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Abstract

Nowadays, a huge volume of data is increasingly produced by various sources, such as mobile

sensing devices, system logs, and user activities over Internet. Accordingly, the information

hidden in the massive size of data has a great potential to change and benefit our lives in many

fields. To explore the values from data, researchers have made efforts to provide solutions to

accommodate the big data applications. These applications not only require scalability on

computation and storage but also bring a pressing challenge on data processing speed. If the

data processing speed cannot catch up with the data generation speed, the computing results

provided by the data analytic systems will be useless. Additionally, in many applications

such as real-time recommendation system and web index maintenance, dataset involved in

the computation needs to be frequently updated. To catch the change of individual data

items and deliver the correct result reactively under the fast evolving dataset, we have to

adopt online data analytic systems.

Unfortunately, there exists a gap between the state-of-the-art data analytic system and

the requirement of the online data analytics. It prevents the current data analytic system-

s/algorithms from being adopted in the more challenging, yet more realistic, online scenarios.

In this thesis, we identify three major requirements to move the conventional offline com-

puting systems to online: (1) First, we need to build a fluent online processing pipeline

which consumes input data reactively and with high throughput; (2) We desire a storage

layer which serves online query and update to the computing state so that it can deliver the

results adaptively against the fast evolving dataset; (3) Finally, while moving from offline to

online, the data analytic systems should be backward compatible to its offline counterparts,

hence, we need to keep the maximum compatibility with infrastructure, programming model,

etc.
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In this thesis, we study the solutions to fulfill these three requirements. (1) We design and

implement the micro-batch-based online data processing pipeline with fine-grained resource

allocation to avoid the per-record backup and handle the highly-skewed computing demands,

e.g. videos with various length. (2) We build a parallel-friendly and high-performance

computing state management system based on Locality Sensitive Hashing (LSH). Our system

differentiates with the conventional LSH system in that it does not need to reconstruct

itself to serve the online update requests and adopt multiple system-oriented optimization

strategies to scale to large storage size and the multi-cores environment. (3) We achieve

the scalable, efficient and reliable computing state management for online data analytics by

introducing Resilient State Table (RST) as a component of Spark. So the system we have

designed can seamlessly integrate with the programming model and scheduling policy of the

original Spark framework.

We evaluate our design in various scenarios. Our design exceeds the performance of the

state-of-the-art systems in many application domains, e.g. the content-based video indexing,

high dimensional nearest neighbors search, real-time web index maintenance, and machine

learning algorithms.
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Abstract

Actuellement l’afflux de donnes produites par diverses sources, telles que les dispositifs de

dtection mobile, les journaux d’vnements systmes, et les activits utilisateurs sur Internet,

ne cesse de crotre. Par consquent, l’information enfouie dans ces donnes massives a un

potentiel important de pouvoir amliorer nos connaissances et la faon d’aborder diffrents

domaines. Les chercheurs ont donc oeuvr fournir des solutions innovantes pour explorer les

informations contenues dans ces donnes massives. Ces applications requirent non seulement

l’extension des capacits de calcul et de stockage, mais ajoutent un dfi important sur la vitesse

de traitement des donnes. Si cette vitesse de traitement n’est pas en adquation avec la vitesse

avec laquelle les nouvelles donnes sont gnres, les rsultats obtenus par les systmes d’analyse

seront inutilisables. De plus, dans beaucoup de cas tels quels des systmes de recommandations

en temps rel ou la maintenance de l’indexation de pages web, les ensembles de donnes

impliqus dans les calculs doivent tre mis jour frquemment. Pour dtecter un changement

dans un enregistrement individuel et dlivrer le bon rsultat de faon efficace dans un ensemble

de donnes lui-mme sujet des modifications rgulires, nous devons passer la main des systmes

d’analyse de donnes en ligne.

Malheureusement un foss demeure entre les systmes analytiques de pointe et les conditions

pour leur utilisation sur des donnes en ligne. Ce dernier empche ces systmes/algorithmes

d’tre utiliss dans les cas rels, mais plus complexes, des traitements de donnes en ligne. Dans

cette thse, nous identifions trois prrequis majeurs pour basculer du modle conventionnel du

traitement des donnes hors ligne au modle en ligne : (1) Premirement, nous devons construire

un pipeline en ligne qui consomme des donnes d’entre rapidement, avec un dbit de sortie

lev ; (2) Nous ncessitons un support de stockage qui rpond des requtes en ligne et qui

est capable de mettre jour l’information qu’il contient malgr une frquence de modification
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importante ; (3) Finalement, tout en effectuant ces changements de hors-ligne a en ligne,

le systme d’analyse doit conserver la rtro compatibilit avec ses quivalents hors-ligne, nous

devons donc conserver une compatibilit maximale vis vis de l’infrastructure, des modles de

programmation, etc.

Dans cette thse, nous tudions les solutions qui remplissent ces trois pr-requis. (1) Nous

crons et implmentons un pipeline de streaming en micro-lots avec une allocation des res-

sources millimtre, vitant le cot de la sauvegarde par enregistrement et permettant de rpondre

des demandes trs varies, ex : des vidos de taille variable. (2) Nous construisons un systme

de gestion de la computation d’tats hautement paralllisable, bas sur le Locality Sensitive

Hashing (LSH). Notre systme se diffrencie du LSH conventionnel car il ne ncessite pas de se

reconstruire pour servir la requte en ligne et comprend des optimisations de stratgies systmes

pour supporter la monte en charge du point de vue de l’espace de stockage et du nombre

de coeurs de l’environnement. (3) Nous parvenons l’extensibilit et l’efficacit du systme de

gestion de computation d’tats pour les analyses de donnes en ligne en y ajoutant les Resilient

State Table (RST) en tant que composant de Spark. Le systme que nous avons bti peut donc

s’intgrer aisment avec le modle de programmation et de planification du framework Spark

original.

Nous valuons notre projet d’aprs diffrents scnarios. En effet, il surpasse les performances

des technologies de pointe actuelles dans beaucoup de domaines, ex : recherche de contenu

dans lors de l’indexation video, recherche multidimensionnelle des plus proches voisins, main-

tenance d’index en temps rel, et algorithmes d’apprentissage machine.
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Chapter 1

Introduction

The variety of the data sources and the size of generated data are dramatically increasing

nowadays. Internet users are producing a vast amount of data across the web. For example,

the users of Instagram share more than 80M pictures every day [54]. The Internet of Things

(IoT) encompasses many aspects of human society, from connected cities, to connected cars

and to sensors embedded in smart devices that track personal behavior [6]. The information

hidden behind the massive size of data are changing our way to conduct operations in nearly

all fields, e.g. scientific research [40], business [18, 83] and finance [111].

Not only the total volume of data is increasing, but also the velocity of the data generation

is high and grows in a fast pace. The users of Facebook generates 50 million messages/sec

or 5 trillion messages/day which are consumed by its infrastructure [95]. The Options Price

Reporting Authority (OPRA), the organization taking in charge of aggregating all the quotes

and trades from the options exchanges, stated that the peak message rates would be doubling

every year since 2005 when the number was 122000/second [101].

Unfortunately, a lot of traditional data analytic applications, which are based on frame-
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works like Hadoop [47], Spark [100], cannot meet this requirement despite its prevalence.

We refer the design pattern of these applications as Offline Data Analytics. We illustrate a

web index system designed following the pattern of offline data analytics in Figure 1.1. The

input of this application comes from the web crawlers which monitors the updates of the web

pages and fetch them into a database/file system. A MapReduce job runs periodically to

poll the database, parse all crawled pages, and calculate the in-links of each URL for further

URL score calculation. The results of this MapReduce job is saved in another database.

Other MapReduce jobs run in a similar way to conduct the further processing.

Design Pattern of Offline Data Analytic Applications In general, an offline data

analytic application consists of a set of batching jobs which are chained through the database

or file systems. Specifically, we summarize the design characteristics of offline data analytics

as following:

— Input : in the input part of each processing phase, offline data analytic applications

accumulate data in a database/file system and then conduct further processing;

— Output : in output part, offline data analytic applications generate batching output

and assume that the results are write-once-read-many-times.

These two characteristics bring the low application effectiveness in several aspects. A

too long interval between two polling on the database results in the stale results serving to

the users. Shorten the interval length does not resolve the issue. When the newly generated

data contains the dependency to the existing data, e.g. the newly crawled web page contains

the link to the existing page [85], it requires batching jobs to traverse over the complete

database which brings unexpected redundant computation.

In this thesis, our goal is to propose a new design pattern of data analytic applications,

which resolves the challenge in not only handling data with the large volume but also with
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CHAPTER 1. INTRODUCTION

Figure 1.1 – Offline Web Index Update: Offline Web Index system has to update the index in
batching, and for every running of the MapReduce, it has to scan through the entire database to
reconstruct the index

the high velocity. We refer the new design pattern as “Online Data Analytics”.

1.1 Requirements of Online Data Analytics

Streaming Data Feeding The first requirement to online data analytics is to replace

the “accumulate-first” data processing workflow with the streaming data feeding. The offline

data analytic applications take the input as bulks and read them at once at the beginning of

processing. To consume data online, online applications treat the input as continuous data

streams and apply the logic to the incoming data streams reactively. The state-of-the-art

streaming processing engines [106, 23, 116] impose First-Come-First-Serve (FCFS) order of

the elements in the data streams. However, we argue that the application-specific require-

ment has to be considered when building data streams. For example, when the computing

resource demand is highly skewed among the elements in the data streams, the FCFS order

may bring the compromised system performance. On the other side, the application-specific

requirement is various, e.g. FCFS is mandatory in scenarios like online time-series analysis.
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1.1 Requirements of Online Data Analytics

High-Performance Computing State Management Layer To avoid redundant

computation which exists in offline data analytic applications, the online data analytic ap-

plications have to save the intermediate results in a scalable and flexible data structure for

incremental computation. We refer the intermedia results as the computing state. The com-

puting state management layer has to accept not only query but also update requests in an

online manner and contains the parallel-friendly design to utilize the computational capacity

fully in the modern CPUs. The most challenging part comes from the potential complicate

structure of the computing state, and the tools to handle this complexity are designed with

the offline computation assumption. Therefore, we have to refactor these tools to fit into the

scenario when building computing state management layer.

Minimize the Cost For Migration A lot of existing applications are built with the

frameworks which do not offer the facilities to achieve online data analytics. While we can

invent new frameworks with the full-fledged or partial support to online data analytics [11,

68, 87, 15, 46, 49, 37, 77, 1], we have to re-write the existing applications with the new

APIs of these new frameworks and introduce additional complexity to the infrastructure.

Therefore, the third requirement for us to achieve online data analytics is on the cost side,

i.e. how to minimize the changes applied to the existing infrastructure, programs and users’

habit on the programming model.

In Figure 1.2, we illustrate the overview of online data analytics. Being different with

the conventional offline design, the Extract-Load-Transform (ETL) and data analytic phases

are integrated into a streaming pipeline. In the input phase, online data analytics enables

the application-specific stream scheduling logic. The output of the online data analytic

applications are generated by computing over both the input data and the computing state

entries stored in the computing state management layer.
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Figure 1.2 – Design Pattern of Online Data Analytics

1.2 Contributions

In this thesis, we make the following contributions to fulfill the above requirements:

— We propose the design pattern of online data analytic applications. We realize on-

line data analytics in practice within the context of content-based video indexing.

We refactor the conventionally offline content-based video indexing system and build

a complete online processing pipeline from feature extraction to feature index for

videos [121]. We introduce a streaming data feeding component which organizes the

input video streams as micro batches and allocate the computing resources among

videos with a credit-based algorithm to prevent compromised system performance due

to the skewed resource demand. We use a distributed feature index which enables

incremental index update.

— We design and implement the computing state management layer with the focus

on enabling online update and parallel processing. To overcome the challenges due

to the complicated structure of computing state entries, we study the solution by

taking the high dimensionality as an example, i.e. the computing state entries are

represented as high-dimensional vectors. We build a Locality Sensitive Hashing (LSH)
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based state management layer aiming to provide the fine-grained and low-latency

online query/update to the high-dimensional unstructured state entries [122]. The

LSH-based index is conventional to be built in an offline manner as it has to be

reconstructed under online updates [104, 39, 67]. The proposed system contains a

hierarchical memory system consisting of RAM and flash memory. The RAM space

consumes all updates to avoid write persistent memory space in random and the

hardware feature of flash memory fills to performance gap between the sequential and

random read. Additionally, we use a Partitioned Hash Forest structure to improve

the system performance in the multi-cores environment.

— To minimize the overhead to port the existing data analytic applications built on

top of the frameworks without the full support of online data analytics, we introduce

Resilient State Table (RST) [123] into one of the most popular data analytic frame-

work, Spark. The existing efforts to achieve online data analytics either fall short in

providing the low-latency and fine-grained state access [11, 49, 13] or imposes new pro-

gramming model which is incompatible with the existing data processing frameworks

[77, 37, 15]. RST not only offers the full-fledged online data analytic functionality

but also integrates with the programming model and scheduling policy of the original

Spark framework.

The rest of the thesis organizes as follows: We introduce the background knowledge in

Chapter 2. In Chapter 3, we apply the online data analytics in the context of content-

based video indexing. In Chapter 4, we present the computing state management layer for

the online data analytics in the context of the high-dimensional unstructured data. We

then describe how we achieve online data analytics with the backward compatibility to the

existing data processing frameworks in Chapter 5. Finally, we summarize the contributions
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of this dissertation and discuss the future directions of this research topic in Chapter 6.
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Chapter 2

Background

In this chapter, we introduce the background knowledge which facilitates the understand-

ing of this dissertation. In Section 2.1, we describe the design of the state-of-the-art data

processing frameworks and highlight why the existing applications based on these frame-

works do not fit into the online scenario. In Section 2.2, we compare various design patterns

of data analytic applications with the proposed design, “online data analytics”.

2.1 Design of Offline-oriented Frameworks

In this section, we introduce the design of data analytic frameworks with the example of

Apache Spark [100]. Apache Spark is one of the most prevalent data analytic frameworks,

and it is representative in its design idea which targets to process large data volumes [38,

47]

Figure 2.1 shows the architecture of Spark. Spark follows the Master-Workers design

style in which Master allocates computing resources in Workers to the applications. The

applications utilize the resources of workers by starting Executors to execute computing
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CHAPTER 2. BACKGROUND

Figure 2.1 – Spark Architecture: the computing resources are managed by Master and Workers;
Each Spark application consists of a Driver which serves as the schedules tasks and one or more
Executors which gets tasks to run.

tasks. Driver, as the per-application scheduler, talks with Master to acquire resources and

dispatches the tasks to the executors.

The core component in Apache Spark is an in-memory abstraction, called Resilient Dis-

tributed Dataset (RDD) [115]. RDD provides the fast and reliable in-memory storage for

data, and the interfaces to the users to scale the computations over RDD to the commodity

cluster. All data involved in Spark-based computation are wrapped by RDD. We give an

example in Figure 2.2 to show the execution logic of the following Spark program:

1 val wordRawRDD = sc . t e x t F i l e ( ” i n p u t F i l e ” ) . f latMap ( . s p l i t ( ’ ’ ) )

2 val wordAndFrequencyRDD = wordRawRDD.map( word => ( word , 1) )

3 val aggFrequencyForEachWord = wordAndFrequencyRDD . reduceByKey ( (

f req1 , f r eq2 ) => f r e q1 + f r eq2 )

4 val r e s u l t = aggFrequencyForEachWord . c o l l e c t ( )

Line 1 reads a text file from the file system and splits each line at the space to form an
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Figure 2.2 – An Example of RDD: RDD is immutable. Users reflect the changes to the content in
a RDD by calling the APIs like map(), reduceByKey() to create a new RDD.

RDD wrapping a bunch of words. The following Line 2 maps each word into a (word, 1) pair.

We then call reduceByKey() in Line 3 to aggregate the frequency of each word. The elements

in RDD are assigned to a specified partition by a “Partitioner”. The mapping relationship

between two RDDs is in the unit of partition. The partition-to-partition dependency can be

one-one (e.g. the dependency constructed by calling map() in Line 2) or one-to-many/many-

to-one (e.g. the dependency created by calling reduceByKey()).

Programming with RDD is attractive for scaling the data processing to multi-cores and

distributed servers. The processing of each partition in Figure 2.2 is indepedent so that they

can be conveniently parallelized. RDD is immutable so that users do not need to worry

about the concurrent mutation which brings most complexity in parallel programming [50].

In the above example program, when we call map() and reduceByKey() we do not change

the content in wordRawRDD and wordAndFrequencyRDD respectively, but create the new

RDDs, resulting that there is no concurrent threads modifying the same memory space.

Gap Between Offline Framework Design and Online Data Analytics However,
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CHAPTER 2. BACKGROUND

Figure 2.3 – The updates on input (filled with grey in the figure) has to be reflected by redundant
computation.

the design of RDD makes Spark does not fit into the scenario of online data analytics. First,

Online Data Analytics requires incremental computation against updated input which cannot

be fulfilled with Spark. In Figure 2.3, we update the first input partition of the original text

file in Figure 2.2 by adding a new word, “McGill”. To update the frequency of each word in

the text file, we have to re-apply the computation over the complete dataset, leading to the

considerable amount of redundant computation. Second, to avoid redundant computation,

we have to save the current frequency of each word, i.e. computing state in this case, and

only mutate the involved computing state for each update on the input. This requirement

does not match with the design of RDD. Due to the immutability of RDD, Spark reflects

the changes applied to the elements in RDD by creating a new RDD with APIs like map().

If we save computing state in RDD, we have to create a new RDD for every fine-grained

update on the computing state, causing significant overhead.

From the above analysis, we can see that frameworks like Spark are designed for coarse-

grained computation. The similar design philosophy can be found in Hadoop [47], Flink [38],
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etc. Therefore, the data analytic applications based on these frameworks cannot fulfill the

requirements of online data analytics.

2.2 Design Patterns of Data Analytic Applications

The researchers and the developers are making efforts to overcome the limitations in

offline data analytics. In this section, we compare different design pattern of data analytic

applications which are proposed for this purpose. We focus on three aspects of various design

patterns:

— Input The input format of different design patterns decides how fast the applications

can consume the newly arrived data.

— Output Output phase decides how efficiently the users can get data analytic results,

e.g. whether introduce redundant computation, etc.

— Compatibility With Offline Applications We consider how many changes we

have to introduce to the offline applications to move them from offline to the new

design pattern.

Input To avoid the accumulate-first strategy in offline data analytics, researchers propose

the Streaming Processing pattern which takes continuous streaming as input. The streaming

processing frameworks like Storm [106], Samza [23], enables the applications following this

pattern to operate in low latency. However, the state-of-the-art streaming processing pattern

assumes that the processing overhead of all elements are similar so that the applications

process the elements in First-Come-First-Serve (FCFS) order. This assumption does not

hold for several scenarios. As we will introduce in Chapter 3, the video data contains

highly skewed computing resource demand, and FCFS processing order brings sub-optimal

12



CHAPTER 2. BACKGROUND

resource allocation in this case. Online Data Analytics include an application-specific stream

scheduler to reorganize the order of the elements in data streams and then feed into the

system.

