et A Natonat Library
S B of Canada

Acquisitons and

Bibhothéaque nationgly
ciu Canada

Drection des acquistions et

Bibliograptue Services Branch des senaces bibhographiques

A5 Wl gTon St
Uit (kg
k1AM kLA ORA

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewtriter ribbon or if the
university sent us an inferior
bhotocopy.

Reproduction in full or in part of
this microforth is governed by
the Canadian Copyright Act,
R.s.C. 1970, ¢. C-30, and
subsequent amendments.

J95 rue Welkington
DL g (O nat

AVIS

La qualité de cette microforme
dépend grandenient de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiguer avec l'université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure,

l.a reproduction, méme patrtielle,
de cette ricroforme est soumise
a la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

Canadi

¥

Keyword Classification Trees for Speech
Understanding Systems

Roland Kuhn

School of Computer Science
McGill University, Montreal

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of
. Doctor of Philosophy

copyright ©1993 Roland Kuhn

May 12, 1993

4

-

i+l

- The

_distribute or = sell

Mational Library
of Canada

Acquisitions and
Bibliographic Services Branch

- 385 Wellington Street
‘Ottawa, Ontario
K1A ON4 K1A ON4

author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
petsons. T

The author retains ownership of
the copyright in his/her thesis.

Neither the thesis nor substantial -

extracts from it may be printed or
otherwise reproduced without
his/het permission.

395, rue Wellington
Ottawa {Ontario)

~ doivent

Bibliothéque nationale
du Canada

Direction des acquisitions et
des setvices bibliographiques

. Your hin Votre reldtence

Our tie Notrg iehence

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a- la Bibliothéque
nationale ©+ du Canada de
reproduire,~préter, distribuer ou
vendre des ‘copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a ta disposition des
personnes intéressées. _

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thase ni des extraits
substantiels de celle-ci ne
étre

autorisation.

ISBN 0-315-91711-3

Canada

Iy

imprimés ou
~ autrement reproduits sans son

i

Acknowledgements

[have mixed feelings about this thesis: it forms the tombstone of my agree-
able former life as a perpetual student. Nevertheless, [wish to thank the
people who made its completion possible.

David Samuel and Louis Vroomen drew dozens of diagrams for me without
complaining before I learned Framemaker. During a period when they had
many other tasks to carry out, Régis Cardin and Diane Goupil worked very
hard to provide data needed for this thesis. Diane also helped me with many
minor problems that wouid-Lave cost me months. Evelyne Millien created
the local parser that forms an integral part of CHANEL; her hard work, sense
of humour and good nature made collaboration a pleasure, Catoline Drouin,
Ying Cheng, Bassem Khalife, and Charles Snow created the SQL module.
Catoline also desetves mention for the large amounts of pepper vodka and
moderate amounts of tofu I ingested at her expense in the eatly years of my
PhD, and for being a polyglot hippie vegetarian street musician in the 1990’s.
Undet the leadetship of Yves Normandin, the CRIM speech recognition team
- Charles, Diane, Evelyne, Louis, Minh, Régis, and Roxane - provided s warm
working envitonment and a stimulating forum for discussion of absolutely
anything. Displaying true heroism, the team hired me after experiencing
for a yeat my French, my jokes, and my voice. To all these colleagues and
friends, my gratitude.

When I was looking for a supetvisot, a vague intetest in natural language
processing led me to Renato De Mori. I could not have made a wiser choice.
Starting at zeto, Renato trained me to wotk on speech recognition and com-
prehension, cttrently among the most fascinating areas in any science; for
this alone I would be permanently grateful. However, Renato gave me more
than this: the example of a researcher who has fiercely resisted mediocrity
throughout his career. Renato has always matched himself and his students
against the best in the world, even when he commanded far fewer resources
than his competitors. Consequently, he and those fortunate enough to work
with kim have produced world-class work. As a supervisor, he shows an
exemplaty concern for the well-being of his students, making strenuous ef-
forts to ensure that they have financial support; in Canada, this is a difficult
task. Finally, he is a man of great courtesy. Although he constantly de-
vises new ideas of his own, and has an extraordinarily extensive knowledge
of the approaches being taken by other researchers all over the world, he has

encouraged me to follow my own path. My thanks to Renato De Mori.

McGill University is a “‘wonderful place to be a graduate student. Be-
ginning with my old friend and room-mate Henry Schultz, far too many
people form part of my happy memories of McGill and of Montréal to be
listed here. However, I would like to'thank the former systems staff of the

* McGill School of Computer Science, particularly Peter Deutsch, Alan Em-
tage, Luc Boulianne, Wanda Pierce, and Bill Heelan, for their help with my
outlandish and often cretinous requests. I would also like to thank a place:
Thomson House, the club and pub for McGill graduate students. Its civi-
lized ambiance, British beers on tap, and wood panelling soothe the soul, its
industrial-strzength Zombies anaesthetized me for the Comprehensives, but
what I appreciate most of all about TH is the way it contrasts with the
dank, disagreeable, low-budget rat-hole reserved for undergraduates. As the
English know, to relish most deeply one's status as a member of a privileged
class, one must be able to contemplate the sufferings of an oppressed lower
class.

The members of my family have had a lot to put up with over the years,
and also deserve my thanks. My parents-in-law Jane and Lockwood Haight
contributed to the thesis indirectly, partly by producing a daughter foolhardy
enough to marry me and partly by inspiring me with the-desire to rank higher
than 4 on a scale of 10. To my brother Oliver: I will never forget the New
Zealand apple cotes. I enjoyed living with my sister Nicola the year I stud-
ied for the Comptehensives - her tolerance of my antics was admirable and
lovable. My father and fellow McGill PhD Tillo did everything in his power
to help me finish; for instance, he burnt special incense from Mount Athos
on the morning of the Comptehensives, and again on the morning of my de-

~"fense. My mother Naomi provided me with affectionate weekend hospitality,
emotional support, and some useful genes for sangfroid and mathematics.

To my beloved wife Susan: what can I say? For most people, writing'a
PhD thesis is dull misety intertupted by episodes of sheer hell. Because you
love me and because you were here with me, writing the thesis was satisfying
and occasionally enjoyable. Because you ate as unlike a computer geek as
anyone can be, you were willing to talk about everything under the sun except
the subject of my thesis, and that did me a lot of good. Because you are
with me, I'm happy. “Thy sweet love remembered such wealth brings that
then I scorn to change my staté with lnngs My thanks and my love go to
you, Susan, most of all.

W
N

Abstract

Speech understanding systems try to ‘extract meaning from one or several
word sequence hypotheses generated by a speech recognizer. Designers of
these systems rely increasingly on robust matchers to perform this task; a
robust matcher processes semantically important word islands rather than
attempting ‘to parse‘the entire word sequence. This thesis desciibes a ro-
hust matcher for speech understanding whose rules are learnt automatically
from training data. Learning is carried out by a new set of algorithms in-
volving a new data structure, the Keyword Classification Tree (KCT).
By eliminating the need to handcode and debug a large number of rules,
this approach facilitates rapid construction of a speech understanding sys-
tem. Furthermore, the rules learned by a KCT, which depend on a very
small number of words in each utterance, are highly resistant to errors by
the speaker or by the speech recognizer. The thesis discusses a speech un-
derstanding system built at the Centre de Recherche Informatique de Mon-
tréal that incorporates this robust matcher, using the DARPA-sponsored Air
Travel Information System (ATIS) task as training corpus and testbed,

]

P

Sommaire

Les systémes de compréhension de la parole ont pour but d’extraire le con-
tenu sémantique des hypothéses de phrases générées par un module de re-
connaissance de la parole. Les concepteurs de tels systémes recourent de
Plus en plus & des approches robustes pour accomplir cette tiche. Ces ap-
proches s’attachent aux groupes de mots sémantiquement importants plutdt
que d’essayer d'analyser syntaxiquement toute la phrase. La présente thése
décrit une nouvelle approche pour apprendre des régies robustes automa-
tiquement A partir de données d’entrainement. L’apprentissage se fait a
aide d'un ensemble d’algorithmes basés sur une nouvelle structure de don-
nées : les arbres de classification de mots clés (KCT ; “keyword classification
trees”). Cette approche facilite le développement rapide d’un systéme de
compréhension de la parole en évitant 'écriture et la mise au point manuelle
d’un grand nombre de régles. De plus, les régles apprises par un KCT dépen-
dent d’un petit nombre de mots dans la phrase et sont donc assez robustes
face aux erreurs du locuteur ou.du module de reconnaissance. Cette thése
présente aussi le systéme de compréhension dé¢: la parole dévelop;j:ic:au Cen-
tre de rechetche informatique de Montréal pour la tiche “Air Travel Infor-
mation System” (ATIS) parrainée par DARPA, systéme utilisant le module

développé & partir des KCT.

T ind

\'\(;

'\\\

A

Contents

1 Introduction
1.1 Problem Statement
1.2 Training and Testing
1.3 The Probabilistic Approach to Natural Language Processing .
1.4 Thesis Outline.

2 Speech Recognition and Speech Understanding

2.1 Potential Applications
2.2 Dimensions of Difficulty . .- o L.
2.3 Non-Probabilistic Speech Recogmt;on Systems
2.3.1 Template-Based Speech Recognition
2.3.2 Knowledge-Based Speech Recognition . . .%...
2.4 Preclabilistic Speech Recognition Systems.
2.4.1 The AcousticFront End
2.4.2 Hidden MarkovModels=
2.4.3 Choosing the Units
2.44 The Language Model
2.4.5 Lexical Search and the N-Best Hypotheses
2.4.6 The Linguistic Analyzer

= 3 Speech Understanding Systems for the ATIS Task

3.1 Introduction
3.2_-The Evolutionof ATIS o e
~ 3.2.1 Original Definitionof ATIS
3.2.2 Criticismsof ATIS .. .¢,
3.2.3 TheFutureof ATIS. . . .coo i it in..

e

[

ot
2l
Py

3.3.0 TheSRISystem 15

3.32 The CMUSystem.o v 13

333 TheBBNSystem 50

3.34 The MIT System 51

3.3.5 The Paramax-Unisys, Systm1 52

33.6 The AT&T System, 53

34 Summary R 9T
4 Learning Patterns in Strings 59
4.1 Introduction e e e e e e T PR 59
4.2 Grammatical Inference in the Traditional Paradigm 60
4.2.1% Inference of Regular Non-Stochastic Grammars 60

4.2.2 Stochastic Grammars 67

4.3 PAC Learning and P-Concepts =% 72
4.3.1 Introduction e 72

4.32 PAC Learning 73

= 4.3.3 Learning P-Concepts 78
. 44 Keyword Classification Trees %o v ... 81
4.4.1 7The Theory and Practice of Machine Learning 81

442 Each Class of a KCT is a Regular Set 32

4.4.3 Classification Propertxes of KCTs 34

444 Discussion Lo o e 91

5 Clag‘sfi'ﬂ_éation Trees in Speech Processing 94
5.1 What is a Binary Classification Tree? 94
5.2 ! Splitting Rules and Stopping Rules e 97
5.3 Pruning Techniques 000, 101
5.3.1 The CART Cross-Validation Approach to Prumng . 101

5.3.2 The Iterative Expansion-Pruning Approach - 107

5.4 Set-Membership Questions 113
5.5 Applications of Classification Trees in Speech Processing . . . 114
5.5.1 Vector Quantization 115

5.5.2 Context-Dependent Phone Modeling 118

5.5.3 Language Modeling 122

ii

S

7

i

6 Building Keyword Class:ﬁcatlon Trees 7118
6.1 % Jntroduction:;, _.-_‘si-.,,ai"'?'; e e e e e e e .. 126
6.2. Single-Sy:) nbol 1‘CTS .‘ DS 129

" 6.2.1 Tile Basic Algorithm, S 129
6.2.2 Prm minary Experiments with Single-Symkbol I\UTs .. 132
6.3 Set-I wembLI‘S};llp KCTso i i 135
6.4 Classifying Substrings 139

. 6.5 Related Work L 143
' 6.5.1 Comparison with IBM Tree-Based Language Modeling 143
6.5:2 An ‘\ppllcatlon -of C]assxﬁcaulon Trens in Information

Retrieval . . . 0. e e 145
6.5.3 PACE: A Parallel Classifier REERERREE 147
7 Computatlonal Comp‘e}uty of the KCT Algorn:hms ~ 151
& 7.1 Introduction0 . 151
7.2 Time Complexity of Single-Symbol KCT Algorithms 152
7.2.1 The Set-up Phasé: \.nrvertmg Sentences to Lexical
Index Strings e R D ."154_,('
7.2.2 The Balanced Scenario L 156
7.2.3 The Unbalaficed Scenario with D <4xLxV oo 159
7.2.4. The Unbalanced Scenario with D 3 4 % L * Voo 159°

7.3 Time Complexity of Set~Membersmp KCT Algorithms 162
7.3.1 Time Complexity of Set:-Membership Questions 162

i

7.3.2 Generating Set-Membership Questions 164

7.3.3 Determining Time Complexity'for the Set-Membership
Scenarios RPN 166
7.4 Parallel Time Complexity of I((‘T Algontﬂms e 168
8 CHANEL: A KCT-Based Linguistic Analyzer for ATIS 171
=81 System Structure for Two ATIS Tasks. = 171
8.2 Examples of ATIS Data . " 173
8.3 The Semantic Representa.tlon La,nguage 174
8.3.1. Details of the Représentation 174
8.3.2 Discussion of the Representa.tlon 180
8.4 The SQL Module e e e e e 181
7 8.5 The Local ParsingModule 182
8.6 The Robust Matcher 185

R

iii

184

s

3.6.0 Overall Striicture | L 185
8.6.2 Choosing the Displayed Attributes 136
8.6.3 Classifving Const; anes Lo.oLLL L D L 190
§.6.4 Metarules . . . L L 192
9 Results =~ . 193
9.1 Experiments with Different KCT Typcs 193
9.1.1 Classification Aceu racy ... SR 193
9.1.2 Properties of KCTs . 7%,, 193
9.2 The November 1992 ATIS Benchmarks"7. 198
9.2.1 KCTs Grown for-the November 1992 Robust Matcher . 198
9.2.2 BenchmarkResults 201
9.3 Analysisof Errors L 208
9.3.1 Analysisof NL Errors 208
‘;’? 9.3.2 Analysisof SLSErrors, 211
10 Discussion A ‘ 214
'10.1 _Original Contributions of the Thesm 214
10:2 Advantages and Disadvantages of KCT-Based Robust Matcher 215
©10.2.1 Advantages-. e 215
10.2.2 Disadvantages . . . R 217
10.3 Improvements, e 218
10.3.1 Improvements to KCTs D 219
10.3.2 Improvements to KCT-Based Robust Matchers 220-
104 Conclusion . . . o0 o v v v v i e e e 225
KCT-Growing Details " 226
A.l Single-Symbol KCTs e 226
A.2 Set MembershipKCTs+... 229
Bibliography : N . = 231

it =

v

List of Figures

2.1 Between-Speakers Variation of Pronunciation of “seven” . .. 11
2.2 Within-Speaker Variation of Pronunciation of “seven” 12
2.3 Template-Based Speeck Recognition. 18
2.4 Structure of the CRIM Speech Recognit:ion System 22
2.5 HMM for “sauce” [Norm9l,pg.22]. 25
3.1 Simulated Dialogue with MIT Dialogue System {Sen91, pg.357] 43
3.2 Ticket Facsimile shown by MIT Dialogue System [Sen91, pg.357] 44
3.3 Structure of the Phoenix System [War91, pg.103] 49
3.4 Block Diagram of AT&T System [adapted from Pie92b] 54
4.1 First 2 Iterations of Kearns-Schapire Alg. on KCT-Style Ques-
tionList 88
4.2 p-Concept KCT for 2 Stochastic Grammars, where P(G,) =
P(G2) . . o e 90
5.1 Patient Classification Example [Bre84,pg.2] 96
5.2 Classification Tree (Training Data Items shown at each Node) 102
5.3 Same Tree, R(n) shown for each Noden 103
5.4 Same Tree, gi(n) shown foreach Noden 105
5.5 Same Tree after Pruning of Subtree with lowest g; 106
5.6 The Expansion-Pruning Algorithm 110
5.7 Binary Tree Codebook [0'S87, pg.317] 117
5.8 Decision Tree for Allophones of ‘k’ [Hon91, pg.260} 119
5.9 Clustering Simple Questions to form a Compound Question
[Hon91,pg260] 121
5.10 Example of a Pylon [BahWLb, pg.508] 124

6.1 Single-Symbol KCT Grown on ATIS 1990 Transcripts 134
6.2 Set-Membership KCT Grown on ATIS 1990 Transcripts 136
6.3 Growing a Set-Membership KCT 140
6.4 KCT for Classifying CITY Substrings 142
7.1 Converting Sentences to Lexical Index Strings {Setup Phase) . 155
7.2 Balanced KCT, Depth = O(logD) 156
7.3 Unbalanced KCT, D <4+« LxV, Depth=O{D) 160
7.4 Unbalanced KCT, D >4« L+ V, Depth = Q{L*V) 161
7.5 Asking Set-Membership Question (for 1 string, O(L) work} . . 163
7.6 Finding Set-Membership Question from Single-Symbel Ques-

tion (/V training strings) 165
8.1 Linguistic Processing in 1992 CRIM ATIS System 172
8.2 The KCT-Based Robust Matcher 187
8.3 Set-Membership KCT for fare.fare_id (grown on ATIS 2 data) 189
9.1 Classification Accuracy on NL Data for Various KCT Types . 196
9.2 Single-Symbol KCTs for Displayed Attributes Tested on Parsed

SpeechData 199
9.3 KCT Sizes vs. Size of Training Data (Tree 44 = fare.fare_id,

Tree 68 = flight. flight_id) 200
9.4 Single-Symbol KCT for fare.fare_id trained on NL Data (num-

berofnodes =37) 202
9.5 Single-Symbol KCT for fare.fare_id trained on Speech Data

(numberof nodes =33),, 203
9.6 November 1992 ATIS NL Test Results (Class A only) 204
9.7 November 1992 ATIS SPREC Test Results (Class A only) . . 205
9.8 November 1992 ATIS SLS Test Results (Class A only) 206
9.9 Results for NL W. Err/(SLS W. Err.« SPREC Prop. Corr.)207
9.10 Histogram of NL Errors 210

9.11 Histogram of SLS Errors without corresponding NL Errors . . 213

vi

Chapter 1

N

Introduction

On these Papers were written all the Words of their Language
in their several Moods, Tenses, and Declensions, but without any
Order. The Professor then desired me to observe, for he was going
to set his Engine at work. The Pupils at his Command took each
of them hold of an Iron Handle, whereof there were Forty fixed
round the Edges of the Frame; and giving them a sudden Turn,
the whole Disposition of the Words was entirely changed. He
then commanded Six and Thirty of the Lads to read the several
Lines softly as they appeared upon the Frame; and where they
found three or four Words together that might make Part of a
Sentence, they dictated to the four remaining Boys who were
Scribes... Six Hours a-Day the young Students were employed
in this Labour, and the Professor shewed me several Volumes
in large Folio already collected, of broken Sentences, which he
intended to piece together; and out of those rich Materials to
give the World a compleat Body of all Arts and Sciences.

Jonathan Swift, Gulliver’s Travels [Swi]

1.1 Problem Statement

When someone speaks to a speech recognition system, it tries to guess the se-
quence of words that best matches the acoustic signal. A typical system will

generate several word sequence hypotheses, cach with an associated probabil-
ity. If it is a dictation system, it will display the most probable hypothesis
to the user for approval or correction. If it is a speech understanding system,
the meaning of the utterance is more important than the precise sequence of
words. Word sequence hypotheses in a speech understanding system undergo
further processing to yield a conceptual representation, which may trigger ac-
tions by the non-speech part of the system. For instance, the information
contained in the conceptual representation might cause a robot to move for-
ward and pick up an object, or might initiate a search through a databﬁ.ae
for information requested by the user. 4

The part of a speech understanding system that translates word sequence
hypotheses into a conceptual representation will be called the linguistic an-
alyzer. In the recent past, the linguistic analyzer of a typical speech under-
standing system was built around strict syntactic rules [ErmWL,LowWL];
it was usually called the “parser”. Word sequences that disobeyed the rules
were discarded during the recognition process, so that an incoming utterance
could yield only two outcomes: failure or a parse for a complete sequence of
words.

This approach has strong academic as well as practical appeal: one can
write elegant papers about how a particular syntactic theory is incorporated
in the parser. Unfortunately, many spoken sentences are meaningful but
ungrammatical. A linguistic analyzer that relies heavily on syntax will refuse
to respond to such sentences, or will generate and respond to an incorrect
word sequence hypothesis that happens to be grammatical. Neither outcome
is desirable.

A growing number of speech understanding systems rely on robust match-
ing to handle ungrammatical utterances. The robust matcher tries to fill slots
in a frame without attempting a sentence-level parse; it skips over words or
phrases that do not help it to fill a slot or to decide on the identity of the
current frame. The slot-filling phrases themselves still undergo syntactic
parsing. Because it does not attempt to generate a parse tree incorporat-
ing every word in the utterance, the robust matcher can handle interjections,
restarts, incomplete sentences, and many other phenomena typical of speech.
Some current speech understanding systems have a linguistic analyzer that
will invoke the robust matcher only if a sentence-level parse fails, while oth-
ers have a linguistic analyzer consisting entirely of the robust matcher. The
robust matcher requires a large set of semantic rules to carry out its task;

2

N

these tell it how to identify the frame or frames referred to by the current
utterance, and how to match slot-fillers to slots.

This thesis describes a robust matcher for speech understanding that
incorporates a set of semantic rules automatically learned from training data.
A data structure called the Keyword Classification Tree (KCT) has been
devised for the purpose of learning semantic rules which depend on a small
number of keywords in each utterance. These keywords, and the phrases
they make up, are not specified in advance by the programmer but generated
by the KCT-growing algorithm from the entire lexicon on the basis of the
training data.

The robust matcher proposed in this thesis is original. Other robust
matchers tend to ignore irrelevant words in an utterance, but these do not
attempt to minimize the number of keywords that must be seen to generate
the correct conceptual representation. The KCT-growing algorithms tend
to find close to the smallest possible number of keywords required for se-
mantic rules. Since the robust matcher built out of KCTs is unaffected by
recognition errors in non-keywords, it is very tolerant of recognition errors.
Researchers at AT&T have also proposed a robust matcher whose rules are
learned from data rather than hand-coded [Pie92a, Pie92b, Pie91]. How-
ever, their matcher is based on statistical segmentation of the word sequence
into concepts, rather than on classification trees; it has trouble dealing with
concepts that overlap each other. The KCT-based robust matcher makes
extensive use of independent KCTs, each of which looks at the entire word
sequence, and therefore deals effectively with overlapping concepts.

1.2 Training and Testing

The training corpus and testbed for the KCT-based robust matcher was the
DARPA-sponsored ATIS (“Air Travel Information System”) task. ATIS was
chosen for pragmatic reasons:

1. DARPA provides a large corpus of recorded ATIS utterances, each
accompanied by its typed transcript and by the “translation” of the
utterance into SQL judged most appropriate by DARPA. The KCT-
based robust matcher requires large amounts of semantically labelled
training data. The ATIS data fit this requirement perfectly, if one

takes the SQL translation as the criterion for successful semantic in-
terpretation of an utterance. (However, the robust matcher generates
a frame-based conceptual representation that is not in SQL code; an
independent moduie called the “SQL module” generates the code from
the conceptual representation, and could be replaced if we chose to use
another database query language).

[

Many of North America’s leading speech groups are working on the
ATIS task. If the KCT-based robust matcher was applied to the ATIS
task rather than some self-devised task, my work could more easily be
compared to the work of other researchers.

3. The speech group at CRIM (Centre de Recherche Informatique de Mon-
tréal) had recently begun to participate in ATIS, and therefore had
access to ATIS data. Members of the group kindly let me use the data,
and subsequently collaborated with me in building a linguistic analyzer
incorporating the KCT-based robust matcher for the November 1992
ATIS benchmarks (described in Chapter 8).

4. | was interested in seeing how semantic rules learned by the KCT-
growing algorithms from written sentences differed from rules learned
by the same algorithms from word sequence hypotheses output by a
recognizer. Certain semantically important words may, for acoustic
reasons, be poorly recognised by a particular system; KCTs trained on
written sentences will choose some of these words as keywords, while
KCTs trained on word sequence hypotheses should choose more reliably
recognised words. The CRIM group was willing to provide me with
speech recognizer output for the ATIS task.

Despite these arguments for the ATIS task, the work presented in this
thesis would be worthless if it were only applicable to ATIS. Later in the
thesis, I will argue that a robust matcher that learns rules for a particular
speech understanding task from training data can be ported quickly to new
tasks or new languages, unlike a hand-coded matcher.

1.3 The Probabilistic Approach to Natural
Language Processing

The work reported here'is part of a larger shift in natural language processing
research, from approaches based on linguistic theory to approaches that treat
natural language processing as a pattern recognition problem that can be
handled probabilistically. Researchers who employ the probabilistic approach
borrow some ideas from linguistics, but they avoid implementing linguistic
theories in their entirety. They often consider linguistics, especially syntactic
theory, as an obstacle to building practical systems that can handle a wide
range of input. S

The probabilistic approach has achieved its greatest successes and ac-
quired the largest number of adherents in the speech recognition community.
Many existing speech recognition systems work better than their predecessors
because simple, robust models trained on large amounts of data were sub-
stituted for cumbersome systems of hand-coded linguistic rules, at several
different levels of speech recognition. This shift in perspective was partly
brought about by the ARPA Speech Understanding Project of the 1970’s
[KlaWL].

Despite the rhetoric employed on both sides of the debate, all probabilistic
natural language systems are hybrids that incorporate a considerable amount
of a priori linguistic expertise along with probabilistic parameters whose
values are calculated from training data. A “pure” probabilistic approach
that uses no linguistic knowledge at all is impossible. It is always necessary
to define basic units and a structure for the probabilistic model, and this
can only be done on the basis of linguistic knowledge. For instance, the IBM
language models employ words or parts of speech as the basic units. Each
choice reflects an a priori linguistic judgement. This is obviously true for
parts of speech, and also true - though less obviously so - for words. Speakers
of Indo-European languages tend to believe that language is segmented into
words, and the typographical conventions of these languages reinforce the
belief. If the designers of the IBM language models had been speakers of
Hungarian or Inuit then a unit that seems more natural to speakers of these
languages, such as the morpheme or the phrase, might have been chosen
instead. The structure of the IBM models reflects another a priorijudgement:
that the identity of a word can be predicted by the immediately preceding

words.

Thus, the basic units and the structure of a probabilistic model always
reflect the linguistic judgements or prejudices of its designers. What distin-
guishes the probabilistic approach from other approaches is that once the
model has been defined, its parameters are calculated from training data.
Furthermore, the structure of the model is usually very simple and linguis-
tically “naive”. The popularity of this approach seems to be spreading from
the speech recognition community to researchers in other branches of natural
language processing, such as machine translation and message understanding
[Bro92, BroS8, Wei92].

Advocates of the approach, such as Geoffrey Sampson [Gars87 chap. 2]
argue that the predominant rule-based approach leads to brittle toy systems
that can deal only with a tiny set of made-up examples. Because these
systems categorize sentences as either grammatical or ungrammatical, they
cannot estimate degrees of acceptability; they reject a high proportion of
sentences a human being would judge acceptable, and derive little useful
information from such sentences. Adding more rules will not help. “I find it
hard to imagine that in practice this revision process could ever be concluded.
Like other rules concerning human behaviour, rules of grammar seem made
to be broken... If the activity of revising a generative grammar in response to
recalcitrant authentic examples were ever to terminate in a perfectly leak-free
grammar, that grammar would surely be massively more complicated than
any extant grammar, and would thus pose correspondingly massive problems
with respect to incorporation into a system of automatic analysis” [Gars87
pg. 20].

By contrast, probabilistic systems deal with relative frequencies of out-
comes and make no binary judgments about the grammaticality or ungram-
maticality of a sentence. They can handle even extremely ill-formed input.
In most cases, they are much simpler in structure than rule-based systems
and require less programming time to set up. The main disadvantage of prob-
abilistic models is the need to accumulate large collections of training data
and carry out computation-intensive probability calculations. The rule-based
approach makes heavy demands on human effort, in the form of linguistic
expertise and programming time. If the need for hand-labelling training data
can be avoided or minimized, the main demands of the probabilistic approach
are on computer memory and .processing power. As memory and computa-
tion get cheaper, the competitive advantage of the probabilistic approach

6

Hicreases.

Advocates of the probabilistic approach are often caricatured as arrogant
technocrats who believe that the secrets of natural language can be extracted
by a purely mechanical process, like the Professor in the Academy of Lagado
described in the quotation from Gulliver’s Travels. | prefer to think that the
probabilistic approach reflects an understanding of the fragility and trickiness
of language. Language is complex, ever-changing, anc 7 fficult to master;
we cannot force it to behave deterministically. [nstead, we should model its
uncertainties, giving systems the ability to learn probabilistic rules that work
well in situations resembling those they were trained on.

The KCT-based robust matcher described in this thesis represents an
attempt to extend the probabilistic approach to the one level of current
speech understanding systems where hand-coded rules still reign supreme:
the linguistic analyzer. 3 |

1.4 Thesis . Dutline

‘Note that some of the chapters listed below are mainly theoretical or describe
related work by others; a reader interested in a quick overview of the original
work and its practical results may wish to focus on Chapter 6 (“Building Key-
word Classification Trees”), Chapter 8 (*CHANEL: A KCT-Based Linguistic
Analyzer for ATIS"), Chapter 9 (“Results”) and Chapter 10 (“Discussion”).

¢ Chapter 2 - “Speech Recognition and Speech Understanding”. De-
scribes the structure of speech recognition systems and recent progress
in speech recognition; discusses the role of the linguistic analyzer of a
speech understanding system. A major theme of the chapter, which
will be illustrated at several different levels of speech recognition, is
the triumph of brute-force approaches involving simple models trained
on large amounts of data over linguistically sophisticated, hand-coded
approaches.

¢ Chapter 3 - “Speech Understanding Systems for the ATIS Task”. De-
scribes the DARPA-sponsored ATIS task and recent suggestions for
changes in the definition of ATIS. The bulk of the chapter is a compar-
ison of the linguistic analyzers of various ATIS systems.

Chapter ¢4 - “Learning Patterns in Strings”. Before designing algo-
rithms that learn semantic rules, one must ask: what kinds of rules

- are learnable? A review of the literature on grammatical inference,

syntactic analysis, and related topics, which places KCTs in context.

Chapter 5 - “Classification Trees in Speech Processing”. This chap-
ter presents the techniques underlying the original work described in
Chapter 6.. These techniques for growing and using classification trees
are illustrated by\examples from other levels of speech processing (the
work described in this thesis is the only a.pphca.tlon known to me of
classification trees to speech semantics).

- :TChapter 6 - “Building Keyword Classification Trees”. Summarizes the

decisions that must be made by a robust matcher in a speech under-
standing system, and shows how KCTs can learn rules for making these
decisions. Most of the chapter is devoted to a description of the algo-
rithms for growing two kinds of KCTs: the .single-symbol KCT and the
sel- membe"shtp KCT. - :

Chaptzr 7 - “Computational Complexity of l‘the KCT Algorithms”. Rig-

. orous serial and parallel time complexity computations for the KC r

growing and clasmﬁce‘xon algorithms. The discussion of parallel imple-
menta.tlon of tl'.ese alﬂorit‘lms is of pa.rtlcular interest,

Chapter 8- “CHAN EL: A KCT-Based Linguistic Analyzer for ATIS".
CHANEL is a linguistic analyzer developed at CRIM and tested in the
November 1992 ATIS benchmarks. This chapter describes the structure
of CHANEL. Details of the conceptual representation language, of the

local parsers that handle slot-filling phrases, and of the ATIS training
data are given.

Chapter 9 - “Results”.. For both the transcript task and the word
sequence hypothesis task, comparisons are made between the results
obtained with single-symbol KCT's and set-membership KCTs, and be-
tween KCTs permitted to ask questions about semantic categories and
those that can only use lexical items. It is shown how performance
varies with the size of the training corpus. The hypothesis that KCTs
trained on recognizer output perform better in a speech understanding

.

system than transcript-trained I{_CTS is tested and discussed. Finally,
this chapter analyzes the results'obtained by CHANEL in the Nover -
ber 1992 ATIS benchmarks.

¢ Chapter 10 - “Discussion”. Discusses the advantages and shortcomings
jof the KCT-based robust matcher, and makes suggestions for further

work.

o Appendix - gives technical details of the KCT-growing algorithms.

S

Vi

=y

Chapter 2

Speech Recognition and
Speech Understanding

Speech recognition is a hard problem. There is a large amount of variabil-
ity in human speech, as illustrated in figures 2.1 and 2.2 (courtesy of the
CRIM Speech Recognition Group). Note from figure 2.2 that even the same
speaker pronouncing the:same word at different times demonstrates consid-
erable variability. Human beings wield a vast amount of knowledge about
acoustics, syntax, semantics, and about the pragmatics of the situation in
which the speech signal is produced in order to identify spoken words. The
nature of this knowledge and the manner in which it is applied are as yet only
partially understood. Thus, systems which understand unrestricted natural
language will not be built for many years.

Given the difficulty of the problem, it is remarkable that practical speech
recognition systems are currently being built. This chapter describes poten-
tial applications for such systems, and surveys the twenty years of steady
progress in speech recognition that have made them possible.

2.1 Potential Applications

It is likely that man-machine communication by voice will become part of
daily life in the developed world within the next twenty years. Many millions
of people in North America have already replied “yes” or “no” to a recorded
message asking them whether they accepted a collect call; their reply was

10

i ?\\:

Figure 2.1:

e o

v =
L i
i
—]
-y Hon

Between-Speakers Variation of Pronunciation of “seven™

11

e

uuuuu "

Figure 2.2: Within-Speaker Variation of Pronunciation of “seven”

e -
"L“—‘a“.:
3 o : i N i
, R 12 s
- [} T -5
N ;
= R

processed by a speech recognition system developed by Bell Norihern Re-
secarch. It remains to be seen whether speech recognition technology will
he confined to a few niche applications like this one, or whether voice will
hecorne one of the principal channels of man-machine communication.

Among existing systems, one may conveniently distinguish between dic-
fation systems and speech understanding systems. The former, marketed by
such companies as Dragon Systems of Boston, attempt to transcribe speech
accurately. The latter execute spoken commands - for instance, they may
attempt to retrieve from a database information asked for by the user. Thus,
the work of a dictation system is completed when 1t has obtained the word
sequence that matches the user’s utterance, while a speech understanding
system must generate a conceptual representation that initiates further ac-
tion.

Although a dictation system only carries out speech recognition, while
a speech understanding system carries out speech recognition and then per-
forms an extra step, dictation systems are no easier to design than speech
understanding systems. For instance, dictation systems normally recognize
a much larger vocabulary than speech understanding systems. Some data
entry systems carry out tasks that lie along the border between dictation
and speech understanding. Kurzweil Applied Intelligence of Cambridge cur-
rently markets a system designed to take dictation from a doctor examining
a patient. The system fills in fields in a chart, and will prompt the doctor at
the end of the examination if there are any unfilled fields.

Medium-term applications of speech understanding systems will be lim-
ited mainly by the state of the art in knowledge representation and semantics.
Speech understanding systems will probably soon handle many routine, high-
volume transactions that are carried out in the same way most of the time
[WaiWL pg. 1]. Examples are enquiries about schedules and ticket-buying
over the telephone. An application like airline flight booking (as in the ATIS
scenario) yields a high proportion of simple requests and some more compli-
cated ones requiring human judgment; here, one could envisage the system
transferring the complicated requests to a human being. For sensitive appli-
cations like bank balance transfers, speech understanding could be combined
with speaker recognition to enhance security.

Speech understanding systems may also provide a communication chan-
nel in command and control situations where the individual’s hands and
eyes are otherwise occupied, as for surgeons and fighter pilots. Similarly, the

13

handicapped may benefit from wheelchairs or robots that respond to voice
commands, and owners of intelligent houses and intelligent cars may wish
to communicate with them verbally. Another obvious application of speech
understanding is communication with a personal computer. Apple Com-
puter Inc. is currently working on a voice interface called “Casper” to the
Macintosh personal computer, under the guidance of Kai-Fu Lee, a highly
respected speech recognition researcher.

[n the long term, some researchers envisage the translating telephone
or even the ultimate conversational computer [WaiWL]. The conversational
computer would have the ability to understand, think about, and respond to
ordinary conversation. I am more sceptical about this possibility than I am
about the ones mentioned in previous paragraphs, since I helieve it would
require a revolution in our understanding of semantics and knowledge repre-
sentation. In the past, good natural language processing systems were built
for semantically limited domains - microworlds - but deep problems were
encountered when one attempted to build more general systems. Neverthe-
less, it is clear that speech understanding systems have a host of poteutial
applications, and an interesting future.

2.2 Dimensions of Difficulty

Let us now return to solid ground and survey the difficulties that degrade
speech recognition performance. Existing speech recognition systems can be
located in a multidimensional space defined by axes of difficulty. Designers
of these systems often deal with unavoidable difficulty in one dimension by
accepting a more forgiving definition of the task in another dimension.

The main dimensions of difficulty are [WaiWL]:

Isolated-word or continuous speech;

Vocabulary size;

Task and language constraints;

Speaker dependent or independent;

o Acoustic confusability of vocabulary items;

14

¢ Environmental noise.

Systems that recognize only isolated-word speech require the user to pause
for at least 100-250 msec after each word, whiie continuous speech systems
impose no constraint on the user, allowing him to speak rapidly and fluently.
Continuous speech may be cut up into words in many different ways: consider
“euthanasia” and “youth in Asia”, “new display” and “nudist play”. The dif-
ficulty of recognizing word boundaries makes continuous speech recognition
much more difficult than isolated-word speech recognition.

As the size of the vocabulary increases, there are more mutually confus-
able words, and exhaustive search of the whole vocabulary becomes com-
putationally intractable. With a small vocabulary, one can build a good
acoustic model for recognizing each individual word. With a large vocabu-
lary, it becomes difficult to collect enough training data for each word, so
that subword models based on phonemes or syllables are employed instead.
When such subword models are concatenated to form word models, some
word-specific information is lost, reducing recognition accuracy.

The stronger the constraints known to affect the order and choice of words
in an utterance, the easier speech recognition becomes. Such constraints
are incorporated in a language model that helps to reduce the number of
reasonable word candidates at a given time. For some tasks, users may be
forced to speak according to the rules of an artificial syntax to facilitate
recognition.

A speaker dependent system is trained to deal with the utterances of a
particular individual. Typically, each new person who will be working with
the system takes an hour or so to train it by reading it all the words in the
vocabulary (if it is a small-vocabulary system) or a passage containing the
most common combinations of phonemes in the language (if it is a large-
vocabulary system}. A speaker independent system is trained once, before
use, and must then be able to handle a wide variety of voices not encountered
during training. Provided a speaker dependent system is tested only on the
voice it has been trained for, it will perform better than a comparable speaker
independent system. To give speaker independent systems accuracy closer
to that of speaker dependent systems, speaker adaptation methods have been
developed; these adjust the parameters of the system’s recognition models in
the course of an interaction to better model the current speaker, or map the
current speaker onto one of a number of speaker clusters and then employ

15

the model corresponding to that cluster.

Two vocabularies of the same size may differ in acoustic confusability.
Thus, the ten digits are easier to recognize than the letters thyming with *B’.

Finally, environmental noise often affects performance; a speech under-
standing system that operates in a factory may be much harder to design
than one that operates in a quiet office. Background conversation, slamming
doors, sneezes, emotionally stressed users, and a host of other phenomena
must be taken into account. Environmental factors may be quite subtle -
some speech recognition systems work better with certain microphone types
than with others.

These dimensions of difficulty can be traded off against each other. Thus,
a dictation system like those marketed by Dragon has an extremely large vo-
cabulary and flexible word order which are “paid for” by requiring each user
to train the system to his voice, to pause between words during dictation,
and to shield the system from ambient noise. A speech understanding system
designed to execute commands in the cockpit of a fighter plane would have ex-
tremely high noise tolerance, attained by a small vocabulary and constrained
syntax for commands, and possibly also by making the system speaker de-
pendent. A system for making air reservations over the phone must carry out
speaker independent continuous speech recognition, and tolerate some back-
ground noise; hence, the vocabulary size must be relatively small. While the
designer cannot impose a constrained syntax on users of this air reservation
system, he might cause the system to ask carefully designed questions that
made user utterances more predictable.

In this thesis, the focus will be on speaker independent continuous speech
understanding. The ATIS testbed for the KCT algorithms has a modest
vocabulary (about 1000 words) and assumes low levels of ambient noise,
with the speech transmitted directly to the system microphone rather than
over the telephone. There are semantic but not syntactic constraints on user
utterances, which must deal with air travel and related subjects. ATIS will
be described in more detail in Chapter 3.

16

2.3 Non-Probabilistic Speech Recognition Sys-
tems

This section describes template-based and knowledge-based speech recogni-
tion systems. Although these two system types are still in use for certain
specialized applications, the probabilistic type described in the next section
has supplanted them for large vocabulary, speaker independent, continuous
speech recognition. Many aspects of probabilistic systems are derived from
these older types.

2.3.1 Template-Based Speech Recognition

A summary of template-based approaches may be found in {O'S87 pp. 415-
459); further readings on this topic may be found in Chapter 4 of [WL90}. The
first two system components shown in figure 2.3 perform feature extraction
and are often called the front end. The front end eliminates signal variability
due to the environment and to special characteristics of the speaker’s voice,
then converts the signal to acoustic features such as formants, phonemes, or
phoneme sets (e.g. “fricative” or “plosive”). Thus, the front end eliminates
redundancy and reduces the amount of data to manageable size.

From the sequence of features, the system forms the current pattern. This
is then compared with stored templates, and the template that matches the
current pattern most closely is chosen. This requires a local distance measure
for comparing a feature in the pattern with a feature in a template, a global
measure for the overall pattern-template distance together with a computa-
tionally efficient method for computing it, and a decision rule for choosing
the final word sequence. In the “active model” of template-based speech
recognition, there may be feedback from the component that hypothesizes a
pattern to lower-level components.

Consider an isolated word, small vocabulary system. Here, word bound-
aries will be easy to spot and it makes sense to design the system so that
the current pattern and the stored templates are individual words. A global
distance obtained by lining up the start of the current pattern with the start
of a template and adding up local distances will not tell us much. Instead,
we can temporally “stretch” some phonemes and “compress” others in the
current word until as many portions of it as possible are lined up with like

17

speech

Data acquisition
and transformation

-

%

Extraction of
speech parameters
and descriptors

¢

Training

Generation of
classification
hypotheses

!

—»

Unit or word
models

Figure 2.3: Template-Based Speech Recognition

18

word
sequence
L

portions of the stored word: a penalty for stretching and compression must
be built into the global distance score for each such match. This idea is the
basis for dynamic lime warping, the most popular methodology for pattern
matching in template-based systems. A variety of distance measures and
decision rules have been devised for the dynamic time warping algorithm.

Template-based systems work well for isolated word speaker dependent
recognition of small vocabularies containing short words. As vocabulary size
and word length increase, computation time goes up. Continuous speech
requires the dynamic time warping algorithm to consider all possible combi-
nations of word starts and stops, and thus also increases computation time.
Template-based approaches are even worse at segmenting continuous speech.

Finally, different speakers may use different phonemes in pronouncing the
same word, creating a difficulty that dynamic time warping cannot handle
with a single word template. As we will see, probabilistic systems can incor-
porate alternative pronunciations in a single model. Template-based systems
are incapable of carrying out this kind of generalization and can only cope
with this problem by storing several different pronunciations of the same
word, which increases computation time and ignores similarities between the
different pronunciations - thus failing to take full advantage of the training
data.

2.3.2 Knowledge-Based Speech Recognition

Many researchers from the mid-1970s onward believed it was important to
incorporate linguistic rules in speech recognition systems, which is difficult
to do with a template-based approach. Although the phrase “knowledge-
based speech recognition” is widely accepted as the designation for the work
of these researchers, [WaiWL pg. 4], [O’S87 pg. 418), it is misleading. Ev-
ery speech recognition system, from the earliest template-based system to a
recent probabilistic one, is the product of hard-won human knowledge. It
would be more accurate to say that this group of systems is characterized by
the “expert system” approach.)

The best example of this approach was HEARSAY, a system developed at
CMU as part of an ARPA-sponsored research effort to achieve speaker inde-
pendent continuous speech recognition between 1971 and 1976. HEARSAY

_pioneered the idea of a “blackboard” architecture which allowed multiple
" knowledge sources to talk to each other. Each knowledge source is an expert

19

system covering a particular aspect of linguistics, such as acoustic-phonetics,
syllabification, prosodics, syntax, or semantics; cach functions in parallel with
the other knowledge sources. The blackboard contains hypotheses written
on it by the knowledge sources; a hypothesis written there by one knowl-
edge source often causes other knowledge sources to add new hypotheses. A
description of the system can be found in [ErmWL].

The architecture of HEARSAY permitted it, unlike a template-based sys-
tem, to benefit from up-to-date linguistic expertise in each area correspond-
ing to a knowledge source. Unfortunately, knowledge sources often contra-
dicted each other, or got stuck waiting for information from each other.
Subsequently, @ CMU group devised a streamlined, “compiled” version of
- HEARSAY called HARPY [LowWL}]. HARPY discarded many of the knowl-
edge sources employed by HEARSAY and used only phonemic knowledge
(specifying one or more acoustic templates for each phoneme), juncture rules
(for dealing with phones at word boundaries), lexical knowledge (represent-
ing alternative word pronunciations), and syntactic knowledge (specifying
permissible word sequences). All these knowledge sources were expressed as
graphs, and all except for the phonemic knowledge were hand-coded.

The final, dramatic step in creating HARPY was to compile all these
knowledge sources into a single, 15000-state graph. During recognition, a
set of paths close to the best found so far was explored in parallel with the
best path. This heuristic beam search made backtracking unnecessary, thus
speeding up search - it was one of HARPY's most important contributions.

HARPY attained the highest level of performance among the systems par-
ticipating in the five-year ARPA speech understanding project that ended in
1976. Much of its success was due to tight and rather unnatural syntac-
tic constraints which greatly decreased the number of word candidates that
had to be considered at a given time. On the other hand, compared with
HEARSAY, HARPY demonstrated the advantages of a uniform encoding of
different types of knowledge that avoided run-time conflicts between knowl-
edge sources.

Although the “expert system” approach to speech recognition has been
superseded for most applications by the probabilistic approach, there are
strong arguments to be made for incorporating linguistic constraints in speech
recognition systems.

