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Abstract

Speech understandillg systems try to 'extract,meaning from one or several
word sequence hypotheses generated by a speech recogn~er. Designers of
these systems rely inereasingly on robllst matchers to perform this taskj a
robust matcher processes semantically important word islands ril,ther than
attempting:'to parse'the entire word sequence. Thi,s thesis desc"jbes a ro
bust matcher for speech understanding whose rules'are learnt automatically
from training data. L'earning is carried out by a new set of algorithms in
volving a new data structure, the Keyword Classifica{ion Tree (KCT).
By eliminating the need to handcode and debug a 'large number of rules,
this approach facilitates rapid construction of a speech understanding sys
tem. Furthermore, the rules learned by a KCT, which depend on a very
small number of words in each utterance, are highly resistant to errors by
the speaker or by the speech recognizer. The thesis discusses a speech un
derstanding system built at the Centre de Recherche Informatique de Mon
tréal that incorporates this robust matcher, using the DARPA-sponsored Air
Travel Information System (ATIS) task as training corpus and testbed,
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Sommaire

Les systèmes de compréhension de la parole ont pour but d'extraire le coi,
tenu sémantique des hypothèses de phrases générées par un module de re
connaissance de la parole. Les concepteurs de tels systèmes recourent de
plus en plus à des approches robustes pour accomplir cette tâche. Ces ap
proches s'attachent au,x groupes de mots sémantiquement importants plutôt
que d'essayer d'analyser syntaxiquement toute la phrase. La présente thèse
décrit une nouvelle approche pour. apprendre des règles robustes automa
tiquement à partir de données d'èntraînement. L'apprentissage se fait à
l'aide d'un ensemble d'algorithmes basés sur une nOliS'elle structure de don
nées: les arbres de classification de mots clés (KCT ; ;'keyword classification
trees")": Cette approche facilite le développement rapide d'un système de
compréhension de la parole en évitant l'écriture et la mise au point manuelle
d'un grand nombre de règles. De plus, les règles apprises par un KCT dépen
dent d'un petit nombre de mots dans la phrase et sont donc assez robustes
face aux erreurs du locuteur ou .du module de reconnaissance. Cette thèse
présente aussi le système G.e compréhension d" la parole déveloPij,,~,au Cen
tre de recherche informatique de Montréal pour la tâche "Air Travel Infor
mation System" (ATIS) parrainée par DARPA, système utilisant le module
développé à partir des KCT.

'"

1~)



Y'

Contents

2.1
2.2

, . 2.:3
"

2.4

1 Introduction
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . ..
1.2 Training and Testing . . . . . . . . . . . . . . . . . . ....
1.:3 The Probabilistic Approach to Natural Language Processing
1.4 Thesis Outline .

1
1
3
5
7

10
10
14

r,

H
17
19
22
23
24
26
27
28
30

31
31
34
34
36
40
45,:

Speech Understanding Systems for the ATIs Task
3.1 Introduction.........:...
3.2/, The Evolution of ATIS .

• 3.2.1 Original Definition of ATIS ..
3.2.2 Criticisms of ATIS "" ,;
3.2.3 The Future of ATIS ..

3.3 Linguistic Analyzers for ATIS

2 Speech Recognition and Spçech Understanding
Potential Applications .. ' .
Dimensions of Difficulty .. ',. . . . . . . .
NOll-Probabilistic Speech Re'éognition Systems
2.3.1 Template-Based Speech Recognition .
2.3.2 Knowledge-Based Speech Recognition.
PrcLàbilistic Speech Recognition Systems.
.2.4.1 The Acoustic Front End
2.4.2 Hidden Markov Models .
2.4.3 Choosing the Units ...
2.4.4 The Language Model ..
2.4.5 Lexical Search and the N-Best Hypotheses
2.4.6 The l.inguistic Analyzer . . . . . . .....

- .
- ~--'

.;;:;..--::,--:.:<. 3

.,
,'.



/~I

:3.:3.1 The SRI System ..
:3.3.2 The CMU SYStCI;l .
:3.:3.3 The BBN System .
3.3.4 The MIT System .
3.3.5 The Paramax-Unisys,Systcm .
3.3.6 The AT&T System

3.4 Summary ..... . . . . . . . . . .

4 Learning Patterns in Strings
4.1 Introduction ii' ......•.••..•

4.2 Grammatical Inference in the Traditional Paradigm
4.2.1': Inference of Regular Non-Stochastic Grammars
4.2.2 Stochastic Grammars ..

4.3 PAC Learning and P-Concepts .
4.3.1 Introduction .
4.3.2 PAC Learning .
4.3.3 Learning P-Concepts :

--fA Keyword. Classification Trees :
,4.4.1 1 he Theory and Practice of Machine Learning
4.4.2 Each Class of a KCT is a Regular Set. .
4.4.3 Classification Prope~ties of KCTs .
4.4.4 Discussion..............

5 Cla~,Sifiéation Trees in Speech Processing
5.1 :: What is a Binary Cla,ssifi<;ation Tree?
.5.2 :i Splitting Rules and Stopping Rules . . ..
5.3 Pruning Techniques . . . . . . . . . . . . .

5.3.1 The CART Cross-Validation Approach to Pruning .
5.3.2 The Iterative Expansion-Pruning Approach ...

5.4 Set-Membership Questions . . . . . . . . . . . . . . . . .
5.5 Applications of Classification Trees in Speech Processing

5.5.1 Vector Quantization .
5.5.2 Context-Dependent Phone Modeling
5.5.3 Language Modeling . . . . . . . . . .

il

Vj
·\8
;10
51
52
5:3
.57

59
59
60
60
67
~?
I-

n
7:3
78
81
81
82
84
91

94
94
97

101

· 101
:107
· II:j
· 114
· 115

118
· 122



ii

"

6 '. Building Keyword Classification Trees
(LI':' Ilitroduction:, . .~:,j':.'.: '.
6.2. Single-S};!,nbôfl{CTs .. . . . . . . . ...'

6.2.1 Tii,~ba:,ic Algorithm. . . . . . . Ii
6.2.2 Pre;~'minary Experiments with Single-SymJ:.ol KCTs

6.3 Sct-Memhers.hip KCTs
6,4 Classifying SJ'bstrings
6.5 Rclated Work

G..5.1 Comparison with IBM Tree-Based Language Modeling
6..5.2 'An Application ,('f Classification Trt'~s in Information

• /, - .-': j;' \+; .-
Retneval " .

6..5.3 T'ACE: A Parallel Classifier

, 1~!6

126
129
129 ....
132
13.5
139
l43
143

145
147

,~.

7 Computational Complexityof the KCT Algorithms
7.1 Introduction . .:' .". . . . . .. . ...
7.2 Time Complexity ofSingle-Symbol KCT Algorithms

7.2.1 The Set-up Phase:.:rG0nvertirig Sentences to Lexical
Index Strings

7.2.2 The Balanced Scenario . . . . .. . . ...
7.2.3 The Unbalari2ed Scenario with D < 4 *L *V
7.2.4 The Unbalanced Scenario with D·~· 4 * L *V

7.:3 Time Complexity of Set-Membefs:iip KCT Algorithms
7.3.1 Time Complexity of Set,~Membership Questions
7.3.2 Generating Set'Membership Questions .....
7.3.3 Détermining Time Complexityfor the Set-Membership

Scenarios .
7.4 Parallel Time Complexity of KeT AlgorftJ}ms :"'

. ,

151
151
1-?
ù~

1-54,
156

c

159
159
162
162
164

166
168

171
171
173
174
174
180
181
182
185

. ~.'

System'Structure for Two ATIS Tasks",' .
Examples of ATIS Data .. '.' .
The Semantic Representatioii Lang~age .
8.3.L Details of the Representation

-,_.'

8.3.2 Discussion of the Representation
"The SQL Module '

The Local Parsing Modlilfl
The Robust Matcher

8.4
8.5
8.6

8 CHANEt:, A KCT-Based Linguistic Analyzer for ATIS
t~..:: 8.1

8.2
8.3

iii
"

i



8.6.1
8.6.'2
S.6.3
S.6A

Ovc;',"! Sti{,cturc .
Choosing the Displayèd :\tt.ributes
Classifying Const;'aincs
Meta-nlles . . . .' ..-. . . . . . . . .

1sri
I~li

1!)O
1!J2

9 Results 193
9.1 Experiments with Different KCT Typcs . 19:.1

9.1.1 Classification Acèuracy . 19:1
9.1.2 Properties of KCTs".' ... :~~ .. , " 19S

.9.2 The November 1992 ATlS Benchmarks .. -- 19S
9.il KCTs Grown for the November 1992 Robust Matcher. las
9.2.2 Benchmark Results . . . 201

9.3 Analysis of Errors . . . . . . . . 20S
9.:U Analysis of NL Errois . 20S
9.3'.'2 Analysis ofBLS Errors . 211

10.Discussion 214
'10.1 Original Contributions of the Thesis. . 214
10:2 Advantages and Disadvantages of KCT-Base~ Robust Matchcr 215

10.2.1 Advantages·. . 215
10.2.2 Disadvantàges . . . . . . . . . . . . . 217

10.3 Improvements ;.'. . 'F""';;'~: . . 21S
lÛ.3.1 Improv~m~nts to KCTs . . . . . . . . 219
10.3.2 Improvements to KCT-Based Robust Matchers . 220,

1004 Conclusion ... ,.. . . . . . . . . . . . . . . . . . . . . . 225

A KCT-Growing Details
A.l Single-Symbol KCTs
A.2 Set Membership KCTs

Bibliography

IV

=

'226
. 226
. 229

231

l\ -_......-



.

tist of Figures

2.1 Between-Speakers Variation of Pronunciation of "seven" 11
2.2 Within-Speaker Variation of Pronunciation of "seven" . 12
2.3 Template-Based Speech Recognition. '.' . . . 18
2.4 Structure of the CRIM Speech Recognition System .. 22
2.5 HMM for "sauce" [Norm91, pg.22] . . . . 25

3.1 Simulated Dialogue with MIT Dialogue System [Sen91, pg.357] 43
:3.2 Ticket Facsimile shown by MIT Dialogue System [Sen91, pg.357] 44
3.3 Structure of the Phoenix System [War91, pg.103] 49
:3.4 Block Diagram of AT&T System [adapted from Pie92b] , 54

1.1 First 2 Iterations of Kearns-Schapire Alg. on KCT-Style Ques-
tion List . . . . . . . . . . .. .... . . . . . . . . . ., 88

4.2 p-Concept KCT for 2 Stochastic Grammars, where P(GJl =
P(G2 ) •••••••••••••• • • • • • • • • • • • •• 90

5.1 Patient Classification Example [Bre84, pg.2] , 96
5.2 Classification Tree (Training Data Items shown at each Node) 102
5.3 Same Tree, R(n) shown for each Node n . . . . . . . . 103
5.4 Same Tree, 91(n) shown for each Node n . . . . . . . . 105
5.5 Same Tree after Pruning of Subtree with lowest 91 . . . 106
5.6 The Expansion-Pruning Algorithm . . 110
5.7 Binary Tree Codebook [0'S87, pg.317] . . 117
5.8 Decision Tree for Allophones of 'k' [Hon91, pg.260] .. 119
5.9 Clustering Simple Questions to form a Compound Question

[Hon91, pg.260] . . . . . . . . . . . . . . . 121
5.10 Example of a Pylon [BahWLb, pg.508] 124

v



,

6.1 Single-Symbol KCT Grown on ATIS 1990 Tra',lscripts . . . 13·'
6.2 Set-Membership KCT Grown on ATIS 1990 'l'ranscripts . 1:3(;
6.3 Growing a Set-Membership KCT . . . . . . . . . . . . . . 140
6.4 KCT for Classifying CITY Substrings . . . . . . . . . . . . 1,12

7.1 Converting Sentences to Lexical Index Strings (Setup Phase) . 155
7.2 Balanced KCT, Depth = O(logD) . . . . . . . . . . . 156
7.3 Unbalanced KCT, D < 4 * L * V, Depth = O(D) 160
7.4 Unbalanced KCT, D > 4 * L * V, Depth = O(L * V) 161
7..5 Asking Set-Membership Question (for 1 string, O(L) work) . , 16:3
7.6 Finding Set-Membership Question from Single-Syrnbol Ques-

tion (N training strings) . . . . . . . . . . . . . . 165

8.1 Linguistic Processing in 1992 CRIM AT1S System 172
8.2 The KCT-Based Robust Matcher 187
8.3 Set-Membership KCT for fare.fare-id (grown on AT1S 2 data) 189

9.1 Classification Accuracyon NL Data for Various KCT Types . 196
9.2 Single-Symbol KCTs for Displayed Attributes Tested on Parsed

Speech Data 199
9.3 KCT Sizes vs. Size of Training Data (Tree 44 = fa7·e.fare-irl,

Tree 68 = fJight.fiighLid) . . . . . . . . . . . . . . . . . . . . . 200
9.4 Single-Symbol KCT for fareJarC-id trained on NL Data (num-

ber of nodes = 37) 202
9.5 Single-Symbol KCT for fare.fare-id trained on Speech Data

(number of nodes = 33) . 203
9.6 November 1992 AT1S NL Test Results (Class A only) 204
9.7 November 1992 AT1S SPREC Test Results (Class A only) .. 20.5
9.8 November 1992 AT1S SLS Test Results (Class A only) .... 206
9.9 Results for NL W. Err/(SLS W. Err. * SPREC Prop. C01T.)207
9.10 Histogram of NL Errors . 210
9.11 Histogram of SLS Errors without corresponding Nc~_Errors .. 213

vi



,

Chapter 1

tntrodtiction

On these Papers were written ail the Words of their Language
in their several Moods, Tenses, and Declensions, but without any
Order. The Professor then desired me to observe, for he was going
to set his Engine at work. The Pupils at his Command took each
of them hold of an Iron Handle, whereof there were Forty fixed
round the Edges of the Frame; and giving them a sudden Turn,
the whole Disposition of the Words was entirely changed. He
then commanded Six and Thirty of the Lads to read the several
Lines softly as they appeared upon the Frame; and where they
found three or four Words together that might make Part of a
Sentence, they dictated to the four remaining Boys who were
Scribes... Six Hours a-Day the young Students were employed
in this Labour, and the Professor shewed me several Volumes
in large Folio already collected, of broken Sentences, which he
intended to piece together; and out of those rich Materials to
give the World a compleat Body of ail Arts and Sciences.

Jonathan Swift, Gulliver's Travefs [Swi]

1.1 :Problem Statement
When someone speaks to a speech recognition system, it tries ta guess the se
quence of words that best matches the acoustic signal. A typical system will

1
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generate several ward sequence hypothese8, each with an associated probabil
ity. If it is a dictation system, it will display the most probable hypothesis
to the user for approval or correction. If it is a speech understanding system,
the meaning of the utterance is more important than the precise sequence of
words. Word sequence hypotheses in a speech understanding system undergo
further processing to yield a conceptua/ rep7'esentation, which may trigger ac
tions by the non-speech part of the system. For instance, the information
contained in the conceptual representation might cause a robot to move for
ward and pick up an object, or might initiate a search through a database
for information requested by the user.

The part of a speech understanding system that translates word sequence
hypotheses into a conceptual representation will be called the /inguistic an
a/yzer. In the recent past, the linguistic analyzer of a typical speech under
standing system l'as built around strict syntactic mies [ErmWL,LowWL];
it was usually called the "parser". Word sequences that disobeyed the mies
were discarded during the recognition process, 50 that an incoming utterance
could yield only two outcomes: failure or a parse for a complete sequence of
words.

This approach has strong academic as weil as practical appeal: one can
write elegant papers about how a particular syntactic theory is incorporated
in the parser. Unfortunately, many spoken sentences are meaningful but
ungrammatical. A linguistic analyzer that relies heavily on syntax will refuse
to respond to such sentences, or will generate and respond to an incorrect
word sequence hypothesis that happens to be grammatical. Neither outcome
is desirable.

A growing number of speech understanding systems rely on robust match
ing to handle ungrammatical utterances. The robust matcher tries to fill slots
in a frame without attempting a sentence-Ievel parse; it skips over words or
phrases that do not help it to fill a slot or to decide on the identity of the
current frame. The slot-filling phrases themselves still undergo syntactic
parsing. Because it does not attempt to generate a parse tree incorporat
ing every word in the utterance, the robust matcher can handie interjections,
restarts, incomplete sentences, and many other phenomena typical of speech.
Sorne current speech understanding systems have a linguistic analyzer that
will invoke the robust matcher only if a sentence-Ievel parse fails, while oth
ers have a linguistic analyzer consisting entirely of the robust matcher. The
robust matcher requires a large set of semantic ru/es to carry out its task;

2
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thcsc tcll it how to idcntify the frame or frames referred to by the cllrrent
IItterance, and how to match slot-fillers to slots.

This thcsis describes a robust matcher for speech understanding that
incorporates a set of semantic mies automatically learned from training data.
A data structure called the Keyword Classification Tree (KCT) has been
devised for the purpose of learning semantic rules which depend on a small
number of keywords in each utterance. These keywords, and the phrases
they make up, are not specified in advance by the programmer but generated
by the KCT-growing algorithm from the entire lexicon on the basis of the
training data.

The robust matcher proposed in this thesis is original. Other robust
matchers tend to ignore irrelevant words in an utter~nce, but these do not
attempt to minimize the number of keywords that must be seen to generate
the correct conceptual representation. The KCT-growing algorithms tend
to find close to the smallest possible number of keywords required for se
mantic mies. Since the robust matcher built out of KCTs is unaffected by
recognition errors in non-keywords, it is very tolerant of recognition errors.
Researchers at AT&T have also proposed a robust matcher whose mies are
learned from data rather than hand-coded [Pie92a, Pie92b, Pie91]. How
ever, their matcher is based on statistical segmentation of the word sequence
into concepts, rather than on classification treesj it has trouble dealing with
concepts that overlap each other. The KCT-based robust matcher makes
extensive use of independent KCTs, each of which looks at the entire word
sequence, and therefore deals effectively with over1apping concepts.

1.2 Training and Testing
The training corpus and testbed for the KCT-based robust matcher was the
DARPA-sponsored ATIS ("Air Travel Information System") task. ATIS was
chosen for pragmatic reasons:

1. DARPA provides a large corpus of recorded ATIS utterances, each
accompanied by its typed transcript and by the "translation" of the
utterance into SQL judged most appropriate by DARPA. The KCT
based robust matcher requires large amounts of semantically labelled
training data. The ATIS data fit this requirement perfectly, if one
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takes the SQL translation as the criterion for successful sl'mantic in
terpretation of an utterance. (However, the robust matcher generates
a frame-based conceptual representation that is not in SQL code; an
independent moduie called the "SQL module" generates the code 1'1'0111

the conceptual representation, and couid be replaced if we chose to use
another database query language).

2. Many of North America's leading speech groups are working on the
ATIS task. If the KCT-based robust matcher was applied to the ATlS
task rather than sorne self-devised task, my work could more easily be
compared to the work of other researchers.

3. The speech group at CRIM (Centre de Recherche Informatique de Mon
tréal) had recently begun to participate in ATIS, and therefore had
access to ATIS data. Members of the group kindly let me use the data,
and subsequently collaborated with me in building a linguistic analyzer
incorporating the KCT-based robust matcher for the November 1992
ATIS benchmarks (described in Chapter 8).

4. 1 was interested in seeing how semantic rules learned by the KCT
growing algorithms from written sentences differed from rules learned
by the same algorithms from word sequence hypotheses output by a
recognizer. Certain semantically important words may, for acoustic
reasons, be poorly recognised by a particular system; KCTs trained on
written sentences will choose sorne of these words as keywords, while
KCTs trained on word sequence hypotheses should choose more reliably
recognised words. The CRIM group was willing to provide me with
speech recognizer output for the ATIS task.

Despite these arguments for the ATIS task, the work presented in this
thesis would he worthless if it were only applicable to ATIS. Later in the
thesis, 1 will argue that a robust matcher that learns rules for a particular
speech understanding task from training data can he ported quickly to new
tasks or new languages, unlike a hand-coded matcher.
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1.3 The Probabilistic Approach to Natural
Language Processing

The work reported hen~-is part of a larger shift in naturallanguage processing
research, from approaches based on linguistic theory to approaches that treat
natural language processing as a pattern recognition problem that can be
handled probabilistically. Researchers who employ the probabilistic approach
borrow ,ome ideas from linguistics, but they avoid implementing linguistic
theories in their entirety. They often consider linguistics, especially syntactic
theory, as an obstacle to building practical systems that can handle a wide
range of input.

The probabilistic approach has achieved its greatest successes and ac
quired the largest number of adherents in the speech recognition community.
Many existing speech recognition systems work better than their predecessors
because simple, robust models trained on large amounts of data were sub
stituted for cumbersome systems of hand-coded linguistic rules, at several
different levels of speech recognition. This shift in perspective was partly
brought about by the ARPA Speech Understanding Project of the 1970's
[KlaWL].

Despite the rhetoric employed on both sides of the debate, ail probabilistic
naturallanguage systems are hybrids that incorporate a considerable amount
of a priori linguistic expertise along with probabilistic parameters whose
values are calculated from training data. A "pure" probabilistic approach
that uses no linguistic knowledge at ail is impossible. It is always necessary
to define basic units and a structure for the probabilistic mode), and this
can only be done on the basis of linguistic knowledge. For instance, the IBM
language models emp)oy words or parts of speech as the basic units. Each
choice refiects an a priori linguistic judgement. This is obviously true for
parts of speech, and also true - though less obviously so - for words. Speakers
of Indo-European languages tend to believe that language is segmented into
words, and the typographical conventions of these languages reinforce the
helief. If the designers of the IBM language models had been speakers of
Hungarian or Inuit then a unit that seems more natural to speakers of these
languages, such as the morpheme or the phrase, might have been chosen
instead. The structure of the IBM models refiects another a priori judgement:
that the identity of a word can be predicted by the immediate)y preceding
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words.
Thus, the basic units and the structure of a probabilistic mode! alw"y~

reflect the linguistic judgements or prejudices of its designers. Wh"t di~t.in

guishes the probabilistic approach from other approaches is that once the
model has been defined, its paramet.ers are ca1culated from training data.
Furthermore, the structure of the model is usually very simple and linguis
tically "naive". The popularity of this approach seems to be spreading from
the speech recognition community to researchers in other branches of nat.mal
language processing, snch as machine translation and message underst.anding
[Bro92, Br088, Wei92].

Advocates of the approach, such as Geoffrey Sampson [Gars87 chap. 21
argue that the predominant rule-based approach leads to brittle toy syst.ems
that can deal only with a tiny set of made-up examples. Because these
systems categorize sentences as either grammatical or ungrammat.ical, t.hey
cannot estimate degrees of acceptability; they reject a high proportion of
sentences a human being would judge acceptable, and derive little useflll
information from such sentences. Adding more rules will not help. "[ find it
hard to imagine that in practicc this revision process could ever be concluded.
Like oth~~rules concerning human behaviour, rules of grammar seem made
to be brôken... If the activity of revising a generative grammar in response to
reca1citrant authentic examples were ever to terminate in a perfectly leak-free
grammar, that grammar would surely be massively more complicated than
any extant grammar, and would thus pose correspondingly massive problems
with respect to incorporation into a system of automatic analysis" [Gars87
pg. 20].

By contrast, probabilistic systems deal with relative frequencies of out
cornes and make no binary judgments about the grammaticality or ungram
maticality of a sentence. They can handle even extremely ill-formed input..
In most cases, they are much simpler in structure than rule-based systems
and require less programming time to set up. The main disadvantage of prob
abilistic models is the need to accumulate large collections of training data
and carry out computation-intensive probability ca1culations. The rule-bascd
approach makes heavy demands on human effort, in the form of linguistic
expertise and programming time. If the need for hand-Iabelling training data
can be avoided or minimized, the main demands of the probabilistic approach
are on computer memory and.processing power. As memory and computa
tion get cheaper, the competitive advantage of the probabilistic approach
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IIlcreases.

Advocates of the probabilistic approach are often caricatured as arrogant
technocrats who believe that the secrets of naturallanguage can be extracted
by a purely mechanical process, like the Professor in the Academy of Lagado
described in the quotation from Gulliver 's Travels. 1prefer to think that the
probabilistic approach refiects an understanding of the fragility and trickiness
of language. Language is complex, ever-changing, an(::':~:fficult to master;
we cannot force it to behave deterministical1y. Instead, we"should model its
uncertainties, giving systems the ability to learn probabilistic rules that work
weil in situations resembling those they were trained on.

The KCT-based robust matcher described.in this thesis represents an
attempt to extend the probabilistic approach "to the one level of current
speech understanding systems where hand-coded rules still reign supreme:
the linguistic analyzer.

1.4 1'hesis .Dutlïne
Note that sorne of the chapters listed below are mainly theoretical or describe
related work by othersj a reader interested in a quick overview of the original
work and its practical results may wish to focus on Chapter 6 ("Building Key
word Classification Trees"), Chapter 8 ("CHANEL: A KCTcBased Linguistic
Analyzer for ATIS"), Chapter 9 ("Results") and Chapter 10 ("Discussion").

• Chapter 2 - "Speech Recognition and Speech Understanding". De
scribes the structure of speech recognition systems and recent progress
in speech recognition; discusses the role of the linguistic analyzer of a
speech understanding system. A major theme of the chapter, which
will be illustrated at several different levels of speech recognition, is
the triumph of brute-force approaches involving simple models trained
on large amounts of data over linguistical1y sophisticated, hand-coded
approaches.

• Chapter 3 - "Speech Understanding Systems for the ATIS Task". De
scribes the DARPA-sponsored ATIS task and recent suggestions for
changes in the definition of ATIS. The bulk of the chapter is a compar
ison of the linguistic analyzers of various ATIS systems.
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• Chapter .\ - "Learning Patterns in Strings". 13efore designing algo
rithms that learn semantic rules, one lllllst ask: what kinds of mies
are learnable? A review of the literature on grammatical inference,
syntactic analysis, and related topics, which.places KCTs in context.

• Chapter 5 - "Classification Trees in Speech Proccssing". This chap
ter presents the techniques underlying the original work described in
Chapter 6.,Thes~ techniques for growing and using classification trees
are illustrated bYJexamples from other levels of speech processing (the
work described id this thesis i~ the only application known to me of
classification trees to speech semantics).

• r]hapter 6 - "Building Keyword Classification Trees". Summarizes the
decisions that must be made by a robust matcher in a speech under
standing,system, and shows how KCTs can learn rules for making these
decisions. Most of the chapter is devoted to a description of the algo
rithmsfor growing two kinds of KCTs: thesingle-symbol KCT and the
set-m~mbe1'ship KCT. .:',' .

• Chapt~r 7 - "Computational Complexity of the KCT Algorithms". Rig
l', orous seriai and parallel time complexity computations for the KCT

growing and c1assifi,?J,ionalgorithms. The discussion of parallel imple
mentation of Ü.e;è algorithms is of particu!ar interest.

\'---' .,

~ ".
• Chapter 8 - "CHAN.F:L: A KCT-B_~edLinguistic Analyzer for ATIS".

CHANEL is a linguittic analyzer developed at CRIM and tested in the
November 1992 ATIS benchmarks. This chapter describes the structure
of CHANEL. Details of the conceptual representation language, of the
local parsers that handle slot-filling phrases, and of the ATIS training
data are given.

• Chapter 9 - "Results". For both the transcript task and the word
sequence hypothesis task, comparisons are made between the results
obtained with single-symbol KCTs and set-membership KCTs, and be
tween KCTs permitted to ask questions about semantic categories and
those that can only use lexical items. It is shown how performance
varies with the size of the training corpus. The hypothesis that KCTs
trained on recognizer output perform better in a speech understanding
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system than t:'anscript-trained KCTs is tested and discussed. Finally.
this chapter analyzes the resultJ'obtained by CHANEL in the Nover"·
ber 1992 ATIS benchmarks.

• Chapter 10 - "Discussion". Discusses the advantages and shortcomings
';" of the KCT-based robust matcher, and makes suggestions for further

work. -- "

• Appendix - gives technical details of the KCT-growing aIgorithms.
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Chapter 2

Speech ttecognition and
Speech tJnderstanding

Speech recognition is a hard problem. There is a large amount of variabil
ity in human speech, as illustrated in figures 2.1 and 2.2 (courtesy of the
CRIM Speech Recognition Group). Note l'rom figure 2.2 that even the same
speaker pronouncïilg the'! same word at different times demonstrates consid
erable variability. Human beings wield a vast amount of knowledge about
acoustics, syntax, semantics, and about the pragmatics of the situation in
which the speech signal is produced in order to identify spoken words. The
nature of this knowleclge and the manner in which it is applied are as yet only
partially understood.. Thus, systems which understand unrestricted natural
language will not be built for many years.

Given the difliculty of the problem, it is remarkable that practical speech
recognition systems are currently being built. This chapter describes poten
tial applications for such systems, and surveys the twenty years of steady
progress in speech recognition that have made them possible.

2.1 PotenUal Applications
It is likely that man-machine communication by voice will become part of
daily life in the developed world within the next twenty years. Ma.n~( millions
of people in North America have already replied "yes" or "no" to a recor.ded
message asking them whether they accepted a collect cali; their reply was
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proœssed by a speech recognition system developed by Bell Nonhern Re
search. Il rernains to be seen whether speech recognition technology will
be confined to a few niche applications like this one, or whether voice will
becorne one of the principal channels of man-machine communication.

Among existing systems, one may conveniently distinguish between dic
"Ilion systems and speech understanding systems. The former, marketed by
such companies as Dragon Systems of Boston, attempt to transcribe speech
accurately. The latter execute spoken commands - for instance, they may
attempt to retrieve from a database information asked for by the user. Thus,
the work of a dictation system is completed when it has obtained the word
sequence that matches the user's utterance, while a speech understanding
.ystem must generate a conceptual representation that initiates further ac
tion.

Although a dictation system only carries out speech recognition, while
a speech understanding system carries out speech recognition and then per
forms an extra step, dictation systems are no easier to design than speech
understanding systems. For instance, dictation systems normally recognize
a much larger vocabulary than speech understanding systems. Sorne data
entry systems carry out tasks that lie along the border between dictation
and speech understanding. Kurzweil Applied Intelligence of Cambridge cur
rently markets a system designed to take' dictation from a doctor examining
a patient. The system fms in fields in a chart, and will prompt the doctor at
the end of the examination if there are any unfilled fields.

Medium-term applications of speech understanding systems will be lim
ited mainly by the state of the art in knowledge representation and semantics.
Speech understanding systems will probably soon handle many routine, high
volume transactions that are carried out in the same way most of the time
[WaiWL pg. 1]. Examples are enquiries about schedules and ticket-buying
over the telephone. An application like airline flight booking (as in the ATIS
scenario) yields a high proportion of simple requests and sorne more compli
cated ones requiring human judgmentj here, one could envisage the system
transferring the complicated requests to a human being. For sensitive appli
cations like bank balance transfers, speech understanding could be combined
with speaker recognition to enhance security.

Speech understanding systems may also provide a communication chan
nel in command and control situations where the individual's hands and
eyes are otherwise occupied, as for surgeons and fighter pilots. Similarly, the
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handicapped may benefit from wheelchairs or robots that rl'spond to voicI'
commands, and owners of intelligent houses and intelligent cars lIlay wish
to communicate with them verbally. Another obvious application of speech
understanding is communication with a personal computer. Apple COIll

puter Inc. is currently working on a voice interface called "Casper" to the
Macintosh personal computer, under the guidance of Kai-Fu Lee, a highly
respected speech recognition researcher.

In the long term, sorne researchers envisage the trans/ating te/ephone
or l'ven the ultimate conversationai computer [WaiWL]. The conversational
computer would have the ability to understand, think about, and respond to
ordinary conversation. 1 am more sceptical about this possibility than 1 am
about the ones mentioned in previous paragraphs, since 1 helieve it would
require a revolution in our understanding of semantics and knowledge repre
sentation. In the past, good natural language processing systems were built
for semantically limited domains - microworlds - but deep problems were
encountered when one attempted to build more general systems. Neverthe
less, it is clear that speech understanding systems have a host of potelltial
applications, and an interesting future.

2.2 Dhnetlsiotls of Difficulty
Let us now return to solid ground and survey the difficulties that degrade
speech recognition performance. Existing speech recognition systems can be
located in a multidimensional space defined by axes of difficulty. Designers
')f these systems often deal with unavoidable difficulty in one dimension by
accepting a more forgiving definition of the task in another dimension.

The main dimensions of difficulty are [WaiWLJ:

• Isolated-word or continuous speech;

• Vocabulary sizej

• Task and language constraints;

• Speaker dependent or independent;

• Acoustic confusability of vocabulary items;
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• Environmental noise.

Systems that recognize only isolated-word speech require the user to pause
for at least 100-2.50 msec after each word, while continuous speech systems
impose no constraint on the user, allowing him to speak rapidly and fluently.
Continuous speech may be cut up into words in many different ways: consider
"euthanasia" and "youth in Asia", "new display" and "nudist play". The dif
ficulty of recognizing word boundaries makes continuous speech recognition
much more difficult than isolated-word speech recognition.

As the size of the vocabulary increases, there are more mutually confus
able words, and exhaustive search of the whole vocabulary becomes com
putationally intractable. With a small vocabulary, one can build a good
acoustic model for recognizing each individual word. With a large vocabu
lary, it becomes difficult to collect enough training data for each word, so
that subword models based on phonemes or syllables are employed instead.
W.hen such subword models are concatenated to form word models, sorne
word-specific information is lost, reducing recognition accuracy.

The st ronger the constraints known to affect the order and choice of words
in an utterance, the easier speech recognition becomes. Such constraints
are incorporated in a language model that helps to reduce the number of
reasonable word candidates at a given time. For sorne tasks, users may be
forced to speak according to the rules of an artificial syntax to facilitate
recognition.

A speaker dependent system is trained to deal with the utterances of a
particular individual. Typically, each new person who will be working with
the system takes an hour or so to train it by reading it ail the words in the
vocabulary (if it is a small-vocabulary system) or a passage containing the
most common combinations of phonemes in the language (if it is a large
vocabulary system). A speaker independent system is trained once, before
use, and must then be able to handle a wide variety of voices not encountered
during training. Provided a speaker dependent system is tested only on the
voice it has been trained for, it will perform better than a comparable speaker
independent system. To give speaker independent systems accuracy doser
to that of speaker dependent systems, speaker adaptation methods have been
developedj these adjust the parameters of the system's recognition models in
the course of an interaction to better model the current speaker, or map the
current speaker onto one of a number of speaker dusters and then employ
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the model corresponding to that cluster.
Two vocabularies of the same size may differ in acoustic confusability.

Thus, the ten digits are easier to recognize than the letters rhyming with '13'.
Finally, environmental noise often affects performance; a speech under

standing system that operates in a factory may be much harder to design
than one that operates in a quiet office. Background conversation, slarnming
doors, sneezes, emotionally stressed users, and a host of other phenomena
must be taken into account. Environmental factors may be quite suhtle 
sorne speech recognition systems work better with certain microphone types
than with others.

These dimensions of difficulty can be traded off against each other. Thus,
a dictation system like those marketed by Dragon has an extremely large vo
cabulary and flexible word order which are "paid for" by requiring each user
to train the system to his voice, to pause between words during dictation,
and to shield the system from ambient noise. A speech understanding system
designed to execute commands in the cockpit of a fighter plane would have ex
tremely high noise tolerance, attained by a small vocabulary and constrained
syntax for commands, and possibly also by making the system speaker de
pendent. A system for making air reservations over the phone must carry out
speaker independent continuous speech recognition, and tolerate sorne back
ground noise; hence, the vocabulary size must be relatively small. While the
designer cannot impose a constrained syntax on users of this air reservation
system, he might c~use the system to ask carefully designed questions tltat
made user utterances more predictable.

In this thesis, the focus will be on speaker independent continuous speech
understanding. The ATIS testbed for the KCT algorithms has a modest
vocabulary (about 1000 words) and assumes low levels of ambient noise,
with the speech transmitted directly to the system microphone rather than
over the telephone. There are semantic but not syntactic constraints on user
utterances, which must deal with air travel and related subjects. ATIS will
be described in more detail in Chapter 3.
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2.3 Non-Probabilistic Speech Recognition Sys
tems

This section describes template-based and knowledge-based speech recogni
tion systems. Although these two system types are still in use for certain
speciaiized applications, the probabilistic type described in the next section
has supplanted them for large vocabulary, speaker independent, continuous
speech recognition. Many aspects of probabilistic systems are derived from
these older types.

2.3.1 1'emplate-13ased Speech Recognition
A summary of template-based approaches may be found in [0'587 pp. 415
459]; furthcr readings on this topic may be found in Chapter 4 of [WL90]. The
first two system components shown in figure 2.3 perform feature extraction
and are often called the front end. The front end eliminates signal variabiiity
due to the environment and to special characteristics of the speaker's voice,
then converts the signal to acoustic features such as formants, phonemes, or
phoneme sets (e.g. "fricative" or "plosive"). Thus, the front end eliminates
rcdundancy and reduces the amount of data to manageable size.

From the sequence of features, the system forms the current pattern. This
is then compared with stored templates, and the template that matches the
current pattern most closely is chosen. This requires a local distance measure
for comparing a feature in the pattern with a feature in a template, a global
measure for the overall pattern-template distance together with a computa
tionally efficient method for computing it, and a decision rule for choosing
the final word sequence. In the "active model" of template-based speech
recognition, there may be feedback from the component that hypothesizes a
pattern to lower-level components.

Consider an isolated word, small vocabulary system. Here, word bound
aries will be easy to spot and it makes sense to design the system so that
the current pattern and the stored templates are individual words. A global
distance obtained by lining up the start of the current pattern with the start
of a template and adding up local distances will not tell us much. Instead,
we can temporally "stretch" sorne phonemes and "compress" others in the
current word until as many portions of it as possible are lined up with like
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portions of the stored 1V0rcl: a penalty fol' stretching and compression must
be built into the global distance score for each such match. This idea is the
basis for dYIl1l11lic lime wlll'ping, the most popular methodology for pattern
rnatching in template-based systems. A variety of distance measures and
decision rules have been devised for the dynamic time warping algorithm.

Template-based systems work weil for isolated word speaker dependent
recognition of small vocabularies containing short words. As vocabulary size
and word length increase, computation time goes up. Continuous speech
requires the dynamic time warping algorithm to consider ail possible combi
nations of word starts and stops, and thus also increases computation time.
Template-based approaches are even worse at segmenting continuous speech.

Finally, different speakers may use different phonemes in pronouncing the
same word, creating a difficulty that dynamic time warping cannot handle
with a single word template. As we will see, probabilistic systems can incor
porate alternative pronunciations in a single mode!. Template-based systems
are incapable of carrying out this kind of generalization and can only cope
with this problem by storing several different pronunciations of the same
word, which increases computation time and ignores similarities between the
different pronunciations - thus failing to take full advantage of the training
data.

2.3.2 knowledge-gased Speech ltecognition

Many researchers from the mid-1970s onward believed it was important to
incorporate linguistic rules in speech recognition systems, which is difficult
to do with a template-based approach. Although the phrase "knowledge
based speech recognition" is widely accepted as the designation for the work
of these researchers, [WaiWL pg. 4], [0'S87 pg. 418], it is misleading. Ev
ery speech recognition system, from the earliest template-based system to a
rccent probabilistic one, is the product of hard-won human knowledge. It
would be more accurate to say that this group of systems is characterized by
the "expert system" approach.

The best exampleof this approach was HEARSAY, a system developed at
CMU as part of an ARPA-sponsored research effort to achieve speaker inde
pendent continuous speech recognition between 1971 and 1976. HEARSAY

_pioneered the idea of a "blackboard" architecture which allowed multiple
- knowledge sources to talk to each other. Each knowledge source is an expert
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system covering a particul"r aspect of iinguistics, such as acoustic-phonetics,
syllabification, prosodics, syntax, or semantics; pach functions in parallei with
the other knowledge sources. The blackboard contains hypotheses written
on it by the knowledge sources; a hypothesis written there by one knowl
edge source often causes other knowledge sources to add new hypotheses. A
description of the system can be found in [ErmWL].

The architecture of HEARSAy permitted it, unlike a template-based sys
tem, to benefit from up-to-date linguistic expertise in each area correspond
ing to a knowledge source. Unfortunateiy, knowledge sources often contra
dicted each other, or got stuck waiting for information from each other.
Subsequently, a CMU group devised a streamlined, "compiled" version of
HEARSAY called HARPY [LowWL]. HARPY discarded many of the knowl
edge sources employed by HEARSAy and used only phonemic knowledge
(specifying one or more acoustic templates for each phoneme), juncture mies
(for dealing with phones at word boundaries), lexical knowledge (represent
ing alternative word pronunciations), and syntactic knowledge (specifying
permissible word sequences). Ali these knowledge sources were expressed as
graphs, and al! except for the phonemic knowledge were hand-coded.

The final, dramatic step in creating HARPY was to compile aIl these
knowledge sources into a single, 15000-state graph. During recognition, a
set of paths close to the best found so far was explored in paral!el with the
best path. This heuristic beam search made backtracking unnecessary, thus
speeding up search - it was one of HARPY's most important contributions.

HARPY attained the highest level of performance among the systems par
ticipating in the five-year ARPA speech understanding project that ended in
1976. Much of its success was due to tight and rather unnatural syntac
tic constraints which greatly decreased the number of word candidates that
had to he considered at a given time. On the other hand, compared with
HEARSAY, HARPY demonstrated the advantages of a uniform encoding of
different types of knowledge that avoided run-time conflicts between knowl
edge sources.

Although the "expert system" approach to speech recognition has been
superseded for most applications by the prohabilistic approach, there are
strong arguments to be made for incorporating !inguistic constraints in speech
recognition systems.

In a 1985 article, Victor Zue listed severallinguistic constraints that couId
improve speech recognition performance [ZueWLJ. For instance, the acoustic
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front end should take into account what is known about the human auditory
system. The ear's temporal window for frequency analysis is non-uniform.
Low-frequency sounds such as sonorants are assigned a long integration win
dow, yielding good frequency resolution, while high-frequency sounds such
as stop bursts are assigned a short window, yielding good temporal resolu
tion. Other "design decisions" in the human ear lead to superior formant
tracking, and thus superior phoneme recognition; they also Iead to increased
robustness in the presence of environmental noise. Stephanie Seneff initiated
and successfully implemented many of these ideas for improving the front
end [Sen WL]. .

Zue also advocated the study of phonemes in context. "Speech is gener
ated through the dosely coordinated and continuous movements of a set of
articulators \vith different degrees of sluggishness... the acoustic properties
of a given ph()neme can change as a function of the immediate phonetic envi
ronment" [ZueWL, pg. 201]. This phenomenon is called coarticulation. Zue
suggested that prosody is a valuable clue - unstressed syllables can be repre
sented by broad phonetic categories, with analysis focusing on the stressed
syllables that help most in identifying a particular word. Since unstressed syl
lables are acoustically variable, it is more accurate to model them coarsely.
A related point is that the distance measure between the current pattern
and a stored template should concentrate on regions which are perceptually
salient.

Finally, Zue emphasized the importance of a coherent knowledge represen
tation and control strategy for combining knowledge from different sources.
HEARSAY ran into difficulty because of loose coupling between knowledge
sources, which led to confiicts and communication problems.

It is on this level of representation and control strategy that the knowledge
based approach and the probabilistic approach differ. At other levels, there
is no confiict between the two; many of the good ideas generated by Zue and
by other advocates of the knowledge-hased approach have been reborn in
probabilistic costume. Designers of probabilistic systems employ linguistic
expertise in defining the structure of probabilistic models. However, they
prefer the parameter values for these mcdels to be estimated automatically
from large amounts of training data, instead of by human experts.
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Figure 2.4: Structure of the CRIM Speech Recognition System

2.4 Prohahilistic Speech 1l.ecognition Systems

•

Figure 2.4 shows the structure of the CRIM speech understanding system,
which is described in [Norm92J. Probabilistic systems for speaker indepcn
dent, continuous speech recognition al! strongly resemble each other, so the
diagram would look much the same if another system were chosen as the
example.

These systems view speech recognition as a decoding problem. Let y
represent an acoustic observation vector, and w a sequence of words. The
task of a speech recognition system is to find w such that P(wly) is maximal.
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By Hayes', rule. wc have

P(wly) = P(w)P(ylw)/ P(y).

P(y) cau be ignored, since it is constant at a given time. Thus, a proba
bilistic speech recognition system seeks to find w maximizing P(w)P(ylw).
The calculation of P(w) is the job of the language model, while P(ylw) is
calculated by hidderl Mar'kov rnodels (HMMs) operating on the output of the
acoustic front end.

2.4.1 'l'he Acoustic Front End

The front end digitizes the acoustic signal and cuts it into frames, usually
at a fixcd frame rate. It then extracts a smail number of parameters per
frame, which rcflect aspects of the signal 's power spectrum. The frame seen
at time i thus generates a vector Yi of spectral parameters. Many systems
vector quantize the frame vectors Yi by mapping each onto the nearest entry
in a vcctor quantization codebookj sorne systems use several codebooks. To
illustratc the use of classification trees, Chapter 5 of this thesis will describe
how they can assist vector quantization. The observation vector y which is
the input to the hidden Markov models is the concatenation of the YiS, or of
the codewords to which vector quantization has mapped them.

The front end of a typical probabilistic system incorporates many ideas
developed for template-based and knowledge-based systems. The choice of
parameters usually reflects sorne form of auditory modeling, thus building
on the work of Seneff and Zue. However, most systems do not attempt to
rcplicate ail the stages of processing carried out by the human ear.

An important recent development in the front end is the use of dynamic
parameters describing how other parameters are changing - in other words,
the use of first and second derivatives. This is a way of letting the front end
modellollger-term trends that are poorly modeled by hiddell Markov models;
it can be seen as highlighting one of the major f1aws of HMMs [Norm91 pg.
il. HMMs assume that each frame of the acoustic signal, covering about a
centisecond, is statistically independent of the previous one - a completely
unrealistic assumption. Thus, the front end can be designed in a way that
helps compensate for sorne of the f1aws in the next processing stage.
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2.4.2 Hidden Markov Models

HNlNls lie at the core of a probabilistic speech recognition system. Once the
system designer has chosen the speech unit - possibly the word. possihly il

subword unit such as the phoneme - every example of that unit is Illodcled by
means of a finite-state graph and a different output distribution for each statc
in the graph. Speaker variability is modeled in two ways: by I1lcans of the
output distribution associated with each state, and by means of pl'Ohabilities
for transitions between states. Each frame of the acoustic signal corresponds
to an output from some state. The output distributions for states enable
the mode! to deal with such phenomena as different pronunciations fol' part
of a word, while the transition probabilities enable the mode! to deal ',Vith
variations in timing such as skipped, lengthened, or truncated syllables of a
word (if the unit is the word).

