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Abstract—Power substations generate a significant
“bursty impulse noise” that might interfere with wireless
technologies working in the vicinity of power equipment.
Existing wireless systems are not designed for such an
environment; we propose a Maximum a Posteriori (MAP)
receiver designed with Markov-Gaussian models in order
to mitigate the impact of impulsive noise in substations.
We study and compare different noise models implemented
in the receiver and we discuss the performance of the
receiver based on the characteristics of the impulsive noise.
Our proposed model can be used by a MAP receiver to
offer optimum performances from low signal to noise ratio
(SNR). When the communication is disturbed by impulsive
noise measured in the field, the MAP receiver still offers
better performance than when using other models, but
mainly at higher SNR.

I. INTRODUCTION

IEC 61850 standard integrates Substation Automa-
tion (SA) for Smart Grid [1], which requires installing
Intelligent Electrical Devices (IED) within substations.
Wireless technology remains a serious candidate for such
an application, since it allows an easy installation of
sensors and saves expensive retrofitting in substations.
However, the power equipment and electrical switching
operations generate a significant impulsive noise that
might disturb wireless communications. Impulsive noise
can be represented by a process switching between a
background noise and impulses. In a noise modeling
framework, the background noise is usually represented
by a Gaussian distribution, while the impulses can have
a different pattern, depending on the model. Wide-band
measurements in substations [2] show that impulses have
a damped oscillating waveform, which means that the
samples are correlated. In [3], we have seen that the
power spectrum of the impulses is significant enough to
be detected by wireless receivers, which motivates the
design of new receivers that use the memory of impulsive

noise models to enhance the communication.
The receiver can use the correlation between the

samples with an implemented statistical model in order
to estimate the transmitted bits; hence, models with
memory would improve the detector performances on
the receiver side. In our previous works [4], [5], we have
presented our impulsive noise model that is capable of
replicating the damped oscillation waveform within the
impulses. In the present paper, we propose to implement
a new less complex model, in terms of the number of
noise states, into a MAP receiver. Finally, we observe the
performances at the receiver output when the channel is
disturbed by substation impulsive noise.

We present in Section II some impulsive noise models
such as Bernoulli-Gaussian with memory and a new
version of our proposed Partitioned Markov chain. In
Section III, we present the design of a MAP optimum re-
ceiver for the Markov-Gaussian channel and we explain
how the detector calculates the output probabilities that
are used for the decoding. In Section IV, we present the
simulation conditions and we show the BER results for a
communication between a transmitter and a receiver that
is impaired by both synthetic and measured impulsive
noise.

II. IMPULSIVE NOISE MODELS

Among different models representing impulsive noise,
two different types emerge: memoryless models and
models with correlated samples. Middleton’s class-A
model (MCA) is used a lot in communications under
impulsive noise and optimum receivers using MCA
offer satisfying performances for average and strong
impulsive noise [6]. In [6] a simplification of the
model decreases the complexity in terms of calculations
by identifying the noise with two states: one for the
background noise and one for the impulse. Each state
is associated with a Gaussian distribution, where the



variance of the impulse is larger than the variance of
the background noise; such a simplification can be
interpreted as a Bernoulli-Gaussian model.

In this work, we will consider the Bernoulli-Gaussian
model with memory, which is a two-sate Markov-chain
(MC2), as a classic model for “bursty” impulsive noise.
We will compare the performances resulting in the use
of the MC2 model with our own configuration of a
Partitioned Markov chain (PMC).

A. Bernoulli-Gaussian

1) Memoryless model: The Bernoulli-Gaussian model
(BG) is certainly the simplest model that can represent
impulsive noise since it is a mixture of two zero-
mean Gaussian distributions ruled by a single Bernoulli
probability [7]. The probability density function (PDF)
of the amplitudes f(x|σ20, σ21, p) for this model is
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In general cases, one Gaussian distribution characterizes
the background noise and the other, the impulses. The
BG model assumes there is only one source of impulsive
noise that generates i.i.d. impulses for a one-sample
duration. According to (1), the model needs only three
parameters, which are the background noise variance σ20 ,
the impulses variance σ21 , and the Bernoulli probability
p to be in an impulsive state.