In a 1985 article, Victor Zue listed several linguistic constraints that could
improve speech recognition performance {ZueWL]. For instance, the acoustic

20

front end should take into account what is known about the human auditory
system. The ear’s temporal window for frequency analysis is non-uniform.
Low-{requency sounds such as sonorants are assigned a long integration win-
dow, yielding good frequency resolution, while high-frequency sounds such
as stop bursts are assigned a short window, yielding good temporal resolu-
tion., Other “design decisions” in the human ear lead to superior formant
tracking, and thus superior phoneme recognition; they also lead to increased
robustness in the presence of environmental noise. Stephanie Seneff initiated
and successfully implemented many of these ideas for improving the front
end [SenWL]. '

Zue also advocated the study of phonemes in context. “Speech is gener-
ated through the closely coordinated and continuous movements of a set of
articulators with different degrees of sluggishness... the acoustic properties
of a given phoneme can change as a function of the immediate phonetic envi-
ronment” [ZueWL, pg. 201]. This phenomenon is called coarticulation. Zue
suggested that prosody is a valuable clue - unstressed syllables can be repre-
sented by broad phonetic categories, with analysis focusing on the stressed
syllables that help most in identifying a particular word. Since unstressed syl-
lables are acoustically variable, it is more accurate to model them coarsely.
A related point is that the distance measure between the current pattern
and a stored template should concentrate on regions which are perceptually
salient.

Finally, Zue emphasized the importance of a coherent knowledge represen-
tation and control strategy for combining knowledge from different sources.
HEARSAY ran into difficulty because of loose coupling between knowledge
sources, which led to conflicts and communication problems.

It is on this level of representation and control strategy that the knowledge-
based approach and the probabilistic approach differ. At other levels, there
is no conflict between the two; many of the good ideas generated by Zue and
by other advocates of the knowledge-based approach have been reborn in
probabilistic costume. Designers of probabilistic systems employ linguistic
expertise in defining the structure of probabilistic models. However, they
prefer the parameter values for these medels to be estimated automatically
from large amounts of training data, instead of by human experts.

Speech

‘ HMM Lexical
i Y S Model

Microphoné Uit Modely “*_Builder
l 5

Acoustic

Front End ——————#»-{ 36| #--evmomoenos lexicon
.
N-Best
Hypotheses
SQL Linguistic Langua
e . ge
Translator ﬂ Analyzer | Medel

‘ Representation

database

Displa
———— | modul

To Screen

Figure 2.4: Structure of the CRIM Speech Recognition System

2.4 Probabilistic Speech Recognition Systems

Figure 2.4 shows the structure of the CRIM speech understanding system,
which is described in [Norm92}. Probabilistic systems for speaker indepen-
dent, continuous speech recognition all strongly resemble each other, so the
diagram would look much the same if another system were chosen as the
example.

These systems view speech recognition as a decoding problem. Let y
represent an acoustic observation vector, and w a sequence of words. The
task of a speech recognition system is to find w such that P(wly) is maximal.

22

By Bayes's rule. we have

P(wly) = P(w)P(ylw)/P(y).

P(y) can be ignored, since it is constant at a given time. Thus, a proba-
bilistic speech recognition system seeks to find w maximizing P(w)P(y|w).
The calculation of P(w) is the job of the language model, while P(y|w) is
calculated by hidden Markov models (HMMs} operating on the output of the
acoustic front end.

2.4.1 The Acoustic Front End

The front end digitizes the acoustic signal and cuts it into frames, usually
at a fixed frame rate. It then extracts a small number of parameters per
frame, which reflect aspects of the signal’s power spectrum. The frame seen
al time ¢ thus generates a vector y; of spectral parameters. Many systems
vector quantize the frame vectors y; by mapping each onto the nearest entry
in a vector quantization codebook; some systems use several codebooks. To
illustrate the use of classification trees, Chapter 5 of this thesis will describe
how they can assist vector quantization. The observation vector y which is
the input to the hidden Markov models is the concatenation of the y;s, or of
the codewords to which vector quantization has mapped them.

The front end of a typical probabilistic system incorporates many ideas
developed for template-based and knowledge-based systems. The choice of
parameters usually reflects some form of auditory modeling, thus building
on the work of Seneff and Zue. However, most systems do not attempt to
replicate all the stages of processing carried out by the human ear.

An important recent development in the front end is the use of dynamic
parameters describing how other parameters are changing - in other words,
the use of first and second derivatives. This is a way of letting the front end
model longer-term trends that are poorly modeled by hidden Markov models;
it can be seen as highlighting one of the major flaws of HMMs [Norm91 pg.
7}. HMMs assume that each frame of the acoustic signal, covering about a
centisecond, is statistically independent of the previous one - a completely
unrealistic assumption. Thus, the front end can be designed in a way that
helps compensate for some of the flaws in the next processing stage.

2.4.2 Hidden Markov Models

HMMs lie at the core of a probabilistic speech recognition system. Once the
system designer has chosen the speech unit - possibly the word, possibly a
subword uni such as the phoneme - every example of that unit is modeled by
means of a finite-state graph and a different output distribution for each state
in the graph. Speaker variability is modeled in two ways: by means of the
output distribution associated with each state, and by means of probabilities
for transitions between states. Each frame of the acoustic signal corresponds
to an output from some state. The output distributions for states enable
the model to deal with such phenomena as different pronunciations for part
of a word, while the transition probabilities enable the model to deal with
variations in timing such as skipped, lengthened, ot truncated syllables of a
word (if the unit is the word).

Figure 2.5 shows an HMM for the word “sauce”. This tnodel was formed
by concatenating models for “s” and “ao”. Given such a model and an
observation vector y, it is possible to calculate the probability P{“sauce”|y)
that an attempt to pronounce the word “sauce” gave rise to y.

The popularity of HMMs is partly due to their surpriingly high level of
recognition accuracy, and partly to the tractability of the algorithms asso-
ciated with HMMs. The accuracy of HMMs is surprising because, as men-
tioned earlier, each frame of data is assumed “o be independent of the pre-
vious frame (given the state). The reader interested in the details of the
algorithms for training and using HMMs should consult the lucid description
given in [RabWLJ.

HMMs can be classified as discrete, continuous, or semi-continuous; these
terms refer to the modeling of the output distributions. Discrete HMMs are
easier to implement than continuous HMMs, while the latter offer more de-
grees of freedom. Semi-continuous HMMs use mixtures of continuous distri-
butions: each state's output is modeled by selecting discrete values specifying
the weights to be assigned to each of the continuous densities (which are avail-
able to all states). Semi-continuous HMMs seem to combine the advantages
of the other two types, and are becoming increasingly popular. {Norm91 pp.
38-43] defines and discusses all three HMM types. 7

There are some problems with HMMs. Nothing in their structure suggests -
a speaker is unlikely to alternate from falsetto to bass, or from the accent of
Bela Lugosi to that of Nelson Mandela, at each frame boundary. HMMs also

24

Figurc 2.5: HMM for “sauce” [Norm91, pg.22]

vield erroneous predictions for the overall timing of a unit - for instance, an
HMM for a word will predict that very [ast or very slow pronunciations of the
word are much more unlikely than they actually are (the estimated average
time will be about right). As a result, there is a tendency to smuggle long-
term cétistraints into other parts of an HMM-based system, such as the front
end and the choice of units. This is only a partial solution, and attempts to

turn HMMs into better models without losing their advantages are an active
area of research.

2.4.3 Choosing the Units

For an application with a small vocabulary, it makes sense to build an HMM
for each word in the vocabulary. As vocabulary size grows, it becomes more
and more arduous to obtain enough training data for each word. The de-
signer of a large vocabulary system would naturally consider making the
phoneme the basic unit of the system, with word models built by concate-
nating phoneme HMMs.

Unfortunately, the acoustic realization of a phoneme is extremely vari-
able: it depends on the accent, the speaking rate, the phonetic context,
stress, and a number of other factors. Many system designers have attained
good results by defining units that are more specific than phonemes and more
general than words: phonemes in context. For instance, triphone modeling
involves building an HMM for each phoneme given the previous and follow-
ing phoneme. Since there are roughly 40" phonemes in English, this could
conceivably involve building 40° = 64000 different HMMs. Fortunately, the
number of triphones that actually occur is often much smaller. An example
is the Resource Management application which involves somewhere between
2000 and 8000 t.lphones depending on whether one considers only intra-word
or also inter-word contexts [Norm91 pg. 10].

Many variants of this basic idea have been tried. For instance, on the
grounds that function words like articles, prepositions, and conjunctions
cause a disproportionate number of recognition errors, Kai-Fu Lee introduced
models sBeciﬁc to function words. Part of Chapter 5 describes an application
of classification trees to derivation of models for phonemes in context. All
these context-dependent subword models are an expression within the prob-

abilistic approach of a theme mentioned by Zue in the article cited above
[ZueWL].

2.4.4 The Language Model

Rlecall that the language model specifies the a priori probability P(w) of the
word sequence w. The knowledge-based systems described earlier tended to
define possible word sequences by means of a finite-state grammar, effectively
assigning a probability of 0 to almost all possible word sequences.

[t was the IBM speech recognition team headed by Dr. Frederick Jelinek
that initiated the study of more flexible language models, perhaps because the
tearn was working on a dictation system rather than a speech understanding
system. Speech understanding systems tend to make the people buiiding
them believe, usually wrongly, that they know in advance how people will
phrase their requests to the system. Builders of a dictation system know
that the users will employ a wide variety of linguistic constructions that are
impossible to predict in advance.

The IBM trigram model for dictation predicts the probability of occur-
rence of a word w; on the basis of the identity of the two words w;_o, w;_;
that preceded it. To do this, one analyses a huge training corpus of docu-
ments, which should be similar in topic and vocabulary to the documents
which will be dictated to the completed system. The analysis involves count-
ing all three-word sequences. The trigram model estimates the probabil-
ity P(w;|wi—z,w;~;) that the current word is w;, given the two preceding
words, by the frequency f(w;|w;_2,w;—1) with which w; immediately followed
wi_2, wi— in the training corpus. Since three-word sequences not encoun-
tered in the training corpus will inevitably occur and should not be assigned a
probability of 0, in practice the trigram frequencies are interpolated with bi-
gram frequencies and unigram {requencies (the frequency of individual words
in the corpus).

This kind of language model, often criticized as childishly simplistic by
academic linguists, has proven astonishingly successful and durable for prac-
tical speech recognition. Many variants exist. For instance, the ¢riPOS model
“forgets” the exact identity of the preceding two words and remembers only
their parts of speech (POS), i.e. whether they were zouns, verbs, adjectives,
or whatever. The estimated probability of the cu:ient word is the product
of its probability within a given POS with the probability of that POS given
the two preceding ones. If g; represents the POS of the ith word, we have :

Pwilgi-2,gi-1) = Pwilgi) P(gilgi-2s gi-1)-

27

N

The trigram model performs best if more than two or three million words of
training text are available. If not, other models like the triPOS model or a
bigram model estimating P(w;|w;-,) are preferable. It has been shown that a
triPQS model can be significantly impro' .1 by assigning higher probabilities
to words that occur in the course of the recognition task [Kuh90,Kuh92].

The effectiveness of a language model is expressed by the reduction in
perplezity it permits. When a language model has perplexity S for a given
sequence of words w, recognizing w is approximately as difficult as if, at any
time, there were S equiprobable word candidates. The perplexity is defined
as S(w) = P(w)~'/", where n is the number of avords in w.

These simple language models, combined with HMMSs for acoustic mod-
eling, yield such rapid, robust and accurate lexical search algorithms that
they are now erqployed in many speech understanding systems, as well as
in dictation Systems., This has occurred despite the original belief of most
bpeech understanding researchers that speech understanding scenarios would
vield tighter constraints based on syntactic and semantic models. Chapter
3 describes some speech understanding systems for ATIS in which syntactic
and semantic constraints are applied only at the last stage of the search; they
come into play after the knowledge contained in a simple language model and
the HMMs has been applied to generate a small number of word sequence
hypotheses.

2.4.5 !_;,exical Search and the N-Best Hypotheses

Recall that the task of the speech recognition system is to find w maximizing
P(w)P(y|w), where P(w) is calculated by the language model, P(y|w) by
concatenated HMMs. How can the search for the optimal w be carried out
efficiently?

Most systems use Viterbi search to find the best path through the con-

. catenation of speech unit models. Viterbi search stores a trellis of paths
“and their scores, where the score is some function (usually logarithmic) of

the probablhty of the path so far. Viterbi search does not yield the to-

““tal probablllty of a given word sequence: it discards low-probability paths

through the graph of concatenated HMMs. In principle, the probability of a
word sequence should be obtained by summing the probabilities of all pos-
sible paths through that word sequence, including the most unlikely. Thus,
Viterbi-search may lose the path with the highest score. Furthermore, the

28

S

imperfect nature of the acoustic models implies that even the word sequence
with the highest score may not be identical to the word sequence actually
nitered by the user. Thus, it is prudent to find other word sequences that
are “close” in some sense to the top word sequence found by Viterbi.

In 1990, F. Soong and E.-F. Huang devised an ingenious two-pass algo-
rithm that employs the scores stored in the Viterbi trellis as the basis for
a low-cost A" backward search that generates the N best path hypotheses
[S0090]. A" search is a strategy that always extends the path with the lowest
value of f(n), where n is a node and f(n) = g(n) + h(n). Here g(n) is the
known cost of the path from the start to n, and h(n) is a heuristic estimate
of the cost of extending a path from n to the finish. k(n) is called admis-
sible if it is guaranteed never to overestimate the cost from n to the finish
- in other words, if it is a lower bound. If h(n) is admissible, the strategy
of expanding the node with the lowest value of f(n) can never cause us to
overlook the lowest-cost path. Even if the wrong path is extended for a while,
sooner or later its value of g(n) is guaranteed to exceed the value at an open
node on the best path. Note that if A(n) is set to 0, it is admissible but leads
to an inefficient breadth-first search; the more closely h(n) approaches from
below the true cost of the remaining path to the finish, the more efficient the
A" search.

Soong and Huang perceived that if the Viterbi scores generated in the
forward search at each time i are remembered, they yield exact scores h(n)
for an A* search beginning at the end of the utterance and moving backwards
in time. In this manner, the)V best word sequences can be generated for any
reasonable value of N at only a tiny additional computational cost over the
amount of processing required to find the best word sequence.

Real-time systems often employ beam search or festmatch techniques to
speed up Viterbi lexical search {Norm92 pp. 43-44]. In a traditional beam
search (as in the HARPY system), patbs whose probability falls below a
certain threshold are pruned; the threshold is usually the probability P of
the best path, minus some 4. The CRIM group is exploring the possibility
of a more intelligent beam search that would allow & to increase in regions
of uncertainty, and decrease in regions of greater certainty. Fastmatch is
a look-ahead technique which identifies the most promising extensions of a
path. Both techniques make search inadmissible, since they make it possible
for the best path to be pruned. Provided this happens seldom, it is a price
worth paying for real-time performance.

29

2.4.6 The Linguistic Analyzer

There is a surprising degree of consensus among researchers about thie best
overall structure and components for a large vocabulary, continuous speech
recognition system. Details differ, but the description of components and
algorithms given in the preceding subsections could serve as an introduction
to most existing speech recognition systems.

This consensus disappears when one turns a speech recognition system
into a speech understanding system by adding a linguistic analyzer. The
linguistic analyzers of different systems have tended to resemble cach other
very little. In some “loosely coupled” systems the linguistic analyzer remains
aloof during lexical search, but later chooses among the word sequence hy-
potheses; in “tightly coupled” systems, the linguistic analyzer is intimately
linked to lexical search. Some linguistic analyzers have an ad hoc flavour,
others are firmly rooted in one of a variety of competing syntactic theories.
Nevertheless, one of the themes of Chapter 3 is the emergence of a tentative
convergence between linguistic analyzers, driven by the practical demands of
the ATIS task and occurring despite considerable divergence of opinion at
the theoretical level.

Differences between linguistic analyzers have arisen partly because of the
variety of tasks for which speech understanding systems may be designed,
partly because until recently most effort has been focused on other levels
of the system, but mainly because the criteria for judging a speech under-
standing system are nebulous. A good speech recognition system is one that,
other things being equal, recognizes a higher proportion of words than its ri-
vals. What is a good speech understanding system? This question is another
underlying theme in Chapter 3.

30

Chapter 3

Speech Understanding
Systems for the ATIS Task

The criterion of the scientific status of a theory is its falsifia-
bility, or refutability, or testability.

Karl Popper, Conjectures and Refutations [Pop69]

3.1 Introduction

Many branches of natural language processing have made little progress to-
wards building practical systems in the last decade. Speech recognition is the
exception, even though it does not enjoy the luxury of working with typed
input. Why has speech recognition made such rapid strides, while related
fields such as machine translation have been relatively stagnant?

Apologists for other branches of natural processing would argue that the
problems they must deal with are harder than they look, and that much
of the improvement in speech recognizer performance has come from better
hardware rather than deeper understanding of the problem. According to the
latter argument, improved performance was inevitable - speech recognition
systems were pushed forward by favourable technological winds.

I would argue otherwise. Improvements in speech recognizer performance
were not technologically inevitable. Rather, the reasons for the successes of
speech recognition technology are cultural. Researchers in this field have
always tried to build complete systems that tackle a large, clearly defined

31

task, rather than toy systems that handle a few examples made up by the
designer: what might be called an “engineering” rather than an “academic”
approach.

Even more important, they have been willing to compare their systems
with those of other researchers by evaluating performance on agreed-on bench-
mark tasks. These include digit recognition in continuous speech [Car92], the
Resource Management task involving read speech with a 1000-word vocabu-
lary [Pri88], and more recently ATIS. Much of the credit for this must go to
agencies like ARPA and its successor DARPA, which funded such evaluations
and many of the groups taking part in them.

A crucial aspect of the benchmark evaluations is that they involve two
similar but disjoint data sets: the training set and the test set. The training
set is released to system designers some time before the evaluation, and gives
them a chance to fine-tune their systems. The test set is used only for
testing, and only results on this set are considered valid indicators of system
performance.

This evaluation methodology may appear ohvious, but until recently it
has not been applied in other branches of natural language processing. [was
once present at a frank and extremely illuminating talk on machine trans-
lation given by Alan Melby [Mel88]. Melby noted the tendency of designers
of machine translation systems to illustrate the performance of their systems
with a single example that has been intensively studied: *Almost any ma-
chine translation system can produce brilliant results when the same text is
run through it again and again with successive tuning. The power of tuning
is well-known and has been given a name in Al research, namely, defining a
microworld... In a machine translation system, difficulties arise when a tuned
system is applied to a new text” [ibid, pg. 412].

At the end of his talk, Melby proposed the establishment of benchmark
evaluations for machine translation systems. System designers would be
given many details about the passage to be translated in advance - the source
language, the target language, the vocabulary and the topic - but not the
passage itself. No “tuning” of the system or “post-editing” of the translations
would be permitted during the test; every translation would be scored by a
jury of professional translators. Melby’s proposal was received with hostility

“by an audience of experts in machine translation, who managed to devise an

ingenious collection of reasons for rejecting it. A cynic might conclude that
they were worried about the impact of such an evaluation on their funding.

32

The philosopher Karl Popper maintained [Pop69)] that a theory could only
he called scientific if it exposed itself to experimental refutation. Thus, a
good physicist can devise hundreds of experiments that, if the results turned
out a certain way, would prove Einstein's theory of relativity wrong. So
far, every such experiment has failed to refute the theory, but it might have
been otherwise. On the other hand, it is impossible to imagine an experiment
that would convince an ardent Freudian or a believer in astrology that his pet
theory is wrong. A scientific theory makes precise predictions and thus runs
the risk of being proved wrong. In fact, scientific progress depends to a large
extent on the refutation of good theories, which leads to the development
of even better ones. A pseudo-scientific theory like astrology can never be
proved wrong, and may therefore linger for millennia.

Analogously, progress in natural language processing depends on objec-
tive tests of system performance. Without such tests, the best ideas will not
win out; instead, victory will go to those ideas whose proponents are the most
eloquent, charming or influential. Speech recognition system performance is
casy to measure - the percentage of words correct is an obvious metric. It is
much harder to devise an objective metric for the performance of a speech
understanding system. Thus, as speech recognition performance improved
and the attention of researchers shifted towards speech understanding, there
was a danger that speech researchers would acquire the bad habits of their
colleagues in other branches of natural language processing and abandon
common benchmarks.

Fortunately, this has not happened. “There has been a growing apprecia-
tion in the speech recognition community of the importance of standards for
reporting performance. The availability of standard databases and protocols
for evaluation has been an important component in progress in the field and
in the sharing of new ideas. Progress toward evaluating spoken language
systeins, like the technology itself, is beginning to emerge” [Pri90 pg. 91]. In
fact, researchers in other branches of natural language processing have begun
to develop benchmarks for their own domains [Sun91].

The Air Travel Information Service task domain, known as ATIS, is a
benchmark for speech understanding. The next section describes it in detail.
Every participating group has criticised one or more aspects of ATIS, and
indeed, parts of the ATIS definition are bizarre or inept. There is a con-
cern that participating groups spend too much time optimising their systems
to deal with the idiosyncrasies of ATIS, rather than breaking new ground.

33

Nevertheless, the existence of a standard procedure for comparing different

systems, in which many of the most important speech understanding groups
take part, is invaluable.

3.2 The Evolution of ATIS

3.2.1 Original Definition of ATIS

An article by P. Price [Pri90] gives a good description of the ATIS benchmark
as originally conceived. The main features were described as follows:

¢ The ultimate goal is evaluation of systems for understanding speaker in-

dependent, spontaneous speech with a medium-sized vocabulary (around
1000 words). :

¢ Independence of the training and test sets, as mentioned above. This
ensures that the system has learnt some general rules from the training
set, and it focuses the attention of the system developer on linguistic
phenomena in proportion to their frequency of occurrence.

¢ Quantitative, automated evaluation methods rather than qualitative,
subjective methods. Thus, it is better to devise measures such as the
percentage of correct answers, which can be evaluated automatically by
comparing system-generated answers with some standard, rather than
measures of nebulous qualities like user-friendliness.

¢ The stress is on “black box” rather than “glass box” evaluation of the
two components of a speech understanding system: the speech recog-
nition component and the linguistic analyzer. That is, the overall per-
formance of each component is more important than the performance
of its parts. Groups can choose any combination of three evaluations:

1. a test of the speech recognition component on spoken utterances
using percentage of words correct as the metric;

2. a test of the linguistic analyzer in stand-alone mode on transcripts
of utterances using a function of the proportion of correct database
queries generated as the metric;

34

3. a test of the complete speech understanding system on spoken
ntterances using the database query metric.

¢ A limited domain which is a plausible application for speech under-
standing systems.

¢ A “Wizard of Oz” data collection scenario designed to simulate the
conditions under which the speech understanding system will be used.
The subject believes he or she is interacting with a speech understand-
ing system. In fact, a concealed transcriber wizard types what the
user has said and sends it to the screen display, while a database wiz-
ard enters the appropriate database command and causes the answer
(columns and rows from the database) to appear on the screen below
the transcript.

¢ Classification of the collected utterances as acceptable or unacceptable.
Unacceptable utterances include those that are grossly ill-formed, am-
biguous, or unanswerable, and originally included those that depend on
previous utterances (context dependent). System designers may train
on any or none of these classes of data from the training set; only
acceptable utterances are used for testing.

® To obtain reference answers for both the training and test data sets, the
database queries typed in by the database wizard during the session
with the user were reviewed and modified if necessary. A program
to compare the answers generated at the test sites with the reference
answer for each utterance was developed.

There were several reasons for choosing air travel as the domain:

¢ A real, widely-used database, the Official Airline Guide, was available;

¢ The domain includes a variety of topics, such as schedules and fares,
the services available on different flights, information about airplanes,
and ground transportation;

¢ A wide pool of users is familiar with the domain;

¢ The domain can be scaled as the technology becomes more advanced
- that is, one can imagine the same domain supporting more sophisti-
cated man-machine spoken interaction;

35

¢ The domain resembles many other possible applications of specch un-
derstanding.

3.2.2 Criticisms of ATIS

The first evaluation took place in June 1990, the second in February 1991, and
the third in February 1992, Of systems participating in the first evaluation,
only the CMU Phoenix system was tested on recorded utterances as well
as on transcripts; the linguistic analyzers of all other systems were tested
in stand-alone mode as text processors. Since then, the number of groups
participating in all three tests-.of the speech recognition component alone, of
the linguistic analyzer alone, and of the complete speech recognition system
- has increased at each evaluation.

Participating groups have criticised several aspects of the original dehi-
nition of ATIS; see the discussion in [Pol92]. Some of these criticisms have
already been dealt with, others may be resolved in the near future. The
criticisms are as follows:

8 Recall that probabilistic models require large amounts of data for es-
timation of parameter values. Since researchers in speech recognition
began applying probabilistic approaches at most levels of their systems,
the complaint “We need more training data!” has become a cliché in
the speech recognition community. All the groups participating in the
first two ATIS evaluations complained that inter-speaker variability in
accent, lexical choice, syntax, and spontaneous speech characteristics
such as frequency and type of interjections was far too great to be
adequately represented by the 1000 or so utterances in the training
set. This problem has now been resolved by MADCOW, a project that
gathers and pools data from many participating sites [Hir92]. As of
February 1992, 10,000 utterances from 280 speakers at five sites had
been collected, with 1,000 utterances set aside for the February 1992
test and the same number for the November 1993 test.

¢ There is a serious problem with the “wizard” scenario described above:
the wizard is much smarter than a machine. He will answer questions a
real speech understanding system could not, and thus encourage users
to become increasingly bolder and idiomatic in their use of language as
they interact with him. Transcripts from the user-wizard interaction

36

will contain little “error recovery” behaviour, though error recovery
will be very important for a real speech understanding system. Clearly,
the wizard scenario should only be employed in the first phase of an
iterative bootstrapping effort to build speech understanding systems;
in the later phases, the systems themselves should be used to collect
data. This is exactly what has happened. To obtain the February 1992
MADBCOW data, two of the groups employed the complete system to
convert utterances into database queries, while the other three groups
employed a transcription wizard to type the sequence of words into the
linguistic analyzer.

Some sites complained that there were too many words in the test
sentences that were absent from the training sentences. This complaint
seems unreasonable: in the real world, different people make different
lexical choices.

ATIS speech is recorded under almost ideal conditions, with no back-
ground noise. Thus, speech recognition performance on ATIS data gives
no indication of how robust a system would be in a real-life, noisy set-
ting, such as an airport or travel agent’s office. There are no indications
that this aspect of ATIS will be modified.

Real-time performance is not one of the ATIS criteria; as far as I know,
BBN is the only site that claims to have achieved it. Presumably, it
was felt that inclusion of this criterion would unduly reward groups
that could afford the most expensive signal-processing hardware.

There has been a continuing struggle over the definition of correct an-
swers. Since the first evaluation, the release of each set of training data
- has been accompanied by a document called “Principles of Interpreta-
tion”. Some examples of rules found in this document: “around” X
a.m. means from (X — 1) : 45 to X : 15; a snack counts as a meal
if seriiecone wants to see “flights with meals”; “flights between A and
B"“means only flights from A to B. Questions beginning “how many...”
may be answered either literally with a number or more pragmatically
with a display of data. Similarly, some questions may be answered
literally with “yes” or “no”,.or-pragmatically. The document has not
eliminated all controversy about correct answers, but it has kept it

37

within reasonable bounds. Disputes about how much information to
provide in response to a question have been resolved since February
1992 by providing minimum and maximum reference answers - if the
system generates all the information in the minimum answer and no
more than the information in the maximum answer, the response is
marked correct.

What penalty should be assigned to a partial'answer, to a wrong answer
and to no answer? This has been one of the hottest issues in the ATIS
community. At present, the main metric for evaluating the output of
the linguistic analyzer is the weighted error, defined as (2 * % false +
%no.-answer). Many groups feel that this excessively penalizes answers
that are almost right, to the detriment of user-friendliness. Consider
the following question-response pair:

LIST FLIGHTS FROM BOSTON TO PITTSBURGH LEAV-
ING AT 3 PM

Here are flights from Boston to Pittsburgh:
(displays flights from Boston to Pittsburgh)

This would earn twice the penalty of the response “No answer” because
the detail about 3 pm was missed, even though the flights displayed on
the screen include those the user wanted to know about. There does not,
seem to be any consensus on this issue, so the current scoring scheme
will probably survive.

Almost a third of the utterances collected for the first evaluation were
questions about the meanings of codes displayed on the screen, such
as “What does restriction AP/80 mean?” The original screen displays
were cluttered and cryptic; all the user received in response to a ques-
tion was the appropriate rows and columns from the Official Airline
Guide, Since the QOAG is designed to be accessed by travel agents
rather than untrained members of the public, the users’ bewilderment
should have been predicted. In more recent releases, the column head-
ings and codes have been made much easier to understand, and the
proportion of questions about them has decreased dramatically. Nev-
ertheless, some groups feel that the system responses should be made

N

38

far inore user-friendly. As described in the next section, MIT has de-
vised a screen display based on an airline ticket for a dialogue version of
ATIS; AT&T’s ATIS system outputs synthesized speech summarizing
the result of the database query.

Although users are given scenarios before interacting with the system,
these are complicated, vague, and often seem to have little to do with
the resulting utterances. Questions found in the first release include
“What is the payload of an African Swallow?” and “Show me Daphne’s
itinerary”. It was never clear whether the user was a member of the
public or a travel agent. The mode of communication was unrealistic:
most members of the public would find it convenient to telephone for
air travel information, rather than leave their homes and offices to
talk to a screen. (The AT&T group is now working on a telephone
version of its ATIS system). Finally, since the system cannot pretend
to take bookings or sell tickets, an excellent opportunity for purposeful
dialogue has been lost; many interactions give the impression of aimless

'd

chatter. The MIT dialogue version takes bookings, but is not part of
the ATIS benchmark evaluation - unlike the main MIT version. In
general, though sites participating in MADCOW have some liberty to
define their own scenarios, the resulting utterances still seem somewhat
unrelated to them.

The main cause of the irrelevance of the scenarios is that ATIS bench-
mark systems are forbidden to engage users in dialogue. One of sev-
eral negative results of this policy is that users currently try to cram
linguistically unnatural amounts of information into a single question,
because they know the system cannot ask follow-up questions. It seems
absurd to cripple the systems in this manner, but there are good ad-«
ministrative reasons for it. Currently, recorded utterances are sent
to the participating sites on CD-ROMs for training and testing; this
protocol does not accommodate dialogue. User utterances that refer
to previous utterances, such as “show me those flights again except
for the ones on United” are allowed, but they are labielled ‘D’ (for
“context-dependent”) to distinguish them from the stand-alone ‘A’ (for
“acceptable”) utterances. If the ability to carry out dialogue were an
ATIS criterion, real-time or near real-time performance would become

39

obligatory, giving an unfair advantage to groups with the most ex-
pensive hardware. Furthermore, some groups piefer the evaluation of
non-dialogue systems because it is more “objective” - the performance
criteria for a dialogue system are unclear.

¢ The opposite point of view also exists. According to this point of view,
the current “objective” criteria should be supplemented by more “sub-
jective” criteria that attempt to measure the effectiveness and usecr-
friendliness of a speech understanding system. Like the closely related
issue of dialogue, this remains unresolved.

3.2.3 The Future of ATIS

Two major, interrelated issues were mentioned above - criteria that mea-
sure effectiveness and user satisfaction with a system, and dialogue. These
issues are discussed in an interesting paper by members of the MIT group
[Pol92]). The MIT researchers have carried out experiments exploring new
performance metrics for the linguistic analyzer. The metrics fell into two
categories: o

1. Metrics for end-to-end evaluation, i.e. for measuring task completion
effectiveness. Subjects were asked to discover a certain fact by ques-
tioning the system; wlien they had discovered it, they were told to say
“End scenario. The answer is ...” and then give the answer. The
metrics included the number of user queries before task completion,

" the number of successful and unsuccessful (“No answer”) queries, the
number of times the task as a whole was completed successfully, and
the task completion times. ’

2. Metrics for log file evaluation. Pairs of subject queries and system
responses were extracted from log files; seven evaluators then rated the
query as clear, unclear, or unintelligible, and the system response as
correct, partially correct, incorrect, or “error message”. Reassuringly,
there was a high degree of consensus among the evaluators.

The MIT researchers then conducted a more ambitious experiment de-
signed to compare two MIT linguistic analyzers, the full parse system and
. the robust parse system (to be described in a later section). Subjects took

Ry

40

,j,’f‘

cach of these through four scenarios. All the metrics mentioned above were
applied to the interactions between the subjects and the two systems, along
with a metric for user satisfaction - subjects were asked which of the two
systems they preferred. All these metrics favoured the same system on all
scenarios (the robust one) except for one anomalous scenario.

The importance of these experiments is that they suggest realistic meth-
ods for evaluating the effectiveness and user-friendliness of a speech under-
standing system in a problem-solving context. The strong correlation be-
tween rmetrics is reassuring; it suggests that they all measure aspects of the
same phenomenon. Adoption of these or similar metrics might remove the

—anain objection to including dialogue systems in ATIS: the difficulty of objec-
“tively evaluating such systems. However, one would have to show that they

can be used to. compare completely different systems, as well as different
versions of the same system.

This is precisely the question addressed in [Pri92], which describes an ex-
ercise to compare the performance of the MIT and SRI systems. To eliminate
the problem of user variability, the design of the exercise was within-subject;
that is, each user assesses both systems. Half the users would work with the
SRI system first and then the MIT system, while the other half would work
with the systems in the opposite order. The main difficulty was the need
to have both systems running in the same place at the same time. Hard-
ware, software, and licensing compatibility problems prevented this from
happening. As a compromise, the evaluation ultimately pitted the SRI sys-
tem against a hybrid system made up of the SRI speech recognizer and the
MIT linguistic analyzer.

The experimental subjects were asked to play out two scenarios, A and
B, on each of the two systems. The metrics for the evaluation were similar
to those:employed in the MIT experiments:

¢ User satisfaction, obtained by asking the subject to score his satisfac-
tion with the system on a scale from 1 to 5; -

¢ Correctness of the answers extracted by the subject from the system;

¢ Total time to cornplete the scenario;
o Waiting time between “he sub _]ect’s utterange of his ﬁ t question a}p\d
the system’s response;, . A L

V=

B 41

\\Q§_

i

i

¢ User response time (from appearance of the system’s response to the
subject’s next utterance);

¢ Recognition word error rate;
¢ Frequency and type of diagnostic error messages.

#The authors of [Pri92] stress the importance of finding metrics for inter-
altive systems that reflect user satisfaction and user efliciency, and the need
for a “reality check™ on the role of the current ATIS metrics in promoting
technological progress. Although within-subject experimental design is the
optimum, the MIT-SRI exercise showed that this might pose practical dif-
ficulties. The authors therefore suggest log file evaluation or evaliation of
taped subject-system interactions by a neutral * Jury ' of experts as another
worthwhile approach.

Many of the arguments for new metrics that mlght allow dialogue systems
to be included in ATIS benchmark tests come from researchers in the MIT
group. This may have something to do with the existence of an impressive,
ATIS-related dialogue system built by these researchers [Sen91] This system
builds on earlier work on the MIT VOYAGER system [Zue91]. Figure 3.1
shows part_of a dialogue between a user trying to make a-round-trip flight
reservation and ithe MIT system (taken from [Sen91 pg. 357]). Note that
the dialogue is mixed-initiative; the system can ask clarificatory questions,
but responds smoothly if the user chooses to incorporate additional answers
in his answer. As the MIT researchers point out, the system thus occupies
a middle ground between systems that passively respond to user requests
B " without asking questions (as in the ATIS benchmarks), and menu-driven
systems that allow the user a very narrow range of choice. The system also
has the capability (not shown in the example) of asking the user to repeat
a request by printing out “I’m sorry, I had trouble understandmg that” or a
similar dnagnostlc 2 ma

The system has a mechanism for remembermg information mentioned
earlier and interpreting anaphoric references llke “the third one”. To allow
this, it keeps a history table containing such’ obJects as flights a.nd dates,
represented as frames, as well as the current txcket prev:ously booked tickets,
and previously displayed tables. Another nice feature of thé-system is that at
a certain point in the flight reservation scenario, a facsimile of a partly filled-
. in airline ticket appears on the screen, as shown in figure 3.2. This enables

e

f

42 ‘;‘; .

N

S

[

Subject: | WANT TO GO TO SAN FRANCISCO \\
ATIS: Where {rom?

Subject: BOSTON
ATIS: What date will you be fravelling on?

Subject: I'LL BE LEAVING BOSTON NEXT SUNDAY
AND RETURNING THE FOLLOWING TUESDAY
ATIS:; These are the flights from Boston to San Francisco

on Sunday January 6:

AIRLINE NUMBER FROM TO DEPARTURE ARRIVAL STOPS
United 21 BOS SFO &00am 11:31am 0
United 343 BOS SFO 8:40am 1:36 pm 1

AA 813 BOS SFO 11:49am 5:58pm 1
Cont 1765 BOS SFO 5:40pm 11:10pm 1
United 93 BOS SFO 5:45pm 9:27 pm 0
TWA 61 BOS SFO 6:10pm 9:37 pm 0

Subject: WHERE DOES THE THIRD ONE STOP
ATIS: American flight 813 from Boston to San Francisco
on Sunday January 6 stops in the following places:

AIRLINE NUMBER FROM TO DEPARTURE ARRIVAL STOPS AIRPORT
\AA 813 BOS SFO 11:49am 5:58pm FW

Figure 3.1: Simulated Dialogue with MIT Dialogue System [Sen91, pg.357]

43

I |

Figure 3.2: Ticket Facsimile shown by MIT Dialogue System {Sen91, pg.357]

the user to see what further information the system needs from him, and
whether there have been any misunderstandings that need to be corrected.

In developing the dialogue version of their ATIS system, the MIT re-
searchers concentrated on the goal-oriented task of making flight reservations,
and ignored potential dialogues focusing on ground transportation, aircraft
capacity, and so on that occur frequently in the ATIS training and test data.
They argue that flight reservation is a well-structured goal with well-defined
subgoals that is comprehensible to a large pool of untrained users, which
forms an ideal testbed for dialogue systems.

If, as the MIT researchers hope, the ATIS benchmarks are redefined to in-
clude dialogue systems, the long-term effect on the speech community would

44

o

be dramatic. Up to the present, research effort has focused on improving the
percentage of words correctly recognized. Although this would remain an
important goal (an indispensable one for dictation systems), attention would
shift to dialogue as a strategy for recovering from misrecognition. Language
models would take dialogue state into account; indeed, the study of discourse
phenomena would become central at most levels of speech ecognition. Thus,
the MIT dialogue system may be a preview of the future of ATIS.

3.3 Linguistic Analyzers for:ATIS

The remainder of this chapter describes the linguistic analyzers that had
been developed for the ATIS task at the time of the February 1992 DARPA
Workshop [DAR92), the latest date for which published material is available.

3.3.1 The SRI System

SRI's Template Matcher [Jack9l, App92], is the linguistic analyzer for a
speech understanding system closest to the keyword-based one described in
this thesis. The input to the Template Matcher is the top hypothesis gen-
erated by the speech recognition component, which uses a‘bigram language
model. Interestingly, SRI went into the first ATIS evaluation with a unifica-
tion grammar-based parser [M0o90]. By the time of the next ATIS evalua-
tion, the SRI group had built the Template Matcher, based on very different

;- principles. It simply tries to fill slots in frame-like templates. For the 1991

G

evaluation, there were 8 templates: these dealt with flights, fares, ground
transportation, meanings of codes and headings, aircraft, cities, airlines and
airports. The different templates compete with each other on each utterance;
all are scored, and the template with the best score generates the database
query (provided its score is greater than a certain “cut-off”).” Slots are filled
by looking through the utterance for certain phrases and words.

Here is a typical example, tal\en from [Jack91 pg 191]. For the utterance

Show me all the Umted flights Boston to Da.lla.s nonstop on the
third of November leaving after four in the afternoon

the following flight template would be generated:

o

[flight, [stops,nonstop],
fairline,UA],
[origin,BOSTON],
[destination,DALLAS],
[departing_after,[1600]],
[date, [november,3,current_year]]].

Words in the utterance may contribute to selection and filling of a tem-
plate in various ways:

¢ They may help to identify the template - the occurrence of the word

“downtown” is a good indicator of the ground transportation template;
:). T
¢ They may fill a slot - like “Boston™ and “Dallas” in the example;

¢ They may help to indicate what slot a phrase goes in - like “from” or
“to” preceding a slot-filling phrase.

N

However, many words are irrelevant: “please”, “show me”, “would you”, and
so on. The Template Matcher simply skips over these.

The score for a template is basically the percentage of words in the ut-
terance that contribute to filling the template, However, certain keywords
that are strongly correlated with a particular template will strongly boost
the sccre of that template, if they occur in the utterance. For instance, the
occurrence of “how much”, “fare”, or “price” boosts the score of the fare tem-
plate; the occurrence of “what is”, “explain”, or “define” boosts the score
of the meaning template. However, if the template has no slots filled, it is
assigned a score of zero; or if the system has tried to assign two or more
values to the same slot in the template, it is aborted.

If the best score does not exceed a certain numerical “cut-off”, the system
responds with “no answer” rather than with the template that yielded the
best score. Recall that ATIS scoring penalizes wrong answers rather harshly,
so that “no answer” is often a preferable response; to optimize the perfor-
manc? of their system on tests, the SRI researchers set the cnt-off to the

_value that yielded the best results on training data.

For thie 1991 evaluation, the SRI researchers called the Template Matcher
when the conventional parser failed; for the 1992 evaluation, they scrapped
the conventional parser and kept the Template Matcher [App92]. Several

46 [i -

~J

improvements were made in the Template Matcher. The 1991 version could
only fill slots with fixed words or phrases - it had no ability to deal with
general phrase categories like numbers, dates, and times. In the 1992 version,
phrases falling into these categories in the incoming utterance are parsed by
special grammars, and are then put into slots by the matcher. Slots are filled
by matching regular expressions - for instance, “from” followed by a city or
airport name would cause the name to be put into the origin slot of the flight
template.

For the 1992 version, the number of templates was increased to 20, and the
number of slots to 110. Templates now contain illocutionary force markers to
note whether the utterance is (for instance) of the “yes-no” or “how much”
type. Special mechanisms deal with certain types of false starts and complex
conjunctions.

The major difference between the 1991 and 1992 versions of the Tem-
plate Matcher is that the latter contains a context handling mechanism for
class ‘D’ (context-dependent) queries; the 1991 version was only designed
to work with class ‘A’ (context-independent, acceptable) queries. As in the
MIT dialogue system, the context handling mechanism allows slots to be
inherited from previous utterances by the same user. Note that if the user’s
first utterance is wrongly interpreted, his subsequent context-dependent ut-
terances may all be correctly recognized yet misunderstood: this might be
called the “getting off on the wrong foot” problem. If systems were allowed
to ask users for confirmation from time to time, this problem would be rel-
atively unimportant. Since the ATIS evaluations do not permit dialogue,
the SRI researchers devised several ingenious mechanisms for preventing the
problem. For instance, when the system gives “no answer” to a query, sub-
sequent context-dependent queries also yield “no answer”, until a query that
sets a completely new context arrives. This strategy yields the best evalu-
ation results azd was consequently adopted for the test, though as the SRI
group points out, “it would be a ridiculous way for a system to behave when
interacting with a real user” [App92]. During MADCOW data collection,
on the other hand, the system generates an answer when possible, on the
ground that users prefer slightly incorrect answers to “I don’t understand”.

The SRI system performed well op-both evaluations. In 1992, it placed
second in both the natural-language-only test on transcripts of utterances
and the spoken language test (in which the output of the SRI recognizer
is analyzed by the Template Matcher) [Pal92]. Tl SRI researchers believe

AT

\\.
.

1
i
~

1

that about 80% of cases where the wrong template was generated could be
remedied within the framework of the Template Matcher - for instance, by
adding a new template or a new slot. The rest would require an approach
that yielded more information about the structure of the sentence. They
conclude that their approach is well-suited to a domain of about the same
complexity as ATIS.

3.3.2 The CMU System

Figure 3.3 shows the structure of PHOENIX, the CMU system’s caseframe
parser [War92, War91, War90]. In many respects, this system is very similar
to SRI’s Template Matcher. As in the SRI system, the input to PHOENIX is
the top hypothesis of the speech recognition component. The system consid-
ers different frames in parallel; the score for a frame is the number of input
words it accounts for. Unlike the SRI system, which aborts a frame if an
attempt is made to overwrite a slot that has already been filled, PHOENIX
allows the overwrite to take place - if a slot is filled several times, the last
slot-filler prevails.

Scored frames generated by PHOENIX are optionally post-processed by
MINDS-II, a “knowledge-based correction module”. In addition to dealing
with context-dependent utterances, this module uses domain knowledge and
syntax to detect erroneous parses, skipped information, and out of domain
requests. For instance, if someone asks “what is the shortest flight from
Dallas to Fort Worth?” this module informs the user that these two cities
share a single airport [You91]. Before deciding between the scored frames
provided by PHOENIX, this module looks at word strings not accounted
for by a given frame to determine if they are important. The module may
also make deductions about information missing from a frame and supply it
before generating the SQL database query.

The official results are very interesting. For the natural language test,
CMU tested the PHOENIX system alone and with the MINDS-II postpro-
cessor. PHOENIX alone obtained the best results of any system participat-
ing; PHOENIX pius MINDS-II performed significantly worse and was beaten
by several other systems [Pal92]. As far as I can tell from the vague word-
ing of [War92} only PHOENIX was used for the spoken language test, with
mediocre results. This is partly due to PHOENIX’s policy of guessing at an
answer whenever possible, rather than returning “No answer”. The CMU

48

i

DSP

Sphinx

'

Error
Correcting
Parser

Dialog-based
Ambiguity
Resolution

'

ATIS
Application

'

Travel
Database

Speech: “show me ... ah ...I want to see all the flights
to Denver after two pm”

digitize: 16 KHz, 16 bit samples

VQ codes: A vector of 3 bytes, each 10 ms

words: “show me [want to see all flights to Denver after two pm™

[list): I want to see
(flights] :all flights

frame: [amive_loc] : to Denver
[depart_time_range): after two pm

{list]: list
.1 [Hights]: flights
canonical forrive _loc]; “DEN"
- [depart_loc): “PIT™
[depant_time_range]: 1400 -2400

select airline_code, flight_number

SQL: from flight_table
where (from_airport="PIT" and to_aijrport ='DEN")
and (departure_time >1400)

Figure 3.3: Structure of the Phoenix System [War91, pg.103]

2

49 o

group’s unofficial spoken language resuits show PHOENIX plus MINDS-II
performing better than PHOENIX alone, but only because MINDS-1I returns
“No answer” on many utterances for which PHOENIX alone would not have
returned “No answer”. MINDS-II actually reduces the proportion of correct
answers.

Thus, the SRI-style template matcher at CMU performs very well on
transcripts (and might perform well on speech if it returned *No answer”
more often in doubtful cases); further processing by an expert system may
actually impair performance.

3.3.3 The BBN System

BBN's speech recognizer is called HARC. Its speech recognition component is
called BYBLOS; its linguistic analyzer is called DELPHI, and is made up of
a chart-based unification parser and a robust fallback module {Kub92]. BBN
has traditionally taken a conventional syntactic approach to language inter-
pretation; the fallback module is a recent addition that was absent during the
February 1991 evaluation [Aus91]. An interesting feature of the chart parser
is that it incorporates information about rule firing probabilities, estimated
from_training data.

The. BBN group has a distinctive approach to the design of spoken lan-
guage systems, characterized by ingenious use of the N best hypotheses. This
approach is described in [Ost91, Schw92]. It involves generating the N best
hypotheses using a fast. simple algorithin, then repeatedly rescoring these
hypotheses by means of more complex, slower algorithms. In this manner,
several different knowledge sources can contribute to the final result without
complicating the control structure or significantly slowing down derivation
of the final result. In the February 1992 tests, BYBLOS first generated an
N-best list using discrete HMMs and a bigram language model, reordered the
list using cross-word-boundary triphone models and semi-continuous HMMs,
then reordered it again using a trigram grammar. .

