Bl S

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Otlawa, Ontario
KT1A ON4 K1A QN4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

~ Canada

395, rue Wellington
Citawa (Onlano)

Your bl Vs raldtance

Ow hlo Noire référence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de Ila thése soumise au
microfiimage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité dimpression de
certaines pages peut laisser a .
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, ¢. C-30, et
ses amendements subséquents.

EXPLOITING SHORT-LIVED VARIABLES
IN SUPERSCALAR PROCESSORS

by
Luis Alfonso Lozano C.

School of Computer Science
McGill University, Montreal

January 1995

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

Copyright © 1995 by Luis Alfonso Lozano C.

! * I National Library Bibliothéque nationale
of Canada du Canada

Acquisitions and Direclion des acquisitions et
Bitliographic Services Branch des services bibliographiques
395 Wellington Street 385, rue Wellington

QOttawa, Ontario Ottawa (Ontario)

K1A ON4 1A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-05585-X

Canadi

Your hie Voire rélécence

Ow ble Noire rélirerce

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE TNTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES QU
AUTREMENT REPRODUITS SANS SON
AUTORISATION,

Abstract

Modern supcerscalar processors use advanced features like dynamic scheduling and spec-
ulative execution to exploit fine-grain parallelism. In order to support these features,
they use complex hardware mechanisms like reorder buffers, instructions windows and
renaming buffers. In this thesis, we have made an observation about the use of these
mechanisms: a significant number of program variables are short-lived in the sense that
their whole live ranges occur entirely within the reorder buffer. Therefore, the values
produced by these short-lived variables do not need to be written back (committed) to the
register file. Based on this observation, we have proposed a compiler analysis, which we
call short-live-range analysis, and a simple architecture feature to avoid the useless commits
of the values generated by these short-lived variables. Moreover, we have proposed a new
register allocation scheme to assign these variables to the locations provided for register
renaming (rather than to the register file), thus decreasing the register pressure.

We have implemented this hardware/software codesign scheme using the McCAT
testbed and the simulation results show: (1) the short-live-range analysis and the proposed
architecture feature can be successfully used to avoid the useless commit of instructions

. to the register files; (2) the above mechanism can reduce the number of write ports to the
register files without affecting performance; (3) the allocation of short-lived variables to
the locations provided by the register renaming mechanism can significantly reduce the
introduction of spill code and improve the overall performance.

Résumé

Les machines superscalaires modernes requigrent des mécanismes élaborés tels que 'or-
donnancement dynamique et I'exécution spéculative afin d’exploiter au mieux le par-
allélisme & grain fin. Pour cela, elles s’appuient sur des techniques matérielles complexes
telles que les tampons de réordonnancement, les fenétres d'instructions, le renommage
des registres. Dans le cadre de ce mémoire, nous nous sommes attachés a I'étude de ces
mécanismes : il s’est avéré qu'un nombre significatif des variables d'un programme a
une durée de vie courte, dans ce sens que leur vie entiére se déroule dans le tampon de
réordonnancement. Les valeurs produites alors par ces variables de courte activité n’ont
pas besoin d’étre inscrites dans les registres. A partir de cette observation, nous avons
proposé une technique de compilation que nous avons appelée "analyse des variables
de courte activité” ainsi qu'un mécanisme mateériel destiné a éviter les écritures inutiles
des valeurs produites par ce type de variables. De plus, nous avons proposé un nouveau
schéma d’allocation de registres, afin d’attacher ces variables aux emplacements de renom-
mage des registres (plutdt que dans les registres eux mémes), afin de réduire la pression
sur ces registres.

Nous avons implémenté ces mécanismes, a la fois logiciels et matériels, & I'aide du
banc de test McCAT. Les simulations ont donné les résultats suivants : {1) I'analyse des
variables de courte activité et les mécanismes matériels proposés ont démontré qu'ils
pouvaient réduire de maniére significative le nombre d’écritures dans les registres; (2) ces
mémes mécanismes permettent encore de diminuer le nombre de ports d’écriture vers les
registres sans dégrader les performances; (3) Vallocation des variables de courte activité
dans les emplacements de renommage permet de supprimer beaucoup de code de vidage
et d"ainsi améliorer la performance globale.

ii

To my parents: Joaquin and Virginia

Acknowledgments

There are occasions in your life when you want to express something and you just cannot
find the right words to use. I think that writing these acknowledgments is one of them.
There are no words to express my gratitude to all the people who helped me to pursue my
Master’s degree.

First, I would like to thank my thesis supervisor, Dr. Guang Gao. Since I came to
Mcgili, I saw in Dr. Gao an inspiring lecturer and an infatigable researcher. He always
trusted me and listened to my ideas. He encouraged me to go for new goals and to accept
difficult challenges. He also supported me for a long period of my studies.

I also thank Dr. Laurie Hendren. Laurie (as everyone calls her) introduced me to the
world of compilers. She is one of the best lecturers I have ever seen. She assigned very
interesting projects to me and was always willing to help me solve research problems.

There are no words to thank Claudia Pateras. She gave me all her love and support.
She spent long hours helping me write this thesis and making sure I was not going to go
insane. I hope I can give her back all the time that she gave me. Claudia, wherever we are
we will always be together. Iamalso very thankful to the Pateras family. They opened their
home to me and let me share with them their happiest moments. Mrs. Pateras, thanks for
all those times you sent me your delicious dishes while I was working late at school.

There is no doubt I could not have achieved this goal without the help of my family.
My parents saw my eagerness to look for new goals and were willing to do whatever they
could to help me reach them. During my stay in Montreal my whole family constantly
encouraged me and sent me their love. They always made me feel close to my beloved
Colombia. During the difficult times, they gave me strength to continue and, although I
was away, we became closer than ever. I will never forget the beautiful letters I received
from them, the long conversations I had with my father through computer “talks” and

iv

the small drawings and letters from my nephews and nieces. My mother always helped
me and took good care of me. She was always present, she will always keep our family
together.

I am a man of friends, and I am proud to say that I have many of them. Some of
them helped me a lot during my Master’s studies. Thanks to my new friends in Montreal:
Lucie, Sandro, Mary, William, Alain. They gave me plenty of good moments to enjoy and
took me away from my long periods of study. Thanks to my friends from the ACAPS
group: Ana, Rakesh, Chris, Nasser, Cecile, Maryam, Sreedhar. They gave me crazy times
and helped me stand the moments of pressure. Each of us with different accents, all of
us with similar dreams. Thanks to my other friends in North America: Claudia, Mark &
Lisa, Robert, Adriana. Claudia, my true friend. Mark, always doing crazy things for me.
Robert, my “adoptive” brother. Thanks to my friends in Colombia: John, Jose German and
Jaime. They were always willing to help me and my family. Many mountains are waiting
for us!

Finally, I should thank two very special people in the School of Computer Science:
Lorraine and Lise. They always took good care of all my problems and had a huge smile
for me every day.

Contents

Abstract

Résumé

Acknowledgments

1 Introduction

1.1 ThesisContribubions v o v v i i i it s e s e e e e e e e e e

1.2 ThesisOutline i i i st e e e e e e e e

2 Background

2.1 Instruction Level Parallelism and Architectures to Exploit ILP

2,11

SuperscalarProcessors

212 Complexitylssues

213

The Superscalar Processor ExecutionModel

22 RegisterAllocation o,

221
222
2.2.3
224

The Problem of Register Allocation
TheYorktown Allocator
The Optimistic Allocator

Other Allocators v i i it e e e e e e e e e e e

ii

iv

Short-Lived Variables and Useless Commits 25

3.1 Useless Commits: A MotivatingExample 25
3.2 ExperimentalObservations 26
33 ProblemFormulation 0 L, 28
34 OSolutionStrategy e e e 30
35 Obstacles s e e 31

35.1 Determining Useless Commits at Compile Time 31

3.5.2 Detecting Useless Commits in the Presence of Speculative Execution 33

353 DealingwithInterrupts, 34
Reduction of Useless Commits 37
4.1 DetectingUselessCommits, 37
42 Dealing with InstructionSpeculation. 42
43 CompilerAmnalysis i e 46
Allocation of Short-Lived Variables 51
5.1 Allocation of Short-Lived Variables. 52
5.2 Allocation of the Long-Lived Variables 55
53 IntroductionofSpillCode, 56
Experimental Results 58
6.1 TestbedandBenchmarks 59
62 BaseModel e e, 60
6.3 SummaryofResults ittt i, 61

vii

6.4 The Effect of Short-live-range Analysis and Architecture Support for Useless

Commit Elimination
6.5 The Effect of Reducing the Number of Register Ports Needed

6.6 Effect of the Allocation of Short-Lived Variables

7 Related Work

8 Conclusions and Future Work

Bibliography

A The McCAT testbed

A1 The McCAT CCompiler

A.2 TheSuperDLX Superscalar Simulator

viii

.....................

...............

.....................

69

73

75

82

List of Tables

31

4.1

6.1

6.2

6.3

6.4

Percentageof uselesscommits 0 Lo o, 28

Percentage of useless commits produced by live ranges that do not cross
basicblockboundaries. o e i 45

Configuration parameters specified for thebasemodel 61

Effectiveness of the short-live-range analysis and the architecture support
forreducinguselesscommits Lo oo 63

Performance effect of the number of write ports on the base and optimized
models e e e e e 65

Percentage of improvement obtained by allocation of short-lived variables 68

List of Figures

1.1

2.1

22

23

2.4

25

2.6

27

3.1

3.2

3.3

34

3.5

4.1

42

4.3

Building the dataflow graph for a set of short-lived variables 3
Different processors toexploitILP 10
Superscalar processor executionmodel L L oL, 16
Live ranges and interference graph for a small program 19
Steps of the Yorktownallocator, 20
A small graph where the Yorktown allocatorfails 22
Generalization of the problem of the Yorktown allocator 23
The Optimistic allocator versus the Yorktownallocator 23
Examples of short-live-range variables 27
Some concepts related to short-lived variables 29
Impossibility of determining useless commits at compile time 32
Dealing with speculativeexecution. . .,, 33
The problem of handlinginterrupts 35
Marking thelastuseofavalue 39
Keeping a minimum number of instructions in the reorder buffer. 41
Detecting useless commits in the presence of instruction speculation 44

X

4.4
5.1
5.2
5.3
54
6.1

6.2

6.3
Al

A2

An example of the short live range analysis for a program fragment 48

Traditional register allocation vs. short-lived variable allocation 53
An example of the analysis for the allocation of short-lived variables 54
An example of the code produced for the two allocation schemes 55
Effect of spill code on the allocation of short-lived variables 57
Percentage of discarded writes to theregisterfile 63
Performance of base and optimized models when restricting the number of

WIEBPOTES . . . i i e e e 65
Average improvement obtained by the allocation of short-lived variables . 68
TheMcCAT compiler i, 83

TheSuperDLX simulator 85

xi

Chapter1

Introduction

Vitae summa brevis spem nos vetat incohare longam.
Life's short span forbids us to enter on far-reaching hopes.

Horace

In today’s pursuit of high performance computing, processors base their performance
not only on high clock rates but also on the number of instructions that can be executed
in parallel each cycle. Currently, the most v:sed architecture paradigm in the design of
commercial processors is the superscalar paradigm. Examples of modern superscalar
machines include the IBM RISC-6000 architecture [BW90], the Motorola 88110 [DA92], the
Intel Pentium [AA93], the Hewlett-Packard PA7100 [AAD93), the TFP [Hsu94] and the
PowerPC [DOH94, SD94].

In the superscalar paradigm, parallelism is extracted from code written for a sequential
machine using aggressive techniques like dynamic scheduling [Tho64, Smi89], speculative
execution [L584] and register renaming [Kel75]. There are two important aspects to note
about the use of these features. First, although these features have been used successfully
to uncover the parallelism found in sequential code, the hardware complexity of these
mechanisms is very high and, therefore, they are very difficult to implement. Some of
these mechanisms require, for example, very wide datapaths and complicated forwarding
capabilities. Second, in most cases, the structure of these mechanisms has remained hidden
from the compiler. That is, although these features provide powerful schemes to extract
parallelism, the compiler is not able to interact with them. Thus, for example, the compiler

is not aware of mechanisms like the reorder buffer [SV87] that are used to support these
features.

We believe that, in order to continue the current rate of performance growth of RiSC
processors, it is necessary to expose the structure of these complex mechanisms to the
compiler. The compiler can help reduce the complexity of implementation of some of these
features and use them more efficiently in order to increase the performance of the machine.
We believe that the trend in computer architecture should be towards an increasingly
closer relationship between the compiler and the hardware in which the compiler collects
information about the program to be executed and passes this information to the hardware.
By using the information provided by the compiler, the hardware can be designed more
efficiently so as to reduce its complexity. Moreover, this information can alsoc be used by the
Pprocessor to take better decisions at run time and increase the performance of the model.
Besides counting on the information provided by the compiler, the processor should also
be powerful enough to be able to make decisions based on events that cannot be anticipated
by the compiler such as cache misses.

This relationship between the compiler and the hardware has many facets. In this
thesis, we examine one of these facets based on one gbservation about the behavior of
dynamically scheduled superscalar processors. In order to provide dynamic scheduling,
processors build, at run time, the data flow graph for a small window (set) of instructions.
For each value produced by an instruction, two actions are taken by the current mechanism:
first, the value is forwarded to the ocher instructions that use this value and that are found
in the same window of instructions being analyzed; second, the value produced is retired
at commit time to the register file from where succeeding instructions that make use of
it will be able to fetch it. Our observation is that a large percentage (often more than
90%) of the values produced by the instructions in the program are “short-lived” in the
sense that the producer and the last consumer of a value are found very close together in
the instruction stream. This implies that there is a big chance that the producer and last
consumer of a value are found in the same window of instructions while the superscalar
processor is building thedataflow graph for them. Inthat case, when the value is produced
it will be forwarded to all the possible consumers of the value. Therefore, when the valueis
retired to the register file, there will not be any subsequent use of this value. We maintain
that, since the value has been forwarded to all the uses before being retired to the register
file, there is no need to commit this value to the register file.

This observation can be illustrated with the small example given in Figure 1.1. As it

Ragister

: File

: — I ,
: 3 4 arr 4 H
tl = sarr + 4; E N V4 N E
t2 = 4 * §;) €2 tl@ t5® '
]]
1]
(t3=t1+t2; ' \/\/ :
L]]
£d = t3 + 2; i €3 té E
] L]
. ! 2 1
(tS =4 * i; E P E
£6 = t5 + tl; i t4 I
. I |
.] \
H e 4

(a) Program fragment (b) Dataflow graph and retircment

of values to the register file

Figure 1.1: Building the dataflow graph for a set of short-lived variables

can be seen in the figure, the values produced by the instructions in the small program
fragment are consumed by instructions that follow closely in the instruction stream (with
the exception of the value produced for t4). Therefore, it is possible that the instructions
in this program fragment fit in the same window of instructions while the processor is
dynamically building the dataflow graph for the them. In this case, the values produced
for t1, t2, t3, and t5 are forwarded to all their consumers in the window thus making
unnecessary the commit of these values to the register file. On the other hand, the value

produced for t4 has to be retired to the register file so that its last consumer can find it
there.

As a consequence of this observation, there is another point we make that is related to
the use of the register renaming mechanism provided by the type of superscalar processors
we are considering. Since we propose that many of the values produced should not be
retired o the register file, we note that it is not necessary to assign to these values names
from locations in the register file. That is, since these values are never going to reside
in the register file, why should we allocate them to the register file? In order to increase
instruction level parallelism, superscalar processors implement r:e\‘gister renaming to avoid
outputand anti dependencies. To support this, the register renaming mechanism provides
a new location and a different name for each value produced by the instructions in the

3

window being analyzed. We have noticed that, for those values which do not need to
be retired to the register file, the processor only refers to them by the name dynamically
assigned by the renaming mechanism and not by the name originally assigned to them by
the register allocator (the name of a physical register).

The problem with the current superscalar implementations is that the values produced
by the short-lived variables are, in fact, committed to the register file. This constitutes an
unnecessary runtime overhead and increases the number of required hardware resources,
such as the number of register file ports. Also, the conventional compiling schemes for
register allocation do not give special treatment to these short-lived values. This yields to
inefficiencies and increases the number of physical registers required for the allocation of
the variables in the program.

1.1 Thesis Contributions

Based on these observations, we have proposed in this thesis the codesign of a hard-
ware/ software scheme to exploit the occurrence of short-lived variables. With this scheme,
we aim to reduce the complexity and increase the performance of dynamically scheduled
superscalar processors.

We have designed a compile-time analysis method (called short-live-range analysis)
and a simple architecture feature to avoid the useless commit of the short-lived variables.
Moreover, we proposea novel register allocation scherme by which the compiler can directly
assign the short-lived variables to the spaces provided by the register renaming mechanism
rather than the physical registers.

We have implemented our scheme on McCAT - The McGill Compiler-Architecture
Testbed ~ which includes an optimizing C compiler [HDE*+92] and a cycle-by-cycle super-
scalar simulator [Mou93]. Cur simulation results have demonstrated that:

¢ The proposed short-live-range analysis can successfully capture most of the short-
lived variables: on the average between 80% and 91% of the variables are detected
to be short-lived. Furthermore, the combined architecture and compiler method can
effectively make use of such analysis and eliminate a great majority of useless writes
to the register files: on the average between, approximately, 76% and 89%.

¢ The mechanism devised to avoid the useless commits of instructions can be used Lo
reduce the number of write ports to the register files without affecting performance.
Only a 1% performance loss is detected after reducing the number of write ports to
the register file from 4 to 1 for the target superscalar architecture we are studying.

* The proposed method of allocation of short-lived variables to locations provided for
register renaming in the reorder buffer can reduce the number of registers needed
and, consequently, the amount of spill code introduced by the register allocator thus
substantially improving execution time. For instance, the average improvement
when the register pressure is high is significant: between, approximately, 15% and
26%.

1.2 Thesis Outline
This thesis is organized as follows:

¢ In Chapter 2 we provide the necessary background for the understanding of the
problems addressed in this thesis and of the proposed solutions. We briefly describe
the concepts of Instruction Level Parallelism (ILP) and the architectures to exploit ILP.
We focus our attention on superscalar processors and describe the different features
used by these processors to expose and exploit instruction level parallelism. Based on
the presented concepts, we introduce the execution model in which the discussions
in this thesis are going to be based, In the second part of this chapter, we give the
background information for the problem of register allocation. This information is
necessary to understand our scheme for allocation of short-lived variables.

¢ Chapter 3 describes in more detail our observation about the useless commit of
short-lived values to the register file. We present a motivating example and give
experimental evidence of the occurrence of this phenomenon. The problems to be
studied and the solution strategy are also stated in this chapter.

