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In Canada, Alzheimer's disease (AD) and multiple sclerosis (MS) affect respectively 2.1 and 

0 .3% people. AD affects memory, day-to-day cognitive ability and represents 60 to 80 

percent of dementia cases in the elderly while MS is the most common neurological disability in 

young adults. These two common neurodegenerative diseases have no cure, but approaches to 

help with early diagnosis, treat their symptoms, and delay their progression are currently under 

heavy international research investigation. While the neurodegenerative processes that occur 

during these diseases are quite different, they both can result in widespread and sometimes subtle 

anatomical changes over time. Neurodegenerative changes, such as loss of neurons or loss of 

other building blocks of the brain (e.g., myelin), can – over time – result in cerebral atrophy, 

defined as the macroscopic loss of brain parenchymal volume. Reliably quantifying these 

changes will provide new insights into disease progression with immense potential 

implications for disease prognosis, treatment strategy and monitoring therapeutic effects. 

Magnetic resonance imaging (MRI) enables the macroscopic visualization of brain structure and 

anatomy, and allows the non-invasive assessment of neurodegenerative phenomena (e.g., 

atrophy), as well as their temporal evolution. Although automatic image analysis methods for 

the measurement of anatomic changes in the brain have been used extensively for the 

estimation of morphological differences, they have been in large part limited by 

technological approaches that are inherently cross-sectional (single time-point). 

Recently, the emergence of numerous databases with longitudinal MR images provides the 

necessary data to develop, test and investigate the longitudinal structural changes of brain 

anatomy at a much larger scale. The main objective of this thesis was to develop robust, 

accurate and fully automatic measures of focal longitudinal changes in the brain on MRI. Such 

methodology will enable a more detailed understanding of the initiation and spread of 

neurodegeneration, with the overall goal to comprehend the dynamic spatio-temporal 

distribution of brain atrophy in neurodegenerative diseases. As registration-based methods to 
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detect brain atrophy are confounded by image intensity changes due to focal lesions, the first aim 

was to automatically detect the presence of focal lesions. Second, we proposed a new filling 

strategy to remove these lesion-induced intensity irregularities that could potentially affect 

subsequent analysis. For the third aim, we proposed and assessed a new method to remove 

potential bias in pair-wise non-linear registration used to estimate brain atrophy. Finally, we 

developed a spatio-temporal image registration framework, which accounts for potential biases 

in longitudinal image analysis. The methods developed in this thesis improve longitudinal 

morphological measurements and can find application in monitoring and diagnosing 

neurodegenerative diseases.   
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Au Canada, la maladie d'Alzheimer (MA) et la sclérose en plaques (SP) affectent 

respectivement 480,600 et 100,000 patients. AD affecte la mémoire, la capacité cognitive 

quotidienne et représente 60 à 80 pourcent des cas de démence alors que la SP est le handicap 

neurologique le plus répandue chez les jeunes adultes. Ces deux maladies neurodégénératives 

sont incurables, mais des traitements pour leur symptôme, leur diagnostic précoce et pour 

retarder leur apparition sont actuellement évalué internationalement. Les processus 

neurodégénératifs résultants de ces maladies peuvent entraîner des changements anatomiques 

spatio-temporaux globaux et focaux. Quantifier de manière fiable ces changements permettra 

d’offrir de nouvelles perspectives sur la progression de la maladie et aura d'immenses 

implications pour le pronostic, les stratégies de traitement et le suivi des effets thérapeutiques sur 

la maladie. L’imagerie par résonance magnétique (IRM) permet la visualisation de 

macrostructure anatomique du cerveau, permet de saisir les phénomènes neurodégénératifs  tels 

que l'atrophie, et d'enquêter de manière non invasive l’évolution temporale. Bien que des 

méthodes ont été largement utilisées pour l'estimation robuste de l'atrophie, elles se sont limitées 

aux analyses de type transversal.  

L'émergence récente de nombreuses bases de données longitudinales fournit les données 

nécessaires pour développer, tester et étudier les changements structurels longitudinaux de 

l'anatomie cérébrale. L'objectif principal de cette thèse était de développer une mesure robuste, 

précise et entièrement automatique des changements longitudinaux focaux en IRM, permettant 

une compréhension détaillée de l’origine, de la propagation et de la distribution spatio-

temporelle de l'atrophie cérébrale des maladies neurodégénératives. Le premier objectif était de 

détecter automatiquement la présence de pathologies telles que des lésions. Deuxièmement, les 

lésions peuvent avoir un impact sur les analyses d’image. Nous avons donc proposé une nouvelle 

stratégie de remplissage des lésions  pour éliminer les irrégularités d'intensité qui peuvent 

affecter les analyses ultérieures. Pour le troisième objectif, nous avons proposé et évalué une 
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nouvelle méthode permettant d'éliminer le biais potentiels du recalage non-linéaire. Finalement, 

nous avons développé une approche de recalage spatio-temporelle d'images avec pour but de 

supprimer la variabilité longitudinale. Les méthodes développées dans cette thèse offrent un 

grand potentiel clinique en termes de diagnostic, traitement et suivi des maladies 

neurodégénératives. 
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means (NLM) image segmentation. We developed an approach based on only two 
MRI contrasts (T2W and FLAIR) that out-performed state-of-the-art automatic 
lesion segmentation methods. We evaluated our approach in both voxel- and 
lesion-wise frameworks, which showed the ability of the method to detect small 
lesions with high sensitivity and specificity.  

 

II. Chapter 4 Development, implementation and validation of an automatic inpainting 

method to fill focal image intensity irregularities such as lesions: 

We proposed a novel approach using non-a priori non-local information to replace 
signal intensity changes due to MS lesions with intensities representative of 
surrounding healthy tissue in order to remove focal inhomogeneities that might 
adversely affect image registration quality. We demonstrated a higher fidelity of 
the reconstructed images from simulated lesion data and an increase in power to 
detect brain atrophy. 

 

III. Chapter 5 Evaluation of non-linear registration symmetry of different popular 

registration algorithms and development of a method to force registration 

symmetry: 

We evaluated bias in non-linear registration algorithms and proposed a novel 
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does not impair the accuracy of the registration and improves the ability to detect 
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IV. Chapter 6 Design, implementation and validation of a new method for robust 

longitudinal MRI data registration: 
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Neurodegeneration is a phenomenon by which neurons deteriorate and ultimately die. This 

process underlies major human neurological diseases such as Alzheimer’s disease (AD), 

Parkinson’s disease, multiple sclerosis (MS), Huntington’s disease, and amyotrophic lateral 

sclerosis (ALS, also known as Lou Gehrig’s disease), but remains poorly understood. With the 

widespread use of magnetic resonance imaging (MRI), morphological changes, and in particular 

brain atrophy, have emerged as clinically relevant biomarkers of neurodegeneration. Such 

biomarkers have been used to monitor disease progression and evaluate treatment since they can 

be measured in-vivo in a reproducible manner at both local and global levels. 

The main objectives of this dissertation were to develop and validate the necessary image 

processing algorithms to quantify brain volume changes on local (voxel-wise) metrics in order to 

characterize atrophy due to neurodegeneration over the course of the disease. In order for these 

longitudinal metrics to be robust and stable, it was important to ensure that they were not being 

influenced by the underlying pathology and that they were relatively immune to the potential 

acquisition biases affecting the medical images. 

In Chapter 2, the different background materials required to understand the objectives of this 

thesis are introduced. The clinical and pathological aspects of neurodegeneration in the context 

of MS and AD are described, as well as how MRI data are reconstructed and analysed. 

The body of this thesis is composed of 4 articles presented in Chapters 3 to 6. Chapter 3 and 

Chapter 4 focus on methods to limit the influence of focal intensity irregularities such as lesions 

on image processing steps. As such, in Chapter 3, we propose a new method to automatically 

detect MS lesions. This method uses a patch-based approach to learn from a large library of 

manual segmentations by looking at the local image characteristics. The results of our method 
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show promising results compared to other state-of-the-art approaches. The manuscript has 

been published in NeuroImage: Clinical. 

Chapter 4 presents a new automatic method to minimize the impact of lesions on 

longitudinal image analysis. The proposed method uses previously generated lesion 

segmentations and fills the regions with anatomically realistic normal appearing tissue 

intensities. The results exhibit better power to detect to detect longitudinal changes, related to 

natural course of disease and/or treatment than if no filling is carried out. The manuscript has 

been published in Frontiers of Neuroscience. 

Following the detection and compensation of pathological biases such as lesions as 

described in Chapters 3 and 4, a better estimation of morphological changes using non-linear 

registration can be performed. However, in itself, non-linear registration for longitudinal 

analysis can be subject to various other sources of bias, namely asymmetry in the estimation of 

the registration transformation. Thus, Chapter 5 contains an evaluation of the impact of non-

linear registration symmetry in the context of longitudinal MR images analysis. Non-linear 

registration asymmetry can generate significant bias depending on the direction of the 

registration (from volume A to B, or from B to A) and can favour atrophy or growth for 

example. In the manuscript, we concluded that symmetry is an important step in pairwise non-

linear registration, and the proposed method to force symmetry has shown to be easy to 

implement and to reduce unwanted biases. The manuscript was presented at the Spatio-

Temporal Image Analysis (STIA) workshop, 2010. 

As part of an extension from pairwise to multi time-point longitudinal analysis, in Chapter 6 

we propose a method to estimate longitudinal changes by means of the creation of an individual 

3D template using spatio-temporal regularization. We validate our approach on a large 

population of AD patients. We found that spatio-temporal regularization enables a significant 

decrease in the number of subjects required to detect group differences (i.e, an increase in 

statistical power) in the setting of a clinical trial. The manuscript has been published in Plos-

One. 
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Finally, we discuss the novelty, strengths and limitations, and the relevance of our findings, 

as well as suggestions for future work before concluding in Chapter 7.    
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The following chapter is organized in four sections to provide the necessary background to 

understand the purpose of the thesis. The first section describes briefly the neurodegeneration 

phenomenon with the example of MS and AD. The second is on the imaging of 

neurodegenerative disease, after introducing the principles of MRI. In this pathological context, 

the third section provides the fundamental image processing techniques used in MRI. This 

chapter concludes with a review of atrophy measurement approaches and their potential as a 

surrogate metric of neurodegeneration.  

2.1. Neurodegeneration: MS and AD as 

disease examples  

Neurodegeneration is a broad term comprising the progressive loss of structure or function of 

neurons, as well as the death of neurons. Many neurodegenerative diseases including 

amyotrophic lateral sclerosis (ALS), Parkinson’s (PD), Huntington’s (HD), AD and MS occur as 

a result of different forms of neurodegenerative processes. This work focuses primarily on MS 

and AD, which are fundamentally different diseases, with different symptoms, causes and 

pathogenesis. MS is a chronic inflammatory disease, which is believed to be initially driven by 

an auto-immune response characterized by demyelination of the white and grey matter (WM and 

GM). In contrast, AD is a neurodegenerative disease associated with the aggregation of 

misfolded proteins. However, recent studies indicate some similarity in the neurodegenerative 

mechanisms of the two diseases. In the following sections, the basics of neuroanatomy and 

neurodegeneration are described, followed by the clinical and pathological aspects of both 

diseases.  
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2.1.1. Neuroanatomy 

The human brain, as illustrated in Figure 2.1, has similar features across most vertebrate 

brains. It is divided into a forebrain, hindbrain and midbrain, surrounded by cerebrospinal fluid 

(CSF). The forebrain can be broken down structurally into the cerebral cortex, subcortical 

structures (thalamus, hypothalamus, hippocampus, basal ganglia and amygdala) and the corpus 

callosum. The hindbrain is composed of the cerebellum, brainstem and pons. 

The human cerebral cortex can be segmented into four lobes: frontal, parietal, occipital and 

temporal. Gyri are the cortical ridges of these lobes and are bordered by grooves (sulci), which 

create the characteristic folded appearance of mammalian brains. Most of the GM is in the 

cortical layers and is distinguished from WM by its numerous neuron cell bodies (Figure 2.2). 

WM is usually deeper in the hemispheres and holds mainly glial cells (Figure 2.2) and 

myelinated neuronal axons which connect the cell bodies. Axons are integral part of a neuronal 

cell. Many of the axons are parts of neurons that originate in the cortex. The biggest WM fiber 

tract bundle is the corpus callosum which connects both hemispheres. Deep grey matter 

structures are embedded within the WM such as the basal ganglia and thalamus. The brainstem 

connects the brain and the spinal cord while the cerebellum is at the base of the brain. 

Most of the lobes are demarcated following skull anatomy but they also have different 

functional roles. The division in lobes is convenient for reference and each of them have 

different main cognitive and motor functions. The frontal lobe functions control attention, 

abstract thinking, behavior, problem solving tasks, physical reactions and personality. The 

occipital lobe's main functions are visual reception, visual-spatial processing, movement and 

color recognition. The temporal lobe controls auditory and visual memories, language, and some 

hearing and speech functions. And the parietal lobe, also known as the somatosensory cortex, is 

essential to process and integrate sensory information.  
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Figure 2.1: Human brain neuroanatomy. Magnetic resonance image (MRI), grey matter (GM), white matter 
(WM), cerebral spinal fluid (CSF) and brain lobes are illustrated with annotation and from top to bottom the axial, 
sagittal and coronal views.  

2.1.2. Neurodegeneration 

Neurodegeneration occurs when the central nervous system (CNS), and in particular the 

neurons (Figure 2.2), begin to deteriorate. The degeneration of neuronal cells alters their 

functionality and eventually leads to their death. In neurodegenerative diseases, as neurons 

deteriorate, patients may at first experience mild symptoms, but as the number of affected 

neurons increases, symptoms progressively worsen and can lead to death. Aging affects many 

cellular processes and is the greatest risk factor for neurodegeneration (Trapp, Peterson et al. 

1998, Niccoli and Partridge 2012). This process is still poorly understood but recent progress in 

research has found many pathological parallels between neurodegenerative diseases (e.g., AD, 

MS, ALS, PD, and HD) (Durrenberger, Fernando et al. 2014). However, the causes and the 

neurodegenerative mechanisms are not yet fully understood and in the following sections we 

summarize the current understanding of these processes. 
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Figure 2.2: Neurons and glia cells in the human nervous system. The neurons and their surrounding blood

vessels interact with different categories of glial cells: oligodendrocytes create the myelin sheath around axons to
speed up neuronal transmission. Astrocytes play a supportive role for neurons and the blood brain barrier but are 
also involved in providing nutrient, repairing, scaring and maintenance of extracellular ion balance. Microglia act as 
the first and main form of active immune defense in the CNS. Ependymal cells produce cerebrospinal fluid that 
cushions the neurons.  

Most neurodegenerative diseases show neuropathological changes mainly in the form of 

focal loss of neurons (cell death) with reactive changes of glia cells (or “gliosis”). Improving the 

understanding of the mechanisms underlying neurodegeneration is a major challenge in 

experimental neuroimmunology and the development of treatments. The potential mechanisms 

of neurodegeneration can be summarized in three different biological mechanisms (more details 

can be found in Ramanan et al. (2013)):  

• Intra-cellular mechanism: Three major morphological types of cell death have been 

found: apoptotic, autophagic and necrotic. Apoptosis is generally understood as the 

process of programmed cell death (Lockshin and Williams 1964), and is characterized 

by a specific morphologic sequence of changes in the dying cell (i.e. membrane and 

nuclear fragmentation). Autophagy is the mechanism regulating the degradation of 

unnecessary and dysfunctional cellular compartments. Controlled autophagy can clear 
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aggregated or dysfunctional proteins which could contribute to neurodegeneration 

(Bredesen, Rao et al. 2006). Necrosis is the result of unregulated digestion of cell 

components due to external factors such as infection, toxins, or trauma 

(Proskuryakov, Konoplyannikov et al. 2003). 

• Extracellular environment: The extracellular matrix is the extracellular environment 

made of molecules secreted by cells that provide structural and biochemical support 

to the surrounding cells. The disturbance of this environment can contribute to 

neurodegeneration. For instance, cellular adhesion, which involves the binding of 

cells between each other or to extracellular tissue, are important to maintain the 

synaptic contacts, blood brain barrier (BBB) integrity, neurotransmission efficiency 

and the intracellular signalling (Horwitz 2012).   

• Systemic environment: Complex biological system deregulation in inflammatory, 

vascular, or endocrine domains has also been considered as a potential precursor of 

neurodegeneration. In general, inflammation is a protective response to various cell 

and tissue injuries. The effect of uncontrolled immune responses initiates excessive 

cell and tissue damage that result in destruction of normal tissue and chronic 

inflammation (Lee and Yang 2012). Inflammation and immune deregulation being 

causal to neurodegeneration or secondary to apoptosis is still an ongoing debate and 

might be specific to the pathology. 

Genetic and environmental are the most studied factors of neurodegenerative diseases 

include genetic and environmental factors. Some disorders have shown familial occurrence 

suggesting deterministic genetic factors such as HD which follows an autosomal dominant 

pattern (Myers 2004).  Genetics may also play a role in roughly 10% of AD cases 

(Lautenschlager, Cupples et al. 1996). Recently in MS, epigenetic modifications have raised the 

question about potential risk genes instead of deterministic genes (Huynh and Casaccia 2013). 

Indeed, toxic environment factors might play a crucial role in the initiation of the 

neurodegenerative disease. The prevalence of geographical and temporal clusters of patients 
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supports this hypothesis as it has been shown in the case of exposure to synthetic opioid 

analgesics in a severe variant of PD (Przedborski and Vila 2001) for example. Similar 

neurological conditions have shown to correlate with toxic environmental exposure risk factors 

for specific socio-geographical and professional contexts. However, most patients suffering from 

neurodegenerative disorders do not belong to specific population clusters. These findings suggest 

that neurodegenerative diseases are possibly the result of a combination of both factors, 

environmental and genetic, and these factors might potentially initiate some neurodegenerative 

mechanisms. 

2.1.3. Multiple Sclerosis 

MS is an inflammatory demyelinating disease that affects the patient’s CNS. First described 

in 1868 by the French neurologist Jean-Martin Charcot (Charcot 1868), MS was initially called 

“sclérose en plaques” in reference to the sclerosis (hardening) of the CNS tissues and the 

appearance, which is described as ‘plaques’ for their sectional plate shape. In young adults in 

Northern Europe, North America, and similar temperate latitudes in Australasia, it is the most 

common cause of neurological disability (Weinshenker 1996). The average age of onset is 

around 30 and women are 2-3 times more susceptible to be affected by MS than men. 

The symptoms, prognosis and disease progression vary considerably between patients. 

Treatment can help to recover from and prevent new attacks, however, the cause of the disease is 

still unknown and there is no known cure. Despite the different treatments, MS patients have a 

life expectancy 5 to 10 years lower than the population average (Compston and Coles 2008). 

In Canada, 55,000 to 75,000 people are affected by this disease with an annual therapy cost of up 

to $40,000cnd per patient (estimated to be more than $1 billion cnd per year (1998)).  

In the following, we summarize the clinical and pathologic characteristics of MS to better 

understand this complex and multifaceted disease. 
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MS Symptoms and diagnosis 

MS is characterized by unpredictable acute attacks on the CNS (or relapses), where the 

patients can present with a variety of neurological symptoms. Following these relapses, the 

patients can thereafter partially or completely recover. Neither the attacks, nor the progression of 

the disease can be predicted by any surrogate marker. 

The location of the lesions in the CNS determines the related symptoms and can vary 

considerably within and between patients. Autonomic (digestion, bladder, sexual arousal), visual, 

motor (spasticity, gait ataxia, and weakness in arms and legs) and sensory nervous system 

symptoms (numbness, pain, tingling sensation, and coordination problems) are the most common 

symptoms (Noseworthy, Lucchinetti et al. 2000, Compston and Coles 2008). Other MS 

symptoms have been widely reported such as cognitive (slower speed processing and 

concentration) and memory impairments (Chiaravalloti and DeLuca 2008) as well as fatigue and 

depression (Ziemssen 2009).  

Relapses usually persist for days (Naldi, Collimedaglia et al. 2011), ), but the patients tend 

to recover partially or completely, more so at the early stage of the disease. Following these 

relapses, there is a period of remittance during which the disease is silent for a relatively long 

period of time. The frequency of the attacks is rarely less than twice per year (Scalfari, Neuhaus 

et al. 2010). 

The similarity between MS symptoms and other pathologies (ie. Acute Disseminated 

Encephalomyelitis, Systemic Lupus Erythematosus…) can make the diagnosis difficult, and a 

at least 2 clinical relapses over time have been required in the past to confirm the MS 

diagnosis (Poser, Paty et al. 1983). More recently, the revised McDonald diagnosis criteria 

use MRI and permit determination of a spatio-temporal dissemination of lesions, and thus 

allows for an earlier diagnosis and thus earlier treatment of MS (Polman, Reingold et al. 2011).  
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MS disease course and treatments 

In most cases, MS leads to eventual chronic disability (Noseworthy, Lucchinetti et al. 2000). 

MS patients are classified according to clinical disease course in different subtypes (Lublin and 

Reingold 1996) that include: relapsing remitting (RRMS) and secondary progressive (SPMS), 

as well as two less common forms of MS being primary progressive (PPMS) and benign. 

The different subtypes of MS are described as follows (Hurwitz 2009): 

• RRMS: Well-defined relapses with partial to full recovery followed by a remittance 

period without progression of neurological symptoms.  

• SPMS: Continuous progression of the disease following the RRMS phase. The 

progression might occasionally relapse with short remissions or plateaus.  

• PPMS: Continuous progression of the disease from onset, with occasional improvement 

or plateauing.  

• Benign MS: Continuous mildest form of the disease.  

The most common type of MS is RRMS with about 85% of the patients at onset, followed by 

the SPMS pattern (Confavreux and Vukusic 2006). Figure 2.3 describes the typical evolution of 

disability for the RRMS patients before converting to SPMS, where during the preclinical phase, 

the underlying tissue morphology (i.e., brain volume) may have already started to show 

alterations. After an initial neuroinflammatory event, if a second relapse occurs or imaging 

evidence of spatio-temporally disseminated lesions is detected, the patient is diagnosed with MS 

(Polman, Reingold et al. 2011). RRMS patients usually convert to SPMS when their disability 

worsens with almost no relapses (Confavreux and Vukusic 2008). 

There is currently no known cure or preventive measures for MS. However, there are 

treatments that can affect the symptoms and disease-modifying therapies (DMT) that might 

reduce relapses and slow disease progression. For RRMS patients, interferon-β or glatiramer 
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acetate are the most commonly used subcutaneous or intramuscular DMTs but new

immunomodulating oral DMTs have been approved since 2010 (Teriflunomide (O'Connor, 

Wolinsky et al. 2011),  Dimethyl Fumarate (Gold, Kappos et al. 2012), Fampridine (Goodman, 

Brown et al.)) and are expected to gain in popularity (Miller 2011). However, the DMT’s 

efficacy, with respect to disability progression and relapse rate, is limited as some patients do not 

respond to these therapies at all (Rudick, Lee et al. 2004). These DMTs were initially 

investigated for RRMS patients to prevent attacks, but they have shown some effects on SPMS 

patients. In the case of severe acute attacks, to reduce the inflammation and the severity of the 

relapse, high doses of corticosteroids are often administered. 

 
Figure 2.3: Typical clinical and MR image course of MS. MR image activity (vertical arrows) indicates an 

inflammatory process as measured on brain MR imaging by a gadolinium-enhancing or a new T2 hyperintense brain 
lesion. An increase in disease burden (brown line) can be measured by the total volume of MR-imaged lesions and is 
an indication of permanent tissue damage. A loss in brain volume (dashed red line) is also thought to occur early in 
the disease and gradually progresses over time. Importantly, MR image activity is typically more frequent than 
clinical relapses as shown by the clinical disability (green line). Adapted from (Fox, Bethoux et al. 2006). 
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Neuropathology in MS 

MS is considered an autoimmune disorder but recent hypotheses suggest that MS could be 

primarily a neurodegenerative disease (Chaudhuri 2013). It is believed that MS is due to nervous 

system dysfunction, secondary to focal inflammatory demyelination as a result of autoimmune 

responses acting upon myelin and/or the oligodendrocytes that produce myelin (Evangelou, Esiri 

et al. 2000) (Figure 2.2). Post-mortem investigations suggest a focal model of MS WM lesions 

(Bitsch, Kuhlmann et al. 2001) and has been widely studied on MRI based on their appearance 

(Section 2.2.2). However, more global or diffuse damage is occurring in the normal appearing 

brain tissues (NABT) (Prineas and Connell 1978, Rodriguez and Scheithauer 1994). 

Focal pathology in MS: Lesions are the most obvious pathology in MS and are mainly 

visible in WM but can be found also in GM (Figure 2.7). MS lesions are more frequently located 

in the peri-ventricular or sub-cortical region of the brain. They vary in size, location and volume 

but are usually elongated along small vessels. The lesions are highly heterogeneous and include 

different underlying processes: focal breakdown of the BBB, inflammation, destruction of the 

myelin sheath (demyelination), astrocytic gliosis, partial preservation of axons and 

remyelination. The temporal inflammation activity is usually used to classify lesions in the 

following manner (Trapp, Peterson et al. 1998): 

• Acute active lesions are often referred to as “new lesions” and present abundant 

macrophages that contain early and late hypercellular degradation products.   

• Chronic active lesions are demyelinated and present an increasing concentration of 

macrophages from their center to their edge.  

• Chronic inactive lesions are the most common subtype of lesion in the brain.  They 

are hypocellular, demyelinated and often have gliosis and large extracellular spaces. 

• Remyelinating lesions are characterized by thin irregularly formed myelin sheaths. 
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 Global pathology in MS: The previously described focal involvement may be combined 

with a more global model, where a more diffuse process occurs in WM and GM, which could 

explain the focal and global loss of tissue due to the decline of neuronal density in the normal 

appearing white matter (NAWM) and the normal appearing grey matter (NAGM) (Arnold, 

Matthews et al. 1990, Kidd, Thorpe et al. 1993, Ceccarelli, Rocca et al. 2008). Potential re-

organization of cortical networks (cortical plasticity), and CNS redundancy, may hide clinical 

symptoms of the pathological changes caused by axonal loss (Kidd, Thorpe et al. 1993, 

Evangelou, Esiri et al. 2000). In terms of volumetric changes, since axons contribute up to 46% 

of the WM volume while myelin represents only 24%, (Miller, Barkhof et al. 2002), thus 

cerebral atrophy should reflect their irreversible loss. However, these volumetric changes might 

be confounded by the swelling effect of inflammation and gliosis.  

2.1.4. Alzheimer’s disease 

Alzheimer’s disease (AD) is a neurodegenerative disease of the brain, named after the 

German physician Dr. Alois Alzheimer and described as a progressive dementia and the presence 

of neuropathological alterations in the brain.  

In the elderly population, AD is the most common cause of dementia, with a world-wide 

prevalence of 44 million in 2014 (2014). In Canada, 480,600 people are affected by this disease 

with an annual cost estimated to range from $9,000cnd to $37,000cnd for severe disease cases 

(2012). 

AD is a progressive disease where the earliest symptom is usually memory loss, followed by 

functional and cognitive decline until the patient is fully dependant on care givers (De Leon and 

Braak 1999). There is currently no cure, nor any disease-modifying therapy available for AD. 

Mental function and behavioral symptoms can sometimes be maintained with treatment, but the 
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focus of current pharmaceutical trials are on the development of new treatments to delay and/or 

prevent its onset or progression (Salomone, Caraci et al. 2012). 

In the next section, we describe the clinical and pathologic characteristics of AD in order to 

emphasize the need to quantify neurodegeneration to better understand and assess the changes 

due to the disease. 

AD Symptoms and diagnosis 

The most common and often the first symptom is short-term memory loss. However, other 

numerous cognitive impairments can affect AD patients:  

• Familiar daily tasks such as cooking and cleaning might become difficult. 

• Language problems, such as word-finding problems or reduced vocabulary in speech 

or writing.  

• Confusion with location or passage of time. 

• Impaired judgment (e.g. health treatment, proper clothes for outside temperature). 

• Difficulty of performing abstract tasks (e.g. planning public transport itinerary) 

• Having visual or space difficulties, such as not understanding distance in driving, 

getting lost or misplacing items. 

• Change in mood, behavior, personality 

The diagnosis of AD is difficult because of the large spectrum of symptoms but consensus 

criteria have been proposed to guide the classification of patients as definite, probable or possible 

AD (McKhann, Drachman et al. 1984), theses criteria have been improved by using biochemical 

and neuroimaging biomarkers (McKhann, Knopman et al. 2011). These consensus criteria have 
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proven to be accurate up to 80% when confirmed by neuropathology gold standards 

(Ranginwala, Hynan et al. 2008).  

However, significant challenges remain to diagnose AD including pre-symptomatic 

diagnosis, differential diagnosis and the evaluation and prediction of disease progression 

Sperling, Aisen et al. 2011).  

AD disease course and treatments 

AD is believed to start many years before the first clinical symptoms, when underlying 

pathology phenomena are starting. Figure 2.4 describes the clinical stages and their relationship 

with different biomarkers. One common belief is that AD starts with the deposition of beta-

amyloid plaques (Aβ) and neurofibrillary tangles (Tau) in the pre-symptomatic phase. Then, the 

disease progresses and affects brain structures with atrophy and loss of memory and function.  

Before developing AD, many patients go through a mild cognitive impairment (MCI) phase. 

This phase involves problems with general cognitive function (their mental abilities such as 

thinking, knowing and remembering). Although MCI significantly increases someone's risk of 

developing dementia, more than 50% of MCI patients will not convert to dementia (Mitchell and 

Shiri-Feshki 2009). From a meta-analysis of 41 robust cohort studies, it was shown that MCI 

patients convert to AD with a yearly rate of about 4.8-8.5%. 

There is currently no cure for AD but some symptomatic treatments are available to improve 

the cognitive and behavioral symptoms, however they appear to delay progression by a few 

months to a few years. Disease-modifying drugs to alter AD progression and improve patient’s 

quality of life are under study and people with a risk of developing AD will greatly benefit from 

any disease-modifying drugs or preventive treatments. In fact, as the number of AD patients is 

expected to roughly quadruple by 2050 worldwide, delaying the onset of the disease by 5 years 

would reduce the number of AD cases by half (Brookmeyer, Johnson et al. 2007). 
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Figure 2.4: Dynamic biomarkers of the Alzheimer’s pathological cascade. Aβ, Tau-mediated neuronal injury 

and dysfunction, memory, brain structure and clinical function evolution in AD are represented as a function of 
patient’s clinical disease stage. Adapted from (Sperling, Aisen et al. 2011). 

Neuropathology of AD 

The principal neuropathological characteristics of AD are the abundance of extra-cellular 

amyloid plaques and intra-cellular neurofibrillary tangles, which are clearly visible on post-

mortem microscopy (Crimins, Pooler et al. 2013). It is believed that the accumulation of the 

amyloid deposits creates a cascade of neuropathological processes leading to neuronal loss

(Figure 2.4). This phenomenon is called “the amyloid cascade hypothesis” (Jack, Knopman et al. 

2010).  

Amyloid plaques are dense, insoluble deposits of beta-amyloid (Aβ) peptides and cellular 

material that aggregate around the neurons. These Aβ peptides are produced from the successive 

scission of larger amyloid precursor proteins (APP). Aβ40 and Aβ42 can be found in amyloid 
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plaques but Aβ42 is believed to be more neurotoxic and have a greater tendency to aggregate 

(Mohandas, Rajmohan et al. 2009). 

Neurofibrillary tangles are insoluble aggregates of the microtubule-associated 

hyperphosphorylated tau protein. The hyperphosphorilation of tau occurs during the primary 

phase of neurodegeneration of individual neurons and is associated with the accumulation of tau 

and microtubules-associated proteins inside the cells. This disturbance of the microtubules, 

which are an important part of intra-neuronal communication, leads to cell death (Mohandas, 

Rajmohan et al. 2009).  

 Neuronal loss results in brain atrophy when tissue volume is not compensated for by gliosis 

and inflammation. Gross brain atrophy is visible with lateral ventricles enlargement while the 

cerebrum, hippocampi and cortex shrink (Figure 2.7). These changes occur in both healthy 

ageing and AD populations, however, it accelerates drastically during the progression of AD in 

particular in the temporal lobes.  

To conclude, as is the case for both MS and AD, neurodegeneration represents irreversible 

loss of neurons, which will inevitably lead to brain atrophy. MRI provides a non-invasive in-vivo 

tool to investigate the gross effects of the underlying microscopic pathology and will be 

described in the next section. 

2.2. Imaging neurodegeneration with MRI 

The discovery of X-rays by Wilhelm Roentgen at the end of the 19th century revolutionized 

our ability to investigate otherwise hidden anatomical structures in a non-invasive way. Since 

then, other non-invasive imaging techniques have been developed to explore the human body 

such as X-ray computed tomography, positron emission tomography and MRI. In the following 

section, we describe MRI as it has proven to be a useful, robust and non-invasive imaging tool to 



 

19 

 

explore in-vivo soft tissues such as the brain, and is particularly useful for quantifying the effects 

of neurodegeneration.  

2.2.1. MRI principles and modalities 

MRI can produce high-resolution anatomical images of soft tissue by exploiting the nuclear 

magnetic resonance (NMR) phenomenon. This work on the NMR phenomenon resulted in a 

double 1952 Nobel Prize in Physics for Felix Bloch and Edward Mills Purcell. The NMR 

phenomenon is the physical principal that describes the absorption and re-emission of 

electromagnetic radiation of an object when placed in a magnetic field. The development of 

analytic chemistry and biochemistry using NMR as well as electromagnetic and electronic 

technology enabled its introduction into medical use. The transfer of NMR to medical imaging 

came thanks to two major contributors: Paul Lauterbur for the spatial localization using magnetic 

field gradients (Lauterbur 1973) and Peter Mansfield for the mathematical model to reconstruct 

3D images (Mansfield and Granell 1973). Their work was awarded a Nobel Prize in 2003 and 

MRI is now widely used in a variety of applications ranging from anatomical imaging to 

quantitative mapping, functional mapping, connectivity analysis to name a few. 