Figure 2.5 shows an HMM for the word "sauce". This model was formcd
by concatenating models for "s" and "ao". Given such a model and an
observation vector y, it is possible to caleulate the pl'Obability P("sauce"ly)
that an attempt to pronounce the word "sauce" gave rise to y.

The popularity of HMMs is partly due to their surpfislngly high level of
recognition accuracy, and partly to the tractability of the algorithms <L~So

ciated with HMMs. The accuracy of HMMs is surprising because, as men
tioned earlier, each frame of data is a~sumed ·:to be independent of the pre
vious frame (given the state). The reêder interested in the details of the
algorithms for training and using HMMs"should consult the lucid description
given in [RabWL].

HMMs can be classified ai, discrete, continuous, or semi-conti111LOUSj tbesc
terms refer to the modeling of the output distributions. Discrctc HMMs arc
easier to implement than continuous HMMs, while the latter oifer morc de
grees of freedom. Semi-continuous HMMs use mixtures of continuous distri
butions: each state's output is modeled by selecting discrete valucs specifying
the weights to be assigned to each of the continuous densi ties (which arc avai!
able to aU states). Semi-continuous HMMs :;eem to combine the advantagcs
of the other two types, and are becoming increasingly popular. [Norm91 pp.
38-43] defines and discusses ail three HMM types.

There are sorne l'roblems with HMMs. Nothing in thcir structure suggests .
a speaker is unlikely to alternate from falsettl) to bass, or from the accent of
Bela Lugosi to that of Nelson Mandela, at each frame boundary. HMMs also
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"s" "ao" "s"

Figure 2.5: HMM for "sauce" [Norm91, pg.22]
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yield erroncous predictions for the overall timing of a nnit - for instanc,'. an
HMM for a word will predict that very fast or very slow pronunciations of lh,'
word are much more unlikcly than they actually arc (the cstimated average'
time will be about right). As a l'l'suit. there is a tendeney to smngglc long
term crJlistraints into other parts of an I-IMi\-I-based system, such as the frollt
end and the choice of units. This is only a partial solution, and attempts to
turn HMMs into better models without losing their advantages arc an active
area of research.

2.4.3 Choosing the Dnits

,

For an application with a small vocabulary, it makes sense to build ail HMM
for each word in the vocabulary. As vocabulary size grows, it becomcs more
and more arduous to obtain enough training data for each word. The de
signer of a large vocabulary system would naturally consider making the
phoneme the basic unit of the system, with word modekbuilt by cOllcate
nating phoneme HMMs.

Unfortunately, the acoustic realization of a phoneme is extremely vari
able: il, depends on the accent, the speaking rate, the pholletic context,
stress, and a number of other factors. Many system designers have aUai lied
good results by defining units that are more specific than phonemes alld more
general than words: phonemes in con!ex!. For instance, triphone rnodcling
involves building an HMM for each phoneme given the previous and follow
ing phoneme. Since there arc roughly 40- phonemes in English, this could
conceivably involve building 403 = 64000 dilferent HM Ms. Fortunatcly, the
number ortriphones that actually occur is often much smaller. An exarnple
is the Resourcc Management application which involves somewhere between,
2000 and 8000 {;iphones, depending on whether one considers only irMa-word
or also inter-word contexts [Norm91 pg. 10].

Many variants of this basic idea have been tried. For instancc, 011 the
grounds that function words like articles, prepositions, and conjllnctions
cause a disproportionate number of recognition errors, Kai-Fll Lee illtroduccd

.-
models specifie 1,0 function words. Part of Chapter 5 describes an application
of classification trees 1,0 derivation of models for phonemes in context. Ail
these context-dependent subword models are an expression within the prob
abilistic approach of a theme mentioned by Zue in the article cited above
[ZueWL].
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2.4.4 The Language Model

Recall that the language model specifies the a Jl"iori probability P(w) of the
\l'ord sequence w. The knowledge-based systems described earlier tended to
ddine possible \l'ord sequences by means of a finite-state grammar, effectively
assigning a probability of 0 to almost all possible word sequences.

[t was the IBM speech recognition team headed by Dr. Frederick Jelinek
that initiated the study of more flexible language models, perhaps because the
team was working on a dictation system rather than a speech understanding
system. Speech understanding systems tend to make the people building
them believe, usually wrongly, that they know in advance how people will
phrase their requests to the system. Builders of a dictation system know
that the users will employa wide variety of linguistic constructions that are
impossible 1,0 predict in advance.

The IBM trigram mode! for dictation predicts the probability of occur
rence of a ward lU; on the basis of the identity of the two words Wi-2, W;-l

that preceded il. To do this, one analyses a huge training corpus of docu
ments, which should be similar in tapie and vocabulary ta the documents
which will be dictated to the completed system. The analysis involves count
ing all three-word sequences. The trigram model estimates the probabil
il,y P(WdW;-2.Wi_l) that the currcnt \l'ord is Wi, given the two preceding
words, by the frequency !(WdWi-2, 'ù;-tl with which Wi immediately followed
W;-2, W;-l in the training corpus. Since three-word sequences not encoun
tered in the training corpus will inevitably occur and should not be assigned a
probability of 0, in practice the trigram frequencies are interpolated with bi
gram frequencies and unigram frequencies (the frequency of individual words
in the corpus).

This kind of language model, often criticized as childishly simplistic by
academic linguists, has proven astonishingly successful and durable for prac
tical speech recognition. Many variants exist. For instance, the triPOS model
"forgets" the exact identity of the. preceding two words and remembers only
their parts of speech (POS), i.e. whether they were :Jouns, verbs, adjectives,
or whatever. The estimated probability of the CUItent ward is the product
of its probability within a given POS with the probability of that POS given
the two preceding ones. If gi represents the POS of the ith word, we have:
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The trigrarn model performs best if more than t\Vo or thrce million ll'ord, of
training text are available. If not, other models like the triPOS model or il

bigram mode! estimating P(w;lw;_d arcpreferable. It has been sholl'n that il

triPOS model can be significantly impro' ..1 by assigning higher probabilities
ta words that occur in the course of the recognition task [Kuh90,Kuh9:l].

The effectiveness of a language mode! is expressed by the reduction in
perplexity it permits. When a language mode! has perplexity S for a given
sequence of words w, recognizing w is approximately as difficult as if, at any
time, there were S' equiprobable ward candidates. The perplexity is defined
as S(w) = P(w)-I/n, where Tl is the number of,words in w.

These simple language mode!s, combined with HMMs for acoustic 1110d
eling, yield such rapid, robust and accurate lexical search algorithrns that
they are no\v p,rnployed in many speech understanding systems, as weil as
in"dictationsYstems., This has occurred despite the original belief of most
speech understanding researchers that speech understanding scenarios wonld
yield tighter constraints based on syntactic and semantic models. Chapter
:3 describes some speEich understanding systems for ATIS in which syntactic
and semantic constraints are applied only at the last stage of the search; they
come into play al'ter' ;ile knowledge contained in a simple language model and
the HMMs has been applied 1.0 generate a small number of ward sequence
hypotheses.

2.4.5 ~exical Search and the N-Best Hypotheses

Recall that the task of the speech recognition system is ta find w maximizing
P(w)P(ylw), where P(w) is ca1culated by the language model, P(ylw) by
concatenated HMMs. Hall' can the search for the optimal w be carried out
efficiently?

Most systems use Viterbi search ta find the best path through the con
. catenation of speech unit models. Viterbi search stores a trellis of paths
',' andtheir scores, where the score is some function (usually logarithmic) of

théprobability of the path 50 far. Viterbi search does not yield the to
. ,-' ta! prob<,J5ilitY of a given word sequence: it discards low-probability paths
- through"the graph of concatenated HMMs. In prillciple, the probability of a

ward sequence should be obtained by summing the probabili ties of ail pos
sible paths through that word sequence, including the most unlikely. Thus,
Viter~j_'~earch may lose the path with the highest score. Furthermore, the
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illlperfect nature of the acoustic models implies that even the word sequence
with the highest score may not be identical ta the ward sequence actually
nttered by the user. Thlls, it is prudent to find other word sequences that
are "close" in some sense to the top ward s~quence found by Viterbi.

[n 1990, F. Soong and E.-F. Huang devised an ingenious two-pass algo
rithm that employs the scores stored in the Viterbi trellis as the basis for
a low-cost A" backward search that generates the N best path hypotheses
[So090]. A" search is a strategy that always extends the path with the lowest
value of f(n), where n is a node and f(n) = g(n) +h(n). Here g(n) is the
known cost of the path from the start ta n, and h(n) is a heuristic estimate
of the cost of extending a path from n to the finish. h(n) is called admis
sible if it is guaranteed never ta overestimate the cast from n ta the finish
- in other words, if it is a lower bound. If h(n) is admissible, the strategy
of cxpanding the node with the lowest value of f(n) can never cause us to
overlook the lowest-cost path. Even if the wrong path is extended for a while,
sooner or later its value of g(n) is guaranteed to exceed the value at an open
1I0de on the best path. Note that if h(n) is set to 0, it is admissible but leads
ta an inefficient breadth-first search; the more closely h(n) approaches from
bclow the true cast of the remaining path to the finish, the more efficient the
A" search.

Soong and Huang perceived that if the Viterbi scores generated in the
forward search at each time i are remembered, they yield exact scores h(n)
for an A" search beginning at the end of the utterance and moving backwards
in time. In this manner, the N best word sequences can be generated for any
reasonable value of N at only a tiny additional computational cost over the
amount of processing required to find the best word sequence.

Real-time systems often employ beam search or fastmatch techniques to
speed up Viterbi lexical search [Norm92 pp. 43-44]. In a traditional beam
search (as in the HARPY system), patbs whose probability falls below a
certain threshold are prunedj the threshold is usually the probability P of
the best path, minus sorne 5. The CRIM group is exploring the possibility
of a more intelligent beam search that would allow 5 to increase in regions
of uncertainty, and decrease in regions of greater certainty. Fastmatch is
a look-ahead technique which identifies the most promising extensions of a
path. Both techniques make search inadmissible, since they make it possible
for the best path to be pruned. Provided this happens seldom, it is a priee
worth paying for real-time performance.
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2.4.6 The Linguistic Analyzer

There is a surprising degree of consensus among researchers about the best
overall structure and components for a large vocabulary, continuons speech
recognition system. Details differ, but the description of components and
algorithms given in the preceding subsections could serve as an introduction
to most existing speech recognition systems.

This consensus disappears when one tums a speech recognition system
into a speech understanding system by adding a linguistic analyzer. The
linguistic analyzers of different systems have tended to resemble each other
very little. In sorne "Ioosely coupied" systems the linguistic analyzer remains
aloof during lexical search, but iater chooses among the word sequence hy
potheses; in "tightly coupIed" systems, the linguistic analyzer is intimately
linked to lexical search. Sorne linguistic analyzers have an ad hoc flavour,
others are firmly rooted in one of a variety of competing syntactic theories.
Nevertheless, one of the themes of Chapter 3 is the emergence of a tentati ve
convergence between linguistic analyzers, driven by the practical demands of
the ATIS task and occurring despite considerable divergence of opinion at
the theoreticai level.

Differences between linguistic analyzers have arisen partly because of the
variety of tasks for which speech understanding systems may be designcd,
partly because until recently most effort has been focused on other levels
of the system, but mainly because the criteria for judging a speech under
standing system are nebulous. A good speech recognition system is one that,
other things being equal, recognizes a higher proportion of words than its ri
vais. What is a good speech understanding system? This question is another
underlying theme in Chapter 3.
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Chapter 3

Speech tJtlderstatlditlg
Systems ror the ATts Task

The criterion of the scientific status of a theory is its falsifia
bility, or refutability, or testability.

Karl Popper, Conjectures and Refutations [Pop69]

3.1 tntroduction
Many branches of natural language processing have made little progress ta
wards building practical systems in the last decade. Speech recognition is the
exception, even though it does not enjoy the luxury of working with typed
input. Why has speech recognition made such rapid strides, while related
fields such as machine translation have been relatively stagnant?

Apologists for other branches of natural processing would argue that the
problems they must deal with are harder than they look, and that much
of the improvement in speech recognizer performance has come from better
hardware rather than deeper understanding of the problem. According to the
latter argument, improved performance was inevitable - speech recognition
systems were pushed forward by favourable technological winds.

1 would argue otherwise. Improvements in speech recognizer performance
were not technologically inevitable. Rather, the reasons for the successes of
speech recognition technology are cultural. Researchers in this field have
always tried to build complete systems that tackle a large, c1early defined
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task, rathel' than toy systems that han(Ile a few examples made IIp by the
designer: what might be called an "engineering" rather than an "academic"
approach.

Even more important, they have been \Villing to compare their systems
with those of other researchers by evaluating performance on agreed-on bench
mark tasks. These include digit recognition in continuous speech [Car92], the
Resource Management task involving read speech with a lOOO-word vocabu
lary [Pri88], and more recently ATIS. Much of the credit for this must go to
agencies like ARPA and its successor DARPA, which funded such evaluations
and many of the groups taking part in them.

A crucial aspect of the benchmark evaluations is that they involve two
similar but disjoint data sets: the training set and the test set. The training
set is released to system designers sorne time before the evaluation, and gives
them a chance to fine-tune their systems. The test set is used only for
testing, and only results on this set are considered valid indicators of system
performance.

This evaluation methodology may appear obvious, but until l'ecently it
has not been applied in other branches of natural language processing. 1 was
once present at a frank and extremely illuminating talk on machine trans
lation given by Alan Melby [MeI88]. Melby noted the tendency of designers
of machine translation systems to illustrate the performance of their systems
with a single example that has been intensively studied: "Almost any ma
chine translation system can produce brilliant results when the same text is
l'un through it again and again with successive tuning. The power of tuning
is well-known and has been given a name in AI research, namely, defining a
microworld... In a machine translation system, difficulties arise when a tuned
system is applied to a new text" [ibid, pg. 412].

At the end of his talk, Melby proposed the establishment of benchmark
evaluations for machine translation systems. System designers would be
given many details abouCŒe passage tobe translated in advance - the source
language, the target language, the vocabulary and the topic - but not the
passage itself. No "tuning" of the system or "post-editing" of the translations
would be permitted during the test; every translation would be scored by a
jury of professional translators. Melby's proposaI was received with hostility
-by an audience of experts in machine translation, who managed to devise an
ingenious collection of reasons for rejecting it. A cynic might conclude that
they were worried about the impact of such an evaluation on their funding.
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The philosopher Karl Popper maintained [Pop69] that a theory couId only
be otIled scientific if it exposed itself to experimental refutation. Thus, a
good physicist can devise hundreds of experiments that, if the results turned
out a certain way, would prove Einstein 's theory of relativity wrong. So
far, every such experiment has failed to refute the theory, but it might have
been otherwise. On the other hand, it is impossible to imagine an experiment
that would convince an ardent Freudian or a believer in astrology that his pet
theory is wrong. A scientific theory makes precise predictions and thus runs
the risk of being proved wrong. In fact, scientific progress depends to a large
extent on the refutation of good theories, which leads to the development
of even better ones. A pseudo-scientific theory like astrology can never be
proved wrong, and may therefore linger for millennia.

Analogously, progress in natural language processing depends on objec
tive tests of system performance. Without such tests, the best ideas will not
win out; instead, victory will go to those ideas whose proponents are the most
eloquent, charming or influential. Speech recognition system performance is
easy to l11easure - the percentage of words correct is an obvious metric. It is
much harder to devise an objective metric for the performance of a speech
understanding system. Thus, as speech recognition performance improved
and the attention of researchers shifted towards speech understanding, there
was a danger that speech researchers would acquire the bad habits of their
colleagues in other branches of natural language processing and abandon
common benchmarks.

Fortunately, this has not happened. "There has been a growing apprecia
tion in the speech recognition community of the importance of standards for
reporting performance. The availability of standard databases and protocols
for evaluation has been an important component in progress in the field and
in the sharing of new ideas. Progress toward evaluating spoken language
systéms, like the technology itself, is beginning to emerge" [Pri90 pg. 91J. In
fact, researchers in other branches of naturallanguage processing have begun
ta develop benchmarks for their own domains [Sun91J.

The Air Travel Information Service task domain, known as ATIS, is a
benchmark for speech understanding. The next section describes it in detai!.
Every participating group has criticised one or more aspects of ATIS, and
indeed, parts of the ATIS definition are bizarre or inept. There is a con
cern that participating groups spend too much time optimising their systems
to deal with the idiosyncrasies of ATIS, rather than breaking new ground,
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Ncvertheless, the existence of a standard procedurc for comparillg diffcrcnt
systems, in which many of the most important speech ullderstalldillg groups
take part, is invaluable.

3.2 The Evolution of A'l'ls

3.2.1 Original Definition of A1'tS
An article by P. Price [Pri90] gives a good description of the ATIS benchmark
as originally conceived. The main features were described as follows:

• The ultimate goal is evaluation of systems for understanding speaker ill
dependent, spontaneous speech with a medium-sized vocabulary (around
1000 words).

• Independence of the training and test sets, as mentioned above. This
ensures that the system has learnt sorne general rules from the training
set, and it focuses the attention of the system developer on linguistic
phenomena in proportion to their frequency of occurrence.

• Quantitative, automated evaluation methods rather than qualitative,
subjective methods. Thus, it is better to devise measures such as the
percentage of correct answers, which can be evaluated automatically by
comparing system-generated answers with sorne standard, rather than
measures of nebulous qualities like user-friendliness.

• The stress is on "black box" rather than "glass box" evaluation of the
two components of a speech understanding system: the speech recog
nition component and the linguistic analyzer. That is, the overall per
formance of each component is more important than the performance
of its parts. Groups can choose any combination of three evaluations:

"
1. a test of the speech recognition component on spoken utterances

using percentage of words correct as the metricj

2. a test of the linguistic analyzer in stand-alone mode on transcripts
of utterances using a function of the proportion of correct database
queries generated as the metricj
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:\. " test of the complete speech understanding system on spoken
Iltterances nsing the database query metric.

• A limited domain which is a plausible application for speech under
standing systems.

• A "Wizard of Oz" data collection scenario designed to simulate the
conditions under which the speech understanding system will be used.
The subject believes he or she is interacting with a speech understand
ing system. In fact, a concealed transcriber wizard types what the
user Ims said and sends it to the screen display, while a database wiz
ard enters the appropriate database command and causes the answer
(columns and rows from the database) to appear on the screen below
the transcript.

• Classification of the collected utterances as acceptable or unacceptable.
Unacceptable utterances include those that are grossly ill-formed, am
biguous, or unanswerable, and originally included those that depend on
previous utterances (context dependent). System designers may train
on any or none of these classes of data from the training set; only
acceptable utterances are used for testing.

• To obtain reference answers for both the training and test data sets, the
database queries typed in by the database wizard during the session
wi th the user were reviewed and modified if necessary. A program
to compare the answers generated at the test sites with the reference
answer for each utterance was developed.

There were several reasons for choosing air travel as the domain:

• A real, widely-used database, the Official Airline Guide, was available;

• The domain includes a variety of topics, such as schedules and fares,
the services available on different f!ights, information about airplanes,
and ground transportation;

• A wide pool of users is familiar with the domain;

• The domaiu can be scaled as the technology becomes more advanced
- that is, one can imagine the same domain supporting more sophisti
cated man-machine spoken interaction;
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• The domain resembles many other possible applications of speech IIn
derstanding.

3.2.2 Criticisms of ATls
The first evaluation took place in June 1990, the second in February 1991, and
the third in February 1992. Of systems participating in the first evaluation,
only the CMU Phoenix system was tested on recorded utterances as weil
as on transcriptsj the linguistic analyzers of ail other systems \Vere tested
in stand-alone mode as text processors. Since then, the number of gl"OU ps
participating in ail three tests~\of the speech recognition component alone, of
the linguistic analyzer alone, and of the complete speech recognition system
- has increased al. each evalua.tion.

Participating groups have criticised several aspects of the original defi
nition of ATIS; sel.' the discussion in [Pol92]. Sorne of these criticisms have
already been dealt \Vith, others may be resolved in the near future. The
criticisms are as follo\Vs:

• Recall that probabilistic models require large amounts of data for es
timation of parameter values. Since researchers in speech recognition
began applying probabilistic approaches al. most levels of their systems,
the complaint "We need more training data!" has become a cliché in
the speech recognition community. Ali the groups participating in the
first t\Vo ATIS evaluations complained that inter-speaker variability in
accent, lexieal choiee, syntax, and spontaneous speech characteristics
such as frequency and type of interjections was far too great to be
adequately represented by the 1000 or 50 utterances in the training
set. This problem has now been resolved by MADCOW, a project that
gathers and pools data from many participating sites [Hir92]. As of
February 1992, 10,000 utterances from 280 speakers al. five sites had
been collected, with 1,000 utterances set aside for the February 1992
test and the same number for the November 1993 test.

• There is a serious problem with the "wizard" scenario described above:
the wizard is much smarter than a machine. He will answer questions a
real speech understanding system could Dot, and thus encourage users
to become increasingly bolder and idiomatic in their use of language as
they interact with him. Transcripts From the user-wizard interaction
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will contain little "error recovery" behaviollr, thollgh crror recovery
will be very important for a real speech llnderstanding system. Clearly,
the wizard scenario should only be employed in the tirst phase of an
iterative bootstrapping effort to build speech understanding systems;
in the later phases, the systems themselves should be used to collect
data. This is exactly what has happened. To obtain the February 1992
MADCOW data, two of the groups employed the complete system to
convert utterances into database queries, while the other three groups
employed a transcription wizard to type the sequence of words into the
linguistic analyzer.

• Sorne sites complained that there were too many words in the test
sentences that were absent from the training sentences. This complaint
seems unreasonable; in the real world, different people make different
lexical choices.

• ATIS speech is recorded under almost ideal conditions, with no back
ground noise. Thus, speech recognition performance on ATIS data gives
no indication of how robust a system would be in a real-life, noisy set
ting, such as an airport or traveI agent 's office. There are no indications
that this aspect of ATIS will be moditied.

• Real-time performance is not one of the ATIS criteria; as far as l know,
BBN is the only site that claims to have achieved it. Presumably, it
was felt that inclusion of this criterion would unduly reward groups
that could afford the most expensive signal-processing hardware.

• There has been a continuing struggle over the definition of correct an
swers. Since the first evaluation, the release of each set of training data
has been accompanied by a document called "PrincipIes of Interpreta
tion". Sorne examples of rules found in this document: "around" X
a.m. means from (X - 1) : 45 to X : 15; a snack counts as a meal
if sç:neone wants to see "flights with meals"; "flights between A and
B""means only lIights !rom A to B. Questions beginning "how many..."
may be answered either literally with a number or more pragmatically
with a display of data. Similarl):, sorne questions may be answered
iiterally with "yes" or "no".,.or~pragmatically. The document has not
eliminated all controver..s/about correct answers, but it has kept it
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within reasonable bounds. Disputes about how much information 10

provide in response to a question have been resolved sincc Febrnarv
1992 by providing minimum and maximum referenee answers - if the
system generates ail thc information in the minimum answC'r and no
more than the information in the maximum answer, the response IS

marked correct.

• What penalty should be assigned to a partial'answcr, to a\vrong answcr
and to no answer? This has been one of thl;'hottest issues in the ATIS
community. At present, the main mctric for evaluating the output of
the linguistic analyzer is the weighted amI", defined as (2 * %Ja/se +
%no_answer). Many groups feel that this cxcessivcly penalizes answers
that are almost right, to the detriment of user-friendliness. Consider
the foilowing question-response pair:

LIST FLIGHTS FROM BOSTON '1'0 PITTSBURGH LEAV
ING AT 3 PM

Here are f1ights l'rom Boston to Pittsburgh:

(displays flights Jrom 8oston to Pittsburgh)

This would earn twice the penalty of the response "No answer" bccause
the detail about 3 pm was missed, even though the f1ights displayed on
the screen include those the user wanted to know about. There does not
seem to be any consensus on this issue, so the current scoring schcmc
will probably survive.

• Almost a third of the utteranees collected for the first evaluation were
questions about the meanings of codes displayed on the screen, such
as "What does restriction AP/80 mean?" The original screen displays
were cluttered and crypticj ail the user reeeived in response to a ques
tion was the appropriate rows and columns l'rom the Official Airline
Guide. Sinee the OAG is designed to be accessed by travel agents
rather than untrained members of the public, the users' bewilderment
shou!d have been predicted. In more recent releases, the eolumn head
ings and codes have been made much easier to understand, and the
proportion of questions about them has decreased dramatically. Nev
ertheless, sorne groups feel that the system responses should b,e made
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far more uscr-friendly. As described in the next section, MIT has de
vised a screen display based on an airline ticket for a dialogue version of
ATIS; AT&T's ATIS system outputs synthesized speech summarizing
the result of the database query.

• Although users are given e:enarios before interacting with the system,
these are complicated, vague, and often seem to have little to do with
the resulting utterances. Questions found in the first release include
"What is the payload of an African Swallow?" and "Show me Oaphne's
Itinerary". It was never clear whether the user was a member of the
public or a travel agent. The mode of communication was unrealistic:
most members of the public would find it convenient to telephone for
air travel information, rather than leave their homes and offices to
talk to a screen. (The AT&T group is now working on a telephone
version of its ATIS system). Finally, since the system cannot pretend
to I.ake bookings or sell tickets, an excellent opportunity for purposeful
dialogue has been lost; many jnteractions give the impression of aimless
chatter. The MIT dialogue,'v€{sion takes bookings, but is not part of
the ATIS benchmark evaluation - unlike the main MIT version. In
general, though sites participating in MAOCOW have sorne liberty to
define their own scenarios, the resulting utterances still seem somewhat
unrelated to them.

• TIle main cause of the irrelevance of the scenarios is that ATIS bench
mark systems are forbidden to engage users in dialogue. One of sev
eral negative results of this policy is that users currently try to cram
linguistically unnatural amounts of information into a single question,
because they know the system cannot ask follow-up questions. It seems
absurd to cripple the systems in this manner, but there are good ad-"
ministrative reasons for it. Currently, recorded utterances are sent
to the partidpating sites on CO-ROMs for training and testing; this
protocol does not accommodate dialogue. User utterances that refer
to previous utterances, such as "show me those f1ights again except
for the ones on United" are allowed, but they are latelled 'd' (for
"context-dependent") to distinguish them from the stand-a10nc 'A' (for
"acceptable") utterances. If the ability to carry out dialogue were an
ATIS criterion, real-time or near real-time performance would become
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obligatory, glVlng an unfair advantage to group~ with the lllost ex
pensive hardware. Furthermore, sorne groups pl'efer the evaluation of
non-dialogue systems because it is more "objective" - the performance
criteria for a dialogue system are unclear.

• The opposite point of view also exists, According to this point of view,
the current "objective" criteria should be supplernented by more "sub
jective" criteria that attempt to measure the effectiveness and user
friendliness of a speech understanding system. Like the closely related
issue of dialogue, this remains unresolved.

3.2.3 'l'he Future of A'l'IS
.---;:c--

Two major, interrelated issues were mentioned above - criteria that mea
sure effectiveness and user satisfaction with a system, and dialogue. These
issues are discussed in an interesting paper by members of the MIT group
[PoI92]. The MIT researchers have carried out experiments exploring new
performance metrics for the linguistic analyzer. The metrics fell into two
categories:

I. Metrics for end-to-end evaluation, i.e. for measuring task cornpletion
effectiveness. Subjects were asked to discover a certain fact by <[ues
tioning the system; wllen they had discovered it, they were told to say
"End scenario. The answer is ..." and then give the answer. The
metrics included the number of user queries before task complet ion,
the number of successful and unsuccessful ("No answer") queries, the
number of times the task as a whole was completed successfully, and
the task completion times.

2. Metrics for log file evaluation. Pairs of subject queries and system
responses were extracted from log files; seven evaluators then rated the
query as clear, unclear, or unintelligible, and the system response as
correct, partially correct, incorrect, or "error message". Reassuring~y,

there was a high degree of consensus among the evaluators.

The MIT researchers then conducted a more ambitious experirnent de
signed to compare two MIT linguistic analyzers, the full parse system and
the robust parse system (to be described in a later section). Subjeets took
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each of lhese lhl'ough four scenarios. Ail the metrics mentioned above \Vere
applied to the interactions between the subjects and the two systems, along
with a metric for user satisfaction - subjects were asked which of the two
systems they preferred. Ail these met ries favoured the same system on ail
scenarios (the robust one) except for one anomalous scenario.

The importance of these experiments is that they suggest realistic meth
ods for evaluating the effectiveness and user-friendliness of a speech under
standing system in a problem-solving context. The strong correlation be
tween rnetrics is reassuring; it suggests that they ail measure aspects of the
same phenomenon. Adoption of these or similar met ries might remove the
.nain objection to including dialogue systems in ATIS: the difliculty of objec
'tively evaluating such systems. However, one \Vould have to show that they
can be \Ised to compare completely different systems, as weil as different
versions of the same system.

This is pl'ecisely the question addressed in [Pri92], which describes an ex
ercise to compare the performance of the MIT and SRI systems. 1'0 eliminate
the problem of user variability, the design of the exercise was within-subject;
that is, each user assesses both systems. Half the users would \Vork with the
SRI system first and then the MIT system, while the other half would work
\Vith the systems in the opposite order. The main difliculty was the need
to have both systems running in the same place at the same time. Hard
ware, software, and licensing compatibility problems prevented this from
happening. As a compromise, the evaluation ultimately pitted the SRI sys
tem against a hybrid system made up of the SRI speech recognizer and the
MIT linguistic analyzer.

The expei'Ïmental subjects \Vere asked to play out two scenarios, Aand
B, on each of the two systems. The metrics for the evaluation were~i'milar

to thoseemployed in the MIT experim~nts:
','

• User satisfaction, obtained by asking the subject to score his satisfac-
tion with the system on a scale from 1 to 5; <

• Correctness of the answers extracted by the subject from the system;

• Total time to complete the scenario;,

• Waiting time betweJC1pe subject's utteranç~ of his fii~t qtlestion and
the system's response; ,ç~''':=' (\
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• [jser r('sponse time (from appearance of the system's respons(' to th,'
subjec,'s next utterance);

• Recognition word error rate;

• Frequency and type of diagnostic error messages.

;/The authors of [Pri92] stress the importance of finding metrics for inter
attive systems that refiect user satisfaction and user efficiency, and the nced
for a "reality check" on the role of the current ATIS metrics in promoting
technological progress. Although, within-subject experimental design Îs the
optimum, the MIT-SRI exerciseshowed that this might pose practical dif
ficulties. The authors therefore suggest log file evaluation or evali;ation of
taped subject-system interactions by a neutral "juryH.of experts as anothcr
worthwhile approach.

Many of the arguments for new metrics that might allow dialoguc systems
to be included in ATIS benchmark tests come from researchers in the MIT
group. This may have something to do with the existence of.an impressivc,
ATIS-related dialogue system built by these researchers [Sen91]. This system
builds on ~;u'lier work on the MIT VOYAGER system [Zue91]. Figure 3.1
shows par~;2ta dialogue between a user trying to make a·round-trip night
reservatioiîând,the MIT system (taken from [Sen91 pg. 357]). Note that
the dialogue is mixed-initiative; the system can ask clarificatory questions,
but responds smoothly if the user chooses to incorporate additional answers
in!Jis answer. As the MIT researchers point out, the system thus occupics
a middle ground between systems that passively respond to user requests
withollt asking questions (as in the ATIS benchmarks), and menu-driven
systems that allow the user a very narrow range of choice. The system also
has the capability (not shown in the example) of asking the user to repeat
a request by printing out "l'm sorry, l had trouble understanding that" or a
simiIar diagnostiè. ;';:.;.-

The system has a mechanism for rememberiAginformation mentioned
earlier and interpreting anaphoric references li~~ "the third one". To allow
this, it keeps a history table containing suchhbjects as fiights and dates,
represented as frames, as weil as the Cllrrent tickè~._pre,YiQusly booked tickets,
and previously displayed tables. Another nice feat;;êof th'è'system is that at
a certain point in the f1ight reservation scenario, a facsimile of a partly filled
in airline ticket appears on the screen, as shown in figure 3.2. This enables

",'
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STOPS
o
1
1
1
o
o

,

Subject 1WANT TO GO TO SAN FRANCISCO
ATIS: Whcre from?

Subject BOSTON
ATIS: What date will you he travelling on?

Subject l'LL BE LEAVING BOSTON NEXT SUNDAy
AND RE1URNlNG TIŒ FOLLOWING TUESDAy
ATIS: These are the Oights from Boston to San Francisco
on Sunday January 6:

A/RUNE NUMBER FROM Ta DEPARTURE ARRNAL
United 2l BOS SFO 8:00 am 11:31 am
United 343 BOS SFO 8:40 am 1:36pm
AA 813 BOS SFO 11 :49 am 5:58 pm
Conr 1765 BOS SFO 5:40pm 11:10pm
UnÎled 93 BOS SFO 5:45 pm 9:27 pm
1WA 61 BOS SFO 6:10pm 9:37pm

Subject WHERE DOES TIŒ THIRD ONE STOP
ATIS: Amerlcan Oight 813 from Boston to San Francisco
on Sunday January 6 stops in the following places:

A/RUNE NUMBER FROM TO DEPARTURE ARRlVAL STOPS A/RPORT
AA 813 BOS SFO Il:49am 5:58pm 1 DFW

Figure 3.1: Simulated Dialogue with MIT Dialogue System [Sen91, pg.357]
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Figure 3.2: Ticket Facsimile shown by MIT Dialogue System [Sen91, pg.357]

the user to see what further information the system needs from hirn, and
whether there have been any misunderstandings that need to be corrected.

In developing the dialogue version of their ATIS system, the MIT re
searchers concentrated on the goal-oriented task of making flight reservations,
and ignored potential dialogues focusing on ground transportation, aircraft
capacity, and so on that occur frequently in the ATIS training and test data.
They argue that flight reservation is a well-structured goal with well-defined
subgoals that is comprehensible to a large pool of untrained users, which
forms an ideal testbed for dialogue systems.

If, as the MIT researchers hope, the ATIS benchmarks are redefined to in
clude dialogue systems, the long-term effect on the speech community would
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he dramat.ic. Up t.o the present, research effort has focused on improving the
percentage of 1V0rds correctly recognized. Although this 1V0uld remain an
important goal (an indispensable one for dictation systems), attention would
shift 1.0 dialogue as a strategy for recovering from misrecognition. Language
models would take dialogue state into accountj indeed, the study of discourse
phenomena would become central at most levels of speech<i·ecognition. Thus,
the MIT dialogue system may be a preview of the future of ATIS.

3.3 tinguistic Analyzers for,A1'tS
The remainder of this chapter describes the linguistic analyzers that had
been develop~d for the ATIS task at the time of the February 1992 DARPA
Workshop '[DAR92], the latest date for which published material is available.

3.3.1 't'he stH System

SiU's Template Matcher [Jack91, App92], is the linguistic analyzer for a
speeèh understanding system c10sest to the keyword-based one described in
this thesis. The input to the Template Matcher is the top hypothesis gen
erated by the speech recognition component, which uses 'it'liigram language
mode!. Interestingly, SRJ went into the first ATIS evaluation with a unifica
tion grammar-based parser [Mo090J. By the time of the next ATIS evalua
tion, the SRI group had built the Template Matcher, based on very different

,-1 principles. It simply tries to fill slots in frame-like templates. For the 1991
evaluation, there were 8 templates: these dealt with flights, fares, ground
transportation, meanings of codes and headings, aircraft, cities, airlines and
airports. The different templates compete with each C'ther on each utterancej
ail are scored, and the template with the best score generates the database
query (provided its score is greater than a certain "cut-off"). Slots are filled
by looking through the utterance for certain phrases and words.

Here is a typical example, taken from [Jack91 Pll' 191]. For the utterance

Show me ail the United flights Boston to Dallas nonstop on the
third of November leaving after four in the afternoon

the following flight tempiate would be generated:
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[flight, [stops,nonstop],
[airline, UA] ,
[origin,BOSTON] ,
[destination ,DALLAS] ,
[departing_after, [1600]] ,
[date,[november,3,current_year]]] .

Words in the utterance may contribute to selection and filling of a tem
plate in various ways:

• They may help to identify the template - the occurrence of the wOl'd
"downtown" is a good indicator of the g1'Ound transportationt,cmplate;

, ,
• They may fill a slot - like "Boston" and "Dallas" in the exal~ple;

• They may help to indicate what slot a phrase goes in - like "from" or
"to" preceding a slot-filling phrase.

However, many words are irrelevant: "please", "show me", "would you", and
so on. The Template Matcher simply skips over these.

The score for a template is basically the percentage of words in the ut
terance that contribute to filling the template. However, certain keywords
that are strongly correlated with a particular template will strongly boost
the scçre of that template, if they occur in the utterance. For instance, thc
occurrence of "how much", "fare", or "priee" boosts the score of the Jare tem
plate; the occurrence of "what is", "explain", or "define" boosts the score
of the meaning template. However, if the template has no slots filled, it is
assigned a score of zero; or if the system has tried to assign two or morc
values ta the same slot in the template, it is aborted.

If the best score does not exceed a certain numerical "eut-off", thc systcm
responds with "no answer" rather than with the template that yielded the
best score. Recall that ATIS scoring penalizes wrong answers rather harshly,
so that "no answer" is often a preferable response; to optimize the perfor
maD.!.:; of their system on tests, the SRI researchers set tl.e c~lt-off to the
value that yielded the best results on training data,

. For the 1991 evaluation, the SRI researchers called the Template Matcher
when the conventional parser failed; for the 1992 evaluation, they scrapped
the conventional parser and kept the Template Matcher [App92J. Several
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improvcments were made in the Template Matcher. The 1991 version could
only fil! slots with fixed words or phrases - it had no ability to deal with
general phrase categories like numbers, dates, and times. In the 1992 version,
phrases falling into these categories in the incoming utterance are parsed by
special grammars, and are then put into slots by the matcher. Siots are filled
by matching regular expressions - for instance, "from" followed by a city or
airport name would cause the name to be put into the origin slot of the flight
template.

For the 1992 version, the number of templates was increased to 20, and the
number of slots to 110. Templates now contain illocutionary force markers to
note whether the utterance is (for instance) of the "yes-no" or "how much"
type. Special mechanisms deal with certain types of false starts and complex
conjunctions.

The major difference between the 1991 and 1992 versions of the Tem
plate Matcher is that the latter contains a context handling mechanism for
class 'D' (context-dependent) queries; the 1991 version was only designed
to work with dass 'A' (context-independent, acceptable) queries. As in the
MIT dialogue system, the context handling mechanism allows slots to be
inherited from previous utterances by the same user. Note that if the user's
first utterance is wrongly interpreted, his subsequent context-dependent ut
terances may ail be correctly recognized yet misunderstood: this might be
called the "getting off on the wrong -foot" problem. If systems were allowed
to ask users for confirmation from time to time, this problem would be rel
atively unimportant. Since the ATIS evaluations do not permit dialogue,
the SRI researchers devised several ingenious mechanisms for preventing the
problem. For instance, when the system gives "no answer" to a query, sub
sequent context-dependent queries also yield "no answer", until a query that
sets a completely new context arrives. This strategy yields the best evalu
ation results a:fd y!as consequently adopted for the test, though as the SRI
group points oû't, "it would be a ridiculous way for a system to behave when
interacting with a real user" [App92]. During MADCOW data collection,
on the other hand, the system generates an answer when possible, on the
ground that users prefer slightly incorrect answers to "1 don't understand".

The SRI system performed weil oD',both evaluations. In 1992, it placed
second in both the natural-Ianguage-only test on transcripts of utterances
and the spoken language test (in which the output of the SRI recognizer
is analyzed by the Template Matcher) [PaI92]. TI;~ SRI researchers believe
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that about 80% of cases where the wrong template was generated couId \'"
remedied within the framework of the Template Matcher - for instance. by
adding a new template or a new slot. The rest would require an approach
that yielded more information about the structure of the sentence. They
conclude that their approach is well-suited to a domain of about the sarne
complexityas ATIS.

3.3.2 't'he CMtJ System

Figure 3.3 shows the structure of PHOENIX, the CMU system's caseframe
parser [War92, War91, War90]. In many respects, this system is very similar
to SR!'s Template Matcher. As in the SRI system, the input to PHOENIX is
the top hypothesis of the speech recognition component. The system consid
ers different frames in parallel; the score for a frame is the number of input
words it accounts for. Unlike the SRI system, which aborts a frame if an
attempt is made to overwrite a slot that has already been filled, PHOENIX
allows the overwrite to take place - if a slot is filled several times, the last
slot-filler prevails.

Scored frames generated by PHOENIX are optionally post-processed by
MINOS-II, a "knowledge-based correction module". In addition to dcaling
with context-dependent utterances, this module uses domain knowledgc and
syntax to detect erroneous parses, skipped information, and out of domain
requests. For instance, if someone asks "what is the shortest flight from
Oallas to Fort Worth?" this module informs the user that these two cities
share a single airport [You91]. Before deciding between the scored frames
provided by PHOENIX, this module looks at word strings not accounted
for by a given frame to determine if they are important. The module may
also make deductions about information missing from a frame and supply it
before generating the SQL database query.

The official results are very interesting. For the natural language test,
CMU tested the PHOENIX system alone and with the MINOS-II postpro
cessor. PHOENIX alone obtained the best results of any system participat
ing; PHOENIX plus MINOS-II performed significantly worse and was beaten
by several other systems [PaI92J. As far as 1 can tell from the vague word
ing of [War92] only PHOENIX was used for the spoken language test, with
mediocre results. This is partly due to PHOENIX's policy of guessing at an
answer whenever possible, rather than returning "No answer". The CMU

48



VQ codes: A veetor of3 bytes. each 10 ms

[Iisll: liSl
[flights): flights
[arrive_loc]: "DEN"
[depan_loc]: "PIT"
[depan_tîme_range]: 1400 ·2400

seleel airline_code, flighcnumber
from flighUable
where (from_airport.'PIT' and lo_airport ·'DEN')
and (depanure_lÎme >14(0)

SQl:

[liSl): 1wanllo sec
[flightsl :all flights

frame: [arrive-'?"I: to Denver
[deparLtime_range]: aflertwo pm

words: "show me 1wantto sec ail f1ights 10 Denver after two pm"

canonical
frame:

digitize: 16 KHz. 16 bit samples

Speech: "show me ... ah ...1want to sec ail the nights
ta Denver aCter (wo pm"

+
DSP

•Sphinx

•crror
Correcling

Parscr

•1J"lo~'based

Amb.gu.ly
Resolution

•ATIS
Application

t
Travel

Database

Figure 3.3: Structure of the Phoenix System [War91, pg.l03]
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group's unofficial spoken language results show PHOENIX pills ~IINDS-11

performing better than PHOENIX alone, but ùnly because MINDS-ll rct.1I1'115
"No answer" on many utterances for which PHOENIX alonc wOllld not. hit"c
returned "No answer". MINOS-II act.ually reduces the proportion of correct.
answers.

Thus, the SRI-style temp!ate matcher at CMU performs very weIl 011

transcripts (and might perform weIl on speech if it returned "No allsIVer"
more often in doubtful cases); further processing by an expert system may
actually impair performance.

3.3.3 'l'he nnN System

BBN's speech recognizer is called HARC. Its speech recognition compollent. i5
called BYBLOS; its linguistic analyzer is called DELPHI, and is made up of
a chart-based unification parser and a robust fallback module [Kub92]. BEN
has traditionally taken a conventional syntactic approach to language inter
pretation; the fallback module is a recent addition that IVas absent during the
February 1991 evaluation [Aus91]. An interesting feature of the chart parser
is that il. incorporates information about rule firing probabilities, estimated
frorrLt.raining data.

'riieBBN group has a distinctive appl'oach 1.0 the design of spoken lan
guage systems, characterized by ingenious use of the N best hypotheses. This
approach is described in [Ost91, Schw92]. It involves generating the N best
hypotheses using a fast, simple algoritlïrn, then repeatedly rescoring these
hypotheses by means of more complex, sloIVer algorithms. In this manner,
several different knowledge sources can contribute 1.0 the final result without
complicating the control structure or significantly slowing down derivation
of the final fesult. In the February 1992 tests, BYBLO~ first generated an
N-best list using discrete HMMs and a bigram language model, l'eordered the
list using cross-word-boundary triphone models and semi-continuous IHv1Ms,
then rcordered il. again using a trigram grammal'."

, The fallhack understanding module within OELPHI is called if the unifi
cation chart parser fails [Sta92]. Il. tries to generate a robust interpretation
from parsed fragments left over from the lirst, failed parse. The fallback
module is itself made up of two parts: the Syntactic Combiner and the
Frame Combiner. The Syntactic Combiner uses extended grammatical rules
that can skip over ill:tervening material in an attempt ta generate a complete
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parsc. If thc attcmpt fails, the Framc Combiner tries to fill slots in frames
in a manner similar to that of the systems described above. The main dif
ference is that because it operates on the output of a parser, it can fill slots
with complicated phrases such as "the airport closest to Washington OC".
The Frame Combiner uses many pragmatic rules obtained through study of
training data which could not be defended on abstract grounds. for instance,
interpretations which combine flight and ground transportation information
are rulcd out because they are never observed in the data, even though a
query like "Show flights to airports with limousine service" is theoretically
possible.

To the surprise of the BBN researchers, the fallback module worked better
if only the Frame Combiner - but not the Syntactic Combiner - was included.
Both were included in the linguistic analyzer used for the February 1992
benchmarks. In this evaluation, DELPHI did reasonably weIl on the natural
language test and HARC as a whole did better than any other system on the
spoken language test. According to [Sta92] both results would have been even
bettcr if the version of the system with the Frame Combiner and without the
Syntactic Combiner had been used.

The BBN researchers carried out experiments to determine the best way
of combining the chart parser with the fallback module, given that the output
of the BYBLOS speech recognizer is the N best hypotheses [Kub92J. Note
that if only the parser were used, it would go through the hypotheses from
most to least probable unti! it found one that was globally parsablej if there
\Vas none, presumably it would return "No answer". If only the fallback
module were used, it would always generate sorne interpretation from the top
hypothesis - it has no rejection criterion. Thus, it is not obvious how best
to combine the parser and the fallback module. The BBN group obtained
the best results by setting N to 5. If the c.hart parser was una'..ile to obtain a
global parse for any of the 5 hypotheses, the fallback component generated
an interpretation (presumably from the best hypothesis).

