K and I∗K are defined by Eqs. (8), (4) and (5), respectively. This new 1D ODE model is in a closed

form as it purely depends on R.

The bistability in R with respect to maximum phosphorylation rate of paxillin B was an important feature of

the original ODE model given by Eqs. (7) [A26]. This is further confirmed here by plotting the bifurcation diagram

of R with respect to B (Fig. 3A), producing a bistable switch comprised of two branches of stable equilibria

(solid lines) linked together by a branch of unstable equilibria (dashed line) at two saddle-node bifurcations.

To determine if such bistable switch is preserved by the simplified 1D ODE model, we plot the same type of

bifurcation diagram for R in terms of B but use Eq. (10). Doing so produces a bistable switch whose shape and

range of hysteresis are similar to that obtained by the original ODE model (Fig. 3B). In both models, bistablity

allows for the switching between the uninduced (low active Rac) and induced (high active Rac) states to occur

at specific thresholds in B (determined by the saddle-node bifurcations), outside of which the system becomes

monostable. These results thus demonstrate that the simplified 1D ODE model, defined by Eq. (10), preserves

the key dynamic features of the original ODE model, defined by Eq. (7), and can thus be used to analyse motility.

2.4 Two-dimensional (2D) ODE model with one fast and one slow variable

Studying the impact of bistability on cellular polarization has been previously investigated in detail in past

modeling studies [A37,A38]. Because CHO-K1 cells are known to exhibit much more complex migration patterns

(manifested as quick increases and decreases in protrusions, indicating variations in the Rac activity) [A31], we

have decided to increase the complexity of the 1D ODE model, given by Eq. (10), to allow the modified model

to display a whole set of new and interesting dynamics, including oscillations. The goal is to explore how such
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Figure 3: Bistable switch generated by the Rac, Rho and paxillin signaling network. The bifurcation diagram
of R with respect to B according to the (A) 6D, and (B) 1D models defined by Eqs. (3) and (10), respectively,
when diffusion is ignored. Both diagrams exhibit bistability between the uninduced (low active Rac) and induced
(elevated active Rac) states in an almost identical fashion. Solid lines: branches of stable equilibria; dashed
lines: branches of unstable equilibria (or saddle fixed points). Solid lines merge with dashed lines at saddle-node
bifurcations.

new complex dynamics can impact motility.

With the evidence suggesting that there are potential feedbacks from Rac to maximum phosphorylation rate

B, the 1D ODE model is modified here accordingly. This is done by augmenting the 1D ODE model with one

additional auxiliary and phenomenological equation that reflects the slow dynamics of paxillin phosphorylation.

More specifically, we have turned the parameter B into a slow variable, given by

dB

dt
= ϵ

(
1− γRR− kB(B −Br) +

1

η (B − ϵB)

)
,

where 0 < ϵ ≪ 1 is the time constant, Br > 0 is the resting state of B, kB > 0 is the recovery rate to the resting

state and ϵB , η > 0 are parameters. The resulting 2D ODE model becomes

dR

dt
= (IR + I∗K)

(
Ln
ρ

Ln
ρ + ρn

)
(1−R− γK)− δRR (11a)

dB

dt
= ϵ

(
1− γRR− kB(B −Br) +

1

η (B − ϵB)

)
. (11b)

This new 2D ODE model is designed to have B vary very slowly compared to R. This means that R can

always converge to a steady state, if it exists, before any substantial variation in B. The slow dynamics of B is

depicted here by ϵ. Two important features of this new model include the absence of feedback from B to active
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Rac R (i.e., the model is feedforward with B receiving input from R but not vice versa), and the impossibility

for B to be negative due to the term 1
η(B−ϵB) which acts as a barrier.

Equations 11, possess one slow and one fast variable. As before, this model can exhibit bistability for certain

parameter values. Indeed, depending on the parameters that govern the variation in B (e.g., kB and γR), the

system can either have one or two co-existing stable steady states, when the B-nullcline crosses the ”generalized”

R-nullcline at stationary points where R is stable (i.e., the lower and upper stable branches of the generalized

R-nullcline, see Fig. 4A, B and C). The real interesting dynamic feature of this new model, however, is that it

can also exhibit ROs; this occurs when it is in a configuration in which the B-nullcline intersects the generalized

R-nullcline in the middle unstable branch (Fig. 5A). This would allow the 2D ODE model to exhibit relaxation

oscillations (ROs) along the hysteresis cycle that involves the slow evolution of trajectories along the stable

branches of the generalized R-nullcline, because B is slow, and the fast jumps between the two stable branches at

the saddle-nodes, because R is fast (Fig. 5B). Having the B-nullcline separating the phase-space into two regions:

one above the B-nullcline with dB/dt < 0 (B is decreasing) and another below the B-nullcline with dB/dt > 0

(B is increasing), causes the trajectories to move to the left (right) below (above) the B-nullcline until they reach

the saddle-nodes. Thus for such oscillations to occur, ϵ must be very small and the two nullclines must intersect

only once on the middle unstable branch of the cubic-shaped generalized R-nullcline (Fig. 5).

With these ROs, one would expect (as shown later) to obtain a Hopf bifurcation when varying the parameter(s)

related to B, or more specifically those that dictate the position of the B-nullcline (e.g., kB). Indeed, if this

parameter variation causes the configuration of the nullclines in Fig. 4A, where the two nullclines intersect at

a stable steady state in the upper branch of the generalized R-nullcline, to transition to the one in Fig. 5A,

where the two nullclines intersect at an unstable steady state in the middle branch of the generalized R-nullcline,

a shift in dynamics from quiescent to oscillatory behaviour would occur right when the intersection of the two

nullclines crosses the upper saddle-node bifurcation during this transition. This oscillatory behaviour is eventually

manifested as a RO (Fig. 5B).

Interestingly, during the transition from quiescent to the ROs obtained while varying the slope of the B-

nullcline (through the parameter kB), another very interesting dynamics is also observed within a very small

parameter regime (Fig. 6A). In this third regime, trajectories exhibit very small amplitude oscillations (SAOs)

in both variables: R and B (Fig. 6B). Such oscillations are formed as soon as the stable steady state disappears

during the decrease in the slope of the B-nullcline and a new unstable steady state is formed in the middle branch

of the generalized R-nullcline. Trajectories, in this case, initially get attracted to the lower stable branch of the

generalized R-nullcline causing R to jump from the upper branch at the saddle-node bifurcation; during this

jump, however, the fast variable crosses the B-nullcline, causing the slow variable B to increase again. When B
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Figure 4: Three possible configurations for the steady states of the 2D ODE model, given by Eqs. 11, lying at the
intersection of the B-nullcline (purple) and generalized R-nullcline (blue) obtained when kB and γR are varied
but no change is made to the remaining parameter values listed in Tables 1 and 2. In the first two cases, one
stable steady state, lying either on the (A) upper or (B) lower stable branch of the generalized R-nullcline is
formed between the two nullclines. In the last case, (C) two stable steady states, lying on the upper and lower
stable branches of the generalized R-nullcline, are formed. Black solid (empty) circles represent stable (unstable)
steady states.

Figure 5: A new configuration for the steady state of the 2D ODE model, given by Eqs. 11, lying at the
intersection of the B-nullcline (purple) and generalized R-nullcline (blue) obtained at default parameter values
listed in Tables 1 and 2. In this case, (A) only one intersection occurs on the middle unstable branch of the cubic
generalized R-nullcline, forming an unstable steady state (open circle). The inset in (A) is a magnification of
the box surrounding the bottom saddle-node bifurcation. (B) Stable periodic orbit in the form of ROs (black)
is formed around the unstable steady state. The cause for the apparent stretching of the ROs far from the
generalized R-nullcline in (A, B) is the use of the logarithmic scale, which considerably expands any small
deviation near zero. (C) Time series simulations of R (top) and B (bottom) showing oscillations.
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Figure 6: The 2D ODE model, given by Eqs. 11, can exhibit SAOs when varying kB due to canards. (A) Gradually
decreasing the slope of the B-nullcline through kB , the steady state at the intersection of the generalized R-
nullcline (blue) and the B-nullcline (shades of purple) transitions from being stable (lying on the upper branch
of the generalized R-nullcline) to being unstable (lying on the middle branch of the generalized R-nullcline).
(B) Time series simulations of SAOs displayed by R (top) and B (bottom) formed right after the B-nullcline
shifts its intersection with the generalized R-nullcline to the middle branch.

reaches a higher value, it brings the system back to the right of the upper saddle-node bifurcation. Meanwhile,

the decrease in R is insufficient to bring the trajectories all the way down to the lower branch, causing them

to interrupt their jumps and to return back to the upper branch of the generalized R-nullcline (because of the

increase in B). When this happens, the same phenomenon repeats itself again, causing both R and B to generate

SAOs (Fig. 6B).

2.4.1 Three-dimensional (3D) ODE model with one fast, one slow and one very slow variable

The SAOs highlighted in the previous section (Fig. 6) occur between the upper stable branch of the generalized R-

nullcline and its unstable branch, in the neighbourhood of the upper saddle-node. Further investigation of the 2D

ODE model of Eqs. (11) shows that for the trajectories to go back and forth between the quiescent configuration

of Fig. 4A to the RO configuration of Fig. 5, one needs to periodically decrease and increase the slope the B-

nullcline sufficiently enough. This can be done by targeting the the recovery rate parameter kB which defines the

slope of the B-nullcline. By dynamically varying kB , the system can travel through the whole spectrum of these

regimes highlighted earlier, producing SAOs in combination with ROs in the form of large amplitude oscillations

(LAOs). This combination of different amplitude oscillations is called mixed modes oscillations (MMOs).

Keeping that in mind, we have expanded the 2D ODE model into a 3D semi-phenomenological ODE model

based on the scheme of Fig. 7 to produce MMOs. The model possesses three different timescales: fast, slow
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Figure 7: Schematic of the 3D ODE model involving Rac and paxillin in a simplified protein network. Diagram
of the signalling pathways included in the 3D ODE model showing Rac cycling between inactive and active
forms and the indirect positive auto-feedback (via Rho) on itself through RacGEF. It also shows the positive and
negative (blue pathway) feedbacks on paxillin phosphorylation at a fast and a slow timescale, respectively, as
well as the indirect upregulation of Rac activation through RacGEF by phosphorylated paxillin. Blue pathway:
refinement of the original model from Tang et al (2018).

and very slow, to allow for the aforementioned patterns of activity to arise, including MMOs that combine slow

large amplitude with fast small amplitude oscillations within one cycle. The fast variables in this new model

is R whereas the slow and the very slow variables are the two parameters - turned into variables - B and kB ,

respectively. The 3D ODE model is given by

dR

dt
= (IR + I∗K)

(
Ln
ρ

Ln
ρ + ρn

)
(1−R− γK)− δRR (12a)

dB

dt
= ϵ

(
1− γRR− kB(B −Br) +

1

η (B − ϵB)

)
(12b)

dkB
dt

= ϵL (γK −R) , (12c)

where 0 < ϵL ≪ ϵ < 1 is the time constant and γK > 0 is a parameter chosen to be between the steady states of

R defined by the generalized R-nullcline. The equations for R and B are identical to these in Eqs. (11).

The 3D ODE model of Eqs. (12) is once again feedforward. The new auxiliary equation for recovery variable

kB possesses the slowest timescale defined by ϵL, receives input from R in a feedforward manner and allows the

system to exhibit oscillations of varying amplitudes and periods. These oscillations are manifested as MMOs in

R (Fig. 8).
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Parameter Description Value Unit
αP Linearization coefficient in paxillin activation 2.7 unitless
ϵ Time constant for B 0.01 s−1

Br Resting state of B 10 unitless
kB Recovery rate of B back to its resting state 0.04 unitless
γR Strength of R feedback onto B 8.6956 s−1

η, ϵB Parameters that guarantee the positivity of B 104, 10−4 unitless
ϵL Time constant of kB 10−5 s−1

γK Source term 0.15 unitless

Table 2: Parameter values associated with the 2D and 3D ODE models defined by by Eqs. (11) and (12),
respectively.

Figure 8: MMOs generated by the 3D ODE model defined by Eqs. (12). Time course simulations of (A) R, (B) B
and (C) kB showing oscillations in each variable with R displaying very pronounced MMOs.
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2.4.2 Slow-fast analysis of the 3D ODE model

The MMOs detected in the 3D ODE model of Eqs. (12) (Fig. 8) indicate that there is a quick and exponential

increase in the amplitude of these oscillations through a canard explosion. This classical canard phenomenon

explains the very fast transition from a small amplitude oscillations (SAO), via canard cycles, to a large amplitude

oscillation (LAO), after a Hopf bifurcation. Such very fast transition happens within an exponentially small

range of a control parameter, making it difficult to detect. Still, the peculiar shape of the generalized R-nullcline

(i.e., the critical manifold of the 3D ODE model) makes our system very prone to developing these canard

explosions; indeed, these types of oscillations are always encountered when designing the model and setting

different formulations for the B and kB equations.

Desroches et al (2012) [A32] provided a detailed summary of the local mechanisms that give rise to MMOs.

As acknowledged in this study, different configurations that can produce MMOs have been widely studied in the

presence of folded singularities in the critical manifold. According to this scenario, the simplest form for a system

to exhibit MMOs is to have a three-dimensional model with one fast and two slow variables. By investigating

the dynamics of the reduced problem, obtained by setting the fast variable to steady state, one could find folded

singularities in the critical/slow manifold of the problem and thus explain the presence of MMOs. However, in

some cases, there is no folding in the critical manifold, and therefore another less common approach must be

applied, where the system is viewed as consisting of two fast variables and one slow one. Here, we adopt this

approach with the 3D ODE mode, given by Eqs. (12), by taking R and B to be fast and kB to be slow. To

simplify the analysis, we let

dR

dt
= (IR + I∗K)

(
Ln
ρ

Ln
ρ + ρn

)
(1−R− γK)− δRR =: f(B, kB , R, ϵL) (13a)

dB

dt
= ϵ

(
1− γRR− kB(B −Br) +

1

η (B − ϵB)

)
=: g(B, kB , R, ϵL) (13b)

dkB
dt

= ϵL (γK −R) =: ϵLh(R). (13c)

Based on this, we can define the layer problem to be

∂R

∂t
= f(B, kB , R, 0) (14a)

∂B

∂t
= g(B, kB , R, 0) (14b)

∂kB
∂t

= 0, (14c)

and the the reduced problem, obtained by transforming the fast time scale t into a slow time scale T = ϵLt, to
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Figure 9: Slow-fast analysis of the 3D ODE model defined by Eqs. (12). Bifurcation diagram of (A) R and (B) B
with respect to kB as defined by the layer problem 14. Solid (dashed) blue and purple lines represent stable
(unstable) equilibria. In both panels, the change in stability (i.e., the switch from solid to dashed line) occurs at
a supercritical Hopf bifurcation at which two envelopes of stable periodic orbits (solid green), representing the
maximum and minimum of the oscillations, emerge. Red line in Panel A is the kB-nullcline superimposed on the
bifurcation diagram.

be

∂R

∂T
= 0 (15a)

∂B

∂T
= 0 (15b)

∂kB
∂T

= h(R), (15c)

where ϵL is set to zero in both problems defined by Eqs. (14) and (15). According to this formalism, the critical

manifold is defined to be S =
{
(R,B, kB) :

dR
dt = 0

}
, which is equivalent to the null-surface of the fast variable

R.

