
The Fine-Grained Complexity of

Constraint Satisfaction Problems

László Egri

Doctor of Philosophy

School of Computer Science

McGill University, Montréal

December, 2012

A thesis submitted to the Faculty of Graduate Studies and

Research in partial fulfillment of the requirements of the degree

of Ph.D.

Copyright c©László Egri 2012.

Abstract

Constraint satisfaction problems (CSPs) provide a unified framework for

studying a wide variety of computational problems naturally arising in com-

binatorics, artificial intelligence and database theory. To any finite domain

D and any constraint language Γ (a finite set of relations over D), we as-

sociate the constraint satisfaction problem CSP(Γ): an instance of CSP(Γ)

consists of a list of variables x1, x2, . . . , xn and a list of constraints of the

form “(x7, x2, ..., x5) ∈ R” for some relation R in Γ. The goal is to determine

whether the variables can be assigned values in D such that all constraints

are simultaneously satisfied. The computational complexity of CSP(Γ) is

entirely determined by the structure of the constraint language Γ and, thus,

one wishes to identify classes of Γ such that CSP(Γ) belongs to a particular

complexity class.

In recent years, combined logical and algebraic approaches to understand

the complexity of CSPs within the complexity class P have been especially

fruitful. In particular, precise algebraic conditions on Γ have been conjec-

tured to be sufficient and necessary for the membership of CSP(Γ) in the

i

complexity classes L and NL (under standard complexity theoretic assump-

tions, e.g. L 6= NL). These algebraic conditions are known to be necessary,

and from the algorithmic side, a promising body of evidence is fast-growing.

The main tools to establish membership of CSPs in L and NL are the logic

programming fragments symmetric and linear Datalog, respectively.

This thesis is centered around the above algebraic conjecture for CSPs in

L, and most of the technical work is devoted to establishing the membership

of several large classes of CSPs in L. Among other results, we characterize

all graphs for which the list homomorphism problem is in L, a well-studied

and natural class of CSPs. We also extend this result to obtain a complete

characterization of the complexity of the list homomorphism for graphs. We

develop new tools (dualities for symmetric Datalog) to show membership of

CSPs in L, prove an L − NL dichotomy for the list homomorphism problem

for oriented paths, provide results about the structure and polymorphisms

of Maltsev digraphs, and also contribute to the conjecture of Dalmau that

every CSP in NL is in fact in linear Datalog.

ii

Résumé

Les problèmes de satisfaction de contraintes (ou CSP) forment un cadre

particulièrement riche permettant de formaliser de façon uniforme un grand

nombre de problèmes algorithmiques tirés de l’optimisation combinatoire, de

l’intelligence artificielle et de la théorie des bases de données. À chaque do-

maine D et chaque langage de contraintes Γ (i.e. un ensemble de relations

sur D), on associe le problème CSP(Γ) suivant. Une instance du problème

est constituée d’une liste de variables x1, . . . , xn et d’une liste de contraintes

de la forme (x7, x2, . . . , x5) ∈ R, où R ∈ Γ. On cherche à déterminer si des

valeurs de D peuvent être assignées aux variables de telle sorte que les con-

traintes soient toutes satisfaites simultanément. La complexité algorithmique

de CSP(Γ) est entièrement fonction de la structure du langage de contraintes

Γ et on cherche alors à identifier des classes de contraintes pour lesquelles

CSP(Γ) appartient à une classe de complexité spécifique.

Récemment, la combinaison des approches logique et algébrique a porté

fruits dans la compréhension de la complexité des CSP à l’intérieur de la

classe P. En particulier, on a conjecturé des conditions algébriques nécessaires

iii

et suffisantes précises pour l’appartenance de CSP(Γ) dans les classes L et

NL (sous les hypothèses habituelles en théorie de la complexité, e.g. L 6= NL).

Ces conditions algébriques sont sues être nécessaires, et d’un point de vue

algorithmique, les indications en faveur du résultat s’accumulent rapidement.

Les outils principaux pour établir l’appartenance d’un CSP à L ou NL sont

respectivement les fragments “symmetric Datalog” et “linear Datalog” en

programmation logique.

Notre thèse est centrée sur la conjecture algébrique ci-haut mentionnée

pour les CSP dans L, et la majeure partie du travail technique est dédiée à

montrer l’appartenance de plusieurs grandes familles de CSP dans L. Entre

autres résultats, nous caractérisons tous les graphes pour lesquels le problème

de “list homomorphism” est dans L, une famille naturelle et bien étudiée

de CSP. Nous étendons aussi ce résultat pour obtenir une caractérisation

complète de la question pour les graphes. Nous développons de nouveaux

outils (les dualités pour “symmetric Datalog”) pour montrer l’appartenance

de CSP dans L, nous prouvons une dichotomie L-NL pour les problèmes de

“list homomorphism” pour les chemins orientés, nous donnons des résultats

sur la structure et les polymorphismes des digraphes de Maltsev, et nous

contribuons à la conjecture de Dalmau à l’effet que chaque CSP dans NL est

en fait dans “linear Datalog”.

iv

Acknowledgments

First and foremost, I wish to express my deepest gratitude to my supervisor

Denis Thérien. I am grateful to Denis for getting me interested in complexity

theory during his two fantastic courses and giving me the opportunity to

work in this field. I also thank him for inviting me to his terrific Barbados

workshops, and the financial support he provided me.

I am particularly grateful to Benoit Larose for letting me benefit from his

expertise on constraint satisfaction problems, and for many fruitful discus-

sions and stimulating collaborations. Further thanks go to my other collab-

orators: Catarina Carvalho, Marcel Jackson, Andrei Krokhin, Todd Niven,

and Pascal Tesson. I thank Catarina Carvalho (twice), Martin Grohe, and

Nicole Schweikardt for hosting me at their universities.

Special thanks go to Anil Ada for constituting the other half of the com-

plexity lab from the very beginnings. I also thank Arkadev Chattopadhyay

for being part of the fun working environment for the first year of my PhD.

I also want to thank NSERC and FQRNT for their financial support.

Finally, I thank my parents for their encouragement, and Minori Yokota

v

for her patient support.

vi

Contents

1 Introduction 1

1.1 The Constraint Satisfaction Problem 1

1.2 The Dichotomy Conjecture . 2

1.3 Fine-Grained Complexity of CSPs 3

1.3.1 CSPs and Datalog Fragments 3

1.3.2 A Few Words on Tame Congruence Theory 4

1.3.3 A Note on Conjectures Related to Symmetric and Lin-

ear Datalog . 5

1.3.4 Summary of Contributions and Thesis Structure 6

2 Background 8

2.1 The CSP and Examples . 8

2.2 Basic Notions . 11

2.2.1 Relational Structures, Homomorphisms 11

2.2.2 Tuple Structures . 12

2.2.3 Algebra . 12

vii

2.2.4 Datalog . 13

2.2.5 Defining CSPs . 16

2.2.6 Obstruction Sets . 16

2.2.7 Graph Theory . 17

3 Dualities for Symmetric Datalog 19

3.1 Introduction . 19

3.2 Preliminaries . 21

3.2.1 Path Decompositions and Derivations 21

3.2.2 Canonical Programs 22

3.2.3 The Main Goal . 22

3.2.4 The Zigzag Operator 23

3.3 Two Dualities for Symmetric Datalog 24

3.3.1 Symmetric Bounded Pathwidth Duality 25

3.3.2 Piecewise Symmetric Bounded Pathwidth Duality . . . 28

3.4 Applications . 35

3.4.1 Datalog + Maltsev ⇒ Symmetric Datalog 35

3.4.2 A class of oriented paths for which the CSP is in L,

and a class for which the CSP is NL-complete 37

4 The Complexity of the List Homomorphism Problem for

Graphs 46

4.1 Introduction . 46

4.2 Preliminaries . 48

viii

4.2.1 Graphs and relational structures 48

4.2.2 Algebra . 49

4.3 Main results and proof outline 51

4.4 Combinatorial graph characterisations 54

4.4.1 The reflexive graphs in F 55

4.4.2 The irreflexive graphs in F 56

4.4.3 The case of general graphs 61

4.5 Algebraic results . 63

4.5.1 Implication (4) ⇒ (1) in Theorem 48 66

4.6 Symmetric Datalog constructions 74

4.6.1 Composing symmetric Datalog programs 74

4.6.2 Symmetric programs for the list-homomorphism prob-

lem for graphs in F . 81

4.7 List homomorphism problems definable in first-order logic . . 89

5 A Dichotomy for the List Homomorphism Problem for Ori-

ented Paths 91

5.1 Introduction . 91

5.2 The L-NL Dichotomy . 91

5.2.1 NL-hardness . 91

5.2.2 Membership in L, NL 94

5.3 Logspace Preserving Constructions 98

6 On Maltsev Digraphs and CSPs in L 102

ix

6.1 Introduction . 102

6.2 Retracts of Maltsev digraphs 103

6.3 Characterisations, Polymorphisms and Algorithms 108

6.3.1 Rectangular Characterisations and Other Polymorphisms108

6.4 Constructing Maltsev DAGs 115

6.4.1 Proof of Theorem 113 116

6.5 Some Applications to the Constraint Satisfaction Problem . . 123

7 On CSPs in NL 125

7.1 Introduction . 125

7.2 Definitions . 126

7.2.1 Examples . 128

7.3 Main Results . 129

8 Conclusions and Open Problems 136

x

Chapter 1

Introduction

1.1 The Constraint Satisfaction Problem

Constraint satisfaction problems (CSP) constitute a unifying framework to

study various computational problems [32, 60, 71, 72, 67, 80, 75]. More

specifically, CSPs naturally arise in artificial intelligence, database theory,

graph theory, etc. Loosely speaking, an instance of a CSP consists of a list

of variables and a set of constraints, each specified by an ordered tuple of

variables and a constraint relation over some specified domain. The goal is

then to determine whether variables can be assigned domain values such that

all constraints are simultaneously satisfied.

The CSP is NP-complete, and therefore it is widely believed that no

efficient (i.e. polynomial-time) general-purpose algorithm exists to solve it.

However, in many practical applications the instances that arise have a spe-

1

1.2 The Dichotomy Conjecture

cial form that allow for efficient heuristics, see for example [15, 25, 65, 76].

Another way to obtain polynomial time solvable CSPs is not by making

assumptions about the form of the input instances, but rather, by restricting

the type of constraints that are allowed. That is, a finite set of finite con-

straint relations Γ is fixed (also called the template of the CSP), and then

an instance is specified as before except that all constraints have the form

(xi1 , . . . , xik) ∈ R for some R ∈ Γ. This model is referred to as nonuniform

CSP, and when Γ is given, it is denoted by CSP(Γ). Examples of nonuniform

CSPs include k-Sat, Horn-3Sat, Graph H-Coloring, and many others.

This thesis is focused on the nonuniform CSP, and therefore from now on

when we say CSP, we always mean nonuniform CSP.

Much recent effort has focused on the complexity of the (nonuniform)

CSP, i.e. to make precise statements about the complexity of CSP(Γ) given

only Γ. In what follows, we outline the main directions and specify our goals.

1.2 The Dichotomy Conjecture

The well-known CSP dichotomy conjecture of Feder and Vardi [43] fore-

casts that every CSP is either solvable in polynomial time (tractable) or

NP-complete, and progress toward this conjecture has been steady during

the last fifteen years. An early breakthrough in the development occurred

when Jeavons, Cohen and Gyssens [57] announced an algebraic approach

to the problem. Their work, refined later by Bulatov, Jeavons and Krokhin

2

1.2 The Dichotomy Conjecture

[17, 15], showed that the complexity of a non-uniform CSP is fully determined

by a set of operations, the polymorphisms of the template of the CSP. This

algebraic approach allowed to conjecture the precise boundary between NP-

complete and tractable problems [17], and led to results unreachable before.

For example, using the algebraic approach, Bulatov proved the dichotomy

conjecture for CSPs with domain size 3 [13], and for conservative CSPs [16].

Another important application of the algebraic approach is a theorem of

Barto, Kozik and Niven [8, 9] stating that the dichotomy conjecture holds

for digraphs with no sources and no sinks.

A different, descriptive complexity theoretic approach consists in classify-

ing the CSPs according to the sophistication of the logical apparatus required

to define the set of negative instances of the given CSP. (Why we work with

the negative instances of a CSP is a technicality that will be explained in the

next chapter, Subsection 2.2.5; the set of negative instances of a CSP will be

denoted by co-CSP.) It was noted early on that when the negative instances

of a CSP are definable in the database-inspired logic programming language

Datalog then the CSP lies in polynomial time1 (P) [43], and this provides a

unifying explanation for a number of (but not all) tractable cases.

There are two known major “islands” of tractable CSPs. Problems in the

first class are solvable using the few subpowers algorithm [55, 29]. Problems in

the other class are solvable using local consistency checking, which is definitely

the widest known and most natural algorithm for solving CSPs. In fact,

1This is because a Datalog program can be evaluated in polynomial time.

3

1.3 Fine-Grained Complexity of CSPs

these CSPs are precisely the ones whose negative instances can be defined

in Datalog. Understanding the applicability of local consistency checking

was considered as an important step towards establishing the dichotomy

conjecture, and this was recently achieved by Barto and Kozik [6]. Some

believe that the dichotomy conjecture might be settled in the near future.

1.3 Fine-Grained Complexity of CSPs

1.3.1 CSPs and Datalog Fragments

From a complexity-theoretic perspective, the classification of CSP(Γ) as in

P or being NP-complete is rather coarse and therefore somewhat unsatis-

factory. Consequently, understanding the fine-grained complexity of CSPs

gained considerable attention during the last few years. Ultimately, one

would like to know the precise complexity of a CSP lying in P, i.e. to identify

a “standard” complexity class for which a given CSP is complete. Towards

this, it was established that Schaefer’s P− NP dichotomy for Boolean CSPs

[78] can indeed be refined: each CSP over the Boolean domain is either de-

finable in first order logic, or complete for one of the classes L, NL, ⊕L, P or

NP under AC0-reductions [3]. The question whether some form of the above

fine-grained classification extends to non-Boolean domains is rather natural.

Strong connections between expressibility in symmetric Datalog and lin-

ear Datalog, and CSP solvability in logarithmic space (L) and nondetermin-

istic logspace (NL), respectively, have been indicated in [38] and [28]. These

4

1.3 Fine-Grained Complexity of CSPs

papers also conjectured that a CSP is in L if and only if its negative instances

are expressible in symmetric Datalog, and it is in NL if and only if its negative

instances are expressible in linear Datalog. Note that a symmetric (linear)

Datalog program can be evaluated in L (NL), and therefore only one direction

of the above conjectures has to be proven. An important evidence that the

converse might also hold in the case of symmetric Datalog is provided by

[38], which shows that over the Boolean domain, the negative instances of

a CSP are expressible in symmetric Datalog if and only if the CSP is in L,

assuming that L 6= NL and L 6= ⊕L.2 In fact, the two most important tools to

study CSPs whose complexity is below P are symmetric Datalog and linear

Datalog.

1.3.2 A Few Words on Tame Congruence Theory

As mentioned above, the polymorphisms of the template Γ of a CSP com-

pletely determine the complexity of CSP(Γ). These polymorphisms can be

thought of as the operations of an algebra, and we denote this algebra by

A(Γ) (precise definitions will be given in the next chapter).

Tame Congruence Theory, a deep universal-algebraic framework devel-

2The class ModpL was defined in [20]. The results mentioned below are also from
the same paper. For a prime p, ModpL denotes the class of languages recognized by
Modp-counting nondeterministic logspace machines. Formally, K ∈ ModpL if there exists
a nondeterministic logspace machine M such that w ∈ K if and only if the number
of accepting paths of M on w is not divisible by p. The class ModpL is closed under
complement. When p = 2, the corresponding class is usually denoted as ⊕L. These
classes contain a number of natural problems related to modular arithmetic such as solving
systems of linear equations over Zp.

5

1.3 Fine-Grained Complexity of CSPs

oped by Hobby and McKenzie in the mid 80s [54], classifies the local be-

haviour of finite algebras into five types (unary, affine, Boolean, lattice and

semilattice). It was recently shown (see [19, 18, 63]) that there is a strong con-

nection between the computational and descriptive complexity of co-CSP(Γ)

and the set of types that appear in A(Γ) and its subalgebras. There are strong

conditions involving types which are sufficient for NL-hardness, P-hardness

and NP-hardness of CSP(Γ) as well as for inexpressibility of co-CSP(Γ) in

Datalog, linear Datalog and symmetric Datalog. These sufficient conditions

are also suspected (and in some cases proved) to be necessary, under natural

complexity-theoretic assumptions. For example, (a) the presence of unary

type is known to imply NP-completeness, while its absence is conjectured to

imply tractability (see [19]); (b) the absence of the unary and affine types was

recently proved to be (unconditionally) equivalent to definability in Datalog

[6]; (c) the absence of the unary, affine, and semilattice types is proved nec-

essary, and suspected to be sufficient, for membership in NL and definability

in linear Datalog [63]; (d) the absence of all types but Boolean is proved nec-

essary, and suspected to be sufficient, for membership in L and definability

in symmetric Datalog [63]. The strength of evidence varies from case to case

and, in particular, the conjectured algebraic conditions concerning CSPs in

NL and L (and, as mentioned above, linear and symmetric Datalog) still rest

on relatively limited evidence [18, 21, 22, 28, 24, 31, 63]. Our thesis is mostly

centered around those CSP(Γ)-s for which the typeset of A(Γ) contains only

the Boolean type, i.e. those CSP which are conjectured to be in L.

6

1.3 Fine-Grained Complexity of CSPs

1.3.3 A Note on Conjectures Related to Symmetric

and Linear Datalog

The linear Datalog conjecture (Conjecture 1) states that if CSP(Γ) is in NL,

then in fact, co-CSP(Γ) is in linear Datalog [28]. (This conjecture is hard

because combined with some known results [1], it would easily imply that

NL 6= P.3) The algebraic linear Datalog conjecture (Conjecture 2) states that

the variety (a certain class of algebras) associated with Γ omits the unary,

affine and semilattice types if and only if co-CSP(Γ) is in linear Datalog [63].

One direction of this conjecture is known: if the variety associated with Γ

admits one of the unary, affine or semilattice types then co-CSP(Γ) is not in

linear Datalog [63].

Note that if we assume that NL is different from P and ModpL for any

prime p, then Conjecture 2 implies Conjecture 1: Consider any Γ such that

CSP(Γ) is in NL and assume for contradiction that co-CSP(Γ) is not in

linear Datalog. Then by the assumption that Conjecture 2 holds the variety

associated with Γ admits at least one of the unary, affine or semilattice types.

By results of [63], this implies that CSP(Γ) is hard for NP, P or ModpL for

some prime p, which implies that NL is equal to P or ModpL for some prime

p.

The symmetric Datalog conjecture (Conjecture 3) states that if CSP(Γ)

3Assume that the P-complete CSP Horn-3Sat is in NL. If Conjecture 1 holds, then
Horn-3Sat is in linear Datalog. But we know that Horn-3Sat is not in linear Datalog by
[1].

7

1.3 Fine-Grained Complexity of CSPs

is in L, then in fact, co-CSP(Γ) is in symmetric Datalog. (This conjecture

is also hard because combined with some known results [39], it would imply

that L 6= NL.4) The algebraic symmetric Datalog conjecture (Conjecture 4)

states that the variety associated with Γ omits the unary, affine, lattice and

semilattice types if and only if co-CSP(Γ) is in symmetric Datalog. Just as

above, one direction is known: If the variety associated with Γ admits one

of the unary, affine, lattice or semilattice types, then co-CSP(Γ) is not in

symmetric Datalog [63].

A similar argument to the one given for Conjectures 1 and 2 shows that

under the assumption that L is different from NL and ModpL for any prime

p, Conjecture 4 implies Conjecture 3.

Note that we usually speak about showing that “every CSP in NL is

also in linear Datalog”. Strictly speaking, this is Conjecture 1, but because

showing Conjecture 1 would separate complexity classes, we assume that

those complexity classes are different, and then try to show Conjecture 1.

One way to think about Conjecture 2 is as a tool to show Conjecture 1 in

the presence of standard complexity theoretic assumptions.

4Assume that the NL-complete CSP directed st-connectivity (actually, a slightly mod-
ified version of it) is in L. If Conjecture 3 holds, then directed st-connectivity is in sym-
metric Datalog. But we know that directed st-connectivity is not in symmetric Datalog
by [34, 39].

8

1.3 Fine-Grained Complexity of CSPs

1.3.4 Summary of Contributions and Thesis Structure

The unifying theme of this thesis is CSPs within the complexity class P.

We are mostly concerned with CSPs of logarithmic space complexity. Nev-

ertheless, CSPs in NL also show up, for example, Chapter 7 is a modest

contribution to our understanding of CSPs in NL. We briefly outline the

chapters of the thesis.

In the next chapter, we present the necessary background material. Chap-

ter 3 introduces new techniques that can be used to establish the membership

of CSPs in the complexity class L. Applications are discussed and, in par-

ticular, a new short proof of the main result of [31] is presented. This work

was published in [35] (first part of the paper).

The list homomorphism problem for graphs is a well-studied and natural

class of CSPs. In Chapter 4, we completely classify the computational com-

plexity of the list homomorphism problem for graphs (with possible loops) in

combinatorial and algebraic terms: for every graph H, the problem is either

NP-complete, NL-complete, L-complete or is first-order definable; descriptive

complexity equivalents are given as well via Datalog and its fragments. Most

of the work in the chapter is focused on those list homomorphism problems

which are in L. Our algebraic characterisations match important conjectures

in the study of constraint satisfaction problems. This is joint work with

Andrei Krokhin, Benoit Larose, and Pascal Tesson [36, 37].

In Chapter 5, we show that the list homomorphism problem for oriented

paths admits an L − NL dichotomy. That is, for any oriented path, the list

9

1.3 Fine-Grained Complexity of CSPs

homomorphism problem can be solved in L, or is complete for NL.

In Chapter 6, we study digraphs preserved by a Maltsev operation, Malt-

sev digraphs. We show that these digraphs retract either onto a directed path

or to the disjoint union of directed cycles, showing that the CSP for Maltsev

digraphs is in L. (This was observed in [58] using an indirect argument.)

We then generalize results in [58] to show that a Maltsev digraph is pre-

served not only by a majority operation, but by a class of other operations

(e.g., minority, Pixley) and obtain a O(|VG|4)-time algorithm to recognize

Maltsev digraphs. We also prove analogous results for digraphs preserved by

conservative Maltsev operations which we use to establish that the list ho-

momorphism problem for Maltsev digraphs is in L. Finally, we give a simple

inductive construction of directed acyclic digraphs preserved by a Maltsev

operation. The chapter contains both individual and joint work with Cata-

rina Carvalho, Marcel Jackson and Todd Niven. These results (and some

others) appear in [23].

In Chapter 7 we contribute to the conjecture that if CSP(Γ) is in NL then

co-CSP(Γ) is in linear Datalog, a strict subclass of NL. More specifically, we

define a non-trivial subclass C of NL that contains NL-complete problems and

also problems not in linear Datalog, and show that if co-CSP(Γ) is in C then

co-CSP(Γ) is also in linear Datalog. This result constitutes the second part

of [35].

Finally, in Chapter 8, we conclude with some open problems.

10

Chapter 2

Background

2.1 The CSP and Examples

We begin with the formal definition of a CSP.

Definition 1. A constraint language over a set D is a subset of all finitary

relations over D. For any set D and any constraint language Γ over D,

CSP(Γ) is the combinatorial decision problem:

Instance: A triple 〈V,D,C〉, where

• V is a set of variables ;

• C is a set of constraints, {C1, ..., Cq};

• Each constraint Ci ∈ C is a pair 〈si, Ri〉, where

– si is a tuple of variables of length ni, called the constraint scope;

11

2.1 The CSP and Examples

– Ri ∈ Γ is an ni-ary relation over D, called the constraint relation.

Question: Does there exist a solution, that is, a function f : V → D

such that for each constraint 〈s, R〉 ∈ C with s = 〈v1, ..., vn〉 the tuple

〈f(v1), ..., f(vn)〉 belongs to R? The set of solutions of a CSP instance

P = 〈V,D,C〉 will be denoted by Sol(P).

To give a feel for CSPs, we present a number of examples and then link

CSPs to the homomorphism problem and discuss some more basic concepts.

Example 2. 3-Sat is the decision problem in which we are given a 3CNF-

formula φ with variables x1, ..., xn and clauses c1, ..., cm and we have to decide

whether the clauses can be satisfied simultaneously. Now we express 3-Sat

as a CSP. For each possible type of clause we create a relation in the following

way:

Clause Type Relation

(x ∨ y ∨ z) R0 = {0, 1}3\{(0, 0, 0)}

(¬x ∨ y ∨ z) R1 = {0, 1}3\{(1, 0, 0)}

(¬x ∨ ¬y ∨ z) R2 = {0, 1}3\{(1, 1, 0)}

(¬x ∨ ¬y ∨ ¬z) R3 = {0, 1}3\{(1, 1, 1)}

Let Γ = {R0, R1, R2, R3}. Then the CSP instance 〈V,D,C〉 has a solu-

tion if and only if φ is satisfiable, where V = {x1, ..., xn}, D = {0, 1}, C =

{c1, ..., cm} and in ci = 〈(x, y, z), Rj〉, where Rj is the relation corresponding

to (x, y, z) as given in the table above.

12

2.1 The CSP and Examples

Example 3. A Boolean constraint language is a constraint language over a

two element domain D = {d0, d1}. Similarly to the encoding used in Example

2, we can express Satisfiability [73] as a CSP. It was established by

Schaefer in 1978 in a seminal paper [78] that a Boolean constraint language

Γ is tractable if (at least) one of the following six conditions holds:

1. Every relation in Γ contains the tuple in which all entries are equal to

d0;

2. Every relation in Γ contains the tuple in which all entries are equal to

d1;

3. Every relation in Γ is definable by a conjunction of clauses, where

each clause has at most one positive literal (i.e., a conjunction of Horn

clauses);

4. Every relation in Γ is definable by a conjunction of clauses, where each

clause has at most one negative literal (i.e., a conjunction of anti-Horn

clauses);

5. Every relation in Γ is definable by a conjunction of clauses, where each

clause contains at most two literals;

6. Every relation in Γ is the set of solutions of a system of linear equations

over the finite field with two elements, GF(2).

Otherwise Γ is NP-complete. This result is often called Schaefer’s dichotomy

theorem [78]. Relying on universal algebra, Allender et al. refined Schaefer’s

13

2.1 The CSP and Examples

theorem [2] by showing that any Boolean CSP is either definable in first order

logic, or complete for one of the classes L, NL, ⊕L, P or NP.

Example 4. Let D = {0, 1}, and E be the less-than-or-equal-to relation,

i.e. E = {(0, 0), (0, 1), (1, 1)}. Furthermore, let S = {1} and T = {0}. It is

not difficult to see that the CSP defined by E, S, and T corresponds to the

following decision problem: given a directed graph G and two subsets of the

vertices of G, SG and ST , is there a directed path from a vertex in SG to a

vertex in ST ? This CSP is NL-complete.

Example 5. Let D be a finite domain. A binary relation R ⊆ D2 is said

to be implicational or a 0/1/all constraint if it is one of the following forms

(see [59] and [26]):

1. R = B × C for some B,C ⊆ D;

2. R = {〈b, f(b)〉 : b ∈ B} where B ⊆ D and f is an injective function;

3. R = {b} × C ∪B × {c} for some B,C ⊆ D with b ∈ B and c ∈ C.

Dalmau showed [28] that CSPs defined by implicational constraints are in

NL.

In the following examples, we exceptionally allow Γ to be infinite (both the

universe and the number of relations can be infinite). We need the following

definition:

Definition 6. A constraint language Γ is called:

14

2.1 The CSP and Examples

• Tractable if CSP(Γ′) can be solved in polynomial time, for each subset

Γ′ ⊆ Γ;

• NP-complete if CSP(Γ′) is NP-complete for some finite subset Γ′ ⊆ Γ.

Example 7. The binary less than relation over an ordered set D is defined

as:

<D= {〈d1, d2〉 ∈ D2 : d1 < d2}

Let D be N, the set of natural numbers. Then the class of CSP instances

CSP({<N}) corresponds to the Acyclic Digraph problem [11] (the prob-

lem is to decide whether a graph is acyclic). Note that a directed graph is

acyclic if and only if its vertices can be numbered in such a way that every

arc leads from a vertex with smaller number to a vertex with a greater one.

Since the Acyclic Digraph problem is tractable, {<N} is tractable.

Example 8. Let disequality be the following relation over D:

6=D= {〈d1, d2〉 ∈ D2 : d1 6= d2}

CSP({6=D}) corresponds to the Graph Colorability problem [45, 73] with

|D| colors. This problem is in polynomial time if |D| ≤ 2 or |D| = ∞ and

NP-complete if 3 ≤ |D| <∞.

Example 9. Let F be any finite field and ΓLin be the constraint language

containing all those relations over F which consist of all the solutions to some

system of linear equations over F. Any relation from ΓLin, and therefore any

15

2.2 Basic Notions

instance of CSP(ΓLin) can be represented by a system of linear equations over

F and this system of equations can be computed from the relations in poly-

nomial time [15]. A system of linear equations can be solved in polynomial

time (e.g., by Gaussian elimination) and therefore ΓLin is tractable.

2.2 Basic Notions

2.2.1 Relational Structures, Homomorphisms

For any set A (called domain or universe) and any non-negative integer n,

the set of all n-tuples of elements of A is denoted by An. A subset of An

is called an n-ary relation over A. A signature is a (finite) set of relation

symbols. Each symbol R has an associated arity, which is denoted with

ar(R). A relational structure A of signature τ consists of a set A called

the universe (or domain) of A, and a relation for each symbol in τ of the

corresponding arity. Given a symbol R ∈ τ we use superscripts to denote the

corresponding relation RA in structure A. All structures in this thesis are

assumed to be finite. In the following, we denote the universe of a structure

A with its lightface equivalent, e.g. A.

Let B be a structure of the same signature as A. A homomorphism from

A to B is a map f from A to B such that f(RA) ⊆ RB for each R ∈ τ , i.e.

we have (f(a1), . . . , f(ar)) ∈ RB whenever (a1, . . . , ar) ∈ RA. In this case we

write f : A → B. When it is clear from the context, we often say “maps”

instead of “homomorphically maps”. A retract of a structure B is an induced

16

2.2 Basic Notions

substructure B′ of B such that there is a homomorphism g : B→ B′ with

g(b) = b for every b ∈ B′. A retract of B that has minimal size among

all retracts of B is called a core of B. It is well known that all cores of a

structure are isomorphic, and so one speaks of the core of a structure B,

core(B). We denote by CSP(B) the class of all τ -structures A that admit a

homomorphism to B, and by co-CSP(B) the complement of this class. Note

that in this thesis, B in CSP(B) is always assumed to be finite.

Notice that in Section 2.1 we defined the CSP differently. To see that our

original CSP definition is the same as the homomorphism variant, consider

CSP(B) and an input structure A: think of the elements in A as variables,

the elements in B as values, tuples in the relations of A as constraint scopes,

and the relations of B as constraint relations. With this correspondence, the

solutions to this CSP instance are precisely the homomorphisms from A to

B.

2.2.2 Tuple Structures

The following non-standard definition will be used in Chapters 3 and 7, and

later in this chapter. A tuple structure Ã over a vocabulary τ is a set of pairs

(R, t) where R ∈ τ and t is an ar(R)-tuple. We associate a domain Ã with a

tuple structure: Ã contains every element that appears in some tuple in Ã,

and possibly some other elements. Clearly, tuple structures are equivalent to

relational structures. If A is a relational structure, we denote the equivalent

tuple structure with Ã, and vice versa. For convenience, sometimes we use

17

2.2 Basic Notions

the two notations interchangeably.

2.2.3 Algebra

An n-ary operation on a set A is a map f : An → A. For example, a

projection operation is an operation of the form ein(x1, . . . , xn) = xi for some

1 ≤ i ≤ n. Given an h-ary relation θ and an n-ary operation f on the same

set A, we say that f preserves θ or that θ is invariant under f if the following

holds: given any matrix M of size h× n whose columns are in θ, applying f

to the rows of M will produce an h-tuple in θ. A polymorphism of a structure

T is an operation f that preserves each relation in T; in this case we also

say that T admits f . For the special case of graphs, this means that if there

is an edge between ai and bi for each 1 ≤ i ≤ n (where the ai’s and bi’s

are not necessarily distinct) then there is an edge between f(a1, . . . , an) and

f(b1, . . . , bn). More specific algebraic definitions will be given in Chapter 4,

where these definitions will be explicitly used. To give a flavor of the power

of the algebraic approach to study the complexity of the CSP, we mention

some results about CSPs involving polymorphisms.

Definition 10. Let A be a nonempty set. An n-ary operation f : An → A

is a near unanimity operation if it satisfies

f(x, . . . , x︸ ︷︷ ︸
i−1

, y, x, . . . , x︸ ︷︷ ︸
n−i

) = x for all x, y ∈ A, and for all i ≤ n. (2.1)

In the special case when n = 3, f is called a majority operation.

18

2.2 Basic Notions

Definition 11. Let A be a nonempty set. A ternary operation f : A3 → A

is a Maltsev operation if it satisfies

f(y, x, x) = f(x, x, y) = y for all x, y ∈ A (2.2)

Theorem 12 ([30], 2008). Suppose the finite structure B admits a majority

polymorphism. Then CSP(B) has bounded pathwidth duality and hence is in

NL.

Theorem 13 ([10], 2012). Suppose the finite structure B admits a (d+1)-ary

near unanimity polymorphism. Then CSP(B) has bounded pathwidth duality

and hence is in NL.

Theorem 14 ([14]). Suppose the finite structure B admits a Maltsev opera-

tion. Then there is a polynomial-time algorithm for CSP(B).

More background on algebra is given in Subsection 4.2.2.

2.2.4 Datalog

We provide only the necessary concepts related to Datalog and its fragments,

and the reader can find more details, for example, in [66, 27, 38]. Datalog is a

database-inspired query language whose connection with CSP-complexity is

now relatively well understood (see e.g. [6]). Let τ be some finite vocabulary.

A Datalog program over τ is specified by a finite set of rules of the form

h← b1∧· · ·∧bt, where h and the bi are atomic formulas R(x1, . . . , xk). When

19

2.2 Basic Notions

we specify the variables of an atomic formula, we always list the variables

from left to right, or we simply provide a tuple x of variables whose i-th

variable is x[i]. We distinguish two types of relational predicates occurring

in a Datalog program: predicates that occur at least once in the head of a

rule (i.e., its left-hand side) are called intensional database predicates (IDBs)

and are not in τ . The predicates which occur only in the body of a rule (its

right-hand side) are called extensional database predicates (EDBs) and must

all lie in τ . A rule that contains no IDB in the body is called a nonrecursive

rule, and a rule that contains at least one IDB in the body is called a recursive

rule. A Datalog program contains a distinguished IDB of arity 0 which is

called the goal predicate; a rule whose head IDB is a goal IDB is called a goal

rule.

Linear Datalog is a syntactic restriction of Datalog in which there is at

most one IDB in the body of each rule. The class of linear Datalog programs

that contain only rules with at most k variables and IDBs with at most j ≤ k

variables is denoted with linear (j, k)-Datalog. We say that the width of such

a linear Datalog program is (j, k).

Symmetric Datalog is a syntactic restriction of linear Datalog. A linear

Datalog program P is symmetric if for any recursive rule I(x)← J(y)∧Ē(z)

of P (except for goal rules), where Ē(z) is a shorthand for the conjunction

of the EDBs of the rule over variables in z, the symmetric pair J(y) ←

I(x) ∧ Ē(z) of that rule is also in P . The width of a symmetric Datalog

program is defined similarly to the width of a linear Datalog program.

20

2.2 Basic Notions

We explain the semantics of linear (symmetric) Datalog using derivations

(it could also be explained with fixed point operators, but that would be

inconvenient for the proofs). Let P be a linear Datalog program with vo-

cabulary τ . A P-derivation with codomain D is a sequence of pairs D =

(ρ1, λ1), . . . , (ρq, λq), where ρ` is a rule of P , and λ` is a function from the

variables V` of ρ` to D, ∀` ∈ [q]. The sequence D must satisfy the following

properties. Rule ρ1 is nonrecursive, and ρq is a goal rule. For all ` ∈ [q − 1],

the head IDB I of ρ` is the IDB in the body of ρ`+1, and if the variables

of I in the head of ρ` and the body of ρ`+1 are x and y, respectively, then

λ`(x[i]) = λ`+1(y[i]), ∀i ∈ [ar(I)].

LetR(z) be an EDB with variables in some rule ρ` of a derivation D . Then

we write R(t) to denote that λ`(z) = t, i.e. that λ` instantiates the variables

of R(z) to t, and we say that R(t) appears in ρ`, or less specifically, that

R(t) appears in D . Given a structure A and a derivation D with codomain

A for a program P , we say that D is a derivation for A if for every R(t)

that appears in a rule of D , (R, t) ∈ Ã. We denote a P-derivation for a

structure A by DP(A). A linear (symmetric) Datalog program P accepts an

input structure A if there exists a P-derivation for A.

An example is given in Figure 2.1. The vocabulary is τ = {E2, S1, T 1},

where the superscripts denote the arity of the symbols. Notice that in the

symmetric Datalog program P , rules 2.4 and 2.5 form a symmetric pair. It

is not difficult to see that P accepts a τ -structure A if and only if there is

an oriented path (oriented means that as the path is traversed, each edge is

21

2.2 Basic Notions

oriented forward or backward, see Section 2.2.7) in EA from an element in

SA to an element in TA.

I(x)← S(x) (2.3)

I(y)← I(x) ∧ E(x, y) (2.4)

I(x)← I(y) ∧ E(x, y) (2.5)

G← I(x) ∧ T (x) (2.6)
a

b
c

d

SG = {a}
TG = {d}

e
f g

I(a)

S(a)

I(b)

E(a, b)

I(c) I(d) G

E(c, b) E(c, d) T (d)

ρ1 ρ2 ρ3 ρ4 ρ5

λ1(x) = a λ2(x) = a
λ2(y) = b

λ3(x) = c
λ3(y) = b

λ4(x) = c
λ4(y) = d

λ5(x) = d

Figure 2.1: Top left: Symmetric Datalog program P . Top right: Input struc-
ture G where the binary relation EG is specified by the digraph. Bottom:
Visualization of a P-derivation DP(G) = (ρ1, λ1), . . . , (ρ5, λ5) for G, where
ρ1 is nonrecursive, ρ2, ρ4 are rules of type 2.4, ρ3 is a rule of type 2.5, and ρ5

is the goal rule. For example, the dashed box corresponds to rule ρ2, and it
is the rule I(y)← I(x) ∧ E(x, y) of P , where λ2 assigns a to variable x and
b to variable y.

2.2.5 Defining CSPs

The following discussion applies not just to Datalog but also to its symmetric

and linear fragments. The class of structures accepted by a Datalog program

is homomorphism-closed, i.e. if A belongs to the class and A → B, then

B also belongs to the class. To see this, assume that there is derivation

for the structure A, and a homomorphism h from A to B. We obtain a

22

2.2 Basic Notions

derivation for B by “replacing” every occurrence of an element a of A in

the derivation with h(a). On the other hand, unless CSP(T) is the set of

all structures, CSP(T) is not homomorphism-closed. Therefore (with the

exception of the trivial case), it is not possible to define CSP(T) in Datalog.

However, co-CSP(T) is closed under homomorphisms, and in fact, it is often

possible to define co-CSP(T) in Datalog.

