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Combining the GLM and Spline Smoothing
to Analyze Examination Data
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Abstract

This thests aims to propose and specify a way to analyze test data. In order to
analyze test data, it is necessary to estimate a special binary regression relation.
called the item characteristic enrve. The item characteristic curve is a relationship
hetween the probabilities of examinees answering an item correctly and their
abtlities.

The statistical tools used in this thesis are the generalized linear models and
spline smoothing. The method tries to combine the advantages of both para-
metric modeling and nonparametric regression to get a good cstimate of the item
characteristic curve. A special basis lor spline smoothing is proposed which is mo-
tivated by the properties of the item characteristic curve. Based on the estimate
of the item characteristic curve by this method, a more stable estimate of the
itemn information function can be generated. Some illustrative analysis of simu-
lated data are presented. The results scem to indicate that this method does have
the advantages of both parametric modeling and nonparametric regression: it is
faster to compute and more flexible than the methods using parametric models,
for example, the three-parameter model in psychometrics, and on the other hand,
il generates more stable estimate of derivatives than the purely nonparametric

regression.



Résumé

Cette tiese a pour double objectil de proposer et de déerive une fag on
danalyser les donndes provenant de tests. Dans le bat danalvser les donndes
de tests, 1l s’avere néeessaire d'estimer une forme spéctale de régresston binatre
connue sous le nom de courbe caractéristique d'item. La courbe caractéristique
d’un item cxprime la relation entre la probabilité de répondre correctement &
I'item et I'habileté des sujets.

Les instruments statistiques mis a profit dans cette these sont le modele
linéaire généralisé (GLM) ct la fonction spline de lissage. La présente méthode
tente de combiner a la fols les avantages de la modelisation paramdétrique et de la
régression non-paramétrique afin d’obtenir un estimé plus fiable de la courbe car-
actéristique d’item. Etant donné les propriétés de la courbe caractéristique d'item
une base spéciale pour la fonction spline de lissage est proposée. L'estime de la
courbe caractéristique d’item obtenu a l'aide de cette méthode produit un estime
plus stable de la courbe d’information d'item. Des analyses de données simulées
sont présentées a des fins d’illustration. Les résultats semblent indiqués que cette
méthode possede a la fois les avantages de la modélisation paramétrique et de la
régression non-paramétrique: clle s’avere moins longue & estimer, plus flexible que
les méthodes basées sur des modéles paramétriques; et d'autre part, clle génere

des dérivés plus stables que la méthode de régressicn non-paramétrique.
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Chapter 1

Introduction

The purpose of exams is to figure out students™ abilities. Therefore, it is very
important to find a way to assess whether an exam is good or not. To assess an
exam, the data coming from an exam administration arc analyzed by statistical
methods. This is one of the most important ficlds in psychometrics, and is called
item response theory. Item response theory is a theory about the probability of
exarninees choosing an option, and probabilities should have some relationship to
the ability of examinees. Within item response theory, the ability of examinees is
usually viewed as unidimensional, and denoted as 0. The probability of a specific
response to an item is assumed to depend only on 0§, and denoted as P(0).

In this thesis, some statistical tools arc applied to the problem of estimating
the function P(0): the generalized linear model and spline smoothing adapted Lo
this special problem. The goal is to combinc the advantages of both. In fact, this
approach is a combination of a parametric model and nonparametric regression.

The advantages of such a combination are of:

1. rapid computation because the algorithm in the generalized lincar model

based on the scoring method converges rapidly,

o



2. more flexibility because it allows both parametric model and unspecified

components to contribute to the estimate, and

3. stable and efficient estimate of derivatives,

The detail of these advantages will be discussed in the later chapters.

The thesis aims only to propose and specily a method of analysis, although
a small simulation study is included to indicate the feasibility of the method. A
detailed evaluation of the method is left to further research.

For simplicity, only binary data are considered in this thesis. That means one
only considers whether the item is answered correctly or not, i.e. that there are
two responses to cach item. The modelling of binary data requires an estimate
of the binary regression of these data on the values of ability 0.

Chapter 2 recalls the basic knowledge of generalized linear models, especially
on how to use it for binary regression. It introduces the main features of gen-
eralized lincar models, and reviews the generalized linear model algorithm for
calculating the estimated function P(#) using the deviance criterion defined by
Nelder and Wedderburn (1972).

Chapter 3 describes how to combine generalized linear models and nonpara-
metric regression together with the penalized likelihood function.

Chapter 4 describes a special method of nonparametric regression, spline
smoothing. It gives details of its use and techniques of computation.

Chapter 5 is an introduction to background of psychometric theory. It intro-
duces the main features of itemn characteristic curve, which describes the relation-
ship between the probability of an examinee choosing a correct answer and the

ability of an examinee. Some assumptions and concepts are also introduced in



this Chapter.

The main contributions of this thesis are in Chapter 6 and Chapter 7. In
Chapter 6. a new basis adapted to this special problem for spline smoothing is
put forward. The details of a modified algorithm based on the generalized linear
model algorithm are deseribed to show how to estimate binary regression.

Some small simulations are carried out in Chapter 7. Comparisons are made
among the ordinary generalizad lincar model, generalized linear model with cubic

polynomial spline and the new method.

-1



Chapter 2

General Introduction to the
Binary Response Model

2.1 Introduction to Binary Regression

in the real world, there are many examples of observations only taking two
possible states, for convenicnce denoted by 0 and 1. For example, to test a new
medicine, a patient has either recovered, response denoted by 1, or not, response
denoted by 0. If such a response is denoted by a random variable, Y, it can be

expressed in the following way,
EY)=Pr(Y=1)=P, P(Y=0)=1-P (2.1)

This means for a certain patient, the probability of his recovering from his illness
now is P, the probability of his {ailure in recovering is 1 — P. This random
variable is said to follow a Bernoulli distribution with parameter P. And these
kind of data arc called binary data.

Generally, Y is called the response variable. There may be other variables
used to explain or predict the variation of response variable Y, which are called
the explanatory variables or covariates. Such a covariate value will be indicated

by 0. Variable # can be a vector.



Given data {0i.y:}.7 = 1. .. n. the purpose is to build up a relationship

between P(0) and 0, which is assumed known,
E(Y|0) = P(0).

Function P(0) is called the binary regression function.

2.2 Test Data

The binary response of primary interest in this thesis comes from testing data.
\When an examinee takes an exam, his response to cach item can also be denoted
by 1 or 0. If he answers correctly, it is denoted by 1, otherwise, denoted by 0.
Now P is the probability of his choosing a correct answer.

Assume there are n examinees taking an cxam. For a certain item, an exami-
nee’s response can be viewed as a binary random variable if onc is only interested
in whether the response is correct or not. Because the probability of different ex-
aminees choosing a correct answer is different, this difference will be explained by
examinees’ ability. Ability, denoted by 4, is thought to be the total knowledge of
examinees with respect to such an item. Usually 0 is taken Lo be one dimensional
and evaluated by a real number. Therefore cach 0 corresponds to a P(0) which is
the probability of a correct response conditional on @. The relationship between
P(0) and 0 is called as the item response model, and such a P(?) is called item
characteristic curve (ICC).

A good item should indicate the difference between examineces. This means
that examinees with low ability should have a low probability to get a correct
answer, and on the other hand, examineces with high ability should have more

chance to answer correctly.



There are three main features of an ICC of nterest.

I

&

A guessing level. Althongh £(2) is bounded by 0 and 1, the lower bound
of P(0) is usually greater than 0. For example, considering an item for a
multiple choice exam with Af options, if an examinece knows nothing about
this item, his probability of choosing a correct answer may be equal to 1/
by a randorm selection rule. The guessing level can be referred to as P(—o0)

for a certain item.

. The difficulty of an item for the whole group of examinces is also a very

important concept. There are two ways to cstimate this difficulty. One
considers probability, the other considers ability. If one knows the average
of the ability of this whole group, the probability of choosing a correct
answer with respect to such a value of ability is 2 measurement of the
difficulty for this item. If this value of probability is lower, it suggests that
this item is more difficult for this group, otherwise, it means this item is
casier. Another way is to calculate the average between the guessing level
and 1 and find the value of § corresponding to this average. The higher the

value of 0, the easier this item.

