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Abstract

With extraordinary advancements in Natural Language Processing (NLP) and crosswords

being more popular than ever, the current era of Machine Learning (ML) and NLP has

reinvigorated interest in automating crossword solving. Crossword puzzles are intellec-

tual games that are popular all over the world. To solve them, they require a large vocab-

ulary and deductive reasoning. Crossword clues are often less straightforward, involve

many different types of reasoning, and could contain multiple different linguistic com-

plexities. Furthermore, they are often considered an ideal testing ground for AI and NLP

tasks as they are an abundant, diverse and validated type of data. In fact, they are often

used for QA and constraint satisfaction. However, solving them involves more than just

generating answers. It is essential to take into account intersecting letters and length con-

straints. Nevertheless, crossword solvers often encounter the following two problems:

a vast search space needed to generate candidate solutions and having multiple valid

possible solutions. Therefore, developing models capable of accurately interpreting and

resolving linguistic ambiguity in crossword clues can help contribute to advancements in

NLP, particularly in tasks that involve deciphering natural language. As previously men-

tioned, despite advancements, challenges persist. Automated crossword solvers have

been built in the past and can outperform most humans. Some of the best are Proverb,

Dr. Fill, and Berkeley Solver. Despite their success, they still struggle to solve difficult lin-

guistic instances present in crosswords and fail to outperform expert humans. In pursuit

of improving crossword-solving accuracy, previous models using BERT, T5, and GPT2

still faced difficulties when it came to QA due to clue ambiguity and crossword grid con-

straints. By leveraging GPT-4 alongside the findings of past explorations in this field,

the goal of this thesis is to develop a cutting-edge crossword solver that achieves higher
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accuracy than previous models and potentially address the remaining challenges in cross-

word solving, making our approach a promising avenue for further improvement in the

field. To achieve this, we developed a crossword solver model incorporating GPT-4 for

the generation of answers along with grid constraints to take care of the crossing letter

and length constraints. We tested our work using a collection of crosswords extracted

from the New York Times. Our experiments show that our model achieved an accuracy

that is on more than 20% higher than the latest crossword solver presented in at the 2022

ACL conference and about 2% higher than the Berkeley Solver.
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Abrégé

Avec le New York Times Crosswords qui a atteint plus de 500 000 abonnés en 2019, l’ère

actuelle de l’apprentissage automatique (ML) et du traitement du langage naturel (NLP)

a a renouvelé l’intérêt pour l’automatisation de la résolution de mots croisés. Les mots

croisés, populaires dans le monde entier, sont des défis intellectuels qui nécessitent un

vocabulaire étendu et le raisonnement déductif. Les indices donnés sont souvent moins

simples que l’on pense. Ils impliquent divers types de raisonnement et des complexités

linguistiques. En tant que tels, ces énigmes constituent un terrain parfait pour tester

les tâches de AI et de NLP, en particulier la réponse aux questions (AQ) et la satisfac-

tion des contraintes. La résolution implique plus que de produire des réponses. Les

solveurs de contraintes sont essentiels pour réconcilier les lettres de croisement et con-

traintes de longueur. Ceci est difficile en raison de devoir chercher des candidats dans

un grand espace et de la d’avoir plusieurs sources valides. solutions. Par conséquent, le

développement de modèles capables d’interpréter et de résoudre avec précision l’ambiguı̈té

linguistique dans les indices de mots croisés peuvent contribuer aux progrès de la PNL,

en particulier dans les tâches qui impliquent comprendre et lever l’ambiguı̈té du langage

naturel. Comme mentionné précédemment, malgré les progrès, les défis persistent. Des

solutions automatisées de mots croisés ont été créées dans le passé et peuvent surpasser

la plupart des humains. Certains les meilleurs sont Proverb, Dr. Fill et Berkeley Solver.

Malgré leur succès, ils ont encore du mal à résoudre des difficultés linguistiques présentes

dans les mots croisés et ne parviennent pas à surpasser les humains experts. Dans le but

d’améliorer la précision de la résolution des mots croisés, les modèles précédents utilisant

BERT, T5 et GPT2 avaient toujours des problèmes losqu’il s’agissait de la compréhension

de l’ambiguı̈té des indices et des constraintes imposées par la grille des mots croisés. En
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tirant parti de GPT-4 parallèlement aux découvertes du passé dans ce domaine, l’objectif

est de développer un outil de résolution de mots croisés de pointe qui atteint des résultats

plus élevés que les modèles a priori et potentiellement résoudre les défis restants dans la

résolution de mots croisés. Pour y parvenir, nous avons développé un modèle utilisant

GPT-4 pour la génération de réponses ainsi que les solveurs de la théorie du module

de satisfaction (SMT) pour prendre en charge les contraintes de lettre et de longueur de

croisement. Nous avons testé notre solution sur une collection de mots croisés extraits

du New York Times. Nos expériences montrent que notre modèle a atteint une précision

supérieure de plus de 20% que celle du dernier solveur de mots croisés présenté lors de

la conférence ACL 2022 et environ 2% supérieure à celle du solveur de Berkeley.
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Chapter 1

Introduction

1.1 Problem Statement

With a rapid increase in the performance of NLP models in recent years, it reinvigorated

researchers’ interest in NLP models’ capabilities to reason about popular word games. In

the realm of mind games, crossword puzzles have emerged as a crowd favourite.

Popular all over the world, crossword puzzles are challenges that require an expansive

vocabulary, as well as deductive reasoning. With more than 500,000 subscribers in 2019

for the NYT crosswords [1], the current era of ML and NLP has also contributed to the

renewed interest in automating crossword solving.

They offer an abundant amount of diverse labeled data. As such, these puzzles serve

as a perfect testing ground for AI and NLP tasks, specifically question answering (QA)

and constraint satisfaction.

Solving crosswords requires more than just generating words that fit the grid. One

needs to decipher clues, which may include puns, anagrams, or metaphorical associa-

tions. These clues are often less straightforward and involve various types of linguistic

complexities, such as homophony, and wordplay, to name a few [17, 32]. Furthermore,

crossword clues can sometimes intentionally lack specificity, requiring those involved to

skip certain clues until more information is available [17, 20, 32].
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Some of the best automated crossword solvers in the world are Proverb [20], Dr. Fill

[17], and Berkeley Solver [32]. Despite their success, they still struggle to understand

difficult linguistic nuances present in crosswords and fail to outperform expert humans.

The main problem with current solvers is their struggle with addressing the complex

linguistic nuances of clues and the rigid structural constraints of the crossword grid si-

multaneously. Generally, existing solvers excel in one of the above aspects, but often

struggle with the other.

Current solvers, which rely heavily on mathematical optimization or rule-based ap-

proaches, can struggle to interpret subtle linguistic cues accurately. This leads to a mis-

match between the solver’s interpretation and the intended answer, resulting in inaccu-

rate solutions. This is in part due to the vast search space and potential for multiple valid

solutions. Miscalibrations in models might also result in predicted answers that are close

to the actual solutions but still wrong [32]. Addressing these challenges necessitates a

solver capable of interpreting linguistic subtleties, generating contextually more correct

solutions.

1.2 Thesis Methodology and Contribution

To improve on existing solvers, this thesis’ methodology consists of developing an au-

tomated crossword solver that employs GPT-4 for the generation of answers and logical

constraints to take care of the intersecting letters and length constraints. To validate the

model’s efficacy, it was tested on an extensive dataset comprised of crossword puzzles

from The New York Times (NYT) ranging from 1989 to 2018 and comparing its efficacy to

previous models.

I worked on both the theoretical conception and the actual coding portion of the

model. As well, I prepped the data used for the testing aspect. Finally, I wrote the entirety

of my thesis.
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1.3 Research Objectives

By leveraging the latest GPT model alongside the findings of past explorations in this

field, the goal is to develop a crossword solver that achieves higher accuracy than pre-

vious models and potentially addresses the current challenges in crossword solving. As

such, it highlights our approach as a promising avenue for further improvement in the

field.

1.4 Outline of the Thesis

The thesis is organized as follows:

• Chapter 1: The background information and context for this thesis are provided in

this chapter. It delivers an overview of the thesis’ organization and presents the

research technique and objectives.