2.2.6 Obstruction Sets

It is well known and easy to see that for any structure B, there is a set of

structures O, called an obstruction set, such that a structure A homomorphi-

cally maps to B if and only if there is no structure inO that homomorphically

maps to A. In fact, there are many possible obstruction sets for any struc-

ture B. We say that B has duality X, if B has an obstruction set which has

the special property X. We formally define an obstruction set as:

Definition 15 (Obstruction Set). A set O of τ -structures is called an ob-

struction set for B, if for any τ -structure A, A 6→ B if and only if there

exists S ∈ O such that S→ A.

Note that given an obstruction set O for B, A ∈ CSP(B) iff for all

structures O ∈ O, O 6→ A.

Example 16. Let B be a structure with domain {0, 1}, and having a sin-

gle relation {(0, 1), (1, 0)}. In graph-theoretic terms, B is just an undirected

23

2.2 Basic Notions

edge. It is well known and easy to see that an input graph A homomorphi-

cally maps to B iff there is no cycle C of odd length such that C→ A. That

is, the set of all odd cycles can be chosen as an obstruction set O for B. See

the illustration in Figure 2.2.

O

A A⇔
B

0

1

Figure 2.2: The set of all odd cycles is an obstruction set for the undirected
edge (graphs are thought of as relational structures).

2.2.7 Graph Theory

Depending on the context, we denote the vertices of a graph G with VG and

its edge set with EG. An oriented path is a digraph obtained by orienting the

edges of an undirected path. In other words, an oriented path has vertices

v0, . . . , vq+1 and edges e0, . . . , eq, where ei is either (vi, vi+1), or (vi+1, vi). We

call (vi, vi+1) a forward edge and (vi+1, vi) a backward edge. The length of

an oriented path, len(P), is the number of edges it contains. The net length

of a path P , net(P), is the number of forward edges minus the number

24

2.2 Basic Notions

of backward edges in P . A (reverse) dipath is a sequence of, not necessarily

distinct, vertices v1, . . . , vn such that for every i ∈ [n−1], (vi, vi+1) ((vi+1, vi))

is an edge. A directed cycle is a dipath v1, . . . , vn such that (vn, v1) is also an

edge. A cycle is an oriented path with starting point v1 and endpoint vm such

that either (vm, v1) or (v1, vm) is an edge. We use the term simple dipath or

(directed) cycle to indicate that all vertices of the dipath or (directed) cycle

are distinct.

A component of digraph G is a maximal subgraph H of G such that for

every pair of vertices u, v ∈ VH , there is an oriented path from u to v. A

digraph with one component is said to be connected. A digraph is a directed

acyclic graph (DAG) if it contains no directed cycles. A DAG G is balanced if

there exists q ∈ N such that VG can be partitioned into q levels L0, . . . , Lq−1,

such that any edge of G goes from Li to Li+1, for some i ∈ {0, . . . , q−2}. We

always choose q to be minimal. Observe that any oriented path is balanced.

The mapping level : VG → {0, 1, 2, . . . , q− 1} assigns each vertex v a number

i such that v is in the i-th level Li. The level of an edge (a, b) of G is level(a),

i.e. the level of the starting vertex of (a, b). The height of G (denoted with

height(G)) is maxa∈VG level(a).

Let P be an oriented path whose vertex with indegree 0 and outdegree

1 is u, and whose vertex with indegree 1 and outdegree 0 is v. We say that

P is minimal if u is in L0 (the bottommost level) and v is in Lheight(G) (the

topmost level), and there are no other vertices of P in the bottommost or

the topmost levels.

25

2.2 Basic Notions

If a and b are vertices of G, a
k→ b denotes the existence of a dipath

from a to b of length k; a → b denotes a
1→ b. Let G be a digraph, and

x a vertex of G. We define x+1 = {y ∈ VG : (x, y) ∈ EG} (EG is the

edge set of G), and x−1 = {y ∈ VG : (y, x) ∈ EG}. We call a vertex v a

source if v−1 = ∅, and a sink if v+1 = ∅. Oriented paths can be thought of

as relational structures over the vocabulary {E2}, so sometimes we denote

them with boldface letters, e.g. P.

26

Chapter 3

Dualities for Symmetric

Datalog1

3.1 Introduction

As mentioned in Section 1.3 (Chapter 1), strong connections between mem-

bership of CSP(B) in L and expressibility of co-CSP(B) in symmetric Datalog

have been indicated and conjectured [38, 63]. Symmetric Datalog programs

can be evaluated in logarithmic space (L) [38] using Reingold’s logspace algo-

rithm for undirected st-connectivity [77], and it is conjectured that if CSP(B)

is in L then co-CSP(B) can be defined in symmetric Datalog [38]. Therefore

providing tools to show whether co-CSP(B) can be defined in symmetric

Datalog is an important task. In this chapter, we introduce two dualities for

1The contents of this chapter were published as the first part of [35].

27

3.1 Introduction

symmetric Datalog and study expressibility of CSPs in symmetric Datalog

by means of these new dualities.

Recall Section 2.2.6 from Chapter 2 and the definitions there. The fol-

lowing two well-known theorems relate definability of co-CSP(B) in Datalog

and linear Datalog to B having bounded treewidth and bounded pathwidth

duality, respectively:

1. co-CSP(B) is definable in Datalog if and only if B has bounded treewidth

duality [43];

2. co-CSP(B) is definable in linear Datalog if and only if B has bounded

pathwidth duality [27].

It was stated as an open problem in [18] to find a duality for symmetric

Datalog in the spirit of the previous two theorems. We provide two such

dualities: symmetric bounded pathwidth duality (SBPD) and piecewise sym-

metric bounded pathwidth duality (PSBPD). We note that SBPD is a special

case of PSBPD. For both bounded treewidth and bounded pathwidth dual-

ity, the structures in the obstruction sets are restricted to have some special

form. For SBPD and PSBPD the situation is a bit more subtle. In addition

we require the obstruction sets to contain structures only of a special form

(they must have bounded pathwidth), the obstruction sets must also possess

a certain “symmetric closure” property. To the best of our knowledge, this

is the first instance of a duality where in addition to the local requirement

that each structure must be of a certain form, the set must also satisfy an

28

3.1 Introduction

interesting global requirement.

Using SBPD, we give a short and simple new proof of the main result

of [31] that “Maltsev + Datalog ⇒ symmetric Datalog”. Considering the

simplicity of this proof, we suspect that SBPD (or PSBPD) could be a useful

tool in an attempt to prove the algebraic symmetric Datalog conjecture [63],

a conjecture that proposes an algebraic characterization of all CSPs lying in

L. An equivalent form of this conjecture is that “Datalog + n-permutability

⇒ symmetric Datalog” (by combining results from [54, 6, 64]), where n-

permutability is a generalization of Maltsev.

One way to gain more insight into the dividing line between CSPs in L

or NL is through studying the complexity of CSPs corresponding to oriented

paths. The only known thing regarding the complexity of these CSPs is that

they are all in NL (by combining results from [40, 30, 27]). To make progress

in this direction, it is natural to ask whether there are oriented paths for

which the CSP is NL-complete and L-complete. We provide two classes of

oriented paths, C1 and C2, such that for any B1 ∈ C1, the corresponding CSP

is NL-complete, and for any B2 ∈ C2, the corresponding CSP is in L. In

fact, it can be seen with the help of [63] that for most B2 ∈ C2, CSP(B2) is

L-complete. To prove the membership of CSP(B2) in L (for B2 ∈ C2), we use

PSBPD in an essential way. One can hope to build on this work to achieve

an L-NL dichotomy for oriented paths.

29

3.2 Preliminaries

3.2 Preliminaries

3.2.1 Path Decompositions and Derivations

Definition 17. [Path-Decomposition] Let S be a τ -structure. A (j, k)-path

decomposition (or path decomposition of width (j, k)) of S is a sequence

S0, . . . , Sn−1 of subsets of S such that

1. For every (R, (a1, . . . , aar(R))) ∈ S̃, ∃` ∈ {0, . . . , n − 1} such that

{a1, . . . , aar(R)} ⊆ S`;

2. If a ∈ Si ∩ Si′ (i < i′) then a ∈ S` for all i < ` < i′;

3. ∀` ∈ {0, . . . , n− 1}, |S`| ≤ k, and ∀` ∈ {0, . . . , n− 2}, |S` ∩ S`+1| ≤ j.

For ease of notation, it will be useful to introduce a concept closely related

to path decompositions. Let τ be a vocabulary. Let S be a τ -structure

that can be expressed as S = S0 ∪ · · · ∪ Sn−1, where the S0, . . . , Sn−1 (the

universes of the Si) satisfy properties 2 and 3 above. Note that ∪ here

denotes union, not disjoint union of τ -structures. We say that S is a (j, k)-

path, and that (S0, . . . ,Sn−1) is a (j, k)-path representation of S. We denote

(j, k)-path representations with script letters, e.g. S = (S0, . . . ,Sn−1). The

substructure Si ∪ · · · ∪ Si′ of S (assuming a (j, k)-representation is fixed) is

denoted with S[i,i′]. We call n the length of the representation. Obviously, a

structure is a (j, k)-path if and only if it admits a (j, k)-path decomposition.

Let D = (ρ1, λ1), . . . , (ρq, λq) be a derivation for some linear or symmetric

program P with vocabulary τ . We can extract from D a τ -structure Ex(D)

30

3.2 Preliminaries

such that D is a derivation for Ex(D). We specify Ex(D) as a tuple structure

Ã: for each R(t) that appears in D (R ∈ τ), we add the pair (R, t) to Ã,

and set Ã to be the set of those elements that appear in a tuple.

Let D = (ρ1, λ1), . . . , (ρq, λq) be a derivation. For each x that is in a rule

ρ` for some ` ∈ [q], call x` the indexed version of x. We define an equivalence

relation Eq(D) on the set of indexed variables of D . First we define a graph

G = (V,E) as:

• V is the set of all indexed versions of variables in D ;

• (x`, y`
′
) ∈ E if `′ = `+ 1, x is the i-th variable of the head IDB I of ρ`,

and y is the i-th variable of the body IDB I of ρ`+1.

Two indexed variables x` and y`
′

are related in Eq(D) if they are connected

in G. Observe that if C = {x`11 , x`22 , . . . , x`cc } is a connected component of G,

then it must be that λ`1(x1) = λ`2(x2) = · · · = λ`c(xc).

Definition 18 (Free Derivation). Let P be a linear Datalog program and

D = (ρ0, λ0), . . . , (ρq, λq) be a derivation for P . Then D is said to be free if

for any two (x`, y`
′
) 6∈ Eq(D), λ`(x) 6= λ`′(y).

Intuitively, this definition says that D is free if any two variables in D

which are not “forced” to have the same value are assigned different values.

3.2.2 Canonical Programs

Fix a τ -structure B and j ≤ k. Let Q1, . . . , Qn be all possible at most j-ary

relations over B. The canonical linear (j, k)-Datalog program for B ((j, k)-

31

3.2 Preliminaries

CanL(B)) contains an IDB Im of the same arity as Qm for each m ∈ [n]. The

rule Ic(x)← Id(y) ∧ Ē(z) belongs to the canonical program if it contains at

most k variables, and the implication Qc(x) ← Qd(y) ∧ Ē(z) is true for all

possible instantiations of the variables to elements of B. The goal predicate of

this program is the 0-ary IDB Ig, where Qg = ∅. In this case, the implication

Qg ← Qd(y)∧ Ē(z) means that Qd(y)∧ Ē(z) is false for any instantiation of

yp and z.

The canonical symmetric (j, k)-Datalog program for B ((j, k)-CanS(B))

has the same definition as (j, k)-CanL(B), except that it has less rules due to

the following additional restriction. If Ic(x)← Id(y)∧Ē(z) is in the program,

then both Qc(x)← Qd(y) ∧ Ē(z) and Qd(y)← Qc(x) ∧ Ē(z) must hold for

all possible instantiations of the variables to elements of B. The program

(j, k)-CanS(B) is obviously symmetric. When it is clear from the context, we

write CanL(B) and CanS(B) instead of (j, k)-CanL(B) and (j, k)-CanS(B),

respectively.

3.2.3 The Main Goal

Recall from Chapter 2 that an obstruction setO defines co-CSP(B) implicitly

as A ∈ co-CSP(B) if and only if there exists S ∈ O such that S→ A. If O

above can be chosen to have property X, then we say that B has X-duality.

Our main goal is to show that co-CSP(B) is definable in symmetric Datalog

if and only if B has symmetric bounded pathwidth duality, defined below after

going through the necessary background.

32

3.2 Preliminaries

3.2.4 The Zigzag Operator

A zigzag operator ξ takes a (j, k)-path representation S = (S0, . . . ,Sn−1)

of a (j, k)-path S and a minimal oriented path P = e0, . . . , eq such that

height(P) = n, and it returns another (j, k)-path ξ(S ,P). Intuitively,

ξ(S ,P) is the (j, k)-path S “modulated” by P such that the forward and

backward edges ei of P are mimicked in ξ(S ,P) by “forward and backward”

copies of Slevel(ei). Before the formal definition, it could help the reader to

look at the right side of Figure 3.1, where the oriented path used to modu-

late the (j, k)-path over the vocabulary E2 (i.e. digraphs) with representation

(S0,S1,S2) is P on the left side. The left side is a more abstract example,

and the reader might find it useful after reading the definition.

We inductively define the (j, k)-path ξ(S ,P) as (Se0 ,Se1 , . . . ,Seq) to-

gether with a sequence of isomorphisms ϕe0 , ϕe1 , . . . , ϕeq , where ϕei is an

isomorphism from Sei to Slevel(ei), 0 ≤ i ≤ q. For the base case, we define Se0

to be an isomorphic copy of S0, and ϕe0 to be the isomorphism that maps

Se0 back to S0. Assume inductively that Se0 , . . . ,Sei−1
and ϕe0 , . . . , ϕei−1

are already defined. Let S′ei be an isomorphic copy of Slevel(ei) with domain

disjoint from Se0 ∪ · · · ∪ Sei−1
, and fix ϕ′ei to be the isomorphism that maps

back S ′ei to Slevel(ei). We “glue” S′ei to Sei−1
by renaming some elements of

S′ei to elements of Sei−1
. To facilitate understanding, we can think of the al-

ready constructed structures Se0 , . . . ,Sei−1
as labels of the edges e0, . . . , ei−1

of P, respectively, and we want to determine Sei , the label of the next edge.

The connection between Sei−1
and Sei will be defined such that Sei−1

and Sei

33

3.3 Two Dualities for Symmetric Datalog

“mimic” the orientation of the edges ei−1 and ei.

We resume our formal definition. Set ` = level(ei), and let `′ = `− 1 if ei

is a forward edge, and `′ = `+1 if ei is a backward edge. If an element x ∈ S ′ei
and an element y ∈ Sei−1

are both copies of the same element a ∈ S` ∩ S`′ ,

then rename x to y in S ′ei . After all such elements are renamed, S′ei becomes

Sei . That is, for all a ∈ S` ∩ S`′ , rename ϕ′−1
ei

(a) in S′ei to ϕ−1
ei−1

(a) to obtain

Sei .

We define the isomorphism ϕei from Sei to Slevel(ei) as:

ϕei(x) =




ϕ′ei(x) if x ∈ Sei and x 6∈ Sei−1

ϕei−1
(x) if x ∈ Sei ∩ Sei−1

.

3.3 Two Dualities for Symmetric Datalog

The two main theorems (Theorems 22 and 29) of this section can be combined

to obtain:

Theorem 19. For a finite structure B, TFAE:

1. There is a symmetric Datalog program that defines co-CSP(B);

2. B has symmetric bounded pathwidth duality (for some parameters);

3. B has piecewise symmetric bounded pathwidth duality (for some param-

eters);

34

3.3 Two Dualities for Symmetric Datalog

S0

S1

S2

e0

e1 e3

e4

e2

Se0

Se2 Se3

Se4

ba b′a′

dc

S P ξ(S ,P)

d′′c′′

b′′a′′

Se1

d′c′

S0

S1

S2

Se0

Se2 Se3

Se4

Se1

S ξ(S ,P)

ξ

Figure 3.1: Left: Applying a zigzag operator to the (j, k)-path S with the
(j, k)-representation S = (S0,S1,S2). Suppose that S0 ∩ S1 = {a, b} and
S1 ∩ S2 = {c, d}. We demonstrate how Se0 and Se2 are obtained. Se0 is a
disjoint copy of S0 (and the copy of a and b in Se0 are a′ and b′, respectively).
To obtain Se2 , first make a disjoint copy S′e2 of Slevel(e2) = S1. Set ` =
level(e2) = 1. Since e1 is a forward edge and e2 is a backward edge, `′ = `+1 =
2. Therefore to “glue” S′e2 to Se1 , we need to look at S`∩S`′ = {c, d}. Assume
that the copy of c and d in Se1 are c′ and d′, respectively. Furthermore, assume
that the copy of c and d in S′e2 are c̃ and d̃, respectively. To obtain Se2 , we

rename c̃ to c′, and d̃ to d′ in S′e2 . Right: A specific example when S0,S1,S2

are the digraphs in the boxes. The dashed lines indicate identification of
vertices. The level of (Se2 ,Se3), for example, is 0 since e2 and e3 share a
vertex at vertex level 1 (defined below).

3.3.1 Symmetric Bounded Pathwidth Duality

Definition 20 ((j, k)-symmetric). Assume that O is a set of (j, k)-paths.

Suppose furthermore that a (j, k)-path representation can be fixed for each

structure in O such that the following holds. For every S ∈ O with repre-

sentation S of some length n, and every minimal oriented path P of height

n, it holds that ξ(S ,P) ∈ O. Then O is said to be (j, k)-symmetric.

35

3.3 Two Dualities for Symmetric Datalog

Definition 21 (SBPD). A structure B has (j, k)-symmetric bounded path-

width duality ((j, k)-SBPD) if there is an obstruction setO for B that consists

of (j, k)-paths, and in addition, O is (j, k)-symmetric.

The following is our main duality theorem for symmetric Datalog:

Theorem 22. For a finite structure B, co-CSP(B) can be defined by a sym-

metric (j, k)-Datalog program if and only if B has (j, k)-SBPD.

We will use Lemma 23 in the proof of Theorem 22. Lemma 23 can be

proved using the standard canonical Datalog argument. Lemma 24 is also

used in the proof of Theorem 22 and it is the main technical lemma of the

section.

Lemma 23. If CanS(B) accepts a structure A, then A 6→ B.

Proof. Structure B is not accepted by CanS(B) because a derivation could

be translated into a valid chain of implications, which is not possible by the

definition of CanS(B). If CanS(B) accepts A and A → B, then CanS(B)

accepts B, a contradiction.

Lemma 24. For any τ -structures A and B, if there exists a structure S with

a (j, k)-path representation S of some length n such that S → A, and for

any minimal oriented path P of height n, it holds that ξ(S ,P) 6→ B, then

(j, k)-CanS(B) accepts A.

To prove Lemma 24 we need to define an additional concept related to

the zigzag operator. Once the (j, k)-path ξ(S ,P) = (Se0 , . . . ,Seq) is defined,

36

3.3 Two Dualities for Symmetric Datalog

where P is the path e0, . . . , eq, each pair (Sei ,Sei+1
), ∀i ∈ {0, . . . , q − 1} is

assigned a level : level(Sei ,Sei+1
) is the level of the vertex v minus 1, where

v is the vertex that ei and ei+1 share (see Figure 3.1).

Proof of Lemma 24. For the rest of this proof, let CS denote (j, k)-CanS(B),

and CL denote (j, k)-CanL(B). If program CS accepts structure S then

because S→ A, CS also accepts A. So it is sufficient to show that program

CS accepts structure S.

First we specify how to associate a CL-derivation with ξ(S ,P), where P

is a minimal oriented path of height n. Assume that ξ(S ,P) = S0∪· · ·∪Sq.

For each i ∈ {0, . . . , q − 1}, fix an arbitrary order on the elements of Si∩Si+1.

Assume that |Si∩Si+1| = j′(≤ j), and define the j′-tuple si such that si[`] is

the `-th element of Si ∩ Si+1. We define sq to be the empty tuple. It is good

to keep in mind that later, si will be associated with the IDB Ji.

The derivation will be DCL(ξ(S ,P)) = (ρ0, λ0), . . . , (ρq, λq). We specify

ρi as

Ji(xi)← Ji−1(xi−1) ∧ Ē(yi) J0(x0)← Ē(y0)

if i ∈ [q] if i = 0.

We begin with describing the EDBs of a rule ρi together with their variables.

Assume that Si = {d1, . . . , dt}, and observe that t ≤ k. The variables of

ρi are v1, . . . , vt. For every R ∈ τ , and every tuple (df(1), . . . , df(r)) ∈ RSi ,

where r = ar(R), R(vf(1), . . . , vf(r)) is an EDB of ρi.

37

3.3 Two Dualities for Symmetric Datalog

We describe the variables of the IDBs Ji−1 and Ji, i ≥ 1 (the case

when i = 0 is handled similarly). Assume that si−1 = (dg(1), . . . , dg(j1))

and si = (dh(1), . . . , dh(j2)). Then the IDB in the body of ρi together with

its variables is Ji−1(vg(1), . . . , vg(j1)), and the head IDB together with its vari-

ables is Ji(vh(1), . . . , vh(j2)). The function λi simply assigns the value dg to

the variable vg, ∀g ∈ [t].

It remains to specify the IDBs, i.e. which IDBs of CL the Ji-s correspond

to. For each i ∈ {0, . . . , q}, Ji denotes JMP
i

, where MP
i is a subset of Bj′

for some j′ ≤ j. We define the sequence MP
0 ,M

P
1 , . . . ,M

P
q inductively. To

define MP
0 , consider the nonrecursive rule J0(x0)← Ē(y0). Assume that the

arity of J0 is j′, and that y0 contains k′ variables. (Note that the variables

in x0 and y0 are not necessarily disjoint.) For all possible functions α :

x0[1], . . . ,x0[j′],y0[1], . . . ,y0[k′] → B such that the conjunction of EDBs

Ē(α(y0[1]), . . . , α(y0[k′])) is true, place the tuple (α(x0[1]), . . . , α(x0[j′])) into

MP
0 . In the special case when x0[1], . . . ,x0[j′],y0[1], . . . ,y0[k′] is the empty

string ε, α(ε) is defined to be ε. Note that a 0-ary relation R is either empty

or it contains ε. If R is empty, then R false, and if R contains ε, then R is

true.

Assume that MP
i−1 is already defined. Then similarly to the base case, for

each possible instantiation α of the variables of ρi over B with the restriction

that α(xi−1) ∈MP
i−1, if the conjunction of the EDBs of ρi is true, then add the

tuple α(xi) to MP
i . It is not difficult to see that if MP

q 6= ∅ (i.e. MP
q contains

ε), then we can construct a homomorphism from ξ(S ,P) to B which would

38

3.3 Two Dualities for Symmetric Datalog

be a contradiction.

For each i ∈ {0, . . . , q − 1}, assume that (Si,Si+1) has level `i. Then we

say that the IDB Ji has level `i and we write level(Ji) = `i.

We proceed to construct a CS-derivation DCS(S) for S. Let Q be a di-

rected path of height n. We construct DCS(S) just like we would construct

DCL(ξ(S ,Q)) above, except that we will define the subscripts of the IDBs,

MQ
0 , . . . ,M

Q
n−1, differently, so that every rule of the resulting derivation be-

longs to CS. From now on we write M0, . . . ,Mn−1 instead of MQ
0 , . . . ,M

Q
n−1.

To define M0, . . . ,Mn−1, let P0,P1, . . . be an enumeration of all (finite)

minimal oriented paths of height n. Intuitively, we will collect in N `
m all

subscripts (recall that a subscript is a relation) of all those IDBs which have

the same level ` in DCL(ξ(S ,Pm)). Formally, for each ` ∈ {0, . . . , n − 1}

defineN `
m = {MPm

t | level(Jt) = `}. Then we collect the subscripts at a fixed

level ` in O` over all derivations corresponding to P0,P1, Formally, for

each ` ∈ {0, . . . , n− 1}, we define O` = N `
0 ∪N `

1 , We are ready to define

M0, . . . ,Mn−1. For each s ∈ {0, . . . , n− 1}, define Ms =
⋃
W∈OsW .

It remains to show that every rule of the derivation we defined is in S

and that the last IDB is the goal IDB. If the last IDB is not the goal IDB of

S, then Mn−1 6= ∅. By definition, it must be that for some minimal oriented

path Pm of height n and length qm, MPm
qm−1 6= ∅ (note that the last IDB of

DCL(ξ(S ,Pm)) has subscript MPm
qm−1). As noted before, this would mean

that ξ(S ,Pm)→ B, a contradiction.

We show that each rule of DCS(S) as defined above belongs to CanS(B).

39

3.3 Two Dualities for Symmetric Datalog

Suppose DCS(S) contains a rule ρ

Ji(xi)← Ji−1(xi−1) ∧ Ē(yi)

that is not in CanS(B). By definition, there cannot be an instantiation α of

variables of ρ to elements of B such that α(xi−1) ∈ Mi−1, the conjunction

of EDBs holds, but α(xi) 6∈ Mi. Assume then that there is an α such that

α(xi) ∈ Mi, the conjunction of EDBs holds, but α(xi−1) 6∈ Mi−1. It is also

not difficult to see that this is not possible because we used all minimal

oriented paths in the construction of DCS(S).

Proof of Theorem 22. If co-CSP(B) is defined by a symmetric (j, k)-Datalog

program P , then using the symmetric property of P , it is laborious but

straightforward to show that

O =
⋃

D is a free
derivation of P

{Ex(D)}

is a (j, k)-symmetric obstruction set for B.

For the converse, assume that B has (j, k)-SBPD. Let O be a symmetric

obstruction set of width (j, k) (i.e. the path decomposition of every struc-

ture in O has width (j, k)) for B. We claim that (j, k)-CanS(B) defines

co-CSP(B). Assume that A→ B. Then by Lemma 23, (j, k)-CanS(B) does

not accept A. Suppose now that A 6→ B. Then by assumption, there exists

a (j, k)-path S ∈ O with a representation S of length n such that S → A.

40

3.3 Two Dualities for Symmetric Datalog

Furthermore, sinceO is symmetric, for any minimal oriented path P of height

n, ξ(S ,P) 6→ B. It follows from Lemma 24 that CanS(B) accepts A.

From the above proof it is obvious that:

Corollary 25 ([31]). If a symmetric (j, k)-Datalog program defines co-CSP(B),

then so does (j, k)-CanS(B).

3.3.2 Piecewise Symmetric Bounded Pathwidth Dual-

ity

Piecewise symmetric bounded pathwidth duality (PSBPD) for symmetric

Datalog is less stringent than SBPD; however, the price is larger program

width. Although the following definitions might seem technical, the general

idea is simple: a piecewise symmetric obstruction set O does not need to

contain all (j, k)-paths obtained by “zigzagging” (j, k)-paths in O in all pos-

sible ways. It is sufficient to zigzag a (j, k)-path S using only oriented paths

which “avoid” certain segments of S: some constants c and d are fixed for O,

and there are at most c fixed segments of S that are avoided by the zigzag

operator, each of size at most d. We give the formal definitions.

Definition 26 ((c, d)-filter). Let S be a (j, k)-path with a representation

S = S0, . . . ,Sn−1. A (c, d)-filter F for S is a set of intervals

{[s1, t1], [s2, t2], . . . , [sc′ , tc′]}

41

3.3 Two Dualities for Symmetric Datalog

such that

1. c′ ≤ c; 0 ≤ s1; tc′ ≤ n−1; si ≤ ti,∀i ∈ [c′]; and t`+2 ≤ s`+1, ∀` ∈ [c′−1];

2. |⋃i∈[s`,t`]
Si| ≤ d,∀` ∈ [c′].

Elements of F are called delimiters. An oriented path P of height n obeys

a (c, d)-filter F if for any delimiter [si, ti] ∈ F , the set of edges e of P such

that si ≤ level(e) ≤ ti form a (single) directed path. A demonstration is

given in Figure 3.2.

Remark: The first condition says that we have at most c delimiters (i.e.

intervals), and that two consecutive delimiters are not right next to each

other. The second condition limits the size of the substructure of S associated

with a delimiter.

S FS P

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

Figure 3.2: S is a (j, k)-path representation of S. FS is the (3, 2k)-filter
{[0, 0], [3, 4], [7, 8]} for S . P is an oriented path that obeys the filter. For
example, observe that the edges at levels 3 and 4 form a directed subpath,
and that “zigzagging” happens only at those parts of P that do not fall into
the intervals of the filter.

42

3.3 Two Dualities for Symmetric Datalog

Definition 27 (Piecewise Symmetric). Assume that O is a set of (j, k)-

paths, and c and d are nonnegative integers. Suppose furthermore that for

each S ∈ O, there is a (j, k)-path representation S , and a (c, d)-filter FS

such that the following holds. For every S ∈ O of some length n, and every

minimal oriented path P of height n that obeys the filter FS, it holds that

ξ(S ,P) ∈ O. Then O is (j, k, c, d)-piecewise symmetric.

Roughly speaking, an oriented path P is allowed to modulate only those

segments of S which do not correspond to any delimiters in FS. Compare

Definition 27 with Definition 20, and observe that the only difference is that

in the piecewise case, oriented paths must be of a restricted form. Therefore

a set that is (j, k)-symmetric is also (j, k, c, d)-piecewise symmetric for any c

and d. We simply associate the empty (c, d)-filter with each structure.

Definition 28 (PSBPD). A structure B has (j, k, c, d)-piecewise symmetric

bounded pathwidth duality ((j, k, c, d)-PSBPD) if there is an obstruction set

O for B that consists of (j, k)-paths, and in addition, O is (j, k, c, d)-piecewise

symmetric.

Theorem 29. For a finite structure B, B has SBPD (for some parameters)

if and only if B has PSBPD (for some parameters).

We need the corollary of the following lemma in the proof of the above

theorem.

Lemma 30. Let P be a minimal oriented path e0, . . . , en−1 with the (1, 2)-

path representation P = (e0, . . . , en−1), where ei is a structure with two

43

3.3 Two Dualities for Symmetric Datalog

domain elements and a binary relation that contains the tuple (edge) ei. Let

Q be a minimal oriented path f0, . . . , fm with n edge levels. Then the oriented

path ξ(P,Q) is minimal and has the same height as P.

Proof. It is obvious that ξ(P,Q) is an oriented path. Furthermore the map

that assigns every vertex of ξ(P,Q) to its original in P is a homomorphism.

It is easy to check that this homomorphism maps the edges of ξ(P,Q) back

to their originals and the level of an edge in ξ(P,Q) is the same as the

level of the original of that edge. Checking the minimality of ξ(P,Q) is also

straightforward.

Corollary 31. Let O be a set of (j, k)-paths, where a (j, k)-representation

is fixed for each path. Let O′ be the set that contains all (j, k)-paths that can

be obtained from a (j, k)-path in O by applying some zigzag operator. Then

O′ is (j, k)-symmetric.

Remark: A similar statement holds in the piecewise symmetric case.

Proof. The formal proof is straightforward but laborious. We explain the

basic idea. Let S′ be an element of O′. If we can show that applying an

arbitrary zigzag operator to S′ yields a (j, k)-path in O′, then we are clearly

done. So assume that S′ was obtained from S ∈ O by applying a zigzag

operator. The (j, k)-path S′ inherits the (j, k)-representation of S in a natural

way. Then we apply any zigzag operator to S′ to obtain S′′, and we need to

show that S′′ is in O′.

44

3.3 Two Dualities for Symmetric Datalog

We get from S to S′ using a zigzag operator and from S′ to S′′ another

zigzag operator. Using Lemma 30, these two zigzag operators can be replaced

by a single zigzag operator to obtain S′′ from S directly.

Proof of Theorem 29. Let O be a (j, k)-symmetric obstruction set for B. As

observed above, for any c and d, O is also (j, k, c, d)-piecewise symmetric.

For the converse, let Ops be a (j, k, c, d)-piecewise symmetric obstruction

set. Our goal is to construct a (j′, k′)-symmetric obstruction set Osym for

B as follows. For each structure S ∈ Ops, let S = S0 ∪ · · · ∪ Sn−1 be the

corresponding (j, k)-path representation. Using the filter for S, we “regroup”

S0, . . . ,Sn−1 to obtain a (j′, k′)-path representation S ′ = T0∪· · ·∪Tm of S.

We add each S together with its new representation to Osym, and also add

every structure that is needed to ensure that Osym is symmetric. Finally, we

show that Osym is a symmetric obstruction set for B. We begin with the

regrouping procedure.

Let S ∈ Opsp, S = S0 ∪ · · · ∪ Sn−1 be the corresponding (j, k)-path

representation, and {[s1, t1], [s2, t2], . . . , [sc′ , tc′]} be the (c, d)-filter FS. The

regrouping procedure is quite pictorial and it is demonstrated in Figure 3.3.

We define

T0 =
⋃

`∈[a,b]:
[a,b]∈FS

S`.

This places all substructures in S which correspond to delimiters of FS into

one big initial structure. Note though that |T0| ≤ c·d. Define the complement

45

3.3 Two Dualities for Symmetric Datalog

T0

T1

T2

T3

T4

T5

S S ′

S1

S0

S2

S3

S4

S5

S6

S12

S13

S8

S9

S10

S11

S7 S14

S15

S16

S17

S10

S11

S12

S13

S14

S15

S16

S17

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

Figure 3.3: An example regrouping for the proof of Theorem 29. The filter
FS = {[0, 1], [6], [12, 13], [17]}. The structures corresponding to the filter
are laying inside the rectangles with lines. The complement of the filter is
F̄S = {[2, 3, 4], [7, 8, 9, 10, 11], [14, 15, 16]}. The structure corresponding to
F̄S lay in the gray ovals. The new (j′, k′)-path representation S ′ of S is on
the right. Notice the following pattern: the segments of S determined by
FS are placed next to each other in S ′.

of FS as

F̄S = {[0, s1 − 1], [t1 + 1, s2 − 1], [t2 + 1, s3 − 1], . . . , [tc′ , n− 1]},

46

3.3 Two Dualities for Symmetric Datalog

and set

m = max
[a,b]∈F̄S

(b− a).

Intuitively, m is the length of the longest interval in S between any two

delimiters.

We define T′` as follows. For each interval [a, b] ∈ F̄S take the (` − 1)-

th structure Sa+`−1 in that interval and define T′` to be the union of these

structures. Formally, for every ` ∈ {1, . . . ,m}, set

T′` =
⋃

i=a+`−1≤b:
[a,b]∈F̄S

Si.

Observe that |T ′`| ≤ k ·(c+1). We need to ensure property 2 in Definition 17,

so we need to place some additional elements into the domains of the T′`.

Let [x, y] ∈ FS and [z, w] ∈ F̄S be such that z = y + 1. Then the set

of elements Sx ∪ · · · ∪ Sw is called a column. (For the beginning and end

of S a column is defined in the natural “truncated” way.) Because S is a

(j, k)-path representation, it follows from the definition that the intersection

of any pair of columns has size at most j. Let C1, . . . , Cr be an enumeration

of all the columns. Set D =
⋃
` 6=`′ C` ∩ C`′ and observe that |D| ≤ j ·

(
r
2

)
.

We add D to the domain of T0, and also to the domain of T′i to obtain Ti,

∀i ∈ {1, . . . ,m}. It is straightforward to see that the new representation

T = (T0, . . . ,Tm) satisfies property 2 of Definition 17. Using the remarks

about the sizes of the sets, we observe that T is a (j′, k′)-path decomposition

47

3.3 Two Dualities for Symmetric Datalog

of S, where j′ and k′ are functions of j, k, c and d.

We place all structures S ∈ Ops into Osym but we associate the new

representation with S. For a structure S ∈ Osym, we also apply all valid

zigzag operators to S (with respect to the new representation) and add all

these structures to Osym. By Corollary 31, Osym is a (j′, k′)-symmetric set.

We need to establish that Osym is an obstruction set. Because Ops ⊆ Osym,

it is sufficient to show that no structure in Osym maps to B. To do that

we show that for any structure in Osym, there is a structure in Ops that

homomorphically maps to it.

Giving a formal proof would lead to unnecessary notational complications

and therefore we give an example that is easier to follow and straightforward

to generalize. The example is represented in Figure 3.4. Let S ∈ Osym
such that S is also in Ops. Assume that the (j′, k′)-representation of S in

Osym is T . We consider ξ(T ,P) for some minimal oriented path and show

how to find a minimal oriented path Q such that ξ(S ,Q) → ξ(T ,P). To

construct Q, we make a copy of P aligned with S0,S1,S2,S3,S4 in S . This

is represented by the dashed lines in Figure 3.4. We also make a copy of

P aligned with S5,S6,S7,S8,S9. This is represented with the dash dotted

lines. Note that the resulting minimal oriented path respects the delimiters,

i.e. the zigzag operator will not “zigzag” S0 and S5. (In general, we never

need to “zigzag” structures that were placed into T0, i.e. the structures that

correspond to the delimiters, because P is minimal.)

In ξ(T ,P) we denote the copies of the Si with S̃i and primed S̃i. Using

48

3.3 Two Dualities for Symmetric Datalog

S0,S5, D

S1,S6, D

S2,S7, D

S3,S8, D

S4,S9, D

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S0

S1

S2

S3 S′
3

S′
2 S′′

2

S′′
3

S′
4

S′
5

S′
6

S′
7

S′
8 S′′

8

S′′
7 S′′′

7

S′′′
8

S′
9

S̃0, S̃5, D

S̃1, S̃6, D

S̃2, S̃7, D

S̃3, S̃8, D

S̃′′
2 , S̃

′′
7 , D

S̃′′
3 , S̃

′′
8 , DS̃′

3, S̃
′
8, D

S̃′
2, S̃

′
7, D

S̃′
4, S̃

′
9, D

Q ξ(S ,Q) P ξ(T ,P)S : the rep-
resentation of S
in Ops

T : the rep-
resentation of S
in Osym

Figure 3.4: Example in the proof of Theorem 29. See the proof for details.

the definition of the zigzag operator, it follows that the function f that maps

an element of S0∪S1∪S2∪S3∪S′3∪S′2∪S′′3∪S′4 in ξ(S ,Q) to the corresponding

element in S̃0∪S̃1∪S̃2∪S̃3∪S̃′3∪S̃′2∪S̃′′3∪S̃′4 is a homomorphism. We similarly

define a homomorphism h from S′5 ∪ S′6 ∪ S′7 ∪ S′8 ∪ S′′8 ∪ S′′7 ∪ S′′′7 ∪ S′′′8 ∪ S′9

in ξ(S ,Q) to S̃′5 ∪ S̃′6 ∪ S̃′7 ∪ S̃′8 ∪ S̃′′8 ∪ S̃′′7 ∪ S̃′′′7 ∪ S̃′′′8 ∪ S̃′9 in ξ(T ,P).

If for every x that is in the domain of both f and h, f(x) = h(x), then we

can combine f and h to get the desired homomorphism. Assume for example

that the element x appears in S2 and also in S′′′8 in ξ(S ,Q), and suppose

that f(x) = y and h(x) = y′. Let the originals of y and y′ be z and z′ in T ,

respectively. We also find z and z′ in S2 and S8 in S . Observe that x in S2

in ξ(S ,Q) is a copy of z and x in S′′′8 in ξ(S ,Q) is a copy of z′. If z 6= z′

(in S) then x could not appear both in S2 and S′′′8 by the definition of the

zigzag operator. Therefore z = z′, z ∈ D, and by definition, z is in every bag

49

3.4 Applications

of T . The elements y and y′ are copies of z, and because z appears in every

“bag” of T , all copies of z in ξ(T ,P) are identified to be the same element.

In particular, f(x) = y = y′ = h(x).

