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Preface

This manuscript-based thesis contains six chapters: an introduction, an original literature

review, three chapters that correspond to three stand alone manuscripts, and a conclusion.

A complete bibliography is presented after the appendices, at the end of this thesis. Chap-

ters 3, 4 and 5 are linked by the main research topic of this thesis, and each adds novel

methodological developments and new insights to the current statistical literature in the

area of penalized mixed models for genetic association studies. Each of these three chapters

begins with a short preamble that introduces the topic of the chapter and that briefly de-

scribes the gap in literature that I seek to fill with the proposed methodology. The proposed

methodologies are all demonstrated using real genetic cohort studies.

The introduction and the literature review (Chapters 1 and 2) of this thesis were conceived

and written by Julien St-Pierre (JStP), and both were further edited by Karim Oualkacha

(KO) and Josée Dupuis (JD). The work in Chapter 3 was conceptualized in a series of discus-

sion between JStP, Sahir Rai Bhatnagar (SB) and KO. JStP conducted the methodological

derivations, designed and conducted the simulation study, performed the data analysis and

wrote the manuscript draft. SB and KO provided substantial help and guidance with the

methodological derivations, simulation studies and data analysis. SB and KO further cor-

rected and edited the chapter. The methodological work in Chapter 4 was conceptualized

by JStP with help and guidance by SB and KO. JStP conducted the methodological deriva-

tions, designed and conducted the simulation study, performed the data analysis and wrote

the manuscript draft. The work was advised by SB and KO, which also corrected and edited

the chapter. The work in Chapter 5 was conceptualized in a series of discussion between

JStP and KO. JStP conducted the methodological derivations, designed and conducted the

simulation study, performed the data analysis and wrote the manuscript draft. KO provided

substantial help and guidance with the methodological derivations and simulation studies.
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Massimiliano Orri (MO), KO and JD provided guidance and support for the real data analy-

sis. KO, JD and MO advised the work and edited the chapter. The conclusion was conceived

and written by JStP and edited by JD and KO.
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Preface

The case study in Chapter 3 of this thesis uses the data from the UK Biobank. UK

Biobank is a large-scale biomedical database and research resource containing de-identified

genetic, lifestyle and health information and biological samples from half a million UK par-

ticipants (Sudlow et al. [2015]). UK Biobank is generously supported by its founding funders

the Wellcome Trust and UK Medical Research Council, as well as the Department of Health,

Scottish Government, the Northwest Regional Development Agency, British Heart Founda-

tion and Cancer Research UK. The organisation has over 150 dedicated members of sta!,

based in multiple locations across the UK. More information on obtaining access to the UK

Biobank data is available on the project website (http://www.ukbiobank.ac.uk).

The case study in Chapter 4 of this thesis uses data from the Orofacial Pain: Prospec-

tive Evaluation and Risk Assessment (OPPERA), OPPERA II and Complex Persistent

Pain Conditions (CPPC): Unique and Shared Pathways of Vulnerability studies. OPPERA

was supported by the National Institute of Dental and Craniofacial Research (NIDCR;

https://www.nidcr.nih.gov/): grant number U01DE017018. The OPPERA program also

acknowledges resources specifically provided for this project by the respective host univer-

sities: University at Bu!alo, University of Florida, University of Maryland–Baltimore, and

University of North Carolina–Chapel Hill. Funding for genotyping was provided by NIDCR

through a contract to the Center for Inherited Disease Research at Johns Hopkins Univer-

sity (HHSN268201200008I). Data from the OPPERA study are available through the NIH

dbGaP: phs000796.v1.p1 and phs000761.v1.p1. The Complex Persistent Pain Conditions:

Unique and Shared Pathways of Vulnerability Program Project were supported by NIH/-

National Institute of Neurological Disorders and Stroke (NINDS; https://www.ninds.nih

.gov) grant NS045685 to the University of North Carolina at Chapel Hill, and genotyping

was funded by the Canadian Excellence Research Chairs (CERC) Program (grant CERC09).
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The OPPERA II study was supported by the NIDCR under Award Number U01DE017018,

and genotyping was funded by the Canadian Excellence Research Chairs (CERC) Program

(grant CERC09).

The case study in Chapter 5 of this thesis uses data from the Quebec Longitudinal Study of

Child Development (QLSCD) and the Quebec Newborn Twin Study (QNTS). QLSCD and

QNTS data are accessible to researchers on the premises of the Centre d’accès aux données de

recherche de l’Institut statistique du Québec (CADRISQ) located in Montreal and Quebec

City. More information on obtaining access to the QLSCD data can be found on Research

Data Access Point website (https://www.stat.gouv.qc.ca/research/#/accueil). More

information on obtaining access to the QNTS data can be found on the Groupe de recherche

sur l’inadaptation psychosociale chez l’enfant (GRIP) website (http://www.gripinfo.ca/

grip/public/www/etudes/fr/dadprocedures.asp).
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Abstract

Genome-wide association studies (GWAS) aim to identify important genetic predictors as-

sociated with measurable traits, i.e, phenotypes. GWAS are typically conducted by test-

ing association on each genetic variant independently, requiring a stringent multiple-testing

threshold to avoid false positives. Penalized regression methods have been proposed as

an alternative method to increase the power for identifying weaker genome-wide associa-

tions. Population-based cohorts often include diverse and admixed individuals, as well as

individuals with known or unknown familial relatedness, and failing to account for the afore-

mentioned can decrease power and lead to spurious associations. Thus, including the top

principal components (PCs) of a genetic relatedness matrix (GRM) and/or a random e!ect

with variance-covariance structure proportional to a GRM is warranted. While mixed mod-

els are now widely employed in GWAS and the literature is expanding, existing methods are

mostly focusing on univariate association models. In my doctoral thesis, I focus on devel-

oping penalized generalized linear mixed models (GLMMs) for identifying and estimating

important genetic predictors e!ects, while accounting for non-normality of the traits and

correlation between di!erent observations.

In a first manuscript, I introduce a new method that allows to simultaneously select genetic

markers and estimate their e!ects, accounting for between-individual correlations and bi-

nary nature of the trait. I develop a computationally e"cient algorithm based on penalized

quasi-likelihood (PQL) estimation that allows to scale regularized mixed models on high-

dimensional binary trait GWAS. I show through simulations that when the dimensionality

of the relatedness matrix is high, a penalized LMM or logistic regression model with PC

adjustment fail to select important predictors, and have inferior prediction accuracy com-

pared to the proposed model. Further, I demonstrate through the analysis of two polygenic

binary traits that the proposed method can achieve higher predictive performance, while also

selecting fewer predictors than a sparse regularized logistic lasso with PC adjustment.
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In a second manuscript, I extend the model proposed in the first manuscript to perform

hierarchical selection of gene-environment interaction (GEI) e!ects in sparse regularized

GLMMs, accounting for population structure, close relatedness, shared environmental ex-

posure and binary nature of the trait. I propose to combine PQL estimation with a sparse

group lasso penalty and derive a proximal Newton-type algorithm with block coordinate

descent. I show that for all simulation scenarios, the proposed method always select the

lowest number of predictors in the model, while maintaining low false positive rates (FPR)

and false discovery rates (FDR). Moreover, using real data from the OPPERA study to

explore the comparative performance of the model in selecting important predictors of tem-

poromandibular disorder (TMD), I show that the proposed method is able to identify a

previously reported significant SNP in a combined or sex-segregated GWAS.

The third manuscript is motivated by analyses of longitudinal data collected from partici-

pants in the Quebec Longitudinal Study of Child Development (QLSCD) and the Quebec

Newborn Twin Study (QNTS) to identify important genetic predictors for emotional and

behavioral di"culties in childhood and adolescence. The methodology proposed in the pre-

vious two chapters is extended to allow multiple measurements per subject through the use

of multiple random e!ects. Through simulation studies, I first show that using a GRM to

account for both population structure and closer relatedness is not enough as it inflates the

relative bias of variance components estimates, and adjusting for population structure by

adding the 10 PCs is warranted. Moreover, I show that even though using a sparse GRM

in place of the full GRM does introduce bias in the variance components estimates, the

computational gain is major while the impact on the performance of the penalized model

to identify important predictors is negligible. I compare the performance of the proposed

penalized mixed model to a standard lasso and to a univariate mixed model association test

and show that the proposed model always identifies causal predictors with greater precision.

Finally, I show an application of the proposed model to predict externalizing scores in the

combined QLSCD and QNTS longitudinal cohorts.
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Abrégé

Les études d’association pangénomique (GWAS) visent à identifier d’importants prédicteurs

génétiques associés à des traits mesurables, c’est-à-dire des phénotypes. Les GWAS sont

généralement menées en testant l’association entre un phénotype et chaque variant génétique

de manière indépendante, nécessitant un seuil de test multiple strict pour éviter les faux

positifs. Des méthodes de régression pénalisée ont été proposées comme une alternative

pour augmenter la puissance d’identification des associations pangénomiques plus faibles. Les

cohortes populationnelles incluent souvent des individus provenant de diverses populations,

ainsi que des individus avec des liens familiaux connus ou inconnus, et ne pas prendre en

compte ces facteurs peut réduire la puissance et conduire à des fausses associations. Ainsi,

inclure les premières composantes principales (PCs) d’une matrice de similarité génétique

(GRM) et/ou un e!et aléatoire avec une structure de variance-covariance proportionnelle à

une GRM est nécessaire. Bien que les modèles mixtes soient désormais largement utilisés

dans les GWAS et que la littérature s’agrandisse, les méthodes existantes se concentrent

principalement sur les modèles d’association univariés. Dans ma thèse de doctorat, je me

concentre sur le développement de modèles linéaires généralisés mixtes (GLMMs) pénalisés

pour identifier et estimer les e!ets des prédicteurs génétiques importants, tout en tenant

compte de la non-normalité des traits et de la corrélation entre di!érentes observations.

Dans un premier article, je présente une nouvelle méthode qui permet de sélectionner si-

multanément les marqueurs génétiques et d’estimer leurs e!ets, en tenant compte des cor-

rélations entre les individus et de la nature binaire du trait. Je développe un algorithme

e"cace sur le plan computationnel basé sur l’estimation par quasi-vraisemblance pénalisée

(PQL) qui permet d’adapter les modèles mixtes régularisés aux GWAS de traits binaires. Je

montre à travers des simulations que lorsque la dimensionnalité de la matrice de similarité

est élevée, les modèles linéaires mixtes pénalisés et la régression logistique avec ajustement

par PC échouent à sélectionner les prédicteurs importants et ont une précision de prédiction
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inférieure par rapport au modèle proposé. De plus, je démontre, à travers l’analyse de deux

traits polygéniques binaires, que la méthode proposée peut atteindre une performance pré-

dictive plus élevée, tout en sélectionnant moins de prédicteurs qu’une régression logistique

régularisée par lasso avec ajustement par PC.

Dans un second article, j’étends le modèle proposé dans le premier article pour e!ectuer une

sélection hiérarchique des e!ets d’interaction gène-environnement (GEI) dans les GLMMs

régularisés sparses, en tenant compte de la structure de la population, des relations famil-

iales, de l’exposition environnementale partagée et de la nature binaire du trait. Je propose

de combiner l’estimation par PQL avec une pénalité de groupe lasso sparse et je dérive un

algorithme de Newton proximal avec descente par coordonnées en bloc. Je montre que pour

tous les scénarios de simulation, la méthode proposée sélectionne toujours le plus petit nom-

bre de prédicteurs dans le modèle, tout en maintenant de faibles taux de faux positifs (FPR)

et de fausses découvertes (FDR). De plus, en utilisant des données réelles de l’étude OP-

PERA pour explorer la performance comparative du modèle dans la sélection des prédicteurs

importants du trouble temporomandibulaire (TMD), je montre que le modèle proposé est

capable d’identifier un SNP significatif précédemment rapporté dans une GWAS stratifiée

ou non par sexe.

Le troisième article est motivé par des analyses de données longitudinales collectées auprès

de participants de l’Étude longitudinale du développement des enfants du Québec (QLSCD)

et de l’Étude des jumeaux nouveau-nés du Québec (QNTS) pour identifier d’importants

prédicteurs génétiques des di"cultés émotionnelles et comportementales durant l’enfance et

l’adolescence. À travers des études de simulation, je montre d’abord que l’utilisation d’une

GRM pour tenir compte à la fois de la structure de la population et des liens familiaux

n’est pas su"sante, car cela augmente le biais relatif des composantes de variance, et que

l’ajustement pour la structure de la population en ajoutant les 10 premiers PCs est nécessaire.

De plus, je montre que bien que l’utilisation d’une GRM sparse à la place de la GRM complète
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introduise un biais dans l’estimation des composantes de variance, le gain computationnel

est majeur tandis que l’impact sur la performance du modèle pénalisé pour identifier les

prédicteurs importants est négligeable. Je compare la performance du modèle mixte pénalisé

proposé à un lasso standard et à un test d’association mixte univarié et montre que le modèle

proposé identifie toujours les prédicteurs causaux avec une plus grande précision. Enfin,

je montre une application du modèle proposé pour prédire les scores externalisés dans les

cohortes longitudinales combinées QLSCD et QNTS.
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Chapter 1

Introduction

This thesis focuses on variable selection models in the context of genetic association studies.

I address two important challenges in those studies, which are i) the spurious selection of

variables due to confounding by population stratification and close relatedness of the rela-

tionship between genetic predictors and the outcome, and ii) the computational complexity

associated with fitting mixed models when the number of predictors is significantly larger

than the sample size.

The observed variation for certain measurable traits in a population, also called phenotypes,

are influenced by the environment and variations in the genes that code for these pheno-

types, to varying degrees depending on the trait under study. The deoxyribonucleic acid

(DNA) located on the gene locus di!ers from one individual to another. These variations in

nucleotides for a specific locus are called alleles. Since each individual inherits pairs of ho-

mologous chromosomes at birth, one chromosome from the father and one from the mother,

there are precisely two alleles at each genome location for a trait. The majority of observed

genetic diversity is due to genetic variations a!ecting only a single pair of nucleotide bases,

called single nucleotide polymorphisms (SNPs). A biallelic site is a specific locus in a genome

that contains two observed alleles. In this case, the allele most prevalent in a population for
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a SNP is referred to as the major allele, contrasting with the minor allele, which is less fre-

quent. Multiallelic sites refer to specific loci in a genome that contain three or more observed

alleles. Confounding due to population structure comes from the fact that allele frequencies

can di!er greatly between individuals who do not share similar ancestry. Moreover, genetic

similarity between close individuals, referred to as genetic kinship, can also confound the

association between genetic predictors and phenotypes.

Genome-wide association studies (GWAS) have led to the identification of hundreds of com-

mon genetic variants, or SNPs, associated with complex traits (Visscher et al. [2017]). This

thesis focuses on regularized regression models for GWAS, in which the e!ects of a large

number of genetic predictors are jointly estimated in a penalized model in order to induce

sparsity among the predictors fixed e!ects. This is in contrast to univariate methods which

typically test the statistical association between one or many phenotypes and each genetic

variant, or SNP, independently. Although these two approaches are fundamentally di!erent

in the way they address having significantly more predictors than observations, they are

prone to the same biases that arise from population structure and genetic kinship.

Several authors have proposed in the statistical literature methods to adjust for popula-

tion structure and genetic similarity between individuals in univariate association tests (see

e.g., Yu et al. [2005], Price et al. [2006], Price et al. [2010], Yang et al. [2011], Conomos et al.

[2015], Sul et al. [2016], Chen et al. [2016]). Sparse regularized linear mixed models (LMMs)

have also been proposed in the statistical literature to perform variable selection in GWAS

of continuous phenotypes while adjusting for population structure and genetic kinship (see

e.g., Rakitsch et al. [2012], Bhatnagar et al. [2020b]). Nevertheless, sparse regularized mixed

models were not yet proposed in the literature for GWAS of binary traits, due to the compu-

tational complexity associated with fitting high dimensional generalized linear mixed models

(GLMMs).

In this thesis, I therefore build on the previous statistical literature on sparse regularized
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GLMMs to propose and demonstrate a methodology for the selection and estimation of

genetic e!ects for GWAS of binary traits. In Chapter 2, I provide a review of the fundamental

concepts to consider in the development of that methodology. More explicitly, I discuss

the important aspects of GWAS, variance components estimation in mixed models, and

algorithms to estimate fixed e!ects coe"cients in sparse regularized regression models.

In Chapter 3, a method is proposed to select important genetic predictors and estimate

their e!ects in GWAS of binary traits, accounting for between-individual correlations and

binary nature of the outcome. An algorithm based on regularized penalized quasi-likelihood

(PQL) estimation is presented. The method is demonstrated in extensive simulation studies

and is used to assess the predictive performance of a polygenic model for asthma and high

cholesterol, in an analysis of data from the UK Biobank.

In Chapter 4, hierarchical selection of gene-environment interaction (GEI) e!ects in sparse

regularized GLMMs is considered. A proximal Newton-type algorithm with blockwise co-

ordinate descent (BCD) combining regularized PQL estimation with a sparse group lasso

penalty is derived. The use of a second random e!ect to account for shared environmental

exposure is demonstrated using di!erent simulation scenarios. Finally, the proposed method-

ology is used to identify important predictors of temporomandibular disorder (TMD) that

may interact with sex, in a GWAS using individuals from the OPPERA study.

Chapter 5 is motivated by analyses of longitudinal data collected from participants in the

Quebec Longitudinal Study of Child Development (QLSCD) and the Quebec Newborn Twin

Study (QNTS) to identify important genetic predictors for emotional and behavioral di"cul-

ties in childhood and adolescence. The methodology proposed in the previous two chapters

is extended to allow multiple measurements per participant through the use of multiple ran-

dom e!ects. Using simulation studies, it is demonstrated that using a genetic relatedness

matrix (GRM) to account for both population structure and closer relatedness may not be

su"cient as it inflates the relative bias of variance components estimates, and adjusting for
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population structure by adding the top principal components (PCs) to the model is war-

ranted. Moreover, even though the use of a sparse GRM introduces bias in the variance

components estimates, it is demonstrated that the computational gain is major while the

impact on the performance of the penalized model to identify important predictors is neg-

ligible. Using simulation studies of both continuous and binary traits, the proposed model

is shown to always identify causal predictors with greater precision than other methods. Fi-

nally, an application of the methodology to build a prediction model for externalizing scores

in the combined QLSCD and QNTS longitudinal cohorts is demonstrated.

Chapters 3 to 5 were written as stand-alone manuscripts. Chapter 3 is published in Bioin-

formatics. Chapter 4 is published in Statistical Methods in Medical Research. Chapter 5 is

ready to be submitted for publication in a statistical journal. This thesis ends with a conclu-

sion in which I review the notable contributions of this thesis, discuss important limitations

of this work, and mention potential ideas for future work.
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Chapter 2

Literature review

This chapter introduces and reviews the theory that we expanded upon in all three manuscripts

comprising this thesis.

In this chapter, vector and matrices are denoted in bold. I use the notation yi to denote the

phenotypic outcome of individual i, i = 1, ..., n, Gi to refer to a vector of genetic predictors

for individual i, taking values {0, 1, 2} as the number of copies of the minor allele, with

corresponding coe"cients ε denoting the e!ect of Gi on the outcome mean. In the univariate

models, Gi and ϑ represent the number of copies of the minor allele and regression coe"cient

for a single genetic predictor. Important covariates that are generally collected in GWAS,

such as age, sex and ancestry, are included in the vector Xi, with their corresponding fixed

e!ects ϑ.

2.1 Genome wide association studies

In this section, I first present the single-SNP linear regression model that is widely used in

GWAS for continuous phenotypes, and I explain the rationale behind the use of a polygenic

random e!ect to account for unexplained heritability. Second, I give an overview of the
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average information restricted maximum likelihood (AIREML) algorithm that is a popular

method to estimate variance components in mixed models. Third, I review the literature

on population structure and participant relatedness, and the di!erent mixed models that

have been proposed in the recent years to address these two confounding sources. Fourth,

I present the generalized linear mixed model association test (GMMAT) proposed by Chen

et al. [2016] which is an extension of the mixed models literature for non-normally distributed

phenotypes, and I review PQL estimation. I finish this section by introducing the concept

of GEIs.

2.1.1 Single-SNP regression model

The single-SNP linear regression model can be written as

yi = X↭
i
ϑ+Giϑ + ei,

where Gi is the number of copies of the minor allele for the SNP under study, and ei →

N(0, φ2
e
) is the residual error. Standard maximum-likelihood estimation (MLE) procedures,

such as the Wald test can be conducted to perform inference on ϑ and draw evidence on

the relative importance of a genetic predictor in explaining the observed variation in the

phenotype y.

Given the very large number of independent SNPs being tested for association, typically

in the order of one million, a stringent multiple-testing threshold is required to avoid false

positives. The Bonferonni genome-wide significance p-value threshold of 5 ↑ 10→8 has be-

come the standard, as it represents a false discovery rate of 0.05/106 (Pe’er et al. [2008]).

Moreover, GWAS have brought to light the problem of unexplained heritability, that is,

identified variants only explain a low fraction of the total observed variability for traits un-

der study (Manolio et al. [2009]). Yang et al. [2010] hypothesized that most causal variants

explain such a small amount of variation that their e!ects do not reach stringent signifi-
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cance thresholds, and they proposed modelling the additive genetic e!ects of all the SNPs

as random e!ects in a LMM to estimate the heritability, i.e. the variance explained by all

the causal genetic predictors. They proposed the following model

y = Xϑ+Wu+ e,

where u → N(0, IMφ
2
u) is a vector of random SNP e!ects, IM is an M ↑M identity matrix

with M the total number of SNPs, and e → N(0, Inφ2
e
) is the vector of residual (random)

e!ects. If we define ” = WW↑
/M , where W is the standardized design matrix for the M

genetic predictors, and let φ
2
g
= Mφ

2
u

be the additive genetic variance, then we can rewrite

the previous LMM as

y = Xϑ+ b+ e,

where b → N(0, φ2
g
”) is an n ↑ 1 vector of polygenic random e!ects, and ” is the GRM

between individuals. Yang et al. [2011] proposed using an AIREML approach (Harville

[1977], Gilmour et al. [1995]) to estimate the polygenic variance component φ
2
g
. I briefly

review in the next section this estimation method in the context of LMMs.

2.1.2 AIREML estimation in LMMs

The previous LMM can be extended in a more general form to incorporate more than a

single random e!ect, such as

y = Xϑ+ Zb+ e, (2.1)

where Z = [Z1, ...,Zr] is a n ↑ nr design matrix with Zj the n ↑ n design matrix for the

j
th random e!ect, and b = (b↭

1, ...,b
↭
r
)↭ is a stacked nr ↑ 1 vector of random e!ects. For

many genetic applications, it is convenient to assume that all random e!ects are mutually
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independent, such that the total variance can be written as

# =
r)︄

j=1

φ
2
j
ZjVjZ

↭
j
+ φ

2
e
In,

where Vj is a n ↑ n similarity matrix that accounts for between-subject relatedness, and

φ
2
j

are variance components. The restricted log-likelihood function (Harville [1977]) for the

model in (2.1) is equal to

↼R(ϑ, φ
2
e
, φ

2
1, ..., φ

2
r
) = ↓1

2
log |#|↓ 1

2
log

[︄[︄X↓↭#→1X↓[︄[︄↓ 1

2
y↭Py,

where X↓ is a full-rank submatrix of X and P is a projection matrix defined by #→1 ↓

#→1X↓ (X↓↭#→1X↓)→1 X↓↭#→1
. In the restricted maximum likelihood (REML) method,

estimates for the variance components and fixed e!ects are iteratively updated using New-

ton’s method

ϑ(t+1) = ϑ(t) ↓ [↔2
ω↼R]

→1↽↼R

↽ϑ
|(ω(t),ε(t)),

ϖ(t+1) = ϖ(t) ↓ [↔2
ε↼R]

→1↽↼R

↽ϖ
|(ω(t+1),ε(t)),

where ↓↔2
ω↼R, ↓↔2

ε↼R are the observed information matrices with respect to ϑ and ϖ =

(φ2
e
, φ

2
1, ..., φ

2
r
). The first and second derivative of ↼R with respect to ϖ are

↽↼R

↽⇀j

=
1

2

]︄
y↭P

↽#

↽⇀j

Py ↓ tr

⌊︄
P

↽#

↽⇀j

⌋︄⌈︄
,

↽
2
↼R

↽⇀l↽⇀j

=
1

2

]︄
↓2y↭P

↽#

↽⇀l

P
↽#

↽⇀j

Py ↓ tr

⌊︄
P
↽#

↽⇀l

P
↽#

↽⇀j

⌋︄⌈︄
,

with

↽#

↽⇀j

=

⌉︄
In if j = 1,

ZjVjZ
↭
j

otherwise.
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The elements of the expected information matrix are

E

⌊︄
↓ ↽

2
↼R

↽⇀l↽⇀j

⌋︄
=

1

2
tr

⌊︄
P
↽#

↽⇀l

P
↽#

↽⇀j

⌋︄
.

Evaluating the trace in either the observed or expected information matrix is computa-

tionally expensive. Thus, Gilmour et al. [1995] proposed replacing the observed information

matrix by the average of the observed and expected information matrices, which yields the

updates

ϖ(t+1) = ϖ(t) + [AI(t)]→1↽↼R

↽ϖ
|(ω(t+1),ε(t)),

with

AIlj =
1

2
y↭P

↽#

↽⇀l

P
↽#

↽⇀j

Py.

2.1.3 Population structure and subject relatedness

Confounding due to population structure or participants relatedness is a major issue in

genetic association studies. Confounding comes from the fact that allele frequencies can di!er

greatly between individuals who do not share similar ancestry. Modern large scale cohorts

will often include participants from di!erent ethnic groups as well as admixed individuals,

that is, subjects with individual-specific proportions of ancestries, or individuals with known

or unknown familial relatedness, defined as cryptic relatedness (Sul et al. [2018]). When

ignored, population structure and subject relatedness can decrease power and lead to spurious

associations (Price et al. [2010]).

Principal component analysis (PCA) can control for the confounding e!ect due to population

structure by including the top eigenvectors of the GRM as fixed e!ects in the regression

model (Price et al. [2006]). With admixture and population structure being low dimensional

fixed-e!ects processes, they can correctly be accounted for by using a relatively small number
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of PCs (e.g. 10) (Novembre and Stephens [2008]). However, using too few PCs can result

in residual bias leading to false positives, while adding too many PCs as covariates can

lead to a loss of e"ciency (Zhao et al. [2018]). More importantly, genetic studies frequently

contain sample structure influenced by both population stratification and closer relatedness.

Existing methods for inferring population structure may struggle when applied to samples

with related individuals (Price et al. [2010], Thornton and Bermejo [2014]). Conomos et al.

[2015] proposed a method called PC-AiR (principal components analysis in related samples)

that allows to identify a diverse subset of mutually unrelated individuals such that the top

PCs are constructed to only reflect the ancestry and to be robust to both known or cryptic

relatedness in the sample.

To adjust for both population structure and closer relatedness in a sample, including the

top PCs and a random e!ect with variance-covariance structure proportional to a grm is

warranted (Yu et al. [2005], Price et al. [2010]). Indeed, kinship is a high dimensional process,

such that it cannot be fully captured by a few PCs, and it would require the inclusion of

too many PCs as fixed e!ects covariates relative to the dimension of the sample size. An

important limitation of mixed model association tests is the need to fit a large number of

mixed-e!ects regression models, one per variant, across the genome in order to estimate the

variance components. A common approach to reduce this computational burden is to fit a

regression mixed model under the null hypothesis only once per GWAS, assuming that the

variance components are the same for all variants. This is is known as the P3D (population

parameters previously determined) method (Zhang et al. [2010]), and it has been shown to

outperform both PCA and genomic control in correcting for sample structure (Kang et al.

[2010]) in mixed model association tests. Thus, LMMs are now widely used in GWAS to

test for association between individual genetic variants and a phenotype of interest while

adjusting for all sources of confounding (Kang et al. [2008], Zhang et al. [2010], Kang et al.

[2010], Yang et al. [2011], Lippert et al. [2011], Zhou and Stephens [2012], Loh et al. [2015]).

By possibly incorporating more than a single random e!ect, LMMs allow to account for
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other sources of confounding that may arise from more complex designs.

2.1.4 GMMAT

For binary traits, Chen et al. [2016] have shown that LMMs are generally inappropriate

when population stratification leads to violation of the LMM’s constant-residual variance

assumption. They proposed the following GLMM for a continuous or binary phenotype yi,

i = 1, ..., n,

⇁i = g(µi) = X↭
i
ϑ+Giϑ + bi, (2.2)

where E[yi|b] = µi, b = (b1, ..., bn)↭ → N (0,
{︄

K

k=1 ϱkVk) is an n↑ 1 column vector of random

intercepts, ϱ = (ϱ1, ..., ϱK)↭ are the variance component parameters that account for the

relatedness between individuals, and V1, ...,VK are known relatedness matrices. Typically,

V1 is the GRM ” between individuals to account for closer relatedness that cannot be

captured by the leading PCs.

Chen et al. [2016] proposed estimating the variance component parameters ϱ only once,

under the null model of no genetic association, that is assuming that ϑ = 0. GMMAT relies

on PQL to estimate the fixed e!ects parameters ϑ and the average information REML algo-

rithm (Harville [1977], Gilmour et al. [1995]) to estimate the variance components. Similarly

to other LMMs, the fitted null model is the same for all genetic predictors in a GWAS. To

test for association between each genetic variant and a binary trait, GMMAT applies a score

test which is computationally fast and scalable for large-size GWASs. However, obtaining

e!ect size estimates ϑ̂ for a large number of predictors is computationally demanding as

it requires fitting one mixed model per tested predictor. Thus, the authors suggested a

two-steps method where only the important predictors that passed a user-defined stringent

significance threshold are estimated using a Wald test. Of note, the GMMAT assumes that

score test statistics asymptotically follow a Gaussian distribution to estimate asymptotic
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p-values. Zhou et al. [2018] argued that this can potentially lead to type I error rate inflation

when case-control ratios are unbalanced, and proposed a Scalable and Accurate Implemen-

tation of GEneralized mixed model (SAIGE) that relies on the saddlepoint approximation

to calibrate unbalanced case-control ratios in score tests. They further proposed to estimate

ϑ̂ using the variance components estimated under the null model of no association to avoid

fitting a large number of mixed models. Their estimate for ϑ̂ is given by

ϑ̂ =
}︄
G↭P̂G

⟨︄→1

G↭(y ↓ µ̂),

where P̂ = #̂
→1↓#̂

→1
X(X↭#̂

→1
X)→1X↭#̂

→1
is a projection matrix, #̂

→1
= Ŵ

→1
+
{︄

K

k=1 ϱ̂ kVk

is the variance-covariance matrix, and W is the diagonal matrix of GLM weights.

In the next section, I briefly review the PQL estimation method given it is an important

component of the models that I propose in this thesis.

2.1.5 PQL estimation

Let f(·) be a probability density function, such that the marginal log-likelihood for the

previous GLMM in (2.2) is

↼(ϑ, ϑ, ϱ ) = log

⟩︄ n/︄

i

f(yi|ϑ, ϑ, ϱ , b)f(b|ϱ )db

= log

⟩︄
exp

\︄
/︂

\︂

n)︄

i=1

log f(yi|ϑ, ϑ, b)↓ 1

2
b↭

⎛
K)︄

k=1

ϱkVk

⎞→1

b

⎡
⎤

⎣↑

[︄[︄[︄[︄[︄

K)︄

k=1

ϱkVk

[︄[︄[︄[︄[︄

→1/2

db.

MLE requires exact information about the data distribution through specification of the

conditional densities f(yi|ϑ, ϑ,b). Moreover, except for normal responses with an identity

link function, the marginal likelihood ↼(ϑ, ϑ, ϱ ) has no analytic form. Let

h(b) =
n)︄

i=1

log f(yi|ϑ, ϑ, b)↓ 1

2
b↭

⎛
K)︄

k=1

ϱkVk

⎞→1

b,
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we can use Laplace method (Tierney and Kadane [1986]) to approximate the integral

⟩︄
exp{h(b)}db ↗ (2↪)

n
2

[︄[︄[︄↓h
↑↑(b̃)

[︄[︄[︄
→ 1

2 exp{h(b̃)},

such that the Laplace approximated log-likelihood is defined as

↼LA(ϑ, ϑ, ϱ ) =
n)︄

i=1

log f(yi|ϑ, ϑ, b̃)↓ 1

2
b̃
↭
⎛

K)︄

k=1

ϱkVk

⎞→1

b̃↓ 1

2
log

[︄[︄[︄[︄[︄

K)︄

k=1

ϱkVkW + I

[︄[︄[︄[︄[︄ ,

where b̃ is the solution of h↑(b) = 0, W is a diagonal matrix with weights for each observation

wi = ϖ
→1diag

⎦
ai

ω(µi)[g→(µi)2]

⎢
, ϖ is the dispersion parameter, ai are known weights, and ↩(µi)

is the variance function. Assuming that the weights in W varies slowly with the conditional

mean µ, Breslow and Clayton [1993] proposed maximizing instead a PQL function

↼PQL(ϑ, ϑ, ϱ ) =
n)︄

i=1

qli(ϑ, ϑ, b̃)↓ 1

2
b̃
↭
⎛

K)︄

k=1

ϱkVk

⎞→1

b̃,

where qli(ϑ, ϑ, b̃) =
⎥

µi

yi

ai(yi→µ)
εω(µ) dµ is the quasi-likelihood for the ith subject given the random

intercept b.

PQL is formally equivalent to replacing the observation vector y by a working vector Ỹ =

ς+$(y↓µ) with $ = diag(g↑(µ1), ..., g↑(µn)) and assuming under the normal theory linear

model that Ỹ = ς + φ where φ → N(0,W→1). Moreover, PQL does not require specifying

the exact distribution of the data, but only some information about the mean and variance

relationship. PQL estimation can be justified by using a Taylor series expansion of the linear

predictor g(yi) around the conditional mean of yi (Schall [1991])

g(yi) ↗ g(µi) + g
↑(µi)(yi ↓ µi) = ⇁i + g

↑(µi)(yi ↓ µi) = Ỹ i.
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2.1.6 GEI

Aside from population structure and closer relatedness, genetic association studies are also

subject to unobserved confounding factors arising from heterogeneous environmental expo-

sure. Moreover, interactions between genes and environmental factors may play a key role

in the etiology of many common disorders that have both genetic and environmental risk

factors. Ottman [1996] defined GEI as “a di!erent e!ect of an environmental exposure on

disease risk in persons with di!erent genotypes”, or alternatively, “a di!erent e!ect of a

genotype on disease risk in persons with di!erent environmental exposures”. Thus, we may

hypothesize that the average e!ect of a treatment or any environmental risk factor on an

individual may be modified by its genotype, or alternatively that the e!ect of a gene on an

individual’s phenotype may be altered by a treatment or environmental exposure.

Sul et al. [2016] studied the impact of population structure on GEI statistics in GWAS and

proposed a statistical approach based on mixed models with an additional random e!ect that

captures the similarity of individuals due to random polygenic GEI e!ects. Given the kinship

matrix K and binary exposure D, they define the matrix KD where each entry K
D

ij
= Kij

if Di = Dj and K
D

ij
= 0 otherwise (Yang et al. [2011]). This derived kinship matrix KD

describes how individuals are related both genetically and environmentally because a pair

of individuals who are genetically related and share the same environment exposure have a

non-zero kinship coe"cient.