One nceds to define a quantity to measure the sensitivity of P(8). Usually,
the change in P(0) over a standard small change of 8 will measure it. Such
a quantity is defined as item discrimination or item diseriminability. If one
has a differentiable ICC, the first derivative of ICC measures the sensitivity
of P(0), and the maximum value of the first derivative of P(0) can be useful

to measure the overall discriminating power of an item.
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2.3 Generalized Linear Model (GLM) for
Bernoulli Regression

Generalized linear models. introduced by Nelder and Wedderburn (1972), are
statistical models for the analyvsis of data from exponential families. This i1s an
extension of classical linear modecls, for classical lincar models only allow data to
come from normal distribution, which is obviously onc special case of an expo-
nential family distribution.

The data are assumed to come from an exponential family in the form
{0i,9:), 1=1.2,...,m,

in which #;’s are independent observations conditional on covariate values 0;'s.
Let Y be the random variable taking values of y which can be equal to any ;.

According to the cxponential family, the density function of Y has the form

f(ylh, &) = exp{(yh - b(h))/a($) + (v, $)], (22)

for some specific functions of e, b and ¢. Parameter L is called the canonical pa-
rameter. Because it is always a function of the mean, it is also called the location
parameter. Parameter ¢ is a known scale parameter for a specific exponential
family. Mean and variance of ¥ can be derived by

B(Y) = 1= (DY) = 37,

&2b
dh?’

For the Bernoulli distribution, ¢ = 1. Consequently, the density of Y has the

Var(Y) = V = (D2b)(h)e(8) =

form
fy\Py = P*(1-P)

11



= e (yin s~ L)
--L.\pynl_P—nl_P.

Comparing with {(2.2), i can be written as

and functions «, b and ¢ for Bernoulli distribution are
ag) =1,
b(h) = ln(e* + 1),

c(y,9) = 0.

Therelore the density function of the Bernoulli distribution becomes
S(ylh) = explyh — In(e" +1)].
Also mean and variance have the form
E(Y)=p=¢"/(e"+1),

Var(Y) =V = * /(e + 1)* = p(1 — p).

There are many approaches to study the dependency of P(8), the probability

of a binary response variable Y, on an explanatory variable value 0. The approach

in this thesis is to use fairly simple empirical functions that express P(#) in terms

of # and some unknown parameters in a reasonably flexible way, such that the

parameters have a clear interpretation and preferably such that the resulting

statistical analysis is straightforward.

But P(0) must satisfy the following condition,

0< PO)<1.

12



This may cause some difficulties in fitting models directly, and one necds o find
a way to fit models in which constraint (2.3) is automatically satisfied.

It was shown in McCullagh and Nelder (1939) that cach exponential family
distribution has a special transformation, which is a function of mean p, and for
which there exists a sufficient statistic. which is assumed to be a linear combi-
nation of some covariates X' = (x1..... T,). This transformation wiil be called
a link function, denoted by 7, and it occurs for the Bernoulli distribution when
n() = In[pe/(1 — p2)]- Recail that

P(0)

h(O) =ln l—_m,

therefore 7 maps the interval (0,1) onto the whole real line and builds up a

relationship between P(0) and the location parameter £(0). It follows that

h(0) = (10 P)O) = In s,
which is also called logit transformation.

This suggests astimating h(0) instead of estimating (0) directly. Notice that
the original problem is trying to estimate P(0) in terms of the covariate 0, so
X' = (z1,...,7p) must be functions of 9, i.e. X'(0) = (z.(0),...,z,(0))-

It is clear that the generalized linear model {or the Bernoulli distribution has

the following three-part specification:

1. The random component: the components of Y have independent Bernoulli

distribution with E(Y) = P = 4.
2. The link function: between the random and systematic components:
7(P) = [F/(1 - P)].

13



3. The systematic component: covariates X' = (r(#)..... r,(0)) produce a

lincar predictor i given by
P
WOy = (noP)(0)=X'8=> z:{0)3:.
k=1

fir this formulation, generalized linear models allow two extensions from clas-
stcal linear models: first the distributior, in the random component 1 may come
fromn any exponential family other than the normal; such as in this situation
where it comes from a Bernoulli distribution. and secondly the link function in
component 2 may become any monotonic ditferentiable function.

The log likelthood may be written in two forms

(P(O)y) = S {mih(0) — Infe"® + 11}

=1

= i{y;ln [l_fsf’%] +1nfl - P(O:)]}

i=1

= il,(P(o,), y:')s (2.‘1)

=1
where
I"(P(Dl')s yl') = y;lz({),-) - ln[eh(gi} 4 1]

= W In ll—f(l%] -+ ln{l - P(O,)]

2.4 Deviance: The Criterion for Fitting GLM

Nelder and Wedderburn (1972) defined devianee to measure the discrepancy
or goodness of fit in terms of the logarithm of likelihood ratio.

There are two extreme models which can be considered. One is the model
just with one parameter, representing a common g for all the ¥;’s whicli is called

the null model. The other, saturated model, contains n parameters, one per

14



observaiion, and y's derived from it mateh the data exactly, Thus the null model
consigns all the variation between the y;7s to the random component, but the
saturated model leaves none for the random component,

In practice. the null model is too simple to give a syvstematic knowledge about
the data. and the saturated model s meaningless hecause it does not summarize
the data but merely repeats them in full. However, it suggests that the litted
model should be between these two models and with the number of parameters
between 1 and n.

Denote all the values of y by a vector y. It is convenicnt to express the log
likelihood in terms of the mean-value parameter g rather than the link function
7. The maximum likelihood achievable in a saturated model with » parameters
is I(y; £ = y). which is ordinarily finite. The diserepancy of a fit is proportional
to twice the difference between the maximum log likelihood achievable and that
achieved by the model under investigation. If one denotes by i = #(jt) under the

estimated model and §j = 5(y) under the saturated model, the discrepancy can

be written as
2wl — i) — b(iK:) + b)) = D(y, )

D(y, i) is known as deviance for the current model and is a [unction of the data

only.

The form of deviance for the Binomial distribution follows:
Dy, i) =23 {wiIn(y:/f:) + (1 = w) In[(1 = %:)/(1 = ju)]}.
=1
2.5 The GLM Algorithm

The algorithm for fitting GLM can be defined by considering the problem of



fitting a single observation, for which the log-fikeliliood i:
=yl =bh).

The maximum likelihood estimate 7 satisfies the equation.

a; p="?
it is shown by McCullagh and Nelder (1989) that such an estimate of the
parameter 2 in the lincar predictor # can be obtlained by iterative weighted least
squares. Considering one element 5; of 3, thc - can be expressed as the following

by thie chain rule,

ol _ dlap In
aﬁ 3;1 8:; aﬁ_,
Since
al _ al o
3 ah k.’
and
al
ﬁ =y =

note that (Db)(R) = g, and define V = (D?b)(h) = (Di)(h). From 5 = ¥ B;z;,

it follows that,
al e 1= 1 dz
o8 VY THY "

With the definition of the quadratic weight

dn._.
W= (vﬁ -2y, (2.5)
,—1’,— becomes,
ol dn
& Wy - s, 2.

16



Therefore the maximum likelihood cquation for Jis given by

— . I
Sy - ) =0,
— J;r
Using the Fisher's scoring method. the updated 3% = 3 + &b is detined by the
solution to the lincar equation
ol .
e = h’ .‘j ')[J‘ 27

where /f is the information matrix
H(3) = —E(D%!

and 3 is the current estimate of 3. Consequently, using (2.6). the clements of H

are

>l
i = %5553
a
- Ez[dﬁ. (ﬁ)]
= EZ{aﬁ [(J—]!.)‘V?Irjl}
- - v 9
= DZ{ i) a5, (Hfdﬂ:r,.) + W & :r‘,.()ﬁ (v ;1)}
= S [_wdn, Oe
= EZ( Wd;r.xraﬁ,)
_ vy, O
= le"d‘x,aﬁs
= Z‘H zr([ﬁa
= > Waz,az,.

The new estimate 8° which is obtained by adjusting 2 by b satislving equation

(2.7), is defined to be

al

HE = HB + 16 = 1B+ 7.