With these two problems introduced, we can now plot the bifurcation diagrams of the fast variables with

respect to kB as defined by the layer problem of Eqs. (14) (Fig. 9). Our results reveal that both variables of the

fast sub-system, namely, R (Fig. 9A) and B (Fig. 9B), undergo a supercritical Hopf bifurcation when decreasing

kB at kBHopf ≈ 0.048. Two envelopes of stable periodic orbits representing the maximum and minimum of the

oscillations emanate from the Hopf bifurcation. The amplitude of the oscillations increases exponentially fast in

the form of a canard explosion until these envelops eventually plateau starting from approximately kBLAO ≈ 0.038

(estimated using AUTO-07p [A39]) towards smaller values of kB . The periodic orbits associated with canard
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explosion seen in the bifurcation diagrams of R and B (Fig. 9A and B, respectively) are ROs that partially

contribute to the formation of the LAOs in the MMOs. Due to the fact that these oscillations appear at

kBLAO < kBHopf , the Hopf bifurcation in this case is referred to as delayed Hopf. In our subsequent analysis, we

use the phrase ”active phase” of the system to refer to the configuration when kB is between kBLAO and kBHopf .

To further investigate how SAOs and LAOs form MMOs, we now turn our attention to the reduced problem,

given by System 15. By superimposing the nullcline of kB on the bifurcation diagram of R with respect to kB

(Fig. 9A), we can see that the dynamic of the full 3D ODE model is dictated by how long trajectories spend

time below or above the kB-nullcline. Indeed, if the average value of R, calculated over an entire SAO cycle, is

bigger than γK , then kB will decrease (since the average dkB/dt < 0), causing the trajectory to move to the left

in Fig. 9. If the opposite happens, then the trajectory moves to the right. Such mechanism is similar to that

seen in parabolic bursting [A40].

To verify if this is the mechanism underlying MMOs, one cycle of the solution trajectory of the full 3D ODE

model, given by Eqs. (12), is superimposed onto the bifurcation diagram of R with respect to kB (Fig. 10A). Doing

so shows that the trajectory initially moves to the left while exhibiting SAOs delimited by the two envelopes

of the periodic orbits to the right of the canard explosion because it spends more time above the kB-nullcline.

Thus, the number of spikes during the active phase is directly linked to the time constant of kB , because the time

the system spends in the active phase depends on how fast kB decreases. However, when the trajectory crosses

kBLAO and enters the relaxation oscillation regime, it starts spending more time below the kB-nullcline causing

it to travel to the right (recall that we have Rlow < γK < Rhigh).

Notice here that, according to the configuration of Fig. 10A, the trajectory does not spend too much time

in the RO regime, as it leaves very soon after by moving to the right away from the periodic envelopes. The

contribution of ROs (through the canard explosion) to the MMOs is therefore limited. Interestingly, when the

trajectory moves to the right, it peculiarly does not follow a specific manifold and suddenly changes direction

upward by forming a very prominent LAO. The configuration of Fig. 10A is thus not sufficient to explain all the

dynamics.

To explain the underlying dynamics of this very last component of the solution trajectory showing the promi-

nent LAO, it is necessary to expand our slow-fast analysis to include B. This is done in Fig. 10B, where we plot

the critical manifold of the layer problem, given by Eqs. (14), and the B-nullsurface along with one cycle from the

solution trajectory of the full 3D ODE model to view how it evolves with respect to both of these surfaces. Our

results reveal that towards the end of the last SAO (which is becoming a LAO), the trajectory reaches the lower

stable sheet of the critical manifold. When this happens, the trajectory ends up being below the B-nullsurface

in a region where dB/dt > 0, causing it to travel right along this stable sheet until it reaches the fold (the
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Figure 10: Underlying dynamics of MMOs produced by the 3D ODE model defined by Eqs. (12). (A) Solution
trajectory (black line) superimposed in the bifurcation diagram of R with respect to kB previously plotted in
Fig 9. (B) The critical manifold S (blue) along with the B-nullsurface (purple) showing how they govern the
dynamics of a solution trajectory (black) over time.

saddle-node); this produces the lower plateau part of the trajectory in Fig. 10A right after leaving the oscillatory

regime. At the fold, the trajectory then jumps up to the upper stable sheet of the critical manifold of Fig. 10B

(because R is fast), crossing the B-nullsurface into a region where dB/dt < 0, causing the trajectory to travel to

the left briefly along the upper sheet until it crosses the B-nullsurface all over again (Fig. 10B). Because B has

slow time scale, trajectory then moves downward and slightly to the left along the B-nullsurface until it enters

the oscillatory regime determined by kB . The full cycle of jumping up, and down with a short plateau in between

form the LAO seen in Fig. 10A.

2.4.3 Spatiotemporal dynamic in the presence of diffusion

By reintroducing diffusion into the R equation of the 1D and 3D ODE models, given by Eqs.(10) and (12),

respectively, one can investigate the spatiotemporal dynamic of Rac according to these models. In order to do

this in the context of cell motility, however, one also needs to reintroduce the equation that govern the dynamics

of inactive Rac (Ri). This produces, as a result, two spatiotemporal models that we label as the 2D and 4D PDE

models, respectively.

2.4.3.1 Wave-pinning in the 2D PDE model A hallmark of cell motility and cell polarization is the

formation of a stable inhomogeneous pattern in molecular concentrations between the front and the rear of a po-

larized cell [A41]. Such a pattern has been previously referred to as wave-pinning [A38,A42]; it is a spatiotemporal

phenomenon that describes the propagation of a front of higher protein concentration, originating from a pertur-

bation of a homogeneous low steady state, and the stabilization of the front, creating a restricted region with high
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concentration of an active protein at steady state. It is an inherent property of some reaction-diffusion systems

possessing bistability, and relies on two important biophysical assumptions, namely, that matter is conserved and

that there is a difference in diffusion coefficients between the chemical species under consideration [A38,A42].

As an example, let us consider the 2D PDE model, given by

∂R

∂t
= (IR + I∗K)

(
Ln
ρ

Ln
ρ + ρn

)
(1−R− γK)− δRR+DR

∂2R

∂x2
(16a)

∂Ri

∂t
= − (IR + I∗K)

(
Ln
ρ

Ln
ρ + ρn

)
(1−R− γK) + δRR+DRi

∂2Ri

∂x2
, (16b)

where ρ is defined by Eq. (8). This model depends purely on active (R) and inactive (Ri) Rac in a closed form,

is conserved and possesses differences in diffusion coefficients between its two molecular species: R and Ri. In

other words, it has all the ingredients necessary to produce wave-pinning.

To verify this, the model is simulated over time on a one-dimensional spatial domain by initiating it from

non-homogeneous initial condition (Fig. 11). A step function with R = 0.083 for x ≤ 30 and R = 0.2269 for

x > 30 (which correspond, respectively, to the stable low and high equilibria of R in the 1D ODE model) is used

as an initial condition. By doing so, we obtain the wave-pinning phenomenon comprised of elevated R in the

”front” and low R in the ”back” (Fig. 11A). This spatiotemporal phenomenon remained stable at steady state

due to the low diffusion coefficient of R. In contrast, the high diffusion coefficient of Ri prevented this from

happening, leading Ri to become homogeneous at steady state (Fig. 11B). This result thus confirms that the

reduced 2D PDE model of Eqs. 16 can produce wave-pinning in Rac in a manner similar to that seen with the

6D PDE model [A26].

2.4.3.2 Spatiotemporal dynamics of the 4D PDE model To explore how MMOs affect the spatiotem-

poral patterns generated by Rac, we turn our attention now to the 4D PDE given by

∂R

∂t
= (IR + I∗K)

(
Ln
ρ

Ln
ρ + ρn

)
(1−R− γK)− δRR+DR

∂2R

∂x2
(17a)

∂Ri

∂t
= − (IR + I∗K)

(
Ln
ρ

Ln
ρ + ρn

)
(1−R− γK) + δRR+DRi

∂2Ri

∂x2
(17b)

∂B

∂t
= ϵ

(
1− γRR− kB(B −Br) +

1

η (B − ϵB)

)
(17c)

∂kB
∂t

= ϵL(γK −R). (17d)

The numerical instability of this model makes it quite difficult to simulate it over time on a one-dimensional

domain. To overcome this obstacle, we revert kB to being a parameter and analyze the dynamics of the resulting
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Figure 11: Wave-pinning in a one-dimensional spatial domain generated by the 2D PDE model, given by Eqs. (16).
Kymographs of (A) R and (B) Ri when a step-function is used as an initial condition, with zero-flux boundary
conditions. The kymographs are color-coded according to the color-map in each panel. Ri is homogeneous,
having DRi

≫ DR, whereas R exhibits a front that eventually gets pinned. Longer simulations indicate that the
front stays indefinitely in a fixed position, preventing the homogenization of the domain in terms of R. Time
and distance are dimensionless.
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Figure 12: Switching and ripples produced by the 4D PDE model, given by 17, when kB is set to a constant.
Kymographs of R (left) Ri (middle) and B (right) in two parameter regimes defined by kB : (A) The RO regime
and (B) SAO regime. A step-function is used as an initial condition, with zero-flux boundary conditions. The
kymographs are color-coded according to the color-map in each panel.

3D PDE model in two different parameter regimes associated with kB : one that produces ROs and another that

produces SAOs (as defined by the 2D ODE model of Eqs. (11)).

Our results show that, by simulating this 3D PDE model of active (R), and inactive (Ri) Rac and B in the RO

regime, we obtain intermittent polarization that switches orientation back and forth as time evolves (Fig. 12A).

In the SAO regime, however, the entire domain shows small ripples that are present in all variables, especially in

R (Fig. 12B). Interestingly, the switching in the level of the three variables in the SAO regime at the boundary

of the domain is less pronounced than those seen in the RO regime (compare Fig. 12A to B), but the scaled

concentrations across the domain are more heterogeneous.

The fact that kB varies slowly between these two dynamic behaviours in the 4D PDE model, given by Eqs. (17),

indicates that a mixture of these outcomes should be observed periodically. In other words, we expect the 4D

PDE model to show a succession of the behaviours detected in the two regimes displayed in Figure 12. Such a

mixture of dynamic outcomes can potentially act as a framework that allows cells to exhibit not only change in

Rac localization, but also membrane oscillations and fast directionality variations.

2.5 Computer simulations of motile cells

Cellular Potts Models (CPMs) have recently received quite a bit of attention as a tool to simulate ”cells”

in two-dimensional grid to investigate how different mechanical and chemical forces affect cellular migration

[A30,A43,A44]. It is an iterative discrete grid-based stochastic simulation technique that involves the modelling
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of the extracellular matrix (ECM) as a mesh upon which simulated cells are superimposed. This computational

technique is used here as a framework to explore the migration patterns that can be generated by the 4D PDE

model in combination with stochasticity.

2.5.1 Numerical implementation of the CPM

Each simulated CPM cell is modelled as a compartmentalized object that can grow, undergo shape variations

and move on the surface of the grid. To account for forces F affecting cell shape and movement, such as elastic

restoring forces or pressure caused by actin filaments growth that push the membrane outward, a Hamiltonian

function H(F;λ) is designed with different weights given by λ. Monte Carlo Markov Chain-like simulations

are then implemented based on the energy expressed by the Hamiltonian, to generate successive configurations

of the cell body. Such configurations dictate how cell membrane evolves over time according to the physical

forces included in the Hamiltonian. One can use Morpheus, a highly flexible CPM simulator software [A45], to

incorporate multi-scale systems into this computational technique to simulate a migrating cell.

In the analysis presented here, we combine the 4D PDE model, given by Eqs. (17), with the CPM simulations.

This is done by incorporating the chemical reactions of the PDE model along with diffusion to dictate how

membrane protrusions are regulated. The main assumption made in these simulations is that elevated Rac

causes localized membrane protrusions. In our settings, we set the Hamiltonian function to be

H = λP (pσ,t − Ptarget)
2
+ λS (sσ,t − Starget)

2
+ λAct

(
Πu∈M(σ,t)Act (u)

)
,

where σ denotes the configuration of the cell at time t, the weights λP and λS describe the deformation resistance

with values tuned to allow the CPM cell to exhibit reasonable membrane elasticity properties [A46,A47], M(σ, t)

denotes the set of lattices that form the membrane of the cell and the Act function measures the amount of actin

activity at a specific location. According to this model, protrusions are favoured in the regions of elevated Rac

thanks to the Act function. Details of the Morpheus implementation can be found in [A45].

2.5.2 Outcomes of the CPM simulations

As highlighted previously, the 4D PDE model, given by Eqs. 17, possesses different time scales; the presence of

these time scales have been shown to be crucial for producing complex spatiotemporal patterns, induced by a

combination of ROs and SAOs in the form of MMOs. It would be thus interesting to explore how these patterns

affect migration paths of simulated cells generated using the CPM.

To study the migration paths of CPM cells, the boundary of these cells is initially computed using binary
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Figure 13: Migration patterns detected in the CPM. Migration paths of simulated CPM cells exhibiting (A) di-
rected, (B) non-motile and (C) meandering motion. Insets: Binary masks of CPM cells at a given frame of the
Monte Carlo simulations.

masks, defined as the black and white pixelation of the domain where each pixel occupied (unoccupied) by

the cell is colored black (white), and their center of mass is determined at each frame generated by the Monte

Carlo simulations. The x and y position of the center of mass of each frame is then tracked to generate the

migration path. With this analysis, we have found that these paths display three distinct migration patterns.

In the first one, CPM cells exhibit the classic directional motion that is typically associated with wave-pinning

(Fig. 13A). These cells are fast, unidirectional (i.e., rush in one direction) and possess a stable front (back) with

high (low) R. In the second pattern, simulated CPM cells display a homogeneous cytoplasm in terms of R and

are non-motile (Fig. 13B). They nonetheless exhibit fluctuations in their membrane and small divergence away

from their initial position due to the inherent stochasticity of the Monte Carlo simulation. Finally, in the third

pattern, simulated cells show oscillations as well as meandering motion (Fig. 13C). More specifically, these cells

protrude episodically and move more substantially than those simulated cells detected in the second pattern.

Their membranes display waving patterns, and sometimes stretch because of multiple protruding fronts that

dynamically change localization. No straight migratory patterns emerge in these CPM cells, because of this

episodic activity in protrusions and retractions. This causes the simulated cells in this migration pattern to

exhibit meandering trajectories typical of many migrating mesenchymal cells (such as CHO-K1 cells) [A31]. This

seems to suggest that MMOs are important for generating such migration pattern.
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2.6 Discussion

Understanding molecular mechanisms underlying excitability in cell motility is a very challenging task due to

the wide variability and complexity of the biological network involved. Redundancy in the signalling pathways,

stochasticity in molecular expression and the nonlinearity associated with the processes underlying cell motility

make investigating the role of excitability in this system very challenging experimentally. Therefore, one can use

mathematical modeling as an alternative approach to decipher the dynamics of cell motility, including excitability,

in different conditions.