Ji
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3:3.4 'l'he Mt'l' System
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The linguistic analyzer of the MIT system went through the same evolution <is
BBN's DELPHI linguistic analyzer: originally it consisted only of a syntactic
parser, but suhsequently a robust matcher was added as backup when the
parser.Jails [Zu~92, Sen92]. As in DELPHI, this matcher fills slots in a
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frame with parsed phrases fOund during the failed global parse. Although
the MIT system is capable of generating N best hypotheses which cau theu
be reordered by the linguistic analyzer, the version of the system used for
testing seems to have employed only the top hypothesis.

Recall that, as descri bed in a previous section, the MIT researchers have
built a version of their system (not used in ATIS evaluations) that carries
out dialogue. The unusual aspect of MIT's robust matcher is that it exploits
features of the history mechanism built to make dialogue possible. During
dialogue, this history mechanism allows slots to be inherited from previolls
utterances. Similarly, the robust matcher "remembers" slots filled earlier in
the same utterance. Gnly one adjustment was needed to make the history
mechanism suitable for sentence-internal parsing: overwriting of slots was
forbidden (it oCG~t~ between utterances in the dialogue version).

Another featureio(}he MIT system deserves mention. Although a bigram
language model flrsrgenerates 50 N-best hypotheses, these are then reordered
by a probabilistic LR language model based on the grammar used by the
global syntactic parser. This parser has a finite number of states Qj. One
cau employ it to parse a training corpus of sentences, count the number of
times the word Wi occurs when the parser is in state Qi> and thus obtain an
estimate of P(w;lQj). Since the probabilistic LR grammar gives an estimate
(lf the probability P(Qilwo, ... ,Wi-I) that the parser is in state Qi at the time
if encounters word 'iI}i, the probabilistic LR language model estimates P(Wi)
as .:

P(w;iwo, .fo, Wi_l) = L P(wiIQj)P(Qilwo, ... , wi-d·
i

3.3.5 'l'he Paramax-tJnisys System

The semantic module of this system attempts to instantiate the arguments
of case frame structures called "decompositions" [Nort92, Nort91}/i'hese ar
guments are assigned th~m:1tic role labels such as agent, patient, a&l source.
Two types Of syntacti2"constraints apply to role fillers: categorial con
straints which.;.pecify that a role flUer must be of a certain grammatical

,/

type, and att'achment constraints which specify that a role filler must be
within the phrase headed by the predicate of which it is the argument. In
many cases, the attachment constraints turn out to prevent the correct inter
pretation - for instance, they ruIe out "Whât flights do you have to Boston?"
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(t.he pcrmil.l.ed fonn wou Id be "What flights to Boston do you have?") and "1
want t.he %.50.00 flight" (costs:apply to fares, not flights). These attachment
constraintshave been relaxed somewhat [Nort91]. However, this system still
incorporates global, fairly rigid syntactic constraints.

Recent additions 1.0 the system aim al. enhancing dialogue. They include
non-monotonie reasoning for making tentative inferences which can be with
drawn on the basis of new information supplied by the user, resolution of
impiicit anaphoric references, and paraphrasing of the user's utterance, en
abling the user 1.0 check and confirm or correct his request. The performance

.of this syst~m on the last two tests has been very disappointing: only the
AT&T system has performed worse. As we will see, the AT&T system is
based on radically different principies from the other systems; of the more
conventional systems, the Paramax system is the only one that has not in
corporated sorne kind of robust matcher.

3.3.6 'l'he A'l'&'l' System

The AT&T system is a bold departure from previous approaches 1.0 speech
understanding [Pie92a, Pie92b, Pie91]. The emphasis of the AT&T re
searchers is on a linguistic analyzer that can carry out unsupervised learning,
reducing the need for human intervention. This emphasis aIso inspired the
KCT-based linguistic analyzer described in this thesis, although its struc
ture is that of an SRI-style robust matcher which bears no resemblance 1.0
the AT&T system.

Figure 3.4 shows the structure of the AT&T system. A hasty reading of
this group's papers might give the impression that aimost ail the work done
by the system is performed by rules automatically generated from training
data. Actual1y, the automatical1y generated rules are confined 1.0 the concep
tllal decoding module shown in the figure. The template generation module is

"al. least equal1y important, and is made up of hand-coded rules. The AT&T
researchers argue that there are not enough training data 1.0 generate rules
for both these modules automatical1y, though this is possible in principle.
The same design decision - 1.0 use a mixture of hand-coded and learned rules
- was made for the KCT-based linguistic analyzer, again because there are
not enough training data. 1.0 learn ail rules. In the cited papers, the AT&T
researchers describe the conceptual decoding module in great detail but fail
1.0 provide a thorough desdption of the rules in the template generator.
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Figure 3.4: Black Diagram of AT&T System [adapted from Pie92bJ
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The cOlu:eplulll decoding module segments and labels a string of words.
(The .',,;ti~al pm'sec shawn in the figure simply generates alternate arrange-. ,
rnents \l.f compound words and acronyms; for instance, on the substring "B
SEVEN FOURSEVEN" it generates "Bï4ï", "B ï4ï", "Bï 4ï", and sa on).
The labels for the ward substrings are drawn from a set of predefined con
cepts. For instance, here is the labelling of the ward sequence "Please !ist
ail flights between Baltimore and Atlanta on Tuesdays between 4pm and 9
pm" [Pie91]: .

DUMMY:
QUERY:
DBJECT:
origin:
destin:
day:
time:

Please
list all
flights
between Baltimore
and Atlanta
on Tuesdays
between 4 pm and 9 pm.

",/.

~ /:
Ir
J,

The lemplate generator takes labelled ward sequences as input, converting
them ta a form from which SQL code can be generated.

The design of the conceptual decoding module is based on HMMs - here
lies the originality of AT&T's approach. Each ward sequence is considered ta
be an HMM, with the words being the observations and the concepts being
the states. We want to find the sequence of words W and the sequence of
concepts C maximizing P(W, ClA), where A is the acoustic evidence. This
is equivalent ta maximizing

P(AIW, c)P(WIC)P(C).

If we make the approximation

P(AIW, C) = P(AIW)

the first of these three terrns is taken care of by the speech recognizer's
HMMs. The remaining terms are

P(~IC)P(C) = TI P(w;iwll"" Wi_ll C)P(wil. TI P(.:;1cll"" Ci-l)P(Cl)'
-; i=2 i=2

The AT&T system approximates P(w;iwll"" Wi_ll C) by P(wiIWi-ll Ci) and
P(c;ic" ...,Ci"':,) by P(c;IC;4). .
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~;':By means of the Viterbi training algorithrn ror HMMs, these probabil
ities'can be estimated from a training corpus of segment"d, labeled word
sequences. The conceptual decoding module uses them as parameter values
for a Viterbi segmenting, labeling process on new word sequences. ln a reccnt
enhancement of the model, morphologically or semantically related words are
grouped together to form word classes on an ad hoc basis [Pie92a].

Beginning with a corpus of 532 sentences they segmented and labeled
themselves, the AT&T researchers carried out the following iterative proce
dure:

1. Train th~::,èonceptual decoding module on segmented, labeled sentences;
l" i',;
\' .

2. Use this mt~dule and other components of the system on new training
sentences to':gc;nerate answers;

3. Compare the answers to the reference answers;
',.

4. Add' segmented, labeled sentences that gener,;~rl correct answers to .,
the t~aining data and return to step 1. "

Senténces that still produce 'incorrect answers after several cycles must be
hand-lal'eled and added to the training data; however, this procedu.'cClearly
reduces th" amount of human intervention needed. ;~,

For the ATIS spoken language tests, the input tà the linguistii: analyzer
was the top hypothesis of the N-best hypotheses. As noted earlier, results
for both the naturallanguage and thé spoken language tests were inferior to
those of other groups. However, the novelty of AT&T's approach and the
way in which human effort is minimized make this system worthy of carerul
study.

My main criticism of this work is the omission of important details rrom
the group's published papers. It is not clear whether the version of the system
used for the spoken language test was trained on hand-labeled transcripts,
or on hand-labeled output from the recognizer, though this decision might
have a strong effect on performance. A more fundamental problem is that
problems with the representation are alluded to but never discussed. The
authors mention the problem of adapting the representation to queries with
multiple f1ight identifications, origins, and destinations [Pie92a]. They ignore
the possibility of concepts that are split by intervening words. For instance,



in "show me early flights on Friday afternoon for next week" the day concept,
"Friday ... next week" is split, and so is the tim~ ~oncept, "early ... after
Iloon". This kind of split is common in ATIS data, and poses a grave problem
for the very linear approach 1,0 parsing favoured by the AT&T group.

3.4 Summary>
The preceding survey of linguistic analyzers for ATIS speech understanding
systems contains a clear message. Like sailboats with different headings that
are blown off-course by a gale, the groups participating in ATIS began with
very different ideas about s);stem design but have been compelled by the task
1,0 move in the same direction.

Groups like SRI and CMU attained good early results with robust match-
ers, and therefore kept and improved them. Groups like BBN and MIT that~·>
originally scorned robust matchers in favour of parsers baiied on syntactic
theory found themselves obliged 1,0 huild robust matchers as backups when
the parsers fail, which occurs frequentl)r:'-':o\part l'rom AT&T's system, which
is radically different l'rom any of the others, the worst-performing system is
Paramax's, which relies entirely on syn~ax"';=cS:-~Seneffsums up the charac
teristics of the syntax-driven appr9acll-a-s-f6110\Ys [Sen92]: "While providing
strong ling'lÎstic constraints 1,0 t.he speech recognition component and a use-
fui structure for further linguistic aùalysis, such an approach can break down
in the presence of unki\)~ll words, novellinguistic constructs, recognition er
rors, and sorne spontà.~eous speech events such as false starts".

A robust matcher, on the other hand, seems 1,0 work best;when il, can
{or11lulate rules based on word and phrase categories - that' i,,/ when a local
parser has identified and labeled word groups constituting a category within
a word sequence bel'ore the robust matcher- sees the sequence. Thus, ,nost ;
of the ATIS systems seem 1,0 be converging on an approach that'employs
syntax locally and semantics and pragmatics globally. It would be ::iriistake
1,0 <!ismiss this as an artifact of the ÂTIS task. In my.opinion, the ATIS

~'-..:-

researchers have ma'd"o:>cgcliuine linguistic discovery: sorne types of spoken
language are made up ()f Islands of syntactically correct phrases separated by
verbal "noise", with weak or non-elSistent global syntactic constraints.

Each of the systems described above inco=porates ingenious ideas which
are independent of the sys~em architecture, and may:.therefore be borrowed
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by future systems with a different architecture. For instance, the CM U idea of
employing an expert system to post-process the output of the robust matcher
has great potential, though it yielded little improvement in the CMU im
plementation. The idea, associated with BBN, of joining together diverse
knowledge sources in series so that each can contribute to the final result via
rescoring of the N-best hypotheses is elegant and powerful; as real-time per
formance becomes more important, ifseems likely to become more and more
prevalent. Finally, though there are pp;r.lems with the division of labour
and the knowledge representation in thè'".<\T&T system, the AT&T group's
emphasis on automatic learning of rules from training data deserves to he
emulated.

\

,. -;::.:;,
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From the viewpoint7;f,p.inpirica! research, one of the main
difficulties in comparing'<;ari;:;~;\alg6ri[hms which learn from ex
amples is the lack of a formàl1y specified model by which the
algorithms may be evaluated. Typically, different learning algo
rithms and theories are giveh together with examples of their per
formance" but without a precise definition of "learnabilitY," it is
difficult td'characterize the scope of applicability of an algorithm
or analyze the success of different approaches and techniques, =0

~.- ~

M. Kearns, The Computational Complexity of Machine Learning [Kea90a]
:: . J

4.1 ttltroductiOtl r,, :-::-~---=

,

-, ~

This thesis proposes a nli~ method for lea~ning from examples the rules that
carry out part of a certain task in speech understanding systems. N. Prieto
and E. Vidal caH this task formai transduction and give a good definition of
it [PrV91, pg. 789]: "FormaI transduction ... (maps) input acoustic strings
representing uttered sentences into output semantic strings representing the
actions or semantic messages that are conveyed by these sentences". The
oretical work in both linguistics and formai language theory has focused
on syntax rather than semantics, so formai transduction remains mysterious.
For instance, though there is ample experimental evidence that semantic ~bn-

"tent can be successfuHy conveyed from one person to another in utterances
marred by grave syntactic errors, the mechanisms that make this possible
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have not attracted the attention of theorists. Thus, the top';c of this thesis -
learnlng robust transduction mies from examplcs - falls int6'C<?theoretically
uDcharted area of research. C'

,. Nevertheless, the the~is\vol,lld be incompl~te if it did not try to place
Keyword Classification Trees~~iito a~formal context. This chapter discusscs
related work on automatic learni"g of mies for identifyinKPdtterns in strings.
Section 2 discusses traditional work on grammatical inference, section 3 di2
cusses a newer body of work concerned Y;'ith "probably approximately cor
rect" learning, and section 4 discusse~ KCT..>:·i" the lighîi,,,f the preceêling
sections. :;'/ '_.?:~.~;-::~:1~~. (:(

\~~

4.2 Gratntnatical tnferetlce lh the Traditional
Paradigtn

Tif~:;;:~.ction s:mmarizes'tue la~:ge body of work oD\'gr.itmmatical inference
that pr~dal;es or is unaffeeted"by the theory of "probably approximately,.,

occorrect" (PAC) learning. The main focus will be on the inference of reg
ular grammars, both non-stochastic and stochastic. Non-stochastic regular
grammars are either deterministic or else non-deterministic but without nu
merical probability values; these two types belong together because of the
equivalence of deterministic and non-deterministic fini te automata (DFAs
and NFAs) [Hop79J. Stochastic grammars contain productions that are as
sociated with numerical probability values.

4.2.1 tni'erence oi' Regutar Nott-stochastic Graiiliilars

timitatlons on tnrerence

. Two results proved by Gold (in 1967 and 1978) provide die framework for
ail recent work in inference of non-stochastic regular grailimars. The first
proobhows that there are. regular languages that cannot be learned "in the
limit" from positive sa.mp!es only:-' A language L is said to be learned by
an algorithm A in the limit from positive samples when, after seeing a finite
number of strings from L, A has learne<! a set of rules which can always decide
correctly whether a given string is or is not in L. Since the regular languages
are a subset of the context-free languages, which are a subset of thecontext-

\. '. ( ...
,_, 1

I?
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sensitLve languages, Gold's 1967 result implies that arbitrary eontext-free and
context-sensitive !anguages~also cannot be learned in the limitJrtlm positive
samp'jes. '."".'-

What about inferenee'irom positive and negative samples? Many different
~::=~_.::~ grammars may generate the same language; furthermore, a finite sample does ' ii
._.~. (Îlot uniquely define a language [Fu86a, pp. 344-345]. Thus, unless there i;:iè-J!

eonstraints on the form of the regular grammar to be inferred from positive
and negative samples, there will often be an infinite number of a'lswers,',r ."
each of which generates the positive sample and ,ll()t the negative' sample.
For instance. one can easily construct in· polynomial time a DFA, called the
canonical d~finftefinite-state gramma7', that gene("tes exactly the strings in".;.,!
the positivesample and no other strings whatsoever [ibid, pg, 346]. However,c,
this grammar does not satisfy our intuitive notion of "infërence": it is too',_

Jarge (the DFA has anumber of states proportional to the total number of."symbols in the positive sample), and does not generalize beyond the strings'
actually seen. Most researchers have been interested in finding the DFA of
minimum size that accepts the strings in the positive sample and rejects those
in the negative sample. . .

Gold's second pr~~fo~h(lws that when both positive and negative finite
samples are provided, liiiding the DFA with the minimum number of states
compatible with these data is NP-hard. That is, ba,:fing revolutionary de
velopments in complexity theory, we ean assume that for practieal purposes ,_
solving this problem takes exponential time. Seeause of the equivalence of .~.

the set of strings aeeepted by DFAs and the regular languages, this result
a:so applies to the regular, context-free and context-sensitive languages. D.
Angluin states: "This result is generally interprèted as indicating that even
a very simple case of inductive inference, inferring DFAs from positive and
negative examples;is computationally intractable " [Ang87, pg. 89]. Angluin
herself proved an analogous result, showing that the problem of finding the
shortest regular expression compatible with a set of positive and negative
samples is also NP-hard [Ang78].

Gold's second proof leaves a loophole: perhaps finding the minimum DFA
compatible with positive and negative data is an excessively strict require
ment, and if we let the DFA be somewhat larger than the minimum size, a
polynomial-time algorithm can be found. It might be that by operating on
the canonieal definite finite-state DFA or in sorne other way, we can obtain a
DFA only a bit bigger than the minimal one. Li and Vazirani [Li88] recently



c10sed this loophole by proving that even if the inferred DFA is allowed to be
bigger t:J<Înthe minimum DFA bya factor (1 + cl, for smaIl c, the problcm
is still NP-complete. Subsequently Pitt and Warmuth [PitSSb] showed that
a DFA of size n cannot even be learned in polynomial time by a DFA of size':
polynomial in n unless NP = RP. Gold's second result is thus waterproof: for
aIl practical purposes, it is impossible to infer reasonable regular languages
from the presentation of positive and negative samples.

As Garcia and Vidal point out [Garc90], many of the papers published
on grammatical inference pass over these fundamentallimitations in silence.
Most of them adopt one of two strategies to circumvent the Gold limitations
on the inference of non-stochastic regular grammars:

1. The class of languages inferred is some tractable subset of the regular
languages; Il

2. The informil.tion provided to the inference algorithm is more generous
than described above - for instance, a "teacher" may answer questions
posed by the algorithm, and even supply counterexamples to conjec
tures produced by it.

The next two subsections deal with these two strategies.

lnference of Grammars for Subsets of the Regular languages

Biermann and Feldmann's k-tails method is a heuristic that requires users to
supply a parameter k and positive samples from the language to be inferred
[Bie72]. The method begins with a large, often non-deterministic, grarnmar
called the canonical derivative grammar obtained from the canonie,e.1 defini te
finite-state grammar. States in the canonical derivative grammar that have
the same behaviour on strings of length k or less are merged. Thus, if the
user picks a low k, such as 1 or 2, the resulting fini te automaton will tend to
be significantly smaller than the canonical derivative grammar, but may not
model the language very weil; a high k will,oLten model the language better,
but may be almost as large as the canonical del'ivative grammar. If negative
samples are supplied the method can be:adapted to generate a variety of finite
automata from the positive samples, beginning with the canonical derivative
grammar and decreasing in sizll~J.!Jesmallest grammar compatible with tb
negative samples is chosen. Thislleuristic infers a family of non-deterministic
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grarnlllilrs which depend on the parameter k, ",nd which correspond ta finite
aulomata somewhat smaller than the large automaton that generates only
the strings in lhe positive sampie. In most cases, the inferred automaton will
still be much bigger than thé minimal automaton compatible with the data.

Angluin and Smith describe the k-tails method as heuristic because the
subset of the regular languages it infers is hard to characterize formally
[Ang83]. Angluin has developed a method for learning the pattern lan
guages, a well-defined subset of the regular languages [ibid, pg. 261]. A
pattem is made up of variables and constants - e.g., 3xxy112x, where x, y, z
are variables. The language L(p) generated by a pattern p is the set of
strings obtained by substituting constant strings for the variables; for in
stance, L(3xxy1l2x) contains 30000511200 and 3114241121. Angluin's in
fcrencealgorithm finds the smallest finite automaton that generates a pattern
language compatible with a given set of positive samples. For the case where
the pattern contains only one variable, her algorithm runs in polynomial
time.

Shinohara has extended Angluin's work to find polynomial-time algo
rithms for inferring from positive samples the minimum fini te automaton
that generates a given extended regular pattern language, or a given non
cross-pattern language [Shi82]. The extended regular pattern dass languages
are pattern languages in which ail the variables occurring in a pattern are
distillCt and the null string may be substituted for any variable; the non
cross-pattern languages are pattern languages in which occurrences ofagiven
variable may not be interr:upted by occurrences of any other variable.. Shi
nohara's algorithms begiiiwith a general pattern which is then specialized;

;::"they have been applied to a practiçaldata entry task.
Another tractable subset of the regular languages is the k-reversible lan

guages [Ang82]. Let a, b, v, w, z be strings. A regular language L is k
reversible iff whenever avw and bvw are in L and v is of length k, then
for every z, either both avz and bvz are in L, or neither is. Thus, a zero
reversible language Lz is such that whenever aw and bw are in Lz, for every
;; either az and bz are in Lz, or neither is. An example of a zero-reversible
language is the set of strings with an even number of Os and an even number
of 1.

Angluin has devised an algofithm that infers the smallest k-reversible
language containing a positive sample, for fixed k [ibid]. Like the k-tails
method, the algorithm cOP$frùcts a large finite automaton from the strings

.'....,.- // '>
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in the positive sampie, then merges states satisfying a critcrion of similarity
that depends on k. The algorithm runs in O(kn") time, whcre n is the total
length of ail the strings in the positive sampie. If positive and ncgative
samples are given. the algorithm can be t'Un on the positive samples with
k = 0, 1,2, ... until a k-reversible language is found that does not gencl'atc
any of the strings in the negative sampie. This modified àlgorithm is also
polynomial-time: it is O(m2n3

), where ln is the final value of.~ and 11 is thc
totallength of the strings in the positive and negative samples. Angluin has
proved that m ~ n, so the algorithm is OinS) [ibid, pg. 762J. As required
by the Gold limitations on inference of regular languages, the k-revcrsible
languages are a proper subset of the regular languages: for instance, the
regular expression ba"c +d(aa)"c corresponds to a language that is not k
reversible:for any k [ibid, pg. 750].

Another line of research arose from a paper published by Richetin and
Vernadat, describing the "successor method" for grammaticaiinferencc from
positive samples [Ric84]. The underlying inference strategy was similar to
that employed in the well-known bigram language models employed in speech
recognition systems: it relied on analysis of pairwise successions of terminais
in the positive sample strings. Subsequently, Garcia, Vidal and Casacuberta
showed that the class of grammars inferred by the successor method is the
local languages, a proper subset of the regular languages [Garc87]. The same
paper generalizes the successor method by showing that many non-local reg
ular languages can be obtained from positive samples by applying "morphic
operators" to a local language inferred by the successor method. This method
supplements the information contained in the positive sampIe by information
contain~d in the user-specified morphic operators, and thus belongs in the
next subsectionj in any case, it is too cumbersome to be practical.

A later paper by Garcia and Vidal generalizes the successor method in
a different, more practical way [Garc90]. The paper presents a polynomial
time algorithm for inferring "k-testable languages in the strict sensç:'/·, k
TLSSs. These languages are defined as follows: they begin with ~"c:e of
initial segments h (oflength at most k), they end with a set of final segments
Fk (of length at most k), and they are forbidden to contain segments in the
set Tk (of length exactlyk). The set of 2-TLSS languages is exactly equal
to the local languages:Ai k increases, the languages infe,;',j from a given
positive sampie become increasingly' restricted; if k is s,,;_,b the length of •
the longest string in the positive sampie, the inferred language is identical to
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the positive ,ample. The time required to mn the algorithm depends partly
on m, the number of permissible substrings of length k (i.e. the number of
length k substrings not in Tk ): it is O(kn log ml. Furthermore, the number
of transitions in the inferred automaton is bounded by O(m).

The k-TLSSs are a subset of Angluin's k-reversible languages, so her algo
rithm could be used to perform the inference instead. However, if one is sure
that a language is best modeled as a k-TLSS, the Garcia-Vidal algorithm is
usually faster. Like Angluin, Garcia and Vidal extend their method of infer
ring a grammar from positive samples to the situation where both positive
and negative samples are available by increasing k from a low initial value
(k = 2) until the grammar generated from the positive samples does not gen-

,,",srate any of the strings in the negative sampie. 1 will describe a stochastic
- 'extension of the Garcia-Vidal algorithm in the section of this chapter dealing

with stochastic grammars.

Inference of Regular Grammars with Additional Information
;j~ , "

This section describes methods where the learning protocol allows the in
ference algorithm to ask a ~teacher" for additional information beyond that
contained in positive and negative string samples. Here, the question of in
terest is: how little information must be given by the teacher for the correct
regular language to be inferred?

An early paper by B. and K. Knobe describes an algorithm that infers
context-free grammars from positive samples:[Kn076]. At every stage, the
algorithm has a partial grammar made up of production rules that accounts

,;"for the strings seen 50 far. The teacher will tell it whether it is done, or
whether the partial grammar generates ungrammatical strings, or tells it the
current grammar is incomplete and gives it a new string from the desired
language which the Inference algorithm can,use to generate additional rules
for the inferred grammar. The inference algorithm always tries to create new
production rules that are as general as possible: they are short, they have a
high ratio of nonterminals to terminais, and they will generate recursions.

The Knobes did not attempt to characterize formally the set of context
free grammars that can be inferred by using their approach. It seems probable
that this set is a proper subset of the context-free languages, and perhaps does
not include,the set of regular languages but merely overlaps with it. They
did not give a time complexity analysis for the method. Furthermore, the

, .'
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method depends on the teacher presenting positive samples in appropriate
order - it is easy to devise malign orderings of the positive samples which will
result in the method never inferring the desired language. This method has
received no further attention from researchers. Interestingly, its underlying
philosophy is the same as that underlying I<CTs: "We think that the princip!e
of working from the most genera! to the more specific is a principle applicable
to any inference problem, and it is definitely the prime reason for the success
of our entire approach" [ibid, pp. 131-132J.

Crespi-Reghizzi et al have developed a method for inferring context-free
grammars from positive bracketed samples [Cres73, Cresï2]. Given a context
free grammar, one can generate a bracketed context-free grammar from it by
replacing each production of the form N =} Il, where N stands for a non
terminal and Il for a string, by a production of the form N =} [uJ. The
strings generated by this grammar will bé-bracketed in a viày that indicates
the order of operations. The Crespi-Reghizzi algorithm takes as input a
positive sampIe consisting of a set of bracketed strings of this form, and
merges states that satisfy a similarity criterion in a manner reminiscent of
the methods described in the previous section. The algorithm generates the
smallest, simplest context-free grammar of a certain type, called the "free
operator precedence grammars", compatible with the positive sample. 1 am
unaware of any time complexity results for the algorithm, but in practicc it
seems to run'inpolynomial time. It requires a substantial amount of work
on the part of the teacher, who must supply fully-pars~d strings belongillg
to the language to be inferred.

A recent paper by Angluin contaim a proof that any regular language R
can be learned in polynomial time by a learning algorithm L from a "mini

) lIlally adequate teacher" T [Ang87]. A minimally adequate teacher T is one
-who:

1. answers membership queries: given a string by L, T says whether or
not the string is in Rj

2. answers conjectures: given a description of a hypothetical regular lan
guage H by L (in the form of an encoding of a deterministic finite-state
automaton), T either tells L that it has correctly guessed R (H and R
are equivalent) or provides a counterexample (a string in R - H or in
H-R).
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Aiguill's algorithm yields the minimum DFA generating R in time polyno
mial in the number of states in that DFA, and in the length of the longest
counterexample provided by T.

The requirement}h<i.\T'sp.pplY counterexamples may prevent practical
use of the algoritlim. Trùe,if T itself "knows" the regular language R to
he learned by L in the form of a determini~tic finite-state automaton, it can

<' provably produce a string in Et?::" H or in ir'- R in polynomial time [ibid, pg.
89] - but if one already ownsa fi'ûte automaton T that knows the regular
language, why use the inference algorithm at ail? However, Angluin also
shows that a version of the algorithm c~n carry out "probably approximately
correct" learning under very reasonable assumptions, as will be discussed in
section 3.2.

4.2.2 Stochastic G~~mmars

Inference of,Stochastic Grammars ~.

A stochastic grammar is one in which every production rule Ri is associated
with a probability Pi, and which therefore assigns to every possible string
a probability of being produced (perhaps 0). We will only be interested in
stochastic grammars for whichth.e total probability over ail strings is 1; these
are called the stochastic consietênt grammars. A stochastic presentation
from a stochastic consistent grammar G is an infinite sequence of strings
generated according to the probabilistic production rules of G. In 1969,
J. Horning showed that stochastic context~free languages can be inferred
in the limit from a stochastic presentation with probability 1 [Ang83 pp.
250-1]. Gold showed t]lat the inference of non-stochastic regular grammars
requires a neg?:'.i:{«tsarii~le. This is untrue for stochastic regular or context
free grammars that are given a stochastic presentation, because the strings
that nev"r appear can be assigned a probability of 0 (with a degree of error
that depé'nds on how many strings in the presentation are actually used by
the inference algorithm).

Practical algorithms for learning stochastic grammars access a sampie
made up of a finite set of strings E = {(Xl> cd, (X2' C2), ..., (x"' e,,)}, where
Xi stands for a string and Ci the number of times it occurs in the sample.
They tend to fall into two classes, "search" algorithms and "constructive"
algorithms. The latter are called "jumping to conclusions" a1gorithms by
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Angluin and Smith [AngS:3. pg. 2601. Search algorithms generate ail gram
mars of a particular class in a systematic manner until a grammar is found
that meets an acceptance criterion; they are cautious, being designed not to
skip over any acceptable hypothesis, and tend to be time-consuming. Con
structive algorithms resemble the algorithms disc!lssed in the last section.
They begin with a hypothetical grammar generated directly from the sam

'pIe E, which is then successively refined to produce new grammars until an
acceptance criterion is met; they tend to run faster than the search algo
rithms, but often produce more complicated, less elegant solutions. Search
algorithms usually start with very simple, incorrect grammars that arc mod
ified in the djrection of greater complexity and greater confùfrnity with the
sampie g, \vhile constructive algorithms begin with a complicated grammar
that generates only the strings in E and is then modified in the direction of
greater simplicity. ,

Horning's 1969 Ph.D. dissertation provided some_()fth~ a~c'bssary machin
ery for the search approach, by showing how to con's't;ruct a Bayesian accep
tance criterion for hypothesized stochastic grammars (see [FuS6b, pg. 367]):
Suppose we have a finite set of such hypothesized grammars, {ah â2, ... ,G~}; c

each with an a priori probability p(ai)' Horning derived a forrÎmla for cal
culating from the productions of a grammar ai the probability p( EIGil that
ai will generate the sample E. The optima:t ai is the one for which the
Bayesian criterion p(ailp(Elai ), and thus l'(GilE), is maximized. Horning
also devised a stochastic generator of grammars to provide the hypothesized
grammars ai and their associated probabilities.

The main disadvantage of Horning's approach is its computational com
plexity: t;le algorithlI', takes a long time to calculate p(Elai ), and must look
at all the aiS before it can pick the optimal one [Fu86b, pg. 3671. To speed
up search algorithms, Maryanski and BooHh:ie;'i~ed a X2 test to measure
the goodness of fit of a hypothesized stochitstic grammar to the sampIe E
[Mar77]. F;r each sample string Xi occurring'ci times in E, one can calculate
the expected number of occurrences of Xi according to grammar ai. The X2

test compares these expected numbers with the actually observed counts Ci".
temng us whether the deviation is about what we would expect, or it(Ji

should be rejecteù.
Another piece of machinery is needed before a practical search algorithm

can be designed: a method for converting a non-stochastic gramm~r into a
stochastic one, by estimating the probabilitiei'of the production,fules from
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t.he ~alllple E. This is necessary becallse scarch algorithms lIsllally explore
a ~earch .race made IIp of non-stocha~tic grammars. Once a non-stochastic
gram mal' fl i is reached, il. is converted 1.0 a stochastic grammar Gi and
then tested against the acceptance criterion. A method for estimating the
probabilities from E is given in [F1I86b, pp. 364-3651. II. only works for
lInambigllolls grammars, in which every possible string can only be generated
in one way from the jJroductions.

Maryanski and Booth have implemented a search algorithm that asks the
liser for a threshold for the x 2 acceptance criterion [Mar77]. The algorithm
searches throllgh an infinite tree of deterministic regular grammars in which
the first level corresponds 1.0 grammars or partial grammars with one non
terminal symbol, the second level 1.0 grammars or partial grammars with
two nonterminals, and 50 on. Each of the candidate grammars examined is
converted 1.0 stochastic form by the probability estimation algorithm, then
evaluated by the X2 test. Three outcomes are possible: the grammal' may be
accepted, il. may be completely rejected (along with ail its unborn children),
or il. may be selected for expansion. In the last case, the grammal' generates
several deterministic regular grammars al. the next level of the tree. Heuristic
pruning techniques were developed 1.0 reduce the number of nodes that must
be considered. The search algorithm can be implemented in either depth-first
or breadth-first fashion.

Maryanski and Booth have shown that this method will always generate
a finite automaton with the minimum number of states that meets the user
sul'l'lied X2 goodness of fit criterion. Gaines employs a similar algorithm, but
prefers 1.0 consider goodness of fit and the number of states as separate criteria
that should be considered independently [Gai78]. These researchers have not
proved that their algorithms l'un in polynomial time - given the exhaustive
nature of thésearch they perform, they are probably not polynomial-time.

Cook et al devised a constructive algorithm that c~.rries out sorne local
search [Coo76]. Like other constructive algorithms, il. begins with a com
plex grammar that is derived from the observed sample, and modifies il. in
the direction of greater simplicity. In this case, the starting grammar is a
stochastic grammar that generates each string in the saml'le with precisely
its observed frequency. A cost measure M(G, E) thal. is a linear combination
of the complexity of the grarnmar G and its discrepancy from the sample E
is definedj the measure assigns Iower cost 1.0 productions generating homo
geneous strings than 1.0 strings made up of mixtures of terminais. Several
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gram mal' transformations - substitution, disjunction, and reIlloval of pro
ductions - are also defined. These transformations are used to generate new
grammars. The algorithm then begins work on the lowest-cost new gram mal',
and iterates until no further improvement is possible. The algorithm of Cook
et al is greedy: it finds the locally optimal, lowest-cost stochastic grammar
in the neighbourhood of the starting grammar. No complexity results were
presented for the algorithm.

The approach of Van der Mude and Walker is similar to that of Cook
et al [Van78]. The main difference is the use of a quasi-Bayesian accep
tance criterion P(EIC)P(C), as suggested by Horning; the criterion Îs only
quasi-Bayesian because P(C) is a heuristic, rather than a genuine probabil
ity estimate. The algorithm first derives a stochastic regular grammal' with
many rules that generates exactly the strings in E, with expected frequcncies
exactly equal to the observed frequencies. This grammal' is called the t,.ce
gmmmar CT and is easily constructed in polynomial time. A set of transfor
mations called "splits" is applied to CT to produce a new set of candidate
grammars which are then evaluated in terms of the quasi-Bayesian criterion.
This procedure is iterated to find the optimal grammar in the local neigh
bourhood of CT' The time complexity is not given, but the way in which
time goes up with size of sampIe in the trial l'uns listed in the paper suggests
it is exponentia1.

A previous section discussed Garcia and Vidal's method for learning k
TLSSs from a positive sample. The stochastic extension of this mcthod
by the same researchers is a good example of a pure constructive approach
[Garc90]. To adapt the method to learning stochastic k-TLSSs, Garcia and
Vidal use the k-TLSS method to infer a non-stochastic grammal', then obtain
a maximum likelihood estimate of the production probabilities by mcans of
the estimation procedure in [Fu86b, pp. 364-365]. This procedure only works
if the inferred grammar is unambiguous.

Since Garcia and Vidal are interested in seeing how weil stochastic k
TLSSs can approximate the regular languages, they carried out a series of
experiments in which each of ten stochastic regular grammars generated a
training set of strings; a test set was generated by pooling other strings
generated by the ten grammars [Garc90]. A stochastic k-TLSS grammar
was inferred from each of the training sets, so that ten stochastic k-TLSS
grammars were generated. To allow for the parsing of strings almost but
not quite in a given grammar, a wild-card production with low probability
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W,", addcd to match otherwise lInparsable input symbols. The strings in the
test set were then parsed by each of the ten stochastic grammars, with each
string assigned to the grammar which assigned it the highest probability of
being produced.

Garcia and Vidal examined the effects of varying the size of the training
sets and the value of k on the proportion of strings assigned to the correct
grammar. When each training set contained 150 strings and k was greater
than2, the error rate was never more than 0.6%. These results show that
a language at one level of the formaI hierarchy may be successfully approx
imated for classification purposes by a stochastic language at a lower level.
The experiment also illustrates one of the least attractive aspects of the gram
matical inference approach to classification: ten different grammars must be
grown to perform a ten-fold classification. A single KCT grown on the same
data could perform the same ten-foid classification, perhaps equally weIl.

Calculation of Probabilities in a Stochastic Grammar

Th~ estimation of probabilities fur a stochastic grammar whose 'structure iG
known is an easier problem than the inference of the grammar from noth
ing, but is by no means trivial. As mentioned above, Fu gives a method for
estimating production probabilities in unambiguous context-free grammars
[Fu86b, pp. 364-365]. The estimation techniques for stochastic grammars
currently in the most widespread use are those that estimate the parameters
of Hidden Markov Models (HMMs), which are described in Chapter 2. These
techniques, such as the Baum-Welch method, iterativelysearch for probabil
ity vJ.lues in an HMM that maximize the probability of the observations,
given the HMM [RabWL]. They do not analytically solve this estimation
problem, but find values that yield a local maximum.

Though HMMs are finite automata,.J. Baker extended an HMM pa
rameter estimation met.hod to stochastic context-free grammars, calling this
extension the "Inside-O'utside" algorithm [Bak79]. Recently, SCFGs and
the Inside-Outside algorithm p'.ave been applied to naturallanguage [Lar91,
Lar90]; unfortunately, serious difficulties have been encountered. The amount
of time l'equired to estimate the SCFG parameters on a reasonable amount
of training data is large. Wprse, the a1gorithm often gets trapped in a local
maximum that is extremely sub-optimal, unlike the HMM case where the
local maximum·found is usually quite good.

~ - -</
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The approach of Pieraccini et al at AT&T, which was described in Chap
ter 3, is somewhat less ambitious. Re(all that these researchers employ
HMM-like estimation techniques to obtain parameter values for a finite-state
model of natural language. In this respect, their approach rescmbles the
KCT approach: both approaches assume that for practical purposes, natllral
language can be approximated by a finite-state mode!.

4.3 l'AC tearning and l'-Concepts

4.3.1 lntroduction

Most of the techniques for inferring stochastic grammars presented in the
previous section had a heuristic f1avour. Their inventors neither prove that
they were capable of learning a clearly-detined set of languages, nor provide
performance guarantees for them, in the sense of proving that the learnillg
process requires only a reasonable amount of time. Clearly, precise criteria
for evaluating probabilistic learning are needed.

A 1984 article by L. Valiant has acted as a catalyst for recent research into
computational'Iearning theory [VaI84]. M. Kearns summarizes the features
of Valiant's new paradigm as follows [Kea90a]:

1. The requirement for the learning algorithm 1.0 identify the target rules
exactly is relaxed 1.0 allow approximations. The paradigm dèfines ail
acceptable approximation 1.0 the target rules, and this definitioll is
phrased in terms of proba!>ilities.

2. The demand for computational efficiency is now central - we are in
terested in rules that can be learned in a reasonable amol;nt of timc
(which implies a limited sample size), rather than in mies that can only
be learned in the limit.

3. The learning algorithm should work for any probability distribution,
provided that the samples on which il. learns and the domain in which
the learned rult:,;',will be applied are governed by the same distribution.
We will cali an algorithm that meets this criterion "distribution-free".
Traditional techniques in statistical pattern recognition often assume a
particular input distribution (see [Dud73]).
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:\, I~eill'n, point, out, the l'elationship between formai and empil'icaI ma
chine iearning l'esearch has often been less close than one might expect .
.• Mitny of the problems titckled by artificial intelligence ... appear extremely
complex and are poorly understood in their biological incarnations, to the
point that they are currently bcyond mathematical formalization. The re
seitrch presentcd here does not pretend to 'a.ddress such l'roblems" [Kea90a,
pg. :3]. Nonetheless, since the new paradigm gives a model for machine
learning that is both more practical and more precisely specified in formai
terms than older mc..dels, it"constitutes a major stel' towards the application
of formai learning theory to problems in artificial intelligence.

"

4.3.2 ~PAC tearning
'"

Valiant begins his definition of PAC learning adollows [VaI84]. Consider a
domain X made up of descriptions of certain objects. For instancE, X might
be a list of descriptions of all the objects in a house. The goal of a learning
algorithm A is to \~~rn a subset of Xj the subset to be learned is called
a concept. Thu~, ,ve"IT1;ght present A with sorne examples of descriptions
of chairs and ot' non-chairs in X, hoping that it will learn rules capable of
cleciding wheth~r an arbitrary element of X belongs to the subset "chairs"
in X. A must h/LYe a formalism for encoding the rules it learns. The set of
concepts capabl~ of being expressed in this formalism is the representation
c/ass. A representation class C need not be capable of describing all the
possible concepts (subsets) of X, only those that are of interest. Given the

"representation class C,'however, we want A to be able to learn any specific
C ·i

member c of. Ii ,
Each time A is e~.ecuted, its goal is to learn sorne concept c in C. The

next time it is executed, the concept to be learned may be diiferent, but
will still be in C. A has access to two oracles, POS and NEG, which yield
descriptions of saml'le objects in Xj the descriptions provided by POS are
o~ items in c, those provided by NEG are of items not in c. We will assume
that the descriptions provided by POS and NEG are efficiently encodedj
furthermore, they are drawn randomly from probability distributions D+(c)..
and D-(c) resp,'dively. These two probability distributions are arbitrary but
fixed: they do not vary over time. As weil as being the distributions that
l'l'ovide the examples from which A learns, D+ and D- are also the target
distri~utitns. That is, we will be satisfied with the rules learned by A if they
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work well on data drawn from D+ and D-; wc do not require cl to learn
rules that also work well on other distributions.

The learning performed by cl may be approximate: cl may output a
0; hypothesized concept h that is only an approximation to c, provided that h

satifies certain criteria. h, like c, is always a subset of X. Wewill assume
that the description of h output by A is polynomially evaluatable. That is,
given h and a data point x, it can be decided in time polynomial in the length
of the descrip~;onsof h and x whether x is in h or not. h may be drawn from
a representation class H that is different from C, the representation class for
c.

Finally, consider the two ways in which h ~ay wrongly classify a new data
item i: it may wrongly exclude i even though it is a memberof c, or it may
wrongly inclÙde i even though it is not in c. Let e~(h) be the probability

_-'-that an item randomly chosen from iJ+ is not in h, i.e. is wrongly classified
-by h as not being an example of concept c, and let e-(h) be the probability
that an item randomly chosen from D- is wrongly "accepted" by h.We can

r nowdescribe probably approximateiy corree! leaminy [Kea90a, pg. III.
Oefinition:

• Consider two representation classes C and H over X. An algorithm
A with access to oracles POS, NEG is a learning algorithm for C if,
for any c in C and for any values of 0, f between 0 and l, A outputs
a representation h in H such that with probability 1 - 0, e+(h) < f

and e- (h) < f. C is called the "targe-t class" and H the "hypothesis
class". A is a "polynomial learning algorithm" for C if C and H are
polynomially evaluatable and A mns in time polynomial in 1/0, I/f,
and Ici - we say that A carries out "probably approximately correct
learning", or "PAe learning".

A simple example will illustrate this (taken from [Kea90a, pp. 14-17]).
Let the formalism for both C and H be conjnn~tions of Boolean variables..
(also called "monomials"), where the set of viiiiibles describes various prop
erties of animais. Sorne variables describe physical properties: isJarge,
has_c1aws, has_mane, has_JourJegs, has_wings, and so on. Sorne variables
describe behaviour: can_Jly, can_walk_on_twoJegs, can..speak, hibernates,
and so on. Sorne variables describe the animal's habitat: is_wild, lives.in_circus,
and so on. Other variables deal with scientific classifications: is.mammal
and so on. There may be many other types of variables.
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Now, suppose that the concept c to be learned is ;;lion". c might be the
fol1owing monomial:

c = is_mammal and isJarge and has_claws and (~Ol hibernales).,
As long as c successful1y identifies the subset of lions within X, it doesn't

matter whether it is a valid description of lions in general. Consider D+, the
probability distribution for positive examples of c. D+ yields descriptions
of particular lions, each of which specifies th" values of ail variables. By
definition, each of these descriptions lT1ust have the variables is_mammal,
isJarge, and has_claws set to TRUE and hibernales set to FAL5E with
probability 1. However, the variable h:is_mane may be TRU E about half the
time (when the lion is male) and F AL5Ethe rest of the time; has_wings will
always be false. There may be dependencies between sorne of the variables:
for instanéé, can_walk_on_lwoJegs may have low average probability of being
TRU E, but much higher probability of being TRU E when livesin_circÛs'
is TRU E. Similarly, D- is the probability distribution for examples of non
lions in X, and may have arbitrary dependencies between ','ariables.

We require a learning algorithm A for finding a monomial h that is good at
distinguishing lions from non-lions. A willlearn h from examples generated
from D+ and D-. Although C and H are identical in this example, since both
the concept c and the hypothesis h are monomials, h need not be the same
as c. For instanc~, suppose the domain X only includes two species of large
animais: lions and eleplfants. In that case, A might output the following h:
has_claws. This h would perform weIl, correctly identifying examples from
D+ as lions and examples from D- as non-lions, even though it is different
from c.

Valiant devised a polynomiallearning algorithm A that learns monomials
::Cover n variables (Val84 article]. The algorithm only needs examples drawn

from pas, not NEG, so it is called "positive-only". Though it only uses
examples from POS, the definition of PAC learning given above requires it
to classify correctly most new examples generated by both POS and NEG,
IVhich it does. The algorithm is subject to two types of error, one associated
with f, one with o. The f type of error occurs when a variable with 101V

but non-zero probability ofbeÎ:1g false in D+ is not deleted froml:.~, This
type of error, by definition, only misclassifies new examples that 'have low
probability in D+. The ,0, type,of error is more serious. It occurs when the
learning examples drawn from D+ are very unrepresentative of D+, so that
the rate of misclassification on new examples is higher than f. For instance,
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if the ln positive examples drawn during learning \\,ere ail trained circlIs lions
(even though D+ assigns a moderately low probability to this type of lion),
the final version of h might include the variable ca1uvalk_orLtwo-legs. This
h would perform poorly on new data.