Principles 

MRI relies on the NMR principle of nuclear resonance of certain atoms when they are placed 

in a magnetic field. When nuclei holding an odd number of protons (or neutrons) are introduced 

into a magnetic field (B0), a small fraction of the nuclei align themselves with the direction of the 

field and precess around it at the Larmor frequency, which is dictated by their gyromagnetic 

ratio. The precession of charged particles, such as nuclei, produces a small net magnetic field or 

moment. Due to the abundance of water (H2O) in the human body, hydrogen protons (H) are by 

far the most studied in conventional MRI. Their Larmor Frequency is proportional to B0 and to 

the proton gyromagnetic ratio, which is equal to 42.575 MHz/T for protons. The resulting net 
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magnetic moment (M0) generated by the precession of the hydrogen nuclei is aligned with B0 

and has small amplitude (in comparison to B0) making the signal difficult to measure. However, 

by applying a radio-frequency (RF) magnetic pulse (Brf) perpendicular to B0 with a frequency 

equal to the Larmor frequency, M0 can be rotated to the transverse plane and parallel to Brf. Once 

the Brf pulse is removed, the nuclei will realign with B0 and the magnitude of the signal will 

recover based on the proton density (PD), the longitudinal (T1) and the spin-spin or transverse 

(T2) relaxation times (Figure 2.5). A receiver perpendicular to B0 can detect the signal emitted 

by the relaxing nuclei. In order to reconstruct a 3D image of this process, magnetic field 

gradients are used to spatially encode this signal. By applying linear gradients along different 

axes, the frequency and phase of the processing nuclei are modulated based on their different 

spatial locations. A 2D Fourier transform applied to this data results in an image in the spatial 

domain.  

For a given tissue type, the relaxation time constant T1 describes the exponential return to 

equilibrium of the longitudinal magnetization Similarly, the transverse equilibrium 

magnetization decays with a time constant of T2 (Figure 2.5). By manipulating imaging 

parameters such as the repetition time (TR) of the RF pulse, the flip angle and the time at which 

the image is acquired (echo time TE), different contrasts between tissue types can be achieved. 

In the following section, we describe a few of the conventional MRI contrasts. 
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Figure 2.5: Time course of T1 relaxation and T2 decay after the RF pulse (Brf). The signal (magnetization on z 
axis (Mz) and on the xy plane (Mxy)) of different tissue types (CSF, GM, WM and MS lesion) is shown as a function 
of the time (t), T1 and T2 relaxation behaviors that can be described by exponential curves and vary considerably 
between the tissue types. 

T1-weighted imaging 

T1-weighted (T1W) images (Figure 2.6) exhibit contrast between the long T1 relaxation of 

fluid (i.e. dark CSF), tissues with water content (i.e.: mid-grey grey-mater) and short T1 for fat-

based tissues (i.e.: bright WM). These different T1 relaxation times are related to the 

gyromagnetic ratio and the exchange of energy between the spins and the surrounding nuclei 

lattice, called “spin-lattice relaxation”. The mobility of the lattice structure will increase the 

dissipation of energy and thus will require a longer relaxation time (i.e., for liquids such as CSF). 

T1W images are usually acquired with a short TE (10 to 20ms) and TR (400 to 600 ms) in order 

to limit the effects of T2 relaxation. Because of the high tissue contrast provided by T1W 

imaging, it is often used as the “anatomical” reference in neuroimaging.  

Concurrently with imaging, the injection of a contrast agent can be used to enhance the 

visibility of certain tissues or abnormalities. For example, gadopentetate dimeglumine 

(“Gadolinium” or “Gad”) is a contrast agent commonly used to enhance blood vessels and 

highlight breakdown of the BBB (Figure 2.6). This is because Gad is a large molecule that 
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causes T1 shortening and normally does not cross the BBB, such that vasculature and areas 

where the BBB is damaged are highlighted on T1w images.  

T2-weighted imaging 

On T2-weighted (T2W) images (Figure 2.6), fatty tissues appear darker and tissues with high 

water content appear brighter. T2W images are based on the dephasing of the spins after the 

application of the transverse Brf  pulse. The “spin-spin” interactions are greater in solids or semi-

solid tissues (i.e. white and grey matter) compared to liquids (CSF) leading to a difference in 

contrast. T2W images can be obtained with a long TE (> 75 ms) and TR (> 1500 ms) in order to 

limit the effects of T1 relaxation.  

Proton density weighted (PDW) images (Figure 2.6) are often simultaneously acquired with 

T2W images, using a short echo time in order to minimize the effects of T1 and T2.  

Inversion recovery imaging  

Inversion recovery (IR) is an imaging technique that allows the suppression of specific T1 

signals from a T1W or T2W image and therefore can help to better visualize tissues of interest. 

To achieve this attenuation, a 180° pulse is first used to flip the longitudinal magnetization. 

Then, during the recovery of this magnetization, a 90° RF pulse is applied at a specific time (TI) 

equal to the relaxation time of the component to be suppressed. At TI, the transverse 

magnetization of that component will be nulled and thus effectively absent from the signal to be 

imaged. 

A typical example is Fluid Attenuated Inversion Recovery (FLAIR) (Figure 2.6), which is a 

T2W sequence often used to detect WM pathologies. In this case, the bright CSF is nulled such 

that abnormalities such as lesions, that are also hyper-intense, are more conspicuous. 
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Figure 2.6: T1W, Gad, T2W, PDW and FLAIR MRI images of the same axial (or transverse) slice of an healthy 
young subject. These images demonstrate the polyvalence of MRI and show few typical image modalities that can 
be obtained. 

2.2.2. Imaging neurodegenerative disease 

Imaging MS 

Conventional MRI acquisition protocols for MS often include the following contrasts: T1W, 

T2W, PDW, FLAIR and contrast-enhanced T1W. This is due to the fact that these qualitative 

MRI modalities are sensitive to the inflammatory and demyelinating changes directly associated 

with relapses, which lead to “MS lesions” and atrophy (Figure 2.7). As such, MRI is often used 

to monitor, identify and quantify MS progression (Fazekas, Barkhof et al. 1999).  

In particular, T2W images are usually used for the diagnosis of MS where patients typically 

show peri-ventricular or subcortical hyperintense regions in the WM. These hyperintense regions 

indicate either inflammation or scar tissue and are commonly called “T2-lesions”. T2W FLAIR 

images enable a better discrimination of T2-lesions from CSF. The formation of new lesions can 

be observed on contrast-enhanced T1W images using Gad. These contrast-enhanced lesions 

(CEL) typically last about 2 months and correlate with the BBB breakdown as well as 

inflammation. Thus the inclusion of enhanced T1W imaging enables the differentiation between 

acute, active lesions and chronic, inactive lesions (Lassmann 2008). New CELs are almost 

always associated with the presence of T2-lesions and they shrink in size and their intensity 
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decreases on T2W after a few months (Meier and Guttmann 2003, Meier, Weiner et al. 2007). 

When lesions cease to enhance, about 40% of them remain hypointense on T1W images (“black 

holes”) (Sahraian, Radue et al. 2010) and are associated with irreversible tissue damage (Brück, 

Bitsch et al. 1997, van Walderveen, Kamphorst et al. 1998, Bitsch, Kuhlmann et al. 2001).  

More recently, a measurement of cerebral atrophy on MRI images has been shown to be a 

good indicator of MS status and long-term progression as well as correlated with clinical 

measures (Clark, James et al. 1992, Huber, Bornstein et al. 1992, Barkhof, Elton et al. 1998, 

Pelletier, Suchet et al. 2001, Owens 2003, Confavreux and Vukusic 2006). The average whole 

brain atrophy rate in MS has been shown to be 0.5-1% per year versus 0.1-0.3% per year for 

healthy subjects and appears to be relentless (Coffey, Wilkinson et al. 1992). The different forms 

of MS (e.g. RRMS, SPMS) have all shown some extent of atrophy (Simon, Jacobs et al. 1999, 

Turner, Ramli et al. 2001, Bakshi, Dandamudi et al. 2005, De Stefano, Giorgio et al. 2010). 

Regional atrophy of the corpus callosum (Huber, Bornstein et al. 1992, Barkhof, Elton et al. 

1998, Pelletier, Suchet et al. 2001) and ventricular enlargement (Clark, James et al. 1992, 

Dastidar, Heinonen et al. 1999) have shown moderate to strong correlations with clinical scores 

of disability  (i.e.: expanded disability status score (EDSS)). All in all, measures of atrophy have 

shown to be strongly correlated with irreversible neurological dysfunction, which implies that 

atrophy might be a good representative surrogate marker for the progression of MS (Jagust and 

Noseworthy 2000). 

The relationship between lesions and atrophy is complex and not fully understood. Some 

studies have found that MS T2-lesion load correlates with late brain atrophy (Chard, Brex et al. 

2003). In addition, a weak correlation was found during early disease between T2-lesion load 

and cortical atrophy (Charil, Dagher et al. 2007, Amato, Portaccio et al. 2010), as well as brain 

(Sailer, Losseff et al. 2001) or spinal cord atrophy (Evangelou, Esiri et al. 2000). CELs (Meier, 

Weiner et al. 2004, Richert, Howard et al. 2006) and black hole lesion load (Chard, Griffin et al. 

2002, Bermel, Sharma et al. 2003) have also shown correlations with brain atrophy. These results 

are consistent with the hypothesis that focal damage is related to diffuse atrophy. 
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Other less conventional MR modalities, such as MR spectroscopy, have been used to 

measure the integrity of the myelin sheath and axonal loss in the non-lesional NAWM and the 

NAGM in patients with MS (Casanova, Martínez-Bisbal et al. 2003, Vrenken, Rombouts et al. 

2006). These results were consistent with previous histopathological findings (Ferguson, 

Matyszak et al. 1997, Trapp, Peterson et al. 1998, Bjartmar and Trapp 2003) highlighting the 

existence of diffuse axonal demyelisation in the NABT. Similar results were found when 

measuring the axonal integrity in the NAWM with diffusion weighted imaging (DWI) where 

possible chronic axonal changes were found in NAWM (Kezele, Arnold et al. 2008, Fox, Cronin 

et al. 2010).  

Imaging AD 

MCI patient longitudinal outcome is heterogeneous. In fact, despite having a higher risk to 

convert to AD, a significant number of MCI patients remain stable (Petersen, Roberts et al. 2009) 

or might even become clinically normal (Manly, Tang et al. 2008). Brain atrophy measurements 

have shown to strongly correlate with cognitive and neuropsychological scores and can help to 

predict the transition from MCI to AD (Jack, Shiung et al. 2004). Furthermore, as shown on 

Figure 2.4, AD brain atrophy rates accelerate faster than normal ageing and starts before the 

onset of the disease. Because of its high sensitivity in tracking AD patient progression from 

cognitively normal to cognitively impaired, structural brain atrophy measures from MRI are 

currently included as biomarkers in the diagnostic of AD (Dubois, Feldman et al. 2007). 

Structural brain atrophy has proven to be more accurate than standard neuropsychological 

evaluations (Fox, Cousens et al. 2000) and could potentially be used as a surrogate biomarker in 

clinical trials (Frisoni, Fox et al. 2010). 

The brain atrophy pattern follows the earliest site of Tau deposition (Scahill, Schott et al. 

2002) and encompasses the regions where structural measurements correlate highly with 

cognitive decline: hippocampi (Jack, Shiung et al. 2004), enthorinal cortex (Cardenas, Chao et al. 

2011), temporal lobes (Scheltens, Leys et al. 1992), cortical thinning (Dickerson, Bakkour et al. 

2009), as well as lateral ventricle enlargement (Ridha, Barnes et al. 2006). T1W images are the 
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standard acquisition protocol used to assess brain atrophy both manually and automatically and a 

few of these mentioned atrophy patterns can be appreciated on Figure 2.7. Despite their small 

size and convoluted shape, hippocampi have been extensively assessed and validated with 

manual and automatic segmentation on T1W images. These structures have also provided 

promising results to predict accurately the conversion of MCI subjects to AD (Yuan, Gu et al. 

2009). 

Figure 2.7: Comparison of a normal young, normal aged, MS and AD patient brains. Lateral ventricles 
enlargements are represented in red and the enlarged sulci in yellow. MS lesions are shown in green. 

Other image modality techniques are not used clinically but have proven to be good markers 

for early change and could help the diagnosis of AD. DWI (Kantarci, Petersen et al. 2005) and

magnetization transfer ratio (MTR) (Ridha, Symms et al. 2007) are able to capture the micro-
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structural changes (axonal, dendritic, myelin), while MRS can capture the chemical environment 

due to the pathology (Miller, Moats et al. 1993). More recently, perfusion MRI with arterial spin 

labeling (Luckhaus, Jänner et al. 2010) and the default mode network from resting-state fMRI 

(Damoiseaux 2012) have shown promising results in terms of detecting early changes, but still 

need further clinical validation.  

Despite all the progress in MRI acquisition techniques, the unpredictable course and short-

term changes caused by neurodegeneration make clinical trials of MS and AD difficult. Thus, 

specific image processing is required to improve, normalize and compare MRI images in the 

context of longitudinal and neurodegenerative diseases. 

2.3. MRI processing for neurodegenerative 

diseases 

MRI is now the standard imaging technique used to support the diagnosis of 

neurodegenerative diseases and is commonly used to assess disease progression by a neurologist. 

Qualitatively, the increasing variety of MRI protocols has improved sensitivity and specificity in 

determining pathology. However, visual and quantitative assessment of images taken under a 

variety of protocols can be time consuming for a neurologist and difficult in large-scale MRI 

studies. In order to process and analyze a significant volume of images with high quality 

quantitative measures, computer assisted image processing has become an integral part of 

medical imaging. Over the last 2 decades, biomedical image processing has combined the 

expertise of interdisciplinary fields from applied mathematics, computer science, engineering, 

statistics, physics, medicine and biology to enable the development of MRI processing.  
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In the following section, we provide an overview of the different pre-processing steps 

required by most of image processing tools but first, we give an introduction to MRI brain 

atlases which are commonly use as a spatial reference system in medical imaging. 

2.3.1. MRI brain atlas  

Brain atlases or templates are referential brain images or histological series of brain slices 

associated with a corresponding set of anatomical labels that provide a standardized coordinate 

frame. In 1988, Talairach and Tournoux proposed a brain atlas, based on an individual post-

mortem brain, that associated anatomical landmarks to a spatial coordinate system (Talairach and 

Tournoux 1988). In order to obtain a more representative atlas of normal population anatomical 

MR images, the Montreal Neurological Institute (MNI) and the International Consortium for 

Brain Mapping (ICBM), created an anatomical average of 152 MR images of young normal 

healthy controls (Mazziotta, Toga et al. 2001) after linear and non-linear co-registration (Collins, 

Neelin et al. 1994, Collins and Evans 1997) (Section 2.3.3) to the Talairach and Tournoux atlas. 

This template, known as the ICBM152, remains the most commonly used today, and was used in 

this thesis as a common reference space. Each normal control (NC) MRI that was used to create 

the template, was automatically segmented into different anatomical regions (Collins and Evans 

1997) and these regions were used to create statistical probability anatomy maps (Figure 2.8). 

Furthermore, as part of this thesis, we created AD and MS population templates to identify more 

specifically the anatomy of each of these populations.  
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Figure 2.8: Non-linear ICBM152 T1W template. The maximum probabilistic anatomical atlas of the brain lobes 

are overlaid on top of the template T1W image.  

2.3.2. MRI pre-processing  

The corruption of MRI data can alter the final outcome of applied image processing

techniques. Artifacts, a common problem in MRI, result from the complexity of the imaging 

technique and arise from different sources of errors (Bellon, Haacke et al. 1986). Scanner 

hardware limitations and physical constraints, such as field inhomogeneity can also contribute to 

the problem. Additionally, different source of spurious noise, related to the sequence and the 
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patient, can degrade the images. These artefacts and constraints can degrade the images but they 

can also lead to more subtle effects (i.e. intensity contrasts) which can lead to misinterpretation 

of the images and have an impact on the following processing methods: segmentation, tissue 

classification, and registration. For these reasons, MRI pre-processing techniques mentioned in 

this section can be used to remove or minimize the effects of artifacts.  

Intensity non-uniformity correction 

A multiplicative model with additive noise is commonly used to describe an image corrupted 

by a non-uniformity field: 

 

  
 Equation 2.1 

Where ( )x i is the measured intensity and ˆ( )x i  is the original intensity of the image at the 

location ( , , )i x y z= , g(i) is the non-uniformity effect, and ( )n i  is the noise. 

Intensity non-uniformity is partially independent of the anatomy of the scanned subject and is 

mainly caused by local variation of the flip angle, eddy currents and standing waves in tissue. An 

example of the non-uniformity bias field is provided in Figure 2.10.E. The combination of the 

MRI sequence and the shape of the object being scanned can trigger these local non-uniformity 

variations. Despite careful correction of the inhomogeneity of the static magnetic field B0, 

residual variations are possible and result in intensity non-uniformity as well as spatial distortion 

(Bridcut, Redpath et al. 2001). RF coil geometry (Collins, Li et al. 1997), gradient fields 

(Langlois, Desvignes et al. 1999) and the shape of the imaged object (Sled and Pike 1998) can 

also have an impact on the inhomogeneity. 

Intensity inhomogeneity manifests by smooth intensity variation across the image and can 

significantly alter the performance of image segmentation and registration which are sensitive to 

the spurious variation of image intensity. Numerous different approaches have been proposed to 
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minimize the adverse effects of inhomogeneity. The estimation of the inhomogeneity effect can 

be done prospectively or retrospectively and then simply divided from the image signal (x(i)). 

Prior information that are obtained from measures on an MRI phantom (Narayana, Brey et al. 

1988) or mathematical model (McVeigh, Bronskill et al. 1986) can also be used to predict the 

inhomogeneity map but neither of these methods cannot estimate the inhomogeneity induced by 

the object. The most common approaches are retrospective, estimating the inhomogeneity 

directly from the image itself. These can be classified as follows: 

• Spatial filtering: As inhomogeneity are slowly varying in the image domain, using 

low-pass or homomorphic filtering in the frequency domain can help extract the true 

signal. The simplicity of the low-pass filtering methods make them popular, however, 

the overlapping intensity spectrum from the inhomogeneity and the imaged object 

and the possibility of introducing ringing artifacts limits the efficiency of these 

methods (Brinkmann, Manduca et al. 1998). 

• Surface fitting: Since inhomogeneity fields are smooth, they can be approximated by 

a smooth function using splines (Dawant, Zijdenbos et al. 1993) or polynomial basis 

functions (Tincher, Meyer et al. 1993) but only for 2D slices. In both of these 

approaches, single or multi-pass fitting can be used, with control points being 

obtained manually or from automatic tissue segmentation. 

Statistical methods: Statistical methods developed to segment images can also be used to 

model inhomogeneity. Here, inhomogeneity is assumed to follow a distribution (i.e. Gaussian) 

(Wells, Grimson et al. 1996) or can be modelled as a random process (i.e. Markov random field) 

(Held, Rota Kops et al. 1997). However, other non-parametric approaches, such as the non-

parametric non-uniform intensity normalization (N3) technique proposed by Sled et al. (Sled, 

Zijdenbos et al. 1998) consider the problem as a deconvolution and therefore do not require 

segmentation. N3 simplifies the inhomogeneity distribution as a maximization problem by 

iteratively estimating a smooth Gaussian multiplicative field which maximize the frequency 

content of the tissue intensities. In this thesis, we used the N3 algorithm as our work focuses on 
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images acquired on a 1.5T MRI magnetic field (B0), for which the N3 was developed. For higher 

MRI fields, N4 was proposed to improve the original N3 B-spline smoothing estimation strategy 

(Tustison, Avants et al. 2010). 

Denoising 

In MRI, the Rician distribution of noise can be caused by many factors, including the 

receiving coil resistance, induction loss in the imaged object, the B0 strength, the object size, the 

voxel size, receiver bandwidth, the number of averages and most importantly the thermal noise 

in the amplifier (Gudbjartsson and Patz 1995). Noise removal, therefore needs to be robust to the 

different MRI image protocols and the object being scanned, while preserving relevant 

information. Many approaches have been proposed to estimate the original image ( ˆ( )x i ) 

contaminated with noise ( ( )x i ): Gaussian filters (Ashburner and Friston 2000), anisotropic 

diffusion filters (Gerig, Kubler et al. 1992), wavelet-based methods (Donoho and Johnstone 

1994), and bilateral filtering (Tomasi and Manduchi 1998). More recently, Buades et al. (Buades, 

Coll et al. 2005) proposed the non-local means (NLM) approach to denoise images. This 

approach takes advantage of image redundancy to average similar local realizations of the noisy 

image (Figure 2.9). The noise of the image is reduced by averaging the voxels that would have a 

similar intensity in the noise-free image. The denoising of voxel x(i) is achieved, by comparing 

the patch P(x(i)) centered on i with all the patches P(x(j)) centered on j of the images in the 

neighbourhood Ω such that: 

 

  
 Equation 2.2 

The term w(i,j), a weight based on the similarity of patches P(x(i)) and P(x(j)), is designed to 

attribute a smaller weight to the greater L2-norm ( ) (or sum of square differences (SSD)) 

distance measures. The h2 term is a smoothing parameter that is proportional to the noise 

variance. This denoising technique shows outstanding results in MRI denoising (Coupé, Yger et 
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al. 2008, Manjón, Thacker et al. 2009). An example of NLM denoising results on MRI is 

provided in Figure 2.10.B.  

 

Figure 2.9: NLM estimator principle. When evaluating patch P(x(I)) (white square), similar patches such as 
patch P(x(jn)) (white dotted squares), give a larger weight (Wn) while smaller weights (W0 and W1) are given to 
more different patches (P(x(j0) and P(x(j1)). 

Intensity normalization 

Another drawback of MRI is the lack of quantifiable standard image intensities, as is possible 

with CT. Indeed, even in an image acquisition of the same body part on the same subject with the 

same MRI protocol/sequence, the image intensities do not hold a fixed quantitative meaning

making direct quantative voxel comparison impossible. This lack of normalization requires the 

adjustment of the intensity window setting in order to display the images with the optimal 

contrast. This intensity variability can also limit automatic segmentation (Zhuge and Udupa 

2009) and registration techniques (Bağcı, Udupa et al. 2010). To normalize the intensity between 
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protocols, subjects and image templates, different MRI calibration methods have been proposed. 

Similar to inhomogeneity correction, methods that do not require extra acquisitions (i.e. MRI 

phantoms) are usually preferred.    

The most common intensity normalization approaches generally aim to match the intensity 

histograms of two images, a reference (or model/template) and the considered image. The basic 

idea of these methods is to find a transformation of the image histogram so that it matches the 

reference image histogram by minimizing the bin count difference. To make the methods more 

robust and more specific to the region of interest, thresholds or masks can be used to remove the 

background. This transformation of the image histogram can be linear (Wang, Lai et al. 1998) 

where a multiplicative scale factor is applied to modify the gain ( ( )g i ), piece-wise linear (Nyúl 

and Udupa 1999, Nyúl, Udupa et al. 2000) or non-linear (Jäger, Deuerling-Zheng et al. 2006). 

Other methods, which use region or tissue class specific normalization where the source and the 

reference histograms are modeled (i.e. Gaussian mixture models (Hellier 2003)) or where tissue 

model parameters are defined manually  (Wells, Grimson et al. 1996), have also been proposed. 

The effectiveness of these methods was mainly assessed on “normal” MRI images without 

pathological lesions or atrophies where histogram matching can be challenging. As demonstrated 

by Shah et al. (Shah, Xiao et al. 2011) for pathological intensity normalization in MS, piece-wise 

linear normalization such as in Nyul et al. (Nyúl and Udupa 1999) can offer a good compromise 

between computational burden and better image processing.  

Linear and piece-wise linear normalization of histograms is both easier to customize to 

various anatomical regions and more robust. Furthermore, these methods do not rely on specific 

statistical properties of tissue classes that can vary with pathologies. Another advantage is their 

lower computational complexity. For these reasons, linear and piece-wise linear normalization 

are the most common methods for normalization in the presence of pathology and therefore were 

used in this thesis. An example of the piece-wise linear normalization can be appreciated in 

Figure 2.10.B where image Figure 2.10.A is normalized to the ICBM152 T1W template (Figure 

2.10.C). 
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Figure 2.10: T1W image pre-processing. A) original T1W image, B) pre-processed T1W image (denoising, 
non-uniformity correction and intensity normalization to image C), C) ICBM152 T1W template D) Intensity 
difference image after denoising, normalization and non-uniformity correction (or A minus B), E) N3 bias field  
(Note the different ranges on the scale bars).  

2.3.3. MRI registration 

After the pre-processing steps, images should present little to no intensity non-uniformity and 

their intensity distribution should be normalized and have minimal noise. Following these pre-

processing steps, image registration is a crucial task for medical imaging with numerous 

applications, including: i) longitudinal individual comparison of anatomical changes to 

determine treatment effect, ii) statistical analysis of population anatomy when comparing to a

reference template, iii) non-linear registration-based segmentation, and iv) template creation. 

Registration is still an active field of research and numerous methods have been proposed. For 
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the purpose of this thesis we focus on intensity based registration techniques. A detailed review 

of image registration can be found in Hajnal et al. (Hajnal and Hill 2014). 

The aim of image registration is to find the spatial transformation, ( )T i , between two images, 

a moving image, I(i), and a reference image, R(i), which maximizes their similarity, such that: 

 

  
 Equation 2.3 

This problem can be rewritten under the form of an objective function where the optimization 

consists of finding its minimum or maximum depending on the similarity metric used: 

 

  
 Equation 2.4 

In the following sections, we will describe the different components of this problem: 

transformation model (T), optimization, similarity metric (M), regularization (W) and 

interpolation).  

Transformation model 

 Depending on the final application of the registration, different transformation models (T) 

can be chosen, such as rigid-body, affine and non-linear.  

Rigid transformations are global in nature; they cannot model local anatomical differences 

(Figure 2.11.B) and they can be described as a translation and rotation. While affine 

transformations combine translation, rotation and scaling and allow for shearing and skewing, 

thus preserving points, straight lines and planes. A 3D affine transformation can therefore be 

defined using 12 parameters. Rigid or affine transformations are often used as an initial step for 

non-linear registration and for aligning multiple image modalities of a subject.  
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Non-linear transformations are more appropriate to estimate the local differences that might 

occur between different time-points of an MR image of an AD patient, for example. Indeed, non-

linear transformations can locally warp the source image to the reference image through local 

deformations as illustrated in Figure 2.11.C. The choice of the transformation is important as a 

trade-off between computation cost and anatomical correspondence. We can classify the non-

linear transformation models into two main categories: physical models and interpolation 

models. Physical models are used to enforce the topology property using theories derived from 

continuum mechanics of solid materials (i.e. elastic body) and fluids (i.e. viscous fluid). 

Interpolation theory methods use basis function expansion to model the transformation. Many 

mathematical basis functions are used to interpolate the deformations, for example: radial, b-

spline, thin-plate splines and wavelets. Besides these two categories, non-linear transformation 

models can also be described by the constraints applied to the deformation when specific 

knowledge is known (i.e. geometric transformations deriving from biomechanical models of 

specific organs). 

We provide a summary of non-linear transformation models, inspired by the works of Holden 

et al. (2008) and Sotiras et al. (2013), in Table 2.1. 

  



 

38 

 

Table 2.1: Summary of non-linear transformation methods, with their principles and authors. For Further 
details, the reader can refer to the reference.   

Non-linear 
transformation 

models 
Principles Authors 

Ph
ys

ic
al

 m
od

el
s Elastic body 

Navier-Cauchy Partial Differential Equation 
(PDE)   

Riemannian elasticity energy 

(Davatzikos 1997) 
(Christensen and Johnson 2001) 

(Leow, Huang et al. 2005) 

Viscous fluid Navier-Stokes equation (velocity field) 
(Bro-Nielsen and Gramkow 

1996, Christensen, Rabbitt et al. 
1996) 

Optical flow 
Maxwell’s demons(Diffusion model) 

Diffeormorphic flow (Large Deformation 
Diffeomorphic Metric Mapping (LDDMM)) 

(Thirion 1998) 
(Miller, Trouve et al. 2002, 

Vercauteren, Pennec et al. 2007) 

In
te

rp
ol

at
io

n 
th

eo
ry

 

Radial basis 
functions  Thin plate splines (TPS) (Bookstein 1989, Younes 2006) 

Free Form 
Deformations 

(FFD) 
Cubic B-spline (Rueckert, Aljabar et al. 2006, 

Shi, Zhuang et al. 2012) 

Locally 
Affine Models Block-matching or poly-affine (Collins and Evans 1997) 

 

The transformation model is closely related to regularization, which can be applied to the 

transformations in order to obtain specific properties of the transformation (symmetry, topology 

preservation, diffeomorphism). 

The majority of non-linear registration algorithms are asymmetric and provide different 

results depending on direction of the registration (I → R or R → I). For longitudinal non-linear 

registration, this symmetry, or inverse consistency is crucial to prevent bias from a specific 

deformation direction. Christensen et al. (Christensen and Johnson 2001) suggested inverse 

consistency by combining both the forward and the backward transformation and penalizing the 

inconsistency during the registration process. Other types of approaches use symmetric objective 

functions to estimate the transformation (Leow, Huang et al. 2005), while others estimate the 

forward and the backward transformations by optimizing a standard objective function. In these 

cases, both transformations map the image to a common space (often called half-way 
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space)(Noblet, Heinrich et al. 2008). The final transformation (i.e. from the moving to the 

reference image) can be obtained by combining the forward (to halfway space) and the inverse of 

the backward transformation (from halfway space). Further details on the inverse consistency 

technique are provided in Chapter 5.  

The inverse consistent transformation can preserve topology but other methods require 

topological constraints to prevent collapsing and crossing of deformation fields. Topology 

preservation or homeophormism can be achieved by stretching and compressing without tearing. 

Figure 2.11.C provides an example of a homeomorphic transformation map. A one-to-one 

mapping between images is not always possible and can, without sufficient regularization, create 

a discontinuous mapping. To preserve the topology and provide an invertible and continuous 

one-to-one mapping, two conditions are mandatory (Musse, Heitz et al. 2001): (1) transformation 

is bijective and (2) the Jacobian determinant (J) of the transformation is positive (Equation 2.5). 

Indeed, J represents the amount of local volume change with its expansion (>1) or contraction 

(<1) and negative values describes that the deformation collapse onto itself.

 

 

  Equation 2.5 

These conditions can be integrated into the objective function or the optimization scheme 

(Noblet, Heinrich et al. 2006, Durrenberger, Fernando et al. 2014). To conclude on 

transformation models, diffeomorphic transformations preserve the topology, by definition, as 

they provide an invertible and differentiable transformation mapping (Vercauteren, Pennec et al. 

2009). 

In this thesis, we used the in-house ANIMAL (Automatic Nonlinear Image Matching and 

Anatomical Labeling) non-linear registration approach (Collins and Evans 1997), which is based 

on a small deformation assumption that is estimated from local block-matching. Such a 
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constraint is justified when looking at the small deformations expected in AD and MS. ANIMAL 

regularizes the estimated deformations with Gaussian kernels that approximate a linear-elastic model. 

These types of non-physical modeling techniques present a major advantage over explicit 

physically based approaches, as they are computationally efficient. Indeed, physical modeling, 

such as viscous fluid and elastic body, is problematic as typically the observed physical 

phenomena are very complex and finding the underlying model’s parameters requires a 

multitude of assumptions and/or very expensive computation. Furthermore, the approximated 

linear-elastic model such as the one used in ANIMAL has shown to correspond well to real tissue 

deformation when compared to elastic model (Rogelj and Kovacic 2004). Another advantage of 

using small deformations is that the arithmetic manipulation of displacement fields is well 

defined and allows for symmetric constraints as well as group-wise and/or longitudinal 

registration (Joshi, Davis et al. 2004).  

Optimization  

In image registration, the optimization aims to estimate the transformation parameters that 

maximize the similarity of the moving and the reference image according to an objective 

function. The difficulty to optimize the registration process correlates with the complexity of the 

transformation model. Linear registration can require optimizing up to 12 parameters for affine 

registration and could in theory use a global optimization scheme on the whole image.  

This task is much more complex for non-linear registration where the number of parameters 

is much higher. To solve this problem, different sophisticated optimization algorithms have been 

proposed and choosing an appropriate algorithm depends highly on the objective function. 

Indeed, if the objective function is differentiable and the variables are real values, continuous 

optimization such as gradient descent, Gauss-Newton and Levenberg Marquardt can be used. On 

the other hand, discrete methods such as Graph-based and linear programming need to be chosen 

when the parameters take a finite set of values (ie. grid-based deformation (Broit 1981)). A 

summary of a few of the most popular optimization methods, inspired by the work of (Sotiras, 

Davatzikos et al. 2013), is provided in Table 2.2.  
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Table 2.2: Summary of optimization methods, with their principles and authors that used them for registration. 
For Further details, the reader can refer to the reference. 

Optimization method Principles Authors 

C
on

tin
uo

us
 m

et
ho

d Gradient descent 
Follows the direction which decreases the 
energy of the objective function (negative 

gradient)  
(Viola and Wells 1997) 

Gauss-Newton Minimize the sum of squared differences 
(Vercauteren, Pennec et al. 

2007, Ashburner and 
Friston 2011) 

Levenberg-
Marquardt 

Similar to Gauss-Newton but faster to 
converge 

(Sawhney and Kumar 
1997, Thevenaz and Unser 

1998) 

D
is

cr
et

e 
m

et
ho

ds
 

Graph-based Max-flow min-cut principle (So, Tang et al. 2011) 

Linear-
programming Linear programming (i.e. Simplex) (Collins and Evans 1997) 

 

The continuous and discrete methods are limited regarding what objective functions and 

structures they can optimize. Furthermore, the type of deformation of an image determines the 

complexity of the registration problem.  

Using a hierarchical approach with a coarse-to-fine strategy can prevent the convergence to 

an incorrect solution, termed a “local minimum” or “local maximum”. In hierarchical strategies 

first larger scale deformations are estimated, these are then followed by finer scales (Vanderbrug 

and Rosenfeld 1977). Starting from a lower resolution, this strategy, which usually follows a 

Gaussian pyramid, reduces the search domain and thus decreases the computational burden. In 

such strategies, regularization is often performed through convolutions with a Gaussian kernel at 

each level of the pyramid, such as in the ANIMAL algorithm (Collins and Evans 1997). 
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Similarity metrics 

The similarity metrics (M) measure the correspondence between the images to be registered. 

Different features can be used to match the images such as geometric descriptors (i.e. SIFT 

(Urschler, Bauer et al. 2006)) but for the purpose of this thesis we only describe intensity-based 

similarity metrics. Because intensity-based similarity are performed at the voxel level, they can 

better estimate dense deformation fields and capture the underlying physical image differences.  

The simplest and most intuitive similarity measure is the sum of square difference (SSD) or 

L2-norm. This metric is very sensitive and can be used only if the images have similar intensities 

but, as mentioned above, image intensities of MRI vary. 