• Chapter 2: Background and Related Work- This chapter contains a short history on

crosswords and crossword solvers, reviews the relevant literature and provides a

theoretical foundation for the implementation of crossword solvers.

• Chapter 3: Models and Solutions - This chapter discusses the design of the final

crossword solver model in detail as well as different techniques that we considered.

• Chapter 4: Experiments and Evaluations- The experimental setup and technique

utilized to assess the performance of our final crossword solver model are presented

in this chapter. It also contains the outcomes.

• Chapter 5: Discussion - This chapter dives into detail the results of our experiments,

where we look into the advantages and limitations of our final model.

• Chapter 6: Conclusion - The summary of our results and the project’s contribution

are compiled in this chapter. It also includes a list of potential future projects.
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Chapter 2

Literature Review

In Chapter 2, we review some of the most pertinent work in relation to this thesis, starting

with a brief history on crosswords and its solvers, then moving on to CSPs, LLMs and

finally conclude with summaries of some of the most relevant crossword solvers.

2.1 Brief History of Crosswords and Crossword Solvers

Before diving into the relevant research surrounding this thesis, we first set the stage with

a brief history on crosswords and crossword solvers.

The history of crossword solvers traces its origins back to the late 19th century, where

in 1913, Arthur Wynne created the first known crossword puzzle for the New York World

[28]. Since it inception, a crossword puzzle, as displayed in 2.1, is a word game or mind-

teaser that typically consists of the following several key elements [3, 28]:

• Grid: The grid is the main structure of the crossword, consisting of black and white

squares. The white squares are to be filled with letters to form the correct words,

while black squares are there to separate and delineate the words.

• Clues: Clues are hints provided for each word in the crossword. They can take on

various forms such as definitions, wordplay, or references to certain topics.
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• Across and Down: Words in a crossword are generally categorized as either ”across”

or ”down”. ”Across” words are read from left to right, and ”down” words are read

from top to bottom. They can sometimes also be referred to as ”horizontal” or ”ver-

tical” respectively.

• Numbers: Each white square contains a number which indicates the starting point

of an across or down word. The numbers help solvers identify the beginning of each

word and link the clues to the appropriate grid location.

Figure 2.1: Example of a Crossword taken from the New York Times Journal [1]

In the 20th century, crosswords have crossed into the realm of computational problem-

solving, where automated crossword solvers have flourished. Notable ones include Proverb

[20], Dr.Fill [17], and Berkeley Solver [32], demonstrating the capability to outperform a

majority of humans by combining logic constraints and LLMs.

To better understand crossword solvers, we will be exploring CSPs, SATs, LLMs and

notable crossword solvers as we dive further into this thesis.
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2.2 Constraint Solving Problems

Crossword solvers are often challenged by grid constraints and possess multiple plausi-

ble candidate answers. Participants must ensure that their answers satisfy both the grid

constraints and the given clues. As such, they are a great example of CSPs. In this section,

we will be looking into the brief history of CSPs, their definition and key elements, their

sub-branches, and finally some of their most popular tools.

A CSP is a mathematical element employed in computer science and AI to model

problems by using a set of variables whose values are subjected to specific constraints [11].

CSPs can be found in numerous applications, including scheduling, planning, resource

allocation, configuration, and optimization, to name a few.

In a CSP, the primary objective is to determine an assignment of values to the variables

such that it satisfies all imposed constraints [11, 18, 30]. Each variable has an associated

domain, which defines the possible values it can have. Constraints, on the other hand,

refer to the relationships and dependencies between variables, which consequently also

dictate how these variables relate to one another.

The solution of a CSP is a combination of variable assignments that adheres to the

problem’s defined constraints. However, it is not as simple as it sounds. The challenge lies

in searching through a large solution space efficiently. Techniques such as backtracking,

constraint propagation, and heuristics are often employed to minimize this problem [30].

Additionally, CSPs allow for the representation and solution of complex, real-world

problems in a structured format. Their inherent flexibility and applicability make CSPs

an important factor in computational techniques to address a wide array of problems

requiring logical reasoning and constraint-based decision-making.

As previously mentioned, in the following subsections, we will be going through their

brief history, definition, key elements and some of the most important work and research

areas to have come out of it.
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2.2.1 Brief History

CSPs found their roots in the mid-20th century. Throughout that time, the complexities of

scheduling, resource allocation, and logistical challenges pushed mathematicians to find

ways to deal with these problems in an efficient manner.

However, CSPs were only really formalized in the 1970s and 1980s. Researchers came

up with systematic methodologies for the representation and resolution of problems sub-

ject to constraints. During this time, important contributions included the backtracking

algorithm, along with the introduction of constraint propagation techniques, were re-

leased [30].

The subsequent decades saw the use of constraint satisfaction techniques in AI pro-

grams [30]. CSPs assumed a pivotal role in the modeling and resolution of intricate chal-

lenges pertaining to knowledge representation, planning, and decision-making within AI

research and application [30].

The start of the 21st century ushered in a period of time characterized by an increasing

use of constraint solving methodologies with more AI programs. Noteworthy applica-

tions of constraint programming during this era include scheduling, configuration, and

optimization. [18, 30].

Current trends in constraint solving encompass the deployment of sophisticated algo-

rithms to harness the potential of parallel computing programs and automated reasoning.

Constraint solving techniques continue to be a crucial part of addressing complex prob-

lems in domains such as robotics, bioinformatics, and supply chain management to name

a few [13].

2.2.2 Definition and Key Elements

To better understand a CSP, a definition and its key elements will be provided below.

A CSP is commonly described as a method used to model and solve problems where a

set of variables must be assigned values subject to specified constraints. Its primary goal

is to find a consistent assignment of values to the variables that satisfies all the constraints

[11, 30].
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A CSP typically contains the following:

• Variables (V): Variables represent the unknowns whose values need to be deter-

mined in the problem. They can be any value from a specified domain, which de-

fines the set of possible values it can assume.

• Domains (D): The domain of a variable is the set of values it can take on. Depend-

ing on the nature of the problem, they can be finite or infinite, as well as discrete

or continuous. A problem’s constraints ensure that the assigned values come from

these domains.

• Constraints (C): Constraints are rules that impact the allowable combinations of val-

ues for a set of variables. They dictate relationships or dependencies among vari-

ables and must be satisfied for a solution to be valid.

• Solution (S): A valid solution to a CSP is an assignment of values to the variables

that satisfies all the constraints. The search for a solution often involves systemati-

cally exploring the space of possible assignments until a satisfactory set of values is

found.

• Objective Function (optional): In some CSPs, there may be an associated objective

function that needs to be optimized. The objective function assigns a value to each

possible assignment, and the goal is to find the assignment that optimizes or satis-

fies this function.

• Search Space: The search space of a CSP is the set of all possible assignments of

values to variables. Due to the constraints, not all combinations are valid solutions,
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and the search process involves going through this space to find a consistent assign-

ment [15].

CSPs are often solved using search algorithms, with backtracking being one of the

fundamental techniques used. Backtracking involves systematically exploring the search

space and undoing choices when a constraint is violated. Other search algorithms, like

constraint propagation or heuristics, may also be employed to efficiently traverse the

space.

In summary, a CSP consists of a set of variables with associated domains, a set of

constraints that define allowable combinations of variable assignments, and the objective

of finding a consistent assignment satisfying all constraints. The exploration of the search

space is a key aspect of solving CSPs.

2.2.3 Boolean Satisfiability Problems

In many cases, CSPs are reformulated into SATs for the purpose of leveraging the effi-

ciency of SAT solvers. This reformulation is motivated by the fact that SAT solvers have

contributed to substantial advancements and optimizations in AI and other areas, making

them powerful tools for solving complex logical problems.

SATs form a crucial component in the domain of mathematical logic and computa-

tional complexity. Based on the theoretical framework of propositional logic, SATs can be

defined by the quest to determine the feasibility of truth assignments to a set of Boolean

variables that satisfy a given logical formula [16].

SATs are typically expressed in CNF, where logical relationships among variables are

structured as clauses. The following figure illustrates an example of a SAT problem [15].