3.4 Applications

3.4.1 Datalog + Maltsev ⇒ Symmetric Datalog

Using SBPD, we give a short and simple re-proof of the main result of [31]:

Theorem 32 ([31]). Let B be a finite core structure. If B is invariant under

a Maltsev operation and co-CSP(B) is definable in Datalog, then co-CSP(B)

is definable in symmetric Datalog (and therefore CSP(B) is in L by [38]).

We only need to show that if co-CSP(B) is in linear Datalog and B is

preserved by a Maltsev operation, then co-CSP(B) is in symmetric Datalog.

The “jump” from Datalog to linear Datalog essentially follows from already

established results, as observed in [31]. For completeness’ sake, we outline

the argument but we omit the technical definitions.

Lemma 33 ([31]). Let B be a core structure such that the variety correspond-

ing to the algebra associated with B (V(A(B))) is congruence-permutable and

co-CSP(B) is in Datalog. Then V(A(B)) is arithmetical.

Lemma 34 ([74]). A variety is arithmetical if and only if it has a majority

term and a Maltsev term.

50

3.4 Applications

Therefore if co-CSP(B) is in Datalog and B is invariant under a Maltsev

operation (i.e. is congruence-permutable), then B is also closed under a ma-

jority operation. By [30], invariance of B under a majority operation implies

that co-CSP(B) is in linear Datalog.

To re-prove Theorem 32, we show the following lemma using an SBPD

argument.

Lemma 35. If co-CSP(B) is definable by a linear Datalog program and B

is invariant under a Maltsev operation m, then co-CSP(B) is definable by a

symmetric Datalog program.

To get ready for the proof of Lemma 35, we define an N of size s as an

oriented path that consists of s forward edges, followed by s backward edges,

followed by another s forward edges. Proposition 36 is easy to prove, and

the Maltsev properties are used in Lemma 37.

Proposition 36. A minimal oriented path is either a directed path, or it

contains a subpath which is an N .

Lemma 37. Let B be a structure invariant under a Maltsev operation m,

S be a (j, k)-path with a (j, k)-representation S = (S0, . . . ,Sn−1), and P =

e0, . . . , eq be a minimal oriented path of height n. If ξ(S ,P) → B, then

S→ B.

Proof. Using Proposition 36, there is a t such that Q = et, et+1, . . . , et+(3s−1)

is an N of size s in P. Assume that the first and last vertices of Q are v and

51

3.4 Applications

w, respectively. Let P′ be the oriented path obtained from P by removing

Q, and adding a directed path Q′ = ft, ft+1, . . . , ft+(s−1) of length s from v to

w. We claim that there is a homomorphism γ from ξ(S ,P′) to B. Once this

is established, repeating the argument sufficiently many times clearly yields

that S→ B.

Let ξ(S ,P) = (Se0 , . . . ,Seq), and ϕe0 , . . . , ϕeq be the corresponding iso-

morphisms (recall the zigzag operator definition in Section 3.2.4). Similarly,

let ξ(S ,P′) = (Sf0 , . . . ,Sfq−2s), and ψf0 , . . . , ψfq−2s be the corresponding iso-

morphisms. Because S[e0,et−1] and S[et+3s,eq] are isomorphic to S[f0,ft−1] and

S[ft+s,fq−2s], respectively, γ for elements in S[f0,ft−1] ∪ S[ft+s,eq−2s] is defined in

the natural way. It remains to define γ for every d ∈ S[ft,ft+(s−1)].

Assume that d ∈ Sft+` for some ` ∈ {0, . . . , s − 1}. Find the original of

d in S and let it be do, i.e. do = ψft+`(d). Then we find the three copies

d1, d2, d3 of do in S[ft,ft+(3s−1)]. That is, first we find the three edges e`1 , e`2 , e`3

of Q which have the same level as ft+` (all levels are with respect to P

and P′). Then di = ϕ−1
e`i

(do), i ∈ [3]. We define γ(d) = m(d1, d2, d3). By

the Maltsev properties of m, γ is well-defined. As B is invariant under m,

ξ(S ,P′)
γ−→ B.

Proof of Lemma 35. If co-CSP(B) can be defined by a linear (j, k)-Datalog

program, then there is an obstruction set O for B in which every structure is

a (j, k)-path by [27]. We construct a symmetric obstruction set Osym for B as

follows. For every (j, k)-path S with a (j, k)-representation S = S0, . . . ,Sn−1

in O and for every minimal oriented path P of height n, place ξ(S ,P) into

52

3.4 Applications

Osym. By Corollary 31, Osym is (j, k)-symmetric.

Observe that O ⊆ Osym, so it remains to show that no element of Osym
maps to B. But if T ∈ Osym, then T = ξ(S ,P) for some S ∈ O and P. By

Lemma 37, if ξ(S ,P) → B, then S → B. This contradicts the assumption

that O is an obstruction set for B.

3.4.2 A class of oriented paths for which the CSP is in

L, and a class for which the CSP is NL-complete

In this section we define a class C of oriented paths such that if B ∈ C then

co-CSP(B) is in symmetric Datalog. Our strategy is to find an obstruction

set O for B ∈ C, and then to show that our obstruction set is piecewise

symmetric. We need some notation.

We say that a directed path is forward to mean that its first and last

vertices are the vertices with indegree zero and outdegree zero, respectively.

Let P be an oriented path with first vertex v and last vertex w. Then the

reverse of P, denoted with P̄, is a copy of the oriented path P in the reverse

direction, i.e. the first vertex of P̄ is a copy of w and its last vertex is a copy

of v. Let Q be another oriented path. The concatenation of P and Q is the

oriented path PQ in which the last vertex of P is identified with the first

vertex of Q. For a nonnegative integer r, Pr denotes P1P2 · · ·Pr, where

the P` are disjoint copies of P. Given two vertices v and w, we denote the

presence of an edge from v to w with v → w.

53

3.4 Applications

P1

P2

P3

P4

P5

s

t

a

b

c

d

e

E1

E2

Figure 3.5: 2-wave in the proof of Theorem 39.

Definition 38 (Wave). If an oriented path Q can be expressed as E1(PP̄)rPE2,

where Ei (i ∈ [2]) denotes the forward directed path that is a single edge, P

is a forward directed path of length `, and r ≥ 0, then Q is called an `-wave.

A 2-wave is shown in Figure 3.7, 1.

Theorem 39. Let Q be a wave. Then Q has PSBPD, co-CSP(Q) is definable

in symmetric Datalog, and CSP(Q) is in L.

Proof. We prove the case when Q is an `-wave for ` = 2. For larger `-

s, the proof generalizes in a straightforward manner. Let P be a directed

path of length h, P1,P3,P5 be disjoint copies of P, and P2,P4 be copies of

the reverse of P. Let E1 and E2 be forward edges. Assume the 2-wave Q

is E1P1P2P3P4P5E2 (Figure 3.5). We will provide a piecewise symmetric

obstruction set Ops for Q, such that every element of Ops is an oriented

path. To do this, first we observe that by [53], Q has path duality, i.e. we

can assume that the set O of all oriented paths that do not homomorphically

map to Q form an obstruction set for Q. To construct Ops from O, we will

place certain elements of O into Ops such that Ops is still an obstruction set

54

3.4 Applications

for Q.

We begin with some simple observations. Any oriented path that has

height at most h + 1 maps to Q, so these oriented paths can be neither in

O nor in Ops. Any oriented path that has height strictly larger than h + 2

obviously does not map to Q, so all such paths are in O and we also place

these paths into Ops. Assume that P ∈ O has height exactly h+2. It is easy

to see that if P is not minimal, then it contains a minimal subpath that does

not map to Q. Therefore, it is sufficient to place only those oriented paths

from O of height h+ 2 into Ops which are minimal.

Let P ∈ Ops of height h+2 (then P is minimal). Intuitively, any attempt

to homomorphically map the vertices of P to Q starting by first mapping

the first vertex of P to the first vertex of Q and then progressively finding

the image of the vertices of P from left to right would get stuck at a or c.

Formally, assume that the vertices of P are v1, . . . , vn. Let P[i] denote

the subpath of P on the first i vertices. Choose i to be the largest index

such that P[i]
ϕ−→ Q and ϕ(v1) = s. Then ϕ cannot be extended to vi+1

for one of the following reasons. Clearly, ϕ must map vi to a source or a

sink other than s or t, i.e. to a,b,c or d. Furthermore, we can assume that

vi is not mapped to b or d. This is because if vi is mapped to b or d, then

level(vi) = 1, so the edge between vi and vi+1 is from vi to vi+1, and therefore

ϕ can be extended. So we can assume that vi is mapped to a or c. Because

we cannot extend ϕ, vi+1 must be at level ` + 2, so it must be that vi+1 is

the last vertex vn of P. Because P 6→ Q, P[n−1] must be an oriented path

55

3.4 Applications

such that any homomorphism ϕ from P[n−1] to Q such that ϕ(v1) = s maps

vn−1 to a or c but not to e.

We assume first that any homomorphism ϕ from P[n−1] to Q maps vn−1

to a. We follow the vertices of P[n−1] from left to right. Let wa be the first

vertex that is at level h + 1. If there is a vertex to the right of wa at level

1, then because P[n−1] will have to reach level h + 1 again, we will be able

to map vn−1 to c, and that is not possible by assumption. So P must have

the following form (Form 1): (w1 → w2)X(w3 → w4)Y(w5 → w6), where X

is any oriented path of height h− 1 with first vertex at the bottom and last

vertex at the top level of X, and Y is any oriented path of height h− 1 with

both its first and last vertices being in the top level of Y. See Figure 3.6,

left.

For the second case, we assume that P[n−1] is such that vn−1 can be

mapped to c. Again, we follow the vertices of P[n−1] from left to right. Let

wa be the first vertex that is at level h + 1. We must have a vertex going

back to level 1 (otherwise we could not “pass” b and could not map vn−1 to

c). Let wb be the first such vertex. We will have to go back to level h + 1

again, so let wc be the first vertex at that level. Finally, we cannot go back

to level 1 again, since then the last vertex of P[n−1] can be mapped to e. We

can “go down” to at most level 2 of P[n−1]. So P must have the form (Form

2) (w1 → w2)X(w3 → w4)Y(w5 ← w6)Z(w7 → w8)W(w9 → w10), where X

(Z) is any oriented path of height h− 1 with first vertex at the bottom and

last vertex at the top level of X (Z), Y is any oriented path of height h− 1

56

3.4 Applications

with first vertex at the top and last vertex at the bottom level of Y, and W

is any oriented path of height h− 1 with both its first and last vertices being

in the top level of W. See Figure 3.6, right.

X

Y

w1

w2

w3

wa = w4 w5

w6

X

Y

w1

w2

w3

wa = w4

Z

W

w5

wb = w6

w7

w9

w10

wc = w8

Figure 3.6: Obstructions of height h+ 2 for a 2-wave.

Because Ops ⊆ O and for any structure S ∈ O, there is a structure

S′ ∈ Ops such that S′ → S, Ops is an obstruction set for Q.

It remains to show that Ops is piecewise symmetric. Let S be an oriented

path of height more than h+ 2, and assume the vertex set of S is v1, . . . , vn.

We need to define a representation S , and a filter FS for S. The represen-

tation (S0,S1, . . . ,Sn−2) is (v1, v2), (v2, v3), . . . , (vn−1, vn) (width (1, 2)). The

filter FS is the empty filter. Note that if we apply a zigzag operation to

S, we get an oriented path of the same height as S, so Ops is closed under

zigzagging of obstructions of height greater than h+ 2.

Let S be an oriented path of height h + 2 of Form 1, and assume the

vertex set of S is v1, . . . , vn. The representation S = (S0,S1, . . . ,Sn−2) is

constructed as in the previous paragraph. We specify FS to be the following

(3, 6)-filter. Assume that the edge (w3, w4) is structure Si. Then FS =

{[0, 0], [i, i], [n−2, n−2]}. Using the definitions it is easy to see that if P obeys

57

3.4 Applications

the filter FS, then ξ(S ,P) is also an oriented path of Form 1. Therefore Ops
is closed under zigzagging of obstructions of Form 1. Obstructions of Form

2 can be handled similarly.

We state the following generalization of waves.

Definition 40 (Staircase). A monotone wave is an oriented path of the

form (P̄P)rP̄, where P is a forward directed path and r ≥ 0. We call the

vertices of a monotone wave in the topmost level peaks, and the vertices in

the bottommost level troughs.

If a minimal oriented path Q can be expressed as

P1W1P2W2 . . .Pn−1Wn−1Pn,

where P1, . . . ,Pn are forward directed paths, W1, . . . ,Wn−1 are monotone

waves, and for any i ∈ [n− 1], the troughs of Wi are in a level strictly below

the level of the troughs of Wi+1, and also, the peaks of Wi are in a level

strictly below the level of the peaks of Wi+1, then Q is called a staircase.

An example is given in Figure 3.7, 2.

Theorem 41. Let Q be a staircase. Then Q has PSBPD, co-CSP(Q) is

definable in symmetric Datalog, and CSP(Q) is in L.

Proof. Assume that the height of pQ is h. As for waves, we use [53] to

conclude that Q has path duality. We will construct a piecewise symmetric

obstruction set Ops for Q by placing three classes of oriented paths into Ops.

58

3.4 Applications

First, Ops contains all oriented paths which have height strictly greater than

h. These oriented paths obviously do not map to Q.

The next class of oriented paths we place into Ops are those which have

height precisely h. Recall that Q consists of waves patched together with

directed paths in between. Let the wave subpaths of Q be W1, . . . ,Wn,

from left to right. For each Wi, we construct a class of oriented paths.

Assume that Wi has height hi and let Oi be the set of minimal oriented

paths of height hi which do not map to Wi. For each R ∈ Oi, we construct

C = B1RB2, where B1 and B2 are oriented paths (possibly empty) such that

C has height h, and the level of R in C matches the level of Wi. Observe

that there cannot be a homomorphism from C to Q. We place all such

constructed C into Ops.

Let ` be the length of the longest directed subpath of Q. The third class

of oriented paths are those that have height h′, where ` < h′ < h. For every

such h′, we produce a set of obstructions. (Remark: we set ` < h′ because

any oriented path of length ` or less maps to Q.)

Assume inductively (the base case is trivial) that we already have a

piecewise symmetric obstruction set for every staircase of height strictly less

than h. Consider every subpath Q1, . . . ,Qm of Q of height h′. Notice that

core(Qi) is a staircase which is not a directed path. By the inductive hypoth-

esis we have a piecewise symmetric obstruction set Ui for Qi. We keep only

those oriented paths in Ui which have height at most h′; observe that Ui 6= ∅.

Construct D = B1T1 · · ·BmTmBm+1, where (T1, . . . ,Tm) ∈ U1 × · · · × Um

59

3.4 Applications

and the Bj are arbitrary oriented paths such that the height of D is h′. Place

all these D-s into Ops.

Notice that D does not map to Q for the following reason. Assume for

contradiction that D maps to a subpath S of Q. Then D also maps to the

core of S which is a staircase. But by construction D contains a subpath

that does not map to S.

We show that Ops is an obstruction set for Q. If a structure Z ∈ Ops
homomorphically maps to an input structure A, then obviously, there cannot

be a homomorphism from A to Q. Assume for contradiction that no structure

in Ops maps to A but A does not map to Q. Then O contains an oriented

path P that maps to A. So if we show the following claim then we are done.

Claim. For any oriented path P that does not homomorphically map to Q,

there is an oriented path Z ∈ Ops that homomorphically maps to P.

Proof of Claim. Assume that P has height precisely h. We show that there

exists Z ∈ Ops of height h such that Z → P. Assume for contradiction

that none of the oriented paths of height h in Ops map to P. As before,

let W1, . . . ,Wn be the wave segments of Q, from left to right, and assume

without loss of generality that none of the Wi is a directed path. Let the

initial and final vertices of Wi be ai and bi respectively, i ∈ [n]. For each

i ∈ [n], find the minimal oriented subpaths of P whose initial vertices have

the same level as ai, and final vertices have the same level as bi, or vice versa

(note that because of the structure of Q, no such oriented path could contain

60

3.4 Applications

another as a subpath, however, these oriented paths could overlap). For any

such subpath R of P associated with Wi, map the lowest vertex of R to

ai, and the highest vertex of R to bi. Remark 1: In fact there is no other

choice. The rest of the vertices of R can be mapped to Q as follows. If R

does not map to Wi with first and last vertices matched then by definition,

P is in Ops and we have a contradiction. Therefore let the homomorphism

for R be ϕR. Remark 2: Also observe that ϕR maps the inner vertices of R

to vertices of the staircase which are between ai and bi.

We show that the partial homomorphisms ϕR map the same vertex of P

to the same vertex in Q, and furthermore we can also map those vertices of

P to an element of Q that are not mapped anywhere by the ϕR. This way

we obtain a homomorphism from P to Q and this would be a contradiction.

First, any vertex v is assigned to a vertex of Q by at most two homomor-

phisms which correspond to consecutive wave segments of Q. This is because

in Q, Wi and Wj are disjoint unless j = i+ 1. Using Remarks 1 and 2, we

can see that if a vertex v of P is in the domain of two “non-consecutive” ho-

momorphisms, then because those homomorphisms could not agree on where

to map v, it is not possible that P→ Q. This is a contradiction.

Let ϕR1 and ϕR2 (assume without loss of generality that R1 and R2

correspond to W1 and W2, respectively) be two partial homomorphisms

such that their domains overlap. Then the markers a1, b1, a2, b2 appear in

the order a1, a2, b1, b2 when traversing P from left to right. The vertices that

are in the domain of both homomorphisms are the ones from a2 to b1. By the

61

3.4 Applications

choice of a1, b1, a2, b2, the segment of P from a2 to b1 is a minimal oriented

path. Checking the images of the vertices going back from b1 to a2 under the

map ϕR1 , we see that these vertices are mapped to the rightmost directed

path segment of W1. Similarly, the image of these vertices under ϕR1 is the

leftmost directed path of the W2. That is, the two homomorphisms coincide

for the vertices from a2 to b1.

Furthermore, some vertices of P are not in the domain of any partial

homomorphisms. Consider the two minimal oriented paths S and S′ on the

two sides of such a maximal continuous sequence of vertices in P. There are

two cases. First, assume that S and S′ both correspond to the same Wi.

Let the markers for S be a and b and the markers for S′ be a′ and b′. Then

following P from left to right, the markers appear in the order a, b, b′, a′. The

images of the vertices from b to b′ are not defined. (Observe that b and b′

are mapped to the same vertex.) Consider the last directed path segment of

Wi together with the first directed path segment of Wi+1 (or just the last

edges of Q if i = n). Observe that the vertices from b to b′ can be mapped

to this directed path. The case when S and S′ correspond to different waves

of Q is handled similarly.

Suppose lastly that P has height h′ < h. Because P does not map to

any of the subpaths of Q of height h′, for each subpath Q1, . . . ,Qm of Q of

height h′, P contains a subpath Si such that Si 6→ Qi, i ∈ [m]. If Si 6→ Qi

then Si 6→ core(Qi). Recall that core(Qi) is a staircase and by definition, Ui
contains an oriented path S′i such that S′i → Si. It is clear that we can choose

62

3.4 Applications

oriented paths B1, . . . ,Bm+1 such that B1S
′
1B2 . . .BmS′mBm+1 → P.

Finally, it is not hard to see from the construction how to associate filters

with the elements of Ops to establish that Ops is piecewise symmetric.

We also give a large class of oriented paths for which the CSP is NL-

complete. We need the following lemma and proposition to prove Theo-

rem 44.

Lemma 42 ([49]). Let P1 and P2 be two minimal oriented paths of the

same height h. Then there is a minimal oriented path Q of height h such

that Q→ P1,P2.

Proposition 43. A core oriented path has a single automorphism, i.e. it is

rigid.

Proof. Let P be a core oriented path and P be an isomorphic copy of P′.

There are at most two isomorphisms from P′ to P (because a vertex with

indegree 0 must be mapped to a vertex with indegree 0, and similarly for

a vertex with outdegree 0). One possibility is to map the first vertex of P′

to the first vertex of P and the last vertex of P′ to the last vertex of P.

For contradiction, assume that the second possibility happens, i.e. there is

an isomorphism ϕ that maps the first vertex of P′ to the last vertex of P

and the last vertex of P′ to the first vertex of P. Assume that both the first

vertex v and last vertex w of P′ have indegree zero (the other case is similar).

Then the level(v) = level(w). This implies that the number of forward and

63

3.4 Applications

backward edges in P is the same, so P has 2q edges. By the existence of ϕ, P

must have the form QQ̄, and such an oriented path is clearly not a core.

Theorem 44. Let P be a core oriented path that contains a subpath P1P2P3

of some height h with the following properties: P1,P2 and P3 are minimal

oriented paths, they all have height h, and there is a minimal oriented path

Q of height h such that Q → P1, Q → P3 but Q 6→ P2. Then CSP(P) is

NL-complete.

An example is given in Figure 3.7, 3 and 4.

P1

P2

P3

P4

P5

E1

E2

Q

1 2 3 4

P1

P2

P3

Figure 3.7: 1: A 2-wave. 2: A staircase. 3: An example oriented path
for which the CSP is NL-complete. 4: The oriented path Q in Theorem 44
corresponding to the oriented path in 3.

Proof of Theorem 44. We show that the less-than-or-equal-to relation on two

elements, R≤ = {(0, 0), (0, 1), (1, 1)}, and the relations {0} and {1} can

be expressed from P using primitive positive (pp) formulas (i.e. a first or-

der formulas with only existential quantification, conjunction and equality).

This will prove the theorem because it is easy to see and well known that

co-CSP({R≤, {0}, {1}}) is equivalent to the NL-complete directed st-Conn

problem.

64

3.4 Applications

Since P is a core, it is rigid by Proposition 43. Assume that the first vertex

of P1 is in a level lower than the level of the last vertex of P1 (the other case

can be handled similarly). See the illustration in Figure 3.8. Assume that the

first vertex of P1 is 0 and the first vertex of P3 is 1. We construct a structure

G with two special vertices x and y such that {(h(x), h(y)) | G h−→ P} = R≤.

It is well known and easy to show that then R≤ can also be expressed from P

using a pp-formula. Let P′ be an isomorphic copy of P. We refer to copies of

x y

Q P123

P23

P1

10

P2 P3 P′
1 P′

2 P′
3

c

P G

Figure 3.8: Construction of the gadget G.

P1,P2,P3 as P′1,P
′
2,P

′
3, respectively. Using Lemma 42, we find a minimal

oriented path P23 of height h that maps to both P2 and P3. Similarly, we find

a minimal oriented path P123 that maps to each of P1,P2,P3. We rename

the first vertex of Q to x, and the first vertex of P123 to y. To construct G,

we identify the topmost vertices of the oriented paths P23,Q and P123. Then

we identify the first vertex of P23 with the vertex c of P′ that is shared by

P′2 and P′3. Observe that any homomorphism from G to P, must map c to

1. It is straightforward to verify that {(h(x), h(y)) | G h−→ P} = R≤.

65

3.4 Applications

Because P is rigid, any relation of the form {v} where v ∈ P can be

expressed by a pp-formula.

66

Chapter 4

The Complexity of the List

Homomorphism Problem for

Graphs1

4.1 Introduction

Homomorphisms of graphs, i.e. edge-preserving mappings, generalize graph

colorings, and can model a wide variety of combinatorial problems dealing

with mappings and assignments [50]. Because of the richness of the homo-

morphism framework, many computational aspects of graph homomorphisms

have recently become the focus of much attention. In the list H-colouring

problem (for a fixed graph H), one is given a graph G and a list Lv of vertices

1The contents of this chapter were obtained in joint work with Andrei Krokhin, Benoit
Larose, and Pascal Tesson, published in [36, 37].

67

4.1 Introduction

of H for each vertex v in G, and the goal is to determine whether there is a

homomorphism h (for graphs this is just an edge-preserving map) from G to

H such that h(v) ∈ Lv for all v. The complexity of such problems has been

studied by combinatorial methods, e.g., in [41, 42]. In this chapter, we study

the complexity of the list homomorphism problem for graphs in the wider

context of classifying the complexity of CSPs, see [9, 43, 50].

The aim of the present chapter is to show that the algebraic conditions

explained in Section 1.3.2 are indeed sufficient and necessary in the special

case of list H-colouring for undirected graphs with possible loops, and to

characterise, in this special case, the dividing lines in graph-theoretic terms.

Note that our results provide the first complete classification of CSPs with a

fixed template for a reasonably large class of structures outside the Boolean

case [2]. One can view the list H-colouring problem as a CSP where the

template is the structure HL consisting of the binary (edge) relation of H

and all unary relations on H (i.e. every subset of H). Tractable list ho-

momorphism problems for general structures were characterised in [16, 4] in

algebraic terms. The tractable cases for graphs were described in [42] in both

combinatorial and (more specific) algebraic terms; the latter implies, when

combined with a recent result [30], that in these cases co-CSP(HL) is defin-

able in linear Datalog and therefore CSP(HL) is in fact in NL. We complete

the picture by refining this classification and showing that CSP(HL) is either

NP-complete, or NL-complete, or L-complete or in AC0 (and in fact first-order

definable). We also remark that the problem of recognising into which case

68

4.1 Introduction

the problem CSP(HL) falls can be solved in polynomial time.

As we mentioned above, the distinction between NP-complete cases and

those in NL follows from earlier work [30, 42], and the situation is similar

with distinction between L-hard cases and those leading to membership in

AC0 [61, 62]. Therefore, the main body of technical work in the chapter con-

cerns the distinction between NL-hardness and membership in L. We give two

equivalent characterisations of the class of graphs H such that CSP(HL) is

in L. One characterisation is via forbidden induced subgraphs (for example,

the reflexive graphs in this class are exactly the (P4, C4)-free graphs2, while

the irreflexive ones are exactly the bipartite (P6, C6)-free graphs), while the

other characterisation is via an inductive definition. The first characterisa-

tion is used to show that graphs outside of this class give rise to NL-hard

problems; we do this by providing constructions witnessing the presence of

a non-Boolean type in the algebras associated with the graphs. The second

characterisation is used to prove positive results. We first provide operations

in the associated algebra which satisfy certain identities; this allows us to

show that the necessary condition on types is also sufficient in our case. We

also use the inductive definition to demonstrate that the class of negative

instances of the corresponding CSP is definable in symmetric Datalog, which

implies membership of the CSP in L.

2Pk is a path on k vertices, and Ck is the chordless cycle on k vertices. A graph is
(Pk, Ck′)-free if it does not contain a Pk or a Ck′ as an induced subgraph.

69

4.2 Preliminaries

4.2 Preliminaries

4.2.1 Graphs and relational structures

The direct n-th power of a τ -structure T, denoted Tn, is defined to have

universe T n and, for any (say m-ary) R ∈ τ , (a1, . . . , am) ∈ R(Tn) if and

only if (a1[i], . . . , am[i]) ∈ R(T) for each 1 ≤ i ≤ n. For a subset I ⊆ T , the

substructure induced by I on T is the structure I with universe I and such

that R(I) = R(T) ∩ Im for every m-ary R ∈ τ .

For the purposes of this chapter, a graph is a relational structure H =

〈H; θ〉 where θ is a symmetric binary relation on H. The graph H is reflexive

(irreflexive) if (x, x) ∈ θ ((x, x) 6∈ θ) for all x ∈ H. Given a graph H, let

S1, . . . , Sk denote all subsets of H; let HL be the relational structure obtained

from H by adding all the Si as unary relations; more precisely, let τ be the

signature that consists of one binary relational symbol θ and unary symbols

Ri, i = 1, . . . , k. The τ -structure HL has universe H, θ(HL) is the edge

relation of H, and Ri(H
L) = Si for all i = 1, . . . , k. It is easy to see that HL

is a core; in fact its only self-map which is a homomorphism is the identity.

We call CSP(HL) the list homomorphism problem for H. Note that if G is

an instance of this problem then θ(G) can be considered as a digraph, but

the directions of the arcs are unimportant because H is undirected. Also, if

an element v ∈ G is in Ri(G) then this is equivalent to v having Si as its list,

so G can be thought of as a digraph with H-lists. Note that an element of

G can in principle have several H-lists, which is equivalent to having their

70

4.2 Preliminaries

intersection as a single list.

In [42], a dichotomy result was proved, identifying bi-arc graphs as those

whose list homomorphism problem is tractable, and others as giving rise to

NP-complete problems. Bi-arc graphs are defined as follows. Fix a circle with

two distinct specified points p and q. A bi-arc is a pair of arcs (N,S) on the

circle such that N contains p but not q and S contains q but not p. A graph

H is a bi-arc graph if there is a family of bi-arcs {(Nx, Sx) : x ∈ H} such that,

for every x, y ∈ H, the following conditions hold: (i) if x and y are adjacent,

then neither Nx intersects Sy nor Ny intersects Sx, and (ii) if x is not adjacent

to y then both Nx intersects Sy and Ny intersects Sx. Equivalently, H is a

bi-arc graph if and only if the complement of the graph H×K2 is a circular

arc graph (i.e., can be represented by arcs on a circle so that two vertices are

adjacent if and only if the corresponding arcs intersect) [42].

4.2.2 Algebra

An algebra is a pair A = 〈A;F 〉 where A is a non-empty set, and F is a

family of finitary operations on A. With any structure T, one associates an

algebra AT whose universe is T and whose operations are all polymorphisms

of T. Given a graph H, we let, for the ease of notation, H denote the algebra

associated with HL. An operation on a set is called conservative if it preserves

all subsets of the set (as unary relations). So, the operations of H are the

conservative polymorphisms of H. Polymorphisms can provide a convenient

language when defining classes of graphs. For example, it was shown in [12]

71

4.2 Preliminaries

that a graph is a bi-arc graph if and only if it admits a conservative majority

operation, where recall that a majority operation is a ternary operation m

satisfying the identities m(x, x, y) = m(x, y, x) = m(y, x, x) = x (for all x, y).

In order to state some of our results, we need the following basic notions

from universal algebra (see textbooks [54, 70] for more universal-algebraic

background and [15, 24] for the basics of the connection between universal

algebra and CSP). Let I be a signature, i.e. a set of operation symbols f each

of a fixed arity; we use the term “signature” for both structures and algebras,

this will cause no confusion. An algebra of signature I is a pair A = 〈A;F 〉

where A is a non-empty set, the universe of A, and F = {fA : f ∈ I}

is the set of basic operations (for each f ∈ I, fA is an operation on A

of the corresponding arity). The term operations of A are the operations

built from the operations in F and projections by using composition. The

polynomial operations of A are the operations built from the operations in F ,

the constant operations and projections by using composition. An algebra all

of whose (basic or term) operations are conservative is called a conservative

algebra. A subalgebra B of an algebra A consists of a subset B of A that is

invariant under all operations of A and the restrictions of the operations of

A to B. A homomorphic image of an algebra A is an algebra C which is

similar to A (i.e. with the same signature) and such that there is a surjective

mapping ψ : A → C with ψ(fA(a1, . . . , ar)) = fC(ψ(a1), . . . , ψ(ar)) for all

operations f ∈ I and all tuples of elements of A. Direct products and powers

of algebras are defined in a natural way, by taking direct product of universes

72

4.2 Preliminaries

and defining the operations to act componentwise. A class of similar algebras

which is closed under formation of homomorphic images, subalgebras and

direct products is called a variety. The variety generated by an algebra A,

denoted by V(A), is the smallest variety containing A, it coincides with the

class of all homomorphic images of subalgebras of direct powers of A.

Tame Congruence Theory, as developed in [54], is a powerful tool for the

analysis of finite algebras. Every finite algebra has a typeset, which describes

(in a certain specified sense) the local behaviour of the algebra. It contains

one or more of the following 5 types: (1) the unary type, (2) the affine

type, (3) the Boolean type, (4) the lattice type and (5) the semilattice type.

The numbering of the types is fixed, and they are often referred to by their

numbers. The typeset of a variety V , denoted typ(V), is simply the union

of typesets of all finite algebras in it. We note that there is a very tight

connection between the kind of identities that are satisfied by the algebras in

a variety and the types that are admitted or omitted by a variety, i.e. those

types that do or do not appear in the typesets of algebras in the variety [54].

We will be mostly interested in type-omitting conditions for varieties of the

form V(AT), and Corollary 3.2 of [79] says that in this case it is enough to

consider the typesets of AT and its subalgebras. On the intuitive level, if T

is a core structure then the typeset typ(V(AT)) contains crucial information

about the kind of relations that T can or cannot simulate, thus implying

lower/upper bounds on the complexity of CSP(T).

The definitions of the types are rather technical in general, but they are

73

4.2 Preliminaries

simple enough for conservative algebras, and all algebras in this chapter are

conservative. Let A = 〈A,F 〉 be a conservative algebra and let X = {a, b} be

a two-element subset of A. By conservativity, every operation in F preserves

X, so X is the universe of a subalgebra X of A. Identify a with 0 and b with

1, and think of operations on X as Boolean operations. Then X satisfies

exactly one of the following five conditions (see [54]):

• The type of X (in A) is unary, or 1, if f |X is a projection for each

f ∈ F .

• The type of X is affine, or 2, if it is not unary and f |X is a linear

operation for each f ∈ F . Equivalently, the type of X is affine if the

polynomial operations of X are all linear Boolean operations.

• The type of X is semilattice, or 5, if it is not unary and either each

operation f |X , f ∈ F , is the minimum of some of its arguments or each

operation f |X , f ∈ F , is the maximum of some of its arguments.

• The type of X is lattice, or 4, if it is not semilattice, but all operations

f |X , f ∈ F , are monotone. Equivalently, the polynomial operations of

X are all monotone Boolean operations.

• The type of X is Boolean, or 3, in all other cases, that is, if the family

{f |X | f ∈ F} contains a non-linear operation and a non-monotone

operation. Equivalently, the polynomial operations of X are all possible

Boolean operations.

74

4.2 Preliminaries

The typeset of a conservative algebra A admits all types of two-element

subsets of A, and possibly some other types. Consider the following ordering

of the types: 1 < 2 < 3 > 4 > 5 > 1. It follows from Corollary 3.2 of [79]

that, for any type i, the variety V(A) omits all types below i (with respect to

the above ordering) if and only if none of the two-element subsets of A has

type below i. Thus, for a structure of the form HL, the knowledge of how

conservative polymorphisms of H behave on two-element subsets of H gives

us all necessary information about the typeset of V(H).

We will use the ternary operations f1, . . . , fn satisfying the following iden-

tities:

x = f1(x, y, y) (4.1)

fi(x, x, y) = fi+1(x, y, y) for all i = 1, . . . n− 1 (4.2)

fn(x, x, y) = y. (4.3)

The following lemma from [54] contains some type-omitting results that

will be important later.

Lemma 45. 1. A finite algebra A has term operations f1, . . . , fn, for

some n ≥ 1, satisfying identities (4.1)–(4.3) if and only if the vari-

ety V(A) omits the unary, lattice, and semilattice types.

2. If a finite algebra A has a majority term operation then V(A) omits the

unary, affine, and semilattice types.

75

4.3 Main results and proof outline

We remark in passing that operations satisfying identities (4.1)–(4.3) are

also known to characterise a certain algebraic (congruence) condition called

(n+ 1)-permutability [54].

4.3 Main results and proof outline

In this section we state our main results, Theorems 46, 48, and 49. Theo-

rem 46 follows from known results (with a little help from Lemma 60), the

proof of Theorem 49 is a relatively simple application of a result from [61],

and the proof of Theorem 48 constitutes most of this chapter.

Theorem 46. Let H be a graph.

• If V(H) admits the unary type, then co-CSP(HL) is not expressible in

Datalog and CSP(HL) is NP-complete (under first-order reductions);

• if V(H) omits the unary but admits the lattice type, then co-CSP(HL)

is not expressible in symmetric Datalog but is expressible in linear Dat-

alog, and CSP(HL) is NL-complete (under first-order reductions).

Proof. The first statement is shown in [62]. If V(H) omits the unary type,

then HL admits a majority operation by Lemma 60 in Section 4.5 and then

co-CSP(HL) is expressible in linear Datalog by [30]; in particular the prob-

lem is in NL. If, furthermore, the variety admits the lattice type, then

co-CSP(HL) is not expressible in symmetric Datalog and is NL-hard by re-

sults in [62].

76

4.3 Main results and proof outline

By Lemma 45, the presence of a majority operation in H implies that

typ(V(H)) can contain only the Boolean and lattice types. The lattice type

is dealt with in Theorem 46, so it remains to investigate graphs H with V(H)

admitting only the Boolean type. We will now define the class of graphs that

plays a central role in this chapter.

Definition 47. The class F consists of all graphs H that contain none of

the following as an induced subgraph:

1. the reflexive path of length 3 and the reflexive 4-cycle;

2. the irreflexive cycles of length 3, 5 and 6, and the irreflexive path of

length 5;

3. B1, B2, B3, B4, B5 and B6 (see Figure 4.1.)

B1 B2 B3 B4 B5 B6

a

b

c

a a

d

a

d

e

a′

b′

c′

a

b

c
c′

b′

a′ a

b

c

b b b

c c c

Figure 4.1: The forbidden graphs.

Notice that when only reflexive or only irreflexive graphs are of interest,

then the only relevant forbidden subgraphs are those in Definition 47(1) or

77

4.3 Main results and proof outline

in Definition 47(2), respectively. Observe that all irreflexive graphs in F are

bipartite.

The next theorem is the main result of this chapter.

Theorem 48. Let H be a graph. Then the following conditions are equiva-

lent:

1. H admits conservative operations satisfying (4.1)–(4.3) for n = 3;

2. H admits conservative operations satisfying (4.1)–(4.3) for some n ≥ 1;

3. V(H) admits only the Boolean type;

4. H ∈ F ;

5. co-CSP(HL) is definable in symmetric Datalog.

If the above holds then CSP(HL) is in the complexity class L.

Proof. (1) trivially implies (2). If (2) holds then by Lemma 45 V(H) omits

the unary, lattice, and semilattice types. By Lemma 60 in Section 4.5, H

admits a majority operation, so Lemma 45 implies that V(H) also omits the

affine type; hence (3) holds. Implication (3)⇒(4) is the content of Lemma 61

in Section 4.5, and (5) implies (3) by a result of [62]. We give an inductive

characterisation of the class F in Theorem 58 in Section 4.4, and then use it

to show that (4) implies both (1) and (5), in Subsection 4.5.1 and Section 4.6,

respectively. Finally, definability in symmetric Datalog implies membership

in L by [38].

78

4.3 Main results and proof outline

For completeness’ sake, we describe graphs whose list homomorphism

problem is definable in first-order logic (equivalently, is in AC0, see [18].) By

results in [62], any problem CSP(T) is either first-order definable or L-hard

under FO reductions. Hence, it follows from Theorem 48 that, for a graph

H ∈ F , the list homomorphism problem for H is either first-order definable

or L-complete.

Theorem 49. Let H be a graph. Then CSP(HL) is first-order definable if

and only if H has the following form: H is the disjoint union of two sets R

and I such that (i) R is the set of loops of H and induces a complete graph,

(ii) I is the set of non-loops of H and induces a graph with no edges, and (iii)

I = {x1, . . . , xm} can be ordered so that the neighbourhood of xi is contained

in the neighbourhood of xi+1 for all 1 ≤ i ≤ m− 1.

Remark 50. Given a graph H, it can be decided in polynomial time which of

the different cases delineated in Theorems 46, 48, 49 the list homomorphism

problem for H satisfies. Indeed, it is known (see [42]) that H is a bi-arc graph

if and only if the complement of H×K2 is a circular arc graph which can be

recognised in linear time [69]. Assume that H is a bi-arc graph: the definition

of F (Definition 47) gives a polynomial-time (in fact, even AC0) algorithm

to recognise them; and those graphs whose list homomorphism problem is

first-order definable can be recognised in polynomial time by results of [61].

