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ABSTRACT  
According to Canadian Environmental Sustainability Indicators (CESI), in 2015, the transport 

sector was the 4th leading source of PM2.5 emissions in Canada. Vehicular emissions contribute 

significantly to air quality problems and public health issues in urban areas. Nevertheless, 

previous studies have shown that transport users do not perceive their travel-related emissions 

as out of pocket costs. In addition, travelers prefer emissions’ information in monetary values 

rather than in their own units (tons or grams of emissions). In this study, I estimate the health-

related costs of transport emissions for Montreal residents. In addition, I examine the use of an 

air dispersion model (AERMOD) in estimating travel-related air pollution concentrations for four 

intersections in Bucaramanga, Columbia. 

In the second chapter, I estimate and quantify emissions generated on the Montreal road 

network. First, I transform the emissions rates estimated from the MOVES software into air 

pollution concentrations. Then, I convert the concentrations into health outcomes. Finally, I 

valuate these health outcomes in monetary terms. My results show that among three key 

emission types, NOx has the highest emission cost (up to $0.38/km), followed by PM2.5 

($0.31/km) and CO ($0.0074/km), during peak hours. In addition, the downtown and Plateau 

areas have the highest total emissions costs per km.  

In the second part of the thesis, I apply an air dispersion model (AERMOD) to simulate the air 

pollutant movements at four intersections in Bucaramanga, Colombia. My results show that the 

higher traffic volume, the higher the emission rates for both PM2.5 and Black Carbon, except for 

when heavy trucks’ percentage is high. The La Provenza intersection generates the highest 

PM2.5 rate (90g/h during peak hours and 16g/h during off-peak hours) and Black Carbon (15g/h 
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during peak hours and 3g/h during off-peak hours). In addition, the air pollution concentrations 

are highest among the most congested links, in all studied intersections. Moreover, the PM2.5 

and Black Carbon concentrations drop off substantially when moving away from the 

intersections’ centers, and then gradually decrease after 50 meters. In addition, compared to 

the real measurements (by the equipment installed in the intersections), the proposed set of 

models (MOVES+AERMOD) captures most of the general trends in PM2.5 and Black Carbon. 

However, the predicted concentrations are less than the observed measurements. This could 

be due to the fact that some factors are neglected, and those can affect the results, factors 

including emissions generated by people’s other daily activities (e.g., cooking), the relatively old 

vehicle fleet in Colombia (different from MOVES’s fleet), etc. I conducted a set of sensitivity 

analyses to understand the performance of the AERMOD dispersion model in estimating PM2.5 

concentrations, by altering the input data. My results show that AERMOD is highly sensitive to 

wind conditions. The temperature was observed to have a slightly negative correlation with 

PM2.5 concentrations. My results could be used to raise public awareness regarding the health 

impacts of traffic-induced air pollution, and eventually could change travel behavior of urban 

travelers.  

Keywords: Urban traffic, health-related emissions cost; Montreal transport users; MOVES; 
Emission rates; Bucaramanga, Colombia intersections; Air pollution dispersion modeling, and air 
pollution concentration. 
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RÉSUMÉ 
Selon les Indicateurs canadiens de durabilité de l’environnement (ICDE), en 2015, le secteur de 

transport est le quatrième secteur d’émissions de PM2.5. Les émissions des véhicules 

contribuent considérablement aux problèmes de qualité de l’air et à la santé publique dans les 

zones urbaines. Toutefois, des études antérieures ont démontré que les utilisateurs des 

systèmes de transport ne perçoivent que leurs émissions liées aux déplacements sont des coûts 

dont ils doivent payer de leurs propres poches. D’ailleurs, ils sont plus intéressés à recevoir les 

informations sur les émissions sous forme de valeur monétaire au lieu de l’unité brut (tonnes 

ou grammes d’émission). Par la présente étude, j’estime les coûts liés à la santé engendrés par 

les émissions de déplacements des utilisateurs de systèmes de transport à Montréal. De plus, 

j’examine la faisabilité d’un modèle de dispersion de l’air (AERMOD) pour estimer la 

concentration de pollution atmosphérique connexe aux déplacements de quatre intersections à 

Bucaramanga, Colombie. 

Dans le deuxième chapitre, pour estimer les coûts des émissions pour la santé, je transforme 

les taux d’émissions estimés à partir de MOVES en concentrations de pollution atmosphérique, 

par la suite j’ai converti les concentrations aux conséquences sur la santé, et enfin évaluer ces 

résultats en termes monétaires. Mes résultats indiquent que parmi les trois types d’émissions 

principaux, NOx a le coût d’émission le plus élevé (jusqu’à $0,38/km), suivi de PM2.5 ($0,31/km) 

et du CO ($0,0074/km). De plus, les régions du centre-ville et du Plateau ont les coûts 

d’émissions par km. 

Dans la deuxième partie, j’ai appliqué un modèle de dispersion (AERMOD) pour simuler le 

mouvement des polluants atmosphérique aux quatre intersections à Bucaramanga, en 
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Colombie. Mes résultats démontrent que la quantité de véhicules est directement reliée aux 

taux d’émission de PM2.5 et de carbone noir, à l’exception d’un pourcentage élevé de camions. 

L’intersection La Provenza a les taux d’émission de PM2.5 (90g/h les heures de pointe, 16g/h les 

heures creuses) et de Carbone Noir (15g/h les heures de pointe, 3g/h les heures creuses) les 

plus élevés. Parmi les intersections étudiées, les concentrations sont les plus élevées aux 

liaisons les plus fréquentées. De plus, les concentrations de PM2.5 et de carbone noir diminuent 

à partir du centre de l’intersection, puis diminuent graduellement après 50 mètres. En outre, 

par rapport aux mesures réelles (à l’aide des équipements installés aux intersections), 

l’ensemble de modèles proposé (MOVES + AERMOD) capture la plupart des tendances 

générales concernant les PM2.5 et le noir de carbone. Cependant, les concentrations prévues 

sont inférieures aux observations. Cela pourrait être dû au fait que non seulement les sources 

mobiles routières et industrielles routières peuvent influer sur la concentration de pollution 

atmosphérique, notamment les émissions générées par les autres activités de la vie 

quotidienne (par exemple, la cuisine), le véhicule relativement ancien. Flotte en Colombie 

(différente de la flotte de MOVES), etc. J’ai entrepris des analyses de sensibilité dans cette 

étude pour mieux comprendre le comportement du modèle de dispersion AERMOD lors de 

l'estimation des concentrations de PM2.5 en altérant les données d'entrée. Mes résultats 

indiquent qu’AERMOD est très sensible aux conditions de vent. Mes résultats indiquent que la 

température avait une corrélation négative avec la concentration en PM2.5. Mes résultats 

pourraient être utilisés pour sensibiliser le public aux conséquences de la pollution de l'air par 

la circulation, sur la santé, et pourraient éventuellement changer le comportement des 

voyageurs urbains en matière de voyages. 
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Mots-clés- Coût des émissions liées à la santé de la circulation urbaine; usagers du transport de 
Montréal; MOVES; taux d’émission; intersections Bucaramanga, Colombie; modèle de 
dispersion de la pollution atmosphérique et concentration de la pollution atmosphérique. 
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Chapter 1:  Introduction 

1.1. Background 

The economy of any region is tightly linked to the quality and the coverage of regional 

transportation systems, which can significantly impact passengers’ and freights’ travel time and 

distance, especially when developing new transportation infrastructures. However, urban 

traffic congestion and related air pollution are generated as negative byproducts of travel, so 

called travel externalities. According to the statistic of Canada, over 34.3 million vehicles are 

registered on road with a total of 521 billion kilometers traveled in 2017 (Statistic Canada, 

2017). Since the transportation sector is the second largest source of CO2 emissions and also 

contribute to 44% and 30% of total national nitrogen oxides (NOx) and carbon monoxide 

emissions (Environment and Climate Change Canada, 2016) with enormous environmental and 

public health implications, a better understanding of the overall impact of these emissions and 

how these emission affect public health and environment based on a social welfare perspective 

is of significant importance (Rouhani et al., 2016). 

The vehicular emissions impact air quality in the form of greenhouse gas emissions (mainly CO2) 

and criteria air pollutants including PM, O3, CO, NOx, as specified by the United States 

Environmental Protection Agency (US EPA) as key surface transportation environmental 

footprints.  

With the improvements in vehicle technologies and transportation infrastructure provisions, as 

well as sustainable policies, such as the Canadian Environmental Protection Act 1999, total 

emissions generated by vehicles has decreased in Canada over the past years. For instance, 

total NOx and CO emissions generated from significantly contributing vehicle categories in 
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Canada dropped from 0.95 million tons to 0.4 million tons and 10 million tons to 4.5 million 

tons, respectively, from 1985 to 2010 (Environment Canada, 2012). However, the 

transportation sector is still identified by the Canadian Environmental Sustainability Indicators 

(CESI) as the second greatest source of greenhouse gases (GHGs) in Canada, contributing to 

24% of the national carbon dioxide (CO2) emissions (Environment and Climate Change Canada, 

2017). In addition, around 4000 tons of PM2.5 emissions in 2015 are generated by the 

transportation sector in Canada, as the 4th leading sector (Environment and Climate Change 

Canada, 2016).  

Many sectors other than transportation contribute to criteria air pollutants. However, 

transportation-related emissions are of more significant concern, not only because of the high 

contribution of the sector but also because the emissions affect a large number of residents in 

urban areas. Especially in large metropolitan areas with relatively high traffic congestion, 

vehicle emissions are of vital significance as pedestrians are directly exposed to the travel-

related air pollutions. 

As a result, the quantification of traffic-related pollutants and the associated air concentrations 

is necessary. Various emissions simulator models have been used to estimate emissions 

generated by vehicles and their impacts on air pollution concentration considering different 

emission types. The resulting air pollution has a variety of effects on residents’ health, ranging 

from severe (mortality) to mild effects (morbidity) (Environment and Climate Change Canada, 

2015). The typical health effects associated with exposure to CO range from cardiovascular 

problems to death after exposure to very high concentrations of CO (Satran et al., 2006) while 

NOx causes severe respiratory problems (Mavroidis & Chaloulakou, 2010). The Air Health 
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Indicator (AHI) of Canada indicates that about 1% of cardiopulmonary mortalities could be 

attributable to exposure to fine particulate matters or PM2.5 (Sawyer et al., 2007).  

A survey conducted in Montreal-Canada finds that urban travelers are interested in receiving 

their travel-related emission information, mainly monetary metrics (Daher et al., 2018). In 

order to determine the monetary impacts, the health effects should be translated into welfare 

money lost by using the value of life (VOL) for mortality cases and people’s willingness to pay to 

accept that specific health problem for morbidity cases (Sawyer et al., 2007). 

1.2. Motivation  

Transport users cannot perceive their contributions to climate change according to several 

surveys conducted in the US, Canada, and Mexico (Daher et al., 2018; Lorenzoni & Pidgeon, 

2006). In addition, a limited number of research studies have been conducted on quantifying 

and monetizing transportation-related emissions for Canadian cities. Most of them are based 

on a regional or provincial scale (Sawyer et al., 2007; Zhang et al., 2004). 

Second, the majority of the past researches focus on a single emission type, mainly NOx or CO, 

as NOx is the most impactful emission type generated by vehicles (Zhang & Batterman, 2013). 

However, there are several other emission types, such as PM that are generated by the 

transportation sector and have significant health implications, as discussed in the background 

section. 

Furthermore, numerous studies examined the health outcomes related to air pollution 

concentration change due to traffic-related emissions. (Shekarrizfard et al., 2017) applied 

MOVES software to estimate emissions and used Calpuff & Calmet air dispersion model to 
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predict air concentration related to transportation in Montreal. However, air concentration 

changes were not translated into health outcome or monetary values, and the employed 

dispersion model is calibrated for California, not Canada. (Chen et al., 2013) studied the 

relationship between the air concentration of NO2 and health outcomes using exposure-

response relationships These relationships are estimated by linking variance of NO2 air pollution 

concentration across all postal-code addresses in Toronto to the database that provides data on 

all deaths of Canadians that occurred in Canada as well as most of those that occurred in 

approximately 20 U.S. states between 1982 and 2004. However, these health outcomes were 

not translated into monetary values to help people understand these emissions impacts.   

Hence, my key research goals are (1) to quantify the vehicular emission concentrations for 

PM2.5, NOx, and CO on a city level (Montreal, Canada) and a project level (Bucaramanga, 

Colombia) using an integrated modelling framework, and (2) to estimate the welfare monetary 

impacts of those emissions based on the monetary value of the associated health effects for the 

city of Montreal. 