In this present study, we used this modeling approach to uncover the oscillatory mechanisms that can arise in

a molecularly-explicit model of cell motility. By focusing on a pre-existing 6D PDE model that describes closely

the dynamics of the scaled concentrations of active and inactive forms of Rac and Rho (two members of the

Rho family of GTPases that define cellular polarity), as well as of phosphorylated and unphosphorylated forms

of the adaptor protein paxillin (an adhesion protein) [A26], we were able to initially simply the model into a

1D ODE model by ignoring diffusion and by using a combination of linear regression and QSSA. The 1D ODE

model described the dynamics of scaled active Rac concentration (R) and produced outcomes very similar to

those produced by the original PDE model when diffusion was ignored, including bistability.

The simplified model was then successively expanded by phenomenologically turning two of its key parameters

to slow and very slow variables. This expansion allowed the resulting 2D and 3D ODE models to produce ROs

and MMOs in addition to bistability seen in the original model. The two parameters targeted in these expansions

were the phosphorylation rate of paxillin B and the recovery rate kB . By applying slow fast analysis on the 2D

and 3D ODE model, we determined how these oscillations are regulated by the critical manifold of this system

and by the different time scales included. More specifically, by focusing on the 3D ODE model, we demonstrated

how SAOs and LAOs in MMOs seen in scaled active Rac concentration were generated by considering the layer

and reduced problems obtained from the timescale separation. Based on this analysis, we concluded that MMOs

are due to both canard explosion and delayed Hopf bifurcation [A32].

Whereas MMOs usually arise from folded singularities [A32], the 3D ODE model analyzed here behaved

differently. By choosing to decipher the dynamics of this model using two time scales: two fast (R and B) and

one slow (kB) variables, we showed that the SAOs in MMOs start with very low amplitude but gradually grow

before entering the RO regime; during this process the oscillations evolve from being canards without head to

becoming canards with head in the RO regime in a manner similar to that governed by delay in a dynamical

Hopf bifurcation [A32]. By expanding the analysis to two time scales: one fast (R) and one slow (B), we then

demonstrated that the last LAO in the MMOs was due to slow propagation of the trajectory along the two

attracting sheets of the critical manifold and jump between them across the B nullcline.
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While it is generally accepted that the small GTPases Rac and Rho are responsible for cell motility, most

of the standard existing mathematical models only account for polarized cells with a leading front and a stable

back that do not display a behavior more complex than straight directed motion. Some relevant models happen

to produce oscillations [A29,A37], but they rely on external feedbacks such as adhesion dynamic and signalling

from the extra-cellular matrix, as well as do not exhibit frequent directionality change. Here we choose to focus

only on internal pathways, and take advantage of the unusual structure and shape of the critical manifold and

of the time-scale separation to show that these three internal variables are sufficient to build a model capable

of generating complex oscillatory phenomena. This was verified when simulating the 2D and 4D PDE models

considered in this study. The spatiotemporal patterns generated by the latter especially revealed that a mixture

of switching between front and back as well as ripples across the one-dimensional domain can be obtained. This

allowed the simulated CPM cell to exhibit three migration patterns that are quite distinct: directed, meandering

and non-motile motions. The latter two appeared quite consistent with those migration patterns detected in

CHO-K1 cells [A31].

What are the functional and physiological consequences of the MMOs in this chemical system of cell motility

is still to be determined. One needs to quantitatively compare the migration patterns generated by the CPM cells

with those generated by mesenchymal cells (e.g. CHO-K1 cells), in a rigourous manner that should be applicable

to both systems. This would allow for important conclusions to be drawn about the role of MMOs in defining

cell migration.
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Abstract

In mesenchymal cell motility, several migration patterns have been observed, including directional, exploratory

and stationary. Two key members of the Rho-family of GTPases, Rac and Rho, along with an adaptor protein

called paxillin, have been particularly implicated in the formation of such migration patterns and in regulating

adhesion dynamics. Together, they form a key regulatory network that involves the mutual inhibition exerted

by Rac and Rho on each other and the promotion of Rac activation by phosphorylated paxillin. Although this

interaction is sufficient to generating wave-pinning that underscores cellular polarization comprised of cellular

front (high active Rac) and back (high active Rho), it remains unclear how they interact collectively to induce

other modes of migration detected in Chinese hamster Ovary (CHO-K1) cells. We previously developed a

6D reaction-diffusion model describing the interactions of these three proteins (in their active/phosphorylated

and inactive/unphosphorylated forms) along with other auxiliary proteins, to decipher their role in generating

wave-pinning. In this study, we explored, through computational modeling and image analysis, how differ-

ences in timescales within this molecular network can potentially produce the migration patterns in CHO-K1

cells and how switching between them could occur. To do so, the 6D model was reduced to an excitable 4D

spatiotemporal model possessing three different timescales. The model produced not only wave-pinning in

the presence of diffusion, but also mixed-mode oscillations (MMOs) and relaxation oscillations (ROs). Im-

plementing the model using the Cellular Potts Model (CPM) produced outcomes in which protrusions in cell

membrane changed Rac-Rho localization, resulting in membrane oscillations and fast directionality variations

similar to those seen in CHO-K1 cells. The latter was assessed by comparing the migration patterns of CHO-

K1 cells with CPM cells using four metrics: instantaneous cell speed, exponent of mean square-displacement

(called α-value), directionality ratio and protrusion rate. Variations in migration patterns induced by mutat-

ing paxillin’s serine 273 residue was also captured by the model and detected by a machine classifier, revealing

that this mutation alters the dynamics of the system from MMOs to ROs or nonoscillatory behaviour through

variation in the concentration of an active form of an adhesion protein called p21-Activated Kinase 1 (PAK).

These results thus suggest that MMOs and adhesion dynamics are the key ingredients underlying CHO-K1

cell motility.
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3.1 Introduction

Mesenchymal cell migration is a spatiotemporal phenomenon that refers to one mode of cell movement char-

acterized by the development of protrusive areas at the cell front and retractive areas at the cell rear and the

requirement of energy consumption [B1]. It is regulated by both extrinsic (e.g., chemokinetactic gradients) [B2,B3]

and intrinsic signals (e.g., Rho family of GTPases) [B4, B5] that result in the spatial organization and subse-

quent dynamic remodelling of subcellular structures such as protein complexes termed adhesions that anchor

a motile cell to its substrate and the actin-cytoskeleton [B6]. It is an essential process for many physiological

functions, including embryonic development [B7], wound healing [B8], inflammation and axonal growth during

development [B9]; it is also involved in pathophysiological conditions such as cancer metastasis [B8, B10] and

thrombosis [B11]. Thus, a more clear understanding of the molecular processes that regulate cell migration will

improve our understanding of a fundamental cellular physiology and also can lead to new discoveries for the

treatment of disease.

Motile cells display a wide range of migratory behaviours [B1]. They can bias their direction of locomotion by

heading to the source of a stimulus, or randomly explore their surrounding environment [B12]. Understanding the

underlying mechanisms that lead to different patterns of cell migration (e.g. random, directed) is a challenging

task given the large number of proteins involved. Indeed, over two hundred proteins have been implicated in

regulating cell migration and adhesion dynamics with complex biological signaling pathways governing their

interactions and activity [B13]. Nonetheless, two members of the Rho-family of GTPases Rac1 and RhoA

(referred to as Rac and Rho for the remainder of this study) have been identified as key players responsible

for generating cellular polarity, comprised of a cell front and rear, leading to directional cell migration [B14].

They transition from inactive (guanosine diphosphate (GDP)-bound) to active (guanosine triphosphate (GTP)-

bound) forms, via Guanine nucleotide Exchange Factors (GEFs), and vice versa, via GTPase-Activating Proteins

(GAPs) [B4]. Activation is also regulated through their mutual inhibition that the active forms of Rac and Rho

exert on each other. Together these two processes of activation and deactivation form the key signaling pathways

for producing cellular polarization [B4]. Active Rac is responsible for actin polymerization, causing membrane

protrusion [B15–B18] and formation of lamellipodia (cytoskeletal projection of the membrane at the leading edge

of the cell). Rho, on the other hand, is known to induce the formation of actin stress fibers and large stable focal

adhesions [B4,B5,B19], and is responsible for the actomyosin-driven contractions at the rear of a cell required

for membrane retraction towards the nucleus [B20].

It has been shown that the dynamics of Rac and Rho are modulated by an adaptor protein called paxillin [B21].

This adhesion protein can be phosphorylated at its serine 273 (S273) residue by the active form of the protein

p21-Activated Kinase 1 (PAK) when bound to RacGTP (PAK-RacGTP) [B22]. This phosphorylated form of
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paxillin can then bind to a protein complex formed by: the G protein-coupled receptor kinase InteracTor 1

(GIT), beta-PAK-Interacting exchange factor (PIX), and PAK, and subsequently promote further Rac activation

[B22]. The phosphorylation of paxillin at S273 is one crucial switch for regulating fast adhesion assembly and

disassembly [B21–B24]. Interestingly, substituting serine by alanine (S273A) or aspartic acid (S273D) generates,

respectively, nonphosphorylatable and phosphomimetic mutants that directly affect not only the motility patterns

of Chinese Hamster Ovary (CHO-K1) cells but also adhesion dynamics across the cell [B22, B24] and paxillin

co-binding with PAK in adhesion subdomains [B24]. The nonphosphorylatable S273A mutant showed reduced

motility, more stable adhesions and minimal co-binding with PAK compared to wildtype cells. In contrast, the

phosphomimetic S273D paxillin mutant showed more enhanced motility, more dynamic adhesions and increased

paxillin-PAK co-binding to adhesions [B24].

The complexity of this system and how it impacts cell migration motivates the use of mathematical modelling

approaches to quantitatively study this system [B25]. Previous models have varied in complexity and analyzed

different aspects of cell migration, but many of them focused on the Rac-Rho subsystem. In these models, the

mutual inhibition seen in the Rac-Rho system was sufficient to generate the spatiotemporal pattern needed to

generate cell polarity. This spatiotemporal pattern, called wave-pinning, is formed when a travelling wave in

the cytosol is pinned in space, generating a concentration gradient in Rac and Rho and a polarized cell with

a front and back, respectively [B26,B27]. The dynamics of this spatiotemporal phenomenon was expanded by

including paxillin and the GIT-PIX-PAK complex in a six-dimensional (6D) mathematical model characterizing

how paxillin can affect polarity and wave-pinning [B21,B23]. This work has highlighted the importance of paxillin

in the small GTPases Rac and Rho activation.

Chinese hamster ovary (CHO-K1) cells have long been used to study cell motility. Despite their lack of

significant polarity, CHO-K1 cells show significant protrusion and retraction leading to random migration as

seen when they are placed on glass coverslips coated with extracellular matrix (ECM) proteins [B28]. Persistent

polarity leading to rapid directed cell migration is rare but the cells do form dynamic and stable adhesion

complexes whose assembly, disassembly and stability are tightly regulated by proteins including paxillin [B22].

Waves and oscillatory phenomena, in both cell tracks and membrane protrusions are frequently detected in various

cell lines migrating on 2D surfaces [B29,B30], so this prompted the question of whether wave-pinning alone can

produce such behaviours, and if not, what other oscillatory dynamics must be involved. Much experimental

evidence has repeatedly demonstrated the importance of shape oscillations in cell migration [B31]. Several

mathematical studies have attempted to understand how these oscillations are generated at the cell membrane

level using a spatiotemporal model with multiple timescales [B32,B33]. Existing mathematical models involving

the Rac-Rho system typically accounted for polarized cells with a leading front and a stable back [B26,B34,B35].
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These models were then further expanded to couple the Rac-Rho system to the extracellular matrix (ECM),

generating oscillatory dynamics that were either periodic or semi-periodic [B36]. The amplitude of the oscillations

in these models did not change or changed very little (e.g. in the case of semi-periodic oscillations). Therefore,

implementing these models using the Cellular Potts Model (CPM), a computational discrete grid-based simulation

technique that involves the modelling of the ECM as a mesh upon which simulated cells are superimposed [B37],

typically produced migrating cells that were either purely directional or do not migrate significantly but remain

inactive with random cell membrane protrusion and retraction (depending on the amplitude of the oscillations),

but not both. The fact that CHO-K1 cells do display both of these behaviours simultaneously, allowing them to

explore and migrate [B24,B38], suggests that other oscillatory dynamics may be at play.

In this study, we used a reduced four-dimensional (4D) spatiotemporal model that possesses three different

timescales [B39] to analyze motility patterns of CPM cells and how they compare to those exhibited by CHO-K1

cells. The model was both physiological, taking into account the dynamics of Rac and how it interacts with Rho

and paxillin, as well as phenomenological to allow for the inclusion of two slower time scales. The model, in the

absence of diffusion, produced temporal profiles that possessed both slow large amplitude oscillations and fast

slow amplitude oscillations in the form of mixed-mode oscillations (MMOs) [B40]. Several metrics developed in

this study demonstrated that such MMOs are essential for capturing the key features of CHO-K1 cell migration.

3.2 Results

3.2.1 CHO-K1 cells display two distinct migration patterns: active and inactive

To explore the role of paxillin phosphorylation on serine 273, we studied Chinese hamster ovary (CHO-K1)

cells. When we visually examined the migration patterns of CHO-K1 cells, data showed that they can be either

(i) inactive (Fig. 14a), remaining mostly stationary (i.e. stalled) while attached to the substrate with very

little movement in their membrane and very limited displacement away from their starting point, or (ii) active

(Fig. 14b), exhibiting more migration activity by moving around on the substrate and travelling away from

their starting point. When inspecting all the recorded tracks of imaged CHO-K1 cells, we found that they all

exhibited one of these migration patterns (Fig. 14c), generating two independent classes of inactive and active

cells displaying low or high levels of membrane activity, respectively (Fig. 14d).

The exponent of mean square-displacement, called the α-value expressed in Equation 21 (see Methods),

provides a metric to automate classification of CHO-K1 cells as inactive or active. Thus, to systematically

distinguish between the two classes of CHO-K1 cells detected, we first used the α-value to split them into two

separate classes. Those that attained α-values below 1.4 were considered inactive, while those that attained α-
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Figure 14: Characteristics of inactive and active classes of CHO-K1 cells exhibiting two distinct migration
patterns detected using the α-value. (a, b) Representative binary masks (left) illustrating the shapes of CHO-K1
cells, along with their representative migration tracks (right). (c) Roseplots of a sample of CHO-K1 cell tracks
(31 in total) colour-coded according to each class; orange: inactive, blue: active. (d) Time series of the level of
membrane activity of two representative CHO-K1 cells, colour-coded according to each class. (e) Mean α-value
of CHO-K1 cells in each class. (f) Directionality ratio (DR) for the entire trajectory of CHO-K1 cells in each
class. (g) Mean instantaneous speed of CHO-K1 cells in each class. (h) Multiple measurements of the level of
membrane activity, in term of pixel counts, of CHO-K1 cells in each class. Error bars indicate SEM. Black dots
represent individual cells. Tracking data from Kiepas (2020) were used to produce panels c, e, f and g. Tracking
data and cell images acquired for this study were used to produce panels a, b, d and h. There were n = 18
inactive cells and n = 108 active cells in panels e, f and g, whereas there were n=3 inactive and n=4 active cells
in panel h.
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values above 1.4 were considered active (Fig. 14e). Based on extensive exploration of the data, it was determined

that a 1.4-threshold generated the best separation between these two classes. We then used three additional

metrics, directionality ratio (DR), instantaneous speed and level of membrane activity to further characterize the

behaviour of the two classes identified. Results revealed that the inactive class, on average, exhibited significantly

lower DR values, instantaneous speed and membrane activity than active cells. Active cells displayed more wavy

patterns on the membrane and oscillated in an irregular fashion (compare the blue trace that exhibits slow

oscillations to the yellow trace that does not in Fig. 14d).