The remaining sections are devoted to proving the lemmas used in the

proof of the above theorems. Section 4.4 deals with the graph-theoretic

79

4.4 Combinatorial graph characterisations

proofs, Section 4.5 presents the proofs of the algebraic results, and Section 4.6

provides the symmetric Datalog expressibility proofs. Finally, Section 4.7

contains the proof of Theorem 49.

4.4 Combinatorial graph characterisations

In this section, we give an inductive characterisation of the class F defined in

the previous section. This characterisation is stated in Theorem 58. Before

proving Theorem 58, we provide inductive characterisations for the reflexive

and the irreflexive subclasses of F in Lemmas 53 and 55, respectively. These

lemmas will facilitate the proof of Theorem 58.

Let Fre denote the reflexive graphs in F (i.e. reflexive graphs that do

not contain graphs in Definition 47(1) as induced subgraphs), and Fir the

irreflexive graphs in F (i.e. irreflexive graphs that do not contain graphs in

Definition 47(2) as induced subgraphs).

We need the following two operations on graphs:

Definition 51. Let H1 and H2 be bipartite irreflexive graphs, with colour

classes B1, T1 and B2 and T2 respectively, with T1 and B2 non-empty. We

define the special sum H1 �H2 (which depends on the choice of the Bi and

Ti)
3 as follows: it is the graph obtained from the disjoint union of H1 and

H2 by adding all possible edges between the vertices in T1 and B2. We say

that an irreflexive graph H is a special sum or expressed as a special sum if

3Notice that one can often divide a bipartite graph into parts in several ways, and even
choose B1 and/or T2 to be empty.

80

4.4 Combinatorial graph characterisations

there exist two bipartite graphs and a choice of colour classes on each such

that H is isomorphic to the special sum of these two graphs.

Definition 52. Given two vertex-disjoint graphs H1 and H2, the adjunction

of H1 to H2 is the graph H1 �H2 obtained by taking the disjoint union of

the two graphs, and adding every edge of the form (x, y) where x is a loop

in H1 and y is a vertex of H2.

We begin with the simple case of reflexive graphs.

4.4.1 The reflexive graphs in F

Lemma 53. Fre is the smallest class of reflexive graphs Ire such that:

1. Ire contains the one-element graph;

2. Ire is closed under disjoint union;

3. if H1 is a single loop and H2 ∈ Ire then H1 �H2 ∈ Ire.

Proof. It is easy to see that Ire ⊆ Fre. Suppose that Fre 6⊆ Ire, and let H be

a graph of smallest size such that H ∈ Fre and H 6∈ Ire, i.e. H cannot be ob-

tained from the one-element graph using the operations of disjoint union and

adjunction of a loop. By minimality, H is connected, contains no universal

vertex (a vertex that is a neighbour of every other vertex including itself), it

contains more than one vertex, and all of its proper induced connected sub-

graphs contains a universal vertex. Pick some edge (x, y) in H; since there

81

4.4 Combinatorial graph characterisations

is no universal vertex there exists some t not adjacent to y. Let G be the

subgraph induced by H \ {x}.

Assume first that G is connected. Let u be a universal vertex of G; we

have edges (x, y), (y, u), (u, t). Since H has no universal vertex then x is not

adjacent to u. Thus {x, y, t, u} is either a reflexive path of length 3 or a

reflexive 4-cycle, a contradiction.

Suppose now that G is not connected. Let C and D be distinct compo-

nents of G; since x is not universal in H there exists some z not adjacent to

x, and without loss of generality suppose that z ∈ C. Since H is connected

there exists a path from z to some element in D, in particular we can find

edges (z, w), (w, x), (x, v), where z, w ∈ C and w is a neighbour of x, z is

not adjacent to x, and v ∈ D. It is easy to verify that {z, w, x, v} induces a

reflexive path of length 3, a contradiction.

Remark 54. Lemma 53 states that the reflexive graphs avoiding the path of

length 3 and the 4-cycle are precisely those constructed from the one-element

loop using disjoint union and adjunction of a universal vertex. These graphs

(with no self-loops) have been studied before. Namely, our inductive definition

corresponds to the definition of the so-called NLCT width 1 graphs. In [47],

it is shown that NLCT width 1 graphs are precisely the (C4, P4)-free graphs,

which are known to be the trivially perfect graphs. Our result provides an

alternative proof of the equivalence of these conditions.

82

4.4 Combinatorial graph characterisations

4.4.2 The irreflexive graphs in F

The following result gives an inductive characterisation of the class of graphs

Fir.

Lemma 55. Fir is the smallest class of irreflexive graphs Iir such that:

1. Iir contains the one-element graph;

2. Iir is closed under disjoint union;

3. Iir is closed under special sum.

Proof. We show that Iir ⊆ Fir. The class Fir obviously contains the one-

element graph. In order to prove the inclusion, it is sufficient to show that if

H1 and H2 are graphs that do not contain any cycles of length 3, 5 or 6, or

a path of length 5 as an induced subgraph, then neither the disjoint union of

H1 and H2, nor the special sum of H1 and H2 contain any cycles of length

3, 5 or 6, or a path of length 5 as an induced subgraph. This is clearly the

case for disjoint union, so now we concentrate on the special sum of H1 and

H2.

As it was observed after Definition 47, if an irreflexive graph does not

contain cycles of length 3, 5 or a path of length 5, then it must be bipartite.

It follows that H1 �H2 must be bipartite, so H1 �H2 contains no induced

cycles of length 3 or 5. Assume then that C is an induced subgraph of

H1 �H2, where C is a 6-cycle or a 5-path. We shall obtain a contradiction

by showing that C must be contained either in H1 or H2. By assumption

83

4.4 Combinatorial graph characterisations

and definition of special sum, it is clear that, since C is connected, it must

contain at least one vertex in T1 and at least one in B2; on the other hand,

since C contains no induced 4-cycle, C can have at most 2 vertices in T1

and at most 1 in B2, without loss of generality. Suppose first that there is

exactly one vertex of C in T1. Since every vertex of C has degree at most

2, it follows that no more than 1 vertex of C can be in B1, and similarly no

more than 1 vertex of C can be in T2. Therefore C cannot contain vertices

both in T1 and B2, so C is either in H1 or H2, a contradiction. On the other

hand if C has 2 vertices in T1, then C has no vertex in T2 and at most 2 in

B1, so again, C cannot contain vertices both in T1 and B2, a contradiction.

Hence, we conclude that Iir ⊆ Fir.

For the reverse inclusion, Fir ⊆ Iir, suppose for a contradiction that there

exists a graph H ∈ Fir such that H 6∈ Iir. Choose H so that its set of vertices

is of minimal size. Obviously H is connected. We denote the usual graph

distance between vertices x and y by d(x, y), i.e. the length of a shortest path

in the graph between x and y. Let N(x) denote the set of neighbours of x in

H, and let N2(x) = {t ∈ T1 : d(x, t) = 2}.

Claim 1. For every x ∈ H there exists y ∈ H such that d(x, y) = 3.

Proof. Otherwise, since H is connected, we’d have some x ∈ H with d(x, y) ≤

2 for all y ∈ H. Now let B2 denote the set of all vertices adjacent to x, and

let T2 = H \ (B2 ∪ {x}). Furthermore let B1 = ∅ and T1 = {x}. Since H

is bipartite, (B2, T2) is a bipartition, and hence H is expressed as a special

sum, a contradiction.

84

4.4 Combinatorial graph characterisations

Claim 2. There exists x ∈ H such that the subgraph induced by H \{x}

is connected.

Proof. Notice first that if for some x the subgraph G induced by H\{x} is not

connected, then it contains at most one connected component with 2 or more

vertices. Indeed, by Claim 1 let y ∈ H such that d(x, y) = 3; let y, w, z, x be

an induced path of length 3 from y to x. Note that the connected component

of y has size at least 2. Now choose a different connected component C

of G that contains at least two vertices. Since H is connected, C clearly

contains adjacent vertices u and v with u adjacent to x. But then the vertices

y, w, z, x, u, v induce a path of length 5 in H, a contradiction.

Now choose any vertex x in H. If the subgraph induced by H \ {x} is

connected we are done; otherwise, one of its components must be trivial, i.e.

H has a vertex x′ dangling from x. Then the subgraph induced by H \ {x′}

is connected.

T1 T2

B1 B2

x

Figure 4.2: The graph H.

So we may now suppose that H has the following structure: there is

some vertex x such that the subgraph G induced by H \ {x} is connected;

85

4.4 Combinatorial graph characterisations

by induction hypothesis, G is a special sum, with subsets Bi, Ti, (i = 1, 2)

where T1 and B2 are non-empty. We suppose without loss of generality that

x is adjacent to some vertex in B1 ∪B2 (see Figure 4.2.)

Case 1: T2 is non-empty.

Claim 3. There exists an edge (u, v) with u ∈ B2 and v ∈ T2 such that

u is not adjacent to x.

Proof. Suppose for a contradiction that this is not the case: then B2 =

B0
2 ∪ B1

2 where B0
2 consists of all elements of B2 not adjacent to any vertex

in T2, and since T2 is non-empty, the set B1
2 is non-empty, and contains by

hypothesis only vertices adjacent to x. Then define a decomposition of H as

follows: let B′1 = B1 ∪ B0
2 , T ′1 = T1 ∪ {x}, B′2 = B1

2 and T ′2 = T2. But then

H is a special sum, a contradiction.

Claim 4. The subgraph induced by N(x) ∪N2(x) is complete bipartite.

Proof. Otherwise, we may find elements t ∈ N2(x) and z ∈ N(x) which are

not adjacent. Let y be a vertex on a path of length 2 between x and t. Let u

and v be the elements whose existence is guaranteed by the last claim: then

it is easy to see that the sequence z, x, y, t, u, v is an induced path of length

5 in H, a contradiction.

Consider the following decomposition of H: let B′1 = B1 \ (N(x) ∩ B1),

T ′1 = N2(x), B′2 = (N(x)∩B1)∪B2 and T ′2 = (T1\N2(x))∪{x}∪T2. By Claim

4 this is a decomposition of H as a special sum, unless there exists some edge

86

4.4 Combinatorial graph characterisations

(y, z) with y ∈ B′1 and z ∈ T ′2, i.e. with y ∈ B1 \ N(x) and z ∈ T1 \ N2(x).

Suppose this occurs. Then we have the following:

Claim 5. (y, t) is an edge for every t ∈ N2(x).

Proof. If this is not the case, then choose some t ∈ N2(x) not adjacent to y;

let n ∈ N(x) be adjacent to t. By Claim 3 we can find u ∈ B2 not adjacent

to x. Then the sequence y, z, u, t, n, x is an induced path of length 5 in H, a

contradiction.

It follows from Claim 5 that we can modify our last decomposition as

follows: simply remove from B′1 all the offending vertices such as y. More

precisely, let Y be the set of all y ∈ B′1 that have some neighbour z ∈

T1 \ N2(x), and let B′′1 = B′1 \ Y , T ′′1 = T ′1, B′′2 = Y ∪ B′2 and T ′′2 = T ′2. By

Claim 5, this shows that H is a special sum, a contradiction.

T1

B2

x

B1

N(x)

Figure 4.3: The graph H with T2 empty.

Case 2: T2 is empty.

Notice that in this case we may assume that N(x) ⊆ B1, by simply

decomposing H \ {x} if necessary as B′1 = B1 ∪N(x), B′2 = B2 \N(x), and

87

4.4 Combinatorial graph characterisations

T ′i = Ti for i = 1, 2. (Of course, if H is not a special sum then there is at

least one vertex in B2 \N(x) for otherwise we could set T ′1 = T1 ∪ {x}.)

Claim 6. For every y, z ∈ N(x) we have N(y) ⊆ N(z) or N(z) ⊆

N(y). Similarly, for every u, v ∈ T1, either N(u) ∩ N(x) ⊆ N(v) ∩ N(x) or

N(v) ∩N(x) ⊆ N(u) ∩N(x).

Proof. Suppose this is not the case: then we may find y, z ∈ N(x) and

u ∈ N(y) and v ∈ N(z) such that u is not adjacent to z and v is not

adjacent to y. Let b ∈ B2. Then clearly the subgraph of H induced by

{x, y, z, u, v, b} is a 6-cycle, a contradiction. The argument for the second

statement is identical.

By Claim 6, there exists an ordering of N(x) = {b0, . . . , bm} such that

N(bi) ⊆ N(bj) if i ≤ j, and an ordering of T1 = {t0, . . . , tM} such that

N(ti)∩N(x) ⊆ N(tj)∩N(x) if i ≤ j. Since H is connected, it is easy to see

that bm must be adjacent to tM ; and by Claim 1, bm cannot be adjacent to

t0.

Claim 7. For every t ∈ T1, eitherN(t)∩N(x) = N(x) orN(t)∩N(x) = ∅.

Proof. Suppose this is not the case. Then there exists some t ∈ T1 such

that t is adjacent to bm but not to b0. Then for any b ∈ B2 the sequence

b0, x, bm, t, b, t0 is an induced path of length 5, a contradiction.

Let F denote the set of vertices t ∈ T1 such that N(t) ∩ N(x) = N(x)

and let E denote the set of vertices t ∈ T1 such that N(t) ∩N(x) = ∅.

88

4.4 Combinatorial graph characterisations

T1

B2

x

B1

N(x)

F E

Y

Figure 4.4: The graph H.

Claim 8. For every y ∈ B1 \N(x), if y is adjacent to some vertex in E

then it is adjacent to every vertex in F .

Proof. Otherwise we can find t ∈ E and t′ ∈ F and y ∈ B1 \ N(x) such

that (y, t) is an edge but (y, t′) is not. Then for any b ∈ B2 the sequence

x, bm, t
′, b, t, y is an induced path of length 5, a contradiction.

Let Y denote the set of vertices in B1 \ N(x) that are adjacent to some

vertex in E. By the last claim, the subgraph induced by (Y ∪B2∪N(x))∪F

is complete bipartite. Consider the following decomposition: let B′2 = Y ∪

N(x)∪B2, B′1 = B1 \B′2, T ′1 = F and T ′2 = E∪{x}. By the above argument,

this shows that H is in Iir, a contradiction.

4.4.3 The case of general graphs

In this section we shall prove Theorem 58 which provides an inductive char-

acterisation of F , our main family of graphs.

Call graphs in Iir (see Lemma 55) basic irreflexive.

89

4.4 Combinatorial graph characterisations

Definition 56. A connected graph H is basic if

1. H is a single loop, or

2. H is a basic irreflexive graph, or

3. H is obtained from a basic irreflexive graph Hir with colour classes B

and T by adding every edge (including loops) of the form (t, t′) where

t, t′ ∈ T .

Definition 57. Let I be the smallest class of graphs such that:

1. I contains the basic graphs;

2. I is closed under disjoint union;

3. if H1 is a basic graph and H2 ∈ I then H1 �H2 ∈ I.

Theorem 58. The graph classes F and I coincide.

Proof. To establish the inclusion I ⊆ F , we start by showing that every

basic graph is in F , i.e. that a basic graph does not contain any of the

forbidden graphs. If H is a single loop or a basic irreflexive graph, then this

is immediate. Otherwise H is obtained from a basic irreflexive graph Hir

with colour classes B and T by adding every edge of the form (t1, t2) where

ti ∈ T . In particular, the loops form a clique and no edge connects two

non-loops; it is clear in that case that H contains none of B1, B2, B3, B4.

On the other hand if H contains B5 or B6, then Hir contains the path of

length 5 or the 6-cycle, contradicting the fact that Hir is basic.

90

4.4 Combinatorial graph characterisations

Next we show that F is closed under disjoint union and adjunction of

basic graphs. It is obvious that the disjoint union of graphs that avoid

the forbidden graphs will also avoid these. So suppose that an adjunction

H1 �H2, where H1 is a basic graph, contains an induced forbidden graph

B whose vertices are neither all in H1 nor H2; without loss of generality

H1 contains at least one loop, its loops form a clique and none of its edges

connects two non-loops. It is then easy to verify that B contains both loops

and non-loops. Because the other cases are similar, we prove only that B is

not B3. Observe that every loop in H1 is adjacent to every loop in H1�H2.

So b, c, and d (see Figure 4.1) must be in H2. But if a is in H1, then it cannot

be adjacent to a loop in H2, so a is also in H2, a contradiction.

Now we must show that F ⊆ I, i.e. every graph in F can be obtained from

the basic graphs by disjoint union and adjunction of basic graphs. Suppose

this is not the case. If H is a counterexample of minimum size, then obviously

it is connected, and it contains at least one loop for otherwise it is a basic

irreflexive graph. By Lemma 53, H also contains at least one non-loop.

Let R(H) denote the subgraph of H induced by its set R(H) of loops,

and let J(H) denote the subgraph induced by J(H), the set of non-loops of

H. Since H is connected and neither B1 nor B2 is an induced subgraph of

H, the graph R(H) is also connected, and furthermore every vertex in J(H)

is adjacent to some vertex in R(H). By Lemma 53, we know that R(H)

contains at least one universal vertex: let U denote the (non-empty) set of

universal vertices of R(H). Let J denote the set of all a ∈ J(H) such that

91

4.4 Combinatorial graph characterisations

N(a) ∩ R(H) ⊆ U . Let us show that J 6= ∅. For every u ∈ U , there is

w ∈ J(H) not adjacent to u because otherwise H is obtained by adjoining

u to the rest of H, a contradiction with the choice of H. If this w has a

neighbour r ∈ R(H) \ U then there is some s ∈ R(H) \ U not adjacent to

r, and the graph induced by {w, u, s, r} contains B2 or B3, a contradiction.

Hence, w ∈ J . Let S denote the subgraph of H induced by U ∪J . The graph

S is connected. We claim that the following properties also hold:

1. if a and b are adjacent non-loops, then N(a) ∩ U = N(b) ∩ U ;

2. if a is in a connected component of the subgraph of S induced by J with

more than one vertex, then for any other b ∈ J , one ofN(a)∩U,N(b)∩U

contains the other.

The first statement holds because B1 is forbidden, and the second follows

from the first because B4 is also forbidden. Let J1, . . . , Jk denote the different

connected components of J in S. By (1) we may let N(Ji) denote the set of

common neighbours of members of Ji in U . By (2), we can re-order the Ji’s

so that for some 1 ≤ m ≤ k we have N(Ji) ⊆ N(Jj) for all i ≤ m and all

j > m, and, in addition, we have m = 1 or |Ji| = 1 for all 1 ≤ i ≤ m. Let

B denote the subgraph of S induced by B =
⋃m
i=1 (Ji ∪N(Ji)), and let C be

the subgraph of H induced by H \ B. We claim that H = B�C. For this,

it suffices to show that every element in
⋃m
i=1 N(Ji) is adjacent to every non-

loop c ∈ C. By construction this holds if c ∈ J ∩ C. Now suppose this does

not hold: then some x ∈ J(H)\J is not adjacent to some y ∈ N(Ji) for some

92

4.5 Algebraic results

i ≤ m. Since x 6∈ J we may find some z ∈ R(H) \ U adjacent to x; it is of

course also adjacent to y. Since z 6∈ U there exists some z′ ∈ R(H)\U that is

not adjacent to z, but it is of course adjacent to y. If x is adjacent to z′, then

{x, z, z′} induces a subgraph isomorphic to B2, a contradiction. Otherwise,

{x, z, y, z′} induces a subgraph isomorphic to B3, also a contradiction.

If every Ji with i ≤ m contains a single element, notice that B is a

basic graph: indeed, removing all edges between its loops yields a bipartite

irreflexive graph which contains neither the path of length 5 nor the 6-cycle,

since B contains neither B5 nor B6. Since this contradicts our hypothesis on

H, we conclude that m = 1. But this means that N(J1) is a set of universal

vertices in H. Let u be such a vertex and let D denote its complement

in H: clearly H is obtained as the adjunction of the single loop u to D,

contradicting our hypothesis. This concludes the proof.

4.5 Algebraic results

We need the following well-known auxiliary result. Note that the assumption

of conservativity of the algebra AT in it is not essential. Note also that the

assumptions of this lemma effectively say that CSP(T) can simulate the

graph k-colouring problem (with k = |U |) or the directed st-connectivity

problem.

Lemma 59. Let S,T be structures such that the algebra AT is conservative,

let s1, s2 ∈ S, and let R = {(f(s1), f(s2)) | f : S→ T}.

93

4.5 Algebraic results

1. If R = {(x, y) ∈ U2 | x 6= y} for some subset U ⊆ T with |U | ≥ 3 then

V(AT) admits the unary type.

2. If R = {(t, t), (t, t′), (t′, t′)} for some distinct t, t′ ∈ T then V(AT)

admits at least one of the following types: unary, lattice, semilattice.

Proof. The assumption of this lemma implies that AT has a subalgebra (with

universe U and {t, t′}, respectively) such that all operations of the subalgebra

preserve the relation R. It is well known (see, e.g., [50]) that all conservative

operations preserving the disequality relation on U are projections which

proves the first statement, while it is easy to check that the order relation on

a 2-element set (such as the relation R from the second statement) cannot

admit operations satisfying identities (4.1)–(4.3), so one can use Lemma 45

to prove the second statement.

The following lemma connects the characterisation of bi-arc graphs given

in [12] with a type-omitting condition.

Lemma 60. Let H be a graph. Then the following conditions are equivalent:

1. the variety V(H) omits the unary type;

2. the graph H admits a conservative majority operation;

3. the graph H is a bi-arc graph.

Proof. The equivalence of (2) and (3) is from [12], and (2) implies (1) by

Lemma 45, so the rest of this proof shows that (1) implies (3). We shall

94

4.5 Algebraic results

use the following construction from [42]. Given a graph H, let K denote the

irreflexive bipartite graph obtained from H as follows: its vertices consist of

two copies of the vertex set of H, say H ′ = {x′ : x ∈ H} and H ′′ = {x′′ : x ∈

H}, with edges (x′, y′′) iff (x, y) is an edge of H. In other words, K = H×K2

where K2 is the irreflexive edge. Let K denote the algebra associated with

KL.

By putting together Proposition 3.1 of [42] and Corollary 4.6 of [41], one

immediately obtains that H is a bi-arc graph if and only if K is chordal

bipartite and contains no special edge-asteroids. We need not know what

these two conditions on K mean - it is shown in (proofs of) Theorems 3.1

and 3.2 of [41] that if K fails to satisfy either of them then T = KL satisfies

the conditions of Lemma 59(1) for suitable S, s1, s2, and so V(K) admits the

unary type. Hence, it only remains to show that the variety V(K) omits the

unary type whenever V(H) does so.

It is well known (see, e.g., Corollary 3.3 in [79]), that the unary type

is present in the variety generated by a conservative algebra A if and only

if there exist elements a, b in the algebra such that each operation of A is

a projection when restricted to {a, b}. So we may assume now that, for

every 2-element subset {a, b} of H, there is an operation of H that is not a

projection when restricted to {a, b}, and we need to show the same for K.

For each operation (say k-ary) operation f of H, introduce a (2k− 1)-ary

operation gf on K, as follows. Let x = (xe11 , . . . , x
e2k−1

2k−1) be an element of

K2k−1, where x1, . . . , x2k−1 ∈ H and e1, . . . , e2k−1 ∈ {′,′′ }. Then obviously

95

4.5 Algebraic results

exactly one of ′ or ′′ appears at least k times; let ε denote this symbol; let

i1, . . . , ik denote the first k positions where it appears in the tuple x; then

define

gf (x) = f(xi1 , . . . , xik)
ε.

It is clear that this is a well-defined operation on K, and it is easy to see

that it preserves edges of K; since f is conservative, so is gf . Hence, gf is an

operation of K.

Let {xu, yv} be a 2-element subset of K. Suppose first that xu and yv

belong to different colour classes of K: then the restriction of gf to this

subset satisfies the property

gf (x
u, . . . , xu, yv, xu . . . , xu) = f(x, . . . , x)u = xu

and similarly for g(yv, . . . , yv, xu, yv, . . . , yv). On the other hand if xu and yv

are in the same colour class, then the restriction of gf to {xu, yv} coincides

with that of f (with k − 1 additional fictitious variables). It follows that in

either case, the restriction of gf is not a projection whenever the restriction

of f is not.

The following lemma establishes the implication (3)⇒(4) in Theorem 48.

Lemma 61. If H 6∈ F then V(H) admits a non-Boolean type.

Proof. By Theorem 9.15 of [54], V(H) admits only the Boolean type if and

only if H admits a sequence of conservative operations satisfying certain

96

4.5 Algebraic results

identities in the spirit of (4.1)–(4.3). (Note that Theorem 9.15 of [54] applies

to the so-called locally finite varieties, but every variety generated by a single

finite algebra, such as V(H), has this property [70]). By conservativity, such

operations can be restricted to any subset of H while satisfying the same

identities, so the property of having only the Boolean type in the variety

generated by their conservative algebra is inherited by induced subgraphs of

H. It follows that it is enough to prove this lemma for the forbidden graphs

from Definition 47.

For the irreflexive odd cycles, the lemma follows immediately from the

main results of [9, 68]. The proof of Theorem 3.1 of [41] shows that the

conditions of Lemma 59(1) are satisfied by (some S, s1, s2 and) T = FL

where F is the irreflexive 6-cycle. One can easily check that the reflexive

4-cycle is not a bi-arc graph, so we can apply Lemma 60 in this case.

For the remaining forbidden graphs F from Definition 47, we use Lemma 59(2)

with T = FL. In each case, the binary relation of the structure S will be a

short undirected path, and s1, s2 will be the endpoints of the path. We will

represent such a structure S by a sequence of subsets of F (indicating lists

assigned to vertices of the path). It can be easily checked that, in each case,

the relation R defined as in Lemma 59(2) is of the required form.

If F is the reflexive path of length 3, say a− b− c− d, then S = ac− bc−

ad − ac. If F is the irreflexive path of length 5, say a − b − c − d − e − f ,

then S = ae− bd− ce− bf − ae. For graphs B1−B6, we use notation from

Figure 4.1. For B1, S = bc− bc−ab−ab− bc. For B2, S = bc−ac−ab− bc.

97

4.5 Algebraic results

For B3, S = bc− ad− bd− bc. For B4, S = ae− bd− cd− ae. Finally, for

both B5 and B6, S = ac− b′c′ − ab− a′c′ − ac.

4.5.1 Implication (4) ⇒ (1) in Theorem 48

We prove this implication in two steps: first for irreflexive graphs and then

in general.

Recall the definition of basic irreflexive graphs from Lemma 55 and Def-

inition 51.

Lemma 62. If H is a basic irreflexive graph then H admits conservative

operations satisfying (4.1)–(4.3) for n = 3.

Proof. We shall show by induction on the size of H that there exist conserva-

tive operations f1, f2, f3 preserving the graph H, obeying the identities (4.1)–

(4.3) and furthermore that satisfy the following condition (D):

For every x, y, z, n,m ∈ H such that n is adjacent to x and m is adjacent to

z, f1(x, y, z) is adjacent to n and f3(x, y, z) is adjacent to m.

The result is trivial for a one-element graph. If H is not connected, then

H is the disjoint union of proper subgraphs H1 and H2. Let f1, f2, f3 and

g1, g2, g3 be the desired operations on H1 and H2 respectively; we define

operations h1, h2, h3 on H as follows:

98

4.5 Algebraic results

For every 1 ≤ s ≤ 3, let hs(x, y, z) = fs(x, y, z) if (x, y, z) ∈ H3
1 and

let hs(x, y, z) = gs(x, y, z) if (x, y, z) ∈ H3
2 ; if (x, y, z) ∈ Hi ×Hj ×Hk with

i, j, k not all equal, then let h1(x, y, z) = x and h3(x, y, z) = z, and finally

let h2(x, y, z) = z if (i, j, k) ∈ {(1, 1, 2), (2, 2, 1)} and let h2(x, y, z) = x

otherwise.

It is immediate that identities (4.1) and (4.3) are satisfied and that each

hs is a conservative homomorphism. For (4.2): we may assume that x 6= y;

if x and y are in the same Hi then (4.2) follows from the fact that the fi

and gi satisfy it; otherwise we have that h1(x, x, y) = x = h2(x, y, y) and

h2(x, x, y) = y = h3(x, y, y). It is easy to see that condition (D) is satisfied

by h1 and h3.

Now suppose that the basic graph H is connected, and hence is the special

sum of two smaller graphs. For the moment, it will be convenient to denote

the colour classes of H by C1 and C2; our first task is to show it suffices to

define our operations on C3
1 ∪ C3

2 . Indeed, suppose that we have functions

F ′1, F
′
2, F

′
3 : C3

1 ∪ C3
2 → H that satisfy all the required identities, are edge-

preserving and conservative. Then we may extend these to full operations

F1, F2, F3 : H3 → H as follows: let

F1(x, y, z) =





F ′1(x, y, z), if (x, y, z) ∈ C3
1 ∪ C3

2 ;

x, otherwise.

99

4.5 Algebraic results

F3(x, y, z) =





F ′3(x, y, z), if (x, y, z) ∈ C3
1 ∪ C3

2 ;

z, otherwise.

F2(x, y, z) =





F ′2(x, y, z), if (x, y, z) ∈ C3
1 ∪ C3

2 ;

z, if (x, y, z) ∈ Ci × Ci × Cj for some i 6= j;

x, otherwise.

Notice that distinct sets Ci×Cj ×Ck and Ci′ ×Cj′ ×Ck′ are in different

connected components of H3, unless i 6= i′, j 6= j′ and k 6= k′; it follows im-

mediately that the Fi are edge-preserving; they are also clearly conservative.

It is a simple matter to verify that all the required identities are satisfied.

Hence, from now on, we assume without mention that in all triples (x, y, z)

considered all the entries come from the same colour class of the graph under

consideration.

So let H be the special sum of two smaller graphs Hi with colour classes

Bi and Ti, i = 1, 2; by induction hypothesis H1 admits the required oper-

ations f1, f2, f3 and H2 admits operations g1, g2, g3 satisfying the necessary

conditions. We define operations F1, F2, F3 on H as follows. For convenience,

let S = T1 ∪ B2, B = B1 ∪ B2, T = T1 ∪ T2. Notice that by definition of

special sum S induces a complete bipartite graph in H.

100

4.5 Algebraic results

F1(x, y, z) =





f1(x, y, z), if x, y, z ∈ H1, else

g1(x, y, z), if x, y, z ∈ H2, else

x, if y = z or x ∈ S, else

u, where u is the leftmost of {y, z} ∩ S.

F3(x, y, z) =





f3(x, y, z), if x, y, z ∈ H1, else

g3(x, y, z), if x, y, z ∈ H2, else

z, if x = y or z ∈ S, else

v, where v is the leftmost of {x, y} ∩ S.

F2(x, y, z) =





F1(x, x, z), if y = z, else

F3(x, z, z), if x = y, else

f2(x, y, z), if x, y, z ∈ H1, else

g2(x, y, z), if x, y, z ∈ H2, else

w, where w is the leftmost of {x, y, z} ∩ S.

Obviously all three operations are conservative, and by definition they obey

all the required identities. Now we verify that F1 satisfies condition (D):

let (x, n) be an edge of H: we show that F1(x, y, z) is adjacent to n. If

x, y, z ∈ Hi for some i = 1, 2 then this follows by induction hypothesis,

101

4.5 Algebraic results

and it is clearly true if F1(x, y, z) = x. Otherwise, F1(x, y, z) = u for some

u ∈ S; if x, y, z ∈ B then x ∈ B1 so n ∈ T1 is adjacent to u. Otherwise

x, y, z ∈ T , so x ∈ T2 hence n ∈ B2 is adjacent to u. The proof that F3

satisfies (D) is identical. It remains to show that each Fi is edge-preserving.

Let (x, y, z) be adjacent to (x′, y′, z′) and suppose without loss of generality

that x, y, z ∈ B and x′, y′, z′ ∈ T . We start with F1. If x, y, z ∈ B1 then

x′, y′, z′ ∈ T1 and hence F1 coincides with f1 on both tuples and we are done

by induction hypothesis. If F1(x, y, z) = x then by (D) we have F1(x′, y′, z′)

adjacent to x. Otherwise, we have that x ∈ B1 (and thus x′ ∈ T1) and

F1(x, y, z) = u ∈ B2; in any case F1(x′, y′, z′) ∈ T1 so it is adjacent to

u. The argument for F3 is identical. Now we consider F2. Notice that by

induction hypothesis and definition of the Fi, we have that F2 coincides with

f2 (or with g2) on tuples whose coordinates all lie in H1 (respectively H2).

If x, y, z ∈ B1, then certainly x′, y′, z′ ∈ T1, and then the result follows by

induction hypothesis and the last remark. Now we require the following

claim:

Claim. Suppose that a, b, c do not all lie in the same Hi. If b = c or

a = b then F2(a, b, c) ∈ S.

Proof. Suppose that b = c, so that F2(a, b, c) = F1(a, a, c). By hypothesis, a

and c do not lie in the same Hi, and in particular they are distinct, hence

by definition of F1 we have that F1(a, a, c) = a if a ∈ S or F1(a, a, c) = u

for some u ∈ S (here u = c of course). The proof for the case a = b is

102

4.5 Algebraic results

identical.

Now we can finish the proof. Suppose first that x, y, z are not all in

the same Hi; by the claim F2(x, y, z) ∈ S. If x′, y′, z′ are not all in the

same Hi then F2(x′, y′, z′) ∈ S also and we are done. Otherwise, x′, y′, z′ all

lie in T1 (since one of them is a neighbour of an element of B1) and hence

F2(x′, y′, z′) = f2(x′, y′, z′) ∈ S and we are done. Now suppose that x, y, z are

all in B2 (we dealt with the case B1 earlier.) Then F2(x, y, z) = g2(x, y, z) ∈

S, so if x′, y′, z′ are not all in the same Hi we are done by the claim again.

Otherwise either x′, y′, z′ ∈ T1 so F2(x′, y′, z′) = f2(x′, y′, z′) ∈ S, or else

x′, y′, z′ ∈ T2: then F2(x′, y′, z′) = g2(x′, y′, z′) and we are done by induction

hypothesis.

Lemma 63. If H ∈ F then H admits conservative operations satisfying (4.1)–

(4.3) for n = 3.

Proof. We invoke the characterisation of F from Theorem 58. We will prove

that H has the required polymorphisms when H is a basic graph, and show

that this property is preserved under disjoint union and adjunction of basic

graphs.

Let H be a basic graph. The result is trivial if H is a single loop, and if H

is a basic irreflexive graph then we invoke Lemma 62. So now assume that H

is obtained from some basic irreflexive graph H1 with colour classes B and T

by adding all edges (t, t′) with t, t′ ∈ T . By Lemma 62 there exist operations

f1, f2, f3 on H1 satisfying the required identities; furthermore recall that we

103

4.5 Algebraic results

can assume that the fi satisfy condition (D):

For every x, y, z, n,m ∈ H such that n is adjacent to x and m is adjacent to

z, f1(x, y, z) is adjacent to n and f3(x, y, z) is adjacent to m.

For convenience of notation, define, on triples (x1, x2, x3) such that {x1, x2, x3}

intersects the set T , two ternary operations µL and µR by µL(x1, x2, x3) = xj

where j = min{i : xi ∈ T} and µR(x1, x2, x3) = xk where k = max{i : xi ∈

T}. Notice that both of these operations trivially preserve the edges of H.

We define operations F1, F2 and F3 on H as follows:

F1(x1, x2, x3) =





x1, if x2 = x3, else

f1(x1, x2, x3), if {x1, x2, x3} intersects only one of B and T ,

µL(x1, x2, x3), otherwise.

F3(x1, x2, x3) =





x3, if x1 = x2, else

f3(x1, x2, x3), if {x1, x2, x3} intersects only one of B and T ,

µR(x1, x2, x3), otherwise.

104

4.5 Algebraic results

F2(x1, x2, x3) =





f2(x1, x2, x3), if {x1, x2, x3} intersects only one of B and T ,

µL(x1, x2, x3), otherwise.

It is clear that all three operations are conservative, and that identi-

ties (4.1) and (4.3) are satisfied. To prove (4.2), suppose without loss of gen-

erality that x 6= y: if {x, y} intersects only one of B and T then F1(x, x, y) =

f1(x, x, y) = f2(x, y, y) = F2(x, y, y); on the other hand if {x, y} intersects

both B and T then F1(x, x, y) = F2(x, y, y) is the unique element in {x, y}

that belongs to T . The proof that F2(x, x, y) = F3(x, y, y) is similar.

Next we prove that property (D) holds for F1 (the proof for F3 is identi-

cal.) Let n be a neighbour of x1. If F1(x1, x2, x3) = x1 the result is trivial,

and if F1(x1, x2, x3) = f1(x1, x2, x3) then we are done because f1 satisfies

(D). If F1(x1, x2, x3) = µL(x1, x2, x3), there are two cases: if x1 ∈ T then

F1(x1, x2, x3) = x1, otherwise x1 ∈ B forces n ∈ T so n is necessarily adja-

cent to µL(x1, x2, x3) ∈ T .

Finally we show that F1 is edge-preserving (the proof for F2 and F3 is

identical.) Let (x1, x2, x3) and (y1, y2, y3) be adjacent. Suppose first that

x2 = x3; then F1(x1, x2, x3) = x1. If y2 = y3 there is nothing to show so we

may assume that y2 6= y3. Since f1 has property (D) we may also assume

with no loss of generality that {y1, y2, y3} intersects B and T and hence

F1(y1, y2, y3) is the leftmost yi in T . If this is y1 we’re done, otherwise x1

must be in the clique T and we are also done. So now suppose that x2 6= x3

105

4.5 Algebraic results

and y2 6= y3. If the xi all lie in B or all in T and the same holds for the yi,

then we are done since f1 is a homomorphism and T is a clique. Otherwise

suppose without loss of generality that {y1, y2, y3} intersects both B and T ;

then some xi must be in T , and then in any case the values of F1 on both

triples lie in the clique T and hence are adjacent. This completes the proof

for all basic graphs.

The proof for disjoint union is identical to the one in the irreflexive case

(Lemma 62).

Finally we show that the property of admitting conservative operations

satisfying (4.1)–(4.3) for n = 3 is preserved under adjunction of a basic graph.

Let H1 be a basic graph, where L1 and N1 denote the set of loops and non-

loops of H1 respectively, and let H2 satisfy our induction hypothesis, and

let L2 and N2 denote the set of loops and non-loops of H2 respectively. We

may assume that L1 is non-empty, and hence it is a clique. Let g1, g2, g3 be

operations on H2 that satisfy all required identities and property (D). By our

earlier analysis, we know there exist operations f1, f2, f3 on the basic graph

H1 that satisfy all required identities and property (D), and moreover satisfy

the following condition (E):

If {x, y, z} intersects L1 and y 6= z then

f1(x, y, z) and f3(y, z, x) belong to L1.

For convenience of notation, define two ternary operations λL, λR on

106

4.5 Algebraic results

triples (x1, x2, x3) such that {x1, x2, x3} intersects the set L1 by λL(x1, x2, x3) =

xj where j = min{i : xi ∈ L1} and λR(x1, x2, x3) = xk where k = max{i :

xi ∈ L1}. Define two ternary operations νL and νR on triples (x1, x2, x3)

such that {x1, x2, x3} intersects the set H2 by νL(x1, x2, x3) = xj where

j = min{i : xi ∈ H2} and νR(x1, x2, x3) = xk where k = max{i : xi ∈ H2}.

Notice that λL and λR are trivially edge-preserving, and so are νL and νR if

we restrict them to triples (x1, x2, x3) such that {x1, x2, x3} ⊆ N1 ∪H2.