1.3. Objectives 

As mentioned above, the key objectives of this research is to estimate and to monetize the 

emissions associated with urban transportation in a city or in an area (project level) using and 

combining a microscopic emission simulator (MOVES), a pollutant dispersion model (AERMOD), 

an Air Quality Benefits Assessment Tool (AQBAT), and monetary valuations of health outcomes. 

The fundamental concept is to monetize emissions on road networks by determining the 

predicted air pollution concentration level changes as a result of vehicle emissions and then 
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estimating human health problems associated with the changes in air quality using a computer 

simulation tool, and finally assigning monetary values to specific health outcomes.  

The scope of this research includes the following tasks: 

1) Estimate emissions rates on all links of the Montreal road network for NOx, CO and 

PM2.5 in October and January 2016, using a vehicle emissions simulator called MOVES.  

2) Obtain the air pollution concentration changes due to vehicular emissions estimated 

from vehicle emissions simulator using an air pollution dispersion model called 

AERMOD.  

3) Estimate and analyze the impacts (risks) of emissions on health outcomes (mortality, 

morbidity, etc.) based on the changes in air quality. 

4) Monetize the health-related air quality impacts caused by transportation emissions (in 

$/ton) for different Montreal boroughs and various vehicle types. 

5) Compare the results of modeling with the measured (real) air pollution concentrations 

on a project level (four intersections) for a case study in Bucaramanga, Colombia. 

1.4. Literature Review 

1.4.1. Health and Environmental Impacts of Transport Emissions  

With the substantial increase of vehicular emissions in recent years, a large number of 

epidemiological studies have studied the link between the emissions to various health problems 

(Brunekreef and Holgate, 2002). The air-pollution-related mortality was examined and 

estimated in many countries across the world. For instance, (Cohen et al., 2017) found out that 

the ambient PM2.5 was the 5th global mortality contributor in 2015. The exposure to PM2.5 

emissions caused more than 4 million deaths (around 7.6% of total global deaths) and more 
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than 100 million disability-adjusted life-years (DALYs) (4.2% of global DALYs) in 2015 and the 

number increased from 3.5 million to 4.2 million from 1990 to 2015 based on the death 

records. Also, (Cohen et al., 2017) found that exposure to ozone caused additional 254,000 

deaths and a loss of 4.1 million DALYs because of chronic obstructive pulmonary diseases in 

2015. Based on the above estimates, air pollution, especially PM2.5, seems to be the most 

important environmental footprint of travel, having significant impacts on human health. 

In Canada, the air-pollution-related mortality has been estimated by researchers based on 

different pollutant types considering their health implications. For instance, (Buckeridge et al., 

2002) developed an exposure model and implemented it using a geographic information 

system (GIS) to estimate the average daily exposure to PM2.5 in Southeast Toronto. This study 

shows that with a log10 increase in exposure of PM2.5, admission rates for a subset of 

respiratory diagnoses (asthma, bronchitis, chronic obstructive pulmonary disease, pneumonia, 

upper respiratory tract infection) will increase by 24%. 

For pollutants other than PM2.5, (Burnett et al., 1998) conducted a study on 11 Canadian cities, 

estimating the urban ambient air pollution impacts of transportation on daily mortality rates for 

11 years from 1980 to 1991. The results show that nitrogen dioxide had the most significant 

impact on mortality rate with a 4.1% increased risk of mortality, followed by ozone at 1.8%, 

Sulphur dioxide at 1.4%, and carbon monoxide at 0.9% based on a statistical analysis examining 

multiple pollutant regression models.  

(Chen et al., 2013) also conducted a cohort study indicating that individuals living in more 

polluted urban areas are at higher risks of dying from cardiovascular disease. This research 

studied the correlation of traffic-related air pollution and cardiovascular mortality among adults 
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who lived in three cities in Ontario, Canada. The results show that the cumulative exposure to 

NO2 was associated with a 12% increase in mortality from cardiovascular diseases, for each 

addition of 5 parts per billion (ppb) of NO2. 

(Parent et al., 2013) examined the correlation between traffic-related air pollution and the 

prostate cancer risk in Montreal and found out that the risk might increase by 27% with the 

exposure to ambient every 5 parts per billion (ppb) of N02 concentrations. 

1.4.2. Vehicle Emission Simulator 

Vehicular emissions are generally estimated by using a vehicle emissions simulator on links 

based on the vehicle fleet mixture, the volume, and speed of traffic flow, as well as the 

metrological data required for the study area, including the temperature and humidity. Early 

emission simulator models (Noland & Quddus, 2006; Chen & Yu, 2007), also known as 

aggregate emission factor simulators, only estimate emission rates by relying on the average 

speed on each link and the specific vehicle type distribution. Emissions for a specific vehicle 

type, age, time period and weather conditions are generally calculated based on sample driving 

cycles as pre-tests for the road network under study. Other factors affecting emissions have 

also been included, such as the air conditioner operation (Okui, 2017). The total emissions for a 

pollutant type are then estimated by multiplying the emission rate by the vehicle trip 

characteristics, such as distance and time travelled.  

Microscopic emission simulators are the more advanced versions of emission simulators that 

are calibrated based on high resolution driving cycles and can provide second by second 

emission rates for a given roadway link based on the observed vehicle driving cycles, including 



8 
 

detailed vehicular motion information (idling, acceleration, deceleration, and cruising activity, 

etc.).  

Both macroscopic (aggregate) and microscopic emission simulators provide accurate emission 

rates for regional scales since detailed driving cycles are not required. However, it is well 

established in the literature that microscopic emission models could provide more accurate 

results at project scales than macroscopic models (Moulvi, 2010). 

MOBILE (Environmental Protection Agency, 2012) and EMFAC (California Environmental 

Protection Agency, 2010) are examples of aggregate models that cannot function on a 

microscale level.  Emission models such as the Comprehensive Modal Emission Model (CMEM) 

(Misra et al., 2013), and Motor Vehicle Simulator (MOVES) (Environmental Protection Agency, 

2012) are most-commonly-used microscopic models.  

COPERT 4 is another average speed model that estimates vehicular emissions, which has been 

widely used in Europe (Emisia, 2011). As one example, (Shen et al., 2006) employed the COPERT 

model to measure vehicular emissions of 195 diesel trucks in six cities in China. As another 

example, (Wang et al., 2008) applied the International Vehicle Emission (IVE) model to simulate 

vehicle emissions in order to calculate vehicle-emission factors in Shanghai. The COPERT 

methodology can be used with a sufficient degree of certainty at high resolution. However, it 

uses the average speed of a particular link regardless of the type of vehicle, which is the 

limitation of this traffic model. 

MOVES model developed by the US EPA, a new version of the MOBILE6 model, is widely used in 

North American cities to estimate GHG and criteria pollutant emissions (Abou-Senna & Radwan, 
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2013). MOVES is commonly used in Canadian cities considering local characteristics, especially 

for Toronto’s (Alam & Hatzopoulou, 2017) and Montreal’s (Daher et al., 2018) road networks.  

Comparing the performance of two models: MOVES and MOBILE, (Vallamsundar & Lin, 2011) 

estimated NOx and CO2 emissions in Cook County, Illinois, 2011. The study found that MOVES 

can provide more accurate estimations of vehicle emissions, especially at the project scale, or 

disaggregate levels. Base on my literature review, it seems evident that microscopic emission 

models, for instance MOVES, should be preferred in order to estimate emission rates on 

roadway links at the county and project scales along with local data in order to provide accurate 

estimates. 

1.4.3. Emissions to Air Concentration 

Emissions from transportation can cause several health problems in some cases even beyond 

the dispersed location. An air dispersion Model along with the pre-processor information 

including required weather conditions and land use data can predict the movement of 

pollutants in the air and then predict the air pollution concentration at the ground level for the 

study area. In order to estimate the effects, emissions generated from transportation must be 

translated into the ambient air quality changes by using a dispersion model.  

Most commonly-used dispersion models in North America for near field pollutant analyses are 

(i) Steady-State Gaussian Models (AERMOD, CALINE 3, CAL3QHC/CAL3QHCR), (ii) non-steady 

state models (CALPUFF) developed by United States Environmental Protection Agency (EPA) 

and (iii) the Lagrangian particle dispersion model (QUIC) developed by Los Alamos National 

Laboratory (2010).  



10 
 

(Jungers et al., 2006) and (Indra et al., 2004) reviewed air dispersion models and distinguished 

the most useful emission dispersion models currently available for analyzing mobile emissions. 

As far as regulatory applications are concerned, the Gaussian approach seems to perform the 

best based on their reviews. 

As one example, CALINE3 is a steady-state Gaussian dispersion model designed by Caltrans, 

which determines the air pollution concentrations for relatively uncomplicated terrains. CALINE 

3 is incorporated into more refined CAL3QHC and CAL3QHCR models that are based on the CO 

emission model with some additional features. However, CAL3QHC is not intended for 

modeling sites with complex geometries.  

Other models such as AERMOD and CALPUFF are more common and considered as EPA’s main 

regulatory models. AERMOD is a steady-state Gaussian plume dispersion model that 

incorporated the air dispersion based on planetary boundary layers and can be employed for 

both simple and complex terrains (Environmental Protection Agency, 2012). CALPUFF is the 

EPA’s Long Range Transport (LRT) air quality dispersion model. It is a non-steady state model as 

opposed to AERMOD which is a steady state model. CALPUFF is not recommended for nearby 

field analysis (Brode & Anderson, 2008). In order to provide a more user-friendly dispersion 

model, several companies and organizations, for example the Lakes Environment Company, 

have incorporated a few popular U.S. EPA air dispersion models into one integrated interface 

both for AERMOD (AERMOD view) and CALPUFF (CALPUFF view), providing all the necessary 

pre-processors required in the package (Lake environment, 2019). 

As another common example, the Quick Urban and Industrial Complex (QUIC) dispersion model 

is a fast response Lagrangian particle dispersion model, which has been developed by Los 
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Alamos National Laboratory (2010) in order to compute concentrations of pollutants in a short 

period of time. QUIC has been used for analyzing the air pollution dispersion effects of roadside 

barriers on the traffic flow patterns of a high-traffic highway in Raleigh, North Carolina, USA 

(Bowker, 2007), but the model is not employed on any road network.  

Several global studies have used Gaussian models to evaluate traffic emissions. (Hao et al., 

2000) used the Industrial Sources Complex Short Term Version 3 (ISCST3), a multi-source 

pollution dispersion model developed by the US EPA to estimate the air concentration change 

due to transportation-related emissions on road link levels in Beijing, China. The study verified 

the data with the results from monitoring stations. The results show that mobile sources 

contribute 74% to CO concentration and 67% to NOx concentration, which implies that vehicle 

emissions are the most important air pollutant source in Beijing. The verification from 

monitoring stations shows that the ISCST3 method can provide realistic air pollution 

concentrations in the Beijing urban area. However, additional factors should be taken into 

consideration, such as the influence of low wind speed and heat island effects. (Alvarez et al., 

2018) estimated the concentration of air pollutants generated by road traffic on the main roads 

of the city of Cartagena, Colombia using AERMOD view. Mobile sources are taken into account 

as well as other sources using the geographic information obtained from the Geographic 

Information System (GIS). By implementing the AERMOD software, it is possible to estimate the 

degree of concentration of pollutants generated by transportation contributes to the total 

pollution existing in these areas. However, a study that links the concentrations of PM2.5 with 

the different diseases caused by inhalation of this pollutant would be especially required. 



12 
 

In the U.S. context, (Edward et al., 2014) examined the air concentration change due to 

transportation-related emissions and applied CALPUFF to simulate how pollutants are mixed 

and dispersed. The results show exceedances of NO2 and PM2.5 concentration of U.S. National 

Ambient Air Quality Standards (NAAQS) in the study area, with about two-thirds of NOx 

emissions and one-quarter of PM2.5 emissions from on-road vehicles. However, the CALPUFF 

modeling system showed an over-prediction bias of 20 to 40% for PM2.5 concentration. Using 

AERMOD, (Rowangould, 2015) estimated the PM2.5 concentration of road traffic emissions 

across Los Angeles County, California. As the software can only estimate point sources, the Los 

Angeles County road network is divided into a grid composed of 1 km by 1 km cells using the 

GIS software. Each 1 km cell was assigned meteorological data with some adjustments. The 

results show that high resolution air dispersion modeling can be performed efficiently for large 

transportation networks with a few simplifying assumptions. 