2.2 Regularized regression models

Multivariable regression methods, as opposed to single-SNP models, simultaneously fit many

genetic variants as fixed e!ects in a single regression model. They have been proposed as

an alternative method to increase the power for identifying weaker genome-wide associa-

tions compared to univariable methods (Li et al. [2010]). Moreover, contrary to single-SNP

methods, a multivariable model can incorporate information about the dependence structure
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between di!erent variants, i.e. the nonrandom association of alleles of di!erent loci referred

to as linkage disequilibrium (LD) (Slatkin [2008]), potentially di!erentiating causative from

spurious associations (Malo et al. [2008]). In both simulations and analysis of high dimen-

sional data, that is where the number of predictors p is much greater than the sample size

n, multivariable logistic models have shown to achieve lower false-positive rates and higher

precision than methods based on univariable GWAS summary statistics in case-control stud-

ies (Qian et al. [2020], Privé et al. [2019]).

In high dimensional data, because the number of predictors exceeds the number of obser-

vations, regularization that imposes a penalty on the size of the predictors coe"cients is

required to avoid over-fitting and numerical instability of the standard regression solution.

A common regularization penalty used in genetic studies is the lasso, for least absolute

shrinkage and selection operator, which imposes a ↼1 penalty on the regression coe"cients of

the genetic predictors (Tibshirani [1996]). The popularity of the lasso is due to the fact that

the constraint it imposes results in many coe"cients being exactly equal to zero, leading to

more interpretable models, especially in high dimensional settings. A very e"cient imple-

mentation of the lasso can be found in the glmnet package in R (Friedman et al. [2010b]).

The great computational e"ciency of the lasso relies on three key concepts, cyclic coordi-

nate gradient descent (CGD) to minimize the loss function with respect to one predictor at

a time (Wu and Lange [2008]), pathwise solutions and strong rules for discarding the vast

majority of predictors from each iteration (Tibshirani et al. [2012]).

In this section, I first present the lasso regularized multivariable genetic linear model for con-

tinuous phenotypes. Second, I detail how pathwise solutions and strong rules help reduce the

computational burden associated with fitting high dimensional regularized models. Third, I

present the proximal Newton algorithm (Lee et al. [2014]) that was proposed by Friedman

et al. [2010b] to obtain estimates of the fixed e!ects predictors for the logistic lasso model.

Fourth, the adaptive lasso (Zou [2006]) and elastic-net (Zou and Hastie [2005]) penalties are
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presented. I finish this section by reviewing the literature behind the group lasso and sparse

group lasso models.

2.2.1 Lasso regularization

Consider the following multivariable genetic linear model, where for simplicity we include no

covariate except for an intercept term ▷,

yi = ▷ +G↭
i
ε + ei. (2.3)

The lasso solves the minimization problem

min
ϑ,ϑ

1

2n

n)︄

i=1

(yi ↓ ▷↓G↭
i
ε)2 + ◁

p)︄

j=1

|ϑj|

where ◁ is a tuning parameter that controls the sparsity of the solution. Assume we have

initial estimates for the intercept ▷̃ and for genetic predictors fixed e!ects ϑ̃
l
for l ↘= j and

j = 1, ..., p. A coordinate descent step involves computing the subgradient at ϑj = ϑ̃
j

such

that the stationary condition is given by

0 = ↓ 1

n

n)︄

i=1

Gij(yi ↓ ▷̃↓G↭
i
ε̃) + ◁u,

where we define the subgradient u ≃ ↽|ϑj̃| =

\︄
⎧⎧/︂

⎧⎧\︂

[↓1, 1] if ϑj̃ = 0,

sign(ϑj̃) if ϑj̃ ↘= 0.

Let r
(j)
i

= yi ↓ ▷̃ ↓
{︄

l ↔=j
Gilϑl̃ be the partial residual when solving for ϑj, then it is simple

to show that the coordinate step solution is

ϑj̃ = Sϖ

⎛
1

n

n)︄

i=1

Gijr
(j)
i

⎞
,
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where Sϖ(·) is the soft-tresholding function defined as

Sϖ(a) =

\︄
⎧⎧⎧⎧⎧⎧/︂

⎧⎧⎧⎧⎧⎧\︂

a↓ ◁ if a > ◁,

0 if |a| ⇐ ◁,

a+ ◁ if a < ↓◁.

Let yî = ▷̃+
{︄

p

l=1 Gilϑl̃ be the current fit of the model for the ith observation, and ri = yi↓yî

the current residual. Assuming Gj is standardized such that
{︄

n

i=1 G
2
ij
= n, we can rewrite

the coordinate descent update as

ϑj̃

(t+1)
= Sϖ

⎛
1

n

n)︄

i=1

Gijr
(t)
i

+ ϑj̃

(t)

⎞
. (2.4)

2.2.2 Pathwise solution and strong rules

Suppose that the current estimates ϑ̃1, ϑ̃2, ..., ϑ̃p
are all equal to 0 for ◁ = ◁1, and that we

have an initial estimate ▷̃0 of the intercept, then from (2.4) we must have that for all j

1

n
|

n)︄

i=1

Gij(yi ↓ ▷̃0)| ⇐ ◁1.

Thus, we can create a path of decreasing values of the tuning parameter ◁1 > ◁2 > ... > ◁m

such that at ◁1 = max
j

1
n
|
{︄

n

i=1 Gij(yi ↓ ▷̃0)| all coe"cients are equal to 0. This procedure

also exploits warm starts, that is the solution ε̃(◁k→1) at ◁k→1 is used as the initial estimate

for minimizing the loss function at ◁k.

When the number of genetic predictors is very large, assuming that most of their e!ects

are equal to 0, it is desirable to discard them from the coordinate descent steps to speedup

the optimization procedure. Tibshirani et al. [2012] derived sequential strong rules that can

be used when solving lasso-type problems over a grid of tuning parameter values. There-

17



fore, having already computed the solutions ▷̃(◁k→1) and ε̃(◁k→1), the sequential strong rule

discards the j
th genetic predictor from the optimization problem at ◁k if

|G↭
j
(y ↓ 1▷̃(◁k→1)↓Gε̃(◁k→1))| < 2◁k ↓ ◁k→1. (2.5)

Thus, we define the strong set S(◁k) as the indices of the predictors that survive the screening

rule (2.5). Once all coe"cients in the strong set has converged, we check the stationary

condition | 1
n

{︄
n

i=1 Gijri| < ◁k for all remaining predictors. If any predictor violates the

stationary condition, then we add them to S(◁k) and rerun the coordinate descent algorithm

on S(◁k) only.

2.2.3 Logistic lasso

Consider the following multivariable genetic logistic model, where for simplicity we again

include no covariate except for an intercept term ▷,

logit(µi) = ▷ +
p)︄

j=1

Gijϑj,

where µi = P (yi = 1|Gi). The lasso solves the minimization problem

min
ϑ,ϑ

⌉︄
↓
⎫
1

n

n)︄

i=1

yi(▷ +G↭
i
ε)↓ log(1 + e

ϑ+G↭
i ϑ)

⎩
+ ◁

p)︄

j=1

|ϑj|
⎭
. (2.6)

Clearly, taking the derivative of the regularized loss function (2.6) and setting it to zero does

not provide any closed form solution for (▷̃, ε̃). Since the objective function in (2.6) consists

of a smooth convex function f(▷,ε) := ↓
⎨
1
n

{︄
n

i=1 yi(▷ +G↭
i
ε)↓ log(1 + e

ϑ+G↭
i ϑ)

⎬
and a

non-smooth convex regularizer g(ε) := ◁⇒ε⇒1, Friedman et al. [2010b] proposed a proximal

Newton algorithm (Lee et al. [2014]) with cyclic coordinate descent to find solutions to

the minimization problem (2.6). This consists in replacing f(▷,ε) in (2.6) by its second
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order Taylor expansion about the current iterate !(t) = (▷(t)
,ε(t)) while maintaining the

regularization function g(ε) unchanged. Let X! = 1▷ + Gε, the iterative step reduces

to

!(t+1) = argmin
!

⌉︄
1

2st

⎪⎪⎪⎪!↓
⌊︄
!(t) ↓ st

⏐
↔2

!f(!
(t))

⎝→1

↔!f(!
(t))

⌋︄⎪⎪⎪⎪
2

2

+ g(!)

⎭

= argmin
!

]︄
1

2st

⎪⎪⎪!↓
⎨
X↭W(t)X

⎬→1
X↭W(t)

⎠
X!(t) + stW

→(t)(y ↓ µ(t))
⎜⎪⎪⎪

2

2
+ g(!)

⌈︄
,

where st is a suitable step size and W(t) is a diagonal matrix of weights, with the i
th element

being equal to µ
(t)
i
(1↓µ

(t)
i
). Defining the working response vector Ỹ = X!(t)+stW→(t)(y↓

µ(t)), we can rewrite the minimization problem as a weighted least squares (WLS) problem

where

!(t+1) = argmin
!

]︄
1

2st

⎪⎪⎪!↓
⎨
X↭W(t)X

⎬→1
X↭W(t)Ỹ

⎪⎪⎪
2

2
+ g(!)

⌈︄

= argmin
!

⌉︄
1

2st

n)︄

i=1

wi

}︄
Ỹ i ↓Xi!

⟨︄2

+ ◁

)︄

j

|ϑj|
⎭
,

where wi = µ
(t)
i
(1 ↓ µ

(t)
i
). Thus, for a fixed vector of weighs (w1, ..., wn), the update step is

simply given by

ϑj̃ =
Sϖ(

{︄
n

i=1 wiGijr
(j)
i
){︄

n

i=1 wiG
2
ij

with r
(j)
i

= Ỹ i ↓ ▷̃↓
{︄

l ↔=j
Gilϑl̃ the working partial residual when solving for ϑj. Compared

to the lasso for the linear model, this algorithm requires iteratively fitting WLS as an inner

loop combined with an outer quadratic approximation around the current iterates. Although

the Newton algorithm is not guaranteed to converge with a fixed step size st = 1, the fact

that the quadratic approximation is always warm-started from the previous iterative solution

makes it very accurate in practice (Friedman et al. [2010b]).
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2.2.4 Adaptative lasso and elastic-net

The ↼1 penalty imposed by the lasso produces biased estimates for large coe"cients. Indeed,

in the orthonormal case, one can show that

ϑ̂
lasso

j
= Sϖ(ϑ̂

OLS

j
) = sign(ϑ̂

OLS

j
)(|ϑ̂

OLS

j
|↓ ◁)+,

where ϑ̂
OLS

j
is the ordinary least squares (OLS) estimator and (·)+ is equal to zero if not

positive. Fan and Li [2001] conjectured that because of this resulting bias the oracle properties

do not hold for the lasso. They proposed a smoothly clipped absolute deviation (SCAD)

penalty for variable selection and proved its oracle properties. Alternatively, Zou [2006]

proposed assigning di!erent weights to di!erent coe"cients through a weighted lasso, and

showed that if the choice of the weights is informed by the data, then the weighted lasso can

achieve the oracle properties. They proposed the adaptive lasso methodology which solves

the minimization problem

min
ϑ,ϑ

1

2n

n)︄

i=1

(yi ↓ ▷↓G↭
i
ε)2 + ◁

p)︄

j=1

wj|ϑj|,

where the weights wj for j = 1, ..., p are defined by ŵj = 1/|ϑ̂
j
|ϱ and ϑ̂

j
is a root-n-consistent

estimator of ϑj, for example the OLS estimator, and ω > 0. In the high-dimensional setting,

where the number of predictors diverges with the sample size, as it is the case with genetic

association studies, the OLS estimator is no longer applicable. A practical solution is to use

the ↼2 penalized estimator for constructing the weights in the adaptive lasso (Zou [2006]).

Moreover, in the case where there is strong collinearity between the predictors, as with

SNPs in LD blocks, the performance of the lasso in retrieving important predictors breaks

down (Zou and Hastie [2005]). Indeed, when there is strong pairwise correlations among a

group of predictors, the lasso tends to select only one variable from the group randomly.

To address this challenge, Zou and Hastie [2005] proposed a new regularization and variable
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selection technique called the elastic-net which is a convex combination of the lasso and

ridge (Hoerl and Kennard [1970]) penalty on the regression coe"cients. For the model in

(2.3), the elastic-net estimator is defined as

ε̂
enet

= (1 +
◁2

n
)

⌉︄
arg min

ϑ

n)︄

i=1

(yi ↓ ▷↓G↭
i
ε)2 + ◁2

p)︄

j=1

ϑ
2
j
+ ◁1

p)︄

j=1

|ϑj|
⎭
. (2.7)

The elastic-net method produces a sparse model with good prediction accuracy, while en-

couraging a grouping e!ect. However, it lacks the oracle property of the adaptative lasso.

Thus, similarly to the adaptive lasso methodology, the adaptive elastic-net (Zou and Zhang

[2009]) incorporates cleverly chosen penalization weights to achieve both the oracle property

and good selection performance when there is collinearity between predictors. Zou and Zhang

[2009] proposed to solve the following minimization problem

(1 +
◁2

n
)

⌉︄
arg min

ϑ

n)︄

i=1

(yi ↓ ▷↓G↭
i
ε)2 + ◁2

p)︄

j=1

ϑ
2
j
+ ◁

↓
1

p)︄

j=1

wĵ|ϑj|
⎭
,

where the adaptive weights wj for j = 1, ..., p are equal to wĵ = 1/|ϑĵ

enet

|
ϱ

. For ◁2 = 0,

the adaptive elastic-net reduces to the adaptive lasso. Moreover, in the orthogonal case, the

adaptive elastic-net also reduces to the adaptive lasso for any value of ◁2.

2.2.5 Group lasso

It is often the case that predictors are organized into natural groups, for example SNPs

located on the same genes, genes belonging to the same pathways, or di!erent levels from a

categorical predictor. Thus, instead of focusing on selection of individual predictors, we may

be interested in selecting groups of predictors all together. The group lasso (Yuan and Lin

[2005], Simon and Tibshirani [2012]) applied to model (2.3) minimizes the convex loss

1

2n

n)︄

i=1

(yi ↓ ▷↓G↭
i
ε)2 + ◁

L)︄

k=1

⇑
pk⇒(ϑk1, ..., ϑkpk

)⇒2,
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where pk is the size of the k
th group of predictors. The non-di!erentiability of the ↼2 norm

at 0 ensures that some groups will have all their coe"cients to be exactly 0. Indeed, for the

↼
th group of predictors G(ς), ε̃

ς
= (ϑ̃

ς1, ..., ϑ̃ςpω
) must satisfy the stationary condition

1

n

n)︄

i=1

G(ς)
i
(yi ↓ ▷↓

L)︄

k=1

G(k)
i

↭
εk) = ◁

⇑
pςv,

where v is the subgradient of ⇒ες⇒2 evaluated at ε̃
ς

which is given by

v =

\︄
⎧⎧/︂

⎧⎧\︂

{v| ⇒v⇒2 ⇐ 1} if ες̃ = 0,

ες̃/⇒ες̃⇒2 if ε̃
ς
↘= 0.

For ε̃
ς
= 0 to be a solution, the constraint ⇒v⇒2 ⇐ 1 implies that

⇒G(ς)↭(y ↓ 1▷↓
L)︄

k ↔=ς

G(k)ε̃
ς
)⇒2 ⇐ ◁

⇑
pς.

For ε̃
ς
↘= 0, solving the stationary condition yields

ε̃
ς
=

⎛
n)︄

i=1

G(ς)
i
G(ς)

i

↭
/n+ ◁

⇑
pς/⇒ε̃ς

⇒2Ipω

⎞→1
n)︄

i=1

G(ς)
i
r
(ς)
i
/n

which is a function of the optimal solution ◁
⇑
pς/⇒ε̃ς

⇒2, with r
(ς)
i

= yi ↓ ▷̃ ↓
{︄

L

k ↔=ς
G(k)

i

↭
ε̃

k

the partial residual of yi when subtracting all group fits other than the ↼
th group of predic-

tors.

Assuming that
{︄

n

i=1 G
(ς)
i
G(ς)

i

↭
/n = Ipω , the solution simplifies to (Yuan and Lin [2005])

ε̃
ς
=

⎛
1↓

◁
⇑
pς

⇒
{︄

n

i=1 G
(ς)
i
r
(ς)
i
/n⇒2

⎞
n)︄

i=1

G(ς)
i
r
(ς)
i
/n.

In the case where the columns of G(ς) are not orthogonal, one may be tempted to orthogonal-
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ize them before applying the group lasso. However, Friedman et al. [2010a] showed that the

resulting solution, when transformed back to the original basis for each group, will not gen-

erally provide a solution to the group lasso problem with the original covariates. Meier et al.

[2008] implemented a block coordinate gradient descent (BCGD) that combines a quadratic

approximation of the log-likelihood via a quasi-Newton method with an additional Armijo

line search. Alternatively, Kim et al. [2006] proposed updating the entire coe"cient vector

simultaneously at each step by bounding the sum of the groups’ norms instead of using

a penalty. Their method relies on projecting the solution vector of the unpenalized loss

function to the closest vector satisfying the bound condition on the sum of group norms.

Finally, Foygel and Drton [2010] fit the group lasso by finding the exact optimal value for

each group block-wise with one univariate line search using the spectral decomposition of

G(ς)↭G(ς).

2.2.6 Sparse group lasso

While the group lasso e!ectively allows to perform selection of groups of predictors, it may

select too many false positives in the final model due to the fact that once a predictor

from a group enters the model, it favours other predictors from the same group to also be

selected even though they may not have any direct e!ect on the response. The sparse group

lasso is a natural extension of the group lasso formulation that allows both sparsity between

groups and within each group of predictors by adding a ↼1 penalty on the coe"cients of the

predictors (Wu and Lange [2008], Foygel and Drton [2010], Friedman et al. [2010a], Zhou

et al. [2010], Simon and Tibshirani [2012]). The sparse group lasso for model (2.3) minimizes

the convex loss function given by

1

2n

n)︄

i=1

(yi ↓ ▷↓G↭
i
ε)2 + (1↓ 0)◁

L)︄

k=1

⇑
pk⇒(ϑk1, ..., ϑkpk

)⇒2 + 0◁⇒ε⇒1
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with 0 ≃ [0, 1] an additional tuning parameter that controls the relative strength of the ↼2

and ↼1 penalties. Setting 0 = 0 is equivalent to a group lasso problem, while 0 = 1 gives a

lasso problem. Thus, the sparse group lasso can be seen as a linear combination of the two

penalties.

The stationary condition for the ↼
th group of predictors G(ς) must satisfy

1

n

n)︄

i=1

G(ς)
i
(yi ↓ ▷↓

L)︄

k=1

G(k)
i

↭
εk) = (1↓ 0)◁

⇑
pςv + 0◁u,

where again u and and v are respectively the subgradients of ⇒ες⇒1 and ⇒ες⇒2 evaluated at

ε̃
ς
. It is easy to show that ε̃

ς
= 0 satisfies the subgradient equations if

⇒Sφϖ(
n)︄

i=1

G(ς)
i
r
(ς)
i
/n)⇒2 ⇐ (1↓ 0)◁

⇑
pς,

where r(ς)
i

is the partial residual of yi, and the soft-thresholding operator is applied coordinate-

wise. Hence, the sparse group lasso applies univariate soft-thresholding before applying

shrinkage to each group.

If ες ↘= 0, then the subgradient equations for the jth predictor ϑςj or group ↼ is given by

1

n

n)︄

i=1

G
(ςj)
i

(yi ↓ ▷↓
L)︄

k=1

G(k)
i

↭
εk) = (1↓ 0)◁

⇑
pς

ϑςj

⇒ες⇒2
+ 0◁uj.

Again, since ϑςj = 0 implies |uj| < 1, we have that the stationary condition is satisfied for

ϑςj = 0 whenever

[︄[︄[︄[︄[︄

n)︄

i=1

G
(ςj)
i

r
(ςj)
i

[︄[︄[︄[︄[︄ ⇐ n0◁

with r
(ςj)
i

= r
(ς)
i

↓
{︄

k ↔=j
G

(ςk)
i

↭
ϑςk the partial residual when fitting all other predictors than

ϑςj.
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For ϑςj di!erent from 0, the solution is

ϑ̃
ςj
=

Sφϖ(
{︄

n

i=1 G
(ςj)
i

r
(ςj)
i

/n)
{︄

n

i=1 G
(ςj)
i

2
/n+ (1↓ 0)◁

⇑
pς/⇒ε̃ς

⇒2

which depends on the optimal solution ⇒ες̃⇒2. Friedman et al. [2010a] proposed to fit the

sparse-group lasso using blockwise descent and an accelerated generalized gradient algorithm

with backtracking line search to solve within each group. Alternatively, Wu and Lange

[2008] proposed majorizing the group ↼2 penalty of the loss function using the concavity

of the square root function. This approach yields an elastic-net solution to the problem,

that is a combination of a ridge (Hoerl and Kennard [1970]) and a lasso penalty as first

introduced by Zou and Hastie [2005]. The authors note that although convergence may

be slowed by majorization, the descent property of the majorization-minimization (MM)

algorithm (Lange et al. [2000]) ensures that minimizing the surrogate function minimizes in

turn the loss function.

2.3 Sparse regularized mixed models

To account for the correlation between observations that may arise from the sampling design

or longitudinal nature of the data, a common and flexible approach is to fit sparse regularized

multivariable mixed models. Schelldorfer et al. [2011] first proposed a CGD algorithm for ↼1

penalized high dimensional LMMs which they proved to converge numerically to a station-

ary point of the loss function, albeit with no guarantee to converge to the global optimum

due to non-convexity of the negative log-likelihood function. Alternatively, Bondell et al.

[2010] considered the simultaneous selection of fixed and random e!ects for low dimensional

LMMs. Ibrahim et al. [2011] and Ghosh and Thoresen [2017] further extended the framework

to other penalties than the lasso, such as the SCAD and the adaptive least absolute shrink-

age and selection operator (ALASSO) penalty functions. For GLMMs, Schelldorfer et al.

[2014] considered joint estimation of random e!ects and sparse fixed e!ects using a Laplace
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approximation of the log-likelihood. They proposed a two steps method in which they first

perform variable screening to reduce the dimensionality of the model, and in a second step

refit the model by maximum likelihood (ML) estimation to get accurate parameter estimates.

On the other hand, Groll and Tutz [2012] and Hui et al. [2017] considered joint selection of

mixed e!ects using regularized PQL. More recently, M. Heiling et al. [2024] proposed an R

package called glmmPen to jointly select fixed and random e!ects in GLMMs using a Monte

Carlo expectation conditional minimization (MCECM) algorithm.

In genetic association studies, the number of important random e!ects is often low dimen-

sional and pre-specified. Indeed, it is common to only include a random polygenic e!ect

with variance-covariance structure proportional to a known GRM. Thus, we are mainly in-

terested in performing selection of important predictors while jointly estimating the variance

components. However, it is computationally challenging to jointly estimating the variance

components with the regression fixed e!ects vector since the penalized negative log-likelihood

function is non-convex with respect to the variance components. For this reason, to obtain

a scalable algorithm, Rakitsch et al. [2012] proposed estimating first the variance compo-

nents assuming no SNP main e!ects in a null model, and in the second step, using the

residuals from the null model as the response in a high dimensional linear model that as-

sumes uncorrelated errors. As an alternative to the two-steps approach, Bhatnagar et al.

[2020b] developed a BCD algorithm to simultaneously select predictors and estimate their

e!ects in LMMs, accounting for between-individual correlations, while jointly estimating the

variance components parameters. I briefly review below the model from Bhatnagar et al.

[2020b].

Consider the following LMM

y = Xϑ+Gε + b+ e,

with b → N (0, ⇁φ2”) and e → N (0, (1 ↓ ⇁)φ2I). The scalar parameter ⇁ represents the
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narrow-sense heritability, that is the proportion of phenotypic variance explained by additive

genetic e!ects (Manolio et al. [2009]). Defining the complete parameter vector as ! :=

(ϑ,ε, ⇁, φ2), the negative log-likelihood for the previous model is given by

↓↼(!) ⇓ n

2
log(φ2) +

1

2
log(det(V)) +

1

2φ2
(y ↓Xϑ↓Gε)↭V→1(y ↓Xϑ↓Gε),

where V = ⇁”+ (1↓ ⇁)I.

Let ” = UDU↭ be the spectral decomposition of the kinship or GRM matrix, then we

have

log(det(V)) =
n)︄

i=1

log(1 + ⇁(!i ↓ 1)),

with !1 ⇔ !2 ⇔ ... ⇔ 0 the (positive) eigenvalues of ”. Further, the inverse of V can be

expressed as

V→1 = UD̃
→1

U
↭
,

where D̃ = ⇁D + (1 ↓ ⇁)I is diagonal. Using the previous two equations, the negative

log-likelihood becomes

↓↼(!) ⇓ n

2
log(φ2) +

1

2

n)︄

i=1

log(1 + ⇁(!i ↓ 1)) +
1

2φ2
(ỹ ↓ X̃ϑ↓ G̃ε)↭D̃

→1
(ỹ ↓ X̃ϑ↓ G̃ε),

where ỹ = U↭y is the rotated response vector, and X̃ = U↭X, G̃ = U↭G are respectively

the rotated covariates and genetic predictors matrices. Thus, the spectral decomposition

of the matrix ” results in a diagonal covariance matrix making the negative log-likehood a

function of the WLS function

1

2φ2

n)︄

i=1

(yĩ ↓ X̃
↭
i
ϑ↓ G̃

↭
i
ε)2

1 + ⇁(!i ↓ 1)
.

27



Adding a lasso regularization term to the negative log-likelihood function, the objective

function to minimize is defined as

Qϖ(!) :=

n

2
log(φ2) +

1

2

n)︄

i=1

log(1 + ⇁(!i ↓ 1)) +
1

2φ2

n)︄

i=1

(yĩ ↓ X̃
↭
i
ϑ↓ G̃

↭
i
ε)2

1 + ⇁(!i ↓ 1)
+ ◁

k)︄

j=1

↩
ϑ

j
|▷j|+ ◁

p)︄

j=1

↩
↼

j
|ϑj|,

where ↩
ϑ

j
and ↩

↼

j
are regularization weights to achieve di!erent penalties for each parameter.

Bhatnagar et al. [2020b] proposed a general purpose block CGD algorithm to estimate ! by

minimizing Qϖ(!) with respect to one parameter at a time while holding all others fixed.

Through simulation studies, Reisetter and Breheny [2021] showed that estimating the vari-

ance components only once under the null as proposed by Rakitsch et al. [2012] performed

similarly in terms of estimating the SNPs coe"cients than by including the variance compo-

nents in the iterative procedure as in Bhatnagar et al. [2020b], while showing much greater

computational e"ciency and numerical stability.
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Chapter 3

E!cient Penalized Generalized Linear

Mixed Models for Variable Selection and

Genetic Risk Prediction in

High-Dimensional Data

Preamble to Manuscript 1.

Rakitsch et al. [2012] and Bhatnagar et al. [2020b] have proposed e"cient algorithms to fit

penalized LMMs to high-dimensional genetic data. These methods are typically restricted

to linear models since in GLMMs, it is no longer possible to perform a single spectral de-

composition to rotate the phenotype and design matrix, as the covariance matrix depends

on the sample weights which in turn depend on the estimated regression coe"cients that

are being iteratively updated. This limits the application of high-dimensional MMs to anal-

ysis of binary traits in genetic association studies. This gap motivated the methodological

development proposed in this manuscript.

The original contributions of this chapter are i) developing a scalable algorithm based
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on regularized PQL estimation which makes it possible to fit penalized GLMMs on high-

dimensional GWAS of binary traits, ii) developing an open source Julia programming lan-

guage package called PenalizedGLMM.jl, and iii) showing through simulation studies that

our proposed method has higher precision and better prediction accuracy than a penalized

LMM and logistic lasso with PC adjustment when the number of subpopulations is greater

than the number of PCs included in the model, or when there is genetic relatedness between

individuals.

The corresponding manuscript was published in Bioinformatics (St-Pierre et al. [2023]).
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Abstract

Motivation: Sparse regularized regression methods are now widely used in genome-wide

association studies (GWAS) to address the multiple testing burden that limits discovery of

potentially important predictors. Linear mixed models (LMMs) have become an attractive

alternative to principal components (PC) adjustment to account for population structure

and relatedness in high-dimensional penalized models. However, their use in binary trait

GWAS rely on the invalid assumption that the residual variance does not depend on the es-

timated regression coe"cients. Moreover, LMMs use a single spectral decomposition of the

covariance matrix of the responses, which is no longer possible in generalized linear mixed

models (GLMMs).

Results: We introduce a new method called pglmm, a penalized GLMM that allows to simul-

taneously select genetic markers and estimate their e!ects, accounting for between-individual

correlations and binary nature of the trait. We develop a computationally e"cient algorithm

based on penalized quasi-likelihood (PQL) estimation that allows to scale regularized mixed

models on high-dimensional binary trait GWAS. We show through simulations that when

the dimensionality of the relatedness matrix is high, penalized LMM and logistic regression

with PC adjustment fail to select important predictors, and have inferior prediction accuracy

compared to pglmm. Further, we demonstrate through the analysis of two polygenic binary

traits in a subset of 6731 related individuals from the UK Biobank data with 320K SNPs that

our method can achieve higher predictive performance, while also selecting fewer predictors

than a sparse regularized logistic lasso with PC adjustment.

Availability and implementation: Our Julia package PenalizedGLMM.jl is publicly

available on github : https://github.com/julstpierre/PenalizedGLMM.

Contact: julien.st-pierre@mail.mcgill.ca

Supplementary information: Supplementary data are available at Bioinformatics on-

line.

32

https://github.com/julstpierre/PenalizedGLMM
julien.st-pierre@mail.mcgill.ca


3.1 Introduction

Genome-wide association studies (GWAS) have led to the identification of hundreds of com-

mon genetic variants, or single nucleotide polymorphisms (SNPs), associated with complex

traits (Visscher et al. [2017]) and are typically conducted by testing association on each SNP

independently. However, these studies are plagued with the multiple testing burden that

limits discovery of potentially important predictors. Moreover, GWAS have brought to light

the problem of missing heritability, that is, identified variants only explain a low fraction of

the total observed variability for traits under study (Manolio et al. [2009]). Multivariable

regression methods, on the other hand, simultaneously fit many SNPs in a single model and

have been proposed to increase the power for identifying weaker associations compared to

univariable methods (Li et al. [2010]). Moreover, sparse regularized multivariable regres-

sion models, which can perform variable selection, are exempt from the multiple testing

burden.

Principal component analysis (PCA) can control for the confounding e!ect due to popu-

lation structure by including the top eigenvectors of a genetic similarity matrix (GSM) as

fixed e!ects in the regression model (Price et al. [2006]). Alternatively, using mixed models

(MMs), one can model population structure and/or closer relatedness by including a poly-

genic random e!ect with variance-covariance structure proportional to the GSM (Yu et al.

[2005]). Hence, while both PCA and MMs share the same underlying model, MMs are more

robust in the sense that they do not require distinguishing between the di!erent types of

confounders (Price et al. [2010]). Moreover, MMs alleviate the need to evaluate the optimal

number of PCs to retain in the model as fixed e!ects.

Several authors have proposed to combine penalized quasi-likelihood (PQL) estimation with

sparsity inducing regularization to perform selection of fixed and/or random e!ects in gener-

alized linear mixed model (GLMMs) (Groll and Tutz [2012], Hui et al. [2017]). However, none

of these methods are currently scalable for modern large-scale genome-wide data, nor can
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they directly incorporate relatedness structure through the use of a kinship matrix. Indeed,

the computational e"ciency of recent multivariable methods for high-dimensional MMs rely

on performing a spectral decomposition of the covariance matrix to rotate the phenotype

and design matrix such that the transformed data become uncorrelated (Bhatnagar et al.

[2020b], Rakitsch et al. [2012]). These methods are typically restricted to linear models since

in GLMMs, it is no longer possible to perform a single spectral decomposition to rotate the

phenotype and design matrix, as the covariance matrix depends on the sample weights which

in turn depend on the estimated regression coe"cients that are being iteratively updated.

This limits the application of high-dimensional MMs to analysis of binary traits in genetic

association studies.

In this paper, we introduce a new method called pglmm that allows to simultaneously select

variables and estimate their e!ects, accounting for between-individual correlations and bi-

nary nature of the trait. We develop a scalable algorithm based on PQL estimation which

makes it possible to fit penalized GLMMs on high-dimensional GWAS of binary traits. To

speedup computation, we estimate the variance components and dispersion parameter of the

model under the null hypothesis of no genetic e!ect. Secondly, we use an upper-bound for

the inverse variance-covariance matrix in order to perform a single spectral decomposition

of the GSM and greatly reduce memory usage. Finally, we implement an e"cient cyclic

coordinate descent algorithm in order to find the optimal estimates for the fixed and ran-

dom e!ects parameters. Our method is implemented in an open source Julia programming

language (Bezanson et al. [2017]) package called PenalizedGLMM.jl and freely available at

https://github.com/julstpierre/PenalizedGLMM.

The rest of this paper is structured as follows. In Section 3.2 we present our model, describe

the cyclic coordinate descent algorithm that is used to estimate the parameters and detail

how predictions are obtained in GLMs with PC adjustment versus our proposed mixed

model. In Section 3.3, we show through simulations that both LMM and logistic model
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with PC adjustment fail to correctly select important predictors and estimate their e!ects

when the dimensionality of the kinship matrix is high. Further, we demonstrate through the

analysis of two polygenic binary traits in a subset of 6731 related individuals from the UK

Biobank data that our method achieves higher predictive performance, while also selecting

consistently fewer predictors than a logistic lasso with PC adjustment. We finish with a

discussion of our results, some limitations and future directions in Section 3.4.

3.2 Methods

3.2.1 Model

We consider the following GLMM

g(µi) = ⇁i = Xiϑ+Gi↼ + bi, (3.1)

for i = 1, .., n, where µi = E(yi|Xi,Gi, bi), Xi is a 1↑m row vector of covariates for subject

i, ϑ is a m ↑ 1 column vector of fixed covariate e!ects including the intercept, Gi is a

1 ↑ p row vector of genotypes for subject i taking values {0, 1, 2} as the number of copies

of the minor allele, and ↼ is a p ↑ 1 column vector of fixed additive genotype e!ects. We

assume that b = (b1, ..., bn)↭ → N (0,
{︄

S

s=1 ϱsVs) is an n↑ 1 column vector of random e!ects,

ϱ = (ϱ1, ..., ϱS)↭ are variance component parameters, V1 is a known kinship matrix or GSM

typically estimated from high-quality common genotype markers (MAF ⇔ 0.01) (Yang et al.

[2011]) and V2, ...,VS are any known n ↑ n positive semi-definite matrices to account for

shared environmental e!ects or complex sampling designs. The phenotypes yi are assumed

to be conditionally independent and identically distributed given (Xi,Gi, b) and follow any

exponential family distribution with canonical link function g(·), mean E(yi|b) = µi and

variance Var(yi|b) = ϖa
→1
i
↩(µi), where ϖ is a dispersion parameter, ai are known weights and

↩(·) is the variance function. In order to estimate the parameters of interest and perform
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variable selection, we need to use an approximation method to obtain a closed analytical form

for the marginal likelihood of model (3.1). Following the derivation of (Chen et al. [2016]),

we propose to fit (3.1) using a PQL method, from where the log integrated quasi-likelihood

function is equal to

ql(ϑ,↼,ϖ, ϱ ) =↓ 1

2
log

[︄[︄[︄[︄[︄

S)︄

s=1

ϱsVsW + In

[︄[︄[︄[︄[︄+
n)︄

i=1

qli(ϑ,↼|b̃)

↓ 1

2
b̃↭

⎛
S)︄

s=1

ϱsVs

⎞→1

b̃, (3.2)

where W = diag
⎦

ai
εω(µi)[g→(µi)2]

⎢
is a diagonal matrix containing weights for each observation,

qli(ϑ,↼|b) =
⎥

µi

yi

ai(yi→µ)
εω(µ) dµ is the quasi-likelihood for the ith individual given the random

e!ects b, and b̃ is the solution which maximizes (3.2).