With the importance of SAT, the introduction of efficient SAT solvers was inevitable,

where employing techniques like backtracking, conflict-driven clause learning, and ad-

vanced heuristics, has propelled the applicability of SATs across diverse fields, including

formal verification, AI, and hardware design for instance [22].
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Figure 2.2: Example of a SAT Problem

2.2.4 SAT Solvers

SATs and their solvers are some of the foundational components of computational logic.

The motivation behind their development lies in the complexity of a SAT problem, an im-

portant NP-complete problem that has spurred the creation of powerful tools for solving

intricate logical decision problems.

Driven by the desire to efficiently explore the Boolean solution space, SAT solvers have

evolved quickly over time, resulting in the development of ground-breaking applications

like CDCL [29]. These solvers employ strategies such as backtracking to methodically

search through the solution space, which is frequently represented in CNF, and arrive at

the best answer. Guided by heuristic insights, the fundamental idea of SAT solvers is to

adeptly explore the large solution space by making strategic judgments regarding truth

assignments in relation to Boolean variables.

The first step in most SAT solvers is to encode a given problem into its respective

CNF representation, which expresses logical relationships in the form of conjunctions of

clauses. Subsequently, the solver proceeds to methodically investigate potential truth

assignments, traversing several branches of the solution space via backtracking. Fur-

thermore, sophisticated heuristics can also help direct variable selection and truth value

assignment order, maximizing the effectiveness of the search.

The CDCL algorithm is one of the most significant advancements in constraint sat-

isfaction. It is a crucial part of SAT solvers, enabling them to dynamically modify their

search strategy in response to conflicts that they encounter [29]. In order to prevent re-
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occurring conflicts, the solver learns from conflicts by recognizing and evaluating the

conflicting clause and then modifying its approach.

Although SAT solvers have demonstrated their effectiveness in several applications,

they are not without their drawbacks. For example, its NP-completeness-related compu-

tational complexity makes scaling difficult. As well, their expressiveness is restricted to

Boolean logic, which limits the kinds of constraints they can handle well [16, 22].

Ongoing research continuously refines SAT-solving methodologies, contributing to

their versatility and significance in addressing complex logical decision problems. The

perpetual exchange between theoretical insights and algorithmic advancements charac-

terizes the academic landscape surrounding SATs.

2.2.5 SMT

SMT solvers have only relatively recently emerged as powerful tools in automated rea-

soning. It solves decision problems by integrating mathematical theories with logical

restrictions [14]. Building upon the foundations laid by SAT solvers, SMT solvers com-

bine specialized decision processes for certain mathematical theories, including arrays,

bit-vectors, and arithmetic. With applications ranging from formal verification, software

analysis, and symbolic execution, this allows users to reason about complicated systems

that have both logical and mathematical components [4, 14].

The history of SMT solvers can be traced back to the early 2000s, with pivotal research

such as the development of the DPLL framework [?] and the introduction of efficient

decision procedures for theories like linear arithmetic and bit-vectors. Over the years, re-

search efforts have focused on refining algorithms, optimizing performance, and expand-

ing the expressiveness of SMT solvers to handle increasingly complex problem domains.

Compared to SAT solvers, SMT solvers offer several other advantages. Firstly, they

provide a more expressive modeling language, allowing users to illustrate a broader

range of constraints [4, 14]. This enables SMT solvers to capture richer problem domains

and reason about complex systems more accurately. Additionally, SMT solvers often ex-
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hibit better performance on problems that involve both logical and mathematical con-

straints, as they can leverage specialized decision procedures tailored to specific theories.

Despite their strengths, SMT solvers also have their limits. One weakness is the com-

putational complexity of solving problems in certain areas, such as nonlinear arithmetic

or quantified formulas. These problems can be challenging to solve efficiently, limiting

the scalability of SMT solvers for certain classes of problems. Furthermore, while SMT

solvers excel at reasoning about precise mathematical constraints, they may struggle with

problems that involve uncertainty, approximation, or probabilistic reasoning [4, 14].

SMT solvers represent a significant advancement in automated reasoning, offering a

versatile framework for solving decision problems that combine logical and mathematical

constraints. Their integration of specialized decision procedures, expressive modeling

language, and efficient algorithms has propelled them to the forefront of formal methods

research and practical applications. However, addressing challenges such as scalability

and handling uncertainty remains an ongoing area of research for those involved.

2.2.6 Z3-Solver

One of the most well-known SMT solvers is the Z3 solver. The Z3 solver is a powerful

and popular SMT solver developed by Microsoft Research. It is primarily used for solving

constraints from various domains, including software analysis, verification, and security

protocols [10].

The main motivation behind Z3 is to provide a highly efficient solver for a wide range

of constraint satisfaction problems (CSPs). These problems arise in various domains, in-

cluding software and hardware verification, model checking, and scheduling to name a

few. It aims to automate the process of proving or disproving the satisfiability of logical

formulas and constraints [10].

While Z3 is highly efficient for many types of constraints, certain problems can still be

computationally expensive or even undecidable [10]. Constraints involving non-linear

arithmetic, quantifiers, or complex data structures may require significant computational

resources or may not even be solvable at all. Although it supports a wide range of theo-
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ries and logical constructs, there are still limitations to its expressiveness. Certain special-

ized domains or problem types could require custom solvers or additional pre-processing

steps to effectively utilize Z3 [10].

Furthermore, solving complex constraints can consume significant computational re-

sources, including memory and CPU. As a result, scalability can be another downside,

particularly for large-scale verification tasks or when dealing with highly complex con-

straints.

The Z3 solver is a powerful tool for automated constraint solving and formal veri-

fication tasks, offering efficiency and support for various problem domains. However,

users should be aware of its limitations regarding complexity, expressiveness, resource

consumption, and the need for careful validation of results.

2.3 LLMs

Prior to looking at crossword solvers, it is important to know how they came to be. One

of the most important aspects that has led to some of the best crossword solvers is the use

of LLMs.

In this chapter, we will be giving a short history on LLMs, followed by some of the

most important turning points in their evolution such as the introduction of the Trans-

formers architecture, BERT, GPT, and many more.

2.3.1 Brief History

The evolution of LLMs in NLP unfolds as a series of advancements that have signifi-

cantly impacted the progression of ML. In 2018, the introduction of Google’s BERT [12]

represented a pivotal moment, enhancing language comprehension by capturing contex-

tual nuances bidirectionally. Following suite, 2019 witnessed the debut of T5, a model

that revolutionized NLP tasks by framing them as text-to-text challenges, streamlining

versatility and training procedures.
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One of the most recent milestones was in 2020 with the release of GPT-3 by Ope-

nAI. GPT-3 showcased remarkable language generation capabilities across a multitude of

tasks, from sentence completion to language translation to name a few. At the same time,

models like DistilBERT and RoBERTa emerged, aiming to improve the efficiency of large

models.

At the core of all of these models lies the transformer architecture, introduced by

Vaswani et al. in 2017 [31], which played a fundamental role in capturing intricate lan-

guage patterns through its self-attention mechanism.

2.3.2 Transformers Architecture

Motivated by the limitations of traditional sequential models, such as RNNs, the Trans-

former architecture [31], introduced by Vaswani et al. in 2017, became a turning point in

the realm of NLP which subsequently inspired other revolutionary models such as BERT

and GPT.

At its core, the Transformers architecture embodies a novel approach to sequence pro-

cessing. RNNs struggled to capture dependencies over long sequences due to vanishing

and exploding gradient problems. As well, they processed sequences sequentially, limit-

ing parallelization [26,31]. This inefficiency hindered the training of large models on vast

datasets. Furthermore, along with CNNs, they lacked a built-in mechanism to consider

the positional information of elements in a sequence which is essential for tasks involving

ordered data such as natural language. The motivation for the creation of the Transformer

was to overcome the limitations of sequential models, enabling more scalable and efficient

processing of language sequences [26, 31].

With the Transformers architecture, it replaces sequential computation with a self-

attention mechanism, allowing the model to simultaneously consider all elements in a se-

quence. This not only facilitates parallelized computations but also empowers the model

to capture richer contextual relationships across an entire sequence [26, 31]. The archi-

tecture introduces the concept of attention ”heads,” working collaboratively to focus on
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distinct aspects of the input, thereby enhancing the model’s capacity to discern diverse

features in a more comprehensive manner [31].

