
NOTE TO USERS

This reproduction is the best copy available.

UMT

Auditory-Based Noise-Robust Audio
Classification Algorithms

Wei Chu

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

October 2008

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Doctor of Philosophy.

© 2008 Wei Chu

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Voire reference
ISBN: 978-0-494-66629-6
Our file Notre reference
ISBN: 978-0-494-66629-6

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lntemet, prefer,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

To Yong Hong, Zi Cong, Zi Min, and my parents, Yin Di and Hong Xin

and in memory of my aunt, Yin Zhen

ii

Abstract

The past decade has seen extensive research on audio classification algorithms which play a

key role in multimedia applications, such as the retrieval of audio information from an audio

or audiovisual database. However, the effect of background noise on the performance of

classification has not been widely investigated. Motivated by the noise-suppression property

of the early auditory (EA) model presented by Wang and Shamma, we seek in this thesis to

further investigate this property and to develop improved algorithms for audio classification

in the presence of background noise.

With respect to the limitation of the original analysis, a better yet mathematically

tractable approximation approach is first proposed wherein the Gaussian cumulative dis­

tribution function is used to derive a new closed-form expression of the auditory spectrum

at the output of the EA model, and to conduct relevant analysis. Considering the compu­

tational complexity of the original EA model, a simplified auditory spectrum is proposed,

wherein the underlying analysis naturally leads to frequency-domain approximation for fur­

ther reduction in the computational complexity. Based on this time-domain approximation,

a simplified FFT-based spectrum is proposed wherein a local spectral self-normalization is

implemented. An improved implementation of this spectrum is further proposed to calcu­

late a so-called FFT-based auditory spectrum, which allows more flexibility in the extraction

of noise-robust audio features.

To evaluate the performance of the above FFT-based spectra, speech/music/noise and

noise/non-noise classification experiments are conducted wherein a support vector ma­

chine algorithm (SVMstruct) and a decision tree learning algorithm (C4.5) are used as the

classifiers. Several features are used for the classification, including the conventional mel-

frequency cepstral coefficient (MFCC) features as well as DCT-based and spectral features

derived from the proposed FFT-based spectra. Compared to the conventional features, the

auditory-related features show more robust performance in mismatched test cases. Test

results also indicate that the performance of the proposed FFT-based auditory spectrum

is slightly better than that of the original auditory spectrum, while its computational com­

plexity is reduced by an order of magnitude.

Finally, to further explore the proposed FFT-based auditory spectrum from a practical

audio classification perspective, a floating-point DSP implementation is developed -and

optimized on the TMS320C6713 DSP Starter Kit (DSK) from Texas Instruments.

i i i

Sommaire

Au cours de la derniere decennie, il y a eu des recherches considerables sur les algorithmes de

classification audio jouant un role cle dans les applications multimedias, comme l'extraction

d'information audio a partir d'une base de donnees audio ou audiovisuelles. Cependant,

l'effet de bruit de fond sur l'efficacite de la classification n'a pas fait l'objet de beaucoup de

recherches. Motive par la propriete d'elimination de bruit du modele d'audition primaire

(EA, early auditory) presente par Wang et Sharama, nous voulons grace a la presente these

etudier davantage cette propriete et mettre au point des algorithmes pour la classification

audio en presence de bruit de fond.

Pour ce qui est des limites de 1'analyse d'origine, nous proposons d'abord une meilleure

approche d'approximation qui est mathematiquement soluble, ou la fonction de distribution

cumulee gaussienne est utilisee pour deriver une nouvelle expression en forme analytique

du spectre auditif a la sortie du modele EA et pour effectuer l'analyse pertinente. Vue la

complexite de calcul du modele EA d'origine, nous proposons un spectre auditif simplifie, ou

l'analyse sous-jacente mene naturellement a une approximation du domaine frequentiel afin

de reduire encore plus la complexite de calcul. A partir de cette approximation du domaine

temporel, nous proposons un spectre simplifie base sur la transformed de Fourier rapide

(TFR) avec l'implementation d'une auto-normalisation locale du spectre. Une version

amelioree de l'implementation de ce spectre est aussi proposee pour calculer un spectre

auditif base sur la TFR, permettant davantage de flexibilite dans l'extraction de vecteurs

de caracteristique audio avec beaucoup de bruit.

Afin d'evaluer le rendement de ce spectre base sur la TFR, des experiences de classifica­

tion parole/musique/bruit et bruit/non-bruit ont ete realisees, avec l'utilisation d'un auto­

mate a support vectoriel (SVMstruct) et d'un algorithme d'apprentissage a arbre decisionnel

(C4.5) comme classificateurs. Plusieurs vecteurs de caracteristiques sont utilisees pour la

classification, y compris les coefficients mel-cepstre (MFCCs, mel-frequency cepstral coeffi­

cients) ainsi que les TCD (transformees en cosinus discretes) derivees du spectre base sur

la TFR propose. Par rapport aux vecteurs de caracteristiques conventionnelles, ceux liees

a l'audition sont plus efficaces dans le cadre de tests non apparies. Les resultats indiquent

aussi que le rendement du spectre auditif base sur la TFR propose est legerement meilleur

que celui du spectre auditif d'origine, tandis que sa complexite de calcul est reduite d'un

ordre de grandeur.

iv

Enfin, pour explorer davantage le spectre auditif base sur la TFR propose d'un point

de vue de classification audio pratique, une implementation de traitement numerique du

signal en virgule flottante est mise au point et optimisee grace au necessaire de demarrage

pour le traitement de signal numerique (DSK, DSP Starter Kit) TMS320C6713 de Texas

Instruments.

V

Acknowledgments

I would like to express my deepest gratitude to my supervisor, Professor Benoit Champagne,

for his guidance, encouragement and support throughout the course of my Ph.D. studies.

I am grateful for the financial support from Professor Champagne via research grants from

the Natural Sciences and Engineering Research Council of Canada (NSERC).

Many thanks are extended to Professor Douglas O'Shaughnessy of INRS-EMT and

Professor Jeremy R. Cooperstock, members of my Ph.D. committee, for their feedback and

suggestions.

I would also like to thank my external examiner, Professor Pierre Dumouchel of Ecole

de technologie superieure, and the members of my defence committee, namely: Professor

M. Dobbs, Professor F. Labeau, Professor B. Champagne, Professor J. Clark, Prof. D.

O'Shaughnessy, and Professor W. Zhu of Concordia University, for their valuable comments

and suggestions.

During my stay at McGill, I have met many dedicated students, faculty and staff mem­

bers who have made my Ph.D. studies a memorable experience. In particular, I am grateful

to my fellow graduate students in the Telecommunications and Signal Processing (TSP)

Laboratory, and especially to Eric Plourde and Rui Ma, for their friendship and help. My

special thanks go to Eric for proofreading the French version abstract of the thesis.

I am deeply indebted to my parents, parents-in-law, sister, and other family members

for their love and support. Last but not least, my deepest gratitude goes to my wife, Yong

Hong, for her unconditional love, support, understanding, and patience throughout my

studies.

Contents

1 Introduction 1

1.1 Content-Based Audio Analysis 1

1.2 Motivation and Research Objective . . 5

1.3 Main Contributions 8

1.3.1 Extended Analysis of Self-Normalization 9

1.3.2 Simplification/Approximation of the Auditory Spectrum 9

1.3.3 Setup of the Audio Classification Experiment 10

1.3.4 DSP Demo System 10

1.3.5 Publications 11

1.4 Thesis Organization 11

2 A Review of Audio Classification Algorithms 13

2.1 Audio Signals 14

2.1.1 Speech and Music Classification 14

2.1.2 Environmental Sound and Background Noise 15

2.1.3 Use of Compressed Audio Data 17

2.2 Audio Features 18

2.2.1 Frame-Level Features 18

2.2.2 Clip-Level Features 25

2.3 Classification Methods 28

2.3.1 Gaussian Mixture Model 29

2.3.2 Hidden Markov Model 29

2.3.3 Support Vector Machine 31

2.3.4 Nearest Neighbor 33

Contents vii

2.3.5 Neural Network 34

2.3.6 Linear Discriminant Analysis 35

2.3.7 Other Classification Approaches 35

2.4 Conclusion 36

3 Early Auditory Model and the Noise-Suppression Property 37

3.1 Structure of the EA Model 38

3.2 Noise-Suppression Property 40

3.2.1 Qualitative Analysis 40

3.2.2 Quantitative Analysis of a Special Case 42

3.3 Audio Classification using EA Model-Based Features 42

3.4 Open Research Problems 44

3.5 Conclusion 45

4 Analysis of the Self-Normalization Property 46

4.1 Gaussian CDF and Sigmoid Compression Function 46

4.2 Closed-Form Expression of £,[y4(t,s)] 48

4.3 Local Spectral Enhancement 49

4.4 Approximation using a Gaussian Mixture Function 51

4.5 Conclusion 52

5 Simplification of the Auditory Spectrum 53

5.1 Time-Domain Simplified Auditory Spectrum 54

5.1.1 Nonlinear Compression 54

5.1.2 Half-Wave Rectification and Temporal Integration 54

5.1.3 Simplified Auditory Spectrum 54

5.2 Implementation 1: A FFT-Based Self-Normalized Spectrum 56

5.2.1 Normalization of the Input Signal 56

5.2.2 Calculation of a Short-Time Power Spectrum 57

5.2.3 Power Spectrum Grouping 57

5.2.4 Spectral Self-Normalization 58

5.2.5 Post-Processing . 59

5.3 Implementation 2: A FFT-Based Auditory Spectrum 59

5.3.1 Normalization of the Input Signal . . 60

Contents viii

5.3.2 Calculation of a Short-Time Power Spectrum 60

5.3.3 Power Spectrum Selecting 60

5.3.4 Spectral Self-Normalization 61

5.3.5 Post-Processing 65

5.4 Conclusion 66

6 Audio Classification Experiments 67

6.1 Audio Sample Database 67

6.1.1 16-kHz Samples 67

6.1.2 8-kHz Samples 68

6.1.3 Pre-Processing of Audio Samples . 70

6.1.4 Testing Approach 72

6.2 Audio Features 72

6.2.1 MFCC Features 73

6.2.2 Spectral Features 73

6.2.3 DCT-Based Features 75

6.2.4 Clip-Level Features 76

6.3 Implementation .' 81

6.3.1 NSL Matlab Toolbox 81

6.3.2 Classification Approaches 81

6.4 Performance Analysis 83

6.4.1 Performance Comparison with the 16-kHz Database 83

6.4.2 Performance Comparison with the 8-kHz Database 89

6.4.3 Effect of Running Average Coefficients 91

6.4.4 Computational Complexity 91

6.5 Conclusion . 92

7 Implementation Based on TMS320C6713 DSK 93

7.1 Implementation of the Proposed Audio Classification Algorithm 94

7.1.1 Structure of the System 94

7.1.2 Tracing the Computational Complexity 98

7.2 Analysis of the Complexity 101

7.2.1 Initial Implementation 101

Contents IX

7.2.2 Compiler Optimization . . . 102

7.2.3 Optimization of DOT and FFT Modules 105

7.2.4 Use of C67x FastRTS Optimized Library 107

7.3 Conclusion 109

8 Summary and Conclusion 110

8.1 Summary of the Work 110

8.2 Future Research 113

A Closed-Form Expression of E[y±(t, s)] 115

B TMS320C6713 DSK 118

B.l Hardware Overview 118

B.2 Software Overview , 121

B.2.1 Code Creation 121

B.2.2 Debug 122

B.2.3 Analysis 123

References 124

X

List of Figures

1.1 Schematic description of an audio classification system 3

1.2 Schematic description of the EA model presented by Wang and Shamma

[WS94] 7

2.1 Spectral centroid. (a) Speech, (b) Music, (c) Noise 22

2.2 Linear separating hyperplane for a separable case. The support vectors are

circled 31

3.1 Schematic description of the EA model [WS94] 38

4.1 Sigmoid function (a = 0.1) and Gaussian distribution function (ag — 0.163).

(a) g(x) and $(x/ag). (b) g'(x) and (l/<79)$' (x/ag) 47

4.2 E[y4(t,s)] as a function of au and.av 50

4.3 Sigmoid function (a = 0.1) and Gaussian mixture function (M = 4). . . . 52

5.1 Auditory spectrograms of a one-second speech clip, (a) Original auditory

spectrogram, (b) Simplified auditory spectrogram, (c) Simplified auditory

spectrogram without time-domain derivative 55

5.2 Schematic description of the proposed FFT-based implementations 56

5.3 The cochlear filter H(u>, s) centered at 1017 Hz and the corresponding dif­

ferential filter dsH(u>}s) [Neu]. (The 3-dB bandwidth of the cochlear filter

is about 220 Hz, while the 3-dB bandwidth of the differential filter is 80 Hz.) 63

5.4 The filtering characteristics of the proposed running average scheme. . . . 64

5.5 Running average results 64

5.6 A power spectrum vector and the corresponding self-normalized version, (a)

Whole data set. (b) Details of some spectral valleys 65

List of Figures X I

5.7 The proposed FFT-based auditory spectrograms of a one-second speech clip,

(a) Clean case, (b) SNR = 15 dB (babble noise), (c) SNR = 15 dB (white

noise) 66

6.1 Structure of the VAD algorithms in [CAS05] 71

6.2 Characteristic frequency values corresponding to the index values i given in

Table 5.1 75

6.3 Distributions of conventional MFCC features. For all figures, horizontal and

vertical axes refer to the variance values of the first and the second compo­

nents of the frame-level features respectively, (a)Speech (clean), (b)Music

(clean). (c)Noise. (d)Speech (SNR = 20 dB). (e)Speech (SNR = 15 dB).

(f)Speech (SNR = 10 dB). (g)Music (SNR = 20 dB). (h)Music (SNR = 15

dB). (i)Music (SNR = 10 dB) 78

6.4 Distributions of DCT-based features obtained from original auditory spec­

trum. For all figures, horizontal and vertical axes refer to the variance values

of the first and the second components of the frame-level features respec­

tively. (a)Speech (clean). (b)Music (clean). (c)Noise. (d)Speech (SNR = 20

dB). (e)Speech (SNR = 15 dB). (f)Speech (SNR = 10 dB). (g)Music (SNR

= 20 dB). (h)Music (SNR = 15 dB). (i)Music (SNR = 10 dB) 79

6.5 Distributions of DCT-based features obtained from FFT-based auditory

spectrum. For all figures, horizontal and vertical axes refer to the variance

values of the first and the second components of the frame-level features re­

spectively. (a)Speech (clean). (b)Music (clean). (c)Noise. (d)Speech (SNR

= 20 dB). (e)Speech (SNR = 15 dB). (f)Speech (SNR = 10 dB). (g)Music

(SNR = 20 dB). (h)Music (SNR = 15 dB). (i)Music (SNR = 10 dB). . . . 80

6.6 NSL toolbox GUI. , 81

6.7 Speech/music/noise classification error rates as a function of SNR for differ­

ent audio features (refer to Table 6.3). (a) SVM. (b) C4.5 84

7.1 Modules of the algorithm, (a) Frame-based processing, (b) Clip-based pro­

cessing 96

7.2 The structure of a pipe [Tex04a] 97

7.3 Host Channel Control window . . 99

7.4 Statistics View window 100

List of Figures xn

7.5 Audio classification decisions for a sample of 3 min long. There are 6 error

decisions out of a total of 180 decisions 102

B.l TMS320C6713 DSK block diagram [Spe04] 119

B.2 TMS320C6713 DSP core functional block diagram [Tex05c] 120

X l l l

List of Tables

3.1 Error classification rates from [RA04] (%) 43

5.1 Frequency index values of Nk and & 62

6.1 Selected noise samples from the NOISEX database [VSTJMs] 69

6.2 Selected noise samples from the IS-727 database [TIA98] . . . 70

6.3 Summary of the clip-level audio features 76

6.4 Speech/music/noise classification error rates with a clean set as the training

data(%) • • • 85

6.5 Average classification error rates from cross-validation (%) 87

6.6 Confusion matrices for different audio feature sets at SNR = 10 dB 88

6.7 Speech/music/noise classification error rates with a 15-dB set as the training

data (%) 89

6.8 Noise/non-noise classification error rates with SVM as the classifier (%) . . 90

6.9 Error classification rates of the DCT-FFT2 features with different running

average coefficients (%) 91

7.1 Size of the executable file • 101

7.2 Computational complexity after introducing compiler optimization options 104

7.3 Reduction in the computational complexity after introducing optimizations

to the DCT and FFT modules 107

7.4 Reduction in the computational complexity after using the C67x FastRTS

library 108

7.5 Size of the executable file after introducing all proposed optimizations . . . 109

List of Acronyms

AAC

ACC

AI

AMDF

ANN

ANSI

API

ASR

ASB

ASP

BM

BP

BSL

CCR

CCStudio/CCS

CELP

CF

CPLD

CSL

DCT

DFT

DIP

DIT

DSK

Advanced Audio Coding

Average Computational Complexity

Artificial Intelligence

Average Magnitude Difference Function

Artificial Neural Networks

American National Standards Institute

Application Programming Interface

Automatic Speech Recognition

Audio Spectrum Basis

Audio Spectrum Projection

Basilar Membrane

Band Periodicity

Board Support Library

Correct Classification Rate

Code Composer Studio

Code-Excited Linear Prediction

Characteristic Frequency

Complex Programmable Logic Device

Chip Support Library

Discrete Cosine Transform

Discrete Fourier Transform

Dual In-line Package

Decimation In Time

DSP Starter Kit

List of Terms xv

DSP Digital Signal Processor or Digital Signal Processing

EAM Early Auditory Model

EDMA Enhanced Direct-Memory-Access

EM Expectation-Maximization

EMIF External Memory Interface

FFT Fast Fourier Transform

GMM Gaussian Mixture Model

GPIO General-Purpose Input/Output

GUI Graphical User Interface

HMM Hidden Markov Model

HOSVD Higher Order Singular Value Decomposition

HPI Host-Port Interface

HWR Half-Wave Rectification

HZCRR High Zero-Crossing Rate Ratio

I2C Inter-Integrated Circuit

IDE Integrated Development Environment

JTAG Joint Test Action Group

KNN K-Nearest-Neighbor

LDA Linear- Discriminant Analysis

LED Light-Emitting Diode

LIN Lateral Inhibitory Network

LPC Linear Predictive Coding

LPCC Linear Prediction Coefficient-derived Cepstrum Coefficients

LP-ZCR Linear Prediction Zero-Crossing Ratio

LSF Line Spectrum Frequency

LSP Line Spectrum Pair

LSTER Low Short-Time Energy Ratio

McASP Multichannel Audio Serial Port

McBSP Multichannel Buffered Serial Port

MCC Maximum Computational Complexity

MDCT Modified Discrete Cosine Transform

MFCC Mel-Frequency Cepstral Coefficient

MFLOPS Million Floating-point Operations Per Second

List of Terms xvi

MIPS

MMACS

MP3

MPEG

NFL

NFR

NRAF

PCA

PCM

PLL

RMS

RTA

RTDX

SFuF

SNR

STRF

SVM

TDMA

VLIW

VoIP

ZCR

Million Instructions Per Second

Million Multiply-Accumulate Operations Per Second

MPEG-l/MPEG-2 Audio Layer 3

Moving Picture Experts Group

Nearest Feature Line

Noise Frame Ratio

Noise-Robust Auditory Feature

Principal Component Analysis

Pulse Code Modulation

Phase-Locked Loop

Root Mean Square

Real-Time Analysis

Real-Time Data Exchange

Short-Time Fundamental Frequency

Signal-to-Noise Ratio

Spectro-Temporal Response Field

Support Vector Machine

Time Division Multiple Access •

Very-Long-Instruction-Word

Voice over IP

Zero-Crossing Rate

1

Chapter 1

Introduction

Today digital multimedia information has become a ubiquitous component of our lives.

Among these multimedia data, audio sequences constitute an important part. The expo­

nential growth of internet usage, the rapid increase in the speed and capacity of modern

computers, and the latest advances in network-related technologies have boosted appli­

cations of multimedia services which comprise audio elements, for example, voice-over-IP

(VoIP), on-line music sales, cellular telephony, simultaneous digital transmissions of live

television/radio station outputs, etc.

In many cases, the success of distributing audio data or providing client services compris­

ing audio data is greatly dependent on the ability to classify and retrieve audio information

in terms of their properties or contents. However, a raw audio signal data set is a large

featureless collection of bytes and does not readily allow content-based audio classification

and retrieval. It is thus desirable that certain signal processing approaches be explored

which allow efficient and automated content-based analysis for stored or streamed audio

data.

Below, the concept of content-based audio analysis is introduced first, followed by mo­

tivation and objective of the proposed research, and a summary of the main contributions.

Finally, an overview of this thesis is given.

1.1 Content-Based Audio Analysis

Considering the diversity of audio signals, in some applications it would be desirable to

classify audio clips in terms of their contents before other processing steps are further

1 Introduction 2

applied. For example, a speech/non-speech classifier is required if an automatic speech

recognition (ASR) unit is expected to be turned on for pure speech data only. In some cases,

people may benefit from isolating or retrieving any sound clips from an audio database,

wherein these clips could match a given excerpt or given properties. For low bit-rate

audio coding algorithms, to trade off audio quality against the average bit rate, a multi-

mode codec is often designed which can accommodate different signals. For example, in

[Qia97] and [TRRLOO], the coding module is selected based on the output of a speech/music

classifier.

An audio signal clip is usually taken as a collection of bytes with only some common

information attached such as the name, format, sampling rate, size, etc. Clearly, the

attached information does not readily allow content-based analysis like classification or

retrieval. Searching for a particular audio class, such as applause, music played by a

violin, sound of a train, speech, or the speech of a particular speaker, can be a tedious

or even impossible task due to the inability to look inside the audio data. For a limited

amount of audio and video data, it is possible to create content-based information manually

for browsing and management. However, due to the rapid development in technologies

for data compression, storage, and transmission, the size of multimedia data collections

is increasing so fast, making manual indexing no longer appropriate. Besides, an index

information created manually by one person is highly subjective and may be of limited

use to another person. Therefore, a computer-based analysis of the semantic meanings of

the documents containing audio sequences, or video sequences with accompanying audio

tracks, is indispensable.

The past decade has thus seen extensive research on audio content analysis. Current

interest in content-based audio analysis covers at least the following applications:

• Audio classification/segmentation: To discriminate among certain pre-selected audio

classes, such as speech, music, and noise; or to identify different speakers.

• Content-based audio retrieval: To search and retrieve any sound clips that match a

given excerpt or given properties.

• Indexing for audio/audiovisual data: To facilitate the management of audio and

audiovisual digitized documents.

Among these applications, audio classification is the fundamental process which can be

1 Introduction 3

Audio
Clio

Pre­
processing

Feature
Extraction

Classifica­
tion

Post-
Processing

Audio
Class

Fig. 1.1 Schematic description of an audio classification system.

employed as a basis for other applications. The scope of this work will be focused on audio

classification algorithms.

The general structure of an audio classification system is shown in Fig. 1.1 and comprises

the following building blocks:

Pre-Processing

Depending on different applications, the pre-processing may include normalization (for

example, with respect to a long-term average energy), lowpass/highpass filtering, and/or

some other processing operations.

Feature Extraction

Using input audio data, a set of audio features is calculated, which is characteristic of the

original signal. Audio features are commonly extracted in two levels, namely: the short-

term frame level with a length around 10-40 ms and the long-term clip level with a length

from one second to several tens of seconds [WLH00]. Different features have been proposed

for audio classification applications. A good feature is always expected to show a large

interclass difference and a small intraclass difference. Illustrative examples of frame-level

features are discussed below.

• Based on time-domain analysis, short-term energy and zero-crossing rate (ZCR)

[O'SOO] are two common features for classification due to their low computational

complexity and high-efficiency. Both features can be employed to distinguish voiced

speech from unvoiced speech. Short-term energy is also useful in identifying silence

gaps in between audible sounds.

• Compared to the time-domain analysis wherein audio waveform is directly used,

more features are calculated using frequency-domain analysis wherein the efficient

1 Introduction 4

fast Fourier transform (FFT) is involved [OSB99], for example, mel-frequency cep-

stral coefficients (MFCCs) [DM80, RJ93], brightness or spectral centroid [WBKW96],

fundamental frequency [O'SOO], etc. As a smoothed representation of the signal spec­

trum, MFCCs also take into consideration the nonlinear property of the human hear­

ing system with respect to different frequencies. Spectral centroid or brightness is

designed to measure the higher frequency content of the signal. Different audio sig­

nals are characterized by different harmonic structures, which can be captured to

some extent by the fundamental frequency value.

• Besides, linear predictive coding (LPC) analysis is also employed in audio classifi­

cation to extract frame-level features. For example, in [EMKPK00], a set of line

spectrum frequency (LSF)-based features is calculated to capture the fine spectral

variations between speech and music.

Frame-level features are designed to capture the short-term characteristics of an audio

signal. However, to extract the semantic content, it is usually necessary to consider an

analysis window spanning a much longer time scale, which leads to the development of

various clip-level features. Most clip-level features characterize how frame-level features

change over this long window, possibly extending to the clip length. Specifically, statistical

information about the frame-level features is often collected by calculating the mean and

variance values, higher-order statistics like skewness and kurtosis, or some other self-defined

parameters (e.g., [SS97, LZJ02]).

Due to quite different amplitude envelope patterns of speech and music, time-domain

analysis may be efficient in a speech/music classification task. However, for a more complex

classification task wherein more audio classes are involved, the classification engine may

have to include more sophisticated features, e.g., from frequency-domain analysis.

Classification

Many classification approaches have been investigated for applications to audio classifi­

cation systems. The choice of a specific approach depends on various factors such as

classification performance and computational complexity. In an application where there is

a requirement for real-time processing, simple heuristical rule-based methods are usually

considered, e.g., classification methods in [ZC01, PT05, JOMM02]. However, in some other

1 Introduction 5

applications, in order to achieve a better classification performance, we may resort to more

complex pattern recognition approaches, such as the hidden Markov model (HMM), the

Gaussian mixture model (GMM), the neural network, the support vector machine (SVM),

etc. [ZK99, LHOOa, ZZ04, XMS05].

Hidden Markov models, the dominant tool in the area of speech recognition, are also

used in audio classification tasks. As a generative modeling approach, the HMM describes

a stochastic process with hidden variables that produce the observable data [Rab89]. Com­

paratively, the support vector machine is a relatively new statistical machine learning tech­

nique that has been successfully applied in the pattern recognition area [CV95, Bur98]. A

SVM first transforms input vectors into a high-dimensional feature space using a linear or

nonlinear transformation, and then conducts a linear separation in feature space.

Post-Processing

Based on the decisions on audio classes, post-processing is usually designed to achieve

further improvement in the classification performance. For example, error correction may

be conducted by grouping and checking the neighboring decisions.

1.2 Motivation and Research Objective

Many audio classification algorithms have been proposed along with excellent performance

being reported. However, the issue of background noise, specifically, the effect of back­

ground noise on the performance of classification, has not been widely investigated. In

fact, a mismatch of background noise levels between the training and testing data may

degrade the performance of a system to a significant extent. In some cases, an algorithm

trained using clean sequences may fail to work properly while the actual testing sequences

contain background noise with signal-to-noise ratio (SNR) below a certain level (see test

results in [RA04, MSS04]). For example, results from [RA04] show that, using a set of

MFCCs as features, the error rate of speech/music classification increases rapidly from 0%

in a clean test to 40.3% in a test where SNR = 15 dB. For certain practical applications

wherein environmental sounds are involved in audio classification tasks, noise robustness is

an essential characteristic of the processing system.

The early auditory (EA) model presented by Wang and Shamma [WS94] has been

proved to be robust in noisy environments. Recently, this model has been employed in a

1 Introduction 6

two-class audio classification task, specifically a GMM-based speech/music classification,

and robust performance in noisy environments has been reported [RA04]. For example, at

SNR = 15 dB, the error rate of the auditory based features is 17.7% as compared to 40.3%

for the conventional MFCC features.

The EA model was developed based on investigations at various stages of the auditory

system. Fig. 1.2 shows the structure of the EA model presented in [WS94], wherein a dig­

itized input signal (e.g., 16-bit signed pulse-code modulation (PCM) data with a sampling

rate of 16 kHz) passes through the following three processing stages:

• Cochlear filters: A set of bandpass filters h(t,s) is used to describe the response

characteristics of the basilar membrane (BM), wherein t is the time index and s

denotes a specific location on the BM.

• Hair cells: The process at this stage can be modeled by a temporal derivative, a

sigmoid-like nonlinear compression, and a lowpass filtering. At this stage, the motion

on the BM is transformed into neural spikes in the auditory nerves.

