
1+1 National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographie services Branch des services bibliographiques

395 Wellington Street
Oltawa. Onlaflo
K1AON4

NOTICE

395. rue Wellinglon
Onawa (Onlariol
K1AON4

AVIS

·i

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Sorne pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C·30, and
subsequent amendments.

Canada

La qualité de cette microforme
dépend grandement de la qualité
de la thèse soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser à .
désirer, surtout si les pages
originales ont été
dactylographiées à l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inféril:lurë.

La reproduction, même partielle,
de cette microforme est soumise
à la Loi canadienne sur le droit
d'auteur, 5RC 1970, c. C-30, et
ses amendements subséquents.

•

•

EXPLOITING SHORT-LIVED VARIABLES
IN SUPERSCALAR PROCESSORS

by
Luis Alfonso Lozano C.

School of Computer Science
McGill University, Montreal

January 1995

A THESIS SUBMITIED 10 THE FACULTY OF GRADUATE 5TUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUlREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright ©1995 by Luis Alfonso Lozano C.

.+. National Ubrary
of Canada

Bibliothèque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bitliographic Services Branch des services bibliographiques

395 WelliflQloo Street 395. rue Wellington
Ottawa. Ontario Ottawa (Onlario)
K1A 0N4 K1A ON4

THE AUTIIOR RAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LffiRARY OF CANADA TO
REPRODUCE, LOAN, DISTRmUTE OR
SELL COPIES OF mS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING TffiS THESIS
AVAILABLE TO lNTERESTED
PERSONS.

THE AUTIIOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN mSIHER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT mSIHER
PERMISSION.

ISBN 0-612-05585-X

Canad~

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BffiLiOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRmUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE­
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

•

•

Abstract

Modem supcrscalar processors use advanced features like dynamic scheduling and spec­
ulative execution to exploit fine-grain parallelism. In order to support these features,
they use complex hardware mechanisrns Iike reorder buffers, instructions windows and
renaming buffers. In this thesis, we have made an observation about the use of these
mechanisrns: a significant number of program variables are short-lived in the sense that
their whole live ranges occur entirely within the reorder buffer. Therefore, the values

produced by these short-Iived variables do not need to be written back (committed) to the
register file. Based on this observation, we have proposed a compiler analysis, which we
cali short-live-range analysis, and a simple architecture feature to avoid the useless commits

of the values generated by theseshort-Iived variables. Moreover, we have proposed a new

register allocation scheme to assign these variables to the locations provided for register

renaming (rather than to the register file), thus decreasing the register pressure.

We have implemented this hardware/software codesign scheme using the McCAT
testbed and the simulation results show: (1) the short-live-range analysis and the proposed

architecture feature can be successfully used to avoid the useless commit of instructions
to the register files; (2) the above mechanism can reduce the number of write ports to the

register files without affecting performance; (3) the allocation of short-lived variables to

the locations provided by the register renaming mechanism can significantly reduce the

introduction of spill code and improve the overall performance.

i

•

•

Résumé

Les machines superscalaires modernes requièrent des mécanismes élaborés tels que l'or­
donnancement dynamique et l'exécution spéculative afin d'exploiter au mieux le par­
allélisme à grain fin. Pour cela, elles s'appuient sur des techniques matérielles complexes
telles que les tampons de réordonnancement, les fenêtres d'instructions, le renommage
des registres. Dans le cadre de ce mémoire, nous nous sommes attachés à l'étude de ces
mécanismes: il s'est avéré qu'un nombre significatif des variables d'un programme a
une durée de vie courte, dans ce sens que leur vie entière se déroule dans le tampon de
réordonnancement. Les valeurs produites alors par ces variables de courte activité n'ont
pas besoin d'être inscrites dans les registres. A partir de cette observation, nous avons
proposé une technique de compilation que nous avons appelée "analyse des variables
de courte activité" ainsi qu'un mécanisme matériel destiné à éviter les écritures inutiles
des valeurs produites par ce type de variables. De plus, nous avons proposé un nouveau
schéma d'allocation de registres, afin d'attacherces variables aux emplacements de renom­
mage des registres (plutôt que dans les registres eux mêmes), afin de réduire la pression
sur ces registres.

Nous avons implémenté ces mécanismes, à la fois logiciels et matériels, à l'aide du
banc de test McCAT. Les simulations ont donné les résultats suivants: (1) l'analyse des
variables de courte activité et les mécanismes matériels proposés ont démontré qu'ils
pouvaient réduire de manière significative le nombre d'écritures dans les registres; (2) ces
mêmes mécanismes permettent encore de diminuer le nombre de ports d'écriture vers les
registres sans dégrader les performances; (3) l.'allocation des variables de courte activité

dans les emplacements de renommage permet de supprimer beaucoup de code de vidage
et d'ainsi améliorer la performance globale.

ii

•

•

Ta my parents: Joaquin and Virginia

•

•

Acknowledgments

There are occasions in your Iife when you want to express something and you just cannot
find the right words to use. 1 think that writing th~se acknowledgments is one of them.
There are no words to express my gratitude to ail the people who helped me to pursue my
Master's degree.

First, 1 would Iike to thank my thesis supervisor, Dr. Guang Gao. 5ince 1came to
Mcgill, 1saw in Dr. Gao an inspiring lecturer and an infatigable researcher. He always
trusted me and Iistened to my ideas. He encouraged me to go for new goals and to accept
difficult challenges. He also supported me for a long period of my studies.

1also thank Dr. Laurie Hendren. Laurie (as everyone calls her) introduced me to the
world of compilers. 5he is one of the best lecturers 1have ever seen. 5he assigned very

interesting projects to me and was always willing to help me solve research problems.

There are no words to thank Claudia Pateras. 5he gave me ail her love and support.
5he spent long hours helping me write this thesis and making sure 1was not going to go
insane. 1hope 1can give her back ail the time that she gave me. Claudia, wherever we are
we will always be together. 1am also very thankful to the Pateras family. They opened their
home to me and let me share with them their happiest moments. Mrs. Pateras, thanks for
ail those times you sent me your delicious dishes while 1was working late at school.

There is no doubt 1could not have achieved this goal without the help of my family.
My parents saw my eagemess to look for new goals and were willing to do whatever they
could to help me reach them. During my stay in Montreal my whole family constantly
encouraged me and sent me their love. They always made me feel dose to my beloved
Colombia. During the difficult times, they gave me strength to continue and, although 1

was away, we became doser than ever. 1will never forget the beautifulletters 1received
from them, the long conversations 1 had with my father through computer "talks" and

iv

•

•

the small drawings and lellers from my nephews and nieces. My mother always helped
me and took good care of me. She was always present, she will always keep our family

together.

1am a man of friends, and 1 am proud to say that 1 have many of them. Sorne of
them helped me a lot during my Master's studies. Thanks to my new friends in Montreal:
Lucie, Sandro, Mary, William, Alain. They gave me plenty of good moments to enjoyand
took me away from my long periods of study. Thanks to my friends from the ACAPS
group: Ana, Rakesh, Chris, Nasser, Cecile, Maryam, Sreedhar. They gave me crazy limes

and helped me stand the moments of pressure. Each of us with different accents, aU of
us with similar dreams. Thanks to my other friends in North America: Claudia, Mark &

Lisa, Robert, Adriana. Claudia, my true friend. Mark, always doing crazy things for me.

Robert, my "adoptive" brother. Thanks to my friends in Colombia: John, Jose German and

Jaime. They were always willing to help me and my family. Many mountains are waiting
for us!

Finally, 1 should thank two very special people in the School of Computer Science:

Lorraine and Lise. They always took good care of ail my problems and had a huge smile
for me every day.

v

•

•

Contents

Abstract

Résumé ii

Acknowledgments iv

1 Introduction 1

1.1 Thesis Contributions .. 4

1.2 Thesis Outline 5

2 Background 7

2.1 Instruction Level Parallelism and Architectures to Exploit ILP 8

2.1.1 Superscalar Processors 9

2.1.2 Complexity Issues .. 14

2.1.3 The Superscalar Processor Execution Model 15

2.2 Register Allocation .. 17

2.2.1 The Problem of Register Allocation 18

2.2.2 The Yorktown Allocator .. 19

2.2.3 TheOptirnistic Allocator 22

2.2.4 Other Allocators .. 24

vi

•
3 Short-Lived Variables and Useless Commils 25

3.1 Useless Commils: A Motivating Example 25

3.2 Experimental Observations · 26

3.3 Problem Formulation · 28

3.4 Solution Strategy ... · 30

3.5 Obstacles .. 31

3.5.1 Determining Useless Commits at Compile TIme 31

3.5.2 Detecting Useless Commils in the Presence of Speculative Execution 33

3.5.3 Dealing with Intermpts

4 Reduction of UseIess Commils

4.1 Detecting Useless Commils

34

37

37

4.2 Dealing with Instruction Speculation. .. 42

•

4.3 Compiler Analysis

5 Allocation of Short-Lived Variables

5.1 Allocation ofShort-Lived Variables.

5.2 Allocation of the Long-Lived Variables .

5.3 Introduction of Spill Code .

6 Experimental Results

6.1 Testbed and Benchmarks

6.2 Base Model

6.3 Summary of Resulls

vii

.

46

51

52

55

56

58

59

60

61

•

•

6.4 The Effeet ofShort-live-range Analysis and Architeeturesupport for Uselcss
Commit Elimination . 62

6.5 The Effeet of Rcducing the Number of Rcgister Ports Nceded . 64

6.6 Effeet of the Allocation of short-Lived Variables 66

7 Relaled Work 69

8 Conclusions and Future Work 73

Bibliography 75

A The McCAT leslbed 82

A.l The McCATC Compiler 82

A.2 The superDLX superscalar simulator 84

viii

•

List of Tables

3.1 Percentage of useless commits 28

4.1 Percentage of useless commits produced by live ranges that do not cross
basic block boundaries. .. 45

6.1 Configuration parameters specified for the base model . 61

•

6.2 Effectiveness of the short-live-range analysis and the architecture support
for reducing useless commits .. 63

6.3 Perfonnance effect of the number of write ports on the base and optimized
models 65

6.4 Percentage of improvement obtained by allocation of short-lived variables 68

il<

•

List of Figures

1.1 Building the dataflow graph for a set of short-Iived variables 3

2.1 Different processors to exploit ILP · 10

2.2 Superscalar processor execution model · 16

2.3 Live ranges and interference graph for a small program . 19

2.4 Steps of the Yorktown allocator 20

2.5 A small graph where the Yorktown allocator fails ... 22

2.6 Generalization of the problem of the Yorktown allocator . · 23

2.7 The Optimistic allocator versus the Yorktown allocator 23

3.1 Examples of short-Iive-range variables 27

3.2 Sorne concepts related to short-Iived variables 29

3.3 Irnpossibility of deterrnining useless commits at compile time 32

3.4 Dealing with speculative execution. 33

3.5 The problem of handling interrupts 35

4.1 Marking the last use of a value 39

4.2 Keeping a minimum number of instructions in the reorder buffer. 41

• 4.3 Detecting useless commits in the presence of instruction speculation .. 44

x

•
4.4

5.1

5.2

5.3

5.4

6.1

6.2

An example of the short live range analysis for a program fragment 48

Traditional register allocation vs. short-lived variable allocation .. 53

An example of the analysis for the allocation of short-lived variables. . 54

An example of the code produced for the two allocation schemes . 55

Effect of spill code on the allocation of short-lived variables . 57

Percentage of discarded writes to the register file 63

Performance of base and optimized models when restricting the number of
write ports 65

•

6.3 Average improvement obtained by the allocation of short-lived variables. 68

A.l The McCAT compiler o.. 83

A.2 The SuperDLX simulator . 85

xi

•

•

Chapterl

Introduction

Vitae summa brevis spem nos vetat incohare IOllgam.
Life's short span forbids us to enter on far-reaching hopes.

Horace

In today's pursuit of high perfonnance computing, processors base their perfonnance

not only on high clock rates but also on the number of instructions that can be executOO

in parallel each cycle. Currently, the most \'sOO architecture paradigrn in the design of
commercial processors is the superscalar paradigrn. Examples of modern superscalar

machines include the mM RlSC-6000 architecture [BW90], the Motorola 88110 [DA92], the
Intel Pentium [AA93], the Hewlett-Packard PA7100 [AAD+93], the TFP [Hsu94] and the
PowerPC [00H94, SD94].

In the superscalar paradigrn, parallelism is extractOO from code written for a sequential

machine using aggressive techniqueslike dynamic schOOuling [Tho64, Smi89], speculative
execution [LS84] and register renaming [KeI75]. There are two important aspects to note

about the use of these features. First, although these features have been usOO successfully

to uncover the parallelism found in sequential code, the hardware complexity of these

mechanisrns is very high and, therefore, they are very difficult to implement. Sorne of
these mechanisrns require, for example, very wide datapaths and complicatOO forwarding

capabilities. Second, in most cases, the structure of these mechanisrns has rernainOO hidden
from the compiler. That is, although these features provide powerfulschemes to extract

parallelism, the compiler is not able to interact with them. Thus, for example, the compiler

1

•

•

is not aware of mechanisms Iike the reorder buffer [SV87] that are used to support these

features.

We believe that, in order to continue the current rate of performance growth of RlSC

processors, it is necessary to expose the structure of these complex mechanisms to the
compiler. The compiler can help reduce the complexity of irnplementation of sorne of these
features and use them more efficiently in order to increase the performance of the machine.
We believe that the trend in computer architecture should be towards an increasingly

closer relationship between the compiler and the hardware in which the compiler collects

information about the program to be executed and passes this information to thehardware.
By using the information provided by the compiler, the hardware can be designed more
efficiently so as to reduce its complexity. Moreover, this information can also beused by the

processor to take better decisions at run tirne and increase the performance of the mode!.
Besides counting on the information provided by the compiler, the processor should also
be powerful enough to be able to make decisions based on events that cannotbe anticipated
by the compiler such as cache misses.

This relationship between the compiler and the hardware has many facets. In this

thesis, we examine one of these facets based on one observation about the behavior of
dynamically scheduled superscalar processors. In order to provide dynarnic scheduling,

processors build, at run time, the data flow graph for a small window (set) of instructions.
For each value produced byan instruction, two actions are taken by thecurrentmechanism:

first, the value is forwarded to the o,her instructions that use this value and that are found
in the same window of instructions being analyzed; second, the value produced is retired

at commit time to the register file from where succeeding instructions that make use of

it will he able to fetch it. Our observation is that a large percentage (often more than

90%) of the values produced by the instructions in the program are "short-lived" in the
sense that the producer and the last consumer of a value are found very close together in

the instruction stream. This implies that there is a big chance that the producer and last

consumer of a value are found in the same window of instructions while the superscalar
processor is building thedataflow graph for them. In thatcase, when thevalueis produced
it will he forwarded to ail the possible consumers of the value. Therefore, when the value is

retired to the register file, there will not be any subsequent use of this value. We maintain

that, since the value has been forwarded to all the uses before being retired to the register
file, there is no need to commit this value to the register file.

This observation can be illustrated with the small example given in Figure 1.1. As it

2

•
Register

File

t4

r tl = &arr + 4;

\.C t2 = 4 ft j:

(t3 == tl + t2:

t4 = t3 + 2;

t5 = 4 * i;

{t6=tS+tl;

(a) Program fragment

1
1
1
1
1
1
1
1_________________________________ J

(b) Dutanow graph and reliremenl
of values 10 the rcgislcr file

•

Figure 1.1: Building the dataflow graph for aset ofshort-lived variables

can be seen in the figure, the values produced by the instructions in the small program
fragment are consumed by instructions that follow closely in the instruction stream (with
the exception of the value produced for t4). Therefore, it is possible that the instructions

in this program fragment fit in the same window of instructions while the processor is
dynamically building the dataflow graph for the them. In this case, the values produced
for tl, t2, t3, and t5 are forwarded to ail their consumers in the window thus making
unnecessary the commit of these values to the register file. On the other hand, the value
produced for t4 has to be retired to the register file so that its last consumer can find it

there.

As a consequence of this observation, there is another point we make that is related to

the use of the register renaming mechanism provided by the type ofsuperscalar processors
we are considering. 5ince we propose that many of the values produced should not be
retired to the register file, we note that it is not necessary to assign to these values names

from locations in the register file. That is, since these values are never going to reside

in the register file, why should we allocate them to the registerfile? In order to increase
instruction level parallelism, superscalar processors implement ri;gister renaming to avoid

output and anti dependencies. To support this, the register renaming mechanism provides

a new location and a different name for each value produced by the instructions in the

3

•

•

window being analyzed. We have noticed that, for those values which do not need to

be retired to the register file, the processor only refers to them by the name dynamically
assigned by the renaming mechanism and not by the name originally assigned to them by

the register allocator (the name of a physical register).

The problem with the current superscalar implementations is that the values produced
by the short-lived variables are, in fact, committed to the register file. This constitutes an
unnecessary runtime overhead and increases the number of required hardware resources,

such as the number of register file ports. AIso, the conventional compiling schemes for
register allocation do not give special treatment to these short-lived values. This yields to
inefficiencies and increases the number of physical registers required for the allocation of

the variables in the program.

1.1 Thesis Contributions

Based on these observations, we have proposed in this thesis the codesign of a hard­

ware/software scheme to exploit the occurrence ofshort-lived variables. With this scheme,

we aim to reduce the complexity and increase the performance of dynamically scheduled
superscalar processors.

We have designed a compile-time analysis method (called short-live-range analysis)
and a simple architecture feature to avoid the useless commit of the short-lived variables.
Moreover, we propose a novel registerallocation schemeby which the compilercandirecUy

assign theshort-lived variables to the spaces provided by the register renaming mechanism
rather than the physical registers.

We have implemented our scheme on McCAT - The McGill Compiler-Architecture

Testbed - which includes an optimizing C compiler [HDE+92) and a cycle-by-eycle super­
scalar simulator [Mou93). Our simulation results have demonstrated that:

• The proposed short-live-range analysis can successfully capture most of the short­

lived variables: on the average between 80% and 91% of the variables are detected

to he short-lived. Furthermore, the combined architecture and compiler method can

effectively make use ofsuch analysis and eliminate a great majority ofuseless writes

to the register files: on the average between, approximately, 76% and 89%.

4

•

• The mechanism devised to avoid the useless commits of instructions can be used lo
reduce the number of write ports to the register files without affecting performance.

Only a 1% performance 1055 is detected after reducing the number of write ports to
the register file from 4 to 1 for the target superscalar architecture we are studying.

• The proposed method of allocation of short-Iived variables to locations providL'<Î for
register renaming in the reorder buffer can reduce the number of registers needed
and, consequently, the amount of spill code introduced by the register allocator thus

substantially improving execution time. For instance, the average improvement
when the register pressure is high is significant: between, approximately, 15% and
26%.

1.2 Thesis Outline

This thesis is organized as follows:

• In Chapter 2 we provide the necessary background for the understanding of the
problerns addressed in this thesis and of the proposed solutions. We briefly describe

the concepts ofInstruction Level Parallelism (ILP) and the architectures to exploit lLP.

We focus our attention on superscalar processors and describe the different features
used by these processors to expose and exploit instruction level parallelism. Based on

the presented concepts, we introduce,the execution model in which the discussions

in this thesis are going to be based. In the second part of this chapter, we give the

background information for the problem of register allocation. This information is
necessary to understand our scheme for allocation of short-lived variables.

