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Abstract

Howmultiple interpenetrating polymer molecules behave in a confined space is a problem of inter-
est both from a biological and a technological standpoint. We probe a solution of DNA molecules
confined in a slit-like geometry on a nanofluidics chip. Inside the nanoscale slit, the DNAmolecules
are compressed via hydrodynamic flow against a barrier permeable only to solvent; the resulting
compressed DNA solution concentration profile is recorded as a function of position in the slit.
We develop a theoretical model for this concentration profile based on mean-field assumptions and
using the Onsager Variational Principle. We find that this model yields a nonlinear Schrödinger
type equation governing the concentration profile. We fit this model to our experimental data and
we find good agreement for high enough DNA concentration.
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Abrégé

Comment multiples molécules de polymère interpénétrantes se comportent dans un espace con-
finé est un problème d’intérêt d’un point de vue biologique et aussi technologique. Nous étudions
une solution de molécules d’ADN confinée dans une lamelle sur une puce nanofluidique. Dans la
lamelle de dimensions nanométriques, les molécules d’ADN sont comprimées par un courant hy-
drodynamique contre une barrière perméable seulement au solvant; le profil de la solution d’ADN
comprimée ainsi obtenu est enregistré en fonction de sa position dans la lamelle. Nous dévelop-
pons un model théorique pour ce profil de concentration basé sur l’assomption du champ moyen et
utilisant le principe de variation «Onsager». Ce model produit une équation non-linéaire de type
«Schrödinger»pour le profil de concentration. Nous ajustons ce model à nos données et trouvons
que celles-ci conforment bien à notre prédiction quand la concentration d’ADN est suffisante.
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Introduction and Motivation

1



2 Current State of Nanofluidics

1.1 Current State of Nanofluidics

The field of nanofluidics has enabled the manipulation and sensing of single or multiple polymer
molecules with applications ranging from simulating biological environment to DNA nanochannel
mapping and nanopore sequencing. The development of nanofluidics has led to efforts at study-
ing the physics of polymers in confinement, in order to understand the behaviour of the manipu-
lated polymers and improve device design. Molecules like DNA can mould themselves into the
shape of the devices that confine them: they extend themselves in nanochannels [26] and com-
pact themselves when pushed into nanopits [3, 21]. The equilibrium behaviour of single polymer
molecules under confinement (0D, 1D or 2D) is now well understood, with for each type of con-
finement many confinement regimes each with its own scaling relationships [26, 30, 6]. Even
non-equilibrium single-chain systems [17, 18] and single-chains in complex confinement geome-
tries [21] have been studied and characterized. However, multi-chain systems under confinement
are still poorly understood.

1.2 Motivation for Studying Polymer Solutions

From the point of view of nanofluidics, understanding the physics of polymer solutions under con-
finement is as fundamental as understanding the physics of single chains under confinement. We
need to know how polymer solutions flow and compress in micro/nanosized channels or slits in
order to design better devices that manipulate polymer solutions. Even with devices that are de-
signed to sense or manipulate single molecules, there can be regions in the device corresponding to
a sudden change of geometry where molecules can build up and form a concentrated local solution.
For instance, this could happen at the entrance of a nanochannel [39], at the interface of an entropic
trap and a nanochannel [13], or at the entrance of a nanopore [38]. It is therefore important to know
the behaviour of polymer solutions to avoid “clogging” in these places.

From the point of view of biology, an ultimate goal is to understand the behaviour of biological
multi-chain systems, such as the multiple chromosomes in the nucleus of an eukaryotic cell. Prob-
ing an in vitromulti-chain system is the first step to understanding how in vivomulti-chain systems
behave [2].



3 Novelty of Current Work

1.3 Novelty of Current Work

The physics of single chains is now well understood, and if a multi-chain system is dilute enough
such that the molecules don’t overlap each other, such a system behaves like single chains. How-
ever, different behaviours arise once themulti-chain system reaches semidilute concentration where
the molecules do overlap. De Gennes first studied confined semidilute flexible polymer solutions
[6] and his theory has been tested in simulations [35] and experiments in porous media [22], but
not in rigorously defined nanofluidics systems. Moreover, DNA is a semiflexible molecule, with a
persistence length around 50 nm, which is much larger than its width of around 2 nm [26]. Sakaue
has shown that for the single molecule case, introducing semiflexibility leads to different confine-
ment regimes than those described by de Gennes [16, 31]. For semiflexible molecules, mean-field
scalings can be exact (these regimes are called “marginal solution regimes” in classical solution
theory [1, 32]) whereas for flexible molecules, concentration fluctuations have a non-negligible
effect on scaling exponents. Therefore, the question is whether semiflexible polymer solutions ex-
hibit mean-field or flexible behaviour. Answering this question experimentally would be a first step
towards understanding semiflexible polymer solutions. Previous studies in our group demonstrate
that single DNA molecules compressed in a nanochannel using a sliding piston exhibit mean-field
behaviour [17, 18]. The present thesis would be a natural extension of this work by studying its
multi-chain equivalent. A final note is that non-equilibrium behaviour of polymers under con-
finement is only beginning to be studied [17, 18]. It is all the more important to study the non-
equilibrium behaviour of polymer solutions experimentally because polymer solutions are more
computationally intensive to study in simulations than single molecules [14].

1.4 Concept and Outline of This Thesis

In this thesis, we develop a nanofluidic device to study polymer solutions in slit-like confinement,
analogous to devices used to manipulate single molecules. Multiple DNAmolecules are introduced
in a nanoslit during an experiment, and solvent flow is applied to push the DNA against a barrier at
the end of the slit that is permeable to solvent but not to DNA molecules, as shown in Fig. 1.1(a).
The degree of compression of DNA can be tuned by varying the solvent flow speed. The build-up
of DNA against the barrier, which exists as a non-equilibrium steady-state, is imaged (Fig. 1.1(b))
and converted to our key observable: a one-dimensional DNA concentration as a function of dis-
tance from the slit barrier (Fig. 1.1(c)). We show that this concentration profile can be described
by a mean-field type theory based on M. Doi’s two-fluid model [10] and the Onsager variational



4 Concept and Outline of This Thesis
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Figure 1.1: (a) Schematic showing dense packing of DNA against a slit barrier inside an array of
nanoslits. (b) Full two-dimensional intensity profile for 79 ± 6DNA molecules, with an applied
pressure of 27mbar (corresponding to a flow speed of 1.13µm/s). The slit barrier is on the left end
of the figure. Scale bar indicates 5µm. (c) One-dimensional fluorescence intensity profile along
the channel axis extracted for the same data set.

principle [8], if the number of DNA molecules, or packing concentration, is high enough.
This thesis is a manuscript-based thesis; the manuscript was published in the journal Macro-

molecules in 2018 [25]. The first section provides the background information, including a theory
and a data analysis techniques overview, to support the content inside the manuscript. The second
section is the manuscript itself, with the last subsection acting as a footnote for details omitted in
the manuscript itself. The thesis ends with a conclusion which introduces future projects in our
group.
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6 Theory

Figure 2–2: Simulation of a random walk in 3D space; the simplest approxi-
mation for a polymer’s end-to-end extension in free solution.

square end-to-end length hR2i of a random walk can be computed assuming

the length of the displacements ~ri is approximately 2P (h~ri~rji = [2P ]2�ij) [35]:

p
hR2i ⇠

vuut
⌧✓ NX

i=1

~ri

◆
.

✓ NX

j=1

~rj

◆�
⇠ 2P

p
N (2.2)

This model can be systemetically improved by treating the physical poly-

mer as a self-avoiding chain with an e↵ective width w that excludes a finite

volume, and also by accounting for the finite flexibility of the physical polymer

by introducing a persistence length.

2.1.1 Semiflexible Chain

A semiflexible chain behaves ideally only if the polymer is much longer

than its persistence length, L � P . While on the other hand, if the polymer is

shorter than its persistence, L < P , it will tend to behave as a rigid rod. Thus,

the random walk model (equation 2.2) would describe the extension well at

scales much larger than P , but would obviously fail at scales smaller than P

[35]. To rectify the transition from the L > P regime to the L < P regime, we

13

Figure 2.1: Simulation of a freely jointed chain, or a 3D random walk. Figure courtesy of [19].

2.1 Theory

2.1.1 Single Molecule Under Confinement

2.1.1.1 Polymer Physics Formalism

A polymer, such as DNA, is a large molecule composed of many repeating small subunits called
monomers. A linear polymer (as opposed to branched or circular) is then essentially a string of
monomers. Such a molecule can be represented as a 3D random walk where each step corresponds
to the position of a monomer. The simplest model of a polymer is a random walk where the distri-
bution of angles between the successive steps is uniformly random. This model is called the “freely
jointed chain” [9] and can be visualized in Fig. 2.1.

This simplified picture already introduces two key concepts: contour length (L) and end-to-
end length (R). The contour length is the length of the polymer from one end to the other, fully
stretched out. In other words, the contour length is the number of steps/monomers (N ) multiplied by
step/monomer size (b). The end-to-end length on the other hand is the distance between the polymer
ends in a particular polymer configuration (as opposed to fully stretched out). It is illustrated in
Fig. 2.2. In the freely jointed chain model, the relationship between contour length, number of
monomers, size of monomer, and end-to-end length is:

R = (bL)1/2 = bN1/2. (2.1)
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CHAPTER 2
Theoretical Background

2.1 Confinement Free Energy

From a polymer physics point of view, DNA can be characterized by

three key parameters. Firstly, the contour length L, defined as the end-to-end

extension of a fully stretched DNA molecule with no thermal fluctuations. It

is more easily quantifiable by multiplying the average base pair length (h =

0.34nm) by the total number of base pairs in a specific chromosome [3].

P

w/2


R


Figure 2–1: Illustration of the physical parameters characterizing a polymer in
free solution: the persistence length P , the e↵ective width w, and the radius
of gyration R.

Secondly, the persistence length P ; a physical unit used to quantify the

rigidity of a polymer, which is known as the length scale over which the poly-

mer “forgets” its orientation [3,11]. The persistence length is formally defined

11

Figure 2.2: Illustration of end to end length, persistence length, and effective width. Figure courtesy
of [19].

While some polymers (especially synthetic polymers) are very flexible and can really be de-
scribed by a random walk with uniformly distributed angles, DNA is much more rigid: it is semi-
flexible. Semiflexibility introduces one more key concept: persistence length (P ). For a given
position on the polymer, persistence length can be understood as the “distance in contour over
which the DNA molecule ‘forgets’ its orientation” [26], as illustrated in Fig. 2.2. It is a measure of
the rigidity of the polymer. In the case of DNA in a salt solution, persistence length depends on the
sequence of DNA and on the ionic strength of the solution. The relationship between end-to-end
length, contour length, and persistence length for a semiflexible polymer is [26]:

R2 = 2PL

(
1 +

P

L

[
exp

(
−P
L

)
− 1

])
. (2.2)

In the L ≫ P limit (molecule is large), Eq. 2.2 reduces to R2 ≈ 2PL, which corresponds to a
random walk with step size of 2P , or a flexible molecule of monomer size 2P . In the L≪ P limit
(molecule is small), Eq. 2.2 reduces to R2 ≈ L2, which corresponds to a rigid rod of length L.

The previous models viewed the polymer as an ideal chain: two different monomers at different
contour positions on the molecule can theoretically occupy the same physical space, meaning the
chain can go through itself. In reality, this is of course impossible. A real chain exhibits self-
avoidance: each segment of the polymer occupies a space excluded to other polymer segments.
This concept is formalized as the ‘excluded volume’ (ν). We can understand the ideal chain as being
infinitely thin, while the self-avoiding chain has a finite effective width (usually w but denoted d in
the manuscript section; its value can depend on ionic strength). The excluded volume is therefore
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moves below one persistence length. The cross-over behavior
between these limits can be obtained by directly computing the
end-to-end distance of a semiflexible chain with finite rigidity.
Using equation (1) we find [35]

⟨R2⟩ =
∫ L

0
ds

∫ L

0
ds ′⟨f⃗ (t)(s) · f⃗ (t)(s ′)⟩

= 2PL

(
1 +

P

L

[
exp

(
−L

P

)
− 1

])
. (18)

This formula is known in polymer physics as the ‘Kratky-
Porod’ formula. In the case that L ≫ P , ⟨R2⟩ ≈ 2PL. In
other words, we recover the random walk limit with a step
size equal to 2P , the Kuhn length. The pre-factor 2P , around
100 nm for DNA at typical ionic strength, is much larger than
the base pair length of 0.34 nm, the expected pre-factor if DNA
were perfectly flexible. In the limit L ≪ P , ⟨R2⟩ ≈ L2 so that
that the chain is effectively rigid at these scales.

However, we still have ignored the necessity of self-
avoidance, which is important as dimensionality shrinks.

3.2. The self-avoiding chain

Flory theory in bulk. The finite thickness of ‘real’ chains
has two key implications: (1) the chains occupy a finite
volume that is excluded to the rest of the chain (‘the excluded-
volume’) and (2) a real physical chain cannot pass through
itself. These effects are known as ‘self-avoidance.’ While the
chain width w is very small compared with its contour length,
and one might anticipate that the effect of self-exclusion is
very small, in fact self-exclusion can appreciably perturb the
coil conformation, creating an effective swelling of the chain.
For reasons we will explain below in detail, the importance of
self-avoidance in determining the overall chain conformation
depends not only upon the chain width but upon the size of
the chain: there is a critical chain size (L⋆⋆) below which the
chain is approximately ideal and above which the chain can
be considered self-avoiding. The second consequence of self-
avoidance, the impossibility of self-crossing, while it plays no
role in determining the chain equilibrium conformation [44],
is key for understanding certain dynamic processes in biology,
particularly the process of DNA replication. Since DNA is a
interwound double helix it cannot be pulled apart in the process
of replication without cutting one of the two strands of the
double helix and rejoining them. An amusing example of the
need for cutting and rejoining of the strands, perhaps said with
a certain amount of irony, is the following quote: ‘I had a
physicist who worked with me for a while, who was dealing
with the problem of untangling DNA. He said there must be
a way that the strands can pass through each other. I told
him he was crazy, that you couldn’t get the phosphodiesters
apart. But in fact, his experiment could have led him to
discover topoisomerases (enzymes that control and modify
the topological states of cellular DNA). It was a mistake I
tried to learn from’—David Botstein, in The Scientist, 17,
28 July 2003. Note that an ‘infinitely thin’ chain—while it
effectively excludes no volume so its equilibrium conformation
is necessarily ideal—does have a ‘topological’ self-avoidance

Figure 3. A statistical segment of length ∼P excludes a volume of
size ∼P 2w to neighboring segments of the same length.

effect [44] in the sense that it cannot pass through itself without
cutting the chain.

The effect of self-avoidance on the end-to-end distance
of a polymer is strongly dependent on the dimensionality of
the space. We calculated in equation (17) that the end-to-end
distance scaled as

√
⟨R2⟩ ∼ 2PN ν where ν = 1/2, (19)

when we ignored self-avoidance. Self-exclusion interactions
will swell the chain. A combination of computer simulations
and analytical calculations suggests that for a space of
dimension d the exponent ν should vary as [61]

ν = 3
2 + d

(20)

for d = 1, 2, 3, 4. Self-avoidance becomes weaker as the
dimension of the space increases. Obviously, for d = 1 the
chain can only extend forward if it is to be self-avoiding and
ν = 1, while for d = 4 the chain is ideal.