» Chapter 4 describes the combined hardware/software mechanism used to reduce
the number of useless commits. We describe the possible hardware mechanisms, the
compiler analysis and the collaboration between the hardware and the compiler in
order to solve this problem.

¢ In Chapter 5 we describe cur scherie for the allocation of the short-lived variables.
We describe the advantages of our scheme over the traditional register allocation
scheme and we discuss the effects of the introduction of spill code on our method.

» Chapter 6 presents the results of the different experiments performed to show the
advantages of the proposed solutions. The benchmarks used and the base superscalar
model used for the simulations are introduced.

¢ In Chapter 7 we briefly summarize the works from other authors that are related
to our research. We describe some studies in which the authors have exposed the
structure of different hardware mechanisms to the compiler in order to reduce the
hardware complexity and increase the performance of their models.

« Finally, in Chapter 8, we summarize our achievements and give directions for future
research,

Chapter 2

Background

In this chapter we present the background information required for the understanding
of the problems addressed in this thesis. The chapter is split into two sections. The first
of them briefly describes the concepts related to Instruction Level Parallelism and the
architectures developed to exploit this kind of parallelism. We focus our attention on
superscalar processors, present the tasks to be accomplished by this type of processors
and introduce some of the hardware mechanisms designed to accomplish these tasks. We
also discuss some issues involved in the implementation of this kind of processors. Atthe
end of this section, we present the execution model to be used throughout the rest of the
thesis and we briefly review how this execution model works. The reader interested in
Instruction Level Parallelism can find a more general overview of the field in [FR91, RF93].
An excellent and exhaustive study on superscalar processors can be found in [Joh91].

The second section of this chapter briefly presents the concepts related to the problem
of global register allocation. We review h~w this problem is mapped to the problem of
graph coloring and we describe the heuristic developed by Gregory Chaitin [CAC*+81] to
solve this problem. We also discuss the advantages and disadvantages of this heuristic.
Atthe end of the section, we describe an improvement to Chaitin’s heuristic developed by
Preston Briggs [Bri92]. This heuristic is the one used by the register allocator developed
for the McCAT compiler.

2.1 Instruction Level Parallelism and Architectures to Exploit ILP

Instruction Level Parallelism (ILP) is a set of processor features and compiler optimizations
aimed at increasing the performance of the processor by executing multiple instructions
in parallel. The concept of ILP has been exploited by supercomputers and mainframes
since the early 60's. It has gained large popularity since its implementation at the micro-
processor level and its use in the workstation and the personal computing market. Part of
this popularity is due to the fact that ILP can be implemented without affecting the pro-
grammer’s model. That is, ILP may be used to exploit the parallelism found in programs
written to be executed in a sequential machine. This is a direct advantage over other forms
of parallelism where the programmer has to specifically describe how parallelism can be
exploited.

The amount of parallelism that can be extracted from sequential code is limited by the
control and data dependencies found in it. Different compiler and hardware techniques
can be used to expose parallelism and make a more efficient use of the resources provided
by the processor. At the compiler level, techniques such as loop unrolling, software
pipelining and dependence analysis can be used to reduce the dependencies and produce
code with more possibilities to exploit parallelism. Techniques like register renaming,
dynamic scheduling, and branch prediction can be used at the hardware level to avoid
false dependencies and take decisions at run time to increase the number of instructions
that can executed in parallel.

Diverse architectures have been proposed to exploit ILF. They can be classified accord-
ing to whether the decision of which instructions are executed in parallel is taken by the
compiler or the hardware, and according to, in the case the decisions are taken by the
compiler, how these decisions are communicated to the hardware via the program. The
corresponding classification of ILP architectures is as follows [RF93]:

o Sequential architectures: In this type of architectures, the hardware decides which
instructions are executed in parallel and the program does not give any information
to the processor in this respect. Superscalar machines are an example of sequential
architectures.

o Dependence architectures: In these architectures, the compiler determines the depen-
dencies between instructions and communicates them to the hardware. Typically
this is done by specifying, for each operation, the list of other operations that are

8

dependent on it. The hardware makes the scheduling decisions according to the
information provided. Dataflow architectures are representative of this category.

o Independence architectures: In these architectures, the compiler determines which in-
structions can be executed in parallel, and informs the architecture via the program.
Very Long Instruction Word (VLIW) processors are examples of independence archi-
tectures. In the typical implementation of this type of architectures, the hardware
does not take any scheduling decisions.

Several processors have been implemented for each kind of architecture. Of special
interest for this thesis are the machines that evolved from the pipelined RISC processors
since these are prevalent in commercial machines nowadays. As dataflow processors are
beyond the scope of this thesis, we will not make any further references to them.

Starting from a conventional pipelined machine there are several ways a processor can
be modified to be able to execute several instructions simultaneously. Figure 2.1 depicts
their pipelined execution and compares them against the typical single pipelined machine
(Figure 2.1(a)).

o Superpipelined processors: In a superpipelined machine, the number of stages in the
pipeline is increased thus allowing the clock length to be reduced. The clock length
is set to a fraction of the latency of a single functional unit. For example, a super-
pipelined machine of degree 3 (Figure 2.1(b)) will have a clock length thatis 1/3 the
latency of the simplest functional unit, and since it can issue one instruction per cycle
will have several instructions in the execute stage simultaneously.

e Superscalar processors: On a superscalar machine, multiple instructions are decoded,
issued and executed each cycle. For instance, in a superscalar processor of degree 3
(Figure 2.1(c)), up to 3 instructions can be issued each cycle.

o VLIW processors: In a Very Long Instruction Word machine, each instruction consists of
a set of operations that can be executed simultaneously. Therefore, ina VLIW processor
of degree 3, up to 3 operations can be specified in each instruction (Figure 2.1(d)).

2.1.1 Superscalar Processors

Superscalar machines have become the standard type of processor implementation for
. the modem general purpose microprocessors. This kind of machines are considered

9

Kay:
{ | | |

Fetch Decode Execute WriteBack

Z]l 2 o[[i
1] g 1177 [
-2 g. 2. I I
2]] @ —
'y 4] [}
5] 5] [J
v 3 L]} i : 3 : v 1 by
o K] 2 3 4 '5] 1294567 89 1011121314'151617 18
Cycles Cycles
(=) Pipelined (b) Superpipelined
g °] g |
2 1] %
i
- = -
3 X —]
K
5. -
i' > v .y
‘o { ? 3 4 '5 s 0 Kl 2 3 4 '5 6
Cycles Cycles
(c) Supescalar (d) VLIW

Figure 2.1: Different processors to exploit ILP

the natural next step in the evolution of RISC architectures {Joh91]. The main reason
for their success resides in their ability to extract parallelism from code produced for
sequential machines. They maintain the binary code compatibility thus preserving the
existing software base.

In order to extract parallelism from sequential code, a superscalar processor must be
able to perform the following tasks in hardware:

o Fetch and decode several instructions per cycle.
¢ Detect the dependencies between the instructions in the instruction stream.
¢ Find several independent instructions to be executed in parallel.

o Schedule the independent instructions and assign them to the available resources.

10

Various hardware mechanisms have been designed to accomplish these tasks. The
compromise is always to try to maximally exploit parallelism while keeping the hardware
comnplexity low. As we will briefly discuss in Section 2.1.2, this objective is not always
reached.

The first of the aforementioned tasks, fetching and decoding several instructions per
cycle, is critical to the performance of the processor. The number of instructions that can be
executed simultaneously is obviously limited by the number of instructions fetched and
decoded each cycle. One important limitation of the processor to be able to fetch several
instructions per cycle is the occurrence of branches in the instruction stream. Branches
limit the number of instructions that can be fetched per cycle because the fetcher has to
stall while waiting for the branch to be executed in order to be able to continue bringing
target instructions from memory. A technique called branch prediction can be used to solve
this problem. Branch prediction allows the processor to continue fetching instructions
by predicting the outcome of the branch. A number of hardware mechanisms have been
designed to provide prediction that go from simple static prediction mechanisms [HP90],
to more complex and accurate dynamic branch predictors that achieve up to 97% accuracy
[YP93, LS84]. Since the prediction is not always correct, the processor has to provide a
mechanism to undo the effect of instructions executed in a wrongly predicted path. Several
techniques used to this effect are described later in this section.

Oncethe instructions have been fetched, the processor has to establish the dependencies
between them. As mentioned before, data dependencies are one of the fundamental
limits to instruction paralielism. There are two ways the hardware can ensure that data
dependencies are respected: by stopping the instruction from being decoded, and by
stopping the instruction from being issued. Different mechanisms have been designed to
enforce the dependencies in these two ways. The simplest mechanisms enforce the in-order
issue of the instructions by using a scoreboard to stop the decoder whenever a dependency
is found [DA92, McG90). The scoreboard detects the dependencies by keeping track of
registers that will be updated by the instructions currently in execution. However, this
mechanism is too restrictive and provides few chances to exploit the parallelism found in
the code. A more aggressive use of the scoreboard [Tho64] stalls the decoder only when
output dependencies occur. This mechanism avoids anti-dependencies by making copies
of the operands for each instruction, and enforces the flow dependencies by putting the
dependent instructions in an instruction window thus avoiding stalling the decoder. From
this window, instructions will be issued once their operands have been calculated. Register
renaming [Kel75] can be used to avoid stalling the decoder in the presence of output

1

dependencies. In order to implement register renaming the hardware has to provide
additional internal registers so that each value generated gets allocated to a different
location. Providing the space for these new locations and the logic to associate these
locations to the instructions makes the hardware even more complex.

By using scoreboarding or register renaming in conjunction with an instruction win-
dow, the processor is capable of issuing the instructions to the functional units out of the
original program order. The out-of-order issue capability is very important to increase
parallelism. The processor selects from the window the instructions that are indepen-
dent, and dynamically schedules them according to the availability of their operands and
the availability of the functional units. The amount of independent instructions that can
be selected depends on the size of the instruction window. Basically, the processor is
building the dataflow graph [DFL72] for the instructions in the window. Therefore, more
parallelism is achieved by using large instruction windows. However, in order to keep
the window full, the hardware requires excellent branch prediction techniques. Different
mechanisms havebeen designed to provide the processor with this dynamic scheduling ca-
pability. Decentralized schemes buffer the instructions separately for each functional unit.
In Thornton’s scoreboard mechanism, each functional unit has its own instruction buffers.
In the reservations stations mechanism [Tom67], the instructions and their operands are
kept in stations associated to each functional unit. On the other hand, centralized schemes
have one instruction window for all the functional units. The Dispatch Stack [AKC86], the
Register Update Unit - RUU [SV87] and the Deferred-Scheduling Register-Renaming Instruc-
tion Shelf — DRIS [PSS191] are examples of centralized mechanisms. The use of a central
window can provide better performance because better scheduling decisions can be taken
when the instructions are in the same window. However, centralized windows are more
difficult to implement.

As mentioned before, the use of branch prediction requires mechanisms that allow the
speculative execution of instructions while ensuring the correct execution of the program.
In case the processor executes instructions from a wrongly predicted branch, the mecha-
nism should be able to undo the effect of these instructions. Techniques like the history
buffer, the reorder buffer, the future file (all described in [SP88)), and checkpointing [HP87]
have been proposed to this effect. A comparison of the performance of these mechanisms
can be found in [BP93]. For this thesis, we are particularly interested in the reorder buffer
since this is the mechanism assumed in our execution model and whose characteristics we
are going to exploit. The reorder buffer is a FIFO structure that provides additional storage
for the results of the instructions executed out-of-order and ensures the in-order update

12

of the register file. Instructions enter the reorder buffer in program order, are executed
out-of-order and, when completed, their results are put in the FIFO instead of the register
file. The values are copied, or committed, to the register file only when the instruction
reaches the head of the reorder buffer. If a branch prediction happens to be incorrect, the
instructions that are found after the branch are flagged as invalid so when they reach the

head of the FIFO they are discarded. In this way, the correct state of the register file is
preserved.

The reorder buffer and all the other state maintenance mechanisms are also used to
provide precise interrupts [SP88, HP87]. Interrupts are events that disturb the normal
execution of the program like a page fault or a hardware error. An interrupt is precise
if the state of the processor when the interrupt is handled corresponds to that of the
sequential model of the same processor. The out-of-order execution of instructions makes
the problem of providing precise interrupts more difficult. The difficulty lies in restoring
the processor to the state where all the instructions preceding the faulting instruction have
updated the machine state, and none of the succeeding instructions have modified it. This
can be accomplished with the help of the reorder buffer by delaying the processing of the
interrupt until the point when the faulting instruction reaches the head of the reorder buffer.
At this point, all the instructions preceding the interrupt have modified the processor state,
the instructions remaining in the reorder buffer can be discarded and the interrupt can be
handled.

Another important issue for superscalar processors is to be able to deal with depen-
dencies between instructions that access memory. A memory instruction is dependent on
another when the location accessed by both is the same. The simplest way to deal with
this kind of dependency is by simply serializing the accesses to memory. A more aggres-
sive solution relaxes the ordering of accesses to memory by allowing the loads to bypass
preceding stores whenever possible. Since stores modify the state outside the processor,
they have to be issued in strict order with respect to other instructions. However, loads do
not need to be issued in order and can be issued before other instructions if there are no
dependencies. To accomplish this, stores can be buffered and only sent to memory afterall
the preceding instructions have been committed. Loads can be issued as soon as they are
decoded and can bypass the stores in the bulffer if there is no address conflict. A further
improvement consists in forwarding the values from buffered stores to succeeding loads

thus avoiding the loads’ accesses to memory. A complete description of load bypassing and
load forwarding can be found in [Joh91].

13

212 Complexity Issues

In the previous section we briefly described the problems faced by superscalar processors
to extract parallelism from sequential code, and we mentioned some of the techniques
used to overcome these problems. Although these techniques are effective to increase the
number of instructions that can be executed in parallel, they are far from being simple to
implement in a single chip processor. The complexity of the hardware for a superscalar
processor depends mainly on the number of uncompleted instructions permitted, the
width of the decoder, the mechanism used to restart after a misspredicted branch and
the necessity of forwarding results to waiting instructions. Besides the difficulties of
implementing each of the major features mentioned, the design of the processor also has
to deal with the difficulties caused by the interdependencies between them. The result of
all of this is a very complex hardware with long logic delays.

Other than the complexity of implementing a feature, it is also very important to
consider the effect that introducing this feature has on the clock cycle length. The overall
performance of the processor depends both in the number of instructions executed per
cycle and on the clock cycle length. The success of a hardware technique in increasing
parallelism can be undermined if the implementation of the mechanism badly affects the
clock length. The importance of this tradeoff can be better exemplified by the two current
tendencies in superscalar processor implementations. One tendency is towards simpler
hardware lacking some of the mechanisms described in the previous section, but attaining
high clock speed. The other tendency is towards complex hardware implementing several
of the mechanisms described to exploit ILF, but attaining a much slower clock speed
[SW94, WHKM93a, WHKM93b]. Although the two tendencies are different in nature,
their performance is still comparable and it is unclear at the moment which tendency will
predominate.

One of the proposals of this thesis is that the complexity of implementation of some of
the superscalar features previously described can be reduced with the help of the compiler.
In particular, we are going to address the problem of how to reduce the complexity of the
register fileand thedata path by modifying the compiler. The complexity of the register file
is an important issue in architectures that exploit instruction level parallelism. In fact, the
inability to build register files with a large number of ports is considered one of the major
bottlenecks in realizing an ideal VLIW machine [CDN92]. A processor that is able to issue
N instructions per cycle requires a register file with at least 2 x N read ports and N write
ports in order to attain peak performance. In the near future, we expect to have superscalar

14

machines able to issue six or eight instructions per cycle. This implies that we will require
register files with at least 24 ports. To the best of our knowledge, it is very difficult to
build register files with that number of ports [Jol91], and even if they are realizable, they
may seriously affect the length of the clock cycle. The chip real-state of a multi-ported
register file is proportional to the product of the number of read ports and the number of
write ports. Moreover, the access time can be modeled as a logarithmic function of the
number of read ports. Hence, it is important to keep the number of ports small in order
not to affect the clock cycle. The problem gets even more complicated when we consider
that several of the reads/writes can be accessing/modifying the same register each cycle.
For these reasons, processors that are able to issue a large number of instructions per cycle
partition the register file and the functional units in clusters in which a functional unit can
only access the values stored in the register file found in its own cluster [Fis83, FERN84].
In this way, the number of ports for each register file is smaller. However, when necessary,
values must be explicitly moved between clusters using a slower communication channel.
As a consequence, the compiler has to deal with the problem of intelligently distributing

the computation in such a way that the communication between clusters is minimized
[CDN92].

To deal with the problem of the complexity of the register file, modern superscalar pro-
cessors limit the number of register ports and put restrictions on the number of instructions
that can be committed each cycle. One interesting approach is adopted in [SD94), where
the designers allow the commitment of the instructions from two stages of the pipeline to
compensate for the effect of the reduced number of ports.

2.1.3 The Superscalar Processor Execution Model

Figure 2.2 shows the structure of a generic superscalar processor model [Joh91, Mou93]
that will be adopted as our execution model. It is very important, for the sake of the
comprehension of the different mechanisms discussed in this thesis, to briefly describe
how this model works. The superscalar processor model has two important components:
the instruction (dispatch) window and the reorder buffer. The instruction window serves
as a pool of instructions from where the instructions that are ready to execute are issued to
the functional units. The reorder buffer is a FIFO structure which ensures that instructions,
upon leaving the buffer, modify the register file in program order and provides the mech-
anism to support speculative execution and precise interrupts. Although in Figure 2.2 the
reorder buffer and the instruction window are drawn as two separate elements, they could

15

Fetchar l
\

Instruction
Queue

Raglster f
Flle t

Instruction
Dispatch
Window

Functional Functional Functicnal
Unit Unit Unit

Figure 2.2: Superscalar processor execution model

also be assumed to be joined, as is the case for the Register Update Unit mentioned in
Section 2.1.1, without affecting the functionality of our model.

Let us briefly overview how the elements in this model interact to execute instructions
concurrently. Instructions are brought from memory by the fetcher which aligns and
merges them before putting them in the instruction queue. The decoder reads several
instructions each cycle from the instruction queue and puts them in the reorder buffer and
in the instruction window. Instructions enter the reorder buffer in program order, and are
assigned a tag which identifies them and allows automatic renaming of the destination
register. At the same, time when an instruction, say s, enters the instruction window, its
operands are searched for in the reorder buffer. If an operand is found in the reorder buffer
and its value has already been calculated, the value is directly used as the operand for s in
the instruction window. If the operand is found in the reorder buffer but its value has not
been calculated, then the tag (corresponding to the instruction which calculates the value)
is used as the pending operand for s in the instruction window. Finally, if the operand

16

is not encountered in the reorder buffer, then its value is obtained from the register file
instead of the reorder buffer.