Output To eliminate redundant computation in offline data analytics, researchers pro-

pose several strategies to produce output incrementally. Incremental Computation eliminates

the redundant computation by keeping the results from the preivous data analytic jobs and

derive the contemporary results based on that. However, the applications in this category

are still based on the batched processing. For example, Nectar [46] saves the results of

previous batching jobs and associate the current job with the previous ones through hash

tags to achieve incremental computation. The reason for this type of design is the lack of a

computing state management layer which supports low-latency and fine-grained computing

state access. Stateful Computation is a category of the applications which are based on the

data analytic frameworks with the special design of computing state management layer. De-

pends on the frameworks design, the applications in this category have various compromising

on the functionality, e.g. cannot scale to large state size, etc. Some streaming processing

frameworks also contain computing state management component but usually suffer from

compromised on scalability to large state size [23, 106]. Some of the frameworks [87, 37]

provide the support of full-fledged stateful computation, including low-latency, scale to large

state size, etc. We will have a comprehensive study of these frameworks in Section 5.1.

Online data analytics requires the full-fledged computing state management.

Compatibility with Offline Data Analytic Applications Compatibility with the

offline data analytic applications is critical to apply the design patterns in practice in terms of

cost. Streaming processing is significantly different with the offline data analytics therefore

does not support a smooth migration from offline data analytic to streaming processing
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applications. Applications in the category of incremental computation are usually based

on the customized version of the original offline frameworks. Therefore, they provide the

compatibility with the original offline applications while the processing efficiency of them

suffer on their batching nature. The frameworks providing the full-fledged computing state

management usually adopts an imperative programming model to simplify the operations

to the state entries as put/get APIs. As we stated in Section 2.1, offline data analytic

applications usually embrace the functional programming model to facilitate parallelization.

Discarding the functional programming model means that we need to rewrite all applications

with the new programming model. Additionally, imperative programming model would

make the design of the critical processing stage like Extract-Transform-Load in applications

over-complicated. Online data analytics masks the imperative operations with the high-

level abstraction and is compatible with the functional programming model to reduce the

overhead to migrate from offline to online data analytics.

Online Data Analytics is the design pattern of data analytic applications proposed

in this thesis. Online data analytics takes continuous data streams as input and relax the

constraint on the processing order of the elements in the stream. Therefore, the application-

specific requirement can be embedded into the input phase. Online data analytics not only

requires a full-fledged computing state management layer, but also pursue the backward

compatibility to the offline data analytic applications.
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Chapter 3

Online Data Analytics in Practice

In this chapter, we present the design pattern of online data analytic applications in the

context of content-based video indexing. The state-of-the-art content-based video indexing

system is usually designed to be offline. The challenge of porting the content-based video

indexing system to online is that the video data applies much higher computational over-

head than the other types of data due to its size and complexity. This higher computing

pressure involves both the feature extraction and indexing part. Additionally, the video clips

have various length and different number of keyframes that brings more challenges because

the bigger/longer video may block the online pipeline and starve the others. We address

these challenges by building a distributed streaming processing pipeline based on the novel

resource-aware micro-batch model, and the feature index which consumes the output in

feature extraction stage online without the necessary to reconstruct the index in an offline

manner.

We describe the motivation and background knowledge for this chapter in Section 3.1

and then move forward to the overall architecture of Marlin in Section 3.2. We go into the
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details of feature extraction system and content-based index of Marlin in Section 3.3 and 3.4

respectively. We describe the implementation details in Section 3.5. Section 3.6 demonstrates

the evaluation results, and Section 3.7 discusses the related work. We summarize the design

of the system and discuss how to extend it to the other fields in Section 3.8.
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3.1 Background

In the era of big data, various forms of data including trillions of text documents, billions

of images, videos and audios and a huge amount of data on user activates (e.g., queries, page

clicks, user relations) are transmitted, stored and generated in the cloud. Among of them,

video data are dominant in volume. According to Cisco, the Internet video is expected to

account for from 78% in 2014 to 84% in 2018, of all U.S. Internet traffic [22]. However, it

is super challenging to provide useful insight in search, sharing, storage, transfer and piracy

detection for video data.

A common but imperfect way to tackle the complexity of video data is to use the manual

tagging with metadata, then apply Natural Language Processing (NLP), or the other text

analytics methods for structured metadata to study the unstructured video data. There are

two drawbacks to this approach: (1) The performance of online video systems depends on

the quality and completeness of the metadata, however, having humans manually annotate

videos in a large online video system is labour-intensive, time-consuming and error-prone;

(2) the contemporary online video systems trust the users who upload the video clips to

annotate the videos. A user may intentionally use deceptive descriptions to a video in order

to gain popularity. It is very common that identical video clips have different sets of tags

associated with them, and the video clips with the identical set of tags can be significantly

different. As reported by Wu et al. in [112], by searching the 24 most popular keywords

on YouTube, Yahoo! Video and Google video, around 27% online videos are duplicate or

near-duplicate.

Hence, Content-based index and search are not only necessary but also fundamental in big

video data research. It will benefit a variety of applications, including storage optimization

[73], search result diversification [33, 93], polluted tag detection [61], and piracy detection,
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etc.

3.1.1 Online vs. Offline Content-based Video Indexing

Researchers have proposed various approaches to index videos based on their content

instead of metadata. For example, authors of [118, 94] have managed to incorporate the

temporal and spatial aspects of information into features, It has been reported that the

computation of the sophisticated features is extremely time-consuming [98]. Therefore, the

conventional video retrieval systems rely on the offline computation to extract features. For

instance, MapReduce-based algorithms are widely adopted for multimedia feature extraction

[117, 19, 66]. As we introduced in Chapter 1, while MapReduce-based approaches parallelize

the data processing, the user has to endure the high latency for each job and the stale system

status between two running instance of the offline jobs. Nowadays, the extreme volume and

astonishing expanding rate of online video sharing and hosting systems (e.g., YouTube)

require the online processing of the feature extraction. According to YouTube, over 300

hours videos are uploaded in a minute [114]. Hence, a fast video feature extraction system

is in great demand to make the feature extraction catch up with the video upload speed.

In the setting of offline-based feature extraction, the content-based index design also

assumes that the content of the index is updated in batching and offline manner. In this

case, the entire index structure has to be reconstructed to include the newly uploaded videos

to the index. In contrast, to achieve the online content-based video indexing, we need to

eliminate the build-in-offline assumption and make the indexing structure updatable in an

online fashion.

In this chapter, we describe an online content-based video indexing system for large-

scale video sharing hosting platforms, called Marlin [121]. It spreads computing tasks,
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including feature extraction and indexing query/update, to distributed servers. The feature

extraction and indexing operations are conducted as a pipeline. Once the feature of a video is

extracted, the features are accessible for content-based search. Meanwhile, Marlin optimizes

the computational resource allocation to speed up feature extraction. Specifically, we make

the following contributions in this chapter:

— Streaming Feature Extraction: The feature extraction system in Marlin handles the

streaming data in a micro-batching fashion [49, 68]. The videos are separated into

small batches, and each batch contains videos arriving in a fixed time interval. Our

system parallelizes the feature extraction of a certain video at keyframe level and fur-

ther aggregates the keyframe features to get the feature representation of the videos.

— Fine-grained Resource Allocation: The existing streaming processing frameworks

[106, 23, 116] apply the First Come First Serve scheduling policy. However, un-

der such scheduling policy, a video with a large number of keyframes may take all

resources, thus preventing the processing of the other videos in the same batch and

even in the later batches. To increase the system throughput, we improve the current

micro-batch mode with the fine-grained resource allocation mechanism based on the

fair queuing algorithm. We model each video to a network flow, where the keyframe

number of a video is considered as the packet size in a flow. We employ an O(1)

algorithm to prevent the unfair resource allocation and improve the overall system

throughput (Section 3.3.3).

— Online Content-based Indexing: The feature index in Marlin offers two-folded benefits:

1) it provides the capability of distributed and parallel processing so as to accelerate

the content-based search; 2) it incrementally updates the feature index with the newly

arrived videos to avoid rebuilding the entire index, and pipelines with the feature
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Figure 3.1 – Architecture of Marlin: Marlin calculates the feature vectors of the keyframes and
aggregates them to get the feature vector of the video. Marlin detects the similarity between
the newly uploaded video and the existing videos to provide the optimization advice to the other
systems.

extraction without waiting for the completion of feature extraction for all the videos

in a batch.

3.2 Marlin Overview

We illustrate the architecture of Marlin in Figure 3.1. Marlin consists of three compo-

nents:

— Data Feeder Data Feeder takes video clips containing sequences of keyframes as in-

put, and places them in the distributed memory space directly before running feature

extractor algorithm. Rather than placing the keyframes to distributed file systems

(e.g. HDFS [97]) then loading them into the memory space, it saves the I/O cost

greatly. In the case of that the size of videos exceeds the available memory space, the
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Least-Recently-Used (LRU) rule will be adopted to spill the least recently used video

data to the disk.

— Streaming Feature Extractor Streaming Feature Extractor consists of a TaskSched-

uler and a group of TaskRuntime processes running on the distributed servers. The

TaskScheduler distributes the two types of tasks, feature extraction and feature aggre-

gation, to the TaskRuntime processes. The feature extraction task takes a keyframe

and computes its feature vectors. The aggregation task yields video features by ag-

gregating the vectors across the servers. We separate the continuous video streams

into micro batches [49], i.e. we periodically deliver a set of videos for processing and

the video set in each period is referred as a micro batch. Being different with the

conventional micro batch model, the TaskScheduler assigns a video into a micro-batch

according to not only its arrival time but also the number of keyframes, i.e. the de-

mand on the computing resources. To prevent a video containing a large number

of keyframes from overtaking resources and starving other videos, the TaskScheduler

calculates the fair share of each video in every scheduling period and picks the videos

whose computing demand are under their fair share to the next micro batch.

— Distributed Feature Index Distributed Feature Index is the index system storing

the video feature vectors. It supports fast query as well as the incremental updates.

Upon the feature vector of a video is calculated, it is sent to the distributed index

system immediately, no waiting for the features of other videos in the same batch to be

extracted. This design enables the feature vectors to be accessible to the content-based

query once they are calculated. The immediately accessible feature differentiates

Marlin with the batch processing approaches proposed in [108, 34], i.e. we virtually

eliminate the explicit division of feature extraction and content-based index building
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phases.

The above three components map to the components in Figure 1.2. Data Feeder and

Streaming Feature Extractor map to the streaming-based ETL engine and application-

specific stream scheduler. Distributed Feature Index corresponds to the computing state

management system where it indexes the video feature vectors according to their content to

serve the query and update to the index.

In an architectural view, the major differences between Marlin and the other near-

duplicate detection systems include 1) it processes everything in an online manner, elim-

inating the assumptions of pre-calculated features, static index, and explicit phase division;

2) it utilizes the in-memory and parallel computing to accelerate the data processing. In the

following sections, we elaborate the design of Streaming Feature Extractor (Section 3.3) and

the content-based Index (Section 3.4) respectively.

3.3 Streaming Feature Extractor

In this section, we present how we port the traditionally offline feature extraction to a

streaming computing system. We discuss three topics involved in this process: a) select a

simple yet efficient feature to represent the video to reduce the computational overhead for

each video (Section 3.3.1); b) scale the streaming feature extraction to distributed servers

(Section 3.3.2) and c) allocate the computing resources among the videos to prevent the big

video clips occupying too many resources thus suffering the fluency of the online processing

pipeline (Section 3.3.3).
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3.3.1 Video Feature Selection

In pursuit of accuracy for content-based video indexing, video features are designed to

be more and more complicated [112, 118, 94]. However, with the complex features, it is

computationally expensive to extract the features online [98]. Also, the high complexity

may make the parallelization pipeline paralyzed [17]. In this chapter, we adopt a simple

feature, HSV color distribution, to represent a video. The HSV color distribution describes

a video in three dimensions, Hue(H), Saturation(S), or Value(V), each of which is mapped

to a histogram. The number of bins of these histograms is adjustable for accuracy tuning.

Simple features, like HSV color distribution, are efficient but less accurate in the content

search. To compensate the accuracy loss, we scale the feature description to higher resolution,

and then use distributed inverted index structure described in Section 3.4 to ensure the fast

data access and efficient feature comparison.

3.3.2 Distributed Streaming Feature Extraction

Building a streaming processing system is challenging, especially that we need to guar-

antee the zero data loss with the high-speed data streams. Traditional stream processing

frameworks either replicate data in multiple servers or backup the upstream data to prevent

the data loss caused by the unexpected termination of the data processing jobs. However,

in online video sharing and hosting systems, the multiple copies of the large volume of video

data will incur large software/hardware overhead, and the upstream backup imposes the

whole system to pause the processing and wait for a single point to replay all messages from

upstream sequentially.

In this chapter, we adopt DStream abstraction [116] to implement our streaming video

feature extractor (we also improve DStream on resource management which will be intro-
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duced in Section 3.3.3). DStream organizes the data streams as micro batches. Each micro

batch is a set of videos and processed with parallel computing tasks. When processing each

batch, DStream maintains data dependency as a directed acyclic graph (DAG). In the case

of data loss, it recovers the missing data by traversing the DAG from the latest checkpoint

to the missed data without the necessary to maintain multiple copies of each video.

The other important strategy to speed up the feature extraction is parallelization, in

which the granularity of the task greatly affects the parallel performance. Too fine granu-

larity will bring large communication overhead for aggregating the results across over the

network to get the final video feature. According to [21], the overhead of network commu-

nication in parallel computing framework has been one of the dominating factors reducing

the efficiency large-scale data processing. Too coarse granularity, e.g. organizing the feature

extraction of a complete video as a single task, is not a wise choice either. Because a large

amount of computation need to be completed before a task releases the resources, coarse

granularity makes computing task management more challenging. For example, in specula-

tive execution model [30], we choose to predictively start multiple copies of the slow tasks

to mitigate the influence of abnormal server conditions. However, with multiple duplicates

of computationally intensive tasks, a system will suffer from super high overhead. In this

chapter, we choose keyframe-level parallelization, so that the individual keyframe feature

vectors in a video is computed in parallel and then aggregated into video feature vectors

according to the video ID (Message 3 and 4 in Figure 3.1) in parallel.

Being different with the conventional multimedia indexing system [94] which has explic-

itly separate feature extraction and indexing phases, Marlin does not wait for the completion

of feature extraction of all videos in a batch before it performs the content-based search. In-

stead, with the support of the incrementally updatable index design which will be introduced
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in Section 3.4, a video feature vector is sent to the Online Feature Index as soon as it is

computed.

3.3.3 Resource-aware Data Stream Scheduling

The conventional DStream does not consider the various computing resource demand

among the arriving data objects, which may degrade the system throughput with the diverse

resource demands of the data objects. In the original DStream abstraction, the system

creates each micro batch by including the videos arriving at the system within a certain

time interval and in the First Come First Serve (FCFS) order. However, with the keyframe-

level parallelism, the demand for the computing resources of each video is proportional to

its keyframe number. As shown in Figure 3.2, the distribution of the keyframe number in

the standardized dataset CC WEB VIDEO [113] exhibits as a long-tail shape. If we simply

assign videos to micro batches in FCFS order, a large video will easily overtake the computing

resources. For instance, if a large video with thousands of keyframes arrives before short

videos with less than ten keyframes, the large video will starve other short videos by taking

all the computing resources and in turn to affect the system throughput.

In this chapter, we propose a resource-aware DStream abstraction to address fair resource

allocation and improves the system throughput. We differentiate with the original DStream

by introducing a resource allocator in the TaskScheduler of the streaming feature extractor.

Instead of FCFS, we assign videos to the next micro batch according to the video size as well

as arrival time. Our scheduling algorithm is an analog to the fair queuing problem in the

network domain. Each video is mapped to a network flow with varying packet size (number

of the keyframes), and the computing resources (CPUs and Memory) are mapped to the link

bandwidth. Then our goal is to allocate bandwidth among the flows with the various packet
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Figure 3.2 – Distribution of keyframe number in CC WEB VIDEO dataset. The number of the
videos with the keyframe number ranging from 6000 - 10000 is too small to be visible but still
larger than 0.

size and ensure that the large flows will not starve the small flows and still capture their

chances to be processed.

Our algorithm is inspired by the Deficit Round Robin (DRR) algorithm in network field

[96]. DRR algorithm assigns flow to queues and assigns a quantum of service to each queue

in a round-robin fashion. Only the queues whose accumulated quantums are larger than the

size of its packet will be served. The flows with the large packets are inclined to be back

off. For each round, the size of the sent packet is subtracted from the quantum, and the

remaining quantum value is accumulated to the next round. Thus, the system keeps tracking

the deficits, and the queues that were short in the current round are compensated in the

next round.

In the scenario of video feature extraction, videos are mapped as flows while the key

difference is that the “flow” in our system has only one packet. We assign flows to a particular
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Figure 3.3 – Mapping Video to Flow for DRR Fair Scheduling: Each video is mapped to flow, and
the packet size is the keyframe number of the video. The key difference is that the “flow” here has
only one packet

logical queue which represents different levels of the computing resource demand. The unique

ID of the queue is added to an active list when the video is received by Data Feeder (see

Figure 3.1). When the queue ID is at the head of the list, we accumulate the current deficit

of the queue Deficit and the service quantum Quantum. If Deficit + Quantum is larger

than the size (the number of the key frames) of the video, we assign the video to the next

micro batch to be processed. Otherwise, we skip the current queue and move to the next

one. After being processed, the queue ID will be removed from the list.

Figure 3.3 shows a scenario of DRR scheduling where V ideo1 with only ten keyframes can

be scheduled in this scheduling round. Figure 3.4 shows another scenario where the required

processing capacity is larger than the available resources. V ideo2 requires 150 keyframes

which are larger than its current deficit value so that it is skipped for this scheduling round.

However, it can be scheduled in next around as the quantum granted in this round will be
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Figure 3.4 – DRR Fair scheduling: V ideo2 requires 150 keyframes which are larger than its current
deficit value so that it is skipped for this scheduling round. However, it can be scheduled in next
around as the quantum granted in this round will be accumulated to the next one.

accumulated to the next one. In this way, we ensure that the scheduled according to their size,

but will no be backed off infinitely just because it is large. We evaluate the resource-aware

DStream abstraction in Section 3.6.1, where it shows the 5x overall throughput improvement

brought by the adjustment of the processing order of the videos.

3.4 Feature Indexing for Online

After the videos are represented as feature vectors, we can search the videos based on

the content by calculating the similarities between the query vector and the existing feature

vectors, then respond with the videos whose vectors are similar to the query one. Two

videos are considered to be similar if their similarity value is beyond the predefined threshold

(Message (5) in Figure 3.1). However, without the support of efficient indexing structure,
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such comparisons would be painful and burdensome, e.g. the pair-wise comparison brings the

O(N2) time complexity. In Marlin, we build a distributed index supporting: 1) Incremental

Update The index structure is supposed to support incremental update: for each new feature

vector of the video arriving at the system, we return the similar videos, update the index and

immediately serve the updated index for the future content-based queries. This strategy is

more efficient than re-indexing the entire collection; 2) Parallel/Distributed Processing

To support the processing in streaming scenario, we distribute the workload of index request

processing to multi-cores and further multi-machines.

3.4.1 Distributed Inverted Index Structure

Our approach is built on top of inverted index structure proposed in [8]. When there is a

newly uploaded video whose feature vector has been computed by the method we introduced

in Section 3.3, we update the index by adding this new vector and at the same time presents

as the query to the existing index. Figure 3.5 shows the basic structure of the inverted index

for the binary vectors. Each entry in the inverted index table maps to one of the dimensions

of the vector. The vectors which have the non-zero value at the dimension resides in the list

associating with that entry.

A major challenge in the inverted index system shown in Figure 3.5 is that it does not

support the concurrent access to the index table. Any concurrent read/write or write/write

has to be serialized by exclusive locks.