17



Nu\'.'
(113), = Z .3, = Z W

.'\Illl

!
(Hd), =3 Wi, [,, +(y - ;z)-;-f%} :

—
[ £
.
o

-

which is the equation of the form of lincar weighted least squares with weight

(2.5) and dependent variable

di
s=y+(y- ;:)d—;- (2.9)

Consequently, one can see that in this regression, the dependent variable in a
specific iteration is not ¥ but 2, a linecarized form of the link [unction applied to
y as in (2.9). and the weights are functions of the fitted values ji. The process
is iterative because both the adjusted dependent variables = and the weight W
depend on the fitted values, for which only current estimates are available. The

procedure underlying the iteration is as follows:



anm the tnitial values, jg = 1,".3\_

h 4

{ p=Inp/{l —p)
:

- T g .

W= (1)
!

4

s=g+(y— )P

g
[
h J

from ({/3), =% Wa,z

-

compute the estimate 3

h 4

compute the deviance

a . . AP NN
satisfy iteration critewion?

(ﬁnall_\' get the estimate @
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Chapter 3

GLM and Nonparametric
Regression

3.1 Combination of Nonparametric
Regression and GLM

GLM models like other parametric models have stable curves, and stable
derivatives. But they leave no room for an unspecified component of variation in
the function P(0). Consequently, these models can often fail to capture important
features in the data. On the other hand, purely nonparametric regressions can
have other disadvantages such as unstable derivatives.

In the GLM model! described in Chapter 2, the mean is related to the linear
predictor of variable Y or GLM regression surface via the transformation, which

will be called % in the following chapters,
by = 0(0;) = (no PY0:;) = X'(0,)3.

Thercfore one can rewrite P(0) as

eh(ﬁ)

=W, —oo < < oo

P(0)
It is frequently casier to attempt to cstimate I rather than P because £ is in

20



principle unbounded.

Function 7 will be estimated nonparametrically. Like Silverman (1973). An-
derson and Blair (1932). Gu and Qiu (1993). and Gu (1993), {function & will be
estimated by the penalized likelihood method of Good and Gaskins (1971}, The
estimate of £(0) is the functlion. 7:,\(0). that minimizes the penalized negative
logarithm of the likelihood.

I
Qalyi, 1(0:)) = - ,Z_T Ly h(0) + NJ(1). (3.1)
where L{y:, h(0;)) is defined in (2.1). Function J(h) is a penalty functional de-
signed to incorporate prior notions, such as smoothness, about the behaviour of
h. It will be discussed in detail below.

The estimate of A(#) will depend on the parameter A, which is called the
smoothing parameter. Parameter A controls the relative weighting of the penalty
function in estimating 2. When A — 0 the solution will be a function that
maximizes the likelihood, whereas when A — 0o the solution will be determined
by the penalty function. Usually, a generalized cross-validation procedure is put

forward for empirically assessing the parameter.

3.2 The Penalty Function J(h)

The transformation h(0) is a function defined on the whole real line R In
practice, the domain of 0 is always chosen as a subinterval of R, denoted by €.
And the range of £(0) is also the whole real line. The domain of the penalty
functional, J, is all the possible functions A.

For any function h(0) in a certain function space, some may be more smooth

than others. The penalty functional, J(&)}, is defined to be a measurement of
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stnoothness of the funetion b with the appropriate properties required by a par-
tienlar sttuation,  From the mathematical view. the smoothness of a function
mweans the existence of & certain number of derivatives. If a function has higher
derivatives, it is sald Lo be more smooth, Assume that one considers functions It
with derivatives up to order m, D2h,j = 0,1,...,m. In practice, it is useful to
assume that D™h e L2,

IFrom the basic idea of smootliness, 1t is casy to understand why smoothness
was defined classically in terms of D™. Polynomials are groups of functions which
are most smooth. For any polynomial p with order m, the smoothness of 1 +p is
considered to be just the same as that of i. Therelore, polynowials are regarded
as hyper-smooth.

With the same idea of classical smoothness, one can consider a more general

sitnation. Define a lincar differential operator, L, as
L= ‘tL‘ODu 4 IU]DI F .- -+ u)m_IDm—l + Dm

where D° is the identity functional, and wy, wy,. .., wm-; may be functions of 9,
which must satisfy certain conditions to be specified later. With this definition
of L, a more gencral smoothness can be defined. Let ker L be a space containing
these functions f which satisfy the condition Lf = 0. Any function f in such a
space can be regarded as hiyper-smooth in this general idea of classical polynomial
smoothness. The advantage of such a procedure will be scen when such a special

smoothness is used in Chapter 6. Therefore, smoothness is hereby defined as

J(h) = /Q (Lh)*(0)d0 = || LA|3x. (3.2)



3.3 Minimization of the Penalized
Likelihood

To minimize the penalized likelihood, first consider how to tind a Iy which
minimizes the penalized likelihood for a fixed value of .

The penalty functional. J(h). becomes

J(h) = f(f.h)"‘(())da.

For simplicity, @ = [—=T. 7] will be used in this thesis. If f is unspecified. jf:,- will
be implied. The penalized likelihood for gencralized lincar models can be written
as

Qulyi- h(0)) = ;1;2 Ly h () + A j (Lh)2(0)d0. (3.3)

It will be shown in Chapter 5 that il_\ is a lincar combination of two sots of
linear functions. The first is a sct of m [functions, w;, ¢ = 1,...,m, which span
the function space ker L, and therefore generate all hyper-smooth functions. The
second is a set of n functions q;.7 = 1,...,n corresponding to a set of n discrete
values of 4.

Consequently, the linear component of the link function will be composed of
ut=1,...,mand ¢;,7 =1,...,n. Let z;,2 = 1,...,p with p = m + n, instead
of u; and ¢;, i.e.

r=u,i=1,...,m,

Tiem = q.Hj =1...,m,
then h can be written as
P

S 2u(0)8: = X'(0)B.

k=1

-~
—

<
~—

I
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With the linear expression {or £, one can rewrite the penalized negative likelithood

{3.1) as
] = L ~f 7
OQ.(3) = 1_ Z Ly, X'3) + AJ(X'3).

=1

-

From the definition of J in (3.2). let X, be

X, = j(L:r,)(U)(L:r,)(U)clO

Then

1 - wt A%}
QN3 = ;Z[i(yiax 3)+ AB'E3
i=}
= L(B)+ AB'EA. (3.4)

To find &y which minimizes the penalized negative likelihood (3.1) is cquivalent
to find B which mintmizes (3.1).

Recall the sigorithm in the last chapter. To find the maximum likelihood
cstimate of 3 is equivalent to find B which is the linear weighted least squares
2.8) with weight (2.3) and dependent variable (2.9). That means B minimizing

{2.8) is the same as which will minimize

—Zu,,(.., X'B): + A8'S3. (3.5)
With the same definition of W and =z in the last chapter, applying the Newton-
Raphson minimization procedure with the GLM algorithm technique will lead to

a way to find a sequence of approximations, {8*}, which will converge to 8 when

k tends to infinity. The information matrix H can be calculated in each iteration

as

H(8*) = E{[8°L(8")/93,8,]In: = X'(6;)8}.

and thercfore

BHY = gF — [H(8) + 200D 3-(Qn)-
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The mean and variance functions, g; and 13, are both evaluated as though X3
were the true values of A(#;). It follows that this technique s equivalent to an
iteratively weighted ridge regression procedure.

To assess the smoothing parameter A a standard way is 1o use the cross-
validation or gencralized cross-validation. The detail of this technigue can be

found in Wahba and Wold (1975) and Craven and Wahba (1979).



Chapter 4

Using Spline Smoothing to
Estimate h(4)

- 4.1 Function Space Defined by a Differential
Operator L

Let S be a function space in which for any function f, D™f € L% It is
necessary to define a Hilbert space Hy on § by delining an inner product. For
details one can refer to Ramsay and Dalzell (1991).

Within the function space S, there is a subspace, ker L, which contains all the

livper-smooth functions, i.c. for any lunctions, fi, fo € ker L,

[ e =o.

Let hyper-smooth functions v’ = (wq,...,un) span ker L. On the other hand, it
is needed to keep the form f(Lh,)(Lha) as part of the inner product of Hg for
any functions hy, ho € Hy in order to measure the smoothness of {unctions not in
ker L.