The introduction of positional encoding further addresses the challenge of maintain-

ing sequential order information, ensuring that the model understands the position of

each word in a sequence. To take into account non-linearity, feed-forward neural net-

works with ReLU activation are incorporated [31]. Additionally, layer normalization and

residual connections are employed to stabilize the training of deep models.

The architecture’s success in parallelization and contextual understanding has not

only propelled its adoption in various NLP applications but has also influenced subse-

quent models across domains beyond NLP [33]. It represents a groundbreaking shift in

NLP, offering a versatile and efficient solution to the challenges posed by traditional se-

quential models. Its impact extends beyond its initial motivation, shaping the landscape

of modern ML.

2.3.3 BERT

Following the previously mentioned milestone, in 2018, BERT was introduced to the

world by Devlin et al. through their research paper [12]. In their paper, they presented

their BERT model as a pre-training technique for natural language understanding tasks.

Its introduction marked a significant advancement in the field of NLP, particularly in un-

derstanding bidirectional context for language representation.

BERT was developed to overcome the contextual understanding problem and solve

the shortcomings of conventional language models [12]. Through the realization of how

much one’s understanding is impacted by contextual details in natural language, which

was something that models prior to BERT lacked [12], it inspired the authors [12] to create

BERT. By utilizing bidirectional contextual modeling instead of the unidirectional meth-

ods used in earlier models, BERT was able to reach previously unheard-of outcomes by

taking into account both left and right context during its pre-training.

When it comes to pre-training, BERT thoroughly processes large datasets, where it

leverages the masked language modeling objective. By predicting masked words within
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Figure 2.3: Transformer Architecture Introduced by Vaswani et al. [31]

a sentence, it captures detailed contextual dependencies and produces embeddings that

condense complex relationships between words [12]. This pre-training method has al-

lowed BERT to excel in a wide range of NLP tasks, such as sentiment analysis, named

entity recognition, and question answering for instance.

The fact that BERT can provide a robust and flexible solution for a wide range of ap-

plications, beyond the limitations of task-specific designs, highlights its influence on NLP.

The approach does, however, have a unique set of issues [12]. At the time of its release,

it took a significant amount of money to train and fine-tune. Additionally, BERT only
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works with fixed context lengths, which poses problems in situations where flexibility is

required to adjust to different context lengths [12].

The seminal work of Devlin et al. has not only established BERT as a cornerstone in

NLP but has also catalyzed ongoing research in later transformer-based models.

2.3.4 GPT

GPT-1, launched by OpenAI in 2018, was the precursor to many of the most advanced

models that we know of today such as ChatGPT and Sora. Its initial goal was to advance

the field of NLP using pre-training techniques. Its main concept is based on its ability

to pick up complex linguistic patterns through its exposure to large amounts of diverse

textual data during its pre-training phase [2]. GPT-1 can successfully capture local de-

pendencies because of this design decision, which uses the transformer architecture and

predicts words in a sentence based only on the previously given context [2].

The model gains a deeper understanding of natural languages’ syntactic patterns, se-

mantic connections, and contextual subtleties by pre-training it on a large variety of lin-

guistic datasets. Its generative capabilities have allowed it to be recognized as a note-

worthy turning point in NLP research through a demonstration of its capacity to create

content that is both coherent and contextually relevant [2].

GPT-1 does, however, have a few significant drawbacks. Its utilization of a unidi-

rectional context window greatly restricts its ability to handle bidirectional relationships,

which consequently affects its comprehension of subtle nuances in natural language, es-

pecially in scenarios that call for a more comprehensive contextual awareness. When pro-

ducing vast volumes of text, keeping a consistent logic throughout its output also proved

to be difficult, occasionally leading to consistency failures [2]. Furthermore, GPT-1’s sus-

ceptibility to generating factually incorrect information really emphasized the inherent

complications of unsupervised learning regarding enormous and diverse datasets.

Despite its problems, GPT-1 serves as an important breakthrough, setting the stage

for subsequent advancements in LLMS. The model’s launch sparked a wave of innova-
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tion, with each version increasing in strength. GPT-1’s major role in transforming the

landscape of pre-training approaches drives continuous study and discovery in NLP.

2.3.5 GPT-2

With the release of GPT-2 by OpenAI in 2019, which replaced GPT-1, LLMs underwent a

radical transformation. The objective of this new iteration was to further enhance natu-

ral language generation and understanding, building on the successes of its predecessor.

Similar to GPT-1, GPT-2 employs a transformer architecture, although it operates on a

much larger scale [25].

The primary element of improvement is GPT-2’s capacity to produce words with the

backing of a richer and more complex contextual understanding. The model’s exten-

sive pre-training on a wider range of literary works enabled it to identify more intricate

linguistic patterns, semantics, and contextual links. GPT-2 has significantly more sophis-

ticated generating skills than its predecessor, allowing it to produce texts that are more

aware and suitable for the given situation. As such, it is therefore very good at tasks like

creative writing and summarizing [25].

On the other hand, GPT-2’s size and power also provide particular difficulties. Train-

ing and fine-tuning are extremely costly due to the sheer amount of parameters, which,

as a result, increases processing demands. As the model can produce extremely convinc-

ing false text, there have also been concerns expressed over the abuse of the technology

in academic settings [25]. As well, it also sparked questions about the possible use of

unauthorized data for its conception.

GPT-2’s introduction marks a significant advancement in NLP, pushing the bound-

aries of what large-scale language models can achieve. Its impact resonates in both re-

search and applications, influencing subsequent developments and inspiring a new era

of exploration in this field.
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2.3.6 GPT-3

GPT-3, which was first released in 2022, also makes use of a transformer design, which is

renowned for its capacity to identify complex contextual relationships in sequential data.

GPT-3 is significantly larger than most contemporary language models and its predeces-

sor, GPT-2, with an incredible 175 billion parameters [8].

The architecture consists of many levels of attention processes, each of which increases

the model’s ability to understand and generate logical language. GPT-3 gains exposure

through the use of a broad and diverse dataset during pre-training, which facilitates the

understanding of intricate grammatical structures, linguistic patterns, and contextual re-

lationships [8].

As well, GPT-3 is unique in the sense that it can be used for both zero-shot and few-

shot learning [8]. With few-shot learning, the model can complete tasks with few in-

stances, and with zeroshot learning, it can complete tasks without explicit training by

using the general information it has gained prior to training. Thanks to its adaptability,

GPT-3 may be used for a wide range of activities, including creative writing, code devel-

opment, language translation, and summarization [8].

By making it available through an API, OpenAI encourages innovation in NLP and AI-

driven solutions by allowing developers to incorporate its capabilities into a wide range

of applications. However, on the other side, by making it available to the public, it raises a

few concerns. As GPT-3 can produce realistic and contextually coherent language, ethical

concerns about its responsible usage highlight the significance of using AI ethically [8].

It faces another prominent problem: large costs. It allows for fine-tuning, which in-

volves adjusting the model to comprehend more specific tasks or domains. As a result,

by subjecting it to datasets tailored to particular tasks, it boosts the model’s performance.

However, the sheer amount of information typically used for fine-tuning presents diffi-

culties with regard to computing needs, requiring significant resources for deployment

and training, which as a result, presents an exorbitantly high bill for the subscribers [8].

To summarize, the architecture of GPT-3, with its large scale and attention mecha-

nisms, as well as its few-shot and zero-shot learning capabilities, places it at the forefront
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of natural language processing and pushes the limits of what is possible in terms of lan-

guage generation and understanding.

2.3.7 GPT-4

GPT-4, developed by OpenAI, is a large-scale multimodal model that debuted in 2023

and can generate text outputs from picture and text inputs [23].

The transformer-based model GPT-4 has been pre-trained to anticipate the next token

in a document. The introduction of post-training alignment leads to enhanced perfor-

mance on assessments of factual accuracy and compliance with intended behavior. The

creation of optimization techniques and infrastructure that exhibit predictable behavior

at a variety of sizes was a fundamental element of this paradigm.