2) Two-states Markov chain: One implements
memory to the Bernoulli-Gaussian model by associating
a Gaussian distribution to each noise state of a
Markov chain and by choosing appropriate transition
probabilities between the states (Figure 1). The
Bernoulli-Gaussian model can generate impulses
with samples that follow a Gaussian distribution;
the variance of the impulse remains larger than the
one of the background noise. The duration of the
impulse is configured with the probability to remain
in the impulse state (state I in Figure 1). Different
methods for parameter estimation exist, such as the
method of moments and the speEM algorithm. We
prefer to calculate the parameters with the output of
our impulse detection method presented in [4]. Our
impulse detection method detects and separates the
impulses from the background noise, which allows
us to get information such as the impulse generation
rate, the average impulse duration, the variances of
both the background noise and the impulses. We
work with a Maximum-Likelihood (ML) approach

in the study of impulsive noise; in order to estimate
the variance of the impulses and the probability to
remain in the impulse state, we calculate respectively
the sample variance and the average duration of
the impulses. The transitions probabilities are derived
from the impulse rate and the average impulse durations:

p =
Number of impulse events

Number of background noise samples
(2)

q = 1− 1

Average number of samples per impulse
(3)

This model is actually a particular configuration of
the partitioned Markov chain [7], [8] since one state
represents the background noise (state G) and the other
represents the impulses (state I).

G:
N(0,σ0

2)
I:

N(0,σ1
2)

p

1-q

1-p q 

Fig. 1. Bernoulli-Gaussian model with memory.

B. Partitioned Markov chain

The partitioned Markov chain represents impulses
events for Power Line Communications (PLC) [8]. In
our previous works [4], we have modified the configu-
ration of [8] to design our own impulsive noise PMC
model. Using 19 states where one state represents the
background noise and the 18 other states represent the
impulses, we manage to generate an impulsive noise with
characteristics similar to those derived from measure-
ments in substations. The model associates a Gaussian
distribution N (µm, σ

2
m) to each state m, where µm and

σ2m are the mean and the variance respectively. Such a
model provides the correlation required for a wide band
representation of substation impulsive noise, since char-
acteristics such as impulse duration, sample distribution,
impulse amplitude and energy density spectrum of the
impulses are better replicated than with other models.
The parameters for our PMC model are estimated from
measurements by using a Fuzzy C-means algorithm [5].
The proposed configuration of PMC provide a very
accurate output to represent impulsive noise in substa-
tions; however, the 19 Gaussian distributions make the
model very complex for parameter estimation and for an
implementation in a receiver.



TABLE I
TRANSITION MATRIX OF THE PROPOSED PARTITIONED MARKOV

CHAIN WITH 6 IMPULSIVE STATES PMC-6

T =



p00 0 0 p01 0 0 p01

p10 pf q10 0 0 0 0

p10 0 pf q10 0 0 0

p10 0 0 pf q10 0 0

p10 0 0 0 pf q10 0

p10 0 0 0 0 pf q10

p10 q10 0 0 0 0 pf

 ,

with q10 = 1− pf − p10 and p00 = 1− 2× p01.

For a simpler implementation of the model into a
receiver, we propose to lighten the PMC model by
representing the impulses with 6 states instead of 18. We
call this new version PMC6. The transition matrix of the
PMC6 model is configured as indicated in Table I. The
state 0 represents the background noise and the states
1, 2..., 6 represent the impulse. The transition from the
background noise to the impulses is represented by
the probability p01 which corresponds to the half of
the probability p used in the Bernoulli-Gaussian model
(Figure 1). p10 is the probability to leave any state of
the impulse and to return to the background noise state
(state 0). For simplifying our model, we consider that
any state of an impulse has the same probability to
return to state 0, which is equivalent to the probability
1 − q in MC2 model (Figure 1). The probability pf
to remain in a state of an impulse characterizes the
oscillation frequency that is observed in an impulse [4].
The equation used to calculate the probability pf are
explained in (4):

pf = 1− 6
f

Fs
(4)

with f the oscillation frequency in MHz and Fs the
sampling frequency used by the oscilloscope. Due to our
measurement setup, we choose f = 700 MHz and Fs =
5 GS/s. We provide all the parameter values in Section
IV.