In typical genome-wide studies, the number of predictors is much greater than the number of

observations (p > n), and the parameter vector ↼ becomes underdetermined when modelling

SNPs jointly. Thus, we propose to add a lasso regularization term (Tibshirani [1996]) to the

negative quasi-likelihood function in (3.2) to seek a sparse subset of ↼ that gives an adequate

fit to the data. Because ql(ϑ,↼,ϖ, ϱ ) is a non-convex loss function, we propose a two-step

estimation method to reduce the computational complexity. First, we obtain the variance

component estimates ϖ̂ and ϱ̂ under the null hypothesis of no genetic e!ect (↼ = 0) using the

AI-REML algorithm (Gilmour et al. [1995]) detailed in Appendix A.1 of the Supplementary

Material. Second, assuming that the weights in W vary slowly with the conditional mean, we

drop the first term in (3.2) (Breslow and Clayton [1993]) and define the following objective
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function which we seek to minimize with respect to (ϑ,↼, b̃):

(ϑ̂, ↼̂, b̂) = argmin
ω,ϖ,b̃

Qϖ(ϑ,↼, b̃),

Qϖ(ϑ,↼, b̃) = ↓
n)︄

i=1

qli(ϑ,↼|b̃) + 1

2
b̃↭

⎛
S)︄

s=1

ϱ̂ sVs

⎞→1

b̃+ ◁

)︄

j

vj|ωj|

:= ↓↼PQL(ϑ,↼, ϖ̂, ϱ̂ |b̃) + ◁

)︄

j

vj|ωj|, (3.3)

where ◁ is a nonnegative regularization parameter, and vj is a penalty factor for the j
th

predictor. This two-step approach is known as the P3D (population parameters previously

determined) method (Zhang et al. [2010]), which is a common approach in mixed-model

association tests, and it has been shown to outperform both PCA and genomic control

in correcting for sample structure (Kang et al. [2010]). Moreover, Reisetter and Breheny

[2021] showed through simulation studies that in the case of penalized LMMs, estimating

the variance components once performed similarly in terms of estimating the SNP coe"cients

than by including the variance components in the iterative procedure, while showing much

greater computational e"ciency and numerical stability. By default, we standardize the

genotype counts and assign vj = 1 for all genetic predictors in (3.3), which is equivalent to

using unscaled genotypes with v
→1
j

=
⎟

2MAFj(1↓MAFj) where the MAFs are estimated

from the data. Alternatively, it is possible to use an adaptive lasso penalty with weights

vj = |ϑ̂
j
|→↽, where 1 is a common power parameter and ϑ̂

j
is the coe"cient estimate obtained

by univariable marginal regression (Waldmann et al. [2019]).

In Appendix A.2 of the Supplementary Material, we detail our proposed cyclic coordinate

gradient descent algorithm to solve (3.3) and obtain regularized PQL estimates for ε =

(ϑ↭
,↼↭)↭ and b̃. Briefly, our algorithm is equivalent to iteratively solving the two penalized
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weighted least squares (WLS)

argmin
b̃

}︄
Ỹ ↓ X̃ε ↓ b̃

⟨︄↭
W

}︄
Ỹ ↓ X̃ε ↓ b̃

⟨︄
+ b̃

↭
⎛

S)︄

s=1

ϱ̂ sVs

⎞→1

b̃,

and

argmin
ϑ

}︄
Ỹ ↓ X̃ε

⟨︄↭
#→1

}︄
Ỹ ↓ X̃ε

⟨︄
+ ◁

)︄

j

vj|ϑj|, (3.4)

where # = W→1 +
{︄

S

s=1 ϱ̂ sVs is the covariance matrix of the working response vector Ỹ ,

and X̃ = [X; G]. We use the spectral decomposition of # to rotate Ỹ , X̃ and b̃ in (3.4)

such that the transformed data is uncorrelated. Given the current estimate for ε, b̃ can be

shown to be equal to a generalized ridge-like WLS estimator with X̃ε as an o!set. Hence,

by profiling out b̃ from the objective function and replacing it by its closed-form estimate,

we estimate ε by cycling through its coordinates and minimizing the objective function

with respect to one coordinate at a time. In this work, we focus on penalized GLMMs for

high-dimensional (p > n) GWAS data of binary traits, for which we can use a lower bound

on # so that a single spectral decomposition is performed (Böhning and Lindsay [1988]).

Although the methods apply to GLMMs for any exponential family, e.g. counts following a

Poisson distribution, we need to perform a spectral decomposition of # each time we update

the weight matrix W . Hence, for other distributions, further work is needed to address these

computational limitations for application to high-dimensional GWAS data. All calculations

and algorithmic steps are detailed in Appendix A.2 of the Supplementary Material.

3.2.2 Prediction

It is often of interest in genetic association studies to make predictions on a new set of

individuals, e.g., the genetic risk of developing a disease for a binary response or the expected

outcome in the case of a continuous response. In what follows, we compare how predictions
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are obtained using pglmm versus a GLM with PC adjustment.

pglmm

Suppose a single variance component is needed such that b → N (0, ϱ1V1) where V1 is the

GSM between n subjects that are used to fit the GLMM (3.1). We iteratively fit on a training

set of size n the working linear mixed model

Ỹ = X̃ε + b+ φ,

where φ = g
↑(µ)(y ↓µ) → N (0,W→1). Let Ỹ s be the latent working vector in a testing set

of ns individuals with predictor set X̃s. Similar to Bhatnagar et al. [2020b], we assume that

the marginal joint distribution of Ỹ s and Ỹ is multivariate Normal :

⟨︂

⟩︂⨆︁
Ỹ s

Ỹ

⨆︂

∮︁∮︂ → N

⨀︁

⨀︂⨁︁

⟨︂

⟩︂⨆︁
X̃sε

X̃ε

⨆︂

∮︁∮︂ ,

⟨︂

⟩︂⨆︁
#11 #12

#21 #22

⨆︂

∮︁∮︂

⨁︂

⨂︁⨂︂ ,

where #12 = ϱ1V12 and V12 is the ns ↑ n GSM between the testing and training individuals.

It follows from standard normal theory that

Ỹ s|Ỹ ,ϖ, ϱ1,ε, X̃, X̃s →

N
}︄
X̃sε +#12#

→1
22 (Ỹ ↓ X̃ε),#11 ↓#12#

→1
22 #21

⟨︄
.
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The predictions are based on the conditional expectation E[Ỹ s|Ỹ ,ϖ, ϱ1,ε, X̃, X̃s], that

is

µ̂
s
= g

→1
}︄
E[Ỹ s|Ỹ , ϖ̂, ϱ̂ 1, ε̂, X̃, X̃s]

⟨︄

= g
→1

}︄
X̃sε̂ + ϱ̂ 1V12

⎠
W→1 + ϱ̂ 1V1

⎜→1
(Ỹ ↓ X̃ε̂)

⟨︄

= g
→1

⎛
X̃sε̂ + V12U

⌊︄
1

ϱ̂ 1
D→1 +U ↭WU

⌋︄→1

U ↭W (Ỹ ↓ X̃ε̂)

⎞
, (3.5)

where g(·) is the link function and U is the n↑ n matrix of PCs obtained from the spectral

decomposition of the GSM for training subjects.

GLM with PC adjustment

Another approach to control for population structure and/or subjects’ relatedness is to use

the first r columns of U as unpenalized fixed e!ects covariates (Privé et al. [2020]). This

leads to the following GLM

g(µ) = X̃ε +Urω,

where Ur is the n↑r design matrix for the first r PCs and 2 ≃ Rr is the corresponding vector

of fixed e!ects. Letting Ỹ = X̃ε+Urω+ g
↑(µ)(y→µ) be the working response vector, one

can show that

ω̂ = (U ↭
r
WUr)

→1 U ↭
r
W

}︄
Ỹ ↓ X̃ε̂

⟨︄
, (3.6)

where W is the diagonal matrix of GLM weights. Recall that V12 is the ns↑n GSM between

the test and training sets subjects such that the projected PCs on the testing subjects are
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equal to V12Ur. Then, the estimated mean response µ̂
s

for the testing set is given by

µ̂
s
= g

→1
}︄
Xs
˜ ε̂ + V12Urω̂

⟨︄

= g
→1

}︄
Xs
˜ ε̂ + V12Ur (U

↭
r
WUr)

→1 U ↭
r
W

}︄
Ỹ ↓ X̃ε̂

⟨︄⟨︄
. (3.7)

By comparing (3.5) and (3.7), we see that both GLM with PC adjustment and pglmm use a

projection of the training PCs on the testing set to predict new responses, but with di!erent

coe"cients for the projected PCs. For the former, the estimated coe"cients for the first r

projected PCs in (3.6) are obtained by iteratively solving generalized least squares (GLS) on

the partial working residuals Ỹ ↓X̃ε̂. For pglmm, the estimated coe"cients for all projected

PCs are also obtained by iteratively solving GLS on the partial working residuals Ỹ ↓ X̃ε̂,

with an extra ridge penalty for each coe"cient that is equal to ϱ1̂
→1!→1

i
with !i the i

th

eigenvalue of V that is associated with the i
th PC.

Hence, pglmm shrinks PCs coe"cients proportionally to their corresponding eigenvalues in a

smooth way, while the fixed e!ect GLM uses a thresholding approach; the first r predictors

with larger eigenvalues are kept intact, and the others are completely removed. This implies

that the confounding e!ect from population structure and/or relatedness on the phenotype is

fully captured by the first r PCs. As we show in simulations, departure from this assumption

may lead to higher false-positive rates and decrease prediction accuracy.

3.2.3 Simulation design

We evaluated the performance of our proposed method against that of a lasso LMM, using

the R package ggmix (Bhatnagar et al. [2020a]), and a logistic lasso, using the Julia package

GLMNet which wraps the Fortran code from the original R package glmnet (Friedman et al.

[2010b]). We compared glmnet when we included or not the first 10 PCs in the model

(glmnetPC). We performed a total of 50 replications for two simulation scenarios, drawing
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Table 3.1: Values for all simulation parameters. In the first scenario, we simulated binary
phenotypes and random genotypes from the BN-PSD admixture model using the bnpsd

package in R. In the second scenario, we simulated binary phenotypes using a total of 6731
subjects of White British ancestry from the UK Biobank data having estimated 1st, 2nd or
3rd degree relationships with at least one other individual.

Scenario 1 Scenario 2
Parameter Definition BN-PSD model Real genotype

M Number of replications 50 50
h
2
g

Fraction of variance due 0.5 0.17
to fixed genetic e!ects

h
2
b

Fraction of variance due 0.4 0.4
to random genetic e!ects

↪0 Prevalence under the null 0.1 0.1
n Sample size 2500 6731
p Number of SNPs 5000 15 000
c Fraction of causal SNPs 1% 1%

anew genotypes and simulated traits. Values for all simulation parameters are presented in

Table 3.1.

Simulated genotype from the admixture model

In the first scenario, we studied the performance of all methods for di!erent population

structures by simulating random genotypes from the BN-PSD admixture model for 10 or 20

subpopulations with 1d geography or independent subpopulations using the bnpsd package

in R (Ochoa and Storey [2021]). Sample size was set to n = 2500. We simulated p = 5000

candidate SNPs and randomly selected c=1% to be causal. The kinship matrix V and PCs

were calculated using a set of 50, 000 additional simulated SNPs. We simulated covariates

for age and sex using Normal and Binomial distributions, respectively.

For each replication, subjects were partitioned into training and test sets using an 80/20

ratio. Variable selection and coe"cient estimation were performed on training subjects for

all methods. We compared each method at a fixed number of active predictors, ranging from

5 to either 50 which corresponds to the number of true causal SNPs. Comparisons were
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based on three criteria: the ability to retrieve the causal predictors, measured by the true

positive rate

TPR =
|{1 ⇐ k ⇐ p : ϑ̂

k
↘= 0 ↖ ϑk ↘= 0}|

|{1 ⇐ k ⇐ p : ϑk ↘= 0}| ,

the ability to accurately estimate coe"cients, measured by the root mean squared error

RMSE =

∑︁∏︁∏︁∫︁1

p

p)︄

k=1

(ϑ̂
k
↓ ϑk)2,

and the ability to predict outcomes in the test sets, measured by the area under the roc

curve (AUC).

Real genotypes from the UK Biobank data

In the second scenario, we compared the performance of all methods when a high proportion

of related individuals are present, using real genotype data from the UK Biobank. We

retained a total of 6731 subjects of White British ancestry having estimated 1st, 2nd or 3rd

degree relationships with at least one other individual. We compared methods in a more

realistic setting with weaker e!ect sizes and more causal variants than the first scenario. We

sampled p = 15 000 candidate SNPs among all chromosomes and randomly selected c=1% to

be causal. We used PCs as provided with the data set. These were computed using a set of

unrelated samples and high quality markers pruned to minimise LD (Bycroft et al. [2018]).

Then, all subjects were projected onto the principal components using the corresponding

loadings. Since the markers that were used to compute the PCs were potentially sampled

as candidate causal markers in our simulations, we included all candidate SNPs in the set

of markers used for calculating the kinship matrix V . We simulated age using a Normal

distribution and used the sex covariate provided with the data.

For this simulation scenario, we evaluated the performance of all methods when using cross-

validation as a model selection criteria, rather than fixing the number of active predictors in

43



the model. For this, the 6731 subjects from the UK Biobank data were randomly split into

training (40%), validation (30%) and test (30%) sets, ensuring all related individuals were

assigned into the same set. For cross-validation, the full lasso solution path was fitted on the

training set, and the regularization parameter was obtained on the model which maximized

AUC on the validation set. We also evaluated the performance of our proposed method

when using AIC as a model selection criterion. Again, we compared methods performance

on the basis of TPR, AUC on the test sets and RMSE. Additionally, we compared each model

selection approach on the total number of predictors selected and on the model precision,

which is defined as the proportion of selected predictors that are true positives.

Simulation model

Let S be the set of candidate causal SNPs, with |S| = p↑ c, then the causal SNPs fixed ef-

fects ϑj were generated from a Gaussian distribution N (0, h2
g
φ
2
/|S|), where h2

g
is the fraction

of variance on the logit scale that is due to total additive genetic fixed e!ects. That is, we

assumed the candidate causal markers explained a fraction of the total polygenic heritabil-

ity, and the rest was explained by a random polygenic e!ect b → N (0, h2
b
φ
2V ). For the first

scenario, we simulated a signal-to-noise ratio (SNR) equal to 1 for the fixed genetic e!ects

(h2
g
= 50%) under strong random polygenic e!ects (h2

b
= 40%). For the second scenario,

we simulated fixed e!ects using h
2
g
= 17%, which corresponds to the estimated SNP her-

itability for asthma on the liability scale (see https://nealelab.github.io/UKBB_ldsc/

h2_summary_20002_1111.html), again under strong random polygenic e!ects (h2
b
= 40%).

We then simulated a binary phenotype using a logistic link function

logit(↪) = logit(↪0)↓ log(1.3)↑ Sex+ log(1.05)Age/10

+
)︄

j↗S

ϑj · ⋃︁Gj + b, (3.8)
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Table 3.2: Demographics for the real data application. We retained a total of 6731 subjects
of White British ancestry from the UK Biobank data having estimated 1st, 2nd or 3rd degree
relationships with at least one other individual.

Asthma High Cholesterol
Cases Controls Cases Controls

N (%) 819 (12.2) 5912 (87.8) 883 (13.1) 5848 (86.7)
Age Median (IQR) 58 (16) 59 (15) 64 (7) 57 (16)
Male (%) 306 (37.4) 2571 (43.5) 467 (52.9) 2410 (41.2)

where the parameter ↪0 was chosen to specify the prevalence under the null, and ⋃︁Gj is the

j
th column of the standardized genotype matrix g̃

ij
= (gij ↓ 2pi)/

⎟
2pi(1↓ pi) and pi is

the MAF. By using the spectral decomposition of the kinship matrix V , we can show that

b = U2, where 2 → N (0, h2
b
φ
2D), U is the n↑n matrix of PCs, and D is a diagonal matrix

of corresponding eigenvalues. Thus, the unmeasured confounding e!ect ω is correlated with

the population structure through the design matrix of PCs U .

3.2.4 Real data application

We used the same set of 6731 related subjects from the UK Biobank data set presented in

Section 2.3.2 to construct a polygenic risk score (PRS) on two highly heritable binary traits,

asthma (self-reported, UK Biobank code: 20002_1111) and high cholesterol (self-reported,

UK Biobank code: 20002_1473). We present demographics and number of cases for both

analyses in Table 3.2. After filtering for SNPs with missing rate smaller than 0.01, MAF

above 0.05 and a p-value for the Hardy–Weinberg exact test above 10→6, a total of 320K

genotype SNPs were remaining.

To better understand the contribution of the PRS for predicting asthma and high cholesterol,

we fitted for each trait a null model with only age, sex, genotyping platform and the first 10

PCs as fixed e!ects. Since for highly polygenic traits, it is generally considered that there

are a large number of predictors with small to moderate e!ects (O'Connor et al. [2019]),

we also fitted a standard genomic best linear unbiased prediction (gBLUP) model (Ødegård
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et al. [2018]). The gBLUP model corresponds to the null model of pglmm, i.e, a model where

we include age, sex and genotyping platform as fixed e!ects, and one random e!ect with

variance-covariance proportionnal to the GSM. For both gBLUP and pglmm, we did not

include any PC since kinship is accounted for by the random e!ect. Finally, we also fitted

a logistic lasso in which the top 10 PCs were included as unpenalized covariates in addition

to age, sex and genotyping platform (glmnetPC). To evaluate the predictive performance of

the compared methods in independent subjects, we randomly split the subjects in training

(80%) and test (20%) sets for a total of 40 times. For each of the 40 replications, the full lasso

solution path was fitted on the training set only. For pglmm, the regularization parameter

(◁) was selected to minimize the AIC on the training data. For glmnetPC, the regularization

parameter was obtained by minimizing the deviance using 10-fold cross-validation on the

training data. We compared mean prediction accuracy on the test sets as well as the median

number of predictors included in all models.

3.3 Results

3.3.1 Simulation results for the first scenario

Results for selection of important predictors, as measured by the mean TPR in 50 replica-

tions, are presented in Figure 3.1. For both 1d linear admixture and independent subpop-

ulations, glmnet without PC adjustment failed to retrieve causal markers compared to all

other methods. This is expected under population stratification; SNPs that di!er in fre-

quency between subpopulations are identified as important predictors because prevalence is

not constant across each group. When the first 10 PCs were added as unpenalized covariates,

glmnetPC’s ability to select causal predictors was lesser to that of pglmm and ggmix for the

20 independent subpopulations. Since in the independent subpopulations simulated data,

each subpopulation indicator function is strongly associated with only a few PCs, as shown

in Appendix A.5 of the Supplementary Material, omitting to include all important PCs in
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Figure 3.1: Mean of 50 TPRs for the first simulation scenario where we simulated random
genotypes from the BN-PSD admixture model. K represents the number of intermediate
subpopulations in the 1d linear admixture data (left panel), and the number of independent
subpopulations in the independent data (right panel).
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the model leads to incorrectly capturing the confounding structure. On the other hand, be-

cause there is more overlap between subpopulations in the admixture data compared to the

independent subpopulations (Reisetter and Breheny [2021]), each subpopulation indicator

function is moderately correlated with many PCs. Thus, including only the first 10 PCs

in the model is enough to correct for confounding even when K = 20. (bottom-left panel

of Figure 3.1). Alternatively, including a random e!ect with variance-covariance structure

proportional to the GSM correctly adjusts for population structure in all scenarios while

alleviating the burden of choosing the right number of fixed predictors to include in the

model. Even though ggmix assumes a standard LMM for the binary trait, it was able to

identify causal markers at the same rate as pglmm.

Results for estimation of SNP e!ects as measured by the mean RMSE in 50 replications are

presented in Figure 3.2. Results are consistent with TPR results in that glmnet without PC

adjustment performed poorly in all scenarios, while pglmm outperformed all other methods

for the 20 independent subpopulations and performed comparably with glmnetPC for all

other settings. As expected, ggmix had higher RMSE compared to pglmm and glmnetPC.
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Figure 3.2: Mean of 50 RMSEs for the first simulation scenario where we simulated random
genotypes from the BN-PSD admixture model. K represents the number of intermediate
subpopulations in the 1d linear admixture data (left panel), and the number of independent
subpopulations in the independent data (right panel).
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Thus, even though ggmix was able to identify causal markers at the same rate as other

methods that accounted for the binary nature of the response, resulting estimates for the

SNP e!ects were not accurate.

For both 1d linear admixture and independent subpopulations, ggmix and glmnet had poor

predictive performance for K = 10 and K = 20, as reported in Figure 3.3. Also, the

predictive performance of glmnetPC was greatly reduced when K = 20 for both admixture

and independent populations, even if in the case of the admixture data, the RMSE for

estimation of SNP e!ects was comparable for glmnetPC and pglmm. This suggests that the

observed discrepancy in predictive accuracy might be caused by how each method handle the

confounding e!ects. Using only 10 PCs as fixed e!ects when K = 20 may result in overfitted

coe"cients for glmnetPC, which may in turn potentially decrease prediction accuracy and

increase variance of predictions in independent subjects. By using a ridge-like estimator

for the random e!ects, pglmm is less likely to overfit the confounding e!ects compared to

glmnetPC.
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Figure 3.3: Mean of 50 AUCs in test sets for the first simulation scenario where we simu-
lated random genotypes from the BN-PSD admixture model. K represents the number of
intermediate subpopulations in the 1d linear admixture data (left panel), and the number of
independent subpopulations in the independent data (right panel).
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3.3.2 Simulation results for the second scenario

In the second simulation scenario, we evaluated the performance of our method when using

AIC or cross-validation as a model selection strategy, i.e, for selecting the optimal value

of the regularization parameter, rather than fixing the number of active predictors in the

model. For all other methods, we used cross-validation to perform model selection and

compared the ability of all methods to adjust for potential confounding stemming from

subjects’ relatedness. We present median and interquartile values for AUC, model size,

RMSE, TPR and precision in Table 3.3. In addition to the penalized methods, we reported

prediction accuracy for the standard gBLUP model where only non-genetic covariates and a

polygenic random e!ect were included.

Contrarily to the previous simulations under the admixture and independent populations

models, glmnetPC had lower prediction accuracy compared to glmnet. This highlights the

fact that using a fixed number of PCs to control for sample relatedness is not robust compared

to using a random e!ect. In comparison to the first simulation scenario, where the TPR was

between 30% and 40% when the number of active predictors in the model was equal to the
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Table 3.3: Results of the model selection simulations for the second scenario. For each repli-
cation, the best model for pglmm was chosen using either AIC, or CV. For all other methods,
the best model was chosen using CV. For all metrics, we report median and interquartile
range. Since the gBLUP model makes prediction using only non-genetic covariates and a
polygenic random e!ect, we only report median AUC values.

ggmix glmnet glmnetPC pglmm (AIC) pglmm (CV) gBLUP
Model size341 (1598) 226 (1050) 378 (1021) 50.5 (54.2) 102 (487) 0 (0)
AUC 0.558 (0.023) 0.561 (0.030) 0.552 (0.022) 0.569 (0.021) 0.568 (0.028) 0.549 (0.020)
RMSE 0.0334 (0.0038)0.0328 (0.0117)0.0336 (0.0127)0.0318 (0.0036)0.0324 (0.0051)-
TPR 0.167 (0.248) 0.133 (0.192) 0.17 (0.165) 0.06 (0.0517) 0.08 (0.155) -
Precision 0.0576 (0.141) 0.0854 (0.117) 0.0584 (0.0653)0.203 (0.156) 0.107 (0.200) -

number of causal markers, the maximum value for the TPR for all methods was equal to 17%

in the second simulation scenario. This is because although in both scenarios the proportion

of causal markers was the same (c = 1%), we simulated more causal predictors with weaker

e!ects size in the second scenario. Indeed, the number of causal markers and simulated

heritability in the second scenario were equal to c ↙ p = 150 and h
2
g
= 17% respectively,

compared to c ↙ p = 50 and h
2
g
= 50% in the first scenario.

In term of prediction accuracy and estimation of predictor coe"cients, pglmm performed

comparably using either cross-validation or AIC, while achieving better performance than

all other methods. Moreover, our method led to sparser models with higher precision than

all other methods, especially when using AIC as a model selection criteria. Thus, using a

logistic lasso model with 10 PCs to control for relatedness led to models with more false

positives and worse prediction accuracy than all other methods, including the logistic lasso

with no PC adjustment. These results highlight once again the robustness of using a random

e!ect rather than PCs to account for relatedness between subjects. In summary, by explicitly

modeling the correlation between subjects and binary nature of the trait, our method led to

sparser models with higher precision and prediction accuracy than all other methods.
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3.3.3 PRS for the UK Biobank real data application

Results for asthma and high cholesterol PRSs are summarized in Table 3.4. For asthma,

pglmm performed better than all other methods when comparing AUC on the test sets. In

addition, the median number of predictors selected by pglmm was 2.5 times smaller than for

glmnetPC, and the variability in predictors selected was more important for glmnetPC, as

reported by an IQR value equal to 113.25, compared to 43.25 for pglmm. This is consistent

with our simulation results showing that pglmm leads to sparser models with higher predictive

power than logistic lasso. For high cholesterol, the median number of predictors selected by

both penalized models was equal or close to 0, which suggests that SNP e!ects may be too

small to detect. Indeed, both methods based on sparse regression do not perform as well as

either the gBLUP or null model with non-genetic covariates and 10 PCs. For both asthma

and high cholesterol, fitting the null model for pglmm took a median time of approximately

1.7 minutes, while fitting the full lasso path for 100 values of the tuning parameter ◁ took

a median time of 51 and 55 minutes respectively. Analyses were performed using 2 cores of

an AMD Rome 7532 (2.40 GHz), each with 64GB of RAM. As implemented in the glmnet

package and other high-dimensional sparse regression methods, we use sequential strong

rules for solving the lasso problem such that most of the predictors are discarded from the

optimization problem at each iteration (Tibshirani et al. [2012]). This allows our sparse

regularized mixed regression method to remain computationally e"cient when the number

of genetic variants is very large.

3.3.4 Computational e!ciency

In this additional simulation scenario, we compared the computational e"ciency of all meth-

ods. We considered a grid of values for the sample size n and number of predictors p, and we

simulated a total of 10 replications of the 1d linear admixture model with 20 populations,

for each of the nine combinations of (n, p). For each replication, we randomly selected 1% of

the predictors to be causal. Simulations were performed on a single core of an AMD Rome
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Table 3.4: PRS results for asthma and high cholesterol using a total of 6731 subjects of
White British ancestry from the UK Biobank data having estimated 1st, 2nd or 3rd degree
relationships with at least one other individual. To find the optimal regularization parameter
for both penalized methods, we split the subjects in training (80%) and test (20%) sets for
a total of 40 times.

Model AUCtest Model size
Asthma Mean (SD) Median (IQR)
Covariates + 10PCs 0.5227 (0.021) -
gBLUP 0.5447 (0.017) -
glmnetPC 0.5258 (0.020) 42 (113.25)
pglmm 0.5484 (0.017) 16.5 (43.25)
High cholesterol
Covariates + 10PCs 0.7126 (0.020) -
gBLUP 0.7142 (0.020) -
glmnetPC 0.7106 (0.020) 0 (7.25)
pglmm 0.7118 (0.020) 0.5 (16)

7532 (2.40 GHz) with 64 GB of RAM. Results for the computational e"ciency of all methods

for di!erent sample sizes and number of predictors are reported in Table 3.5. The median

computational time of pglmm ranged between 5.3 minutes (n = 2500, p = 10 000) and 48.6

minutes (n = 7500, p = 30 000), while ggmix running time varied between 13.7 and 93.3

minutes respectively. Thus, pglmm was considerably faster than ggmix because contrarily to

the latter, we estimate the variance components only once under the null model, which dra-

matically decreases the computational complexity of the regularized minimization problem.

The maximum running time for glmnetPC was equal to 2 minutes, for the simulations with

n = 7500 and p = 30 000. The large di!erence in computation time between pglmm and

glmnetPC is explained by the dimension of the parameter space that each method is estimat-

ing. Indeed, to account for population structure, glmnetPC only needs to fit the first 10 PCs,

while under the mixed model approach, pglmm needs to estimate the random e!ects vector

of dimension equal to the sample size. As we show in Appendix A.2 of the Supplementary

Material, by profiling out the random e!ects vector from the regularized minimization prob-

lem in our proposed algorithm, we need to rotate the response vector using the eigenvectors

of the variance-covariance matrix after each WLS iteration such that the transformed data

52



Table 3.5: Median computation time in minutes of pglmm, glmnetPC and ggmix for fitting a
sequence of 100 regression models for di!erent sample sizes and number of predictors. For
pglmm, we also present the median computation time for fitting the null model. Simulations
were performed on a single core of an AMD Rome 7532 (2.40 GHz) with 64 GB of RAM. We
simulated a total of 10 replications of the 1d linear admixture model with 20 populations.

pglmm glmnetPC ggmix

n p Null model Full model Full model Full model
2500 10 000 0.6 5.3 0.2 13.7

20 000 - 11.0 0.4 26.6
30 000 - 13.8 0.6 34.0

5000 10 000 2.1 11.9 0.6 25.0
20 000 - 24.4 1.0 42.0
30 000 - 34.9 1.2 55.8

7500 10 000 4.8 24.0 1.3 51.3
20 000 - 33.5 1.7 78.2
30 000 - 48.6 2.0 93.3

is uncorrelated. This requires performing multiple matrix-vector multiplications, with com-

plexity O(n2), while glmnetPC only needs performing vector multiplications with complexity

O(n).

3.4 Discussion

We have introduced a new method called pglmm based on regularized PQL estimation, for

selecting important predictors and estimating their e!ects in high-dimensional GWAS data,

accounting for population structure, close relatedness and binary nature of the trait. By

simulating random genotypes from the BN-PSD admixture model for 10 or 20 subpopulations

with 1d geography or independent subpopulations, we showed that pglmm was markedly

better than a logistic lasso with PC adjustment when the number of subpopulations was

greater than the number of PCs included. We also showed that a lasso LMM was unable

to estimate predictor e!ects with accuracy for binary responses, which greatly decreased its

predictive performance. Performance assessment was based on TPR of selected predictors,

RMSE of estimated e!ects and AUC of predictions. These results strongly advocate for
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using methods that explicitly account for the binary nature of the trait while e!ectively

controlling for population structure and relatedness in genetic studies.

In the second simulation scenario, we used real genotype data from a subset of related

individuals from the UK Biobank data to simulate binary responses, and showed that pglmm

e!ectively led to sparser models with higher precision and prediction accuracy than a lasso

LMM and a logistic lasso model with or without PC adjustment. We also demonstrated that

using AIC as a model selection strategy led to similar prediction performance than cross-

validation, with even sparser models. Using the same data set, we illustrated the potential

advantages of pglmm over a logistic lasso with PC adjustment in a real data application for

constructing a PRS on two highly heritable binary traits. Although these analyses have

limited power compared to using all UK Biobank subjects of White British ancestry, it is

often the case that researchers may be limited to relatively smaller data sets. For these

cases, it is of primary importance to avoid discarding samples based on relatedness and

properly account for the possible correlation between observations. Thus, we used this

reduced sample from the UK Biobank to demonstrate the potential advantages of using

penalized multivariable GLMMs in smaller data sets where subjects’ relatedness might be

an important confounder.

A limitation of pglmm compared to a logistic lasso with PC adjustment is the computational

cost of performing multiple matrix calculations that comes from incorporating a GSM to

account for population structure and relatedness between individuals. These computations

are clearly too prohibitive for application to large cohorts such as the full UK Biobank with

a total of 500K samples. Solutions to explore in order to increase computation speed and

decrease memory usage would be the use of conjugate gradient methods with a diagonal

preconditioner matrix, as proposed by (Zhou et al. [2018]), and to use a sparse GSM to

adjust for the sample relatedness (Jiang et al. [2019]).

In this study, we focused solely on the lasso as a regularization penalty for the genetic markers
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e!ects. However, it is known that estimated e!ects by lasso will have large biases because

the resulting shrinkage is constant irrespective of the magnitude of the e!ects. Alternative

regularizations like the Smoothly Clipped Absolute Deviation (SCAD, Fan and Li [2001]) and

Minimax Concave Penalty (MCP, Zhang [2010]) could be explored, although we note that

both SCAD and MCP require tuning an additional parameter which controls the relaxation

rate of the regularization. Another alternative includes implementation of the relaxed lasso,

which has shown to produce sparser models with equal or lower prediction loss than the

regular lasso estimator for high-dimensional data (Meinshausen [2007]). Finally, it would

also be of interest to explore if tuning the generalized ridge regularization on the random

e!ects, or replacing it by a lasso regularization to perform selection of individual random

e!ects, could result in better predictive performance.
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Chapter 4

Hierarchical selection of genetic and

gene by environment interaction e"ects

in high-dimensional mixed models

Preamble to Manuscript 2.

The etiology of most complex diseases involves genetic variants, environmental factors, and

gene-environment interaction (GEI) e!ects. In high-dimensional regularized regression mod-

els, hierarchical selection of GEI e!ects is desired, where a GEI e!ect is selected in the

model only if the corresponding genetic main e!ect is also selected. Hierarchy can be in-

duced through the use of group lasso penalties (Yuan and Lin [2005], Lim and Hastie [2015])

and generalizations thereof such as the sparse group lasso (Friedman et al. [2010a], Liang

et al. [2024]) or group L↘ penalty (Zemlianskaia et al. [2022]), or by adding a set of convex

constraints to the lasso (Bien et al. [2013]).

Dependence between gene and environment can be induced by population structure and

closer relatedness (Dudbridge and Fletcher [2014]). Thus, spurious selection of GEI e!ects

is also of concern in genetic association studies. Sul et al. [2016] showed that under the
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polygenic model, population structure and closer relatedness may largely increase the false

positive rate of GEI statistics. They proposed introducing an additional random e!ect that

captures the similarity of individuals due to polygenic GEI e!ects to account for the fact that

individuals who are genetically related and who share a common environmental exposure are

more closely related. To our knowledge, the spurious selection of GEI e!ects in regularized

models due to the dependence between gene and shared environmental exposure has not

been explored yet.

The original contributions of this chapter are i) developing a unified approach based on

regularized penalized quasi-likelihood (PQL) estimation to perform hierarchical selection of

GEI e!ects in sparse regularized logistic mixed models, ii) deriving a proximal Newton-type

algorithm with block coordinate descent for PQL estimation with mixed lasso and group lasso

penalties, and iii) showing through simulation studies that including and additional random

e!ect to account for the shared environmental exposure reduced the false positive rate for

the selection of both GEI and main genetic e!ects in sparse regularized mixed models.