. The fallback understanding module within DELPHI is called if the unifi-
cation chart parser fails [Sta92]. It tries to generate a robust interpretation
from parsed fragments left over from the first, failed parse. The fallback
module is itself made up of two parts: the Syntactic Combiner and the
Frame Combiner. The Syntactic Combiner uses extended grammatical rules
that can skip over intervening material in an attempt to generate a complete

50

parse. If the attempt fails, the I'rame Combiner tries to fill slots in frames
in a manner similar to that of the systems described above. The main dif-
ference is that because it operates on the output of a parser, it can fill slots
with. complicated phrases such as “the airport closest to Washington DC”.

The Frame Combiner uses many pragmatic rules obtained through study of
training data which could not be defended on abstract grounds. For instance,
interpretations which combine flight and ground transportation information
are ruled out because they are never observed in the data, even though a
query like “Show flights to airports with limousine service” is theoretically
possible.

To the surprise of the BBN researchers, the fallback module worked better
if only the Frame Combiner - but not the Syntactic Combiner - was included.
Both were included in the linguistic analyzer used for the February 1992
benchmarks. In this evaluation, DELPHI did reasonably well on the natural
language test and HARC as a whole did better than any other system on the
spoken language test. According to [Sta92] both results would have been even
better if the version of the system with the Frame Combiner and without the
Syntactic Combiner had been used.

The BBN researchers carried out experiments to determine the best way
of combining the chart parser with the fallback module, given that the output
of the BYBLOS speech recognizer is the N best hypotheses [Kub92]. Note
that if only the parser were used, it would go through the hypotheses from
most to least probable until it found one that was globally parsable; if there
was none, presumably it would return “No answer”. If only the fallback
module were used, it would always generate some interpretation from the top
hypothesis - it has no rejection criterion. Thus, it is not obvious how best
to combine the parser and the fallback module. The BBN group obtained
the best results by setting N to 5. If the chart parser was unable to obtain a
global parse for any of the 5 hypotheses, the fallback component generated
an interpretation (presumably from the best hypothesis).

i
3:3.4 The MIT System

The linguistic analyzer of the MIT system went through the same evolution as
BBN’s DELPHI linguistic analyzer: originally it consisted only of a syntactic
parser, but suhsequently a robust matcher was added as backup when the
parser. fa.lls [Zue92, Sen92]. As in DELPHI, this matcher fills slots in a

"E
o \)
g 2l - s
.\

‘__J

i

frame with parsed phrases found during the failed global parse. Although
the MIT system is capable of generating N best hypotheses which can then
be reordered by the linguistic analyzer, the version of the system used for
testing seems to have employed only the top hypothesis.

Recall that, as described in a previous section, the MIT researchers have
built a version of their system (not used in ATIS evaluations) that carries
out dialogue. The unusual aspect of MIT’s robust matcher is that it exploits
features of the history mechanism built to make dialogue possible. During
dialogue, this history mechanism allows slots to be inherited from previous
utterances. Similarly, the robust matcher “remembers” slots filled earlier in
the same utterance. Only one adjustment was needed to make the history
mechanism suitable for sentence-internal parsing: overwriting of slots was
forbidden (it OU"L['S between utterances in the dialogue version).

Another fea.turevof the MIT system deserves mention. Although a bigram
language model ﬁrst generates 50 N-best hypotheses, these are then reordered
by a probabilistic LR language model based on the grammar used by the
global syntactic parser. This parser has a finite number of states @;. One
can employ it to parse a training corpus of sentences, count the number of
times the word w; occurs when the parser is in state ();, and thus obtain an
estimate of P(w;|Q;). Since the probabilistic LR grammar gives an estimate
of the probability P(Q;|wo, ..., w;—,) that the parser is in state @; at the time

it encounters word w;, the probabilistic LR language model estimates P{w;)
as

P(wllwﬂ'r Ty Wi l ZP(wi|Qj)P(lew0v---1wi—l)'
2

3.3.5 The Paramax-Unisys Systet_ri

The semantic module of this system attempts to instantiate the arguments
of case frame structures called “decompositions” [Nort92, Nort91]=These ar-
guments are assigned themutxc role labels such as agent, patient, and source.
Two types of syntactic constraints apply to role fillers: categorial con-
straints which specify that a role filler must be of a certain grammatical

_ type, and attachment constraints which specify that a role filler must be

within the phrase headed by the predicate of which it is the argument. In
many cases, the attachment constraints turn out to prevent the correct inter-
pretation - for instance, they rule out “What flights do you have to Boston?”

52

i

(the permitted form would be *What flights to Boston do you have?”) and “[
want the $50.00 flight” {costs'apply to fares, not flights}. These attachment
constraints have been relaxed somewhat [Nort91]. However, this system still

* incorporates global, fairly rigid syntactic constraints.

_Recent additions to the system aim at enhancing dialogue. They include
non-monotonic reasoning for making tentative inferences which can be with-
drawn on the basis of new information supplied by the user, resolution of
implicit anaphoric references, and paraphrasing of the user’s utterance, en-
abling the user to check and confirm or correct his request. The performance

- of this system on the last two tests has been very disappointing: only the

AT&T system has performed worse. As we will see, the AT&T system is
based on radically different principles from the other systems; of the more
conventional systems, the Paramax system is the only one that has not in-
corporated some kind of robust matcher.

3.3.6 The AT&T System

The AT&T system is a bold departure from previous approaches to speech
understanding [Pie92a, Pie92b, Pie9l|. The emphasis of the AT&T re-
searchers is on a linguistic analyzer that can carry out unsupervised learning,
reducing the need for human intervention. This emphasis also inspired the
KCT-based linguistic analyzer described in this thesis, although its struc-
ture is that of an SRI-style robust matcher which bears no resemblance to
the AT&T system.

Figure 3.4 shows the structure of the AT&T system. A hasty reading of
this group’s papers might give the impression that almost all the work done
by the system is performed by rules automatically generated from training
data. Actually, the automatically generated rules are confined to the concep-
tual decoding module shown in the figure. The template generation module is

‘fjgl.t least equally important, and is made up of hand-coded rules. The AT&T

researchers argue that there are not enough training data to generate rules
for both these modules automatically, though this is possible in principle.
The same design decision - to use a mixture of hand-coded and learned rules
- was made for the KCT-based linguistic analyzer, again because there are
not enough training data to learn all rules. In the cited papers, the AT&T
researchers describe the conceptual decoding module in great detail but fail
to provide a thorough descziption of the rules in the template generator.

53

Conceptual

Segmentation
Speech
| Sbeech < o Conceptual L gf Template
Recognizer Decoding Generation
1 Template
T Word
ext Lexical Lattice SQL
—®' Parser Translator
SQL Query
Output Output Answer
-4

Formatters

Figure 3.4: Block Diagram of AT&T System [adapted from Pie92b]

54

LRSI

The conceplual decoding module segments and labels a string of words.
{The . u:zca! parser shown in the figure simply generates alternate arrange-
ments of compound words and acronyms; for instance, on the substring “B
SEVEN FOUR SEVEN" it generates “B747”, “B 7477, “B7 47", and so on).
The labels for the word substrings are drawn from a set of predefined con-
cepts. For instance, here is the labelling of the word sequence “Please list

all flights between Baltimore and Atlanta on Tuesdays between 4 pm and 9
pm” [Pie9l]: E

DUMMY: Please

QUERY: 1list all

OBJECT: flights

origin: between Baltimore
destin: and Atlanta

day: . on Tuesdays

time: between 4 pm and 9 pm.

W

The template generator takes labelled word sequences as input, converting
them to a form from which SQL code can be generated.

The design of the conceptual decoding module is based on HMMs - here
lies the originality of AT&T’s approach. Each word sequence is considered to
be an HMM, with the words being the observations and the concepts being
the states. We want to find the sequence of words W and the sequence of
concepts C maximizing P(W,C|A), where A is the acoustic evidence. This
is equivalent to maximizing

P{A|W,C)P(W|C)P(C).
If we make the approximation

P(A|W,C) = P(A|W) =

the first of these three terms is taken care of by the speech recognizer's

HMMs. The remaining terms are

P(W|C Hp(wslwh w,-_l,C wl HP‘ —llcl: acl—l) (Cl)

1=2 =2

The AT&T system approximates P(wi|wy, ..., wi-1, C) by P(wi|wi—y,¢;) and
P(Cilch act—) by P(Cilc-—l)

3

Al

Tf.‘i_}By means of the Viterbi training algorithm for HMMs, these probabil-
itiés can be estimated from a training corpus of segmented, labeled word
sequences. The conceptual decoding module uses them as parameter values
for a Viterbi segmenting, labeling process on new word sequences. In a recent
enhancement of the model, morphologically or semantically related words are
grouped together to form word classes on an ad hoc basis [Pie92a).

Beginning with a corpus of 532 sentences they segmented and labeled
themselves, the AT&T researchers carried out the following iterative proce-
dure:

1. Train the'{li_:onceptual decoding module on segmented, labeled sentences;
W I
. y - . .
2. Use this module and other components of the system on new training
sentences to ‘gc-'herate answers;

3. Compare the answers to the reference answers;

4. Add:segmented, labeled sentences that genercted correct answers to

the training data and return to step 1.

Sentéﬁc,esjthat still produce_i'ncorrect answers after several cycles must be. -
~ hand-lakeled and added to the training data; however, this proceduic clearly
“' reduces the amount of human intervention needed. ;™

For the ATIS spoken language tests, the input to the linguistic analyzer
was the top hypothesis of the N-best hypotheses. As noted earlier, results
for both the natural language and the spoken language tests were inferior to
those of other groups. However, the novelty of AT&T’s approach and the
way in which human effort is minimized make this system worthy of careful
study.

My main criticism of this work is the omission of important details from
the group’s published papers. It is not clear whether the version of the system
used for the spoken language test was trained on hand-labeled transcripts,
or on hand-labeled output from the recognizer, though this decision might
have a strong effect on performance. A more fundamental problem is that
problems with the representation are alluded to but never discussed. The
authors mention the problem of adapting the representation to queries with
multiple flight identifications, origins, and destinations [PieY2a]. They ignore
the possibility of concepts that are split by intervening words. For instance,

in “show me carly flights on Friday afternoon for next week” the day concept,
“Friday ... next week" is split, and so is the fimc Zoncept, “early ... after-
noon”. This kind of split is common in ATIS data, and poses a grave problem
for the very linear approach to parsing favoured by the AT&T group.

3.4 Summary _

The preceding survey of linguistic analyzers for ATIS speech understanding
systems contains a clear message. Like sailboats with different headings that
are blown off-course by a gale, the groups participating in ATIS began with
very different ideas about system design but have been compelled by the task
to move in the same direction. .
Groups like SRI and CMU attained good early results with robust match-

ers, and therefore kept and improved them. Groups like BBN and MIT that "~

originally scorned robust matchers in favour of parsers based on syntactic
theory found themselves obliged to build robust matchers as backups when
the parsers fail, which occurs frequently=Apart from AT&T’s system, which
is radically different from any of the others, the worst-performing system is
Paramax’s, which relies entirely on syntax...S& =Seneff sums up the charac-
teristics of the syntax-driven approach as follow_s [Sen92): “While providing
strong linguistic constraints to thé speech recognition component and a use-
ful structure for further lmgmshc analysis, such an approach can break down
in the presence of unkmwn words, novel linguistic constructs, recogmtion er-

“. . rots, and some spontaneous speech events such as false starts”.

A robust matcher, on the other hand, seems to work best, when it can
formulate rules based on word and phrase categories - that'is; when a local
parser has identified and labeled word groups constituting a category within
a word sequence before the robust matcher sees the sequence. Thus, inost "
of the ATIS systems seem to be converging on an approach that employs
syntax locally and semantics and pragmatics globally. It would be ~riistake
to dismiss this as an artifact of the ATIS task. In my .opinion, the ATIS
researchers have made &=a-genuine linguistic dlscovery some types of spoken
language are made up of islands of syntactlcally correct phrases separated by
verbal “noise”, with weak or non—exxs*ent global synta.ctlc constraints.

Each of the systems described above incozporates ingenious ideas which
are independent of the system architecture, and may therefore be borrowed

57

ir

by future systems with a different architecture. For instance, the CMU idea of
employing an expert system to post-process the output of the robust matcher
has great potential, though it yielded little improvement in the CMU im-
plementation. The idea, associated with BBN, of joining together diverse
knowledge sources in series so that each can contribute to the final result via

rescoring of the N-best hypotheses is elegant and powerful; as real-time per- ~

formance becomes more important, it'seems likely to become more and more
prevalent. Finally, though there are prihlems with the division of labour
and the knowledge representation in the AT&T system, the AT&T group’s
emphasis on automatic lea.rmng of rules from training data deserves to be
emulated. :

b

W

fets

Chapter 4 S

Learning Patterns ih Strings

:\ i

\ ﬂ “1:1—'-\\

From the vnewpmm of meplrlcal research one of the main
difficulties in comparing \arlou\ % algorithms which learn from ex-
amples is the lack of a formally specified model by which the
algorithms may be evaluated. Typically, different learning algo-
rithms and theories are given together with examples of their per-
formance. but without a precise definition of “learnability” it is -
difficult t&: characterize the scope of applicability of an algorlthm
or analyze the success of different approaches and techmques G

M. Kearns, The Computationa! Complezity of Machine Leammg [KeaQOa]

Semawn)
A
Rl

4.1 Introduction -

= i
= it

This thesis proposes a new method for learning from examples the rules that
carry out part of a certain task in speech understanding systems. N. Prieto
and E. Vidal call this task formal transduction and give a good definition of
it [Prv91, pg. 789]: “Formal transduction ... (maps) input acoustic strings
representing uttered sentences into output semantic sirings representing the
actions or semantic messages that are conveyed by these sentences”. The-
oretical work in both linguistics and formal language theory has focused
on syntax rather than semantics, so formal transduction remains mysterious.
For instance, though there is ample experimental evidence that semantic con-
tent can be successfully conveyed from one person to another in utterances
marred by grave syntactic errors, the mechanisms that make this possible

39

-

=

PE I

U " \
have not attracted the attention of theorists. Thus, the top\“f‘c of this thesis -
learning robust transduction rules from examples - falls into“% theoretically
upcharted area of research.

Nevertheless, the thesis. would be mcomplete if it did not try to place
Keyword Classification Trees iuto a formal context. This chapter discusses
related work on automatic learnmg of rules for identifying-patterns in strings.
Section 2 discusses traditional work on grammatical inference, section 3 diz-
cusses a newer body of work concerned with “probably approximately cor-
rect” learning, and section 4 dlscussec KCT:» in the l:gh -of the preceding

sections. i

1l

3

4.2 Grammatical Infere’ﬁc;e”:ih the Traditional

Paradigm

Thzs =ct10n summarizes the la,xge body of work on‘granimatical inference
that prcdates or is unaffected by the theory of “probably approximately

=correct” (PAC) learning. The main focus will be on the inference of reg-
ular grammars, both non-stochastic and stochastic. Non-stochastic regular
grammars are either deterministic or else non-deterministic but without nu-
merical probability values; these two types belong together because of the
equivalence of deterministic and non-deterministic finite automata (DFAs
and NFAs) [Hop79)]. Stochastic grammars contain productions that are as-
sociated with numerical probability values.

4.2.1 Inference of Regular Non-Stochastic Gramtnars

Limitations on Inference

" Two results proved by Gold (in 1967 and 1978) provide ﬁt-ﬁ‘é framework for

all recent work in inference of non-stochastic regular granimars. The first
proof-chows that there are regular languages that cannot be learned “in the
limit” from positive sample s only.” A language L is said to be learned by
an algorithm A in the limit from positive samples when, after seeing a finite
number of strings from L, A has learned a set of rules which can always decide
correctly whether a given string is or is not in L. Since the regular languages
are a subset of the context-free languages, which are a subset of the context-

‘4/

f}'J
. s

60 A

71

S
i
i

A

« sensitive languages, Gold’s 1967 result implies that arbitrary context-free and |
"+ context-sensitive Ianguages also cannot be learned in the limit from positive -
= samples iy P

What about mference from positive and negative samples? Many different

. _grammars may generate the same language; furthermore, a finite sample does_- 2
i.-’-_r"not uniquely define a language [Fu86a, pp. 344-345). Thus, unless there are ./

constraints on the form of the regular grammar to be inferred from pesitive

and negative samples, there will often be an infinite number of a;lswer‘:,‘

each of which generates the positive sample and not the negative sample.
For instance, one can easily construct in polynomlal time a DFA, called the

canonical deﬁmte finite-state grammar, that generates exactly the strings in--
the positive sample and no other strings whatsoever [ibid, pg. 346]. However;~

this grammar does not satisfy our intuitive notion of “inference™: it is too-..

_]arge (the DFA has a'number of states proportional to the total number of
symbols in the positive sample), and does not generalize beyond the strings -

actually seen. Most researchers have been interested in finding the DFA of
minimum size that accepts the strings in the positive sample and rejects those
in the negative sample.

Gold’s second proof-shows that when both positive and negative finite
samples are provided, firiding the DFA with the minimum number of states
compatible with these data is NP-hard. That is, ba-ring revolutionary de-
velopments in complexity theory, we can assume that for practical purposes
solving this problem takes exponential time. Because of the equivalence of
the set of strings accepted by DFAs and the regular languages, this result
aiso applies to the regular, context-free and context-sensitive languages. D.
Angluin states: “This result is generally interprated as indicating that even
a very simple case of inductive inference, inferring DFAs from positive and
negative examples, is computationally intractable ” {Anz87, pg. 89]. Angluin
herself proved an analogous result, showing that the problem of finding the
shortest regular expression compatible with a set of positive and negative
samples is also NP-hard [Ang78].

Gold’s second proof leaves a loophole: perhaps finding the minimum DFA
compatible with positive and negative data is an excessively strict require-
ment, and if we let the DFA be somewhat larger than the minimum size, a
polynomial-time algorithm can be found. It might be that by operating on
the canonical definite finite-state DFA or in some other way, we can obtain a
DFA only a bit bigger than the minimal one. Li and Vazirani [Li88] recently

e,

61

l™

e

-

closed this loophole by proving that even if the inferred DFA is allowed to be
bigger tian the minimum DFA by a factor (1 + ¢), for small ¢, the problem
is still NP-complete. Subsequently Pitt and Warmuth [Pit88b] showed that
a DFA of size n cannot even be learned in polynomial time by a DFA of size™
polynomial in n unless NP = RP. Gold’s second result is thus waterproof: for
all practical purposes, it is impossible to infer reasonable regular languages
from the presentation of posttive and negative samples.

As Garcia and Vidal point out [Garc90], many of the papers published
on grammatical inference pass over these fundamental limitations in silence.
Most of them adopt one of two strategies to circumvent the Gold limitations
on the inference of non-stochastic regular grammars:

1. The class of languages inferred is some tractable subset of the regular
languages; t

2. The information provided to the inference algorithm is more generous
than described above - for instance, a “teacher” may answer questions
posed by the algorithm, and even supply counterexamples to conjec-

© _ tures produced by it.

The next two subsections deal with these two strategies.

Inference of Grammars for Subsets of the Regular Languages

Biermann and Feldmann’s k-tails method is a heuristic that requires users to
supply a parameter k and positive samples from the language to be inferred
[Bie72]. The method begins with a large, often non-deterministic, grammar
called the canonical derivative grammar obtained from the canonical definite
finite-state grammar. States in the canonical derivative grammar that have
the same behaviour on strings of length & or less are merged. Thus, if the
user picks a low k, such as 1 or 2, the resulting finite automaton will tend to
be significantly smaller than the canonical derivative grammar, but may not
model the language very well; a high k will often model the language better,
but may be almost as large as the canonical derivative grammar. If negative
samples are supplied the method can be’adapted to generate a variety of finite
automata from the positive samples, beginning with the canonical derivative
grammar and decreasing in size - the:smallest grammar compatible with tho
negative samples is chosen. This heuristic infers a family of non-deterministic

62

grammars which depend on the parameter %, and which correspond to finite
automata somewhat smaller than the large automaton that generates only
the strings in the positive sample. In most cases, the inferred automaton will
still be much bigger than the minimal automaton compatible with the data.

Angluin and Smith describe the k-tails method as heuristic because the
subset of the regular languages it infers is hard to characterize formally
[Ang83]. Angluin has developed a method for learning the pattern lan-
guages, a well-defined subset of the regular languages [ibid, pg. 261].
pattern is made up of variables and constants - e.g., 3zzy112z, where z,y, 2
are variables. The language L(p) generated by a pattern p is the set of
strings obtained by substituting constant strings for the variables; for in-
stance, L(3zzyl12z) contains 30000511200 and 3114241121. Angluin’s in-
ference algorithm finds the smallest finite automaton that generates a pattern
language compatible with a given set of positive samples. For the case where
the pattern contains only one variable, her algorithm runs in polynomial
time.

Shinohara has extended Angluin’s work to find polynomial-time algo-
rithms for inferring from positive samples the minimum finite automaton
that generates a given extended regular pattern language, or a given non-
cross-pattern language [Shi82]. The extended regular pattern class languages
are pattern languages in which all the variables occurring in a pattern are
distiact and the null string may be substituted for any variable; the non-
cross-pattern languages are pattern languages in which occurrences of a given
variable may not be interrupted by occurrences of any other variable. Shi-
_nohara’s algorithms begin with a general pattern which is then spemahzed
they have been applied to a practical data entry task.

Another tractable subset of the regular languages is the k-reversible lan-
guages {Ang82]. Let a,b,v,w,z be strings. A regular language L is k-
reversible iff whenever avw and bvw are in L and v is of length k, then
for every z, either both avz and bvz are in L, or neither is. Thus, a zero-
reversible language Lz is such that whenever aw and bw are in Lz, for every
z either az and bz are in Ly, or neither is. An example of a zero-reversible
language is the set of strings with an even number of 0s and an even number
of L.

Angluin has devised an algorithm that infers the smallest k-reversible
language containing a positive sample, for fixed k {ibid]. Like the k-tails
method, the algonthm CODStruCtS a large finite automaton from the strings

63

in the positive sample, then merges states satisflying a criterion of similarity
that depends on k. The algorithm runs in O{kn?) time, where n is the total
length of all the strings in the positive sample. If positive and negative
samples are given, the algorithm can be run on the positive samples with
k =0,1,2,... until a k-reversible language is found that does not gencrate
any of the strings in the negative sample. This modified algorithm is also
polynomial-time: it is O{m?n®), where m is the final value of & and n is the
total length of the strings in the positive and negative samples. Angluin has
proved that m < n, so the algorithm is O(n®) [ibid, pg. 762]. As required
by the Gold limitations on inference of regular languages, the k-reversible
languages are a proper subset of the regular languages: for instance, the
regular expression ba*c + d{aa)’c corresponds to a language that is not k-
reversible:for any k [ibid, pg. 750].

Another line of research arose from a paper published by Richetin and
Vernadat, describing the “successor method” for grammatical inference from
positive samples [Ric84]. The underlying inference strategy was similar to
that employed in the well-known bigram language models employed in speech
recognition systems: it relied on analysis of pairwise successions of terminais
in the positive sample strings. Subsequently, Garcia, Vidal and Casacuberta
showed that the class of grammars inferred by the successor method is the
local languages, a proper subset of the regular languages [Garc87]. The same
paper generalizes the successor method by showing that many non-local reg-
ular languages can be obtained from positive samples by applying “morphic
operators” to a local language inferred by the successor method. This method
supplements the information contained in the positive sample by information
contained in the user-specified morphic operators, and thus belongs in the
next subsection; in any case, it is too cumbersome to be practical.

A later paper by Garcia and Vidal generalizes the successor method in
a different, more practical way [Garc90]. The paper presents a polynomial-
time algorithm for inferring “k-testable languages in the strict sense™ k-
TLSSs. These languages are defined as follows: they begin with a »et of
initial segments I; (of length at most k), they end with a set of final segments
F. (of length at most k), and they are forbidden to contain segments in the
set Ti (of length exactly k). The set of 2-TLSS languages is exactly equal
to the local languages. As k increases, the languages infer~d from a given

positive sample become increasingly restricted; if k is sci_o the length of * .~

the longest string in the positive sample, the inferred language is identical to

5

‘ 64

the positive sample. The time required to run the algorithm depends partly
on m, the number of permissible substrings of length & (i.e. the number of
length k substrings not in T}): it is O(knlog m). Furthermore, the number
of transitions in the inferred automaton is bounded by O(m). "™
The k-TLSSs are a subset of Angluin’s k-reversible languages, so her algo-
rithm could be used to perform the inference instead. However, if one is sure
that a language is best modeled as a k-TLSS, the Garcia-Vidal algorithm is
usually faster. Like Angluin, Garcia and Vidal extend their method of infer-
ring a grammar from positive samples to the situation where both positive
and negative samples are available by increasing & from a low initial value
(k = 2) until the grammar generated from the positive samples does not gen-
.+-crate any of the strings in the negative sample. I will describe a stochastic
" extension of the Garcia-Vidal algorithm in the section of this chapter dealing
with stochastic grammars.

Inference of Regular Grammars with Additional Information

This section describes methods where the learning protocol allows the in-
ference algorithm to ask a “teacher” for additional information beyond that
contained in positive and negative string samples. Here, the questicn of in-
terest is: how little information must be given by the teacher for the correct
regular language to be inferred?

An early paper by B. and K. Knobe describes an algorithm that infers
context-free grammars from positive samples:[Kno76]. At every stage, the
algorithm has a partial grammar made up of production rules that accounts

+~for the strings seen so far. The teacher will tell it whether it is done, or
whether the partial grammar generates ungrammatical strings, or tells it the
current grammar is incomplete and gives it a new string from the desired
language which the inference algorithm can use to generate additional rules
for the inferred grammar. The inference algorithm always tries to create new
production rules that are as general as possible: they are short, they have a
high ratio of nonterminals to terminals, and they will generate recursions.

The Knobes did not attempt to characterize formally the set of context-
free grammars that can be inferred by using their approach. It seems probable
that this set is a proper subset of the context-free languages, and perhaps does
not include the set of regular languages but merely overlaps with it. They
did not give a time complexity analysis for the method. Furthermore, the

.65

I'it

method depends on the teacher presenting positive samples in appropriate
order - it 1s easy to devise malign orderings of the posi‘tive samples which will
result in the method never inferring the desired language. This method has
received no further attention from researchers. Interestingly, its underlying
philosophy is the same as that underlying KCTs: “We think that the principle
of working from the most general to the more specific is a principle applicable
to any inference problem, and it is defivitely the prime reason for the success
of our entire approach” [ibid, pp. 131-132].

Crespi-Reghizzi et al have developed a method for inferring context-free
grammars from positive bracketed samples [Cres73, Cres72]. Given a context-
free grammar, one can generate a bracketed context-free grammar from it by
replacing each production of the form N = u, where NV stands for a non-
terminal and u for a string, by a production of the form N = [u]. The
strings generated by this grammar will hébracketed in a way that indicates
the order of operations. The Crespi-Reghizzi algorithm takes as input a
positive sample consisting of a set of bracketed strings of this form, and
merges states that satisfy a similarity criterion in a manner reminiscent of
the methods described in the previous section. The algorithm generates the
smallest, simplest context-free grammar of a certain type, called the “frec
operator precedence grammars”, compatible with the positive sample. [am
unaware of any time complexity results for the algorithm, but in practice it
seems to run’in.polynomial time. It requires a substantial amount of work
on the part of the teacher, who must supply fully-parsed strings belonging
to the language to be inferred.

A recent paper by Angluin contains a proof that any regular language R

_can be learned in polynomial time by a learning algorithm L from a “mini-
‘mally adequate teacher” T [Ang87]. A minimally adequate teacher T is one

who:

1. answers membership queries: given a string by L, T says whether or
not the string is in &;

2. answers conjectures: given a description of a hypothetical regular lan-
guage H by L (in the form of an encoding of a deterministic finite-state
automaton), T either tells L that it has correctly guessed R (H and R
are equivalent) or provides a counterexample (a string in R — H or in

H - R).

66

P
i

Alguin’s algorithm yields the minimum DFA generating R in time polyno-
mial in the number of states in that DFA, and in the length of the longest
counterexample provided by 7.

The requirement that, T:.upply counterexamples may prevent practical
use of the algoritlim. True,if T itself “knows” the regular language R to
be learned by L in the form of a deterministic finite-state automaton, it can
=& provably produce a string in R— H or in H — R in polynomial time [ibid, pg.
89] - but if one already owns a finite automaton I that knows the regular
language, why use the inference aléorj_thm at all? However, Angluin also
shows that a version of the algorithm can carry out “probably approximately
correct” learning under very reasonable assumptions, as will be discussed in
section 3.2.

4.2.2 Stochastic Grammars
Inference of"-jStog:hastic Grammars ~

A stochastic grammar is one in which every production rule R; is associated
with a probability p;, and which therefore assigns to every possible string
a probability of being produced (perhaps 0). We will only be interested in
stochastic grammars for which the total probability over all strings is 1; these
are called the stochastic consistent grammars. A stochastic presentation
from a stochastic consistent grammar G is an infinite sequence of strings
generated according to the probabilistic production rules of G. In 1969,
J. Horning showed that stochastic context-free languages can be inferred
in the limit from a stochastic presentation with probability 1 [Ang83 pp.
250-1]. Gold showed that the inference of non-stochastic regular grammars
requires a negz.'ive sample. This is untrue for stochastic regular or context-
free grammars that are given a stochastic presentation, because the strings
that never appear can be assigned a probability of 0 (with a degree of error
that depends on how many strings in the presentation are actually used by
the inference algorithm).

Practical algorithms for learning stochastic grammars access a sample
made up of a finite set of strings £ = {(z1,¢1), (22,¢2), ..xy (Zn,¢n)}, where
z; stands for a string and ¢; the number of times it occurs in the sample.
They tend to fall into two classes, “search” algorithms and “constructive”
algorithms. The latter are called “jumping to conclusions” algorithms by

67

Angluin and Smith [AngS3, pg. 260]. Search algorithms generate all gram-
mars of a particular class in a systematic manner until a grammar is found
that meets an acceptance criterion; they are cautious, being designed not to
skip over any acceptable hypothesis, and tend to be time-consuming. Con-
structive algorithms resemble the algorithms discussed in the last section.
They begin with a hypothetical grammar generated directly from the sam-
‘ple E, which is then successively refined to produce new grammars until an

= ‘acceptance criterion is met; they tend to run faster than the search algo-

rithms, but often produce more complicated, less elegant solutions. Search
algorithms usually start with very simple, incorrect grammars that are mod-
ified in the direction of greater complexity and greater conformity with the
sample 7, while constructive algorlthms begin with a complicated grammar’
that generates only the strings in £ and is then modified in the direction of
greater simplicity.

Horning’s 1969 Ph.D. dissertation provided some of the qc.cussary machin-
ery for the search approach, by showing how to construct a Bayesian z accep-
tance criterion for hypothesized stochastic grammars (see [Fu86b, pg. 367 1)
Suppose we have a finite set of such hypothesized grammars, {G, Gay o, G2
each with an a priori probability p(G;). Horning derived a formula for cal-
culating from the productions of a grammar G; the probability p(£|G;) that

G; will generate the sample E. The optimal: G is the one for which the .. _

Bayesian crilerion p(G;)p(E|G;), and thus p{(i7;| B}, is maximized. Horning
also devised a stochastlc generator of grammars to provide the hypothesized
grammars G; and their associated probabilities.

The main disadvantage of Horning's approach is its computational com-
plexity: tue algorithm: takes a long time to calculate p(£|G;), and must look
at all the Gis before it can pick the optimal one [Fu86b, pg. 367]. To spced
up search algorithms, Maryanski and Bootli“devised a x* test to measure

. the goodness of fit of a hypothesized stochas*xc grammar to the sample £
[Mar77]. Fut each sample string z; occurring’ c; times in F, one can calcula,Lc
the expected number of occurrences of z; according to grammar G;. The x
test compares these expected numbers with the actually observed counts ¢;, ..
telling us whether the deviation is about what we would expect, or it G;
should be rejected.

Another piece of machinery is needed before a practlcal search algorithm
can be designed: a method for converting a non-stochastic grammar into a
stochastic one, by estimating the probabilities of the production rules from

68

v

the sample £. This is necessary because search algorithms usually explore
a search space made up of non-stochastic grammars. Once a non-stochastic
grammar f; is reached, it is converted to a stochastic grammar (; and
then tested against the acceptance criterion. A method for estimating the
probabilities from E is given in {Fu86b, pp. 364-365]. It only works for
unambiguous grammars, in which every possible string can only be generated
in one way from the productions.

Maryanski and Booth have implemented a search algorithm that asks the
user for a threshold for the.x? acceptance criterion [Mar77]. The algorithm
searches through an infinite tree of deterministic regular grammars in which
the first level corresponds to grammars or partial grammars with one non-
terminal symbol, the second level to grammars or partial grammars with
two nonterminals, and so on. Each of the candidate grammars examined is
converted to stochastic form by the probability estimation algorithm, then
evaluated by the x* test. Three outcomes are possible: the grammar may be
accepted, it may be completely rejected (along with all its unborn children),
or it may be selected for expansion. In the last case, the grammar generates
several deterministic regular grammars at the next level of the tree. Heuristic
pruning techniques were developed to reduce the number of nodes that must
be considered. The search algorithm can be implemented in either depth-first
or breadth-first fashion.

Maryanski and Booth have shown that this method will always generate
a finite automaton with the minimum number of states that meets the user-
supplied x? goodness of fit criterion. Gaines employs a similar algorithm, but
prefers to consider goodness of fit and the number of states as separate criteria
that should be considered independently [Gai78). These researchers have not
proved that their algorithms run in polynomial time - given the exhaustive
nature of the search they perform, they are probably not polynomial-time.

Cook et al devised a constructive algorithm that carries out some local
search [Coo76]. Like other constructive algorithms, it begins with a com-
plex grammar that is derived from the observed sample, and modifies it in
the direction of greater simplicity. In this case, the starting grammar is a
stochastic grammar that generates each string in the sample with precisely
its observed frequency. A cost measure M (G, E) that is a linear combination
of the complexity of the grammar G and its discrepancy from the sample E
is defined; the measure assigns lower cost to productions generating homo-
geneous strings than to strings made up of mixtures of terminals. Several

69

grammar Lransformations - substitution, disjunction, and removal of pro-
ductions - are also defined. These transformations are used to generate new
grammars. The algorithm then begins work on the lowest-cost new grammar,
and iterates until no further improvement is possible. The algorithm of Cook
et al is greedy: it finds the locally optirnal, lowest-cost stochastic grammar
in the neighbourhood of the starting grammar. No complexity results were
presented for the algorithm.

The approach of Van der Mude and Walker is similar to that of Cook
et al [Van78]. The main difference is the use of a quasi-Bayesian accep-
tance criterion P{E|G)P(G), as suggested by Horning; the criterion is only
quasi-Bayesian because P(G) is a heuristic, rather than a genuine probabil-
ity estimate. The algorithm first derives a stochastic regular grammar with
many rules that generates exactly the strings in £, with expected frequencies
exactly equal to the observed frequencies. This grammar is called the tree
grammar G and is easily constructed in polynomial time. A set of transfor-
mations called “splits” is applied to G'r to produce a new set of candidate
grammars which are then evaluated in terms of the quasi-Bayesian criterion.
This procedure is iterated to find the optimal grammar in the local neigh-
bourhood of G7. The time complexity is not given, but the way in which
time goes up with size of sample in the trial runs listed in the paper suggests
it is exponential.

A previous section discussed Garcia and Vidal's method for learning k-
TLSSs from a positive sample. The stochastic extension of this method
by the same researchers is a good example of a pure constructive approach
[Garc90]. To adapt the method to learning stochastic k-TLSSs, Garcia and
Vidal use the k-TLSS method to infer a non-stochastic grammar, then obtain
a maximum likelihood estimate of the production probabilities by means of
the estimation procedure in [Fu86b, pp. 364-365]. This procedure only works
if the inferred grammar is unambiguous.

Since Garcia and Vidal are interested in seeing how well stochastic k-
TLSSs can approximate the regular languages, they carried out a series of
experiments in which each of ten stochastic regular grammars generated a
training set of strings; a test set was generated by pooling other strings
generated by the ten grammars [Garc90]. A stochastic k-TL35 grammar
was inferred from each of the training sets, so that ten stochastic k-TLSS
grammars were generated. To allow for the parsing of strings almost but
not quite in a given grammar, a wild-card production with low probability

70

was added to match otherwise unparsable input symbols. The strings in the
test set were then parsed by each of the ten stochastic grammars, with each
string assigned to the grammar which assigned it the highest probability of
being produced.

Garcia and Vidal examined the effects of varying the size of the training
sets and the value of £ on the proportion of strings assigned to the correct
grammar. When each training set contained 150 strings and & was greater
than 2, the etror rate was never more than 0.6%. These results show that
a language at one level of the formal hierarchy may be successfully approx-
imated for classification purposes by a stochastic language at a lower level.
The experiment also illustrates one of the least attractive aspects of the gram-
matical inference approach to classification: ten different grammars must be
grown to perform a ten-fold classification. A single KCT grown on the same
data could perform the same ten-fold classification, perhaps equally well.

Calculation of Probabilities in a Stochastic Grammar

The estimation of probabilities for a stochastic grammar whose structure is
known is an easier problem than the inference of the grammar from noth-
ing, but is by no means trivial. As mentioned above, Fu gives a method for
estimating production probabilities in unambiguous context-free grammars
[Fu86b, pp. 364-365]. The estimation techniques for stochastic grammars
currently in the most widespread use are those that estimate the parameters
of Hidden Markov Models (HMMs), which are described in Chapter 2. These
techniques, such as the Baum-Welch method, iteratively search for probabil-
ity values in an HMM that maximize the probability of the observations,
given the HMM [RabWL]. They do not analytically solve this estimation
problem, but find values that yield a local maximum.

Though HMMs are finite automata, J. Baker extended an HMM pa-
rameter estimation method to stochastic context-free grammars, calling this
extension the “Inside-Outside” algorithm [Bak79]. Recently, SCFGs and
the Inside-Outside algorithm have been applied to natural language [Lar91,
Lar90]; unfortunately, serious difficulties have been encountered. The amount
of time required to estimate the SCFG parameters on a reasonable amount
of training data is large. Worse, the algorithm often gets trapped in a local
maximum that is extremely sub-optimal, unlike the HMM case where the
local maximum found is usually quite good.

71

The approach of Pieraccini ef alat AT&'T, which was described in Chap-
ter 3, is somewhat less ambitious. Rerall that these researchers employ
HMM-like estimation techniques to obtain parameter values for a finite-state
model of natural language. In this respect, their approach resembles the
KCT approach: both approaches assume that for practical purposes, natural
language can be approximated by a finite-state model.

4.3 PAC Learning and P-Concepts

4.3.1 Introduction

Most of the techniques for inferring stochastic grammars presented in the
previous section had a heuristic flavour. Their inventors neither prove that
they were capable of learning a clearly-detined set of languages, nor provide
performance guarantees for them, in the sense of proving that the learning
process requires only a reasonable amount of time. Clearly, precise criteria
for evaluating probabilistic learning are needed.

A 1984 article by L. Valiant has acted as a catalyst for recent research into
computational learning theory [Val84]. M. Kearns summarizes the leatures
of Valiant’s new paradigm as follows [KKea90a):

1. The requirement for the learning algorithm to identify the target rules
exactly is relaxed to allow approximations. The paradigm defines an
acceptable approximation to the target rules, and this definition is
phrased in terms of probabilities.

2. The demand for computational efficiency is now central - we are in-
terested in rules that can be learned in a reasonable amount of time
(which implies a limited sample size), rather than in rules that can only
be learned in the limit.

3. The learning algorithm should work for any probability distribution,

> provided that the samples on which it learns and the domain in which

the learned rules will be applied are governed by the same distribution.

We will call an algorithm that meets this criterion “distribution-free”.

Traditional techniques in statistical pattern recognition often assume a
particular input distribution (see [Dud73]).

72

>

As Kearns points out, the relationship hetween formal and empirical ma-
chine learning research has often been less close than one might expect.
“Many of the problems tackled by artificial intelligence ... appear extremely
complex and are poorly understood in their biological incarnations, to the
point that they are currently beyond mathematical formalization. The re-
search presented here does not pretend to address such problems” [Kea90a,
pg. 3]. Nonetheless, since the new paradigm gives a model for machine
learning that is both more practical and more precisely specified in formal
terms than older models, it constitutes a major step towards the apphcatlon
of formal learning theorv to problems in artificial intelligence.

4.3.2 PAC Learning

Valiant begins his definition of PAC learning as follows [Val84]. Consider a
domain X made up of descriptions of certain objects. For instance, X might
be a list of descriptions ‘of all the objects in a house. The goal of a learning
algorithm A is to learn_a subset of X; the subset to be learned is called
a concept. Thus, we" “might present A with some examples of descriptions
of chairs and of non-chairs in X, hoping that it will learn rules capable of
deciding whether an arbitrary element of X belongs to the subset “chairs”
in X. A must have a formalism for encoding the rules it learns. The set of
concepts capable of being expressed in this formalism is the representation
class. A representation class C need not be capable of describing all the
possible concepts (subsets) of X, only those that are of interest. Given the
representation class C, however, we want A to be able to learn any specific
member ¢ of C. ,"f

Each time A is executed, its goal is to learn some concept ¢ in C. The
next time it is executed, the concept to be learned may be different, but
will still be in C. A has access to two oracles, POS and NEG, which yield
descriptions of sample objects in X; the descriptions provided by POS are
o7 items in ¢, those provided by NEG are of items not in ¢. We will assume
that the descriptions provided by POS and NEG are efficiently encoded;
furthermore, they are drawn randomly from probability distributions D"‘(c)
and D~ (¢) respz,m.tlvely These two probability distributions are arbitrary but
fixed: they do not vary over time. As well as being the distributions that
provide the examples from which A learns, D* and D~ are also the target
distrib_ut«iéﬁs. That is, we will be satisfied with the rules learned by A if they

i

work well on data drawn from D% and D7; we do not require A to learn
rules that also work well on other distributions.

. The learning performed by A may be approximate: A may output a
hypothesnzed concept A that is only an approximation to c, provided that £
satifies certain criteria. f, like ¢, is always a subset of X. We will assume
that the description of A output by A is polynomially evaluatable. That is,
given h and a data point z, it can be decided in time polynomial in the length
of the descripsions of » and z whether z is in A or not. may be drawn from
a representation class H that is different from C, the representation class for
c.

Finally, consider the two ways in which A may wrongly classify a new data
item ¢: it may wrongly exclude i even though it is a member of ¢, or it may

. wrongly include 7 even though it is not in c. Let e*(h) be the probability

~“that an item randomly chosen from D* is not in h, i.e. is wrongly classified
by k as not being an example of concept ¢, and let e~ () be the probability
that an item randomly chosen from- D~ is wrongly “accepted” by k.-We can
now .describe probably approzimately correct learning [Kea90a, pg. 11].

Definition:

¢ Consider two representation classes C' and H over X. An algorithm
A with access to oracles POS, NEG is a learning algorithm for C' if,
for any c in C and for any values of &, ¢ between 0 and 1, A outputs
a representation & in H such that with probability 1 — 6, e¥(h) < ¢
and e~ (h) < e. C is called the “target class” and H the “hypothesis

e class”. A is a “polynomial learning algorithm” for C if C and H are
i polynomially evaluatable and A runs in time polynomial in 1/4, 1/¢,

and [c| - we say that A carries out “probably approximately correct
learning”, or “PAC learning”. E

A simple example will illustrate this (taken from {Kea90a, pp. 14-17]).
Let the formalism for both C and H be conjunctions of Boolean variables
(also called “monomials”), where the set of variables describes various prop-

erties of animals. Some variables describe physical properties: islarge,.

has_claws, has_mane, has_four_legs, has_wings, and so on. Some variables
describe behaviour: can_fly, can_walk_on_two.legs, can_speak, hibernates,

and so on. Some variables describe the animal's habitat: is_wild, lives.in._circus,

and so on. Other variables deal with scientific classifications: is.memmal
and so on. There may be many other types of variables.

74

1
]
i

Now, suppose that the concept ¢ to be learned is “lion”. ¢ might be the
following monomial:)

¢ = is.mammal and is_large and has_claws and (not hibernates).

As long as c successfully identifies the subset of lions within X, it doesn t
matter whether it is a valid description of lions in general. Consnder D+, the
probability distribution for positive examples of ¢. D7 yields descriptions
of particular lions, each of which specifies the values of all variables. By
definition, each of these descriptions must have the variables is.mammal,
isdarge, and has_claws set to TRUE and hibernates set to FALSE with
probability 1. However, the variable has_mane may be TRU E about half the
time (when the lion is male) and FALSE the rest of the time; has_wings will
always be false. There may be dependencies between some of the variables:
for instance, can_walk.on_two legs may have low average probability of being
TRUE, but much higher probability of being TRUE when livesin.circus -
is TRUE. Similarly, D~ is the probability distribution for examples of non-~
lions in X, and may have arbitrary dependencies between variables.

We require a learning algorithm A for finding a monomial 4 that is good at
distinguishing lions from non-lions. A will learn A from examples generated
from D* and D~. Although C and H are identical in this example, since both
the concept ¢ and the hypothesis i are monomials, 2 need not be the same

=..... as c. For instance, suppose the domain X only includes two species of large
‘animals: lions and elepliants. In that case, A might output the following A:

has_claws. This h would perform well, correctly identifying examples from
D* as lions and examples from D~ as non-lions, even though it is dlﬂ'erent
from c.

Valiant devised a polynomial learning algorithm A that learns monomials

~over n variables [Val84 article]. The algorithm only needs examples drawn

from POS, not NEG, so it is called “positive-only”. Though it only uses

examples from POS, the definition of PAC learning given above requires it
to classify correctly most new examples generated by both POS and NEG,
which it does. The algorithm is subject to two types of error, one associated
with ¢, one with §. The € type of error occurs when a variable with low
but non-zero probability of being false in D* is not deleted from £ This
type of error, by definition, only misclassifies new examples that ‘have low
probability in D*. The 4.type.of error is more serious. It occurs when the
learning examples drawn from Dt are very unrepresentative of D*, so that
the rate of misclassification on new examples is higher than e. For instance,

75

if the m positive examples drawn during learning were all trained circus lions
(even though D* assigns a moderately low probability to this type of lion),

the final version of h might include the variable can_walk_on_two.legs. This -

h would perform poorly on new data.

In addition to defining PAC learning and giving a polynomial algorithm
for learning monomials, Valiant’s original article extended the algorithm to
two other classes of Boolean formulae [ibid]. Define a “k-clause” as a dis-
junction of at most & Boolean variables, e.g. C; = v, or ... or v,. Then
the representation class k<CNF consists of conjunctions of k-clauses, e.g.
Ca and Cs and Cs. Similarly, define a “k-term” as a conjunction of-at most
k Boolean variables, e.g. T; = vy and ... and v,.. The representation class
kDNF consists of disjunctions of k-terms, e.g. 7 or Ty. Valiant adapted
the algorithm for learning monomials to obtain polynomial algorithms for
learning kCNFs and kDNFs. For each of these algorithms, the concept class
C is equal to the hypothesis class ff.

