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- This thesis addresses the problems.of quantization and coding of discrete eosine

k " *
transform block cogfﬁcients. . Block quantizers ‘subjectively adapted to the human

visual system are investigated, followed by a study of block coders using a combi-

. nation of run length and Huffman coding techniques. Two and Eh\ree—dimvensional

- e

. i

[y . . 4 . » B ¥ / . ) . .
processing are investigated with, however, a strong emphasis on two dimensional

processing. Quality of the cgdgd i‘mages‘. is. given a priority over bandwidth com:

o

pression. A goder operating at the threshold of impairment perceptibility is sought

© for natural images and man rﬂade objects making the bulk of televis}bn programs.

~ ' ’ LI

Average/bit rates below 1.5 bits per pe!-are achieved with two-dimensional discrete,

) - .
cosine transform and 1.0 bit per pel for threg—dimensio:lal processing.
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Cette thése est consaérée & ’étude de quantificateurs et.codeurs de blocs pour -
" la transforinée en cosinus. Les quantificateurs de blocs sont adaptés spécifiquement,

*

au caractéristiques du systéme visuel humain. Les codeurs de blocs subséquents font

o

N .. appel aux téc_}fn_iqu‘es de codage par plage et de codage de Huffinan. Le traitement

~ I

bidimensionnel et tridimensionnel sont étudiés avec toutefois une nette emphase sur

’

"le traitement bidimensionnel. La qualité de image a ici préséance sur la réduction

du-débit. La recherche porte plus spécifigiement sur un codeur opérant au setil de

. [N

perception de distorsion pour des imagés naturelles ou d’objets courant formant le

gros, des programmes de télévision. Un débit moyen inférieur & 1.5 bit par pixel est

: A .

atteint en codage bidimensionnel et 1.0 bit par pixel en traitgment tridimensionrel.

. . ! s s
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Digital transmission and storage of images has gained considerable importance
in the pasf decades Applicatio;ls are varied: High Definition TV, teleconferencing,
transmission of pictures from obsérvation satellites or over teleph(;ne lines, storage

of pictures in computer databases and many more. The reasons for such an interest

lie in the flexibility and ruggedness of digital transmission and processing as well as

AR

.
b
2

-

consistent picture quality. . .

Th;'ee steps are inVolvgd in the process of transmitting images ljy digital means :
Firsf, pictorial data is produced by sampling in space and time anduthen quantizing
%n brightness (or color) an analog and continuous scene. An appropri.ate sampling
structure is chosen to minimize the number of pels required and avoid aliasing.

& ~Kor the majority of ap;)ic\ations, however, the sampling structure is dictated by

v

the.avai\lable hardware or compatibility constraints, as for line interlace in televi-

sion. Sec;ndly, the digital image is code;i, transmitted or stared, then received or
retrieved, anﬁ decoded. Thirdly, interpolation to a c(;ntinuous and anal?g form isr
s accomplished by projecting ‘the image on a display and then low pass filtering by the
eye and brain of the vit;wer. The choice oi' the sampling structure in the first step,

should take into account specific-properties of the Human ¥isual System (HVS).

- o 0
Q In the second step, coding can be further separated into source coding and ¢hannel

-~
L]

-1-
$




coding. Source coding removes the redundant information in the source; the digital

[

v . .
image, and produces a bit stream. Channel coding converts this bit stream to a

1

format suitable for transmission over the channel, be it an optic fiber, a telephone

-

_line, a microwave link etc... It may also add some redundancy for error-control.

From now on, coding will mean source coding.

Severzfl:n}ethods are presently used and many ax:é being investigated. Tl;e sim-
plest of 'all, Pulse Co.de Modulation (PCM), consists :of fixed length coding. The
pictorial dz}ta isdirectl; channel coded. The tradeoff for such simplicity is bit rate
or equiva;e;i'tly, bandwidth. For e);;mple a monochrome, 640x525 'pels/frame and

¥
30 frames/second digital TV where the luminance is quantized with 8 bits would

require a bit rate of 80.6 Mbps !- For color, it would be even more. Transmitting

at such high rates may-not be economically viable depending‘on the a,pplicati{ms.

o
b

Luckily, the pictorial data is not tot@ random since the color of adjacent pels

is highly correlated in space and time.’: In the franéelwork of information and cod-_

4 \

ing theory, the bit rate kan be reduced down to the entropy, allowing a saving of
about 50% quite easily. However, the order of magnitude is still the same and going
below the entropy would result in the alteration of the pictorial data. But does

such an alteration affect what the viewer sees ? It depends on the type and degree

of alteration. The Human Visual §ystem is & complex mechanism that is not very ~

r

w\ell understood. Psychovisual and neurophysiological experim?ntns’have led to some

" models of the HVS that closely describe certainn phenomena but no gen%x;al model

e

o 1
yét exists. Studies have shown that huge bandwidth compression can be achieved

by properly taking advantage of the properties of the HVS and transmitting only

what is actually perceived. A coinpression ratio of 100:1 with yespect to PCM is

e -

enﬁsiqx’led,l the problem is in sorting out the relevant information.

I3 -

Image compression techniques vary greatly in complexity, quality,and efficiency.

Simple ones such as DPCM are readily available for real time processing and achieve

)

4

AY
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a compression ratio of up to 2:1: casily. More claborate techniques achieve better l

3 o
Pay 0
W ‘
» -
.

compression ratios but require complex and expensive equipment. The quality cri-

terion plays an important role in choosing a teghnique for a particular use. While in
E

broadcast t@on distortion can not be tolerated, teleconferencing requirements -

i are less stringent.
P o
3 -

The work presented here focuses on a particular transform coding technique,

| _ © namely the 'Discrete Cosine Transform (D(,(T) applied to monochrome imagery.

/' The pictorial data, consisting of successive frames of H x Vpels is divided into
N x M x K blocks of pels. For a still picture, K is equal to one. Tlhie DCT is applied -

to the blocks yielding N x M x K real, less correlated coefficients, with most of

.

the ‘energy’ concentrated into the lower ‘frequency’ coefficients.” The coefficients

©

are then quantized and coded for trapsmission. Two‘properties of the coeflicients
are exploitable for bandwidth reduction. Firstly, due to the energy compaction,
’ \ - -

f@ : many coefficients are often zero or have a small amplitude and may be efficiently

coded. Secondly, coefficients have different visual mgmﬁcance dependlng on theuj‘r

‘.e'.) posxtlon w1th1n the transforrr;ed block and need not be unantued with the samc
" quantizer. There are basicly two issues in DQT coding: the proper quantization®f

the bloc’k c'oefﬁcients and their subsequent coding. The problem of qu'a.ntization can

©

. be fufther separated in two. The selection of the best type of quanti.zci' to use, and
) the assignment of a particular quantizer to each coefficient. Tl;ey will be referred to
. .

as quantizer type and quantizer distribution. Both are closely related to properties @
o , . N _

- of the HVS. ' - :

A E 4

- The goals in this thesis are to determine & quantizer distribution for the DCT
- ' that, is well adapted te the HVS, and find an efficient coding technique.

Previous work in this area is extensive. Notably Ericson [4], Griswold [5], Man-

.'-

@ t Rigorously, the terms in quotes are valid only for the Fourier transform. where energy and
. frequency are defined, here they startd Prtie ¢quivalent terms for the DCT. "
- : ) - - 3 - * )
Id h é '} o
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* nos and Sakrison [6] have used specific models of the HVS to generate a weighting

function.The coefficient are multiplied by the function and then quantized using a

o

unique quantizer. The weighting function is thys equivalent to the quantizers distri-

bution. The results are-dependent on the accuracy.and completeness of the model..

[ . .
Lohscheller [3] evaluated the visual effect of each coefficient and then generated a

o

weighting function according to visual thresholds. The approach taken in this thesis
o 4 g
is original in the sense that no model of the HVS is assumed. Visual experiments

and subjective tests are used\extensively to study the quantizer distributions that
© f‘ ,

are best suited to the DCT. The quantizer distributions are then modeled using

Ll

parametrical functions. Both ,,three—din;ensional and two-dimensional DCT are in-
vestigated with a strong emphasis on the latter. Uniform quantizers were mostly"

used. A particular type of non uniform quantizet was also investigated.

’

Concerning the subsequent block coding, the most recent contributions are by .
Chen and Pratt [7] who used a combination of Huffman and run length coding, and _

by Saghri and Tescher [8] who usesl the concept of chain coding to code clusters
\ of zero valued coefficients within a block. Variations.on ‘the .method of ‘Chen &and N
0 v

“Pratt are investigated in this thesis. ‘

- Chapter 2 presents the concepts of digital images and an introduction to image

»

com'n’lunicationl systems. A short survey of some coding method is then followed by

. 8 more detailed presentation of transform coding. Since the human viewer is the
last element in the chain, a review ;)f the_ relevant properties of the human visual
system concludes the chapter. 4 '

)’ aChapter 3 presents the work on the éesign of block qu;,ntizegs wh}ch are subjec-

o - tively adapted to the human visual system. A function that z_a.utomatic‘allngen;rates

a

"a block quantizer from a given set of parameters was obtained. Thj’s function allows

1 ) " - U 1o . i » ) . . L] - ¢ )
c : the quality of reproduced’images to be easily varied. A subjective test with a group )
° - ; ° . — <] '
b ‘ N : °. . H ‘ f . X
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of viewers was used- to formally® assess the performance of this block quantization

.

© ,

°

method.

In chapter 4, efficient block coding techniques using Huffman and run length 'f
\ B
coding are investigate:i for specific use on the DCT quantized blocks. Average bit X

P
.

rates of 1.5 bit per pels for two-dimensional coding and 1,0 bits per pels for three- .
. 1 . 3

dimensional processing were attained for images rated at around the -threshold, of . -
’ o v L.

~

perceptibility. )
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* and coding the transform coefficients. R .

7

L

Chapter 2 ' ‘“ - Theoretical Context

8 . _ ,

L

The purpose of this chapter is 'tg present an overall view of the fields related
to image trangmission systems, bandwidth’ reduction techniques and vision. This

will help establish a framework upon which the more specific ‘topics related to

quantization and coding for Transform codingican be discussed.

a

The first section deals with digita] comrr;uniqafion systemg in general. A no-

-
- ,

. tation and mathematical framework to characterize images is présented. Require-
- 3

ments for transmission of time varying images over a single channel and_some tech-
\ - i
niques for bandwidth reduction are presented. - -
' . '
. hJ . . .
The second section focuses on transform coding in general and the discrete

- ’

. cosine transform in particular. It introduces the problems arising from quantizing
) ° .

!

__Finally, section three vre've%dlls the present state of knowledge of the mechanism

of vision and emphasizes the specific properties of the Human Visual System that )

are digectly applicable to bandwidth reduction with tvhe DCT.

v
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2.1 Digital Image Communication Systems

f
The term ‘ilnage’ has been used quite vaguely up to now. Before proceeding any

further it is necessary to better define what ‘image’. means. In the context of this
. X

study, ar‘i’ image fepresents the distribution of light received on a limited portion
.- oo
“ of a plane known as the receptor. This light may come from light emitting objects

like light bulbs, the sun-and LEDs ... or from the reflection on objects and the
| -
Let C(z,y,t,)) represent the light reteived at the receptor in Watt/m*/Hz. It

R
surroundings.

< . is a spectrum of electromagnetic waves ahd C (z, y,t,;/\)d/\ represent thegpower per

unit surface contained in .‘frequency interval\(A, A +d)) at position (z,y) and time ¢.

,t,A) is converted into a perception

.

In the case of the receptor being the eye, C(z,

of color and intensity. In the case of a canlera tybe, it is converted into electrical

may be de%ned as

e = [TV, (2.1)

- Fig. 2.1.