 

  
 Equation 2.6 

Cross-correlation (CC), which assumes a linear relationship of their voxel intensities when 

aligned, is widely used for mono-modal image registration (Leese, Novak et al. 1971):  

 

  
 Equation 2.7 

where (.)I and (.)R are the mean intensity of image I(.) and R(.). 

In the case of multi-contrast image registration (i.e. T2W registered to T1W images), a linear 

correlation between both images cannot be assumed. The information theory field provides 

measures that can capture the “mutual information” (MI) of two images (Collignon, Maes et al. 

1995, Viola and Wells 1997), defined as:  
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 Equation 2.8 

where H(.) is Shannon’s entropy (Shannon 1948) and represents the randomness (or dispersion) 

of the images I, R and of the joint probabilities distribution p(I,R), such that: 

 

  

 

and 

 

 

Equation 2.9 

 

  
 Equation 2.10 

Thus maximizing MI is equivalent to minimizing the joint distribution entropy of I and R. 

The joint probability distribution of the images (I and R) can be estimated from their joint 

histogram and this joint histogram shows smaller dispersions when both image are aligned. 
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Figure 2.11: Image registration transformations. The image shows the reference image, R(i), in D and the

source, I(i), image in A. The linear registration I(TL (i)) is shown in B with rotation, translation and scaling while in 
C the non- linear registration I(TNL(i)) with its deformation map overlay on top of the image is displayed. Figure 
inspired by (Avants, Grossman et al. 2006) 

2.3.4. MRI segmentation 

Image segmentation consists of dividing an image into homogeneous regions (intensity, 

texture, color...) by assigning a label to “similar” features. Whereas MRI segmentation allows for 

the extraction of anatomical structures (cerebrum, lateral ventricles...), tissue classification is 

used for assigning tissue classes (WM, GM, CSF...) to voxels. Tissue pathology such as MS 

lesion can be seen as a classification and/or a segmentation problem. In this thesis, MRI images 
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are used to segment anatomical regions of the brain but also MS lesions. In the following section, 

we provide a brief summary of different MRI segmentation approaches. 

Manual segmentation 

Manual segmentation is still recognized as the gold standard for MRI segmentation, but it is 

time consuming and despite precise protocols and expert training, manual segmentation results in 

inter- and intra-rater variability. It requires a detailed segmentation protocol for the structure to 

be identified and a good understanding of brain anatomy from the person segmenting. In the case 

of structures with high variability (i.e. shape, size, contrast…), such as MS lesions, manual 

segmentation (on the same subject by different experts) had an inter-rater reliability agreement of 

only 25% (García-Lorenzo, Francis et al. 2013). For these reasons manual segmentation is 

difficult to apply to large cohort studies. Conversely, automated or semi-automated segmentation 

techniques hold the potential of being more robust and reducing variability when the resulting 

segmentations are of sufficient quality.  

Anatomical segmentation methods 

There are numerous automated segmentation techniques that enable identification of 

anatomical structures in MRI images. An exhaustive review of the literature is available in 

Cabezas et al. (2011). Example techniques include deformable models or region growing 

(Ghanei, Soltanian-Zadeh et al. 1998, Shen, Moffat et al. 2002, Chupin, Mukuna-Bantumbakulu 

et al. 2007), appearance-based models (Duchesne, Pruessner et al. 2002, Hu and Collins 2007), 

and atlas/template-warping techniques (Collins and Evans 1997, Fischl, Salat et al. 2002, 

Rohlfing, Brandt et al. 2004, Zhou and Rajapakse 2005, Heckemann, Hajnal et al. 2006, 

Hammers, Heckemann et al. 2007, Barnes, Foster et al. 2008, Gousias, Rueckert et al. 2008, 

Aljabar, Heckemann et al. 2009).  

The in-house template-warping technique proposed by (Collins and Evans 1997) named 

ANIMAL performs non-linear registration using minctracc (cf. Section 2.3.3) of the image to be 
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segmented to the ICBM152 template. Then, the inverse of the non-linear deformation is used to 

interpolate the anatomical atlas onto the subject image space (Figure 2.14).    

An individual template many not be sufficient to capture the individual or pathological 

variability of the anatomy. Thus, to overcome this limitation, multi-atlas segmentation 

approaches have been proposed. In this case, a library of MR images with their respective 

manual expert-based segmentations is used. Then linear and/or non-linear registration is used to 

register the subject image to the library. Next, the fusion of the labels is done using a majority-

voting rule. To decrease the anatomical variability of the library, a pre-selection of the most 

similar templates is possible (Aljabar, Heckemann et al. 2009). Multi-atlas segmentation has 

demonstrated better accuracy to segment anatomical structures, yielding less error than single 

template approaches (Rohlfing, Brandt et al. 2004, Heckemann, Hajnal et al. 2006, Hammers, 

Heckemann et al. 2007, Gousias, Rueckert et al. 2008, Aljabar, Heckemann et al. 2009, Collins 

and Pruessner 2010). Multi-atlas label fusion segmentations have improved over individual 

exemplar segmentation approach results. However, these methods are still limited by the atlas 

biases, mis-registration, and interpolation error. 

Recently, a solution to these limitations of structural segmentation has been proposed in 

terms of patch-based methods that use the NLM operator (Buades, Coll et al. 2005) (described in 

section 2.3.1).  Indeed, the non-local approach exploits image redundancy within a library of 

images and their respective segmentation to obtain a larger number of samples by looking for 

similar patches in a given search area. In these approaches, the intensity-based distances between 

the patch under study and corresponding patches in the template library are used to perform a 

weighted label fusion based on the NLM estimator (Figure 2.12). Furthermore, the weighted 

average of the most similar patches provides a more robust labelling than traditional majority 

voting where the same weight is given to all the samples. Patch-based segmentation methods 

have gained wide popularity and have shown impressive results, despite their simplicity. They 

have been applied to segment a multitude of anatomical structures including hippocampus 

(Coupé, Manjón et al. 2011, Tong, Wolz et al. 2013), brain (Eskildsen, Coupé et al. 2012), lateral 

ventricles (Fonov, Coupé et al. 2012), deep nuclei (Xiao, Fonov et al. 2014), intracranial cavity 
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(Manjón, Eskildsen et al. 2014) and other structures of the brain (Rousseau, Habas et al. 2011, 

Zhang, Guo et al. 2012).    

In this thesis, we applied NLM segmentation, as well as template-warping approaches to 

segment different structures. Example segmentations are provided in Figure 2.13 for brain 

(Eskildsen, Coupé et al. 2012), lateral ventricles (Fonov, Coupé et al. 2012) and hippocampi 

(Coupé, Manjón et al. 2011).  
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Figure 2.12: Multi-atlas NLM segmentation overview. The patch P(x)i of the image modality M to be 

segmented (in red) is compared with the patch in the search area Ω of the pre-selected N training subjects. The most 
similar patches are represented in blue and their corresponding weights are represented on the weight maps. Then a 
weighted average of the library of manual segmentation l(jn) is estimated to obtain the final label (green). In this 
exemple, the weighted average is estimated from the central (x(i)) and the mean value (µ(i)) of the patch as 
described in Chapter 3. Graphical abstract from (Guizard, Coupé et al. 2015). 
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Figure 2.13: NLM segmentation examples. From left to right, T1W image, the brain (red), lateral ventricles 
(green) and hippocampi (blue) segmentation.. 

Tissue classification and lesion segmentation methods 

Tissue classification can be considered as a form of image segmentation where the task is to 

classify the voxel into tissue types rather than structures; for example, WM, GM and CSF 

(Figure 2.14). MRI tissue classification represents an important problem in medical image 

analysis.  In cases of disease or pathology, one may want to identify lesion or tumour. Tissue 

classification has numerous applications related to diagnosis, surgical planning, image-guided 

interventions, monitoring therapy, and clinical drug trials. Tissue class volumes can be used as a 

disease progression biomarker (Bendfeldt, Klöppel et al. 2012, Weygandt, Hummel et al. 2015). 

Tissue classification is also used to improve image-processing techniques (i.e. normalization, 

registration…) and for further processing (e.g., cortical thickness, partial volume effects…). For 

the purpose of this thesis, we only describe classification techniques that can identify MS lesions. 
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From two recent literature reviews of MS lesion segmentation methods (Lladó, Oliver et al. 

2012, García-Lorenzo, Francis et al. 2013), two main categories of automatic classifiers emerge 

from the literature: unsupervised and supervised.   

Supervised methods learn features from previously segmented datasets (intensity, local 

gradients, etc.). The features in new images to be segmented are compared with those in the 

training sets in order to estimate the lesions. These methods can use different techniques to select 

the features, including: artificial neural networks (ANN) (i.e. INSECT (Intensity Normalized 

Stereotaxic Environment for Classification of Tissues) from (Zijdenbos, Dawant et al. 1994)), k-

nearest neighbours (K-NN) (Vinitski, Gonzalez et al. 1999), decision trees (Kamber, Shinghal et 

al. 1995), random decision forests (RDF) (Geremia, Clatz et al. 2011), and Bayesian frameworks 

(Harmouche, Collins et al. 2006). Patch-based techniques have also been used for tissue 

classification (Cordier, Menze et al. 2013). We propose an adaptation of the NLM patched-based 

segmentation technique to the MS lesion classification in Chapter 3. 

Unsupervised methods do not require manual segmentation of the lesions a priori, but 

estimate tissue classes or clusters of similar voxels based on voxel features such as intensity, 

with or without the help of anatomical and MRI knowledge. Unsupervised techniques were 

initially developed to classify healthy brain tissues from MRI intensities into three classes (CSF, 

WM and GM) using a fuzzy C-means and Gaussian mixture models and expectation 

maximization (EM) (Wells, Grimson et al. 1996). To detect MS lesions, some groups adapted the 

Gaussian models by adding an extra class for MS lesions (Kikinis, Guttmann et al. 1999, 

Souplet, Lebrun et al. 2008) while others defined lesions as outliers of the mixture model (Van 

Leemput, Maes et al. 2001). Other approaches define lesions as outliers when comparing the 

spatial and intensity information of the images to be segmented and the library of healthy 

subjects (Tomas-Fernandez and Warfield 2011). To correct for noise and image artefacts, graph-

cut techniques combine spatial information from local neighborhoods (García-Lorenzo, Prima et 

al. 2008, Khayati, Vafadust et al. 2008). Unsupervised techniques suffer from image intensity 

non-uniformity when present. Lesions, which present different intensity characteristics with 
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respect to their stage (acute, chronic...), make it difficult to apply a single global model as it 

cannot capture this variability.  

Image and lesion variability are common limitations of both supervised and unsupervised 

techniques. However, by using image pre-processing, along with the appropriate training set and 

image features, supervised techniques can potentially capture MS lesions and image intensity 

variability, as we will describe in Chapter 3. 

All these tissue classification and segmentation techniques are usually performed in a cross-

sectional manner and have shown good results.  However, these techniques are usually limited in 

the context of longitudinal analyses because they do not leverage the constraints available when 

considered longitudinal data as an ensemble. More specifically in MS, lesion segmentation is 

often considered as an end-point where lesion count or the total lesion volume, are derived from 

this segmentation. . Furthermore, in the context of longitudinal morphological analysis, lesions 

represent potential confounding and can introduce pathological variability. Thus, accurate lesion 

segmentation will help automating longitudinal processing and improve the atrophy measure 

sensitivity.  

Figure 2.14: Tissue classification of a normal control subject. WM is in blue, the GM in is green and the CSF is 
represented in red. Note that in this example the skull, dura-matter and skin are also mis-segmented as either GM, 
WM or CSF.  
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2.4. MRI atrophy measurements as a 

surrogate of neurodegeneration 

Most of the different tools mentioned above have been used to assess morphological changes 

in brain images due to disease progression. The recent progress in MR imaging techniques and 

image processing has helped to increase our knowledge about the pathophysiology of MS and 

AD. Brain atrophy has been shown to be a relevant feature for both pathologies and has been 

proposed as a surrogate marker for disease burden in MS (Bakshi, Dandamudi et al. 2005, 

Zivadinov and Leist 2005, Bermel and Bakshi 2006, Simon 2006) and in AD (Thompson, 

Hayashi et al. 2004, Schott, Price et al. 2005, Barnes, Godbolt et al. 2007, Frisoni, Fox et al. 

2010). Brain atrophy measures are promising surrogates for the pathological progress of the 

disease because:  

1) Atrophy measures represent the net effect of tissue destruction. 

2) Atrophy quantification does not require a specialized MRI protocol. 

3) Atrophy can be measured in an automatic and robust manner. 

4) Atrophy can be detected over small periods of time depending on the disease. 

5) Atrophy metrics should have a significantly smaller variance as compared to clinical 

disability scales. 

Many studies have assessed longitudinal brain atrophy and there are different approaches 

possible for measuring these changes. The recent availability of large datasets of longitudinal 

MRI data has given rise to the need for longitudinal image processing techniques. Indeed, 

different meta-analyses of the literature have shown strong evidence of heterogeneity in the 

measure of brain atrophy rates. One of these meta-analysis from Barnes et al. (Barnes, Bartlett et 

al. 2009) investigated the hippocampal atrophy rate on 595 AD patients. In their random-effect 
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meta-analyses, they reported an overall mean atrophy rate of 4.66% per year (95% CI 3.92, 5.40) 

in AD and an estimated “between-study” standard deviation of 0.77%. They also reported 

significant differences between-study groups revealing the strong evidence of study 

heterogeneity (Figure 2.15). This variability found between studies could be explained by many 

factors such as (Jovicich, Czanner et al. 2009, Frisoni, Fox et al. 2010, Vrenken, Jenkinson et al. 

2013):  

• Pathological changes: treatment effect, severe atrophy or lesion. 

• Intrinsic image acquisition factors: spatial resolution, incomplete head coverage, 

positioning, tissue contrast, noise and artifacts. 

• Methodological limitations. 
Clinical studies usually control for scanner, treatment and patient pathological factors. But 

the inherent methodological errors can be subtle and must be taken into considerations. In the 

following sections, we thus describe the different approaches and their limitations to assess brain 

atrophy globally and (Section 2.4.1) and focally (Section 2.4.2).  
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Figure 2.15: Meta-analysis of hippocampal atrophy rates of AD patients From nine studies (Jack, Slomkowski 
et al. 2003, Wang, Swank et al. 2003, Du, Schuff et al. 2004, Jack, Shiung et al. 2004, Thompson, Hayashi et al. 
2004, Fox, Black et al. 2005, Hashimoto, Kazui et al. 2005, Kaye, Moore et al. 2005, Barnes, Godbolt et al. 2007). 
The square size is proportional to the inverse of (the study variance + the between-study variance estimate) while the 
solid lines represent the 95% confidence intervals. Adapted from (Barnes, Bartlett et al. 2009).  

2.4.1. Global brain atrophy  

Global atrophy is the overall atrophy of brain tissue, or of a particular tissue compartment 

(WM or GM). It is measured globally, and carries no specific information of location of lost 

tissue. We can classify global brain atrophy metrics into two main categories: cross-sectional and 

pair-wise atrophy measure.  
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Cross-sectional global atrophy measure 

Until recently, most longitudinal analyses have been performed globally, using cross-

sectional (i.e. from structural segmentation), or pair-wise measures. Cross-sectional global 

atrophy measurements can be achieved with any segmentation technique as mentioned in section 

2.3.4, in order to estimate an absolute volume of the total brain parenchyma (Dalton, Chard et al. 

2004), the corpus-callosum cross sectional area (Pelletier, Suchet et al. 2001), the cerebellum 

volume (Liu, Edwards et al. 1999), the ventricle volume (Lukas, Minneboo et al. 2010), or the 

volume of individual brain lobes (Benedict, Zivadinov et al. 2005). 

Non-linear registration can be used to obtain a Jacobian determinant of the transformation at 

each voxel (Equation 2.5). This determinant can be integrated over a pre-segmented brain region 

to obtain an approximation to the volume different between a source and target image in that 

region. This technique has been applied to many brain structures (ie. whole brain (Freeborough 

and Fox 1998) or hippocampus (Crum, Scahill et al. 2001)) and we showed that it can improve 

the estimation of longitudinal cortical grey matter atrophy in MS (Nakamura, Guizard et al. 

2014). 

Another approach to measure global brain atrophy uses brain segmentation to compute a 

ratio of the brain tissue volume and the intra-cranial cavity to obtain a normalized head-size  

metric such as the brain parenchymal fraction (BPF) (Rudick, Fisher et al. 1999). A similar fully 

automated approach was developed at the MNI to measure the brain to intra-cranial capacity 

ratio (BICCR) (Collins, Montagnat et al. 2001). BPF has shown to be smaller in MS than in 

healthy normal controls (Rudick, Fisher et al. 1999), and to decrease faster than in healthy 

normal controls (Chard, Brex et al. 2003). Similar results have been found in AD (Ramirez, 

McNeely et al. 2014). 

Pair-wise global atrophy measures  

The first set of methods uses longitudinal data where volume changes are estimated at the 

edge of the brain between two successive images of registered data (registered using affine 
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transformations). Because of their accuracy and robustness, the boundary shift integral (BSI) 

(Freeborough and Fox 1997) and SIENA (Structural Image Evaluation, using normalization of 

atrophy) (Smith, Destefano et al. 2000) in the FMRIB Software Library (FSL) have been widely 

used for global brain atrophy measures in research and clinical trials:   

BSI: Given the boundary of the segmented structure (ie. brain (Freeborough, Fox et al. 

1997)), BSI estimates the amount of displacement of this boundary between two time-point 

images. A region around the boundaries is defined using morphological operators. In this region, 

the volume change is estimated by integrating the normalized intensity difference of both 

images.  

SIENA: SIENA starts with brain and skull segmentation (Smith 2002) to perform skull-based 

registration in a half-way space. Then, the brain:non-brain boundary is estimated from tissue 

classification (Zhang, Brady et al. 2001) before computing the perpendicular displacement 

between the brain boundaries of the two time-points. Finally, the surface displacement is 

averaged to obtain a global estimate of percentage of brain volume change (PBVC). 

Global atrophy measures require a priori knowledge of the anatomical structures being 

assessed and might exclude potential focal or regional relevant regions from the analysis.  

2.4.2. Focal brain atrophy  

With the advent of more sophisticated techniques, it is possible to investigate focal 

longitudinal changes, which will invariably provide more insight into specific atrophy patterns. 

In addition to manual, automated or semi-automated outlining methods, studies have explored 

the whole brain in a voxel-based manner to measure focal atrophy at the individual level but also 

across whole populations. Here, we describe possible approaches to measure voxel-wise tissue 

changes or atrophy using: voxel-base morphometry (VBM), deformation- and tensor-based 

morphometry (DBM). 
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VBM:  Initially proposed by Ashburner et al. (Ashburner and Friston 2000), VBM is 

believed to reflect the tissue changes at a voxel level. These changes are estimated by first 

aligning the images into stereotaxic space (cross-sectional or longitudinal), followed by GM 

segmentation and voxel-wise statistical comparison of the smoothed GM images. In optimized 

VBM, the Jacobian determinant of the non-linear registration to a template space can be used to 

weight the GM density (Good 2001). The statistical comparison employs the general linear 

model (GLM), which allows a variety of different statistical tests at the voxel-wise level such as 

group comparisons and correlations with covariates of interest. VBM has been widely used to 

identify focal brain atrophy in normal aging brain (Kalpouzos, Chételat et al. 2009) and 

neurodegenerative diseases such as Alzheimer's disease (Baron, Chételat et al. 2001). The VBM 

approach enabled the identification of atrophy in GM structures such as the cortex and thalamus 

(Audoin, Davies et al. 2006, Ceccarelli, Rocca et al. 2008) in MS.  

DBM: This morphometric method has been developed to estimate macro-anatomical or 

shape differences between two MRI images using non-linear registration. In this thesis, we use 

the term DBM to describe methods of studying the deformation fields or scalar field derived 

from the deformation fields (ie. Jacobian determinant). The term tensor-based morphometry 

(TBM) is sometimes used in the literature to describe DBM analyses based on Jacobian 

determinants. In DBM, vector-values or derived scalar properties of the deformation field are 

used to compare and correlate morphological changes directly instead of using intensity as an 

indirect handle on shape change such as within the techniques described for VBM.  Tao et al. 

(Tao, Datta et al. 2009) used DBM in MS to evaluate the deep GM structure atrophy and they 

demonstrated a correlation between the thalamus volume and clinical scores. Hua et al. (Hua, 

Leow et al. 2008) performed statistical analysis of the Jacobian determinant maps between 

normal AD, MCI and NC to reveal correlations with clinical measurement and genes associated 

with AD. However, one limitation of DBM analysis is that multiple solutions exist for non-linear 

registration. This is due to the fact that there are different strategies used to estimate the 

deformation (Section 2.3.3), which need to appropriately handle the potentially opposing 

requirements for deformation and regularization for the global and local fitting. 
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One main limitation of morphometric analyses is that they attempt to find a one-to-one 

anatomical correspondence between subjects, a correspondence that might not exist. These is 

particularly true in cross-sectional research were VBM and DBM are mainly used. However, 

DBM advantages are its ability to detect subtle anatomical differences that could potentially 

provide precise longitudinal morphological measures where the one-to-one correspondence 

exists over time. Furthermore, DBM does not require tissue segmentation or a-priori information 

about specific anatomical structural changes.  

The variability mentioned above in medical image acquisitions and methods has limited the 

wide use of longitudinal morphological studies. These potentially confounding factors need to be 

controlled to increase the sensitivity of atrophy measures. Furthermore, due to the vast variety of 

registration algorithms, no widely accepted standard for DBM studies exists, which has 

prevented its incorporation into major neuroimaging software packages. To overcome these 

limitations, non-linear registration and their resulting measures for longitudinal analysis should 

satisfy the requirements mentioned by Fox et al. (2011):  

1. Symmetry: The order of the non-linear registration should produce the same absolute 

change regardless of the registration direction (I → R or R → I). 

2. Transitivity: In the case of multiple images (here A, B and C), the sum of the changes 

from A→B and B→C should be equal to the direct measure A→C. 

3. State of the art comparison: The measure should be compared on publically available 

data and compared to other approaches. 

4. “Scan-rescan” reproducibility: Brain changes should tend to zero when estimated on 

scans acquired over a short period of time. Therefore, subjects scanned the same day 

should have zero brain changes and any deviations will provide insight into potential 

biases and robustness of the method.  
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5. Power analysis: Statistical power analysis such as sample size and effect size 

measures should be performed and normal ageing should be taken into account to 

assess the performance of the method to differentiate the groups or decrease the 

longitudinal variability. 

Efforts have been made to improve longitudinal image analysis, but longitudinal non-linear 

registration still needs improvement in order to be used in research and clinical settings. This 

improvement will at term increase the sensibility of longitudinal measurements and increase the 

sensitivity to detect morphological changes. This will lead to a better power to evaluate disease 

progression and/or treatment effect, which could reduce the number of participants required in 

clinical trials and thus reduce the cost of potential new treatments.  

2.5. Objectives 

To summarize, neurodegenerative diseases such as AD and MS affect a large proportion of 

our population and their occurrence is expected to increase, especially in the case of AD. Given 

our current knowledge of these diseases, there is a need to understand and track the pathological 

processes in order to ultimately reliably assess potential treatments. MRI offers the possibility of 

investigating brain changes in a non-invasive manner. However, efficient, reliable and stable 

longitudinal measures from MRI are challenging to obtain and numerous factors can affect these 

measures, ranging from pathological to acquisition-related variability.  

Therefore, the objectives of this thesis are to develop the necessary image processing 

approaches to attempt to circumvent the potential longitudinal variability in MRI studies while 

being effectively applicable in clinical settings.  

In the following (Chapter 3), we begin to address the issue of pathological confounds by first 

proposing a method to detect MS lesions in a sensitive manner using an example-based 

approach, which exploits the use of large available libraries of manual lesion segmentations. In 

order to limit the impact of lesions on longitudinal measurements, we propose, in Chapter 4, a 
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method to synthesise normal tissue to be used as a replacement in regions of affected tissue. In 

terms of longitudinal analysis, Chapter 5 assesses the bias and the symmetry of non-linear 

registration approaches. Finally, in Chapter 6, we propose a spatio-temporal non-linear 

registration framework to reduce the longitudinal variability primarily caused by acquisition 

differences.  
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Preface 

This chapter presents a method for automatic segmentation of lesions from mulit-contrast 

MRI data.  As discussed in the previous chapter, detection and quantification of brain 

morphological change has resulted in heterogeneous findings, perhaps due to the potential 

pathological confounds such as lesions. MS lesions are a clear example of sporadic and scattered 

visible pathological changes occurring in MR images in patients with MS. Despite poor 

correlation between MR Lesion volume and clinical disability, manual MS WM lesions have 

been used to follow MS disease progression and it is still perceived as the gold standard. 

Therefore, providing a reliable and fully automatic longitudinal measure of brain atrophy is 

important to detect the presence of potential pathological confounding but also as a pathological 

marker on its own.  

The following manuscript proposed a new approach to detect MS lesion and was published in 

NeuroImage: Clinical (Guizard, Coupé et al. 2015). The method exploits, in an optimal fashion, 

a large library of MRI images with corresponding pre-segmented lesion labels using label fusion 

segmentation principles.  The method has shown highly competitive results on both public and 

local private datasets. The flexibility of this supervised approach makes it potentially applicable 

to other focal pathology (ie. AD T2W hypointensity lesions or FLAIR hyperintensities). 
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3.1. Abstract 

Multiple sclerosis (MS) lesion segmentation is crucial for evaluating disease burden, 

determining disease progression and measuring the impact of new clinical treatments. MS 

lesions can vary in size, location and intensity, making automatic segmentation challenging. In 

this paper, we propose a new supervised method to segment MS lesions from 3D magnetic 

resonance (MR) images using non-local means (NLM). The method uses a multi-channel and 

rotation-invariant distance measure to account for the diversity of MS lesions. The proposed 

segmentation method, rotation-invariant multi-contrast non-local means segmentation 

(RMNMS), captures the MS lesion spatial distribution and can accurately and robustly identify 

lesions regardless of their orientation, shape or size.  

An internal validation on a large clinical magnetic resonance imaging (MRI) dataset of MS 

patients demonstrated a good similarity measure result (Dice similarity=60.1% and 

sensitivity=75.4%), a strong correlation between expert and automatic lesion load volumes 

(R2=0.91), and a strong ability to detect lesions of different sizes and in varying spatial locations 

(lesion detection rate=79.8%). On the independent MS Grand Challenge (MSGC) dataset 

validation, our method provided competitive results with state-of-the-art supervised and 

unsupervised methods. Qualitative visual and quantitative voxel- and lesion-wise evaluations 

demonstrated the accuracy of RMNMS method. 
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3.2. Introduction 

Multiple Sclerosis (MS) is a chronic, inflammatory demyelinating disease, which mainly 

affects the white matter of the central nervous system (CNS) but may also affect the cortex. The 

disease presents itself with a wide range of clinical manifestations, usually beginning with a 

relapsing remitting (RRMS) phase. RRMS is characterized by attacks of worsening neurologic 

function (relapses) that are followed by partial of full recovery (remissions). Relapses are 

directly related to an underlying inflammation of the CNS, which affects the myelin of the axons 

and consequently leads to focal “MS lesions”. Because magnetic resonance imaging (MRI) is 

sensitive to inflammatory and demyelinating changes, it is often used to monitor, identify and 

quantify MS lesions (Fazekas, Barkhof et al. 1999) that are hyperintense on T2-weighted (T2W) 

magnetic resonance (MR) images and may become hypointense on T1-weighted (T1W) images. 

Lesion counts are often used to assess the disease burden and track disease progression as new 

lesions are related to current disease activity. Both counts are used to assess the efficacy of new 

therapies (Polman, Reingold et al. 2011). For the purpose of this article, we focus on lesions 

commonly called “T2-lesions” (those that are hyperintense on T2W images) and do not consider 

other sub-types of lesions (i.e. gadolinium enhancing “active lesions”, “black holes” and cortical 

lesions). MS lesions in MR images are extremely difficult to identify because of inter-subject 

anatomical variability, lesion location, size, texture and shape. Manual segmentation of MS 

lesions is still recognized as the gold standard in MS, but it is time consuming and subjects to 

intra- and inter-expert variability. As an alternative, a multitude of automatic techniques to detect 

and segment MS lesion have been proposed. However, recent reviews of the literature (Lladó, 

Oliver et al. 2012, García-Lorenzo, Francis et al. 2013) concluded that automatic MS lesion 

segmentation is still an unsolved topic. Although promising progress has been made in this field 

open problems and limitations persist. For example, many techniques are not robust across 

imaging centers or differing MRI protocols.  

Two main categories of classifiers emerge from the literature: unsupervised and supervised. 

Unsupervised methods do not require manual segmentation of the lesions, but estimate tissue 
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classes or clusters of similar voxels with or without the help of anatomical and MRI knowledge. 

Many unsupervised techniques were initially developed to classify healthy brain tissues based on 

MRI intensities into three classes (cerebral spinal fluid (CSF), white matter (WM) and grey 

matter (GM)). This was done by using fuzzy C-mean and Gaussian mixture models with 

expectation maximization (EM) (Wells, Grimson et al. 1996). To detect MS lesions, some 

groups adapted the Gaussian models by adding an extra class for MS lesions (Kikinis, Guttmann 

et al. 1999, Souplet, Lebrun et al. 2008) and/or added topological constrains (i.e. the publically 

available approach LesionTOADS (Shiee, Bazin et al. 2010)). Others defined lesions as outliers 

of the mixture model (Van Leemput, Maes et al. 2001, Schmidt, Gaser et al. 2012, Cabezas, 

Oliver et al. 2014) or as outliers when comparing the spatial and intensity information of the 

images to be segmented and library of healthy subjects (Tomas-Fernandez and Warfield 2011, 

Tomas-Fernandez and Warfield 2015). To correct for noise and image artifacts, graph-cut 

techniques have been used to combine spatial information from the local neighborhoods with the 

intensity model (García-Lorenzo, Prima et al. 2008, Khayati, Vafadust et al. 2008). Unsupervised 

techniques suffer from both intensity non-uniformity, in the whole image and in the lesion since 

this variability in intensities cannot be captured with a single global model. Furthermore, the 

properties of each image need to be specifically defined which can be difficult when artifacts 

have properties similar to lesions.  

The supervised methods use machine-learning techniques to extract relevant features (e.g. 

intensity or local gradient) and train automatic classifiers from manual or automatic lesion 

segmentation datasets. Then, the features of new images to be segmented are compared with the 

training sets to estimate the lesions. These methods can use different machine-learning 

approaches including: artificial neural networks (ANN) (Zijdenbos, Dawant et al. 1994), k-

nearest neighbors (K-NN) (Vinitski, Gonzalez et al. 1999), decision trees (Kamber, Shinghal et 

al. 1995), random decision forests (RDF) (Geremia, Clatz et al. 2011), Bayesian frameworks 

(Harmouche, Collins et al. 2006) and logistic regression (Sweeney, Shinohara et al. 2013). The 

common limitation of both supervised and unsupervised techniques is their sensitivity to image 

and lesion variability. However, using the appropriate training set and image features, supervised 
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techniques can potentially identify the MS lesion and compensate for variability in image 

intensities.  

Indeed, it has been shown that many supervised library-based (or multi-atlas) techniques 

outperform unsupervised model-based segmentation methods (Lao, Shen et al. 2008). For 

example, patch-based methods using non-local means (NLM) for structural segmentation have 

gained in popularity and shown promising results despite their simplicity (Coupé, Manjón et al. 

2011). Patch-based approaches have been applied to segment a multitude of anatomical 

structures including the hippocampus (Coupé, Manjón et al. 2011), brain (Eskildsen, Coupé et al. 

2012), lateral ventricles (Fonov, Coupé et al. 2012), deep nuclei (Xiao, Fonov et al. 2014), 

intracranial cavity (Manjón, Eskildsen et al. 2014), brain tissues (Cordier, Menze et al. 2013) and 

other structures of the brain (Rousseau, Habas et al. 2011). Although NLM has proven to be 

useful in segmenting anatomically well-defined structures (e.g. hippocampus and lateral 

ventricles) they have not yet been applied intensively to MS lesion segmentation.  

Given the success of patch-based approaches, we present a library-based NLM approach 

where voxels with similar surrounding neighborhoods (or patches) are used to estimate the 

presence of lesions. Contrary to the original patch-based segmentation method (Coupé, Manjón 

et al. 2011), we offer two main contributions in order to efficiently address the problem of MS 

lesion segmentation: i) a rotationally-invariant similarity metric for patch comparison which 

better captures lesion shape variability and ii) a multi-contrast framework that takes advantage of 

information derived from T2w and FLAIR images. Indeed, in the context of MS lesion 

segmentation the dimension, shape, orientation and position of lesions vary greatly (Figure 3.3). 

The sum of squared differences (or L2-norm), which originally used as patch-based distance 

measure (Buades, Coll et al. 2005), is sensitive to the orientation of the patch. While this is good 

for structure segmentation, this could potentially miss lesion labels (Figure 3.1). Similar to the 

work by Manjón et al. (2012), we replace the L2-norm distance measure with a rotation-invariant 

distance (RI) where only the intensity of a central voxel and the mean intensity of the patches are 

considered. Furthermore, the existing NLM segmentation algorithms used a single contrast 

library (e.g. only T1W images), however, a single image contrast does not hold enough 
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information to separate lesions from healthy tissues. Most lesion segmentation algorithms use 

T2W and FLAIR MR images, as most MS lesions appear hyperintense on these modalities 

indicating inflammation or scar tissue. On T1W images, lesions appear hypointense but present a 

larger intensity variability which might reflect the different sub-types of lesion such as the so-

called “black hole” associated with irreversible tissue damage (van Walderveen, Kamphorst et al. 

1998). Inspired by the work of Coupé et al. (2013), which introduced multi-contrast NLM for 

image super-resolution and Xiao et al. (2014) for dual-channel NLM segmentation of deep brain 

structures, we propose an adaptation of the NLM segmentation algorithm to take advantage of 

multi-contrast images for MS lesion segmentation. This library-based approach captures the 

potential global and local variability of the anatomy as well as the intensity variability in lesions.  

To our knowledge, despite the increasing popularity of patch-based techniques, only a few 

recent methods have been developed to segment MS lesions. Weiss et al. (2013) presented a 

supervised segmentation technique using sparse coding with patches from a library of healthy 

subjects to reconstruct MS patient images. The reconstruction estimates an error map, which 

detects outliers believed to describe MS lesions. Their method shows promising preliminary 

results but was not assessed on a large clinical cohort and might not be specific enough to 

distinguish MS lesions from artifacts when detecting image outliers. The approach by Roy et al. 

