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Abstract

The phase field crystal (PFC) methodology models material solidification and

other transformations through the evolution of an atomic density field driven by

dissipative dynamics. PFC permits investigation of atomic scale processes on

dissipative time scales. Building on past PFC methodology, we develop and char-

acterize several new models of atomic scale material phase transformations that

were not possible with previous PFC modelling approaches. This thesis makes

several new contributions to PFC modelling. These are described below.

First, we develop a model of magnetism in materials by extending previous

models. This model couples the atomic scale PFC density field to a ferromag-

netic order parameter (the magnetization field). We base our model on the struc-

tural PFC (XPFC) formalism. Additional terms giving rise to magnetocrystalline

anisotropy are also included in the model. We characterize this anisotropy ana-

lytically for various crystal structures. Magnetic hysteresis is demonstrated and

characterized. Using this model we investigate the effects of external magnetic

fields on grain growth in a solidifying system.

Second, we introduce a new, computationally tractable, three-point interac-

tion term for PFC density fields. This interaction term energetically favours par-

ticular bond angles between nearest neighbour atoms, while retaining the overall

rotational invariance that permits PFC to model crystal formation in any orien-

tation. The primary motivation for this approach is to produce a PFC model of

graphene, a material which has proven difficult to model using the PFC formal-

ism. We show that this approach is capable of stabilizing triangle, square, and the

aforementioned graphene crystals. Moreover, we show that the defect structure

of the resulting polycrystalline graphene structures closely matches experimental
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results.

Last, we explore binary PFC models by retaining separate density fields for

each atomic species. This differs from the traditional approach of exploring such

systems through concentration and total density fields. We demonstrate the ver-

satility of this approach by constructing simple models, including a model of a

“salt-like” system, as well as one of an impurity species inhabiting the interstitial

sites of a solid lattice. Lastly, we examine a model of the chemical vapour de-

position (CVD) of graphene, which is being used to investigate the interaction of

carbon and hydrogen on the metal surface during the CVD process.

The major contributions of this work are: the development of new theory to

model consistent magneto-crystalline interactions; the introduction into the PFC

methodology of rotationally invariant three-point density correlations; and the de-

velopment of a new formalism to model binary systems based species densities,

allowing for local inter-species interaction, leading to specialized binary system

models not possible with previous continuum models.

iv



La méthodologie phase field crystal (PFC) modélise les matériaux en trans-

formation (solidification ou autre) à travers un champ de densité qui subit un pro-

cessus dissipatif. Elle permet d’étudier des processus atomiques à des échelles

de temps diffusives. Nous utilisons cette méthodologie pour développer et car-

actériser plusieurs nouveaux modèles, rendant possible l’étude de phénomènes

précédemment inaccessibles. Cette thèse fait plusieures contributions dans le do-

maine de la modélisation PFC, elles sont listées ci-dessous.

Nous commenons par développer un modèle de magnétisme dans les matériaux,

basé sur des travaux antérieurs par Faghihi et al.[Faghihi et al., Phy. Rev. E,

88:032407, 2013]. Notre modèle établit un couplage entre la densité PFC à

l’échelle atomique et un paramètre d’ordre ferromagnétique (le champ de magnétisation).

Basé sur le formalisme XPFC (surnommé ’PFC Structurel’) de Greenwood et

al.[Greenwood et al., Physical Review E, 83:031601, 2011], il inclut des termes

supplémentaires donnant lieu à une anisotropie magnétocristalline. Nous car-

actérisons cette anisotropie analytiquement pour diverses structures cristallines,

et démontrons la présence d’une hystérèse magnétique, que nous caractérisons

aussi. En utilisant ce modèle, nous étudions les effets de champs magnétiques

externes sur la croissance de domaines dans un système en solidification.

Deuxiémement, nous introduisons un nouveau terme d’interaction à trois points

viable numériquement pour les champs de densité PFC. Ce terme d’interaction fa-

vorise des angles de liaison particuliers entre les atomes voisins les plus proches,

tout en conservant l’invariance rotationnelle globale qui permet à la théorie de

modéliser la formation de cristaux dans n’importe quelle orientation. La princi-

pale motivation de cette approche est de produire un modèle PFC du graphène,

un matériau qui s’est avéré difficile à modéliser en utilisant le formalisme PFC
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habituel. Nous montrons que cette approche est capable de stabiliser des agence-

ments atomiques triangulaires (réseau hexagonal), carrés (réseau tétragonal) et les

cristaux de graphène sus-mentionnés. De plus, nous montrons que la forme des

défauts de structure dans notre graphène polycristallin correspond étroitement aux

résultats expérimentaux.

Enfin, nous explorons des modèles PFC binaires en conservant des champs

de densité distincts pour chaque espèce atomique. Cette approche diffère de la

méthode traditionelle de ces systèmes qui privillégie le plus souvent la concen-

tration et le champ de densité totale comme variables. Nous démontrons la poly-

valence de notre approche en construisant des modèles simples, y compris un

modèle à structure saline, ainsi qu’un modèle pour les impuretés qui habitent

les sites interstitiels d’un réseau solide. Enfin, nous examinons un modèle de

déposition chimique en phase vapeur (CVD) du graphène. Celui-ci sert à étudier

l’interaction du carbone et de l’hydrogène sur une surface métallique pendant le

processus CVD.

vi



Contents

Dedication i

Acknowledgements ii

Abstract iii

1 Introduction 1

1.1 Brief introduction to the phase field crystal model . . . . . . . . . 14

1.1.1 PFC dynamics . . . . . . . . . . . . . . . . . . . . . . . 16

2 Magneto-Crystalline Interactions 18

2.1 XPFC model of magneto-crystalline interactions . . . . . . . . . . 21

2.1.1 Ferromagnetic free energy density . . . . . . . . . . . . . 23

2.1.2 Alloy free energy density . . . . . . . . . . . . . . . . . . 24

2.1.3 Magnetostatics and electrostatics . . . . . . . . . . . . . . 24

2.1.4 Two-point correlation function . . . . . . . . . . . . . . . 25

2.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Equilibrium properties . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Amplitude expansions . . . . . . . . . . . . . . . . . . . 28

vii



2.3.2 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.3 Magnetic anisotropy . . . . . . . . . . . . . . . . . . . . 34

2.3.4 Small deformation limit and magnetorestriction . . . . . . 38

2.4 Numerical tests and applications of model . . . . . . . . . . . . . 45

2.4.1 Ferromagnetism in square polycrystalline order . . . . . . 45

3 Three Point Correlation Functions 52

3.1 Simplified density functional theory . . . . . . . . . . . . . . . . 55

3.2 Two-point correlations . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Three-point correlations . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Equilibrium Phase diagrams for different crystal structures . . . . 63

3.4.1 Triangular crystals . . . . . . . . . . . . . . . . . . . . . 64

3.4.2 Square crystals . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.3 Graphene crystals . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Poisson’s ratio of the three-point XPFC model . . . . . . . . . . . 69

3.6 Dynamics and simulations . . . . . . . . . . . . . . . . . . . . . 73

3.6.1 Polycrystalline 2D materials, defects and coexistence . . . 76

4 Binary Systems 82

4.1 Simplified density functional theory for a two-component system . 84

4.2 Form of the two-point correlation functions . . . . . . . . . . . . 87

4.3 Phase diagrams for two component systems . . . . . . . . . . . . 89

4.4 Special case studies of the binary model . . . . . . . . . . . . . . 92

4.4.1 “Salt-like” system . . . . . . . . . . . . . . . . . . . . . 92

4.4.2 Solid-gas system . . . . . . . . . . . . . . . . . . . . . . 95

4.4.3 Interstitial impurity system . . . . . . . . . . . . . . . . . 96

viii



4.5 Binary model of graphene-hydrogen surface interactions . . . . . 98

4.5.1 Properties of the model . . . . . . . . . . . . . . . . . . . 99

4.5.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Conclusion 104

A Computing Phase Diagrams 109

B Fourier Transforms in Polar Coordinates 122

C Convex Hulls 125

C.1 Description of convex hull construction algorithm . . . . . . . . . 126

C.2 Complete C++ implementation . . . . . . . . . . . . . . . . . . . 127

D Magnetoelastic Coupling Constants 149

E Three Dimensional Three-point 153

E.1 3D three point correlation . . . . . . . . . . . . . . . . . . . . . . 154

ix



List of Figures

2.1 Organization of the vectors of a reciprocal triangular lattice ac-

cording to modes. Dots represent reciprocal lattice vectors, cir-

cles connect vectors of equal magnitude, i.e. in the same mode.

To each mode an amplitude ϕk is assigned. . . . . . . . . . . . . 29

2.2 Amplitudes of the first three modes in Eq. 2.19 as a function of ϕ0

with σ = 0.12, for the case of a single-peaked XPFC correlation

with k1 = 2
√
2π, 1/(2ρiβi) = 1/24

√
2, and t = v = 1. . . . . . . 32

2.3 Free energy as a function of ϕ0 for σ = 0.12. The other param-

eters are the same as described in Fig. 2.2. Note the kink at the

liquid-solid transition. . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Phase diagram for the magneto-XPFC model, showing coexist-

ing liquid, BCC and FCC phases, as well as paramagnetic and

ferromagnetic phases. Parameters are α2 = .001, rm = .025,

ωm = 0.25, and γm = 1. Generated using five modes (N = 5). . . 34

2.5 Hysteresis loop for a single two dimensional square crystal. Sys-

tem parameters are as stated at the beginning of the section with

σ = 0.04, n0 = 0.05, and (α2, α4) = (0.001,−0.01). . . . . . . . 46

x



2.6 Plot of magnetization components mx and my versus time (t) for

the hysteresis loop in Fig. 2.5. Note that the magnetization re-

verses by rotation of the magnetization vector. . . . . . . . . . . 48

2.7 Randomly oriented crystal seeds growing under the influence of

an external field. Arrows indicate the orientation of the seed crystals. 49

2.8 Comparison of initially identical systems grown under an external

magnetic field (left) and no field (right). Crystal grains aligned

with the x-y axes (such as A and G) have their easy axes aligned

with the external field, and grow at the expense of those that are

not aligned (such as D). . . . . . . . . . . . . . . . . . . . . . . 50

2.9 Difference in power spectra of polycrystalline solid grown in an

external field (Pex) and no external field (P0), respectively. . . . . 51

2.10 Difference in power spectra of polycrystalline solid grown in an

external field at late (Pl) and early (Pe) times, respectively. . . . . 51

3.1 Two-point correlation function in real space. . . . . . . . . . . . 57

3.2 Plot of −2RJ1(r0k)/(r0k) in units of k/r0. . . . . . . . . . . . . 58

3.3 Triangular-disorder phase diagram using only two-point correla-

tions (X = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Triangular-disorder phase diagram using two and three-point cor-

relations, with m = 6 and R = 6. Here r0/a0 = 0.70785. . . . . 65

3.5 Square-disorder phase diagram using two and three-point correla-

tions with m = 4, R = 5 and r0/a0 = 0.81736. . . . . . . . . . . 66

3.6 Graphene-disorder coexistence phase diagram, with m = 3 and

R = 6. Here r0/a0 = 1.2259. . . . . . . . . . . . . . . . . . . . 70

xi



3.7 Density fields of triangular (a and b), square (c and d) and graphene

(e and f ) phase growth, showing early (left) and late (right) times

during solidification. Systems are initialized with gaussian den-

sity fluctuations. For all three systems ϕ0 = 0.3 and values of

r0/a0 match those in Table 3.1. For (a and b), R = 7 and X = 0.

For (c and d), R = 6 and X−1 = 0.5. For (e and f ), R = 6 and

X−1 = 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.8 Comparison of simulated and experimentally determined defect

structures of polycrystalline graphene. The defect structure of

Figure 3.7(f ) is highlighted in (a). The grain boundary is resolved

by a line of 5-7 defect structures. These defect structures match

those found experimentally in polycrystalline graphene membranes

grown by chemical vapour deposition (CVD) [102]. (b) shows an

atomic resolution transmission electron microscope (TEM) im-

age of one such graphene membrane; the defect structure is high-

lighted in (c). (b) and (c) reprinted by permission from Macmillan

Publishers Ltd: Nature [102], copyright 2011. . . . . . . . . . . . 79

3.9 Simulation of coexistence between the ordered and disordered

phases of graphene. Density field n(r) of the equilibrium interface

between phases shown in (a). Smoothed average density along the

longitudinal axis depicted in (b). Here, X−1 = 0.5, R = 6. Av-

erage densities of 0.057 and 0.134 in the disordered and ordered

phases respectively match closely the theoretical values from the

phase diagram in Figure 3.6. . . . . . . . . . . . . . . . . . . . . 81

xii



4.1 Density fields of three two component systems, with the compo-

nent densities A and B coloured red and green, respectively. (a)

shows a salt-like system where A and B atoms are attracted to

each other but not themselves. (b) shows a system where A atoms

form a solid, B atoms favour remaining disordered, but A and B

atoms repel each other. (c) shows a system where the disordered B

atoms favour dispersing within the lattice of the ordered A atoms.

The details of the models used to simulate these three situations

are discussed further below. . . . . . . . . . . . . . . . . . . . . 88

4.2 Free energy plot as a function of density. The red line is the co-

existence line, where one phase decomposes into two phases of

density n1 and n2. As the average density moves from n1 to n2,

the system remains in coexistence at these endpoints, however the

volume fraction changes from {v1, v2} = {1, 0} to {v1, v2} =

{0, 1}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Replacing the free energy plot with its convex hull. The convex

hull represent the true equilibrium free energy of the system. . . . 92

4.4 Early (left) and late (right) density evolution for the “salt-like”

binary system. The density nA is indicated in red, and nB is indi-

cated in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Phase diagram for the “salt like” toy system (Figures 4.1a and

4.4). The two lines indicate the coexistence region. For all points

in the phase diagram nA = nB = n. The strength of the interac-

tion is determined by s. . . . . . . . . . . . . . . . . . . . . . . 94

xiii



4.6 Phase diagram for the second system (Figure 4.1b), with αij =

1.5, aij = 1, RBB = ABB = AAB = 0, RAA = AAA = 6 and

RAB = 2. Grey lines indicate coexistence tie lines. Species B is

always disordered. . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.7 Early (left) and late (right) density evolution for the gas-solid sys-

tem. nA indicated in red, nB indicated in green. For this simula-

tion, we took nA = nB = −0.5. . . . . . . . . . . . . . . . . . . 97

4.8 Separated density fields of the steel-like system. (a) shows both

densities together, with nA in red and nB in green. (b) shows nA

by itself. (c) shows nB by itself. Note that the nB field is attracted

to grain boundaries and other defects in the nA crystal. . . . . . . 98

4.9 Phase diagram for the graphene-hydrogen system, with a = b =

1 in the hydrogen-carbon interaction term and R = 6, X−1 =

0.4, B = 0.125 in the graphene three-point correlation function.

The grey lines indicate coexistence tie lines for the graphene and

disordered phases. Species B (“hydrogen”) is always disordered. 101

4.10 Results of the graphene-hydrogen model. (a) shows the carbon

density, nA, and (b) shows the hydrogen density, nB. Note the

attraction of the hydrogen atoms to the grain boundaries of the

graphene. nA = 1, nB = −2, R = 4.5, X−1 = 0.35, and a = 2

and b = 0. Results courtesy of Kate Elder. . . . . . . . . . . . . 103

xiv



List of Tables

3.1 The ratio of r0 to a0 for various two dimensional crystal lattices.

K1 is the reciprocal lattice vector of the first mode of a crystal

structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Measurement of elastic coefficients for various system parameters

for the three-point graphene system. Results obtained using an

eight mode amplitude expansion. R = 6 and u = 0.01 for all

entries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Summary of system parameters for the three systems described. . 98

xv



Chapter 1

Introduction

Advanced materials are a crucial part of modern economies. Manufacturing in

sectors such as aerospace, automotive, microelectronics, and energy, to name a

few, is critically dependent on the development of advanced materials with im-

proved properties. Examples include metal alloys for green transportation and

microelectronic components or metal oxides for improved energy storage. Funda-

mental to the discipline of material science is that a solid state material’s macro-

scopic properties depend intimately on its underlying microstructure. For exam-

ple, yield strength of metals depends on grain size and defect distributions. Re-

liability of metal interconnects in nano-electronics depend on the interaction of

electrons with grain boundaries and voids. Coercivity in ferro-magnetic materials

is directly controllable by the grain size and crystalline anisotropy of a material.

Many more examples abound in the materials science and materials engineering

literature. The theme in most cases is the same: the evolution of microstructure

in a solid is ultimately the result of non-equilibrium thermodynamic processes at

play during its initial phase transformation from the liquid state, and its subsequent
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processing. As a result, understanding materials and their properties necessitates

understanding the fundamental physics of mesoscale patterning in materials—

often inappropriately referred to under the blanket name of “microstructure”—and

how this is influenced from microscopic physical principles.

While the final material microstructure of a material can be examined through

various forms of microscopy (such as electron, atomic force, transmission elec-

tron, or scanning tunnelling microscopes) as well as through X-ray and neu-

tron diffraction, the dynamical evolution of microstructure processes is difficult

to examine in-situ experimentally, particularly in metals where the solidification

thermo-mechanical processing occurs at high temperatures. Even in cases where

experimental observation is achievable, predicting the causal connections between

a process and resulting microstructure is typically not possible without some the-

oretical connections to guide the causal connections between experimental mea-

surements and materials parameters.

Due to this difficulty of examining microstructure evolution experimentally,

modelling the process of microstructure evolution plays an important complimen-

tary role to experiments in material science. In order to model microstructure

phenomena over the relevant time and length scales—that is, the dynamics of

atomic ordering and defect formation on the atomic scale and their emergent ef-

fects on the mesoscale, under the influence of thermodynamic forces—theoretical

models are required that can bridge the gap between the physics of atomic scale

effects and long wavelength pattern formation that defines microstructure over

diffusional time scales. The most fundamental level of theoretical modelling re-

volves around first principles methods, which are concerned primarily with elec-

tron band structure and the chemistry of bonding or with electron conduction.
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On a slightly higher scale is molecular dynamics (MD), which examines atomic

length scales very accurately for a range of nanoscale systems at short time scales

(on the order of the Debye frequency). MD has been instrumental in elucidat-

ing the kinetic and capillary properties of the interface such as the surface en-

ergy and its anisotropy[1, 2]. These are quintessential in free boundary models of

solidification[3]. However MD is not presently capable of simulating mesoscale

phenomena on diffusive time scales that characterize materials phenomena such as

crystallization, grain coarsening and dislocation dynamics out to experimentally

relevant time scales.

Another very promising modelling paradigm that has emerged in the past 20

years or so is that of phase field models. The original phase field models were

extensions of Ginzburg-Landau type models that demonstrated that simple free

energies based on symmetries of a material could describe all the essential qual-

itative physics of first and second order phase transitions [4, 5, 6, 7]. Phase field

models describe a system in terms of smooth order parameters that vary spatially

on the atomic scale of a solid-liquid or solid-solid interface. They are also cou-

pled to other thermodynamic fields such as temperature, impurity concentration,

strain fields, etc. As such, they are excellent at capturing the salient physics of

microstructure evolution problems governed by the competition of mass and heat

diffusion, interface energy, and elastic strain energy[4, 5, 6, 8, 9, 10, 11]. They

have long ago been shown to capture the properties of higher length scale free

boundary problems of solidification in the limit where there exists sufficient sep-

aration between the model’s solid-liquid interface—often treated as a computa-

tional parameter—and the capillary length[12, 13]. More recent advances have

also used matched asymptotic analysis to quantitatively map phase field models
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onto engineering sharp interface models of solidification in the limit when the in-

terface is of the same order or even greater than the capillary length[14, 15, 16].

This made the results of phase field modelling, for the first time, quantitatively

comparable to experiments[15, 17, 18, 19, 20].

Since traditional phase field models are usually formulated in terms of fields

that are spatially uniform in equilibrium, they suffer from a very important draw-

back in that their use precludes from study physical features and materials pro-

cesses that arise on the atomic scale, specifically, due to the periodic nature of

crystalline phases. This preclusion includes elastic and plastic deformation, anisotropy

and multiple orientations. Traditional phase field models have typically gotten

around this problem in Ginzburg-Landau type phase field models by adding one or

more auxiliary fields in order to describe atomic scale phenomena effectively, by

adding fields describing the distribution of dislocations[21, 22], continuum strain

and stress fields through a material[23, 24] or the orientation of crystal grains[25,

26]. Another class of phase field models used in the materials science literature

these days defaults to a simple use of multiple order parameters to described a

specific crystal orientation. This goes back to the work of Khachaturyan[27],

where a discrete set of orientations was to be described, which corresponded to a

discrete set of solid-state precipitate orientations in a parent matrix phase. This

approach has also worked its way into solidification studies since its inception,

where multiple order parameter or “phase fraction” fields are ascribed to different

orientations in polycrystalline solidification[22, 25, 28, 26, 29, 30, 31, 32]. Be-

yond being computationally intensive, this approach is physically inconsistent as

it breaks rotational invariance. This approach also precludes a consistent descrip-

tion of nucleation. As a result, such models are only appropriate for the study
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of select problems involving a few crystals at pre-defined orientations. More-

over, such so-called multi-phase field or multi-order parameter approaches, like

all phase field models, require that one know the free-boundary conditions gov-

erning the growth of microstructure in order to tune most of their parameters. This

is simple enough to do in traditional solidification problems, but indeed, problems

involving the interplay of interface kinetics, elastic and plastic energy, and large

density changes don’t even have a corresponding sharp interface models.

A new extension to phase field modelling has emerged in the past 12-15 years

known collectively as phase field crystal (PFC) models[33, 34, 35]. This method-

ology describes the evolution of the atomic density of a system according to dis-

sipative dynamics driven by free energy minimization. In the PFC approach, the

free energy functional of a solid phase is minimized when the density field is pe-

riodic. As shown in Refs. [33, 34], the periodic nature of the density field, and

the rotational invariance of the free energy, naturally gives rise to elastic energy

in solids, multiple crystal orientations and a proper accounting of misorientation

energy, the nucleation, motion and interaction of dislocations, and multi-phase nu-

cleation. While these physical features are included in other atomistic approaches

(such as molecular dynamics), a significant advantage of the PFC method is that,

by construction of its dynamical equations of motion, it operates on diffusive time

scales and not on the prohibitively small time scales associated with atomic lat-

tice vibrations. From its earliest applications to pure materials, the PFC approach

was shown to model a wide range of phenoma[33, 34] dominated by atomic scale

elastic and plastic deformation effects, including grain boundary interactions, epi-

taxial growth and the yield strength of nano-crystals. Following its phenomeno-

logical introduction and demonstration in single component (i.e. pure) materi-
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als, the PFC model was somewhat formalized when it was shown to emerge as

a simplification of classical density functional theory (cDFT), truncated to two-

point particle correlations[35]. In the same work, the application of cDFT to two

fields, each representing a different elemental alloy component, was also shown

to lead to a simplified alloy PFC model, wherein a PFC density field describ-

ing the total mass density was coupled to a concentration field[35] (a similar ap-

proach was concurrently proposed by Jin and Khachaturyan[36]). Recently, the

original PFC has been augmented with long wavelength multi-point correlations

to model triple-point materials and problems relevant to CVD processes in pure

materials[37] and alloys[38].

Structure in the original PFC models arises through a single-peaked fourth-

order polynomial correlation function in k-space, which allowed only simple struc-

tures to be modelled realistically. For example, in two dimensions these models

could produce triangular crystal structure and in three dimensions, body-centred

cubic (BCC). While it was later found by Jaatinen et. al [39, 40] that face-centred

cubic (FCC) and hexagonal closed-packed (HPC) structures were possible in three

dimensions, transforming from FCC to HCP was only possible through a change

of average density, not temperature. Moreover, the original PFC free energies re-

produced equilibrium phase diagrams that were experimentally realistic only in

small regions of their phase space (average density for a pure material, concen-

tration for the binary alloy, and the models’ temperature parameter). A new type

of PFC model called the structural phase field crystal model (XPFC) was devel-

oped after 2010 to address these shortcomings of the original PFC approach[41].

In XPFC modelling, two-point particle interactions were modelled entirely in

Fourier space by using two-point correlation functions consisting of a family of
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Gaussian peaks, located at the positions of the reciprocal space peaks of the lat-

tice (or lattices) of interest. Specifically, one Gaussian peak is included for the

main reflection from each family of lattice planes for the crystal structure of in-

terest. The height of each peak is modulated by a Debye-Waller like coefficient

that scales with a model parameter that represents temperature in some way. By

controlling the heights of these peaks, most metallic crystal structure relevant to

metals could be stabilized from a liquid. The original work of Ref. [41] was for a

pure material. This was later extended binary alloys[41, 42], and then to general

multi-component materials by Ofori-Opoku et al.[43].