Al

O

) C(:B, Y, t, )t)-i Receptor@ r—-){ Coder -—)l Transmission Decoder ' }—’ }‘fh}' ->» é(m,y, {, A)

Fig. 2.1 An Image Communication System
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s, Tlie major problem is to réduce the spatial and temporzl continuous analog inten-
B > [ a

sity signal I{z,y,t) into a one dimensional signal, namely, a signal dependgnt on
. . . . & :

time only. This ‘requii:es sampling the intensity signal in at least two dimensions. In

broadcast television, the signal isesampled in the vertical and temporal dimensions

¢ ! ) ‘ "\ » ’ - 7 £ .
(v and t) in a-line interldced fashion. A discrete image implies'that sambling is .

. performed in three dimensions. A digital image is a discrete image in which the -

lum'glanée signal is also quantized. .

) -
i ]

2.1.1 Digital Images
’ : o S ‘ e . . , ‘< . o
~As seen im&he previous section, a digital image is a quantized sampled image.
2 Ce N ' . ¢ \,
" The present section explains the sampling and quantizingiprocesses., ' :
, T 7 ' .

\

- .\

San;plin.g

t
v . -
Y v

A detailed review of sairipling éf time varying imaggi’y can be found in [9).

>Basically, sampling is the process of converting a continuous representation of the '

analog intensity signal into a'discrete representa,tioﬁ. The resulting intensity signal

is ther®defined as a set (A) Jf discrete po:lﬁ{:s called a sampling lattice. An element

4

of the lattice is called a pel (61‘ pixel), rﬁéaning ‘ﬁicfure element’. The lattice can

be formally represe'ntred BS: | o ) Lo

- a .
£

A= {nyvy +ngve + n3‘V3 | ny,ng,ng € zZ} ’ (2.2) R

:

- where vi,va,vg are the basis vectors of the-lattice and Z the set of integer numbers.

A_ Jettice is & discrete additive abelian group. The basis completely characterizes .

1 . .
the sampling lattice. For practical applications, only a portion of the lattice is-used,

f11,n2, ng have a limited range. In order to better understand this operation, the

°

equivaleént one-dimensional operation is pulse modulation used in speech applica-

. -

tion, telemetry, and in general for multiplexing several time varying signals oger the
! T *
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same channel: The analog signal is sampled at intervals of T seconds, Fig. 2.2, mld‘
J

its‘sampling lgl.ttice may be expressed as: b

A= {nT|nm E Z} ' (2{3)

Fig. 2.2 Sampling of a unidimensional signal

In order to be able to exactly reconstruct .ihe signal by interpolationﬂhe sampling
interval must be smaller than the inverse of twice the bandwidth of the signal

(Nyquist criterion). This is to avoid aliasing. -

, These limitations also hold for the sampling of images. The basis vectors of theﬂ\'

L3

Tattice should satisfy certain constraints in order to be able to reconstruct a contin- (

uous image from the sampled one without distortion. The reconstruction process is
a thre‘e dir.nensiona,l low pass filtering operation. When choosing“a.lsampling struc-
ture, one would like to minimize the number of pels vv)lile maintaining an adequate
visual bandwidth. This means that the pels should be close enough to avoid aliasing
and the input signal should' be low: pass filtered pr'iorl to sampling.” However, f;)r
many applicétions, compatibility with existing analog systems dictates the choicg of
the sampling structure. For example, tel\evisicg: use;sl a line interlace scanning with

‘

defined vertical and temporal sampling rates. A frame at full vertical resolution

»

consists of two fields sampled at twice the frame sa;npling rate. Field lines are also

-

1] , .
vertically displaced so as not to overlap.! The compatible sample lattice should use

.

- 1 525 lines/frame, 60 fields/second in some countries and 625 lines/frame, 50 fields/second in
others. o

¢
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the same vertical and temporal scanning rates, Fig. 2.3. The horizontal sampling

. rate js chosen by the designer, ' L a o
- nth frame
.-
. even field: t = nT oddﬁdd:t:nT-}-%T " even field: t = nT ¢ oddﬁdd:t:nT-i-%T'
continuous line scanning ~ . discrete line scanning
Fig. 2.3 Line Intérlaced TV Frame - .
- . \ " / . 7~
AS . v
yl[\ 2 ' yl\ )
! 3 X X X e e o ‘e_ o o
‘ - X X X , ’ -
3 X X X , v o o e o ‘e -
} ® x X x -
e b X X Xu »" 0 o o o o
" 1§ xva x  x et . ’
— - L 5 -
vs i - - >t bl i ‘4:
T’& X t¢ a horizontal line Y edsapel |
% ' Fig. 2.4 Projection views )
\

In the orthonormal reference system, the ‘basis vectors for this sampling lattice

. " are (1,0,0) (0,1,4) and (0,0, 1), Fig. 2.4. These vectors stand for the horizontal

. sampling rate, temporal even field 'samplingl rate, and ‘the verticzilly displaced odd

field, respectively. All pels are a linéar combination of these vectors. Since this

' . ‘ ) - ..
L .sampling lattice does not lend itsélf to easy mathematical tractability, it is-often
a K
( preferred to use a simpler lattice-with the orthonormal basis vectors (1,0,0) (0,1,0)
: 4 .- 10- \ -
) ¢ .0 _ - 10 .

4] K -

- - . -
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[y

‘hnd (0,0,_1) for‘mathematical processing-._ Two sélutions are Ssod to convert the
image sa.;npled in the line ir}terlaced fashion to an orthonormal s&mpling. The first
solufion consists of merging the g)dd field and the even field to g;t a full frame, This
will be-called ‘frame 'sampHng’ in this thesis, Fig. 2.5. In the second solution known

“as ‘field sampling’, Fig. 2.6, the odd fields and even fields are vertigally aliéned.

. 2 &
® o
y/\ » y/\ -
b X X X X
—x hamar 8 k X x
1 X x * = x x
o X ==X . c " X x X
»t b - D RN e
B A & t
X 18 a horizontal lint Y Frame sampling
¢ ° —

Fig. 2.5 Conversion to a Frame Sampling Lattice

T
[4 y R
X x %X X )
= X X X X
.t .
\ . 't * ’ t
x ts a horizontal line Field sampling
Fig. 2.6 Conversion to a Field Sampgigty Lattice ~

[

In both cases, digital processing of the images is much easier. At (}ispla)" time,
the reverse operation is performed to return to line interlace scanning. The price
to pay issthat, depending on the co&ing and processing done,’ the quality of the

reconstructed image may be affected. ;',
[ 4

-11 -
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Quantization

This section is gbout scalar quantization of the original image so that further
block quantization can be performed by digital processing. Quantlza.tlon 1§“the
conversion,of an analog signal into » discrete representation. Quantization is a lossy
operation since ihe analog signal ca{mot be converted back exactly from its discrete -
represeﬁtation.' Quantization thus introduces a distortion called quantization noise.
(However this quantization noise may be imperceptible to the viewer.) A, quantizer
is fully de;cribed by its input-output relationship. For any real inp.ut. valye z, <
T < Ty -the output valu'e_.%n is chosen éo that the quantization noise is minimized.
The set {:?:,,Q} can be'mappf‘ad into the set of integers for convenience.

>

If the step size z,,+1 ~ Zp,(n 2 1) is constant, the quantizer is called ﬁ{liform.

" Otherwise it is a non-uniform quantizer. Prior to quantization, the luminance signal

Lo .
goes through an exponential non linearity, 2 = yv, known as gamma correction in

order to compress its dynamic range. This is usually done by the camera itself.

“The resulting signal is then uniformly quantized using 64 (6 bits) or 256 (8 bits)

grey levels. The number of grey levels is a comproﬁiise between quality, storage and
traqnsr\nfssion requirements. This method is su‘l}jectively near optimum [10].

To summarize, Fig. 2.7, a digital image is realized by sampling the lumiq;pcé
signal and 'performiné both gamma correction and unifor&quantization. Note tilat

gamma correction may be done prior to sampling.

\
L%
. G ’ Lin Dz'gital
L'ght 3] Receptor fter -3 Sample [ pom:n > Quantie:nl;ion ima,ge
. ) Fig. 2.7 Digitalization of an Image

t
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From now on, if not otherwise stated, ‘image’ will actually mecan digital image

a - . ,
sampled with an orthonormal lattice and will be denoted by f(1,j,k), where [ is
a8 n M

-the intensity of the signal at the pel spatially located in (,5), (= 0,..., N = 1),
. L4 . . -
(5 =0,...,M —1), at time k.
“ ]

’ 2.1.2 Statistical Characterization of Digital Images

It is convenient to regard a real image as a sample of a stochastic process. For
» aé

LY

continuous images, the function f(z,y,t) is assumed to be a member of a continuous
. 4

| three-dimensional stochastic process with space variables (z,y) and {time variable
«_ ~ (t). For digital images, f(,7,k) is defined at discrete points-and has an integer

" value. o -0 B

A}

. The mean, variance,-autocovariance and autocorrelation are widely used char-.
€ ' a “
aqterizations of random processes and are defined below for discrete images.

v
.
]

. R
i\ E
'+ e Mean . - KA (
. o k) =E[fGaR] T (24
Variance _— | ’ . N
_ c R =B[UGLR)Y] - BUGLRDE T  (29)
- . Autocovariance . , )
Ky (i1, dy, ka3 i, 2, k2) = ELf (in, 1, ka) - S (72, 72, F)] '
% \ “ - =¥ [f(id1, k1)) - B[S (42,52, k2)] (2.6)
i _ Autocox:relation i . _ ‘
‘ | Ry(in, 41, ki3 i3, 02 k2) = B[S (in,n, k) - S(i2, 52, k)] (1)
. -7 7 An image is said to be stationary in the strict sense if all its moments ‘are
/o . unaffected ‘by shifts in the space and time origin. It is stationary in the wide sense
d ’ -18 - “
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(less stringent) if its mean is constant and its autocorrelation is dependent only on
the difference in the image'toordinates, (i1 —i2),(j1 —j2), (k1 — k2) and not on their

individual values.

- For convenience, images are often modeled as samples of a first order Markov

process. A random process is first order MarkoV if it is stationary and the correlation .

L 3

- ]
hetweeh points in the image frames is proportional tg the distance between them.
While this approximation is close enough to model certain natural scenes, it is not

well suited for'man made objects which exhibit patterns and high horizontal and’

3

vertical correlation. For example, a typical movie frame has a background that is out

of focus but its objects oy attors of interest dre in focus and usually exhibit details,

’ o

0

sharp edges, patterns etc... iny global mathematical model of images should be

used with great caution.

2

It is subjectively clear that some images convey more ‘information’ than others.
For example, a view of a chess board with the players in the middleof a gamme conveys

more information than a view of sand dunes in the Sahara. The latter one offers

a

., uniformity, few shades and few details while the former one contains many more

details to beanalyzed (for example who is.winning the game, who are the players

etc...). It would be helpful to be able to measure the amount of information, but as
o .

) usual, the hardest part is t6 define rigorously what ‘information’ is. A generalized

-measure of information is the ‘entropy H(S) defined as follows:
f SN B

° T
s

S
S)=—) P(s;)logy P(s;) . : (2.
HE)=- L PedlosaPe) e8|

° ’ ©

"whete S is a source with elements s; (i = 1,..., N) having the probability of oc-

I currence P(s;). This defines how many hits are necessary to code squrce elements

on the average, and thus gives a quantitative;i'afue of the information contained in
N )

. - the source. It should ﬁe‘ noted that this definition corresponds to the zero-order (

-

entropy. It applies if the source is independent and identically distributed (#¢d) and




3

is a sample of a stationary random process. Infformation cannot be coded below
entropy without introducing distortion. For a digital itnage source, s; stands for the \

integer grey scale value of the luminance f(i, j, k). ‘In general, images. are not tid
- \

° »

processes and thus strictly speaking zero order entropy is not apﬁropriate in this \
.- \

case. Higher order entropy definition should be used that takes into account the

o

pel statistics. However, for comparison purposes, this assumption may be made in

, o order to determine the minimum number of bits per pel required for transmitting

o

the digital image.