To support the concurrent read/write or write/write, we first propose a lock-free design of

the inverted index utilizing multi-cores architecture. The proposed inverted index structure

is shown in Figure 3.6. We separate the entry lists in the inverted index into different shards

according to the entry ID and assign each shard to a ShardLord. ShardLord is the only entity
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Figure 3.5 – Basic Inverted Index Structure: Each entry in the inverted index table maps to one
dimension in the feature vector. The vectors which have non-zero value at the dimension resides
in the list associates with that entry. V0 = (1, 0, 0, 0, 1), V1 = (1, 1, 0, 0, 0), V2 = (0, 1, 1, 0, 0),
V3 = (0, 1, 0, 0, 0)

with the access permission to that shard. The communication between the ShardLords and

the other components in Marlin is via messages. Messages are queued in the message queue

of the ShardLoad. To guarantee the thread safety, we guarantee that the message queue of

a ShardLord can only be accessed by a single thread at any moment. This design follows

the Actor model [2] if we abstract each ShardLoad as an actor. The advantage of the actor-

based system is the easy support of high concurrency (abstract the system on high-level and

minimize the context switch by sharing a thread among actors) and avoid the lock usage.

To further improve the capacity of the index system in a cluster of computers, we design

the distributed scheme to spread the shards of the inverted index to multiple nodes in the

cluster. We organize the nodes in the cluster in a peer-to-peer fashion and manage the

membership of the nodes via Gossip protocol [90]. Each node in the cluster holds one or

more ShardLords that maintain their shards. The access to the shards is the same as in

30



CHAPTER 3. ONLINE DATA ANALYTICS IN PRACTICE

ShardLord

0 v0 v1

2 v2
Shard Data

Message Queue
Message 

Processing Engine

4 v0

ShardLord

Shard Data

Message Queue
Message 

Processing Engine

ShardLord

Shard Data

Message Queue
Message Processing 

Engine

1 v2 v1 v3

Figure 3.6 – Sharded Inverted Index: We separate the entry lists in the inverted index into different
shards according to the entry ID and assign each shard with a ShardLord, which is the only entity
with the access permission to the shard. The communication between the ShardLords and the
external system and the ShardLoad is via messages. We guarantee that the message queue of a
ShardLord can only be accessed by a single thread at any moment

multi-core scenario. Each node receives the newly generated video feature vectors from

Streaming Feature Extractor and spreads it to the ShardLords across the cluster. The shard

location across the cluster is maintained by an elected node, referred as coordinator. The

other nodes get the shard location by querying the coordinator and save the location in the

local cache to reduce the overhead of future queries.

3.4.2 Content-based Search

In this section, we discuss the content-based search process in our sharded inverted index

system. We illustrate the details in Algorithm 1 and 2.

To assign the feature vectors to different shards, the Client Handler of each ShardLord

(Figure 3.1) receives the feature vectors generated by Streaming Feature Extractor and
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performs Algorithm 1. We define n as the maximum number of shards in the system, d

is the dimensionality of the feature vectors, and t is the similarity threshold selecting the

similar videos. The basic idea of Algorithm 1 is that we traverse each non-zero dimension

of the vector received from Streaming Feature Extractor and send the vector to one or more

shards according to the dimensions (Line 7 - 9). In Line 5 of Algorithm 1, we introduce a

vmax, which is a predefined vector and is consistent across all nodes in the cluster. Each

dimension of vmax contains the largest possible value of that dimension across the cluster.

For example, in the simplified scenario of Figure 3.5, vmax equals to (1, 1, 1, 1, 1), as all of

the vectors in Figure 3.5 are binary vectors. SCOREv in Line 5 contains the accumulated

similarity between the v and vmax one each dimension. The result of the algorithm is that,

by indexing just enough number of feature dimensions, any vector v′ whose similarity with

v is potentially to be meet the similarity threshold can be identified as the response against

the content-based search of v. We use this approach to mitigate the size of the inverted index

as well as the cost to send vectors across the network. While a further optimization can be

done by sorting the dimension according to the number of non-zero values as introduced in

[8], it requires more data synchronization in distributed environment.

The node receives the Vj generated by Algorithm 1, and dispatches the Vj to the Shard-

Lord that maintains Shard Sj. The ShardLord then executes Algorithm 2 which dynamically

builds the inverted index and outputs the vectors which are similar to Vj. Algorithm 2 checks

each dimension of v and find the vectors of the videos whose similarity is beyond the thresh-

old.

32



CHAPTER 3. ONLINE DATA ANALYTICS IN PRACTICE

Algorithm 1 Sharding Feature Vectors

1: procedure Sharding(V ) . V is the vector set received from Streaming Feature
Executor

2: V1, V2, ..., Vn ← ∅ . the set of the normalized vectors sending to shard 1 to n
3: for all v ∈ V do
4: for each non-zero dimension d of v do
5: SCOREv ← SCOREv + vd ∗ vmax

d . SCOREv is the accumulated score of v,
vd is the value at the dimension d of v

6: if SCOREv >= t then
7: shardId← mapToShard(d)
8: VshardId ← VshardId ∪ (d, v)
9: end if

10: end for
11: end for
12: for j = 1 to n do
13: Query location of Shard Sj in shard location cache and if missed, query the

Coordinator and saves the response in location cache
14: Send Vj to Shard Sj

15: end for
16: return O
17: end procedure

Algorithm 2 Find Matching Vectors in a Sharding to the input Vector

procedure Find-Match(V, V S, t, Ip, Ip+1, ...Iq) . the ShardLord maintains the inverted
index entries with the IDs ranging from Ip to Iq. V is the vector set received from other
nodes which contain the vectors to be indexed in this shard. V S is the set containing all
vectors in this shard

O ← ∅ . O is the set of similar vectors’ ID pairs
for all (d, v) ∈ V do

V S ← V S ∪ v
for all k ∈ Id do . k is the vector Id contained in Id

v′ ← V Sk

if sim(v′, v) ≥ t then
O ← O ∪ {(v, v′)}

end if
end for
Id ← Id ∪ IDXv . IDXv is the index of vector v in V S

end for
end procedure
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3.5 Implementation

In this section, we discuss the implementation details of Marlin, with the specific focus

on the resource-aware DStream (Section 3.5.1), Load Balancing in Online Content-based

Feature Index (Section 3.5.2) and Fault-tolerance of the system (Section 3.5.3).

3.5.1 Feature Extraction with Resource-aware DStream

We implement the streaming feature extractor and resource-aware DStream abstraction

by customizing Spark Streaming, the implementation of DStream abstraction [116]. Spark

Streaming aggregates the data streams flowing into the system within the certain period

as a Resilient Distributed Dataset [115]. We modify the logic to generate the RDD in

Spark Streaming to implement the DRR-based resource allocation logic. RDD provides

a partitioned distributed memory abstraction and for each partition, it starts a task for

processing the data. The best part with RDD is that it records how every piece of data

is generated, i.e. the “lineage” of the data, so that it handles data loss by re-run the

computing tasks without the necessary to replicate data and to handle the accompanying

data consistency issue.

3.5.2 Load Balancing in Distributed Feature Index

As stated, to be able to scale the system, we design the Feature Index in a distributed

fashion. The unbalanced load makes some of the Feature Index servers having a long message

queue where the messages are queued to be processed while others are idle. This situation

lowers the overall system performance. We use Akka [107] to implement the sharded in-

verted index. We employ the facilities provided by Akka to implement the Load Balancing
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functionality.

Load Balancing in Feature Index We balance the load of the feature index processes

by balance the number of the shards maintained by them. In our implementation, the cluster

members elect the oldest member as the Coordinator, which maintains the shard location

information across the cluster. Coordinator allocates the new shard to the node with the

least number of the shards to achieve load balancing. To utilize the newly joined node in

the cluster, Coordinator periodically checks the shard number on each node. When the

gap between the maximum and minimum shard number across the cluster is larger than

a user-defined threshold, Coordinator moves the shard from the overloaded nodes to the

under-utilized nodes.

3.5.3 Fault Tolerance

We consider the three possible types of faults happening in Marlin:

— Data loss can happen for the failed processes, servers and the interaction with Data

Feeder in Streaming Feature Extractor. For data loss in feature extraction job, we

rely on the RDD lineage [115] to recompute data. To prevent the data loss due to

the failure of Spark Streaming application, we enable the Write-Ahead-Log (WAL) in

Spark Streaming to write all received data to a user-specified HDFS directory. The

restarted Spark Streaming application can recover data from the directory before

receiving new data.

— We also consider the message delivery reliability in the components implemented

with Akka framework, i.e. ShardLords, Data Feeder. We use Akka’s “At-least-once”

mechanism to ensure that messages get delivered reliably.

— To avoid the data loss in Feature Index, the data maintained by the ShardLords are
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persisted to the shared storage system (e.g. HBase) and indexed by the ShardID.

The restarted ShardLords recovers data, according to the ShardID from the shared

storage system.

3.6 Performance Evaluation

This section describes the experimental evaluation of Marlin based on a real system

implementation and the extensive simulation. Through the experiments, we are trying to

answer the following questions:

— Whether the Streaming Feature Extractor scales with more computing resources, and

whether the resource allocator in Streaming Feature Extractor improves the system

performance (Section 3.6.1)?

— Whether the Feature Index responses the content-based search and index update

request in real-time and scales with more computing resources (Section 3.6.2)?

— Whether Marlin can accurately capture the similarities among the videos to support

content-based search (Section 3.6.3)?

We use the standardized dataset CC WEB VIDEO containing 24 categories of videos as

workload. In each category, one of the videos is the seed video, and the others are with

“Similar” or other marks based on the comparison with the seed. We feed the videos to the

Data Feeder continuously with a test stub program to simulate the streaming video files.

All servers in the cluster used in the evaluation are with Intel(R) Core(TM) i3-3220 CPU

@ 3.30GHz (4 cores with Hyper-Threading running at 1.6 GHz) and 16GB RAM. The servers

are linked with 1Gbps Ethernet. Unless mentioned otherwise, the shard number is 300, the

threshold filtering similar video pairs as 0.85 in the experiments (t in Algorithm 1), and the
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batching interval of the Spark Streaming as 1s. We use the standalone deployment model

of Spark 1.2.0 and allocate 4GB memory to each executor. We will specify other parameter

values in the following subsections.

3.6.1 Streaming Feature Extraction

We test the scalability of Streaming Feature Extractor in this section. We compose the

workload with 250 videos which are randomly chosen from CC WEB VIDEO dataset and

feed them to the system in the Poisson distribution (with the mean value of 30). We use

the Apache Commons Mathematics Library [4] to generate the Poisson-distributed workload

and all videos are sent within 50 seconds.

Figure 3.7 shows the throughput speedup of the system with different core number.

Because we have to allocate one of the cores to receive data from Data Feeder, we take

the core number of 2 as the baseline (1 out of 2 cores is used for processing the feature

extraction task) and set the corresponding speedup as 1. We observe that Marlin achieves

25X speedup with 16 cores comparing against the sequential algorithm. We measure that 16

cores setup of Marlin takes 52 seconds to complete the feature extractions for all videos. The

performance improvement comes from two factors: 1) The more processing cores bring more

computational power; 2) the distributed architecture amortizes the memory overhead with

more machines so that it reduces the system performance degradation (e.g. avoid Garbage

Collection).

We also test the effectiveness of DRR-based resource-aware DStream abstraction in Mar-

lin. Due to the limited size of the physical cluster in hand, even the videos with the least

numbers of keyframes occupy the considerable portion of the cluster computing resources,

so we decide to use the simulation to evaluate resource-aware DStream. We simulate a 100-
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Figure 3.7 – Scalabilty of Marlin: With 250 videos arriving with Poisson distribution, Marlin
achieves 25X speedup with 16 cores and it takes around 52 seconds to extract features for all 250
videos.

cores cluster and serve it with batches containing 50 videos. The size of the videos is sampled

based on the size distribution of CC WEB VIDEO dataset (see Figure 3.2). We set the time

cost to generate the feature vector for each keyframe as around 50ms. Regarding the DRR

scheduler configuration, we make quantum as 1 and DRR scheduler checks the scheduling

candidates every 1 ms. We demonstrate the experimental results in Figure 3.8. We observe

that with the DRR-based resource allocator, the response time of the videos is proportional

to their computing resources demand, i.e. key frame number. Additionally, since we give

the higher priority of processing to the small videos, the response time of the large videos

also improves for nearly 5X due to the disappearing of the computing resource contention

with the small videos.
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Figure 3.8 – Response Time with/without Resource-aware DStream Abstraction: The figure is
generated by batches consisting of 50 arrival videos. We set quantum as 1 and DRR-based scheduler
checks the scheduling candidates for every 1ms.

3.6.2 Distributed Feature Index

To test the performance of Distributed Feature Index, we build a customized benchmark

by replicating the videos in the 9th category of CC WEB VIDEO. In the experiment, we

feed the system with 500 requests per second. Figure 3.9 shows the scalability of the feature

index when we increase the size of the cluster from 1 to 16 cores. When we increase core

number from 1 to 4 cores, we found that the speedup increases only for 2x. The reason is

that these four cores are on the same machine, so both one and four cores setup suffer from

the fact that a large number of in-memory objects occupy the heap space of the process,

and Garbage Collection (GC) happens more frequently than multi-nodes setup. When we

scale the system to multiple machines, the speedup grows quickly. With 16 cores (4 cores

per machine), we can increase the speedup to as much as 24x.

The second experiment we conduct to test the feature index performance is to measure
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Figure 3.9 – Scalability of Feature Index: with 16-cores setup, the speedup is 24x. The single-node
setup (one core and four cores) suffers from the frequent happening of Garbage Collection

the processing latency under the highly-concurrent requests. We assign the feature index

with 16 cores (4 cores per server) and feed the system with the various number of requests

as a single batch and measure the average processing latency. We demonstrate results in

Figure 3.10. We observe that with the increasing number of requests in the batch, the

average latency increases accordingly since the servers have the limited computing resources

and the processing of the requests competes for the resources with each other. However, the

feature index is still able to consume the update requests in real-time. With 500 requests in

the batch, it takes 34 ms on average to update the index with the latest video.

3.6.3 Accuracy of Marlin

Figure 3.11 shows Marlin’s accuracy with different threshold deciding whether two videos

are similar. We use 9th category in CC WEB VIDEO in this experiment. We can achieve

100% precision and meanwhile maintaining the recall as high as around 80%. This result
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Figure 3.10 – Processing Latency Under the Workload With Different Size

is better than the reported performance of color distribution algorithm in [94], in which

the recall drops to 0 when the precision is 100%. The reason for the much better accuracy

of Marlin is that we describe the color distribution of the videos with higher dimensional

vectors. Though the higher dimensionality of the vectors brings more computation overhead,

the distributed and parallel architecture of Marlin mitigates that and keeps the satisfying

computing performance. Therefore, we have much larger tunable space to achieve better

accuracy. In the experiment, we describe the vector feature with a 512-dimensional vector,

which is concatenated with 256 bins for Hue, 128 bins for Saturation and 128 bins for Value.

3.7 Related Work

Content-based Video Search The proposed approaches in [118, 94, 98] are various

ways to detect the similarity of the videos. The authors of [94] leverages relative gray-level

intensity distribution within a frame and temporal structure of videos along the time line

41



3.7 Related Work

0.4	
  

0.5	
  

0.6	
  

0.7	
  

0.8	
  

0.9	
  

1	
  

0.85	
   0.875	
   0.9	
   0.925	
   0.95	
  

Pr
ec
is
io
n	
  
/	
  
Re

ca
ll 

Threshold	
  

precision	
  

recall	
  

Figure 3.11 – Accuracy of Marlin with different threshold: We can achieve 100% precision and
meanwhile maintaining the recall as high as around 80%. We describe the vector feature with a
512-dimensional vector, which is concatenated with 256 bins for Hue, 128 bins for Saturation and
128 bins for Value.

to represent the feature of the video. This approach requires that the frames of the same

video are processed in the same thread to extract the temporal information, i.e. it is hard to

parallelize efficiently with the state-of-the-art parallel computing framework. The proposed

system in [98] employs multiple features of the video and learn multiple hash functions to

map the video frames into the Hamming space. The high complexity of this system prevents

it from being used in the online scenario, like Marlin. Besides that, both of these two

approaches requires the pre-calculated feature of the videos and assumes the static feature

index.

Similarity Indexing During the past years, many methods were proposed to index data

in the feature space. Spatial indexing approaches like kd-tree [9] were proposed to handle

low-dimensional data. But this category of approaches suffers from the exploded search

space when data is with high dimensions. Though we can use the index like LSH [32, 103] to
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reduce the search space. Additionally, conventional LSH scheme does not scale to the modern

computer architecture [103] and it does not support online update efficiently (We will have a

detailed discussion in the next chapter). We implement the distributed inverted index which

dynamically update the index structure and answer the similarity search queries. PLSH [103]

also proposed to use distributed design to accelerate the similarity search process, it has to

broadcast the request to all servers due to the lack of indexing structure. Marlin forwards

the similarity search query to the exact server serving the similar candidate by indexing the

vectors with their significant dimensions and provides data persistence functionality for the

fault-tolerance purpose.

3.8 Summary of this Chapter

In this chapter, we have developed Marlin, an online data analytic application which

indexes videos based on the visual features of the videos. Our key idea is to integrate both

the feature extraction and content-based index as an online processing pipeline. Specifically,

we develope a micro-batch based streaming feature extractor and a distributed feature in-

dex supporting incremental update. Additionally, we develope the fair queuing theory based

resource allocator to achieve load balancing and ensure the fluency of the online data process-

ing pipeline. The extensive experimental and the simulation-based evaluations demonstrate

the superiority of our system over the existing work.

The research work presented in this chapter is among the first to combine the feature

extraction and the content-based video index as an online data analytic pipeline. The evalu-

ation results show that our design is promising in developing the future online video sharing

and hosting services. Marlin serves as an successful example to realise online data analytics
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in practice. On a higher level, the design philosophy of Marlin brings great potential to ben-

efit the existing online data analytic system design in other fields, include the measurements

from sensor applications, log records, blog or twitter posts and web page clicks, etc. Ingesting

these types of data in online and pipelines with the data analytic phase is computational-

intensive, contains various application-specific requirements on the resource allocation, and

demand the efficient computing state management strategy to perform incremental compu-

tation. Marlin sufficiently provides a reference to the design of these applications and prove

the feasibility of the design pattern of online data analytics.

44



Chapter 4

Computing State Management in

Online Data Analytics

In the previous chapter, we focus on how to make the input data be consumed in on-

line with high throughput, and we use an inverted-index-based data structure to serve the

computing state query/update. In this chapter, we have a further discussion about the de-

sign of an efficient computing state management layer, with the focus on the case that the

computing state entries have complex structure.

We use the very high-dimensional computing state as an example. We propose a system

based on Locality Sensitive Hashing (LSH), which is one of the most promising tools to

handle high-dimensional data but does not fit in the online data analytic applications due

to its conventional design.

In this chapter, we achieve online data analytics by answering the question, “how to

adapt LSH to handle the high-dimensional and unstructured computing state for online

data analytics?”. Specifically, we put our effort on building an LSH-based state manage-
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ment layer with several system-oriented improvements, including the hierarchical memory

system, reconstruction-free data structure, and parallel-friendly data partitioning. With the

improvements, we can scale to large state size, afford the online update and be friendly to

the parallel processing.

This chapter is organized as follows: Section 4.1 covers the motivation and background

knowledge. Section 4.2 goes into the details of the hierarchical memory design. Section 4.3

describes how we use the adaptive hash tree to handle online update requests. In Section

4.4, we discuss the parallel-friendly indexing structure and the concurrency management

module in our system. Section 4.5 contains the extensive experimental evaluation. Section

4.6 discusses the related work. Section 4.7 summarizes the chapter and discuss the difference

between PFO and the general online database system.
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4.1 Background

The recent exponential growth of social media, multimedia, and artificial intelligence

applications have produced many instances where high-dimensional feature vectors are used

to represent data. Accordingly, the online data analytic applications/algorithms working in

these scenarios usually have to deal with the computing state with the high dimensionality.