III. MAP RECEIVER

In [9], the authors acknowledge that if the noise was
correlated, the proposed receiver using the Middleton
class-A model would not be optimum and only a re-
ceiver considering the correlation could reach optimum
performances. We propose to use a MAP receiver that
is composed of three Soft-Input Soft-Output (SISO)
blocks: a detector, a de-mapper and a decoder, and
which produces decoded data at the bit level (Figure 2).
Such a receiver is designed for communications under
“bursty impulsive noise” as we can find in Power Line

Communications [10], [11]. The system consists of a
communication between a transmitter and a receiver
where the transmission is corrupted by correlated im-
pulsive noise. The system uses a BPSK mapping. Before
going any further, we define the following terms:

• ck: Transmitted symbol at time k
• zk: Noise component at time k
• sk: Noise state at instant k
• K: Codeword length
• RK

1 : Received sequence of length K
• rk: Received symbol at time k
• bi,k: ith bit of the symbol ck
• b̂i,k: Estimation of the transmitted bit bi,k

SISO 
detector

SISO de-
mapper

SISO 
decoder

Impulsive 
noise

P(ck|R1
K) P(bi,k=b|R1

K)

bi,k 
^ck

zk

rk

MAP Optimal Receiver

Fig. 2. MAP optimal receiver.

The system is represented by equation (5); at time slot
k.

rk = ck + zk , k ∈ {1, 2, ...,K}. (5)

The detector calculates the a-posteriori probability
p(ck|RK

1 ) that the symbol ck is emitted based on the
observation of the received sequence RK

1 by using the
BCJR algorithm (Bahl, Cocke, Jelinek, Raviv) [12]. We
present below the terms used in the algorithm :

Fk(ck, sk, sk+1) = p(sk+1|sk)×
p(zk = rk − ck|sk) (6)

αk+1(sk+1) =
∑
sk,ck

Fk(ck, sk, sk+1)

×p(ck)αk(sk) (7)

βk(sk) =
∑

sk+1,ck

Fk(ck, sk, sk+1)

×p(ck)βk+1(sk+1) (8)

and the completion stage

Uk(ck) =
∑

sk,sk+1

αk(sk)βk+1(sk+1)Fk(ck, sk, sk+1)

(9)
αk(sk) and βk(sk) are referred to as the forward and
backward filters and Fk(ck, sk, sk+1) represents the
branch metric of the trellis diagram. We initialize the
forward filter with probabilities Pm to be in each state



and the backward filter with 1:

α1(m) = Pm , m ∈ {0, 1, ...6}
βK+1(m) = 1 , m ∈ {0, 1, ...6}

Moreover, in our configuration of the PMC6 model,

p(zk = rk − ck|sk = m) =
1

σm
√
2π
e
− (rk−ck−µm)2

2σ2m ,

with m = 0, 1, ...6. The probability p(ck|RK
1 ) is

proportional to p(ck)Uk(ck) by a positive coefficient
that is irrelevant for the detection process [11], [13].
From the same equation system, we can derive the
probability p(sk|RK

1 ) ∝ αk(sk)βk(sk) that the state sk
is the actual channel state at the moment k.

Using the transition matrix of our model, the detector
can calculate the metrics required for the decoding. To
evaluate the relevance of our model implementation into
the MAP receiver, we compare the output of the receiver
for three cases: for a classic AWGN receiver, when the
detector uses MC2 model and when the detector uses
our proposed PMC6 model.

IV. RESULTS

A. Simulated noise

We simulate an information transmission from a trans-
mitter to a receiver where the channel is disturbed by
an additive impulsive noise generated with our PMC6
model. We compare the received Bit-Error Rate (BER)
when the receiver considers the noise being Gaussian,
MC2 and PMC6. We simulate the transmission over
20 millions of samples and we use an LDPC en-
coder/decoder configured with the DVB-S2 standard,
with R=1/2 and the codeword length is 64800 bits.