2.1.3 Transmission of Digital Images

3}

o 13 ’
Given a digital image, consisting of a sequence of frames of N x M pels linearly
\

quantized with. b bits, the problem is to transmit it as efficiently as possible with

the least perceptible distortion. Figure 2.8 shows a typical communication system.

=@
¥
¢
. aﬁ 2 : , Oa
‘ Source | 3| Channel y] Channel Source
,...) p—--—>
. Coder > Coder Channel Decoder Decoder
Original Image - 4 Reconstructed
Digital Link . Image

4 N

Fig. 2.8 Digital Image Communication System -

)
The source coder converts the digital image into a stream of bits. An eflicient

source coder will minimize the average number of bits per pels at its output. This
J

bit stream is transmitted over 5; digital link that is assumed to be error free At

*  .the receiver, the source decoder yields as reconstructed digital image ]’ which can

o

then be displayed on a digital monitor. If the source coder does not introduce any
distortion, f = ]', otherwise an error is introduced.

& \ - 15 -
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Q) There exist methods to estimate the impact of such’errors. Objective measures

2

give an exdct value of the eyror while subjective measures rely on the persomal

opinion of observers as to the quality of the reconstructed image or its degradation

L% *

with respect to the original. The most common objective measure is the normalized
< .mean square errot NMSE and its derivative, the normalized signal-to-noise ratio
. NSNR given by:
'J NMSE = E{!—_}Z;‘il Ef:l[f(is.;‘,k) - ](Z,.-hk)]z
T SN M KGR
1=14j=1 k=1[ 1y s ) LI

B &

-

(2.9)"
N L

NSNR = 10LOG1o (NMSE) : (2.10).

.
1

-

» -]

o
W
/ . -

: Although this measure is mathematically tractable, it does not always correlate
well vith subjective measures. Atte/mgts have been made to introduce objecitlve
" measures taking into account a model of the visual system [6] [11] [12]. 5

The most appropriate measure of image dlstortlon is the subjective measure that

¢

1
¢

N

hed

.
Cow Yy

N

mvolves the opxmon of the the viewer. The viewer is asked to express h1s opmion ‘

. WEI
regarding the quahty of the reconstructed image accordlng to a ‘di tortlon‘é&ale

L8
The CCIR has deﬁned a few standard tests oriented toward partigular needs ‘and

-set guidelines as to the manner these'tests should be condt_xcted (r¢commendations
450 and 500). The two most often used distortion scales are the fiv :grade quality

P

and impairfhent scales in Table 2.1.

' Impairment Scale Quality Scale,
5 Imperceptible R Excellent
\ 4 | Perceptible, but not annoying 4| Good
31\ Slightly annoying 3 Fair —
2 \ \A,nnoying . 2 Poor
1 Very annoying ° - 1 Bad
o Tabls 2.1 Subjective Distbrsion Scales ]

T ’ - 16 -
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2

L

- quality 6f a coder. T e

e b
E]

» The quality’ scale is used to judge the overall quality of an image without any

referente. The impairment scale is used to compare the quality of a processed (and

" presumably impaired) image with respect to the: origfnal, for example, to assess the

- \ 4

-

<

2.1.4 Survey of Some Coding Methods

®

Putting aside.PCM (pulse code modulasion) which is not really a compression
technique;, four main classes of coding techniques exist, namely, predictive coding,
L, ¥

> - . . 3 3 . i
transform coding, interpolative coding, and finally, miscellaneous techniques: A
o ©
brief description of each is given‘below; a more comprehensive review can be found
° [

PRs

-

in [13] [14] [15]. . ‘

9

Predictive coding methods are spatiotemporal methods.- The image is scanned-
and for each pel a value corresponding to a prediction error is transmitted. The
prediction error is formed by the difference between the ‘iﬁmch:ance of the p?l and lz

prediction signal based on the luminance of previously transmitted pels. This is in

. N . . .
contrast with PCM whgar\e the luminance value is sent for each pel. The error has a

- smaller range and variance than the luminance signal. Its quantized value may be

coded for transmission using fixed or variable length codewords. The prediction may

be one, two or three dimensional, with increasing.complexity and starage (buffer)

requirements. AdapiTuantization and/or predictors can be used to enhance

performances and adapf to the image being transmitted. Predictive coding can be

L3

implemented quite easily for real time use.

+ " In transform coding, the image is parsed into blocks and each block is mapped
\ 2

to a transform block by a linear transformation. Seyeral transforms have nice -

¥ ¢

0 &
properties that make them attractive for picture coding. They can decorrelate the' ‘

A .

block to-# certain extent and pack energy into fewer coefficients. The coefficients

¥

‘ - '17" LY



\ 3

arc*thus a more compact repyesentation of the image if adequately quantized and

N b o
. - s .
T =

coded. A more thorough review will be presented in the next section.

] _-

e ) In interpolative coding, a subset of pels are transmitted and the remaining

ones are interpolpted. For example szced slibsampling may be either horizontal,

spatial, temporal o) a combination of them. " In more complex schemes, the set

of transmitted ‘elements may depend on the image itself in an adaptive fashion.. s
6 ° R ° ,

Temporal subsampling with an algorithm that interpolate the skipped frame using ‘ .

motion compensation techniques show promise.

L

In hybxid coding‘, a combination®of the above coding technique is used to further
K ' -
reduce the bit rate. For example spatial DPCM.and temporal subsampling with -

motion compensation. 2

2.2 Transform Coding PR

©
3

S ) The transform coding process i3 indirect. A unitary linear transformation is

. performed on the image dataﬂt(‘)‘ produce a set of transform coefficients which are

Y then (}\iaﬁtized and coded for transmission. In pracical systems, the image is -

o

divided into smaller blocks and the transform is performed on the blocks rather

than on the whole image. The receiver decodes the block and performs the inverse o

e

~

. S \ i [ X . , 4]
C *  transformation.- Fig. 2.9 portrays a communication system based on transfrom ‘

.1(8- ]

o
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. negligible‘image distortion. Hence bandwidth reduction is accomplished.

-3

0 ﬂ Segmentation Block > Block Block
.. in blocks Transform Quantization Coding
Original ' -

mage

------------------------------

Digital link } ....... ]
! .
‘ Block I QG "
ot nyerse > » Image >
Decoding , Treasform | Reconstruction [« ,
— - . Reconatructed
Image
{ - -
. ¢ /
:T N Fig. 2.9 Image Communication by Transform Coding

-
o

The concept: of transform -coding for images emerged in the late sixties. The

Fourier transform was the first to be investigated. Its transform coefficients repre-

o
. 2

sent the spatial spectral distribution. The basic concept behind the Fourier trans-

d
form is that for natural images, most of the spectral energy is concentrated at low

-
Q

frequencies, and a small portion at the higher frequencies. These latter terms can

be coded with only a few number of code symbols or eontir'ely discarded with only

%
[}

" Other useful transforms are the Karhunen-Loeve, Walsh, Hadamard, Slant, Co-
( N . i)
sine and Sine transforms. The Karhunen-Loeve transform is optimal wheP some

assumptions regarding image statistics are made and is often used as a reference.
‘ : ; '

However, it is impractical due to the dependency on image content and computation

vequirements. The choice of a particular transform depends on the specificspeeds. If

processing speed is an important factor, the Hadamarg.fransform is adequate since

10 -
p

»
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it uses only integer arithmetic. However, other transforms may yield better quality

C :

images while achieving the same bit rate.
>~ . . .
" The %\)sine transform bas emerged as a favorite because:it theoretically ap-
- \ [

p‘roaches the bandwidth reduction of the Kar}Eunen-L'oeve transform while having

* '

©

fast computational algorithms.

3 * ’
¢ 1S

. k) )
2.2.1 The'Karhunen Loeve transform (KLT) . .

«

, Although the Karhunen-Loeve transform is seldom used in practice, it is a gbod
example to gain some insight to the theory behind transform coding. The material
contained in this subsection come§ largely from [16]. For transform coding, the key

4

to data compressioq js Signal rep{esgﬁ“tation, which concerns the representation of a
3 .* |

. o . 13 - . -
> given class (or classes) of signal in an efficient manner. In a general framework, if a

°

( discrete signal is comprised of N sampled values (a block), fhen it can be thought of
* <

as being a vector X in an N-dimensional space. For a more efficient representation

CaN

N of the signal, an orthogonal transform T, is applied to X yielding the vector Y.
The objective is to select a subset of M components of Y, where M is substantially

less than N..The remaining (N — M) components can be discarded without intro-

o

ducingoobjecti?nable‘error when the signal is reconstructed using the retained

’

compenents. This achieves data compression. The most often used error criterion

-]

. , . &
‘ stated, an orthogonal transform is a basis change (in particular, a rotation) for the

+ - for judging or comparing orthogonal fransforms is the mean square error. Simply

2

representation _of the vector éignal X in the N-dimensional space. It can be shown

that the optimal basis with respect to the mean square error criterion consists of

»
.

. the eigenvectors of the autocovariance matrix of X. In that basis, the autocovari-
ance matrix of Y is diagonal, meaning that the transform vector components ;/,- are

C ) *  uncorrelated. The M components that should be retained correspond simply to the

- 20 -
\/-\7('3 » ) A
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them all but use an optimal bit allogation as described in Segall [17].

The Karhunen-Loeve t\t:.nsform is\the transform corresponding to thisf\‘opt' hal’ s

at!

basis. Two objections can be raised to its use for image coding. The first ong is that
ilnages are not a stationary process. This implies that the autocovariance

the image blocks changes and must be constant]y updated. This'adds oh overhead

since the new matrix should be transmitted along with the coded blocks. If it is ' -

updated too often, the overhead offsets any gain. The second objeetion concerns
the adequacy of the mean square error criterion used to determine the optimality of .

the Karhunen-Loeve transform. Depending on the level and kind of impairments,

the mean square grror may not correlatg well with subjective error measures. o
. / :‘

s

Q
- -
.

4 )
2.2.2 , The Discrete Cosine Transform (DCT) W

The Discrete Cosine Transform/(DCT) is a deterministic tremsform in the sense

that its basis vectors are fixed. It has gained much interegt in recent years due to its
-

excellent performance regarding-compression, quality of the reconstructed images

and to a lesser exte‘nt, the availabilit&' of fast algorithms. The DCT is an outgrowth

of ’the Discrete Fourier Transform (DFT). Their definitions for a N x M x K block e
s given belgw. p . - v
DCT - :
1 ~1M-1K-~1
| Flusu=oma Y E z gcw)c )C(a) - f(mm, k) ’
\ 3 cos(x(2r;; 1)u Jeos(’ (2m+ l)u)co (1r(2k2;‘~’ l)w) (@1)

Inverse DCT
: N-1M-1K~-1
f(n’ m, k) = ‘/—\/—\/—' uz:o OZ:WZOC(’)C(J)C - F(u,v, w)
cos( 1(2;1-; l)n)cos(x(&;;:-ll)m)c s 1r(2u211-{i— l)’k)

-

(2.12)

with C(0) =1 and C(l) =2 for l # 0. ‘ - g
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DFT > ° i ]

i Coms —2miwk
21rum)ex( 21rwm)exp( LW ) (2.13)_\

Inverse DFT

+2niun ex + rzvm)exp(+2mwk) . (2.14)

with i = \/:T ‘

The problem wit® the DET is that the periodic signal consisting of the shiftifig
of the block in three dimensions is r-lot ‘continuous’ in general. The DFT .produces
non—negligible high freq )cy terms which produce the so called Gibbs phenc;menon
and causes visible block effects (the blo\ck boundaries are not smooth).