We define operations F1, F2 and F3 on H as follows:

F1(x1, x2, x3) =





x1, if x2 = x3, else

f1(x1, x2, x3), if {x1, x2, x3} ⊆ H1, else

g1(x1, x2, x3), if {x1, x2, x3} ⊆ H2, else

λL(x1, x2, x3), if {x1, x2, x3} intersects both L1 and H2,

νL(x1, x2, x3), otherwise.

107

4.5 Algebraic results

F3(x1, x2, x3) =





x3, if x1 = x2, else

f3(x1, x2, x3), if {x1, x2, x3} ⊆ H1, else

g3(x1, x2, x3), if {x1, x2, x3} ⊆ H2, else

λR(x1, x2, x3), if {x1, x2, x3} intersects both L1 and H2,

νR(x1, x2, x3), otherwise.

F2(x1, x2, x3) =





f2(x1, x2, x3), if {x1, x2, x3} ⊆ H1, else

g2(x1, x2, x3), if {x1, x2, x3} ⊆ H2, else

λL(x1, x2, x3), if {x1, x2, x3} intersects both L1 and H2,

νL(x1, x2, x3), otherwise.

It is clear that each Fi is conservative and that identities (4.1) and (4.3)

are satisfied. To prove (4.2), suppose without loss of generality that x 6= y: if

{x, y} is contained in H1 or contained in H2 then the result follows from the

fact that the fi and gi satisfy (4.2); if {x, y} intersects both L1 and H2 then

F1(x, x, y) = F2(x, y, y) is the unique element in {x, y} that belongs to L1; if

{x, y} intersects both N1 and H2 then F1(x, x, y) = F2(x, y, y) is the unique

element in {x, y} that belongs to H2. The proof that F2(x, x, y) = F3(x, y, y)

is similar.

Next we prove that property (D) holds for F1 (the proof for F3 is identi-

108

4.5 Algebraic results

cal.) Let n be a neighbour of x1. If F1(x1, x2, x3) = x1 the result is trivial,

and if {x1, x2, x3} is contained in H1 or contained in H2 then the result

follows from the fact that both fi and gi satisfy (D). Suppose now that

{x1, x2, x3} intersects both L1 and H2. Then F1(x1, x2, x3) ∈ L1; in particu-

lar if n ∈ H2 ∪ L1 we are done. If on the other hand n ∈ N1 then x1 ∈ L1

so F1(x1, x2, x3) = λL(x1, x2, x3) = x1. If F1(x, y, z) = νL(x, y, z) 6= x then

x ∈ N1, n ∈ L1, and νL(x, y, z) ∈ H2, so we are done.

Finally we show that F1 is edge-preserving (the proof for F2 and F3 is

identical.) Let (x1, x2, x3) and (y1, y2, y3) be adjacent. We analyse the dif-

ferent cases. Without loss of generality we may assume throughout that

y2 6= y3.

(1) Suppose first that x2 = x3 so that F1(x1, x2, x3) = x1. (a) If {y1, y2, y3} ⊆

H1, then F1(y1, y2, y3) = f1(y1, y2, y3); either x1 ∈ H2, forcing y1 ∈ L1 so

by property (E) we have that F1(y1, y2, y3) ∈ L1 adjacent to x1, or else

x1 ∈ H1 and so property (D) guarantees F1(y1, y2, y3) adjacent to x1. (b)

If {y1, y2, y3} ⊆ H2, then F1(y1, y2, y3) = g1(y1, y2, y3); if x1 ∈ H1 then it

is in L1 and is adjacent to F1(y1, y2, y3); otherwise x1 ∈ H2 and property

(D) applies. (c) If {y1, y2, y3} intersects both L1 and H2, then F1(y1, y2, y3)

returns the leftmost entry which is in L1; hence if x1 is not in N1 then it is

adjacent to F1(y1, y2, y3). If x1 ∈ N1 then y1 ∈ L1 so F1(y1, y2, y3) = y1 and

we are done. (d) Suppose that {y1, y2, y3} intersects both H1 and H2 but not

L1: then F1(y1, y2, y3) returns the leftmost entry in H2; if x1 is in H1 then it

must be in L1; otherwise x1 ∈ H2 forces y1 ∈ H2; in both cases x1 is adjacent

109

4.5 Algebraic results

to F1(y1, y2, y3).

From now on we may assume that x2 6= x3.

(2) Suppose {x1, x2, x3} ⊆ H1. (a) If {y1, y2, y3} ⊆ H2, then xi ∈ L1 for all

i, so F1(x1, x2, x3) ∈ L1 by property (E), so we are done. (b) If {y1, y2, y3}

intersects both L1 and H2, then F1(y1, y2, y3) returns the leftmost entry which

is in L1. There is some i such that yi ∈ H2, hence xi ∈ L1; by (E) it follows

that F1(x1, x2, x3) ∈ L1 and is adjacent to F1(y1, y2, y3). (c) Suppose that

{y1, y2, y3} intersects both H1 and H2 but not L1; then F1(y1, y2, y3) returns

the leftmost entry in H2. There is some i such that yi ∈ H2, hence xi ∈ L1;

by (E) again F1(x1, x2, x3) ∈ L1 and is adjacent to F1(y1, y2, y3).

(3) Suppose {x1, x2, x3} ⊆ H2. By the previous cases we may assume that

{y1, y2, y3} intersects both H1 and H2; in this case it must also intersect

L1, hence F1(y1, y2, y3) returns the leftmost entry which is in L1, which is

adjacent to every vertex in H2.

(4) Suppose {x1, x2, x3} intersects both L1 and H2. If the same holds for

{y1, y2, y3}, the result follows from the fact that λL is edge-preserving. We

may now assume that {y1, y2, y3} intersects both H1 and H2 but not L1.

Then by definition F1(x1, x2, x3) ∈ L1 and F1(y1, y2, y3) ∈ H2, and hence are

adjacent.

(5) Finally, suppose that each of {x1, x2, x3} and {y1, y2, y3} intersects both

H1 and H2, but not L1. Then the result follows from the fact that νL is

edge-preserving.

110

4.6 Symmetric Datalog constructions

4.6 Symmetric Datalog constructions

The goal of this section is to prove the following lemma.

Lemma 64. If H ∈ F then co-CSP(HL) is in symmetric Datalog.

Recall that F = I by Theorem 58, and we will use the inductive definition

of this class in this section. We start by describing a method to compose

symmetric Datalog programs.

4.6.1 Composing symmetric Datalog programs

The output of a Datalog program over τ with a set of IDBs I is a structure

over the extended signature τ ∪ I. Such a structure can naturally be fed

as input to another Datalog program working over this extended signature

and using a set J of IDBs disjoint from I. The result is a structure over the

signature τ ∪ I ∪J . Of course, the effect of this composition can be obtained

by simply merging the list of rules of the two programs. However, this naive

construction does not preserve the linearity or symmetricity of the programs.

The following lemma shows that in fact symmetricity can be preserved at the

cost of an increase in the arity of the IDBs.

Lemma 65. Let D be a symmetric Datalog program over the signature τ =

{E1, . . . , Ek} that outputs IDBs I1, . . . , It of respective arities a1, . . . , at. Let

pIj1∧. . .∧Ijsq denote the relation of arity aj1 +. . .+ajs which is the Cartesian

product of the (not necessarily distinct) relations Ij1 , . . . , Ijs. For any c, there

111

4.6 Symmetric Datalog constructions

exists a symmetric program Dc over the signature τ which correctly derives

all the pIj1 ∧ . . . ∧ Ijsq with s ≤ c.

Proof. It suffices to show that this holds when c = 2 since the more general

statement can be obtained by iterating the construction detailed below. Note

that we consider pIk ∧ I`q as a single4 IDB. We use x̄, ȳ and so on to denote

tuples of variables and say that x̄ and ȳ are disjoint if they share no variable.

We also use E(w̄) to denote some conjunction of EDBs. We construct D2

with the following rules.

1. Original rules of D are kept.

2. If Ij(x̄) ← E(w̄) is a non-recursive rule in D , we include for any 1 ≤

q ≤ t the rule

pIj(x̄) ∧ Iq(ȳ)q← Iq(ȳ) ∧ E(w̄)

where ȳ is disjoint from x̄ and w̄. We also include the symmetric rule

Iq(ȳ)← pIj(x̄) ∧ Iq(ȳ)q ∧ E(w̄).

3. Finally, if Ij(x̄)← Ik(ȳ)∧E(w̄) is a recursive rule of D , we include for

any 1 ≤ q ≤ t the rule

pIq(z̄) ∧ Ij(x̄)q← pIq(z̄) ∧ Ik(ȳ)q ∧ E(w̄)

4As stated, the lemma distinguishes the IDBs pIj ∧ Ikq and pIk ∧ Ijq. However, the
two are clearly equivalent from a computational perspective. To simplify our description
of D2, we thus implicitly assume that any rule involving pIj ∧ Ikq is accompanied by the
counterpart rule using pIk ∧ Ijq.

112

4.6 Symmetric Datalog constructions

where z̄ is disjoint from x̄, ȳ and w̄. Because D is symmetric, we know

that the symmetric of the above rule also appears in D2.

By construction D2 is symmetric. We claim that it computes the product

relations correctly. It can be easily seen using induction that all rules above

are sound, i.e. there is a derivation in D2 for any pIq(z̄)∧ Ij(x̄)q only if there

are derivations for Iq(z̄) and Ij(x̄) in D . For example, assume that pIq(z̄) ∧

Ij(x̄)q is derived in D2 using the rule pIq(z̄)∧Ij(x̄)q← pIq(z̄)∧Ik(ȳ)q∧E(w̄)

of type (3), and we already established that Iq(z̄) and Ik(ȳ) are derived in

D . Then Ij(x̄) (and Iq(z̄)) can be derived in D by the definition of rules of

type (3). The same argument shows that D and D2 derive the same IDBs

I1, . . . , It. In fact, it is convenient to view the execution of D2 as a two-stage

process where the original IDBs are derived first.

It remains to show that if there are derivations in D for Ij(x̄) and Ik(ȳ)

then there is a derivation of pIj(x̄)∧ Ik(ȳ)q in D2. Note first that since there

is a derivation of Ik(ȳ) in D , that same derivation exists in D2 (this is the

purpose of rules of type (1)). Now let

→ Ij1(x̄1)→ . . .→ Ijn(x̄n)→ Ij(x̄)

denote the sequence of IDBs used in the derivation of Ij(x̄) in D . Suppose

that Ij1(x̄1) is derived in D by instantiating a first-order rule

Ij1(x̄1)← E(w̄0).

113

4.6 Symmetric Datalog constructions

The rules of type (2) provide a corresponding derivation of pIj1(x̄1) ∧ Ik(ȳ)q

in D2 through

pIj1(x̄1) ∧ Ik(ȳ)q← Ik(ȳ) ∧ E(w̄0).

Similarly, suppose that the derivation of Ij2(x̄2) in D is given by

Ij2(x̄2)← Ij1(x̄1) ∧ E(w̄1).

The rules of type (3) provide a corresponding derivation of pIj2(x̄2) ∧ Ik(ȳ)q

in D2 through

pIj2(x̄2) ∧ Ik(ȳ)q← pIj1(x̄1) ∧ Ik(ȳ)q ∧ E(w̄1).

Thus, we can successively derive pIjt+1(x̄t+1) ∧ Ik(ȳ)q, from pIjt(x̄t) ∧ Ik(ȳ)q

and ultimately obtain a derivation of pIj(x̄) ∧ Ik(ȳ)q.

This construction is used to prove the following lemma which, intuitively,

proves that symmetric Datalog programs can be composed in a way that

preserves the symmetry.

Lemma 66. Let D be a symmetric Datalog program over the signature τ =

{E1, . . . , Eq}, and assume that the set of IDBs of D is I = {I1, . . . , Is}, with

respective arities a1, . . . , as. Further, let E be a symmetric Datalog program

over the signature τ ′ = τ ∪ I, and assume that the set of IDBs of E is

J = {J1, . . . , Jt}, with respective arities b1, . . . , bt. For a τ -structure H, let

H′ denote the τ ′-structure defined by D(H). One can construct a symmetric

114

4.6 Symmetric Datalog constructions

Datalog program F over the original signature τ with the following properties:

a) the IDBs I and J of D and E are IDBs in F ;

b) Ik(x̄) is derived in F (H) iff Ik(x̄) is derived in D(H);

c) J`(x̄) is derived in F (H) iff J`(x̄) is derived in E (H′).

Proof. Let c be such that each rule of E uses at most c EDBs in τ ′−τ , i.e. at

most c of the IDBs of D . By the previous lemma, we can assume that c = 1

since we can otherwise construct Dc and thus get relations that represent any

conjunction of the Ij.

The IDBs of our new program F include the IDBs of D and E (i.e. the

IDBs in I∪J) as well as auxiliary IDBs of the form pJ`∧Ikq for any 1 ≤ k ≤ s

and 1 ≤ ` ≤ t. The rules of F are constructed as follows.

1. Every rule of D is kept.

2. All rules of E which use only EDBs of the original signature τ are kept.

3. For any non-recursive rule of D , say Ik(x̄)← E(w̄), we include for each

1 ≤ ` ≤ t the symmetric pair of rules

pJ`(ȳ) ∧ Ik(x̄)q← J`(ȳ) ∧ E(w̄)

J`(ȳ)← pJ`(ȳ) ∧ Ik(x̄)q ∧ E(w̄)

where ȳ is disjoint from x̄ and w̄.

115

4.6 Symmetric Datalog constructions

4. For any recursive rule of D , say Ik1(x̄1) ← Ik2(x̄2) ∧ E(w̄), we include

for each 1 ≤ ` ≤ t the rule

pJ`(ȳ) ∧ Ik1(x̄1)q← pJ`(ȳ) ∧ Ik2(x̄2)q ∧ E(w̄)

where ȳ is disjoint from x̄1, x̄2 and w̄. The symmetricity of D ensures

that F contains the symmetric rule:

pJ`(ȳ) ∧ Ik2(x̄2)q← pJ`(ȳ) ∧ Ik1(x̄1)q ∧ E(w̄).

5. For any non-recursive rule of E that uses one of the Ik as an EDB,

say J`(ȳ)← Ik(x̄)∧E(w̄), we include the symmetric pair of (recursive)

rules

pJ`(ȳ) ∧ Ik(x̄)q← Ik(x̄) ∧ E(w̄)

Ik(x̄)← pJ`(ȳ) ∧ Ik(x̄)q ∧ E(w̄).

6. For any non-recursive rule of E that does not use any of the Ik as an

EDB, say J`(ȳ)← E(w̄), we include for each 1 ≤ k ≤ s the symmetric

pair of (recursive) rules

pJ`(ȳ) ∧ Ik(x̄)q← Ik(x̄) ∧ E(w̄)

Ik(x̄)← pJ`(ȳ) ∧ Ik(x̄)q ∧ E(w̄).

116

4.6 Symmetric Datalog constructions

7. For any recursive rule of E that use some Ik as an EDB, say J`1(ȳ1)←

J`2(ȳ2) ∧ Ik(x̄) ∧ E(w̄), we include the rule

pJ`1(ȳ1) ∧ Ik(x̄)q← pJ`2(ȳ2) ∧ Ik(x̄)q ∧ E(w̄).

Because E is symmetric, we know that F also includes the rule

pJ`2(ȳ2) ∧ Ik(x̄)q← pJ`1(ȳ1) ∧ Ik(x̄)q ∧ E(w̄).

8. For any recursive rule of E that does not use an Ij as an EDB, say

J`1(ȳ1)← J`2(ȳ2) ∧ E(w̄), we include for each 1 ≤ k ≤ s the rule

pJ`1(ȳ1) ∧ Ik(x̄)q← pJ`2(ȳ2) ∧ Ik(x̄)q ∧ E(w̄)

where x̄ is disjoint from ȳ1, ȳ2 and w̄. Because E is symmetric, we know

that F also includes the rule

pJ`2(ȳ2) ∧ Ik(x̄)q← pJ`1(ȳ1) ∧ Ik(x̄)q ∧ E(w̄).

We claim that F has the desired properties. Again, we first note that

all the rules are sound: if there is a derivation in F (H) for Ik(x̄) (resp.

J`(ȳ); pJ`(ȳ) ∧ Ik(x̄)q) then there is a derivation for Ik(x̄) in D(H) (resp.

a derivation for J`(ȳ) in E (H′); derivations for Ik(x̄) in D(H) and for J`(ȳ)

in E (H ′)). In other words, none of the above rules can produce unwanted

117

4.6 Symmetric Datalog constructions

tuples.

It remains to show that F is complete, i.e. that if there exists a deriva-

tion for Ik(x̄) in D(H) and a derivation for J`(ȳ) in E (H′) then there are

derivations in F (H) for Ik(x̄), J`(ȳ) and pJ`(ȳ)∧ Ik(x̄)q. This is obvious for

Ik(x̄) since the original rules of D are also rules of F . Similarly, rules of type

(2) yield the claim if the derivation of J`(ȳ) in E (H′) never uses one of the

Ij as an EDB.

The non-trivial case consists of derivations of E (H′) which use the Ij as

EDBs. The crux of the argument rests on the possibility of “inverting” any

sequence of derivation steps in a symmetric program. Consider the sequence

of IDBs in a valid derivation path in D(H):

Ik1(x̄1)→ Ik2(x̄2)→ . . .→ Ikn(x̄n).

If the ith step is obtained as Iki+1
(x̄i+1)← Iki(x̄i)∧E(w̄i) then the symmetric-

ity of D ensures that Iki(x̄i)← Iki+1
(x̄i+1) ∧ E(w̄i) is also a valid derivation

step in D(H) and the sequence

Ikn(x̄n)→ Ikn−1(x̄kn−1)→ . . .→ Ik1(x̄1)

also corresponds to a valid derivation path. In other words, if D(H) can pro-

duce a derivation of Ikn(x̄n) from Ik1(x̄1) then it can also produce a derivation

of Ik1(x̄1) from Ikn(x̄n).

We begin with the following claim.

118

4.6 Symmetric Datalog constructions

Claim 1. Assume that there exists a derivation of Ik(x̄) in D(H). Then

there exists a derivation of J`(ȳ) in F (H) iff there exists a derivation of

pJ`(ȳ) ∧ Ik(x̄)q in F (H).

Proof. In the left to right implication, we assume that J`(ȳ) is derived in

F(H) and use a simple induction on the length of the derivation of Ik(x̄) in

D(H). If Ik(x̄) is derived from a non-recursive rule then the derivation of

pJ`(ȳ)∧Ik(x̄)q in F(H) is obtained through a rule of type (3). The induction

step is obtained through rules of type (4).

The right to left implication is established through the same basic idea

but using the inverse path of derivation. Assume that pJ`(ȳ)∧ Ik(x̄)q can be

derived in F (H). If Ik(x̄) is derived from a non-recursive rule then we can

derive J`(ȳ) from pJ`(ȳ) ∧ Ik(x̄)q because of the symmetric rule of type (3).

If the derivation of Ik(x̄) in D(H) is of length at least 2 then consider the

last derivation step, say:

Ik(x̄)← Ik′(x̄
′) ∧ E(w̄).

By induction, there exists a derivation from pJ`(ȳ)∧Ik′(x̄′)q to J`(ȳ) and the

symmetric rule of type (4) provides the missing derivation step:

pJ`(ȳ) ∧ Ik′(x̄′)q← pJ`(ȳ) ∧ Ik(x̄)q ∧ E(w̄).

This completes the proof of the claim.

119

4.6 Symmetric Datalog constructions

Using Claim 1, we can complete the proof of the lemma by showing that

any derivation of J`(ȳ) in E (H′) has a corresponding derivation of J`(ȳ)

in F (H). Suppose that the derivation of J`(ȳ) in E (H′) has length n. If

n = 1 then J`(ȳ) is derived in E (H′) from a non-recursive rule which may

or may not use one of the Ij as an EDB. By using a rule of type (5) or

(6), we can obtain in F (H) a derivation for some pJ`(ȳ) ∧ Ik(x̄)q where

Ik(x̄) has a derivation5 in D(H). It then follows from Claim 1 that we can

obtain in F (H) a derivation for J`(ȳ) as well as derivations for any of the

pJ`(ȳ) ∧ Ik′(x̄′)q when Ik′(x̄
′) has a derivation in D(H).

For the induction step, take n ≥ 2 and suppose the last step in the

derivation of J`(ȳ) in E (H′) is given by

J`(ȳ)← J`n(ȳn) ∧ Ikn(x̄n) ∧ E(w̄n).

We know by the induction hypothesis that there is a derivation in F (H) for

pJ`n(ȳn) ∧ Ikn(x̄n)q. A rule of type (7) can now complete the derivation of

pJ`(ȳ) ∧ Ikn(x̄n)q in F (H):

pJ`(ȳ) ∧ Ikn(x̄n)q← pJ`n(ȳn) ∧ Ikn(x̄n)q ∧ E(w̄n).

Finally, Claim 1 ensures that J`(ȳ) itself can be derived in F (H). The case

5Note that we can assume without loss of generality that there is at least one such
Ik(x̄). If all the Ik are empty in D(H) then derivations in E (H′) can only be constructed
from rules that do not use the Ik as EDBs and, as we remarked earlier, the rules of type
(2) cover this case.

120

4.6 Symmetric Datalog constructions

where the last derivation step of J`(ȳ) in E (H′) does not rely on one of the

Ij as an EDB is covered by rules of type (8).

4.6.2 Symmetric programs for the list-homomorphism

problem for graphs in F

Our objective is to show that for any undirected graph H in F the set

co-CSP(HL) of digraphs with H-lists that do not map homomorphically to

HL is definable in symmetric Datalog. We proceed by induction on the

structure of H, i.e. using the inductive definition of F . If H consists of a single

loop or non-loop, co-CSP(HL) is trivially definable in symmetric Datalog and

it remains to show that this property is preserved by the operators disjoint

union, basic graph adjunction, formation of a basic graph by completion of

a colour class and special sum.

We begin with simple but useful observations that allow more concise and

intuitive descriptions of our constructions. These remarks and basic tricks

all rely on Lemma 66.

1. In a number of constructions below, we want to obtain from two sym-

metric Datalog programs D1 and D2 with goal predicates T1 and T2,

respectively, a new symmetric program D which accepts an input G

if G is accepted by D1 or if G is accepted by D2. This can be done

effortlessly since we can simply take the union of the rules of D1 and

D2, create a new goal predicate T and include the rules T ← T1 and

121

4.6 Symmetric Datalog constructions

T ← T2.

If instead we want D to accept G if both D1 and D2 accept G, we can

use Lemma 66 as follows. Consider the relational structure output by

D1: this structure includes the relation T1 which we can now use as an

EDB in D . It now suffices to add T1 to the body of any rule of D2

which has T2 as its head.

2. When analysing programs we always assume that the input structure

G is connected6. This is possible without loss of generality. Indeed,

consider Datalog programs over a signature τ that contains a binary

relation E (this is the case in all our constructions). It is straightfor-

ward to define a k-ary relation CE in symmetric Datalog which contains

the tuple (x1, . . . , xk) iff all xi are in the same connected component of

E. Moreover, Lemma 66 allows us to assume that any program D has

access to this relation as an EDB.

Suppose that the body of each rule in D includes the EDB condition

CE(x1, . . . , xk) where the xi are the variables occurring in the rule. Note

that if G is a digraph given as input to D , then any derivation of D(G)

must now take place within a single connected component of G. So

the digraphs accepted by D are disjoint unions of connected digraphs

(recall Footnote 6), one of which is accepted by D . In our case, we

6Note that because the target graph is an undirected graph, the direction of the edges
of G can be ignored. Therefore we say that two vertices u and v in G are connected if u
and v are connected in G once the direction of the edges are ignored.

122

4.6 Symmetric Datalog constructions

construct Datalog programs which accept a digraph G with H-lists iff

there is no homomorphism from G to HL (here we understand that G

includes the unary relations encoding the lists) and this of course holds

iff there is some connected component of G that does not map to HL.

In proving the correctness of a given program, we can therefore assume

connectivity of the input structure without loss of generality.

3. If T is a subset of vertices of H and if G is a digraph with H-lists,

we can construct in symmetric Datalog a digraph G∩T in which every

vertex v is bound by a list L′v which is the intersection of the original

Lv with T .

Furthermore, in the constructions below we typically assume that sym-

metric programs D1,D2 exist for co-CSP(HL
1) and co-CSP(HL

2) and

construct a symmetric program D for co-CSP(HL) where H is a graph

obtained by combining H1 and H2 through some operator. Strictly

speaking, the inputs of D are digraphs with H-lists and thus cannot be

fed as inputs to D1 or D2 since the latter only deal with lists contained

in H1 and H2, respectively. Note however that G∩H1 can be used as

an input to D1 and we use this trick repeatedly. If it is needed, we can

also use symmetric programs to construct digraphs G1 and G2 with,

respectively, H1-lists and H2-lists and new edge relations denoted E1

and E2, respectively. We can further modify the rules of D1 and D2 by

replacing the occurrences of E by E1 and E2 and by our first remark,

123

4.6 Symmetric Datalog constructions

we can then construct a symmetric program D that accepts G iff D1

accepts G1 and D2 accepts G2 or a program D that accepts G iff D1

accepts G1 or D2 accepts G2.

Let G be a digraph with H-lists. Any v ∈ G is potentially bound by

more than one unary predicate but of course this amounts to imposing a

list on v which is the intersection of all such unary predicates. We call this

intersection the minimal list of v. By the inductive definition of F , i.e. the

definition of I, the following lemmas complete the proof of Lemma 64.

Lemma 67. Suppose co-CSP(HL
1) and co-CSP(HL

2) are definable in symmet-

ric Datalog and let H be the disjoint union of H1 and H2. Then co-CSP(HL)

is also definable in symmetric Datalog.

Proof. Suppose co-CSP(HL
1) and co-CSP(HL

2) are recognised by symmetric

Datalog programs D1 and D2 with respective goal predicates K1 and K2. If

H is the disjoint union of H1 and H2, it is clear that a connected digraph G

with H-lists maps into HL iff G maps to HL
1 or to HL

2 . Of course G maps

to HL
i iff G∩Hi does. In other words, G does not map into HL iff D1 accepts

G∩H1 and D2 accepts G∩H2 . As we noted in the above remarks, this can be

tested with a symmetric program D .

Lemma 68. Let H1 be an irreflexive basic graph with colour classes B and T

and assume that co-CSP(HL
1) is recognised by a symmetric Datalog program

D1. If H is the graph obtained by transforming T into a reflexive clique then

co-CSP(HL) is also definable in symmetric Datalog.

124

4.6 Symmetric Datalog constructions

Proof. Let G be a digraph with H-lists. We produce a graph G′ from G by

removing any edge (u, v) of G if both Lu and Lv contain at least one vertex

from T . If there is a homomorphism h from G to HL, then h is clearly a

homomorphism from G′ to HL
1 . If there is a homomorphism g from G′ to

HL
1 , then we can produce a homomorphism g′ from G to HL as follows:

g′(w) =




t, if Lw contains a vertex t ∈ T (any t in T ∩ Lw suffices);

g(w), otherwise.

To check the validity of g′, we first notice that g can be assumed to have

a certain property. Specifically, observe that any vertex w of G′ whose list

contains at least one element t from T can be assumed to be mapped by g

to t, and this is just what g′ is doing. Then we add back the edges of G′

to obtain back G, and notice that if (u, v) is added back, then (g′(u), g′(v))

is an edge of G. Therefore to check the existence of a homomorphism from

G to HL, we can just check if there is a homomorphism from G′ to HL. It

remains to construct a symmetric Datalog program D that outputs G′ given

GL.

We define a unary relation GB that contains all vertices of G whose

minimal lists are subsets of B. This can be achieved by using all rules of the

form GB(x) ← ∧
S∈S US(x), where S is a collection subsets of B. We also

define a unary relation GT that contains all vertices of G whose minimal

lists contain at least one element of T and possibly some other vertices.

This is implemented using the rules GT (x) ← ∧
S∈S US(x), for all possible

125

4.6 Symmetric Datalog constructions

collections S of subsets of T such that
⋂
S∈S contains at least one element

of T . Note that a vertex in GB could also be present in GT . If there is an

edge between two vertices in GB, there can be no homomorphism. This can

be easily indicated by the rule I ← E(x, y) ∧ GB(x) ∧ GB(y) (note that we

are implicitely using Lemma 66 to be able to view GB and GT as EDBs).

Finally, we define E ′, the edge relation of G′ with the rule

E ′(x, y)← E(x, y) ∧GB(x) ∧GT (y). (4.4)

Let’s check that D has the desired output. Let (u, v) be an edge of G.

If Lv, Lu ⊆ B, then D indicates that there can be no homomorphism. If

Lv ⊆ B and Lu contains an element of T (or the other way around), then

(u, v) ∈ E ′, as desired. If both Lv and Lu contain an element of T , then

neither u nor v is in GB, so there is no way rule 4.4 could have put (u, v)

into E ′.

Lemma 69. Let H1 be a basic graph and assume that co-CSP(HL
1) and

co-CSP(HL
2) are recognised by symmetric Datalog programs D1 and D2, re-

spectively. If H is the result of adjoining H1 to H2 then co-CSP(HL) is also

definable in symmetric Datalog.

Proof. For i ∈ {1, 2}, let Ri, Ii respectively denote the set of loops and non-

loops of Hi. Recall that the adjunction of H1 to H2 is the graph obtained by

taking the disjoint union of the two graphs and adding every edge from R1

to H2. Moreover, because H1 is basic, its loops R1 form a clique and there

126

4.6 Symmetric Datalog constructions

are no edges between I1 and H2.

Let G be a digraph with H-lists. WLOG, we can also assume that GL is

not the graph with a single vertex (without self-loop). We begin by defining

a few sets:

• i1 : set of all vertices whose minimal lists are subsets of I1;

• r1 : set of all vertices whose minimal lists contain at least one vertex

from R1, and r1 could possibly contain any other vertex (see later);

• h2 : set of all vertices whose minimal lists do not contain any vertex

from R1 but contain at least one vertex from H2, and h2 could possibly

contain some vertices whose minimal lists are subsets of I1 (see later).

Claim. G maps to HL iff the following conditions hold:

1. There is no edge (u, v) in G such that u, v ∈ i1;

2. There is no edge (u, v) in G such that u ∈ i1 and v ∈ h2 (or the other

way around);

3. Let G1 be the subgraph of G that contains an edge (u, v) of G iff u ∈ i1
and v ∈ r1 (or the other way around). Then G1 (with lists restricted

to H1) maps to HL
1 ;

4. Let G2 be the subgraph of G that contains an edge (u, v) of G iff u, v ∈

h2. Then G2 (with lists restricted to H2) maps to HL
2 ;

127

4.6 Symmetric Datalog constructions

Proof of Claim. If conditions 1 or 2 fail then there is obviously no homomor-

phism from G to HL. So from now on we assume that both conditions 1 and

2 are satisfied. Observe the following: if there is any homomorphism from

G to HL then there is one such that any vertex w such that Lw ⊆ H2 ∪ I1

and Lw contains an element of H2 is mapped to a vertex in H2. Let’s see

what G2 is in condition 4: if (u, v) is an edge of G such that both Lu and

Lv contain an element of H2, then (u, v) is in G2. Edge (u, v) cannot be an

edge such that Lu or Lv is a subset of I1 by assuming conditions 1 and 2.

But then if there is a homomorphism from G to HL, then the image of (u, v)

can be assumed to be in H2. So if condition 4 is violated, there can be no

homomorphism from G to HL.

Assume that (u, v) is an edge of G1 in condition 3. Observe that if u ∈ i1,

then Lv must contain an element of R1. If it does not, then v also belongs

to i1 or h2 and therefore at least one of conditions 1 or 2 would be violated.

Notice that if there is a homomorphism from G to HL then v can be assumed

to be mapped to a vertex in R1. So if there is a homomorphism G to HL,

then we can assume that G1 is mapped to H1 and therefore if condition 3

fails, there can be no homomorphism from G to HL.

Conversely, assume that all the above conditions are satisfied. Let ϕ1 be a

homomorphism from G1 to HL
1 and ϕ2 be a homomorphism from G2 to HL

2 .

Just like before, we can assume that ϕ1 maps a vertex whose list contains an

element of R1 to a vertex in R1. We construct a homomorphism ϕ from G

128

4.6 Symmetric Datalog constructions

to HL:

ϕ(w) =





ϕ1(w), if Lw ⊆ I1 or Lw contains an element of R1;

ϕ2(w), otherwise, i.e. if Lw contains an element

of H2 and no element of R1.

Let’s check that the map ϕ is defined for every vertex of G and that it is

actually a homomorphism. Recall that G is connected and it is not a single

vertex, so every vertex of G is in an edge. So let (u, v) be any edge of G.

Assume first that Lu contains an element of R1. Then u is mapped to a

vertex in R1 by ϕ1. If Lv also contains an element of R1, then (u, v) is clearly

mapped to an edge. If Lv contains no element of R1 but contains an element

of H2, ϕ2 maps u to a vertex in H2 and therefore (u, v) is mapped to an edge

(using the definition of adjunction). If Lv contains only vertices in I1, then

(ϕ1(u), ϕ1(v)) is obviously an edge of H1.

Suppose that Lu contains an element of H2 but no element of R1. If Lv

has the same properties, then the image of (u, v) is (ϕ2(u), ϕ2(v)). If Lv ⊆ I1,

then condition 1 or 2 would be violated. Lastly if both Lu, Lv ⊆ I1, then

condition 1 is violated.

Now we just have to construct a symmetric Datalog program D verifying

the conditions in the claim. Notice that the relations i1, r1 and h2 are defined

so that we can define them in symmetric Datalog. For example, to define h2,

we use the rules h2(x)← ∧
S∈S US(x), where S is any collection of subsets of

129

4.6 Symmetric Datalog constructions

H2 ∪ I1 such that
⋂
S∈S S contains at least one element of H2 (note that this

could add a vertex to h2 whose minimal list does not contain any element

of H2). Conditions 1 and 2 are trivial to check. To check condition 3, we

produce G1 using the rule E1(x, y)← i1(x) ∧ r1(x) ∧E(x, y). Obtaining the

lists of the vertices of G1 reduced to H1 can be achieved by using rules of the

form U∩H1
Q (x) ← US(x) ∧ E1(x, y) and U∩H1

Q (x) ← US(x) ∧ E1(y, x), where

S is any subset of H such that S ∩ H1 = Q. Condition 4 can be checked

similarly.

Lemma 70. Let H1 and H2 be irreflexive graphs such that co-CSP(HL
1)

and co-CSP(HL
2) are recognised by symmetric Datalog programs D1 and D2,

respectively. If H is the special sum of H1 and H2 then co-CSP(HL) is also

definable in symmetric Datalog.

Proof. Recall that the special sum of bipartite irreflexive graphs H1 and H2

with colour classes Bi, Ti consists of the disjoint union of the graphs in which

all edges between T1 and B2 are added. Note first that G must be bipartite

in order to map to H and since bipartiteness can be checked in symmetric

Datalog, we can assume that any input G is indeed bipartite. For now, we

assume that we have access to a unary relation Uc that contains a single

arbitrary vertex c of the input graph G and later we will get rid of this

relation. Also recall that we are assuming that G is connected, so we can

construct a symmetric Datalog program that outputs a unary relation BG

that contains all vertices in the same partition as c. This is achieved by

putting any vertex that can be reached from c using an even length walk into

130

4.6 Symmetric Datalog constructions

BG. Similarly, TG denotes the other color class. We use BG and TG as EDBs

in the sequel.

Set T = T1 ∪ T2 and B = B1 ∪ B2. We define four unary relations over

the vertices of G:

1. t1: contains all vertices whose minimal lists are subsets of T and con-

tains at least one element of T1, and possibly some other vertices whose

minimal lists are subsets of T ;

2. t2: contains all vertices whose minimal lists are subsets of T2;

3. b1: contains all vertices whose minimal lists are a subsets of B1;

4. b2: contains all vertices whose minimal lists are subsets of B and con-

tains at least one element of B2, and possibly some other vertices whose

minimal lists are subsets of B.

The following claim has a somewhat similar proof to the claim in the previous

lemma, except that this one is simpler:

Claim. There is a homomorphism from G to HL (with color classes matched

as above) iff the following conditions hold:

1. There are no edges (u, v) such that v ∈ t2 and u ∈ b1 (or the other way

around);

2. Let G1 be the subgraph of G obtained by taking the graph induced by

t1∪b1 and removing any isolated vertices. Then G∩H1
1 homomorphically

maps to HL
1 ;

131

4.6 Symmetric Datalog constructions

3. Let G2 be the subgraph of G obtained by taking the graph induced by

t2∪b2 and removing any isolated vertices. Then G∩H2
2 homomorphically

maps to HL
2 ;

Proof. If condition 1 is violated, there is trivially no homomorphism from

G to HL (where the color classes are matched), so from now on we assume

that condition 1 is satisfied. If there is a homomorphism h from G to HL,

then for any vertex v such that h(v) ∈ T and Lv ∩ T1 6= ∅, we can assume

that h(v) ∈ T1. Using the assumption that condition 1 is met, it is easy to

see that h (restricted to vertices of G1) is a homomorphism from G∩H1
1 to

HL
1 . A similar argument can be made for condition 3. Therefore the above

conditions are necessary for the existence of a homomorphism from G to HL.

Conversely, assume that all conditions above are met. Let the two homo-

morphisms from conditions 2 and 3 be ϕ1 and ϕ2. To obtain a homomorphism

ϕ from G to HL, observe first that the domains of ϕ1 and ϕ2 are disjoint: if

for a vertex v, Lv ⊆ T and Lv contains a vertex from T1, then v cannot be

in the domain of ϕ2. If Lv does not contain a vertex from T1, then v cannot

be in the domain of ϕ1. Similarly for the bottom partition.

For any vertex v in the domain of ϕ1, ϕ(v) is defined to be ϕ1(v). Simi-

larly, for any vertex v in the domain of ϕ2, ϕ(v) is defined to be ϕ2(v). Note

that G could still contain some vertices which are neither in the domain of

ϕ1 nor in the domain ϕ2. Let v be such a vertex. Observe that v cannot be

in t2 because G is connected, and therefore v must have a neighbor u. Vertex

u can be only in t2 and therefore the edge (v, u) belongs to G2, so v is in

132

4.6 Symmetric Datalog constructions

the domain ϕ2. Similarly, v cannot be in b1. If v is in t1 and not in t2, then

the list of v must contain at least one element w of T1. By the properties of

special sum, we can define ϕ(v) to be w. We define ϕ similarly if v is in b2.

It is not hard to check that ϕ is a homomorphism from G to HL.

To construct the symmetric Datalog program, notice that we can output

t1, t2, b1 and b2. We can also output G1 using the rules E1(x, y)← E(x, y)∧

t1(x)∧ b2(y) and E1(x, y)← E(x, y)∧ t1(y)∧ b2(x). We need to trim the lists

of G1 to contain only elements of H1. Note we cannot just take all vertices in

t1 and remove vertices not in H1, because if t1 contains a vertex v such that

Lv ⊆ T2, then this approach would produce a vertex with the empty list,

which would indicate a false negative. Instead, first we produce the vertex

set of G1 with the rules VG1(x)← E1(x, y) and VG1(x)← E1(y, x), and then

we trim the lists. Now we can just use the programs for co-CSP(HL
1) and

co-CSP(HL
2) to test conditions 2 and 3, and we can directly check condition

1.

Up to this point, our program D1 checks if there is a homomorphism

from G to HL such that the color class of c is mapped to B1 ∪B2. To check

the other possibility, we just write another program D2 with color classes

reversed, and produce a third program D3 that accepts if both D1 and D2.