The effect of self-exclusion can be explicitly modeled
using a very simple model due to Flory. Let us consider a
chain of length L made up of N links of length ℓ and width w.
The Flory model assumes that the polymer, for the purposes
of estimating the effect of self-exclusion, can be approximated
as a ‘gas’ of interacting links of size ℓ. In this sense, the
Flory model resembles the van der Waals model for a non-
ideal gas (and hence loses the connected nature of a polymer
in the process). To approximate the effects of semiflexibility,
each link is assigned a length of 2P (e.g. ℓ = 2P ). In the
Flory model a given polymer link excludes other links from a
volume of size χ = wℓ2 [49] (see figure 3: this quantity is
also known as the second virial coefficient of the interaction)
[35, 62]. We assume that the chain coil has an extent R: at this
level of description we will blur the distinction between the
end-to-end length and radius of gyration (the two quantities
differ only by a numerical pre-factor, e.g. they have the same
scaling on chain size). In addition, as the following section
concerns results from scaling theories, we will not keep track
of numerical prefactors. Ultimately, key scaling prefactors
are to be determined from experiment. For example, we will

7

Figure 2.3: Illustration of excluded volume. Figure courtesy of [26].

a function of P and w, and a simple derivation gives ν ∼ P 2w, as illustrated in Fig. 2.3. The
excluded volume has the expected effect of swelling a self-avoiding polymer when compared with
an ideal polymer of the same contour length. While for an ideal semiflexible chain,R ∼ 2PN1/2,1

for a real semiflexible chain [26],
R ∼ 2PN3/5. (2.3)

The 3/5 exponent is called the Flory exponent.
The free energy of a self-avoiding polymer has two components. The first is an excluded volume

component:

FEx.Vol. =
1

2
kBTν

N2

R3
, (2.4)

where kBT is the thermal energy. This free energy decreases asR increases, and swells the polymer
as expected. The second is an entropic component:

FEntropy =
3

4PL
R2. (2.5)

This free energy increases as R increases, and shrinks the polymer. Entropy favours shrinking
because there are more possible configurations for a shrunken polymer than for a more extended
one. Adding the free energies together and minimizing with respect toR yields flory scaling forR.

For polymers under confinement, whether 1D, 2D or 3D, and also polymer solutions of a certain
concentration, it is standard to use the ‘blob’ model. The idea is that a polymer’s contour can be

1. This is equivalent to R ∼ (2PL)1/2 given above since L ∼ 2PN .
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Figure 2.4: Illustration of polymers partitioning themselves into blobs. Figure courtesy of [11].

partitioned into one or more consecutive sections called blobs, as illustrated in Fig. 2.4. A blob is
of a critical size such that a segment inside a blob only interacts with other segments within the
blob; it does not interact with the outer environment or segments from other blobs. This critical
size is a key concept that we will come back to later: it’s called the correlation length (ξ).

2.1.1.2 Regimes of Confinement

Before we can start thinking about what happens to polymer solutions under confinement, it is
helpful to think of the single molecule case. Sakaue worked through all possible confinement
regimes for a single chain in strong confinement regime (SCR) [30]. While in weak confinement
regime (WCR), the local volume fraction of the polymer inside a blob2 is independent of polymer
length, in SCR, the volume fraction does depend on polymer length. For the single molecule case,
all 1D and 2D confinement fall into WCR while only 3D confinement can result in SCR. We shall
see later than for systems with multiple molecules in solution, 1D and 2D confinement can also
result in molecules being in SCR, when the concentration is high enough. Indeed, SCR is the right
single molecule analogy to the polymer solution system we’re studying.

Sakaue first explores the confinement regimes for flexible polymers [30]. In SCR, there are
two possible scaling regimes: fluctuating semidilute (I) and semidilute in θ-solvent regime (II), as
shown in Fig. 2.5. We can think of a flexible polymer this way: for high enough temperature (above
θ, that is), in bulk the polymer is just a random walk of blobs, called thermal blobs, the size (ξth)
of which is determined by the temperature and θ. Such a polymer, when put into a small cavity in
SCR, will also partition itself into blobs of size ξ. Therefore, two things can happen: either ξ > ξth

because confinement is slightly less strong, or the opposite is true when confinement is stronger.

2. Volume occupied by segments of the polymer inside the blob divided by total volume of blob, solvent included.
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geometry is a sphere (the effect of the shape will be addressed
in section 4).

2. A Flexible Chain in SCR
Let us consider a flexible linear chain (contour length L)

dissolved in a solvent. Large-scale properties of the chain are
conveniently modeled as a sequence of N links of size b (volume
V = b3), i.e., the standard bead-on-filament model, with the
distance between neighboring beads along the chain a.12 For a
flexible chain, the natural choice is N ) L/b and a ) b. The
excluded-volume effect becomes important when the parameter
z(N) ) BN1/2/a3 is larger than unity, where B ) Vτ is the second
virial coefficient. The solvent quality is designated by a reduced
temperature τ ) (T - θ)/θ with T and θ being the absolute
temperature and a θ temperature, respectively. From the
condition z(gth) ) 1, the number of monomers gth ) τ-2
constituting the thermal blob is obtained. Inside the thermal
blob, the chain conformation is Gaussian, leading to the ther-
mal blob size #th ) bτ-1. The chain conformation in a bulk
solution can be envisioned as a self-avoiding walk of thermal
blobs of size #th = b/τ, which leads to the overall chain size
R = bN3/5τ1/5.
Then, consider that the chain is brought into a spherical cavity

of size D < R. This corresponds to the simplest example of the
SCR. A key observation is that the strongly confined chain can
be viewed as a semidilute solution with the volume fraction φ
= b3N/D3;11 i.e., the correlation of concentration fluctuations
is suppressed at the length scale

The above expression for the correlation length is obtained from
a scaling argument3 (by imposing # must be (i) independent of
N and (ii) equal to R at the overlap concentration) and valid as
long as φ < τ S # > #th. This corresponds to the fluctuating
semidilute regime. Inside the blob, the correlation is evident;
thus, the number of monomers in each blob is obtained from
the relation # = bg3/5τ1/5. At larger length scale, the application
of the mean-field argument is valid with the blobs of size #
being the renormalized monomers. A free energy arising from
volume interactions is, thus, evaluated as

where B* = #3 is the renormalized second virial coefficient.
This is equivalent to assigning the energy on the order of kBT
to each blob.
In the opposite case, φ > τS # < #th, the chain conformation

is Gaussian in all the length scale, which indicates the
applicability of the mean-field theory. This corresponds to the
semidilute in θ-solvent regime. The volume interaction energy
per unit volume can be expressed in a virial expansion fvol/kBT
= 1/2Bc2 + 1/3Cc2 +, where B ) Vτ and C ) V2 are the second
and third virial coefficients and c ) φ/V is the monomer
concentration. The monomer pair-correlation function is cal-
culated by a random phase approximation3,12,15

where the correlation length in this regime is, instead of eq 1,
given by

where the osmotic pressure (due to volume interactions) can
be expanded in a series of power c as Π/(kBT) ) Bc2 + 2Cc3
+ .... Under the present condition φ > τ, the interaction is
dominated by the three-body contribution; therefore, the total
volume interaction contribution to the confinement free energy
and the correlation length are evaluated as

Note that short chains (N < gth) are in the θ-solvent regime
already in the bulk isolated state, to which eqs 5 and 6 always
hold upon the confinement. The confinement regimes of a
flexible chain in a closed cavity is presented in diagrammatic
form in Figure 1.
The scaling form of eq 2 in the athermal solvent has been

confirmed by a recent computer simulation,16 while the con-
jecture has been proposed11 that the form of eq 5 would be
relevant to resolve controversial experimental results on the
partitioning coefficient of a flexible polymer into a protein
pore.5,17-19
In both regimes, aside from the volume interaction free energy

(bulk term), there is a contribution from the nonuniform link
concentration ∆F (surface term).11 These are calculated in the
Appendix and given by

in the fluctuating semidilute regime and

in the semidilute in θ-solvent regime.
For a flexible chain, the dominant term is always given by

the volume interaction, i.e., F = Fvol. However, as we shall see

Figure 1. A diagram of confinement regimes for a flexible chain in a
closed sphere (logarithmic scale). Regions I and II correspond to the
fluctuating semidilute and semidilute in θ-solvent regime, respectively.
Shaded areas are irrelevant; i.e., upper left is a bulk (D > R), and lower
right is not accessible (φ g1). Border lines between regimes are (a)
D/b = τ1/5N3/5, (b) D/b = (N/τ)1/3, (c) D/b = N1/3, and (d) D/b = N1/2.
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Figure 2.5: Confinement regimes for a single flexible chain: (I) fluctuating semidilute and (II)
semidilute in θ-solvent regime. x-axis increases with chain length (or concentration) while y-axis
increases with confinement size. Figure courtesy of [30].

The two scaling regimes correspond exactly to these two cases. Specifically, fluctuating semidilute
regime is when ξ > ξth; the correlation length is larger than the thermal blob size, resulting in larger
scale structures, or fluctuations than the thermal blobs, hence the name “fluctuating”. Semidilute
in θ-solvent regime is the opposite case.

Sakaue then moves on to the confinement regimes for semiflexible polymers [30], and the
picture gets more complicated. There are five regimes in total: fluctuating semidilute (I), mean
field semidilute (II), liquid crystalline (III), ideal chain (IV), and bending regime (V), as shown
in Fig. 2.6. The first two are the semiflxible chain analogue to the two flexible chain regimes.
The mean field theory, which applies in the mean field semidilute regime, is a way to simplify the
model of interaction between chain segments. It models interactions by looking at one particular
segment and its interaction with all other segments which is approximated as a field, thus reducing
a many-body problem to a one-body problem. When confinement gets even stronger than in the
mean field semidilute regime, correlation length decreases to the order of the persistence length,
and we’re in the liquid crystalline regime, where the segments behave like a liquid crystal which
can be ordered or unordered.

There is another region where concentration is slightly lower than the mean field semidilute
regime, and correlation length is larger than the confinement dimension. This is the ideal chain
regime, called such because the entropy term of free energy is dominant compared to the excluded
volume term. Mean field theory also applies in this regime. Finally, there is the bending regime,
where confinement is very strong, and behaviour of the polymer depends strongly on the exact
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below, there is a regime in which ∆F plays a central role for a
semiflexible chain.

3. A Semiflexible Chain in SCR
Our result is summarized in the diagram of Figure 2.

To discuss this diagram, we first assume (i) D > l and (ii) L >
pD (here p is the stiffness ratio mentioned in section 1).
As we shall see later, these conditions are requisite for a
confined chain to be viewed as an analogue of bulk semidilute
solution.
Let us begin with the evaluation of the volume interaction

parameter z ) BN1/2/a3. There is a freedom on how to break
the chain into links, and we adopt the simplest, in which the
chain is represented as N ) L/b links with their volume V = b3
(b is the chain thickness). Then, for the model to be consistent,
the distance between links should be set as a) (bl)1/2.12 It should
be emphasized that results obtained are independent of such a
modeling (one can also set N ) L/l, V = bl2, and a ) l). For
simplicity, we shall focus on the purely repulsive case, i.e.,
athermal solution: τ ) 1 (thus, B ) V). From z ) 1, we find
the length scale "th = bp2, below which the excluded-volume
effect is insignificant (the corresponding number of monomers
is gth = ("th/a)2): for semiflexible chains, "th . b even in the
athermal limit. As a consequence, the chain with N< p3 behaves
as a Gaussian chain; i.e., its size in bulk is given by R = (lL)1/2.
On the other hand, the excluded-volume interaction should be
taken into account for the longer chain, i.e., R = "th(N/gth)3/5 =
(bl)1/5L3/5.
Along with the same argument as in the flexible

chain, one can distinguish (I) the fluctuating semidilute regime
and (II) the mean-field semidilute regime depending on the
relative ratio of "th and the correlation length of density
fluctuations.
(I) Fluctuating Semidilute Regime: pN1/3 < D/b < p1/5N3/5.

According to the analogy with the semidilute solution, a
confined chain is viewed as a dense packing of blobs of
size " ) "th(g/gth)3/5 (g is the number of monomers in each blob).
This indicates the condition g/"3 ) N/D3, from which one
finds

The dominant term in the confinement free energy comes from
the volume interaction

(II) Mean-Field Semidilute Regime: (pN)1/3 < D/b <
min{pN1/3,p-1N}. A correlation length " becomes shorter
with the increase in L (or decrease in D) and becomes
comparable to "th at D = lN1/3(S φ = p-3). This indicates a
crossover to the mean-field semidilute regime. One can also
recognize the meaning of this condition through the Ginzburg
criterion:

where brackets denote the statistical average and V" = "MF3 is
the correlation volume. The correlation length is calculated from
eq 4 with ignoring the third- and higher-order terms in virial
expansion

(Note that the eq 12 also provides the borderline for a flexible
chain discussed in the previous section.)
Here again, the confinement free energy is dominated by the

volume interaction, which is evaluated by the mean-field theory.
In the case under consideration ((blL)1/3 < D), the binary
interaction is the most dominant than higher-order terms in the
virial expansion; thus

This scaling form has been proposed on the basis of a self-
consistent-field calculation,20 but here one should notice the
range for the applicability, i.e., only valid for a semiflexible
chain in the present regime.
(III) Liquid Crystalline Regime: max{p,N1/3} < D/b <

(pN)1/3. If the density is further increased, the volume interaction
becomes higher and the correlation length becomes comparable
to the Kuhn segment length at D = (blL)1/3(S φ = p-1). This
indicates some role of model specificity on the flexibility mecha-
nism at higher concentrations, the analysis of which is beyond
the scope of the present discussion. Here, we just note what is
expected from the bulk theory. According to the standard
theory,21 the system responds by breaking the isotropic sym-
metry; i.e., the competition between steric repulsion (evaluated
by the second virial approximation) and orientational en-
tropy results in the first-order phase transition at the volume
fraction φ = p-1. The transition proceeds with the coexis-
tence of isotropic and nematic phases at c1p-1 < φ < c2p-1
(numerical coefficients depend on the flexibility mecha-
nism), which suggests an interesting possibility of an “intra-
chain” separation for a confined chain. The free energy in the
nematic state is dictated by the loss of the orientational
entropy and, thus, evaluated to be proportional to the number

Figure 2. A diagram of confinement regimes for a semiflexible chain
in a closed sphere under athermal condition (logarithmic scale). Each
labeled region designates (I) fluctuating semidilute, (II) mean-field
semidilute, (III) liquid crystalline, (IV) ideal chain, and (V) bending
regime (see the main text for details). Shaded areas are irrelevant; i.e.,
upper left is a bulk (D > R), and lower right is not accessible (φ g1).
Border lines between regimes are (a) D/b = p1/5N3/5, (b) D/b = pN1/3,
(c) D/b = (pN)1/3, (d) D/b = N1/3, (e) D/b = (pN)1/2, (f) D/b = N/p, (g)
D/b = p, and (h) D/b = N.
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Figure 2.6: Confinement regimes for a single semiflexible chain: (I) fluctuating semidilute, (II)
mean field semidilute, (III) liquid crystalline, (IV) ideal chain, (V) and bending regime. x-axis
increases with chain length (or concentration) while y-axis increases with confinement size. Figure
courtesy of [30].

flexibility of the polymer.
When trying to generalize the single molecule confinement regimes to solutions, we wonder if

we will observe similar scalings as in the single molecule case. The critical question is, will mean
field type scaling apply or would we observe fluctuating scalings instead?

2.1.1.3 Above the Overlap Concentration

We have seen above that single chains in SCR are well understood. (Single chains in WCR, so
1D or 2D confinement, are also well understood.) When we have many chains, but the solution is
dilute enough such that the chains don’t touch each other, these chains behave like single chains.
But what happens when the solution is more concentrated and the chains do overlap? This threshold
is aptly named the “overlap concentration”; below it, we’re in dilute solution while above it, we’re
in semidilute solution.