• Chapter 3 describes in more detail our observation about the useless commit of
shorl-lived values to the register file. We present a motivating example and give
experimental evidence of the occurrence of this phenomenon. The problerns to be

studied and the solution strategy are also stated in this chapter.

• Chapter 4 describes the combined hardware/software mechanism used to reduce
the number ofuseless commits. We describe the possible hardware mechanisrns, the
compiler analysis and the collaboration between the hardware and the compiler in

order to solve this problem.

5

•

•

,; ln Chapter 5 we describe our schellle for the allocation of the short-Iived variables.

We describe the advantages of our scheme over the traditional register allocation
scheme and we discuss the effects of the introduction of spiII code on our method.

• Chapter6 presents the results of the different experiments performed to show the
advanta-ges of the proposed solutions. The benchmarksused and thebase superscalar
model used for the simul~tionsare introduced.

• In Chapter 7 lIVe briefly summarize the works from other authors that are related
to our research. We describe sorne studies in which the authors have exposed the

structure of different hardware mechanisms to the compiler in order to reduce the
hardware complexity and increase the performance of their models.

• Finally, in Chapter 8, we summarize our achievements and give directions for future
research.

6

•

•

Chapter2

Background

In this chapter we present the background information required for the understanding
of the problerns addressed in this thesis. The chapter is split into two sections. The first
of them briefly describes the concepts related to Instruction Level Pa:':\Uelism and the
architectures developed to exploit this kind of parallelism. We focus our attention on
superscalar processors, present the tasks to be accomplished by this type of processors
and introduce sorne of the hardware mechanisrns designed to accomplish these tasks. We
also discuss sorne issues involved in the implementation of this kind of processors. At the
end of this section, we present the execution model to be used throughout the rest of the
thesis and we briefly review how this execution model works. The reader interested in
Instruction Level Parallelism can find a more general overview of the field in [FR91, RF93].
An excellent and exhaustive study on superscalar processors can be found in Uoh91].

The second section of this chapter briefly presents the concepts related to the problem
of global register allocation. We review hc.w this problem is mapped to the problem of
graph coloring and we describe the heuristic developed by Gregory Chaitin [CAC+81] to
solve this problem. We also discuss the advantages and disadvantages of this heuristic.
At the end of the section, we describe an improvement to Chaitin's heuristic developed by
Preston Briggs [Bri92]. This heuristic is the one used by the register allocator developed
for the McCAT compiler.

7

•

•

2.1 Instruction Level Parallelism and Architectures to Exploit ILP

Instruction LeveI ParalIeIism (ILP) is a set ofprocessor features and compiler optimizations
aimed at increasing the performance of the processor by executing multiple instructions
in parallel. The concept of lLP has been exploited by supercomputers and mainframes
since the early 60's. lt has gained large popularity since its implementation at the micro­
processor level and its use in the workstation and the personal computing market. Part of
this popularity is due to the fact that ILP can be implemented without affecting the pro­
grammer's model. That is, lLP may be used to exploit the parallelism found in prograrns
written to be executed in a sequential machine. This is a direct advantage over other forms
of parallelism where the programmer has to specifically describe how parallelism can be

exploited.

The amount of parallelism that can be extracted from sequential code is limited by the
control and data dependencies found in it. Different compiler and hardware techniques
can be used to expose parallelism and make a more efficient use of the resources provided
by the processor. At the compiler level, techniques such as loop unrolling, software
pipelining and dependence analysis can be used to reduce the dependencies and produce
code with more possibilities to exploit parallelism. Techniques like register renaming,
dynamic scheduling, and branch prediction can be used at the hardware level to avoid
false dependencies and take decisions at run time to increase the number of instructions

that can executed in parallel.

Diverse architectures have been proposed to exploit ILP. They can be classified accord­
ing to whether the decision of which instructions are executed in parallel is taken by the
compiler or the hardware, and according to, in the case the decisions are taken by the
compiler, how these decisions are communicated to the hardware via the program. The
corresponding classification of lLP architectures is as follows [RF93):

• Sequential architectures: In this type of architectures, the hardware decides which
instructions are executed in parallel and the program does not give any information
to the processor in this respect. Superscalar machines are an example of sequential
architectures.

• Dependence architectures: In these architectures, the compiler determines the depen­
dencies between instructions and communicates them to the hardware. 'IYPically
this is done by specifying, for each operation, the list of other operations that are

8

•

•

dependent on it. The hardware makes the scheduling decisions according to the
information provided. Dataflow architectures are representative of this category.

• Independence architectures: In these architectures, the compiler determines which in­
structions can be executed in parallel, and informs the architecture via the program.
Very Long Instruction Word (VLIW) processors are examples of independence archi­
tectures. In the typical implementation of this type of architectures, the hardware
does not take any scheduling decisions.

Several processors have been implemented for each kind of architecture. Of special
interest for this thesis are the machines that evolved from the pipelined RISC processors
since these are prevalent in commercial machines nowadays. As dataflow processors are

beyond the scope of this thesis, we will not make any further references to them.

Starting from a conventional pipelined machine there are several ways a processor can

be modified to be able to execute several instructions simultaneously. Figure 2.1 depicts

their pipelined execution and compares them against the typical single pipl:lined machine
(Figure 2.1 (a».

• Superpipelined processors: In a superpipelined machine, the number of stages in the
pipeline is increased thus allowing the clock length to be reduced. The clock length
is set to a fraction of the latency of a single functional unit. For example, a super­
pipelined machine of degree 3 (Figure 2.1 (h» will have a clock length that is 1/3 the

latency of the simplest functional unit, and since it can issue one instruction per cycle

will have several instructions in the execute stage simultaneously.

• Superscalar processors: On a superscalar machine, multiple instructions are decoded,
issued and executed each cycle. For instance, in a superscalar processor of degree 3
(Figure 2.1 (c», up to 3 instructions can be issued each cycle.

• VL1W processors: In a Very Long Instruction Word machine, each instruction consists of
a set ofoperations that can be executed simultaneously. Therefore, in a VLIW processor

of degree 3, up to 3 operations can be specified in each instruction (Figure 2.l(d».

2.1.1 Superscalar Processors

Superscalar machines have become the standard type of processor implementation for
the modern general purpose microprocessors. This kind of machines are considered

9

•
Koy:

c=J 1 1 1
Fetch Oetllœ &BClJ1B Wrilelladl

El 1
1

1
: :.1 1

4
5

'0 il '2 '3 '4 '5 '6
Jo

Cycles

(<1) Pipelincd

[0
~ , '"'"""r----'--r----...,...,..........".-y----'-1

cr 2
~ 3

4

5

Cycles

(b) Supcrpipelincd

[0 I--lf-- :..... ''';'';'''''-1-----l

à. 2

3

1

'--lf-- ;.;..... ;,;,;"";;;.;:+..,...,..,,,.,.,.f--....,
S' ~:::-:::~:~ :~~:_:

4
5

'0 i,
Cycles

(c) Supcscalar

'5 '0 "
Cycles

(d)VLlW

1

'5 '6 11'

•

Figure 2.1: Different processors fo exploit ILP

the natural next step in the evolution of RISC architectures ijoh91]. The main reason
for their success resides in their ability ta extract parallelism from code produced for
sequential machines. They maintain the binary code compatibility thus preserving the
existing software base.

In arder ta extract parallelism from sequential code, a superscalar processor must he
able ta perfonn the following tasks in hardware:

• Fetch and decode several instructions per cycle.

• Detect the dependenctes between the instructions in the instruction stream.

• Find several independent instructions to be executed in parallel.

• Schedule the independent instructions and assign them to the available resources.

10

•

•

Various hardware mechanisms have been designed to accomplish these tasks. The

compromise is always to try to maximally exploit parallelism while keeping the hardware
complexity low. As we will briefly discuss in Section 2.1.2, this objective is not always
reached.

The first of the aforementioned tasks, fetching and decoding several instructions per
cycle, is critical to the performance of the processor. The number of instructions that can be
executed simultaneously is obviously limited by the number of instructions fetched and
decoded each cycle. One important limitation of the processor to be able to fetch several

instructions per cycle is the occurrence cf branches in the instruction stream. Branches
limit the number of instructions that can be fetched per cycle because the fetcher has to
stail while waiting for the branch to be executed in order to be able to continue bringing

target instructions from memory. A technique called branc/I prediction can be used to solve

this problem. Branch prediction allows the processor to continue fetching instructions
by predicting the outcome of the branch. A number of hardware mechanisms have been
designed to provide prediction that go from simple static prediction mechanisms [HP90),
to more complex and accurate dynamic branch predictors that achieve up to 97% accuracy

[YP93, 1584). Since the prediction is not always correct, the processor has to provide a

mechanism to undo the effect ofinstructions executed ina wrongly predicted path. Several
techniques used to this effect are described later in this section.

Once the instructions have been fetched, the processorhas to establish thedependencies
between them. As mentioned before, data dependencies are one of the fundamental

limits to instruction parallelism. There are two ways the hardware can ensure that data
dependencies are respected: by stopping the instruction from being decoded, and by

stopping the instruction from being issued. Different mechanisms have been designed to

enforce thedependencies in these two ways. Thesimplest mechanisms enforce the in-order
issue of the instructions by using a scoreboard to stop the decoder whenever a dependency

is found [DA92, McG90). The scoreboard detects the dependencies by keeping track of

registers that will be updated by the instructions currently in execution. However, this
mechanism is too restrictive and provides few chances to exploit the parallelism found in

the code. A more aggressive use of the scoreboard [Tho64) stalls the decoder only when

output dependencies occur. This mechanism avoids anti-dependencies by making copies

of the operands for each instruction, and enforces the Dow dependencies by putting the

dependent instructions in an instruction window thus avoiding stalling the decoder. From

this window, instructions will be issued once their operands have been calculated. Register
renaming [Ke175) can be used to avoid stalling the decoder in the presence of output

11

•

•

dependencies. In order to implement register renaming the hardware has to provide
additional internaI registers so that each value generated gets aIlocated to a different

location. Providing the space for these new locations and the logic to associate these

locations to the instructions makes the hardware even more complex.

By using scoreboarding or register renaming in conjunction with an instruction win­

dow, the processor is capable of issuing the instructions to the functional u::lÎts out of the
original program order. The out-of-order issue capability is very important to increase

paraIlelism. The processor selects from the window the instructions that are indepen­
dent, and dynamicaIly schedules them according to the availability of their operands and

the availability of the functional units. The amount of independent instructions that can
be selected depends on the size of the instruction window. BasicaIly, the processor is
building the dataflow graph [DFL72] for the instructions in the winclow. Therefore, more
paraIlelism is achieved by using large instruction windows. However, in order to keep

the window fuIl, the hardware requires exceIlent branch prediction techniques. Different
mechanisrns havebeen designed to provide the processor with thisdynamic schedulingca­

pabiIity. Decentralized schemes buffer the instructions separately for each functional unit.
ln Thornton's scoreboard mechanism, each functional unit has its own instruction buffers.

ln the reservations stations mechanism ITom67], the instructions and their operands are
kept in sta tions assodated to each functional unit. On the other hand, centralized schemes

have one instruction window for aIl the functional units. The Dispatch Stack [AKC86], the

Register Update Unit - RUU [SV87] and the Deferred-Scheduling Register-Renaming Instruc­
tion Shelf- DRIS [PSS+91] are examples of centralized mechanisrns. The use of a central

window can provide beller performance because beller scheduling decisions can be taken

when the instructions are in the same window. However, centralized windows are more

difficultto implement.

As menlioned before, the use ofbranch prediction requires rnechanisrns thataIlow the

speculative execution of instructions while ensuring the correct execution of the program.

ln case the processor executes instructions from a wrongly predicted branch, the mecha­
nism should be able to undo the effect of these instructions. Techniques like the history
buffer, the reorder buffer, the future file (aIl described in [SP88]), and checkpointing [HP871

have been proposed to this effect. A comparison of the performance of these mechanisrns

can be found in [BP93]. For this thesis, we are particularly interested in the reorder buffer
since this is the mechanism assumed in our execution model and whose characteristics we

are going to exploit. The reorder buffer is a FIFO structure that provides additional storage

for the results of the instructions executed out-of-order and ensures the in-order update

12

•

•

of the register file. Instructions enter the reOlùer buffer in program order, are executed
out-of-order and, when completed, their results are put in the FIFO instead of the register
file. The values are copied, or commitled, to the register file only when the instruction
reaches the head of the reorder buffer. If a branch prediction happens to be incorrect, the
instructions that are found after the branch are flagged as invalid 50 when they reach the
head of the FIFO they are discarded. In this way, the correct state of the register file is
preserved.

The reorder buffer and ail the other state maintenance mechanisms are also used to
provide precise interrupts [SP88, HP87]. Interrupts are events that disturb the normal
execution of the program like a page fault or a hardware error. An interrupt is precise
if the state of the processor when the interrupt is handled corresponds to that of the
sequential model of the same processor. The out-of-order execution of instructions makes
the problem of providing precise interrupts more difficult. The difficulty lies in restoring
the processor to the state where ail the instructions preceding the faulting instruction have
updated the machine state, and none of the succeeding instructions have modified it. This
can be accomplished with the help of the reorder buffer by delaying the processing of the
interruptuntil the point when the faultinginstruction reaches the head ofthereorderbuffer.
At this point, ail the instructions preceding the interrupt have modified the processor state,
the instructions remaining in the reorder buffer can be discarded and the interrupt can be
handled.

Another important issue for superscalar processors is to be able to deal with depen­
dencies between instructions that access memory. A memory instruction is dependent on

another when the location accessed by both is the same. The simplest way to deal with
this kind of dependency is by simply serializing the accesses to memory. A more aggres­
sive solution relaxes the ordering of accesses to memory by allowing the loads to bypass
preceding stores whenever possible. Since stores modify the state outside the processor,
they have to be issued in strict order with respect to other instructions. However, loads do
not need to be issued in order and can be issued before other instructions if there are no
dependencies. To accomplish this, stores can be buffered and only sent to memory afterail
the preceding instructions have been committed. Loads can be issued as soon as they are
decoded and can bypass the stores in the buffer if there is no address conflict. A rurther
improvement consists in forwarding the values from buffered stores to succeeding loads
thus avoiding the loads' accesses to memory. A complete description of load bypassing and
load forwarding can be found in Uoh91).

13

•

•

2.1.2 Complexity Issues

ln the previous section we briefly described the problems faced by superscalar processors
to extract parallelism from sequential code, and we mentioned sorne of the techniques
used to overcome these problems. Although these techniques are effective to increase the
number of instructions that can be executed in parallel, they are far from being simple to
implement in a single chip processor. The complexity of the hardware for a superscalar
processor depends mainly on the number of uncompleted instructions permitted, the

width of the decoder, the mechanism used to restart after a misspredicted branch and
the necessity of forwarding results to waiting instructions. Besides the difficulties of
implementing each of the major features mentioned, the design of the processor also has

to deal with the difficulties caused by the interdependencies between them. The result of

ail of this is a very complex hardware with long logic delays.

Other than the complexity of implementing a feature, it is also very important to

consider the effect that introducing this feature has on the clock cycle length. The overall
performance of the processor depends bath in the number of instructions executed per

cycle and on the clock cycle length. The success of a hardware technique in increasing

parallelism can be undermined if the implementation of the mechanism badly affects the
dock length. The importance of this tradeoff can be better exemp1ified by the Iwo current
tendencies in superscalar processor implementations. One tendency is towards simpler
hardware lacking sorne of the mechanisms described in the previous section, but attaining

high clock speed. The other tendency is towards complex hardware implementing several

of the mechanisms described to exploit ILp, but attaining a much slower clock speed
(SW94, WHKM93a, WHKM93b]. Although the two tendencies are different in nature,

their performance is still comparable and il is unclear at the moment which tendency will

predominate.

One of the proposais of this thesis is that the complexity of implementation of sorne of

the superscalar features previously described can be reduced with the help of the compiler.
In particular, we are going to address the problem of how to reduce the complexity of the

register file and the data path by modifying the compiler. The complexity of the register file

is an important issue in architectures that exploit instruction level parallelism. In fact, the

inability to build register files with a large number of ports is considered one of the major
bottlenecks in realizing an Ideal VLIW machine (CDN92]. A processor that is able to issue

N instructions per cycle requires a register file wilh at least 2 x N read ports and N write

ports in order to attain peak performance. In thenear future, we expect to have superscalar

14

•

•

machines able to issue six or eight instructions per cycle. This implies that we will require
register files with at least 24 ports. To the best of our knowledge, it is very difficult to
build register files with that number of ports UoI91), and even if they are realizable, they

may seriously affect the length of the clock cycle. The chip real-state of a multi-ported
register file is proportional to the product of the number of read ports and the number of

write ports. Moreover, the access time can be modeled as a logarithmic function of the
number of read ports. Hence, it is important to keep the number of ports small in order
not to affect the clock cycle. The problem gets even more complicated when we consider
that several of the reads/writes can be accessing/modifying the same register each cycle.
For these reasons, processors that are able to issue a large number of instructions per cycle

partition the register file and the functional units in clusters in which a functional unit can
only access the values stored in the register file found in its own cluster [Fis83, FERN84).
In this way, the number of ports for each register file is smaller. However, when necessary,
values must be explicitly moved between clusters using a slowercommunication channel.

As a consequence, the compiler has to deal with the problem of intelligently distributing
the computation in such a way that the communication between clusters is minimized
[CON92).

To deal with the problem of the complexity of the register file, modem superscalar pro­
cessors limit the number ofregister ports and put restrictions on the number ofinstructions
that can be committed each cycle. One interesting approach is adopted in [5094), where

the designers allow the commitment of the instructions frorn two stages of the pipeline to

compensate for the effect of the reduced number of ports.

2.1.3 The Superscalar Processor Execution Model

Figure 2.2 shows the structure of a generic superscalar processor model Uoh91, Mou93)

that will be adopted as our execution model. It is very important, for the sake of the

comprehension of the different mechanisms discussed in this thesis, to briefly describe

how this model works. The superscalar processor model has two important components:

the instruction (dispatch) window and the reorder buffer. The instruction window serves

as a pool of instructions from where the instructions that are ready to execute are issued to
the functional units. The reorderbuffer is a FIFO structurewhich ensures that instructions,
upon leaving the buffer, modify the register file in program order and provides the mech­

anism to support speculative exe(:ution and precise interrupts. Although in Figure 22 the

reorder buffer and the instruction window are drawn as two separate elements, they could

15

•
Instruction

Queue
r - -...,

Reorder
Butler

1
..J

Reglster
Flle

•

Figure 2.2: Superscalar processor execution model

aIso be assumed to be joined, as is the case for the Register Update Unit mentioned in

Section 2.1.1, without affecting the functionality of our mode!.

Let us briefly overview how the elements in this model interact ta execute instructions
concurrently. Instructions are brought from memory by the fetcher which aligns and
merges them before putting them in the instruction queue. The decoder reads several
instructions each cycle from the instruction queue and puts them in the reorder buffer and

in the instruction window. Instructions enter the reorder buffer in program order, and are

assigned a tag which identifies them and allows automatic renaming of the destination
register. At the same, time when an instruction, say s, enters the instruction window, its

operandsare searched for in the reorder buffer. Ifan operand is found in the reorder buffer
and its value has already been calculated, the value is direcUy used as the operand for sin
the instruction window. If the operand is found in the reorder buffer but its value has not
been calculated, then the tag (corresponding to the instruction which calculates the value)

is used as the pending operand for s in the instruction window. Finally, if the operand

16

•

•

is not encountered in the reorder buffer, then ils value is obtained from the register file
instead of the reorder buffer.