To achicve this objective, a complementary constraint operator B is defined
whose kernel space is exactly the function space for which [{LA;)(Lh2) is an inner

product. Such a kernel space with the constraint operator B must be orthogonal
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to ker L1l it has an inner product of the form. [( LA L) Therelore
l. ker LMNker B =0.
2 ker L S ker B =5,

There are many ways to define the constraint operator 2. But however B
is defined, there is a common property: ker 2 must be of dimension oo and
codimension m. This can be achicved by letting B be a mapping from S to ™.
Two kinds of B introduced here are often used in practice. One is called the

initial value constraint, and is

(BRY(0) = {h(0).(DE)(0), ..., (D™ h)(O)}".

The other is the integral constraint operator, with the form:
t
(BR)(0) = { f 1(0)1(0)d0, j w2(0Y(0)O, . .., f u,,.(())h(O]dO} :
With a well defined constraint operator B, the inner product of ker 3 will
have the form f(Lh{}{Lh2) and the inner product of ker L can be defined as
(Bh1}(Bha). Denote ker L as H; and ker B as [la, so that Iy = I, @ I, with

the inner product, for any &, hy € [y, defined to be

(hyha)o = (M, ha)y + (hyy ha)2
= (Bhy)'(Bhs) + f (Lhy)( Lha)d0. (4.1)
It will be assumed that the inner product spaces fly, #, and H. arc complete,

and hence Hilbert spaces of functions (sce Adams 1975 for a complete treatment,

of Sobolev spaces.)

2
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With the partition of the Hilbert space of functions Iy, any function & in
11y ean also be partitioned into two [unctions according to the two orthogonal

subspaces [y and [l Let

h={‘|._

where f € [, r € Ha. One can sce that [ and r satisly Lf =0 and Br =0.
For cach value of 8, there exists a function ky(8,-) which represents the eval-

uation of & at 8. h(#), as follows:
(ko(0,), () = h(0), Yh € .

The function ko(0,-) is known as a representor of this evaluation, and its exis-
tence and uniqueness are assured by the Riesz representation theorem and the
continuity of the evaluation functional in S, (sce Aubin 1979). Corresponding
representor of evaluation in My and H. also exist, and are denoted as k(0,)
and k2(0,-). These representors viewed as bivariate functions are called repro-
ducing kernels. Function k{8, ) is the reproducing kernel for Hy, k(0. -) for H;
and k2(0,-) for Ha. Since Hy is partitioned into two complementary subspaces,
Hy = I, @ I, cach subspace has its own inner product as well as the reproducing
kernels, and &y = by + k2. The reproducing kernel, ko9, ) of the Hilbert space
Ho. belongs to the space Hy when cither argument is fixed. These spaces are
called reproducing kernel Hilbert spaces, abbreviated to RKHS. Real functions in
a RKHS arc smooth in the sense that two functions which are arbitarily close
together in the sense defined by the inner product must also have values which

are closce.

b
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4.2 Definition of Interpolating and Smoothing
Spline

The reason why one needs to do smoothing is that within cach iteration of the
algorithm deseribed in last chapter. at the beginning. one only has the diserete
values of # and the corresponding values of A, The real function of i s unknown.
The aim is to find a smoothing function which captures the trend of the original
data. It is true that there is no knowledge or control over what cither the original
function /i or the smoothing function  does between arguments values. 1 seems

reasonable to ask that 2 minimize the criterion
Qﬂmﬁmg:%@—ﬁﬂwu—ﬁy+wmﬁ (1.2)
where z € R™ and is defined as in (2.9), 0 € R*, h € &, with
i = (h(0,), h{04), ..., h(0,)),

and W is the weight matrix, W € **, The norm of ||&]| is defined as

umF:]um%mw.

In practice, one always deals with data with discrete values, These data can
be viewed as a set of n function values, h; = &(0;), i = 1,...,n corresponding
to argument values 0;, 7 = 1,...,n. The interpolating function should be equal
to the function values when evaluated at the corresponding arguments and have
the norm ||%|| as small as possible so that % is as conservalive or cautious as one
can make it between arguments. It can be shown that the minimum norm £ is
a linear combination of the n reproducing kernels &y(0;,-), ¢ = 1,...,n (Waliba

1991),
h(-) =3 ciko(0;, ).

=]
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However, It is unwise to fit a function that passes exactly through the data
£0,.1n} in stdistics because there are always some observational errors. There-
fure, to smooth the data means to fit a function which can capture the trend of
the data and also be as close as possible at the same time. It can be shown that
a smoothing function I minimizing the criterion (3.3) is of the form

h(-) =3 dii() + 3 eiea(0:10) (1.3)
i=1 =1
This means that it is essential to calculate the reproducing kernels &) and k,.

The reproducing kernel £ is casily computed. Defining the matrix U; to be

the order m symmetric matrix with values,
(tll'suj)h I,J = 132! EERY L

then,

k(s 1) = u(s)'Urtu(l). (1.1)

Computing the reproducing kernel &2 is in general much more difficult, and details
are given by Dalzell and Ramsay (1993). The remainder of the section gives the
steps required to compute ko,

[n order to distinguish the initial value constraint and the integral constraint,
let B denote the former and B denote the latter.

The first step involves computing the Green's function go(s,w) for the initial
value constraint, In the particular case where & is a real-valued function, the

Green's function associated with the differential operator L and the initial value

condition B(%) = 0 satisfics

Vi | B(h) =0, h(0) = f go(0, w)(Lh) (w)dew.
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In order to ealeulate the initial value Green's function gy @, we), one neads fiest 1o
calculate the Wronskian matrix. The Wronskian matrix s the order rrwatreis-

valued function with elements

It is assumed that 117(0) is nonsingular for all €. The adjoint functions,

wt = (ujouseonn).

are defined by u = (IW=!) where (11771),, is the m® row of W' The Green's
function with the initial value condition is

w(0) u(w) = 3L, wi(0)ui(w). 0<w<h
go(0.w)y =1 —u(f) e (w)y= -0, w;(Oui(w). 0 <w<0

gt ]

0, otherwise
Once go(0,w) is computed, one can modify go to obtain g(#, w). which is
the Green's function associated with the dilferential operator L and the integral

constraint Bh = 0 satisfics
Vh | B(h)=0, h(0) = / g(0, w)(LI)(w)dur.
Define the vector valued functional by by
bo(w) = (Bgo)(-,w).

Let order m matrix B” have elements bju;, where b; is the 4 functionul in B
that is B® = Bu'. I[ B" is nonsingular and the functional §; commutes with

integration in Hy, then the Green's function for the condition Bk =0 is
9(0,w) = go(0, ) — u(0)B™" by (w). (4.5)

The proof can be found in Dalzell and Ramsay (1993).
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The integrad constraint Green's function can be derived simply from &, since
it follows from (L0)(0.-) = g(0.-). where L is applied 10 & as a function of w
for a fixed 0, Conversely, the reproducing kernel &, can also be computed from g

as,

Ba(0.0) = (ka(0.) Kalt )
- .[([,A--:)(O.ur)(U:g)(f.u')riu:

]9(0. wg(l. w)dw.

il

i

4.3 Computation of Smoothing Spline

Using the matrix notation, onc can have a form of £ similar to (4.3).

h=Td+Ke
where T is a n X m matrix. with
Li=w(0;), i=12...n j=12,....m,
and K is the symmetric n X n matrix, with entries
hip = ka(0:,0;), 1,5=1,2,....n.
By the above notation, Qy (4.2) can be written as:
1

Qr= —(h - Td — Ky W(h - Td - K¢ + \¢Ke. (4.6)

To find vectors d and ¢ which minimize the criterion @y, the first step is to take

the first derivatives of @y according to d and ¢,
)
D:Q\ = -iT’VV(h ~ Td - Ke),
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2
D.Qy = = =KW = Td - Ke) + 20K

Letting these two equations equal to zero, and solving them, o and ¢ will be found

by,

T'W(h - Td—-Ke) =0 -
KWk — Td = K¢) — n\Kce = 0 (1.7)

Assuming K is nonsingular and multiplying the second eguation of (1.7) by
L

T'K"!. one gets
T'c=0. (-1.8)
So the stationary equations are now:
KW(h —Td - Kc) = n\Ke.
T'c = 0.