After the publication of Valiant’s 1984 paper, D). Angluin studied a prob-
lem closely related to PAC-learning a regular set from examples. [Ang87].
Recall from section 2.1.3 that in the same paper, Angluin showed that a
learning algorithm L exists for learning any regclar language R in polyno-
mial time from a minimally adequate teacher T. Such a teacher answers
membership queries and answers conjectures. That is, L can give T strings
which T must declare as members or non-members of R, and T must respond
to a hypothetical regular grammar H output by [by either confirming that
H is identical to R or by providing a counterexample - & string in the sym-
metric difference of R and H.

Angluin also considered the case where L has access to an oracle supply-
ing sample strings randomly chosen from an unknown distribution D, each
labeled as belonging to R or not. In this case, T' need only carry out the first
part of its job: answering membership queries. The oracle can be used as a
source of counterexamples for modifying L’s current hypothesis H - some of
the strings from the oracle belong to R but not H, and vice versa.

Angluin defines a hypothesis H that e-approximates R as follows: If

~ e-approximates R if D assigns probability less than ¢ to strings in the sym- -

metric difference of R and H. Let n be the number of states i in the minimum
DFA for R, and m the maximum length of a string output by the oracle.
Angluin showed that in time polynomial in 1/¢, 1/4, n and m, her learmng
algorithm L yields with probability 1 -4 a hypothems H that c—a.pproxm e

& . . '_"E‘,(_, 76

f2. Note that although Angluin’s algorithm almost meets the PAC-learning
criteria, it still requires a teacher T to answer membership que11e= Thus, it
;is not a PAC-learning algorithm.

Subsequently, Pitt and Valiant studied two classes, k-term-DNF and &-
clause-CNF that are properly contained within ACNF and ADNF, respec-
tively [Pit88a). They:showed that learning a concept ¢ in k-term-DNF by
h in k-term-DNF js 5. NP-hard for k > 1, yet learning the same ¢ by & in
ECNF can be done by the Valiant algorithm for kCNF. Siinilarly, learning a
concept in k- clause-CNF by a hypothesis in the same class is NP-hard, yet
can be done:in polynomial time if the hypothesis class is kDNF. ‘Thus,.there
are cases where the learning problem is too hard if we impose the constraint
C = H, but tractable if we let H be a more powerful class than C.

From this, it follows that there are two types of hardness result: “representation-
based” and “representation-independent”. Both concern learning of a fixed
representation class C of concepts. A representation-independent hardness
result would prove that C is hard to learn by any polynomially evaluatable
representation class H of hypotheses, while a representation-based hardness
result merely shows that C is hard to learn for some particular H. Clearly,
Pitt and Valiant’s proof that it is hard to learn k-term-DNF by k-term-DNF
was representation-based.

Representation-independent hardness results are much more powerful than
representation-based ones,and correspondingly harder to obtain. Kearns
gives some interesting representation-independent hardness results based on
cryptographic assumptions [Kea90a, Chap. 7]. He shows that given these
assumptions, general Boolean formulae over n variables of length polynomial
in n cannot be learned in polynomial time.

This concludes the introduction to PAC learning. In previous sections, we
have been concerned with the learning of regular languages, i.e. of finite au-
tomata. Gold showed that learning a DFA with the minimal number of states
from positive and negative samples was NP-hard (see section 2.1.1 above).
However. PAC-learnability provides a much more tolerant criterion for learn-
ing. tlian was considered previously: Is polynomial-time PAC-learning of finite
“automata possible?

In 1989, Pitt and Warmuth proved that it is NP-hard to PAC-learn a
DFA of size n by an NFA whose size is bounded above by any polynomial
- in n [Pit89]. This was a representation-based hardness result which still left
open the possibility thit DFAs can be PAC-learned by some representation

-
I

77

class H other than regular sets. Next, Pitt and Warmuth proved that the
existence of a polynomial-time algorithm--for PAC-learning DFAs by any
representation class H implies the existence of a polynomial-time algorithm
for PAC-learning arbitrary Boolean formulae [Pit90]. However, as described
above, Kearns showed that given reasonable cryptographic assumptions, one
cannot PAC-learn Boolean formulae in polynomial time. This constitutes
a representation-independent proof that DFAs cannot be PAC-learned in
polynomial time.

The next section considers another paradigm for probabilistic learning
closely related to PAC learning, but even more tolerant of error. This
paradigm will be used subsequently to prove a result about KCTs.

4.3.3 Learning P-Concepts

PAC learning involves a tolerant and realistic definition of acceptability for
the hypothesis yielded by a learning algorithin. However, the PAC-learning
assumptions about the nature of the examples are open to question. [s it
realistic to assume that one can obtain sources POS and NEG of positive
and negative examples that are 100% reliable? '

If one relaxes this assumption, one obtains new models for learning. For
instance, we may assume a “white noise” model in which we still use the
oracles POS and NEG, except that the examples yielded by each have a
small, fixed probability of being mislabelled before they reach the learning
algorithm [Ang88]. That is, if examples from POS are normally labelled
“+" and those from NEG normally labelled “-”, a certain proportion chosen
at random will get the wrong label! In chapter 5 of his book, M. Kearns de-
scribes a more pessimistic model in which a malicious adversary is allowed to
choose and mislabel a proportion Eprar of the exarples, and does this in the
way most likely to cause the learning algorithm to output a bad hypothesis
[Kea90a].

These two models still assume that in principle, a particular example
belongs to exactly one of the two categories. However, we may wish to explore
domains where classification is uncertain or probabilistic in principie - where
there is not necessarily a single right classification. The theory of learning
“probabilistic concepts” or “p-concepts” deals with this kind of situation, and
is being developed mainly by M. Kearns and R. Schapire. This theory is very
new; the only references I know of are Schapire’s Ph.D. thesis [Scha91] and

78

an extended abstract by Kearns and Schapire [Kea90b], though M. I_enuls
kindly sent me the full version of the latter. i '
Kearns and Schapire give three examples to clarify p-concepts:

1. A meteorologist measures a small number of relevant parameters, such
as the temperature, barometric pressure, and wind speed and direction;
he makez a prediction of the form “chances for rain tommorrow are
70%". The next day it either rains or does not rain.

o

A statistician wants to predict which students will or will not be ad-
mitted to a particular college on the basis of their high school average
and SAT scores. Some students have such good or such bad marks that
the statistician can makz @ prediction with almost complete certainty;
the fate of borderline students depends on the mood of the admissions
officer at a particular moment (about which the statistician has no
information). Each student either is or is not admitted.

3. A physicist wants to know the orientation of spin for particles in a
magnetic field of known strength and direction. Each particle has spin
either up or down.

lireach of these three cases, as with PAC-learning, the examples ha.ve an
ummblguous label - each is either positive or negative. For instance, it either
rains or does not rain on a particular day. The difference is that two identical
examples may receive opposite labels, and this is not due to some error in
the labelling process but part of the phenomenon itself. In some cases, as
for examples 1 and 2, we may lack additional information that would enable
us to correctly distinguish positive and negative examples 100% of the time.
In other cases, as in example 3, quantum theory tells us that 100% accuracy
of classification is impossible in principle. Both t;:pes of phenomenon are"
covered by the theory of p-concepts. The theory also deals with the “fuzzy
logic” type of concept, where two different prople may disagree about the
boundaries of a concept like “tallness”.

In all these situations, we have a domain X from which we draw an
example @ according to distribution D. Once drawn, z is labelled “+” with
probability ¢(z) and “-” with probability 1 — ¢(z). The learning algorithm
A has-access to labelled examples f-the form < 2,4+ > or < #,—~ >, from
which we want it to generate in polynomial time an approximation h to the

. ".
fy

79

function ¢(x). We will call both ¢ and / p-concepts: that is, they are real-
valued functions mapping X' onto the interval {0,1]. An obvious algorithm
A would collect several examples for each possible value =, and obtain an
estimate k(z) as an average frequency f(+|z). This will work if = only takes
on a few discrete values. In most cases, however, we will scldom get eractly
the same metereological measurements or the same combination of marks
in a row. [nstead, algorithms for obtaining an approximate i(x) for a ¢(z)
usually rely on some kind of structure in ¢(z) - for instance, days with similar
measurements may have a similar probability of rain.
Definition:

¢ A p-concept k is an (e, v)-good model of probability for distribution
c(z) if Pr[|h(z) — c(z)] > 7] £ ¢, where the probability is taken over
distribution D. Then by analogy with PAC-learning, we say that 4
learns a class of p-concepts C' if for any ¢(z) in C, given access to an
oracle that draws examples from D and then labels them according to
c(z), A outputs with probability 1 -~ § a p-concept A that is an (c,7)-
good model for distribution ¢(z}. If A can produce such an £ in time
polynomial in 1/¢, 1/, and 1/§ we say that A is a polynomial-time
learning algorithm for p-concepts.

Note that once we have learned a reasonably good approximation 2(z) to
c(z), we can easily turn it into a decision rule. The best decision rule is to
label examples z for which A{z) > 0.5 with “+”, those for which A(z) < 0.5
with “” and the rest arbitrarily (unless one type of misclassification is more
costly than another).

- Kearns and Schapire have devised polynomial-time learning algorithms

for a number of p-concept classes C. For our purposes, the most important
of these is the algorithm that learns probabilistic decision lists. The next
section shows that the existence of this algorithm casts light on what is
learned by KCTs. ' , -

Suppose we have a set of n Boolean parameters, each of which is either
TRUE or FALSE. We can construct a set fi, f2,..., fy of Boolean-valued
functions over these parameters. If our domain is the admissions task de-
scribed above, f, might be the question “does the student have straight
A’s?”", f, might be the question “does the student have a SAT math score
of more than 650, or an English SAT score of more than 700?”, and so on.
Now, we might have an admissions procedure which resulted in probabilities

30

of the following form: if f; is TRU/ E the student is admitted with probabil-
ity ry; otherwise, if f, is TRU E the student is admitted with probability ry;
otherwise... and so on until f,, which is the constant function TRU E, gives
a probability r, for admission. This is a probabilistic decision list. A prob-
abilistic decision list with decreasing probabilities is the special case where
each r; 2 riy.

We will assume-that we have already drawn up a list of the relevant
Boolean-valued functions or questions {g;} from which the {f;} will be se-
lected. The learning task is to find out what order they should be in in the
decision list, and to estimate the probabilities r;. First, we draw a large num-
ber m of exainples, each lahelled “+7 or “-"; m is polynomial in 1/e,1/¥,1/d.
Now, considet a particular question g;. Among the m examples, some will
yield a value TRUE to g; of these, some will be labelled “+” and some
= @2 02f those that yield the value FALSE to g;, some will be labelled “4”
and some *-". We can calculate from these counts a conditional frequency
F(+1g:) for each .

Now, the function f, has the property that if it is TRUE, the probability
of getting a “+" is maximal (it is equal to r;). Therefore, the question
q; that yields the highest conditional frequency f(+lg;) is likely to be fi;
furthermore, if fy = ¢; then f(+|gi) is a good estimate for r;. The learning
algorithm sets f; to this ¢; and uses the corresponding conditional frequency
as an estimate of r;. Then, it discards all the examples for which f; is TRUE
and calculates the conditional frequency f(+]g:) for the g;s other than the
one just chosen as f;. The ¢; yielding the maximal conditional frequency is
chosen as f,, this conditional frequency is taken as the estimate for r, and
so on until the algorithm runs out of questions. Kearns and Schapire prove
that this learning algorithm is polynomial in 1/¢, 1/4, 1/4, in the total length
of the question list {¢;}, and in the maximum time required to evaluate any
question q; [Kea90b pg. 385, Schadl pp. 117-122]. The proof is complex,
and will not be given here.

4.4 Key}vord Classification Trees

4.4.1 The Theory and Practice of Machine Learning

Ideally, this thesis would supply rigorous-answers to two questions:

81

1. What do K(CTs learn?

2. What computational resources do they require to carry out learning?

Chapter 7 answers the second question; the current state of machine learning
theory makes it impossible to answer the first one fully.

As Kearns and others point out, there is a large gap between the theory
and practice of machine learning. The complex learning algorithms actually
used in Al do not lend themsélves to formal analysis. Thus, theoreticians
have tended to employ simplistic models that leave out important aspects
of practical machine learning, and designers of Al algorithms have often
abdicated their responsibility to analyze formally what they are doing. The
admirable work of Valiant, KKearns, and their colleagues has provided us with
new models of learning that are simultaneously more rigorous and more com-
putationally realistic than earlier models. Perhaps one day, Al practitioners
will routinely give and prove probabilistic performance guarantees for their
learning algorithms. Meanwhile, research on PAC learning and p-concepts
has narrowed the gap between theory and practice, but not bridged it.

This section provides some clues to the question of what KCTs learn.
First, it is shown that each class in a single-symbol or set-membership KCT
corresponds to a regular set. Next, p‘concept theory is used to prove a result
for a data structure closely resembling KCTs. Finally, the relationship of
KCTs to the learning algorithms described earlier is discussed.

4.4.2 Each Class of a KCT is a Regular Set

We will prove by induction that every node in a single-symbol tree represents
a regular language. A regular language is one describable by a regular expres-
sion, Hopcroft and Ullman define the regular expressions over an alphabet
T and the sets they accept as follows [Hop79 pg. 28]:

1. ¢ is a regular expression and denotes the empty set.

!\'J

€ is a regular expression and denotes the set {€}.

For each a in £, a is a regular expression and denotes the set {a}.

-~ W

If r and s are regular expressions denoting the languages R and S,
respectively, then (r U s), (rs), and (r") are regular expressions that
denote the sets RU S, RS, and R*, respectively.

82

We will also need some results from Hoperoft and Ullman pertaining to
the closure properties of regular sets [Hop79 pg. 59]:

1. The regular sets are closed under union |J.

2. The regular sets are closed under complementation - that is, if L is a
regular set and L © ¥*, then L¢ = &% — L is a regular set.

3. The regular sets are closed under intersection .

We wish to show that every node in a single-symbol KCT accepts a regular
set. Now, our algorithm for growing a single-symbol KCT chooses a question
for every interior node in the KCT, generated from the “known structure”
for the node. Questions are made up of the symbol 4 and the symbols in
E. For instance, if the known structure for N were < a + ¢+ >, the chosen
question might be “is the form of the string < aze4 >7"

Our first step is to show that KCT questions involve regular expressions,
even though they may include the non-standard symbol +. The KCT-
growing algorithms use the symbol + to denote all strings other than the
empty string €; 4 thus denotes the complement of the regular set {¢}, and
therefore (by closure property 3) denotes a regular set. Thus + by itself is
a regular expression. By the definition of the regular expressions, any single
symbol a in & is itself a regular expression, and any concatenation (rs) of
two regular expressions is itself a regular expression. It follows by induction
on the length of any string w that is made up of the symbol + and symbols
in I that w is a regular expression. Thus, quesions in single-symbol KCTs
are regular expressions.

For a node N, let S(N) denote the set of strings arriving at N; for a
question Q involving a regular expression, let S'(Q) denote the set of strings
that would yield “YES” to the question (i.e. that match the regular ex-
pression in). Consider an interior node N, its chosen question), and its
children YES and NO. YES accepts strings in S(N)NS'(Q); NO accepts
strings in S(N)N[S'(Q)]°. Since a regular set is accepted at the root, and
the sets accepted by YES and NO children of a set N are obtained from the
set accepted by N via intersection and complementation with regular sets,
it follows by induction from the closure properties of these operations that
every node in a single-symbol KCT accepts a regular set. In particular, each
of the leaf nodes in a KCT accepts a regular set.

33

Now, a given class in an KCT may be associated with more than one leaf
node - i.e., more than one leaf node may have the label associated with the
particular class. A class corresponds to.a union over leaf nodes. Since regular
sets are closed under union, this implies that each class in a single-symbol
KCT is rcpresen/téd by a regular set. To extend this proof to set-membership
KCTs, one miist prove that the expressions in the nodes of a set-membership
KCT are regular, which is trivial. . _

Of course, this does not imply that the KCT-growing algorithms are
capable of learning any given regular language from examples. As described
above, Gold proved that learning 2 minimal DFA from positive and negative
samples was NP-hard; Pitt and Warmuth proved that PAC-learning a DFA
of size n by an NFA whose size is bounded above by any polynomial in n is
also NP-hard. Since the KCT-growing algorithms are polynomial-time (see
Chepter 7) it follows that there will be regular languages that cannot be
exactly learned, nor PAC-learned, by KCTs. KCT-growing must therefore
be regarded as a heuristic method that always learns some regular language
approximation to the language that produced the training examples. The
next section considers the question: when is the KCT grown from training
data a good approximation?

4.4.3 Classification Properties of KCTs

This section examines the ability of KCT's to separate classes of strings. The
discussion that follows considers only the case where we wish to classify a
string s as belonging to L,, the language generated by stochastic grammar
(', or to Ly, the language generated by stochastic grammar G;; however,
the results could easily be extended to a larger number of classes.

KCTs and p-Concepts

A given string s may have non-zero probability of being generated by 7 and
non-zero probability of being generated by G2. The p-concept approach is
relevant here. Let ¢(s) be the probability that s belongs to L,, i.e. ¢(s) =
P(G,|s). Similarly, the probability that s belongs to Ly is P(G;|s) = 1 —¢(s).
Since ¢(s) is a p-concept, a decision rule can easily be derived from it once
it has been learned; in most cases, we will decide that s belongs to L; if
¢(s) > 0.5. ‘ :

84

Each leafl node of a KCT represénts a decision rule of the form “strings
that have arrived at this node will be labelled X”. However, KCTs can be
converted into a data structure that estimates probakilities. First, grow the
KCT on one set of labelled data; sin¢e we are dealing with the two-class
problem, each training string will be labelled either 1 or 2. Next, use a new
set of labelled strings to estimate c(s) for cach leaf node. For a particular
leaf node N, the estimate A(V} is simply the proportion of strings ending
up in that node that is labelled 1. This modified " KCT clearly approximates
p-concepts ¢(s), with each leaf node N providing the estimate h{N) for the
strings that end up in it.)

What classes of p-concepts ¢(s) defined on strings can be learned by
KCTs? The theory of p-concepts cannot be applied directly to KCTs, which
are obtained via the iterative expansion-pruning algorithm in a way that
would be difficult to analyze formally. However, we can obtain an interesting
result using a modified decision list closely resembling smgle—symbol KCTs.

Two questions are of interest:

1. Are there stochastic grammars (;, G, such that no KCT can reliably
decide whether a given string belongs to L; or L,?

2. Given two stochastic grammars Gy, (2 such that a KCT that can reli-
ably determine membership in L, or L, exists,.will this KCT actually
be learned in a reasonable amount of time from examples?

These questions are closely related. The first question can be answered by
producing an example of stochastic grammars G, G, such that a KCT which
reliably determine membership in L, and L, is impossible to grow. Suppose
that G yields strings of the form < aa{bc)*aa >, and G yields strings of the
form < aa(cb) aa >, with identical probability distributions on values-of n.
In general, it will be impossible to get the KCT-growing algorithms staited
- no question of the type “is the form of the string < X >7”, “is the form of
the string < X+ >7”, “is the form of the string < +X >77, or “is the form
of the string < +X+ >7" (whether the single-symbol or set-membership
protocol is followed) yields a significant drop in impurity at the root.

We could deal with practical situations in which stalemates of this sort
often arose by developing a new KCT protocol in which questions involving
n-grams are permitted. In a protocol that allowed bigrams, a question such
as “is the form < +bc+ >?" would be permitted at the root and this would

85

A
T

i

w2

.‘:\\.

.+ handle the example just given. However, for any protocol allowing questions
" about n-grams (value of n fixed), it is easy to produce a counterexample

which requires a higher value of n to handle it. Thus, there are definitely
cases of stochastic grammars G, and G for which membership cannot be

-7 determincd by KCTs.

- The second question we wish to answer concerns situations where there
is a possible KCT that would:sorrectly model ¢(s) = P(Gi|s). Will such a
KCT actually be learned in a reasonable amount of time from sample strings
generated by G; and G,7 Recall that Kearns and Schapire proved that a
decision list with decreasing probabilities is Iearnable That is, an algorithm
exists for Iedrnmg a list of the form (fi,71), (f2, rg) . (fs, 75} where an exam-
ple has probability r; of being in class 1 if f; is TRUE, otherwise probability
r2 of being in class 1 if f; is TRUE, otherwise... - and so on (where the r;
are in decreasing order). It is assumed that the f; are drawn from a list of
potential questions {g;}; the only restriction on these questions is that they
must be Boolean. The algorithm is guaranteed to output with probability
1 —§ a hypothesized decision list & that is an (e, v)-good model for the prob-
ability c(z) given by the real decision list that an example z belongs to class
1. Furthermore, the running time of the algorithm is polynomial in 1/¢, 1/~,
1/4, in the total length of the question list {¢;}, and in the maximum time
required to evaluate any question ¢;.

Suppose we have access to labelled strings from stochastic grammars G,
and Gz. Let {¢} be the questions considered at the root of a single-symbol
KCT. That is, we allow questions of the type “is the form of the string
< X >7", “s the form of the string < X+ >77, “is the form of the string
<+X >7” and “is the form of the string < +X4 >?7, where X is a variable
allowed to take on the value of any symbol in the alphabet £. There are

4 % |Z| such questions. If we run the Kearns-Schapire decision list algorithm -

using this list of ‘questions, we obtain a probabilistic decision list that with
probability 1 — &"ives us an (¢,v)-good model for the probability ¢(s) that
a string s was produced by G, in terms of the questions asked. The list will
be obtained-in"time polynomial in 1/¢, 1/v, 1/4, and alphabet size |Z|. If we
regard €, 7, and § as fixed, the time to find the list is polynomial in |Z|.
Figure 4.1 shows how the Kearns-Schapire algorithm can be iterated to
produce a bloated kind of KCT. Since the lexicon is V' = {b,¢,m}, at the

[

,\-.\

86

root

{g:} = {l<c>?,<m>T, <t >N, < et >N <mt >, < +b+ >,
L > < 4m > < b ST < Fet 37, < dmt >,

o
The algorithm then arranges these questions so that the probabilities ry, ..., 3
shown for iteration 1 are in decreasing order. The chain of questions gen-
erated in this iteration will act as a backbone from which future questions
grow; it contains O(|X|) questions.

During iteration 2, single-symbol questions from the known structure
< +b+ > for the YES chiid of the root are generated; there will be O(|Z])
of these. Using a new set of examples generated by G, and G, we run the
Kearns-Schapire algorithm with the new questions filling the role of {q]}.
Again, we are guaranteed to find a probabilistic decision list that is a good
estimate of the corresponding conditional probabilities in time polynomial in

We now run the Kearns-Schapire algorithm on the YES child of the second
question in the backbone, < +m >? Again, we get a probabilistic decision
list in time polynomiai in {E]. We continue until every one of the O(|Z])
YES children in the backbone has a probabilistic decision list attached to it.
The whole process takes O(|Z|?) time, since an O(|Z]) algorithm is being run
O(lZ]) times.

Thus, the final structure will consider every possible question involving
exactly two symbols in a way that yields, with probability 14, an (¢, ¥)-good
model of the corresponding conditional probabilities (these are stored in the
leaves). The structure takes O(|£[?) time to build. In general, if we wanted
to consider all questions involving k symbols, we would require O(|Z|¥) time.

We have now shown that the class of p-concepts given by P(G,]K(s)),
where K(s) is the known structure for a string s, is-learnable in polynomial
time by the iterated version of the Kearns-Schapire algorithm just given.
The running time is polynomial in the size of the alphabet for fixed & (the
maximum number of symbols in a known structure). This does not prove
that the KCT-growing algorithms we actually use produce an (e, v)-good
model with probability 1 — &, but it makes such a claim plausible.

87

V = {b,¢,m} => Question List = {7?, ..., <c+>?, ..., <+m+>7}
Itera{ion 1:
Yes SebD No
[@ Yes‘/@@:\ No
Yes'/ No

"\

| Yes i; F!NO
P(Gl)=r12 P(G1)=r13

-
iyt

iteration 2:

Yes No

o "\

\\ Yos No

No [P(G1) =r12 P(G1)=r13

(PG =r24] [P@G1)-r1.25]

Yes

Figure 4.1: First 2 {terations of Kearns-Schapire Alg. on KCT-Style Question
List

When Do KCTs Perform Well?

Formal analysis normally considers the worst case: how badly a given method
might perform. Later chapters of this thesis present evidence that KCTs per-
_ form quite well on some natural language tasks. This fact may tell us some-
thing about natural language. Reversing the usual question, one therefore
asks: in what situations would one expect KCTs to perform well?.

The performance of KCTs in deciding whether a string s belongs to L,
or Ls has little to do with the position of these languages in the Chomsky
hierarchy. Rather, it depends on the way in which the corresponding gram-
mars G, and G use the symbols in the alphabet. If G; and G- use these
symbols with different frequencies, KCTs find L, and L, easy to distinguish;
if symbols are used with similar frequencies, KCTs do not easily distinguish
L[and Lg.

For a trivial example, suppose that L, is the language denoted by the
expression a"zb", where n > 1, and L, is the language denoted by a™b",
where n > 1 {both with some consistent probability assignment to strings).
The KCT consisting of the single question “is the form < +z4+ >77 s
capable of deciding membership in L, or Ly with 100% accuracy. Neither
L, nor L, is regular [Hop79 pp. 61-62]. Thus, one cannot conclude from
the regularity of the sets accepted by KCTs that thigy only perform well in
deciding membership in regular languages.

Figure 4.2 presents a more interesting example. Here, G, and G, differ
only in the probability values for the rules associated with the symbols x
and z. The set of strings produced by L, and L, is the same, but some of
them differ in their probability of occurrence: If the a priori values P(G))
and P((,) are identical, one can show by the Bayes theorem that c(aab) =
P(G|aab) = 0.5. On the other hand, the string aazb is more likely to be
produced by G, than by G,. By the Bayes theorem, c{aazb) = P(G|aazbd) =
0.67. i ’

For this example, the only information about a string that makes either
Ly or Ly more likely than the alternative is the fact that it contains z or
z. Any further details about the string are irrelevant. The hypothetical
KCT shown yields the best possible estimate h(s) = ¢(s) for the probability
that a string s was produced by G: no other data structure or grammatlcal
inference method can do better than this. Assuming that a KCT contammg
the questions shown here is obtained from training data, the probc\.bllltles

.,"
(E'
1

89

Grammar 1 (productions with probabilities)

s @3 . 0 8 A4 b
§— B amB M o

A (45 gy M 118 -
A (1/5) M AL
B O . »BB

Grammar 2 (productions with prohabilities)

(114

§ e ® g — M 4p
e S—13 _pamp M—) .y
" A __am) oy M i gy
A (175) y w2,
B 8% »eB

Figure 4.2:

P(G)

p-Concept I(C:'i‘ for 2 Stochastic Grammars,

v

90

w

where P(G,)

1

L

s

f?

~y

M

k(s) at the leaves can be estimated from additional training data, and will
rapidly converge to ¢fs).

_4.4.4 Discussion

In a survey of pattern recognition, I(.5. Fu stated: “Many matheniatical
m~thods have been proposed for solving pattern recognition problems. They
can be grouped into two major approaches, the decision-theoretic or statis-
tical approach and the structural or syntactic approach” [FuS6c pg. 398).
These two approaches differ in their goals, as well as in the technigues they
employ. The decision-theoretic approach aims at making a decision about
new patterns on the basis of statistical classification rules learned from pat-
terns seen earlier. The syntactic approach tries to describe the nature of
the rules that generated a set of patterns, and may use this information to
make a classification decision about new patterns. The syntactic approach
is thus more ambitious than the decision-theoretic approach: in addition to
classifying the data, it attempts to explain the process that gave rise to them.

_ Without exception, all the papers | have read on machine learning of
siTing patterns assume that the syntactic approach is the only possible one.
Nobody seems to have posed the following question: can strings be classified
without full syntactic analysis? In other words, what method should one
employ if one’s only interest in a set of strings is decision-theoretic rather than
syntactic? KCTs fll a hitherto empty niche. They are a means of achieving
for string data the modest goal of decision (heory - that of classifying the data
correctly - rather than the more ambitious syntactic goal of characterising
the processes that generated the data.

This accounts for some of the apparent idiosyncrasies of KCTs:

¢ KCTs perniii'gaps --arbitrary substrings of length one or more that
can be made up’of any symbols from the alphabet. In fact, operations
performed on gaps lie at:the heart of the KCT-growing algorithms. No
7,:.,-gr'azﬁimatica.l inference technique I know of permits gaps, since the aim
=" of such techniques is to account for all the symbols in a given string.

¢ The performancel of KCTs depends on the extent to which, in.a given
domain, the class of a string correlates with the identity of the terminals
it contains, i.e. with string composition. Natural languages have a huge

Wk
" 91

et
——l

number of possible terminals (words); only a fraction of the lexicon
can appear in a given sentence. If one were interested in classifying
sentences by topic, an unordered list of the words occurring in the
sentence would be quite helpful. Many vatural language classification
problems thus seem ideally suited to KCTs. By contrast, a domain in
which different string classes tend to have the same terminals arranged
differently might be better-suited to another technique.

Most work in grammatical inference considers only two classes of strings:
those generated by a’grammar G and those not generated by (;. When
more than two classes are considered, a separate grammar is inferred
for each. Thus, a new string is parsed first by G|, then by G», G5 and
so on until a grammar G; is found such that the parse is successful.
If the grammars are stochastic, the successful parse is the one which
yields the highest probability of generating the string. A single KCT
can separate strings belonging to several different classes in a small
number of steps. X

Although the leaf nodes-of a KCT accept regular languages, KCTs
can reliably tell apart strings produced by some pairs of grammars
Gy, Gz higher up in the Chomsky hierarchy - if certain conditions
are placed on production probabilities in those grammars. Broadly

“jpeaking, good performance is possible when at least one of the two

grammars generates strings containing regular patterns not produced
by the other grammar as substrings.

Growing a KCT on a set of training strings is usually much faster
than inferring a grammar from the same data, as is using 2 KCT to
classify 2 new string. In return for giving up the goal of explaining how
the data arose and concentrating on classification, KCTs obtain speed
advantages.

 KCTs are not the only possxble decision-theoretic learnmg method for
'/':atnng classification rules. As others arise - based, for instance, on the theory
of Bayesian networks [Char91] - it will be important to develop theoretical cri-
teria for assessing them. The PAC learning paradigm (including p-concepts),
with its emphasis on computability and on probabilistic performance guar-
antees, promises to supply such criteria. I have devoted considerable space

92

) R

to this relatively new, incomplete paradigm because | am convinced that it
will be of great importance in the future. In the long term, work in ma-
chine learning in general and string classificatior in particular will grow out
of closer collaboration between theory and practice.
In the medium term; the validity of KCTs must be established empirically.
Like bigrams and trigrams for language modeling, KCTs seem to yicld simple,
rapidly-trainable models that approxiinate linguistic reality by ignoring some
i aspects-of it. Chapter 5 presents binary decision trees, of which KCTs are a
specialised form; Chapter 6 presents KCTs themselves. N

93

e

{1

i

Chaptér 5

Classification Trees in SDeech

Processmg

- -

5.1 What is a- 1.:1'113"}’ Llasmﬁcatlon Tree"

A binary classification tree is a binary tree each of wiiose mternal Tiodes

_ consists of a yes-no quéstion, a YES subtree,-and a NO.subtree, and each of
) whose leaf nodes is labeled with a category.To classify a data item, apply
- the question at the root to it and euter cither the YES or the NO subtree,

depending on the answer to the quéstion, recurse until the data item arrives
at a leaf node, whose category is assigned to the item.

Thus, using a binary clasmﬁcat:on tree is analogous to playing the game
“Twenty Questions” - except that in pattern-recognition applications there
is no rule limiting the depth of the tree to Lwenty The most difficult part
of this game is the formulation of 2 good tree of binary questions; once this
tree has heen devised in the course of several games, it can be used over and
over again: with. little mental effort. Similarly, the trickiest part of binary
tree classification as a statistical’ techmque is the generation of the tree from
training data; once it has been’ grown, classifying new data is trivial. The
structure of the completed trce is easy for people to understand and often
yields a deeper understanding of the hidden processes generating the data,

_jwhich is not always true of competmg statistical techniques.

In the last few years efficient algorithms for growing binary classification_ 2
trees from training data have been devised. Many of these are contained in a

~

; .l
\:\

.?'

- o

book sometinies called the "Bible? or "Bhagavad Gita” of classification tree ¢

methodology: “Classification and Regression Trees” by Breiman, Friedman
et al [Bre84]. Some important; recent contributions to the methodology are
[Cho91, Gel91, Nad51]. To employ these tree-growing algorithms, one must
supply three elements [Bre84}: :

L. A set of possible yes-no questions thiat can be applied to data items;

2.°A rule for selecting the best-guestion at a' node, or deciding that it
shonld be a leaf node, on the basis of training-.dta;

3. A method for pruning trees to prevent over-training.

Note that the set of possible questions one supplies to the tree-growing

algorithm is normally much larger than the set of questions ultimately as-
signed to nodes of the-tree. Any question that yields a “YES” or “NO”
answer when applied to the type of data one is; studymg is permissible in
principle. The beauty of the classification tree 1pp1’>ach is that if one thinks
a certain. aspect of the data nght concewably be relevant to classification,
one can supply a question reflecting this aspect to the tree-growing algorithm
and allow it to make the’final decision. The algorithm discards most of the
possible questions and determmm the placement i in the tree of the remaining
questions on the basis of training data. TN

The classification iree method can be applled to a wide variety of prob-
lems: [Bre84] discusses a tree that identifies heart attack patients who risk
having a second, fatal attack within the next month, a trce that determines
the class of a ship from its radar range profile, and a tree that :letects the
presence of bromine from mass spectrometer measurements. Figure 5.1 [tbid
pe. 2] shows the tree that identifies high-risk heart attack patients: ¢ means
high risk, F' means low risk. People who had suffered a mild heart attack
and were admitted to a certain medical centre underwent coreful examina-
tion involving measurement of 19" variables: blood pressure, age, and so on.
If they died within the next 30 days they were classified as G, otherwnse they
were classified as F. The resulting corpus of data was used to grow the tree
in the figure.

Note that only three of the 19 variables (mlmmum systolic blood pressure,
age, and presence or absence of sinus tachycardia) turned out.to be relevant
for classification. Sophisticated statistical regression techniques applied to

P
o

PN

95

-

Is min. systolic blood pressure

over first 24 hrs. > 91?
yi;//// no

Is age > 62.5?
. G
yi://// N no
Is sinus tachycardia

present? F

yes no

Key

F = low risk patient
G = high risk patient

Figure 5.1: Patient Classification Example [Bre84, pg.2|

96

the same data yielded complex formulae involving most of the 19 variables,
but these turned out to be less accurate than the tree in classifving new data.
Classification trees often have a competitive advantage over other statistical
approaches when the data are highly complex. They should be considered
when the data have the following characteristics [Bre84 pg. 7):

¢ High dimensionality;
¢ A mixture of data types;
¢ Nonstandard data structure;

¢ Nonhomogeneity - i.e., different relationships hold between variables in
different parts of the measurement space.

This chapter discusses general algorithms for growing classification trees,
and applications of these trees at other levels of speech processing. All algo-
rithms and formulae are given for the case where the cost of misclassifying a
class ¢ item for a class j item is the same for all 7 and 7, but they are casy
to modify for non-uniform misclassification costs.

In subsequent chapters, I will show how to grow specialized classification
trees that aid speech understanding by dealing with word sequence hypothe-
ses generated by the speech recognition component. Note that most of the
characteristics listed above apply to word sequence hypotheses:

¢ Their dimensionality varies and can be quite high;

® They consist of a mixture of nouns, verbs, and other information-
carrying parts of speech with meaningless interjections and repetitions;

¢ They are highly non-homogeneous in the sense that one sentence may
require elaborate computation based on all its words, while another
may require very little processing.

—n

5.2 Splitting Rules and Stopping Rules

As mentioned above, one must supply three elements in order to grow a
binary classification tree:

I. The set of possible questions;

2. A rule for selecting the best question at a node, or dec)iding that it
should be a leaf node;

3._A method for pruning trees to prevent over-training.

Tle set of possible questions depends on the application. This section de-
scribes the Gini criterion for selecting a question and a stopping rule that
decides when a node is a leaf node; the next section describes pruning tech-
niques.

Consider the items in the training data that end up at a newly generated
node. Since we know the category of each item, we can define a measure of
the “impurity” of the node with the following properties:

¢ The impurity is always non-negative;

¢ A node containing equal proportions of all possible categories has max-
imum impurity;

¢ A node containing only one of the possible categories has impurity of
0 (the minimum possible impurity).

There are several functions satisfying these conditions; all depend only
on the counts of each category within a node. Breiman, Friedman, et al
[Bre84] considered several possible impurity measures. They found that the
misclassification rate of the tree is quite insensitive to the function chosen,
as long as it belongs to a set of functions with reasonable properties. From
this set, they ultimately chose the Gini criterion. The Gini criterion is a
measure of impurity that always lies between 0 and 1. If T is a certain node
and f(5|T) is the proportion of items in the node that belong to category 7,
then the Gini impurity #(T") of the node is defined as

i(T) =3 fFUIT(RIT) =1 = 32 fUIT).

%k

For instance, suppose there are three possible categories, A, B, and C.
Consider a given node T at which 10 items in the training data arrive. Of
these 10 items, 5 belong to category A, 3 to category B, and 2 to category

98

C. Then f(A|T)is 0.5, f(B|T) is 0.3, and f(C|T) is 0.2. From these values
and the equation, we deduce that the Gini impurity {(T') is 0.62.

The best question for a node is considered to be the question which brings
about the greatest drop in impurity in going from the parent node to its
children. In other words, if i(T'} is the impurity of node T, the two children
of T are denoted YES and NO, and the proportions of items at 7" that a
question will send to the YES and NO children are denoted py and py
respectively, consider the change in impurity defined as

Al = i(T) = py * (Y ES) — pn % i(NO).

The question chosen at node T will be a question that maximizes Afl. The
process of picking a question for a node, generating the YES and NO children
of the node, and dividing up the strings at the parent node between the two
children is called splitting the parent node.

Consider the node T above, which had 5 category A items, 3 category B
items, and 2 category C items. Suppose one of questions @; and (), must be
chosen, where the YES child of (), contains 4 A items and 1 C item, and its
NO child contains 1 A item, 3 B items, and 1 C item, while the YES child
of @2 contains 3 A and 3 B items and its NO child 2 A and 2 C items. Then
the impurity of @,’s YES child is 0.32 and the impurity of its NO child is
0.56, so

AI{Q,) = 0.62 — (0.5)(0.32) — (0.5)(0.56) = 0.18.
The impurity of both the YES and the NO child of @ is 0.3, so
AI{Q,) = 0.62 — (0.6)(0.5) — (0.4)(0.5) = 0.12.

@, brought about the greatest drop in impurity, and will therefore be pre-
ferred to @». -

Clearly, the children of a given node will be less impure than their parent.
If this process is carried out recursively to generate grandchildren, great-
grandchildren, and so on of the original root node, some of the descendants
of the root may have impurity of 0. These nodes will be designated leaf
nodes, and labelled with the name of the single category they contain. Other
leaf nodes will be designated as such because there is no way of reducing
the impurity any further, or because the maximal A/ is too small, or for

99

some other reason. These leal nodes will be labelled with the name of the
most common category they contain; ties are broken arbitrarily. The criteria
used to determine when a node should be prevented from splitting further
by declaring it a leaf node are called the “stopping rules”.

Breiman ef al initially experimented with a variety of stopping rules to
obtain the best-sized tree. For instance, they considered different numerical
values for a threshold b such that a node is considered to be a leaf node if the
maximal A/ (over the set of questions) is less than b. None of these stopping
rules achieved the desired goal of obtaining a tree with strong predictive
power. The reason is that in many cases, a node for which the best question
gives an unimpressive A [has children which can achieve high values of A/; a
stopping rule that turns the original node into a leaf prevents these valuable
child nodes from being born.

These researchers ultimately adopted a tree-growing strategy with two
stages: first grow a tree that is much too large using a simple stopping rule,
then prune the tree upwards from the leaves using an independent data set.
The simple stopping rule they adopted was to keep splitting nodes until for
cach terminal node, either there are fewer than N items (V close to 1), or
the maximal value of Af is 0. The growing-pruning strategy vielded better
results than the most sophisticated stopping rules they tried.

Before we consider pruning, an important point about the choice of ques-
tion at each node must be made. This choice is not necessarily optimal for
the tree as a whole. [deally, we would choose the question that ultimately
led to the tree with the lowest misclassification rate. This would require
consideration of all possible subtrees of the current node and is computa-
tionally impractical. Use of the Gini criterion is a greedy heuristic that gives
good global results most of the time. If the set of possible questions is small,
one can employ a look-ahead version of the algorithm in which the criterion
is the impurity of the grandchildren or greatgrandchildren of the current
node, rather than the impurity of the children. Once the number of layers of
look-ahead is greater than two or three, this again becomes computationally
impractical.

100

5.3 Pruning Techniques

A tree grown with a tolerant splitting rule like the one utilized by Breiman et
al will not perform well on new data - it will be “overtrained™. Overtraining
occurs when a predictor is so well-fitted to its training data that its ability
to predict new data is handicapped. For instance, if we have 15 data points
(z,y) we could fit them perfectly with a polynomial in powers of z up to
z!1. However, it is unlikely that this polynomial will accurately predict the
value of y for a new z. We would be better off using the 15 points to
estimate accurately the parameters of a cubic, or of some other lower-order
polynomial. Similarly, too large a classification tree will have a higher true
rate of misclassification than some smaller trees, despite better performance
on the training data. Picking the best-sized tree is a compromise between a
tree that is too small, ignoring useful information in the training data, and
a tree that is too large and therefore overtrained.

Breiman et afs CART Cross-Validation approach to this problem is
complicated and computationally expensive; their description of it is a con-
fusing part of what is otherwise a beautifully clear book [Bre84 pp. 59-
92]. Recently, Gelfand et al [Gel91] proposed a new iterative expansion-
pruning approach that is elegant, computationally cheap, simple to imple-
ment, and guaranteed to werform as well as or better than the Breiman el af
approach. The Keyword Classification Trees (KCTs) described later in this
thesis were all grown by means of the iterative Gelfand et al approach.

5.3.1 The CART Cross-Validation Approach to Prun-
ing -

Once the initial, too-large tree has been grown, we are no longer concerned

with Gini impurity. To prune the tree, Breiman et al calculate the resubsti-

tution misclassification rate R(n) for each node n. First, give each internal

node, as well as each leaf node, the label of the most common data type that

passed through that node.

Figure 5.2 illustrates this. The tree shown here was grown on 100 data
items, with equal numbers falling into classes A, B, C, D, E. At theroot, the
classes are tied; the tie was broken arbitrarily in favour of the label A. When
the question at the root was chosen, 52 data items yielded a “yes” answer
and went into the left child, 48 yielded a “no” answer and went into the right

101

@ 20A+20B+20C+20D+20E

15A+6B+12C+19D 5A+14B+8C+1D+20E

/

15A+5B| B 1B SA+12B| 2B+8C+6E
+12C +1D

+19D \l

4E
C 3B+12C| A [5A+2B+9D E 2B+5E 5A+10B+1D+9E
. +10D

B 10B+5E A SA+I1DH4E

Figure 5.2: Classification Tree (Training Data Items shown at each Node)

child. Among the 52 items in the left child of the root, the largest group was
labeled D (19 of these) so the label of this node is I); similarly, the presence
of 20 E items in the right child of the root causes this node to be labeled E.
Each data item ends up at one of the leaf nodes; of course, the total count of
iterns shown in the leaf nodes is 100. I rnade up this example - a tree grown
on 100 items using the Gini criterion would normally be much bigger, with
only a few items per leaf node (unless the set of possible questions was very
restricted).

R(n) is defined as the ratio of the number of items misclassified by the
label at node n to the total number of data items used to grow the tree. For
instance, the leftmost leaf node (with label C) contains 13 items that do not

102

1.
@ R=08

R=0.33 R=0.28

R=0321] g R=00 * R=0.18 | ~ R=0.08

>/®

6

R=0.11 E R=0.02 R=0.15

B R=(0.05 A R=0.05

R=0.13

o

Figure 5.3: Same Tree, R(n) shown for each Node n

belong to class C' (3 B and 10 D); divide this by 100 (not 25, the number of
items in this node) to get an R(n) of 0.13 for this node. Figure 5.3.1 shows
R(n) for all the nodes in the tree.

In a tree grown on real data when the stopping rule was “keep splitting
until all leaf nodes are as pure as possible”, one would expect to see most
leaf nodes with an R{n) of 0.0. The sum of the leaf node R(n)s gives the
misclassification rate of the whole tree on the data it is trained on, which
will be close to 0.0. As explained above, this is an overoptimistic estimate of
the misclassification rate on new data.

To obtain a good pruned tree from the original tree, Breiman et af first
obtain a family of pruned trees. For an internal node n, let R(n,.) be the

103

resubstitution misclassification rate of the subtree at n, defined as the sum
of R(i) over descendants of n that are leaf nodes. For instance, the node”
numbered 2 in figure 5.3.1 has three leaf node descendants, labeled C, A,
and B respectively; thus

R(2w) =0.13+0.11 + 0.0 = 0.24. S
)
Also, for each internal node n, let |sub{n)| denote the number of leaf node
descendants it has; for the same internal node 2, this is 3. Finally, for each
internal node n, define

g1(n) = [R(n) ~ R(nsu)}/[lsub(n)] - 1].

Figure 5.4 shows the ¢; values for the internal nodes in the tree. Note
that, for instance, g,(2) is (0.33—0.24)/(3—1). Breiman et alcall the internal
node n with the lowest value of g; the “weakest link”. In the example, this
happens to be node 4. The first member of the family of pruned subtrees
is obtained by turning the weakest link into a leaf node and pruning its
descendants, as shown in figure 3.5.

What is the rationale for this procedure? The numerator of g;(n) tells
us how much more misclassification we get if we prune the subtree of » and
just classify data by the label at n. Obviously, if this numerator is small the
subtree of n gives only a small improvement over n alone. If the denominator
is large, there are a lot of leaf nodes in the subtree of n. Thus, a small value
for gy(n) implies that if we turn n into a leaf node, we can get rid of a lot of
nodes without greatly increasing misclassification of the training data.

To obtain the other members of the family of pruned subtrees, one must
recalculate the g;(n)s in the new tree, turn the internal node with the lowest
value of g;(n) in the new tree into a leaf node, and iterate until there is
nothing left but the root. Compared to the computational cost of growing
the original tree, these steps take little computation.

We now have a family of pruned subtrees of the original tree. If we have
plenty of data, the original tree should be grown on most of the data. To pick
the best member of the family of pruned subtrees, test each on the remaining
data and pick the one with the lowest misclassification rate. (If we grew and
tested the trees on the same data, the first, largest pruned subtree would
always be chosen). Unfortunately, this procedure is a waste of data.

To use the available data more efficiently, Breiman et al devised a com-
plicated cross-validation scheme:

104

,
.""
“E.’f' .

I

Figure 5.4: Same Tree, g,(n) shown for each Node n

105

/

A

el

Figure 5.5: Same Tree after Pruning of Subtree with lowest ¢,

106

E. Divide the data into V' disjoint subsets.

| O]

Employ V' — 1 of these subsets to grow a too-large trce and the corre-
sponding family of pruned subtrees; find the best pruned subtree from
this family by testing on the subset that was not used for growing the
tree. _

3. Repeat this V times, each time reserving a different subset for inding
the best subtree.

4. One now has V best pruned subtrees. From these, one can obtain an
estimate of “how big” the optimal subtree should be (actually, a certain
tree complexity parameter is estimated).