The issue stage selects from the instruction window the instructions whose operands
have already been calculated, checks the availability of the functional units and sends
the instructions that are ready for execution. The instructions are, therefore, dYllamically
scheduled according to the availability of the operands and the functional units. This
mechanism thus allows the out-of-order issue of the instructions to the functional units.
Once an instruction has been executed (completed by a functional unit), its resulting value
is written back to the reorder buffer and forwarded to the instructions whose pending
operand tags correspond to the tag of the completed instruction. It is important to note
that values computed by the functional units are not written back to the register file
directly; they are written back to the reorder buffer which allows the out-of-order completioll
of instructions. Instructions can complete and have their values written to the reorder
buffer in any order. Il is at the commit stage that instructions at the head of the reorder
buffer are retired to the register file. This FIFO structure of the reorder buffer also provides
the undo capability necessary to support speculative execution. When a branch is executed
and its prediction turns out to be incorrect, ail the instructions that come after the branch
are marked so they can be discarded later at commit time.

2.2 Register Allocation

In this section we review the register allocation problem. This section will provide the
necessary background information required to understand the scheme proposed for the
allocation of Short-Lïved variables.

During recent years a sustained increase in processor performance has been observed;
the speed of CPUs has increased in the range of 50% to 100% each year. In contrast, the
situation has notbeen thesame for main memories (DRAMs) for which increase in capacity
and reduction in cost have been significant, but for which reduction in access time has not
progressed at the same rate (i.e: roughly 7% each year) [HP901. This growing gap between
memory cycle lime and processor cycle time has been a key motivation for the introduction
of additionallevels in the memory hierarchy. Smaller, but faster, memories between the
main memory and the CPU are essential to allow the processor to receive the data at the

rates demanded. Hence, modern microprocessors have adopted the use of larger reglster
files and one or severaI levels of instruction and data caches.

17

•

•

Furthermore, the introduction of Load/Store architectures, where aIl the computations

are performed in registers and accesses to memory are performed only through explicit
Load/Store instructions, increased the importance of the use of register files since the goal
in this type ofarchitectures is to keep the maximum amount ofdata in registers to avoid the
expensive accesses to memory. Consequently, the problem of efficiently mapping program
variables to machine registers has become one of the predominant compiler optirnization

techniques [HP90].

2.2.1 The Problem of Register Allocation

User prograrns make use of variables to store and manipulate data. Various phases of
the compiler introduce temporary variables to calculate intermediate values and perforrn

different transformations. Optimizations performed before register allocation assume
that ail these variables reside in an unlirnited number of virtual registers. The goal of

the register allocator is to maximize the number of virtual registers that are assigned to
physical registers in order to minimize the number of accesses to memory. To accomplish

this task, the register allocator tries to map the virtual registers whose live ranges do not
interfere to the same physical register. However, sometimes the number of variables that
interfere at the same time exceeds the number of registers available and, therefore, the

register allocator must carefully decide which variables must be spilled (i.e. temporarily

stored in memory) in order to minirnize the negative effect on the program's execution
time.

Register allocation can be performed at four different levels: 1) at the level of expres­
sions, where the purpose is to reduce the number of allocated registers by finding the best
order for the evaluation of the expression; 2) at the level ofbasic blocks, where the purpose

is to reduce the number of registers used by the variables in the basic block [ASU88]; 3) at

the level of procedures (intraprocedural), usually called global register allocation, where the
optimization is perforrned for the whole body of a routine; and 4) at the level of the en­

tire program (interprocedural), in which case the optirnization perforrns the allocation for

several routines simultaneously [WaI86]. In this thesis, we will only consider the problem
of register allocation at the global (intraprocedural) and basic block levels.

Traditionally, the problem of global register allocation is solved by converting it into

the equivalent problem of graph coloring. The problem is represented by a graph G(V, E),
called the interference graph, in which the vertices V represent the variables of the program

18

•
and the edges E represent the interferences between them. The number of colOl"5 k that
can be used ta color the graph represent the number of physical registers available in the
target processor. An example, showing a small program fragment, the live ranges for
the variables in the program and the corresponding interference graph, is presented in
Figure 2.3.

abc d e
a - Read () ;
b - Read ();
c - a * b;
d - a + b;
e - c / d;
print(a,b,e);

(a) Program segment (b) Live ranges (c) interfercnœ graph

•

Figure 2.3: Live ranges and interference graph for asmall program

5ince the problem of coloring an arbitrary graph when the number of colors is greater
than two is NP-eomplete, researchers have developed different heuristics to solve the
problem. The first heuristic applied to register allocation was developed by Chaitin
(CAC+81, Cha82]. This heuristic was later improved by Briggs [BCKT89, Bri921 as part of
his PhD dissertation. In the following subsections, we describe in more detail bath heuris­
tics since they are the basis for the register allocator developed for McCAT and constitute
the foundation of the register allocation mechanism developed for the allocation of the
5hort-Lïved variables. Other heuristics are briefly described at the end of the chapter.

2.2.2 The Yorktown Allocator

The Yorktown allocator, 50 named for being developed at mM Yorktown Heights, wa5 the
first implementation of a global register allocator. It was developed by Gregory Chaitin
[CAC+81] and his coUeagues as part of the PL.8 compiler [AH82].

Chaitin devised a very simple heuristic to color the interference graph that has been
proven to work very weIl in many cases. His reasoning states that, in arder ta color a
graph with k colors, one can simplify the graph by removing anode n with degree less
than k because, no matter how the neighbor nodes of n are colored, there will always be a

remaining color to assign to n. This process of simplifying the graph by removing nodes
with degree less than k can continue until no more nodes can be removed from the graph

19

•

•

or the graph is empty. In the case where no more nodes can be removed from the graph,

the heuristic has to select one node to be spilled (i.e. kept in memory instead of registers),

and hope that by removing that node othernodes with degree less than k will emerge thus

allowing the simplification process to continue. The choice of which node to spiII must
be done carefuIly. Chaitin's heuristic selects the node with minimum spiII cost to degree

ratio. The intuition for this criteria is to try to find a variable that is comparatively cheap

to spiII and, at the same time, interferes with a large number of variables. In this way,

when the selected node is removed from the graph a large number of interferences will

aIso be removed thus increasing the possibilities of continuing the simplifying process.

The coloring process starts once aIl the nodes have been removed. The nodes are put back

in the graph in the inverse order of their removaI. Each time anode is added to the graph

:l color is assigned to it according to the colors of its current neighbors.

The different steps performed by the Yorktown allocator are depicted in Figure 2.4. A

brief description of each step follows:

Splll
Code

~ ~-= Renumber Bulld f- Coalesce Celculate 1- Slmpllfy ~ Select 1-
Greph Veriables Splll CoslS Greph Colors

Figure 2.4: Steps of the Yorktown al/ocator

• Renumber: During this step, the compiler finds the right number of live ranges to

allocate by calculating the set of connected du-ehains [ASU88] for aIl the variables in

the routine. Each du-ehain is assigned a unique identifier.

• Build Graph: Given the set of live ranges, this step goes through the routine finding

which ones interfere and constructing the interference graph. l'wo Iife ranges are

said to interfere if one is alive at any of the definition points of the other.

• Coalesce Variables: AIso called subsumption, this stage removes copy statements of

variables whose live ranges do not interfere by coalescing the respective nodes in

the graph into one. This helps to reduce the copy statements produced in the code

and improves the targeting of instructions which is useful in optimizing procedure

20

•

•

calls and handling special purpose registers. After this step, the Interference graph

is built again and coalescing is repeated until no more variables can be subsumed.

• Caleulale Spill Cosls: During this step, the register allocator calculates the cost of

spilling each live range. This cost is calculated by predicting the number of load and
store instructions that would be executed if the live range were spilled. These costs

are only an estimate since they are found at compile time.

• Simplify Graph: During this stage the graph is simplified by removing the nodes with
degree less than k from graph. Removed nodes are pushed cnte a stac1<. When

no more nodes can be removed from the graph, the algorithm selects the node Il

with minimum spilLcosl(Il)1degree(ll) to be spilled. This process continues until the

graph is empty.

• Spill code: In this stage, the allocator introduces the spill code for the variables that

were spilled Ùl the simplify stage. For each variable spilled, a load instruction is

introduced before each use of the variable, and a store instruction js inserted after

each definition. The spill code transforms the live range of the variable into a set of

smalllive ranges. Since these smal1live ranges still interfere with other variables, the

algorithm has to rebuild the interference graph and start the coloring process again.

The whole process is repeated until no more spill code is required.

• Select Colors: Once the simplify stage is completed without spilling any variable, the

coloring of the nodes of the graph is started. The nodes are added to the graph in

the reverse order in which they were removed by popping them from the stack, and

a color is selected for each node added according to the Interferences with the nodes

alreadyadded.

The complexity of the algorithm is O(V +E). Therefore, depending on the number of
interferences between variables, the complexity of Chaitin's method can go from O(V) to
O(V2).

The Yorktown allocator has been proven to work well in many cases. However, it has

sorne problems. The first problem is that once a variable has been chosen to be spilled, it is

spilled everywhere instead ofbeing spilled only in the places where the register pressure is

high. Thesecond problem is that, due to the fuct that the live ranges ofspilled variables still

interfere with other variables, the whole process of register allocation has to be repeated

several times until no more spill code is required. Usually this process does not requlre

21

•

•1

more than 3 or 4 iterations but it still can be very costly. The third problem is that, since

the algorithm is based on a heuristic, it does not guarantee ta find a solution for ail the

tractable cases, even if the problem ta solve is very simple. Ta iIlustrate this problem,

consider the !ittle graph presented in Figure 2.5, and assume we want ta find a 2-eoloring

of this graph using Chaitin's heuristic. During the simplifying process, the algorithm wiIl

try ta find any node with degree less than 2. However, since no node has degree less than

2, the heuristic wiIl wrongly decide ta spill one of the variables. Clearly this graph is very

easily colorable with 2 caloTS by assigning red ta a and b, and white ta cand d, for example.

Figure 2.5: A small graph where the Yorktown allocator [ails

2.2.3 The Optimistic Allocator

The problem with Chaitin's heuristic for the simplification of the graph is that it looks for

nodes with degree less than k assuming that ail the neighboTS of the node wiIl be colored

with different caloTS. This assumption is tao restrictive as il canbe seen in the subgraph

presented in Figure 2.6. If we assume that aIl the nodes in the graph have a degree of at
least 4 and that ail of them have the same spiIl cast, and we attempt a 3-eoloring of the

graph, Chaitin's heuristic will spill the variable a. This spilling is unnecessary because,

as can be seen in the figure, the 4 neighboTS of a can be colored using only 2 caloTS (red,

white), and a can be colored with the remaining color (blue).

Briggs' heuristic [BCKT89, Bri92] solves this problem by optimistically assuming that,

even if a has 4 neighboTS, a and its neighboTS can be colored using 3 coloTS or less. In arder

ta do this, Chaitin's algorithm is modified 50 that the spiIl decisions are moved from the

simplify step ta the later step of selection of caloTS as shawn in Figure 2.7. During simplify,
the optimistic allocator looks for anode that has degree less than k, removes it from the

graph and pushes it into the auxiliary stack. It repeats this process until no more nodes

22

•

•

Figure 2.6: Generalization of the problem of the Yorktown allocator

Splll
Code)4••••.••••••..••..•••..•••••••.•••••••..••••, Opt/m/st/c

Yorl<town!

~ J ..1
~ Bund Coalesce Calculale Slmpllry Select 1-

Renumber I-l l--l 1--1 1--1
Graph Variables Splll Costs Graph Calors

Figure 2.7: The Optimistic al1ocator versus the Yorktown allocator

with degree less than k can be found. At this point, the allocator chooses the node with

lowest spill cost to degree ratio, optimistically rernoves it from the graph and pushes it into

the stack assuming that the select colors phase will be able to assign a color to it. During the

select colors step the nodes are put back in the graph in inverse order and colored according

to the colors of the neighbor nodes. If at sorne point anode cannot be colored because

there are no free colors, the node is rnarked to be spilled and it is not added to the graph.

Briggs shows in his PhD thesis that if his heuristic decides to spill anode that node would

.have aIso been spilled by Chaitin's heuristic and, therefore, his heuristic always works at

least as weIl as Chaitin's heuristic.

23

•

•

2.2.4 Other Allocators

There have been other heuristics developed to solve the problem of global register alloca­
tion. Register allocation is a hot topic within thecompiler research community. Theeurrent
foeus is towards integrated schemes of register allocation and instruction scheduling. Due
to space limitations, we will just mention a few of them and point out their most relevant
characteristic.

Chow and Hennessy's mechanism [CH90] colors the interference graph by prioritizing

the variables according to the their benefils of residing in registers. Cal1ahan and Koblens
[CK9l] present a method to color the interference graph guided by the hierarchical struc­
ture of the program. Gupta and his col1eagues [GSS89] presented a method to color the
interference graph by partitioning it in ils clique separators. Proebsting and Fischer [PF92]

use a stochastic approach to al10cate registers based on the probability that a value will

be held in a register. Kolte and Harrold [KH93] propose a method that partitions the
live ranges in Load/Store ranges providing more flexibility for the allocation. Norris

and Pol1ock [NP94] propose to guide al1ocation with the use of the Program Dependence
Graph - PDG. Final1y, an allocation method based on cyclic interval graphs instead of the
interference graph is proposed by Hendren et al. [HGAM93].

24

•

•

Chapter3

Short-Lived Variables
and Useless Commits

In this chapter we describe the problem of the useless commit of instructions to the register

file. We start by presenting a simple example which points out the inefficiencies of the
execution model as a result of this phenomenon. We then provide experimental evidence
of the useless commits of instructions for a set of benchmarks. After defining sorne

concepts, we formula te the problerns to be studied in this thesis, we show the importance

of addressing these problerns, and we give an intuitive description of how these problerns

should be solved. At the end of the chapter, we describe the main obstacles we face to
apply the solutions proposed, we illustrate the circurnstances under which these obstacles

are present, and for each one we give a small description of the method used to overcome
them.

3.1 Useless Comrnits: A Motivating Example

One important observation ofthis thesis is thata significant portion of the values generated

by the functional units are used only while they reside inside the reOl'der buffer. The cause

of this is that a large percentage of the values generated have a very short live range.
In general, the last use of a value can be found in the instruction stream soon after its

definition point.

25

•

•

As an example, consider the small loop extracted from the Tomcat benchmark and
reproduced in Figure 3.1(a). Figure 3.1(b) shows the DLX [HP90) assembly code for the
body of the loop produced with dlxcc, the GCC Compiler targeted to produce code for the
DLX architecture!. Figure 3.1 (c) shows the live ranges for the different values generated
and the respective register assignments. In this figure, small circles (0) denote definition
points while cross signs (x) denote the points where the values die. Overlapped cross and

circle signs (0) denote redefinition points. It can be seen that, for aIl live ranges, once a
new value is defined, it is last used a few instructionslater. If we count the length of a live
range by the number of instructions between the producer and the last consumer, we can
see that the length of the longestlive range in this example is 14 instructions. If this code
were to be run on a machine with a reorder buffer of 16 entries, ail values produced could

be consumed while they reside in the reorder buffer. If this were the case, the commit of
the instructions to the register file would be useless because none of the values would ever

be obtained from the register file.

Another important pointto note from this example is that nine2 physical registers have
been used for the allocation of the temporal variables used in the body of the loop. This is
a waste of resources because, as we pointed out before, the values stored in these registers

are never being acquired from the register file. ln other words, the register allocator is
assigning register names to values that are never going to be obtained from the register

file.

From the analysis of this example, two questions emerge: can we avoid the useless
commits of instructions to the register file? Also, can we improve the register allocation
process so that register names are not assigned to values that do not require them?

3.2 Experimental Observations

After considering this example, we want to determine how often these useless commits
occur during the execution of real programs. For this purpose, we modified our super­

scalar simulation testbed to establish the percentage of useless commits found during the

'Wheneverapproprlate, we wlll use lnourexamplesassembly code produced for the DLX architecture. The
mnemonies used for the instructions are in general casy ID understand, and most of the instructions have this
format:<Op. code> "·,9-est. register>, <src. register 1>, [<src. register 2>]. A complete
description of the instruètion set can be found in [HP90).

'f4 and f6 are beingused as double registers.

26

for (I ~ 1; 1 <a N: I++) (

XII)lll" (double) (I-1))
1 (double) (N-1):

(a) C Program

L5:
lw r3,O(r6l
s111 r4, r3, Jl2
add r4,r4,r3
slli rt1, r4, H3
add r4, r7 , r4
add r5,r3,JJ-1
mov!2fp fO,r5
cvti2d ft1,fO
lh! rI, (LCO»161 &OxEfff
addu! rI, rI, (LCO&Oxffffl
Id f6,O(rll
d!vd f4, f4, f6
sd 8(r41,f4
add r3, r3, Hl
sw O(r61,r3
lw r4,O (r61
add! r3,rO,84
sle rl,r4,r3
bnez rl,L5

(b) Assembly code

r1 r3 r4 r5 10 14 18

(c) Live Ranges

•

Figure 3.1: Examples ofsllort-live-range variables

execution of a set of benchmarks. The simulator was modified to count the number of

values written ta the register file, and ta detect which of these values are never read from

the register file. The results of these experiments are summarized in Table 3.1. In this table,

we give the percentage of useless commits detected when running each benchmark with

different sizes of the reorder buffer. A description of the benchmarks used will be given

in Section 6.1, and a description of the testbed will be given in Appendix A.

From the resu1ts presented in this table, it can he seen that a large percentage of the

instructions committed ta the register file are useless. The percentage of useless commits

increases with·the size of the reorder bufferbecause there is a bigger chance that the last use

of a value and its definition point reside in the reorder buffer at the same tîme. Even with

a reorder buffer of 8 entries the percentage of useless commits is very high (on average

89.56%). With a reorder buffer of 32 entries the percentages are even higher, on average

95.11 %. These results suggest that ail these useless commits constîtute a significant waste

of resources and allow for architecture and compiler optimizations.

27

•

•

BufferSize

Benchmark 8 16 32

Alvinn 85.80 88.90 89.89

Bubble 93.82 95.93 97.14

L8 89.66 98.81 98.81

L14 91.65 95.93 97.08

L8unroll 89.54 98.70 98.70

L14unroll 91.77 95.87 97.12

Linpack 92.32 92.61 93.33

Quickrand 81.81 87.52 88.19

Tomcat 95.95 97.61 97.78

Whetstone 83.29 90.21 93.04

1 Average ~ 89.56 1 94.21 1 95.11 1

Table 3.1: Percentage of useless commits

3.3 Problem Formulation

In this section we fonnulate the problems to be studied in this thesis. We start by defining

sorne of the related concepts. Sorne of these concepts are also exemplified in Figure 3.2.