An earlier paper by Daoud et al. explores solutions of flexible polymers in 1D and 2D confine-
ment [6]. For 2D confinement, Daoud reports five regimes of confinement, as shown in Fig. 2.7.
Regions A and B are not strongly affected by slit confinement while regions C, D and E are. Con-
sequently, blobs in regions A and B are spherical while blobs in regions C, D and E are flatter, or
pancake shaped. Regions A and C are dilute while regions B, D, and E are semidilute. The overlap
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FIG. 1. - Conformations of a single flexible chain trapped into
a slit (a) or a capillary (b).

We assume that polymer absorption on the solid
surfaces is negligible = this can be achieved on glass,
for instance, through replacement of the --OH groups
by trimethylsilane [3]. We also, restrict our attention
to uncharged polymers. A good example for our

purposes would be polystyrene dissolved in a good
solvent for the bulk solutions of such systems we have
detailed neutron data, which have shown qualitative
deviations from the Flory Huggins theory [4]. These
deviations have been interpreted by a scaling method.
Our aim is to extend these considerations to situa-

tions where the pore size D is comparable to, or even
smaller than the individual coil radius R (2). For a
single ideal chain trapped in a pore the entropy and
all related thermodynamic parameters have already
been discussed in detail [5]. But the scaling approach
described in ref. [4] allows us to do much more :
we can incorporate rigorously the repulsive interac-
tions between monomers, which are very important in
practice, and treat both dilute solutions (where
different chains do not overlap) and semi-dilute
solutions (where the overlap is significant).
From a theoretical standpoint, these problems

are interesting because they are associated with
various cross-overs between three dimensional beha-
viour (for R  D) and two dimensional behaviour
(for R &#x3E; D) in a slit (or between dimensionalities 3
and 1 in a capillary). 
There is a close relation between polymer statistics

and magnetic phase transitions [6, 7].
An abundant theoretical literature can be found

on magnetic transitions in systems of restricted dimen-
sionality [8, 9]. However, only a small fraction of this
work can be transposed immediately to the polymer
problem. For this reason, we shall not emphasize
very much the magnetic analogy, but we shall write

(2) On the other hand, we usually assume that D is much larger
than the monomer size.

down directly most of our scaling assumptions on the
polymer system. This style (hopefully) should make
our arguments more accessible to physical chemists.
In section 2 we discuss the single chain problem (with
excluded volume effects) for both slits and capillaries.
In section 3 we consider overlapping chains in a slit;
in section 4 we proceed to the most delicate case of
overlapping chains in a capillary.

2. The single chain problem. - 2. 1 THE CHAIN
IN OPEN SPACE. - Let us start from a single chain
in an infinite sea of solvent (Fig. 2A). The situation
is described by the following parameters :
- the ideal chain radius Ro = NI/2 a where N

is the polymerization index and a a characteristic
length (which for brevity we call the monomer size),
- the excluded volume v proportional to the

parameter 1/2 - x of Flory [10]. For the good solvents
of interest here v is positive and of order a3. It is
sometimes convenient to visualize this by imposing a
lattice model, as in the Flory-Huggins theory [10] -
e.g. a cubic lattice of mesh size a ; all chains are then

represented by self avoiding random walks of N

steps on this lattice,
- the real radius of the chain RF3 (where F stands

for Flory and 3 for 3 dimensional) is then of the
form [10]

In eq. (2.1) (and in all what follows an #e sign)
we purposely ignore all numerical coefficients.

2.2 CHAIN IN A SLIT. - Let us now bring the chain
inside a slit of diameter D. If D &#x3E; RF3 no change in

FIG. 2. - Various regimes for macromolecular solutions in a slit.
Ç3 is a characteristic length of bulk solutions, varying like the
concentration C - 3/4. Thus the ordinates y increase with concentra-
tion. The abscissas x are inversely proportional to the slit thick-

ness D.

Figure 2.7: Confinement regimes for solution of flexible chains in slit-like (2D) confinement. x-
axis decreases with confinement size while y-axis increases with concentration. Figure courtesy of
[6].

concentration for less confined regions scales simply as

c∗ ∼
N

R3
F

∼ b−3N−4/5 (2.6)

where RF is the end to end length of one chain given by Eq. 2.3, also called the Flory radius. The
overlap concentration for more confined regions scales as

c∗ ∼
N

R2
pancakesD

∼ b−3N−1/2

(
b

D

)1/2

(2.7)

where Rpancakes is the extent of a chain that has been flattened to a pancake shape in the slit, andD
is the height of the slit.

Region A corresponds to dilute chains in very weak confinement, and so these chains behave
like single chains in bulk. Region C corresponds to dilute chains in stronger confinement, and these
chains behave like single chains in a slit. According to Sakaue’s definition, this is still in WCR.
Region B corresponds to semidilute solution in very weak confinement, so essentially in bulk also.
What happens when we’re above overlap concentration and confinement is high? Daoud predicts
two cases: either the correlation length is smaller than slit dimension D (region E where solution
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behaves like in bulk), or it is larger (region D, a transition between regions C and E). This rings
a bell! Region D is similar to the ideal chain regime (IV) of Sakaue’s single semiflexible chain
theory while region E is similar to the mean field semidilute regime (II).

So where does the system we’re studying in this thesis fall within this framework? We have
found that in our system, a mean field type theory works and the correlation length is larger than
slit height. The closest analogue in Sakaue’s system is region IV of single semiflexible chains,
while the closest analogue in the theory of Daoud et al. is the transition region D. So we know for
sure that there exists a regime for solutions of semiflexible polymers where the concentration is
semidilute, mean field theory works, and the correlation length is large. Are there other possible
regimes for solutions of semiflexible polymers? Of course, but they are beyond the scope of the
present thesis.

2.1.2 Solution Under Confinement

2.1.2.1 Self-Consistent Field Approach

Now that the big picture of where our system is situated within the complex confinement regime
space has been discussed, how do we go about theoretically modelling our particular problem? We
used the mean field approach, also called the self-consistent field approach, following de Gennes
[11]. The idea is this: we assume all monomers are identical and all interactions are repulsive
and short-ranged. The interaction between two monomers i and j is defined as νkBTδ(rij) where
ν is the excluded volume and δ(rij) is a Kronecker delta function of the distance between the
monomers. Then, instead of working with interactions between pairs (and triple, quadruple, etc.)
of monomers, we look at one particular monomer and its interactionwith all other monomers, which
is approximated as a potential field (the mean field). The potential is therefore U(r) = νkBTc(r)
where c(r) is the local concentration of monomers at position r. Then we proceed as follows:
we first assume an initial U(r) from an initial c(r) and use it to derive a new local concentration
c′(r) consistent with U(r). We then compute a new U ′(r) from c′(r) to derive c′′(r), and so on.
Eventually, the sequence c(r) → c′(r) → c′′(r) → ... will converge to a final cfinal(r) that is
consistent with Ufinal(r) = νkBTcfinal(r), or with itself (the self-consistent field).

In practice however, we don’t need to go through all the iterations to find the final concentration;
we can use a Green’s function instead. We set up the problem as such: a polymer chain is inscribed
inside a lattice of step-size b, so instead of a random walk of step-size b with uniformly distributed
angles between steps, only certain angles are permitted. A potential U(r) acts on each monomer
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of the lattice-bound polymer. Therefore, the statistical weight of the whole polymer is

exp
(

1

kBT
(U(r1) + U(r2) + ...+ U(rN))

)
(2.8)

where r1...rN are the position on the lattice of the monomers. We define the sum of this statistical
weight over all possible paths of fixed ends r1 = r′ and rN = r as

zNGN(r′, r) (2.9)

where z is the number of neighbours for one lattice site (e.g. 4 for a square lattice), and zN is
therefore the number of all possible different paths ofN steps, and serves as a normalization factor.
GN(r′, r) is the Green’s function. We define the Green’s function of 0 step as

G0(r′, r) = δr′,r (2.10)

where δr′,r is a Kronecker delta function. We can also write a Green’s function of N + 1 steps as a
function of a Green’s function of N steps, when both Green’s functions share the same beginning
and end positions:

GN+1(r′, r) =
1

z

∑
r′′
GN(r′, r′′)e

− U(r)
kBT (2.11)

where the factor of 1/z is from our chosen normalization,
∑

r′′ GN(r′, r′′) is the sum of all possible
paths ofN steps from position r′ to r′′ and r′′ is one step away from position r, and exp (U(r)/kBT )
is the statistical weight of the last step. The relationship between the chains of N and N + 1 steps
are shown in Fig. 2.8. Using induction, we can recover

GN(r1, rN) =
1

zN

∑
all paths

exp
(

1

kBT
(U(r1) + U(r2) + ...+ U(rN))

)
(2.12)

which we had defined in the beginning.
Assuming that U(r)

kBT
is small, we can Taylor expand Eq. 2.11 to become

GN+1(r′, r) =
1

z

(
1− U(r)

kBT

)∑
r′′
GN(r′, r′′) (2.13)
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Figure 2.8: Illustration of the relationship between chains of N and N + 1 steps as defined in
Eq. 2.11.

Then assuming that |r′′ − r|, or the step-size, is small, and Taylor expanding again,∑
r′′
GN(r′, r′′) =

∑
r′′

(GN(r′, r− (r− r′′)))

=
∑
r′′

(
GN(r′, r) + (r− r′′)

∂GN

∂r
+

1

2
(r− r′′)α(r− r′′)β

∂2GN

∂rα∂rβ
+ ...

) (2.14)

Rearranging terms of Eq. 2.13 and using the relation
∑

r′′ GN(r′, r′′) = zGN(r′, r′′), we get

G(r′, r)N+1 −G(r′, r)N =
U(r)
kBT

G(r′, r)N +
1

z

∑
r′′

(
1− U(r)

kBT

)(
(r− r′′)

∂GN

∂r

+
1

2
(r− r′′)α(r− r′′)β

∂2GN

∂rα∂rβ
+ ...

)
.

(2.15)

The term
∑

r′′(r− r′′)∂GN

∂r vanish because∑
r′′

(r− r′′) = 0 (2.16)

for a symmetric lattice. To figure out what happens to the term
∑

r′′
1
2
(r− r′′)α(r− r′′)β ∂2GN

∂rα∂rβ
, let
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r− r′′ = r̃ and consider a cubic lattice∑
α=x,y,z

∑
β=x,y,z

r̃α · r̃β = r̃xr̃x + r̃yr̃y + r̃zr̃z + r̃xr̃y + r̃yr̃x + r̃xr̃z + ... (2.17)

Since r̃xr̃x + r̃yr̃y + r̃zr̃z = b2 and all mixed terms equal to 0, we can therefore say that

r̃α · r̃β = δαβ
b2

3
(2.18)

and therefore
1

z

∑
r′′

(r− r′′)α(r− r′′)β = δαβ
b2

3
. (2.19)

Finally, the left-hand side of Eq. 2.15 can be written

G(r′, r)N+1 −G(r′, r)N =
G(r′, r)N+1 −G(r′, r)N

N + 1−N
≈ ∂GN

∂N
(r′, r). (2.20)

Considering Eq. 2.15 with Eq. 2.16, 2.19 and 2.20, we get

− ∂G

∂N
= −b

2

6
∇2G+

U(r)
kBT

G. (2.21)

Eq. 2.21 has obvious resemblance with Schrödinger’s equation:

− i�h
∂ψ

∂t
= −�h2

2m
∇2ψ + V (r)ψ (2.22)

where ψ is the wave function of the particle, �h = h
2π

is the reduced Plank constant, m is the
particle mass, and V (r) is a potential similar to U(r)

kBT
. We can therefore interpret Eq. 2.21 in term

of Eq. 2.22: each chain conformation is equivalent to one path of a particle. The wave function
corresponds to a superposition of amplitudes for different paths, and similarly, the Green’s function,
to a superposition of amplitudes for different chain conformations. In light of this similarity, we
can solve the Green’s function like we solve the Schrödinger’s equation: by using an expansion in
eigenfunctions. Consider the linear operator

G = −b
2

6
∇2 +

U(r)
kBT

. (2.23)
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Figure 2.9: Illustration of two chains of N ′ and N −N ′ monomers joining at s to form a chain of
N monomers.

We introduce a series of eigenfunctions u0(r), u1(r), u2(r), ...uk(r), ... such that

Guk(r) = ϵkuk(r) (2.24)

where ϵk is the eigenvalue of eigenfunction uk(r), and ϵ0, ϵ1, ϵ2, ...ϵk, ... is an increasing series with
ϵ0 being the minimum and corresponding to the ground state eigenvalue. We can show that these
eigenfunctions uk(r) exhibit the properties of orthogonality and closure. Green’s function can then
be explicitly written in term of the eigenfunctions:

GN(r′.r) = b3
∑
k

u∗k(r′)uk(r)e−Nϵk (2.25)

where u∗k is the complex conjugate of uk. We can show that this form of the Green’s function indeed
satisfy Eq. 2.21. It also satisfies the property of Green’s function:

GN(r′, r) =
∑
s

GN ′(r′, s)GN−N ′(s, r) (2.26)

which basically means that a chain of N monomers which starts at r′ and ends at r can be divided
into two consecutive chains with arbitrary junction point s, as shown in Fig. 2.9
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How does the Green’s function relate to the familiar concept of concentration? We can define
concentration c(s) as the probability that at position s, there is a monomer of a chain with arbitrary
ends r′ and r. We then introduce the statistical weight Φ(s) of a chain passing through s regardless
of end points r′ and r and regardless of N . The statistical weight can be written in terms of the
Green’s function

Φ(s) =
∑

r′
∑

r
∑N

N ′=0GN ′(r′, s)GN−N ′(s, r)∑
r′
∑

rGN(r′, r)
(2.27)

where the denominator is a normalization factor. And the statistical weight is related to concentra-
tion by

Φ(s) = b3c(s). (2.28)

Since the eigenfunction expansion of the Green’s function has a factor of e−Nϵk , more weight
is given to smaller values of ϵk, and so we expect the ground state to dominate. In the case of
ground state dominance, let the ground state be written as u0(r) = ψ(r) and the Green’s function
asGN(r′, r) = b3ψ∗(r′)ψ(r)e−Nϵ0 . The statistical weight reduces to Φ(s) = Nb3|ψ(s)|2 and there-
fore, c(s) = N |ψ(s)|2. As expected, if we integrate over the whole chain, we obtain

∫
c(s)ds = N .