(w1

Now grow a too-large tree on all the data, obtain the family of pruned
subtrees, and pick the one that is “the right size” (i.e. has close Lo the
estimated value of the complexity parameter).

Fortunately, just as I was beginning to implement this cumbersome and
computationally expensive procedure, I encountered an article describing the
Gelfand et al approach [Gel91}.

5.3.2 The Iterative Expansion-Pruning Approach

Gelfand et of's iterative algorithm is easy to understand and to implement.
In my description of it, I will (unlike Gelfand et al) call the process by which a
tree acquires new nodes “expansion” (rather than “growth”). The removal of
nodes will still be called “pruning”, and the process of obtaining the final tree
via cycles of expansion and pruning will be called “growth”. The Gelfand el a!f
algorithm will therefore be referred to as the “expansion-pruning” algorithm.
Compared to the cross-validation procedure described above, the expansion-
pruning algorithm has several advantages. In the cross-validation procedure,
« pruned subtree is selected from a parametric family of pruned subtrees
which represents only a small subset of all possible subtrees of the original
tree. There is no guarantee that the parametric family of pruned subtrees
contains even a single member capable of yielding good performance on new
data, because the parametric family was obtained using only information
contained in the training data. In the pruning step of the expansion-pruning

107

N

algorithm, a somewhat better estimate of the misclassification rate is min-
imized over all possible pruned subtrees, not just a subset of them. This
algorithm thus tends to yield a final tree with a lower misclassification rate
on new data. Furthermore, the cross-validation procedure requires grow-
ing many trees that are later discarded. The expansion-pruning algorithm .~
constructs the bulk of the final tree in the first few iterations and does com-
paratively little work thereafter, so it is computationally cheaper than cross-
validation.

LS

The expansion phase of this algorithm works exactly as in the Breiman
et al algorithkm, using the Gini criterion (or some similar criterion) to pick
questions and a simple stopping rule that generates overtrained irees. Labels
are again assigned to all nodes in the expausion phase, as described above,
Since the pruning phase that follows will cut off leaf nodes (and often interp\g]
nodes) without doing any labelling of its own, internal nodes must be labelled”
during the expansion phase. Otherwise, we would obtain new leaf nodes with
no labels at the end of the next pruning phase. To expand a pruned tree, one
retains the labels on the leal nodes but selects new binary questions for them
so as to produce YES and NO children of minimal;impurity. These children
are split recursively, in the usual way, until pure léif nides are obtained.

The most important aspect of the expansion-pruning algorithm is that
the training data are split into two disjoint sets of approximately equal size,
which [will call F and § (for “first” and “second”). After being expanded
on one set, the tree will be pruned on the other, then expanded on the set
it was just pruned on; this process is iterated until two siccessive pruned:
trees are of the same size. If we let T stand for the original empty tree, the
iterations can be described as follows:

Ly

¢ Expand Tp on F to get Ti;

Prune T} on S to éet Ts;

Expand T, on S to get Ty;

Prune T3 on F to get Ty;

Expand Ty on F to get Ts;

Prune Ts on S to get Tg;

108

and so on. Eventually two successive pruned trees - for jnstance, Ty and 7
- will have the same number of odes, and we set the final tree to be the
second one. Gelfand et al have proved that this must happen, and that when
it does the two successive prunecl trees must be identical (1.e. in the example,
T and T3 will be ithe same tree). fnev also state informally that the number
of iterations is small in' practice, and so far my results bear them out: | have
never needed to go beyond growing Ts {which was the same as 74). The
pruning phase is always much faster than the expansion phase. Figurc 5.6
shows part of this cycle. - J

The pruning algorithm takes as input a set of data and a tree. IMirst,
all data items are shunted to the leaf nodes by the binary questions in the
tree; then the algorithm works backwards from the leaves to the root. For
each parent of two leaf nodes, consider what number of items in the two
children will be misclassified if we assign to all of them the label of the
parent. Compare that with the number of items that will be misclassified if
we assign to items in the YES child the label of the YES child, and to items
in the NO child the label of the NO child. It is quite possible that fewer
items are misclassified if we label all of them with the parent’s label. If so,
cut off the two children; if not, keep them.

This idea can be extended. For an internal node n, we want to compare
the number of items arriving at the node that will be misclassified if we give
them the label at n with the number that will be misclassified by the subtrec
whose root is n. If the label at n is a better way of assigning the class than
the subtree rooted at n, the subtree should be pruned. Working recursively
from the leaves to the root until no more nodes can be pruned, the iterative
expansion-pruning algorithm carries out this idea.

Therefore, certain YES-NO pairs of child nodes that are initially retained"
because they yield less misclassification than their immediate parent may be
removed later. This occurs when a more distant ancestor of these nodes (a
grandparent or greatgrandparent) yields even less misclassification than any
possible pruned subtree descending from it. All descendants of this ancestor
will be pruned.

To implement the algorlthrn define a parameter R(n) that will be stored
at each node n in the classification tree. R(n) is the proportion of the total

v, number of data items that is misclassified by the label at node n. This is not
. equivalent to R(n) in the cross-validation procedure, since it is estimated on
2l a data set other tha.n the set on which tle las. tree expanswn took place

109

—

Three Stages of the Algorithm

Expand J. Prune Expand x %
onF : . on S | E

) () () 0
ERCRDRNENREE BRE

Basic Idea of Algorithm

- Split training data into two data sets, F and S.

- Expand T1 on F, letting nodes be split until leaf nodes are “pure”
(only 1 class of item in each leaf node). T1 is now overtrained.

- Prune T1on Stoget T2,

- Expand T2 on S to get T3 (Wwith pure leal nodes).

- Prune T3 on F to gel T4,

- lterate until 2 successive even-numbered Ts are the same size.

Advantages

- Unlike Braiman et al pruning, minimizes misctassification over all pruned subtrees;
- Much faster than Breiman et al algorithm;
- Easy 1o implement;

- Efficient use of training data.

Figure 5.6: The Expansion-Pruning Algorithm

110

!
and is defined at leal nodes as well as internal nodes. As with R(n). it is
important to remember that /(n) is not the proportion of the number of
items in node n that are misclassified by the label of n. If the data set used
for pruning has 100 items in it, 5 of these reach a node n, and 2 of these H
are misclassified by the label of n, then R(n) is 0.02 rather than 0.4. [stress
 this point because I made this error when first implementing the algorithm!
Another parameter S(n) is also stored at each node. S(n) represents the
proportion of the total number of data items that is misclassified by the best
possible pruned subtree obtained from the original subtree rooted at n. Our
data structure for the tree will have storage at each node for R(n), for S(n),
and for a ‘done’ bit (the ‘done’ bit is not really necessary but makes the
algorithm easier to understand).
Here is the pruning algorithm, which takes as input a classification tree
with all nodes labelled and a set of data:

1. Read in the tree; set the ‘done’ bits of the leal nodes to 1 and all other
bits to 0.

o

. Use the tree to classify the dat2, and record the value of R{(n) for all
nodes n, both internal and.leaf. The data can be discarded once this
has been done.

3. For each leaf node n, set S(n) to R(n).

KN

. Carry out the following step recursively (you will be working from the
leaves to the root), stopping when all nodes in the tree have the ‘done’
bit set to 1. The step is carried out on those nodes of the tree that
have a ‘done’ bit set to 0, but whose children both have a ‘done’ hit
of 1. Denote such a node by n, and its children by YE&S and NO.
Compare R(n) with S(YES) + S(NO). If R(n) is smaller than or
equal to this sum, dispose of the YES and NO descendants and set
S(n) to fi(n); otherwise, leave the children where they are and set
S(n) to S(YES) + §(NO). Now set the ‘done’ bit for n to 1.

Gelfand et al have proved that this fast, simple algorithm finds the opti-
mal pruned subtree of the original tree.

This completes the description of the iterative expansion-pruning algo-
rithm. When I first read and implemented the algorithm, there was one

. 111

‘rr/

question that puzzled me: why do more than two iterations ever occur”? It
scemed to me that aflter expanding the empty tree Tp on data set £ to get
T\, then pruning 1) on S to get T%, then expanding T; on & to get T3, then
pruning Ts on F to get Ty, one should always have Ty identical to T». This
may happen, but frequently it does not - further iterations are often neces-
sary. | will give the reasoning that led me to this false conclusion, and then
show what is wrong with the reasoning. In the process, the reader may gain
a deeper understanding of the algorithm.

My reasoning was as follows. Consider an internal node n that is in Ty
and is then pruned (without its parent being pruned), so that it is not in
Ty. When n was originally put into T3, a large number of possible yes-no
questions were considered to fill this node: call them @4, @B, @¢, and so on.
Ultimately all but one of these questions was rejected during this expansion
phase: let us call the one that was chosen @@4. Now, suppose that though n
was pruned {rom T, during the next expansion phase on § another internal
node grows where n used to be. Obviously, the question contained here in
Ty cannot be @4, since Q4 did a worse job of classifying the data in S than
its parent did (that's why it was pruned). We know that the same set of
questions as before were considered for this position (since the parent is the
same) - 4, @B, and so on - but this time another question was chosen. Let’s
call the question occupying node n in T3 Q5. Now, my reasoning was that
when we prune T; on ', we know that Qg was already rejected once before
on this same data, during the expansion phase that led to the choice of @ 4.
Therefore, node n, which contains g, must be pruned from T5.

This is not a watertight case for saying that T and T4 must be identical,
since it only concerns one type of node. However, it was enough to make
me feel uneasy about the algorithm. The error in the argument lies in the
confusion between rejecting a possible question during the expansion phase
and rejecting it during the pruning phase. During expansion, the question
that most reduces impurity is selected at each node. Many of the questions
that are not chosen may be capable of reducing misclassification (they may
cven be better at this than the question chosen). Thus, in the previous
paragraph, when Q4 was originally chosen to fill n over @ g and the others,
@ B may still be an improvement over its ancestors (in terms of classifying the
data in F'}, When the pruning algorithm later considers the effect of removing
@5, it may therefore decide to keep @5 because it reduces misclassification
of §, even though it is not the best possible question for S in that position

112

from the point of view of reducing impurity (@4 [its that description). In
other words, the pruning ulgorithm only rejects a question if it does not
reduce misclassification, whereas the expansion algorithm rejects all but the
question that reduces impurity the most. Therefore, a question that was
rejected earlier by the expansion algorithm on a set of data may reappear on
the other set and be retained by the pruning algorithm on the original sct.

Thus, as one might expect, the final tree is a compromise between the
trees that would be locally optimal for the two data sets I and 5. Each
question in the final tree will be locally optimal for one data set, and be
acceptable for the other data set - in the sense that it does not increase
misclassification.

5.4 Set-Membership Questions

When one seeks to apply classification tree methodology to a problem, one
frequently has an obvious set of possible “primitive” yes-no questions which
one might like to combine to get “compound” questions. For instance, sup-
pose that each of the data items consists of a vector of observations, cach
taking on one value in a discrete set of integer values; thus, each item is a
vector X =< x1,..., T >. Typical primitive questions would then be “does
z3 = 57" and “does ¢ = 17"

In such a situation, one might be content with letting the tree-growing
algorithm pick good primitive questions for each node. However, it may be
that data items with 23 = 2, 23 = 5 and 3 = 6 tend to be similar; if
so, a question that groups them together makes more economical use of the
training data and will therefore yield a better tree. Hence, one might wish
to consider compound questions like “is z3 in the set {2,5,6}7”

In the case of word sequences, different words may have similar meanings.
In the ATIS application, the sentences “Show me taxi fares”, “show me
limousine fares”, and “show me bus fares” should have exactly the same elfect
on the speech understanding system (the display of a ground transportation
table), whereas the sentence “show me flight fares” should have a completely
different effect. 1 was therefore interested in looking at algorithms capable
of asking questions about a set of words in a given position - for instance,
“does the sentence contain a word in the set {tazi, limousine, bus}?"

The problem with asking questions about sets of values of a variable is

113

that the number of possible questions goes up exponentially with the number
of values the variable can assume. l.e., if z; can take N discrete values, the
number of possible “set-membership” questions regarding z; is exponential
in V. In {Bre84], Breiman et al give an exact, linear-time algorithm for
finding the optimal set-membership question in the case where there are only
two classes. For more than two classes, no such algorithm has been found.
Therefore, if there are more than two classes one must employ a heuristic.

Two such heuristics for finding a good set-membership question in polyno-
mial time are found in [Cho91] and [Nad91]. The first reference describes an
iterative, A'-means-like clustering algorithm; the second exploits the Breiman
el al two-class algorithm (by grouping, and by iteratively reversing the roles

_of variable values and classes). The first algorithm was inapplicable to the
“problem of classifying word sequences because it assumed that the outcomes
being combined in a set-membership question are mutually exclusive. It
would have had trouble generating a question like “does the sentence contain
a word in the set {faxi,limousine,bus}?” because two or even three of the
words in the set may occur in the same sentence. The second algorithm
assumes a small number of possible values, corresponding to a small number
of possible words - with a vocabulary of about 1000 words, it would have
taken far too long to run.

However, | considered these two heuristics carefully, and even came up
with modified versions that might have been applied to the word sequence
problem [was considering, though they would have demanded considerable
computation time. Ultimately, I decided on a simpler heuristic for generat-
ing set-membership questions that made more sense for this problem; it is
described in the next chapter.

5.5 Applications of Classification Trees in
Speech Processing

Keyword Classification Trees are an adaptation of classification trees to the
requiremnents of the speech understanding task. Both the nature of the ques-
tions in KCTs and the application of classification trees to speech under-
standing are original. However, standard classification trees are employed at
other levels of the speech hierarchy. The examples that follow will serve both

114

to illustrate the practical application of classification trees and to underline
the unique aspects of KCTs.

5.5.1 Vector Quantization

Vector quantization is a technique that maps a stream of high rate data into
a stream of relatively lower-rate digital data [GraWL]. The goal is to achieve
a maximum amount of data compression and a minimum of distortion. The
technique has been applied to many types of coding, especially image coding
and speech coding. As was mentioned in Chapter 2, vector quantization is
often applied in speech recognition systems to provide the input to HMMs.

Although the details of particular applications of vector quantization vary
greatly, the basic idea is easy to grasp. Consider an input vector

X=<z1,00,&pq >

that one wishes to transmit. Suppose that there exists a vector quantiza-
tion codebook containing M n-dimensional vectors Cj of the same type as
X, and that there also exists a distance measure d(X, C;) hetween such
n-dimensional vectors. To transmit X, find the closest vector C; in the code-
book to it, then send the index 7 of that vector across the channel instead of
the vector itself. At the other end, a decoder which has access to the same
codebook will be able to reconstitute the codebook vector chosen. If the
indices of the M vectors in the codebook are the numbers 1, ..., M in binary,
it is obvious that the message will require approximately log, M bits.

The technique has the advantage that by increasing or decreasing the
number M of vectors in the codebook, one can smoothly trade off fidelity of
transmission against data compression. The more non-uniform the distribu-
tion of vectors in the observation space, the greater the potential for data
compression - if the choice of codebook vectors is carried out cleverly. Thus,
codebock design is crucial to the success of the technique.

A common procedure for designing the codebook is iterative and locally
optimal {0’S87 pp. 315-316). It works as follows:

1. Start with an initial codebook and a set of observation vectors. Calcu-
late the average distance (often called the average “distortion”) between
an observation vector and the codebook vector that will represent it.
If the average distance is small enough, stop.

115

2. If not, replace cach codebook vector with the average of all observation
vectors that mapped onto it, i.e. with their centroid.

3. Using the new codebook, return to step 1.

The choice of initial codebook has a strong effect on the performance of the
final codebook. A simple approach is to pick M vectors at random from the
training set.

Note that in general, the coding of observation vector X requires distance
comparisons with M vectors C;. This is called “full codebook” search. We
can speed up coding at the cost of increased distortion by employing “tree
search” instead. Figure 5.7 shows a binary tree codebook. Here, an obser-
vation vector is first compared to vectors yp and y,. If it is closer to yp, it is
then compared to ygo and yg, and so on until it reaches one of the leaves.
The coding of the vector is the bit string label for the leaf at which it ends
up. Note that this procedure is not guaranteed to send an observation to
the leaf node it is closest to, though it cannot get to a leaf node that is very
distant from the optimal one. On the other hand, it only takes about log, M
comparisons.

There are several ways of obtaining tree-structured codebooks. One way
is to begin with the M (a power of two) leaf vectors, which are clustered into
pairs of adjacent vectors. The vectors at the next level are the centroids of
these pairs. The process continues until there are two centroid vectors at a
level, iy, and y.

Alternatively, one may build a tree-structured codebook by calculating
the centroid of all training vectors, taking this vector V as the root of the
tree. One then splits the root by perturbing V slightly to obtain two distinct
nearby vectors Vg and V3. About half the training vectors will be closer
to Vo, the rest closer to V1: let yg be the centroid of the first group,
the centroid of the second group. Assign each training vector to the y; it is
closest to, and split each y; by perturbing it and then finding two centroids
for the vectors assigned to the y;. These two new centroids will be y;p and
yi1. Continue the process recursively until the codebook is large enough.

Makhoul et al [Mak85] were the first to introduce an unbalanced tree:
instead of growing the tree a layer at a time, they always split the node (at
any depth) that contributes most to overall distortion. To implement a fixed
rate code, they simply number the leaf nodes in some convenient order (e.g.

116

£ f

yooo y001 y010 y011 y100 yi01 yi10 yiid

Figure 5.7: Binary Tree Codebook [0’S87, pg.317]

117

preorder). To maximize transmission efficiency, one should grow the tree
until the number of leaves is a power of two.

The application of Breiman et al classification tree methodology to un-
balanced tree-structured codebook design is now obvious. Two recent papers
[Och91, Ris91] describe experiments along these lines. As the impurity mea-
sure, they use a function of distortion. In [Ris91] cross-validation pruning is
carried out; the criterion A for pruning is the ratio of potential increase in
distortion to decrease in number of bits. Also in [Ris91], the authors made
the interesting experimental observation that two-step lookahead during the
growing phase yields performance close to that obtained by pruning. Another
interesting recent paper on this topic is [Kia91].

5.5.2 Context-Dependent Phone Modeling

Ideally, one would construct HMMs for each word in the vocabulary. As
the size of the vocabulary increases, it becomes more and more unreasonable
to expect sufficient repetitions of each word in the training data. Hence,
subword modeling is required for large-vocabulary speech recognition: the
unit for which HMMs are trained is smaller than the word. An excellent
introduction to this topic is [LeeWL].

Phoneme models seem an obvious choice; it would be easy to get enough
data to train an HMM for each of the 50-odd English phonemes. Unfor-
tunately, the acoustic realization of a phoneme - the phone - depends on
surrounding phones, because our articulators cannot move instantaneously
from one position to another. For instance, the ‘I’ in “lamp” is quite different
from the ‘1" in “pull” (in Welsh these are two different phonemes). Context-
independent phone models average out these differences, yielding HMMs that
perform poorly.

A popular compromise is to model triphones. That is, for a given phone,
one builds an HMM for each combination of left and right context in which
it can occur. Though there are roughly 50 English phonemes, the number
of HMMs required is much less than 50° because many combinations are
impossible. The actual number depends on whether only inter-word or also
intra-word contexts are modeled.

Hon and Lee [Hon91] propose an interesting classification-tree-based al-
gorithm for clustering together triphones, if there are insufficient data for
training all triphone models. Figure 5.8 shows the resulting tree for the

118

Right=Back Vowe!?

yes

Left=Vowel? Lefi=Vowel? i
yes 1o yes no y
[aq] [as]

Figure 5.8: Decision Tree for Allophones of 'k’ {Hon91, pg.260]

[as] [A7]

phone ‘k’ (“left” means the preceding phone, “right” the next phone). First,
HMMs were trained for all possible triphones with ‘k’ in the middle. Once
the tree had been generated from these, there were 8 HMMs for ‘k’: one for
each of the leaf nodes shown. During recognition, whenever the probability
that a phone is ‘k’ must be evaluated, the phone is shunted to the appropriate
leaf in the tree and analyzed by the corresponding HMM. In an experiment
described in [ibid], this approach improved performance from 6.5% error rate
with the original large set of triphone HMMs to 5.4% error rate with the
new, smaller set of phone HMMs.

To grow the tree, consider a root node containing ali triphone HMMs
and a set of possible questions about the context like those shown in the

119

figure. Lach question will split the triphones into two sets a and b. There is
a fast procedure for determining an HMM for each of e and 6 from the indi-
vidual iriphone models. Using these two new HMMs, calculate the amount
of entropy reduction for each possible question and pick the question that
maximizes the overall drop in entropy (entropy is the impurity criterion).
Recurse until some stopping rule is triggered, then prune the tree on new
data.

. In an earlier section, I discussed the generation of “set-membership” ques-
tions from more primitive questions. The authors of [Hon91] employ an in-
triguing algorithm to generate what they call “compound” questions from
“simple” questions. To pick the best compound question for a given node
n, they grow a complete tree made up only of simple questions from n.
Subsequently, they consider all possible Boolean combinations of the simple
tuestions in the tree whose root is n and pick the best combination for n,
discarding the tree of simple questions. This process is illustrated for a single
node A in figure 5.9; provided the size of the simple tree grown at each node
ts very small, it is computationally feasible. Unfortunately, these authors
never define or list the simple questions.

A group of researchers at IBM have taken an even bolder step: instead
of working with triphones, they use a new set of context-dependent subword
models defined by classification trees [Bah91]. Presumably, their reasoning
was that there is nothing magic about the context provided by the imme-
diately preceding and immediately following phone only - surely the current
phone may sometimes be affected by even earlier and even later phones?

Counsider the sequence P_g, ..., Po, ..., Pk, where Py is the current phone.
The IBM researchers collected training data annotated in this manner (K
was set to 5) and grew classification trees on it, one for each phone F. The
set of possible questions was obtained by asking about one particular F; at a
time. Each question could ask whether P; was a particular phone, or whether
it belonged to a certain phonologically meaningful subset of all phones. For
instance, the questions “is P., the phone ‘a’?” and “is P a voiced stop?”
were among the questions considered. Questions asking about more than one
P; at a time were not allowed.

Training HMMs for each possible split during growth of the tree in order
to calculate an HMM-based impurity criterion would have been computa-
tionally expensive. Therefore, a cheaper criterion based on the similarity
of the outputs of the vector quantizers associated with the phones was em-

120 =

yes no \: Jes <
- 9 O
no ;
;! " .
N\ ‘:
N ~. Cluster! . L -
TP ; e / \ \
] \
: L]
\ :
\ ;

N\ Cluster2

o
o
S, "

T

Figure 5.9: Clustering Simple Questions to form a Compound Question
[Hon91, pg.260]

121

ployed instcad. Once the tree has stopped growing, an HMM is grown at
each leaf; the leaves are called “allophones”. Some of the IBM experiments
used a stopping criterion that prevented the tree getting very large, but did
not prune the tree; others involved an oversized tree that was subsequently
pruned.

Experiments with test data showed improvement over triphone models
(which are obtained when A" = 1). The best results were obtained for K = 5,
i.e. when some of the questions in the tree go back as far as 5 phones in the
past or go forwards as far as 5 phones in the future. The average error rate
was 6.8% for A" = 1 {triphone) and 5.9% for A" = 5. In a slightly different
set of experiments, the best average number of allophone models per phone
was found to be about 45; of course, some phones may require more models
than this and others fewer.

5.5.3 Language Modeling

Recall that if y represents an acoustic observation vector, and w a sequence
of words, the task or*a speech recognition system is to find w such that
P(wly) is maximal. By Bayes's rule, we have

P(wly) = P(w)P(y|w}/P(y).

P(y) can be ignored, since it is constant at a given time. Thus, the system
seeks to find w maximizing P(w)P(y|w); the calculation of P(w) is the job
of the language model.

P(w) is easily calculated if for each word w; in the sequence, we know the
probability of w; given all preceding words: P(wi|wg, ..., wi~1). Among the
most popular formulae for estimating this probability are the digram estimate
f(wi|w;_1) and the trigram estimate f(w;|w;-q,wi=,) where the frequencies
f() are obtained from a large training corpus. In theory, one might also wish
to consider 4-gram, 5-gram, and arbitrary N-gram models - in practice, N-
gram models with N > 3 require such huge training corpora that they are
inapplicable.

In [BahWLb] researchers at IBM argue that the bigram ‘and trigram
classes embody naive definitions of equivalence classes. These models ig-
nore all words prior to the two most recent. In reality, some word sequences
ending with the same pair of words may behave quite differently, while other

122

word sequences ending with a different pair may be functionally equivalent.
To remedy this, they propose a classification-tree-based model that allows
P(w;) to be conditioned on much less recent words. The new tree-based
model is no more expensive to apply during recognition than the trigram
model, but does require much more computation to develop.

The IBM work on the tree-based model is reminiscent of the IBM work on
context-dependent phone modeling; however, the context here extends into
the past only, and not into the future. The experiments carried out at [BM
attempt to predict the 21st word in a sequence, given the preceding 20 words.
Let wo denote the most recent word, w,;g the second most recent word, and
so on. As in the phone modeling work, potential questions concerning the
w;s (7 < 21) may be simple or complex. Simple questions can ask whether a
given w; is one of the words in a vocabulary, or whether it belongs to a set
of predefined classes supplied to the algorithm by the researchers. Classes
may overlap. For instance, since the class of nouns and the class of months
are defined, the simple questions “is w7 a noun?”, “is w7 a month?” and
“Is w7 the word ‘July’?” will all be considered.

The impurity criterion for choosing questions is entropy. To obtain a
compound question at each node in the growing tree from the set of simple
questions, the IBM researchers employ a peculiar data structure they call a
pylon. This is shown in Figure 5.10. Suppose we are at a given node n of the
growing tree. First, pick the simple question yielding the greatest reduction
in entropy; this splits the data into two groups. Now pick a simple question
that will split the YES group, with members of this group that yielded “no”
being added back into the NO group, in a way that yields the maximum drop
in entropy over all data in the node. Next, split the NO group, adding the
“yes” children back into the YES group. Continue until no further drop in
entropy can be obtained; the simple questions chosen may involve different

w;s. This process generates a subset of the Boolean expressions over the

simple questions.
A huge training corpus of about 29 million words was employed to grow
_and prune a tree of compound questions, which was not allowed to have more

= than 10, 000 leaves. The vocabulary size was 5000 words. This tree was tested

on about 1 million words of data. The perplexity of the tree-hased model
was not much smaller than that obtained with the trigram model: the former
was 90.7, the latter 94.9. However, the tree-based mcdel was less likely to
assign a very low probability to certain words in the training text. Since this

123

5

Figure 5.10: Example of a Pylon [BahWLb, pg.508]

124

i

is a situation likely to result in recognition errors, the drop in perplexity may
underestimate the improvement in recognition performance to be expected
from use of the tree-based mode'--Furthermore, an interpolation of the tree-
based model and the trigram mudel yielded much better perplexity than
either alone: 82.5. .

The paper also contains some interesting statistics on the pylon depths
and how often each w; formed part of a question. Roughly speaking, about
half the questions in the final tree were simple questions (pylon depth is 1),
half of the rest contained two simple questions, and so on. Contrary to what
one might expect, wqg - the most recent word - was not the word most often
asked about; wig - the second most recent word - was. After w,q, the most
popular word for questions was wg; only then came wq. Next came wys,
and-after that usage dropped off fairly rapidly. These results, along with the
perplexity results, suggest that the tree-based language model incorporates
quite different information from the trigram model, and hence forms a useful
complement to it. '

- .

125

)

Chapter 6

Building Key@ord
Classification Trees

6.1 Introduction

In Chapter 3, we looked at the linguistic analyzer of several speech under-
standing systems. We saw that most of these systems are evolving in the
same direction: though they once relied exclusively on syntactic parsing,
they now rely on robust matching to handle some or all utterances at the
global, sentence level. The robust matcher tries to fill slots in a frame with-
out attempting a sentence-level parse, and skips over words or phrases that
do not help it to fill a slot or to decide on the identity of the current frame.
Syntactic parsing is required locally, to identify the slot-filling phrases and
corivert them to standard representation.

"7~‘1:J}‘§;work done by the linguistic analyzer in translating an utterance to a
frame-like conceptual representation can thus be divided into three parts:

1. Parsing slot-filling phrases - this is the task of local syntactic parsers.

2. Deciding on the identity of the frame - this is part of the task of the
robust matcher.

3. Assigning each slot-filling phrase to the appropriate slot - this is the
rest of the robust matcher’s task.

The robust matcher requires a large set of rules that tell it how to identify the
frame or frames referred to by the current utterance, and how to match slot-
fillers to slots. In all the systems [know of that employ a robust matcher,
these semantic rules are handcoded by the system designers. The AT&T
system does ler.a rules for segmenting a sentence into concepts from training
data; however, it does not contain a robust matcher in the sense described
above.

The assumption underlying the work described in this thesis is that effec-
tive semantic rules can be learned from training data, and that these rules can
afford to ignore many of the words in an utterance. Keyword Classification
Trees (KCT's) were devised for the purpose of learning such semantic rules;
they are the building blocks of the linguistic analyzer described in Chapter
8.

KCTs have the following properties:

¢ They are a tool which can be applied whenever one wishes to classify
strings or substrings. To apply them to a particular problem involving
strings, one must formulate it as a classification problem.

¢ To train a KCT, one must supply it with a corpus of classified strings
or substrings.

¢ The rules found in the nodes of a KCT refer to the symbols in the
strings. These may be words, parts of speech (POSs), or higher-level
syntactic structures like noun phrases (NPs) or prepositional phrases
(PPs). We will assume that all possible symbols are listed in a lexicon.
For convenience, though we will be considering strings made up of a
mixture of words, NPs, and PPs, we will refer to the symbols referred
to in the nodes of a KCT as its “keywords”. The keywords are selected
from the lexicon by the KCT-growing algorithm, rather than by the
programmer, and normally constitute a small fraction of the lexicon.

¢ The questions in the nodes of a KCT concern regular expressions made
up of keywords and gaps, where a gap is defined as an unspecified
substring of length at least one. If an incoming string matches the
expression in a node, it is sent to the node’s YES child; if not, it is
sent to the NO child. As classification proceeds, gaps are progressively

filled in.

127

¢ ‘There are two kinds of KCT, single-symbol KCTs and set-membership
KCTS. The questions in a single-symbol KCT contain regular expres-
sions made up of individual symbols; set-membership KCTs contain
regular expressions made up of sets of individual symbols. The distinc-
tion between the two question types somewhat resembles that made by
IBM researchers between “simple” and “compound” questions, in the
work described at the end of Chapter 5.

As noted above, KCTs can be employed either to classify strings, or to
classify substrings. In the first case, each data item W; is a sequence of
words:

Wi =L Wy ey Wy >

The training corpus consists of a large number of such Wis, each with a
known class ¢{Wj). The KCT grown on this corpus assigns a class &(Wj)
to new word sequences Wj. This case will be discussed extensively in the
sections that follow; it often arises when one wishes to derive semantic rules
for selecting the correct frame for an utterance.

In the second case, we wish to classify only some parts of a string: inside
each W;, we have N(j) substrings S5, ..., Sn(;) that are to be assigned classes
é(S1), .y &(Snyj)). Here, the training corpus consists of word sequences whose
substrings are labelled. An example from ATIS will illustrate this case, which
often arises when one wishes to derive rules for assigning slot-filling phrases
of a given type to the correct slot of the same type.

Suppose that the local parsing step replaces all city names with the
generic symbol “CIT”. For the ATIS task, it is important to label city names
that occur in the word sequence hypothesis as “ORI" (origin of a flight),
“DEST" (destination of a flight), “STOP” (stopover location}, or “SCRAP”
(irrelevant). The original word sequence hypothesis might be: “show me
flights from Boston no sorry from New York to Chicago stopping over in
Pittsburgh”. After local parsing, this would be “show me flights from CIT
no sorry from CIT to CIT stopping over in CIT”.

If this sentence is used for training, it should be labelled as follows: “show
me flights from CIT<SCRAP no sorry from CIT<OR! to CIT<«DEST stop-
ping over in CIT<«STOP™. If the sentence is a new one presented to a KCT,
we wish the KCT to label each “CIT” in exactly this way. Fortunately, the

128

algorithms used to grow KCTs that classify entire strings require only mi-
nor modification to grow KCTs that classify parts of strings. This will be
demonstrated at the end of the chapter.

The properties of the KCT-based robust matcher are partly determined
by the properties of KCTs. In particular:

¢ The work done by the robust matcher on word sequence hypotheses is
broken up into subproblems, in such a way that inany of these subprob-
lems can be defined as classification problems handled by KCTs. The
only part of the ATIS task not handled by KCTs is an initial parse
which identifies slot-filling phrases such as city names, dates, times,
flight numbers and so on (recall that the AT&T group also came to the
conclusion that this type of specialised local parsing was best handled
by hand-written rules, because of the paucity of training data). Thus
the robust matcher is basically a collection of KCTs, each handling a
different subproblem, together with the mechanisms for invoking them
in the correct order.

¢ Since KCTs ack about only a small fraction of symbols in the lexicon,
the KCT-based robust matcher ignores many of the words in an utter-
ance. Other robust matchers also ignore some words, but the KC'T-
growing algorithms find close to the smallest possible number of key-
words required for semantic rules. Recognition errors in non-keywords
do not hinder generation of the correct conceptual representation -
consequently, the KCT-based matcher is very tolerant of recognition
€rrors.

A full description of the KCT-based semantic matcher for the ATIS task
will be found in Chapter 8; the current chapter is concerned with the KCT's
themselves.

6.2 Single-Symbol KCTs
6.2.1 The Basic Alggrithm

Recall that to grow classification trees, one must supply three elements:

1. A set of possible yes-no questions that can be applied to data items;

129

2. A rule for selecting the best question at any node on the basis of training
data;

3. A method for pruning trees to prevent over-training,.

The original aspect of KCTs is the way in which the set of possible questions
is generated. To choose a question from this set, we use the Gini criterion as
described in Chapter 5, section 2; to prevent over-trained trees, we use the
iterative expansion-pruning algorithm described in Chapter 5, section 3.2.

Each node of the growing single-symbol KCT is associated with a regular
expression called the known structure consisting of symbols and gaps; the set
of possible questions is generated by manipulating each of the gaps. A gap
is an unknown sequence of symbols, of length at least one - it is symbolized
by +. The known structure for the root of the KCT is always < + >, where
< and > stand for the beginning and end of the string. respectively. This
implies that strings entering the root must always have length at least one
(empty strings are not permitted).

Consider the four regular expressions generated from a particular gap +
in the known structure and a given item w; in the lexicon as follows:

1. The regular expression obtained by replacing this + in the known struc-
ture by w;;

2. The regular expression obtained by replacing this + in the known struc-
ture by w;+;

3. The regular expression obtained by replacing this + in the known struc-
ture by 4wy

4, The regular expression obtained by replacing this + in the known struc-
ture by +w;+.

At the root, whose known structure is < + >, these four gap operations
generate the expressions < w; >, < wi+ >, < +w; >, and < +w;+ >.
Each of these expressions F is turned into a potential question by asking:
“Does the sequence being classified match the expression £?” For instance,
the expression < wj; > matches only the sequence consisting of the single
symbol w3, the expression < w3+ > matches sequences of length at least two
beginning with wj,, the expression < +ws; > matches sequences of length at

130

least two ending with ws, and the expression < +w3+ > matches sequences
containing a wy that is neither the first nor the last symbol. If there are L
symbols in the lexicon, we generate 4 * L questions by allowing w; to be any
of them. In addition to these questions, we consider all reasonable questions
about the total length of the string, of the form “is length < n?”"; thesc
have turned out to be of little practical importance, as they are hardly ever
chosen. From all these questions, the KCT-growing algorithm selects the one
which achieves the best split of the labelled sequences in the training data,
according to the minimal-impurity Gini criterion.

As the tree grows, known structures get longer. The known structure for
the YES child of a node is identical to the expression found in the question
of its parent, while the known structure for the NO child is identical to
the known structure of its parent. For instance, if the question “does the
sequence match < 4ws+ >7” is selected to fill the root (which has known
structure < + >) the known structure for the root’s YES child is < +ws+ >,
and the known structure for the root’s NO child is < 4+ >. New questions
are generated by applying the four gap operations to each + individually.
For instance, if the known structure is < +wg+ >, questions involving the
expressions < +w; + wg-+ > and < 4wsg + w;+ > will be generated, but not
questions involving < +w; + ws + w;+ > (which would require operating on
both gaps in the known structure simultaneously).

Because we are using the expansion-pruning algorithm, we employ toler-
ant stopping rules that encourage growth of a large tree. A node is declared
to be a leaf node when no further split is possible. This may happen for
three reasons:

1. All training items in the node belong to the same category - this in-
cludes the case where only one training item ends up in the node; OR

2. There are no gaps + in the known structure for the node, so no ques-
tions can be asked; OR

3. There are questions that can be asked, but none of them give a split
that reduces the Gini impurity.

For a detailed description of the implementation of this basic algorithm
for growing single-symbol KCTs, see the Appendix. The next subsection
. gives an examples of a KCT grown from real data.

131

6.2.2 Preliminéry Experiments with Single-Symbol
KCTs

Preliminary experiments were carried out on the November 1990 release of
ATIS data, before work began on the KCT-based robust matcher trained on
1992 ATIS data (as described in Chapter 8). The preliminary experiments
were of two kinds:

1. Experiments involving transcripts of utterances;

2. Experiments involving the most probable word sequence hypotheses
generated by the December 1991 version of the CRIM speech recogni-
tion system from the 1990 ATIS recorded speech. The CRIM system
yields the N-best word sequence hypotheses, but only the top hypoth-
esis for each utterance was employed for the experiments.

With these data, we studied two problems:
l. Determining the general topic of a request for information;

2. For questions involving fares or flights that only mention two city
names, determine which is the origin and which the destination.

Unfortunately, the second problem proved unsatisfactory: not because it
was too hard, but because it was too easy! It happens that in the November
1990 data, the origin of a flight is almost always mentioned before the desti-
nation. Although only a clumsy version of the algorithm for growing KCTs
that label substrings had been developed at this time, the KCT grown for
this problem nevertheless learned this simple rule. It labelled the first city
name ORI, the second DEST.

The first problem was much more interesting. SQL queries have three
parts:

1. a SELECT clause that specifies what attributes to retrieve;

o

a FROM clause that indicates which tables contain these attributes;

3. a WHERE clause that specifies conditions on the rows.

For the 1990 ATIS data, it was convenient to assign queries to one of
six topics or frames, based on the tables mentioned in the FROM clause
(changes in the data and in the evaluation have subsequently diminished
the usefulness of this six-fold classification). The topics were numbered as
follows: 1. AIRCRAFT 2. FARE 3. FLIGHT 4. FLIGHT _FARE 5.
GROUND 6. MEANING.

The task of a KCT was to determine which of these six frames a sen-
tence from the transcript data or the speech recognizer belonged to. Two
KCTs capable of carrying out this task were grown: one trained on tran-
scripts labelled with the correct topic, the other trained on the top word
sequence hypotheses output by the CRIM recognizer (also labelled with the
correct topic). The true labels for both were determined by glancing at the
corresponding SQL commands provided by DARPA. Both were tested on
new data of the same type - i.e., the transcript-grown KCT was tested on
transcripts, and the hypothesis-grown KCT on hypotheses.

Figure 6.1 shows the upper part of the KCT grown on transcripts. The
KCT grown on hypotheses from the recognizer was rather similar, except
near the leaves. This was to be expected; recognition errors are more likely
to affect the choice of question in nodes that receive a small number of
training data items. Note that keywords may occur next to each other, as in
the question involving the expression

< +transportation codes >,

or apart. None of the questions in this KCT involve categories, such as
city names, dates, or flight numbers. This is because the training sentences
were not preparsed. If they had been, expressions like +C [T+ might have
appeared in the nodes of the KCT.

Perhaps the most important aspect of the single-symbol KCT grown to
identify the topic is not evident from figure 6.1. There were 41 nodes in this
tree; of these, 28 occurred in the subtree indicated with a triangle. This
points to a problem experienced with most single-symbol KCTs: at any level
of such KCTs, the NO subtrees tend to contain more nodes than their YES
siblings.

Again, this might have been predicted. There are many ways of saying
the same thing with different words in English. Thus, if we ask whether a
particular keyword is present in sentences of a given type, there will always

133

yes no

FLIGHT-FARE <<+ flights + fares3T>

AIRCRAFT

yes no

FLIGHT-FARE FLIGHT

Figure 6.1: Single-Symbol KCT Grown on ATIS 1990 Transcripts

1

134

be many sentences for which the answer is *no”. Most questions in a single-
symbol KCT will therefore shunt more training data items into their NO child
than into their YES child, giving the NO subtree more chance to grow before
it runs out of data items. This asymmetrical quality implies that single-
symbol KCTs do not use the training data efficiently, since word sequences
that belong together are forced apart. Set- memberslnp I\CTs represent an
attempt to overcome this problem.

‘o
.

6.3 Set-Membership KCTs

Above, we mentioned the possibility of preparsing sentences in the training
corpus for a single-symbol KCT, thus allowing expressions involving cate-
gories like “CIT" and “DATE" to appear in questions. These categories
are defined by the system designer. A more radical approach is to allow the
KCT-growing algorithms to generate questions about sets of words at a given
position, in effect allowing system-defined categories. This is the idea behind
set-membership KCTs. Figure 6.2 shows a set-membership KCT grown on
the same data as the single-symbol KCT shown in figure 6.1.

Note that the questions involve many of the same keywords as appeared in
the figure 6.1 single-symbol KCT. The set of words { flights, flight,nonstops, how}
in the root node is of particular interest, because in the context; of ATIS the
first three words act almost as synonyms. For instance, “show me a flight to
Boston”, “show me flights to Boston”, and “show me nonstops to Boston” all
belong in the FLIGHT category. Experiments with set-membership KCTs
often generate sets of words that are quasi-synonyms. So far, the most in-
teresting example [have seen is the set {what,ezplain, describe,define},
in a question that was generated by the system but rejected in favour of a
question at another position in the known structure that was slightly better
at lowering Gini impurity.

Many of the questions in the nodes of a set-membership KCT will insert
a new set into the gaps + in the known structure, similar to what happened
to individual symbols in the single-symbol KCT. As figure 6.2 shows, this
is not the only possible type of question. Consider the node whose known
structure is

< +{for, ticket,aircraft,cost} + { flights, flight, nonstops:f-z;w}+ >;

135

<+ {fhghr.s flight,nonstops, how} +>7

yes \
@auen for, coach.axm@

yes HO.

<+ {for ticketaircraft,cost } + {flights,fight, nons@
no

@- {fi ghls.ﬂlght.nonst@

Subtree

AIRCRAFT

Subtree

Figure 6.2: Set-Membership KCT Grown on ATIS 1990 Transcripts

136

the question chosen for this node 'wl-\q whether sequences match the expres-.
sion

< +{aircraft} + {flights, flight, nonstops, how}+ > .

Thus, the question in a node of a set-membership KCT may partition a set
in the known structure.

Set-membership KCTs are somewhat trickier than figure 6.2 indicates.
Consider the sentence: “please tell me how much the ticket for a Hight
to Boston costs”. Clearly, this matches the pattern shown at the root of
the KCT, since the middle of the sentence contains the words “how”, and
“flights”, both in the set {flights, flight,nonstops,how}. The sentence
passes to the Toot’s YES child. Here, it is unclear whether the sentence
matches the pattern

< +{for, ticket,aircra fi,cost} + { flights, flight, nonstops, how}+ > .

The word *ticket” in the first set is left of the word “how” in the second set,
but right of the word “flight” in the second set. i

The solution to this problem is that we must clearly define the left and
right boundaries of a set, in order for subsequent questions to be well-defined.
If we do so, we may even ask questions that split a set into a substring in
the known structure. For instance, the known structure

< +{flights, flight, nonstops, how}+ >
might yield a question about the expression
< +{how} + {fl-ights,flz'ght,nonstops}--i- > .

The details of defining set boundaries and questions that depend on them are
not difficult, but complicated and tedious; they are given in the Appendix.

As with single-symbol KCTs, questions in the set-membership KCT are
generated at gaps + in the known structure. The most important compo-
nent of the algorithm for growing set-membership KCTs is the function that,
generates sets of words at a given +. If S stands for a set of symbols, the
questions considered at each + are as follows:

1. The regular expression obtained by replacing this + in the known struc-
ture by S;

137

(S

The regular expression obtained by replacing this + in the known struc-
ture by S+;

3. The regular expression obtained by replacing this + in the known struc-
ture by +5;

4. The regular expresston obtained by replacing this + in the known struc-
ture by +S5+.

A variety of methods for generating S was considered, as mentioned in
Chapter 5. Ultimately, the simplest possible method was adopted. Consider
the problem of choosing a sports team from a large group of temperamental
athletes, some of whom hate each other. One heuristic would be to pick the
best athlete, then the best remaining athlete who gets on with the first one,
then the best remaining athlete who gets on with the two already chosen, and
so on. The heuristic is not infallible: if an athlete chosen early on vetoes most
of the best remaining athletes, one might obtain a better team by leaving
him or her out. However, the heuristic does ensure that the team chosen
commands the services of the best athlete. The method for generating S is
based on this heuristic.

For each + in the known structure, obtain four initial set-membership
questions as follows:

1. Find the best question obtained by replacing this + in the known struc-
ture by S, where § contains a single item w; from the lexicon - i.e.,

§ = {wi};

. Find the best question obtained by replacing this + in the kriown struc-
ture by S+, where § contains a single item w; from the lexicon;

]

3. Find the best question obtained by replacing this + in the known struc-
ture by +S, where 5 contains a single item w; from the lexicon;

4. Find the best question obtained by replacing this + in the known struc-
ture by +S+, where § contains a single item w; from the lexicon.

Thus, the best single-symbol question for each of th;é“our sap operations is
obtained, and used’io initialize four differesis sets S. 'Nekt, the a.lgonthm goes
through the lexicon to find- the symbol that will most diminish Gini i L urity

—

= i

s

\23:.

-

W

&

when it is added to each set S, and adds it to the set. The algorithm now
cycles through the lexicon again to add to the set i.hc item that further
reduces impurity the most. Eventually, the addition of further symbols to
a set will leave the impurity the same or actually increase it; at this point
the set § for one of the set-membership questions has been found. When all
sets are complete, the set-membership question which most reduces the node

_simpurity is chosen,

Figure 6.3 illustrates this method. Here the vocabulary V' consists of
animal names, one for each letter of the alphabet, and the known structure
for the node is < +horse+ >. Thus eight initial single-symbol questions
will be generated, four for each of the two “+” in the known structure. The
diagram shows the expansion of two of the eight initial questiors. Note that
the best set-membership question may be generated from a single-symnbol
question that was not the best of the single-symbol questions.

This heuristic for question generation is not guaranteed to yield the opti-
mal set-membership question - but neither are any of the more complicated
heuristics described in Chapter 5. It has the merit of being fast, easy to
implement, and is guaranteed to bring about at least as big an impurity re-
duction 2s the best single-symbol question, because the best single-symbol
questivn-is always one of the set-membership questions considered.