Let do. dl. d2 dn be the definition points for a set of values VO, tit, 112 ... Vn• Let

lIio' lIi, , lIi2 ••• lIi be the set of last-use points for a value Vi. We define the live range
Ti, of a value Vi as the sequence of instructions in the intervaI [di.lIijl, and the length of

Ti" .e(Ti), as the number of machine instructions in the Iongest path between di and 'Ui,

including di and lIi,. Assume we have a superscaIar machine M, Iike the one described in

our execution model (Section 2.1.3), with a reorder buffer oflength .enentries. We say that

the commit of the value Vi produced by the definition point di to the register file is a useless
commit if ail the references to Vi are obtained from the reorder buffer rather than from the

register file. We say a live range Ti, is short if it has a Iength that is smaller than or equal

to the size of the reorder buffer, i.e., .e(Ti,> ::; .en. ConsequenUy, we calI a variable x a

short-lived variable ifail the live ranges associated to x are short. Note that for an instruction

at dk to be a useIess commit, it is necessary that ail the associated live ranges, Tk. for any

x, beshort.

28

e = a;

b = y;
if (b) 1

c = a + b;
d :0 C / 2;
e = d + a;
else 1

(1) a = x;
(2)
(3)
(4)
(5)
(6)
(7)
(8)

; rao

i L(raJ = 6

l Uao
rat 1*Ua,

L(ra1) =4

Head-.

TaU..............

1
RegiS:JI

File

-r
a .. x;

b = y;

if (b)

c = a + b;

d = c / 2;

e .. d + a;

Reorder
Buffer

t
lost.
Commit

•

Figure 3.2: S(lme concepts related ta shorl-lived variables

Given these definitions, the problems to be studied in this thesis can be stated as
follows:

• Problem 1 - Reduction of Useless Commits: Given a machine M with a reorder
buffer of CR. entries and a program P, we want ta develop architecture mechanisms
and compiler techniques to reduce the number of useless commits in M, while
executing P.

• Problem 2- Allocation of shorl-Iived variables: In conjunction with the solution for
Problem 1, we want to propose a register allocation scheme which ensures that the
short-lived variables in P do not occupy physical registers of the machine whenever
possible.

Solving Problem 1 will allow the architecture to reduce the number of write ports ta
the register file without affecling the execution lime of the program. The reduction of
write ports is an important issue because it simplifies the structure of the data path of
the processor [UJ92, Joh91). The complexity of implementation of the reorder buffer, the
register file and the associated busses depends on the number of ports to the register file.

As we mentioned in Section 2.1.2, the area complexity of a multiported register file is
roughly proportional ta the square of the number of ports (CDN92). In faet, due to the

29

•

•

complexity of the register file, the cycle length for many architectures is determined by the

access time to the register file. Recent superscalar designs, like the PowerPC 604 [5094],
provide register files with more than 10 ports. However, even 10 register ports may not be
enough to satisfy the demands posed by issuing several instructions each cycle, and the
designers are forced to put restrictions on the number of instructions that can be committed
per cycle or to add stages to the pipeline to handle the possible contention [5094].

Solving Problem 2 will allow the compiler to utilize more effidently the physical reg­
isters by using them exclusively for the allocation of variables with long live ranges. The
effective utilization of the registers is also an important issue. As we saw in Section 2.2, the

register allocator tries to map a usually large number of virtual registers to a small num­
ber of physical registers which, therefore, constitute a preàous resource. Furthermore,
compiler optimizations for ILP try to increase parallelism which in tum increases register

pressure [CF87]. We need to find mechanisms to reduce the register pressure created by

these optimizations and utilize as efficiently as possible the register names provided. If
we avoid the use of physical registers by the short-lived variables we will increase the

number of registers available for long-lived variables thus reducing register pressure and

the amount of spill code introduced.

3.4 Solution Strategy

As observed in Section 3.2, a large percentage of the instruction commits are not necessary.
Therefore, we propose to reduce this percentage (Problem 1) by providing the architecture
with specifie information, 50 that, at commit time, it can decide whether a value should

be committed to the register file or just discarded. This information should be collected

by the compiler by analyzing the characteristics of the live ranges of the variables, and
provided to the architecture through the instruction set. Note that only the compiler can
detect whether the use of a value is the last one or not. Thus, it is the responsibility of the

compiler to flag the instructions that are going to be discarded at commit time.

To solve Problem 2, we propose to modify the register allocation process, so that

variables whose live ranges are not committed to the register file are not assigned to

physical registers since these live ranges are not going to make use of them. We maintain

that these variables should be assigned to and stored in the reorder buffer instead of the

register file. Then, the reorder buffer will be considered an extension of the register file in

30

•

•

which the values of short live ranges will be temporarily stored before they are discarded
at commit time. The actual storage for the value will be dynamically allocated by the
renaming mechanism of the architecture. In short, we propose to use the space provided
by the renaming capabilities of the reorder buffer as additional registers to allocate the
short-lived variables.

3.5 Obstacles

In the preceding sections, we have proposed exploiting the fact that a large percentage
of the live ranges occur while they reside in the reorder buffer. However, in order to be
able to exploit this fact, we need to overcome sorne problems. There are 3 main obstacles
to surpass: the compiler's lack of knowledge about which instructions are present in
the reorder buffer at any given point, the detection of useless commits in the presence
of the speculative execution of instructions, and the need to provide support for precise
interrupts. In the following subsections, we will illustrate with examples these obstacles
and give an intuition on how to overcome them. Sorne of the presented ideas will be
elaborated in subsequent chapters.

3.5.1 Determining Useless Commits al: Compile Ume

The first obstacle preventing us from applying our ideas is that in current superscalar
designs, like the one described in our execution model in Section 2.1.3, the compiler
cannot safely determine whether an instruction commit will be useless based only on
the fact that the associated live range has a length smaller than the size of the reorder
buffer. The compiler can establlsh that a live range is short, but that does not imply that
the associated definition point will he a useless commit. The problem lies in that, with
the current implementation of the reorder buffer, an instruction can he committed to the
register file as soon as il reaches the head of the reorder buffer without waiting for the last
use of the value to enter the buffer.

This problem is illustrated in Figure 3.3. Consider a machine with a reorder buffer
having 12 entries U:.n = 12), which is able to fetch and decode 2 instructions per cycle
('DB = 2). As it can he seen in the figure, the length of the live range of a is Il. According
to our definition, this live range is short. However, from the moment the definition point

31

•

of (1, d'II enters the reorder buffer, to the moment the last use, Ua, enters the reorder buffer,
five clock cycles will occur. In these five cycles, instruction (1) will be able to execute and
write back its result to the reorder buffer. If this instruction reaches the head of the reorder
buffer before the last use Ua enters the buffer, then the value of a will be retired to the
register file. Then, when Ua enters the reorder buffer the value of a will have to be obtained
from the register file and therefore, the commit of da will not be useless. However, if we
had a different policy for the commit process of the instructions, the commit of da could
have been avoided.

Figure 3.3: Impossibility ofdetermining useless commits at compile time

Ta address this issue, we propose that the compiler should mark in the code the
definition and last use points of the short live range, while the architecture should be
augmented ta ensure that the instruction defining the value will not leave the reorder
buffer before the last use enters the reord.er buffer. We will elaborate on this mechanism
and ils possible variations in Chapter 4 where we discuss the compiler mechanism and
architectural modifications required.

32

•
3.5.2 Detecting Useless Commits in the Presence of Speculative Execution

The second obstacle to overcome is related to the speculative execution of instructions. The
problem of knowing at compile time when an instruction is going to be a useless commit
is even more difficult in the presence of speculative execution. After a definition point has
entered the reorder buffer, one or several branches can be predicted before the last use of

the value enters the reorder buffer. Yet, even aCter the last use has enterecl, it is not safe
to say that the definition point can he discarded once it arrives to the head of the reorder
buffer because sorne of the branches in the middle could have been wrongly predicted. If
the definition point is discarded and the prediction for one of the branches happens to be
incorrect, then anotheruse of the valuecan be fetched from the new path, and this use will
not be able to find the value in the reorder buffer nor in the register file.

Aeorder
Buffer

(1) a .. 2; da

(2) b :: c 1 a;
(3) if (b) (...

: raO:
:

4rao)=7:·(7) ·e .. C + a; · Uao:
(8) else ·

tL(Iil,) = 6

(11) e .. d * a; ua,
(12) } .···:

Head--...,

11

Tall~

Aegl;:j
File

l
a .. 2~

b .. c / a;

if (b)

·
· .
· .

e • c + a;

l lnst.
Commit

•

Figure 3.4: Dealing with speculative execution

To illustrate this problem, consider the example given in Figure 3.4. Assume the
processor has a reorder buffer with 8 entries (CR. = 8). The definition point of (l, da, is

found in instmction (1). In this case there are two last uses for a, one at the end of the

if-body and the otherat the end of the else-body. The respective lengths ofboth live ranges
are six and seven. Therefore, based on our definition, both live ranges are short and a

is a short-lived variable. Assume that the branch prediction mechanism for~tells that the

if-body is going to he taken. In that case, instmction (7) would he put in the reorder buffer

33

•

•

and we could assume that since both the definition point da and the last use !ta are present

in the reorder buffer, the commitment of da would be a useless commit. Then, when

retiring the definition point da we could discard the value of a instead of committing it to

the register file. If the prediction of the branch is correct the value of a will not be required

anymore and the mechanism would work properly. However, if the prediction happens to

be incorrect, the instructions in the else-body will be fetched and when instruction (11) is

decoded the value of a will not be found either in the register file nor in the reorder buffer.

There are two possible ways to get around this problem. One way is to design a

hardware mechanism to ensure that the definition point of a short live range will not leave

the reorder buffer until the last use is also in the reorder buffer and the branches between

them have been resolved. The other way is to simplify our problem and decide that we

are only going to avoid the useless commits of short live ranges that do not cross the basic

dock boundaries. Both mechanisms will be discussed in Chapter 4.

3.5.3 Dealing with Interrupts

The last obstacle we have to overcome in order to allow the compiler to exploit the occur­

rence ofshort-Iived variables is related to the need to provide precise interrupts. Interrupts

are events that disturb the normal execution of the program like a page fault or an arith­

metic overflow. An interrupt is said to he precise, if at the moment when the interrupt is

handled ail the instructions preceding the faulting one in the sequentialcode have updated

the state of the processor, none of the succeeding instructions have updated the processor

state, and the saved program counteris pointing to the instruction thatcaused the interrup­

tion [SP88, HP87]. Precise interrupts are easily achievable in sequential processors where

ail the instructions are executed in order. However, in ILP processors precise interrupts

are difficult to achieve due to the fact that in this kind of machines instructions can be

executed out of order and thus update the state of the processor in a non sequential order.

As we described in Section 2.1.1, the reorder buffer provides a mechanism to support pre­

cise interrupts. The interrupt is not treated until the faulting instruction reaches the head

of the reorder buffer. In this way, we can ensure that ail the instructions preceding the

faulting one have updated the state of the processor and that the saved program counter

is pointing to the correct instruction.

Even if our execution model uses a reorder buffer, we face a new problem when we are

trying to avoid the useless commits produced by short-Iived variables and at thesame lime

34

•
still providing precise interrupts. The problem resides in the recoverability ofthe processor

state after handling the interrupt. Ifwe discard the value produced by thedefinition point,
and an instruction lying between the definition point and the last use point of a live range
causes an interrupt, then the last use of the value will not be able to find this value after
the interrupt has been handled.

To illustrate this problem, consider the example given in Figure 3.5. The range of /1 in
this example is a short live range. Assume the situation in the reorder buffer is as depicted
in the figure. Both the definition point Onst. 1) and the last use Onst. 5) of /1 are in the

reorder buffer. Assume further that when retiring instruction (1) we discard the value
produced instead of committing it to the register file. A problem arises if an instruction,
say instruction (3), causes an interrupt. In this case, the processor will wait until instruction
(3) reaches the head of the reorder buffer and, at this point, it will cali the routine to handle

the interrupt. The routine will save the state of the registers, process the interrupt and
restore the register file to the state it had before the interrupt. After the handling routine
has retumed the processor will start executing the program from the point where the fault

occurred. However, when the processor tries to decode instruction (5) again, it will look

for the value of /1 and, since we discarded it before the interrupt occurred, it will not be

able to find it. In this case, the interrupt was handled at the point where it should have
been, that is, the interrupt was precise. Nevertheless, the interrupt was not recoverable.

lJJ(,= B

l Ins!.
Commit

Reglsler
Flle

l
d_ a 1: 2;

b ... Y + ai

Il c ... y 1 x;

e ... b + Ci

11-'" d a c + ai
Ta

Hea

I
da

ra L(r,,) = 5

ua

(1) a = 2;
(2) b = Y + a;
(3) c = y / x;
(4) e = b + c;

(5) d rc + a;

:

~

•
Reorder
Buller

Figure 3.5: The problem ofhandling interrupts

35

•

•

In order to provide the recoverability of the interrupls, we propose that at the moment of
handling the interrupt, not only thestate of the register file and the program countershould
be saved, but also the state of the reorder buffer should be saved. The process of saving
the state of the reorder buffer can be expensive given that the size of the reorder buffercan
be large. However, since interrupls do not occur frequently (around 1 instruction every
5000 instructions [HP87, BP93)), the performance penalty of saving the state of reorder

buffer should be negligible. The advantage of saving the state of the reorder buffer is that

the processor can restart fetching the instructions from the last instruction that entered the
reorder buffer before the interruption was treated instead of restartîng fetching from the

instruction tha t caused the interrupt.

As we will see in Section 4.2, an improvement to this mechanism can be irnplemented
if we consider discarding only the values of short live ranges that do not cross the basic

block boundaries.

36

•

•

Chapter4

Reduction of Useless Commits

ln the previous chapter, we illustrated with examples the fact that, with our current

execution model, the detection of a short live range by the compiler does not imply the

detection of a useless commit to the register file. We pointed out that the problem with the

current model is that an instruction can be retired to the register file as soon as it reaches

the head of the reorder buffer without waiting for the last use to be present. We also

noted that, even if the architecture ensures that the definition point of a value is not retired

until the Jast use is also in the reorder buffer, it is not safe to decide that a value should

be discarded if the last use of this value is being speculatively executed. In this chapter,

we describe the hardware and software mechanisms used in this thesis to overcome the

problem ofdetection ofuseless commits both with and without the presence of speculative

execution. With the help of this mechanisms we are able to solve the problem of reduction

of useless commits, which is the first problem this thesis aims at resolving.

4.1 Detecting Useless Commits

The simplest mechanism, though not the most efficient, for the deteclion of the useless

commit of instructions could be implemented at the hardware level without requiring the

intervention of the compiler. At commit time, the processor could decide to discard the

value to he stored in a register if it detects that a succeeding instruction in the reorder

buffer is also writing to the same register. Although this mechanism does not require any

information provided by the compiler, it is not as precise as the mechanism we propose

37

•

•

in this thesis. That is, it would not detect the useless commits of instructions whose

corresponding registers are not redefined by any of the suceeeding instructions in the
reorder buffer. Moreover, this mechanism would also have problems dealing with the
speculative execution of instructions since the instruction redefining the register could be
in the reorder buffer after an unresolved branch.

Since we want to maximally reduee the number of useless commits, we decided to
implement the mechanism suggested in our solution strategy in Section 3.4. That is, to use
the compiler to collect infonnation about the live ranges and communicate this information

to the processor through the instruction set. Hence, in ourmechanism thecompiler decides
which values should be discarded at commit time and tags these values. In addition, the
architecture provides a mechanism to ensure that the whole live range of a tagged value
will occur inside the reorder buffer. To achieve this, the architecture has to impose more
constraints on the commit process of an instruction to guarantee that the definition point

of a value chosen by the compiler will not be discarded until the last use enters the reorder
buffer. This can be implemented using two different schemes:

• S~heme 1: Marking the last use of a value

ln this scheme, the compiler is responsible for informing the architecture which of

ail the uses of the value is the last one. When the last use enters the reorder buffer
an associative search is performed in the reorder buffer and the definition point is

marked so that when it arrives at the head of the reorder buffer it can be discarded.

This should not increase the time required to enter an instruction into the reorder

buffer since the mechanism defined in the execution model is already performing

the associative search to find the instruction that is defining the value.

This mechanism is exemplified in Figure 4.1. Figure 4.1(a) shows a fragment of
assembly code that has been annotated by the compiler with ampersand signs to
indicate which values can be ùiscarded at compile time and to f1ag the corresponding

last uses of these values. Thus, for example, the value of r3 defined in instruction (2)

can be discarded at compile time and the last use of this value is found in instruction

(3). The value of r3 in instruction (3) can be discarded at commit time and its last
use is found in instruction (5). On the other hand, the values of r 5 in instruction (1)

and of r4 in instruction (4) must be committed to the register file.

Figure 4.1(b) shows a partial representation of these instructions in the reorderbuffer.
We have added two bits to each entry in the reorder buffer. The "Discard" bit (Dise)

38

•
(1) add r5,rO,r3

(2) slli &r3, r4, 12

(3) add &r3,&r3,r4

(4) slli r4,r3,13

(5) add &r6,r4,&r3

(a) Assembly code

Flag Des!. Reg. Result Disc. Last U.•••••••

l.:l1..=8

lins!.
Commit~ r5 0 0

2) r3 1 1

3) r3 1 1
4) r4 0 0

5)~ r6 1 0

Head

Tail

(b) Rcorder buffer representalion

Figure 4.1: Marking the last use ofavalue

•

indicates that the value being defined in this entry can be discarded at commit time.
The value of this bit is determined when the instruction is decoded and entered in the

reorder buffer. The "LastUse" bit indicates that the last use of the value beingdefined

in this entry is present in the reorder buffer. This bit is set when the instruction with
the last use of the value enters the reorder buffer. When the instruction reaches the

head of the reorder buffer, the value is retired to the register file if the "Discard" bit

is zero. If both the "Discard" bit and the "Last Use" bit are one, the value can be

discarded. Otherwise, if the value of the "Discard" bit is one and the "Last Use" is
zero, then the value cannot be discarded until the corresponding last use enters the

reorder buffer. Thus, in the example, the value produced for r 5 must be retired to

the register file since the value of the "Discard" bit is reset. On the other hand, the

value produced for r 3 can be discarded since both the "Discard" and the "Last Use"
bit are set. Once instruction (5) arrives to the head of the reorder buffer, the value

produced for r6 can be discarded only if the "Last Use" bit has been set, indicating

that the last use of r 6 has entered the reorder buffer.

39

•

•

5pecial care has to be taken by the compiler so that the use of this mechanism does
not produce stalls in the decode stage. If the length of the reorder buffer is en
and the decode bandwidth of the processor is VB, then the length of the live ranges
chosen by the compiler must not exceed en - VB. In this way, we avoid the case
where instructions cannot enter the reorder buffer because another instruction is at
the head waiting for the last use to enter the reorder buffer and stopping the commit

of other instructions. 50, as an example, if en is 16 and VB is 4 then the length of

the live ranges chosen to be discarded should not exceed 12 instructions.