We can use ground state dominance and, as an exercise, apply it to the problem of an ideal chain
confined between two repulsive walls at x = 0 and x = D. Our potential is defined as U(x) = 0

between the walls and U(x) = ∞ outside the walls. Therefore we have boundary conditions
ψ(0) = ψ(D) = 0 and equation

Gψ(x) = −b
2

6

d2

dx2
ψ = ϵ0ψ. (2.29)

The solution is simple:
ψ = k sin

(πx
D

)
, (2.30)

where k is a constant. From

Gψ(x) = −b
2

6

d2

dx2
ψ =

b2

6

( π
D

)2

k sin
(πx
D

)
= ϵ0ψ, (2.31)

we find that ϵ0 = 1
6

(
πb
D

)2. The concentration is therefore
c(x) = N |ψ(x)2| = Nk2 sin2

(πx
D

)
. (2.32)

Now, let’s use a potential that’s self-consistent in the case of ground-state dominance. We can
use a different normalization: c(r) = |ψ(r)|2, instead of N |ψ(r)|2. The self-consistent potential is
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then
U(r) = kBTνc(r) = kBTν|ψ(r)|2. (2.33)

Our Schrödinger’s equation is now

ϵ0ψ = −b
2

6
∇2ψ + ν|ψ|2ψ. (2.34)

We can write the free energy of our chain conformation as

F

kBT
=

∫ (
b2

6
|∇ψ|2 + 1

2
ν|ψ|4

)
dr. (2.35)

We can get back Eq. 2.34 from Eq. 2.35 by taking the variational derivative of both sides with
respect to ψ∗. On the left-hand side

δ

δψ∗
F

kBT
=

δ

δψ∗Nϵ0 =
δ

δψ∗

∫
|ψ|2ϵ0dr =

∫
δ

δψ∗ (ψ
∗ψ)ϵ0dr =

∫
ϵ0ψdr (2.36)

The first term on the right-hand side is

δ

δψ∗

∫
b2

6
∇2ψdr =

∫
b2

6

δ

δψ∗∇ψ
∗ · ∇ψ

=

∫
b2

6

(
∇ψ∗ · δ

δψ∗∇ψ +∇ψ · δ

δψ∗∇ψ
∗
)
dr

=

∫
b2

6

(
0 +∇ψ · δ

δψ∗∇ψ
∗
)
dr

=

∫
b2

6
∇ψ · ∇ δ

δψ∗ψ
∗dr

=

∫
S

b2

6

δ

δψ∗ψ
∗ · ∇ψdΓ−

∫
b2

6
∇2ψ · δ

δψ∗ψ
∗dr

= 0 +

∫
−b

2

6
∇2ψdr

(2.37)

where on the 5th line, we use integration by parts. The second term on the right-hand side is

δ

δψ∗

∫
1

2
ν|ψ|4dr =

∫
1

2
ν
δ

δψ∗ (ψψ
∗ψψ∗)dr =

∫
1

2
ν(ψψψ∗ + ψψ∗ψ)dr =

∫
ν|ψ|2ψdr (2.38)

Eq. 2.35 is the form of free energy we use in the manuscript section. It is a mean-field, self-
consistent free energy.
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2.1.2.2 Onsager Variational Principle

While the self-consistent field approach is powerful, it cannot be directly applied to our polymer
solution problem, because of the interaction between the polymers and the compressive solvent
flow. The presence of the solvent flow means the system is in steady-state, not equilibrium. This
is where the Onsager variational principle comes in [8]. In a system of small particles and viscous
liquid, the evolution of the system is determined by the balance of two forces: the force due to the
potential driving the system to a minimum energy, and the frictional forces resisting this change.
The Onsager variational principle allows us to find the evolution of such systems.

We start by writing the Langevin equation, which describes a particle undergoing Brownian
motion, with an external field

− ξẋ− ∂U

∂x
+ Fr(t) = mẍ = 0 (2.39)

where the first term is the force due to friction, the second term is the force due to potential, and the
third term is the random force. If the random forces are negligible, and we have a set of particles
at positions x = (x1, x2, ...xN), then their time evolution can be written

−
∑
j

ξij(x)ẋj −
∂U(x)

∂xi
= 0 (2.40)

where ξij are friction coefficients and U(x) is the potential energy of the system. Eq. 2.40 is a set
of nonlinear differential equations. ξij satisfy the Lorentz reciprocal relation, i.e. ξij = ξji. Also,∑

ij ξij(x)ẋiẋj ≥ 0 for all xi and xj . Therefore, ξij is a positive definite matrix.
We define the Rayleighian [7]

R(ẋ, x) =
∑
i

∂U(x)

∂xi
ẋi +

1

2

∑
ij

ξij(x)ẋiẋj. (2.41)

Since ξij is positive definite, R(ẋ, x) has a unique minimum at the condition ∂R
∂ẋi

= 0. In fact,

∂R

∂ẋi
=
∂U

∂ẋi
+

∂

∂ẋi

1

2

∑
ij

ξij(x)ẋiẋj (2.42)
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and the second term equals

∂

∂ẋi

1

2

∑
ij

ξij(x)ẋiẋj =
∂

∂ẋi

1

2

∑
i

ξii(x)ẋ
2
i +

∂

∂ẋi

1

2

∑
i ̸=j

ξij(x)ẋiẋj +
∂

∂ẋi

1

2

∑
i ̸=j

ξji(x)ẋjẋi

=
∑
i

ξii(x)ẋi +
1

2

∑
i≠j

ξij(x)ẋj +
1

2

∑
i ̸=j

ξji(x)ẋj

=
∑
i

ξii(x)ẋi +
∑
i ̸=j

ξij(x)ẋj

=
∑
j

ξijẋj.

(2.43)

Therefore
∂R

∂ẋi
=
∂U

∂ẋi
+
∑
j

ξijẋj = 0 (2.44)

is equivalent to Eq. 2.40. The first term of the Rayleighian can be understood as the rate of change
of potential energy when the particle i moves at velocity ẋi, while the second term is one half
of the energy dissipated into heat due to friction per unit time. In other words, the Rayleighian
describes how the free energy dissipates due to various processes, and its minimization is based on
the principle of least energy dissipation [7].

We can derive the equations that govern particle sedimentation using the variational principle as
an example. In this problem, the solute, or particles, has velocity vp, while the solvent has velocity
vs. The average velocity of the solution is then

v = ϕvp + (1− ϕ)vs (2.45)

where ϕ is the volume fraction of the solute, or ϕ = b3c. There are two energy dissipation terms.
The first is due to relative velocity between solvent and solute and has the form

Φ1 =
1

2

∫
drξ̃(vp − vs)2 (2.46)

where ξ̃ = ξ̃(ϕ) is a friction coefficient that depends on volume fraction (or concentration). Specif-
ically, we expect ξ̃(0) = ξ̃(1) = 0 while ξ̃max occurs at ϕ = 1/2. We can also write

vp − v = vp − ϕvp − (1− ϕ)vs = (1− ϕ)(vp − vs) (2.47)
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and therefore, Eq. 2.46 can be written

Φ1 =
1

2

∫
drξ(vp − v)2 (2.48)

where ξ = ξ̃/(1− ϕ)2. ξ ≈ ξ̃ for small ϕ. The second contribution to energy dissipation is due to
the spacial gradient of velocity:

Φ2 =
1

4

∫
drη

(
∂vβ
∂rα

+
∂vα
∂rβ

)2

=
1

4

∫
drη

[
∇v+ (∇v)t

]2
.

(2.49)

Notice that the square really means tensor product. We have chosen to ignore the gradient between
vp with itself, and vp with v, which is fine for small volume fraction.

The free energy of the system is

A =

∫
dr(f(ϕ)− ρϕg · r) (2.50)

where f(ϕ) is the free energy due to mixing per volume, ρ is the difference in the density of solute
and solution, and g is gravitational acceleration. We need ∂A/∂t to construct the Rayleighian, so

Ȧ =

∫
dr(f ′(ϕ)ϕ̇− ρϕ̇g · r) =

∫
drϕ̇(f ′(ϕ)− ρg · r) (2.51)

We can use the continuity equation ϕ̇ = −∇ · (vpϕ) and integrate by part:

Ȧ = −
∫
dr∇ · (vpϕ)(f ′(ϕ)− ρg · r)

= −vpϕ(f ′(ϕ)− ρg · r)
∣∣∣∞
−∞

+

∫
dr(vpϕ) · (∇ · f ′(ϕ)−∇ρg · r)

= 0 +

∫
drvp · (ϕ∇ · f ′(ϕ)− ϕρg)

(2.52)

Using the osmotic pressure Π = ϕ∂f
∂ϕ

− f and∇Π = ∂f
∂ϕ
∇ϕ+ ϕ∇∂f

∂ϕ
− ∂f

∂ϕ
∇ϕ = ϕ∇∂f

∂ϕ
, we obtain

Ȧ =

∫
drvp · (∇Π− ϕρg) (2.53)

We need to add one Lagrange multiplier term to the Rayleighian to preserve the incompress-
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ibility criterion∇ · v = 0. The Rayleighian is

R =
1

2

∫
drξ(vp − v)2 +

1

4

∫
drη

[
∇v+ (∇v)t

]2
+

∫
drvp · (∇Π− ϕρg)−

∫
drp∇ · v

=
1

2

∫
drξ(vpα − vα)

2 +
1

4

∫
drη

(
∂vβ
∂rα

+
∂vα
∂rβ

)2

+

∫
drvpα(

∂Π

∂rα
− ϕρgα)−

∫
drp

∂vα
∂rα

(2.54)

Taking the variational derivative of R with respect to v yields

δR

δvα
= −

∫
drξ(vpα − vα)−

∫
dr

∂

∂rα
η

(
∂vβ
∂rα

+
∂vα
∂rβ

)
+

∫
dr

∂p

∂rα
= 0 (2.55)

using integration by part on the second and third terms. The resulting equation is therefore

ξ(vp − v) +∇ · η
[
∇v+ (∇v)t

]
= ∇p (2.56)

Taking the variational derivative with respect to vp yields

δR

δvpα
=

∫
drξ(vpα − vα) +

∫
dr

(
∂Π

∂rα
− ϕρgα

)
= 0 (2.57)

The resulting equation is therefore

ξ(vp − v) = −∇Π+ ϕρg. (2.58)

This approach was used in the manuscript, with the only difference being that we used the mean-
field self-consistent free energy from Section 2.1.2.1 instead.

2.1.2.3 Rescaling

After combining the approaches from the previous two sections, we find an equation governing the
ground-state eigenfunction that has the same form as the Gross-Pitaevskii equation. The Gross-
Pitaevskii equation describes the ground state of a quantum system of identical bosons, and is
written [24]: (

− �h
2m

∇2 + V (r)
4π�h2a
m

|ψ(r)|2
)
ψ(r) = µψ(r) (2.59)

where �h is the reduced Plank constant,m is the mass of the particle, a is the scattering length, V (r)
is an external potential, and µ is the chemical potential. The 1D equation we derive for the ground-
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the vicinity of the classical turning point reduces to that for a
linear-ramp potential @5#. We therefore solve the nonlinear
GP equation for a linear-ramp potential. When the kinetic
energy is included, the wave function acquires a tail and
extends smoothly beyond the classical turning point. We
shall consider the effect of this tail on the momentum distri-
bution.

A. The linear-ramp potential

For a linear-ramp potential the GP equation is

F2
\

2

2m
d2

dx2 1Fx1
4p\

2a
m uc

~

x !u2Gc~

x !5mc

~

x !, ~2!

where the coordinate x measures distances in the direction of
2π

W V , and the origin is chosen to be at the classical turning
point.
After introducing a scaled length variable y5x/d where

d is given by \

2/2md

25Fd , or d5(\2/2mF)1/3 and a scaled
wave function given by C5c/b where b25Fmd/4p\

2a or
b25(2Fm/\2)2/3/8pa , we obtain

C95yC1C

3, ~3!

where the prime denotes differentiation with respect to y .
The corresponding Thomas-Fermi approximation is

C5A2y for y<0, C50 for y.0. ~4!

Note that the derivative of the TF wave function diverges as
y!02, as in the general case.
Before we discuss the numerical solution of Eq. ~3! we

consider the behavior for uy u@1. For y@1 we may linearize
Eq. ~3! and obtain by neglecting the cubic term the asymp-
totic solution

C.
C
y1/4 e

22y3/2/3, ~5!

which is just the asymptotic behavior of the Airy function.
For y!21 the TF solution C.A2y is approximately valid.
In order to determine the leading correction to this, we write
C5C01C1 and linearize Eq. ~3!, thereby finding

2C191yC113C0
2
C15C09 . ~6!

Using C0
252y and C0951/4yA2y we arrive at

C1.2
1

8y2A2y
, ~7!

where the second derivative of C1 has been neglected, since
it contributes to terms of higher order in 1/y . The asymptotic
solution is thus

C5A2y S 11
1
8y3D . ~8!

The numerical solution is shown in Fig. 1, where we also
show the asymptotic behavior for large uy u. From the numeri-

cal result we find that the constant C entering Eq. ~5! is
approximately equal to 0.3971.
Let us now calculate the kinetic energy associated with

this solution. One question that immediately comes up is
which operator one should use to do this. Two possibilities
are (\2/2m)*d3ruπW cu2 and 2(\2/2m)*d3rc*π

2
c , and

provided the wave function vanishes or has zero gradient on
the boundary of the volume over which the integration is
performed, the two expressions will lead to identical results.
However, for the ramp potential the product of the wave
function and its gradient tends to a constant for large nega-
tive values of y . This apparent difficulty is removed by rec-
ognizing that, in realistic physical situations, the potential
will not be a linear ramp in the whole of space, and therefore
one has to match the solution for the linear ramp to the wave
function for some other more general potential, for example
that for a harmonic oscillator in the problem of experimental
interest. The answer for the total kinetic energy will not de-
pend on the form of the operator used, provided that
c

*
πc vanishes rapidly enough at large distances, but how

one assigns the kinetic energy to various parts of space will
depend on the choice of operator. This reflects the fact that
the kinetic energy density operator is not uniquely defined.
We now evaluate the contribution to the kinetic energy

for the wave function for the linear ramp, and for definite-
ness we shall write this as

^

p2
&

2m 52
\

2

2mE d3rc*π

2
c . ~9!

Let us first use the Thomas-Fermi wave function ~4! for the
calculation of the kinetic energy. We expect this to be valid
in the region x!2d . Because of the square-root behavior of
the wave function ~4! the integration must be cut off at a
distance l ~of order d) from the turning point. In evaluating
the mean value of the square of the momentum, p2, using the
wave function ~4!, we introduce a lower cutoff at x52L and
integrate from 2L to x52l ,

^

p2
&

52\

2
*2L

2l dxcc9

*2L
2l dxc

2 .
\

2

2L2 ln
L
d

1OS \

2

L2D . ~10!

The term of order \

2/L2 may be evaluated from the numeri-
cal solution to Eq. ~3! which we show in Fig. 1. The mean
value of the square of the momentum is obtained from

FIG. 1. The numerical solution for the linear-ramp potential
~full line! together with the various asymptotic solutions.
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Figure 2.10: Numerical solution to Eq. 2.61 with approximations. The Thomas-Fermi curve corre-
sponds to Eq. 2.62; the TF + leading correction curve corresponds to Eq. 2.65; the airy asymptote
curve corresponds to Eq. 2.63. Figure courtesy of [24].

state eigenfunction (Eq. 3.18 in the manuscript section) corresponds exactly to a Gross-Pitaevskii
equation where the external potential is a linear ramp:(

− �h
2m

d2

dx2
+ Fx+

4π�h2a
m

|ψ(x)|2
)
ψ(x) = µψ(x) (2.60)

(F is a force acting on the particle).
Lundh et al [24] proposed a rescaling method to reduce Eq. 2.60 into the parameterless equation

Ψ′′ = yΨ+Ψ3. (2.61)

The rescaling is y = x/δ where δ = (�h/2mF )1/3 and Ψ = ψ/b where b = (2mF/�h)2/3/8πa.
It is then possible to solve Eq. 2.61 numerically, or apply approximations. The Thomas-Fermi
approximation ignores the second derivative and yields

Ψ =
√
−y for y ≤ 0 and Ψ = 0 for y > 0. (2.62)

For y ≪ −1, this approximation is valid. We can also linearize Eq. 2.61 by ignoring the cubic
term, and the solution is an Airy function, the asymptotic behaviour of which is

Ψ ≈ k

y1/4
e−

2
3
y3/2 (2.63)

where k is a constant. This approximation only works for y > 0. If we take the Thomas-Fermi
solution as Ψ0 and add a correction Ψ1 to it such that the resulting solution is Ψ = Ψ0 + Ψ1, we
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find using perturbation theory that
Ψ1 ≈

1

8y2
√
−y

(2.64)

and
Ψ ≈

√
−y

(
1 +

1

8y3

)
. (2.65)

The numerical solution to Eq. 2.61 as well as the approximations in Eq. 2.62, 2.63 and 2.65 are
shown in Fig. 2.10. We have used a similar rescaling method in the manuscript, but used exact
numerical solutions instead of the approximations. The numerical solution we computed for the
rescaled equation perfectly matches the one provided by Lundh et al in Fig. 2.10.
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Figure 2.11: The first frame of the video taken with 79± 6 DNA, at flow speed of 1.13 µm/s, with
the region of interest shown in red rectangle.