In the Canadian context, CALLPUFF and AERMOD are also commonly used for estimating air 

concentrations. (Gibson et al., 2013) estimated the PM2.5, NOX and SO2 air concentrations for 

Halifax, Pictou, Sydney, and Port Hawkesbury, Nova Scotia, Canada.  The air quality dispersion 

model AERMOD View was used to estimate the air dispersion of point and major line emissions 

within four, 50 km x 50 km, domains on annual, monthly and 1–hour averaging concentration 

period bases. The results show that AERMOD is a suitable model for on-road air pollution 

concentration estimation in Nova Scotia and annual and monthly SO2 concentrations estimation 

in Halifax and Sydney. (Misra et al., 2013) used the CHEM emission estimation model and the 

AERMOD view dispersion model to estimate NOx and CO air concentrations for Toronto, Canada 
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in 2011. The results show that AERMOD provides better outcomes for CO concentration than 

NOx by comparing modeled air pollution concentration to station air pollution concentration. 

For Montreal, ( Shekarrizfardet al., 2017) estimated the health impacts of planned public transit 

projects for 2030 based on the decrease in NO2 emissions from cars. The emissions are 

calculated using a modified version of MOVES calibrated for Montreal, while the NO2 air 

concentration is simulated by CALPUFF and validated against the measured NO2 data from the 

Reseau de Surveillance de la Qualite de l’Air (RSQA). The results show an average 27% decrease 

in exposure of NO2 concentration for the 2031 transit scenario compared to the baseline 

scenario of the year 2018. However, indoor or in-vehicle exposures should be considered for 

future research. 

Based on my literature review of several dispersion models, Gaussian modeling seems to be the 

most appropriate approach. Therefore, AERMOD view software is utilized in this study. The 

software benefits from an easy-to-use interface and offers relatively accurate results 

considering detailed metrological and land use data I used in this study.  

1.4.4. Air Concentration to Health Outcomes 

Air pollution has important health implications according to the emission type as discussed in 

the previous section. All residents are exposed to air pollutions, while the health of vulnerable 

groups (including children and the elderly) is impacted to a greater extent. Considering both 

short-term and long-term exposures, one could develop models that can convert air pollution 

concentrations into health outcomes, which is necessary for policy makers. 

Health impact assessment (HIA) analyses describe the health impacts of a proposed or existing 

project, policy or program on a specific population. These assessments provide information on 
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health implications and take into account socio-economic effects. They serve as valuable tools 

to measure the air quality impacts of transportation on health. HIAs examine several health 

outcomes, including health impacts of current air quality in the study area; the impacts of a 

project that may damage the local environment and people’s health; and an evaluation of 

existing targets on reducing air pollutant exposures. Decision makers can use HIA to determine 

if changes need to be made to a project, policy or program to minimize the associated health 

impacts. 

In the U.S., the Environmental Benefits Mapping and Analysis Program (BenMAP) is the 

principal tool being used to quantify the benefits of reducing criteria air pollutants and to 

determine health impacts anywhere in the world, in order to inform air-quality-related policies 

(Sacks et al., 2018).  

In Spain, BenMAP has been used by (Boldo et al., 2010) to estimate the number of avoidable 

death incidents associated with reducing PM2.5 levels. The results show that around 6 per 

100,000 population in all-cause deaths could be prevented annually with an average annual 

reduction of 0.7 μg/m3 in PM2.5 levels. It shows the specially adapted BenMAP could be used as 

a tool for estimating traffic-related health impacts in Spain. However, one significant limitation 

of this study is that the health impact analyses is the inability to quantify many of the health 

effects related to fine particulates due to the lack of health data or reliable impact functions. 

(Voorhees et al., 2014) used BenMAP in Shanghai, China to estimate prevented cases of 

pollution-related mortality and morbidity taking into account the Chinese air pollution-related 

epidemiological health functions and Shanghai air quality data.  This study evaluated the impact 
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on all-cause mortality of a year with exposure to mean PM2.5 concentration ranged from 180 to 

3500. By using BenMAP, analysts can run multiple iterative analyses to suitable pollution 

control and policy options for local, regional or national scale assessment in China. However, 

Differences in location, times, air concentrations, health functions and population size lead to 

wide variability in estimated impact and rely on health impact functions from other geographic 

locations for China might lead to a large number of variables.  

In the U.S., BenMAP has been utilized in combination with vehicle microscopic simulation 

models, emission models, and air pollutant dispersion models in order to quantify social costs 

of urban freight transportation in the Alameda corridor in Los Angeles (Lee et al., 2012). Results 

show that during 2008, the total number of mortality cases caused by PM2.5 exposure was 43. 

However, this analysis accounts only for limited health outcomes due to lack of concentration-

response functions for mortality, particularly with respect to young adults and children, either 

because epidemiologic data are not available, or because studies address populations are 

different from the people who live in the study area (Grabow et al., 2012) simulated the census-

tract level changes in hourly pollutant concentrations from reducing automobile round trips in 

11 metropolitan areas in the upper mid-western United State regions using the Community 

Multiscale Air Quality (CMAQ) model and BenMAP to estimate health impacts. This study shows 

that with a decline of 0.1 µg/m3 of PM2.5, the mortality rate would decline by approximately 

1295 deaths/year across the study region of approximately 31.3 million people. However, this 

study did not assess health effects from decreases in other pollutants, for example, carbon 

monoxide and sulfur dioxide that also have impacts on people’s health. 
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Environment Canada and Health Canada jointly developed the Air Quality Valuation Model 

(AQVM) for monetizing health and environmental outcome changes from air quality 

programs/policies in Canada (Sawyer et al., 2007). Since its development in 1996, AQVM has 

been widely used in monetizing emissions’ health impacts. Since 2003, Health Canada initiated 

the development of the Air Quality Benefits Assessment Tool (AQBAT). It is a computer 

simulation tool designed to estimate the human health and welfare benefits or damages 

associated with changes in Canada’s ambient air quality. The AQBAT model enhances the 

estimation capabilities of the previous AQVM and provides a more open and transparent 

modelling environment.  

In Canada, (Zhang et al., 2004) estimated the social and environmental costs of transportation 

using AQVM while (Sawyer et al., 2007) applied AQBAT to model health outcomes for 9 

Canadian provinces as well as the whole Canada.  Comparing the two commonly-used tools, the 

AQVM model uses the concentration-response function to calculate changes in the frequency 

of 9 health endpoints, while AQBAT applied the concentration-response functions of 12 health 

endpoints (Sawyer et al., 2007). The major contributing pollutants in both tools are NOX, Ozone, 

SO2, and PM2.5.  

For both AQVM and AQBAT models, DFA and Concentration Response Functions (CRF) are 

developed and applied by linking databases of transportation-related emission data, 

concentration changes in ambient air quality data, geographic areas and scenario years to 

health endpoints.  

The CRFs in AQBAT are derived from epidemiological studies and are defined as distributions 

such as linear or normal. The associated health endpoints in AQBAT includes both short-term 
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exposure (acute) and long-term exposure (chronic), implying that each event reflects either an 

immediate or cumulative health impact for either mortality or morbidity. Each CRF applies to a 

specific population age group pre-defined in AQBAT. Tables 1.1 provide detailed health 

endpoints associated with a variety of pollutants as well as the relevant epidemiological 

studies. As can be seen in the Table, the considered health endpoints range from sever 

outcomes like acute exposure mortality to more moderate issues such as restricted activity 

days. 

As AQBAT is the most up-to-date model developed for Canada, I will use it in this research to 

convert the air pollution concentrations to health endpoints. 
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Table 1.1 Concentration Response Functions for Various Health Endpoints 

Health Endpoint Pollutant 
Distribution 

Type 
Epidemiological 

Study 

Acute exposure Mortality NOx Poisson Burnett et al. (2004) 

Chronic exposure mortality PM2.5 Poisson Krewski et al. (2000) 

Acute respiratory symptom days PM2.5 Linear Krupnick et al. (1990) 

Adult chronic Bronchitis Cases PM2.5 Poisson Burnett et al. (2004) 

Asthma Symptom Days PM2.5 Linear 
Ostro et al. (1991); 

Whittemore & Korn,  
(1980) 

Cardiac Emergency Rooms Visits PM2.5 Linear 
Burnett et al. (1995); 

Stieb et al. (2000) 

Child Acute Bronchitis Episodes PM2.5 Poisson Dockery et al. (1996) 

Respiratory Emergency Room 
Visits 

PM2.5 Linear 
Burnett et al. (1995); 

Stieb et al. (2000) 

Restricted Activity Days PM2.5 Poisson Ostro (1987) 

Cardiac Hospital Admission CO Linear 
Schwartz & Morris 

(1995); Burnett et al. 
(1996) 

 

1.4.5. Health Outcomes to Monetary Values 

Emissions from motor vehicles have several effects on human health and the 

environment. These impacts could be translated into monetary welfare impacts based 

on either mortality or morbidity outcomes. (Zhang et al., 2004) applied a value of life 

(VOL) of 7.5 million CAD for 2002 and estimated mortality and people’s willingness to 

pay (WTP) for morbidity changes caused by transportation activities. The valuation of 

mortality was estimated by multiplying the occurrence of mortality by the value of a 

statistical life (VSL). The morbidity was estimated by multiplying the occurrence of the 

health endpoint by people’s willingness to pay (WTP) which is estimated by asking 

people’s willingness to pay to avoid different combinations of health or consumption. In 
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another study, (Sawyer et al., 2004) applied the value of life (VOL) & wage risk (range of 

3 to 5 million CAD for 2000 on estimating mortality and willingness to pay to avoid a 

specific morbidity outcome for 9 Canadian provinces. The results show that Quebec 

represents the second highest costs of all health endpoints among 9 Canadian provinces 

of 959 to 1630 million CAD for 2002. In the following two sections, I discuss the 

commonly-employed approaches to determine the monetary implications of transport 

emissions.   

Mortality 

An important step to monetize mortality is to estimate the value of life (VOL), or what is 

also called the value of a statistical life, in the study area. (McCubbin & Delucchi, 1999) 

have estimated the health costs of motor-vehicle-related air pollution considering 

different values of mortality, depending on the degree of prematurity as well as the 

timing of the death in California, with an average value of life of $ 4.0 million (1999US$). 

They calculated emissions cost for PM2.5 ($10,420 - $159,190) $/tons, PM10 ($9,750 - 

$133,780) $/tons, SOx ($6,900 - $65,520) $/tons, NOx ($1,020 - $16,560) $/tons, and CO 

($10 - $90) $/tons in 1991 USD.  The Secretary of Transportation recommends the use of 

a VOL of $9.6 million (2016US$) which is also used by US Department of Transportation 

(US Department of Transportation, 2016).  

In Canada, (Sawyer et al., 2007) estimate the VOL for Canadian residents in a range from 

$CAD 3 billion to $CAD 5 billion, with an average value of $C 4 billion in 2000. (Chestnut 

et al., 2011) reviewed the literature on WTP for changes in the death risk and estimated 

VOL that could be used in the economic evaluation of environmental issues. They 
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concluded that the VOL for older residents (over 65 years old) at $3.9 million (in 1996 

$C), with a range from $7.8 million to $2.3 million. For younger people (under 65 years 

old), the VOL is estimated at $5.2 million ($3.1-$10.4 million). Taking a weighted average 

of these estimates and assuming that 85% of air particulate-related deaths are linked to 

older generations, Environment Canada recommends a central, age-weighted estimate 

of $4.1 million, with a range from $2.4 million to $8.2 million 

For Montreal, (Daher et al., 2017) estimated an average VOL of $CAD 16 million based 

on a contingent valuation survey conducted in Montreal. The value of life of $CAD 16 

million will be utilized in this research as the benchmark value since it is estimated for 

the same case study (Montreal) and the same study period as for this research. 

Morbidity 

Morbidity has been valued into monetary values in several ways, including the 

“observed market” approach with a cost-of-illness (COI) study and the “constructed 

market” approach with a WTP study. COI studies measure medical costs and lost income 

associated with exposure to emissions while WTP studies measure people's actual 

willingness to purchase of other goods and services in return for the improved health 

(Pervin et al., 2008).  COI studies estimate the costs based on the demand and cost 

functions, market prices, and residents’ behavior and choices in the study area (Johnson 

et al., 1997). However, they do not consider the total welfare impact of an adverse 

health effect. Therefore, the approach of WTP studies will be employed in this study 

since it can estimate the appropriate measures of the social value of health based on 

the traditional economic theory fundamentals. 
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(Sawyer et al., 2007) and (Zhang et al., 2004) provided a detailed unit cost of 9 health 

endpoints based on several epidemiological studies conducted in Canada. (Sawyer et al., 

2007) estimate all the morbidity values of health endpoints based on the WTP study 

while (Zhang et al., 2004) applied both COI and WTP studies to monetize morbidity 

values. The unit morbidity values from (Sawyer et al., 2007) will be utilized in this study 

and will be modified by considering additional local data (population, age distribution). 