• Lateral inhibitory network (LIN): The operations at this stage include a derivative

with respect to the tonotopic or spatial axis s, a local smoothing, a half-wave rec­

tification, and a temporal integration. Discontinuities along the cochlear axis s are

detected at this stage.

For a frame of input signal, these operations effectively compute a so-called auditory spec­

trum1.

Following the analysis in [WS94], the noise-robustness of the EA model can be at­

tributed in part to its self-normalization property which causes spectral enhancement or

noise suppression. To explore the nature of the self-normalization, Wang and Shamma

have conducted a qualitative analysis, followed by a quantitative analysis wherein a closed-

form expression of the auditory spectrum is derived [WS94]. For the quantitative analysis,

because of the nonlinear nature of the EA model, only a special simplified case has been

studied wherein a step function is used to replace the original nonlinear sigmoid compression

function at the second processing stage in Fig. 1.2.

The noise-robustness of the original EA model has been demonstrated in different ap­

plications such as audio classification [WS94, RA04]. However, this model is characterized

*As usual, auditory spectrogram refers to the three-dimensional plot of auditory spectra over time.

1 Introduction 7

Audio Input

Cochlear Filters
Bandpass filters set h(t, s)
t: time index
j : tonotopic or spatial index

i
Hair Cells

Temporal derivative
Nonlinear compression

Lowpass filtering

Lateral Inhibitory Network
Spatial derivative

Local smoothing and rectification
Temporal integration

Auditory
Spectrogram

Fig. 1.2 Schematic description of the EA model presented by Wang and
Shamma [WS94].

1 Introduction 8

by high computational requirements and nonlinear processing, which may prevent its use

in certain-practical applications.

Motivated by the existing work on EA model [WS94], we seek in this thesis to further

explore its noise-suppression property from a broader perspective, and to develop simplified

implementations of this property for applications to a broad class of audio classification

tasks. Accordingly, the following sub-objectives are established in this work:

• With respect to the limitation of the quantitative analysis conducted in [WS94], it is

of interest to investigate the noise-suppression property from a broader perspective,

i.e., to derive a closed-form expression for auditory spectrum using a more general

sigmoid-like function, and to conduct relevant analysis.

• Considering the computational complexity of the original EA model, it is desirable

that the, model be further simplified. Specifically, a frequency-domain approximated

realization with noise-suppression property implemented, wherein efficient FFT algo­

rithms are available, may be of significant practical interest.

• The noise-suppression property implemented in the proposed simplified realization

needs to be evaluated through audio classification experiments. Ideally, the clas­

sification performance of the audio features obtained from the proposed simplified

implementation should be compared to that of some conventional features such as

MFCCs.

• To further explore the proposed frequency-domain simplified implementation from a

practical perspective, it is desirable to implement an audio classification algorithm,

which involves the use of audio features obtained from the simplified implementation,

on a floating-point DSP platform.

1.3 Main Contributions

As indicated above, the main focus of this research is on the noise-suppression property

of the EA model [WS94], together with its application in audio classification. The main

contributions are summarized below.

1 Introduction 9

1.3.1 Extended Analysis of Self-Normalization

Having noticed the general nonlinear compression nature of the Gaussian cumulative distri­

bution function (CDF), and the resemblance between the graph of the sigmoid function and

that of the Gaussian CDF, we use the latter as an approximation to. the original sigmoid

compression function to derive a new closed-form expression for the auditory spectrum at

the output of the EA model, and to conduct further relevant analysis. The new results

based on the Gaussian CDF verify the self-normalization property as analyzed in [WS94].

Compared to the original analysis wherein a step function is used to approximate the non­

linear sigmoid compression function, a Gaussian CDF provides a better, yet mathematically

tractable, approximation in the analysis.

1.3.2 Simplification/Approximation of the Auditory Spectrum

Based on the original time-domain analysis in [WS94], a simplified auditory spectrum is

proposed, which provides a way to investigate or approximate the EA model from a linear

perspective. The underlying analysis naturally leads itself to frequency-domain approaches

for approximation in order to achieve a significant reduction in the computational com­

plexity of the EA model.

Such a simplified FFT-based spectrum is then proposed wherein a local spectral self-

normalization is implemented through the use of a pair of wide and narrow filters defined in

the frequency domain. A simplified scheme is also proposed for power spectrum grouping

with emphasis on the low-frequency components. The classification performance of the

proposed FFT-based spectrum is comparable to that of the original auditory spectrum

while its computational complexity is much lower.

An improved implementation of the above FFT-based spectrum is further proposed to

calculate a so-called FFT-based auditory spectrum. The introduced improvements include

the use of characteristic frequency (CF) values of the cochlear filters in the original EA

model for power spectrum selection, and the use of a pair of fast and slow running averages

over the frequency axis to implement the spectral self-normalization. With the introduced

improvements, the proposed FFT-based auditory spectrum allows more flexibility in the

extraction of noise-robust audio features.

1 Introduction 10

1.3.3 Setup of the Audio Classification Experiment

To evaluate the performance of the proposed simplified FFT-based spectra2, some audio

classification experiments are designed and carried out. The main distinguishing features

of our experimental setup can be summarized as follows:

• Audio sample database: To carry out audio classification tests, two generic audio

databases are built which include speech, music, and noise clips. The sampling rates

of the two audio sample databases are 16 kHz and 8 kHz, whereas the total lengths

are 200 min and 140 min, respectively.

• Audio feature: Audio features are calculated over short (frame level) and long (clip

level) time periods. For the original auditory spectrum [WS94] and the two proposed

FFT-based simplified spectra, discrete cosine transform (DCT)-based features are

calculated. In addition, a set of spectral features are calculated using the proposed

FFT-based simplified auditory spectrum. The clip-level features used in this study

are simply the statistical mean and variance values of the corresponding frame-level

features.

• Classification test: Three-class (i.e., speech, music and noise) and two-class (noise

and non-noise) classification experiments have been conducted to evaluate the per­

formance. Specifically, mismatched tests are designed to evaluate the noise-robustness

of various features, wherein the training and testing sets contain samples with mis­

matched SNR values.

1.3.4 DSP Demo System

To further explore the proposed FFT-based auditory spectrum from a practical audio clas­

sification perspective, a floating-point DSP implementation is developed and tested. A

three-class audio classification algorithm using the DCT-based feature set and a C4.5 deci­

sion tree model [Qui93] is implemented on Texas Instruments TMS320C6713 DSP Starter

Kit (DSK) [Spe04, ?]. The input audio signals are 16-bit signed PCM data which are sam­

pled at 16 kHz and stored on the host PC. The outputs of the system are audio classification

2These include the proposed FFT-based spectrum and the proposed FFT-based auditory spectrum as
discussed in Section 1.3.2

1 Introduction 11

decisions on a 1 s basis. Through the use of a pair of host channels, the connection between

the host PC and DSP target board has been established in the presented implementation.

A simple Matlab algorithm is also developed to monitor the real-time outputs from the

DSP target.

By using the available real-time software development tools [Tex05a], we have investi­

gated the computational complexity of the algorithm. Through the use of different opti­

mization approaches, including the tools and optimized functions provided by the C6713

DSK, a significant reduction in the computational complexity is achieved for the proposed

implementation.

1.3.5 Publications

The above contributions lead to a number of publications in peer-reviewed journals and

conference proceedings, listed as [CC08, CC06b, CC06c, CC06a, CC07] in the reference

section.

1.4 Thesis Organization

The proposed research work will be presented in detail in the next few chapters according

to the following outline:

In Chapter 2, a literature review is presented covering audio classification algorithms

presented in the recent decade from three perspectives, i.e., audio signals, audio features

and classification approaches.

The EA model presented by Wang and Shamma [WS94], the original analysis of the

self-normalization property, and the application of this model in audio classification, are

summarized in Chapter 3. Several open research problems are further presented which form

the basis of the proposed research on auditory-inspired noise-robust audio classification

algorithms.

As an extension to the original analysis in [WS94], the proposed analysis of self-

normalization using the Gaussian CDF approximation is presented in Chapter 4.

Chapter 5 details our efforts to develop simplified FFT-based spectra wherein the noise-

suppression property inherited from the original auditory spectrum are implemented.

The general setup of the classification experiment is presented in Chapter 6, wherein

the audio database, the extraction of different audio features, and the implementation

1 Introduction 12

of classification algorithms are detailed. The classification performance of different audio

features is compared and analyzed.

Chapter 7 describes the implementation of a demo system based on the C6713 DSK,

wherein the algorithm uses DCT-based features obtained from the proposed FFT-based

auditory spectrum. Different optimization approaches are applied to reduce the computa­

tional complexity of this system.

Chapter 8 concludes this thesis by summarizing the main contributions and discussing

possible future research avenues.

13

Chapter 2

A Review of Audio Classification

Algorithms

Content-based audio analysis has existed for some time. In certain applications, the main

focus is on the speech or text information, e.g., text retrieval, documentary indexing,

multi-speaker change detection [YBF+97, VBDT99, HH04]. For a multimedia document,

its semantic meanings are embedded in multiple forms, including audio and video data.

Therefore, a content-based analysis over all types of data would provide a more accurate

description. As an important part of multimedia documents, audio data can provide useful

information for content-based analysis. Indeed the past decade has seen extensive research

on audio-based content analysis, due to the relative simplicity of the processing procedures

and the effectiveness of the content analysis.

In this work, we focus on audio classification algorithms. In recent years, different

audio classification algorithms have been proposed along with excellent performance be­

ing reported. In this chapter, an overview is presented on audio classification algorithms

from the following three perspectives: audio signals, audio features, and classification ap­

proaches.

2 A Review of Audio Classification Algorithms 14

2.1 Audio Signals

2.1.1 Speech and Music Classification

As the two most popular audio classes in multimedia communications, speech and music

attract much attention in audio classification applications. In an early study by Saunders

[Sau96], a simple technique has been proposed to discriminate speech from music by only

using time-domain features such as the zero-crossing rate (ZCR) and energy. The minimal

computation associated with the proposed approach may lend itself to implementations in

radio receivers at very low add-on cost. A correct classification rate of 98% was reported.

In another work, to classify speech and music on FM radios, Scheirer and Slaney employed

as many as 13 features, such as 4-Hz modulation energy, pulse metric, spectral centroid,

spectral rolloff point, etc. [SS97]. The speech samples used in this work include those

spoken by both male and female speakers. For music samples, the database includes jazz,

pop, country, salsa, reggae, classical, various non-Western styles, various sorts of rock,

and new age music, both with and without vocals. A correct classification rate of 94.2%

has been reported for 20 ms segments and 98.6% for 2.4 s segments. A similar work

done by Carey et al. has compared the discrimination performance achieved by different

features, such as pitch, amplitude features, ZCR, etc., wherein the gaussian mixture model

(GMM) was used for classification [CPLT99]. In this work, the speech samples are spoken

in thirteen languages including Arabic, English, French, Mandarin, etc., whereas for the

music, besides a diverse selection of Western music, music clips from Eastern Asia, the

Arab world, Africa, South America and the Indian subcontinent are also included. Similar

research on speech/music classification can also be found in [AMB02, GL04, PT05].

Such speech/music classification sets can be used for listeners to surf radio channels

for segments of music or talk. It may also be used for long-term monitoring of a given

station for different purposes. A Low bit-rate audio coding algorithm is also an application

that can benefit from distinguishing speech from music. To design a universal coder that

can reproduce well both speech and music is a complex problem. An alternative approach

is to design a multi-mode coder that can accommodate different types of signals. The

appropriate module is selected using the output of a speech/music classifier. For example,

Qiao proposed an alternative approach to mixed speech/music coding [Qia97]. After music

signals are separated from speech, a G.722 coder and a G.723.1-based speech coder are used

for music and speech segments respectively. In [TRRL00], a speech/music discrimination

2 A Review of Audio Classification Algorithms 15

procedure for multi-mode wideband coding is described. An experimental CELP (code-

excited linear prediction)/transform coder operating at 16 kbit/s is demonstrated, wherein

an improved overall subjective quality is observed as compared to single-mode coders.

2.1.2 Environmental Sound and Background Noise

Besides speech and music, due to different considerations, some researchers have included

other audio classes in their studies, especially the environmental sound and background

noise, which are important elements in audio recordings.

In a content-based retrieval work by Wold et al. [WBKW96], the test sound database

contains about 400 sound files, varying in duration from less than one second to about 15

seconds. This database comprises a wide variety of sounds, including those from animals,

machines, musical instruments, speech, and nature.

Compared to some other studies, Zhang and Kuo have placed more emphasis on the

environmental sounds, an issue which was often ignored in the past [ZK99]. A hierarchical

system for audio classification and retrieval has been proposed, wherein audio clips are

first classified and segmented into speech, music, several types of environmental sounds

and silence; the environmental sounds are further classified into 10 sub-classes including

applause, birds' cry, dog bark, explosion, foot step, laugh, rain, river flow, thunder, and

windstorm. The proposed work has achieved accuracy rates of 90% and 80% for the first-

and second-stage classification respectively.

Jiang et al. [JLZ00], Lu et al. [LZJ02], and Zhu and Zhou [ZZ03] each proposed an

audio or audio video combined classification/segmentation scheme, in which audio tracks

are classified into speech, music, environmental sound and silence. Sound effects that are

associated with highlight events in entertainments, sports, meetings and home videos, such

as laughter, applause, cheer, scream, etc., are considered in [CLZC03] and [ZBC03].

In practical applications, background sound and noise may be present together with

other audio signals like speech or music. These mixed or hybrid sounds have also been inves­

tigated in some research, for example, speech with background music [ZC01, LD04, NHK05],

speech with background noise (or noisy speech) [NHK05, WGY03, SA04], environmental

sound with background music [ZC01], and music presented in noisy conditions [SA04]. In

a work by Lu and Hankinson [LHOOb], the level of the background sounds has been taken

into consideration wherein the audio database contains speech samples mixed with light

2 A Review of Audio Classification Algorithms 16

background noise/music, medium background noise, and heavy background noise/music.

Recently, Alexandre et al. proposed an automatic sound classifier for digital hearing

aids, which aims to enhance listening comprehension when the user goes from one sound en­

vironment to another [ACRLF07]. A two-layer classifying system is implemented, wherein

an audio signal is first classified into either speech or non-speech, and then the speech is

further classified into either speech in quiet (with no background noise or with a high SNR

ratio) or speech in presence of noise or music (vocal or non-vocal).

Indeed for modern hearing aids instruments, researchers have attempted to improve the

performance through the use of audio classification algorithms. In [Kat95], based on some

other studies, Kates concluded that different hearing aids characteristics are desirable under

different listening conditions. Accordingly, modern hearing aids normally provide several

hearing programs, each being designed for a specific listening environment (or acoustic sit­

uation), such as quiet environment or noisy environment. A set of common audio classes

from a hearing instrument point of view includes speech, music, stationary and nonstation-

ary noise [BB04]. A scheme for automatically adapting.a hearing instrument for various

listening situations (e.g., speech, music, silence, noise, etc.) would free users from manually

switching. Nordqvist and Leijon [NL04] proposed an efficient and robust sound classifica­

tion algorithm which would enable a hearing aid to automatically change its behavior for

three listening environments, namely: speech in traffic noise, speech in babble, and clean

speech, regardless of the SNR value. A set of cepstral coefficient features is calculated

for the use of classification, and the estimated computational load is less than 0.1 million

instructions per second (MIPS) based on a Motorola 56k architecture [NL04].

In [RA05], Ravindran and Anderson presented a robust audio classification system that

could be used to switch automatically between different hearing aids algorithms based on

the auditory scene. A four-class audio classification task, i.e., speech, music, noise, and

speech in noise, is carried out to evaluate the performance of the proposed system. A

similar research is also found in [BALD05] wherein a sound classification system for the

automatic recognition of the acoustic environment in a hearing aid is proposed. Using

audio features that are inspired by auditory scene analysis, the system distinguishes four

sound classes, i.e., clean speech, speech in noise, noise, and music.

Some simple audio classification systems have been employed in the current hearing aids

instruments. Adapto, for example, is a product of Oticon, a successful Danish hearing aids

manufacturer and one of the world's leading manufacturers of hearing aids products [Otil.

2 A Review of Audio Classification Algorithms 17

What has made Adapto unique are three revolutionary innovations, among which is the

VoiceFinder, an integrated sub-system that allows Adapto to accurately detect speech in

difficult listening situations. The VoiceFinder acts as a speech/noise classifier. It processes

incoming sound to provide maximum speech understanding. When no speech is present,

it automatically tunes out background noise and saves one from unnecessary annoyance.

A similar sound classification system, AutoSelect, is implemented in Phonak's (based in

Stafa, Switzerland) Claro hearing systems, which can automatically switch between quiet

and noisy situations [Pho]. Once a switch has been activated, a different signal processing

strategy is applied to match a specific listening situation.

2.1.3 Use of Compressed Audio Data

Instead of the conventional waveform audio signal (i.e., PCM uncompressed data), some

algorithms have used compressed audio data directly. The use of compressed data is suitable

for large-size audio or video files, which are often stored in certain compressed formats.

Using compressed data may lead to savings on the calculations related to the complex

decoding process.

In [NLS+99], a fast and accurate audio classification method is described on the Mov­

ing Picture Experts Group (MPEG)-l Layer 2 coded data domain. Silence segments are

detected first; and then, non-silence segments are further classified into music, speech, and

applause. Jarina et al. [JOMM02] proposed an approach to speech/music discrimination

based on rhythm (or beat) detection. The discriminator uses just three features (i.e., the

width of the widest peak, peak rates, and the rhythm metric) that are computed from the

data directly taken from MPEG-1 Layer 2 bitstreams. A classification rate, of 97.7% is

reported.

Recent years have seen a widespread usage of MPEG-1 Audio Layer 3 (MP3) audio and

a more efficient successor, MPEG Advanced Audio Coding (AAC) audio, as well as the

proliferation of video content carrying MP3 or AAC audio. With the emerging MP3/AAC

audio contents, research has been conducted to classify audio data using MP3/AAC en­

coded bitstreams. Tzanetakis and Cook investigated the calculation of spectral features

(e.g., centroid, rolloff point) directly from MPEG-2 Layer 3 compressed data [TCOO]. Ex­

perimental results show that the proposed classification algorithms are comparable to those

working directly with PCM uncompressed audio data. Kiranyaz et al presented a novel

2 A Review of Audio Classification Algorithms 18

perceptual based fuzzy approach to the classification and segmentation of MP3 and AAC

audio [KQG04]. The input audio segments are classified into speech, music, fuzzy or si­

lence. Lie and Su [LS04] investigated the content-based retrieval of MP3 songs based on

the query by singing wherein perceptual features were calculated from MDCT (modified

discrete cosine transform) coefficients.

2.2 Audio Features

A key issue in the development of an audio classification algorithm is the design of audio

features that can be used to discriminate different audio classes. A good feature is expected

to have a large interclass difference while maintaining a small intraclass difference.

Audio features are commonly extracted in two levels, the short-term frame level and the

long-term clip level [WLHOO]. The concept of audio frame comes from traditional speech

signal processing, where a frame usually covers a length of around 10 to 40 ms within which

the signal is assumed to be stationary. However, to reveal the semantic meanings of an

audio signal, an analysis over a longer interval is more appropriate. A signal with such

a long interval is called an audio clip, usually with a length ranging from one second to

several tens of seconds. Clip-level features usually describe how frame-level features change

over a time window. Depending on different applications, the length of an audio clip could

be fixed or not. Audio frames and clips may overlap in time with their predecessors. Some

common frame-level and clip-level features are introduced below.

2.2.1 Frame-Level Features

The frame-level features are calculated through time-domain analysis, Fourier transform

analysis, linear predictive coding (LPC) analysis, etc.

Short-Time Energy

The short-time energy is a simple yet reliable feature. It is defined as

1 N

. ^ - K r l X N (2-1)

2 A Review of Audio Classification Algorithms

where En denotes the nth frame energy, N is the frame length, and xn[i] represents the

zth sample in the nth frame1. The short-time energy can be used to distinguish audible

sounds from silence gaps when the SNR is high, or voiced speech from unvoiced speech.

The change pattern of the short-time energy over time may reveal the rhythm or periodicity

information. Short-term energy also provides a basis for normalization of the signal.

Instead of the short-term energy as defined in (2.1), some studies use the root-mean-

square (RMS) value, i.e., the so-called volume, or approximately the loudness [WBKW96,

PT05]. Some other studies consider energy features in the frequency domain, using either

the total power or the subband power as features [LiOO, LCTC05].

Short-Time Average Zero-Crossing Rate

The short-time average zero-crossing rate (ZCR) can be defined as

1 N

ZCR, = -J2 |sgn (xn[z]) - sgn (xn[i - 1])| (2.2)
1 i=2

where ZCRn denotes the nth frame ZCR and sgn(-) is the sign function. Since unvoiced

speech typically has much higher ZCR values than voiced speech, the ZCR can be used to

distinguish between voiced and unvoiced speech [O'SOO].

In [EMKPKOO], a new ZCR-based feature, the linear prediction zero-crossing ratio (LP-

ZCR), is defined as the ratio of the ZCR of the input to the ZCR of the output of the LP

analysis filter (i.e., the LP residual signal). According to this study, the LP-ZCR quantifies

the correlation structure of the input sound. For example, a highly correlated sound such

as voiced speech has a low LP-ZCR, while unvoiced speech has a value above 0.5. For a

white noise the LP-ZCR is ideally one.

Pitch/Fundamental Frequency

A harmonic sound consists of a series of major frequency components including the fun­

damental frequency and its integer multiples. Pitch, a perceptual term, is also used to

represent the fundamental frequency. The typical pitch frequency for a human being is

1In case a windowing operation is involved in the short-time analysis, xn[i], i = 1,2, • • • ,N, represent
the corresponding samples weighted by a specific window function.

2 A Review of Audio Classification Algorithms 20

between 50-450 Hz, whereas for music the value can be much larger [WLH00]. To design a

robust and reliable pitch detector for an audio signal is still an open research problem.

The fundamental frequency is often estimated in the time domain via the autocorrelation

function defined as
N

ACORn[fc] = - J2 xn[i\xn[i - k] (2.3)
i=k+l

where ACOR„[A;] is the autocorrelation function at a lag of k for the nth signal frame. An

alternative option is to use the average magnitude difference function (AMDF), which is

defined as [O'SOO]
N

AMDFn[fc] = Y, K\i] ~ xn{i - k}\ (2.4)
i=k+l

where AMDFn[/c] denotes the AMDF value at a lag of k for the nth signal frame.

Where the autocorrelation function ACOR„[£;] has peaks for values of k near multiples

of the pitch period, the AMDF has minima correspondingly [O'SOO]. Therefore, pitch can

be determined by locating peaks from the autocorrelation function or valleys from the

AMDF, and employing an approximate greatest common divisor algorithm.

Efforts have been made in different ways to obtain a robust estimation of the fundamen­

tal frequency value. Zhang and Kuo proposed an efficient and robust, but not necessarily

perfectly precise, feature, the short-time fundamental frequency (SFuF) [ZC01, ZK99].

When the sound is harmonic, the SFuF value is equal to the fundamental frequency esti­

mated at that instant; when the sound is non-harmonic, the SFuF value is set to zero. In

[LZJ02], a subband-based pitch feature, band periodicity (BP), is defined as the periodicity

of a subband. It is observed that the band periodicity of music is in general much higher

than that of environment sound. Another subband-based pitch detection scheme can be

found in [LCTC05] wherein a noise-robust wavelet-based pitch detection method is used to

extract the pitch value.

2 A Review of Audio Classification Algorithms 21

Spectral Centroid or Brightness

As a measure of the centroid of the magnitude spectrum or power spectrum, the spectral

centroid (also called brightness) can be defined as [WBKW96] [LiOO]

E kAn[k]
SPCTn = ^ (2.5)

E K[k) .
fe=i

where SPCTn denotes the spectral centroid corresponding to the nth signal frame, An[k]

is the kth. component of the spectrum vector for the nth signal frame, and K is the size

of the spectrum vector An. An can be a magnitude spectrum as used in [WBKW96], or

power spectrum as used in [LiOO]. In [NLS+99], a similar feature, the center frequency of

subband, is estimated by calculating the subband centroid for each MPEG audio frame.

Spectral centroid or brightness can be used to characterize the higher frequency content

of the signal [WBKW96]. According to [SS97], many kinds of music involve percussive

sounds which, by including high-frequency noise, push the spectral mean higher.

As an example, Fig. 2.1 shows spectral centroid values for speech, music and noise, each

with a length of 10 s and sampled at 16 kHz. The length of the FFT analysis window is 30

ms with an overlap of 20 ms, corresponding to an increment of 1 unit along the time index

axis. For speech, due to the different characteristics of voiced speech and unvoiced speech

(plus some inactive background sounds), a relatively large fluctuation pattern is seen over

time. For music and noise, the variation patterns over time are relatively smooth, with the

average value of noise being higher than that of music.

Spectral Rolloff Point

Scheirer and Slaney defined the spectral rolloff point as the 95th percentile of the power

spectral distribution [SS97], i.e., a value Rn such that

Rn K

YJMk) = uYsAn[k] (2-6)
fc=i fc=i

where a = 0.95 and An[k] denotes the kth component of the power spectrum vector for the

nth signal frame.

2 A Review of Audio Classification Algorithms 22

Time Index Time index Time Index

(a) (b) (c)

Fig. 2.1 Spectral centroid. (a) Speech, (b) Music, (c) Noise.

Unvoiced speech has a high proportion of energy in the high-frequency range of the

spectrum whereas most of the energy for voiced speech and music is located in lower

frequency bands. Z?n is a measure of the skewness of the spectral shape as the value is

higher for right-skewed distributions [SS97]. A slightly different measure is calculated in

[TCOO], where the rolloff point is defined over subband components (MPEG compressed

data).

Spectral Flux

Spectral flux is a measure of spectral change. It is defined as the 2-norm of the frame-to-

frame magnitude spectrum difference [SS97, XMS05], i.e.,

K

Y,(An+1[k]-An[k])2 (2.7)
fc=i

where SPFXn denotes the spectral flux.

Speech alternates periods of transition (consonant-vowel boundaries) and periods of

relative stasis (vowels), while music typically has a more constant rate of change.

SPFXn =
A

2 A Review of Audio Classification Algorithms 23

Bandwidth

In [WBKW96], bandwidth is computed as the magnitude-weighted average of the differ­

ences between the spectral components and the centroid, i.e.,

BWn =

\

f:(k-SPCTn)
2An[k]

k=i

EA»[fc]
1=1

(2.8)

where BWn denotes the bandwidth, and SPOT™ is the spectral centroid as defined in (2.5).

In [WBKW96], An[k] represents magnitude spectrum, whereas in [LHWC97, LiOO], it is the

power spectrum. Essentially, the bandwidth as defined in (2.8) characterizes the spread of

energy (or magnitude) with respect to the spectral centroid.

Mel-Frequency Cepstral Coefficients

Mel-frequency cepstral coefficients (MFCCs) are the most popular features for automatic

speech recognition. MFCCs employ a nonlinear frequency axis following the Bark or mel

scale, and provide an alternative representation for speech spectra which incorporate some

aspects of audition [DM80, RJ93, O'SOO]. MFCCs are commonly derived as follows:

• Take the Fourier transform of the nth signal frame (with appropriate window function

applied).

• Map the log-energy of the spectrum obtained above onto the mel scale, using a set

of triangular overlapping windows (also called filters).

• Apply the discrete cosine transform (DCT) to the list of mel scale log-energy, i.e.,

z = l , 2 , - - - , M (2.9) MFCCn[i} = Y^Ln[j}cos
1 \ 7T

2 J

where M is the number of cepstrum coefficients, J is the number of triangular filters,

and Ln[j] represents the log-energy output of the j th filter.

Despite the differences among various studies on the mel scale conversion, the mel-frequency

scale is widely accepted as a linear frequency spacing below 1000 Hz and a logarithmic

2 A Review of Audio Classification Algorithms 24

spacing above 1000 Hz [DM80]. Such a frequency spacing scale has been used to capture

the phonetically important characteristics of speech. In [DM80], a set of 20 triangular

windows was used wherein the frequency range covers up to around 5 kHz.

MFCCs are also found useful in audio classification applications [Li00]. Two properties

of MFCCs, one being that the first coefficient is proportional to the audio energy and the

other being that there is no correlation among different coefficients, make MFCCs attractive

in audio classification [LHOOa].