In the XPFC approach, controlling the positions of the two-point correlation

peaks makes it possible to very easily model the nucleation and growth from a

liquid of triangular and square lattices in two dimensions and FCC and HPC in

three dimensions. In a pure material, this can be done either through a temper-

ature quench or by increasing the density of the system. In addition, it is pos-

sible to model solid-state transformations. As an example of this feature, it is

possible to examine nucleation and growth of a polycrystalline triangular solid,

from which square lattice precipitates emerge through heterogeneous nucleation

at triple junctions and dislocations. This is possible though processes that change

either temperature or density. In the alloy XPFC model, such changes can be in-

duced through by varying the concentration of solute(s). By controlling the width

of the Gaussian peaks, it is also possible to model different material parameters,

such as elastic coefficients or solid-liquid surface energies. XFPC represented

the first time that phase field type models could look at phase transformations that

captured both mesoscale structure (grain size distributions and orientations, solute

segregation) and atomic scale effects (a wide range of crystal orientations, grain

7



boundaries, anisotropic elasticity, dislocations and atomic scale nucleation) un-

der one formalism. For example, Berry et al. showed that a sufficient number of

peaks in the XPFC correlation function can control the stability of stacking faults

and partial dislocations in FCC materials[44], in addition to the usual long-lived

dislocation structures. Using a two-peaked XPFC model also captured the physics

of diffusion-controlled Cobble creep in polycrystalline 3D FCC materials[45].

The multi-component XPFC model of Ofori-Opoku et al.[43] also predicted the

mechanism for precipitate nucleation through a process of dislocation-mediated

solute clustering in two and three dimensions. This work predicted that embry-

onic precipitates become post-critical in size due to the strain energy of assembled

dislocations[46, 47], findings that were later verified by electron microscopy work

in Al-Cu and Al-Mg-Si.

The above examples suggest numerous interesting areas of future applications

for XPFC modelling. One in particular is in the area of microstructure engineer-

ing. In traditional materials this is done almost exclusively by thermal and me-

chanical processing of grain structure by the processes of solidification, precipi-

tation and recrystallization. This typically leads to indirect control of microstruc-

ture. Another candidate avenue for controlling grain structure is to couple the

crystalline anisotropy in the lattice of a material to external fields. One of the

most promising classes of materials for which this can happen is ferromagnetic

and ferroelectric materials. While this can be coupled to molecular dynamics, the

short time scale of MD precludes any long-time study of how external fields can

influence crystalline anisotropy and grain size selection. The diffusional times

scales accessed by PFC models, and the complexity of crystalline structure and

elastic anisotropy that can accessed by XPFC in particular, makes a study of mi-
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crostructure pattering in ferromagnetic and ferroelectric materials an interesting

avenue of future investigation.

Further to new applications of XPFC modelling, it is also instructive to con-

sider avenues of study that lead to improvements this methodology. Specifically,

XPFC models, and indeed, the broader class of PFC models, have several short-

comings that remain presently unsolved, and which must resolved for the for-

malism to be made more physically consistent. For example, it is not clear if it

is possible to describe the emergence of complex non-metallic structures solely

from two-point interactions, or whether higher-order multi-point correlations are

required. A case in point, and one that is quite timely in the materials science

community, is that of graphene, a non-metallic two dimensional allotrope of car-

bon exhibiting a honeycomb lattice. Recent work by Ref. [48] has shown that

graphene and Kagomi lattices and grain boundaries can be stabilized from a PFC

model which, analogously to XPFC, uses multiple two-point correlation peaks in

the free energy. However, that approach precludes the possibility of stable co-

existence between graphene and a disordered phases such as a vapour or liquid,

a crucial feature for modelling growth of graphene by chemical vapour deposi-

tion (CVD). These authors also recently developed a two-component PFC model

with two-point interactions wherein two triangular lattices interact to stabilize a

suite of very interesting 2D phases/defect structures, including a graphene-like

honeycomb lattice[49]. However, this approach only allows graphene-disordered

coexistence along a line of equal amounts of A/B components, and represents the

honeycomb lattice with equal substitutional constituents of A and B, both condi-

tions being unsuitable to study CVD graphene. Other problem areas with current

XPFC models involve the structure of some exotic solid state defects. As shown
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in the work of Berry et al.[44], the large number of XPFC peaks needed to sta-

bilize stacking faults in FCC materials adversely affect the stability, and thus the

efficiency, of dynamical simulations of the XPFC model. Indeed, it was shown

that in order to stabilize stacking faults, it was necessary to use a few low-k, but

broad, XPFC peaks, but this essentially transformed the XPFC model into the reg-

ular PFC model, and thus lost control of the desired features of the XPFC: stability

of crystal structure, elastic properties and robustness of phase coexistence.

Another problematic feature of present XPFC models (and also PFC models

in general) regards density changes in multi-component or alloy systems. Most

XPFC and PFC models have used the atomic density field to distinguish between

periodic and uniform phases, and concentration to stimulate the phase changes;

local changes of density are typically ignored or at best are present in some im-

plicit but uncontrolled way. Fixing the phase diagram in concentration-density-

temperature space is a crucial feature for working in the Helmholtz representation,

where pressure changes through the concentration-temperature phase diagram,

as shown by Jugdutt et al.[50] in their examination of the equilibrium proper-

ties of alloy interfaces in the XPFC model. Furthermore, dynamical simulations

in the PFC literature have largley ignored local average density change, making

them physically inconsistent. The two issues of density change are essential for a

proper description of hot tearing during of rapid solidification of confined liquid

volumes[38]. Part of the lack of a consistent treatment of average density changes

in PFC modelling lies in the lack of an efficient methodology for determining

phase diagrams in density-concentration-temperature space. Another lies in in the

increased complexity of the equations of motion generated when evolving concen-

tration and density self-consistently. Both the last two problems are much more
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effectively addressed if alloy XPFC models are re-designed from a fundamental

level as multi-component theories, consistent with cDFT.

The overall goal of this thesis is to extend the PFC methodology beyond its

present niche as a model of simple metals and alloys. We focus first on develop-

ing a realistic PFC model of magnetic materials, which incorporates magnetocrys-

talline interactions, including anisotropy and magnetostriction. Next, we focus on

the development of a PFC model that employs three-point density correlations,

which allows the modelling of 2D materials. We apply this new approach to the

modelling of graphene, a material characterized by strong covalent bonds with a

distinct defect structure which has proven a challenge for the PFC methodology.

Finally, we investigate multicomponent PFC models from a novel perspective that

employs atomic species densities directly, permitting the investigation of materials

more complex than multicomponent alloys traditionally studied through PFC.

The thesis begins with an application that extends the XPFC method of Refs. [41,

43] to ferromagnetic alloy materials. This work expands on earlier work by

Faghihi et al.[51]. This is done by coupling a magnetization field to gradients

of the XPFC atomic density. The equilibrium properties of the model are exam-

ined, showing how the competition of crystalline anisotropy and an external mag-

netic field can influence magneto-restriction and grain boundary evolution. We

also demonstrate this modelling approach as a viable method for microstructure

pattering.

The second topic investigated in this thesis is that of modelling complex non-

metallic structures, focusing specifically on graphene. We break with the tradi-

tional PFC approach for the first time and extend the free energy out to three point-

correlations. Here, the two-particle interactions are treated through the correlation
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function of a simple repulsive interaction. Structural complexity at the atomic

scale is regulated by a novel three-point correlation function. This three-point

correlation function favours particular bond angles over others, while remaining

invariant with respect to rotations of the system. A significant feature of the form

of this three-point correlation function is that it is also computationally tractable,

with asymptotic computational complexity no worse than the two-point correla-

tion function of the previous XPFC model. The model’s equilibrium properties

are examined, demonstrating a robust range of coexistence between graphene and

a disordered phase, which can be interpreted as a vapour phase. We also calculate

some of the model’s elastic properties. Finally, we investigate grain boundaries in

graphene as predicted by this latest generation of structural XPFC model, showing

excellent agreement with experimental observations.

The final topic of this thesis is an extension of the multi-point XPFC model to

multiple components. Alloys in the PFC framework are traditionally constructed

in density-concentration (n, c) variables[35, 42, 43]. The concentration is assumed

to vary on a much longer length scale than the atomic density fluctuations[43].

This has been relatively successful when describing metallic alloys where the

thermodynamic free energies of phases are typically discussed in terms of con-

centration and temperature. In that approach, it is reasonable to treat the density

n as an atomically periodic ordering field whose structure is modulated by the

concentration c in a way that conforms to a known phase diagram. This approach,

however, does not work well when constructing general multi-component models

for which the the outcome (in terms of thermodynamic equilibrium) is not known.

An example of this is the phase diagram of CVD graphene wherein carbon and

hydrogen appear to be able to coexist in graphene and disordered phases on the
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surface of a metal such as copper. In this thesis, we adopt an approach that is

more closely linked to cDFT and assign each elemental component its own field

(e.g. nA, nB for a binary mixture). This approach makes modelling interactions

of each component and between components more transparent and controllable.

It also allows the diffusion coefficients of each component to differ, as well as

eliminating the phenomenological assumption that the concentration must vary

on longer length scales than the atomic density variations. Beyond having more

fundamental underpinnings than previous approaches, we show that this new flex-

ibility allows unique structures to be stabilized, including mixed (i.e. salt-like)

structures. Moreover, employing explicit diffusion coefficients for each compo-

nent allows for modelling of important systems such as iron-carbon, or surface

carbon-hydrogen (vapour deposition of graphene).

The remainder of this thesis is organized as follows. Following a brief intro-

duction to the PFC formalism in the remainder of this chapter, Chapter 2 discusses

the new XPFC model that couples magnetization to the atomic density in ferro-

magnetic materials. Chapter 3 introduces a new XPFC model that employs both

two and three-point correlations. This new model is shown to produce complex

lattices. Here, we demonstrate its application to polycrystalline graphene and its

defects. Finally, Chapter 4 extends the new three-point correlation formalism of

Chapter 3 to two components. The robustness of the model is demonstrated for

generating different types of materials through control of inter-particle interac-

tions. This section showcases a computationally efficient numerical approach for

computing complex two-component phase diagrams. This method is of general

validity and of significant enough importance that its details are shown the the

Appendix. Several calculations and numerical algorithms used in the main text
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are also supported in Appendices. Each chapter in this thesis comes with its own

introduction to motivate the topic of that chapter and to emphasize the value and

relevance to the topic of XPFC modelling.

Note to the reader: All chapter, section, equation, and figure references, as

well as citations, are hyperlinked in the digital PDF version of this work, for

convenience.

1.1 Brief introduction to the phase field crystal model

The PFC model can be derived from classical density functional theory (CDFT)

through the application of some simplifying assumptions. The starting point is

the CDFT free energy functional of T.V. Ramakrishnan and M. Yussouff[52], ex-

panded close to a reference liquid state at coexistence with a solid, of reference

density ρ̄:

F

kBT
=


dx


ρ(x) ln


ρ(x)

ρ̄


+ (ρ(x)− ρ̄)

− ρ(x)

2


dx′C(|x− x′|)ρ(x′)


. (1.1)

The first part of the integrand, ρ ln (ρ/ρ̄)+(ρ− ρ̄), is the free energy density of an

ideal gas. The second part, −(ρ(x)/2)

dx′C(|x − x′|)ρ(x′), is the excess free

energy due to particle interactions. It is ultimately responsible for solidification.

First, we rescale space by r = x/a, with r being dimensionless. a is a length

on the order of the lattice spacing of the solid phase. With V = a3, the free energy
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is now

F

kBTV
=


dr


ρ(r) ln


ρ(r)

ρ̄


+ (ρ(r)− ρ̄)

− ρ(r)

2


dr′C(|r− r′|)ρ(r′)


. (1.2)

Next, we recast the free energy in terms of a dimensionless density n(r) =

(ρ(r)− ρ̄)/ρ̄. Substituting ρ = ρ̄(n+ 1) into the ideal free energy and expanding

to fourth order we get

ρ̄


1 + 2n+

n2

2
− n3

6
+

n4

12


. (1.3)

The constant term will not affect the physics and can be discarded. The linear term

can also be discarded. In what follows, the density will be a conserved parameter:

1

Ω


Ω

n(r)dr = n0, (1.4)

where Ω is the volume of the system and n0 is the system average density. Under

this condition, it should be clear that any linear term in the free energy density

(of the form an(r)) will integrate to the same value no matter how the density is

distributed. Such linear terms can have no effect on a system driven by free energy

minimization, so we will discard them.

Substituting the dimensionless density into the excess free energy term yields

−ρ(r)

2


dr′C(|r− r′|)ρ(r′) →

−1

2
(n(r) + 1)


dr′C(|r− r′|)(n(r′) + 1). (1.5)

15



Noting that


dr


dr′C(|r− r′|)n(r′) =


drn(r)


dr′C(|r− r′|) (1.6)

(taking advantage of the rotational symmetry of C and swapping r and r′), we can

manipulate Equation 1.5 into

= −1

2
n(r)


dr′C(|r− r′|)n(r′) +


n(r) +

1

2


dr′C(|r− r′|). (1.7)

Since our integrals are over all space,

dr′C(|r− r′|) evaluates to a constant and

the entire second term is of linear order in n(r). As we did with the ideal free

energy, we can discard such terms. This leaves us with

−1

2
n(r)


dr′C(|r− r′|)n(r′) (1.8)

for the excess free energy density.

Our complete free energy is now

F

kBTV
=


dr


n2(r)

2
− n3(r)

6
+

n4(r)

12
− 1

2
n(r)


dr′C(|r− r′|)n(r′)


.

(1.9)

1.1.1 PFC dynamics

As a conserved parameter, the density n obeys Model B type dissipative dynamics[53]:

∂n

∂t
= Mn∇2


δF

δn


+ ξ. (1.10)
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Here, δF/δn is the functional derivative of the free energy with respect to the

density field, Mn is the diffusivity parameter, and ξ is a noise parameter. The noise

parameter should satisfy the fluctuation-dissipation theorem. While important for

certain classes of phenomena, for simplicity the noise term will not be included in

what follows.

The functional derivative of the ideal free energy, Fid, is straightforward:

δFid

δn
= n(r)− n2(r)

2
+

n3(r)

3
. (1.11)

The excess free energy, Fex, is a convolution integral. Its functional derivative is

well known[53] and given by:

δFex

δn
= −


C2(|r− r′|)n(r′)dr′. (1.12)

Combining, we get the equation of motion of the density field:

∂n

∂t
= Mn∇2


n(r)− n2(r)

2
+

n3(r)

3
−

C2(|r− r′|)n(r′)dr′


, (1.13)

where the noise term has been dropped here for simplicity.

The remainder of this thesis focuses on extensions of this basic PFC model.

In Chapter 2, we add a magnetization field to the free energy; in Chapter 3, we

move beyond two-point correlations and include three-point correlations; and in

Chapter 4, we consider multicomponent models, expanding the free energy for

systems with more than one density field.

17



Chapter 2

XPFC Modelling of

Magneto-Crystalline Interactions

When a solid undergoes a spontaneous transition to a magnetized or electrically

polarized state, its electromagnetic properties are strongly controlled by its mi-

crostructure because both the magnetization and polarization couple strongly to

the crystalline structure [54]. For example, the efficiency of a transformer core is

directly influenced by its coercivity, which in turn is a function of the polycrys-

talline grain size [55, 56, 57, 58, 59]. Ferromagnetic or ferroelectric order can also

induce a strain in the lattice. This effect is referred to as magnetostriction in the

former case and the piezoelectricity in the latter. The coupling between electric,

magnetic and elastic energy in materials has been exploited for many years. For

example, the ability to turn magnetic or electric energy into mechanical energy

and vice versa is the mechanism behind many sensors and actuators. Materials

that contain at least two of the three properties—ferroelasticity, ferromagnetism

and ferroelectricity—are referred to as multiferroic.
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While there exist some single phase materials that are multiferroic, typically

these materials are unsuitable for practical applications as the magneto-electric

coupling is either too weak or occurs at low temperatures. In recent years, re-

searchers have been considering composite materials which contain both ferro-

magnetic and ferroelectric properties (e.g. YMnO3 and BaNiGF4)[60, 61, 62].

Such materials are of interest as the elastic coupling between the materials can be

exploited by using either a magnetic field to control ferroelectricity or an electric

field to control magnetization. The latter is particularly attractive for non-volatile

memory applications in semiconductors where the ability to write and read on

magnetic material using current is very advantageous. Heteroepitaxially grown

films offer a promising configuration for such composite materials, although the

great costs associated with their fabrication makes them difficult and expensive to

realize. It is thus important to understand the properties of self-assembled multi-

ferroic materials made by cost effective processes like sintering, embedding par-

ticles of one material in another, or eutectic solidification[63, 64, 65].

Modelling multiferroic material properties is challenging because magneti-

zation and polarization couple strongly to the microstructure of a material. For

example, the crystal lattice often determines the direction in which the magnetic

(m) or electric (P) dipoles align. However, in a real materials, each grain typi-

cally has a different crystallographic orientation. In polycrystalline materials, this

grain texture can significantly alter coercivity[55, 56, 57, 58, 59], a measure of the

strength of the external magnetic field needed to change the direction of magneti-

zation in the material. Furthermore, the presence of grain boundaries, dislocations

and magnetic impurities is also expected to influence magnetization and polariza-

tion, either directly or through the influence of such topological defects on grain
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size. In addition it is expected that the volume fraction of composite components

or phases also will be important.

Another difficulty in modelling multiferroics is due to the multiple length

and time scales that need to be considered. Molecular dynamics simulations

offer an accurate way to simulate atomic interactions. However, they are of-

ten limited to nanosecond time scales and nanometer length scales. Traditional

phase field models have been developed to describe multiferroics using a free

energy functional that couples polarization, magnetization and strain. These mod-

els incorporate anisotropy with respect to an a priori known crystal orientation

and elasticity through the the introduction of auxiliary fields. For example, the

Landau-Ginzburg-Devonshire free energy[66] for ferroelectrics includes terms

like α11


P 4
i + α12


j>i P

2
i P

2
j where α12 ̸= 2α11 and i and j refer to cartesian

coordinates. Grain orientation is incorporated by coupling polarization or mag-

netization to a local orientation parameter[67], which can be fixed from a grain

distribution or, in principle, evolved according kinetic model. A drawback of tra-

ditional phase field approaches is that they typically lack an explicit connection to

atomic scale crystal structures.

An adaptation of the phase field methodology that can help resolve some of the

aforementioned modelling challenges is the structural phase field crystal (XPFC)

model. This chapter introduces a binary ferromagnetic XPFC model that couples

the PFC crystal density field n and solute concentration field c to a magnetiza-

tion field m, making it possible to couple ferro-magnetic domain formation to

grain orientation, grain boundaries, elastic strain, defects and solute impurities.

The coupling of m to n at the atomic scale naturally leads to the emergence of

magnetic anisotropy at the meso-scale, as well as the phenomenon of magne-
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tostriction. This model extends the work of Faghihi et al.[51], which considered

a single component ferromagnetic PFC model without anisotropic ordering of m.

One of the important features of the model introduced here is that the form of

coupling between n and m determines the preferred crystallographic directions

in which m orders. This anisotropic ordering is a very important physical feature

that has been used to explain the behaviour of the magnetic coercivity in polycrys-

talline materials [55, 58, 57, 56]. The model presented here does not consider the

magneto-electric coupling arising due to magnetic ordering heterogeneity, a phe-

nomenon that occurs in some single phase materials at temperatures much lower

than those of the multiferroic materials we wish to address with PFC modelling.

2.1 XPFC model of magneto-crystalline interactions

A dimensionless free energy for the magneto-XPFC model is defined as

∆F =
∆F̃

kBTV ρ̄
=


dr (fid + fex + fm + fc) , (2.1)

where F̃ represents the dimensional free energy, T denotes temperature, kB Boltz-

mann’s constant and ρ̄ is a reference liquid density around which the free energy

functional is expanded. The terms in the integrand are free energy densities: fid

is the ideal free energy density, fex is the excess energy density due to atomic in-

teractions, fm is the magnetic free energy, and fc is the alloy free energy density.

Due to the similarities between magnetization and electric polarization, it is

straightforward to add an additional term fP to the free energy which is similar

in form to fm. We do so in Ref. [68], however the present work will focus on

magnetism alone.
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fid and fex are based on traditional PFC approaches, in particular the XPFC

model of Greenwood et al. [69, 70]. These are expressed in terms of the reduced

PFC density n(r) ≡ (ρ(r) − ρ̄)/ρ̄, where ρ(r) is related to the atomic number

density of the material [33, 70] and ρ̄ is a reference density of the cDFT expansion

from which the XPFC model emerges. fid, the free energy density of an ideal gas,

is given by

fid =
n2

2
−η

n3

6
+χ

n4

12
, (2.2)

an approximation based on the Taylor series of ρ log ρ. In what follows, η = χ =

1.

The excess free energy density is based on the XPFC model of Greenwood

et al. [69, 70]. In this model the free energy of interactions is expressed via a

two-point correlation function:

fex = −1

2
n(r)


C2(|r− r′|)n(r′)dr′, (2.3)

where C2 controls the atomic structure of the material. C2 contains Gaussian

peaks in reciprocal space at the reciprocal lattice wave vectors corresponding to

the crystal structure to be stabilized. This will be discussed in greater detail below.
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2.1.1 Ferromagnetic free energy density

The ferromagnetic free energy density fm is given by:

fm =ωB


W 2

0

2
(∇ ·m)2 + (rm − ωmn

2)
|m|2
2

+ γm
|m|4
4

−


k=2,4,...

αk

k
(m · ∇n)k −m ·B+

|B|2
2


, (2.4)

where ωB = B2
0/(µ0kBT ρ̄) sets the scale of magnetic energy, with B0 a refer-

ence magnetic field and µ0 the magnetic permeability of free space. Two fields,

m and B are introduced here. m is the magnetization, the density of magnetic

dipole moments in the material, and B is the magnetic field. Both are expressed

in dimensionless units. The first term, W 2
0

2
(∇ ·m)2, represents the exchange free

energy, the gradient serving as the lowest order representation of the exchange en-

ergy in ferromagnetic systems, where the tendency is for magnetic spins to align.

W0 sets the length scale of the exchange interaction. The second and third terms,

(rm − ωmn
2) |m|2

2
+ γm

|m|4
4

, are mean field bulk free energy terms which control

the ferromagnetic/paramagnetic transition temperature[51]. rm, ωm, and γm are

parameters which set the magnitude of the equilibrium magnetization of the ma-

terial. The fourth term, −k=2,4,...
αk

k
(m · ∇n)k, typically truncated at k = 4,

couples the magnetization to the atomic lattice in a manner that depends on the rel-

ative orientation between the magnetization vector and the atomic lattice, with αk

controlling the strength of the coupling. This term controls the magnetocrystalline

anisotropy and magnetostriction in the material. The last two terms, −m·B+ |B|2
2

,

define the magnetostatic free energy.
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2.1.2 Alloy free energy density

We can also add a contribution to the model to allow for impurity effects in the

base material. For a two component system, an additional field c is introduced

into the XPFC model, where c = C(r⃗)− C̄, with C being the local concentration

and C̄ a reference concentration. The free energy is given by

fc =
1

2
(a− bn2)c2 +

c4

4
+

K

2
|∇c|2 + 1

2


αm|m|2


c n2 (2.5)

where a, b and K are constants. The first three terms of fc are the standard Cahn-

Hilliard type terms that favor phase separation at a particular temperature, which

depends on the average density through the n2 term. The last term in fc favours

a ferromagnetic state in regions of the materials where c is negative and param-

agnetic space in regions where c is positive. More complex alloys are possible

by using more sophisticated expansions. This component of the model is added

formally in the model for completeness, but it will not be considered in any sim-

ulations reported later.

2.1.3 Magnetostatics and electrostatics

The total magnetic field B (scaled by B0) is given by sum of the external and

induced magnetic fields:

B = Bext +Bind. (2.6)
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Bext results from fields imposed externally on the sample. Bind is induced by the

magnetization within the sample, and is given by

Bind = ∇×A, (2.7)

where the vector potential A is in turn given by

∇2A = −∇×m. (2.8)

2.1.4 Two-point correlation function

The two-point correlation function in the excess free energy (Eq. 2.3) controls

the crystal structure that emerges from the liquid. The form we use here was

introduced by Greenwood et al. and in reciprocal space is given by the maximal

envelope of a set of Gaussian peaks[69, 70]:

Ĉ2(q) = max

{Ĉi

2(q)}

. (2.9)

The peaks Ĉi
2(q) are defined as

Ĉi
2(q) = e−σ2k2i /(2ρiβi) e−(q−ki)

2/(2ξ2i ). (2.10)

Here, the values {ki} set the locations of the Gaussians in reciprocal space; these

are typically set to correspond to the wavevectors of the desired lattice to be sta-

bilized. The temperature is parameterized by σ. The values {ξi} set the width

of the Gaussians—these control the elastic constants of the material (this will be

discussed below). The parameters ρi and βi are, respectively, the planar atomic
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density and the number of planes corresponding to the ith wavevector.

If a single peak is used, this correlation function can stabilize triangular lat-

tices in two dimensions, or BCC (body-centered cubic) lattices in three dimen-

sions. If additional peaks are used more structures are possible: square lattices

in two dimensions; and in three dimensions FCC (face-centered cubic) and HCP

(hexagonal closed packed) lattices.