In terms of limitations, similar to its previous iterations, it is very computationally

expensive in terms of training and fine-tuning. As well, ethical concerns continue to

persist, especially in terms of picture generation, where many artists have raised concern

over the origins of the data used to train GPT-4.

GPT-4 demonstrates a human-level of performance based on a variety of professional

and academic standards, surpassing its previous iterations [23]. As such, it makes the

public even more excited for what is to come in NLP.

2.3.8 Chat GPT

In 2022, OpenAI created and released ChatGPT, a complex dialogue system that advanced

conversational AI and drew on the achievements of previous models such as GPT-2. Chat-

GPT was developed as a sister product to InstructGPT and is now capable of carrying

on meaningful discussions with people, demonstrating improvements in NLP, according

to [8, 25]

ChatGPT uses the transformer architecture to record contextual dependencies and

provide contextually relevant replies, driven by the goal of developing more dynamic

and engaging conversational bots. The pre-trained model is able to comprehend con-
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text changes, user inputs, and linguistic subtleties thanks to a variety of conversational

datasets [8].

Even though it excels at providing contextually meaningful answers during conver-

sations, there are still some issues. One of which is that it has been shown to be sensitive

to how an input is worded, and in certain cases, it might produce answers that seem

reasonable but are not factually correct. In order to overcome these issues, OpenAI grad-

ually launched ChatGPT and improved it based on user input [23]. Another issue, simi-

lar to previous GPT models, is the concern surrounding plagiarism in relation to papers

and homework solutions being artificially generated. To counter this, many others have

launched GPT detection tools, however they have been met with lukewarm reactions.

Sometimes it marked a real human’s writing as AI and vice versa.

With the launch of ChatGPT, conversational AI has advanced significantly and shown

promise for more interactive and contextually aware virtual assistants. Like any AI model,

it is always being improved and adjusted in an effort to produce better chatbots that are

increasingly more intelligent and reliable.

2.4 Crossword Solver

Formed by the amalgamation of LLMs and CSPs, many different crossword solvers were

born. The introduction and summaries of the some of the most recognizable crossword

solvers take place in the following subsections.

2.4.1 Proverb

Though it is hard to pinpoint when the first automated crossword solver appeared, one

notable early example is ”Proverb,” a crossword-solving system introduced in 1999. Proverb

was created by Michael L. Littman, Greg A. Keim, and Noam M. Shazeer [20]. Motivated

by the new era in ML and NLP, by employing a combination of machine learning and

NLP techniques to tackle crossword puzzles, it became one of the first notable attempts
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to automate crossword solving. In particular, it was awarded the 1999 Outstanding Paper

Award from AAAI.

The Proverb Crossword Solver is a specialized tool designed to assist crossword en-

thusiasts in solving crossword puzzles where the clues are proverbs or well-known say-

ings [20]. Users input the clues provided in the crossword puzzle, which typically consist

of partial phrases or keywords associated with specific proverbs or sayings [20]. Next,

in order to identify possible matches, the solver compares the input clues with entries

in a chosen database that contains a sizable collection of proverbs, idioms, and sayings

from many cultures and languages [20]. The solver then identifies possible completions

or answers for the crossword puzzle clues based on the matches discovered.

However, one major limitation is that the accuracy of the solver depends on the quality

and comprehensiveness of the database of proverbs it accesses. In some cases, the solver

may struggle to find suitable matches for ambiguous or obscure clues [20].

Though it has its challenges, Proverb became a groundbreaking innovation that in-

spired others to follow suit.

2.4.2 Dr. Fill

Developed by computer scientist and entrepreneur Dr. Matt Ginsberg in collaboration

with other well-established researchers, comes another ground-breaking crossword solv-

ing tool called Dr. Fill. When it comes to solving crossword puzzles from a variety of

sources, such as newspapers, magazines, and contests, Dr. Fill has proven to be remark-

ably proficient in contrast to standard crossword-solving algorithms and is capable of

functioning independently without human assistance [17].

At the heart of Dr. Fill’s functionality lies a mix of computational techniques, includ-

ing constraint satisfaction, pattern matching, semantic analysis, and probabilistic reason-

ing [17]. These techniques enable Dr. Fill to effectively decipher and interpret the often

ambiguous clues presented in crosswords, strategically filling in answers with a high de-

gree of accuracy.
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This solver begins by analyzing each clue in the crossword puzzle, breaking it down

into its crucial components for resolution such as keywords, word lengths, and any con-

textual hints provided [17]. This initial parsing step helps the solver understand the struc-

ture and requirements of each clue.

It then employs pattern matching algorithms to identify potential candidate answers

that match the criteria outlined in the clue. These candidate answers are subjected to

further scrutiny through constraint satisfaction techniques, ensuring they satisfy any in-

tersecting letters and constraints imposed by neighboring answers [17].

Dr. Fill goes beyond mere pattern matching by incorporating semantic analysis tech-

niques to assess the suitability of candidate answers in the context of the clue [17]. This

involves looking at the semantic coherence and relevance of the candidate answers in

comparison to the overall theme or topic suggested by the clue.

In instances in which numerous candidate answers could satisfy both its given hint

and the constraints of its associated crossword grid, Dr. Fill uses probabilistic reasoning

to evaluate the likelihood of each being the correct solution [17]. Factors such as word fre-

quency, common crossword conventions, and contextual clues from neighboring answers

are taken into account to assign probabilities to candidate solutions [17].

To summarize everything, its solving strategy is iterative, with the program continu-

ally refining its list of candidate answers based on feedback from intersecting clues and

the overall puzzle grid [17]. As Dr. Fill progresses through the puzzle, it revisits and

revises its earlier decisions, incorporating new information to improve the accuracy of its

solutions.

One of Dr. Fill’s key strengths lies in its extensive database, meticulously curated to

encompass a vast repository of words, phrases, common crossword clues, and linguistic

patterns [17]. This comprehensive knowledge base allows Dr. Fill to quickly generate

potential solutions, leveraging its understanding of language semantics and crossword

conventions.

Though Dr. Fill excels in executing logical and analytical tasks, its dependence on

computational algorithms does raise some questions about the role of intuition, word-
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play, and human ingenuity in crossword solving, a domain traditionally associated with

human expertise [17].

The success of Dr. Fill in solving crosswords has garnered widespread attention and

acclaim within both the crossword-solving community and the broader AI field. Its ability

to tackle crosswords of varying difficulty levels, including notoriously challenging cryp-

tic crosswords, showcases the remarkable capabilities of modern AI systems in tackling

complex NLP tasks.

2.4.3 Down and Across

Another innovative method for solving crossword puzzles is offered in the paper ”Down

and Across: A Transformer-based Crossword Puzzle Solver,” which was given at the 2022

ACL conference [19]. Driven by crosswords’ appeal to the general public and the chal-

lenges they provide, this model aims to utilize advanced transformer-based language

models to improve and automate crossword puzzle solving [19].

Its key innovation lies in adapting transformer architectures, known for their use in

NLP, to the domain of crossword solving [19]. The model is pre-trained on a vast corpus of

textual data, enabling it to learn complex linguistic patterns and semantic relationships.

During the solving process, the model generates candidate solutions for each clue by

leveraging its understanding of both language and context.

According to [19], their suggested method uses beam search and heuristic tactics to

handle the general difficulties encountered when it comes to crossword puzzles, such as

cryptic clues, wordplay, and intersecting word limitations to name a few. These strategies

of theirs let the model navigate the large search space of hypothetical answers all while

complying with grid limitations like word length and intersecting letters [19].

Despite its promising performance, this transformer-based crossword solver has its

limits. One significant challenge it encounters is its reliance on pre-trained language mod-

els. These pre-trained language models may struggle with domain-specific nuances, as

well as rare or obscure vocabulary that could take part in crosswords [19]. Addition-
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ally, the computational complexity of beam search and heuristic techniques may limit the

scalability of this solver when it comes to larger puzzles or real-time solving scenarios.

2.4.4 Berkeley Solver

The Berkeley Crossword Solver stands as another groundbreaking advancement in crossword-

solving technology. It was developed by a team of researchers at the University of Cali-

fornia, Berkeley and unlike previous solvers, this model integrates the most cutting-edge

NLP, ML, and constraint satisfaction techniques at the time of its release to interpret and

solve crossword puzzles [32]. Based on their experiments, it produced high accuracy and

efficiency when it comes to crossword solving across a number of different newspapers,

including the NYT [32].