In [KMS04], speaker recognition experiments have been conducted to evaluate the effi­

ciency of an audio indexing and retrieval system based on audio spectrum basis (ASB) and

audio spectrum projection (ASP) of MPEG-7 audio descriptors. The experimental results

indicate that MFCC features together with delta and double-delta MFCCs outperform

MPEG-7 features.

LPC-Related Features

A popular alternative to the short-time Fourier transform for speech signals is linear pre­

dictive coding (LPC) analysis [RS78, O'SOO]. LPC estimates each speech sample based on

a linear combination of its previous samples. By minimizing the error between the actual

and the predicted samples over a finite interval, a set of predictor coefficients can be de­

termined, which provides an analysis-synthesis system for speech. The linear prediction is

closely related to the speech generation model wherein speech can be modeled as the out­

put of a linear, time-varying system excited by either quasi-periodic pulses (during voiced

speech), or random noise (during unvoiced speech) [RS78].

LPC is one of the most common techniques for low-bit-rate speech coding. The pop­

ularity of LPC comes from the relatively simple computation procedure yet precise repre­

sentation of the speech magnitude spectrum. LPC can be used to estimate basic speech

parameters, e.g., pitch, formants, vocal tract area function.

LPC analysis is also employed in audio classification to extract frame-level features. El-

Maleh et al. [EMKPK00] proposed a frame-by-frame classification scheme based on 10th

order line spectrum frequency (LSF) (also called line spectrum pair (LSP)) coefficients and

the differential LSFs. The LSF-based features are extracted to capture the fine spectral

variations between speech and music. According to [EMKPK00], small differential LSPs

indicate that the energy peaks are tightly packed while larger values can be interpreted as

2 A Review of Audio Classification Algorithms 25

a broader distribution. A similar analysis can be found in [JLZOO] wherein LSF analysis is

employed to refine the classification results from a pre-classifier.

In [XMS05], the so-called linear prediction coefficients-derived cepstrum coefficients

(LPCCs) are employed. Test results show that LPCCs are much better than LP coefficients

in identifying vocal music. Besides, according to [XMS05], the performance of the LP

coefficients and LPCCs can be improved by 20%-25% if the LP coefficients or LPCCs are

calculated in subbands.

2.2.2 Clip-Level Features

Some clip-level features are designed to characterize the temporal variation of frame-level

features (i.e., they are calculated using frame-level features), whereas others are designed

without the use of frame-level features. The most widely used clip-level features are the

statistical mean and variance values of frame-level features such as the energy and ZCR.

In addition, there are many other clip-level features as introduced below.

Energy-Based Features

The percentage of low energy frames is proposed in [SS97] to represent the variation of the

short-time energy. It is defined as the proportion of frames with RMS (root mean square)

power less than 50% of the mean RMS power within a window of 1 s. A similar feature,

low short-time energy ratio (LSTER), is defined in [LZJ02] and [JLZOO] as

Nf-l

LSTER = - L V [sgn(0.5 E-En) + l] (2.10)

where Nf is the number of frames in a clip, En represents the nth frame energy, E denotes

the average short-time energy in a window of 1 s, and sgn(-) is the sign function. In general

there are more silence frames in speech than in'music. As a result, the LSTER measure of

speech will be much higher than that of music. According to [LZJ02], when using LSTER

as the only feature to discriminate speech from music, the error rate is 8.27%.

Normalized RMS variance is defined in [PT05] as the ratio of the RMS variance to the

square of the RMS mean, wherein here RMS value corresponds to the square-root value of

the frame energy. The generalized x2 distribution is used to approximate the distribution

2 A Review of Audio Classification Algorithms 26

of RMS values. With a separation threshold of 0.24, 88% of the speech segments and 84%

of the music segments can be correctly identified [PT05]..

Energy features are also considered in the subband domain, for example, in [NLS+99].

In [SS97], a so-called 4-Hz modulation energy is proposed where the calculation is based

on the energy distribution in 40 perceptual subbands. This feature is based on a generally-

accepted observation that speech has a characteristic energy modulation peak around the

4 Hz syllabic rate. Speech tends to have more modulation energy at 4 Hz than music does.

ZCR-Based Features

Speech signals produce a marked rise in ZCR during periods of unvoiced speech (especially

fricatives). As a result, the distribution of ZCR for speech signals is skewed towards the

high end, generating a distribution different from music signals, whose ZCR variation is not

distributed with the same bimodality as voiced and unvoiced speech [Sau96]. To capture

the lopsidedness of the distribution of ZCR, Saunders [Sau96] employed a set of features

including the standard deviation of the first order difference of the ZCR, the third central

moment about the mean, the total number of zero crossings exceeding a threshold, and the

difference between the number of zero crossing samples above and below the mean.

A so-called high zero-crossing rate ratio (HZCRR) is designed in [JLZ00] and [LZJ02]

to reflect the skewness of the ZCR distribution. It is defined as follows [LZJ02]:

Nf-1

HZCRR =~7j-'52 [sgn(ZCRn -1.5 ZCR) + l] (2.11)
f n=0

where ZCRn is the nth frame ZCR, and ZCR is the average ZCR in a 1 s window. According

to [LZJ02], if HZCRR alone is used to discriminate speech from music, the error rate is

19.36%.

Since there are always some silence intervals in a speech, the occurrence of null zero-

crossings (i.e., ZCR = 0) can be used to identify speech. Based on this, the ratio of null

zero-crossings can be used to identify speech segments [PT05]. However, the accuracy of

this feature may be affected by the presence of background noise or a change of speaking

rate.

2 A Review of Audio Classification Algorithms 27

Spectrogram-Based Features

A FFT-based or other sort of spectrogram effectively describes the spectral-temporal pat­

tern of an audio clip. In [ZC01], a feature called spectral peak track is determined by detect­

ing peaks in the power spectrum generated by the autoregressive (AR) model parameters

and checking harmonic relations among the peaks. For sounds from musical instruments,

their spectral peak tracks usually last for a certain period of time while remaining at the

same frequency level. Sounds from human voices have harmonic peak tracks which align

tidily in the shape of a comb. For songs, there are relatively long and stable tracks because

the voice may stay at a certain note for a period of time. Meanwhile, due to the vibration

of vocal cords, the spectral peak tracks in songs are often in a ripple-like shape. However,

for speech segments, the spectral peak tracks normally lie in lower frequency bands, and

tend to be shorter because there are intermissions between voiced syllables. In addition, the

spectral peaks may fluctuate slowly because the pitch may change during the pronunciation

of certain syllables.

In [LZJ02], an average spectral flux is proposed. It is defined as the average variation

value of spectra between two adjacent frames in a one-second window. It is found that in

general this value for speech is higher than that of music. In addition, the average spectral

flux for environment sound is among the highest and it changes more dramatically than

speech or music.

Rhythm and Tempo

In [SS97], a novel feature, called pulse metric, is calculated to determine the amount of

"rhythmicness" in a window of 5 s. The presented approach divides the signal into six

bands and finds the peaks using autocorrelations in the envelopes of each band, where the

peaks correspond roughly to perceptual onsets. According to [SS97], pulse metric may

indicate whether there is a strong, driving beat (i.e., techno, salsa) in the signal. Instead

of the autocorrelation method as presented in [SS97], Scheirer proposed another method

wherein banks of parallel comb filters are used to analyze the tempo of, and extract the

beat from, musical signals [Sch98].

A similar feature is proposed in [JOMM02] to classify speech and music wherein rhyth­

mic pulses are detected using a long-term autocorrelation method and with MPEG-1 en­

coded bitstreams.

2 A Review of Audio Classification Algorithms 28

In [FU01], a feature called beat spectrum is proposed to characterize the rhythm and

tempo of music and audio. The beat spectrum is a measure of acoustic self-similarity as

a function of time lag. A distance measure is used to calculate the similarity between

all pairwise combinations of feature vectors. The beat spectrogram is also proposed to

graphically illustrate rhythm variation over time.

Others

There are many other clip-level features. For example, a noise frame ratio (NFR) is pro­

posed in [LZJ02], where it is defined as the ratio of the number of noise frames to the

number of total frames in a given audio clip. Also in [LZJ02], the LSP dissimilarity be­

tween two one-second audio clips is measured to discriminate speech and noisy speech from

music.

In [PRAO03], based on observations of signals and spectrograms suggesting that music

appears to be more "ordered" than speech, entropy modulation is proposed to measure the

"disorder" of speech and music. Using the entropy computed from each signal frame (16

ms), the entropy modulation is calculated over a 1 s window. Entropy modulation is higher

for speech than for music [PRAO03].

2.3 Classification Methods

Depending on different requirements, the classifiers employed in audio classification range

from simple rule-based methods to more complex pattern recognition approaches. The

rule-based classifiers, such as those used in [ZC01, PT05, JOMM02], are often used in an

application where there is a requirement for real-time processing. Other pattern recognition

approaches commonly used in audio classification applications include the hidden Markov

model (HMM), the support vector machine (SVM), the Gaussian mixture model (GMM),

etc. A brief introduction to these classification approaches is given below.

2 A Review of Audio Classification Algorithms 29

2.3.1 Gaussian Mixture Model

A GMM represents each class of data as the union of several Gaussian clusters in the feature

space. The probability density function (pdf) of class i, / (x | i) , is defined as

j

/(x|t) = ^ u ; j 6 j (x) (2.12)
i=i

where x represents an observed feature vector of dimension n, i.e., a point in the feature

space Rn, Wj's are positive scalar weights with their sum equal to 1, and fy(x) is a Gaussian

multivariate pdf which is completely specified by its mean vector fij and covariance matrix

K,.

Training feature vectors are used to determine the parameters of the mixture density,

i.e., the weights Wj, and the mean vectors \x^ and covariance matrices Kj of the Gaus­

sian densities bj(x). The number of mixtures J is predetermined. The mixture model

approximates the underlying density of the training vectors. Determination of the GMM

parameters can be accomplished via a maximum likelihood formulation and the use of the

iterative expectation-maximization (EM) algorithm [RN03].

The testing measures how well the new observation vector x is modeled by the trained

Gaussian mixture models, i.e., likelihood is calculated for each test feature using the GMM

from the training phase. Finally, an incoming point in the feature space is assigned to

whichever class j the point is most likely to have come from, i.e.,

j = argmax{/(x|i)} (2.13)
i

Various audio classification applications using the GMM as classifiers can be found in

[SS97, WHJ+98, TRRLOO, LHOOa, PRAO03, RA04].

2.3.2 Hidden Markov Model

As the dominant tool in speech recognition, HMM is also used in audio classification ap­

plications, for example, in [ZK99, ZBC03, NL05, XRDH03]. In [ZK99], a HMM-based

fine-level classification is implemented wherein the environmental sounds, which are iden­

tified from the coarse-level classification, are further classified into finer classes such as

applause, rain, birds' sound, etc. In [ZBC03], a home video abstraction technique combin-

2 A Review of Audio Classification Algorithms 30

ing audio and video features is presented, wherein the background sound, which is obtained

from'the first-stage classification, is further classified into laughter, applause, scream and

others using HMM.

As a generative modeling approach, HMM describes a stochastic process with hidden

variables that produces the observable data. For the speech recognition problem, the

underlying assumption of the HMM is that the speech signal can be well modeled as a

parametric random process, and the corresponding parameters can be estimated in a well-

defined manner [Rab89, RJ93].

Taking Zhang and Kuo's work as an example [ZK99], a hidden Markov model with

continuous observation densities and explicit state duration densities is used to model each

class of sound. The complete parameter set of the HMM is represented as

A = (A , B , D , T T) (2.14)

where A is the transition probability matrix, B denotes the parameters of the observation

density, D denotes the parameters of the duration density, and ix represents the initial state

distribution. To train the HMM parameters, the parameters of the observation density,

which take the form of Gaussian mixtures, are first estimated for each state through a

maximum likelihood iteration process. Then, the transition probability and the duration

density parameters are calculated statistically according to the state indices of feature

vectors in the training set. The initial state distribution is usually set as

*i = jf> l<i<N (2.15)

where N is the number of states.

In [ZK99], HMM parameter sets are built for ten different classes of sounds, which

include applause, birds' cry, dog bark, explosion, foot step, laugh, rain, river flow, thunder,

and windstorm. That is, there are ten classes of sounds modeled with parameter sets

Aj, 1 < i < 10. Feature vectors X = {xi,x2, • • • , x r } are extracted from 6 to 8 sound

clips, and used for building the model for each audio class. The features used are taken

directly from the coefficients of a 128-point FFT applied to the audio signal, i.e., a feature

vector of 65 dimensions corresponding to the logarithm of the amplitude spectrum between

normalized frequency 0 and ir. Information about timbre and rhythm is embedded in the

2 A Review of Audio Classification Algorithms 31

HMM, wherein timbre is modeled by the state of HMM and represented with a Gaussian

mixture density, and rhythm is denoted by transition and duration parameters.

Once the model parameters are estimated, the HMM likelihoods P(X|Aj), 1 < i < K,

can be computed for any new set of feature vectors. A test sound is classified into class j

if it maximizes P(X|Aj), i.e.,

j = axgmax{P(X|Ai)}. (2.16)
\<i<K

In [ZK99], fifty new sound clips were used to test the classification accuracy. A classification

accuracy about 80% was reported.

2.3.3 Support Vector Machine

Support vector machine (SVM) is a statistical learning technique that has been success­

fully applied to pattern recognition [CV95, Bur98]. A SVM first transforms input vectors

into a high-dimensional feature space using a linear or nonlinear transformation, and then

conducts a linear separation in this feature space.

Fig. 2.2 Linear separating hyperplane for a separable case. The support
vectors are circled.

To illustrate the operation of SVM, consider a simple problem shown in Fig. 2.2 where

a linear machine is trained on a two-class separable data set. Assume we have the following

2 A Review of Audio Classification Algorithms 32

training data

{Xi.j/J, i = l,2,---,Z (2.17)

where the observation Xj e R", the class y\ £ { — 1,1}, and / is the size of the data set.

Suppose there exists a hyperplane H0 which separates the training data. That is, define

H0 as

H0:w
Tx + b = 0 (2.18)

where x represents the points lying on Ho, w is normal to Ho, T represents the transpose,

and b G R. Data points such that w T x + b > 0 (< 0) are referred to as positive (negative)

samples, respectively. Let d+ and d~ represent the shortest distance from H0 to the closest

positive and negative samples, respectively. The quantity d = d+ + d~~ is further defined as

the separation margin of the hyperplane Ho- Therefore, for a linearly separable two-class

case, as illustrated in Fig. 2.2, the support vector machine algorithm simply looks for the

optimal separating hyperplane, i.e., H0 with the largest margin. The constraints in this

optimization problem can be formulated as follows [Bur98]:

wTXi + b > +1 for yi = +1 (2.19)

wrXi + b < - 1 for yi = - 1 (2.20)

These can be further combined into one set of inequalities as

yi(w
TXi + b)-l > 0 Vz. (2.21)

Through a Lagrange approach, the optimal solution w can be found as [Bur98]

i

w = ^ W c i (2.22)

where ait i = 1, 2, • • • , /, are the nonnegative Lagrange multipliers introduced for each of

the inequality constraints in (2.21). The so-called support vectors are the points X; with

a; > 0 and lying on the hyperplane Hx : wTXi + b = 1, or H2 : wTXj + b — —1.

After a support vector machine is successfully trained, we may determine the class of a

given test pattern x, i.e., c(x), by checking on which side of the decision boundary x lies.

2 A Review of Audio Classification Algorithms 33

That is,

c(x) = sgn(w rx + b) = sgn I J ^ a ^ x f x + b 1 (2.23)

where sgn(-) is the sign function.

In cases the data are not linearly separable, but nonlinearly separable, a nonlinear

support vector classifier can be constructed using a kernel function K(xi,~x) to replace

the product xfx that characterizes the linear case [CV95, Bur98]. For example, we now

determine the class of a given test pattern x as

c(x) = sgn I Y^OiiViKixi,x) + b\ (2.24)

where the model parameters aij and b are obtained through training. Commonly used

kernel functions include the polynomial function, the Gaussian radial basis function, and

the sigmoid function.

Although the SVM classifiers described above are binary in nature, they can be com­

bined to handle multiclass cases. A simple way is to take a "one-versus-rest" strategy to

train N classifiers, and determine the class for a test point which corresponds to the largest

distance [Bur98]. There are more efficient SVM algorithms proposed to handle multiclass

classification problems, e.g., in [CS01, TJHA05].

It is found in some studies that SVM is much more effective than other conventional

classifiers in terms of the classification accuracy, computation time, and stability to the

parameter settings [LCTC05]. For example, in [SchOO], SVM is shown to outperform neural

networks and ^-nearest neighbor classifiers in a handwritten digits recognition task.

Recent years have seen increasing interest in the use of SVM in audio classification

applications [MROO, ZBC03, GL03, LD04, MSS04, XMS05, LCTC05]. For example, in

[LD04], four binary SVM classifiers are trained for a multiclass classification among seven

audio classes. Test results show that the proposed SVM-based method outperforms the

decision tree-based and the threshold-based audio classification schemes.

2.3.4 Nearest Neighbor

The nearest neighbor algorithm is relatively simple to implement. The main work of the

training phase is to store feature vectors and the corresponding class labels of the training

2 A Review of Audio Classification Algorithms 34

samples. To classify a new observation point x, the nearest neighbor algorithm examines

the local neighborhood of this point in the feature space and determines which training

point is closest to it. Observation x is then classified into the category of its nearest

neighbor.

If the number of the training points is large, instead of the single nearest neighbor, it is

more appropriate to consider K nearest neighbors. This leads to the if-nearest-neighbor

(KNN) algorithm, wherein a majority vote is conducted among the nearest K neighbors

and the test point is assigned to the class that is most common among its K nearest

neighbors [Fuk90]. The neighbors are taken from a set of training data. Euclidean distance

is commonly used for the KNN algorithm.

In [WBKW96], a nearest neighbor classifier based on a weighted Euclidean distance

measure is employed. One major disadvantage of the nearest-neighbor classifier is the need

to store a large number of training vectors, resulting in a large amount of computations

[EMKPKOO]. In [SS97], a so-called k-d spatial classification algorithm is presented to ap­

proximate the KNN approach by voting only among those training points in the particular

region of the feature space grouped together by the k-d tree partitioning. This approximate

algorithm is proved to be faster than the conventional KNN classifier in a speech/music

classification application in [SS97].

2.3.5 Neural Network

An artificial neural network (ANN), or simply a neural network, grew out of research in

artificial intelligence (AI). An ANN attempts to mimic the fault-tolerance and capacity to

learn of the human brain by modeling its low-level structure. ANN refers to a mathematical

or computational model, consisting of a set of interconnected artificial neurons that are

characterized by a set of input values, the associated weights, and a function that sums

the weights and maps the result to an output [RN03]. An ANN processes training data

one at a time, and "learns" by comparing the output class with the known actual class of

the training data. The errors.from the initial classification of the first data are fed back

into the network to modify the networks' parameters, and so on for many iterations until

certain training criteria are achieved.

The feedforward, back-propagation architecture is the most popular, effective, and easy-

to-learn model for complex, multi-layered networks. The typical back-propagation network

2 A Review of Audio Classification Algorithms 35

has an input layer, an output layer, and at least one hidden layer. The number of layers and

the number of processing elements per layer are important parameters in the design of an

ANN. Unfortunately, there is no clear answer to the optimal choice of these parameters for

a particular application. It is the "art" of the network designer. In applications, scientists

usually follow some general rules, which are developed over time, to set these parameters;

to some extent, this represents the art of the ANN design.

Over the years, ANN has emerged as a promising alternative to various conventional

classification methods due to several advantages including the nonlinear modeling ability,

which makes them flexible in modeling real world complex relationships [ZhaOO]. For ex­

ample, a multiscale framework for five-class audio classification is proposed in [ZZ04]. Test

results indicate that the proposed neural network classifier outperforms other classifiers like -

KNN. In [RSA05], compared to a GMM-based classifier, a neural network classifier with

features derived from an auditory model performs better in a four-class audio classification

task..

2.3.6 Linear Discriminant Analysis

Linear discriminant analysis (LDA) tries to find a linear combination of the extracted fea­

tures that best separates the group of cases [EKR04]. To represent the required linear

combination, a discrimination function is formed using the extracted features as discrim­

ination variables. After determining the first function that separates the groups as much

as possible, refined functions that improve the separation and are uncorrelated to previous

ones are further determined.

In [EKR04], using time-frequency analysis along with LDA, music clips are classified into

six different classes consisting of rock, classical, country, folk, jazz and pop. A similar work

can be found in [UKJ05]. Goodwin et al. proposed a LDA-based dynamic programming

segmentation algorithm for speech/music discrimination [GL04].

2.3.7 Other Classification Approaches

Many other pattern classification approaches have been applied in audio classification al­

gorithms besides the above introduced classifiers. For example, the AdaBoost algorithm

[RA05, GZL01], the nearest feature line (NFL) approach [LiOO], the maximum entropy

model based classifier [FZWL03], etc. In the development of an algorithm, the choice of a

2 A Review of Audio Classification Algorithms 36

specific classification method is determined by various factors, such as the requirements on

the computational complexity (including processing delay and memory requirement) and

the audio features employed in the algorithm.

2.4 Conclusion

In this chapter, a literature review has been presented on audio classification algorithms

from three perspectives, namely: audio signals, audio features, and classification approaches.

Regarding our proposed work, both three-class (i.e., speech, music and noise) and two-

class (i.e., noise and non-noise) classification experiments are conducted. The audio features

used in our experiments include conventional features such as MFCCs, features obtained

from the original auditory spectrum [WS94], and features obtained from the proposed

auditory-inspired FFT-based spectra. As for the classification approach, we use a SVM

algorithm and a decision tree learning algorithm. As introduced before, there has been

an increasing interest in the use of SVM in audio classification applications, and excellent

performance with SVM has been reported. In this work, we use the SVMstruct algorithm,

which is developed for predicting multivariate or structured outputs [TJHA05]. C4.5,

a widely used decision tree learning algorithm, is also used in our experiments for the

purpose of performance comparison [Qui93]. We will have more on these two classification

algorithms later in Chapter 6.

37

Chapter 3

Early Auditory Model and the

Noise-Suppression Property

As seen from the literature review presented in the previous chapter, some studies have

considered the presence of background noise in audio classification applications, for ex­

ample, in [LHOOb, WGY03, SA04, NHK05, ACRLF07]. However, such considerations are

limited to using background noise as one of the audio classes or as a component of some

hybrid sounds. The effect of background noise on the performance of classification has not

been investigated widely. In fact, a classification algorithm trained using clean sequences

may fail to work properly when the actual testing sequences contain background noise with

certain SNR levels [RA04, MSS04].

The so-called early auditory (EA) model presented by Wang and Shamma [WS94] was

proved to be robust in noisy environments due to an inherent self-normalization property

that causes spectral enhancement or noise suppression. Recently, this model has been

employed in audio classification and noise-robust performance has been reported in [RA04].

Below, a brief introduction to the EA model [WS94] is presented, with emphasis on

its computational structure, its inherent self-normalization property, and an existing audio

classification task using this EA model. Based on the existing research on the EA model

and its application in audio classification, we further propose several research topics which

are either new or have only raised limited attention at this stage. These research topics

form the basis of our proposed study on auditory-inspired noise-robust audio classification

algorithms.

3 Early Auditory Model and the Noise-Suppression Property 38

3.1 Structure of the EA Model

Computational auditory models are based on neurophysiological, biophysical, and psy-

choacoustical investigations at various stages of the auditory system [WS94, ECS03]. They

consist of two basic stages, namely: an early stage followed by a central stage. The for­

mer models the transformation of the acoustic signal into an internal neural representation

referred to as an auditory spectrogram, whereas the later analyzes the spectrogram to

estimate the content of its spectral and temporal modulations.

The auditory features used in this work are derived from an early auditory model which

can be simplified as a three-stage process as shown in Fig. 3.1 [WS94]. An audio signal

x(t) y,(t,s) y2{^) y3(t,s) y4(t,s) y5(t,s)

Input
h{t,s)

d

dt
- • g(0 vAJ) - •

a
5s

v(s) -> HWR - • Jr
Auditory
Spectrum

Cochlear Filters Hair Cells Lateral Inhibitory Network

•<—. • ^ • ^ •

Fig. 3.1 Schematic description of the EA model [WS94].

entering the ear. first produces a complex spatio-temporal pattern of vibrations along the

basilar membrane (BM). The maximal displacement at each cochlear point corresponds to

a distinct tone frequency in the stimulus. A simple way to describe the response character­

istics of the BM is to model it as a bank of constant- Q highly asymmetric bandpass niters

with impulse responses h(t, s), wherein t is the time index and s denotes a specific location

on the BM (or equivalently, a spatial or channel index). Given an input signal x(t), the

output of the BM is

yi{t,s) = x(t)*th(t,s) (3.1)

where *t denotes the time-domain convolution over the variable t.

At the next stage, the motion on the BM is transformed into neural spikes in the

auditory nerves. The process at this stage can be modeled by the following three steps:

1. Temporal derivative which converts the instantaneous membrane displacement into

velocity;

3 Early Auditory Model and the Noise-Suppression Property 39

2. Application of a sigmoid-like compression function <?(•), which models the nonlinear

channel through the hair cells; and

3. Lowpass filtering w(t) which models the leakage of the cell membranes.

Therefore, the response of this stage can be described as

y2(M) = s (^ i (M) J *tw(t). (3.2)

At the last stage, a lateral inhibitory network (LIN) detects discontinuities along the

cochlear axis s. The operations can be divided into the following four steps:

1. Derivative with respect to s (i.e., along the tonotopic axis) which describes the lateral

interaction among LIN neurons;

2. Local smoothing with v(s), which accounts for the finite spatial extent of the lateral

interactions;

3. Half-wave rectification (HWR) which models the nonlinearity of the LIN neurons;

and

4. Temporal integration which reflects the fact that the central auditory neurons are

unable to follow rapid temporal modulations.

The operations at this stage can be summarized as follows [WS94]:

2/3(M) = (^>2(M)J *av(s)
' (d \ d2

*tw(t)*8v(s) (3.3)

2/4(*, s) = max(y3(t,s),0) (3.4)

y5(t,s) = y4(t,s)*tIl{t) (3.5)

where II(t) is a temporal integration function and *s denotes convolution along the tono­

topic, or the cochlear axis, s.

For a frame of input signal, these operations effectively compute a so-called auditory

spectrum. In practice, these operations can be implemented in the discrete-time domain

by use of appropriate digital filters.

3 Early Auditory Model and the Noise-Suppression Property 40

3.2 Noise-Suppression Property

In [WS94], through a stochastic analysis, this EA model was proved to be noise-robust due

to an inherent self-normalization property. The main results of this analysis are summarized

below.

3.2.1 Qualitative Analysis

Suppose the input signal x(t) can be modeled as a random process with zero mean. If

the bandwidth of the lowpass filter II(t) is narrow enough, the output auditory spectrum,

2/5(£, s), can be approximated by E[y^{t, s)) [WS94], where E[-] denotes statistical expecta­

tion. E[y^(t, s)] is referred to as an auditory spectrum in [WS94].

For the sake of simplicity, the temporal and spatial smoothing filters w(t) and v(s) are

ignored in the analysis [WS94]. From (3.4), we have [WS94]

E[y,(t,s)] = E
m a X (^ (^ l (t ' s)) ^ y i (M) ' 0

(3.6)

Define quantities U and V as1 [WS94]

U = U(t, s) = jtyx(t, s) = (jftx(t)\ *t h(t, s) (3.7)

. vs^-)=^'a)=(rw)*'(l^a0- (3-8)
Therefore, (3.6) can be rewritten as [WS94]

/ max{g'(u)v,0)fuv(u,v)dudv
•oo J—oo

/

oo roo

/ g'(u) max(v,0) fuv(u,v)dudv
-00 J —OO

/

oo

g'(u)E[max(V,0)\U = u\fu(u)du (3.9)
-oo

where fu(u) and fuv(u, v) denote the probability density function (pdf) of U and the joint

xThe dependence of U and V on indices (t, s) is dropped in the main text for notational simplicity and
convenience.

3 Early Auditory Model and the Noise-Suppression Property 41

density function of U and V, respectively at given (t,s) coordinates. Function g'(u) is

assumed non-negative.

The quantity V is of zero mean due to the zero-mean property of the input x(t). In

[WS94], it is observed that E[ma,x(V, 0)\U] is proportional (though not necessarily linearly)

to the standard deviation of V, namely av. Accordingly, the quantity E[max.(V, 0)\U] is

referred to as energy considering the one-to-one correspondence2 between the standard

deviation av and the variance a\.