The issue stage selects from the instruction window the instructions whose operands
have already been calculated, checks the availability of the functional units and sends
the instructions that are ready for execution. The instructions are, therefore, dynaniically
scheduled according to the availability of the operands and the functional units. This
mechanism thus allows the out-of-order issue of the instructions to the functional units.
Once an instruction has been executed (completed by a functional unit), its resulting value
is written back to the reorder buffer and forwarded to the instructions whose pending
operand tags correspond to the tag of the completed instruction. It is important to note
that values computed by the functional units are not written back to the register file
directly; they are written back to the reorder buffer which allows the out-of-order completion
of instructions. Instructions can complete and have their values written to the reorder
buffer in any order. It is at the commit stage that instructions at the head of the reorder
buffer are retired to the register file. This FIFO structure of the reorder buffer also provides
the undo capability necessary to support speculative execution. Whena branch is executed
and its prediction turns out to be incorrect, all the instructions that come after the branch
are marked so they can be discarded later at commit time.

2.2 Register Allocation

In this section we review the register allocation problem. This section will provide the
necessary background information required to understand the scheme proposed for the
allocation of Short-Lived variables.

During recent years a sustained increase in processor performance has been observed;
the speed of CPUs has increased in the range of 50% to 100% each year. In contrast, the
situation has not been the same for main memories (DRAMS) for which increase in capacity
and reduction in cost have been significant, but for which reduction in access time has not
progressed at the same rate (i.e: roughly 7% each year) [HP90]. This growing gap between
memory cycle time and processor cycle time has been a key motivation for the intreduction
of additional levels in the memory hierarchy. Smaller, but faster, memories between the
main memory and the CPU are essential to allow the processor to receive the data at the
rates demanded. Hence, modern microprocessors have adopted the use of larger register
files and one or several levels of instruction and data caches.

17

Furthermore, the introduction of Load /Store architectures, where all the computations
are performed in registers and accesses to memory are performed only through explicit
Load /Store instructions, increased the importance of the use of register files since the goal
in this type of architectures is to keep the maximumamount of data in registers to avoid the
expensive accesses to memory. Consequently, the problem of efficiently mapping program
variables to machine registers has become one of the predominant compiler optimization
techniques [HP30].

2.2.1 The Problem of Register Allocation

User programs make use of variables to store and manipulate data. Various phases of
the compiler introduce temporary variables to calculate intermediate values and perform
different transformations. Optimizations performed before register allocation assume
that all these variables reside in an unlimited number of virtual registers. The goal of
the register allocator is to maximize the number of virtual registers that are assigned to
physical registers in order to minimize the number of accesses to memory. To accomplish
this task, the register allocator tries to map the virtual registers whose live ranges do not
interfere to the same physical register. However, sometimes the number of variables that
interfere at the same time exceeds the number of registers available and, therefore, the
register allocator must carefully decide which variables must be spilled (i.e. temporarily
stored in memory) in order to minimize the negative effect on the program’s execution
time.

Register allocation can be performed at four different levels: 1) at the level of expres-
sions, where the purpose is to reduce the number of allocated registers by finding the best
order for the evaluation of the expression; 2) at the level of basic blocks, where the purpose
is to reduce the number of registers used by the variables in the basic block [ASUS8]; 3) at
the level of procedures (intraprocedural), usually called global register allocation, where the
optimization is performed for the whole body of a routine; and 4) at the level of the en-
tire program (interprocedural), in which case the optimization performs the allocation for
several routines simultaneously [Wal86]. In this thesis, we will only consider the problem
of register allocation at the global (intraprocedural) and basic block levels.

Traditionally, the problem of global register allocation is solved by converting it into
the equivalent problem of graph coloring. The problem is represented by a graph G(V, E),
called the interference graph, in which the vertices V represent the variables of the program

18

and the edges E represent the interferences between them. The number of colors & that
can be used to color the graph represent the number of physical registers available in the
target processor. An example, showing a small program fragment, the live ranges for

the variables in the program and the corresponding interference graph, is presented in
Figure 2.3.

Read () ;
Read():
a™* b;
a+ b;
e/ &
print{a,b,e):

o N ow

(a) Program segment (b) Live ranges {c) interference graph

Figure 2.3: Live ranges and interference graph for a small program

Since the problem of coloring an arbitrary graph when the number of colors is greater
than two is NP-complete, researchers have developed different heuristics to solve the
problem. The first heuristic applied to register allocation was developed by Chaitin
[CACt81, Cha82). This heuristic was later improved by Briggs [BCKT89, Bri92} as part of
his PhD dissertation. In the following subsections, we describe in more detail both heuris-
tics since they are the basis for the register allocator developed for McCAT and constitute
the foundation of the register allocation mechanism developed for the allocation of the
Short-Lived variables. Other heuristics are briefly described at the end of the chapter.

2.2.2 The Yorktown Allocator

The Yorktown allocator, so named for being developed at IBM Yorktown Heights, was the
first implementation of a global register allocator. It was developed by Gregory Chaitin
[CAC*81] and his colleagues as part of the PL.8 compiler [AHS82].

Chaitin devised a very simple heuristic to color the interference graph that has been
proven to work very well in many cases. His reasoning states that, in order to color a
graph with k colors, one can simplify the graph by removing a node n with degree less
than k because, no matter how the neighbor nodes of n are colored, there will always be a
remaining color to assign to n. This process of simplifying the graph by removing nodes
with degree less than & can continue until no more nodes can be removed from the graph

19

or the graph is empty. In the case where no more nodes can be removed from the graph,
the heuristic has to select one node to be spilled (i.e. kept in memory instead of registers),
and hope that by removing that node other nodes with degree less than & will emerge thus
allowing the simplification process to continue. The choice of which node to spill must
be done carefully. Chaitin’s heuristic selects the node with minimum spill cost to degree
ratio. The intuition for this criteria is to try to find a variable that is comparatively cheap
to spill and, at the same time, interferes with a large number of variables. In this way,
when the selected node is removed from the graph a large number of interferences will
also be removed thus increasing the possibilities of continuing the simplifying process.
The coloring process starts once all the nodes have been removed. The nodes are put back
in the graph in the inverse order of their removal. Each time a node is added to the graph
a color is assigned to it according to the colors of its current neighbors.

The different steps performed by the Yorktown allocator are depicted in Figure 2.4. A
brief description of each step follows:

[sar |

code
Renumbe Build Coahsce catculata Simplify Select
Graph Vaﬂables Spll Costs Graph Colors

Figure 2.4: Steps of the Yorktown allocator

» Renumber: During this step, the compiler finds the right number of live ranges to
allocate by calculating the set of connected du-chains [ASU88] for all the variables in
the routine. Each du-chain is assigned a unique identifier.

¢ Build Graph: Given the set of live ranges, this step goes through the routine finding
which ones interfere and constructing the interference graph. Two life ranges are
said to interfere if one is alive at any of the definition points of the other.

o Coalesce Variables: Also called subsumption, this stage removes copy statements of
variables whose live ranges do not interfere by coalescing the respective nodes in
the graph into one. This helps to reduce the copy statements produced in the code
and improves the targeting of instructions which is useful in optimizing procedure

20

calls and handling special purpose registers. After this step, the interference graph
is built again and coalescing is repeated until no more variables can be subsumed.

Calculate Spill Costs: During this step, the register allocator calculates the cost of
spilling each live range. This cost is calculated by predicting the number of load and
store instructions that would be executed if the live range were spilled. These costs
are only an estimate since they are found at compile time.

Simplify Graph: During this stage the graph is simplified by removing the nodes with
degree less than & from graph. Removed nodes are pushed onto a stack. When
no more nodes can be removed from the graph, the algorithm selects the node »
with minimum spill_cost(n}/degree(n) to be spilled. This process continues until the
graph is empty.

Spill code: In this stage, the allocator introduces the spill code for the variables that
were spilled in the simplify stage. For each variable spilled, a load instruction is
introduced before each use of the variable, and a store instruction is inserted after
each definition. The spill code transforms the live range of the variable into a set of
small live ranges. Since these small live ranges still interfere with other variables, the
algorithm has to rebuild the interference graph and start the coloring process again.
The whole process is repeated until no more spill code is required.

Select Colors: Once the simplify stage is completed without spilling any variable, the
coloring of the nodes of the graph is started. The nodes are added to the graph in
the reverse order in which they were removed by popping them from the stack, and
a color is selected for each node added according to the interferences with the nodes
already added.

The complexity of the algorithm is O(V + E). Therefore, depending on the number of

interferences between variables, the complexity of Chaitin’s method can go from O(V) to
o(V?).

The Yorktown allocator has been proven to work well in many cases. However, it has

some problems. The first problem is that once a variable has been chosen to be spilled, it is
spilled everywhere instead of being spilled only in the places where the register pressure is
high. The second problem is that, due to the fact that the live ranges of spilled variables still
interfere with other variables, the whole process of register allocation has to be repeated
several times until no more spill code is required. Usually this process does not require

21

more than 3 or 4 iterations but it still can be very costly. The third problem is that, since
the algorithm is based on a heuristic, it does not guarantee to find a solution for all the
tractable cases, even if the problem to solve is very simple. To illustrate this problem,
consider the little graph presented in Figure 2.5, and assume we want to find a 2-coloring
of this graph using Chaitin’s heuristic. During the simplifying process, the algorithm will
try to find any node with degree less than 2. However, since no node has degree less than
2, the heuristic will wrongly decide to spill one of the variables. Clearly this graph is very
easily colorable with 2 colors by assigning red to a and b, and white to cand d, for example.

Figure 2.5: A small graph where the Yorkiown allocator fails

2.2.3 The Optimistic Allocator

The problem with Chaitin’s heuristic for the simplification of the graph is that it looks for
nodes with degree less than & assuming that all the neighbors of the node will be colored
with different colors. This assumption is too restrictive as it can be seen in the subgraph
presented in Figure 2.6. If we assume that all the nodes in the graph have a degree of at
least 4 and that all of them have the same spill cost, and we attempt a 3-coloring of the
graph, Chaitin’s heuristic will spill the variable a. This spilling is unnecessary because,
as can be seen in the figure, the 4 neighbors of a can be colored using only 2 colors (red,
white), and a can be colored with the remaining color (blue).

Briggs’ heuristic [BCKT89, Bri92] solves this problem by optimistically assuming that,
even if a has 4 neighbors, a and its neighbors can be colored using 3 colors or less. In order
to do this, Chaitin’s algorithm is modified so that the spill decisions are moved from the
simplify step to the later step of selection of colors as shown in Figure 2.7. During simplify,
the optimistic allocator looks for a node that has degree less than &, removes it from the
graph and pushes it into the auxiliary stack. It repeats this process until no more nodes

22

Figure 2.6: Generalization of the problem of the Yorktown allocator

(s)

l Code ; ... 1 Optimistic
Yorktown
Renumbe Build Coalasca Calculale impllly Salact
imoer Graph Varlables Spll Costs Graph Colors

Figure 2.7: The Optimistic allocator versus the Yorktown allocator

with degree less than k can be found. At this point, the allocator chooses the node with
lowest spill cost to degree ratio, optimistically removes it from the graph and pushes it into
the stack assuming that the select colors phase will be able to assign a color to it. During the
select colors step the nodes are put back in the graph in inverse orderand colored according
to the colors of the neighbor nodes. If at some point a node cannot be colored because
there are no free colors, the node is marked to be spilled and it is not added to the graph.
Briggs shows in his PhD thesis that if his heuristic decides to spill a node that node would
_have also been spilled by Chaitin’s heuristic and, therefore, his heuristic always works at

least as well as Chaitin’s heuristic.

8

2.2.4 Other Allocators

There have been other heuristics developed to solve the problem of global register alloca-
tion. Registerallocation is a hot topic within the compiler research community. The current
focus is towards integrated schemes of register allocation and instruction scheduling. Due
to space limitations, we will just mention a few of them and point out their most relevant
characteristic.

Chow and Hennessy’s mechanism [CHS0] colors the interference graph by prioritizing
the variables according to the their benefits of residing in registers. Callahan and Koblens
[CK91] present a method to color the interference graph guided by the hierarchical struc-
ture of the program. Gupta and his colleagues [GSS589] presented a method to color the
interference graph by partitioning it in its clique separators. Proebsting and Fischer [PF92]
use a stochastic approach to allocate registers based on the probability that a value will
be held in a register. Kolte and Harrold [KH93] propose a method that partitions the
live ranges in Load/Store ranges providing more flexibility for the allocation. Norris
and Pollock [NP94] propose to guide allocation with the use of the Program Dependence
Graph - PDG. Finally, an allocation method based on cyclic interval graphs instead of the
interference graph is proposed by Hendren et al. [HGAM93].

24

Chapter 3

Short-Lived Variables
and Useless Commits

In this chapter we describe the problem of the useless commit of instructions to the register
file. We start by presenting a simple example which points out the inefficiencies of the
execution model as a result of this phenomenon. We then provide experimental evidence
of the useless commits of instructions for a set of benchmarks. After defining some
concepts, we formulate the problems to be studied in this thesis, we show the importance
of addressing these problems, and we give an intuitive description of how these problems
should be solved. At the end of the chapter, we describe the main obstacles we face to
apply the solutions proposed, we illustrate the circumstances under which these obstacles
are present, and for each one we give a small description of the method used to overcome
them.

3.1 Useless Commits: A Motivating Example

Oneimportant observation of this thesis is that a significant portion of the values generated
by the functional units are used only while they reside inside the reorder buffer. The cause
of this is that a large percentage of the values generated have a very short live range.
In general, the last use of a value can be found in the instruction stream soon after its
definition point.

As an example, consider the small loop extracted from the Tomcat benchmark and
reproduced in Figure 3.1{a). Figure 3.1(b) shows the DLX [HP90] assembly code for the
body of the loop produced with dixcc, the GCC Compiler targeted to produce code for the
DLX architecture!. Figure 3.1(c) shows the live ranges for the different values generated
and the respective register assignments. In this figure, small circles (¢) denote definition
points while cross signs {x) denote the points where the values die. Overlapped cross and
circle signs (®) denote redefinition points. It can be seen that, for all live ranges, once a
new value is defined, it is last used a few instructions later. If we count the length of a live
range by the number of instructions between the producer and the last consumer, we can
see that the length of the longest live range in this example is 14 instructions. If this code
were to be run on a machine with a reorder buffer of 16 entries, all values produced could
be consumed while they reside in the reorder buffer. If this were the case, the commit of
the instructions to the register file would be useless because none of the values would ever
be obtained from the register file.

Another important point to note from this example is that nine? physical registers have
been used for the allocation of the temporal variables used in the body of the loop. This is
a waste of resources because, as we pointed out before, the values stored in these registers
are never being acquired from the register file. In other words, the register allocator is
assigning register names to values that are never going to be obtained from the register
file.

From the analysis of this example, two questions emerge: can we avoid the useless
commits of instructions to the register file? Also, can we improve the register allocation
process so that register names are not assigned to values that do not require them?

3.2 Experimental Observations

After considering this example, we want to determine how often these useless commits
occur during the execution of real programs. For this purpose, we modified our super-
scalar simulation testbed to establish the percentage of useless commits found during the

"Whenever appropriate, we will use in our examples assembly code produced for the DLX architecture. The
mnemonics used for the instructions are in general easy to understand, and most of the instructions have this
format:<Op. code> w«'&qest . register>,<src. register 1>, [<sre. register 2>]. Acomplete
description of the instruction set can be found in [HP90].

2£4 and £6 are being used as double registers.

26

L5: M 34 510 14 16
lw r3,0(re) Q
slli r4,r3,42
add r4,r4,r3
slli rd,r4,43
add rd,r?,rd4
add r5,r3, ¥-1
movi2fp £0,rS i i
for (I = 1; I <= N; I++) { cvei2d f4,£0
X[IJ(1) = ({double) (I-1)) lhi rl, (LCO>>16)S0XEELE
/ {double) (N-1); addul rl,ri, (LCOSOXELES) i
} 1d fe,0(rl) I
divd f4,£4,f6
sd 8(rd), fA X
add r3,r3, # I
sw 0{r6),r3

lw r4,0(r6)

addi r3,r0, #4 i I
sle rl,r4,r3 1

bnez rl,LS

{a) C Program (b) Assembly code (¢} Live Ranges

Figure 3.1: Examples of short-live-range variables

execution of a set of benchmarks. The simulator was modified to count the number of
values written to the register file, and to detect which of these values are never read from
the register file. The results of these experiments are summarized in Table 3.1. In this table,
we give the percentage of useless commits detected when running each benchmark with
different sizes of the reorder buffer. A description of the benchmarks used will be given
in Section 6.1, and a description of the testbed will be given in Appendix A.

From the results presented in this table, it can be seen that a large percentage of the
instructions committed to the register file are useless. The percentage of useless commits
increases with the size of the reorder buffer because thereis a bigger chance that thelast use
of a value and its definition point reside in the reorder buffer at the same time. Even with
a reorder buffer of 8 entries the percentage of useless commiits is very high (on average
89.56%). With a reorder buffer of 32 entries the percentages are even higher, on average
95.11%. These results suggest that all these useless commits constitute a significant waste
of resources and allow for architecture and compiler optimizations.

27

Buffer Size
Benchmark || B8 | 16 | 32__

Alvinn 85.80 | 88.90 | 89.89]
Bubble 9382 | 9593 | 97.14
L8 89.66 | 98.81 | 98.81
L14 91.65 | 95.93 | 97.08

L8unroll 89.54 | 98.70 | 98.70
L14unroll | 91.77 | 95.87 | 97.12
Linpack 9232 | 92.61 | 93.33
Quickrand | 81.81 | 87.52 | 88.19
Tomcat 95.95 | 97.61 | 97.78

Whetstone | 83.29 | 90.21 | 93.04 |
Average ll 89.56 ; 94.21 | 95.11

Table 3.1: Percentage of useless commits

3.3 Problem Formulation

In this section we formulate the problems to be studied in this thesis. We start by defining
some of the related concepts. Some of these concepts are also exemplified in Figure 3.2.