If the weight matrix W is of full column rank. then from the first equation of

(4.7) one can deduce the {ollowing,
d = (T'WTY'T'W(h - Ke)
= T (h—Kq¢),
where T~ is called the least squares generalized inverse of T,
T = (T'WT)""T'W.
Correspondingly,
Td =TT (h - Kc) = P(h — Kc), (4.9)

where P = TT™ has the following properties: P? = P. Thercfore, P is a projec-
tion matrix. By substituting (1.9) into the second equation of (1.7), one can see

more clearly the propertics of d and ¢,
KWI[i — P(h — Kc) — K] = AnKe.

33



Letting Q =1 — Potlis equation can be weitten as
KwWQ(h - Ke) = AnKe. (1.10)
fewerite (1,10} as the Tollowing,
K(WQK + nAI)c = KWQU, (4.11)
and ¢ can be obtained by
¢ = [K(WQK + 2} '"KWQh. (4.12)

Now one can find both d and ¢ which minimize the penalty likelihood Q5.

If we define My = WQK 4 21, d is also able to be solved by

d = T[I-K(WQK + 2\)"'WQJk
T-(I - KM;'WQ)k,

and with the result of d, ¢ is solved by
¢ =M7"WQkh.
Therefore rewrite 2(0) by the results of d and ¢,

h(0) = Td+Ke (4.13)

P[I- K(WQK + 2\I)7'WQJh + KM'WQA
(P + QKM 'WQ)h. (4.14)

Here k is the smoothed values of h. The above expression of h{0) in (4.14) means
projecting A into two subspaces which are orthonormal. Since P is a projection

matrix and Q = I — P, these two orthonormal spaces combined together is not
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the whole space of [y, except for A = 0. More clearly, when X = 0, My s not

[ull rank matrix. il generalized inverse is applied liere.
g 1

QKMIWQ = Q.

now,

) = Ph+Qh
= Ph+(I-P)k
= I+ ha

= h

where fy is the component in the space by the projection P. denoting such a
subspace by Py, and A2 is the component of Q,. If A # 0, (QKMIWQ), is a
subspace of Q,. It is clear what a role A plays. When A becomes larger, the b

becomes more smooth. Therefore, A controls the degree of smoothness.



Chapter 5

Psychometric Theory

5.1 Notation

The purpose of this scction is to introduce notation. In this thesis, the interest
is only in the response to cach item of an exam correct or not. These kind data

are called dichotemous.

0: This indicates the ability of examinees. It stands for the trait or skill of

examinees, and is a latent or nonobservable variable.

n: This is the total number of levels for the ability, usually equal to the total num-
ber of examinces. It indicates how many levels there are in distinguishing

the ability 0. Variable € has levels 0;,2 =1,...,n.

#i: This is an indicator variable which is the response of an individual with 4
level of ability, i.e. y; =1 indicates this examinee getiing a correct answer,

¥i = 0, means his failure in choosing a correct answer.

P(0;): This is the probability of an examinee with the i** level of ability choosing
a correct answer, i.e.

P(0;) = Pr(y: = 1{0:)

36



The data always have this form {05} = 1...., n. Let Y be a random

variable, following Bernoulli distribution with parameter £2(6),
P0y = Pr(} = 1}0).

All the above notation is for only one specilic item. I some information

between items need to be considered. the following indices will he used:
Nt This is the total number of items in an exam.

Yait This is an indicator variable to item a. It means the response of an examinee
with the ability level ;. If ¥ = 1. meaning that the examinee with the
ability level 0; gets a correct answer of item a. il y,; = L. meaning that such

an examinee gets a wrong answer of item a.

5.2 Background on Analyzing a Psychological
or Educational Test

A psychological or educational test is a sample of behaviour. Usually the
belhaviour is quantified in some way to obtain a numerical score. Commonly, a
test consists of separate items and the test score is a (possibly weighted) sum of
item scores. In this case, statistics describing the test scores of a certain group
of examinees can be expressed algebraically in terms of statistics describing the
individual item scores for the same group.

In practical test development work, one nceds to be able to describe the
statistical and psychometric propertics of any test that may be built, Also it is
needed to describe the items by item parameters and the examinees by examinee
parameters in such a way that one can describe as well as possible the response

of any examinee to any item.
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Furthermore, a1 main objective is 1o infer the examinee’s ability level or skill
which has some relationship with the testing scores, In order to do this. one
st know something about how ability or skill determines the response to an
item. The item response theory starts with a mathematical statement as to how
respouse depends on the level of ability or skill 8. That means to find the relation-
ships between the testing scores and the individual's real ability. This relationship
is given by the dem responsc funclion, also called the item characteristic curve
(1CC). Throughont this thesis the ICC is simply the probability P(9) of a correct

response to the item conditional on ability level 8.

5.3 (General Features of Item Characteristic
Curves

Figure 5.1 displays six correct-answer item characteristic curves for six differ-
ent items on a final exam in a course on Introductory of Psychology. This was
actually a multiple choice test, consisting of 100 items, cach with 4 options, and
given to 379 examinees. The curves were estimated using the kernel smoothing
approach of Ramsay (1991, 1993).

The first and perhaps most obvious aspect of the ICC is that it indicates
the probability that an examince of ability 0 will get the item right. The low
value of 0 stands for the low ability and the high value of # stands for the high
ability. ICC, P(0). tends to increase over whole range as § increases, although it
may decrease locally in some parts. If P(0) is near zero, then we can conclude
that this is a difficult item for an examinee with this ability level. Values near
one indicate an easy item for an examinee with corresponding ability levels, and

values near 0.5 suggest an item of intermediate difficulty.
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Figure 3.1 Six items responses of the real score from a final test of Introductory
of Psychology.
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In Fignre 3.1, obvionsly item 2 is the casiest one because even the individual
with a very low ability still has a high probability to get a correct answer. Item
I and 3 are alse very easy although they seem not as easy as item 2. There is a
ivtle difficulty to compare the item <1, 5 and 6. If one fixes his view on the average
ability level, e may say, itenn 1 and tem 6 are of the intermediate difficulty, and
item 5 is tongh,

rom Figure 5.1, it can be scen that the probability of a correct response
for examinees with extremely low ability values is not alwavs zero. In fact, by
using some random sclection rules, every examinec can expect to average about a
correct response one out of Af tries. This probability is called as before, “guessing

level”,

5.4 Local Independence and Likelihood

In Chapter 2.2, a log-likelihood of all examinces within onc item was intro-
duced. If it is denoted by X", another kind of log-likelihood will be introduced
here, denoted by IS"'), which is the log-likelihood of all items for a certain ex-
aminee. And let L denote the whole log-likelihood of summary of lfz) over all
examinees. One can think of the log-likelihood as a measure of how well the
model fits the data, i.c. trying to use the maximum likelihood rule to estimate 0,
such values of # will give the largest value of L for all response sequences.

Now, Ifz) can be written as:
1 = In[Pr(yai = La = 1,...,N|0;)].

Local independence means that for a fixed level of 8, responses to two different

items are independent. This is a very strong assumption, but if it holds, one can
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say that responses given or conditional on the information incorporated into such
a model P(#) are independent events.,

Supposing that local independence really holds, then

Pr(ye; = Loy = 1) = Pr(pa = U Pr(w = 110).

SO
N
1 =5l Pya = 110) (5.1)
a=1
for a fixed level of 0. Further,
n N n N
L= "SInPlya=10) =31 =3 i", (5.2)
=1 a=1 =l az=l

To sum up, with formula (5.1) and (5.2). one can get the maxinum likelihood

estimate of ¢, denoted by 0.

5.5 Item Information Function

A good item discriminates highly for some range of ability values, and there-
{ore the size of slope of P(0), mcasured by derivatives { DP}0), is a uselul indi-
cator. A closely related quantity that is used for item scored as right or wrong is
the item information function, I,(0),

[(DR)(O)F

“O= mon-ror )

where P, is the item response function for a fixed item.