The corresponding manuscript has been accepted for publication in Statistical Methods in

Medical Research and is currently available online (St-Pierre et al. [2024]).
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Abstract

Interactions between genes and environmental factors may play a key role in the etiology of

many common disorders. Several regularized generalized linear models (GLMs) have been

proposed for hierarchical selection of gene by environment interaction (GEI) e!ects, where

a GEI e!ect is selected only if the corresponding genetic main e!ect is also selected in the

model. However, none of these methods allow to include random e!ects to account for pop-

ulation structure, subject relatedness and shared environmental exposure. In this paper, we

develop a unified approach based on regularized penalized quasi-likelihood (PQL) estima-

tion to perform hierarchical selection of GEI e!ects in sparse regularized mixed models. We

compare the selection and prediction accuracy of our proposed model with existing methods

through simulations under the presence of population structure and shared environmental

exposure. We show that for all simulation scenarios, including and additional random e!ect

to account for the shared environmental exposure reduces the false positive rate (FPR) and

false discovery rate (FDR) of our proposed method for selection of both GEI and main ef-

fects. Using the F1 score as a balanced measure of the FDR and true positive rate (TPR),

we further show that in the hierarchical simulation scenarios, our method outperforms other

methods for retrieving important GEI e!ects. Thus, compared to other penalized meth-

ods, our proposed method enforces sparsity by controlling the number of false positives in

the model while having the best predictive performance. Finally, we apply our method to

a real data application using the Orofacial Pain: Prospective Evaluation and Risk Assess-

ment (OPPERA) study, and found that our method retrieves previously reported significant

loci.
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4.1 Introduction

Genome-wide association studies (GWAS) have led to the identification of hundreds of com-

mon genetic variants, or single nucleotide polymorphisms (SNPs), associated with complex

traits (Visscher et al. [2017]) and are typically conducted by testing association on each

SNP independently. However, these studies are plagued with the multiple testing burden

that limits discovery of potentially important predictors, as genome-wide significance p-value

threshold of 5↑ 10→8 has become the standard. Moreover, GWAS have brought to light the

problem of missing heritability, that is, identified variants only explain a low fraction of the

total observed variability for traits under study (Manolio et al. [2009]). Beyond the identi-

fied genetic variants, interactions between genes and environmental factors may play a key

role in the multifactorial etiology of many complex diseases that are subject to both genetic

and environmental risk factors. For example, in assessing interactions between a polygenic

risk score (PRS) and non-genetic risk factors for young-onset breast cancers (YOBC), Shi

et al. [2020] showed a decreased association between the PRS and YOBC risk for women

who had ever used hormonal birth control, suggesting that environmental exposure might

result in risk stratification by interacting with genetic factors. Thus, there is a rising interest

for discovering gene-environment interaction (GEI) e!ects as they are fundamental to bet-

ter understand the e!ect of environmental factors in disease and to increase risk prediction

accuracy (Mukherjee et al. [2009]).

Several regularized generalized linear models (GLMs) have been proposed for selection of

both genetic and GEI e!ects in genetic association studies (Fang et al. [2023], Zemlianskaia

et al. [2022], Lim and Hastie [2015]), but currently no such method allows to include any

random e!ect to account for genetic similarity between subjects. Indeed, one can control for

population structure and/or closer relatedness by including in the model a polygenic random

e!ect with variance-covariance structure proportional to a kinship or genetic similarity matrix

(GSM) (Yu et al. [2005]). However, because kinship is a high-dimensional process, it cannot
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be fully captured by including only a few Principal Components (PCs) as fixed e!ects in

the model (Ho!man [2013]). Hence, while both Principal Component Analysis (PCA) and

mixed models (MMs) share the same underlying model, MMs are more robust in the sense

that they do not require distinguishing between the di!erent types of confounders (Price

et al. [2010]). Moreover, MMs alleviate the need to evaluate the optimal number of PCs to

retain in the model as fixed e!ects.

Except for normal responses, the joint estimation of variance components and fixed e!ects

in regularized models is challenging both from a computational and analytical point of view,

as the marginal likelihood for a generalized linear mixed model (GLMM) has no closed form.

To address these challenges, penalized quasi-likelihood (PQL) estimation is conceptually

attractive as under this method, random e!ects can be treated as fixed e!ects, which allows

to perform regularized estimation of both fixed and random e!ects as in the GLM framework.

The computational e"ciency of multivariable methods for high-dimensional MMs rely on

performing a single spectral or Cholesky decomposition of the covariance matrix to rotate

the phenotype and design matrix such that the transformed data become uncorrelated. For

very large sample sizes, computing these decompositions can be very burdensome, with

complexity of O(n3), where n is the sample size. Secondly, to obtain regularized estimates

for the genetic predictors and GEI e!ects in linear mixed models (LMMs), we need to

perform matrix multiplications with complexity of O(n2) and O(n2
p) to rotate the phenotype

and genotype matrix respectively, where p is the number of genetic predictors. Even for

moderately small cohorts, the number of predictors in GWAS is often greater than one

million, such that the genotype matrix itself will require around one terabyte of space to

be loaded in memory in a normal double-precision format (Qian et al. [2020]). In PQL

regularized models, by minimizing the objective function with respect to the fixed e!ects

vector only, we need not rotate the genotype matrix as we are conditioning on the random

e!ects vector estimate.
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Several authors have proposed to combine PQL estimation in presence of sparsity by inducing

regularization to perform joint selection of fixed and/or random e!ects in multivariable

GLMMs (St-Pierre et al. [2023], Hu et al. [2019], Hui et al. [2017]). However, these methods

were not developed to specifically address selection of GEI e!ects. Although it is possible to

perform naive selection of fixed and GEI e!ects by simply considering interaction terms as

additional predictors, the aforementioned methods are not tailored to perform hierarchical

selection, where interaction terms are only allowed to be selected if their corresponding main

e!ects are active (i.e. non-zero) in the model (Bien et al. [2013]). Hierarchical variable

selection of GEI e!ects is appealing both for increasing statistical power (Cox [1984]) and

for enhancing model interpretability because interaction terms that have large main e!ects

are more likely to be retained in the model.

Population structure and closer relatedness may also cause dependence between gene and

environment, leading to selection of spurious GEI e!ects (Dudbridge and Fletcher [2014]).

In the context of GWAS, Sul et al. [2016] showed that under the polygenic model, ignoring

this dependence may largely increase the false positive rate of GEI statistics. They proposed

introducing an additional random e!ect that captures the similarity of individuals due to

polygenic GEI e!ects to account for the fact that individuals who are genetically related and

who share a common environmental exposure are more closely related. To our knowledge,

the spurious selection of GEI e!ects in regularized models due to the dependence between

gene and shared environmental exposure has not been explored yet. Thus, further work

is needed to develop sparse regularized GLMMs for hierarchical selection of GEI e!ects in

genetic association studies, while explicitly accounting for the complex correlation structure

between individuals that arises from both genetic and environmental factors.

In this paper, we develop a unified approach based on regularized PQL estimation to perform

hierarchical selection of GEI e!ects in sparse regularized logistic mixed models. Similar

to Sul et al. [2016], we use a random e!ect that captures population structure and closer
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relatedness through a genetic kinship matrix, and shared environmental exposure through a

GxE kinship matrix. We propose to use a composite absolute penalty (CAP) for hierarchical

variable selection (Zhao et al. [2009]) to seek a sparse subset of genetic and GEI e!ects that

gives an adequate fit to the data. We derive a proximal Newton-type algorithm with block

coordinate descent for PQL estimation with mixed lasso and group lasso penalties, relying

on our previous work to address computational challenges associated with regularized PQL

estimation in high-dimensional data (St-Pierre et al. [2023]). We compare the prediction and

selection accuracy of our proposed model with existing methods through simulations under

the presence of population structure and environmental exposure. Finally, we also apply

our method to a real data application using the Orofacial Pain: Prospective Evaluation and

Risk Assessment (OPPERA) study cohort (Maixner et al. [2011]) to study the sex-specific

association between temporomandibular disorder (TMD) and genetic predictors.

4.2 Methodology

4.2.1 Model

We have the following generalized linear mixed model (GLMM)

g(µi) = ⇁i = Zi↽ +Di▷ +Giε + (DiGi)↼ + bi (4.1)

for i = 1, .., n, where µi = E(yi|Zi,Gi, Di, bi), Zi is a 1 ↑ m row vector of covariates for

subject i, Gi is a 1 ↑ p row vector of genotypes for subject i taking values {0, 1, 2} as the

number of copies of the minor allele, (↽↭
,ε↭)↭ is a (m+p)↑1 column vector of fixed covariate

and additive genotype e!ects including the intercept, Di is the exposure of individual i to a

binary or continous environmental factor D with fixed e!ect ▷, and ↼ = [↼1,↼2, ...,↼p]↭ ≃ p

is the vector of fixed GEI e!ects. Thus, we have a total of 2p + m + 1 coe"cients. We

assume that b = (b1, ..., bn)↭ → N (0, ϱgK + ϱdKD) is an n ↑ 1 column vector of random
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e!ects, with ϱ = (ϱg, ϱd)↭ the variance components that account for the relatedness between

individuals. K is a known GSM or kinship matrix and KD is an additional kinship matrix

that describes how individuals are related both genetically and environmentally, because a

pair of individuals who are genetically related and share the same environment exposure have

a non-zero kinship coe"cient. The kinship matrix KD corrects for the spurious association

of GEI e!ects due to population structure and subjects relatedness, in the same way that

the kinship matrix K corrects for population structure and subjects relatedness on the

main e!ects. Thus, the matrix KD can be interpreted as the covariance matrix between

individuals that captures the residual variance explained by the sum of many small GEI

e!ects across the genome. For a binary exposure, we define K
D

ij
= Kij if Di = Dj, and

K
D

ij
= 0 otherwise. For a continuous exposure, one possibility is to set K

D

ij
= Kij(1 ↓

d(Di, Dj)), where d is a metric with range [0, 1]. The phenotypes yi’s are assumed to be

conditionally independent and identically distributed given (Zi,Gi, Di, b) and follow any

exponential family distribution with canonical link function g(·), mean E(yi|Zi,Gi, Di, b) =

µi and variance Var(yi|Zi,Gi, Di, b) = ϖa
→1
i
↩(µi), where ϖ is a dispersion parameter, ai are

known weights and ↩(·) is the variance function.

4.2.2 Regularized PQL Estimation

In order to estimate the model parameters and perform variable selection, we use an ap-

proximation method to obtain an analytical closed form for the marginal likelihood of model

(4.1). We propose to fit (4.1) using a PQL method (St-Pierre et al. [2023], Chen et al. [2016]),

from where the log integrated quasi-likelihood function is equal to

↼PQL(!,ϖ, ϱ ; b̃) = ↓1

2
log

[︄[︄⎠ϱgK + ϱdK
D
⎜
W + In

[︄[︄+
n)︄

i=1

qli(!; b̃)↓ 1

2
b̃↭

⎠
ϱgK + ϱdK

D
⎜→1

b̃,

(4.2)
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where ! = (↽↭
,▷,ε↭

,↼↭)↭ ,W = ϖ
→1$→1 = ϖ

→1diag
⎦

ai
ω(µi)[g→(µi)2]

⎢
is a diagonal matrix

containing weights for each observation, qli(!; b) =
⎥

µi

yi

ai(yi→µ)
εω(µ) dµ is the quasi-likelihood

for the ith individual given the random e!ects b, and b̃ is the solution which maximizes
{︄

n

i=1 qli(!; b)↓ 1
2b

↭ ⎠
ϱgK + ϱdKD

⎜→1
b.

In typical genome-wide studies, the number of genetic predictors is much greater than the

number of observations (p > n), and the fixed e!ects parameter vector ! becomes underde-

termined when modelling p SNPs jointly. Moreover, we would like to induce a hierarchical

structure, that is, a GEI e!ect can be present only if both exposure and genetic main e!ects

are also included in the model. Thus, we propose to add a sparse group lasso penalty (Si-

mon et al. [2013]) to the negative quasi-likelihood function in (4.2) to seek a sparse subset

of genetic and GEI e!ects that gives an adequate fit to the data. Indeed, the sparse group

lasso is part of the family of composite absolute penalties (CAP) that can induce hierarchical

variable selection (Zhao et al. [2009]). We define the following objective function Qϖ which

we seek to minimize with respect to (!,ϖ, ϱ ):

Qϖ(!,ϖ, ϱ ; b̃) := ↓↼PQL(!,ϖ, ϱ ; b̃) + (1↓ 0)◁
)︄

j

⇒(ϑj, ωj)⇒2 + 0◁

)︄

j

|ωj|, (4.3)

where ◁ > 0 controls the strength of the overall regularization and 0 ≃ [0, 1) controls the

relative sparsity of the GEI e!ects for each SNP. In our modelling approach, we do not

penalize the environmental exposure fixed e!ect ▷. Thus, a value of 0 = 0 is equivalent to

a group lasso penalty where we only include a predictor in the model if both its main e!ect

ϑj and GEI e!ect ωj are non-zero. A value of 0 < 0 < 1 is equivalent to a sparse group lasso

penalty where main e!ects can be selected without their corresponding GEI e!ects due to

the di!erent strengths of penalization, but a GEI e!ect is still only included in the model if

the corresponding main e!ect is non-zero.
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4.2.3 Estimation of variance components

Jointly estimating the variance components ϱg, ϱd and scale parameter ϖ with the regression

e!ects vector ! and random e!ects vector b is a computationally challenging non-convex

optimization problem. Updates for ϱg, ϱd and ϖ based on a majorization-minimization (MM)

algorithm (Zhou et al. [2019a]) would require inverting three di!erent n↑ n matrices, with

complexity O(n3), at each iteration. Thus, even for moderately small sample sizes, this is not

practicable for genome-wide studies. Instead, we propose a two-step method where variance

components and scale parameter are estimated only once under the null association of no

genetic e!ect, that is assuming ε = ↼ = 0, using the AI-REML algorithm (St-Pierre et al.

[2023], Gilmour et al. [1995]).

4.2.4 Spectral decomposition of the random e"ects covariance matrix

Given ϱ̂ g, ϱ̂ d and ϖ̂ estimated under the null, spectral decomposition of the random e!ects

covariance matrix yields

⎠
ϱ̂ gK + ϱ̂ dK

D
⎜→1

= (U%U ↭)→1

= U%→1U ↭
, (4.4)

where U is an orthonormal matrix of eigenvectors and % is a diagonal matrix of eigenvalues

!1 ⇔ !2 ⇔ ... ⇔ !n > 0 when both K and KD are positive definite. In practice, if K is

rank-deficient, one can replace it by K + εIn for ε > 0 small, to ensure that both K and

KD are positive definite.

Using (4.4) and assuming that the weights in W vary slowly with the conditional mean (Bres-
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low and Clayton [1993]), minimizing (4.3) is now equivalent to

!̂ = argmin
!

↓
n)︄

i=1

qli(!; ω̃) +
1

2
ω̃↭%→1ω̃ + (1↓ 0)◁

)︄

j

⇒(ϑj, ωj)⇒2 + 0◁

)︄

j

|ωj|

= argmin
!

f(!; ω̃) + g(!), (4.5)

where ω̃ = U ↭b̃ is the minimizer of f(!; ω) := ↓
{︄

n

i=1 qli(!; ω)+ 1
2ω

↭%→1ω. Thus, iteratively

solving (4.5) also requires updating the solution ω̃ at each step until convergence. Condition-

ing on the previous solution for !, ω̃ is obtained by minimizing a generalized ridge weighted

least-squares (WLS) problem with %→1 as the regularization matrix. Then, conditioning on

ω̃, !̂ is found by minimizing a WLS problem with a sparse group lasso penalty. We present

in Appendix B our proposed proximal Newton-type algorithm that cycles through updates

of ω̃ and !.

4.3 Simulation study

We first evaluated the performance of our proposed method, called pglmm, against that of a

standard logistic lasso, using the Julia package GLMNet which wraps the Fortran code from

the original R package glmnet (Friedman et al. [2010b]). Then, among logistic models that

impose hierarchical interactions, we compared our method with the glinternet (Lim and

Hastie [2015]) and gesso (Zemlianskaia et al. [2022]) models which are both implemented in

R packages. The glinternet method relies on overlapping group lasso, and even though it is

optimized for selection of gene by gene interactions in high-dimensional data, it is applicable

for selection of GEI e!ects. An advantage of the method is that it only requires tuning a

single parameter value. On the other hand, gesso uses a CAP penalty with a group L↘ norm

(iCAP) to induce a hierarchical structure, and the default implementation fits solutions paths

across a two-dimensional grid of tuning parameter values. For all methods, selection of the

tuning parameters is performed by cross-validation. The default implementation for glmnet,
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glinternet and pglmm is to find the smallest value of the tuning parameter ◁ such that no

predictor are selected in the model, and then to solve the penalized minimization problem

over a grid of decreasing values of ◁. For these three methods, we used a grid of 50 values of

◁ on the log10 scale with ◁min = 0.01◁max, where ◁max is chosen such that no predictors are

selected in the model. In addition for pglmm we solved the penalized minimization problem

over a grid of 10 values of the tuning parameter 0 evenly spaced from 0 to 0.9, fitting a total

of 500 models. The default implementation for gesso is to solve the minimization problem

over a 20 by 20 two-dimensional grid of the tuning parameters values ◁1,◁2, starting from

the smallest value such that all coe"cients are zero, and setting ◁min = 0.1◁max. Finally,

for glmnet, gesso and glinternet, population structure and environmental exposure is

accounted for by adding the top 10 PCs of the kinship matrix as additional covariates.

Table 4.1: Number of samples by population for the high quality harmonized set of 4,097
whole genomes from the Human Genome Diversity Project (HGDP) and the 1000 Genomes
Project (1000G).

Population 1000 Genomes HGDP Total
African 879 (28%) 110 (12%) 989 (24%)
Admixed American 487 (15%) 62 (7%) 549 (13%)
Central/South Asian 599 (19%) 184 (20%) 783 (19%)
East Asian 583 (18%) 234 (25%) 817 (20%)
European 618 (20%) 153 (16%) 771 (19%)
Middle Eastern 0 158 (17%) 158 (4%)
Oceanian 0 30 (3%) 30 (1%)
Total 3,166 931 4,097
Unrelated individuals 2,520 880 3,400

4.3.1 Simulation model

We performed a total of 100 replications for each of our simulation scenarios, drawing anew

genotypes and simulated traits, using real genotype data from a high quality harmonized

set of 4,097 whole genomes from the Human Genome Diversity Project (HGDP) and the

1000 Genomes Project (1000G) (Koenig et al. [2023]). At each replication, we sampled

10 000 candidate SNPs from the chromosome 21 and randomly selected 100 (1%) to be
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causal. Let S be the set of candidate causal SNPs, with |S| = 100, then the causal SNPs

fixed e!ects ϑj were generated from a Gaussian distribution N (0, h2
S
φ
2
/|S|), where h

2
S

is

the fraction of variance on the logit scale that is due to total additive genetic fixed e!ects.

Let S ↑ be the set of candidate causal SNPs, not necessarily overlapping with S, that have a

non-zero GEI e!ect, with |S ↑| = 50, then the GEI e!ects ωj were generated from a Gaussian

distribution N (0, h2
S→φ

2
/|S ↑|), where h

2
S→ is the fraction of variance on the logit scale that

is due to total additive GEI fixed e!ects. Further, we simulated a random e!ect from

a Gaussian distribution ε → N (0, h2
g
φ
2K + h

2
d
φ
2KD), where h

2
g

and h
2
d

are the fractions

of variance explained by the polygenic and polygenic by environment e!ects respectively.

The kinship matrices K and KD were calculated using a set of 50, 000 randomly sampled

SNPs excluding the set of candidate SNPs, and PCs were obtained from the singular value

decomposition of K. We simulated a covariate for age using a Normal distribution and used

the sex covariate provided with the data as a proxy for environmental exposure. Then, for

i = 1, ..., 4097, binary phenotypes were generated using the following model

logit(↪) = logit(↪0k)↓ log(1.3)↑ Sex+ log(1.05)Age/10 +
)︄

j↗S

ϑj
⋃︁Gj +

)︄

j↗S→

ωj · (Sex↑ ⋃︁Gj) + ε,

(4.6)

where ↪0k, for k = 1, ..., 7, was simulated using a U(0.1, 0.9) distribution to specify a di!erent

prevalence for each population in Table 4.1 under the null, and ⋃︁Gj is the j
th column of the

standardized genotype matrix g̃
ij

= (gij ↓ 2pi)/
⎟
2pi(1↓ pi) and pj is the minor allele

frequency (MAF) for the j
th predictor.

In all simulation scenarios, we set h
2
S

= 0.2 and h
2
S→ = 0.1 such that each of the main

e!ects (|S| = 100) or GEI e!ects (|S ↑| = 50) explains 0.2% of the total variability on the

logit scale. We compared the methods when h
2
g
= 0.2 and h

2
d
= 0.1 (i.e., low polygenic

e!ects with φ
2 = 9), and when h

2
g
= 0.4 and h

2
d
= 0.2 (i.e., high polygenic e!ects with

φ
2 = 35) respectively. In the first simulation scenario, we induced a hierarchical structure
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for the simulated data by imposing ωj ↘= 0 ∝ ϑj ↘= 0 for j = 1, ..., p, such that the total

number of causal SNPs is equal to 100, with half of them having non-zero GEI e!ects. In the

second simulation scenario, we repeated the simulations from the first scenario, but without

enforcing any hierarchical structure, such that the number of causal SNPs is equal to 150,

with 100 of them having non-zero main e!ects, and 50 having non-zero GEI e!ects.

4.3.2 Metrics

To compare the performance of all methods in discovering important genetic predictors

and estimating their main and interaction e!ects, we define in this section the performance

metrics that will be used. First, we define the model size as simply the number of non-

zero coe"cients estimated by a model, that is
{︄

p

j=1 (ϑ̂
j
↘= 0) for the main e!ects, and

{︄
p

j=1 (ω̂
j
↘= 0) for the GEI e!ects. The false positive rate (FPR) is defined as the number of

non-causal predictors that are falsely identified as causal (false positives), divided by the total

number of non-causal predictors. The true positive rate (TPR), also known as sensitivity or

recall, is defined as the number of true causal predictors that are correctly identified (true

positives), divided by the total number of causal predictors. The false discovery rate (FDR) is

defined as the number of false positives divided by the total number of selected predictors in

the model. Thus, while FPR and TPR measure the ability of a model to distinguish between

causal and non-causal predictors, the FDR actually measures the proportion of predictors

that are not causal among those declared significant. Moreover, in genetic association studies

where the number of non-causal predictors is very high, we are more interested in controlling

the FDR rather than the FPR. Alternatively, we can define the precision as 1 minus the

FDR, which measures the proportion of causal predictors among those declared significant.

The F1 score is defined as the harmonic mean of the precision and TPR, and it can be used

to take into account that methods with a large number of selected predictors will likely have

a higher TPR, and inversely that methods with a lower number of selected predictors will

likely have a higher precision. Finally, the area under the curve (AUC) is used as a measure
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of the predictive performance of all methods when predicting the binary status of individuals.

It takes into account the TPR of all methods at various FPR values when making individual

predictions. A higher AUC means that a method has a better capacity at distinguishing

between cases and controls.

4.3.3 Results

We obtained solutions paths across a one dimensional (glmnet, glinternet) or two-dimensional

grid of tuning parameter values (gesso, pglmm) for the hierarchical and non-hierarchical sim-

ulation scenarios and reported the mean precision, i.e. the proportion of selected predictors

that are causal, over 100 replications for the selection of GEI e!ects (Figure 4.1) and main

genetic e!ects (Figure 4.2) respectively. We see from Figure 4.1 that in the hierarchical

simulation scenario, gesso and pglmm retrieve important GEI e!ects with better precision

than glmnet and glinternet. When we simulate a low random polygenic GEI e!ect, gesso

slightly outperforms pglmm, but when we increase the heritability of the two random e!ects,

both methods perform similarly. When we simulate data under no hierarchical assumption,

precision for all hierarchical models fall drastically, although they still perform better than

the standard lasso model. We note that gesso retrieves important GEI e!ects with equal or

better precision than other methods in all simulation settings. This is explained by the fact

that gesso is using a CAP penalty with L↘ group norm which has been shown to perform

better than the sparse group lasso for retrieving interaction e!ects (Zhao et al. [2009]). On

the other hand, we see from Figure 4.2 that pglmm outperforms all methods for retrieving im-

portant main e!ects for both hierarchical and non-hierarchical simulation scenarios. When

we simulate low polygenic e!ects, pglmm and glmnet perform comparably. We also note

that gesso retrieves main e!ects with less precision than glmnet and pglmm in all scenarios.

At last, the precision of glinternet is considerably lower than all other methods until the

number of selected main genetic e!ects in the model is large.

In practice, we often do not have any a priori knowledge for the number of main e!ects

78



and/or GEI e!ects that we want to include in the final model. Thus, instead of comparing

methods at a fixed number of selected predictors along their regularization paths, we used

cross-validation to compare how each method performs when having to select an optimal

number of predictors in the model for the same two simulation scenarios that we previously

described. We randomly split the data (n=4097) into training and test subjects, using a

80/20 ratio, and fitted the full lasso solution path on the training set for 100 replications.

We report the model size, false positive rate (FPR), true positive rate (TPR), false discovery

rate (FDR), and F1 score on the training sets, and the area under the ROC curve (AUC)

when making predictions on the independent test subjects. To assess the potential spurious

association of both main and GEI e!ects due to shared environmental exposure, we compare

our method when including only the kinship matrix K (plmm (1 Random effect (RE)))

and when including both K and K
D matrices (pglmm (2 REs)).

With respect to selection of the GEI e!ects (Table 4.2), the comparative performance of each

method varies depending on the simulation scenario. As expected, we see that including

an additional random e!ect reduces the FPR for all simulation scenarios for our proposed

method. Unsurprisingly, glinternet and glmnet have the lowest FPRs of all methods since

they always select the least number of GEI e!ects in the final models. Consequently, they

have the smallest TPRs in all scenarios. By using the F1 score to account for the trade-o!

between FDR and TPR, we have that pglmm performs the best in hierarchical simulation

scenarios, while gesso performs better in the non-hierarchical scenarios.

With respect to the genetic main e!ects (Table 4.3), pglmm selects the lowest number of

predictors in the model, and thus has the lowest FPR and FDR in all simulation scenarios.

Again, adding an additional random e!ect reduces the FPR for pglmm, but to a lower extent

than for selection of GEI e!ects. On the other hand, glinternet always selects the largest

number of predictors in all scenarios, and hence has the highest TPR and FPR values. Using

the F1 score to balance FDR and TPR, we see that pglmm performs the best for retrieving
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Figure 4.1: Precision of compared methods averaged over 100 replications as a function of
the number of active GEI e!ects.
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the important main genetic e!ects in all simulation scenarios. Also, we see that gesso and

pglmm perform similarly when the heritability of the polygenic random e!ects is low, but

when we increase the heritability, the FDR for gesso increases drastically, and the number

of selected main e!ects becomes on average more than 1.5 times higher than for pglmm.

Results for the accuracy of predicting binary outcomes in independent test sets are included

in Table 4.4. We see that pglmm with two random e!ects outperforms all other methods for

all simulation scenarios.
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Figure 4.2: Precision of compared methods averaged over 100 replications as a function of
the number of active main e!ects in the model.
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4.4 Discovering sex-specific genetic predictors of painful

temporomandibular disorder

Significant associations between temporomandibular disorder (TMD), which is a painful

disease of the jaw, and four distinct loci have been previously reported in combined or

sex-segregated analyses on the Orofacial Pain: Prospective Evaluation and Risk Assess-

ment (OPPERA) study cohort (Smith et al. [2018]). Moreover, TMD has much greater

prevalence in females than in males and is believed to have some sex-specific pathophysi-

ologic mechanisms (Bueno et al. [2018]). In this analysis, we wanted to explore the com-
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parative performance of our method pglmm in selecting important sex-specific predictors

of TMD and its performance predicting the risk of painful TMD in independent subjects

from two replication cohorts, the OPPERA II Chronic TMD Replication case-control study,

and the Complex Persistent Pain Conditions (CPPC): Unique and Shared Pathways of Vul-

nerability study, using the OPPERA cohort as discovery cohort. Sample sizes and dis-

tribution of sex, cases and ancestry for the three studies are shown in Table 4.5, and

further details on study design, recruitment, subject characteristics, and phenotyping for

each study are provided in the Supplementary Materials of Smith et al. [2018] (available at

http://links.lww.com/PAIN/A688).

We used the imputed data described in Smith et al. [2018]. Genotypes were imputed to the

1000 Genomes Project phase 3 reference panel using the software packages SHAPEIT (De-

laneau et al. [2011]) for prephasing and IMPUTE version 2 (Howie et al. [2009]). For each

cohort independently, we assessed imputation quality taking into account the number of

minor alleles as well as the information score such that a SNP with rare MAF must pass

a higher quality information threshold for inclusion. After merging all three cohorts, we

tested for significant deviations of the Hardy-Weinberg equilibrium (HWE) separately in

cases and controls, using a more strict p-value threshold for hypothesis testing among cases

to avoid discarding disease-associated SNPs that are possibly under selection (Marees et al.

[2018]) (< 10→6 in controls, < 10→11 in cases). We filtered using a SNP call rate greater

than 95% on the combined dataset to retain imputed variants present in all cohorts, which

resulted in a total of 4.8M imputed SNPs. PCs and kinship matrices were calculated on the

merged genotype data using the –pca and –make-rel flags in PLINK (Chang et al. [2015]),

after using the same HWE p-value threshold and SNP call rate as for the imputed data.

To reduce the number of candidate predictors in the regularized models, we performed a

first screening by testing genome-wide association with TMD for subjects in the OPPERA

discovery cohort using PLINK. We fitted a logistic regression for additive SNP e!ects, with

age, sex and enrollment site as covariates and the first 10 PCs to account for population
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stratification, and retained all SNPs with a p-value below 0.05, which resulted in a total of

243K predictors.

We present in Table 4.6 the estimated odds ratios (OR) by each method, pglmm, gesso

and glmnet, for the selected SNPs for both main and GEI e!ects. Of note, it was not

possible to use the glinternet package due to computational considerations, its memory

requirement being too large for the joint analysis of the 243K preselected predictors. All three

methods selected the imputed insertion/deletion (indel) polymorphism on chromosome 4 at

position 146,211,844 (rs5862730), which was the only reported SNP that reached genome-

wide significance in the full OPPERA cohort (OR = 1.4, 95% confidence interval (CI):

[1.26; 1.61], P = 2.82↑10→8) (Smith et al. [2018]). In a females-only analysis, rs5862730 was

likewise associated with TMD (OR = 1.54, 95% CI: [1.33; 1.79], P = 1.7↑ 10→8), and both

pglmm and gesso selected the GEI term between rs5862730 and sex.

Moreover, we present in Table 4.7 the AUC in the training and test cohorts, the number

of predictors selected in each model and the total computation time to fit each method.

We see that pglmm has the highest AUC on the training data, as well as the best predic-

tive performance on the CPPC cohort alone. On the other hand, glmnet and gesso both

have a greater predictive performance in the OPPERA2 cohort compared to pglmm. When

combining the predictions for OPPERA2 and CPPC cohorts, all three methods have similar

predictive performance. In term of the number of predictors selected by each model, glmnet

has selected two SNPs with important main e!ects and no GEI e!ects, while gesso has

selected the highest number of predictors, that is a total of 13 SNPs with both main and

GEI e!ects. On the other hand, our proposed method pglmm has selected a total of 7 SNPs,

among which 3 had a selected GEI e!ect with sex. Finally, we report for each method the

computational time to fit the model on the training cohort using 10-folds cross-validation.

While glmnet only took two hours to fit, it failed to retrieve any potentially important GEI

e!ects between TMD and sex, albeit we note that it had a similar predictive performance
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than the hierarchical methods on the combined test sets. On the other hand, pglmm had

the highest computational time required to fit the model, because it requires iteratively esti-

mating a random e!ects vector of size n = 3030, while both glmnet and gesso only require

to estimate a vector of fixed e!ects of size 10 for the PCs. However, pglmm had the highest

AUC on the train set, and was able to retrieve potentially important GEI e!ects for some

of the select SNPs in the model, while selecting half as many predictors than gesso.
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Table 4.2: Results for the GEI e!ects ω. For each simulation scenario, we report the
mean value over 100 replications when we simulate only one random e!ect with low
heritability (Low ε) and we simulate two random e!ects with high heritability (High
ε). Bolded values indicate the method with the best performance according to each
metric.

Non-hierarchical model Hierarchical model
Metric Method Low ε High ε Low ε High ε

Model size pglmm (1 RE) 84.6 99.2 95.5 103
pglmm (2 REs) 58.4 57.8 63.9 59.8
glmnet 21.6 38.8 22.7 38.6
glinternet 17.5 39.2 19.5 39.6
gesso 64.3 102 78.6 110

FPR pglmm (1 RE) 8.31↑10→3 9.76↑10→3 8.96↑10→3 9.69↑10→3

pglmm (2 REs) 5.72↑10→3 5.65↑10→3 6.00↑10→3 5.55↑10→3

glmnet 2.09↑10→3 3.80↑10→3 2.20↑10→3 3.76↑10→3

glinternet 1.68↑10→3 3.79↑10→3 1.84↑10→3 3.79↑10→3

gesso 6.20↑10→3 9.94↑10→3 7.38↑10→3 1.06↑10→2

TPR pglmm (1 RE) 0.039 0.043 0.126 0.124
pglmm (2 REs) 0.030 0.031 0.084 0.091
glmnet 0.016 0.020 0.018 0.025
glinternet 0.016 0.030 0.024 0.038
gesso 0.052 0.068 0.104 0.103

FDR pglmm (1 RE) 0.966 0.965 0.926 0.908
pglmm (2 REs) 0.936 0.968 0.921 0.889
glmnet 0.962 0.974 0.955 0.967
glinternet 0.948 0.956 0.923 0.949
gesso 0.945 0.948 0.912 0.930

F1 pglmm (1 RE) 0.035 0.033 0.091 0.084
pglmm (2 REs) 0.039 0.036 0.082 0.090
glmnet 0.036 0.033 0.035 0.036
glinternet 0.040 0.038 0.045 0.048
gesso 0.052 0.048 0.083 0.067

Model size is defined as
{︄

p

j=1 (ω̂
j
↘= 0).

FPR is defined as
{︄

p

j=1 (ω̂
j
↘= 0 ↖ ωj = 0)/

{︄
p

j=1 (ωj = 0).
TPR is defined as

{︄
p

j=1 (ω̂
j
↘= 0 ↖ ωj ↘= 0)/

{︄
p

j=1 (ωj ↘= 0).
FDR is defined as

{︄
p

j=1 (ω̂
j
↘= 0 ↖ ωj = 0)/

{︄
p

j=1 (ω̂
j
↘= 0).

F1 is defined as 2↑
⎠

1
1→FDR

+ 1
TPR

⎜→1.
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Table 4.3: Results for the genetic predictors main e!ects ϑ. For each simulation sce-
nario, we report the mean value over 100 replications when we simulate two random
e!ects with low heritability (Low ε) and high heritability (High ε). Bolded values in-
dicate the method with the best performance according to each metric.