• Scheme 2: Keeping a minimum number of instructions in the reorder buffer

In thisscheme, an instruction cannotbecommitted unless there isa minimumnumber

of instructions in the reorder buffer. In this way, the compiler can be sure that if two
instructions are separated by a number of instructions that is less than the minimum
number of instructions kept in the reorder buffer, the two instructions are going to be
simullaneously present in the reorder buffer. Here again, special care has to be taken

when choosing the minimum number of instructions to be kept in the reorder buffer

in order to avoid decode stalls. The minimum number ofinstructions Men must be
selto (en - VB). That is, Men will be an architectural parameterwhich depends on

the reorder buffer size en and the decode bandwidth VB (See Figure 4.2). Knowing
Men, the compiler will be able to decide which live ranges will completely occur

inside the reorder buffer and mark them, so the architecture can safely discard the
associated value at committime.

We should emphasize here that the use of this scheme does not delay the execution of

the instructions in the program. The fact that an instruction i cannot be retired from

the reorder buffer until a minimum number of succeeding instructions are present
in the buffer, does not delay the execution of the instructions that depend on i. The

reason is that the reorder buffer forwards the value produced by the instruction i

to all dependent instructions at the time i finishes execution rather than when it is
retired. Moreover, this scheme does not delay the decoding of instructions because
the minimum number of instructions Men was set in such a way that it ensures

there is space in the reorder buffer to put VB new instructions each cycle. The only

situation where the reorder buffer could be full is when the instruction at the head

of the buffer bas not finished execution, and this situation is not caused by the fact

that we are keeping a minimum number of instructions in the reorder buffer.

An advantage of this mechanism is that the compiler does not need to flag the last

use of a value to be discarded. Only the definition point has to be flagged. This is

40

•
(1) add rS,rO,r3

~) s111 &r3,r4,'2

(3) add &r3,r3,r4

~) 511i r4,r3,.3

(5) add &r6, r4, r3

(6) addi &rl, r5, #8

(a) Assembly code

Head~r-.F:-la~g-r_D~e_sl_._Re_Q_•.,.-_Re_s_u_ll.-,._D_iSC_....,..._.....:-._••_._._-,

(1) t Inst.
~ ~~

(3)

!Ml9t= 6 (4)

(5)

(6)~&L4~~~~~$24Z2iE~..iI

Tai!

(b) Rcordl!r buffl!r rl!prescntation

'D'B= 2

•

Figure 4.2: I<eeping a minimum number of instructions in tire reorder buffer

illustrated in Figure 4.2. In Figure 4.2(a) a fragment of assembly code annotated with

the information of which values should be discarded at commit time is shown. As

it can be seen, the compiler only needs to mark the values that can be discarded at

commit time. In this example, the values produced by instructions (2), (3), (5) and

(6) can be discarded instead of cornmitted to the register file. Figure 4.2(b) shows a

partial representation of these instructions in the reorder buffer. In this case we only

need to add one bit to each entry of the reOlder buffer. As in the previous schem2, we

caU this bit the "Discard" bit. It is determined when the instruction is decoded, and

it is used at commit time to decide if the value should be discarded or committed to

the register file. The reorder buffer has to be modified to ensure that an instruction

at the head of the buffer can only be removed if the number of instructions in the

reorder buffer is at least Mln.

These two schemes are equivalent in terms of effectiveness. The selection of the

mechanisrn will depend, then, on the complp.xity of the irnplernentation. As rnentioned

41

•

•

before, Scheme 2 has the advantage that only the definition points need to be marked by
the compiler. This implies a smaller change in the instruction format and, depending on

the instruction set, could imply that object code compatibility could be preserved. On the
other hand, the implementation of Scheme 2 could he more difficult for sorne architectures
particularly in the presence of branch prediction. When a branch is wrongly predicted,
sorne architectures scrap the instructions following the branch while others just mark them

so tbat at commit time they can be discarded. For the architectures that actually scrap the
instructions, it could be nlore difficult to keep an account of how many instructions are in
the reorder buffer. In this case, Scheme 1 could be easier to use.

4.2 Dealing with Instruction Speculation

As we showed in Section 3.5.2, the problem of detecting useless commits at compile time

is more difficult when we consider the speculative execution of instructions. The problem
is that it is not safe to discard a definition point even if the last use is also present in the
reorder buffer because the last use could be speculatively executing. There are 2 schemes
that can be use to solve this problem:

• Scheme 1: Using a hardware mechanism to detect useless commits in the presence

of speculative execution

With this scheme, the reorder buffer has to be modified to ensure that the definition

point of a short live range is not discarded until we are certain that the last use is

not executing speculatively. That is, the value produced by a tagged instruction at
the head of the reorder buffer cannot be discarded until the last use has entered the

reorder buffer, and there are no unresolved branches between the definition point

and the last use of the value. This can be accomplished in hardware by keeping

track of the difference in speculation level between the definition point and the last

use of the value. For this, each entry in the reorder buffer can he augmented with
two fields to indicate the level (depth) of speculation at which the entry currently is

("CurrLevel"), and the level of speculation at which the last use of the value being

produced is ("LastUseLevel"). Each can be implemented with no more than four

bits, since no more than four levels of speculation are required to achieve nearly

maximum paral1elism in a superscalar processor, as shown in ijoh91].

42

•

•

This mechanism is described in Figure 4.3. Figure 4.3(a) shows a small fragment of
assembly code which includes a branch instruction (instruction (3». We will focus
our attention on the value of r6 since it has been tagged by the compiler and its last

use occurs after the branch. Figure 4.3(b) shows the state of the reorder buffer after
the first three instructions have entered. Bit 0 of the "CurrLevel" of instructions (1)

and (2) is setto one whereas bit 1 of "CurrLevel" of instruction (3) is set to one to

indicate that instructionsafter thebranch are in the next level of speculation. Assume
that the branch predictor foretells that the branch is not going to be taken. When
instruction (4) enters the reorder buffer (Figure 4.3(c», the bit 1 of its "CurrLevel" is

set to one and, since this instruction has the last use of r 6, bitl of the "LastUseLevel"
for instruction (1) is also set to one. When the branch is resolved, two actions can

be taken. If the branch was correctly predicted (Figure 4.3(d», bit 1 of "CurrLevel"
for ail the instructions preceding the branch is set to one to indicate that the branch
corresponding to that level was correctly predicted. If the branch was mispredicted,
bit 1 of "LastUseLevel" for ail the instructions preceding the branch is set to zero to
indicate that ail the instructions with last uses in that level were wrongly entered in
the reorder buffer.

The value defined by a tagged instruction (Discard bit set to one) can be discarded

only if the same bit is set in both the "LastUseLevel" and the "CurrLevel" fields.
In Figure 4.3(d), the value defined in instruction (1) can be discarded because bit

1 for both the "CurrLevel" and the "LastUseLevel" is set, indicating that there are

no unresolved branches between this instruction and the last use of the value being
produced.

Although this mechanism is able to rnap short live ranges to useless commits in the

presence of instruction speculation, there are several arguments against its use. The
first argument is that it seerns difficult to implement. One of the goals of this thesis

is to use information provided by the compiler to reduce the hardware complexlty.

The use of this mechanism would certainly not help to achieve this goal. The second
argument is that this mechanism can introduce stalls in the decoder. In effect, the
definition point ofa short live range cannotbediscarded until thereare no unresolved

branches between it and the last use of the value. Therefore, a definition point

could be at the head of the reorder buffer waiting for sorne succeeding branches

to be resoIved and stopping the decoding process because of Iack of space in the
reorder buffer to introduce more instructions. Although we did not impIement this

mechanism and, therefore, we are not certain of how often this situation can cecur,

43

•
(1) add 'r6,rO,H3 ;r6 Definition Point
(2) sgt &r3, r3, r5 ; r3 = (r3 > r5)
(3) beqz &r3, Lelsel ; If (13 == 0) golO Lolse'
(4) add r5,rO,&r6 ;r6L.astUse

(al Assembly code

Flag Oest. Reg Result Discard
CurrLeval LastUseLovel
32'0321 0

10. r6 1 ,
) r3 1 1 1

) ~ - . 1

1

(

(2

??(3

Tai

Head

Rosu!t OiscardFlag Oost. Reg

(b) Insertion of instructions up to the branch

CurrLevel LastUseLovel

32'0321 0

~ r6 , , 1

) r3 , 1 1

) . - 1

) ~ r5 0 1

(1

(2
??(3

(4

Tan

Head

(c) Insertion of the last use of r6

Aag Oost. Reg Rosult Oiscard CurrLevel LastUseLevel

32' 032 1 0

;0. r6 1 1 1 1

) r3 1 1 1 ,
) . . 1

) ~ r5 0 1

il

(

(2

(3

(4

Ta

Head

•
(dl Resolution of the branch

Figure 4.3: Detecting useless commits in the presence of instruction speculation

44

•

•

this scenario is, of course, undesirable.

• Scherne 2: Considering only live ranges that do not cross basic block boundaries

The other way to get around this problem is to simply avoid it by considering as

short-lived variables only those variables whose live ranges are short and whose

definition and last use points are found in the same basic block. The intuition behind

this idea is that, since the live ranges we are considering are short, there is a high

probability that their definition and last use points are in the same basic block. In

general, many of these short live ranges are produced as a consequence of the use of

temporary variables by the compiler. Most of the lime, these variables introduced by

the compiler are used only inside the basic block. ln orcier to verify this observation,

we modified our simulator to count the number of useless commits that are caused

by live ranges that do not cross the basic block boundaries. The results of our
measurements for different reorcler buffer sizes are presented in Table 4.1.

BufferSize

Benchmark 8 16 32

Alvinn 85.8 89.35 89.35

Bubble 93.83 95.90 95.92

L8 89.66 98.81 98.81

L14 91.26 95.16 95.16

L8unroll 89.54 98.70 98.70

L14unroll 91.39 94.85 94.85

Linpack 92.31 92.50 92.64

Quickrand 81.37 84.11 84.50

Tomcat 96.31 97.45 97.57

Whetstone 82.82 89.26 89.26

1 Average ~ 89.43 1 93.61 1 93.68 1

Table 4.1: Percentage of useless commits produced by live ranges that do not cross basic black
boundaries

Comparing these results with the ones presented in Table 3.1, it can be seen that most

of the short live ranges do not cross the basic black boundaries. Even for a reOl'cier

buffer of 32 entries, the difference of the measurements presented in Tables 3.1 and

45

•

•

4.1 for a particular benchmark is at most 4%. The differences are further reduced

when we consider the measuremenls for reorder buffers of 8 and 16 entries. This
sman difference confirms thatthis scheme can be used, without a significantloss of
precision, to detectthe useless commils, thus avoiding in a simple way the problem
posed by the speculative execution of instructions.

As can be seen, there are good reasons to choose Scheme 2 over Scheme 1. The com­
plexily of Implementation and the potential stal\ing of instruction decoding, disfavoring

Scheme 1, outweighs the slightloss of precision of Scheme 2. By choosing scheme 2, we

are applying the principle of "making thecommon case fast" [HP90) since we are avoiding
the use of a complicated hardware mechanism that would only be necessary in a small
percentage of the cases. As a consequence of this selection, we wil1 modify Ol~;- definition

of a short-lived variable given in Section 3.3. We redefine a short- lived variable as a
variable whose live ranges are short and whose definition and last-use poinls are found in
the same basic block.

Another advantage of the use of Scheme 2 is related to the recoverability of the inter­
rupls. As we explained in Section 3.5.3, in order to make an interrupt recoverable under
our scheme, il is necessary to save the state of the whole reorder buffer before handling

the interrupt. An improvement to this mechanism can be obtained if we consider that the
short live ranges to be discarded do not cross the basic block boundaries. In this case, the

values discarded will only be required by the instructions between the faulting instruction
and the next instruction in the reorder buffer that changes the control flow, i.e., by the in­

structions that are in the same block of the instruction that produced the fault. According

to this observation, il is not necessary to save the status of the whole reorder buffer, but

only the status of the entries from the head of the reorder buffer to the next jump orbranch

instruction. Since jump and branch instructions constitute around 13% of the instruction
mix [HP90), we will be, in general, saving less than eight entries of the reorder buffer each

time an interrupt occurs.

4.3 Compiler Analysis

Now that we have selected the hardware mechanism and have simplified the problem

in such a way that we can exactly map short live ranges to useless commils, we need to

46

•

•

design the compiler analysis to find out which live ranges are going to be tagged so that
the values produced are discarded at commit time.

This analysis, which we cali the short-live-rmlge analysis, must perform the following
tasks:

1. Find the length of the longest live range of each variable.

2. Detect variables whose live ranges cross basic block boundaries.

3. Based on the previous information, on the size of the reorder buffer CR, and on

the processor's decode bandwidth VB, find the variables that correspond to our
definition of a short-lived variable.

The analysis is carried out on the low level abstract syntax tree representation (LAST)

lDon94] ofthe McCAT compiler (See Appendix A). It performs a backwards walk over the
tree keeping track of the definition and last-use points of each live range and the distance

between these points. In order to do this, the analysis makes use of a counter which we
cali Position and two sets called Alive and Lenyth. The Position counter always keeps

the distance of the instruction being analyzed relative to the end of the basic block. This
distance is measured in machine instructions. The Alive set keeps a list of the variables

that are alive at the point where the analysis is being performed. It consists of a set of

tuples < x, Ux >, where x is a variable and Ux is the position of the instruction containlng

the last use of x relative to the end of the basic block. The Lenyth set keeps the Information

of the variables whose live ranges have already been analyzed. It consists of a set of tuples

< y, ly >, where y is a variable and ly is the length of the longest live range found for that
variable. The symbol Cl: can be used as a value for ly to Indicate that at least one live range
belonging to the variable y crosses the limlts of a basic block. Since this is a backwards

analysis, we are golng to descrlbe the actions taken by It when It advances, statement by

statement, from the end to the beginnlng of a basic block. We then describe the rules
used to merge the Information obtalned from dlfferent basic blocks. A small example,

illustratlng the results of the analysis for each statement of a program fragment, is glven

ln Figure 4.4.

Initially, the analysis sets the value of the Lenylh set to empty. When the analysis
reaches the end of a basic block, it resets the Position counter and initializes the Alive set

to be empty. For each statement in the basic block of the form x = y op z, the followlng

actions are taken:

47

•
Position Allve Lenglh

4 {}
3 {(b,l)}
2 {(b,l)}
1 {(b,l)}

4 {(i,3),(arr,4)}
3 {(I1,2),(I,3)}
2 {(tl,2),(12,2)}
1 {(t3,l)}

b = read li ,
1 = 2;
j = 3,
if (b 1

tl = &arr;
t2 = t1 * 1;
t3 = tl t2;
cl = lIlt3;

1
cIse

t2=4*j;
tl = &arr;
t3 = tl + t2i
t4 = t3 + 2,
cl = *t4;

5
4
3
2
1

{(j,5),(arr,4)}
{(12,3),(arr,4)}
{(I1,3),(12,3)}
{(t3,2)}
{(14,l)}

{(d,a), (14,2),(13,2), (11,3), (12,3) ,(l,a),(j,a),(arr,a), (b,4»

{(d,a),(14,2) ,(13,2), (11,3),(12,3),(l,a), (j,a),(arr,a), (b,4)}
{(d,a), (14,2) ,(13,2) ,(11,3),(12,3),(l,a), (j,a),(arr,a)}
{(d,a), (14 ,2),(13,2) ,(11 ,3),(12,3),(1,a),(j,a),(arr,a)}
{(d,a) ,(14,2),(13,2) ,(11 ,3),(12,3),0,a),(j,a),(arr,a)}

{(d,a),(13,2),(12,2),(I1,3),(I,a),(arr,a)}l
((d,a),(13,2),(12,2),(I1,3))
((d,a),(13,2),(12,2))
{(d,a),(13,2)} Merge

{(d,a)} J
{(d,a), (14 ,2),(13,2), (11 ,3),(12,3), (j,al, (arr,a)}
{(d,a) ,(14,2),(13,2),(I1,2),(12,3)}
«(d,a) ,(14,2),(13,2),(I1,2)}
{(d,a),(14,2),(13,2)}
{(d,a),(14,2)}
{(d,a)}

(a)

l'rograrr. fragment
(b)

Analysls Results

•

Figure 4.4: An example of the short live range analysis for a program fragment

1. 5ince x is being defined, then the tuple < x, u'" > is remo"Jed from the Alive set ta
reflect the fact that x is dead before this instruction, The tuple < x, u'" > should
have been added ta the Alive set by the analysis when it found the last use of x

in the basic block. The length of the live range of x, 1"" is set ta the number of
instructions between this statement and the last use of x, which can be expressed as
1", =Position - u'" +1. If x is not already in the Length set, then the tuple < x,l", >
is added ta the set. If a tuple < x, l"'oId > is already in the Length set then the tuple
with the maximum length is put in the set; that is, the old tuple is removed and the

tuple < x, max(l"'oId' 1",) > is added ta the set (Note that we define max(Ct,lw) = Ct

for any value of Iw)'

2. 5ince y is being used, then we have ta check if this is the last use of y. That is, if
y is not already in the Alive set, then we set uy = Position and we add the tuple
< y, Uy > ta the Alive set, ta indicate that y is alive up ta the current instruction and
ta record the point where the last use of y is. The same action is taken for z.

3. The Position counter is increased by the number of machine instructions produced

48

•

•

by this statement. In general, a statement in the LA5T tree corresponds to one
machine instruction.

In order to clarify these actions let's illustrate how they work for an statement in the
example program. Let's take the instruction t4 = t3 + 2 Olt the end of the else-body.
Before analyzing these statement, the value for the A/ive set Ï3 {(t4, 1)} indicating that the
last use of t4 WOlS found in the instruction Olt position 1. The value for the Length set is

{(d, a)} indicating that dis a variable that WolS previously analyzed and has Olt least one
live range that crosses the boundaries of a basic block. The current value of po.• ition is

2. 5ince t4 is being defined in this instruction, we remove (t4, 1) from Alive and we add
(t4,2) to Length to indicate that the live range of t4 has a length of2 instructions. 5ince t3

is being used in this instruction, we add (t3, 2) to the Alive set to indicate that the last use
of t3 in this basic block is Olt position 2. Finally, we increment the position counter before
proceeding to the next instruction. The same actions are taken for ail the instructions until

we reach the beginning of the basic block.

When the analysis reaches the begin of a basic block, we are certain that the variables

that are in the Alive set cross the border of this basic block. Therefore, for each variable x

in the Alive set a tuple < x, a> must be added to the Length set overwriting the value of

any previous tuple for x. When joining the information of two basic blocks A and il, the

corresponding sets LengthA and LengthB have to be merged into the set Len!/thFinnl so
that the length of the longest live range for each variable is preserved. The result obtained
in LengthFinal is given as input for the analysis of the basic block that precedes A and E.

The rules to merge the information of the length of the live ranges are the following:

1. If a variable y is in both LengthA and LengthB, then the tuple < y, m(lx(lvA, /vB) >
must be added to LengthFinal.

2. For any tuple < w, /w > in LengthA or in LengthB, if the variable w is either in
LengthA or in LengthB, but not in both, then the tuple < w,lw > must be added to

LengthFinal.

Lets consider how this rules apply in our example when we merge the information
obtained for the else-body and the if-body. For example, in the else-body, the length of

the live range of t2 is 3 instructions. For the if-body, the length of the live range of t2 is

2 instructions. Therefore, when merging the information we take the longest live range,

49

•

•

i.e., (12,3). On the other hand, from the information obtained from the else-body it can be
seen that j crosses the boundaries of that basic block; therefore, (j, a) must be added to the
merged [,engtil set. The same rules are applied for ail the variables in both sets.