In addition to defining PAC learning and giving a polynomial algorithm
for learning monomials, Valiant's original article extended the algorithm to
two other classes of Boolean formulae [ibid]. Define a "k-clause" as a dis
junction of at most k Boolean variables, e.g. Ci = VI or ... or V n • Then
the representation class kCNF consists of conjunctions of k-clauses, e.g.
C2 and Cs and CG' Similarly, define a "k-term" as a conjunction oLat most
k Boolean variables, e.g. T i = VI and ... and vn •• The representation class
kDNÎ? consists of disjunctions of k-terms, e.g. Tl or T.I • Valiant adapted
the algorithm for learning monomials to obtain polynomial algorithms for
lnrning kCNFs and kDNFs. For each of these algorithms, the concept class
C is equal to the hypothesis class H.

After the publication of Valiant's 1984 paper, D. Angluin studied a prob
lem closely related to PAC-learning a regular set from exampJn.-: [Ang87].
Recall from section 2.1.3 that in the samepaper, Angluin shôÎved that a,
learning algorithm L exists for learning any regt.lar language R in polyno
mial time from a minimally adequate teacher T. Such a teacher answers
membership queries and answers conjectures. That is, L can give T strings
which T must declare as members or non-members of R, and T must respond
to a hypothetical regular grammar H outr,ut by L by eith<lr confirming that
H is identical to R or by providing a couriterexample - ,. string in the sym
metric difference of Rand H.

Angluin also considered the case where L has access to an oracle supply
ing sample strings randomly chosen from an unknown distribution D, each
labeled as belonging to R or not. In this case, T need only carry out the first
part of its job: answering membership queries. The oracle can be used as a
source of counterexamples for modifying L 's current hypothesis H - sorne of
the strings from the oracle belong to R but not H, and vice versa.

Angluin defines a hypothesis H that f-approximates R as follows: /1
f-approximates R if D assigns probability less than f to strings in the sym- .
metric difference of Rand H. Let n be the number of states in the minimum
DFA for R, and m the maximum length of a string output 'by the oracle.
Angluin showed that in time polynomial in l/f, 1/0, n and m, her learning
algorithm L yields with probability 1-0 a hypothesis H that f-approxiIÎ~;.~~.':;,
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/1. N"tethat although Angluin's algorithm aimas! meets the PAC-Iearning
criteria, it still requires a teacher T to answer membership Gueries. Thus, it
is not a PAC-Iearning algorithm.

" Subsequently, Pitt and Valiant studied two classes, k-term-DNF and k-
clause-CNF that are properly contained within kCNF and kDNF, respec
tively [Pit88a]. They,showed that learning a concept c in k-term-DNF by
h in k-term-DNF i'i.NP-hard for k > l, yet learning the same c by h in
kCNF can be do,,~by the Valiant algorithm for kCNF. Silnila.rly, learning a
concept in k-cla~se-CNF by a hypothesis in the same class is NP"b.ard, yet
can be done.in polynomial time if the hypothesis class is kDNF..'!'hus,there
are cases where the learning problem is too hard if we impose the constraint
C = fi, but tractable if we let fi be a more powerful class than C.

From this, it follows that there are two types of hardness result: "representation
based" and "representation-independent". Both concern learning of a fixed
representation class C of concepts. A representation-independent hardness
resllit would prove that C is hard to learn by any poly"omially evaluatable
representation class H of hypotheses, while a representation-based hardness
result merely shows that C is hard to learn for same particular H. Clearly,
Pitt and Valiant's proof that it is hard to learn k-term-DNF by k-term-DNF
was representation-based.

Representation-independent hardness results are much more powerful than
representation-based ones,"and correspondingly harder to obtain. Kearns
gives sorne interesting representation-indepelldent hardness results based on
cryptographie assumptions [Kea90a, Chap. 7]. He shows that given these
assllmptions, general Boolean formulae over n variables of length polynomial
in n cannot be learned in polynomial time.

This concludes the introduction to PAC learning. In previous sections, we
have been concerned with the learning of regular languages, Le. of finite au
tomata. Gold showed that learning a DFA with the minimal number of states
l'rom positive a.nd ne~?tive samples was NP-hard (see section 2.1.1 above).
However, PAC-Iearnability provides a much more tolerant criterion for learn

ingJlîâ6.· was considered previously,Ts polynomial-time PAC-Iearning offinite
. au tomata possible?

In 1989, Pitt and Warmuth proved that it is NP-hard to PAC-learn a
DFA of size n by an NFA whose size is bounded above ily any polynomial

_ in n [Pit89]. This was ,~ representation-based hardne~s result which stillieft
open the possibility thilt DFAs can be PAC-Iearned by sorne representation
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c1ass H other than regular sets. Next, Pitt and Warll1uth proved that the
existence of a polynomial-time algorithm·:ùr PAC-learning DFAs by IlIlY

representation c1ass H implies the existence of a polynomial-time algorithll1
for PAC-Iearning arbitrary Boolean formulae [Pit90]. However, as described
above, Kearns showed that given reasonable cryptographie assumptions, one
cannot PAC-learn Boolean formulae in polynomial time. This constitutes
a representation-independent proof that DFAs cannot be PAC-learned in
polynomial time.

The next section considers another paradigm for probabilistic learning
closely related to PAC learning, but even more tolerant of error. This
paradigm will be used subsequently to prove a result about KCTs.

4.3.3 Learning P-Concepts

PAC learning involves a tolerant and rea!istic definition of acceptability for
the hypothesis yielded by a learning algorithm. However, the PAC-Iearning
assumptions about the nature of the examples are open to question. [s it
realistic to assume that one can obtain sources pas and NEG of positive
and negative examples that are 100% reliable? .

If one relaxes this assumption, one obtains new models for learning. For
instance, we may assume a "white noise" model in which we still use the
oracles Pas and NEG, except that the examples yielded by each have a
small, fixed, probability of being mislabelled before they reach the learning 
algorithm [Ang88J. That is, if examples from pas are normally'labelled
"+" and those from NEG normally labelled "-", a certain proportion chosen
at random will get the wrong labeH In chapter 5 of his book, M. Kearns de
scribes a more pessimistic model in which a malicious adversary is alloweCl. to
choos~and mislabel a proportion EMAL of the examples, and does this in 'che
way most likely to cause the learning algorithm to output a bad bypothesis
[Kea90aJ.

These two models still assume that in principle, a particular example
belongs to exactly one of the two categories. However, we may wish to explore
domains where classification is uncertain or probabilistic in princ:iple - where
there is not necessarily a single right classification. The theory of learning
"probabilistic concepts" or "p-concepts" deals with this kiud of situation, and
is being developed mainly by M., Kearns and R. Schapire. This theory is very
newi the only references l know of are Schapire's Ph.D. thesis [Scha91] and
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an extcnded abstract by Kearns and Schapire [Kea90b], though M. K~"rits

kindly sent me the full version of the latter. -"
Kearns and Schapire give three examples to clarify p-concepts:

1. A meteorologist rri~asures a small number of relevant parameters, such
as the temperature, barometric pressure, and wind speed and direction;
he makc3 ..a prediction of the form "chances for rain tommorrow are
70%". Th~ next day it either rains or does not rain.

2. A statistician wants to predict which students will or will not be ad
mitted to a particular college on the basis of their high school average
and SAT scores. Sorne students have such good or such bad marks that
the statistician can mah;à: prediction with almost complete certaintYi
the fate of borderline students depends on the mood of the admissions
officer at a particular moment (about which the statistician has no
information). Each student either is or is not admitted.

:3. A physicist wants to know the orientation of spin for particles in a
magnetic field of known strength and direction. Each particle has spin
either up or down.

lireù.~h of these.three cases, as with PAC-learning, the examples have an
uilambig'uous label - each is either positive or negative. For instance, it either
I""in"s ur does not rain on a particular day. The difference is that two identical
èxamples may receive opposite labels, and this is not due to sorne error in
the labelling process but part of the phenomenon itself. In sorne cases, as
fOI" examples 1 and 2, we may lack additional information that would enable
us to correctly distinguish positive and negative examples 100% of the time.
ln other cases, as in example 3, quantum theory tells us that 100% accuracy
of classification is impossible in principle. Both (ipes of phenomenon are
covered by the theory of p-concepts. The theory also deals with the "fuzzy
logi';" type of concept, where two different pPOple may disagree about the
boundaries of a concept like "tallness".

In ail these situations, we haye a domain X from which we draw an
example x according to distribution D. Once drawn, x is labelled "+" with
probability c(x) and "-" with probability 1 - c(x). The learning algorithm
A hasacct:~s to labelled examples CUbe form < x, + > or < x, - >, from
which we want it to generate in polynomial time an approximation h to the. .

.
!~

'. 79



function c(x). We will call both c and il p-concepts: that is, they aI"<' real
valued functions mapping X onto the interval [0,11. An obvious alg;orithm
.4. would collect several examples for each possible valuc :/;, and obtain '"I
estimate h(x) as an average frequency f(+lx). This will work if:r C'lllytakes
on a few discrete values. In most cas~s, however, we will scldom g;et ~.ract/y

the same metereological measurements or the same combination of marks
in a roI'. Instead, algorithms for obtaining an approximate h(x) for a c(x)
usually rely on sorne kind of structure in c(x) - for instance, days with similar
measurements may have a similar probability of rain.

Definition:

• A p-concept h is an (e, ,)-good model of probability for distribution
c(-:r) if Pr[lh(x) - c(x)1 > ,l :::; e, where the probability is taken over
distribution D. Then by analogy with PAC-Iearning, we say that A
learns a class of p-concepts C if for any c(x) in C, given access to an
oracle that draws examples from D and thén labels them according; to
c(x), A outputs with probability 1 - 8 a p-concept h that is an (c,,)
good model for distribution c(x). If A l'an produce such an h in timc
polynomial in Ile, Iii', and 1/8 we say that A is a polynomial-time
learning algorithm for p-concepts.

Note that once we have learned a reasonably good approximation h( x) t.o
c(x), we l'an easily turn it into a decision rule. The best decision rule is to
label examples x for which h(x) > 0.5 with "+", those for which h(x) < 0.5
with "-", and the rest arbitrarily (unless one type of misclassification is more
costly than another).

Kearns and Schapire have devised polynomial-time learning aigorithms
for a number of p-concept classes C. For our purposes, the most important
of these is the a1gorithm that I~arus probabilistic decision lists. The next
section shows that the existence of this algorit,hm casts light on what is
learned by KCTs.

Suppose we have a set of n Boolean p~rameters, each of which is either
TRUE or FA.LSE. We can construct a s~t /1,12, ... '/, of Boolean-valucd
functions over these parameters. If our doll1.'iÏn is the admissions, task de
scribed above, ft might be the question "does the student have straight
A's?", /2 might be the question "does the student have a SAT math score
of more than 650, or an English SAT score of more than 700?", and so on.
Now, we might have an admissions procedure which resulted in probabilities
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of the following form: if JI is TRU Ethe student is admitted with probabil
ity 1'1; otherwise, if 12 is TRU Ethe student is admitted with probability f2;

otherwise... and so on until J" which is the constant function TRU E, gives
a probability f, for admission. This is a probabilistic decision list. A prob
abilistic decision list with decreasing probabilities is the special case where
each 1'; 2:: f;+I'

We will assume. that we have already drawn up a list of the relevant
Boolean-valued functions or questions {qi} from which the {J;} will be se
lected. The learning task is to find out what order they should be in in the
decision list, and to estimate the probabilities ";. First, we draw a large num
ber m of examples, each labelled "+" or "-"; m is polynomial in l/E, lh, 1/8.
Now, considé a particular qt:estion qi. Among the m examples, sorne will
yield a value TRU E to qi; of these, sorne will be labelled "+" and sorne
"-'\cOf those that yield the value FALSE to qi, sorne will be labelled "+"
and sorne "-". We can calculate from these counts a conditional frequency
J( +Iqi) for each qi·

Now, the function JI has the property that if it is TRU E, the probability
of getting a "+" is maximal (it is equal to rI)' Therefore, the question
q; that yields the highest conditional frequency f( +Iq;) is likely to be ft;
furthermore, if fI = qi then f( +Iqi) is a good estimate for rI' The learning
algorithm sets JI to this qi and uses the corresponding conditional frequency
as an estimate of ri. Then, it discards ail the examples for which fI is TRU E
and calculates the conditional frequency f( +Iqi) for the qiS other than the
one just chosen as fI, The qi yielding the maximal conditional frequency is
chosen as 12, this conditional frequency is taken as the estimate for r2, and
so on until the algorithm runs out of questions. Kearns and Schapire prove
that this learning algorithm is polynomial in l/E, lh, l/a, in the totallength
of the question list {q;}, and in the maximum time required to evaluate any
question qi [Kea90b pg. 385, Scha9l pp. 117-122]. The proof is complex,
and will not be given here.

4.4 Keyword Classification Trees

4.4.1 The Theory and Practice of Machine Learning

Ideally, this thesis would supply rigofou5'ûnswers to two questions:
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1. What do I\CTs learn?

2. \Vhat computational resources do they require ta carry l'ut 1l'il1'l1illg?

Chapter 7 answers the secon'cl question; the current state of machine learning
theory makes it impossible ta answer the first one fully.

As Kearns and others point out, there is a large gap between the theOl'y
and practice of machine learning. The complex Iearning aigorithms actllally
used in AI do not lend themsdyes ta formaI analysis. Thus, theoreticians
haye tended ta employ simr;listic models that leaye out important aspects
of practical machine learIlîng, and designers of Al algorithms haye olten
abdicated their responsibility ta anaIyze formally what they are doing. The
admirable work of Valiant, Kearns, and their col1eagues has proyided us with
new models of learning that are simultaneously more rigorous and more com
putational1y realistic than earlier models. Perhaps one day, Al practitioncrs
will routinely giye and praye probabilistic performance gllarantees for their
learning algorithms. Meanwhile, research on PAC learning and p-conecpts
has narrowed the gap between theer/and practice, but not bridged il.

This section proyides sorne clues ta the question of what KCTs Iearn.
First, it is shawn that each class in a single-symbol or set-membership KC'!'
corresponds to a regular set. Next, pCconcept theory is used ta praye a result
for a data structure closely resembling KCTs. Finally, the relationship of
KCTs ta the learning algorithms described earlier is discussed.

4-.1.2 Each Class of a KCT is a Regular Set

We will praye by induction that eyery node in a single-syrnbol tree represents
a regular language. A regular language is one describable by a regular expres
sion. Hopcroft and Ullman define the regular expressions oyer an alphabet
I; and the sets they accept as follows [Hop79 pg. 281:

1. ri> is a regular expression and denotes the empty set.

2. € is a regular expression and dellotes the set {€}.

3. For each a in I;, a is a regular expression and denotes the set {a}.

4. If rand sare regular expressions denoting the languages Rand 5',
respectively, then (r Us), (rs), and (r") are regular expressions that
denote the sets RUS, RS, and R", respectively.
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We will also need sorne rcsults from Hopcl'Oft and Uilman pertainin!\ ta
the closme propenies of regular sets [Hapï9 pg. 59]:

1. The regular sets are dosed under union U.

2. The regular sets are closed under complementation - that is, if L is a
regular set and L ç E*, then te = E* - L is a regular set.

3. The regular sets aœ closed under intersection n.
We wish to show that every node in a single-symbol [(CT accepts a regular

set. Now, our algorithm for growing a single-symbol [(CT chooses a question
for every interior nade in the [(CT, generated from the "known structure"
for the node. Questions are made up of the symbol + and the symbols in
E. For instance, if the known structure for N were < a + c+ >, the chosen
question might be "is the form of the string < azc+ >'!"

Our first step is to show that KCT questions involve regular expressions,
even though they may include the nor.-standard symbol +. The [(C'f
growing algorithms use the symbol + to denote all strings other than the
empty string €j + thus denotes the complement of the regular set {(}, and
therefore (by dosure property 3) denotes a regular set. Thus + by itself is
a regular expression. By the definition of the regular expressions, any single
symbol a in E is itself a regular expression, and any concatenation (1'S) of
two regular expressions is itself a regular expression. lt follows by induction
on the length of any string w that is made up of the symbol + and symbols
in E that w is a regular expression. Thus, ques.ions in single-symbol «CTs
are regular expressions.

For a node N, let S(N) denote the set of strings arriving at Nj for a
qu~stion Q involving a regular expression, let S'(Q) denote the set of strings
that would yield "YES" to the question (i.e. that match the regular ex
pression in Q). Consider an interior node N, its chosen question Q, and its
children YES and NO. YES accepts strings in S(N)nS'(Q); NO accepts
strings in S(N)n[S'(Q)]c. Since a regular set is accepted at the root, and
the sets accepted by YES and NO children of a set N are obtained from the
set accepted by N via intersection and complementation with regular sets,
it follows by induction from the dosure properties of these operations that
every node in a single-symbol KCT accepts a regular set. In particular, each
of the leaf nodes in a KCT accepts a regular set.
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Now, iL givcn c1,tss in an KCT may hc associatcd with marc than one leaf
node . i.e., more th,,;) one leaf node may have the label associated with the
particular c1a~s. A c1ass correspond~ toa union over leaf nodes. Since regular
sets are c1o~edllnder union, this implies that each c1ass in a single-symbol
KCT is represented by a regular set. Ta extend this proof ta set-membership

"-.-.- ..~
KCTs, one mÙst prove that the expressions in the nodes of a set-membership
KCT are regular, which is trivial.

Of course, this does not imply that the KCT-growing algorithms are
capable of lcarning any given regular language from examples. As described
above, Gold provcd that learning a minimal DFA from positive and negative
samples was NP-hard; Pitt and Warmuth proved tha~ PAC-learning a DFA
of sizc Il by an NFA whose size is bounded above by any poiynomial in Il is
also NP-hard. Since the KCT-growing algorithms are polynomial-time (see
Ch~:ptcr i) it follows that there will be regular languages that cannot be
exactly learned, nor PAC-Iearned, by KCTs. KCT-growing must therefore
be rcgarded as a heuristic method that always learns some regular language
approximation to the language that produced the training examples. The
ncxt section considers the question: when is the KCT grown from training
data il good approximation?

4.4.3 Classification Properties of KC1's

This section examines the ability of KCTs to separate classes of strings. The
discussion that follows considers only the case where we wishto c1assify a
string s as belonging to LI, the language generated by stochastic grammar
C" or to L2, the language generated by stochastic grammar C2; however,
the results could easily be extended to a larger number of classes.

KC1's and p-Concepts

A given string s may have non-zero probability of being generated by CI and
non-zero probability of being generated by C2• The p-concept approach is
relevant here. Let c(s) be the probability that s belongs to LI> Le. c(s) =
P(Cds). Similarly, the probability that s belongs to L2 is P(C2 Is) = I-c(s).
Since c(s) is a p-concept, a decision rule can easily he derived from it once
it has been learned; in most cases, we will decide that s belongs to LI if
ê(s) > 0.5.
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I~ach leaf node of a KCT represents a decision l'Ille of the forlll "strings
that have arrived at this node will be labelled X". However, I,CTs can be
converted into a data structure that estimates probabilities. First, grow t.he
KCT on one set of labelled data; since we are dealing with the t.wo-c1ass
problem, each t.raining string will be labelled eit.her 1 or 2. Next, use a new
set of labelled strings to estimat.e c(s) for each leaf node. For a particldar
leaf node N, the estimate h(N) is simply the proportion of strings ending
up in that node that is labelled 1. This modified-i<CT c1early approximates
p-concepts c(s), with each leaf node N providing th~ estimale h(N) for the
strings that end up in it.

What classes of p-concepts c(s) defined on strings can be learnelby
KCTsl The thenry of p-concepts cannot be applied directly to KCTs, which
are obtained via the iterative expansion-pruning algorithm in a way that
would be difficult to analyze formally. However, we can obtain an interesting
result using a modified decision list c10sely resembling single-symbol KCTs.

Two questions are of interest:

1. Are there stochastic grammars Cl, C2 such that no I<CT can reliably
decide whether a given string belongs to LI or L27

2. Given two stochastic grammars Cl, C2 such that a KCT that can reli
ably determine membership in LI or L2 exists, .will this KCT actually
be learned in a reasonable amount of time from examples7

These questions are cIosely related. The first question can be answered by
producing an example of stochastic grammars Ch C2 such that a KCT which
reliably determine membership iil LI and L2 is impossible to grow. Suppose
that GI yields strings of the form < aa(bctaa >, and G2 yields strings of the
form < aa(cb)naa >, with identical probability distributions on values-of n.
In general, it will be impossible to get the KCT-growing algorithms sta?ted
- no question of the type "is the form of the string < X >7", "is the form of
the string < X + >7", "is the form of the string < +X >7", or "is the form
of the string < +X+ >7" (whether the single-symbol or set-membership
protocol is followed) yields a significant drop in impurity at the root.

We could deal with practical situations in which stalemates of this sort
often arose by developing a new KCT protocol in which questions involving
n-grams are permitted. In a protocol that allowed bigrams, a question such
as "is the form < +bc+ >7" would be permitted at the root and this would
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,_, handle the examplejust given. However, for any protocol allowing questions
about n-grams (value of Il fixed), it is_easy to produce a counterexample
which requires a higher value 'of n to handle it. Thus, there are definitely
cases of stochastic grammars G l and Gz for which membership cannot be

- determin,~d by KCTs.
The second question we wish to answer concerns situations where there

is a possible KCT that woulcl,:;orrectlY model c(s) = P(Gtls). Will such a
KCT actually be learned in a reasonable amount of time from sample strings
generated by Gl and Gz7 Recall that Kearns and Schapire proved that a
decisioll list with decreasing probabilities is learilable. That is, an algorithm
cxists for lei{rninga list of the form (JI, rd, (fz, r~\ ... , (J" r.) where an exam
pie has probability rI of being in c1ass 1 if fI is TRUE, otherwise probability
rz of being in c1ass 1 if h is TRU E, otherwise... - and so on (where the ri
are in decreasing order). It is assumed that the fi are drawn from a listof
potential questions {qi}; the only restriction on these questions is that they
must be"Boolean. The algorithm is guaranteed to output with probability
1- /5 a hypothesized decision list h that is an (E, 'i')-good model for the prob
ability c(x) given by the real decision list that an example x belongs to c1ass
1. Furthermore, the running time of the algorithm is polynomial in l/E, 1h,
1//5, in the totallength of the question list {q;}, and in the maximum time
required to evaluate any question qi.

Suppose we have access to labelled strings from stochastic grammars G I

and (;z. Let {qi} be the questions considered at the root of a single-symbol
KCT. That is, we allow questions of the type "is the form of the string
< X >7" ,_"is theform of the string < X + >7", "is the form of the string
< +X >7", and "is the form of the string < +X+ >7", where X is a variable
allowed to take on the value of any symbol in the alphabet E. There are
4 * [El such questbns. If we run the Kearns-Schapire decision list algorithm 
using this list d'questions, we obtain a probabilistic decision list that with
probability 1 - <Î~~ives us an (E, 'i')-good model for the probability c(s) that
a string s was P!oduced by Gl , in terms of the ,questions asked. The list wiII
be obtained:in'time polynomial in l/E, 1/;, 1/5, and alphabet size lEI. If we
regnrd E,j;' and 5 as fixed, the time to find the list is polynomial in lEI.

Figure 4.1 shows how the Kearns-Schapire algorithm can be iterated to
pro<!uce a bloated kind of KCT. Since the lexicon is V = {b, c, m}, at the
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root

{} { b ?·? '1 b '1 '1 '1 bqi = < >.,<c.>.,<m>.,< +>.,<c+>.,<m+>.,<+ +>,
~. '1 + ? +b+ ? ? 'Il. -< +c >., < m >., < >. , < +c+ >. , < +m+ >. .

, 1

T!lealgorithm then arranges these questions 50 that the probabilities 1"1, .•• , "13

shown for iteration 1 are in decreasing orûer. The chain of questions gen
erated in this iteration will act as a backbone from which future questions
grow; it contains O(lEI) questions.

During Iteration 2, single-symbol questions from the known strudure
< +b+ > for the l'ES child of the root are generatedj the'~< will be O( lEI)
of these. Using a new set of examples generated by Cl an.d C2 , we rull the
Kearns-Schapire algorithm with the new questions filling <the role of {(/i}.
Again, we are guaranteed to find a probabilistic decision list that is a good
estimate of the corresponding conditional probabilities in time polynomial in
lEI·

We now run the Kearns-Schapire algorithm on the l'ES child of the second
question in the backbone, < +m >? Again, we get a probabilistic decision
list in time polynomiai in lEI. We continue until every one of the O(IEI)
l'ES children in the backbone has a probabilistic decision list attached to it.
The whole process takes O(lEI2 ) time, since an O(lEI) algorithm is being run
O(IEI) times.

Thus, the final structure will consider every possible question involving
exactly two symbols in a way that yields, with probability 1-8, an (€" )-good
model of the corresponding conditional probabilities (these are stored in the
leaves). The structure takes O(IEI2) time to build. In general, if we wanted
to consider ail questions involving k symbols, we would require O(IElk ) time.

We have now shown that the dass of p-concepts given by P(Cd[«s)),
where [«s) is the known structure for a string s, idearnable in polynomial
time by the iterated version of the Kearns-Schapire algorithm just given.
The running time is polynomial in the size of the alphabet for fixed k (the
maximum number of symbols in a known structure). This does not prove
that the KCT-growing algorithms we actually use produce an (€, ,)-good
model with probability 1 - 8, but it makes such a daim plausible.
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v - {b,c,m} -> Question List - {<b>?, ... ,<c+>?, ... ,<+m+>?}

Iteration 1:

~
Yes~ " No

[PiGFJ @+m>:l>Yey ~ No

I-;::P(;;::;G:71)-=~~1 YeYC>~ No

1P(G1) - r31

< +>

Iteration 2:

Yes

P(G1) = r12

P(G1) - r1,2 No

"Yes

1p(G1)-r1,24!

'"

,
Figure 4.1: First 2 Iterations of Kearns-Schapire Alg. on KCT-Style Question
List
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When Do KCTs Perform Weil?

Formai analysis normally':considers the worst case: how badly a givcn mcthod
might perform. Later chapters of this thesis present evidence that KCTs per
form quite weil on sorne natural language tasks. This fact may tell us some
thing about natural language. Jl.eversing the usual question, one therefore
asks: in what situations would one expect KCTs to perform weil?

The performance of KCTs in deciding whether a string s belongs to LI
or L2 has little to do with the position of these languages in the Chomsky
hierarchy. Rather, it depends on the way in which the corresponding gram
mars CI and C2 use the symbols in the alphabet. If CI and C2 use these
symbols with different frequencies, KCTs find L. and L2 easy to distinguish;
if symbols are used with similar frequencies, KCTs do not easily distinguish
L. and L2•

For a trivial example, suppose that L. is the language denoted by the
expression anzbn, where n <:: 1, and L2 is the language denoted by anb",
where n <:: 1 (both with sorne consistent probability assignment to strings).
The KCT consisting of the single question "is the form < +=+ >?" is
capable of deciding membership in LI or L2 with 100% accuracy. Neither
L. nor L2 is regular [Hop79 pp. 61-62]. Thus, one cannot conclude from
the regularity of the sets accepted by KCTs that tlîey only perform weil in
deciding membership in regular languages.

Figure 4.2 presents a more interesting example. Here, C. and C2 differ
only in the probability values for the rules associated with the symbols x
and z. The set of strings produéed by LI ll,nd L2 is the same, but sorne of
them differ in their probabiIity of occurrenœ;, If the a priori values P(C.)
and P(C2) are identical, one can show by the Bayes theorem that c(aab) =
P(Cl\aab) = 0.5. On the other hand, the striilg aaxb is more likely to be
produced by CI than by C2• By the Bayes theorem, c(aaxb) = P(C.\aaxb) =
0.67.

For this example, the only information about a string that makes either
L. or L2 more likely than the alternative is the fact that it contains x or
z. Any further details about the string are irrelevant. The hypothetical
KCT shown yields the best possible estimate h(s) = c(s) for the probability
that <1 string s was produced by CI: no other data structure or grammatical
inference method can do better than this. Assuming that a KCT cOlitaining

"./ the questions shown here is obtained from training data, the probi~filities

->'
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Grammar 1 (productions with probabllilies)

"\,.1 (213) '. ~i;41
S --- .. AB B • b

S (1/3)
l."AMB M

(1/2) • x

A
(4/5) .-AA M

(1/4) .. Y

(1/5) .:::
(1/4) ,

A ..a M .z
B

(3/4)
• BB- ----

.- -,

,.
Grammar 2 (productions wlth prohllbililles)

,-

.. '

(213)
.AB B

(114) .. bS

S (1131
"AMB M

(1/4) ..",. x .. ,

A
(4/5) IIAA. M

(1!4) .. Y

A
(115)

Ita M
(1/2)

,~z

(3/4)
.. BBB

(.

:,....

,
Figure 4.2: p-Concept KCT for 2 Stochastic Grammars, where P(G1 ) =
P(G2 )
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I:(s) at the leaves can be estimated from additional training data, and will
rapidly converge to c(.s).

4.4.4 Discussion

In a survey of pattern recognition, K.8. Fu stated: "Many mathcmatical
m~thods have been proposed for solving pattern recognition problems. They
~an be grouped into two major approaches, the decision-theoretic or ~tatis

tical approach and the structural or syntactic approach" [Fu86c pg. :398J.
These two approaches differ in their goals, as weil as in the techniqnes they
employ. The decision-theoretic approach aims at making a decision about
new patterns on the basis of statistical classification rules learned from pat
terns seen earlier. The syntactic approach tries to describe the nature of
the ruies that generated a set of patterns, and may use this information to
make a classification decision"bout new patterns. The syntactic approach
is thus more ambitious than the decision-theoretj.~approach: in addition to
c1assifying the data, it attempts to explain the pro':ess that gave rise to them.

_ Without exception, all the papers 1 have read on machine learning of
sT.ring patterns assume that the syntactic approach is the only possible one.
Nobody seems to have posed the following question: can strings be classified
without full syntactic analysis? In other words, what method should one
employ if one's only interest in a set of strings is decision-theoretic rather than
syntactic? KCTs fill a hithei'to empty niche. They are a means of achieving
for string data the modest goal of decision (heory - that of classifying the data
correctly - rather than the more ambitious syntactic goal of characterising
the processes that generated the data.

This accounts for sorne of the apparent idiosyncrasies <)f KCTs:

• KCTs pernîiCgaps -:arbitrary substrings of length one or more that
can be made up'of any symbols from the alphabet. In fact, operations
performed on gaps lie at,the heart of the KCT-growing algorithms. No
gra;;~;rtical inference technique 1 know of permits gaps, since the aim

.,c" of such techniques is to account for ail the symbols in a given string.

• The performanc~o(i{CTs depends bn the extent to which, in.a given
domain, the class of a string correlates with the identity of the terminais
it contains, i.e. with string composition. Naturallanguages have a huge

1~,;,
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lIumbcr of possible tcrniinals (words); only a fr"acti()n. of the lexicol!
can appcar in a given sentence. If one were interested in c1assifying
sentences by topic, an unordered list of the words occurring in the
sentence ~uld be quite helpful. Many natural language classification
problems thus seem ideally suited to KCTs. By contrast, a domain in
which different string classes tend to have the same terminaIs arranged
differently might be better-suited to another technique.

• Most work in grammatical inference considers only two classes of strings:
those generated by ~:gramma, C and those not generated by G. When
more than two c1'1.Sses are considered, a separate grammar is inferred
for each. Thus, a new string is parsed first by Ch then by C2 , Ca and
so on until a grammar Ci is found such that the parse is successful.
If the grammars are stochastic, the successfur pal'se is the one which
J'ields the highest probability of generating the string. A single KCT
can separate strings belonging to several different classes in a srnall
number of steps. \."

• Although the leaf nodefof a KCT accept regular languages, KCTs
can reliably tell apart strings produced by sorne pairs of grarnrnars
Ch C2 higher up in the Chomsky hierarchy - if certain conditions
are placed on production probabilities in thosc grarnmars. BroadIy

:/;peaking, good performance is possible when at least one of the two
grammars generates strings containing regular patterns not produced
by the other grammar as substrings.

• Growing a KCT on a set of training strings is usually much faster
than inferring a grammar from the same data, as is using a KCT to
c1assify a new string. In return for giving up the goal of explaining how
the data arose and concentrating on classification, KCTs obtain speed
advantages.

KCTs are not the only possible decision-theoretic learning method for
•string classification rules. As others arise - based, for instance, on the theory
of Bayesian networks [Char91] : it will ~"important to develop theoretical cri
teria for assessing them. The l'AC le~ming paradigm (including p-concepts),
with its emphasis on computability and on probabilistic performance guar
antees, promises to supply such criteria. 1 have devoted considerable space
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to this relatively new, incomplete paradigm bccau~l' [ am convinced that it
will be of great importance in the futurc. In the long term, work in lIla
chine.learning in general "nd string classification in l'articulaI' will grow ont
of clos~r collaboration between theory and ['ractice.

In the medium term~.the validity of KCTs must be established cmpirically.
Like bigrams and trigrams for langnage modeling, KCTs seern to yicld simpic,
rapidly-trainable models that approxil;1ate Iinguistic reality by ignoring somc
aspects of it. Chapter 5 presents binary decision' trees, of which KCTs arc a
specialised form; Chapter6 presents KCTs themsel yeso
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Chaptfh' 5

C1as:sification Tte.es~' in Soeech
'.' ....

~_roéessing
~,,\

1)

5.1 What is acB~n;:).ry ·<Slassification Tree?;
::, \.\ ;:

A binary classification tree is a binary tree each of whase internai nod(·s
consists of ayes-no quf's'tion, a YES subtree,and a No..subtree, and each of
whose,l~af nodes is labeled with a category.\.\To cJassify a data item, apply

. the question at the root to it and eu,;er either the YES or the NO subtree,
depending oil the answer to the question; recu:se until the data item arrives
at a leaf node, whose cat~gory is ~ssigned to the item.

Thus, using a binar/dassifkation tree is analogous to playing the game
"Twenty Questions" - except tnat in pattern-recognition applications there
is no rule limiting the depth of the tree to 't,yenty. Tfe most difficult part
of this game is the formulation of à good tre~: of binary questions; once this
tree has been dcvised in the course of several games, it can he used over and
over agairî: with. litt le mental effort. ~;milarly, the trickiest p'lrt of hinary
tree classification as a statistical;téchnique is the generation of the tree from
training data; once it has been'!grO\vll; classifying new data is trivial. The _.'
structure of the completed tree is èâ~y for people to understand and often
yiclds a~deeper understanding of the hidden processes generating the data,.\

;which is not always true of competing statistical techniques.
. In the last few years effi~ient algorithms for growing binary classification, .)"ô;:::C oc",.

trees from training data have been devised. Many of these are contained in a'-'
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ilooksomelirlù:s è.alled the "Bible",or "Bhagavad Gita" 01' classification tr('(' ,
methodology: "Classifical:ion and Regression Trecs:' ily· Breirllan. Friedman
el al [8re84]. Sorne important rcecènt contributionsto the methodology are
[Ch091, Ge191, Nad91]. To emp16y these lree-growing algorithms, one must
supply three elements [Bre841:

1. A set of possible yes-no questions"tllat can be applied to data items;

2. A rule for selecting the beskq;;estiôll ata node, or deciding that it
s~o!~lld be a leaf node, on the basis of training:~:;;"ta;

3. A method for pruning trees to prevent over-training.

Note that· the set of possible questions one supplies to the trce-growing
algorithm is normally much larger than the set of questions ultimately as
signed to nodes of the'tree. Any question thatyields a "Y ES" or "NO"
answer when applied to the type of data one is:studying is permissible in
principle. The beauty of the classificatioh trte ap'proach is that if one thinks
a certain/aspect of the data might concêivably be relevant to classification,
one can supply a question reflecting this aspect to the tree-growing algorithm
and allow it to make the final decision. The algorithm discards rnost of the
possible questions and determin~~.,the placement in the tree of the remaining
questiçms on the basis ?f training·data. !~"i7""

The classification'i;~eemethod can be applied to a wide variety of prob
lems: [Bre84]discusses a tree that identifies heart attack patients wh,?,/isk
having a second, fahl attack within the next month, a trce that dctermincs
tll.El c1ass of a ~hip from its radar range profile, and a tree that ',letects the
pr'esence of bromine from mass spectrometer measurements. Figure 5.1 [ibid
pg. 2] shows the tree that identifies high-risk heart attack patients: G means
high risk, F means low risk. People who had suifered a mi Id heart attack
and were admitted to a certain"medical centre underwent c,l,reful examina
tion involving measurement ofÎ'g";rariablës: blood pressure, age, and so on.
If they died within the next 30 days they were classified as GS?therwi~e they
were classified as F. The resulting corpus of data was used tà-grow''i.he tree
in the figure.

Note ihat only three of the 19 variables (minimum systolic blood pressure,
age, and presence or absence of sinus tachycardia) turned out:,to be relevant
for classification. Sophisti~ated statistical regIf~ssion techniques applied to
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O Is min. syslolie blood pressure
over firs! 24 hrs. > 91?

y"/ ~-
Is age ~62.5?0 . GJ

ye/ .~no
Is sinus lachycardia 0
present? F

~b
Key

F - low risk patient

G - hlgh rlsk patient

Figure 5.1: Patient Classification Example [Bre84, pg.2]
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the saIlle data yielded complex formulae involving rnost oC the 19 \"lI'iable".
but these turned out to be less accu rate than the tree in c1assifying n(',W data.
Classification trees oftenhave a competitive advantage over ot\ler statistical
approaches when the data are highly complex. They should be considered
when the data have the following characteristics [Bre84 pg. il:

• High dimensionalitYi

• A mixture of data types;

• Nonstandard data structure;

• Nonhomogeneity - i.e., different relationships hold between variables in
different parts of the measurement space.

This chapter discusses general algorithms for growing classification trees,
and applications of these trees at other levels of speech processing. Ali algo
rithms and formulae are given for the case where the cost of misclassifying a
class i item for a class j item is the same for ail i and j, but they ,u'e easy
to modify for non-uniform misclassification costs.

In subsequent chapters, 1 will show how to grow specialized classification
trees that aid speech understanding by dealing with word sequencc hypothe
ses generated bi the speech recognition component. Note that most of the
characteristics listed above apply to word sequence hypotheses:

• Their dimensionality varies and can be quite high;

• They consist of a mixture of nouns, verbs, and other information
carrying parts of speech with meaningless interjections and repetitions;

• They are highly non-homogeneous in the sense that one sentence may
require elaborate computation based on al! its words, while another
may require very little processing.

5.2 Splitting ttules and Stopping ttules
As mentioned above, one must supply three elements in order to grow a
binary classification tree:
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l. The set of possible questions;
,~: ~

2. A rule for selecting the best question at a uode. or deciding that it
should be a leaf node;

:l'J\rnethod for pruning trees to prevent over-training.
-:;::._--<

The set of possible questions depends on the application. This section de
scribes the Gini criterion for selecting a question and a stopping rule that
decides when anode is a leaf node; the next section describes pruning tech
niques.

Consider the items in the training data that end up at a newly generated
node. Since we know the category of each item, we can define a measure of
the "impurity" of the node with the following properties:

• The impurity is always non-negative;

• Anode containing equal proportions of ail possible categories has max
imum impurity;

• Anode containing only one of the possible categories has impurity of
o(the minimum possible impurity).

There are several functions satisfying these conditions; ail depend only
on the counts of each category within anode. Breiman, Friedman, et al
[Bre84] con&idered several possible impurity measures. They found that the
misc1assification rate of the tree is quite insensitive to the function chosen,
as long as it belongs to a set of functions with reasonable properties. From
this set, they ultimately chose the Gini criterion. The Gini criterion is a
measure of impurity that always lies between 0 and 1. If T is a certain node
and fUIT) is the proportion of items in the node that belong to category j,
then the Gini impurity i(T) of the node is defined as

i(T) = L fUIT)f(kIT) = 1 - L lUIT).
i#k i

For instance, suppose there are threè possible categories, A, B, aRd C.
Consider a given node T at which 10 items in the training data arrive. Of
these 10 items, 5 belong to category A, 3 to category B, and 2 to category
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C. Then f(AIT) is 0.5, f( BIT) is 0.:3. and f( C1T) is 0.2. From these \'alue~

and the equation, we deduce that the Gini impurity ;(7') is 0.62.
The best question for anode is considered to be the question which brings

about the greatest drop in impurity in going from the parent node to its
children. In other words, ifi(T) is the impurity of node T, the two children
of Tare denoted YES and NO, and the proportions of items at l' that a
question will send to the 'y' ESand NO children are denoted PI' and llN
respectively, consider the change in impurity defined as

6./ = ;(1') - l'Y * i(YES) - PN * i( NO).

The question chosen at node l' will be a question that maximizes 6.f. The
process of picking a question for anode, generating the YES and NO children
of the node, and dividing up the strings at the parent node between the two
children is called splitting the parent node.

Consider the node l' above, which had 5 category fi items, 3 category B
items, and 2 category C items. Suppose one of questions QI and Qz must be
chosen, where the YES child of QI contains 4 A items and 1 C item, and its
NO child contains 1 A item, 3 B items, and 1 C item, while the YES child
of Q2 contains 3 A and 3 B items and its NO child 2 A and 2 C items. Then
the impurity of QI'S YES child is 0.32 and the impurity of its NO child is
0.56, so

D./(Qtl = 0.62 - (0.5)(0.32) - (0.5)(0.56) = 0.18.

The impurity of both the YES and the NO child of Q2 is 0.5, so

D./(Q2) = 0.62 - (0.6)(0.5) - (0.4)(0.5) = 0.12.

QI brought about the greatest drop in impurity, and will therefore be pre
ferred to Q2.

Clearly, the children of a given node will be less impure than their parent.
If this process is carried out recursively to generate grandchildren, great
grandchildren, and so on of the original root node, sorne of the descendants
of the coot may have impurity of O. These nodes will be designated leaf
nodes, and labelled with the name of the single category they contain. Other
leaf nodes will be designated as such because there is no way of reducing
the impurity any further, or because the maximal t::..! is too small, or for
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sOllle other reason. Thesc leaf nodes will be labelled with the name of the
most cOlllmon category they contain; ties are broken arbitrarily. The criteria
nsed to dctcrmine when anode should be prevented from splitting further
by declaring it a leaf node are called the "stopping rules".

Brciman et al initially experimented with a variety of stopping rules to
obtain the best-sized tree. For instance, they considered different numerical
values for a threshold b such that anode is considered to be a leaf node if the
maximal ~l (over the set of questions) is less than b. None of these stopping
rules achieved the desired goal of obtaining a tree with strong predictive
power. The reason is that in many cases, a node for which the best question
gives an unimpressive ~l has children which can achieve high values of ~l; a
stopping rule that turns the original node into a leaf prevents these valuable
child nodes from being born.

These researchers ultimately adopted a tree-growing strategy with two
stages: first grow a tree that is much too large using a simple stopping rule,
then prune the tree upwards from the leaves using an independent data set.
The simple stopping rule they adopted was to keep splitting nodes until for
each t.crminalnode, either there are fewer than N items (N close to 1), or
the maximal value of ~l is o. The growing-pruning strategy yielded better
results than the most sophisticated stopping rules they tried.

Before we consider pruning, an important point about the choice of ques
tion at each node must be made. This choice is not necessarily optimal for
the tree as a whole. Ideally, we would choose the question that ultimately
led to the tree with the lowest misclassification rate. This would require
consideration of ail possible subtrees of the current node and is computa
tionally impractical. Use of the Gini criterion is a greedy heuristic that gives
good global results most of the time. If the set of possible questions is small,
one can employa look-ahead version of the algorithm in which the criterion
is the impurity of the grandchildren or greatgrandchildren of the current
node, rather than the impurity of the children. Once the number of layers of
look-ahead is greater than two or three, this again becomes computationally
impractical.
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5.3 Pruning Techniques

A tree grown with a tolerant splitting rule like the one utilized by Breiman cl

al will not perform weil on new data - it will be "overtraincd". Ovcrtraining
occurs when a predictor is 50 well-fitted to its training data that its ability
to predict new data is handicapped. For instance, if we havc 15 data points
(x, y) we couId fit them perfectly with a polynomial in powers of x up to
X 14 • However, it is unlikely that this polynomial will accurately prcdict the
value of y for a new x. We would be better off using the 15 points to
estimate accurately the parameters of a cubic, or of sorne other lower-order
polynomial. Similarly, too large a classification tree will have a higher true
rate of misclassification than sorne smaller trees, despite better performance
on the training data. Picking the best-sized tree is a compromise between a
tree that is too small, ignoring useful information in the training data, and
a tree that is too large and therefore overtrained.

Breiman et ars CAli.'!' Cross-Validation approach to this problem is
complicated and computationally expensivej their description of it is a con
fusing part of what is otherwise a beautifully clear book [BreS'! pp. 59
92J. Recently, Gelfand et al [Ge191J proposed a new iterative expansion
pruning approach that is elegant, computationally cheap, simple to imple
ment, and guaranteed to r,erform as weil as or better than the Breiman el III

approach. The Keyword Classification Trees (KCTs) described later in this
thesis were ail grown by means of the iterative Gelfand et al approach.

5.3.1 'l'he CAlt'l' Cross-Validation Approach to Prun
ing

Once the initial, too-Iarge tree has been grown, we are no longer concerned
with Gini impurity. To prune the tree, Breiman et al ca1culate the 1"C.5ubsti
tution misclassification rate R(n) for each node n. First, give each internai
node, as weil as each leaf node, the label of the most common data type that
passed through that node.

Figure 5.2 iIIustrates this. The tree shown here was grown on 100 data
items, with equal numbers falling into classes A, B, C, D, E. At the root, the
classes are tied; the tie was broken arbitrarily in favour of the label A. When
the question at the root was chosen, 52 data items yielded a "yes" answer
and went into the left child, 48 yielded a "no" answer and went into thc right
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5A+1D+4EA

5A+12B C 2B+8C+6E
+ID,\E

L-E-J 2B+5E 8 5A+10B+ID+9E

~ '00'"

B lB

8 20A+20B+2OC+20D+20E

/~
15A+6B+12C+19D 5A+14B+8C+ID+20E

15A+2B+9D3B+12C A
+IOD

C

Figure 5.2: Classification Tree (Training Data Items shown at each Node)

chiId. Among the 52 items in the left chi Id of the root, the largest group was
labeled D (19 of these) so the label of this node is D; similarly, the presence
of 20 E items in the right child of the root causes this node to be labeled E.
Each data item ends up at one of the leaf nodes; of course, the total count of
items shown in the leaf nodes is 100. 1 i;lade up this example - a tree grown
on 100 items using the Gini criterion would normally be much bigger, with
only a few items per leaf node (unless the set of possible questions was very
restricted).