Non-hierarchical model Hierarchical model
Metric Method Low ε High ε Low ε High ε

Model size pglmm (1 RE) 227 212 220 204
pglmm (2 REs) 206 190 214 179
glmnet 278 444 286 450
glinternet 299 481 312 480
gesso 212 361 224 367

FPR pglmm (1 RE) 2.09↑10→2 1.96↑10→2 2.01↑10→2 1.87↑10→2

pglmm (2 REs) 1.89↑10→2 1.74↑10→2 1.95↑10→2 1.62↑10→2

glmnet 2.59↑10→2 4.24↑10→2 2.66↑10→2 4.29↑10→2

glinternet 2.80↑10→2 4.61↑10→2 2.91↑10→2 4.57↑10→2

gesso 1.95↑10→2 3.42↑10→2 2.05↑10→2 3.47↑10→2

TPR pglmm (1 RE) 0.195 0.181 0.208 0.196
pglmm (2 REs) 0.188 0.177 0.206 0.188
glmnet 0.215 0.244 0.226 0.257
glinternet 0.216 0.246 0.237 0.271
gesso 0.190 0.220 0.210 0.238

FDR pglmm (1 RE) 0.895 0.895 0.891 0.883
pglmm (2 REs) 0.888 0.885 0.885 0.870
glmnet 0.920 0.944 0.917 0.942
glinternet 0.925 0.948 0.922 0.943
gesso 0.906 0.937 0.903 0.932

F1 pglmm (1 RE) 0.123 0.120 0.136 0.134
pglmm (2 REs) 0.126 0.124 0.138 0.140
glmnet 0.115 0.091 0.119 0.094
glinternet 0.109 0.085 0.116 0.094
gesso 0.123 0.096 0.131 0.103

Model size is defined as
{︄

p

j=1 (ϑ̂
j
↘= 0).

FPR is defined as
{︄

p

j=1 (ϑ̂
j
↘= 0 ↖ ϑj = 0)/

{︄
p

j=1 (ϑj = 0).
TPR is defined as

{︄
p

j=1 (ϑ̂
j
↘= 0 ↖ ϑj ↘= 0)/

{︄
p

j=1 (ϑj ↘= 0).
FDR is defined as

{︄
p

j=1 (ϑ̂
j
↘= 0 ↖ ϑj = 0)/

{︄
p

j=1 (ϑ̂
j
↘= 0).

F1 is defined as 2↑
⎠

1
1→FDR

+ 1
TPR

⎜→1.
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Table 4.4: Results for the prediction accuracy of a binary outcome on test sets. For each
simulation scenario, we report the mean AUC value over 100 replications when we simulate
two random e!ects with low heritability (Low ε) and high heritability (High ε). Bolded
values indicate the method with the best performance according to each metric.

Non-hierarchical model Hierarchical model
Metric Method Low ε High ε Low ε High ε

AUC pglmm (1 RE) 0.719 0.786 0.728 0.788
pglmm (2 REs) 0.723 0.790 0.730 0.792
glmnet 0.688 0.753 0.695 0.751
glinternet 0.702 0.760 0.710 0.761
gesso 0.695 0.750 0.707 0.751

Table 4.5: Demographic data for the OPPERA training cohort, and for the OPPERA2 and
CPPC test cohorts.

Study name
OPPERA OPPERA2 CPPC

N (% female) 3030 (64.6) 1342 (66.0) 390 (84.4)
Cases (%) 999 (33.0) 444 (33.0) 164 (42.0)
Ancestry (% white) 61 79 68
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Table 4.6: Selected SNPs by each method with their estimated odds ratios (OR) for the
main e!ects (ϑ) and GEI e!ects (ω) from the TMD real data analysis. All three methods
selected the imputed insertion/deletion (indel) polymorphism on chromosome 4 at position
146,211,844 (rs5862730), which was the only reported SNP that reached genome-wide sig-
nificance in the full OPPERA cohort.

pglmm gesso glmnet

Chromosome Position OR↼ ORϱ OR↼+ϱ OR↼ ORϱ OR↼+ϱ OR↼

3 5,046,726 - - - 1.0042 1.0087 1.0129 -
3 153,536,154 1.0020 - - - - - -
4 42,549,777 1.0068 1.0042 1.0110 1.0029 1.0060 1.0089 -
4 146,211,844 1.0252 1.0448 1.0712 1.0261 1.0553 1.0829 1.0312
11 17,086,381 1.0076 - - 1.0014 1.0029 1.0042 -
11 132,309,606 0.9965 - - - - - -
12 19,770,625 - - - 1.0045 1.0094 1.0140 -
12 47,866,802 1.0184 1.0001 1.0184 - - - 1.0140
12 47,870,741 - - - 1.0152 1.0320 1.0477 -
14 24,345,235 1.0013 - - - - - -
16 81,155,867 - - - 1.0039 1.0082 1.0122 -
17 46,592,346 - - - 1.0025 1.0052 1.0077 -
17 52,888,414 - - - 1.0005 1.0011 1.0017 -
17 69,061,947 - - - 1.0021 1.0043 1.0064 -
18 36,210,549 - - - 1.0186 1.0392 1.0585 -
19 37,070,882 - - - 1.0020 1.0042 1.0062 -
21 32,760,615 - - - 1.0051 1.0107 1.0159 -

Table 4.7: Area under the roc curve (AUC), model size and computational time for the
analysis of TMD.

AUCtrain AUCtest Model size Computational
Method OPPERA OPPERA2 CPPC OPPERA2+CPPC Main e!ects GEI e!ects time (hours)
glmnet 0.722 0.587 0.632 0.551 2 0 2
gesso 0.725 0.586 0.630 0.551 13 13 9
pglmm 0.867 0.512 0.652 0.550 7 3 47
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4.5 Discussion

We have developed a unified approach based on regularized PQL estimation, for selecting

important predictors and GEI e!ects in high-dimensional GWAS data, accounting for popu-

lation structure, close relatedness, shared environmental exposure and binary nature of the

trait. We proposed to combine PQL estimation with a CAP for hierarchical selection of main

genetic and GEI e!ects, and derived a proximal Newton-type algorithm with block coordi-

nate descent to find coordinate-wise updates. We showed that for all simulation scenarios,

including and additional random e!ect to account for the shared environmental exposure

reduced the FPR of our proposed method for selection of both GEI and main e!ects. Using

the F1 score as a balanced measure of the FDR and TPR, we showed that in the hierarchical

simulation scenarios, pglmm outperformed all other methods for retrieving important GEI

e!ects. Moreover, using real data from the OPPERA study to explore the comparative per-

formance of our method in selecting important predictors of TMD, we found that our method

was able to retrieve a previously reported significant loci in a combined or sex-segregated

GWAS.

A limitation of pglmm compared to a logistic lasso or group lasso with PC adjustment is the

computational cost of performing multiple matrix calculations that comes from incorporating

a GSM to account for population structure and relatedness between individuals. These

computations become prohibitive when the sample size increases, and this may hinder the

use of random e!ects in hierachichal selection of both genetic and GEI fixed e!ects in genetic

association studies. Solutions to explore in order to increase computation speed and decrease

memory usage would be the use of conjugate gradient methods with a diagonal preconditioner

matrix, as proposed by Zhou et al. [2018], and the use of sparse GSMs to adjust for the sample

relatedness (Jiang et al. [2019]).

In this study, we focused solely on the sparse group lasso as a hierarchical regularization

penalty. Although previous work has shown that using a CAP penalty with a group L↘ norm
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(iCAP) might perform better than a sparse group lasso penalty for retrieving important

interaction terms (Zhao et al. [2009]), substantive work is needed to develop an e"cient

algorithm to fit the iCAP penalty in the presence of random e!ects. It is also important

to highlight that for selection of main e!ects, the sparse group lasso penalty might perform

better than the iCAP penalty. Thus, the choice of which group penalty to use should

reflect this trade o! between improving the selection of main e!ects versus selection of

important GEI e!ects. Moreover, it is known that estimated e!ects by lasso will have large

biases because the resulting shrinkage is constant irrespective of the magnitude of the e!ects.

Alternative regularizations like the Smoothly Clipped Absolute Deviation (SCAD) (Fan and

Li [2001]) and Minimax Concave Penalty (MCP) (Zhang [2010]) could be explored, although

we note that both SCAD and MCP require tuning an additional parameter which controls

the relaxation rate of the penalty. Another alternative includes refitting the sparse group

lasso penalty on the active set of predictors only, similarly to the relaxed lasso, which has

shown to produce sparser models with equal or lower prediction loss than the regular lasso

estimator for high-dimensional data (Meinshausen [2007]).

Another interesting question to address in the context of high-dimensional GLMMs would be

to assess the goodness of fit of the selected sparse model. In the context of high-dimensional

GLMs, a recent methodology has been proposed to test for any signal left in the residuals

after fitting a sparse model in order to assess whether a sparse non-linear model would be

more appropriate (Janková et al. [2020]). Although there exist graphical and numerical

methods for checking the adequacy of GLMMs (Pan and Lin [2005]), to our knowledge no

such procedure has been extended to high-dimensional mixed models. Finally, it would

also be of interest to explore if joint selection of fixed and random e!ects could result in

better selection and/or predictive performance. Future work includes tuning the generalized

ridge regularization on the random e!ects (Shen et al. [2013]), or replacing it by a lasso

regularization to perform selection of individual random e!ects (Hui et al. [2017], Bondell

et al. [2010]).
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Chapter 5

Penalized generalized linear mixed

models for longitudinal outcomes in

genetic association studies

Preamble to Manuscript 3.

In the previous two chapters, a general framework was proposed for accounting for multiple

sources of confounding in multivariable regularized models applied to genetic association

studies. In this manuscript, we extended the proposed methodology to analysis of longi-

tudinal outcomes. This work was first motivated by analyses of longitudinal data collected

from participants in the Quebec Longitudinal Study of Child Development (QLSCD) and the

Quebec Newborn Twin Study (QNTS) to identify important genetic predictors for emotional

and behavioural di"culties in childhood and adolescence.

The original contributions of this chapter are i) proposing a methodology based on regular-

ized penalized quasi-likelihood (PQL) estimation to perform selection of genetic predictors in

sparse regularized longitudinal mixed models, ii) studying the performance of the AIREML

algorithm in the estimation of variance components in multilevel mixed models for longitu-
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dinal genetic studies of both continuous and binary outcomes in the presence of population

structure and family relatedness, and iii) applying the proposed methodology to a real case

study to determine the genetic contribution of emotional and behavioural di"culties in child-

hood and adolescents from two longitudinal cohorts from the province of Quebec.

The manuscript presented in this chapter will be submitted to a statistical journal soon after

the submission of this thesis.
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Abstract

This work is motivated by analyses of longitudinal data collected from participants in the

Quebec Longitudinal Study of Child Development (QLSCD) and the Quebec Newborn Twin

Study (QNTS) to identify important genetic predictors for emotional and behavioural dif-

ficulties in childhood and adolescence. We propose a lasso penalized mixed model for con-

tinuous and binary longitudinal traits that allows the inclusion of multiple random e!ects

to account for random individual e!ects not attributable to the genetic similarity between

individuals. Through simulation studies, we show that replacing the estimated genetic re-

latedness matrix (GRM) by a sparse matrix introduces bias in the variance components

estimates, but that the obtained computational gain is major while the impact on the per-

formance of the penalized model to retrieve important predictors is negligible. We compare

the performance of the proposed penalized mixed model to a standard lasso and to a uni-

variate mixed model association test and show that the proposed model always identifies

causal predictors with greater precision. Finally, we show an application of the proposed

methodology to predict three externalizing behavioural scores in the combined QLSCD and

QNTS longitudinal cohorts.

104



5.1 Introduction

Our study of penalized generalized linear mixed models (GLMMs) for longitudinal traits was

motivated by analyses of data collected from participants in the Quebec Longitudinal Study

of Child Development (QLSCD) and the Quebec Newborn Twin Study (QNTS) to iden-

tify important genetic predictors for emotional and behavioral di"culties in childhood and

adolescence, including externalizing (e.g., aggression) problems. Because of the longitudinal

nature of the study, one needs to explicitly model the correlation between repeated measure-

ments within an individual, one possibility being through the use of mixed-e!ects regression

models. Moreover, genetic correlation between pairs of twins needs to be accounted for via

a polygenic random e!ect (Yang et al. [2011]), otherwise the study may be prone to a loss of

power and spurious associations (Yu et al. [2005], Price et al. [2010]). The generalized linear

mixed model association test (GMMAT) proposed by Chen et al. [2016] allows to include

a known kinship matrix when analysing family samples with known pedigree structures in

a homogeneous population, or an empirical genetic relatedness matrix (GRM) to account

for both population structure and cryptic relatedness, for genome-wide association studies

(GWAS) of continuous and binary traits. In addition, the authors have implemented ran-

dom intercept only models, and random intercept and random slope models to account for

random individual e!ects not attributable to the similarity between individuals. Typically,

between-individuals similarity can be caused by genetic relatedness, shared environmental

exposure or study sampling design.

Given the relative low sample sizes of the QLSCD (n = 721) and QNTS cohort (n = 636),

a GWAS may fail to discover significant genetic variants that are associated with emotional

and behavioral di"culties in childhood and adolescence. Moreover, obtaining e!ect size

estimates for a large number of individual predictors via logistic or linear mixed models is

highly computationally intensive using the GMMAT model, given that a new mixed model

needs to be fitted for each predictor. This complicates the calculation of a polygenic score
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(PS) for longitudinal outcomes, in which variants e!ects across the genome are aggregated

in order to predict complex traits (Dudbridge [2013], Choi et al. [2020]). Indeed, there is

great clinical interest in being able to predict externalizing scores with precision as children

following high-chronic trajectories of externalizing and internalizing behaviours have been

shown to be at risk of negative long-term outcomes, including peer victimisation (van Lier

et al. [2012], Oncioiu et al. [2020]), suicidal ideation and attempt (Orri et al. [2019], Forte

et al. [2019]), and substance use (Lemyre et al. [2018], Navarro et al. [2020], Zdebik et al.

[2019]).

Penalized models have been proposed as an alternative method to increase the power for

identifying weaker genome-wide associations and interactions compared to univariable meth-

ods (Chu et al. [2020], Li et al. [2010], Zhou et al. [2010], Wu et al. [2009], St-Pierre et al.

[2023]). In this paper, we propose a lasso penalized mixed model framework for continu-

ous and binary traits that allows the inclusion of more than one random e!ect to account

for random individual e!ects not attributable to the genetic similarity between individu-

als. We study the performance of the average information restricted maximum likelihood

(AIREML (Gilmour et al. [1995])) algorithm when analyzing simulated data with both pop-

ulation structure and subjects relatedness for continuous and binary traits. In addition, we

show that replacing the GRM by a sparse matrix greatly reduces the computational time

required to fit the penalized model, while having little impact on the performance of the

model in retrieving important predictors. Next, we compare the performance of our pro-

posed model in retrieving important predictors for both continuous and binary traits, and

demonstrate that it achieves better precision than the GMMAT model and that of a lasso

penalized model without any random e!ect. Finally, we apply our proposed method for

predicting externalizing scores in children from the combined QLSCD and QNTS cohorts

and compare the performance of the lasso and adaptive lasso mixed models with respect to

the predicted scores accuracy and models sparsity.
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5.2 Methods

5.2.1 Model

Assume yij, i = 1, ...,m, j = 1, ..., ni, is the measurement of a continuous or binary phenotype

at time tij for subject i, where n =
{︄

m

i=1 ni is the total number of observations. Let Cij be a

1↑c row vector of possibly time-varying covariates for subject i, Gi a 1↑p row vector of bial-

lelic single nucleotide polymorphisms (SNPs) taking values {0, 1, 2} as the number of copies

of the minor allele, (↽↭
,ε↭)↭ a (c+p)↑1 column vector of fixed covariate and additive geno-

type e!ects including the intercept. We assume that b0 = (b01, ..., b0m)↭ → N (0,
{︄

K

k=1 ϱkVk)

is an m ↑ 1 column vector of random intercepts, ϱ = (ϱ1, ..., ϱK)↭ are the variance compo-

nent parameters that account for the relatedness between individuals, and V1, ...,VK are

known relatedness matrices. We typically define V1 as the GRM between individuals. Fur-

ther, we assume that b1i = (b11i, b12i, ..., b1ri)↭ → N (0,D(ς)) is the r ↑ 1 column vector of

subject-specific random e!ects for i = 1, ...,m to account for the correlation between repeated

measurements, where D is an r ↑ r covariance matrix and ⇀ contains the unique elements

of D. Let Zij = (Zij1, ..., Zijr) be a 1↑ r covariate vector for subject-specific random e!ects

b1i, possibly containing a non-polygenic random intercept and more than one random slope.

The phenotypes yij’s are assumed to be conditionally independent and identically distributed

given (Cij,Gi,Zij, b0i,b1i) and follow any distribution with canonical link function g(·), mean

E(yij|Cij,Gi,Zij, b0i,b1i) = µij and variance Var(yij|Cij,Gi,Zij, b0i,b1i) = ϖw
→1
ij
↩(µij),

where ϖ is a dispersion parameter, wij are known weights and ↩(·) is the variance func-

tion. We have the following GLMM for longitudinal data

g(µij) = ⇁ij = Cij3 +Giε + b0i + Zijb1i. (5.1)

We assume that the random e!ects vector b0 is independent of b1 = (b↭
11, ...,b

↭
1r), such that

the stacked random individual e!ects vector is b = (b↭
0,b

↭
11, ...,b

↭
1r)

↭ → N(0, diag
⎦{︄

K

k=1 ϱkVk,D′ Im
⎢
),
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where ′ is the Kroneker product. Typically, when there are no time trends and observa-

tions for the same individual are assumed to be exchangeable, a model with two random

intercepts is appropriate, where the first random intercept captures the correlation induced

by genetic relatedness, and the second intercept captures the correlation between repeated

measurements. In the case where we observe or suspect individual-specific time trends to

vary substantially, we can add one or more random slope to the model.

For ease of presentation, let y = (y11, ..., y1n1 , ..., ym1, ..., ymnm)
↭ be the stacked outcome vec-

tor and Z̃k be an n↑m block-diagonal matrix for the k
th subject-specific random e!ect b1k

for k = 1, ..., r. For example, if b11 is a random intercept and b12 is a random slope, we

would have for m = 3 and n1 = n2 = n3 = 2, Z̃1 =

⟨︂

⟩︂⟩︂⟩︂⟩︂⟩︂⟩︂⟩︂⟩︂⟩︂⟩︂⟩︂⟩︂⟩︂⟩︂⨆︁

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1

⨆︂

∮︁∮︁∮︁∮︁∮︁∮︁∮︁∮︁∮︁∮︁∮︁∮︁∮︁∮︁∮︂

and Z̃2 =

⟨︂

⟩︂⟩︂⟩︂⟩︂⟩︂⟩︂⟩︂⟩︂⟩︂⟩︂⟩︂⟩︂⟩︂⟩︂⨆︁

Z112 0 0

Z122 0 0

0 Z212 0

0 Z222 0

0 0 Z312

0 0 Z322

⨆︂

∮︁∮︁∮︁∮︁∮︁∮︁∮︁∮︁∮︁∮︁∮︁∮︁∮︁∮︁∮︂

.

Next, let Z̃ =
⏐
Z̃1, Z̃2, ..., Z̃r

⎝
be a n↑mr block matrix, and L↭ = (L↭

1, ...,L
↭
1⋂︁ ⨄︁⋀︁ ⋁︁

n1 times

, ...,L↭
m
, ...,L↭

m⋂︁ ⨄︁⋀︁ ⋁︁
nm times

)

be an m ↑ n matrix of indicators such that b0i = Lib0. Thus, for a model with two ran-

dom intercepts and one random slope, the random e!ects for all observations is given by

Lb0 + Z̃b1 → N(0,L
}︄{︄

K

k=1 ϱkVk

⟨︄
L↭ + Z̃{

⨀︁

⨀︂⨁︁
ς1 ς2

ς2 ς3

⨁︂

⨂︁⨂︂′ Im}Z̃
↭
).

Chen et al. [2016] proposed a di!erent variance-covariance structure for the random e!ects

for all observations in model (5.1). They assumed that b0 → N (0,
{︄

K

k=1 ϱkVk + ϱK+1Im),

Cov(b0,b1) =
{︄

K

k=1 ϱK+1+kVk+ϱ2K+2Im and b1 → N (0,
{︄

K

k=1 ϱ2K+2+kVk+ϱ3K+3Im). Thus,

in the model with one (K = 1) similarity matrix, they assumed that the random e!ects for

all observations is given by Lb0 + Z̃b1 → N(0, Z̃{

⨀︁

⨀︂⨁︁
ϱ1 ϱ3

ϱ3 ϱ5

⨁︂

⨂︁⨂︂ ′ V1 +

⨀︁

⨀︂⨁︁
ϱ2 ϱ4

ϱ4 ϱ6

⨁︂

⨂︁⨂︂ ′ Im}Z̃
↭
).

Adding an additional random slope to model (5.1) to account for extra sources of variability

108



would increase the number of variance components to estimate from 6 to 12, compared to 7

variance components in our proposed variance-covariance structure, impacting not only the

computational requirements to fit such model, but also the model interpretability. This is

why we decided to adopt a di!erent approach, where we assume that b0 ∞ b1 and that only

the polygenic random intercept variance is proportional to the GRM.

5.2.2 Estimation

In order to estimate the model parameters (↽↭
,ε↭

,ϖ, ϱ ,⇀) and perform variable selection, we

use an approximation method to obtain an analytical closed form for the marginal likelihood

of model (5.1). We propose to fit (5.1) using a penalized quasi-likelihood (PQL) method,

where the log integrated quasi-likelihood function is equal to

↼PQL(!,ϖ, ϱ ,⇀; b̃) = ↓1

2
log

[︄[︄[︄[︄[︄(Z̃(D′ Im)Z̃
↭
+ L(

K)︄

k=1

ϱkVk)L
↭)W + In

[︄[︄[︄[︄[︄+
)︄

i,j

qlij(↽; b̃)

↓ 1

2
b̃
↭
⎛

diag

⌉︄
K)︄

k=1

ϱkVk,D′ Im

⎭⎞→1

b̃, (5.2)

and ! = (↽↭
,ε↭)↭, W = ϖ

→1$→1 = ϖ
→1diag

⎦
aij

ω(µij)[g→(µij)2]

⎢
is a diagonal matrix containing

weights for each observation, aij are known weights, qlij(!;b) =
⎥

µij

yij

aij(yij→µ)
εω(µ) dµ is the quasi-

likelihood for the jth observation from the ith individual given the random e!ects b, and b̃ is

the solution which maximizes
{︄

i,j
qlij(!,b)↓ 1

2b
↭
}︄
diag

⎦{︄
K

k=1 ϱkVk,D′ Im
⎢⟨︄→1

b.

In typical genome-wide studies, the number of genetic predictors is much greater than the

number of observations (p > n), and the fixed e!ects parameter vector ! becomes unidenti-

fiable when modelling p SNPs jointly. Thus, we propose to add a lasso penalty (Tibshirani

[1996]) to the negative quasi-likelihood function in (5.2) to seek a sparse subset of genetic

e!ects that gives an adequate fit to the data. We define the following objective function Qϖ
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which we seek to minimize with respect to (!,ϖ, ϱ ,⇀):

Qϖ(!,ϖ, ϱ ,⇀; b̃) := ↓↼PQL(!,ϖ, ϱ ,⇀; b̃) + ◁

)︄

j

↩j|ϑj|, (5.3)

where ◁ > 0 controls the strength of the overall regularization and ↩j are penalization weights

that allows incorporating a priori information about the SNP e!ects. Zou [2006] proposed

the adaptive lasso where they defined the weights ↩̂j = |ϑ̂
j
|→ϱ for j = 1, ..., p, and ϑ̂

j
is a

root-n consistent estimator of ϑj, for example the ordinary least squares (OLS) estimator,

and ω > 0 is an additional tuning parameter.

5.2.3 Estimation of variance components

Jointly estimating the variance components and scale parameter vector (⇀, ϱ ,ϖ) with fixed

e!ects parameters vector ! is a computationally challenging non-convex optimization prob-

lem. Thus, as detailed in St-Pierre et al. [2023], we propose a two-step method where variance

components and scale parameter are estimated only once under the null association of no

genetic e!ect, that is assuming ε = 0, using the AI-REML algorithm. Updates for ϱ , ϖ and

⇀ based on the AI-REML algorithm or a majorization-minimization algorithm (Zhou et al.

[2019a]) requires iteratively inverting the n↑n covariance matrix #, with complexity O(n3).

To reduce the computational cost of inverting the matrix #, we can use the Woodbury

matrix identity, and define the matrix R = Z̃(D′ Im)Z̃
↭
+W→1, which yields

#→1 = R→1 ↓R→1L(L↭R→1L+ (
)︄

ϱkVk)
→1)→1L↭R→1

.

Because R and L↭R→1L are respectively block-diagonal and diagonal matrices, the complex-

ity of inverting the n↑n matrix # is similar to that of inverting the m↑m matrix
{︄

ϱkVk.

To further reduce the computational complexity of the AI-REML estimation procedure when
{︄

ϱkVk = ϱ1V1, that is when K = 1, we propose replacing V1 by a sparse GRM (Jiang
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et al. [2019]), where pair-wise relatedness coe"cients that are smaller than 2→9/2 are set to

0. This corresponds to a 3rd degree kinship threshold, meaning that anyone less related

than first cousins are assumed to be unrelated. By rearranging the sparse GRM as a block-

diagonal matrix, where each block consists of clusters of relatives, we show in the simulation

study that it greatly reduces the computational time required to fit both the null and penal-

ized models, and that the resulting bias in the variance components estimates has a limited

impact on the performance of the penalized model to retrieve important predictors.

5.3 Simulation study

5.3.1 Simulation model

We performed simulation studies sampling real genotype data from a high quality harmonized

set of 4,097 whole genomes from the Human Genome Diversity Project (HGDP) and the

1000 Genomes Project (1000G) (Koenig et al. [2023]), including both related and unrelated

individuals from seven distinct population groups (Table 5.1). At each of the 50 replications,

we sampled 10, 000 candidate SNPs from chromosome 21 and randomly selected 100 (1%)

to be causal. Let S be the set of candidate causal SNPs, with |S| = 100, then the causal

SNPs fixed e!ects ϑs were generated from a Gaussian distribution N (0, h2
S
φ
2
/|S|), where h

2
S

is the fraction of variance that is due to total additive genetic fixed e!ects and φ
2 is the total

phenotypic variance.

We simulated a polygenic random intercept b0 → N (0, h2
g
φ
2V1) where h

2
g

is the fraction of

variance explained by the polygenic random e!ect and V1 is the estimated GRM using the

PC-Relate method (Conomos et al. [2016]). The polygenic random intercept b0 leverages

the existing genetic relatedness in the sample due to familial or cryptic relatedness to sim-

ulate correlated phenotypes between individuals who share recent common ancestors. More

specifically, pair-wise kinship coe"cients were first estimated on a set of 13, 750 SNPs se-

lected after LD pruning using the KING-Robust algorithm which is robust to population
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Table 5.1: Number of samples by population for the high quality harmonized set of 4,097
whole genomes from the Human Genome Diversity Project (HGDP) and the 1000 Genomes
Project (1000G).

Population 1000 Genomes HGDP Total
African 879 (28%) 110 (12%) 989 (24%)
Admixed American 487 (15%) 62 (7%) 549 (13%)
Central/South Asian 599 (19%) 184 (20%) 783 (19%)
East Asian 583 (18%) 234 (25%) 817 (20%)
European 618 (20%) 153 (16%) 771 (19%)
Middle Eastern 0 158 (17%) 158 (4%)
Oceanian 0 30 (3%) 30 (1%)
Total 3,166 931 4,097
Unrelated individuals 2,520 880 3,400

structure (Manichaikul et al. [2010]). Then, PCs were estimated using the PC-AiR method

(principal components analysis in related samples) that allows to identify a diverse subset

of mutually unrelated individuals such that the top PCs are constructed to only reflect the

ancestry and to be robust to both known or cryptic relatedness in the sample (Conomos

et al. [2015]). Finally, the GRM was constructed from pair-wise kinship coe"cients esti-

mated using the residuals of a linear regression model after adjusting for the ancestry PCs

calculated in the previous step. Hence, the PC-Relate method divides genetic correlations

among sampled individuals into a component which represents familial relatedness, and an-

other component which represents population structure (Conomos et al. [2016]). To induce

additional confounding due to population stratification, we simulated di!erent intercepts

↪0k, k = 1, .., 7, for each population in Table 5.1 using a U(0.1, 0.3) distribution.

For all individuals, we used the sex covariate available from the data set, and we simulated

five measurements for age using a Normal distribution, after which 1 to 5 measurements were

uniformly sampled to allow di!erent number of observations per individual. To generate

correlated observations for each individual, we simulated one random intercept, one random

slope for the e!ect of age and one additional random slope representing the e!ect of a

time-varying environmental exposure from a Gaussian distribution b1i → N (0,D) with the
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covariance matrix D equal to

⟨︂

⟩︂⟩︂⟩︂⟩︂⨆︁

0.4 ↓0.2 0.1

↓0.2 0.5 0.2

0.1 0.2 0.3

⨆︂

∮︁∮︁∮︁∮︁∮︂
. Then, for i = 1, ..., 4097, j = 1, ..., ni,

continuous phenotypes were generated using the following model

yij = logit(↪0k)↓ log(1.3)↑ Sexi + log(1.05)↑ Ageij +
100)︄

s=1

ϑs ·Gis + b0i + Zijb1i + εij,

(5.4)

where Gis is the (standardized) number of alleles for the s
th causal SNP, Zij is the covariate

vector for subjects-specific random e!ects b1i, and εij is an error term from a standard

normal distribution N (0,ϖ). To simulate binary traits, we used a cuto! value c determined

such that P(y01
ij

= 1) = P(yij > c) = 0.2.

5.3.2 Results

Estimation of variance components

We first simulated continuous phenotypes under the null model of no genetic association to

study the impact on the variance components estimation procedure of including or not the

first 10 PCs to control for genetic ancestry, as well as the impact of using a sparse GRM versus

using the full GRM. In the upper-right panel of Figure 5.1, we see that the median relative

bias for all variance parameters is close to zero when fitting the model with the full GRM and

the first 10 PCs, with the interquartile range (IQR) below ±10% for all parameters, except for

the covariance parameter ς3. When replacing the full GRM by a sparse GRM (lower-right),

the median relative bias for the variance of the non polygenic random intercept ς1 is around

↓10%, while the median relative bias for the variance component of the polygenic random

intercept ϱ is around 10%. Thus, the non-polygenic random intercept is capturing some of

the variability that is not captured by the polygenic random intercept due to the fact that

we are using a sparse GRM. The impact of using no PC to adjust for population structure
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in the sample is observed in the upper-left panel of Figure 5.1, where the median relative

bias for the variance component of the polygenic random intercept ϱ is around 30%. This is

explained by the fact that the PC-Relate estimator of the kinship coe"cients is constructed

after adjusting for PCs as predictors in linear regression models, and, thus, the residuals

are orthogonal to the PCs. Genetic similarities due to more distant ancestry are therefore

accounted for by using the PCs as covariates in the null model. When using only a sparse

GRM without any PCs to adjust for both population structure and closer relatedness (lower-

left), the median relative bias for ϱ and ς1 are quite important, as expected. Finally, in all

four modelling strategies, the relative bias for the dispersion parameter ϖ which corresponds

to the residual variance term of the errors εij remains low. Adding the first 20 PCs to adjust

for population structure decreased the mean relative bias for the variance component of the

polygenic random intercept by a small amount compared to when using the first 10 PCs

only (Supplementary Table C.1). Results for binary traits (Supplementary Table C.3 and

Supplementary Figure C.1) are consistent to what is observed for continuous traits, that is

adjusting for population structure with the first 10 PCs reduces the relative bias of variance

components, and the use of a sparse GRM slightly increases the relative biases compared

to using a full GRM. Compared to simulations of continuous phenotypes, relative biases for

variance components are more important in simulations with binary traits.

We then simulated continuous phenotypes with 100 causal predictors explaining 2% of her-

itability to assess the impact on the estimation of variance components when the model is

misspecified, since under our proposed model, we estimate all variance parameters under the

null model of no genetic association. As can be seen in Figure 5.2, estimates of the variance

parameters for the two random intercepts are upwardly biased even when using the full GRM

with the first 10 PCs to account for population structure. When replacing the full GRM by

a sparse one, the median relative bias for the variance of the non polygenic random intercept

ς1 remains around ↓10%, which is similar to when the null model is the true model (Figure

5.1). However, we observe an increased relative bias when estimating the variance component
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Figure 5.1: Relative bias of variance parameters estimated under the null model of no genetic
association when simulating continuous phenotypes with no causal predictor. Top-left panel:
Model with a full GRM and no PC to control for genetic ancestry. Top-right panel: Model
with a full GRM and 10 PCs to control for genetic ancestry. Bottom-left panel: Model with
a sparse GRM and no PC to control for genetic ancestry. Bottom-right panel: Model with
a sparse GRM and 10 PCs to control for genetic ancestry.
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Table 5.2: Computation time in minutes to fit the AI-REML algorithm as a function of the
modelling strategy for the simulation model with no causal predictor (0% heritability) and
for the simulation model with 100 causal predictors explaining 2% of heritability for both
continuous and binary phenotypes. We present the median value with IQR in brackets.

Binary phenotypes Continuous phenotypes
Number of PCs GRM 0% 2% 0% 2%
0 full 9.9 (7.0) 8.3 (7.0) 7.7 (0.4) 6.9 (1.0)

sparse 2.7 (1.9) 2.5 (0.9) 1.3 (0.2) 1.4 (0.1)
10 full 7.3 (7.6) 8.3 (2.6) 7.4 (0.3) 6.7 (1.1)

sparse 1.6 (1.0) 1.2 (1.2) 1.1 (0.2) 1.2 (0.1)
20 full 9.0 (8.1) 8.5 (4.4) 7.5 (1) 8.2 (1.2)

sparse 1.6 (0.9) 1.7 (1.2) 1.3 (0.1) 1.7 (0.1)

of the polygenic random e!ect ϱ , with a median value lying above 30%, compared to a me-

dian relative bias of 10% when the model is not misspecified. Again, when fitting the model

with either the full or sparse GRM but without any PC to control for population structure,

estimates of variance parameters for the two random intercepts have large relative biases.

Adding the first 20 PCs to adjust for population structure decreased the mean relative bias

for the variance component of the polygenic random intercept by a small margin compared

to when using the first 10 PCs only (Supplementary Table C.2). Results for binary traits

(Supplementary Table C.4 and Supplementary Figure C.2) are again consistent to results

for continuous traits, albeit with relative biases that are larger in magnitude.

We present in Table 5.2 the computation time in minutes to fit the AI-REML algorithm when

using a full GRM versus a sparse GRM for the simulation model with no causal predictor

and for the simulation model with 100 causal predictors explaining 2% of heritability. We see

that although using a sparse GRM results in biased estimates of the variance parameters for

the two random intercepts, the computation time is reduced by a factor of five for continuous

phenotypes and by a factor of four for binary phenotypes.
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Figure 5.2: Relative bias of variance parameters estimated under the null model of no genetic
association when simulating continuous phenotypes with 100 causal predictors explaining
2% of heritability. Top-left panel: Model with a full GRM and no PC to control for genetic
ancestry. Top-right panel: Model with a full GRM and 10 PCs to control for genetic ancestry.
Bottom-left panel: Model with a sparse GRM and no PC to control for genetic ancestry.
Bottom-right panel: Model with a sparse GRM and 10 PCs to control for genetic ancestry.
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Selection of genetic predictors

We present in Figure 5.3 the Precision-Recall (PR) curve to illustrate the performance of

our proposed method in retrieving causal genetic predictors as a function of the modelling

strategy for the simulation model with continuous phenotypes and 100 causal predictors

explaining 2% and 10% of heritability respectively. The PR curve displays the precision

of a method, i.e. the proportion of selected predictors that are truly causal, as a function

of the true positive rate (TPR), that is the percentage of true causal predictors that are

selected by the model. Because the number of non-causal predictors is significantly greater

than the number of causal predictors in genetic association studies, the PR curve is a more

robust tool than the receiving operator characteristic (ROC) curve which is sensitive to the

imbalance between the number of causal and non-causal predictors, since the false positive

rate (FPR) is naturally weighted down due to the very large number of true negatives (Saito

and Rehmsmeier [2015]). We see that including the 10 PCs as covariates to adjust for

population structure in the penalized model greatly increases the ability to retrieve causal

predictors. On the other hand, using a sparse GRM in place of the full GRM to adjust for

relatedness in both the null and penalized models has little impact on the performance of the

model, which is encouraging. Results for binary phenotypes, presented in Supplementary

Figure C.3, are consistent with results obtained when simulating continuous phenotypes.