One of the most prevalent data analytic algorithms handling high-dimensional data is

Nearest Neighbors (NN) search. Given a dataset D ⊂ Rd and a query data point q, Nearest

Neighbor (NN) search problem aims to find a data point o in D, and requires any other

data points p ∈ D, ‖p,q‖ ≥ ‖o,q‖, where ‖‖ represents the distance between two points.

To improve the efficiency of NN search in a high-dimensional space, researchers developed

approximate version of NN search algorithms, i.e. Approximate Nearest Neighbor (ANN), to

locate o∗ ∈ D, where ‖o∗,p‖ ≤ c‖o,p‖, c is the approximate ratio and usually larger than 1.

NN search is the fundamental technique supporting various applications, e.g. recommenda-

tion system [91], machine learning [109], etc. However, the computational overhead and the

storage pressure increases with the growth of dimensionality dramatically, a.k.a. “Curse of

Dimensionality” [10, 58, 110], which makes it super-challenging to achieve online NN search.

The state-of-the-art online NN search systems sacrifice the system effectiveness for gaining

the responsiveness. We use the online recommendation system [91] as an example to illustrate

the scenario. Online recommendation system aims to capture the real-time user behavior

and produce the recommending suggestions interactively. Therefore, it has to keep the users’

behavior as computing state and adjust the recommendations against the frequent updates

to it. In a large-scale system with the tremendous number of users/items, the user behavior

has to be represented as the high-dimensional vector, each dimension of which stands for

whether this user clicks the corresponding item. The high-dimensional vector not only brings
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the storage pressure but also makes the computation over them challenging. For example,

the pair-wise comparison between the vectors becomes prohibitively expensive to calculate

the similarities for the recommendation. The existing systems usually remove all computing

state which locates outside of a time window [52, 16]. The consequence is the missing of the

opportunity to make more comprehensive recommendations.

4.1.1 Locality Sensitive Hashing

Instead of removing all state entries out of the time window in the online NN search

systems, we propose to adopt the approximation technique to handle the high dimensional

state entries in the computing state management layer. The key idea is to use Locality

Sensitive Hashing (LSH) [27, 53] to index the state entries in the system. LSH is proposed

as one of the most promising tools to handle high dimensional data. It has been widely

adopted in the production environment, e.g. Google News [25] (in the offline scenario). The

basic idea of LSH is to reduce the dimensionality of the data points by mapping them into

a lower-dimensional space with the specially designed distance-preserving hash functions.

Consequently, the hash values of the data points are the same or similar with high probability

if they are close to each other in the high-dimensional space.

Locality Sensitive Hashing (LSH) is formally defined as following:

Definition 1 (Locality Sensitive Hashing) Given a distance R, an approximate ratio c as

well as two probabilities p1 and p2, a hash function h : Rd → Z is called (R, c, p1, p2)-sensitive,

if

— If ‖p,q‖ ≤ R, then Pr[h(p) = h(q)] ≥ p1;

— If ‖p,q‖ ≥ cR, then Pr[h(p) = h(q)] < p2;

We guarantee that c > 1 and p1 ≥ p2. In practice, we use a Compound Hash Key
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Figure 4.1 – Locality Sensitive Hashing.

to map the object into a bucket in an LSH hash table. Given a compound hash function

G = (h1, ..., hm), the bucket ID consists of (h1(p), ...hm(p)). In this chapter, we adopt the

angular distance of two vectors. We use the hash function which is parameterized by an unit

vector a, and the hash value of the query object q is ha(q) = sign(a.q).

Within a single hash table in LSH, the conventional approaches only take the data points

with the same hash value, i.e. in the same hash bucket, as the candidates of the nearest

neighbor. This rule is too strict as it filters out too many data points. To mitigate this, we

usually use L hash tables in an LSH-based system. We illustrate the structure of LSH in

Figure 4.1. Multiple hash tables in LSH cause significant memory overhead to the LSH-based

system. To reduce the number of the required hash tables in LSH, one approach is to take

the data points with the “similar” hash values as the candidates of the nearest neighbor [70,

67, 104]. To measure the distance between two compound hash values, we adopt the similar

definition as in [104]:

Definition 2. (Distance of Compound Hash Values). Given two compound hash keys K1

and K2, the distance between them is denoted as dist(K1, K2) and is defined as: dist(K1, K2) =

1
LLCP (K1,K2)

, where LLCP is the longest length of the common prefix of two compound hash

49



4.1 Background

values.

4.1.2 Online vs. Offline LSH

The most challenge to embrace LSH in the online data analytic applications comes from

the gap between the existing LSH design and the requirements of the state management

layer in online data analytic applications. Comparing to the requirements stated in Section

1.1, we identified several facts that hinder the application of LSH in online data analytics:

— Storage A challenge we face is the dilemma that we should whether to pursue data

access efficiency or storage scalability? For the seek of the efficiency, we prefer to

use RAM to implement LSH; but for scalability, usually people adopt disk storage.

Achieving both efficiency and scalability is desired for big data applications with

online performance requirements, but the state-of-the-art LSH design [103, 70, 67,

39] cannot achieve both goals.

— Parallelization The parallel processing has been adopted to improve the data ana-

lytic applications’ performance in most of the scenarios [100, 55, 47, 78]. Therefore,

the query/update requests to the computing state arrive at the state storage layer con-

currently. Most of the current LSH designs aim to optimize the efficiency of a single

query request [104, 39, 67] but ignore the support to parallel processing. The others

propose the parallel/distributed LSH system. A few of them execute the queries in

batch [7, 48], hence only work in the offline scenario. The others require broadcast-

ing requests to all servers due to the lack of cluster-wise indexing. We are in need

of indexing the high-dimensional state entries with LSH but with better scalability

against the concurrent query/update requests.

— Online Update The online data analytic application requires the state management
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Storage
Medium

Parallel Data
Access

Online Update

Multi-Probe LSH
[70]

RAM Single Thread No

LSB-Tree [104] Disk Single Thread No

C2LSH [39] Disk Single Thread No

SK-LSH [67] Disk Single Thread No

PLSH [103] RAM Distributed Pause the pro-
cessing to con-
sume it

Distributed LSH
[7]

Disk MapReduce No

Hypercurves [105] RAM CPU&GPU for
Construction

No

GPU-LSH [84] RAM GPU for Con-
struction

No

PFO Hierarchical
Memory System

Multi-Threaded Parallel-friendly
Index and Smart
Write Task Dis-
patching

Table 4.1 – Analysis of Representative LSH systems and How PFO differentiates itself with
them

layer to offer the capability to query/update the state entries in fine-granularity.

The contemporary LSH systems [84, 105] are designed with the assumption of no or

infrequent update requests. Therefore, they have to be reconstructed to consume the

online updates or pay additional space and/or accuracy cost to maintain the updated

version of the state entries [67, 103]. It is not practical to use LSH in contemporary

big data systems if LSH fails to support the online update efficiently.

We summarize the representative LSH-relevant research work in Table 4.1.
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4.1.3 LSH-Based State Management Layer

In this chapter we design PFO , A Parallel-Friendly State Management Layer for Online

data analytic applications. We utilize multiple system-oriented optimization strategies to

serve massive state size, concurrent and online requests. Specifically, we made the following

contributions:

— Hierarchical Memory To resolve the dilemma between the query efficiency and

system scalability, we adopt a hierarchical memory system in PFO. All query and

update requests to PFO are firstly consumed in RAM memory space to improve the

processing speed. In RAM space, we employ a data placement strategy to reduce the

overhead brought by Garbage Collection. To scale the system capacity, we write data

to flash memory in the case of overloaded RAM and organize data in a read-friendly

format to improve the query efficiency.

— Reconstruction-Free Hash Tree We build a hash tree structure which accepts the

online update requests without the necessary to reconstruct itself. With the hash

tree, PFO accommodates the online update requests more efficiently than the other

data structures which require reshaping the index, e.g. B-Tree [104].

— Parallel-Friendly Design We propose an indexing structure called Partitioned

Hashing Forest (PHF) to facilitate the parallel data access. By applying the LSH

functions to the data points and then to their hash values, we divide the memory

space into two levels, called HashTree and Partition level. With PHF, the state en-

tries in PFO is partitioned with the respect to their locations in the high-dimensional

space. Each partition can be accessed in parallel without the crossing dependence.

Additionally, we have a concurrency management strategy to avoid the synchroniza-

tion across threads. By eliminating the cross-threads synchronization, we significantly
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improve the performance when the query and update requests arrive at the system

concurrently.

We implement PFO in a prototype and evaluate it on 10-cores server with the standard

benchmark datasets. We compared the performance of PFO with its variations to show the

effectiveness of its components. Our results show that PFO: 1) scales with the growing size

of the state entries in the hierarchical memory system; 2) scales processing throughput close

to linearly with the increasing number of cores; 3) achieve the higher accuracy with less

resource consumption. We list the notations used in the rest of the chapter in Table 4.2.

Notations Explanation

L the number of hash tables used in LSH schema

C the number of LSH hashing functions which are used to lo-
cate the data point in partition level

Sij the snapshot of partition i of a hash table locating in flash
memory which is saved at moment j

m the number of bits in a data point’s hashing value which is
used to locate the hashing tree in H layer

t the allowed number of data points residing in the same
bucket (except the last level of the hash tree)

l the number of slots in the directory node

s the size of the data point in terms of bytes

r the record ID of the data point

h hash value of the data point

A(q) nearest neighbors candidates of the query data point, the
data points in this set whose distance to the query data
point is no larger than the user-defined threshold, R, are
selected as nearest neighbors

o offset of the leaf in off-heap space

M maximum length of hash key in PFO in terms of bits

h′ variation of h by discarding h’s’ last i ∗ log2(l) bits, where i
is an integer ranging from 0 to the height of the hash tree

h′max the maximum length of the existing h′ in hash table in terms
of bits

KL the longest length common prefix of a data point’s hash key
and the other one

Table 4.2 – Notations of PFO
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Figure 4.2 – Storage Memory Layer Design: PFO saves data in both RAM and Flash Memory
(SSD-based). It consumes all I/O in RAM to improve the performance and saves snapshots (Sij) in
SSD for increasing the system capacity with the performance guarantee. Additionally, the off-heap
space for each table is divided into multiple partitions (Pi) for exploit parallelism for processing.

4.2 Storage Design of PFO

In this section, we present PFO’s storage design which consists of multiple hash tables

locating across hierarchical memory space. This design resolves the dilemma between the

efficiency and capacity of LSH systems. Figure 4.2 illustrates our design. In the following

subsections, we step through the components in the figure. We begin the description with

how we organize state entries in multiple data tables in Section 4.2.1. After that, we move

forward to the design of each layer in the hierarchical memory system of PFO in Section

4.2.2.
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4.2.1 Hash Tables in PFO

LSH systems usually employ multiple LSH tables to achieve better accuracy for nearest

neighbors search. However, the state-of-the-art systems have focused on the optimization of

individual LSH table, but ignore the overall performance and overhead of the systems. For

example, in LSH systems described in [104, 67], the vectors have multiple copies, each of

which is saved in an LSH table. This storage approach incurs extra storage overhead. Even

worse, in LSH systems like SKLSH [67], the order of the vectors in an LSH table affects the

system accuracy. In online scenarios where the vectors are subject to the frequent updates,

the order of the vectors may need to be changed accordingly, and additional efforts are

required to maintain the index of the vectors in multiple LSH tables to optimize the query

response of the LSH systems.

To overcome the issues in the existing LSH design, we adopt a “MainTable + LSHTables”

structure in PFO. As shown in the top line of Figure 4.2, PFO consists of one MainTable

and L LSHTables. The MainTable stores the state entries (represented as vectors), which

are indexed by the unique IDs. The LSHTables only store the IDs of the vectors. Therefore,

PFO saves the storage space by keeping a single copy of each vector in MainTable and

achieves better accuracy with multiple LSHTables which only store the vector IDs.

PFO handles query and update requests as follows. When fetching nearest neighbors

for the given state entry q, we calculate q’s hash values with the hash functions associated

with L LSHTables and fetch the IDs of the nearest neighbors candidates, referred as A(q),

from all these tables. We then remove the duplicate IDs and fetch the corresponding vectors

from MainTable with the remaining ones. When adding a new vector to PFO, we first save

it in MainTable and then update L LSHTables with its ID according to its hash values

in these tables. MainTable is built with the hash function minimizing the hash conflict
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(MurmurHash3 [45]) providing an O(1) complexity when reading/inserting/deleting. Since

MainTable does not impose any constraint on how the vectors shall be placed in the memory

space, we do not have to rebuild the whole hash table for vector updates.

4.2.2 Hierarchical Memory System

As we discussed in Section 4.1, the online environment brings the challenges on both sys-

tem capacity and responsiveness of PFO. Therefore, neither of pure-RAM approaches like

E2LSH [27] and Multi-probe LSH [70], or pure-disk approaches like SK-LSH [67] are ideal

in the case. In this section, we introduce how we overcome the challenges with Hierarchical

Memory System in PFO. The left part of Figure 4.2 suggests that each table in PFO locates

across three types of memory: on-heap, off-heap and flash memory. Among the three com-

ponents, on-heap and off-heap are in RAM and flash memory is built with Solid State Disk

(SSD).

RAM

To respond quickly to the query/update requests and offer scalable storage capacity as

well, we employ both RAM and flash memory in PFO. RAM serves as the buffer for query

and update operations. When handling a query request, we first search the A(q) in RAM

before we go to the disk space. When we update a data point, it is added in the RAM. If

the RAM is overloaded, the data points will be dumped to flash memory.

We divide the RAM space in PFO into on-heap and off-heap to reduce the overhead

applied by the program runtime. Recently, more and more database systems serving a

large volume of online user requests are developed in programming languages that rely on

automatic Garbage Collection (GC) [102] to reclaim memory space. The representative
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examples include HBase [5] and Cassandra [3] serving Facebook and Apple respectively.

However, when the program is under significant memory pressure and getting free memory

space is tough, GC will bring considerable overhead to the user applications [72, 41]. In the

worst case, GC threads pause the application threads to get free memory space with the

best efforts, a.k.a. Stop-The-World GC. To minimize the negative effect brought by GC, we

save different types of data in on-heap and off-heap spaces.

In on-heap part, we only keep the runtime data, which includes system runtime param-

eters and the handler of the off-heap data. The runtime data is small and brings ignorable

overhead to the program memory. We save the PFO tables in off-heap space. Each table

is divided into independent partitions (referred as Pi in Figure 4.2) to facilitate the parallel

access to the whole table. Every partition contains the content incurring most of memory

cost, Data and Index . For MainTable, Data is the vectors representing the data points;

while for LSHTables, Data are the IDs of the vectors. To locate the IDs (in LSHTable)

and vectors (in MainTable) quickly, we employ a Partitioned Hash Tree (PHF) Index to

serve the purpose. As the name suggests, PHF is a set of hash trees, the non-leaf nodes of

which are kept in the off-heap memory as Index. (We will leave the detailed introductions

to the partitioning algorithm and the PHF index to Section 4.4.1). By saving MainTable

and LSHTable in off-heap memory that is not subject to GC, we minimize the chances to

trigger GC, therefore, achieve the high system performance of PFO.

We describe the memory layout in a single partition of the PFO tables in Figure 4.3. By

saving the roots of the hash trees in the fixed offset, we start searching A(q), the nearest

neighbors of vector q, in the hash tree by fetching the root node, step down the levels and

eventually locate the leaf node, i.e. the vectors or vector IDs. As a result, we may perform

read operations for multiple times for Index segment and for each time, we get the offset
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indicating the next memory block to read. To further reduce the memory cost in MainTable,

we save the vector in a compressed format in Data segment. We design the format based on

the fact that the vectors are mostly sparse in many scenarios, e.g. recommendation system

[52], machine learning [88]. A vector consists of 3 fields, size, non-zero indices and non-zero

values. “size” is the dimensionality of the vector, “non-zero indices” records the dimensions

where the vector has a non-zero value and “non-zero values” are the non-zero values in the

dimensions referred by non-zero indices field. To represent the vectors with the same LSH

values, we have the offset field in each instance of the vector indicating the offset of the next

data point with the same LSH value.

A major challenge for off-heap memory space design comes from the frequently updated

vector. As a result, we need to have a fast approach to invalidate the memory space used

by the old vectors, and reclaim it for future use. Therefore, we employ Header segment

containing the metadata describing the whole partition. We allocate memory in times of 16

bytes and address the memory space with the eight-bytes-length address. When the vector

is updated, we save a new version of the vector in Data segment of the memory space and

update the corresponding bytes in Index. After that, we reclaim the space that is used to save

the old version. We reclaim the memory space through a set of LinkedLists in the Header

segment of the off-heap memory. The offset of the first LinkedList is RECLAIMED LIST .

Given a vector with the size of s bytes, when its space is reclaimed, we add the offset address

of the memory block to the LinkedList with the offset RECLAIMED LIST + (s− 16)/2.

When we allocate the memory space for a new vector with the size of s bytes, we first check

if there are reusable space in the LinkedList offsetting at RECLAIMED LIST +(s−16)/2.

In practice, we have a limited number of LinkedLists, thus, have the maximum size of

each allocated memory block. We chain the memory blocks in order to support the vector
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Figure 4.3 – Memory Layout in Off-heap space. In the figure, we only show the layout of MainTable
which has vectors in Data segment for simplicity. For LSHTables, the content in Data segment is
the IDs of the vectors.

whose size is larger than the maximum memory block size.

Flash Memory

Given the limited space in off-heap memory, we employ flash memory to accommodate

a high volume of data in the online environments. PFO allows the user to set a threshold

of the data size in off-heap space. When the data size is beyond the threshold, we make

a read-only snapshot of the data in off-heap space, and save snapshot in the flash memory

(referred as Sij in Figure 4.2, where i is the table’s partition i in off-heap space, j stands for

the timestamp when creating this snapshot). Figure 4.2 shows that the individual snapshot

in flash memory contains Index and Data files, corresponding to Indexing and Data segments

in Figure 4.3.

59



4.2 Storage Design of PFO

In LSH system, different LSHTables calculates the LSH values of the state entries with the

different set of hash functions. They may give different answers to whether two vectors are in

A(q) of each other. As a result, it is impossible for us to arrange two vectors in MainTable in

the sequential disk space for more efficient disk operations if their hash values are equal. In

another word, the access pattern in MainTable has to be random. We utilize flash memory to

serve query request with the salient performance. According to the previous studies, there

is no evident gap between the random and sequential reading performance in SSD-based

flash memory [31]. By utilizing the flash memory, we do not need to pay extra overhead

even vectors in MainTable are put in random. Regarding the update request, flash memory

does not provide the random write performance that is as good as its read counterpart so

that we need to avoid the random write. The snapshot we keep in flash memory layer is

read-only, i.e. when off-heap partition reaches its threshold, we create the snapshot, and

the future updates on the vector data will be consumed by the RAM-based buffer first and

reflected in the future snapshots. Since we write only once for every snapshot, it is easy to

perform the sequential write.