The idea behind the DCT is to build a ‘superblock’ by taking the symmetry of
the N x M x K block with respect to the planes z = —% y = —% t =,_% and
apply the DFT to that block of 2N x 2M X 2K pels. f K = 1 then only 2N x 2M
is necesrsary.\Thi;7 remo;'es‘the artificially high frequency content z;nd the blocking
c effect. Using the fact that luminance values are real in nature and the symmetrical
ex;ature of the ‘superblock’ yi.elds the formyla of the PC’;[I‘I:F the one of the DFT.
Fast algorithms exist to compute the NCT, these are either based on-the fast DFT
or are sue\mﬁc to the DCT’ [18] [19] [20] The formula given above corresponds to
the even DCT since its block sizes are even. 'If the superblock’ is constructed ‘by'
taking the symntetry with respect to the planes z =0 y = 0 and t= 0, the block
dimensions become 2N - 1, 2M -1 and 2K — 1 and the DCT is said to be odd. It
is seldom used because it does not lend itself to fast computational algorithjns.

3

In general for all transforms, energy compaction approaches the KLT asymp-

'

totically with increasing block size. However, the DCT is best in the sense that it

-performs very well for small block sizes.

- 22 © ' » .
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2.2.3 Quantization offthé ‘Transform Coefficients

The step following the mathematical transform is the quantization of the gener-
ally real valued transform coefficients. The purpose of this subsection is to formally

define a few terms and describe some often used block quantizers.

-~

Block quantization is the operation that congists in mapping each real valued

, é
transform coefficient to a code symbol belonging to a figite set, usually an integer.

Thetutput of a block quantizer is a block of code symbols that will be called the

quantized transform coefficients, Fig. 2.10. An N x M x K block quantizer consishs )

of NMK individual quantizers Qyyq, (u=0,.,N-1 v=0;..,.M—-1 w=

0, .ey K - 1). N
y ! ° ‘ ) 2
H
F(0,0,0) . Qo,0,0 F(0,0,0)
}\‘0\-1-0) ! Qo,1,0 » £(0,1,0) ’

-

F( N-1,M~1,K-1) | @N-1,M-1,K-1 . F(N~1,M-1,K-1)

Real Transform Coefficients buantizers Integer Transform Coeflicients

Fig. 2.10 Block Quantization of the Transform Coefficients

o

|
As previously seen for the quantization of the luminance signal, a quantizer.

is totally defined by its iqpqt-output relationship.' A block quantizer will be said

.to be spatially uniform tif Quuw is the same for all coefficients. In practice, this -

1

implies that only one quantizer is needed hence reducing the system complexity.

Uniform and threshold quantizers are most often used. The uqiform quantizer has

4

t Not to confuse with an individual uniform quafxtizer which has _arconstun?. step size

v ; ' - 29 -
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a uniform step size throughout its input range, Fig. 2.11. The threshold quantizer is

: -

. a uniform quantizer with a different input step size corresponding to a null output.

Other types of quantizers will just be called non-uniform.

w ) L
Q1 - Q=) . Qe
! i
% % - %
»
/
Uniform Quantizer ’ Threshold Quantizer Non Uniform Quantizer
. .

Fig. 2.11 Different Quantizers

The threshold quantizer is primarily usetl to select onfy those coefficients having
an amplitude in absolute value greater than a certaiﬁ threshold. A high value for
the threshold will augment the probability of ‘having zero valued outputs that are
ﬁgually coded efficiently for transmission. The threshold may be controlled in a
feedback loop by s;)me parameters dependgnt on image constagt or system state
[7]. The choice and de;ign of the quantizer depend upon the specific transform

‘ used, the coding strategy aﬂQmost important, subjective experiments. It should be

noted thaf the quantization process is a lossy operation and may introduce Yisible

-

distortion.
2 . ‘ ' \
2.2.4 Source Coding of the Quantized .Coefficients '
<
Source coding is the process of producing a bit stream from the block of qua,zr-J
tized coefficients. The design of a coder is intimately dependent on the quantization

scheme and the specific transform used. An efficient coder will min®mize the number

of bits required to code a block. Two ishsue,s affect the complexity of a transform

- 24 -
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coder, namely, block quantization and block (or vector) coding. For block quan-
tization, the de51gner has to choosg the type of quantizer t¢’ use, such as MMSE,

uniform, threshold quantlzer, and the quantlzer distribution for thelcoefﬂcxents‘
Block coding is often simplified to sca,lar coding of each coefﬁclent using fixed or

variable length codeWords. Some examples are given below.

-]

Zonal Coding

12 .
In this method, MMSE ! (or Max[21]) quantizers are used. The outputs of the

quantizers are coded with fixed length codewords, Let by, be the number of bits )

allocated to the coefficient F(u,v,w), and b the number of bits used to code the -

luminance value of a pel f(7,7,k). The compressmn ratio achieved is the given by

z”*‘ SMIrE by . 5
NMKb ‘ (2.15)

The choice of the I;uornber of bits for the MMSE quantizers is left to the designer'and

C=

is a tradeoff between visual quality (more bits) and compression (less bits). However

o
e

the total number of bits in a block is fixed by the channel bandwidth. The problem

is thus 4o optimally allocate bits-to each coefficient. Exampl;s of algorithms are

presented in [2], [22], [23] and [17]. An example with a 16 x 16 x 1 block is given
below in Fig. 2.2. Zero bit mear:s that the coefficient is discarded.

this method is simple and yields a constant bit rate. A major 'diéadvzﬁ}tage is
the fact that the bit allocation is fixed. The MMSE quantizers are designed with

statistics¥from a set of irmuges and are optimum in the mean square error sense for

7 (that set of images. The objection is that if an image differs tooumuch from the

degign set, its quality may degrade quickly. In particular, if a set of coefficients is
allocated no bits, but is important for the given block, the distortion for that block
will be high and visible and may attract the attention of the viewer. Also, a% seen

before, the mean square error is"not a good distortion measure. ra

t Minimum Mean Square, Error
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&

rd

—_ %
8 8 8 7 7.7 55 4 4 4 4 4 4 4 4 —_
88 7 655 333 3322222
8 7.6.4 4 4 3 38 % 2 2 232 2 2 2
T3 76 43222211110000 .
» |75 4222 21110000T00 7
. 75 4 2 2 2 11000000 O0 0]
53 38 2211000000000
58321 1000000000O0| ,
432 1100000QO0O0O0GO0TO0O0O0 .
43 2.110000O000O00O0O0TO00
\ - |43 2 1000000O0CO0O0O0T0O00 ,
y 432 1000000000000 .
' 4722 000 0000000 0 00
42 200000000000 O00
4220000000000 00
42 200000000000 O0O0

Table 2.2 Typical bit assignment for transform zonal coding in
16 x 16 pel blocks at a rate of 1.5 bits per pel.(From

[2];nage 675) , .

e
e

Threshold Sampling Methods

'

These methods are meant to provide some adaptivity in selecting the coefficients

to be transmitted. Only ‘relevant’ coefficients containing a significant a.mouat of en-

o

ergy are chosen for transmission. They can be selected by using threshold quantizers

where only non-zero valued coefficients are transmitted along with their location.
\ ' :

A particular case consists of transmitting only L highest valued coefficients.

° ¢

4 . .
The Method qf?Chen and Pratt :

&

The following is the method’used by Chen and Pratt [7] in their ‘scene adaptive

coder’. The quantization is performed as follows. First, the coefficients with ampli-

ry

- 4 o2 N
tude greater than a threshold value ¢ °are scaled by a scaling parameter s. Second,
9 - -
the’ quantization is performed by doing“a simple floating point to intéger roundoff

y

- 26 -
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~ conversion of the scaled coefficients. The parameters ¢ and s depend upon the sta-

O

: \
tus of an output bufferand are dsed to control the ‘coarseness’ of the quantization.
' ’

" A good image qual‘ltyiresulting from a fine quantization tends to yield more output
bits hence ﬁll‘ing up the buffer, and vice versa. This regulates the output bit rate
y : going to the channel coder. The coder uses a cpmbingtion of Huffman coding and
, run length coding. The coeffi'cient: are scanned sequentially following a zigzag pat-
* tern, Fig.:2.12. Only tile coeflicient greater than the threshold ¢ are quantized. The
'putput i; coded with a Huffman coder. The coefficients less than ¢, the zero valued
| ones, aré coded with a-run length codeér followed by a Huffman coder. Once ; Zero is
\ encountered in the scanning process, the numl;er of succeedi;1g zeros is counted u‘p
to the occurrence of the next non zero value. The length of the sequence of zeros is
‘;hen coded using a separate Huffman cod\er. Both amplitude and run length coder
o are then integrated into a unique coder. A similar coding method is used in this
ﬁ , ) “thesis (chapter® 5;. | ‘ .
’ ' !d . : horixontal

vertical

| ) Fig. 2.12 Zigzag scanning pattern for the transform
s " ’ coefficients. The upper left corner represents F(0,0)
and is the starting point.

S - “ '\/f

0 - The use of a variable length cbdgword coder and adaptive processing makes

: /

» - .

X - -27-
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automatic and dynamical bit allocation possible to better usé the channel bandwidth

available. Saghri and Tesher (8] api)lied the concept of chain coding.to code the

-

clusters of zero valued coefficignts.
B }

2.3 The Human Visual Systerge(H\;S) N T

- irA good knowledge of the psychovisual properties of the humaré\visnua] system
is helpful to design efficient coders. Specifically, knowing what kind of distortion is
introduced by a coder and its subjective effects on the viewer permit one to define
thresholds for perception. If the distortion magnitude is below the threshold, it is
not visible or bothersome.” When its magnisude is above th;e threshold the distortion
becomes visible or annoying. Thresholds are not absolute values but depend on the

specific applications and subjective test criteria. °

-

2.3.1 General Description

This subsection is meant to pravide a very simplified desc:aion of the HVS.

A more thorough review can be found in [24]. Since vision is a complex’process

o

that involves both physical interaction of the visual sensors and thought, it is not. .

S

always easy to point out the boundaries between matter and abstraction. Flg 2.13

v
¢ e

attempts to present a representatic;n‘of the HVS that can be loosely broken into
the _opt{cal system, the retina which performs low‘ level processing and theé)rain
wl;iph performs high level processing. The separations here are not really physical
but rather conceptual. lj‘or examplé, the eye compr“igg;es both the optical system ;nd

the retina. The retina is separated from the brain by the optic nerve which can also

o

- 28 - L
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be considered as part of the brain. .

c
s .
A
.
‘ﬁ/ ) ,
- R
'

Brain, Visual
High Level Processing Sensation

Y

Optical Retina,
R Light —> System | X Low Level Processing

1 ’3‘:)
Q‘.

~ .

Fig. 2.13 The Human Visual System

The optical system is responsible for focusing light on the retina and controlling

& the amount of light projected on the retina. “

The retina comprises a layer of cells called photoreceptors and a few layers
between the photoreceptors and the optical nerve responsible for low leve] processing

4
g
of the received image. The photoreceptors convert the-light enecrgy into electrical
°

signals " There exist two kinds of photoreceptors; the reds and the cones. The

rods (about 130 million on the retina) are sensitive to the overall shape of objects

o
[

and low level of light. They are responsible fgr ‘night vision’"called scotopic vision.

o

The cones are responsible for photopic vision. There are about”6.5 million cones
mostly concentrated in a small region in the.focusing areét calle(.luthe fovea. They
are sensitive to color and details and account for most of the day vision. There are
around 120 cones per degree in the fovea resulting in a visual resolution better than
Jm% of a degl:ee. The: low level processing is responsible for ‘mu&tiplexihg’ the huge

amount: of visual information received for fcrénsmiossion to the brain via the optic

. nerve. For examiple, local operators recognize edges and certain shapes.
¥
Y

The brain is responsible for the sensati§n of visual perception. It is.not yet well

@ _understood how it works. ' ) ,

o . # - 29 - -
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When analyzing a scene, the eyes scan quickly the image and fixes parts of

. P . . . . L
the image on the fovea in a rapid succession of fizations. The scanning pat%ern.

is controlled by the brain with a complex feedback mechanism dependent on the

W

image content, the memory of the viewer etc.

2.3.2 Properties of the Human Visual System

Listed here are some general properties of the human visual system that are

relevant to imagzc%g. Since 1ost are experimental results, it is probably helpful

to describe both the ekperimental setting and the outcome.