One of the key distinguishing features of this solver is its incorporation of semantic

analysis techniques. While earlier solvers primarily heavily relied on pattern matching

and syntactic analysis, the Berkeley Crossword Solver goes beyond surface-level cues

to decipher and really understand the underlying meanings that can be found within

crossword clues. This enables it to select candidate answers that are not only syntactically

correct but also semantically coherent and contextually relevant [32].

The Berkeley Crossword Solver also employs probabilistic reasoning algorithms to

assess the likelihood of a candidate answer being the correct solution for a given clue

[32]. By considering factors such as word frequency, common crossword conventions,

and contextual clues from neighboring answers, the solver can assign probabilities to

candidate solutions, increasing the accuracy of its predictions [32].

Additionally, the solving process of the Berkeley Crossword Solver is iterative. This

method allows it to continuously refine its list of candidate answers based on feedback

from intersecting clues and the overall puzzle grid [32]. This type of approach enables

the solver to constantly adapt and improve its solving strategies over time, learning from

past successes and failures through ML algorithms [32].

The Berkeley Crossword Solver represents a significant leap in crossword-solving

technology, leveraging advanced algorithms and techniques to tackle the complexities
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of crosswords with unprecedented accuracy and efficiency. Its integration of semantic

analysis, probabilistic reasoning, and iterative learning sets it apart as a powerful tool for

crossword enthusiasts and researchers alike, pushing the boundaries of what is achiev-

able in automated crossword solving.

26



Chapter 3

Models and Solutions

In this chapter, we will be going through our general methodology, of which we will be

discussing our dataset and how it came to be. Following suite, we will be describing some

of the aspects that were discussed and/or employed in our model to maximize accuracy.

Finally, we will be summarizing our final model’s main idea.

Our general methodology consists of first collecting the necessary data, cleaning and

formatting it, and finally building up our models through testing different combinations

of attributes.

3.1 Datasets

To train and test our models, we utilized crosswords from the NYT that are dated from

1989 all the way up to 2018. These crosswords were part of an open source collection

found on GitHub. In the following subsections, we will detail how we collected and

pre-processed it.

3.1.1 Collection

Our first attempt at collecting NYT crosswords was a failure. It consisted of creating an

account with the NYT and using Jack Boyce’s collection tool to extract NYT crosswords

[7]. However, we encountered many problems using this tool. First and foremost, it
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requires a Windows or Linux based computer to be able to execute it. However, we tried

many different Windows and Linux laptops and desktops to try to load the crosswords

and it never worked.

As such, we turned our attention towards other sources of NYT crosswords. We

came across an open source GitHub repository containing NYT crosswords from 1989

to 2018 [24]. These crosswords were formatted as JSON files and contained grid number

placements, answers and clues, of which the figure below illustrates an example.

Figure 3.1: Extract from Raw Dataset

3.1.2 Pre-Processing

We pre-processed our data such that its final form is a dictionary consisting of clues and

its accompanying answers look like the following:

Figure 3.2: Extract from Formatted Dataset
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We formatted it as such, as it is the only format that OpenAI’s GPT-3.5 and GPT-4 APIs

accept.

3.2 Models

When it comes to our final model, we tested a variety of different attributes that can

enhance our model’s performance.

We found that our best and final model consists of an amalgamation of the following:

few-shot prompting, passes, grid constraints and GPT4.

Before we begin detailing our model, we would first like to preface with a few quick

summaries on the following topics.

3.2.1 Few-Shot Prompting

In traditional machine learning, models are trained on large datasets with many examples

of each class or category they are supposed to recognize. However, in few-shot learning,

the model is trained with very few examples, sometimes just one or a handful, of each

class.

Due to the large costs associated with training and fine-tuning GPT-3.5 and GPT-4

based models, we decided to go with few-shot prompting to minimize costs. To help our

GPT-3.5 and GPT-4 models have a better understanding of what type of answer is ex-

pected of them and consequently reducing the need to clean our outputs, we integrated

few-shot prompting into our models such that we feed them examples of both the ex-

pected input and output.

3.2.2 Majority Voting and Passes

Majority voting consists of a set of candidates and the chosen one is the one that reoccurs

the most in said set. The accuracy is then based on that. Passes, on the other hand, consists

of the number of times we prompt LLMs for an output.
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3.2.3 Grid Contraints

Crossword grid constraints refer to the rules and limitations that govern the arrangement

of words within a crossword grid. These constraints ensure that the crossword remains

both challenging and solvable while maintaining consistency and coherence. Key grid

constraints include:

• Intersecting Words: Words must intersect at least one letter with another word in

the grid, creating both horizontal and vertical word patterns.

• Word Length: Each grid entry has a predetermined length, typically specified in the

puzzle’s clues. This constraint ensures that words fit within their given positions in

the grid and align with possibly intersecting entries.

• Black Squares: Black squares or blocks in the grid serve as dividers between words,

preventing them from intersecting where they are not intended. These squares also

contribute to the puzzle’s overall symmetry and iconic image.

• Symmetry: Many crossword puzzles adhere to a symmetrical layout, where hori-

zontal and vertical entries are reflections of each other, enhancing the puzzle’s vi-

sual appeal.

• Overall Grid Shape: Crossword grids often have specific dimensions, such as 15x15

or 21x21 squares for example. This has an influence on the number of entries and

the overall complexity of the puzzle.

3.2.4 Final Model Algorithm

For our final model, we first reformat the crossword data. Once the data has been refor-

matted, we take into account the positioning of each clue in the crossword grid such that
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we are aware of the length of the correct answer and any intersection of the first and last

letters of the correct answer with others. We then store this information within a new

dictionary, where the keys correspond to the clue’s number in the grid. We also store

the clues and answers in a separate dictionary with matching keys to the grid constraint

dictionary.

We combine the information from both dictionaries to then feed a few entries as prompts

to the LLM of our choosing so that it knows the type of output that is expected.

Once the few-shot prompting phase is over, we move onto candidate answer genera-

tion, where we let the LLM generate five candidate answers for each clue. Each of these

candidate answers’ word accuracy is recorded and we pick the one that is closest to the

ground truth. We store all of the best candidates in a dictionary with the same keys as the

previous ones.

To minimize incorrect answers, we implemented the following:

• Force the length of the candidate answer to be that of the ground truth through a

feedback loop. Until an output possesses the correct length to be a candidate, we

continuously prompt the LLM.

• Similarly, after all the best candidates are picked, we check if the intersecting candi-

dates share the same first and last letters. If they do not, we continuously prompt

the LLM to output another candidate until we get one with the correct length and

possessing the correct intersecting letters.

Once all this is done, we calculate the final accuracy achieved for each crossword, for

which we look at the number of correctly answered clues and the correct letters of the

final candidate answer, as candidate answers could belong to the same word family but

are ultimately not the exact same as the ground truth.
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Chapter 4

Experiments and Evaluations

In this chapter, we will be detailing the testing that was done and its set-up and will

conclude by showcasing the final results.

4.1 Datasets

As previously mentioned, our dataset consists of NYT crosswords taken from an open-

source repository where there exists a collection of NYT crosswords dating from 1989 to

2018.

To test our model, we randomly selected 1000 of those crosswords with the help of a

random date generator.

4.2 Setup

After having collected our data, we conducted a series of tests, which we describe the

different models we tested and how these tests were set-up.

Before getting to our final model, we came up with the following different variations

and tested all of them on a set of 1000 NYT crosswords chosen at random, where each had

on average 80 clues, from an open-source repository of about 10 000 NYT crosswords:
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• Baseline Model with GPT-3.5 (B3.5): This model consists of just feeding the clues to

the GPT-3.5 model with the use of their API and outputting the answer.

• Baseline Model with GPT-4 (B4): Similar to the previous, the only change is that we

use GPT-4 for this one.