Finally, median computation times to fit the lasso regularization path for our proposed

penalized mixed model is presented in Table 5.3. Using a sparse GRM in place of the full

GRM reduces the median computation time by at least a factor of two in all simulations.

Next we compared the performance of our method versus that of a standard lasso, us-

ing the Julia package GLMNet which wraps the Fortran code from the original R package

glmnet (Friedman et al. [2010b]). The default implementation for glmnet and pglmm is to

find the smallest value of the tuning parameter ◁ such that no predictors are selected in

the model, and then to solve the penalized minimization problem over a grid of decreas-
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Figure 5.3: Precision-recall curve for selection of genetic predictors for our proposed method
as a function of the modelling strategy. The left and right panels illustrate the average
performance of the method over 50 replications for the simulation model with continuous
phenotypes and 100 causal predictors explaining 2% and 10% of heritability respectively.
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ing values of ◁. For these two methods, we used a grid of 100 values of ◁ on the log10

scale with ◁min = 0.01◁max, where ◁max is chosen such that no predictors are selected in

the model. We also compared the performance of our method with that of GMMAT, using

the freely available R package. Variable selection for GMMAT was performed by varying

the cuto! value pϑ such that all predictors with a p-value smaller than pϑ were retained in

the model. For GMMAT and our proposed method, we use a sparse GRM to account for

relatedness between individuals. For all three methods, population structure was accounted

for by adding the first 10 PCs as additional covariates. As can be seen on Figure 5.4, our

proposed method’s ability to retrieve causal predictors is uniformly superior to that of both

119



Table 5.3: Computation time in minutes to fit the lasso regularization path for each modelling
strategy for the simulation model with no causal predictor (0% heritability) and for the
simulation model with 100 causal predictors explaining 2% of heritability for both continuous
and binary phenotypes. We present the median value with IQR in brackets.

Binary phenotypes Continuous phenotypes
Number of PCs GRM 0% 2% 0% 2%
0 full 82.3 (17.6) 88.0 (19.8) 60.8 (18.6) 66.8 (26.4)

sparse 34.2 (10.5) 35.1 (6.9) 25.0 (15.2) 24.2 (9.5)
10 full 96.0 (14.8) 97.2 (15.3) 113 (29.4) 81.5 (19.7)

sparse 45.2 (8.6) 40.0 (8.5) 57.5 (16.3) 35.1 (8.1)

glmnet and GMMAT. Results for binary phenotypes, presented in Supplementary Figure

C.4, are again consistent with those obtained when simulating continuous phenotypes.
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Figure 5.4: Precision-recall curve for selection of genetic predictors for the three compared
methods. The left and right panels illustrate the average performance with 95% confidence
interval of the methods over 50 replications for the simulation model with continuous phe-
notypes and 100 causal predictors explaining 2% and 10% of heritability respectively.
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5.4 Identification of genetic predictors for emotional and

behavioral di!culties in childhood and adolescence

Emotional and behavioral di"culties in childhood and adolescence are associated with sig-

nificant impairment in various domains of functioning and are a major public health con-

cern (Ogundele [2018]). The etiology of such problems is complex and involves both genetic

and environmental determinants that are likely to interact and change over the course of

development. Understanding the genetic and environmental risk factors underlying these

di"culties is crucial for the development of e!ective prevention and intervention strategies.

However, most of the research in genetic epidemiology is conducted in samples of adults, and

then generalized to children and adolescences. This is mainly due to the fact that samples to

conduct GWAS in children and adolescent are of relatively small size, which is not adapted

to the standard GWAS approaches.

The objective of this study is to identify genetic predictors for emotional and behavioral

di"culties in childhood and adolescents from the the Quebec Longitudinal Study of Child

Development (QLSCD) and the Quebec Newborn Twin Study (QNTS). The QLSCD was

designed to examine the long-term associations of preschool physical, cognitive, social, and

emotional development with biopsychosocial development across childhood, adolescence, and

young adulthood (Orri et al. [2021]). Data have been collected annually or every 2 years

from children born in 1997/1998 in the Canadian province of Quebec and followed up from

ages 5 months to 25 years. Data were collected, in either English or French, by trained

interviewers from the person most knowledgeable about the child (mother in > 98% of the

cases). The QNTS is a population-based cohort initially including 1324 twins (i.e., 662

pairs) born between April 1st, 1995 and December 31st, 1998 in the greater Montreal area

of the province of Québec, Canada (Boivin et al. [2012]). Zygosity was initially assessed via

questionnaire and confirmed with DNA tests on a subsample of n = 123 same-sex pairs (96%

correspondence; (Forget-Dubois et al. [2003])).
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5.4.1 Outcomes and covariates

When children were 6, 7, 8, 9, 10, and 12 years of age, school teachers rated their social

and emotional behavior in the past 6 months using validated questionnaires. For this study,

we focused on three externalizing behaviors: aggression, hyperactivity and opposition. Hy-

peractivity, aggression and opposition externalizing behaviors scores were rated on a 3-point

Likert scale (0=never/1=sometimes/2=often) using respectively six, ten and four validated

items from the Social Behavior Questionnaire (Collet et al. [2022]), and then averaged at

each age (range 0-2, higher scores indicating higher propensity to display such behavior).

Children’s behavior was assessed by a di!erent teacher each year, thus reducing risks of

rater bias. Socio-economic status was derived using household income, education level and

prestige of the profession of both parents, and then standardized with zero mean and unit

standard deviation (SD) (Institut de la statistique du Québec, Direction des enquêtes lon-

gitudinales et sociales [2016]). We dichotomized the variable (Low vs High) using 0 as the

cuto! value.

5.4.2 Genotype data

Genome-wide genotype data was available from n = 721 participants in the QLSCD cohort

and n = 641 participants in the QNTS cohort. Biological samples from the QNTS partic-

ipants were genotyped in two batches, the first in 2016 and the second in 2019. QLSCD

participants were genotyped in 2016. For all batches, Illumina PsychArrayv1.X was used

with assembly b37. Data were exported in FWD/REV format using Illumia’s GenomeStudio

software. Quality control (QC) was conducted with PLINK v1.90b6.20 and R v4.0, and all

steps are detailled in Appendix C.3. For the calculation of ancestry components used to

determine genetic outliers and as covariates in the analyses, pre-imputation genotype data

were used. Genetic outliers were defined as individuals with a distance from the mean of

> 4 SD in the first eight multidimensional scaling (MDS) ancestry components. Additional

variant filtering steps for calculation of ancestry components were the removal of variants
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with a MAF < 0.05 or Hardy-Weinberg equilibrium (HWE) exact test p-value < 10→3 in

sets of unrelated individuals, removal of variants mapping to the extended MHC region

(chromosome 6, 25-35 Mbp) or to a typical inversion site on chromosome 8 (7-13 Mbp), and

linkage disequilibrium (LD) pruning. Next, the pairwise identity-by-state (IBS) matrix of all

individuals was calculated using filtered genotype data. MDS analysis was performed on the

IBS matrix using the eigendecomposition-based algorithm in PLINK v1.90b6.7 (QLSCD)

and PLINK v1.90b5.2 (QNTS). Imputation was conducted using SHAPEIT v2 (r837) (De-

laneau et al. [2013]), IMPUTE2 v2.3.2 (Howie et al. [2009]), and the 1000 Genomes Phase 3

reference panel. After imputation, variants with a MAF < 1%, an HWE exact test p-value

< 1↑ 10→6, and an INFO metric < 0.8 were removed. Finally, variants that were not SNPs

or that were strand-ambiguous were removed, leaving about four millions imputed SNPs for

the analysis. Imputed SNPs were converted into PLINK binary format.

5.4.3 Methods

Imputation of missing data

Socio-economic status was missing for 3 (0.42%) participants from the QLSCD cohort and

110 (17%) participants from the QNTS cohort. Thus, we imputed the missing covariate using

the average in each cohort independently. A significant number of children whose genotype

data were available had missing data for all time points (1% of participants in the QLSCD

cohort; 12% of the participants in the QNTS cohort). In order to avoid discarding them

from GWAS which may reduce the power to find any significant SNPs, we imputed their

externalizing scores using the average score stratified by cohort, sex, binary socio-economic

status and age. For children who were lost to follow-up, externalizing scores were imputed

using the last observation carried forward (LOCF) procedure. In the following analyses, we

compare the results between the complete case analysis (CCA, N = 1217) and the single

imputation (SI, N = 1357) approach.
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GWAS

We ran a GWAS using the GMMAT package in R using age, age2, cohort, binary socio-

economic status, sex and the first 10 PCs as fixed-e!ects covariates in the model. To account

for the correlations between repeated measurements, we added a random intercept and a

random slope for age. To account for the genetic correlation between individuals, we used a

sparse GRM that was calculated using the PC-Relate method (Conomos et al. [2016]). The

GWAS analysis was performed on just over 4 millions imputed SNPs that passed QC.

Prediction model

We used our proposed lasso penalized mixed model for selecting important predictors and

for building a prediction model for the externalizing behaviors. We used the same fixed-

e!ects covariates in the model as for the GWAS. To account for the correlations between

repeated measurements, we again added a random intercept and a random slope for age,

and we used a sparse GRM to account for the genetic correlation between individuals. We

fitted the model removing the last observation for each participant (train set), and used

the last observation for each participant (test set) to assess the accuracy of the predicted

externalizing scores. We compared the performance of the lasso penalized mixed model

with an adaptive lasso mixed model, using the bigstatsr package in R to fit an elastic-net

penalty model on the training data. More specifically, we used the estimated predictors

coe"cients from the elastic-net model to define the adaptive lasso weights to be used in our

proposed penalized mixed model, such that for the j
th predictor, the weight was defined as

ŵj = |ϑ̂
j

enet

|→0.25.

To assess the calibration and predictive performance of the prediction models, we report a

mean squared prediction error (MSPE)-based definition of the R
2 coe"cient of determina-
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tion (Staerk et al. [2024]) defined as

R
2
MSPE

= 1↓
{︄

m

i=1(yi ↓ yî)2{︄
m

i=1(yi ↓ ȳ)2
,

where yî is the predicted score for the ith participant, for i = 1, ...,m, and ȳ is the mean score

in the test set. We note that if R2
MSPE

is negative, this means that a simple intercept model

on the test data performs better than the polygenic model in predicting externalizing scores.

Compared to the squared correlation between predicted and observed values which only

focuses on the discriminative performance of the model, R2
MSPE

takes both discrimination

and calibration of the prediction model into account. To reduce the number of predictors to

incorporate in the penalized mixed models, we merged the list of imputed SNPs that passed

QC (→ 4 millions SNPs) with the list of SNPs from the third phase of the International

HapMap Project (The International HapMap Consortium [2003], Pain [2023]), containing a

total of 1.2 millions of SNPs that are generally well imputed in most studies. After merging

both list of SNPs, the final analysis included a total of 735K SNPs to be included in our

penalized regressions mixed models.

5.4.4 Results

Characteristics of the QLSCD and QNTS cohorts participants are presented in Table 5.4.

For both cohorts, externalizing scores are higher on average in males compared to females.

Aggression mean scores are similar between the two cohorts, as opposed to hyperactivity

and opposition mean score values that are higher in the QNTS cohort. We present in Table

5.5 the list of SNPs with a p-value smaller than 5 ↑ 10→8 for either the CCA or SI model,

which is generally considered as the genome-wide significance threshold (Pe’er et al. [2008]).

P-values were obtained by fitting the GMMAT model on all imputed SNPs, using a score test

statistics that was computed using variance components estimated under the null model of no

genetic association. When two significant SNPs were in LD, defined as a squared correlation
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based on genotypic allele counts greater than 0.2, only the most significant was retained. A

total of 9 SNPs were significant in the CCA model for the hyperactivity externalizing score,

but none were significant in the SI model. Similarly, a total of 9 SNPs were significant in

the CCA model for the aggression externalizing score, but none were significant in the SI

model. Finally, 2 SNPs were significant in the GWAS of the opposition externalizing score

for both analyses. We note that there was no overlap between the SNPs that were found to

be significant among the three externalizing scores, which may be surprising given that the

correlation coe"cient between the three scores ranges from 0.57 to 0.70.

The predictive performance of the lasso and adaptive lasso penalized mixed models as a

function of the number of selected genetic predictors is presented in Supplementary Figures

C.5 and C.6 respectively. For the lasso penalized mixed model, the best predictions for both

imputation methods are obtained for the opposition externalizing score (CCA R
2
MSPE

=

0.310 and SI R
2
MSPE

= 0.441), followed by hyperactivity (CCA R
2
MSPE

= 0.304 and SI

R
2
MSPE

= 0.420) and aggression (CCA R
2
MSPE

= 0.261 and SI R2
MSPE

= 0.403) as presented

in Table 5.6. The number of selected genetic predictors in all models is relatively high,

ranging from 601 to 851 for the CCA, and from 965 to 1163 for the models using SI to

impute missing values.

For the adaptive lasso penalized mixed model, the best predictions for both imputation

methods are again obtained for the opposition externalizing score (CCA R
2
MSPE

= 0.294 and

SI R2
MSPE

= 0.439), followed by hyperactivity (CCA R
2
MSPE

= 0.301 and SI R2
MSPE

= 0.411)

and aggression (CCA R
2
MSPE

= 0.235 and SI R
2
MSPE

= 0.376). Thus, the proportion of

variance explained by the estimated polygenic score is slightly lower in the adaptive lasso

compared to the lasso regularized prediction model. On the the other hand, the number of

selected genetic predictors in all models is comparatively lower in the adaptive lasso mixed

model, ranging from 419 to 628 for the CCA, and from 744 to 966 for the models using SI

to replace missing values.
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The set of overlapping SNPs, i.e. SNPs that were selected by the penalized mixed model for

all three externalizing scores included 3 SNPs in the complete case analysis and 16 SNPs in

the single imputation analysis as presented in Supplementary Table C.6. A total of 2 SNPs

in the complete case analysis and 17 SNPs in the single imputation analysis were selected

by the adaptive penalized mixed model for all three externalizing scores as presented in

Supplementary Table C.7. We report for each SNP the gene where they are located when

applicable, and if they are intronic, missense or non coding variants.

Finally, we examined the impact of imputing missing data on the variance component esti-

mates under our proposed model. As shown in Supplementary Table C.5, the estimates for

the polygenic variance component (ϱ̂) were consistent in both the CCA and the SI analysis.

However, imputing missing data led to lower estimates for the residual variance parameter

(ϖ̂) compared to CCA, while the estimates for the variance of the non-polygenic random

intercept (ϖ1) were higher in the SI analysis. This result aligns with the imputation method

we used, which involved imputing missing externalizing scores using stratified sample av-

erages, thereby reducing variability between individuals. The increase in within-individual

variability after imputing missing data suggests that di!erences between individuals play a

significant role relative to within-individual fluctuations in explaining trajectories of exter-

nalizing behaviors.
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Table 5.4: Characteristics of the Quebec Longitudinal Study of Child Development (QLSCD)
and the Quebec Newborn Twin Study (QNTS) participants.

Cohort
QLSCD QNTS

Females Males Total Females Males Total
n 398 (55%) 323 (45%) 721 319 (50%) 317 (50%) 636
Socio-economic status (%)

High 206 (52%) 165 (51%) 371 (51%) 133 (42%) 139 (44%) 272 (43%)
Aggression score, Mean (SD)

6 years old 0.16 (0.28) 0.33 (0.45) 0.23 (0.37) 0.18 (0.36) 0.38 (0.54) 0.28 (0.47)
7 years old 0.15 (0.30) 0.34 (0.40) 0.23 (0.36) 0.11 (0.29) 0.43 (0.54) 0.27 (0.46)
8-9 years old 0.14 (0.29) 0.31 (0.40) 0.22 (0.35) 0.10 (0.30) 0.37 (0.54) 0.23 (0.45)
10 years old 0.11 (0.23) 0.32 (0.45) 0.20 (0.36) 0.11 (0.31) 0.35 (0.50) 0.23 (0.43)
12 years old 0.09 (0.20) 0.26 (0.39) 0.16 (0.31) 0.02 (0.10) 0.25 (0.42) 0.13 (0.32)

Hyperactivity score, Mean (SD)
6 years old 0.27 (0.39) 0.56 (0.56) 0.39 (0.49) 0.41 (0.50) 0.70 (0.65) 0.55 (0.60)
7 years old 0.28 (0.40) 0.57 (0.56) 0.41 (0.50) 0.36 (0.48) 0.65 (0.61) 0.51 (0.57)
8 years old 0.28 (0.40) 0.53 (0.52) 0.39 (0.47) 0.57 (0.44) 0.67 (0.44) 0.62 (0.44)
9 years old - - - 0.30 (0.46) 0.60 (0.62) 0.45 (0.56)
10 years old 0.17 (0.34) 0.50 (0.54) 0.32 (0.47) 0.25 (0.41) 0.56 (0.55) 0.41 (0.51)
12 years old 0.12 (0.24) 0.42 (0.48) 0.25 (0.40) 0.21 (0.38) 0.46 (0.52) 0.33 (0.47)

Opposition score, Mean (SD)
6 years old 0.19 (0.33) 0.38 (0.49) 0.27 (0.42) 0.27 (0.45) 0.45 (0.56) 0.36 (0.51)
7 years old 0.17 (0.34) 0.40 (0.51) 0.27 (0.44) 0.21 (0.38) 0.46 (0.57) 0.34 (0.50)
8-9 years old 0.20 (0.40) 0.41 (0.49) 0.29 (0.45) 0.23 (0.44) 0.44 (0.56) 0.33 (0.51)
10 years old 0.18 (0.36) 0.41 (0.55) 0.28 (0.47) 0.22 (0.41) 0.43 (0.53) 0.33 (0.49)
12 years old 0.15 (0.33) 0.40 (0.51) 0.26 (0.44) 0.16 (0.28) 0.41 (0.52) 0.28 (0.43)
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Table 5.6: Performance of the best prediction models on the test set for each externalizing
score, imputation model and regularization procedure.

Lasso mixed model Adaptive lasso mixed model
Externalizing Number of selected Number of selected
score Analysis genetic predictors MSPE R

2
MSPE genetic predictors MSPE R

2
MSPE

Aggression Complete case analysis 601 0.083 0.261 419 0.086 0.235
Single imputation 965 0.066 0.403 744 0.069 0.376

Hyperactivity Complete case analysis 771 0.147 0.304 533 0.147 0.301
Single imputation 1080 0.119 0.420 905 0.121 0.411

Opposition Complete case analysis 851 0.135 0.310 628 0.138 0.294
Single imputation 1163 0.109 0.441 966 0.109 0.439

MSPE = Mean squared prediction error.
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5.5 Discussion

We proposed a methodology for fitting penalized longitudinal mixed models with more than

a single random e!ect to account for random individual e!ects not attributable to the genetic

similarity between individuals. Our proposed model is based on regularized PQL estimation,

which does not require making any assumption about the distribution of the outcome, but

only the mean-variance relationship. We studied the performance of the AIREML algorithm

when simulating population structure and subjects relatedness for continuous and binary

traits. We showed that using PC-AiR to calculate PCs that account for genetic correlations

due to distant common ancestry and PC-Relate to estimate kinship due to the sharing of more

recent ancestors was e!ective in controlling the relative bias of variance components estimates

under the null model of no genetic association. In addition, we showed that the use of a sparse

GRM greatly reduced the computational burden of estimating the variance components and

fitting the penalized mixed model, while having little impact on the performance of the lasso

penalized mixed model in retrieving important predictors. In simulation studies for both

continuous and binary longitudinal traits using real genotype data, we demonstrated that

our proposed model achieved better precision (lower FDR) than an univariate association

test (GMMAT) and that of a lasso penalized model without any random e!ect.

We further showed that omitting to add the top PCs as covariates in the model to adjust

for population stratification led to an increase in the relative bias of variance components

and in the false discovery rate (FDR) of the lasso penalized mixed model. This is due

to PC-Relate only measuring the genetic relatedness due to alleles shared identically by

descent (IBD) from recent common ancestors, because genetic relatedness due to more distant

ancestry have been adjusted for by previously regressing the genotype values on the top PCs.

Using a di!erent approach to estimate the kinship coe"cients between individuals, such

as the REAP (Thornton et al. [2012]) and RelateAdmix (Moltke and Albrechtsen [2013])

methods may circumvent the need to add the top PCs as covariates in the model to adjust
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for population structure (Chen et al. [2020]). However, the advantage of PC-Relate compared

to the aforementioned methods is that it does not require model-based estimates of individual

ancestry and population-specific allele frequencies nor using external reference population

panels.

Albeit consistent estimation of variance components in mixed models is often overlooked in

genetic association studies, we studied the impact of di!erent modelling strategies on the

relative bias of the estimates, and showed that increased relative biases were associated with

an increase of the FDRs in the penalized model. Since the total phenotypic variance is

usually expressed as the sum of polygenic and residual variances, when the polygenic vari-

ance is overestimated, the model fails to capture the correct extent of the genetic influences

on the phenotype. Furthermore, the variance attributable to the error terms or to within-

individual fluctuations in longitudinal studies will be underestimated, leading to potentially

inflated type I error rates. In our approach, as we do not test for individual significance of

the predictors, this would be translated in observing an increase of the FDR, as was shown

in the simulation studies. Additionally, we showed in St-Pierre et al. [2023] that the inverse

polygenic variance component ϱ→1 can be seen as a ridge regularization parameter for penal-

ization of the individual polygenic random intercepts. Thus, overestimating the polygenic

variance component ϱ results in overfitting of the contribution of the PCs obtained from the

spectral decomposition of the GRM in explaining the observed phenotypic variance. In other

words, it means that the model is overestimating the heterogeneity of the individual random

intercepts. From a bias-variance tradeo! point of view, overestimation of the polygenic vari-

ance component results in increasing the variability of the random e!ects estimation, which

will be reflected in higher error rates in independent data sets.

In a real case study for identifying important genetic predictors of aggression, hyperactivity

and opposition externalizing behaviors in childhood and adolescents from the QLSCD and

QNTS cohorts, we fitted the GMMAT model and our proposed penalized mixed model and
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showed that the two methods identified di!erent sets of potentially important SNPs. We

performed an analysis based on single imputation method to handle missing data due to

non-response or loss to follow-up, and compared the results with a complete case analysis.

We found two SNPs (rs116541675, rs145226968) that were genome-wide significant (p-value

< 5 ↑ 10→8) for the opposition externalizing behaviour in both the single imputation and

complete case analyses. For the hyperactivity and aggression behaviours, we found nine

mutually exclusive SNPs that were significant in the complete case analysis only. We further

demonstrated the utility of our proposed methodology in predicting externalizing behaviours

scores in children from the combined QLSCD and QNTS cohorts, and showed using an

MSPE-based definitions of the R
2 coe"cient of determination that the obtained predictions

were well-calibrated, and that genetic e!ects improved the accuracy of the predicted scores

compared to a model without any genetic contribution. In addition, we fitted an adaptive

lasso penalized mixed model with weights inversely proportional to e!ect sizes estimates

obtained via an elastic-net regularized regression. We found that the adaptive lasso mixed

model resulted in sparser models than the lasso mixed model while the predicted scores

accuracy was comparable.

In this study, we have not considered gene-environment interaction (GEI) e!ects. Conducting

genome-wide GEI analyses would contribute to identify important genetic variants whose

e!ects are modified by environmental factors, and could improve the accuracy of a prediction

model as predictors of externalizing behaviours are likely heterogeneous among di!erent

environmental exposures, such as socio-economic status. To our knowledge, there exists

no GEI univariate association test that allows to account for both genetic similarity and

correlation between repeated measurements within an individual for both continuous and

binary traits. Further work is needed to assess the computational e"ciency and evaluate

the estimation and selection accuracy of a penalized hierarchichal variable selection method

based on regularized PQL for longitudinal outcomes. An interesting idea to explore is the

use of adaptive weights combined with a sparse group lasso penalty in order to perform
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hierarchichal selection of main genetic and GEI e!ects in longitudinal studies (Mendez-

Civieta et al. [2020]).

One limitation of the proposed methodology is that PQL estimation results in biased esti-

mators of both regression coe"cients and variance components in GLMMs (Jang and Lim

[2009]). It would be interesting to explore if first-order and second-order correction proce-

dures that were proposed in the literature to correct for this bias (Breslow and Lin [1995],

Lin and Breslow [1996]) would increase the performance of the penalized mixed model in

retrieving important predictors when between and within individuals correlations are impor-

tant. Moreover, it is known that estimated e!ects by lasso will have large biases because

the resulting shrinkage is constant irrespective of the magnitude of the e!ects. Alternative

regularizations like the Smoothly Clipped Absolute Deviation (SCAD) (Fan and Li [2001])

and Minimax Concave Penalty (MCP) (Zhang [2010]) could be explored. Another limita-

tion of our proposed method is that we cannot directly analyse imputed SNPs in the dosage

format as we rely on the SnpArrays package (Zhou et al. [2019b]) developed in the julia

programming language which provides computationally e"cient routines for reading and

manipulating compressed storage of biallelic SNP data. Finally, when pairwise correlations

between SNPs in blocks of LD are important, it is known that the lasso has a tendency

to only select one variant among a group of correlated variants. In low-dimensional set-

tings, Freijeiro-González et al. [2021] showed through a simulation study that the adaptive

lasso with weights based on elastic-net regression estimates performed well to retrieve causal

predictors in di!erent dependence structures. This is the approach we followed in the real

case study. Another direction to explore would be replacing the lasso regularization by an

elastic-net penalty in our proposed penalized longitudinal mixed model.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, I have proposed computationally e"cient mixed-e!ects models for variable

selection in the context of genetic association studies to address the spurious selection of

variables due to confounding by population stratification and close relatedness, and the

computational complexity associated with fitting high-dimensional mixed models.

In the first manuscript presented in Chapter 3, a lasso regularized GLMM for selecting impor-

tant predictors and estimating their e!ects in high-dimensional GWAS data was proposed

and implemented. Building on the work of Bhatnagar et al. [2020a] for lasso regularized

LMMs, I relaxed the normality assumption of the phenotype distribution, and obtained an

analytical form for the loss function by using PQL estimation. In PQL estimation, because

the random e!ects vector is treated as a fixed e!ect parameter, it is estimated in a similar

manner to other fixed e!ects as in a GLM. Thus, minimizing the lasso regularized PQL

loss function with respect to the fixed and random e!ects respectively is equivalent to it-

eratively solving two penalized WLS problems. By using the spectral decomposition of the

variance-covariance matrix to rotate the data, the estimate for the random e!ects vector can
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be obtained as the solution to a generalized ridge WLS problem where the fixed e!ect pa-

rameters of the model are held constant. By profiling out the random e!ects vector estimate

from the objective function and replacing it by its PQL estimate, the solution for the genetic

predictors fixed e!ects are obtained by solving a simple lasso regularized WLS regression.

Thus, one could use an existing implementation of lasso regularization such as glmnet to

obtain estimates for the genetic predictors fixed e!ects. Nonetheless, I decided to implement

the coordinate descent algorithm using the julia programming language (Bezanson et al.

[2017]) to make it reusable and adaptable for the work presented in Chapters 4 and 5.

A key distinction with the approach of Bhatnagar et al. [2020a] is that I proposed estimating

the variance components of the model only once under the null hypothesis of no genetic

e!ects. This is the typical approach in mixed-model association tests and is known as the

P3D (population parameters previously determined) method (Zhang et al. [2010]). While

I did not assess the implications of this approach on the estimation and selection accuracy

of my proposed model, it is important to note that the impact of reestimating the variance

components on the computational requirements would be high. Indeed, by proposing to use

a lower bound on the variance-covariance matrix of the working data (Böhning and Lindsay

[1988]), I showed that a single spectral decomposition of this matrix is needed, similarly to

the factored spectrally transformed linear mixed model (FaST-LMM) algorithm proposed

by Lippert et al. [2011]. For GLMMs, this is only possible if the variance components of

the model are considered to be known, or estimated once under the null model. Moreover, I

showed in Section 3.2.2 of Chapter 3 that including a random e!ect with variance-covariance

proportional to a known GRM is equivalent to a ridge regularized regression where each

PC’s fixed e!ect is shrinked by a factor ϱ1̂→1!→1
i

with ϱ1̂
→1 the estimated variance component

for the polygenic random e!ect and !i the i
th eigenvalue of the GRM. Thus, an alternative

approach to estimating the polygenic random e!ect variance under the null model would

be to consider ϱ as an additional tuning parameter of the model, similarly to the lasso

tuning parameter ◁. An analogous approach has been proposed in the literature for LMMs
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by Runcie and Crawford [2019].

By simulating random genotypes from the BN-PSD admixture model (Ochoa and Storey

[2021]) for 10 or 20 subpopulations with one dimensional geography or independent sub-

populations, we showed that including a random e!ect with variance-covariance structure

proportional to the GRM has better selection, estimation and prediction accuracy than a

logistic lasso with PC adjustment when the number of subpopulations was greater than the

number of PCs included. I also showed that the lasso penalized LMM proposed by Bhatna-

gar et al. [2020a] was unable to estimate predictor e!ects with accuracy for binary responses,

which greatly decreased its predictive performance compared to our proposed lasso penalized

GLMM. In the second simulation scenario, I sampled real genotype data from a subset of

related individuals from the UK Biobank data, and showed that our proposed model e!ec-

tively led to sparser models with higher precision and prediction accuracy than the lasso

LMM from Bhatnagar et al. [2020a] and a standard logistic lasso model with or without

PC adjustment. It was also demonstrated that using AIC as a model selection strategy led

to similar prediction performance than cross-validation, with even sparser models. Finally,

I demonstrated through the analysis of two polygenic binary traits in a subset of 6731 re-

lated individuals from the UK Biobank data that our method achieved higher predictive

performance, while also selecting consistently fewer predictors than a logistic lasso with PC

adjustment. Using sequential strong rules for solving the lasso problem such that most of

the 320,000 analyzed predictors were discarded from the optimization problem at each it-

eration [Tibshirani et al., 2012], fitting the full lasso path for the real case study took a

median time of 53 minutes. Thus, for relatively small sample sizes, our proposed sparse

regularized logistic mixed model remains computationally e"cient even when the number of

genetic variants is very large.

In the second manuscript presented in Chapter 4, a unified approach based on regularized

PQL estimation was derived for selecting important main genetic and GEI e!ects in high-
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dimensional GWAS data, while imposing hierarchy between main and interaction e!ects,

and accounting for shared environmental exposure that may induce additional relatedness

between individuals. To perform hierarchical selection of main genetic and GEI e!ects, that

is an interaction term can only be selected in the model if the corresponding main e!ects

are di!erent from zero, a sparse group lasso penalty was added to the PQL loss function.

Indeed, by regrouping together the main genetic and GEI e!ects and applying a group lasso

penalty, it ensured that hierarchical selection was maintained. Adding an additional lasso

penalty for the GEI e!ects allowed for main genetic e!ects to be selected in the model

without any interaction e!ect. We derived a proximal Newton-type algorithm with BCD

to find coordinate-wise updates of the fixed and random e!ects vector. As opposed to the

work presented in Chapter 3, we did not profile out the random e!ects vector estimate from

the objective function, because this approach requires rotating the phenotype and genotype

using the eigenvectors of the random e!ects covariance matrix which is computationally

demanding and requires storing in memory a very large amount of data. In fact, by showing

that the random e!ects vector estimate is obtained as the solution to a generalized ridge WLS

problem, we proposed estimating it using coordinate descent rather than Newton’s method,

which does not require using a lower bound on the variance-covariance matrix of the working

data. Thus, our proposed methodology is applicable to other exponential family distributions

such as the Poisson distribution for which no lower bound for the variance-covariance matrix

exists.

Simulations results showed that including and additional GRM to account for the shared

environmental exposure, as first proposed by Sul et al. [2016] when testing for association in

single-SNP mixed models, reduced the false positive rate (FPR) for selection of both GEI

and main e!ects. Using the F1 score as a balanced measure of the false discovery rate (FDR)

and true positive rate (TPR), we showed that in the hierarchical simulation scenarios, our

proposed method outperformed comparative methods for retrieving important GEI e!ects.

Moreover, using real data from the OPPERA study to explore the performance of our method
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in selecting important predictors of TMD, we were able to retrieve a previously reported

significant loci in a combined or sex-segregated GWAS.

In the third manuscript presented in Chapter 5, the methodology derived in the previous

two manuscripts was extended for fitting penalized longitudinal mixed models with more

than a single random e!ect to account for random individual e!ects not attributable to the

genetic similarity between individuals. The performance of the AIREML algorithm when

simulating population structure and subjects relatedness for continuous and binary traits

was studied, and it was shown that using the PC-AiR method (Conomos et al. [2015]) to

calculate PCs that account for genetic correlations due to distant common ancestry and the

PC-Relate method (Conomos et al. [2016]) to estimate kinship due to the sharing of more

recent ancestors was e!ective in controlling the relative bias of variance components estimates

under the null model of no genetic association for continuous traits. For binary traits, the

polygenic random e!ect heritability was consistently overestimated, even when simulating

data under no genetic association, that is when the model was correctly specified. It is

reported in the literature that PQL estimation results in biased estimators of both regression

coe"cients and variance components in GLMMs, especially for binary outcomes (Jang and

Lim [2009]), and first-order and second-order correction procedures were proposed to correct

for this bias (Breslow and Lin [1995], Lin and Breslow [1996]). Although accurate estimation

of variance components in mixed models is often not of interest or extensively discussed

in genetic association studies, it was demonstrated in the simulations of Chapter 5 that

increased relatives biases were associated with an increase of the FDRs in the penalized

model. Moreover, overestimation of the polygenic heritability results in overfitting of the

contribution of the GRM in explaining the observed phenotypic variance, meaning that the

model is overestimating the heterogeneity of the individual random intercepts. From a bias-

variance tradeo! point of view, overestimation of the polygenic variance component results

in increasing the variability of the random e!ects estimation, which will be reflected in higher

error rates in independent observations that were not used in the training model, such as
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cross-validation test sets or replication data sets.

In simulation studies for both continuous and binary longitudinal traits using real genotype

data, we demonstrated that our proposed model achieved better precision (lower FDR) than

the GMMAT model proposed by Chen et al. [2016] and that of a lasso penalized model

without any random e!ect. In a real-world case study aimed at identifying key genetic

predictors of aggression, hyperactivity, and opposition externalizing behaviours in children

and adolescents from the Quebec Longitudinal Study of Child Development (QLSCD) and

Quebec Newborn Twin Study (QNTS) cohorts, we applied both the GMMAT univariate

model and our proposed penalized mixed model. The two methods identified di!erent sets

of potentially important SNPs. To address missing data due to non-response or loss to

follow-up, we used a single imputation method and compared findings with a complete case

analysis. For opposition externalizing behaviour, two SNPs (rs116541675, rs145226968) were

genome-wide significant (p-value < 5 ↑ 10→8) in both the single imputation and complete

case analyses. For hyperactivity and aggression behaviors, we identified nine SNPs that were

significant only in the complete case analysis. Additionally, we demonstrated the utility of

our proposed method in predicting externalizing behavior scores in children from the com-

bined QLSCD and QNTS cohorts. Using a mean squared prediction error based definition

of the R
2 coe"cient of determination as proposed by Staerk et al. [2024], we showed that

the predictions were well-calibrated, and that including genetic e!ects improved prediction

accuracy compared to a model without genetic contributions. Furthermore, we fitted an

adaptive lasso penalized mixed model, with weights inversely proportional to e!ect size esti-

mates from elastic-net regularized regression. This model resulted in sparser solutions than

the lasso mixed model, while maintaining comparable accuracy in the predicted scores.