(2014) also uses sparse techniques. In their method, they estimate a weighted average of the most 

similar patches of a kd-tree using a nearest neighbor search on a library of pre-segmented multi-

contrast (T1W and FLAIR) images. While sparse strategies present the advantage of decreasing 

the dimensionality of the library, kd-tree removes the 3D spatial knowledge of the training 

images which may hold additional pertinent information that can help identifying MS lesions. 

Indeed, despite careful pre-processing, the local MS lesion properties in MR images (i.e. 

intensity, contrast, noise, etc.) depend on the local anatomical and/or spatial location of the lesion 

(Meier and Guttmann 2003). Thus, by using a 3D volume library, this local information can help 

capture the spatial layout of different MS lesions. Finally, neither Weiss et al. (2013) or Roy et 

al.’s (2014) patch-based approaches for lesion segmentation use rotationally invariant features. 
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As will be demonstrated in Section 3.3, this aspect is crucial in the context of MS lesion 

detection. 

We assessed our rotation-invariant multi-contrast non-local means segmentation (RMNMS) 

approach on 108 RRMS patients from a multi-site clinical study. Our method obtained a Dice 

similarity measure of 60.1±16.4%, a sensitivity 75.4±15.7% and a precision 55.0±20.1% in 

cross-validation. Using the parameters established for our initial evaluation, we compared 

RMNMS to several different state-of-the-art techniques using the datasets from the MS lesion 

Grand Challenge (MSGC, MICCAI 2008 (Styner, Lee et al. 2008)), on which we obtained very 

competitive results holding the first rank at the time of the submission.  

3.3. Methods 

In the following section we first describe the developed algorithm (3.3.1), then the datasets 

(3.2.2), and lastly our evaluation techniques (3.3.3).  

3.3.1. The algorithm 

Our algorithm adapts the NLM estimator (a.) to account for multi-modal images (b.) and 

rotation-invariant distance measure of the patches (c.).  
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a. The non-local mean approach 

NLM estimator 

The NLM estimator, which takes advantage of image redundancy, was initially proposed by 

Buades et al. (2005) for image denoising. The idea of the NLM is to reduce the noise of the 

image by averaging the voxels that would have a similar intensity in the noise-free image. To 

achieve the denoising of voxel x(i), the patch P(x(i)) centered on i is compared with all the 

patches P(x(j)) centered on j of the images in the neighbourhood Ω such that: 
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Equation 3.1 

 

 Where the term w(i,j) is a weight based on the similarity of between the patches P(x(i)) 

and P(x(j)), and is designed to attribute a smaller weight to the greater L2-norm ( 2. ) distance 

measures. The term h2 is a smoothing parameter proportional to the noise variance. 

NLM segmentation 

The NLM approach has been used for structural segmentation (Coupé, Manjón et al. 2011) 

by employing a library of atlases with co-registered anatomical images and manually segmented 

structures to segment those particular structures on new subjects. For NLM segmentation, the 

weights are estimated between intensities of the subject patch, P(x(i)), and patches from a subject 

S from library of N pre-segmented subjects, P(x(js)), such that: 
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Equation 3.2 

 

where in this case the h2 parameter is set based on the patch minimum distance of the search area 

(Coupé, Manjón et al. 2011). Thus, if similar patches are found in the library the minimum 

distance h2 will be low and the weight function will decay quickly such that it is not influenced 

by other patches.  

b. Multi-contrast NLM segmentation 

(MNLM) 

Multi-contrast NLM estimator  

In MS, multi-contrast images for manual and automatic segmentation have shown to improve 

the identification of MS lesions. Inspired by previous work on multi-contrast NLM (MNLM) for 

denoising (Manjón, Thacker et al. 2009) and for super-resolution (Coupé, Manjón et al. 2013), 

we apply the NLM weighting function to allow for various contrasts (M) such that:  
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Here M represents the different MR contrasts commonly used in MS lesion segmentation: 

T1W, T2W, PD, or FLAIR for example. It is important to note that the smoothing parameter 

is estimated for each considered contrast (i.e., the per contrast minimum distance). Similarly, the 

L2-norm distance is estimated between patches of the same contrast.  

Multi-contrast training subject pre-selection 

Subjects with similar lesion load and spatial distribution may be more similar with respect to 

their brain intensity characteristics. Therefore, focusing the weight estimation on the most similar 

subjects should potentially hold more similar patches, and also presents the advantage of 

reducing computation. In the context of label fusion segmentation methods, Aljabar et al. (2009) 

proposed a pre-selection for single contrast images of the most similar structures present in the 

training library. In our multi-contrast method, we seek the most similar training subjects by 

measuring the multi-contrast L2-norm (ML2-norm) distance of the subject being segmented and 

the training subjects across their brain mask region, defined as:  

 2
( ( )) ( ( )ML2-n rm )o M M s

M
I x i L x j= −∑  

 

Equation 3.4 

 

The N subjects with smallest ML2 distances are selected as they represent the most similar 

training subjects and thus provide the most similar set of features. 

  

hM
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c. Rotation-invariant multi-contrast non-

local mean segmentation (RMNMS) 

Previous NLM segmentation implementations have shown convincing results in segmenting 

anatomically well defined structures (e.g., hippocampus and lateral ventricles (Coupé, Manjón et 

al. 2011)). Anatomically, these structures present a relatively small variability of shape, contrast 

and spatial location making the orientation of the structure to be segmented an important 

constraint when looking for similar patches in the library. However, this strong advantage for 

structural segmentation could be a drawback in the context of MS lesion segmentation where no 

structural, orientation nor spatial location can be assumed. Indeed, Kincses et al. (2011) show 

that MS lesions can be found almost anywhere in the brain. However, there is spatial predilection 

for lesions to occupy the peri-ventricular area, the cortico-spinal tract and the optic radiations the 

lesion distribution probability map as can be shown in Figure 3.3. The lesions themselves do not 

appear to have a constraint on their size, shape or number (as shown in Figure 3.3 and Figure 

3.10 on three MS cases). 

In order to increase the ability of the NLM segmentation approach to detect MS lesions, we 

propose a rotation-invariant distance (RI) metric instead of the L2-norm metric that is used in the 

multi-contrast NLM framework. Similar to the work of Manjón et al. (2012) on sparseness and 

self-similarity for MRI denoising, we replaced the L2-norm with a RI distance measure. 

Therefore, only the intensity of a central voxel (x) and the mean of surrounding patch (µ) are 

considered:  
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In our experiments, we found that the intensity difference of the central voxels 
2( ( ) ( ))M M Sx i x j− , was roughly the same as the intensity difference of the patch average 

2( ( ) ( ))M M Si jμ μ− , thus we chose α=1, whereas Manjón et al. (2012) used α =3. The need for a 

difference in alpha might be due to our pre-processing and in particular the denoising step, which 

tends to smooth the neighbouring intensity values surrounding the central voxel. The image 

denoising step used in our pre-processing (Coupé, Yger et al. 2008) is indeed a crucial step as it 

removes the variability of the central voxel with respect to its neighborhood and therefore 

allowing a better identification of similar RI features.  

In order to be fully invariant to rotation, patches should be spherical, however, we found that 

cubic patches significantly reduce computational burden while preserving the distance accuracy. 

A graphical example is provided in Figure 3.1, where the distance of a cubic patch containing a 

lesion and the identical patch subject to different rotations is measured. Indeed, RI provides 

identical distance measures for different rotations of the same patch, only varying due to 

sampling and/or interpolation error, while L2-norm varies greatly and favors a larger distance 

between patches. 

Another advantage of the RI distance measure is a reduced computational cost owing to 

considering only the central voxel and the mean of the patch, rather than all voxels in the patch. 

To further reduce computational cost we used multithread processing.  
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Figure 3.1: Comparison of L2-norm and RI distance. Different rotations are applied to the extracted patch i
(red) to obtain the patches j (blue). The L2-norm and the RI distance metric are then computed between these two 
patches.  

3.3.2. Datasets 

As mentioned by García-Lorenzo et al. (2013), simulated data sets, e.g. BrainWeb, enable a 

good proof of concept validation for image processing methods by providing ground truth 

images and lesion masks. However, BrainWeb images present multiple limitations: synthetic 

images are much easier to segment, only one phantom anatomy exists, and BrainWeb lacks 

contrasts such as FLAIR. Therefore, in this article we focus on two clinical datasets, an RRMS 

multi-center clinical dataset and the MICCAI 2008 MS Grand Challenge dataset (Styner, Lee et 

al. 2008). 
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Clinical MS dataset 

One clinical multi-center dataset of 108 RRMS patients [age=42.6±10.7, 72 females] was 

used to assess the proposed segmentation algorithm. The dataset contains T1W [TE=9-11 ms, 

TR=30-40 ms, flip angle=30°, in-plane resolution=0.977x0.977 mm2, slice thickness=3 mm], 

T2W [TE=66-100 ms, TR=3550-6610 ms, flip angle=90°, in-plane resolution=0.977x0.977 

mm2, slice thickness=3 mm], PD [TE=10-18 ms, TR=1867-3750 ms, flip angle=90°, in-plane 

resolution=0.977x0.977 mm2, slice thickness=3 mm] and FLAIR [TE=59-94 ms, TR=7977-9630 

ms, TI=1993-2500 ms, flip angle=90°, in-plane resolution=0.977x0.977 mm2, slice thickness=3 

mm] for all subjects. The MRI data were acquired at 32 sites on 1.5T scanners from different 

manufacturers: GE (n=19), Philips (n=3) and SIEMENS (n=10). We do not have access to 

demographic information for this dataset. 

This dataset also contains gold standard MS lesion segmentation labels that were first 

automatically segmented by a multi-spectral Bayesian classifier (Francis 2004) with the T1W, 

T2W and PD images and manually assessed and corrected by expert raters who underwent 

extensive training on similar MS patient MRI data. In a previous study (Caramanos, Francis et al. 

2012), seven raters with similar expertise, corrected the automatically generated lesion labels and 

were evaluated on a set of 10 MS patients with similar MRI protocols to those used in this study. 

Thanks to the initial automatic segmentation, this evaluation revealed an excellent inter-rater 

reliability relative to their trainer’s reference segmentations (DSC=93.5±1.5%) and intra-class 

correlations (ICC=99.0±0.5%). 

This RRMS cohort presents a large range of lesion loads (0.5-48.8 ml) and lesion counts (1-

156 lesions) which are depicted in Figure 3.2. In this gold standard delineation protocol, only 

lesions with at least three connected voxels (or a lesion volume of 0.009 ml) in the 3D volume 

are kept and considered in our experiments. The MRI data and the expert lesion masks were used 

to form the template library of our proposed algorithm, which was tested in a leave-one-out 

fashion. 
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Figure 3.2: Lesion count and load for each RRMS subject of the clinical cohort. Only lesions with more than 
three connected voxels (or a lesion volume > 0.009 ml) are considered. The lesion count represents the number of 
non-connected lesions in grey. The lesion load represents the total volume of lesion (ml) in black. We can note that 
the lesion load volume is coarsely proportional to the number of lesions. 

MS Grand Challenge dataset of MICCAI 2008 (MSGC) 

Our proposed RMNMS algorithm was further validated using the clinical data provided by 

the MS lesion segmentation challenge introduced at MICCAI 2008 (Styner, Lee et al. 2008). 

From the MS challenge website0F

1, 20 training MR datasets with ground truth manual lesion 

segmentations and 23 testing cases were provided from the Boston Children’s Hospital (CHB) 

and the University of North Carolina (UNC). While lesions masks for the 23 testing cases are not 

                                                

1 http://www.nitrc.org/projects/msseg/ 
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available for download, an automated system is available to evaluate the output of a given 

segmentation algorithm. 

We downloaded the co-registered T1W, T2W, FLAIR images for all 43 datasets as well as 

the ground truth lesion mask images for the 20 training datasets. All images were interpolated at 

0.5 mm3 isotropic resolution. We used the MSGC training set as a library to segment the MSGC 

T2W and FLAIR images.  

Pre-processing and training library  

All the images from both MS datasets (clinical RRMS and MSGC) were processed using the 

same pipeline, which does:  

a) NLM image denoising (Coupé, Yger et al. 2008). 

b) Intensity non-uniformity correction (N3) (Sled, Zijdenbos et al. 1998). 

c) Linear intensity normalization of the image histogram to our in-house MS templates 

that were created with an unbiased template creation algorithm (Fonov, Evans et al. 

2011) from the 108 T1W images of the RRMS patients (Figure 3.3). 

d) Linear registration of each T1W image to our MS template which is in the MNI152 

template space (Collins, Neelin et al. 1994). 

e) Rigid registration of the T2W and FLAIR to the T1W image, followed by resampling 

onto a 1x1x1mm grid in the MNI space. Note that for the purpose of the validation 

describe here, we used the T1W as the reference image for registration, but other 

modalities (T2W, FLAIR…) could be chosen if a T1W image is not present or 

required. 

f) Brain extraction (Eskildsen, Coupé et al. 2012).  

 

Contrary to some recent patch segmentation approaches (Bai, Shi et al. 2013), we did not 

apply non-linear registration to segment and create the library. This is due to the fact that non-
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linear registration and interpolation of MS lesions could alter the anatomical and intensity 

characteristics of MS lesions.  

After pre-processing, all of the images and their respective manual segmentation lesion maps 

are spatially aligned and their intensity distributions are normalized. The denoising step of the 

pipeline is crucial for the RI distance measure as the central voxel value of a patch is given as 

much weight as its surrounding patch average. The MS library, used for the segmentation, was 

built using the output images from the pre-processing stages d, e and f. To double the size of the 

library and increase the spatial distribution of MS lesions, left-right-mirrored copies of each 

dataset were added to the library (Figure 3.3).  

3.3.3. Evaluation metrics and experiments 

In the following Section, we describe the general evaluation strategy (2.3.1) and the different 

metrics (2.3.2) used to assess the proposed segmentation method. 

General evaluation strategy 

On the clinical RRMS dataset, we performed a leave-one-out cross-validation of the 

proposed RMNMS method. This leave-one-out cross-validation is achieved by first removing the 

subject and its respective left-right-mirrored images from the training library, then the multi-

modal pre-selection of the N closest subjects are selected and finally the segmentation is 

performed.  

We first evaluated the performance of RMNMS with respect to the search area radius of the 

patches in the library and the number of pre-selected training subjects (as described in 3.3.3).  

We also assessed RMNMS using i) different contrast combinations (T1W+FLAIR, 

T2W+T1W+FLAIR and T2W+FLAIR contrasts), ii) the original L2-norm distance measure 
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version of the NLM segmentation algorithm using T2W+FLAIR contrasts (“T2W+FLAIR 

NLM”), iii) without the left-right mirror addition to the training library, and iv) the 

LesionTOADS1F

2 approach proposed by Shiee et al. (2010). LesionTOADS is an iterative atlas 

based segmentation technique that uses a topological and a statistical atlas within the fuzzy C-

means algorithm. As it was originally developed to segment healthy brain tissues (Bazin and 

Pham 2008), the algorithm was adapted to use multi-contrast (T1W+FLAIR) and an extra lesion 

class within the WM class. LesionTOADS was chosen as it is publically available and obtained 

one the best results during the 2008 MSGC (Styner, Lee et al. 2008). Note, that the algorithm 

was used with its default parameters. 

Furthermore, we explored the effect of patients’ total lesion-load and lesion-by-lesion 

detection measures on the RMNMS method.  

Two experiments were done using the MSGC dataset. First, our algorithm was validated on 

the training set using leave-one-out cross-validation. Second, our segmentation results on the 

testing MSGC dataset were submitted online2F

3 and compared with other published techniques 

including i) LesionTOADS, ii) Souplet el al. (Souplet, Lebrun et al. 2008), winner of the MSGC 

at MICCAI 2008, iii) a recent supervised technique by Geremia et al. (2011) and iv) Tomas-

Fernandez et al. (2011), who hold the current best score on the MSGC website before our 

submission.  

For the online MSGC evaluation, we provided the lesion mask in native space after 

interpolation. The organizers normalized different metric results between 0 and 100, where 100 

is a perfect score and 90 is the typical score of an independent rater as described by Styner et al. 

(2008). The different metrics (volume difference “VolD”, surface distance “SurfD”, true positive 

rate “TPR” and false positive rate “FPR” (Table 3.1)) were measured by comparing the 

automatic segmentation to the manual segmentation of two experts (“CHB” and “UNC”).  

                                                

2 https://www.nitrc.org/projects/toads-cruise/ 
3 http://www.ia.unc.edu/MSseg/ 
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Evaluation metric  

The quantitative evaluation of our method is carried out using different metrics, summarized in 

Table 3.1 as suggested by Styner et al. (2008), and García et al. (2013).  

A high precision (PPV) and sensitivity (TPR) indicate that the automatically segmented lesions 

correspond well to the manually labeled lesion voxels. A low fall-out (FPR) indicates that the 

procedure does not identify voxels as lesion when they are not. We measure the absolute volume 

difference (VolD) of the manual versus the automatic segmentation (0% indicates a perfect 

lesion volume agreement) and the symmetric surface distance (SurfD) estimates the Euclidean 

distance between the surfaces of both segmentations at each voxel of their contours (0 mm 

indicates a perfect match of the surfaces). To estimate the SurfD values, we first estimate the 

distance transform from the binary segmentation using a 3D-Euclidean metric (Borgefors 1988) 

where the surface has a value of 0. Then, we look at the value of the binary segmentation and the 

corresponding transform distance value to estimate the distance to the surface. Usually, the true 

positive (TP), false positive (FP) and false negative (FN) rates are voxel-based; however, this 

measure can also be performed in a lesion-wise manner. 

Indeed, in some studies, detecting small lesions is more important than properly identifying 

their borders. In these comparisons, we use LPPV and LTPR, which are lesion-wise version of 

the PPV, and TPR metrics where lesion wise TP (LTP), FP (LFP) and FN (LFN) are measured at 

each distinct lesion (Table 3.1). In this case, instead of applying the metrics on a voxel-by-voxel 

basis, we measure the ability of the method to detect the presence of a lesion. Following the 

expert manual segmentation protocol, only lesions with at least 3 voxels (or 0.009 ml in the 

native image space) and an overlap of at least 1 voxel (or 0.003 ml) were considered 

(Karimaghaloo, Shah et al. 2012).  

Finally, we assess the behaviour of our method with regard to the patient’s lesion load, size 

and location. 
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Table 3.1: Nomenclature of the evaluation metrics. The evaluation metrics are listed in the table below and 
estimated using the following abbreviations: true positive (TP), lesion-wise rue positive (LTP), false positive (FP), 
lesion-wise false positive (LFP), false negative (FN), lesion-wise false negative (LFN), automatic lesion volume 
(Va), manual lesion volume (Vm,), am

ad  and ma
ad are the Euclidean distances between the automatic (a) and the 

manual (m) lesion surface voxels, and na and nm are the number of surface voxels for each segmentation. 

Name Abbr. Equation Units 

Dice similarity  
measure DSC 

2
2

TP
FP FN TP

×

+ + ×  
% 

true positive rate or sensitivity 

TPR 
TP

TP FN+
 % 

LTPR 
LTP

LTP LFN+  
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positive predictive value or precision 

PPV 
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3.4. Results 

The T1W, T2W, and FLAIR RRMS average templates created for the pre-processing stages 

of our method are presented in Figure 3.3 along with the spatial distribution of T2W lesions. 

While one can appreciate the anatomical definition of the different contrast templates, we can 
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still visually identify the hypo-intense intensity distribution around the lateral ventricles on the 

T2W and the corresponding hyper-intense intensity on the FLAIR. As expected, the T2W lesion 

spatial probability distribution is higher is the peri-ventricular region. However, the presence of 

lesions is diffuse, and our library of MS patients holds enough spatial variation to capture the 

spatial distribution of lesions.  

 

Figure 3.3: RRMS templates (T1W, T2W, FLAIR) and T2W lesion probability map overlay on the T1W RRMS 
template.  

3.4.1. Evaluation on the clinical RRMS 

dataset 

Impact of the search area radius 

The results for different search area radii on the different metrics (DSC, VolD, TPR, PPV, 

LTPR and LPPV) are presented in Figure 3.4 for RMNMS using T2W+FLAIR. In our 

experiments, we found that using a patch size of 3x3x3 provides the best compromise between 

accuracy and computational burden. With a 3x3x3 patch (i.e., radius of 1 voxels) and a pre-
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selection of 50 subjects, the DSC, TPR, PPV, LTPR and LPPV results plateau at their best 

results with a search area radius of 5 voxels (i.e., 11x11x11 search area). The volume difference 

(VolD) results are not as clear but the best results are achieved for any search area radius bigger 

than 2 voxels. Increasing the search area increases the chance of capturing a patch that is more 

similar to the considered patch, thus it is not surprising that better results are achieved with 

bigger search areas. However, increasing the search area needs to balance against computational 

cost where for instance, increasing the search area from 5 to 6 voxels increases the computational 

time by 15%. We found a search area radius of 5 voxels to be a good compromise (median 

results: DSC=60.1±16.4%, TPR=75.4±15.7%, PPV=55.0±20.1%, VolD=33.5±68.9%, 

LTPR=79.8±14.6% and LPPV=85.7±24.2%) and was chosen for the rest of the evaluation. 
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Figure 3.4: Impact of the search area radius (1-8 voxels) on DSC, VolD, TPR, PPV, LTPR and LPPV 

distributions. The boxes represent the lower and upper quartile with the median as the central black line. The 
whiskers extend to the most extreme data point. The experiment was conducted with a patch size radius of 1 voxel, 
and a pre-selection of 50 subjects. 

Impact of the number of pre-selected training subjects 

Pre-selecting more subjects from the template library can increase segmentation accuracy. In 

Figure 3.5, the results for the RMNMS method using T2W+FLAIR with different numbers of 

pre-selected training subjects on the different metrics (DSC, TPR, VolD, PPV, FPR and VolD) 

are presented. The experiment was performed with a patch radius of 2 (voxels), and a search area 



 

84 

 

radius of 5 voxels while varying the number of pre-selected training subjects from 10 to 80. As 

expected, increasing the number of subjects in the library improves the quality of the 

segmentation. Using 50 subjects provides a good comprise between segmentation results and 

computational cost (median results with 50 pre-selected subjects are the same as in section 

3.4.1.a, as we used the same parameters) and was chosen for the rest of the evaluation. 

 

Figure 3.5: Impact of the number of pre-selected training subjects on DSC, VolD, TPR, PPV, LTPR and LPPV 
distributions. The experiment was conducted with a patch radius of 1 voxel, and a search area radius of 5 voxels on 
the 108 RRMS subjects. 
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Impact of the methods and modalities  

Here, we compare RMNMS using T1W+FLAIR, T2W+T1W+FLAIR, T2W+FLAIR with 

and without the mirrored library images as well as the previous MNLM technique using 

T2W+FLAIR images, and LesionTOADS using T1W+FLAIR images. RMNMS with 

T2W+FLAIR was selected as the baseline for comparison and the similarity metric results are 

summarized in Figure 3.6.  

The main result made evident by Figure 3.6 is that RMNMS T2W+FLAIR provides a higher 

LTPR (79.8±14.6%) than T2W+FLAIR MNLM (67.3±18.6%). Furthermore, T2W+FLAIR 

RMNMS consistently obtains the highest results (DSC, VolD, PPV, TPR, LTPR and LPPV) 

when compared to the different modalities used with RMNMS but also when compared with the 

unsupervised LesionTOADS approach.  

Using T2W+FLAIR images provides overall better segmentation results than the other 

modality combination and the addition of the left-right mirrored images to the training set 

improves consistently the segmentation results of T2+FLAIR RMNMS.  

The computational time for RMNMS using 16 threads on an Intel Core i7-950 processor at 

3.06 GHz was around 40 min per subject. Our method with these settings is about three times 

faster (p-value <0.01) than similar MNLM patch-based methods with the same parameter 

settings and the computation time for the methods using the entire training set are provided in 

Table 3.2. 
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Figure 3.6: DSC, VolD, TPR, PPV, LTPR and LPPV distributions for different NLM MS lesion segmentation 
techniques (MNLM and RMNMS), different image modalities (T2W+FLAIR, T1W+FLAIR and 
T2W+T1W+FLAIR) as well as T2W+FLAIR RMNMS with (T2W+FLAIR RMNMS), without the left-right 
mirrored of each dataset (T2W+FLAIR+noMIRLIB RMNMS) and T1W+FLAIR LesionTOADS. The experiment 
was conducted on the 108 RRMS subjects, and for the NLM approaches a patch radius of 1 voxel, and a search area 
radius of 5 voxels were chosen. 
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Table 3.2: Computational time results on the RRMS clinical dataset. The proposed method RMNMS, with 
T2W+FLAIR images, is compared to the original NLM segmentation approach with multi-contrast (MNLM) and a 
T1W+FLAIR and T2W+T1W+FLAIR version of RMNMS (T1W+FLAIR and T2W+T1W+FLAIR RMNMS). The 
best measures are shown in bold and the significant difference when comparing with T2W+FLAIR RMNMS is 
shown in red. The experiment was conducted with a patch radius of 1 voxel, a search area radius of 5 voxels, a pre-
selection of 50 subjects for all the methods. 

Method 
Computation time (min) 

Mean Std p-value 

T2W+FLAIR 
MNLM 111.88 ±11.76 <0.01 

T1W+FLAIR 
RMNMS 42.15 ±4.73 0.23 

T2W+T1W+FLAIR 
RMNMS 72.15 ±5.13 <0.01 

T2W+FLAIR 
RMNMS 41.81 ±4.52 - 

 

Impact of lesion load and sizes 

The segmentation results for patients with different lesion loads are shown in Figure 3.7. 

Subjects with larger lesion loads have better results with lower variability. However, we found 

that the mean TPR of the method is less affected by the lesion load than the other metrics (i.e., 

DSC and PPV). Note that DSC is sensitive to object size and smaller DSC is expected for 

smaller lesions. The linear regression of the manual lesion volume and RMNMS lesion volume 

shows good correlation with a R2 of 0.91, a slope of 1.01 and an intercept of 1.5 ml.  

Figure 3.8 shows the ability for the RMNMS segmentation to capture the presence of a lesion 

for different lesion size groups (<0.05, 0.05-0.10 and bigger than 0.10 ml). Sixty percent of all 

manually segmented lesions are smaller than 0.05ml and not surprisingly, it is easier to capture 

the presence of bigger lesions as demonstrated by the LTPR and LPPV (median results: LTPR= 
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100.0±16.2% and LPPV=100±17.6%). For the lesions smaller than 0.05ml, the results are not as 

good (median results: LTPR= 62.5±20.9% and LPPV=71.7±26.2%).  

 

Figure 3.7: Impact of the lesion load on DSC, manual lesion load linear correlation with RMNMS, TPR, PPV, 
LTPR and LPPV. The experiment was conducted with a patch radius of 2 voxels, a search area radius of 5 voxels 
and a pre-selection of 50 training subjects on the 108 RRMS subjects (represented by colored dots on the graph). 
The blue line represents a non-parametric fitting using a nearest neighbour approach with a locally weighted 
regression for DSC, TPR and PPV and a linear fitting for the linear regression of the manual lesion load and 
RMNMS lesion volume. The darker grey shading represents the 95% confidence and for the linear correlation, the 
slope, the intercept and the residual error (R2) are provided on the graph.  
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Figure 3.8: Expert segmentation lesion count, LTPR and LPPV per lesion size groups. The plot on the left 

shows the manually outline lesion count per each lesion volume group (<0.05, 0.05-0.10, > 0.10 ml), averaged 
across all subjects. The LTPR and LPPV measurement experiments were conducted with a patch radius of 1 voxel, a 
search area radius of 5 voxels and a pre-selection of 50 training subjects on the 108 RRMS subjects.  

Impact of lesion spatial location and examples 

In this section we present the RMNMS segmentation results with images to qualitatively 

describe its spatial behavior.  

In Figure 3.9, the expert and the automatic RMNMS probability maps of the lesion 

segmentation show similar frequency and spatial distribution. While the TP and the FP follow 

the spatial prevalence of the peri-ventricular region, the spatial distribution of the FN is more 

uniform suggesting non-systematic segmentation errors. 

Figure 3.10 shows images 3 RRMS patients with the highest, median and smallest lesion load 

with their respective RMNMS segmentation TP, FP and FN. One can appreciate the ability of the 

method to capture the presence of most of the lesion regardless of the amount and size of the 

subject’s lesions.  
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Figure 3.9: Expert and RMNMS, TP, FP and FN lesion segmentation probability maps for the 108 RRMS 

patients. All the maps are displayed within the same range and overlaid on the RRMS template T1W.  
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Figure 3.10: Segmentation results for 3 RRMS cases. a) the largest (48.8 ml), b) median (7.9 ml and c) the 

smallest (0.5 ml) lesion load of the cohort. The figure shows axial slices (“z” is the z-coordinate in mm in the MNI 
space) for T2W, FLAIR and T1W combined with the automatic RMNMS segmentation (“T1W+RMNMS”) and 3D 
rendering of the segmentations (orientation is defined such as F=frontal, P=posterior, R= surgical right and L= 
surgical left). The overlapping voxels (TP) with the manual segmentation are represented in green, while the false 
positives (FP) are yellow and the false negatives (FN) are red. The green circle highlights the TP of the unique 
lesion for subject “c”. The experiment was conducted with a patch radius of 1 voxel, a search area radius of 5 voxels 
and a pre-selection of 50 training subjects on the 108 RRMS subjects. 
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3.4.2. MSGC results 

Images from the MSGC were pre-processed like the RRMS dataset. For segmentation, the 

training library consisted only of the MSGC training dataset. First, we present our leave-one-out 

cross validation results on the MSGC training set and then we compare our results on the testing 

set with other methods using an objective web-based system (Styner, Lee et al. 2008).  

MSGC training dataset  

The 20 MSGC training subjects RMNMS segmentations were evaluated in a leave-one-out 

cross-validation using ((20-1)x2=38 templates (including the mirrored images). We chose to use 

a bigger search area radius to compensate for the smaller number of training subject than was 

available in the RRMS validation. In order to capture the presence of lesions in a greater search 

area in the library the following parameters were used: patch size radius=3 and search area 

radius=7. It is interesting to note, that the DSC (43.8±16.03) results of RMNMS on this dataset 

are significantly smaller than for the RRMS dataset (62.3±14.6%). Similar comments can be 

made for the TPR of 43.9±19.1% and the PPV of 48.7±17.1%.  

Given the decreased accuracy of RMNMS with the MSGC dataset we decided to compare 

the two manual gold standard labels using the same metrics. Comparing the two gold standard 

manual labels yields a median DSC of 23.7±13.5%, a TPR of 37.1±16.4% and a PPV of 

20.2±19.5% confirming the low agreement between the raters.  

MSGC testing dataset 

The segmentation of the MSGC testing dataset was performed using the whole cohort of 

training subjects in the template library (20x2=40) with the same parameters as those used for 

the training experiment except for the pre-selection number that was set to 40. Our segmentation 

results were interpolated back to their original space and then uploaded to the MSGC website, 

where an objective independent automatic evaluation was performed. The MSGC provides a 
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results archive, allowing us to compare the performance of our method with other groups. The 

results are summarized in Table 3.3.  

At the time of writing, RMNMS held the best result with an overall average summary score 

of 86.1 (note that 90 corresponds to a segmentation accuracy reaching human expert inter-rater 

variability). While RMNMS holds the best results for VolD and SurfD, this advantage is not 

statistically significant compared to Souplet et al. (2008), Geremia et al. (2011) and 

LesionTOADS; however RMNMS has a significantly lower FPR when compared to these 

methods.  
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Table 3.3: VolD, SurfD, TPR and FPR results on the MSGC testing dataset. Our method is compared to 3 
methods. The best measures are in bold and the significant differences when comparing with RMNMS are in red for 
each rater (CHB and UNC). 

Method Rater 

VolD (%) SurfD (mm) TPR (%) FPR (%) Score 

Mean Std 
p-

value 
Mean Std 

p-

value 
Mean Std 

p-

value 
Mean Std 

p-

value 
 

Lesion 

TOADS 

CHB 85.2 123.4 0.64 8.2 10.8 0.47 55.8 24.0 0.64 70.5 22.8 <0.01 

79.96 

UNC 63.7 125.7 0.48 7.2 9.1 0.32 49.0 24.5 0.67 74.9 23.2 <0.01 

(Geremia, 

Clatz et al. 

2011) 

CHB 52.4 29.1 0.89 5.67 9.72 0.96 59.0 19.9 0.05 71.5 14.9 <0.01 

82.07 

UNC 45.0 33.0 0.89 5.67 6.82 0.89 51.2 20.4 0.23 76.7 12.9 <0.01 

(Souplet, 

Lebrun et 

al. 2008) 

CHB 86.4 107.3 0.10 8.40 11.1 0.13 58.2 23.5 0.41 70.6 18.1 <0.01 

80.00 

UNC 57.9 30.8 0.14 7.54 8.43 0.22 49.1 16.1 0.66 76.3 17.4 <0.01 

(Tomas-

Fernandez 

and 

Warfield 

2011) 

CHB 53.4 56.0 0.86 8.29 7.63 0.03 51.8 19.7 0.83 45.1 22.7 0.26 

84.46 

UNC 37.8 28.3 0.34 7.03 5.75 0.20 42.0 16.0 0.19 44.1 23.0 0.87 

RMNMS 

CHB 51.3 30.4 - 5.49 5.65 - 52.7 19.6 - 41.96 23.1 - 

86.11 

UNC 46.3 25.7 - 5.50 4.22 - 47.0 19.6 - 43.49 20.6 - 
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3.5. Discussion  

In this article, we proposed a new method to detect MS lesions using a training library 

containing T2W and FLAIR images along with manual T2w lesion masks. Our adaptation of the 

increasingly popular NLM segmentation method to MS lesions identification with a new multi-

contrast and RI distance measure has proven to be highly competitive in our internal validation 

and in an independent comparison. On a large clinical dataset of 108 RRMS patient, the best 

compromise between sensitivity, specificity and computation time using leave-one-out cross-

validation was obtained with a patch radius of 1 voxel, a search area radius of 5 voxels and a pre-

selection of 50 subjects (median results: DSC=60.1±16.4%, TPR=75.4±15.7%, 

PPV=55.0±20.1%, VolD=33.5±68.9%, LTPR=79.8±14.6% and LPPV=85.7±24.2%). Given the 

large RRMS cohort size and variability (e.g. lesion load, age, sex, MRI protocols and scanner 

brand, etc.), these results rank among the best in the MS segmentation literature (Lladó, Oliver et 

al. 2012). Furthermore, when compared to the state-of-the-art methods with the publicly 

available MSGC dataset used during the 2008 MICCAI challenge, the RMNMS yields highly 

competitive segmentation accuracy (best score, 86.11) and produced segmentations that are 

comparable to the inter-rater variability.  