1.5. Structure of Thesis   

The proposed research framework consists of four key components as follows: 

1) A vehicle emission simulator, MOtor Vehicle Emission Simulator (MOVES); 

2) A dispersion model, AERMOD, Environmental Protection Agency (EPA) regulatory 

model for near field dispersion;  

3) Air Quality Benefit Assessment Tool (AQBAT) using Concentration Response Functions 

(CRF); and 

4) Valuation of health outcomes: Value of Life (VOL) for mortality and willingness to pay 

(WTP) for morbidity. 

Chapter 2 provides an analysis of emissions from road links in Montreal based on the 

county scale using MOVES software. I will discuss the vehicle emission simulator 

(MOVES) used in this study as well as its framework in Section 2.2.2 and followed by the 

discussion of the required data for running MOVES in Section 2.2.3. Starting from 

Section 2.3, I will examine the detailed emission estimation rates from MOVES. 

Emissions generated from transportation will be then translated into air pollution 

concentration changes for Montreal based on the relationships found in the literature, 
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and it will be discussed in Sections 2.4 to 2.5 offering detailed information on the 

transformation of air concentration changes into health endpoints and finally convert 

health outcomes into monetary values using VOL and WTP measures. Limitations and 

future research will be discussed in section 2.6. 

In Chapter 3, AERMOD will be used to simulate the dispersion of emissions in the 

atmosphere by assuming roadway links as emissions’ sources for four intersections in 

Bucaramanga, Colombia. Section 3.5 will discuss the software, pre-processors, the 

required local data as well as air pollution concentration distribution from AERMOD. 

Section 3.6 will provide discussions regarding the air pollution concentrations estimated 

from AERMOD with the observed concentrations measured by equipment in order to 

evaluate the performance of the model. Section 3.7 will provide the correlation of 

predicted PM2.5 air pollution concentration with temperature and wind speed from 

AERMOD. Figure 1.1 provides a ‘Basic Emission Valuation Framework’ considering each 

four component of the framework.  

In Chapter 4, I will summarize the findings of previous chapters, and I will discuss some 

of the limitations of this research and provide recommendations for future research 

studies in the last section. Figure 1.2 illustrates the research outline for chapters 2 and 

3. 
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Figure 1.1 An Overview of Basic Emission Valuation Framework 
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Chapter 2:  Traffic-related Emissions and Costs Estimation 

2.1. Introduction  

Vehicular emissions contribute significantly to the deterioration of air quality and public 

health in urban areas. In order to estimate transportation-related emissions, traffic 

emission simulation models are used to estimate emission factors, based on attributes 

such as the vehicular fleet, the traffic flow volumes, the vehicle operating characteristics 

(e.g., the speed profile), and the meteorological data for the case study. In this chapter, I 

estimate and quantify variable emissions generated in the Montreal island road network 

based on the EPA software, MOtor Vehicle Emission Simulator (MOVES). 

However, according to previous studies (Daher et al., 2018; Lorenzoni & Pidgeon, 2006), 

transport users do not perceive their travel-related emissions meanwhile they are 

interested in receiving emission information in monetary values (Daher et al., 2018). To 

estimate the health-related costs of emissions, I transform the emissions rates 

estimated from MOVES into air pollution concentrations, then convert the 

concentrations into health outcomes, and finally valuate these health outcomes in 

monetary terms. The monetary valuation is based on a value of life estimate from the 

survey conducted in Montreal (Daher et al., 2018) for mortality, and based on a willing-

to-pay value, borrowed from the  lecture review (Sawyer & Stiebert, 2007) and adjusted 

for Montreal, to avoid health problems for morbidity. 

This chapter is divided into two parts that estimate emissions rates and valuate 

emissions costs in monetary values. In the first part, I apply the MOVES software to 

estimate emissions in Montreal explaining all necessary models, data and assumptions 
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required to quantify the emission rates. In addition, I discuss the correlation between 

emissions rates and average speeds. Next, I transform the estimated emission rates in 

Montreal into monetary units to determine emissions costs and its geographical 

distribution along 41 Montreal boroughs.  

2.2. Emission Estimation  

Although the production, distribution, and combustion of gasoline and diesel introduce 

a variety of harmful chemicals into the air, land and water (Wang, et al., 2008; Mccubbin 

& Delucchi, 2003), my analysis is limited to PM2.5, CO and NOx emissions. The MOVES 

software used to calculate emissions, the collected data, and the analysis results are 

discussed later in this section. 

2.2.1. Study Area 

My estimation is based on a representation of the Montreal island road network 

consisting of more than 40,000 links focusing on the main highways and arterials. Figure 

2.1 represents the road network considered in this study on the base map of the 41 

Montreal boroughs. 
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Figure 2.1 Montreal Road Network’s Representation 
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2.2.2. MOVES County Scale 

I use the MOVES software to calculate the vehicle emissions rates for Montreal. MOVES 

is a Java-based software that estimates vehicle emissions on three different analysis 

scales: national, county and project (Geroliminis & Skabardonis, 2006; Koupal et al., 

2018). For the first part of this chapter, regarding the city of Montreal case study, I use 

the county scale to simulate emissions rates. Since the MOVES software is calibrated for 

US regions, I use the MTQ's assumptions to choose the Hennepin County that have the 

most similar geometry to Montreal. The MOVES estimates emissions rates mainly based 

on average speed bins (ranges) and assign an emission rate to every bin considering 

“Source” binning, “Age Group” binning and “Operating Mode” binning (Papson, et al., 

2012). “Source” binning includes the travel activity in terms of vehicle-kilometer 

traveled (VKT) according to different vehicle types and fuel types. “Age Group” binning 

represents the vehicle’s age and model year. “Operating Mode” binning indicates the 

speed of each vehicle type considering different road types. The total emissions are 

calculated by multiplying the adjusted emission rates (e.g., grams/Vehicle-km) by the 

appropriate activity levels (VKT), where the adjustments are based on temperature, 

humidity, and fuel information.  

An adapter is then used to transfer simulated volumes, speeds, and road types from the 

MTQ’s model based on O-D survey from 2008. First, the meteorology, fuel type(s), 

vehicle configuration and emissions’ types required as inputs for MOVES are prepared 

and inputted into the adapter. Next, road links and centroids from the Montreal road 

network (the EMME model) are added into the adapter. Finally, the inputs required for 
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the MOVES are exported to a database management system (MySQL) to generate the 

“Runspec” document and run MOVES. Finally, MOVES results are stored in MySQL for 

further analysis. Figure 2.2 illustrates the procedure. 

 

Figure 2.2 The Framework of MOVES and Adapter Methodology 

2.2.3. Data Collection  

The data required to run MOVES can be categorized into seven inputs: the vehicle type 

population, vehicle fleet’s age distribution, vehicle kilometers traveled (VKT), average 

speed distribution, road type distribution, meteorology and fuel composition (Papson et 

al., 2012). The traffic volumes and average speeds on all links of the Montreal road 

network are available from MTQ’s Montreal model (MOTREM08) and other required 

data are provided by SAAQ (the vehicle type population, vehicle fleet’s age distribution 

data) and Environment Canada (meteorological data). Table 2.1 represents the data 

required for running the MOVES.  
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Table 2.1 Data Sources for MOVES’s Inputs 

Data Input  Description  Source 

Vehicle type 
population 

 
 

Number of vehicles by category 
operating in Montréal 

 
 

SAAQ; Provided by 
MTQ 

Vehicle 
fleet’s age 
distribution 

 
 

Age distribution  of vehicles based on 
model year or age 

 
 

SAAQ; Provided by 
MTQ 

Vehicle 
kilometers 
traveled 

 
 
 

Total kilometers traveled by each 
vehicle type/category 

 
 

MTQ’s Montreal Model 
(MOTREM08) 

Average 
speed 
distribution 

 
 

Average speed of each vehicle type on 
different road types during a period of 
time 

 
 
 

MTQ’s Montreal Model 
(MOTREM08) 

Road type 
distribution 

 
 

VMT distribution according to different 
road types 

 
 
 

Quebec’s Ministry of 
Transport (MTQ) 

Meteorology  
Average hourly temperature and the 
humidity 

 
 

Environment Canada; 
Provided by MTQ 

Fuel  Fuel type information  Environment Canada 

 

2.3. Results and Discussion 

2.3.1. Montreal Road Network 

After inputting the vehicular information (from EMME), meteorology, and fuel data for 

various scenarios into the adapter, several MOVES simulations were conducted to 

obtain the emissions rates (g/vehicle-km) of the PM2.5, CO, and NOx on all Montreal road 

network’s links. The emissions rates will then be analyzed during AM peak hours (6 AM 

to 9 AM) and off-peak hours (midnight to 4 AM), for two different weather conditions 

(January and October). Figures 2.3 to 2.5 illustrate the estimated PM2.5, CO and NOx 

emissions rates across the Montreal network for AM peak hours in October. Compare 

among these three emissions types, NOx has the highest emission rate (up to 17.29 

g/km), followed by CO (up to 4.58 g/km) and PM2.5 (up to 0.91 g/km).  In addition, the 
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Downtown and Plateau areas seem to have the highest air pollution rates for all 

emission types.  

 

Figure 2.3 PM2.5 Emissions Rates across the Montreal Road Network 
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Figure 2.4 CO Emissions Rates across the Montreal Road Network 
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Figure 2.5 NOx Emissions Rates across the Montreal Road Network 
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2.3.2. Emissions vs Speed on Links 

Because the vehicle speed is the significant factor determining emissions rates (Kean et 

al., 2005), first, I plot the link emissions rates against the link speeds in Figures 2.6 to 2.8 

to study their correlations. The rates are the average emissions rates on links based on 

the traffic mix (vehicle types) on each link. The speed levels are the average speed of all 

vehicles on each link, assuming all vehicles travel at the same speed.  

Comparing the emissions rates with speed levels, I find a strong correlation during both 

peak and off-peak hours, as shown in Figures 2.6 to 2.8. We can observe that PM2.5, CO, 

and NOx emissions rates decrease with speed until the speed reaches 100km/h, where 

emissions rates increase slightly with higher speed. In addition, comparing peak and off-

peak emissions rates, I find that the average off-peak hours PM2.5 and NOx emissions 

rates (0.045 g/vehicle-km for PM2.5, 0.950 g/vehicle-km for NOx) are around 3 times 

greater than those of peak hours (0.0186 g/vehicle-km for PM2.5 and 0.398 g/vehicle-km 

for NOx). This can be explained by the vehicle mixture in each time period since trucks 

represent a relatively higher percentage in the mixture during off-peak hours. However, 

for the CO emission, the average rate for peak hours is higher than the off-peak hours 

rate (1.63 g/vehicle-km for peak hours and 1.35 g/vehicle-km for off-peak hours) it 

might because of diesel fuel combustion engines produce lower levels of carbon 

monoxide than gasoline engines as heavy trucks (diesel fuel combustion) represent 8% 

of the vehicle mix during off-peak hours as opposed to 3% during peak hours. Therefore, 

higher passenger car mixture (gasoline engines) during peak hours results to a higher CO 

emission rate during peak hours (Geneva: World Health Organization, 2015). 
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Figure 2.6 PM2.5 Emission Rates for: (a) October; (b) January 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

P
M

2
.5

 (
g/

km
) 

Speed (km/h) 

off peak peak(a) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

P
M

2
.5

 (
g/

km
) 

Speed (km/h) 

off-peak peak(b) 



36 
 

 

 

Figure 2.7 CO Emissions Rates for: (a) October; (b) January 
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Figure 2.8 NOx Emissions Rates for: (a) October; (b) January 
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As weather could act as another essential factor to impact emissions rates (Frey et al., 

2003), I compare the emissions rates of January (a) and October (b) in Figures 2.6 to 2.8. 

The emissions rates in January are expected to be higher than those of October 

(Marshall & Eccleston, 1980) for several reasons. First, users drive relatively slower on 

icy roads and in snowy weather, which results to relatively higher emissions rates. 