2.2 Dynamics

The density, n, and concentration, c, are both conserved quantities. As a result,

their dynamics are driven by fluxes proportional to the variation of the free energy

with respect to changes in these fields. Specifically:

∂n

∂t
= Mn∇2


δF

δn


(2.11)

∂c

∂t
= Mc∇2


δF

δc


(2.12)

where Mn and Mc are parameters setting the diffusivity of the density and con-

centration respectively.

The magnetization is not conserved. It follows dynamics of the form

1

τm

∂mi

∂t
= − δF

δmi

, (2.13)

where τm sets the relaxation time scale. Note that we have not used the usual

Landau-Lifshitz-Gilbert (LLG) type equation to model the magnetization dynam-

ics. LLG equations are valid at microscopic time scales where the conservation of
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angular momentum remains relevant. At the diffusional time scales studied here,

m(r, t) represents a locally time-averaged quantity whose dynamics are driven by

free energy relaxation.

In order to simulate the model we will require explicit forms of these equa-

tions. For the density field,

∂n

∂t
=Mn∇2


n− t

2
n2 +

v

3
n3 −


C2(|r− r′|)n(r′) dr′

+ ωB


− ωmnm

2 + α2


(m · ∇n)(∇ ·m) +m · ∇(m · ∇n)


+ α4


(m · ∇n)3(∇ ·m) + 3(m · ∇n)2m · ∇(m · ∇n)


+ αm|m|2c n


. (2.14)

For the concentration field,

∂c

∂t
= Mc∇2

 
a− bn2


c+ c3 −K∇2c+

1

2
αm|m|2n2


. (2.15)

And for the components of the magnetization field,

1

τm

∂mi

∂t
=W 2

0∇2mi −

rm − (ωm − αmc)n

2 + γm|m|2

mi

+ α2(m · ∇n)(∂in) + α4(m · ∇n)3(∂in) +Bi. (2.16)

Note that, additionally, Eqs. 2.7 and 2.8 are solved at each time step of the simu-

lation.

These equations represent relaxation dynamics on a diffusional time scale,

driven by a free energy functional. As such, they should, in principle, also in-

clude a stochastic noise source to re-introduce the fluctuations washed out in the

27



implied time-averaging. However, as we will not be considering nucleation from

the disordered state, nor interface fluctuations, we will leave noise sources out of

the dynamics.

2.3 Equilibrium properties

In this section we investigate the equilibrium properties of the model. Specifically

we will look at the phase diagram, anisotropy, and the small deformation limit.

For this section we will only be considering single component models. Hence fc

will be omitted in what follows.

2.3.1 Amplitude expansions

We will apply amplitude expansions in order to investigate the equilibrium prop-

erties of the model. We begin by expanding the crystal structure in a Fourier

series:

n(r) =

q

ϕqe
iq·r, (2.17)

where q are the reciprocal lattice vectors of the crystal structure and ϕq are their

associated amplitudes. The vectors q can be grouped by magnitude; these groups

are collective referred to as modes. Thus q are replaced by qk,j , which refers to

vector j of mode k.

To simplify the analysis we make the assumption that all amplitudes corre-
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sponding to qk,j with j in the mode k are equal and real. That is

ϕqk,j
= ϕk : ∀ j in k. (2.18)

Figure 2.1 shows the grouping of reciprocal lattice vectors into modes of equal

magnitude (dots represent the lattice vectors indexed by j belonging to the same

k; modes k are represented by circles). Each mode is labeled with its amplitude

ϕk, which is the same for all vectors in that mode.

ϕ0

ϕ1

ϕ2

ϕ3

ϕ4

Figure 2.1: Organization of the vectors of a reciprocal triangular lattice accord-
ing to modes. Dots represent reciprocal lattice vectors, circles connect vectors
of equal magnitude, i.e. in the same mode. To each mode an amplitude ϕk is
assigned.

If we additionally truncate the expansion to the first N modes, our amplitude
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expansion becomes:

n(r) ≈
N
k=0

ϕk


j

eiqk,j ·r


. (2.19)

Using these approximations we may determine the equilibrium properties of

the model. Following a well documented approach [71, 72], we begin by inserting

Eq. 2.19 into the model free energy density and integrating over a unit cell of the

crystal structure of interest. Phase equilibrium is then determined for a given set of

system parameters by numerically minimizing the free energy. When ϕk = 0, k >

0 the system is in a liquid state, when ϕk ̸= 0, k > 0 the system is in a crystal state.

We use the common tangent construction to determine the coexistence region.

2.3.2 Phase diagram

The amplitude expansion of Equation 2.17 is inserted into the free energy (Eq. 2.1).

In the mean field limit used to construct the phase diagram, oscillating terms of the

form ei(qi+qj+...)·r emerge. These integrate to zero unless qi + qj + . . . = 0; this

is known as the resonance condition. After integration, the resulting free energy

will depend only on the amplitudes {ϕk}, the components of the magnetization

vector {mi}, and the model parameters. This mean field free energy is denoted as

Fmf({ϕk}, {mi}, ϕ0, σ), where ϕ0 has been separated out to signify its role as the

system average density.

For now we assume that m = 0. For each set of {ϕ0, σ}, Fmf is minimized

with respect to the amplitudes {ϕk}, k > 0. When the number of modes N > 1

it becomes impractical to minimize the free energy analytically so it is minimized

numerically. This gives a set of amplitudes {ϕk}, k > 0 as a function of the
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parameters {ϕ0, σ}. Figure 2.2 shows an example these amplitudes plotted for a

fixed σ as a function of ϕ0. Where the amplitudes are zero (corresponding to a flat

density field) the free energy of the liquid phase is lower; where they are non-zero

(corresponding to a density field with periodic fluctuations) the free energy of the

solid phase is lower. The plot of the free energy (Fig. 2.3) shows a kink at this

transition point. The first derivative of the free energy with respect to the density

would show a discrete jump at this point, indicating a first order phase transition.

Since ϕ0 is a conserved parameter, there is a coexistence region between the

liquid and solid phases. This region can be found by the common tangent con-

struction. This is done by finding the a secant line that is tangent to the two convex

curves on either side of the cusp. The tangent points correspond to the equilibrium

densities of the coexisting phases. This procedure is performed numerically.

To construct a phase diagram with more than one solid phases (such as in a

BCC/FCC system), we write amplitude expansions of the form of Eq. 2.19 for

each potential solid structure. We perform the same procedure as above for each

structure and then pick, for each {ϕ0, σ}, the lowest free energy of the structures

considered (the free energy of the liquid will be identical for each structure). This

produces additional coexistence regions between the various solid phases; these

are found by the common tangent construction. Calculation of all coexistence re-

gions at all σ yields the complete phase diagram. Figure 2.4 depicts the full phase

diagram. This result closely matches that of Greenwood et al in their introduction

of the XPFC model [69, 70].

The paramagnetic-ferromagnetic transition line of Fig. 2.4 is calculated from

each solid phase using the numerically determined amplitudes computed above.

For simplicity it is assumed that the amplitudes are not changed by the introduc-

31



Φ1

Φ2

Φ3

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
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Figure 2.2: Amplitudes of the first three modes in Eq. 2.19 as a function of ϕ0

with σ = 0.12, for the case of a single-peaked XPFC correlation with k1 = 2
√
2π,

1/(2ρiβi) = 1/24
√
2, and t = v = 1.

tion of the magnetic free energy. When the amplitude expansion is inserted into

the magnetic free energy the result takes on the form of Am2 +Bm4 with B > 0.

When A > 0 there is a single minimum in the magnetic free energy density at

m = 0, corresponding to paramagnetic ordering. When A < 0 there are two min-

ima at m ̸= 0, corresponding to ferromagnetic ordering. For each solid phase the

value of A depends on the amplitudes, ϕk, of the corresponding lattice as well as

the average density ϕ0. For example, the m2 term for a BCC lattice is

1

2


rm − ωmϕ

2
0 + (12k2

1α2 − 12ωm)ϕ
2
1

+ (12k2
1α2 − 6ωm)ϕ

2
2 + (72k2

1α2 − 24ωm)ϕ
2
3


|m|2, (2.20)
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Liquid Solid
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-0.004

-0.002

0.000
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0.004
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0.008

Φ0

DF

Figure 2.3: Free energy as a function of ϕ0 for σ = 0.12. The other parameters
are the same as described in Fig. 2.2. Note the kink at the liquid-solid transition.

where k1 = |q1,j| is the length of the first set of reciprocal lattice vectors. Inserting

the numerically determined amplitudes determines the sign of the coefficient and

thus whether the system is in the paramagnetic or ferromagnetic region. As noted

above the effect of the magnetic free energy on the amplitudes has been omitted.

This assumption is equivalent to assuming that m = 0. At the transition line

the average magnetization is exactly zero. While there may be spacial variations

in the magnetization that average to zero, the magnitude of any such variations

would be limited by the gradient term in Eq. 2.4. As a result, the magnetic free

energy is unlikely to have a large effect on the phase diagram.
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Figure 2.4: Phase diagram for the magneto-XPFC model, showing coexisting liq-
uid, BCC and FCC phases, as well as paramagnetic and ferromagnetic phases.
Parameters are α2 = .001, rm = .025, ωm = 0.25, and γm = 1. Generated using
five modes (N = 5).

2.3.3 Magnetic anisotropy

Magnetic anisotropy is an essential feature in micromagnetic phenomena. In the

literature magnetic anisotropy is generally expressed with respect to a fixed crystal

orientation. As an example, for uniaxial anisotropy with symmetry along the z-

axis, the lowest order anisotropic free energy per unit volume is given by

fa = Kum
2
z. (2.21)

If Ku < 0 there is an easy axis along the z direction, along which the magneti-

zation is energetically favoured to lie. If Ku > 0 there as a hard axis along the z
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direction and an easy plane in the x-y plane, with the magnetization preferring to

line in the plane.

Cubic anisotropy with symmetry along the x, y and z axes is given by

fa = Kc(m
2
xm

2
y +m2

xm
2
z +m2

ym
2
z), (2.22)

with the easy axes along any of the six axes ±x̂, ±ŷ or ±ẑ for Kc > 0, or along

any of the eight direction vectors ±x̂± ŷ ± ẑ for Kc < 0.

The above forms cannot be used in the PFC free energy because they assume

a given crystal orientation. With PFC the crystal orientation is not a priori known,

since PFC uses a rotationally invariant free energy which permits crystals to form

in any orientation. Instead we must use terms which depend on the density, n.

The simplest expression that contains information on the local crystal orientation

is ∇n. In order to have magnetic anisotropy that depends on the local crystal

orientation, we use terms that couple m with ∇n in the free energy. Specifically,

we use couplings of the form

1

k
(m · ∇n)k, (2.23)

where k is some even integer. To obtain N–fold symmetry it is necessary (but not

sufficient) that k be at least of order N . That is, to obtain 2–fold symmetry, k = 2,

while for 4–fold, k = 4, and so on.

Eq. 2.4 contains m · ∇n coupling terms of order 2 and 4. The second order

term allows for uniaxial anisotropy in systems with HCP ordering. The fourth

order term allows for cubic anisotropy in BCC and FCC systems, as well as two

dimensional square systems. Two dimensional triangular systems require an ad-
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ditional sixth order term.

To obtain an approximation of the long-wavelength form of the anisotropy

energy contained in the (m · ∇n)k terms in Eq. 2.4, a single mode expansion,

n(r) ≈ ϕ0 +

qj

ϕeiqj ·r, (2.24)

is inserted into Eq. 2.23, where qj are the lowest order reciprocal lattice vectors

of a crystal lattice. The result is

1

k


qj

(im · qj)ϕe
iqj ·r
k

. (2.25)

Expanding out Eq. 2.25 and applying the resonance condition (i.e., terms of the

form ei(qj+qk+...+ql)·r integrate to zero under coarse graining unless qj + qk +

. . . + ql = 0), an approximation of the anisotropic free energy in the phase field

limit is obtained.

If we apply this procedure for a BCC lattice with k = 4, we find that

fa,BCC =
1

Vu


dr

−α4

4
(m · ∇n)4


≈− 27

2
α4(k1ϕ)

4

|m|4 − 7

9
(m2

xm
2
y +m2

xm
2
z +m2

ym
2
z)

, (2.26)

where the integration is over unit cell of volume Vc. Note the similarity of the final

term in this formula to Eq. 2.22. Since the result depends on the amplitude, ϕ, the

anisotropy depends on both the average density and the temperature parameter

through the amplitude’s dependance on these parameters. This also ensures that

anisotropy vanishes in the liquid region of the phase diagram as expected.
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The parameter α4 can be either positive or negative in order to model different

forms of anisotropy. Care must be taken, however, because for a large enough

positive α4, the coefficient of m4 in Eq. 2.26 will exceed γm/4, leaving no finite

global minimum for the free energy as a function of m. A similar issue exists with

the ϕ4 coefficient and the coarse grained term vn4/12 in the free energy. To avoid

these issues α4 must either be sufficiently small, or terms higher order than fourth

order in n and m must be added to fid and fm, respectively.

Applying the same procedure for an FCC lattice gives

fa,FCC ≈− 2α4(k1ϕ)
4

3|m|4 − 4(m2

xm
2
y +m2

xm
2
z +m2

ym
2
z)

. (2.27)

The above derivation considered only a liquid-BCC-FCC system, however

the XPFC formalism can also be used to model systems with hexagonal closed-

packed (HCP) structure[69]. Magnetically, HCP systems show uniaxial anisotropy,

and so only a second order term is required to produce anisotropy. An approxi-

mation for this anisotropy is computed in an analogous manner as above, but now

using the (m · ∇n)2 term, and taking into account the structure factors that arise

due to the additional basis atom needed to describe HCP crystals. A single mode

expansion is not sufficient in this case because the lowest order (smallest q) mode

of the underlying hexagonal Bravais lattice vanishes when the structure factor of

the two atom basis is computed. The next lowest order mode lies in the basal

plane; we denote it’s amplitude by ϕ. With these modifications to Eq. (2.24), the

phase field (amplituide) limit of the α2 term becomes

−α2

2
(m · ∇n)2 ≈− 4

3
α2ϕ

2k2
1(|m|2 −m2

z), (2.28)
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which is consistent with the form for uniaxial anisotropy.

2.3.4 Small deformation limit and magnetorestriction

Phase field crystal models naturally contain an elastic response to deformation. An

interesting consequence of magnetocrystalline interactions is that crystal phases

to deform in the presence of a magnetic field. This effect is known as magne-

tostriction in ferromagnetic materials. This section derives the magnetostriction

coefficients of the present model.

Before proceeding, the density expansion (Eq. 2.17) is modified by assuming

that the amplitudes are complex and can vary in space, i.e.

n(r) =

qj

ηqj
(r)eiqj ·r. (2.29)

The amplitudes are then decomposed in the form of a real magnitude and complex

phase. Specifically

ηqj
(r) = ϕqj

eiqj ·u(r), (2.30)

where u(r) is a displacement field that serves to strain the system. Inserting

Eq. 2.30 into Eq. 2.29 yields

n(r) =

qj

ϕqj
eiqj ·(u(r)+r). (2.31)

We denote the spatial derivatives of u(r) as ∂rwuv = uvw (v, w = 1, 2, 3 are spatial

indices). In the small deformation limit we can write uv(r) =


w uvwrw. Then,
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by defining q′w =


v qvuvw, Eq. 2.31 can be re-expressed as

n(r) =

qj

ϕqj
ei(qj+q′

j)·r. (2.32)

In reciprocal space Eq. 2.32 becomes:

n̂(k) =

qj

ϕqj
δ((qj + q′

j)− k). (2.33)

Eq. 2.33 is used below to compute contributions to the elastic energy arising from

the relevant terms in the PFC free energy.

Elastic energy density of the excess term

Substituting Eq. 2.33 into the excess term of the free energy, fex (Eq. 2.3), gives,

in reciprocal space,

Fel[n̂] = −

qj

ϕ2
qj
Ĉ2(qj + q′

j). (2.34)

The two-point correlation function, Ĉ2, is rotationally symmetric. For small q′
j ,

we can write the magnitude of qj + q′
j as (qj + q′

j) · (qj/qj) = qj +
1
qj
(q′

j · qj),

where qj = |qj|. This gives

Fel[n̂] = −

qj

ϕ2
qj
Ĉ2


qj +

1

qj
(q′

j · qj)

. (2.35)

The peaks in the Ĉ2 correlation kernel (Eq. 2.9) can be approximated, near the
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peak, by the second order expansion

Ĉi
2(q) ≈ A


1−K(q − ki)

2 + . . .


, (2.36)

where

A = e
− σ2k21

2β1ρ1 , K =
1

ξ21
. (2.37)

Truncating this expansion at quadratic order and keeping only the peak corre-

sponding to the first mode of the Bravais Fourier series of a BCC lattice (i.e.,

i = 1 with k1 = |q1,j|) gives, after Eq. 2.36 is substituted into Eq. 2.35,

Fel[n̂] ≈ −ϕ2A


12− 2Kk2

1


i

ϵ2ii +

i<j

(2ϵ2ij + ϵiiϵjj)


, (2.38)

where ϵij = ϵji = (uij + uji)/2 is the infinitesimal strain tensor. Or, with the

values of A and K inserted,

Fel,XPFC[n̂] ≈ −ϕ2e
− σ2k21

2β1ρ1


12− 2k2

1

ξ21


i

ϵ2ii +

i<j

(2ϵ2ij + ϵiiϵjj)


. (2.39)

Magneto-elastic energy term

Next we consider the magneto-elastic energy term of the free energy density:

fme,XPFC[n̂] =
1

Vu


dr

−α2

2
(m · ∇n)2


. (2.40)
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If we substitute the density expansion of Eq. 2.31 into the the expression m · ∇n,

we get

m · ∇n =

qj

iϕqj
((m · ∇)(u · qj) +m · qj)e

iqj ·(u+r). (2.41)

Substituting into the magneto-elastic energy term, assuming a BCC lattice for the

density expansion, and applying the resonance condition, we find that

fme,XPFC[n̂] =
1

Vu


dr

−α2

2
(m · ∇n)2


≈ −2α2ϕ

2k2
1


i

m2
i (1 + 2ϵii) + 4


i<j

mimjϵij


. (2.42)

Calculation of magnetostriction constants

Following Kittel[73], a cubic system is expected to have a magneto-elastic free

energy of the form

Fme =B1


i

m2
i ϵii +B2


i<j

mimjϵij

+
1

2
c11

i

ϵ2ii + 2c44

i<j

ϵ2ij + c12

i<j

ϵiiϵjj. (2.43)

Minimizing this free energy with respect to all the strains we obtain the following

stress-free strains:

ϵii =
B1

c11 − c12

 |m|2c12
c11 + 2c12

−m2
i


,

ϵij = − B2

4c44
mimj, i ̸= j. (2.44)

41



The magnetostriction constants λ100, λ111 are defined by [73]:

δl

l
=
3

2
λ100


i

m2
iβ

2
i

|m|2 − 1

3


+ 3λ111


i<j

mimjβiβj

|m|2 , (2.45)

where δl/l is the extension of the sample along the direction of the unit vector β

due to the magnetization. It can be shown that [73]

δl

l
=

i≤j

ϵijβiβj. (2.46)

If we substitute the solutions from Eq. 2.44 into Eq. 2.46, drop constant terms,

and compare with Eq. 2.45, we obtain the magnetostriction constants[73]:

λ100 = −2

3

B1|m|2
c11 − c12

; λ111 = − 1

12

B2|m|2
c44

. (2.47)

Now if we compare Eq. 2.43 to Fel,XPFC + Fme,XPFC we can see that

B1 = −4α2ϕ
2k2

1, B2 = −8α2ϕ
2k2

1,

c11 = 4ϕ2k2
1AK, c44 = 2ϕ2k2

1AK, (2.48)

c12 = 2ϕ2k2
1AK,

which then yields, from Eq. 2.47,

λ100 =
4

3

α2

AK
|m|2; λ111 =

1

3

α2

AK
|m|2. (2.49)

We can see here that λ100 = 4λ111, for a single mode approximation. Hence it is

not possible with a single peaked correlation kernel to tune the ratio of λ100 to λ111
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separately in order to match real materials which exhibit other ratios. In order to

tune the magnetostriction separately either the elastic anisotropy, c44/(c11 − c12),

or the ratio of B1 to B2 must be tuned.

The ratio of B1 to B2 is independent of the correlation function. The elastic

anisotropy is not. However, tuning the elastic anisotropy cannot be be achieved

with a single peak in the XPFC correlation function. If we wish to tune the elastic

anisotropy, and therefore the ratio of λ100 to λ111, it is necessary to add a second

peak to the correlation function, which corresponds to the second BCC mode.

Adding a second peak and following the same general approach as above, but

with a two-mode density expansion, gives the elastic free energy

Fel,XPFC2[n̂] ≈ 2ϕ2
1k

2
1


(A1K1 + 2r2A2K2)


i

ϵ2ii

+ A1K1


i<j

(2ϵ2ij + ϵiiϵjj)


, (2.50)

where we define r = ϕ1/ϕ2, and

Ai = e
− σ2k2i

2βiρi ; Ki =
1

ξ2i
. (2.51)

Constant terms have been ignored in the above.

Similarly, expanding fm with a two mode density expansion yields the two-

mode magneto-elastic energy to second order:

Fme,XPFC2[n̂] ≈ −2α2ϕ
2
1k

2
1(1 + r2)


i

m2
i (1 + 2ϵii) + 4


i<j

mimjϵij


. (2.52)
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Comparing these results to Fme in Eq. 2.43 gives

B1 = −4α2ϕ
2k2

1(1 + r2), B2 = −8α2ϕ
2k2

1(1 + r2),

c11 = 4ϕ2k2
1(A1K1 + 2r2A2K2), (2.53)

c44 = 2ϕ2k2
1A1K1, c12 = 2ϕ2k2

1A1K1.

The magnetostriction constants now become

λ100 =
4

3

α2(1 + r2)

A1K1 + 4r2A2K2

|m|2; (2.54)

λ111 =
1

3

α2(1 + r2)

A1K1

|m|2. (2.55)

Now it can be seen that λ100 = 4λ111(1 + 4r2(A2K2)/(A1K1))
−1. Although A1

and A2 are fixed in the XPFC model, K1 and K2 (Eq. 2.51) are tunable parameters.

The magnetostriction constants can therefore be tuned individually through their

dependence on the elastic anisotropy, which is controlled by the addition of higher

order peaks in the XPFC correlation function. Note that A1, A2 and r in general

depend on the system parameters of temperature (σ) and average density, making

the magnetostriction constants functions of temperature and average density.

A similar approach could be followed for other crystal symmetries such as

FCC.

An approach for changing the ratio change the ratio of λ100 to λ111 by changing

the ratio of B1 to B2 is discussed in Appendix D.
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2.4 Numerical tests and applications of model

2.4.1 Ferromagnetism in square polycrystalline order

We use our model to examine ferromagnetism in a single-component XPFC model.

Using the XPFC correlation function that gives two-dimensional square crystals,

along with a magnetic free energy with 4-fold anisotropy, we tested magnetic

hysteresis and the effects of magnetic fields on grain growth in a pure material.

Simulations were carried using Euler’s method. The numerical mesh spacing was

∆x = 0.1 and the time steps were ∆t = 0.001. Unless otherwise stated, parame-

ters used were: (t, v) = (1, 1) , (W0, rm, ωm, γm) = (0.1, 0.01, 0.4, 1), (ξ1, ξ2) =

(0.9, 1.27279), (ρ1, ρ2) = (1,
√
2/2), (β1, β2) = (4, 4), and (Mn, τm) = (1, 1).

Other parameters are specified in the text.

Magnetic Hysteresis

We consider here the simplest case of magnetic hysteresis of a perfect crystal,

with an alternating external magnetic field, B, aligned to the crystal’s magne-

tocrystalline easy axis. In this situation the magnetic part of the free energy has

the form

fm(m) = f1(m)−m ·B. (2.56)

In general this free energy will have a number of stationary points defined by

∂fm/∂mi = 0. Those which are also local minima will be stable and the magne-

tization can come to rest there. When the external field B is non-zero some local

minima can become metastable. When a large enough external field is oriented
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opposite to the magnetization, the metastable well in which the magnetization lies

becomes unstable and the magnetization abruptly reverses. Reversing the exter-

nal field repeats this cycle in the opposite direction. Plotting the magnetization

against the external field results in a hysteresis loop, such as the one shown in

Fig. 2.5 for a two dimensional single square crystal.

−0.03 −0.02 −0.01 0.00 0.01 0.02 0.03

−0.4

−0.2

0

0.2

0.4

B

m

Figure 2.5: Hysteresis loop for a single two dimensional square crystal. System
parameters are as stated at the beginning of the section with σ = 0.04, n0 = 0.05,
and (α2, α4) = (0.001,−0.01).

To produce the hysteresis loop in Fig. 2.5 the system was first brought to mag-

netic saturation by an initially strong external field. After a set amount of time the

process of measuring the hysteresis loop proceeded by sweeping the external field
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through successively decreasing values. For each external field value the magne-

tization was allowed to relax until dm/dt was smaller than a convergence value

(10−5 in Fig. 2.5), ensuring that the magnetization had reached a local minima cor-

responding to that value of the external field. Once the magnetization had relaxed

the value was recorded and the external field was then decreased to its next value.