Our voxel-wise analysis showed promising result with respect to the ability to automatically 

define the volume and the boundary of the MS lesions. Moreover, our ability to segment MS 

lesions is relatively independent of the patient’s lesion load and lesion location. We also 

investigated the ability of RMNMS to detect the presence of lesions as lesion-wise measures are 

often more clinically relevant. For example, lesion count is often used for diagnosis and the 

evaluation of treatment effect. In this aspect, RMNMS shows a great ability to detect the 

presence of lesions; it detects almost all lesions bigger than 0.05 ml and 62.5% of lesions smaller 

than 0.05ml. Furthermore, due to the ability of RMNMS to explore a large training set cohort 

with a large search radius, the probability of detecting MS lesions inside anatomical regions is 

still high within regions of infrequent MS lesions occurrence (i.e., non peri-ventricular lesions). 
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In both sets of experiments, results were obtained from a multi-center study, which highlights 

the robustness of our method in the face of inter-site variability. Whereas many methods require 

at least 3 MRI contrasts (T1W, T2W, PD or FLAIR) (Souplet, Lebrun et al. 2008, Geremia, 

Clatz et al. 2011), and others require even-more contrasts (FLAIR, diffusion tensor imaging 

fractional anisotropy and mean diffusivity...) (Morra, Tu et al. 2008), we use only two (T2W and 

FLAIR). This dual-contrast method presents multiple advantages. First, reducing the MRI 

acquisition time by reducing the number of contrasts can decrease the risk of corruption due to 

image artifacts, it reduces the financial cost and increases patient comfort. When compared to 3-

contrast RMNMS (T2W+T1W+FLAIR), the dual-contrast RMNMS with T2W+FLAIR provides 

better results with shorter computational time.  

NLM segmentation based on a single contrast image shows higher DSC results for the 

hippocampus (median DSC=88.4%) (Coupé, Manjón et al. 2011), brain (DSC=98.3%) 

(Eskildsen, Coupé et al. 2012), lateral ventricles (median DSC=96.1%) (Fonov, Coupé et al. 

2012) and other structures of the brain (Rousseau, Habas et al. 2011). However, DSC is not an 

optimal similarity metric for small structure segmentation (Rohlfing, Brandt et al. 2004) and 

because of spatial scattering, anatomical variability and intensity variations, MS lesion 

segmentation is a much more complex problem. Indeed, our implementation of the standard 

NLM segmentation with multi-contrast algorithm (MNLM) only achieves a median 

LTPR=67.3%. Where, the multi-contrast RMNMS (T2W+FLAIR) significantly improves the 

detection of lesions (LTPR=79.8%) and significantly decreases the computational time. This 

demonstrates the importance of considering not only the voxel-by-voxel intensity similarity but 

also the importance of patch-based RI methods for the problem of lesion segmentation. Because 

of the important reduction in computational time, RMNMS enables the exploration of each 

training subject with a much wider search radius, which allows for capturing smaller lesions that 

can even be located in regions where there is low probability of lesion presence in the library. To 

further increase the presence of similar image in the training library and thus the presence of 

similar lesions, we used left-right mirrored images and showed the positive impact on the 

RMNMS segmentation results. 
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The NLM segmentation technique as applied to the anatomical structures mentioned above 

require a smaller set of pre-selected training subjects (20 subjects for hippocampus, lateral 

ventricles, brain) for optimal results while for MS lesions, RMNMS requires more than 40 

training subjects to plateau. This difference can be easily explained by the characteristics of the 

structure to be segmented where spatial distribution, shape and size of MS lesions are not 

consistent and thus require a larger number of training subjects to capture this variability. Yet 

another advantage of the subject training pre-selection in the case of altered images is the 

selection of the “closest” subjects from the training library. Indeed, despite the presence of 

artifacts and abnormal intensity non-uniformity in the MSGC dataset (García-Lorenzo, Prima et 

al. 2008), RMNMS has proven to be highly accurate in part due to the pre-selection of the most 

representative training subjects.  

The comparison of MS lesion segmentation algorithms is a difficult task as described by 

García et al. (2013) for multiple raisons: lack of publicly available datasets/methods, differing 

MRI contrasts, optimal parameters, and inter-rater segmentation variability. Indeed, variation of 

MS lesion manually defined on the same subject by different experts has been reported to vary 

greatly by Zijdenbos et al. (2002). The MSGC dataset (Styner, Lee et al. 2008) also shows 

significant inter-rater variability with VolD=68% and SurfD=4.85 mm. More importantly, the 

MSGC training set has an inter-rater reliability of 25% (DSC). One assumes that the MSGC 

testing set is similar. Despite these criticisms, the organizers of the MSGC are to be 

congratulated as the MSGC dataset is the first publicly available MS lesion dataset and 

independent platform for segmentation algorithm validation and comparison. That being said, the 

MSGC results need to be interpreted carefully with certain limitations in mind. First, the low 

agreement between the raters should be used as a reference. This can be done by mapping a 25% 

DSC to a 90% score to represent inter-rater variability when assessing methods. This poor inter-

rater agreement may be due to the quality of the images and the presence of multiple artifacts as 

mentioned by García et al. (2008). The high inter-rater variability for the gold standard MSGC 

labels results in an upper bound on the quality metrics, as it is not possible to simultaneously 

agree with multiple manual raters that do not agree. For these reasons it is not surprising that 
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RMNMS obtained lower similarity measures on the MSGC than on the clinical RRMS dataset. 

Second, the MSGC provides pre-processed data (registration, interpolation…), which is not 

optimal for the different pre-processing steps specific to the different segmentation algorithms. 

Finally, the on-line validation metrics are only voxel-wise measures, but the MS segmentation 

problem cannot be only seen as a voxel-wise or volume difference problem. MS lesion 

segmentation is also a detection problem especially in the context of clinical studies where a 

method should capture the presence of all individual lesions. This is not reflected in the global 

DSC, VolD and SurfD measurements. 

Despite these limitations, we compared our approach with state-of-art supervised and 

unsupervised methods (n>45) by submitting our segmentation results of the 23 MS test subjects 

to the MSGC website (Styner, Lee et al. 2008). While our RMNMS approach attained the first 

position at the time of writing with a score of 86.11, this result must be considered with the 

limitations described above. We feel that our evaluation with the multi-site clinical dataset is 

much more representative of quality and robustness of the RMNMS technique. We also 

compared our approach on our RRMS dataset to the popular and publicly available 

LesionTOADS approach (Shiee, Bazin et al. 2010). Compared to RMNMS, LesionTOADS is a 

topology preserving approach guided by probabilistic and topologic atlases. This approach was 

developed to segment T1W and FLAIR images and as any unsupervised approach it is less 

flexible to image variability that is not described by the underlying models. These differences 

could explain the better results obtained by RMNMS on both MS datasets. 

Future work will focus on improving segmentation results for smaller lesions, further 

decrease the computational time with more advanced patch matching strategy (Ta, Giraud et al. 

2014), investigate the performance and the pre-selection preferences with respect to scanner 

machine, site, gender and other clinical variables. Finally, we plan to make the RMNMS 

algorithm available online (http://www.bic.mni.mcgill.ca/RMNMS). 
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3.6. Conclusion 

We have proposed a new method for segmenting MS lesions. Our method, RMNMS, is a 

multi-contrast and rotation-invariant distance adaptation of the non-local means operator. 

RMNMS presents highly competitive results compared to state-of-the-art supervised and 

unsupervised methods and provides segmentation quality near inter-rater variability for MS 

lesion segmentation. RMNMS, with multi-contrast and rotation-invariant patch distance, 

demonstrates that the non-local approach is able to detect structures that vary in size, shape and 

location such as MS lesions.  
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Preface 

In medical imaging, the presence of MS lesions can affect the accuracy of automated MRI 

processing tools such as registration, segmentation and cortical extraction, and thus confound the 

resulting analysis. In the past for registration, lesions were simply masked away and ignored. 

Here, we propose a method to replace lesion regions with normal appearing tissue, using a non-

local mean technique. This new approach exploits the redundancy of the image to detect the most 

plausible healthy patches to synthesize appearing healthy tissue. Importantly, this inpainting 

technique does not require any pre-processing steps apart from the delineation of the region to be 

filled. Ultimately, the detection of pathology proposed in Chapter 3 will be used to estimate the 

location of the region to inpaint. 

This chapter was derived from an earlier conference proceedings published at the 2013 

endMS conference (Guizard, Nakamura et al. 2013) and a full version was published in 

(Guizard, Nakamura et al. 2015).  
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4.1. Abstract 

In medical imaging, multiple sclerosis (MS) lesions can lead to confounding effects in 

automatic morphometric processing tools such as registration, segmentation and cortical 

extraction and subsequently alter individual longitudinal measurements. Multiple magnetic 

resonance imaging (MRI) inpainting techniques have been proposed to decrease the impact of 

MS lesions in medical image processing, however, most of these methods make the assumption 

that lesions only affect white matter. Here, we propose a method to fill lesion regions using the 

patch-based non-local mean (NLM) strategy. The method consists of a hierarchical concentric 

filling strategy after identification of the lesion region. The lesion is filled iteratively, based on 

the surrounding tissue intensity, using an onion peel strategy. This concentric technique presents 

the advantage of preserving the local information and therefore the continuity of the anatomy and 

does not require identification of any a priori normal brain tissues. The method is first evaluated 

on 20 healthy subjects with simulated artificial MS lesions where we assessed our technique by 

measuring the peak signal-to-noise ratio (PSNR) of the images with inpainted lesion and the 

original healthy images. Second, in order to assess the impact of lesion filling on longitudinal 

image analyses, we performed a power analysis with sample size estimation to evaluate brain 

atrophy and ventricular growth in patients with MS. The method was compared to two different 

publicly available methods (FSL lesion fill and Lesion LEAP) and a more classic method, which 
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fills the region with intensities similar to that of the surrounding healthy white matter tissue or 

mask the lesions. The proposed method was shown to exceed the other methods in reproducing 

the fidelity of healthy subject images where the lesions were inpainted. The method also 

improved the power to detect brain atrophy or ventricular growth by decreasing the sample size 

by 25% in the presence of MS lesions.   

4.2. Introduction 

Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous 

system (CNS) and presents different clinical variants but it usually starts with a relapsing 

remitting phase (RRMS). The underlying neuronal pathology of a relapse consists of attacks of 

the myelin and creates focal inflammation leading to lesions in both white matter (WM) and grey 

matter (GM) and can ultimately lead to demyelination, gliosis and axonal loss. Quantification of 

MS lesions, also known as plaques, is often used in clinical studies as a marker for disease 

burden because they are visible on conventional magnetic resonance imaging (MRI) (Fazekas, 

Barkhof et al. 1999). In addition, MRI enables the exploration of the morphological differences. 

In MS, structural segmentation (i.e. tissue classification (Zijdenbos, Forghani et al. 1998)) and 

voxel-wise analysis (i.e. voxel-based morphometry (VBM) (Prinster, Quarantelli et al. 2006, 

Lansley, Mataix-Cols et al. 2013) or deformation based-morphometry (DBM) (Tao, Datta et al. 

2009)) have been used to measure these differences. These tools have been used to assess 

longitudinal changes of anatomical structures (Nakamura, Guizard et al. 2014) or normal 

appearing brain tissue (NABT) (Sanfilipo, Benedict et al. 2006). However, MS lesions can swell, 

shrink and disappear over weeks or months depending on the pathological activity and evolution 

of the disease (Rovira, Auger et al. 2013). These longitudinal changes affect their appearance on 

MRI and thus can potentially affect image processing tools such as registration (Brett 2001, 

Meier and Fisher 2005) and tissue classification (Nakamura and Fisher 2009, Chard, Jackson et 

al. 2010), and may lead to longitudinal inconsistencies.  
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In order to remove the variability due to MS lesions, various approaches have been proposed. 

Depending on the application and the final objective, after identification of the region of interest 

(ROI), it is possible either to remove (“Mask-out”) or to replace these voxels with potential 

NABT intensity values. Masking-out MS lesion has shown some limitations in the context of 

longitudinal brain atrophy measurements (Battaglini, Jenkinson et al. 2012). Lesion filling or 

inpainting strategies consist in replacing or synthesizing voxel values within the region of the 

MS lesion by representative NABT values. A variety of approaches have been proposed in the 

literature. Sdika and Pelletier (2009) described three different inpainting strategies: basic, local 

white matter (LWM) and global white matter inpainting. Basic inpainting was inspired from 

Telea et al. (2004) and consists in propagating the local average of the outer region towards the 

inner region of the lesion mask equivalent to an onion peel strategy. Local white matter 

inpainting uses a prior tissue classification of the NABT to fill the lesion with the local normal 

appearing WM (NAWM) intensity average. Global white matter inpainting fills the lesion region 

with the global intensity average of the NAWM obtained from the tissue classification. Chard et 

al. (2010) proposed LEAP (LEsion Automated Preprocessing) which also uses NABT 

classification but extracts the NAWM histogram properties to obtain its intensity peak and noise 

properties to fill the lesion region. Later, Battagliani et al. (2012) proposed an approach 

implemented in FSL4 which fills the lesion with random intensity values from the surrounding 

NABT distribution of WM and partial WM volumes. These methods focused on reducing the 

impact of white matter lesions and have been shown to improve results for cortical GM atrophy 

measurement (Ceccarelli, Jackson et al. 2012, Magon, Gaetano et al. 2014, Popescu, Ran et al. 

2014) as well as for white matter atrophy estimation (Chard, Jackson et al. 2010). However, 

methods such as basic inpainting use the surrounding voxels to fill and propagate intensities and 

thus can potentially fill the lesion regions with undesired intensities. The main limitation of these 

methods is their assumption that only WM should contain lesions. Furthermore, these methods 

                                                

4 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki 
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rely on tissue classification which can be challenging in presence of MS (Derakhshan, 

Caramanos et al. 2010) due to the underlying neuropathology affecting the NAWM intensity 

(Vrenken, Geurts et al. 2006).  

In the computer vision community, the field of image inpainting has the goal of producing a 

plausible image after the removal of a region defined by an operator. Inpainting is often used to 

restore image deterioration (e.g. scratches, dust speckles…), remove or add elements (e.g. text 

elements, publicities, persons…) from the remaining information of the image. The main 

inpainting methods in the literature may be categorized as being sparsity-based, variational, and 

patch-based. Bertalmio et al. (2014) provides an interesting review of the inpainting literature. 

Here we describe a patch-based approach inspired from methods that were initially proposed for 

texture synthesis. During the last few decades, several paradigms have been used in computer 

vision. First, the method described in Efros et al. (1999) has proven to be effective, using an 

“onion-peel” strategy to fill the region from its outer surface to its inner core. Their method 

compares the available patches (small regions of the image) and fills the considered “empty” 

central voxel of a patch (a small nxn area, where typically n=5..15) with the central voxel 

intensity value of the most similar patch before moving to the next voxel to be filled. Later, 

Criminisi et al. (2004) proposed an exemplar-based approach which fills the whole patch instead 

of the central voxel for faster processing, while prioritizing the filling of edges first. Despite 

impressive visual results, several limitations remain for these inpainting algorithms. The main 

limitation is that by using only the best match sample chosen could be corrupted or not a perfect 

match. More recently, the Non-Local Mean (NLM) method, used to compare patch similarities 

initially proposed for image denoising (Buades, Coll et al. 2005), takes advantage of the image 

redundancy by using a large number of patches instead of the closest one and has been applied to 

2D image inpainting (Wong and Orchard 2008). 

Although using patch-based inpainting strategies has shown promising results in computer 

vision in natural and artificial scenes, it has yet not been fully exploited in medical imaging. This 

approach presents the enormous advantage of not requiring any tissue segmentation a priori, and 

allowing rough larger lesion delineations. Another advantage of not requiring tissue 
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classification is that the method does not depend on specific image contrasts. Indeed, our 

inpainting approach can be applied to any types of MRI acquisition protocols. Inspired by the 

computer vision inpainting techniques, we used an exemplar-based NLM inpainting strategy in 

the context of MS lesion filling in MRI (Guizard, Nakamura et al. 2013). The proposed method 

consists of a concentric filling strategy. After identification of the lesion region, the lesion is 

filled using an onion peel strategy where concentric layer’s voxels of the lesion are successively 

replaced by the weighted average of the surrounding normal patches (detailed below). Inspired 

by our initial NLM lesion inpainting technique (Guizard, Nakamura et al. 2013), Prados et al. 

(2014) applied a similar approach with a different initialization strategy (they used the original 

voxel values) and smoothed the NLM result. Here, we propose to improve the initialization and 

the convergence using a hierarchical framework, which synthesizes the image intensity 

variability in the lesion mask.  

In this article, we provide a thorough validation using simulated lesions on healthy subjects 

where we assessed the similarity of the inpainted lesion images and the original images using 

peak signal noise ratio (PSNR). We also performed power analysis on longitudinal MS patient 

data to detect changes over time. We compare our proposed method to three different publicly 

available MS inpainting methods: LWMI (Sdika and Pelletier 2009), LEAP (Chard, Jackson et 

al. 2010) and FSL lesion filling (Battaglini, Giorgio et al. 2009).  

4.3. Methods 

In the following section we first describe the NLM inpainting, the filling strategy and the 

proposed hierarchical approach. Here, given an image I and the lesion ROI (L), we define the 

inpainted image  at the voxel location i as to obtain the final image I*, such as: 
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  Equation 4.1 
 

4.3.1. NLM inpainting 

The propose NLM inpainting approach takes advantage of image redundancy to locally 

average similar realizations of the image. Indeed, the idea of the NLM was initially proposed for 

image denoising (Buades, Coll et al. 2005) to reduce the noise of the image by averaging the 

voxels of patches that would have the same intensity in the noise-free image. Similarly to 

denoising, our inpainting strategy exploits the redundancy of the image to fill the lesion.  

The patch distance estimator (dist) used for denoising is here adapted for inpainting by 

comparing the patch P(I(i)) centered on i (in red in Figure 4.1) with the patch P(I(j)) centered on 

j (in green in Figure 4.1) within a certain search area (Ω): 

 
Equation 4.2 

where the voxel i belongs to the considered voxel of the lesion mask layer L* (in yellow Figure 

4.1). 

This distance is then used to computed the weighted function, w(i,j), designed to attribute a 

smaller weight to greater distance measures of the corresponding patches P(I(i)) and P(I(j)),  

such as:  
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Equation 4.3 

where h2 is a chosen smoothing parameter, discussed in the following section. 

Once the corresponding distance with i of every voxel j belonging to Ω is estimated, the ROI, 

L*(x), is filled with the weighted average:  

 
 

Equation 4.4 

4.3.2. Filling strategy 

The filling strategy is important in image inpainting in order to preserve continuity of edges 

and visual consistency present in the true image. The proposed NLM inpainting strategy consists 

in a hierarchical inpainting of concentric layers, iterated for different smoothing parameters.  

Concentric filling: The concentric technique presents the advantage of propagating the local 

information and therefore the continuity of the anatomy (Efros and Leung 1999).  

Cubic patches of voxels from the outermost layer to be filled are compared to patches from 

the surrounding voxels not in the lesion mask L. After filling a layer of L, this process is repeated 

on the next interior layer of the new lesion mask, L*, until reaching its core. Only voxels outside 

of L*, thus including the already inpainted voxels, are used during the patch distance estimation.  

Hierarchical inpainting: In order to optimize the performance of the NLM inpainting and to 

reduce the ambiguity in the case of large lesion (Liu and Caselles 2013), we embed the filling 

strategy within a hierarchical multi-resolution framework.  
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Starting from the downsampled resolution and the outside layer of the lesion mask, the 

process fills the next interior layer until reaching the center of the lesion mask before moving to 

the next hierarchical level where this process is repeated. The original image and its lesion mask 

are interpolated at different resolution scales (k) using respectively tri-linear and nearest neighbor 

interpolations. Starting from the lowest resolution level, the inpainting results of the innermost 

concentric layer are then used to initialize the following level. The inpainted regions of lower k 

levels are interpolated using tri-linear interpolation to the k-1 level to replace the voxels filled at 

the previous iteration.  

Smoothing parameter (h2): Within the NLM approaches, h2 is critical to attribute weight to 

the most similar patches. For our inpainting problem, decreasing h2 attributes less weight to less 

similar patches while a bigger h2 value tends to provide smoother inpainting results. Therefore, 

for each inpainted voxel at each hierarchical level and each concentric layer, we iterate the NLM 

inpainting with the following successive h2 values [0.9, 0.7, 0.5, 0.3, 0.1]. Starting the inpainting 

of the considered voxel with a big h2, we initiate the voxel filling with a smooth value with 

respect to the neighborhood (Ω). Then, successively decreasing h2 to 0.1, is equivalent to 

searching for the most similar patch (i.e., the minimum intensity distance) in Ω, thus 

synthesizing the finer image textural details. 

The concentric and hierarchical inpainting processes are graphically illustrated respectively 

by the “Layer” and the “Level” axes in Figure 4.1. In the following experiments, we used three 

(k=3) isotropic resolution levels (4, 2 and 1mm) with similar patch sizes (9x9x9 voxels). 
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Figure 4.1: NLM lesion inpainting strategy. The inpainting process starts with the lesion mask (L) of the 

original image (I) in the downsampled space k to obtain the inpainted image of this level. Then, the inpainted region 
is upsampled into the image of the next hierarchical level. The inpainting itself consists in finding the most similar 
patches (P(j), in green) in the “non-lesion” region with the considered patch P(i). All voxels in white are not 
considered during the patch distance estimation. The concentric filling is described by the boundary of the current 
mask (L* in yellow) shrinking by one voxel at the next “Layer”. The original lesion mask L is reinitiated at the 
beginning of each hierarchical “Level”. 

4.4. Experiments 

In the following section we describe 1) the data used in our experiments, 2) the simulated MS 

lesion data such that the original MRI intensity information can be used as a ground truth, 3) the 

longitudinal power analysis to detect brain atrophy and 4) the different methods evaluated.  
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4.4.1. Data 

The Montreal Neurological Institute research ethics committee gave approval for this study 

and all subjects gave informed consent. To evaluate the proposed algorithm, two neuroimaging 

datasets were used anonymously:  

• From a multi-site clinical study with 67 relapsing-remitting MS patients (RRMS, 

mean age 37.5 y, SD 10.0 y). Each patient underwent an MRI at two time points, 

baseline (m00) and 12 month (m12), that included sagittal T1W [TE=9-11 ms, 

TR=30-40 ms, flip angle=30°, in-plane resolution=0.977x0.977 mm2, slice 

thickness=1.5 mm], T2W [TE=65-104 ms, TR=3666-8585 ms, flip angle=90°, in-

plane resolution=0.977x0.977 mm2, slice thickness=3 mm] and PD [TE=10-18 ms, 

TR=2200-3800 ms, flip angle=90°, in-plane resolution=0.977x0.977 mm2, slice 

thickness=3 mm] images.  The MRI data were acquired on 1.5T scanners from 

different manufacturers: GE (n=20), Philips (n=18) and Siemens (n=29).  

• From this RRMS database, we randomly selected T1W images of twenty MS patients 

to simulate realistic MS lesions on BrainWeb simulation MRIs 

(http://brainweb.bic.mni.mcgill.ca/brainweb/) (Collins, Zijdenbos et al. 1998) from 20 

healthy subjects  (Aubert-Broche, Griffin et al. 2006). 

Although the application of our inpainting method is not limited to a specific imaging 

modality, T1W images were chosen since they are acquired as part of many standard imaging 

protocols and are widely used to assess longitudinal volume changes in MRI. In addition, this 

modality was used by the other inpainting methods we wish to compare to in this analysis.   
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4.4.2. Artificial MS lesions validation  

The different inpainting methods are evaluated using artificial numerical MS lesions that are 

simulated on healthy subject MRIs. Simulations are done using the strategy of Brett et al. 

(2001)., whereby MRI data from MS patients are used to simulate WM lesions on healthy 

subject MRIs. Here, the goal was to create T1W MS lesions for which we know the underlying 

ground truth (from the healthy subject data) such that we can compare inpainting results across 

different methods. 

The simulation, illustrated in Figure 4.2, was performed on the healthy brain image (H) using 

real lesions from the MS patient image (M), and can be summarized as follows: 

1. Pre-processing: i) intensity non-uniformity correction (Sled, Zijdenbos et al. 1998), ii) 

intensity normalization using linear histogram matching and iii) linear registration 

(Collins, Neelin et al. 1994) to the stereotaxic ICBM152 template. 

2. Tissue classification of H and M: after an automatic segmentation of the WM, GM, 

cerebrospinal fluid (CSF) and T2W MS lesions (only on the patients) by a multi-

spectral Bayesian classifier (Francis 2004) using the T1W, T2W and PD images. From 

prior probability model of the segmentation estimated from a training dataset, the M is 

segmented using Bayes’ theorem, where the distribution of each tissue classes is used 

to estimate the parameters of their Gaussian distribution. The automatic T2W lesion 

outlines of M were superimposed on T1W, T2W and PD for manual reviews. Experts 

who underwent extensive training on similar MS patient MRI data carefully reviewed 
the MS lesion mask, L.  

3. For each H:M pair: Compute the voxel-wise intensity ratio (R) of the healthy WM 

(obtained from stage 2) intensity average (WMa) and the T1W voxel intensity of lesion 

tissue (T1WM(i))from the corresponding manually-corrected mask (L) of M for a voxel 

i:  
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Equation 4.5 

4. Estimate the non-linear transformation (NLreg) between M and H (Avants, Epstein et al. 

2008).  

5. Using the transformation (NLreg), interpolate spatially R and L into the H space and 

obtain R’ and L’.  

6. From the interpolated R’ and L’, create a new image (H’) where the final image 

intensity voxels equal  where the lesion (L’) is defined and H everywhere else. 

The six steps are repeated for the 20 H:M pairs. The resulting simulated dataset allowed us to 

assess the impact of the patch search radius for the proposed NLM inpainting before comparing 

it to state of the art inpainting approaches.   
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Figure 4.2: Flowchart of the lesion simulation  

As a means to evaluate the inpainting algorithms, we can assess the fidelity of the restored 

image I* by comparing it to the original image I. In the computer vision literature (Group 2003, 

Wong and Orchard 2008, Fadili, Starck et al. 2009), this is often done using the peak signal to 

noise ratio (PSNR) by measuring the ratio of the maximum possible power of the signal and the 

mean squared error (MSE) between the restored and the original image:  

  
Equation 4.6

where MAX1 is the maximum possible pixel value (255 for 8 bits voxel storage) while MSE is 

estimated estimated within the lesion mask, L, between the original image I (before adding the 

lesion) and the inpainted version, I*: 
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Equation 4.7 

where n is the number of voxels. Thus, in this MS lesion simulation framework, we expect a 

smaller MSE, and thus a higher PSNR when the reconstruction is more similar to the original 

image.  

We first evaluated the performance of our NLM inpainting approach for different search area 

radii, which is an important factor to find similar patches. The size of the search radius also 

influences the computational burden.  

We then assessed the PSNR results of the different inpainting methods while simulating 

potential manual lesion segmentation variability and lesion mask misalignment. This is done by 

varying the original lesion mask boundary (β0) with morphological operations on the ground 

truth lesion mask, through dilation by 1 or 2 voxel layers (β1 and β2) around the whole lesion 

mask volume. This will enable characterization of the methods with respect to smaller or larger 

lesions. 
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4.4.3. Longitudinal MS data validation 

In the second set of experiments, our proposed inpainting technique is evaluated and 

compared to three different publicly available inpainting algorithms and a masking technique 

using real longitudinal MS patient data in order to determine the impact of the method on the 

power to detect longitudinal volume changes.  

The longitudinal MRIs were pre-processed using steps 1) and 2) of section 0 in order to 

obtain the lesion segmentations for each subject’s time-point. All inpainting techniques used to 

the same set of lesion labels for the comparison.  

In order to compare the performance of the inpainting methods, the popular longitudinal 

atrophy measurement tool SIENA (Smith, Zhang et al. 2002) was used to measure the percent 

brain volume change (PBVC) as well as the percent ventricular volume change (PVVC) in the 

MS dataset. SIENA starts with brain and skull segmentation (Smith 2002) to perform skull-based 

registration and analysis in the half-way space of the subject. Then, the brain and non-brain 

boundary is estimated from tissue classification (Zhang, Brady et al. 2001) before computing the 

perpendicular displacement between the brain boundaries of the two time-points. Finally, the 

surface displacement is averaged to obtain a global estimate of PBVC, and the PVVC if ventricle 

masks are used instead of brain masks. 

Statistical comparison of the inpainting approaches was conducted using power analysis 

where we estimated the sample size (per arm), n, required to detect pre-specified treatment effect 

without accounting for normal aging atrophy (Anderson, Bartlett et al. 2007), such as:  

  
Equation 4.8 
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where µ1 and µ2 are the mean rate of volume change in the placebo and treated groups 

respectively, and σ2 the corresponding variance of the rate of change. Here, we only had a 

control MS group, we thus estimated sample sizes for 10, 30 and 50% treatment effects, so that 

u2 = u1*(1-0.10), u2 = u1*(1-0.30) and u2 = u1*(1-0.50), respectively. The analysis was conducted 

with 80% power (a=0.842) and a significance level of 0.05 (b=1.96). The 95% confidence 

intervals were estimated by bootstrapping 10,000 times. The treatment effect are derived from 

previous clinical trial studies, where treatment effects on RRMS brain atrophy was around 50% 

(Rudick, Fisher et al. 1999). 

4.4.4. Methods compared 

We compared our method to 4 other methods that deal with MS lesions: 3 inpainting 

methods and 1 masking method:  

• LWM (Sdika and Pelletier 2009) estimates the tissue classes of the NABT to fill the 

lesion with the intensity average of the surrounding NAWM. Because this method is 

not publically available, we implemented our own version. 

• LEAP (Chard, Jackson et al. 2010) also uses tissue classification of the NABT but 

applies the intensity properties of the NAWM histogram to the region being filled. 

LEAP is available at: http://www.nmrgroup.ion.ucl.ac.uk/analysis/lesionfill.html  

• FSL lesion filling (Battaglini, Giorgio et al. 2009) fills the lesion from random 

intensity values estimated in the surrounding NABT after estimating the tissue WM 

and partial WM volumes. The FSL lesion filling method is available at: 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/lesion_filling. 

• Masked-out: We also evaluated the impact of removing the MS-lesion for the 

longitudinal analysis by masking the lesion out (or so called “Masked-out” approach 

(Battaglini, Jenkinson et al. 2012)). 
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4.5. Result 

4.5.1. Artificial MS lesions  

NLM inpainting search area  

The NLM inpainting algorithm does not require a-priori knowledge of the NABT, GM or 

WM and searches for the most similar patches throughout the whole brain. However, as shown 

in Figure 4.3, the PSNR plateaus around a radius of 10 voxels (note the discontinuous x axes), 

precluding the need of doing a brain-wide search. As such, a search area radius of 10 voxels was 

used in the remaining experiments since it provides a good compromise between reconstruction 

fidelity and computational burden. 

 

Figure 4.3: PSNR measure and computation time of the proposed NLM method for different search area radii.
The boxes represent the lower and upper quartile with the median as the central black line and the mean with a red 
cross. The whiskers extend to the most extreme data point. Note that the x axis is discontinuous after 10 voxels. 
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Inpainting of simulated MS lesions 

Here, we compare the NLM inpainting approach with LWM, FSL and LEAP, while 

incorporating segmentation variability by simulating different lesion boundaries from the 

original lesion segmentation (β0). We do not compare to the Masking-out technique, as it does 

not attempt to model the original data.  

Figure 4.4 presents the PSNR results of the inpainting strategies for 3 different levels of 

lesion mask boundaries. We can notice that NLM outperforms the other methods regardless of 

the lesion mask size (β0, β1 and β2).  

A one-way between subjects ANOVA was conducted to compare the effect of inpainting on 

the PSNR reconstruction measure  [F(4,135)=6.40, p<0.01]. The Bonferroni-adjusted t-test 

analysis revealed that NLM is significantly better than LWM and LEAP (p<0.01) with β0 and 

these results are summarized in Table 4.1.  

NLM’s PSNR is stable when β increases since this approach is not specific to WM intensity 

distribution which can be altered when the mask used to compute the PSNR becomes bigger than 

the actual simulated lesion. 
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Figure 4.4: PSNR of the simulated (no-inpainting) and inpainted images with the 4 techniques when compared 

to the original images for different lesion mask boundaries (β). Statistical analysis at β0 is reported in Table 4.1. 

Table 4.1: Mean average and standard deviation (SD) of the PSNR for the simulated images without inpainting 
(no-inpainting) and the different inpainting methods with the original lesion mask (β0) and Bonferroni-adjusted 
multi-comparison t-test of the PSNR results. 

 

Simulation 

(no-inpainting) 
LWM FSL LEAP NLM 

Mean PSNR 20.25 20.89 22.46 21.75 23.52 

SD 1.38 3.47 1.01 2.33 1.42 

t-test with NLM 
[(t-value, df),   

p-value] 
[(8.68, 27), <0.01] [(5.32, 27), <0.01] [(2.56, 27), 0.03] [(5.43, 27), <0.01] 
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Figure 4.5 illustrates examples of the inpainting results for the different techniques based on 

original images and the simulation of 3 different lesion types. The 3 cases were chosen to 

visualize typical large (A), medium (B), and small (C) peri-ventricular MS lesions. Visual 

inspection of the lesion filling with NLM shows qualitatively more plausible contrast, intensity 

gradients, texture and anatomy compared to other methods. For example, in case A, the NLM 

inpainting recovers the curved contour of the lateral ventricles despite the fact that the lesion 

mask reaches the CSF boundary. This is not the case for the LWM and LEAP methods; both 

show some “bleeding” into the ventricles (red arrows in second row of Figure 4.5). In addition, 

on cases B and C, the WM/GM boundary gradient is more gradual with NLM and more 

faithfully reproduces the original contrast. Furthermore, the overall texture of the NLM 

reproduces the surrounding noise level, while LEAP tends to over-smooth and FSL seems to 

introduce noise (black dots highlighted with yellow arrows in cases A and B) 
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Figure 4.5: Lesion simulation examples with the original image, MS lesion simulation and the different lesion 

filling results LWM, FSL, LEAP and NLM for 3 different lesion sizes (A=large, B=medium and C=small). The red 
arrows point to anatomically improbable lesion filling results, the yellow arrows point to intensity problems while 
the green arrows point to plausible and realistic anatomy. The original lesion boundary and the red square on the 
axial image depicts the zoom-in image region shown below it. Note that these images were generated at β0. 
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Figure 4.6: Lesion-wise PSNR results for the 20 simulated images (no-inpainting) and the inpainting 

approaches (LWM, FSL, LEAP and NLM).   