The differences between inactive and active cells identified here are consistent with what was previously found

in the literature [B28]. Using the α-value, we were able to demonstrate here that these two classes of cells are

indeed distinct in a systematic and automated fashion. This, however, raises the question of what the underlying

causes of such differences are between the two dynamic classes of cells?

3.2.2 Mixed-mode oscillations in scaled Rac concentration

It has been previously shown that wave-pinning, a spatiotemporal phenomenon that describes the propagation

of a front of higher protein concentration that eventually gets pinned in space, underlies cellular polarization in

motile cells [B26]. It is an inherent property of some reaction-diffusion systems capable of attaining two different

states for the same set of parameters but starting from different initial conditions (also called ”bistability”).

Such spatiotemporal phenomenon, however, typically produces migrating cells that are persistently directional,

a feature that appears not to be very consistent with CHO-K1 cell migration patterns (Fig. 14), including local

Rac activities in several locations in the cytosol and wavy patterns travelling across the membrane.

To explore if other dynamic behaviours, aside from bistability, can produce migration patterns that are in

agreement with those seen in CHO-K1 cells, we designed a simplified mechanistic model involving active and

inactive forms of Rac (Fig 15) that possesses multiple time scales ranging from fast to slow (see Methods) [B39].

In this model frame, described by the 4D model of Eqs. (20), active Rac exerts positive (negative) feedback on

paxillin phosphorylation rate on a fast (slow) timescale (Fig. 15a), as well as exerts indirect positive auto-feedback

(via Rho) on itself through RacGEF. The combination of the timescales in this model allows scaled concentration

of Rac to display one type of oscillations that are called mixed-mode oscillations (MMOs) (Fig. 15b) [B39]. In

MMOs, fast small amplitude oscillations are combined with slow large amplitude oscillations that can potentially

allow for local Rac activities in several locations in the cytosol to form and wavy patterns travelling across the

membrane to occur.
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Figure 15: Model framework and model simulations. (a) Schematic of the semi-phenomenological four-
dimensional (4D) model of Eqs. (20). Rac cycles between inactive (GDP-bound) and active (GTP-bound)
forms. Rac-GTP (denoted by R) exerts an indirect positive auto-feedback (via Rho) on itself through RacGEF.
It also simultaneously exerts positive and negative (blue pathway) feedback on paxillin phosphorylation at a
fast and a slow timescale, respectively. Phosphorylated paxillin, in turn, indirectly upregulates Rac activation
through RacGEF. Blue pathway: refinement of the original model Tang et al (2018) ; red pathway: the reaction
directly influenced by the half-maximum phosphorylation of paxillin (LK). (b) Time courses of active Rac (R),
phosphorylation rate (B) and recovery rate (kB) in the absence of diffusion, showing the presence of mixed-model
oscillations (MMOs) in R.

3.2.3 Cellular Potts Model (CPM) simulated cells exhibit three distinct migration patterns: di-

rected, oscillatory and inactive

Having detected two classes of CHO-K1 cells from experimental data, we went on to explore if Cellular Potts

Model (CPM) simulated cells, governed by the 4D model of Eqs. (20), can also exhibit the two distinct migration

patterns. Making this link would allow us to test the hypothesis of whether the dynamic feature of MMOs, that

combine slow large amplitude with fast small amplitude oscillations, underlies active CHO-K1 cell migration.

To do this, we first simulated 60 CPM cells; this produced noisy tracks with considerable variability due to

the stochastic nature of the CPM simulations. When visually examining these tracks, three distinct motility

patterns were discernible, one of which was inactive (Fig. 16a), exhibiting migration patterns very similar to

inactive CHO-K1 cells, while the other two were active (Fig. 16b, c). The active CPM cells were either highly

directed (Fig. 16c) or exhibited migration pattern that were more like patterns seen with active CHO-K1 cells

(Fig. 16b). The dynamics of this latter group is governed by MMOs (and hence labelled ”oscillating” CPM cells

hereafter), while directed cells are purely governed by wave-pinning [B26, B27]. All the simulated CPM cells

appeared to fall into one of these three classes of migration patterns (Fig. 16d) and their levels of membrane

activity seemed to positively correlate with their ability to migrate (Fig. 16e). Interestingly, CPM cells in the

oscillating class were found to also exhibit slow oscillations in their membrane activity, unlike the other two
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Figure 16: Characteristics of the three classes (n=20 for each group) of simulated cells obtained by the Cellular
Potts Model (CPM) exhibiting distinct migration patterns detected by the two metrics: α-value, that distin-
guishes inactive from active CPM cells, and directionality ratio (DR), that divides active cells into oscillatory
and directed cells. (a, b, c) Representative binary masks (left) illustrating the relevant shapes of CPM cells,
along with their representative migration tracks (right). (d) Roseplots of a sample (n=21) of CPM cell tracks
colour-coded according to each class; orange: inactive, blue: oscillatory, purple: directed. (e) Time series of the
level of membrane activity of three representative CPM cells, colour-coded according to each class. (f) Mean
α-value of CPM cells in each class. (g) Directionality ratio (DR) for the entire trajectory of CPM cells in each
class. (h) Mean instantaneous speed of CPM cells in each class. Inactive cells have a non-zero mean instantaneous
speed due to their inherent stochasticity, causing them to be random. (i) Mean level of membrane activity, in
terms of pixel counts, of CPM cells in each class. Error bars indicate SEM. Black dots represent individual cells.
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classes (Fig. 16e). Oscillating CPM cells on average show membrane activity that is 1.945 times higher than

inactive CPM cells, a ratio that is similar to the 1.825 obtained for active versus inactive CHO-K1 cells.

To systematically categorize the classes of CPM cells, we applied the same strategy used on CHO-K1 cells by

using the 1.4-threshold in α-value to separate inactive CPM cells from active ones. The active CPM cells were

then further divided into oscillating and directed by choosing a threshold of 0.8 in DR. This combined strategy

generated a clear distinction between the three classes of CPM cells based on their α-value (Fig. 16f) and DR

(Fig. 16g). Interestingly, the α-value of directed CPM cells was ≈ 2, indicating a super-diffusive motion, while the

DR value of inactive cells was very low, highlighting a motion that is random (i.e. the inactive CPM cells were

mostly stationary). Comparing the mean instantaneous speed (Fig. 16h) and mean level of membrane activity

(Fig. 16i) between the three classes of CPM cells revealed that these two metrics positively correlated with the

efficiency with which each class migrate. In other words, inactive (directed) CPM cells had the lowest (highest)

mean instantaneous speed and level of membrane activity compared to other classes, an expected outcome in

view of how these classes of CPM cells were defined.

3.2.4 Active Rac localization is central in defining the three classes of CPM cells

To determine what role the spatiotemporal dynamics of Rac plays in generating differences between the three

classes of CPM cells, Rac activity was studied across the entire cell bodies of these simulated cells. To do this,

we first considered the inactive class of CPM cells. In this class, CPM cells always displayed homogeneous scaled

concentrations of active and inactive Rac along their membrane (Fig. S1a) and in their cytoplasm, respectively,

but still attained a non-zero mean instantaneous speed (Fig. 16h). The reason for the latter is because the CPM

relies on a Hamiltonian to estimate different energy configurations and tends to minimize it locally. Because the

minimization includes a stochastic component, the CPM makes it possible for these inactive cells to have slight

changes in membrane configurations over time, granting them the ability to move around during these energy

fluctuations. Such behaviour can be seen as a random motion, with DR that drops very quickly over time to

approach zero.

In the second class, oscillating CPM cells were found to exhibit episodic bursts of activity and waving patterns

in their membrane (Fig. 16e). The bursts of activity were manifested as increased levels of protrusions, due to

active Rac localization along the membrane (Fig. S1b), that do not last for too long but are repeated periodically.

Such behaviour caused the CPM cells to sometimes stretch (because of multiples protruding fronts that dynam-

ically change localization), and to not exhibit straight migratory pattern (because of their episodic activity in

protrusions and retractions) (Fig. 17a). As a result, they exhibited meandering migratory paths (Fig. 16b) with

active protrusions that allowed them to migrate a lot further than inactive CPM cells (Figs. 16f and 17a, b; red
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Figure 17: Characterizing cell movement of oscillating CPM cells. (a) MSD time series of an oscillating CPM cell.
Red arrows point to periods of directed motion, when the MSD scales with t2. (b) Level of membrane activity
associated with the same cell in a. Notice how periods of directed motion in the MSD correspond to periods
of increased level of membrane activity, called bursts of activity (also highlighted by red arrows in this panel).
(c) α-values plotted against mean level of membrane activity (averaged over 40 time-steps) for this oscillating
cell, along with the linear regression line (light gray).

arrows). The DR of their entire paths were low, but non-zero and not as low as the inactive ones (Figs. 16g).

Their level of membrane activity varied depending on the phase of bursting (Fig. 17b), was positively correlated

with the α-value (Fig. 17c) and picked up after increases in the speed of the cell; this level of membrane activity

changed over time within the same track and caused the α-value to change meanwhile.

Finally, directed CPM cells were found to be very polarized with active Rac accumulating in the front but

not in the rear (Fig. S1c). This extensively-studied feature of cell migration, called wave-pining [B26,B27], was

reproducible by the model and caused the CPM cells to move in a fast and directed fashion for prolonged periods

of time. Their DR values were close to 1 (Fig. 16g) and level of membrane activity were high throughout the

whole simulations (Fig. 16e, i). Furthermore, their MSD indicated a superdiffusive active motion, with α-values

close to 2.

3.2.5 Event detection in oscillating CPM cells is consistent with active CHO-K1 cells

To provide further evidence that oscillating CPM cells are representative of active CHO-K1 cells, we applied an

event detection framework, designed to detect events of directionality change, on both CHO-K1 experimental

and CPM simulated cells to further explore how they compare to each other.

For CHO-K1 cells, we previously distinguished active cells from those that were inactive (Fig. 14), classifying

108 tracks as belonging to the first class - active - and 18 belonging to the second - inactive. The event detection

was run on the 108 active cell tracks. To ensure, retrospectively, that the detected events were indeed separating

periods of directed motion, the α-value of each period of directedness was computed, averaged and eventually

65



Figure 18: Periods of directedness and directionality change in active CHO-K1 and oscillating CPM cells. Event
detection framework applied to (a) an active CHO-K1 cell, and (b) an oscillating CPM cell. Directionality ratio
(left panels), computed using a rolling window of length 60 minutes (light blue) for an active CHO-K1 cell and
20 time-steps for an oscillating CPM cells, allowed for event detection (orange dots). Superimposing detected
events (orange dots) on cell tracks (right panel) shows a good agreement with directionality change.

compared to the 1.4 threshold; our results indicated that, on average, the α-value for all periods of directedness

and tracks was 2.065 ± 0.473, which is larger than the 1.4 threshold, indicating a very highly directed super-

diffusive motion. As an example, for a randomly selected active CHO-K1 cell (Fig. 18a), the computed α-values

of all detected periods of directedness were 2.069, 2.262, 2.143, 2.039 and 1.350, showing that during four out

of five periods, the cell was directed. More importantly, when the α-values were computed using a 60-minute-

long rolling window (see Methods), we found that, for each CHO-K1 cell track, the α-value of each period of

directedness, delimited by two events, was almost always higher than its mean using the rolling window. Thus,

this method allowed for the automatic identification of periods of increased directionality.

The same event detection framework was then applied on 20 oscillating CPM cell tracks. Interestingly, similar

dynamics concerning change of direction were observed. As in CHO-K1 cells, periods of directness were followed
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by clear changes in directionality. An example of such behaviour, a randomly selected oscillating CPM cell

(Fig. 18b) showed that the computed α-values of all detected periods of directedness were 1.634, 1.56, 1.148,

2.645, 0.327, 1.724. When computing the average α-value of all periods of directedness and all tracks, a value of

1.851 ± 0.80 was obtained; this value is close to that seen in CHO-K1 cells (refer to figure).

3.2.6 Mutation of Serine-273 residue on paxillin alters CHO-K1 cell migration patterns

The S273 residue can be targeted to generate phosphomimetic or nonphosphorylatable mutants of paxillin in

which the serine 273 residue is replaced with aspartic acid (S273D) or alanine (S273A), respectively. Here, we

investigated how such mutations alter migration patterns.

Cells expressing the paxillin-EGFP-S273A mutant showed impaired motility with typically shorter migration

tracks compared to CHO-K1 cells expressing wild-type paxillin-EGFP (Fig. 19; compare panel a to b). Indeed,

cells expressing the S273A mutant had significantly reduced instantaneous speed of 16.1 ± 0.658 µm·h−1 and

lower mean α-value of 1.418± 0.038 compared to CHO-K1 cells expressing wild-type-paxillin-EGFP whose mean

instantaneous speed was 25.8±0.822 µm·h−1 and mean α-value was 1.698 ± 0.037 (Fig. 19d and e, respectively).

Cells expressing the paxillin-EGFP-S273D phosphomimic, on the other hand, displayed - on average - a more

active migratory phenotype than cells expressing wild-type-paxillin-EGFP (Fig. 19; compare panel a to c) with

a higher mean instantaneous speed of 35.2± 1.93 µm·h−1 (Fig. 19d) and elevated, but statistically insignificant,

mean α-value of 1.672±0.028 (Fig. 19e). These results are in agreement with previously published data [B22,B24].

To further explore how the migration patterns of cells expressing wild-type versus mutant paxillin compare

to each other, the number of events representing changes in directionality (as defined by Fig. 18) were measured

for all cells in each condition. The results were normalized by the number of events in cells expressing wild-type-

paxillin-EGFP (Fig. 19f). Our results showed that cells expressing the S273A mutant exhibited a significantly

lower number of events (1.93) than wild-type expressing cells (2.55) and S273D mutant expressing cells (2.62),

but the latter two groups did not show statistically significant differences.

These results thus suggest that cells expressing the S273A mutant are distinct in their migration patterns,

exhibiting a far less active migratory behaviour, while the migration patterns of cells expressing the S273D

phosphomimic are generally equivalent to or are slightly more dynamic than cells expressing wild-type paxillin.