The parameters of the noise in the channel are shown
in Table II; the parameters of the models MC2 and
PMC6, that are used in the detector block, are estimated
with our impulse detection method [4] applied to the
synthetic impulsive noise. We choose a high memory
configuration of the model because it provides the best
conditions to observe that the receiver manages to mit-
igate correlated impulsive noise [10]. We increase the
memory of the model by representing impulses with long
durations. The probability to return to the background
noise p10 in Table I characterizes the impulse duration
and then the memory of the model.
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Fig. 3. BER for Optimum receiver designed with impulsive noise
models; for PMC6, p01 = 1.271 × 10−4, p10 = 4.689 × 10−4 and
pf = 0.16.

We observe that the receiver offers close-optimum
performances for noise generated with the PMC6 model
(Figure 3), since the PMC6 parameters used for the
receiver are not exactly the same as the parameters
used to generate the channel noise with PMC6 model.
We have used Gaussian parameters estimated from our
measurements (Table II); however, we have generated
10 times more impulses and for an impulse duration 10
times longer (probabilities shown in Figure 3). Hence,
we observe that the more impulsive the noise, the more
efficient the MAP receiver becomes with PMC6. The
receiver using PMC6, starts having a lower BER at low
SNR (Figure 3).

B. Measured noise

We decide now to test the MAP receiver with mea-
sured noise from an existing substation owned by Hydro-
Québec. We have performed many impulsive noise
measurements in wide band [2], [3] and with a mea-
surement setup that is composed of a bandpass filter
and a LNA [2], we focus on the 700-800 MHz band.
As we can observe in Figure 4, impulsive noise in
the substation is composed of damped oscillations. We
simulate the communication and add the measured noise
to the received signal over 20 millions of samples.
Figure 5 shows that the receiver manages to mitigate
the impact of impulsive noise. Impulsive noise measured
in substation is composed of shorter impulses which
makes the detection of the impulses more difficult,
but not impossible. We still obtain better performances
than using a receiver implemented with a Bernoulli-
Gaussian model with memory. According to figures 3
and 5, smaller impulses make the detector less efficient
for models with memory and the receiver starts being



TABLE II
PARAMETERS OF THE GAUSSIAN DISTRIBUTIONS FOR PMC6 MODEL GENERATING THE CHANNEL NOISE.

.
state m 0 1 2 3 4 5 6
µm 0 0.0105 0.0475 0.0105 -0.0114 -0.0494 -0.0114
σi 0.00433 0.0075 0.0198 0.0075 0.0079 0.0195 0.0079
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Fig. 4. Impulsive noise measured in a 735 kV substation own by
Hydro-Québec, Band: 700 MHz - 800 MHz, Sampling frequency =
5 GHz.
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Fig. 5. BER for MAP receivers under measured impulsive noise.

efficient at higher SNR than with synthetic noise. We
can explain this observation by remarking that shorter
impulses provide parameters that decrease the memory
of the model. In [10] the authors have noticed that when
the channel has more memory the receiver performs
better.

V. CONCLUSION

A MAP receiver that uses our PMC6 model can miti-
gate the impact of correlated impulsive noise. Although
the model is more complex in terms of configuration and
parameters than with MC2 model, the receiver manages
to calculate the probabilities useful to the detector and for
specific scenarios of impulsive noise. The longer the im-
pulses last and the more performing the receiver becomes
when using our PMC6 model. The use of the model in
the receiver will depend on the noise characteristics. We
have verified that the receiver can work with different
models with memory by using measured impulsive noise
from an existing substation for the 700 MHz - 800 MHz
band. The PMC6 model can be easily used by the MAP
receiver to mitigate the impact of impulsive noise in
substation and the performances will increase with the
impulse duration.

As future work, we recommend to study the impulsive
noise characteristics to estimate the number of Markov
states required to offer the best performances at the
receiver. For a given sequence of noise samples, we
would be able to determine the optimum model based on
the duration, the rate and the variance of the impulses.
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