4.5.2. Longitudinal MS data 

Lesion inpainting on an individual MS longitudinal dataset 

In Figure 4.7, we show examples of lesion filling on longitudinal data from an MS patient 

using LWM, FSL, LEAP and NLM. As can be seen on the original T1W images, the lesion 

boundary has changed between the two time-points. This is likely affecting the inpainting results, 

since as discussed previously and described in Figure 4.5, the performances of LWM, FSL and 

LEAP are more affected by lesion boundaries than the NLM method. This limitation can be 

appreciated by comparing the right and left panels of Figure 4.7, where the extent of the 

inpainting ‘bleeding’ into ventricles is different for the different time-points. Clearly, this would 

lead to erroneous longitudinal measures of ventricular enlargement, for example. In contrast, 
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NLM lesion filling seems to provide more plausible contrast and tissue boundaries gradient that 

are consistent between both time-points (panel m00 and m12). 

 
Figure 4.7: Example of lesion inpainting on real longitudinal MS data from one patient at baseline (m00) and 

one year later (m12) (first row) for the different methods (LWM, FSL, LEAP and NLM).   



 

124 

 

Power analysis of brain atrophy measures  

The longitudinal analysis of brain atrophy (PBVC) and ventricular (PVVC) enlargement 

measurements for all 67 MS subjects using SIENA are summarized in Table 4.1. The inpainting 

(LWM, FSL, LEAP, NLM) and the masking strategies resulted in similar mean PBVC and 

PVVC changes of about -1.1% and 3.8% respectively. However, NLM has the smallest 

variability (PBVC SD=0.83% and PVVC SD=4.28%) thus leading to the smallest required 

sample sizes to detect changes across all assumed treatment effects (10, 30 and 50%). In fact, 

NLM inpainting leads to a reduction in the number of subjects by a factor of 14% to detect brain 

volume changes and 21% to detect ventricular enlargement, compared to the volume change 

estimation on the original data.  

An example of the SIENA brain boundary change results for one subject can be seen in 

Figure 4.8. The figure shows unexpected focal boundary fluctuations (red arrows) in locations 

where lesions were present on the “original” image without lesion inpainting and with lesion 

masking but also with WML, FSL and LEAP lesion inpainting. These changes are particularly 

visible in regions of larger lesions (e.g., peri-ventricular region). The inpainting approaches 

reduce these fluctuations but the NLM inpainting results show the most homogenous changes 

across the boundaries. This likely contributes to the lower variability that this method provides 

across the whole dataset.   
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Table 4.2: PBVC and PVVC SIENA results and 10000 bootstrapping sample size estimation, with a power of 
80% and a confidence interval of 95% for different treatment effects (10, 30 and 50%) between m00 and m12. The 
smallest sample sizes are in bold font. Note, that PVVC cannot be estimated with the Masked-out approach. 

Method 

PBVC PVVC 

Mean % 

(SD) 

Sample Size Mean % 

(SD) 

Sample size 

10% 30% 50% 10% 30% 50% 

Original 
-1.12 
(0.94) 

1171 

829-1740 

130 

93-196 

47 

33-71 

3.85 
(5.24) 

583 

329-1145 

65 

37-125 

24 

13-46 

Masked-
out 

-1.15 
(0.98) 

1106 

788-1638 

123 

98-183 

44 

31-66 
- - - - 

LWM 
-1.08 
(0.95) 

1117 

806-1661 

124 

90-185 

45 

32-66 

3.76 
(4.81) 

555 

333-1070 

62 

37-114 

22 

13-42 

FSL 
-1.13 
(0.94) 

1153 

829-1730 

129 

92-193 

46 

33-69 

3.82 
(4.79) 

539 

316-1026 

60 

35-114 

22 

13-42 

LEAP 
-1.12 
(0.94) 

1179 

847-1769 

130 

92-193 

47 

34-71 

3.97 
(4.88) 

506 

308-956 

56 

34-108 

20 

12-38 

NLM 
-1.14 
(0.83) 

999 

763-1389 

110 

84-152 

40 

31-56 

3.93 
(4.28) 

446 

297-727 

49 

33-2 

18 

12-29 
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Figure 4.8: SIENA brain boundary changes (atrophy=blue and growth red) of the “original” images and with 
the different strategies to account for lesions (Masked-out, LWM, FSL, LEAP and NLM). 

4.6. Discussion  

In this work, we propose a new inpainting NLM method to replace MS lesion ROIs with 

intensities from surrounding normal-appearing brain tissue. We demonstrated the efficiency of 

our approach in the context of longitudinal image analysis. The proposed approach presents the 

advantages of not requiring any pre-processing (after lesion identification) and could be applied 

to any MR image contrast. With MS lesion simulations and with RRMS 1-year longitudinal 
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brain change measures, the results of this study show that the proposed method was superior to 

the most commonly used inpainting approaches. Furthermore, the qualitative visual results of the 

proposed approach are realistic and anatomically plausible. 

On simulated MS lesions our inpainting approach allows us to reproduce with the best 

fidelity the original “lesion free” MRI images. Using the NLM operators allows replacing a 

lesion voxel with voxels having the most similar patches without any explicit a priori for healthy 

tissue classification of the healthy tissues. The different boundaries of the lesion masks 

confirmed this, where bigger masks of the actual lesion do not affect the fidelity of the 

reconstruction. Therefore, the definition of the lesion mask does not require an accurate 

definition covering only the affected white matter tissues but a rather “bigger” mask definition. 

Indeed, because of the propagation strategy using concentric layers, we suggest applying a 

morphological operator to dilate the lesion mask ROI in order to effectively avoid the 

propagation of affected tissue intensities.  

The evaluation of the different methods in the context of longitudinal brain atrophy and 

ventricular enlargement measures qualitatively and quantitatively favor the proposed NLM 

inpainting algorithm. These results suggest that MS lesion inpainting in the context of clinical 

longitudinal MRI studies have substantial advantages to detect brain atrophy and have already 

proven to improve some longitudinal structural measurements (Nakamura and Fisher 2009, 

Magon, Gaetano et al. 2014). MS lesions are more frequently located in the peri-ventricular 

region of the brain (Narayanan, Fu et al. 1997). This spatial preference could explain the stronger 

improvement in power to detect ventricular enlargement for the NLM inpainting.  

In this study, we only consider WM lesions and T1W images as do most of the inpainting 

approaches available in MS imaging (LWM, FSL and LEAP). These approaches require 

modification of their algorithm to fill GM lesions. But, in MRI studies, GM or cortical lesions 

have been found in the majority of the RRMS populations (64%) (Calabrese, Agosta et al. 2009). 

Our method, which does not depend on specific image contrasts, is more flexible in that it can 
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deal with any region where the intensities need to be replaced by intensities from nearby normal 

regions.  

We initially proposed to use the NLM as an inpainting operator (Guizard, Nakamura et al. 

2013). In this paper, we provide a more thorough validation as well as some improvements on 

our original approach. Our initial approach inspired Prados et al. (2014) to develop a similar 

inpainting method based on the NLM, however, their method is different as they only estimate 

the minimum intensity distance patch before applying a smoothing kernel. Here, we improve on 

our initial method by proposing a pyramidal hierarchical filling strategy, which enables to 

capture more structural information at a lower level, propagating this inpainting to the next level. 

While Prados et al. (2014) search for the most similar patch throughout the whole brain, we show 

here that inpainting results plateau after at a certain search area distance radius. We believe that 

the NABT intensities might not be similar across the whole brain, thus limiting the search to a 

certain distance from the lesion seems adequate. Furthermore, this limited search area reduces 

the computational burden in comparison to searching over the whole brain area.  

On the clinical aspect experiments, the estimated sample size required with SIENA in the 

current study was smaller (130 with a 30% treatment effect on the original version of SIENA) 

than previously reported by Anderson et al. (2007) (191 with a 30% treatment effect). These 

differences could be explained by different factors such as the RRMS population treatment, 

difference of power (90% for the later) and the study design.  

Future work will focus on combining automatic lesion segmentation (Guizard, Coupé et al. 

2015) with the proposed inpainting approach to provide a fully automatic approach. We plan to 

assess the impact of lesion inpainting in the context of longitudinal non-linear registration and 

diffusion weighted imaging in order to assess the focal atrophy in the surrounding of the lesion 

without the confounds due to the presence of lesions.   
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4.7. Conclusion 

We developed a technique to replace tissues of interest, such as MS lesion, with healthy 

appearing tissues in order to perform cross-sectional and longitudinal image analyses. The 

method is robust and can improve the statistical power of detecting brain atrophy in MS. 

Furthermore, the proposed approach does not require any other image pre-processing than the 

lesion masking. 
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Preface 

Over the past decade, longitudinal image data has become more and more available, where 

multiple scans are collected over a period of time on the same subject. Longitudinal design 

presents the advantages of reducing the confounding effects of inter-individual morphological 

variability by using each subject as his or her own control. Subtle changes such as longitudinal 

atrophy require specific non-linear registration approach mainly due to the fact that traditional 

non-linear registration algorithms have focussed on cross-sectional registration. Indeed, it is 

important to obtain robust and unbiased measures of the atrophy that can identify subtle brain 

changes over time. The symmetry or inverse consistency of the registration is very important for 

longitudinal and cross-sectional subject registration, in order not to bias a specific deformation 

direction. 

Chapter 5 appeared as a conference proceeding of MICCAI Spatio-Temporal Image Analysis 

(STIA) workshop in 2010.   
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5.1. Abstract 

The evaluation of brain atrophies in neuroimaging studies is important, especially for 

neurodegenerative diseases such as Multiple Sclerosis, Alzheimer's and Parkinson's where brain 

volume changes over time must be assessed. Deformation and tensor-based morphometry are 

popular methods to evaluate brain difference cross-sectionally and/or longitudinally in a voxel-

wise manner. Both of these methods depend highly on the quality of the non-linear registration 

between pairs of images. The deformation field obtained may present error and/or inaccuracy 

which affect the detection of these changes. With this in mind, we propose a new approach to 

constrain the symmetry of the non-linear registration. The performances of the proposed 

approach and popular techniques were evaluated on cross-sectional (LPBA40) and longitudinal 

databases (ADNI). The results show the importance of symmetry in longitudinal MRI study and 

promising results in the prognosis of dementia. 

                                                

5 Data used in the preparation of this article were obtained from the Alzheimer's Disease 
Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). As such, the investigators within the 
ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in 
analysis or writing of this report. ADNI investigators include (complete listing available at 
http://www.loni.ucla.edu/ADNI/Data/ADNI Authorship List.pdf). 
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5.2. Introduction  

Multiple sclerosis (MS), Alzheimer's Disease (AD) and Parkinson's Disease (PD) are 

neurodegenerative diseases that affect millions of people around the world. Magnetic resonance 

imaging (MRI) is a powerful tool, which facilitates diagnosis and prognosis. Longitudinal MRI 

studies have the potential to assess and help in understanding disease progression. Recent image 

processing tools, such as Deformation-based morphometry (DBM), look at the local deformation 

obtained by registering each subject to a reference or to the same subject over time. DBM 

analyses can be performed to assess population differences (Shen 2003) or longitudinal brain 

changes within an individual subject or compare to a population reference (Leporé, Brun et al. 

2007). In large clinical population trials, longitudinal DBM can be used to evaluate the disease 

onset or progression.  

Because of its internal design, DBM creates deformation maps that depend on the quality of 

the non-linear registration that might limit the sensitivity and accuracy (Christensen and Johnson 

2001, Yushkevich, Avants et al. 2010). Today, many non-linear or non-rigid registration 

methods are available, mostly having a similar structure: a similarity measure to find how well 

the two images correspond, a transformation model to define how the image can be modified and 

an optimization algorithm which maximizes the similarity of the two images by changing the 

parameters of the transformation model. The symmetry or inverse consistency of the registration 

is very important for longitudinal and cross-sectional subject registration, in order not to bias a 

specific deformation direction. Christensen et al. (Christensen and Johnson 2001) suggested 

consistent image registrations and compared their approach qualitatively with other techniques 

(Thirion 1998). Symmetric non-linear registration has been widely investigated in medical 

imaging (Leow, Huang et al. 2005, Rogelj and Kovacic 2006, Yanovsky, Leow et al. 2009).  

In this article, we propose a strategy to force symmetry within the publicly available 

ANIMAL method and this approach was compared with a symmetric optimization scheme 

technique (Avants, Epstein et al. 2008). For the evaluation, two different publicly available 
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databases were used: 1) the LPBA40 to evaluate non-linear registration quality and 2) the ADNI 

database to evaluate longitudinal non-linear bias. The metrics used to assess the methods were: 

region overlap metric (OM), intensity variance metric (IVM), inverse consistency (IC) and the 

transitivity (TM). Finally with the same ADNI cohort, a DBM analyses was performed to 

evaluate the power of the algorithms in the prediction of brain changes over time.  

5.3. Materials and Methods  

5.3.1. Unbiased symmetric non-linear 

registration  

Throughout this article, the following notation will be used: in the domain Ω of 3, for two 

images Ii and Ij  ∈ Ω, the transformation Tij is sought for each spatial coordinate x which 

matched both images such that Ii ◦Tij(x)=Iij the interpolated image. The inverse of the 

deformation field is Tij
-1. Symmetric optimization schemes such as (Leow, Huang et al. 2005) 

and (Avants, Epstein et al. 2008) minimize and regularize the forward and  the backward 

transformation directly. Motivated by the work of (Guimond, Meunier et al. 2000, Joshi, Davis et 

al. 2004, Yanovsky, Leow et al. 2009), the registration was constrained to be symmetric by 

combining the forward and the backward registration in order to obtain Tij≈ Tji−
1. In the following 

equations, Sij(x), Tij(x) and Tji(x) are respectively the symmetric, the forward and the backward 

transformations of the image Ii to Ij. The symmetry of the registration was forced by combining 

both the forward and the backward registration separately, such that:  
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 Sij x( )  =  
Tij x( )+Tji x( )

−1

2
 

Equation 5.1 

If the registration is indeed symmetric, then the concatenation of the forward and backward 

transformations, Tij(Tji(x)), should be the “identity” transformation. The expression Tij(Tji(x)) will 

be simplified to Tij.Tji in the remaining text. However, due to the optimization scheme and the 

regularization of the deformation fields, the “non-symmetry” of the registration may induce bias 

in the computation of the deformation. Our approach, inspired by (Thirion 1998) and 

(Christensen and Johnson 2001), adds the residual registration error r(x), defined as ri(x) = 

Tij(x).Tji(x) to the forward and rj = Tji.Tij to the backward registration:  
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Equation 5.2 

To preserve the diffeomorphism which ensures the invertibility of the deformation field, the 

computation of the symmetric deformation S was done in the log-Euclidean space (Arsigny, 

Commowick et al. 2006).  

The symmetrization described above is applicable to any non-linear registration algorithm, 

however it was implemented in our in-house algorithm, ANIMAL5F

6 (Collins, Neelin et al. 1994). 

ANIMAL uses a multi-scale vector deformation estimation with a normalized cross-correlation 

(CC) similarity measure. Local registration is achieved in a hierarchical manner with a Gaussian 

blurring. ANIMAL uses hierarchical iterations with different step sizes and blurring kernels. In 

                                                

6 Available at: http://www.bic.mni.mcgill.ca/software/  
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this article, ANIMALsym denoted the symmetrization of ANIMAL with the residual error 

correction. The symmetrization constraint was applied at each iteration of the hierarchical 

scheme, in addition to performing 4 supplementary iterations at each level to take into 

consideration the indirect regularization of the symmetrization.  

Recently, Klein et al. (Klein, Andersson et al. 2009) compared 14 fully automatic non-linear 

algorithms. In this paper, the proposed algorithm was compared to the best symmetric 

optimization scheme from Klein's study: SyN6F

7 (Avants, Epstein et al. 2008). The SyN algorithm 

from Klein's study, with the identical configuration uses a bi-directional optimization scheme 

with a gradient descent, diffeomorphic forward and backward transformations and CC as a 

similarity measure. To allow comparisons, the following parameters for the registration were 

used (based on the supplementary section of Klein et al. (2009)):  

- ANIMAL: “minctracc -non-linear corrcoef -weight 1 -stifness 1 -similarity 0.3 -sub lattice 

6 -iterations [20x20x20x20x20x10] -step [32x16x12x8x6x4x2] -lattice diam step∗3 step∗3 

step∗3 -identity moving.mnc fixed.mnc transformation.xfm” for each iteration, a respective 

blurring of 16x8x6x4x3x2x1mm was applied and “x” represents the successive iterations. Note 

the supplementary finest iteration performed at 2mm this is to address the problem from the 

Klein's paper where ANIMAL was used with a 4mm fit.  

- SyN: “ANTS 3 -m PR[fixed.mnc, moving.mnc, 1, 2] -o transformation.xfm -r Gauss[2,0] -t 

SyN[0.5] -i 30x99x11 -use-Histogram-Matching”  

The goal of this article was to compare ANIMAL and ANIMALsym with SyN to 

demonstrate that the ANIMAL-based techniques are at least as good as SyN when run with the 

appropriate parameters.  

  
                                                

7 Available at: http://picsl.upenn.edu/ANTS/index.php  
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5.3.2. Data used for the evaluation  

LPBA40: The LPBA40 database7F

8 (Shattuck, Mirza et al. 2008) consists of 40 T1-weighted 

images of normal subjects with 56 manually delineated structures following the LPBA40 

protocol8F

9 (Figure 5.1, A). The volumes were linearly registered to MNI Talairach-like MNI305 

space (Evans, Collins et al. 1993). In order to compare with Klein et al. results, the preprocessed 

data were downloaded and the linear pair-wise registered data from the supplementary material 

available with the paper.  

ADNI: For the longitudinal registration assessment, 60 subjects were selected from the 

ADNI database (Figure 5.1, B). The evaluation was limited to 3 time points (0, 12 and 24 

months) as it is sufficient to evaluate the transitivity and inverse consistency of the algorithms. 

The T1-weighted images were acquired with a magnetization-prepared rapid acquisition with a 

gradient echo (MP-RAGE) sequence from different ADNI sites with a 1.5T MRI scanner with a 

resolution of 0.94x0.94x1.2 mm3. The cohort was constituted of 20 normal controls (NC), 20 

mild cognitive impaired (MCI) and 20 Alzheimer disease (AD) patients with their respective 

clinical information (visit, MCI conversion time to AD...). Each subject of the ADNI group went 

through the preprocessing pipeline which consisted of the following successive stages: 1) 

Intensity non-uniformity correction (Sled, Zijdenbos et al. 1998) 2) Image denoising (Coupé, 

Yger et al. 2008) 4) Brain masking (Smith 2002) 5) Intensity normalization (Nyúl and Udupa 

1999) 6) Linear registration (Collins, Neelin et al. 1994) with 9 degrees of freedom (3 rotations, 

3 translations and 3 shearing) of the month 12 and 24 to month 0 (baseline) image in native space 

7) Computation of the linear and non-linear registration transformations (Collins, Neelin et al. 

1994, Collins, Holmes et al. 1995) of each baseline to the stereotaxic space of ICBM152 

                                                

8 Available at: http://www.loni.ucla.edu/Atlases/LPBA40 
9 Available at: http://www.loni.ucla.edu/Protocols/LPBA40 
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(Mazziotta, Toga et al. 2001, Mazziotta, Toga et al. 2001) 8) Tissue classification (white matter, 

grey matter and cerebral spinal fluid) (Zijdenbos, Forghani et al. 1998)  

Scan-Rescan: Because no anatomical brain changes should occur during the same day, 15 

subjects have been scanned twice during the same day (Figure 5.1, C). The T1-weighted MRI 

images were acquired on a 1.5T SIEMENS MRI scanner with a 3D FLASH sequence and a 

resolution of 1x1x1mm. Following usual MRI study protocols, after the first set of image 

acquisition, the subject was taken out from the scanner before getting back in the rescan session.  

5.3.3. Experiments 

Cross-sectional registration evaluation: In order to compare with recent non-linear 

registration evaluation articles (Hellier, Barillot et al. 2003, Klein, Andersson et al. 2009), the 

LPBA40 database was used with similarity metrics similar to those used previously.  

- Overlap Metric (OM): The different labeled structure overlap after the registration indicates 

the anatomical agreement of the registration. The overlap of the 56 segmented regions of the 

subject (or the moving image) (denoted I) and the target (or the fixed image) (denoted F). OM 

depends on the size of the structure and varies between 0-1 with 1 indicating a perfect match:  

  ) (labelOM I F
F

=
∩

 
Equation 5.3 
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Figure 5.1: Example MRI subjects: LPBA40 subject (A), with the raw brain MR image (left) and the segmented 
brain (right), ADNI (B) subjects, with the raw brain MR image (left) and the subtracted 1 year scan to it (right) and 
scan-rescan subject (C), with the raw image on the left and the image difference of the scan and the following scan.  

- Intensity Variance Metric (IVM): After registration the intensity difference between the 

source and the target should tend to 0. This metric evaluates the intensity variance of N

registered subjects i to the target j. IVM depends on the intensity value of the images and tends to 

0 if the match is perfect:  
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Equation 5.4 

The same subject is used as a source and a target and thus makes the sample non-

independent. To overcome this issue, a permutation test was performed (Menke and Martinez 

2004, Fink, Klein et al. 2010). The significance of the results was evaluated with a Tukey-

corrected p-value.  
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Longitudinal registration evaluation: In the context of longitudinal studies with the 

ADNI database, the inverse consistency (IC), the transitivity (TM) and the direct bias (DB) of the 

non-linear registration algorithms were evaluated. In the following section, l, m and n represent 3 

successive time-points.  

- Inverse Consistency Metric (IC): Regardless of the direction, non-linear algorithms should 

obtain similar results. To evaluate the symmetry of the registration (Christensen, Geng et al. 

2006), the IC measures the residual distance of the concatenation of the forward Tlm and the 

backward Tml transformations on a voxelwise level. In the case of perfect symmetry of the 

registration IC should equal 0:  

 2( ( ))lm mlIC T T x x= −  Equation 5.5 

- Transitivity Metric (TM): In longitudinal studies with multiple time-points, an important 

aspect is the transitivity or the ability of the algorithm to combine the successive registrations. 

The TM is the difference of the concatenation of the forward registrations Tlm followed by Tmn 

and the direct transformation from the first time point to the last time points Tln transformations 

of the same image on a voxel-wise level with regard to the displacement. TM tends to 0 if the 

combination of the transformation is not giving registration error:   

  2( . )lm mn lnTM T T T= −  Equation 5.6 

- Direct Bias (DB): To assess the tendency of the algorithms to privilege atrophy or growth, 

the local log-transformed Jacobian (J) (Chung 2003) was computed for each pair (N) of the scan-

rescan database:  
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- DBM analyses: Medial temporal lobe atrophy in Alzheimer disease differs from other 

dementia diseases as it has been shown in histopathology and MRI studies (Braak and Braak 

1991, Barkhof 1999). The evaluation of the registration overall quality as well as the inverse 

consistency of the non-linear registration algorithm set the basics of unbiased DBM analysis. 

With the same ADNI cohort, a longitudinal DBM analysis was performed on the 3 time points 

(0, 12 and 24 months). The local log-transformed Jacobian (Eq. ) was computed for the 

deformation field T for each time point to the baseline (0 month) yielding m12 and m24 

transformations. The means of each subject Jacobian were compared by means of paired t-tests. 

The Jacobian map was also computed in the white matter (WM) of the temporal lobes obtained 

with the tissue classification to estimate the WM atrophy in Alzeihmer's disease.  

This regional DBM analyses were then used to assess the power of prognosis of each method 

for the MCI population in order to predict their conversion to AD after their first visit (m0). 

From our ADNI cohort of 20 MCI subjects, 8 subjects converted to AD after a period of time 

between 12 to 24 months.  

5.4. Results  

Cross-Sectional evaluation results  

The cross-sectional evaluation results of the 1560 registrations with the LPBA40 database are 

represented in Figure 5.2. Regardless of the metric, all techniques had similar overall results. The 

paired t-test ANOVA did not detect any significant difference in OM between the three 
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techniques. An interesting finding is that the overall OM is consistent with the OM per region 

(Figure 5.3).  

ANOVA showed a statistical difference between methods (p-value < 0.0001), with 

ANIMALsym giving the best results for IVM.  

Figure 5.2: Overlap metric (OM) and intensity variance (IVM) for the different non-linear registration methods 
obtained with the LPBA40 database. 

 
Figure 5.3: Overlap per brain region: this matrix represents the overlap of the 56 regions for SyN, ANIMAL and 

ANIMALsym. The color scale is from 0 (blue) to 1 (red).  
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Longitudinal evaluation results  

The registration of the different time-point images from the ADNI database enabled the 

measurement of the symmetry of the algorithm (Figure 5.4). As expected the symmetrization 

improved the inverse consistency of the standard ANIMAL algorithm (p-value < 0.0001). With a 

mean IC of 0.154mm ( 0.03), ANIMALsym achieved significantly better results than SyN (p-

value < 0.0001).  

Regardless of the symmetry, accurate registration should provide a better transitivity. 

ANIMAL and ANIMALsym yield significantly better transitivity of the registration compared to 

SyN (Figure 5.4), respectively: ANIMAL = 0.15( 0.05) (p-value < 0.0001) and ANIMALsym = 

0.17( 0.05) (p-value < 0.00001).  

The registration of the scan-rescan data demonstrated equal sensitivity of the 3 methods 

(Figure 5.5). All methods presented a mean DB close to 0 with a normal distribution of their log-

transformed Jacobian.  

Figure 5.4: Inverse consistency (IC) and Transitivity metric (TM) results obtained for each non-linear
algorithms with the ADNI database.  
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Figure 5.5: Direct bias of the scan-rescan dataset for each algorithm.

DBM analysis  

The total brain log-transformed Jacobian of DBM analysis across each population and each 

method for the ADNI database is shown in (Figure 5.6). This figure highlights qualitatively the 

inherent difference of the deformation obtained. Compared to the other algorithms, 

ANIMALsym estimated smaller regional atrophy or growth (i.e. cortical). With regards to the 

atrophy in the medial temporal lobes (Figure 5.7), all the algorithms showed stable atrophy for 

the control subjects. ANIMAL, ANIMALsym and SyN detect an increase of atrophy for the MCI 

and the AD at m12 and m24. Despite the large distribution of the log-transformed Jacobian or 

ANIMALsym, the match-pairs t-test for the AD and MCI subject with ANIMAL (t=4.2,

p<0.001) and ANIMALsym (t=2.0,p<0.01) are significant. The preliminary results of the log-

transformed Jacobian of the MCI and the MCI converted to AD measured in the temporal lobes 

(Figure 5.8) showed the highest mean difference with ANIMALsym (p < 0.01).  
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Figure 5.6: DBM analyses of the ADNI database: Representation of the log-transformed Jacobian (> 0 atrophy) for 
each registration of the subject follow-up visit to the baseline visit (m12 to m0 and m24 to m0).  

Figure 5.7: DBM analyses log-transformed Jacobian determinant average per population (NC, MCI, AD) at 
m12 visit registered to the baseline visit (m0): The DBM averaged results with each algorithms are represented in 
red represents atrophy and blue represents expansion overlaid on the ICBM152 template. 
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Figure 5.8: Converting and non-converting MCI DBM comparisons: Representation of the mean log-
transformed Jacobian between the converted and non-converted MCI to AD. 

5.5. Discussion  

The main contributions of this article are the evaluation of different non-linear registration 

techniques and their accuracy/sensitivity to detect brain atrophy in the context of a longitudinal 

study.  

In this article, three non-linear registration methods were compared, SyN, ANIMAL and its 

proposed symmetric version, ANIMALsym. The evaluation of the methods was performed on 

three different databases. To evaluate the quality of the overlap and the image matching, the 

LPBA40 database was used with its 56 manual labeled regions. Then, for the evaluation of the 

behavior of the algorithms in the context of longitudinal MRI study, 60 subjects were chosen 

from the ADNI database with 3 different time-points and 15 subjects with their scan-rescan 

images. Finally, a DBM analyses was performed on the ADNI subjects (20 NC, 20 MCI and 20 

AD subjects) and assessed the ability of the registration method to predict the conversion of MCI 

subject to AD.  

The region overlap is not high, probably because of manual labelling but they are consistent 

with the findings of Klein et al. (Klein, Andersson et al. 2009) for SyN. ANIMAL performs 

better with a finer iteration step at 2mm. The intensity variance reinforces the overlap results. 
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The cross-sectional results are interesting in evaluating the quality of the registration but do not 

insure the quality of the registration algorithm in the context of longitudinal registration. 

Therefore, the inverse consistency and the transitivity of the algorithm were evaluated and 

showed that the symmetrization constrain of ANIMAL does insure symmetry as well as the 

symmetric optimization scheme offered by SyN. The scan-rescan dataset showed that neither of 

the symmetric methods have a significant bias, which would produce false atrophy/growth 

discovery.  

The quality and the inverse consistency of ANIMALsym and SyN, set the basis to perform a 

DBM analyses on the ADNI groups. Visual inspection of the DBM maps showed anatomical 

coherence of the atrophies and growths. In the temporal lobes, both ANIMAL and ANIMALsym 

detected atrophy progression for the MCI and the AD subjects between the m12 and m24 which 

are coherent with previous findings (Burton, Barber et al. 2009). The small number of subjects 

for the prediction of converting subject from MCI to AD limits our results, however they shown 

interesting preliminary results with ANIMALsym.  

5.6. Conclusion  

In longitudinal neuroimaging studies, symmetric registrations are important to evaluate the 

brain deformations over time. Non-symmetric registration results in error, bias and wrong 

estimation of brain atrophy and enlarging. This article compared the symmetry of well-

established non-linear registration symmetric and non-symmetric method with constrained 

symmetrization strategies.  

The constrained symmetrization, using bi-directional registration to force the symmetry of 

the transformations results in overall better results than the symmetric optimization algorithm. 

Subsequently, a longitudinal DBM analysis was performed to evaluate the sensitivity of our 

proposed method and obtained significant atrophy detection in Alzheimer's, mild cognitive 
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impaired and normal control subjects in the medial temporal lobes. With more investigation, the 

symmetric registration framework proposed in this article could be used as a prognosis tool to 

predict dementia or other pathology.  
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Preface 

For longitudinal studies, numerous groups have investigated paired images and different 

approaches have been developed to evaluate the brain changes. By taking into consideration the 

temporal dimension of the data, the analyses of the anatomical morphology will be less sensitive 

to spatio-temporal image acquisition variability (patient repositioning, MRI sequence, scanner 

hardware, image resolution…), as well as punctual anatomical differences due to lesions or 

inflammation.  

Chapter 6 was published in (Guizard, Fonov et al. 2015). Earlier forms of the work have been 

published in conference proceedings at the MICCAI Spatio-Temporal Image Analysis (STIA) 

workshop in 2012 where it was accepted for an oral presentation. A variant of this work, where 

we applied the proposed method to a longitudinal RRMS cohort was accepted for poster 

presentation at the ISMRM White Matter Study Group in 2013.   
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6.1. Abstract 

Neurodegenerative diseases such as Alzheimer's disease present subtle anatomical brain 

changes before the appearance of clinical symptoms. Manual structure segmentation is long and 

tedious and although automatic methods exist, they are often performed in a cross-sectional 

manner where each time-point is analyzed independently. With such analysis methods, bias, 

error and longitudinal noise may be introduced. Noise due to MR scanners and other 

physiological effects may also introduce variability in the measurement. We propose to use 4D 

non-linear registration with spatio-temporal regularization to correct for potential longitudinal 

inconsistencies in the context of structure segmentation. The major contribution of this article is 

the use of individual template creation with spatio-temporal regularization of the deformation 

fields for each subject. We validate our method with different sets of real MRI data, compare it 

to available longitudinal methods such as FreeSurfer, SPM12, QUARC, TBM, and KNBSI, and 

demonstrate that spatially local temporal regularization yields more consistent rates of change of 

global structures resulting in better statistical power to detect significant changes over time and 

between populations. 
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6.2. Introduction 

Longitudinal measures of brain volumetry are powerful tools to assess the anatomical 

changes underlying on-going neurodegenerative processes. In different neurological disorders, 

such as multiple sclerosis (MS), Alzheimer’s disease (AD) and Parkinson’s disease (PD), brain 

atrophy has been shown to be good surrogate marker of disease progression (Chard, Brex et al. 

2003, Burton, McKeith et al. 2004, Ridha, Barnes et al. 2006). Magnetic resonance imaging 

(MRI) can provide reproducible 3D structural images of the brain, which can be used to assess 

its integrity. Furthermore, the emergence of freely available longitudinal MRI databases, (e.g., 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller, Weiner et al. 2005), Open 

Access Series of Imaging Studies (OASIS) (Marcus, Fotenos et al. 2009) and others) provide the 

necessary data to develop and test new methods and investigate the longitudinal structural 

changes of healthy and pathological brains. 

Image processing in MRI-based neuro-anatomical studies is often performed in a cross-

sectional manner where each time-point is evaluated independently. Typically, brain 

morphometry comparisons can be done by matching paired images (template-to-subject or 

subject-to-subject), where the deformation field is used to map atlas regions or to compute voxel-

wise comparisons of anatomical changes as in deformation-based morphometry (DBM). 