3.2.7 Mutant CPM cells can mimic cells expressing paxillin phosphorylation mutants by altering

the model to change the sensitivity of paxillin to phosphorylation

The total active PAK concentration (i.e., total RacGTP-bound PAK) is known to be essential for paxillin phospho-

rylation at the S273 residue. The half-maximal activation parameter LK in Eq. (19) describes phenomenologically

67



Figure 19: Serine-273 (S273) residue on paxillin is key to CHO-K1 cell migration. Roseplots showing cell
tracks (n=40 cells for each condition) of wild-type CHO-K1 cells that were transfected with (a) paxillin-EGFP,
(b) paxillin-S273A-EGFP phosphomutant, and (c) paxillin-S273D-EGFP phosphomimic. (d) Mean instantaneous
speed of the same sampled cells in each condition, measured over 360 minute-long recordings. (e) Mean α-value of
the same sampled cells in each condition, computed using a rolling window of length 60 minutes. (f) Normalized
number of events of the same sampled cells in each condition computed over their entire tracks. Error bars
indicate SEM. Cell tracking data from Rajah (2019) were used to produce the figure.
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Figure 20: Role of PAK-dependent sensitivity parameter LK in defining mutant dynamics in CPM cells. (a) Time
series simulations of active Rac at default value of LK = 5.77 (top) showing mixed-mode oscillations (MMOs), at
LK = 7 (middle) showing non-oscillatory behaviour, and at LK = 4.5 (bottom) showing relaxation oscillations
(ROs). (b) Migration tracks of CPM cells generated by altering only LK while keeping other parameters fixed;
this produced inactive (i.e., random) cells when LK > 6 (left), or actively migrating cells when LK ≲ 6 (right).
The lower the value of LK , the further the CPM cell typically migrated. (c) Mean instantaneous speed, (d) mean
α-values, and (e) normalized number of events evaluated over the entire simulated track from 20 cells from each
of wild-type-like (LK = 5.77), S273A-like (LK = 7) and S273D-like (LK = 4.5) CPM cells. The number of events
in the S273A-like CPM cells did not vary because they all exhibited random inactive migration pattern; they
were all zero and became negative when normalized. Error bars indicate SEM.

how sensitive paxillin phosphorylation is to active PAK (PAK-RacGTP) concentration. Thus, LK is a parameter

that indirectly links adhesion dynamics to cell motility and causes significant changes to Rac dynamics when it

is altered. For example, increasing LK above ∼ 6 caused Rac dynamics to change from MMOs to being non-

oscillatory, whereas decreasing it below ∼ 5.25 caused active Rac dynamics to change from MMOs to relaxation

oscillations (ROs) (Fig. 20a). To investigate how altering the value of this parameter affects migration patterns

of CPM cells, we simulated CPM cells at different values of LK and plotted their migration tacks (Fig. 20a).

Doing so revealed that setting LK ≲ 6 produced actively migrating cells, while setting LK ≲ 6 produced inactive

or stationary cells (Fig. 20a), demonstrating its importance in defining CPM motility.

As a result, the parameter LK was targeted to determine if this could generate similar migration patterns as

cells expressing one of the two paxillin mutants. This was done by simulating 20 CPM cells per condition using

Morpheus. In these simulations, all cells possessed identical parameter values across the three conditions except

for LK that was either kept at its default value of LK = 5.77 to represent the wild-type paxillin expressing cells,
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set to LK = 7 to represent the S273A phosphomutant, or set to LK = 4.5 to represent the S273D phosphomimic.

In the S273A-like CPM cells, the mean instantaneous speed 0.9537 ± 0.009 and alpha value 1.115 ± 0.014 were

significantly lower than those for wild-type-like CPM cells (mean instantaneous speed: 1.057 ± 0.007; mean

α-value: 1.553 ± 0.010) (Fig. 20c and d, respectively). The normalized number of events representing changes in

directionality in S273A-like CPM cells (-3.981; negative values due to normalization) was also significantly lower

than the value for wild-type-like CPM cells which was 0, due to normalization (Fig. 20e).

In the case of S273D-like CPM cells, however, the instantaneous speed (1.60 ± 0.032) and α-values (1.690 ±

0.0170) of these simulations were significantly higher than wild-type-like CPM cells (Fig. 20c and d, respectively).

The former is in agreement with how experimental cells expressing the S273D mutant compare to cells expressing

wild-type paxillin, but the latter is not. This seems to suggest that distinguishing between the three cell conditions

using the parameter LK would be better captured by using distributions of LK values (centred around those

used for each condition) to describe them, rather than using one specific value of LK to describe all CPM cells

within each condition. This is in line with cell-to-cell variation expected in experimental systems. To further

validate this argument, the normalized number of events representing change in directionality was calculated

(-0.1475 relative to 0 for the wild-type-like cells) and was not statistically different from wild-type-like CPM cells

(Fig. 20e), in agreement with what was seen in experiments with CHO-K1 cells (Fig. 19f). This suggests that

the number of events in both wild-type-like and S273D-like cells are equivalent.

3.2.8 Machine classification-based approach to validate the CPM model

Now that the CPM model captured the key features of CHO-K1 migration, the question was: could a machine

classifier be trained on simulated CPM cells belonging to the three simulated conditions, then recognize and

distinguish between cells expressing wild-type-paxillin, or one of the two phosphorylation mutants S273A and

S273D? In other words, can a classifier be trained with the dynamic features of simulated motile CPM cells to

characterize experimental CHO-K1 cells?

An artificial neural network with 3 fully-connected layers that incorporated a set of 4 metrics: mean instan-

taneous speed of the cell, mean alpha-value, directionality ratio and number of events representing change in

directionality was generated (see Methods). The neural network, or classifier, was trained using 10 of each wild-

type-like (LK = 5.77), S273A-like (LK = 7) and S273D-like (LK = 4.5) CPM cells. Its performance was then

tested on sixty (twenty of each type) randomly simulated CPM cells. The classifier demonstrated almost-perfect

accuracy.

The trained classifier was then applied to track 40 CHO-K1 cells expressing wild-type-paxillin-EGFP, paxillin-

S273A-EGFP mutant or paxillin-S273D-EGFP mutant (Fig. 21). In each category, the classifier identified the
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Figure 21: Machine classification of CHO-K1 cell tracks in three different condition. Tracks of 40 CHO-K1 cells
expressing (a) paxillin-S273A-EGFP mutant, (b) wild-type-paxillin-EGFP, or (c) paxillin-S273D-EGFP mutant.
Trajectories were colour-coded based on the classifier’s predictions with green corresponding to tracks classified
as cells expressing the S273A mutant, orange as wild-type and purple as the S273D mutant. Insets: boxplots
showing the distributions of the classifier’s predictions within each class. Tracking data from Rajah (2019) were
used to produce the figure.

majority of wild-type or mutant expressing cells accurately by labelling them according to the type of paxillin

they were expressing. The distribution of cell identification for each predicted condition was centred around the

matching condition (Fig. 21, insets). Interestingly, a distribution shift was observed between cells expressing the

S273A versus the S273D paxillin mutants. Specifically, the classifier identified most paxillin-S273D expressing

cells correctly, with few recognized as wild-type-paxillin-EGFP expressing cells and very few as paxillin-S273A

mutant expressing cells; the classifier did as well on the cells expressing the paxillin-S272A mutant: only one was

identified as paxillin-S273D cells.

These results thus show that the classifier is able to identify the three groups of CHO-K1 cells after training

only with simulated CPM cells. This supports our hypothesis that MMOs underlying the dynamics of wild-type-

paxillin-like CPM cells is key to producing expected migration patterns of CHO-K1 cells.

3.3 Discussion

The present study brought new light onto what defines cell migration in CHO-K1 cells by emphasizing the

importance of the presence of multiple timescales in governing the dynamics of Rac, Rho and paxillin. The

pre-existing 6D spatiotemporal Rac, Rho and paxillin model [B21,B23] was simplified and modified to develop a

reduced 4D spatiotemporal model to achieve this goal [B39]. The model described closely the dynamics of active

and inactive Rac, based on its interaction with other proteins including Rho and paxillin, but also included a
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phenomenological part comprised of two parameters that were turned into variables. These variables were the

maximum phosphorylation rate of paxillin B and the recovery rate of B to its resting state Br, given by kB . The

model incorporated, respectively, a fast and a slow positive and negative feedback from active Rac to paxillin

phosphorylation (Fig. 15a).

The presence of the three timescales in the 4D model produced, in the absence of diffusion, a special kind

of dynamic behaviour in the scaled concentration of Rac, namely, MMOs. MMOs combine slow large amplitude

oscillations with fast small amplitude oscillations to generate interesting behaviours that we showed here to be

key to CHO-K1 cell migration. By perturbing one key parameter of the 4D model, LK , representing how sensitive

paxillin phosphorylation is to active PAK (PAK-RacGTP) concentration, it was demonstrated that the model

can also produce ROs and non-oscillatory behaviour.

Having previously analyzed mathematically how MMOs are generated by the 4D model using slow-fast analysis

[B39], here an implementation of a Cellular Potts Model (CPM) was used to produce computer simulated cells.

The spatiotemporal dynamics of these CPM cells exhibited three migratory patterns that were heavily influenced

by not only the mutual inhibition of Rac and Rho, but also by the combination of slow large amplitude and

fast small amplitude oscillations within MMOs. This temporal pattern resulted in CPM cells that fell into three

classes with distinct modes of migration: directed with rare events of change in directionality, oscillatory with

frequent directionality changes, and inactive in which CPM cells were mostly stationary.

Unlike the inactive and directed CPM cells, oscillatory CPM cells displayed meandering migration track

caused by periodic bursts of activity with piece-wise directed motion interrupted by changes in directionality.

The combination of slow large amplitude and fast small amplitude oscillations in MMOs were responsible for

generating this behaviour. Stationary cells, on the other hand, displayed homogeneous scaled concentrations of

active and inactive Rac in their cytoplasm, but still attained a non-zero mean instantaneous speed due to energy

fluctuations in the Hamiltonian as seen in random motion. Finally, the motion of directed CPM cells was governed

by mostly prolonged large amplitude oscillations (with minimal impact from fast small amplitude oscillations).

Such migration pattern is similar to those produced by CPM cells whose underlying dynamics are governed by

wave-pinning only [B27] or by standard oscillatory behaviour [B35,B41]. In other words, MMOs allow cells to

simultaneously exhibit migratory and exploratory behaviours that standard non-MMOs or wave-pinning alone

cannot, and localized active Rac activity is essential for generating the three migration patterns.

The migratory patterns of the CPM cells were then compared with the two CHO-K1 cell migration patterns

detected in this study, namely, the active and inactive modes. Using a set of four metrics, including mean

instantaneous speed, mean α-value, directionality ratio and level of membrane activity, we then characterized

these two modes of migration and compared them to the ones generated by CPM cells. Our investigation revealed
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that the oscillatory and inactive CPM cells were consistent with the migratory patterns of active and inactive

CHO-K1 cells, respectively, while directed CPM cells were not consistent with any of the migratory patterns of

CHO-K1 cells. The former highlighted the importance of MMOs in CHO-K1 cell motility and suggested that

wave-pinning and standard oscillations are insufficient to produce the combination of directionality change and

stationarity seen in CHO-K1 cells. In addition, the results of the event detection method highlighted how similar

active CHO-K1 and oscillating CPM cells are in their migration patterns, with both cells types possessing periods

of directedness separated by events of change in direction. They also produced similar averaged α-values during

periods of directedness over all tracks. This showcases that the CPM offers a good model to study and understand

how CHO-K1 cell migration is regulated. CHO-K1 cells do not contain many ion channels and thus tend not to

be highly polarized and do not exhibit highly directed cell tracks. Therefore, it is not surprising that the directed

cell population is not observed [B42].

By altering the sensitivity of paxillin phosphorylation to active PAK concentration (i.e., by perturbing the

parameter LK), CPM cells successfully reproduced the motility patterns of CHO-K1 cells expressing one of the

two paxillin-mutants: S273A and S273D. To capture the former (latter), migratory behaviour of the CPM cells

were impaired (enhanced) by increasing (decreasing) LK . A comparison between mutant CPM and experimental

CHO-K1 cells was then performed using a machine classifier trained using the simulated wild-type and mutant

CPM cells. The classifier was successful in identifying CHO-K1 cells in each condition with high accuracy. This

further highlighted that the CPM model governed by MMOs is sufficient to capture CHO-K1 cell migration and

that perturbing adhesion dynamics reflected by the parameter LK in the CPM model changes its underlying

dynamics to either ROs or nonoscillatory behaviour. These latter temporal patterns are needed to capture the

mutant dynamics associated with S273 amino acid phosphorylation. The classifier results also suggested that

the limited number of CHO-K1 cells that were labelled differently than their actual condition may have some

underlying differences in their protein network that make them different. This is not unexpected since each CHO-

K1 cell expresses a different amount of the mutant paxillin protein and the cells also express endogenous paxillin

that can compensate for the mutant proteins. In fact, the paxillin-S273A mutant is known to have a higher

binding affinity for adhesions [B24]. With this longer binding time, it is less likely to be displaced by endogenous

paxillin, making the phosphomutant the dominant form of paxillin in adhesions. Thus the classifier almost

perfectly identified cells expressing S273A correctly. However, the paxillin-S273D mutant has a lower binding

affinity to adhesions than even the wild-type protein [B24], so it can easily be displaced by endogenous paxillin.

Endogenous paxillin can take on the form of the S273A or S273D mutant depending on its phosphorylation state

leading to some cells being correctly identified as wild-type or S273A even though the cells are expressing the

S273D phosphomimic.
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The motility of S273D-like CPM cells was purely governed by ROs, allowing these cells to exhibit longer

periods of directionality and to reach higher speeds. S273D-like CPM cells were very efficient in quickly changing

their directionality due to the absence of small amplitude oscillations in ROs seen in MMOs. Taking a closer look

at wild-type-like CPM cells, it was observed that they typically exhibited some brief random (diffusive) motions

prior to directionality change, unlike S273D-like CPM cells. This random motion during change in directionality

caused the discrepancy in the α-values that was not seen in CHO-K1 cells.

Small oscillations were visible in the time courses of the level of membrane activity in the active side of

simulated CPM cells (results not shown). Limitations in the duration of imaging of CHO-K1 cells (mostly linked

to the frequency at which these cells divide), however, did not allow to validate these observations on these cells.

Some time courses of the level of membrane activity obtained from CHO-K1 cells showed irregular oscillations,

but power spectra of these time series did not reveal anything (results not shown), because time series were

too short to obtain clean power spectra. To further examine this aspect of CHO-K1 cell motility, higher time

resolution imaging techniques are needed to investigate the dynamic of their protrusive activity.

Although CPMs are widely used to provide key insights into the mechanisms regulating cell motility, the

nature of noise used in the simulation (white noise) can be substituted by other types of noise for purposes of

enhancing the similarity with experimental biological systems. White noise does not allow for rare events or large

deviations from the baseline in terms of cell perimeter or area and as a consequence, might not be closely aligned

with the biological reality of cell motility. Coloured noise seems to provide a good alternative in some biological

system simulations [B43,B44] and its impacts could be extensively studied in the future.