R(n) is defined as the ratio of the number of items misclassified by the
label at node n to the total number of data items used to grow the tree. For
instance, the leftmost leaf node (with label C) cantains 13 items that do not
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2.
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Figure 5.3: Same Tree, R(n) shown for each Node n

belong to class C (3 Band 10 D); divide this by 100 (not 25, the number of
items in this node) to get an R(n) of 0.13 for this node. Figure 5.3.1 shows
R(n) for ail the nodes in the tree.

In a tree grown on real data when the stopping rule was "keep splitting
untii ail leaf nodes are as pure as possible", one wouid expect to see most
leaf nodes with an R(n) of 0.0. The sum of the Ieaf node R(n)s gives the
misclassification rate of the whole tree on the data it is trained on, which
will be close to 0.0. As explained above, this is an overoptimistic estimate of
the misclassification rate on new data.

To obtain a good pruned tree from the original tree, Breiman et al first
obtain a family of pruned trees. For an internai node n, let R(n.ub) be the
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rc,"i>sLitltion misclassification rate of the subtree at n,.defined as the sum
or II( i) over descendants of 11 that are leaf nodes. For instance, the node·
nllll1bered 2 in figure 5.3.1 has three leaf node descendants, labeled C, A,
and B respectively; thus

R(2,ub) = 0.13 +0.11 +0.0 = 0.24.

Also, for each internai node n, let Isub(n)1 denote the number of leaf node
descendants it has; for the same internai node 2, this is 3. Finally, for each
internai node n, define

91(n) = [R(n) - R(n,ub)II[1sub(n)I-IJ.

Figure 5.4 shows the 91 values for the internal nodes in the tree. Note
that, for instance, 9,(2) is (0.33-0.24)/(3-1). Breiman et al call the internai
node n with the lowest value of 91 the "weakest link". In the example, this
happens to be node 4. The first member of the family of pruned subtrees
is obtained by turning the weakest link into a leaf node and pruning its
descendants, as shown in figure .5 ..5.

What is the rationale for this procedure? The numerator of 91 (n) tells
us how much more misclassification we get if we prune the subtree of n and
just classify data by the label at n. Obviously, if this numerator is small the
subtree of n gives only a small improvement over n alone. If the denominator
is large, "here are a lot of leaf nodes in the subtree of n. Thus, a small value
for 91 (11) imp!ies that if we turn n into a leaf node, we can get l'id of a lot of
nodes without greatly increasing misclassification of the training data.

To obtain the other members of the family of pruned subtrees, one must
recalculate the 91 (n)s in the new tree, turn the internai node with the lowest
value of 91 (n) in the new tree into a leaf node, and iterate until there is
nothing left but the root. Compared to the computational cost of growing
the original tree, these steps take !ittle computation.

We now have a family of pruned subtrees of the original tree. If we have
plenty of data, the original tree should be grown on most of the data. To pick
the best member of the family of pruned subtrees, test each on the remaining
data and pick the one with the lowest misclassification rate. (If we grew and
tested the trees on the same data, the first, largest pruned subtree would
always be chosen). Unfortunately, this procedure is a waste of data.

To use the available data more efficiently, Breiman et al devised a com
plicated cross-validation scheme:
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Figure 5.4: Same Tree, 91(n) shawn for each Node n
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l. Dividc tlll' data into li di,;joint ';lIhsets.

2. Employ V - 1 of these subsct.s to grow a too-l<ll'gc tree and th" corr"
sponding family of prllned subtrees; find the best pruned slIbtr",· from
this family by testing on the slibset that was not lIsed for growing th,'
tree.

3. Repeat this V times. each time reserving a different sllbset for finding
the best subtree.

4. One now has V best pruned subtrees. From these, one can obtain an
estimate of "how big" the optimal subtree should be (actually, a certain
tree complexity parameter is estimated) .

.5. Now grow a too-Iarge tree on ail the data, obtain the family of prllned
subtrees, and pick the one that is "the right size" (i.e. has close to t.he
estimated value of the complexity parameter).

Fortunately, just as 1 was beginning to implement this cumbersome and
computationally expen'sive procedure, 1encountered an article describing t.he
Gelfand et al approach [GeI91J.

5.3.2 The Iterative Bxpansion-Pruning Approach

Gelfand et crs iterative algorithm is easy to lInderstand and to implement.
In my description of it, 1will (unlike Gelfand et a0 call the process by which a
tree acquires new nodes "expansion" (rather than "growth"). The removal of
nodes will still be called "pruning", and the process of obtaining the final t.rce
via cycles of expansion and pruning will be called "growth". The Gelfand el. al
algorithm will therefore be referred to as the "expansion"pruning" algorithm.

Compared to the cross-validation procedure described above, the expansion
pruning algorithm'has severatadvantages. In the cross-validation procedure,
,( pruned subtree is selected from a parametric family of pruned subtrees
which represents only a small subset of all possible subtrees of the original
tree. There is no guarantee that the parametric family of pruned subtrees
contains even a single member capable of yielding good performance on new
data, because the parametric family was obtained using only information
contained in the training data. In the pruning stel' of the expansion-pruning
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;,lgOl'itlilll, " sOlllcwhat bettcr cstimate of thc misc!assification rate is min
irnized over ail possiblc pruned subtrees, not just a subset of them. This
algol'ithm thus tcnds to yield a final tree with a !owermisc!assification rate
on new data. Furthermore, the cross-validation procedure requires grow
illg rnany trees that are Jater discarded. The expansion-pruning algorithm
cOllstructs the bulk of the final tree in the first few iterations and does com
paratively little work thereafter, so it is computationally cheaper than cross
validation.

The expansion phase of this algorithm \~orks exactly as in the Breiman
cl al algorithm, using the Gini criterion (orsome similar' criterion) to pick
qucstions and a simple stopping rule that gefierates overtrained ·zrees. Labels.
are again assigned to ail nodes in the expansion phase, as described above.
Since the pruning phase that follows will cut off leaf nodes (and often inter.~l

nodes) withont doing any labelling of its own, internai nodes must be labellèd'
during the cxpansion phase. Otherwise, we would obtain new leaf nodes with
no labels at the end of the next pruning phase. To expand a pruned tree, one
retains the labels on the leaf nodes but selects new binary questions for them
so as to produce YES and NO children of minimal)mpurity. These children
are split recnrsively, in the usual way, nntil pure lè:tf n"des are obtained.

The most important aspect of the expan~ion-pruningalgorithm is that
the training data are split into two disjoint sets of approximately equal size,
which 1 will cali F and S (for "first" and "second"). After being expanded
on one set, the tree will be pruned on the other, then expanded on the set
it was just pruned on; this process is iterated unti! two successive pruned
trees are of the same size. If we let To stand for the original empty tree, the
iterations can be described as follows:

• Expand Ta on F to get Tl;

• Prune Tl on S to get T2 ;

• Expand T2 on S to get T3;

• Prune T3 on F to get TI;

• Expand T4 on F to get Ts;

• Prune Ts on S to get TG;
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and so on. Eventually two succl'ssiw~ pruned trecs - for instancl'. 1;; and TI<
- will liave the same number o('.'odes, and wc sct t.he final Ir('e (0 be the
second one. Gelfand et al have proved that this must happen, and that whcn
it does the t\Vo successive pruned trces must be idcntical (i.e. in thc cxample.
1'6 and Ts will be the,same tree). Tf,ey also state infonnally that the numbcl'
of iterations is small in practice, and so far my results bcar them out: 1 have
never needed to go beyond growing 1'6 (which was the same as Td. The
pruning phase is always mtlch faster than the expansion phase. Figure 5.6
shows part of this cycle. .

The pruning algorithm takes as input a set of data and a trce. First,
ail data items are shunted to the leaf nodes by the binary questions in the
tree; then the algorithm works backwards from the leaves to the root. Fol'
each parent of two leaf nodes, consider what number of items in the two
children will be misclassified if we assign to ail of them the label of the
parent. Compare that with the number of items that will be misclassified if
we assign to items in the YES child the label of the 'l'ES child, and to itcms
in the NO child the label of the NO child. It is quitc possible that fcwcr
items are misclassified if we label ail of them with the parent's label. If so,
cut off the two childrcnj if not, keep them.

This idea can be extended. For an internai node n, we want to compare
the 1!umber of items arriving at the node that will be misclassified if we give
them the label at n with the number that will be misclassified by the subtree
whose root is n. If the label at n is a better way of assigning the class than
the subtree rooted at n, the subtree should be pruned. Working recursively
from the leaves to the root until no more nodes can be pruned, the iterative
expansion-pruning algorithm carries out thisidea.

Therefore, certain YES-NO pairs of chiltl nodes that are initially retained
becausfl they yield less misclassification than their immediate parent may be
removed later. This occurs when a more distant ancestor of these nodes (a
grandparent or greatgrandparent) yields l'ven less misc!assificationthan any
possible pruned subtree descending from it. AlI descendants of this ancestor
will be pruned.

Toimplement the algoritlim, define a p'arameter R(n) that will be s,t'ored
at each node n in the classification tree. R(n) is the proportion of the total

, number of data items that is misclassified by the label at node n. This is not
\'

equivalent to R(n) in the cross-validation procedure, since it is estimated on
a data set other than: the set on which the la&'~ tree expansion took place

:,
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Three Stages 01 the Algarithm

Tl

Prune

~

Basic Idea of Algorlthm

T2

Expand
on S
---I~

T3

- Split training data inta Iwo data sets, F and S.

- Expand T1 on F, letting nodes be split until leaf nodes are "pure"
(only 1class of item in each leaf nodel. T1 is now overtrained.

- Prune T1 on S to get T2.

- Expand T2 on S to get T3 (wlth pure leaf nodes).

- Prune T3 on F to get T4.

- Ilerate until 2 successive even-numbered Ts are the same size.

Advantages

- Unlike Breiman et al pruning, minlmizes misclassification over ail pruned subtrees;

- Much faster than Breiman et al algorithm;

- Easy to implement;

- Efficient use of training data.

Figure 5.6: The Expansion-Pruning Algorithm
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and is defined at leaf nodes as weIl as internaI Ilodes. :\s with H(II). it is
important to remember that R(n) is not the proportion of the number of
items in node Il that are misclassified by the label of Il. If the data set usetl
for pruning has 100 items in it, 5 of these reach a node n, and 2 of these ;j

are misclassified by the label of Il, then R(Il) is 0.02 rather than 0.'1. 1stress
. this point because 1 made this error when first implemcnting the algorithl1l!

Another parameter 5(11) is also stored at each node. 5(11) represents the
proportion of the total number of data items that is misclassified by the best
possible pruned subtree obtained from the original subtree rooted at n. Our
data structure for the tree will have storage at each node for j'l(Tl), for ~'(n),

and for a 'done' bit (the 'done' bit is Ilot really necessary but makes the
algorithm easier to understand).

Here is the pruning algorithm, which takes as input a classification tree
with aIl nodes labelled and a set of data:

1. Read in the tree; set the 'done' bits of the leaf nodes to 1 and aIl other
bits to O.

2. Use the tree to c1assify the data, and record the value of ÎI.(n) for ail
nodes n, bath internaI and,leaf. The data can be discarded once this
has been done.

3. For each leaf node n, set 5(n) ta R(n).

4. Carry out the following step recursively (you will be working from the
leaves to the root) , stopping when ail nodes in the tree have the 'donc'
bit set to 1. The step is carried out on those nodes of the tree that
have a 'done' bit set to 0, but whose children both have a 'donc' bit
of 1. Denote such anode by n, and its children by YES and NO.
Compare R(n) with 5(Y ES) + !;(NO). If R(n) is smaller than or
equal to this sum, dispose of the YES and NO descendants and set
8(n) to R(n); otherwise, leave the children where they arc and set
8(n) to 5(YES) + !;(NO). Now set the 'done' bit for n ta 1.

Gelfand et al have proved that this fast, simple algorithm finds the opti
mal pruned subtree of the original tree.

This completes the description of the iterative expansion-pruning algo
rithm. When 1 first read and implemented the algorithm, there was one
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,!lIcstiou that pll~~led me: why do more than two iterations ever oeem? lt
sccmed to mc that a[ter cxpanding the empty tree Ta on data set F to get
TI, then prllning TI on 5' to get T2 , then expanding T2 on 5' to get T3 , then
prllning T3 ou F to get T.h one should always have T4 identical to T2 • This
may happcn, but [requently it does not - further iterations are often neces
sary. 1 will givc the reasoning that led me to this false conclusion, and then
show what is wrong with the reasoning. In the process, the reader may gain
a dceper undcrstanding of the algorithm.

My reasoning was as follows. Consider an internaI node n that is in Tl
aud is thcn pruned (without its parent being pruned), so that it is not in
T2 • When n was originally put into Tt, a larg" number of possible yes-no
questions were considered to fill this node: calI them QA, QB, QG, and so on.
Ultimatelyall but one of these questions was rejected during this expansion
phase: let liS calI the one that was chosen QA. Now, suppose that though n
was pruned from T2 , during the next expansion phase on 5' another internal
node gl'Ows where n used to be. Obviously, the question contained here in
73 cannot be Q,,, since Q,\ did a worse job of classifying the data in S than
its parent did (that's why it was pruned). We know that the same set of
questions as before were considered for this position (since the parent is the
same) - QA, QB, and so on - but this timeanother question was chosen. Let's
calI the question occupying node n in T3 QB. Now, my reasoning was that
when we prune T3 on F, we know that QB was already rejected once before
on this same data, during the expansion phase that led to the choice of Q.4.
Therefore, node n, which contains QB, must be pruned from T3.

This is not a watertight case for saying that T2 and T4 must be identical,
sincc it only concerns one type of node. However, it was enough to make
me feel uneasy about the algorithm. The error in the argument lies in the
confusion between rejecting a possible question during the expansion phase
and rejecting it during the pruning phase. During expansion, the question
that most reduces impurity is selected at each node. Many of the questions
that are not chosen may be capable of reducing misclassification (they may
even be better at this than the question chosen). 'l'hus, in the previous'
paragraph, when Q.4 was originally chosen to fill nover QB and the others,
QB may still be an improvement over its ancestors (in terms of classifying the
data in F). When the pruning algorithm later considers the effect of removing
QB, it may therefore decide to keep QB because it reduces misclassification
of S, even though it is not the best possible question for S in that position
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from the point of viclV of reducing impurity (Cd" lits that description). ln
other words, the pruning ,dgorithm only rejects a question if il. docs not.
rednce misclassification, whereas the expansion algorithm rejects ail hut t.he
question that reduces impurity the most. Therefore, a qucstion that IVas
rejected earlier by the expansion algori thm on a set of data may rcappear on
the other set and he rctained by the pruning algorithm on the original set..

Thus, as one might expect, the final tree is a compromise hetIVeen the
trees that would be locally optimal for the tIVO data sets F and S. Each
question in the final tree will be locally optimal for one data set, and he
acceptable for the other data set - in the sense that it does not increase
misclassification.

5.4 Set-Membership Questions
When one seeks 1.0 apply classification tree methodology ta a prohlem, one
frequently has an obvious set of possible "primitive" yes-no questions which
one might like to combine to get "compound" questions. for instance, sup
pose that each of the data items consists of a vector of observations, each
taking on one value in a discrete set of integer values; thus, each item is a
vector X =< Xl, ••• , X m >. Typical primitive questions would then he "does
X3 = .5?" and "does X6 = l?"

ln such a situation, one might be content with letting the tree-growing
algorithm pick good primitive questions for each node. However, it may be
that data items with X3 = 2, X3 = 5 and X3 = 6 tend to be similar; if
50, a question that groups them together makes more economical use of the
training data and will therefore yield a better tree. Bence, one might wish
to consider compound questions like "is X3 in the set {2, 5, 6}?"

ln the case of word sequences, different words may have similar meanings.
ln the ATIS application, the sentences "Show me taxi fares", "show Ille
limousine fares", and "show me bus fares" should have exactly the same cf[ecl;
on the speech understanding system (the dis play of a ground transportation
table), whereas the sentence "show me f1ight fares" should have a completely
different effect. 1 was therefore interested in looking at algorithms capable
of asking questions about a set of words in a given posi tion - for instance,
"does the sentence contain a word in the set {taxi,limousine,bus}?"

The problem with asking questions about sets of values of a variable is
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tbat the nllmber of possible questions goes up exponentially with the number
of values the variable can assume. I.e., if Xi can take N discrete values, the
nllmber of possible "set-membership" questions regarding Xi is exponential
in N. In [Bre84], Breiman et al give an exad, linear-time algorithm for
finding the optimal set-membership question in the case where there are only
two classes. For more than two classes, no such algorithm has been found.
Therefore, if there are more than two classes one must employa heuristic.

Two such heuristics for finding a good set-membership question in polyno
mial time are found in [Ch091] and [Nad91]. The first reference describes an
iterative, l\-means-like clustering algorithmj the second exploits the Breiman
et III two-class algorithm (by grouping, and by iteratively reversing the roles

. of variable values and classes). The first algorithm was inapplicable to the
'problem of classifying word sequences because it assumed that the outcomes
being combined in a set-membership question are mutually exclusive. It
would have had trouble generating a question like "does the sentence contain
a word in the set {taxi, limousine, bus}?" because two or even three of the
WOl'ds in the set may occur in the same sentence. The second algorithm
assumes a small number of possible values, corresponding to a small number
of possible words - with a vocabulary of about 1000 words, it would have
taken far too long to run.

However, 1 considered these two heuristics carefully, and even came up
with modified versions that might have been applied to the word sequence
problem 1 was considering, though they would have demanded considerable
computation time. Ultimately, 1 decided on a simpler heuristic for generat
ing set-membership questions that made more sense for this problemj it is
described in the next chapter.

5.5 App1ications of Classification Trees in
Speech Processing

Keyword Classification Trees are an adaptation of classification trees to the
requirements of the speech understanding task. Both the nature of the ques
tions in KCTs and tbe application of classification trees to speech under
standing are original. However, standard classification trees are employed at
other levels of the speech hierarchy. The examples that follow will serve both
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to illustrate the practical application of classification trces and to Ullfl"r1illt,
the unique aspects of KCTs.

5.5.1 Vector Quantization

Vector quantization is a technique that maps a stream of high rate data into
a stream of relatively lower-rate digital data [GraWL]. The goal is to achieve
a maximum amount of data compression and a minimum of distortion. The
technique has been applied to many types of coding, especially image coding
and speech coding. As was mentioned in Chapter 2, vector quantization is
often applied in speech recognition systems to provide the input to HMMs.

Although the details of particular applications of vector quantization vary
great1y, the basic idea is easy to grasp. Consider an input vector

that one wishes to transmit. Suppose that there exists a uee/ol" qlulIlti:ll'
lion codebook containing M n-dimensional vectors Ci of the same type as
X, and that there also exists a distance measure d(X, Ci) between such
n-dimensional vectors. To transmit X, find the closest vector Ci in the code
book to it, then send the index i of that vector across the channel instead of
the vector itself. At the other end, a decoder which has acccss to the samc
codebook will be able to reconstitute the codebook vector chosen. If the
indices of the M vectors in the codebook are the numbcrs 1, ... ,!vI in binary,
it is obvious that the message will require approximately log2 M bits.

The technique has the advantage that by increasing or decrcasing the
number !vi of vectors in the codebook, one can smoothly trade off fidelity of
transmission against data compression. The more non-uniform the distri bu
tion of vectors in the observation space, the greater the potential for data
compression - if the choice of codebook vectors is carricd out c1cverly. Thus,
codebook design is crucial to the success of the technique.

A common procedure for designing the codebook is iterative and locally
optimal [O'S87 pp. 315-316]. It works as follows:

1. Start with an initial codebook and a set of observation vectors. Ca1cu
1ate the average distance (often called the average "distortion") between
an observation vector and the codebook vector that will represent it.
If the average distance is small enough, stop.
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2. If IlOt., replace each codebook vector wit.h the average of ail observation
vect.ors t.hat mapped onto it., i.e. wit.h their centroid.

:3. Using the new codebook, return t.o step l.

The choice of initial codebook has a strong effect on the performance of the
final codebook. A simple approach is to pick M vectors at random from the
training set.

Note that in general, the coding of observation vector X requires distance
comparisons with M vectors Ci. This is called "full codebook" search. We
can speed up coding at the cost of increased distortion by employing "tree
seat'ch" instead. Figure 5. ï shows a binary tree codebook. Here, an obser
vation vector is first compared to vectors Yo and Yi' If it is closer to Yo, it is
then compared to Yoo and YOI, and so on until it reaches one of the leaves.
The coding of the vector is the bit string label for the leaf at which it ends
up. Note that this procedure is not guaranteed to send an observation to
the leaf node it is closest to, though it cannot get to a leaf node that is very
distant from the optimal one. On the other hand, it only takes about log2 M
cornl'arisons.

There are several ways of obtaining tree-structured codebooks. One way
is to begin with the M (a power of two) leaf vectors, which are clustered into
pairs of adjacent vectors. The vectors at the next level are the centroids of
these pairs. The process continues until there are two centroid vectors at a
level, YI and Y2.

Alternatively, one may build a tree-structured codebook by calculating
the centroid of ail training vectors, taking this vector V as the root of the
tree. One then splits the root by perturbing V slightly to obtain two distinct
llearby vectors Vo and V 1. About half the training vectors will be closer
to Vu, the rest closer to V 1: let Yo be the centroid of the first group, YI
the centroid of the second group. Assign each training vector to the Yi it is
closest to, and split each Yi by perturbing it and then finding two centroids
for the vectors assigned to the Yi. These two new centroids will be YiO and
Yil' Continue the process recursively until the codebook is large enough.

Makhoul et al [Mak85] were the first to introduce an unbalanced tree:
instead of growing the tree a layer at a time, they always split the node (at
any depth) that contributes most to overall distortion. To implement a fixed
rate code, they simply number the leaf nodes in sorne convenient order (e.g.
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Figure 5.7: Binary Tree Codebook [0'887, pg.31i]
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prcorder). '1'0 maximize transmission cfficiency, one should grow the tree
llntil the number of leaves is a power of two.

The application of Breiman et al classification tree methodology to un
balanced tree-structured codebook design is now obvious. Two recent papers
[Och91, Ris91] describe experiments along these lines. As the impurity mea
sure, they use a function of distortion. In [Ris91] cross-validation pruning is
carried out; the criterion .\ for pruning is the ratio of potential increase in
distortion to decrease in number of bits. Also in [Ris91], the authors made
the interesting experimental observation that two-step lookahead during the
growing phase yields performance close to that obtained by pruning. Another
interesting recent paper on this topic is [Kia9l].

5.5.2 Context-Dependent Phone Modeling
Ideally, one would construct HMMs for each word in the vocabulary. As
the size of the vocabulary increases, it becomes more and more unreasonable
to expect sufficient repetitions of each word in the training data. Hence,
subword modeling is required for large-vocabulary speech recognition: the
unit for which HMMs are trained is smaller than the word. An excellent
introduction to this topic is [LeeWL].

Phoneme models seem an obvious choice; it would be easy to get enough
data to train an HMM for each of the 50-odd English phonemes, Unfor
tunate!y, the acoustic realization of a phoneme - the phone - depends on
surrounding phones, because our articulators cannot move instantaneously
from one position to another. For instance, the 'l'in "lamp" is quite different
from the 'l'in "pull" (in Welsh these are two different phonemes). Context
independent phone models average out these differences, yielding HMMs that
perform poorly.

A popular compromise is to mode! triphones. That is, for a given phone,
one builds an HMM for each combination of left and right context in which
it can occur. Though there are roughly 50 English phonemes, the number
of HMMs required is much less than 503 because many combinations are
impossible. The actua! number depends on whether only inter-word or also
intra-word contexts are modeled.

Hon and Lee [Hon9l] propose an interesting c1assification-tree-based al
gorithm for clustering together triphones, if there are insufficient data for
training all triphone models. Figure 5.8 shows the resulting tree for the
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Figure 5.8: Decision Tree for Allophones of 'k' [Hon9l, pg.260]

phone 'k' ("Ieft" means the preceding phone, "right" the next phone). First,
HMMs were trained for ail possible triphones with 'k' in the middlc. Once
the tree had been generated from these, there were 8 HMMs for 'k': one for
each of the leaf nodes shown. During recognition, whenever the probability
that a phone is 'k' must be evaluated, the phone is shuntcd to the appropriatc
leaf in the tree and analyzed by the corresponding HMM. In an expcriment
described in [ibid], this approach improved performance from 6.5% crror rate
with the original large set of triphone HMMs to 5.4% error rate with the
new, smaller set of phone HMMs.

To grow the tree, consider a root node containing ail triphone HMMs
and a set of possible questions about the context like those shown in the
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figure. Each question will split the triphones into tlVO sets a and b. There is
a fast procedure for determining ail HMM for each of a and b from the indi
vidual triphone models. Using these tlVO new HMMs, calculate the amount
of entropy reduction for each possible question and pick the question that
maximizes the overall drop in entropy (entropy is the impurity criterion).
Recurse unti! sorne stopping ru le is triggered, then prune the tree on new
data.

ln an earlier section, 1discussed the generation of "set-membership" ques
tions from more primitive questions. The authors of [Hon91] employ an in
triguing algorithm to generate what they cali "compound" questions from
"simple" questions. To pick the best compound question for a given node
n, they grow a complete tree made up only of simple questions from n.
Subseqllently, they consider aIl possible Boolean combinations of the simple
questions in the tree whose root is n and pick the best combination for n,
discarding the tree of simple questions. This process is illustrated for a single
node A in figure .5.9; provided the size of the simple tree grown at each node
is very small, it is computationally feasible. Unfortunately, these authors
never define or list the simple questions.

A group of researchers at IBM have taken an even bolder step: instead
of working with triphones, they use a new set of context-dependent subword
models defined by classification trees [Bah91]. Presumably, their reasoning
was that there is nothing magic about the context provided by the imme
diately preceding and immediately following phone only - surely the current
phone may sometimes be affected by even earlier and even later phones'?

Consider the sequence P-K, ... , Po, ... , PK, where Po is the current phone.
The IBM l'esearchers collected training data annotated in this manner ([(
was set to 5) and grew classification trees on it, one for each phone Po. The
set of possible questions was obtained by asking about one particular P; at a
time. Each question cou!d ask whether Pi was a particular phone, or whether
it belonged to a certain phonologically meaningful subset of ail phones. For
instance, the questions "is P- 2 the phone 'a',?" and "is Ps a voiced stop'?"
were among the questions considered. Questions asking about more than one
Pi at a time were not allowed.

Training HMMs for each possible split during growth of the tree in order
to calculate an HMM-based impurity criterion would have been computa
tionally expensive. Therefore, a cheaper criterion based on the similarity
of the outputs of the vector quantizers associated with the phones was em-
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ployed inslcad. Once the trce has stopped growing, an HMM is grown al
each leaf; the leaves are called "allophones". Some of the IBM experiments
uscd a stopping criterion that prevented the trce getting very large, but did
not prune the trec; others involved an oversized tree that was subsequently
pruned.

Experiments with test data showed improvement over triphone models
(which are obtained when f( = 1). The best results were obtained for 1": = 5,
i.e. when some of the questions in the tree go back as far as 5 phones in the
past or go forwards as far as .j phones in the future. The average error rate
was 6.8% for f( = 1 (triphone) and 5.9% for f( = .5. In a slightly different
set of experiments, the best average number of allophone models pel' phone
was found to be about 4.j; of course, some phones may require more models
than this and others fewer.

5.5.3 Language Modeling
Recall that if y represents an acoustic observation vector, and w a sequence
of words, the task oi" a speech recognition system is to find w such that
P(wly) is maximal. By Bayes's rule, we have

P(wly) = P(w)P(ylw)/ P(y).

P(y) can be ignored, since it is constant at a given time. Thus, the system
seeks to find w maximizing P(w)P(ylw); the calculation of P(w) is the job
of the language model.

P(w) is easily calculated iffor each word Wi in the sequence, we know the
probability of Wi given ail preceding words: P(wilwo, ...,wi-d. Among the
most popular formulae for estimating this probability are the bigram estimate
J(w;jwi-d and the trigram estimate J(w;jWi_2' Wi-l) where the frequencies
JO are obtained from a large training corpus. In theory, one might also wish
to consider 4-gram, 5-gram, and arbitrary N-gram models - in practice, N
gram models with N > 3 require such huge training corpora that they are
inapplicable. .

In [BahWLb] researchers Olt IBM argue that the bigram and trigram
classes embody naive definitions of equivalence classes. These models ig
nore ail words prior to the two most recent. In reality, sorne word sequences
ending with the same pair of words mOlY behave quite differently, while other

122



word sequences ending with a different pair may be fllnetionally equivalent.
To remedy this, they propose a c1assification-tree-ba'ed model that allow"
P( w;) to be conditioned on mllch less recent words. The new tree-based
mode! is no more expensive to apply during recognition tllan the trigram
model, but does require much more computation to develop.

The IBM work on the tree-based model is reminiscent of the IBM work on
context-dependent phone modeling; however, the context here extends into
the past only, and not into the future. The experiments carried out at IBM
attempt to predict the 21st word in a sequence, given the preceding 20 words.
Let W20 denote the most recent word, lOl9 the second most recent word, and
so on. As in the phone modeling work, potential questions concerning the
lOjS (j < 21) may be simple or complex. Simple questions can ask whether a
given lOj is one of the words in a vocabulary, or whether it belongsto a set
of predefined classes supplied to the algorithm by the researchers. Classes
may overlap. For instance, since the c1ass of nouns and the c1ass of months
are defined, the simple questions "is lO\7 a nou~?", "is lOI7 a month?" and
"is W\7 the word 'July'?" will all be considered.

The impurity criterion for choosing questions is entropy. To obtain a
compound question at each node in the growing tree from the set of simple
questions, the IBM researchers employa peculiar data structure they cali a
py/on. This is shown in Figure 5.10. Suppose we are at a given node n ,,f the
growing tree. First, pick the simple question yielding the greatest reduction
in entropy; this splits the data int() two groups. Now pick a simple question
that will split the YES group, w;th~members of this group that yielded "no"
being'added back into the NO group, in a way that yields the maximum drop
in entropy over all data in the node. Next, split the NO group, adding the
"yes" children back into the YES group. Continue until no further drop in
entropy 'éanbe obtained; the simple questions chosen may involve different
lOjs. This process generates a subset of the Boolean expressions aver the "
simple questions.

A huge training corpus of about 29 million words was employed to grow
'. and prune a tree of compound questions, which was not allowed to have more

<~" than 10,000 leaves. The vocabulary size was 5000 words. This tree was tested
on about 1 million words of data. The perplexity of the tree-based mode!
was not much smaller than that obtained with the trigram model: the former
was 90.7, the latter 94.9. However, the tree-based model was less likely to
assign a very low probability to certain words in the training text. Sincc this
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is a situation likely to result in recognition errors, the drop in perp[exity Il\ay
underestimate the improvement in recognition performance to be expected
from use of the tree-based mode!-.Furthermore, an interpolation of the tree
based model and the trigram nludel yielded much better perplexity than
either alone: 82.5.

The paper also contains sorne interesting statistics on the pylon depths
and how often each Wj formed part of a question. Roughly speaking, about
half the questions in the final tree were simple questions (pylon depth is 1),
half of the rest contained two simple questions, and so on. Contrary to what
one might expect, W20 - the most recent word - was not the word most often
asked about; W19 - the second most recent word - was. After W19, the most
popular word for questions was Wisi only then came W20. Next came W17,

andafter that usage dropped off fairly rapidly. These results, along with the
perplexity results, suggest that the tree-based language model incorporates
quite different information from the trigram model, and hence forms a useflll
complem'ênt to it.
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chapter 6

Building keyword
Classification Trees

6.1 introduction
[n Chapter 3, we looked at the linguistic analyzer of several speech under
standing systems. We saw that most of these systems are evolving in the
same direction: though they once relied exclusively on syntactic parsing,
they now rely on robust matching to handle sorne or ail utterances at the
global, sentence level. The robust matcher tries to fil! slots in a frame with
out attempting a sentence-level parse, and skips over words or phrases that
do not help it to fil! a slot or to decide on the identity of the current frame.
Syntactic parsing is required local!y, to identify the slot-filling phrases and
cor;vert them to standard representation.

'-q;htl~work done by the linguistic analyzer in translating an utterance to a
frame-like conceptual representation can thus be divided into three parts:

1. Parsing slot-filling phrases - this is the task of local syntactic parsers.

2. Deciding on the identity of the frame - this is part of the task of the
robust matcher.

3. Assigning each slot-fil!ing phrase to the appropriate slot - this is the
rest of the robust matcher's task.
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The robust matcher requires a large set of rules that tell it how to identify t.he
frame or frames referred 1.0 by the current utterance, and how to match slot
fillers to slots. In all the systems 1 know of that employa robust matcher,
these semantic rules are handcoded by the system designers. The AT&T
system does le;'"l rules for segmenting a sentence into concepts from training
data; however, il. does not contain a robust matcher in the sense described
above.

The assumption underlying the work described in this thesis is that effec
tive semantic rules can be learned from training data, and that these rules can
afford 1.0 ignore many of the words in an utterance. Keyword Classification
Trees (KCTs) were devised for the purpose of learning such semantic rules;
they are the building blocks of the linguistic analyzer described in Chapter
8.

KCTs have the following properties:

• They are a 1.001 which can be applied whenever one wishes 1.0 classify
strings or substrings. To apply them 1.0 a particular problem involving
strings, one must formuiate il. as a classification problem.

• To train a KCT, one must supply il. with a corpus of classified strings
or substrings.

• The rules found in the nodes of a KCT refer 1.0 the symbols in the
strings. These may be words, parts of speech (POSs), or higher-Ievel
syntactic structures like noun phrases (NPs) or prepositional phrases
(PPs). We will assume that ail possible symbols are listed in a lexicon.
For convenience, though we will be considering strings made up of a
mixture of words, NPs, and PPs, we will refer 1.0 the symbols referred
1.0 in the nodes of a KCT as its "keywords". The keywords are selected
from the lexicon by the KCT-growing algorithm, rather than by the
programmer, and normally constitute a small fraction of the lexir.on.

• The questions in the nodes of a KCT concern regular expressions made
up of keywords and gaps, where a gap is defined as an unspecified
substring of length al. least one. If an incoming string matches the
expression in a node, il. is sent 1.0 the node's YES childj if not, il. is
sent 1.0 the NO child. As classification proceeds, gaps are progressively
filled in.
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• TI",r" arc two kinds of KCT, single-symbol l(CTs and set-17lembership
!(CTS. The questions in a single-symbol KCT contain regular ex!;res
sions made up of individual symbols; set-membership KCTs contain
regular expressions made up of sets of individual symbols. The distinc
tion between the two question types somewhat resembles that made by
IBM researchers between "simple" and "compound" questions, in the
work described at the end of Chapter 5.

As noted above, KCTs can be employed either to classify strings, or to
c1assify substrings. In the first case, each data item Wi is a sequence of
words:

Wi =< Wh"',Wn >.

The training corpus consists of a large number of such WiS, each wi th a
known class C(Wi). The KCT grown on this corpus assigns a class ê(Wj)
to new word sequences W} This case will be discussed extensive!y in the
sections that follow; it often arises when one wishes to derive semantic rules
for selecting the correct frame for an utterance.

In the second case, we wish to classify only sorne parts of a string: inside
each Wj, we have NU) substrings SI, ... , SN(j) that are to be assigned classes
ê(Stl, ... ,ê(SN(j)). Here, the training corpus consists of word sequences whose
substrings are labelled. An example From ATIS will illustrate this case, which
often arises when one wishes to derive rules for assigning slot-filling phrases
of a given type to the correct slot of the same type.

Suppose that the local parsing step replaces all city names with the
generic symbol "CIT". For the ATIS task, it is important to label city names
that occur in the word sequence hypothesis as "0RI" (origin of a flight),
"DEST" (destination of a flight), "STOP" (stopover location), or "SCRAP"
(irrelevant). The original word sequence hypothesis might be: "show me
flights from Boston no sorry From New York to Chicago stopping over in
Pittsburgh". After local parsing, this would be "show me flights From CIT
no sorry from CIT to CIT stopping over in CIT".

If this sentence is used for training, it should be labelled as follows: "show
meflights from CIT{:SCRAP no sorry From CIT{:ORI to CIT{:DEST stop
ping over in CIT{:STOP". If the sentence is a new one presented to a KCT,
we wish the KCT to label each "CIT" in exactly this way. Fortunately, the

128



,

algorithms used to grow KGTs that c1assify cntirc strings requin' only mi
nor modification to grow KGTs that c1assify parts of strings. This will 1,..
demonstrated at the end of the chapter.

The properties of the KGT-based robust matcher are partly determined
by the properties of KGTs. In particular:

• The work done by the robust matcher on word sequence hypotheses is
broken up into subproblems, in such a way that many of these snbprob
lems can be defined as classification problems handled by KGTs. The
only part of the ATIS task not handled by KGTs is an initial parse
which identifies slot-filling phrases such aS city names, dates, times,
f1ight numbers and so on (recall that the AT&T group also came to the
conclusion that this type of specialised local parsing was best handled
by hand-written rules, because of the paucity of training data). Thus
the robust matcher is basically a collection of KGTs, each handling a
different subproblem, together with the mechanisms for invoking thcm
in the correct order.

• Since KCTs ask about only a small fraction of symbols in the iexicon,
the KGT-based robust matcher ignores many of the words in an ùtter
ance. Other robust matchers also ignore sorne words, but thc KGT
growing algorithms find close to the smallest possible numbcr of key
words required for semantic rules. Recognition errors in non-keywords
do not hinder generation of the correct conceptual reprcsentation 
consequently, the KCT-based matcher is very tolerant of recognition
errors.

A full description of the KCT-based semantic matcher for the ATIS task
will be found in Chapter 8; the current chapter is concerncd with the KCTs
themselves.

6.2 Single-Symbol KC1's

6.2.1 The Basic Alg?rithm
Recall that to grow classification trees, one must supply three elements:

1. A set of possible yes-no questions that can be applied to data items;
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2. A rule for selecting the best question at any node on the basis of training
data;

3. A method for pruning trees to prevent over-training.

The original aspect of KCTs is the way in which the set of possible questions
is generated. To choose a question from this set, we use the Gini criterion as
described in Chapter 5, section 2; to prevent over-trained trees, we use the
iterative expansion-pruning algorithm described in Chapter 5, section 3.2.

Each node of the growing single-symbol KCT is associated with a regular
expression called the known struciU7'e consisting of symbo/s and gaps; the set
of possible questions is generated by manipulating each of the gaps. A gap
is an unknown sequence of symbols, of length at least one - it is symbolized
by +. The known structure for the root of the KCT is always < + >, where
< and> stand for the beginning and end of the string. respectively. This
implies that strings entering the root must always have length at least one
(empty strings are not permitted).

Consider the four regular expressions generated from a particular gap +
in the known structure and a given item Wi in the lexicon as follows:

1. The regular expression obtained by replacing this + in the known struc
ture by Wi;

2. The regular expression obtained by replacing this + in the known struc
ture by Wi+;

3. The regular expression obtained by replacing this + in the known struc
ture by +Wi;

4. The regular expression obtained by replacing this + in the known struc
ture by +Wi+.

At the root, whose known structure is < + >, these four gap operations
generate the expressions < Wi >, < Wi+ >, < +Wi >, and < +Wi+ >.
Each of these expressions E is turned into a potential question by asking:
"Does the sequence being classified match the expression E?" For instance,
the expression < W3 > matches only the sequence consisting of the single
symbol W3' the expression < W3+ > matches sequences of length at least two
beginning with W3, the expression < +W3 > matches sequences of length at
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least two ending with lU3, and the expression < +W3+ > matches sequences
containing a W3 that is neither the first nor the last symbol. If there are L
symbols in the lexicon, we generate 4 * L questions by al!owing tui to be any
of them. In addition to these questions, we consider al! reasonable questions
about the total length of the string, of the form "is length < n'l"j these
have turned out to be of little practical importance, as they are hardly ever
chosen. From all these questions, the KCT-growing algorithm selects the one
which achieves the best split of the labelled sequences in the training data,
according to the minimal-impurity Gini criterion.

As the tree grows, known structures get longer. The known structure for
the 'lES child of anode is identical to the expression found in the question
of its parent, while the known structure for the NO child is identical to
the known structure of its parent. For instance, if the question "does the
sequence match < +ws+ >?" is selected to fill the root (which has known
structure < + » the known structure for the root's 'lES child is < +Ws+ >,
and the known structure for the root's NO child is < + >. New questions
are generated by applying the four gap operations to each + individually.
For instance, if the known structure is < +ws+ >, questions involving the
expressions < +Wj +ws+ > and < +ws +Wj+ > will be generated, but not
questions involving < +Wi + lOS +Wj+ > (which would require operating on
both gaps in the known structure simultaneously).

Because we are using the expansion-pruning algorithm, we employ toler
ant stopping rules that encourage growth of a large tree. Anode is declared
to be a leaf node when no further split is possible. This may happen for
three reasons:

1. Ali training items in the node belong to the same category - this in
c1udes the case where only one training item ends up in the nodej OR

2. There are no gaps + in the known structure for the node, so no ques
tions can be askedj OR

3. There are questions that can be asked, but none of them give a split
that reduces the Gini impurity.

For a detailed description of the implementation of this basic algorithm
for growing single-symbol KCTs, see the Appendix. The next subsection
gives an examples of a KCT grown from real data.
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6.2.2 Preliminary Experiments with Single-Symbol
KCTs

Preliminary experiments were carried out on the November 1990 release of
ATIS data, before work began on the KCT-based robust matcher trained on
1992 ATIS data (as described in Chapter 8). The preliminary experiments
were of two kinds:

l. Experiments involving transcripts of utterances;

2. Experiments involving the most probable word sequence hypotheses
generated by the December 1991 version of the CRIM speech recogni
tion system from the 1990 ATIS recorded speech. The CRIM system
yields the N-best word sequence hypotheses, but only the top hypoth
esis for each utterance was employed for the experiments.

With these data, we studied two problems:

l. Determining the general topic of a request for information;

2. For questions involving fares or f1ights that only mention two city
names, determine which is the origin and which the destination.

Unfortunately, the second problem proved unsatisfactory: not because it
was too hard, but because it was too easy! It happens that in the November
1990 data, the origin of a f1ight is almost always mentioned before the desti
nation. Although only a clumsy version of the algorithm for growing KCTs
that label substrings had been developed at this time, the KCT grown for
this problem nevertheless learned this simple rule. It labelled the first city
name ORI, the second DEST.

The first problem was much more interesting. SQL queries have three
parts:

l. a SELECT clause that specifies what attributes to retrieve;

2. a FROM clause that indicates which tables contain these attributes;

3. a WHERE clause that specifies conditions on the rows.
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For the 1990 ATIS data, it was convenient to assign queries to one of
six topics or frames, based on the tables mentioned in the FROM clause
(changes in the data and in the evaluation have subsequently diminished
the usefulness of this six-fold classification). The topics were nurnbered as
follows: 1. AIRCRAFT 2. FARE 3. FLIGHT 4. FLIGHT..FARE 5.
GRODND 6. MEANING.

The task of a KCT was to determine which of these six frames a sen
tence from the transcript data or the speech recognizer belonged to. Two
KCTs capable of"carrying out this task were grown: one trained on tran
scripts labelled \vî'th the correct topic, the other trained on the top word
sequence hypotheses output by the CRIM recognizer (also labelled with the
correct topic). The true labels for both were determined by glancing at the
corresponding SQL commands provided by DARPA. Both were tested on
new data of the same type - i.e., the transcript-grown KCT was tested on
transcripts, and the hypothesis-grown KCT on hypotheses.

Figure 6.1 shows the upper part of the KCT grown on transcripts. The
KCT grown on hypotheses from the recognizer was rather similar, except
near the leaves. This was to be expectedj recognition errors are more likely
to affect the choice of question in nodes that receive a small number of
training data items. Note that keywords may occur next to each other, as in
the question involving the expression

< +transportation codes >,

or apart. None of the questions in this KCT involve categories, such as
city names, dates, or f1ight numbers. This is because the training sentences
were not preparsed. If they had been, expressions like +CIT+ might have
appeared in the nodes of the KC'l'.

Perhaps the most important aspect of the single-symbol KCT grown to
identify the topic is not evident from figure 6.1. There were 41 nodes in this
treej of these, 28 occurred in the subtree indicated with a triangle. This
points to a problem experienced with most single-symbol KCTs: at any leveJ
of such KC'l's, the NO subtrees tend to contain more nodes than their YES
siblings.

Again, this might have been predicted. 'l'here are many ways of saying
the same thing with different words in English. 'l'hus, if we ask whether a
particular keyword is present in sentences of a given type, there will always

133



<+ flights +>'/

yes no

<+ lransponation +>1

no yes no

<+ transponation codes">

no

no

no 1 MEANING 1 IGROUND!

IAIRCRAFTI

yes no

yes

Figure 6.1: Single-Symbol KCT Grown on ATIS 1990 Transcripts
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be many sentences for which the answer is ·'no·'. Most qnestions in a single
symbol l\CT will therefore shunt more training data items into their NO child
than into their YES child, giving the NO subtree more chance to grow before
it runs out of data items. This asymmetrical quality implies that single
symbol KCTs do not use the training data efficiently, since word sequences
that belong together are forced apart. Set-membership l\CTs represent an
attempt to overcome this problem. '.

"-: /

6.3 Set-Membership KC1's

Above, we mentioned the possibility of preparsing sentences in the training
corpus for a single-symbol KCT, thus allowing expressions involving cate
gories like "CIT" and "DATE" to appear in questions. These categories
are defined by the system designer. A more radical approach is to a!low the
KCT-growing algorithms to generate questions about sets of words at a given
position, in effect allowing system-defined categories. This is the idea behind
set-membership KCTs. Figure 6.2 shows a set-membership KCT grown on
the same data as the single-symbol KCT shown in figure 6.1.