2.2 Data Analysis Techniques

2.2.1 Obtaining Longitudinal Profiles

2.2.1.1 Image Processing Procedure

As the author of this thesis did not take the experimental data, we will not cover the data acqui-
sition details. A summary of the experimental procedure can be found in the manuscript section.
The important part for data analysis is what the raw data consist of: they are videos of an array of
nanoslits containing a number of fluorescently dyed DNA molecules during steady-state compres-
sion. There are six sets of experiments that were retained in the manuscript: four sets were taken
in 2µm wide slits and contained 79± 6, 60± 6, 57± 9, and 50± 5 DNA molecules; two sets were
taken in 10µm wide slits and contained 154 ± 28 and 78 ± 19 DNA molecules. Each set of data
contains five different steady-states videos corresponding to different solvent flows (ranging from
1µm/s to 22µm/s), and each video was imaged for 20-30 s at a frame rate of 100ms.

The image processing of the raw data is minimal. Using matlab, we read each video into a 3D
array where the first two dimensions are the length and width of one image, and the third dimension
is time. Since each video contains typically more than one slit, we manually draw a rectangle using
the builtin function roipoly around the region of interest and only process the pixels inside the
cropped region (the region of interested is shown by the red square in Fig. 2.11). Then for each
video, we sum over the width of the slit, and take an average over all frames. The resulting 1D
longitudinal time-averaged data vector is then normalized: it is divided by its total intensity Itot and
also by the pixel size∆xpix. Normalizing the data individually for each data profile accounts for the
effect of photobleaching over the time of the experiment. To find the number of molecules of each
set of data, we divide Itot by the total intensity of one molecule (which was imaged separately).
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2.2.1.2 Background Subtraction

In the final version of the manuscript, we have decided not to subtract background noise at all. This
is due to the special nature of how light scatters around our region of interest. As seen in Fig. 2.11,
the light intensity of each packing seems to bleed around the packing into the dark regions around
it, decaying with distance from the packing. If we plot each set of longitudinal data, we find that
the intensity far from the packing decays exponentially on both sides of the packing (see Fig. 3.5(b)
in the manuscript section). We therefore conclude that this tail is due to a wave-guiding effect of
the packing intensity along the glass microfluidic device.

This effect poses a problem to the subtraction of background noise. If we use a region between
slits to calculate our background intensity, this background region still contains some light intensity
from the packings adjacent to it. The slits on our devices are too close to each other to provide
a region free from wave-guiding light intensity between them. This means if we subtract this
background intensity, we’re altering the shape of our resulting data.

If we use the boundary of our region of interest to construct a background intensity, which
we can do by using the matlab function roifill, we’re also altering the shape of our resulting
data. roifill uses Laplace’s equation to fill in a region with a given boundary condition. We can
interpret it as heat distribution: the boundary of the region has fixed temperature, while inside the
region, heat is allowed to flow freely. The solution obtained from solving Laplace’s equation is
the final steady-state temperature profile inside the region for the given boundary conditions. This
algorithm works well for background subtraction if the boundary of our region of interest really
only exhibit background intensity, but it is not the case in our data. In fact, we had processed our
data this way in the past, and it did alter the tail of our profiles, as shown in Fig. 2.12. This is why
we stopped using this method.

2.2.2 Generating Numerical Solutions using FlexPDE

2.2.2.1 Using Adiabatic Expansion

In order to compare the experimental data with the theory, we need to compute the numerical
solutions to the PDE predicted by the theoretical model (the LRCPDE, Eq. 3.18, in the manuscript
section). Solving this PDE is not trivial due to the third order term. We used the commercial
PDE solver FlexPDE to compute our numerical solutions, and it cannot solve nonlinear eigenvalue
problems. Without the third order term, the solutions are simple: they are the Airy functions (Ai(x)
and Bi(x)). One method is inspired from quantum mechanics: we start with the linear solution,
then use adiabatic expansion to slowly introduce the third order term.
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Figure 2.12: (a) Concentration profiles for 79 ± 6 DNA, with roifill background subtraction.
The pale-red curve corresponds to a pressure of 27mbar, purple curve 47mbar, blue-curve 96mbar,
pink curve 151mbar and green curve 196mbar. (b) Concentration profiles for the same dataset,
without any background subtraction. Note the difference in the tails. The tails in (a) quickly drop
to 0.

We start by computing the numerical solutions to the linear equation without the third order
term, which we call u0. We define our region as bounded by positions x = 0 and x = L and
our boundary condition is that u0 = 0 at x = 0 (the barrier end of the slit). When the parameter
m = 1, the solution corresponds exactly to Ai(x), while whenm ̸= 1, the solutions are rescaled by
m (Ai(mx)). The initial solutions are normalized such that

∫ L
0
dx|u0|2 = 1. This initial function

u0 is fully real, but when we solve the nonlinear Schrödinger’s equation using adiabatic expansion,
we use a complex function u = ur + ui where ur is the real part and ui is the imaginary part
(|u|2 = u2r + u2i as expected). The boundary condition then becomes ur = 0 and ur = 0 at x = 0.
We introduce the nonlinear term gradually, converging to the desired value exponentially. The
time-dependent Schrödinger’s equation which we solve interatively is

i
∂u

∂t
= −m∂2u

∂x
+
(
1− e

t
tr

)
(u2r + u2i )u+ vxu (2.66)

where tr is the timescale of the convergence of the nonlinear term. The time-step used to solve the
Schrödinger’s equation is several order of magnitudes smaller than tr while the the computation
ends when t reaches tend = 10tr. Making the time-step and tr larger makes the situation less
adiabatic (the norm of u drops more at each time-step); making tend small gives less time for the
system to converge. But using small time-step and tr as well large tend increases the physical
computation time (computing the entire set of solutions necessary for curve fitting can take upwards
of 12 hours).
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For each time-step, we monitor the value of |u|2 = u2r + u2i at each point between x = 0 and
x = L, as well as the value of ϵ2 =

∫ L
0
dx|−m∂2u

∂x
+(1−et/tr)(u2r+u2i )u+vxu|2, which corresponds

to the square of the energy of u at the given time-step. If the process was completely adiabatic, the
final values of u(x) correspond to the ground-state solution, while ϵ is the ground-state eigenvalue.
However, because of the discreteness of our time-step and computation, our process is not entirely
adiabatic, and so the final u(x) is a mixture of the ground state and the first few excited states. We
know this because the values of |u|2 and ϵ2 oscillate with time while converging exponentially. We
therefore need to explicitly compute the eigenstates and eigenvalues from the values of |u|2 and ϵ2.

We compute the eigenstates/eigenvalues with a matlab code which reads the time evolution
of |u(x)|2 and ϵ2. We also assume that only the ground state ψ0 and the first excited state ψ1 are
present (which is not entirely true, but is good enough for our purposes). So

u = a0ψ0e
iE0t + a1ψ1e

iE1t (2.67)

where a0 and a1 are constants that would have been the probability amplitude of each eigenstates,
had the norm of u been exactly 1. Therefore

|u(x)|2 = a20|ψ0(x)|2 + a21|ψ1(x)|2 + 2a0a1ψ0(x)ψ1(x) cos((E1 − E0)t) (2.68)

and

ϵ2 = a20E
2
0 + a21E

2
1 + 2a0a1E1E2

(∫ L

0

ψ0(x)ψ1(x)dx

)
cos((E1 − E0)t). (2.69)

We take the last few oscillations towards the end of the time evolution of |u|2 and ϵ2 and remove
the remaining slope due to the exponential convergence (by fitting the time evolution to a linear
function and subtracting the slope while maintaining the mean value of the time evolution). We
then perform a Fourier transform of the oscillations. We obtain the frequencies and amplitudes of
the oscillations. The first peak in freaquency corresponds to the difference in energy of the ground
and the first excited states. The first peak frequency of |u|2 and ϵ2 are the same and equal f = |E1−
E0|/2π. The amplitude of the peak frequency of |u(x)|2 corresponds toAu(x) = 2a0a1ψ0(x)ψ1(x).
The time-averaged value of the last few oscillations of |u(x)|2 is Mu = a20|ψ0(x)|2 + a21|ψ1(x)|2

while the time-averaged value ϵ2 isMϵ = a20E
2
0 + a21E

2
1 . We obtain

a20|ψ0(x)|2 =
1

2

(
Mu +

√
M2

u − A2
u

)
a21|ψ1(x)|2 =

1

2

(
Mu −

√
M2

u − A2
u

)
.

(2.70)
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Therefore |ψ0(x)|2 is just a20|ψ0(x)|2 normalized, and similarly for |ψ1(x)|2. We find the probability
p0 of ψ0 by dividing the norm of a20|ψ0(x)|2 by the norm of |u|2 and the probability p1 of ψ1 by
dividing the norm of a21|ψ1(x)|2 by the norm of |u|2. As expected, p0 + p1 = 1. Finally, we find

E0 = 2πfp1 +
√
Mϵ − (2πf)2p0p1

E1 = 2πfp0 +
√
Mϵ − (2πf)2p0p1.

(2.71)

We can then use |ψ0(x)|2 and E0 for our fitting purposes.
Since we need to calculate the numerical solutions for a whole grid of values of m and ξ2 in

order to be able to fit our data to the numerical solutions, computation time is very long. Also,
the process is not entirely adiabatic, and our approximation that u is only composed of the ground
state and the first excited state is not entirely accurate. As a result, the profiles for |ψ0(x)|2 that we
obtain are not entirely right. In particular, we observe still some oscillations in the tails of these
profiles, especially when plotted in log-linear (see Fig. 2.13(a)). It is crucial that the tails of the
numerical solutions be accurate since the most striking feature of the model that we’re fitting to are
the tails. With the level of error that we have using the adiabatic method, the fitting did not work
very well. We ultimately used another method to compute numerical solutions.

2.2.2.2 Using Non-Adiabatic Time Evolution Equation

Since FlexPDE could not solve nonlinear eigenvalue problems directly, the adiabatic method is the
only one that allows us to find the eigenvalue in our nonlinear PDE. But not being able to find the
eigenvalue is not an issue if we don’t need the eigenvalue in the first place. In our problem, the
eigenvalue corresponds to a translation of the whole profile along the x-axis. This translation is
crucial to the profile only if we set the boundary condition u = 0 at x = 0. If we set no boundary
condition, the profile looks like an infinite ramp at x < E, and the tail region starts at x = E, with
values at x > E decaying asymptotically to 0. Where we place E doesn’t matter, so we can set
E = 0. Since we decided to fit only the ramp and tail portions of our experimental profiles (because
the boundary portion depends on the exact geometry of our slit barrier, which is unknown), we are
free to set E = 0 and instead introduce the translation of the profile x0 as a fitting parameter which
doesn’t depend on the model.

As we don’t need the eigenvalue anymore, we can solve our PDE using a simple time-dependent
method. We set our region from x = −L to x = L, with no boundary conditions for ψ, and the
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equation that we solve iteratively is

ξ2
∂ψ

∂x
− ψ3 −mxψ =

∂ψ

∂t
(2.72)

where the right-hand side is an artificially introduced time dependence of ψ that decays to 0 for
large time t. ψ is the ground-state exactly (not a composite state), and is fully real. The initial value
of ψ(x) can be set to a large constant. When we plug it in Eq. 2.72, the first term on the left side
is 0 since ψ(x) is a constant, while the next two terms have large negative values, and therefore
∂ψ
∂t

≪ 0. Hence the value of ψ(x) lowers gradually, until ∂ψ
∂t

converges to 0. The final value of
ψ(x) is the ground-state and only needs to be squared (|ψ(x)|2 = c(x)) before we can perform a
fitting.

This method, due to the simplicity of its variables and equations, is at least an order of mag-
nitude faster than the adiabatic method. Using a larger grid of values of m and ξ2, all numerical
solutions can be computed in a matter of minutes. We don’t need a complicated program to extract
the ground-state from the raw solutions, and the accuracy in the tail is much improved. A com-
parison for solutions obtained using the adiabatic and non-adiabatic methods is plotted in Fig. 2.13
(solutions have been rescaled according to Eq. 3.22 and 3.23 in the manuscript section for com-
parison purposes). The non-adiabatic method, with its higher quality solutions, is used in the final
manuscript.

2.2.3 Fitting Data to Theory

2.2.3.1 Fitting Procedure

In order to fit the model to our data, we used a few matlab codes. The first code creates the numer-
ical solutions by specifying a grid of values of parameters and running FlexPDE to compute the
solutions for these values. Instead of directly usingm and ξ2 as the varied parameters, we used ξ2

and v = m/ξ2 because these two parameters are independent of each other. We used 19 values of
ξ2 ranging from 1/3 to 1/50, with values more closely spaced for smaller ξ2 because the profiles
vary faster between values of ξ2 for smaller ξ2. We used 17 values of v ranging from 0.03 to 1.5,
with values more closely spaced for smaller v for the same reason. For each set of parameters, the
numerical solution is computed at 400 equally spaced points on the x-axis between x = −30 and
x = 30 (L = 30). The values of ξ2, v and L are selected by visually comparing numerical solutions
to the experimental data.

The second code reads the numerical solutions obtained by FlexPDE from the first code, and
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Figure 2.13: (a) Rescaled numerical solutions obtained using the adiabatic method. The tail region
(x̃ < 0) exhibit oscillations and don’t collapse. (b) Rescaled numerical solutions obtained using
the non-adiabatic method. The tail region (x̃ < 0) collapse almost perfectly. Note that the adiabatic
solutions include the boundary region (x̃ ≫ 0, the portion of the curves that don’t collapse) while
the non-adiabatic solutions don’t.

creates an interpolation matrix of solutions that can be used for data fitting. It uses the built-in
function scatteredInterpolant, which can interpolate between points that are scattered rather
than equally spaced. scatteredInterpolant builds an interpolation matrix from the grid of nu-
merical solutions, and the resulting matrix is evenly and finely spaced between parameters. This
matrix has the interpolated values of |ψ|2 for each of the 100 different values of ξ2, 100 different
values of v and 600 values of x (the range of each parameters is bound by the range of the numerical
solutions).

The third code fits the experimental data to the interpolation matrix. It uses the built-in function
lsqcurvefit and fits the data to the interpolated values of the theoretical |ψ|2 which has been
convolved with the Line Spread Function (see next section). Each set of data (consisting of five
profiles with different flow speed but the same number of molecules) is fitted together. The fitting
parameters are: five values of slope m (different for each profile), five values of x0 which is the
x-axis translation of the curve (also different for each profile), one value of ξ2 (the same for all five
profiles), and two values that determine the LSF (the same for all five profiles).
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2.2.3.2 Line Spread Function

The LSF is an effect that our experimental setup has on our observations. It has two components:
the first arises from the microscopy instruments, while the second arises from the wave-guiding
effect of our devices. The first component has the effect of spreading the intensity of sharp features
of the sample. Any two dimensional image obtained using any microscope is equivalent to the
convolution of the actual light intensity of the imaged sample with an Airy function (which can
sometimes be approximated as a Gaussian). In 1D, the corresponding form of this component of
the LSF is a Struve function (exact form given by Eq. 3.26 in manuscripte). The width of the Airy
function (upon which depends the width of the Struve function) is determined experimentally by
imaging a fluorescent bead and fitting the intensity with the convolution of a sharp 2D circle and
an Airy function. The width is extracted from the fit.

The second component of the LSF is specific to our device and has the form of an exponential
as discussed earlier in Section 2.2.1.2 (exact form given by Eq. 3.27). The ratio of the strength of
the first and the second components of LSF (A), as well as the decay length of the exponential (a),
are both fitting parameters when fitting each set of data to the model.