However, in the context of longitudinal datasets, the robust estimation of anatomical changes is 

still challenging (Thompson and Holland 2011). Indeed, in the case of neurodegeneration 

occurring in a short period of time (2-3 years), if we assume that longitudinal changes are 

smoothly varying, spatially local, and temporally monotonic processes, considering individual 

time-points independently can generate unnecessarily noisy longitudinal measurements due to 

the intrinsic noise associated with each visit. Different studies have shown the impact of the MRI 

acquisition protocol on structural measurements (Caramanos, Fonov et al. 2010) and cortical 

thickness (Fonov, Coupé et al. 2012). Therefore, methods that integrate constraints from the 

temporal dimension (i.e., 4D methods) should produce more accurate, robust and stable measures 

of the longitudinal anatomical changes resulting in a more realistic estimation of temporal 
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evolution. Different approaches have been proposed to overcome the complexity of anatomical 

4D longitudinal data image analysis. We classify these methods in 2 major groups: “4D” and 

“longitudinal 3D”. The 4D approaches treat the individual and/or group-wise longitudinal data as 

an ensemble and provide longitudinal models or measurements. They are mathematically 

sophisticated approaches that have been proposed in the context of modeling larger anatomical 

changes over time (i.e., growth over the span of childhood). For example, a 4D population model 

creation using Gaussian kernel regression has been suggested by Davis et al. (2007) where each 

image is registered independently to a moving average, avoiding the creation of an explicit 

parameterized model of the longitudinal changes (Figure 6.1a). Kernel regression has also been 

used in the framework of the Large Deformation Diffeomorphic Metric Mapping (LDDMM) for 

brain shapes (Durrleman, Pennec et al. 2009) (Figure 6.1b) and images (Durrleman, Pennec et al. 

2009, Hart, Shi et al. 2010, Sadeghi, Prastawa et al. 2010). Regarding intra-subject 4D 

registration, Lorenzi et al. (2010) have proposed 4D non-linear registration via a global 4D 

deformation optimization scheme in the Demons registration framework. Finally, Wu et al. 

(2011) introduced an implicit mean-shape of the population which could be used for individuals. 

Their approach maximizes the spatio-temporal correspondence and continuity from a set of 

temporal fibre bundles (Figure 6.1c).  

The longitudinal 3D approaches include the adaptation of popular 3D/cross-sectional 

methods with some longitudinal constraints or longitudinal pre-processing. For instance, in the 

context of clinical evaluation over a few years where anatomical changes are small and 

continuous, the use of 3D individual template targets have been proposed to perform non-linear 

registration (Kraemer and Thiemann 1987, Ashburner and Ridgway 2012, Reuter, Schmansky et 

al. 2012) or tensor-based analyses (TBM) (Hua, Hibar et al. 2013). Indeed, to compare 

anatomical differences, 3D population templates have proven their importance for different 

applications such as mapping function, structure, or vasculature (Thompson and Toga 2002) and 

group comparisons (Ashburner, Hutton et al. 1998). While different techniques exist to create 

unbiased population templates for multi-subject cross-sectional studies (Guimond, Meunier et al. 

1998, Fonov, Evans et al. 2011), few of these techniques have been developed for the creation of 
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an individual 3D subject template. More recently, Reuter et al. (2012) created a subject-specific 

3D template for longitudinal analysis by computing the median image of the linearly registered 

images of the same subject from different time-points and this method is implemented within the 

longitudinal version of FreeSurfer9F

10 (Reuter, Schmansky et al. 2012). In the continuity of their 

work on voxel-based morphometry (VBM) (Ashburner and Friston 2000, Baron, Chételat et al. 

2001, Chetelat, Landeau et al. 2005), Ashburner et al. (2012) presented an unbiased “group-wise 

intra-subject” template with an iterative longitudinal non-uniformity correction, linear and non-

linear diffeormorphic registration that is implemented in the Statistical Parametric Mapping 12 

(SPM12)10F

11. Aubert-Broche et al. (2013) also proposed to use robust non-linear individual 

templates to perform tissue classification and segmentation of pediatric images.  

Inspired by previous work and the need for longitudinal analysis, we propose to include 

spatio-temporal constraints to analyze longitudinal MRI volumes, combining the advantages of 

both 4D longitudinal and 3D longitudinal approaches. An iterative algorithm is presented to 

create subject-specific templates for structural segmentation (Figure 6.1d). The decomposition of 

the longitudinal deformation fields, similar to a Taylor series, enables local spatial constraints as 

well as temporal regularization. While the spatial constraints aim to preserve the anatomical 

consistency in the image, the voxel-wise temporal regularization tackles the potential 

longitudinal alteration of the images. The temporal regularization is achieved with a local voxel-

wise linear regression of the deformation components over time, resulting in a more consistent 

global longitudinal deformation. In this article, we first evaluate the stability and robustness of 

our method with a scan-rescan dataset, then, we assess its power to analyze a longitudinal cohort 

from the ADNI database. We show that a weak local spatial constraint over time can have 

significant positive global effects to significantly reduce inter-visit variability in the 

measurement of structure volumes such as the lateral ventricles, hippocampi and brain 

parenchyma. 

                                                

10 http://surfer.nmr.mgh.harvard.edu/ 
11 http://www.fil.ion.ucl.ac.uk/spm/  
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Figure 6.1: Longitudinal registration and template creation methods. Each vignette (a, b, c and d) represents 

different strategies proposed to overcome longitudinal MRI data analysis.  
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6.3. Methods 

The objective of the template creation algorithm is to find the non-linear transformations that 

minimize the anatomical shape differences between images to create the most representative 

average of the subject's anatomy. Processing is achieved in two steps.  First, all data is processed 

cross-sectionally to bring each volume into stereotaxic space.  Second, this data is used to build a 

subject-specific individual template. The method and notation is inspired from Fonov et al. 

(2011) and Aubert-Broche et al. (2013), and described in the following sections.  The 

nomenclature is summarized in Table 6.1. 

Table 6.1: Notation 

Symbol  Definition  
v  Voxel position v varying from 0 to N  
k  Iteration k  
It (v)  Set of images for subject I from different time-points t  
( )k
I vΦ  Individual template of subject I at voxel v  
, ( )
k
t vψ Φ  Deformation field of time-point t to template Ф at voxel v  
, ( )
k
t vΦΦ  Bias free deformation field of time-point t to template Ф at voxel v  
Ωv  Neighborhood or patch surrounding voxel v 

T (v,t) Trajectory of voxel v at time t  
( ),T v tℑ  Jacobian matrix of voxel v at time t  

βt (v)  Non-uniformity field at voxel v  
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6.3.1. Cross-sectional pre-processing 

All MRI data are pre-processed to reduce the effects of artifacts and noise. The standard 

deviation of the MRI Rician noise is estimated automatically and image redundancy is used to 

reduce the noise using a non-local patch-based technique (Coupé, Manjón et al. 2010). A non-

parametric estimation of the slow varying non-uniformity field corrects the intensity 

inhomogeneity produced by scanner radio-frequency coil variations (Sled, Zijdenbos et al. 1998). 

In addition, linear histogram matching is performed between each subject and a reference image 

to normalize the image intensities between subjects/scans to a range between 0.0 and 100.0. The 

reference image was created to represent the ageing population brain anatomy from the AD 

cohort using the unbiased template creation approaches proposed by Fonov et al. (2011). Finally, 

to correct for variation in head position, orientation and size, an initial 9 parameter linear 

registration (translation, rotation and scale) is computed to bring each subject into the ICBM152 

template stereotaxic space (Collins, Neelin et al. 1994). 

6.3.2. Longitudinal processing 

The subject-specific template is based on the work of Guimond et al. (1998, 2001), Joshi et 

al. (2004) and Fonov et al. (2011) where a template is created in two steps, first using linear 

registration  and second, using non-linear registration with a spatio-temporal regularization 

(section 2.2.3). 

Linear individual template  

In order to refine the alignment of individual images and estimate global whole brain scale 

factors between the consecutive visits, we perform a hierarchical iterative linear registration. 

Starting with the individual stereotaxic image average as the initial target, the linear individual 
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template ( ( )L vΦ ) is then defined as the intensity average of the B-spline (order 4) interpolated 

individual visit scans after affine registration. For each subject, a twelve parameter affine 

registration (Collins, Neelin et al. 1994), based on an intensity cross-correlation similarity 

measure, is performed between the time-points’ (t=[0..n]) and the subject-specific template 

volumes at 32, 16, 8 and 4mm hierarchical step sizes.  

Non-linear minimum deformation individual template 

A non-linear subject-specific template ( )NL vΦ  is estimated with an iterative approach, 

similar to the linear template, but using non-linear registration in order to estimate the local 

deformation between the visits and the individual template. To create ( )NL vΦ , a minimum 

deformation template (MDT) approach is used as described by Fonov et al. (2011). However, 

here the MDT estimation is modified to account for spatio-temporal regularity constraints 

(described in 2.2.3) and the implementation of the 4D constraints is done in the framework of a 

3D non-parametric vector field estimator using the Automatic Non-linear Image Matching and 

Anatomical Labeling (ANIMAL) procedure (Collins and Evans 1997).  

For the MDT, ANIMAL estimates the non-linear deformation field required to align two 

image volumes in a hierarchical manner, where the algorithm maximizes the local cross-

correlation of the blurred image intensity of the source image with the equivalently blurred 

image intensity of a target image. Starting from down-sampled images, the displacement vectors 

that best match the two images are stored at the nodes of a 3D grid, producing a dense 

deformation field. Then, the deformation field is upsampled and used to initiate the deformation 

at the next hierarchical iteration where the blurring kernel is reduced, and the deformation field is 

refined.  Details of the ANIMAL algorithm are described in (Collins, Holmes et al. 1995, Collins 

and Evans 1997). 

To satisfy the intensity constraint condition (eq.1) and the deformation constraint condition 

of (eq.2), we use an iterative approach. At each iteration, ANIMAL is used to map the voxels v 
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from the MRI of a subject at time-point t=[0..n], ( )vIt , to the current evolving estimate of the 

template ( )k
NL vΦ  at iteration k through a deformation transformation )(, v

k
t Φψ . This is followed 

by the removal of the bias (or mean deformation ( ),
0

n
k
t

t
vψ Φ

=
∑ )  to obtain )(, v

k
t Φφ (eq. 3) (thus 

enforcing the condition in eq.2) and calculating a new estimate of the template ( )1k
NL v
+Φ   (eq. 4).  

  ( ) ( )( )( ),

2

0
( ) argmin

t

n
k k k
NL I t

t volume

v v I v dvψ
Φ

Φ =

Φ = Φ −∑ ∫  Equation 6.1 

  
2

,
0
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n

k k
NL t

t volume

v v dvψ Φ
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  ( )( ),

1
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1( )
t

n
k k
NL t

t
v I v

n
ϕ

Φ

+

=

Φ = ∑  Equation 6.4 

In these equations, the operation  denotes concatenation of transformations, and X  denotes 

inversion of a transformation X. 

The algorithm is initialized with the individual linear template ( ( )L vΦ ). At each iteration k, 

Φ,tψ is the non-linear transformation required to map It  to k
NLΦ  which was obtained using 

ANIMAL. It is spatially constrained with a linear elastic body model while it minimizes the 

intensity difference of the paired images (i.e., between template and time-point images). The 

linear elastic body constraints are justified in such intra-subject registrations where very large 



 

158 

 

deformations are not expected. The parameters of the hierarchical non-linear registration are 

chosen to ensure that the transformation defined by the vector field is smooth, bijective and 

invertible (Fonov, Evans et al. 2009). The details of the iterative hierarchical schedule and the 

non-linear registration parameters for the 3D grid step size, image blurring kernel and similarity 

measure neighborhood size are summarized in Table 6.2. The registration schedule parameters 

are similar to Fonov et al. (Fonov, Evans et al. 2009) and ANIMAL is robust to changes in 

parameters by a factor of 2 (Collins and Evans 1997, Chakravarty, Bertrand et al. 2006).  

This subject-specific template creation process yields the non-linear deformations to map 

each of the subject time-points toward the template. By concatenating a forward transformation 

to the template and the inverse transformation toward a specific time-point, we can obtain the 

total non-linear transformation between two time-points transitively.  

Table 6.2: ANIMAL non-linear registration schedule. For each iteration, we define a step size as the distance 
between control nodes for the free-form deformation recovered. The blurring kernel is the size of the full-width-half-
maximum of the Gaussian kernel used to blur the source and target data. The local correlation which defines the 
local similarity is estimated in the neighborhood of diameter equals to the neighborhood size parameter. 

Iteration  Step size  
(mm)  Blurring kernel  

(mm)  Neighborhood size  
(mm)  

1  16  8  48  
2-3  8  4  24  
4-5  4  2  12  
6-7  2  1  6  
8-9  1  1  6  

 

The MDT algorithm described above is modified to include an additional constraint for the 

non-linear transformations between time-points. It is implemented as an additional regularization 
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step which is performed at each iteration of the template creation in the spatio-temporal domain 

in order to obtain a smooth non-linear deformation over time, since we expect the anatomical 

changes to happen in a slow and continuous fashion. We replace the individual time-point non-

linear registrations k
t Φ,ψ  with a continuous and smooth transformation field 

])(,...,)([),( ,,0
k
t

k
t n

vvtvT φφ ψψ=  where T(v,t) can be seen as the trajectory of voxel position v over 

time t. The proposed spatio-temporal regularization of the longitudinal deformation field is 

achieved  through the  following steps: 

First, we decompose the longitudinal deformation component of the transformation into a 

simplified Taylor series expansion of order 1 in space, where the higher order terms are 

neglected, which allows for spatial regularization, such as:  

  ( ) ( ) ( ) vtvTtvTtvvT Δ⋅ℑ+≈Δ+ ,,,  Equation 6.5 

This Taylor expansion presents the advantage of accounting for the longitudinal deformation 

(or temporal trajectory, ),( tvT ) as well as the longitudinal local variation (Jacobian matrix,

( )tvT ,ℑ ).  

Second, we want to regularize the trajectory ( ),( tvT ) to obtain smooth longitudinal 

deformations while preserving the longitudinal local variation of the Jacobian matrix ( )( , )T v tℑ , 

such as:  
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Equation 6.6 

To preserve the spatial consistency, we approximate the Jacobian matrix ( )tvT ,ℑ  from 

equation 6, by averaging across finite differences, such as: 

  T v+Δv, t( ) ≈ T v, t( )+ 1
Ωv

ℑT u, t( )
u∈Ωv

∑ ⋅Δv  Equation 6.7 

where Ωv  is the local neighbourhood centered on v. Thus, this approximation provides a 

spatially regularized longitudinal deformation and in our experiments, we found that a 3x3x3 

local neighbourhood was a good comprise between spatial smoothing and computational time.  

Simultaneously, we perform linear regression of the zeroth order term in eq. 5 in the 

temporal domain such as:  

  T v, t( ) ≈ T0 (v)+T1(v) ⋅ t  Equation 6.8 

where 0 ( )T v is the intercept and 1( )T v  is the slope of the linear regression. 



 

161 

 

Thus, we effectively perform spatio-temporal regularization of the set of deformations fields 

with a spatial regularization (eq. 6) and a temporal regression (eq. 8), such as: 

  T ∗ v, t( ) = T0 v( )+T1 v( ) ⋅ t +
1
Ωv

ℑT u, t( )
u∈Ωv

∑ ⋅Δv  Equation 6.9 

We use the resulting regularization procedure instead of eq. 6.3 in the MDT template 

creation.  

This approach presents the advantage of taking into consideration the longitudinal 

deformation at each voxel and at the local neighbourhood level by the means of the local 

Jacobian matrix and the explicit local voxel-wise regularization of the deformation field 

components. 

Individual template-based bias field correction 

Intensity non-uniformity may vary between longitudinal scans due to differences in field 

inhomogeneity (B1) and receiver coil sensitivity (Liang and Lauterbur 2000) as well as 

differences in the positioning of the subject inside the coil. As described by Holland et al. (2011) 

as well as Ashburner and Ridgway (2012), if uncorrected, these temporal intensity non-

uniformities could be detected as atrophy or growth with intensity-based non-linear registration 

tools. Therefore, inspired by the differential intensity inhomogeneity correction proposed by 

Lewis et al. (2004), we propose to use the intensity difference of the subject-specific template 

and the warped time-point image to estimate the smooth longitudinal inhomogeneity correction 

field with N3 (Sled, Zijdenbos et al. 1998). N3 iteratively sharpens the histogram of the image 

intensity difference by de-convolving Gaussian fields from the true signal, while using splines to 

represent the estimated bias field. During the iterative process of the individual template creation 

and after the spatio-temporal regularization, the image intensity difference of the subject visit      

( tI ) and the current template ( ( )NL vΦ ) is computed at each iteration after resampling tI  with 
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the transformation k
t Φ,

ψ . The bias field for each visit ( k
tβ ) is estimated from the differential 

image (eq. 10 and 11).  

  ( )( )( ))(
,3 i

k
Ii

kk
t

k
t vvIN

t
Φ−=

Φ
ψα  Equation 6.10 
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n

t

k
t

k
t

k
t n 0

log1exp ααβ  Equation 6.11 

Then the bias field is transformed back into the native time-point space to correct the residual 

longitudinal inhomogeneity of the source images for the following iteration (eq. 11). 

  ( ) ( ))()( ,
1

it
kk

t
k
t

k
t vvIvI Φ
+ ⋅= ψβ  Equation 6.12 

Optimization and convergence 

The non-linear template creation optimization is done at 5 hierarchical levels, starting with 

deformations estimated every 16, 8, 4, 2 and finally 1mm and the corresponding non-linear 

registration parameters are summarized in Table 2. At each level, the regularizations are 

performed consecutively in the order of equations 2, 9 and 3. An initial spatial regularization is 

applied to the subject visit-template deformation with a Gaussian kernel while for the spatio-

temporal regularization, the whole time series deformation set is constrained (eq. 9). In our 

implementation, different parameters of the spatio-temporal regularization can be adjusted. The 

neighborhood size of the Jacobian matrix computation can be increased to obtain smoother 

deformations.  
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In previous cross-sectional template creation studies, we found that 9 iterations are enough 

for the convergence of the iterative process at each hierarchical level (Fonov, Evans et al. 2011). 

In the case of individual template creation, the additional longitudinal regularization could slow 

down convergence but it is compensated by the anatomical similarity of the images being 

registered. We found in our experiments that 9 iterations are thus also sufficient to converge. The 

template, longitudinal non-uniformity correction and deformation fields estimated at one 

hierarchical level are all used to initialize the procedure at the next hierarchical level.  

6.3.3. Experiments 

Data 

Two neuroimaging datasets were used anonymously to evaluate the proposed algorithm. All 

subjects gave written informed consent at the time of enrollment for imaging and completed 

questionnaires approved by each participating site’s Institutional Review Board (IRB).  

Scan-rescan dataset 

First, to evaluate stability and potential bias, a scan-rescan database of 20 healthy subjects 

scanned 4 times within the same week (twice during a first session and twice again over 2 

different days) was used. Each subject was taken out from the scanner before getting back in for 

each rescan session. No volume change is expected for the subjects in this database. The T1-

weighted MRI images were acquired on a 1.5T SIEMENS MRI scanner with a 3D spoiled 

gradient echo (GRE) sequence (TR=22ms, TE=9.2ms, flip angle=30o, 1mm isotropic voxels).  

ADNI dataset 

Second, to evaluate the performance of the algorithm when changes over time are expected, 

we used data obtained from the ADNI database (adni.loni.usc.edu). The ADNI was launched in 
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2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and 

Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical 

companies and non-profit organizations, as a $60 million, 5-year public private partnership. The 

primary goal of ADNI has been to test whether serial MRI, positron emission tomography (PET), 

other biological markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of mild cognitive impairment (MCI) and early AD. Determination of 

sensitive and specific markers of very early AD progression is intended to aid researchers and 

clinicians to develop new treatments and monitor their effectiveness, as well as lessen the time 

and cost of clinical trials. More information about the ADNI investigators is given in the 

Acknowledgement section. 

To date these three protocols have recruited over 1500 adults, ages 55 to 90, to participate  

in the research, consisting of cognitively normal older individuals, people with early or late MCI, 

and people with early AD. The follow up duration of each group is specified in the protocols for 

ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO had 

the option to be followed in ADNI-2. For up-to-date information, see www.adni-info.org. 

From the website (www.adni.loni.ucla.edu/ADNI), ADNI-1 AD and normal controls (NC) 

subjects with 4 time-points (0, 6, 12 and 24 months) acquired on a 1.5T scanner that are part of 

the standardized set of subjects as described by Wyman et al. (2013) were selected. This 

selection yielded 155 NC (age average at baseline=76.0±4.9 years) and 98 AD patients (age 

average at baseline=75.3±7.3) that passed quality control (Jack, Bernstein et al. 2008). The 3D 

T1-MPRAGE images (TR=2300–3000, TE=/3–4 ms, flip angle=8–9°, section thickness=1.2 

mm, 256 reconstructed axial sections) with the following image pre-processing: gradient non-

linearity distortion correction (grad-wrap (Jovicich, Czanner et al. 2006)) and intensity non-

uniformity (N3 (Sled, Zijdenbos et al. 1998)) were used for subsequent analysis.  
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Metrics 

In order to evaluate the stability, regularity, continuity and bias of the proposed approach, we 

chose metrics based on ventricular, hippocampi and cerebral segmentations for each subject at 

each time-point. These structures were chosen since they have previously been used to represent 

the progression of neurodegenerative processes such as in MS or AD (Fisher, Rudick et al. 2002, 

Lewis and Fox 2004, Nestor, Rupsingh et al. 2008). For the methods described below, these 

structures were either (i) segmented locally using the patch-based technique proposed initially by 

Coupé et al. (2011) for hippocampus, for ventricles by Fonov et al. (2012) and for brain 

Eskildsen et al. (2012) combined with a Bayesian tissue classifier (Zijdenbos, Forghani et al. 

1998) to remove cerebrospinal fluid (CSF) from the initial brain mask to conserve only brain 

tissue; or (ii) data was downloaded from the “MRI image analyses” section of the ADNI 

website11F

12 as indicated below.  

Methods compared 

The proposed method is compared to seven other methods. Like the proposed method, the 

first two are based on the ANIMAL non-linear registration framework, while the five others are 

based on publicly available methods that include FreeSurfer, SPM12, QUARC, TBM and 

KNBSI12F

13. The eight techniques are identified as follows: 

• LIT: The longitudinal individual template is the new method proposed in this paper, 

with spatio-temporal regularization with an individual template. 

• IT: The individual template method is like LIT with longitudinal pre-processing using 

all time-points, but without applying the spatio-temporal regularization. 

                                                

12 www.loni.ucla.edu/ADNI 
13 http://sourceforge.net/projects/bsintegral/ 
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• CS: The cross-sectional method is based on ANIMAL, and uses direct linear 

registration (Collins, Neelin et al. 1994) of each time-point independently to the 

common stereotaxic space (MNI template) after intensity non-uniformity correction. 

CS, IT and LIT represent different levels of the pipeline stages as seen in Figure 6.2, thus 

enabling an evaluation of the contribution of the longitudinal processing and the spatio-temporal 

regularization steps. 

 

Figure 6.2: Longitudinal pipeline diagram. The different steps performed on each subject time-points are 
represented in the left part of the diagram, where the processes in the left small square represents the cross-sectional 
(CS) part of the pipeline. The individual template (IT) creation (linear and non-linear) is represented in the right side 
of the figure. 
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For CS, the structure segmentation was performed independently on the scan from each subject’s 

time-point and the volume change was estimated by computing the volume difference between 

the visits. In the case of the IT and LIT longitudinal approaches, only the subject-specific 

template was segmented and the estimated non-linear transformations were used to transform the 

segmentation to each time-point and estimate the Jacobian determinant. The volume change was 

estimated by integrating the Jacobian determinant within the regional structure masks for whole 

brain, ventricles and hippocampi.  

• FS: The longitudinal stream of FreeSurfer software (version 5.1) was chosen as it 

has shown better results for longitudinal analyses than the cross-sectional version, 

except for longitudinal whole brain measurement (Holland, McEvoy et al. 2012). FS 

provides structural segmentations of each subject time-point that are initialized by 

independent cross-sectional segmentations estimated from a linear individual 

template. For the scan-rescan analysis, the longitudinal version of FS was used to 

segment the hippocampi, lateral ventricles and brain. Briefly, FS processing included 

motion correction and averaging (Cheng, Edwards et al. 2010) of multiple volumetric 

T1 weighted images (when more than one was available), removal of non-brain tissue 

using a hybrid watershed/surface deformation procedure (Ségonne, Dale et al. 2004), 

automated Talairach transformation (Collins, 1994),  intensity normalization (Sled, 

Zijdenbos et al. 1998) and segmentation of the subcortical white matter and deep gray 

matter volumetric structures (including hippocampi, amygdala, caudate, putamen, and 

ventricles) (Fischl, Salat et al. 2002, Fischl, Salat et al. 2004).  For analysis of the 

ADNI data, we downloaded the appropriate values from the ADNI website (UCSF-

Longitudinal FreeSurfer (5.1), 2014/05/01) as we felt that these would have been 

optimally run by the authors. 

• SPM12: A unified model which combines intensity non-uniformity correction, 

linear registration and non-linear registration was proposed by Ashburner et al. 

(Ashburner and Ridgway 2012) and implemented in SPM12. Their method produces 
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a subject-specific template and uses the Jacobian determinants of the deformation 

map of the visit toward the template. As SPM12 does not create structure 

segmentations, our in-house segmentation tools were applied on the SPM12 subject-

specific template and the volume change was estimated by integrating the Jacobian 

determinant within the regional structure masks for whole brain, ventricles and 

hippocampi. SPM12 was run locally for the scan-rescan and ADNI data. 

• KNBSI: KNBSI (Leung, Clarkson et al. 2010) is based on the classic boundary 

shift integral (BSI) procedure (Freeborough and Fox 1997) and measures the tissue 

boundary displacement of a pair of images for the whole brain. KNBSI uses tissue 

specific normalization, k-means classifiers and specific parameters to account for 

large multi-site image intensity variability (in terms of SNR and tissue contrast 

differences). To account for the multiple tissue boundaries of the hippocampus, we 

used the double intensity windowing approach technique which estimates the 

boundary shift between CSF and grey matter as well as between grey and white 

matter (Leung, Barnes et al. 2010). For the scan-rescan data, KNBSI was run locally 

for all structures after applying our in-house differential bias correction as 

recommended by the author.  For the ADNI data, KNBSI data was downloaded from 

the ADNI site for whole brain and ventricles (Fox Lab, 2014-01-31), again to have 

optimally run values.  We ran double window KNBSI locally for the hippocampi, as 

these values were not available on the ADNI website.  

• QUARC: Quantitative anatomical regional change (Holland, Dale et al. 2011) 

estimates the volume changes over a region defined in the baseline image where the 

deformation is estimated by combining pair-wise forward and backward non-linear 

transformations with intensity normalization. As QUARC is not publically available, 

we did not use it in the scan-rescan evaluation.  However, for analysis of the ADNI 

data we downloaded QUARC results (UCSD, downloaded on 2014-06-01) from the 

ADNI web site.  
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• TBM: The tensor-based morphometry method proposed by Hua et al. (2013), first 

estimates the statistical properties of the Jacobian determinant of non-linear 

deformations used to map training subjects to a population template. Second, a group 

of voxels with a significant rate of atrophy as measured by the Jacobian (p<0.001) in 

the temporal lobes are defined as a region of interest (“stat-ROI”). Finally, a single 

measurement for each subject, of an independent testing set, is obtained by 

integrating the Jacobian determinant of the non-linear deformations to the identical 

population template within the stat-ROI. TBM is not publically available and was not 

evaluated with the scan-rescan data. TBM results for ADNI data were downloaded 

from the ADNI website (USC, 2013-11-17).  

Each image processing pipeline has a different level of robustness, and MRIs that do not pass 

quality control could adversely affect the estimation of statistical power.  Instead of a head-to-

head comparison, we decided to keep only datasets that passed visual quality control.  For the 

data downloaded from the ADNI website, quality control information was only available for FS, 

KNBSI, and QUARC data.  Subjects who passed quality control with the following arguments 

were kept for the power analyses: FS: QVERALLQC = “Pass” or “Partial”; for the ventricular 

KNBSI: BSI VENTACCEPT = 1, REGRATING ≤ 3, for KNBSI: KMNREGRATING ≤ 3; and 

QUARC QCPASS = 1. The final cohort number for each method is summarized in Table 6.3. 
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Table 6.3: Number of ADNI-1 subjects available from the downloaded results or that passed quality control and 
use for the power analyses for the different methods. 

Method  NC  AD  

CS  153  95  

IT  155  98  

LIT  155  98  

FS  152  96  

SPM12  98 60  

KNBSI  105  66  

QUARC  131  73  

TBM  115  73  

6.3.4. Statistics 

Variability and bias 

For the scan-rescan dataset, the percent volume change (VC ) and the absolute percent 

volume change (aVC ) were used respectively to evaluate bias and variability of structure 

volume (V ). For each structure of each subject at time-point t  of the n visits and the structure 

average volume (
1

1 n

i
i
V

n =
∑ ), VC  and aVC were estimated with the following formulas: 
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The significant differences between the match-paired segmentations were compared with a 

paired t-test for the VC comparison and a Wilcoxon sign-rank test for the aVC comparison. The 

Wilcoxon signed rank test was chosen over a paired t-test because the scan-rescan aVC values do 

not follow a normal distribution due to the use of the absolute value. 

For the longitudinal dataset, the percent volume change measures atrophy or growth using 

the baseline volume ( 0V ) as a reference such as: 

  
0

100* 1 t
t

VlongVC
V

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 Equation 6.14 

Power analyses 

For the longitudinal results, we use power analyses to estimate the required sample size to 

assess the interaction of treatment and time in a longitudinal study where smaller longitudinal 

variability will enable better detection of a potential treatment effect. Here, the volume change 

was estimated using a linear mixed-effect model (LME). Indeed, linear mixed-effect modeling 

has shown to be a powerful statistical technique to analyze longitudinal data (Verbeke and 

Molenberghs 2000). In this study, we used a simple LME of the volume changes ( longVC ) 

consisting of a temporal, time-point t  interval ( ItInterval ) and group (Group ) fixed-effects 

while subject ( I ) was chosen as random effects, such as: 
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  1 2( )It I It ItlongVC Group b Intervalβ β ε= + × + × +  Equation 6.15 

Power analyses, as described by Diggle et al. (2013) and applied in Reuter et al. (2012), for 

longitudinal analysis were performed to estimate the sample size. From the LME model 

estimation, the common variance (unexplained variability in longVC ), the correlation of the 

repeated observations, the number of time-points, the smallest meaningful difference in the rate 

of change between AD and NC to be detected (effect size), the power of the test (here we chose 

80%) and the within-subject variance of the time-points were used to compute sample size. 

Using the Diggle et al. (2013) formula, power analysis was performed using the R software 

package13F

14 with the lme414F

15 and longpower15F

16 library. The 95% confidence intervals of the 

estimated sample sizes were obtained from 1000 parametric bootstrappings of the LME model. 

The stability of LME model is influenced by the variability of the data as well as the number 

of time-points. Similarly, the power of the method is more influenced by the baseline and final 

time-point. Thus, only subjects with 4 time-points successfully passing the quality control were 

included for the power analysis (Table 6.3). 

  

                                                

14 http://www.r-project.org 
15 http://cran.r-project.org/web/packages/lme4 
16 http://cran.r-project.org/web/packages/longpower 
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6.4. Results 

Qualitatively, a general overview of the pipeline segmentation and individual template of one 

subject can be appreciated in Figure 6.3. Also, an example of individual template-based 

longitudinal non-uniformity intensity correction is depicted in Figure 6.4.  

 
Figure 6.3: Individual LIT template segmentations of an AD subject from ADNI. Axial, sagittal and coronal 

slices are presented with from left to right: A) Linear individual template, B) non-linear individual template, C) 
BEaST skull-stripped mask, D) brain mask, E) lateral ventricle mask and F) right (blue) and left (green) 
hippocampus mask. 
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Figure 6.4: Individual longitudinal template-based bias field correction of an AD subject from the ADNI 

database. From left to right: A) baseline time-point, B) individual linear template, C) baseline time-point and 
individual template intensity difference image (or A-B), D) bias field of the difference image (C) and E) the baseline 
image after correction of the longitudinal bias field (D). (Note the different ranges on the color bars.)  

6.4.1. Scan-rescan dataset 

The scan-rescan dataset should show no anatomical variability since the 4 MRI scans were 

acquired during a week. Figure 6.5 shows the brain, ventricle and hippocampi volume changes (

VC  and aVC ) for the cross-sectional (CS) and the longitudinal techniques (IT, LIT, FS, SPM12 

and KNBSI) for the repeated sessions. For VC  and aVC , the smallest structures present the 

highest volume variability. The method variability ranking is similar across structures excepted 

for FS and KNBSI, which show more variability for the lateral ventricles and the hippocampi 

measures.  

No significant bias was found when comparing the mean VC  of the different methods, as the 

mean VC values from all methods was centered on zero.  

When looking at the aVC , the longitudinal methods (IT and LIT) significantly reduce 

(p<0.02) the variability for all the segmented structures compared to the cross-sectional (CS) 

method. The longitudinal pre-processing and registration methods such as SPM12 and LIT result 

in smaller variability between successive sessions compared to CS, IT, FS and KNBSI. 

Furthermore, SPM12 and LIT methods significantly reduce the aVC for the ventricle 

segmentation (p<0.02). The mean aVC respectively for the brain, ventricles and left/right 
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hippocampi with the LIT approach are (in percent change): 0.093 (±0.073), 0.355 (±0.387), 

0.279 (±0.277) and 0.416 (±0.432).  

 
Figure 6.5: Brain, ventricle and left/right hippocampus percentage of volume change for the scan-rescan dataset 

for the different methods (CS, IT, LIT, FS, SPM12 and KNBSI). The significant difference (p<0.01) computed with 
a match paired Wilcoxon sign-rank are represented by a ∗  where the pairs are represented by the thicker horizontal 
lines.  

6.4.2. ADNI longitudinal dataset  

The identical cohort of subjects from ADNI-1 was used to evaluate the different methods, 

however, subjects scans failing during pipeline processing or absent at the time of method result 

publication were removed from the analyses and the final number of subjects analysed is 

summarized in Table 6.3.  

Smaller longitudinal variability should improve the statistical power to detect changes in an 

individual, and facilitate detection of group differences (treatment effects) and thus reduce the 
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number of subjects required for analysis in a clinical trial. In Table 6.4, we provide estimates of 

the different sample sizes required to detect a treatment effect that would reduce the annual AD 

atrophy rate by 25% for the different structures and methods. Table 6.4 also shows the annual 

atrophy rate for the different structures and methods. In general, amongst all methods compared, 

the LIT method requires a smaller number of subjects per arm for all treatment effect sizes for 

the brain and hippocampi measurements while KNBSI hold the smallest sample size for the 

lateral ventricles. 

Figure 6.6 shows the individual longitudinal whole brain, ventricular and hippocampi 

changes (or cumulative atrophy) for each group (NC in blue and AD in red) and are described in 

more detail in the following sections. 