Contrast Sensitivity

Depénding on the brightness of the background, variation in brightness are
perceived differently. The experiment consists of displaying a uniform backgrdund
with luminance L and a circle with luminance L + AL and asking the viewer to
adjust 0AL 50 that‘ t}he circle be at the threshold of perceptibility, F}g. 2.14. It was
found that the ratio QLL was constant i:1 a large range, Fig. 2.14. This suggests
that the dynamic range of the inpu;cilight is compressed by a logarithmic function.

The contrast sensitivity is defined as KLL'

=
'O
> |
=
) r
4
— ol

' « INTENSTY, L

Fig. 2.14 Contrast. Sensitivity , Experiment and Results




Edge Enhancement & .

.

The perception of edgesand details is enhanced: The Mach band phenomenon,is
- - ¢

a.good example. In an image consisting of adjacent rectangular bands of different
[ -

gray levels, Fig 2.15, the perceived gray level near the edges is different than in

.

the middle of the rectangles. Edge efﬁiancement may be viewed as equivalent to

°

highpass filtering in the spatial domain, _~ - ’
. D) ;
. t ’
§ ' .

1

& Q .
o s
. . . 1 ’

Frequency ‘Response \ . !

. /.

A sinusoidal grating of amplitude AL and horizontal frequency [ is added to, -

a uniform background of luminande L. The viewer is asked to adjust AL at the

threshold of perceptibility. It wag found that ﬁ( f) had the characteristics of a

lowpass filter, Fig 2.16. Mor&)q} r, replacing the sine grating by a square grating,

thus adding harmonics, did not ha\",e significant effects. In the temporal domain,

° ° . N
* < “ ~
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the human visual system is a lowpass filter with a cutbff frequency around 70H z.

° £
£
; o
%
- $
L4 g -
- ¢
x
t
03 i 3 (] 30
SPATIAL FREQUENCY lcych/depree)
Fig. 1. Spatial freq y response i of human wisual system,
. Fig. 2.16 Response to sine gratings (From Hall and Hall[1] )
; . \ - \
' ” "
- > o k\
W
(..J

Masking Properties

Ansimage or région of an image will be called active if it is highly dé?;aile:i,
with many edges, patterns etc... &ind/or( changes rapidly in time. For exz;mple, in
a scene of a tree with many branches and lea;es in a field on a windy day, the
region of the tree may be con.sidered as active. In active regions, the ;'isibility of
impairments is drastically reduced. This is a manifestation of masking, which in
psychophysics is defined as) the reduction in visibility of a stimulus by spatial or
i

temporal non-uniformity in its surroundings [11].

-~ s

Conclusion ) v : t

a

These results combined with other experiments have led to models of the human .
vis}ml system. A simple one is presented in Fig.2.17 and uses the following obser-
vations. The contrast sensitivity experiment implies a logarithmic dynamic range
compression. :I‘he edge awareness-effect implies a spatial higli;:ais filtering. Thesine

- 32 = - Wy,
. ; T




grating experi%glt implies a lowpass filtering. Also; ant upper limit on the visual
resolution is due'to the discrete nature of the photoreceptors. Lukas and Budrikis

[11] have developed a model of the HVS that i$ more accurate to describe proper- * .
, .

. ties of the threshold Yyision. It is aiméd.at facilitating the estimation of impairment
for black-and-white television pictures. This model is acceptabke for ‘monochrome
8 .

vision’. For color vision, a simijlar multichannel model exists. More sophisticated .

models include banks of parallel bandpass filters acting on non-overlapping fre-

quency ranges.

rd °

v

LigL Log non- Spatial Low- Spatial High- Temporal Low- Masking 4 _Signal to
linearity Pass Filter Pass Filter Pass Filter Property | the Brain

L

Fig. 2.17 A Simple Model for Monochrome Vision (Ad¥pted
from [2]) -

‘u -
.

2.3.3 The Human Visual System and the DCT

L A’s’previously seen, the DCT allows céfding to'be made in a frequency s;ie\ce.‘
The transform coeﬂicieqfs in a block thus represent the amplitu('le of freq.t‘xency
components father the lhminance amplitudes. By taking advantage of the fact that

/ the frequency response of the HVS is not flat, the transform.coeflicients are not
‘percueiv‘;d equally and need not be quantized using the same quantizer, In other
words, the tolaéfar}cé to the quantization error is not uniform. The experiments
conducted with sine gratings give some hints in that higher frequency coefﬁcieﬁts
canbe quantized more coarsely (or less finely) tohan lower frequency terms, However,

no meaningful quantitative information as to the specific quantizers to use can be

extracted from these experiments.

. , o
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N o
. For the simplivity of its design, the first DCT coders used uniform block quan-

( tizers. Thegtep size was usually dictated by the most sensitive coefficients and was

ﬁsually too fine for the majority. This yields an unnecessarily high bit rate since

4 2

imperéeptib‘le information is transmitted. Several researchers have tried to use the

proper.ties\af)the HVS to design better coders basing their work on specific models.
Co. .

Ericsson[4] working with 8 x 8 x 1 blocks introduced a weighting functionderived

from detection thresholds for circular gratings and taking into account blocking ef-
> s
fects. The transform coefficients are multiplied by their respective weights prior to.

quantization. This approach was inspired from the work of Mannos and Sakrison

[6]. Lohscheller [3] measured the visibility threshold for each transform cgeﬁicien_t
.4 '

against a uniform background for still pictures, Fig 2.18. The inverse of the visi-

bility threshold was used as a weighting function. This approach, like Mannos and

Sakrison’s, does not take into account the combined effect when all the coefficients

are quantizedy

dynomc rengs
kmn 100
Kmae ¢ 800
bon * 1,00
T ¢ 8,00
Cpmn 2-182
S W) 08

Fig 7. Expected values of the vimbdity threshold v, for the spectral Fig 8 Image onented vuiblluylnea.st.nul.('a
coeflicients of 8 DCT (block sue 8 x B pels) o

o

Fig. 2.18 Results of Lohscheller [3] _

8

Griswold [5] defined a cosine energy functjon from a model of the HVS and used
it to generate a bit allocation map for the coefficients. Bit allocation implicitly
ch%racteribzes a guantizer as in zonal coding. Nill [25] incorporated a model of

the HVS in a refined version of the mean square error quality assessment that

-8 -
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helped him find a weighting function. for the transform coefficients, The trend so .
far has been to use weighting functions‘ derived from specific models of the HVS, or
° .more, aécurately, general models obtained from specific psychovigual experiments.
ber

.n 9

The originality of the work presented. in thid thesis is to take the reverse ap-

Lohscheller achieved-the most by using thresholds specific to the

¥

.

proach. - Although keep;hg in mind the properties of tlte HVS, no specific model
is assumed. ’fhe weighting distribution is determined empirically through exten-
sive experiments and viewing sessions on a set of images. This takes into account
the combined effect of all cogﬂ‘icients. Once a satisfactory distribution is \reachf\d,
a parametrical function is sought that closely approximates the distribution. The
function can be viewed as a specific model of the visual perceptibility of the HVS
for the DCT,, Mc;reover, it p-errnits a certain flexibility in the specification of the

block quantizer that may be usefyl in adaptive yuantization.

P4
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Chapter 3 ~Design of Quantizers for the DCT
. . . |

‘ The goal of this chapter is to study Some quantization schemes for the DCT
coefficients that are subjectivély adapted.to the human visual system. An empirical
approach is taken. Through subjective testing experimentﬂs'with DCT coded images,
a modei"of the HVS’s sensitiviti’ to the kind of‘distortion introduced by the DCT is
sought. The term ‘model’ being quite ambitious, the study focusgs rather on ‘E}nding o
parametrical functions to generate block quantizers appropriate to DCT coding. ,

" This is carried out in three steps: The first step consists of preliminary experi-
ments on still pictures with N x N two-dimensional DC"I‘. Uniforn; quantizers are
used. The quantizer distribution is zonal: the block ,is divided into zones in which
coefficients use quantizers with the same step size. Z:>nes and step sfzeé are adjusted
to produce images with distort_ion at the threshold of pircestibility for experienced

viewers.

»

The second step consists of approximating the previously found zoral aistri-
bution with a parametrical function. The quar;tizer step size for a coeflicient is a
function of its position within tile block and a number of parameters. The function
and the pa.ramet:ars should allow an easy specification of a block quantizer and per-
mit a range of distortions around the threshold of perceptibilify to be obtained by

varying the parameters. Ultimately the number of parameterts should be reduced

.to one.

.
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The third step consists in extending the experiments to time varying images and

evaluating the performance of the quantization scheme through formal subject‘ivo

tests. | P

-~

Based on the results obtained, non-uniform quantizers are investigated. The

study is then extended to N x N x K (three-dimensional) DCT.

3.1 - Transform Coding System
> ! «

3

3.1.1 Block Quantizer

"As seen in Sect. 2.2.3, a block quantizer is specified by assigning a particular
quantizer Qy y 4 to each 'of 'thz N X M x K coefficients of the block. In this study,
a particular type of non-uniform quantizer is { sed which is described by a set of sixﬁ
parameters: Q y o (Minimumy 4 v, mazimum,;,,,,w, stariing stepy v w, |

thresholdy y v, 8lopey yw, saturationyy ). These parameters are illustrated in .

4
.

Fig.8.1
The parameters are used to ‘customize’ the quantizer for a particular coefficient

and are defined as follows:

1 minimumy )y is the minimum input value <o
-

k]

(1)

3  Su,v,w = Su,v,w is the quantization just after the threshold.

4 thresholdy gy, : for an in value z guch that —thresholdy vy < = < .
thresholdy y v, the outpuf is zero '

LY

5,6 slopey v, and tiony y . are defined)by: s
. . 5 .
S,(,?v—ful,) = min(slopel v w, 3aturatwn,,,,,’w)S,(,,13,w where S,(:.,Tul,) is the (n+ 1)"‘
quantization step. ' .
. v A
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Minimum and maximum depend on the measured dynamic range otj the coeffi-
cient according to statistics generted with a set of test images. The other parame-
ters are assigned by the designer and are used to control'the ‘shape’ of the quantizer.

Uniform quantizers will be used mostly, in which case thrésholdy y o = ﬁﬁ’ﬂ and

slopey yw = 1.

vulput
6 9.1q
Yo . ‘
- . ¥
5 e— 7.12
4+ 5.26
¢ v
. 3« 3.67
9 . [3
A 2+—2.35
B
1e1.25 . ’ °
. | PR
thr | SO alpS‘sip? SY) alp® S gt 500 ggp 5(0 N

0« 0.00 T
0.76 1.75 2,95 4.39 6.12 .8.12 10.12 nput

Fig. 3.1/An example of quantizer, threshold =-0.75, s() = 1, .
slope = 1.2, saturation = 2.0 ) .

\ " (symmetrical negative side) ) /
» .y ' > s

- o‘b‘ '
The representativg levels of the quantizer are real values %, defined l:(y
{ . . {

s ' zn+zn;t1 n 2 1 -
. iu =40 n=20
Tn-1tzp n< -1

The output of the quantizer.is given by Q(z) = &,ifz € iy where

) [zmzn+l] n>1 -
i={le o) n=0 |
® [zn-—l’ 311] n< -1
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To make the coding processfeasier, these real values are mapped into tlio set of

integers, Z, — y, = n. From now on, a quantized coefficient will actually refer to

the irteger value.

v

The definition of the DCT' given earlier has been slightly modified so that the

dynamic rarige of the.transform coefficients be of the same order of magnitude as the

¢

dynamic range of the luminance value of the pels. &‘or example using this definition,

r
the value of the coefficient F(0,0,0) is the dctual average lummance value of the

pels in the block. This only represénts a scaling of the,,transform coctlicients.