With the time passing, each partition may have multiple snapshots in flash memory. As

a result, searching a particular data point requires traversing multiple snapshot files, which

brings large query overhead. To deal with multiple snapshots, we generate a summary for

each snapshot with Bloom Filter [12] (shown in Figure 4.2). The Bloom filter is a compact

signature built on the hash keys in each snapshot. The key in the Bloom Filter of the

MainTable is the vector ID. In the LSHTables, we use the indices of all non-empty buckets

as the keys of Bloom Filters. To search A(q) in flash memory, we go through the snapshot

files in the reversed time order. For each snapshot, we test the Bloom filters instead of

searching snapshot file directly. If any Bloom filter matches, the corresponding vectors are

60



CHAPTER 4. COMPUTING STATE MANAGEMENT IN ONLINE DATA
ANALYTICS

retrieved from flash. Bloom Filter based lookups may result in false positive; thus, a match

could lead to an unnecessary flash I/O. According to studies in [35], we are able to control the

false positive rate in low level with a very small disk space cost, e.g. with 13 hash functions

and 2.29MB disk cost, we can build a Bloom Filter for 1M items with the false positive rate

which is as low as 0.0001.

4.3 Online State Query/Update

To achieve online data analytics, we need to provide the index structure which not only

maps the hash keys of the state entries point to their locations in the storage system but

also apply the minimum change to the indexing structure when handling update requests.

Operations altering the shape of the indexing structure consumes many CPU cycles and

blocks the access to the affected region of the index until the reshaping is finished. For

example, PLSH [103] requires to maintain the updated vectors in another hash table and

stop the processing to merge hash tables periodically. In this section, we propose to use a

hash tree structure which supports the in-place update when new data points are added and

keep the query effectiveness by adjusting the resolution to identify the nearest neighbors.

4.3.1 Adaptive Hash Tree

Figure 4.4 illustrates the hash tree structure. The hash tree consists of two types of

nodes, leaf node and non-leaf node. The non-leaf node is an integer array with the length

l. Each slot in the array maps to a bucket in the hash table. The value in the slot is the

offset of the first leaf node in the slot or the offset of the non-leaf node in the next level of

the tree. A leaf node consists of three fields: KEY field saves the vector ID, V ALUE field
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Figure 4.4 – Adaptive Hash Tree Structure: X(Y) in the Figure stands for that the original offset
Y is replaced with X. In the hash tree, we progressively include more bits in the hash value of the
vectors to locate them in the buckets. When there are more than t nodes under the same buckets
we redistribute them to the next level of the hash tree. The leaf nodes containing only two fields
means that it is the last node in its bucket.

is the vector data (for MainTable) or not exists (for LSHTable), NEXT indicates the offset

of the next vector within the same slot of the non-leaf node.

In the following paragraphs, we describe the update process to showcase how we traverse

the hash tree.

— Step 1: We encapsulate the vector’s ID as a leaf node, and save the node in the

storage space with the offset o. Given that the LSH value of the vector h and the

directory node length l in bits, we use the first log2(l) bits of h as the vector’s slot

position in the root node;

— Step 2: If the slot has not been occupied, we update the value in the corresponding

slot of the root node (or the intermediate non-leaf node) with o and finish the update

process. For example, we update the first slot of the root node in Figure 4.4 with
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K1’s offset 1. Otherwise, we move to Step 3;

— Step 3: If the slot has been occupied, and the corresponding memory block is a non-

leaf node, we use the next log2(l) bits of h as the object’s slot position in this non-leaf

node. We recursively repeat this step until we find an empty slot or we used all bits

in the h. If we find an empty slot, we perform the operations in Step 2. Else if the

slot has been occupied, and the corresponding memory block is a leaf node offsetting

at o′, we chain the newly added node to the leaf node by updating NEXT of the new

node with o′ until the chain size larger than t. When the length of the chain reaches

at t, we expand the hash tree by adding a new non-leaf node and redistribute leaf

nodes in the new non-leaf node.

The middle part of Figure 4.4 illustrates an update process by chaining the leaf nodes

without reaching the chain size threshold t. K3 was originally in the root level of the hash

tree, with the offset as 16. After we insert K2 which offsets at 9, we replace 16 in the slot

of the root node with 9 and update the NEXT field of K2 as 16. The right most of Figure

4.4 describes the expanding of the hash tree when the chain size reaches t. Suppose we set t

as 2. When we are inserting K6 whose offset is 20 to the last slot of the root node, we find

that there will be more than t nodes in the same bucket. To spread these nodes to the next

level, we add a new non-leaf node with the offset of 21 and replace the 20 in the slot of the

root node with 21. We then extract the next log2(l) bits in the hash values of K4, K5, and

K6 and use them as the slot index in the new non-leaf node. For example, the next log2(l)

bits of K4 and K5 refer to the last slot of the new non-leaf node and the next log2(l) bits of

K6 point to the first slot.

The query process of the hash tree is a simplified version of the update, it only locates

the vectors with every log2(l) bits in the hash values.

63



4.3 Online State Query/Update

The fundamental idea of the above algorithm is to adaptively control the resolution

to identify nearest neighbors and minimize the involved area of indexing structure being

changed with update requests. (1) We progressively include more bits in the hash value of

the vectors to form the ID of the bucket where it locates. By setting an explicit threshold

t, we can guarantee the effectiveness of the responses to nearest neighbors queries. Given a

query data point q, when there are few vectors (less than t) have the common prefix with

q, we want to include these data points as the candidates of the nearest neighbors to avoid

return empty to the query. When there are more vectors (more than t) in the same bucket,

we have to upgrade the resolution of identifying the nearest neighbors. We raise the bar

on the minimum length of the common prefix by moving the data points whose hash values

differ in the following log2(l) bits to different slots (Step 4). Without this step, we may have

too many candidates to check whether they are within the distance of R from q in an efficient

manner. (2) The modification to the indexing structure is performed by changing the value

in the slot of non-leaf nodes. Comparing to the state-of-the-art work which sorts the vectors

according to LSH values and change the indexing structure by reconstruction [67], we can

perform update operations online.

Parameters l and t define the shape of the hash tree by regulating the number of data

points in each bucket, and in turn influences the efficiency and effectiveness of nearest neigh-

bors search. Larger value of t increases the chances to find nearest neighbors by enlarging

the search range, yet introduces larger overhead for including many data points in similarity

calculation to find the ones within the user-defined distance, R. Too small t excludes too

many data points which possibly also exclude the ones within R from the query range. The

change of the l value exhibits the reversed impact against t on the efficiency and accuracy.

With the standard benchmark datasets MNIST [62] and COLOR [56], we prove that PFO
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retains the salient efficiency and much higher accuracy than the competitors with proper

parameter configuration (Section 4.5.5 and 4.5.4).

4.4 Parallel-friendly State Management

Compared to the state-of-the-art LSH design, PFO is more feasible to handle a large

number of concurrent query and update requests and maximize system throughput for the

admitted requests. PFO benefits from two design innovations: (1) an indexing structure

facilitating the parallel data access with LSH-aware partitioning (Section 4.4.1), and (2)

a concurrency management module mitigating the cross-threads synchronization (Section

4.4.2). In this section, we will demonstrate the design details of these two innovations.

4.4.1 Parallel-friendly Indexing

To enable the parallelization, we partition the vectors into several groups and make the

access to different vectors affect each other as little as possible. PFO adopts Partitioned

Hash Forest (PHF) to achieve this object. PHF separate the memory space of a hash table

on two levels, Partition and HashTree level. Our goal is to place the vectors which are

potential to be the nearest neighbors in the same hash tree. Therefore, the data residing in

different partitions or hash trees are not possible to be involved in the same query or update

request, enhance requests targeting at various hash trees can be handled in parallel.

The partitioning algorithms in MainTable and LSHTables are different. In MainTable,

given a vector v, we apply a hash function designed to minimize the hash conflict, e.g.

MurmurHash3 [45], to its vector ID. To locate the hash tree within a partition for v, we

extract the first m bits of the hash value as the tree ID. The memory space partitioning in
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LSHTable has more challenges than that in MainTable. We have the additional requirement

to preserve the distance between the vectors when partitioning the memory space, i.e. we

need to ensure that only the vectors in the same hash tree are possible to be the nearest

neighbors. Upon achieving this, we retain the desired benefits of PHF: the irrelevant vectors

are indexed in different trees so that the trees can be updated in parallel and independently.

The idea of the partitioning algorithm for LSHTables in PFO is to apply the LSH func-

tions for two times. This algorithm is inspired by the Layered LSH [7] which is used to

determine the location of a server saving the vector based on its content. To determine the

hash tree for a given vector v for an LSHTable, we first apply the LSH functions associated

with the LSHTable and get its LSH value h. We take the first m bits of h as the hashing tree

ID in HashTree layer. However, only partitioning in HashTree level is not precise enough.

For example, hash values 01111 and 00000 are significantly different with each other, but

they will be indexed in the same hash tree if we set m as 1. We introduce C locality sensitive

hashing functions to decide the location of v in Partition level. By applying these functions

on h, only the similar hashing values are in the same region in Partition level. By introducing

C hashing functions in Partition level and extracting m bits from vector’s hashing value, we

separate the memory space into 2C+m regions each of which corresponds to a hash tree and

only the similar vectors are in the same tree.

The first glance of PHF may give a wrong impression that it is just the conventional

lock-stripping strategy [50] which manages the data structure with independent locks to

mitigate the lock contention. In fact, PHF structure significantly boosts the performance of

LSH system that cannot be achieved by the lock-stripping approach and hash table structure

with the fixed length of bucket index.

The LSH-based query is essentially the query request target to a particular key range of
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the hash table, i.e. multiple hash buckets in the conventional hash table. Given the definition

of the distance between the hash keys in Section 4.1.1, we need to query across all hash

buckets whose index range between h− 2M−KL and h to get all near neighbors candidates.

The conventional lock-stripping strategy manages the buckets with the same BI mod Lmax

value with the same lock, where BI is the bucket index and Lmax is the maximum number

of locks. For fetching the near neighbors of the query vector, we must obtain up to Lmax

locks. The range-based lock allocation that manages the nearby buckets with the same lock

does not work either for the similar reason. The demand for multiple locks for a single

read/write request evidently increases the chances of lock contention, thus decreasing the

system performance in the concurrent environments.

The parameters C and m influence the throughput of PFO by allowing different level of

parallelism. On the other hand, the nearest neighbors might be filtered out because they

are assigned to different partitions mistakenly due to the approximate nature of LSH. In

this case, the accuracy of PFO suffers from data partitioning. In Section 4.5.5, we evaluate

the impact on PFO’s throughput and accuracy brought by these two parameters. We prove

that PFO exhibits salient throughput and accuracy despite the potential problem that some

nearest neighboring vectors are dumped to different partitions/trees.

4.4.2 Concurrency Management

With only the parallel-friendly data structure, it is not enough to maximize the system

performance. The reason is that different threads targeting to the same hash tree have to

be synchronized. To minimize cross-threads synchronization, we introduce the Actor -based

concurrency management strategy of PFO [2].

Actor is a memory-efficient entity that maintains its state. The only way to query/update
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Figure 4.5 – Request Dispatching Module in PFO consists of a group of computing threads and
multiple actors each of which maintains a hash tree as its state.

the state of the actors is to send the message to them. At any moment, there is at most

one thread having the access to the message queue of the actor. To achieve concurrent

processing, Actor model encourages the fine-grained partitioning of state, and computation.

The actor is enqueued to the task queue of a thread for processing the message.

As depicted in Figure 4.5, the Concurrency Management module in PFO consists of a

group of computing threads and multiple actors each of which maintains a hash tree as

its state. The computing threads handle the computation of the hash values of the query

vectors. These threads firstly process the requests so that the hash value calculation can be

parallelized at the maximum level since there no thread synchronization in this step. After

getting the hash value h of the vector v, we locate the hash tree for v with the method we

introduced Section 4.4.1. The query/update request is then sent to the actor that maintains

the corresponding hash tree as the state. After receiving the request, the actor is attached

to a thread for processing the request. Actor-based concurrency module in PFO minimizes
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the synchronization necessary across the threads. Each thread processes the requests in its

full speed instead of pausing a while just because it attempts to access some region of the

hash table that is currently updated by others.

A potential problem in this design is the skewed data distribution across hash trees which

causes load imbalance among actors. The same issue appears in the general key-value store

design [65, 57, 75]. We use a similar partitioning approach with the previous studies [65],

i.e. using the first C + m bits to locate the hash tree. With the standard key-value store

benchmark, YCSB [24] which exhibits a Zipf-distributed population of size 192M keys with

the skewness 0.99, partitioning the memory space with the first 4 bits in hash value of the

key makes the most popular partition only 53% more frequently accessed than the average.

Additionally, multiple LSHTables in PFO will mitigate the influence of the data skewness

with more hash trees. Our experimental results in Section 4.5 proves that PFO keeps high

throughput under this potential issue.

4.5 Evaluation

To evaluate PFO, we implement a prototype based on MapDB [59] database engine.

MapDB is a pure-Java database, and we choose MapDB because of its clear interfaces and

implementation so that we can easily customize MapDB to achieve our goal. We implement

the hierarchical memory system by customizing MapDB’s storage module and build hash

tree based on MapDB’s hash tree implementation. We implement Actor-based concurrency

management module with Akka [107], and replaced MapDB’s multi-threading module with

it.
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4.5.1 Evaluation Setup

Our testbed equips with Intel(R) Xeon(R) CPU E5-2687W v3 (25M Cache, 3.10 GHz)

and 32GB RAM memory. The testbed server uses SK hynix SH920 2.5 7MM 512GB SSD

as the external memory. Unless mentioned otherwise, we use 1 LSHTable (L = 1) in PFO,

and the table is partitioned into 4 partitions (C = 2). In each partition, we use 16 hash

trees (m = 4). Within each tree, we allow at most 500 nodes in the same bucket (except the

bottom level) (t = 500), the length of the non-leaf node is 128 (l = 128).

We use three datasets to evaluate PFO. The first one is Enron Email Dataset [28] which

contains around 650,000 text files. We preprocessed the dataset with TF-IDF weighting

scheme by only selecting the top weighted 0.5% words, which limits the vector dimensionality

as 9,331. We use this dataset to test the scalability and efficiency of PFO because the total

number and the dimensionality of the vectors are large. We use MNIST [62] and COLOR

[56] datasets to evaluate the accuracy of PFO. The MNIST dataset contains 60,000 points.

Each point is a 784-dimensional vector representing the pixel value of a 28 * 28 image.

The dataset also contains a test set of 10,000 points. The COLOR dataset contains 68,040

instances, each of which describes the color histogram of an image.

In the following sections, we aim to answer the following questions through the extensive

evaluation:

— Does the hierarchical memory design in PFO improve the system efficiency and scal-

ability, comparing with a single-layer design? (Subsection 4.5.2)

— Does the concurrency management in PFO improve the system capability to handle

online requests? How does it compare with the conventional multi-thread model and

the other indexing structure? (Subsection 4.5.3)

— Does the indexing structure in PFO precisely find the nearest neighbors of the query
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data point? (Subsection 4.5.4)

— How is PFO sensitive to the system parameters, i.e. how a user tunes the performance

of PFO, regarding efficiency and accuracy? (Subsection 4.5.5)

4.5.2 Test Hierarchical Memory System

In this subsection, we evaluate the hierarchical memory design in PFO by measuring the

query latency on each layer with various amount of data. Based on the observation of the

latency change on each layer, we can get the maximum data capacity of each layer so that

we know whether the hierarchical memory in PFO is superior to a single layer design.

To understand the query latency in the different layers of the memory system of PFO,

we run three experiments with all vector data in on-heap, off-heap and flash memory respec-

tively. We query data in the system with ten threads, each of which generated 10,000 read

requests. In these experiments, we used an open source Open Addressing Hash Table [99] to

index data in the on-heap case; we use PHF to index vectors in off-heap and flash memory

(SSD) case. We measured the average and maximum query latency and show the results in

Figure 4.6.

Figure 4.6(a) and 4.6(b) demonstrate the average and maximum read latency with three

types of storage medium. On average, on-heap memory space offers the shortest read latency

with no more than 450,000 vectors. The latency of off-heap and on-heap RAM are nearly the

same within this data scale. Fetching the nearest neighbors for a particular query data point

from SSD is around 2X slower than RAM (but still delivers sub-second latency). When

we scale to 500,000 vectors, we observe that 1) the average latency of on-heap memory

dramatically increases with 500,000 vectors; 2) the maximum latency of on-heap memory is

always larger than off-heap memory. Both of the phenomena are due to the garbage collection
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Figure 4.6 – Read Latency of three types of single-layered design

occurring in JVM. When GC happens (even they are just minor GC), GC threads compete

with the application threads for CPU resources; the latency of the “unlucky” requests that

are processed at the same moment with GC prolong with different levels. The worst case

is that when GC module stops the application threads to struggle for more memory space,

the maximum latency increased by orders of magnitude, from milliseconds to 10 seconds.

In our case, it happens when we have more than 500,000 vectors. Because all the requests

are blocked for waiting for GC to complete, the average latency increases accordingly, from

milliseconds to second.

Through the extensive evaluation of the read latency in three layers, we have the following

two observations:

— Single-Layered design is not efficient. With a single flash memory layer, the

query latency is around 2x slower than RAM; with the single layer with RAM, the

capacity of the system is limited by the total size of physical RAM in the host. On-

heap RAM is not a feasible solution for storing a large volume of objects as the GC

would degrade performance dramatically.
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Figure 4.7 – Scalability of PFO in Multi-core platform (L = 1)

— PFO overcomes the drawbacks by introducing hierarchical memory stor-

age. By consuming the I/O in off-heap RAM, we can process the request in memory.

We scale the system capacity with SSD-based flash memory. When querying data in

SSD-based flash memory, we still achieve the sub-second query latency.

4.5.3 Test Parallel-friendly Design

In this subsection, we focus on the testing of the parallel-friendly design of PFO. We test

the write throughput of PFO with various numbers of cores and compare it with various

indexing structures. We measure the write throughput of the systems when writing 500,000

objects to the memory and show the results in Figure 4.7 and 4.8.

In these two figures, we replace PFO’s data partitioning and concurrency management

modules with various designs and compare the performance. First, we build PFO on top of

the original MapDB (referred as “MapDB”). From Figure 4.7, we observe that we improve
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Figure 4.8 – Scalability of PFO in Multi-core platform (L = 10)

MapDB’s scalability in PFO and gain a 2.5X speedup on throughput. Second, as B/B+

Tree is one of the most widely used data structure in the previous LSH-based indexing [104,

67], we replace PFO’s hash forest with a B-Link Tree [63]. B-Link Tree is a parallel-friendly

version of B+ Tree, which adopts the fine-grained locking strategy. We observe that PFO

still gains 2.5X speedup over B-Link Tree. Finally, we remove the actor-based concurrency

management in PFO (“PFO w/o CM” in Figure 4.7) and compare the performance with

PFO. PFO is around 50% faster than PFO w/o CM in this case. Based on the comparison,

we prove that the data partitioning and the concurrency management strategy in PFO

significantly improve the performance.

In Figure 4.8, we use 10 tables in PFO and evaluate in the same approach as in Figure

4.7. The speedup of throughput ranges between 20% to 70%. We also observe that (1) the

overall throughput drops down dramatically; (2) the performance improvement is mitigated

comparing to 1-table case. The reason is that the total lock number increases with more
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tables so that more operations are running concurrently. From this figure, we can see that

more hash tables in LSH-based systems not only impose more resource consumption but

also makes the system optimization less effective. In the next section, we will show that

PFO does not need to introduce many tables to achieve the high accuracy comparing to the

state-of-the-art work.

4.5.4 Test Accuracy

To evaluate the accuracy of PFO, we compare the accuracy of PFO and LSB-Tree [104]

with the metric in Equation 1. We use two standard benchmarks here, MNIST [62] and

COLOR [56]. We use the accuracy metric, error ratio, to measure the accuracy of PFO.