We need to modify D3 so that it does not use the relation Uc. Produce D

from D3 by adding a new variable x to every IDB of D3. For every rule R

that contains Uc(y), remove Uc(y) from R, and replace any occurrence of y

in R with x. We claim that D3 accepts iff D accepts. Let P be a derivation

133

4.7 List homomorphism problems definable in first-order logic

for D3. We obtain a D-derivation for the same input structure by removing

Uc(a) from all rules, where a is the value assigned to the variable y if Uc.

We add the new variables x to the IDBs and instantiate them to a. For

the converse, we assume that the newly added variable takes on the value a

everywhere (they are forced to be the same by definition), and make Uc be

the relation {a}. Now we just to do obvious backward modification of rules

to obtain a D3-derivation.

4.7 List homomorphism problems definable

in first-order logic

In this section we prove Theorem 49. We need the following characterisation

of structures whose CSP is first-order definable [61]. Let T be a relational

structure and let a, b ∈ T . We say that b dominates a in T if, for any

relation R(T), and any tuple t ∈ R(T), replacement of any occurrence of a

by b in t will yield a tuple of R(T). Recall the definition of a direct power

of a structure from Subsection 4.2.1. If T is a relational structure, we say

that the structure T2 dismantles to the diagonal if there exists a sequence of

elements {a0, . . . , an} = T 2 \ {(a, a) : a ∈ T} such that, for all 0 ≤ i ≤ n, ai

is dominated in Ti, where T0 = T2 and Ti is the substructure of T2 induced

by T 2 \ {a0, . . . , ai−1} for i > 0.

Lemma 71 ([61]). Let T be a core relational structure. Then CSP(T) is

134

4.7 List homomorphism problems definable in first-order logic

first-order definable if and only if T2 dismantles to the diagonal.

Proof. (of Theorem 49). We first prove that conditions (i) and (ii) are nec-

essary. Notice that if CSP(HL) is first-order definable then so is CSP(KL)

for any induced substructure K of H. Let x and y be distinct vertices of

H and let KL be the substructure of HL induced by {x, y}. If x and y are

non-adjacent loops, then θ(K) = {(x, x), (y, y)} is the equality relation on

{x, y}; if x and y are adjacent non-loops, then θ(K) = {(x, y), (y, x)}, the

adjacency relation of the complete graph on 2 vertices. It is well known (and

can be easily derived from Lemma 71) that neither of these classes CSP(KL)

is first-order definable. It follows that the loops of H induce a complete graph

and the non-loops induce a graph with no edges.

Now we prove (iii) is necessary. Suppose for a contradiction that there

exist distinct elements x and y of I and elements n and m of R such that

m is adjacent to x but not to y, and n is adjacent to y but not to x. Then

CSP(G) is first-order definable, where G is the substructure of HL induced

by {x, y,m, n}. By Lemma 71, G2 dismantles to the diagonal. Then (x, y)

must be dominated by one of (x, x), (y, x) or (y, y), since domination respects

the unary relation {x, y}2 (on G2). But (m,n) is a neighbour of (x, y) and

none of the other three, a contradiction.

For the converse: we show that we can dismantle (HL)2 to the diagonal.

Let x ∈ H: then (x1, x) and (x, x1) are dominated by (x, x). Suppose that

we have dismantled every element containing a coordinate equal to xi with

i ≤ j − 1: if x is any element of H such that the elements (xj, x) and (x, xj)

135

4.7 List homomorphism problems definable in first-order logic

remain, then either x is a loop or x = xk with k ≥ j; in any case the elements

(xj, xk) and (xk, xj) are dominated by (x, x). In this way we can remove all

pairs (x, y) with one of x or y a non-loop. For the remaining pairs, notice

that if u and v are any loops then (u, v) is dominated (in what remains of

(HL)2) by (u, u).

136

Chapter 5

A Dichotomy for the List

Homomorphism Problem for

Oriented Paths

5.1 Introduction

In this chapter, we further contribute to the understanding of the fine-grained

complexity of the list homomorphism problem. We show that when H is an

oriented path, CSP(HL) is in L or is NL-complete. We use some notation

from Chapter 4.

137

5.2 The L-NL Dichotomy

5.2 The L-NL Dichotomy

5.2.1 NL-hardness

We start with some definitions.

Definition 72. A fuzzy-N (see left of Figure 5.2) of height h is an oriented

path N of the following form. Let P1, P2, P3 be minimal oriented paths of

height h (recall that minimal means that the first vertex is in the bottom

level and the last vertex is in top level and no other vertices are in the top

and bottom levels). Let U be an oriented path of height less than h such

that its first and last vertices are both in the top level. Let D be an oriented

path of height less than h such that its first and last vertices are both in the

bottom level. Then N is obtained by taking the union of P1,U,P2,D and

P3, and identifying the following pairs of vertices: the topmost vertex of P1

and the first vertex of U, the last vertex of U and topmost vertex of P2,

the bottommost vertex of P2 and first vertex of D, the last vertex of D and

bottommost vertex of P3.

Definition 73. Z5 is the oriented path:

.

Definition 74. The set F is the set of oriented paths that do not contain a

fuzzy-N, or a Z5 as an (induced) subgraph.

138

5.2 The L-NL Dichotomy

Note that to show hardness results, our strategy is similar to the strategy

in Chapter 4. In particular, see Lemma 61. Once we show that the variety

associated with the oriented path P admits a unary, lattice or semilattice

type, we know that CSP(PL) is NL-hard by applying Theorem 4.1 of [63].

Therefore we only show how to construct S for Lemma 59(2) with T = PL.

If we wished to avoid algebra, we can directly show that once the relation

{(0, 0), (0, 1), (1, 1)} is defined from PL (as in Lemma 59), we can reduce

directed reachability to CSP(PL) (as we already mentioned in the proof of

Theorem 44, Chapter 3).

Lemma 75. If an oriented path P contains a Z5 as a subgraph, then CSP(HL)

is NL-hard.

Proof. In Figure 5.1 below, the gadget S is the oriented path with lists as

indicated. It is straightforward to check that any homomorphism from S to

Z5 must map (s1, s2) to (0, 0), (0, 4) or (4, 4). The lemma follows from the

above comments.

0 2 4

531

Z5

{0, 4} {2, 0, 4} {0, 4}

S

{1, 5} {3, 1}
s1 s2

Figure 5.1: Z5 and gadget.

We need to recall Claim 1 within the Corollary of Theorem 1 of [49] to

139

5.2 The L-NL Dichotomy

P1
P2 P3

U

D

a b

d e m

P

s2s1

Q
QQ′ Q′

Q′′ Q′′

S

c

Figure 5.2: A fuzzy-N and a gadget.

prove the next lemma. The definition of minimal oriented path in [49] is

slightly different from ours. We refer to their notion of minimality as weak

minimality. An oriented path is weakly minimal if its first vertex is in the

bottommost level and its last vertex is in the topmost level (or the other way

around).

Claim 76 ([49]). Let P = p0p1 . . . pa and P′ = p′0p
′
1 . . . p

′
b be weakly minimal

oriented paths of net length k. Then there exists an oriented path P∗ =

p∗0p
∗
1 . . . p

∗
c such that P∗

h−→ P and P∗
h′−→ P′. Furthermore, h and h′ can be

chosen such that h(p∗0) = p0, h′(p∗0) = p′0, h(p∗c) = pa, and h′(p∗c) = p′b.

Lemma 77. If an oriented path P contains a fuzzy-N N as a subgraph, then

CSP(PL) is NL-hard.

Proof. We follow the same strategy as in Lemma 75 (and see the comments

above). We simply produce the gadget S as before. Let the building blocks of

N be P1,U,P2,D,P3, just like in the definition above. See left of Figure 5.2.

Using Claim 76, we can find a minimal oriented path Q of height h that

140

5.2 The L-NL Dichotomy

maps to P1, P2 and P3. Let hU be the height of U. Let v be a vertex of

U in the bottom level, and “cut” U at vertex v, i.e. obtain weakly minimal

oriented paths U1 and U2 of height hU such that identifying the last vertex

U1 with the first vertex of U2 gives back U. Let P′1 be the shortest oriented

subpath of P1 starting at the top of P1 that has height hU. Define P′2 and

P′3 similarly. Using Claim 76, find an oriented path Q′ that maps to U1, U2,

P′1, P′2, and P′3 and furthermore for these homomorphisms, the first vertex

of Q′ is mapped to the first vertex of the target path, and the last vertex of

Q′ is mapped to the last vertex of the target path. In exactly the same way,

find a Q′′ with respect to D. Our gadget S is the oriented path constructed

from Q, Q′, Q′′, shown in Figure 5.2 (right side).

Let A and B be oriented paths. Let Aij denote the subpath of A from

vertex i to j. Let Aij → Bkl denote the existence of a homomorphism from

Aij to Bkl that maps i to k and j to l. Then by construction, the following

homomorphisms exist: Ss1m → Pac, Ss1m → Pad, Ss1m → Pbe (note that we

can assume that these homomorphisms do not map anything to vertices in

P2 or D, except for vertices d and b.) We also have Ss2m → Pac, Ss2m → Pbd,

and Ss2m → Pbe. We add lists to restrict the possible homomorphisms. First,

add lists so that s1 and s2 can map only to {a, b}. By adding lists, we restrict

the possible images of vertices in Ss1m to those vertices of P which are in

Pad or P3. It is easy to check that there are homomorphisms that map P to

S such that (s1, s2) is mapped to (a, a), (a, b) or (b, b). The only remaining

possibility would be to map (s1, s2) to (b, a), but that is not possible for the

141

5.2 The L-NL Dichotomy

following reason. If s1 is mapped to b, then because no vertex in Ss1s2 can

map to D, vertex m must be mapped to e. Recall that Q is minimal and

the height of Q′′ is strictly less than the height of Q. But then Sms2 contains

only a single vertex in the top level, namely m. If s2 was mapped to a, Sms2

should have a vertex that is mapped to a vertex in Pcd in the top level of P,

a contradiction.

5.2.2 Membership in L, NL

The following result is just putting together results from [40] and [30].

Theorem 78. If P is an oriented path, then CSP(PL) is in NL.

Proof. In [40], a majority operation is defined for any oriented path. In fact,

this majority operation is trivially conservative. Therefore the main result of

[30] shows that co-CSP(PL) is in linear Datalog and therefore in NL [28].

Now we focus on showing that if P is in F , then CSP(PL) is in L. We

begin with defining a class of oriented paths constructed inductively using

three operations. It can be easily verified that all three operators in Defini-

tion 79 are special cases of the special sum operator (see Definition 86 in the

next section) or disjoint union followed by special sum.

Definition 79. We define three operators that produce new oriented paths

from oriented paths:

142

5.2 The L-NL Dichotomy

1. The growth operator takes an oriented path in which the last vertex v

is in the topmost level. We obtain a new oriented path by attaching a

new arc (v, u). A similar operation is defined for the first vertex.

2. The bulge operator takes two oriented paths P1 and P2. Let u be a

vertex of P1 in the top level that has indegree 1 and outdegree 0 (if

such a vertex exists). Similarly, find such a vertex v in P2. We take

the disjoint union of P1 and P2 and add a new vertex w, and the arcs

(u,w) and (v, w) to obtain a new oriented path. A similar construction

can be performed with vertices in the bottom levels.

3. The dent operator takes two oriented paths P1 and P2. Let u be the

vertex of P1 that has indegree 1 and outdegree 0. Similarly, let v be

such a vertex in P2. If u is the only vertex in the top level of P1 and v

is the only vertex in the top level of P2, then we take the disjoint union

of P1 and P2, add a new vertex w, and the arcs (w, u) and (w, v) to

obtain a new oriented path. A similar construction can be performed

with vertices in the bottom levels.

Lemma 80. Let H1 and H2 be two oriented paths. Assume that there are

logspace algorithms that decide CSP(HL
1) and CSP(HL

2). If H is obtained

from H1 and H2 using the bulge or the dent operators, then there is a logspace

algorithm for CSP(H). If H is obtained from H1 using the growth operator,

then there is a logspace algorithm for CSP(H).

Proof. As the above three operators are special cases of the special sum

143

5.2 The L-NL Dichotomy

operator, or a disjoint union operator followed by a special sum operator

(see next section), the result follows from Lemmas 88 and 84.

Definition 81. The set I is defined to be the set of all oriented paths which

can be constructed using the operations in Definition 79 starting with a single

vertex as the base case.

The following lemma is central.

Lemma 82. I = F .

Proof. Let P be an oriented path that does not contain a fuzzy-N or a Z5.

If P contains a single edge in its top level, we can obviously obtain P from

a smaller oriented path P′ using the growth operator. A similar argument

holds for the bottom level. If the topmost level contains only a single vertex

v and it is not the last or the first vertex of P, then we can remove v to obtain

P1 and P2. We can clearly get back P1 and P2 with the bulge operator. A

similar argument holds for the bottom level. Therefore we can assume that

both the top and the bottom levels of P contain at least two vertices.

Let u and v be in the topmost level of P (see Figure 5.3). Assume first

that the oriented path M from u to v has height at least 2. Then the path

Q1 coming into u from left cannot have a vertex in the bottommost level

because that would create a fuzzy-N. Similarly, the path leaving v to the

right cannot have a vertex in the bottommost level. So the (at least) two

vertices in the bottom level must actually be in M. Let a be the first vertex

in the bottommost level to the right of u, and let b be the last vertex in

144

5.2 The L-NL Dichotomy

Q1 Q2

u v

a b

Figure 5.3

the bottommost level before v. The path M′ from a to b must have height

1, otherwise a fuzzy-N is clearly present. To avoid Z5, M′ must actually

be the arcs (a, w) and (b, w), for some vertex w. Removing w creates two

components which we can put back together using the dent operator.

Assume now that the height of M is 1. When height(Q1) ≤ 1 and

height(Q2) ≤ 1, we check all cases individually. If height(Q1) = height(Q2) =

0 then the only possibility for P is shown in the left side Figure 5.4 (otherwise

P contains a Z5). In this case, P can be decomposed into two smaller oriented

paths by removing the vertex d, and P can be obtained back after an appli-

cation of the dent operator. If height(Q1) = 1 and height(Q2) = 0 then the

only possibilities for P are the graphs in the middle of Figure 5.4 (similarly

for the symmetric case). These graphs can be easily decomposed and put

back together with a dent operator. If height(Q1) = 1 and height(Q2) = 1

then the only possibilities for P is the graph on the right side in Figure 5.4.

Suppose therefore that at least one of height(Q1) ≥ 2 or height(Q2) ≥ 2

holds. We can also assume that P has a vertex z different from u and v in

the top level, because otherwise we can decompose P by removing the only

145

5.2 The L-NL Dichotomy

u vd

u

u

v

v

u v

Figure 5.4

vertex between u and v. It is easy to see that z cannot be between u and

v because otherwise P contains a Z5. Also, we can assume that z is in Qm

for an m ∈ {1, 2} such that height(Qm) ≥ 2. To see this, assume w.l.o.g.

that height(Q1) ≥ 2, height(Q2) = 1 and z in Q2 and observe that in this

situation P contains a Z5.

Therefore assume w.l.o.g. that height(Q1) ≥ 2 and z is in Q1. Assume

the edge coming into u is (w, u). The situation is illustrated in Figure 5.5. If

u v

w

z

Q1 Q2

Figure 5.5

(w, z) is an edge of P, then h(Q1) ≥ 2 cannot be satisfied without having a

Z5. So following the oriented path from w to the left, we go down at least one

level, and eventually we get back to z in the top level. Suppose c is a vertex

between u and z such that c is in the lowest level reached when following the

path from u to z. Let the level of c be L`. We observe that there is no vertex

146

5.2 The L-NL Dichotomy

in level L` to the left of z because that would produce a fuzzy-N. We can

also conclude that h(Q2) < h(Q1) because otherwise P contains a fuzzy-N.

So we can conclude that ` = 0, and all vertices in level L0 (i.e. bottom level

of P) are between u and z. Let i and j be two vertices in the bottom level. If

the path from i to j has height more than 1, we have a fuzzy-N. This is true

for any pair of vertices in the bottom level, so to avoid having a Z5, in fact

we have only i and j in the bottom level. The only possibility left is having

the edges (i, k) and (j, k). We can remove k to obtain two paths, and using

the dent operator, we can get back P.

For the other direction, it is easy to see that none of our three operations

can create a Z5 or a fuzzy-N.

Theorem 83. Let P be an oriented path. If P contains a subpath that is a

Z5 or a fuzzy-N then CSP(PL) is NL-complete. Otherwise CSP(PL) is in L.

Furthermore, the previous condition, i.e. whether P contains a subpath that

is a Z5 or a fuzzy-N, can be decided in polynomial time.

Proof. For any oriented path P, CSP(PL) is in NL by Theorem 78. If P

contains a fuzzy-N or a Z5 then CSP(HL) is NL-hard by Lemmas 75 and 77.

Otherwise, follow the inductive construction of P given by Lemma 82. Ob-

viously, there is a logspace algorithm for CSP(HL) if H is a single vertex.

At each construction step, apply Lemma 80 repeatedly until a logspace al-

gorithm for CSP(PL) is produced.

Searching for a Z5 or a fuzzy-N in P can be easily done in polynomial

time.

147

5.3 Logspace Preserving Constructions

5.3 Logspace Preserving Constructions

We begin by proving the following since it is used in the previous section.

Lemma 84 (Disjoint union lemma). Let H1 and H2 be digraphs. If there

are logspace algorithms for CSP(HL
1) and CSP(HL

2), then there is a logspace

algorithm for CSP((H1 tH2)L). (The operator t stands for disjoint union.)

Proof. The components of a directed graph G can be output in L using

Reingold’s logspace algorithm for undirected st-connectivity [77]. We check

for each component of G whether it homomorphically maps to H1 or H2. If

there is a component C of G that does not map either to H1 nor to H2, then

our algorithms rejects. Otherwise it accepts.

The main part of this section is the definition of the special sum operator

(not the same operator as in Chapter 4) and proving a logspace preservation

lemma for it (Lemma 88). The basic idea of this construction is inspired by

the special sum operator in Chapter 4 or [36, 37]. First we need the following

definition.

Definition 85. Given a subset S of the vertices of a digraph G, let Si=0

denote the set of vertices in S that have in-degree zero (in G), and Si>0

denote the set of vertices in S that have in-degree at least one. Similarly

define So=0 and So>0 with respect to out-degrees.

Definition 86. The special sum operator takes two balanced digraphs L

and R, a vertex level KL of L, and a vertex level KR of R, and two subsets

148

5.3 Logspace Preserving Constructions

H1 H2 H: the special sum of H1 and H2

Figure 5.6: Example special sum construction.

ML ⊆ Ki=0
L , and MR ⊆ Ko=0

R . (If L has more than one component, then

KL is obtained by choosing a vertex level of each component and taking the

union of these vertex levels. Similarly for R and KR.) The operator produces

H which is obtained by taking the disjoint union of L and R, and adding all

edges of the form (u, v), where u ∈ Ko>0
R ∪MR and v ∈ Ki>0

L ∪ML. (See the

right side of Figure 5.7.)

Example 87. See Figure 5.6. The right side is obtained by applying the

special sum operator to H1 and H2.

Lemma 88. Let H be obtained as in Definition 86. Then if CSP(LL) and

CSP(RL) are in logspace, then so is CSP(HL).

Proof. Let G be a digraph with lists. If G maps to HL, then G must be

balanced. We can check in logspace if a digraph is balanced (in fact, there is

a simple symmetric Datalog program to do this). Let h be the height of H.

We can also output the height of G if it is at most h, and we can indicate if

it is more than h, all in logspace. One way to do this is to write a symmetric

program to check for each ` ≤ h + 1 if the input contains an oriented path

of height `. Run each symmetric program, and among those that accept,

149

5.3 Logspace Preserving Constructions

choose the one which was checking for the largest height. If this number is

at most h, output this number. Otherwise we can clearly reject the input.

So now we can assume that G is balanced and has height at most h.

Using a similar argument to the one in Section 4.6.2 of Chapter 4, we

can assume that the input is connected. It is obvious that if there is a

homomorphism h from G to HL, then h pairs up the vertex levels of G and

H. That is, assume that the levels of G are L0, . . . , Ln, and the levels of

H are L′0, . . . , L
′
m. Then for any 0 ≤ i ≤ n, there is a j such that every

vertex in Li is mapped to a vertex in L′j. Furthermore, once two levels are

matched, in our case Li and L′j, the rest of the pairings is forced in a trivial

way. Therefore given our balanced input G, we label its vertex levels by the

levels of H, and we check (later) the existence of a homomorphism from G to

HL with paired up levels for all possible pairings. This overhead mechanism

can be implemented in logspace, where we make use of Reingold’s logspace

algorithm for undirected st-connectivity [77]. So from now on, we assume

that we already did all the above-described preprocessing and fixed which

level of G maps to which level of H.

We use the notation from Definition 86. In H, let UL be the set of vertices

of L which are in the same level as the vertices in KR. Similarly, let UR be

the set of vertices of R that are in the same level as the vertices in KL. See

the right side of Figure 5.7.

We give the proof referring to the example in Figure 5.7 (it is trivial to

generalize the proof). Let I be the vertex level of G that is matched with

150

5.3 Logspace Preserving Constructions

KR

UR

L R

KL

UL

A B C

D E

G

I

J

L

L

R

LR

MRKo>1
R

︸ ︷︷ ︸

︷ ︸︸ ︷
Ki>0

LML

Figure 5.7: The special sum operator.

the level KL ∪ UR of H, and let J be the level of G just below. Remove the

edges induced by I ∪ J from G to yield components A,B,C,D,E. We call

the components above I (A, B and C) top components and the components

below J (D, E) bottom components. The following claim is easy to verify

using the definition of the special sum operator:

Claim. Let Q be a top component of G, and Q′ be Q modified in the following

way. For any vertex u of Q in I, if the indegree of u is at least one (with

respect to G), then all elements of Ki=0
L are removed from the list of u.

Assume there is a homomorphism h from G to HL. Then we can assume

that h maps Q to L iff Q′ homomorphically maps L. A similar claim holds

for bottom components.

151

5.3 Logspace Preserving Constructions

Using the above claim, we label a top component Q of G with L if

Q′ homomorphically maps to L. To do this test, we use the algorithm for

CSP(LL) and input Q′ where the lists of Q′ are trimmed to contain only

elements of L, and the lists of the vertices in the bottom level of Q′ contain

only vertices from KL. If Q′ does not map to L but Q maps to R (the check

is done similarly), we label the component with R. If Q′ does not map to L

and Q does not map to R, then there can be no homomorphism from G to

HL (recall again, this is only for one possible matching of the levels, so there

could still be a homomorphism with some other matching). In an analogous

way, we also label the bottom components. See the left side of Figure 5.7

where an example labeling is shown.

We produce the subgraph L̃ of G which is the union the subgraphs that

have label L, in our case B,C and E, and all the edges from J to I that

involve only vertices in B ∪ C ∪ E. We similarly construct R̃. We check if

there is a homomorphism from R̃ to R, and from L̃ to L (levels matched, as

before). We also check if there is no arc from J to I going from a vertex in

L̃ to R̃. It is easy to check that G homomorphically maps to HL iff all tests

above pass. With a bit of work, all these can be implemented in logspace

(using Reingold’s undirected st-connectivity algorithm as a subroutine).

152

Chapter 6

On Maltsev Digraphs and

CSPs in L1

6.1 Introduction

The study of relational structures and, in particular, digraphs preserved by

polymorphisms became extremely important during the last decade. For ex-

ample, to establish the CSP dichotomy conjecture, it is sufficient to establish

the conjecture restricted to digraph templates [43]. In this direction, [8] gen-

eralizes the graph dichotomy theorem of Hell and Nešetřil [51] to digraphs

with no sinks and no sources by showing that digraph templates for which

the CSP is tractable are very structured, in fact, they retract onto a disjoint

union of directed cycles [8]. Other results relating the complexity of CSPs

1Some of the results in this chapter were obtained in collaboration with Catarina Car-
valho, Marcel Jackson and Todd Niven, published in [23].

153

6.1 Introduction

on digraphs to the existence of operations that preserve the digraph can be

found, for example, in [7, 5]. The connection between the polymorphisms of

a graph and its structure is widely studied, see for example [12, 42].

We study the structure of digraphs preserved by a Maltsev operation,

that we call Maltsev digraphs. We show that these digraphs retract either

onto the disjoint union of directed cycles or to a directed path. This gives

a direct proof that the corresponding CSP is in constant width symmetric

Datalog and therefore in L. (Membership of these CSPs in symmetric Dat-

alog, without the constant width guarantee, was independently shown by

Kazda [58], however, his proof is more indirect.)

We then generalize other results in [58] to show that a Maltsev digraph

is preserved not only by a majority polymorphism, but also by a class of

polymorphism obeying certain restrictions (e.g. minority, Pixley2). We also

extend the results to the conservative setting, i.e. we show that a conservative

Maltsev digraph is preserved by a class of conservative polymorphisms.

We apply our results to the list homomorphism problem discussed in

Chapter 4. While we completely characterised the complexity of the list ho-

momorphism problem for graphs, not much is known about the fine-grained

complexity of the list homomorphism problem for digraphs. However, a

P − NP dichotomy is known [52]. Toward a more refined classification, we

show that the list homomorphism problem for Maltsev digraphs is in L. (See

2A Pixley operation m is a ternary operation satisfying m(x, x, y) ≈ m(y, x, x) ≈
m(y, x, y) ≈ y.

154

6.2 Retracts of Maltsev digraphs

also Chapter 5 for more results related to the directed case.)

A generalization of the rectangularity [14] property of digraphs is intro-

duced. We call this rectangularity total rectangularity, and we establish that

a digraph is preserved by a Maltsev operation iff it is totally rectangular.

Similarly, we show that a digraph is preserved by a conservative Maltsev

operation if and only if it is universally rectangular, a specific form of total

rectangularity.

We also give an inductive construction of directed acyclic graphs preserved

by a Maltsev operation. The main motivation behind this construction is that

we suspect that extending this construction to “n-permutable digraphs” (“2-

permutable digraphs” are precisely the Maltsev digraphs [48]) might make

progress toward identifying all list homomorphism problems for digraphs

in L. Recall that in Chapter 4, an inductive construction of “conservative

n-permutable graphs” is key to the identification of all graphs whose list

homomorphism problem is in L.

6.2 Retracts of Maltsev digraphs

Since all graphs in the rest of this chapter are directed, we use the terms

graph and digraph interchangeably. Also, we often denote the vertex set of

a digraph G with VG and its edge set with EG.

Definition 89 (totally rectangular). A digraph G is k-rectangular if the

155

6.2 Retracts of Maltsev digraphs

following implication holds for all vertices x, y, u, v:

x
k→ u & y

k→ u & y
k→ v ⇒ x

k→ v.

A digraph is rectangular if it is 1-rectangular, and totally rectangular if it is

k-rectangular for every k ∈ N.

It is not hard to verify that a Maltsev digraph must be totally rectangular,

but in Section 6.3 (see Corollary 107) we show that the two properties are

equivalent.

Example 90. The digraph in on the left in Fig. 6.1 is rectangular but not

2-rectangular, while the digraph on the right is totally rectangular.

Figure 6.1: A rectangular digraph that is not 2-rectangular (left) and a
digraph that is totally rectangular (right).

We now state the main result of this section.

Theorem 91. Let G be a totally rectangular digraph. If G is acyclic then G

retracts onto a simple dipath. Otherwise G retracts onto the disjoint union

of simple directed cycles.

The proof of Theorem 91 is a direct consequence of Lemma 98 below. We

begin with some definitions and simple observations.

156

6.2 Retracts of Maltsev digraphs

Lemma 92. Let G be a DAG. Then G is balanced iff for every pair of vertices

u, v in G, and any pair of oriented paths P and Q from u to v, it holds that

net(P) = net(Q).

Definition 93. Let G be a digraph that contains a directed cycle. Let C be

a shortest directed cycle in G and assume it has length m. We say that G

is inconsistent if there exist two vertices u, v in G such that, there are two

different oriented paths of net lengths `1 and `2 from u to v such that `1 6≡ `2

mod m. Otherwise we say that G is consistent.

Proposition 94. Let G be a digraph that contains a directed cycle. Let C

be a shortest directed cycle in G. Then G retracts onto C iff G is consistent.

Proof. Assume that C has length m. If G is consistent, then choose an

arbitrary vertex of C and label it with 0. Call this vertex s. For each vertex

v ∈ G\s, find an oriented path P from s to v. Assume P has net length `.

Label v with the number ` mod m. Since G is consistent, this labeling is

well-defined. It is easy to see that the mapping that sends every vertex with

label i to the vertex of C that has label i is a retraction of G onto C.

Conversely, assume that G retracts to C through a homomorphism h.

Label every vertex v with h(v). It is not difficult to see that for any two

vertices u and v of G such that there are two different (not necessarily simple)

oriented paths of net lengths `1 and `2 from u to v, it must be that `1 ≡ `2

mod m.

157

6.2 Retracts of Maltsev digraphs

Lemma 95. Let G be a totally rectangular digraph and u, v be vertices in G.

Let P and Q be two dipaths in G from u to v, such that len(P) > len(Q).

Set k = len(P), ` = len(Q), and d = k − `. Then one of the following two

cases occurs:

1. If 2` > k, then G contains vertices u′, v′ and dipaths P ′, Q′ from u′

to v′ with the following property: len(P ′) = `, len(Q′) = 2` − k, and

len(P ′)− len(Q′) = d;

2. If 2` ≤ k, then G contains a directed cycle of length d.

Proof. See Fig. 6.2. In the first case, let u′ be the vertex of P such that

the subpath Pu′v of P from u′ to v has length `. Let v′ be the vertex of

P such that the subpath Puv′ of P from u to v′ has length `. Applying

the `-rectangularity of G to Pu′v, Q, and Puv′ , we obtain the desired dipath

P ′ with len(P ′) = `. The other required dipath Q′ is the subpath of P

from u′ to v′. Since k = 2` − len(Q′) we have that len(Q′) = 2` − k, and

len(P ′)− len(Q′) = `− (2`− k) = k − ` = d.

In the second case, the two paths P ′ and Q′ form a cycle of length ` +

(k − 2`) = d because 2` ≤ k.

Definition 96. Let P be an oriented path. Let P1, . . . , Pn be all maxi-

mal (with respect to length) directed subpaths of P , such that Pi and Pi+1,

i ∈ [n − 1] share a common vertex. We call P1, . . . , Pn a directed path de-

composition of P . We can obtain a directed path decomposition for oriented

158

6.2 Retracts of Maltsev digraphs

u

v

u′

v′

P ′ Q
Q′

P u

v

u′

v′

P ′ Q
Q′

P

Figure 6.2: Case 1 (left) and Case 2 (right) of Lemma 95.

cycles in a similar way. Note that if an oriented cycle has two maximal

directed subpaths, then these two subpaths share two vertices.

Lemma 97. Let G be a totally rectangular digraph and u, v ∈ VG. Let P1

and P2 be oriented paths in G from u to v. Assume that net(P1) > net(P2),

and set d = net(P1)− net(P2). Then there are vertices s, t ∈ VG and dipaths

Q1 and Q2 in G from s to t, such that len(Q1)− len(Q2) = d.

Proof. Consider the oriented cycle C formed by P1 and P2. Let R0, . . . , Rn−1

be a directed path decomposition of C, and assume that n ≥ 2. Find a

shortest segment Ri in the decomposition and assume it has length k. Then

both Ri−1 and Ri+1 have length at least k, where i−1 and i+1 are considered

modulo n. Assume without loss of generality that Ri−1 and Ri have the same

endpoint b, and Ri and Ri+1 have the same starting point c. Let a be the

vertex of Ri−1 at distance k from b (going backward on Ri−1), and d be the

vertex of Ri+1 at distance k from c. Then using the k-rectangularity of G,

we can make a shortcut from a to d to obtain a new oriented cycle C ′ in

G. We repeat these procedure until we obtain a cycle which has a directed

path decomposition consisting only of two directed paths, Q1 and Q2. See

159

6.2 Retracts of Maltsev digraphs

Figure 6.3 for an illustration.

Ri−1

Ri

Ri+1

C

c

b

a

d

v

v

a

d

v

v

C ′

Figure 6.3: Making a shortcut.

Assume without loss of generality that Q1 is longer. To see that net(Q1)−

net(Q2) = d, observe that d is the difference of the forward and backward

arcs in C. Applying the above shortcutting procedure to C to obtain C ′ does

not change the difference of the forward and backward arcs in C. To see this,

observe that we take out 2k forward arcs and k backward arcs from C, and

then we add back k forward arcs to obtain C ′.

Lemma 98. Let G be a connected totally rectangular digraph. If G is a

DAG then G retracts onto a simple dipath. Otherwise G retracts onto a

simple directed cycle.

Proof. Assume first that G is a DAG. We claim that G must be balanced.

Assume, for a contradiction, that G is not balanced. By Lemma 92, there

exist u, v ∈ VG and oriented paths P and Q from u to v, such that net(P) 6=

net(Q). Using Lemma 97, we can assume that P and Q are dipaths of

different length. Now we repeatedly apply Case 1 of Lemma 95 as long as it

160

6.2 Retracts of Maltsev digraphs

is possible, and then applying Case 2 yields a cycle, a contradiction. So G is

balanced.

Assume that G has levels L0, . . . , Lq−1. Fix vertices s ∈ L0 and t ∈ Lq−1,

and let O be any oriented path from s to t (such a path exists because G is

connected). Applying the total rectangularity of G to appropriate subpaths

of O, it is easy to see that there exists a dipath D of length q − 1 from s to

t in G. Clearly, G retracts onto D.

Suppose that G contains a directed cycle. By Proposition 94, it is enough

to show that G is consistent. Assume this is not the case. Let C be a shortest

directed cycle in G, and assume it has length m. Because G is inconsistent,

we can find vertices u, v ∈ VG and oriented paths P1 and P2 from u to v,

such that net(P1) 6≡ net(P2) mod m. Set `1 = net(P1) and `2 = net(P2).

Assume w.l.o.g. that `1 > `2, and that u is a vertex of C. Note that if u is

not a vertex of C, then we fix a vertex c of C and find any oriented path S

from c to u. Then attaching S to P1 and P2 at vertex u gives us the desired

oriented paths. Furthermore, we can assume that `1−`2 = d < m, because if

not, we can add C-loops from u to u to P2 to increase its length by a multiple

of m, until `1 − `2 < m. Using Lemma 97 we obtain directed paths Q1 and

Q2 such that len(Q1) − len(Q2) = d, and then, by applying Lemma 95, we

obtain a cycle of length d in G, a contradiction.

By Lemma 98, each connected component of G retracts either onto a

simple dipath or to a simple directed cycle. The trivial observation that a

dipath homomorphically maps to a cycle completes the proof Theorem 91.

161

6.3 Characterisations, Polymorphisms and Algorithms

6.3 Characterisations, Polymorphisms and Al-

gorithms

6.3.1 Rectangular Characterisations and Other Poly-

morphisms

In this section we generalise a technique of Kazda [58] to characterise di-

graphs that admit Maltsev and conservative Maltsev polymorphisms as those

which are totally rectangular and universally rectangular respectively and to

provide polynomial-time algorithms for recognising the relevant properties.

Furthermore, we show that Maltsev digraphs also admit many other poly-

morphisms.

Definition 99 (conservatively k-rectangular, universally rectangular). We

say that a graph is conservatively k-rectangular if it satisfies the following

sentence:

x→ x1 → · · · → xk−1 → u

y → y1 → · · · → yk−1 → u

y → z1 → · · · → zk−1 → v





⇒





There is a path x → w1 →

· · · → wk−1 → v with wi ∈

{xi, yi, zi} for each i.

(6.1)

A graph that is conservatively k-rectangular for all k ≥ 1 will be called

universally rectangular.

Example 100. The digraph on the right in Fig. 6.1 is conservatively rect-

162

6.3 Characterisations, Polymorphisms and Algorithms

angular but not conservatively 2-rectangular. While the digraph in Fig. 6.4

is universally rectangular.

Figure 6.4: A universally rectangular digraph.

Definition 101. Let G be a digraph. Define the binary relations R− on VG

by x R− y if x−1 ∩ y−1 6= ∅. The dual relation R+ is defined by x R+ y if

x+1 ∩ y+1 6= ∅.

If G is rectangular, then the relation R+ is an equivalence relation on

the set {x ∈ VG : x+ 6= ∅}, the set of vertices of G that are not sinks.

The relation R− is an equivalence relation on the set {x ∈ VG : x− 6= ∅},

the set of vertices of G that are not sources. So it makes sense to consider

the respective factor graphs, this was observed in [58]. We use the notation

G/R+ to denote the graph on the R+-classes of G. Given R+-classes A,B, we

write A→ B if there is some a ∈ A and b ∈ B with a→ b. Similarly, G/R−

denotes the same construction, but using the relation R−. Note that G/R+

is not strictly an actual graph quotient of G, only a quotient of an induced

subgraph of G. Nevertheless, we sometimes refer to it as “the quotient of G

by R+”.

Lemma 102. Let G be a rectangular digraph and k > 1.

163

6.3 Characterisations, Polymorphisms and Algorithms

1. G is `-rectangular for all ` = 1, . . . , k if and only if G/R+ is `-rectangular

for all ` = 1, . . . , k − 1.

2. If G is conservatively `-rectangular for all ` = 1, . . . , k then G/R+ is

conservatively `-rectangular for all ` = 1, . . . , k − 1.

Proof. The rectangularity of G ensures that G/R+ is well-defined. Consider

some ` ≤ k − 1. We show that G is (` + 1)-rectangular if and only if G/R+

is `-rectangular.

Consider vertices u, v, x, y such that x/R+ `→ u/R+, y/R+ `→ u/R+,and

y/R+ `→ v/R+ in G/R+. This is equivalent to both the following properties

holding:

1. there are ux, uy ∈ u/R+ and vy ∈ v/R+ such that x
`→ ux, y

`→ ux,

and y
`→ vy in G,

2. there are u′, v′ with u→ u′ and v → v′ in G.

Now these two combined are equivalent to x
`+1→ u′, y

`+1→ u′, and y
`+1→ v′ in

G, a general instance of the premise of (` + 1)-rectangularity of G. If G is

(`+ 1)-rectangular then x
`+1→ v′ and as vxR

+v, we have that x/R+ `→ v/R+

in G/R+, showing that G/R+ is `-rectangular. Conversely, if G/R+ is `-

rectangular then x/R+ `→ v/R+ gives x
`+1→ v′, showing that G is ` + 1-

rectangular. The second statement is proved similarly.

For a totally rectangular graph G, define G0 = G and Gi+1 = Gi/R
+,

i ≥ 1. From Lemma 102 it follows that Gi is defined for all positive integers

164

6.3 Characterisations, Polymorphisms and Algorithms

i, and eventually Gi will either be empty or a disjoint union of directed cycles

(the only situations that R+ can be trivial). We define G∞ = Gk, where k is

such that Gk = Gk+1 (i.e. G∞ is either empty or a disjoint union of directed

cycles).

The next lemma is easily obtained by applying the Maltsev property to

the columns of the premise of (6.1) in Definition 99.

Lemma 103. Let G be a digraph.

1. If G has a Maltsev polymorphism, then G is totally rectangular.

2. If G has a conservative Maltsev polymorphism, then G is universally

rectangular.

The next lemma is used in the proof of Theorem 106.

Lemma 104. Let a, b be vertices in a totally rectangular digraph G satisfying

conservative 2-rectangularity and assume that neither a nor b is a source or

sink. If a/R+ ∩ b/R− is nonempty then either b ∈ a/R+ or a ∈ b/R−.