For a sigmoid-like nonlinear compression function, the derivative, </(•), has a finite

input dynamic range. Outside this dynamic range, g'(-) is characterized by a negligible

gain. This implies from (3.9) that the estimation of the energy of V takes place only when

U lies within the dynamic range of </(•). When U has a large variance, it is less probable to

restrict its value within a certain range. As a result, the likelihood of having small values

of g'(U) and thus a small E\y±{t, s)\ is high. Therefore, conceptually, E[y±{t, s)) is inversely

proportional to the energy of U. Besides, through E[m&x(V, 0)\U], the correlation between

U and V also affects the energy estimation, and hence the auditory spectrum.

Further analysis in [WS94] reveals that noise suppression or spectral enhancement is

attributed in part to a self-normalization property, which is inherent in this EA model.

Specifically, the key conclusions on noise suppression from the original stochastic analysis

in [WS94] are summarized below.

1. The auditory spectrum E[y^(t,s)] is proportional to the energy of V, and inversely

proportional to the energy of U, where U and V are defined in (3.7) and (3.8).

2. Considering that the cochlear filters h(t, s) are broad while the differential filters

(d/ds)h(t, s) are narrow and centered around the same frequencies, U can be viewed

as a smoothed version of V.

3. Combining 1 and 2, it is concluded that the auditory spectrum is a kind of self-

normalized spectral profile. The self-normalization property results in the spectral

components of the audio signal receiving unproportional scaling. Specifically, a spec­

tral peak receives a relatively small self-normalization factor (i.e., the energy of U is

relatively small) whereas a spectral valley receives a relatively large self-normalization

factor.
2For convenience, we adopt a similar terminology in this work.

3 Early Auditory Model and the Noise-Suppression Property 42

4. The difference in the self-normalization further enlarges the ratio of spectral peak to

valley, a phenomenon referred to as spectral enhancement or noise suppression.

3.2.2 Quantitative Analysis of a Special Case

It is desirable that the above qualitative analysis on the self-normalization property be

verified by some results of quantitative analysis, e.g., the integration result of (3.9). How­

ever, due to the nonlinear nature of this model, it is difficult to find a simple closed-form

expression for this integral.

In [WS94], a special case has been studied wherein the hair cell nonlinear sigmoid

compression function is replaced by a step function. In this case, g'(u) becomes the delta

function 8(u), and (3.9) can be simplified as [WS94]

E[yi(t,s)] = E[max(V,0)\U = 0]fu(0). (3.10)

Assume the input signal x(t) is a zero mean Gaussian process. Since U and V are obtained

by linear filtering ofx(t), they are also zero mean Gaussian. The evaluation of the expected

value in (3.10) can be found as [WS94]

E[vA(t,s)] = 1p^VT=7i (3.11)

where r, au and av denote the correlation coefficient between U and V, the standard

deviation of U, and the standard deviation of V, respectively. This expression demonstrates

the self-normalization property of the auditory spectrum as analyzed above, i.e., E[y$(t, s)\

is proportional to the standard deviation of V (or the energy of V according to [WS94])

and inversely proportional to that of U (or the energy of U).

3.3 Audio Classification using EA Model-Based Features

The noise-suppression property of the auditory spectrum has been illustrated by several

examples in [WS94]. Concerning the audio classification application, which is the focus

of this thesis, a recent study by Ravindran and Anderson [RA04] describes the use of the

EA model to calculate audio features and excellent performance has been reported. They

proposed to use a noise-robust auditory feature (NRAF) as a viable alternative to MFCCs

3 Early Auditory Model and the Noise-Suppression Property 43

in a four-class (i.e., speech, music, noise, and animal sound) classification task. The NRAFs

are obtained by applying a discrete cosine transform (DCT) to the logarithm of the output

auditory spectrum data. For a frame signal of 8 ms, the auditory feature set is a 128-

dimensional vector. Principal component analysis (PCA) [Lay03] is performed to reduce

the dimension of the feature vector to 64. For the purpose of performance comparison, 13

MFCCs are also extracted. Based on the auditory or MFCC frame-level feature vectors,

mean and variance values are further calculated over a 1 s window and used for the training

and testing.

The Gaussian mixture model (GMM) is used to model each class of data. The feature

vectors from each class are used to train the GMM. During the testing, the likelihood that

a test sample belongs to each model is computed and the sample is assigned to the class

whose model produces the highest likelihood. The experimental error rate of NRAFs is

9.78% as compared to 14.15% for MFCCs.

To compare the noise robustness of the MFCC and NRAF features, a speech/music

classification experiment is further conducted in [RA04]. White'noise is employed to gen­

erate noisy samples with different SNR values. The GMM model is trained using clean

samples and tested with noisy samples. Test results are listed in Table 3.1.

Table 3.1 Error classification rates from [RA04] (%)

SNR (dB) MFCC NRAF

oo 0.00 0.33

15 40.33 17.66

10 41.00 26.40

5 41.00 38.16

Although the MFCC-based classification provides an excellent performance in clean test

cases, its performance degrades significantly as SNR decreases from oo to 15 dB, leading

to a relatively poor overall performance. However, this is not the case for the NRAF-based

classification which shows relatively more robust performance in noisy test cases.

3 Early Auditory Model and the Noise-Suppression Property 44

3.4 Open Research Problems

Noise-robustness is a property that is lacking in many of today's audio classification and

speech recognition systems. Inspired by the noise-suppression property of the EA model

[WS94], we seek in this thesis to investigate the application of this property to audio

classification algorithms. A series of related research topics, which are either new or have

only raised limited attention at this stage, are listed below: they form the basis of our

proposed study on auditory-based noise-robust audio classification algorithms.

Stochastic Analysis of Self-Normalization

In [WS94], the conclusions on the self-normalization property of the EA model, which

translates into spectral enhancement or noise suppression, are obtained using a qualitative

analysis first, followed by a quantitative analysis wherein a closed-form expression of the

auditory spectrum is derived. However, for the quantitative analysis, only a special, simpli­

fied case has been studied wherein a step function is used to replace the original nonlinear

sigmoid compression function. With respect to the limitation of the quantitative analysis

in [WS94], it is of interest to investigate the noise-suppression property from a broader

perspective, i.e., to derive a closed-form expression for auditory spectrum using a more

general sigmoid-like function, and to conduct relevant analysis.

Simplification/Approximation of the Original Auditory Spectrum

The noise-robustness of the original auditory spectrum has been demonstrated in different

applications [WS94, RA04]. However, this EA model is characterized by high computa­

tional requirements and nonlinear processing, which may prevent its use in some practical

applications. It is therefore desirable to compute an approximated or simplified version

of the auditory spectrum in the frequency domain wherein efficient FFT algorithms are

available. The aim is to develop a simplified FFT-based spectrum which is noise-robust in

audio classification applications while much simpler in computation, as compared to the

original auditory spectrum.

3 Early Auditory Model and the Noise-Suppression Property 45

Multi-Class Audio Classification Experiment

The effect of background noise on the performance of classification has been investigated

in [RA04] wherein a two-class classification task (i.e., speech/music) was carried out. To

evaluate the noise-robustness of a classification algorithm, a multi-class classification task,

especially with noise included as one audio class, would be more appropriate. With noise

as the background of speech or music and as one audio class, the classifier will face a more

difficult task. In addition, it is desirable to conduct classification experiments using audio

samples with different sampling frequency values.

Different features have been proposed for audio classification tasks. Considering the

focus of this research, it is of interest to extract conventional audio features based on the

proposed approximated or simplified noise-robust FFT-based auditory spectrum.

Some other issues are also to be investigated in order to evaluate the noise-robustness of

the proposed audio classification algorithm. For example, the use of different classification

approaches, the length of audio clips, etc.

3.5 Conclusion

In this chapter, we have presented a brief introduction to the EA model [WS94], including

its processing structure, its inherent self-normalization property, and the summary of a

recent study using this model for audio classification tasks. Several research topics were

further discussed, which form the basis of our proposed study on auditory-based noise-

robust audio classification algorithms.

46

Chapter 4

Analysis of the Self-Normalization

Proper ty

In [WS94], a special case was investigated wherein a simplified auditory spectrum was

derived by using a step function to approximate the original sigmoid compression function

of the EA model in Fig. 3.1. Although we may take a step function as a very special case

of the sigmoid compression function, it is desirable to obtain the closed-form expression

of j£[y4(£, s)] from (3.9) using a better, yet mathematically tractable, approximation. In

particular, it is of interest to determine whether the resulting expression still supports the

original qualitative analysis on self-normalization.

Having noticed the general nonlinear compression nature of the Gaussian cumulative

distribution function, and the resemblance between the graph of the sigmoid function and

that of the Gaussian CDF, below, we use the latter as an approximation to the sigmoid

compression function to derive a new closed-form expression of E[yt(t, s)] and conduct

relevant analysis.

4.1 Gaussian CDF and Sigmoid Compression Function

Referring to Fig. 3.1, the sigmoid compression function at the hair cells stage used in the

implementation [Neu] takes the following form:

4 Analysis of the Self-Normalization Property 47

0 . 8 -

0.6

0.4

0 . 2 -

7

1

, , g(x)
<D(x/og)

1 | M
1 ;

i \ ;
L/! :

2.5

1.5

0.5

,, 9 w
<t>'(x/ag)/ag

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

(a) (b)

Fig. 4.1 Sigmoid function (a = 0.1) and Gaussian distribution function
(<rg = 0.163). (a) g(x) and $(x/og). (b) g'(x) and (l/ag)& (x/ag).

where the coefficient a is typically set to 0.1. Fig. 4.1(a) shows the sigmoid function g(x)

with a = 0.1.

From Fig. 4.1(a), it is noted that g(x) resembles the CDF of a Gaussian random variable

with zero mean. In particular, with a = 0.1 in (4.1), g[x) is close to the CDF of a Gaussian

variable with zero mean and standard deviation ag = 0.163, i.e., $ (x/ag), where $(x) is

the CDF of a standard normal random variable as denned below:

$ (z) = i-t2'2dt. (4.2)

To show the resemblance, the function $(a;/0.163) is also plotted in Fig. 4.1(a). The

derivatives of the function g(x) and $(x/ag), respectively g'(x) and (l/crg)$' (x/ag) (i.e.,

Gaussian pdf), are shown in Fig. 4.1(b). To measure the relative difference between the

two curves in Fig. 4.1(b), a relative error E is denned as

E =
EWi^-il/a^'ixt/a,)]

(4.3)

From (3.9), the argument of the function g(x) is U, which is defined in (3.7). Based on

4 Analysis of the Self-Normalization Property 48

a practical range of the values of U as determined from experimental measurements using

signals with different SNR values, the relative error E between these two curves is of the

order of 5% or less for different processing channels1. In the following analysis, g'(x) with

a = 0.1 is therefore approximated as

g'{x) „ ______£_ = 1 C - . V ^ (4 . 4)

Og V2irag

where ag = 0.163.

4.2 Closed-Form Expression of E[y±{t, s)]

Similar to the stochastic analysis in [WS94], input signal x(t) is assumed to be a zero mean

stationary Gaussian process. From definitions given in (3.7) and (3.8), U(t,s) and V(t,s)

are obtained by applying linear filtering on x(t), and are thus zero mean, jointly Gaussian

random variables, i.e.,

U(tia)~tf(0,al) (4.5)

V(t,s).~M(0,al) (4.6)

where au = au(s) a n d av = av(s) denote t he s t a n d a r d devia t ions of U and V respectively.

Fur thermore , based on conclusions presented in [PP02] a n d [Mey70], t h e condit ional pdf

of V given U = u, deno ted as fv\u{v\u)i IS a l s o Gauss ian w i t h m e a n (j,v\u a n d variance a\,

given below:

Hv\u = ru— (4.7)

a\u = al{\ - r2) (4.8)

where r represents t he correlat ion coefficient be tween U a n d V.

W i t h these assumpt ions , the closed-form expression for (3.9) is ob ta ined as (see Ap­

pendix A for details)

* " ' S) I = J W M - (49)

^ h e r e are 129 channels, corresponding to a set of 129 bandpass filters [Neul.

4 Analysis of the Self-Normalization Property

Based on (4.9), the following two derivatives are found

dE[y4(t,s)} _ y/°2
g + vlO--r2)

dav 2TT(<72 + a2)

dE[y4(t,s)] -ouav

d<Ju 2*(al + o*)*y/al + aUl-r*)

(4.10)

[(1 + r > ; + (1 - rV2] • (4-H)

Therefore, given that au, av and ag are all positive, and \r\ < 1, we have dE[yi{t, s)]/dav >

0 and dE[yi{t,s)]/dau < 0, indicating that E\y±(t,s)] is a linear increasing function of av,

and a decreasing function of au.

Fig. 4.2 gives a three-dimensional view of E[y^(tts)] as a function of au and av, where

Og = 0.163 and r2 is set to a fixed value of 0.1 to facilitate the analysis2.

The results given in (4.9), (4.10), (4.11), and Fig. 4.2 indicate that E[yA(t,s)} is pro­

portional to ov (or, the energy of V according to [WS94]) and inversely proportional to

au (or, the energy of U according to [WS94]). Therefore, using a Gaussian CDF to ap­

proximate the original sigmoid function, the derived results support the original analysis

on self-normalization, which is summarized in Section 3.2.1.

4.3 Local Spectral Enhancement

Regarding the conclusions on self-normalization summarized in Section 3.2.1, statement 4

refers to a desirable situation where spectral enhancement or noise suppression is achieved.

It seems to be a natural result from statement 3, but it may not be necessarily the case.

To facilitate the following interpretative analysis on local spectral enhancement due to

the self-normalization property, we make the following simplified assumption:

B b . M] « g $. (4-12)

Suppose that V(t, sp) corresponds to a power spectral peak, and U(t, sp) is a smoothed

version of V(t, sp). Similarly, let V(t, sv) and U{t, sv) correspond to a power spectral valley

and its smoothed version respectively.

2According to our tests based on the implementation [Neu], the mean values of r2 for the three audio
classes (i.e., speech, music and noise) in different noise environments are around 0.1.

4 Analysis of the Self-Normalization Property 50

Fig. 4.2 E[y±(t, s)] as a function of au and av.

In statement 3, the word relatively indicates a comparison between the power spectrum

component and the corresponding smoothed version, i.e., we have the following:

V2(t,sp)/U
2(t,sp)>l (4.13)

V2(t,sv)/U
2(t,sv)<l. (4.14)

Assuming the ratio of spectral peak to valley is enlarged in the output auditory spec­

trum, the following should be satisfied:

V2(t,sp)/U
2(t,Sp) V2(t,sp)

V*(t,sv)/U*(t,sv) * V*{t,sv)
 { ' '

i.e., it is required that U2(t,sp) < U2(t,sv), which may not be necessarily so. In the case

with the above simplified assumptions, (4.13) and (4.14) do not necessarily ensure that we

have (4.15). Thus, the statement 4 is not guaranteed, although it refers to a property that

is desirable for noise suppression.

Although the enlargement of the ratio of spectral peak to valley is not guaranteed from

the above analysis, conditions given in (4.13) and (4.14) do provide a basis to implement

spectral enhancement. Given (4.13) and (4.14), a simple way to enlarge the ratio of spectral

4 Analysis of the Self-Normalization Property 51

peak to valley is to multiply the power spectral components V2(t,sp) and V2(t,sv) with

the corresponding ratios given in (4.13) and (4.14), i.e.,

V2(t,sp)/U
2(t,sp) V2(t,sp) V2(t,sp)

v2(t,Sv)/u
2(t,sv) I / 2 (M „) v2(t,Svy

 {-]

In the next chapter, the idea presented in (4.16) will be implemented in the proposed

FFT-based systems.

4.4 Approximation using a Gaussian Mixture Function

To provide a better approximation to the sigmoid compression function (4.1), instead of a

single Gaussian CDF, we may use a set of functions, for example, a set of M zero-mean

Gaussian distribution functions to approximate g'(x), i.e.,

g.(x) aj2mn*M (4 .n)

where Wj's are positive coefficients, and

J2wi = 1- (4-18)

i = l

M

i = l

Using a set of four Gaussian distribution functions, the approximation results are shown

in Fig. 4.3. Clearly, the 4-Gaussian mixture function produces a better approximation as

compared to the single Gaussian function shown in Fig. 4.1(b). In this case, the relative

error as defined in (4.3) over a practical range of values of U is of the order of 0.2% or less.

Due to the linear nature of the calculations involved in finding the integral result of

(4.9) when using an M-Gaussian mixture function (with zero mean) to approximate the

sigmoid function, the output (4.9) can be modified as

With positive coefficients Wi, the conclusions on the spectral enhancement given above

4 Analysis of the Self-Normalization Property 52

2.5

1.5

0.5

• g 'M
4-Gaussian

-1.5 -0.5 0.5 1.5

Fig. 4.3 Sigmoid function (a = 0.1) and Gaussian mixture function (M =
4).

using a single Gaussian function can now be extended straightforwardly, i.e., E[y^{t, s)]

is a weighted summation of M components, with each component proportional to av and

inversely proportional to au.

4.5 Conclusion

In this chapter, we have used the Gaussian CDF as an approximation to the sigmoid

compression function to derive a closed-form expression of E[y^(t, s)]. Based on the derived

results, E{y4(t, s)] is proportional to the energy of V and inversely proportional to the energy

of U, which supports the original analysis on self-normalization given in [WS94]. In the

next chapter, based on the condition given in (4.16), two algorithmic implementations will

be further proposed to evaluate this noise-suppression property in the frequency domain.

53

Chapter 5

Simplification of the Auditory

Spectrum

Despite the inherent noise-suppression property, the EA model [WS94] is characterized

by high computational requirements and nonlinear processing, which may prevent its use

in certain practical applications. It is therefore desirable to reduce the computational

complexity of this model while maintaining its noise-suppression property.

In this chapter, a simplified version of the original auditory spectrum is first proposed

wherein the processing steps are linear in the time domain except for the calculation of the

square-root value of the energy. The proposed analysis naturally leads itself to frequency-

domain approximations of the auditory spectrum in order to achieve a significant reduction

in the computational complexity. Following this, a simplified FFT-based spectrum is pro­

posed wherein a local spectral self-normalization is implemented through the use of a pair of

wide and narrow niters defined in the frequency domain. Finally, an improved implementa­

tion is further proposed to calculate a so-called simplified FFT-based auditory spectrum by

making use of the characteristic frequency (CF) values of the bandpass filter set of the EA

model [WS94] for power spectrum selection, and the use of a pair of fast and slow running

averages over the frequency axis to implement the spectral self-normalization. With the in­

troduced improvements, the proposed FFT-based auditory spectrum allows more flexibility

in the extraction of noise-robust audio features.

5 Simplification of the Auditory Spectrum 54

5.1 Time-Domain Simplified Auditory Spectrum

5.1.1 Nonlinear Compression

Referring to Fig. 3.1, at the hair cells stage, a sigmoid compression function g(-) is used to

model the nonlinear channel through the hair cells. Considering the nonlinear nature of the

sigmoid compression function, we may seek to replace it with different functions in order

to facilitate the analysis based on some approximated results. For example, as pointed out

earlier, a step function is used in [WS94] as an approximation to this sigmoid function to

conduct relevant analysis of the self-normalization property.

Below, to investigate the approximation of the EA model [WS94] from the perspective

of linear processing, the sigmoid compression function is replaced by a linear function, e.g.,

g(x) = x. Accordingly, from (3.9), we have

E\yA{t,s)] = E[max(V,0)]- (5-1)

Here E[y4(t,s)] represents the spectral energy profile of the sound signal x(t) across the

channels indexed by s.

5.1.2 Half-Wave Rectification and Temporal Integration

From Fig. 3.1 it is noted that the LIN stage consists of a derivative with respect to the

tonotopic axis s, a local smoothing operation by v(s), a half-wave rectification (HWR),

and a temporal integration (implemented with lowpass filtering followed by down-sampling

at a frame rate [Neu]). Essentially, for an input signal frame, the HWR and temporal

integration serve to calculate a positive quantity corresponding to a specific pair of frame

and channel indices (i.e., a component of the auditory spectrogram). One way to interpret

this positive quantity is simply as the square-root value of the frame energy in a specific

channel. Based on these considerations, we propose to approximate the HWR and temporal

integration by calculating the square-root value of the frame energy.

5.1.3 Simplified Auditory Spectrum

By introducing modifications to the original processing steps of the nonlinear compression,

half-wave rectification, and temporal integration, a simplified auditory spectrum is calcu-

5 Simplification of the Audi tory Spectrum 55

120

100

BO

c

1 60

40

20

' -t A

•K^*t-

• « * -

%**»" '

100 200 300 400 500 600 700 800

Time (ms)
100 200 300 400 600 6(

Time (ms)
700 800 900 100 200 300 400 500 600 700

Time (ms)

(a) (b) (c)

Fig. 5.1 Auditory spectrograms of a one-second speech clip, (a) Original
auditory spectrogram, (b) Simplified auditory spectrogram, (c) Simplified
auditory spectrogram without time-domain derivative.

lated. Figs. 5.1(a) and 5.1(b) show the original and the simplified auditory spectrograms

of a 1 s speech clip. As compared to the original auditory spectrogram shown in Fig.

5.1(a), the simplified one shown in Fig. 5.1(b) is to some extent a pre-emphasized version

wherein high-frequency components are enhanced [O'SOO]. Accordingly, to make this sim­

plified spectrogram close to the original one, we may de-emphasize the input signal of the

simplified EA model; or equivalently, the time-domain derivative operation (see Fig. 3.1)

is removed from the processing. As can be seen from Fig. 5.1(c), the resulting simplified

auditory spectrogram is a closer match to that of the original one shown in 5.1(a).

While the above simplified auditory spectrum leads to certain reduction in the com­

putational complexity, the main reason for the introduction at this part is to explore the

use of linear processing operations for subsequent frequency domain FFT-based process­

ing. Indeed, for the above simplified auditory spectrum, except for the calculation of the

square-root value of the energy, the proposed processing steps are linear. Considering the

relationship between time-domain and frequency-domain energies as per Parseval's theo­

rem [OSB99], it is therefore possible to analyze the simplified auditory model from the

perspective of frequency-domain processing.

Considering that the main focus of this thesis is the application of the EA model to audio

classification tasks, and not the exact frequency-domain implementation of this model, two

implementations1 are proposed below to calculate simplified FFT-based spectra wherein

1 Implementation here refers to the realization of an algorithm by means of computer software.

5 Simplification of the Auditory Spectrum 56

x(n)

Input
Audio

Clip

Normali­
zation

jt(n)

— •

FFT&
Power

Spectrum

X{k)

— •

— •

Selecting/
Grouping

Narrow
Window

Wide
Window

Y(i)

i

4

r

W)

JL C^
T

y (o

Z(i)

C(i)

Post-
Processing

Auditory-Inspired

Spectrum

Fig. 5.2 Schematic description of the proposed FFT-based implementations.

certain operations and features inherent in the calculation of the original auditory spectrum

are included. The first algorithmic implementation is proposed mainly for the verification

of the noise-suppression property, whereas the second one is an improved implementation

which calculates a simplified FFT-based auditory spectrum and allows more flexibility in

the extraction of audio features.

5.2 Implementation 1: A FFT-Based Self-Normalized Spectrum

To evaluate the noise-suppression property of the original auditory spectrum in the fre­

quency domain, an implementation is proposed to calculate a FFT-based spectrum wherein

the self-normalization property is integrated based on the condition given in (4.16). The

details of this implementation, illustrated in Fig. 5.2, are presented below.

5.2.1 Normalization of the Input Signal

To make the algorithm adaptable to input signals with different energy levels, each input

audio clip (with a length of 1 s) is normalized with respect to the square-root value of its

5 Simplification of the Auditory Spectrum 57

average energy, i.e.,

x(n) = ±x(n) (5.2)

C =

where L denotes the length of an audio clip, and x(n) and x(n) represent the audio clip

before and after normalization respectively

5.2.2 Calculation of a Short-Time Power Spectrum

Using the normalized audio signal x(n), the corresponding discrete Fourier transform (DFT)

is calculated using a M-point FFT algorithm, i.e.,

M - l

X(k) = Y^ x{n)w{n)e-j2™k/M, k = 0,1, • • • , M - 1 (5.4)
n=0

where w(n) is the Hanning window function [OSB99], and X(k) represents the complex

DFT coefficients. For signals sampled at 16 kHz, as used in this thesis, M is set to 512,

corresponding to an analysis window of 30 ms and an overlap of 20 ms.

Based on the complex DFT coefficients, the corresponding power spectrum coefficients

are further calculated. Considering the symmetry property of the DFT coefficients of a

real-number sequence [OSB99], only half of these coefficients are required, leading to a

power spectrum vector of dimension M/2.

5.2.3 Power Spectrum Grouping

To reduce the dimension of the obtained power spectrum vector, we may use methods

like principal component analysis (PCA) [Lay03]. For the sake of simplicity, we propose a

5 Simplification of the Auditory Spectrum

grouping scheme which is described as follows:

Y{i) = {

X(i) 0<i<79

1 i
- J2 x (2i ~ 80 + k) 80 < i < 119
2 fc=o
1 7

- E X (8i - 800 + k) 120 < i < 131
° fc=0

(5.5)

where i is a modified frequency index and Y(i) represents the power spectrum after the

grouping operation. The grouping scheme defined in (5.5) gives emphasis to low-frequency

components. With (5.5), a set of M/2, i.e., 256, power spectrum components is transformed

into a 132-dimensional vector.

5.2.4 Spectral Self-Normalization

To apply the self-normalization property as given in (4.16) to the above 132-dimensional

power spectrum vector, we first define a pair of narrow and wide filters, Wn(i) and Ww(i)

respectively, as

WnOO = Y l akS^ ~ k^
fc=-i

2

Ww(i) = Yl h5{i - k)

(5.6)

(5.7)
fc=-2

where afc's and b^s are coefficients, and i is the modified frequency index. Let Yn(i) and

Yw(i) represent the outputs from filters Wn(i) and Ww(i) respectively, i.e.,"

Yn(i) = Y{i)*Wn(i)

Yw(i) = Y(i) * Ww(i)

(5.8)

(5.9)

where * denotes convolution. Based on Yn(i) and Yw(i), a self-normalization coefficient at

modified frequency index i, C(i), is defined as

C(t) =
Yn(i)
YJi)'

0,1 , - - - ,131. (5.10)

5 Simplification of the Auditory Spectrum

The coefficients of the filters Wn(i) and Ww(i), i.e., a^'s and bk's, were adjusted exper­

imentally so that in general, C(i) is larger than 1 for a spectral peak and smaller than 1

for a spectral valley. For example, we may assume Wn(i) = 8(i), whereas Ww(i) is a bell-

shape symmetric filter with Ylk=-2^k = !• Hence, Yn{i) = Y(i) while Yw(i) is a smoothed

version of Y(i). This way, in general the corresponding filtered value Yw(i) is smaller for

a spectral peak, while for a spectral valley, the corresponding filtered value Yw(i) is larger.

Accordingly, C(i) is larger than 1 for a spectral peak and smaller than 1 for a spectral

valley, which coincides with the conditions given in (4.13) and (4.14).

Finally, following the idea given by (4.16), the self-normalized spectrum at frequency

index i, Z(i), is obtained as follows:

Z{i) = C{i)Y{i) • (5.11)

5.2.5 Post-Processing

The square-root values of the self-normalized spectrum data Z(i) are further calculated.

After discarding the first and the last two components, we obtain a 128-dimensional FFT-

based self-normalized spectrum vector.

5.3 Implementation 2: A FFT-Based Auditory Spectrum

The effectiveness of the proposed self^normalization scheme implemented in the FFT do­

main, as described in Section 5.2, will be verified in the performance analysis presented in

Chapter 6. From Section 5.2, the proposed algorithmic implementation employs a simple

grouping scheme (5.5) to reduce the dimension of the power spectrum vector. However, this

scheme fails to give a clear interpretation of the meaning of the modified frequency index,

making it inappropriate in the applications wherein frequency-dependent audio features

need to be extracted (e.g., spectral centroid, bandwidth).

Following the work in Section 5.2, we further present an improved implementation for

the calculation of a FFT-based auditory spectrum by introducing additional features of the

EA model. Specifically, the characteristic frequency (CF) values Of the constant- Q band­

pass filters h(t, s) (see Fig. 3.1) are used for power spectrum selection, and a pair of fast and

slow running averages over the frequency axis are used to implement the self-normalization.

With these improvements, the proposed FFT-based auditory spectrum allows flexibility in

5 Simplification of the Auditory Spectrum 60

the extraction of noise-robust audio features. The proposed implementation has a similar

structure as that illustrated in Fig. 5.2, and the relevant details are presented below.