150



6.2 Limitations and future directions

Important limitations of the methodology developed in this thesis are discussed in this sec-

tion.

The regularized mixed models framework presented in Chapter 3 to Chapter 5 relies upon the

lasso and sparse group lasso penalties as a regularization technique for simultaneous estima-

tion and variable selection. However, because the lasso shrinkage produces biased estimates

for larger coe"cients, Fan and Li [2001] demonstrated that the oracle property does not hold

for the lasso and proposed a SCAD penalty for variable selection. The SCAD penalty retains

the penalization rate and bias of the lasso for small coe"cients, but continuously relaxes the

rate of penalization as the absolute value of the coe"cient increases through the use of a

second tuning parameter (usually denoted ω) that controls the concavity of the penalty. An-

other folded concave penalty, the MCP, was proposed by Zhang [2010] to address the bias

and non-consistency of the lasso regularization estimates. However, because the penalty

functions for SCAD and MCP are concave, there are numerical challenges in fitting these

models. Indeed, concave objective functions are di"cult to optimize and often produce

unstable solutions. Breheny and Huang [2011] discussed the convergence properties of coor-

dinate descent algorithms for fitting MCP and SCAD penalties within the linear regression

framework, and proposed a fast, e"cient and stable algorithm available in an open-source

R package called ncvreg. An alternative method is to fit adaptive lasso mixed models as

presented in the real case study of Chapter 5, where adaptive weights are used for penalizing

coe"cients di!erently, as proposed by Zou [2006]. Future work could entail allowing for

concave penalties for selection of genetic predictors in high dimensional genetic association

studies, as was done in (Chung et al. [2019], Huang et al. [2013]). Concave penalties can

also be combined in a manner analogous to the sparse group lasso to perform hierarchical

variable selection for linear and logistic regression models (Buch et al. [2024]).

Another limitation of the lasso regularization is that it is known that when correlations

151



between predictors are strong and e!ect sizes are small, the FDR for the models selected

by the lasso procedure can be important (Su et al. [2017]). Indeed, when the correlations

between predictors is high, as it is the case with SNPs in blocks of LD, the lasso will usually

select only one predictor randomly from a group of correlated predictors. Moreover, it is

empirically expected that the prediction performance of ridge regression (Hoerl and Ken-

nard [1970]) is superior to that of the lasso regression (Tibshirani [1996]) when pair-wise

correlations between predictors is important. By adding a constraint on the ↼2 norm of the

predictors coe"cients, ridge regularization ensures that correlated predictors coe"cients es-

timates are shrunk towards a common value when there is multicollinearity. However, ridge

regression does not induce sparsity in the predictors coe"cients, hence it cannot perform

automatic variable selection. In high-dimensional models, where the number of predictors

is much greater than sample size, a convex combination of the lasso and ridge regulariza-

tion, referred to as the elastic-net penalty (Zou and Hastie [2005]), can be used to induce

sparsity in the predictors coe"cients estimates while shrinking predictors’ e!ect sizes that

are highly correlated. An adaptive elastic-net penalty framework has also been proposed

by Zou and Zhang [2009] to combine the strengths of the quadratic regularization and the

adaptively weighted lasso shrinkage. The authors further established the oracle property

of the adaptive elastic-net under weak regularity conditions. An alternative approach was

proposed by Huang et al. [2013] in which the authors proposed a novel penalty, the smoothed

minimax concave penalty (SMCP) that is a combination of the MCP and a penalty consist-

ing of the squared di!erences of the absolute e!ects of adjacent markers. Their proposed

penalization framework explicitly uses correlation between adjacent markers and penalizes

the di!erences of genetic e!ects at adjacent SNPs with high correlations. Future work could

consider extending our proposed penalized mixed models framework to other penalizations

such as the SMCP or adaptive elastic-net penalties to address the challenges stemming from

the presence of causal SNPs in LD.

A limitation of the proposed methodology pertains to the computational burden of esti-
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mating variance components for high-dimensional mixed models, which relies on performing

a spectral or Cholesky decomposition of the covariance matrix. We partially circumvented

this challenge by estimating the random e!ects variance parameters only once under the null

hypothesis of no genetic association, as typically done in genetic univariate association tests,

such that the number of decompositions required remained low. However, for very large

sample sizes, computing a Cholesky or spectral decomposition of the covariance matrix can

be very burdensome, with complexity of O(n3), where n is the sample size. For low dimen-

sional confounding e!ects such as population structure, adjusting for the top eigenvectors

(PCs) of an ancestry representative GRM is usually enough. On the other hand, for higher

dimensional confounding e!ects such as family or cryptic relatedness, including a random

e!ect with variance-covariance proportional to the GRM is warranted. A possible approach

would be to use the implicitly restarted Arnoldi method (Abraham et al. [2017]) to obtain

only the top k eigenvectors of the covariance matrix, instead of computing its full spectral

decomposition. However, estimating the dimensionality of real datasets, and thus the num-

ber of eigenvectors to include is still a challenging open question, notably because estimated

eigenvalues have biased distributions (Yao and Ochoa [2022]). Another alternative that we

followed in Chapter 5 is to use a sparse GRM to adjust for the sample relatedness combined

with e"cient sparse matrix-based algorithms for parameter estimation (Jiang et al. [2019]).

However, because a sparse GRM cannot incorporate polygenic e!ects, as contributions from

small e!ects are e!ectively replaced by zero, it may be less powerful than using a dense

GRM (Bi et al. [2021]). Finally, another solution to explore to increase computation speed

and decrease memory usage would be the use of conjugate gradient methods with a diagonal

preconditioner matrix, as proposed by Zhou et al. [2018].

In GWAS, confidence intervals for the e!ect size estimates of predictors and their related

standard errors and p-values are of primary interest. A limitation of penalized multivariable

regression models is that they do not allow to perform inference on the individual statisti-

cal significance of the selected predictors. Indeed, the distribution of the lasso estimator is
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known only asymptotically in the case where the sample size n is much smaller than the

number of predictors p (Knight and Fu [2000]), which is not useful in the context of genetic

association studies. Inference based on the lasso estimator is still an open question, but

we can cite here the work of Lee et al. [2016] who derived optimal and exact confidence

intervals for post-selection inference using a truncated Gaussian distribution. However, their

proposed post-selection intervals for regression coe"cients have 1 ↓ ▷ coverage conditional

on the selected model, where ▷ is the size of the test. In the case where the oracle property

of the model selection procedure is not guaranteed, such as for the lasso when the number of

predictors is much greater than the sample size, these conditional confidence intervals might

not be suitable as they ignore the uncertainty associated with the model selection procedure.

An alternative approach is the use of data-splitting methods, where an independent sample

from the one that was used to fit the regularized model is used for performing post-selection

inference (Cox [1975]). This is a popular approach in the Mendelian randomization litera-

ture (Grant and Burgess [2020], Zhao et al. [2019]) and it has been shown that the correct

type I error rate will be retained given that multiple independent samples measuring the

traits of interest are available.

Another limitation of our proposed methodology is that for continuous outcomes, we assumed

that important genetic predictors only a!ect the conditional mean response of a phenotype.

However, the influence of a genetic variant can extend beyond the mean, a!ecting both

the lower and upper tails of the phenotype distribution. A robust alternative would be the

use of quantile regression (QR) which is a generalization of the least absolute deviations

regression to other percentiles than the median. More formally, QR allows to model the

conditional quantile of a response as a function of the covariates. Compared to least squares

regression, QR o!ers some uniques advantages such as (1) identifying variants with heteroge-

neous e!ects across quantiles of the phenotype distribution; (2) accommodating a wide range

of outcome distributions including non-normal distributions; and (3) providing robustness

against outliers and flexibility to model nonlinear relationships. Recently, QR has been used
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to discover variants with larger e!ects on high-risk subgroups of individuals but with lower

or no contribution overall for 39 quantitative traits in the UK Biobank (Wang et al. [2024]).

Several authors have recently addressed the limitations related to the computational burden

of fitting QR due to the non smoothness of the loss function, and extended QR models to

high-dimensional sparse regularized problems (Pietrosanu et al. [2021], Gu et al. [2018], Yu

and Lin [2017]). They proposed combining fast alternating direction method of multipliers

(ADMM) algorithms with coordinate descent steps to solve large-scale penalized QR prob-

lems. In addition, I find relevant the work of Mendez-Civieta et al. [2020] who proposed an

adaptive sparse group lasso methodology to the QR framework, and the work of Koenker

[2004] who derived a penalized QR framework for longitudinal data. Future work includes

extending our proposed methodology to the QR framework, relying on the work from the

aforementioned authors.

6.3 Concluding remarks

Genetic association studies, with sample sizes and number of predictors ever increasing, o!er

interesting challenges for variable selection in high dimensional problems. This thesis focused

on the development of computationally e"cient multivariable regularized methods to account

for di!erent sources of confounding in genetic association studies. I have proposed models

based on regularized PQL estimation to fit GLMMs to high dimensional GWAS data and

developed e"cient algorithms implemented in the julia programming language to make the

proposed models applicable in real-life case studies where the number of candidate genetic

predictors is very high. The proposed methods may be used to perform variable selection or

to construct prediction scores when multiple levels of correlation between observations used

to fit the model is observed. The methods may also be used in other areas of research related

to genetic association studies, such as Mendelian randomization studies, given that post-

selection confidence intervals with the desired level of coverage can be constructed.
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APPENDIX A

Appendix to Manuscript 1

A.1 Estimation of Variance Component Parameters

In what follows, we provide a near verbatim of Appendix A from Chen et al. [2016] that

details the AI-REML algorithm to estimate the variance components and fixed e!ects for

the non-genetic covariates under the assumption of no genetic association. To be consistent

with the remainder of the manuscript, we slightly changed the notation from the original

derivation where appropriate.

If ϖ and ϱ are known, we jointly choose ϑ̂(ϖ, ϱ ), ↼̂(ϖ, ϱ ) and b̂(ϖ, ϱ ) to minimize (5.2), then

b̂(ϖ, ϱ ) = b̃(ϑ̂(ϖ, ϱ ), ↼̂(ϖ, ϱ )) because b̃ maximizes f(b) for given (ϑ,↼). Assuming that the

weights in W vary slowly with the conditional mean, the derivatives of (5.2) at ↼ = 0 with

respect to (ϑ, b) are given by

↽ql(ϑ,↼ = 0,ϖ, ϱ )

↽ϑ
= ↓

n)︄

i=1

ai(yi ↓ µi)

ϖ↩(µi)

1

g↑(µi)
X↭

i
= ↓X↭W”(y ↓ µ),

↽ql(ϑ,↼ = 0,ϖ, ϱ )

↽b
= ↓

n)︄

i=1

ai(yi ↓ µi)

ϖ↩(µi)

1

g↑(µi)
Z↭

i
+

⎛
S)︄

s=1

ϱsVs

⎞→1

b =

⎛
S)︄

s=1

ϱsVs

⎞→1

b↓W”(y ↓ µ),

where ” = diag(g↑(µi)) and Zi is a n ↑ 1 vector of indicators such that bi = Zib. Defining
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the working vector Ỹ with elements Yĩ = ⇁i + g
↑(µi)(yi ↓ µi), the solution of

\︄
⎧⎧/︂

⎧⎧\︂

X↭W”(y ↓ µ) = 0

W”(y ↓ µ) =
}︄{︄

S

s=1 ϱsVs

⟨︄→1

b

can be written as the solution to the system

⟨︂

⟩︂⨆︁
X↭WX X↭W

WX
}︄{︄

S

s=1 ϱsVs

⟨︄→1

+W

⨆︂

∮︁∮︂

⟨︂

⟩︂⨆︁
ϑ

b

⨆︂

∮︁∮︂ =

⟨︂

⟩︂⨆︁
X↭WỸ

WỸ

⨆︂

∮︁∮︂ .

Let # = W→1 +
{︄

S

s=1 ϱsVs, P = #→1 ↓#→1X (X↭#→1X)→1 X↭#→1, then

\︄
⎧⎧/︂

⎧⎧\︂

ϑ̂ = (X↭#→1X)→1 X↭#→1Ỹ

b̂ =
}︄{︄

S

s=1 ϱsVs

⟨︄
#→1

}︄
Ỹ ↓Xϑ̂

⟨︄ .

Of note, we have that

Ỹ ↓ ς̂ = Ỹ ↓Xϑ̂↓ b̂

=

⌉︄
I ↓

⎛
S)︄

s=1

ϱsVs

⎞
#→1

⎭}︄
Ỹ ↓Xϑ̂

⟨︄

= W→1#→1
}︄
Ỹ ↓Xϑ̂

⟨︄

= W→1P Ỹ .
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The log integrated quasi-likelihood function in (5.2) evaluated at (ϑ̂,↼ = 0,ϖ, ϱ ) becomes

ql(ϑ̂(ϖ, ϱ ),↼ = 0,ϖ, ϱ ) =↓ 1

2
log

[︄[︄[︄[︄[︄

S)︄

s=1

ϱsVsW + I

[︄[︄[︄[︄[︄↓
1

2

n)︄

i=1

ai(yi ↓ µ̂
i
)2

ϖ↩(µ̂
i
)

↓ 1

2
b̂
↭
⎛

S)︄

s=1

ϱsVs

⎞
b̂

=↓ 1

2
log |#W |↓ 1

2
(Ỹ ↓ ς̂)↭W (Ỹ ↓ ς̂)

↓ 1

2

}︄
Ỹ ↓Xϑ̂

⟨︄↭
#→1

⎛
S)︄

s=1

ϱsVs

⎞
#→1

}︄
Ỹ ↓Xϑ̂

⟨︄

=↓ 1

2
log |W |↓ 1

2
log |#|↓ 1

2
Ỹ ↭PW→1P Ỹ

↓ 1

2
Ỹ ↭P

⎛
S)︄

s=1

ϱsVs

⎞
P Ỹ

= c↓ 1

2
log |#|↓ 1

2
Ỹ ↭P#P Ỹ

= c↓ 1

2
log |#|↓ 1

2
Ỹ ↭P Ỹ .

Similarly, the restricted maximum likelihood (REML) version is

qlR(ϑ̂(ϖ, ϱ ),↼ = 0,ϖ, ϱ ) = cR ↓ 1

2
log |#|↓ 1

2
log

[︄[︄X↭#→1X
[︄[︄↓ 1

2
Ỹ ↭P Ỹ .

We need to maximize qlR(ϑ̂(ϖ, ϱ ),↼ = 0,ϖ, ϱ ) with respect to ϖ, ϱ . Let V0 = diag{a→1
i
↩(µi)[g↑(µi)2]} =

ϖ
→1W→1, then # = ϖV0 +

{︄
S

s=1 ϱsVs, and the first derivatives of qlR(ϑ̂(ϖ, ϱ ),↼ = 0,ϖ, ϱ )

with respect to ϖ and ϱs are

↽qlR(ϑ̂(ϖ, ϱ ),↼ = 0,ϖ, ϱ )

↽ϖ
=

1

2

⎦
Ỹ ↭PV0P Ỹ ↓ tr(PV0)

⎢
(A.1)

↽qlR(ϑ̂(ϖ, ϱ ),↼ = 0,ϖ, ϱ )

↽ϱs
=

1

2

⎦
Ỹ ↭PVsP Ỹ ↓ tr(PVs)

⎢
, (A.2)

since one can show that

↽P

↽ϖ
= ↓PV0P ,

↽P

↽ϱs
= ↓PVsP .

ϖ̂ and ϱ̂ are estimated by finding the solutions of (A.1) and (A.2) equal to zero. Let ↽ =
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(ϖ, ϱ ), and recall that in the REML iterative process, ↽̂ at the (i+1)th iteraton is updated

by ↽̂(i+1) = ↽̂(i) + J(↽̂(i))→1
S(↽̂(i)), where S(↽) = ⇀qlR(ϱ)

⇀ϱ and J(↽) = ↓⇀
2
qlR(ϱ)
⇀ϱ2 . The elements

of the observed information matrix J(↽) are

↓ ↽
2
qlR(ϑ̂(ϖ, ϱ ),↼ = 0,ϖ, ϱ )

↽ϖ2
= Ỹ ↭PV0PV0P Ỹ ↓ 1

2
tr(PV0PV0)

↓ ↽
2
qlR(ϑ̂(ϖ, ϱ ),↼ = 0,ϖ, ϱ )

↽ϖ↽ϱs
= Ỹ ↭PV0PVsP Ỹ ↓ 1

2
tr(PV0PVs)

↓ ↽
2
qlR(ϑ̂(ϖ, ϱ ),↼ = 0,ϖ, ϱ )

↽ϱl↽ϱs
= Ỹ ↭PVlPVsP Ỹ ↓ 1

2
tr(PVlPVs).

The elements of the expected information matrix are

E

⌊︄
↓↽

2
qlR(ϑ̂(ϖ, ϱ ),↼ = 0,ϖ, ϱ )

↽ϖ2

⌋︄
=

1

2
tr(PV0PV0)

E

⌊︄
↓↽

2
qlR(ϑ̂(ϖ, ϱ ),↼ = 0,ϖ, ϱ )

↽ϖ↽ϱs

⌋︄
=

1

2
tr(PV0PVs)

E

⌊︄
↓↽

2
qlR(ϑ̂(ϖ, ϱ ),↼ = 0,ϖ, ϱ )

↽ϱl↽ϱs

⌋︄
=

1

2
tr(PVlPVs).

The average information matrix AI is defined as the average of the observed information

J(↽) and the expected information

AIεε =
1

2
Ỹ ↭PV0PV0P Ỹ ,

AIε⇁s =
1

2
Ỹ ↭PV0PVsP Ỹ ,

AI⇁s⇁l =
1

2
Ỹ ↭PVsPVlP Ỹ .

Let ↽ be the variance component and dispersion parameters to estimate, that is when ϖ ↘= 1,

↽ = (ϖ, ϱ ), and AI is a (S + 1) ↑ (S + 1) matrix. For binary data, ϖ = 1, ↽ = ϱ , and AI

is a S ↑ S matrix containing only AI⇁s⇁l . We use the following algorithm to estimate ↽, ϑ

and b:
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Algorithm 1 AI-REML algorithm
1. Initialization

Fit a generalized linear model with ϱ = 0 and get ϑ̂(0) and working vector Ỹ (0);
Use ↽(0) = V ar(Ỹ (0))/S (if ϖ = 1) or ↽(0) = V ar(Ỹ (0))/(S + 1) (if ϖ ↘= 1) as the
initial value of ↽;
For each s = 0, 1, ..., S, update ↽ using 3

(1)
s = 3

(0)
s + 2n→1{3(0)s }2(↽qlR(↽(0))/↽3s);

2. Iteration
for t = 1, 2, ..., until convergence do

Update ↽(t+1) = ↽(t) + {AI(t)}→1(↽qlR(↽(t))/↽↽);
Calculate ϑ̂(t+1) and b̂

(t+1)
using Ỹ (t) and ↽(t+1);

Update Ỹ (t+1) using ϑ̂(t+1) and b̂
(t+1)

;

Convergence is defined using 2 max{|ϑ̂(t) ↓ ϑ̂(t→1)|/(|ϑ̂(t)|+ |ϑ̂(t→1)|), |↽̂
(t)

↓ ↽̂
(t→1)

|/(|↽̂
(t)
|+

|↽̂
(t→1)

|)} ⇐ tolerance

A.2 Cyclic coordinate Descent for PQL Regularized Pa-

rameters

Assuming that the variance components and dispersion parameters are known, we fit the full

GLMM (5.1) with lasso regularization on ε = (ϑ↭
,↼↭)↭ to obtain PQL regularized estimates

for ε and b̃. At each iteration, we cycle through the coordinates and minimize the objective

function (5.3) with respect to one coordinate only. Suppose we have estimates ε̃ and we

wish to partially optimize (5.3) with respect to b̃. The gradient and Hessian of ↼PQL with

respect to b̃ at ε = ε̃ are given by

↔b̃↼PQL(ε̃, ϖ̂, ϱ̂ |b̃) =
n)︄

i=1

ai(yi ↓ µi)

ϖ̂↩(µi)

1

g↑(µi)
Z↭

i
↓
⎛

S)︄

s=1

ϱ̂ sVs

⎞→1

b̃

= W”(y ↓ µ)↓
⎛

S)︄

s=1

ϱ̂ sVs

⎞→1

b̃,
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and

↔2
b̃
↼PQL(ε̃, ϖ̂, ϱ̂ |b̃) = ↓W ↓

⎛
S)︄

s=1

ϱ̂ sVs

⎞→1

,

where ” = diag(g↑(µi)) and Zi is a n↑ 1 vector of indicators such that bi = Zib. We form

a quadratic approximation of ↼PQL(ε̃, ϖ̂, ϱ̂ |b̃) around current iterate b̃, which yields

f(b) := ↼PQL(ε̃, ϖ̂, ϱ̂ |b̃) + (b↓ b̃)↭↔↼PQL(ε̃, ϖ̂, ϱ̂ |b̃) +
1

2
(b↓ b̃)↭↔2

↼PQL(ε̃, ϖ̂, ϱ̂ |b̃)(b↓ b̃).

This leads to the Newton’s updates

b̂ = b̃+
⏐
↓↔2

b̃
↼PQL(ε̃, ϖ̂, ϱ̂ |b̃)

⎝→1

↔b̃↼PQL(ε̃, ϖ̂, ϱ̂ |b̃)

= b̃+

⨀︁

⨁︁W +

⎛
S)︄

s=1

ϱ̂ sVs

⎞→1
⨁︂

⨂︂
→1 ⨀︁

⨁︁W”(y ↓ µ)↓
⎛

S)︄

s=1

ϱ̂ sVs

⎞→1

b̃

⨁︂

⨂︂

=

⎛
S)︄

s=1

ϱ̂ sVs

⎞⎛
W→1 +

S)︄

s=1

ϱ̂ sVs

⎞→1 }︄
”(y ↓ µ) + b̃

⟨︄
. (A.3)

Defining the working vector Ỹ with elements Yĩ = ⇁i + g
↑(µi)(yi ↓ µi), the solution of (A.3)

is equal to

b̂ =

⎛
S)︄

s=1

ϱ̂ sVs

⎞
#→1

}︄
Ỹ ↓ X̃ε̃

⟨︄
, (A.4)

where X̃ = [X G] and # = W→1+
{︄

S

s=1 ϱ̂ sVs. Because the weights W are being updated

repeatedly, the solution (A.4) requires inverting a di!erent variance-covariance matrix # at

each iteration, with complexity O(n3). In modern large-scale data sets, the sample size n

can be very large, thus we want to avoid costly matrix inversions. For binary traits, we have

that

↔2
b̃
↼PQL(ε̃, ϖ̂, ϱ̂ |b̃) ∈ ↓0.25In ↓

⎛
S)︄

s=1

ϱ̂ sVs

⎞→1

.
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Therefore, we can replace the hessian by its lower-bound in the quadratic approximation

f(b) (Böhning and Lindsay [1988]). This leads to a minorization-maximization (MM) algo-

rithm (Hunter and Lange [2004]) with updates

b̂ = b̃+

⨀︁

⨁︁0.25In +

⎛
S)︄

s=1

ϱ̂ sVs

⎞→1
⨁︂

⨂︂
→1 ⨀︁

⨁︁W”(y ↓ µ)↓
⎛

S)︄

s=1

ϱ̂ sVs

⎞→1

b̃

⨁︂

⨂︂

=

⎛
S)︄

s=1

ϱ̂ sVs

⎞⎛
4In +

S)︄

s=1

ϱ̂ sVs

⎞→1 }︄
4(y ↓ µ) + b̃

⟨︄
. (A.5)

Redefining the working vector Ỹ with elements Yĩ = ⇁i + 4(yi ↓ µi), the solution of (A.5) is

equal to

b̂ =

⎛
S)︄

s=1

ϱ̂ sVs

⎞
#̃

→1
}︄
Ỹ ↓ X̃ε̃

⟨︄
, (A.6)

where #̃ = 4In +
{︄

S

s=1 ϱ̂ sVs.

Let
{︄

S

s=1 ϱ̂ sVs = UDU ↭ be the associated eigen-spectral decomposition of the variance-

covariance matrix of b, where Un≃n is an orthonormal matrix of eigenvectors and Dn≃n is a

diagonal matrix of eigenvalues, such that (A.6) can be rewritten as

b̂ = U
⎠
4D→1 + In

⎜→1
U ↭

}︄
Ỹ ↓ X̃ε̃

⟨︄
. (A.7)

By rotating the random e!ect ω = U ↭b, we have that (A.7) is equivalent to solving the

following generalized ridge regression problem

ω̂ = argmin
ς

1

4

}︄
Ỹ ↓ X̃ε̃ ↓Uω

⟨︄↭ }︄
Ỹ ↓ X̃ε̃ ↓Uω

⟨︄
+ ω↭D→1ω.

Consider now a coordinate descent step for ε. That is, suppose we have updates b̃ and ε̃
l

for l ↘= j, and we wish to partially optimize with respect to ϑj. We would like to compute
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the gradient at ϑj = ϑj̃, which only exists if ϑ̃
j
↘= 0. If ϑ̃

j
> 0, then

↽Qϖ(ε, b)

↽ϑj

|(b,ϑ)=(b̃,ϑ̃) = ↓
n)︄

i=1

ai(yi ↓ µi)

ϖ̂↩(µi)

1

g↑(µi)
X̃ ij + ◁vj = ↓X̃

↭
j
W”(y ↓ µ) + ◁vj, (A.8)

where X̃j is a n↑ 1 column vector for predictor j. Recall that for binary traits, we defined

the working vector Ỹ such that y ↓ µ = 1
4(Ỹ ↓ X̃ε ↓ b). Moreover, for binary traits with

logistic link function, we have ϖ = 1 and W = $→1. Thus, plugging b̃ = b̂ from (A.7) and

solving (A.8) leads to

↓1

4
X̃

↭
j

}︄
Ỹ ↓ X̃ε̃ ↓ b̃

⟨︄
+ ◁vj = 0

∋△ ↓1

4
X̃

↭
j
U

}︄
In ↓

⎠
4D→1 + In

⎜→1
⟨︄
U ↭

}︄
Ỹ ↓ X̃ε̃

⟨︄
+ ◁vj = 0

∋△ ↓X̃
↭
j
U (4In +D)→1 U ↭

}︄
Ỹ ↓ X̃ε̃

⟨︄
+ ◁vj = 0.

Finally, isolating ϑj yields

ϑ̂
j
=

Xj
˜ ↭

U (4In +D)→1 U ↭
}︄
Ỹ ↓

{︄
l ↔=j

X̃ lϑl̃

⟨︄
↓ ◁vj

X̃
↭
j
U (4In +D)→1 U ↭X̃j

=

{︄
n

i=1
1

4+!i
X̃

↓
ij

}︄
Ỹ

↓
i
↓
{︄

l ↔=j
X̃

↓
il
εl̃

⟨︄
↓ ◁vj

{︄
n

i=1
1

4+!i
X̃

↓2
ij

, (A.9)

where !i are the eigenvalues of
{︄

S

s=1 ϱ̂ sVs, Ỹ
↓
= U ↭Ỹ and X̃

↓
= U ↭X̃. By proceeding

in a similar way for ϑ̃
j
< 0, one can show (Friedman et al. [2007]) that the coordinate-wise

update for ϑj has the form

ϑ̂
j
=

S

}︄{︄
n

i=1
1

4+!i
X̃

↓
ij

}︄
Ỹ

↓
i
↓

{︄
l ↔=j

X̃
↓
il
εl̃

⟨︄
,◁vj

⟨︄

{︄
n

i=1
1

4+!i
X̃

↓2
ij

, (A.10)
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where S(z, ω) is the soft-thresholding operator:

sign(z)(|z|↓ ω)+ =

\︄
⎧⎧⎧⎧⎧⎧/︂

⎧⎧⎧⎧⎧⎧\︂

z ↓ ω if z > 0 and ω < |z|

z + ω if z < 0 and ω < |z|

0 if ω ⇔ |z|.

Finally, the updates for ς are given by

ς̂ = Ỹ ↓
}︄
Ỹ ↓Xε̂ ↓ b̂

⟨︄

= Ỹ ↓U
∑︂
In ↓ (4D→1 + In)

→1
∏︂}︄

Ỹ ↓ ↓ X̃
↓
ε̂
⟨︄

= Ỹ ↓U

⌊︄
1

4
D + In

⌋︄→1 }︄
Ỹ ↓ ↓ X̃

↓
ε̂
⟨︄
. (A.11)

We performed additional simulations in Appendix A.4 and show that coe"cients estimates

for ε obtained by replacing the hessian by a lower bound are similar to those obtained by

repeatedly inverting the full hessian matrix at each iteration.

The cyclic coordinate descent algorithm to obtain regularized PQL estimates for ε =

(ϑ↭
,↼↭)↭ and b is as follows:
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Algorithm 2 Cyclic coordinate descent for regularized PQL estimation
1. Initialization

Set ε̂
(0)

= (ϑ̂↭
,0↭) and b̂

(0)
= b̂ , where ϑ̂, b̂ are the estimates from the AI-REML

algorithm;
Calculate ς̂(0) = X̃ε̂

(0)
+ b̂

0
, Ỹ ↓(0)

= U ↭Ỹ (0) and X̃
↓
= U ↭X̃;

2. Iteration
for ◁ = ◁max to ◁min do

for t = 1, 2, ..., until outer-loop convergence do
for j = 1, ...,m+ p do

Calculate

ε̂
(t)

j
=

S

}︄{︄
n

i=1
1

4+!i
X̃

↓
ij

}︄
Ỹ

↓(t→1)

i
↓
{︄

l ↔=j
X̃

↓
il
εl̂

(t→1)
⟨︄
,◁vj

⟨︄

{︄
n

i=1
1

4+!i
X̃

↓2
ij

,

until inner-loop convergence;

Calculate ς̂(t) = Ỹ
(t→1) ↓U

⎠
1
4D + In

⎜→1
}︄
Ỹ ↓(t→1) ↓ X̃

↓
ε̂

(t)
⟨︄
;

Update Ỹ (t) and Ỹ ↓(t) using ς̂(t);

Set ε̂
(0)

= ε̂
(t)

, Ỹ (0) = Ỹ (t) and Ỹ ↓(0) = Ỹ ↓(t) as warm starts for next ◁;

For inner-loop convergence, we use the same criteria as Friedman et al. [2007], that is after

a complete cycle of coordinate descent we look at

max
j

”j = max
j

n)︄

i=1

1

4 + !i

X̃
↓2
ij
(ϑ̂

(t→1)

j
↓ ϑ̂

(t)

j
)2,

which measures the maximum weighted sum of squares of changes in fitted values for all coef-

ficients. If maxj ”j is smaller than tolerance, we stop the coordinate descent loop. For outer-

loop convergence, we calculate the fractional change in the loss function ↓lPQL(ϑ,↼, ϖ̂, ϱ̂ )

and declare convergence if its value is smaller than tolerance.
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A.3 Model selection

Approaches to selecting the optimal tuning parameter in regularized models are of primary

interest since in real data analysis, the underlying true model is unknown. A popular strategy

is to select the value that minimizes out-of-sample prediction error, e.g., cross-validation

(CV), which is asymptotically equivalent to the Akaike information criterion (AIC) (Akaike

[1998], Yang [2005]). While being conceptually attractive, CV becomes computationally

expensive for very high-dimensional data. Moreover, in studies where the proportion of

related subjects is important, either by known or cryptic relatedness, the CV prediction error

is no longer an unbiased estimator of the generalization error (Rabinowicz and Rosset [2020]).

Through simulation studies and real data analysis, Wang et al. [2020] found that LD and

minor allele frequencies (MAF) di!erences between ancestries could explain between 70 and

80% of the loss of relative accuracy of European-based prediction models in African ancestry

for traits like body mass index and type 2 diabetes. Thus, there is no clear approach to how

multiple admixed and/or similar populations should be split when using CV to minimize

out-of-sample prediction error.

Alternatively, we can select the optimal value of the tuning parameter by optimizing the

generalized information criterion (GIC) with an appropriate model complexity penalty an,

defined as

GICϖ = ↓2↼PQL + an · df̂ϖ
, (A.12)

where ↼PQL is defined in (5.3), and df̂
ϖ
= |{1 ⇐ k ⇐ p : ϑ̂

k
↘= 0}|+ dim(ϱ̂ ) is the number of

nonzero fixed-e!ects coe"cients (Zou et al. [2007]) plus the number of variance components.

The choice of an becomes crucial for e!ectively identifying the true model in high-dimensional

data. Fan and Tang [2012] have proposed using a high-dimensional Bayesian information

criterion (HDBIC) with an = log(log n)log p. However, in our simulations and analysis of

real data, our findings were that using an = 2 (AIC) was an appropriate model complexity
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penalty, and that using an = log(n) (BIC, Schwarz [1978]) resulted in sparse models with

almost no predictors. Hence, we did not investigate in this work the use of more severe model

complexity penalties such as the HDBIC, but in our software implementation we allow to

choose between AIC, BIC and HDBIC for selecting the best model.

A.4 Comparison of coe!cient estimates using a lower-

bound algorithm

We performed additional simulations to evaluate the impact on the coe"cient estimates of

taking a lower-bound of the variance-covariance matrix. More specifically, we simulated

random genotypes from the BN-PSD admixture model for 10 intermediate populations of

the 1D linear admixture model, with a total of n = 2500 samples, p = 5000 candidate SNPs

where we randomly selected c = 1% to be causal. We fitted the full lasso path for 100 values

of the regularization parameter ◁. We report in Figure 1 the median mean squared-error

(MSE) for 20 replications, defined as MSE(ε̂) = ⇒ε̂ ↓ ε⇒2/p, when we repeatedly inverted

the full variance-covariance matrix (pglmm_hessian), and when we replaced the hessian by

a lower-bound (pglmm). We also included in the comparison the coe"cient estimates for

a logistic lasso with 10 PCs (glmnetPC). We can see that all 3 methods lead to similar

estimates on the full lasso path as measured by the median MSE(ε̂). For models with large

number of active predictors, the estimates based on the lower-bound method are closer to

the true estimates compared to the other methods. We note that for binary responses,

the existing lower-bound on the variance-covariance matrix not only provides an increasing

computational advantage over Newton–Raphson, but also guarantees linear convergence to

the optimal solution (Böhning and Lindsay [1988]). Thus, using a lower-bound on the hessian

of the loss function for logistic regression is commonly done in majorization-minimization

(MM) algorithms (Hunter and Lange [2004], Hu et al. [2019]).
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Figure A.1: Median MSE(ε̂) for 20 replications of the simulated genotype with 1d linear
admixture and K = 10 subpopulations. Compared methods are pglmm with a lower-bound
algorithm, pglmm_hessian where we repeatedly invert the full variance-covariance matrix
and logistic lasso with 10 PCs (glmnetPC).
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A.5 Confounding from population structure
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Figure A.2: Correlation heatmap between the first 20 PCs and K = 20 indicator functions
identifying the independent subpopulations from the simulated genotype. We used the ab-
solute value or the Pearson’s correlation coe"cient for the color scaling, and displayed the
value whenever |r2| > 0.2.
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Figure A.3: Correlation heatmap between the first 20 PCs and K = 20 indicator functions
identifying subpopulations from the simulated genotype with 1d linear admixture. We used
the absolute value or the Pearson’s correlation coe"cient for the color scaling, and displayed
the value whenever |r2| > 0.2.
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APPENDIX B

Appendix to Manuscript 2

B.1 Updates for ω̃

The gradient and Hessian of f(!; ω) are given by

↔ςf(!; ω) = ↓ϖ̂
→1
U ↭(y ↓ µ) +%→1ω,

↔2
ςf(!; ω) = ϖ̂

→1
U ↭$→1U +%→1

.