The stochastic nature of the simulations can also be envisioned differently. Simulated CPM cells were very

distinct across the three conditions of wild-type versus mutant paxillin and showed significant differences in all

metrics, whereas CHO-K1 cells expressing wild-type paxillin and S273 mutants did not show a statistical difference

in DR measurement (results not shown). This may be due to the absence of ion channels, the variability in the

expression level of wild-type or mutant paxillin, the presence of endogenous paxillin or upregulation of other

motility-related proteins. The classification task may be able to identify this variability and correctly identify the

CHO-K1 cell behaviours. Future plans are to improve the simulation set-up by sampling the parameter LK from

a distribution instead of assigning each condition a single value. This would nevertheless require an estimate of

the distribution of LK that the parameters should be sampled from, but would produce more diverse phenotypes

within a given condition.

This study involved the development of tools that can continue to be developed for simulating cell migration

and varying regulation of migration through paxillin phosphorylation. The simulations accurately reproduced

the known experimental outcomes. Tools were also developed for automated 1) cell segmentation 2) cell track
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generation, 3) identification of cell direction changes, 4) measurements of cell speed, 5) determination of type

of cell movement (e.g. inactive, random, directed), 6) calculation of directionality ratios, 7) calculation of cell

speed, 8) calculation of cell membrane activity and 9) classification of cell tracks.

This study demonstrates the utility of a newly developed CPM for simulated cell migration movies, provides

a MMO model that can generate physiologically relevant cell migration tracks, and applies this model to further

understand cell migration of CHO-K1 cells and the role of paxillin S273 phosphorylation in regulating that

migration by characterizing the underlying dynamics. It uses both computational methods and mathematical

modelling to achieve this goal. The approaches applied can be further expanded to analyze motility patterns in

other cell types in different conditions and to include other phosphorylation pathways that regulate cell migration

through the regulation of adhesions, the actin-cytoskeleton and Rho-GTPases.

3.4 Methods

3.4.1 CHO-K1 cell growth and imaging

Wild-type Chinese Hamster Ovary-K1 (CHO-K1) cells were obtained from the American Type Culture Collection

(Cat. no.: CCL-61, ATCC). CHO-K1 cells stably expressing WT-paxillin–EGFP were obtained from the lab of

Dr Rick Horowitz (University of Virginia, Charlottesville, VA). Stable cell lines expressing paxillin-S273A-EGFP

or paxillin-S273D-EGFP were based on ATCC purchased CHO-K1 cells. CHO-K1 cells stably expressing G.

gallus (chicken) paxillin-EGFP were seeded onto fibronectin coated ibidi 8-well u-slide (Ibidi, Cat. no. 80826)

at a density of 2000 cells/cm2 and allowed to attach overnight. Before plating cells, the dishes were coated

with a freshly made 2 ug/mL solution of fibronectin diluted in phosphate buffered saline (PBS) from a stock

of 0.1% human plasma fibronectin (Sigma Aldrich, Cat. no. F-0895). The fibronectin coating was applied

overnight at 4oC. Dishes were then washed 3x with Phosphate Buffered Saline (PBS). The CHO-K1 cells were

grown in low glucose (1.0 g/L) Dulbecco’s modified Eagle’s medium (DMEM; Thermo Fisher Scientific, Cat. no.

11,885-084) supplemented with 10% fetal bovine serum (FBS; Thermo Fisher Scientific, Cat. no. 10082-147,

), 1% non-essential amino acids (Thermo Fisher Scientific, Cat. no. 11140-050, ), 25 mM 4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid (HEPES; Thermo Fisher Scientific, Cat. no. 15630-080, ) and 1% penicillin-

streptomycin (Thermo Fisher Scientific, Cat. no. 10378-016, ). Cells were maintained in 0.5 mg/mL Geneticin-

418 (G418; Thermo Fisher Scientific, Cat. no. 11811-031, ) antibiotic selection to maintain paxillin–EGFP

expression. After ensuring the cells were attached to the well surface, the samples were placed in a Chamlide

TC-L-Z003 stage top environmental control incubator (Live Cell Instrument, Seoul, South Korea) to maintain the

cells at 37oC and 5% CO2 while imaging. The cells were imaged with transmitted light and fluorescence emission
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of EGFP on an automated Zeiss AxioObserver microscope with a Plan-ApoChromat 20X/0.8 NA objective lens

and an Axiocam 506 monochrome CCD camera (Carl Zeiss, Jena, Germany, 2752 x 2208 pixels, 4.54 µm pixels).

Transmitted light images were acquired with the halide lamp set at 3V of power and a 50 ms camera exposure

time. Fluorescence images were collected using the X-Cite 120 LED light source (Excelitas, Toronto, Ontario,

Canada) and a FS10 filter cube (Carl Zeiss, Jena, Germany, Ex450-490 nm, Dichroic Filter FT510, Em515-565

nm). The light power on the sample was set to 1% excitation light intensity using 10% lamp power and a 10%

neutral density filter. Fluorescence images were collected with a 5 s exposure time. For protrusion measurements,

images were collected at 3-minute intervals for a total of 5 hours. The resulting image timeseries were saved as a

Zeiss propriety “czi” files that was later used to track the cells using a FIJI/ImageJ Manual tracking plugin. For

cell tracking experiments in Figure 19 baseline measurements of cell migration, transmitted light images were

acquired every minute for a total of 3 h and tracked using FIJI/ImageJ Manual tracking plugin.

3.4.2 Paxillin mutant CHO-K1 cell tracking data

Cell tracking data from previous work in the Brown laboratory was used for this study. Readers are referred

to the respective publications for the experimental details, image acquisition parameters and image analysis

protocols [B38,B45].

3.4.3 Framework of the simplified 4D mathematical model

We have previously extended a reaction-diffusion model, comprised of the two members of the Rho-family of

GTPases, Rac and Rho [B16], to include the adhesion protein paxillin [B21] and its effects on Rac, Rho and

adhesion dynamics, through the GIT-PIX-PAK complex. The model consisted of two main modules: the mutual

inhibition exerted by Rac and Rho on each other, as well as the positive feedback exerted by active Rac on paxillin

phosphorylation which, in turn, exerts positive feedback on Rac activation [B21]. The model was described by

a 6D system of partial differential equations (PDEs) dictating the dynamics of the two proteins Rac and Rho

scaled concentrations in their active (R, ρ) and inactive (Ri, ρi) forms, along with the scaled concentrations of

phosphorylated and unphosphorylated forms of paxillin (P, Pi) at serine 273 (S273) residue.

We subsequently simplified this model by making the following physiologically-based assumptions: (i) The

synthesis and degradation of Rac, Rho, and paxillin occur on a much slower timescale compared to their reaction

kinetics, implying that their total concentrations are conserved [B46–B48]. (ii) Rho dynamics occur at a faster

timescale compared to the rest of the model, allowing us to use quasi-steady state approximation to express

the scaled concentration of Rho as a function of Rac scaled concentration. (iii) The diffusion of active chemical

species are very similar [B49], allowing us to approximate the diffusion coefficient of these chemical species in
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their active/phosphorylated forms to be the same.

Taking these three assumptions into account produced a two-dimensional (2D) PDE model, given by

∂R

∂t
= (IR + I∗K)

(
Ln
ρ

Ln
ρ + ρn

)
(1−R− γK)− δRR+DR

∂2R

∂x2
(18a)

∂Ri

∂t
= − (IR + I∗K)

(
Ln
ρ

Ln
ρ + ρn

)
(1−R− γK) + δRR+DRi

∂2Ri

∂x2
, (18b)

where γ is the ratio of total PAK to total Rac concentrations, K the scaled concentration of active PAK, defined

by [PAK∗]
[PAKtot]

, DR and DRi
are the diffusion coefficients of R and Ri, respectively, IR+I∗K is the sum of the constant

basal rate (IR) and the GIT-PIX-PAK complex-dependent rate (I∗K) of R activation, δR is the inactivation rate

of R, Lρ is the half-maximal inhibition of R by ρ and n is the Hill coefficient. At steady state,

ρ =
IρL

n
R

IρLn
R + δρ (Ln

R + (R+ γK)
n
)
,

P =
B Kn

Ln
K+Kn

αPB
Kn

Ln
K+Kn + δP

, (19)

K =
αRR

(1 + kX [PIX]) (1 + αRR) + kGkX [GIT ][PIX]

1+kX [PIX]+ 3
1+R

and

I∗K = IK ×
(
1− 1

1.5 + kX [PIX] + kGkXkC [GIT ][PIX][Paxtot]P

)
,

where LK represents the half-maximum phosphorylation of paxillin at steady state, IK the maximum Rac ac-

tivation rate, αP the linearization coefficient between total scaled concentration of paxillin [Paxtot] and scaled

concentration of phosphorylated paxillin involved or not in the binding with the GIT-PIX-PAK complex, kX the

association constant for PIX-PAK binding, kG the association constant for GIT-PIX binding, kC the associa-

tion constant for Paxp-GIT binding, [GIT ] the concentration of GIT, [PIX] the concentration of PIX, αR the

affinity constant for PAK-RacGTP binding, δρ the Rho inactivation rate, and δP the paxillin dephosphorylation

rate [B21,B23]. Technical details of how the three assumptions were implemented to simplify the model can be

found in [B39].

This 2D model produces dynamics that are very similar to the original 6D model [B21], including bistability

with respect to maximum paxillin phosphorylation rate (B) in the absence of diffusion, as well as the wave-pinning

phenomenon, a spatiotemporal pattern with a stable front and back [B26,B27]. In this study, we demonstrated

that wave-pinning produces only directed motion that is not consistent with the migration patterns detected
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in CHO-K1 cells. To address this issue, we expanded the 2D model into a 4D semi-phenomenological model

(Fig. 15a) with three timescales: fast, slow and very slow, to allow for other patterns of activity to arise, including

mixed-mode oscillations (MMOs) that combine slow large amplitude with fast small amplitude oscillations within

one cycle. The fast variables in this new model are R and Ri, described by Eqs. (18a) and (18b), whereas the slow

and the very slow variables are the two parameters - turned into variables - the maximum paxillin phosphorylation

rate (B) and the recovery rate of B to its resting state Br = 10 (kB).

The resulting 4D model is given by

∂R

∂t
= (IR + I∗K)

(
Ln
ρ

Ln
ρ + ρn

)
(1−R− γK)− δRR+DR

∂2R

∂x2
(20a)

∂Ri

∂t
= − (IR + I∗K)

(
Ln
ρ

Ln
ρ + ρn

)
(1−R− γK) + δRR+DRi

∂2Ri

∂x2
(20b)

∂B

dt
= ϵ

(
1− γRR− kB(B −Br) +

1

η (B + ϵB)

)
(20c)

∂kB
∂t

= ϵL (γK −R) . (20d)

The R and Ri equations here are identical to Eqs. (16a) and (16b), respectively, where B was designed to vary

slowly compared to R and Ri, so that these fast variables can converge to their steady states before any substantial

variation in B can occur. This slow dynamics of B is reflected by the parameter 0 < ϵ ≪ 1. Mechanistically,

R exerts positive (negative) feedback on B on a fast (slow) timescale (Fig. 15a). The new recovery variable kB ,

on the other hand, causes the system to exhibit oscillations of varying amplitudes and periods. It possesses the

slowest timescale defined by ϵL, where 0 < ϵL ≪ ϵ ≪ 1. The combination of these timescales allows R to display

unusual dynamic properties at low values of B, manifested as MMOs in the absence of diffusion (Fig. 15b).

Descriptions and values of model parameters are given in Table S1. Detailed analysis of MMOs produced by the

model are available in [B39].

Here we make four important observations: (i) Although there is a positive feedback from phosphorylated

paxillin onto Rac activation, there is no direct feedback from B onto R. (ii) There is no diffusion in the last

two equations, implying that they are ordinary differential equations (ODEs). (iii) It is impossible for B to be

negative due to the fraction term in Eq. (20c) that acts as a barrier. (iv) The parameter LK has a direct effect

on paxillin phosphorylation (Fig. 15); it can increase or decrease the range of bistability generated by the 4D

model of Eqs. (20) in the absence of diffusion when LK is increased or decreased, respectively.
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3.4.4 Numerical simulations of the Cellular Potts Model

The development of the Cellular Potts Model (CPM) for computer-based simulations of migrating cells has pro-

vided an excellent tool to analyze cellular motility under varying conditions. This discrete grid-based simulation

technique involves the modelling of the extra-cellular matrix (ECM) as a mesh upon which simulated cells are

superimposed in the form of compartmentalized discrete objects that can evolve, grow or divide on the surface

of this discretized mesh. A Hamiltonian function H(F;λ) is typically designed to account for forces F, such

as pressure caused by actin filaments growth that push the membrane outward, peer contact, or external cues

depending on environment-related parameters with different weights defined by λ. This design is used in Monte

Carlo Markov Chain (MCMC)-like simulations to mimic cellular movements, membrane deformation or even cell

division, employing classically a stochastic energy minimization principle. In these simulations, the deformable

area (or volume, depending on the dimensionality of the simulations) representing the cell has no pre-determined

shape and movement, except for physical limitations such as elasticity limit and only responds to energy variation

and physical forces.

We used Morpheus, a highly flexible CPM simulator software [B50], to simulate a migrating cell. The software

allows users to simulate cells under different experimental conditions, parameters values and dynamics, and to

account for diffusive molecules in these cells. Our main motivation for choosing this particular CPM was its

multi-scale component and its applicability to models expressed as reaction-diffusion equations. The software

provides a tool to simulate multi-scale multicellular systems (coupling ODEs, PDEs and CPM in 2D or 3D grid),

and to solve the resulting models numerically using the stochastic simulation algorithm. The system described by

Eq. (20) requires this multi-scale numerical simulation method Morpheus to elucidate its underlying dynamics.

In our settings, we set the Hamiltonian function to be

H = λP (pσ,t − Ptarget)
2
+ λS (sσ,t − Starget)

2
+ λAct

(
Πu∈M(σ,t)Act (u)

)
,

where σ denotes the position of the cell at time t, the weights λP and λS describe the deformation resistance

with values tuned to allow the CPM cell to exhibit reasonable membrane elasticity properties [B51,B52], M(σ, t)

denotes the set of lattices that form the membrane of the cell and the Act function measures the amount of

actin activity at a specific location. In our general CPM implementation, we substituted actin activity by its

equivalent counterpart: the active Rac activity represented by R [B53]. All lattice sites outside the cell in

this implementation were assumed to have a nonzero, but very small (0 < ϵR ≪ 1) level of R; this makes

Rac activities in these lattice sites negligible. Based on that, the software updates membrane localization by

favouring membrane expansion in the regions where R is high, i.e. Rac activity is the highest, causing membrane
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protrusions. The level of R is each lattice site in the newly updated configuration of the cell is then dictated by

the software.