After the analysis is performed we obtain, for every variable in the routine, the length

of its longest live range. With this information, and the knowledge of the length of the

reorder buffer r.n and the decode bandwidth 'DB, the analysis can decide which variables
are short-lived and pass this information to the code generator. The code generator can

produce the code with the flagged live ranges so that the values generated by these live

ranges can be discarded at commit time.

From the final result in our example (the set drawn inside the box), we can see that in

this program the variables Il, i,j, arr cross the basic block boundaries and, therefore, cannot

be considered short-lived variables. The other variables have very short live ranges and,

if we assume we have a machine with a reorder buffer of 8 entries (r.n=8) and decode
bandwidth of2 instructions per cycle ('DB=2), then ail of them would be considered short­

lived variables.

50

•

•

Chapter5

Allocation of Short-Lived Variables

In the previous chapter, we presented the hardware and software mechanisms to reduce
the number of useless commits to the register file. We also discussed the issues that we
had to solve in order to achieve the goals statoo in the description of the first problem to
be studied in this thesis (Section 3.3). In this chapter, we describe the software scheme

used to solve the second problem stated. That is, the need for a different register allocation
scheme, so that variables that are short-lived are not allocated to architected registers.

Up to now, we have only di~ssed how to modify the architecture so that the values

produced by short-lived variables are discarded at commit time. However, the register
allocatorcontinues to assign these variables to physical registers even though the associated

values are never going to be put there. As we explained in Section 3.1, this constitutes a

waste of resources. The names provided to address the spaces located in the register file
should be used only for the variables that will, in effect, make use of them. That is, these

names should be used exclusively to allocate the long-lived variables. Since the values

produced by the short-lived variables are cnly used from the reorder buffer, these values

should be alIocated mto the space provided by the reorder buffer. Hence, our idea is to
expose the reorder buffer to the compiler as an extension of the programmable registers

for storing short-lived values.

With our proposai, the space in the reorder buffer is treated as additional registers

which we calI symbolic regis/ers. There are as many symbolic registers as entries in the

reorder buffer. However, a symbolic register is not tied to any partlcular location in the
reorder buffer. For example, if a value is assigned to the symbolic register two (sr2), that

51

•

•

does not mean the value will be stored in the second entry of the reorder buffer. The actual
association between a symbolic register and a reorder buffer entry is done at runtime.

When the instruction defining the value of the symbolic register enters the reorder buffer,
the renaming mechanism renames the symbolic register and assigns an entry in the reorder
buffer to store the value being produced.

Given the set of symbolic registers, the problem now is to modify the compiler to make
an efficient use of them. The register allocation process has to be modified to ensure that
short-lived variables are allocated independently and are assigned to symbolic registers.
ln order to achieve this, we propose a register allocation scheme that is performed in four
steps:

1. Short-Iive-range analysis.

2. Allocation of short-Iived variables.

3. Modified Chaitin-Iike allocation for remaining variables.

4. Introduction of spill code.

These steps are depicted in Figure 5.1 (h) where they can aIso be compared to the steps

in the traditional register allocation process, which are represented in Figure 5.1(a) and
explained in detail in Section 2.2. As it can be seen, we are adding two steps to the

traditional Chaitin-Iike allocation process to allocate the short-Iived variables first. As

shown in the figure, the whole allocation process has to be repeated after the introduction

of spill code. Later in this chapter, we will explain why the allocation of short-Iived

variables must aIso be repeated after the introduction of spill code.

In the following subsections, we will explain, in more detail, the steps involved in the

proposed allocation scheme.

5.1 Allocation of Short-Lived Variables

The first step is to perform the short-Iive-range analysis, as we described in Section 4.3,

ta find out which variables can be allocated ta the symbollc registers. The second step

is to assign the symbolic registers to these short-lived variables. Since the live ranges of

52

•
Splll

Code

-.j Renurmer ~
Bulld
~

Calculate I---i SlmplHy
~

select 1-.-
Graph SplllCosls Graph Colors

(a) Traditional rcgistcr allocation

Spil1
Code

Build
Graph

t--l Calculale 1---01 Simplily 1---01
Spill Costs Graph

Select ...
Colols

•

(b) Rcgistcr allocation with short-livcd variablcanalysis

Figure 5.1: Traditional register allocation vs. short-lived variable allocation

these variables do not cross the basic block boundaries, they can be allocated in linear Ume

using a simplified version of the algorithm for register allocation at the basic block level

presented in [ASU88].

For each basic block, the algorithm performs a backwards walk over the tree assigning

symbolic registers to the short-lived variables it finds in each statement. The infonnation

on the registers assigned to the variables is stored in the tree 50 that it can later be accessed

by the code generator. The algorithm makes use of two sets which we calI Position and

Registers Used. The Position set keeps track of the variables that already have symbolic

registers assigned. Bach element in the set is a tuple of the forro < x, ST:!: >, where x is a
short-lived variable and ST:!: is the symbolic register assigned to it. The Registers Used set

keeps track of the symbolic registers that are currently used . Initially both sels are empty.

The analysis is exemplified in Figure 5.2. In this example, we assume that the variables

a,b,e,d,i,j are long-lived and, therefore, the algorithm does not allocate symbolic registers

to them.

For each statement of the forro x = y op z, the algorithm performs the following

actions:

53

•
tl = &ai

t2 = 8 * i;

t3 = t2 + 4;

t4 :::2 tl + t3i

tl o:z &bi

t2 ~ 8 * j;
t3 = t2 + 4;

tS = tl + t3;

c -= *t4;
d = *t5;

Position

li
«t1.h}

«11.h.<12.2>}

«11.h.<13.2>}

«14.2>}

«14.2>.<11.h}

{<14.2>.<l1.1 >.<12.3>}

«14.2>.<11.1 >.<13.3>}

«15.1 >,<l4.2>}

{<l5.h}

Symbollc reglslers usee!

li
{1}
{1.2}

{1.2}

{2}
{1,2}

{1,2,3}

{1,2,3}

{1,2}

{1}

(al Program fragment (b) Allocation of shorl-lived variables

•

Figure 5.2: An example of the analysis for the allocation ofshort-lived variables

1. If x is a short-lived variable, sinee x is being defined, then the symbolic register
associated to x, ST", can be freed. To reflect this, the tuple < X,ST" > is removed from
the Position set and the register assigned to it, ST", is removed from the Registers Used
set,

2. If y is a short-lived variable, then the algorithm checks if y is not already in the
Position set. If it is not, then the algorithm assigns to it one symbolic register that is
not in the Registers Used set, say STy, and adds the tuple < y, STy > to the Position set.
Also, the symbolic register STy is added to the Registers Used set. The same action is
taken for z, if z is a short-lived variable.

Using this algorithm, independent live ranges that belong to the same variable can be
allocated to different registers, as for the variables t2 and t3 in the previous example. In
this case, t3 has 2 live ranges. In one of them, t3 gets allocated to the symbolic register
three (sr3). In the other, it gets allocated to the symbolic register two (sr2). t2live ranges
get allocated analogously.

It is important to note here that, since the number of symbolic registers available is
equal to the number of entries in the reorder buffer, and since the length of each live range
does not exeeed the length of the reorder buffer (the short-Iive-range analysis ensures this
is true), the number of symbolic registers is always enough to allocate ail the short-Iived
variables without requiring the introduction of spiIl code.

54

•

•

The assembly code produced after the symbolic registers have been allocaled is shown
in Figure 5.3. In this figure, we show how the code looks when the variables are allocated
using the traditional Chaitin-like allocation scheme (Figure 5.3(h», compared to the code
produced when we use our proposed allocation scheme. Note that our scheme uses three
symbolic registers and two physical registers compared to the five physical registers used
by the traditional allocation scheme!.

tl &a: add r6,r3C,#-36 add srl,r30,#-36
t2 = 8 • i; s11i r3,r5,#3 slli sr2, r5, #3
t3 t2 + 4; addi r3,r3,#4 addi sr2,sr2,#4
t4 tl + t3; add r5,r6,r3 add sr2,srl,sr2
tl = &b: add r6,r30,#-40 add srl,r30,#-40
t2 8 • j; s11i r3,r4,#3 slli sr3,r4,#3
t3 t2 + 4; addi r3,r3,#4 addi sr3,sr3,#4
t5 = tl + t3; add r4,r6,r3 add srl,srl,sr3
c = *t4; lw r8,O(r5) lw r4,O(sr2)
d *t5; lw r3,O(r4) lw r5, °(srl)

(a) Program fragment (h) Code produœd afler (c) Code produced afler separale
Chaitin-like allocation allocation for short-livcd variables

Figure 5.3: An example of the code produced for the Iwo allocation schemes

5.2 Allocation of the Long-Lived Variables

After all the short-lived variables are allocated, the next step is to allocate the remaining
variables using Chaitin's allocator with the Briggs improvement (CAC+81, Bri92). The
advantage of our scheme at this point is that, since many of the variables have already
been allocated in the previous step, in this step the size of the interference graph is srnaller
than what it would be for the traditional allocator, thus simplifying the problem. This
al50 implies that fewer variables are competing for the physical regislers which means
a decrease in the amount of spill code required. Yet, it is still possible that during the
selection of the colors for the interference graph, the Chaitin allocdtor decides to spill sorne
variables to memory thus requiring the introduction of spill code.

'We do not count r30 heresince in DLX this register;s rescrvcd to keep thevalueofthe frame pointer

55

•

•

5.3 Introduction of Spill Code

When introducing spill code, the register allocator inserts a load before each use and a store
after each definition for each variable being spilled. The introduction of these load/store
instructions has two effects on our mechanism:

1. The variables that are spilled now become short-Iived variables.

2. The introduction ofloads and stores may cause sorne short-Iived variables to become

long-lives.

These two effects can be better understood by examining the example presented in
Figure 5.4. Figure 5.4(a) presents a fragment of a program together with the repre3entation

of the corresponding live ranges before the spill code is introduced. The gray boxes

represent zones where the register pressure is assumed to be high enough to require the
introduction of spill code2. In the example, x is not short-lived and has several uses,
while 10 and 11 are short-Iived variables. For the purposes of our example, we are going to

assume that the length of the live range of 10 is the maximum length for 10 to be considered
short-Iived. Let us assume that, since the regi~ter pressure is high, the register allocator
selects :r. to be spilled, and let us examine the effect of introducing spill code for this

variable, as depicted in Figure 5.4(b). The first effect is that since x was spilled, ils live

range is now composed of several small live ranges causing x to become a short-lived

variable that can be allocated using symbolic registers. This is an advantage of our scheme

over Chaitin's allocator which repeats the whole allocation process again because spilled
variables continue to interfere with the other variables in the interference graph.

The second effect of the introduction of spill code is that since the length of the live
range for IV was on the limit of being considered short, and since sorne instructions were

introduced for the spill code of x, then the live range for 10 is not short anymore, and IV has

to be allocated using the physical registers. This forces the repetition of the whole process
to check if anymore spill code is required for the variables that interfere with IV. We have

observed, though, that this does not happen too often and that our process converges faster

than in the traditional Chaitin allocation. Finally, note that despite the fact that the live

range for 11 is longer now, 1L is still a short-lived variable and can still be allocated using

symbolic registers. This implies that no additional spill code is going to be introduced in
this zone with high register pressure.

~We assume lhal seme regislers are occuple<! by ather program variables nal shawn in the figure.

56

~I

x w u

•

x w u
x=:=z:·•····:···

l

(a) 13cforc spill code

x =z;
store x;··:,······i~--~--S- M --i

1 W,= : 1
t' , 1

:: 1
1 ..

:' load:x::" ,:
l' 'Y =W+X" ':,'
L~~~~:_~~~~ ~~_l

···,··----~-------------l "",'" 1

:,u~2;'"",' ,,:
! lëiadx;:> !
l' :Z;,J,'x,', *"u,':;, 1 9
l~_~~_~~ ~~~_~2J *

Cb) Aftcr spill code

l

•

Figure 5.4: Effect of spill code on the allocation ofshort-lived varial1les

57

•

•

Chapter6

Experimental Results

In the two previous chapters, we presented the hardware and ~oftwareschemes used to
solve the problems of reducing the number of useless commits to the register file and the
allocation of the short-Iived variables to the storage provided by the reorder buffer. In

this chaptcr, we perform experiments using our testbed to show the effeetiveness of the
proposed solution.

In order to determine the effeet of the suggested methods, we performed the following

measurements:

1. Effeetiveness of the short-Iive-range variable analysis in terms of the percentage of
program variables that are deteeted to be short-Iived variables, and in terms of the
percentage ofwrites to theregister files that can be discarded by using the information
provided by this analysis.

2. Effeet of the reduction of the write ports to the register files on the performance of
the current execution model and on the performance of our proposed (optimized)
model in which values produced by short-Iived variables are not committed to the
register file.

3. Effeetiveness of the scheme for the allocation of short-Iived variables to the symbolic
registers in the reorder buffer in terms of the percentage of improvement in the
execution time for the different benchmarks.

58

•

•

Westart ourdiscussion by presenting the conditions under which the experiments were
carried out. First, in Section 6.1, we list the different tools used tu cond.uct th,' experiments
and the set of benchmarks employed. Then, in Section 6.2, we instantiate the execution
model by specifying the configuration parameters for what we cali the base model. This
base modelspecifies the different resource sizes and latencies for the processor used in our
simulations.

Before presenting the detailed results, we give a short summary to facilita te the under­
standing of the analyses (Section 6.3). After this, we present and analyze the detailed data
obtained through the experiments (Section 6.4, Section 6.5, and Section 6.6).

6.1 Testbed and Benchmarks

Ali analyses and experiments were carried outusing the McGiII Compiler and Architecture
Testbed (McCAT) testbed (For a more detailed description see Appendix A). This testbed

consists of an optimizing C compiler (McCAT) [HDE+92) and a superscalar processor
cycle-by-<:ycle simulator (SuperDLX). SuperDLX [Mou93) simulates many of the features

described by Johnson Uoh91) including dynamic scheduling, branch prediction, register

renaming and the use of a reorder buffer.

For our experiments, we have used 10 benchmarks which are briefly described here:

1 Alvinn: Single precision 110ating point benchmark from the gPEC 92 suite. Il trains a

neural network using backpropagation in order to keep an autonomous vehicle on

theroad.

1 Bubble: Kemel integer benchmark. Performs recursive bubble sort.

1 LB: Loop 8 of the Livermoore loops. Double precision floating point benchmark.

Chosen because il is one of the loops with the most register pressure.

1 L14: Loop 14 of the Livermoore loops. Double precision floating point benchmark.
Chosen because it is one of the loops with the most register pressure.

1 LBunrol/: Loop 8 of the Livermoore loops unrolled twice to increase register pressure.

1 L14unrol/: Loop 14 of the Livermoore loops unrolled twice to increase register pres­

sure.

59

•

•

• Linpaek: Kemel benehmark from the "LINPACK" package of linear algebra routines

developed by Dongarra.

• Quiekrand: Kemel integer benchmark. Implements a recursive version of Quicksort.

• Tomeat: Floating point benchmark from the SPEC 92 benchmark suite. It performs
mesh generation.

• Whetstone: Synthetic benchmark intended to be representative of floating point in­

tensive programming.

As it can be seen, our set of benchmarks comprises code from different types of appli­

cations. We included sorne integer kemels taken from non scientific applications, sorne
floating point kemels from scientific code and sorne complete floating point scientific ap­
plications. We believe thatalthough thesample ofbenchmar!'s is small, it is representative
of a wide set of applications.

6.2 Base Model

Ali experiments were performed by simulating the behavior of the execution model de­

scribed in Seetion 2.1.3. We instantiated this model by speeifying the values ofthe different
parameters as shown in Table 6.1. The processor resulting from this speeification is our

base model for the experiments 10 be carried out. Sorne of lhe paramelers of the base model,

like the deeode bandwidth, lhe number of memory accesses per cycle and the memory
latency, were seleeted according to real values found in sorne recent superscalar processor
designs. The base model uses a reorder buffer size of 16 entries and assumes 4 write ports

per register file. The different measurements are oblained by varying sorne parameters of

the base model, e.g., the reorder buffer size belween 8, 16 and 32 entries, and the number
of regisler write ports per regisler file. In such cases, the sizes of the instruction dispatch

window and the load and store buffers are always kept equal to the size of the reorder
buffer. For simplicity, we assume that the base model and its variations have a perfeet

cache and we brielly comment on the effeet of a non-perfeet cache on our results. Aiso

for simplicity, we assume that we have enough functional units (five of each type) to exe­

cute the operations that are not related to memory accesses and that the latency of these

operations is one cycle.

60

•
1 Parameter 1 Value

•

Instruction queue 16 instructions

Decode bandwidth 4 instructions per cycle

Reorder buffer 16 entries

Memory latency 2 cycles

Memory accesses 1 percycle

Address resolution functional units 1

Other functional units 5 of each type

Latency of other functional units 1 cycle

Write ports per register file 4

Table 6.1: Configuration parameters specified for the base model

6.3 Summary of Results

The major results of our experiments are:

• The short-live-range analysis can be successfuUy used to avoid the useless commit

of instructions to the register files. The proposed analysis successfully captures most

of the short-lived variables: on the average, close to 90% (89.34) of ail variables are

detected to be short-lived when we assume a reorder buffer with 16 entries, and
more than 90% (91.92) when the reorder buffer size is increased to 32. The combined

architecture and compiler scheme can effectively make use of such an analysis and

eliminate a great majority of the useless writes to the register files: on the average

87% (87.98) for the base model and close to 90% (89.71) when reorder buffer size is

increased to 32.

• The mechanism devised to avoid the useless commits of instructions can be used to
reduce the number of write ports to the register files without affecting performance.

In fact, using this mechanism we could reduce the number of write ports to one and

obtain a loss on performance ofonly onepercent. We performed these measurements

with the model using a reorder buffer of 32 entries. In this way, we obtained the

largest performance impact when we reduced the number of write ports.

61

•

•

• The proposed method for allocation ofshort-lived variables to syrnbolic registers can
reduce the number of physical registers required and decrease the amount of spill
code needed thus improving execution time. The average improvement compared
to the traditional allocation method is substantiaI. When the register pressure is high
(only 4 registers are effectively available) the irnprovement exceeds 22% (22.35%) for
a reorder buffer ofsize 16, and 26% (26.43%) when the reorder buffer size is increased

t032.

We will further €Iaborate on these results in the following three sections.

6.4 The Effect of Short-live-range Analysis and Architecture Sup­

port for Useless Commit Elimination

The effectiveness of the short-live-range compiler analysis (explained in Section 4.3) and of
the hardware mechanisrns that allow the elimination of theuseless writes to the register file
(explaincd in Section 4.1) is ilIustrated in Table 6.2. In this table are the measurements of

the effectiveness of our combined hardware/software mechanism for different sizes of the
reorder buffer. For each size, we present the percentage of variables that were detected by
the compiler to be short-lived variables, and the percentage of writes that were discarded

at run time. It can be seen, that even for a small reorder buffer (of size 8), on the average

more than 80% of the variables used at the low level representation of the program are

being detected as short-Iived variables. This is caused, as explained before, by the large

number of temporal variables introduced by the compiler. Most of these variables, plus

the ones that are spilled to memory by the register allocator, are successfully captured by
our compiler analysis: on the average close to 90% (89.34) when the reorder buffer size
is 16 (base modeI), and 80.13% and 91.92% when the reorder buffer sizes are 8 and 32

respectively.