• Few-Shot Prompting with GPT-3.5 (FS3.5): This model consists of just first feeding

GPT-3.5 a few randomly selected clue-answer prompts to familiarize it with the ex-

pected input and output formats. Afterwards, we tested it by feeding the clues to

the GPT-3.5 model with the use of their API and outputting the answer.

• Few-Shot Prompting with GPT-4 (FS4): Similar to the previous one, the only differ-

ence is that we employ GPT-4 for this one.

• Few-Shot Prompting with Majority Voting with GPT-3.5 (FSM3.5): Here, instead of

only having one output, we generate five candidates using GPT-3.5 for each clue

and pick the one that reoccurs the most often.

• Few-Shot Prompting with Majority Voting with GPT-4 (FSM4): Same as above ex-

cept for the use of GPT-4 instead.

• Few Shot Prompting with 5 Passes with GPT-3.5 (FSM5P3.5): Instead of selecting

the most frequently generated candidate answer, it generates five candidates using

GPT-3.5 and averages out the accuracy across the five candidates.
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• Few Shot Prompting with 5 Passes with GPT-4 (FSM5P4): Same as above but with

GPT-4 instead.

• Few Shot Prompting with Grid Constraints with GPT-3.5 (FSG3.5): Instead of five

passes, we introduce grid constraints, where we take into account the length of the

answer and the intersecting first and last letters between clue-answer pairs. After

few-shot prompting, we feed GPT-3.5 a clue to then generate an answer that respects

the length constraint. If the generated candidate answer does not respect the length

constraint, we force GPT-3.5 through a feedback loop to generate a new candidate

until it does.

• Few Shot Prompting with Grid Constraints with GPT-4 (FSG4): Same as above but

with GPT-4.

• Few Shot Prompting with Grid Constraints and 5 Passes with GPT-3.5 (FSG5P3.5)

Similar to the previous two models, we also ask the model to generate five candidate

answers that respect the length constraint and we average out the accuracy across

those five.

• Few Shot Prompting with Grid Constraints and 5 Passes with GPT-4 (Final Model)

Similar to above, but using GPT-4 instead.

4.3 Results

Following our set-ups, we conducted a series of tests that will be displayed further along

in this thesis.

From our experiments, we have gotten the following results in Table 4.1 and Table 4.2.
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Average Crossword Accuracy refers to the number of clues that were correctly an-

swered across the 1000 crosswords. Average Word Accuracy refers to the average accu-

racy of each answer in terms of letters and its respective position in comparison to the

ground truth.

Model Performances
Models Average Cross-

word Accuracy
Average Word
Accuracy

B3.5 42.3% 46.2%
B4 47.6% 54.3%
FS3.5 46.1% 56.0%
FS4 53.7% 59.2%
FSM3.5 48.2% 57.1%
FSM4 56.5% 62.5%
FSM5P3.5 56.4% 68.3%
FSM5P4 59.3% 67.6%
FSG3.5 52.8% 68.1%
FSG4 66.7% 72.8%
FSG5P3.5 72.9% 79.2%
Final Model 83.6% 93.3%

Table 4.1: Model Variation Results

As well, we compared our final model to current well-known state of the art crossword

solvers, for which the results can be found in Table 4.2.

Model Performances
Models Average Cross-

word Accuracy
Average Word
Accuracy

Final Model 83.6% 93.3%
Dr. Fill 70.5% 99.4%
Berkeley 81.7% 99.7%
DownAcross 55.6% 43.4%

Table 4.2: Model Results Compared to Well-Known Solvers
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4.3.1 Brief Results Discussion

From Table 4.1, among our other models, we can clearly see that our final model per-

formed the best in both aspects. However, when it came to testing, it also took the longest

to produce results.

When looking at Table 4.2 on the other hand, we see that our final model performs

slightly better than the rest of them, with an Average Crossword Accuracy 1.9% higher

than the Berkeley solver, which is the runner up. However, our final model is second to

last when it comes to Average Word Accuracy. In terms of testing time, we are unable to

compare as we were unable to run those other models due to a lack of code.

We will be discussing these results in more detail in the following chapter.
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Chapter 5

Discussion

As previously mentioned, our final model did perform well. Even so, there are quite a

few interesting points that we need to expand on,

Following suite from our results, in here, we will be discussing its implications, our

final model’s advantages and limitations in contrast

5.1 Results Discussion

In this section, we dive into two different result discussions, one for the Average Cross-

word Accuracy and the other for the Average Word Accuracy

5.1.1 Average Crossword Accuracy

Based on our model variations’ test results, we can clearly see that our final model per-

formed the best. In comparison to well-known solvers however, in terms of crossword

accuracy, our model also performed the best out of all of them.

In general, the models using GPT-4 performed better in comparison to their coun-

terparts using GPT-3.5. However, one interesting point to note is that FSG3.5 and FSG4

achieved worse results than FSM5P3.5 and FSM5P4 respectively.

Early on, we hypothesized that the models employing grid constraints would perform

better in terms of average crossword accuracy regardless of other variations. However,
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this was clearly not the case when we tested FSG3.5 and FSG4 right after FSM5P3.5 and

FSM5P4, where these two models employ majority voting.

This could be due to a number of reasons. One of them is that if the GPT model

misunderstood the clue, then consequently, the inclusion of grid constraints, in particu-

lar intersecting letter constraints, further dragged the GPT model away from the correct

answer.

Another could be that in FSG3.5 and FSG4, we do not give it multiple passes to pro-

duce candidate answers to then choose from. Whatever the first output is, then that is the

candidate answer we will use.

Figure 5.1: Visualization of Model Variation Performance

5.1.2 Average Word Accuracy

Moving away from the Average Crossword Accuracy, we will go through our results in

terms of Average Word Accuracy in this subsection.

When it comes to the Average Word Accuracy, we find our model lagging behind Dr.

Fill and Berkeley. This could be due to the fact that when our final model’s predicted
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answers are wrong, they are less similar to the ground truth than other solvers. It could

be a consequence of including intersecting letter constraints in the inputs that we fed to

our models. As previously mentioned, this can drag a candidate answer further away

from the intended answer. On the other hand, previous models did not include grid

constraints and mostly relied on extensive training databases to generate their answers.

As such, their candidate answers are relatively similar in comparison to our final model.

Figure 5.2: Visualization of Model Performance compared to Well-Known Solvers

5.2 Advantages

In retrospect, even though the accuracy differences between our final model and Berke-

ley’s is not as big as we would have liked, ours does possess a key advantage over the

rest of them.

Berkeley, Dr. Fill and DownAcross all require very large amounts of data for training,

and consequently, this also increases the overall training time exponentially. Furthermore,

this increases the amount of computational resources needed.
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No training on the same scale was required for ours. As such, it makes it much less

computationally heavy and time-consuming compared to theirs. With the addition of

fine-tuning, we believe that our final model can achieve even higher accuracy, reach Dr.

Fill’s and Berkeley’s and possibly beat them out when it comes to Average Word Accu-

racy.

5.3 Limitations

Though our model performed generally well and possessed its advantages, there are

quite a few limitations that could have possibly influenced our results. The following

subsections will detail two types of limitations that we considered: model and testing

limitations.

5.3.1 Model Limitations

One glaring limitation is the lack of fine-tuning. All of the well-known solvers that we

compared our final model to were trained and fine-tuned on hundreds of thousands to

millions of rows of data. To be on a more equal footing, we would need that same amount

of data to fine-tune GPT-4. However, this would cost well over tens of thousands of

dollars to do so.

Another limitation is how GPT-4 and GPT-3.5 process grid constraints as prompts.

Our model only takes into account the length and intersection of the first and last letters

of a word. This was because we found that the more grid constraints we included in

our prompts, the worse the outputs would become. As such, we lose a lot of valuable

information.

Furthermore, the daily token limits imposed by OpenAI impede the amount of detail

we can feed the LLMs. As such, we needed to limit both the number of words each

prompt includes and the number of crosswords we tested.
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5.3.2 Testing Limitations

The results of the well-known solvers were tested on a much larger number of crosswords

than we have. As a result, our table is perhaps not the best for comparisons.

If there were no token or monetary limitations, we would have been able to test many

more crosswords and consequently produced a more well-rounded set of results.