Proof. Let c ∈ a/R+ ∩ b/R−. There are vertices e, f, g, h such that {a, c} ⊆

e−1, b ∈ f−1, a ∈ g+1 and {c, b} ∈ h+1. However G is conservatively 2-

rectangular so that there is either an edge from at least one of a, c to f or

there is an edge from g to at least one of {b, c}. Then 1-rectangularity shows

that either there is an edge from a to f or from g to b.

To give details of the proof of Theorem 106, it is useful to recall the

following collection of easy observations from [58].

165

6.3 Characterisations, Polymorphisms and Algorithms

Lemma 105. Let G be a rectangular digraph. Then the following hold:

1. R+ is an equivalence relation on G \ S+(G), where S+(G) is the set of

sinks of G.

2. R− is an equivalence relation on G \ S−(G), where S−(G) is the set of

sources of G.

3. Whenever xR+y, we have that x+1 = y+1 and x+1 is an equivalence

class of R−.

4. Whenever xR−y, we have that x−1 = y−1 and x−1 is an equivalence

class of R+.

5. The mapping φ : X → X+1 is a bijection from the set of equivalence

classes of R+ to the set of equivalence classes of R−, and φ is an iso-

morphism from G/R+ to G/R−.

Theorem 106. Consider a property C of digraphs defined by the existence

of polymorphisms t1, t2, . . . , tk (not necessarily distinct) satisfying a single

equational sequence

t1(x1,1, x1,2, . . . , x1,n1) ≈ · · · ≈ tk(xk,1, xn,2, . . . , xk,nk) ≈ x,

where {x1,1, . . . , x1,n1} = · · · = {xk,1, . . . , xk,nk} and x ∈ {x1,1, . . . , x1,n1}.

The following statements are true provided that the equation x ≈ y does not

follow from C.

166

6.3 Characterisations, Polymorphisms and Algorithms

1. Let G be a totally rectangular digraph. Then G has property C if and

only if G∞ has property C.

2. Let G be universally rectangular. Then G has property C with each

ti conservative if and only if G∞ has property C with each of the ti

conservative.

The same conclusions can be made without the requirement that ≈ x be in-

cluded in the equational sequence, and if the polymorphisms are required to

be idempotent.

Proof. Our proof is very similar to the main proof in [58]; we use Lemma 102

rather than the assumption of the Maltsev property directly. We focus only

on the conservative case (not considered in [58]), as the non-conservative case

is obtained by following this proof and missing some steps.

It is easy to see that if G has conservative property C then so does G/R+

by defining ti(x1/R
+, . . . , xn/R

+) = ti(x1, . . . , xn)/R+. Thus, it suffices to

show that if G/R+ satisfies some conservative property C then so does G.

This uses only total rectangularity (to ensure that successive quotients are

well defined).

We show the reverse direction by backward induction over successive quo-

tients by R+. It is useful to note that instead of explicit use of universal rect-

angularity, the argument uses only the fact that on each successive quotient

by R+, both rectangularity and the conclusion of Lemma 104 hold. Assume

thatG/R+ has conservative polymorphisms t+1 , . . . , t
+
k witnessing property C.

167

6.3 Characterisations, Polymorphisms and Algorithms

Let t−i (x1, . . . , xn) denote the operation given by φ(t+i (φ−1(x1), . . . , φ−1(xn)))

(φ is from Lemma 105). We show that one can construct conservative func-

tions tG1 , . . . , t
G
k on G such that the following hold for all i = 1, . . . , k:

1. The equation sequence defining C holds;

2. If x1, . . . , xn ∈ VG are not sinks then

tGi (x1, . . . , xn)/R+ = t+i (x1/R
+, . . . , xn/R

+);

3. If x1, . . . , xn ∈ VG are not sources then

tGi (x1, . . . , xn)/R− = t−i (x1/R
−, . . . , xn/R

−).

We note that any function satisfying properties 1 and 2 is a polymorphism:

this is proved in the case of majority function by Kazda [58] but his proof

makes no use of the majority property, nor of the arity of the functions. Thus

it remains to show that functions with all three properties stated above can

be found.

We will assume that in the case where ≈ x is included in the definition

of C, the values of the ti are forced at many tuples. The assumption of

idempotence on some of the terms in C similarly will force some constant

tuples. Such forcing cannot result in the identification of distinct elements,

as this enables a proof of the trivial equation x ≈ y. Properties 2 and 3 hold

trivially for such tuples.

168

6.3 Characterisations, Polymorphisms and Algorithms

We now fix some linear order ≤G on the vertices VG and choose the

values of tG(a1, . . . , an) which have not so far been forced. Assume that

one of a1, . . . , an ∈ VG is a source. Choose the value of tG(a1, . . . , an) to

be the smallest element al (under ≤G) of {a1, . . . , an} such that al/R
+ =

t+(a1/R
+, . . . , an/R

+). This way condition 2 and 3 are satisfied. A dual

statement holds if one of x1, . . . , xn is a sink. Note that if t(a1, . . . , an) ap-

pears in the equation sequence definition C, then as the variables appearing

throughout this sequence are the same and since G/R+ satisfies the equa-

tions, the same ≤G-earliest vertex will be selected in every case. Hence the

equations are not violated by these selections.

Now consider the case where none of the a1, . . . , an are sources or sinks.

We show that the R+-class t+(a1/R
+, . . . , an/R

+) intersects the R−-class

t−(a1/R
−, . . . , an/R

−) and that one of the a1, . . . , an lies in this intersection

(this is the conservative part); this vertex will be chosen as the value of

tG(a1, . . . , an).

Since t+ and t− are conservative functions, we have t+(a1/R
+, . . . , an/R

+) ∈

{a1/R
+, . . . , an/R

+} and t−(a1/R
−, . . . , an/R

−) ∈ {a1/R
−, . . . , an/R

−}. Be-

cause any vertex u ∈ VG that is neither a source nor sink has u ∈ u/R+ ∩

u/R−, we need to consider the situation where t+(a1/R
+, . . . , an/R

+) is the

R+-class of one of {a1, . . . , an} but t−(a1/R
−, . . . , an/R

−) is the R−-class of

a different vertex in {a1, . . . , an}. So assume that t+(a1/R
+, . . . , an/R

+) =

al/R
+ and t−(a1/R

−, . . . , an/R
−) = al′/R

−, for some l 6= l′.

We now show that al/R
+ ∩ al′/R− 6= ∅. Since ai/R

+ ∩ ai/R− 6= ∅, for

169

6.3 Characterisations, Polymorphisms and Algorithms

each i = 1, . . . , n, we have

φ(φ−1(ai/R
−)) ∩ ai/R+ 6= ∅,

and therefore

(φ−1(ai/R
−), ai/R

+) ∈ EG/R+ .

Thus

(t+(φ−1(a1/R
−), . . . , φ−1(an/R

−)), t+(a1/R
+, . . . , an/R

+)) ∈ EG/R+ ,

from which it follows that

t−(a1/R
−, . . . , an/R

−) ∩ t+(a1/R
+, . . . , an/R

+) = al/R
+ ∩ al′/R− 6= ∅.

As al/R
+ ∩ al′/R− 6= ∅, we can use Lemma 104 to show that there is i ≤

n with ai ∈ al/R
+ ∩ al′/R−. Choose tG(a1, . . . , an) to be the ≤G-earliest

amongst the ai ∈ al/R+ ∩ al′/R− (this takes care of any equations involving

t(a1, . . . , an)). This completes the proof that there are tG1 , . . . , t
G
k satisfying

C and 2 and 3, as required.

Some instances of polymorphisms satisfying the conditions of Theorem

106 are majority, Maltsev and Pixley. In these cases G∞ always has the

desired polymorphism, giving the following corollary.

170

6.3 Characterisations, Polymorphisms and Algorithms

Corollary 107. Let G be a digraph.

1. G admits a (conservative) Maltsev polymorphism iff it admits a (con-

servative) Pixley operation iff it is totally (universally) rectangular.

2. If G is totally (universally) rectangular then G admits a (conservative)

minority polymorphism and a (conservative) majority polymorphism.

Remark 108. The first part of Corollary 107 strengthens the result given

in Lemma 4 of [33], for the case of digraphs. The relational clone 〈B〉 of

a structure B is the set of all relations that can be expressed with primitive

positive first-order formulas (i.e. only existential quantification, conjunction,

and equality is allowed) from B. When we restrict [33, Lemma 4] to digraphs,

it can be stated as follows: A digraph G is preserved by a Maltsev operation

iff every binary relation in 〈G〉 is rectangular. It is easy to see and well-

known that every binary relation in 〈G〉 can be expressed as BG(S, a, b) =

{(h(a), h(b))|h is a homomorphism from S to G} for a structure S with two

distinguished vertices a and b. Then Corollary 107 implies that for a digraph

G to be preserved by a Maltsev operation it is enough to require that only

those binary relations in 〈G〉 that can be expressed as BG(S, a, b), where S is

a directed path with initial vertex a and terminal vertex b, are rectangular.

The above corollary yields an algorithm for verifying if a graph has a

Maltsev (or Pixley) polymorphism. Indeed, the rectangularity of a digraph

is equivalent to the following property of its adjacency matrix: when two

rows (or two columns) share a common 1 they are identical. On an n-vertex

171

6.4 Constructing Maltsev DAGs

digraph this property may be verified inO(n3) steps. A digraph has a Maltsev

polymorphism if and only if each (of at most n) successive quotient by R+ is

rectangular, with the process stopping once there are no R+-classes of size

more than 1 (which happens after at most n quotients). Overall this takes

O(n4) steps (quadratic in terms of the size of the adjacency matrix).

Universal rectangularity (equivalently, the existence of a conservative

Maltsev polymorphism) can also be verified in polynomial time by verify-

ing total rectangularity and conservative 2-rectangularity at each successive

quotient by R+. In fact, the proof of Theorem 106 is sufficiently construc-

tive to construct the desired polymorphisms (when they exist): simply work

backwards from their definition of G∞.

6.4 Constructing Maltsev DAGs

In this section, all graphs will be acyclic, i.e. DAGs. Recall that all DAGs

preserved by a Maltsev polymorphism are balanced and retract onto a simple

dipath, see Theorem 91.

We provide a simple inductive characterisation of totally rectangular

DAGs. We note that in [58, Corollary 16] Kazda gives an inductive con-

struction of Maltsev digraphs, however, this construction is not fully satis-

fying in the sense that it is non-deterministic, i.e. it does not specify how to

obtain the desired preimages, and it is not clear if it can be made determin-

istic. The construction described below consists of repeated applications of

172

6.4 Constructing Maltsev DAGs

two straightforward steps (and their reverse versions) which clearly specify

how to obtain a new Maltsev digraph from an already constructed one by a

certain copying process. We need the following definitions.

Definition 109 ((Reverse) arborescence). An (reverse) arborescence is a

directed tree with root r such that every edge points away from (toward) r.

Definition 110 (∇(r, h) and ∆(r, h)). Let G be a digraph, r ∈ VG, and

h ∈ N. ∇(r, h) (∆(r, h)) is defined to be the subgraph of G whose vertices

and edges are the vertices and edges of all (reverse) sub-dipaths of G which

have initial vertex r and length h. A vertex v ∈ ∇(r, h)−{r} (∆(r, h)−{r}) is

called an endpoint of ∇(r, h) (∆(r, h)) if there is a (reverse) dipath of length

h from r to v. Otherwise v is called an inner vertex of ∇(r, h) (∆(r, h)).

Definition 111 (isolated∇(r, h) and ∆(r, h)). Let G be a digraph. Consider

∇(r, h) (∆(r, h)) for some r ∈ VG and h ∈ N. We say that ∇(r, h) (∆(r, h)) is

isolated in G if for every inner vertex v of ∇(r, h), both the in-neighbourhood

and the out-neighbourhood of v belongs to ∇(r, h) (∆(r, h)).

r

∇(r, 2)
2a

r
∆(r, 2) 2d

p

G G′ G′′

Figure 6.5: Construction of a totally rectangular DAG.

173

6.4 Constructing Maltsev DAGs

We are ready to define the construction formally in Fig. 6.6. This con-

struction can be used, for example, to define a minority operation for a totally

rectangular DAG, but this is a bit complicated and Theorem 106 is much

more efficient.

1. C contains dipaths of all possible lengths n ∈ N0;

2. C is closed under applying the following operations:

(a) Given a digraph G, let r ∈ VG and h ∈ N such that ∇(r, h) is
an arborescence. Let ∇′ be a copy of ∇(r, h). Join ∇′ to G by
identifying the corresponding endpoints of ∇′ and ∇(r, h). Let
the resulting graph be G′;

(b) Given a digraph G, let r ∈ VG be such that r has exactly one
incoming edge (p, r), and h ∈ N such that ∇(r, h) is an isolated
arborescence. Let ∇′ be a copy of ∇(r, h) with root r′. Join
∇′ to C by identifying the corresponding endpoints of ∇′ and
∇(r, h), and adding the edge (p, r′). Let the resulting graph be
G′;

(c) The reverse version of Step 2a (defined in the natural way);

(d) The reverse version of Step 2b (defined in the natural way).

3. M is the set of digraphs that can be obtained by taking disjoint
unions of digraphs in C.

Figure 6.6: Inductive construction of the setM of totally rectangular DAGs.

Example 112. Consider the totally rectangular DAG G′′ in Fig. 6.5. To

construct it using the method in Fig. 6.6, we start with the dipath G and

first apply Step 2a to G to obtain G′. Next we apply Step 2d to G′ obtain

174

6.4 Constructing Maltsev DAGs

The class M is the set of all digraphs G such that every component C of
G can be obtained as follows:

1. Initially, C is a directed path of arbitrary length;

(a) Using Step 2c of the construction in Figure 6.6, build a balanced
arborescence A.

(b) Choose a vertex layer Lm such that each connected component
of the subgraph between L0 and Lm is a balanced arborescence
(notice that these arborescences must have their endpoints in
Lm).

i. Choose a vertex v ∈ Lk, where 0 ≤ k < m. Apply Step 2a
of the construction in Figure 6.6 with ∇(v,m−k) to obtain
a new graph. Repeat this step as many times as you like.

ii. Choose a vertex v ∈ Lk, where 0 < k < m. Apply Step 2b
of the construction in Figure 6.6 with ∇(v,m− k). Repeat
this step as many times as you like.

iii. Choose a vertex v ∈ Lk, where 0 < k < m. Apply Step 2c
of the construction in Figure 6.6.

(c) Go back to Step 1b arbitrarily many times.

Figure 6.7: A more restricted construction of totally rectangular DAGs.

G′′. The thick edges indicate the subgraphs ∇(r, 2) and ∆(r, 2), which are

the subgraphs to be copied and attached appropriately.

In fact, we can extract from Lemma 119 a more restricted version of the

construction in Figure 6.6 that is still sufficient. This restricted version is

given in Figure 6.7.

Theorem 113. The class of totally rectangular DAGs is the set of digraphs

M defined in Fig. 6.6, or equivalently, the class of digraphs M defined in

175

6.4 Constructing Maltsev DAGs

Figure 6.7.

6.4.1 Proof of Theorem 113

In the first part of this section, we prove one direction of the theorem stated

in Corollary 115.

Lemma 114. Let G be a connected digraph built using the construction in

Figure 6.6 or Figure 6.7. Then G is totally rectangular.

The corollary below easily follows:

Corollary 115. Let G be a digraph built using the construction in Figure 6.6

or Figure 6.7. Then G is totally rectangular.

Proof of Lemma 114. Because the construction in Figure 6.7 is a restricted

version of the construction in Figure 6.6, from now on we focus only on the

construction in Figure 6.6. We show that applying a construction step to a

totally rectangular digraph G yields a totally rectangular digraph G′. Since

a directed path is totally rectangular, this will prove the lemma.

Consider the case when G′ was obtained from G by an application of

Step 2a attaching ∇′ to G. Take any 4 distinct vertices a, b, c, d such that

there are directed paths Pab from a to b, Pcb from c to b, and Pcd from c to d,

each of some length `. We show that there must be a directed path of length

` from d to a. Observe first that the construction has the property that there

is no directed path from a vertex of G to a vertex of ∇′, and vice versa,

176

6.4 Constructing Maltsev DAGs

except for the endpoints of ∇′ (which are identified with the corresponding

vertices of G). Let I be the common vertices of G and ∇′. We consider four

cases:

1. Vertices a and c are in G. Then Pab, Pcd, and Pcp are subpaths of G, so

the total rectangularity of G provides a directed path of length ` from

a to d.

2. Vertex a ∈ G and c ∈ ∇′. See Figure 6.8 for an illustration. Note that

this is possible only if each path Pab, Pcd, and Pcb has a vertex u, v and

w, respectively, in I. Let Pcv denote the subpath of Pcb from c to v,

and Pvb the subpath of Pcb from v to b. Similarly define the subpaths

Pcw and Pwd of Pcd. Observe that by construction, Pcv is a copy of a

dipath Pc′v from a vertex c′ to v in G. Similarly, Pcw is a copy of a

dipath Pc′w from a vertex c′ to w in G. We have dipaths Pab from a to

b, Pc′vPvb from c′ to b, and Pc′wPwd from c′ to d, each of length ` and

fully inside G. Therefore we have a dipath of length ` from a to d.

3. Vertex c ∈ G and a ∈ ∇′.

4. Both vertices a and c are in ∇′.

For the last two cases, an analysis fairly similar to the analysis of the second

case can be done.

Suppose now that G′ was obtained from G by an application of Step 2b

of the construction. Let r, r′, h, p, ∇(r, h), and ∇′ be as in the definition

177

6.4 Constructing Maltsev DAGs

I u v w

a c′ c

b d

Pab
Pcd

Pcb

∇′

G′

a c

b d

G′

e r r′

p

Pab

Pcb Pcd

Q

w

Figure 6.8: Left: Vertex a ∈ G and c ∈ ∇′ in analysis of Step 2a Right:

of Step 2b. Take any 4 distinct vertices a, b, c, d such that there are directed

paths Pab from a to b, Pcb from c to b, and Pcd from c to d, each of the same

length `. We show that there must be a directed path of length ` from d to

a. If level(a) = level(c) ≥ level(r), then obviously, the same analysis works

as for Step 2a. In addition, the vertex level of level(b) = level(d) > level(p)

because otherwise all paths are fully inside G and the total rectangularity of

G proves the claim.

Furthermore, there must be two (distinct) edges e1 and e2 among the

edges of Pab, Pcb Pcd, such that e1 is an edge in A = {∇(r, h) ∪ (p, r)} and

e2 ∈ B = {∇′ ∪ (p, r′)}. To see this, remove A from G′ to obtain graph G,

and observe that F is isomorphic to G. Assume then that there is no edge of

Pab, Pcb Pcd in A. The total rectangularity of F yields the desired path from

a to d. Because ∇(r, h) and ∇′ are isolated and p is the only incoming arc

of r and r′, the only way that at least two of Pab, Pcb Pcd can be in A and B

is if at least two of Pab, Pcb Pcd enters A and B through p.

178

6.4 Constructing Maltsev DAGs

If Pab and Pcd both cross p, then we obviously have a dipath from a to d.

If Pab and Pcb meet at p then let Pap be the subpath of Pab from a to b, and

Pcp the subpath of Pcb from c to p. Assume k = len(Pap)(= len(Pbp)), and

let Q be the subpath of Pcd starting at c and taking the first k arcs. Suppose

the endpoint of Q is e. Then by the total rectangularity of G, there is a path

of length k from a to e. This path from a to e and the subpath of Pcd from

e to d provides the desired path from a to d.

If Pcb and Pcd meet at p, then using the fact that G and F are isomorphic,

we can assume WLOG that Pcb passes through r and Pcd passes through r′.

Let Pr′w be the subpath of Pcd from r′ to an endpoint w. Because Pr′w is

entirely in B, Pr′w is a copy of some dipath Q from r to w entirely in A and

therefore entirely in G. Let Pwd be the subpath of Pcd from w to d. Let Peb

be the subpath of Pab from e to b, where e is the vertex of Pab such that

level(e) = level(r). Let Prb be the subpath of Pcb from r to b. Then using

the dipaths Peb, Prb, QPwd, we obtain a dipath R from e to d using the total

rectangularity of G. Then following Pab up to e and then using R we obtain

the desired dipath from a to d.

The other direction of Theorem 113 follows from Lemma 119, which we

prove in the rest of this section.

Lemma 116. Assume that G is a totally rectangular DAG, r is a vertex of

G, and h ∈ Z+ such that A = ∇(r, h) is an arborescence in G. Suppose that

G contains a dipath P = v0, . . . , vh of length h such that vh is an endpoint

179

6.4 Constructing Maltsev DAGs

of A, but P and A do not share any other vertices. Then A′ = ∇(v0, h) is

isomorphic to A through an isomorphism ϕ, such that ϕ is the identity map

on the endpoints of A′. Furthermore, A′ and A share only the endpoints.

Proof. We induct on the height h of A. When h = 1, the result trivially

follows from the assumption that G is totally rectangular. Assume that

h > 1. Remove the root r of A to obtain sub-arborescences A1, . . . , As,

each of height h− 1, and with roots r1, . . . , rs, respectively. Fix an arbitrary

endpoint ei for each Ai. Once the following Claim is established, it is easy

to see that the inductive hypothesis yields the result.

Claim: There are dipaths Q1, . . . , Qs of length h from v0 to ei, for each i ∈

[s], such that the only vertex any pair of these paths share is v0. Furthermore

for any i ∈ [s], Qi does not contain any inner vertices of A.

If s = 1, i.e. r has only one out-neighbor, then the claim obviously follows.

So assume that s ≥ 2, and fix a dipath Qi from v0 to ei for each i ∈ [s] as

follows. Let Q be a path from r to ei. Since by assumption vh is an endpoint

of A, there is a path Q′ from r to vh. By the total rectangularity of G, there

must be a path of length h from v0 to ei. Let this path be Qi.

Assume for the sake of contradiction that there is pair of paths Qi and Qj

such that they share the vertex x and x 6= v0. Suppose x is as far as possible

from v0 (note that if the distance of x from v0 to x is different on Qi and Qj,

then G cannot be layered). Let Qi,x and Qj,x be the subpath of Qi and Qj

from x to ei and ej, respectively. Suppose the len(Qi,x) = len(Qj,x) = `. Let

R be the reverse directed path of length ` in Si starting at ei and ending at

180

6.4 Constructing Maltsev DAGs

some vertex t. Then Qi,x, Qj,x and R together with the total rectangularity

of G guarantee the existence of a path of length ` from t to ej. This provides

two distinct dipaths of length h from r to ej, contradicting the fact that A

is an arborescence.

Suppose for contradiction that for some i ∈ [s], Qi contains an inner ver-

tex f of A. Let Qi,f be the subpath of Qi from v0 to f , and set k = len(Qi,f).

Let Prf be a dipath from r to f of length k. Then by the rectangularity of G,

the existence of the paths Qi,f , Prf and v0, . . . , vk guarantees the existence

of a path of length k from r to vk, and therefore vk is an inner vertex of A,

a contradiction.

Proposition 117. Let G be a digraph, r a vertex of G, and h ∈ Z+. Then

∇(r, h) is an arborescence if, and only if for every pair of distinct vertices v,

u in ∇(r, h), there is at most one dipath from v to u.

Proof. One direction is trivial. For the other direction, assume that for each

pair of distinct vertices v, u there is at most one directed path from v to

u. Then there is at most one directed path from r to any other vertex w

of ∇(r, h). By the definition of ∇(r, h), there is at least one directed path

from r to w. So there is exactly one directed path from r to w, and we are

done.

Lemma 118. Let G be a totally rectangular DAG, r, a vertex of G, and

h ∈ Z+. Assume that ∇(r, h) is isolated in G. Then ∇(r, h) is either an

arborescence, or it can be obtained from an arborescence by repeated applica-

181

6.4 Constructing Maltsev DAGs

tions of Step 2b of the construction in Figure 6.6.

Proof. If ∇(r, h) is an arborescence there is nothing to do. If ∇(r, h) is not

an arborescence, then by Proposition 117, there is at least one pair of vertices

u,v such that there are at least two distinct directed paths from u to v. It

is sufficient to show that in this scenario, we can produce a subgraph Gs of

G in which there are less directed paths from u to v, and an application of

Step 2b of the construction yields G from Gs.

Take the largest 1 ≤ g < h such that ∇(r, g) is still an arborescence (note

that ∇(r, 1) is always an arborescence). Then we can find an endpoint v of

∇(r, g + 1) end a vertex u in ∇(r, g) (a subgraph of ∇(r, g + 1)) such that

there are two disjoint dipaths from u to v. Choose such a pair of vertices u

and v such that these two distinct directed paths P = u,w1, . . . , wm, v and

Q = u,w′1, . . . , w
′
m, v are shortest possible.

By the choice of u and v, there is no vertex pair u′, v′ in ∇(w1,m) such

that there is more than one directed path from u′ to v′. Therefore ∇(w1,m)

is an arborescence. To see that ∇(w1,m) is in fact an isolated arborescence,

assume for contradiction that there is an edge (s, t) such that t is an inner

vertex of ∇(w1,m) and s 6∈ ∇(w1,m). Then t is also an inner vertex of

∇(r, h), and because ∇(r, h) is isolated, s must be in ∇(r, h). This implies

that ∇(r, h) contains some vertex s′ such that there are at least two directed

paths from s′ to t. By Proposition 117, this would contradict the choice

of g because ∇(r, g) is an arborescence. Similarly, ∇(w′1,m) is an isolated

arborescence in G. By a similar argument, w1 or w2 has only the in-neighbor

182

6.4 Constructing Maltsev DAGs

u.

Using the subpath w′1, . . . , w
′
m, v of Q and Lemma 116, we obtain that

∇(w′1,m) is isomorphic to ∇(w1,m). Let Gs be the graph obtained from G

be removing ∇(w′1,m) and the edge u,w′1. It is clear now that we can use

Step 2b of the construction to obtain G from Gs.

Lemma 119. Let G be a totally rectangular DAG. Then each component of

G can be built using the construction in Figure 6.6.

Proof. WLOG, we assume that G has only one component. By Theorem 91,

G retracts onto a directed path of some length n. We show that if G is not

a directed path, we can always define a totally rectangular DAG (which has

one component) such that G′ is smaller than G and an application of a step

of the construction gives G from G′. Let L0 be the bottommost vertex level

of G. Let Li be the first level above L0 such that it contains a vertex w which

has at least two in-neighbors. Consider the subgraph of G between L0 and

Li and call it H.

Assume first that H contains a sink that is not in Li. Let t be such a

sink with the smallest possible level. By the choice of w, t has precisely one

in-neighbor. Find a shortest reverse directed path P from t to a vertex c

such that c has at least two out-neighbors. To see that such a vertex exists,

observe that there is an oriented path Q from t to w because G is connected.

Since t is a sink, the first arc of Q is a backward arc. As we follow the vertices

of Q, eventually we must meet a forward arc because level(t) < level(w).

183

6.4 Constructing Maltsev DAGs

Set ` = len(P). Since c has at least two out-neighbors, there is a dipath

R starting at c and distinct from P . We can choose R so that it has length `

because t is a sink closest to L0. Every vertex of R must have in-degree one

because of the choice of w. Furthermore, P and R shares only the vertex c

because otherwise the choice of w would be violated. Let the endpoint of R

be t′. Remove P from G to obtain G′. Then clearly, G′ is connected, totally

rectangular, and we can obtain G back from G′ by applying Step 2c with

∆(t′, `).

Assume now that H contains no sinks except in Li. Suppose that there

is a source s in H such that level(s) = i − k and ∇(s, k) is not an arbores-

cence. Observe that by the choice of Li, ∇(s, k) is isolated, and therefore by

Lemma 118 we can assume that ∇(s, k) is an arborescence.

Suppose that there is a connected component of H that is not an (bal-

anced) arborescence. Let C be a such a component. Then C contains more

than one source, so let s and s′ be sources such that level(s′) ≤ level(s). As-

sume that level(s) = i− k. Then ∇(s, k) is an arborescence. In fact, ∇(s, k)

is an isolated arborescence because H contains vertices with in-degree 2 and

sinks only in Li. Now using Lemma 116 and Step 2a, we can assume that

each connected component of H is an arborescence.

Repeating this procedure as many times as necessary, we always decrease

the present graph, and we end up with a balanced arborescence. This can

easily be constructed using Step 2c from a directed path.

A close reading of Lemma 119 reveals that if G is a totally rectangular

184

6.5 Some Applications to the Constraint Satisfaction Problem

DAG, then each component of G can be built using the construction in

Figure 6.6 in a very structured manner. This construction is explicit in

Figure 6.7.

We observe the following properties of this restricted construction. In

Steps 1(b)i and 1(b)ii, ∇(v,m − k) is always isolated. In Step 1(b)iii F =

∆(v, ·) is always a reverse directed path, and every vertex of F has precisely

one in-neighbor.

6.5 Some Applications to the Constraint Sat-

isfaction Problem

By Theorem 91, the core of a Maltsev digraph is either a directed path or a

disjoint union of cycles, and for such digraphs the following is not difficult to

show. In this section, we return to the notation from Chapter 4.

Corollary 120. Let H be a Maltsev digraph. Then co-CSP(H) can be defined

in symmetric Datalog of constant width and therefore CSP(H) is in L.

Proof. By Theorem 3.1, we can assume that H is a dipath or a disjoint

union of cycles. For such a digraph H, it is not too difficult to write a

symmetric program of constant width for co-CSP(H). The high level idea is

the following. If H is a dipath, then we just have to check if the input graph

contains any oriented path whose height is larger than the height of H. If H

has height `, we have an IDB i for each i ∈ {0, 1, . . . , ` + 1}. The program

185

6.5 Some Applications to the Constraint Satisfaction Problem

“follows” an oriented path in the input and keeps track of the level of the

current vertex using the above IDBs. If Ii+1 is activated, then there is a path

of height at least i+ 1 and the program accepts.

For an oriented cycle C consisting of m edges, G homomorphically does

not map to C iff C contains an oriented cycle of net length ` such that ` 6≡ 0

mod m. Again, this is easy to check with a constant width program. The

programs for different cycles are easy to combine without blowing up the

width, and we just give the basic idea. Assume for example that the target

is the disjoint union of two oriented cycles for which we have programs D1

and D2. Instead of the goal predicate of D1 having arity zero, we modify

the program so that the goal predicate has arity one and its variable is

instantiated to a vertex v of the detected oriented cycle. Now we add a few

extra rules that find an arbitrary oriented path starting at v and ending at

some vertex u. Finally, we add D2 but we modify it so that any oriented

cycle it detects contains the vertex u.

The above results also have applications to the list homomorphism prob-

lem. In particular, the following result can be viewed as further extending

the results in Chapter 4.

Corollary 121. Let H be a digraph that has a conservative Maltsev polymor-

phism. Then co-CSP(HL) is in symmetric Datalog (and therefore CSP(HL)

in L).

Proof. Assume that the conservative Maltsev polymorphism is mal. Using

186

6.5 Some Applications to the Constraint Satisfaction Problem

Corollary 107, it is easy to obtain a conservative majority polymorphism

maj for H. Because because both mal and maj are conservative, they also

preserve HL. If a structure has a majority polymorphism, then the corre-

sponding CSP is in (linear) Datalog [30]. We know from [31] and also from

Chapter 3 that if co-CSP(HL) is in Datalog and HL is preserved by a Maltsev

operation, then co-CSP(HL) is in symmetric Datalog.

187

Chapter 7

On CSPs in NL1

7.1 Introduction

In this chapter, we modestly contribute to the understanding of CSPs in

NL. Based on the observation that any CSP known to be in NL is also

known to be definable by a linear Datalog program, Dalmau conjectured

that every CSP in NL can be defined by a linear Datalog program [27] (recall

the discussion about Conjectures 1 and 2 in Subsection 1.3.3 of Chapter 1,

and also note that we do not make any complexity theoretic assumptions in

this chapter). Linear Datalog(suc,¬) (linDat(suc,¬)) denotes the extension

of linear Datalog in which we allow negation and access to an order over the

domain of the input. A linDat(suc,¬) program can be evaluated in NL, and

it is also known that any problem in NL can be defined by a linDat(suc,¬)

1The contents of this chapter were published as the second part of [35].

188

7.1 Introduction

program [27, 46, 56]. Therefore, one way to prove the above conjecture would

be to show that any CSP that can be defined by a linDat(suc,¬) program

can also be defined by a linear Datalog program (as suggested in Section 8 of

[28], the journal version of [27]). We consider a restriction of the conjecture

because proving it in its full generality would separate NL from P (using [1],

and as mentioned in Subsection 1.3.3 of Chapter 1).

Read-once linear Datalog(suc) (1-linDat(suc)) is a subclass of linDat(suc,¬),

but a subclass that has interesting computational abilities, and for which

we are able to find the chink in the armor. We can easily define some NL-

complete problems in 1-linDat(suc), such as the CSP directed st-connectivity

(st-Conn), and also problems that are not homomorphism-closed, such as

determining if the input graph is a clique on 2n vertices, n ≥ 1, (where each

vertex of a clique may or may not have a self-loop). Because any problem that

can be defined with a linear Datalog program must be homomorphism-closed,

it follows that 1-linDat(suc) can define nontrivial problems which are in NL

but which are not definable by any linear Datalog program. However, in this

chapter we show that if co-CSP(B) can be defined by a 1-linDat(suc) pro-

gram, then co-CSP(B) can also be defined by a linear Datalog program. The

crux of our argument applies the general case of the Erdős-Ko-Rado theorem

to show that a 1-linDat(suc) program does not have enough “memory” to

handle structures of unbounded pathwidth.

Our proof establishing the above result for 1-linDat(suc) programs can be

adapted to show a parallel result for a subclass of nondeterministic branching

189

7.2 Definitions

programs, which constitute an important and well-studied class of computa-

tional models (see the book [81]). More precisely, we show that if co-CSP(B)

can be defined by a poly-size family of read-once2 monotone nondeterministic

branching programs (mnBP1(poly)) then co-CSP(B) can also be defined by

a linear Datalog program.3

Finally, our results can be interpreted as lower-bounds on a wide class

of CSPs: if B does not have bounded pathwidth duality, then co-CSP(B)

cannot be defined with any 1-linDat(suc) program or with any mnBP1(poly).

A specific example of such a CSP would be the P-complete Horn-3Sat

problem, and more generally, Larose and Tesson showed that any CSP whose

associated variety admits the unary, affine or semilattice types does not have

bounded pathwidth duality (see [63] for details).

7.2 Definitions

Let τ be a vocabulary. A successor τ -structure S is a relational structure

with vocabulary τ ∪ {first, last, suc}, where first and last are unary symbols

and suc is a binary symbol. Without loss of generality, the domain S is

defined as {1, . . . , n}, firstS = {1}, lastS = {n}, and sucS contains all pairs

(i, i + 1), i ∈ [n − 1]. Because firstS, lastS and sucS depend only on n, they

2Our read-once restriction for nondeterministic branching programs is less stringent
than the usual restriction because we require the programs to be read-once only on certain
inputs.

3A 1-linDat(suc) can be converted into an mnBP1(poly), so another way to present
our results would be to do the proofs in the context of mnBP1s, and then to conclude the
parallel result for 1-linDat(suc).

190

7.2 Definitions

are called built-in relations. When we say that a class of successor structures

is homomorphism/isomorphism-closed (isomorphism-closed is defined in the

obvious way), all structures under consideration are successor structures,

and we understand that homomorphism/isomorphism closure, respectively,

is required only for non-built-in relations.

Definition 122 (Split Operation). A split operation produces a τ -structure

A′ from a τ -structure A as follows. For an element a ∈ A let Ta be defined

as

Ta = {(t, R, i) | t = (t1, . . . , tr) ∈ RA where R ∈ τ , and ti = a}.

If |Ta| ≤ 1, no split operation can be applied. Otherwise we choose a strict

nonempty subset T of Ta, and for each triple (t, R, i) ∈ T , we replace t =

(t1, . . . , tr) in RA with (t1, . . . , ti−1, a
′, ti+1, . . . , tr)p to obtain A′, where a′ is

a new element and A′ = A ∪ {a′}.

Definition 123 (Split-Minimal, Critical). Let C be a class of structures over

the same vocabulary. We say that a structure A ∈ C is split-minimal in C

if for every possible nonempty sequence of split operations applied to A, the

resulting structure is not in C. We say that a structure A ∈ C is critical in

C if no proper substructure of A is in C.

For a class of successor τ -structures, criticality and split-minimality is

meant only with respect to non-built-in relations.

Definition 124 (Read-Once Derivation). We say that a derivation D is

191

7.2 Definitions

read-once if every R(t) that appears in D appears exactly once in D , except

when R is the special EDB suc, first, or last, defined above.

Definition 125 (Read-Once Datalog). Let P be a (linear, symmetric) Dat-

alog program that defines a class of structures C. If for every critical and

split-minimal element of C there is a P-derivation that is read-once, then we

say that P is read-once.

Definition 126 (Read-Once mnBP1). A monotone nondeterministic branch-

ing program (mnBP) H with variables X = {x1, . . . , xn} computes a Boolean

function fH : {0, 1}n → {0, 1}. H is a directed graph with distinguished

nodes s and t and some arcs labeled with variables from X (not all arcs must

be labeled). An assignment σ to the variables in X defines in a natural way

a subgraph Hσ of H. The function fH is defined as fH(σ) = 1 if and only if

Hσ has a directed path from s to t (an accepting path). The size of an mnBP

is |VH |.

Let F be a poly-size family of mnBP1s (mnBP1(poly)) that defines a

class of structures C over a vocabulary τ . (The encoding is done in the

straightforward manner, i.e. there is a variable for every possible (R, t) where

R ∈ τ and t is a tuple.) If for every structure in C there is an accepting path

that queries every variable at most once, then we say that F is read-once.

(This read-once condition can be made a bit weaker.)

192

7.2 Definitions

7.2.1 Examples

We give some examples of problems definable by a 1-linDat(suc) program

or by an mnBP1(poly). The program in Section 2.2.4, Figure 2.1 without

rule 3 is a read-once linear Datalog(suc) program that defines the problem

directed st-Conn. To see that this program Pst−Conn is read-once, let G be

any input that is accepted (we do not even need G to be critical and split-

minimal). Then we find a directed path in EG connecting an element of SG

to an element of TG without repeated edges. We build a Pst−Conn-derivation

for this path in the obvious way.

For this section, by a clique we mean an ordinary undirected clique but

each vertex may or may not have a self-loop. Let EvenCliques be the

class of cliques of even size. The read-once linear Datalog(suc) program PEC

below defines EvenCliques. The goal predicate of PEC is G2, and E is the

symbol for the edge relation of the input. The first part of PEC checks if the

domain size n of the input is even. The second part goes through all pairs

(x, y) ∈ [n]2, and at the same time, checks if (x, y) is an edge in E. This is

achieved by accessing the order on the domain. Program PEC goes through

every pair of vertices precisely once, so every PEC-derivation is read-once,

and therefore PEC is read-once.

In fact, we can easily test much more complicated arithmetic properties

than the property of being even (e.g. being a power of k) with a 1-linDat(suc)

program. We note that EvenCliques or “cliques with any domain size prop-

erty” cannot be defined by a linear Datalog program because a non-empty set

193

7.2 Definitions

I(y)← first(x) ∧ suc(x, y)

I(z)← I(x) ∧ suc(x, y) ∧ suc(y, z)

G1 ← I(x) ∧ last(x)

J(x, y)← G1 ∧ first(x) ∧ first(y)

J(x, z)← J(x, y) ∧ suc(y, z) ∧ E(x, z) ∧ E(z, x)

J(z, w)← J(x, y) ∧ last(y) ∧ suc(x, z) ∧ suc(z, w)∧
E(z, w) ∧ E(w, z)

G2 ← J(x, y) ∧ suc(x, y) ∧ last(y).