The amount of information given by an item varics with ability level 0. The
higher the curve, the more the information. If one information function is twice
as high as another at some particular ability level, then it will take two items of

the latter type to measurc as well as one item of the former type at that ability

level.
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From the expression of the item information function (3.3). one can sce there

are soe problems in estimating £,(0) dircetly:

Function [,(0) is a ratio of [(DP,)(0)]° over P (0)[1 — F.(0)]. Producing

sood estimmates of ratios has been a classically difficult problem in statistics.

To estimate (DP,)(0) is also to estimate a ratio.

. . - . » . . - i)
Sampling variation in DF, leads to bias in estimating (DF,)".

When P,(#) is near 0 or 1. [,(0) becomes unstable.

A good procedure must be sought which can minimize these problems in estimat-
ing 1,(0).

A good procedure should have the following three properties: flexible, fast
to compute and with stable derivatives. Parametric models for item and option
characteristic functions are sure to give nice smooth derivatives, so that item in-
formation function also looks nice. But their shape tigidity leaves room for doubt
about whether they capture all the important features of a curve, and fitting
them has not turned out to be casy. Completely nonparametric approaches, such
as the kernel smooth process of Ramsay (1991), are certainly flexible and fast,
but produce very ugly and unstable derivatives, and hence are of limited value in
estimating information functions. The procedure combining GLM mecthod and
nonparamectric regression is one satisfying these three propertics. And with the
logit transform 2(0) = In{P(0)/[1 — P(0)]}, the item information function can be
estimated by

1.(0) = P.(O)[1 = P,(0)}(DR)(0). (5.4)



Now the real problem is how to give a good estimate of #{0} and the corresponding

(DR)(0).

5.6 Test Information Function

A maximum likelihood estimator 0 of a parameter € iz asvmptotically novmally

distributed with mean 0y (the unknown true parameter) and variance

. ! !
Var(0]0y) = A )
O = TRz = 1o

where L is the log-likelihood function, sce Lord (1990). When the item response

model is known, and by the local independence, one has,

1 & lor)oy)

10) = G0 = & o - RO (5

4]
o
—r

That means that the information function for an unbiased estimator of ability
is the reciprocal of the sampling variance of the estimator. Equation (5.5) is of
such importance that it is given a special name and symbol. 1t is called the test
information funclion and is denoted simply by I(0). The importance of the test
information function comes partly from the fact that it provides an (attainable)
upper limit to the information that can be obtained {rom the test, no matter
what method of scoring is used.

A very important feature of (5.5) is that the test information function consists
entirely of independent and additive contributions from the items. The contri-
bution of an item does not depend on what other items are included in the test.
The contribution of a single item is (D, )*/[Pa(l — P.)]. Becausc in the later
chapters, only the item information function is considered, the notation f(8) is

also used as the item information function.
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Figure 5.2: One 3PL model with 2(0) = 0.2 + 0.8[e*7E+05) /(1 4 17+0SH] the
parameters a, b and ¢ are equal to 1, -0.5 and 0.2 separately.

5.7 The Three-Parameter Logistic Model

Whether calculating the log-likelihood or the item and test information func-
tion, we need to know the itermn response model P(0). One of these models used
very often in psychometrics is

el7a (0=1b)

P=PN=c+(1- C)'l + ¢lral0-b)"

which is called three-parameter logistic model (3PL). Figure 5.2 illustrates the
characteristic of this model.

I'rom Figure 5.2, one can sec parameter ¢ determines the guessing level, pa-
rameter b is the location point where the curve has its inflexion. This point is
called the item difficulty. The more difficult the item, the further the curve is

to the right. And the parameter a is proportional to the slope of the curve at

the inflexion point. Thus parameter a represents the discrimination power of the
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item. the degree to which item response varies with ability levels,

The purpose of tntroduction of 31, model is because in Chapter 7 the simu-

lated data will be generated according to this model.



Chapter 6

A Psychometric Model for r(4)

6.1 A New Spline Model for h(f)

The method is used in this thests to combine the generalized lincar model and
nonparametric regression to estimate the logit transformation 2{9) with the goal
of obtaining a good estimate of the information function /(0) as well as the ICC,
P(0).

Considering Figure 6.1, one can sce that the main features of P(8) which are
senerated by a 3PL model

ei-Ta{0-b)

P0)=c+(1- C)l T olrato=h)

are the following:

1. The curve has a lower asymptote of ¢, which is equal to guessing level. in

this case, ¢ = 0.2,

&
H

The [unction is monotone increasing with an upper asymptote of 1.

3. The point. 0 = b is of intermediate difficult of the corresponding item, in

this casec. b = 0.
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I

Figure 6.1: P(0) generated by a 3PL model witha = 1.6 =0.c = 0.2

. Parameter, a, controls the slope of P(#) at & = b. llere the slope is near

0.34(= 0.415a(1 — ¢)).

Figure 6.2 and Figure 6.3 show what 2(0) and (DR)(0) look like. It is also casy
to see some properties of (), such as that the curve of h{0) is asymptotically
linear in #. For large negative values of § the curve of (0) approaches the constant
logit(c), and the first derivative of h(0) is asymptotically constant.

In order to approximate the special characteristics of £(8), a basis for approx-

imating %(0) is chosen to be,
{1,0,In(e*®-" + 1)} .

For any function f in the function space spanned by {1,0,In(c*?-% + 1)}, we

have
f(0) =¢; + 20 + c3ln(e*C) + 1) (6.1)
where a and b are taken as known or independently estimated. Functions f(0)
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Figure 6.2: £(0) of 3PL model witha =1,b=0,¢=0.2.
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Figure 6.3: (DAh)(0) of 3PL model with e = 1,6 =0,¢=10.2.
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have the sane properties as A(8). For example. when 0 has a large positive value,
In(e* =" 4+ 1) tends to eequal . Therefore f(0) is asymptotically linear in 0. And
the first derivative of f{0),

*(0=b)

(DfY0) = cx + e3a 0=t 1 1°

is asymptotically a constant near ¢z + eza for the large positive values of 0.
It would be naive to suppose that the function (6.1) s cnough to describe

h{0). One will estimate h{#) through a more genvralized smooth function
h(0) = f(0) + ri).

‘This first term [ is the model component (6.1) and the second term r is a residual
function which gives a more adequate approximation to the real curve. But one
can only identify term r uniquely if it satisfies some suitable constraint that
separates its contribution from that potentially provided by term f. Now let it

satisfy the integral constraint.
(Br)(0) = { [r0do. [ 0r(0)a, f In(c*@= + 1)r(0)da}' = 0.
Define a differential operator L as
L=wD*-D?

where
a(l — ¢*(0-4))
ca{0=b) +1

Then 1(0) consists of two parts, f(0) and r(0), with f(8) € ker L and »(0) € ker B.

w=

If let Ho = Hy @ Hs, with Hy = ker L and H, = ker B. Then Hj is a Hilbert

space for any h; and k2 belonging to Hy with inner product
(hyhs) = f ha(0)d0 f ha(0)d0
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c(ﬂ ] afd—h)
-‘-flu( T )fn 00 [[n (Tm) ha (N0

+f(f.hl)(())(LI:-_.)((?)J(). (6.2)
6.2 Computing the Reproducing Kernels

With the same notation as in chapter 1.2, one can calenlate the &(0.¢) and
ka(0,t) for this specific model 2{0).

Now m = 3, and u = {ut;, up, uz}’ is equal to «(0) = {1.0.In(c’ + 1)} respec-
tively, i.e. it is assumed for convenience that @ = 1 and & = 0.

First, look at how to compute the reproducing kernel 4,(0.1). Recall the

formula of how to calculate £(0,¢) in Chapter 4,

k1(0.8) = u(0)Ur u(t)

l
= (I,O,In(ca-}-l))U'{‘( ] )
In(c? + 1)

where Uy is a 3 x 3 matrix with w; = {(u;, v;). And

(u;.u;) = (/u;(ﬂ)cm,'[ﬂu;(o)do,/In(ca + 1):1,-(0)(1())

Ju;(0)d0
X J 0u;(0)d0 .
( JIn(e? + 1)u;(0)d0 )

Therefore three special one-dimension numerical integral were computed:

[

. fIn(e? +1)d0,

(A
H

J01n{e? +1)do,

w

[1n*(e? + 1)d0.