Initial experiments showed that one modification to the heuristic was
necessary. If each set S is allowed to grow until no more words that reduce
impurity when added to S can be found, some words may bhe added to S on
the basis of a single example. In a sense, the set S becomes “overtrained”
to the training data. This situation was resolved by a “stopping rule” that
specified that a set is only allowed to incorporate new words that reduce
impurity and do so by moving at least NV training data items to a more

appropriate child node, where N is a number greater than 1 (usually set to
2 or 3).

6.4 Classifying;S{i:B?trings

We will now see how tci: adapt the algorithms for growing KCTs (either
single-symbol or set-membe.thp) to the task of classifying substrings. The
example gwen earlier was that o of dealmg with sentences that emerge from

Example

Vocabulary V= {asp, bee, cat. ..., z¢bma}
Known Structure = <+ horse +>.
Best Single-Symbol Questions (first 2 rows below):

CEworm horse+>7>

+ horse quagga>] M

<+ fox + horse +>1

sea . sen

é@

= {bec} T = {cat}
Try § = {bec.asp}, {bee,cat},..., {bee, zebra} Try T = {cat,asp}, {cat. bee},..., {cat, zebra}
S = {bee, viper} yiclds best Gini value T = {cat,hog} vields best Gini value
S = {bes, viper} T = {cat,hog}
Try S = {bee,viper,asp }......{bee,viper,zebra } Try T = {cat,hog.asp}. ..., {cat,hog,zebra}
(unknown # of iterations) (unknown # of iterations})

NO MORE IMPROVEMENT e e NO MORE IMPROVEMENT
BY ADDINGTO § BY ADDINGTOT

N
Compare vs. 6others vs. @

pick the best one!

Note: starting with known structure <+ horse +>, obtain the best single-symbol question for

each of 8 possible operations on known structure, i.e. 8 single-symbol questions, From these,
obtain 8 set-membership questions - pick the one yielding greatest impurity drop. For space
reasons, only show generation of 2 of the 8 set-membership questions.

Note: best of the 8 single-symbol questions does not usually yield best of 8 set-membership ones!

Figure 6.3: Growing a Set-Membership KCT

140

from CIT to CIT stopping over in CIT". To generate the conceptual repre-
sentation, one requires each occurrence of the category CIT to be labelled as
follows: “show me flights from CIT<SCRAP no sorry from CIT<ORI to
CIT<«=DEST stopping over in CIT<STOP”. Once this has been done, the
second, third and fourth city names mentioned in the original sentence are
retrieved and assigned to the ORIGIN, DESTINATION, and STOPOVER
slots respectively.

The crucial insight here is to submit the same sentence to a KCT as many
times as there are substrings to be classified. Each time, the substring being
classified is marked with a special symbol such as “*'. Figure 6.4 shows a
single-symbol KCT for classifying CIT substrings.

To classify the first CIT in the sentence above, we submit “show me flights
from *CIT no sorry from CIT to CIT stopping over in CIT” to the KCT. This
sentence matches first the expression < +*C T+ > in the root and then the
pattern < +*CIT no+ >, so the first CIT is labelled “SCRAP”. To classify
the second city, we submit “show me flights from CIT no sorry from *CIT
to CIT stopping over in CIT” to the KCT. This time, the sentence matches
the pattern < +from * CIT+ >, so the second CIT is labelled “ORI1”. To
classify the third and fourth CIT in the sentence, the sentence is resubmitted
twice more after marking the current CIT with ‘*’. This single-symbol KCT
correctly labels all four appearances of CIT in the sentence.

How can a KCT for classifying substrings be grown from training data?
Note that certain nodes in figure 6.4, including the root, are shaded. These
nodes are the compulsory backbone of any KCT for classifying CIT sub-
strings. The growth of such a KCT begins from the compulsory backbone
already specified by the system designer; otherwise, the KCT-growing algo-
rithm is exactly the same.

As one might expect, the training data are sentences whose substrings
have been correctly labelled. For instance, a typical training sentence for the
CIT task might be “list fares for flights out of CIT«ORI to CIT<=DEST".
To convert this to a form useful for growing the tree, a preprocessor makes
two copies of this: one is “list fares for flights out of *CIT to CIT” and is
labelled “ORI”, the other is “list fares for flights out of CIT to *CIT” and
is labelled “DEST”. These two sentences are treated as independent items
for training. Thus, a sentence in which “CIT” appears N times yields N
training data items.

This approach allows the KCT to classify one occurrence of CIT at a

141

e

Subtree

Note: shaded area is compulsory backbone - put in place before
tree-growing begins. :

\

Figure 6.4: KCT for Classifying CITY Substrings

142

time: the one marked with a ***. “CIT” without the ‘" is treated just like a
normal word in the lexicon, and may occur in a question. For instance, the
expression < +CIT + *C [T+ > would be matched by a sentence like “give
me all CIT flights from *CIT today”. The approach allows one to employ
algorithms for growing either single-symbol or set-membership KCTs exactly
as described above, starting with the compulsory part and utilizing a training
corpus.

The only drawback of the approach is that because each substring being
classified (the substring “CIT” in this case) is classified independently, two
or more of them could be assigned the same label. Heuristics to deal with
this problem can easily be devised. For instance, probabilities for the leaves
of the KCT could be estimated from a disjoint subset of the: raining data
- in case of a conflict, assign labels in a way that maximizes the overall
probability. However, it is probably wiser to view assignment conflicts as
a sign that a situation rarely or never encountered in the training corpus
has been encountered, and that substring classification will consequently be:-
unreliable, ’

In the version of substring KCT's used in the Nov92 ATIS benchmarks,
a new type of question was considered, in addition to the types described
earlier. The new type asked about the ordinality of a substring with respect
to other substrings belonging to the same category. Thus, questions like: “is
this the second CIT?” and “is this the third last CIT?” could be asked. This
question type proved very useful. For instance, if two cities are mentioned,
there is a good chance that the first will be the origin and the second the
destination.

6.5 Related Work

f-6.5.1 Comparison with IBM Tree-Based Language Mod-
eling

Though KCTs were devised to learn semantic rules, and theIBM technique
described in Chapter 3 (section 5.5.3) was applied to language modeling,
both employ classification trees to classify word sequences. How do the two
approaches differ?

Recall that the IBM technique classifies the context within whick a word

w, occurs by asking questions about the identity of the preceding 20 words
Wyn_20, ..., Wn_. For instance, a simple question in the IBM scheme could be
“is w,_s the word ‘flight’?" Compound questions are Boolean combinations
of simple questions. Thus, in the IBM technique questions refer to the posi-
tion of a word in a sequence relative to a fixed location given by the current
word. By contrast, when KCTs are employed to classify a complete word
sequence, the only fixed initial positions are given by the beginning and the
end of the sequence.

KCTs have been applied to two problems: classifying entire word se-
quences, and classifying subsequences within word sequences. The IBM tech-
nique has been applied only to the latter problem. It is not clear how it could
be extended to the classification of an entire word sequence - one would need
to specify a fixed location in the sequence with respect to which questions
would be asked.

Consider the question “does the sequence match < +flight time+ >7”
contained in the node of a single-symbol KCT. This question would yield
“yes” on the following sentences {and an infinite number of others):

Give me the flight time for Delta 105.
What was the flight time again?
The flight time for Delta 105 please.

Suppose the IBM technique was adapted to classify complete word sequences
by letting the last word be w,, the fixed position. Then the IBM question
closest to this KCT question would be the horrendously complicated com-
pound question: “Is (w,-y = time AND w,_; = flight) OR (wp_; = time
AND w,_3 = flight) OR (w,_3 = time AND w,_4 = flight) OR ...?” This
compound:-question will only be generated if each of the simple questions in
it wins out over thousands of rivals, which is far from certain; furthermore,
it requires much larger amounts of computation to generate than does the
corresponding single-symbol KCT question. Note also that by fixing w, at
the end of the sentence, we lose the ability to ask about the beginning of the
sentence (if it is more than 21 words.long) whereas the KCT approach allows
questions to focus on any part of indefinitely long sentences.

In exchange for its advantages, the KCT approach gives up the possibility
of asking about precise positions within the word sequence. The questions
in a KCT may refer to the first or last word in a sentence, and to a position

/144 ‘ .

P i

left or right of a previously identified kevword, but in general they cannot
refer to the word at position ¢ in the sequence (unless previous questions have
specified the words present at positions | to i, or backwards from the last
word at position n to 1). As the name “Keyword Classification Tree” implies,
the KCT approach focuses on keyword islands within the word sequence,
specifying their left-to-right order without giving precise distances between
them.

Thus the two approaches have different strengths and weaknesses: the
IBM trees specify the words found at a given position but lack the ability
to ask simple questions that place a keyword in a wide region of the word
sequence, while KCTs deal effectively with keywords found anywhere within
a region but cannot ask about precise locations. My personal opinion is that
the latter approach more closely models the properties of natural language,
which frequently exhibits insertions and deletions of irrelevant or mildly rel-
evant words and phrases. Only experimentation with both approaches can
settle this question. It might be interesting, for instance, to apply KCTs to
language modeling, and the IBM trees to the generation of semantic rules.

Incidentally, the IBM method for generating compound questions from
simple questions would be applicable to KCTs. That is, one could grow set-
membership KCTs from single-symbol KCT questions in a different manner
than that described above. At each node n of the growing set-membership
tree, one would find the best single-symbol question for n and then grow
a single-symbol subtree from it. The set-membership question for n would
be generated by considering Boolean combinations of the questions in the
single-symbol subtree at n. This approach was rejected hecause it leads to
complicated known structures for the nodes of the set-membership tree, but
it might be worth considering as a means of improving the performance of
set-membership KCT's.

6.5.2 An Application of Classification Trees in Infor-
mation Retrieval

A recent paper by Crawford, Fung et al [Cra91] describes the application
of classification trees to an information retrieval task. The ultimate goal of
this research is on-line monitoring of newswires for topics of interest. The
raw material for the experiments was a collection of 730 Reuters articles

N

145

from 1981, dealing with a wide variety of topics including terrorism. The
experimental aim was to grow on training data a tree classifier that accurately
partitioned new articles into two classes: terrorism and non-terrorism.

Crawlord, Fung ef al are thus attempting to grow classification trees to
learn semantic rules for natural language. From this peint of view, their work
is quite similar to mine. However, the questions contained in their trees are
much simpler than those found in a KCT: they ask only whether a particular
word w; or set of words {w;} occurs or does not occur in an article. Word
order is not taken into account.

For instance, one of their trees incorporates the following rules:

if article contains word "bomb"
[then if article contains words "injure" or "kill"
then TERRORISM;
else NON-TERRORISM;
]
else if article contains word "kidnapping"
then TERRORISM;
else NON-TERRORISM.

This tree was grown on the 730 classified articles by the Breiman et al
methodology, including cross-validation pruning. The estimated true error
rate was 6%. The researchers grew several different trees from the same data
by varying the costs associated with the two possible types of misclassifica-
tion and showed that recall of terrorism articles could be increased at the
expense of precision, or vice versa, in this way.

The researchers point out that these simple trees are likely to be insuf-
ficiently robust in the presence of new data. They therefore grew a concept
tree, in which the questions in the tree ask about the presence or absence of
subconcepts. The optimal concept tree was:

if article contains subconcept BOMBING
[then if contains subconcepts EXPLOSION or KILLING
then TERRORISM;
else NON-TERRORISM;
1 .
else if contains subconcept KIDNAP-EVENT and NAMED-TERRORIST
then TERRORISH; '

o

146

else NON-TERRORISM.

In order to grow this tree, it was necessary to hand-label the 730 articles in
terms of the presence or absence of 18 possible subconcepts (an article can
contain any or all of these). Again, experiments with different settings of
the misclassification costs were carried out. The resulting trees performed
somewhat better than the word-based trees.

The researchers suggest that concept trees could be implemented by grow-
ing word-based trees for subconcepts, then running the concept tree on the
output of these word-based trees. This is an interesting idea, whose main
disadvantage is the extra human time required in labeling articles with sub-
concepts (to permit the growing of word-based subconcept trees). The results
of varying misclassification costs are also interesting. In the application of
KCTs described in this thesis, it seemed reasonable to assume uniform mis-
classification costs, but it would be easy to vary misclassification costs in
KCTs if the application called for it.

The Crawford, Fung et al classification tree is a greatly simplified version
of the KCT that ignores word order. In the course of the growth of this
tree, a small subset of the questions that would be generated by the KCT
algorithms on the same data is considered. [t seems likely that, in general,
the KCT approach - which allows questions about the presence or absence
of keywords, and their relative order - will outperform a classifier that can
only ask about the presence or absence of keywords.

6.5.3 PACE: A Parallel Classifier

Another robust classifier for natural language that learns rules from a training
corpus is described in [Cree92]. The interest of this work is the size of the task
and the parallel implementation, rather than the nature of the rules employed
by the system. Furthermore, in this case thorough, empirical comparison
‘with a knowledge-based approach was possible: it was shown that the robust
classifier performed much better than a hand-coded expert system designed
for the same task.

The task itself is truly immense - it involves processing 22 million natural
language responses to the US Census long form. Specifically, the system
must analyze each response to determine which of 232 industry categories
the individual’s employer belongs to, and which of 504 occupation categories

147

o

defines the individual's specific job. Here is a sample response [Cree92 pg.
511

For whom did this individual work? Essex Electric.

What kind of business or industry was this? Photography-Battery Div.
General category {from a list): Manufacturing.

What kind of work is this person deoing? Apprentice Electrician.

What are this person’s most important activities? Wiring Machinery.
Type of employer (from a list): Private company.

What is this person’s age? 25.

According to the census guidelines, for this response the correct industry cat-
egory is “Photographic Equipment and Supplies” (code 380) and the correct
occupation category is “Electrician Apprentices” (code 576).

The Census Bureau had previously designed an expert system called
AlOCS to carry out this task, in time for the 1990 census. The creation
of AIOCS required 192 person-months of work; on a set of test responses,
it correctly assigned 57% of the industry codes and 37% of the occupation
codes. PACE, the robust parallel classifier, required only 4 person-months
to build. After training on 132,247 previously classified returns, it correctly
assigned 63% of industry codes and 57% of occupation codes for the test
responses. PACE was implemented on a CM-2 parallel computer with 132K
simulated processors.

To classify responses, PACE uses a version of the k-nearest neighbour
approach; the optimal k was found to be somewhere between 10 and 15.
A response is assigned the code that is most frequent among the k nearest
classified examples in the database. This approach supports an ingenious
confidence score for the chosen code, which measures not only the distance
between the current response and the neighbours with the same code, but
also how close the next most plausible answer is to the one chosen.

The distance measure itself depends on what the authors call “conjunctive
features”. Words occurring in the response are given suffixes associated with

“the line they occur on: for instance, every word in the answer to the question
“For whom did this individual work?” is given the suffix “.c”; every word
in the answer to “What kind of business or industry was this?” is given the
suffix “.i"; every word in the answer to “What kind of work is this person
“doing?” is given the suffix “.0”. From then on, two words which are the

. same except for different suffixes are considered to be different words.

|
H

148 E0

During training, all 4.3 million possible combinations of two words are
considered as possible conjunctive features. A conjunctive feature often con-
tains more information than the two words alone. For instance. the con-
ditional probability of the industry code being “general machinery” given
that “shop.i” occurs is 0.24, the probability of this industry code given that
“machinist.o” occurs is 0.29, but the probability of the same code given that
both “shop.i” and “machinist.o” occur is 0.93.

Various weighting schemes for the conjunctive features were considered,
and are described in detail in [Cree92]. Because of the massively parallel
-, implementation, it is possible to calculate weights for each of the 4.5 million
" ~conjunctive features in about 10 minutes. Furthermore, despite this huge

number of parameters, classification of new responses proceeds at the rate of
10 per second.

An interesting observation was made in the course of PACE’s development
- it was found that morphological analysis did more harm than good. For
instance, one would expect the words “attorney” and “attorneys” to behave

- very similarly. In fact, the word “attorneys” predicts the “Legal Services”

code with 0.98% accuracy, while the word “attorney” only predicts the same
code with 68% accuracy. “Blindly stripping prefixes and suffixes from words
to arrive at a canonical stem must be used prudently, if at all. It is our belief,
and the belief of some other researchers who use data-driven approaches...
that the data rather than human intuition should drive the design of the
application” [Cree92, pg. 53].

The researchers responsible for PACE cite the following advantages for
their robust, massively parallel approach:

¢ Ease of programming: PACE took 4 person-months to build, while
AIOCS took 192 person-months;

¢ Completeness and uniformity of coverage: because it was.grown [rom 7
training data mirroring the overall data mix, PACE was guaranteed to 5>

perform well on that mix; 2

-

¢ Scalé;i)ility: as the amount of training data and hardware capabilitics=-
grow, PACE will improve; ’

e Ease of updating: it is easy to adjust system behaviour by removing
old examples and adding new ones;

149

e Confidence scores: if a new example is identical to or close to stored
examples, PACE can assure the user that it has high confidence in the
result - Jow-confidence results can be submitted to human experts for
checking;

¢ Justification: nearest neighbours can be listed as precedents for PACE’s
decisions.

PACE’s classification rules are of limited interest; nevertheless, this work

is important. The comparison between PACE and AIOCS shows that the

* economic tradeoff between computer effort and human effort is tilting towards
the computer. Computation is becoming so ridiculously cheap that it makes
more and more sense to devise brute-force, rather than knowledge-based,
approaches to natural language tasks where possible. The work also suggests
that parallel implementation of such brute-force approaches is an important

consideration. A section in Chapter 7 deais with parallel implementation of
KCTs.

I 150

Chapter 7

Computational Complexity of
the KCT Algorithms

7.1 Introduction

This chapter discusses the time complexity of algorithms for growing and us-
ing KCTs. It shows that even under extremely unfavourable assumptions, the
time required to grow a single-symbol or set-membership KCT by means of
the iterative expansion-pruning algorithm is always polynomial in the amount
of training data, the length of the longest string, and the size of the vocab-
ulary. For both kinds of KCT; the chapter shows that classification takes
relatively little time. -

Table 1 summarizes the serial time complexity results for both kinds of
KCT. The relevant parameters are L), the number of sentences in the training
data (i.e. the total number of sentences in the two training texts used by the
iterative expansion-pruning algorithm), L, the upper limit on the number of
words in a sentence, and V/, the size of the vocabulary.

The algorithms for growing KCTs described in this thesis are well-suited
to parallelization. The last section of the chapter shows how different degrees
of speed-up can be achieved along the continuum from coarse-grained to fine-
grained parallel machines. This chapter thus establishes serial and parallel
time dependencies for the KCT algorithms, and demonstrates that growing
and using KCTs is relatively cheap in computational terms.

151

Table 7.1: SERIAL COMPLEXITY RESULTS FOR KCT ALGORITHMS

ASSUMPTIONS

Voo

Single-symbol growth

Classification
Single-symbol growth

Classification

Set-membership growth

Set-membership growth

D < 4x L*V, unbalanced:

D < 4+ L*V, unbalanced
D < 4% L*V, unbalanced
D > 4% L *V, unbalanced
D > 4% L*V, unbalanced
D > 4+ L*V, unbalanced

ALGORITHM COMPLEXITY
Single-symbol growth balanced O(D* xlogD = L* + V')
Set-membership growth balanced O(D?*+ log D * L* * V?)
Classification balanced O(L # (log V + log D))

O(D? » L2 x V)
O(D3 % L2 x V?)

O(D? * L3 x V?)
O(D? x L « V/3)

O(L2 % V)

7.2 Time Complexity of Single-Symbol KCT
Algorithms

There are two kinds of KCTs: single-symbol KCTs, in which each question
refers to an individual item in the vocabulary, and set-membership KCTs,
in which a question may refer to a set of symbols. We will assume that
the number of classes is negligible compared to the smallest of the three
parameters D, L, and V. For the ATIS system described in Chapters 8 and
9, the maximum value of D was 3254 and V was 592; L was arbitrarily and
pessimistically set to 100.
The nature of the worst-case time analysis for both single-symbol and set-
membership KCTs depends partly on whether we assume that the supply of
training strings, or the supply of possible questions, runs out first. Since no
question can be asked more than once along a path from the root to a leaf,
it is imaginable that KCT expansion will stop because all possible questions
are in the tree. We will therefore begin the analysis by asking two related ==

questions:

1. What is the maximum possible depth of the tree, i.e. the largest number
of YES-NO single-symbol questions:that can be posed along a path

from root to leaf?

b

’ b
{

S

N
N

=T .."'f";i 152
;;&_\;
Do
o

-
Ay

BN

f

2. What is the largest possible number of nodes in the tree?

To determine the maximum depth, note that the maximum number of
“+" positions that can appear in a known structure is L. For cach “+7,
at most 4V single-symbol questions can be asked: questions of the form
“<w > < 4w DT, ‘< +w+ > and “< w+ >77, for every word win
the vocabulary. Suppose that for a particular string in the training text that
has its own leaf, the answer is “NO" to all but one of these questions about
a given < + > (i.e. they are either of the wrzng type or specify the wrong
symbol). After 4V —1 “NQ" answers we have established the identity of one
of the symbols in the substring “+”. We now start work on another “+”,
Since each set of 4V —1 questions establishes one of a maximum of L symbols
in the string;>the maximum number of questions in a path is L * (4V — 1).
Thus, the longest path has less than 4 « L * V' questions in it.

Now, let us determine the maximum number of nodes in a single-symbol
KCT. To get the biggest possible KCT, assume there is one leaf for: every
possible string. Since there are V' possible SeraOlb in the first position, V
m the second powtmq, and so on, there will be VL leaves. In a binary tree,

-%he total number of nod:s must be less than twice thu number of leaf nodes,_"';

theiefore, the largest possible KCT has O(V™) nodes altogethe!. This is an
enormous number. For instance, if V = 100 and L = 10, V¥ = 10%, It
is reasonable to assume that the number of training sentences D is smaller
than this. Given this assumption, the largest KCT is obtained when every
training sentence yields a leaf nude, i.e. when the number of leaves and the
total number of nodes are both O(D). Thus, our analysis begins with the
assumption that the depth is at most O{ L* V), and that the number of nodes
is O(D). :
The first scenario we consider makes a more optimistic assumption about
the maximum depth of the KCT: that it is O(log D). The only justification
for this assumption is that it reflects the experimental results: in practice,
KCT depth seems to go up very slowly with D (see Chapter 9). This will be
called the “balanced” scenario, though KCTs meeting this description need
be balanced only in a very loose sense {e.g. a balanced KCT could have™
an average depth of 0.5log D and a maximum depth of 1000 log D). If the
KCT is unbalanced, we will make the most pessimistic assumnption possible
about the depth. There are two possible scenarios: either D <4+ L+ V or
D> 4% LxV. In the first case, the worst thing that could happen is that

’J.
e

N 153

o

i

the KCT consists of a single chain D — 1 questions long, with each question
separating only one string from: itic rest. The second case is similar, except
that the supply of p0551b1e questlons (of which there are about 4 % L * V)
runs out before the training sentences do.

Thus, three worst-case scenarios will be discussed:

1. The balanced scenario shown in figure 7.2, in which KCT depth is
O(log DY;

]

. The unbalanced scenario shown in figure 7.3, in which D <4 * L *V
and depth is O(D);

3. The unbala.nced scenario shown in figure 7.4, in which D >4xLxV
and depth is O(L * V).

Before considering these scenarios separately, we will consider the 4set- ﬁp
phase” that precedes both growth and classification for single-symbol KCTs

in all scenarios.

CElial

7.2.1 The Set-up Phase: Coinverting Sentences to Lex-
ical Index Strings _
Figure 7.1 shows how a sentence is converted to a lexical index string: every

word in the senlt nce is replaced by its index in the vocabulary. When a KCT
is about to be grown the training sentences must be converted before the

- start of the iterative expansion-pruning algorithm. Similarly, when an input
- sentence is about to be classified by a KCT, conversic:i must first be carried

out. It takes O(log V') time to look up a single word in the vocabulary and
replace it; since each sentence has at most L words in it, the cost of converting
a sentence is O(L x log V). a

Thus, it costs O(D * L * log V) to convert the O(D) se.uences in the
training text before KCT growtu begins, and O(L*log V) to convert a single
lexical indices rather than words, sentence conversion reduces computation
time for KCT growth: it replaces each later O(log V) lexical lookup by an
O(1) integer comparison. - o

e

P

154

Original Sentence 1) , Vocabuiary
how many noon flights to boston? Index Word
- 1 3
ey
Lexical Index String ‘ }’—3 how
223 296 335 189 514 69 296| _ many
' ; 333 10000
: "
e g T - 392 rone
i
J
Figure 7.1: Converting Sentences to Lexical Index Strings (Setup Phase)

Depth = O(log D)

1item \ 1 item J 1item

1 item litem| _

1 item '

O(D) leaf nodes

Figure 7.2: Balanced KCT, Depth = O{logD)

7.2.2 The Balanced Scenario

Figure 7.2 shows the balanced scenario in which KCT depth is O(log D). To
maximize the work that must be done by the KCT-growing algorithm, we
assume that the D data items divide evenly at each question as shown. How
much time will it take to grow this KCT?

Consider a node that is being expanded during the expansion-pruning
algorithm. We have established that the maximum number of single-symbol
questions that can be posed at any node is O(L * V). Consider a single
training lexical index string s of length at most L that is being =5‘_Lsked a -
particular question. In the worst case, the known structure is < + >, the — =
question is “< +i+ >?" where ¢ is the index of some word w(i) in the

156

.

'{
i

|
li
| !

lexicon. and the answer will turn out to be *NO". In Lh"~ +c250, § 1S comparet:

to the second, third, ..., second last indices in s one after t the other, requiring

~ O(L) time. Once a_ YES or *NO” answer has been obtained, a counter

array “YEScount[¢]” or “¥Qco, nt[c] is incremented, where ¢ is the class of
the training string (an O(l‘ operation). -

Thus, when the root of the KCT is grown during the first e\pmsum in the
expansion-pruning algorithm, each question costs O(L) and each is poud to
D strings, so a question costs O(D* L) time. Aftera question has been posed

toall D trammg strings, the change in (-fm lmpurlty i "'150 be calculated from
the arrays “YEScount[]” and * I\:Ocount[] “This is 5 O(C?) eperation whei®;

C is the number of classes, which we asswine is trivial compared to D, L, and
V. Picking the best question from those whose impurity has been calculated
is an O(L*V') operation (we just keep track of the best question so far, and its
impurity, replacing both whenever an even better question is found). Thus
the total work at the root to find the best question for' D training strings is
O(D * L) work per question for O(L * V') possible. questions: O(D * [* « V)
work (the O(L#*V') question comparison work is too small to atfect the overall
time complexity). AT

Once the best question for the root has beeni found some of the data
go to the YES child and some to the NO child. In each, a maximum of
O(LxV) questions will be considered. At this layer of the KCT, if we consider
the YES child and the NO child together, D strings are asked O(L * V)
questions. Thus, the time taken for this layer will be the same as at the root:
O(D * L** V).

In fact, this will be the amount of work done at each layer of the tree.
Since the depth is Q{lug D), we conclude that the total work done during
the first expansion is O(D *log D * L? * V). Note that the cost of the set-up
phase, O(D * L x log V), is insignificaut. If we had skipped this phase and
done lexical lookups each time a string is asked a question, the cost of a
question on a single string would have been O(L *log V') instead of O(L) and
we would have ended up with an extra factor of log V in the final result.

Because the question for each node has been selected, the pruning stage of

the expansion-pruning algorithm takes less work. During the set-up phase, i

a new training text with D strings in it is converted in O(D * L = log V)
time. The resulting lexical index strings are read into the root and the
misclassification rate R(root) is calculated in O(D) time. Next, the questxon
at the root is applied to each of the strings to obtain the answer “YES”

157

s

gy FreaTT AT T
L) R
P

. s
[s
Ly
i '

i
N

r *NO” in O(D # L) time. The total work at the root is thus O(P L)

The D strings are then partitioned between the two childrer and the same’

computations carricd out 4t this level, and continued recursively at lower~

levels. Since each levei has O(L\ strings to work on, each does O(Dx L) work:

There are O(log D) levels, so the total work for this stage of pruning is O(Dx

log D * L). At the final phcse of pruning, the algorithm works recursively
upwards from the leaves, pruning them if their combined misclassification
rate is higher than that of their parent. Using a stack, this can be dene in
time linear in the number of nodes in the tree, O(D). Thus the time requu'ed
for pruning is O(D % £ = logV + D *xlog D x L + D). If we assume that
vocabulary size V is small compared to the number D of training strings,
this is O(D * log D * L). One cycle of expansion followed by iteration is
therefore O(D*IogD*L""*V+D*logD* L)=0DxlogDxL*=V)._

Finally, we must_establish the number of cycles of expansion-pruning
required by the iterative algorithm. Gelfand et al [Gel91] have proved that
at the end of each:such cycle, the size of the tree has either increased since
the previous cycle, ot stayed the sume. If the size has stayed the same,
convergence has occurred and the iteration stops - we have the final KCT.
So assume that the size of the tree increases on each 1tera.tlon We have
established that the maximum size of the KCT is O(D). Ti:us, we will get
the maximum number of iterations if we assume tha’ the first” pruned tree
has size 1, the second has size 2, and so on until O(D) is reached. There were
O(D) cycles, each requiring O(D * log D * L? x V) operations, so the total
time required to grow a single, balanced KCT is O(D*xlog D * L** V). This
is a very loose (pessimistic) upper bound; with some work it would probably
be possible to prove a hghter upper bound. In particular, the assumption
of O(D) cycles of expansion and pruning is extremely pessimistic. When
growing KCT's for the ATIS task, I have never encountered a situation where
more than 4 cycles were needed, even for D > 3000.

Once the balanced KCT has been grown, how many operations are re-
quired to classify a given string? Recall that for a single string, the set-up
phase is O(L * log V). At each node encountered during classification, de-
termining the answer to the node’s question may require looking at up to L
positions in the lexical index string. Since there are at most O(log D) levels
in a balanced KCT, classification of the lexical index string is O(log D * L).
Thus, total time complexity for classification of a string by a balanced KCT
is O(L *log V + log D * L). This is negligible in any realistic case, especially

\';

~ 158

M

’

- in'speech understanding, where the carlier recognition stages are guaranteed
to require orders of magnitude more time.

7.2.3 The Unbalanced Scenario with D < 4% LV

In this scenario, the length of the longest path is O{D) nodes - the supply of
training strings is exhausted before the supply of questions runs out. Using
the same arguments as for the balanced scenario, it is straightforward to
establish the time complexity of the iterative expansion-pruning algorithm.
For the expansion step, we still have O(D * L? + V) operations per level, but
now we have O(D) levels, implying O(D?*L*+V') time complexity. Pruning is
still cheaper than this, so the cost of one iteration cycleis O{ D?* L?*V'); there
is still 2 maximum of D cycles. Thus, in“this scenario the time complexity
of growing the tree is O(D® = L? » V). Note that the substitution of O(D)
tree depth far O(log D) tree depth yields precisely O(D/log D) increase in
complexity. Subsequent use of the tree to classify a string of maximum length
L is clearly O(D = L) - again, negligible in most imaginable circumstances.

7.2.4 The Unbalanced Scenario with D> 4+« LV

In this scenario, there are enough training strings to fill out the longest
possible path, which we established earlier has depth approximately 4+ L+ V.
O(D) strings must still be processed at each level of the tree, but the worst-
case number of levels is O(L * V). Thus O(D % L? % V') work is done per level
in an expansion step as before, but there are now O(L * V) levels, so that an
expansion step requires O(D * L3 * V?) work.

Again, because the pruning step requires less time than the expansion
step, this expression also describes the total number of operations required
for one cycle of the iterative algorithm. By the argument used previously, the
number of iterations is O(D), so the t4*al time for growing this kind of KCT
is O(D? % L% x VV2), When this kind Li"KCT<classifies a string, the worst-case
number of operations is still the product of maximum string length L with
maximum depth, i.e. O(L? * V).

i

i
Q-1 items Depth = O(D)
Litem @2 items>

Yoo

Figure 7.3: Unbalanced KCT, D < 4« L x V, Depth = O(D)

160

<y
£

4

[k

Depth = O(L*V)

Y

9% :
?items M

Figure 7.4: Unbalanced KCT, D > 4% L * V| Depth = O(L+V)

161

7.3 Time Complexity of Set-Membership KCT

Algorithms

In this section, I will discuss KCT's containing questions of the form: “within
a given segment of the string, does any symbol belonging to the set of symbols
X occur?" As described in Chapter 6, there are a number of different types of
set-membership questions. For simplicity, | will usually assume that each set-
membership question asks about a precise, fixed location of the string. The
types of set-membership questions actually used are no more computationally
expensive than this kind,

To begin the analysis, consider the time required to determine whether
a particular string s yields the answer “YES” or “NO” in response to an
arbitrary set-membership question.

7.3.1 Time Complexity of Set-Membership Questions

Figure 7.5 shows how a set-membership question is posed. The set of words
X referred to by the question is stored in an array (also called “X” in the
diagram) of V bits, with bits corresponding to the words in X set to 1 and the
rest set to 0. The question also refers to a region of the sentence demarcated
by left and right positions (not shown). As with the single-symbol case,
assume that a set-up phase has already converted the sentence to a string of
lexical indices.

To determine if the answer to the question is “YES” or “NO” for a given
string s, traverse the string from the appropriate position on the left to the
appropriate position on the right and check for each number ¢ appearing
there whether X (i) i1s 1. If the answer is “YES” for any 7, the answer for the
string s as a whole is also “YES”. In figure 7.5, the question is “< + X+ >7"
so the numbers in s to be checked range from the second number (200 in
the figure) to the second last number (3 in the figure). Since each check
requires an O(1) array access and comparison, and there are at most L of
those, since s cannot have a length greater than L, the cost of obtaining
an answer to any set-membership question on any string is O(L). Thus, set-
membership questions are no more costly to ask than single-symbol questions,
apart from the cost of setting up the bit array X. This is the next aspect of
set-membership questions we must look at: how are they generated?

162

Question: IS STRING s OF FORM <+X+>, WHERE X IN SET {2.5.352}7"

Index->1 2 3 4 5 352 v
X=[0|1]0]0]1]0]..]0]1]0].0]

$=35200914..5403 17

X[200] = 17280 X[9] = 170 X[14] = 1978 -~ X[540] = 138> X[3] = 17
yes yes no
yes yes
YES TO QUESTION NO TO QUESTION

Figure 7.5: Asking Set-Membership Question (for 1 string, O(L) work)

163

7.3.2 Generating Set-Membership Questions

Recall that each set-embership question is generated from the best single-
symbol question at fa fixed position in the known structure. Suppose there
are N training siiinzsin a given node. At a fixed position in the known
structure, O(V) smble~symbol questions can be generated; each costs O(L}
to ask per training string (we may have to traverse a large fraction of the
string to ask the question). Thus, the cost of finding the best single-symbol
question at a fixed position in-the known structure for N training strings is
O(LxN+V). 2

Figure 7.6 shows how set—membershlp questions are generated from a par-
ticular single-symbol question. Suppose the single-symbol question involves
the word at position ¢ in the lexicon. Then we initialize a bit array X to
X[i] = 1, and set all other bits in X to 0. This involves O(V) work.

To ﬁnu a good two‘element X, we leave X[z] =1 and try X{1] =1. By
the argumont of the previous section, measuring the Gini impurity, of this
question over'N. training strings requires O(L * N) work. We next set X[l]
back to 0 and calculate the impurity when X[2] = 1; again, this requires
O(Lx N) work. We continue in this way until we have X[V] = 1 and all two-
element sets that include ¢ have been tried. Clearly, V — 1 different settings
have been tried at the cost of O(L * NV * V) time to obtain the two-element
question involving ¢ that ylelds the lowest impurity. Let this two-element
question have the setting X[t] = 1, X[j] = 1,1 # 7, and all other elements of
X set to 0.

To find the best three-element X, we start with the two-element setting
and try setting a third bit to 1; there are V' — 2 ways of doing this. To get
the best three-element question based on the two-element question requires
O(L * N V) time:

The process continues until the question obtained with M + 1 elements is
no improvement on the M-element question. Conceivably, it could continue
until ¥ — 1 bits in X are set to 1. If this happened, the cost would be
O(L * N V).

This is the cost for finding the set-membership question for cne position
in the known structure from N training strings. Since there can be O(L)
“+” in the known structure, the cost of the final set-membership question
obtained at a single node from N training strings is O(L? * N » V?),

164

1. Start with a single-symbol question at a fixed position, involving word i in lexicon,
SetX =i

{ndex -> 1

234 5 i v
X=[0]0]0]0]0]|0[..]0[1]0].]0]

2. Find best two-element question involving word i.

Index->] 2 5 4 5 i v
2.1y X = {1,i} X=[l]0|0|0]0|0|...|0[l|0|...|()l
Cost = O(L*N)

Index->1 2 3 4 5 i \Y
22 try X ={2,i} X=[O|l|0[0[0|0|...|0|1|0|...[0|
Cost = O(L*N)

i Index->1 2 3 4 § - ol kY
2Viwy X={V,i} X=10]0]0]0]0]0].{0[1]0].1]
Cost = O(L*N)

Lowest impurity question: X = {i,j}

Index->1 2 3 i iV
X=[0|0|0|...|0| 1{0]..10]|1]|0}x01

Total cost for two-element question = O(L¥N*V)

\]\ - .

3. Find best three-element question inveolving ij.

Index->12 3 i ioovo
AlLuyX={Lij} X={|0|0].[o]t]0].fo]t[Of. 01"~

o Index->1 2 3 i j v
AVity X = {i,j,V} X=[0]|0]0}L..]0| L{O|..JO] 1[0} 1]
Tetal cost for three-element question = O(L*N*V)

Up to V-1 elements, so cost is O(L*N*V*V)

Figure 7.6: Finding Set-Membership Question from Single-Symboi Question
(N training strings)

165

N
7.3.3 Determining Time Complexity for the Set-Membership
Scenarios

Just as with the single-symbol KCT, we must answer two questions to com-
plete the time complexity analysis:

1. What js the maximum possible depth of the set-membership KCT, i.e.
the largesi number of YES-NO set-membership questions that can be
posed along a path from root to leaf?

2. What is thr:"rlra.,rgest possible number of nodes in the KCT?

Consider a fixed position in the string. What is the length of the longest
chain of questions that can be asked about this position? Initially, when
nothing is known about this position, X can be set to any proper non-
ernpty subset of the vocabulary. Thus, there are 2¥ —~ 2 possible questions
that can be asked, since each element of the vocabulary can be included
or not included in the set X, and we must subtract 2 to eliminate the two
cases where X is empty or equal to the whole vocabulary (which give rise
to pointless questions). To get the longest possible chain of questions, one
might reason that it can be obtained via a series of “NO” answers. There are
2¥Y — 2 possible questions that can initially be asked about the position; once
one of them is chosen, there are 2¥ — 3 possible questions to be asked if the
answer to the first question is “NO”. Once one of these has been chosen, there
are 2V — 4 possible questions left over for the NO child to use - and so on.
Following this reasoning, the number of questions that could be asked along
a path from root to leaf about a fixed position would be 2V — 2 (implying
that the maximum depth for a set-membership KCT is O(L * 2¥), since we
have L positions in the longest string).

This reasoning is fallacious. Each answer to a question, whether it is
“YES” or “NO", greatly restricts the scope of the questions that follow.
Imagine that as we move along the chain of questions about a particular
position in the known structure, we are filling in an array A of V integers.
Suppose that A[i{] = 1 means that word ¢ occurs at this position, A[{] =0
means word ¢ does not occur at this position, and A[i{] = —1 means that it
is not known whether word i occurs at this position or not. At the root, for
a given position in the known structure, A{{] = —1 for all 1.

Now, consider the set-membership question: “does an element of the set
Y occur at this position?” In the NO child of this question, we can set Y|

166

elements of array A, those corresponding to the elements of ¥, to 0. In the
YES child of this question, we know that none of the clements of V' = Y
can occur at the given position, so |V — Y| elements of array 4 are sct to 0.
Thus, every time a question is encountered, at least one element of array A
is set to 0. We can only continue to ask questions about a fixed position if
some of the V' positions in A are still set to —1. Therefore, the maximum
number of set-membership questions encountered along a path from root
to leaf about a fixed position in the known structure is V. The maximum
number of positions in the known structure is O(L); therefore, the maximum
set-membership KCT depth is O(L + V).

We now have a situation analogous to that described in the section on
single-symbol KCT algorithms: there, also, the maximal depth of the KCT
was O(L * V). This is fortunate - it means that many of the arguments
employed in that section can be recycled! For set-membership KCTs, we
again have a three-fold division:

1. The balanced scenario shown in figure 7.2, in which KCT depth is

O(log DY);

1o

The unbalanced scenario shown in figure 7.3, in which D < 4+ L+ V

and depth is O(D);

3. The unbalanced scenario shown in figure 7.4, in which D > 4+« L+ V
and depth is O(L = V).

For all of these, we know that the time complexity of finding the sct-
membership question for a node from N training strings during the expansion
phase of the expansion-pruning algorithm is O(L? * N * V). Finding set-
membership questions by means of the greedy heuristic, rather than finding
the best single-symbol question, has increased the worst-case complexity of
the KCT-growing algorithm by a factor of V.

Here is the time complexity for each of the three scenarios:

1. The balanced scenario - work per level of expanding tree is O(D *
L? % V?), there are O(log D) levels, so one expansion-pruning cycle is
O(D xlog D = L? » V?). Since there can be at most D cycles, the
time complexity of growing a balanced set-membership KCT is O(D?
log D = L* » V?). '

167

2. The unbalanced scenario for D < 4% L * V - the number of levels is
O(D) rather than O(log D), but otherwise the analysis is the same as

in the balanced scenario. Therefore, the time complexity of growing an
unbalanced set-membership KCT is O(D? * L? = V'?).

3. The unbalanced scenario for D > 4 « [* V - work per level is still
O(D * L?* » V%), but the number of levels is O(L # V), so the work
required for one cycle of the iterative expansion-pruning algorithm is
O(D » L3+ V?). The maximum number of cycles is O(D), so the worst-

case time complexity for growing a set-membership KCT is O(D? = L*«
V3.

We saw that classification of a string at a node takes no more time (within
a constant factor) for set-membership trees than it does for single-symbol
trees, so the previous time complexity results for classification still hold.

7.4 Parallel Time Complexity of KCT Algo-
rithms

The most important Connection Machine data structure is
the tree. Trees are used by themselves and as components of
other data structures, such as graphs, arrays, and butterflies...
Trees are useful because they provide a fast way of collecting,

combining, and spreading information to and from the leaves.
W. Daniel Hillis [Hil85 pp. 97-98]

This quotation from one of today’s mcst respected researchers in the field
of massively parallel computation suggests that the KCT algorithms might
be unusually well-suited to parallel implementation. This turns out to be the
case. In fact, there are three different “dimensions” of parallelism that may
be exploited independertly in the course of growing an KCT, allowing us to
pick an implementation that suits the degree of parallelism available on the
machine we are using. _

The most obvious way of using parallelism is to assign a processor to each
node of the expanding tiee. The time complexity at the root node, which
receives [strings, will be what it is in the serial implementation. However,
if the tree is balanced, and the training strings are divided fairly evenly

168

hetween the leaves, the time required at the nest level is halved: there are
two processors running simultaneously, each working with O(D/2) strings.
By the same logic, the time will be halved again at the next level, and so
on. Under these assumptions - which are admittedly rather strese - if the
time taken at the root node is T, the total timeis T+ (1 +0.54+0.25 +...) =
2+ T (ignoring communication costs). In effect, this reduces the serial time
complexity by a factor equivalent to the maximum depth of the tree. This
would reduce the time complexity for growing a balanced tree (single-symbol
or set-membership) by a factor of log D. However, that this will only happen
if the training strings are evenly distributed across leaves. If the tree is
unbalanced or the strings concentrated in a small fraction of leaf nodes,
assighing a processor to each node makes no difference.

Fortunately, the remaining two “dimensions” of parallelism we will ex-
plore give guaranteed speedup, independent of the shape of the tree being
grown and the nature of the training data. Suppose that at least O(V)
processors are available for the tree-growing task. Assign one processor to
each symbol in the vocabulary, so that every time questions involving the V
symbols are being compared to find the best one, the impurities are calcu-
lated in parallel. Each processor will ask a question, each involving at most
O(L) work (in either the single-symbol or the set-membership case), for its
assigned symbol at each of O(L) positions in the known structure over O(D)
strings. It also keeps track of which of these questions yields the greatest
drop in impurity. This takes O(D * L?) time for each processor. In O(log V)
time, the V processors can then compare results to give the best question
[Hil85 pg. 100]. Finding Lhc best question thus takes O(D* L? +log V) time.
On the reasonable assumption that log V' is small compared io D % L?, this
is O(D % L) - an O(V) speedup over the serial algorithm. .

In fact, this speedup will be attained at each level of the expanding tree,
no matter what its shape or the distribution of training strings: looking
at possible questions during the expansion step wili be faster by a factor
of order O(V) everywhere. The pruning step is not speeded up, because
here the questions have already been chosen at each node and there is no
need to go through the vocabulary at each level; however, the time taken
for each iteration does shrink by O(V'), because it is determined by the_
computationally more expensive expansion step. The total time complexity
is thus obtained by dividing the serial expressions by V.

169

BN

Finally. if we can afford O(D) processors, we can assign one of them to
cach training string and have it carry out the necessary computations on that
string at each node. Naturally, this produces an O(D) speedup, this time
during pruning as well as during expansion.

Which of these parallelization strategies is adopted depends, of course, on
how many processors are available. Note that if we parallelize by vocabulary
item or by training string but have a number of processors less than the
vocabulary size V or the number of training strings D respectively, we still
get speedup proportional to the number of processors. For instance, if we
have exactly [2/2 processors, we can work on half the training st:ings in
one round and the other half in the next round, getting a D/2 speedup -
the speedup varies smoothly with number of processors, rather than showing
quaiitum jumps. If we have a truly enormous number of processors, for
instance O(D * V'), we could combine two or even three of these strategies,
getting a speedup of O(D V) or better.

Classificaiion of a single string is so fast in the serial imp]ementation that
it is probably. not worthwhile to parallelize it. Obviously, parallelism would
come in handy for a KCT-based system that looked at all N hypotheses out-
put by the recognizer. In designing the KCT-based robust matcher described
in Chapter 8, | kept an open mind about whether to use KCTs in parallel or
in series.(the implementation runs on a serial machine). As it turned out, it

~was much more convenient to build the matcher out of about 100 KCTs that
~ function in parallel; each handles a different linguistic aspect of the problem.
Thus, the KCT -based robust matcher could be implemented in parallel with
a speedup of 10 =~ 100 at the cost of very little effort if a parallel machine
were available. _j-1

170

Chapter 8

CHANEL: A KCT-Based
Linguistic Analyzer for ATIS

8.1 System Structure for Two ATIS Tasks

Figure 8.1 shows the structure of the linguistic analyzer built at CRIM for
the November 1992 ATIS benchmarks. This linguistic analyzer was called
. CHANEL, for “CRIM Hybrid Analyzer for Natural Language” (the word “hy-
brid” is a reminder that the analyzer consists of a local chart-based parser
plus the Robust Matcher). The Robust Matcher component was trained on
class “A” (acceptable) but not class “D” (context-dependent) or class “X™
(unacceptable) sentences from ATIS 2, the 1992 ATIS training data release.
For the NL (natural language} benchmarks the input to the matcher is a
transcript of what a user said, while for the SLS (spoken language systems)
benchmarks the input is the most probable word sequence hypothesis out-
put by the CRIM recognizer. Originally, it was planned to train the robust
matcher for the SLS task on labelled recognizer output. However, the exper-
iments described in the next chapter suggested that even for the SLS task,
it was better to use transcript training data. Thus, exactly the same robust
matcher was used for both NL and SLS benchmarks. »

Note from figure 8.1 that word sequences are processed by a local parser
before being submitted to the matcher. However, I also considered an alter-
native, more complex architecture in which some processing by KCTs pre-
cedes local parsing; this alternative will be discussed in the last section=of

~,

173

AN
e

Transeript or N-Best Hypothesis Locally Parsed Form
from Recognizer

Local

SIHOW ME 10 AM FLIGHTS FROM | Parser _

i BOSTON TOQ DENVER AND HOW ——r—i show me TIM flights from

MUCH THEY COST : CIT to CIT and how much

: they cost ’
“NO ANSWER™ TIM = 10:00, CIT1 = BBOS,
: CIT2 = DDEN
Possible “NO ANSWER" ?