DCT

o =22 LS5 o e sam i
Flu,v,w) = — — =, C v)C{w) « f(n,m, k
g N.M K n=0 m=0 k=0
1 y3 2k
. - “co.s(lw(m;;“ ‘)u) os(’r( r;; 1)v)cos( ul 2;1)10) {s.1)
fnverse DCT -
) *N-1M-1K-1 . -
fln,m, k) = Z Z Z 1)C(5)C (k) - F(u,v, w): '
g =0 v=0 w=0 . ‘ ’
E}v icos(’f(m;; l)n)cos("[(%z;!l)m)cos(w(z‘;; l)k) (8.2)

with C(0) =1 and C(l) = /2 for | # 0.

" The evaluation of a block quantizer is carried out in three steps: The first

step involves the specification of the qﬁa'ntizer for each coefficient in terms of the
relevant parameters. The second step consists of performing the DCT, quantization
and inverse DCT for a set of test images. The final step consists of evaluating the

processed image based on a number of criteria. Subjective evaluation is the principal
\ ~ - : )
} /

criterion used. | ¢

3.1.2 Frame or Field Proces;ing and Block Size Considerations

<

0" ’f.\

For the DCT coding of line interlaced imag¥s, two major decisions must be taken. )

L

The first one concerns the block size to be used. The second one is whether tb use
field or frame processing, or in other words convert the line interlaced sampling

L4

“'91?"
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lattice to a frame sampling lattice or a field sampling lattice. The terms mtrajramc

C e processing will apply to bidimensional processing (N x M x1) using a frame sampling

lattice while 1'nterfrdmehprocessing will apply to three-dimensional prgcessing. The
terms,int.raﬁ‘cld and interﬁeld have the sé‘me meaning when using a field sampling
lattice. The inconvenience with frame processing is that the line interlace prqdqceé
images with jagged edges where there is motion due to the suﬁérposition of ;:he
[ y -
two displaced fields. This increases the energy-contained in vertica,'ll‘\'high frequency
coeficients, thus reducing the energy compaction. THe inconvenience with field
\

prdcessing is thzt;lhe correlation with vertically adjacent pels is reduced since the

em is actually doubled. This also makes energy compaction less

-

distance between
J effective. ’ ®
o In this study, frame processing was chosen for the following reasons. When

there is little or no motion and not too many edges and details, the effects of the

. k o
( .. line tnterlace are not significant. Moreover, even though the high freqiency content .

-

of the frame is increased when there is motion; there is no need to accurately:

reproduce t}xe jagged edges. Their perceptibility is reduced since they are in a -

région of temporal activity.
\

Larger blotk sizes better exploit the energy compaction property of the DCT.

" L
: As mentiored earlier, due %the non-stationary nature of images, adaptive sys--

tems outperi'orm non-adaptive 'one\s. Adaptivity is better acﬁieved with smaller

R ~ block sizes. Smaller block sizes also’ allow faster computatlon which 1is extremely
important for real time processmg A spatial bfock 51ze of 16 x 16 was chosen since

. it .offers a good compromise and is used ex,ter.lswely by other researchers. For a

o {three—dimen‘sional DCT; a tempe}'al dimension of four was ghoien to yield blocglg‘

s ’ of 16 x 16 x 4. This small value also reduces memory requirements for computer

- . 1 4 : ¢
( simulation and processing ti an acceptable level. ‘
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_ used and displayed in a palindromic fashion.

4

3.2 Experimentgil Setting !

N

8.2.1 Test Images -

A set of six images was used for £he experiments, namely, EIA, QUILT, OSCAR,

. TOYS, YVON . and ALBERT. The first frame of these images cén be found in Ap-

pendix A. EIA is a test pattern that is used in the TV industry. It is meant to

present critical areas whete distortion, if any, is easy to detect, There is trans-

» lational and rotational motion. QUILT presents diverse and strong patterns with

much h{gh frequency content. It is a difficult image to code with transform meth-
“‘ods. There is horizontal motion. OSCAR is a furry puppet o‘n a turntt;ble in which
rotational motion is present. TOYS comprises a cube with letters on it, a few toys
on a piece of wood. ALBER’I; and YVON are head and sh9ulder scenes typical ;:)f
teleconferencing. . |
. These iméges are meant to present txpic%characterigtics of television and tele-
conferencing scenes where the distortion introEluced by the quantization of the DCT
coefficients can be studied. For the experiments on still images, only the first frame

was used. For experiments on time varying images, a sequence of 12 frames was

. N

The HDVS system of the BNR/INRS laboratory was used. The HDVS permits -

real time recording and reproduction of digital high resolution color imag_es‘ In the
display mede, up to eight image sequences stored on disks are accessible and one

may switch to any sequeﬂce instantly. Any frame or field can be displayed and

8

values of individual pels are available. Due to hardware limitations, only a window
of 256 x 212 pels/frame can be displayed in real time, Fig 3.2. In monochrome

mode, the images are quantized with eight bits (256 grey levels).
o ,

- - R

,
.
| /
N
. . .
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Fig. 3.2 View of the monitor and the display window.
. Here PH = 0.35m
3.2.2 Some Statistics on the Real Transform Coefficients
-~

The minimum , maximum, average and standard deviations. for the real coefﬁ-
cients (before quantization) were compuned for a 16 x 16 x 1 block using the test
images mentioned earlier and other ones as well. Results are given in Appendix D.
The standard deviation gives an idea (c)f the energy contdined in a coefficient. The
standard deviatihn table clearly shows the energyj compaction property of the DCT.

The probability density function of the coefficients is also of interest. Except for
F(G,0,0), the pr.oba.bility density function resembles a decaying’ exponential.“An
example is given in Fig. 3.3. ‘Depending on the value of threshold for the particular

coefficient, a fair percentage of the quantized values can hayve the value zero.

o
»
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Fig. 3.3 Probability density function of F(2, 2,0)./ The

' sequence used to generate it is LONG-SEQUENCE
(described in appéndix A) processed-with a -
16 x 16 x 1 DCT =

e

3.3 Thresholds of Perception for Still Images (Zi)-f)CT)

]

Experimenting with still images has two advantages. First, it is easier to study
the distortion in the coded image. Secondly, there are no temporal masking effects.

o
As a starting point for this study, uniform quantizers will be used. In that case,

only one parameter is required to characterize a quantizer, namely, its step size

Su,v,w- . /

Assume it is possible to assess the effect of each individual coefficient on the

/
-~

reconstructed image. The valte of the quantization step size Sty y 4 such that if
]
Su,v,w > Sty v w, distortion becomes visible will be said to be at the threshold of

perception for the coefficient F(u,v,w). The block quantizer with such quantization

-

steps is what is sought in this chapter and defines an upper limit on the values of

the quantization steps for the transform coefficients. ’
“w g ¢ [N

Needless to say,‘ it is virtually impossible to find such a block quantizér since _

i T - 48- . °



rﬂh 0 1 2 3 4 5 6 7 8 ] 10 11 12 13 14 15
[} 01 02 01 61 01 01 01 O) 0) 01 01 01 O01 01 01 01
o 1 ¢1 01 ©1 01 03 01 -01 01 01 01 0©01 01 O£1 01 01 O1
2 ot 01 01 01 ¢1 01 01 O! 01 0.@ 01 0! O O@! O0a O1

i 3 o1 01 o01! Ot 01 01 01 O1 0y O1 O O O1 01 01 O1I
4 rOl 01 01 0% 01 01 01 01 01 01 01 01 O1 ©1 01501

] 01 01 01 01 031 01 01 01 01 01 01 021 O 01 O0a O1

] o1 0 01 01 o041 01 01 01 01 O1 01 01 01 01 01 O

7 or 01 0. 0‘1 01 01 o1 01 01 01 01 01 01 0! O1 O.1

8 ¢1 01 o1 01 O O] 01 O 0!l O 01 01! O1 01 01 01
14 o1 01 o0! 01 0! 01 ©01! Ot ©0! O 01 01 OQ1 01 o011 O1
10 or 01 01! 01 ©O01 01 01 ©01 01 01 01 01 O} O 01 O.1
1n 01 01 01 01 01 O0:r 01 01 01 01 Ol 01 O1 01 01 O1
12 01 01 01 0! 01 01 01 01 01 01«01 01 01 01 01 O1
13 or o1 01 031 01 01 01 01 0} 03 01 01 ©O1 01 O1 O1I
14 oy 0l ©1 01 01 01 Ot O} 01 01 01 01 O1 O1 91 01
15 0] 01 01 01 01 Ot 01 01 01 01 01 0,1 ©O01 01 01 01

!

Table 3.1 Example 1l of the step size distributionl o} a block

quantizer. Spatially uniform step size of 0.1 .

it is difficult (if not impossible) to assess the perceptibility of a single coefficient

and the threshold will depend on the viewing distance, the viewer and the image

itself. Therefore, a conservative method to evaluate the outcome of the experiments

is used. The viewing distance is less than the one used for subjective tests later

[y

o

on. A distortion will be considered visible if it is visible on any of the test images./

Typical distortions introduced by quantizing the transform cfeiﬁcients are:

- Block effects: The effect of segmenting the image into smailer blocks is visi-

E
ble. This is usually due to a coarse quantization of low frequency coefficients.

Artifacts: Intr?)duptién or modification of patterns and in general small
changes in areas with details.

Loss of resolution: Generally introduced by discarding high frequency cQ,ef—

. ficients.

oise,

o

%

ed by the additive effoct of quantizing the coefficients. It is
. For images already noisy, it may be not distinguishable from

’
~

The types of distortion are listed-’u’l decreasing order of annoyance level. In

general, block effects are quite artnoying while noise may be more easily tolerated.

°
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Exp eriments

LY

First, the maximum step size for a spatially uniform block quantizer was de-

termined. This value is dictated by the low frequency coefficients that need to be
finely quantized to avo%ock effects and artifacts. Secondly, quantizing all the

coefficients with the above mentioned step size, a zone (or a set) of coeflicients is
. 14

more coarsely quantized. The maximum step size introducing distortion is sought.
)
This operation is repeated until the zones cover the whole block. Thirdly, the co-

efficients afe quantized with the step size found for the zone they belong to. If

distortion becomes visible, some ‘tuning’ is applied. Thelzones are first chosen to

be large and as experience and ‘feeling’ is gained, they arc tnade smaller.

This constitutes a lengthy procedure that comprises over 150 experiments.T

"Some intermediate results are given in Table 3.1, 3.2 and 3.3.

1 2 3 4 5 L] 7 8 9 10 11 12 13 14 18

<
oaqom;un—-o.ﬂ

P

[+

15 0 17

01

04
04
04
04
04
04
0%
04
o4
04
04 04
04 04 04 04 04 04 04 04
04 04 04 04 04 %l D¢ D4
D4 04 04 04 04 04 04 04 04K 04 O0€ 06 04 04 04

bl

Table 3.2

! a

o

Example 2 of the step size distribution of a block
quantizer.-Intermediate experiment.

AR

-]

t An experiment: assessing and analyzing the effect of a block quantizer on the test images.

v
)
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Table 3.3 Examplé 3 of the step size distribution of a block
quantizer. One of the final experimerits.

a

The first distril;ution in Table. 3.i corresponds to the starting point, spatially
ur;iform-and having a quantization step of 0.1. The second in Table. 3.2 corresponds
toa tent&ti\'rq zonal distribution. The third one in Table. 3.3 is the last result after
some ‘turiing’. The symmetry was kept on purpose for the sake of simplicity. Thec
last distribution does not represent the ultimate threshold distribution. Ih fact, it
is a conservative distribution that will serve as a reference for future experimer'1ts.