Furtherrnore, the architecture mechanism proposed can make use of the information

provided by the compiler and eliminate a great majority of useless writes to the register

files. The reduction on the average is 88% (87.98) for the base model, and is 76.34% and

89.71 %when the reorder buffer sizes are 8 and 32 respectively. These results are ilIustrated
in Figure 6.1. In this graph, we show the lowest, the highest and the average percentage

of discarded writes for each size of the reorder buffer. It can be seen that in sorne cases

62

•
Reorder Buffer

8 16 32
Benchmark Short Discarded Short Discarded Short Discarded

Variables Writes Variables Writes Variables Writes

Alvinn 75.33 69.38 84.44 88.13 86.44 88.47

Bubble 81.25 79.56 89.58 89.76 91.67 91.81

L8 73.15 72.04 89.49 96.06 94.16 98.80

L14 83.33 83.95 88.33 88.37 91.67 90.78

L8unroll 81.37 70.90 95.24 95.60 96.70 98.34

L14unroll 89.35 83.97 92.73 88.41 94.29 90.80

Linpack 80.20 84.37 89.93 90.88 94.14 91.46

Quickrand 76.60 71.73 80.85 76.61 80.85 76.61

Tomcat 79.05 80.26 91.38 88.17 94.80 89.99

Whetstone 81.62 67.27 91.39 77.76 94.49 80.00

1 Average ~L....-_80_.1_3-----JL....-_76_.3_4_-L-_8_9_.34_-I-_8_7_.9_8_",-_91_.9_2 89_.7_1_

Table 6.2: Effectiveness of the short-live-range analysis and the architecture support for reducing
useless commits

Figure 6.1: Percentage ofdiscarded writes ta the register file

• Low • Average lm High

•

100

80+----

20

o
8 16

Rcorder bulfer size
32

63

•

•

the percentage of discarded writes is very high, more than 98%. On the other hand, the
lowest values are still considerably high. For the base model, the lowest percentage is
76%. These resulls are substantia\. They show that, if the proposed mechanisrns are used
in the design of a superscalar processor, we could implement a processor that is able to
issue N instructions, but only requires a minimum of r(1 - 0.88) *Nl write ports to the
register file since we are discarding 88% of the writes to the register file1• As mentioned
in Section 2.1.2, the complexity of implementation of the register file is a very important

factor in processors that are able to execute several instructions per cycle.

Moreover, if we compare the results of this table to the results presented in Table 3.1,
we can see that our analysis is able to detect a great majority of the useless commits. For
reorder buffers of sizes 16 and 32, the difference is less than 7%. For a reorder buffer with
8 entries, the difference is less than 14%.

6.5 The Effect of Reducing the Number of Register Ports Needed

Since the percentage of commits that can be discarded is large, we decided to measure
the loss of performance of the proposed (optimized) model when the number of write
ports per register file is restricted, and compare il to the loss of performance for the base

model under the same restriction. The results of the comparisons are tabulated in Table 6.3

and iIIustrated in Figure 6.2. The left side of Table 6.3 shows the relative performance

obtained by varying the number of register write ports when the compiler and architecture

optimization proposed in this thesis is notapplied. We report the performance ofvariations
of the base model when the number of write ports to the register files is restricted to 1, 2
or 3 ports per register file compared (in normalized form) to the performance of the base

model when the number of ports is 4. Note that, since the number of instructions decoded

by cycle in the base model is aIso 4, we cali this the not restricted mode\. Figure 6.2 shows
in a bargraph the performance of the base and optimized modeIs normalized to the not

restricted mode\. From this figure, il can be seen that restrictions on the number of ports to

the register file can seriously affect the performance of the base model. Using, for example,

only one port per register file can degrade the performance of the base model by 55%. If
we increase the number of ports to two per register file we still degrade performance by
18%.

IThis Is an approximation bascd on an average measurement. In order 10 be more caullous, a designer
could uscan approximation bascd on Ihe 10wcsI percentage ofdlscardcd wriles, i.e., declde 10 use a minimum
of [(1 - 0.76). Nl wrlle ports.

64

•

•

Base Model Optimized

Write Ports Write Ports

Benchmark 1 2 3 1 2 3

Alvinn 0.46 0.82 0.97 1.00 1.00 1.00

Bubble 0.38 0.74 0.94 1.00 1.00 1.00

L8 0.34 0.69 0.97 1.00 1.00 1.00

L14 0.44 0.85 1.00 0.96 1.00 1.00

L8unroll 0.34 0.68 0.96 1.00 1.00 1.00

L14unroll 0.44 0.87 1.00 0.96 1.00 1.00

Linpack 0.45 0.86 1.00 1.00 1.00 1.00

Quickrand 0.66 0.95 1.00 1.00 1.00 1.00

Tomcat 0.43 0.80 0.99 0.99 1.00 1.00

Whetstone 0.55 0.96 1.00 0.99 1.00 1.00

Average 0.45 0.82 0.98 0.99 1.00 1.00

Table 6.3: Performance effect of the Humber ofwrite ports on the base and optimized models

• Base • Optimizcd tml Not Rcstrictcd
1

el 0.8
la
8
~ 0.6
l:l.o
"'0
QI

0.4
~

~ 0.2

0
1 2 3

Numbcr of writc ports

Figure 6.2: Performance of base and optimized models when restricting the number ofwrite poris

65

•

.'

The reader might be surprised by the variations in the performance loss of the different
benc'1marks when the number of register ports is reduced to one per register file (first col­
umn of Table 6.3). These variations are due to the different nature of the benchmarks used.

Benchmarks with litt1e parallelism (e.g., Quickrand) will be less affected than benchmarks
with enough parallelism (e.g., Tomcat, Alvinn) to fully utilize the resources provided in
the base mode!. Another factor that affects this measurement is the instruction mix for
each benchmark. 5ince we are restricting the number of write ports to each register file
and our model provides a register file for integer operations and another register file for
floating point operations, the benchmarks in which the mix of instructions is most1y in­
teger (e.g., Bubble) will he affected more than the benchmarks where the distribution of

instructions is more even (e.g., Whetstone)

We applied the proposed optimization to the base model and performed the same
measurements. The results, on the right side of the Table 6.3, show that the 10ss in

performance is very small, as it was expected. Around 1%when using on1y one write port
to each register file. This can be easily noticed in Figure 6.2 because the height of the bars
for the optimized and the not restricted models is almost identica!.

6.6 Effect of the Allocation of Short-Lived Variables

Table 6.4and Figure 6.3 show the improvement obtained in the overall execution time of the

benchmarks by using the short-lived variables allocation method exp1ained in Chapter 5.
To show the effectiveness of the method, we vary the number of registers availab1e for
the register allocation process (4, 8 and 16), and the size of the reorder buffer (8, 16 and

32) from the base mode!. The performance improvement is calcu1ated with the formula
(cyclcs(traditional) - cyclcs(proposcd))/cyclcs(traditional). Where traditional refers to

the Chaitin like allocation method and proposcd refers to our improved allocation scheme.

1t can be seen from the Figure 6.3 that the higher the register pressure, the higher the

improvement obtained by our method. When the register pressure is high (on1y 4 registers
are available), the improvement is significant: over 22% (22.35%) for a reorder buffer of

size 16, and 15.96% and 26.43% when the reorder buffer size is 8 and 32 respective1y. As
explained in Chapter 5, this improvement is obtained because the use ofsymbolic registers
increases the number of registers availab1e for the allocation of 10ng-lived variables, and

because the variables that would be spilled by the traditiona1 allocator can be allocated

66

•

•

instead to the syrnbolic registers thus reducing the possibilities of requiring the introduc­
tion of more spill code. It can also be seen from this figure that for a given level of register
pressure (number of registers available) the improvement that can be obtained depends
on the size of the reorder buffer. The reason for this is that with larger reorder buffeTS
there are better chances to find more short-lived variables and, therefore, further reduce
the register pressure.

It is importantto note that we are taking aIl of our measurements assuming a perfeet
cache and that we are making use of large load/store buffeTS. Withoutthe use of these
fealures, the improvements obtained by our method would be even greater. That is,
the results reported in this seetion are somewhat conservative and can be used as a safe
estimate of the potential improvement gained from our method. ln fact, in a previous
teehnical report [LCG94), we presented these same measurements but without using the
load forwarding meehanism in the load/store buffer. In that case, the improvements
obtained by our meehanism were even higher. The reason for the deerease in performance
improvement obtained is that the load forwarding fealure helps to reduce the effeet of the
introduction of spill code. Since we are using large load/store buffeTS, there is a better
chance that the loads introduced by the register allocator find the data they require in the
load/store buffer. Thus, in these cases, the loads do not have to wail until the data is
fetched from memory, and, therefore, the benefits of our scheme are partially hidden.

67

•
Number of registers

4 8 16

Reorder Buffer Reorder Buffer Reorder Buffer

Benchmark 8 16 32 8 16 32 8 16 32

Alvinn 21.56 16.81 15.44 0.33 0.22 0.60 0.00 0.01 0.01

Bubble Il.00 19.42 30.52 0.04 0.06 0.04 0.04 0.06 0.04

L8 15.50 28.24 31.97 5.18 6.48 6.52 0.03 0.05 0.07

L14 14.83 20.51 25.65 3.31 0.11 6.84 2.18 2.16 2.72

L8unroll 25.68 36.57 42.01 5.27 9.11 II.23 0.65 1.63 2.00

L14unroll 20.60 27.76 26.70 5.89 9.34 16.57 6.43 6.30 4.88

Linpack 12.92 15.30 27.08 0.15 1.80 1.11 0.70 1.58 1.67

Quickrand 15.89 26.94 32.50 0.23 3.59 5.56 0.00 2.26 4.17

Tomcat Il.81 16.15 14.69 3.35 8.32 7.63 1.73 3.41 4.07

Whetstone 9.76 15.83 17.73 5.27 13.10 14.29 7.64 16.20 15.88

1 Average ~ 15.96122.35126.43~ 5.21 1 7.04 !Iill 3.37 1 3.55 1

Table 6.4: Percentage of improvement obtained by allocation ofsbort-lived variables

Reorder Buffer5îze:. 8 • 16 • 32
30 - --..--..--.-.-..- ..----.----.- --..-.------

". Figure 6.3: Average ;"mprovement obtained by the allocation ofshort-lived variables

168
Number of Registers

4
o

.... 25-~--­
~
(1.1

~ 20-1--

~
Ei 15-'t!
~ 10.....
o
~ 5

•
68

•

•

Chapter7

Related Work

In ourresearch work we have discussed issues like the reduction of ports to the register file,
the exposition to the compiler of the renaming capabilities provided by the reorder buffer,
and modifications to the register allocation process to exploit the occurrence ofshort-lived

variables. In this chapter, we briefly describe the work related to these issues. For each
study we give a brief description and, whenever applicable, we compare it against our
research.

In [1'S88], Pleszkun and Sohi remark upon the occurrence of the useless commit of

instructions to the register file when using state maintenance mechanisms like the reorder
buffer or the Register Update Unit - RUU [SV87]. As mentioned in Section 2.1.1, the RUU

is an implementation of a centralized instruction window that also supports the features

of the reorder buffer. The authors study, among other factors, the performance increase
obtained by the out-of-order issue of instructions with the support of theRUU. They briefly

discuss thecomplexity of the implemenlation of thebusesbetween the functional units, the

RUU and the register file. They conclude that because of the RUU capability of forwarding

the generated values to other instructions in the RUU, the number of read ports from the

register file can be reduced thus reducing the complexity of the buses. They also notice

that a register update is not necessary if there is a succeeding instruction in the RUU unit
that updates the value of the same register. Based on this, they suggest thatthe number

of write ports to the register file could also be reduced without affecting performance.
However, they do not perform any experiments on these observations. The authors do

not mention how the unnecessary writes to register can be avoided in the presence of

speculative execution and interrupts.

69

•

•

ln [PGH+87J, Pleszkun et al. propose exposing the structure of the reorder buffer to

the compi/er to improve the performance of the processor. In their model the compi/er
can use the reorder buffer in 3 ways: 1) to access old register values whi/e new ones are
being computed, 2) to access values that been generated but have not been comrnitted to
the register file, and 3) to select instructions to be discarded after they have been issued
but before they have committed. With these features, the compi/er is able to improve the
scheduling of the instructions and provide speculative execution. As in our research, the
authorsaIso face the problem ofdetermining at compile time which instructionsare present
in the reorder buffer when another one is decoded. To solve this problem they propose to

keep the number of instructions in the reorder buffer constant by allowing one instruction
to commit only if another one has been put at the end of the buffer. This research work
also proposes to handle the interruptions by saving the state ofthe reorder buffer and they
note that this process can be expensive. Our work has been influenced by theirs, but our
objectives are different. Their work does not make explicit use of the renaming capabilities

of the reorder buffer. Also, since in their model at most one instruction is comrnitted each
cycle, they do not have to consider the problem of reducing the complexity of the register

file and the associated busses.

ln [FS92), Frankin and Sohi make an extensive analysis of the characteristics of the
communication between instructions through registers. In their study they conclude that
many of the values generated are used only once and that most of the values are dead

soon after they have been created, i.e., between 30-40 instructions later. They also observe

that, by using a mer.hanism to buffer 30 or more instructions, at least 80% of the writes
to the register file are unnecessary. These observations resulted from analyses of code

produced by two separate commercial compi/ers. Moreover, the authors briefly discuss

compi/er mechanisms that could be used to reduce the number of writes to the register

file. However, in the mechanisms proposed they do not consider the effect of speculative
execution or the problem of handling interrupts. Our experimental results reported in

Section 3.2 and Chapter 6 were derived independently. The observation that most of the

short-lived variables have live ranges within a basic block is new. Also, our solution

strategy and implementation scheme are novel, and can effectively work in the presence
of speculative execution. Finally, the application of their observations is different from

ours: they use their results in the design of the Multiscalar processing paradigrn in order

to reduce the traffic between the elements of the distributed register file that this model

uses.

Uht and Johnson [UJ92) discuss different issues related to the complexity of the data

70

•

•

path in a highly concurrent machine. Their execution model has 32 processing elements
and provides special hardware support for loop execution. Their model also supports
register renaming by using a mechanism called the "shadow sink matrix". The shadow
sink matrix provides a different set of renamed registers for each iteration of the loop. They
observe that building a data path for such a highly concurrent machine can be extremely
difficult or even impossible. To reduce the complexity of the data path they propose to
duplicate the sink matrix so that each processing element can read values from their own
matrix. Also, they propose to extend the model so that writes to scalar variables can
be elirninated if they are superseded by writes to the same variables in succeeding loop
iterations. They report that with this model they can eliminate 72% of the register writes
thU5 allowing further simplification ofthe data path. Their mechanism is quite interesting,
but their architecture model is very different from ours.

Finally, in [HC94], Hoogerbrugge and Corporaal study the register file port require­
rnents ofTransportTriggered Architectures (TTA). In this type ofarchitecture, theprocessor
is notprograrnrned by specifying the operations to be executed, which causes implicit data
movement between the register files and the functional units. Rather, the program explic­
itly specifies the data movements. Therefore, an instruction of the fOTm:

add rl, r2, r3

is converted to these three instructions:

r2 -> alul.add-o; r3 -> alul.add-t; alul.add-r -> rl

which establish the movementbetween registers and specifie functional units. ln this small
example, r2 is moved to the functional unit 1 (alull as an operand for the add operation,
r 3 is rnoved to the same functional unit as the trigger for the add, and, finally, the result
of the add is sent from the functional unit to rI. The researchers show that this type of
architecture requires less ports to the register file. The reason is that their instructions
can be used to forward a value between two functional units thus avoiding the access to
the register file. Their experiments show that this method can eliminate 50% of the read
traffic and 65% of the write traffic to the register file. Our hardware/software scheme
can elirninate a larger percentage of writes to the register file because of the buffering of
instructions in the reorder buffer. This buffering allows the forwarding of values between
instructions thatare notas close togetheras it is required in theTTA forwarding mechanism.

Although the works listed h"re are related to sorne of the issues we have exarnined
in this thesis, we are not aware of any research that explicitly shows how to modify

71

•

•

the register allocator so as notto assign short-Iived variables to physical registers, thus
reducing register pressure and spill cost.

72

•

•

Chapter8

Conclusions and Future Work

Modern commercialsuperscalar processors arenow able to use f€atures that for years were
exclusively used by supercomputers. Hardware featureslike branch prediction and dy­
namic schedulingsupported by mechanisms like the reorder buffer or the Register Update
Unit are becoming standard elements in the design of current and future microprocessors.
Moreover, the trend of introducing more hardware features on a sin3le chip is expected
to increase as the transistor densities continue to climb [FPT94j. Accordingly, in the near
future we expect to see superscalar processors with larger on-ehip caches, larger register
renaming buffers and larger windows for dynamic scheduling. T~.e introduction of these
features poses new challenging problems for the compiler.

In this thesis we haveseen thatbyallowing thecompiler to access the different resources
used by thearchitecture, the implementation ofsorne features in hardware can besimplified
and a better utilization of the provided resources can be obtained. ln particular, we
have demonstrated how compiler and architecture techniques can be combined ta take

advantage of the fact that many program variables are short-lived. Our implementation
and experimental results have provided ample evidence that the proposed optimizations
can be effective and may lead to significant performance improvements with relatively
few architectural modifications.

One possible direction for future research is to continue improving the scheme for
the allocation of the short-lived variables to the locations provided by the reorder buffer.

One way ta do this is by using a modified version of live range splitting [Bri92j. Our
current implementation of the register allocator naively introduces loads/stores for each

73

•

•

use/definition of a spilled variable. We believe this can be improved by splitting the

live ranges of spilled variables in such a way that the resulting range fragments are short
enough to be considered short-live ranges, but long enough to span several uses of the
same variable. In this way, the new live ranges could still he allocated to the locations in
the reorder buffer and we would further reduce the number of load/stores introduced in

the spilling process.

In this thesis we have studied how the register allocation process can take advantage
of the exposure of hardware mechanisms like the renaming buffers. Another direction
of investigation would be to analyze whether other compiler optimizations could benefit

from the knowledge of mechanisms like the reorder buffer. In particular, it would be
interesting to study the effect on the problem of instruction scheduling. If the scheduler
had knowledge of the size of the reorder buffer if could, for example, decide in sorne cases

not to separa te the producer and the consumer of a value by a number of instructions
greater than the size of the reorder buffer. In this way, it is possible that the live range
associated to the value becomes a short-live range and we could use our allocation scheme
to allocate this range into the locations provided by the reorder buffer thus decreasing the
register pressure.

74

•

Bibliography

[AA93) Donald Alpert and OrorAvnon. Architecture of the Pentium Microprocessor.

IEEE Micro, 13(3):11-21, June 1993.

[AAD+93) Tom Asprey, Gregory S. Averill, Eric Delan, Russ Mason, Bill Weiner, and

Jeff Yetter. Performance Features of the PA7100 Microprocessor. IEEE Micro,
13(3):22-35, June 1993.

[AH82) Marc Auslander and Martin Hopkins. An overview of the PL,8 compiler.

In Proceedings of the SIGPLAN '82 Symposium on Compi/er Construction, pages

22-31, Boston, Massachusetts, June 23-25, 1982. ACM SIGPLAN. SIGPLAN
Notices, 17(6), June 1982.