Note that the questions involve many of the same keywords as appeared in
the figure 6.1 single-symbol KCT. The set of words {flights, flight, nonstops, /ww}
in the root node is of particular interest, because in the contexl; of ATIS the
first three words act almost as synonyms. For instance, "show me a flight to
Boston", "show me f1ights to Boston", and "show me nonstops to Boston" ail
belong in the FLlGlt1' category. Experiments with set-membership KCTs
often generate sets of words that are quasi-synonyms. So far, the most in
teresting example 1 have seen is the set {what, explain, describe, define},
in a question that was generated by the system but rejected in favour of a
question at another position in the known structure that was slightly better
at lowering Gini impurity.

Many of the questions in the nodes of a set-membership KCT will insert
a new set into the gaps + in the known structure, similar to what happened
to individual symbols in the single-symbol KCT. As figure 6.2 shows, this
is not the only possible type of question. Consider the node whose known
structure is

< +{jor, ticket, aircraft, cost} + {flights, flight, nonstops, hmn}+ >;
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<+ (ftights,ftighl,nonstops,how} +>'.

yes no
<+ {transportationJor.coach.aircraft.to} +>.

<+ (for,liekel,aircrafl,eosl} + (ftights,ftighl,nonslOps,how} +>.

no

noyes

yes

+ (aireraft} + (ftights,ftight,nonslops,how} +>

Figure 6,2: Set-Membership KCT Grown on ATIS 1990 Transcripts
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the question chosen for this node asks whether sequences match tlw ('Xl'rt'S

sion

< +{aircraft} + {flights,flight,llOllstops,how}+ >.

Thus, the question in a node of a set-membership KCT may partitiou a set
in the known structure.

Set-membership KCTs are somewhat trickier than figure 6.2 indicalcs.
Consider the sentence: "please tell me how much the ticket for a Ilight
to Boston costs". Clearly, this matches the pattern shown at the root of
the KCT, since the middle of the sentence contains the words "how", and
"flights", bothin the set {flighls, flight, nonslops, hotu}. The sentence
passes to the root's YES child. Here, it is unclear whether the sentence
matches the pattern

< +{for, ticket, aireraft, cost} + {flights, flight, nonstops, /ww}+ > .

The word "ticket" in the first set is left of the word "how" in the second sel,
but right of the word "flight" in the ~econd set.

The solution to this problem is that we must clearly define the left and
right boundaries of a set, in order for subsequent questions lo be well-defined.
If we do so, we may even ask questions that split a set into a snbstring in
the known structure. For instance, the known structure

< +{Jlights, flight, nonstops, how}+ >

might yield a question about the expression

< +{how} + {flights,flight, nonstops}+ > .

The details of defining set boundaries and questions that depend on them are
not difficult, but complicated and tedious; they are given in the Appendix.

As with single-symbol KCTs, questions in the set-membership KCT are
generated at gaps + in the known structure. The most impottant compo
nent of the algorithm for growing set-membership KCTs is the function thal
generates sets of words at a given +. If S stands for a set of symbols, the
questions considered at each + are as follows:

1. The regular expression obtained by replacing this + in the known struc
ture by Sj
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2. The regular expression oblained by replacing this + in the known struc
ture by ST;

:J. The regular expression obtained by replacing this + in the known struc
ture by +S;

4. The regular expression obtained by replacing this + in the known struc
ture by +S+.

A variety of methods for generating S was considered, as mentioned in
Chapter 5. Ultimately, the simplest possible method was adopted. Consider
the problem of choosing a sports team from a large group of temperamental
athletes, sorne of whom hate each other. One heuristic would be to pick the
best athlete, then the best remaining athlete who gets on with the first one,
then the best remaining athlete who gets on with the two already chosen, and
so on. The heuristic is not infallible: if an athlete chosen early on vetoes most
of the best remaining athletes, one might obtain a better team by leaving
him or her out. However, the heuristic does ensure that the team chosen
commands the services of the best athlete. The method for generating S is
based on this heuristic.

For each + in the known structure, obtain four initia! set-membership
questions as follows:

l. Find the best question obtained by replacing this + in the known struc
ture by S, where S contains a single item Wj from the lexicon - i.e.,
S = {Wi};

2. Find the best question obtained by replacing this + in the k'nown struc
ture by ST, where 8 contai!:!s a single item Wi from the lexicon;

3. Find the best question obtained by replacing this + in the known struc
ture by +8, where 8 contains a single item Wi from the lexicoll;

4. Find the best question obtained by replacing this + in the known struc-
ture by +8+, where 8 contains a single item Wj from the lexicon.

Thus, the best single-symbol question for each of the2four )J:ap operations is
obtained, and used;io initialize four di!fereric,sets 8. NeJ,;t, tlle algoritlun goes
through the lexicon to find thesymbol th~t\~ilC~ostdiminish Gini i, \urity

~--,--. --'
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We will now sec how toi adapt the algorithms for growing KCTs '(either
single-symbolor set-men{b",s!J..\I>l ta the task of classifying substrings. The
example given earlier was that qG.dealing with sentenc(ls that emerge from
the local parsing phase in a forn; Îike "show me flightsfrom CIT no sarry:::.,,

when il. is added 1.0 each set .5'. and adds il. 1.0 the set. The algorithlll 1l0W

cycles tlirough the lexicon again 1.0 add 1.0 the set the item that furtlter
reduces impurity the most .. EventuaIly, the addition of fmther sYlllbols 1.0

a set will leave the impurity the same or actually increase il.; al. this point
the set S for one of the set-membership questions has been found. When aIl
sets are complete, the set-membership question which most reduccs the Ilode
impurity is chosen.

if Figure 6.3 illustrates this method. Here the vocabulary Il consists of
animal names, one for each letter of the alphabet, and the known structure
for the node is < +horse+ >. Thus eight initial single-symbol questions
will be generated, four for each of the two "+" in the known structure. The
diagram shows the expansion of two of the eight initial questior:s. Note that.
the best set-membership question may be generated from a single-symbol
question that was not the best of the single-symbol questions.

This heuristic for question generation is not guaranteed 1.0 yield the opti
mal set-membership question - but neither are any of the more complicated
heuristics described in Chapter 5. II. has the merit of being fast, easy 1.0

implement, and is guaranteed 1.0 bring about al. least as big an impurity re
ductioll,y..s the best single-symbol question, because the best single-symbol
quesÜcîn is always one of the set-membership questions considered.

Iilltial experiments showed that one modification 1.0 the heuristic was
necessary. If each set S is allowed 1.0 grow until no more words that reducc
impurity when added 1.0 Scan be found, sorne words may be added to S on
the basis of a single example. In a sense, the set S becomes "overtrained"

< to the training data. This situation was resolved by a "stopping rule" that
specified that a set is only allowed 1.0 incorporate new words that reduce
impurity and do sa by moving al. least N training data items 1.0 a mÛe
appropriate child node, where N is a number gr,eater than 1 (usually set 1.0

2 or 3).

6.4 ClassifyingSubstrings
,':
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Example

Voc.bulary V- {.sp. Ile•• cat..... zcbm}

Known Slructure "" <+ horse +>.

B.sl Singlc-Symbol Questions (firsl 2 rows b.low):

<+ fox + horse +>',

Try S - {bee,asp}. {bec.cat}..... {bec. zebra}

S - {bec. vipcr} yields best Gini value

€ horse~ S - {bec. viper}

<+ horse + cal +>',

@horse worm~

<+ horse +T +>?
T - {cati

Try T - {cat.asp}. {cat. bec }..... {cat. zebra}

T - {cat.hog} yields besl Gini value

c;:hors. +T~ T - {cal.hog}

Try T - {cat.hog.asp}..... {cal.hog.zebra}

l(unknown # of itemtions}

vs. 6 olhers vs.

Try S - {bee.vipcr.asp}......{bee.viper.zebra}

l(unknown # of Iterations)

NO MORE IMPROVEMENT
BY ADDfNG TO S

'"Compare € harse+~

... ... NO MORE IMPROVEMENT
BY ADDfNG TO T

<+ horse +T +>?

pick the besl one!

Nole: staning with known structure <+ horse +>. obtain the besl single-symbol question for
each of g possible opcl1ltions on known structure. i.e. g single-symbol questions. From these.
obtain g set-membership questions - pick the one yielding greatest impurity drop. For space
reasons. only show generation of 2 of the g set-membership questions.

Nole: besl of the g single-symbol questions does not usually yield best of g set·membership ones!

Figure 6.3: Growing a Set-Membership KÇT
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from CIl' to CIl' stopping over in CIT". '1'0 generate the conceptual repre
sentation, one requires each occurrence of the category CIl' to be labelled as
follows: "show me f1ights from CIT<=SCRAP no sorry from CIT<=ORI to
CIT<=DEST stopping over in CIT<=STOP". Once this has been done, the
second, third and fourth city nameS mentioned in the original sentence arc
retrieved and assigned to the ORIGIN, DESTINATION, and STOPOVER
slots respectively.

The crucial insight here is to submit the same sentence to a KCT as many
times as there are substrings to be classified. Each time, the substring being
classified is marked with a special symbol such as '*'. Figure 6.4 shows a
singlc-symbol KCT for classifying CIl' substrings.

'1'0 classify the first CIl' in the sentence above, we submit "show me f1ights
from *CIT no sorry from CIl' to CIl' stopping OVer in CIl'" to the KCT. This
sentence matches first the expression < +*CfT+ > in the root and then the
pattern < +*CfT no+ >, 50 the first CIl' is labelled "SCRAP". '1'0 classify
the second city, we submit "show me f1ights from CIl' no sorry from *CIT
to CIl' stopping OVer in CIl''' to the KCT. This time, the sentence matches
the pattern < +from * C fT+ >, so the second CIT is labelled "ORI". '1'0
classify the third and four th CIT in the sentence, the sentence is resubmitted
twice more after marking the current CIT with '*'. This single-symbol KCT
correctly labels ail four appearances of CIl' in the sentence.

How can a KCT for classifying substrings be grown from training data?
Note that certain nodes in figure 6.4, including the root, are shaded. These
nodes are the cornpulsory backbone of any KCT for classifying CIl' sub
strings. The growth of such a KCT begins from the compulsory backbone
already specified by the system designer; otherwise, the KCT-growing aIgu
rithm is exactly the same.

As one might expect, the training data are sentences whose substrings
have been correctly labelled. For instance, a typical training sentence for the
CIl' task might be "list fares for f1ights out of CIT<=ORI to CIT<=DEST".
'1'0 convert this to a form useful for growing the tree, a preprocessor makes
two copies of this: one is "list fares for f1ights out of *CIT to CIl''' and is
Iabelled "ORI", the other is "list fares for f1ights out of CIl' to *CIT" and
is labelled "DEST". These two sentences are treated as independent items
for training. Thus, a sentence in which "CIl''' appears N times yields N
training data items.

This approach aIlows the KCT to classify one occurrence of CIl' at a
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yes

STOP r:-

~CITY+>D

ycs ~o
-.-,----

no

<+ 10 'cny +>?

ycs

yes no

SCRAP <+ from 'CITY +>',
,

,......

NOle: shaded area is compuisory backbone - PUI in place before
tree-growing bcgins,

Figure 6.4: KCT for Classifying CITY Substrings
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time: the Olle marked with a"'. "CIT" without the .. , is trcated just like a
normal word in the lexicon, and may occur in a question. For instance. the
expression < +C fT + *C fT+ > would be matched by a sentence like "give
me ail CIT flights from *CIT today". The approach allows one to employ
algorithms for growing either single-symbol or set-membership I\CTs cxactly
as described above, starting with the compulsory part and utilizing a training
corpus.

The only drawback of the approach is that because each substring being
classified (the substring "CIT" in this case) is classified independently, two
or more of them could be assigned the same label. Heuristics to deal with
this problem can easily be devised. For instance, probabilities for the leaves
of the KCT could be estimated from a disjoint subset of the \. \aining data
- in case of a conflict, assign labels in a way that maximizes the overail
probability. However, it is probably wiser to view assignment conflicts as
a sign that a situation rarely or never encountered in the training corpus
has been encountered, and that substring classification will consequently be;
unreliable.

In the version of substring KCTs used in the Nov92 ATIS benchmarks,
a new type of question was considered, in addition to the types described
earlier. The new type asked about the ordinality of a substring with respect
to other substrings belonging to the same category. Thus, questions like: "is
this the second CIT?" and "is this the third last CIT?" couId be asked. This
question type proved very useful. For instance, if two cities are mentioned,
there is a good chance that the first will be the origin and the second the
destination.

6.5 ttelated Work

6.5.1 Comparison with lnM Tree-nased tanguage Mod-
eling

'Ihough KCTs were devised to learn semantic rules, and th6'cIBM technique
described in Chapter 5 (section 5.5.3) was applied to language modeling,
both'employ classification trees to classify word sequences. How do the two
approaches differ?

Recall that the IBM technique classifies the context within which a word
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lU" occurs by asking questions about the identity of the preceding 20 words
W"_20' ... , W,,_i' For instance, a simple question in the IBM scheme could be
"is W,,_5 the word 'f1ight'?" Compound questions are Boolean combinations
of simple questions. Thus, in the IBM technique questions refer to the posi
tion of a word in a sequence relative to a fixed location given by the current
word. By contrast, when KCTs are employed to classify a complete word
sequence, the only fixed initial positions are given by the beginning and the
end of the sequence.

KCTs have been applied to two problems: classifying entire word se
quences, and classifying subsequences within word sequences. The IBM tech
nique has been applied only to the latter problem. It is not clear how it could
be extended to the classification of an entire word sequence - one would need
to specify a fixed location in the sequence with respect to which questions
would be asked.

Consider the question "does the sequence match < +flight time+ >?"
contained in the node of a single-symbol KCT. This question would yield
"yes" on the following sentences (and an infinite number of others):

Give me the f1ight time for Delta 105.

What was the f1ight time again?

The f1ight time for Delta 105 please.

Suppose the IBM technique was adapted to classify complete word sequences
by letting the last word be Wn, the fixed position. Then the IBM question
closest to this KCT question would be the horrendously complicated com
pound question: uIs (Wn_l = time AND W n -2 = flight) OR (Wn-2 = time
AND W n-3 = flight) OR (Wn-3 = time AND W n_4 = flight) OR ...?" This
compound~que,stionwill only be generated if each of the simple questions in
it wins out ovér thousands of rivaIs, which is far from certain; furthermore,
it requires much larger amounts of computation to generate than does the
corresponding single-symbol KCT question. Note also that by fixing W n at
the end of the sentence, we lose the ability to ask about the beginning of the
sentence (if it is more than 21 wor<1,s long) whereas the KCT approach allows
questions to focus on any part of indefinitely long sentences.

In exchange for its advantages, the KCT approach gives up the possibility
of asking about precise positions within the \\·àrd sequence. The questions
in a KCT may refer to the first or last word in a sentence, and to a position
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left or right of a previously identified keyword, but in general they cannat.
refer to the word at position i in the sequence (unless previous questions have
speci ned the words present at posi tions 1 to i, or backwards from the last
word at position n to il. As the name "Keyword Classification Tree" implies,
the KCT approach focuses on keyword islands within the word sequence,
specifying their left-to-right order without giving precise distances between
them.

Thus the two approaches have different strengths and weaknesses: the
IBM trees specify the words found at a given position but lack the ability
to ask simple questions that place a keyword in a wide region of the word
sequence, while KCTs deal effectively with keywords found anywhere within
a region but cannot ask about precise locations. My personal opinion is that
the latter approach more closely models the properties of natural language,
which frequently exhibits insertions and deletions of irrelevant or mildly rel
evant words and phrases. Only experimentation with both approaches can
settle this question. It might be interesting, for instance, to apply KCTs to
language modeling, and the IBM trees to the generation of semantic l'Ules.

Incidentally, the IBM method for generating compound questions from
simple questions would be applicable to I<CTs. That is, one could grow set
membership I<CTs from single-symbol I<CT questions in a different manner
than that described above. At each node n of the growing set-membership
tree, one would find the best single-symbol question for n and then grow
a single-symbol subtree from it. The set-membership question for n would
be generated by considering Boolean combinations of the questions in the
single-symbol subtree at n. This approach was rejected because it leads to
complicated known structures for the nodes of the set-membership tree, but
it might he worth considering as a means of improving the performance of
set-memhership KCTs.

6.5.2 An Application of classification 'l'rees in lnfor
mation ll.etrieval

A recent paper hy Crawford, Fung et al [Cra91] describes the application
of classification trees to an information retrieval task. The ultimate goal of
this research Is on-Hne monitoring of newswires for topics of interest. The
rail' material for the experiments was a collection of 730 Reuters articles
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from 1981, dealing with a wide variE;ty of topics including terrorism. The
experimental aim was to grow on training data a tree classifier that accurately
partitioned new articles into two classes: terrorism and non-terrorism.

Crawford, Fung et al are thus attempting to grow classification trees to
learn sernantic rules for naturallanguage. From this point of view, their work
is quite similar to mine. However, the questions contained in their trees are
much simpler than those found in a KCT: they ask only whether a particular
word lUi or set of words {lU;} occurs or does not occur in an article. Word
order is not taken into account.

For instance, one of their trees incorporates the fol1owing rules:

if article contains word "bomb"
[ then if article contains words "injure" or "kHI"

then TERRDRI5M;
el se NDN-TERRDRI5M;

]

el se if article contains word "kidnapping"
then TERRDRI5M;

else NDN-TERRDRI5M.

This tree was grown on the 730 classified articles by the Breiman et al
methodology, including cross-validation pruning. The estimated true error
rate was 6%. The researchers grew several different trees from the same data
by varying the costs associated with the two possible types of misclassifica
tion and showed that recal1 of terrorism articles could be increased at the
expense of precision, or vice versa, in this way.

The researchers point out that these simple trees are likely to be insuf
ficiently robust in the presence of new data. They therefore grew a concept
tree, in which the questions in the tree ask about the presence or absence of
subconcepts. The optimal concept tree was:

if article contains subconcept BDMBING
[ then if contains subconcepts EXPLD5IDN or KILLING

then TERRDRI5M;
else NDN-TERRDRI5M;

]

else if contains subconcept KIDNAP-EVENT and NAMED-TERRDRI5T
then TERRDRI~!1~~'
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else NDN-TERRDRI5M.

[n order to grow this tree, it was necessary to hand-label the no articles in
terms of the presence or absence of 18 possible subconcepts (an article can
contain any or aIl of these). Again, experiments with different settings of
the misclassification costs were carried out. The resulting trees performed
somewhat better than the word-based trees.

The researchers suggest that concept trees could be implemented by grow
ing word-based trees for subconcepts, then running the concept tree on the
output of these word-based trees. This is an interesting idea, whose main
disadvantage is the extra human time required in labeling articles with sllb
concepts (to permi t the growing of word-based subconcept trees). The resllits
of varying misclassification costs are also interesting. ln the application of
KCTs described in this thesis, it seemed reasonable to assume uniform mis
classification costs, but it would be easy to vary misclassification costs in
KCTs if the application called for it.

The Crawford, Fung et al classification tree is a greatly simplified version
of the KCT that ignores word order. In the course of the growth of this
tree, a small subset of the que~tions that would be generated by the KCT
algorithms on the same data is considered. It seems likely that, in general,
the KCT approach - which allows questions about the presence or absence
of keywords, and their relative order - will outperform a classifier that can
only ask about the presence or absencé of keywords.

6.5.3 PAcB: A Parallel Classifier
Another rôbust classifier for naturallanguage that learns rules from a training
corpus is described in [Cree92]. The interest of this work is the size of the task
and the parai leI Implementation, rather than the nature of the rules employed
by the system. Furthermore, in this case thorough, empirical comparison
with a knowledge-based approach was possible: it was shown that the robust
classifier performed much better than a hand-coded expert system designed
for the same task.

The task itse1f is truly immense - it involves processing 22 million natural
language responses to the US Census long form. Specifically, the system
must analyze eadi. response to determine which of 232 industry categories
the individual's employer belongs to, and which of 504 occupation categories
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defilles the individua!"s specific job. Herc is il sam pIe response [Cree92 pg.
51]:

For whom did this individual work? Essex Electric.
What kind of business or industry was this? Photography-Battery Div.
General category (from a list): Manufacturing.
What kind of work is this person doing? Apprentice Electrician.
What are this person's most important activities? Wiring Machinery.
Type of employer (from a list): Private company.
What is this person's age? 25.

According to the census guidelines, for this response the correct industry cat
egory is "Photographie Equipment and Supplies" (code 380) and the correct
occupation category is "Electrician Apprentices" (code 5i6).

The Census Bureau had previously designed an expert system called
AIOCS to carry out this task, in time for the 1990 census. The creation
of AIOCS required 192 person-months of work; on a set of test responses,
it correctly assigned 5i% of the industry codes and 3i% of the occupation
codes. PACE, the robust paralle1 classifier, required only 4 person-months
to build. ACter training on 132,24i previously classified returns, it correctly
assigned 63% of industry codes and 5i% of occupation codes for the test
responses. PACE was Lmplemented on a CM-2 parallel computer with 132I{
simu1ated processors.

To classify responses, PACE uses a version of the k-nearest neighbour
approach; the optimal k was found to be somewhere between 10 and 15.
A response is assigned the code that is most frequent among the k nearest
classified examples in the database. This approach supports an ingenious
confidence score for the chosen code, which measures not only the distance
between the current response and the neighbours with the same code, but
also how close the next most plausible answer is to the one chosen.

The distance measure itself depends on what the authors cali "conjunctive
features". Words occurring in the response are given suffixes associated with

<the line they occur on: for instance, every word in the answer to the question
"For whom did this individua1 work?" is given the suffix ".c"; every word
in the answer to "What kind of business or industry was this?" is given the
suflix ".i" i every word in the answer to "What kind of work is this person
doing?" is -given the suffix ".0". From then on, two words which are the
sam.eexcept l'or different suffixes are considered to be different words.

i '~,
l,:
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During training. ail 4.5 million possible combinations of two words arl'
considered as possible conjunctive features. A conjunctive featurl' often ron
tains more information than the two words alone. For instancc. tllL' con
ditional probability of the industry code being "general machinery" given
that "shop.i" occurs is 0.24, the probability of this industry code given that
"machinist.o" occurs is 0.29, but the probability of the same code given that
both "shop.i" and "machinist.o" occur is 0.93.

Various weighting schemes for the conjunctive features were considered,
and are described in detail in [Cree92). Because of the massively parallel
implementation, it is possible to calculate weights for each of the 4.5 million

"<:'()Iljunctive features in about 10 minutes. Furthermore, despite this huge
Ilumber of parameters, classification of new responses proceeds at the rate of
10 pel' second.

An interesting observation was made in the course of PACE's development
- it was found that morphological analysis did more harm than good. For
instance, one would expect the words "attorney" and "attorneys" to behave
very similarly. In fact, the word "attorneys" predicts the "Legal Services"
code with 0.98% accuracy, while the word "attorney" only predicts the same
code with 68% accuracy. "Blindly stripping prefixes and suffixes from words
to arrive at a canonical stem must be used prudently, if at aiL It is our belicf,
and the belief 01 sorne other researchers who use data-driven approaches...
that the data rath'Jr than human intuition shoulcl drive the design of the
application" [Cre~92, pg. 53J.

The researchers responsible for PACE cite the following advantages for
their robust, massively parallel approach:

• Ease of programming: PACE took 4 person-months to build, while
AIOCS took 192 person-months;

• Completeness and uniformity of coverage: because it ~is~grown from
training data ffiin;'ring the overall data mix, PACE was guaranteed to
performwell on that mix;

• Scal~bility: as the amount of training data and hardware capabiliti~3',
grow, PACE will improve;

• Ease of updating: it is easy to aàjust system behaviour by removing
old examples and adding new ones;
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• Confidence ,cores: if a new example is identical to or close to stored
exalllples, PACE can assure the user that it has high confidence in the
re,u!t - low-confidence results can be submitted to human experts for
checking;

• .Justification: nearest neighbours can be listed as precedents for pACE's
c1ecisions.

pACE's classification rules are of limited interest; nevertheless, this work
is importànt. The comparison between PACE and AIOCS shows that the
economic tradeoff between computer effort and human éff~~t is tilting towards
the computer. ,Computation is becoming so ridiculously cheap that it makes
more and more sense to devise brute-force, rather than knowledge-based,
approaches to naturallanguage tasks where possible. The work also suggests
that parallel implementation of such brute-force approaches is an important
consideration. A section in Chapter ï deals with parallel implementation of
I\CTs.
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Chapter 7

Computational Complexity of
the l<:CT Algorithms

7.1 Introduction

This chapter discusses the time complexity of algorithms for growing and us
ing KCTs. It shows that even under extremely unfavourable assumptions, the
time required to grow a single-symbol or set-membership KCT by means of
the iterative expansion-pruning algorithm is always polynomial in the amount
of training data, the length of the longest string, and the size of the vocab
ulary. For both kinds of KCT, the chapter shows that classification takes
relatively little time.

Table 1 summarizes the seriai time complexity results for both kinds of
KCT. The relevant parameters are D, the number of sentences in the training
data (i.e. the total number of sentences in the two training texts used by the
iterative expansion-pruning algorithm), L, the upper limit on the number of
words in a sentence, and V, the size of the vocabulary.

The algorithms for growing KCTs described in this thesis are well-suited
to parallelization. The last section of the chapter shows how different degrees
of speed-up can be achieved along the continuum from coarse-grained to fine
grained parallel machines. This chapter thus establishes seriai and parailel
time dependencies for the KCT algorithms, and demonstrates that growing
and using KCTs is relatively cheap in computational terms.
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Table ;.1: SERIAL COMPLEXITY RESULTS FOR KCT ALGORITHMS

ALGORITHM ASSUMPTIONS COMPLEXITY ,L~

Single-symbol growth balanced 0(D2 * log D * U * \/)
Set-membership growth balanced 0(D2. log D * L2 * \/2)

Classification balanced O(L * (log V + log D))
Single-symbol growth D < 4 * L * V, unbalanced 0(D3 * L2* \/)

Set-membership growth D < 4 * L * V, unbalanced 0(D3 * L2* V2)
Classification D < 4 * L * V, unbalanced O(DOLIFI

Single-symbol growth D > 4 * L * V, unbalanced 0(D2* L3 * \/2)
Set-membership growth D > 4 * L * V, unbalanced 0(D2 * L3 * \f3)

Classification D > 4 * L * V, unbalanced 0(L2*V)

7.2 'l'hne Complexity of' Single-Symbol kc1'
Algorithms

There are two kinds of KCTs: single-symbol KCTs, in which each question
refCl"s to an individual item in the vocabulary, and set-membership KCTs,
in which a question may refer to a set of symbols. We wiII assume that
the number of classes is negligible compared to the smallest of the three
parameters D, L, and V. For the ATIS system described in Chapters 8 and
9, the maximum value of D was 3254 and V was 592; L was arbitrarily and
pessimistically set to 100.

The nature of the worst-case time analysis for both single-symbol and set
membership KCTs depends partly on whether we assume that the supply of
training strings, or the supply of possible questions, runs out iiist. Since no
question can be asked more than once a10ng a path from the root to a leaf,
it is imaginable that KCT expansion will stop because all possible questions
are in the tree. We will therefore begin the analysis by asking two related~<

questions:

1. What is the maximum possible depth of the tree, Le. the largest number
of YES-NO single-symboI questions:that can be posed along a path
from root to leaî?



''::--:":-'-';j

"."

.'.-- ,
2. What is th~ largest possible number of nodes in the trcc'(

To determine the maximum depth, note that the maximum number of
.,+., positions that can appear in a known structure is L. For each "+",
at most 4V single-symbol questions can be asked: questions of the fonn
"< 10 > 7", "< +10 > 7", "< +10+ >7", and "< 10+ >7", for every word win
the vocabulary. Suppose that for a particular string in the training text that
has its own leaf, the answer is "NO" to all but one of these questions about
a given < + > (i.e. they are either of the WE:lg type or specify the wrong
symbol). ,~fter 4V -1 "NO" answers we have established the identity of one
of the syn\bols in the,~ubstring "+". We now start work on another "+".
Since each s~t of 4V -1 questions establishes one of a maximum of L symbols
in the string'; the maximum number of questions in a path is L * (4 V - 1).
Thus, the longest path has less than 4 * L * V questions in it.

Now, let us determine the maximum number of nodes in a single-symbol
KCT. To get the biggest possible KCT, assume there is one leaf for', every
possible string. Since there are V possible sy0!.î6is in the first position'; V
in the second po~iti'm, and so on, there will be VL leaves. In a binary tree,

. ~l1e total number of 'nod;'.s must be less than twice th" number of leaf nodesj ,
th~'iefore, the largest possible KCT has O(VL ) nodes alt,ogetlwf. This is ah
ellormous number. For instance, if V = 100.'lnd L = 10, vu' = 1020. It
is reasonable to assume that the number of training sentences D is smaller
than this. Given this assumption, the largest KCT is obtained when every
training sentence yields a leaf nüde, i.e. when the number of leaves and the
total number of nodes are both O( D). Thus, our analysis begins with the
assumption that the depth is at most O(L* V), and that the number of nodes
is O(D).

The first scenario we consider makes a more optimistic assumption about
the maximum depth of the KCT: that it is O(log D). The only justification
for this assumption is that it reflects the experimental results: in practicc,
KCT depth seems to go up very slowly with D (see Chapter 9). This will be
called the "balanced" scenario, though KCTs meeting this description need
be balanced only in a very loose sense (e.g. a balanced KCT could have'
an average depth of 0.510g D and a maximum depth of 1000 log D). If the
KCT is unbalanced, we will make the most pessimistic assumption possible
about the depth. There are two possible scenarios: either D < 4 * L *V or
D > 4 * L *V. In the first case, the worst thing that could ha??en is that

<'.:.---
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the KCT consists of a single chain D - 1 qup.stions long, with each question
separating only one strin'r-Crom.' ,l,crest. Thé:second case is similar, except

~ .

that the supply of possible questions (of which there are about 4 * L * V)
rnns out before the training sentences do.

Thus, three worst-case scenarios will be discussed:

l. The balanced scenario shown in figure 7.2, in which KCT depth lS

O(log D);

2. The unbalanced scenario shown in figure 7.3, in which D < 4 * L * V
and depth is O( D);

3. The unbalanced scenario shown in figure 7.4, in which D > 4 * L * V
and depth is O( L *V). .

7.2.1 't'he Set-ut> Phase: Coilverting Sentences to tex
ical lndex Strings

Figure 7.1 shows how a sentl'nce is converted to a lexical index string: every
word in the sen\'ince is replaced by its index in the vocabulary.When a KCT
is about to begrôwn, the training sentences must be converted before the
start of the iterative expansion-pruning.algorithm. Similarly, when an input

'.: sentence is about to be classified by a KCT, conversid must first be carried
out. It takes O(log V) time to look up a single word in the vocabulary and
replace it; since each sentence has at most L words in it: the cost ofconverting
a sentence is O(L * log V).

Thus, it costs O(D * L * log V) to convert the O(D) s€~rences in the
..... '~ training telit before KCT growth begins, andO( L *log V) to~o'nvert a single
'. sentence bèiorü~;J,.j,<,dassified bya KCT. Since ail KCT questions refer to

lexical indices rather than words, sentence conversion reduces computation
time for KCT growth: it replaces each later O(log V) lexicallookup by an
O( l) integer comparison. ~' /c.
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Original Sentence Voc.bul.ry

how many noon flights to boston'] Index Won!

j
Lexic.llndcx String

"'1\

OSIOO-:-

22329633518951469 96 many

"'.-.

1:19 zone

Figure 7.1: Converting Sentences to Lexical Index Strings (Setup Phase)
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Il item 1

Dcpth = O(log D)

,

O(D) Icaf nodcs

Figure 72: Balanced KCT, Depth = O(logD)
!,/

7.2.2 't'he aalF~nced Scenario ;-

Figure 7.2 shows the balanced scenario in which KCT depth is O(log D). To
maximize the work that must be done by the KCT-growing algorithm, we
assume that the D data items divide evenly at each question as shown. How
much time will it take to grow this KCT?

Consider anode that is being expanded during the expansion-pruning
algorithm. We have established that the maximum number of single-symbol
questions that can be posed at any node is O(L * V). Consider no single
training lexical index string s of length at most L that is being ii.sked a
particular question. In the worst case, the known structure is < + >, the _
question is "< +i+ >?" where i is the index of sorne word w( i) in the
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i~xicon. and the answer will turn out to be "1'10". In di:" cas<'. i is cOl1lparc(~.--to the second, third, ... , second last indicesin $ one aftei'the othe l', requiring
O(L) time, Once a,c"YES" or "NO" ans·.ver has bccn obtained, a counter
array "YEScount[c]" or ',~~J.'OcOt·,nt[cl" is incremented. where c is the c1ass of
the training string (an O(l}operation). " ,

Thus, wl,en the root of the KCT is grown during tl;e first expansi~n,in the
expansion-pruning algorithm, each qu"stion costs O( L) and each is po~cd to
D strings, so a question costs O( D *L) ti:ne. After a question has becn posed
to ail D training strings, the change Î JJ D'iniimpurityio{ilst be calculated from
the arrays "YEScount[]" and "NOcount[j"'.: This i~ iù: O(C2 ) operation whei2,:
C is the numbêi of classes, which we ass\ùriè is trivial compared to D, L, and",
V. Picking the best question from those whose impurity has been calculated
is an O( L* V) operation (we just keeptrack of the best question so far, and its
impurity, repiacing both whenever an even better question is found). Thus
the total work at the root to find the best question [eif' D training strings is
O( D * L) work per question for O( L * V) possibleq"lCstions: O( D * L2 * V)
work (the O(L* V) question comparison work istoo smàll to alfect the overall
timecomplexity)..'~~~,ic'~ ,

Once the best question for the root has been'\:found, sorne of the data
go to the YES child and some to the NO child. In each, a maximum of
O( L* V) questions will be considered. At this layer of the KCT, if we consider
the YES child and the NO child together, D strings are asked O(L * V)
questions. Thus, the time taken for this layer will be the sarne as at the root:
O(D * L2 * V).

In fact, this will be the amount of work done at each layer of the tree.
Since the depth is O(l"g D), we conclude that the total work done dUrlng
the first expansion is Cf(D * log D *L2 *V). Note that the cost of the set-up
phase, O(D * L * log V), is insignificaut. If we had skipped this phase and
done lexical lookups each time a string is asked aq~èstion, the cost of il

question on a single string wouId have been O( L *log V) instead of O( L) and
we would have ended up with an extra factor of log V in the final result.

Because the questi0n for each node has been selected, the pruning stage of
the expansion-pruning 'algorithm takes less work. During the set-up phase, "
a new training text with D strings in it is converted in O( D * L * log V) "
time. The resulting lexical index strings are read into the root and the
misclassification rate R(root) is calculated in O(D) time. Next,the q!lestion
at the root is applied to each of the strings to obtain the answe/":YES"
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~r "è'/O" in O( D * L) lime. The total IVork at the root is thus O( T) * L) ..
.The f) st.rings ar~ then partitioned between the tIVO childrcr: itnJ the sai1l~'

'computations carri,':ci outiit· this level, and continued rerursively at 10IVer'
lcvels. Since cach l~vd has O( D.)strings to work on, each does O( D*L) work':
There are O(log D) levels, s;, th~total work for this stage ofpruning is O(D*
log D * L). At the final phl;se of pruning, the algorithm works recursively
upwards from the leaves,pruning them if their combined misclassification
rate is higher than that of, their parent. Using a stack, this can bcdone in
time linear in the number of nodè~ in the tree, O(D). Thus the time required
for jJruning is O(D * L * log V + D * log D * L + D). If we assuIIle that
vocaint!ary size li is small compared to the number D of training strings,
this is O( D * log D * L). One cycle of expansion followed by iteration is
therefore O( D * log D * U * li + D * log D * L) = O(D * log D * U " V)"

Finally, we must~establish the number of cycles of expansion-pruning
required by the iterdtive algorithm. Gelfand et al [GeI91] have proved that
at the cnd of each :such cycle, the size of the tree has either increased since
the prcvious cycle', or. stayed the .>.:orne. If. the size has stayed the same,- -~. '.
convergence has occurred and the iteration stops - we have the final KCT.
So assume that the size of the tree increases on each iteration. We have
established that the maximum size of the KCT is O(D).~r;:\.i;;, we will get
the maximum number of iterations if we assume tha;; the firstIiruned tree
has size l, the second has size 2, and so on until O(D)'is reached. There were
O( D) cycles, each requiring O(D * log D * L2 * V) operations, so the tOtal
time requiî'ed to grow a single, balanced KCT is 0(D2*log D *L2 *V). This
is a very loose (pessimistic) upper boundj with sorne work it would probably
be possible to prove a tighter upper bound. In particular, the assumption
of 0 (D) cycles of expailsion and pruning is extremely pessimistic. When
growing KC1's for the ATIS task, 1have never encountered a situation where
more than 4 cycles were needed, even for D > 3000.

Once the balanced KCT has been grown, how many operations are re
quired to classify a given string? Recall that for a single string, the set-up
phase is Q( L * log V). At each node encountered during classification, de
termining the answer to the node's question may require looking at 'up to L
positions in the lexical index string. Since there are at most O(log D) levels
in a balanced KCT, classification of the lexical index string is Q(log D *L).
Thus, total time complexity for classification of a string by a balanced KCT
is Q( L * log V + log D *L). This is negligible in any realistic case, especially
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in speech understanding, where the earlier recognition stages arc guarantced
to require orders of magnitude more time.

7.2.3 The Unbalanced Scenario with D < 4 * L * y'

In this scenario, the length of thelongest path is O( D) nodes . the supply of
training strings is exhausted before the supply of questions runs out. Using
the same arguments as for the balanced scenario, it is straightforward to
establish the time complexity of the iterative expansion-pruning algorithm.
For the expansion step, we still have O( D * L2 * V) operations per [evel, but
now we have O(D) levels, imp!ying O(D2*L2* V) time complexity. Pruning is
still cheaper than this, so the cost of one iteration cycle is O( D2 *L2*V)j there
is still a maximum of D cycles. Thus, in'!this scenario the time complexity
of growing the tree is O( D3 * L2 * V). Note that the substitution of O( D)
tree depth br O(log D) tree depth yields precisely O(D/log D) increase in
complexity. Subsequent use of the tree to classify a string of maximum length
Lis clearly O(D * L) - again, negligible in most imaginable circumstances.

7.2.4 't'he Unbalanced Scenario with D > 4 *L *V

In this scenario, there are enough training strings to fill out the longest
possible path, which we established earlier has depth approximately 4* L* V.
O(D) strings must still be processed at each level of the tree, but the worst
case number of levels is O( L *V). Thus O( D *L2 *V) work is done per level
in an expansion step as before, but there are now O(L *V) levels, so that an
expansion step requires O( D * L3 * V2) work.

Again, because thepruning step requires les~ time than -the expansion
step, this expression also describes the total number of operations required
for one cycle of the iterative algorithm. By the argument used previously, the
number of iterations is O(D), so thet<:al ti'Pe for growing this kind of I<CT
is O( D2 *L3 *V2). When this kind G:'KCT--'classifies a string, the worst-case
number of operations is still the produet of maximum string length L with
maximum depth, i.e. O(L2 * V).
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Depth =0(0)
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1 item ~

Il item 1 Il item 1

Figure 7.3: Unbalanced KCT, D < 4 * L *V, Depth = O(D)
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Deplh =O(LOV)

Il item 1

Figure 7.4: Unbalanced KeT, D > 4 * L * V, Depth = O(L~V)
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7.3 Time Complexity of Set-Membership KCT
Algorithms

In this section, 1 will discuss KCTs containing questions of the form: "within
a given segment of the string, does any symbol belonging to the set of symbols
X occur?" As described in Chapter 6, there are a number of different types of
set-membership questions. For simplicity, 1will usually assume that each set
membership question asks about a precise, fixed location of the string. The
types of set-membership questions actually used are no more computationally
expensive than this kind.

To begin the analysis, consider the time required to determine whether
a particular string s yields the answer "YES" or "NO" in response to an
arbitrary set-membership question.

7.3.1 Time Complexity of Set-Membership Questions

Figure ï.5 shows how a set-membership question is posed. The set of words
X referred to by the question is stored in an array (also called "X" in the
diagram) ~f V bits, with bits corresponding to the words in X set to 1 and the
rest set to O. The question aiso refers to a region of the sentence demarcated
by left' and right positions (not shown). As with the single-symbol case,
assume that a set-up phase has already converted the sentence to a string of
lexical indices. "

To determine if the answer to the question is "YES" or "NO" for a given
string s, traverse the string from the appropriate position on the left to the
appropriate position on the right and check for eac~ number i appearing
there whether X(i) is 1. If the answer is "YES" for any i, the answer for the
string s as a whole is also "YES". In figure ï.5, the question is "< +X+ >?"
so the numbers in s to be checked range from the second number (200 in
the figure) to the second last number (3 in the figure). Since each check
requires an O(1) array access and comparison, and there are at most L of
those, since s cannot have a length greater than L, the cost of obtaining
an answer to any set-membership question on any string is O(L). Thus, set
membership questions are no more costly to ask than single-symbol questions,
apart from the cost of setting up the bit array X. This is the next aspect of
set-membership questions we must look at: how are they generated?
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Question: "IS STRING s OF FORM <+X+>. WHERE X IN SET {2.5,352}?"

Index .> 1 2 3 4 5 352 V

X = [0 Il 1 0 10 Il [0 1... 10 Il 10 1...10 ]

s =35 200914 ... 540 3 17

no no no no no
X[200] = I?,..... X[9] = 1?~X[14] = l?r"'7 X[540] = 1') X[3] = 1?1

yes yes yes no
yes yes ycs

YES TO QUESTION NO TO QUESTION

..

Figure 7.5: Asking Set-Membership Question (for 1 string, O(L) work)

163



7.3.2 Generating Set-Membership Questions

Recall that each set-membership question is generated from the best single-
"symbol question at la. fixed position in the known structure. Suppose there

"are N training sLïin6s)n a given node. At a fixed position in the known
structure, O(V) singl.f-symbol questions can be generatedj each costs O(L)
to ask per training string (we may hax~ to traverse a large fraction of the
string to ask the question). Thus, the cost of finding the best single-symbol
question at a fixed position in t'le known structure for N training strings is
O(L*N*V). .

Figure i.6 shows how set-membership questions are generated from a par
ticular single-symbol question. Suppose the single-symbol question involves
the word at position i in the lexicon. Then we initialize a bit array X to
X[il = 1, and set ail other.bits in X to O. This involves O(V) work.

To find a good twO:el~;nent X, we leave Xli] = 1 and try X[lJ ='1. By
the argum:.nt of the previous section, measuring the Gini impurity of this
question o"er.N training strings reqUires O(L *N) work. We next set .,{[lJ
back to 0 and calculate thel,mpurity when X[2] = 1j again, this requires
O( L*N) work. We continue in this way until we have X[VJ = 1 and ail two
clement sets that include i have been tried. Clearly, V - 1 different settings
have been tried at the cost of O(L * N * V) time to obtain the two-element
question involving i that yields the lowest impurity. Let this two-element
question have the setting x'[if = 1, X[j] = 1, i =1 j, and ail other elements of
X set to O.

To find the best three-element X, v;e start with the two-element setting
and try setting a third bit to 1; there are V - 2 ways of doing this. To get
the best three-element question based on the two-element question requires
O(L * N *V}time~;'

The process' continues until the question obtained with i'v[ +1 elements is
no improvement on the M-element question. Conceivably, it could continue
until V - 1 bits in X are set to 1. If this happened, the cost would be
O(L * N* V2

).

This is the cost for finding the set-membership question for one position
in the known structure from N training strings. Since there can be O(L)
"+" in the known structure, the cost of the final set-membership question
obtained at a single node from N training strings is 0(L2* N *V2).
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1. Start lI'ith a single-symbol question at a lixed position. involving word i in lexicon.
Set X = i:

Index -> 1 2 3 4 5 V

X = [0 10 10 10 10 10 1... 10 Il 10 1...10 1

2. Find best two-element question involving word i.
Index ·>1 2 :. 4 5 i V

2.I:tryX={1,i} x=[110101010101... IOI1IOI...IOI
Cost =OCL*N)

Index -> 1 2 3 4 5 i V
2.2: try X = {2,i} X = [0 Il 10 10 10 10 1... 10 Il 10 1...10 1
Cost = O(L*N)

Index ->1 2 3 4 5 i V
2.V: try X = {V,i} X = [0 10101010101..·10 III 0 1...111
Cost =O(L*N)

Lowest impurity question: X = {i,j}
Index ->1 2 3 i j ... V

X = [0 10 10 1... 10 Il 10 1···1 0 Il 10 j···iO J
Total cost Cor two-element question = O(L*N*V)

3. Find best three-element question involving i,j.

Index->123 i j V"
3.l:tryX={I,i,j} X""ï'\oIOI... IOIIIOI...IOIIIOI...IO]'

...
Index->! 2 3 i j V

3.V: try X = {ij,V} X = [0 10 10 1... 10 III 0 1...10 Il 10 1···III

Total cost Cor three-element question = O(L*N*V)

!'; .

Up to V-l elements, 50 cost is O(L*N*V*V)

Figure 7.6: Finding Set-Membership Question [rom Single-Symbol Question
(N training strings)_
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7.3.3 Determining Time Complexity for the Set-Membership
Scenarios

.Just as with the single-symbol KCT, we must answer two questions to com
plete the time complexity ana!ysis:

1. What is the maximum possible depth of the set-membership KCT, i.e.
the largesL number of YES-NO set-membership questions that can be
posed along a path from root to leaf?

2. What is thelargest possible number of nodes in the KCT?

Consider a fixed position in the string. What is the length of the longest
chain of questions that can be asked about this position? Initial1y, when
nothing is known about this position, X can be set to any proper non
empty subset of the vocabulary. Thus, there are 2v - 2 possible questions
that can be asked, since each element of the vocabulary can be included
or not included in the set X, and we must subtract 2 to climinate the two
cases where X is empty or equal to the whole vocabulary (which give rise
to pointless questions). To get the longest possible chain of questions, one
might reason that it can be obtained via a series of "NO" answers. There are
2v - 2 possible questions that can initial1y be asked about the position; once
one of them is chosen, there are 2v - 3 possible questions to be asked if the
answer to the first question is "NO". Once one of these has been chosen, there
are 2v - 4 possible questions left over for the NO child to use - and so on.
Following this reasoning, the number of questions that could be asked along
a path from root to leaf about a fixed position would be 2v - 2 (implying
that the maximum depth for a set-membership KCT is O(L * 2V ), since we
have L positions in the longest string).