Let dp, dy,d ... dn be the definition points for a set of values w, v, 22 ... v, Let
gy Uiy Uiy -+« Uj,, De the set of last-use points for a value v;. We define the live range
7i; of a value v; as the sequence of instructions in the interval [d;, u.-,-], and the length of
ri; £(ry;), as the number of machine instructions in the longest path between d; and w;;
including d; and u;;. Assume we have a superscalar machine M, like the one described in
our execution model (Section 2.1.3), with a reorder buffer of length LR entries. We say that
the commit of the value v; produced by the definition point d; to the register file is a useless
commit if all the references to v; are obtained from the reorder buffer rather than from the
register file. We say a live range r;; is short if it has a length that is smaller than or equal
to the size of the reorder buffer, i.e,, £(r;;) £ LR. Consequently, we call a variable z a
shori-lived variable if all the live ranges associated to z are short. Note that for an instruction
at dy. to be a useless commit, it is necessary that all the associated live ranges, ry, for any
z, be short.

28

Register
File

M d '
g; Z _ };' a Head~—_ a = x; | l 'c';';',,mn
(@) 4f (b) { r —
(4) ¢ =a+b; @ b=y
) d=c/2; i | Llag=8 if (b)
(63 e=d+a; : Uap ¢ =a + b;
(7)) 1) else { |
(8) e = a; ra1l Ua1 d=c / 2; LR=8
} E L(ra1)=4 Tai[/ e =sd+ a;
Reorder
Butfer

Figure 3.2: Some concepts related to short-lived variables

Given these definitions, the problems to be studied in this thesis can be stated as
follows:

¢ Problem 1 - Reduction of Useless Commits: Given a machine M with a reorder
buffer of LR entries and a program P, we want to develop architecture mechanisms
and compiler techniques to reduce the number of useless commits in M, while
executing P.

¢ Problem 2 - Allocation of short-lived variables: In conjunction with the solution for
Problem 1, we want to propose a register allocation scheme which enstres that the
short-lived variables in P do not occupy physical registers of the machine whenever
possible.

Solving Problem 1 will allow the architecture to reduce the number of write ports to
the register file without affecting the execution time of the program. The reduction of
write ports is an important issue because it simplifies the structure of the data path of
the processor [U]92, joh91]. The complexity of implementation of the reorder buffer, the
register file and the associated busses depends on the number of ports to the register file.
As we mentioned in Section 2.1.2, the area complexity of a multiported register file is
roughly proportional to the square of the number of ports [CDN92]. In fact, due to the

29

complexity of the register file, the cycle length for many architectures is determined by the
access time to the register file. Recent superscalar designs, like the PowerPC 604 [SD94],
provide register files with more than 10 ports. However, even 10 register ports may not be
enough to satisfy the demands posed by issuing several instructions each cycle, and the
designers are forced to put restrictions on the number of instructions that can be committed
per cycle or to add stages to the pipeline to handle the possible contention [SD94].

Solving Problem 2 will allow the compiler to utilize more efficiently the physical reg-
isters by using them exclusively for the allocation of variables with long live ranges. The
effective utilization of the registers is also an important issue. As we saw in Section 2.2, the
register allocator tries to map a usually large number of virtual registers to a small num-
ber of physical registers which, therefore, constitute a precious resource. Furthermore,
compiler optimizations for ILP try to increase parallelism which in turn increases register
pressure [CF87]. We need to find mechanisms to reduce the register pressure created by
these optimizations and utilize as efficiently as possible the register names provided. If
we avoid the use of physical registers by the short-lived variables we will increase the
number of registers available for long-lived variables thus reducing register pressure and
the amount of spill code introduced.

3.4 Solution Strategy

As observed in Section 3.2, a large percentage of the instruction commits are not necessary.
Therefore, we propose to reduce this percentage (Problem 1) by providing the architecture
with specific information, so that, at commit time, it can decide whether a value should
be commiitted to the register file or just discarded. This information should be collected
by the compiler by analyzing the characteristics of the live ranges of the variables, and
provided to the architecture through the instruction set. Note that only the compiler can
detect whether the use of a value is the last one or not. Thus, it is the responsibility of the
compiler to flag the instructions that are going to be discarded at commit time.

To solve Problem 2, we propose to modify the register allocation process, so that
variables whose live ranges are not committed to the register file are not assigned to
physical registers since these live ranges are not going to make use of them. We maintain
that these variables should be assigned to and stored in the reorder buffer instead of the
register file. Then, the reorder buffer will be considered an extension of the register file in

30

which the values of short live ranges will be temporarily stored before they are discarded
at commit time. The actual storage for the value will be dynamically allocated by the
renaming mechanism of the architecture. In short, we propose to use the space provided

by the renaming capabilities of the reorder buffer as additional registers to allocate the
short-lived variables.

3.5 Obstacles

In the preceding sections, we have proposed exploiting the fact that a large percentage
of the live ranges occur while they reside in the reorder buffer. However, in order to be
able to exploit this fact, we need to overcome some problems. There are 3 main obstacles
to surpass: the compiler’s lack of knowledge about which instructions are present in
the reorder buffer at any given point, the detection of useless commits in the presence
of the speculative execution of instructions, and the need to provide support for precise
interrupts. In the following subsections, we will illustrate with examples these obstacles
and give an intuitior on how to overcome them. Some of the presented ideas will be
elaborated in subsequent chapters.

3.51 Determining Useless Commits ai Compile Time

The first obstacle preventing us from applying our ideas is that in current superscalar
designs, like the one described in our execution model in Section 2.1.3, the compiler
cannot safely determine whether an instruction commit will be useless based only on
the fact that the associated live range has a length smaller than the size of the reorder
buffer. The compiler can establish that a live range is short, but that does not imply that
the associated definition point will be a useless commit. The problem lies in that, with
the current implementation of the reorder buffer, an instruction can be committed to the
register file as soon as it reaches the head of the reorder buffer without waiting for the last
use of the value to enter the buffer.

This problem is illustrated in Figure 3.3. Consider a machine with a reorder buffer
having 12 entries (CR = 12), which is able to fetch and decode 2 instructions per cycle
(DB = 2). Asit can be seen in the figure, the length of the live range of a is 11. According
to our definition, this live range is short. However, from the moment the definition point

31

of a, d,, enters the reorder buffer, to the moment the last use, u,, enters the reorder buffer,
five clock cycles will occur. In these five cycles, instruction (1) will be able to execute and
write back its result to the reorder buffer. If this instruction reaches the head of the reorder
buffer before the last use u, enters the buffer, then the value of a will be retired to the
register file. Then, when u, enters the reorder buffer the value of e will have to be obtained
from the register file and therefore, the commit of d, will not be useless. However, if we
had a different policy for the commit process of the instructions, the commit of d, could

have been avoided.
Register
File

(1 3;2; 0 dy T A =2 Inst.
{(2) b=c¢c + a; b=c+a; Commit
(3)d=:b*3: d=b*3;

:: | Lim=1 ’ \./\.

N LR=12

(9) e =d + b; e=d+b;
(10) b = d + ¢; b=d+¢;
(1) d = ¢ - a; X U Tail/

verrdessren

Reorder
Buffer

Figure 3.3: Impossibility of determining useless commits at compile time

To address this issue, we propose that the compiler should mark in the code the
definition and last use points of the short live range, while the architecture should be
augmented to ensure that the instruction defining the value will not leave the reorder
buffer before the last use enters the reorder buffer. We will elaborate on this mechanism
and its possible variations in Chapter 4 where we discuss the compiler mechanism and
architectural modifications required.

32

3.5.2 Detecting Useless Commits in the Presence of Speculative Execution

The second obstacle to overcome is related to the speculative execution of instructions. The
problem of knowing at compile time when an instruction is going to be a useless commit
is even more difficult in the presence of speculative execution. Aftera definition point has
entered the reorder buffer, one or several branches can be predicted before the last use of
the value enters the reorder buffer. Yet, even after the last use has entered, it is not safe
to say that the definition point can be discarded once it arrives to the head of the reorder
buffer because some of the branches in the middle could have been wrongly predicted. If
the definition point is discarded and the prediction for one of the branches happens to be
incorrect, then another use of the value can be fetched from the new path, and this use will
not be able to find the value in the reorder buffer nor in the register file.

Register
File

; 1"'__*:':"
() a = 2; da Head
@ b=c/a; Tl a =2 Inst.
(3) if (b) { - r b=e¢/ a; Commil
%0 22| 1f (b)
: Uy =7
(7 e=c + a; Uy _
(8)) else { i 0 LR=8
; ag 1
' - e = ¢ 4 a;
‘ Elay) =8 Tail ="
(1) e=d*a; %Yy =~_.___I,
(12) 1}, Reorder
Buffer

Figure 3.4: Dealing with speculative execution

To illustrate this problem, consider the example given in Figure 3.4. Assume the
processor has a reorder buffer with 8 entries (LR = 8). The definition point of 4, d, is
found in instruction (1). In this case there are two last uses for a, one at the end of the
if-body and the other at the end of the else-body. The respective lengths of both live ranges
are six and seven. Therefore, based on our definition, both live ranges are short and a
is a short-lived variable. Assume that the branch prediction mechanism foretells that the
if-body is going to be taken. In that case, instruction (7} would be put in the reorder buffer

33

and we could assume that since both the definition point d, and the last use u, are present
in the reorder buffer, the commitment of d, would be a useless commit. Then, when
retiring the definition point ¢, we could discard the value of « instead of committing it to
the register file. If the prediction of the branch is correct the value of a will not be required
anymore and the mechanism would work properly. However, if the prediction happens to
be incorrect, the instructions in the else-body will be fetched and when instruction (11} is
decoded the value of a will not be found either in the register file nor in the reorder buffer.

There are two possible ways to get around this problem. One way is to design a
hardware mechanism to ensure that the definition point of a short live range will not leave
the reorder buffer until the last use is also in the reorder buffer and the branches between
them have been resolved. The other way is to simplify our problem and decide that we
are only going to avoid the useless commits of short live ranges that do not cross the basic
clock boundaries. Both mechanisms will be discussed in Chapter 4.

3.5.3 Dealing with Interrupts

The last obstacle we have to overcome in order to allow the compiler to exploit the occur-
rence of short-lived variables is related to the need to provide precise interrupts. Interrupts
are events that disturb the normal execution of the program like a page fault or an arith-
metic overflow. An interrupt is said to be precise, if at the moment when the interrupt is
handled all the instructions preceding the faulting one in the sequential code have updated
the state of the processor, none of the succeeding instructions have updated the processor
state, and the saved program counter is pointing to the instruction that caused the interrup-
tion [SP88, HP87]. Precise interrupts are easily achievable in sequential processors where
all the instructions are executed in order. However, in ILP processors precise interrupts
are difficult to achieve due to the fact that in this kind of machines instructions can be
executed out of order and thus update the state of the processor in a non sequential order.
As we described in Section 2.1.1, the reorder buffer provides a mechanism to support pre-
cise interrupts. The interrupt is not treated until the faulting instruction reaches the head
of the reorder buffer. In this way, we can ensure that all the instructions preceding the
faulting one have updated the state of the processor and that the saved program counter
is pointing to the correct instruction.

Even if our execution model uses a reorder buffer, we face a new problem when we are
trying to avoid the useless commits produced by short-lived variables and at the same time

34

still providing precise interrupts. The problem resides in the recoverability of the processor
state after handling the interrupt. If we discard the value produced by the definition point,
and an instruction lying between the definition point and the last use point of a live range
causes an interrupt, then the last use of the value will not be able to find this value after
the interrupt has been handled.

To illustrate this problem, consider the example given in Figure 3.5. The range of ¢ in
this example is a short live range. Assume the situation in the reorder buffer is as depicted
in the figure. Both the definition point (inst. 1) and the last use (inst. 5) of a are in the
reorder buffer. Assume further that when retiring instruction (1) we discard the value
produced instead of committing it to the register file. A problem arises if an instruction,
say instruction (3), causes an interrupt. In this case, the processor will wait until instruction
(3) reaches the head of the reorder buffer and, at this point, it will call the routine to handle
the interrupt. The routine will save the state of the registers, process the interrupt and
restore the register file to the state it had before the interrupt. After the handling routine
has returned the processor will start executing the program from the point where the fault
occurred. However, when the processor tries to decode instruction (5) again, it will look
for the value of a and, since we discarded it before the interrupt occurred, it will not be
able to find it. In this case, the interrupt was handled at the point where it should have
been, that is, the interrupt was precise. Nevertheless, the interrupt was not recoverable.

| Register

: X File
M) a = 2; da Head—J % = 25 Inst,
(2) b=y+ a; () =5 b=y + a; Commit
B c=y/ x; fa | Lv@l= -)
{4 e=Db + ¢c; Me=y/x
8) d=c +a; Uy e=b + c;

Tajl—"} L2 S * 3

LR=8

Reorder
Buffer

Figure 3.5: The problem of handling interrupts

35

In order to provide the recoverability of the interrupts, we propose that at the moment of
handling the interrupt, not only the state of the register fileand the program counter should
be saved, but also the state of the reorder buffer should be saved. The process of saving
the state of the reorder buffer can be expensive given that the size of the reorder buffer can
be large. However, since interrupts do not occur frequently (around 1 instruction every
5000 instructions [HP87, BP93]), the performance penalty of saving the state of reorder
buffer should be negligible. The advantage of saving the state of the reorder buffer is that
the processor can restart fetching the instructions from the last instruction that entered the
reorder buffer before the interruption was treated instead of restarting fetching from the
instruction that caused the interrupt.

As we will see in Section 4.2, an improvement to this mechanism can be implemented
if we consider discarding only the values of short live ranges that do not cross the basic
block boundaries.

Chapter 4

Reduction of Useless Commits

In the previous chapter, we illustrated with examples the fact that, with our current
execution model, the detection of a short live range by the compiler does not imply the
detection of a useless commit to the register file. We pointed out that the problem with the
current model is that an instruction can be retired to the register file as soon as it reaches
the head of the reorder buffer without waiting for the last use to be present. We also
noted that, even if the architecture ensures that the definition point of a value is not retired
until the fast use is also in the reorder buffer, it is not safe to decide that a value should
be discarded if the last use of this value is being speculatively executed. In this chapter,
we describe the hardware and software mechanisms used in this thesis to overcome the
problem of detection of useless commits both with and without the presence of speculative
execution. With the help of this mechanisms we are able to solve the problem of reduction
of useless commits, which is the first problem this thesis aims at resolving,

4.1 Detecting Useless Commits

The simplest mechanism, though not the most efficient, for the detection of the useless
commit of instructions could be implemented at the hardware level without requiring the
intervention of the compiler. At commit time, the processor could decide to discard the
value to be stored in a register if it detects that a succeeding instruction in the reorder
buffer is also writing to the same register. Although this mechanism does not require any
information provided by the compiler, it is not as precise as the mechanism we propose

37

in this thesis. That is, it would not detect the useless commits of instructions whose
corresponding registers are not redefined by any of the succeeding instructions in the
reorder buffer. Moreover, this mechanism would alse have problems dealing with the
speculative execution of instructions since the instruction redefining the register could be
in the reorder buffer after an unresolved branch.

Since we want to maximally reduce the number of useless commits, we decided to
implement the mechanism suggested in our solution strategy in Section 3.4. That is, to use
the compiler to collect information about the live ranges and communicate this information
to the processor through the instruction set. Hence, in our mechanism the compiler decides
which values should be discarded at comunit time and tags these values. In addition, the
architecture provides a mechanism to ensure that the whole live range of a tagged value
will occur inside the reorder buffer. To achieve this, the architecture has to impose more
constraints on the commit process of an instruction to guarantee that the definition point
of a value chosen by the compiler will not be discarded until the last use enters the reorder
buffer. This can be implemented using two different schemes:

¢ Scheme 1: Marking the last use of a value

In this scheme, the compiler is responsible for informing the architecture which of
all the uses of the value is the last one. When the last use enters the reorder buffer
an associative search is performed in the reorder buffer and the definition point is
marked so that when it arrives at the head of the reorder buffer it can be discarded.
This should not increase the time required to enter an instruction into the reorder
buffer since the mechanism defined in the execution model is already performing
the associative search to find the instruction that is defining the value,

This mechanism is exemplified in Figure 4.1. Figure 4.1(a) shows a fragment of
assembly code that has been annotated by the compiler with ampersand signs to
indicate which values can be discarded at compile time and to flag the corresponding
last uses of these values. Thus, for example, the value of r3 defined in instruction (2)
can be discarded at compile time and the last use of this value is found in instruction
(3). The value of x3 in instruction (3) can be discarded at commit time and its last
use is found in instruction (5). On the other hand, the values of x5 in instruction (1)
and of r4 in instruction (4) must be committed to the register file.

Figure 4.1{b) shows a partial representation of these instructions in the reorder buffer.
We have added two bits to each entry in the reorder buffer. The “Discard” bit {Disc)

38

(1) add r5,r0,r3

(2 slli &x3,r4,#2
(3) add &r3,sr3,r4
{(4) slli r4,r3,#3
(5) add &r6,xr4,&r3

(a) Assembly code
Flag Dest. Reg. Result Disc. LastU. seevess
Head

o2 \ Inst,
1 r5 0 0 Commit
(2) r3 1 1
{3) r3 1 1
{4) r4 0 0 LR=8
(y r6 1 0

Tail

(b) Reorder buffer representation

Figure 4.1: Marking the last use of a value

indicates that the value being defined in this entry can be discarded at commit time.
The value of this bit is determined when the instruction is decoded and entered in the
reorder buffer. The “Last Use” bit indicates that the last use of the value being defined
in this entry is present in the reorder buffer. This bit is set when the instruction with
the last use of the value enters the reorder buffer. When the instruction reaches the
head of the reorder buffer, the value is retired to the register file if the “Discard” bit
is zero. If both the “Discard” bit and the “Last Use” bit are one, the value can be
discarded. Otherwise, if the value of the “Discard” bit is one and the “Last Use” is
zero, then the value cannot be discarded until the corresponding last use enters the
reorder buffer. Thus, in the example, the value produced for x5 must be retired to
the register file since the value of the “Discard” bit is reset. On the other hand, the
value produced for r3 can be discarded since both the “Discard” and the “Last Use”
bit are set. Once instruction (5) arrives to the head of the reorder buffer, the value
produced for 6 can be discarded only if the “Last Use” bit has been set, indicating
that the last use of r6 has entered the reorder buffer.

39

Special care has to be taken by the compiler so that the use of this mechanism does
not produce stalls in the decode stage. If the length of the reorder buffer is LR
and the decode bandwidth of the processor is DB, then the length of the live ranges
chosen by the compiler must not exceed LR — DB. In this way, we avoid the case
where instructions cannot enter the reorder buffer because another instruction is at
the head waiting for the last use to enter the reorder buffer and stopping the commit
of other instructions. So, as an example, if LR is 16 and DB is 4 then the length of
the live ranges chosen to be discarded shouid not exceed 12 instructions.