[AKC86) R. D. Acosta, J. Kjelstrup, and Torng H. C. An Instruction Issuing Approach

to Enhancing Performance in Multiple Functional Unit Processors. IEEE
Transactions on Computers, 35(9):815-828, September 1986.

[ASU88) Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compi/ers - Principles,
Techniques, and Tools. Addison-Wesley Publishing Company, Reading, Mas­

sachusetts, corrected edition, 1988.

[BCKT89) Preston Briggs, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Coloring

heuristics for register allocation. In Proceedings of the SIGPLAN '89 Conference
on Programming Language Design and Implementation, pages 275-284, Port­
land, Oregon, June 21-23, 1989. ACM SIGPLAN. SIGPLAN Notices, 24(7),
July 1989.

•
[BP93) Michael Butler and Yale N. Patt. A Comparative Performance Evaluati0l\

of Various State Maintenance Mechanisms. In Proceedings of the 26th Annual
International Symposium on Microarchitecture, pages 70-79, Austin, Texas, De­
cember 1-3, 1993. IEEE-es TC-MICRO and ACM SIGMICRO.

75

•
[Bri92) Preston Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice Uni­

versity, Houston, Texas, April 1992. Published as Rice COMP TR92-183.

(BW90) H. B. Bakoglu and T. Whitside. RISC System/6000 hardware overview.
ln Mamata Misra, editor, IBM RlSC System/6000 Technology, pages 8-15.
International Business Machines Corporation, first edition, 1990. Order No.

SA23-2619.

(CAC+81) G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins,
and P. W. Markstein. Register allocation via coloring. Computer lAnguages,
6:47-57, January 1981.

(CDN92) Andrea Capitanio, Nikil Dutt, and Alexandru Nicolau. Partitioned regis­

ter files for VLIWs: A preliminary analysis of tradeoffs. In Proceedings of
the 25th AnnualInternational Symposium on Microarchitecture, pages 292-300,
Portland, Oregon, December 1-4, 1992. ACM SIGMICRO and IEEE-CS TC­

MICRO.

(CF87) Ron Cytron and Jeanne Ferrante. What's in a name? or the value of re­
naming for parallelism detection and storage allocation. In Proceedings of the
1987 International Conference on Parallel Processing, pages 19-27, St. Charles,
Illinois, August 17-21, 1987.

(CH90) Fred C. Chow andJohn L. Hennessy. The priority-based coloringapproach to
register allocation. ACM Transactions on Programming lAnguages and Systems,
12(4):501-536, October 1990.

(Cha82) G. J. Chaitin. Register allocation & spiIling via graph coloring. In Proceed­
ings of the SIGPLAN '82 Symposium on Compiler Construction, pages 98-105,
Boston, Massachusetts, June 23-25,1982. ACM SIGPLAN. SIGPLAN Notices,
17(6), June 1982.

"

(CK91) David Callahan and Brian Koblenz. Register allocation via hierarehical

graph coloring. In Proceedings of the SIGPLAN '91 Conference on Programming
lAnguage Design and Implementation, pages 192-203, Toronto, Ontario, June

'26-28,1991. ACM SIGPLAN. SIGPLAN Notices, 26(6), June 1991.

•
(DA92) Keith Diefendorff and Michael Allen. Organization of the Motorola 88110

superscalar RlSC microprocessor. IEEE Micro, 12(2);40-63, April 1992.

76

•

•

[DFL72] J. B. Dennis, J. B. Fosseen, and J. P. Linderman. Data flow schemas. In

Internationa! Symposium on Theoretica! Programming, number 5 in Lecture

Notes in Computer Science, pages 187-215. Springer-Verlag, Berlin, 1972.

[DHB89] James c. Dehnert, Peter Y.-T. Hsu, and Joseph P. Bratt. Overlapped loop

support in the Cydra 5. In Proceedings of the Third Intemationa! Conference on
Architectura! Support for Progrmnming Languages and Operating Systems, pages
26-38, Boston, Massachusetts, April 3-6, 1989. ACM SIGARCH, SIGPLAN,

SIGOPS, and the IEEE Computer Society. Computer Architecture News, 17(2),
April 1989; Operating Systems Review, 23, April 1989; SIGPLAN Notices, 24,

. May 1989.

[00H94] Keith Diefendorff, Rich Oehler, and Ron Hochsprung. Evolution of the
PowerPC Architecture. IEEE Micro, 14(2):35-49, April 1994.

[Don94] Christopher M. Donawa. The design and implementation of a structured

backend for the McCAT C compiler. Master's thesis, McGill University,

Montréal, Québec, March 1994.

[FERN84] Joseph A. Fisher, John R. Ellis, John C. Ruttenberg, and Alexandru Nicolau.

Parallel processing: A smart compi'.er and a dumb machine. In Procecdillgs of
the SIGPLAN '84 Symposium on CompilerConstruction, pages 37-47, Montréal,

Québec, June 17-22, 1984. ACM SIGPLAN. SIGPLAN Notices, 19(6), June

1984.

[Fis83] Joseph A. Fisher. Very long instruction word architectures and the EU­

512. In Proceedings of the 70th Annual Internationa! Symposium on Computer
Architecture, pages 140-150, Stockholm, Sweden, June 13-17, 1983. Computer
Architecture News, 11 (3), June 1985.

[FPT94] Matthew Farrens, Andrew R. Pleszkun, and Gary Tyson. A Study of Single­

Chip Processor/Cache Organizations for Large Number of Transistors. In

Proceedings of the 21st Annua! International Symposium on Computer Architec­
ture, pages 338-347, Chicago, Illinois, April 18-21, 1994. IEEE Computer

Society and ACM SIGARCH. Computer Architecture News, 22(2), April 1994.

[FR91] Joseph A. Fisher and B. Ramakrishna Rau. Instruction-level"ParalIel Pro­

cessing. Science, 253:1233-1241, September 1991.

77

•
[FS92) Manoj Franklin and Gurindar S. Sohi. Register traffic analysis for stream­

lining inter-operation communication in fine-grain parallel processors. In
Proceedings of the 25th Annual International Symposium on Microarchitecture,
pages 236-245, Portland, Oregon, December 1-4, 1992. ACM SIGMICRO
and IEEE-CS TC-MICRO.

[GSS89) Rajiv Gupta, Mary Lou Soffa, and TIm Steele. Register allocation via clique

separators. In Proceedings of the SIGPLAN '89 Conference on Programming
Language Design and Implementation, pages 264-274, Portland, Oregon, June
21-23,1989. ACM SIGPLAN. SIGPLAN Notices, 24(7), July 1989.

[HC94) Jan Hoogerbrugge and Henk Corporaal. Register file port requirements
of Transport Triggered Architectures. In Proceedings of the 27th Annual In­
ternational Symposium on Microarchitecture, San Jose, Califomia, November
3D-December2, 1994. ACM SIGMICRO and IEEE-CS TC-MICRO. To appear.

[HDE+92) L. Hendren, C. Donawa, M. Emami, G. Gao, Justiani, and B. Sridharan.

Designing the McCAT compiler based on a family of structured intermedi­
ate representations. In Uptal Banerjee, David Gelemter, Alex Nicolau, and
David Padua, editors, Proceedings of the 5th International Workshop on Lan­
guages and Compi/ers for Parallel Computing, number 757 in Lecture Notes in
Computer Science, pages 406-420, New Haven, Connecticut, August 3-5,

1992. Springer-Verlag. Published in 1993.

[HGAM93) Laurie J. Hendren, Guang R. Gao, Erik R. Altman, and Chandrika Mukerji.

A register allocation framework based on hierarchical cyclic interval graphs.

The Journal ofProgramming Languages, 1(3):155-185, 1993.

[HP87) Wen-mei W. Hwu and Yale N. Patt. Checkpoint Repair for Out-of-order

Execution Machines. InProceedings ofthe 74th AnnuallnternationalSymposium
on Computer Architecture, pages 18-26, Pittsburgh, Pennsylvania, June 2-5,
1987. IEEE Computer Society and ACM SIGARCH. Computer Architecture
News, 15(2), June 1987.

[HP90) John L. Hennessy and David A. Patterson. Computer Architecture: A Quanti­
tative Approach. Morgan Kaufmann Publishers, Inc., 1990.

•
[Hsu94] Peter Hsu. Designing theTFP Microprocessor. IEEE Micro, 14(2):23-33,April

1994.

78

[PGH+87] A. R. Pleszkun, J. R. Goodman, W.-c. Hsu, R. T. Joersz, G. Bier, P. Woest, and
P. Schechter. WISQ: A restartable architecture using queues. In Proceedings
of the 14th Annual International Symposium on Computer Architecture, pages

•

•

lJoh91]

lJo191]

(KeI75]

[KH93]

[LCG94]

[LS84]

[McG90]

[Mou93]

[NP94]

[PF92]

Mike Johnson. Superscalar Microprocessor Desigll. Prentice-Hall, lnc., Engle­
wood Cliffs, New Jersey, 1991.

Richard D. Jolly. A9-ns, 1.4-Gigabyte/s, 17-ported CMOS Register File. IEEE
Joumal of Solid-State Circuils, 26(10):1407-1412, October 1991.

Robert M. Keller. Look-ahead processors. ACM Computillg SllrueyS, 7(4):177­

195, December 1975.

P. Kolte and M.J. Harrold. Load/Store Range Analysis for Global Register
Allocation. In Proceedillgs of the SIGPLAN '93 COllferellCe 011 Programmillg Lall­
guage Desigll alld Implemelltatioll, pages 268-277, Albuquerque, New Mexico,
June 23-25, 1993. ACM SIGPLAN. SIGPLAN Notices, 28(6), June 1993.

Luis A. Lozano C. and Guang R. Gao. Effective utilization of the reorder
buffer for short-lived variables. ACAPS Technical Memo 86, School of Com­
puter Science, McGill University, Montréal, Québec, July 1994.

J. K. F. Lee and A. J. Smith. Branch prediction strategies and branch target
buffer design. Computer, 17(1):6-22,January 1984.

Steve McGeady. Inside Intei's i960CA superscalar processor. Microprocessors
alld microsystems, 14(6):385-396, July 1990.

Cecile Moura. SuperDLX - a generic superscalar simulator. ACAPS Tech­
nical Memo 64, School of Computer Science, McGill University, Montréal,
Québec, April 1993.

Cindy Noms and Lori 1. Pollock. Register allocation over the Program De­
pendence Graph. In Proceedillgs of the SIGPLAN '94 COllferellce 011 Program­
millg Language Desigll and Implementation, pages 266-277, Orlando, Florida,
June 20-24, 1994. ACM SIGPLAN. SIGPLAN Notices, 29(6), June 1994.

Todd A. Proebstingand Charles N. Fischer. Probabilistic Register Allocation.
In Proceedings of the SIGPLAN '92 Conference on Programming Language Design
and Implementation, pages 300-310, San Francisco, Califomia, June 17-19,
1992. ACM SIGPLAN. SIGPLAN Notices, 27(7), July 1992.

79

•

e,

[!'S88)

[RF93)

[SD94)

[Smi89)

[SP88)

[SV87)

[SW94)

[Tho64]

[Tom67]

290-299, Pittsburgh, Pennsylvania, June 2-5, 1987. IEEE Computer Society

and ACM SIGARCH. Computer Architecture News, 15(2), June 1987.

A. R. Pleszkun and G. S. Sohi. The performance potential of multiple func­

tional unit processors. In Proceedings of the 15th Annual International Sympo­
sium on Computer Architecture, pages 37-44, Honolulu, Hawaii, May 3O-June
2, 1988. IEEE Computer Society and ACM SIGARCH. Computer Architecture
News, 16(2), May 1988.

V. Popescu, M. Schultz, J. Spracklen, G. Gibson, B. Lightner, and D. !saman.

The Metaflow architecture. IEEE Micro, 11(3):10-13, June 1991.

B. R. Rau and J. A. Fisher. Instruction-Ievel parallel processing: History,

overview and perspective. Journal of Supercomputing, 7:9-50, May 1993.

Peter Song and Marvin Denman. The PuwerPC 604 RISC Microprocessor.
Motorola; IBM Corporation, 1994.

James E. Smith. Dynamic Instruction Scheduling and the Astronautics 25-1.

Computer, 22(7):21-35, July 1989.

James E. Smith and Andrew R. Pleszkun. Implementing precise interrupts

in pipelined processors. IEEE Transactions 011 Computers, 37(5):562-573, May

1988.

Gurindar S. Sohi and S. Vajapeyam. Instruction Issue Logic for High­

Performance Interruptable Pipelined Processors. In Proceedings of the 14th
Amrual Intenrational Symposium on Computer Architecture, pages 27-34, Pitts­

burgh, Pennsylvania, June 2-5, 1987. IEEE Computer Society and ACM

SIGARCH. Computer Architecture News, 15(2), June 1987.

James E. Smith and Shlomo Weiss. PowerPC 601 and Alpha 21064: A Tale

of Two RISCs. Computer, 27(6):46-58, June 1994.

J. E. Thornton. Parallel operation in the Control Data 6600. In Proceedings of
the AFIPS FaU Joint Computer Conference, 1964.

R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic

units. IBM Jounral ofResearch and Development, 11(1):25-33, January 1967.

80

•
[UJ92]

[WaI86]

August K. Uht and Darin B. Johnson. Data path issues in a highly con­

current machine. In Proceedillgs of the 25t11 All/llIal IlItematiOlral Symposil/m
011 Microarchitectl/re, pages 115-118, Portland, Oregon, Dt.>cember 1-4, 1992.

ACM SIGMICRO and IEEE-CS TC-MICRO.

David W. Wall. Global register allocation at link time. In Proceedillgs of tlle
SIGPLAN '86 Symposil/m 011 Compi/er COllstrl/clioll, pages 264-275, Palo Alto,

Califomia, June 25-27, 1986. ACM SIGPLAN. SIGPLAN Nolices, 21(7), July

1986.

[WHKM93a] Steven W. White, Phil D. Hester, Jack W. Kemp, and G. Jeanette McWilIiams.

How Does Processor MHz Relate to End-User Performance. IEEE Micro,
13(4):8-15, August 1993. Part 1: Pipelines and Functional Units.

[WHKM93b] Steven W. White, Phil D. Hester, Jack W. Kemp, and G. Jeanette McWilIiams.
How Does Processor MHz Relate to End-User Performance. IEEE Micro,
13(5):79-88, October 1993. Part 2: Memory Subsytem and Instruction Set.

•

[YP93] Tse-Yu Yeh and Yale N. Patt. A Comparison of Dynamic Branch Predictors

that use Two Levels of Branch History. In Proceedillgs of tire 20tll All/llIal
IlIternatiollal Symposium 011 Computer Arclliteclure, pages 257-266, San Diego,
Califomia, May 17-19, 1993. ACM SIGARCH and IEEE Computer Society.

Compl/ter Arclliteclure News, 21 (2), May 1993.

81

•

•

AppendixA

The McCAT testbed

Ali ofouranalyses and experiments were carried out using the McCAT testbed. The McGill

Compiler and Architecture Testbed (McCAT) was developed to test different compilation

techniques on different architecture targets. It was designed with two objectives in mind:

first, build a compiler that supports both high level and intermr.:iiate representations in

order to facilita te differe:lt analyses and transformations; and second, build architecture

simulator tools to test the output of the compiler, experiment with different combined

hardware-software mechanisrns and produce various performance results.

A.t The McCAT C Compiler

As shown in Figure A.l, the McCAT compiler is an optimizing/parallelizing C language

compiler based on three structured intermediate representations [HDE+92]. This family

of representations supports pervasive flow information, that is, flow information obtained

from analyzing one intermediate representation can be utilized by lower intermediate

representations to perform their analyses. FIRST, a modified version of the GNU GCC

compiler front-end, separates the front-end processing of parsing and type checking from

the back-end phase of analysis, transformations and code generation. In the second phase

of the compiler, FIRST is transformed to SIMPLE, an abstract syntax tree (AST) suitable

for high leveI analyses like the alias and dependence testing analyses. In the next phase,

LAST - a Iow IeveI AST representation - is obtained from SIMPLE. In LAST, Iow-Ievel

82

•

•
Figure A.l: The McCAT compiler

83

•

•

architectural details are exposed so that cptimizations Iike register allocation and instruc­
tion scheduling can be performed. The LAST intermediate representation is very close to
assembly language. In most cases, there is a one-to-one correspondence between LAST
statements and assembly language instructions. However, high-level constructs such as
For and While loops are still represented in order to maintain the structured representation

of the program. Using LAST, code can be generated for different architectures during the
last phase of the compiler. Currently, we have implemented a code generator for the DLX

architecture [HP90l, and code generators for SPARC, RS6DOO and MIPS architectures are
under development.

A.2 The SuperDLX Superscalar Simulator

SuperDLX is one of the simulation tools developed for McCAT. This simulator was de­

veloped by Cecile Moura as part of her Master's project and is described in [Mou93l.
Figure A.2 gives a block diagram of the simulated architecture, which is a superscalar
version of dlxsim, the simulator for the DLX architecture [HP9Dl developed at the Uni­

versity of Califomia. SuperDLX simulates many of the features described by Johnson

ijoh91l including dynamic scheduling, branch prediction, speculative execution, register
renaming and load bypassing and forwarding. The simulator is completely configurable

and provides a statisties module which allows performance and resource usage analyses.

Sorne of the configuration parameters that can be given to the simulator are:

• Number of entries in the reorder buffer, the instruction window and the load/store

buffers.

• Number of functional units and latency of execution for each type of unit.

• Maximum number of instructions fetched, decoded and commilled each cycle.

• Latency of memory operations and number of simultaneous memory accesses.

• Use ofbranch prediction and size of the branch target buffer.

As part of this thesis, new features were added to the simulator in order to carry out

our experiments. These features include:

84

•
1 F""her 1 r--------------------------- ...

1 lntcgcr Unit

l$ 1
1
1 - Register
1 Rcordcr Buff"

IlnstnlCtiOll 1 1
File

Queue 1 l1

+ 1

1 lleeOOor 1 Central Window1
1

RcgisLcr
File

~. T
Shifu:r Il Camp Il Address 1

+ -+

Rcordcr Buffcr

1 IL....,;.A.,.LU--li 1

+
1 Braneh

~

-- - --,•
1
1
1
1
1
1
1 111

~-------------------------------1 Floating Point Unit
1
1
1
1
1
1

•

L-----l~ Central Winoow

~ ! ~ ~~ .~
1FPadd 11FPcvt 11FPmuIl Il FPdiv Il Address Il FPbraneh 1

+ + ~ + ~ ~

~---------------------t_-~-~-~--~-~-~-t--1---.11 S_
1 Burr"
1 Load

L-_~., Burr"

•
Figure A.2: The SuperDLX simulator

85

•

•

• Support for the execution of code with filled delay slots.

• A mechanism ta control the maximum depth of speculation.

• The implementation of the mechanism tor load bypassing.

• A mechanism ta restrict the number of read and write ports ta the register file.

• A mechanism ta keep the reorder buffer filled with a minimum number of instruc­
tions.

• Statistics ta measure the number ofuseless writes ta the register file, and a mechanism
to find the value of this measurement when the program is executcd on a basic black
by basic block basis (used for the measurements performed in Section 4.2).

86