3.4.5 Cell tracking

CHO-K1 cells were manually tracked in FIJI/ImageJ (NIH, Bethesda, MD) using the manual tracking plugin

by clicking on the centre of the cell frame-by-frame for each motile cell in the image time series. The centre of

the CHO-K1 cell nucleus was used as the reference point for each cell. Important to note that no significant

difference was detected when tracking a CHO-K1 cell using its centre of nucleus or centre of cytoplasm or centre

of mass. User bias was minimized by having several authors track the CHO-K1 cells. Cell tracking data from

work that was previously published by the Brown laboratory were also used for these studies. Tracking data

for WT-paxillin-EGFP expressing CHO-K1 cells were from [B38] and CHO-K1 cells expressing EGFP paxillin

fusions of WT, S273A or S273D paxillin constructs were from [B45]. Simulated CPM cells were automatically

tracked by Morpheus. There are slight differences across studies in image acquisition methods (i.e. transmitted

light versus fluorescence imaging) and settings and cell tracking protocols. Details in the methods section refer

to new experiments conducted for these studies and tracked using the methods described above. The reader

is referred to the two aforementioned studies for the details of cell tracking for the appropriate figures. The

x and y position data for each CHO-K1 and CPM cell track was then exported to Python. Rose plots were

created by superimposing the starting position of each cell track on the origin (0, 0). The speed of each cell was

then calculated by taking the mean of the distance travelled between each time point over the imaging interval,

generating the metric ”instantaneous speed”. The data shown represents the mean ± standard error of the mean

(SEM) for all CHO-K1 and CPM cells analyzed.

3.4.6 Comparison framework

In the absence of diffusion, the new simplified model, given by Eqs. 20, exhibits not only bistability (and thus

wave-pinning in the presence of diffusion in R and Ri), but also relaxation oscillations (ROs) and mixed-mode

oscillations (MMOs) [B39]. Thus one would expect that these diverse temporal profiles will generate different

migration patterns in the simulated CPM as long as the dynamics are governed by Eqs. (20). To quantitatively

verify if such migration patterns of the CPM are similar to those exhibited by motile CHO-K1 cells, an analysis

framework was built to fully characterize and compare motile behaviours between simulated cell tracks and tracks

from experimental timelapse movies of cells. The framework compares migration patterns by focusing on speed,

persistence, directionality and membrane activity as defined below.
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3.4.6.1 Analysis of paths: metrics for quantifying cell movement Motile cells can exhibit random

motion in their migratory patterns. However, some cells may also display active migratory patterns that are not

due to biological noise. Quantitative approaches can be employed to distinguish between the two. In normal

diffusion, the mean-square displacement of a diffusing cell, defined by

MSD(t) = ||x(t)− x(0)||22,

where x(t) is the position of the cell’s centre of mass at time t, is proportional to t; this applies to a cell whose

motility is not driven by any concrete force but rather by the noisy fluctuations in the cell’s shape. However,

diffusion can be hindered or enhanced, making MSD proportional to some power of time tα, given by

MSD(t) = tα, (21)

with α < 1 (> 1) indicating hindered (enhanced) diffusion.

For directed motion, MSD becomes proportional to t2 [B54]. For this reason, it is more common to consider

the mean-square displacement through time in log-scale and use the slope of the curve (referred to hereafter as

”α-value”) as a metric to determine the level of directionality [B55,B56]. When α is close to 1, the motion is

random, when α > 1, the motion is said to be superdiffusive, indicating that there is an active force driving

directionality, and when α < 1, the motion is said to be subdiffusive or the cell is somehow confined. For an

actively migrating cell with a speed v, the trajectory of this cell will simultaneously exhibit both superdiffusive and

diffusive (random) motion because of the presence of biological noise. Here, the α-value was used to automatically

classify their activity.

As with every metric, MSD has its pitfalls. Specifically, a cell that follows a curved path while maintaining

an approximately constant distance from its starting point would have the same MSD as that of an immotile

cell. To resolve this issue, another metric called the directionality ratio (DR) that quantifies the straightness of

motion [B57,B58] was also used. It is defined to be the ratio between the straight-line length from the starting

point to the endpoint of the migration path, d, and the total length of the path along the trajectory, D, i.e.,

DR= d/D. According to this definition, it follows that a DR is roughly 1 for a straight trajectory and much

closer to 0 for an almost stationary trajectory. Directionality ratio has its own limitations because it may attain

small values for trajectories that exhibit piece-wise directed motion. In this case MSD of such trajectory should

be further assessed.
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3.4.6.2 Detection of changes in direction To characterize cell movement, a two-step approach was im-

plemented. In the first step, an approximate value of the prevailing α-value over time was computed by applying

log-log regression on the MSD and measuring the slope. This was done on every 20-min-long segment of the

recording for CHO-K1 cells (70 segments in total), or 50 time-step-long segments for CPM cells (350 segments

in total), and then averaged. A threshold value of α = 1.4 was found to be the most suitable in differentiating

between active or motile cells (when α > 1.4) versus those that are inactive or moving randomly (when α < 1.4).

Trajectories of active CHO-K1 cells are typically ”piece-wise directional”, i.e, they exhibit a sequence of

directed motions (referred to hereafter as ”periods of directedness”) separated by events at which cells abruptly

change directionality. To ensure an unbiased and self-consistent detection of all these possible changes in direction

or ”events”, we applied the second step in characterizing cell motion. In this step, a 60-min rolling window for

CHO-K1 cells and 50 time-steps for CPM cells was used to compute the DR of a portion of the trajectory;

the rolling window was then shifted by 1-min (one time-step) in the former (latter) and the computation was

repeated. During periods of directedness, DR values are high (essentially above 0.8). This means that when

the rolling window is overlapping with an event and is no longer purely covering one period of directedness, a

significant drop in DR occurs. A minimum DR is thus attained when half of the window is in the preceding

period of directness, relative to the event, while the other half is in the following period. By computing the DR

values and applying non-frequency-based smoothing [B59] of the DR time series, pronounced dips in times series

were detected. These dips represent the events of abrupt change in directionality.

Note that tracks of inactive cells also exhibit fluctuations in DR with spikes and dips that are quite frequent.

This is because DR does not include any normalization in terms of travelled distance or speed. Indeed, any Wiener

process would have a noisy DR time series that sometimes reaches high values. Fortunately, these inactive cells

also show very low α-values. Such feature can be further used to distinguish between active and inactive cells,

along with the computation of confidence interval for the DR. This was how we overcame the main difficulties in

the event detection task.

3.4.6.3 Cell protrusion and shape To investigate cell protrusion and shape in CHO-K1 and CPM cells,

”binary masks” of these two cell types were extracted [B60]. These masks indicate where the entire body of

the cell lies, allowing for visual identification of protrusions in the membrane and distortion or stretching in the

general shape of a CHO-K1 and CPM cell (Fig. 22).

Fiji/ImageJ was used to generate binary masks of CHO-K1 cells by applying a classic image-segmentation

framework. The cells appeared as fluorescence intensity on a dark background; pixel background intensity signal

was subtracted using the ”Subtract Background” plug-in with default values; the brightness and contrast were
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Figure 22: Image processing of motile cells. (a) A widefield fluorescence microscopy image of a CHO-K1 cell
expressing WT-paxillin-EGFP. Such images often have a light halo and noisy background, that are (b) filtered
to obtain a high signal-to-noise image, and then (c) thresholded to generate a binary image and detect the entire
cell body by applying the ”find-particle” Fiji/ImageJ plug-in, resulting in (d) a binary mask of the cell. For the
CPM cell, the binary masks in step d are generated directly without the need for the first three steps a-c because,
by definition, the simulated images have pixels with signal and pixels that have no signal.

adjusted to visualize the cells and images were thresholded to obtain black-and-white binary images using the

”Threshold” plug-in, with the default settings except that ”dark background” and ”Otsu” filter settings were

selected. The ”Find -particles” algorithm was then used to identify the near-circular objects in the binary images

with default settings except that ”include holes” and ”exclude on edges” were selected. The range of circularity

was set to [0.3− 1.0], minimum size to 1000 (in term of pixel count), allowing for CHO-K1 cell detection. With

CPM simulations, the exact lattices (or pixels) occupied by the cell were known, making the exact detection of

the cell body and generation of binary masks more straightforward. Binary masks were obtained for different

motility patterns detected in CHO-K1 and CPM cells.

From the binary masks of CHO-K1 and CPM cells, changes in cell area due to protrusions and retractions

in the membrane were then visually assessed. Here, we subtracted consecutive cell binary masks to count (in

pixels) the size of deformations from one image to the next, in order to measure the metric ”level of membrane

activity”. When a CHO-K1 or CPM cell moves forward, it is not sliding on the substrate, but rather dynamically

extending its edge by forming a protrusion and retracting its rear. This leads to a displacement, and the mask

subtraction is supposed to highlight these two sites of membrane deformation, i.e. the front and the rear. If

masks were to be realigned, the level of membrane activity would then be close to zero, especially during periods
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of directedness in which CHO-K1 or CPM cells roughly preserve their shapes during migration. That is why

masks were not recentred to align the two barycenters of a cell.

3.4.7 Statistical analysis

Statistical analysis was performed using PRISM software (GraphPad). Mann-Whitney tests were performed.

Statistical significance was accepted at *P < 10−1, **P < 10−2, ***P < 10−3 and ****P < 10−4. Linear

regression was performed using the standard method of ordinary least squares, and run on Python with its

implementation from the sklearn Library.

3.4.8 Machine classifier

We chose to implement our classifier as a neural network, using the simulated wildtype-like, S273A-like and

S273D-like CPM cells for training. As demonstrated below, the set of metrics already established in this study

was quite effective in capturing the differences between the three conditions of CHO-K1 cells. We therefore

chose to restrict ourselves to a very simplified architecture for the neural network; this allowed the algorithm

to use the metrics efficiently and adequately with limited processing, as well as facilitated the interpretation

of the results produced while reducing the risk of overfitting. The architecture consisted of 4 fully-connected

layers, with a rectified linear unit (ReLU) function. The network was given the following four metrics: mean

instantaneous speed of the cell, mean alpha-value, directionality ratio and number of events representing change

in directionality. It must be pointed out that the units of the speed are different between the CHO-K1 cells and

the CPM cells, whereas all other metrics share the same units. For this reason, we normalized the speed across

all samples and kept all the other metrics unchanged. Varying the classifier, the training set and the architecture

of the network, we always obtained an accuracy above 90 percent. With the adopted architecture of 3 layers,

ReLU activation function and a randomized choice of 10 CPM cells per condition (wildtype-like, S273A-like and

S273D-like) to form the training set, 95% was the minimum accuracy obtained, and it often reached 100 percent.

3.4.9 Software

The CPM was simulated using Morpheus (an open source software developed at the Technische Universität

Dresden [B50], available here). Its graphical user interface supports the entire workflow from model construction

and simulation to visualization, archiving and batch processing. Plotting and classification were done using

Python 3.8.12. For the machine classifier, we used the implementation of Multi-layer Perceptron classifier from

the Python library Scikit learn; it was trained using the default value setting except for the choice of the solver

(selected to be ‘lbfgs’), and the regularization parameter (set to be α = 10−5). The codes used for producing the
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simulations can be obtained online [B61].

Data availability statement

The datasets used and/or analysed during the current study are available from the corresponding author on

reasonable request.
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[B30] Barnhart, E. L., Allen, G. M., Jülicher, F. & Theriot, J. A. Bipedal locomotion in crawling cells. Biophysical

journal 98, 933–942 (2010).

[B31] Ehrengruber, M. U., Deranleau, D. A. & Coates, T. D. Shape oscillations of human neutrophil leukocytes:

characterization and relationship to cell motility. The Journal of experimental biology 199, 741–747 (1996).

[B32] Barnhart, E. L., Allard, J., Lou, S. S., Theriot, J. A. & Mogilner, A. Adhesion-dependent wave generation

in crawling cells. Current Biology 27, 27–38 (2017).

[B33] MacKay, L., Lehman, E. & Khadra, A. Deciphering the dynamics of lamellipodium in a fish keratocytes

model. Journal of Theoretical Biology 512, 110534 (2021).

[B34] Lavi, I., Piel, M., Lennon-Duménil, A.-M., Voituriez, R. & Gov, N. S. Deterministic patterns in cell

motility. Nature Physics 12, 1146–1152 (2016).

[B35] Holmes, W. R., Park, J., Levchenko, A. & Edelstein-Keshet, L. A mathematical model coupling polarity

signaling to cell adhesion explains diverse cell migration patterns. PLoS computational biology 13, e1005524

(2017).

[B36] Rens, E. G. & Edelstein-Keshet, L. Cellular tango: how extracellular matrix adhesion choreographs rac-rho

signaling and cell movement. Physical biology 18, 066005 (2021).

[B37] Marée, A. F., Grieneisen, V. A. & Hogeweg, P. The cellular potts model and biophysical properties of

cells, tissues and morphogenesis. In Single-cell-based models in biology and medicine, 107–136 (Springer,

2007).

[B38] Kiepas, A., Voorand, E., Mubaid, F., Siegel, P. M. & Brown, C. M. Optimizing live-cell fluorescence

imaging conditions to minimize phototoxicity. Journal of cell science 133, jcs242834 (2020).

[B39] Plazen, L. & Khadra, A. Excitable dynamics in a molecularly-explicit model of cell motility: Mixed-mode

oscillations and beyond. bioRxiv (2022).

[B40] Desroches, M. et al. Mixed-mode oscillations with multiple time scales. Siam Review 54, 211–288 (2012).

88



[B41] Holmes, W. R., Carlsson, A. E. & Edelstein-Keshet, L. Regimes of wave type patterning driven by

refractory actin feedback: transition from static polarization to dynamic wave behaviour. Physical biology

9, 046005 (2012).

[B42] Gamper, N., Stockand, J. D. & Shapiro, M. S. The use of chinese hamster ovary (cho) cells in the study

of ion channels. Journal of pharmacological and toxicological methods 51, 177–185 (2005).

[B43] Grove, M., Timbrell, L., Jolley, B., Polack, F. & Borg, J. M. The importance of noise colour in simulations

of evolutionary systems. Artificial Life 27, 164–182 (2022).

[B44] Spagnolo, B. et al. Noise effects in two different biological systems. The European Physical Journal B 69,

133–146 (2009).

[B45] Rajah, A. The paxillin serine 273 phosphorylation signaling pathway positively regulates cell migration,

persistence and protein dynamics. Master’s thesis, McGill University, Department of Physiology (2020).

[B46] Kovacic, H. N., Irani, K. & Goldschmidt-Clermont, P. J. Redox regulation of human rac1 stability by the

proteasome in human aortic endothelial cells. Journal of Biological Chemistry 276, 45856–45861 (2001).

[B47] Chen, Y. et al. Cullin mediates degradation of rhoa through evolutionarily conserved btb adaptors to

control actin cytoskeleton structure and cell movement. Molecular cell 35, 841–855 (2009).

[B48] Chay, K.-O., Park, S. S. & Mushinski, J. F. Linkage of caspase-mediated degradation of paxillin to

apoptosis in ba/f3 murine pro-b lymphocytes. Journal of Biological Chemistry 277, 14521–14529 (2002).