Figure 7.1: The read-once linear Datalog(suc) program PEC for Even-
Cliques.

of cliques is never closed under homomorphisms. Since it is not difficult to

convert a 1-linDat(suc) program into an mnBP1(poly), the aforementioned

problems can also be defined with an mnBP1(poly).

The additional power the successor relation gives to 1-linDat is at least

twofold. For example, read-once linear Datalog(suc) can do some arithmetic,

as demonstrated above. In addition, let’s define the density of a graph to be

the number of edges divided by the number of vertices. The density of an

n-clique is
(
n
2

)
/n = θ(n). As demonstrated above, access to an order allows

read-once linear Datalog(suc) to accept only structures of linear density. On

the other hand, any linear Datalog program P accepts structures of arbitrary

low density. For let S be a structure accepted by P . Then adding sufficiently

many new elements to the domain of S yields a structure S′ whose density

is arbitrarily close to 0, and S′ is still accepted by P . One consequence of

194

7.3 Main Results

Corollary 128 is that if a read-once linear Datalog(suc) defines co-CSP(B),

then both aforementioned additional abilities are of no use.

7.3 Main Results

We begin with stating the results for 1-linDat(suc) and poly-size families of

mnBP1s discussed in the Introduction.

Theorem 127. Let C be a homomorphism-closed class of successor τ -structures.

If C can be defined by a 1-linDat(suc) program of width (j, k), then every crit-

ical and split-minimal element of C has a (j, k + j)-path decomposition.

Corollary 128. If co-CSP(B) can be defined by a 1-linDat(suc) program of

width (j, k), then co-CSP(B) can also be defined by a linear Datalog program

of width (j, k + j).

Theorem 129. Let C be a homomorphism-closed class of successor τ -structures.

If C can be defined by a family of mnBP1s of size O(nj), then every critical

and split-minimal element of C has a (j, r + j)-path decomposition, where r

is the maximum arity of the symbols in τ .

Corollary 130. If co-CSP(B) can be defined by a family of mnBP1s of size

O(nj), then co-CSP(B) can also be defined by a linear Datalog program of

width (j, r + j), where r is the maximum arity of the relation symbols in the

vocabulary of B.

195

7.3 Main Results

As discussed before, a wide class of CSPs–CSPs whose associated variety

admits the unary, affine or semilattice types–does not have bounded path-

width duality [63]. It follows that all these CSPs are not definable by any

1-linDat(suc) program, or with any mnBP1 of poly-size. An example of such

a CSP is the P-complete CSP Horn-3Sat.

After some definitions, we give a high-level description of the proof of

Theorem 127. Any τ -structure M with domain size n can be naturally con-

verted into an isomorphic successor structure M(π), where π is a bijective

function π : M → {1, . . . , n}. We define the domain M(π) as {1, . . . , n}

(note that this automatically defines firstMπ , lastMπ and sucMπ) and for any

R ∈ τ , and (t1, . . . , tar(R)) ∈ RM, we place the tuple (π(t1), . . . , π(tar(R))) into

RMπ). When we want to emphasize that a structure under consideration

is a successor τ -structure, we use the subscript s, for example Ms. Given a

successor τ -structure Ms, M denotes the structure Ms but with the relations

firstMs , lastMs and sucMs removed.

We make the simple but important observation that we are interested

only in isomorphism-closed classes. For example, co-CSP(B) is obviously

isomorphism-closed. We will crucially use the fact that if Ms is accepted

by a 1-linDat(suc) program P , then P must also accept M(π) for any bijec-

tive function π. We are ready to describe the intuition behind the proof of

Theorem 127.

A 1-linDat(suc) program that ensures that the class of successor-structures

C it defines is homomorphism-closed (and therefore isomorphism-closed) does

196

7.3 Main Results

not have enough “memory”–due to its restricted width–to also ensure that

some key structures in C are “well-connected”. If these key structure are not

too connected, then we can define co-CSP(B) in linear Datalog.

The more detailed proof plan is the following. Assume that co-CSP(B),

where the input is a successor structure, is defined by a linDat(suc) pro-

gram P of width (j, k). We choose a “minimal” structure M in C that is

accepted, and assume for contradiction that M does not have width (j, k).

Then roughly speaking, for all possible “permutations of the domain elements

of M”, M must be accepted; therefore for each of these isomorphic structures,

P must be able to provide a derivation. Because this procedure will provide

many enough derivations, we will be able to find some derivations which are

of a desired form. The identification of these “good” derivations also cru-

cially uses the generalized Erdős-Ko-Rado theorem. Once these derivations

are detected, they can be combined to produce a derivation that “encodes”

a structure of bounded pathwidth. The structures of bounded pathwidth

produced this way can be used to define co-CSP(B) in linear Datalog. We

give the formal proofs.

We need the following additional definitions for the proofs. In addition

to extracting Ex(D) from D , we can also extract a decomposition of Ex(D)

reminiscent of a path decomposition. For each ` ∈ [q], we define a tuple struc-

ture B̃` by adding (R, t) to B̃` if R(t) appears in ρ`. In such a representation

of Ex(D), we call B̃` the `-th bag, and (B̃1, . . . , B̃q) the tuple distribution

of Ex(D). It will be useful to remove empty bags from the list of bags

197

7.3 Main Results

(B̃1, . . . , B̃q) to obtain the sequence (B̃i1 , . . . , B̃it), where i` < i`′ if ` < `′.

For simpler notation, we renumber (B̃i1 , B̃i2 , B̃is) to (B̃1, B̃2, . . . , B̃t).

We call the sequence (B̃1, . . . , B̃t) the pruned tuple distribution of D . The

following is easy to prove.

Proposition 131. Let A′ be a τ -structure obtained from a τ -structure A by

applying a sequence of split operations. Then A′ → A.

We recall the following theorem tailored a bit to our needs.

Theorem 132 (Erdős-Ko-Rado, general case, see e.g. [44]). Suppose that F

is a family of s-subsets of {1, . . . , n}, where n ≥ n0(s, j + 1). Suppose that

for any two sets S1, S2 ∈ F , |S1 ∩ S2| ≥ j + 1. Then |F| ≤
(
n−(j+1)
s−(j+1)

)
=

O(ns−(j+1)).

Proof of Theorem 127. Let the read-once linear Datalog(suc) program that

defines C be P . Let M be a structure in C such that M is critical and

split-minimal, but assume for contradiction that M has no (j, k)-path de-

composition. Suppose that M = {m1, . . . ,ms}. We choose a large enough

n divisible by s (for convenience): how large n should be will become clear

later. We begin with constructing a class of successor structures from M.

Let ϕ : M → {1, . . . , n} be a function that for all i ∈ [s], maps mi to one

of the numbers in
{

(i− 1) · n
s

+ 1, . . . , i · n
s

}
. We call such a function an em-

bedder. Observe that there are (n
s
)s possible embedder functions. For each

embedder ϕ, we define a successor structure Mϕ as follows. Mϕ is obtained

198

7.3 Main Results

from M by renaming mi to ϕ(mi) for each i ∈ [s], and adding all numbers

inside {1, . . . , n} but not in the range of ϕ to the domain of the structure.

Obviously for any embedder ϕ, Mϕ contains an isomorphic copy of M,

and therefore M → Mϕ. Since C is closed under homomorphisms (and

successor-invariant), it follows that for any embedder ϕ, Mϕ is accepted by

P . Our goal now is to show that P accepts a structure that can be obtained

from M by applying a nonempty sequence of split operations. This would

contradict the split-minimality of M with respect to C.

Let ϕ1, . . . , ϕt be an enumeration of all t = (n
s
)s embedders, and Mϕ1 , . . . ,Mϕt

the corresponding successor structures. Since P is read-once, we can assume

that for each i ∈ [t], there is a read-once P-derivation for Mϕi :

D(Mϕi) = (ρi1, λ
i
1), . . . , (ρiqi , λ

i
qi

).

For each D(Mϕi) we denote its pruned tuple distribution as (B̃i
1, . . . , B̃

i
wi

).

Let ψi(B̃
i
1, . . . , B̃

i
wi

) denote (M̃i
1, . . . , M̃

i
wi

), where M̃i
` for each ` ∈ [wi] is

obtained as follows. For every (R, t) ∈ B̃i
`, place (R,ϕ−1

i (t)) into M̃i
`. We

call ψi(B̃
i
1, . . . , B̃

i
wi

) the prototype of (B̃i
1, . . . , B̃

i
wi

). We say that two pruned

tuple distributions (B̃i
1, . . . , B̃

i
wi

) and (B̃i′
1 , . . . , B̃

i′
wi′

) are similar if they have

the same prototypes, i.e. ψi(B̃
i
1, . . . , B̃

i
wi

) = ψi′(B̃
i′
1 , . . . , B̃

i′
wi′

).

Note that the codomain of ψi, for any i, is a sequence S of bags such

that a bag contains elements of M̃. Because by definition, every bag in S

is nonempty, and D(Mϕi) is read-once, we have that |S| ≤ |M̃|. Therefore

199

7.3 Main Results

the number of possible bag sequences can be upper-bounded by a function

of s; let this upper bound be cs. It follows that there must be at least t′ = t
cs

embedders ϕi1 , . . . , ϕit′ such that for any `, `′ ∈ {i1, i2, . . . , it′}, (B̃`
1, . . . , B̃

`
w`

)

and (B̃`′
1 , . . . , B̃

`′
w`′

) are similar. Let the common prototype of all these simi-

lar pruned tuple distributions be (M̃1, . . . , M̃w) (i.e. ψi1(B̃
i1
1 , . . . , B̃

i1
wi1

)). Be-

cause M̃ is critical, it follows that M̃ = M̃1 ∪ · · · ∪ M̃w.4

To give a heads-up to the reader, our goal now is to construct a derivation

D ′ using the derivations D(Mϕi1
),D(Mϕi2

), . . . ,D(Mϕit′
), such that Ex(D ′)

is isomorphic to a structure M̃′ that can be obtained from M̃ by a nonempty

sequence of split operations. Because M̃ is split-minimal, this contradiction

will complete the proof.

Define Xg = M̃1 ∪ · · · ∪ M̃g, and Yg = M̃g ∪ · · · ∪ M̃w for g ∈ [w]. If there

is no g ∈ [w − 1] such that |Xg ∩ Yg+1| > j, then we construct a (j, k + j)-

path decomposition S1, . . . , Sw for M as follows. Define S1 = M̃1, Sw = M̃w,

and S` = M̃` ∪ (X`−1 ∩ Y`+1), for 2 ≤ ` ≤ w − 1. The first condition of

Definition 17 is obviously satisfied. For the second condition, take Si and

Si′ and i < ` < i′. If a ∈ Si ∩ Si′ then a ∈ M̃i′′ and a ∈ M̃i′′′ for some

i′′ ≤ i and i′ ≤ i′′′, so a ∈ S`. For the first part of the third condition observe

that because P has width (j, k), |M̃`| ≤ k. Because we added at most j new

elements to M̃` to obtain S`, |S`| ≤ k + j for any `. For the second part of

4Note that because M̃ is critical and C is homomorphism closed, M̃ cannot contain
isolated elements except when M̃ is a structure with a single element and no tuples. In
this case the only critical and split-minimal element is M̃ and the empty set is a (0, 0)-path
decomposition for M̃.

200

7.3 Main Results

the third condition, observe that S` ⊆ X` and S`+1 ⊆ Y`+1, so |S`∩S`+1| ≤ j

for any `.

For the other case, suppose that for some g, |Xg ∩ Yg+1| > j. Recall

that for each ` ∈ {i1, i2, . . . , it′}, M̃g was constructed from the bag B̃`
g, and

B̃`
g was constructed from a rule ρ`g` for some g`, i.e. the g`-th rule in the

derivation D(Mϕ`) = (ρ`1, λ
`
1), . . . , (ρ`q` , λ

`
q`

). Let ι be the number of IDBs of

P and κ the maximum arity of any IDB of P . Recall that since P has width

(j, k), any IDB contains at most j variables. Assume that the head IDB of

ρ`g` is I`g`(x
`
g`). Then there are at most ιjκnj possibilities for the head IDB

I`g` together with its variables instantiated to numbers in [n]. This means

that there is an IDB I and a tuple t such that for at least t′′ = t′
ιjκnj

values

of ` ∈ {i1, i2, . . . , it′}, it holds that I`g` = I, and λ`g`(x
`
g`) = t. Let these t′′

values be {`1, . . . , `t′′}.

We establish later that we can choose values `a, `b ∈ {`1, . . . , `t′′} such

that the following inequality holds:

(
B̃`a

1 ∪ · · · ∪ B̃`a
w

)
∩
(
B̃`b

1 ∪ · · · ∪ B̃`b
w

)
≤ j. (7.1)

Assuming that we have such `a and `b, we define D ′ as:

(ρ`a1 , λ
`a
1), . . . , (ρ`ag`a , λ

`a
g`a

), (ρ`bg`b+1, λ
`b
g`b+1), . . . , (ρ`bq`b

, λ`bq`b
).

That is, we “cut” the derivations D(Mϕ`a
) at the g`a-th rule, and cut the

derivation D(Mϕ`b
) at the g`b-th rule, and concatenate the first part of

201

7.3 Main Results

D(Mϕ`a
) with the second part of D(Mϕ`b

). D ′ is a valid derivation be-

cause at the point of concatenation, the head IDB of ρ`ag`a is the same as the

IDB in the body of ρ`bg`b+1, and the variables of this IDB are instantiated to

the same values in both rules. Observe that the pruned tuple distribution of

D ′ is (B̃`a
1 , . . . , B̃

`a
g , B̃

`b
g+1, . . . , B̃

`b
w). Set B̃ = B̃`a

1 ∪· · ·∪B̃`a
g ∪B̃`b

g+1∪· · ·∪B̃`b
w .

Claim. B̃ is isomorphic to a structure that can be obtained from M̃ by a

nonempty sequence of split operations.

Proof of Claim. Observe that the substructure M̃1∪· · ·∪M̃g of M̃ is isomor-

phic to B̃`a
1 ∪· · ·∪ B̃`a

g through ϕ`a . Similarly, M̃g+1∪· · ·∪M̃w is isomorphic

to B̃`b
g+1 ∪ · · · ∪ B̃`b

w through ϕ`b . Our goal is to understand the difference

between M̃ and B̃.

Notice that because any embedder maps mi ∈M into the interval

{
(i− 1) · n

s
+ 1, . . . , i · n

s

}
,

and for any i 6= i′,

{
(i− 1) · n

s
+ 1, . . . , i · n

s

}
∩
{

(i′ − 1) · n
s

+ 1, . . . , i′ · n
s

}
= ∅,

if i 6= i′, then ϕ`a(mi) 6= ϕ`b(mi′). Therefore ϕ`a and ϕ`b can return the same

value only if they both get the same input. The set Xg∩Yg+1 can be thought

of as those elements of M̃ where M̃1∪· · ·∪M̃g and M̃g+1∪· · ·∪M̃w are “glued

together” to obtain M̃. Let U = B̃`a
1 ∪ · · · ∪ B̃`a

g and V = B̃`b
g+1 ∪ · · · ∪ B̃`b

w .

202

7.3 Main Results

The set U ∩V can be thought of as those elements of B̃ where B̃`a
1 ∪· · ·∪ B̃`a

g

and B̃`b
g+1 ∪ · · · ∪ B̃`b

w are “glued together” to obtain B̃.

If for all elements m ∈ Xg ∩ Yg+1, ϕ`a(m) = ϕ`b(m), then B̃ would be

isomorphic to M̃, i.e. B̃`a
1 ∪ · · · ∪ B̃`a

g would be glued to B̃`b
g+1 ∪ · · · ∪ B̃`b

w to

obtain B̃ the same way as M̃1∪· · ·∪M̃g is glued to M̃g+1∪· · ·∪M̃w to obtain

M̃. But by Inequality 7.1, |Xg ∩ Yg+1| > |U ∩ V |. In other words, there are

some elements m ∈ Xg ∩Yg+1 which have one copy for ϕ`a , and another copy

for ϕ`b in B̃. Identifying ϕ`a(m) and ϕ`b(m) for all such m would convert B̃

to a structure isomorphic to M̃. Now it is easy to see that going backwards,

splitting elements of M̃ would yield a structure isomorphic to B̃.

It remains to show why we can choose `a and `b to satisfy Inequality 7.1.

Note that t′′ =
(n
s

)s

csιjκnj
≥ Ω(ns−j). Also note that for any `′ ∈ {`1, . . . , `t′′},

B̃`′
1 ∪ · · · ∪ B̃`′

w is an s-subset of [n]. So by Theorem 132, if for every pair

`a, `b ∈ {`1, . . . , `t′′},
(
B̃`a

1 ∪ · · · ∪ B̃`a
w

)
∩
(
B̃`b

1 ∪ · · · ∪ B̃`b
w

)
≥ j + 1, then

t′′ ≤ O(ns−j−1)). But as observed t′′ ≥ Ω(ns−j), so for a large enough n (as a

function of s,j, ι and κ, so n can be chosen in advance) Inequality 7.1 must

hold for some `a, `b ∈ {`1, . . . , `t′′}.

Proof of Corollary 128. LetO = co-CSP(B), i.e. the set of all those successor

structures that do not homomorphically map to B. We construct an obstruc-

tion set O′ for B such that every structure in O′ has pathwidth (j, k + j).

O′ is the set of all critical and split minimal structures of O. Theorem 127

tells us that every structure in O′ has a (j, k + j)-path decomposition.

203

7.3 Main Results

To see that O′ is an obstruction set for B, take any structure S ∈

co-CSP(B) = O. Keep on applying split operations to S and taking substruc-

tures of S (again, these operations are with respect to non-built-in relations

only), as long as the resulting structure is still in O. That is, if we apply any

split operation to S′, or if we take any substructure of it, then the resulting

structure is not in O any more. Then S′ ∈ O′ because S′ is critical and split

minimal with respect to O. Using Proposition 131, we also see that S′ → S.

Because O′ is an obstruction set for B such that every structure in O′

has width (j, k+ j), it follows from [27] that co-CSP(B) is definable in linear

(j, k + j)-Datalog.

These proofs can be easily adapted for mnBP1s to obtain Theorem 129

and Corollary 130.

204

Chapter 8

Conclusions and Open

Problems

This thesis, among other things, establishes the membership of some large

classes of CSPs in the complexity class L and also in symmetric Datalog.

In Chapter 3, we described two new dualities to show membership of CSPs

in symmetric Datalog. As an application, we gave a short new proof that

“Maltsev + Datalog ⇒ symmetric Datalog”, i.e. if co-CSP(B) is express-

ible in Datalog and B has a Maltsev polymorphism then co-CSP(B) is in

symmetric Datalog. In Chapter 4, we completely characterized the complex-

ity of the list homomorphism for graphs, and in particular, we identified all

list homomorphism problems in L (modulo standard complexity theoretic as-

sumptions) and in symmetric Datalog. In Chapter 6, among other things,

we showed that the list homomorphism for Maltsev digraphs is in symmetric

205

Datalog.

All the above result support the algebraic symmetric Datalog conjecture,

i.e. the conjecture that co-CSP(B) is in symmetric Datalog if and only if

the variety corresponding to B admits only the Boolean type. One of the

next research challenges is to characterize those digraphs for which the list

homomorphism problem is in L (and symmetric Datalog). A more specific

question is: is the class of digraphs that have polymorphisms f1, . . . , fn, for

some n ≥ 1, satisfying identities (4.1)–(4.3) (see Chapter 4) the class of di-

graphs for which the list homomorphism problem is in L (and symmetric

Datalog)? (?) Note that the existence of the above polymorphisms is neces-

sary by Lemma 45 because if any of the unary, lattice or semilattice types is

present, then co-CSP(B) cannot be in symmetric Datalog by results in [63].

The characterization of the L − NL dichotomy for the list homomorphism

problem for oriented paths, and the result in Chapter 6 that for Maltsev

digraphs the list homomorphism problem is in symmetric Datalog can be

considered as initial steps toward identifying all digraphs for which the list

homomorphism problem is in symmetric Datalog and L.

Remark: Note the subtle issue that in the above question indicated by

(?), we are also indirectly asking the following: if the unary, lattice and

semilattice types are omitted in the variety corresponding to a digraph with

lists, does that imply that the affine type is also omitted? In particular,

observe that if n = 1, then the identities (4.1)–(4.3) force f1 to be a Maltsev

operation. So the answer to the above question when n = 1 is yes, since if

206

G has a Maltsev polymorphism, then it also has a majority polymorphism

(both in the conservative and non-conservative cases, see [58] and Chapter 6),

and therefore Lemma 45 tells us that the affine type is omitted.

Applying a recent breakthrough result [6], the algebraic symmetric Data-

log conjecture can be proved by showing that if co-CSP(B) is in Datalog

and B has polymorphisms f1, . . . , fn, for some n ≥ 1, satisfying identi-

ties (4.1)–(4.3) (for simplicity, we will say that B is (n + 1)-permutable),

then co-CSP(B) is in symmetric Datalog. This seems to be a tough ques-

tion and one intermediate step could be to show the weaker result that if

co-CSP(B) is in linear Datalog and B is (n+1)-permutable, then co-CSP(B)

is in symmetric Datalog. One way to attack this problem would be trying to

generalize our simple proof relying on symmetric bounded pathwidth duality

that if B has a Maltsev polymorphism and co-CSP(B) is in (linear) Datalog

then in fact, co-CSP(B) is in symmetric Datalog (Chapter 3).

The algebraic linear Datalog conjecture states that co-CSP(B) is lin-

ear Datalog if and only if the variety corresponding to B contains only the

Boolean or lattice types. Dalmau and Larose made a first key step in this

direction by proving that if B has a majority polymorphism, then co-CSP(B)

is in linear Datalog. This result has been generalized recently: if B has a

near-unanimity polymorphism, then co-CSP(B) is in linear Datalog [10]. The

obvious open problem is to generalize these results to show the algebraic lin-

ear Datalog conjecture. A starting point is given in [54], where Theorem 9.11

tells us what it means that a variety corresponding to B contains only the

207

Boolean or lattice types in terms of polymorphisms.

208

Bibliography

[1] F. Afrati and S. S. Cosmadakis. Expressiveness of restricted recursive

queries. In Proceedings of the 42th ACM Symposium on Theory of Com-

puting (STOC), pages 113–126, 1989. 5, 125

[2] E. Allender, M. Baul, N. Immerman, H. Schnoor, and H. Vollmer. The

complexity of satisfiability problems: refining Schaefer’s theorem. In

In Proceedings of the 30th International Symposium on Mathematical

Foundations of Computer Science, pages 71–82. Springer-Verlag, 2005.

10, 47

[3] E. Allender, M. Bauland, N. Immerman, H. Schnoor, and H. Vollmer.

The complexity of satisfiability problems: Refining Schaefer’s theorem.

Journal of Computer and System Sciences, 75(4):245–254, 2009. 3

[4] L. Barto. The dichotomy for conservative constraint satisfaction prob-

lems revisited. In LICS, pages 301–310, 2011. 47

[5] L. Barto and J. Bulin. CSP dichotomy for special polyads. Submitted,

2012. 102

209

BIBLIOGRAPHY

[6] L. Barto and M. Kozik. Constraint satisfaction problems of bounded

width. In Proceedings of The 50th Annual Symposium on Foundations

of Computer Science (FOCS), 2009. 3, 4, 13, 20, 137

[7] L. Barto, M. Kozik, M. Maróti, and T. Niven. CSP dichotomy for special

triads. Proceedings of the AMS, 137:2921–2934, 2009. 102

[8] L. Barto, M. Kozik, and T. Niven. Graphs, polymorphisms and the com-

plexity of homomorphism problems. In Proceedings of the 40th annual

ACM symposium on Theory of computing, STOC ’08, pages 789–796,

2008. 2, 102

[9] L. Barto, M. Kozik, and T. Niven. The CSP dichotomy holds for di-

graphs with no sources and no sinks (a positive answer to a conjecture

of bang-jensen and hell). SIAM J. Comput., 38(5):1782–1802, 2009. 2,

46, 66

[10] L. Barto, M. Kozik, and R. Willard. Near unanimity constraints have

bounded pathwidth duality. In LICS, pages 125–134, 2012. 13, 137

[11] M. Bodirsky and J. Nešetřil. Constraint satisfaction with countable ho-

mogeneous templates. In Proceedings of Computer Science Logic and the

8th Kurt Gödel Colloquium, volume 2803 of Lecture Notes in Computer

Science, pages 44–57. Springer-Verlag, 2003. 11

210

BIBLIOGRAPHY

[12] R. C. Brewster, T. Feder, P. Hell, J. Huang, and G. MacGillivray. Near-

unanimity functions and varieties of reflexive graphs. SIAM J. Discrete

Math., 22(3):938–960, 2008. 49, 64, 102

[13] A. Bulatov. A dichotomy theorem for constraints on a three-element

set. In Proceedings 43rd IEEE Symposium on Foundations of Computer

Science, FOCS’02, pages 649–658. IEEE Computer Society, 2002. 2

[14] A. Bulatov and V. Dalmau. A simple algorithm for Mal’tsev constraints.

SIAM Journal on Computing, 36(1):16–27, 2006. 13, 103

[15] A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the complex-

ity of constraints using finite algebras. SIAM Journal on Computing,

34(3):720–742, 2005. 1, 2, 11, 49

[16] A. A. Bulatov. Tractable conservative constraint satisfaction problems.

In LICS ’03: Proceedings of the 18th Annual IEEE Symposium on Logic

in Computer Science, pages 321–330, Ottawa, Canada, 2003. IEEE

Press. 2, 47

[17] A. A. Bulatov, P. Jeavons, and A. Krokhin. Constraint satisfaction

problems and finite algebras. In ICALP ’00: Proceedings of the 27th

International Colloquium on Automata, Languages and Programming,

pages 272–282, London, UK, 2000. Springer-Verlag. 2

211

BIBLIOGRAPHY

[18] A. A. Bulatov, A. A. Krokhin, and B. Larose. Dualities for constraint

satisfaction problems. In Complexity of Constraints, pages 93–124, 2008.

4, 20, 53

[19] A. A. Bulatov and M. Valeriote. Recent results on the algebraic approach

to the csp. In Complexity of Constraints, pages 68–92, 2008. 4

[20] G. Buntrock, U. Hertrampf, C. Meinel, and C. Damm. Structure and

importance of logspace-mod-classes. In Proceedings of the 8th Annual

Symposium on Theoretical Aspects of Computer Science, pages 360–371,

1991. 3

[21] C. Carvalho, V. Dalmau, and A. Krokhin. Caterpillar duality for con-

straint satisfaction problems. In LICS ’08: Proceedings of the 2008 23rd

Annual IEEE Symposium on Logic in Computer Science, pages 307–316,

Washington, DC, USA, 2008. IEEE Computer Society. 4

[22] C. Carvalho, V. Dalmau, and A. A. Krokhin. Csp duality and trees of

bounded pathwidth. Theor. Comput. Sci., 411(34-36):3188–3208, 2010.

4

[23] C. Carvalho, L. Egri, M. Jackson, and T. Niven. On Maltsev digraphs.

In Proceedings of the 6th International Computer Science Symposium in

Russia (CSR), pages 181–194, 2011. 7, 102

[24] D. Cohen and P. Jeavons. The complexity of constraint languages, chap-

ter 8. Elsevier, 2006. 4, 49

212

BIBLIOGRAPHY

[25] D. Cohen, P. Jeavons, P. Jonsson, and M. Koubarakis. Building

tractable disjunctive constraints. J. ACM, 47(5):826–853, 2000. 1

[26] M. C. Cooper, D. A. Cohen, and P. G. Jeavons. Characterising tractable

constraints. Artificial Intelligence, 65:347–361, 1994. 10

[27] V. Dalmau. Constraint satisfaction problems in non-deterministic log-

arithmic space. In Proceedings of the 29th International Colloquium

on Automata, Languages and Programming, ICALP, pages 414–425.

Springer-Verlag, 2002. 13, 19, 20, 36, 125, 135

[28] V. Dalmau. Linear Datalog and bounded path duality of relational

structures. Logical Methods in Computer Science, 1(1), 2005. 3, 4, 5,

10, 94, 125

[29] V. Dalmau. Generalized majority-minority operations are tractable.

Logical Methods in Computer Science, 2(4), 2006. 2

[30] V. Dalmau and A. Krokhin. Majority constraints have bounded path-

width duality. European Journal of Combinatorics, 29(4):821–837, 2008.

13, 20, 35, 47, 52, 94, 124

[31] V. Dalmau and B. Larose. Maltsev + Datalog→ symmetric Datalog. In

IEEE Symposium on Logic in Computer Science (LICS), pages 297–306,

2008. 4, 6, 20, 28, 35, 124

[32] R. Dechter and J. Pearl. Network-based heuristics for constraint-

satisfaction problems. Artif. Intell., 34:1–38, 1987. 1

213

BIBLIOGRAPHY

[33] M. E. Dyer and D. Richerby. On the complexity of #CSP. In STOC,

pages 725–734, 2010. 114

[34] L. Egri. The complexity of constraint satisfaction problems and sym-

metric Datalog. Master’s thesis, McGill University, 2007. 5

[35] L. Egri. On constraint satisfaction problems below P. In CSL, pages

203–217, 2011. 6, 7, 19, 125

[36] L. Egri, A. Krokhin, B. Larose, and P. Tesson. The complexity of the list

homomorphism problem for graphs. In STACS, pages 335–346, 2010. 6,

46, 98

[37] L. Egri, A. Krokhin, B. Larose, and P. Tesson. The complexity of the

list homomorphism problem for graphs. Theory of Computing Systems

(Special Issue of STACS 2010), 2011. In press. 6, 46, 98

[38] L. Egri, B. Larose, and P. Tesson. Symmetric Datalog and constraint

satisfaction problems in logspace. In IEEE Symposium on Logic in Com-

puter Science (LICS), pages 193–202, 2007. 3, 13, 19, 35, 53

[39] L. Egri, B. Larose, and P. Tesson. Directed st-connectivity is not ex-

pressible in symmetric Datalog. In Proceedings of the 35th international

colloquium on Automata, Languages and Programming (ICALP), Part

II, pages 172–183, 2008. 5

214

BIBLIOGRAPHY

[40] T. Feder. Classification of homomorphisms to oriented cycles and of k-

partite satisfiability. SIAM Journal on Discrete Mathematics, 14(4):471–

480, 2001. 20, 94

[41] T. Feder, P. Hell, and J. Huang. List homomorphisms and circular arc

graphs. Combinatorica, 19(4):487–505, 1999. 46, 65, 66

[42] T. Feder, P. Hell, and J. Huang. Bi-arc graphs and the complexity of

list homomorphisms. J. Graph Theory, 42(1):61–80, 2003. 46, 47, 48,

54, 64, 65, 102

[43] T. Feder and M. Y. Vardi. The computational structure of monotone

monadic SNP and constraint satisfaction: A study through Datalog and

group theory. SIAM Journal on Computing, 28(1):57–104, 1998. 2, 19,

46, 102

[44] P. Frankl and R. L. Graham. Old and new proofs of the Erdös-Ko-Rado

Theorem. Journal of Sichuan University Natural Science Edition, 26,

1989. 131

[45] M. Garey and D. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. Freeman, San Francisco, CA., 1979. 11

[46] E. Grädel. Capturing complexity classes by fragments of second-order

logic. Theoretical Computer Science, 101(1):35–57, 1992. 125

215

BIBLIOGRAPHY

[47] F. Gurski. Characterizations for co-graphs defined by restricted nlc-

width or clique-width operations. Discrete Mathematics, 306(2):271–

277, 2006. 56

[48] J. Hagemann and A. Mitschke. On n-permutable congruences. Algebra

Universalis, 3:8–12, 1973. 103

[49] R. Häggkvist, P. Hell, D. J. Miller, and V. Neumann-Lara. On multi-

plicative graphs and the product conjecture. Combinatorica, 8:63–74,

1988. 43, 93

[50] P. Hell and J. Nesetřil. Graphs and homomorphisms. Oxford lecture se-

ries in mathematics and its applications. Oxford University Press, 2004.

46, 64

[51] P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of

Combinatorial Theory, Series B, 48:92–110, 1990. 102

[52] P. Hell and A. Rafiey. The dichotomy of list homomorphisms for di-

graphs. In SODA, pages 1703–1713, 2011. 103

[53] P. Hell and X. Zhu. Homomorphisms to oriented paths. Discrete Math-

ematics, 132:107–114, 1994. 37, 40

[54] D. Hobby and R. McKenzie. The Structure of Finite Algebras, volume 76

of Contemporary Mathematics. American Mathematical Society, Provi-

dence, R.I., 1988. 4, 20, 49, 50, 51, 66, 137

216

BIBLIOGRAPHY

[55] P. Idziak, P. Markovic, R. McKenzie, M. Valeriote, and R. Willard.

Tractability and learnability arising from algebras with few subpowers.

In LICS ’07: Proceedings of the 22nd Annual IEEE Symposium on Logic

in Computer Science, pages 213–224, 2007. 2

[56] N. Immerman. Descriptive complexity. Graduate Texts in Computer

Science. Springer, 1999. 125

[57] P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints.

J. ACM, 44(4):527–548, 1997. 2

[58] A. Kazda. Maltsev digraphs have a majority polymorphism. European

Journal of Combinatorics, 32(3):390–397, 2011. 6, 102, 103, 108, 109,

110, 111, 112, 115, 137

[59] L. M. Kirousis. Fast parallel constraint satisfaction. Artificial Intelli-

gence, 64(1):147–160, 1993. 10

[60] V. Kumar. Algorithms for constraint-satisfaction problems: A survey.

AI Magazine, 13(1):32–44, 1992. 1

[61] B. Larose, C. Loten, and C. Tardif. A characterisation of first-order

constraint satisfaction problems. In Proceedings of the 21st Annual IEEE

Symposium on Logic in Computer Science, pages 201–210, 2006. 47, 52,

54, 89

217

BIBLIOGRAPHY

[62] B. Larose and P. Tesson. Universal algebra and hardness results for

constraint satisfaction problems. In Proc. of ICALP, pages 267–278,

2007. 47, 52, 53

[63] B. Larose and P. Tesson. Universal algebra and hardness results

for constraint satisfaction problems. Theoretical Computer Science,

410(18):1629–1647, 2009. 4, 5, 19, 20, 92, 126, 130, 136

[64] B. Larose and L. Zádori. Bounded width problems and algebras. Algebra

Universalis, 56(3-4):439–466, 2007. 20

[65] D. Lesaint, N. Azarmi, R. Laithwaite, and P. Walker. Engineering dy-

namic scheduler for work manager. BT Technology Journal, 16(3):16–29,

1998. 1

[66] L. Libkin. Elements of finite model theory. Springer, 2004. 13

[67] P. Lincoln and J. C. Mitchell. Algorithmic aspects of type inference

with subtypes. In POPL ’92: Proceedings of the 19th ACM SIGPLAN-

SIGACT symposium on principles of programming languages, pages

293–304, New York, NY, USA, 1992. ACM Press. 1

[68] M. Maróti and R. McKenzie. Existence theorems for weakly symmetric

operations. Algebra Universalis, 59(3-4):463–489, 2008. 66

[69] R. M. McConnell. Linear-time recognition of circular-arc graphs. Algo-

rithmica, 37(2):93–147, 2003. 54

218

BIBLIOGRAPHY

[70] R. McKenzie, G. McNulty, and W. Taylor. Algebras, Lattices and Vari-

eties, volume I. Wadsworth and Brooks, California, 1987. 49, 66

[71] P. Meseguer. Constraint satisfaction problem: An overview. AICOM,

2:3–16, 1989. 1

[72] J. C. Mitchell. Coercion and type inference. In POPL ’84: Proceedings

of the 11th ACM SIGACT-SIGPLAN symposium on Principles of pro-

gramming languages, pages 175–185, New York, NY, USA, 1984. ACM

Press. 1

[73] C. M. Papadimitriou. Computational Complexity. Addison-Wesley,

Reading, Massachusetts, 1994. 9, 11

[74] A. F. Pixley. Distributivity and permutability of congruence relations in

equational classes of algebras. Proceedings of the American Mathematical

Society (AMC), 14:105–109, 1963. 35

[75] V. Pratt and J. Tiuryn. Satisfiability of inequalities in a poset. Fundam.

Inf., 28(1-2):165–182, 1996. 1

[76] L. Purvis and J. P. Constraint tractability theory and its application

to the product development process for a constraint-based scheduler. In

Proceedings 1st International Conference on the Practical Applications

of Constraint Technologies and Logic Programming, PACLP’99, pages

63–79, 1999. 1

219

BIBLIOGRAPHY

[77] O. Reingold. Undirected st-connectivity in log-space. In Proceedings

of the thirty-seventh annual ACM symposium on Theory of computing,

STOC ’05, pages 376–385, 2005. 19, 98, 100

[78] T. Schaefer. The complexity of satisfiability problems. In Proceedings

of the 10th ACM Symposium on Theory of Computing (STOC), pages

216–226, 1978. 3, 9, 10

[79] M. Valeriote. A subalgebra intersection property for congruence-

distributive varieties. Canadian Journal of Mathematics, 61(2):451–464,

2009. 50, 51, 65

[80] M. Wand and P. O’Keefe. On the complexity of type inference with co-

ercion. In FPCA ’89: Proceedings of the fourth international conference

on functional programming languages and computer architecture, pages

293–298, New York, NY, USA, 1989. ACM Press. 1

[81] I. Wegener. Branching programs and binary decision diagrams: the-

ory and applications. Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA, USA, 2000. 126

220

	Introduction
	The Constraint Satisfaction Problem
	The Dichotomy Conjecture
	Fine-Grained Complexity of CSPs
	CSPs and Datalog Fragments
	A Few Words on Tame Congruence Theory
	A Note on Conjectures Related to Symmetric and Linear Datalog
	Summary of Contributions and Thesis Structure

	Background
	The CSP and Examples
	Basic Notions
	Relational Structures, Homomorphisms
	Tuple Structures
	Algebra
	Datalog
	Defining CSPs
	Obstruction Sets
	Graph Theory

	Dualities for Symmetric Datalog
	Introduction
	Preliminaries
	Path Decompositions and Derivations
	Canonical Programs
	The Main Goal
	The Zigzag Operator

	Two Dualities for Symmetric Datalog
	Symmetric Bounded Pathwidth Duality
	Piecewise Symmetric Bounded Pathwidth Duality

	Applications
	Datalog + Maltsev Symmetric Datalog
	A class of oriented paths for which the CSP is in L, and a class for which the CSP is NL-complete

	The Complexity of the List Homomorphism Problem for Graphs
	Introduction
	Preliminaries
	Graphs and relational structures
	Algebra

	Main results and proof outline
	Combinatorial graph characterisations
	The reflexive graphs in F
	The irreflexive graphs in F
	The case of general graphs

	Algebraic results
	Implication (4) (1) in Theorem 48

	Symmetric Datalog constructions
	Composing symmetric Datalog programs
	Symmetric programs for the list-homomorphism problem for graphs in F

	List homomorphism problems definable in first-order logic

	A Dichotomy for the List Homomorphism Problem for Oriented Paths
	Introduction
	The L-NL Dichotomy
	NL-hardness
	Membership in L, NL

	Logspace Preserving Constructions

	On Maltsev Digraphs and CSPs in L
	Introduction
	Retracts of Maltsev digraphs
	Characterisations, Polymorphisms and Algorithms
	Rectangular Characterisations and Other Polymorphisms

	Constructing Maltsev DAGs
	Proof of Theorem 113

	Some Applications to the Constraint Satisfaction Problem

	On CSPs in NL
	Introduction
	Definitions
	Examples

	Main Results

	Conclusions and Open Problems