Scheme 2: Keeping a minimum number of instructions in the reorder buffer

In this scheme, an instruction cannot be committed unless there is a minimum number
of instructions in the reorder buffer. In this way, the compiler can be sure that if two
instructions are separated by a number of instructions that is less than the minimum
number of instructions kept in the reorder buffer, the two instructions are going to be
simultaneously present in the reorder buffer. Here again, special care has to be taken
when choosing the minimum number of instructions to be kept in the reorder buffer
in order to avoid decode stalls. The minimum number of instructions M LR must be
setto (CR - DB). Thatis, MLR will be an architectural parameter which depends on
the reorder buffer size LR and the decode bandwidth DB (See Figure 4.2). Knowing
MLR, the compiler will be able to decide which live ranges will completely occur
inside the reorder buffer and mark them, so the architecture can safely discard the
associated value at commit time.

We should emphasize here that the use of this scheme does not delay the execution of
the instructions in the program. The fact that an instruction ¢ cannot be retired from
the reorder buffer until a minimum number of succeeding instructions are present
in the buffer, does not delay the execution of the instructions that depend on i. The
reason is that the reorder buffer forwards the value produced by the instruction ¢
to all dependent instructions at the time { finishes execution rather than when it is
retired. Moreover, this scheme does not delay the decoding of instructions because
the minimum number of instructions MLR was set in such a way that it ensures
there is space in the reorder buffer to put P8 new instructions each cycle. The only
situation where the reorder buffer could be full is when the instruction at the head
of the buffer has not finished execution, and this situation is not caused by the fact
that we are keeping a minimum number of instructions in the reorder buffer.

An advantage of this mechanism is that the compiler does not need to flag the last
use of a value to be discarded. Only the definition point has to be flagged. This is

40

(1) add r5,r0,r3

(2) s11i &r3,r4,#2
(3) add &r3,r3,x4
(4) slli r4,r3,#3
(5) add &ré6,r4,r3
{6) addi &rl,r5,#8

(a) Assembly code
Head Flag Dest. Reg. Result Disc. anassas
op L r5 M : ‘ Inst.
@) - Commit
(3)
MLR=6 {4)
(8) LR=8
5x
Tail A

(b} Reorder buffer representation

Figure 4.2: Keeping a minimum number of instructions in the reorder buffer

illustrated in Figure 4.2. In Figure 4.2(a) a fragment of assembly code annotated with
the information of which values should be discarded at commit time is shown. As
it can be seen, the compiler only needs to mark the values that can be discarded at
commit time. In this example, the values produced by instructions (2), (3), (5) and
(6) can be discarded instead of committed to the register file. Figure 4.2(b) shows a
partial representation of these instructions in the reorder buffer. In this case we only
need to add one bit to each entry of the reorder buffer. Asin the previous schema, we
call this bit the “Discard” bit. It is determined when the instruction is decoded, and
it is used at commit time to decide if the value should be discarded or committed to
the register file. The reorder buffer has to be modified to ensure that an instruction
at the head of the buffer can only be removed if the number of instructions in the
reorder buffer is at least MLR.

These two schemes are equivalent in terms of effectiveness. The selection of the
. mechanism will depend, then, on the complexity of the implementation. As mentioned

41

before, Scheme 2 has the advantage that only the definition points need to be marked by
the compiler. This implies a smaller change in the instruction format and, depending on
the instruction set, could imply that object code compatibility could be preserved. On the
other hand, the implementation of Scheme 2 could be more difficult for some architectures
particularly in the presence of branch prediction. When a branch is wrongly predicted,
some architectures scrap the instructions following the branch while others just mark them
so thatat commit time they can be discarded. For the architectures that actually scrap the
instructions, it could be niore difficult to keep an account of how many instructions are in
the reorder buffer. In this case, Scheme 1 could be easier to use.

4.2 Dealing with Instruction Speculation

As we showed in Section 3.5.2, the problem of detecting useless commits at compile time
is more difficult when we consider the speculative execution of instructions. The problem
is that it is not safe to discard a definition point even if the last use is also present in the
reorder buffer because the last use could be speculatively executing, There are 2 schemes
that can be use to solve this problem:

s Scheme 1: Using a hardware mechanism to detect useless commits in the presence
of speculative execution

With this scheme, the reorder buffer has to be modified to ensure that the definition
point of a short live range is not discarded until we are certain that the last use is
not executing speculatively. That is, the value produced by a tagged instruction at
the head of the reorder buffer cannot be discarded until the last use has entered the
reorder buffer, and there are no unresolved branches between the definition point
and the last use of the value. This can be accomplished in hardware by keeping
track of the difference in speculation level between the definition point and the last
use of the value. For this, each entry in the reorder buffer can be augmented with
two fields to indicate the level (depth) of speculation at which the entry currently is
(“CurrLevel”), and the level of speculation at which the last use of the value being
produced is (“LastUseLevel”). Each can be implemented with no more than four
bits, since no more than four levels of speculation are required to achieve nearly
maximum parallelism in a superscalar processor, as shown in [Joh91].

42

This mechanism is described in Figure 4.3. Figure 4.3(a) shows a small fragment of
assembly code which includes a branch instruction {(instruction (3)). We will focus
our attention on the value of r 6 since it has been tagged by the compiler and its last
use occurs after the branch. Figure 4.3(b) shows the state of the reorder buffer after
the first three instructions have entered. Bit 0 of the “CurrLevel” of instructions (1)
and (2) is set to one whereas bit 1 of “CurrLevel” of instruction (3) is set to one to
indicate thatinstructions after the branch are in the next level of speculation. Assume
that the branch predictor foretells that the branch is not going to be taken. When
instruction (4} enters the reorder buffer (Figure 4.3(c)), the bit 1 of its “CurrLevel” is
set to one and, since this instruction has the last use of £ 6, bit 1 of the “LastUseLevel”
for instruction (1) is also set to one. When the branch is resolved, two actions can
be taken. If the branch was correctly predicted (Figure 4.3(d)), bit 1 of “CurrLevel”
for all the instructions preceding the branch is set to one to indicate that the branch
corresponding to that level was correctly predicted. If the branch was mispredicted,
bit 1 of “LastUseLevel” for all the instructions preceding the branch is set to zero to
indicate that all the instructions with last uses in that level were wrongly entered in
the reorder buffer.

The value defined by a tagged instruction {Discard bit set to one) can be discarded
only if the same bit is set in both the “LastUseLevel” and the “CurrLevel” fields.
In Figure 4.3(d), the value defined in instruction (1} can be discarded because bit
1 for both the “CurrLevel” and the “LastUseLevel” is set, indicating that there are
no unresolved branches between this instruction and the last use of the value being
produced.

Although this mechanism is able to map short live ranges to useless commits in the
presence of instruction speculation, there are several arguments against its use. The
first argument is that it seems difficult to implement. One of the goals of this thesis
is to use information provided by the compiler to reduce the hardware complexity.
The use of this mechanism would certainly not help to achieve this goal. The second
argument is that this mechanism can introduce stalls in the decoder. In effect, the
definition point of a short live range cannot be discarded until thereare no unresolved
branches between it and the last use of the value. Therefore, a definition point
could be at the head of the reorder buffer waiting for some succeeding branches
to be resolved and stopping the decoding process because of lack of space in the
reorder buffer to introduce more instructions. Although we did not implement this
mechanism and, therefore, we are not certain of how often this situation can occur,

43

(1) add &r6,r0,43 : 16 Definition Paoint

(2) =gt &r3,r3,rc5 113 ={r3 >r5)

(3) begz &r3,Lelsel i {13 == 0) goto Lelse1
{4 add r5,r0,6r6 ;16 Last Use

(a) Assembly code
CurrlLevel LastUselevel
Flag Dest. Reg Result Discard esserecces 32103210
Head
(1)\- 16 1 1
2 13 1 1 1
??(3) - - 1
TaiI/-
(b) Insertion of instructions up to the branch
Cunrlevel LastUselevel
Flag Dest. Reg Result Discard sosscuenes 32103210
Head
(1)\» 16 1 1 1
2 3 1 1 1
?2?(3) - - 1
(4} 15 0 1
Tailf
{c) Insertion of the last use of ré
Currlevel LastUselevel
Flag Dest. Reg Result Discard sonssstees 32103210
Head
(1)\- 6 1 1] 1 1
{2 13 1 111 1
@ : - 1
{4) 5 0 1
Tail
(d) Resolution of the branch

Figure 4.3: Detecting useless commits in the presence of instruction speculation

44

this scenario is, of course, undesirable.

¢ Scheme 2: Considering only live ranges that do not cross basic block boundaries

The other way to get around this problem is to simply avoid it by considering as
short-lived variables only those variables whose live ranges are short and whose
definition and last use points are found in the same basic block. The intuition behind
this idea is that, since the live ranges we are considering are short, there is a high
probability that their definition and last use points are in the same basic block. In
general, many of these short live ranges are produced as a consequence of the use of
temporary variables by the compiler. Most of the time, these variables introduced by
the compiler are used only inside the basic block. In order to verify this observation,
we modified our simulator to count the number of useless commits that are caused
by live ranges that do not cross the basic block boundaries. The results of our
measurements for different reorder buffer sizes are presented in Table 4.1.

" Buffer Size
| Benchmark | 8 | 16 [32
[Alvinn 85.8 | 89.35 | 89.35
Bubble 93.83 | 9590 | 9592
L8 89.66 | 98.81 | 98.81
L14 91.26 | 95.16 | 95.16

L8unroll || 89.54 | 98.70 | 98.70
Ll4unroll || 91.39 | 94.85 | 94.85
Linpack || 9231 | 9250 | 52.64
Quickrand || 81.37 | 84.11 | 8450
Tomcat 96.31 | 97.45 | 97.57
Whetstone || 82.82 | 89.26 | 89.26

[Average] 89.43] 93.61 | 93.68

Table 4.1: Percentage of useless commits produced by live ranges that do not cross basic block
boundaries

Comparing these results with the ones presented in Table 3.1, it can be seen that most
of the short live ranges do not cross the basic block boundaries. Even for a reorder
buffer of 32 entries, the difference of the measurements presented in Tables 3.1 and

45

4.1 for a particular benchmark is at most 4%. The differences are further reduced
when we consider the measurements for reorder buffers of 8 and 16 entries. This
small difference confirms that this scheme can be used, without a significant loss of
precision, to detect the useless commits, thus avoiding in a simple way the problem
posed by the speculative execution of instructions.

As can be seen, there are good reasons to choose Scheme 2 over Scheme 1. The com-
plexity of implementation and the potential stalling of instruction decoding, disfavoring
Scheme 1, outweighs the slight loss of precision of Scheme 2. By choosing scheme 2, we
are applying the principle of “making the common case fast” [HP90] since we are avoiding
the use of a complicated hardware mechanism that would only be necessary in a small
percentage of the cases. As a consequence of this selection, we will modify ot definition
of a short-lived variable given in Section 3.3. We redefine a short- lived variable as a
variable whose live ranges are short and whose definition and last-use points are found in
the same basic block.

Another advantage of the use of Scheme 2 is related to the recoverability of the inter-
rupts. As we explained in Section 3.5.3, in order to make an interrupt recoverable under
our scheme, it is necessary to save the state of the whole reorder buffer before handling
the interrupt. An improvement to this mechanism can be obtained if we consider that the
short live ranges to be discarded do not cross the basic block boundaries. In this case, the
values discarded will only be required by the instructions between the faulting instruction
and the next instruction in the reorder buffer that changes the control flow, i.e., by the in-
structions that are in the same block of the instruction that produced the fault. According
to this observation, it is not necessary to save the status of the whole reorder buffer, but
only the status of the entries from the head of the reorder buffer to the next jump or branch
instruction. Since jump and branch instructions constitute around 13% of the instruction
mix [HP90], we will be, in general, saving less than eight entries of the reorder buffer each
time an interrupt occurs.

4.3 Compiler Analysis

Now that we have selected the hardware mechanism and have simplified the problem
in such a way that we can exactly map short live ranges to useless commits, we need to

46

design the compiler analysis to find out which live ranges are going to be tagged so that
the values produced are discarded at commit time.

This analysis, which we call the short-live-range analysis, must perform the following
tasks:

1. Find the length of the longest live range of each variable.
2. Detect variables whose live ranges cross basic block boundaries.

3. Based on the previous information, on the size of the reorder buffer LR, and on
the processor’s decode bandwidth DB, find the variables that correspond to our
definition of a short-lived variable.

The analysis is carried out on the low level abstract syntax tree representation (LAST)
[Don94] of the McCAT compiler (See Appendix A). It performs a backwards walk over the
tree keeping track of the definition and last-use points of each live range and the distance
between these points. In order to do this, the analysis makes use of a counter which we
call Position and two sets called Alive and Length. The Position counter always keeps
the distance of the instruction being analyzed relative to the end of the basic block. This
distance is measured in machine instructions. The Alive set keeps a list of the variables
that are alive at the point where the analysis is being performed. It consists of a set of
tuples < z,u, >, where z is a variable and u is the position of the instruction containing
the last use of z relative to the end of the basic block. The Length set keeps the information
of the variables whose live ranges have already been analyzed. It consists of a set of tuples
< ¥,ly >, where y is a variable and [, is the length of the longest live range found for that
variable. The symbol a can be used as a value for {, to indicate that at least one live range
belonging to the variable y crosses the limits of a basic block. Since this is a backwards
analysis, we are going to describe the actions taken by it when it advances, statement by
statement, from the end to the beginning of a basic block. We then describe the rules
used to merge the information obtained from different basic blocks. A small example,
illustrating the results of the analysis for each statement of a program fragment, is given
in Figure 4.4, '

Initially, the analysis sets the value of the Length set to empty. When the analysis
reaches the end of a basic block, it resets the Position counter and initializes the Alive set
to be empty. For each statement in the basic block of the form z = y op 2, the following
actions are taken:

47

Posilion Alive Length

I{(d.u),(t4.2).(t3.2).(t1 ,3){12,3), (.0 {0, (arr, o). (b.4)}H]

b = read(); 4 {} {(d.o),(t4,2),(13,2),(t1,3).(12.3).(1,(:),(j,a),(arr,a).(b.4)}
1= 2; a {bn) {(die).(14,2),(t3,2),(11,3),(12,3), (o), (). {arr, o)}
} = 3; 2 {(b,1)} {(d.c),(14,2),(t3,2),(11,3),(t2,3),(i.0),(j.0), (arr, o)}
if {(b)) 1 {(b,1)} {(d,0),{(14,2),{t3,2),(11,3),(12,3),(i,2}, j,00), (arr, 0}
{ {(diu)l(laia)!(tala)l(t1la)l(i'a)l(arrla)}_

tl = garr; 4 {(i-3).(a"-4)} {(d.u).(ls.a).(tz.z).(t‘[.3)}

L2 = 4 * i; 3 {(11.2),(i,3)} {(d,ﬂ},(l3,2),(t2.2)}

t3 = tl 4+ t2; 2 {(11,2),(t2,2)} {(d,0),(13,2)}

g - *u3; e {(d0l} Metae
}
else
{ {{d,0d,(14,2),(13,2),(t1,3),(t2,3),(j, o}, {arr, o}

t2 =4 * §; 5 i(j;s).(a",4)} {(diu)l(t4'2)!(tala)l(t1la)i(mia)}

tl = sarr; 4 {(t2,3),(am,4)} {(d.).,{14,2),(t3,2).(t1,2)}

t3d = vl + t2; 3 {(t‘l .3),(!2,3)} {(dlu)l(t4l2)l(t3l2)}

td = t3 + 2; 2 {(t3,2)} {(d,0).(t4,2}}
} d = *td; 1 {(4,1) {{d, o)}

{a) (b)

Program fragment Analysis Results

Figure 4.4: An example of the short live range analysis for @ program fragment

1. Since z is being defined, then the tuple < z,u; > is removed from the Alive set to
reflect the fact that z is dead before this instruction. The tuple < z,u, > should
have been added to the Alive set by the analysis when it found the last use of z
in the basic block. The length of the live range of =, I, is set to the number of
instructions between this statement and the last use of z, which can be expressed as
Iz = Position — uy + 1. If 2 is not already in the Length set, then the tuple < «,1; >
is added to the set. If a tuple < =z, [, > is already in the Length set then the tuple
with the maximum length is put in the set; that is, the old tuple is removed and the
tuple < z, maz(ly,,, {z) > is added to the set (Note that we define maz(e,ly) = «
for any value of I,,).

2. Since y is being used, then we have to check if this is the last use of y. That is, if
v is not already in the Alive set, then we set u, = Position and we add the tuple
< y,uy > to the Alive set, to indicate that y is alive up to the current instruction and
to record the point where the last use of y is. The same action is taken for z.

3. The Position counter is increased by the number of machine instructions produced

48

by this statement. In general, a statement in the LAST tree corresponds to one
machine instruction,

In order to clarify these actions let’s illustrate how they work for an statement in the
example program. Let’s take the instruction t4 = t3 + 2 at the end of the else-body.
Before analyzing these statement, the value for the Alive setis {(¢4, 1)} indicating that the
Jast use of ¢4 was found in the instruction at position 1. The value for the Length set is
{(d,a)} indicating that d is a variable that was previously analyzed and has at least one
live range that crosses the boundaries of a basic block. The current value of Position is
2. Since 14 is being defined in this instruction, we remove (4,1} from Alive and we add
(14,2) to Length to indicate that the live range of {4 has a length of 2 instructions. Since {3
is being used in this instruction, we add (¢3,2) to the Alive set to indicate that the last use
of ¢3 in this basic block is at position 2. Finally, we increment the position counter before
proceeding to the next instruction. The same actions are taken for all the instructions until
we reach the beginning of the basic block.

When the analysis reaches the begin of a basic block, we are certain that the variables
that are in the Alive set cross the border of this basic block. Therefore, for each variable =
in the Alive set a tuple < z, @ > must be added to the Length set overwriting the value of
any previous tuple for x. When joining the information of two basic blocks A and B3, the
corresponding sets Lengthy and Lengthp have to be merged into the set Lengthpiq so
that the length of the longest live range for each variable is preserved. The result obtained
in Lengthrinat is given as input for the analysis of the basic block that precedes A and B.
The rules to merge the information of the length of the live ranges are the following:

1. If a variable y is in both Lengths and Lengthp, then the tuple < y, maz(l 4, yn) >
must be added to Lengthpinal.

2. For any tuple < w,l, > in Lengthy or in Lengthp, if the variable w is either in
Length or in Lengthpg, but not in both, then the tuple < w, {,, > must be added to
LERgthFina[-

Lets consider how this rules apply in our example when we merge the information
obtained for the else-body and the if-bedy. For example, in the else-body, the length of
the live range of 12 is 3 instructions. For the if-body, the length of the live range of 12 is

. 2 instructions. Therefore, when merging the information we take the longest live range,

49

i.e, (£2,3). On the other hand, from the information obtained from the else-body it can be
seen that j crosses the boundaries of that basic block; therefore, (j, o) must be added to the
merged Length set. The same rules are applied for all the variables in both sets.