5.3.1 Normalization of the Input Signal

This part of the processing is identical to that described in Section 5.2.

5.3.2 Calculation of a Short-Time Power Spectrum

As discussed in Section 5.2.2, an M-point FFT algorithm is employed to calculate a short-

time power spectrum. To determine an appropriate value for M, we have to trade perfor­

mance against complexity.

Referring to Fig. 3.1, the cochlear filters are modeled as a set of constant-Q bandpass

filters [WS94, RuOO]. In the implementation of [Neu], the 129 characteristic frequency (CF)

values of the corresponding constant- Q bandpass filters, Fk, are determined by2

Fk = 2lkF0, fc = 0,1, • • - , 128 (5.12)

where F0 = 440 Hz, and lk = (k - 31)/24.

According to (5.12), the CF values cover a range from 180 Hz to 7246 Hz. The difference

between two neighboring CF values is as low as about 5.27 Hz for k — 1 and 2. For a signal

sampled at 16 kHz, which is used in this study, even with a 2048-point FFT, such a small

frequency interval cannot be resolved. Meanwhile, since the CF values are exponentially

located, the frequency resolution (i.e., Fs/M, where Fs is the sampling frequency and M is

the FFT size) achieved from a 2048-point or even higher-order FFT algorithm is more than

necessary for the high frequency bands. Here, we use an M = 1024 point FFT to achieve

a trade-off between frequency resolution and computational complexity. The length of the

analysis window is 30 ms and the overlap is 20 ms.

5.3.3 Power Spectrum Selecting

To reduce the dimension of the obtained power spectrum vector, a simple selection scheme

is proposed as follows. First, we extend the range of values of k in (5.12), i.e., from -11 to

2Instead of 129, the actual size of the output auditory spectrum vector is 128 due to the derivative with
respect to the channel (see Fig. 3.1).

5 Simplification of the Auditory Spectrum 61

•131. Or equivalently, (5.12) is modified as3

Fk = 2lkF0, A; = 0,1, •••,142 (5.13)

where lk — {k — 42)/24. For each Fk) the corresponding frequency index Nk is determined

by

Nk = int(^-Y fc = 0 , l , . - - ,142 (5.14)

where function int(x) returns the nearest integer value of x, and Fs is the sampling fre­

quency. After discarding the repeated Nk values and renumbering the remaining values, we

obtain a set of 120 characteristic frequency index values fa, i = 0,1, • • • , 119, as illustrated

in Table 5.1.

Using the frequency index values fa, the power spectrum selection (see Fig. 5.2) is

achieved as follows:

Y(i) = X(fa), i = 0,1, •••,119. (5.15)

Based on (5.15), a set of M/2, i.e., 512, power spectrum components is transformed into

a 120-dimensional vector, with each frequency index value corresponding to a specific CF

value of the original cochlear filters.

Besides the scheme defined in (5.15), there are some other options for power spectrum

selection or grouping based on a set of CF index values fa. For example, instead of just

selecting one spectral component as specified by fa in (5.15), the neighboring spectral

components may be combined by using a weighted average. In this work, for the sake of

simplicity, we only use (5.15) to realize the power spectrum selection.

5.3.4 Spectral Self-Normalization

As discussed in Section 4.3, the ratio of spectral peak to valley can be enlarged through

the scheme given by (4.16). In Section 5.2, such a local self-normalization is implemented

through the use of a pair of wide and narrow filters defined in the frequency domain. Below,

we propose an improved implementation for self-normalization which is simpler to use than

3 One purpose in extending the range of values of k is to include more low frequency components for
power spectrum selection. The second purpose is to make the size of the proposed FFT-based auditory
spectrum vector (i.e., 120, see (5.15)) comparable to that of the original auditory spectrum vector (i.e.,
128).

5 Simplification of the Auditory Spectrum 62

Table 5.1 Frequency index values of Nk and fa

k

0

1

2

3

4

5

6

7

8

9

10

Nk

8

9

9

9

9

10

10

10

11

11

11

i

0

-

1

-

-

-

2

-

-

3
_

<&

8

-

9

-

-

-

10

-

-

11
_

141 491 118 491

142 506 119 506

the one proposed in Section 5.2.

According to [WS94], the cochlear filters are broad and highly asymmetric, and the

differential filters are narrowly tuned and centered around the same frequencies. Fig. 5.3

shows the magnitude responses of a cochlear filter H(u>,s), which is centered at 1017 Hz,

and the corresponding differential filter (d/ds)H(ui,s) [Neu].

Based on the magnitude responses shown in Fig. 5.3, an iterative running average is

defined over the frequency index i as follows:

Yr(i) = (1 - a)Yr{i - 1) + aY{i) (5.16)

where 0 < a < 1, and Y(i) and Yr(i) are the input and averaged output, respectively. A

relatively large a corresponds to a "fast" running average, while a relatively small a results

in a "slow" running average. Slow and fast running averages are employed here to simulate

a cochlear filter and a differential filter respectively. By making use of the relationship

5 Simplification of the Auditory Spectrum 63

'] H((o, s)
I 3H(io,s)

I
I

I :
I
I
I :

"0 500 1000 1500 2000

Frequency (Hz)

Fig. 5.3 The cochlear filter H(u>, s) centered at 1017 Hz and the correspond­
ing differential filter dsH(u>,s) [Neu]. (The 3-dB bandwidth of the cochlear
filter is about 220 Hz, while the 3-dB bandwidth of the differential filter is 80
Hz.)

between the frequency index i (see Table 5.1) and the corresponding physical frequency

value, the filtering characteristics of the running average scheme given in (5.16) can be

found. Fig. 5.4 shows the filtering characteristics with three different a values. From

Fig. 5.4, it is noted that the simple running average scheme defined in (5.16) captures

the highly asymmetric nature of the original cochlear filters to some extent. Besides, the

bandwidth of the filter can be easily adjusted through the value of a.

Fig. 5.5 illustrates the running average defined in (5.16), wherein a power spectrum

vector and its running averaged version with a = 0.5 are shown in relative values. In

general, for a spectral peak, the corresponding smoothed value is smaller, while for a

spectral valley, the corresponding smoothed value is larger.

Let Yn(i) and Yw(i) represent the outputs from fast and slow running averages, respec­

tively. Yw(i) may be viewed as a smoothed version of Yn(i). Based on Yn(i) and Yw(i), a

self-normalization coefficient at frequency index i, C(i), is defined as

C(0 = 5 r l » = 0,1, - - • , 119. (5.17)

« •a

-3

-6

5 Simplification of the Auditory Spectrum 64

pa 3
u
T3
3

s -4

• a=0.5

•a=0.1

- a=0.05

'/

200 300 400 500 600 700 800 900 1000 1100
Frequency (Hz)

Fig. 5.4 The filtering characteristics of the proposed running average
scheme.

40 60 80
Frequency index

100 120

Fig. 5.5 Running average results.

Therefore, in general C(i) is larger than 1 for a spectral peak and smaller than 1 for a

spectral valley, which again coincides with the conditions given in (4.13) and (4.14).

The self-normalized power spectrum data Z(i) is then obtained by multiplying C(i)

5 Simplification of the Auditory Spectrum 65

l o ,
0.

0.2

- Self-normalized
• Original

A -A-J i .A

0.01

0.008

5 0.006

I
| 0.004

0.002

40 60 80
Frequency index

10 15
Frequency index

(a) (b)

Fig. 5.6 A power spectrum vector and the corresponding self-normalized
version, (a) Whole data set. (b) Details of some spectral valleys.

with Y(i). By using different parameters for the two running averages, the effect of

self-normalization varies, leading to variable classification performance (see Section 6.4.3).

Fig. 5.6 shows a set of self-normalized power spectrum data (i.e., data Z{i)) together with

the original spectrum data. It is noted from Fig. 5.6 that, after applying the proposed

self-normalization scheme, the power spectral peak values are in general increased whereas

the spectral valley values are decreased, leading to the desired enhancement.

5.3.5 Post-Processing

The square-root values of the self-normalized spectrum data Z(i) are further calculated.

Finally, the proposed FFT-based auditory spectrum is obtained by applying a smoothing

operation on the square-root spectrum data. The smoothing can be implemented using a

fast running average as defined in (5.16). For the sake of simplicity, the smoothing process

is not considered in this work. Fig. 5.7 gives an example of the proposed FFT-based

auditory spectrograms of a 1 s speech clip in a clean case and in two noisy cases where

SNR = 15 dB. From Fig. 5.7 we can see that, with the implemented self-normalization

property, the proposed FFT-based auditory spectrogram of a noisy signal (SNR = 15 dB)

is fairly close to that of the corresponding clean signal.

Compared to the self-normalization scheme proposed in Section 5.2, the new implemen­

tation is easier to use since it only involves two parameters to adjust, i.e., a fast and a

5 Simplification of the Auditory Spectrum 66

(a) (b) (c)

Fig. 5.7 The proposed FFT-based auditory spectrograms of a one-second
speech clip, (a) Clean case, (b) SNR = 15 dB (babble noise), (c) SNR =
15 dB (white noise).

slow running average coefficient. Besides, by making use of the CF values of the original

bandpass filters, a relationship is created between the frequency index of the proposed

FFT-based auditory spectrum vector and the physical frequency value. Therefore, the pro­

posed FFT-based auditory spectrum allows more flexibility in the extraction of different

audio features.

5.4 Conclusion

In this chapter, by introducing certain modifications to the original processing steps of

the EA model [WS94], a simplified auditory spectrum was first proposed. The underlying

analysis led to the use of frequency-domain approximations in order to achieve a significant

reduction in the computational complexity. Such a simplified FFT-based spectrum was

then proposed wherein a local spectral self-normalization is implemented in the frequency

domain. Finally, an improved implementation was further proposed to calculate a so-called

simplified FFT-based auditory spectrum by making use of the CF values of the bandpass

filters of the EA model [WS94]. With the introduced improvements, the proposed FFT-

based auditory spectrum allows more flexibility in the extraction of noise-robust audio

features.

67

Chapter 6

Audio Classification Experiments

To evaluate the noise-robustness of the proposed FFT-based spectra as detailed in the

previous chapter, audio classification experiments are conducted. Below, the setup of the

audio classification experiments, including information about the audio samples, the audio

features, the classification approaches, etc., is presented first, followed by a detailed analysis

on the classification performance of different audio features.

6.1 Audio Sample Database

6.1.1 16-kHz Samples

To carry out audio classification tests, two generic audio databases are built which include

speech, music and noise clips. The sampling rate of the first audio database is 16 kHz.

This database is created for the purpose of performance comparison of all audio features

calculated in this work (see Section 6.2). A detailed description of the 16-kHz database is

given below.

• Speech: Speech clips are captured from several English web radio stations, includ­

ing CBC (the Canadian Broadcasting Corporation), BBC (the British Broadcasting

Corporation), etc. These samples are spoken by different male and female speakers

and at different speaking rates. These clips are treated as clean speech samples.

• Music: Music clips include five common types, namely: blues, classical, country, jazz,

and rock. The music clips also contain segments that are played by some Chinese

6 Audio Classification Experiments 68

traditional instruments (either alone or together with some other instruments), for

example, ruan, xido, zheng, zhu di, er hu, and pi pa. :

The music samples used in this work include both instrumental music and vocal music

with instrumental accompaniment. These clips are treated as clean music samples.

• Noise: Noise samples are selected from the NOISEX database which contains record­

ings of various noises [VSTJMs]. A brief description of the 14 selected noise samples

is given in Table 6.1.

The total length of all these audio samples is 200 minutes, including 70 minutes of

speech, 76 minutes of music, and 54 minutes of noise. These samples are divided equally

into two parts for training and testing respectively. Three-class (speech, music and noise)

classification tests are conducted using this database to compare the performance of differ­

ent audio features. The audio classification decision is made on a one second basis.

6.1.2 8-kHz Samples

The second database is created with 8 kHz sampling frequency and used to further eval­

uate the performance of the features calculated using the proposed FFT-based auditory

spectrum, as compared to the conventional MFCC features, in a narrow-band case.

• Speech and Music: 50 minutes of speech samples and 42 minutes of music samples

are taken from the above 16-kHz database and re-sampled at 8 kHz.

• Noise: 48 minutes of noise samples are selected from an audio database provided

by the TIA/EIA/IS-727 standard [TIA98]. This standard provides minimum perfor­

mance requirements for discontinuous transmission of mobile stations operating under

the TDMA (time division multiple access) scheme. The.noise samples are recorded

in four different environments. Table 6.2 gives a brief description of these noise files.

As this audio database is only used for the performance comparison between two feature

sets, namely: the conventional MFCC features and the features obtained from the proposed

FFT-based auditory spectrum, it is created with a smaller size as compared to the 16-kHz

database. In some narrow-band applications, it is desirable to have a front-end processing

unit identifying noise clips. In this thesis, noise and non-noise (i.e., speech plus music)

6 Audio Classification Experiments 69

Table 6.1 Selected noise samples from the NOISEX database [VSTJMs]

Noise Type

White noise

Pink noise

HF channel noise

Speech babble

Factory floor noise 1

Factory floor noise 2

Buccaneer cockpit

noise 1

Buccaneer cockpit

noise 2

Destroyer noise 1

Destroyer noise 2

F-16 cockpit noise

Military vehicle noise

Tank noise

Description/source

By sampling high-quality analog white noise generator.

Exhibits equal energy per Hz of bandwidth.

By sampling high-quality analog pink noise generator.

Exhibits equal energy per 1/3 octave.

Noise in a HF radio channel after demodulation.

The source is 100 people speaking in a canteen.

Individual voices are slightly audible.

Recorded near plate-cutting and electrical welding equipment.

Recorded in a car production hall.

The Buccaneer jet was moving at a speed of 190 knots, and

an altitude of 1000 feet, with airbrakes out.

The Buccaneer jet was moving at a speed of 450 knots, and

an altitude of 300 feet.

Destroyer engine room noise.

Destroyer operations room background noise.

Recorded at the co-pilot's seat in a two-seat F-16, traveling

at a speed of 500 knots, and an altitude of 300-600 feet.

The Leopard 1 vehicle was moving at a speed of 70 km/h.

The M109 tank was moving at a speed of 30 km/h.

Vehicle interior noise Volvo 340 was moving at 120 km/h, in 4th gear,

on an asphalt road, and in rainy conditions.

6 Audio Classification Experiments 70

Table 6.2 Selected noise samples from the IS-727 database [TIA98]

Noise Type

Train

Garage

Street

Car,

Description

Commuter train

Parking garage

Street and shopping mall

Moving at speeds below 100 km/h with windows up and down

classification tests are conducted using 8-kHz database. The audio classification decision

is made using both 1 s and 5 s clip lengths.

6.1.3 Pre-Processing of Audio Samples

Certain pre-processing steps are applied to the above audio samples to make these samples

ready for audio classification experiments.

Energy Normalization

The normalization with respect to the sample energy is usually conducted in order to deal

with input audio samples with different energy levels.

In this work, following a similar processing method as used for samples in IS-727

database [TIA98], the audio samples are normalized to -26 dBov (dB overload) with respect

to a 16-bit signed word1.

Removal of Inactive Gaps

There are always inactive gaps contained in audio clips (usually in speech clips), and we

may want to remove these parts before classification is conducted. These inactive parts

may be silence gaps, background sound/noise of very low energy level, or even inaudible

speech. For a practical audio classification system, there is usually a voice activity detection

(VAD) engine implemented as a front-end processing to remove the inactive parts. Three

VAD algorithms have been used to identify inactive parts, which include two algorithms

10 dBov refers to the maximum energy value that a 16-bit signed word can express.

6 Audio Classification Experiments 71

Input Speech

High pass

LPC Analysis:
windowing, autocorrelation function, Levinson-Durbin

algorithm

Frame
Energy

Peak
Energy

Minimum
Energy Threshold

Prediction
Gain

Power
Likelihood

Threshold

Non-
stationarity

Prediction
Gain

Likelihood

Threshold

1
Hangover
Scheme

Non-
stationarity
Likelihood Threshold

Set

i l
VAD Decision Rule Set

Output
VAD

Decisions

Fig. 6.1 Structure of the VAD algorithms in [CAS05].

presented in [CAS05] and the G.729B algorithm [ITU96]. Those parts which are classified

as inactive by all three VAD algorithms are removed. All these algorithms perform LPC

analysis to extract speech features for VAD applications.

We may take the VAD algorithm as a special and simplified case of the audio classi­

fication algorithm. Indeed, the processing steps of a VAD system is similar to that of an

audio classification system (see Fig. 1.1). As an example, Fig. 6.1 shows the structure of

the two algorithms presented in [CAS05]. A detailed description of these VAD algorithms

would be beyond the scope of this research.

6 Audio Classification Experiments 72

6.1.4 Testing Approach

This work is focused on the development and evaluation of noise-robust audio classification

algorithms. Therefore, besides the clean samples, noisy samples with different SNR values

are also employed in our experiments. Noisy samples in each database are generated digi­

tally by adding noise segments, which are randomly selected from the corresponding noise

database, to clean speech/music segments based on long-term average energy measurement

and following specific SNR values. Specifically, we use noisy speech/music samples with

SNR values of 20, 15, 10, 5, and 0 dB.

In this work, a training or testing data set with a specific SNR value, e.g., ^4-dB set,

refers to a data set consisting of noisy speech and noisy music (both with SNR = A dB),

and noise only. All these samples are normalized to -26 dBov as introduced before. A

special case is the clean set wherein SNR = oo for speech and music samples. To evaluate

the performance, audio classification experiments are conducted under both matched and

mismatched situations, which correspond to a match or a mismatch between the SNR

values of the training set and the testing set. Specifically, results from matched experiments

may reveal the interclass discriminability while results from mismatched experiments may

indicate the noise-robustness which is the main focus of this work.

6.2 Audio Features

Both frame-level and clip-level features are calculated. At the frame-level, seven sets of

audio features are calculated for performance comparison, including:

• The conventional MFCC features with and without cepstral mean subtraction (CMS).

• Conventional spectral features.

• Spectral features calculated from the FFT-based auditory spectrum (see Section 5.3).

• Discrete cosine transform (DCT)-based features computed from the original auditory

spectrum (i.e., the output of the EA model), from the FFT-based spectrum described

in Section 5.2, and from the FFT-based auditory spectrum proposed in Section 5.3.

The corresponding clip-level features are the statistical mean and variance values of

these frame-level features calculated over a time window. The details of the frame-level

features are given below.

6 Audio Classification Experiments 73

6.2.1 MFCC Features

Being widely used in the speech/speaker recognition applications, mel-frequency cepstral

coefficients (MFCCs) [RJ93, O'SOO] are also useful in audio classification. For the purpose

of performance comparison, the conventional MFCCs are used in this work. A Matlab

toolbox developed by Slaney [Sla] is used to calculate a set of 13 conventional MFCCs.

As mentioned in Section 2.2.1, the mel-frequency scale is widely accepted as a linear

frequency spacing below 1000 Hz and a logarithmic spacing above 1000 Hz [DM80]. In

Slaney's approach, the filter bank is constructed using 13 linearly-spaced filters (133.33 Hz

between center frequencies), followed by 27 log-spaced filters (with neighboring center fre­

quency values increased/decreased by a factor of 1.07) [Sla].

For conventional MFCC features, a so-called cepstral mean subtraction (CMS) tech­

nique may improve the robustness of frame-level MFCCs by removing the time averages

from the cepstrum data [Ata74]. In this work, we have used a 10 s window to calculate the

time averages of the MFCCs and to apply the CMS operation for frame-based MFCCs.

6.2.2 Spectral Features

A set of spectral features are calculated, including energy, spectral flux, spectral rolloff

point, spectral centroid, and bandwidth. Besides the conventional FFT spectrum, these

spectral features are also calculated using the FFT-based auditory spectrum proposed in

Section 5.3 in order to show its flexibility in the extraction of different audio features.

In this work, the magnitude spectrum is used to represent the "energy" instead of the

power spectrum. The magnitude spectrum is also used to calculate spectral flux, spectral

rolloff point, spectral centroid, and bandwidth (see Section 2.2 for detailed definitions of

these features).

Energy

The energy is a simple yet reliable feature for audio classification. In this work, for each

signal frame, the total energy and the energy of 3 subbands are calculated. The 3 subbands

cover frequency ranges from 0 to 1 kHz, 1 to 2 kHz and 2 to 4 kHz, respectively.

6 Audio Classification Experiments 74

Spectral Flux

The spectral flux is a measure of spectral change that comes in different forms. The lst-

order spectral flux for the nth signal frame, denoted SPFX1„, is calculated based on (2.7).

The 2nd-order spectral flux, SPFX2„, is calculated similarly as follows:

K

Y,(&An+1[k]-AAn[k]y (6.1)
fe=i

where AAn[A;] = j4n+i[/c] — An[fc], and An[k] denotes the kth component of the magnitude

spectrum vector for the nth signal frame.

Spectral Rolloff Point

The spectral rolloff point is a measure of the skewness of the spectral shape. In this work,

two spectral rolloff points are calculated which correspond to the 50th and 90th percentiles

of the power spectrum distribution respectively.

Spectral Centroid

Following (2.5), magnitude spectrum is used to calculate the spectral centroid, or bright­

ness.

Bandwidth

Using (2.8), bandwidth is calculated as the magnitude-weighted average of the differences

between the frequency indices and the corresponding centroid.

All these spectral features are grouped together to form a 10-dimensional spectral fea­

ture vector for audio classification applications. While using the proposed FFT-based

auditory spectrum to calculate features such as the spectral rolloff point, spectral centroid

and bandwidth, the physical frequency values are used instead of the corresponding fre­

quency indices i in Table 5.1. The correspondence between the physical frequency values

and the frequency indices is shown in Fig. 6.2, wherein the exponentially distributed nature

of the original CF values can be seen.

SPFX2„ =
\

6 Audio Classification Experiments 75

8000

60
Index i

120

Fig. 6.2 Characteristic frequency values corresponding to the index values
i given in Table 5.1.

6.2.3 DCT-Based Features

These are obtained by applying the discrete cosine transform (DCT) to the original auditory

spectrum, the FFT-based spectrum presented in Section (5.2), and the FFT-based auditory

spectrum proposed in Section (5.3)2. Specifically, a set of 13 coefficients is calculated as

follows:

Fn[l] =

1 K-\

£ M% \[K k=0

T*-1 , .,. l(2k + l)ir

1 = 0

1 < I < 12

(6.2)

where An[k] is the kth component of the magnitude spectrum vector (either the auditory

spectrum vector or the FFT-based spectrum vector) for the nth frame signal, K is the size

of the magnitude spectrum vector An, and Fn[l] is the Ith component of the corresponding

DCT-based feature vector.
2In [CC08], these features are called MFCC-like features.

6 Audio Classification Experiments 76

6.2.4 Clip-Level Features

The clip-level features used in this work are the statistical mean and variance values of the

above frame-level features calculated over a time window whose length, when otherwise

indicated, is taken to be 1 s. The clip-level features are used for the training and testing

of the classification algorithms. Table 6.3 lists all clip-level features used in this work.

From Table 6.3, the dimension of the MFCC feature sets (MFCC-CON and MFCC-CMS)

and that of the DCT-based feature sets (DCT-AUD, DCT-FFT1 and DCT-FFT2) are 26.

This reflects the fact that each of these clip-level feature sets consists of statistical mean

and variance values of the corresponding frame-level features, which are of 13 dimensions.

Similarly, the dimension of the frame-level spectral feature sets (SPEC-CON and SPEC-

FFT2) is 10, leading to the corresponding clip-level feature sets with a dimension of 20, as

given in Table 6.3.

Table 6.3 Summary of the clip-level audio features

Feature

MFCC-CON

MFCC-CMS

SPEC-CON

SPEC-FFT2

DCT-AUD

DCT-FFT1

DCT-FFT2

Dimension

26

26

20

20

26

26

26

Description

Conventional MFCCs

Conventional MFCCs with CMS operation

Conventional spectral features

Spectral features obtained from the FFT-based auditory

spectrum presented in Section 5.3

DCT-based features obtained from the original auditory

spectrum

DCT-based features obtained from the FFT-based spectrum

presented in Section 5.2

DCT-based features obtained from the FFT-based auditory

spectrum presented in Section 5.3

Sample distributions of 3 clip-level features, i.e., MFCC-CON, DCT-AUD and DCT-

FFT2, are shown in Figs. 6.3, 6.4 and 6.5 respectively. Considering the multi-dimensional

nature of these clip-level features, in these figures, we use only two parameters, namely:

6 Audio Classification Experiments 77

the variance values of the first and the second components of the frame-level features, to

plot two-dimensional distributions. Prom Figs. 6.3, 6.4 and 6.5, we may inspect both the

discriminability and the noise-robustness of the corresponding features.

Interclass Discriminability

From Figs. 6.3(a), 6.3(b) and 6.3(c), it is noted that the conventional MFCC features are

good at discriminating among three audio classes (i.e., clean speech, clean music, and noise).

There is almost no overlap between the distributions of speech and noise. For music, the

distribution overlaps with those of speech and noise. A more or less similar situation can

be found in Figs. 6.5(a), 6.5(b) and 6.5(c), which show the DCT-based features computed

from the proposed FFT-based auditory spectrum. For DCT-based features computed from

the original auditory spectrum, the discriminability is relatively lower than that of MFCC-

CON or DCT-FFT2 features (see Figs. 6.4(a), 6.4(b) and 6.4(c)).

Robustness of the Features

For MFCC-CON features, when the background noise level is increased a bit, e.g., SNR =

20 dB, relatively large changes in the distributions can be seen, for example, in Fig. 6.3(d)

as compared to Fig. 6.3(a) for speech distributions, and Fig. 6.3(g) as compared to Fig.

6.3(b) for music distributions. However, as the increase of background noise level continues,

the changes of the distributions become relatively smaller (for example, see Figs. 6.3(d),

6.3(e), and 6.3(f)). Therefore, if the SNR of the training set is 20 dB instead of the clean

set, we may expect a relatively better robustness in the testing of 15 dB and 10 dB sets.

However, when SNR = 20 dB, the discriminability is decreased compared to the clean case

as more speech feature values are now overlapped with noise feature values in the feature

space.

Comparatively, when the background noise level is increased from the clean case so that

SNR = 20 dB, DCT-AUD and DCT-FFT2 features characterize very small changes in the

distributions. For example, for DCT-AUD features, compare Figs. 6.4(a) and 6.4(d), Figs.

6.4(b) and 6.4(g); for DCT-FFT2 features, compare Figs. 6.5(a) and 6.5(d), Figs. 6.5(b)

and 6.5(g). Even when the background noise is increased to SNR = 10 dB, the changes in

the distributions of DCT-AUD and DCT-FFT2 features are still not so large as compared

to that of MFCC-CON features.

6 Audio Classification Experiments 78

(a)

(d)

...

i
fit
& & * • ; % * . . k

**42

t..t*,.;. ...•.: ;..« .

(b)

(e)

o:

; ; ;

0

....;.

tf+'i i i i i r " i r

(c)

: &9 ; °

(f)

^. .*:
W i * i

(g) (h) 0)

Fig. 6.3 Distributions of conventional MFCC features. For all figures, hor­
izontal and vertical axes refer to the variance values of the first and the sec­
ond components of the frame-level features respectively. (a)Speech (clean).
(b)Music (clean). (c)Noise. (d)Speech (SNR = 20 dB). (e)Speech (SNR = 15
dB). (f)Speech (SNR = 10 dB). (g)Music (SNR = 20 dB). (h)Music (SNR =
15 dB). (i)Music (SNR = 10 dB).

6 Audio Classification Experiments 79

o ; ;

o ;

(a)

(d)

Uj-.t,.A-

(b) (c)

(e) (f)

*' *

: * : * • • • • \ • •

• - * * * • • • • * * • •

* i t " * # *
* jE * *

j£&3£*V «r- -.
H H S ^ f l * •*

(g) (h) (i)

Fig. 6.4 Distributions of DCT-based features obtained from original audi­
tory spectrum. For all figures, horizontal and vertical axes refer to the variance
values of the first and the second components of the frame-level features re­
spectively. (a)Speech (clean). (b)Music (clean). (c)Noise. (d)Speech (SNR =
20 dB). (e)Speech (SNR = 15 dB). (f)Speech (SNR = 10 dB). (g)Music (SNR
= 20 dB). (h)Music (SNR - 15 dB). (i)Music (SNR = 10 dB).