 

 

 

 

 

 

 

 

Table 6.4: Sample size per arm needed to detect a 25% reduction in the annualized rate of brain, ventricular and 
hippocampus volume change at 80% power for the different methods, while taking into account the normal rate of 
atrophy. The smallest detectable difference in the rate of change between AD and NC (effect size) and the estimated 
annual atrophy rate for the different structures for normal controls (NC) and Alzheimer subjects (AD) are also 
provided with the range representing the 95% confidence interval obtained from parametric bootstrapping of 1000 
times.  (Table is on the next page)  
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Structure  Method Sample size per arm
[95% CI]  

Effect size in %/year
[95% CI]  

Annual atrophy rate in %  [95% CI] 

NC  AD  

Brain  

CS >1000 [- -] -0.11 [-0.21 -0.07] -0.78 [-1.14 -0.43] -1.24 [-1.71 -0.98] 

IT 146 [127 199] -0.30 [-0.37 -0.23] -0.68 [-0.90 -0.58] -1.87 [-2.05 -1.62] 

LIT 98 [56 135] -0.29 [-0.34 -0.25] -0.66 [-0.79 -0.58] -1.84 [-2.00 -1.71] 

FS 367 [248 551] -0.17 [-0.19 -0.13] -0.62 [-0.73 -0.49] -1.29 [-1.38 -1.11] 

SPM12 312 [90 524] -0.09 [-0.11 -0.06] -0.18 [-0.23 -0.14] -0.53 [-0.61 -0.47] 

KNBSI 117 [95 149] -0.21 [-0.23 -0.18] -0.70 [-0.76 -0.57] -0.17 [-1.59 -1.42] 

QUARC 278 [98 529] -0.17 [-0.22 -0.12] -0.61 [-0.71 -0.47] -1.29 [-1.44 -1.11] 

TBM 216 [98 320] -0.14 [-0.16 -0.11] -0.25 [-0.33 -0.17] -0.79 [-0.87 -0.73] 

Lateral  
ventricles  

CS 173 [127 271] 1.39 [1.05 1.56] 4.46 [3.78 5.39] 10.03 [8.81 10.80] 

IT 214 [141 305] 1.18 [0.93 1.37] 3.90 [3.16 4.62] 8.64 [7.40 9.59] 

LIT 148 [80 190] 1.30 [1.00 1.60] 3.86 [3.19 4.33] 9.04 [8.21 9.72] 

FS 199 [108 287] 1.51 [1.12 1.84] 4.53 [3.68 5.64] 10.57 [9.66 11.51] 

SPM12 145 [125 186] 0.89 [0.79 0.93] 2.36 [2.12 2.68] 5.93 [5.41 6.26] 

KNBSI 199 [153 281] 1.50 [1.09 1.81] 4.46 [3.63 5.48] 10.47 [9.34 11.34] 

QUARC 167 [23 225] 1.84 [1.54 2.39] 4.67 [3.15 6.05] 12.02 [11.47 13.44] 

Right  
hippocampus 

CS 240 [123 353] -0.58 [-0.68 -0.49] -1.48 [-1.74 -1.18] -3.81 [-4.19 -3.39] 

IT 131 [14 205] -0.57 [-0.74 -0.46] -1.09 [-1.28 -0.83] -3.38 [-3.87 -3.01] 

LIT 70 [52 90] -0.65 [-0.73 -0.57] -0.82 [-1.05 -0.55] -3.43 [-3.62 -3.18] 

FS 191 [70 294] -0.71 [-0.91 -0.52] -1.33 [-1.73 -1.08] -4.17 [-4.93 -3.60] 

SPM12 >1000 [- -] -0.04 [-0.10 0.02] -0.17 [-0.29 0.05] -0.35 [-0.56 -0.01] 

KNBSI 173 [67 280] -1.26 [-1.62 -0.87] -0.68 [-6.43 -4.90] -5.73 [-0.25 0.54] 

QUARC 130 [93 166] -0.59 [-0.65 -0.51] -0.98 [-1.16 -0.76] -3.32 [-3.55 -3.01] 

Left 
 hippocampus 

CS 219 [190 317] -0.62 [-0.68 -0.47] -1.44 [-1.93 -1.16] -3.94 [-4.27 -3.41] 

IT 91 [66 130] -0.60 [-0.69 -0.45] -1.10 [-1.35 -1.01] -3.48 [-3.83 -3.10] 

LIT 67 [43 88] -0.61 [-0.70 -0.52] -0.93 [-1.18 -0.77] -3.38 [-3.65 -3.20] 

FS 140 [71 167] -0.84 [-0.99 -0.78] -1.10 [-1.30 -0.78] -4.46 [-4.82 -4.33] 

SPM12 >1000 [- -] 0.02 [-0.05 0.06] -0.16 [-0.37 0.10] -0.08 [-0.30 0.05] 

KNBSI 194 [111 266] -1.07 [-1.28 -0.01] -0.94 [-5.67 -4.84] -5.23 [-0.07 0.35] 

QUARC 133 [83 203] -0.51 [-0.60 -0.37] -1.08 [-1.42 -0.75] -3.12 [-3.32 -2.73] 



 

178 

 

 
Figure 6.6: Longitudinal individual and linear mixed model with confidence intervals for the NC (blue) and AD 

(red) groups. Brain, ventricular and left/right hippocampi volume changes for CS, IT, LIT, FS, SPM12, KNBSI and 
TBM. Each thin full line represents an individual subject volume. Thicker lines represent the LME model for the 
respective groups while the shaded bands represent the 95% confidence interval on the mean model. 

Whole brain measurements 

With regard to the whole brain, the LIT method results in a sample size of 98 to detect a 25% 

change in brain atrophy, versus 146 for IT and more than 1000 subjects required for the cross-

sectional approach (CS). Furthermore, the LIT sample size is smaller than KNBSI (117) and 

TBM (216 subjects per arm). The LIT sample size range (56-135) overlaps with the following 

approaches: IT (127-199), KNBSI (95-149), QUARC (98-529) and TBM (98-320), however, 

LIT and IT provide a stronger effect size (-0.29 and -0.34) than these other methods. 

Regarding the individual trajectories seen in the spaghetti plots in Figure 6.6, LIT provides a 

more progressive and regular individual trend while preserving group differences. It is 

interesting to note that the local constraints on the Jacobian over time result in a structure-wide 

regularization. KNBSI and QUARC measurements show a reduced individual longitudinal 

variability as well, compared to CS, FS, IT and TBM.  
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Lateral ventricle measurements 

Among the different techniques tested, SPM12 and LIT yield the best power to detect a 25% 

reduction in lateral ventricular enlargement with only 145 and 148 subjects required per arm, but 

SPM12 show the tightest range (125-186 and 80-190, respectively). The LIT effect size is 

stronger than SPM12 with a value of 1.30 versus 0.89 to discriminate the ventricular growth rate 

change between AD and NC. The CS approach of our pipeline yields better performance than the 

IT method (173 and 214 subjects, respectively), but the LIT reduces this number to 148 subjects. 

When looking at the segmented lateral ventricle volumes in Figure 6.6, the trend of the 

observed ventricular enlargement is similar between the methods, but there is a net decrease of 

intra-subject variability for the longitudinal methods (IT, LIT, FS, SPM12, KNBSI and 

QUARC), as evidenced by spaghetti plots with more realistic, less chaotic changes over time. 

We can also appreciate with Figure 6.6 that the lateral ventricle volume changes are the strongest 

but also the more stable progression compared to other structures regardless of the method. 

Hippocampus measurements 

Among the different hippocampal methods tested, the LIT technique yields the best power to 

detect a 25% reduction in atrophy, with 67 subjects (left side) and 70 subjects (right side) 

required. When the temporal constraint is not applied to the deformations, the IT method requires 

91 and 131 subjects (left and right side, respectively) to detect the same change. The other 

methods require more than 100 subjects to detect the same potential treatment effect. The 

estimation of the LME for SPM12 did not converge well enough to perform power analyses. FS 

shows the stronger effect size (-0.71±0.20 and -0.84±0.15 for the right and left hippocampi) but 

the effect size variability is much larger than for LIT (-0.65±0.08 and 0.61±0.09). 

Figure 6.6 shows that the individual hippocampal trajectory variability is clearly decreased 

with the longitudinal methods, and in particular with IT, LIT and QUARC. 

  



 

180 

 

Jacobian determinant maps 

The concatenation of the transformation allows us to assess the total deformation between 

two specific time-points. Following this idea, Figure 6.7 shows the Jacobian determinant of the 

deformations estimated for the longitudinal methods (IT and LIT) for an AD patient. The IT 

Jacobian maps have multiple punctuate shrinking and enlarging regions within the ventricles that 

are not consistent with the notion of gradual ventricular growth that is relatively homogenous 

throughout the ventricle. By using a subject-specific template and the 4D regularization with the 

LIT methods (rightmost images), there are focal and consistent deformations that overlap well 

with the anatomy that is assumed to change with AD. Indeed, one can appreciate stronger 

temporal lobe atrophy detected with the LIT approach. 

 

Figure 6.7: Longitudinal deformation fields. Deformation fields from baseline to the 12 month time-point for 
the longitudinal approaches (IT and LIT) where red represent growth and blue atrophy for a randomly chosen AD 
subject. 
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6.5. Discussion 

In this article, we have presented a new approach for the estimation of individual longitudinal 

changes using individual subject-specific templates and spatio-temporal regularization. We also 

provide an unbiased framework for analysing longitudinal data where every time-point is 

processed with the same steps. A robust estimation of the deformations is obtained using an 

unbiased individual template approach, minimizing deformations between subject time-points. 

Meanwhile, a local spatio-temporal regularization is achieved with bi-linear regression of the 

deformation field and its Jacobian matrices. The regression of the decomposition enables a 

temporal regularization at a local voxel level. Furthermore, we compared our technique with a 

traditional cross-sectional approach, as well as recent powerful methods, FS, SPM12, KNBSI, 

QUARC and TBM. Longitudinal image analysis bias was assessed on a scan-rescan dataset, and 

power analysis to detect a potential treatment effect on an Alzheimer cohort was chosen.  

Longitudinal image analyses can be subject to bias in particular due to non-linear registration 

when an arbitrary reference image is chosen (Thompson and Holland 2011) or due to 

interpolation asymmetry (Yushkevich, Avants et al. 2010). 4D Hammer (Shen and Davatzikos 

2004) or non-linear registration such as Diffeomorphic Demons (Vercauteren, Pennec et al. 

2009, Lorenzi, Ayache et al. 2010) and ANTs (Avants, Grossman et al. 2006) require a reference 

image to be defined, therefore introducing possible bias. Symmetric interpolation and 

registration might not be sufficient to correct for bias when there are more than 2 time-points. 

The use of an individual template, as suggested by Reuter et al. (2012) showed no bias and our 

approach exploits this strength and adds non-linear registration to obtain a more accurate 

anatomical correspondence between time-points. Then, the individual template can then be use to 

segment brain structures directly and not only to initialize the segmentation as it is done in FS. 

By definition, our approach, using a longitudinal pre-processing to remove interpolation bias and 

an individual template for non-linear registration, is symmetric and transitive as it is similar to a 

“half-way” space registration approach (Smith, De Stefano et al. 2001). Indeed, the longitudinal 

pre-processing applies the same number of interpolations and removes the intensity inter-visit 
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non-uniformity. Furthermore, the non-linear registration is performed towards a common target, 

producing unbiased deformation fields that can be combined to obtain robust and transitive non-

linear deformations between time-points. However, the individual template estimation depends 

of the current set of subject’s time-points, thus the addition of new time-points will require to re-

estimate the individual template. In our experiments, we have demonstrated that the LIT method 

provides a more robust longitudinal measure on a scan-rescan dataset where no changes are 

expected. We have also found that by using individual subject-specific templates (IT, LIT, FS 

and SPM12), structure volume variability is decreased compared to the cross-sectional 

approaches like CS that uses a single common template (e.g., the ICBM152 model) for all 

subjects. Among the three longitudinal methods tested, the LIT and SPM12 demonstrated the 

least bias and the smallest variability in structure volumes which is expected are both methods 

apply a longitudinal regularization and therefore minimize the temporal variability.  

Experiments on ADNI data reveal increased stability in estimating individual changes over 

time compared to standard cross-sectional approaches. Indeed, the cross-sectional approach was 

chosen as reference method and allowed us to show an important improvement in the 

measurement of longitudinal change thanks to the longitudinal pre-processing (IT) and temporal 

regularization constraint (LIT). However other strictly cross-sectional approaches with 

independent time-point measures have showed to perform better in a similar study such as FS in 

Holland et al. (2012). 

The longitudinal regularization of the deformation at a local level reduces the longitudinal 

noise in volume estimation at the global/structural level, while the hierarchical iterative process 

produces a robust individual template that allows for better anatomical matching across time in 

an individual. An important aspect of longitudinal clinical and research studies is the cost of 

recruiting subjects and scanning them at multiple time-points. The proposed longitudinal analysis 

techniques will allow for better power to detect differences between groups, and thus will lead to 

the reduction of the number of subjects required for research and for clinical trials. Compared to 

the literature, where similar ADNI cohorts of AD and NC were used, our power analysis show 

similar sample sizes required to detect treatment effects for the FS, KNBSI, QUARC and TBM 
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approaches (Holland, McEvoy et al. 2012). The proposed temporal constraint (LIT), after 

longitudinal processing (IT), reduces the sample sized by a factor by approximately 50% for 

brain, 70% for the lateral ventricles and 50% for hippocampus. The temporal constraint from 

SPM12, developed to optimize longitudinal VBM, produces unbiased results on the scan-rescan 

dataset but might be over regularizing the longitudinal deformation to detect structural change on 

the ADNI cohort in this experiment. Indeed, it is important to mention that smoothing the 

temporal fluctuation could remove temporal artifacts, while it could also smooth real signal 

fluctuations. Within LIT, the bi-linear longitudinal constraint is only applied at a voxel level, i.e., 

the displacement of a point in the brain is constrained to move in a linear fashion over time. But 

the volume of the structure is not explicitly constraint the structure to continuously increase or 

decrease. This constraint results in global more continuous volume change which is not the result 

of an explicit constraint on the volume.  

Another interesting finding is that longitudinal pre-processing and individual template 

creation does not affect the longitudinal measurements of anatomical structures in the same 

manner. Indeed, structures such as the lateral ventricles with high contrast and less sensitive to 

bias field and distortion, resulting in a similar sample size for both longitudinal and cross-

sectional approaches. However, the spatio-temporal regularization is able to decrease the 

longitudinal variability of such structures and therefore reduce the sample size. 

We limited our comparison to publicly available methods and/or results on the ADNI-1 

cohort, but other methods have been developed and applied on real longitudinal data. The 

complexity and/or the computational cost of these methods (Durrleman, Pennec et al. 2009, Wu, 

Wang et al. 2011, Liao, Jia et al. 2012) may limit the application to large database such as ADNI. 

Wu et al. (2011) aligned all longitudinal images of a population toward a hidden common space 

equivalent to a template and it can be applied to a single subject. The individual longitudinal 

deformations or “temporal fibers” are estimated without any priors but regularized with a 

Gaussian kernel to preserve the continuity of the longitudinal deformation field. Similarly, 

Lorenzi et al. (2010) proposed to fit a linear model to constrain the longitudinal velocity fields of 

the subjects time-points in the Demons’ framework  with the baseline image used as a reference. 
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Despite the fact of their approaches being more general in modeling the deformations, the usual 

small number of time-points might limit the longitudinal continuity. 

Finally, the main focus of this article was to compare longitudinal regularization versus 

longitudinal pre-processing and cross-sectional approaches. Although we focused on whole 

brain, lateral ventricles and hippocampi, any other structures can be analyzed longitudinally as 

far as the individual template can be segmented. The longitudinal Jacobian determinant maps 

show interesting results to measure voxel-wise deformation individually with the spatio-temporal 

regularization. The deformation maps present plausible anatomical atrophies such as in gray 

matter and in temporal lobes as well as a uniform ventricular enlargement. The results are 

encouraging and hold the potential of voxel-wise longitudinal DBM of neurodegenerative 

diseases. 

6.6. Conclusion 

This study evaluated a longitudinal framework with spatio-temporal regularization of 

deformation fields and the creation of an individual 3D template through non-linear registration 

in the context of longitudinal neuroimaging studies. The experiments were carried out on scan-

rescan and ADNI datasets. In comparison with freely available and popular methods, the spatio-

temporal regularization (LIT) shows competitive results in regard to robustness, power and 

stability while reducing the number of subjects required to show statistical differences between 

groups. In addition, the LIT approach showed promising results for longitudinal DBM analysis 

and can be easily adapted to investigate specific anatomical biomarkers. 
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The main goal of this Ph.D. thesis was to develop the necessary longitudinal MRI workflow 

to quantify in-vivo morphological changes in neurodegenerative disease such as MS and AD. We 

designed methods to account for longitudinal intra-subject pathological variability and took steps 

to minimize methodological variability in atrophy measures. To achieve this objective, we 

proposed the following:  

• A method to detect and remove potential atrophic confounding such as focal 

pathology such as MS lesions which are sporadic and dispersed.  

• A method to assess and correct the methodological bias in non-linear registration 

algorithms. 

• A method to account for longitudinal image acquisition variability. 

In this chapter, before concluding, we summarize our main findings and, discuss the 

strengths, weaknesses, novelty and scientific impact of each four manuscripts, and prospective 

future work based on these thesis contributions. 

7.1. Automated focal pathology detection 

The first study of this thesis (Chapter 3) focuses on detecting focal pathology automatically 

such as MS lesions and was assessed on a clinical RRMS patient database as well as on an 

independent validation dataset, and compared to state-of-the-art methods. The results of the 
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proposed RMNMS approach show highly competitive results to automatically detect small to 

large lesions, and also to estimate the total burden of lesion load. 

One of the strengths of this work was to propose a simple and intuitive method to segment 

MS lesions from exemplar images. Manual MS lesion segmentation has been, and is still, 

considered as the gold standard approach to quantify progression of the focal pathology in 

clinical trials. Our approach proposed to simply exploit large dictionaries of manual segmented 

lesions to find similar local information within these library images when segmenting a new 

dataset. Furthermore, the simplicity of the algorithm allows a wide search for the most similar 

images in the anatomical library. This optimal search of most similar images and similar patches 

enables segmentation of images with different intensity features (i.e., different scanners, sites, or 

image acquisition parameters) which usually requires extensive training for unsupervised 

segmentation approach. Despite being acquired from different scanner manufacturers and 

different sites, the segmentation results showed homogenous results.  

Another interesting aspect for large multi-site clinical trials is the number of image contrasts 

required. While most MS lesions segmentation approaches require T1W, T2W, PDW and 

FLAIR images, we demonstrated that if enough examples are present in the library of images, 

only two modalities (T2W and FLAIR) are sufficient. This smaller number of image contrasts 

can reduce the cost of MRI acquisition per patient.  More importantly, this also reduces the 

scanning time for the patient, leading to the potential of better quality data as patients may have 

less fatigue and less movement artifacts. However, the strength of not requiring a model could be 

a weakness for the RMNMS method where large cohorts of pre-segmented subject data are not 

available. In our validation, we showed that 50 subjects is sufficient to capture the presence of 

most lesions. Therefore, exploiting the MSGC library of images, freely available from MICCAI 

2008, should provide similar results. 

While the article focused on MS lesions segmentation to demonstrate is capability, the 

algorithm could be directly applied to similar focal pathology segmentation such as white matter 

hyperintensities (WMH) lesion segmentation. Similarly to T2W-lesions in MS, WMH lesions are 
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bright on FLAIR images and are associated with degenerative changes of small vessels and 

implicated in the pathogenesis of cognitive decline and dementia (de Leeuw, de Groot et al. 

2001).  Such an application would require a training set of WMH lesions. 

Our lesion segmentation focused on WM lesions in MS while GM pathology can be equally 

or more extensive (Vercellino, Plano et al. 2005).  However, GM lesions have little contrast on 

conventional MRI and generally appear normal. Advanced imaging methods have been 

developed (i.e. double inversion recovery (DIR)(Geurts, Pouwels et al. 2005), and phase-

sensitive inversion recovery (PSIR)(Nelson, Poonawalla et al. 2007)) and have improved the 

detection of cortical lesions by 150-500% with respect to conventional MRI. Therefore, 

including the detection the focal GM pathology could lead to a better assessment of focal 

pathology.  Again, this application would require an appropriate training set of exemplar data as 

the only requirement to apply the proposed patch-based lesion segmentation technique. 

Further research should be devoted to the detection of lesions longitudinally, in serial data, 

which will enable assessment of disease activity over time. It is important to detect the evolution 

of MS lesions as it can be used as a marker of disease activity and as a potential surrogate for 

relapses (Guttmann, Kikinis et al. 1999). More importantly the relationship of acute, chronic and 

remyelinating lesions with respect to focal and diffuse atrophy is still not fully understood. 

Multiple approaches have been developed to detect MS lesions in longitudinal MRI data (Thirion 

and Calmon 1999, Prima, Ayache et al. 2002, Bosc, Heitz et al. 2003), or to detect the 

appearance of new lesions (Rey, Subsol et al. 2002, Elliott, Arnold et al. 2013). The bottleneck 

of these methods is still in the accurate initial detection of chronic lesions. Exploiting the high 

sensitivity of our cross-sectional segmentation approach could provide a good baseline reference. 

In the same multi-modal and rotation invariant NLM segmentation framework, the baseline 

image segmentation could be used to detect the new or disappearing lesions in follow-up images 

within an a contrario framework. In image segmentation, the a contrario segmentation consist in 

identifying a structure when is presence is too unlikely to happen by chance (Desolneux, Moisan 

et al. 2003). The purpose of this model is to detect outliers (e.g. new MS lesions).  The method is 



 

189 

 

composed of two main parts; namely a naive model (the baseline segmented image) and one or 

several measurements related to the structure to be detected.  

7.2. Focal pathology inpainting  

In the continuity of Chapter 3, we developed a new technique in Chapter 4 to replace affected 

tissues, such as MS lesion, with healthy appearing tissues in order which minimize their impact 

when estimating tissue deformation with the goal of improving the power to detect longitudinal 

MRI changes in MS. During the endMS 2013 conference (Guizard, Nakamura et al. 2013), we 

were the first group to propose using an exemplar-based MRI inpainting approach, which 

exploits the redundancy of normal appearing tissues to replace pathological tissues without any a 

priori. Previously, inpainting approaches in MS required tissue segmentation priors which can be 

difficult to obtain when diffuse tissue pathology is present, as is the case in MS.  

Although the method presented in Chapter 4 is applied in the context of MS lesion 

inpainting, the method could be applied to other white matter lesions such as the FLAIR WMH 

in AD. Moreover, the hierarchical strategy to inpaint large regions with the non a priori strategy 

could allow filing of large regions with different tissue types, as could be the case for tumor, or 

for tissue with implanted electrodes (e.g., in epilepsy or Parkinson’s disease) which can also 

affect standard image processing algorithms. Preliminary highly promising qualitative results can 

be appreciated in Figure 7.1, where the region delineated in green, has been removed and 

inpainted by our algorithm. 
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Figure 7.1: Example of simulated electrode and tumor inpainting results on T1W images with NLM inpainting 
algorithm. From left to right, the figure shows the original images, the region masked-out from the images and the 
NLM inpainting results. Note that the mask of the region being inpainted in overlaid on top of the image in red. 

For longitudinal processing, the method can improve the power of the popular SIENA and 

VIENA image analyses tools, which measure changes affecting the boundary of a ROI. 

However, further research should be conducted to assess the impact of lesion inpainting in the 

evaluation of focal morphological changes of the NABT. Indeed, the weakness of our validation 

is the lack of voxel-wise analysis of the inpainting algorithm in a longitudinal study (e.g., in a 

DBM or VBM study). With respect to inpainting impact on non-linear registration, Sdika et al. 

(Sdika and Pelletier 2009) evaluated the impact of their LWM inpainting approach on cross-

sectional non-linear registration from simulated inpainted lesions on healthy subject T1W images 

and compared the resulting deformation fields of the corresponding healthy subject T1W images. 

Their simulation is similar to the one used in our PSNR analysis, which could potentially be used 

to simulate MS lesions in longitudinal healthy subject MRI data. However, we believed that this 

kind of validation framework, inspired by Brett et al. (Brett 2001), is limited by the non-linear 

registration being used for the simulation where brain affected by lesions are registered to 

healthy brains. This limitation will be further amplified in longitudinal non-linear registration 

where other variability might affect the results as mentioned in Chapter 5 and Chapter 6.  
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Focusing on our ultimate goal to measure focal atrophy in a reliable manner, validating the 

impact of inpainting in longitudinal MRI data will require measuring the power to detect 

morphological changes at on a voxel-based level (Chételat, Desgranges et al. 2008). Such a 

validation was out of the scope of this manuscript, but preliminary results show a direct positive 

impact of lesion inpainting on the longitudinal non-linear deformation Jacobian determinant map 

of an individual (Figure 7.2). These promising focal atrophy measurement results should provide 

a better estimation of the longitudinal peri-lesional morphological changes.  

Figure 7.2: Longitudinal DBM analysis of an MS patient over a year interval with and without NLM inpainting 
of the MS lesions. Expansion is shown in orange and atrophy in blue. The red arrows point toward MS lesions 
location in the original image. 

Apart from requiring tissue segmentation, the main limitation of the different inpainting 

approaches, including ours, is the necessity of providing the ROI to inpaint. Because our 

approach is not tissue specific and is robust to “over” segmentation, the combination of our 

RMNMS lesion segmentation and the NLM inpainting would provide a fully automatic lesion 

detection and segmentation.  
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7.3. Non-linear registration symmetry 

In contrast with the manuscripts of Chapter 3 and Chapter 4, the focus of the study presented 

in Chapter 5 was to explore the intrinsic methodological bias and accuracy to detect brain 

atrophy in pair-wise non-linear registration. In this manuscript, we assessed the current most 

popular freely available method SyN and some variants of our in-house ANIMAL algorithm. 

The results demonstrated that symmetry is important to reduce deformation bias of the non-linear 

registration direction. In this study, we also proposed a symmetrization constraint applicable to 

any non-linear registration algorithm which provided unbiased non-linear registration.  

Pair-wise registration algorithms have been evaluated intensively, but for the first time, we 

evaluated their performance on scan-rescan and longitudinal MRI data. For the longitudinal 

evaluation, we chose to use AD instead of MS population because longitudinal AD datasets are 

now freely available (ADNI, OASIS, MIRIAD…) and they provide the necessary support to 

share the results for comparison between other groups as mentioned in Chapter 6. Furthermore, 

the lower amount of visible lesions on T1W images in AD reduces confounds for non-linear 

registration due to focal pathology. Indeed, the detection of small image changes such as lesion 

changes is a difficult task, while the appearance or disappearance of lesions can breach the 

expected one-to-one correspondence of the images being registered. The transformation model or 

the regularization of the non-linear registration, needs to account for this potential lack of 

correspondence or the image itself can be adapted as proposed in Chapter 4.  

ANIMAL regularization uses a Gaussian-based approximation of the linear-elastic 

deformation. While this regularization has shown its efficacy in numerous applications 

(segmentation, cross-sectional non-linear registration…), it can limit the convergence of the 

registration in the case of large deformations. In typical clinical study, the interval between 

baseline scan and the final follow-up for an individual is usually limited to a few years, thus 

large deformations are not expected in this time frame. However, future works should focus on 

integrating a more appropriate deformation model such as visco-elastic regularization to capture 



 

193 

 

potential large deformations. However, increasing the complexity of the deformation and 

improving the accuracy of the registration should maintain the symmetry and the regularity of 

the deformation fields. To obtain reliable DBM results, the deformation fields need to be 

plausible. Therefore, another approach could be to spatially weight the regularization kernel 

based on the current deformation fields (Commowick, Stefanescu et al. 2005), or based on the 

anatomy (or voxel’s intensity) of the image being registered using adaptive anisotropic filtering 

(Forsberg, Andersson et al. 2010). Inspired by the hallucination approach used for resolution 

enhancement (Baker and Kanade 2000), we propose to spatially adapt the regularization from the 

“source” image information using the NLM algorithm to estimate weights from the source image 

and apply them on the deformation field. Using the patch-based NLM estimator will allow us to 

attribute similar weights to the deformation vectors of similar anatomical regions on the “source” 

image. This hallucination principle was applied to Jacobian determinant maps and their 

corresponding anatomical T1W images in the context cross-sectional MS subject registration 

(see Appendix 7.A).   

The comparison different approaches on 60 subjects with baseline and 2 follow-up scans 

required a huge amount of computational resources to estimate the forward and backward non-

linear registration between all possible individual pairs. Despite being set to assess non-linear 

registration approach, the validation framework did not study the impact of image pre-processing 

in longitudinal pair-wise non-linear registration. Consequently, I initiated the development of a 

longitudinal pipeline which was initially presented during the MICCAI 2012 novel imaging 

biomarkers for Alzheimer disease (NIBAD) workshop (Guizard, Fonov et al. 2012). This 

challenge assessed the ability to detect brain atrophy in AD patients and normal controls and 

resulted in a contribution to an article currently in final revision (Cash, Frost et al. Submitted) in 

NeuroImage. The longitudinal pipeline uses a subject-specific individual template as described in 

Chapter 6 and as discussed in the following section. The approach is therefore symmetric and 

transitive by construction and we can exploit the non-linear registrations toward this individual 

template to obtain the full trajectory between all time-points. The use of a template can be seen 

as the equivalent of the principal behind the pair-wise half-way space registration approach.  



 

194 

 

7.4. Longitudinal non-linear registration 

The manuscript presented in Chapter 6 described a new approach to account for longitudinal 

variability due to intrinsic image variability. Embedded in the creation of an unbiased individual 

3D template from multiple time-points, we described our longitudinal pipeline that can account 

for image acquisition temporal variability. Compared to pair-wise approaches, this longitudinal 

workflow and the spatio-temporal regularization provided more stable longitudinal 

morphological measures that in term allows to better identify brain atrophy. The reasoning being 

that the simultaneous analysis of all the subject's time-points as an ensemble should decrease the 

intra-subject longitudinal measure variability. Indeed, we found that our longitudinal approach 

has shown to exceed cross-sectional and pair-wire approaches to detect morphological changes. 

The first finding of this manuscript is the importance of longitudinal pre-processing. In this 

manuscript, we corrected for different technical confounding factors in the image acquisition that 

could alter atrophy measurement. The proposed pipeline uses an iterative approach to create an 

individual template which aligns, removes distortion, normalizes images and removes image 

intensity bias of the subject time-points. Our pipeline has shown to produce accurate longitudinal 

measures and is currently used by many groups at the MNI (Dr. Andrea Bernasconi, Dr. Alain 

Dagher, Dr. Doug L. Arnold) but also internationally (Dr. Jan Krasensky, Charles University, 

Prague, Czech Republic). 

Moreover, the proposed approach follows individual brain changes over time at a voxel level 

(i.e., voxel trajectories) and sets the basis for longitudinal DBM analysis. As mentioned above 

(Section 7.3), the deformation field should not only provide good image matching but provides 

plausible deformation maps. This affirmation is even truer in the case of longitudinal 

deformation where, continuity of the deformation should adequately describe the longitudinal 

morphological changes. Furthermore, in neurodegenerative disease, such as MS, an important 

confounding factor of atrophy is the “pseudoatrophy” effect. This effect has been observed in 

anti-inflammatory clinical trials (i.e., interferon) where the whole brain atrophy rate is greater in 
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the treated group than in the placebo group in the first year, before reversing in the second year 

(Rudick, Fisher et al. 2000). The volume decrease is presumably due to resolution of 

inflammatory edema. The inflammatory activity has shown to not only affect global brain 

atrophy measure but also more local WM atrophy when subject to inflammation activity 

(Tiberio, Chard et al. 2005). Therefore focal inflammation could affect focal atrophy 

measurements. We believe that the proposed spatio-temporal regularization could compensate 

this focal pathological variation. Moreover, to account for focal pathology, we have combined 

the methods to segment and inpaint lesions (described in Chapter 3 and Chapter 4) to further 

minimize their potential adverse impact on the estimation of local deformations. Preliminary 

results on RR MS longitudinal atrophy measures using our spatio-temporal regularization 

framework have shown promising results and were presented at the ISMRM WM study group of 

2013 (see Appendix 7.B). To conclude on the longitudinal deformation field, Figure 7.3 provides 

an example of the potential of longitudinal DBM analysis performed with our in-house 

framework on AD, age-matched normal controls, and young MS subjects, where the annual 

atrophy of the three populations can be visualized. 

Further research should exploit our proposed longitudinal pipeline to characterize the 

relationship of global and focal atrophy in neurodegenerative diseases over time. Research 

should explore if focal atrophy occurs initially around a new lesion in MS or in specific regions 

in AD for instance, and if a second and more diffuse atrophy occurs globally or in the projection 

areas of the affected regions of the brain. However, DBM is limited to capture the micro-

structural changes thus limiting the sensitivity to accurately detect neurodegeneration dynamics. 

DBM of anatomical images should be associated with other MRI modalities such as MTR and 

DWI. For instance, using DWI could reveal brain tissues abnormalities as it is sensitive to micro-

structural alterations and therefore it can be used to estimate the diffusion directionality. 

Diffusion directionality is believed to describe various aspects of axonal injury such as 

demyelination, gliosis, and gross axonal degeneration. Additionally, correlating these measures 

with clinical variables (patient age, disability, disease type and duration) will provide further 

insight on the neurodegenerative diseases.  
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Figure 7.3: Longitudinal DBM annual atrophy rate of 103 AD, 161 age-matched normal control and 55 young 

MS subjects (red=expansion and blue = contraction or atrophy in percent). The annual atrophy rate was estimated 
over a period of 36 months and each individual atrophy rate was interpolated to the ICBM152 space before being 
averaged. 
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7.5. Conclusion 

In conclusion, in the context of neurodegenerative disease, I have developed the necessary 

methods to detect and remove pathological variability, remove intrinsic image variability and 

improve the methods to measure brain atrophy. In this thesis, the algorithms developed have 

been validated and shown to be reliable and robust. Thus, combining the developed workflow to 

measure focal brain atrophy appears to be a highly promising imaging marker for clinical trials. 

This work provides the necessary tools to better understand the origin and the diffusion of 

neurodegeneration, which will in turn provide an invaluable insight of the devastating 

neurodegenerative diseases. 
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Appendix 7.A: Poster presented at the OHBM Conference (2011) 

   



 

199 

 

Appendix 7.B: Poster presented at the WM study group workshop, ISMRM (2013) 
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