. An increase in the quantization step of a few low frequency coefficients will
generally be-fnuch more perceptible than for higher.fi‘equencies. In general for high
frequency coefficients (u,v,> 7), the effect is quite hard to pinpoint and, for a
non-experienced viewer is not perceptible at a first glance. The crescent.shap® is
due to the fact that the eye is more sensitive to horiz:ntal and vertoical patterns
than diagonal ones. While experimenting, the author ha:s gained a k.nowledge of the

possﬂ;l; distortions on the test images and his judggment has sometimes become

overcritical. For the last experiments, a small levsl of distortion, assumed gener-

N A
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ally imperceptible to a non-experienced viewer, was tolerated. Irequent informal

viewing sessions with other viewers were held. ‘ o

The zonal approach to finding a Q-step distribution at the threshold of percep-
tibility presents several drawbacks. The distribution is discontinuous at the zone
bounda;'ies. The zones have to be selected jn a more or less arbitrary fashioh. The
quantization step assignment is not very precise and is very tedious. The use of

a parametrical function to assign values to the quantization steps eliminates these

problems. In that case, a Q-step is given by Sy 4 = s(u,v,‘w,pl,pz,...,p,,) and
the distribution is totally characterized by the paran‘leters Pyt = 1,..,n Sucha
function should satisfy the following requirements:

- Approach the empirical zonal distribution as closely as possible for a certain
set of the parameters. ' '

- The parameters should allow an éasy control over the distribution.

-

The idea behind these requirements are twofold: ease in the specification and
adaptivity considerations. Varying the parameters should have a direct impact
\ -
on the entropy-~of the coefficients (and thus the compression ratio) and the image

quality. It should be possible to select the parameters to get the best quality for a

.

given entropy.

Parametrical Function

4

‘ Different types of functions, varying in complexity, were investigated. The major

goal is not to fit perfectly the zonal distribution but rather to+find a function that

)

fits reasonably well the low and medium coefficients, and that allows one to alter

the shape of the distribution in an easily controllable way. The following function

satisfied these requirements:

] ) \
Su 0 =.a+by(u+1)1by(v+ 1) for v=0,...,15,v =0,..,15.  (3.3)

-

’
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In order to keep a symmetrical distribution, by = b6y = p,c; = c¢g = ¢, This finally

gives

o Syppo=a+ b (u+ 1)°(v+1)° for u=0,...,15,v=0,...,15. 3.4)
°

Depending on the values of a, b and ¢, a reasonable.fit' of the z;nal distribution is

achieved in the low and medium frequencies. Most important, the crescent shape

is preserved. The exponent ¢ controls the shape in the low and medium range. A

one-dimensional example is given below to show what can be achieved by adjusting

the parameters. Let S, = a + b(u + 1)°. Examples of S, are shown in Fig. 3.4.

11 15 u
a=-020=03,¢c=05 a—-004 b—006,c—-10 a = 0.096, b =0.0035, ¢ = 2.0

- ’

Fig. 3.4 Examples of one-dimensional distributions, Sy and Sys
are fixed &

From a practical ”viewpoin,t,n the value of Sp 9,0 cannot be raised yvitho;xt intro-
ducing perceptible block effects. On the other hand, the value of Sj5150 and .
°high frequency coefﬁclents are not of critical importance. Substituting the set
{ 8000,515 15,0 } for { a,b } 1 yxelds a set of three parameters that are mor:
megningful, namely, { 50,0,0,815,15,0,c }. .These can be thought of as the lower
bound, upper bound and ‘curvature’ of the Q-step distribution respectively. By
fixing the value of the upper and lower bounds, the distribution becomes a function

of only one parameter. If needed, it is always possible to override certain values

generated by the function. An example is given below. The contour plot of Fig. 3.5

t b= Su,;lo, :Slo,n,o and a= SO.O.O — b2
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gives a general idea on the shape of the distribution and the order of magnitude of

the quantization step distribution. It 15 useful whenggomparing two distributions.
The quantization step size table in Table 3.4 gives the exact values of the stép sizes.

It is more precise.

-

° Fig. 3.6 Contour plot of a block quantizer step size
distribution. The values of the parameters are:
S000= 0.1, 815150 = 3.0 and ¢ = 1.0

{
Having a function of only one parameter is interesting because it permits an

easy specification of a block quantizer. Subjebtive tests can be conducted to find

the value ofi¢ at the threshold of perception. . "

|

£
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o\h| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 |010 0.11 012 0.13 0.15 0.16 017 0.18 0.19 0.20 0.21 0.23 0.24 0.25 0.26 0.27

{ 1t j0.11 0.13 0.16 0.18 020 0.23 0256 0.27 0.29 0.32 0.34 0.36 0.38 0.41 0.43 0.45

2 {012 0.16 019 0.23 026 0.29 0.33 0.36 0.40 0.43 046 0.50 0.53 0.57 0.60 0.63

3 (013 0.18 023 0.27 032 0.36 041 0.45 0.50 0.54 0.59 0.63 0.68 0.73 0.77 0.82

4 |015 0.20 0.26 0.32 037 0.43 049 0.54 0.6070.66 0.71 0.77 0.83 0.88 0.94 1.00

5 |016 023 029 0.36 043 0.60 057 0.63 0.70 0.77 0.84 091 0.98 1.04 111 1.18

6 1017 0.26 033 0.41 049 0.57 065 0.73 0.81 088 0.96 104 1.12 120 1.28 1.36 -

7

8

9

0.18 0.27 036 0.45 0.54 0.63 0,73 082 091 1.00 1.09 118 1.27 1.36 1.45 154 .
0.19 0.29 040 0.50 060 0.70 081 0.91 101 111 1.2! 1.32 142 152 1.62 1.73
020 032 043 0.54 0.66 0.77 088 1.00 111 1,23 134 145 157 1.68 1.79 1.91 °
10 {0.21 0.34 046 059 071 0.8 096 1.09 121 134 1.46 159 171 1.84 197 2.09
11 {023 036 4.50 0.63 0.77 0.91 1.04 1.18 1.32 1.45 1.59 1.73 1.86 2.00 .2.14 2.27
12 |024 0.38 053 0.68 083 0.98 112 1.27 1.42 1.57 171 186 2.01 216 2.31 245
13 1025 041 057 073 088 1.04 120 1.36 1.52 1.68 184 2.00 2.16 232 2.48 2.64
149026 043 060 077 094 1.11 128 1.45 1.62 1.79 1.97 2.14 2.31 248 2.65 2.82
.16 10.27 0.45 063 0.82 1.00 1.18 136 1.54 1.73 191 2.09 227 2.45 264 2.82 3.00

.

Table 3.4 Table of a block quantizer step size distribution. The
values of the parameters are: Sgp 0= 0.1, )
515,15’0 =3.0andc=1.0

3.4 Thresholds for Time Varying Images(2D-DCT) o
»

.T

3.4.1 Extension of the Results Obtained with Still Images

For time varying images, the previous study gives a good starting point since

at-the limit, a still image may be considered as the repetition of the same frame.
-

However, when viewing a sequence, the subjective pérceptibility of the added quan-
tization noise is different and tetnporal maskiﬁg plays an‘important role. Because
experimex}ts‘on time varying images are more time consuming and involve more com-
puter resources (CPU time and storage), a subset of fopr sequences was used.These

) 3

sequences are EIA, QUILT, OSCAR and ALBERT. -

Preliminary studies indicated that the ranges 0.1 < Spoo0 < 0.15 and -

S15,150 < 6 were adequate. The values S0,0,0 = 0.1 and 515,150 =,3 were chosen.

- 50 -
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Fig. 3.6 Entropy vs ¢ for the sequences ALBERT, EIA, OSCAR,
°  QUYLT, SHORT-SEQUENCE.

t

‘In that case, varying ¢ from 2.0 to 0.1 gives a coded images ranking from ‘no dis-~
tortion perceptible’ to ‘annoying distortion’. Wheh cis lowered, the degradation is

smooth and graceful and the entropy decreases substaﬁtially. ,Fig. 3.6 shows the

variation’of the entropy for the four test sequences and RT-SEQUENCE which
4

is composed of eleven frames from different images (Appendix W). The entropy is

defined’ by
’ . .
. l N“l M"'l K—l 9 4
Havg = m Z Z H(u, v, u)) (3.5)
u=0 v=0 w=0 .
wherée - - . . C
H(u,v,w)=~ 3 plogy(p) «(3.6)

l€eLly,vw

p; is the relative frequency of element ! and Ly y,w i8 the set of possible values for
the ecylivalent integer of f"’ (v,v,0) »
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3.4.2 Subjective Tests

'
!

In the previous section, it was shown that a block quantizer can be complc/altely

~

speéiﬁed by a single parameter ¢. Varying c has both an effect on the compression

- . / - :
ratio and the level of distortion introduced by the coder. It is nat claimed that the
. N e

- -

parametrical function or the parameter chosen are the best ones, However they are

simple and give good results.

The objcctive in this section is to study the effect of varying ¢ on the subjective
°

judgement pf a group of viewers concernjng the quality of the coding. Procedures
for subjective tests are outlined in report 405-4 [26] and recommendation 500 [27]

of the CCIR and also by Sallio & Kretz [28] and Allnatt [29]. The EBU ! method

using the 5-grade impairment scale is best suited.

Setup

v s ¢ .
A population of 15 viewers participated in the xegts, of whom 10 were experi-
enced and 5 were inexperienced viewers. They were all male between 24 and 34

yéars of age. Although not tested for visual acuity, they all claimed to have a good

s

vision. The population was divided into 5 groups of 3. Each group attended two
(
viewing %essions of approximately- 30 minutes-each. The viewing distance was four

_times the screen height (about 1.10m). Three images were chosen for the tests,

namely, ALBERT, EIA and QUILT. Due to the limitation in the duration time of a
session, only eight levels of distortion can be. tested. One level must correspond
to the original (no distortion) for anchoring the results. The seven others must be

chosen to range between a level corresgonding to 5 in the impairment scale to a

< level correspondingﬁo 1. The.averageu level must be close to 3. -

& . .

f

' European Broadcasting Union

1 4
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A sequence is twelve frames of an image. A presentation is the test of a particular |

.

image and consists of the:

- display of the original sequeﬁce for 10 seconds,

- display of a neutral grey fo_r)& seconds,

Al

- display of the coded sequence for 10 seconds,

- display of a neutral grey for 10 seconds (voting peri&i).

|~
The total time of a p‘;esenbation'is thus 35 seconds. A session consists of 18
presentati'ons of the three test images for a t@g{l time of 31°10”. T,hc{.f}rst two
p.resentations are just examples. and not accounted for. Thgr}next 16 presentations
correspond to the actual test. Each level of distortion (including ‘no distortion’).
is presented twice. The order of presentation is different for each image and‘ each
, 5

session. A pseudo-random order is necessary to eliminate adaptation effects. Details-
. P 4

can be found in Appendix C. The following levels of distortion were selected:

dy correspond to nodistortion at all
dy correspond to a block quantizer with ¢ = 2.0

ds correspond to a block quantizer with ¢ = 1.5

d4 correspond to a block quantizer with ¢ = 1.0 . R .
ds correspond to a block quantizer with ¢ = 0.75 P
. . ‘ .

dg correspond to a block quantizer with ¢ = 0.50

—

dy correspond fo a block quantizer with ¢ = 0.25
T e
dg correspond to a bad coding, Sp00 ='So,1,0-= 51,00 = 0.1, Syy0 = 3.0

elsewhere
7/

. Appendix B gives the contour plots corresponding to these levels of distortion

® N

and the first frame of each coded image.
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Results -

Table 3.5 gives the mean r’ating and the standard deviation fof each image.

——

These results have been filtered g.ccordiné to the CCIR .procedure ([26] [27]) ‘to

5

"eliminate inconsistent opinions or incons'istent' viewers. p
=~ ¢
Test, EIA ALBERT QUILT |
' ‘ mean | st dev | mean | st dev } mean | st dev
P dy ’ 4.8 04 4.8 0.4 ‘4.9 0.3 .
d 48 | 04 | 49.| 03 | 49 | 02 .
ds 4.7 0.5 4.8 0.4 49 | 0.3
dy 44 | 05 48 | 04 | 46 | 05 /
ds 4.0 “0.6 4.7 04 4.4 0.5 , ¢
dg 33-| 06 | 43 | 06 | 39 | 05
dy 26 | 06 | 33-] 09 | 31 | 06
4 d 10 | 01 | 111 03 | 12| o5
" Table 3.5 Subjective opinion rating . - ,
‘ v
' A t ’
5.00 4 -
| - R S B B, - #
b _ P
4.00 { ?} ) ]1} ! ‘
§° ' % ’ 4 i ° r
3 3.00 1 R .
=B ]J + QUILT ‘
2.00 ; : s g a EIA-CHART
! o ALBERT ,
1.00 ; ' ‘
A - A . f a8, b
025 05 075 10 L5 20 - no distortion
- parameter ¢ .
L/ .
a Fig. 3.7 Subjective rating vs ¢
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3.4.3 Discussion

' a

* As expected, thenlev:al of perceptible distortion depends much on the imaée itself.
sThe more critic/al the image, the higher is the value of the parameter ¢ corresponding
to the threshold of' perception. The thieshold is defined as the point where the
distortion is imperceptible for 50% of the viewers and corresponds approximately
to a mean®subjéctive rating of 4.5 on the impairment scale.