Error ratio is widely used in the other LSH-relevant work [104, 67], and it is defined as:

r =
1

k

k∑
i=1

‖oi,q‖
‖o∗i ,q‖

(4.1)

where oi (i = 1...k) are the k objects found in the same bucket with q, o∗i (i = 1...k) are

the ground truth of q’s k nearest neighbors. Both oi and o∗i are ranked by the increasing

order of their distance to q. By finding k nearest neighbors for each query, we are setting

the threshold R as the distance from the kth neighbor to the query object. The ideal value

of r is 1. We set k as 10.

In Figure 4.9, we use the results from the original paper describing LSB-Tree directly,

since we use the same experimental setup. We found that the accuracy of PFO improves

significantly with a small number of tables. We attribute the improvement of accuracy to

that we precisely use the hash code to index the elements while LSB-Tree converts the hash

key to z-order value to be indexed by a B-Tree with the cost of accuracy loss. Additionally,
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a small number of tables sufficiently compensate to loss of the data points caused by the

data partitioning algorithm of PFO.

4.5.5 Test Parameter Sensitivity

In this subsection, we discuss the sensitivity of PFO against different parameters. The

first type of parameters is the parameters regulating the number of data partitions, i.e. C

and m. The second type is the parameters deciding the shape of each hash tree, i.e. t and

l which regulate how many elements are allowed to be in the same bucket (above the last

level of the tree) and the size of the directory node in the hash tree. In this section, we focus

on the performance of a single LSHTable.
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Data Partitioning Parameters

Recall C represents the number of hash functions to determine data point’s partition, and

m is the number of bits in the data point’s LSH value to decide which hash tree it belongs to.

To understand how parameters C and m bring impacts to PFO’s performance, we show the

measurement of PFO’s throughput and accuracy against different combinations in Figure

4.10. Figure 4.10(a) shows the system throughput under a synthetic workload. We compose

the workload by using ten threads loading 500,000 vectors to PFO. The general trend is

that with more data partitions, the system throughput increases accordingly. Because we

have only 10 cores in our testbed, the system has the maximum throughput at around 28,000

operations per second. The interesting phenomenon is that the throughput does not increase

in proportion to the number of hash trees. The reason is that the elements do not distribute

evenly among the hash trees. The skewed distribution can be mitigated by introducing more

LSHTables to PFO or more intelligent mapping from hash tree to actors, which would be

addressed in our future work.

Figure 4.10(b) shows the accuracy of PFO brought by partitioning the hash table into

multiple partitions/hash trees. We also use the error ratio metric defined in Equation 4.1.

We use the standard COLOR dataset in the experiment. From Figure 4.10(b), we observe

that introducing more partitions/hash trees does degrade the accuracy. In practice, we need

to make the tradeoff between the accuracy and system throughput when using PFO.

Hash Tree Shaping Parameters

We also test that how the shape of a hash tree influences the accuracy and efficiency of

PFO. We investigate by changing the value of l and t, and fix m and C as 2 and 1 respectively.

l and t influence both the efficiency and accuracy of PFO. We used the accuracy metric
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Figure 4.10 – System Performance Against different C and m
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Figure 4.11 – System Performance Against different l and t

defined in Equation 4.1. To define the efficiency, we measured how many data points are

included in the same bucket but have to be excluded since they are far more away with the

query data point than the kth nearest neighbors. We call this metric as candidate set size,

which is defined as following:

cs =
|A(q)|
k

if |A(q)| > k (4.2)

where |A(q)| is the number of the objects which are in the same bucket with object q. The

ideal case is that we achieve the salient error ratio with the small cs.

We use COLOR dataset and send 50 requests in each experiment. We report the sum
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of e for these 50 requests in Figure 4.11(a). Given the fixed l, increasing t to allow more

data points in the directory node introduces more overheads when searching the nearest

neighbors. However, it increases the chances to find kNN by enlarging the search range as

shown in Figure 4.11(b). With the increasing l, the objects are spread in a wider range.

Thus we have less read overhead. Consequently, there is a higher probability to put the

content-similar objects in different buckets. We observe the higher error ratio with a larger

l.

4.6 Related Work

Approximate Nearest Neighbor : There have been the existing efforts to improving the

performance of LSH-based NN search system. We summarize the existing work on the new

variations of LSH in Table 4.1. Lv et al. [70] proposed to reduce the requested number of

hash tables of LSH by probing more data within a table to answer a query. Their ideas of

taking the data points with the “similar”, instead of strictly identical, hash values as NN

candidates were widely adopted in the following research work. LSB-Tree [104], SK-LSH [67]

and C2LSH [39] followed this idea with various approaches to improving the efficiency and

accuracy of LSH-based systems. All of these approaches prioritize the efficiency of a single

query while did not consider how to optimize the LSH indexing structure to facilitate the

query/update in a concurrent environment.

Parallel AND Distributed LSH : PLSH [103] and Distributed LSH system proposed in

[7] scale the LSH-based NN search system in a distributed fashion. Though the distributed

computing schema scales the overall capacity of the system, it is only an efficient solution

to improve the system scalability when we have exploited the full potentials of a single host.
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“Fully utilize a single before you go to multiple ones” is also a new common agreement in the

community [20, 86, 60]. However, the proposed distributed LSH systems did not explore the

full potentials of the computing power of a single host. For instance, PLSH only considers

using RAM to store LSH tables, and it must broadcast a single request to all machines

to fetch the NN results due to the lack of an indexing structure. Hypercurves [105] and

GPU-LSH [84] utilized GPU to parallelize the index construction but it does not support to

update the indexing structure in online.

Near Neighbours Search via LSH : LSH is not necessary to be used to find the closest

point to the query object in the feature space, thus being helpful to reduce search range for

applications involving similarity search. For example, Google utilizes LSH [25] to cluster the

users before calculating the similarities among the users for news recommendation service.

LSH in Google News are calculated with MapReduce [30], i.e. only being calculated in

batching but does not fit in the scenario that read/write requests arrive continuously. PLSH

proposed in [103] is to streaming the similarity search among the Tweets and LSH is also as

a pre-stage minimizing the search scope before calculating the similarities. As stated above,

it does not fully utilize the computing power of a single host, e.g. the capacity of the system

is limited by the physical RAM size of a host, and it does not maximize the individual host

throughput with the concurrent query and update requests.

4.7 Summary of this Chapter

To achieve the online data analytics with the high-dimensional computing state, we need

to overcome the challenges on both the computation and storage caused by the increased

dimensionality. The state-of-the-art approach is to prune the database to only keep the
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computing state generated within a window, but at the cost of the compromised system

effectiveness.

An approximation-based design like Locality Sensitive Hashing (LSH) accelerates the

data analytic applications handling high-dimensional data, e.g. Nearest Neighbor Search.

However, the state-of-the-art design of LSH-based indexing structure does not the online

state update/query. In this chapter, we have discussed the design of a new computing state

management layer based on LSH, called PFO, that supports online update and scales up to

2.5X throughput in multi-core platform.

The idea in this chapter can be extended to a broader range. (1) The approximation-

based strategy is feasible to facilitate the incremental computation with the computing state

which is complex in structure. (2) Utilizing the modern hardware, like flash memory, is

effective to refactor the originally offline-oriented data structure to manage computing state

entries online. (3) When developing parallel solutions for computing state management, we

need to control the granularity of parallelization in the processing of a request.
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Online Data Analytic Framework

By building an online data processing pipeline and the fine-grained state management

layer, we are able to achieve online data analytics in various scenarios, e.g. video content-

based indexing, high-dimensional nearest neighbor search. However, we cannot ignore the

fact that a lot of existing applications are built with the framework which hasn’t provide

the facilities to support online data analytics, e.g. Spark [100]. Users have deployed these

frameworks in a broad range and build various applications with the programming model of

them. Moving to online data analytics with new frameworks/systems and new programming

interfaces involves an enormous amount of cost for rewriting programs and adding new

components to the users’ infrastructure.

In this chapter, we design and implement a data analytic framework supporting online

data analytics with the focus on the problem about how to minimize the cost to moving

from offline to online data analytics. The goal of our design should include: (1) impose

minimum overhead to the existing infrastructure and changes to the programming model;

(2) provide the full-fledged state management serving the online data analytic applications.
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We introduce Resilient State Table (RST) to Spark, one of the most popular data processing

frameworks. RST provides the efficient, scalable and reliable computing state management

and integrates with Spark’s in-memory abstraction and scheduling policy seamlessly. With

RST + Spark, users can build both offline and online data analytics with the same set of

APIs and run them within the same framework.

In this chapter, we present the motivation and the design space of RST in Section 5.1.

After that, we move forward to discuss the design of RST in Section 5.2, with the focus

on the integration with Spark’s programming model, scheduling and fault-tolerance mecha-

nism. We describe two applications built with RST + Spark in Section 5.3 and evaluate the

performance of RST in Section 5.4. We discuss the difference between RST and the other

related work in Section 5.5. We summarize the chapter and discuss the impact of the design

principle presented in this chapter in Section 5.6.
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5.1 Background

Apache Spark is one of the most popular data analytic frameworks [115, 100]. Accord-

ing to the survey in 2015, more than 1000 companies deploy Apache Spark in their data

infrastructure [26]. For example, Janelia Farm [14] consumes 1TB data for every hour with

Spark. Other companies like Tencent, the largest social network service in China, maintains

the Spark cluster consisting of as many as 8000+ servers.

As we analyzed in Section 2.1, Apache Spark adopts a side-effect-free (functional) pro-

gramming model facilitating the parallelization, but stands in opposition with online data

analytics. The key reason for Spark not be able to fit in online data analytics is the lack of

the computing state management layer. The lack of support for accessing online computing

state brings the compromised performance and capability to Spark. For example, to run the

machine learning algorithms updating the state (i.e. model parameters) iteratively, Spark

has to collect all of its states to the single-pointed server and broadcast again for every

iteration. It increases the network overhead and compromises the convergence rate of the

model training [124].

While researchers propose the frameworks [11, 68, 87, 15, 46, 49] to provide the full-

fledged or partial state management capability, they introduce the additional complexity for

the user. To move the data analytic applications from offline to online, they have to either

rewrite their offline applications with the programming models of these new frameworks, or

introduce the additional complexity to their infrastructure, i.e. make Spark co-exist with

these frameworks but take care of the complexity of the coordination between the applications

written within different frameworks.

We list the design space of state-of-the-art data processing frameworks in Table 5.1.

As show in the first partition of the table, despite their prevalence, the mainstream data
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processing frameworks are designed for stateless parallel data processing, like Spark [115],

MapReduce/Hadoop [30, 47] and Dryad [55]. They do not provide the fine-grained-accessible

data layer so that they cannot achieve stateful data analytics. Some researchers proposed

customized version of the frameworks like HaLoop [13], Incoop [11] and the easy-to-integrate

operator [68, 49]. While these proposals build the bridge connecting the existing data-parallel

processing frameworks and the stateful data analytics, they fall short in either fine-grained or

low-latency access. The other systems propose new frameworks. A few of them still cannot

scale the computing state access to the cluster. While the others provide the required

state management functionality [37, 87], they impose the overhead on the complexity of the

infrastructure and programming model.

In this chapter, we present the design of Resilient State Table (RST), which brings the

full-fledged state management functionality to Spark with seamless integration so that the

users can build online data analytic applications within Spark. Specifically, we make the

following contributions:

— Efficient, Scalable, and Reliable Stateful Data Analytics RST behaves like

hash tables and allows the user to query/update a particular state entry by providing

the hash key. Comparing to the frameworks with the local state storage [77, 15], RST

scales the state storage to the cluster so that it tackles the scenario with a large volume

of computing state. RST tracks how each state entry is generated so as to recover it

through recomputing in the case of data loss. Also, it allows creating checkpoint with

the minimum interruption to the undergoing processing.

— Seamless Integration with Spark RST integrates with both Spark’s programming

model and scheduling policy. RST provides the Spark-styled programming model to

introduce the minimum changes to the existing Spark programs for moving from
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offline to online data analytics. It also reduces the overhead on network transfer by

co-partitioning with Spark’s RDD or batching remote requests.

— Stateful Data Analytic Pipelines built with Spark + RST We build the

stateful data analytic applications with Spark-like APIs and run them in the Spark

cluster. RST not only with the original Spark model but also the more advanced

computing model built on top of Spark, e.g. Spark Streaming [116]. Without the

necessary to add the additional components to the infrastructure, we are able to

perform stateful data analytics with the better performance comparing to the original

Spark.

We evaluate RST with the extensive experiments. The results show that the performance

of RST scales linearly with the state size and available computing resources. We also compare

the performance of data analytic applications built with Spark + RST and the ones built

with the original Spark framework. We can achieve significant performance improvements in

various scenarios, e.g. real-time web index updates, recommendation system, and machine

learning algorithms.

5.2 Resilient State Table

To fill the gap between Spark and the requirements of state management for online

data analytics, we introduce Resilient State Table (RST) into Spark. RST is a distributed

in-memory hash table providing the fine-grained and low-latency access to the computing

state. RST integrates with Spark seamlessly by offering the APIs to the users so that they

can query/update the state entries in each Spark computing task. In Section 5.2.1, we have

a high-level introduction of RST’s components and working mechanism. We then describe
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the programming model of RST (Section 5.2.2). We discuss how RST interacts with Spark’s

scheduling strategy in Section 5.2.3, and introduce the fault-tolerance mechanism of RST in

Section 5.2.4.

5.2.1 Overview

In Figure 5.1, we illustrate the architecture of Spark enhanced with RST. RST behaves

as a hash table which maps the hash key (the input of the query/update requests) to the

corresponding state entry. The Spark application has one or more RSTs, each of which

corresponds to an individual type of state involved in data analytic process. Each RST

has multiple partitions which are stored across the cluster. To manage RSTs, we add a

StateManager in each Spark executor and a StateManagerMaster in the Spark Driver. The

StateManagers belonging to the same application have the same partitioners per RST which

map the state entry’s hash key to the partition ID. The Spark tasks running in an Executor

query/update state by giving the key to the StateManager in the same Executor. The

StateManager queries the IP and port of the StateManager storing the interested partition

from either the StateMasterManager or the location cache, which helps to avoid remote

location querying for every request. In the case of the inconsistency between the cache and

the actual location (e.g. caused by the restarting after Executor failure), StateManager

queries StateManagerMaster for the correct location and fix the location cache with the

response. Besides partitioner, Merger also locates in each StateManager and is identical per

RST. Merger resolves the conflict between the updates to the state entry. For example, in a

streaming WordCount program, the merger accepts the update to the frequency for the same

word by cumulating them. In contrast, in a stateful log analyzer continuously receiving the

last active moment of the user, the merger resolves the conflicts following the last-writer-wins
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Figure 5.1 – Architecture of Spark with RST

stategy.

The design of RST partitions is inspired by the idea of persistent data structure [80].

Persistent data structure preserves the prior versions of data entries when they are modified.

As shown in Figure 5.1, the partition o of RST 1 is updated by adding the new key-value

pairs in the memory, as well as the pointers referring to the old version of RST partition.

In the lastest version of Partition o of RST 1, only the pair (K3, V3) is updated to (K3,

V 3∗). When searching K3 in partition 3, RST would response with the latest value V 3∗

by default. However, for other unchanged pairs, e.g. (K1, V1) and (K2, V 2∗), it would

recursively search in the older version of this partition along the pointers referring there.

The circle in Figure 5.1 is the logical representation of the pointer referring to the older

version of the state entries. In practice, a unified pointer is referring to the hash table in the

last version.

89



5.2 Resilient State Table

Figure 5.2 – Programming Model of RST

Persistent-style RST facilitates the fault-tolerance mechanism of RST. We represent the

version of RST partitions by epoch, each of which is associated with the Spark job producing

the state entries in this epoch. RST also allows the user to compress the dependency chain

from the earliest to the latest version with the checkpoint. When recovering data, we first load

the latest checkpoint and then replaying jobs generating the versions of the RST partition

which are not covered in the checkpoint. We will have more details about how RST the

recompute + checkpoint fault-tolerance mechanism in Section 5.2.4.

5.2.2 Programming with RST

One of the primary goals of RST design is to enable the user to compose stateful data

analytic applications within Spark framework. As we stated in Section 5.1, the programming

model in Spark is RDD-oriented. Therefore, RST’s programming interface is also designed

all around RDD.

Figure 5.2 illustrates the major components in the programming interface of RST. We
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introduce a new type of RDD into the design of RST, StateSourceRDD, which is built from

the original RDD containing input data entries. StateSourceRDD provides two APIs, map-

WithState and mapPartitionWithState. “mapWithState” maps each input data entry in

StateSourceRDD and a specific state entry in RST to an output data entry in the output

RDD. For example, when we calculate the frequency of each word in an RDD by aggregat-

ing with their existing frequency stored in RST, we will use mapWithState to establish this

mapping from the input data entry to the state entry. Being different, “mapPartitionWith-

State” maps each partition of RDD as well as a set of state entries from RST to a partiton

of the output RDD. The usage of “mapPartitionWithState” is feasible in the scenario that

the output is derived from the computation over a set of input entries. For example, the

machine learning model parameters are calculated by traversing the complete training set

(or a subset of the training set) and applying the algorithms over all training samples. In

Section 5.3, we will give two real-world applications showing the usage of these two APIs.

In the last paragraph of Section 2.1, we explained the formal definition of the stateful

data analytic applications as output = UDF (input, state). Therefore, there are two steps to

perform stateful data analytics, mapping from input to state and apply UDF.

StateKeyMapper, as the first parameter taken by mapWithState and mapPartitionWith-

State, is to establish the mapping from input to state. There are two types of StateKeyMap-

per. The first category assumes that the data entry and the corresponding state entry is

one-one mapping, and share the same hash key. In the above example of counting the

words’ frequency, each (word, frequency) pair in RDD is mapped to a single state entry

indexed by the same hash key, i.e. word. The other type maps an input data entry (for

mapWithState) or a set of data entries (for mapPartitionWithState) to one or more state

entries, and the input data and state entry do not need to share the same hash key. For
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example, in the recommendation system mentioned in [37], all products purchased by a

customer (input data) is mapped to one or more state entries in the co-occurence matrix

(state), which represents the products which are purchased by the same customer. In Figure

5.2, we show the case that a certain data entry (dk, dv) is mapped to a set of state entries

(s1k1, s1v1), (s1k2, s1v2), (s2k1, s2v1), where sikj and sivj stand for the key and value of jth state

entry in RST i.

To apply UDF, mapWithState and mapPartitionWithState receive StateMappingFunc

as the second parameter. The runtime of RST produces the data entries in output RDD

by applying StateMappingFunc on the input data entries and their corresponding state en-

tries which are designated by StateKeyMapper. Within the StateMappingFunc, the user is

entitled to query/update RST by calling get()/put(). As shown in Figure 5.2, StateMap-

pingFunc not only produces the data entries in the output RDD but also push back the

updated state entries, (s1k1, s
∗
1v1), (s2k1, s

∗
2v1), via put().