Second, many research studies indicate that the cold-start in winter in low ambient 

temperatures generates a higher level of emissions (Weilenmann et al., 2005). Finally, 

the use of heaters increases emissions, especially when the average ambient 

temperature is less than -10 °C (Zhao et al., 2009). However, my results show that PM2.5, 

CO, and NOx emissions rates are very similar in January and October. This is partly due 

to the simulation for both months use the exact same traffic demand data. All other 

data regarding the fleet, age of vehicles, average speeds, volumes on the road, etc. are 

the same between the two simulations. During peak hours, the average CO emissions 

rate is 1.49 g/vehicle-km in both January and October, and the average NOx emissions 

rate is 0.70 g/vehicle-km for both months. Only for PM2.5, the average emission rate is 

0.0316 g/vehicle-km in October while the rate is relatively higher, 0.0323 g/vehicle-km, 

in January. The slight change in the PM2.5 emission rate is mainly due to emissions 

generated by passenger cars as the average emission rate for passenger cars is 0.008 

g/vehicle-km in October and slightly higher, 0.01 g/vehicle-km, in January. Table 2.2 

represents the peak hours emissions rates comparison for January and October.  
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Table 2.2 Emissions rates for October and January during peak hours 

Emission Type January October 

CO 1.49 g/vehicle-km 1.49 g/vehicle-km 

NOx  0.70 g/vehicle-km 0.70 g/vehicle-km 

PM2.5 0.0323 g/vehicle-km 0.0316 g/vehicle-km 

 

2.4. Cost Estimation  

2.4.1. Methodology  

Using the emissions rates calculated from MOVES as discussed in Section 2.2, in this 

section, I estimate the 2015 monetary value of vehicle-related criteria pollutants for 

Montreal using 3 modeling steps:  

1. Change Emissions (in tons) to air pollution concentrations (in µg/m3); 

2. Calculate the health outcomes/risks (mortality, morbidity, etc.) associated with 

those concentrations; and 

3. Estimate the health costs in welfare money using value-of-life and willingness-

to-pay measures. 

 

 

 

 

 

 

 

Figure 2.9 Cost Estimation Modeling Procedure 

Modeling Input:  
Transport’s Emissions (tons) 

Modeling:  
Emission-Air Quality (µg/m

3
) 

Modeling:  
Air Quality - Change in health 
effects (risks) 

Modeling Output:  
Economic Value of health 
effects (welfare $) 

Step 1 
Step 2 

Step 3 
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Figure 2.9 illustrates the key steps taken in estimating emission costs. The emissions 

derived from the MOVES model were used as the inputs. I calculate each one-day 

emission for a specific emission type summing up the link-based emissions rates 

multiplied by its traffic volume for October 2015 in order to provide the total annual 

emissions.  

For the first step in Figure 2.9, I estimate the incremental (change in) air pollution 

concentration associated with transportation-related emissions based on the 

relationships between emissions levels and the air pollution concentrations related to 

transportation in 2000. For the Montreal case study, I calculate the concentration 

change in 2015 by multiplying the 2000 ratio of the average air pollution concentration 

(in µg/m3) to the total annual emissions (in tons), for each specific emission type, which 

is the input of the three-step model. For each emission type, the relationship is 

explained in Equation 1:  

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑌𝑒𝑎𝑟 2015,
µ𝑔

𝑚3)   =

 
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑌𝑒𝑎𝑟 2000,

µ𝑔

𝑚3) 

𝑇𝑜𝑡𝑎𝑙 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 (𝑌𝑒𝑎𝑟 2000,𝑡𝑜𝑛𝑠) 
∗ 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 (𝑌𝑒𝑎𝑟 2015, 𝑡𝑜𝑛𝑠)                                       (1)                                                                       

As shown in Table 2.2, I obtain the above 2000-year ratio of air pollution concentration 

over emissions from the (Sawyer & Stiebert, 2007) study to transform 2015 emissions in 

tons to air pollution concentrations (µg/m3). 
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Table 2.3 Relationships between Air Pollution Concentration and Emissions Levels 

 
Ratio-Transportation (%) 

Emission types Quebec, 2000 

PM2.5 1.1 

NOx 31 

CO 18 

 

For the second step, knowing the change in the air pollution concentration from the 

previous step, I transform the ambient air pollution concentration changes into health 

outcomes using Health Canada’s Air Quality Benefits Assessment Tool (AQBAT) 

(Government of Canada, 2017). AQBAT prescribes Concentration-Response Functions 

(CRF) that determines the number (risk) of health endpoints’ occurrences in the 

population size of the area as a result of changes in the ambient air quality in a specific 

year to Table 2.3 specifies CRFs for a variety of emission types on health 

endpoints/outcomes.  

For instance, cardiac emergency rooms visit is one of the health problems caused by 

PM2.5 pollution. In order to link PM2.5 concentration to health outcomes, daily average 

concentrations of PM2.5 were obtained from monitoring stations within the study area 

(Burnett et al., 2004). Hospital discharge records were obtained from the Ontario 

Ministry of Health for residents of the study area and hospitals located in the study 

area. Generalized additive models (Hastie & Tibshirani, 1990) were used to determine 

daily variations in PM2.5 concentration and its relationship to daily fluctuations in 

hospital admissions with Poisson variation to link a series of hospital admission counts 
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to air pollution. From this, several characteristics (for example, the mean) can be 

provided to estimate cardiac emergency rooms visit counts from PM2.5 concentration.  

Table 2.4 Concentration Response Functions (CRF’s) in AQBAT 

Health Endpoint Pollutant Distribution Type Mean Value 

Acute exposure Mortality NOx Poisson 2.49E-04 

Chronic exposure mortality PM2.5 Poisson 1.50E-03 

Acute respiratory symptom days PM2.5 Linear 1.39E-03 

Adult chronic Bronchitis Cases PM2.5 Poisson 6.80E-03 

Asthma Symptom Days PM2.5 Linear 5.13E-04 

Cardiac Emergency Rooms Visits PM2.5 Linear 1.70E-04 

Child Acute Bronchitis Episodes PM2.5 Poisson 1.68E-02 

Respiratory Emergency Room Visits PM2.5 Linear 1.32E-04 

Restricted Activity Days PM2.5 Poisson 1.01E-03 

Cardiac hospital admission CO Linear 2.76E-04 

 

The last step for the health-related emissions-cost estimation is to monetarize the 

welfare economic value of health outcomes estimated from the previous step. I find the 

welfare costs associated with urban travel emissions using two figures: (i) value of life 

for mortality and (ii) willingness to pay for morbidity. Table 2.4 shows the average value 

of life for mortality costs, estimated from a survey conducted in Montreal (Daher et al., 

2018). The estimated value of life for Montreal residents was $16 million, on average. I 

borrow the monetary cost of morbidity according to people’s willingness to accept/pay 

for the risk of illness based on a study in Canada -2000 (Sawyer & Stiebert, 2007) and 

adjusted it for Montreal-2015 by multiplying the 2000’s value with an inflation rate of 

1.44 (Bank of Canada, 2019). 
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Table 2.5 Welfare Measures to Determine Mortality and Morbidity Social Costs  

health endpoint 
 

Emission 
Types 

Monetary Value 
(2015 Canadian Dollar) 

Low Median High 

Acute exposure Mortality VOL NOx / 16000000 / 

Chronic exposure mortality VOL PM2.5 / 16000000 / 

Acute respiratory symptom 
days 

WLP PM2.5 19.6 19.6 19.6 

Adult chronic Bronchitis Cases WLP PM2.5 245000 372400 651000 

Asthma Symptom Days WLP PM2.5 9.8 39.2 168 

Cardiac Emergency Rooms 
Visits 

WLP PM2.5 6160 6160 6160 

Child Acute Bronchitis Episodes WLP PM2.5 210 434 644 

Respiratory Emergency Room 
Visits 

WLP PM2.5 2800 2800 2800 

Restricted Activity Days WLP PM2.5 67.2 67.2 67.2 

Cardiac hospital admission WLP CO 4570 9140 13711 

 

Finally, I estimate the social (welfare) cost for each pollutant type. Equation 2 represents 

the welfare value of changes in health outcomes for a pollutant, multiplying the changes 

in the ambient air quality (concentration) by the associated response function (CRF), the 

case study population, and the unit cost of that pollutant type. 

ΔVHp,r = ΔAp,r * CRFp,h * Pr * Vp,h                                               (2)                                    
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Where ΔVHp,r is the welfare value of a health outcome changes for each pollutant p 

living in that region r; ΔAp,r is the change in ambient air quality resulting from pollutant p 

in region r; CRFp,h is the concentration response function for pollutant p and health or 

environmental outcome h; Pr is the population in region r and Vp,h is the welfare unit 

cost of pollutant p of environmental endpoint h for pollutant p. 

2.4.2. Results and Discussion 

Based on the three steps discussed in Section 2.3.1, I calculate the emissions costs in 

Montreal for 2015. Note that for the first case study (Montreal), I simply consider 

constant ratios to transform emissions to air pollution concentrations. As inputs for the 

three-steps-modelling procedure, I use the emissions rates for PM2.5, NOx, and CO as 

shown in Table 2.5 comparing total emissions for Quebec, 2000 and Montreal, 2015. 

Table 2.6 Emission Rates for Quebec and Montreal 

Emission 

Types 

Quebec, 2000 in tons Montreal,2015 in tons 

Total 
emissions 

Transportation 
emissions 

Total emissions 
Transportation 

emissions 

PM2.5 171000 4300 210599 2249 

NOx 459000 168000 223547 68560 

CO 4559460 546782 1519820 273391 

 

I use the air concentration ratios (tons to µg/m3) and apply the estimated 

concentrations into the AQBAT model to estimate resulting health outcomes. The 

calculated air pollution concentration changes due to transportation-related emissions 

are provided in Table 2.6 for the corresponding health endpoints to be used in Step two.
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Table 2.7 Air Concentration Changes for Health Outcomes 

Health Endpoint Emission Types Unit Concentration  

Acute Exposure Mortality NOX µg/m3 9.61 

For All Outcomes PM2.5 µg/m3 7.16 

Cardiac Hospital Admissions CO ppm 0.26 

 

Based on the 2017 Environmental Assessment Report (Environmental Assessment 

Report, 2017), the measured PM2.5 air pollution concentration is 8.6µg/m3 on average, 

while I estimate PM2.5 air pollution concentration at 7.2µg/m3 in 2016. For NOx, the 

measured concentration is 18.8µg/m3 and my estimate is 9.61µg/m3 in 2016. The 

difference results from the fact that I estimate the air pollution concentration based on 

transportation emissions only, not all emissions since my focus is to estimate the health 

impacts/costs of transportation activities. 

Then, I estimate the number of occurrences (risks) of each health outcome based on the 

mean value of concentration-response function (Table 2.3) Table 2.7 shows the resulting 

outcome for each health problem type. 
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Table 2.8 Number of Health Outcomes  

Health Endpoint Emission Types Count 

Acute Exposure Mortality NOX 36 

Chronic Exposure Mortality PM2.5 24 

Acute Respiratory Symptom Days PM2.5 68635 

Adult Chronic Bronchitis Cases PM2.5 35 

Asthma Symptom Days PM2.5 19183 

Cardiac Emergency Rooms Visits PM2.5 3 

Child Acute Bronchitis Episodes PM2.5 702 

Respiratory Emergency Room Visits PM2.5 10 

Restricted Activity Days PM2.5 36845 

Cardiac Hospital Admissions PM2.5 150 

 

Finally, the monetary value is estimated based on the mortality and morbidity unit costs 

borrowed from literature review and listed in Table 2.4. Table 2.8 reports the final 

estimated welfare monetary values/costs associated with each ton of emissions. 

Considering the distributions, I provide low, median and high estimated values of the 

three most impactful emission types in the table. 
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Table 2.9 Monetary Welfare Costs of Emissions 

Health Endpoint 

Cost (1000’$/ton)1 

NOx PM2.5 CO 

L M H L M H L M H 

Acute exposure 
Mortality 9 60 111 / / / / / / 

Chronic exposure 
mortality 

/ / / 51 359 668 / / / 

Acute respiratory 
symptom days 

/ / / 1 1 1 / / / 

Adult chronic 
Bronchitis Cases 

/ / / 8 9 15 / / / 

Asthma Symptom 
Days 

/ / / 0.1 0.5 2.2 / / / 

Cardiac Emergency 
Rooms Visits 

/ / / 0.002 0.009 0.015 / / / 

Child Acute Bronchitis 
Episodes 

/ / / 0.1 0.2 0.3 / / / 

Minor Restricted 
Activity Days 

/ / / / / / / / / 

Respiratory 
Emergency Room 
Visits 

/ / / 0.01 0.02 0.03 / / / 

Restricted Activity 
Days 

/ / / 2 2 2 / / / 

Cardiac hospital 
admission 

/ / / / / / 0.003 0.021 0.054 

Total 9 60 111 59 371 688 0.003 0.021 0.054 
1 L represents the lower bound while M represents mean and H represents higher 
bound of the monetary value of emissions.  
 