As the strength of the external field increases in the negative direction the magne-

tization eventually reverses direction. This reversal gives the drop from the upper

left quadrant to the lower left quadrant of the loop in Fig. 2.5. Once the external

field was at its negative extreme the process was reversed and the external field

increased at each step back towards its initial value, causing the magnetization to

reverse again. This reversal produces the raise from the lower right to upper right

quadrants of the loop in Fig. 2.5. Fig. 2.6 plots the magnetization (both mx and

my) versus time for the entire process. Note that the magnetization reverses by

rotation of the magnetization vector.

Solidification under an external field

The influence of external magnetic fields on the growth of crystal grains has po-

tential applications in microstructural engineering. To investigate the role that

external magnetic fields play on crystal growth, we ran simulations with identi-

cal initial conditions and pseudorandom seeds, differing only in presence of an

external magnetic field. Crystal seeds of random orientations grow, impinge and

coarsen with or without the influence of an external field. This process is depicted

schematically in Fig. 2.7.

A large two dimensional system (4000∆x× 4000∆x) with 160 randomly ori-

ented seeds of square lattice crystals was simulated. Solidification was initiated
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Figure 2.6: Plot of magnetization components mx and my versus time (t) for the
hysteresis loop in Fig. 2.5. Note that the magnetization reverses by rotation of the
magnetization vector.

following a quench to σ = .04 and n0 = .05. We set (α2, α4) = (0.001,−0.0005);

with these values the magnetic easy axes lie along the diagonals of the unit cell.

Other parameters are as discussed in the introduction to this section. Two simula-

tions are run with the same pseudorandom number seed: one with an external field

and one without. A snapshot in time of the density field n(r⃗, t) for the two cases

is shown in Fig. (2.8) for t = 5.75×104∆t. The red lines mark the polycrystalline

grain boundaries in the two cases. Qualitatively it appears that the grains whose

magnetic easy axes are aligned favourably with the external field are favoured in

the final, solidified structure.

In order to investigate more quantitatively the effects of the external field on

grain orientation, we computed the power spectrum of the density field n as a func-

tion of orientation (θ) at the distance in k-space of the first Bragg peak. The differ-
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~B

Figure 2.7: Randomly oriented crystal seeds growing under the influence of an
external field. Arrows indicate the orientation of the seed crystals.

ence in these power spectra is depicted in Fig. 2.9 after 1.4× 105 time steps. The

external field is oriented at an angle of θ = π/4; thus a crystal grain oriented with

its principle reciprocal lattice vectors along the directions θ = 0, π/2, π, 3π/2 will

have its easy axes aligned to the external field. Fig. 2.9 shows that a greater por-

tion of grains evolve to become aligned along these angles when the external field

is present.

We also compared the power spectra of the same system at late and early times.

Fig. 2.10 shows such a comparison for the system with an external field present,

where the density field is evaluated at tearly = 1× 104∆t and tlate = 1.4× 105∆t.

From this figure we can draw the same conclusion as in Fig. 2.9: the presence
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Figure 2.8: Comparison of initially identical systems grown under an external
magnetic field (left) and no field (right). Crystal grains aligned with the x-y axes
(such as A and G) have their easy axes aligned with the external field, and grow
at the expense of those that are not aligned (such as D).

of the external field results in preferential growth for those grains with easy axes

which are aligned to it.

A potentially interesting application of the magneto-XPFC model introduced

in this chapter is the prediction of how to control microstructure of ferromagnetic

materials. Specifically, our results show that it is possible to use external magnetic

fields to influence the domain orientation and anisotropy of grains starting from

solidification and continuing into grain growth. It would be interesting as a future

direction of research to growth ferromagnetic materials experimentally in an ex-

ternal magnetic field, and compare the statistics of grain growth in these materials

to predictions of the present XPFC model.
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Figure 2.9: Difference in power spectra of polycrystalline solid grown in an ex-
ternal field (Pex) and no external field (P0), respectively.
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Figure 2.10: Difference in power spectra of polycrystalline solid grown in an
external field at late (Pl) and early (Pe) times, respectively.
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Chapter 3

Three Point Correlation Functions

for XPFC Modelling of Graphene

Graphene is an exciting, and recently discovered, material consisting of a two di-

mensional, single atomic layer of carbon atoms arranged in a hexagonal lattice.

It exhibits interesting electrical[74, 75] and mechanical properties[76, 77]. Crys-

tals of graphene can be obtained by exfoliating cleaved graphite samples onto

an oxidized silicon wafer to produce flakes of graphene[78]. A scalable method

for obtaining graphene is through chemical vapour deposition (CVD) [79, 80], a

method that produces a polycrystalline material. While theoretically graphene can

be about a hundred times stronger than steel, the properties of graphene realized

in experiments typically reveal a wide variability, up to an order of magnitude

from their theoretical predictions[81, 82]. Variability in the strength properties

of graphene, and in particular their relationship to the defect structure, still re-

mains largely unexplored, particularly theoretically. Recent work suggests that it

is linked to the defect microstructure at grain boundaries[81, 83, 82]. The topolog-
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ical defects in graphene typically take the form of periodic patterns of heptagonal

and pentagonal disclinations, the patterning of which are dictated by the tessel-

lation requirements of atoms in adjacent grains[84, 85, 86]. The complexity of

forming and measuring graphene, however, make it challenging to experimentally

isolate and examine the role of specific defects and grain boundaries on the growth

and properties of this material.

Computational modelling can serve as a route for theoretically understand-

ing the difficult to measure properties of graphene. First principles studies are

useful in examining the adsorption process of carbon onto metal surfaces dur-

ing graphene formation[87]. Molecular dynamics (MD) studies of graphene have

been successful at predicting the anisotropy of graphene morphologies on metal

surfaces[88] or the energy of specific defect structures[86]. On the continuum

scale, phase field models have been used to study how anisotropic diffusion of car-

bon on a surface can yield the formation of the dendritic graphene structures[89].

To date, there has not been a model that can address both the atomically varying

defect microstructures of graphene alongside its nucleation and diffusional growth

kinetics from a disordered state on a surface.

As mentioned in the introduction, phase field crystal (PFC) modelling is a

promising approach for modelling many microstructure phenomena. PFC mod-

els naturally capture many of the salient physics of nucleation, polycrystalline

solidification, grain boundaries[90, 91, 41, 92, 93] and multi-component, multi-

phase solidification[35, 43, 72, 37]. PFC models also capture, in the context of a

single order parameter, elasticity and plasticity phenomena relevant to solid state

processes such as dislocation source creation, dislocation stability[44, 94] and

creep[45]. The most important feature of PFC-type models is that they incor-
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porate the above phenomena from atomic to micron length scales and over dif-

fusional times scales, where the emergent properties of non-equilibrium phase

transformations are typically manifested.

The original PFC model was predominately used for the study of two dimen-

sional triangular and three dimensional BCC crystal symmetries[95, 90]. Later

XPFC models introduced multi-peaked two-point correlation kernels in the non-

local part of the free energy that allowed for a simple yet robust means to simulate

most of the common metallic crystal structures (2D square, BCC, FCC, HCP) in

phase transformations [17, 96, 70]. More recently, a new multi-peaked two-point

correlation was introduced to stabilize more exotic 2D structure such as graphene

and Kagome lattices, and a morphological phase diagram distinguishing the sta-

bility ranges of the two solid phases was explored numerically[48]. However

this model can leads to unstable structures within the graphene part of is phase

diagram and does not support phase coexistence between the solid and any dis-

ordered phase, precluding it from CVD type studies. Indeed, it has proven quite

difficult to stabilize highly anisotropic 2D and 3D materials in PFC modelling

using only two-point correlations.

This chapter introduces a new structural PFC theory that breaks with the tra-

dition of previous PFC models and expands the free energy up to three-point cor-

relations in the PFC density field. Unlike previous PFC theories, the two-point

excess term is based on a simple repulsive interaction. It is shown that this al-

lows for stabilization of triangular lattices in two dimensions. In this formalism,

more complex crystal structures that are describable by a particular bond angle

are stabilized using a new, rotationally invariant, three-point correlation function

we introduce for the excess free energy. This term allows for the stabilization of
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triangular, square and graphene lattices in two dimensions. It is noteworthy that

beyond stabilizing the aforementioned structures, this formalism also allows for

stable coexistence of these structures with a disordered phase, a feature crucial for

modelling nucleation and growth of polycrystalline 2D materials from a vapour

or a disordered arrangement of atoms on a surface. In preparation for future ap-

plications, this chapter highlights the derivation of our new XPFC free energy and

examines its equilibrium properties. It then uses dynamical simulations to demon-

strate defect structures produced in polycrystalline samples and compares these to

experimental observations.

3.1 Simplified density functional theory

The dimensionless density, n, is defined in the usual way as n = (ρ− ρ̄)/ρ̄, where

ρ is the PFC density field and ρ̄ is the reference density around which a functional

expansion of the free energy is carried out. With n as an order parameter, we

expand the free energy around the reference density ρ̄ in a functional series as

∆F

kBT ρ̄
= Fid[n] + Fex,2[n] + Fex,3[n]. (3.1)

where Fid is the ideal free energy of the system, which ignores particle interac-

tions. Its form is expanded from its fundamental logarithmic form (ρ log ρ) based

on a Landau expansion in the order parameter n according to the usual fourth

order form,

Fid =


dr


n2

2
−η

n3

6
+χ

n4

12


, (3.2)
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where η and ξ are dimensionless parameters. In what follows, we will set η = ξ =

1 for simplicity. Their form can be used in general to tune the quantitative form

of the bulk free energy.

The terms Fex,2 and Fex,3 constitute the excess free energy, incorporating two

and three body interactions respectively. The excess free energy due to two body

interactions, Fex,2, takes the form

Fex,2 = −1

2


n(r)


C2(r− r′)n(r′)dr′dr, (3.3)

where C2 is the two-point correlation function, discussed below. The excess free

energy due to three body interactions, Fex,3, takes the form

Fex,3=−1

3


n(r)


C3(r−r′, r−r′′)n(r′)n(r′′)dr′dr′′dr, (3.4)

where C3 is the three-point correlation function, also discussed below. The forms

of Fex,2 and Fex,3 are translationally invariant.

3.2 Two-point correlations

The two-point correlation function, C2, is defined using a simple repulsive term.

The lattice spacing will be determined by the length scale in this term. We first

define the circ function as a circular step function of unit radius and height, centred

on the origin:

circ(r) =

 1 : r ≤ 1,

0 : r > 1.
(3.5)
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Using this function we define C2 in two dimensions according to

C2(r) = − R

πr20
circ


r

r0


, (3.6)

where R sets the strength of the repulsion and r0 sets the cutoff length scale. The

normalization factor, πr20, has been set such that the total integral of C2 is −R.

Figure 3.1 depicts C2(r) schematically.

It is a straightforward matter to add an additional positive XFPC type Gaussian

peak at some r > r0 to further influence interactions at the two-point correlation

level as well. That will not be studied in this work, and only the repulsive part of

the two-point correlation function will be retained for simplicity.

r0

− R
πr20

0
r

C2

Figure 3.1: Two-point correlation function in real space.

It is convenient to have the Fourier space representation of C2. The Fourier

transform of Eq. 3.6 is given by

Ĉ2(k) = −2R
J1(r0k)

r0k
, (3.7)
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where Jm is the mth Bessel function of the first kind. Figure 3.2 shows a plot of

Ĉ2(k). Using the Fourier space representation of C2 we can use the convolution

theorem to write Fex,2 as

Fex,2 = −1

2


n(r)F−1


Ĉ2(k)n̂(k)


dr. (3.8)

2 4 6 8 10 12 14 16

−R

0
kr0

Ĉ2(k)

Figure 3.2: Plot of −2RJ1(r0k)/(r0k) in units of k/r0.

While there is no attraction between the atoms in the two-point correlation

function, the system can still undergo a phase transition and solidify at high

enough density. It can be seen from the Fourier space representation of C2 that

there are some wavelengths (the peaks of Ĉ2(k)) which are energetically favoured.

The relationship between the lattice constant, a0, and the cutoff length, r0, is non-

trivial. In a one-mode approximation the energy of the system will be minimized

when the first reciprocal space mode (K1) of the density lies on the peak of Ĉ2(k)

(Eq. 3.7). This occurs at K1 ≈ 5.13562/r0. Table 3.1 gives the ratio r0/a0 for

various two dimensional lattices.

The two-point correlation function is completely isotropic and favours only
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Lattice K1a0 r0/a0

Triangular 4π/
√
3 0.707854 . . .

Square 2π 0.81736 . . .
Graphene 4π/3 1.22604 . . .

Table 3.1: The ratio of r0 to a0 for various two dimensional crystal lattices. K1

is the reciprocal lattice vector of the first mode of a crystal structure.

one equilibrium distance. It therefore strongly favours a lattice with the highest

packing fraction. In two dimensions this is the triangular lattice, consistent with

the classical result of hard sphere theory[97]. In order to stabilize more complex

solid phases we must include either additional length scales, as in other XPFC

models[69], or break the isotropy of the interactions. However, since we require

the free energy to be rotationally invariant, the isotropy can only be broken rel-

ative to some local density configuration. This is not possible with two-point

correlations—in order to accomplish this we have to move to higher order three-

point correlation functions. Doing so will permit us to energetically favour partic-

ular relative angles between nearest neighbour atoms in order to produce a greater

variety of crystal structures, particularly those of non-metals.

3.3 Three-point correlations

Three-point correlations in the model are included through the excess energy of

Eq. 3.4. This term is computationally expensive relative to the two-point ex-

cess term of Eq. 3.3. The convolution theorem allows the two-point correlation

to be computed by transforming to reciprocal space and multiplying point-wise.

The computational complexity of this approach is O(N logN), the computational
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complexity of the fast Fourier transform (N is the total number of grid points in

the system). To our knowledge there is not such reduction in complexity available

for Eq. 3.4. It therefore exhibits a prohibitive O(N3) computational complexity.

However we can remedy this problem by restricting C3 to those functions that

can be separated in the following manner:

C3(r− r′, r− r′′) =

i

C(i)
s (r− r′)C(i)

s (r− r′′), (3.9)

where the C(i)
s will be defined below. While this limits the possible forms C3 may

take, it remains flexible enough to produce a wide variety of crystal structures, in-

cluding graphene and those previously modelled by XPFC and similar 2D models.

When we insert Eq. 3.9 into Eq. 3.4, it reduces the three-point term to

Fex,3=−1

3


n(r)


i


C(i)

s (r− r′)n(r′)dr′
2

dr. (3.10)

How to approach this term computationally will be discussed below. However it

should be apparent that reducing the double integration over r′ and r′′ to just a

single integration over r′ considerably reduces the computational complexity of

the three-point term.

We now define the C
(i)
s functions. We work in polar coordinates and separate

r into r and θ. We define C
(i)
s as

C(1)
s (r, θ) = Cr(r)C

(1)
θ (θ) = Cr(r) cos(mθ); (3.11)

C(2)
s (r, θ) = Cr(r)C

(2)
θ (θ) = Cr(r) sin(mθ); (3.12)

Cr(r) =
X

2πa0
δ(r − a0). (3.13)
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X defines the strength of the interaction, a0 corresponds to the lattice spacing, and

m defines bond order (discussed below) of the crystal phase.

Despite the angular factors present in Eqs. 3.11-3.12, the total excess free

energy remains rotationally invariant. To demonstrate this, we begin with the sum

in Eq. 3.9 and expand the square to get


i


C(i)

s (r− r′)C(i)
s (r− r′′)n(r′)n(r′′)dr′dr′′


. (3.14)

Defining r1 ≡ r− r′, r2 ≡ r− r′′ and pulling the sum inside the integral gives

 
i

C(i)
s (r1)C

(i)
s (r2)


n(r− r1)n(r− r2)dr1dr2. (3.15)

Considering the sum in the brackets and changing to polar coordinates, ri →
(ri, θi), gives


i

C(i)
s (r1)C

(i)
s (r2) =


i

C(i)
s (r1, θ1)C

(i)
s (r2, θ2) (3.16)

= Cr(r1)Cr(r2)

i

C
(i)
θ (θ1)C

(i)
θ (θ2). (3.17)

Next we insert the C
(i)
θ from Eqs. (3.11) and (3.12) to find that


i

C(i)
s (r1)C

(i)
s (r2) = Cr(r1)Cr(r2)


cos(mθ1) cos(mθ2)

+ sin(mθ1) sin(mθ2)

. (3.18)
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And finally, applying the identity

cos(θ1) cos(θ2) + sin(θ1) sin(θ2) = cos(θ2 − θ1) (3.19)

gives us


i

C(i)
s (r1)C

(i)
s (r2)=Cr(r1)Cr(r2) cos


m(θ2 − θ1)


. (3.20)

Since Eq. 3.20 depends only on the difference θ2 − θ1, the free energy remains

rotationally invariant. By selecting different values for m we can favour certain

crystal structures over others. m = 6 favours the six-fold triangular lattice, m = 4

the four-fold square lattice, and m = 3 favours three-fold graphene crystals.

It is noted that an analogous mathematical approach as the one above can be

used in 3D by replacing the Ci
s(r, θ) by spherical harmonics Ylm(r, θ) and replac-

ing the sum over i in Eq. (3.17) by a sum over m (see Appendix E). However, this

will not be pursued here further in order to keep the scope of this thesis tractable

and limited to three-point interactions in two dimensional systems. We have com-

municated this result to colleagues with whom we are collaborating and who are

presently pursuing this approach for 3D materials[98].

We will later have need for the Fourier transforms of C(i)
s (r, θ). For C(1)

s (r, θ)

we begin by taking the multipole expansion

C(1)
s (r, θ) =

X

2πa0
δ(r − a0)

eimθ + e−imθ

2
, (3.21)
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which transforms as (see Appendix B):

Ĉ(1)
s (k, θk) = X

imeimθkJm(ka0) + i−me−imθkJ−m(ka0)

2
(3.22)

= Xim
eimθk + e−imθk

2
Jm(ka0) (3.23)

= Xim cos(mθk)Jm(ka0), (3.24)

where (k, θk) are the Fourier space polar coordinates. In Eq. (3.23) we have used

the fact that J−m(r) = (−1)mJm(r). Applying the same proceedure for C(2)
s (r, θ)

gives

Ĉ(2)
s (k, θk) = Xim sin(mθk)Jm(ka0). (3.25)

3.4 Equilibrium Phase diagrams for different crys-

tal structures

Using the approach outlined in Section 2.3.1, we can produce phase diagrams for

various crystal structures stabilized by the two-point and three-point correlation

function terms in our model. Here we will present phase diagrams for triangular,

square and honeycomb (graphene) phases coexisting with a disordered phase. The

mathematical procedure of constructing the phase diagram will not be shown here

as again as it was already shown in Chapter 2. The interested reader can contact

the author for access to the Mathematical files used to generate the phase diagrams

that follow.
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3.4.1 Triangular crystals

The triangular phase is notable because we can produce it even with no three-

point correlations. The rejection term R in the two-point correlation function

is sufficient to produce a triangular crystal phase. Figure 3.3 shows an order-

disorder phase diagram in {ϕ0, R} space with X = 0, i.e. without the three-

point interaction term. Note that we have plotted R−1 on the vertical axis, since

decreasing R corresponds to increasing temperature in this model. This phase

diagram was generated with a five mode amplitude expansion for the density.

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0.13
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R−1

Figure 3.3: Triangular-disorder phase diagram using only two-point correlations
(X = 0).

We can also generate a phase diagram for disordered-triangular phase coexis-
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tence by including three-point correlations. Using m = 6 for six-fold symmetry

and fixing R = 6, we obtain the phase diagram in {ϕ0, X} space shown in Fig. 3.4.

It is noted that the use of the three-point term gives rise to an expanded region of
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Figure 3.4: Triangular-disorder phase diagram using two and three-point corre-
lations, with m = 6 and R = 6. Here r0/a0 = 0.70785.

coexistence between the disordered and triangular phases.

As was mentioned earlier, it is also possible to modify the correlations in our

model by adding a Guassian peak to the two-point correlation function, with its

peak position at r > r0. In addition, we could also replace the delta function in

Eq. 3.13 by a similar Gaussian peak. We do not expect that these replacements

would alter the behaviour of the phase diagrams in Figures 3.3 and 3.4, although

the resulting forms are a little mode cumbersome to deal with algebraically. How-
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ever, the added flexibility of these interaction terms would likely make it possible

to further expand the coexistence range of the phase diagram.

3.4.2 Square crystals

For four-fold symmetry we must include the three-point correlations into the free

energy, with m = 4. Using a five mode amplitude expansion and setting R = 5,

we obtain the square-disorder phase diagram depicted in Fig. 3.5.
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Figure 3.5: Square-disorder phase diagram using two and three-point correlations
with m = 4, R = 5 and r0/a0 = 0.81736.
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3.4.3 Graphene crystals

Graphene crystals can be described using a triangular Bravais lattice with a two

atom basis. As a result, graphene crystals differ from triangular crystals only in

their structure factors. Starting with the primitive vectors of the triangular lattice

(in terms of the coordinate vectors x and y):

a0 =
√
3x, a1 =

√
3

2
x+

3

2
y, (3.26)

we locate the basis atoms at

d0 = −
√
3

2
x− 1

2
y, d1 = −

√
3

2
x+

1

2
y. (3.27)

Now, if we have a density expansion for a triangular lattice nT then we can write

the expansion of a graphene lattice by translating nT to the positions of the basis

atoms. That is

nG(r) =

i

nT(r− di). (3.28)

If nT was expanded as in Eq. 2.19, then nG becomes

nG(r) =
N
k=0

ϕT
k


j

Sk,je
iqk,j ·r


; (3.29)

Sk,j =

i

e−iqk,j ·di ; (3.30)

where Sk,j are the graphene structure factors.

The free energy is invariant under a translation of the basis atoms (that is
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di → di + t). In selecting the positions of the basis atoms, we have taken advan-

tage of this freedom: the basis atoms have been positioned such that all structure

factors are real and equal for a given mode. That is, Sk,j = Sk. Noting this, we

can pull the structure factors out of the second sum:

nG(r) =
N
k=0

Skϕ
T
k


j

eiqk,j ·r


(3.31)

=
N
k=0

ϕG
k


j

eiqk,j ·r


; (3.32)

ϕG
k = Skϕ

T
k . (3.33)

Thus, although both triangular and graphene phases are described by the same

underlying lattice, the difference will be detectable in their amplitudes. When we

compute the first four structure factors we find that

S0 = 2; S1 = −1; S2 = 2; S3 = −1. (3.34)

In contrast with the triangular phase, where all structure factors are equal to unity,

we can see that some of the structure factors for graphene are negative. The distin-

guishing feature of graphene amplitude expansions is therefore that certain ampli-

tudes are negative. The crudest test to distinguish the phases is to simply examine

the first amplitude of thr density expansion: if ϕ1 < 0 we have graphene, while if

ϕ1 > 0 we have the triangular phase.

These negative amplitudes provide some insight into the difficulty of produc-

ing graphene phases using two-point correlations alone. If we insert the amplitude

expansion of a triangular lattice into the two-point excess free energy (Eq. 3.3) and
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integrate over a unit cell we find that

Fex,2 = −1

2


Ĉ2(q0)ϕ

2
0 + 6Ĉ2(q1)ϕ

2
1 + 6Ĉ2(q2)ϕ

2
2 + . . .


, (3.35)

where qi are the lengths of the reciprocal space modes (recall that all vectors

in a mode are of the same magnitude). Note that since all amplitudes ϕk are

squared, the excess free energy due to two-point correlations is symmetrical with

respect to the signs of ϕk. No matter what the function Ĉ2(q) looks like, it cannot

energetically favour negative amplitudes over positive amplitudes. The ideal free

energy of Eq. 3.2 is of no help either, as with the standard values η = ξ = 1 it

favours positive amplitudes as well. 1 Three-point correlations don’t suffer this

limitation, since they produce terms of odd powers in ϕk.

To produce the phase diagram for the graphene system we use a five mode

triangular density expansion with m = 3. Minimizing the free energy with re-

spect to the amplitudes and applying the common tangent construction we obtain

a graphene-disorder phase diagram in {ϕ0, X} space. Figure 3.6 shows such a

phase diagram for the case R = 6. Although not shown in the diagram, it was

confirmed that the amplitudes followed the pattern established in Eq. 3.34, with

the first mode negative and the second positive.

3.5 Poisson’s ratio of the three-point XPFC model

In this section we calculate the elastic constant of graphene crystals formed with

our model at various values of the temperature parameter X−1. The approach we
1It is noted that if we change the sign of η it is possible to generate graphene structure. How-

ever, it has been found that the elastic response of this type of graphene is not correct and also the
density of the ordered phases becomes lower than that of the disordered phase [99].
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Figure 3.6: Graphene-disorder coexistence phase diagram, with m = 3 and
R = 6. Here r0/a0 = 1.2259.

take here is numerical, wherein we examine the variations of the free energy of our

system and from this extract the corresponding elastic constants. The free energy

is approximated by numerical minimization of a finite mode amplitude expansion.