Using the Romberg quadrature algorithm (see Press. Teukolsky, Vetterling
and Flannery 1993), the approximate values of Uy for T = 3 are given as [ollows
7256 520 102,81
U, =| 5L42 105.00 261.07 |.
102.81 261.07 238.73
Therefore
7256 5442 10284 \ 7 1
E(0.0) = (1.0,In(<° + 1)) ] 51.42 405.00 261.07 t
102.84 261.07 238.73 In(ef + 1)
14.29 691 =13.75 1
6.9 338 —6.69 t
—-13.75 -6.69 13.2d In(ef + 1)
11.29 + 6.94¢ = 13.75 In(c’ + 1) + 0(6.94 + 3.35¢ — 6.69 In{e + 1))

= (1,0,In(e + 1))(

+ In(e? +1)(=13.75 = 6.69¢ + 13.24In(e" + 1)).
One needs only compute the values of %,(0,1) on some fixed points. Since

ka(0,0) = [ g(0,w)g(t, w)dw
and
9(0,0) = go(0,w) — u(0) B " ho(w),

computing k2(8,t) involves computing two-dimensional numerical integral. To

summarize, the following three steps are required to compute the reproducing

kernel k(0. ¢):

L. compute the initial value constraint Green’s function go(0, w),

-

. compute the integral constraint Green’s function g(8,w),

3. compute the reproducing kernel £2(0,1).
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6.2.1 Computing the Green’s Function g,(#. w) for the
Initial Value Constraint

The following steps show ltow to caleulate the Green's function with the initial

value constiraint:

e Calcvlate the Wronskian matrix 1W':

1 0 0
I {w) = w l‘ 0 .
III(C'A -+ 1) r:_-H (r"r_-i-l)'r ;
o Calculate the inverse of the Wronskian matrix W=
1 0 0
W w) = —w 1 0
?.L'(Cw + 1) _ (C'"+”'c}:|‘ch+” _(Cu- + l) ("";j:.l)'

Therefore the adjoint function is written as

(e" + 1) Infe” + 1)

w
cl

. _(cm + l).

u (w) = (w(e“’ +1) - w) .

o'
o Calculate the go(0,w), the Green's function with the initial value constraint:
go(0,w) = u(0)u (w), 0L w<0.

So the initial value Green’s function is writien as,

¢ (413 Infev4 1)

wlew 4+ 1) - 220
—0(e” +1) + In(c? + 1)!5.:'.;;"".'1);, 0<w<0
go(0,w) = 4 —w(c”+1) + =+ ittfﬂ"'ﬂl

+0(c‘u+ 1) - in(co + I)MTT.'E, 0 S w S 0

] otherwise

o To check the initial value Green’s {unction go(0,w): one uses the adjoint
operator L~ of the operator L and apply it to the initial value Green's

function. One has,
L =wel +w D+ w.D? 4 D3,
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swhere,

QL:tl‘(('Ii‘-_:_ I)

U,'U ((‘I'.l-' + 1)3 -
e
Wy, = —
(C". + 1)..
] L
woe =
c¥ + 1

When we apply it to the initial vajue Green’s function, the result is showing.
L3g9(0.w)=0, when 0w,
This satisfies the basic property of the initial value Green's function.

6.2.2 Computing the Green’s Function g(4.w) for the
Integral Constraint

To compute the Green’s [unction with the integral constraint, one needs to
use the Romberg quadrature algorithm again. Denote

1, fw>0
H{0,w0) = { -1, Sw<@

Rewrite go(0, w) as
go(0,1w) = sgn(0) H (0, w)u'(0)u" (1)

where u(0) = (1,6.In(c? +1}), and

= (e - LMDy (417),

Let Z(8.w) = sgn(0)H(0, w). so
go(0,w) = Z(0,w)u'(0)u"(w).
Define order 3 matrix functions
T
U(w) = f u(0)'(0)df, w >0,
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Viw) = —f_‘ a(Ma' (N0, e > 0.
oy
The approximate values of B™ = Bu' for "= 3 are
G Q G.0-163
B = 0 N S.0000 .
G.0AG3  9.0000 11.0077

Define also

X(w) = B1U((w).
Y(w)=B"'V(w).

Following the formula (1.5). one gets the Green's function of integral constraint

condition

0.1) = Z(0,w)u'(0)u"(w) — v/ ()X (w)u(w), 0<w < T,
g(0.0) = Z(0, ) (D (w) = v (0)Y (w)u(w)., =T <w <0,

By dividing 0 — w planc into four regions, one can get a clearer expression of

g(0,w):

1.0<Sw<o<T,

g(0,w) = u' ()X = X(w)]u (),

[

T <00 wand0<0<Lw<T,

g(0,w) = =u' (X (we)u(w),

g(0,w) = =u'(0)[I+ Y (w)u" (),
4, -T<w<0<0and -T<w<0<0,

g(0,w) = —u'(0)Y (w)u"(w).

(el
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6.2.3 Computing the Reproducing Kernel /4(6.¢)

Let G be the § x § matrix of values of g{0, ) for { estimated values of # and
w. Denote ka(0.) for these fixed points as a [ x { matrix K. the Simpson rule

was nsed for the numerical calculation. Then
K=GWG,

where W ois a diagonal weighted matrix by the Simpson rule,

42 424 1)
‘.?3!3!"'!:3‘,:3!3?:3 -

6.3 Computing the Operators Both
in H, and H>

. The next step after computing the reproducing kernels is 1o compute the d, ¢,
cocflicients of the two components in ff; and ffs.

Depending on the analysis in Chapter 4.3, one czn understand how spline
smoothing works in this problem. But in practical computation, this method can
not be used directly because it involves computing the inverse of a big matrix.
Following are the details of computation using special matrix decompositions
which make computation stable and efficient.

Since weight matrix W is a diagonal matrix and all the diagonal elements are

positive, let W = W%W%, 1.e.

i . 3 1 :
Wz = diag (tc;t,wgz, cee ,w,;) )

]. 1 1 1
. Qr= ;(W%h - WiTd-- WiKc)(Wih - WiTd - WiKe) + AdKe.
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Applying QR decomposition 1o WiT. aot,
]
W:T =QR

, . . c D s i
where Q'Q = QQ' =TI and R is an upper-triangular matrix. For WiT isan~ i3

matrix, so
W%T =(Q. Q) ( I; )

with Q, € " . Q, € R""~% and R € B*®. Obviously,
QL(WIT) =0,
Using Q,, Q., Q and R instead of WIT in Qy, Qy becomes

Ok, hjw)

o x [Q(Wih = WiTd - WiKc)] + A'Ke

%[Q’(W%h — WiTd - WiKe)|'

= %(Q{W%h + QyWih - Rd - QWiKc)

x (Q'Wih+ Q,Wih—Rd—QWiKe).

define
7 =Q\Wrih,
Zr = QyWih,
then
Zy —Rd - Q\WiKc
and

Z» — QYWHKc

are orthonormal, and thus Q) can be written as

[$11
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(.).\Uz.if:fe') = ',17“21 4 Ky = Rl = Q;\V{"Kc— Q-’_‘\Vi"Kc”'-'
+ Ad'Ke

= %“21 - Rd - Q;\V%Kc”z n %”Z'.’ _ Q;\V’:"Kc”l‘
+ A'Ke.

Since T'e = 0, ¢ can be defined as

¢ = WiQ,h,

b= QW3
Therefore
Q\ = %uz. ~Rd - QWIKWIQ,|* +
Z172 - (QUK W Q)" + M/(QWIKWiQ,)b
= % - Rd - QWHKWIQuH* + =17 — Jb|f* + M35,

where J = Q.':\V:"K\V%QT Recall d = T~(I - KM 'WQ)#, using the decom-

positions above, d becomes
Rd = 7, - Q_WIKW3Q,h.

Because R is an upper-triangular matrix, d can be solved by back substitu-
tion. Also because both d and ¢ depend on b, if b is found, the problem can
be completely solved. To compute b will apply the eigendecomposition of J be

J = UD?U’, Since the value of d makes the first part of Q) equal to zero, so
Qs = %IIZ—: —UDUH|? + A¥UDU'S,
7
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The problem ol finding b is changed to find w equivalentiy, Use the similar method
as before. let

!)g,()_\ = 0.