In Table, 2.9, I summarize the total unit social welfare cost associated with CO, PM2.5, 

and NOx ($/ton) based on above all health costs. 
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Table 2.10 Final Calculated Unit Costs 

Cost Parameters 
Estimates 

High Base (mean) Low 

CO unit cost 1 ($/ton) 54 21 3 

PM2.5unit cost 1 ($/ton) 688,000 371,000 59,000 

NOx unit cost 1 ($/ton) 111,000 60,000 9,000 

 

2.5. Emissions cost Distribution on Borough 

I examine the emissions cost geographical distributions in the Montreal area. I calculate 

the total health-related emissions cost for each borough based on the three-step 

modelling procedure discussed in Section 2.3 by sum up the costs for PM2.5, CO, NOx. I 

included the emissions costs into GIS software to illustrate PM2.5, CO, NOx, total health-

related emission and CO2 emission costs in each borough for different periods of the day 

and under two weather conditions.  

Figure 2.10 provides the distribution of emission cost in January during peak hours for 

PM2.5, NOx, and CO for all vehicle types. Compare among three health-related emissions 

costs, NOx has the highest emission cost (up to 0.38 $/km), followed by PM2.5 (0.31 

$/km) and CO (0.0074 $/km) during peak hours. In addition, downtown and Plateau 

areas have the highest emissions cost for all these emission types. The emissions costs 

(0.3$/km) in these areas are almost 40 times the costs of driving in the east-western 

boroughs of Montreal (0.0074$/km). 
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Figure 2.10 Emissions Costs ($/km) in January for (a) PM2.5; (b) NOx; (c) CO

(a) (b) (c) 
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Figure 2.11 Emissions Cost ($/km) during Peak Hours of (a) Total health-related emission 

cost; (b) CO2 emission cost 

 

Figure 2.11 compares the geographical distribution of peak-hours total health-related emission 

cost (PM2.5, NOx and CO) with climate change costs (CO2eq) in January 2017 in Montreal. CO2eq 

emission cost is calculated by multiplying emissions rate with social cost of carbon of ($41/ton), 

according to Environment and Climate Change Canada.  The health-related emission cost (up to 

0.71 $/km) is relatively higher than CO2eq emission cost (up to 0.45 $/km). However, my results 

show that the overemphasis on climate change implications of transportation seems to be 

misleading, especially because I excluded many other vehicular air pollution types (CO, VOC, 

etc.) from my analysis, and those would widen the gap.   

 

0 10 205 Kilometers
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2.6. Limitations 

The estimated emissions rate from the MOVES software for both January and October are 

based on a fixed travel demand which cannot represent the variations in emissions completely. 

Therefore, the next research study should consider the variations in demand (summer months 

are generally more congested in Montreal). In addition, my estimations are based on an 

average person, an average value of travel time, and an average passenger car feature. All 

these numbers would be different using personalized characteristics/features (e.g., the car 

model). In addition, MOVES is developed and calibrated for the US counties and does not 

represent the vehicle fleet in Montreal. MOVES’s limitations could be investigated by 

comparing the emissions from MOVES with the emissions measured from real on-road driving. 

However, generally, MOVES’s results should be lower than older-age vehicles’ emissions and 

higher than those of fuel efficient vehicles in Montreal.    

For the air-pollution-concentration estimations, my assumption regarding constant ratios is 

simple but effective in calculating the changes in concentrations in Montreal. However, the 

concentration changes could vary not only due to emissions generated in that area but also due 

to a variety of other factors such as land use configurations, wind speed, humidity, etc. 

Therefore, a more detailed analysis is required to determine a more precise geographical 

distribution of the air pollution concentration change. This is one of my study’s limitations that I 

will address in the next chapter for the Colombia case study using software.   

In order to determine the welfare costs associated with travel-related emissions, I used the 

AQBAT concentration-response functions for the year 2000, which might require 

updates/adjustments to determine the health endpoints in 2015 precisely. Therefore, a more 
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up-to-date air-quality-benefit-assessment tool could provide more reliable estimates. In 

addition, some of the unit cost values are adopted from national (Canada) or Provincial 

(Quebec)-based studies, therefore, using these values could lead to emissions costs that are 

lower than real values/impacts. 
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Chapter 3:  Air Pollution Dispersion Modelling: the Case Study of 

four Intersections in Bucaramanga, Colombia 

3.1. Introduction  

As previously mentioned in Chapter 2, I transform emissions into the air pollution concentration 

based on the ratio approach (the constant ratio of concentration over emission I tons). 

However, the results from Chapter 2 cannot provide correct results since the concentration 

varies with conditions. Therefore, a dispersion model is required to simulate the movements of 

air pollutants.  Since 2005, the EPA has adopted the AMS/EPA Regulatory Model (AERMOD) as 

the regulatory model for estimating air pollutant concentrations, emitted from sources such as 

industrial plants and vehicular traffic (Environmental Protection Agency, 2012).  

In this chapter, using the MOtor Vehicle Estimation Simulator (MOVES), I apply a dispersion 

model (AERMOD) to estimate the dispersion of traffic-related air pollution concentrations on 

four intersections in Bucaramanga, Colombia. The road-level hourly mobile sources are 

obtained from the MOVES project-scale module based on a vehicle data collection. The air 

pollution concentrations are estimated by the AERMOD based on the emissions from vehicles in 

grams from the MOVES. Finally, the air pollution concentration outputs are compared with the 

observed air pollution concentration based on the emission-concentration-measurement 

devices installed on the buildings’ roofs in the four neighborhoods.  

3.2. Study Area  

I estimate traffic-related emissions and air pollution concentrations are conducted in four 

neighborhoods (La Concordia, La Joya, La Provenza and La AltoViento) in the city of 

Bucaramanga, Colombia.  Figure 3.1 shows the neighborhoods in ArcGIS. The city is the second 

most populated city in Colombia with a population size of 521,857 in the year 2017 (World 
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population review, 2019) and suffers from heavy traffic congestion and highly-polluting motor 

vehicle problems typical to developing countries

 

Figure 3.1 Locations of Four Studied Neighborhoods (Gómez et al., 2015) 

Figure 3.2 demonstrates all associated link configurations. Figure 3.2 (a) represents the first 

intersection; the Calle 51 Street and Carrera 21 Street intersection located at the La Concordia 

neighborhood. On this intersection, the Calle 51 Street is a two-way one-lane road (excluding 

one parking lane) and the Carrera 21 Street is a 3-lane one-way road. Figure 3.2 (b) represents 

the second intersection, the Calle 37 Street and Carrera 9 Street intersection in La Joya 

neighborhood. The Calle 37 Street is a two-way two-lane road and the Carrera 21 Street is a 

one-lane one-way road (excluding one parking lane). Third, the Calle 105 Street and Carrera 22 

Street (signalized) intersection is located in neighborhood La Provenza, Bucaramanga as shown 

in Figure 3.2 (c). The Calle 105 Street is a two-way four-lane road while the Carrera 21 Street is 

a two-lane one-way road. Finally, the Diagonal 33 Street and Carrera 34 Street intersection is 
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located at the neighborhood of La AltoViento, Bucaramanga, as shown in Figure 3.2 (d). The 

Diagonal 33 Street is a two-way two-lane road and Carrera 34 Street is a two-lane one-way 

road. Our research team selected these four distinct neighborhoods in order to study the 

impacts of variations in the traffic level and the intersection type on the air pollution 

concentrations. I study these four intersections and estimate their associated traffic-related 

emissions and air pollution concentrations from travel activities in the surrounding areas.  
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Figure 3.2 Links in four Intersections (a) La Concordia; (b) La Joya; (c) La Provenza; (d) La Alto  

(a) (b) 

(c) (d) 
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3.3. Emissions Estimation 

3.3.1. MOVES Project Scale 

For this case study, I use the MOVES’s project scale module to simulate and estimate the 

traffic-related emissions and their dispersions. Modeling microscale analysis, the MOVES 

project scale is designed to evaluate individual projects. Inputs for MOVES are the link-

specific traffic data, to be used in the Project Data Manager (PDM). The MOVES 

estimation is mainly based on two key inputs: vehicles’ speed and link’s grade. 

Examining the video-data collected, I determine the speed of vehicles by studying the 

detailed second-by-second speed profiles of cars and motorcycles traveling through the 

4 intersections during a peak hour (9am-10am) and an off-peak hour (12am-1am). I 

separate the intersections into several links and estimate the second by second vehicle 

speeds based on links’ lengths and vehicles’ travel time records passing through the 

intersection using the recorded videos with one additional link that represents the off-

network activities (vehicles stopped at each intersection with “zero speed”). Emissions 

for intersections can be estimated from the MOVES using the framework shown in 

Figure 3.3.    
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Input data                                                                                                     Output data 

 

 

 

 

 

Figure 3.2 MOVES Project Scale’s Framework 

3.3.2. Data Collection  

Since MOVES software is calibrated for U.S. counties, not Canada, I select the Leon 

County, Florida that has the most similar conditions to those of Bucaramanga (in terms 

of weather conditions and Longitude).   

Our research team conducted the vehicle data collection in June 2018 for the La 

Concordia & La Joya and July 2018 and La Provenza & La Alto intersections. We installed 

cameras on buildings’ roofs to record videos for further analysis. Next, I count vehicles 

in four different vehicle type categories: passenger cars, motorcycles, light trucks and 

heavy trucks. All vehicles are accounted based on 5-minute intervals. Then, I determine 

the traffic volume and vehicle type distribution databased on the vehicle counting data.  

Since most vehicles in Bucaramanga are shipped from close-by large cities including 

Floridablanca or Giron, I use the vehicle age distribution for Floridablanca as input into 

MOVES. Also note that the vehicle fleet in Bucaramanga is different from the vehicle 

MOVES 

Project Scale 

Emissions in 

tons for each 

Vehicle group 

Project Data Manager (PDM)- 
Traffic Data: 

Source 

Age Group 

Speed and Grade 

Fuel Types 

 

 

Metrological Data  
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fleet in the U.S., which MOVES is built upon on that. As the last input, I obtain the 

meteorology data for Bucaramanga using the historical data of temperature and wind 

(Time and data, 2018).  

In order to provide more accurate emission estimates for each intersection, I apply 

second-by-second speed profiles instead of average speeds. This is one of the most 

important steps that most studies to estimate emissions have neglected. As video 

records can show each intersection within a 50-meter radius, only, I assume traffic 

volumes and speeds will remain the same after moving out of the 50-meter radius. 

Figures 3.4 to 3.11 represent the second-by-second speed profiles on all links in each 

intersection during peak and off-peak hours within 50-meter, 100-meter and 200-meter 

radiuses (circled).  
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Figure 3.3 Speed Profiles- La Concordia during Peak Hours 



61 
 

 

Figure 3.4 Speed Profiles-La Concordia during Off-peak Hours 
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Figure 3.5 Speed Profiles-La Joya for Peak Hours 
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Figure 3.6 Speed Profiles-La Joya during Off-peak Hours 
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Figure 3.7 Speed Profiles-La Provenza during Peak Hours 
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Figure 3.8 Speed Profiles-La Provenza during Off-peak Hours 
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Figure 3.9 Speed Profiles-La Alto during Peak Hours 
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Figure 3.10 Speed Profiles-La Alto during off-peak Hours 

In addition, links’ grades for all four intersections are borrowed from the publicly-

available Google Earth data as shown in Table 3.1. 

Table 3.1 Road Grades for Each Intersection 

Intersection Grade 

La Concordia ±3.5% 

La Joya ±12.8% 

La Provenza ±1.3% 

La Alto ±23.4% 
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I gather other information from several other sources. All the necessary data required to 

run the MOVES project scale and their sources are listed in Table 3.2. 

Table 3.2 Data Sources as Inputs for the MOVES Project Scale 

Data Input  Description  Source 

Vehicle type 
population 

 
 

Number of local vehicles operating in 
the area 

 
 

Field video collection (by 
our research team)  

Vehicle fleet’s 
age 
distribution 

 
 

Vehicle age distribution based on 
vehicle model year or age 

 
 

Floridablanca vehicle 
registration data 
(Direccion de transito, 
2018) 

speed profile 
 
 

Speed profile of each vehicle type on 
travelling along intersections  

 
 
 

Field video collection (by 
our research team)   

Road Type 
Distribution 

 
 

Fraction of a vehicle type volume for 
different road types 

 
 
 

Vehicle counting based 
on videos (by our 
research team) 

Meteorology  
Average hourly temperature and the 
humidity inputs 

 
 

Colombia climate (Time 
and Data, 2018) 

Fuel  Fuel information  
Based on county vehicle 
information (MOVES 
default fuel data) 

 

3.4. Emissions Results from MOVES 

After inputting all required data into MOVES, I estimate the emission rates for PM2.5 and 

Black Carbon (BC) for the four intersections during two different time periods. Figures 

3.12 to 3.15 show the estimated emission rate (g/h) based on the traffic volumes for 

each intersection during peak/off-peak hours.  
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Figure 3.11 La Concordia Intersection (200-meter radius) Emissions vs Volumes for (a) Peak Hours; (b) Off-peak Hours

  

Figure 3.12 La Joya Intersection (200-meter radius) Emissions vs Volumes for (a) Peak Hours; (b) Off-peak Hours 
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Figure 3.13 La Provenza Intersection (200-meter radius) Emissions vs Volumes for (a) Peak Hours; (b) Off-peak Hours 

 

Figure 3.14 La Alto Intersection (200-meter radius) Emissions vs Volumes for (a) Peak Hours; (b) Off-peak Hours
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Figures 3.12 to 3.15 demonstrate that the higher the traffic volume the higher the PM2.5 

and Black Carbon emissions rates. Also note that heavy trucks generate high emission 

rates with a relatively small traffic volume. In addition, emissions are higher during peak 

hours compared to off-peak hours, which is mainly due to larger peak-hours traffic 

volumes.  