To proceed, we write the elastic energy of a strained system as

F =
1

2


Cijϵiϵj + F0, (3.36)

where Cij is the elasticity tensor, ϵi are the strains (in Voigt notation) and F0 is

the unstrained free energy. In terms of the derivatives of the displacement vectors

u, ϵ1 = uxx = ∂ux/∂x, ϵ2 = uyy = ∂uy/∂y, etc. For the simplest anisotropic
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material is it can be shown that C11 = C22 [100]. This simplifies the elastic energy

in Eq. 3.36 to

F =
1

2
C11(u

2
xx + u2

yy) + C12uxxuyy + F0. (3.37)

We next let uxx = u cos(t) and uyy = u sin(t). Noting that cos(t) sin(t) =

sin(2t)/2, we have

F =
1

2
C11u

2 +
1

2
C12u

2 sin(2t) + F0. (3.38)

The free energy of such a strained system can be measured either through ampli-

tude expansions or through simulations. As mentioned above, we take the former

route. If we measure the free energy as a function of t from t = 0 to t = 2π, we

can compute the Fourier series of this function. The values of this series can be

used to derive the parameters C11 and C12 appearing in Eq. 3.38. The constant

term gives us F = 1
2
C11u

2 + F0 and can be used to find C11. The third term gives

us the C12u
2 sin(2t) term, which can be used to find C12.

We can proceed to compute the bulk modulus, shear modulus and Poison ratio

of the graphene generated by our model. These are given explicitly in term of the
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elasticity constants of our system as[53]:

C11 = C12 + 2C44, (3.39)

B =
C11 + C12

2
, (3.40)

µ = C44, (3.41)

Y =
4Bµ

B + µ
, (3.42)

(3.43)

and

ν =
B − µ

B + µ
, (3.44)

where B is the bulk modulus, µ is the shear modulus, Y is Young’s modulus and

ν is Poisson’s ratio, respectively. From this we can see that

ν =
C12

C11

. (3.45)

Thus, Poisson’s ratio for our graphene in our model can be computed from C11

and C12. Table 3.2 shows the values obtained for various system parameters using

an eight mode amplitude expansion. It is seen that the value of the elastic moduli

depends on the system parameters used. Specifically, the Poisson ratio becomes

positive for the temperature parameter X−1 ≥ 0.5 in our model, which indicates

an upper limit of reliability of X−1, at least with the tested values of the parameters

R in the two-point correlation function. In a recent study that compared this and

other PFC type models of graphene, the present one gave a range of parameters
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System parameters Elastic coefficients Bulk moduli
n0 X−1 C11 C12 C44 B µ ν

0.2 0.4 43.5673 −1.00583 22.2866 21.2807 22.2866 −0.0230869
0.2 0.5 7.6481 0.838848 3.40462 4.24347 3.40462 0.109681
0.3 0.4 49.7526 −1.4694 25.611 24.1416 25.611 −0.0295341
0.3 0.5 10.6984 1.01357 4.84243 5.85599 4.84243 0.0947399

Table 3.2: Measurement of elastic coefficients for various system parameters for
the three-point graphene system. Results obtained using an eight mode amplitude
expansion. R = 6 and u = 0.01 for all entries.

that features a negative range of Poisson ratios[101]. It would be instructive to

map out the elastic constants in a more comprehensive way as functions of R,

X−1 and n0 for our system. The model parameters would have to be matched to

graphene properties more quantitatively before a comparison could be made of

the elastic constants to experiments.

3.6 Dynamics and simulations

The density field n(r) is a conserved order parameter. It therefore follows model

B dynamics for conserved fields[7]. This implies that

∂n

∂t
= Mn∇2


δF

δn


, (3.46)

where Mn is a mobility parameter that sets the diffusion rate, and δF/δn is the

functional derivative of F with respect to n. Realistic simulations of n would also

include a noise source in Eq. 3.46, however for simplicity these will be ignored in

the present work.

In order to simulate the evolution of n we will require the functional deriva-
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tives of F . We derive the variational of our free energy term by term in what

follows. The most straightforward is the functional derivative of Fid (Eq. 3.2).

Since Fid is an integral of a simple function of n, we need only take the derivative

of that function:

δFid

δn
= n− η

n2

2
+ χ

n3

3
. (3.47)

The term Fex,2 (Eq. 3.3) is a convolution integral, the variational of which is well

known[53] and given by:

δFex,2

δn
= −


C2(r− r′)n(r′)dr′ ≡ −C2 ∗ n, (3.48)

where ∗ indicates convolution. In general, terms such as this can be computed

efficiently using the convolution theorem.

The three-point term (Eq. 3.10) is more complex. We begin by expanding the

square for each term in the summation:

F
(i)
ex,3[n] = −1

3


C(i)

s (r − r′)C(i)
s (r − r′′)n(r)n(r′)n(r′′)dr′dr′′dr. (3.49)

To find the functional derivative we next make use of the well known formula [53]

F [n+ δn]− F [n] ≡

δn

δF

δn
dr. (3.50)

Applying this to Eq. (3.10) and discarding terms of order O

(δn)2


we are left
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with three terms,

F
(i)
ex,3[n+ δn]− F

(i)
ex,3[n] =

− 1

3


C(i)

s (r− r′)C(i)
s (r− r′′)δn(r)n(r′)n(r′′)dr′dr′′dr

− 1

3


C(i)

s (r− r′)C(i)
s (r− r′′)n(r)δn(r′)n(r′′)dr′dr′′dr

− 1

3


C(i)

s (r− r′)C(i)
s (r− r′′)n(r)n(r′)δn(r′′)dr′dr′′dr. (3.51)

Swapping r and r′ in the second term and r and r′′ in the third gives:

F
(i)
ex,3[n+ δn]− F

(i)
ex,3[n] =

− 1

3


δn(r)

 
C(i)

s (r− r′)C(i)
s (r− r′′)n(r′)n(r′′)

+ C(i)
s (r′ − r)C(i)

s (r′ − r′′)n(r′)n(r′′)

+ C(i)
s (r′′ − r′)C(i)

s (r′′ − r)n(r′)n(r′′)

dr′dr′′dr. (3.52)

Combining the last two terms (by swapping r′ and r′′ in the third term) gives:

F
(i)
ex,3[n+ δn]− F

(i)
ex,3[n] =

− 1

3


δn(r)

 
C(i)

s (r− r′)C(i)
s (r− r′′)n(r′)n(r′′)

+ 2C(i)
s (r′ − r)C(i)

s (r′ − r′′)n(r′)n(r′′)

dr′dr′′dr. (3.53)

Finally, noting from Eqs. (3.11) and (3.12) that C(i)
s (−r) = (−1)mC

(i)
s (r) we find

δF
(i)
ex,3

δn
= −1

3


C(i)

s ∗ n]2 + 2(−1)mC(i)
s ∗


n · (C(i)

s ∗ n)


. (3.54)
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Having expressed the functional derivative in terms of convolutions we can re-

peatedly apply the convolution theorem in order to compute the result efficiently.

The first term can be computed by performing the convolution in reciprocal space

and then returning to real space in order to calculate the square. The second term

can be computed in three steps: computing the inner convolution in reciprocal

space; returning to real space for the multiplication by n; and finally transforming

to reciprocal space once again to compute the outer convolution.

3.6.1 Polycrystalline 2D materials, defects and coexistence

In this section, we demonstrate our model by simulating the evolution of trian-

gular, square and graphene phases by selecting model parameters and average

densities corresponding to the ordered regions of their respective phase diagrams

studied in this chapter. The density field is initialized with Gaussian noise on a

two dimensional system of size N×M with a numerical grid spacing of ∆x = 0.1

and time steps of ∆t = 0.0001, both of which were small enough to assure sta-

bility and accuracy of the following results presented. From the initial conditions,

the system subsequently solidifies into a polycrystalline solid. Figure 3.7 shows

snapshots of the density field at early (left) and late (right) times, for triangular,

square and graphene systems.

Of particular interest are the defect structures of the polycrystalline graphene

phase. Close examination of Fig. 3.7f reveals that along the grain boundaries

separating misaligned crystal grains we see rings of five (pentagons) and seven

(heptagons) atoms. These are highlighted in Fig. 3.8a. These rings are frequently

paired and referred to as 5-7 defects. The overall pattern of 5-7 defects along

the grain boundary appears to be aperiodic in nature. These aperiodic, 5-7 defect

76



(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Density fields of triangular (a and b), square (c and d) and graphene
(e and f ) phase growth, showing early (left) and late (right) times during solidi-
fication. Systems are initialized with gaussian density fluctuations. For all three
systems ϕ0 = 0.3 and values of r0/a0 match those in Table 3.1. For (a and b),
R = 7 and X = 0. For (c and d), R = 6 and X−1 = 0.5. For (e and f ), R = 6
and X−1 = 0.4.
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grain boundaries are in excellent agreement with experimental results of polycrys-

talline graphene[102]. Figure 3.8b and c show grain boundaries in polycrystalline

graphene samples grown experimentally by chemical vapour deposition (CVD).

It is seen that both the simulation and experiment exhibit similar morphological

features.

In order to demonstrate coexistence between the ordered and disordered phases

of our graphene system, we simulate a 2000× 100 system with periodic boundary

conditions, ∆x = 0.10392 (to match the lattice to the box), and the same nu-

merical time step as used to generate the data in Fig. 3.7. A large initial seed is

placed extending through the system transverse to the long dimension. This con-

figuration ensures that the order-disorder interface is a straight line, eliminating

curvature effects on the equilibrium densities. The initial average densities of the

solid and disordered phases are selected according to the phase diagram (Fig. 3.6)

and the system is allowed to come to equilibrium. Figure 3.9a shows the density

field at equilibrium, while Fig. 3.9b shows the smoothed density profile through

the interface. It can be seen that the resulting equilibrium bulk values agree well

with those in Fig. 3.6.

As has been mentioned at above, and in the introduction of this thesis, other

methods exist for stabilizing graphene symmetries using the PFC methodology,

but each with its own shortcoming. The methods Makhonta et al. [48, 49] do not

generate appropriate phase coexistence between graphene and a disordered state,

which is important to simulate a CVD process. Another method is that wherein

one inverts the cubic term in the ideal free energy, first applied to the standard PFC

in [101] and by us in the single-peak XPFC [99, 103]. These so-called “inverted

triangle models” have the deficiency that they place the solid (graphene) phase
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Figure 3.8: Comparison of simulated and experimentally determined defect
structures of polycrystalline graphene. The defect structure of Figure 3.7(f ) is
highlighted in (a). The grain boundary is resolved by a line of 5-7 defect struc-
tures. These defect structures match those found experimentally in polycrystalline
graphene membranes grown by chemical vapour deposition (CVD) [102]. (b)
shows an atomic resolution transmission electron microscope (TEM) image of
one such graphene membrane; the defect structure is highlighted in (c). (b) and
(c) reprinted by permission from Macmillan Publishers Ltd: Nature [102], copy-
right 2011.
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below that of the disordered phase, and they also give the wrong Poisson ratio for

graphene. An amplitude model of single-component graphene was also developed

in [101]. It under-predicts the grain boundary energy (compared to MD simula-

tions presented in [101]), and it fails to capture defect structure and morphology of

graphene grain boundaries. An interesting future project emerging from the study

of this chapter is to develop a complex amplitude model of graphene from the

present model. It would be instructive to determine if this model, which would

have contributions from the three-point and two-point correlation terms, would

fare any better than the amplitude model developed in [101].
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Figure 3.9: Simulation of coexistence between the ordered and disordered phases
of graphene. Density field n(r) of the equilibrium interface between phases shown
in (a). Smoothed average density along the longitudinal axis depicted in (b). Here,
X−1 = 0.5, R = 6. Average densities of 0.057 and 0.134 in the disordered and
ordered phases respectively match closely the theoretical values from the phase
diagram in Figure 3.6.
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Chapter 4

XPFC Modelling of Binary Systems

This chapter is concerned with modelling multicomponent—specifically binary—

systems. Traditionally in XPFC, binary systems have been modelled in the density-

concentration space, where the density n represents the total density of all com-

ponents (relative to a reference total density), and the concentration c represents

the fraction of one component, ranging from 0 to 1 [35, 43]. In this chapter we

break with this tradition and construct the free energy of the system on the basis

of the individual densities nA, nB, etc. There are several reasons for proceeding

in this way.

In the density-concentration description, the simplifying assumption is often

made that the concentration varies on a longer length scale than the density[69,

43]. This works well for systems where the two (or more) species separate into

their own crystal grains, but it precludes systems where atoms of differing species

neighbour each other. Of lesser importance is also the fact that even in metal

alloys where the former approximation holds, it can be shown that the assumption

that c varies on a longer length scale than n is not strictly true[104]. The density-
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concentration description also forces a single diffusion constant on each solute

concentration. This effectively means that only solute (minority) species diffuse

relative to a background lattice. By having each component represented by its

own field, we can model different species’ diffusions by setting different diffusion

constants for each species.

Another reason for describing a binary system in terms of nA and nB is that

for many binary systems the phase diagram is not known in the (n, c) variables, or

indeed any system of variables. A case in point in graphene and hydrogen on a sur-

face of a metal at certain pressure and temperature: it is not clear under what con-

ditions these two elements mix to form a graphene, a disordered “surface state,”

or both. SnSe, popular for its applications in thermoelectric devices, is another

two-dimensional material whose equilibrium phase diagram is not known. Essen-

tially, when the thermodynamics of a mixture—or alloy—are unknown, building

up a theory for such a material is probably most effectively done by considering

the physics of the individual species and their mutual interactions.

In this chapter, we use the above approach to construct new XPFC models of

several binary materials, and demonstrate some basic properties of each system.

The first system is a “salt-like” model where the two species self-repel but are

mutually attracted. This produces a solid with a square crystal lattice where the

nearest neighbours are of opposite species. The second system is a disordered-

solid model, where one species has no self-interaction term and behaves like an

ideal gas, but is repelled from a second, solid-forming species. The third system

has a solid forming species with a diffuse gas-like species that fills the interstitial

sites of the solid forming species. In this model the interstitial species has a high

diffusion constant compared to the solid-forming species. This could be adopted
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into a model for steel, with carbon diffusing into the interstitial sites of iron. Or,

including long-range screened interactions can lead to a PFC model for ionic flu-

ids, where the two-component system represents the ionic cores (nuclei and their

core electrons), and the valence electrons, which can play the role of a classical

electron “gas,” interacting with the ionic cores. Finally, we introduce a model of

chemical vapour deposition of graphene and hydrogen. This model extends the

model of the previous chapter to add a gas-like hydrogen density.

Working in the space of two densities requires methods of constructing phase

diagrams of coexistence that keep the all densities conserved. It is a significantly

more challenging task to deal with two conserved components than it is to deal

only with concentration, as in standard models. Another key contribution of this

thesis is the development of an efficient computational tool used for calculating

two component phase diagrams for the models proposed here, as well as for future

models. We develop theory of these phase diagram construction tools in the text

of this chapter, and show the details of the algorithm in Appendix C.

4.1 Simplified density functional theory for a two-

component system

We begin by introducing the ideal free energy density for a multi-component sys-

tem consisting of N species. As in the case of single component materials, we

will express a species’ true ideal free energy as a Taylor series expanded close to

the free energy of a reference liquid at coexistence with the solid phase we are

trying to model. Specifically, in dimensional units, the true ideal free energy of
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component i near coexistence is given by[52]

F id
i

kBT
= ρi log


ρi
ρ̄i


− (ρi − ρ̄i) , (4.1)

where ρi is the local number density of species i, ρ̄i represents the number density

of species i in the reference liquid, kB Boltzmann’s constant and T is the tempera-

ture. Defining a rescaled species density by ni = (ρi − ρ̄i) /ρ̄i, and expanding the

density-rescaled form of Eq. 4.1 in a Taylor series around ni = 0 to fourth order,

gives

F id
i

kBT
= ρ̄i


n2
i

2
− ηi

n3
i

6
+ χi

n4
i

12


, (4.2)

where the series expansion yields ηi = χi = 1. However, it is possible that higher

order correlation interactions could produce bulk polynomial terms of third and

fourth order, in which case ηi and χi could take on other values. In terms of Eq. 4.2

the total ideal free energy becomes

fid =

i

F id
i

kBT ρ̄
=

i

wi


n2
i

2
− ηi

n3
i

6
+ χi

n4
i

12


(4.3)

where ρ̄ = ρ̄1 + ρ̄2 + · · · is the total average number density of the system and

wi = ρ̄i/ρ̄. The weights wi come out formally from the rescaling of the total ideal

free energy by kBT ρ̄ (these also formally appear in the excess terms discussed

below when written in terms of the densities ni). In what follows, we consider

only two components and consider the simple case where w1 ≈ w2 = 1, and

ηi = χi = 1 for each species. We make these simplification here as the aim of

this work is to investigate new physical properties that come out the form of of
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our new model. Future work will explore the use of such constants on specific

quantities. With these simplifications, the ideal free energy of our binary model is

taken as

fid =

i


n2
i

2
− n3

i

6
+

n4
i

12


. (4.4)

For the excess free energy density, truncating at two-point correlations, there

are in general self-interaction terms for each component, as well as between every

pair of components [42]:

fex =− 1

2


i,j

ni(r)


Cij

2 (r− r′)nj(r
′)dr′. (4.5)

Specifically, for a two component system (nA and nB), we have:

fex =− 1

2
nA(r)


CAA

2 (r− r′)nA(r
′)dr′

− 1

2
nB(r)


CBB

2 (r− r′)nB(r
′)dr′

− nA(r)


CAB

2 (r− r′)nB(r
′)dr′. (4.6)

As mentioned above, Greenwood et al. [69] take a different approach and

transform these equations into a density-concentration space, where the density is

taken to be the total density of all components and the concentration is the fraction

of B atoms. Additionally, they take the inter-species correlation function CAB
2

to be an interpolation between the self-interaction correlation functions, CAA
2 and

CBB
2 , with the interpolation modulated by the concentration field. Here we take an

alternative approach, expressing the model in terms of the individual component
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densities and retaining all three correlation functions explicitly. Doing so allows

us to produce a greater variety of structures.

4.2 Form of the two-point correlation functions

The essence of structure in PFC models—and indeed all DFT models—comes

from the structure of the two-point (and higher) correlation functions. For the

new XPFC binary model defined above, we define a general class of correlation

functions that have the following properties:

1. bounded in real space;

2. exhibit short-ranged repulsion and longer ranged attraction, each character-

ized by a strength and length scale; and

3. have analytical forms for their k-space representations.

To this end we propose the following form of the correlation functions:

Cij
2 (r) = −Rij

αij

π
e−αijr2 +

Aij

2πaij
δ(r − aij), (4.7)

where the parameters αij and aij are given by

αij = (αi + αj)/2; aij = (ai + aj)/2 (4.8)

It is noted that in our computational code we use αij = (αi + αj)/2 and aij =

(ai + aj)/2. The Fourier transform of this correlation function is give by (see

87



(a) (b) (c)

Figure 4.1: Density fields of three two component systems, with the component
densities A and B coloured red and green, respectively. (a) shows a salt-like sys-
tem where A and B atoms are attracted to each other but not themselves. (b) shows
a system where A atoms form a solid, B atoms favour remaining disordered, but
A and B atoms repel each other. (c) shows a system where the disordered B atoms
favour dispersing within the lattice of the ordered A atoms. The details of the
models used to simulate these three situations are discussed further below.

Appendix B for details):

Ĉij
2 (k) = −Rije

−k2/(4αij) + AijJ0(a
ijk), (4.9)

where Jm are the Bessel functions. The parameters {Rij, Aij, α
ij, aij} control the

phases produced by the system.

Figure 4.1 shows “snapshots” of three example systems generated with the

above model using the general form of Cij
2 (r) in Eq. 4.7. Later sections of this

chapter will investigate these three systems in further detail. These binary systems

will serve as case studies that can be expended upon in future work to model

three important material classes that have not been studied previously with PFC

modelling.
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4.3 Phase diagrams for two component systems

In a single component system, if there are two phases coexisting at densities n1

and n2, with volume fractions v1 and v2, then the average density and average free

energy density (denoted n and f ′(n), respectively) will be

n = n1v1 + n2v2; (4.10)

f ′(n) = f(n1)v1 + f(n2)v2. (4.11)

Since v1 + v2 = 1, we can set v2 = v and v1 = 1− v. This gives

n = n1(1− v) + n2v; (4.12)

f ′(n) = f(n1)(1− v) + f(n2)v. (4.13)

With some rearrangement we can obtain:

f ′(n) =
(f(n2)− f(n1))n+ f(n1)n2 − f(n2)n1

n2 − n1

, (4.14)

which for a given n1, n2 defines an equation of a line (see red line in Fig. 4.2).

If f ′(n) < f(n) then the minimization of total free energy of the system favours

separation of a single phase into regions of density n1 and n2; otherwise, mini-

mization favours the entire system remaining at the average density n. Naturally,

through fluctuations, the system will select separation into densities n1, n2 to min-

imize the free energy.

The above conditions imply that if the free energy as a function of the density

is convex (a line segment between any two points on a graph of the function lies
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above the graph), then the entire system will stay at that density and there will be

no points of coexistence. If, on the other hand, the free energy as a function of

the density is concave over any region, then that region is termed a coexistence

region and the endpoints of the region are the densities n1 and n2 in the formulae

above. In this case the system will separate into regions of density n1 and n2 in

order to achieve a system average free energy that is lower than the free energy of

the system with uniform density. This lower free energy of the coexisting system

is its true free energy. As a result, the plot of the true equilibrium free energy

of the system as a function of the system density is always convex; regions of

coexistence are straight lines. Therefore free energy “landscapes” generated by

assuming a single system-wide density must be corrected by taking the convex

hull constructed from the free energy landscape, as illustrated in Fig. 4.3.

For two component systems the situation is more complicated. Here we can

in general have three coexisting regions of volume fractions v1, v2 and v3, with

the constraint that v1 + v2 + v3 = 1 allowing us to eliminate v3 as an independent

variable. v1, v2 can then be determined by the solution to the following formulae:

nA = nA
1 v1 + nA

2 v2 + nA
3 (1− v1 − v2); (4.15)

nB = nB
1 v1 + nB

2 v2 + nB
3 (1− v1 − v2). (4.16)

Meanwhile, the average free energy density of the system is given by

f ′(nA, nB) =

f(nA

1 , n
B
1 )− f(nA

3 , n
B
3 )

v1

+

f(nA

2 , n
B
2 )− f(nA

3 , n
B
3 )

v2

+ f(nA
3 , n

B
3 ), (4.17)
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n1 n2

f(n1)

f(n2)

n

f

Figure 4.2: Free energy plot as a function of density. The red line is the coex-
istence line, where one phase decomposes into two phases of density n1 and n2.
As the average density moves from n1 to n2, the system remains in coexistence at
these endpoints, however the volume fraction changes from {v1, v2} = {1, 0} to
{v1, v2} = {0, 1}.

which is the formula for a plane. It should be noted that sometimes nA
1 , n

B
1 =

nA
3 , n

B
3 (or equivalent) and we have a line. Similarly to the case of single compo-

nent system, the convexity of the free energy landscape of the system is critical

in defining coexistence. If the system can achieve a lower free energy by sepa-

rating into two or three regions then it will, and so a plot of the true free energy

of the system will always be convex as a function of the densities. Thus, finding

the equilibrium free energy “landscape” of a system as a function of nA and nB

requires mapping the local free energy to its convex hull. A computational proce-

dure and algorithm for doing so is presented in Appendix C. This algorithm was

used in the phase diagram examples of the binary model proposed in this chapter

and demonstrated below.
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n

f →

n

f

Figure 4.3: Replacing the free energy plot with its convex hull. The convex hull
represent the true equilibrium free energy of the system.

4.4 Special case studies of the binary model

This section specializes the above binary XPFC theory to three types of systems

modelled by the class of two-point correlation functions in Eq (4.7). These are a

salt-like binary system, a solid-gas system and an interstitial alloy system. These

systems are demonstrated mostly to illustrate the robustness of the new binary

model, and indeed, the salt-like system is merely a toy model of the real sys-

tem it mimics here. It is expected that these three example systems will serve as

templates to build upon for modelling more complex materials in the above three

classes of materials.

4.4.1 “Salt-like” system

In an ionic salt, positively charged cations are attracted to negatively charged an-

ions. Both species repel themselves; hence the resulting structure has each cation

surrounded by anions, and each anion surrounded by cations. Motivated by this
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behaviour, we generated a “salt-like” system like the one shown in Figure 4.1a by

using {αij, aij} = {1.5, 1}. We also set the-short ranged rejection parameters to

RAA = RBB = RAB = 6s, where s is a parameter setting the overall strength of

the interaction (s = 1 in Figure 4.4). We want the two components to attract each

other at the lattice spacing distance, so we set AAB = 6s. However, we want each

component to reject itself at that distance as well, so we set AAA = ABB = −6s.

When the average densities are equal, the result is a system that solidifies into a

square lattice where each atom neighbours atoms of the other species. Two snap-

shots of the early and late time evolution of our model forming a solid with A-B

atoms arranged into interlacing square lattices are shown in Figure 4.4.

Figure 4.4: Early (left) and late (right) density evolution for the “salt-like” binary
system. The density nA is indicated in red, and nB is indicated in green.