Because of the effect of the LSF has on our data, we have to convolve the theoretical model
with the LSF while fitting it to our data. But once the LSF is obtained from the fitting, can we
deconvolve the data from the LSF, and then fit it to the unconvolved theoretical model? We have
tried to do that following the method given in [33]. We used a least square deconvolution method
with diagonal loading to reduce the effect of noise. We compute the convolution matrix H using
function convmtx from the LSF and the x values of the data. Then the deconvolved data is given
by

Cdeconv = (H ′ ·H + λI(N))\(H ′ · Cconv); (2.73)

where H ′ is the transpose matrix of H , λ is the diagonal loading strength and can be varied to get
better results, I(N) is an identity matrix of size N x N , and “\” is right-matrix division. This
deconvolution works, but due to the noise in the data, there are a lot of oscillations in the decon-
volved profiles. We then tried to Fourier transform the deconvolved profiles, set all frequencies
above above a threashold to zero, then inverse Fourier transform the profiles. This does remove
most of the oscillations, but some oscillations are still visible, especially when plotted in log-linear.
We would expect the perfectly deconvolved data to rescale perfectly to the solution of the param-
eterless Schrödinger’s equation (Eq. 3.24 in manuscript), but due to the oscillations, this is not
observed. The deconvolved, frequencies-removed profiles are plotted in Fig. 2.14(a) while the
rescaled versions are plotted with the solution to the parameterless equation in Fig. 2.14(b). Be-
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Figure 2.14: (a) Concentration profiles for 79 ± 6 DNA, after deconvolution and frequencies
removing. The pale-red curve corresponds to a pressure of 27mbar, purple curve 47mbar, blue-
curve 96mbar, pink curve 151mbar and green curve 196mbar. (b) The same profiles, now rescaled,
with the black line being the numerical solution to the parameterless equation. Curves are expected
to collapse with the black line, but this is not observed due to the oscillations in the tails.

cause deconvolution yields inconclusive results, it has not been included in the manuscript.
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36 Preface to the Manuscript

3.1 Preface to the Manuscript

In the previous chapter, we have covered a theoretical background for the content in the manuscript.
We have seen how single semiflexible polymers behave in confinement, and how we can try to
extend the picture to semidilute solutions of semiflexible polymers. We have covered the self-
consistent field approach and the Onsager variational approach, both of which form the basis of the
theory presented in the manuscript. We have discussed in detail the data analysis approaches used
in the manuscript. The present chapter presents the manuscript, tying the loose ends introduced in
the previous chapter. It presents the concept of our experiment, the experimental procedures, the
theory we developed to model the experimental data, and an in depth analysis and discussion of
our data and how it compares with the theoretical model. The last section of this chapter covers
details of the theoretical derivation omitted in the published manuscript.

3.2 Abstract

Many systems of biophysical and technological interest consist of multiple interpenetrating chains
in a confined volume, i.e., a confined polymer solution. Using nanofluidic approaches developed
originally for the study of single chains in confined geometries, we develop an assay to create
confined polymer solutions on-chip, and then probe the solution response to applied compressive
forcing. In our approach, multiple chains are introduced into a nanoslit via hydrodynamic flow,
and are then concentrated against a barrier that is permeable only to solvent. For sufficiently high
concentration, the compressed solution profile can be described by a mean-field polymer model
based on Doi’s two-fluid approach, with the chain free energy described by a Ginzburg type free
energy functional. This theory furnishes a partial differential equation based description of the con-
centration profile in terms of a nonlinear Schrödinger type equation, providing a general theoretical
framework for modelling confined polymer solution dynamics.

3.3 Introduction

The development of nanoanalytical devices for single-molecule DNA sensing andmanipulation has
led to extensive research on how confinement alters the conformation of single polymer chains.
In particular, polymer equilibrium conformation can be ‘sculpted’ via control of the enveloping
confinement geometry and degree of imposed confinement [26]. Nanochannels extend individual
polymer molecules for high throughput mapping [29, 23, 28]. Nanocavity structures can capture
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Figure 3.1: (a) Schematic showing dense packing of DNA against a slit-barrier inside an array of
nanoslits. (b) Cross section of a slit along the channel axis, with the slit barrier on the left side.
(c) One-dimensional fluorescence intensity profile along the channel axis extracted for a typical
packing as shown in (b). This packing had 79 ± 6 DNA molecules, and an applied pressure of
27mbar (corresponding to a flow speed of 1.13µm/s).

and store individual chains [27, 21, 20]. These applications have motivated extensive experimen-
tal, simulation-oriented and theoretical efforts to map out scaling regimes of confined chains in
nanochannel [26, 36, 4], nanoslit [5] and cavity [16, 31, 30] geometries.

Yet, while the equilibrium properties of single-chains in simple geometries are nowwell-understood,
we have a relatively poor understanding of confined multiple chain systems, i.e., confined polymer
solutions. From an application perspective, understanding confined polymer solution behaviour is
as important as understanding confined single chains. For example, there is a need to understand
rheological properties of concentrated polymer solutions in nano/micron sized conduits for charac-
terizing a range of micro/nanofluidic technologies using complex fluids [12]. Even in the context of
nanofluidic devices designed for single-molecule manipulation, concentrated “plugs” of chains can
build up in regions where there is a sharp change in confinement due to entropic trapping [13], e.g.,
at a microchannel/nanochannel junction or pore entrance. These concentrated polymer plugs may
influence the rate at which molecules traverse the barrier and, hence, the tendency of devices, to
“clog”. Future nanofluidic device designs, integrating a range of features of varying size scale such
as pores inside nanochannels [38], may be particularly susceptible to formation of such local “solu-
tion” regions. Lastly, quantifying confined polymer solutions is a first step towards understanding
complex multiple chain systems in a biological context, such as chromosomal organization in the
nucleus [2].

While knowledge of single chain behaviour is sufficient to quantify confined dilute solutions,
new behaviours emerge as the chain concentration increases and the confined coils interpenetrate
so that the system enters a “confined semi-dilute solution regime” [11]. Confined semi-dilute so-
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lutions of flexible chains were first described by de Gennes at the scaling level [6]. This theory has
been tested in simulations [35] and experiments in porous media [22] but not yet in experiments
conducted in nanofluidic systems with rigorously defined geometries. Moreover, DNA is semi-
flexible, with a persistence length P around 50 nm in typical buffer conditions [26]. Semiflexible
chains can have special scaling regimes in confinement and in bulk where mean-field descriptions
are exact and the classical de Gennes theory for flexible chains is no longer correct (in flexible
chain theory, concentration fluctuations have a non-negligible effect on scaling exponents) [16,
31]. These special mean-field scaling regimes are termed “marginal solution regimes” in classical
solution theory [1, 32]; in the special case of nanochannel and nanoslit confinement they are called
“extended de Gennes regimes” [36, 26]. The question of whether a confined semiflexible chain
will adopt mean-field or flexible scalings is highly non-trivial; complex scaling phase spaces exist
as a function of chain size and confinement scale that determine the appropriate description [30]. In
our studies involving compressing single DNAmolecules with a sliding-piston assay, we have also
observed that mean-field behaviour holds [17, 18]. An interesting question is whether mean-field
scaling also applies to systems with multiple DNA chains in confinement. Finally, even for single-
chains, we are just beginning to develop approaches for quantifying non-equilibrium behaviour
in confinement [17, 18]. We expect local solutions in nanofluidic devices to be highly dynamic,
due to continuous chain transport, chain escape and relaxation of concentrated regions. As in the
case of single chains, we need approaches to extend equilibrium models to non-equilibrium sce-
narios [18], but it is even more critical in the multi-chain case, due to the difficulties of extending
computationally intensive Brownian dynamic approaches [14] to many-polymer systems.

Here we develop a nanofluidic assay for creating concentrated polymer solutions in a nanoslit,
analogous to devices used for single-chain manipulation. In this approach, an array of nanoslits is
terminated at one end via a slit-barrier, thus permitting fluid flow, but blocking the passage of single
coils. Multiple coils are introduced into the slits and then pack at the slit barrier (Fig. 3.1(a)), lead-
ing to controlled formation of a polymer solution. The degree of chain concentration can be tuned
by varying the external hydrodynamic flow, which is induced by an applied positive pneumatic
pressure. The integrated chain packing concentration along the channel axis (Fig. 3.1(b-c)), a func-
tion of position from the slit-barrier, encodes key information regarding solution behaviour, and is
the fundamental observable. We find that the concentration profile, when the packing concentration
is high enough, can be described by a “universal” mean-field theory based on M. Doi’s two-fluid
model [10] and the Onsager variational principle [8]. A partial differential equation (PDE) is de-
rived for the Green’s function ψ [11], from which a concentration profile is obtained. This equation
has the form of a nonlinear Schrödinger equation, reminiscent of equations used tomodel a confined
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Bose gas [24]. Numerical solutions for the concentration profile, computed using a commercially
available PDE-solver, are compared with the experimental profiles. We find good agreement when
the number of packed chains is large, suggesting that mean-field-type regimes are probed in the
experiments.

3.4 Experiment

The nanoslits were fabricated in fused silica wafers (HOYA corporation USA) using the protocol
provided in Reisner et al. [26]. Our device comprises two U-shaped microchannels, coupled to
sandblasted loading reservoirs, spanned by an array of nanoslits (Fig. 3.2(a)). The nanoslits are
75µm long, either 2µmor 10µmwide, with a height dimension of 300 nm. The nanoslits terminate
in the array center in blunt-ended gaps. In a second lithography step, we etch a thin (30 nm) slit
over the blunt-ended gaps, creating an array of semipermeable barrier structures that permit fluid
flow, but are sufficiently thin to trap DNA. The chips were bonded to fused-silica coverslips to
form channels of uniform silica surface chemistry. The chips were then wet with a 1×TE buffer
and degassed in a vacuum chamber for 12 hours prior to use. Additional 1×TE buffer with λ-DNA
(New England BioLabs), stained with YOYO-1 (intercalation ratio of 1:10), was then loaded into
the devices. To prevent photobleaching and photonicking of DNA, the loading buffer includes 2%
β-mercaptoethanol. Our imaging setup is based on a Nikon Eclipse Ti microscope with a 100×
N.A. 1.49 oil immersion objective (Nikon), a metal-halide lamp (Xcite) as an excitation source and
a iXon EMCCD camera (Andor). A schematic of a chip is shown in Fig. 3.2(a).

We first load DNA solution into reservoirs 2 and 3 (Fig. 3.2(a)). Pneumatic pressure, generated
by a nitrogen flow applied at reservoir 2 and 3, is used to introduce DNA into a microchannel
arm. Pressure applied at reservoirs 1–4 is then used to drive DNA from the microchannel into
the nanoslit array, gradually filling the nanoslits with DNA (Fig. 3.2(b-c)). Figure 3.2(d) shows a
kymograph representation of the growth of a packing as individual molecules are added one by one.
The kymograph representations are constructed by first averaging the intensity of each image in
the direction transverse to the nanoslit axis, and then reslicing, displaying time along the y-axis and
longitudinal position along the x-axis. The fluid velocity at each applied pressure is measured by
extracting the speed of a free moving DNAmolecule vcoil in a nanoslit during the packing formation
(for example, by performing a linear fitting to a free molecule trajectory, as shown in Fig. 3.2(d)).

Once a prescribed number of DNA are introduced into the nanoslit, compression is initiated
against the barrier (Fig. 3.2(e)). Pneumatic pressure is applied to the two outer reservoirs of the
device where no DNA solution is loaded (e.g., reservoirs 1 and 4), ensuring that no additional DNA
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Figure 3.2: (a) Schematic showing the chip layout. DNAmolecules are initially loaded in reservoirs
2 and 3 and (b) driven into the slit array by symmetric application of pneumatic pressure to all
reservoirs. (c) A packing of chains is built up in each slit with (d) a kymograph showing individual
chains being driven down the slit into the packing (the vertical scale bar is 1 s while the horizontal
scale bar is 4µm). Once the packing is complete, pressure is released at reservoirs 2 and 3, so that (e)
the overall compression of the packing can be tuned by varying pressure applied at reservoirs 1 and
4 without introducing new molecules. (f) Increasing pressure by a fixed increment will increase
in packing density with (g) a kymograph showing a transition for 79±6DNA from 96mbar to
151mbar (the vertical scale bar is 2 s and the horizontal scale bar is 2µm).
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will be introduced into the nanoslit during compression (and the molecule number is conserved) as
shown in Fig. 3.2(e-g). Compression is initiated at a low pressure (∼ 25mbar). When pressure is
applied, there is a short transient process during which chains throughout the nanoslit accumulate
at the barrier (Fig. 3.2(f-g)). Eventually the packing reaches a steady-state where the concentration
profile has a stable extent and structure (Fig. 3.2(g)). We then acquire images for about 10 s to
achieve a satisfactory signal-to-noise ratio and, thus, a robust measurement of the profile structure.
The pressure is then increased to achieve higher packing densities, and the process iterated over a
range of pressures.

The key observable in the assay is the variation of polymer concentration with position along
the channel axis. This longitudinal concentration profile is extracted directly from the raw video
microscopy images. First, we isolate the portions of the video where the packing is steady at a given
pressure (corresponding to 200-300 frames). Next, we select a region that captures thefluorescence
intensity from the polymers. Then, on a frame-by-frame basis, we sum the packing intensity over
the direction transverse to the channel axis to create a profile of concentration versus longitudinal
position. Finally, we average the longitudinal profile over all steady-state frames; the error in the
averaged concentration is determined from the error-of-the-mean arising from intensity fluctuations
between frames. The total intensity of the profile is proportional to the number of DNA molecules.
We obtain the number of DNA N in the packing by dividing the total intensity of the packing by
the intensity of one molecule (extracted before the chain is integrated into the packing). Lastly,
we normalize the resulting intensity profile to the total intensity Itot (summed over all pixels in the
profile) and the pixel size ∆xpix. The normalization is performed separately for each increment in
compression of a fixed number of polymer coils, accounting for any effects of photobleaching. The
normalized longitudinal concentration profile is denoted C ′.

Figure 3.3 shows kymograph representations (Fig. 3.3(a), (c), (e), (g), and (i)) and resulting
time-averaged longitudinal concentration profiles (Fig. 3.3(b), (d), (f), (h), and (j)) following com-
pression. The DNA packing is compressed at different pressures, i.e., 27mbar, 47mbar, 96mbar,
151mbar and 196mbar, corresponding to vcoil values of 1.13µm/s, 1.96µm/s, 4.01µm/s, 6.30µm/s
and 8.18µm/s. The displayed kymographs do not show the whole event continuously, but only the
steady-state portions. Qualitatively, the profiles ramp towards the barrier and then drop at the bar-
rier edge; the scale over which the intensity falls-off at the barrier edge is governed by the specific
boundary conditions imposed at the slit-barrier and the optical resolution (e.g., width of the point-
spread function (PSF)) which will be discussed below.
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Figure 3.3: Kymographs (a, c, e, g and i) and corresponding concentration profiles (b, d, f, h and
j) obtained from averaging the kymographs over 20 s when the packing, incorporating 79±6DNA
molecules, has reached steady-state. The profiles were taken for a range of applied pneumatic
pressures, each corresponding to a different fluid velocity. A measure of the fluid velocity in the
slit is obtained from the velocity vcoil of free DNA coils moving in the slit for the given pressure. The
applied pressures are (a-b) 27mbar (corresponding to vx = 1.13µm/s), (c-d) 47mbar (1.96µm/s),
(e-f) 96mbar (4.01µm/s), (g-h) 151mbar (6.30µm/s), and (i-j) 196mbar (8.18µm/s). The intensity
profiles are normalized so that the total area under each curve is one. The horizontal scale bar
is 10µm; the vertical scale bar is 2 s for the kymographs. Insets (b), (d), (f), (h), and (j) show
corresponding 2D intensity profiles with a scale bar of 5µm.
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3.5 Theory

3.5.1 Onsager’s Variational Method Using a Two-Fluid Model

The shape of the concentration profile encodes information about how the polymer solution re-
sponds to external hydrodynamic forcing. For polymer concentration above the overlap threshold,
the polymer packings exist in a semi-dilute solution regime. The overlap concentration for a slit-
confined solution is given by Daoud et al. [6]

c∗ =
n

πhr2g
, (3.1)

where n is the number of Kuhn length segments in one molecule and rg is the gyration radius of a
single slit-confined molecule [5], and h is the slit height (the factor of π is used for a more precise
estimate of the coil area). We show that the packing concentration is above overlap over most
of the measured profile (Fig. 3.6(a)). In addition, we observe that the longitudinal concentration
profiles of the polymer packings are linear ramps (Fig. 3.3), a characteristic indicative of mean-
field behaviour if the friction factor is proportional to packing concentration, as observed for single
chains [17, 18]. These results motivate development of a systematic theory, based on classic mean-
field assumptions, to describe compressed DNA solutions.