After the analysis is performed we obtain, for every variable in the routine, the length
of its longest live range. With this information, and the knowledge of the length of the
reorder buffer LR and the decode bandwidth D35, the analysis can decide which variables
are short-lived and pass this information to the code generator. The code generator can
produce the code with the flagged live ranges so that the values generated by these live
ranges can be discarded at commit timne.

From the final result in our example (the set drawn inside the box), we can see that in
this program the variables , i, j, arr cross the basic block boundaries and, therefore, cannot
be considered short-lived variables. The other variables have very short live ranges and,
if we assume we have a machine with a reorder buffer of 8 entries (CR=8) and decode
bandwidth of 2 instructions per cycle (DB=2), then all of them would be considered short-
lived variables.

50

Chapter 5

Allocation of Short-Lived Variables

In the previous chapter, we presented the hardware and software mechanisms to reduce
the number of useless commits to the register file. We also discussed the issues that we
had to solve in order to achieve the goals stated in the description of the first problem to
be studied in this thesis (Section 3.3). In this chapter, we describe the software scheme
used to solve the second problem stated. That is, the need for a different register allocation
scheme, so that variables that are short-lived are not allocated to architected registers.

Up to now, we have only discussed how to modify the architecture so that the values
produced by short-lived variables are discarded at commit time. However, the register
allocator continues to assign these variables to physical registers even though the associated
values are never going to be put there. As we explained in Section 3.1, this constitutes a
waste of resources. The names provided to address the spaces located in the register file
should be used only for the variables that will, in effect, make use of them. That is, these
names should be used exclusively to allocate the long-lived variables. Since the values
produced by the short-lived variables are cnly used from the reorder buffer, these values
should be allocated into the space provided by the reorder buffer. Hence, our idea is to
expose the reorder buffer to the compiler as an extension of the programmable registers
for storing short-lived values.

With our proposal, the space in the reorder buffer is treated as additional registers
which we call symbolic registers. There are as many symbolic registers as entries in the
reorder buffer. However, a symbolic register is not tied to any particular location in the
reorder buffer. For example, if a value is assigned to the symbolic register two (sr2), that

51

does not mean the value will be stored in the second entry of the reorder buffer. The actual
association between a symbolic register and a reorder buffer entry is done at runtime.
When the instruction defining the value of the symbolic register enters the reorder buffer,
the renaming mechanism renames the symbolic register and assigns an entry in the reorder
buffer to store the value being produced.

Given the set of symbolic registers, the problem now is to modify the compiler to make
an efficient use of them. The register allocation process has to be modified to ensure that
short-lived variables are allocated independently and are assigned to symbolic registers.
In order to achieve this, we propose a register allocation scheme that is performed in four
steps:

1. Short-live-range analysis.
2. Allocation of short-lived variables.
3. Modified Chaitin-like allocation for remaining variables.

4. Introduction of spill code.

These steps are depicted in Figure 5.1(b) where they can also be compared to the steps
in the traditional register allocation process, which are represented in Figure 5.1(a) and
explained in detail in Section 2.2. As it can be seen, we are adding two steps to the
traditional Chaitin-like allocation process to allocate the short-lived variables first. As
shown in the figure, the whole allocation process has to be repeated after the introduction
of spill code. Later in this chapter, we will explain why the allocation of short-lived
variables must also be repeated after the introduction of spill code.

In the following subsections, we will explain, in more detail, the steps involved in the
proposed allocation scheme.

5.1 Allocation of Short-Lived Variables

The first step is to perform the short-live-range analysis, as we described in Section 4.3,
to find out which variables can be allocated to the symbolic registers. The second step
is to assign the symbolic registers to these short-lived variables. Since the live ranges of

52

[s |

Code

!
Renumbet Build Calculate Simplty Select
Graph Spill Costs Graph Colors

(a) Traditional register allocation

‘ Spif I
| Coda]

Renumber Build Ca'lculato Simpity Select
Graph Spill Casts Graph Colors

(b) Register allocation with short-lived variableanalysis

Figure 5.1: Traditional register allocation vs. short-lived variable allocation

these variables do not cross the basic block boundaries, they can be allocated in linear time
using a simplified version of the algorithm for register allocation at the basic block level
presented in [ASU8S].

For each basic block, the algorithm performs a backwards walk over the tree assigning
symbolic registers to the short-lived variables it finds in each statement. The information
on the registers assigned to the variables is stored in the tree so that it can later be accessed
by the code generator. The algorithm makes use of two sets which we call Position and
Registers Used. The Position set keeps track of the variables that already have symbolic
registers assigned. Each element in the set is a tuple of the form < #,sr, >, where z is a
short-lived variable and sr; is the symbolic register assigned to it. The Registers Used set
keeps track of the symbolic registers that are currently used . Initially both sets are empty.
The analysis is exemplified in Figure 5.2, In this example, we assume that the variables
ab,cd,ij are long-lived and, therefore, the algorithm does not allocate symbolic registers
to them.

For each statement of the form z = y op z, the algorithm performs the following
actions: |

53

tl

t2 =
t3 =

t4
cl
t2
£3
t5
c

d

{a) Program fragment

1. If z is a short-lived variable, since z is being defined, then the symbolic register
associated to z, sr, can be freed. To reflect this, the tuple < z, sr; > is removed from
the Position set and the register assigned to it, sr;, is removed from the Registers Used
set.

2. If y is a short-lived variable, then the algorithm checks if y is not already in the
Position set. If it is not, then the algorithm assigns to it one symbolic register that is
not in the Registers LIsed set, say sy, and adds the tuple < y, sry, > to the Position set.
Also, the symbolic register sry is added to the Registers Used set. The same action is

&a;

g8 * i;
t2 + 4;
tl + t3;
&b

8 * j;
t2 + 4;
tl + t3;
*t4;
k5,

Pasitlon

{}

{«1,15)
[<t1,1>,<12,25)
{<11,15,<13,25}
{<t4,25}
[<14,25,<11,15)
{<t4,2>,<t1,1>,<12,35}
{<t4,2>,<11,15,«13,35}
{<15,1>,<14,25}
{<t5,15}

Symbolic registers usad

{

{1}
{1.2}
{1 l2}
{2}
{1.2}
{1,2,3}
{1,2,3}
{1.2}
{1}

(b} Allocation of short-lived variables

taken for z, if = is a short-lived variable.

Using this algorithm, independent live ranges that belong to the same variable can be
allocated to different registers, as for the variables {2 and t3 in the previous example. In
this case, {3 has 2 live ranges. In one of them, i3 gets allocated to the symbolic register
three (sxr3). In the other, it gets allocated to the symbolic register two (sx2). £2 live ranges
get allocated analogously.

It is important to note here that, since the number of symbolic registers available is
equal to the number of entries in the reorder buffer, and since the length of each live range
does not exceed the length of the reorder buffer (the short-live-range analysis ensures this
is true), the number of symbolic registers is always enough to allocate all the short-lived

variables without requiring the introduction of spill code.

54

Figure 5.2: An exaniple of the analysis for the allocation of short-lived variables

The assembly code produced after the symbolic registers have been allocated is shown
in Figure 5.3. In this figure, we show how the code looks when the variables are allocated
using the traditional Chaitin-like allocation scheme (Figure 5.3(b)), compared to the code
produced when we use our proposed allocation scheme. Note that our scheme uses three
symbolic registers and two physical registers compared to the five physical registers used
by the traditional allocation scheme!.

tl = ga; add r6,r3C,#-36 add srl,r30,#-36
t2 =8 * i; slli r3,r5,43 slli sr2,r5,4#3
t3 = t2 + 4; addi r3,r3,#4 addi sr2,sr2, #4
t4 = tl + t3; add r5,r6,r3 add sr2,srl,sr2
tl = &b; add r6,x30,#-40 add srl,r30, #-40
t2 =8 * 3; slli r3,r4,#3 s11i sr3,r4,#3
t3 = t2 + 4; addi r3,r3,#4 addi sr3,sr3, #4
t5 = £l + t3; add r4,r6,r3 add srl,sri,sr3
c = *t4; lw r8,0(r5) lw r4,0(sr2)

d = *¢5; lw r3,0(r4) lw r5,0(srl)

(a) Program fragment (b) Code produced after (¢} Code produced after separate
Chaitin-like allocation allocation for short-lived variables

Figure 5.3: An example of the code produced for the two allocation schemes

5.2 Allocation of the Long-Lived Variables

After all the short-lived variables are allocated, the next step is to allocate the remaining
variables using Chaitin’s allocator with the Briggs improvement [CAC*+81, Bri92]. The
advantage of our scheme at this point is that, since many of the variables have already
been allocated in the previous step, in this step the size of the interference graph is smaller
than what it would be for the traditional allocator, thus simplifying the problem. This
also implies that fewer variables are competing for the physical registers which means
a decrease in the amount of spill code required. Yet, it is still possible that during the
selection of the colors for the interference graph, the Chaitin allocator decides to spill some
variables to memory thus requiring the introduction of spill code.

'We do not count r30 here since in DLX this register is reserved to keep the value of the frame pointer

55

5.3 Introduction of Spill Code

When introducing spill code, the register allocator inserts a load before each use and a store
after each definition for each variable being spilled. The introducticn of these load/store
instructions has two effects on our mechanism;

1. The variables that are spilled now become short-lived variables.

2. Theintroduction of loads and stores may cause some short-lived variables to become
long-lives.

These two effects can be better understoed by examining the example presented in
Figure 5.4. Figure 5.4(a) presents a fragment of a program together with the representation
of the corresponding live ranges before the spill code is introduced. The gray boxes
represent zones where the register pressure is assumed to be high enough to require the
introduction of spill code?. In the example, z is not short-lived and has several uses,
while w and u are short-lived variables. For the purposes of our example, we are going to
assume that the length of the live range of w is the maximum length for w to be considered
short-lived. Let us assume that, since the register pressure is high, the register allocator
selects = to be spilled, and let us examine the effect of introducing spill code for this
variable, as depicted in Figure 5.4(b). The first effect is that since = was spilled, its live
range is now composed of several small live ranges causing = to become a short-lived
variable that can be allocated using symbolic registers. This is an advantage of our scheme
over Chaitin’s allocator which repeats the whole allocation process again because spilled
variables continue to interfere with the other variables in the interference graph.

The second effect of the introduction of spill code is that since the length of the live
range for w was on the limit of being considered short, and since some instructions were
introduced for the spill code of z, then the live range for w is not short anymore, and w has
to be allocated using the physical registers. This forces the repetition of the whole process
to check if anymore spill code is required for the variables that interfere with w. We have
observed, though, that this does not happen too often and that our process converges faster
than in the traditional Chaitin allocation. Finally, note that despite the fact that the live
range for u is longer now, u is still a short-lived variable and can still be allocated using
symbolic registers. This implies that no additional spill code is going to be introduced in
this zone with high register pressure.

*We assume that some registers are occupied by other program variables not shown in the figure,

56

X=2z Q x=2z i
store x;

i : .
]) i
| 1o loadxy o g
i LoyswER s
) (g SIS OATIEI T |

o s e e e oy

{a) Before spill code (b) After spill code

Figure 54: Effect of spill code on the allocation of short-lived variables

57

Chapter 6

Experimental Results

In the two previous chapters, we presented the hardware and coftware schemes used to
solve the problems of reducing the number of useless commils to the register file and the
allocation of the short-lived variables to the storage provided by the reorder buffer. In
this chapter, we perform experiments using our testbed to show the effectiveness of the
proposed solution.

In order to determine the effect of the suggested methods, we performed the following
measurements:

1. Effectiveness of the short-live-range variable analysis in terms of the percentage of
program variables that are detected to be short-lived variables, and in terms of the
percentage of writes to the register files that can be discarded by using the information
provided by this analysis.

2. Effect of the reduction of the write ports to the register files on the performance of
the current execution model and on the performance of our proposed (optimized)
model in which values produced by short-lived variables are not committed to the
register file.

3. Effectiveness of the scheme for the allocation of short-lived variables to the symbolic
registers in the reorder buffer in terms of the percentage of improvement in the
execution time for the different benchmarks.

58

We sstart our discussion by presenting the conditions under which the experiments were
carried out. First, in Section 6.1, we list the different tools used to conduct th. experiments
and the set of benchmarks employed. Then, in Section 6.2, we instantiate the execution
model by specifying the configuration parameters for what we call the base model. This
base model specifies the different resource sizes and latencies for the processor used in our
simulations.

Before presenting the detailed results, we give a short summary to facilitate the under-
standing of the analyses (Section 6.3). After this, we present and analyze the detailed data
obtained through the experiments (Section 6.4, Section 6.5, and Section 6.6).

6.1 Testbed and Benchmarks

All analyses and experiments were carried out using the McGill Compiler and Architecture
Testbed (McCAT) testbed (For a more detailed description see Appendix A). This testbed
consists of an optimizing C compiler (McCAT) [HDE*92] and a superscalar processor
cycle-by-cycle simulator (SuperDLX). SuperDLX [Mou93] simulates many of the features
described by Johnson [Joh91] including dynamic scheduling, branch prediction, register
renaming and the use of a reorder buffer.

For our experiments, we have used 10 benchmarks which are briefly described here:

e Alvinn: Single precision {loating point benchmark from the SPEC 92 suite. It trainsa
neural network using backpropagation in order to keep an autonomous vehicle on
the road.

o Bubble: Kernel integer benchmark. Performs recursive bubble sort.

« L8: Loop 8 of the Livermcore loops. Double precision floating point benchmark.
Chosen because it is one of the loops with the most register pressure.

e L14: Loop 14 of the Livermoore loops. Double precision floating point benchmark.
Chosen because it is one of the loops with the most register pressure.

e L8unroll: Loop 8 of the Livermoore loops unrolled twice to increase register pressure.

o L1l4unroll: Loop 14 of the Livermoore loops unrolled twice to increase register pres-
sure.

59

o Linpack: Kernel benchmark from the "LINPACK" package of linear algebra routines
developed by Dongarra.

o Quickrand: Kernel integer benchmark. Implements a recursive version of Quicksort.

o Tomcat: Floating point benchmark from the SPEC 92 benchmark suite. It performs
mesh generation.

o Whetstone: Synthetic benchmark intended to be representative of floating point in-
tensive programming.

As it can be seen, our set of benchmarks comprises code from different types of appli-
cations. We included some integer kernels taken from non scientific applications, some
floating point kernels from scientific code and some complete floating point scientific ap-
plications. We believe that although the sample of benchmar}s is small, it is representative
of a wide set of applications.

6.2 Base Model

All experiments were performed by simulating the behavior of the execution model de-
scribed in Section 2.1.3. We instantiated this model by specifying the values of the different
parameters as shown in Table 6.1. The processor resulting from this specification is our
base model for the experiments to be carried out. Some of the parameters of the base model,
like the decode bandwidth, the number of memory. accesses per cycle and the memory
latency, were selected according to real values found in some recent superscalar processor
designs. The base model uses a reorder buffer size of 16 entries and assumes 4 write ports
per register file. The different measurements are obtained by varying some parameters of
the base model, e.g., the reorder buffer size between 8, 16 and 32 entries, and the number
of register write ports per register file. In such cases, the sizes of the instruction dispatch
window and the load and store buffers are always kept equal to the size of the reorder
buffer. For simplicity, we assume that the base model and its variations have a perfect
cache and we briefly comment on the effect of a non-perfect cache on our results. Also
for simplicity, we assume that we have enough functional units (five of each type) to exe-
cute the operations that are not related to memory accesses and that the latency of these
operations is one cycle.

60

Parameter Value

Instruction queue 16 instructions

Decode bandwidth 4 instructions per cycle
Reorder buffer 16 entries

Memory latency 2 cycles

Memory accesses 1 per cycle

Address resolution functional units | 1

Other functional units 5 of each type
Latency of other functional units T cycle

Write ports per register file 4

Table 6.1: Configuration parameters specified for the base model

6.3 Summary of Results
The major results of our experiments are:

o The short-live-range analysis can be successfully used to avoid the useless commit
of instructions to the register files. The proposed analysis successfully captures most
of the short-lived variables: on the average, close to 90% (89.34) of all variables are
detected to be short-lived when we assume a reorder buffer with 16 entries, and
more than 90% (91.92) when the reorder buffer size is increased to 32. The combined
architecture and compiler scheme can effectively make use of such an analysis and
eliminate a great majority of the useless writes to the register files: on the average

87% (87.98) for the base model and close to 90% (89.71) when reorder buffer size is
increased to 32. '

¢ The mechanism devised to avoid the useless commits of instructions can be used to
reduce the number of write ports to the register files without affecting performance.
In fact, using this mechanism we could reduce the number of write ports to one and
obtain a loss on performance of only one percent. We performed these measurements
with the model using a reorder buffer of 32 entries. In this way, we obtained the
largest performance impact when we reduced the number of write ports.

61

¢ The proposed method for allocation of short-lived variables to symbolic registers can
reduce the number of physical registers required and decrease the amount of spill
code needed thus improving execution time. The average improvement compared
to the traditional allocation method is substantial. When the register pressure is high
(only 4 registers are effectively available) the improvement exceeds 22% (22.35%) for
a reorder buffer of size 16, and 26% (26.43%) when the reorder buffer size is increased
to 32.

We will further elaborate on these results in the following three sections.

6.4 The Effect of Short-live-range Analysis and Architecture Sup-
port for Useless Commit Elimination

The effectiveness of the short-live-range compiler analysis (explained in Section 4.3} and of
the hardware mechanisms thatallow the elimination of the useless writes to the register file
(explained in Section 4.1) is illustrated in Table 6.2. In this table are the measurements of
the effectiveness of our combined hardware/software mechanism for different sizes of the
reorder buffer. For each size, we present the percentage of variables that were detected by
the compiler to be short-lived variables, and the percentage of writes that were discarded
at run time. It can be seen, that even for a small reorder buffer (of size 8), on the average
more than 80% of the variables used at the low level representation of the program are
being detected as short-lived variables. This is caused, as explained before, by the large
number of temporal variables introduced by the compiler. Most of these variables, plus
the ones that are spilled to memory by the register allocator, are successfully captured by
our compiler analysis: on the average close to 90% (89.34) when the reorder buffer size
is 16 (base model), and 80.13% and 91.92% when the reorder buffer sizes are 8 and 32
respectively.