This leads to the Newton updates

ω̃
(t+1)

= ω̃
(t) ↓ [↔2

ςf(!|ω̃(t)
)]→1↔ςf(!|ω̃(t)

)

= ω̃
(t)

+
⏐
ϖ̂
→1
U ↭$→(t)U +%→1

⎝→1 }︄
ϖ̂
→1
U ↭(y ↓ µ(t))↓%→1ω̃

(t)
⟨︄

=
⏐
U ↭$→(t)U + ϖ̂%→1

⎝→1

U ↭$→(t)
}︄
$(t)(y ↓ µ(t)) +U ω̃

(t)
⟨︄
, (B.1)

which requires repeatedly inverting the n↑ n matrix #(t) := U ↭$→(t)U + ϖ̂%→1 with com-

plexity O(n3) where n is the sample size. Defining the working vector Ỹ = X!(t)+U ω̃
(t)

+

$(t)(y↓µ(t)), where X! = Z↽+D▷+Gε+(D▽G)↼, the Newton updates in (B.1) can
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be rewritten as

ω̃
(t+1)

=
⏐
U ↭$→(t)U + ϖ̂%→1

⎝→1

U ↭$→(t)
}︄
Ỹ ↓X!(t)

⟨︄
,

which can be equivalently obtained as the solutions to the following generalized ridge weighted

least-squares (WLS) problem

ω̃
(t+1)

= argmin
ς

ϖ̂
→1

}︄
Ỹ ↓X!(t) ↓Uω

⟨︄↭
$→(t)

}︄
Ỹ ↓X!(t) ↓Uω

⟨︄
+ ω↭%→1ω. (B.2)

Equation (B.2) is analogous to the principal component ridge regression (PCRR) model (Ødegård

et al. [2018]), and demonstrates that PCA and MMs indeed share the same underlying

model. At last, to solve (B.2) without repeatedly inverting the n ↑ n matrix #(t) :=

U ↭$→(t)U + ϖ̂%→1, we propose using a coordinate descent algorithm (Kooij [2007]), for

which each coordinate’s updates are given, for j = 1, ..., n, by

2j̃ ̸

{︄
n

i=1 wiUij

}︄
Ỹ i ↓Xi!(t) ↓

{︄
l ↔=j

Uil2l̃

⟨︄

{︄
n

i=1 wiU
2
ij
+ ϖ̂!→1

j

, (B.3)

where wi = $→(t)
ii

.

B.2 Updates for !

Since the objective function in (4.5) consists of a smooth convex function f(!; ω) and a

non-smooth convex regularizer g(!), we propose a proximal Newton algorithm with cyclic

coordinate descent to find PQL regularized estimates for !, in the spirit of the proposed

algorithm by Friedman et al. [2010b] for estimation of generalized linear models with convex

penalties. Let again X! = Z↽ +D▷ +Gε + (D ▽G)↼ and !(t) be the current iterate,
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the iterative step reduces to

!(t+1) = argmin
!

⌉︄
1

2st

⎪⎪⎪⎪!↓
⌊︄
!(t) ↓ st

⏐
↔2

!f(!
(t)|ω̃)

⎝→1

↔!f(!
(t)|ω̃)

⌋︄⎪⎪⎪⎪
2

2

+ g(!)

⎭

= argmin
!

]︄
1

2st

⎪⎪⎪!↓
⎨
X↭$→(t)X

⎬→1
X↭$→(t)

⎠
X!(t) + st$

(t)(y ↓ µ(t))
⎜⎪⎪⎪

2

2
+ g(!)

⌈︄
,

where st is a suitable step size. Defining the working vector Ỹ = X!(t)+U ω̃
(t+1)

+st$(t)(y↓

µ(t)), we can again rewrite the minimization problem as a WLS problem where

!(t+1) = argmin
!

]︄
1

2st

⎪⎪⎪!↓
⎨
X↭$→(t)X

⎬→1
X↭$→(t)

}︄
Ỹ ↓U ω̃

(t+1)
⟨︄⎪⎪⎪

2

2
+ g(!)

⌈︄

= argmin
!

⌉︄
1

2st

n)︄

i=1

wi

}︄
Ỹ i ↓Xi!↓Uiω̃

(t+1)
⟨︄2

+ (1↓ 0)◁
)︄

j

⇒(ϑj, ωj)⇒2 + 0◁

)︄

j

|ωj|
⎭
,

(B.4)

where wi = $→(t)
ii

. We use block coordinate descent and minimize (B.4) with respect to each

component of ! = (↽↭
,▷

↭
,ε↭

,↼↭)↭. In practice, we set st = 1 and do not perform step-size

optimization. We present in Appendix B.5 the detailed derivations and our block coordinate

descent algorithm to obtain PQL regularized estimates for !.

B.3 Strong rule

In modern genome-wide studies, the number of genetic predictors is often very large, and

assuming that most of the predictors e!ects are equal to 0, it would be desirable to discard

them from the coordinate descent steps to speed up the optimization procedure. Tibshirani

et al. [2012] derived sequential strong rules that can be used when solving the lasso and

lasso-type problems over a grid of tuning parameter values ◁1 ⇔ ◁2 ⇔ ◁m, and more details

about the derivation of the sequential strong rule for the sparse group lasso can be found

in Liang et al. [2024]. Therefore, having already computed the solution !̂k→1 at ◁k→1, the

sequential strong rule discards the j
th genetic predictor from the optimization problem at ◁k
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if

∫︂}︄
G

↭
j
(y ↓ µ(!̂k→1))

⟨︄2

+
}︄
Sφϖk↑1

((D ▽Gj)↭(y ↓ µ(!̂k→1)))
⟨︄2

⇐ (1↓ 0)(2◁k ↓ ◁k→1),

where Sϖ(·) is the soft-thresholding function defined as

Sϖ(a) =

\︄
⎧⎧⎧⎧⎧⎧/︂

⎧⎧⎧⎧⎧⎧\︂

a↓ ◁ if a > ◁

0 if |a| ⇐ ◁

a+ ◁ if a < ↓◁

.

B.4 Prediction

Our proposed method to calculate prediction scores in individuals that were not used in

training the models is presented in this section. In sparse regularized PQL estimation, we

iteratively fit on a training set of size n the working linear mixed model

Ỹ = X!̂+ b̃+ φ,

where !̂ = {#̂k ↘= 0|1 ⇐ k ⇐ 2p + m + 1} is the set of non-null predictors, and φ =

g
↑(µ)(y↓µ) → N (0,W→1), with W = ϖ

→1diag
⎦

ai
ω(µi)[g→(µi)2]

⎢
the diagonal matrix containing

weights for each observation. Let Ỹ s be the latent working vector in a testing set of ns

individuals with predictor set Xs. Similar to Bhatnagar et al. [2020b], we assume that the

marginal joint distribution of Ỹ s and Ỹ is multivariate Normal :

⟨︂

⟩︂⨆︁
Ỹ s

Ỹ

⨆︂

∮︁∮︂ → N

⨀︁

⨀︂⨁︁

⟨︂

⟩︂⨆︁
Xs!̂

X!̂

⨆︂

∮︁∮︂ ,

⟨︂

⟩︂⨆︁
#11 #12

#21 #22

⨆︂

∮︁∮︂

⨁︂

⨂︁⨂︂ ,

where #12 = Cov(Ỹ s, Ỹ ) = ϱ̂ gK12 + ϱ̂ dKD

12 is the sum of the ns ↑ n GSMs between the

testing and training individuals, and #22 = Var(Ỹ ) = W→1 + ϱ̂ gK22 + ϱ̂ dKD

22. It follows
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from standard normal theory that

Ỹ s|Ỹ , ϖ̂, ϱ̂ , !̂,X,Xs → N
}︄
Xs!̂+#12#

→1
22 (Ỹ ↓X!̂),#11 ↓#12#

→1
22 #21

⟨︄
.

The predictions are based on the conditional expectation E[Ỹ s|Ỹ , ϖ̂, ϱ̂ , !̂,X,Xs], that

is

µ̂
s
= g

→1
}︄
E[Ỹ s|Ỹ , ϖ̂, ϱ̂ , !̂,X,Xs]

⟨︄

= g
→1

}︄
Xs!̂+#12#

→1
22 (Ỹ ↓X!̂)

⟨︄

= g
→1

}︄
Xs!̂+#12

⎠
W→1 +U%U ↭⎜→1

(Ỹ ↓X!̂)
⟨︄
,

where g(·) is the link function and U%U ↭ is the spectral decomposition of the GSM for

training subjects, with U the n↑ n matrix of eigenvectors.

B.5 Proximal Newton method

Defining the working vector Ỹ = X!(t) +U ω̃
(t+1)

+ st$(t)(y ↓µ(t)) with suitable step size

st, we can again rewrite the minimization problem as a WLS problem where

!(t+1) = argmin
!

]︄
1

2st

⎪⎪⎪!↓
⎨
X↭$→(t)X

⎬→1
X↭$→(t)

}︄
Ỹ (t) ↓U ω̃(t+1)

⟨︄⎪⎪⎪
2

2
+ g(!)

⌈︄

= argmin
!

⌉︄
1

2st

n)︄

i=1

wi

}︄
Ỹ i ↓Xi!↓Uiω̃

(t+1)
⟨︄2

+ (1↓ 0)◁
)︄

j

⇒(ϑj, ωj)⇒2 + 0◁

)︄

j

|ωj|
⎭
,

(B.5)

with wi = $→(t)
ii

. We use block coordinate descent and minimize (B.5) with respect to each

component of ! = (↽↭
,▷

↭
,ε↭

,↼↭)↭. Suppose we have estimates 3̃l for l ↘= j, ε̃, ↼̃ and ω̃, it

176



is straightforward to show that the updates for 3j and ▷ are given by

3j̃ ̸

{︄
n

i=1 wiZij

}︄
Ỹ i ↓

{︄
l ↔=j

Zil3l̃ ↓Di▷̃↓Giε̃ ↓ (Di ▽Gi)↼̃ ↓Uiω̃
⟨︄

{︄
n

i=1 wiZ
2
ij

,

▷̃ ̸

{︄
n

i=1 wiDi

}︄
Ỹ i ↓Zi↽̃ ↓Giε̃ ↓ (Di ▽Gi)↼̃ ↓Uiω̃

⟨︄

{︄
n

i=1 wiD
2
i

.

Denote the residual ri;→j = Ỹ i ↓ Zi↽̃ ↓ Di▷̃ ↓
{︄

l ↔=j
Gilϑl̃ ↓

{︄
l ↔=j

(Di ▽ Gil)ω̃l
↓ Uiω̃. The

subgradient equations for ϑj and ωj are equal to

0 ≃

⟨︂

⟩︂⨆︁
↓
{︄

n

i=1 wiGij

}︄
ri;→j ↓Gijϑj̃ ↓ (Di ▽Gij)ω̃j

⟨︄

↓
{︄

n

i=1 wi(Di ▽Gij)
}︄
ri;→j ↓Gijϑj̃ ↓ (Di ▽Gij)ω̃j

⟨︄
+ 0◁st↽⇒ω̃j

⇒1

⨆︂

∮︁∮︂+ (1↓ 0)◁st↽⇒ϑ̃j
, ω̃

j
⇒2,

where we define the subgradients

u ≃ ↽⇒ω̃
j
⇒1 =

\︄
⎧⎧/︂

⎧⎧\︂

[↓1, 1] if ω̃
j
= 0

sign(ω̃
j
) if ω̃

j
↘= 0

; v ≃ ↽⇒ϑ̃
j
, ω̃

j
⇒2 =

\︄
⎧⎧⎧⎧⎧⎧/︂

⎧⎧⎧⎧⎧⎧\︂

{v| ⇒v⇒2 ⇐ 1} if ϑ̃
j
= ω̃

j
= 0

1
⇐↼̃j ,ϱ̃j⇐2

⟨︂

⟩︂⟩︂⨆︁
ϑ̃
j

ω̃
j

⨆︂

∮︁∮︁∮︂ otherwise
.

(1) The case ϑ̃
j
= ω̃

j
= 0 implies

⟨︂

⟩︂⨆︁
{︄

n

i=1 wiGijri;→j

{︄
n

i=1 wi(Di ▽Gij)ri;→j ↓ 0◁stu

⨆︂

∮︁∮︂ = (1↓ 0)◁stv.

Since ⇒v⇒2 ⇐ 1, equality of the constraint holds as long as

⎛
n)︄

i=1

wiGijri;→j

⎞2

+

⎛
n)︄

i=1

wi(Di ▽Gij)ri;→j ↓ 0◁stu

⎞2

⇐ ((1↓ 0)◁st)
2
.
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Since u ≃ [↓1, 1], a necessary and su"cient condition for ϑ̃
j
= ω̃

j
= 0 being a solution

is

⎛
n)︄

i=1

wiGijri;→j

⎞2

+

⎛
Sφϖst

⎛
n)︄

i=1

wi(Di ▽Gij)ri;→j

⎞⎞2

⇐ ((1↓ 0)◁st)
2
, (B.6)

where Sϖ(·) is the soft-thresholding function defined as

Sϖ(a) =

\︄
⎧⎧⎧⎧⎧⎧/︂

⎧⎧⎧⎧⎧⎧\︂

a↓ ◁ if a > ◁

0 if |a| ⇐ ◁

a+ ◁ if a < ↓◁

.

(2) The case (ϑ̃
j
, ω̃

j
)↭ ↘= 0 implies

⟨︂

⟩︂⨆︁
{︄

n

i=1 wiGij(ri;→j ↓DiGij ω̃j
)

{︄
n

i=1 wi(Di ▽Gij)(ri;→j ↓Gijϑ̃j
)↓ 0◁stu

⨆︂

∮︁∮︂ =

⨀︁

⨀︂⨁︁

⟨︂

⟩︂⨆︁
{︄

n

i=1 wiG
2
ij

0

0
{︄

n

i=1 wi(Di ▽Gij)2

⨆︂

∮︁∮︂+
(1↓ 0)◁st⋃︂

ϑ̃
2

j
+ ω̃

2
j

I2

⨁︂

⨂︁⨂︂

⟨︂

⟩︂⨆︁
ϑ̃
j

ω̃
j

⨆︂

∮︁∮︂ . (B.7)

We have that ω̃
j
= 0 if |

{︄
n

i=1 wi(Di ▽ Gij)(ri;→j ↓ Gijϑ̃j
)| ⇐ 0◁st since u ≃ [↓1, 1]. This

implies that

n)︄

i=1

wiGijri;→j =

⎛
n)︄

i=1

wiG
2
ij
+ (1↓ 0)

◁st

|ϑ̃
j
|

⎞
ϑ̃
j
,

with the solution being equal to

ϑ̃
j
=

S(1→φ)ϖst(
{︄

n

i=1 wiGijri;→j){︄
n

i=1 wiG
2
ij

.
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There is no closed-form solution for (B.7) if both ω̃
j

and ϑ̃
j

are non-null. In this case,

we can replace (B.5) by a surrogate objective function using a majorization-minorization

algorithm (Wu and Lange [2008]). From the concavity of the ↼2 norm ⇒ϑj, ωj⇒2 =
⋃︂
ϑ2
j
+ ω2

j
,

we have the following inequality

⇒ϑj, ωj⇒2 ⇐ ⇒ϑ(t)
j
, ω

(t)
j
⇒2 +

1

2⇒ϑ(t)
j
, ω

(t)
j
⇒2
(⇒ϑj, ωj⇒22 ↓ ⇒ϑ(t)

j
, ω

(t)
j
⇒22),

from where we derive the majorization-minimization iterative step

!(t+1) = argmin
!

⌉︄
1

2st

n)︄

i=1

wi

}︄
Ỹ

(t)

i
↓Xi!↓Uiω

(t+1)
⟨︄2

+ (1↓ 0)◁
)︄

j

⇒ϑj, ωj⇒22
2⇒ϑ(t)

j
, ω

(t)
j
⇒2

+ 0◁

)︄

j

|ωj|
⎭
.

Using cyclic coordinate descent, the updates for ϑj and ωj are given by

ϑj̃ ̸
{︄

n

i=1 wiGij

⎠
ri;→j ↓DiGij ω̃j

⎜
{︄

n

i=1 wiG
2
ij
+ (1↓ 0)◁st̃

,

ω̃ ̸
Sφϖst

}︄{︄
n

i=1 wiDiGij(ri;→j ↓Gijϑ̃j
)
⟨︄

{︄
n

i=1 wi(DiGij)2 + (1↓ 0)◁st̃
,

where we defined s̃t = st/⇒ϑ(t)
j
, ω

(t)
j
⇒2. Algorithm 3 below summarizes our block coordinate

descent (BCD) procedure to obtain regularized estimates for the fixed e!ects vector ! =

(↽↭
,▷

↭
,ε↭

,↼↭)↭.
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Algorithm 3 BCD algorithm to minimize the PQL loss function of the GEI model (4.5)
with mixed lasso and group lasso penalties for GLMMs.
Input: y,X = [Z D G (D ▽G)]
Output: ↽̂, ε̂, ε̂, ↼̂
Estimate ϑg, ϑd and ϖ under the null model (i.e. ε = ↼ = 0) using the AI-REML algorithm;
Given ϑ̂g, ϑ̂d and ϖ̂, perform spectral decomposition of the random e!ects covariance matrix ϑ̂gK+ ϑ̂dKD =
U!U↭;

Initialize ”(0) = (↽(0)↭,ε(0)↭,ε(0)↭,↼(0)↭)↭ and ω̃
(0)

;
for ϱ = ϱ1,ϱ2, ... do

for t=0,1,... until convergence do

Select a suitable step size st;
Update µ(t) ̸ g→1(X”(t) +U ω̃

(t)
), #(t) ̸ diag(g↑(µ(t))) and wi ̸ #→(t)

ii for i = 1, ..., n;
Update Ỹ ̸ X”(t) +U ω̃

(t)
+ st#(t)(y ↓ µ(t));

/* Inner loop to estimate ω̃

for j=1,...,n until convergence do

ςj̃
(t+1) ̸

{︄n
i=1 wiUij

}︄
Ỹ i ↓Xi”(t) ↓

{︄
l ↓=j Uilςl̃

⟨︄

{︄n
i=1 wiU2

ij + ϖ̂!→1
j

;

Update µ(t) ̸ g→1(X”(t) +U ω̃
(t+1)

);
Update Ỹ ̸ X”(t) +U ω̃

(t+1)
+ st#(t)(y ↓ µ(t));

/* Inner loop to estimate ”(t+1)

for k=1,...,m until convergence do

φk̃ ̸

{︄n
i=1 wiZij

}︄
Ỹ i ↓

{︄
l ↓=k Zilφl̃ ↓Diε̃↓Giε̃ ↓ (Di ▽Gi)↼̃ ↓Uiω̃

⟨︄

{︄n
i=1 wiZ2

ik

,

ε̃ ̸

{︄n
i=1 wiDi

}︄
Ỹ i ↓Zi↽̃ ↓Giε̃ ↓ (Di ▽Gi)↼̃ ↓Uiω̃

⟨︄

{︄n
i=1 wiD2

i

;

for j=1,...,p until convergence do

Compute ri;→j = Ỹ i ↓Zi↽̃ ↓Diε̃↓
{︄

l ↓=j Gilωl̃ ↓
{︄

l ↓=j(Di ▽Gil)↼̃l ↓Uiω̃;
If |

{︄n
i=1 wi(Di ▽Gij)(ri;→j ↓Gij ω̃j)| ⇐ ϱst then set

↼̃j ̸ 0 and ω̃j ̸
Sωst(

{︄n
i=1 wiGijri;→j){︄n
i=1 wiG2

ij

;

Else then set

ωj̃ ̸
{︄n

i=1 wiGij

⎠
ri;→j ↓DiGij ↼̃j

⎜
{︄n

i=1 wiG2
ij + ϱst̃

,

↼̃ ̸
Sωs̃t

}︄{︄n
i=1 wiDiGij(ri;→j ↓Gij ω̃j)

⟨︄

{︄n
i=1 wi(DiGij)2 + ϱst̃

,

where s̃t = st/⇒ω(t)
j , ↼(t)

j ⇒2.
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APPENDIX C

Appendix to Manuscript 3

C.1 Supplementary Tables

Table C.1: Mean and standard deviation of the relative bias (%) of variance parameters esti-
mated under the null model of no genetic association when simulating continuous phenotypes
with no causal predictor.

Number of PCs
GRM Variable 0 10 20
full ϖ 0.13 (1.89) 0.14 (1.89) 0.15 (1.89)

ς1 -0.49 (12.5) 0.01 (10.8) -0.10 (10.6)
ς2 0.89 (12.5) 1.05 (12.2) 1.10 (12.2)
ς3 -1.49 (20.2) -1.43 (20.3) -1.86 (20.3)
ς4 0.55 (8.28) 0.59 (7.94) 0.55 (7.97)
ς5 -0.20 (9.66) -0.41 (9.94) -0.43 (10.1)
ς6 0.97 (6.22) 1.04 (6.26) 0.99 (6.30)
ϱ 33.0 (27.2) 1.64 (13.7) 1.19 (13.5)

sparse ϖ 0.12 (1.89) 0.14 (1.91) 0.15 (1.90)
ς1 -30.6 (23.6) -5.86 (20.0) -4.86 (21.2)
ς2 6.29 (24.2) 1.16 (12.3) 1.27 (12.3)
ς3 -5.53 (28.2) -1.28 (20.2) -1.68 (20.2)
ς4 5.76 (14.2) 1.01 (9.11) 0.53 (8.31)
ς5 -0.55 (9.89) -0.68 (10.2) -0.68 (10.3)
ς6 10.1 (17.3) 1.84 (8.03) 1.12 (6.47)
ϱ 72.7 (44.6) 8.68 (25.2) 6.35 (26.0)
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Table C.2: Mean and standard deviation of the relative bias (%) of variance parameters esti-
mated under the null model of no genetic association when simulating continuous phenotypes
with 100 causal predictors explaining 2% of heritability.

Number of PCs
GRM Variable 0 10 20
full ϖ -0.08 (2.04) -0.09 (1.99) -0.09 (1.98)

ς1 9.42 (14.4) 8.99 (13.9) 9.25 (14.0)
ς2 -1.11 (16.0) -1.85 (14.9) -1.68 (15.1)
ς3 -2.58 (18.6) -4.16 (17.9) -4.41 (17.9)
ς4 -0.24 (9.24) 0.14 (8.89) 0.07 (8.96)
ς5 -2.24 (11.1) -1.79 (10.9) -1.79 (11.0)
ς6 0.15 (8.17) 0.17 (7.89) 0.14 (7.85)
ϱ 46.3 (27.0) 13.5 (15.8) 12.6 (15.9)

sparse ϖ -0.06 (2.01) -0.08 (1.97) -0.08 (1.96)
ς1 -26.7 (21.3) -5.35 (25.0) -4.45 (24.8)
ς2 1.11 (17.8) -1.59 (15.2) -1.47 (15.5)
ς3 -4.17 (20.6) -5.26 (19.3) -5.53 (19.3)
ς4 6.69 (13.8) 0.54 (9.71) 0.52 (9.79)
ς5 -1.89 (11.4) -1.57 (11.1) -1.51 (11.1)
ς6 12.1 (19.4) 1.02 (9.29) 1.01 (9.26)
ϱ 95.4 (47.2) 30.5 (29.6) 28.90 (29.0)

Table C.3: Mean and standard deviation of the relative bias (%) of variance parameters
estimated under the null model of no genetic association when simulating binary phenotypes
with no causal predictor.

Number of PCs
GRM Variable 0 10 20
full ς1 -7.29 (44.8) 16.2 (62.4) 16.2 (63.5)

ς2 44.1 (32.1) 51.6 (38.5) 51.4 (38.7)
ς3 -18.4 (40.7) -6.85 (41.1) -8.69 (40.5)
ς4 -9.87 (32.0) -19.4 (60.7) -19.8 (60.6)
ς5 -26.5 (30.1) -35.4 (44.8) -35.6 (44.9)
ς6 -42.0 (20.8) -36.3 (52.7) -36.4 (51.8)
ϱ 73.7 (47.2) 41.9 (37.3) 42.3 (37.6)

sparse ς1 -54.6 (50.7) 4.18 (57.1) 7.17 (56.4)
ς2 72.3 (36.2) 51.8 (37.5) 48.4 (36.6)
ς3 -57.9 (44.7) -19.2 (35.3) -14.3 (37.6)
ς4 -12.2 (30.6) -18.1 (57.3) -16.3 (56.1)
ς5 -23.6 (28.5) -36.2 (42.1) -33.8 (41.5)
ς6 -39.8 (26.5) -36.9 (54.5) -35.3 (54.7)
ϱ 136 (81.7) 49.9 (57.2) 46.6 (60.3)
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Table C.4: Mean and standard deviation of the relative bias (%) of variance parameters
estimated under the null model of no genetic association when simulating binary phenotypes
with 100 causal predictors explaining 2% of heritability.

Number of PCs
GRM Variable 0 10 20
full ς1 -5.20 (39.1) 9.49 (49.3) 9.55 (48.3)

ς2 39.4 (25.3) 44.8 (35.0) 46.6 (35.2)
ς3 -19.4 (43.4) -17.2 (45.3) -15.9 (45.9)
ς4 -6.20 (19.8) -19.0 (41.4) -21.0 (43.2)
ς5 -28.4 (25.2) -31.2 (37.1) -34.7 (39.2)
ς6 -42.3 (18.8) -43.4 (21.6) -45.9 (21.5)
ϱ 96.2 (39.0) 64.6 (37.7) 63.5 (37.5)

sparse ς1 -54.4 (65.7) -13.7 (71.7) -18.3 (66.0)
ς2 74.1 (32.1) 61.0 (37.2) 65.0 (36.3)
ς3 -62.5 (47.6) -36.7 (52.0) -38.8 (52.5)
ς4 -7.81 (39.8) -19.3 (50.8) -24.7 (41.2)
ς5 -27.6 (26.9) -33.3 (37.4) -36.8 (39.5)
ς6 -34.5 (53.7) -40.4 (54.5) -49.2 (22.1)
ϱ 169 (71.4) 95.4 (69.2) 93.1 (67.8)

Table C.5: Point estimates of the residual variance ϖ, polygenic variance component ϱ

and within-individual random e!ects variances and covariance parameters ς1, ς2 and ς3

estimated under the null model of no genetic association using the AIREML algorithm.

Hyperactivity Aggression Opposition
CCA SI CCA SI CCA SI

ϖ̂ 0.119 0.078 0.070 0.049 0.098 0.063
ϱ̂ 0.183 0.195 0.080 0.086 0.189 0.179
ς̂1 0.308 0.505 0.350 0.365 0.237 0.413
ς̂2 0.006 0.013 0.010 0.011 0.010 0.015
ς̂3 -0.042 -0.078 -0.057 -0.061 -0.047 -0.075

CCA = Complete case analysis. SI = Single imputation.

183



Table C.6: Common SNPs selected by the penalized mixed model for all three externalizing
scores.

↼̂

Analysis SNP CHR POS A1/A2 MAF Gene : Consequence Hyp Aggr Opp
CCA rs4653589 1 224688598 G / A 0.172 CNIH3 : Intronic 0.013 0.013 0.015

rs12123482 1 233105677 A / G 0.019 NTPCR : Missense -0.006 -0.052 -0.034
rs10491702 9 2227837 A / C 0.049 LOC107987043 : Intronic 0.019 0.001 0.005

SI rs1181883 1 3677933 C / T 0.401 CCDC27 : Missense 0.005 9x10↑7 0.002
rs6702929 1 25406674 A / C 0.437 None 0.005 0.007 0.007
rs4653589 1 224688598 G / A 0.171 CNIH3 : Intronic 0.002 0.016 0.020
rs12994424 2 26183142 T / C 0.101 KIF3C : Intronic 0.002 0.010 0.006
rs10179260 2 226521752 G / A 0.085 NYAP2 : Intronic -0.007 -0.003 -0.017
rs2292997 3 183724072 A / G 0.099 ABCC5 : Intronic -0.004 -0.006 -0.022
rs1250109 4 1227951 C / T 0.161 CTBP1 : Intronic -0.007 -0.027 -0.002
rs4865047 4 56821806 T / C 0.096 CEP135 : Intronic -0.003 -0.012 -0.013
rs1490794 5 67168343 A / G 0.230 None 0.008 0.006 0.004
rs4292570 6 82763865 C / T 0.200 LINC02542 : Intronic -0.103 -0.008 -0.032
rs9372528 6 119704829 T / C 0.069 None 0.015 0.0009 0.016
rs547124 11 120052554 A / G 0.141 LOC124902773 : Intronic -0.001 -0.022 -0.011
rs12273131 11 123742913 T / C 0.232 None -0.005 →3x10↑6 -0.013
rs6571394 14 21236181 T / C 0.458 LOC107984671 : Intronic -0.025 -0.023 -0.001
rs4932232 15 90114309 G / A 0.405 None -0.008 -0.043 -0.028
rs2951665 17 32075015 T / C 0.485 ASIC2 : Intronic 0.003 0.002 0.008

CCA = Complete case analysis. SI = Single imputation. MAF = Minor allele frequency.
Hyp = Hyperactivity. Aggr = Aggression. Opp = Opposition.
Note 1: MAF was reported for the e!ect allele A1.

Table C.7: Common SNPs selected by the adaptive penalized mixed model for all three
externalizing scores.

↼̂

Analysis SNP CHR POS A1/A2 MAF Gene : Consequence Hyp Aggr Opp
CCA rs4653589 1 224688598 G / A 0.172 CNIH3 : Intronic 0.016 0.009 0.012

rs12123482 1 233105677 A / G 0.019 NTPCR : Missense -0.023 -0.092 -0.010

SI rs6702929 1 25406674 A / C 0.437 None 0.004 0.005 0.004
rs921197 1 30319889 G / A 0.473 None -0.0006 -0.002 -0.006
rs4653589 1 224688598 G / A 0.171 CNIH3 : Intronic 0.008 0.010 0.013
rs12123482 1 233105677 A / G 0.020 NTPCR : Missense -0.019 -0.034 -0.037
rs13027447 2 139943532 C / T 0.181 None 0.018 0.004 0.013
rs10179260 2 226521752 G / A 0.085 NYAP2 : Intronic -0.001 -0.0008 -0.016
rs9819889 3 134584764 A / G 0.322 EPHB1 : Intronic 0.0001 0.018 0.012
rs11922733 3 183260759 T / C 0.057 KLHL6 : Intronic 0.003 0.0003 0.008
rs1250109 4 1227951 C / T 0.161 CTBP1 : Intronic -0.011 -0.028 -0.002
rs4835163 4 150348995 T / C 0.143 IQCM : Intronic 0.013 0.007 0.009
rs7716386 5 9964861 A / G 0.183 LOC107986405 : Intronic -0.0001 -0.036 -0.028
rs4292570 6 82763865 C / T 0.200 LINC02542 : Intronic -0.100 -0.027 -0.035
rs2986977 10 7950558 A / G 0.255 TAF3 : Intronic -0.013 -0.004 -0.015
rs547124 11 120052554 A / G 0.141 LOC124902773 : Intronic -0.004 -0.023 -0.009
rs7138693 12 75257224 G / T 0.278 LOC105369842 : Non coding -0.015 -0.023 -0.008
rs6571394 14 21236181 T / C 0.458 LOC107984671 : Intronic -0.053 -0.050 -0.010
rs4932232 15 90114309 G / A 0.405 None -0.007 -0.045 -0.020

CCA = Complete case analysis. SI = Single imputation. MAF = Minor allele frequency.
Hyp = Hyperactivity. Aggr = Aggression. Opp = Opposition.
SNPs in bold are SNPs that were also selected by the penalized mixed model (Table C.6).
Note 1: MAF was reported for the e!ect allele A1.
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C.2 Supplementary Figures

Figure C.1: Relative bias of variance parameters estimated under the null model of no
genetic association when simulating binary phenotypes with no causal predictor. Top-left
panel: Model with a full GRM and no PC to control for genetic ancestry. Top-right panel:
Model with a full GRM and 10 PCs to control for genetic ancestry. Bottom-left panel: Model
with a sparse GRM and no PC to control for genetic ancestry. Bottom-right panel: Model
with a sparse GRM and 10 PCs to control for genetic ancestry.
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Figure C.2: Relative bias of variance parameters estimated under the null model of no genetic
association when simulating binary phenotypes with 100 causal predictors explaining 2% of
heritability. Top-left panel: Model with a full GRM and no PC to control for genetic ancestry.
Top-right panel: Model with a full GRM and 10 PCs to control for genetic ancestry. Bottom-
left panel: Model with a sparse GRM and no PC to control for genetic ancestry. Bottom-right
panel: Model with a sparse GRM and 10 PCs to control for genetic ancestry.
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Figure C.3: Precision-recall curve for selection of genetic predictors for our proposed method
as a function of the modelling strategy. The left and right panels illustrate the average per-
formance of the method over 50 replications for the simulation model with binary phenotypes
and 100 causal predictors explaining 2% and 10% of heritability respectively.
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Figure C.4: Precision-recall curve for selection of genetic predictors for the three compared
methods. The left and right panels illustrate the average performance with 95% confidence
interval of the methods over 50 replications for the simulation model with binary phenotypes
and 100 causal predictors explaining 2% and 10% of heritability respectively.
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Figure C.5: Performance of the mixed lasso prediction model (R2
MSPE

) on the test set
as a function of the number of selected genetic predictors. The left and right panels are
respectively for the complete case analysis (CCA) and single imputation (SI) model. The
dashed vertical lines represent the best model for each externalizing score.
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Figure C.6: Performance of the adaptive mixed lasso prediction model (R2
MSPE

) on the test
set as a function of the number of selected genetic predictors. The left and right panels are
respectively for the complete case analysis (CCA) and single imputation (SI) model. The
dashed vertical lines represent the best model for each externalizing score. Adaptive weights
were estimated by fitting an elastic-net model on the training data.
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C.3 Genotype quality control

Genotyping was conducted using the Infinium PsychArray-24 v1.3 BeadChip. The quality

control (QC) of genetic data was conducted in PLINK v1.90b5.3, PLINK v1.90b6.7 (Chang

et al. [2015]), and R v3.4.3. Pre-imputation QC of genotype data consisted of the following

steps:

1. Removal of SNPs with call rates < 98% or a minor allele frequency (MAF) < 1%

2. Removal of individuals with genotyping rates < 95%

3. Removal of sex mismatches

4. Removal of genetic duplicates

5. Removal of cryptic relatives with pi-hat⇔ 12.5

6. Removal of genetic outliers with a distance from the mean of > 4 SD in the first eight

multidimensional scaling (MDS) ancestry components

7. Removal of individuals with a deviation of the autosomal or X-chromosomal heterozygosity

from the mean > 4 SD

8. Removal of non-autosomal variants

9. Removal of SNPs with call rates < 98% or a MAF < 5% or Hardy-Weinberg Equilibrium

(HWE) test p-values < 1↑ 10→3

10. Removal of A/T and G/C SNPs

11. Update of variant IDs and positions to the IDs and positions in the 1000 Genomes Phase

3 reference panel

12. Alignment of alleles to the reference panel

13. Removal of duplicated variants and variants not present in the reference panel
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