; "NO ANSWER" KCT-Based

-/.4’//111////ll/.r//t///ﬂv///;//nv/n:r//.u.'ﬂvt. M hbh el Robust Matcher

-

“NO ANSWER™

SQL Query Semantic Representation

DISPLAYED ATTRIBUTES = |
SQL {flight.Night_id, fare fare_id}*- .
SELECT DISTINCT ftight.fiight_id] Module :
fare.fare_id FROM ... CONSTRAINTS =

“4— | [flight.from_airport «-BBOS,
flight.co_airport &= DDEN,

(rest of query is the constraints) i flight. departure_time « 10:00

To Database

Tasks of the KCT-Based Robust Matcher

1. must decide which attributes to display

2. must decide whether TIM appilies to fight.departure_time or ﬂight.arrivaf_tinié'

3. must decide how to assign each CIT to flight.from_airport, flight.to_airport,
or flight_stop.stop_airport

4. must resolve ambiguities (if any) for other semantic categories:
e.g. AIL, AIP, DAT, DAY, FNB, ctc.

5. may decide to send “NO ANSWER” (as may Local Parser or SQL Module)

Figure 8.1: Ling&uist’i(,: Processing in 1992 CRIM ATIS éystem

l“i -

this chapter. Also note that the decision to send a "NO ANSWER™ response
may be made by the local parser, the robust matcher, or the SQL n.odule.
When such a decision is made, further processing is aborted and *NO AN-
SWER” is sent to the ATIS comparator. For interaction with real users,
an appropriate message such as “I’'m sorry, would you mind repeating your
question?” could appear on the screen. The meta-rules for deciding when
“NO ANSWER?” is appropriate will be discussed in the last section of this
chapter.

Before discussing the robust matcher itself, [will explaii. the roles of the
modules on either side of it, with the aid of some typical examples from the

ATIS task.

8.2 Examples of ATIS Data

Four examples drawn from the most recent NIST-supplied ATIS data will
illustrate the nature of the data used to train KCTs, aiid the nature of the
tasks carried out by the different modul=s of the complete system. Rach
example shows a transcript of a user question, flollowed by a representation
for it in the CRIM semantic representation language, followed by the desired
SQL database query. NIST supplies both MIN and MAX versions of the SQL
query for each sentence; a correct answer will include at least the information
requestec by the MIN query and no more than the information requested by
the MAX query. The MIN queries are shown here. The training data for
KCTs is derived from thousands of sentence-SQL query pairs: the input to
the KCT-growing algorithms consists of sentences that are labelled to retlect
the contents of their SQL “translations”. The goal of the complete system
is to reverse the process - to generate the correct SQL query from a word
sequence.

Lach of the SQL queries shown below begins with a list of attributes

between the words “SELECT DISTINCT” and “FROM”. We will cull thesc

the displayed attributes, since they represent the columns in the database
that will be displayed to the user. A displayed attribute consists of a table
name, followed by a dot, followed by the name of a column in the table. The

rest of a query is called the constraints.

In Example 1 the displayed attribute is flight.flight_id, in Ex mnle 2 it is
fare.fare_id, in Example 3 the displayed attributes are ground_seriie.ciiy_code,

173

4

ground.service.airport_code, and ground_service.transport_tyy-, and in Exam-
ple 4 the displayed attribute is flight.flight_id. Occasionally, the displayed
information is a function of an attribute rather than an attribute. For in-
stance, a sentence beginning “HOW MANY FLIGHTS...” is often translated
into an SQL query beginning “SELECT count{*) FROM fiight”. These rare
cases can be treated in the same way as dlsplayed attrlbutes they create no
additional difficulties.

Despite the apparent simplicity of the displayed attributes and the appar-
ent complexity of the constraints in the examples, determiuing the correct
set of displayed attributes from the word sequence is as hard as determining
the constraints. The complicated nesting shown within the constraints for
each SQL query is a reflection of the large number of database joins needed
to construct the constraints, rather than a reflection of any inherent difficulty
in decoding the constraints in the sentence. if the database were structured
somewhat differently, much of this apparent complexity would disappear. Of
course, many sentences in the ATIS domain are constructed in a manner that
makes determination of the constraints difficult, though that is not the case
for these four examples.

8.3 The Semantic Representation Languaée

8.3.1 Details of the Representation

Every ATIS system has some kind of semantic representation language for
the output of the natural language component. The function of the semantic
representation is to carry information from the natural language component
to the component that generates the SQL query; semantic representation lan-
guages therefore tend to have some of the characteristics of natural language
and some of the:characteristics of database query languages.

. ‘The semantic representation language at CRIM was developed by Ying

':'C.'heng, Bassem Khalife, and Charles Snow, and strongly resembles SQL. As

Example 4 shows, a sentence may permit more than one correct representa-
tion; it does not matter which is actually generated, provided it yields the
correct SQL query. The representation is divided intc two parts, the dis-
played attributes and the constraints. ‘The displayed attributes are the
columns of the database the user wishes to see; each is in the form “rela-

174

SHOW ME FLIGHTS FROM BOSTON TO DENVER

DISPLAYED ATTRIBUTES = {flight.flight_id}
CONSTRAINTS =
C
flight.from_airport <- BBOS,
flight.to_airport <- DDEN
]

(SELECT DISTINCT flight.flight_id FROM flight WHERE (flight . from_airport
IR (SELECT airport_service . airport_code FROM airport_service WHERE
airport_service . city_code IN (SELECT city . city_code FROM city WHERE
city.city_name = ’BOSTON’)) AND flight . to_airport IN (SELECT
airport_service . airport_code FROM airport_service WHERE
airport_service . city_code IN (SELECT city . city_code FROM city WHERE
city.city_name = 'DENVER’)))) ;

Example 1

ALL RIGHT WHAT I'D LIKE TO DO IS FIND THE CHEAPEST ONE WAY FARE FROM BOSTON
TO DENVER '

DISPLAYED ATTRIBUTES = {fare.fare_id}
CONSTRAINTS =

C

fare.one_direction_cost <- $MIN,
fare.round_trip_required <- !NULL,
flight.from_airport <- BBOS,
flight.to_airport <= DDEN

]

(SELECT DISTINCT fare.fare_id FROM fare WHERE (fare.one_direction_cost =
{ SELECT MIN (fare.one_direction_cost) FROM fare WHERE
fare.round_trip_required = 'NO’ AND fare . fare_id IN (SELECT
flight_fare . fare_id FROM flight_fare WHERE flight_fare . flight_id IN
(SELECT flight . flight_id FROM fiight WHERE (flight . from_airport IN
={~SELECT airport_service . airport_code FROM airport_service WiAERE
aifbort_service . city_code IN (SELECT city . city_code FROM city WHERE
" city.city_name = ’BOSTON’)) AND flight . to_airport IN (SELECT
airport_service . airport_code FROM airport_service WHERE
airport_service . city_code IN (SELECT city . city_code FROM city WHERE
city.city_name = 'DENVER’)))))) AND fare . fare_id IN (SELECT
flight_fare . fare_id FROM flight_fare WHERE flight_fare . flight_id IN
(SELECT flight . flight_id FROM flight WHERE (flight . from_airport IN
(SELECT airport_service . airport_codz FROM airport_service WHERE
airport_service . city_code IN (SELECT city . city_code FROM city WHERE
“city.city_name = ’'BOSTON’)) AND flight . to_airport IN (SELECT
airport_service . airport_code FROM airport_service WHERE
airport_service . city_code IN (SELECT city . city_code FROM city WHERE
city.city_name = 'DENVER’))))))) ;

—

~ " Example 2

176

-1 WOULD LIKE INFORMATION ON GROUND TRANSPORTATION IN THE CITY OF ATLANTA
FROM AIRPORT TO DOWNTOWN

DISPLAYED ATTRIBUTES =

{ground_service.city_code,ground_service.airport_code,
ground_service.transport_type}
CONSTRAINTS =

L
ground_service.airport_code <~ ATL,
ground_service.city_code <- MATL

]

(SELECT DISTINCT ground_service.city_code , ground_service.airport_code ,
ground_service.transport_type FROM ground_service WHERE

(ground_service . airport_code IN (SELECT airport . airport_code FROM
airport WHERE airport.airport_code = 'ATL’) AND ground_service . city_code IN
(SELECT city . city_code FROM city WHERE city.city_name = 'ATLANTA'))) ;
Example 3

t

N
i7a

177 DR

SHOW ME ALL THE FLIGHTS BETWEEN DALLAS FORT WORTH AND EITHER SAN FRANCISCO
OR DENVER THAT DEPART BETWEEN FIVE AND SEVEN P M

DISPLAYED ATTRIBUTES = {flight.flight_id}
CONSTRAINTS =
£
flight.from_airport <- DFW,
flight.departure_time <- (>=17:00&<=19:00)
] 4 .
&
L
R [
flight.to_airport <- SFO
]
|
L
flight.to_airport <- DEN
]
]

or

DISPLAYED ATTRIBUTES = {flight.flight_id}
CONSTRAINTS =
£
flight.from_airport <- DFW,
flight.departure_time <- (>=17:00&<=19:00)
flight.to_airport <- SFO
1
I
C -
flight.from_airport <- DFW,
flight .departure_time <~ (>=17:00&<=19:00)
flight.to_airport <- DEN ... -
o
Example 4 (first part)
178

(SELECT DISTINCT flight.flight_id FROM flight WHERE

((flight . from_airport IN (SELECT airpert_service . airport_code

FROM airport_service WHERE airport_service . city_code IN

(SELECT city . city_code FROM city WHERE city.city_name = ’DALLAS'))

OR flight . from_airport IN (SELECT airport_service . airport_code FROM
airport_service WHERE airport_service . city_code IN (SELECT city . city_code
FROM city WHERE city.city_name = ’'FORT WORTH’))) AND ((flight . to_airport
IN (SELECT airporﬂ_service . airport_code FROM airport_service WHERE
alrport_service . Eity_code IN (SELECT city . city_code FROM city WHERE
city.city_name = ’SAN FRANCISCO’)) OR fiight . to_airport IN

(SELECT airport_service . airport_code FROM airport_service WHERE
airport_service . city_code IN (SELECT city . city_code FROM city WHERE
city.city_name = ’DENVER’))) AND (flight.departure_time >= 1700 AND
flight.departure_time <= 1800))))

¥

Exarr_‘lj—)le 4 {continued)

tion.attribute”. They are gives as a list.

The constraints are made up of one or more frames, each of which is.
surrounded by square brackets ‘[’ and ‘]’. Frames may be combined by means
of the AND operator ‘&’ or the OR operator ‘|’; they may also be nested.

e A frame may also be negated by the NOT operator ‘I" (though we have
‘ not yet encountered an example where this was necessary). Frames contain
descriptors of the form relation.attribute <= value; descriptors in the same

frame are implicitly ANDED together.

The representation also allows for functions, which are always preceded
by the symbol ‘3’ and which may occur in either the displayed attributes
or the constraints (usually the latter). Example 2 above shows how the
constraint “cheapest” for a one-way flight is translated into the function MIN
acting on fare.one_direction_cost. In the case of “latest flight ...” we would
include among the constraints the descriptor flight.departure_time <= $MAX.
A trickier example would be “the latest afternoon flight ...” which would
yield the descriptor flight.departure_time <= $SMAX (>= 1200 & <= 1800).
Functions among the displayed attributes are treated similarly: for instance,
a sentence beginning “how many flights...” would have the attribute list

. {flight.flight.id <= SCOUNT}. The possible functions are MAX, MIN, AVC,

179

and COUNT.

Finally, as Example 2 above indicates, the symbol ‘I’ can be used to
negate a value, and the symbol NULL is also used for certain-special cases.
. A typical example of the former would be translating the constraint “not

flying on Thursdays ..” by the descriptor flight.flight_days < ITHURSDAY.

8.3.2 Discussion of the Representation

As stated above, semantic representation languages for the ATIS task tend to
lie somewhere along the spectrum between natural languages and database
query languages. The semantic representation language used in CHANEL is
more SQL-like than is the case for other ATIS systems. In particular, the
language employs exactly the same table, attribute, and function names that
will be used in the SQL query. Can this approach be defended?

The main argument against employing a representation that is closcly
related to the database query language and to the structure of the database
is that it reduces portability of the system to other domains. This is a
red herring. In many natural language systems, apparently general names
for variables and values serve as a Potemkin village, concealing profound
domain-dependence [Win86]. [t would be surprising if any of the ATIS nat-
ural language systems ported easily to a new task, no matter what repre-
sentation they use. Insofar as the representations used by other groups are
genuinely domain-independent, this would not reduce the total amount of
work required to port the systems using them to a new domain - work saved
on the natural language component would have to be paid for by extra work
on the SQL module that translates semantic representations into databasc
queries.

There are reasons for thinking that CHANEL is actually more portable
than most. For many potential applications, the only change required in the
representation would be a change in the possible names of attributes, values,
and functions. [t would probably be necessary to rewrite the SQL module and
the local parser, and the number and roles of the KCTs in the robust matcher
would change. Since the KCT-growing algorithms are domain-independent,
the only human work required to grow new KCTs would be that involved in
collecting training data. Though this might be considerable, it seems unlikely

that it would be less than that involved in writing a new set of parsing rules
by hand.

180

Thus, Ll'u.rc is no a priori rcason to c'i:iplov an apparently more general
representation.” On the other hand, there is at least one strong reason to
employ an SQL like representation. The principle behind the robust KCT-

based matcher (as with AT&T’s system) is that of maximizing the extent

to which parsing rules are learned automatically from data. This principle
would be.completely fulfilled if we eliminated the semantic representation
and built a system that learned rules for mapping word sequences directly
onto SQL. This is impractical. However, we get close to it by employing an

SQL-like representation and thus minimizing the amounL of human expertise’

required to build the SQL module.

8.4 The SQL Module

“Charles Snow of CRIM did most of the work on this module, and provided

the following description.
The SQL module has two main tasks:

L. to convert a query expressed in the semantic representation language
into a valid SQL query;

[&)

to manage the interaction with the Oracle relational database - i.e., to
send the SQL query to the database and process the result.

The representation maps fairly straightforwardly into SQL.. The module first
builds the component of the query for the displayed attributes, then builds
the list of constraints, processing constraints one at a time.

The list of constraints is assembled using a context stack wherein each
bracketed set of input lines [] represents a distinct context. Within each
context, the constraints are expressed as (descriptor,value) = (d,v) pairs,
e.g. (fiight.airlinecode, AA). d is a relation name followed by an attribute
name, and v is either a scalar value or a function. Scalar values are implicitly
related to the descriptor by an equality operator unless an explicitly provided
operator (e.g., <, >, !, etc.) is supplied. For each of these, the SQL is
generated to express the d and the way it is related to its corresponding
v. This is straightforward except in cases where d is different from one
or more relations in the list of displayed attributes (see below). If v is a
function, it may be an SQL function such as MIN or M AX (the notation

181

identifies these functions by preceding them with “§") or a function proper to
the representation. SQL functions are understood to be directly applicable
to the corresponding d, and c'enelallv applicable throughout the context in
which they appear. :

In evaluating (d, v) pa.II’S it is necmsary to ensure that the resulting inter-
mediate result will be join conformable with the displayed attributes; thus,
the module is capable of generating joins as required. In cases where the
displayed attributes are drawn from more than one relation, generating the

" join code becomes more involved.

There are accommodations for certain short-hand notations adopted for
reasons of expediency. For example, the module allows an airport code at-
tribute to be expressed as any of: 2-letter state code, 3-letter airport code,
or 4-letter city code, and arranges always to provide a correct list of airport
codes. -

Interaction with the database is mediated by C-callable routines in the
Oracle-supplied function library. The SQL module writes out a ‘ref’ file for
each query expressing the results in ATIS Common Answer Specification
(CAS) format, as well as providing a ‘transcript’ of the generated SQL with
the values returned from Oracle.

8.5 The Local Parsing Module

Evelyne Millien of CRIM built this module, and kindly volunteered to write
this description.

The local parser looks fer words or phrases that are semantically impor-
tant because they provide constraints that should be incorporated in the SQL
query. These words or phrases are replaced by three-letter symbols in the.
version of the input sentence.sent to the I{CT-based robust matchu, whiih=
is not allowed to see the original words covered by the symbol. The meanings
associated with each symbol are stored by the local parser, since they will
have to be recovered to produce the SQL query.

For instance, the local parser would convert the sentence “DELTA FLIGHTS
FROM BOSTON TO DENVER SERVING BREAKFAST” into “AlL flights
from CIT to CIT serving MEA”, the version seen by the robust matcher.
The assignments AIL = DL,CIT\, = BBOS,CIT, = DDEN,MEA =

-break fast will be stored until the robust matcher has made all its decisions

182

= @ DAY - day of the week;

and is ready to generate the conceptual representation. In some cases, the
arder of symbols may be changed before the locally parsed sentence is sent
to tlie robust matcher.

T he local parser is based on a method combining two classes of unification
“grammars: lexical grammars [Dym90] and definite clause grammars (DCGs)

[Per80]. A lexical grammar is composed of two main parts:
) .
l. the lexicon, where the syntactic and semantic properties of words are
described;

2. the rules describing the mechanisms of word combination, according to
constraints given by the lexicon.

DCG rules are used mainly to define categories where no word predominates
over others, such as flight numbers {sequences of digits) or codes (sequences
of letters). .

The parser carries out bottom-up chart parsing. The parsing algorithm
is based on the original algorithm described in [Dym90], which was modified
to parse sentences locally and in a robust way. In particular, the parser can
skip over unknown words within a phrase. The semantic symbols appearing
in the output of the local parser are:

ACO - aircraft code;
& AFA - a.i;craft maker;
¢ AIL - aif‘[ine;
¢ AIP - airport;
o ATY -‘iircraft type (e.g. Boeing 707);
¢ CCO —Eity code;
A
¢ CIT"- city name;

¢ CLA - class (e.g. first class);

¢ DAT - date;

- s

183

¢ ECOQO - economy;
J F'CO - fare code;
- ¢ FNB - flight number;
¢ MCO - meal code;
¢ MEA - meal;
¢ PRI - price;
¢ RCO - reservation code;
¢ ROU - round—ti;ip;
¢ TIM - time of day.

Some examples of input to the local parser and the corresponding output
and stored values:

® input: “ARE ANY OF THE FLIGHTS ON A BOEING SEVEN FIFTY
SEVEN”, output: “are any of the flights on a ATY", stored: ATY =
757;

¢ input: “PLEASE RESERVE UNITED FLIGHT ONE FORTY THREE”,
output: “please reserve FNB AIL", stored: FFNB = 143, Al L = U A;

¢ input: “LEAVING SAN FRANCISCO INTERNATIONAL ...”, out-
put: “leaving AIP ...", stored: AIP = SFO;

¢ input: “BETWEEN THREE AND FOUR P M ON FRIDAY OC-
TOBER FIRST”, output: “TIM on DAY DAT?”, stored: T'IM = (>
1500& < 1600), DAY = friday, DAT = (92/10/1);

¢ input: “.. WITH FARES TWO HUNDRED AND SIXTY EIGHT
DOLLARS”, output: “... with fares PRI”, stored: PRI = 268;

¢ input: “WHAT DOES THE FARE CODE Q W MEAN?”, output:
“what does the FCO mean”, stored: FCO = QW.

Some examples of problems encountered:

184

¢ “INEED A LATE FLIGHT FROM SAN FRANCISCO TO PHILADEL-
PHIA ON OCTOBER NINTH” - according to the ATIS Principles of
Interpretation, a “late flight” normally means between 8§ pm and 3 am.
In this example, the mention of the date implies the Hight is between
8 pm and midnight; the local nature of the parser however prevents it
from relating the word “late” to the date.

¢ “LIST THE AMERICAN AIRLINES FLIGHTS THAT USE A SEVEN
THIRTY SEVEN?” - the local parser may interpret “SEVEN THIRTY
SEVEN” as a time or a flight number (a possible solution weuld be for

it to consider the preceding article “a” or the word “use”, instead of
skipping over them).

) “HOW ABOUT SIX THIRTY P M” - since “HOW?" is not analyzed,
“ABOUT” modifies the time and the interpretation is TIM = (>
1800& < 1900) instead of T/M = 1830.

8.6 The Robust Matcher

8.6.1 Overall Structure

Figure 8.2 shows the internal structure of the KCT-based robust matcher
in CHANEL. The matcher is made up of a large number of KCTs, each
handling a different part of the task of translating a sequence of words into
the appropriate semantic representation. Word sequences in CHANEL are
processed by a local parser before being submitted to the matcher. However,
an alternative, more complex architecture was also considered. Note from
figure 8.2 that the robust matcher has two parts corresponding to the two
parts of the semantic representation: the part that chooses the displayed
attributes and the part that helps generate the constraints. Much of the work
required to generate the constraints is done by the local parser: the part of
the matcher that deals with constraints simply resolves some ambiguities
left over after local parsing, on the basis of global information ignored by
the local parser. Thus, the constraints part of the matcher must act after
local parsing has been carried out. On the other hand, the part of the robust
matcher that chooses the displayed attributes might have been invoked before
local parsing. If this approach had been adopted, figure 8.2 would show a

185

s

word sequence first entering an attribute-choosing module, then the local
parser, then a constraint ambiguity resolution module.

As described in Chapter 9, experiments were carried out to determine
which architecture yielded the best results for ATIS data. [t turned out that
KCTs grown and tested on sequences that have been locally parsed, so that
semantically important phrases have been replaced by generic symbols, are
better at identifying the attributes to be displayed than are KCTs grown and
tested on “raw” word sequences that have not undergone local parsing. Thus,
the architecture shown in figures 8.1 and 8.2 was empirically determined to
be better than the most plausible alternative.

For other domains of discourse, a more complex architecture might be
preferable. It happens that in ATIS, the semantically important phrases -
city names, times, dates, flight numbers, airline names, costs, and so on -

““can usually be recognised by the local parsing module independently of the

global context. In other domains, local parsing decisions might depend on
global information; for instance, on the topic of a sentence. In such domains,
the system might include a KCT-based “router” that helped direct input to

the appropriate local parsing module, as well as the main KCT-based robust
matcher.

—

- 8.6.2 Choosing the Displayed Attributes

In the 1992 ATIS training data, the SQL translations of class A sentences
contain 99 different attributes between an initial “SELECT DISTINCT” and
the following “FROM?”. Attributes appearing in this position are called dis-
played attributes. A given query may have any number of displayed at-
tributes, though rarely more than three. Among the 3254 SQL translations
available at the time the robust matcher was built, flight. flight.id is the most _
common attribute, appearing in 2408 of the queries. Several of the 99 differ-
ent displayed attributes in the class A data appear only once: an example is
city.time_zone_code. Functions may also appear at the beginning of the SQL
translation, though they are rare. In the class A SQL queries, 7 different
function calls appear in this position: MIN(flight.departure time) and 6
different calls to count(), of which count(flight) is the most common. These
7 function calls were treated as if they were attributes.

To determine the set of displayed attributes for a particular w\wrd se-
quence, a separate set-membership KCT was grown for each of the 106 pos-

186

. froin Local Parser show me TIM flights [rom
> CIT to CIT .nd how much

] they cost
TIM = 10:00, CIT1 = BBOS,
CIT2 = DDEN

KCT-Based Robust Matcher *

! Choose Displayed Attributes
Tree | .. Tree dd - s Tree 106
fare.fare_id? count(booking_class)?

gircraft.aircraft_code?

A A AN

',

YES or NO YESorNO YES orNO
\\ o
o _ DISPLAYED ATTRIBU-CES = {flight.flight_id, fare.fare_id}
" = Resolve Constraint Ambiguities
" CIT Tree ' TIM Tree Other Trees
(for other constraints)

For each CIT: origin, deat or stop? For each TIM: arrival or departure?

A A A A

OTHER C ONSTRAINTS

CITl-onyn CIT2 = dest. TIM arr. time

CONSTRAINTS = [f:ght.from_airport—BBOS, [Iight.two_airpom—DDEN, flight.depart_time«—10:00]

N3

71
U

Semiantic Representation DISPLAYED ATTRIBUTES =
{flight.flight_id, fare.fare_id}

to SQL Module
: CONSTRAINTS = .

P
é .
S - [fight.from- airport —BBOS,
flight.toZairport « DDEN,

fiight. departure_time «10:00

Figure 8.2: The KCT-Based'Robust Matcher

187 5 - f;:—;')’
i . A
' ’ & .y

-
~
=N 4

\\

P
.
I

1

ey

Sy

by

SHOW ME FLIGHTS FROM BOSTON TC DENVER => 0

ALL RIGHT WHAT I’'D LIKE TO DO IS FIMD 'THE CHEAPEST ONE WAY FARE FROM BOSTON

TO DENVER => 1 . i
I WOULD LIKE INFORMATION ON GROUND TRANSPORTATION IN THE CITY'GF ATLANTA

FROM AIRPORT TO DOWNTOWN => 0

SHOW ME ALL THE FLIGHTS BETWEEN DALLAS FORT WORTH AND EITHER SAN FRANCISCO

OR DENVER THAT DEPART BETWEEN FIVE AND SEVEN P M => 0

Example 5: Part of Training Data for fare.fare_id KCT

sible attributes and functions. Example 5 shows part of the training data
used to grow the fare.fare_id KCT}; sentences whose SQL translations display
this attribute are labelled i, and all other sentences are labelled 0. Each
KCT decides independently whether or not its attribute appears in the set;

thus, each of these 106 KCTs makes a simple ;Y ES-NO decision on the basu,

_of the word sequence. Figure 8.3 shows a set-membership KCT that decides

whether or not the attribute fare.fare.id should be displayed (this was not
the KCT actually used, which is shown in the next chapter).

Note that each KCT can ask about any part of a word sequence, and
that each is grown independently of the others. If different attributes are
highly correlated, so that they are usually displayed together in the training
data, their KCTs may strongly resemible each other. I have observed this
for the three attributes ground_service.city_code, ground.service.airport_code,
and ground_service.transport_type in the ATIS data. In an extreme case, two

| __attributes that were always displayed together would yield identical KCTs.

~ Thus, there may_be a certain amount of redundancy in the set of KCTs;
given the speed _with which KCTs classify word sequences, this cannot be

“Considered a serious disadvantage. Once these KCTs have been grown, it is

easy to find the list of displayed attributes for an incoming word sequence:
simply pass. ,ue(:;equence through the 106 KCT's and for each attribute, decide
whether or not it should be displayed on the basis of the answer “YES” or
“NQ” obtained from the appropriate tree.
When originally designing the Robust Matcher, I believed that set-membership

KCTs would turn out to be better classifiers than smgle-symbol KCTs. After
the performance of a series of experiments described in the next chapter, it
was clear that the two types of KCTs have roughly the same classification

T P

188

@g.pﬁcc. prices, wa@__

<+ U{fare,code} +>7

@t.pﬁcc, prices, way, round } + {AIP}>7

N

0 Gms.cost.price, prices, way, round }{trip }>' 1 0

<

W

Key

This tree determines whether attribute “fare. fare_id™ should be displayed

1 means “fare.fare_id” displayed “4+" means 1 or more unknown words
. “M™ means 1 or more words in the set
must occur here g
R , 41J" means exactly 1 of the words in
0 means “fare.fare_id” NOT displayed “the set must occur here
Example (after local parsing) Prediction Correct

{MON = sum of $8, FCODE = fare code, AIP = airport, CIT = city name}

show me all flights that are less than MON round trip 0 0
what is the meaning of fare code FCODE and FCODE 0 0
*NOTE: has both “fare” and “code” , so no U{fare,code}

what is the cost of limousine service at AIP 0 0
whh:n is the cost for a one way trip from CTT to CIT o 1 1

Figure 8.3: Set-Membership KCT for fare.fare_id (grown on ATIS 2 data)

189

accuracy (at least for the amount of training data currently available). Since
single‘-symbol KCTs can be grown overnight, while set-membership INCTs
‘take much longer to grow, a decision- was made to use single-symbol KCT's
te pick the displayed attributes and functions for the Nov92 ATIS bench-
marks. Details about these KC'Ts are given in the next chapter.

8.6.3 Classifying Constraints’
Global Constrainit-sl_

Some constraints can be considered as properties of the entire sentence. For
these global constraints, we can grow KCTs that classify the entire string,
like those that select the displayed attributes. The 7 global constraint I{CTs
in the benchmark were singls-symbol. They were:

l. MAX and MIN for fare (“cheapest”, “most expensive” and so on); .
2. MAX and MIN for arrival and departure times;
3. constraints on stops;

4 the fact that a meal should be served;

(1}

constraints on the nature of ground transportation desired;

6. the fact that the flight should be connecting;

7. MAX and. MIN for aircraft ‘capacity. W,

A constraint is included in this list if it tends to be spread out over a
sentence instead of being localized. For instance, it would be difficult for
the local parser to deal with “give me as low a fare for the morning flight to
Atlanta as possible”. Example 6 shows training data for the time global con-
straint KCT; the labels 1,2, 3,4, 5 stand for default, MIN(departure_time),
MAX (departure_time), MIN(arrivaltime), MAX (arrivel Ltime) respec-
tively.

190

W

P

<,

7

e

- SHOW VE ﬁETUHNING FLIGHTS FROM BOSTON TU LDENVER

e

",‘, e

It
v
[

LAST ‘PLANE INTO ATLANTA => 5 g o

GIVE ME THE LAST FLIGHT OUT OF BOSTON TO CHICAGD => 2
TO OAKLAND, GETTING IN AS SOON AS I CAN => 4

Example 6: Part of Training Data for Time Global Constraint KCT

Local Constraints’* .. P

e

The fonstraints component of the robust matcher must also deal with sub-
=, strings identified by the local parser whoscirole is ambiguous. The sectiou
" entitled “Classifying Sub.at,rmgs of Chapter 6 gives as an:: sxample the iden-

tification of the role of a ¢ity name and shows how to grow a KCT that
carries out this 1dent1ﬁcatlon For.the Nov92 benchmarks, 3 of these local
constraint KCTs were gidive; one! ‘each for the codes AlP, CIT, a.nd TIM.
Apart from multiple-frame cases (below) an AIP. or CIT can be 2n origin, a
destination, a stopover, a site served by an alrlme “or a location for ground
transportation; a I'IM can be an arrival time or & departure time. The local

- constraint KCTs are set- membershlp, sunply because there was no time left

to switch to smgle—symbol KCTS after it was discovered these performed just
as well. : :

Multiple frames:-were the blggest problern encountered in dealing with
local constraints. Whenever an “OR” appears in the SQL translation of a
sentence, the conceptual representation should contain two or more frames
separated by the symbol |. Two exam}Sl‘qs of sentences that should generate
multiple frames are: “show me ground transportation in Oakland, San Fran-
cisco and Denver” and “flights from Boston to Dallas or San Francisco or
Atlanta” Note that an “and” in natural language may trinslate to an “OR”
m SQL To make matters’ worse, it is often unclear how other constraints
in the sentence should be distributed across frames: do they apply to all of
them or just to the nearest one?

A variety of labels was devised to cover these cases for the Nov9° version

of CHANEL. For instance, in a normal singlé-frame sentence, the oru.ﬂn;

was labelled I and the destination 2 (each is a CIT or AIP). Howeverlin'a
multiple-frame sentence with one origin and several destinations like “ﬂlghts
from Boston to Dallas or.San Francisco or Atlanta”, the origin was labelled

191

. 2
o v

I
i

N

r

,'\
R

14 and each of the destinations 15, For the case with several origins and
one destination, the labuls were 16 for all origins and 17 for the destination.
Another set of labels covers clauses where each contains an origin-destination
pair; yet another set covers multiple-frame departure and arrival times.

In practice, multlple-fr'tme cases encountered in the test usually yielded
“NO ANSWER". This aspectof the system needs work. Fortunately, single-
frame cases form the overwhelming majority of sentences, and the local con-
stralnt trees worked fairly weli on these. o

B

84.6.4 Meta-rules

The Nov92 version of CHANEL contained simple hand-coded meta-rules that

i

:looked for incompatibilities in the partially completed representation and
returned “NO.ANSWER” if they were found They govern the [ollowing

cases: o

S

1. Clashing roles for global coﬁstréints. For instance, the user wants a
flight to be the cheapest and also the most expensive (in theory this
would be poscuble if there was a single flight meeting the other con-

straints, in: practlce it is a sign something has gone wrong with the
interpretation). U e TN

2. Clashing:roles for local constraints. For instance, two diflerent citics

-_are specified as the origin by the CIT local constraint KC'T, or two
different days of the week are specified as the clcpzutule day by the
DAY local constraint KCT. .

3. Incompatibilities between the displayed attributes and the constraints.

For instance, the displayed attributes involve only the table ground_service,

but a CIT in the sentence is classified as the flight. from_airport, or the
whole sentence hasthe globa! constraint “latest” (the ground.service
table does:not contain temporal information). =

Note that there are no meta-rules for mutually incompatible displayed
attributes. In many cases where none of the meta-rules are invoked and
a representation is produced, “NO ANSWER” is sent by the SQL module
because it cannot perform a join invoked by the representation: As will be
discussed in the final chapter, next year’s system will probably contain more
sophisticated meva-rules that are learned a.utoma.tlca.lly from training data. -

192

&

Chapter 9
Results

This chapter describes experiments carried out to determine which type of
KCT yields the most accurate classification of sentences, and some aspects of
KCT-growing (such as the number of iterations required to grow KCTs, and
the dependence of KCT size on the amount of training data). It also describes
the KCTs actually used by the current Robust Matcher, and the performance
of this Robust Matcher on the November 1992 ATIS benchmarks.

9.1 Experiments with Different KCT Types

Recall that for each of 106 attributes and functions, an independent KCT
is grown to decide whether the attribute should be in the list of displayed
attributes for a given sentence or not. The availability of class A ATIS2
sentences, labelled in a way that showed for each attribute and function
whether or not it was displayed, made it possible to perform experiments
testing different types of KCT. In each of the experiments, 106 KCTs were
grown on a subset of the ATIS2 class A data. The experiments illustrate
the properties of KCTS - and, more important, show how to obtain optimal
performance from KCTs.

9.1.1 Classification Accuracy

The 106 KCTs grown on a subset of ATIS2 class A data were tested on a
disjoint subset of the same data. On the test data, a “success” occurs only

193

whe
resp
the

resp

n the chosen set of displayed attributes is precicely identical to the MIN
onse prescribed by DARPA. This means that if 105 of the KCTs make
correct ves-no decisions about whether the attribute for which cach is
onsible should be chosen for a given sentence, but the remaining KCT

makes the wrong decision, we have “failure”. Thus each of the experimental

resu

Its below represents the combined output of 106 KCTs of a given type.

KCTs for displayed attributes can vary along several orthogonal dimen-
sions:

¢ Trained on a small amount of data vs. trained on a large amount of

data;

¢ Single-symbol vs. set-membership;

¢ Trained on and inputting partially parsed data vs. inputting pure word

sequences,

¢ Trained on “well-shuffled” data vs. trained on “lumpy” data;

¢ For the KCTs that will handle recognizer output, trained on NL data

(transcripts) vs. trained on word sequence hypotheses output by the
recognizer. '

Figures 9.1 and 9.2 show how classification accuracy for sentences depends
on these factors. Before beginning this set of experiments, my expectations
were that;

1

2

. More training data would improve performance;
. Set-membership KCTs would perform better than single-symbol KCTs;

KCTs grown to handle sentences already processed by the local parser
would perform better than KCTs whose input is raw word sequences;

. Tréining data should be similar to test data for good performance, but
the exact composition of training data is not vitally important;

KCTs trained on recognizer output would perform better on such out-
put than KCTs trained on transcripts.

Two of these five assumptions were correct, three incorrect:

194

|. Performance does improve with amount of training dita;

2. Set-membership KC'Ts may not classify more accurately than single-
symbol KCTs;

3. Preprocessing by the local parser does increase accuracy;

4. It is important that the training data resemble as closely as possible
a random sample from the population of sentences to be encountered,
and these data should also be split up between the two files required
by the iterative expansion-pruning algorithm in a random way;

[]

. Transcript-trained KCTs seem to perform better than recognizer-trained
KCTs on speech recognizer output.

Figure 9.1 illustrates the first four points, using KCTs trained and tested
on NL data (transcripts). For all KCTs except those in the curve marked
“lumpy”, the test data consisted of 542 ATIS A sentences - parsed for the
IKCTs trained on parsed data, unparsed for the other KCTs. The KCTs
whose training data and input are preparsed use a slightly different lexicon
from the other KCTs, since they input sentences containing codes such as
AIP, CIT, TIM, and so on as well as ordinary words. The KCT-growing
_ algorithms treat these codes in precisely the same way as other words.

First, note that the figure contains an encouraging message: as the amount
of training data grows, performance can be expected to improve. Except for
the curve labelled “lumpy”, there is no indication that any of the KCT types
shown are approaching an asymptote. Indeed, the rate of improvement seems
to depend linearly, rather than logarithmically as one might expect, on the
number of training sentences. This augurs well for the KCT-based approach.

The curve labelled “lumpy single-symbol unparsed” requires explanation.
Originally, the ATIS2 NL training data were split up into 25 sequential
chunks, each containing about 4% of the data. The two training data files and
the test data file for the iterative expansion-pruning algorithm were made up
of random combinations of the chunks. For instance, one of the data points
on the “lumpy” curve was obtained by training a single-symbol KCT with
one file consisting of chunks 7, 11, and 4, and the other file consisting of
chunks 9, 21, and 3. All other curves shown in the figure were trained and
tested on concatenations of files obtained by taking every nth sentence in

195

% Correct Disp. Att. List

100
4
95
90 ‘ »> parsed set-membership
/ parsed single-symbol
unparsed single-symbol
L .
unparsed sct-membership
80
75
“lumpy™ anparsed single-symbol
70

400 800 1200 1600 2000 2400 2800
Number of NL Training Sentences

Figure 9.1: Classification Accuracy on NL Data for Various KCT Types

196

the training data. Comparison between the “lumpy” curve and the other
“unparsed stngle-symbol” curve show that the latter is a considerably better
classifier; other experiments not shown here confirm this trend. Both forms
of training involve random sampling - why the difference between the final
results?

‘The ATIS2 sentences are ordered by speaker. Thus, when they are split
up into sequential chunks, there is a good chance that most of the class
A utterances of a given speaker will remain together in the test file or in
one of the training files for the IKCT that yielded the “lumpy” curve. The
other, “smooth” method for splitting up data makes it certain that adjacent
utterances will be separated. Apparently, “lumpy” training data may cause
KCTs to learn rules that are biased in favour of idiosyncratic expressions
used by speakers who are over-represented in the training data; “lumpy” test
data may exaggerate the effect of this problem by presenting the KCTs with
several instances of totally new expressions that are over-represented in the
test data. A good analogy is opinion polliag, where reliable results can be
obtained only if the sample is as close to random as possible; a large sample
with a slight bias is a worse predictor of general trends than a much smaller,
: truly random sample.

Figure 9.1 confirms that it is a good idea to carry out local parsing before
KCTs classify the input sentences. It is less clear whether single-symbol or
set-membership KCTs are better classifiers. The latter take much more time
to grow. Thus, I decided that the KCTs for choosing displayed attributes
in the Novemnber 1992 benchmarks would be single-symbol KCT's trained on
parsed, “smoothly” chosen sentences. Another important decision still had
to be made: for the SLS benchmark, was it better to train the KCTs on
recognizer output or on NL data? KCTs grown on recognizer output differ
somewhat from their NL-trained counterparts (figures 9.4 and 9.5 in the next
section give an example).

Figure 9.2 illustrates the performance of single-symbol KCTs on the top
hypothesis from the speech recognizer, after the latter has undergone local
parsing. The comparison is between KCTs trained on speech output (files
containing labelled, parsed versions of the top hypothesis) and KCTs trained
on transcripts. The results in this graph are not comparable to the results
shown in figure 9.1, because they exclude word sequence hypotheses for which
the local parser yielded “NO ANSWER?”. The local parser tends to discard
an appreciable proportion of the speech output in this manner; if discarded

197

sentences were counted as wrong answers, the percentages correct in igure
9.2 would be somewhat lower. Disappointingly, the graph seems to show
better performance for the transcrint-trained KCTs. This seems to refute
the hypothesis that the speech-trained KCTs have learned error-correcting
rules. However, more sophisticated methods of training the KCTs might still
accomplish this goal; the next chapter suggests possible approaches.

9.1.2 Properties of KCTs

Surprisingly, almost all KCTs irrespective of final size required three or fewer
cycles of the expansion-pruning algorithm to converge. It would be interest-
ing to try to prove tight upper bounds for the number of iterations required
by the algorithm. :

To illustrate the growth of KCTs as a function of training text size, two
of the 106 displayed attributes were selected. Figure 9.3 shows the size of
the single-symbol and set-membership KCTs grown on NL data to deal with
fare fare_id and flight.flight.id. As the amount of training data grows, the
number of nodes tends to increase, but there are times when added data
causes little growth or even shrinkage of the KKCT. These pauses in KCT
growth can be viewed as particularly successful generalization steps in the
learning process - the KCT has just replaced a complex rule with a more
parsimonious rule that covers more data.

9.2 The November 1992 ATIS Benchmarks

9.2.1 KCTs Grown for the November 1992 Robust
Matcher

The single-symbol KCT's for displayed attributes and the single-symbol KCTs
for global constraints were grown on 3248 class A ATIS2 NL sentences; the
set-membership constraint KCTs were grown on the same sentences, plus
687 class A and D February 1992 NL sentences. Note that when the local
constraint KCT for a given grammatical code is trained, each copy of the code
counts as a single item of training data. For instance, the set-membership
KCT for CIT (city names) was trained on 3935 class A and D sentences, but
since there was an average of under two occurrences of CIT per sentence, it

198

% Correct

100
A

95

Transcript-Trained KCTs "\
85

80

Speech-Trained KCTs

75

70

65

60

>
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
Number of Training Sentences

Figure 9.2: Single-Symbol KCTs for Displayed Attributes Tested on Parsed
Speech Data

=,

199

Number of Nodes
|

119

100

90

80

70

60

40

30

20

10

parsed single-symbaol
{Tree 68)

""""""""" n parsed set-membership
________ {Tree 68)

s parsed set-membership
o (Treedd)

parsed single-symbol
(Tree 44)

-
"""
....
ot
utt
>
"""
#
it

s,
[
L
.,
s,
"
.,
L
L
),
s,
"
.,
,
¥,

400

800 1200 1600 2000 2400 2800

Number of NL Training Sentences

Figure 9.3: KCT Sizes vs. Size of Training Data (Tree 44 = fare.fare_id, Tree
68 = flight.flight_id)

is closer to the truth to say the training data consisted of 7028 occurrences
of CIT. Similarly, the training data for AIP (airport name) consisted of 221
occurrences of AIP, and the training data for TIM (times) consisted of 980
occurrences of TIM.

The 106 KCTs for displayed attributes ranged in size from 1 node:to 127
nodes. The two largest, the KCTs for attributes fare.fare_id and flight.flight_id,
had 37 and 127 nodes respectively. The 7 KCTs for global constraints were
small; the smallest had 5 nodes, the largest 15 nodes. The set-membership
local constraint KCTs have the following sizes: the AIP KCT has 25 nodes,
the CIT KCT has 157 nodes, the TIM KCT 59 nodes.

Figure 9.4 shows the fare.fare.id displayed attribute KCT grown on NL
data and used in the benchmarks; figure 9.5 shows a KCT grown on the most
probable output of the recognizer for the same utterances. Sentences that
end up in a YES leaf will put fare.fare_id in the displayed attribute list, while
the rest will not. The expression M{w) matches one or more occurrences of
the word w; the question “< 117" means “does the sentence have 11 or
fewer words?” Note that near the root, the two KCTs are very similar -
the differences between them consist of minor rearrangements of the same

“questions. The internal nodes tend to have more descendants in their NO

subtree than in their YES subtree, as is characteristic of single-symbol KCTs.

9.2.2 Benchmark Results

The November 1992 ATIS benchmark results are shown in figure 9.6-9.8.
Two CRIM systems are shown: CHANEL and another one called NEURON.
Since CHANEL was designed for and trained on class A utterances, class D
and X results have been omitted. A context-dependent version of CHANEL
for class D was created at the last moment, but since this work lies outside
the parameters of the problem described in this thesis and was not done by
me, results for this version have also been omitted; the D utterances will be
tackled seriously next year.

Figure 9.9 shows the systems ranked by a simple measure of robustness
(which is not one of the official benchmarks). This measure is the ratio
of NL weighted error to SLS weighted error, divided by the proportion of
correctly recognized words. The rationale is that for a fixed NL to SLS error
ratio, systems that achieve this ratio with a higher percentage of incorrectly

201

<+ fare +>7

W ¥ M(fares) +37

yes no yes no

yes no yes no
NO <+ fare PRI +27 T cost + downtown +5 fces +57
yes no Yes no yes 1o
NO ZHlights + fare +>7 NO < 10?7 YES <+ fare>"
yes no yes no yes 1o
NO YES No | [vEs| |YEs|

Subtree

Figure 9.4: Single-Symbol KCT for fare.fare_id trained on NL Data (number
of nodes = 37)

i

<+ Mifare) code +>7

yes no yes’u:*‘

NO | vEs |

Figure 9.5: Single-Symbol KCT for fare.fare_id trained on Speech Data (num-
ber of nodes = 33) -

I

Ak

,;-{I."