6 Audio Classification Experiments 80

0.2 0.4 0 6 0.8

(d)

,;--'7» ":

- • :«L :

.JE
0.2 0.4 0.6 0.S

(b)

; jf
fb

JHHRKP

• ••• J 3 | | | | P K ^ ° °

o° *S ° °

**l
%° :

O
•O r
o

0.2 0.4 0.6 0.B

(e)

L&t*

jfifflfily** *

*
•

»

v : • ;
*

B

:+

W :
0.2 0.4 1 1.2

(f)

* • *

• ' • j ^ i ••; :

dnnpp%.
• • O f f *

0.2 0.4 0 6 0 8

(g) (h) (i)

Fig. 6.5 Distributions of DCT-based features obtained from FFT-based au­
ditory spectrum. For all figures, horizontal and vertical axes refer to the vari­
ance values of the first and the second components of the frame-level features
respectively. (a)Speech (clean). (b)Music (clean). (c)Noise. (d)Speech (SNR
= 20 dB). (e)Speech (SNR = 15 dB). (f)Speech (SNR = 10 dB). (g)Music
(SNR = 20 dB). (h)Music (SNR = 15 dB). (i)Music (SNR - 10 dB).

6 Audio Classification Experiments 81

6.3 Implementation

6.3.1 NSL Matlab Toolbox

We use a Matlab toolbox developed by the Neural Systems Laboratory (NSL), University

of Maryland [Neu], to calculate the original auditory spectrum. The toolbox is developed

to simulate the processing steps at two stages of an auditory system, i.e., the early stage

and the cortical stage.

As shown in Fig. 6.6, a graphical user interface (GUI) is provided by the NSL toolbox to

facilitate the use of its commands. With this GUI, a target audio signal can be loaded in and

Sound Load WavetoAud AudtoCor CortoAud Aud to Wave Parameters

[. . J
| Refresh

| Load |

Wav 2 Aud |
* - s

©Frequency-lime

" c

Play

| Aud 2 Cor

®Rate-Freq ORate-Ti...
QScale-Freq OScale-Ti...
QRate-Sc... Ofate-Scale-Ti...

O Full Display

Cor 2 Aud

(•) Frequency-Time
O Channel-Frame

Aud 2 Wav

©Frequency-lime

W -
Play

Edit |

| Help

[Exit

Fig. 6.6 NSL toolbox GUI.

re-sampled at a specified sampling frequency value. We may then check the outputs at the

early auditory stage and the cortical stage. We can also modify the cortical representation

and reconstruct the auditory spectrogram and the corresponding audio signal.

In this work, we focus on the early auditory stage. Specifically, we mainly use function

wav2aud to calculate the auditory spectrum for an audio input signal. Relevant modifica­

tions are introduced to this toolbox to meet the needs of our study.

6.3.2 Classification Approaches

In this work, we use two different classifiers, namely: a support vector machine (SVM)

algorithm SVMstruct [TJHA05] and a decision tree learning algorithm C4.5 [Qui93]. As

introduced in Section 2.3.3, recent years have seen increasing interest in the use of SVM in

audio classification applications, and excellent performance with SVM has been reported.

Besides the SVMstruct algorithm, the widely used decision tree learning algorithm C4.5 is

also used in this work for the purpose of performance comparison.

6 Audio Classification Experiments 82

SVM

The SVM is a statistical learning technique that has been recently applied to audio classi­

fication applications. The SVM first transforms the input vectors into a high-dimensional

feature space using a linear or nonlinear transformation, and then conducts a linear sepa­

ration in the feature space.

SVMstruct is a specialized SVM algorithm for predicting multivariate or structured out­

puts. Unlike regular SVM algorithms that only deal with univariate prediction, SVMstruct

can predict complex objects such as trees, sequences, or sets. Examples of problems with

complex outputs include natural language parsing and sequence alignment [TJHA05]. In

this work, we use radial basis function (RBF) as the kernel function, and the model is

tuned to achieve the best training performance.

C4.5

The classification rules of the C4.5 algorithm are in the form of a decision tree, which is

built from a set of training data using the concept of information entropy [Qui93]. Given

a set of attributes which form the data vectors, C4.5 examines the so called normalized

information gain (difference in entropy) that results from choosing a specific attribute to

split the data. The attribute with the highest normalized information gain is the one used

to make the decision. A decision node is then created to split the data set to smaller

sublists. The algorithm recurs on the smaller sublists thereafter and adds the generated

nodes as children of the aforementioned node. When all samples in a sublist belong to a

same class, a leaf node can be created for the decision tree to output the corresponding

class value.

The use of the C4.5 algorithm in audio classification applications is limited at this stage.

We are interested in comparing its performance with that of the SVMstruct algorithm in

audio classification experiments in this work.

6 Audio Classification Experiments 83

6.4 Performance Analysis

6.4.1 Performance Comparison with the 16-kHz Database

Case 1: Training with Clean Data Set

In this case, the training set consists of clean speech, clean music, and noise samples.

This is probably the most popular way to train a classification system. Using the 16-kHz

audio database and with SVM and C4.5 as the classifiers, speech/music/noise classification

experiments are conducted. The corresponding error testing rates as a function of SNR

values are shown in Fig. 6.7 for different audio features (see Table 6.3), wherein the total

number of audio clips under testing is 6000. To calculate the proposed FFT-based auditory

spectrum (see Section 5.3), the fast and slow running average coefficients are set to 1 and

0.5 respectively.

Table 6.4 lists error classification rates for different audio features wherein results are

presented in the following categories:

• Matched (Clean): The error rate in the matched test case, i.e., with clean set as the

testing set.

• Average-Mismatched: The average error rate in five mismatched test cases, i.e., SNR

= 20, 15, 10, 5 and 0 dB.

• Average-Overall: The overall average over the above two. results.

Based on the results presented in Table 6.4 and Fig. 6.7, the following conclusions can

be reached.

• Best performance: The best overall average error rate is 10.2%, which is achieved by

the DCT-FFT2 feature set with SVM as the classifier. Besides, the DCT-FFT2 fea­

ture set together with SVM also performs best in mismatched test cases wherein the

. average error rate is 18.2% whereas that of the MFCC-CON feature set is 40.6%. How­

ever, the MFCC-CON feature set together with SVM performs best in the matched

(or clean) test case with an error rate of 1.9%.

• SVM vs. C4-5: As for the two classification approaches, results from Table 6.4 in­

dicate that SVM outperforms C4.5 in matched test case for each feature set. This

6 Audio Classification Experiments 84

o 1 ' ' ' •-
0 5 10 15 20

SNR (dB)

(a)

SNR (dB)

(b)

Fig. 6.7 Speech/music/noise classification error rates as a function of SNR
for different audio features (refer to Table 6.3). (a) SVM. (b) C4.5.

6 Audio Classification Experiments 85

Table 6.4 Speech/music/noise classification error rates with a clean set as
the training data (%)

!z co ^ <N

O S £ Q £ H ^
>< p̂ O r̂ p p fa

• • ° 5 t fe fo

O O A < fa fo A
P P H ^ E"1 ^ W
& & £ O O O £
S S co Q Q Q co

SVM

C4.5

Matched (Clean)

Average-Mismatched

Average-Overall

Matched (Clean)

Average-Mismatched

Average-Overall

1.9

40.6

21.3

2.8

38.2

20.5

3.0

39.2

21.1

3.6

38.8

21.2

3.4

26.9

15.2

3.6

34.3

19.0

3.3

20.5

11.9

6.2

22.8

14.5

3.0

20.8

11.9

4.1

18.4

11.3

2.2

18.2

10.2

4.8

19.0

11.9

3.2

20.6

11.9

3.6

23.5

13.6

may reflect a superior discriminability of SVM over C4.5 in the matched test case.

However, in mismatched test cases, results from Table 6.4 do not show such a supe­

riority of SVM over C4.5. In fact, C4.5 outperforms SVM in mismatched test cases

for three sets of features, namely: MFCC-CON, MFCC-CMS and DCT-FFT1. We

will have more on the performance comparison between SVM and C4.5 later based

on additional experimental results.

• Auditory-related features vs. conventional features: The four sets of auditory-related

features (i.e., DCT-AUD, DCT-FFT1, DCT-FFT2 and SPEC-FFT2) show a rela­

tively better overall average performance as compared to three sets of conventional

features (i.e., MFCC-CON, MFCC-CMS and SPEC-CON).

Under mismatched test cases, the four sets of auditory-related features are in general

more robust than three sets of conventional features, especially when SNR is between

5 and 20 dB. For example, when SNR = 5 dB and using SVM as the classifier, the

error rate of the SPEC-FFT2 feature set is 29.7%,-whereas those of the SPEC-CON

and MFCC-CON feature sets are 42.1% and 50.3% respectively.

• Conventional features: With SVM as the classifier, the MFCC-CMS feature set re-

6 Audio Classification Experiments 86

suited in a small improvement in mismatched test cases as compared to the con­

ventional MFCC feature set. However, the slight improvements are obtained at the

price of performance loss in the matched test case, which may be a problem in some

applications. Indeed, based on the frame-level conventional MFCCs, statistical mean

and variance values are further calculated over a 1 s time window. The resulting

mean and variance values are grouped together to form the corresponding clip-level

features which are used for the training and testing of the classification algorithm.

Hence, CMS operation has been already implicitly implemented in a different way in

the proposed clip-level MFCC feature set, and thus the use of CMS may not further

improve the robustness of the MFCC feature set as observed in our experiments.

Meanwhile, the SPEC-CON feature set shows a more robust performance in mis­

matched test cases as compared to MFCC-CON or MFCC-CMS features when SNR

is between 10 and 20. dB.

• Auditory-related features: For the four sets of auditory-related features with the two

classification approaches, the combination of DCT-FFT2 with SVM performs best in

both matched and mismatched test cases, with error rates of 2.2% and 18.2% respec­

tively. However, for classification experiments using C4.5, the DCT-FFT1 performs

best with an overall average error rate of 11.3%. Indeed, the DCT-FFT1 is the only

feature set among the four auditory-related feature sets wherein C4.5 outperforms

SVM in the overall average performance. To further investigate this situation, we

conducted a simple cross-validation by switching the training and testing data sets

and repeating the above tests. The error rates of auditory-related features are listed

in Table 6.5 wherein the results are obtained by averaging over the two test results

corresponding to the switching of training and testing sets.

From results in Table 6.5, SVM outperforms C4.5 in almost all categories for these four

feature sets. The only exception is the DCT-FFT1 feature set in mismatched cases

wherein the average error rate with C4.5 is 20.1% while that of SVM is 20.4%. From

these results, we may conclude that in general SVM provides a better or comparable

classification performance as compared to C4.5. Besides, the superior performance

of the DCT-FFT2 feature set is again verified, as compared to three other auditory-

related feature sets including DCT-FFT1.

Table 6.6 presents confusion matrices for a mismatched test case with 10-dB SNR and

6 Audio Classification Experiments 87

Table 6.5 Average classification error rates from cross-validation (%)

DCT-AUD DCT-FFT1 DCT-FFT2 SPEC-FFT2

Matched (Clean) 3.6 2.6 2.2 2.7

Average-Mismatched

Average-Overall

Matched (Clean)

Average-Mismatched

20.2

11.9

6.3

22.3

20.4

11.5

4.3

20.1

17.1

9.6

5.0

18.6

20.1

11.4

3.4

22.3

Average-Overall 14.3 12.2 11.8 12.8

with SVM as the classifier where "Input" and "Output" represent the input audio types

and the output classification decisions respectively. Shown in Table 6.6 are the numbers of

decisions on a 1 s basis. The correct classification rate (CCR) for each feature set is given

in the table. It is seen that the four sets of auditory-related features generally lead to a

better classification performance of the three audio categories. The low overall classification

rates of the conventional MFCC and MFCC-CMS features (58.3% from Table 6.6(a) and

60.4% from Table 6.6(b), respectively) are due in a large part to the low proportion of

speech samples correctly identified. This situation is improved by the conventional spectral

feature set which shows a much better performance. Overall, DCT-FFT2 and SPEC-FFT2

features, which are obtained from the proposed FFT-based auditory spectrum, achieve the

best performance (see Tables 6.6(f) and 6.6(g)). For each of these two feature sets, the

proportion of correctly identified samples is high for all three classes, i.e., speech, music

and noise.

Case 2: Training with 15-dB Data Set

To evaluate the robustness of the features in Table 6.4 from a different perspective, similar

3-class classification experiments have been carried out wherein the algorithms are now

trained with a 15-dB data set. Test results are given in Table 6.7, where "Matched" and

"Average-Mismatched" refer to the error rate from the 15-dB test data set, and the average

error rate from test data sets other than 15-dB SNR (i.e., SNR = oo, 20, 10, 5 and 0 dB),

6 Audio Classification Experiments 88

Table 6.6 Confusion matrices for different audio feature sets at SNR = 10
dB

(a) MFCC-CON (CCR = 58.3%)

Output
Music Noise Speech

Input

Music

Noise

Speech

1554 726 0

1 1619 0

1627 151 322

(c) SPEC-CON (CCR = 81.5%)

Output
Music Noise Speech

Input

Music

Noise

Speech

1949 309 22

39 1580 1

711 29 1360

(e) DCT-FFT1 (CCR = 86.5%)

Output
Music Noise Speech

Input

Music

Noise

Speech

1983 273 24

13 1607 0

429 74 1597

(b) MFCC-CMS (CCR =60.4%)

Output
Music Noise Speech

Input

Music 1744 530 6

Noise 43 1577 0

Speech 1554 242 304

(d) DCT-AUD (CCR = 86.6%)

Output
Music Noise Speech

Input

Music 2045 225 10

Noise 22 1598 0

Speech 534 15 1551

(f) DCT-FFT2 (CCR = 88.9%)

Output
Music Noise Speech

Input

Music 2114 150 16

Noise 22 1597 1

Speech 403 72 1625

(g) SPEC-FFT2 (CCR = 89.1%)

Output
Music Noise Speech

Music

Input Noise

2058 196 26

28 1591 1

Speech 361 41 1698

6 Audio Classification Experiments 89

respectively.

Table 6.7 Speech/music/noise classification error rates with a 15-dB set as
the training data (%)

^ r\ F"1 ^ H
O 9 H H £
O $ ^ ^ to

I < to to I
H • H H H H

£ O O O £
en Q Q Q co

^
o
u
o
o to

CO

S
(J
o
u to

SVM

C4.5

Matched (15 dB)

Average-Mismatched

Matched (15 dB)

Average-Mismatched

2.1

20.8

5.6

20.2

5.3

17.8

6.9

20.0

3.3

16.7

5.2

20.3

3.8

16.0

6.4

18.4

3.4

14.7

5.0

15.6

3.4

14.3

5.8

16.4

3.4

14.6

4.0

17.1

It is noted that in general SVM outperforms C4.5 (the only exception is the MFCC-CON

features set in mismatched tests). In the matched test case (i.e., SNR = 15 dB), MFCC-

CON with SVM again shows the best discriminability with an error rate of 2.1%, whereas

DCT-FFT2 with SVM gives the best average performance in mismatched test cases with

an average error rate of 14.3%. The performance of the 4 sets of auditory-related features

in mismatched test cases is better than that of 3 sets of conventional features; however,

compared to the results in Table 6.4, the performance gap between the auditory-related

and the conventional features becomes smaller. Indeed when the SNR of the training set

is 15 dB while that of the testing set is oo, 20, or 10 dB, the classification performance of

these conventional features is close to that of the auditory-related features, leading to an

improved average performance in mismatched test cases as given in Table 6.7.

6.4.2 Performance Comparison with the 8-kHz Database

The robustness of the proposed FFT-based auditory spectrum has been verified by DCT-

FFT2 and SPEC-FFT2 features in the above 3-class classification experiments with an

audio database sampled at the rate of 16 kHz. To further evaluate the performance of

the proposed FFT-based auditory spectrum in a narrow-band application where the main

focus is on the identification of noise, two-class, i.e., noise/non-noise classification tests are

6 Audio Classification Experiments 90

conducted below using the 8-kHz audio database and with SVM as the classifier, wherein

non-noise samples include speech and music clips.

In this experiment, the training set contains clean speech, clean music and noise samples.

Error classification rates of the conventional MFCC features (MFCC-CON) and the DCT-

based features derived from the proposed FFT-based auditory spectrum (DCT-FFT2) are

listed in Table 6.8, wherein "Matched (Clean)" and "Average-Mismatched" refer to the

error rate in the matched test case (i.e., with a clean set as the testing set) and the average

error rate in five mismatched test cases (i.e., SNR = 20, 15, 10, 5 and 0 dB) respectively.

The decisions are made using both 1 s and 5 s clip lengths. As for the calculation of the

proposed FFT-based auditory spectrum, a 512-point FFT is now used for 8-kHz samples.

Hence, the outputs from (5.14) are identical to those with 16 kHz sampling frequency and

using a 1024-point FFT. Therefore, power spectrum selection can be conducted using Table

5.1 as before except that we now only consider frequency components within the 0-4 kHz

range instead of 0-8 kHz. Accordingly, the dimension of the proposed FFT-based auditory

spectrum vector is now 96 as compared to 120 in the case of 16 kHz sampling frequency.

Results in Table 6.8 show the ability of the two sets of features in discriminating noise

from non-noise (i.e., speech plus music) samples. These results once again confirm the

robustness of the DCT-FFT2 feature set as compared to the conventional MFCC feature

set in mismatched test cases. For example, the average error rate of the DCT-FFT2 feature

set in the mismatched test cases with 1 s clip length is 6.2% whereas that of the MFCC-

CON feature set is 19.0%. Meanwhile, as the length of the audio clip increases from 1 s

to 5 s, no significant improvement in the classification performance is observed for both

feature sets.

Table 6.8 Noise/non-noise classification error rates with SVM as the classi­
fier (%)

MFCC-CON DCT-FFT2

I s 5 s I s 5 s

Matched (Clean) 0.1 0.0 0.1 0.0

Average-Mismatched 19.0 19.3 6.2 6.1

6 Audio Classification Experiments 91

6.4.3 Effect of Running Average Coefficients

As mentioned in Section 5.3, the proposed running average scheme is easier to use than

the implementation presented in Section 5.2 since there are only two parameters to adjust.

To see how running average coefficients in (5.16) affect the performance of the proposed

FFT-based auditory spectrum, experiments with different running average coefficients have

been conducted wherein the fast running average coefficients are simply set to 1, and the

slow running average coefficients are set to 0.5 (previously used), 0.1, and 0.05, respectively.

Using the DCT-FFT2 feature set and SVM algorithm, test results from speech/music/noise

classification using the 16-kHz database and with the clean data set as the training data

are given in Table 6.9. Results in Table 6.9 indicate that, as the slow running average

coefficient increases, the corresponding performance in clean test cases is improved while the

performance in noisy test cases (with 10 dB or 0 dB SNR) in general degrades. The use of

a relatively small coefficient for the slow running average leads to a relatively large increase

in the ratio of spectral peak to valley, which on the one hand improves the robustness, but

on the other hand may reduce the interclass difference to some extent, and thus degrades

the performance in the clean test. The use of different coefficients provides an easy way to

achieve a trade-off between the performance of matched and mismatched test cases.

Table 6.9 Error classification rates of the DCT-FFT2 features with different
running average coefficients (%)

SNR (dB)

oo

10

0

Coefficient a

0.5 0.1 0.05

2.2

11.1

46.2

2.7 3.4

5.7 6.1

39.4 36.1

6.4.4 Computational Complexity

Besides the robustness to noise, an additional advantage of the proposed FFT-based audi­

tory spectrum lies in its low computational complexity as compared to the original auditory

spectrum. An estimation of the computational load for the original auditory spectrum and

6 Audio Classification Experiments 92

the proposed FFT-based auditory spectrum is obtained by measuring the corresponding

runtime of the algorithm.

The implementation platform is a general PC with CPU Intel P4 (3.2 GHz). The

algorithms are implemented using Matlab. Results are obtained using the 16-kHz audio

database. Corresponding to a 1 s audio input clip, the time used for the calculation of

the original auditory spectrum and that of the proposed FFT-based auditory spectrum are

around 1.07 s and 0.08 s, respectively. Based on these results, compared to the original au­

ditory spectrum, the reduction in the processing time of the proposed FFT-based auditory

spectrum is more than a factor of 10. We will have more discussions on the complexity

issue of the proposed FFT-based auditory spectrum in the next chapter, wherein a DSP

implementation is conducted using a floating-point DSP platform.

6.5 Conclusion

In this Chapter, to evaluate the performance of the proposed FFT-based spectra, two audio

databases have been created with sampling rates of 16 and 8 kHz respectively. Three-class

(i.e., speech, music and noise) classification experiments have been conducted using the 16-

kHz database wherein SVM and C4.5 algorithms are used as the classifiers. Compared to

the conventional features, the auditory-related features (i.e., DCT-AUD, DCT-FFT1, DCT-

FFT2, and SPEC-FFT2) show more robust performance in mismatched test cases. Test

results also indicate that, using the DCT-based features, the performance of the proposed

FFT-based auditory spectrum is slightly better than that of the original auditory spectrum,

while the computational complexity is reduced by an order of magnitude. The robustness

of the DCT-based features computed from the proposed FFT-based auditory spectrum has

been further confirmed by test results of noise/non-noise classification experiments using

the 8-kHz database, and the effect of a running average coefficient was also investigated.

93

Chapter 7

Implementation Based on

TMS320C6713 DSK

To further explore the proposed FFT-based auditory spectrum in the applications of audio

classification from a practical perspective, a three-class audio classification algorithm is

implemented on the floating-point TMS320C6713 DSP Starter Kit (DSK) [Spe04] from

Texas Instruments (TI), wherein the DCT-FFT2 features are extracted (see Section 6.2)

and the C4.5 decision tree model is used for the classification. A brief introduction to the

TMS320C6713 DSK1 is given in Appendix B.

In the presented DSP implementation, through a pair of input/output channels between

the host PC and DSP target board, audio data stored on the host PC are fed to the DSP

board as the input to the implemented classification algorithm, and the decisions of the

audio class are sent back to the host PC for the evaluation of the performance. The compu­

tational complexity of the proposed algorithm is investigated using TI's real-time software

and development tool [Tex05a]. A significant reduction in the computational complex­

ity is achieved for the implemented algorithm through the use of different optimization

approaches.

^ o r the sake of simplicity, in this thesis, TMS320C67x and TMS320C6713 are sometimes simplified as
C67x and C6713 respectively.

7 Implementation Based on TMS320C6713 DSK 94

7.1 Implementation of the Proposed Audio Classification

Algorithm

Using the C6713 DSK as the target, a three-class audio classification algorithm is imple­

mented below, wherein the DCT-based features calculated from the proposed FFT-based

auditory spectrum (i.e., DCT-FFT2 features, see Section 6.2) are used for the classification.

In the proposed implementation, to reduce the requirements on the memory units and the

computational complexity, we have used the relatively simple C4.5 decision tree model ob­

tained from the training phase as the classifier [Qui93]. The presented C6713 DSK-based

system demonstrates the ability to classify among speech, music and noise under constraints

of the real-time processing.

7.1.1 Structure of the System

We may divide the work of implementation into three parts, i.e., the classification algorithm,

the input/ouput scheme, and the monitoring of the output.

Audio Classification Algorithm

The audio classification decisions are made on a 1 s clip basis. This enables the algorithm to

wait until the data of a whole clip available in the buffer before the processing starts. In this

implementation, to reduce the requirements on the target's memory units, the algorithm

is designed to work on a frame basis, which follows conventional ways of speech/audio

processing. Following this idea, the modules of the classification algorithm can be grouped

into two parts including the frame-based processing modules and the clip-based processing

modules.

Fig. 7.1 shows the modules of the algorithm. As discussed in Chapter 5, to calculate

the proposed FFT-based auditory spectrum, we take an analysis window of 30 ms with

an overlap of 20 ms. Therefore, for each frame of 10 ms input signal, the frame-based

processing operations output a set of frame-level DCT-FFT2 features.

The clip-level processing is triggered as soon as all signal frames in a clip have been

processed. Therefore, the computational load of the last frame in a clip will be in general

higher than any other frames in the same clip since both frame-level and clip-level operations

are involved.

7 Implementation Based on TMS320C6713 DSK 95

For an ANSI (American National Standards Institute) C algorithm, all these modules

can be simply integrated in the main function to get the desired output. However, for

a C6713 DSK-based implementation, this needs to be modified due to the use of the in­

put/output scheme as described later. Specifically, we now have two functions, namely:

main and classify. The processing modules shown in Fig. 7.1 are placed in the function

classify which acts as an interrupt service routine (ISR) and is triggered under certain

conditions as specified by the configurations of the input/output scheme and the software

interrupt objects. For function main, it is now used only to facilitate the input/output

transmission supported by the DSP/BIOS [Tex04a]. We will have more discussions on this

given below.

Input/Output with Host Channel

Two host channels provided by the C6713 DSK are used in this work to implement the

input and output channels between the host PC and the DSP target for the proposed audio

classification implementation.

Host channel objects are managed by the DSP/BIOS's HST module [Tex04a, Tex04b].

Host channel objects provide a run-time communication link between the host and the

target. When using HST.module, the host PC reads or writes data using LNK_dataPump

object, which is a built-in IDL object that runs its function as part of the background

threads [Tex04a, Tex04b]. Since background threads have the lowest priority, on C6000

platforms, the actual data transfer occurs at high priority by triggering interrupts.

Each host channel is internally implemented using a data pipe object, which is managed

by the PIP module [Tex04a, Tex04b]. Pipes are designed to manage block input/output

(also called stream-based or asynchronous input/output). Each pipe object maintains

a buffer divided into a fixed number of frames, with each frame a fixed length. The

input/output operations on a pipe deal with one frame at a time. As shown in Fig. 7.2,

a pipe has two ends, the writer and the reader. The writer end (also called producer) is

where a program writes frames of data, whereas the reader end (also called consumer) is

where a program reads frames of data. Two data notification functions, notifyReader and

notifyWriter, are employed to synchronize the data transfer.

When a frame of data is written into the pipe, the writer end calls PIP.put function to

put the frame into the pipe. The function notifyReader is triggered to notify the program

7 Implementat ion Based on TMS320C6713 DSK 96

A Frame of
Audio Input

Pre-Processing

Window

FFT

Power Spectrum

Power Spectrum
Selection

Self-
Normalization

DCT-Based
Features

Frame-Level
Feature Set

(a)

Frame-Level
Feature Sets

Energy Update
and Normalization

Clip-Level
Features

Classification
using C4.5

Audio Class

..(b)

Fig. 7.1 Modules of the algorithm, (a) Frame-based processing, (b) Clip-

based processing.

7 Implementation Based on TMS320C6713 DSK 97

Writer \) Reader

1.PIP_alloc V 1.PIP_get
2. Writes data into allocated frame 2, Reads data from frame just received
3. PIP_put (runs notifyReader) 3. PIPJree (runs notifyWriter)

Fig. 7.2 The structure of a pipe [Tex04a].

that the data is available. The reader end then calls PlP^get to read the data from the

pipe. Similarly, after a frame of data is read out from the pipe, the reader end calls PIPJree

to clear this frame in the pipe. The function notifyWriter is then triggered to notify the

program that a frame is free in the pipe. This thereafter enables the writer end to call

PIP-.alloc to allocate the next empty frame, and the write-read process pair continues.

Concerning the proposed implementation, two HST objects, inpuLHST and output-HST,

are defined for the data input/output. To use these two channels, from the perspective of

C coding, HST.getpipe function needs to be called first to get the corresponding pipe ob­

ject. With the available pipe objects, data can be transferred by calling the PIP.get and

PIPJree operations (for input), or PIP.alloc and PIPjput operations (for output) as de­

scribed above. In this work, the inpuLHST and output-HST are bound respectively to an

input audio file and an output file which records the audio classification decisions.

Meanwhile, a software interrupt (SWI) object [Tex04a, Tex04b], classifyLSWI, is also

created. The corresponding interrupt service routine (ISR) is the audio classification func­

tion classify as discussed before which contains processing modules shown in Fig. 7.1. The

classifySWI object is configured such that the two HST objects are passed as arguments

to the function classify when it is triggered, making input/output channels available to the

classification algorithm.

In the proposed implementation, the function main runs before the actual input/output

starts, and it does not include concrete processing in the initial implementation2. When

function main exits, the DSP/BIOS idle loop is executed. Within this loop, DSP/BIOS

2Later on some processing operations are placed in the main function for the purpose of optimization.

7 Implementation Based on TMS320C6713 DSK 98

waits for events such as interrupts to occur. With appropriate configurations for the two

HST objects and one SWI object, the software interrupt classify.SWI will be posted when

the input channel contains a full frame of data and the output channel has a free space

of one frame available. The corresponding ISR classify is then triggered to conduct audio

classification using the data from inpuLHST, and send output results to the host PC via

output.HST. As the audio samples used in this experiment are of 16-bit PCM format,

whereas the samples transferred through the host channels are of 32-bit format, additional

processing operations have been introduced to ensure the classification algorithm receives

the correct input data.