A numerical phase diagram for this toy “salt-like” system is depicted in Fig-

ure 4.5. This specific phase diagram shows a cut along nA = nB line in (nA, nB)

space.

To properly describe an actual salt like system requires the use of screened
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Figure 4.5: Phase diagram for the “salt like” toy system (Figures 4.1a and 4.4).
The two lines indicate the coexistence region. For all points in the phase diagram
nA = nB = n. The strength of the interaction is determined by s.

Coulomb interactions as done in the theory of ionic liquids [105]. The model

illustrated here is a crude toy model analogy of this type of material, which is

made using the interactions defined in Eq. (4.7). It would be an interesting future

application of this binary model to include more detailed screened ionic interac-

tions into the correlation functions and to use these to investigate defects in ionic

materials.
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4.4.2 Solid-gas system

The solid-gas like system in Figure 4.1b represents a binary material where the

A species favours a solid phase, and the B species favours to be a gas (or a

disordered) phase; however the A-rich solid can still contain a fraction of B

atoms within it. To simulate this situation with the binary model, we again set

{αij, aij} = {1.5, 1}. In this system the B atoms are “gas-like” and so have no

self-interaction, and so we set RBB = ABB = 0. The A atoms form a solid, and

so these exhibit an attraction at the lattice spacing length and repulsion at smaller

length scales. Thus, we set RAA = AAA = 6. Lastly, we set the two compo-

nents to be weakly repulsed by each other by setting RAB = 2, AAB = 0. This

system favours in the A atoms solidifying with pockets of the disordered B atoms

between them.

Figure 4.6 shows a phase diagram of the solid-gas system constructed in (nA, nB)

space. The phase diagram was made by the same method outlined in Section 4.3

of this chapter using a new computational algorithm developed for two component

materials, which is discussed in Appendix (A). The lines in the phase diagram in-

dicate tie lines. The lines connect any pair of average densities (⟨nA⟩, ⟨nB⟩) in the

coexistence region to the unique points at the boundaries of the coexistence region

of the phase diagram. Note that the discrete nature of the coexistence boundaries

in Figure 4.6 are due to numerical resolution. These boundaries become smother

as the resolution of the convex hull algorithm described in Appendix C increases,

at the cost of course of increased time to compute the phase diagram.

Figure 4.7 shows “snapshots” of a simulation of the time evolution of a solid-

gas system. The system is prepared with Gaussian noise with average densities

nA = −0.55 and nB = −0.55. This puts the system in the coexistence part of the
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Figure 4.6: Phase diagram for the second system (Figure 4.1b), with αij = 1.5,
aij = 1, RBB = ABB = AAB = 0, RAA = AAA = 6 and RAB = 2. Grey lines
indicate coexistence tie lines. Species B is always disordered.

phase diagram of Figure 4.6. After an initial solidification into a polycrystalline

solid, over time B-rich gas pockets develop at grain boundaries. The latter develop

at grain boundaries as these are higher energy locations that mediate the nucleation

of such gas pockets, as expected.

4.4.3 Interstitial impurity system

In the system shown in Figure 4.1c, species B, which on its own favours a gas

phase, is also able to exist within the interstitial regions of an A-rich solid phase.

This can serve as the first PFC paradigm to our knowledge of an interstitial species
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Figure 4.7: Early (left) and late (right) density evolution for the gas-solid system.
nA indicated in red, nB indicated in green. For this simulation, we took nA =
nB = −0.5.

diffusing within a host solid of another species. One of the most common real-

world examples of this is steel, where carbon is an interstitial element in an iron

lattice.

To simulate this interstitial system, system, we set αij = 2.5, aA = 1, aB = .5

(see Eq. 4.8). In this system the A atoms form a solid while the B atoms form a

diffuse gas in the interstitial sites. RAA = AAA = 6 produces a solid for the A

component. RBB = ABB = 0 results in the B atoms remaining diffuse with no

self-interactions. The B atoms are however attracted to the spaces between the A

atoms by RAB = 3, AAB = 1. We additionally change the diffusion constant for

the B atoms to be ten times larger than that of the A atoms, reflecting their smaller

size.

Figure 4.8 shows a polycrystalline sample of A-rich phase with interstitial B

atoms that are attracted to the interstitial spaces between the A atoms. The nB

density is also greater near defects in the lattice, as expected.
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(a) (b) (c)

Figure 4.8: Separated density fields of the steel-like system. (a) shows both
densities together, with nA in red and nB in green. (b) shows nA by itself. (c)
shows nB by itself. Note that the nB field is attracted to grain boundaries and
other defects in the nA crystal.

System A-A B-B A-B
{RAA, AAA} {RBB , ABB} {RAB , AAB} {αA, αB} {aA, aB}

Salt-like {6,−6} {6,−6} {6, 6} {1.5, 1.5} {1, 1}
Gas-solid {6, 6} {0, 0} {2, 0} {1.5, 1.5} {1, 1}
Interstitial impurity {6, 6} {0, 0} {3, 1} {2.5, 2.5} {1, 0.5}

Table 4.1: Summary of system parameters for the three systems described.

For completeness, Table 4.1 summarizes all the parameters used to demon-

strate the three systems described in the three subsections of the present section.

4.5 Binary model of graphene-hydrogen surface in-

teractions

A common way to grow graphene in experiments is through chemical vapour de-

position (CVD) onto a surface of some metal immersed in controlled gaseous envi-

ronment, where one gas controls the transfer of carbon to the surface and the other
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the overall pressure of the sample[106, 107]. A particular example is that used at

McGill in the lab of professor Michael Hilke. In his group’s experimental set up,

graphene grows on the surface of a copper sample that is in a two-component gas

of molecular hydrogen (H2) and methane (CH4). It is conjectured that these two

gasses, which are maintained at some low pressure, dissociate and adsorb as car-

bon (C) and hydrogen (H) onto the copper surface. Adsorption of each species is

proportional its carrier gas’ partial pressure. As the surface concentration of car-

bon (or the pressure of CH4) increases, graphene flakes start to grow. While the

role of the hydrogen on the surface is presently not well understood, its presence

appears to interfere with the growth of the carbon. It is plausible that the car-

bon and hydrogen on the surface form a mixture out of which graphene grows in

regions of low enough hydrogen density, assuming a locally high carbon density.

4.5.1 Properties of the model

To model CVD graphene as a binary system, we add a second species to the

graphene model described in Chapter 3. We use nA to represent the carbon

surface density and add nB to represent the hydrogen surface density. The to-

tal free energy density of the system (in dimensionless form) is f(nA, nB) =

fA(nA) + fB(nB) + fAB(nA, nB), while, as usual, the total free energy of the

system is F =

f(nA, nB)dV , where the volume is over the system. We take

the free energy of the graphene forming carbon species (A) to be given by Equa-

tions 3.2, 3.6, 3.10 and 3.11–3.13. There is no self-interaction of the hydrogen

atoms, which implies that the B species on their own favour an ideal gas state.
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Thus, we take the hydrogen component of the total free energy to be

fB =

 
nB(r)

2

2
− nB(r)

3

6
+

nB(r)
4

12


dr (4.18)

To this we add an additional term to model an interaction between the two

components:

fAB(r) =

anA(r) + bn2

A(r)
 

χ(r′ − r)nB(r
′)dr′ (4.19)

where the function χ(r′ − r) here comprises a long-range two-point correlation

function. This form essentially causes an A atom (carbon) to feel the effect of

hydrogen in an averaged way in some region around It. The form of χ(r′ − r) in

Fourier space is given by

χ̂(k) = Be−k2/(4α). (4.20)

The constants a and b in Eq. (4.19) influence the type of interactions. For example,

using b = 0 mostly couples the average of nA to the local average of nB , while

the case b ̸= 0 couples the ordering parameters (amplitudes) of nA to the local

average of nB. The constant B controls the magnitude of interaction and α adjusts

the interface energy between the fields. In the results shown below, B = 2 and

α = 0.5.

Figure 4.9 shows a constant temperature the phase diagram of the above model

for the case where the interaction parameters are set to a = b = 1. The same two-

component phase diagram algorithm discussed previously was used, only now

the amplitude expansions included the more complex three-point interactions in
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fA(nA). In the figure, the temperature parameter of the three-point model was set

to X−1 = 0.4 and the two-point interaction strength was set to R = 6.
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Figure 4.9: Phase diagram for the graphene-hydrogen system, with a = b = 1 in
the hydrogen-carbon interaction term and R = 6, X−1 = 0.4, B = 0.125 in the
graphene three-point correlation function. The grey lines indicate coexistence tie
lines for the graphene and disordered phases. Species B (“hydrogen”) is always
disordered.

4.5.2 Dynamics

To simulate dynamics in the above model, each species follows the usual model B

type equations of motion given by Eq. 3.46. To mimic the CVD process, however,

we add to each species’ equations of motion a flux term to represent the flux of

carbon and hydrogen onto the surface from the vapour phase surrounding the 2D
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surface onto which graphene grows. As a result, the equations of motion become,

for each species ni, i = A,B:

∂ni

∂t
= Mn∇2


δF

δni


− f(ni − n∗

i ), (4.21)

In Eq. 4.21, n∗
i is the “target” density at which the flux onto the surface reduces to

zero. In the results presented below, f = 1.95 was used.

Figure 4.10 shows a graphene polycrystalline grown with the graphene-hydrogen

binary model. The temperature parameter was set to X−1 = 0.4, and the inter-

action parameters in fAB were set to a = 1 and b = 0. The densities nA and

nB were initialized uniformly with Gaussian fluctuations of zero mean and unit

variance. Their averages (⟨nB⟩ − ⟨nA⟩) were chosen in the solid region of the

phase diagram corresponding to a = 1 and b = 0 in Figure 4.9. The top image

shows the graphene structure set by nA (carbon), while the bottom image shows

the distribution of nB (hydrogen). The hydrogen is seen to be disordered, with

larger accumulations in the grain boundaries, consistent with experimental obser-

vations [108, 109], which suggests that hydrogen chemically mixes (binds) with

carbon within the bulk of graphene, but has a higher propensity for binding on de-

fects. This simulation begins with the nucleation of different crystal orientations

from the disordered phase, followed by growth and impingement leading to grain

boundaries.
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(a)

(b)

Figure 4.10: Results of the graphene-hydrogen model. (a) shows the carbon
density, nA, and (b) shows the hydrogen density, nB. Note the attraction of the
hydrogen atoms to the grain boundaries of the graphene. nA = 1, nB = −2,
R = 4.5, X−1 = 0.35, and a = 2 and b = 0. Results courtesy of Kate Elder.
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Chapter 5

Conclusion

Using the PFC methodology, we developed and characterized several new models

of atomic scale material phase transformations. In doing so, we have extended the

reach of PFC to investigate new areas of material science. New models have been

developed to: (1) model consistent magneto-crystalline interactions; (2) introduce

into the PFC methodology rotationally invariant three-point density correlations;

and (3) develop a new formalism to model binary systems based on species den-

sities and local inter-species interactions.

In Chapter 2 we expanded the PFC model of Faghihi et al.[51], which was

only valid for isotropic magneto-crystalline coupling, to include anisotropy and

use the XPFC two-point correlation functions as the underlying model of the den-

sity evolution. We derived analytically the form of the anisotropy for various

crystal structures. We also calculated the model’s magnetostriction coefficients.

We demonstrated that a single-peak correlation function does not give enough

degrees of freedom to separately tune the magnetostriction constants, however

multi-peaked XFPC correlation functions do allow for separate control of these
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constants. Magnetic hysteresis was also quantified in the model through direct

simulation. We simulated the effects of external magnetic fields on the result-

ing grain structure of a solidifying crystal, showing that grains in anisotropically

favourable orientations grow preferentially at the expense of those in unfavourable

orientations. This points to potentially interesting applications of using applied

external magnetic fields to effect microstructure control in materials manufactur-

ing. A potentially interesting avenue of future work with this model would include

the study of using low-level magnetic fields to bias magnetic impurities to grain

boundaries of polycrystalline materials. This can be of use in thermoelectric mate-

rials, where it is favourable to form many grain boundaries in order to increase the

dispersion of lattice phonons (thus decreasing thermal conductivity), while mini-

mizing the impact on electrical conductivity due to the enhanced presence of grain

boundaries. The migration of certain elements over others can have demonstrable

effects in the latter electronic effect[110].

Chapter 3 introduced a new type of PFC model that included, for the first time

in the PFC literature, a three point correlation function. These three point interac-

tions favour particular bond angles while being constructed so as to be rotationally

invariant. The aim of this was to increase control of complex crystallographic lat-

tices beyond the standard structures found in metals, without compromising the

ability to control previously studied structures as well. In this study, a simple

repulsive interaction was used as the two-point correlation function. These new

interaction forms were then applied to the modelling of graphene. We derived

phase diagrams and simulated systems for 60◦, 90◦ and 120◦ bond angles, produc-

ing triangular, square, and honeycomb (graphene) ordering, respectively. Simu-

lations demonstrated that the defect structures at grain boundaries, consisting of
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rings of five and seven atoms, compared excellently with those found experimen-

tally. We also calculated the elastic constants of this model and found ranges in

the space of average density and the model’s temperature parameter where these

elastic constants are consistent with theory; this is in contrast to recent other mod-

els of graphene in the literature which are less stable. An interesting avenue of

future work will be to extend the model of Chapter 3 to include three-point inter-

actions in three dimensions. One potential approach is to replace the Ci
s(r, θ) by

spherical harmonics. The idea is sketched out in Appendix E. We are also collab-

orating with a previous Postdoc of the Provatas group (Dr. David Montiel) at the

University of Michigan who is exploring this approach extending the three-point

interaction to three dimensions in order to produce graphene sheets. Also, by ap-

plying this 3D idea, the Michigan group and their own collaborators have recently

yielded 3D perovskite structures[111].

Another avenue of future work with the new three-point structural phase field

crystal (XPFC) model introduced in Chapter 3 is investigating to what extent

adding a Gaussian peak in the two-point correlation function, as well as the soften-

ing the delta function peak by a Gaussian function in the three-point interaction,

would make the model less numerically stiff without compromising the salient

structural benefits introduced in this current model introduced herein.

Chapter 4 studied binary systems. We introduced several new binary XPFC

models, formulated in terms of two independent densities, nA and nB (as op-

posed to previous formulations based on density n and concentration c). This

representation has several benefits, including more robust control over atomic self-

interactions and inter-atomic interactions, since we can explicitly control the three

types of two-point correlation functions, CAA
2 , CBB

2 and CAB
2 . It also allows us
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the ability to assign each component a unique diffusion coefficient, which is not

possible for models formulated based on density and concentration fields. In this

framework, we proposed a new class of two-point correlation functions for Cij
2

that featured both long and short-ranged interactions. We used these correlation

functions to model more exotic material structures such as salt-like substances,

solid-gas coexistence, and carbon diffusing into the interstitial sites of iron. Fu-

ture work along these lines could modify the latter model into a model of free

electrons in metals by including long-range screened Coulomb interactions that

can lead to a PFC model for ionic fluids, where the two components of the sys-

tem represent the ionic cores (nuclei and their core electrons) and the valence

electrons, which can play the role of a classical electron “gas” that interacts with

the ionic cores. By coupling the classical electron field to a local voltage, this

new two-component XPFC model could have potentially interesting applications

in electromigration. Another future direction of research is to more thoroughly

examine the interstitial binary model presented here to map out the parallels to

real steel (iron-carbon alloy). Preliminary simulations we conduced have shown,

for example, that excess amount of the interstitial segregate at grain boundaries, a

promising property of real steel.

Chapter 4 also developed a new model of graphene vapour deposition. By tak-

ing the graphene model developed in Chapter 3 and adding a second field repre-

senting hydrogen, we developed a simple model of graphene vapour deposition on

a copper surface. In this model, the A species (carbon) favours the graphene state

and the B species (hydrogen) favours a gas phase. Kate Elder, a Masters student in

the Provatas group with who I have collaborated, has run chemical vapour deposi-

tion experiments of the deposition of carbon (from CH4) and hydrogen (from H2
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and the aforementioned CH4) onto copper surfaces to examine the effects of the

gas flow rates on graphene dendrite formation. She has also run simulations of the

graphene-hydrogen model to investigate etching of the graphene grain boundaries

by hydrogen. Her simulations are along the lines shown in Chapter 4, but have

characterized the role of hydrogen levels in grain boundaries more thoroughly. Fu-

ture work and a collaboration with the Hilke group at McGill will conduct further

experiments on full coverage graphene to compare the role of hydrogen in exper-

iments to Kate Elder’s simulation with the present graphene-hydrogen model.
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Appendix A

Numerical Approaches for

Computing Phase Diagrams

In N = 3 dimensions, given a set of primitive lattice vectors a1, a2, a3 defining

a Bravais lattice, one finds the primitive vectors of the reciprocal lattice vectors

by[112, p. 29]:

b1 = 2π
a2 × a3

a1 · (a2 × a3)
; (A.1)

b2 = 2π
a3 × a1

a1 · (a2 × a3)
; (A.2)

b3 = 2π
a1 × a2

a1 · (a2 × a3)
. (A.3)

However these formula don’t generalize to N ̸= 3. For a general formula, place

the N column vectors corresponding to the primitive lattice vectors next to each

other to construct an N×N matrix, [a1a2 . . . aN]. The primitive reciprocal lattice
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vectors can then by found by matrix inversion[112, p. 29]:

[b1b2 . . .bN]
T = 2π[a1a2 . . . aN]

−1. (A.4)

The volume of the unit cell can be found using the absolute value of the determi-

nate:

Vcell = |det[a1a2 . . . aN]|. (A.5)

This translates succinctly into Mathematica code, with primitiveVectors be-

ing a list of vectors:

1 GenerateReciprocalLatticeVectors[primitiveVectors_]:=

2 2πInverse[Transpose[primitiveVectors]];

For example, if we test our function using the primitive lattice vectors for a trian-

gular lattice:

3 TriPrimitiveVectors = {{1, 0}, {1/2, Sqrt[3]/2}};

4 GenerateReciprocalLatticeVectors[TriPrimitiveVectors]

5 >>> {{2 π, -((2 π)/Sqrt[3])}, {0, (4 π)/Sqrt[3]}}

Or, for the 2d square lattice:

6 SqPrimitiveVectors = {{1, 0}, {0, 1}};

7 GenerateReciprocalLatticeVectors[SqPrimitiveVectors]

8 >>> {{2 π, 0}, {0, 2 π}}

Note: the term “plane” is used in the code below due to the equivalence be-

tween the indices indicating reciprocal space vectors and Miller indices indicating

real space planes.

We now define a function, Planes, to generate groups of reciprocal lattice

planes. This function takes a set of primitive lattice vectors (a) and the range of
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indices to generate over (size). It will generate every reciprocal lattice vector of

the form k1a1 + k2a2 + . . . + knan, with ki ranging from -size to size. The

sets {k1, k2, . . . , kn} are then grouped by their norm. For example:

9 Planes[TriPrimitiveVectors, 1]

10 >>> {{0, {{0, 0}}},

11 {(4 π)/Sqrt[3], {{1, 1}, {1, 0}, {0, 1}, {0, -1}, {-1, 0}, {-1, -1}}},

12 {4 π, {{1, -1}, {-1, 1}}}}

We can see that Planes has produced three groups with norms 0,(4 π)/Sqrt[3]

and 4 π. Each group has a list of the sets of indices belonging to it (for ex-

ample, the second group has the sets of indices {{1, 1}, {1, 0}, {0, 1},

{0, -1}, {-1, 0}, {-1, -1}}). Note that since the indices are restricted

to the range -size to size, the third group is incomplete here. This will not be a

problem in what follows; we will rely on the fact that the first size + 1 groups

are complete.

We implement Planes as:

13 Planes[a_,size_]:=Module[

14 {b,

15 groupedPlanes,

16 dim,

17 tuples,

18 norms

19 },

20 b=GenerateReciprocalLatticeVectors[a];

21 dim=Length[b];

22 tuples=Tuples[Range[-size,size],dim];

23 norms=Map[

24 Function[tuple, Simplify[Norm[Sum[b[[i]] tuple[[i]],{i,1,dim}]]]],

25 tuples];

26 groupedPlanes=GatherBy[

27 Sort[

28 Transpose[{norms,tuples}],

29 #1[[1]]<#2[[1]] &
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30 ],

31 First

32 ];

33

34 Table[

35 {

36 groupedPlanes[[i,1,1]],

37 Table[groupedPlanes[[i,j,2]],

38 {j,1,Length[groupedPlanes[[i]]]}]

39 },

40 {i,1,Length[groupedPlanes]}

41 ]

42 ];

Next we define two helper functions, ReciprocalLatticeVectors and

ReciprocalLatticeVectorsIndices. The first takes the result from Planes

and produces a flattened list of vectors, the second does the same but produces the

indices. For example:

43 ReciprocalLatticeVectors[TriPrimitiveVectors, 1]

44 >>> {{0, 0}, {2 π, (2 π)/Sqrt[3]}, {2 π, -((2 π)/Sqrt[3])}, {0, (4 π)/Sqrt[3]},

45 {0, -((4 π)/Sqrt[3])}, {-2 π, (2 π)/Sqrt[3]}, {-2 π, -((2 π)/Sqrt[3])},

46 {2 π, -2 Sqrt[3] π}, {-2 π, 2 Sqrt[3] π}}

47 ReciprocalLatticeVectorsIndices[TriPrimitiveVectors, 1]

48 >>> {{0, 0}, {1, 1}, {1, 0}, {0, 1}, {0, -1}, {-1, 0}, {-1, -1}, {1, -1}, {-1, 1}}

These are implemented as follows:

49 ReciprocalLatticeVectors[a_,size_]:=Module[{b,flattenedPlanes,dim},

50 b=GenerateReciprocalLatticeVectors[a];

51 dim=Length[b];

52 flattenedPlanes=ReciprocalLatticeVectorsIndices[a, size];

53 Table[

54 Sum[

55 flattenedPlanes[[i,j]] b[[j]],

56 {j,1,dim}

57 ],

58 {i,1,Length[flattenedPlanes]}
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59 ]

60 ];

61 ReciprocalLatticeVectorsIndices[a_,size_]:=Module[{b,planes,dim},

62 b=GenerateReciprocalLatticeVectors[a];

63 dim=Length[b];

64 planes=Planes[a,size];

65 Flatten[

66 Table[

67 planes[[i,2]],

68 {i,1,Length[planes]}

69 ],

70 1

71 ]

72 ];

Now we define a subroutine to generate common lattice information that will

be used by the functions that follow. GenerateLatticeInfo takes a set of prim-

itive lattice vectors and a list of amplitude names. It returns an object containing

the following information:

• dim: the number of dimensions of the system.

• VCell: volume of the primitive unit cell.

• numPlanes: number of families of vectors.

• K: for each family of vectors, the norm common to those vectors.

• β: for each family of vectors, the number of vectors in that family.

• ρ: for each family of vectors, the planar atomic density.

• Vectors: all reciprocal lattice vectors generated.

• VectorsIndices all reciprocal vectors generated, in indices of the primi-

tive reciprocal vectors.

• Amplitudes corresponding amplitudes for all vectors.
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For example:

73 TriLatticeInfo = GenerateLatticeInfo[TriPrimitiveVectors, {ϕ[0], ϕ[1], ϕ[2]}];

74 TriLatticeInfo["dim"]

75 >>> 2

76 TriLatticeInfo["numPlanes"]

77 >>> 3

78 TriLatticeInfo["VCell"]

79 >>> Sqrt[3]/2

80 TriLatticeInfo["K"]

81 >>> {0, (4 π)/Sqrt[3], 4 π}

82 TriLatticeInfo["β"]

83 >>> {1, 6, 6}

84 TriLatticeInfo["ρ"]

85 >>> {0, 1, 1/Sqrt[3]}

86 TriLatticeInfo["Vectors"]

87 >>> {{0, 0}, {2 π, (2 π)/Sqrt[3]}, {2 π, -((2 π)/Sqrt[3])}, {0, (4 π)/Sqrt[3]},

88 {0, -((4 π)/Sqrt[3])}, {-2 π, (2 π)/Sqrt[3]}, {-2 π, -((2 π)/Sqrt[3])},

89 {4 π, 0}, {2 π, 2 Sqrt[3] π}, {2 π, -2 Sqrt[3] π}, {-2 π, 2 Sqrt[3] π},

90 {-2 π, -2 Sqrt[3] π}, {-4 π, 0}}

91 TriLatticeInfo["VectorsIndices"]

92 >>> {{0, 0}, {1, 1}, {1, 0}, {0, 1}, {0, -1}, {-1, 0}, {-1, -1}, {2, 1}, {1, 2},

93 {1, -1}, {-1, 1}, {-1, -2}, {-2, -1}}

94 TriLatticeInfo["Amplitudes"]

95 >>> {ϕ[0], ϕ[1], ϕ[1], ϕ[1], ϕ[1], ϕ[1], ϕ[1], ϕ[2], ϕ[2], ϕ[2], ϕ[2], ϕ[2], ϕ[2]}

This subroutine is implemented as follows:

96 GenerateLatticeInfo[primitiveVectors_,ampList_]:=Module[

97 {info,

98 numPlanes=Length[ampList],

99 VCell,

100 β, ρ, K,

101 Vectors,

102 VectorsIndices,

103 Amplitudes

104 },

105 VCell=Abs[Det[primitiveVectors]];

106 K=Map[
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107 #1[[1]] &,

108 Planes[primitiveVectors,numPlanes][[1;;numPlanes]]

109 ];

110 β=Map[

111 Length[#1[[2]]] &,

112 Planes[primitiveVectors,numPlanes][[1;;numPlanes]]

113 ];

114 ρ=Map[

115 Function[k,

116 If[k!=0,

117 (2 π)/(k VCell),

118 0

119 ]

120 ],

121 K

122 ];

123 Vectors=ReciprocalLatticeVectors[

124 primitiveVectors, numPlanes][[1;;Total[β]]];

125 VectorsIndices=ReciprocalLatticeVectorsIndices[

126 primitiveVectors, numPlanes][[1;;Total[β]]];

127 Amplitudes=Flatten[

128 Table[

129 Table[

130 ampList[[i]],

131 {j,1,β[[i]]}

132 ],

133 {i,1,Length[β]}

134 ]

135 ];

136 info["dim"]=Length[primitiveVectors];

137 info["numPlanes"]=numPlanes;

138 info["VCell"]=VCell;

139 info["K"]=K;

140 info["β"]=β;

141 info["ρ"]=ρ;

142 info["Vectors"]=Vectors;

143 info["VectorsIndices"]=VectorsIndices;

144 info["Amplitudes"]=Amplitudes;
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145 info

146 ]

We can now use this information in order to construct amplitude expansions

of the free energy of various systems.