Solving this equation will give the solution
b=U(D" + n\)"'U' 7.

6.4 Smoothing P(8). (Dh)(f) and I{#)

Once a good smoothed function A(9) is attained. the anti-logit transformation
gives an estimate of (0). To get a smoothed {(Dh)(8). one can use the similar
method as getting the smoothed £(8). The difference is to use the (DE))u(0.1)
and (Dk:)p(0.t) instead of k(0. ) and ka(0,1).

Once smoothed P(0) and (PR)) are available, using lormula (3.1). the

smoothed estimate of [{f) can be easily computed.

6.5 Summary of the Algorithm

If one has the data in the form {0;,3:},2 = 1,....n, with P(0) to he estimated,
it 1s not necessary to compute the cevaluated values of P(#;) for cach point ;. or
most purposes, estimating P(0) at 0;,& = 1,...,L [ is much smaller than n, is
sufficient. The evaluation points 0¢ can be equally spaced: because caleulating

the reproducing kernels does not involve the original data, one needs to compnte

ka(0,1) and (Dk2)s(0, ¢} only once. The steps of this algorithm are as lollows:

1. Compute k2(0,t) and (Dk;)s(0,t) for points 0¢,& = 1,...,{. Denocte them

by notations K and DK respectively.



20 Set np the operator for Dicin Hy spaee using DKL

-

With the reproducing kernel Koousing the LA algorithm, tirst set up the

operator of foan Iy space in cach teration, and at last get smoothed 4(#),

1. With the operator of DI in Ha space and the estimated £(0). compute the

stmoothed (DL)(0Y and Turther P2(0) and 1(0).

The following tries to illustrate the third step of this algorithm:
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61

wr weights for the
weighted least-square
criterion in GLAM
algorithm

=t dependent variable in
weighted least-square
criterion in GLAL
algorithm



Chapter 7

Simulation, Discussion and
Conclusion

7.1 Illustration with Simulated Data

The purpose of this tiny simulation is to illustrate the method descrilied in

the previous chapters. To illustrate the simulation, three methods were used:

1. GLM with a basis {1,0,In{c® + 1)}.

1w
.

GLM combining the spline smoothing with the basis {1,0}, or cubic spline

smoothing.

3. GLM combining spliue smoothing with a special basis {1,0,1n(? + 1}}.

This will be called psychometric spline smoothing.

The first method is very simple: use the linear regression to approximate A{f)
according to the basis {1.0.1n(c? + 1)}, then use the GLM method to estimate
P(0).(D1)0) and 1{0). The sccond combines GLM method with polynomial
spline with a cubic polynomial basis. The third one combines GLM with the -

splinc smoothing with a special basis {1.0,In(e? + 1)}.



The simulated binary data were carried out for & number of values of ¢ typical
of many applications. namely n = 500, The actual values of ¢ were the corre-
spomcling n quartiles of the standard normal distribution. Conditional on these
s, the function P{O) (). (D0 and 7{0) 10 be extimated were generated from
a three-parameter logistic function with parameter values, v = Lh = 0, = 0.2,
For evaluated points. 21 values with equal spacing were used in each stmulbated
sample, 0 = =3(0.3)3. These evaluated points are reasonable because there are
few points beyond interval [—3.3] with the standard normal distribution.

The number of simulated samples analyzed were 100, Within eacl: stimulated
sample. binary values 3; € {0.1} were generated as follows: generate 500 u;'s
randoml:’ from the uniform distribution. let y; = 0 il «; < P(0;). otherwise y; = 1
il p; > P(0;).

Because both cubic polvnomial spline and psychometric spline involve chioos-
ing the smoothing parameter A, and the first method does not, so the comparison
between the second and the third method is considered lirst.

The smoothing parameter A, was given values of 0.001,0.01,0.1, 1, 10 and 100.
For cach parameter A, the average of mican square errors of cach simnlated sample
for P(0), 1(0),(D1)(8) and T(0) were computed.

In cach graph of Figure 7.1, the z-axis takes values of Inyy(A), and y-axis
takes values of the corresponding mean square errors. The solid line connects the
points by psychometric splines, the dotted line is by cubie polynomial splines. It
is clear that for each value of A, the mean square crrors for P(8), i(, (D) (9)
and I{0) by psychometric splines are always smaller than the cubic polynomial
splines. And the optimal A values of Nk and [ are greater than those for P

and h in both situations. That mecans that estimating Dh and [ requires more
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sinoothing than 12 and b,

There is another way to compate psychometrie splines with cubic polynomial
splines. Compare the mean square errors of both across the simulated samples
for different :1]:]“2.}’ lovel 8;7s,

Figure 7.2 and Fignre 7.3 give the mean square errovs of both cubie polynomial
splines and psychometrie splines for different values of A with different ranges of
. The range of # for Figure 7.2 is from -3 to 3. and for Figure 7.3 is from -1.5 to
1.3, In both figures, the solid line shows the values of mean square errors of the
psvchometric splines and the dotted line shows the values of cubic polynomial
splines. In Figure 7.2, one can sce that cubic polynemial splines are much more
nnstable than psychometric splines, especially on boundaries, but it is difficult
to sce the dilference between them when # varies from -1.5 to 1.5, In Figure
7.3. 1t is clear that whatever the value of smoothing parameter A is, the mean
square crrors of psychometric splines are almost always less than cubic polynomial
splines. Recall the properties of £{0): h(0} is asymptotically linear in @ when ¢
tends to infinity. The psychometric splines with the basis {1, 0, In{e? +1)} satisfies
this property, but not the cubic polynomial spiines. Therelore, the result confirms
the value of using a basis for f,. which d»es have this property.

Once the optimal smoothing parameter, A, is chosen, the comparison between
the first method and the psychometric splines can be made.

In Figure 7.4, the solid line represents the values generated from the 3PL
modecl. the dashed line stands for the values of the linear approximation by GLM
method, and the dotted line is from the estimated values by psychemetric splines,
using A = 0.01 for cstimating & and A = 0.1 for estimating Dh. Comparing these

thwee lines, one can sce that the lincarly approximated values catch almost all
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of the characteristics of functions A(0) and P, espectally when @ has o larger
positive value, 1t illustrates again that the basis, {160, In(e” + DY, satislies the
properties of £(#). The estimated values by psychometric splines are closer than
the linearly approximated values to the original data becanse the spline method
15 more {lexible. Although the estimated Dh doesn’t it very well, good estimatoed

values of /() were still found.

7.2 Discussion and Conclusion

The purpose of this thesis is to propose a method combining parametric mod-
cls ana nonparametric regression tegether. It was hoped thal by controlling the
smoothing parameter A, one can make the smoothed values as close as possible to
the parametric models. and on the other hand, one can also leave more roomn for
the random component. For a very simple sitnulation described above, it scems
to work well,

Comparing the method used in this thesis with the parametric model and
kernel smoothing, the psychometric spline is casier to compute and more flexible
than the parametric model.

However, this method needs improving. To go [urther, first, the method of
computation should be improved, so that one can linprove the aceuracy of the

computation. Also a greater range of simulations should be carried out to test

this method.
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result for the psychometric splines and the dotted line for the cubic splines
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Figure 7.3: Comparison between polynomial splines and psychometric splines by
mean square errors of P(0), k(). (Dh)(0) and I(0) across simulated samples, and
for different values of A with the range of # from -1.5 to 1.5. The solid line shows
the result for the psychometric splines and the dotted line for the cubic splines



0.0 0.2 0.4 0.6 0.8 1.0

1.0 1.5 2.0

Dh

0.0 0.5

theta

0.0 0.1 0.2 0.3 0.4 0.5

theta

— true curve
- gsgchometncs pline.

LJ

imenston approximati

theta

Figure 7.4: Comparison between the psychometric splines and GLM method with
the basis {1, 0,1n(e’ +1)} for one simulated sample. P and © were estimated with
A = 0.01, and Dh and [ were estimated with A = 0.1, The solid line shows the
true curve, the dotted line shows the estimate by the psychometric splines, and
the dashed line shows the estimate by the 3 dimension linear regreston,
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