Therefore, by using DSP/BIOS's HST and SWI objects, a frame-based input/output

scheme is implemented for the proposed audio classification algorithm. The HST module

provides an easy way to handle data transfer between the host and the target. During the

early stage of a development, host channels can be used to verify the output results. Once

the algorithm functions as expected, host channel objects can be replaced by other objects

supported by the DSP/BIOS to implement real-time input/output operations.

Output Monitoring

The HST module uses RTDX (Real-Time Data Exchange) for data transfer between the

host and the target [Tex05a]. RTDX transfers data between the host computer and target

device without interfering with the target application. Host applications can read either

live or saved RTDX data. Therefore we may analyze and visualize the output data on the

host PC by using different softwares as the target application continues running.

Concerning the proposed implementation, a simple Matlab algorithm is developed to

monitor the output audio class values, which are saved on the host PC. These classification

decisions can be displayed simultaneously as the algorithm runs on the target.

7.1.2 Tracing the Computational Complexity

In this work, we mainly focus on the computational complexity of the system to conduct

research. To meet the constraint of real-time processing, for a signal frame of 10 ms as

used in this implementation, the corresponding processing operations should be finished

within 10 ms. To facilitate the analysis, the maximum computational complexity (MCC)

and the average computational complexity (ACC) are defined below to measure the relative

7 Implementat ion Based on TMS320C6713 DSK 99

Host Channel Control

«M Channel
inputJHST
outputJHST

Transferred Limit! State Mode i Binding J Repeat
1920000 B
1920000B

0 KB Running
0 KB Running

Input E:\research3\C6713\music10001 .pern
Output E:\research3\C6713\output.dat

Fig. 7.3 Host Channel Control window.

complexity of the implementation:

MCC =

ACC =

MaxCount
Reference
Ave Count
Reference

(7.1)

(7.2)

where MaxCount and AveCount refer to, respectively: the maximum and the average

runtime in ms (or instruction cycles) taken for the processing of a signal frame of 10 ms,

and Reference is 10 ms (or 2.25 x 106 for instruction cycles). To meet the constraint of

real-time processing, the MCC value of the classification algorithm (i.e., function classify)

should be less than one.

With the C6713 DSP/BIOS real-time analysis tool and APIs (Application Programming

Interfaces) [Tex04b], we are able to instrument the target by capturing and uploading the

real-time information that drives the CCStudio visual analysis tools [Tex05a]. We mainly

use the following three real-time analysis (RTA) tools to monitor the algorithm on the fly:

• Host Channel Control: As shown in Fig. 7.3, the Host Channel Control window

displays host channels defined by a program (e.g., input_HST and output_HST in

Fig. 7.3). This tool is used to bind files to specific channels, start/stop the data

transfer over a channel, and monitor the amount of data transferred. In the example

shown in Fig. 7.3, the input file is "musiclOOOl.pcm", whereas the output file is

"output.dat". The total transferred input data is 1920000 bytes, corresponding to an

input signal of 1 min long, with 16-bit PCM format and sampled at 16 kHz.

• Statistics View: The statistics (STS) module manages statistics objects which store

key statistics information while a program is running. The gathered statistics infor-

file://E:/research3/C671
file://E:/research3/C671
file://3/output.dat

7 Implementation Based on TMS320C6713 DSK 100

Fig. 7.4 Statistics View window.

mation is presented in the Statistics View window, as shown in Fig. 7.4. In this

window, "Count" reports the number of times a thread or a code segment executed.

The number of instructions (or the runtime) used for the execution of a thread or

a code segment are also reported, with "Total", "Max", and "Average" represent­

ing the corresponding arithmetic sum, the maximum value, and the average value,

respectively.

Statistics about the SWI (software interrupt), PRD (period), HWI (hardware in­

terrupt), PIP (pipe), and TSK (task) objects are captured automatically [Tex05a].

This is called implicit instrumentation. For example, in Fig. 7.4, the statistics in­

formation shown in the first line denotes the execution of a software interrupt called

"classify_SWI". Besides the implicit instrumentation, explicit instrumentation can be

used to accumulate statistics explicitly through DSP/BIOS API calls. For example,

we may track statistics such as the amount of time it takes to perform a section of

code as follows [Tex05a]:

STS_set(&stsObj, CLK_gethtime());

(the segment of the code under test)

STS_delta(&stsObj,CLK_gethtime());

Here, STSset saves a high-resolution time value, which is returned by the function

CLK.gethtime, as the initial value in an STS object. STS-delta subtracts this saved

initial value from a new value returned by another CLK^gethtime. The second line in

the Statistics View window in Fig. 7.4 shows such an example of explicit instrumen­

tation wherein a statistics object called "STS2" is defined to benchmark a specific

part of the code.

7 Implementation Based on TMS320C6713 DSK 101

Both implicit and explicit instrumentations are used in our experiments to gather

statistics information about the execution of the algorithm.

7.2 Analysis of the Complexity

In this section, different optimization approaches will be employed to reduce the computa­

tional complexity of the proposed implementation.

7.2.1 Initial Implementation

At the stage of initial implementation, the main focus is placed on the functional correctness

of the code. Meanwhile, we try to keep the code size as small as possible so that the

executable file of the algorithm can be imported into the internal memory units of the

C6713 DSK.

Using the sizeti utility [Tex05b], the memory space required by different sections of the

executable file is given in Table 7.1, where the .bss and .stack sections are reserved for C

variables and stacks. The C6713 DSK features an internal memory of 256 KB, which is

large enough to place all algorithm sections.

Table 7.1 Size of the executable file

Section

code

data

.bss + .stack

Total

Size (KB)

169.83

0.46

35.27

205.56

The correctness of the implementation has been verified using various audio input sam­

ples, which are selected from the 16-kHz database. As an example, Fig. 7.5 shows the audio

classification decisions of a signal, which consists of 1 min of clean speech, 1 min of clean

music and 1 min of noise. The MCC and ACC values are 1.4830 and 1.4048 respectively.

As MCC is larger than 1, the initial implementation is not able to follow the real-time

constraint. A set of optimizations applied to the initial implementation is detailed below.

7 Implementat ion Based on TMS320C6713 D S K 102

3 -

o

o

c
•S 2

O
S3

U

1 1

-

1 1

1 - I 1 " 1

I '

i i

1: Speech
2: Music
3: Noise

-

' i

20 40 60 80 100 120 140 160 180
Time index

Fig. 7.5 Audio classification decisions for a sample of 3 min long. There are
6 error decisions out of a total of 180 decisions.

7.2.2 Compiler Optimizat ion

The TMS320C6x compiler, cl6x, allows source code to be compiled, assembled, and op­

tionally linked in one step to create an executable object file [Tex04c]. This compiler can

perform many optimizations that improve the execution speed and reduce the size of the

source code.

File-Level Opt imizat ion

The easiest way of optimization is to use cl6x compiler's -on option to trigger file-level

optimization, wherein n denotes the level of optimization. The degree of the optimization

is summarized below [Tex04c]:

• -oO

Performs control-flow-graph simplification; allocates variables to registers; performs

loop rotation; eliminates unused code; simplifies expressions and statements; and

7 Implementation Based on TMS320C6713 DSK 103

expands calls to functions declared inline.

• -ol

Performs all -oO optimizations; performs local copy/constant propagation; removes

unused assignments; eliminates local common expressions.

• -o2

Performs all -ol optimizations; performs software pipelining; performs loop optimiza­

tions; eliminates global common subexpressions; eliminates global unused assign­

ments; converts array references in loops to incremented pointer form; and performs

loop unrolling.

• -o3

Performs all -o2 optimizations; removes all functions that are never called; simplifies

functions with return values that are never used; inlines calls to small functions;

reorders function declarations so that the attributes of called functions are known

when the caller is optimized; propagates arguments into function bodies when all

calls pass the same value in the same argument position; and identifies file-level

variable characteristics.

Option -o3 is used below for file-level optimization.

Program-Level Optimization

For multiple source files, program-level optimization can be specified by using -pm option

together with -o3 option. With program-level optimization, all source files are compiled

into one intermediate file called a module. With program-level optimization, the compiler

can "see" the entire program, and then perform several optimizations that are beyond the

scope of a file-level optimization. The optimization operations may include:

• If a particular argument in a function always has the same value, the compiler replaces

the argument with the value and passes the value instead of the argument.

• If a return value of a function is never used, the compiler deletes the return code in

the function.

7 Implementation Based on TMS320C6713 DSK 104

• If a function is not called directly or indirectly by the main function, the compiler

removes the function.

The program-level optimization can be controlled by -opn option, together with -pm

and -o3 options [Tex04c]. The -opn option indicates whether functions in other modules

can call a module's external functions or modify a module's external variables. Specifically,

the number n sets the level for the module that is allowed to be called or modified. Below,

-op3 option is used.

Performance with Compiler Optimization Options

For the optimization of the code size, the compiler cl6x provides -msn option to adjust the

priority between the performance and the code size [Tex04c]. As n is increased from 0 to

3, -msn option increasingly favors the code size over the performance. As the proposed

implementation prefers real-time performance (i.e., the computational complexity) over

code size, and considering that all code sections can be placed in the internal memory

units, -msn option is not applied.

With optimization options -pm -op3 -o3, the MCC and ACC values of the classification

algorithm are given in Table 7.2 under the category "Classify". Although the values of

MCC and ACC are decreased by 32.14% and 31.23% respectively compared to the initial

implementation, the complexity level is still high with MCC larger than 1 and ACC close

to 1. Optimization approaches are therefore further explored with focus on the specific

processing modules.

Table 7.2 Computational complexity after introducing compiler optimiza­
tion options

MCC ACC

Classify 1.0064 0.9661

DCT 0.5323 0.5260

FFT 0.4275 0.4224

By using explicit instrumentations, the two modules with the heaviest computational

loads are identified as the calculation of the DCT-based features and the computation of

7 Implementation Based on TMS320C6713 DSK 105

a 1024-point FFT (see Fig. 7.1). The corresponding complexity values are presented in

Table 7.2 under categories "DCT" and "FFT", respectively. Taking MCC for example,

more than 95% of the total computational complexity is due to these two modules. Be­

low, optimization approaches are introduced to lower the complexity levels for these two

modules.

7.2.3 Optimization of DCT and FFT Modules

Use of a Coefficient Table for DCT Module

For DCT module, it is found that its heavy computational load comes in a large part from

the calculation of cosine coefficients (refer to (6.2)). As these coefficients are unchanged

throughout the processing, we can tabulate these coefficients instead of calculating them

in real time. As such, the DCT module is re-organized into two sub-modules, wherein the

first one calculates the cosine coefficients, whereas the second one calculates the DCT-based

features using the cosine coefficients prepared by the first sub-module.

As the first sub-module only needs to run once throughout the processing, it is now

placed in the function main and acts as the initial processing of the whole algorithm. The

second sub-module remains in the function classify (the interrupt service routine) to replace

the original DCT module. The real-time computational complexity is now determined only

by the second sub-module wherein a significant reduction in the computational complexity

can be achieved. The detailed information on the reduction in the complexity is reported

later.

Use of C67x Optimized DSP Library Functions for the FFT Module

For FFT module, the initial implementation employs a radix-2 decimation in time (DIT)

algorithm [OSB99]. Similarly, there are lots of cosine and sine functions involved in the

calculation of the FFT due to the coefficients Wfc = e-J
2*k/N. An existing optimized FFT

function DSPFsp.cfftr2-dit, which takes the same idea as described above to calculate FFT,

is available from TI's C67x optimized DSP Library (DSPLIB) [Tex06]. This optimized

function is now used to replace the FFT algorithm in the initial implementation.

The C67x DSPLIB is an optimized DSP function library, which includes C-callable,

assembly-optimized, general-purpose signal processing routines. It provides routines in

both single and double precisions. These functions cover the processing or computation of

7 Implementation Based on TMS320C6713 DSK 106

adaptive filtering, correlation, FFT, filtering and convolution, matrix operation, etc. The

C67x DSPLIB can be used in computationally intensive real-time applications to achieve

execution speeds considerably faster than the equivalent code written in the standard ANSI

C language.

The C-callable optimized FFT function used in this work is DSPF.sp.cfftr2.dit, which

is a single-precision floating-point radix-2 DIT FFT algorithm for complex input. The

function is declared as follows:

void DSPF_sp_cfftr2_dit(float *x, float *w, short n) (7.3)

where argument x contains n = N complex input/output numbers arranged as successive

real and imaginary pairs (i.e., 2N elements in total), w contains N/2 complex coefficients

W^ arranged as successive real and imaginary pairs, and n — N is the length of the FFT in

complex samples and it must be a power of 2 and greater than or equal to 32. The elements

of the input array x are in normal order, whereas the outputs in x are in bit-reversed order.

The coefficients w are in bit-reversed order. The calculation of the FFT using the optimized

function DSPFsp-cfftr2-dit is summarized below [Tex06]:

Step 1: Generate coefficient table w using C function genlwiddle(w, N)

Step 2: Bit-reverse coefficient table w using C function bitjrev(w, N/2)

Step 3: Conduct FFT using assembly-optimized function DSPFsp.cf ftr2.dit(x, w, N)

Step 4: Bit-reverse output x using C function bit.rev(x, N)

Clearly, the calculation of the coefficient table w (Steps 1 and 2) can be placed in the initial

processing of the algorithm in the function main. Therefore, only the calculations involved

in Steps 3 and 4 contribute to the real-time computational complexity. In addition, the

C67x DSPLIB provides another optimized function, DSPF.sp.bitrev.cplx, to bit-reverse

single-precision complex numbers. With this function, the above Step 4 can be further

modified as follows:

Step 4_1: Generate index table index using C function bitrev-index(index, N)

Step 4_2: Bit-reverse output x using optimized function DSPF_sp.bitrev.cplx(x, index, N)

http://DSPF.sp.cfftr2.dit

7 Implementation Based on TMS320C6713 DSK 107

Hence, Step 4_1 can also be placed in the initial processing in the function main. Therefore,

the computational complexity is only determined by Steps 3 and 4_2. The reduction in the

complexity is detailed below.

Reduction in the Computational Complexity

With the above optimizations introduced to the DCT and FFT modules, a significant

reduction in the computational complexity is achieved. Table 7.3 lists the information

of the computational complexity before and after introducing optimizations. For audio

classification (i.e., function classify), the MCC and ACC values are decreased by more

than 90%. The MCC is now 0.0886, which means that the algorithm only consumes about

9% of the total computational power C6713 DSK is able to provide.

Table 7.3 Reduction in the computational complexity after introducing op­
timizations to the DCT and FFT modules

MCC ACC

Before After Reduction (%) Before After Reduction (%)

Classify 1.0064 0.0886 91.20 0.9661 0.0684 92.92

DCT 0.5323 0.0114 97.86 0.5260 0.0110 97.91

FFT 0.4275 0.0173 95.95 0.4224 0.0169 96.00

The optimized implementation now meets the real-time constraint. To reveal our efforts

in using different optimization approaches, below, we introduce one more optimization to

the algorithm.

7.2.4 Use of C67x FastRTS Optimized Library

After introducing optimizations to the DCT and FFT modules, it is found that the spectral

self-normalization module (see Fig. 7.1) is now the most critical part wherein about 40.45%

of the total computational complexity (based on the MCC value) is due to this module. The

calculations involved in the spectral self-normalization module follow the ideas described in

Section 5.3.4, wherein the relatively high complexity level is due to the division and square-

root operations in a loop. To conduct optimization for these two operations, we may use

7 Implementation Based on TMS320C6713 DSK 108

C67x's assembly-optimized division and square-root subroutines, which are included in the

C67x fast run-time-support (FastRTS) library [Tex02].

C67x FastRTS library is an optimized floating-point math function library for program­

mers using TMS320C67x devices. This library provides hand-coded assembly-optimized

routines that are C-callable for some computational intensive functions, such as sine, co­

sine, logarithm, exponential, reciprocal, etc. A considerably faster execution speed can be

achieved through testings against C model and existing run-time-support functions [Tex02].

Concerning the proposed implementation, single-precision floating-point functions divsp

and sqrtf provided by the C67x FastRTS library are used to replace the corresponding

existing division and square-root operations in the self-normalization module. Since the

FastRTS library is a subset of the standard RTS library, if we want to use FastRTS library

functions in place of the existing versions of these functions, the FastRTS library must be

linked in before the existing RTS library [Tex02].

The reduction in the computational complexity is achieved and verified by testing results

given in Table 7.4, where "Self-Norm" refers to the spectral self-normalization module.

According to Table 7.4, the MCC and ACC values of the classification algorithm are further

reduced by 39.62% and 46.49% respectively.

The information of the code size is listed in Table 7.5. After all above optimization

approaches have been introduced, the code size is increased by about 12 kB compared to

the data given in Table 7.1. This increase in the code size is not critical as the internal

memory space (i.e., 256 kB) is still large enough to place the executable file of the algorithm.

Table 7.4 Reduction in the computational complexity after using the C67x
FastRTS library

MCC ACC

Before After Reduction (%) Before After Reduction (%)

Classify 0.0886 0.0535 0.3962 0.0684 0.0366 0.4649

Self-Norm 0.0359 0.0078 0.7827 0.0355 0.0074 0.7915

7 Implementat ion Based on TMS320C6713 DSK 109

Table 7.5 Size of the executable file after introducing all proposed optimiza­
tions

Section

code

data

.bss + .

Total

stack

Size (KB)

181.72

0.55

35.27

217.55

7.3 Conclusion

In this chapter, a three-class audio classification algorithm using the DCT-FFT2 feature set

and C4.5 decision tree model is implemented on TI's floating-point C6713 DSK. By using

a pair of host channels, the connection between the host PC and the DSP target board

has been established in the presented DSP implementation. A simple Matlab algorithm

is also developed to monitor the outputs from the DSP target, and the correctness of the

implementation is verified. Through the use of different optimization approaches, such as

compiling with optimization options, creating tables for coefficients, making use of opti­

mized functions from C67x DSP library and C67x FastRTS library, a significant reduction

in the computational complexity has been achieved for the proposed algorithm wherein

the optimized implementation only consumes about 5.35% (in MCC value) of the total

computational power C6713 DSK is able to provide. Based on this optimized implementa­

tion, by only changing the input/output scheme, the presented system can be modified to

handle real-time data transfer, for example, to process audio data from the line input on

the AIC23 codec and plays the results on the line output by using McBSP (multichannel

buffered serial port) and EDMA (enhanced direct-memory-access) [Spe04].

110

Chapter 8

Summary and Conclusion

8.1 Summary of the Work

The past decade has seen extensive research on the content-based audio analysis. Current

research interests lie in the classification/segmentation, the information retrieval, and the

indexing. Among these applications, audio classification is the fundamental process which

can be employed as a basis for other applications. The scope of this work is focused on

audio classification algorithms.

Various audio classification algorithms have been proposed along with excellent perfor­

mance being reported. Among different a.udio classes, speech and music are the two most

popular classes in multimedia communications, and thus have attracted much attention

in audio classification applications. Speech/music classification algorithms can be used for

different purposes, e.g., to surf a radio channel for segments of music or talk. Besides

speech and music, some researchers have included other audio classes in their studies, es­

pecially various environmental sounds and background noises, due to considerations on

certain practical applications wherein background sounds or noises are present.

The design of audio features is a key issue in the development of an audio classification

algorithm. A good feature characterizes a large interclass difference and a small intraclass

difference. Audio features are commonly extracted in two levels, namely: the short-term

frame level and the long-term clip level. The frame-level features are usually calculated

through time-domain analysis, Fourier transform analysis, LPC analysis, etc. Widely used

frame-level features include the short-time energy, the short-time average ZCR, the pitch

frequency, the spectral centroid, the MFCCs, the LPC coefficients, etc. Clip-level features

8 Summary and Conclusion 111

usually describe how frame-level features change over a time window. The most widely used

clip-level features are the statistical mean and variance values of the frame-level features

such as the energy and ZCR.

Various classification approaches have been employed in audio classification applica­

tions. For an application where there is requirements for low complexity and real-time

processing, the simple rule-based classifiers are appropriate. Other complex pattern recog­

nition approaches commonly used in audio classification applications include the HMM,

the SVM, the GMM, etc.

Although in some audio classification applications the presence of background noise has

been considered, such considerations are limited to using background noise as one of the

audio classes or as a component of some hybrid sounds. The effect of background noise on

the performance of classification has not been widely investigated. In fact, a classification

algorithm trained using clean sequences may fail to work properly when the actual testing

sequences contain background noise with certain SNR levels. The so-called early auditory

model presented by Wang and Shamma [WS94] is proved to be robust in noisy environments

due to an inherent self-normalization property which causes noise suppression. Recently,

this model has been employed in audio classification experiments in [RA04] and noise-robust

performance has been reported.

Noise-robustness is a property that is lacking in many of today's audio classification

and speech recognition systems. Inspired by the noise-suppression property of the EA

model [WS94], we seek in this thesis to further explore the application of this property to

audio classification algorithms. A series of related research work has been conducted which

forms the basis of the proposed study on auditory-based noise-robust audio classification

algorithms. The proposed research has led to main achievements as summarized below.

First, we have used the Gaussian CDF as an approximation to the original sigmoid

compression function to derive a new closed-form expression for the auditory spectrum (i.e.,

the output of the EA model) and to conduct relevant analysis. The use of the Gaussian CDF

is based on its nonlinear compression nature, and its resemblance to the sigmoid function.

The new results based on the Gaussian CDF verify the self-normalization property as

analyzed in [WS94]. Compared to the original analysis wherein a step function is used to

approximate the nonlinear sigmoid compression function, the proposed analysis using the

Gaussian CDF provides a better yet mathematically tractable approximation.

Second, efforts have been made to propose simplified and approximated versions of

8 Summary and Conclusion 112

the original auditory spectrum. Based on the original time-domain analysis in [WS94], a

simplified auditory spectrum has been proposed, which provides a way to investigate the

approximation of the EA model from the perspective of linear processing. The under­

lying analysis naturally leads to frequency-domain approaches for further approximation

in order to achieve a significant reduction in the computational complexity. A simplified

FFT-based spectrum is then proposed wherein a local spectral self-normalization is im­

plemented through the use of a pair of wide and narrow filters defined in the frequency

domain. Furthermore, an improved implementation of the above FFT-based spectrum is

proposed to calculate a so-called simplified FFT-based auditory spectrum. The introduced

improvements include the use of characteristic frequency (CF) values of the cochlear filters

in the original EA model for the power spectrum selection, and the use of a pair of fast and

slow running averages over the frequency axis to implement the spectral self-normalization.

With the introduced improvements, the proposed FFT-based auditory spectrum allows

more flexibility in the extraction of noise-robust audio features.

Third, to evaluate the performance of the proposed FFT-based spectrum (see Section

5.2) and the proposed FFT-based auditory spectrum (see Section 5.3), audio classification

experiments have been carried out. Two generic audio databases were created which con­

tain speech, music and noise clips. The sampling rates of the two databases are 16 and 8

kHz. The DCT-based frame-level audio features were calculated using the original audi­

tory spectrum, the proposed FFT-based spectrum, and the proposed FFT-based auditory

spectrum. In addition, frame-level audio features also include a set of spectral features

calculated using the proposed FFT-based auditory spectrum. The clip-level features used

in this study are simply the statistical mean and variance values of the corresponding

frame-level features. As for the classification approach, we have used the SVMstruct al­

gorithm [TJHA05] and the C4.5 algorithm [Qui93]. The experimental platforms include

Matlab and ANSI C. Three-class (i.e., speech, music and noise) and two-class (noise and

non-noise) classification experiments have been conducted to evaluate the classification per­

formance. Specifically, mismatched tests are conducted to evaluate the noise-robustness of

various features, wherein the training and testing sets contain samples with mismatched

SNR values. Compared to the conventional features such as MFCCs, the auditory-related

features (i.e., features obtained from the original auditory spectrum and the proposed FFT-

based spectra) show more robust performance in mismatched test cases. Test results also

indicate that the performance of the proposed FFT-based auditory spectrum is slightly

8 Summary and Conclusion 113

better than that of the original auditory spectrum, while its computational complexity is

reduced by an order of magnitude.

Finally, to further explore the proposed FFT-based auditory spectrum from a practical

perspective, a three-class audio classification algorithm has been developed and tested

on the TI's floating-point DSP platform TMS320C6713 DSK. The algorithm employs the

DCT-based feature set (i.e., DCT-FFT2 feature set) and the C4.5 decision tree model.

Through the use of a pair of host channels, the connection between the host PC and the

DSP target has been established in the presented implementation. The input audio signals

are 16-bit signed PCM data which are sampled at 16 kHz and stored on the host PC,

whereas the outputs of the system are audio classification decisions on a 1 s basis. A

simple Matlab algorithm is also developed to monitor the outputs from the DSP target.

By using TI's real-time software development tool, we have investigated the computational

complexity of the algorithm. Through different optimization approaches, such as the use of

tools and optimized functions provided by the C6713 DSK, we have achieved a significant

reduction in the computational complexity for the proposed implementation.

8.2 Future Research

The proposed research may be further explored from the following perspectives:

• Spectral enhancement along the time index: The proposed self-normalization is im­

plemented in the FFT-domain by using a pair of wide and narrow filters defined over

the frequency channel index. For audio classification applications, as introduced ear­

lier, some clip-level features are designed to characterize the temporal variation of

frame-level features. As such, enhancement along the time index may also lead to the

desired noise suppression. Specifically, it is of interest to investigate if a channel-time

(or space-time) joint spectral enhancement approach can be developed to calculate

a noise-robust FFT-based spectrogram, from which we may achieve further improve­

ment in the noise suppression with application in audio classification.

• Experimental setup: The noise-robustness of the proposed approaches has been eval­

uated in audio classification experiments described in Chapter 6. Regarding the

classifiers and the audio features used in this work, we may change to use some other

8 Summary and Conclusion 114

classification approaches and to calculate other audio features so as to further evaluate

the noise-robustness of the proposed auditory-inspired FFT-based spectra.

• Length of the decision window: The audio classification decisions are made mainly

on a 1 s basis in this work. It is of interest to further investigate the relationship

between the classification performance and the length of the decision window.

• DSP implementation: A demo system is implemented on the C6713 DSK in this

work wherein the input audio data are stored on the host PC. We may move one step

further to develop a system which is able to process real-time data stream instead of

the stored data.

115

Appendix A

Closed-Form Expression of E[y^(tys)

Assume random variables U and V are jointly normal with zero mean and standard devia­

tion au and av, respectively. Accordingly, the conditional distribution function of V given

U = u, fv\u(v\u), is also normal with mean fiv\u = ruav/au and variance a^. — o2
v{\ — r2),

where r represents the correlation coefficient between U and V [PP02., Mey70].

To facilitate the analysis, we first define the following quantities

/? = % (A.l)

Under the above assumptions about the distributions of U and V, E[max(V, 0)\U = u]

in (3.9) is calculated as follows:

(v-0u)2

E[max(V,Q)\U = u] — / v—/= e 2"v]u dv
Jo y/27vav\u

v]ue ^+Pu$ - M - (A-3)
2TT V <?v\u

A Closed-Form Express ion of E[y±{t,s)\ 116

Therefore, (3.9) can

E[y4{t,s)} =

be rewritten

r i c
LQO VZ^CTg

as

u2

a.
.2

^2~

27T

u
,1 I 27TCT,,

-e ^du

= C + D (A.4)

where C and D are evaluated below. For C, we have

C =
2iraa

-e g ' e "i" , —e 2cr^au
2TT 27ra„

^i i |u

(V27r)3a9au

2 2 2

" i " u)du

Define

Then,

1.-1. _i_ _L

C =
2irag<7u

As for D, we have

D =
_oo v 27TCT,

1 — I 11

2iragau d _00

o'v\u) V2TT(TU

e ^du

u <& | -̂ — I e V ^ 2al) du.
T u | u

Define
_L-JL _L
< 2̂ ^ 9 Ou

By using partial integration, we have the following result for D

D =
(5axa

2
2

2TTagaua'vlu

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

A Closed-Form Expression of i?[y4(£,s)] 117

Therefore, the closed-form expression of (3.9) is

E[y4(t,s)}= +
2ira„au 2-Kaqaua[,

2 ^ » + a») • (A - U)

118

Appendix B

TMS320C6713 DSK

B.l Hardware Overview

With a 32-bit word width, TMS320C67x floating-point digital signal processors (DSPs)

enable a larger dynamic range and a higher level of precision as compared to the 16-bit

fixed-point DSPs. Based on the high-precision C6713 DSP, the C6713 DSK creates a low-

cost full featured development platform, and provides users with an easy and cost-effective

way of evaluating and developing the C6713 DSP-based applications. Fig. B.l shows the

block diagram of a C6713 DSK. The key features of C6713 DSK include [Spe04, Tex05c]:

• A 225 MHz TMS320C6713 DSP.