M. Doi has demonstrated that the Onsager principle of minimum dissipation is a powerful, gen-
eral approach for constructing kinetic equations in soft-matter systems [8]. This approach trans-
parently establishes the connection between a system’s equilibrium free energy and resulting non-
equilibrium behaviour under applied forcing provided a dissipation function can be constructed. In
addition, supplemented by a two-fluid type modelling approach [10], the Onsager approach incor-
porates subtle details regarding the coupling between hydrodynamics and polymer dynamics. Here
we use the Onsager principle to construct evolution equations for the evolving polymer concentra-
tion assuming mean-field and develop steady-state solutions satisfied when the polymer solution
is driven against a barrier under constant external flow.

Our system comprises a solvent phase, of velocity vs, and a polymer phase, of velocity vp. The
polymer has concentration c (Kuhn segments per unit volume) and polymer volume fraction ϕ.
The polymer volume fraction is very small for our experimental system, on the order of ϕ ∼ 0.001.
Therefore the average solution velocity

v = ϕvp + (1− ϕ)vs ≈ vs. (3.2)
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Following M. Doi’s version of the Onsager approach [8], we construct a Rayleighian R = Φ +

Ȧ, where Φ is an energy dissipation functional and Ȧ is the rate of change of free energy. The
dissipation comprises two terms: ΦPS , which is the dissipation arising from the relative motion
of the polymer and solvent, and ΦH , which is a purely “hydrodynamic” dissipation arising from
velocity gradients. The first term ΦPS can be written

ΦPS =
1

2

∫
ζ(vp − v)2dr, (3.3)

where ζ is a friction coefficient that is proportional to the polymer concentration c [17, 18]. The
second term ΦH can be written

ΦH =
η

4

∫ [
∇v+ (∇v)t

]2
dr, (3.4)

where η is the solution viscosity, ∇v is the velocity gradient tensor, and t indicates the transpose
matrix.

For a mean-field polymer theory with ground-state dominance, the free energy [11]

A = kBT

∫ (
a2

6
|∇ψ|2 + ν

2
|ψ|4

)
dr, (3.5)

where a = 2P is the Kuhn length (100 nm for DNA), ν is the excluded volume parameter, and ψ is
the Green’s function, related to polymer concentration by c = |ψ|2, and kBT is the thermal energy.
The first term of Eq. 3.5 arises from entropy, whereas the second term is comparable to a potential
arising from self exclusion in the mean-field approach. The excluded volume parameter is ν = a2d

where d is the effective chain width [26].
To obtain the Rayleighian, we first need to compute the time derivative of free energy A and

add it to the energy dissipation functional Φ. The full Rayleighian also requires a third Lagrange
multiplier constraint L to maintain solvent incompressibility, ∇ · v = 0 (a condition which arises
naturally from the definition of v in Eq. 3.2 and the conservation of ϕ). We do this by introducing
a pressure p(r) so that the Rayleighian becomes

R = Φ+ Ȧ− L = Φ+ Ȧ−
∫
p(r)(∇ · v)dr. (3.6)
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The Onsager principle of minimum dissipation requires

δR

δvp
= 0 and

δR

δv
= 0. (3.7)

Computing these functional derivatives yields two equations:

ζ(vp − v) = −ψ2∇
(

1

2ψ

δA

δψ

)
(3.8)

and
ζ(vp − v) +∇ · η

[
∇v+ (∇v)t

]
= ∇p, (3.9)

where
δA

δψ
= 2kBT

(
−a

2

6
∇2ψ + νψ3

)
. (3.10)

Equations 3.8 and 3.9 describe constraints on the behaviour of the flow and the concentration pro-
file. Of particular interest is Eq. 3.8, because it explicitly yields the Green’s function if the velocities
are given.

We will work from now on with Eq. 3.8. Under steady-state compression, we assume the aver-
age velocity of the polymer vp = 0. Furthermore, as discussed, we assume the friction coefficient
to be proportional to concentration: specifically ζ = ζ0|ψ|2. Equation 3.8 then becomes

ζ0v = kBT∇
[
1

ψ

(
−a

2

6
∇2ψ + νψ3

)]
. (3.11)

The quantity ζ0 is a constant that determines the slope of the linear ramp; we will later show how
to use scaling arguments to estimate its value.

3.5.2 Reduction to One-Dimensional Theory

As the nanoslit height (h = 300 nm) is small compared to the length and width dimensions (l =
75µm and w = 2µm), we argue the problem reduces to a quasi-1D case. We orient the channel
axis along x, the width dimension along y and the vertical dimension along z. To transform our
3-D equations into a system of 1-D equations, we assume separability of the functional dependence
on the lateral coordinates x and y and the vertical coordinate z. We also assume that the flow is
strictly parallel to the channel (x) axis, leading to

ψ(x) = f(z)ψxy(x, y) and v(x) = g(z) (vx, 0, 0) . (3.12)
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We expect only weak variation of ψ with y, as the width dimension is significantly larger than the
vertical dimension, so in addition we argue ψxy(x, y) ≡ ψx(x). We approximate the function f(z)
by the transverse concentration profile appropriate for a confined Gaussian chain [11]

f(z) =

√
2

h
sin

πz

h
. (3.13)

We assume a Poisseuille velocity profile in the transverse direction, with vx the constant average
flow-velocity along the channel

g(z) =
6

h2
(h− z)z. (3.14)

Replacing ψ and v in Eq. 3.11 with the expressions in Eq. 3.12–3.14 and integrating over y and z,
we obtain

ζ0vx = kBT
∂

∂x

[
1

ψx

(
−a

2

6

∂2

∂x2
ψx +

ν

hw
ψ3
x

)]
, (3.15)

where w is the slit width. Since vx is a constant, we may integrate both sides of Eq. 3.15 with
respect to x and then multiply both sides by ψ to obtain

ϵψx + ζ0vxxψx = kBT

(
−a

2

6

∂2

∂x2
ψx +

ν

hw
ψ3
x

)
. (3.16)

This is now an eigenvalue problem with the eigenvalue ϵ arising from the integration.
To convert Eq. 3.16 to dimensionless form, we introduce the variables

C ≡ ψ2
x

c∗wh
and Ψ ≡ ψx√

c∗wh
. (3.17)

Using these definitions, Eq. 3.16 becomes

EΨ = −ξ2∂
2Ψ

∂x2
+Ψ3 +mxΨ, (3.18)

where
E ≡ ϵ

kBTνc∗
, ξ2 ≡ a2

6νc∗
andm ≡ − ζ0vx

νkBTc∗
. (3.19)

We will refer to Eq. 3.18 as the ‘Linear Ramp Concentration PDE’ (LRCPDE).
To compare with experiment, firstly we must note that our experimental profiles, normalized to

one, have a different normalization than Eq. 3.18. This issue requires care as Eq. 3.18 is non-
linear and normalization rescales the underlying equation parameters. The normalized profile
C ′ = (c∗wh/Nn)C. Thus, the physical parameters E, ξ andm, appearing in Eq. 3.18, are related
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to the corresponding parameters E ′, ξ′ and m′ obtained by fitting to the normalized experimental
profiles via

E = E ′/η, ξ2 = ξ′2/η and m = m′/η (3.20)

with the conversion factor η ≡ (c∗wh/Nn) = (w/Nr2gπ). Secondly, we need to relate the average
flow velocity vx to the velocity vcoil of a single free coil determined from experiment. The coil ve-
locity can be estimated by averaging the Poisseuille flow over the chain concentration profile [34].
Using Eq. 3.13 to model the chain profile, we find vcoil = (1+ 3/π2)vx ≈ 1.3vx. The coil velocity
is a little higher than the average flow velocity because polymers are concentrated at the channel
center.

3.5.3 Rescaling and Numerical Solution

The LRCPDE is of the same form as the Gross-Pitaevskii equation for a linear ramp potential [24],
which describes the ground state of a quantum system of identical bosons. One approach for obtain-
ing numerical solutions of the LRCPDE is to turn on the cubic (nonlinear) term adiabatically, start-
ing in the ground-state of the linearized equation (simply the Schrödinger equation). Another ap-
proach, which is faster and gives equivalent results, is to convert the LRCPDE to a time-dependent
equation by adding a ∂Ψ/∂t term and finding the LRCPDE solution as a long-time limit of the
modified time-dependent system.

Solutions to the LRCPDE have a ramp-like character and can be divided into three regimes,
as shown in Fig. 3.4: (1) a tail corresponding to low concentration (Ψ2 ∼ 10−1 and lower) where
the nonlinear term is negligible, (2) a linear ramp where the nonlinear term is dominant, and (3) a
boundary region determined by the specific boundary conditions imposed at the slit barrier. The
parameter ξ is the correlation length, which sets the length scale in the boundary and the tail regions.
If the excluded-volume term is dominant, then we may omit the derivative in the LRCPDE, giving
an explicit equation for the linear regime:

C = Ψ2 = mx− E = m(x− xo). (3.21)

The parameter m is the ramp slope and x0 = E/m is the ramp x-intercept. In quantum language,
this is known as a Thomas-Fermi approximation [24].

The LRCPDE can be rescaled by adopting the reduced variables [24]

x̃ =
m1/3

ξ1/3
(x− x0) (3.22)
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Figure 3.4: (a) An example solution to the LRCPDE, obtained using the boundary condition
Ψ2 = 0 at x = 0, form = 0.05µm2 and ξ = 0.1µm. Dashed grey lines separate the three regimes:
(1) tail, (2) ramp, and (3) boundary region. Inset shows several solutions to the LRCPDE for the
same value ofm but increasing ξ (from blue to pink). (b) Additional solutions to the LRCPDE for
varying m and ξ (from blue to pink), rescaled according to Eq. 3.22 and 3.23 (and flipped along
the y-axis). The master curve, solution to Eq. 3.24, is shown in dashed black. A dashed grey line
separates the tail and ramp regions. The inset shows the same curves with log-linear axes.
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and
Ψ̃ =

Ψ

m1/3ξ1/6
. (3.23)

Equations 3.22 and 3.23 lead to the rescaled LRCPDE:

− ∂2Ψ̃

∂x̃2
+ Ψ̃3 + x̃Ψ̃ = 0. (3.24)

The effect of varying the eigenvalue E is highlighted in Eqs. 3.21 and 3.22: varying E varies
x0 and translates the profile along the x-axis. In particular, x̃ = 0 corresponds to the position
x = x0. Figure 3.4 shows the effect of rescaling numerical solutions of the LRCPDE according
to Eqs. 3.22 and 3.23. The curves collapse with deviations from the master envelope occurring
only in a small region near the boundary. Solving the LRCPDE with E = 0, and without imposing
specific boundary conditions at the barrier, produces a master-curve that describes the envelope
produced by the collapse of the rescaled solutions. Note that we present non-rescaled concentration
profiles/numerical solutions with the tail towards the right, and flip the profiles/solutions about the
y-axis when we rescale them, so that the tail points towards the left and the slope is positive.

3.6 Theory Compared to Experiment

Before we compare experimental data to theory, we must first consider the effect of the PSF, which
has two components. The first arises from fluorescence emitted by a point-source that is directly
transmitted through the device bonding-lid, and is described by a standard Airy disk:

PSF (r) = I0

(
2J1(r/r0)

r/r0

)2

, (3.25)

where J1 is the Bessel function of the first kind of order one, r =
√
x2 + y2 is the radial distance

from the optics axis in the focal plane, and r0 is an effective width parameter of the Airy disk.
Specifically, r0 = λN

π
, where λ is the wavelength of observed light, andN = R/d is the f-number,

where R is the observation distance and d is the aperture diameter. To calibrate the Airy-disk
response for this system (e.g., determine r0), we measured the intensity profile of an object below
the diffraction limit (a 75 nm fluorescent bead, see Fig. 3.5(a)). We then convolved the Airy-disk
with a 75 nm diameter disk representing the bead extent, and fitted the resulting profile to the bead
intensity profile, yielding r0 = 0.22µm.

Because our observables are one-dimensional profiles along the channel axis, we use a one-
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Figure 3.5: (a) Intensity profile of a 75 nm fluorescent bead imaged with a 100× N.A. 1.49
objective. The scale bar on the coloured micrograph inset is 1µm. (b) Log-linear plot of concen-
tration profiles, taken for different pressures, in a 2µm wide slit for a packing containing 79 DNA
molecules (x-axis linear, y-axis log). The pale-red curve corresponds to a pressure of 27mbar,
purple curve 47mbar, blue-curve 96mbar, pink curve 151mbar and green curve 196mbar. The
profile tails far away from the slit-barrier fit well to an exponential function (dashed-black curve).
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dimensional projection of the Airy PSF to form a line PSF. The line LSF can be obtained from the
Airy PSF by integration, and is given by [37]

LSFAiry (x) =

∫ +∞

−∞
I0

[
2J1((x

2 + y2)1/2/r0)

(x2 + y2)1/2/r0

]2
dy

= I ′0

(
H1(2x/r0)

(x/r0)2

)
,

(3.26)

where H1 is a first-order Struve function.
The second PSF component arises from fluorescence emitted by a transverse segment of the

slit that is not directly transmitted, but instead is guided down the slit. This wave-guiding effect is
apparent in the long-range intensity tails far away from the DNA packing, as shown in Fig. 3.5(b).
These tails are symmetrically distributed around the packing, are independent of packing concen-
tration, and have an exponential character. We attribute these exponential tails to the exponential
attenuation of light in a dielectric wave-guide due to scattering loss [15]. To account for the wave-
guiding effect, we introduce a second component to the line PSF that has the form of a symmetric
exponential:

LSFwaveguide (x) = A exp(−a|x|). (3.27)

The constant a describes the decay length of the exponential tail; A represents the fraction of light
that is wave-guided, with the absolute value ensuring that the wave guiding effect is symmetric on
both sides of the line source. We find both a and A are independent of packing density (applied
pressure).

To compare our experimental data with theory, we generated numerical solutions of the LR-
CPDE for different values of ξ and m, with the time-dependent equation method, using a com-
mercially available PDE solver (FlexPDE). We then convolved these numerical solutions with a
line-spread function LSF that is the sum of the Airy and waveguide contributions:

LSF (x) = LSFAiry (x) + LSFwaveguide (x) . (3.28)

The experimental concentration profiles were then fitted to these convolved numerical solutions
(using Matlab’s lsqcurvefit). There are five parameters to be determined from the fit: ξ, m, A, a
and the overall translation along the x-axis, x0. We omitted the boundary portion of the profile
when performing the fits; firstly, because the exact boundary condition at the barrier is uncertain,
due to the complex geometry of the channel at the barrier and because the unidirectional-flow
approximation breaks down near the barrier; secondly, because the boundary region does not reflect
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universal characteristics of the profile (the tail and ramp portions of the profile do not depend on
the specific boundary condition imposed at the barrier, e.g., see Fig. 3.4). If we omit the boundary
portion, then we have freedom to set E = 0 when computing the solution. Note that x0 will
be determined uniquely only if a boundary condition is imposed at a specific position (i.e., if a
boundary condition is imposed, the profile will not be invariant under translation, fixing x0).