We can observe in Figure 3.12 that passenger cars emit the highest PM2.5 rates during 

peak hours (9g/h) and off-peak hours (3g/h) for intersection in neighborhood La 

Concordia. For Black Carbon, heavy trucks, although small in numbers, generate the 

highest rate during peak hours (3.8 g/h) while passenger cars result in the highest 

emission rate during off-peak hours (0.5g/h). For the La Joya intersection, the rates are 

generally higher; heavy trucks generate PM2.5 rates of 15g/h and Black Carbon rates of 

11g/h while light trucks generate the lowest rates for PM2.5 (0.3g/h) and Black Carbon 

(0.1g/h) during peak hours, as shown in Figure 3.13 (a). For the La Provenza and La Alto 

intersections, motorcycles have the highest PM2.5 emission rates during peak hours 

(58g/h for La Provenza and 21g/h for La Alto) since there are many while passenger cars 

have the highest emission rate during off-peak hours (8g/h for La Provenza and 12g/h 

for La Alto). Similarly, motorcycles have the highest Black Carbon emission rates during 

peak hours (7g/h) for La Provenza and La Alto intersections, while heavy trucks generate 

the highest rates (8g/h).  

Figure 3.16 represents total emission rates against total passenger-car-equivalent 

volumes. Intersections located in La Provenza generates the highest PM2.5 (90g/h) during 

peak hours and (16g/h) during off-peak hours and Black carbon (15g/h during peak 
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hours and 3g/h during off-peak hours) both during peak and off-peak hours with highest 

traffic volume (2700vehicle/h during peak hours and 600 vehicle/h during off-peak 

hours) compared to other three intersections.  
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Figure 3.15 Total Emissions vs Volumes on Four Intersections (200-meter radius) for (a) Peak Hours; (b) Off-peak Hours 
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3.5. Air Pollution Concentration’s Estimation  

3.5.1. AERMOD Framework 

In this study, I use the AERMOD View software, which is developed by Lakes 

Environmental Software (Lake Environment, 2019). The software provides a user-

friendly Graphical User Interface as shown in Figure 3.17 below.  

 

Figure 3.16 AERMOD-View’s Graphical User Interface 

In addition, the AERMAP and AERMET View models are applied to process and view the 

terrain and meteorological data. Figure 3.18 represents the general framework of 

AERMOD.  
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Figure 3.17 General Framework of AERMOD 

The typical meteorological data set can be developed from historical climate data for 

the studied area (Time and data, 2018). The already-available meteorological dataset 

provides the following hourly inputs to AERMOD: wind direction, wind speed, ground-

level ambient temperature, relative humidity and pressure. Table 3.3 below shows the 

meteorological data to represent the hourly information. 
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Table 3.3 Sample Meteorological Data- Inputs for AERMOD Modelling 

Year Month Day Hour 

Dry Bulb 
Temperature 

Relative 
Humidity 

Station 
Pressure 

Wind 
Direction 

Wind 
Speed 

deg C % mb deg m/s 

2018 Jun 1 1 22 83 1014.2 0 1.11 

2018 Jun 1 2 22 83 1014.2 0 1.11 

… … … … … … … … … 

2018 Jun 1 18 19 100 1013.5 330 4.72 

2018 Jun 1 19 19 100 1014.2 340 1.94 

2018 Jun 1 20 20 100 1014.9 0 1.11 

2018 Jun 1 21 20 100 1016.3 0 1.11 

2018 Jun 1 22 19 100 1017.3 330 3.61 

2018 Jun 1 23 19 100 1017.6 310 1.94 

2018 Jun 1 24 19 100 1017.6 340 1.67 

 

I then convert the above information into AERMET’s Samson format and use it to 

generate the WARPLOT, which has the wind-rose plot for the AERMOD use, as shown in 

Figure 3.19. The wind speed and direction influence the transport and dispersion of 

emissions in the atmosphere. Then, I use the outputs of AERMET directly in the 

AERMOD. 
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Figure 3.18 Wind Speed and Direction from WARPLOT 

 

In addition, terrain characteristics could affect air quality concentrations. The AERMAP 

model first determines the base elevation using the WebGIS module, which is already 

installed in the AERMOD View software, to provide the terrain data for the studied 

areas. Finally, I include 12 industrial sources that generate PM2.5 and Black Carbon in 

Bucaramanga (Azuero Díaz, 2016) and listed them in Table 3.4.  
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Table 3.4 Industrial Sources in Bucaramanga 

Product Location 

Lubricating oils Carrera 15 # 20-33  

Chicken producer Anillo Vial #2-46  

Chicken producer Cra 14 # 4-13 Bucaramanga  

Service for hotel and industrial Cra 4 # 5 -04  

Cheese producer Cra 19 # 5 -21 Bucaramanga  

Manufacture of mechanical metal products Cra 15 # 7-29  

Rubber products supplier Calle 23 # 13-35  

processing cocoa, coffee and cereal Calle 33 #13-37  

Food manufacturer Parque Industrial de Bucaramanga I  

Bird pig food Parque Industrial de Bucaramanga I  

Pasta manufacturer Calle 20# 12-50  

Construction equipment supplier Calle 21 # 11-41  

 

3.5.2. Air Concentration Distribution  

After running AERMET and AERMAP and inputting all required data into AERMOD, I 

estimated the air pollution concentration distributions of PM2.5 and Black Carbon (BC) in 

the four intersections during peak hours, off-peak hours, and over a day. Figures 3.20 

and 3.21 show the air pollution concentration distributions in the 200-meter radius of 

the La Concordia intersection. As expected, the concentrations are the highest among 

the most heavily-used links. A comparison between the peak hours (a) and off-peak 

hours (b) emissions show that for both emission types, the peak air pollution 

concentrations are much higher than those of off-peak hours, in most cases more than 

twice. This result shows that the time of day has a significant influence on the PM2.5 and 

Black Carbon concentrations.  

Figures 3.22 to 3.25 illustrate the estimated PM2.5 and Black Carbon concentrations 

considering the distance from the centerline of intersections. In addition, the 

concentration curves indicate the PM2.5 and Black Carbon concentrations drop off 
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substantially when moving away from the intersection centers, and then gradually 

decrease after 50 meters. The substantial drop is due to a combination of higher speed 

and lower traffic volumes when we move away from the center. 
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Figure 3.19 La Concordia’s PM2.5 Air Pollution Concentration Distributions (a) Peak hours; (b) off-peak hours 

 

 

 

(a) (b) 
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Figure 3.20 La Concordia Black Carbon Air Pollution Concentration Distributions (a) Peak hours; (b) off-peak hours 

(a) (b) 
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Figure 3.21 La Concordia Air Pollution Concentration based on the Distance from Intersection Center (a) PM2.5; (b) Black Carbon 

 

Figure 3.22 La Joya Air Pollution Concentration based on the Distance from the Intersection Center (a) PM2.5; (b) Black Carbon 
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Figure 3.23 La Provenza Air Pollution Concentration based on the Distance from the Intersection Center (a) PM2.5; (b) Black Carbon 

 

Figure 3.24 La Alto Air Pollution Concentration based on the distance from Intersection Center (a) PM2.5; (b) Black Carbon 
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3.6. AERMOD Predicted Vs Observed Air Pollution Concentration  

In addition, our research team measured the real-time PM2.5 and Black Carbon air 

pollution concentrations using the devices located on the building roofs in all four 

intersections. The observed data is then used to represent the urban PM2.5 pollution 

levels. The ambient concentrations are calculated by the receptors measuring such data. 

I compared my estimated vehicle-related PM2.5 and Black Carbon concentrations (from 

AERMOD) with the observed ambient measurements. 

Figures 3.26 and 3.27 show the observed and predicted peak-hours, off-peak-hours, and 

daily-average concentrations for a typical weekday in June 2018. To verify the reliability 

of the proposed modeling methodology, I compare the observed and predicted values 

for all four intersections. Overall, my proposed modeling captures the general trends of 

PM2.5 and Black Carbon concentrations for the La Concordia, La Provenza and La Alto 

intersections throughout a day. However, the modelled PM2.5 concentration in the La 

Joya intersection is much less than the observed values. This intersection is much closer 

to an industrial zone in Bucaramanga. Although I included some industrial sources in this 

study, the difference is significant (Figure 3.26-b). Note that the predicted 

concentrations are generally lower than the observations due to the fact that other 

factors can also affect the results including emissions generated by people’s daily 

activities at home/buildings, relatively less clean vehicles in Colombia than those in 

MOVES, etc.  
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Figure 3.25 Observed vs Estimated PM2.5 concentrations in (a) La Concordia; (b) La Joya; (c) La Provenza; (d) La Alto 
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Figure 3.26 Observed vs Estimated Black Carbon concentrations in (a) La Concordia; (b) La Joya; (c) La Provenza; (d) La Alto
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3.7. Sensitivity Analyses 

Sensitivity analyses are undertaken in this study to better understand the behavior of 

the AERMOD dispersion model and observe the variation in modelled concentrations as 

input data are altered. Various studies have shown that meteorological conditions, 

including wind and temperature, can affect PM2.5 air pollution concentration (Hien et al., 

2002). In this section, the influences of wind speed and temperature on PM2.5 

concentrations are analyzed for four intersections in Bucaramanga, Colombia. 

3.7.1. Wind Speed  

In order to analyze the impacts of wind speed in air pollution concentration, the air 

pollution concentration estimated based on observed wind data is compared with the 

air pollution concentration estimated based on three times higher and three times 

lower of the observed wind data. All other input data, including traffic volume and other 

meteorological data, are kept constant. The results for PM2.5 air pollution concentration 

obtained are shown in Figure 3.28. 

As observed, AERMOD is highly sensitive to wind conditions. The air pollution 

concentration estimated based on observed wind data (10.21 μg/m^3 for peak hours, La 

Concordia) is almost four times the air pollution concentration estimated based on 

three times higher of the observed wind data (2.53 μg/m^3 for peak hours, La Concordia) 

and the air pollution concentration estimated based on three times lower of the 

observed wind data(13.06 μg/m^3 for peak hours, La Concordia)  is almost 1.3 times the 

observed wind data due to the speed of transport of pollutants away from the 

modelling receptor location. This implies that wind speed is a critical factor in pollutant 

dispersion. 
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Figure 3.27 PM2.5 Concentrations Estimated Based on Real, Three Times Higher and Three Times Lower Wind Speed in (a) La 
Concordia; (b) La Joya; (c) La Provenza; (d) La Alto
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3.7.2. Temperature  

In order to analyze the influence of temperature in air pollution concentration, I 

estimate the PM2.5 air pollution concentration based on the temperature of 31°C and 

17°C (highest and lowest temperature in Bucaramanga) compared to the air pollution 

concentration estimated based on the temperature of June 2018 (22°C on average). All 

other input data, including traffic volume and other meteorological data, are kept 

constant. The results obtained are shown in Figure 3.29. 

The temperature was observed to have a slightly negative correlation with PM2.5 

concentration in this study. The air pollution concentration estimated based on real 

temperature (10.21 μg/m^3 for peak hours, La Concordia) is around 1.002 times the air 

pollution concentration estimated based on the temperature of 17°C (10.23 μg/m^3 for 

peak hours, La Concordia) and the air pollution concentration estimated based on the 

temperature of 31°C (10.17 μg/m^3 for peak hours, La Concordia) is around 1.004 times 

the air pollution concentration estimated based on real temperature. However, some 

studies have shown that temperature was positively correlated with PM2.5 (Wang & 

Ogawa, 2015). Therefore, further research on the correlation of temperature on PM2.5 

concentrations should be carried out.
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Figure 3.28 PM2.5 Concentrations Estimated Based on Real temperature (22°C on average), 17°C and 31°C in (a) La Concordia; (b) 
La Joya; (c) La Provenza; (d) La Alto
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Chapter 4: Conclusion 

4.1. Traffic-related Emissions and Costs Estimation 

As shown in the literature, vehicular emissions contribute significantly to air quality as 

well as public health in urban areas (Satran et al., 2006; Mavroidis & Chaloulakou, 2010; 

Sawyer et al., 2007). However, previous studies (Daher et al., 2018; Lorenzoni & 

Pidgeon, 2006) have shown that transport users do not perceive their travel-related 

emission as out of pocket costs. However, travelers prefer emissions’ information in 

monetary values rather than in their own units (tons/grams) (Daher et al., 2018). In the 

second chapter, I estimated and quantified emissions generated in the Montreal road 

network for the Montreal transport users. To estimate the health-related costs of 

emissions, I transformed the emissions rates estimated from MOVES into air pollution 

concentrations, then converted the concentrations into health outcomes, and finally 

valuated these health outcomes in monetary terms.  