Any reciprocal lattice vector in N dimensions can be written in terms of the

N primitive reciprocal lattice vectors, qi, by:

q =
N
i=1

aiqi, (A.6)

where the integers ai are the vector indices. The set {ai} is unique for a given

vector. To simplify what follows, we work with N = 3 and expand the vector as

q = hq1 + kq2 + lq3. (A.7)

A function periodic on a Bravais lattice can be expressed as a Fourier series

through the expansion:

n(r) =

q

ϕqe
iq·r. (A.8)

Any function f of n will also be expressible as a Fourier series with its own

set of amplitudes ϕf
q. Our goal is to compute the amplitudes ϕf

q in terms of the

amplitudes of n, ϕq. Of particular interest are the zero order amplitudes, ϕ0,

corresponding to the system average.
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If we insert Eq. A.7 into Eq. A.8, then we obtain:

n(r) =

h,k,l

ϕhkle
ihq1·reikq2·reilq3·r (A.9)

=

h,k,l

ϕhkl(e
iq1·r)h(eiq2·r)k(eiq3·r)l. (A.10)

For simplicity, define eiqi·r = Xi, yielding

n(r) =

h,k,l

ϕhklX
h
1X

k
2X

l
3. (A.11)

In other words, amplitude expansions can be mapped onto polynomials. This

allows us to use Mathematica’s inbuilt polynomial manipulation to compute am-

plitude expansion coefficients efficiently.

We will be focusing on polynomial functions of n. For example, consider

f [n] = n2:

f [n] = n2(r) =


h,k,l

ϕhklX
h
1X

k
2X

l
3

2

(A.12)

=


h1,k1,l1
h2,k2,l2

ϕh1k1l1ϕh2k2l2X
h1+h2
1 Xk1+k2

2 X l1+l2
3 . (A.13)

Expanding f as

f(r) =

h,k,l

ϕf
hklX

h
1X

k
2X

l
3, (A.14)

we can see the amplitudes ϕf
hkl correspond to the coefficients of the terms of the

same powers in Eq. A.13.
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We can now translate this approach into Mathematica code. We are only inter-

ested in the ϕ000 term. There is one important caveat to the above: Mathematica

manipulates polynomials most efficiently with terms of powers that are positive.

Therefore, we will multiply both sides of the above by X−m
1 X−m

2 X−m
3 , where m

is the smallest of the values of h, k, l (m is referred to as minIndex below). This

will ensure all powers are greater than or equal to zero.

147 ExpandTermsFast[vectorsIndices_,ampsList_]:=Module[

148 {dim,minIndex,BuildTerm,BuildExpr,exprList, exprExpanded,indexList,n},

149 n=Length[ampsList];

150 dim=Length[First[vectorsIndices]];

151 minIndex=Min[Flatten[vectorsIndices]];

152 BuildTerm[hkl_]:=Product[X[i]ˆ(hkl[[i]]-minIndex),{i,1,dim}];

153 BuildExpr[amps_]:=Total[

154 MapThread[Times,{amps,Map[BuildTerm,vectorsIndices]}]

155 ];

156 exprList=Map[BuildExpr,ampsList];

157 exprExpanded=Apply[Times,exprList];

158 indexList=ConstantArray[1-minIndex n ,dim];

159 Extract[CoefficientList[exprExpanded,Table[X[i],{i,1,dim}]],indexList]

160 ]

We can use this subroutine as follows:

161 TriPrimitiveVectors = {{1, 0}, {1/2, Sqrt[3]/2}};

162 TriLatticeInfo = GenerateLatticeInfo[HexPrimitiveVectors, {ϕ[0], ϕ[1], ϕ[2]}];

163 Amps = TriLatticeInfo["Amplitudes"];

164 VecIndices = TriLatticeInfo["VectorsIndices"];

165 ExpandTermsFast[VecIndices, {Amps, Amps}]

166 >>> ϕ[0]ˆ2 + 6 ϕ[1]ˆ2 + 6 ϕ[2]ˆ2

167 ExpandTermsFast[VecIndices, {Amps, Amps, Amps}]

168 >>> ϕ[0]ˆ3 + 18 ϕ[0] ϕ[1]ˆ2 + 12 ϕ[1]ˆ3 + 36 ϕ[1]ˆ2 ϕ[2] + 18 ϕ[0] ϕ[2]ˆ2

169 + 12 ϕ[2]ˆ3

In the first instance we expanded n2 to obtain ϕ2
0+6ϕ2

1+6ϕ2
2. In the second instance

we expanded n3 to obtain ϕ3
0+18ϕ0ϕ

2
1+12ϕ3

1+36ϕ2
1ϕ2+18ϕ0ϕ

2
2+12ϕ3

2. Note that
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since our function takes lists of amplitudes (rather than specific powers) it allows

us to mix amplitude lists (so long as they correspond to the same expansion).

This allows us to obtain expansions of products of different variables. This will

be especially helpful in obtaining expansions of correlation functions, described

below.

We commonly wish to expand the standard PFC ideal free energy term, n2/2−
νn3/6 + ξn4/4.

170 IdealFreeEnergy[latticeInfo_,ν_,ξ_]:=Module[

171 {amps = latticeInfo["Amplitudes"],

172 vecs = latticeInfo["VectorsIndices"]},

173 Expand[FullSimplify[

174 Expand[ExpandTermsFast[vecs,{amps, amps}, 2]/2

175 -ν ExpandTermsFast[vecs,{amps, amps, amps}, 3]/6

176 +ξ ExpandTermsFast[vecs,{amps, amps, amps, amps}, 4]/12]

177 ]]

178 ];

We can use this as follows:

179 IdealFreeEnergyTri = IdealFreeEnergy[TriLatticeInfo, 1, 1]

180 >>> ϕ[0]ˆ2/2 - ϕ[0]ˆ3/6 + ϕ[0]ˆ4/12 + 3 ϕ[1]ˆ2 - 3 ϕ[0] ϕ[1]ˆ2 + 3 ϕ[0]ˆ2 ϕ[1]ˆ2

181 - 2 ϕ[1]ˆ3 + 4 ϕ[0] ϕ[1]ˆ3 + (15 ϕ[1]ˆ4)/2 - 6 ϕ[1]ˆ2 ϕ[2]

182 + 12 ϕ[0] ϕ[1]ˆ2 ϕ[2] + 12 ϕ[1]ˆ3 ϕ[2] + 3 ϕ[2]ˆ2 - 3 ϕ[0] ϕ[2]ˆ2

183 + 3 ϕ[0]ˆ2 ϕ[2]ˆ2 + 30 ϕ[1]ˆ2 ϕ[2]ˆ2 - 2 ϕ[2]ˆ3 + 4 ϕ[0] ϕ[2]ˆ3

184 + (15 ϕ[2]ˆ4)/2

Say we have a function C2[k] which gives the two point correlation as a

function of k. For example, a very simple correlation function based on XPFC

would be (where σ is a temperature parameter)

185 C2[K_] := Exp[-σ] Exp[-(K - 4 \pi/Sqrt[3])ˆ2];

By the convolution theorem, we can calculate the amplitudes of the convolution

of C2 with n by multiplying each amplitude ϕq by C2(q), where q is the recip-
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rocal lattice vector associated with that amplitude. For rotationally symmetric

correlation functions, we can do this in Mathematica in the following manner:

186 C2n = MapThread[

187 Function[{amp, vec}, C2[Norm[vec]] amp],

188 {TriLatticeInfo["Amplitudes"], TriLatticeInfo["Vectors"]}

189 ];

C2n is an amplitude list. From this we can calculate the full amplitude expansion

of the two-point excess term by expanding the product of these amplitudes with

the density amplitudes:

190 ExcessFreeEnergyTri = -(1/2) ExpandTermsFast[TriLatticeInfo["VectorsIndices"],

191 {TriLatticeInfo["Amplitudes"], C2n}]

192 >>> (-(ϕ[0]ˆ2 Exp[(16 πˆ2)/3 - σ]) - (6 ϕ[1]ˆ2) Exp[-σ]

193 - (6 ϕ[2]ˆ2) Exp[(4 π - (4 π)/Sqrt[3])ˆ2 - σ])/2

We now have the amplitude expansion of the ideal and excess free energies of

this simple system. The next step is to minimize the free energy with respect to the

amplitudes. To do this we will create a function CreateAmplitudesMinimizer.

We will define this function below, first we will show how to use it:

194 AmpsMinimizer = CreateAmplitudesMinimizer[IdealFreeEnergyTri + ExcessFreeEnergyTri,

195 {ϕ[1], ϕ[2]}, {ϕ[0], σ}];

The first argument is the free energy. The second argument is the list of amplitudes

which the free energy will be minimized with respect to. The third argument

is the list of system parameters, in this case the average density ϕ[0] and the

temperature parameter σ. We can use the AmpsMinimizer by giving it a list of

the values of the system parameters, specified in the same order:

196 AmpsMinimizer[{.3, .05}]

197 >>> {{0.22452, -0.00190909}, 0.0267824}
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The output is a list of the amplitudes (so ϕ1 = 0.22452 and ϕ2 = −0.00190909)

and the minimized free energy (0.0267824). At a higher temperature, the ampli-

tudes are zero and the system is in the disordered state:

198 AmpsMinimizer[{.3, .3}]

199 >>> {{0, 0}, 0.041175}

We now define the CreateAmplitudesMinimizer function, using the built-in

Mathematica function NMinimize to numerically minimize the free energy:

200 CreateAmplitudesMinimizer[freeEnergy_,amplitudeList_,params_]:=Function[{paramVals},

201 Module[{ParamMap,F,Result},

202 ParamMap=MapThread[#1->#2&,{params,paramVals}];

203 F=freeEnergy/.ParamMap;

204 Result=Last[NMinimize[F,amplitudeList,Method->"RandomSearch"]];

205 {Chop[amplitudeList/.Result],F/.Result}

206 ]

207 ];

With these utilities we can find free energies over a range of values and then plot

phase diagrams.
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Appendix B

Notes on Fourier Transforms in

Polar Coordinates

This appendix shows the mathematical steps required to write Fourier transforms

in polar coordinates. Note that we use the following convention for the Fourier

transform:

F

f(r)


≡ f̂(k) ≡


f(r)eik·rdr (B.1)

To begin, we rewrite Eq. B.1 in polar form:

f̂(k, θk) =

 ∞

r=0

 2π

θ=0

f(r, θ)eikr cos(θ−θk)rdθdr (B.2)

Expressing f as a multipole expansion

f(r, θ) =

m

fm(r)e
imθ (B.3)
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and substituting, we get

f̂(k, θk) =

m

 ∞

r=0

fm(r)r

 2π

θ=0

eimθeikr cos(θ−θk)dθdr (B.4)

Since we integrate over the full range of θ we can substitute θ → θ + θk with no

loss of generality. This leaves us with:

f̂(k, θk) =

m

eimθk

 ∞

r=0

fm(r)r

 2π

θ=0

eimθeikr cos(θ)dθ


dr (B.5)

We make use of following form of the Bessel functions Jm

Jm(z) =
i−m

π

 π

0

eiz cos(θ) cos(mθ)dθ (B.6)

With some manipulation this becomes:

Jm(z) =
i−m

2π

 2π

0

eiz cos(θ) cos(mθ)dθ (B.7)

=
i−m

2π

 2π

0

eiz cos(θ)
1

2
(eimθ + e−imθ)dθ (B.8)

=
i−m

2π

 2π

0

eiz cos(θ)eimθ dθ (B.9)

The term in parenthesis in Eq. B.5 can therefore be replaced by 2πimJm(kr):

f̂(k, θk) = 2π

m

imeimθk

 ∞

0

fm(r)rJm(kr)dr (B.10)

Eq. B.10 gives the Fourier transform of a two dimensional function in polar coor-

dinates, provided f is expressed in the form of Eq. B.3.
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We will be interested particularly in the transforms of the Dirac delta and circ

functions. For the Dirac delta we set f0(r) = δ(r − a0):

F

δ(r − a0)


= 2π

 ∞

0

δ(r − a0)rJ0(kr)dr (B.11)

= 2πa0J0(ka0) (B.12)

For circ we set f0(r) = circ(r/r0):

F

circ


r

r0


= 2π

 ∞

0

circ


r

r0


rJ0(kr)dr (B.13)

= 2π

 r0

0

rJ0(kr)dr (B.14)

using the coordinate transform r′ = kr, dr′ = kdr this becomes

=
2π

k2

 kr0

0

r′J0(r
′)dr′ (B.15)

Finally, noting the identity:

 a

0

xJ0(x)dx = aJ1(a) (B.16)

we get

F

circ


r

r0


=

2πr0
k

J1(r0k) (B.17)

Lastly, for the Gaussian centered on the origin:

F
α

π


e−αr2


= e−k2/4α (B.18)
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Appendix C

Numerical Approach for Computing

Convex Hulls of Free Energy Data

In determining the phase diagram for a system of two components we usually

begin by numerically approximating the free energy for a finite set of density val-

ues. That is, we obtain a set F of three dimensional points

nA, nB, f(nA, nB)


.

The points nA, nB for which we obtain the free energy are usually spaced over a

regular discrete grid covering the range of values of interest. In determining coex-

istence regions for such systems we need to use this set of points to approximate

theconvex hull of the free energy function.

First, some definitions. A set is convex if every line between every pair of

points in the set consists solely of points in that set. The convex hull of a set of

points is the smallest convex set which contains all the points. In three dimensions,

the convex hull of a set of discrete points will be a polyhedron.

The set of all points above the graph of a function is termed its epigraph. A

convex function is a function with the property that its epigraph is a convex set.
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Note that the convex hull of a function has no upper bound.

We are interested in obtaining the convex hull of the free energy function,

which we have approximated by the set of points F . We can find an approximation

of the convex hull of the free energy function by finding only the lower bound of

the convex hull of F (we don’t need the upper bound, since the epigraph of f has

no upper bound). The convex hull we obtain will be a triangular mesh over the

domain of nA, nB with the property that any line joining any two points of F will

lie on or above the mesh.

In the sections that follow, for simplicity we will use the phase “convex hull”

to refer to the lower bound of the convex hull. A point is said to be “included in”

or “inside” a hull if it lies above above the hull.

C.1 Description of convex hull construction algorithm

I developed for this thesis a new algorithm for constructing the convex hull of any

free energy density of the form f(nA, nB) that satisfies the properties described

in the text. This algorithm is based on the QuickHull approach and is shown here

in its full C++ implementation. Access to the code can be obtained by contacting

the author.

The input will consist of a set of values over a regular two dimensional grid.

We start with an initial convex hull that may not include all the points. We

will expand this hull iteratively until all points are included. At all stages the hull

consists of a set of triangles that form a mesh covering the entire domain of the

original points.

For each point p we consider if it is inside the hull. If it is we may discard it and
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move on. If the point p is not in the hull then the hull must be extended to include

the point. We find all faces of the hull visible to the point. The boundary of these

faces (consisting of a set of edges forming a polygon) is termed the “horizon” h.

We remove these visible faces. Then, for each edge e in the horizon h, we add a

new triangular face constructed from e and p.

C.2 Complete C++ implementation

This subsection provides a complete implementation of the algorithm, written in

C++. To invoke this program, the input data must be a text file containing a comma

separated list of the data points, in column major order. The program is invoked

as:

convex [columns] [rows] [file for data values] [output prefix] [xmin]

[ymin] [xstep] [ystep]

Where [columns] and [rows] denote the number of columns and rows of

the input data. If the number of data points provided in the data file doesn’t match

an error will be displaced. [file for data values] is the name of the in-

put data file, described above. [output prefix] is a prefix for the generated

output files. Four output files will be generated, each with this prefix. These are:

"prefix_hull_tris.txt" which lists all the 3d triangles making up the

convex hull; "prefix_on_hull.txt" which outputs a crude text representa-

tion of which points of the input data are or are not on the resulting convex hull;

"prefix_coexist_region.txt" which outputs a set of lines outlining the

coexistence region; and "prefix_coexist_lines.txt" which outputs the

tie lines connecting points of coexistence. [xmin] and [ymin] are the x and y
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coordinates of the first data point. Lastly, [xstep] and [ystep] indicate the

spacing between the data points.

We now provide the implication, with commentary. We start with the included

libraries:

1 #include <fstream>

2 #include <iostream>

3 #include <sstream>

4 #include <string>

5 #include <algorithm>

6 #include <functional>

7 #include <vector>

8 #include <set>

9 #include <stdlib.h>

10 #include <time.h>

11 #include <tuple>

12 #include <deque>

13

14 using namespace std;

Define some basic geometry classes:

15 class point {

16 public:

17 double x, y, z;

18 point(double x, double y, double z) : x(x), y(y), z(z) {};

19 };

20

21 class gridPoint {

22 public:

23 int x, y;

24 double z;

25 gridPoint(int x, int y, double z) : x(x), y(y), z(z) {};

26 operator point() {return point(x,y,z);};

27 bool operator ==(gridPoint p) {return x == p.x && y == p.y && z == p.z;};

28 };

29

30 class edge {
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31 public:

32 gridPoint p1, p2;

33 tuple<int,int,int,int> sortedXY;

34 edge(gridPoint p1, gridPoint p2) : p1(p1), p2(p2) {

35 //Implement so that edges can be sorted/tested for equality. We want

edges to be considered equal regardless of the order

36 //the endpoints are specified, hence getSortedXY, which orders the

endpoints into a tuple. z-values are ignored.

37

38 //Sort endpoints into a tuple

39 tuple<int,int> t1(p1.x, p1.y), t2(p2.x, p2.y);

40

41 //sort the tuples by which is "lower"

42 tuple<int,int> tLower, tUpper;

43 if(t1 > t2) {

44 tLower = t2;

45 tUpper = t1;

46 } else {

47 tLower = t1;

48 tUpper = t2;

49 }

50

51 sortedXY = tuple<int,int,int,int>(get<0>(tLower), get<1>(tLower), get<0>(

tUpper), get<1>(tUpper));

52 };

53

54 };

55

56 class triangle {

57 public:

58 gridPoint p1, p2, p3;

59 triangle(gridPoint p1, gridPoint p2, gridPoint p3) : p1(p1), p2(p2), p3(p3)

{};

60 triangle(gridPoint p, edge e) : p1(p), p2(e.p1), p3(e.p2) {};

61 };

We need to be able to sort and compare instances of edge such that the order

in which points are specified does not matter:
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62 //For use with std::sort. Equivalent edges will be sorted next to each other

63 bool sortEdges (edge lhs, edge rhs) {

64 return lhs.sortedXY < rhs.sortedXY;//leftTuple < rightTuple;

65 }

66

67 //Equality check

68 bool operator==(const edge &lhs, const edge &rhs) {

69 return lhs.sortedXY == rhs.sortedXY;

70 }

Basic geometry operations:

71 double dotProduct(point v1, point v2) {

72 return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;

73 }

74

75 double dotProduct2d(point v1, point v2) {

76 return v1.x * v2.x + v1.y * v2.y;

77 }

78

79 point crossProduct(point v1, point v2) {

80 return point(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z, v1.x * v2.

y - v1.y * v2.x);

81 }

82

83 gridPoint subtract(gridPoint p1, gridPoint p2) {

84 return gridPoint(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z);

85 }

86

87 point subtract(point p1, point p2) {

88 return point(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z);

89 }

Some geometry predicates:

90 //is the 2d projection of the triangle onto the xy plane degenerate (a line or

point)?

91 bool isDegenerate2d(triangle tri) {

92 gridPoint v1 = subtract(tri.p2, tri.p1);
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93 gridPoint v2 = subtract(tri.p3, tri.p1);

94 return (v1.x * v2.y - v1.y * v2.x == 0);

95 }

96

97 point planeNormalUp(triangle plane) {

98 point norm = crossProduct( subtract(plane.p2, plane.p1), subtract(plane.p3,

plane.p1));

99 if(norm.z >= 0) {

100 return norm;

101 } else {

102 return subtract(point(0,0,0), norm);

103 }

104 }

105

106 //Above or on

107 bool pointAbovePlane(gridPoint p, triangle plane) {

108 if(p == plane.p1 || p == plane.p2 || p == plane.p3) {

109 return true;

110 }

111

112 point normal = planeNormalUp(plane);

113

114 point v = subtract(p, plane.p1);

115

116 double dot = dotProduct(normal, v);

117

118 return dot >= 0;

119 }

120

121 bool triangleNotVisible(gridPoint p, triangle tri) {

122 point normal = planeNormalUp(tri);

123 point vectorToPlane = subtract(tri.p1, p);

124 double dot = dotProduct(normal, vectorToPlane);

125 return dot <= 0;

126 }

127

128 bool pointAboveHull(gridPoint point, vector<triangle> hull) {

129 //assuming the hull is convex, if the point is below any plane it is below
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the hull:

130 for(auto h = hull.begin(); h != hull.end(); h++) {

131 if(!pointAbovePlane(point, *h)) {

132 return false;

133 }

134 }

135 return true;

136 }

We can now implement the basic algorithm iteration.

137 //removes the found triangles from the hull

138 vector<triangle> extractVisibleTriangles(gridPoint p, vector<triangle> &hull) {

139 //partition the list so that the visible are at the end and the not visible

are at the beginning

140 //(it’s computationally cheaper to remove from the end of the list):

141 vector<triangle>::iterator bound = partition (hull.begin(), hull.end(), bind(

triangleNotVisible,p,std::placeholders::_1));

142 //copy out visible to be returned:

143 vector<triangle> visible(bound, hull.end());

144 //remove visible from the hull:

145 hull.erase(bound, hull.end());

146

147 return visible;

148 }

149

150 vector<edge> removeDuplicateEdges(vector<edge> edges) {

151 //To find the duplicates we sort the list of edges so that

152 //equal edges will be next to each other in the list.

153

154 //sort them

155 sort(edges.begin(), edges.end(), sortEdges);

156

157 //copy out non-duplicates:

158 vector<edge> edgesOut;

159 unsigned int i = 0;

160 while(i + 1 < edges.size()) { //i < size - 1, but in case size is zero (it’s

unsigned) we use i + 1 < size

161 if(edges[i] == edges[i + 1]) { //it’s a duplicate
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162 i += 2;

163 } else { //it’s not a duplicate, copy it out:

164 edgesOut.push_back(edges[i]);

165 i++;

166 }

167 }

168

169 //if there’s still one entry left, it isn’t a duplicate:

170 if(i + 1 == edges.size()) {

171 edgesOut.push_back(edges[i]);

172 }

173

174 return edgesOut;

175 }

176

177 vector<edge> getEdgesOfTriangles(vector<triangle> group) {

178 //We only want the edges forming the boundray of the triangle group.

179 //All interior edges will show up twice, so if we take all edges and

180 //remove the duplicates we will be left with the boundary.