The following code snippet implements a stateful word counting program with RST’s

APIs. Comparing to the example in Section 2.1, we include the state into the word counting

logic. In the following code, Line 1 registers RST with the cluster. The last parameter 0

indicates the type of StateKeyMapper, where 0 means that the input data entry and the

state entry is sharing the hash key. Line 2 loads raw text corpus from the file system as

an RDD and calculate the frequency of each word presented in the current RDD. Line 3

creates a StateSourceRDD based on RDD generated in Line 2. Because each input entry,

i.e. (word, frequency) pair, is indexed by the same word and shares the same hash key with

its corresponding state entry, we only need to define StateMappingFunc from Line 4 - 8, and

use the default sharedHashKeyMapper in the last line, where we apply stateMapperFunc to

StateSourceRDD and the newly registered RST to generate the output RDD.
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1 val r s t I d = RST. r e g i s t e r ( p a r t i t i o n e r , merger , type = 0)

2 val wordRawRDD = sc . t e x t F i l e ( ” i n p u t F i l e ” ) . f latMap ( . s p l i t ( ’ ’ ) ) .

map( word => ( word , 1) ) . reduceByKey ( ( f req1 , f r eq2 ) => f r e q1 +

f r eq2 )

3 val wordCountStateSource = RST. bu i ldSta teSource (wordRawRDD)

4 val stateMappingFunc = ( word : Str ing , f requency : Int ,

ex i s t ingFrequency : Int ) => {

5 val newFrequency = currentCount + frequency

6 put ( r s t Id , word , newFrequency )

7 ( word , newFrequency )

8 }

9 val outputRDD = wordCountStateSource . mapWithState (

sharedHashKeyMapper , stateMappingFunc , r s t Id , epoch )

This example shows that the programming model of RST interacts with the original

Spark’s RDD abstraction seamlessly. Therefore, the user can program stateful data analytic

application with the popular RDD-based APIs. While the above the example shows the

basics of programming model of RST, we will have two more examples from the real world

in Section 5.3.

5.2.3 Resilient State Table within Spark

RST serves as a component of Spark instead of a new independent framework. The other

challenge for RST to co-exist with the existing Spark components is to operate with the

salient performance under the scheduling mechanism of Spark.
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Given an available task slot in an executor, Spark decides which task shall be taken to

fill the slot with the consideration of data locality. Spark assigns the tasks whose input RDD

partition is managed by exactly the executor owning the current task slot with the highest

priority so that it avoids the overhead to move the input partition around processes on the

same machine and even across the network. Only when the executor with the input data

partition is too busy and a timeout happens, the task can be scheduled to another place,

and the runtime of Spark moves the input partition with it.

In the online data analytics with the computing state, we would like to achieve not only

data locality but also “state locality”, i.e. reducing the cost to access the state entries in

remote servers. We study the solutions case by case.

The cases are determined by StateKeyMapper. As we introduced in Section 5.2.2, StateKeyMap-

per decides that the data entries in the StateSourceRDD’s partition and the corresponding

state entries in the RST partition are sharing hash keys or not. When the user register

RST with the cluster, as we stated in the above WordCount example, the register() API

receives a parameter, “type”, which indicates if the input data and state entry share the

hash key. The solution to reducing the network-involved overhead for remote state access

differs accordingly.

Case 1: Shared Hash Key In the case of shared hash key, we use the identical partitioner

for both the StateSourceRDD containing input data and RST containing the state entries,

i.e. co-partitioning StateSourceRDD and RST [115]. After co-partitioning, the partitions of

StateSourceRDD and RST matches one to one. Figure 5.3(a) shows the difference before

and after co-partition. With co-partitioning, we co-locate the associated partitions of State-

SourceRDD and RST in the same server. In the case of that Spark schedules task without

data locality, i.e. when we need to move StateSourceRDD partition across the network, we
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(a) Shared Hash Key between State-
SourceRDD and RST: Co-partition of
StateSourceRDD and RST

(b) Non-shared Hash Key between StateSourceRDD
and RST: Batching Remote State Access

Figure 5.3 – Achieve State Locality and Reduce Remote State Access Under Spark Scheduling
Policy

move the required RST partition along with the StateSourceRDD partition to pursue data

and state locality.

Case 2: Non-Shared Hash Key If the shared hash key does not apply, the access to the

state entries may target to the remote server, and the network-involved overhead for each

state access will be prohibitively expensive. Spark handles the similar case in the context

of RDD by moving RDD input partition along with the task. Unfortunately, we cannot

adopt this method in RST since the access to a particular state entry may from different

tasks distributing in multiple servers. Therefore, we batch the requests to query/update

state entries to amortize the network cost over multiple state entry access. Figure 5.3(b)

illustrates the general design of request batching mechanism in RST. When processing data in

an InputRDD Partition, e.g. InputRDD Partition 1 in the figure, StateKeyMapper generates

the hash keys of the corresponding state entries and save it in read buffer. In Figure 5.3(b),

(dk, dv) is mapped to the state entries with the key sk1 and sk2. When the size of processing

buffer has achieved the threshold, the runtime of RST fetches all state entries indexed by the

keys saved in the read buffer. StateMappingFunc is then applied with all read state entries
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(Step (1.a)) and input data entries (Step (1.b)) to produce the output data entries ((d∗k,

d∗v) in the figure). Simultaneously, in Step (2), the updated state entries ((sk1, s
∗
v1) and

(sk2, s
∗
v2)) are pushed to write buffer and send to the server storing the corresponding RST

partition when the current data entries in processing buffer are all processed. A finer-grained

request batching mechanism is supported for the following two cases. The first case is that

each data entry only reads/writes a single state entry while they do not share the hash key,

like the distributed kv workload in [37]. The second case is that each state entry just updates

one or more state entries but do need to read, like the recommendation system introduced in

[52]. In these two cases, the read and write buffer work in a per partition fashion, i.e. when

the number of the requests targeting to a particular RST partition is beyond the threshold,

the requests are batched and send to the remote StateManager.

5.2.4 Fault-tolerance

The key idea of the fault-tolerance design in RST is “recompute + checkpoint”, that

means, to recover from data loss, RST provides the flexibility to both restarting the Spark

jobs updating state entries and reloading checkpoint data. The rationale behind this design

is to maximumly accommodate to the fault-tolerance mechanism of Spark. Spark achieves

the fault-tolerance with “lineage” mechanism. For each RDD, Spark records its parent RDD

and the function applied to the parent to produce the entries in the current RDD. In the

case of data loss, the function is applied again for recovery. Eventually, the RDDs involved

in a particular Spark job are associated with a dependency chain, which is “lineage”. RDD

allows the user to reduce the length of the dependency chain by building a checkpoint.

Recover State With Recompute The basic idea to recover state entries of RST

through recompute and fit Spark’s lineage mechanism is to associate each epoch of RST
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with a StateSourceRDD and StateKeyMapper/StateMappingFunc, and start the Spark job

to perform StateMappingFunc over StateSourceRDD again so that the updates to the state

entries are re-executed. We keep track the dependency between StateSourceRDD as well as

StateKeyMapper/StateMappingFunc and RST in StateManagerMaster side, and StateMan-

agerMaster triggers the Spark jobs to recover data. Since we keep multiple versions of the

state entries in RST partition, the state entries can be recovered epoch by epoch.

The most challenge in recomputing is to ignore the duplicate updates, i.e. achieving

“exactly-once” semantics. Figure 5.4 illustrates the scenario with a crashed StateManager

and the potentially involved duplicate updates to the state entries caused by the restarted

Spark jobs. In the beginning, we have two StateSourceRDDs updating RST at epoch 0 and 1

respectively. Each data entry in these two StateSourceRDDs updates both Partition 0 (man-

aged by StateManager i) and 1 (managed by StateManager j) of RST. When StateManager

i crashes, Partition 0 is re-assigned to StateManager j and is recovered from recomputing.

Therefore, the updates to Partition 0 and Partition 1 are both reproduced, and we need to

ignore the updates to Partition 1 but accept the ones to Partition 0.

The approach to ignore the updates from the Spark jobs recovering old epochs is straight-

forward. We only need to keep track the latest epoch of each partition and ignore the updates

from the jobs from passed epoches. In Figure 5.4, because the latest epoch of Partition 1

of RST has been 1, all updates from the Spark job over StateSourceRDD at epoch 0 and

1 are ignored. In contrast, since the newly allocated Partition 0 in StateManager j is just

initialized (the epoch is marked as “?”), the updates to it would be accepted.

The duplicate updates can also come from the restarted tasks (due to a transient error

in the server or speculative execution [30]) belonging to the running job. We still take the

scenario in Figure 5.4 as an example. During the running of the Spark job which takes the
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Figure 5.4 – De-duplicate Updates from Restarted Jobs and Tasks. We keep track the lastest
epoch and the last offset of the data entry producing the state updates for each RST partition.

StateSourceRDD at epoch 1 as input, the task is restarted after processing 6 elements. The

restarted task still starts with the first element. To ensure the correctness, we need to ignore

all updates brought by the first six elements if the update is not idempotent. To achieve

this, we make the StateManager manages the last offset of the data entry producing the

updates to the state entries for each RST partition (e.g. Partition 1 of RST shown on Figure

5.4), and the runtime of RST encapsulates the update requests sent from the Spark tasks to

StateManager with the offset of each input data entry. In this way, StateManager is able to

identify whether the update request is duplicate.

Asynchronous Local Checkpoint The major challenge to the design of checkpoint

is to apply the minimum interrupt to the undergoing processing. The synchronous global

checkpoint adopted by systems like Naiad [77] stops processing across the cluster and brings

low throughput when the state size is large. While the asynchrnous checkpoint taken in [87]

eliminates the necessary to stop the processing, it imposes all nodes to discard the processing

beyond checkpoint and roll back to the checkpointed state in case of failure.

To establish the asynchronous checkpoint, we build the checkpoint for the RST utilizing
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its persistent data structure feature. When the gap between the current epoch Ex and the

last checkpointed epoch Ei reaches the threshold, all state entries between Ei and Ex serve

as a read-only snapshot serving the undergoing Spark job at epoch Ex+1. The checkpoint

process only saves the latest value of each state entry to the stable storage system and

after finishing that, it compresses the memory usage of the state entries by removing all

stale values. To avoid the global checkpoint, we build checkpoint for each partition with an

independent file in the stable storage system, e.g. Hadoop Distributed File System (HDFS).

The checkpoint for each partition is built independently, and the recovery is a per-partition

process.

5.3 Applications

The programming model of RST integrates with Spark seamlessly and supports a broad

range of important stateful data analytic applications. Here we showcase the flexibility of

RST by building two applications, real-time web index updating 5.3.1 and asynchronous

machine learning algorithm 5.3.2.

5.3.1 Refresh Index Against Fast-evolving Web Pages

We begin with the web index updating system based on RST. Internet search engines

face the challenge to keep their indices up-to-date against the rapidly evolving web pages.

In search engines, the web crawler adds the crawled pages to the “crawled” collection; the

index updating program fetches the pages, calculates the score of each URL and triggers the

crawler to conduct another round of crawling for the highly scored URLs [68]. To calculate

the score of each URL efficiently, the state-of-the-art systems maintain the scores of URLs
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as computing state and incrementally update them instead of recomputing from scratch for

every newly crawled URLs [85].

The major challenge for the index updating system comes from the requirement of low

latency. To overcome the challenge, we integrate RST with DStream [116], the streaming

computing model built on top of Spark’s RDD in-memory abstraction. As introduced in

chapter 3, DStream separates the continuous data streams into small chunks based on the

arrival time, referred as “micro batches”. All data arrived within a period presents as a micro

batch and is delivered to Spark as an RDD. Since RST integrates with Spark’s RDD-oriented

programming model seamlessly, RST works with DStream smoothly. In practice, we apply

mapWithState/mapPartitionWithState to every RDD in DStream.

The following Scala code snippet implements the web index program. We register RST

with the cluster in Line 1. In this example, the StateKeyMapper directly uses the url as the

key of the state entry, so that we register the type of StateKeyMapper as 0, indicating that

the input data entry and the corresponding state entry is sharing the hash key. Line 2 creates

a DStream pipeline which extracts links from crawled pages and calculate the current inLinks

based on crawled info. Line 3 - 7 define the StateMappingFunc, which calculates the score

of the URL based on its inLinks update and the existing inLinks in RST, and only returns

the URL if the score is larger than a predefined threshold. In the last five lines, we apply

StateKeyMapper and StateMappingFunc to each micro batch (represented as RDD) and

only output the URLs whose scores are beyond the threshold via filter(). Since the data and

state entry share the hash key in this example, we apply the default sharedHashKeyMapper.

Note that since Spark 1.6, Spark Streaming (implementation of DStream) provides a API

(named mapWithState) which handles the shared hash key case between data and state

entry. In Section 5.4.1, we will compare the performance of Web Index updating program

100



CHAPTER 5. ONLINE DATA ANALYTIC FRAMEWORK

based on RST and Spark Streaming.

1 val r s t I d = RST. r e g i s t e r ( p a r t i t i o n e r , merger , type = 0)

2 val inLinksForEachPage = createDStreamFromCrawledPages ( . . . ) .map(

. e x t r a c t l i n k s ) .map( . c a l c u l a t e I n L i n k s ) . reduceByKey ( + )

3 val stateMappingFunc = ( u r l : Str ing , inL inks : Int ,

e x i s t i n g I n L i n k s : Int ) => {

4 val s co r e = scoringURL ( inLinks , e x i s t i n g I n L i n k s )

5 put ( r s t Id , ur l , s c o r e )

6 i f ( s c o r e > th r e sho ld ) u r l else None

7 }

8 inLinksForEachPage . foreachRDDWithEpoch { ( rdd , epoch ) =>

9 val ur lS ta t eSource = RST. buildStateSourceRDD ( rdd )

10 val urlRDD = ur lS ta t eSourc e . mapWithState ( sharedHashKeyMapper ,

stateMappingFunc , r s t Id , epoch )

11 urlRDD . f i l t e r ( i s not None ) . saveToCrawlerQueue ( )

12 }

5.3.2 Asynchronous Machine Learning Algorithms

A large class of the popular machine learning problems is to minimize the prediction error.

For example, if we were to predict the stock’s price in the following days, the prediction error

represents the deviation between the predicted values and the actual price. Machine learning

algorithms take the large set of training samples (e.g. the historical data in the stock market)

as input and output the predictive model consisting of a certain number of parameters. By
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filling the corresponding parameter values of a certain stock, e.g. price in the last two

days, the model gives the prediction. Machine learning Algorithms iteratively determine the

values of the model parameters by minimizing the objective function. The objective function

usually presents as the form of:

F (w) =
n∑

i=1

l(xi, yi, w) + ω(w) (5.1)

where l is the loss function presenting how accurate the model (with the current parameter

value w) can fit with the training samples (xi and yi). The second term is the regularization

item which prevents the model being “overfitting” by penalizing the model complexity.

One of the most widely used algorithms in finding the optimal values of w is the gradient

descent. Gradient Descent (GD) evaluates the derivative, or gradient of the current objec-

tive function against the complete training dataset and taking steps along with the direction

represented by the derivatives. Stochastic Gradient Descent (SGD), the approximation vari-

ance of the original GD algorithm, moves a step for each training instance. A compromise

between these two variance is the mini batch SGD, which moves a step by looking at a subset

of the training dataset.

Parallel, Synchronous and Asynchronous SGD To tackle the large volume of train-

ing dataset, we usually parallelize the computation of SGD. Spark achieve parallelization by

dividing the training dataset into multiple partitions and calculates the gradients for each

partition in parallel. At the end of each iteration, Spark collects all these gradients to the

Driver node, apply all gradients to update the model parameters, and finally broadcast the

parameters to all Executors before moving forward to the next iteration [74]. This algo-

rithm is usually described as synchronous. Recent work in the machine learning community

propose to break the restriction of updating the parameters at each iteration, and allow the

102



CHAPTER 5. ONLINE DATA ANALYTIC FRAMEWORK

parameter solvers to work concurrently and rely on the asynchronous communication for

the intermediate gradient steps [89, 51]. The rationale behind the asynchronous machine

learning algorithms is that (1) the training of the model converges eventually in a statistical

perspective; (2) by reducing the communication overhead, the total training time shall be

lower than the strictly synchronous version. The original Spark with RDD cannot achieve

asynchronous machine learning algorithm due to the lack of fine-grained state access.

Enabling Asynchronous SGD in Spark With RST, we are able to implement asyn-

chronous SGD in Spark. The following code snippets realize an asynchronous SGD algorithm

resembling the idea of Downpour SGD [29]. In Line 1, we register the RST with the cluster.

The only difference with the mentioned earlier examples is that we pass the type parame-

ter as 1, which indicates that the input data entry and the state entries do not share the

hash key. Line 2 and 3 describe the creation of StateSourceRDD. We have a simplified

StateKeyMapper defined in Line 4 which maps a complete partition to all parameters of

the machine learning model. In practice, the parameter access pattern in machine learning

algorithms exhibits the sparsity [64] so that we can utilize this matter of fact to reduce the

communication overhead further. StateMappingFunc declared in Line 5 are performed over

a collection of data and state entries, instead of a single instance. In StateMappingFunc, the

algorithm iteratively updates the gradients over the trainingSetPartition and synchronize the

local updates with the gradients in RST for every “maxCommRate” iterations. The final

output of the algorithm is the trainingError in each partition. We apply StateKeyMapper

and StateMappingFunc at Line 22 to train the machine learning model. To enhance the

reliability of the algorithm, we can break the single StateMappingFunc into finer granular-

ity where each job proceed for maxCommRate iterations so that the model parameters can

be checkpointed for every maxCommRate iterations. However, this strategy applies more
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synchronization in the training process.

1 val r s t I d = RST. r e g i s t e r ( p a r t i t i o n e r , merger , type = 1)

2 val t r a i n i n g S e t = loadLabe ledPoints ( . . . )

3 val stateSourceWithTra in ingSet = RST. bu i ldSta teSource (

t r a i n i n g S e t )

4 val stateKeyMapper = ( t r a i n i n g S e t P a r t i t i o n : I t e r a t o r [

LabeledPoint ] ) => (0 u n t i l lastParameterIndex )

5 val stateMappingFunc = ( t r a i n i n g S e t P a r t i t i o n : I t e r a t o r [

LabeledPoint ] , g r ad i e n t s : Array [ Double ] ) => {

6 val weights = new Vector

7 for ( i <− 0 u n t i l t o t a l I t e r a t i o n s ) {

8 i f (maxCommRate reached ) {

9 g r ad i e n t s = get ( r s t Id , a l lKeys )

10 updateWeightWithGradients ( weights , g r ad i e n t s )

11 }

12 for ( t ra in ingSample <− subset ( t r a i n i n g S e t P a r t i t i o n ) ) {

13 g r ad i e n t s = computeGradients ( tra in ingSample , weights ,

g r a d i en t s )

14 }

15 updateWeightWithGradients ( weights , g r ad i e n t s )

16 i f (maxCommRate reached ) {

17 put ( r s t Id , g r ad i e n t s )

18 }

19 }
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20 c a l c u l a t e T r a i n i n g E r r o r ( t r a i n i n g S e t P a r t i t i o n )

21 }

22 val outputRDD = stateSourceWithTra in ingSet . mapPartit ionWithState

( stateKeyMapper , stateMappingFunc , r s t Id , epoch )

In Section 5.4.1, we compare the performance of our algorithm and the synchronous

SGD algorithm delivered in Spark’s release. We observe that our algorithm exhibits a faster

converge rate than the competitor.

5.4 Evaluation

We implement RST based on Apache Spark 1.6.0. We customize the implementation of

OpenHashMapBasedStateMap in Spark to support the epoch-based operations of RST. We

conduct the extensive experiments to evaluate the performance of RST. The experiments

presented in this section consists of four groups. In the first group, we implement three

real-world applications with Spark + RST and the original Spark framework respectively

and compare the performance under various implementations (Section 5.4.1). The second

group tests the scalability of RST under different system parameter setup, workload pattern

and the increasing size of computing state (Section 5.4.2). The third group consists of

the experiments showing how well RST integrates with Spark’s scheduling policy (Section

5.4.3). The final group evaluates the fault-tolerance mechanism of RST on the impact to

the undergoing processing and recovery time (5.4.4).