This reasoning is fallacious. Each answer to a question, whether it is
"YES" or "NO", greatly restricts the scope of the questions that follow.
Imagine that as we move along the chain of questions about a particular
position in the known structure, we are fil1ing in an array A of V integers.
Suppose that A[i] = 1 means that word i occurs at this position, A[i] = 0
means word i does not occur at this position, and A[i] = -1 means that it
is not known whether word i occurs at this position or not. At the root, for
a given position in the known structure, A[i] = -1 for ail i.

Now, consider the set-membership question: "does an clement of the set
y occur at this position?" In the NO child of this question, we can set IVI
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elements of array A, those corresponding to the clements of Y. to O. In the
YES child of this question, wc know that none of the clements of Il - }'
can occur at the given position, so IV - YI clements of anay A arc set to O.
Thus, every time a question is encountered, at least one e\ement of array A
is set to O. We can only continue to ask questions about a fixed position if
sorne of the Y positions in A are still set to -\. Therefore, the maxilllum
number of set-membership questions encountered along a path from root
to leaf about a fixed position in the known structure is Il. The maximulll
number of positions in the known structure is O( L); therefore, the maximulll
set-membership KGT depth is O(L. V),

We now have a situation analogous to that described in the section on
single-symbol KGT algorithms: there, also, the maximal depth of the KGT
was O(L • Y). This is fortunate - it means that many of the arguments
employed in that section can be recycled! For set-membership KGTs, we
again have a three-fold division:

1. The balanced scenario shown III figure ï.2, ln which KCT depth 15

O(log D);

2. The unbalanced scenario shown in figure ï.3, in which D < 4 • L • V
and depth is O( D);

3. The unbalanced scenario shown in figure ï.4, in which D > 4 * L • V
and depth is O(L * y),

For ail of these, we know that the time complexity offinding the set
membership question for anode from N training strings du ring the expansion
phase of the expansion-pruning algorithm is O( U * N • V2). Finding set
membership questions by means of the greedy heuris tic, rather than finding
the best single-symbol question, has increased the worst-case complexity of
the KGT-growing algorithm by a factor of V.

Here is the time complexity for each of the three scenarios:

1. The balanced scenario - work pel' level of expanding tree is O( D •
L2 * y 2 ), there are O(log D) levels, so one expansioil-pruning cycle is
O(D * log D * L2 * y 2 ). Since there can be at most D cycles, the
time complexity of growing a balanced set-membership KGT is O( D2 •
log D * U * y2). .
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2. The llllbalanccd scenario for D < " • L • V - the number of levels is
O(D) rather than O(log D), but otherwise the ana!ysis is the same as
in the balanced scenario. Therefore, the time complexity of growing an
llnbalanced set-membership KCT is 0(D3. U. V2 ).

:3. The unbalanccd scenario for D > 4 • L • V - work per level is still
O(D. U • V2 ), but the number of levels is O(L • V), so the work
required for one cycle of the iterative expansion-pruning algorithm is
O( D * L3. V 3 ). The maximum number of cycles is O(D), so the worst
case time complexity for growing a set-membership KCT is 0(D2 *L3.
V3 ).

We saw that classification of a string at anode takes no more time (within
a constant factor) for set-membership trees than it does for single-symbol
trees, so the previolls time complexity results for classification still hold.

7.4 Parallel Time Complexity of-KcT Algo
rithms
The most important Connection Machine data structure is

the tree. Trees are used by themselves and as components of
other data structures, such as graphs, arrays, and butterflies...
Trees are useful because they provide a fast way of collecting,
combining, and spreading information to anà from the leaves.

W. Daniel Hillis [Hi185 pp. 97-98]

This quotation from one of today's mcist respected researchers in the field
of massively parallel computation ,ugg;ests that the KCT algorithms might
be llnusually well,suited to parallel implementation. This turns out to be the
case. In fact, there are three different "dimensions" of parallelism that may
be exploited independently in the course of growing an KCT, allowing us to
pick an implementation-that suits the degree of parallelism available O!l the
machine we are using.

The most obvious way of using parallelism is to assign a proccssor to each
node of the expanding tree. The time complexity at the root node, which
reccives D strings, will be what it is in the seriaI implementation. However,
if the tree is balanced, and 'the training strings are divided fairly evenly
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between the Ieaves, the time rcquired at thc Ilex! leve\ is halvcd: there are
two proccssors running simultancously, cach working with O( D/2) strings.
8y the same logic, the timc will be halved again at the next le"'e\, and so
on. Vnder these assumptions - which are admittedly rather strC'l~lT_ if the
time taken at the root node is T, the total time is T. (1 + 0.5 + 0:2.5+ ... ) =
2. T (ignoring communication costs). In eITect, this reduces the scriai timc
complexity by a factor equivaient to the maximum depth of the trce. This
would reduce the time complexity for growing a balanccd tree (single-symbol
or set-membership) by a factor of log D. However, that this will only happen
if the training strings are evenly distributed across leaves. If the trce is
unbalanced or the strings conccntrated in a small fraction of leaf nodes,
assigning a proccssor to each node makes no difference.

Fortunately, the remaining two "dimensions" of parallelism we will ex
plore give guaranteed speedup, independent of the shape of the tree being
grown and the nature of the training data. Suppose that at least O( V)
proccssors are available for the tree-growing task. Assign one processor 1,0

each symbol in the vocabulary, so that every time questions involving the V
symbols are being compared to find the best one, the impurities are calcu
lated in paraliel. Each processor will ask a question, each involving at most
O(L) work (in either the single-symbol or the set-mem,bership case), for its
assigned symbol at each of O( L) positions in the known'structure over O( D)
strings. It aiso keeps track of which of these questions yield~ the greatest
drop in impurity. This takes O(D. L2

) time for each processor. In O(log V)
time, the V processors can then compare results to give the best question
[Hi185 pg. 100]. Finding Lh'c oest question thus takes O(D. L2 +log V) time.
On the reasonable assumption that log V is small compared Lo D. L2, this
is O(D * L) - an O(V) speedup over the seriai algorithm.

In fact, this speedup will be attained at each leve] of the expanding tree,
no matter what its shape or the distribution of training strings: looking
at possible questions during the expansion step will be faster by a factor
of order O(V) everywhere. The pruning step is not speeded up, because
here the questions have already been chosen at each node and there is no
need to go' through the vocabulary at each levelj however, thetime taken
for each iteration does shrink by O(V), because it is determi:lf~d by the.
computationally more expensive expansion step. The total time complexity'
is thus obtained by dividing the seriai (;xpressions by V.
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Finally. if we can afford O(D) processors, we can assign one of them to
each training string and have it carry out the necessary computations on that
string at each node. Naturally, this produces an O(D) speedup, this time
during pruning as weil as during expansion.

Which of these parallelization stratf'gies is adopted depends, of course, on
how many processors are available. Note that if we parallelize by vocabulary
item or by training string but have a number of processors less than the
vocabulary size V or the numoer of training strings D respectively, we still
get speedup proportiunal to the number of processors. For instance, if we
have exactly D/2 processors, we can work on half the training strings in
one round and the other half in t!:le next round, getting a D/2 speedup 
the speedup varies smoothly with number of processors, rather than showing
quaiitum jumps. If we have a truly enormous number of processors, for
instance O( D * V), we could combine two or even three of these strategies,
getting a speedup of O( D * V) or better.

Classification of a single st.ring is 50 fast in the seriai implementation that
it is probah.1)c,l1ot worthwhile to parallelize it. Obviously, parallelism ",muid
come in handy-for a KCT-based system that looked at all N hypotheses out
put by the recognizer. In designing the KCT-based robust matcher described
in Chapter 8, 1 kept an open mind about whether to use KCTs in parallel or
in series (the implementation runs on a seriai machine). As it turned out, it
was much more convenient to build the matcher out of about 100 KCTs that
f\lnction in parallel; each handles a different linguistic aspect of the problem.
Thus, the KCTcii"sed robust matcher could be implemented in parallel with
a speedup of 10 i~ 100 at the cost of very little effort if a parallel machine
\Vere available. ;'
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Chapter 8

cltAN~t: A KCT-l3ased,

tinguistic Analyzer for A1'tS

8.1 System Structure for 1'wo A1'tS 1'asks
Figure 8.1 shows the structure of the linguistic analyzer built at ClUM for
the November 1992 ATIS benchmarks. This !inguistic analyzer was ca.lled
CHANEL, for "CRIM Hybrid Analyzerfor Natural Language" (the word "hy
brid" is a reminder that the analyzer consists of a local chart-based parser
plus the Robust Matcher). The Robust Matcher component was trained on
class "A" (acceptable) but not class "Dn (context-dependent) or class "X"
(unacceptable) sentences from ATIS 2, the 1992 ATIS training data rclease.
For the NL (natural language) benchmarks the input to the matcher is a
transcript of what a user said, whileJor the SLS (spoken language systems)
benchmarks the input is the most pr~bable word sequence hypothesis out
put by the CRIM recognizer. Original!y, it was planned to train the robust
matcher for the SLS task on label/ed I:ecognizer output. However, the exper
iments described in the next chapte~-suggested that even for the SLS task,
it was better to use transcript training data. Thus, exactly the salTle robust
matcher was used for both NL and SLS benchmarks.

Note from figure 8.1 that word sequences are processed by a local parser
before being submitted to the matcher. However, 1 also considered an alter
native, more complex architecture in which sorne processing by KCTs pre
cedes local parsing; tbis alternative will be discussed in the last sectiop:,,->[

,>.'."<,
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LocaUy Parsed Form

Semantic RepresentationSQLQuery

Transcript or N-Best Hypothesis
from Recognizer

Local
SIIOW ME 10 AM FLIGIITS FROM Parscr
BOSTON TO DENVER AND HOW show me 11M fIights from
MUCH TIIEY COST CIT 10 crr and how mueh

· thcy cast
i·

·"NO ANS\\(ER" TIM - IU:OO. CITI - BB(')S.·· CIl'2- DDEN,

Possible "NO ANSWER" ~
l "NO AN~-WhK" KCT·Bascd

"/~""""""""""""""""I"'~"""''"
.. ,.i! ••••••• Robusl Matcher

~·"NOANsWER",

SELECT DISTINCT flight.nighUd
fare.fare_id FROM ....

( rest of qucry is the conslraints)

SQL
Module

DISPLAYED ATTRIBUTES
{night.nighUd. fare.farejd}·

CONSTRAINTS -
[ flight.from_airpon f-BBOS.

fiighuo_airpon f- DDEN.
1 6ight. depanure_Iime f- 10:00

To Dalabase

Tasks orthe kCT-Based Robust Matcher

1. must decide whieh altributes to display

2. must deeide whether TlM applies 10 flight.depanure_time or flight.arrivaUime·

3. must dceide how 10 assign eaeh CIT to flighl.from-"irport. flighl.lo_airporl,
or flighUtop.slop_airport

4. must rcsolve ambiguities (if any) for other semantic categories:
e.g. AIL. AIP. DAT. DAY. FNB. etc.

5. may deeide to scnd "NO ANSWER" <as may Local Parser or SQL Module)

Figure 8.1: LinguisÙc Processing in 1992 CRlM ATlS System
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this chapter. Also note that the decision ta send a "NO ANS\vEW' response
may be made by the local parser, the roiJust matcher, or the SQL n,'Jdnle.
When such a decision is made, further processing is aborted and "NO AN
SWER" is sent to the ATIS comparator. For interaction with rcal users,
an appropriate message snch as "l'm sorry, \\'ould yon mind repeating yom
question?" could appear on the screen. The meta-rules for decidiug when
"NO ANSWER" is appropriate will be discnssed in the last section of this
chapter.

Before discussing the robust matcher itself, 1 will expIaiï. the l'OIes of the
modules on either side of it, with the aid of some typical examples from the
ATIS task.

8.2 Examples of ATIS Data

Four examples drawn from the most recent NIST-snpplicd ATIS data will
illu"trate the nature of the data used to train KCTs, aiùr'the nature of the
tasks carried out by the different modul~s of the complete system. Each
example shows a transcript of a user question, followed by a represeutation
for it in the CRIM semantic representation language, fùllowed by the desired
SQL database query. NIST supplies both MIN and MAX versions of the SQL
query for each sentenœj a correct a.nswer will include at least the informatiou
requeste(! by the MIN query and n~) more than the information requestcd by
the MAX query. The MIN queries are shown here. The training data for
KCTs is derived from thousands of sentence-SQL query pairs: the input ta
the KCT-growing algorithms consists of sentences that are labelled to reJlecl
the contents of their SQL "translations". The goal of the complete system
is to reverse the process - to generate the correct SQL query from a word
sequence.

Each of the SQL queries shown below begins with a Iist of at.tributes
between the words "SELECT DISTINCT" and "PROM". We will cali these
the displayed attributes, since they represent the columns in the database
that will be displayed to the user. A displayed attribute consists of a table
name, followed by a dot, followed by the name of a column in the table. The
rest of a ,!uery is called the constraints.

In Example 1 the displayed attribute is flight.flighLid, in EX:'l)~le 2 it is
Jare.fare-id, in Example 3 the displayed attributes are gro1Lnd_ser,;i::;·.ciiy_corle,
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i]l'O/lwL""l'lJicr:.llirporLmde, and gl'OllluLservice.tran8porLtyf'·, and in Exam
"le '1 the displayed attribute is fiight.fiighLid. Occasionally, the displayed
information is a function of an attribute rather than an attribute. For in
stance, a sentence beginning "HOW MANY FLIGHTS..." is orten translated
into an SQL query beginning "SELECT count(') FROM flight". These rare
cases can be treated in the same way as displayed. attributes; they create no. .

additional <.iiffi~ulties.

Despité the apparent simplicity of the displayed attributes and the appar
ent complexity of the constraints in the examples, determiilirigthe correct
set of displayed att.ributes from the word sequence is as hard as determining
the constraints. The complicated nesting shown within the constraints for
each SQL query is a reflection of the large number of database joins needed
to construct the constraints, rather than a reflection of any inherent difficulty
in decoding the constraints in the sentence. If the database were structured
somcwhat differently, much of this apparent complexity would disappear. Of
course, many sentences in the ATIS domain are constructed in a manner that
males determination of the constraints difficult, though that is not the case
for these four examples.

8.3 The Sel11antic Repl'esentation Language'.
8.3.1 Details of the ltepresentation

Every ATIS system has sorne kind of semantic representation language for
the output of the natural language component. The function of the semantic
representation is to carry information from the natura! language component
to the component that generates the SQL query; semantic representation lan
guages therefore tend to have sorne of the characteristics of naturallanguage
and sorne of thE>.:haracteristics of database query languages.

•The semantic representation language at CRIM was developed by Ying
Cheng, Bassem Khalife, a'ld Charles Snow, and strongly resembles SQL. As
Example <1 shows, a sent;'nce may permit more than one correct representa
tion; it does not matter which is actually generated, p!ovided it yields the
correct SQL query. The representation is divided into two parts, the dis
played attributes and the constraints. ·The displayed attributes are the
columns of the database the user wishes to see; each is in the form "rela-
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SHOW ME FLIGHTS FROM BOSTON To DENVER

DISPLAYED ATTRIBUTES = {flight.flight_id}
CoNSTRAINTS =
[

flight.from_airport (- BBoS,
flight.to_airport (- DDEN

]

( SELECT DISTINCT flight.flight_id FROM flight WHERE ( flight . from_airport
IN- ( SELECT airport_service . airport_code FROM airpo.t_service WHERE
airport_service . city_code IN ( SELECT city . city_code FROM city WHERE
city.city_name = 'BOSTON' )) AND flight . to_airport IN ( SE~CT

airport_service . airport_code FROM airport_service·WHERE
airport_service . city_c?de IN ( SELECT city . city_code FROM city WHERE
city.city_name = 'DENVER} ))) );

Example 1

'"".
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ALL RIGHT WHAT l'D LIKE TO DO IS FIND THE CHEAPEST ONE WAY FARE FROM BOSTON
TO DENVER

DISPLAYED ATTRIBUTES = {fare.fare_id}
CONSTRAINTS =
[

fare.one_direction_cost <- $MIN,
fare.round_trip_required <- !NULL,
flight.from_airport <~ BBOS,
flight.to_airport <~DDEN

]

( SELECT DISTINCT fare.fare_id FROM fare WHERE ( fare.one_direction_cost =
( SELECT MIN ( fare.one_direction_cost ) "ROM fare WHERE
fare.round_trip_required = 'NO' AND fare . fare_id IN ( SELECT
flight_fare . fare_id FROM flight_fare WHERE flight_fare . flight_id IN
( SELECT flight . flight_id FROM flight WHERE ( flight. from_airport IN

-(SELECT ai:port_service . airport_code FROM airport_service litiERE
airport_service . city_code IN ( SELECT city . city_code FROM city WHERE

·city.city_name = 'BOSTON' » AND flight . to_airport IN ( SELECT
airport_service . airport_code FROM airport_service WHERE
airport_service . city_code IN ( SELECT city . city_code FROM city WHERE
city.city_name = 'DENVER' ») ») AND fare . fare_id IN ( SELECT
flight_fare . fare_id FROM flight_fare WHERE flight_fare . flight_id IN
( SELECT flight . flight_id FROM flight WHERE ( flight . from_airport IN
( SELECT airport_service . airport_coè~ FROM airport_service WHERE
airport_service . city_code IN ( SELECT city . city_code FROM city WHERE

. city.city_name = 'BOSTON' » AND flight . to_airport IN ( SELECT
airport_service . airport_codeFROM airport_service WHERE
airport_service . city_code IN ( SELECT city . city_code FROM city WHERE
city.city_name = 'DENVER' ») ») );

',
.',.-

- Example 2

d
"
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cI WoULD LIKE INFORMATION ON GRoUND TRANSPORTATION IN THE CITY OF ATLANTA
FROM AIRPoRT To ooWNToWN

DISPLAYED ATTRIBUTES =
{ground_service.city_code,ground_service.airport_code,
ground_service.transport_type}

CoNSTRAINTS =
[

ground_service.airport_code (- ATL,
ground_service.city_code (- MATL

]

( SELECT DISTINCT ground_service.city_code , ground_service.airport_code ,
ground_service.transport_type FROM ground_service WHERE
( ground_service . airport_code IN ( SELECT airport . airport_code FROM
airport WHERE airport.airport_code = 'ATL' ) AND ground_service . city_code IN
( SELECT city. city_code FROM city WHERE city.city_name = 'ATLANTA' )) );

Example3

177



SHOW ME ALL THE FLIGHTS BETWEEN DALLAS FORT WORTH AND EITHER SAN FRANCISCO
OR DENVER THAT DEPART BETWEEN FIVE AND SEVEN P M

DISPLAYED ATTRIBUTES = {flight.flight_id}
CONSTRAINTS=
[

flight.from_airport <- DFW,
flight.departure_time <- (>=17:00&<=19:00)

] '

&
[

[

flight.to_airport <- SFO
]

1

[

flight.to_airport <- DEN
]

]

or

DISPLAYED ATTRIBUTES = {flight.flight_id}
CONSTRAINTS =
[

flight.from_airport <- DFW,
flight.departure_time <- (>=17:00&<=19:00)
flight.to_airport <- SFO

]

1

[

flight.from_airport <- DFW,
flight.departure_time <- (>=17:00&<=19:00)
flight . to_airport <- DEN· .'

]

Example 4 (first part)
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( SELECT DISTINCT flight.flight_id FROM flight WHERE
( ( flight . from ..airport IN ( SELECT airport_service airport_code
FROM airport_service WHERE airport_service . city_code IN
( SELECT city. city_code FROM city WHERE city.city_name = 'DALLAS' »
OR flight . from_airport IN ( SELECT airport_service . airport_code FROM
airport_service WHER~ airport_service . city_code IN ( SELECT city . city_code
FROM city WHERE city.city_name = 'FORT WORTH' » ) AIID ( ( flight . to_airport
IN ( SELECT airport!_service . airport_code FROM airport_service WHERE
airport_service . 2ity_code IN ( SELECT city . city_code FROM city WHERE
city.city_name = 'SAN FRANCISCO' ) OR fiight . to_airport IN
( SELECT airport_service . airport_code FROM airport_service WHERE
airport_service. city_code IN ( SELECT city. city_code FROM city WHERE
city.city_name = 'DENVER' )) ) AND ( flight.departure_time >= 1700 AND
flight.departure_time <= 1900 ) ») );

Example 4 (continued)

tion.attribute". They are givell as a list.
The constraints are made up of one or more frames, each of IVhich Îs.

surrounded by square brackets Tand 'J'. Frames may be combined by mealls
of the AND operator '&' or the OR operator 'l'; they may also be Ilested.
A frame may also be negated by the NOT operator 'l' (though IVe have
not yet encountered an example IVhere this lVas necessary). Frames contain
descriptors of the form relation.attribute ~ value; descriptors in the sarne
frame are implicitly ANDED together.

The representation also allows for funetions, which are alway~ pl'eccded
by the symbol '$' and which mi1.Y occur in eithcr the displaycd attriblltcs
or the constraints (usually the latter). Example 2 above shows how the
constraint "cheapest" for a one-way f1ight is translated into the function NI IN
acting on fare.one_direction_cost. In the case of "latest f1ight ..." IVe wOllld
include among the comtraints the descriptor jlight.depa7·ture_time ~ $!'dAX.
A trickier example would be "the !atest afternoon flight ..." which wOllld
yield the descriptor jlight.departurdime ~ $MAX (>= 1200 fj <= 1800).
Functions among the displayed attributes are treated similarly: for instance,
a sentence beginning "how many f1ights ..." lVould have the attribllte list
{jlight.jlighUd ~ SCOUNT}. The possible functions are MAX, MIN, AVe,
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ilnd co UNT.
Finally, as EXil!1lple :2 above indicates. the sYll1bol '!' can be lIsd tn

negate a value, and the symbol NULL is also used for certain special cases.
A typical example of the former would be translating the c·onstraint "1101.
fiying on Thursdays .," by the descriptor flight.flighLdays Ç: !TIlUR5DA V.

8.3.2 Discussion of the Representation

As stated above, semantic representation languages for the ATIS task I.end to
lie somewhere along the spectrum between natural languages and database
query languages. The semantic representation language used in CHANEL is
more SQL-like than is the case for other ATIS systems. In l'articulaI', the
language employs exactly the same table, attribute, and function names I.hat
wiII be used in the SQL query. Can this approach be defended?

The main argument against employing a representation that is c10scly
related to the database query language and to the structure of the dal.abasc
is that it reduces portability of the system ta other domains. This is a
red herring. In many natUl~al language systems, apparently general names
for variables and values serve as a Potemkin village, concealing profound
domain-dependence [Win86]. It \Vould be surprising if any of the ATIS nat
uraI language systems ported easily to a new task, no matter whal. repre
sentation they use. Insofar as the representations used by other grou ps arc
genuinely domain-independent, this would not reduce the total amount of
work required ta port the systems using them ta a new domain - work saved
on the naturallanguage component would have ta be paid for by extra work
on the SQL module that translates semantic representations into databasc
queries.

There are reasons for thinking that CHANEL is actually more portable
than most. For many potential applications, the only change requircd in thc
representation would be a change in the possible names of attributes, valucs,
and functions. It would probably be necessary to rewrite the SQL module and
the local parser, and the number and roles of the KCTs in the robust matcher
would change. Since the KCT-growing algorithms are domain-independent,
the only human work required to grow new KCTs would be that involvcd in
col1ecting training data. Though this might be considerable, it seems unlikely
that it would be less than that involved in writing a new set of parsing rules
by hand.
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'l'hus, thcre is no " 1'1';01'; reason to efùploy a!l apparently more general
reprcsentation." On the other hand, there is at least one strong reason to
employan SQL-like representation. The principle behind the robust I<CT
based mat.cher (as with AT&T'ssystem) is that of maximizing the extent
to which parsing rules are learned automatically from data. This principle
would b,,·. c6mpletely fulfilled if we eliminated the semantic representation
and built a system that learneû rules for mapping word sequences directly
Ollto SQL. This is impractical. However, we get close to it by employing an
SQL-like representation and thus minimizing the amount of human expertise
requirpd to build the SQL module.

8.4 'l'he SQL Module
""Charles Snow of CRlM did most of the work on this module, and provided

the following description.
The SQL module has two main tasks:

l. to convert a query expressed in the semantic representation language
into a valid SQL queryj

2. to manage the interaction with the Oracle relational database - i.e., to
send the SQL query to the database and process the result.

The representation maps fairly straightforwardly into SQL. The module first
builds the component of the query for the displayed attributes, then builds
the list of constraints, processing constraints one at a time.

The list of constraints is assembled using a context stack wherein each
bracketed set of input lines [] represents a distinct context. Within each
context, the constràints are expressed as (descriptor, value) = (d, v) pairs,
c.g. (flight.airlineJ;ode, AA). dis a relation name followed by an attribute
name, and v is either a scalar value or a function. Scalar values are implicitly
related to the descriptor by an equality operator unless an explicitly provided
operator (e.g., <, >, l, etc.) is supplied. For each of these, the SQL is
generated to express the d and the way it is related to its corresponding
v. This is straightforward except in cases where d is different from one
or more relations in the list of displayed attributes (see below). If v is a
function, it may be an SQL function such as MIN or MAX (the notation
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identifies these functions by preceding them with '$') or a function proper ln
the representation. SQL functions are understood tn be directly applicable
to the corresponding d, and generally applicable. throughout the context in
which they appear.

In evaluating (d, v) pairs it is necessary to ensure that the resulting inter
mediate result will be join conforniable with the 'displayed attributes; thus,
the module is capable of generating joins as required. In cases where the
displayed attributes are drawn from more than .one relation, generating the
join code becomes more involved.·

There are accommodations for certain short-hand notations adopted for
reasons of expediency. For example, the module allows an airport code at
tribute to be expressed as any of: 2-letter state code, 3-letter airport code,
or 4-letter city code, and arranges always to provide a correct list of airport
codes.

Interaction with the database is mediated by C-callable routines in the
Oracle-supplied function library. The SQL module writes out a 'ref' file for
each query expressing the results in ATlS Cornmon Answer Specification
(CAS) format, as weil as providing a 'transcript' of the generated SQL with
the values returned from Oracle.

8.5 't'he local Parsing Module
Evelyne Millien of CRlM built this module, and kindly volunteered to write
this description.

The local parser looks fer words or phrases that are semantically impor
tant because they provide constraints that should be incorporated in the SQL
query. These words or phrases are replaced by three-letter symboIs in the
version of the input sentence.sent to the KCT-based robust matcher, whièb"
is not allowed to see the original words covered by the symbol. The meanings
associated with each symbol are stored by the local parser, sinee they will
have to be recovered to produce the SQL query.

For instance, the local parser would convert the sentence "DELTA FLlGf./frS
FROM BOSTON TO DENVER SERVlNG BREAKFAST" into "AIL fiights
from CIT to CIT serving MEA", the version seen by the robust matcher.
The assignments AIL = DL,CITi = BBOS,CIT2 = DDEN,MEA =
breakfast will be stored until the robust matcher has made aIl its decisions
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and is rcady to generatc the conccptual representation. In some cases, the
oJ·d~r.of symbols may ·be changed before the locally parsed sentence is sent
lû·Üie robust matcher.

,,~·"oThe local parser is based on a method combining two classes of unification
. gram'mars: lexical grammars [Dym90] and definite clause gramrnars (DCGs)
[Per801. A lexical gramm'lr is cornposed of two main parts:

~'\

1. the lexicon, where the synt';ctic and sernantic properties of words are
described;

,

2. th." ruICs describing the mechanisms ofword cornbination, according to
cf)lJstraints given by the lexicon.

DCG rules are used mainly to define categories where no word predominates
over others, such as f1ight numbers (sequences of digits) or codes (sequences
of letters).

The parser carries out bottom·up chart parsing. The parsing algorithm
is based on the original algorithm described in [Dyrn90], which was modified
to parse sentences locally and in a robust way. In particuIar, the parser can
skip over unknown words within a phrase. The semantic syrnbois appearing
in the output of the local parser are:

• ACO· aircraft code;

• AFA - aircraft maker;

• AIL - aidine;

• AIP - airport;

• ATY -~Ircraft type (e.g. Boeing 707);

• CCO - Xity code;,
?

• C!T'~ city narne;
u'

• ''cLA - class (e.g. first class);

- • DAY - day of the weekj

• DAT - date;
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• ECO - economy;

• Feo - fare code;

• FNB - flight number;

• MCO - meal code;

• MEA - meal;

• PRI - priee;

• RCO - reservation code;

• ROU - round-trip;

• 'l'lM - time of day.

Sorne examples of input to the local parser and the corresponding output
and stored values:

• input: "ARE ANY OF THE FLIGHTS ON A BOEING SEVEN FIFTY
SEVEN", output: "are any of the flights on a ATY", stored: AT}' =
ï5ï;

• input: "PLEASE RESERVE UNITED FLIGHT ONE FORTY TI-!REE",
output: "please reserve FNB AIL", stored: F N B = 143, Al L = UA;

• input: "LEAVING SAN FRANCISCO INTERNATIONAL ...", out
put: "leaving AIP ...", stored: AlP = S FO;

• input: "BETWEEN THREE AND FOUR P M ON FRIDAY OC
TOBER FIRST", output: "'l'lM on DAY DAT", stored: l'Uvl = (;:::
1500& S; 1600), DAY = friday, DAI' = (92/10/1);

• input: "... WITH FARES TWO HUNDRED AND SIXTY EIGUT
DOLLARS", output: "... with fares PRI", stored: PRI = 268;

• input: "WHAT DOES THE FARE CODE Q W MEAN", output:
"what does the FCO mean", stored: FCO =QW.

Sorne examples of problems encountered:
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• "1 NEED A LATE FLIGHT FROM SAN FRANCISCO '1'0 PHII;,ADEL
l'HIA ON OCTOBER NINTH" - according to the ATIS Principles of
Interpretation, a "late f1ight" normally means between 8 pm and :3 am.
1n this example, the mention of the date implies the flight is between
8 pm and midnight; the local nature of the parser however prevents it
from relating the word"late" to the date.

• "LIST THE AMERICAN AIRLINES FLIGHTS 'l'HAT USE A SEVEN
THIRTY SEVEN" - the local parser may interpret "SEVEN THIRTY
SEVEN".as a time ora f1ight number (a possible solution wculd be for
it to consia~' the preeeding article "a" or the word "use", instead of
skipping over them).

• "HOW ABOUT SIX THIRTY P M" - sinee "HOW" is not analyzed,
"ABOUT" modifies the time and the interpretation is TIM = k
1800& :=; 1900) instead of TI M = 1830.

8.6 'l'he 1t.obust Matcher

8.6.1 Overal1 Structure

Figure 8.2 shows the internai structure of the KCT-based robust matcher
in CHANEL. The matcher is made up of a large number of KCTs, each
handling a different part of the task of translating a sequence of words into
the appropriate semantic representation. Word sequences in CHANEL are
proccssed by a local parser before being submitted to the matcher. However,
an alternative, more complex architecture was aiso considered. Note from
figure 8.2 that the robust matcher has two parts corresponding to the two
parts of the semantic representation: the part that chooses the displayed
attributes and the part that helps generate the constraints. Much of the work
required to generate the constraints is done by the local parser: the part of
the matcher that deals with coiIstraints simply resolves sorne ambiguities
left over after local parsing, on the basis of global information ignored by
the local parser. Thus, the constraints part of the matcher must act after
local parsing has bren carried out. On the other hand, the part of the robust
matcher that chooses the displayed attributes might have been invokèct before
local parsing. If this approach had bren adopted, figure 8.2 would show a
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word sequence first entering an attribute-choosing module, then t.h" loral
parser, then a constraint ambiguity resolution module,

As described in Chapter 9, experiments were caniecl out to determine
whjch architecture yielded the best results for ATIS data. [t turncd out that
KCTs grown and tested on ~equences that have been locally parsed, so that
semantically important phrases have been replaced'by generic symbols, are
better at identifying the attributes to be displayed than are l\CTs grown and
tested on "raw" word sequences that have not undergone local parsing. Thus,
the architecture shown in figures 8.1 and 8.2 was ~mpirically determined to
be better than the most plausible alt('rnative.

For other domains of discourse, a more complex architecture might he
preferable. It happens that in ATIS, the semantically important phrases 
city names, times, dates, f1ight numbers, airline names, costs, and so on 

. can usually be recognised by the local parsing module independently of the
global contelet. In other domains, local parsing decisions might depend on
global information; for instance, on the topic of a sentence. [n such domainH,
the system might include a KCT-based "router" that helped direct input t.o
the appropriate local parsing module, as weil as the main I<CT-based robust
matcher.

8.6.2 Choosing the bisplayed Attributes

In the 1992 ATIS training data, the SQ L translations of class A sentenceH
contain 99 different attributes between an initial "SELECT DISTINCT" and
the following "FROM". AttributE;~ appearing in this position are called dis
played attributes. A given query may have any number of displayed at
tributes, though rarely more than three. Among the 3254 SQL translations
available at the time the robust matcher was built, flight.flighLid is the most,
common attribute, appearing in 2408 of the queries. Several of tlie 99 diffcr-'
ent displayed attributes in the class A data appear only once: an example is
city.time_zone.code. Functions may also appear at the beginning of the SQL
translation, though they are rare. In the class A SQL queries, 7 different
function calls appear in this position: MIN(Jlight.departureJime) and 6
different calls to countO, of which count(Jlight) is the most common. These
7 function calls were treated as if they were attributes. .

1'0 determine the set of displayed attributes for a particulaI' ~;1rd se-
"quence, a separate set-membership KCT was grown for each of the lCJ6 pos·
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SHOW ME FLIGHTS FROM BOSTON TD DENVER => 0
ALL RIGHT WHAT l'D LIKE TD DO IS FIND THE CHEAPEST ONE WAY FARE FROM BOSTON
TO DENVER => 1 li
l WOULD LIKE INFORMATION ON GROUND TRANSPORTATION IN THE CITY OF ATLANTA
FROM AIRPORT TO DOWNTOWN => 0
SHOW ME ALL THE FLIGHT5 BETWEEN DALLAS FORT WORTH AND EITHER SAN FRANCISCO
OR DENVER THAT DEPART BETWEEN FIVE AND SEVEN P M=> 0

Exarnple .5: Part of Training Data for fare.fare-id KCT

sible attributes and functions. Exarnple 5 shows part of the training data
used to grow the fare.fare-id KCT; sentences whose SQL translations display
this attribute are labelled l, and all other sentences are labelled O. Each
KCT decides independently whether or not its attribute appears in the set;
thus, each of these 106 KCTs rnakes a simple \\'ES-NO decision on the basis

.' of the word sequence. Figure 8.3 shows a set-membership KCT that deciclcs
,:' whether or not the attribute fare.fare-id should be displayed (this was fiot

the KCT actually used, which is shown in the next chapter).
Note that each KCT can ask ahout any part of a word sequence, and

that each is grown independently of the others. If different attributes are
highly correlated, so that they are usually displayed together in the training
data, their KCTs may strongly resenible each other. 1 have observed this
for the three attributes ground_service.city_code, ground_service.airl'0rLcOIle,
and ground_service.transporUype in the ATIS data. In an extreme case, two

, attributes that were always displayed together would yield identical I<CTs.
< Thus, there ll1ay. be a certain amount of redundancy in the set of KCTs;
,gi~en the speèll~~'ith which KCTs classify word sequences, this cannot be
'considered a se'rious disadvantage. Once these KCTs have been grown, it is
easy to find the list of displayed attributes for an incoming word sequence:

1"-

simpJy pass.,thù?équence through the 106 KCTs and for each at.tribute, decide
whether or not it should be displayed on the basis of the answer "YES" or
"NO" obtained from (he appropriate tree.

When originally designing the Robust Matcher, 1believed that set-membership
KCTs would turn out to be better classifiers than single-symbol KCTs. After
the performance of a series of experiments described in the next chapter, it
was dear that the two types of KCTs have roughly the same classification
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<+ M{farcs,eos.l.,priec. priees. way. round} +>"

+ M{fares.êcist,price, priees, way, round} + {AIP }>', <+ V{fare,code} +>',

o

"

"

"+" means 1or more unknown words
"M" means 1or more words in the set
must occur here
·~tJ .. means exaclly t of the words in
'thê ,set must occur here

Key
,

This troc determineswhethcr attribute "fare.fare_id" should he dispIayed

o means "fare.fare_id" displayed

o means "fare.farejd" NOT displayed

Example (afler local parsing) Prediction Correct
(MON - sum of SS, FCODE - fare code, AlP - airpon, CIT - city name)

show me all flighls lhat are less lhan MON round trip 0 0

what is the meaning of fare code FCODE and FCODE 0 0*NOTli:: has both "fare" and "code" , so no V{fare,code}

what is the cost of limousine service at AlP 0 0

what is the cosl for a one way trip from CIT to Cff 1 1

Figure 8,3: Set-Membership KcT for fare.fare-id (grown on ATIS 2 data)
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accllr~cy (at least for the amollnt of training data currently availahle). Sinn'
single-symbol KCTs can be grown overnight, while set-membership KC'!\
take much longer to gww, a decision "'as made to use single-symbol KC'\'s
to pick the dispbyedattributes and fuactions for the Nov!J2 ATlS hcnch
marks. Details ab'out these I(CTs are given in the next chapter.

8.6.3 Classifying Constraints

Global Constraints

Some constraints cah he considered as properties of the entire sentence. For
these global constraints, we can grow KCTs that classify the eatire string,
like those that select the displayed attributes. The 7 global constraint [(CTs
ij\ the benchmark were singl,,~~ymboL"They were:

1. MAX and MIN forj't fare ("cheapest", "most expensive" and so on); .
/;

2. MAX and MIN for arrivaI and departure times;
.;."

~'-

3. constraints on stops;
....,.

4. the fact tnat a meal '~hould be served;

.j. constraints on the nature of ground transportation desired;

6. the fact th:tt the flight shou!d be conm~cting;
;:~~:

.'

C 7. MAX arld MIN for aircraft capacity. <\ ,..,

A constraint is included in this list if it tends to be spread out over a
sentence instead of being localized. For instance, it would be difficult for
the local parser to deal with "give me as Iowa fare for the morning flight to
Atlanta as possible". Example 6 shows training data for the lime global con
straint KCT; the labels 1,2,3,4,5 stand for default, MI N(deparlure_lime),
M AX(deparlure.time), MI N( arrivaLtime), M AX(arrivaLtime) respec
tively.

;;/
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,SHoWI1E ïtET'.IRNING FLIGHTS FROM BOSTON TD DENVER => 1

LASTPI.:KNE' INTo ATLANTA => 5 /,
GIVE Mf'THE LAST FLIGHT DUT OF BOSTON To CHlêAGo => 2

To OAKLANI),GETTING IN AS SoON AS l CAN => 4
i' :",

Example 6: Part of Training Data for Tirne Global Constraint KCT

Local Constraints~" ,c,

The/onslminls component of the robust matcher must also deal with sub- G
strings identified by theJocal parser whosc;:'role is ambiguous.The sectioll
entitled "Classifying SubGtrings" of Chapter 6 gives as an:.~xample the iden
tification of therole o('a 'city name and shows how to grow a KCT that
carries out this id~tification. For,the Nov92 benchmarks, 3 of these local
constraint KCTs we;'ë"~f8wn; one:~a'ch for the codes AIP, CIT, and TIM.
Apart from multiple-frame cases (below) an AIP or G!T can'be ?,n origin, a
destination, a stopgver, a site served by an airline';'àr a location 'for'ground
transportation; a ÙM can be an arriva!: time or':;; departure time. The local
constraint KCTs are set-membership, sÙnply because there was no time left
t~ switch to single-symbol KCTs"aftCr it was discovered these performed just
as weil.

Multiple frames,were the biggest problem encountered in dealing with
local constraints. Whenever an "OR" appears in the SQL translation of a
sentence, the conceptual rep!esentatiofl should co..ntain two or more frames
scparated by the symbol 1. T'Vo exampl,~s of sentences that should generate
multiple frames are: "show m~ ground tr~nsportation in Oakland, San Fran
cisct' and Denver" and "flights from Boston to Dallas or San Francisco or
Atlal\,ta". Note that an "an~': in n~;~urallanguage may trii:nslate to an "OR"
in SQL. To make matters\'worse, it is often unclear how other constraints
in the sentence should be distributed across frames: do they apply to all of
th"m or just to the nearest one?

A variety of labels was <levised to coYer these cases for the Nov92 version
of CHANEL. For instance, in a normal singlb-frame sentence, the origip..
was labelled 1 and the"ciestination 2 (each is a CIT or AIP). However.~'in'a ~c"

multiple-frame sentence with one origin and several destinations like "fl\ghts
from Boston to Dallas or,San Francisco or Atlanta", the origin was labelled

)
"i
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14 and each of the destinations 15. For tlw cme with severai origins and
one destination, the labl~l~ were 16 for ail origins and 1ï for t.he destination.
Another set of labels covers clauses where each cont.ains an origin-destinat.ion
pair; yet another set covers multiple-fr.line departure and arrivai t.imes.

fn practice, multiple-frame cases enc0nntered in the t.est. usually yielded
"NO ANSWER". This aspect-of the system needs worl:. Fort.unate!y, single
frame cases form the ovéi-whelming.majority of sentences, and t.he local con
straint trees worked fairly \v,:,n'on tl;ese.

8.6.4 Meta-rules

Tte Nov92 version of CHANEL contained simple hand-coded meta-rules t.hat.
.. 100ked for incompatibilities in the par~ially completed representation and
, rèturned "NO ANSWER" if they were fonn,d. They govern the following

cases: .~_- ,:~:;;;:..

1. Clashing roles for l;;lobal coÙstràints. For instance, t.he user want.s a
f1ight tobe the cheapest and also the most expensive (in t.heOl·y this
would be possible if there l'as a singlè f1ight meeting the ot.her con
straints, inpfactice it is a sign something has gone wrong with the
interpretation). "~="i~'"'

.) Clkhing,:roles for l~cal constraints. For instance, two different cities
._are specified as the origin by the ClT local constraint KÇT, or two
"different days of the week are specified as the departure day by the
DAY local constrailit KCT. ' •

3. Incompatibilities between the displayed attributes and the constraints.
For instance, the displayed attributes involveonly the table gTOunrl_scl'viœ,
but a CIT in th'.' sentence is classified as the flight.from_uirl'Ol·t, or the
whole. sentence hasCth~ global, constraint "latest" (the grounrl_sduicc
table doeo>not contain'temporal information).

Note that there are no meta-rules for mutually i~;;mp":?1bic displayed
attributes. In many cases where' none of the meta-rules are invoked and
a representation is produced, "NO ANSWER" is sent by fhe SQL module
because il. cannot perform a join invoked by the representation; As will be
discussed in the final chapter, next year's sY.8tem will probably contain more
sophisticated mer~-rules that are learned automatically from training data",
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Chapter 9

nesults

This chapter describes experiments carried out to determine which type of
KCT yields the most accu rate classification of sentences, and sorne aspects of
KCT-growing (such as the number of iterations required to grow KCTs, and
the dependence of KCT size on the amount of training data). It also describes
the KCTs actually used by the current Robust Matcher, and the performance
of this Robust Matcher on the November 1992 ATIS benchmarks.

9.1 Experhnents with Oifferent l<:cT Types
Recall that for each of 106 attributes and functions, an independent KCT
is grown to decide whether the attribute should be in the list of displayed
attributes for a given sentence or not. The availability of class A ATIS2
sentences, labelled in a way that showed for each attribute and function
whether or not it was displayed, made it possible to perform experiments
testing different types of KCT. In each of the experiments, 106 KCTs were
grown on a subset of the ATIS2 class A data. The experiments illustrate
the properties of KCTS - and, more important, show how to obtain optimal
performance from KCTs.

9.1.1 Classification Accuracy

The 106 KCTs grown on a subset of ATIS2 class A data were tested on a
disjoint subset of the same data. On the test data, a "success" occurs only
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when the ch~sen set of displayed attributes is preCÎ'."ly identical to the ivllN
response prescribed by DARPA. This means that if 105 of the l\CTs make
the correct yes-no decisions about whether the attribute for which each is
responsible should be chosen for a given sentence, but the remaining KCT
makes the wrong decision, we have "failure". Thus each of the e"perimental
results below represents the combined output of 106 KCTs of a given type.

KCTs for displayed attributes can vary along several orthogonal dimen
sions:

• Trained on a smail amount of data vs. trained on a large amount of
data;

• Single-symbol vs. set-membership;

• Trained on and inputting partially parsed data vs. inputting pure word
sequences;

• Trained on "well-shuflled" data vs. trained on "Iumpy" data;

• For the KCTs that will handle recognizer output, trained on NL data
(transcripts) vs. trained on word sequence hypotheses output by the
recognizer.

Figures 9.1 and 9.2 show how classification accuracy for sentences depends
on these factors. Before beginning this set of experiments, myexpectations
\Vere that:

1. More training data wouId improve performance;

2. Set-membership KCTs would perform better than single-symbol KCTs;

3. KCTs grown to handle sentences already processed by the local parser
\Vould perform hetter than KCTs whose input is raw word sequences;

4. Tr;;iïiing data should he similar to test data for good performance, but
the exact composition of training data is not vitally important;

5. KCTs trained on recognizer output would perform better on such out
put than KCTs trained on transcripts.

Two of these five assumptions were correct, three incorrect:
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1. Performance does improve with amount of training (j".ta;

2. Set-membership KCTs may not classify more accurately than single
symbol KCTs;

3. Preprocessing by the local parser does increase accuracy;

4. It is important that the training data resemble as closely as possible
a random sampie from the population of sentences to be encountered,
and these data should also be split up between the two files required
by the iterative expansion-pruning algorithm in a random way;

.5. Transcript-trained KCTs seem to perform better than recognizer-trained
KCTs on speech recognizer output.

Figure 9.1 ill11strates the first four points, using KCTs trained and tested
on NL data (transcripts). For all KCTs except those in the curve marked
"lumpy", the test data consisted of 542 ATIS A sentences - parsed for the
KCTs trained on parsed data, unparsed for the other KCTs. The KCTs
whose training data and input are preparsed use a slightly different lexicon
from the other KCTs, since they input sentences containing codes such as
AIP, Cl'r, TIM, and so on as weil as ordinary words. The KCT-growing
algorithms treat these codes in precisely the same way as other words.

First, note that the figure contains an encouraging message: as the amount
of training data grows, performance can be expected to improve. Except for
the curve labelled "lumpy", there is no indication that any of the KCT types
shown are approaching an asymptote. Indeed, the rate of improvement seems
to depend linearly, rather than 10garithmica1ly as one might expect, on the
nllmber of training sentences. This augurs well for the KCT-based approach.