Furthermore, the architecture mechanism proposed can make use of the information
provided by the compiler and eliminate a great majority of useless writes to the register
files. The reduction on the average is 88% (87.98) for the base model, and is 76.34% and
89.71% when the reorder buffer sizes are 8 and 32 respectively. These results are illustrated
in Figure 6.1. In this graph, we show the lowest, the highest and the average percentage
of discarded writes for each size of the reorder buffer. It can be seen that in some cases

62

Reorder Buffer
8 16 32

Benchmark Short | Discarded Short Discarded Short | Discarded

Variables {| Writes | Variables | Writes Yariables_ Writes
Alvinn 75.33 69.38 84.44 88.13 86.44 88.47
Bubble 81.25 79.56 89.58 89.76 91.67 91.81
L8 73.15 72.04 89.49 96.06 94.16 98.80
Li4 83.33 83.95 88.33 88.37 91.67 90.78
L8unroll 81.37 70.90 95.24 95.60 96.70 98.34
L14unroll 89.35 83.97 9273 88.41 94.29 90.80
Linpack 80.20 84.37 89.93 90.88 94.14 91.46
Quickrand 76.60 71.73 80.85 76.61 80.85 76.61
Tomcat 79.05 80.26 91.38 88.17 94.80 89.99
Whetstone_ 81.62 67.27 91.39 77.76 94.49 80.00
Average 80.13 76.34 89.34 87.98 91.92 89.71

Table 6.2: Effectiveness of the short-live-range analysis and the architecture support for reducing

useless commits

% Discarded Writes

100

| -S| Average Ei

High

16
Reorder buffer size

Figure 6.1: Percentage of discarded writes to the register file

63

the percentage of discarded writes is very high, more than 98%. On the other hand, the
lowest vzlues are still considerably high. For the base model, the lowest percentage is
76%. These results are substantial. They show that, if the proposed mechanisms are used
in the design of a superscalar processor, we could implement a processor that is able to
issue NV instructions, but only requires a minimum of [(1 — 0.88) *+ N] write ports to the
register file since we are discarding 88% of the writes to the register file!. As mentioned
in Section 2.1.2, the complexity of implementation of the register file is a very important
factor in processors that are able to execute several instructions per cycle,

Moreover, if we compare the results of this table to the results presented in Table 3.1,
we can see that our analysis is able to detect a great majority of the useless commits. For
reorder buffers of sizes 16 and 32, the difference is less than 7%. For a reorder buffer with
8 entries, the difference is less than 14%.

6.5 The Effect of Reducing the Number of Register Ports Needed

Since the percentage of commits that can be discarded is large, we decided to measure
the loss of performance of the proposed (optimized) model when the number of write
ports per register file is restricted, and compare it to the loss of performance for the base
model under the same restriction. The results of the comparisons are tabulated in Table 6.3
and illustrated in Figure 6.2. The left side of Table 6.3 shows the relative performance
obtained by varying the number of register write ports when the compiler and architecture
optimization proposed in this thesis is notapplied. Wereport the performance of variations
of the base model when the number of write ports to the register files is restricted to 1, 2
or 3 ports per register file compared (in normalized form) to the performance of the base
model when the number of ports is 4. Note that, since the number of instructions decoded
by cycle in the base medel is also 4, we call this the not restricted model. Figure 6.2 shows
in a bargraph the performance of the base and optimized models normalized to the not
restricted model. From this figure, it can be seen that restrictions on the number of ports to
the register file can seriously affect the performance of the base model. Using, for example,
only one port per register file can degrade the performance of the base model by 55%. If
we increase the number of ports to two per register file we still degrade performance by
18%.

'This is an approximation based on an average measurement. In order to be more cautious, a designer
could uscan approximation based on the lowest percentage of discarded writes, i.e., decide to use a minimum
of [{1 —0.76) » N'] write ports.

64

Base Model Optimized

Write Ports Write Ports
Benchmark | 1 | 2 [3 [1] 2] 3
Alvinn 0.46 | 0.82 | 097 |(1.00 { 1.00 | 1.00
Bubble 0.38 (0.74 | 0.94 || 1.00 | 1.00 | 1.00
L8 0.34 | 0.69 | 0.97 || 1.00 | 1.00 | 1.00
L14 0.44 1 0.85| 1.00 }} 0.96 | 1.00 { 1.00

L8unroll 0.34 | 0.68 | 0.96 || 1.00 | 1.00 | 1.00
Ll4unroll | 0.44 { 0.87 | 1.00 ([0.96 | 1.00 | 1.00
Linpack 0.45 | 0.86 | 1.00 || 1.00 | 1.00 | 1.00
Quickrand | 0.66 | 0.95 | 1.00 || 1.00 | 1.00 | 1.00
Tomcat 0.43 ; 0.80 | 0.99 || 0.99 | 1.00 | 1.00

Whetstone || 0.55 | 0.96 | 1.00 || 0.99 | 1.00 | 1.00

Average 0.45 | 0.82 |1 098 || 0.99 | 1.00 } 1.00

Table 6.3: Performance effect of the number of write ports on the base and optimized models

Base B Optimized B8] Not Restricted

© o o
- (o1} (o]

Normalized Performance

o
(M

Number of write ports

. Figure 6.2: Performance of base and optimized models when restricting the number of write poris

65

The reader might be surprised by the variations in the performance loss of the different
benchmarks when the number of register ports is reduced to one per register file (first col-
umn of Table 6.3). These variations are due to the different nature of the benchmarks used.
Benchmarks with little parallelism (e.g., Quickrand) will be less affected than benchmarks
with enough parallelism (e.g., Tomcat, Alvinn) to fully utilize the resources provided in
the base model. Another factor that affects this measurement is the instruction mix for
each benchmark, Since we are restricting the number of write ports to each register file
and our model provides a register file for integer operations and another register file for
floating point operations, the benchmarks in which the mix of instructions is mostly in-
teger {e.g., Bubble) will be affected more than the benchmarks where the distribution of
instructions is more even (e.g., Whetstone)

We applied the proposed optimization to the base model and performed the same
measurements. The results, on the right side of the Table 6.3, show that the loss in
performance is very small, as it was expected. Around 1% when using only one write port
to each register file. This can be easily noticed in Figure 6.2 because the height of the bars
for the optimized and the not restricted models is almost identical.

6.6 Effect of the Allocation of Short-Lived Variables

Table 6.4 and Figure 6.3 show the improvement obtained in the overall execution time of the
henchmarks by using the short-lived variables allocation method explained in Chapter 5.
To show the effectiveness of the method, we vary the number of registers available for
the register allocation process (4, 8 and 16), and the size of the reorder buffer (8, 16 and
32) from the base model. The performance improvement is calculated with the formula
(eyeles(iraditional) — cycles(proposed))/cycles(traditional). Where traditional refers to
the Chaitin like allocation method and proposed refers to our improved allocation scheme.

It can be seen from the Figure 6.3 that the higher the register pressure, the higher the
improvement obtained by our method. When the register pressure is high (only 4 registers
are available), the improvement is significant: over 22% (22.35%) for a reorder buffer of
size 16, and 15.96% and 26.43% when the reorder buffer size is 8 and 32 respectively. As
explained in Chapter 5, this improvement is obtained because the use of symbolic registers
increases the number of registers available for the allocation of long-lived variables, and
because the variables that would be spilled by the traditional allocator can be allocated

66

instead to the symbolic registers thus reducing the possibilities of requiring the introduc-
tion of more spill code. It can also be seen from this figure that for a given level of register
pressure {number of registers available) the improvement that can be obtained depends
on the size of the reorder buffer. The reason for this is that with larger reorder buffers
there are better chances to find more short-lived variables and, therefore, further reduce
the register pressure.

It is important to note that we are taking all of our measurements assuming a perfect
cache and that we are making use of large load/store buffers. Without the use of these
features, the improvements obtained by our method would be even greater. That is,
the results reported in this section are somewhat conservative and can be used as a safe
estimate of the potential improvement gained from our method. In fact, in a previous
technical report [LCG94), we presented these same measurements but without using the
load forwarding mechanism in the load/store buffer. In that case, the improvements
obtained by our mechanism were even higher. The reason for the decrease in performance
improvement obtained is that the load forwarding feature helps to reduce the effect of the
introduction of spill code. Since we are using large load/store buffers, there is a better
chance that the loads introduced by the register allocator find the data they require in the
load/store buffer. Thus, in these cases, the loads do not have to wait until the data is
fetched from memory, and, therefore, the benefits of our scheme are partially hidden.

67

Number of registers

4 8 16

Reorder Buffer Reorder Buffer Reorder Buffer
Benchmark | 8 | 16 [32 | 8 | 16 | 32 | 8 | 16 | 32
Alvinn 2156 | 16.81 | 15.44 | 033 | 022 | 0.60 | 0.00] 0.01 | 0.01
Bubble 11.00 | 19.42 { 3052 | 0.04 | 0.06 | 0.04 | 0.04 | 006 | 0.04
L8 1550 [28.24 [3197 [518 | 6.48 | 6.52 [0.03 [0.05 | 0.07
L14 14.83 | 2051 | 2565 | 331 | 0.11 | 6.84 [218 | 216 | 272
L8unroll [25.68 | 36.57 | 42.01 [527 | 9.11 | 11.23 [0.65 | 1.63 | 2.00
Ll4unroll || 20.60 | 27.76 | 26.70 | 5.89 | 9.34 | 1657 | 6.43 | 6.30 | 4.88
Linpack 1292 [1530 | 2708 [0.15 | 1.80 | 1.11 | 070 | 1.58 | 1.67
Quickrand | 15.89 | 26.94 | 32.50 | 0.23 | 359 | 5.56 | 0.00 | 2.26 | 4.17
Tomcat 11.81 | 16.15 | 14.69 | 335 | 832 | 7.63 | 1.73 | 341 | 4.07
Whetstone (| 9.76 | 15.83 | 17.73 | 527 (13.10 | 1429 | 7.64 | 16.20 |{ 15.88
Average 15.96 | 2235 [2643 [290 | 521 | 7.04 [194 | 337 | 355

Table 6.4: Percentage of improvement obtained by allocation of short-lived variables

30

% of Perf. Inprovement

Reorder Buffer Size: IR s BB 16

8
Number of Registers

16

-Figure 6.3: Average improvement obtained by the allocation of short-lived variables

68

Chapter 7

Related Work

In our research work we have discussed issues like the reduction of ports to the register file,
the exposition to the compiler of the renaming capabilities provided by the reorder buffer,
and modifications to the register allocation process to exploit the occurrence of short-lived
variables. In this chapter, we briefly describe the work related to these issues. For each
study we give a brief description and, whenever applicable, we compare it against our
research.

In [PS88], Pleszkun and Sohi remark upon the occurrence of the useless commit of
instructions to the register file when using state maintenance mechanisms like the reorder
buffer or the Register Update Unit - RUU [SV87]. As mentioned in Section 2.1.1, the RUU
is an implementation of a centralized instruction window that also supports the features
of the reorder buffer. The authors study, among other factors, the performance increase
obtained by the out-of-order issue of instructions with the support of the RUU. They briefly
discuss the complexity of the implementation of the buses between the functional units, the
RUU and the register file. They conclude that because of the RUU capability of forwarding
the generated values to other instructions in the RUU, the number of read ports from the
register file can be reduced thus reducing the complexity of the buses. They also notice
that a register update is not necessary if there is a succeeding instruction in the RUU unit
that updates the value of the same register. Based on this, they suggest that the number
of write ports to the register file could also be reduced without affecting performance.
However, they do not perform any experiments on these observations. The authors do
not mention how the unnecessary writes to register can be avoided in the presence of
speculative execution and interrupts.

69

In [PGH*+87], Pleszkun et al. propose exposing the structure of the reorder buffer to
the compiler to improve the performance of the processor. In their model the compiler
can use the reorder buffer in 3 ways: 1) to access old register values while new ones are
being computed, 2) to access values that been generated but have not been committed to
the register file, and 3) to select instructions to be discarded after they have been issued
but before they have committed. With these features, the compiler is able to improve the
scheduling of the instructions and provide speculative execution. As in our research, the
authorsalso face the problem of determining at compile time which instructions are present
in the reorder buffer when another one is decoded. To solve this problem they propose to
keep the number of instructions in the reorder buffer constant by allowing one instruction
to commit only if another one has been put at the end of the buffer. This research work
also proposes to handle the interruptions by saving the state of the reorder buffer and they
note that this process can be expensive. Qur work has been influenced by theirs, but our
objectives are different. Their work does not make explicit use of the renaming capabilities
of the reorder buffer. Also, since in their model at most one instruction is committed each
cycle, they do not have to consider the problem of reducing the complexity of the register
file and the associated busses.

In [F592], Frankin and Sohi make an extensive analysis of the characteristics of the
communication between instructions through registers. In their study they conclude that
many of the values generated are used only once and that most of the values are dead
soon after they have been created, i.e., between 30-40 instructions later. They also observe
that, by using a mechanism to buffer 30 or more instructions, at least 80% of the writes
to the register file are unnecessary. These observations resulted from analyses of code
produced by two separate commercial compilers. Moreover, the authors briefly discuss
compiler mechanisms that could be used to reduce the number of writes to the register

.- file. However, in the mechanisms proposed they do not consider the effect of speculative

execution or the problem of handling interrupts. Our experimental results reported in
Section 3.2 and Chapter 6 were derived independently. The observation that most of the
short-lived variables have live ranges within a basic block is new. Also, our solution
strategy and implementation scheme are novel, and can effectively work in the presence
of speculative execution. Finally, the application of their observations is different from
ours: they use their results in the design of the Multiscalar processing paradigm in order
to reduce the traffic between the elements of the distributed register file that this model
uses.

Uht and Johnson [U]92] discuss different issues related to the complexity of the data

70

path in a highly concurrent machine. Their execution model has 32 processing elements
and provides special hardware support for loop execution. Their model also supports
register renaming by using a mechanism called the “shadow sink matrix”. The shadow
sink matrix provides a different set of renamed registers for each iteration of the loop. They
observe that building a data path for such a highly concurrent machine can be extremely
difficult or even impossible. To reduce the complexity of the data path they propose to
duplicate the sink matrix so that each processing element can read values from their own
matrix. Also, they propose to extend the model so that writes to scalar variables can
be eliminated if they are superseded by writes to the same variables in succeeding loop
iterations. They report that with this model they can eliminate 72% of the register writes
thus allowing further simplification of the data path. Their mechanism is quite interesting,
but their architecture model is very different from ours.

Finally, in [HC94], Hoogerbrugge and Corporaal study the register file port require-
ments of Transport Triggered Architectures (TTA). In this type of architecture, the processor
is not programmed by specifying the operations to be executed, which causes implicit data
movement between the register files and the functional units. Rather, the program explic-
itly specifies the data movements. Therefore, an instruction of the form:

add rl, r2, r3
is converted to these three instructions:
r2 =>» alul.addo; r3 -> alul.add.t; alul.addr -> rl

which establish the movement between registers and specific functional units. In thissmall
example, 2 is moved to the functional unit 1 {alu1) as an operand for the add operation,
r3 is moved to the same functional unit as the trigger for the add, and, finally, the result
of the add is sent from the functional unit to r1. The researchers show that this type of
architecture requires less ports to the register file. The reason is that their instructions
can be used to forward a value between two functional units thus avoiding the access to
the register file. Their experiments show that this method can eliminate 50% of the read
traffic and 65% of the write traffic to the register file. Our hardware/software scheme
can eliminate a larger percentage of writes to the register file because of the buffering of
instructions in the reorder buffer. This buffering allows the forwarding of values between
instructions thatare not as close togetheras it isrequired in the TTA forwarding mechanism.

Although the works listed here are related to some of the issues we have examined
in this thesis, we are not aware of any research that explicitly shows how to modify

71

the register allocator so as not to assign short-lived variables to physical registers, thus
reducing register pressure and spill cost.

72

Chapter 8

Conclusions and Future Work

Modern commercial superscalar processors are now able to use features that for years were
exclusively used by supercomputers. Hardware features like branch prediction and dy-
namic scheduling supported by mechanisms like the reorder buffer or the Register Update
Unit are becoming standard elements in the design of current and future microprocessors.
Moreover, the trend of introducing more hardware features on a single chip is expected
to increase as the transistor densities continue to climb [FPT94]. Accordingly, in the near
future we expect to see superscalar processors with larger on-chip caches, larger register
renaming buffers and larger windows for dynamic scheduling. The introduction of these
features poses new challenging problems for the compiler. B

In this thesis we have seen that by allowing the compiler to access the different resources
used by thearchitecture, theimplementation of some features in hardware can be simplified
and a better utilization of the provided resources can be obtained. In particular, we
have demonstrated how compiler and architecture techniques can be combined to take
advantage of the fact that many program variables are short-lived. Qur implementation
and experimental results have provided ample evidence that the proposed optimizations
can be effective and may lead to significant performance improvements with relatively
few architectural modifications.

One possible direction for future research is to continue improving the scheme for
the allocation of the short-lived variables to the locations provided by the reorder buffer.
One way to do this is by using a modified version of live range splitting [Bri92]. Our
current implementation of the register allocator naively introduces loads/stores for each

73

use/definition of a spilled variable. We believe this can be improved by splitting the
live ranges of spilled variables in such a way that the resulting range fragments are short
enough to be considered short-live ranges, but long enough to span several uses of the
same variable. In this way, the new live ranges could still be allocated to the locations in
the reorder buffer and we would further reduce the number of load/stores introduced in
the spilling process.

In this thesis we have studied how the register allocation process can take advantage
of the exposure of hardware mechanisms like the renaming buffers. Another direction
of investigation would be to analyze whether other compiler optimizations could benefit
from the knowledge of mechanisms like the reorder buffer. In particular, it would be
interesting to study the effect on the problem of instruction scheduling. If the scheduler
had knowledge of the size of the reorder buffer if could, for example, decide in some cases
not to separate the producer and the consumer of a value by a number of instructions
greater than the size of the reorder buffer. In this way, it is possible that the live range
associated to the value becomes a short-live range and we could use our allocation scheme
to allocate this range into the locations provided by the reorder buffer thus decreasing the
register pressure.

74

Bibliography

[AA93]

[AAD*93]

[AHS2]

[AKC86]

[ASUS8]

[BCKT89]

{BP93)

Donald Alpertand Dror Avnon. Architecture of the Pentium Microprocessor.
IEEE Micro, 13(3):11-21, June 1993.

Tom Asprey, Gregory S. Averill, Eric Delan, Russ Mason, Bill Weiner, and
Jeff Yetter. Performance Features of the PA7100 Microprocessor. [EEE Micro,
13(3):22-35, June 1993,

Marc Auslander and Martin Hopkins. An overview of the PL.8 compiler.
In Proceedings of the SIGPLAN 82 Symposium on Compiler Construction, pages
22-31, Boston, Massachusetts, June 23-25, 1982. ACM SIGPLAN. SIGPLAN
Notices, 17(6), June 1982.