[B49] Das, S. et al. Single-molecule tracking of small gtpase rac1 uncovers spatial regulation of membrane

translocation and mechanism for polarized signaling. Proceedings of the National Academy of Sciences

112, E267–E276 (2015).

[B50] Starruß, J., de Back, W., Brusch, L. & Deutsch, A. Morpheus: a user-friendly modeling environment for

multiscale and multicellular systems biology. Bioinformatics 30, 1331–1332 (2014). URL https://doi.

org/10.1093/bioinformatics/btt772. http://oup.prod.sis.lan/bioinformatics/article-pdf/

30/9/1331/17343853/btt772.pdf.

[B51] Graner, F. & Glazier, J. A. Simulation of biological cell sorting using a two-dimensional extended potts

model. Physical Review Letters 69, 2013 – 2016 (1992).

[B52] Niculescu, I., Textor, J. & de Boer, R. J. Crawling and gliding: A computational model for shape-driven

cell migration. PLOS Computational Biology 11 (2015).

89

https://doi.org/10.1093/bioinformatics/btt772
https://doi.org/10.1093/bioinformatics/btt772
http://oup.prod.sis.lan/bioinformatics/article-pdf/30/9/1331/17343853/btt772.pdf
http://oup.prod.sis.lan/bioinformatics/article-pdf/30/9/1331/17343853/btt772.pdf


[B53] Waterman-Storer, C. M. & Salmon, E. Positive feedback interactions between microtubule and actin

dynamics during cell motility. Current opinion in cell biology 11, 61–67 (1999).

[B54] Karatzas, I. & Shreve, S. Brownian motion and stochastic calculus, vol. 113 (Springer Science & Business

Media, 2012).

[B55] Saxton, M. J. A biological interpretation of transient anomalous subdiffusion. i. qualitative model. Bio-

physical journal 92, 1178–1191 (2007).

[B56] Loosley, A. J., O’Brien, X. M., Reichner, J. S. & Tang, J. X. Describing directional cell migration with a

characteristic directionality time. PloS one 10, e0127425 (2015).

[B57] Roman, G. & Alexis, G. Quantitative and unbiased analysis of directional persistence in cell migration.

Nature Protocols 9, 1931–1943 (2014).
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4 Conclusion and futures directions

4.1 Limitations

4.1.1 Experimental Data

Acquisition and access to data of living CHO-K1 cells was essential for this study. The data enabled us to support

our statistical tests and to strengthen our analysis, by going back and forth between predictions of the model and

biological observations throughout the whole project. Nevertheless, difficulties to deal with the inherent nature

of the CHO-K1 cells must not be underestimated. Cells constantly go through a variety of biological processes

not related to motility. For example CHO-K1 cells divide every eighteen hours. Prior to mitosis, the cells grow

during this period. This, as a result, may interfere with the experimental observations being measured, such as

cell size (assumed to be constant); this is especially relevant when measuring the level of membrane activity. In

addition to that, actin cytoskeleton is known to be essential for mitosis [64] and experiences a tightly regulated

morphological transformation during cell division. Actin network also plays an important mitotic role in the

separation of centrosomes [65]. Indeed, for cytokinesis to occur, actin undergoes a reorganization to become part

of the contractile ring (pinching the plasma membrane inward, and forming what is called a cleavage furrow,

to separate the cell in half) [66]. In this situation, change in cell shape cannot be attributed only to motile

strengths. After mitosis, the two daughter cells experience a short phase of brief repulsion which rely on the

actin cytoskeleton of the daughters cells. This increases their speed and restrict the scope of movement. In our

situation, where we wanted to identify slow phenomena that take hours to capture, all these limitations may have

affect our analysis. To mitigate that, manual selection of cells that were imaged outside the period of mitosis

was performed to calculate the level of membrane activity. Doing so reduced the time and number of data that

can be used.

4.1.2 Model simplification

Simplification of the six-dimensional initial model tend to fade out the importance and role of the GIT-PIX-PAK

complex, as we linearized the relation between total amount of paxillin and the phosphorylated paxillin involved

or not in the binding with the GIT-PIX-PAK complex. If the model were to be re used in the context of a

study on binding affinity for GIT, PIX or PAK protein, the linearization coefficient αP should be recomputed

or estimated again. The linearization could be replaced by a more precise or exact function. Still, the focus of

our work was to showcase the important of paxillin phosphorylation temporal dynamic, which is what motivated

this simplification.
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4.2 Future directions

4.2.1 Paxillin phosphorylation sites

Phosphorylation of paxillin at serine 273 was studied using both models and data in this thesis. Still, paxillin pos-

sesses other phosphorylation cites. Similar to PAK1-mediated paxillin-S273 phosphorylation, FAKSrc-mediated

phosphorylation of paxillin at tyrosine 31 (Y31) and 118 (Y118) in the LD2 domain of paxillin is an important

regulator of cell migration and adhesion dynamics [44]. Mutations of these two sites can generate other type of

paxillin mutants that can be characterized with the metrics developed in this thesis. Following our work, models

of cell motility based on paxillin phosphorylation at tyrosine 31 or tyrosine 118 could be developed.

In addition, it is known that tyrosine and serine phosphorylation of paxillin, individually, serve to promote

the migratory phenotype. Work done by Zhang et al revealed that paxillin Y31 and Y118 phosphorylation pre-

cedes and is a requirement for S273 phosphorylation for lung airway smooth muscle contraction [67]. Signalling

pathways in cell motility are known to be redundant and complex. Integrating the effects of these three phos-

phorylation sites on paxillin in a single model could help untangle the interactions between them; it could also

help understand the scope and power of redundancy in these pathways and their limitations. The multiplicity

of phosphorylation sites that all promote dynamic adhesion and rapid migration is not yet understood. This

could also be studied experimentally as our collaborator (Brown Lab, McGill University) has recently succeeded

in targeting all three residues (S273, Y31 and Y118) to generate non-phosphorylatable paxillin mutants (also

known as CHO-K1 triple-knockout mutant cells).

4.2.2 Partial Differential Equations models

The purpose of this study was to decipher the dynamic of the protein-protein interactions involved in cell motil-

ity through mathematical modelling, by providing, among other findings, important results on the dynamical

properties of the system. We provided a complete analysis of the ODE system in terms of stability properties;

it answers the question of how small perturbations could evolve over time in an ordinary differential equation

system.

In the partial differential equations models, the previous results can be generalized to answer the question of

how the system would react to small homogeneous perturbations. Still, perturbation can now also occur locally.

In such scenarios, diffusion must be taken into account to understand the subsequent effect of a small localized

change in one of the concentrations can have. Local Perturbation Analysis (LPA) [68] is a framework that tracks

the approximate early evolution of an arbitrarily large perturbation of a homogeneous steady state and can

provide an approximation of the spatial stability properties of a PDE system. This general framework is based
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on the following three assumptions:

1. There are only two groups of chemical species: slow-diffusing and fast-diffusing.

2. Fast-diffusing species are homogeneously distributed.

3. Slow-diffusing species do not diffuse at all.

Details of the resulting system, bifurcation diagram and numerical resolutions of the model can be found in

the Supplementary Material of this thesis. In this analysis, we found that the 2D PDE model is homogeneously

stable in the bistable regime when B ≤ 2.7. The model then shows a transcritical bifurcation at B = 2.7

which makes the low global steady state become unstable. For B values above 2.7, perturbation of a very small

amplitude, starting from the basin of attraction of the low global steady state, can cause gain in Rac activation

to reach the upper stable branch.

Using Local Perturbation Analysis [68], we have thus shown that this simplified model possesses spatial

instability regions within which a small perturbation in protein concentration can arise and grow in amplitude,

allowing for the generation of, for example, a wave of active Rac protein. In other words, self-polarization of

the cell from the low steady state can happened in this regime. This provides an explanation for the ability of

cells in nature to develop a polarized profile without any artificially large break in symmetry. The study of the

impact that spatial instabilities can have on our slow-fast models could provide new information on cell motility

and remains to be done.

4.2.3 Patterns in the four-dimensional reaction-diffusion model

To our knowledge, only the wave-pinning phenomenon has been entirely analytically studied when it comes to

reaction-diffusion models in cell motility. Still, it is a very simple spatial pattern, and is apparently the only one

which can be observed and which stays stable in a model with two variables. No other pattern more complex

in the Rac-Rho subsystem were demonstrated, and different sources agree that any spatial formation would

eventually evolve to form the wave, or homogenize across the domain [61]. Nevertheless, our refined model

possesses different timescales, and two more variables that are not defusing. Adding this level of complexity

could lead to the emergence of complex spatial dynamics.

The PDE model could not be solved analytically here. We observed some spatial patterns through numerical

simulations, first on Matlab on a simple spatial domain in one dimension, and then on Morpheus in the more

complex domain which is the cell. The patterns produced matched our expectations but a more thorough analysis

could uncover new diffusive phenomena that we would have missed. It cannot be ensured that all of what the
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system can produce have been seen. Slow-fast analysis of the PDE model could lead to new discoveries and

deserve a thorough study. LPA can provide a way to approach this topic, as was done in the previous subsection.

4.3 Conclusions

The purpose of this study was to decipher the dynamics of the interactions between Rac and paxillin by building

simple models which would be tractable and would emphasize the role and importance of different timescales in

the time evolution of the activation/phosphorylation of these proteins. By the mean of mathematical modelling

and subsequent computer simulations, we have shown that a Cellular Potts Model algorithm based on our 4D

PDE model was capable of generating cells that are highly similar to living CH0-K1 cells. We developed metric

tools to characterize cell motility that served to support this claim and that could be generalized to other motility

studies. The model was shown to capture the effects of paxillin mutations as well, through one parameter related

to both adhesion dynamic and paxillin phosphorylation sensitivity to active PAK concentration. The simplicity

of the models, viewed in parallel with the complexity of the resulting dynamical time evolution, showed that

complex dynamical behaviours can emerge when non-linearity and separation of time scales are included, and

that these dynamics can consequently be responsible for rich and diverse motile patterns in migrating cells.
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Supplemental

Supplementary material of Polarity and mixed-mode oscillations may underlie different patterns
of cellular migration

Parameter Description Value Unit References
IR Basal Rac activation Rate 0.0035 s−1 [1]
δR Rac inactivation rate 0.025 s−1 [1]
Lρ Rho-dependent half-maximum inhibition of Rac 0.34 unitless [1]
Iρ Basal Rho activation Rate 0.016 s−1 [1]
δρ Rho inactivation rate 0.016 s−1 [1]
LR Rac-dependent half-maximum inhibition of Rho 0.34 unitless [1]
γ Ratio of total PAK to total Rac 0.3 unitless [1]
δP Paxillin dephosphorylation rate 0.00041 s−1 [1]
n Hill coefficient 4 unitless [1]
αP Linearization coefficient in paxillin activation 2.7 unitless [1]
LK Active PAK-dependent half-maximum activation of paxillin 5.77 unitless [1]
IK Additional Rac activation due to paxillin 0.009 s−1 [1]
kG Association constant for GIT-PIX binding 5.71 s−1 [1]

[GIT ] Concentration of GIT 0.11 µM [1]
kX Association constant for PIX-PAK binding 41.7 s−1 [1]

[PIX] Concentration of PIX 0.069 µM [1]
kC Association constant for Paxp-GIT binding 5 s−1 [1]

[Paxtot] Total concentration of paxillin 2.3 µM [1]
αR Affinity constant for PAK-RacGTP binding 15 unitless [1]
ϵ Time constant for B 0.01 s−1 Estimated
Br Resting state of B 10 unitless Estimated
kB Recovery rate of B back to its resting state 0.04 unitless Estimated
γR Strength of R feedback onto B 8.6956 s−1 Estimated

η, ϵB Parameters that guarantee the positivity of B 104, 10−4 unitless Estimated
ϵL Time constant of kB 10−5 s−1 Estimated
γK Source term 0.15 unitless Estimated

Table S1: Summary of parameter values.
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Figure S1: Membrane bound scaled active Rac concentration in simulated CPM cells defines the shapes of
(a) inactive, (b) oscillating, and (c) directed cells. Simulations are shown at three different time points: T1 = 50,
T2 = 150 and T3 = 250 time-steps. Scaled active Rac concentration is colour-coded according to the colour-bar
to the right.

Supplementary material of the thesis

The general framework of Local Perturbation Analysis is based on the following three assumptions

1. There are only two groups of chemical species: slow-diffusing and fast-diffusing.

2. Fast-diffusing species are homogeneously distributed.

3. Slow-diffusing species do not diffuse at all.

Diffusion coefficients are set to zero for all chemical species: to consider only one equation for the fast-
diffusing species is equivalent to assume an infinitely-fast diffusion, and two equations for the slow diffusing
species is equivalent to assume absence of diffusion. Working under theses hypothesis, one can approximate the
system’s response to a spatially local perturbation. We present here LPA applied to the 2D PDE system by
studying the following system

∂Rg

∂t
= f(Rg, Ri) (S1a)

∂Rl

∂t
= f(Rl, Ri) (S1b)

∂Ri

∂t
= −f(Rg, Ri) (S1c)

where f is the expression derived previously to characterize the variations in Rac activation: f(u, v) =

(IR + I∗K)
(

Ln
ρ

Ln
ρ+ρn

)
v− δRu, R

g is active Rac global concentration, Rl is active Rac local concentration and Ri is

inactive Rac concentration, which is fast-diffusing and therefore only global in the approximation. The resulting
bifurcation diagram is presented in Fig S2.

In the bistable regime (defined by 0.01 ≤ B ≤ 11.7), when B < 2.7 all global steady states are stable. The
variable Rg undergoes a transcritical bifurcation at approximately B ≈ 2.7, and become unstable for higher
values of B, while the Rl variable becomes stable. This means that a small perturbation won’t smooth out

2



Figure S2: Local Perturbation Analysis of the 2D PDE model. Evolution of a small localized perturbation in
active Rac. Global low steady state in active Rac is used as an initial condition and a small perturbation in
active Rac is added, staying in the basin of attraction of the low steady state. At B=1 (A), this perturbation
smooths out. At B=5 (B), the perturbation is able to gain activation, generating a region where Rac has now
reached its elevated steady state. This finally results in the wave-pined profile seen in Figure 11. (C) Bifurcation
diagram of the system S1 obtained on XPPAUT. Global Rac branch is in blue, local Rac branches in orange.

at B values above 2.7: the homogeneous low concentration for the global Rac variable is not a stable pattern
anymore. A small amplitude perturbation starting from the basin of attraction of the global low steady state
can cause gain in Rac activation to reach the upper stable branch. This is a diffusion-specific feature and can be
explained by the fact that high amount of inactive Rac (caused by the global active Rac concentration being at
low steady state) allows the local active Rac originating from the perturbation to strongly activate. Unstability
at homogeneous low concentration was firstly observed by English mathematician Alan Turing over seventy years
ago. This provides an explanation for the formation of patterns in nature, such as stripes and spots, originating
from a homogeneous uniform state slightly destabilized [2]. For this reason, the region of B ∈ [2.7; 11.7] is called
the Turing instability region.
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