The curve labelled "lumpy single-symbolllnparsed" requires explanation.
Originally, the ATIS2 NL training data were split up into 25 sequential
chunks, each containing about 4% of the data. The two training data files and
the test data file for the Iterative expansion-pruning algorithm were made up
of random combinations of the chunks. For instance, one of the data points
on the "lumpy" curve was obtained by training a single-symbol KCT with
one file consisting of chunks 7, 11, and 4, and the other file consisting of
chunks 9, 21, and 3. Ali other curves shown in the figure were trained and
tested on concatenations of files obtained by taking every nth sentence in
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Figure 9.1: Classification Accuracy on NL Data for Various KCT Types
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the tr'lining data. Comparison between the "Iumpy" curve and the other
"llnparsed single-symbol" curve show that the latter is a considerably better
classifier; other cxperiments not shown here confirm this trend. Both forms
of training involve l'andom sampling - why the difference between the final
rcsults?

!fhe ATIS2 sentences are ordered by speaker. Thus, when they are split
up into sequential chunks, there is a good chance that most of the cIass
A utterances of a given speaker will remain together in the test file or in
one of the training files for the KCT that yielded the "lumpy" curve. The
other, "smooth" method for splitting up data makes it certain that adjacent
utterances will be separated. Apparently, "lumpy" training data may cause
KCTs to learn rules that are biased in favour of idiosyncratic expressions
used by speakers who are over-represented in the training data; "lumpy" test
data may exaggerate the cffect of this problem by presenting the KCTs with
several instances of totally new expressions that are over-represented in the
test data. A good analogy is opinion polliàg, where reliable results can be
obtained only if the sample is as close to random as possible; a large sampie
with a slight bias is a worse predictor of general trends than a much smaller,

. truly random sampie.
Figure 9.1 confirms that it is a good idea to carry out local parsing before

KCTs classify the input sentences. It is less cIear whether single-symbol or
set-membership KCTs are better cIassifiers. The latter take much more time
to grow. Thus, 1 decided that the KCTs for choosing displayed attributes
in the November 1992 benchmarks would be single-symbol KCTs trained on
parsed, "smoothly" chosen sentences. Another important decision still had
to be made: for the SLS benchmark, was it better to train the KCTs on
recognizer output or on NL data? KCTs grown on recognizer output differ
somewhat from their NL-trained counterparts (figures 9.4 and 9.5 in the next
section give an example).

Figure 9.2 illustrates the performance of single-symbol KCTs on the top
hypothesis from the speech recognizer, after the latter has undergone local
parsing. The comparison is between KCTs trained on speech output (files
containing labelled, parsed versions of the top hypothesis) and KCTs trained
on transcripts. The results in this graph are not comparable to the results
shown in figure 9.1, because they exclude word sequence hypotheses for which
the local parser yielded "NO ANSWER". The local parser tends to discard
an appreciable proportion of the speech output in this manner; if discarded
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sentences \Vere counted as wrong answers, the percentages correct in ligure
9.2 would be somewhat lower. Disappointingly. the graph seems to show
better performance for the transcript-traincd l\CTs. This secms to rcflltc
the hypothesis that the speech-trained l\CTs havc learned error-corrccting
mies. However, more sophisticated methods of training the l\CTs might still
accomplish this goal; the next chapter suggests possible approaches.

9.1.2 Properties of KC'l's

Surprisingly, almost ail KCTs irrespective of final size required tlHee or fewer
cycles of the expansion-pruning algorithm to converge. It wOllld be intercst
ing to try to prove tight upper bounds for the number of iterations requircd
by the algorithm.

1'0 illustrate the growth of KCTs as a function of training text sizc, two
of the 106 displayed attributes were selected. Figure 9.:3 shows the size of
the single-symbol and set-membership KCTs grown on NL data to deal with
fare.fare-id and fiight.fiighLid. As the amount of training data grows, the
number of nodes tends to increase, but there are times when added data
causes littIe growth or even shrinkage of the KCT. These pauses in KCT
growth can be viewed as particularly successful generalization stcps in the
learning process - the KCT has just replaced a complex mie with a more
parsimonious mie that covers more data.

9.2 't'he November 1992 A't'ts aenchmarks

9.2.1 KC'l's Grown for the November 1992 kobust
Matcher

The single-symbol KCTs for displayed attributes and the single-symbol KCh
for global constraints were grown on :3248 class A ATIS2 NL sentences; the
set-membership constraint KCTs were grown on the same sentences, plus
687 class A and D February 1992 NL sentences. Note that when the local
constraint KCT for a given grammatical code is trained, each copy of the code
counts as a single item of training data. For instance, the set-membership
KCT for CIT (city names) was trained on :3935 class A and D sentences, but
since there was an average of under two occurrences of CIT per sentence, it
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is closer ta the truth ta say the training data consisted of 7028 occurrences
of cn. Similarly, the training data for AIP (aiqiort name) consisted of 221
occurrences of AIP, and the training data for TIM (times) consisted of 980
occurrences of TIM.

The 106 I<CTs for displayed attributes ranged in size from 1 no'ci.:l,to 127
nodes. The two largest, the I<CTs for attributes fare.fardd and flight.flighLid,
had 37 and 127 nodes respectively. The 7 I<CTs for global constraints were
small; the smallest had .) nodes, the largest 15 nodes. The set-membership
local constraint KCTs have the following sizes: the AIP KCT has 25 nodes,
the CIT KCT has 157 nodes, the TIM KCT 59 nodes.

Figure 9.4 shows the fare.fardd displayed attribute KCT grown on NL
data and used in the benchmarksj figure 9.5 shows a KCT grown on the most
probable output of the recognizer for the same utterances. Sentences that
end up in a YES leaf will put fare.fare-id in the displayed attribute list, while
the rest will not. The expression M(w) matches one or more occurrences of
the ward lUj the question "< Il?" means "does the sentence have 11 or
fcwer words?" Note that near the root, the two KCTs are very similar 
the differences between them consist of minor rearrangements of the same
questions. The internai nodes tend ta have more descendants in their NO
subtree than in their YES subtree, as is characteristic of single-symbol KCTs.

9.2.2 aenchmark ltesults
The November 1992 ATIS benchmark results are shawn in figure 9.6-9.8.
Two CRIM systems are shawn: CHANEL and another one called NEURDN.
Since CHANEL was designed for and trained on dass A utterances, dass D
and X results have been omitted. A context-dependent version of CHANEL
for dass D was created at the last moment, but since this work lies outside
the parameters of the problem described in this thesis and was not done by
me, results for this version have also been omittedj the D utterances will be
tackled seriously next year.

Figure 9.9 shows the systems ranked by a simple measure of robustness
(which is not one of the official benchmarks). This measure is the ratio
of NL weighted error ta SLS weighted error, divided by the proportion of
correctly recognized words. The rationale is that for a fixed NL ta SLS error
ratio, systems that achieve this ratio with a higher percentage of incorrectly
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Figure 9.4: Single-Symbol KeT for fare.fardd trained on NL Data (numbcr
of nodes = 37)
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Figure 9.5: Single-Symbol KCT for fare.fare-îd trained on Speech Data (num-
ber of nodes = 33) .-
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System #True #False #NA #UIt Weighted Error

Aïr 343 64 20 427 34.7

BBN 379 19 29 427 15.7

CMU 399 24 4 427 12.2

OIANEL 298 44 85 427 40.5

NEURON 356 62 9 427 31.1

INRS 244 158 25 427 79.9

MIT-LeS '1 380 31 16 427 18.3

PARAMAX 278 39 110 427 44.0

SRll 362 30 35 427 22.2

SRJ2 383 19 25 427 14.8

Figure 9.6: Nove~ber 1992 ATIS NL Test Results (Class A only)
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System %Corr Sub Del·· Ins Eri· ; %Uu. Err

AIT 93.8 4.4 1.8 1.8 8.0 45.4

BBN %.7 2.3 1.0 0.8 4.0 25.3 ~~

CMU %.1 2.7 1.2 0.5 4.4 30.7

CRIM 88.9 8.0 3.1 2.4 13.5 57.8

INRS 0.0 0.0 100.0 0.0. 100.0 100.0- /,

MIT·LCS 93.5 4.4 2.2 I.J '1 ; 7.8 38.2

SRI %.0 3.2 0.9 1.1 5.2 34.2

Figure 9.7: November 1992 ATIS SPREC Test Resuits (Ciass A oniy)<:
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System #True #False #NA #UU Weighted Error

AIT 303 88 36 427 49.6

BBN 361 35 3t 427 23.7

1 CMU 383 40 4 427 19.7

CHANEL 249 65 113 427 56.9

NEURON 296 113 18 427
,

57.1

INRS 0 0 427 427 100

MIT-LCS 347 50 30 427 30.4

SRII 337 46 44 427 31.9

SRI2 352 38 37 427 26.5

Figure 9.8: November 1992 ATIS SLS Test Results (Class A only)
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System NL W. Err. SLS W. Err. SPREC Corr. Robustness

AIT 34.7 49.6 0.938 0.75

BBN 15.7 23.7 0.967 0.69

CMU 12.2 19.7 0.961 0.64

CHANEL 40.5 56.9 0.889 0.80

NEURON 31.1 57.1 0.889 0.61

Mrr·LCS 18.3 30.4 0.935 0.64

SRII 22.2 31.9 0.960 0.72

SR12 14.8 26.5 0.960 0.58

Figure 9.9: Results for NL W. Enj(SLS W. Err. * SPREC Prop. Corr.)

recognized words show greater robustness. By this measure, the CHANEL
system is the most robustj interestingly, the AT&T system, whose parameters
were also automatically trained, is the second most robust. Of course, the
ll1easure may unduly favour systems with a high percentage of misrecognitionj
CHANEL's robustness cannot be fully evaluated until the group's NL and
SPREC results are closer to the median results for other groups.

Overall, the results are quite satisfying. Almost all the groups repre
sented have participated in several previous ATIS evaluationsj the linguistic
analyzers developed by these groups represent a large amount of code and
a large number of person-years. Except for the AT&T system, none of the
non-CRIM systems involve a machine learning approach. While development
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of the I\:CT-grolVing algorithms and programs took a considerable alllollnt of
time. applying them 1,0 ATIS took relatively little timc. If one excllldes \\'ork
on the SQL module, the development of CHANEL for ATIS took 1,\\'0 people
(myself and E. Millien) 3.5 months (August 1,0 mid-November 1992). II, is
the ru les learned by the KCTs that made this rapid developmcnt possible.
Most of the global sentence-Ievel knolVledge is locked up in them, so that the
4000 lines of 'c' code in the Robust Matcher module are mainly concerned
lVith manipulating the output yielded by KCTs on input sentences.

The experiments shown in figure 9.2 demonstrate that for ATIS, transcript
trained [(CTs tested on recognizer output perform bettcr than recognizer
trained KCTs. For this reason, the version of CHANEL used in the bench
marks consisted entirely of transcript-trained KCTs. Mter SUblllission of t.he
benchmark results, a version of CHANEL lVith recognizer-trained displayed
attribute KCTs (still using transcript-trained constraint KCTs) l'as tested
informallyon the SLS class A benchmark data. The resuit confirrned the wis
dom of the decision to train on NL data: the partly speech-trained version
of CHANEL had weighted error of 60.1 (instead of .56.9).

,,. 9.3 Analysis of Errors
Ali errors discussed here are for class A. The system praduced 129 IVrong
answers (F plus NA) on the NL benchmark and 178 wrong answers on the
SLS benchmark. 115 of the 427 sentences yielded the l'rang answer on both
benchmarks, 63 sentences that yielded the correct NL answer gave the wrong
SLS answer, and 14 sentences managed 1,0 yield a wrong NL answer but a
correct SLS answer (i.e. a somewhat distorted version of the sentence pro
duced by the recognizer yielded the correct ans l'el', even though the correct
version yielded the wrong answeI').

9.3.1 Analysis of Nt Brrors
Many of the errors made by the robust matcher on the November 1992 NL
benchmarks involved an incompatibility between the displayed attributes
and the constraints. For instance, questions about the ground.service re·
lation should never involve other relations. Nevertheless, the current robust
matcher sometimes produces a conceptual representation whose displayed

208



"Uributes méntion the f}roIlTl(Lservice relation but whose r.onstraints men
tion other relations. For the sentence "tell me about ground transportation
to DDEN", the matcher might wrongly c1assify DDEN as a jlif}ht.to_airport
despite having generated the correct list of displayed attributes (ail drawn
from ground_service). This kind of error arises because KCTs are indepen
dent: each I<CT produces an answer that does not take into account the
answers output by other KCTs. The next chapter will suggest sorne solu
tions to this problem.

Figure 9.10 breaks down the Ni· '>frors in more detail. If a sentence gives
rise to more than one error, ail are included in the histogram; thus the sum of
errors shown is larger than the number of wreng answers (F plus NA). First,
consider théùcn-KCT errors. The most important type of non-KCT errer
is labelled "DAi''': because of an incompatibility between the local parser's
encoding of dates and the SQL module's decoding of dates, most sentences
that included them yielded an incorrect SQL query. This simple bug has been
fixed. Another omission that will be easy to fix involved two codes, "ODT"
and "LEG", connected with time intervals that overlap midnight and f1ight
legs respectively. There was a deeper problem with the SQL module that
caused it to send "NO ANSWER" when displayed attributes were drawn
from different relations; this may require rewriting of parts orthe module.
The cases shown under "local parser problem" are straightforward, often
involving words missing from the lexicon - such as a "red-eye" f1ight and a
"turboprop" airplane. Thus, most of the non-KCT errors can be remedied
fairlyeasily.

The trickiest type of errer that arises in the KCT part of CHANEL in
volves multiple frames in the representation; recall that these are required to
generate an "OR" in the SQL query. Though CHANEL's training data in
c1uded several dilferent multiple frame cases which were labelled as such, the
system did not handle these cases weil in the test data. Perhaps the approach
was correct and there were simply too few multiple frame examples in the
training data for the KCTs to learn good rules. However, 1 tend to believe
that this preblem calls for a dilferent approach (as yet undetermined).

The remaining errer types do not pose deep problems. The number of
displayed attribute errors is high; however, determining the list of displayed
attributes is a difficult problem. The KCT experiments described earlier give
every reason to believe that more training data will reduce the frequency of
this type of error. Close examination of these errors confirms this view.
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For instance, 25% of them occurred when the sentence contained the word
"airfares", which had occurred exactly once in the training data but was
frequent in the test data. When this word appeared without other fare
related words, the fare.fal'e_id KCT output "no" instead of "yes". Clearly,
more training data would have eliminated ail these errors.

The same applies to errors in the local and global constraints. Further
more, as described in the next chapter, it should be possible to reduce overall
error by implementing automatically generated meta-rules that will ensure
mutual consistency among the displayed attributes and constraints.

9.3.2 Analysis of sts Errors

Benign SLS Errors

"Benign" recognition errors cause the incorrect word sequence hypothesis
output by the recognizer to yield the correct conceptual representation in the
SLS benchmark, even though the corresponding NL transcript containing the
correct word sequence yielded an incorrect representation. Of the 427 class
A sentences, 14 experienced benign errors and 63 experienced malign errors.
Thus the number of sentences with benign recognition errors is surprisingly
high: almost 25% of the number of malign errors. Study of the 14 sentences
with benign errors leads me to suspect that the phenomenon arises partly
because the language model and the KCTs were trained on the same data.
In many cases of misrecognition, the language model "edits" the true word
sequence to produce a hypothesis that more closely resembles sentences found
in the training data. This process of "editing" may help the KCTs, which
work best on sentences similar to those in the training data. For instance,
the true NL word sequence may contain a rare word that confuses the KCTsj
in the SLS version, this word may be "edited out" by the language mode!,
allowing the KCTs to yield the correct answer.

Malign SLs Errors

"Malign" recognition errors cause utterances whose NL version yielded the
correct representation to yield an incorrect SLS answer. Among the 63 class
A sentences that yielded the correct NL answer but a false answer or "NO
ANSWER" on the SLS benchmark, 1 have identified 88 errors. These are
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broken down by category in figure 9.1!. The ··Iocal parscr·' errors in"ol""d
cases where the local ·parser could conceivably have recovered from a recogui
tion error (for instance, the string "December mean Ilth" could conccivably
have been correctly parsed as the date "December the Ilth"). The "local

. " "1 b 1 ." d "d· 1 cl .}" • 1 1constramt , g 0 a constramt , an ISp aye at tn lU te errors nllg It Je
reduced by carrying out some training of KCTs on SLS as weil as on NL.
using one of the methods suggested in the next chal'ter .

The "hopeless" errors are ones where the best hypothesis produced by the
recognizer is so misleading that recovery is impossible; they involve deleted,
inserted, or substituted constraint values. There are surprisingly few cases
of substitution within the same grammatical category - where, for instance,
the name of one city is replaced by the name of another city. Instead, most
of these errors involve either deletion of a constraint value or the insertion or
substitution of a grammatical category that does not OCCUI· in the NI, version
of the sentence. Orten, the new category is one that seldom co-occurs wi t.h
the other constraints, or with the displayed attributes.

This observation offers some hope for an improved SLS version of the ro
bust matcher. Aboye, we mentioned the possibility of automatically generat
ing meta-rules for spotting incompatible combinations of displayed attribntes
and constraints. As will be discussed in the next chal'ter , such meta-rules
for SLS would support a strategy in which not just the top hypothesis, but
the N-best hypotheses, could help to proyide the conceptual representation.
This would help not only with the "hopeless" type of error, but al50 with
the "local constraint", "global constraint", and "displayed attribute" crror
types.

Examining this possibility will be a high priority for the coming yearj
howeyer, it will not be the highest priority. Note that of 178 sentences that
did not yield the correct answer in the SLS benchmark, 11.5 also failcd to
yield the correct answer in the NL benchmark. Thus, working to irnprove
the robust matcher for NL will be the single most important way of hclping
SLS performance.
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Chapter 10

Discussion

10.1 Original Contributions of the 1'hesis
This thesis makes two original contributions:

1. Keyword Classification Trees, a new method for learning and classifying
sequences of symbols. Because KCTs explicitly model gaps, the task of
learning general patterns from training sequences becomes mllch easier
in certain domains. The method is particularly useful in the analysis
of word sequences.

2. The KCT-based Robust Matcher, a linguistic analyzer for speech llll
derstanding that combines a chart-based local parser with a global
analyzer that uses a large number of KCTs (over 100 for the ATIS
task) to carry out semantic analysis. ATIS was used as a testbed for
the KCT-based Robust Matcher; however, this kind of robust matcher
should be widely applicable in text and speech understanding.

For each of these contributions, the thesis describes related work by oth-
ers:

1. Chapter 6 discusses a tree-based language model employed by IBM,
and a classification tree approach to information retrieval devised by
Crawford, Fung et al. Neither of these approaches has been applied
to speech understanding. However, these approaches also differ from
the KCT approach in a more profound way. The IBM trees only ask
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questions about fixed positions in a sentence, e.g. the identity of word
lI. By contrast, KCTs can ask about regions of the sentence defined
in terms of words known to be present, e.g. the identity of the words
between the start of the sentence and the word "f1ight". The Crawford
Fung trees are much more limited than the other two: they can only
ask whether certain words are in the sentence or not, and cannot ask
about relative order of words at ail.

2. Chapter 3 discusses the linguistic analyzers in several speech under
standing systems. Many of them contain robust matchers: linguis
tic analyzers that grab semantically important phrases and stick them
into appropriate slots. These matchers incorporate a very relaxed no
tion of syntactic correctness, and skip over irrelevant words; all are
hand-coded. The KCT-based robust matcher adopts the same overall
philosophy as other robust matchers, but most of its rules ,are grown
from data rather than hand-coded. The only linguistic analyzer for the
ATIS task that contains automatically generated rules is the one built
at AT&T. The AT&T system learns rules for segmenting a sentence
into "concepts" j there is a one-to-one mapping between segments and
units of meaning. Each KCT in the KCT-based robust matcher looks
at the whole sentence; thus, the use of KCTs permits' information in a
given segment of the sentence to play a role in building several different
parts of the conceptual representation.

10.2 Advantages and tJisadvantages of KC1'
nased 1tobust Matcher

10.2.1 Advantages
The main advantages of using KCTs to build a robust matcher are:

• The savings in human effort, and potential improvement in perfor
mance, achieved by growing rules from training data instead of hand
coding them.

• Speed: KCTs process sentences very quickly, that is in time linear
in the length of the sentence; they also take up very little storage.
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The surpris,ing result that single-symbol [(CTs seem to perform about
as weil as set-membership [(CTs means that growing [(CTs for the
matcher can be done fairly quickly. For instance, the set of 106 ~ingle

symbol KCTs for choosing displayed attributes in the ATIS robust
matcher was grown on about 3250 training sentences in less than 10
hours (on a Sun SPARC-2 with 28 MIPs).

• Because KCTs ask about only a few words in a sentence, recognition
errors in the remaining words do not affect performance.

• Increased portability: if the database structure, the database language,
or the task domain are changed, the part of the robust matcher consist
ing of KCTs can be adapted quickly by regrowing the trees on new data.
The new data could be obtained via bootstrapping, beginning with a
Wizard of Oz scenario for collecting the first 500 or so sentences. The
results in the previous chapter for the ATIS task show that while a high
level of performance can only be attained by training on 2000 - 3000
sentences, a reasonable level of performance for a KCT-based system
can be attained by training on a few hundred sentences. Thus a pro
totype trained on 500 sentences would be good enough to gather more
data (with a wizard standing by)j after a few iterations, an excellent
system would be available.

• Unlike neural nets, KCTs learn regular expressions made up of words
and gaps which can easily be interpreted by people, and used in different
contexts. For instance, one could design a recognizer whose lexical
search algorithm was guided by KCT-generated expressions.

• The potential error correction achieved by growing KCTs on recognizer
output. In the case of ATIS, transcript-trained KCTs outperformed
recognizer-trained KCTs. As described below, new experiments us
ing ATIS data will be carried out to see if the potential for SLS error
correction may be realized by using more sophisticated training meth
ods. In any case, it is possible that non-ATIS tasks exist for which
recognizer-trained KCTs will perform better.
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10.2.2 Disadvantages

The main disadvantages (potential or actual) of the KCT-based robust matcher
are:

• The need for a large corpus of labelled training data.

• The heuristic quality of KCTs: that is, the Iack of a formai syntactic
theory to guide interpretation at the global, sentence leveJ.

• Some difficulties caused by splitting up the task of interpretation be
tween a hand-coded, chart-based local parser for semantically impor
tant phrases and a KCT-based robust matcher at the sentence leveJ.

These disadvantages will now be discussed in more detaiJ.
The question of training data involves an important trade-off. For a

given level of performance, one must decide which requires more work: hand
coding rules for a task, or collecting training data and then writing a program
that learns the rules from these data. The automatic learning approach .
is not suitable for ail natural language tasks. Like the AT&T group, the
CRIM group chose to hand-code the local parsing component of the sentence
interpretation task; this was the job of E. Millien's chart parser. The rules
for parsing place names, times, priees, and dates are easily written down:
most people learn them from the blackboard in primary schooJ. A program
designed to learn them from scratch would require a large corpus of training
data.

On the other hand, Chapter 3 demonstrates that at the sentence Ievel
hand-coding appropriate rules requires considerable human effort. The re
sulting systems seem to require a great deal of testing on new data and sub
sequent rewriting of rules in order to reach acceptable performance levels.
The natural language ATIS data was collected primarily because of demand
by creators of hand-coded linguistic analyzers. Thus, the development of
hand-coded systems may require the collection of the same quantity of data
as is required by systems that learn from data; the latter require much less
effort once the data have been collected. At the sentence level, the trade-off
seems to favour automatic learning.

The absence of a formai syntactic theory to guide sentence interpretation
in the KCT-based robust matcher was a deliberate decision rather than an
oversight. Ali robust matchers implicitly operate on the assumption that
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sentence production and sentence interpretation need not be modcllcd in
the same way, Available syntactic theories try to explain production l'athel'
than interpretation, and may therefore be of limited utility for interpretation,
Robust matchers carry out interpretation by skipping over large segments of
the sentence to focus on semantic "islands" that carry most of the meaning,
Usually, the precise form of the patterns that Yl'eld the interpretations is
hidden in the rules of the robust matcher. The behaviour of the KCT-based
robust matcher is easier to characterize formally. It looks for specific regular
expressions made up of \'lords and rarsed phra:,;~s separated by gaps, which
were learned from training data. Thus, the KCT-based approach might be
seen as the adoption of an unusual syntax that permits gaps, rather than as
a rejectioncof syntax at the sentence level.

The very loose coupling between the 10,cal parsing module and the global
matcher created sorne difficulties that might have been resolved if more twe
way communication between these two layers had been permitted. For in
stance, the chart parser often had difficulty interpreting numbers, which can
form part of a date, a time, a f1ight number, a price, or one of the codes
found in the ATIS database. Global information about what type of phrase
to expect in this position of this type of sentence might have helped resolve
sorne ambiguities of this kind; the chart parser looked at neighbouring words,
but did not attempt to globally categorize the sentence.

Similar1y, the KCTs in the global matcher had no access to the contents
of phrases previously parsêd bythe local parser. For instance, they might
see three phrases marked "CIT" in an incoming sentence, but had no way
of knowing which of these three place names, if any, represented the same
city. (The meta-rules in the matcher did have access to this information).
Furthermore, the local parser had no way of telling the matcher which of its
parses were reliable and which were tentative. The division of labour between
the local and global components worked weil overall; the next section will
suggest sorne improvements.

10.3 lmprovements
Since the two contributions of the thesis are KCTs and the KCT-based Re
bust Matcher, one must distinguish between possible improvements to KCTs
(which could be applied outside natural language processing) and improve-
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ments to the KCT-based Robust Matcher. For the latter, one must distin
guish between specific improvements to CHANEL designed to raise perfor
mance on next year's ATIS benchmarks, and more general improvements
that affect the overall concept oi' the KCT ·based Robust Matcher.

10.3.1 Improvements to KCTs

• Surprisingly, single-symbol KCTs obtained about the same classifica
tion results as the more sophisticated set-membership KCTs. This may
be due to the heuristic used to generate set-membership questions, or
to the definition of set-membership questions, or both. It would be
worthwhile to experiment with a different heuristic for generating word
sets, but in myopinion the most promising changes to set-membership
KCTs would involve a narrower definition of the permissible questions.
The set-membership questions currently allowed are too liberal, allow
ing the KCT to group together sentences that are di~similar except
for their.label. Questions involving more than one word couId be re-

"stricted to what the Appendix calls U set-membership questions; these
allow exactly one word in a set of words to appear in a given location.
This might encourage the KCT to learn synonyms and quasi-synonyms;
as a side-effect, it would greatly speed up the process of growing set
membership KCTs.

• Another possible improvement would be the addition of questions about
gap length. 1 have already experimented with questions about the total
length of a word sequence: these were hardly ever chosen, implying that
they yield little useful information. It would be interesting to consider,
at each node of the growing single-symbol or set-membership KCT,
questions about the length of each gap in the known structure. These
would be of the form "is 1+ 1 < N?" and "is 1+ 1 = N?" with N
varying over reasonable values, say from 1 to 20. The computational
cost of considering these questions is trivial. This modification would
allow the KCTs to generate patterns like those generated by the IBM
approach, with more precise positional information than the patterns
generated by the current KCTs.

• Chapter 7 discusses ways of speeding up the KCT-growing process by
running it on parallel machines. Ifmethods can be devised for colleeting
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training data continuo~lsly,as discussed in the next section, I\CTs could
be grown incrementally. That is, instead of regrowing a KCT from
scratch each time a new batch of data arrives, we could add and prune
only at the nodes of the existing KCT. This would allow us to grow
KCTs on arbitrarily large amounts of training data without incurring
enormous computationa! costs.

• Finally, it would be interesting to experiment with applications of KCTs
in other domains. They couId easily be applied to the natural language
tasks mentioned at the beginning of this chapter: information retrieval
and language model!ing for speech recognition. They could aise. be
applied to other domains, unrelated to naturallanguage, in which the
analysis of strings is important. Molecular biology is one such domain:
perhaps KCTs have a role to play in looking for patterns in DNA, or
in the analysis of the amino acid chains that make up proteins.

10.3.2 lmprovements to KC1'-Based ltobust Match
ers

Specifie Improvements to CHANEL

• The most important improvement that must be made to CHANEL in
time for the 1993 benchmarks will be the easiest to achieve: al! KCTs
will be retrained, usiIfgdata from the November 1992 test as weil as

- the earlier training data.

• :.'\t the time 1 was building the KCT-based Robust Matcher compo
nent of CHANEL for the Nov92 benchmarks, 1 believed that the set
membefship KCTs would be more accurate sentence classifiers than
single-symbol KCTs. Thus, the original version of the system cci'nsisted
entirely of set-membership KCTs. When the experiments described in
the last chapter showed that single-symbol KCTs were preferable, there
was enough time left to grow single-symbol KCTs for the displayed at
tributes and global constraints, but not enough time to rewrite the
program that generates KCTs for classifying local constraints. Next
year's system will consist entirely of single-symbol KCTs.
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• The program for growing KCTs that cla,ssify local constraints must be
rewritten anyway, to allow these KCTs to depend on the displayed at
tributes (in the Nov92 version of the system, the output of each KCT is
completely independent of ail other KCT outputs). Recall that analysis
of errors on the Nov92 NL benchmark showed a large number of cases
in which displayed attributes and constraints were incompatible: for
instance, one might involve the ground_service relation and the other
the ftight relation. The algorithms for growing KCTs that classify lo
cal phrases will be modified so that these KCTs are permitted to ask
questions about the displayed attributes found by other KCTs.

• Another minor change must be made to the algorithm that grows the
KCTs that classify cities and airports. Currently, these KCTs have no
way of knowing whether a given CIT or AIP is a repetition of a CIT
or AIP mentioned earlier - they only see the symbols CIT or AIP, not
their contents. Thus, different copies of a repeated city or airport name
may be classified differently. In future, repeated CITs and AlPs will
be "tied" so that ail occurrences .receive the same tag.

• The handling of "multiple frame" cases was unsatisfactory. These in
volve sentences like "show me f1ights mornings from Denver to Boston
and from Denver to New York", for which the natural language "and"
should be translated into an SQL "OR" separating two groups of con
straints (note the ambiguity about whether "mornings" carries over to
the second group). As described in Chapter 8, an ad hoc list of multiple
frame cases designed to resolve the most frequent multiple-frame am
bigui ties was devised after study of a large number of ATIS sentences,
and training sentences correspondingly labelled. It should be possible
to generate a list of possible cases in a more principled way, and thus to
design a system with a more elegant structure. In particular, the next
version of the KCT-based Robust Matcher should include a method for
segmenting utterances that consist of conjoined sentences.

• Another possible improvement involves the local parser. In the current
version, error-correcting KCT-based rules operate at the sentence level
but not 10callYi sorne of the more common local ambiguities could be
resolved by using KCTs at this level as well. For instance, the chart

_ parser sometimes had difficulty with numbers, which may be part of
-..' >--<
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<t d<tte, <t time. a flight number, <t priee. or <t speci<tl code. :\ I~C'l'

could le<trn mies for resolving <tmbiguities involving <t number from
labelled training data; these ru les might turn out todepend on words
distant from the number itr·'If. Incorporating some KCTs would nol,
mean giving up rule-based l,,>al parsing, which works weil· the KC'I's
would act to assist local parsing in borderline cases, thereby increasing
robustness.

• Recall that the same system was used for the Nov92 NI, and SLS bench
marks. Originally, 1 had planned to use KCTs trained on labelled rec
ognizer output in the SLS system; however, experiments described in
the previous chapter showed that even on SLS data, NL-trained I(CTs
performed better than SLS-trained ones. Two new approaches to SLS
training wil! be tried:

L KCTs will be trained on data made up of all NI, data plus <tll
<tvailable SLS data,

2. KCTs will be trained on NI, data, then retrained on SLS d<tt<t.
Th<: Iterative expansion-pruning algorithm makes this easy to do.

" .

• Carefu! study of sentences in the Nov92 benchmark which yielded cor
rect answers for NI, but not SLS turned up many st range combinations
of displayed attl'ibutes and constraints in the conceptual representa
tions output for SLS data. For instance, meal codes show up in the

.-60mpany of other attributes and constraints that are completely ume
lated to them. This is an encouraging finding: it suggests that semantic
meta-rules for spotting wrong answers generated by the SLS module
couId be grown automatically. This is nO,t." good application for KCTs,
since the order of constraints within the iientence seems to be irrelevant.
Instead, an ordinary classification tree ihat asks about the idcntity of
the dispIayed attributes and constraints in the representation and clas
sifies the representation as "sensible" or "strange" can be grown on NI,
and SLS data. If the answer is "strange" , the system should send "NO
ANSWER" or try the next hypothesis on the N-best Iist.
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General Improvements to KCT-Based Robust Matchers

Looking beyond ATIS, one can see several possibilities for research iuto im
proved I\CT-based Robust Matchers:

• Using dialogue to col1ect training data;

• Better meta-rules for determining that there is something wrong with
a conceptual representation;

• Hierarchies of KCTs;

• I\CT-driven lexical search.

Chapter 3 gives arguments for building dialogue capabilities into a spoken
language system. A system with such capabilities couId train itself, with the
assistance of the users. User answers to system questions like ''l'm sorry, was
it the fares you wanted to see?" would enable the system to label the user's
earlier uttcrances and thus add to its stock of training data. Such a system
would be capable of learning the meaning of new combinations of words ,,"s
its KCTs incremental1y grew bigger. Without any intervention by the sys
tem dcsigners, the system's performance would gradually improve. This im
provement wouid involve expansion of naturallanguage coverage for concepts
that were already in the system's knowledge representation. Completely new
concepts would still require intervention by the designers. Nevertheless, the
prospect of a spoken language system that improves with use is enticing.

The meta-rules are the rules that assess an interpretation as a whole,
determining whether it should be accepted or rejected. They may be applied
to a word sequence hypothesis before an interpretation is generatedj word
sequences judged unlikely to yield a correct interpretation will be rejected.
[n an N-best system, they can look at interpretations derived from each of
the N word sequence hypotheses and pick one of them. Formulating good
mcta-rules for a robust matcher is a hard problem. In a conventionai parser,
the meta-ru les are a byproduct of the grammar: a word sequence hypothesis
is j udged unacceptable if it cannot be parsed. By contrast, robust matchers
are designed to overlook all kinds of syntactic oddities - it is hard to decide
how peculiar a hypothesis has to be before it is rejected. For the specifie case
of ATIS, the meta-rule classification tree proposed above wouid depend on
semantic criteria; unusuai combinations of subunits (dispIayed attributes and
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constraints) in the conceptual representation would lead to r"jection. This
approach may make sense for other problems as weIl. In any case. meta-ru les
are clearly an important topic for further investigation.

Crawford, Fung et al employed a hierarchy of classification trces in the in
formation retrieval application: lower-Ievel trees looked for concepts, upper
level trees made decisions about higher-Ievel concepts on the basis of informa
tion supplied by lower-Ievel trees. For the ATIS task, this kind of hierarchv
proved unnecessary. However, for more complex natural language proccssing
tasks, one can envisage a KCT hierarchy in which each level of KCTs anal
yses the output of the level below and feeds its decisions to the level above.
The idea couId prove valuable in the design of dialogue systems, where the
lowest level would deal with sentences and each successive level would deal
with a higher level of discourse.

Finally, a KCT-based system might carry out search in a completely
different way, looking only for keywords that appear in the nodes of sOllle
KCT used by the system and using "garbage modcls" for the gaps. Therc
are several possibilities:

1. Search could be carried out iteratively on each KCT, first determining
whether the answer to the question in the KCT's root node is more
likely to be Oyes" or "no", then recursively descending 1,0 the appropri
ate descendant nodes.

2. Hypotheses at the leaf nodes - each consisting of a regular expression
interspersed with gaps - could compete with each other simultaneously.

3. The problem with the two preceding methods is that they would not
provide a prioriprobability estimates for ending up at a given KCT leaf
node; only acoustic probabilities would be taken into account. How
ever, using the patterns learned by KCTs, it would be possible to derive
a stochastic context-free grammar (SCFG) whose terminais would be
keywords plus the gap symboJ. Because of the relatively small num
ber of terminais, the probability parameters in the grammar could be
estimated from training data without excessive amounts of computa
tion. Given a language model based on such a grammar and a partial
sentence consisting of a prefix, islands, and gaps, there exists a com
putational1y tractable technique for computing the tightest possible
upper bound on the probability of the best parse tree generating the

224



partial sentence [Cor91). Using this new technique for calculating upper
bounds, the rules encoded in the SCFe would guide lexical search.

Il seems likely that these approaches would speed up lexical search, since
no time would be wasted on non-keywords. Conceivably, they might also
improve the proportion of correctinterpretations, sinee search would focus
on the problem of deciding between competing interpretations and not split
up probabilities between word sequence hypotheses. On the other hand,
the information contained in current language models wouId be 10st. The
question can be argued convincingly both ways, which is one of the reasons
KCT-based lexical search would make a good research topic.

10.4 conclusion
The thesis describes a method for learning classification rules for sequences
From training data, and shows how that method can be applied to semantic
problems in speech understanding. It has identified four key issues for future
development of trainable robust matchers:

1. The need for quasi-automatic means of acquiring and labelling sampie
sentences, in order to overcome the data collection bottleneck.

2. The need for a division of labour between different levels of the sys
tem and between hand-coding and automatic learning that minimizes
human effort while maximizing robustness.

3. The need for good meta-rules, preferably learned from training data,
that will increase the probability of obtaining the correct interpretation
of an utterance.

4. The possibility of KCT-driven lexical search.

The most important idea in the thesis is the importance of gaps. Clas
sification trees seemed the most obvious way of learning patterns with gaps
in them, but they are probably not the only way. In the long run, they
will prove to be too heuristic to yield a completely satisfaetory solution to
the problem. The ideal solution would involve probabilistic grammars that
include gaps and can be learnt from training data by efficient methods that
provide probabilistic performance guarantees, as described in Chapter 4.
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Appendix A

kCT-Growing Oetails

A.t Single-Symbol KC1's

As described in the body of the thesis, the set of possible single-symbol
questions was generated at each non-zero gap + in the known structure for
a set of strings as follows. (Questions about the total length of the string
were aiso generated but turned out to be of little practical importance, since
they are hardly ever chosen). Iteratively setting v to be each of the possible
symbols (words) in the vocabulary, produce these questions:

1. Is the + equal to v?

2. Is the + equal to v+? "', ..~
3. Is the + equal to +v?

4. ls the + equal to +v+?

This description was accurate but incomplete: it ignores the problem
of symbols thatappear more than once in a string. Suppose the question
selected for the foot node was of the last type - for instance, "is the + equal
to +q+?" Since at the root node the known structure for the string is < +>,
the YES child of the root node will contain strings of the form < + '1 + >.
Now suppose the question selected to fill this YES child is: ois the first +
equal to +m?" In other words, the question is: "is the form of the string
<+mq+>?"
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If strings are not allowed to contain the same symbol twice, there is no
problelll. However, this is a rather unrealistic requirement; let us see what
IliLppens when il. is violated. Suppose we are using this KCT to c1assify the
string < II x y 'I r m q z >. At the root node, this string is assigned to the
YES child, because it is of the form < + 'I + >. But the correct answer to
the question "is the form of the string < + m q + >7" depends on whether
we look at the first q or the second q in the string.

The questions actually asked at each non-zero gap + are therefore as
follows; each type has been given a mnemonic one-letter name:

1. J questions "join" the edges of a gap togetberj they are of tbe type "Is
the + equal to v'!" (v is set to every item in the vocabulary)

2. L questions place a symbol v on the "left" side of a gap; they are of
the type "Is the + equal to v+7"

3. R questions place a symbol v on the "right" side of a gap; they are of
the type "Is the + equal to +v7"

4. U questions identify a "unique" symbol Vj they are of the type "Is the
+ of the form +v+, where there is preciselyone v with no other v to
left or right of it \Vi thin the original +'!"

5. l' questions identify a pair of "twin" adjacent symbols Vj they are of
the type "Is the + of the form +vv+, where there are precisely two
adjacent v with no other v on either side of them within the original
+7"

6. N questions identify two "non-adjacent" symbols v surrounding a gap;
they are of the type "Is the + of the form +v+v+, \Vhere there are two
non-adjacent v which may or may not have more v in the gap between
them, but such that there is no v to the left of the leftmost of these
two v and no v to the right of the rightmost of these two v within the
original +1"

ï. M questions estahlish that there is one or "more" symhol v in a gap;
they are of the type "Is the + of the form +M(v)+, where M(v) can
he of the form v, vv, or v +v, and there is no v on either side of the
k[(v) within the original +1"
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The M question type really mC<lns. ··ts t.here Olt least one v within the
+?" and is just an OR of the U. T. and N question types. Note tllat these
three question types coyer aIl possible cases of duplication. Hence, strictly
speaking, the M question type is unnecessary; however, there <lre probably
many occasions when aIl that matters is whether a given word occllrred Olt
least once in a gap, and not how often it occurred. We will need questions
to break down an l'vl( v) in the known structure for a set of strings into the
three constituent cases. That is, wherever a YES answer to the M type of
question has put an M(v) (~vhere .~ is sorne vocabulary item) in the known
structure, we will consider the following questions:

1. U: Is M(v) of the form v?

2. T: Is J\-f( v) of the form vv?

3. N: Is M( v) of the form v +v (where the + may have zero, or any other
number of v in it)?

Suppose the root node contains the M question <lIs the string of the fonn
< +M(q)+ >?" The strings in the root node's YES child will then have
the known structure < + M(q) + >, where the two + do not contain a ''l'.
Any of the seven kinds of + questions can then be asked about either of the
two + positions in the known structure, but the only permissible questions
involving the M(q) position are U: <lis the form of the string < + q + >?",
T: <lis the form of the string < + q q + >?", and N: <lis the form of the
string < + q + q + >?"

If the question actually chosen for the YES child of the root is the None,
<lis the forrn of the string < + q + q + >?" , a YES to this question of course
implies that the known structure is < + q + q + >. Further questions in
this case are generated in the usual way from the three +. A NO answer to
<lis the forrn of the string < + q + q + > 7" means that the known structure
is < ,~ M(q) + >, where M(q) is either q or q q; the next question may
either establish which of these two forms the M(q) possesses, or focus on Olle
of the two +.
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A.2 Set Membership KCTs

•

The idea behind set-membership KCTs was that of automatically grouping
together words that are rough semantic equivalents. For instance, words
like "taxi", "limousine", "bus" often identify a ground transport query, and
probably appear in parallel positions in similar sentences. If a single-symbol
KCT asks aboutthesewords, it is obliged to split off the sentences containing
them into three separate groups and learn further rules about each group
separately. A set-membership KCT could include a question like: "Is the

'.' sentence of the form < + v + >, where v is one of taxi, limousine, or bus?"
Thus, the question 's YES child would pool three superficially different but
actually very similar kinds of sentences, permitting more efficient learning of
rules.

The set-membership question types we will consider are called J, t, R,
D,T, N, M, and P. As their mnemonic names indicate, ail but the P type
are analogous to the question types described in the previous section. Each
type refers to a set X that is a proper non-empty subset of the vocabulary
V. The P type deals with the case where we know that certain strings ail
contain a symbol x belonging to a set X at a given position, and we want to
"partition" the strings into those where x belongs tQ Y (a non-empty proper
subset of X) and those where x belongs to X-Y. The l'est operate on a
gap, symbolized "+", within the known structure of the string. Questions
of types D,T, N, and P can also operate on a string segment containing a
segment Jvf(X) identified by a YES answer to an earlier M question.

Here is how these question types operate on a gap +, letting x represent
any single symbol drawn from the set X and letting Xc represent a non-empty
string made up solely of symbols from the complement of X:

• j question - "can + be rewritt)~'rl as x, where x is any symbol in X?"
l ', .

• t question - "can + be rewriÙ~n as x+, where x is any symbol in X?"

• R question - "can + be rewritten as +x, where x is any symbol in X?"

• D question - "can + be rewritten as XCxXc, where x is any symbol in
X?"

• T question - "can + be rewritten as XCxyXC, where x,y are any sym
bols in X?"
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• N question - "can + be rewritten as XC,t + yX'. where .r. yan' any
symbols in XT

• M question - "can + be tewtitten as X'M(X)X', whete M(X) is a
substting of the fotm ;1', .1' y, 01' X +y, and x, y are any symbols in XT'

The P type is a little different - it operates on a fixed position known to
contain a single symbol drawn from the set X, i.e., on a position that can be
denoted x;

• P question - "can ;t be rewritten as y, where y is a single symbol dralVn
from the set Y which is a propet non-ernpty subset of X?"

Note that the known structure for strings in the 'l'ES child of this question
contain a y (symbol in y') at the relevant position, while the strings in the
NO child contain a z there, where z is a symbol in X-y'.

Operating on a substring of form Xc M(X)XC identified by a YES anslVet
to an earlier M question, type D, T, or N questions separate the tht""
subcases (x, y represent arbitral'y symbols. in X):

• D question - "can XCAJ(X)XCbe rewritten as XCxXc,?"

• T question - "can XCM(X)XC be rewritten as XCxyXc >?"

• N questicln - "can Xc M(X)XCbe rewritten as XC;c + xX'?"

Finally, type P questions can aiso be applied to substrings of form XC M(X)Xc:

• P question applied to XCM(X)XC - "can the M(X) be tewritten as
M(Y), where Y is a proper non-empty subset of X, and M(Y) is a
substring of the form y, yw, or y +w, such that y, w are elements of
Y?"

Again, note that the 'l'ES and NO answers to this question are complemen
tary - the strings in the NO child of the question must have a substring of
form M(Z) at the relevant position, where Z = X-Y. Both the M(Y)
in the 'l'ES child and the M(Z) in the NO child of this P question can be
manipulated to produce new D, T, N, and P questions.

The segments of a string written as Xc above may also be written + in the
known structure of a string (when the known structure is used to generate
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lIew Ijuestiolls). Even if every X' is treated as a + if! the known structure
for the purpose of generating new questions, the algorithm for generating
ilnd choosing set-membership questions will never pick a question for this
+ that involves a set with a symbol from X in it. Whether or not it's
wOI·th keeping track of the fact that a l'articulaI' section of a string is X',
i.e. contains no symbols drawn [rom X, is an implementation question more
than 'iL theoretical question.
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