Figure 3.6(a) compares the experimental longitudinal concentration profiles with convolved
theoretical calculations for a packing that comprises N = 79 ± 6 molecules measured at five
different pressures (for clarity, curves for the three lowest pressures are shown). The profiles taken
for different pressures were fit together, with the values of ξ, A and a set to the same value for all
five curves, while m and x0 are determined independently for each curve. The concentration in
Fig. 3.6(a) is plotted in units of the overlap concentration; note that C > 1 for most of the curves,
so the packing is really in a semi-dilute solution (as opposed to dilute regime) and the use of a
solution model is justified. This model describes the results quite well.

Figure 3.6(b) presents the fitted slope of the linear regime (m, Eq. 3.21) plotted versus vcoil.
We find thatm has the linear dependence on vcoil predicted by Eq. 3.19; the fitted slopem/vcoil =

0.476 ± 0.001 s/µm2. To compare to the m-value predicted by theory (e.g., Eq. 3.19), we need
to estimate ζ0 and find c∗ using Eq. 3.1. The maximum possible value of ζ0 is the friction factor
of a single Kuhn segment (≈ 6πηa). This is necessarily an overestimate due to hydrodynamic
screening. If we argue that hydrodynamics are screened over the slit heighth, then the friction factor
is simply the friction factor for a blob of extent h times the number of blobs per unit volume, or ζ =
(6πηh)(C/nH), where nH is the number of Kuhn segments in a blob [11]. We estimate the number
of segments per blob by assuming that the blobs obey Flory scaling, e.g., nH = h5/3/(Pd)1/3a,
giving

ζ0 ≈ 6πηa(Pd)1/3/h2/3. (3.29)

Equation 3.29 gives ζ0 = 421 nm mPa s (using η = 1mPa s, P = 50 nm, and d = 20 nm,
appropriate for our buffer [21]). To estimate the overlap concentration c∗, we need to determine
the radius of gyration of a single slit confined λ-DNAmolecule. For this, we use simulation results
for the slit-confined chains summarized by Dai et al. [5]. Figure 7 in Dai et al. gives rg = 1.5rbulkg

for h = 300 nm, where rbulkg is the bulk (unconfined) gyration radius of λ-DNA. In addition, from
their simulations, they report rbulkg = 392× d0.19, giving rg = 1040 nm (using d = 20 nm). Taking
the dye-adjusted contour of λ-DNA to be 20µm [26], we find n = 200, so that Eq. 3.1 gives
c∗ = 196µm−3. Equation 3.19 then gives m/vcoil = 2.03 s/µm2 (ν = 20 nm× (100 nm)2 and
T = 293K), which is larger than the experiments by a factor≈ 4. We attribute the discrepancy to an
absence of complete hydrodynamic screening by the blobs, since the factor of 6π in the definition of
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Figure 3.6: (a) A packing comprising 79± 6 DNA, normalized by the overlap concentration, with
fitted theory for pressures of 27mbar (pale red curve, corresponding to vcoil = 1.13µm/s), 47mbar
(purple curve, 1.96µm/s), and 96mbar (blue curve, 4.01µm/s). Theory is shown in black for each
pressure. Overlap concentration is shown in dashed purple and x0 is shown in dashed orange. Data
was taken in a 2µm slit. (b) The fitted slope parameterm (red) for the three previous pressures, as
well as for 151 mbar (6.30 µm/s) and 196 mbar (8.18 µm/s), as a function of flow speed measured
by vcoil, and linear fit (black). Error-bars on fitted m values are smaller than the point size. (c)
The same data with all 5 pressures shown in grey, rescaled according to Eq. 3.22 and 3.23, plotted
with convolved theory (blue-dashed) and a simple line convolved with the same LSF model (red-
dashed). The convolved theory and convolved line correspond to the best fit to the highest and the
lowest pressures data (with curves taken for other pressures lying between the two lines). The inset
emphasizes that, in the region about x̃ = 0 (indicated in dashed orange line), the full mean-field
model gives improved agreement to the collapsed experimental profiles (as compared to the simple
convolved line model).
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ζ0 assumes that the blobs act as hard spheres. The fitted correlation length is ξ = 3.960±0.052µm,
which is of the order of the end-to-end length of a single coil (≈

√
6rg = 2.5µm).

Figure 3.6 (c) shows the same experimental profiles and convolved theoretical fits rescaled
according to Eqs. 3.22 and 3.23 with them and ξ parameters determined from the fit of each profile
to theory. For clarity, we plot the theory only for the highest and lowest pressures, which bracket
the range of theoretical fits corresponding to the five profiles. The rescaling collapses both the
experimental profiles and their corresponding theoretical fits. The collapse is not perfect, but this
is expected, due to the influence of the line-spread function; the convolved theory and experiment
show a similar (small) degree of deviation from perfect collapse. In addition, in Fig. 3.6(c), we
check whether the full mean-field model is better than the approximate linear model at describing
the collapsed profiles. The linear model, convolved with Eq. 3.28 (red-dashed curve), agrees with
the experimental profiles and full mean-field theory for x̃ > 1, but deviates from the collapsed
experimental profiles for x̃ values close to the origin. In contrast, the mean-field description (blue-
dashed curve) provides a good description of the experimental data for x̃ > 1 and x̃ values close to
the origin.

We have also explored the effect of varying molecule number N on the packing profiles. Fig-
ure 3.7 shows profiles taken for different N and different pressures fitted to the convolved theory
and then rescaled. As above, we show the best fit to the convolved theory for the highest and
lowest pressures. At high N (Fig. 3.7(a-b)), the collapse works well, and the collapsed profiles
agree with the mean-field theory. As N decreases (Fig. 3.7(c-d)), the collapse degrades for x̃ < 0,
and the mean-field theory falls systematically below the collapsed profiles. The deviation from the
mean-field theory appears to be associated with a decrease in the overall packing concentration. In
particular, for the low N profiles, the profiles at higher pressure agree better with the mean-field
model. We examined packing profiles in larger (10µm wide) slits (Fig. 3.7(e-f)), finding similar
behaviour.

3.7 Discussion and Conclusions

We have developed a nanofluidic system for creating confined polymer solutions and studying their
response to compressive hydrodynamic forcing against a barrier. A Gross-Pitaevskii type equation
was derived to describe the 1-D chain packing profile, treating the flow-induced DNA compres-
sion as a sedimentation problem, and using mean-field and ground-state dominance assumptions
in the context of Onsager dissipation minimization. The mean-field theory works well when N
is sufficiently high. Experimental data, rescaled according to Eqs. 3.22 and 3.23, exhibit striking
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Figure 3.7: Experimental packing profiles for 2µm slits (a-d), and for 10µm slits (e-f), rescaled
according to fitting parameters following Eq. 3.22 and 3.23: (a)N = 79±6DNA, (b) 60±6DNA,
(c) 57±9DNA, (d) 50±5DNA, (e) 154±28DNA and (f) 78±19DNA. In each plot p ≈ 25mbar
(pale red), 50mbar (purple), 100mbar (blue), 150mbar (pink) and 200mbar (green), resulting in
flow speeds ranging from 1µm/s to 22µm/s. The dashed-black curves are rescaled best fits to
mean-field theory at the highest and lowest pressures.

data collapse (despite the interference of the LSF), and agree well with the mean-field theory (LR-
CPDE, Eq. 3.18) convolved with the LSF, in Fig. 3.7). AsN decreases, however, the data collapse
is weaker, and the correspondence with mean-field theory breaks down. In particular, with fewer
confined DNAmolecules and a lower applied pressure (e.g., Fig. 3.7 (c-d) and (f)), the discrepancy
between theory and rescaled experimental data becomes pronounced in the tails.

The very good agreement with mean-field theory and experiments—in the profile tails—is, per-
haps, surprising (see Fig. 3.6(a)). In particular, we did not expect a bulk mean-field regime to exist
at concentrations so close to overlap; in addition, the large correlation length is inconsistent with
a bulk regime, with the bulk correlation length being an order of magnitude lower. One explana-
tion for these observations hinges on the existence of a special transition regime. In de Gennes’
classic theory for confined flexible polymer solutions [6], such a transition bridges the dilute and
bulk regimes where the correlation length is larger than the slit height. Such a transition might be
expected for solutions of semiflexible chains, as for single semiflexible chains in strong confine-
ment [30]. Note that the transition regime predicted by Sakaue for a single confined semiflexible
chain is also a mean-field regime, but with a larger correlation length. Thus, one explanation for
the agreement of mean-field theory and experiments here—in the tails, and the larger correlation
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length, is that our assay probes the transition for confined solutions of semiflexible chains.
In Sakaue’s theory for single confined semiflexible chains, both “fluctuating” regimes with

scalings analogous to flexible chain theory and mean-field regimes exist. The structure of the
predicted scaling regimes as a function of chain size and confinement scale is complex. Moreover,
for confined solutions, incontrast to single chains, the number of confined chains is an additional
variable. We speculate that the departures from mean-field theory that we observe for lower N
might arise when entering a transition regime that is no longer described by mean-field theory.

Further experiments varying the slit height, molecule number, and chain contour length could
help to clarify these issues by (i) helping to provide a rigorous experimental basis for the theory of
confined solutions, and (ii) identifying subtle cross-overs between scaling regimes. Our assay could
be adopted for other polymer systems too, such as flexible synthetic chains and confined solutions
of polymers having complex architecture (e.g., ring and branched polymers). The effects of varying
the solvent (e.g., salt variation and addition of molecular crowders or multi-valent species to drive
the coils into a globule regime) on the polymer conformation and packing profiles might also be
valuable.

3.8 Supplementary Materials

Herewe go through the full derivation of the Rayleighian and Equations 3.8 and 3.9 in themanuscript.
The free energy is given in Equation 3.5 in the manuscript. To compute the time derivative of the
free energy,

Ȧ =

∫
ψ̇
δA

δψ
dr. (3.30)

We use the conservation of molecular contour ċ+∇ · (cvp) = 0, and calculate ψ̇ to be

ψ̇ =
∂ψ

∂c
ċ =

1

2
√
c
ċ =

1

ψ
ċ = − 1

ψ
∇ · (vpψ2) (3.31)

Then, integrating by parts, we have

Ȧ = −1

2

∫
∇ · (vpψ2)

(
1

ψ

δA

δψ

)
dr (3.32)

= −1

2

∫
vp · n

(
ψ
δA

δψ

)
dA+

1

2

∫
ψ2vp · ∇

(
1

ψ

δA

δψ

)
dr. (3.33)
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The first term of equation 3.33 is evaluated over the surface, and vanishes since the boundary
condition of our system is ψ = 0. The full Rayleighian is therefore

R = ΦPS + ΦH + Ȧ− L

=
1

2

∫
drζ(vp − vs) +

η

4

∫ (
∇v+ (∇v)t

)2
dr+

1

2

∫
ψ2vp · ∇

(
1

ψ

δA

δψ

)
dr

−
∫
p(r)(∇ · v)dr.

(3.34)

The Onsager principle of minimum dissipation requires

δR

δvp
= 0 and

δR

δv
= 0. (3.35)

Computing each functional derivative term by term yields

δΦPS

δvp
= −δΦPS

δv
=

∫
ζ(vp − v)dr, (3.36)

δΦH

δv
= −

∫
∇ · η

[
∇v+ (∇v)t

]
dr (3.37)

using integration by parts,
δȦ

δvp
=

1

2

∫
ψ2∇

(
1

ψ

δA

δψ

)
dr (3.38)

using integration by parts, and
δL

δv
= −

∫
∇pdr (3.39)

again using integration by parts. Therefore we obtain:

δR

δvp
=

∫
drζ(vp − v) +

1

2

∫
ψ2∇

(
1

ψ

δA

δψ

)
dr = 0 (3.40)

which can be rewritten as Equation 3.8 in the manuscript, and

δR

δv
= −

∫
drζ(vp − v)−

∫
∇ · η

[
∇v+ (∇v)t

]
dr+

∫
∇pdr = 0 (3.41)

which can be rewritten as Equation 3.9 in the manuscript.
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4.1 Summary of Key Results

We have developed an experimental device to study polymer solutions under confinement, based
on a device used to study and manipulate single chains. The device contains an array of nanoslit in-
side which polymer molecules are packed; a barrier at the end of the slits traps the molecules while
allowing solvent to flow through. We image the steady-state molecule packing compressed against
the barrier and transform the videomicroscopy images into a one-dimensional polymer concentra-
tion profile along the slit longitudinal axis. We develop a theory based on the Onsager variational
principle and mean-field type free energy to model the behaviour we observe. The theory yields a
Schrödinger’s equation governing the Green’s function ψ related to concentration as |ψ|2 = c. This
equation has exactly the same form as the Gross-Pitaevskii equation with a linear ramp potential.
We compute numerical solutions to this equation and fit them to our data. We find good agreement
between theory and experiment, for high enough concentration.

Until now, while the physics of single polymer molecules, flexible and semiflexible, is well un-
derstood, polymer solutions have been overlooked, especially experimentally. We have reviewed
Sakaue’s study of single semiflexible polymers under confinement [30] and the study of Daoud et al
of flexible polymers under confinement [6], and extended their theories to solutions of semiflexible
polymers under confinement. In particular, we find that just like in some regimes of confinements
for single semiflexible polymers, mean-field type scalings apply to our data. We also find a large
correlation length (larger than confinement size) from fitting the data to the mean-field model.
These findings mean that such a regime, with mean field scaling and high correlation length, must
exist for semiflexible polymer solutions. And they lead us to conclude that we’re in the solution
equivalent of Sakaue’s Regime IV (see Fig. 2.6 in the background chapter), and also the semi-
flexible polymer equivalent of Daoud’s Region D (Fig. 2.7 in the background chapter). Only at
concentrations very close to overlap concentration does the mean-field theory stop applying to our
experimental data, which indicate transition to a different scaling regime.

Finding that a mean field type of scaling holds at high enough concentration, instead of a fluc-
tuating semidilute scaling, is a first step towards trying to model the behaviour of DNA and other
semiflexible polymers in confinement. This result advances fundamental knowledge in the field of
polymer physics, andwill also be useful in designing next generationmicro/nanofluidic devices that
manipulate polymers. By knowing how to model semifleixble polymer solutions in confinement,
devices can be made to improve polymer flow and reduce “clogging”.
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4.2 Outlook

While probing more confinement regimes for semiflexible polymer solutions is important, the
future work of our experimental group is focused on studying the interaction between polymer
molecules for now, which is also a natural extension of the work in the current thesis. Future ex-
periment include (but are not limited to) the equilibrium behaviour of two differentially stained
polymer chains confined inside a nanocavity that has been sealed from the top by a pneumati-
cally actuated membrane; the effect of the eccentricity of the said nanocavity on the behaviour of
the confined molecules; steady-state behaviour of two differentially stained chains confined in a
nanochannel; steady-state behaviour of a single differentially stained molecule in a large packing
of molecules, either in a slit or channel geometry. Studying interactions between molecules opens
up a whole new range of physical behaviour to explore.

The next project of the author of this thesis will be studying the mixing and segregation of two
nanochannel confined DNAmolecules. The experimental device will be essentially the same as the
one used in this thesis, except for the dimensions (it will feature nanochannels instead of nanoslits).
The theory also features the use of the Onsager variational principle and a Rayleighian, but applied
to the two chain system which we model as an osmotic cell with movable parition. We hope this
formalism can explain behaviour we observe in our preliminary data: the tendency for both chains
to never overlap inside the same section of the nanochannel at low solvent flow (segregation), the
presence of a section with overlap at higher solvent flow (mixing), and the tendency for this section
to form due to the counterintuitive propagation of the chain closer to the barrier back against the
solvent flow into the other chain (backpropagation).
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