181

182 //find all the edges in the group:

183 vector<edge> edges;

184 for(auto tri = group.begin(); tri != group.end(); tri++) {

185 edges.push_back(edge((*tri).p1, (*tri).p2));

186 edges.push_back(edge((*tri).p2, (*tri).p3));

187 edges.push_back(edge((*tri).p3, (*tri).p1));

188 }

189

190 return removeDuplicateEdges(edges);

191 }

192

193 void iterate(vector<gridPoint> &points, vector<triangle> &hull) {

194 //select a point at random

195 int pointToRemoveIndex = rand() % points.size();

196 gridPoint thePoint = points[pointToRemoveIndex];

197

198 //remove it from points:

199 points[pointToRemoveIndex] = points.back();
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200 points.pop_back();

201

202 if(pointAboveHull(thePoint, hull)) {

203 //if it’s above the hull, do nothing

204 return;

205 } else {

206 //otherwise we must extend the hull to include the point:

207

208 //find and remove all triangles in the hull visible to the point

209 vector<triangle> visibleTriangles = extractVisibleTriangles(thePoint,

hull);

210

211 //find the edges of the visible triangles

212 vector<edge> edges = getEdgesOfTriangles(visibleTriangles);

213

214 //add new triangles from the point to the edges

215 for(auto edge = edges.begin(); edge != edges.end(); ++edge) {

216 triangle newTri(thePoint, *edge);

217 //remove denerate (vertically oriented) triangles:

218 if(!isDegenerate2d(newTri)) {

219 hull.push_back(newTri);

220 }

221 }

222 }

223 }

Using iterate we can now find the convex hull from the initial data set:

224 vector<triangle> getInitialHull(vector<gridPoint> &points, gridPoint topLeft,

gridPoint topRight, gridPoint bottomLeft, gridPoint bottomRight) {

225 //we take the four corners plus the minimum point in the set to generate the

initial convex hull:

226

227 gridPoint minPoint = points[0];

228 for(auto p = points.begin(); p != points.end(); p++) {

229 if((*p).z < minPoint.z) {

230 minPoint = *p;

231 }

232 }
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233

234 //remove the corners from the points list:

235 points.erase(std::remove(points.begin(), points.end(), topLeft), points.end()

);

236 points.erase(std::remove(points.begin(), points.end(), topRight), points.end

());

237 points.erase(std::remove(points.begin(), points.end(), bottomLeft), points.

end());

238 points.erase(std::remove(points.begin(), points.end(), bottomRight), points.

end());

239

240 //remove the minPoint

241 points.erase(std::remove(points.begin(), points.end(), minPoint), points.end

());

242

243 triangle tri1 = triangle(topLeft, topRight, minPoint);

244 triangle tri2 = triangle(topRight, bottomRight, minPoint);

245 triangle tri3 = triangle(bottomRight, bottomLeft, minPoint);

246 triangle tri4 = triangle(bottomLeft, topLeft, minPoint);

247

248 vector<triangle> hull;

249 //remove denerate (vertically oriented) triangles:

250 if(!isDegenerate2d(tri1)){ hull.push_back(tri1); };

251 if(!isDegenerate2d(tri2)){ hull.push_back(tri2); };

252 if(!isDegenerate2d(tri3)){ hull.push_back(tri3); };

253 if(!isDegenerate2d(tri4)){ hull.push_back(tri4); };

254

255 return hull;

256 }

257

258 vector<triangle> generateConvexHull(vector<gridPoint> points, gridPoint topLeft,

gridPoint topRight, gridPoint bottomLeft, gridPoint bottomRight) {

259 vector<triangle> hull = getInitialHull(points, topLeft, topRight, bottomLeft,

bottomRight);

260

261 while(points.size() > 0) {

262 cout << "points remaining " << points.size() << "\n";

263 iterate(points, hull);

135



264 }

265

266 return hull;

267 }

268

269 vector<triangle> generateConvexHullFromData(int width, int height, vector<double>

data) {

270 vector<gridPoint> points;

271 int dataIndex = 0;

272

273 //column major order

274 for(int i = 0; i < width; i++) {

275 for(int j = 0; j < height; j++) {

276 points.push_back(gridPoint(i, j, data[dataIndex]));

277 dataIndex++;

278 }

279 }

280

281 vector<triangle> hull = generateConvexHull(points, points[0], points[height -

1], points[height * (width - 1)], points[width * height - 1]);

282 return hull;

283 }

With the convex hull we can extract some relevant data. getCoexistLine is

used to generate the tie lines seen in the phase diagrams in Chapter 4. While the

algorithm generates a hull consisting of three dimensional triangles, in practice

the systems we consider demonstrate two-point coexistence over most of the co-

existence region. The finite resolution of the input data means that these regions

of two-point coexistence will be spanned by long, thin triangles in the generated

convex hull. The getCoexistLine function makes the simplifying assumption

that the triangles generated can be replaced by lines. It does so by replacing the

shortest edge in each triangle with its midpoint.

284 //Sets the boolean array isOnHull to true or false for each point.

285 //A point is on the hull if it is the endpoint of one of the hull triangles.
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286 void setIsOnHull(bool* isOnHull, int width, int height, vector<triangle> hull) {

287 for(int i = 0; i < width * height; i++) {

288 isOnHull[i] = false;

289 }

290

291 for(auto tri = hull.begin(); tri != hull.end(); tri++) {

292 triangle t = *tri;

293 isOnHull[t.p1.y * width + t.p1.x] = true;

294 isOnHull[t.p2.y * width + t.p2.x] = true;

295 isOnHull[t.p3.y * width + t.p3.x] = true;

296 }

297 }

298

299 //Determines if a point is on the edge of the domain

300 bool notOnEdge(gridPoint p, int width, int height) {

301 if(p.x == 0 || p.y == 0 || p.x == width - 1 || p.y == height - 1) {

302 return false;

303 } else {

304 return true;

305 }

306 }

307

308 //Removes edges that lie entirely on the edge of the domain

309 vector<edge> removeAreaEdges(vector<edge> edges, int width, int height) {

310 vector<edge> edgesOut;

311 for(auto e = edges.begin(); e != edges.end(); e++) {

312 if(notOnEdge((*e).p1, width, height) || notOnEdge((*e).p2, width, height)

) {

313 edgesOut.push_back(*e);

314 }

315 }

316 return edgesOut;

317 }

318

319 //"large" triangles are those of area greater than 1/2. The convex areas of the

input

320 //values will be tiled by "small" triangles of area 1/2. Thus the "large"

triangles
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321 //outline the areas of coexistence.

322 vector<triangle> getLargeTriangles(vector<triangle> tris) {

323 vector<triangle> outTris;

324 for(auto t = tris.begin(); t != tris.end(); t++) {

325 triangle tri = *t;

326 gridPoint u = subtract(tri.p3, tri.p1);

327 gridPoint v = subtract(tri.p2, tri.p1);

328 int twiceArea2d = abs(u.x * v.y - u.y * v.x);

329 if(twiceArea2d != 1) {

330 outTris.push_back(tri);

331 }

332 }

333 return outTris;

334 }

335

336 //Coexistence lines are determined by assuming the triangles are relatively long.

337 //We take the shortest edge and find its midpoint, and then return an edge from

that

338 //midpoint to the point opposite the short side.

339 tuple<double, double, double, double> getCoexistLine(triangle tri) {

340 //vectors for each edge:

341 gridPoint u = subtract(tri.p3, tri.p1);

342 gridPoint v = subtract(tri.p2, tri.p1);

343 gridPoint w = subtract(tri.p3, tri.p2);

344

345 //normˆ2 for each edge:

346 int uu = dotProduct2d(u, u);

347 int vv = dotProduct2d(v, v);

348 int ww = dotProduct2d(w, w);

349

350 //find the edge:

351 if(uu <= vv && uu <= ww) { //u is the short edge

352 return tuple<double, double, double, double>((tri.p3.x + tri.p1.x) / 2.0,

(tri.p3.y + tri.p1.y) / 2.0, tri.p2.x, tri.p2.y);

353 }

354 if(vv <= uu && vv <= ww) { //v is the short edge

355 return tuple<double, double, double, double>((tri.p2.x + tri.p1.x) / 2.0,

(tri.p2.y + tri.p1.y) / 2.0, tri.p3.x, tri.p3.y);
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356 }

357 if(ww <= uu && ww <= vv) { //w is the short edge

358 return tuple<double, double, double, double>((tri.p3.x + tri.p2.x) / 2.0,

(tri.p3.y + tri.p2.y) / 2.0, tri.p1.x, tri.p1.y);

359 }

360

361 //should never get here

362 throw "No shortest edge";

363 }

364

365 //Connects a set of edges into paths. Paths are sequences of points, an edge is a

path of length 2.

366 //Sequences of edges sharing common endpoints are converted into equivalent paths

.

367 vector<vector<gridPoint>> connectEdges(vector<edge> edges) {

368 deque<vector<gridPoint>> paths;

369

370 //Push all edges into the list of paths:

371 for(auto e = edges.begin(); e != edges.end(); e++) {

372 vector<gridPoint> path;

373 path.push_back((*e).p1);

374 path.push_back((*e).p2);

375 paths.push_back(path);

376 }

377

378 //It will take at most this many iterations to connect all paths:

379 int iterations = paths.size();

380

381 while(iterations >= 0) {

382 iterations--;

383

384 //We take the first path, then search for any paths that connect to it at

the front or back.

385 //If we find one we merge the paths into one.

386 //The resulting path (whether or not it was merged with another one) is

pushed to the back of

387 //the queue.

388
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389 vector<gridPoint> path = paths[0];

390 paths.pop_front();

391

392 //search for connections and merge:

393 for(int i = 0; i < (int)(paths.size()); i++) {

394 gridPoint first = path[0];

395 gridPoint last = path.back();

396

397 //front to back

398 if(paths[i][0] == last) {

399 auto foundPath = paths[i];

400

401 //copy found path to end of path

402 path.insert(path.end(), foundPath.begin() + 1, foundPath.end());

403 //remove found path

404 paths.erase(paths.begin() + i);

405 i--;

406 continue;

407 }

408

409 //back to front

410 if(paths[i].back() == first) {

411 auto foundPath = paths[i];

412

413 //copy path to end of found path:

414 foundPath.insert(foundPath.end(), path.begin() + 1, path.end());

415 //this is now our path:

416 path = foundPath;

417 //remove the found path from the list:

418 paths.erase(paths.begin() + i);

419 i--;

420 continue;

421 }

422

423 //front to front

424 if(paths[i][0] == first) {

425 auto foundPath = paths[i];

426
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427 //reverse the path:

428 reverse(path.begin(), path.end());

429 //now append the found path to it:

430 path.insert(path.end(), foundPath.begin() + 1, foundPath.end());

431 //remove found path

432 paths.erase(paths.begin() + i);

433 i--;

434 continue;

435 }

436

437 //back to back

438 if(paths[i].back() == last) {

439 auto foundPath = paths[i];

440

441 //reverse the found path:

442 reverse(foundPath.begin(), foundPath.end());

443 //now append the found path to path:

444 path.insert(path.end(), foundPath.begin() + 1, foundPath.end());

445 //remove found path

446 paths.erase(paths.begin() + i);

447 i--;

448 continue;

449 }

450 }

451

452 paths.push_back(path);

453 }

454

455 return vector<vector<gridPoint>>(paths.begin(), paths.end());

456 }

Generating and outputting info from the hull:

457 //Writes out a grid of 1s and 0s indicating which points in the input were on the

resulting

458 //convect hull. (On hull is "1", not on hull is "0").

459 void writeOnHull(string filename, vector<triangle> hull, int width, int height) {

460 ofstream outfile( filename.c_str(), ofstream::out );

461
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462 bool onHull[width * height];

463

464 setIsOnHull(onHull, width, height, hull);

465

466 int idx = 0;

467 for(int j = 0; j < height; j++) {

468 for(int i = 0; i < width; i++) {

469 outfile << (onHull[idx] ? "1" : "0");

470 idx++;

471 }

472 outfile << "\n";

473 }

474

475 }

476

477 //Outputs all triangles.

478 void writeTris(string filename, vector<triangle> tris, double xMin, double yMin,

double xStep, double yStep) {

479 ofstream outfile( filename.c_str(), ofstream::out );

480

481 for(unsigned int i = 0; i < tris.size(); i++) {

482 auto tri = tris[i];

483 outfile << "{{" << tri.p1.x * xStep + xMin << "," << tri.p1.y * yStep +

yMin << "," << tri.p1.z

484 << "},{" << tri.p2.x * xStep + xMin << "," << tri.p2.y * yStep +

yMin << "," << tri.p2.z

485 << "},{" << tri.p3.x * xStep + xMin << "," << tri.p3.y * yStep +

yMin << "," << tri.p3.z << "}}";

486

487 if(i + 1 < tris.size()) {

488 outfile << ",\n";

489 }

490

491 }

492 }

493

494 //Outputs the coexisting lines (as determined by getCoexistLine) of the given

convex hull.
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495 void writeCoexistLines(string filename, vector<triangle> hull, double xMin,

double yMin, double xStep, double yStep) {

496 auto largeTris = getLargeTriangles(hull);

497

498 vector<tuple<double, double, double, double>> edges;

499 for(auto tri = largeTris.begin(); tri != largeTris.end(); tri++) {

500 edges.push_back(getCoexistLine(*tri));

501 }

502

503 ofstream outfile( filename.c_str(), ofstream::out );

504

505 for(unsigned int i = 0; i < edges.size(); i++) {

506 outfile << "{{"

507 << get<0>(edges[i]) * xStep + xMin << ","

508 << get<1>(edges[i]) * yStep + yMin << "},{"

509 << get<2>(edges[i]) * xStep + xMin << ","

510 << get<3>(edges[i]) * yStep + yMin << "}}";

511

512 if(i + 1 < edges.size()) {

513 outfile << ",\n";

514 }

515 }

516

517 }

518

519 //Writes the paths outlining the coexistence region

520 void writeCoexistOutline(string filename, vector<triangle> hull, int width, int

height, double xMin, double yMin, double xStep, double yStep) {

521 ofstream outfile( filename.c_str(), ofstream::out );

522

523

524 //Use setIsOnHull to find the areas of coexistence

525 bool onHull[width * height];

526

527 setIsOnHull(onHull, width, height, hull);

528

529 vector<edge> edges;

530
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531 //For each point not on the hull, add the four edges corresponding to a

square surrounding that point:

532 int idx = 0;

533 for(int j = 0; j < height; j++) {

534 for(int i = 0; i < width; i++) {

535 if(!onHull[idx]) {

536 //0 for the z values, it won’t be printed anyway

537 edges.push_back(edge(gridPoint(i , j , 0), gridPoint(i + 1,

j , 0)));

538 edges.push_back(edge(gridPoint(i , j , 0), gridPoint(i ,

j + 1, 0)));

539 edges.push_back(edge(gridPoint(i + 1, j , 0), gridPoint(i + 1,

j + 1, 0)));

540 edges.push_back(edge(gridPoint(i , j + 1, 0), gridPoint(i + 1,

j + 1, 0)));

541 }

542 idx++;

543 }

544 }

545

546 //Remove all duplicate edges and edges on the perimeter of the domain, then

connect them into paths:

547 auto paths = connectEdges(removeAreaEdges(removeDuplicateEdges(edges), width,

height));

548

549 //Print the paths:

550 for(unsigned int i = 0; i < paths.size(); i++) {

551 outfile << "{";

552 for(unsigned int j = 0; j < paths[i].size(); j++) {

553 //shift the point by -.5, -.5 to account for placement of squares at

(i,j) to (i+1,j+1) above

554 double x = (paths[i][j].x - .5) * xStep + xMin;

555 double y = (paths[i][j].y - .5) * yStep + yMin;

556 outfile << "{" << x << "," << y << "}";

557 if(j + 1 < paths[i].size()) {

558 outfile << ",";

559 }

560 }
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561 outfile << "}";

562 if(i + 1 < paths.size()) {

563 outfile << ",";

564 }

565 outfile << "\n";

566 }

567 }

Some functions for reading input data:

568 vector<string> readFile(string filename) {

569 vector <string> data;

570 ifstream infile( filename.c_str() );

571

572 while (infile)

573 {

574 string line;

575 if (!getline( infile, line ))

576 break;

577

578 istringstream ss( line );

579

580 while (ss)

581 {

582 string s;

583 if (!getline( ss, s, ’,’ ))

584 break;

585 data.push_back( s );

586 }

587 }

588

589 if (!infile.eof()) {

590 cerr << "??\n";

591 }

592

593 return data;

594 }

595

596 std::string trim(const std::string& str, const std::string& whitespace = " \t")
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597 {

598 const unsigned int strBegin = str.find_first_not_of(whitespace);

599 if (strBegin == std::string::npos)

600 return ""; // no content

601

602 const int strEnd = str.find_last_not_of(whitespace);

603 const int strRange = strEnd - strBegin + 1;

604

605 return str.substr(strBegin, strRange);

606 }

607

608 template <class T> T string_convert(const std::string& s) {

609 std::istringstream i(s);

610 T x;

611 if (!(i >> x)) {

612 //return NAN;

613 }

614 return x;

615 }

616

617 vector<double> convertStringData(vector<string> dataIn) {

618 vector<double> dataOut;

619 for(auto datum = dataIn.begin(); datum != dataIn.end(); datum++) {

620 double dataNum = string_convert<double>(trim(*datum));

621 dataOut.push_back(dataNum);

622 }

623 return dataOut;

624 }

Finally, tying the program together:

625 void run(vector<string> args) {

626

627 //Check that the user had provided the correct number of arguments:

628 int numArgs = args.size();

629

630 if(numArgs != 8) {

631 cout << "Arguments: [size x] [size y] [file for data values] [output

prefix] [xmin] [ymin] [xstep] [ystep]\n";
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632 return;

633 }

634

635 //Convert input arguments:

636 unsigned int width = string_convert<unsigned int>(trim(args[0]));

637 unsigned int height = string_convert<unsigned int>(trim(args[1]));

638 string inputFileName = args[2];

639 string outPrefix = args[3];

640 double xmin = string_convert<double>(trim(args[4]));

641 double ymin = string_convert<double>(trim(args[5]));

642 double xstep = string_convert<double>(trim(args[6]));

643 double ystep = string_convert<double>(trim(args[7]));

644

645 //Get the input data in string format:

646 vector<string> stringData = readFile(inputFileName);

647

648 //Check that the data size matches the expected size from the width and

height:

649 if(stringData.size() != width * height) {

650 cout << "Data size (" << stringData.size() << ") doesn’t match expected

size (" << width << " * " << height << ")\n";

651 return;

652 }

653

654 //Convert the string data into doubles:

655 vector<double> data = convertStringData(stringData);

656

657 //Generate the convex hull:

658 auto hull = generateConvexHullFromData(width, height, data);

659

660 //Output data:

661 writeTris(outPrefix + "_hull_tris.txt", hull, xmin, ymin, xstep, ystep);

662

663 writeOnHull(outPrefix + "_on_hull.txt", hull, width, height);

664

665 writeCoexistOutline(outPrefix + "_coexist_region.txt", hull, width, height,

xmin, ymin, xstep, ystep);

666
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667 writeCoexistLines(outPrefix + "_coexist_lines.txt", hull, xmin, ymin, xstep,

ystep);

668 }

669

670 int main(int argc, char *argv[]) {

671 srand (time(NULL));

672

673 int numArgs = argc - 1;

674 vector<string> args;

675 if (numArgs > 0) {

676 args.assign(argv + 1, argv + argc);

677 }

678

679 run(args);

680 }
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Appendix D

Tuning the Magnetoelastic Coupling

Constants

In Chapter 2 we showed how to tune the magnetostriction constants by control-

ling the elastic anisotropy factor. While this is useful, it has a few drawbacks.

First it can only be done by adding a second peak to the correlation function.

This requires either using XPFC correlations or adding higher orders of ∇2 to

the PFC free energy. It also denies us the freedom to tune the elastic anisotropy

independent of the magnetostriction should we want to do that. We might like

to attempt to tune the magnetostriction constants instead by altering the ratio of

B1 to B2. This is not as easy as it might appear. With just one term, (m · ∇n)2,

B1/B2 = 1/2 is clearly fixed. It might appear that by including the |m × ∇n|2
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term we could affect this ratio. An amplitude expansion of this term yields:

−β2,m

2
|m×∇n|2 ≈ −4β2,mϕ

2


i

m2
i − 2


i<j

mimjϵij

+

i

m2
i


i ̸=j

ϵjj


(D.1)

This last term is not included in Kittel’s free energy. Modifying Equation 2.43 to

include a term of this form yields:

Fme =B1


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m2
i ϵii +B2


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
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
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
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
i<j

ϵiiϵjj (D.2)

and following the procedure outlined in the paper [73] we obtain:

λ100 = −2

3

B1 −B3

c11 − c12
; λ111 = −1

3

B2

c44
(D.3)

We are now interested in the ratio of B1 −B3 to B2. With Equations D.1 and D.1

we get:

B1 = −4α2,mϕ
2; B2 = −8(α2,m − β2,m)ϕ

2; B3 = −4β2,mϕ
2 (D.4)

However this still leads to (B1−B3)/B2 = 1/2 and so λ100/λ111 = c44/(c11−c12).

Perhaps there could be another term that can work? Let’s write (m · ∇n)2 in
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a more suggestive way:

(m · ∇n)2 = (miδij(∂jn))
2

= mimkδijδkl(∂jn)(∂ln) = σijklmimk(∂jn)(∂ln) (D.5)

where δij is the Kronecker delta and the rank 4 tensor σijkl ≡ δijδkl has been

defined. Similarly for |m×∇n|2:

|m×∇n|2 = (m×∇n) · (m×∇n) (D.6)

= (ϵmijmi(∂jn))δmn(ϵnklmk(∂ln)) (D.7)

= ϵmijϵmklmimk(∂jn)(∂ln) (D.8)

= (δikδjl − δilδjk)mimk(∂jn)(∂ln) = τijklmimk(∂jn)(∂ln) (D.9)

where the rank 4 tensor τijkl ≡ δikδjl − δilδjk has been defined. It can be seen that

both terms can be written using rank 4 tensors. The most general isotropic rank 4

tensor is[113]:

αδijδkl + βδikδjl + γδilδjk (D.10)

from which we can see that σijkl corresponds to α = 1, β = γ = 0 while τijkl

corresponds to α = 0, β = 1 and γ = −1. An amplitude expansion with the

form of this most general tensor (i.e. that replaces τijkl or σijkl by the form in

Eq. (D.10) yields (ignoring any additional coefficients):

B1 = 8(α + β + γ)ϕ2; B2 = 16(α + γ)ϕ2; B3 = 8βϕ2; (D.11)
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and so (B1 − B3)/B2 = 1/2 leaving us again with λ100/λ111 = c44/(c11 − c12).

No rank 4 tensor will do the job of allowing us to tune λ100 and λ111 via B1 and

B2.

The next step would be to consider going to a higher order rank 6 tensor in

the magnetizations and density amplitudes. If we want to keep our term to second

order in m, this amounts to going to a fourth order term in ∇n. There are 15 lin-

early independent rank 6 tensors[113]. Clearly we don’t need this much freedom;

let’s try just one of them, δijδklδpq, through which we can write

(δijδklδpq)miml(∂jn)(∂kn)(∂pn)(∂qn) = (m · ∇n)2(∇n · ∇n) (D.12)

An amplitude expansion with the form of this term yields (truncating, as before,

to lowest order in terms of the strain tensor):

γm(m · ∇n)2(∇n · ∇n) ≈γmϕ
4


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
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i ϵii
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
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
i

m2
i


i ̸=j

ϵjj


(D.13)

giving

B1 = 260γmϕ
4; B2 = 392γmϕ

4; B3 = 22γmϕ
4. (D.14)

So (B1 − B3)/B2 = 17/28. Combining this term with one of the terms already

present allows for some tuning of the ratio of the magnetoelastic coupling con-

stants, in principle allowing us to tune the magnetostriction constants indepen-

dently of the elastic anisotropy.
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Appendix E

Three Dimensional Analogue of the

Three-point Correlation Interaction

This appendix shows the main ideas behind generalizing the three-point correla-

tion function introduced in Chapter 3 to 3D. The three point term of Eq. 3.4 is

given by:

Fex,3=−1

3


n(r)


C3(r−r′, r−r′′)n(r′)n(r′′)dr′dr′′dr (E.1)

In Chapter 3 C3, is rewritten as

C3(r− r′, r− r′′) =

i

C(i)
s (r− r′)C(i)

s (r− r′′) (E.2)
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where

C(1)
s (r, θ) = Cr(r)C

(1)
θ (θ) = Cr(r) cos(mθ) (E.3)

C(2)
s (r, θ) = Cr(r)C

(2)
θ (θ) = Cr(r) sin(mθ) (E.4)

Cr(r) =
X

2πa0
δ(r − a0) (E.5)

Later we use

cos(θ1) cos(θ2) + sin(θ1) sin(θ2) = cos(θ2 − θ1) (E.6)

to show that


i

C(i)
s (r1)C

(i)
s (r2)=Cr(r1)Cr(r2) cos


m(θ2 − θ1)


(E.7)

E.1 3D three point correlation

For three dimensions the idea is to use the three dimensional “analogue” of Eq. E.6:

Pl


r1 · r2
r1r2


=

4π

2l + 1

l
m=−l

Ylm(θ1, ϕ1)Y
∗
lm(θ2, ϕ2) (E.8)

Where Pl are the Legendre polynomials and Ylm are spherical harmonics. This is

called the Addition theorem. Note that the result depends only on the dot product

of the two vectors so it is independent of global rotations. For real valued spherical
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harmonics (Rlm) this is just:

Pl


r1 · r2
r1r2


=

4π

2l + 1

l
m=−l

Rlm(θ1, ϕ1)Rlm(θ2, ϕ2) (E.9)

This would suggest for the individual C(m)
s :

C(m)
s (r, θ, ϕ) = Cr(r)C

(m)
θ,ϕ (θ, ϕ) = Cr(r)Rlm(θ, ϕ) (E.10)

with m running from −l to l, we use the form of Eq. 3.9. We pick the l we want

to get the bond angle we want to produce.
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