• An AIC23 stereo codec with 4 audio jacks (microphone (MIC) in, line in, line out,

and headphone (HP) out).

• 16 MB synchronous DRAM (SDRAM) and 512 KB flash memory.

• Four user-accessible LEDs (light-emitting diodes) and DIP (dual in-line package)

switches.

• Board configuration through registers implemented in the CPLD (complex programmable

logic device).

• Configurable boot options.

• A 32-bit EMIF (external memory interface) bus, connecting the DSP to SDRAM,

flash, CPLD, and daughter card.

B TMS320C6713 DSK 119

Fig. B.l TMS320C6713 DSK block diagram [Spe04].

JTAG (Joint Test Action Group) emulation through the on-board JTAG emulator

with USB host interface or external emulator

A detailed discussion of the C6713 DSK is certainly beyond the scope of this thesis.

Below, we only give a brief introduction to the C6713 DSP, which is the core of the system.

Fig. B.2 shows the functional block diagram of the floating-point C6713 DSP. Several key

features of the C6713 DSP are summarized below [Tex05c].

• TI's VelociTI very-long-instruction-word (VLIW) architecture: It enables the central

processing unit (CPU) to fetch a 256-bit wide word to supply up to eight 32-bit

instructions to eight functional units during every clock cycle.

• Speed: Operating at 225 MHz, C6713 DSP provides a processing performance up to

1350 million floating-point operations per second (MFLOPS), 1800 million instruc­

tions per second (MIPS), and up to 450 million multiply-accumulate operations per

second (MMACS) with dual fixed-/floating-point multipliers.

B TMS320C6713 DSK 120

.16,

McBSPI

Enhanced
DMA

Controller
(16 channel)

L2 Cache/
Memory
4 Banks

64K Bytes
Total

(up to
4-Way)

L2
Memory

192K
Bytes

C6713 Digital Signal Processor

L1P Cache
Direct Mapped
4K Bytes Total

Instruction Fetch

Instruction Dispatch

Instruction Decode

Data Path A

A Register File

LI | ,S1 | .M1 I

Data Path B

B Register File

D2 I.M2 I.S2 I.L2

Control
Registers

Control
Logic

In-Circuit
Emulation

Interrupt
Control

L1D Cache
2-Way

Set Associative
4K Bytes

Clock Generator and PLL
x4 through x25 Multiplier
/1 through /32 Dividers

Power-Down
Logic

Fig. B.2 TMS320C6713 DSP core functional block diagram [Tex05c].

• Two sets/sides of functional units: Each set contains four functional units (i.e., .LI,

.Si, .Ml, and .Dl; or .D2, .M2, .S2, and .L2), and one register file which contains 16

32-bit registers. The two .M functional units are dedicated for multiplies.

• Two-level cache-based memory L1/L2: LI consists of a 4 KB program cache (LIP)

and a 4 KB data cache (LID). The 256 KB L2 memory/cache is shared between

program and data.

• Peripherals: These include two multichannel audio serial ports (McASPs), two mul­

tichannel buffered serial ports (McBSPs), two inter-integrated circuit (I2C) buses,

one general-purpose input/output (GPIO) module, two general-purpose timers, one

host-port interface (HPI), and one glueless external memory interface (EMIF).

B TMS320C6713 DSK 121

• Instruction set: C6713 DSK features hardware support for IEEE single and double

precision floating-point operations; 32-bit integer multiply; 8/16/32-bit addressable;

overflow protection, saturation and normalization; etc.

• Other features: These include an enhanced direct-memory-access (EDMA) controller,

a phase-locked loop (PLL) unit, two boot modes (HPI or external asynchronous

ROM), etc.

B.2 Software Overview

TI's floating-point DSPs are supported by TI's real-time eXpressDSP softwares and de­

velopment tools [Tex05a], which include three components, namely: the DSP-integrated

development tools in the Code Composer Studio Integrated Development Environment

(CCStudio IDE, or CCS IDE); the eXpressDSP softwares (e.g., DSP/BIOS kernel), and

the TI DSP-based third-party products.

Below, a brief introduction is given to the CCStudio IDE [Tex05a, Tex05b] with focus

on the basic software tools which are useful at different stages of a development, such as

the code creation, debug, and analysis/tuning. A detailed description of these software and

tools would be beyond the scope of the thesis.

B.2.1 Code Creation

Editor/Complier

CCStudio IDE provides a fully integrated code editing environment tuned for C, C++ and

DSP assembly code. In addition to the common features, the source code editor has some

other unique features like column editing and mixed-mode display (i.e., source code plus

disassembled instructions).

CCStudio compile tools shift the burden of optimization from the hand-coded assembly

to the C compiler. One major focus of the C6000 compiler has been VLIW architecture-

specific optimizations/enhancements which include software pipelining, inner and nested

loop optimization, etc.

B TMS320C6713 DSK 122

Available Softwares

• DSP/BIOS: The DSP/BIOS [Tex04a] consists of a real-time kernel, real-time analysis

services, peripheral configuration libraries, and a graphical configuration tool. It

eliminates the need to develop and maintain custom DSP operating systems, and gives

developers the ability to develop embedded real-time software. Application programs

use DSP/BIOS by making calls to the DSP/BIOS Application Programming Interface

(API) [Tex04b], which is divided into modules. All DSP/BIOS modules provide C-

callable interfaces.

Regarding the proposed implementation, we have used API modules such as HST

- and STS, and created objects such as the software interrupt.

• Library: Various libraries are provided for different purposes. For example, the Chip

Support Library (CSL) is a set of C functions to manage on-chip peripherals, while

the Board Support Library (BSL) is a set of C APIs used to configure and control

all on-board devices [Tex05a]. Some general-purpose C-callable signal processing

routines are provided by DSP libraries [Tex05a].

• TMS320 DSP algorithm standard: It defines common programming rules and guide­

lines with a set of programming interfaces that are used consistently by algorithms

across different applications [Tex05a].

• Reference frameworks: These contain design-ready, reusable C source code [Tex05a].

B.2.2 Debug

Debugger

The CCStudio debugger makes it easy to find and fix errors in real-time embedded appli­

cations by using debug windows/interfaces such as the memory window, registers window,

disassembly window, call stack window, symbol browser, watch window, and command

window. In addition, a probe point can be set to update the connect objects such as a file,

graph, or memory window.

B TMS320C6713 DSK 123

Real-Time Data Exchange

The conventional stop-mode debugging approach exchanges data with the host computer by

using breakpoints to stop the application, which often failed to provide an accurate view

of a system's real-time operation. TI's Real-Time Data Exchange (RTDX) technology

offers one solution to this problem by providing real-time, continuous visibility about the

performance of a target application without stopping it. RTDX also allows data to be

streamed with ActiveX-compliant application such as Excel, Lab VIEW or Matlab. Host

applications can read either live or saved RTDX data.

B.2.3 Analysis

CCStudio IDE provides various tools to help developers analyze and tune their applications.

Among these is the DSP/BIOS real-time analysis (RTA) tools which provide a unique

visibility into applications. The commonly used DSP/BIOS RTA tools include those to

trace an algorithm by displaying events written to target logs, to monitor performance by

tracking statistics information that reflects the use of target resources, and to handle file

streaming by binding input/output objects to host files.

124

References

[ACRLF07] E. Alexandre, L. Cuadra, M. Rosa, and F. Lopez-Ferreras, "Feature selection
for sound classification in hearing aids through restricted search driven by ge­
netic algorithms," IEEE Trans. Audio, Speech, Lang. Process., vol. 15, no. 8,
pp. 2249-2256, Nov. 2007.

[AMB02] J. Ajmera, I. A. Mccowan, and H. Bourlard, "Robust HMM-based
speech/music segmentation," in Proc. IEEE Int. Conf. Acoust, Speech, Signal
Process., vol. 1, May 2002, pp. 297-300.

[Ata74] B. S. Atal, "Effectiveness of linear prediction characteristics of the speech
wave for automatic speaker identification and verification," J. Acoust. Soc.
Amer., vol. 55, no. 6, pp. 1304-1312, Jun. 1974.

[BALD05] M. Biichler, S. Allegro, S. Launer, and N. Dillier, "Sound classification in
hearing aids inspired by auditory scene analysis," EURASIP J. Applied Signal
Process., vol. 2005, no. 18, pp. 2991-3002, 2005.

T. Beierholm and P. M. Baggenstoss, "Speech music discrimination using
class-specific features," in Proc. 17th Int. Conf. Pattern Recognition, vol. 2,
Aug. 2004, pp. 379-382.

C. J. C. Burges, "A tutorial on support vector machines for pattern recogni­
tion," Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121-167, Jun.
1998.

W. Chu, M. O. Ahmad, and M. N. S. Swamy, /'Modified silence suppression
algorithms and their performance tests," in IEEE 48th Midwest Symposium
Circuits Syst., vol. 1, Aug. 2005, pp. 436-439.

W. Chu and B. Champagne, "A noise-robust FFT-based spectrum for audio
classification," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
vol. 5, May 2006, pp. 213-216.

[BB04]

[Bur98]

[CAS05]

[CC06a]

References 125

[CC06b] W. Chu and B. Champagne, "A simplified early auditory model with appli­
cation in audio classification," Can. J. Elect. Comput. Eng., vol. 31, no. 4,
pp. 185-189, Fall 2006.

[CC06c] W. Chu and B. Champagne, "A simplified early auditory model with applica­
tion in speech/music classification," in Proc. IEEE Can. Conf. Elect. Comput.
Eng., May 2006, pp. 578-581.

[CC07] W. Chu and B. Champagne, "An improved implementation for an auditory-
inspired FFT model with applicaiton in audio classification," in Proc. IEEE
Int. Conf. Multimedia Expo, Jul. 2007, pp. 196-199.

[CC08] W. Chu and B. Champagne, "A noise-robust FFT-based auditory spectrum
with application in audio classification," IEEE Trans. Audio, Speech, Lang.
Process., vol. 1, pp. 137-150, Jan. 2008.

[CLZC03] R. Cai, L. Lu, H.-J. Zhang, and L.-H. Cai, "Highlight sound effects detection
in audio stream," in Proc. Int. Conf. Multimedia Expo, vol. 3, Jul. 2003, pp.
37-40.

[CPLT99] M. J. Carey, E. S. Parris, and H. Lloyd-Thomas, "A comparison of features
for speech, music discrimination," in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., vol. 1, Mar. 1999, pp. 149-152.

[CS01] K. Crammer and Y. Singer, "On the algorithmic implementation of multi-
class kernel-based vector machines," J. Mach. Learn. Res., vol. 2, pp. 265-292,
Dec. 2001.

[CV95] C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning,
vol. 20, no. 3, pp. 273-297, Sep. 1995.

[DM80] S. Davis and P. Mermelstein, "Comparison of parametric representations
for monosyllabic word recognition in continuously spoken sentences," IEEE
Trans. Acoust., Speech, Signal Process., vol. 28, no. 4, pp. 357-366, Aug. 1980.

[ECS03] M. Elhilali, T. Chi, and S. Shamma, "A spectro-temporal modulation in­
dex (STMI) for assessment of speech intelligibility," Speech Communication,
vol. 41, pp. 331-348, Oct. 2003.

[EKR04] S. Esmaili, S. Krishnan, and K. Raahemifar, "Content based audio classifi­
cation and retrieval using joint time-frequency analysis," in Proc. IEEE Int.
Conf. Acoust, Speech, Signal Process., vol. 5, May 2004, pp. 665-668.

References 126

[EMKPKOO] K. El-Maleh, M. Klein, G. Petrucci, and P. Kabal, "Speech/music discrimina­
tion for multimedia applications," in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., vol. 6, Jun. 2000, pp. 2445-2448.

[FU01] J. Foote and S. Uchihashi, "The beat spectrum: a new approach to rhythm
analysis," in Proc. IEEE Int. Conf. Multimedia Expo, Aug. 2001, pp. 881-884.

[Fuk90] K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed. Boston:
Academic Press, 1990.

[FZWL03] Z. Feng, Y. Zhou, L. Wu, and Z. Li, "Audio classification based on maximum
entropy model," in Proc. Int. Conf. Multimedia Expo, vol. 1, Jul. 2003, pp.
745-748.

[GL03] G. Guo and S. Z. Li, "Content-based audio classification and retrieval by
support vector machines," IEEE Trans. Neural Networks, vol. 14, no. 1, pp.
209-215, Jan. 2003.

[GL04] M. M. Goodwin and J. Laroche, "A dynamic programming approach to audio
segmentation and speech/music discrimination," in Proc. IEEE Int. Conf.
Acoust, Speech, Signal Process., vol. 4, May 2004, pp. 309-312.

[GZL01] G. Guo, H.-J. Zhang, and S. Z. Li;, "Boosting for content-based audio clas­
sification and retrieval: an evaluation," in Proc. IEEE Int. Conf. Multimedia
Expo, Aug. 2001, pp. 997-1000.

[HH04] R. Huang and J. H. L. Hansen, "Advances in unsupervised audio segmenta­
tion for the broadcast news and NGSW corpora," in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., vol. 1, May 2004, pp. 741-744.

[ITU96] ITU-T Recommendation G.729, Annex B, "A silence compression scheme for
G.729 optimization for terminals conforming to Recommendation V.70," Nov.
1996.

[JLZ00] H. Jiang, T. Lin, and H.-J. Zhang, "Video segmentation with the assistance
of audio content analysis," in Proc. IEEE Int. Conf. Multimedia Expo, vol. 3,
Jul. 2000, pp. 1507-1510.

[JOMM02] R. Jarina, N. O'Connor, S. Marlow, and N. Murphy, "Rhythm detection for
speech-music discrimination in MPEG compressed domain," in Proc. 14th
Int. Conf. Digital Signal Process., vol. 1, Jul. ,2002, pp. 129-132.

[Kat95] J. M. Kates, "Classification of background noises for hearing-aid applica­
tions," J. Acoust. Soc. Amer., vol. 97, no. 1, pp. 461-470, Jan. 1995.

References 127

[KMS04] H.-G. Kim, N. Moreau, and T. Sikora, "Audio classification based on MPEG-
7 spectral basis representations," IEEE Trans. Circuits Syst. Video TechnoL,
vol. 14, no. 5, pp. 716-725, May 2004.

[KQG04] S. Kiranyaz, A. F. Qureshi, and M. Gabbouj, "A fuzzy approach towards
perceptual classification and segmentation of MP3/AAC audio," in Proc. 1st
Int. Symposium Control, Communications, Signal Process., 2004, pp. 727-
730.

[Lay03] D. C. Lay, Linear Algebra and its Applications, 3rd ed. Boston, Mass.:
Addison-Wesley, 2003.

[LCTC05] C.-C. Lin, S.-H. Chen, T.-K. TVuong, and Y. Chang;, "Audio classification
and categorization based on wavelets and support vector machine," IEEE
Trans. Speech Audio Process., vol. 13, no. 5, pp. 644-651, Sep. 2005.

[LD04] Y. Li and C. Dorai, "SVM-based audio classification for instructional video
analysis," in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing,
vol. 5, May 2004, pp. 897-900.

[LHOOa] Z. Liu and Q. Huang, "Content-based indexing and retrieval-by-example in
audio," in Proc. IEEE Int. Conf. Multimedia Expo, vol. 2, Jul.-Aug. 2000, pp.
877-880.

[LHOOb] G. Lu and T. Hankinson, "An investigation of automatic audio classification
and segmentation," in Proc. IEEE Int. Conf. Signal Process., vol. 2, Aug.
2000, pp. 776-781.

[LHWC97] Z. Liu, J. Huang, Y. Wang, and T. Chuan, "Audio feature extraction and
analysis for scene classification," in Proc. IEEE Workshop Multimedia Signal
Process., Jun. 1997, pp. 343-348.

[LiOO] S. Z. Li, "Content-based audio classification and retrieval using the nearest
feature line method," IEEE Trans. Speech Audio Process., vol. 8, no. 5, pp.
619-625, Sep. 2000.

[LS04] W.-N. Lie and C.-K. Su, "Content-based retrieval of MP3 songs based on
query by singing," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
vol. 5, May 2004, pp. 929-932.

[LZJ02] L. Lu, H.-J. Zhang, and H. Jiang;, "Content analysis for audio classification
and.segmentation," IEEE Trans. Speech Audio Process., vol. 10, no. 7, pp.
504-516, Oct. 2002.

References 128

[Mey70] P. L. Meyer, Introductory Probability and Statistical Applications, 2nd ed.
MA: Addison-Wesley, 1970.

[MR00] P. J. Moreno and R. Rifkin, "Using the fisher kernel method for web audio
classification," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
vol. 6, Jun. 2000, pp. 2417-2420.

[MSS04] N. Mesgarani, S. Shamma, and M. Slaney, "Speech discrimination based on
multiscale spectro-temporal modulations," in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., vol. 1, May 2004, pp. 601-604.

[Neu] Neural Systems Laboratory, University of Maryland. NSL Matlab Toolbox.
[Online]. Available: http://www.isr.umd.edu/Labs/NSL/nsl.html. [Cited
May 2005].

[NHK05] N. Nitanda, M. Haseyama, and H. Kitajima, "Accurate audio-segment clas­
sification using feature extraction matrix," in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., vol. 3, Mar. 2005, pp. 261-264.

[NL04] P. Nordqvist and A. Leijon, "An efficient robust sound classification algorithm
for hearing aids," J. Acoust. Soc. Amer., vol. 115, no. 6, pp. 3033-3041, Jun.
2004.

[NL05] T. L. Nwe and H. Li, "Broadcast news segmentation by audio type analysis,"
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., vol. 2, Mar. 2005,
pp. 1065-1068.

[NLS+99] Y. Nakajima, Y. Lu, M. Sugano, A. Yoneyama, and H. Y. A. Kurematsu, "A
fast audio classification from MPEG coded data," in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., vol. 6, Mar. 1999, pp. 3005-3008.

[O'SOO] D. O'Shaughnessy, Speech Communications-Human and Machines, 2nd ed.
New York: IEEE Press, 2000.

[OSB99] A. V. Oppenheim, R. W. Schafer, J. R. Buck, Discrete-Time Signal Process­

ing, 2nd ed. Englewood Cliffs, N. J.: Prentice-Hall, 1999.

[Oti] http://adapto.oticon.com. [Cited Apr. 2006].

[Pho] http://www.phonak.com. [Cited Apr. 2006].

[PP02] A. Papoulis and S. U. Pilled, Probability, Random Variables, and Stochastic
Processes, 4th ed. New York: McGraw-Hill, 2002.

http://www.isr.umd.edu/Labs/NSL/nsl.html
http://adapto.oticon.com
http://www.phonak.com

References 129

[PRAO03] J. Pinquier, J.-L. Rouas, and R. Andre-Obrecht, "A fusion study in
speech/music classification," in Proc. Int. Conf. Multimedia Expo, vol. 1, Jul.
2003, pp. 409-412.

[PT05] C. Panagiotakis and G. Tziritas, "A speech/music discriminator based on
RMS and zero-crossings," IEEE Trans. Multimedia, vol. 7, pp. 155-166, Feb.
2005.

[Qia97] R.-Y. Qiao, "Mixed wideband speech and music coding using a speech/music
discriminator," in Proc. IEEE Region 10 Annu. Conf. Speech Image Technol.
for Comput. Telecomm., vol. 2, Dec. 1997, pp. 605-608.

[Qui93] J. R. Quinlan, C4-5 : programs for machine learning. San Mateo, CA:
Morgan Kaufmann, 1993.

[RA04] S. Ravindran and D. Anderson, "Low-power audio classification for ubiquitous
sensor networks," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
vol. 4, May 2004, pp. 337-340.

[RA05] S. Ravindran and D. V. Anderson, "Audio classification and scene recognition
and for hearing aids," in Proc. IEEE Int. Symposium Circuits Systems, vol. 2,
May 2005, pp. 860-863.

[Rab89] L. R. Rabiner, "A tutorial on hidden Markov models and selected applications
in speech recognition," in Proc. IEEE, vol. 77, Feb. 1989, pp. 257-286.

[RJ93] L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition. Englewood
Cliffs, NJ: Prentice-Hall, 1993.

[RN03] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Upper Saddle River, N.J.: Prentice Hall, 2003.

[RS78] L. R. Rabiner and R. W. Schafer, Digital processing of speech signals. En­
glewood Cliffs, N.J.: Prentice-Hall, 1978.

[RSA05] S. Ravindran, K. Schlemmer, and D. V. Anderson, "A physiologically in­
spired method for audio classification," EURASIP J. Applied Signal Process­
ing, no. 9, pp. 1374-1381, 2005.

[RuOO] P.-W. Ru, "Perception-based multi-resolution auditory processing of acoustic
signals," Ph.D. dissertation, University of Maryland, 2000.

[SA04] C. Senac and E. Ambikairajah, "Audio indexing using feature warping and
fusion techniques," in Proc. IEEE 6th Workshop Multimedia Signal Process.,
Sep. 2004, pp. 359-362.

References 130

[Sau96] J. Saunders, "Real-time discrimination of broadcast speech/music," in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process., vol. 2, May 1996, pp. 993-
996.

[Sch98] E. D. Scheirer, "Tempo and beat analysis of acoustic musical signals," J.
Acoust. Soc. Amer., vol. 103, no. 1, pp. 588-601, Jan. 1998.

[SchOO] F. Schwenker, "Hierarchical support vector machines for multi-class pattern
recognition," in Proc. IEEE 4th Int. Conf. Knowledge-Based Intell. Eng. Syst.
Allied Technol, vol. 2, Aug. 2000, p. 561-565.

[Sla] M. Slaney. Auditory Toolbox: A Matlab Toolbox for Auditory Modeling
Work (Version 2). Interval Research Corporation, Tech. Rep. 1998-010, 1998.
[Online]. Available: http://www.slaney.org/malcolm/pubs.html. [Cited Jul.
2006].

[Spe04] TMS320C6713 DSK Technical Reference, Spectrum Digital, Stafford, TX,
Jan. 2004.

[SS97] E. Scheirer and M. Slaney, "Construction and evaluation of a robust multifea-
ture speech/music discriminator," in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., vol. 2, Apr. 1997, pp. 1331-1334.

[TC00] G. Tzanetakis and F. Cook, "Sound analysis using MPEG compressed audio,"
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., vol. 2, Jun. 2000,
pp. 761-764.

[Tex02] TMS320C67x FastRTS Library Programmer's Reference, Texas Instruments,

Dallas, TX, Oct. 2002.

[Tex04a] TMS320 DSP/BIOS User's Guide, Texas Instruments, Dallas, TX, Apr. 2004.

[Tex04b] TMS320C6000 DSP/BIOS Application Programming Interface (API) Refer­
ence Guide, Texas Instruments, Dallas, TX, Apr. 2004.

[Tex04c] TMS320C6000 Optimizing Compiler User's Guide, Texas Instruments, Dal­
las, TX, May 2004.

[Tex05a] Code Composer Studio IDE Getting Started Guide, Texas Instruments, Dallas,
TX, May 2005.

[Tex05b] TMS320C6000 Code Composer Studio IDE Help, Texas Instruments, Dallas,
TX, May 2005.

http://www.slaney.org/malcolm/pubs.html

References 131

TMS320C6713 Floating-Point Digital Signal Processor, Texas Instruments,
Dallas, TX, Nov. 2005.

TMS320C67x DSP Library Programmer's Reference Guide, Texas Instru­
ments, Dallas, TX, Mar. 2006.

TIA/EIA/IS-727, "TDMA cellular/pcs-radio interface-minimum perfor­
mance standards for discontinuous transmission operation of mobile stations,"
Jun. 1998.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, "Large margin
methods for structured and interdependent output variables," J. Mach. Learn.
Res., vol. 6, pp. 1453-1484, Sep. 2005.

L. Tancerel, S. Ragot, V. T. Ruoppila, and R. Lefebvre, "Combined speech
and audio coding by discrimination," in Proc. IEEE Workshop Speech Coding,
Sep. 2000, pp. 154-156.

K. Umapathy, S. Krishnan, and S. Jimaa, "Multigroup classification of audio
signals using time-frequency parameters," IEEE Trans. Multimedia, vol. 7,
no. 2, pp. 308-315, Apr. 2005.

M. Viswanathan, H. S. M. Beigi, S. Dharanipragada, and A. Tritschler, "Re­
trieval from spoken documents using content and speaker information," in
Proc. 5th Int. Conf. Document Analysis Recognition, Sep. 1999, pp. 567-572.

A. Varga, H. J. M. Steeneken, M. Tomlinson, and D. Jones, "The NOISEX-92
study on the effect of additive noise on automatic speech recognition," 1992,
documentation included in the NOISEX-92 CD-ROMs.

[WBKW96] E. Wold, T. Blum, D. Keislar, and J. Wheaten, "Content-based classification,
search, and retrieval of audio," IEEE Multimedia, vol. 3, no. 3, pp. 27-36, Fall
1996.

[WGY03] W. Q. Wang, W. Gao, and D. W. Ying, "A fast and robust speech/music
discrimination approach," in Proc. 2003 Joint Conf. of the J^th Int. Conf
Information, Communications, Signal Process, and the 4th Pacific Rim Conf.
Multimedia, vol. 3, Dec. 2003, pp. 1325-1329.

[WHJ+98] P. C. Woodland, T. Hain, S. E. Johnson, T. R. Niesler, and A. T. S. J.
Young, "Experiments in broadcast news transcription," in Proc. IEEE Int.
Conf. AcousL, Speech, Signal Process., vol. 2, May 1998, pp. 909-912.

[Tex05c]

[Tex06]

[TIA98]

[TJHA05]

[TRRL00]

[UKJ05]

[VBDT99]

[VSTJMs]

References 132

[WLHOO] Y. Wang, Z. Liu, and J.-C. Huang, "Multimedia content analysis using both
audio and visual clues," IEEE Signal Process. Mag., vol. 17, no. 6, p.p. 12-36,
Nov. 2000.

[WS94] K. Wang and S. Shamma, "Self-normalization and noise-robustness in early
auditory representations," IEEE Trans. Speech Audio Process., vol. 2, no. 3,
pp. 421-435, Jul. 1994.

[XMS05] C. Xu, N. C. Maddage, and X. Shao, "Automatic music classification and
summarization," IEEE Trans. Speech Audio Process., vol. 13, no. 3, pp. 441-
450, May 2005.

[XRDH03] Z. Xiong, R. Radhakrishnan, A. Divakaran, and T. S. Huang, "Comparing
MFCC and MPEG-7 audio features for feature extraction, maximum likeli­
hood HMM and entropic prior HMM for sports audio classification," in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process., vol. 5, Apr. 2003, pp. 628-
631.

[YBF+97] S. J. Young, M. G. Brown, J. T. Foote, G. J. F. Jones, and K. S. Jones,
"Acoustic indexing for multimedia retrieval and browsing," in Proc. IEEE
Int. Conf. Acoust, Speech, Signal Process., vol. 1, Apr. 1997, pp. 199-202.

[ZBC03] M. Zhao, J. Bu, and C. Chen, "Audio and video combined for home video
abstraction," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., vol. 5,
Apr. 2003, pp. 620-623.

[ZC01] T. Zhang and C.-C. Jay Kuo, "Audio content analysis for online audiovisual
data segmentation and classification," IEEE Trans. Speech Audio Process.,
vol. 9, no. 4, pp. 441-457, May 2001.

[ZhaOO] G. Zhang, "Neural networks for classification: a survey," IEEE Trans. Syst.,
Man, Cybern. C, Appl. Rev., vol. 30, no. 4, pp. 451-462, Nov. 2000.

[ZK99] T. Zhang and C.-C. J. Kuo, "Hierarchical classification of audio data for
archiving and retrieving," in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., vol. 6, Mar. 1999, pp. 3001-3004.

[ZZ03] Y. Zhu and D. Zhou, "Scene change detection based on audio and video con­
tent analysis," in Proc. 5th Int. Conf. Computational Intelligence Multimedia
Applications, Sep. 2003, pp. 229-234.

[ZZ04] Y. Zhang and J. Zhou, "Audio segmentation based on multi-scale audio clas­
sification," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., vol. 4,
May 2004, pp. 349-352.