Testbed We run our experiments in a private cluster consisting of 5 servers with 44

cores. The Spark driver runs in a server with Intel(R) Core(TM) i5-4460 CPU @ 3.20GHz (4

cores)/12GB RAM/ST1000DM003-1ER162 HDD. The executors run in 2 types of servers.
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The first type contains 3 servers with Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz (8

cores)/16GB RAM/SAMSUNG SSD PM851 256GB, and the second type has only one

server with Intel(R) Xeon(R) CPU E5-2687W v3 @ 3.10GHz (20 cores)/32GB RAM/SK

hynix SH920 512GB SSD.

If not mentioned specifically, we run the applications with five executors, each of which

has 12GB memory and eight cores. We use 100 partitions in RST and batch the read/write

requests to RST with the size of 1000.

5.4.1 Compare with Spark

In this subsection, our goal is to understand the question “What is the quantified benefit

for introducing state management facilities to Spark?”. We implement the three example

applications with RST + Spark and compare them with the implementations based on

Spark’s RDD APIs.

Real-time Web Index Updating

The first application is the real-time web index updating which has been described in

Section 5.3.1. To compare with the version built with Spark + RST, we implement it with

mapWithState API provided in Spark Streaming. We test the implementations with the

Web Data Commons-Hyperlink Graph dataset [92] (aggregated on subdomain/host level).

The dataset contains 2 billion hyperlinks information across 100M subdomains. We extract

80% entries of the dataset in random and save to RST as the initial state, and use the

hyperlinks info in the rest as the micro-batches with various size to test the system.

Figure 5.5 shows the average processing latency of two implementations. From the figure,

we observe that two curves are nearly identical. The reason is that the mapWithState API
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Figure 5.5 – Online Web Index Update Job Latency Comparison between Spark-Streaming-based
and RST-based Stateful Implementation

implemented in Spark Streaming is based on OpenHashMapBasedStateMap which makes

it equivalent to RST when input data and state entry share the hash key, and we perform

co-partitioning to avoid remote access. As we explained in Section 5.3.1, the shared hash

key is exactly the case of web index application. From this experiment, we conclude that

the performance of RST is no worth than the current local state management functionality

offered in Spark Streaming.

Recommendation System

The second application is the real-time recommendation system introduced in [52]. The

real-time recommendation system collects all user ratings for the products, (userId, itemId,

rating), within a time window and build a relevant matrix, M , the element of which Mi,j

stands for the number of times that item i and j are rated by the same user. As a result,

the input data entry and the state entries are one-to-many mapping, i.e. a single (userId,

itemId, rating) entry may trigger the update of multiple state entries (Mi,j).

We implement the application with RST and compare with the version implemented with
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Figure 5.6 – Recommendation System Job Latency Comparison between Spark-based and RST-
based Stateful Implementation

original RDD-oriented API. We extract a various number of ratings from the standardized

dataset, MovieLens-20M [76], to simulate the user ratings within a time window. In this

experiment, we set partition number of RST as 8. From the results in Figure 5.6, we see

that the processing latency of RST-based version is much lower than the RDD-based one.

The performance gap comes from the overhead to create additional RDDs in RDD-based

version. Without the support of RST, we have to build additional RDDs which contain

all pairs of co-rated items and perform aggregation over the RDDs to count the number of

co-ratings for each item pair. With RST, we simply send requests to update the entries in

RST.

Asynchronous Machine Learning Algorithm

The third experiment we conduct is the asynchronous machine learning algorithm. We

run the experiment with URL dataset which was used in [71]. The dataset contains 2,396,130

URLs and 3,231,961 attributes. We implement the Logistic Regression algorithm based on

the SGD algorithm introduced in Section 5.3.2, and compare it with the Logistic Regression
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Figure 5.7 – Converage Rate Comparison between Asynchronous Machine Learning implemented
with RST + Spark and original Spark, RDD Partition Number = 40, RST Partition Number =
200, Step Size = 1, regParam = 0.01

deliverd in Spark’s machine learning library mllib [74].

In the experiment, we set “maxSyncRate” as 10 . From Figure 5.7, we observe that

the logistic regression algorithm implemented with RST reaches to the smaller loss value

within the same amount of training time. The gaining performance comes from the reduced

communication overhead and this observation goes along with the previous research work

on asynchronous machine learning algorithms [29, 51, 42].

5.4.2 Test Scalability of RST

In this subsection, we study the performance of RST with the different setup. We use

a synthetic benchmark, distributed key/value store implemented with RSTs because it is

general to exemplify the algorithms which access state entries across the cluster, and used

in other representative related work [37]. The figures presented in this section shows the

latency distribution of all tasks and the overall throughput of the Spark job. Each task in

the Spark job sends 50,000 state read/write requests.
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Figure 5.8 – Throughput and Latency of of RST in Distributed Servers

We first test the scalability of RST when scaling to the distributed servers for the large size

of the state. The experiment uses the workload with the read/write ratio as 4:1. We measure

the aggregated throughput and task latency against different size of state and demonstrate

the experimental results in Figure 5.8(a).

With the increasing size of the state, i.e. the increasing number of executors, we observe

that the aggregated throughput increases close to linearly. When adding more executors to

the application, the increased amount of requests is targeting to remote server acrossing the

network. As a result, the latency of a single task increases accordingly but they still keep as

sub-second (under 800 ms).

The next experiment we conduct is to understand the performance of RST with different

workload pattern. We choose a moderate state size of 15GB. We create workload with

various read/write ratio and show the measured task latency distribution and Spark job

throughput in Figure 5.9. With the increasing of update requests, more requests need to

be synchronized to prevent the race condition caused by the concurrent modification to the

same RST partition, so the latency of the tasks increase slightly (within 100 ms).
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Figure 5.9 – Throughput and Latency of RST against Different Workload Pattern

These two experiments show that RST scales to the large state size and distributed

environment. It can fetch and deliver the fresh results with low-latency and high throughput.

5.4.3 Test Integration of RST and Spark

In this part, we evaluate the integration of RST and Spark. Specifically, we test our

strategies of (1) co-partitioning RST and RDD when there is shared hash key between data

and state entries; (2) The impact of the batching size with the non-shared hash key between

data and state entries.

Co-partitioning In Figure 5.8(a), each data entry may access a state entry stored in a

remote server. To show the effectiveness of the co-partitioning strategy, we co-partition the

RDD and RST in the cluster and conduct the test with the same setup again. We present the

throughput and latency in Figure 5.8(b). We observe that without the remote access cost,

the task latency is shortened by half, and the throughput increases with 2X accordingly.

Batching Size When co-partitioning is not feasible, we use request batching to reduce

the overhead on the network. To understand how to choose a good batch size, we conduct
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Figure 5.10 – Throughput and Latency against Different Batch Size.

the experiments with 15GB state size and 4:1 read/write ratio. We show the change of

task latency and job throughput with various batch size in Figure 5.10. We found that

with a small batch size (200), the task latency becomes high as we need to pay more on

the network-involving overhead. When we increase the batch size, the task latency drops

accordingly with the decreased network cost. However, if we continuous increasing the batch

size (beyond 600), we found that the latency goes high again and the throughput degrades.

The reason behind the phenomenon comes from two sides: 1) large batched requests take

more time to transfer, and 2) with a large batched request object, the program spends more

time on the serialization/deserialziation, which is recoganized as one of the major cost in

data analytic systems [82].

5.4.4 Fault Tolerance of RST

We compare the asynchronous checkpoint algorithm of RST with its synchronous variance

regarding the impact to the undergoing Spark tasks and show the results in Figure 5.11. To

test the impact from checkpoint to Spark tasks under different state size, we group the
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Figure 5.11 – Checkpoint Impact to the Task Latency. We group the experiments into 5 groups,
each whcih corresponds to a particular state size. Within each group, the left bar plot stands for
the synchronous algorithm and the right one is the asynchronous algorithm adopted by RST.

experiments into five groups, each of which corresponds to a state size, ranging from 1GB -

5GB. In each group presented in the figure, the left bar plots are the results of the synchronous

checkpoint and the right is the asynchronous checkpoint. From the figure, we observe that

the asyncronous checkpoint algorithm adopted in RST allows the concurrent execution of

undergoing Spark job and checkpoint process. Therefore it is one order of magnitude faster

than the synchronous algorithm.

We measure the recovery time of 5GB state with the global checkpoint, local checkpoint

and recompute against different dependency length chain. For each epoch in the dependency

chain, we run the Spark job consisting of 40 tasks each of which updates 50,000 (referred as

recompute(s)) or 100,000 state entries (referred as recompute(l)). We shutdown one out of

five executors to trigger the data loss. In Figure 5.12, we found that the global checkpoint

algorithm has to roll back the whole system state. Therefore, it takes nearly 80s to finish the

recovery process. In contrast, the local checkpoint only needs to recover the lost partitions,

which shortens the duration of the recovery. In general, the time cost of re-executing a

single Spark job is much less than recovering it from the checkpoint. With the larger Spark
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Figure 5.12 – Recovery Latency of Checkpoint and Recompute with 5GB State Against Different
Dependency Chain Length.

job (100,000 per task), the time cost for recovering with recompute grows proportionally.

When we increase the dependency chain length, the time cost for re-executing the Spark

jobs increases accordingly and it eventually exceeds the time cost of recovering from the

checkpoint when we have 15 epoches in the dependency chain with the larger Spark job.

In this experiment, we demonstrate 1) RST’s local checkpoint algorithm is faster than the

global one used in other systems; 2) the recovery time cost with recomputing is determined

by job granularity. As a result, we need to determine the checkpoint interval (maximum

dependency chain length) according to the characteristics of the data analytic workload.

5.5 Related Work

State Management in Data Analytic Framework As we summarize in Figure 5.1,

there have been some research efforts to achieve stateful data analytics. These efforts can be

classified into two categories, the new frameworks and the refactored stateless frameworks.

For the new frameworks, the representative work like Naiad [77] and SEEP [15] adopt graph-
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and operator-oriented programming model respectively, but cannot scale to the large state

size beyond the capacity of a single host. The other typical studies in this direction include

SDG [37] and Piccolo [87]. Both of these two work adopt the imperative programming

model and support the large state in distributed environment. However, we cannot directly

borrow the ideas from these frameworks to RST as they have the significantly different design

philosophy with Spark in various aspects, e.g. programming model, fault-tolerance, etc. The

design of RST is orthogonal to SDG in that we share the same motivation to achieve stateful

data analytics but we pursue to integrate with the existing frameworks seamlessly.

The other category which proposes to embed the stateful component/abstraction into the

stateless frameworks keeps the capability with the existing frameworks like Hadoop. Some

of these proposals have no support to fine-grained access to the state [11, 49, 13, 46, 116],

because they have to cache the results from previous batching jobs and then derive the future

results. A few of the frameworks in this category [38, 23, 106, 116] have the limited support

of state management. They assume that the data and state entries share the same hash

key, and an individual data entry can only involve a single state entry. As we introduced in

Section 5.3.2, this does not fit in the scenario like machine learning. CBP [68] is a system to

transform batching jobs into incremental computing jobs automatically, but cannot support

low-latency and iterative computing.

Being different with all existing efforts, RST integrates with Spark seamlessly and keeps

the functional programming model in Spark framework to avoid ship the user with another

new framework and another newly-styled APIs. It scales to large state size and supports

fine-grained and low-latency state access.

Stateful Data Analytic Applications within Stateless Framework The other fam-

ily of approaches to achieve stateful data analytics in the stateless framework is to establish
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the communication channel between the computing tasks. PD2F [124] and ASIP [42] fall

into this class. However, these approaches focus on providing the per-application solution

instead of a general framework like RST.

Failure Recovery The basic idea of failure recovery method for in-memory systems

is to replicate checkpoint data to the disk of multiple nodes and recover from multiple

disks in parallel. The difference of various approaches is on whether they have to stop the

undergoing processing during checkpoint and the synchronization among the nodes during

recovery. The systems with synchronous checkpoint [77] have to stop all processing during

checkpoint, and the other systems with the global checkpoint requires rollback all nodes

to the same checkpoint in case of failure. Being similar to the approach in SDG [37], we

adopt the asynchronous local checkpoint in RST, which only roll back the data for lost RST

partitions. RAMCloud [81] replicates data across cluster memory by replicating each write

request. We are different with it in that we checkpoint the state data to stable storage while

allowing the new requests to operate on dirty state.

5.6 Summary of this Chapter

In this chapter, we discuss how to enable the computing state management for online

data analytics within Apache Spark, one of the most popular data processing frameworks.

We introduce Resilient State Table (RST), which not only provides the scalable, efficient and

reliable state management but also integrates seamlessly with Spark’s memory abstraction

as well as Spark’s scheduling mechanism to efficiently perform stateful data analytic tasks.

With Spark + RST, users can build online data analytic applications with their familiar

Spark-styled APIs and run the applications within the Spark cluster instead of introducing
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another framework to the infrastructure and adopt another set of APIs.

The design principle represented in this chapter is valuable to a broader range beyond

Spark community. Instead of inventing more data analytic frameworks and shipping them

with various styled APIs to bother users, this chapter proposes the other practical direction

for the system researchers to explore more probabilities, which is proceeding with more

respects to the compatibility with the existing systems, especially those which have been

adopted in a wide area.
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Chapter 6

Conclusion and Future Work

In this chapter, we will first go through the motivations, design philosophies and the

contributions in this thesis. We then propose several possible future research directions

based on this thesis.

6.1 Conclusion

There has been a significant change in the development of our tools to handle the large

volume of data. Just several years ago, the design of the data analytic applications mostly

focused on the scalability, i.e. how to consume as many data as possible with the minimum

amount of resources. The data analytic logic itself is more like a one-shot process. With the

growing of the variety of data source and the speed of data generation, we observe that it is

more and more urgent on developing data analytic applications which not only scale to the

large data volume but also deliver the data analytic results against the fast evolving dataset

promptly. We refer this type of data analytic applications as “Online Data Analytics”.

We observe that there are two desired components in online data analytics. The first is
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an online data processing pipeline, which consumes the input data in an online fashion and

connects the multiple stages as a complete pipeline. The second is the state management

module which stores the intermediate state of the computing jobs and facilitates us to derive

the results from the existing ones.

Consuming input data in an online fashion and pipelining the computing stages is critical

and but also challenging. We observe that a lot of applications are built as batching-oriented

and have explicitly separate Extract-Transform-Loading (ETL) and data analytics stages.

These two design ideas bring the long latency to the data ingestion because we need to

accumulate all data, wait for the periodic ETL jobs to start, and then perform the data

analytic jobs to get the desired results. To address the issue, we develop Marlin.

Marlin is an online data processing pipeline developed in the context of content-based

video indexing. It aims to serve the video-sharing platform and makes the user-uploaded

videos searchable in real-time. It contains a streaming feature extractor which transforms the

uploaded videos in real-time, and also an online-updatable content-based index to organize

the videos according to their visual features. It addresses two major problems in building

such a system. The first one is the low throughput caused by the load skew among the inputs.

We employ a fair-queuing-based approach to model the videos as flow and intelligently adjust

the processing order of the data to improve the system throughput. The second challenge is

to connect the ETL and data analytic phases. We make the indexing structure incrementally

constructed so that the feature of a video can be sent to the content-based index upon being

available instead of being loaded in batches.

State management plays the significant role in online data analytics. Specifically, we

need to ensure that the state entries are able to be queried/updated in online. Otherwise,

we need to stop all undergoing processing to consume the modification to the state entries
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in batching or even reconstruct the whole state index to reflect the changes. The challenge

arises when we operate with the high dimensional data. The increased dimensionality brings

it difficult to store and analyze over the state entries in online.

We design a Parallel-Friendly State Management Layer for Online data analytic appli-

cations (PFO) to bring Locality Sensitive Hashing (LSH), which is proved to be the most

promising tool for high-dimensional nearest neighbor search, into the online world. To fill

the gap between the state-of-the-art LSH design and the requirement of the state manage-

ment for online data analytics. We employ the hierarchical memory system to overcome

the dilemma between the efficiency and capacity; we design an adaptive hash tree to avoid

reconstructing the LSH index to consume updates; we intelligently partition state entries in

the LSH-based index to facilitate the parallel processing.

After studying the design of the online data processing pipeline and the state manage-

ment, and successfully porting two offline data analytic system to online, we consider the

problem on the other side of the global picture, porting cost. There have been a tremendous

amount of applications built on top of the frameworks which does not provide the facilities

to support online data analytics. Porting them to the new frameworks/systems involves the

huge overhead to rewrite programs and the additional infrastructure complexity brought by

the new frameworks.

We propose Resilient State Table (RST), providing the fine-grained, low-latency and

reliable state management for the online data analytics. Most importantly, RST seamlessly

integrates with the programming model, scheduling mechanism of Apache Spark, which is

one of the most widely adopted data processing frameworks. With Spark + RST, users can

compose online data analytic applications with their familiar programming model and run

the applications within Spark cluster instead of maintaining additional components in the
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infrastructure.

6.2 Future Work

Developing the guidance to move the offline data analytic applications/systems to the

online scenario has the fundamental influence to building the efficient data infrastructure.

As the future work, we will focus on the following three aspects.

First, we will explore the approach to improve the online data ingestion system with the

deep learning technique [44]. To consume the data in an online fashion, it becomes difficult

to adopt the algorithm/data structure involving high time/space complexity to compute,

and we have to discard some of the data features when ingesting it. On the other hand, the

emerging deep learning algorithms are pretty good at creating the efficient and effective data

representation. By building data representation with deep learning, it theoretically possible

to keep the data features with a compact representation which is easy to compute and store.

However, it also raises several challenges, e.g. in the case of the changed data representation

got from deep learning, how to re-index the existing data with the minimum interruption to

the undergoing processing. We will explore the various possibilities and challenges in future.

The second future direction is to build the new system architecture to facilitate the

application-specific optimization in state management for online data analytics. To achieve

the optimal performance, many applications have to embrace the application-specific opti-

mization designs. For example, Locality Sensitive Hashing serves the applications based on

nearest neighbor search well but does not make contribute as much to the other fields. In

future, we will study the design philosophy on the data analytic system to create a smooth

path to integrate these application-specific designs to the a general data processing frame-
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work. It involves creating the new abstraction on the data analytic systems and developing

expressive programming interfaces to enable the user to describe and integrate their design.

The existing efforts on the new system abstraction focus on the data access layer, i.e. how to

interpret data within the certain framework. For instance, the graph-based data processing

engines interpret data as vertex and edges [43, 69]. When comes to the state management

in online data analytics, more attentions go to the storage side, including the file system,

database and the internal storage design in data processing frameworks. We will explore the

new system abstractions in this direction.

Another possible direction is to combine the features of modern hardware to improve the

performance of online data analytic applications. At the moment of the invention of MapRe-

duce [30] as well as the following years, the RAM space is limited in an individual server.

Consequently, the data processing frameworks born in those years are mostly designed to

support computation with the external memory. With the development of modern hard-

ware, the design philosophy of the systems shall change accordingly. In the recent layers, the

server with the large RAM configuration becomes prevalent, so we witness the fast growth

of the data processing frameworks, like Spark [100]. In the following years, new hardware

will facilitate us to achieve more efficient data analytic system but requires us to adjust the

design philosophy. For instance, with the development of Non-Volatile RAM [79], bringing

NVRAM to the design of the hierarchical memory system of PFO and the in-memory RST

will create a storage layer and requires us to adjust the design to fully utilize the hardware

capability. The other example is that the development of Software Defined Network [36, 120,

119] bridges the applications and the network layer, and is potentially beneficial to reduce the

network cost in the online data analytic applications by sharing the network information.
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