System | #True | #False | #NA #Utt | Weighted Error
ATT 343 64 20 427 34.7
BBN 379 19 29 427 157
CMU 399 24 4 427 12.2
CHANEL 208 44 85 427 40.5
NEURON 356 62 9 427 31.1
INRS 244 158 25 427 799
MIT-LCS /| 380 31 16 | 427 18.3
PARAMAX 278 39 110 427 440
SRI1 362 30 35 427 222
SRI2 383 19 25 427 148

Figure 9.6: November 1992 ATIS NL Test Results (Class A only)

204

System [%Corr| Sub Del” | Ins Eri’ [%Utt. Err
ATT 938 | 44 | 18 1.8 8.0 454 |
BBN 96.7 2.3 1.0 0.8 4.0 253 “al
cMU 96.1 2.7 1.2 0.5 4.4 30.7
CRIM 88.9 2.0 3.1 24 13.5 57.8
INRS 0.0 00 | 1000 00, | 1000 100.0
MIT-LCS | 93.5 4.4 22 137 |7 7.8 38.2

SRI 96.0 32 0.9 [1.1 5.2 34.2

Figure 9.7: November 1992 ATIS SPREC Test Results (Class A only}.:™

<

- System | #True | #False | #NA #Utt | Weighted Error
ATT 303 88 36 427 49.6
BBN 361 35 31 427 23.7
CMU 383 40 4 427 19.7
CHANEL 249 65 113 427 569
NEURON 296 113 18 427 57.1
INRS 0 0 427 427 100
MIT-LCS 347 50 30 427 30.4
SRI1 337 46 44 427 3L9
SRI2 352 38 37 427 26.5

* Figure 9.8: November 1992 ATIS SLS Test Results (Class A only)

System | NL W.Err/SLS W. Err.[SPREC Corr.| Robustness
ATT 34.7 49.6 0.938 0.75
BBN 15.7 23.7 0.567 0.69
CMU 122 19.7 0.961 0.64
CHANEL 40.5 56.9 0.889 0.80
NEURON 311 57.1 0.889 0.61
MIT-LCS 18.3 30.4 0.935 0.64
SRII 222 31.9 0.960 0.72
SRIZ 14.8 26.5 0.960 0.58

Figure 9.9: Results for NL W. Err/(SLS W. Err.* SPREC Prop. Corr.)

recognized words show greater robustness. By this measure, the CHANEL
system is the most robust; interestingly, the AT&T system, whose parameters
were also automatically trained, is the second most robust. Of course, the
measure may unduly favour systems with a high percentage of misrecognition;
CHANEL’s robustness cannot be fully evaluated until the group’s NL and
SPREC results are closer to the median results for other groups.

Overall, the results are quite satisfying. Almost all the groups repre-
sented have participated in several previous ATIS evaluations; the linguistic
analyzers developed by these groups represent a large amount of code and
a large number of person-years. Except for the AT&T system, none of the
non-CRIM systems involve a machine learning approach. While development

207

of the KCT-growing algorithms and programs took a considerable amount of
time. applying them to ATIS took relatively little time. If one excludes work
on the 5QL module, the development of CHANEL for ATIS took two people
(myself and E. Millien) 3.5 months (August to mid-November 1992). It is
the rules learned by the KCTs that made this rapid development possible,
Most of the global sentence-level knowledge is locked up in them, so that the
4000 lines of ‘C’ code in the Robust Matcher module are mainly concerned
with manipulating the output yielded by KCT's on input sentences.

The experiments shown in figure 9.2 demonstrate that for ATIS, transcript
trained KCTs tested on recognizer output perform better than recognizer-
trained KCTs. For this reason, the version of CHANEL used in the bench-
marks consisted entirely of transcript-trained KCTs. After submission of the
benchmark results, a version of CHANEL with recognizer-trained displayed
attribute KCTs (still using transcript-trained constraint KCTs) was tested
informally on the SLS class A benchmark data. The resuit confirmed the wis-
dom of the decision to train on NL data: the partly speech-trained version
of CHANEL had weighted error of 60.1 (instead of 56.9).

9.3 Analysis of Errors

All errors discussed here are for class A. The system produced 129 wrong
answers (F plus NA) on the NL benchmark and 178 wrong answers on the
SLS benchmark. 115 of the 427 sentences yielded the wrong answer on both
benchmarks, 63 sentences that yielded the correct NL answer gave the wrong
SLS answer, and 14 sentences managed to yield a wrong NL answer but a
correct SLS answer (i.e. a somewhat distorted version of the sentence pro-
duced by the recognizer yielded the correct answer, even though the correct
version yielded the wrong answer).

9.3.1 Analysis of NL Errors

Many of the errors made by the robust matcher on the November 1992 NL
benchmarks involved an incompatibility between the displayed attributes
and the constraints. For instance, questions about the ground.service re-
lation should never involve other relations. Nevertheless, the current robust
matcher sometimes produces a conceptual representation whose displayed

208

attributes mention the ground_service relation but whose constraints men-
tion other relations. For the sentence “tell me about ground transportation
to DDEN”, the matcher might wrongly classify DDEN as a flight.to_airport
despite having generated the correct list of displayed attributes (all drawn
from ground_service). This kind of error arises because KCTs are indepen-
dent: each KCT produces an answer that does not take into account the
answers output by other KCTs. The next chapter will suggest some solu-
tions to this problem.

Figure 9.10 breaks down the NL. arrors in more detail. If a sentence gives
rise to more than one error, all are included in the histogram; thus the sum of
crrors shown is larger than the number of wrong answers (F plus NA). First,
consider the non-KCT errors. The most important type of non-KCT error
is labelled “DAT™: because of an incompatibility between the local parser’s
encoding of dates and the SQL module’s decoding of dates, most sentences
that included them yielded an incorrect SQL query. This simple bug has been
fixed. Another omission that will be easy to fix involved two codes, “ODT”
and “LEG”, connected with time intervals that overlap midnight and flight
legs respectively. There was a deeper problem with the SQL module that
caused it to send “NO ANSWER” when displayed attributes were drawn
from different relations; this may require rewriting of parts of the module.
The cases shown under “local parser problem” are straightforward, often
involving words missing from the lexicon - such as a “red-eye” flight and a
“turboprop” airplane. Thus, most of the non-KCT errors can be remedied
fairly casily.

The trickiest type of error that arises in the KCT part of CHANEL in-
volves multiple frames in the representation; recall that these are required to
generate an “OR” in the SQL query. Though CHANEL’s training data in-
cluded several different multiple frame cases which were labelled as such, the
system did not handle these cases well in the test data. Perhaps the approach
was correct and there were simply too few multiple frame examples in the
training data for the KCTs to learn good rules. However, I tend to believe
that this problem calls for a different approach (as yet undetermined}.

The remaining error types do not pose deep problems. The number of
displayed attribute errors is high; however, determining the list of displayed
attributes is a difficult problem. The KCT experiments described earlier give
every reason to believe that more training data will reduce the frequency of
this type of error. Close examination of these errors confirms this view.

209

Err

70

¥
k-]
2 2
48
A=
ct
A
& O
E o
-4

7
7.

Figure 9.10: Histogram of NL Errors

210

For instance, 25% of them occurred when the sentence contained the word
“airfares”, which had occurred exactly once in the training data but was
frequent in the test data. When this word appeared without other fare-
related words, the fare.fare_id KCT output “no” instead of “yes”. Clearly,
more training data would have eliminated all these errors.

The same applies to errors in the local and global constraints. Further-
more, as described in the next chapter, it should be possible to reduce overall
error by implementing automatically generated meta-rules that will ensure
mutual consistency among the displayed attributes and constraints.

9.3.2 Analysis of SLS Errors
Benign SLS Errors

“Benign” recognition errors cause the incorrect word sequence hypothesis
output by the recognizer to yield the correct conceptual representation in the
SLS benchmark, even though the corresponding NL transcript containing the
correct word sequence yielded an incorrect representation. Of the 427 class
A sentences, 14 experienced benign errors and 63 experienced malign errors.
Thus the number of sentences with benign recognition errors is surprisingly
high: almost 25% of the number of malign errors. Study of the 14 sentences
with benign errors leads me to suspect that the phenomenon arises partly
because the language model and the KCTs were trained on the same data.
In many cases of misrecognition, the language model “edits” the true word
sequence to produce a hypothesis that more closely resembles sentences found
in the training data. This process of “editing” may help the KCTs, which
work best on sentences similar to those in the training data. For instance,
the true NL word sequence may contain a rare word that confuses the KCTs;
in the SLS version, this word may be “edited out” by the language model,
allowing the KCTs to yield the correct answer.

Malign SLS Errors

“Malign” recognition errors cause utterances whose NL version yielded the
correct representation to yield an incorrect SLS answer. Among the 63 class
A sentences that yielded the correct NL answer but a false answer or “NO
ANSWER” on the SLS benchmark, I have identified 88 errors. These are

211

broken down by category in figure 9.11. The “local parser” errors involved
cases where the local parser could conceivably have recovered from a recogni-
tion error (for instance, the string “December mean 11th” could conceivably
have been correctly parsed as the date “December the 11th”). The *local
constraint”, “global constraint”, and “displayed attribute” errors might be
reduced by carrying out some training of KCTs on SLS as well as on NL,
using one of the methods suggested in the next chapter.

The “hopeless” errors are ones where the best hypothesis produced by the
recognizer is so misleading that recovery is impossible; they involve deleted,
inserted, or substituted constraint values. There are surprisingly few cases
of substitution within the same grammatical category - where, for instance,
the name of one city is replaced by the name of another city. Instead, most
of these errors involve either deletion of a constraint value or the insertion or
substitution of a grammatical category that does not occur in the NI, version
of the sentence. Often, the new category is one that seldom co-occurs with
the other constraints, or with the displayed attributes.

This observation offers some hope for an improved SLS version of the ro-
bust matcher. Above, we mentioned the possibility of automatically generat-
ing meta-rules for spotting incompatible combinations of displayed attributes
and constraints. As will be discussed in the next chapter, such meta-rules
for SIS would support a strategy in which not just the top hypothesis, hut
the N-best hypotheses, could help to provide the conceptual representation.
This would help not only with the “hopeless” type of error, but alse with
the “local constraint”, “global constraint”, and “displayed attribute” error
types.

Examining this possibility will be a high priority for the coming year;
however, it will not be the highest priority. Note that of 178 sentences that
did not yield the correct answer in the SLS benchmark, 115 also failed to
yield the correct answer in the NL benchmark. Thus, working to improve
the robust matcher for NI will be the single most important way of helping
SLS performance.

212

Errors

50‘

Figure 9.11: Histogram of SLS Errors without corresponding NL Errors

Chapter 10

Discussion

10.1 Original Contributions of the Thesis

This thesis makes two original contributions:

1. Keyword Classification Trees, a new method for learning and classifying
sequences of symbols. Because KCTs explicitly model gaps, the task of
learning general patterns from training sequences becomes much easier
in certain domains. The method is particularly useful in the analysis
of word sequences.

[g

. The KCT-based Robust Matcher, a linguistic analyzer for speech un-
derstanding that combines a chart-based local parser with a global
analyzer that uses a large number of KCTs (over 100 for the ATIS
task) to carry out semantic analysis. ATIS was used as a testbed for
the KCT-based Robust Matcher; however, this kind of robust matcher
should be widely applicable in text and speech understanding.

For each of these contributions, the thesis describes related work by oth-
ers:

1. Chapter 6 discusses a tree-based language model employed by IBM,
and a classification tree approach to information retrieval devised by
Crawford, Fung et al. Neither of these approaches has been applied
to speech understanding. However, these approaches also differ from
the KCT approach in a more profound way. The IBM trees only ask

214

S~

questions about fixed positions in a sentence, e.g. the identity of word
t1. By contrast, KCTs can ask about regions of the sentence defined
in terms of words known to be present, e.g. the identity of the words
between the start of the sentence and the word “flight”. The Crawford-
Fung trees are much more limited than the other two: they can only
ask whether certain words are in the sentence or not, and cannot ask
about relative order of words at all.

Chapter 3 discusses the linguistic analyzers in several speech under-
standing systems. Many of them contain robust matchers: linguis-
tic analyzers that grab semantically important phrases and stick them
into appropriate slots. These matchers incorporate a very relaxed no-
tion of syntactic correctness, and skip over irrelevant words; all are
hand-coded. The KCT-based robust matcher adopts the same overall
philosophy as other robust matchers, but most of its rules.are grown
from data rather than hand-coded. The only linguistic analyzer for the
ATIS task that contains automatically generated rules is the one built
at AT&T. The AT&T system learns rules for segmenting a sentence
into “concepts”; there is a one-to-one mapping between segments and
units of meaning. Each KCT in the KCT-based robust matcher looks
at the whole sentence; thus, the use of KCTs permits information in a
given segment of the sentence to play a role in building several different
parts of the conceptual representation.

10.2 Advantages and Disadvantages of KCT-

Based Robust Matcher

10.2.1 Advantages

The main advantages of using KCTs to build a robust matcher are:

¢ The savings in human effort, and potential improvement in perfor-

mance, achieved by growing rules from training data instead of hand-
coding them.

¢ Speed: KCTs process sentences very quickly, that is in time linear

in the length of the sentence; they also take up very little storage.

215

The surprising result that single-symbol KCTs seem to perform about
as well as set-membership KCTs means that growing KCTs for the
matcher can be done fairly quickly. For instance, the set of 106 single-
symbol KCTs for choosing displayed attributes in the ATIS robust
matcher was grown on about 3250 training sentences in less than 10
hours (on a Sun SPARC-2 with 28 MIPs).

Because KCTs ask about only a few words in a sentence, recognition
errors in the remaining words do not affect performance.

Increased portability: if the database structure, the database language,
or the task domain are changed, the part of the robust matcher consist-
ing of KCTs can be adapted quickly by regrowing the trees on new data.
The new data could be obtained via bootstrapping, beginning with a
Wizard of Oz scenario for collecting the first 500 or so sentences. The
results in the previous chapter for the ATIS task show that while a high
level of performance can only be attained by training on 2000 — 3000
sentences, a reasonable level of performance for a KCT-based system
can be attained by training on a few hundred sentences. Thus a pro-
totype trained on 500 sentences would be good enough to gather more
data (with a wizard standing by); after a few iterations, an excellent
system would be available.

Unlike neural nets, KCTs learn regular expressions made up of words
and gaps which can easily be interpreted by people, and used in different
contexts. For instance, one could design a recognizer whose lexical
search algorithm was guided by KCT-generated expressions.

The potential error correction achieved by growing KCTs on recognizer
output. In the case of ATIS, transcript-trained KCTs outperformed
recognizer-trained KCTs. As described below, new experiments us-
ing ATIS data will be carried out to see if the potential for SLS error
correction may be realized by using more sophisticated training meth-
ods. In any case, it is possible that non-ATIS tasks exist for which
recognizer-trained KCTs will perform better.

216

10.2.2 Disadvantages

The main disadvantages (potential or actual) of the KCT-based robust matcher
are:

¢ The need for a large corpus of labelled training data.

¢ The heuristic quality of KCTs: that is, the lack of a formal syntactic
theory to guide interpretation at the global, sentence level.

¢ Some difficulties caused by splitting up the task of interpretation be-
tween a hand-coded, chart-based local parser for semantically impor-
tant phrases and a KCT-based robust matcher at the sentence level.

These disadvantages will now be discussed in more detail.

The question of training data involves an important trade-off. For a
given level of performance, one must decide which requires more work: hand-
coding rules for a task, or collecting training data and then writing a program
that learns the rules from these data. The automatic learning approach .
is not suitable for all natural language tasks. Like the AT&T group, the
CRIM group chose to hand-code the local parsing component of the sentence
interpretation task; this was the job of E. Millien’s chart parser. The rules
for parsing place names, times, prices, and dates are easily written down:
most people learn them from the blackboard in primary school. A program
designed to learn them from scratch would require a large corpus of training
data.

On the other hand, Chapter 3 demonstrates that at the sentence level
hand-coding appropriate rules requires considerable human effort. The re-
sulting systems seem to require a great deal of testing on new data and sub-
sequent rewriting of rules in order to reach acceptable performance levels.
The natural language ATIS data was collected primarily because of demand
by creators of hand-coded linguistic analyzers. Thus, the development of
hand-coded systems may require the collection of the same quantity of data
as is required by systems that learn from data; the latter require much less
effort once the data have been collected. At the sentence level, the trade-off
seems to favour automatic learning,.

The absence of a formal syntactic theory to guide sentence interpretation
in the KCT-based robust matcher was a deliberate decision rather than an
oversight. All robust matchers implicitly operate on the assumption that

fanpitg

217

sentence production and sentence interpretation need not be modelled in
the same way. Available syntactic theories try to explain production rather
than interpretation, and may therefore be of limited utility for interpretation.
Robust matchers carry out interpretation by skipping over large segments of
the sentence to focus on semantic “islands” that carry most of the meaning.
Usually, the precise form of the patterns that yield the interpretations is
hidden in the rules of the robust matcher. The behaviour of the KCT-based
robust matcher is easier to characterize formally. It looks for specific regular
expressions made up of words and rarsed phrasés separated by gaps, which
were learned from training data. Thus, the KCT-based approach might be
seen as the adoption of an unusual syntax that permits gaps, rather than as
a rejection-of syntax at the sentence level.

The very loose coupling between the local parsing moduie and the global
matcher created some difficulties that might have been resolved if more two-
way communication between these two layers had been permitted. For in-
stance, the chart parser often had difficulty interpreting numbers, which can
form part of a date, a time, a flight number, a price, or one of the codes
found in the ATIS database. Global information about what type of phrase
to expect in this position of this type of sentence might have helped resolve
some ambiguities of this kind; the chart parser looked at neighbouring words,
but did not attempt to globally categorize the sentence.

Similarly, the KCTs in the global matcher had no access to the contents
of phrases previously parsed by the local parser. For instance, they might
see three phrases marked “CIT” in an incoming sentence, but had no way
of knowing which of these three place names, if any, represented the same
city. (The meta-rules in the matcher did have access to this information).
Furthermore, the local parser had no way of telling the matcher which of its
parses were reliable and which were tentative. The division of labour between
the local and global components worked well overall; the next section will
suggest some improvements.

be
i
"k‘ .
i

10.3 Improvements
Since the two contributions of the thesis are KCT's and the KCT-based Ro-

bust Matcher, one must distinguish between possible improvements to KCTs
(which could be applied outside natural language processing) and improve-

218

ments to the KCT-based Robust Matcher. For the latter, one must distin-
guish between specific improvements to CHANEL designed to raise perfor-
mance on next year’s ATIS benchmarks, and more general improvements
that affect the overall concept ol the KCT-based Robust Matcher.

10.3.1 Improvements to KCTs

¢ Surprisingly, single-symbol KCTs obtained about the same classifica-
tion results as the more sophisticated set-membership KCTs. This may
be due to the heuristic used to generate set-membership questions, or
to the definition of set-membership questions, or both. It would be
worthwhile to experiment with a different heuristic for generating word
sets, but in my opinion the most promising changes to set-membership
KCTs would involve a narrower definition of the permissible questions.
The set-membership questions currently allowed are too liberal, allow-
ing the KCT to group together sentences that are dissimilar except
for their.label. Questions involving more than one word could be re-
stricted to what the Appendix calls U set-membership questions; these
allow exactly one word in a set of words to appear in a given location.
This might encourage the KCT to learn synonyms and quasi-synonyms;
as a side-effect, it would greatly speed up the process of growing set-
membership KCTs.

¢ Another possible improvement would be the addition of questions about
gap length. I have already experimented with questions about the total
length of a word sequence: these were hardly ever chosen, implying that
they yield little useful information. It would be interesting to consider,
at each node of the growing single-symbol or set-membership KCT,
questions about the length of each gap in the known structure. These
would be of the form “is |+ | < N?” and “is |+ | = N?” with ¥V
varying over reasonable values, say from 1 to 20, The computational
cost of considering these questions is trivial. This modification would
allow the KCTs to generate patterns like those generated by the IBM
approach, with more precise positional information than the patterns
generated by the current KCTs.

¢ Chapter 7 discusses ways of speeding up the KCT-growing process by
runnirg it on parallel machines. If methods can be devised for collecting

219

training data continuously, as discussed in the next section, KCTs could
be grown incrementally. That is, instead of regrowing a KCT from
scratch each time a new batch of data arrives, we could add and prune
only at the nodes of the existing KCT. This would allow us to grow
KCTs on arbitrarily large amounts of training data without incurring
enormous computational costs.

¢ Finally, it would be interesting to experiment with applications of KCTs
in other domains. They could easily be applied to the natural language
tasks mentioned at the beginning of this chapter: information retrieval
and language modelling for speech recognition. They could alsc: be
applied to other domains, unrelated to natural language, in which the
analysis of strings is important. Molecular biology is one such domain:
perhaps KCT's have a role to play in looking for patterns in DNA, or
in the analysis of the amino acid chains that make up proteins.

10.3.2 Improvements to KCT-Based Robust Match-
ers

Specific Improvements to CHANEL

¢ The most important improvement that must be made to CHANEL in
time for the 1993 benchmarks will be the easiest to achieve: all KCTs
will be retrained, using data from the November 1992 test as well as

= the earlier training data.

¢ At the time I was building the KCT-based Robust Matcher compo-
nent of CHANEL for the Nov92 benchmarks, I believed that the set-
membership KCTs would be more accurate sentence classifiers than
single-symbol KCTs. Thus, the original version of the system consisted
entirely of set-membership KCTs. When the experiments described in
the last chapter showed that single-symbol KCT's were preferable, there
was enough time left to grow single-symbol KCTs for the displayed at-
tributes and global constraints, but not enough time to rewrite the
program that generates KCTs for classifying local constraints. Next
year’s system will consist entirely of single-symbol KCTs.

220

The program for growing KCT's that classify local constraints must be
rewritten anyway, to allow these KCTs to depend on the displayed at-
tributes (in the Nov92 version of the system, the output of each KCT is
completely independent of all other KCT outputs). Recall that analysis
of errors on the Nov92 NL benchmark showed a large number of cases
in which displayed attributes and constraints were incompatible: for
instance, one might involve the ground_service relation and the other
the flight relation. The algorithms for growing KCTs that classify lo-
cal phrases will be modified so that these KCTs are permitted to ask
questions about the displayed attributes found by other KCTs.

Another minor change must be made to the algorithm that grows the
KCTs that classify cities and airports. Currently, these KCTs have no
way of knowing whether a given CIT or AIP is a repetition of a CIT
or AIP mentioned earlier - they only see the symbols CIT or AIP, not
their contents. Thus, different copies of a repeated city or airport name
may be classified differently. In future, repeated CITs and AIPs will
be “tied” so that all occurrences receive the same tag.

The handling of “multiple frame” cases was unsatisfactory. These in-
volve sentences like “show me flights mornings from Denver to Boston
and from Denver to New York”, for which the natural language “and”
should be translated into an SQL “OR" separating two groups of con-
straints (note the ambiguity about whether “mornings” carries over to
the second group). As described in Chapter 8, an ad hoc list of multiple
frame cases designed to resolve the most frequent multiple-frame am-
biguities was devised after study of a large number of ATIS sentences,
and training sentences correspondingly labelled. It should be possible
to generate a list of possible cases in a more principled way, and thus to
design a system with a more elegant structure. In particular, the next
version of the KCT-based Robust Matcher should include a method for
segmenting utterances that consist of conjoined sentences.

Another possible improvement involves the local parser. In the current
version, error-correcting KCT-based rules operate at the sentence level
but not locally; some of the more common local ambiguities could be
resolved by using KCTs at this level as well. For instance, the chart

- Darser sometimes had difficulty with numbers, which may be part of

221

T

a date, a time. a flight number, a price, or a special code. A KCT
could learn rules for resolving ambiguities involving a number from
labelled training data; these rules might turn out to depend on words
distant from the number it--lf. Incorporating some KCTs would not
mean giving up rule-based lo..al parsing, which works well - the KCTs
would act to assist local parsing in borderline cases, thereby increasing
robustness. _

Recall that the same system was used for the Nov92 NL and SLS bench-
marks. Originally, [had planned to use KCTs trained on labelled rec-
ognizer output in the SLS system; however, experiments described in
the previous chapter showed that even on SLS data, NL-trained KCTs
performed better than SLS-trained ones. Two new approaches to SLS
training will be tried:

1. KCTs will be trained on data made up of all NL data plus all
available SLS data.

[A%]

KCTs will be trained on NL data, then retrained on SLS data.
The iterative expansion-pruning algorithm makes this easy to do.

-

Careful study of sentences in the Nov92 benchmark which yielded cor-
rect answers for NL but not SLS turned up many strange combinations
of displayed attributes and constraints in the conceptual representa-
tions output for SLS data. For instance, meal codes show up in the

. _.Lompany of other attributes and constraints that are completely unre-

lated to them. This is an encouraging finding: it suggests that semantic
meta-rules for spotting wrong answers generated by the SLS module
could be grown automatically. This is not & good application for KCTs,
since the order of constraints within the fentence seems to be irrelevant.
Instead, an ordinary classification tree that asks about the identity of
the displayed attributes and constraints in the representation and clas-
sifies the representation as “sensible” or “strange” can be grown on NL
and SLS data. If the answer is “strange”, the system should send “NO
ANSWER? or try the next hypothesis on the N-best list.

222

!

General Improvements to KCT-Based Robust Matchers

Looking beyond ATIS, one can see several possibilities for research into im-
proved KCT-based Robust Matchers:

¢ Using dialogue to collect training data,;

¢ Better meta-rules for determining that there is something wrong with
a conceptual representation;

¢ Hierarchies of KCTs: =
o KCT-driven lexical search.

Chapter 3 gives arguments for building dialogue capabilities into a spoken
language system. A system with such capabilities could train itself, with the
assistance of the users. User answers to system questions like “I'm sorry, was
it the fares you wanted to see?” would enable the system to label the user’s
earlier utterances and thus add to its stock of training data. Such a system
would be capable of learning the meaning of new combinations of words as
its KCTs incrementally grew bigger. Without any intervention by the sys-
tem designers, the system’s performance would gradually improve. This im-
provement wouid involve expansion of natural language coverage for concepts
that were already in the system’s knowledge representation. Completely new
concepts would still require intervention by the designers. Nevertheless, the
prospect of a spoken language system that improves with use is enticing.

The meta-rules are the rules that assess an interpretation as a whole,
determining whether it should be accepted or rejected. They may be applied
to a word sequence hypothesis before an interpretation is generated; word
sequences judged unlikely to yield a correct interpretation will be rejected.
[n an N-best system, they can look at interpretations derived from each of
the N word sequence hypotheses and pick one of them. Formulating good
meta-rules for a robust matcher is a hard problem. In a conventional parser,
the meta-rules are a byproduct of the grammar: a word sequence hypothesis
is judged unacceptable if it cannot be parsed. By contrast, robust matchers
are designed to overlook all kinds of syntactic oddities - it is hard to decide
how peculiar a hypothesis has to be before it is rejected. For the specific case
of ATIS, the meta-rule classification tree proposed above would depend on
semantic criteria; unusual combinations of subunits (displayed attributes and

223

constraints) in the conceptual representation would lead to rejection. This
approach may make sense for other problems as well. In any case, meta-rules
are clearly an important topic for further investigation.

Crawford, Fung ef a/ employed a hierarchy of classification trees in the in-
formation retrieval application: lower-level trees looked for concepts, upper-
level trees made decisions about higher-level concepts on the basis of informa-
tion supplied by lower-level trees. For the ATIS task, this kind of hierarchy
proved unnecessary. However, for more complex natural language processing
tasks, one can envisage a (CT hierarchy in which each level of KCTs anal-
yses the output of the level below and feeds its decisions to the level above.
The idea could prove valuable in the design of dialogue systems, where the
lowest level would deal with sentences and each successive level would deal
with a higher level of discourse.

Finally, a KCT-based system might carry out search in a completely
different way, looking only for keywords that appear in the nodes of somne
KCT used by the system and using “garbage models” for the gaps. There
are several possibilities:

1. Search could be carried out iteratively on each KCT, first determining
whether the answer to the question in the KCT’s root node is more
likely to be “yes” or “no”, then recursively descending to the appropri-
ate descendant nodes.

o

Hypotheses at the leaf nodes - each consisting of a regular expression
interspersed with gaps - could compete with each other simultaneously.

3. The problem with the two preceding methods is that they would not
provide a priori probability estimates for ending up at a given KCT leaf
node; only acoustic probabilities would be taken into account. How-
ever, using the patterns learned by KCTs, it would be possible to derive
a stochastic context-free grammar (SCFG) whose terminals would be
keywords plus the gap symbol. Because of the relatively small num-
ber of terminals, the probability parameters in the grammar could be
estimated from training data without excessive amounts of computa-
tion. Given a language model based on such a grammar and a partial
sentence consisting of a prefix, islands, and gaps, there exists a com-
putationally tractable technique for computing the tightest possible
upper bound on the probability of the best parse tree generating the

224

partial sentence {Cor91}. Using this new technique for calculating upper
bounds, the rules encoded in the SCFG would guide lexical search.

It seems likely that these approaches would speed up lexical search, since
no time would be wasted on non-keywords. Conceivably, they might also
improve the proportion of correct interpretations, since search would focus
on the problem of deciding between competing interpretations and not split
up probabilities between word sequence hypotheses. On the other hand,
the information contained in current language models would be lost. The
question can be argued convincingly both ways, which is one of the reasons
KCT-based lexical search would make a good research topic.

10.4 Conclusion

The thesis describes a method for learning classification rules for sequences
from training data, and shows how that method can be applied to semantic
problems in speech understanding. It has identified four key issues for future
development of trainable robust matchers:

1. The need for quasi-automatic means of acquiring and labelling sample
sentences, in order to overcome the data collection bottleneck.

Lo

The need for a division of labour between different levels of the sys-
tem and between hand-coding and automatic learning that minimizes
human effort while maximizing robustness.

3. The need for good meta-rules, preferably learned from training data,
that will increase the probability of obtaining the correct interpretation
of an utterance.

4. The possibility of KCT-driven lexical search.

The most important idea in the thesis is the importance of gaps. Clas-
sification trees seemed the most obvious way of learning patterns with gaps
in them, but they are probably not the only way. In the long run, they
will prove to be too heuristic to yield a completely satisfactory solution to
the problem. The ideal solution would involve probabilistic grammars that
include gaps and can be learnt from training data by efficient methods that
provide probabilistic performance guarantees, as described in Chapter 4.

225

Appendix A
KCT-Growing Details

A.1 Single-Symbol KCTs

As described in the body of the thesis, the set of possible single-symbol
questions was generated at each non-zero gap + in the known structure for
a set of strings as follows. (Questions about the total length of the string
were also generated but turned out to be of little practical importance, since
they are hardly ever chosen). Iteratively setting v to be each of the possible
symbols (words) in the vocabulary, produce these questions:

—

. Is the + equal to v7

| o)

. Is the + equal to v+7?
3. Is the + equal to +v7
4. Is the + equal to +v+7?

This description was accurate but incomplete: it ignores the problem
of symbols that appear more than once in a string. Suppose the question
selected for the root node was of the last type - for instance, “is the + equal
to +¢+7" Since at the root node the known structure for the string is < + >,
the YES child of the root node will contain strings of the form < + ¢ + >.
Now suppose the question selected to fill this YES child is; “is the first +
equal to +m?” In other words, the question is: “is the form of the string
<+mg+>?T

226

If strings are not allowed to contain the same symbol twice, there is no
problem. However, this is a rather unrealistic requirement; let us see what
ltappens when it is violated. Suppose we are using this KCT to classify the
string < e 2 y g r m g = >. At the root node, this string is assigned to the
YES child, because it is of the form < + ¢ + >. But the correct answer to
the question “is the form of the string < + m ¢ + >7" depends on whether
we look at the first g or the second q in the string.

The questions actually asked at each non-zero gap + are therefore as
follows; each type has been given a mnemonic one-letter name:

1

[~

o

|

. J questions “join" the edges of a gap together; they are of the type “Is
the + equal to v?” (v is set to every item in the vocabulary)

L questions place a symbol v on the “left” side of a gap; they are of
the type “Is the + equal to v+7"

. R questions place a symbol v on the “right” side of a gap; they are of
the type “Is the + equal to +v?”

. U questions identify a “unique” symbol v; they are of the type “Is the
+ of the form +v+, where there is precisely one v with no other v to
left or right of it within the original +77

. T questions identify a pair of “twin” adjacent symbols v; they are of
the type “Is the + of the form +wvv+, where there are precisely two
adjacent v with no other v on either side of them within the original
+?n)

N questions identify two “non-adjacent” symbols v surrounding a gap;
they are of the type “Is the + of the form +v+ v+, where there are two
non-adjacent v which may or may not have more v in the gap between
them, but such that there is no v to the left of the leftmost of these
two v and no v to the right of the rightmost of these two v within the
original +7”

. M questions establish that there is one or “more” symbol v in a gap;
they are of the type “Is the + of the form +M(v)+, where M(v) can
be of the form v, vv, or v + v, and there is no v on either side of the
M (v} within the original +?”

1)
o
-\]

The M question type really means. “Is therc at least one » within the
+7" and is just an OR of the U, T. and N question types. Note that these
three question types cover all possible cases of duplication. Hence, strictly
speaking, the M question type is unnecessary; however, there are probably
many occasions when all that matters is whether a given word occurred at
least once in a gap, and not how often it occurred. We will need questions
to break down an M(v) in the known structure for a set of strings into the
three constituent cases. That is, wherever a YES answer to the M type of
question has put an M(v) (where v is some vocabulary item) in the known
structure, we will consider the following questions:

1. U: Is M(v) of the form v?

S

. T: Is M(v) of the form vv?

3. N:1Is M(v) of the form v+ v (where the 4+ may have zero, or any other
number of v in it)?

Suppose the root node contains the M question “Is the string of the form
< +M{q)+ >?" The strings in the root node’s YES child will then have
the known structure < + M(q) + >, where the two + do not contain a ’¢’.
Any of the seven kinds of + questions can then be asked about cither of the
two + positions in the known structure, but the only permissible questions
involving the M(q) position are U: “is the form of the string < + ¢ + >?77,
T: “is the form of the string < + q ¢ + >?", and N: “is the form of the
string <+ ¢ + g+ >7"

If the question actually chosen for the YES child of the root is the N one,
“is the form of the string < + ¢ + ¢ + >7”, a YES to this question of course
implies that the known structure is < + ¢ + ¢ + >. Further questions in
this case are generated in the usual way from the three +. A NO answer to
“is the form of the string < + ¢ + ¢ + >7” means that the known structure
is < - M(q) + >, where M(q) is either ¢ or ¢ ¢; the next question may
either establish which of these two forms the M (q) possesses, or focus on one
of the two +.

A.2 Set Membership KCTs

The idea behind set-membership KCTs was that of automatically grouping
together words that are rough semantic equivalents. For instance, words
like “taxi”, “limousine”, “bus” often identify a ground transport query, and
probably appear in parallel positions in similar sentences. If a single-symbol
KCT asks about these words, it is obliged to split off the sentences containing
them into three separate groups and learn further rules about each group
separately. A set-membership KCT could include a question like: “Is the
sentence of the form < 4+ v + >, where v is one of tazi, limousine, or bus?"
Thus, the question’s YES child would pool three superficially different but
actually very similar kinds of sentences, permitting more efficient learning of
rules. '

The set-membership question types we will consider are called J, L, R,
U, T, N, M, and P. As their mnemonic names indicate, all but the P type
are analogous to the question types described in the previous section. Each
type refers to a set X that is a proper non-empty subset of the vocabulary
V. The P type deals with the case where we know that certain strings all
contain a symbol z belonging to a set X at a given position, and we want to
“partition” the strings into those where z belongs to ¥ (a non-empty proper
subset of X) and those where z belongs to X — Y. The rest operate on a
gap, symbolized “+”, within the known structure of the string. Questions
of types U, T, N, and P can also operate on a string segment containing a
segment M({X) identified by a YES answer to an earlier M question.

Here is how these question types operate on a gap +, letting = represent
any single symbol drawn from the set X and letting X° represent a non-empty
string made up solely of symbols from the complement of X:

. . ‘)l.L . .
¢ J question - “can + be rewritten as z, where z is any symbol in X?”
/ ’,"
¢ L question - “can + be rewritien as z-+, where z is any symbol in X?”
¢ R question - “can + be rewritten as +z, where z is any symbol in X?”

o U question - “can + be rewritten as X°zX*, where z is any symbol in

X7

¢ T question - “can + be rewritten as X°zyX°, where z,y are any sym-
bols in X7

229

¢ N question - “can + be rewritten as X + y.X'°, where r,y are any
svmbols in X7"

¢ M question - “can + be rewritten as X°M{X).X*, where W(\\') is a
substring of the form x, ty, or z + y, and z,y are any symbols in X7”

The P type is a little different - it operates on a fixed position known to
contain a single symbol drawn from the set X, i.e., on a position that can be
denoted z:

¢ P question - “can z be rewritten as y, where y is a single symbol drawn
from the set Y" which is a proper non-empty subset of X7?”

Note that the known structure for strings in the YES child of this question
contain a y (symbol in Y') at the relevant position, while the strings in the
NO child contain a z there, where z is a symbol in X - Y.

Operating on a substring of form X°M{X)X°® identified by a YES answer
to an earlier M question, type U, T, or N questions separate the three
subcases {z,y represent arbitrary symbols in X):

¢ U question - “can X*M (X)X be rewritten as X¢z . X¢7”
¢ T question - “can XM (X)X¢ be rewritten as X°zyX¢ >7”

¢ N question - “can X°M(X)X° be rewritten as Xz + zX°7"

Finally, type P questions can also be applied to substrings of form X¢M(X)X*:

¢ P question applied to X°M{X)X® - “can the M(X) be rewritten as
M(Y), where Y is a proper non-empty subset of X, and M(Y) is a
substring of the form y, yw, or ¥ + w, such that y,w are elements of

ym

Again, note that the YES and NQ answers to this question are complemen-
tary - the strings in the NO child of the question must have a substring of
form M(Z) at the relevant position, where Z = X — Y. Both the M(Y)
in the YES child and the M(Z) in the NO child of this P question can be
manipulated to produce new U, T, N, and P questions.

The segiments of a string written as X° above may also be written + in the
known structure of a string (when the known structure is used to generate

230

W

new questions). LEven if every X¢ is treated as a 4+ in the known structure
for the purpose of generating new questions, the algorithm for generating
and choosing set-membership questions will never pick a question for this
+ that involves a set with a symbol from X in it. Whether or not it’s
worth keeping track of the fact that a particular section of a string is X,
i.e. contains no symbols drawn from X, is an implementation question more
than=a theoretical question.

\

W

Bibliography

[Ang88] “Learning from Noisy Examples”, D. Angluin and P. Laird, Machine
Learning, 1988, V. 2. no. 4, pp. 343-370.

[Ang87] “Learning Regular Sets from Queries and Counterexamples”, Infor-
mation and Computation, D. Angluin, 1987, V. 75, pp. 87-106.

[Ang33] “Inductive Inference: Theory and Methods”, D. Angluin and C.
Smith, Computing Surveys, Sept. 1983, V. 15, no. 3, pp. 237-269.

[Ang82] “Inference of Reversible Languages”, D. Angluin, Journal of the
ACM, July 1982, V. 29, no. 3, pp. 741-765.

[Ang78] “On the Complexity of Minimum Inference of Regular Sets”, D.
Angluin, Information end Control, 1978, V. 39, pp. 337-350.

[App92] “SRI International February 1992 ATIS Benchmark Test Results”,
D. Appelt and E. Jackson [DAR92].

[Aus9l] “BBN HARC and DELPHI Results on the ATIS Benchmarks -
February 1991”7, S. Austin, D. Ayuso, et of [DARIL pp. 112-115].

[Bah91] “Context Dependent Modeling of Phones in Continuous Speech Us-
ing Decision Trees”, L. Bahl, P. de Souza, et al [DARYL pp. 264-269)].

[BahWLa] “A Maximum Likelihood Approach to Continuous Speech Recog-
nition”, L. Bahl, F. Jelinek, and R. Mercer [WL90 pp. 308-319).

{[BahWLb] “A Tree-Based Statistical Language Model for Natural Language
Speech Recognition”, L. Bah!, P. Brown, et al, [WL90 pp. 507-514].

232

[Bak79] ~Irainuble Grammars for Speech Recognition™, J. Baker, Proceed-
ings of the 97th Meeting of the Acoustical Society of America, 1979,

[Bie72] “On the Synthesis of Finite-State Machines from Samples of their
Behavior”, A. Biermann and J. Feldman, [EEE Trans. Comput. C.,
1972, V. 21, pp. 592-507.

[Bob92] “Syntactic-Semantic Coupling in the BBN DELPHI System”, R.
Bobrow, R. Ingria, and D. Stallard [DAR92].

[Bre84] “Classification and Regression Trees”, L. Breiman, J. Friedman, R.
Olshen, and C. Stone, Wadsworth Inc., 1984.

[Bro92] “Analysis, Statistical Transfer, and Synthesis in Machine Transla-
tion” P. Brown, S. Della Pietra, et al, Fourth Int. Conf. on Theorelical
and :’Vlethodofogzcal Issues in Machine Translation (TMI 92) Montreal,
25-27 Aug. 1992, pp. 83-98.

[Bro88] “A Sratistical Approach to Machine Translation”, P Brown, J.
Cocke, et al, Int. Conf. on Computational Linguistics (COLING 88),
Budapest, 22-27 Aug. 1988, pp. 71-76.

[Car92] “High Performance Connected Digit Recognition Using Codebook
Exponents”, R. Cardin, Y. Normandin, and R. De Mori, Proc. I[CASSP
92, V.1, pp. 505-508, San Francisco, 1992.

[Chan91] “Synthesis and Recognition of Sequences”, S. Chan and A. Wong,
Trans. IEEE PAMI, Dec. 1991, V. 13, no. 12, pp. 1245-1255.

[Char91] “Bayesian Networks Without Tears”, E. Charniak, Al Magazine,
Winter 1991, V. 12, no. 4, pp. 50-63.

[Cho91] “Optimal Partitionlilng for Classification and Regression Trees”, P.
Chou, Trans. IEEE PAMI, Apr. 1991, V. 13, no. 4, pp. 340-354.

[Coo76] “Grammatical Inference by Hill-Climbing”, C. Cook, A. Rosenfeld,
and A. Aronson, 1976, Inf. Sci., V. 10, pp. 59-80:,_*?'_\--_

[Cor91] “Computation of Probabilities for a Stochastic Island-Driven
Parser”, A. Corazza, R. De Mori, R. Gretter, and G. Satta, Trans.
IEEE PAMI, 1991, V. 13, no. 9, pp. 936-950.

233

[Cra91] “Classification Trees for Information Retrieval®, S. Crawford, R.
Fung, L. Appelbaum, and B. Tong, 1991, Proc. Sth International Work- .
shop on Machine Learning, Northwestern University, Evanston. Hlinois. -

[Cree92] “Trading MIPs and Memory for Knowledge Engineering”, R.
Creecy, B. Masand, S. Smith, and D. Waltz, Aug. 1992, Communi-
cations of the ACM, V. 35, no. 8, pp. 48-64.

{Cres73] “The Use of Grammatical Inference for Designing Programming
Languages”, S. Crespi-Reghizzi, M. Melkanoff, and L. Lichten, Com-
mun. ACM, Feb. 1973, V. 16, no. 2, pp. 83-90.

[Cres72] “An Effective Model for Gremmatical Inference”, S. Crespi-
Reghizzi, in Information Processing 71, 1972, ed. by B. Gilchrist, pp.
524-529, Elsevier-North Holland.

[DAR92] Proceedings of the 1992 DARPA Speech and Natural Language
Workshop, to be published by Morgan Kauffmann Inc.

[DARO1] Proceedings of the 1991 DARPA Speech and Natural.language
Workshop, Feb. 19-22, 1991, Morgan Kauffmann Inc.

[DAR90] Proceedings of the 1990 DARPA Speech and Natural Language
Workshop, June 1990, Morgan Kauffmann Inc.

[Dym90] “A Symmetrical Approach to Parsing and Generation”, M. Dymet-
man, P. Isabelle, and F. Perrauit, 1990, COLING 90, pp. 90-96.

[Dud73] “Pattern Classification and Scene Analysis”, R. Duda and P. Hart,
1973, Wiley Co.

[ErmWL) “The HEARSAY-II Speech Understanding System”,. L. Erman
and V. Lesser [WL90 pp. 235-245).

[Fu86a] “Grammatical Inference: Introduction and Survey - Part [, K. S. Fu
and T. Booth, Trans. IEEE PAMI, May 1986, V. 8, no. 3, pp. 343—-’%{59.

(Fu86b] “Grammatical Inference: Introduction and Survey - Part I1I”, K.
S. Fu and T. Booth, Trans. IEL."PAMI, May 1986, V. 8, no. 3, pr.
360-375.

I

[Fu86c] “A Step Towards Unification of Syntactic and Statistical Pattern
Recognition”, K.S. Fu, Trans. [EEE PAMI, May 1986, V. 8, no. 3, pp.
398-404.

[Fud2] “Syntactic Pattern Recognition and Applications”, K. S. Fu, Prentice-
Hall Inec., 1982.

[Gai78] “Maryanski’s Grammatical I[nferencer”, B. Gaines, [EEE Trans.

Comput., 1978, C-28, pp. 62-64.

[Garc90] “Inference of k-Testable Languages in the Strict Sense and Appii-
cation to Syntactic Pattern Recognition”, P. Garcia and Enrique Vidal,
Trans. IEEE PAMI, Sept. 1990, V. 12, no. 9, pp. 920-925.

[Garc87] “Local Languages, the Successor Method, and a Step Towards a
General Methodology for the Inference of Regular Grammars”, P. Gar-
cia, E. Vidal, and F. Casacuberto, Trans. IEEE PAMI, Nov. 1987, V.
9, no. 6, pp. 841-845.

[Gare79] “Computers and Intractability: A Guide to the Theory of NP-
Completeness”, M. Garey and D. Johnson, W. H. Freeman Co., 1979.

[Gars87] “The Computational Analysis of English”, R. Garside, G. Leech,
and G. Sampson, Longman Group Ltd, 1987.

[Gel91] “An Iterative Growing and Pruning Algorithm for Classification Tree
Design”, S. Gelfand, C. Ravishankar, and E. Delp, Trans. IEEE PAMI,
Feb. 1991, V. 13, no. 2, pp. 163-174.

[Gol?é] “Complexity of Automaton Identification from Given:Data”, E. M.
Gold, Information and Control, 1978, V. 37, pp. 302-320.

[-CraWL] “Vector Quantization”, R. Gray [WL90 pp. 75-100).

[Hau88] “Proceedings of the 1988 Workshop on Computational, Learning
Theory”, ed. by D. Haussler and L. Pitt, 1989, Morgan Kaufmann Inc.

[Hil85] “The Connection Machine”, W. Daniel Hillis, MIT Press, 1985.

[Hir92] “Multi-Site Data Collection for a Spoken Lanffuage Corpus”,

Hirschpyan [DAR92] ~
Y k

N
pv

L.

F

a

=
N

[HonYl] “Recent Progress in Robust Vocabulary-Independent Speech Recog-
nition”, H.-W. Hon and K.-F. Lee {DAR91 pp. 258-263)].

[Hop?b] “Introduction to Automata Theory, Languages, and Computation™,
J. Hopcroft and J. Ullman, Addison-Wesiey Co., 1979.

[Jack9ll- “A Template Matcher for Robust NL Interpretation”, E. Jackson,
D. Appelt, et al [DARI] pp. 190-194].

[Jaco90] “SCISOR: Extracting Information from Online News”, P. Jacobs
and L. Rau, Commun. ACM, Nov. 1990, pp. 88-97.

[Jai91] “PARSEC: A Connectionist Learning Architecture for Parsing Spo-
ken Language”, A. Jain, Ph.D. Thesis, Dec. 1991, Carncgle Mellon Uni-
versity, CMU-CS-91-208.

[Jel92] “Principles of Lexical Language Modecling for Speech Recognition”,
F. Jelinek, R. Mercer, and S. Roukos, in “Advances in Speech Signal
Processing”, ed. by S. Furui and M. Sondhi, 1992, (pp 651-699), Marcel
Dekker Inc.

[Kea90a] “