I found several interesting results. First, comparing the emissions rates with speed 

levels, a strong correlation exists during both peak and off-peak hours, where PM2.5, CO 

and NOx emissions rates decrease with speed until the speed reaches 100km/h, where 

emissions rates increase slightly with higher speed. In addition, I found that the average 

off-peak hours PM2.5 and NOx emissions rates (0.045 g/vehicle-km for PM2.5, 0.950 

g/vehicle-km for NOx) are around three times greater than those of peak hours (0.0186 

g/vehicle-km for PM2.5 and 0.398 g/vehicle-km for NOx). This can be explained by the 

composition of the vehicle fleet in each time period since trucks represent a relatively 

higher percentage in the mixture during off-peak hours. However, for the CO emission, 
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the average rate for peak hours is higher than the off-peak hours rate (1.63 g/vehicle-

km for peak hours and 1.35 g/vehicle-km for off-peak hours) it might because of the fact 

that diesel-fueled combustion engines produce lower levels of carbon monoxide than 

gasoline-fueled engines; heavy trucks (diesel fuel combustion) represent 8% of the 

vehicle mix during off-peak hours as opposed to 3% during peak hours. Therefore, the 

higher passenger car mixture (gasoline engines) during peak hours results in a higher CO 

emission rate during peak hours (Geneva: World Health Organization, 2015). 

I also compared the emissions rates of January with those of October as the Montreal 

weather could act as another important factor in affecting emissions rates (Frey et al., 

2003). My results show that PM2.5, CO and NOx emissions rates are very similar in size 

for both months. This is partly due to the only difference between the two cases is the 

average weather inputs. The travel demand data is assumed the same for all months, 

based on an O-D survey conducted in fall 2008.  

Moreover, I also examined the geographical distributions of emissions (and their costs) 

in the Montreal area.  Among three health-related emissions costs, NOx has the highest 

emission cost (up to 0.38 $/km), followed by PM2.5 (0.31 $/km) and CO (0.0074 $/km) 

during peak hours. In addition, the downtown and Plateau areas have the highest 

emissions cost for all these emission types. The emissions costs (0.3$/km) in these areas 

are almost 40 times the costs of driving in the east-western boroughs of Montreal 

(0.0074$/km). 



93 
 

In addition, I compared the geographical distribution of peak-hours total health-related 

emission costs (PM2.5 and NOx) with climate change costs (CO2eq) in January 2017 in 

Montreal, and found out that health-related emission cost is relatively higher than CO2eq 

emission cost. However, my results show that the overemphasis on climate change 

implications of transportation seems to be misleading, mainly because I excluded many 

other vehicular air pollution types (CO, VOC, etc.) from my analysis, and those would 

widen the gap.   

4.2. Air pollution dispersion modelling  

As previously mentioned in Chapter 2, my assumption for the Montreal case study was 

to transform emissions (tons) into air pollution concentrations based on a constant ratio 

approach. However, the assumption cannot provide accurate results. Therefore, a 

dispersion model is required to simulate the movement of air pollutants in a given 

region.  In the third chapter, I applied a dispersion model (AERMOD) along with MOtor 

Vehicle Estimation Simulator (MOVES) to estimate the traffic-related air pollution 

concentration distribution for four intersections in Bucaramanga, Colombia.  

Several interesting results emerge. First, the higher vehicle volume, the higher the 

emission rates for both PM2.5 and Black Carbon, except when heavy trucks are high in 

numbers. In addition, emissions are higher during peak hours compare to off-peak 

hours, which is mainly due to the larger vehicle volume observed during peak hours. 

Furthermore, Black Carbon emissions are lower in size than PM2.5 emissions. The 

intersection located in La Provenza generates the highest PM2.5 (90g/h during peak 
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hours and 16g/h during off-peak hours) and Black Carbon (15g/h during peak hours and 

3g/h during off-peak hours).  

Considering the air pollution concentration estimated from AERMOD, I found that the 

concentrations are highest along the most heavily traveled links among the 

intersections. Peak-hours traffic volumes generate a relatively higher air pollution 

concentration than those of off-peak hours for both PM2.5 and Black Carbon, in most 

cases more than twice. Moreover, the PM2.5 and Black Carbon concentrations drop off 

substantially when moving away from the intersection centers, and then gradually 

decrease after 50 meters.  

In addition, the real-time PM2.5 and Black Carbon air pollution concentrations are 

measured using the equipment located on the second-floor balcony or the roof of 

buildings in four intersections. Using such measurements, I compared the real 

observations with my modelled estimations for four intersections. Overall, the proposed 

set of models captures most of the general trends in PM2.5 and Black Carbon. However, 

the estimated PM2.5 concentration for one intersection in La Joya is much less than the 

observation. This intersection is close to the industrial zone in Bucaramanga even 

though I included some industrial sources in this study. Also note that the predicted 

concentrations are less than the observations, and this is due to the fact that not only 

on-road mobile sources and industrial sources can affect air pollution concentration, 

many other factors can also affect the results including emissions generated by people’s 

daily activities, the relatively old vehicle fleet in Colombia (different from MOVES’s 

fleet), etc.  
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Sensitivity analyses are undertaken in this study to better understand the behavior of 

the AERMOD dispersion model in estimating PM2.5 concentrations when input data 

altered. As observed, AERMOD is highly sensitive to wind conditions. The air pollution 

concentration estimated based on observed wind data (10.21 μg/m^3 for peak hours, La 

Concordia) is almost four times the air pollution concentration estimated based on 

three times higher of the observed wind data (2.53 μg/m^3 for peak hours, La Concordia) 

and the air pollution concentration estimated based on three times lower of the 

observed wind data(13.06 μg/m^3 for peak hours, La Concordia)  is almost 1.3 times the 

observed wind data due to the speed of transport of pollutants away from the 

modelling receptor location. The temperature was observed to have a slightly negative 

correlation with PM2.5 concentration in this study. The air pollution concentration 

estimated based on real temperature (10.21 μg/m^3 for peak hours, La Concordia) is 

around 1.002 times the air pollution concentration estimated based on the temperature 

of 17°C (10.23 μg/m^3 for peak hours, La Concordia) and the air pollution concentration 

estimated based on the temperature of 31°C (10.17 μg/m^3 for peak hours, La 

Concordia) is around 1.004 times the air pollution concentration estimated based on 

real temperature.  However, some studies have shown that temperature was positively 

correlated with PM2.5 (Wang & Ogawa, 2015). Therefore, further research on the 

correlation between temperature and PM2.5 concentrations should be carried out.
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4.3. Research Contributions, Limitations and Future Work 

My study suffers from several incomplete assumptions. Both case studies (Montreal, 

Bucaramanga) could be improved in the future. Regarding the Montreal case study, the 

estimated emissions rate from the MOVES software for both January and October are 

based on a fixed travel demand which cannot represent the variations in emissions 

completely. Therefore, a next research study should consider the variations in demand 

(summer months are generally more congested in Montreal). In addition, my 

estimations are based on an average person, an average value of travel time, and an 

average passenger car feature. All these numbers would be different using personalized 

characteristics/features (e.g., the car model) In addition, MOVES is developed and 

calibrated for the US counties and does not represent the vehicle fleet in Montreal. 

MOVES’s limitations could be investigated by comparing the emissions from MOVES 

with the emissions measured from real on-road driving. However, generally, MOVES’s 

results should be lower than older-age vehicles’ emissions and higher than those of fuel 

efficient vehicles in Montreal.    

In order to determine the welfare costs associated with travel-related emissions, in 

Chapter 2, I used the AQBAT concentration-response functions for the year 2000. The 

functions should be updated to determine the health endpoints in 2015, precisely. In 

addition, some of the unit cost values are adopted from national (Canada) or Provincial 

(Quebec)-based studies, therefore, using these values could lead to emissions costs that 

are lower than real values/impacts. 
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For the air-pollution-concentration estimation in Chapter 2, my assumption regarding a 

constant ratio is simple but effective. However, the concentration changes could vary 

not only due to emissions generated in that area, but also due to a variety of other 

factors such as land use configurations, wind speed, humidity, etc.  

Therefore, in the third chapter, I applied the AERMOD air pollution dispersion model to 

estimate the air pollution concentration for Bucaramanga, and compared the 

concentration with the observed air pollution concentration measured by equipment. In 

order to map the second-by-second speed profile of each link in the studied 

intersections, I assumed some links to have a fixed speed profile after moving out of the 

camera vision, since these links’ speed profiles cannot be estimated from the video 

records. Moreover, one key lesson from my study is that we should use MOVES and 

similar other software programs with cautious. MOVES is calibrated for the counties 

located in the United States and not Bucaramanga, Columbia, i.e., the make and model 

of cars are different. In addition, a detailed locally-calibrated model does not exist. My 

PM2.5 and Black Carbon concentration estimates (from MOVES and AERMOD) are only 

around 70% of the measured concentration levels by the equipment, mainly because of 

the relatively older vehicle fleet in Colombia than those of Leon.  Furthermore, other 

factors that can affect air pollution concentrations are not taken into consideration, 

factors such as the rainfall intensity, changes in temperature/humidity (over a day), the 

impact of the area size (radius), etc. Further research is required to provide more 

accurate air pollution concentration estimations for the studied areas.  
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Appendix A: Emission vs Traffic Volume for Intersections in Bucaramanga (50 and 100 meter radius) 

 

Figure 1 La Concordia Intersection (50 meter radius) Emission vs Volume for (a) Peak Hours; (b) Off-peak Hours 

Figure 2 La Concordia Intersection (100 meter radius) Emission vs Volume for (a) Peak Hours; (b) Off-peak Hours 
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Figure 3 La Joya Intersection (50 meter radius) Emission vs Volume for (a) Peak Hours; (b) Off-peak Hours 

 

Figure 4 La Concordia Intersection (100 meter radius) Emission vs Volume for (a) Peak Hours; (b) Off-peak Hours 
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Figure 5 La Provenza Intersection (50 meter radius) Emission vs Volume for (a) Peak Hours; (b) Off-peak Hours 

 

Figure 6 La Provenza Intersection (100 meter radius) Emission vs Volume for (a) Peak Hours; (b) Off-peak Hours 

0

10

20

30

40

50

60

0

200

400

600

800

1000

1200

1400

1600

1800

2000

MC PC LT HT

Em
is

si
o

n
 (

g/
h

) 

V
o

lu
m

e
 (

ve
h

ic
le

/h
) 

volume

PM2.5

BC

0

10

20

30

40

50

60

0

200

400

600

800

1000

1200

1400

1600

1800

2000

MC PC LT HT

Em
is

si
o

n
 (

g/
h

) 

V
o

lu
m

e
 (

ve
h

ic
le

/h
) 

volume

PM2.5

BC

0

10

20

30

40

50

60

0

200

400

600

800

1000

1200

1400

1600

1800

2000

MC PC LT HT

Em
is

si
o

n
 (

g/
h

) 

V
o

lu
m

e
 (

ve
h

ic
le

/h
) 

volume

PM2.5

BC

0

10

20

30

40

50

60

0

200

400

600

800

1000

1200

1400

1600

1800

2000

MC PC LT HT

Em
is

si
o

n
 (

g/
h

) 

V
o

lu
m

e
 (

ve
h

ic
le

/h
) 

volume

PM2.5

BC

(a) (b) 

(a) (b) 



101 
 

 

Figure 7 La Alto Intersection (50 meter radius) Emission vs Volume for (a) Peak Hours; (b) Off-peak Hours 

Figure 8 La Alto Intersection (50 meter radius) Emission vs Volume for (a) Peak Hours; (b) Off-peak Hours 
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Figure 9 Total Emissions vs Volumes on Four Intersections (50-meter radius) for (a) Peak Hours; (b) Off-peak Hours  

  

Figure 10 Total Emissions vs Volumes on Four Intersections (100-meter radius) for (a) Peak Hours; (b) Off-peak Hours 
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