R. D. Acosta,]. Kjelstrup, and Torng H. C. An Instruction Issuing Approach
to Enhancing Performance in Multiple Functional Unit Processors. IEEE
Transactions on Computers, 35(9):815~-828, September 1986.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Uliman. Compilers — Principles,
Techniques, and Tools. Addison-Wesley Publishing Company, Reading, Mas-
sachusetts, corrected edition, 1988.

Preston Briggs, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Coloring
heuristics for register allocation. In Proceedings of the SIGPLAN ‘89 Conference
on Programming Language Design and Implementation, pages 275~284, Port-
land, Oregon, June 21-23, 1989. ACM SIGPLAN. SIGPLAN Notices, 24(7),
July 1989.

Michael Butler and Yale N. Patt. A Comparative Performance Evaluation
of Various State Maintenance Mechanisms. In Proceedings of the 26th Annuzal
International Symposium on Microarchitecture, pages 70-79, Austin, Texas, De-
cember 1-3, 1993. IEEE-CS TC-MICRO and ACM SIGMICRO.

75

[Bri92]

[BW90]

[CAC*81]

[CDN92]

[CF87]

[CHS0]

[Cha82]

{CK91]

[DA92)

Preston Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice Uni-
versity, Houston, Texas, April 1992. Published as Rice COMP TR92-183.

H. B. Bakoglu and T. Whitside. RISC System/6000 hardware overview.
In Mamata Misra, editor, IBM RISC System/6000 Technology, pages 8-15.
International Business Machines Corporation, first edition, 1990. Order No.
SA23-2619.

G.]. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins,
and P. W. Markstein. Register allocation via coloring. Computer Languages,
6:47-57, January 1981.

Andrea Capitanio, Nikil Dutt, and Alexandru Nicolau. Partitioned regis-
ter files for VLIWs: A preliminary analysis of tradeoffs. In Proceedings of
the 25th Annual International Symposium on Microarchitecture, pages 292-300,
Portland, Oregon, December 1-4, 1992. ACM SIGMICRO and IEEE-CS TC-
MICRO.

Ron Cytron and Jeanne Ferrante. What's in a name? or the value of re-
naming for parallelism detection and storage allocation. In Proceedings of the
1987 International Conference on Parallel Processing, pages 19-27, St. Charles,
Illinois, August 17-21, 1987.

Fred C.Chow and John L. Hennessy. The priority-based coloring approach to
register allocation. ACM Transactions on Programming Languages and Systems,
12(4):501-536, October 1990,

G. J. Chaitin. Register allocation & spilling via graph coloring. In Proceed-
ings of the SIGPLAN 82 Symposium on Compiler Construction, pages 98-105,
Boston, Massachusetts, June 23-25, 1982. ACM SIGPLAN. SIGPLAN Notices,
‘l7l(\6), June 1982.

David Callahan and Brian Koblenz. Register allocation via hierarchical
graph coloring. In Proceedings of the SIGPLAN ‘91 Conference on Programming
Language Design and Implementation, pages 192-203, Toronto, Ontario, June
26-28, 1991. ACM SIGPLAN. SIGPLAN Notices, 26(6), June 1991.

Keith Diefendorff and Michael Allen. Organization of the Motorola 88110
superscalar RISC microprocessor. IEEE Micro, 12(2):40-63, April 1992.

76

[DFL72]

[DHB89]

[DOH94]

[Don94]

[FERNS4]

[Fis83]

[FPT94]

[FR91]

J. B. Dennis, J. B. Fosseen, and J. . Linderman. Data flow schemas. In
International Symposium on Theoretical Prograntming, number 5 in Lecture
Notes in Computer Science, pages 187-215, Springer-Verlag, Berlin, 1972.

James C. Dehnert, Peter Y.-T. Hsu, and Joseph P. Bratt. Overlapped loop
support in the Cydra 5. In Proceedings of the Third International Conference on
Architectural Support for Programming Languages and Operating Systems, pages
26-38, Boston, Massachusetts, April 3-6, 1989. ACM SIGARCH, SIGPLAN,
SIGOPS, and the IEEE Computer Seciety. Computer Architecture News, 17(2),
April 1989; Operating Systems Review, 23, April 1989; SIGPLAN Notices, 24,

. May 1989.

Keith Diefendorff, Rich Oehler, and Ron Hochsprung. Evolution of the
PowerPC Architecture. JEEE Micro, 14(2):35-49, April 1994.

Christopher M. Donawa. The design and implementation of a structured
backend for the McCAT C compiler. Master’s thesis, McGill University,
Montréal, Québec, March 1994,

Joseph A. Fisher, John R. Ellis, John C. Ruttenberg, and Alexandru Nicolau.
Parallel processing: A smart compi’er and a dumb machine. In Procecdings of
the SIGPLAN '84 Symposium on Compiler Construction, pages 37-47, Montréal,
Québec, June 17-22, 1984. ACM SIGPLAN. SIGPLAN Notices, 19(6), June
1984.

Joseph A. Fisher. Very long instruction word architectures and the ELI-
512. In Proceedings of the 10th Annual International Symposium on Computer
Architecture, pages 140-150, Stockholm, Sweden, June 13-17, 1983. Computer
Architecture News, 11(3), June 1985.

Matthew Farrens, Andrew R. Pleszkun, and Gary Tyson. A Study of Single-
Chip Processor/Cache Organizations for Large Number of Transistors. In
Proceedings of the 21st Annual International Symposium on Computer Architec-
ture, pages 338-347, Chicago, Illinois, April 18-21, 1994. IEEE Computer
Society and ACM SIGARCH. Computer Architecture News, 22(2), April 1994,

Joseph A. Fisher and B. Ramakrishna Rau. Instruction-levei-Parallel Pro-
cessing. Science, 253:1233-1241, September 1991.

[FS92]

(GSS89]

[HC94]

[HDE*92]

[HGAM93]

[HP87]

[HP90]

[Hsu94]

Manoj Franklin and Gurindar S. Sohi. Register traffic analysis for stream-
lining inter-operation communication in fine-grain parallel processors. In
Proceedings of the 25th Annual International Symposiunt on Microarchitecture,
pages 236~-245, Portland, Oregon, December 14, 1992. ACM SIGMICRO
and IEEE-CS TC-MICRO.

Rajiv Gupta, Mary Lou Soffa, and Tim Steele. Register allocation via clique
separators. In Proceedings of the SIGPLAN ‘83 Conference on Programming
Language Design and Implementation, pages 264-274, Portland, Oregon, June
21-23, 1989, ACM SIGPLAN. SIGPLAN Notices, 24(7), July 1989,

Jan Hoogerbrugge and Henk Corporaal. Register file port requirements
of Transport Triggered Architectures. In Proceedings of the 27th Annual In-
ternational Symposium on Microarchitecture, San Jose, California, November
30-December2, 1994. ACM SIGMICRO and IEEE-CS TC-MICRO. To appear.

L. Hendren, C. Donawa, M. Emami, G. Gao, Justiani, and B. Sridharan.
Designing the McCAT compiler based on a family of structured intermedi-
ate representations. In Uptal Banerjee, David Gelernter, Alex Nicolau, and
David Padua, editors, Proceedings of the 5th International Workshop on Lan-
gunges and Compilers for Parallel Computing, number 757 in Lecture Notes in
Computer Science, pages 406-420, New Haven, Connecticut, August 3-5,
1992. Springer-Verlag. Published in 1993.

Laurie J. Hendren, Guang R. Gao, Erik R. Altman, and Chandrika Mukerji.
A register allocation framework based on hierarchical cyclic interval graphs.
The Journal of Programming Languages, 1(3):155-185, 1993.

Wen-mei W. Hwu and Yale N. Patt. Checkpoint Repair for Out-of-order
Execution Machines. In Proceedings of the 14th Annual International Symposium
on Computer Architecture, pages 18-26, Pittsburgh, Pennsylvania, June 2-5,
1987. IEEE Computer Society and ACM SIGARCH. Computer Architecture
News, 15(2), June 1987.

:]ohn L. Hennessy and David A. Patterson. Compuler Architecture: A Quanti-
tative Approach. Morgan Kaufmann Publishers, Inc., 1990.

Peter Hsu. Designing the TFP Microprocessor. IEEE Micro, 14(2):23-33, April
1994,

78

[Joh91]

(Jolo1]

[Kel75]

[KH93]

[LCGo4]

[LS84]

[McG90])

[Mou93]

[NP94]

[PF92]

[PGH*87]

Mike Johnson. Superscalar Microprocessor Design. Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey, 1991.

Richard D.Jolly. A 9-ns, 1.4-Gigabyte/s, 17-ported CMOS Register File. IEEE
Journal of Solid-State Circuits, 26(10):1407-1412, October 1991.

Robert M. Keller. Lock-ahead processors. ACM Computing Surveys, 7(4):177-
195, December 1975.

. Kolte and M.]. Harrold. Load/Store Range Analysis for Global Register
Allocation. In Proceedings of the SIGPLAN 93 Conference on Programming Lan-
guage Design and Implementation, pages 268-277, Albuquerque, New Mexico,
June 23-25, 1993. ACM SIGPLAN. SIGPLAN Notices, 28(6), June 1993.

Luis A. Lozano C. and Guang R. Gao. Effective utilization of the reorder
buffer for short-lived variables. ACAPS Technical Memo 86, School of Com-
puter Science, McGill University, Montréal, Québec, July 1994.

J. K. E Lee and A. J. Smith. Branch prediction strategies and branch target
buffer design. Computer, 17(1):6-22, January 1984.

Steve McGeady. Inside Intel’s i960CA superscalar processor. Microprocessors
and microsystems, 14(6):385-396, July 1990.

Cecile Moura. SuperDLX - a generic superscalar simulator. ACAPS Tech-
nical Memo 64, School of Computer Science, McGill University, Montréal,
Québec, April 1993.

Cindy Norris and Lori L. Pollock. Register allocation over the Program De-
pendence Graph. In Proceedings of the SIGPLAN 94 Conference on Program-
ming Language Design and Implementation, pages 266-277, Orlando, Florida,
June 20-24, 1994. ACM SIGPLAN. SIGPLAN Notices, 29(6), June 1994,

Todd A. Proebsting and Charles N. Fischer. Probabilistic Register Allocation.
In Proceedings of the SIGPLAN ‘92 Conference on Programming Language Design
and Implementation, pages 300-310, San Francisco, California, June 17-19,
1992. ACM SIGPLAN. SIGPLAN Natices, 27(7), July 1992.

A.R. Pleszkun, J. R. Goodman, W.-C. Hsu, R. T. Joersz, G. Bier, P. Woest, and
P. Schechter. WISQ: A restartable architecture using queues. In Proceedings
of the 14th Annual International Symposium on Computer Architecture, pages

79

(PS88]

[PSSH+91]

[RF93]

(SD94]

[Smig9]

[SP8s]

[Sv87]

(SW94]

[Tho64}

[Tomé67]

290-299, Pittsburgh, Pennsylvania, June 2-5, 1987. IEEE Computer Society
and ACM SIGARCH. Computer Architecture News, 15(2), June 1987.

A.R. Pleszkun and G. 5. Sohi. The performance potential of multiple func-
tional unit processors. In Proceedings of the 15th Annual International Sympo-
sium on Computer Architecture, pages 37-44, Honolulu, Hawaii, May 30-June
2, 1988. IEEE Computer Society and ACM SIGARCH. Computer Architecture
News, 16(2), May 1988.

V. Popescu, M. Schultz, J. Spracklen, G. Gibson, B. Lightner, and D. Isaman.
The Metaflow architecture. IEEE Micro, 11(3):10-13, June 1991.

B. R. Rau and J. A. Fisher. Instruction-level parallel processing: History,
overview and perspective. Journal of Supercomputing, 7:9-50, May 1993,

Peter Song and Marvin Denman. The PowerPC 604 RISC Microprocessor.
Motorola; IBM Corporation, 1994.

James E. Smith. Dynamic Instruction Scheduling and the Astronautics Z5-1.
Computer, 22(7):21-35, July 1989.

James E. Smith and Andrew R. Pleszkun. Implementing precise interrupts
in pipelined processors. IEEE Transactions on Computers, 37(5):562-573, May
1988.

Gurindar S. Sohi and S. Vajapeyam. Instruction Issue Logic for High-
Performance Interruptable Pipelined Processors. In Proceedings of the 14th
Annual International Syriposium on Computer Architecture, pages 27-34, Pitts-
burgh, Pennsylvania, June 2-5, 1987. IEEE Computer Society and ACM
SIGARCH. Computer Architecture News, 15(2), June 1987,

James E. Smith and Shlomo Weiss. PowerPC 601 and Alpha 21064: A Tale
of Two RISCs. Computer, 27(6):46-58, June 1994.

J. E. Thornton. Parallel operation in the Control Data 6600. In Proceedings of
the AFIPS Fall Joint Computer Conference, 1964.

R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic
units. IBM Journal of Research and Development, 11(1):25-33, January 1967.

80

[UJ92)

[Wal86)

[WHKMS93a]

August K. Uht and Darin B. Johnson. Data path issues in a highly con-
current machine, In Proceedings of the 25th Annual International Symposium
on Microarchitecture, pages 115-118, Portland, Oregon, December 1-4, 1992,
ACM SIGMICRO and IEEE-CS TC-MICRO.

David W. Wall. Global register allocation at link time. In Proceedings of the
SIGPLAN 86 Symposium on Compiler Construction, pages 264-275, Palo Alto,
California, June 25-27, 1986. ACM SIGPLAN. SIGPLAN Notices, 21(7), July
1986.

Steven W. White, IPhil D. Hester, Jack W. Kemp, and G. Jeanette McWilliams.
How Does Processor MHz Relate to End-User Performance. [EEE Micro,
13(4):8-15, August 1993. Part 1: Pipelines and Functional Units.

[WHKM93b] Steven W. White, Phil D. Hester, Jack W. Kemp, and G. Jeanette McWilliams.

[YP93]

How Does Processor MHz Relate to End-User Performance. IEEE Micro,
13(5%.79-88, October 1993. Part 2: Memory Subsytem and Instruction Set.

Tse-Yu Yeh and Yale N. Patt. A Comparison of Dynamic Branch Predictors
that use Two Levels of Branch History. In Proceedings of the 20th Annual
International Symposium on Computer Architecture, pages 257-266, San Diego,
California, May 17-19, 1993. ACM SIGARCH and IEEE Computer Society.
Computer Architecture News, 21(2), May 1993.

81

Appendix A

The McCAT testbed

All of ouranalyses and experiments were carried outusing the McCAT testbed. The McGill
Compiler and Architecture Testbed (McCAT) was developed to test different compilation
techniques on different architecture targets. It was designed with two objectives in mind:
first, build a compiler that supports both high level and intermeliate representations in
order to facilitate different analyses and transformations; and second, build architecture
simulator tools to test the output of the compiler, experiment with different combined
hardware-software mechanisms and produce various performance results.

A1 The McCAT C Compiler

As shown in Figure A.1, the McCAT compiler is an optimizing/parallelizing C language
compiler based on three structured intermediate representations [HDE+92]. This family
of representations supports pervasive flow information, that is, flow information obtained
from analyzing one intermediate representation can be utilized by lower intermediate
representations to perform their analyses. FIRST, a modified version of the GNU GCC
compiler front-end, separates the front-end processing of parsing and type checking from
the back-end phase of analysis, transformations and code generation. In the second phase

of the compiler, FIRST is transformed to SIMPLE, an abstract syntax tree (AST) suitable
for high level analyses like the alias and dependence testing analyses. In the next phase,

LAST - a low level AST representation - is obtained from SIMPLE. In LAST, low-level

82

i Source Linker

Front-and
Processing
Shnpity » program structuring
= function inlining
* loop unmolling
* gen, const, propogation
= points-to analysis
* dependency analysis
« high-level loop &
- paraliclization
C-dumper Blasy transformations
* register allocation
+ instruction scheduling
- = * low-level loop
=C= transformations
Native Code
C compler Gererainr
RISC Suparscalar Mt LAST
threaded intoiprater

Figure A.1: The McCAT compiler

83

architectural details are exposed so that cptimizations like register allocation and instruc-
tion scheduling can be performed. The LAST intermediate representation is very close to
assembly language. In most cases, there is a one-to-one correspondence between LAST
statements and assembly language instructions. However, high-level constructs such as
For and While loops are still represented in order to maintain the structured representation
of the program. Using LAST, code can be generated for different architectures during the
last phase of the compiler. Currently, we have implemented a code generator for the DLX

architecture {HP90], and code generators for SPARC, RS6000 and MIPS architectures are
under development.

A.2 The SuperDLX Superécalar Simulator

SuperDLX is one of the simulation tools developed for McCAT. This simulator was de-
veloped by Cecile Moura as part of her Master's project and is described in [Mou93}.
Figure A.2 gives a block diagram of the simulated architecture, which is a superscalar
version of dlxsim, the simulator for the DLX architecture [HP90] developed at the Uni-
versity of California. SuperDLX simulates many of the features described by Johnson
[Joh91] including dynamic scheduling, branch prediction, speculative execution, register
renaming and load bypassing and forwarding. The simulator is completely configurable
and provides a statistics module which allows performance and resource usage analyses.

Some of the configuration parameters that can be given to the simulator are:

o Number of entries in the reorder buffer, the instruction window and the load/store
buffers.

¢ Number of functional units and latency of execution for each type of unit.

» Maximum number of instructions fetched, decoded and committed each cycle.

¢ Latency of memory operations and number of simultaneous memory accesses.

¢ Use of branch prediction and size of the branch target buffer.

As part of this thesis, new features were added to the simulator in order to carry out
our experiments. These features include:

84

Integer Unit

1

i

1

: —— Reorder Buffer Rj_ﬁ_:::«
1 I
t

]

'

]

]

1

——J3»t Central Window

Floating Point Unit

BN

Reorder Bulfer

Centrat Window

Pl Ll

Figure A.2: The SuperDLX simulator

85

e b EE SR ED Ge e ey ER Em o o ml P EE e e my Em b AD G NN P M SR AR D M EE W G S AR N EE OW AW A

» Support for the execution of code with filled delay slots.

¢ A mechanism to control the maximum depth of speculation.

» The implementation of the mechanism tor load bypassing.

¢ A mechanism to restrict the number of read and write ports to the register file.

» A mechanism to keep the reorder buffer filled with a minimum number of instruc-
tions.

« Statistics to measure the number of useless writes to the register file,and a mechanism
to find the value of this measurement when the program is executed on a basic block
by basic block basis (used for the measurements performed in Section 4.2).

86