Even so, with the token limitations, it was not possible to test the well-known solvers

on the same set of random crosswords since for two out of three of them, the code is

unavailable. We tried contacting the authors but received no answers.

Furthermore, even though we performed relatively well when it comes to NYT, other

solvers have also been tested on other popular journals’ crosswords, such as the New York

World. In spite of our success, to have a more global understanding of its performance, it

would be important to see how it performs on crosswords created by different publication

companies.

To add on to the importance of testing our model on additional crossword sources,

the NYT has also been plagued by accusations of bias where both obscure and insensitive

clues have been included. As well, a lack of diversity on the creative team has repeat-

edly been brought up. This can lead to a lack of diverse data to both test and train on.

Altogether, it impacts the global performance of automated crossword solvers as well-

rounded data is needed.

5.4 Brief Future Works Discussion

All in all, our final model possesses both advantages and limitations in comparison to

other well-known crossword solvers.

Though there are limitations, the more interesting part is that there are plenty of in-

novations that we could incorporate into our final model in the future, such as the use of

fine-tuning, using open source LLMs, dynamic programming and many more. We will

be discussing these aspects more in depth in the next chapter.
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Chapter 6

Conclusion and Future Works

Crosswords are a combination of art and logic. Crossword puzzle makers frequently

come up with clues that lead to several viable answers that fit the grid in a coherent

manner and include some challenging clues that require nuance to understand. Due to

their rigorous constraints, current solvers, however, may become fixated on a particular

solution and lose out on the probability of the other remaining solutions.

Certain solvers emphasize speed above all else by prioritizing computational effi-

ciency. Although this can be advantageous, accuracy may suffer as a result, especially

when the linguistic interpretation calls for a deeper comprehension. On the other hand,

solvers that only focus on accuracy may take a very long time before they stop.

For our model, we combined GPT-4 along with grid constraints and few-shot prompt-

ing in order to achieve optimal results while also reducing the need for large amounts of

data needed for fine-tuning, which consequently lowers the amount of time needed to

produce results.

From this, we achieved our goal of outperforming the Berkeley Solver in terms of

crossword accuracy. While it did not outperform its competitors when it comes to word

accuracy, we did uncover some fallacies in GPT where it struggles to juggle between gen-

erating potential answers whilst also taking into account intersecting letters. We found

that if more grid information is loaded into our prompts, performance rapidly worsens,

such that it outputs answers.
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For future research, it would be worthwhile to explore open source LLMs, how fine-

tuning GPT APIs can impact accuracy, the use of dynamic programming, as well as look

into cryptic crosswords, where answers are even less straightforward than traditional

crosswords.

6.1 Future Works

Though our final model achieved good results, there are a few things that can be done to

improve it.

In this section, we explore some aspects that can be done to improve the model, as

well as looking into other types of crosswords to work on.

6.1.1 Fine-tuning

Due to their extensive pre-training on large amounts of data, LLMs are able to recognize

a wide range of language patterns and information. These models may, however, need to

be adjusted to fit more specialized tasks or areas. The model may learn these particular

subtleties and enhance its performance on those particular jobs by fine-tuning certain

datasets.

Improved accuracy when applied to tasks associated with a specific target domain is

another benefit of fine-tuning a model on data from that domain in relation to a specific

task. This is due to the fact that a model gains a deeper understanding of the language,

terminology, and context unique to the target domain.

Furthermore, fine-tuning also allows programmers to have more control over a model’s

outcome. They are able to adjust hyper-parameters, such as learning rate, batch size, and

number of training epochs during fine-tuning to optimize a model’s performance for spe-

cific tasks or datasets.

Additionally, as more data becomes available over time, a model may be updated and

enhanced continuously. Updating and adapting the model to changing language trends

and patterns can be made easier through this approach.
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Overall, fine-tuning serves as a powerful technique for customizing and refining LLMS

in order to achieve higher accuracy and performance on a wide range of NLP tasks. Fine-

tuning could enhance GPT models to adapt to specific tasks, domains, and datasets, re-

sulting in probable significant improvements in accuracy and performance across a wide

range of NLP applications.

6.1.2 Dynamic Programming

Dynamic programming is a method used to solve problems by breaking them down into

simpler subproblems and solving each subproblem only once [5,9]. It stores the solutions

to these subproblems in a table, allowing for efficient lookup and reuse of previously

computed results [5, 9].

By being able to rapidly examine and evaluate alternative solutions for specific clues,

dynamic programming can help crossword solvers become more accurate. For example,

when a clue is obtained, dynamic programming may be used to analyze the available

letters and word patterns to generate a list of potential candidate words. Through efficient

word searches and the use of previously saved answers from clue evaluations, this type of

program can assist in identifying the most likely answer to a given clue. This can improve

accuracy while solving crossword puzzles and assist automated crossword solvers select

the optimal answer by enabling them to consider many choices.

6.1.3 Online Algorithms

Though it shares similarities with dynamic programming, another model aspect that we

can take into account is online algorithms.

Online algorithms are algorithms that can analyze data as it becomes available in real-

time and make judgments based on a continuous and dynamic basis without requiring

knowledge of the complete input beforehand [6,21]. These algorithms are made to handle

data as it comes in and make judgments continually and dynamically. In these scenarios,

the algorithm must adjust to changing conditions without having access to the entire in-

put beforehand. Online algorithms are frequently used to efficiently handle real-time pro-
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cessing tasks in a variety of disciplines, such as networking, optimization, and machine

learning.

By implementing these algorithms, it can help increase accuracy when it comes to

crossword solvers by adapting to new information as it becomes available further down

the line. These algorithms can be extremely practical in adjusting strategies in response

to each new answer-clue pair that is found, making use of the letters that were revealed

in real-time in the crossword grid and the restrictions imposed by each new word that

intersects in order to more quickly investigate possible answers. Because of their iterative

nature, predictions could be continuously improved as new data is obtained during the

crossword solving process.

Overall, online algorithms provide a flexible and adaptive way to approach crossword

solving, allowing the solver to make informed decisions in real-time and incorporate con-

straints as they become available. This dynamic strategy can help improve accuracy by

efficiently exploring the solution space and iteratively refining predictions based on the

constantly evolving crossword grid values.

6.1.4 Cryptic Crossword Solvers

One crossword variation that is quite popular in some parts of the world is cryptic cross-

words. These types of puzzles mostly rely on linguistic tricks and wordplay. The ear-

liest known example dates back to the early 20th century and was published in 1924 by

British writer and musician Arthur Wynne. Cryptic crosswords, however, did not become

widely popular until the 1930s, especially in the UK, when they started to appear more

frequently in publications like The Times and The Guardian [27]. Since then, they have

established themselves as a cornerstone in both print and digital media [27].

In general, they are made up of a grid of black and white squares, not unlike their

traditional counterpart, where each white square corresponds to a letter in the correct

word. For every word in the grid, there is a clue. These clues often include a definition or

synonym of the solution, coupled with a mysterious hint on how to get there. These mys-

terious hints can come in a variety of shapes and sizes, such as homophones, charades,
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hidden words, and anagrams, making it difficult for solvers to interpret the wordplay

and discover the hidden meanings within the clues.

The solving process of cryptic crosswords involves a combination of deductive rea-

soning, lateral thinking, and linguistic analysis. These solvers need to carefully dissect

each clue, identifying the different components of the wordplay and working backwards

to derive the correct answer. This often requires a deeper understanding of language

nuances, cultural references, and common crossword conventions [27].

Current solvers, while proficient in traditional clue types, may fail to adapt to the

complex needs of cryptic clues [27]. There have been several automatic cryptic crossword

solvers out in the market, however none have ever reached any substantial success in

comparison to traditional automated crossword solvers.

Despite their intricacy, cryptic crosswords can provide a satisfying and intellectually

interesting experience for puzzle fans. The satisfaction of solving a particularly difficult

and purposely misleading hint is what keeps advanced puzzle enthusiasts coming back

for more of these again and again. It would be worthwhile to explore this area, as it can

help further train LLM to better understand natural language nuance and consequently

be able to decipher hidden meanings in texts.
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Copyright

Figure 2.3 was adapted from [31]. As well, we obtained permission from the NYT to use

Figure 2.1.
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