For ALBERT, the threshold is around cr= 0.7 whereas for QUILT it is a little
more than ¢ = 1.0. "For EIA, the threshold is a httle less than ¢ = 1.0. For broadcast
television, the complexxt% of the bulk of the 1mages lies between the complexity
of ALBERT and the cpn;];>lex1ty of QUILT and hence, the threshold will be between
¢ = 1.0 and ¢ = 0.75. For the rest of the study, it will be safely assumed that the
threshold c'orrespco;1ds to ¢ = 1.0. . )

"An interesting observation concerns the rating of the(origim‘il image with no
distortion. Within the error mterval repreented by the standard devxatlon it has

o ;

the‘ same ratmg as the levels of dlstortlon corresponding to ¢ = 2.0 and ¢, = 1.5.

This suggest that some (or all) viewers are very critical in their ratings. In general,

ratings depend on the particular image but only to a limited extent. The graphs
r]

for the three images are pretty close. a” ' .
. | ) »
There are no obvious correlation between the subjective ratings and the NSNR

for the set of images used, For simple images with not much activity such as

_ALBERT] only a low level of RMS error can be tolerated before distortion becomes

Y
perceptible. For QUILT, distortion becomes perceptible at much higher values of

the RMS error. This s probably due to the specific . manner in which t@;e error is

introduced by the DCT. Other studies with different kinds of distortion [30] have

P

found Q logistic function that linked p;rcept,ual ratings tc the RMS error.

a
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Fig. 3.8 Subjective rating SNR

3.5 Non Uniform Quantization

A particular class of non-uniform quantizers is studied here, their main charac-
teristic is that the step size is an increasing function of the input value. The idea .
behind this requirement is that a large value for a coefficient ger}erally indicates a
block with activity. Activity implies that the masking property of the eye tolerat;es
more distortion. More quantization noise is introduced ‘with wider step sizes for

large input values. It is hoped that this will increase the compression ratio.

. n+1 .
As seen earlier, .(l,,,,w) = mzn(slopeﬁ,.,,w,saturanonu’v’w)su,v,w. In other

(n+1)
’v,w

g ¢ -
words, until the saturation level is reached, the step size is Sy = slopey yw X

S,(:g'w. As a starting basis, the block quantizer with ¢ = 1.0 was chosen since it
corresponds to the threshold of pérception for uniform quantizers. In the first set
of experiments, the saturation level was set to be very high cgrres’ponding in fact to
-no saturation at all. The slope was varied from 1.0 (uniform qtiantizex) to 2.0 fo;- all

quantizers except Qo o0 which stayed uniform. It appeared that quality degraded

very fast with an increasing slope without a substantial decrease in entropy. This

{
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suggests ,that when a few high valued coeflicients are very coarsely quantized, much
distortion 1s introduced. A saturat}on level of around 3 seemed to cure this problem.
Varying' the slope between 1.0 and 1.5 did not introduce additional distortion. How-
ever the gain in entropy was very .low, on average less than 5%. For a slope higher
than‘ 1.5, distortion began to appear \gj;adually without much gain in compression

ratio. A higher saturdtion level brings less }% decrease in entropy.

.
L)

. ;
The conclusion is that non-uniform quantization does not permit appreciable

©

bandwidth compression for the added ;‘omplexi‘ty.

3.6 Extension to 3D-DCT . PR

It was found in the preceding study©that appreciable bandwidth compression
can be achieved with a 2-D DCT. At the threshold of perception, accor‘ding t;)
the entropy and depending on the images, c(;mpression ratios from 3:1 (QUILT)
to 10:1 (ALBERT) were achieved. By taking advantage of the temporal correlation,
higher compression ratios ¢an be expectéd. An extensive study of block quantizers
for the 3-D DCT would take too much time to conduct in the framework of this
thesis. Also it is unlikely that a simple function of one parameter can 13e found
that will fit a large class of images and most importantly, types of motions. For the
above mentioned ggasons, the study of the 3-D DCT is not as thorough as for the
2-D DCT and is mainly done to get an idea of the gain over 2-D DCT that can be-

achieved.
3.6.1 Advantage over Two-Dimensional Processing
L3

Let the block size be N X M x K. For the particular case of images with

I

absolutely no motion, the first transfoim frame is given by:
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. I M-1K-
F(u,v,0) = Z Z C’(u)C(v )C(0) - f(n, m,0)
n=:0 m=0 k=0 ~
os(w(2n+ 1)u n(2m + 1)v ) s(O) RN n (3 ?)

v
with C(0) = .1 and C(i) - V2 for 1 ;éoo. .
This is the same as the 2-D DCT of one frame since f(n, m,k) = f(n, m0).

and

i

F(u,v,w) =0. for w>0 , (3.8)

since there is no temporal energy.

The average entropy per coefficient is thus Hg = KH 9, where Hj is the average
entropy when the 1ma,ge is processed with a 3-D DCT and Hz with a 2 D DCT.
For K = 2, the bandmdth is halved while the’image quality remains unchanged.
Higher values %or K yield even more savings.

On' the other hand, if the temporal ‘correlation is null (successive frames are
totally different and uncorrelated), then no Jsaving's are achieved by 3-D DCT pro-
cessing over the 2—1% DCT. In reallife, the gain lies somewhere between these two
extremes and depends to a great extent on the types of images processed. However

it suffices to scan a few television channels to notice that a fair part of the material

2

) ‘.
consists of scenes with fixed or slowly moving backgrounds.

3.6.2 Experiments

ay ) ’
A block size of 16 X 16 X 4 was chosen and statistjcs on the real valued transform

Y4

coefficients were gathered. The goal is to find a block quantizer that yields images

comparable to those obtained at the threshold of perception with two-dimensional

o Il

processing. A transform block can be seen as four frames of 16 x 16 coefficients. Each

frame is specified independently of others. The parametrical function developed

/
[2
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earlier is used to generate the quantization step distribution for a frame. A block

quantizer is thus completely specified by t.};o values ¢q, cq, ¢y and cg that are the
parameters for the fra.xpes.

In addition to the distortion present with two-dimensional processing, three-
dimensior;z;.l processing introdﬁges ‘temporal’ distortion. If temporal coefficients are
too c‘oarsely quantizc;d, motion is not well reconstructed in the sense that moving

object may be displaced with respeet to the original frame. This phenomenon is

easily perceptible when viewing the images frame by frame. In real time display, the

, temporal masking property of the human visual system hides much of the distortion.

Since thorough experim‘ents with many types of motion are limited by the com-
puter resources (and time; also), the values of ¢g, ¢j, c2 and ¢g chosen are approx-
imate. They give results comparable to the threshold of perception an:l a gmrgin
was allowed to account for faster types of motion (temporal coefficients are guite
finely quantizgd). it should be,stresséd that these exXperiment are really meant to
see if the gain with respect to 2D DCT is significant or not. The values chosen are:

cog=2.0and ¢; =c9 = c3 = 1.0

Lad
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Chapter 4 | Coding of the DCT Coefficients

[

In the previous chapter, it was s};own that appreciable bandwidth compressiop
can be achieved by the use of DCT coding and proper desiggo'f the block quantizer.
An apf)roxix.nation to the lower bound of the average number of bits per pels ({>r
bits per coefficient) was given by the entropy Havg.” It was found that the entropy
depended both on the irr.lage’itself and on the particular block quantizer used. In
f)ractice However, the compression ratio will depend on the technique used to code
the quantized coefficients. To design an efficient block coder, a th&rough knovgledge
of the source ! statistics is needed. e

The coders used here are inspired by that of Chen and Pratt [7]; namely, they °
use Huffman coding for coding nop zera coefficients and a combination of rpn—length

and Huffman coding for coding zero valued coefficients.

The conéepts of Huffman coding and xiuﬁ-length coding are introduced and’

“followed by a brief look at the quai}tized block characteristics. Different coders are

then simulated and the performances compared. The chapter concludes with a look

at some ‘post. filtering’ that can be embedded in the coders.

o
A
N .

t The source consists of the blocks of coefficients.
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4.1 A Brief Review of Coding Theory, Hufftnan and
Run-Length Coding ‘

“

o
o 4

In a general context, let S be a source of cardinality M with source symbols

8y 1 = 1,..,M having probabilities p;. It is assumed to be stationary. Let A
3 ,

be a code alphabet of cardinality D angﬂ source symbols a;. The source emits a

sequence {s 8;. ..}. A coder is a mapping from a sequence of seurce symbols

Jo 81’1
to a sequence of code symbols. A first order.coder is a mapping of-each of the source

symbol s, into a sequence ¢, of code letters called a code word
4

- 8, ci)‘: {ailaﬂ"'atl,} ) (4'1)

#
where /, is the length of the codeword ¢,. In a vector coder, codewords are assigned

to vectors which are a finite length sequence of source symbols.

{8108:,“...8]'"} s {éjocfl"'c]n} — {a]bl..."ajolo...ajnk} (4.2‘)

There is no indication in the code symbal sequence where a codeword begins and
ends. ' This information must.be determined from the structure of the code itself,

assuming howe¥er that the start of the code sequencé is known. )

> In practice, the cardinality of the code alphabet is two , {0,1}. The efficiency

- - {
of a coder is measured by its average word length [ = Zfi 1 Pily, 1 has the same

* * dimension as the entropy and is measured in bits per symbol. Among first order

n

coderé, two classes are widely used, namely, fixed length coders and prefix variable
length chers. Fixed length coders are simple but give poor results when source
probabilities are not uniform. Prefix codes (also called tree codes) are less simple

but perform better. These coders will always have a code length of at least onc

bit per source symbdl. For sourees with lower entropy, vector coding should be’

considered[31],



4.1.1 Huffman Coding
N

For a g_iven source, it is not always possibledto find a first order coder whose
averaée word lenéth equals the source entropy. However the Huffman code is opti-
.mum in the sense that no other first o}der coder can outperform it. The Hﬁf}'man
code is tree like , or prefix code. Each codeword is represented by a leaf in the tree
and is 'uniquely decodable. The code is built from the source symbol probabilities.
The lengt\h of ‘a codeword is given by the number of nodes between the leaf .and
‘the root of the tree. Short codewords are ;,ssigr;ed to II.IOSt I;robable elements. An
ex‘ample is given below for a five elements source. The value of the entropy is 2.1855

while the avergge codeword length is 2.2.

5 ) ’ N
symbol probability codeword
T8 03 0o —2
e N 0 %
- .
! 82 .0.25 01
* 83 0.25 10 9
N ) i
s, - 01 110 °
. 1
85 01 a1 —2 .

4.1.2 Run;Léngth ~4Coding

o iy

.

Run—length coding is prlmarlly used for the transmlssmn of binary images., The

document is scanned horlzontally resulting in alterngtmg sequences of black and

9

w{ute pels. Compressjon is achleved by transmitting the values of the length of ,the

B

alternating sequences rather tha;n the values of the pels themselves. The source then
" becomes the possible values for the sequence lengths. A first order coder can fur.’.er

be used for coding the elements of this new source. This téchnique is efﬁcxent when

sequences are long, as is usually the case for- typed documents. - <.

»
»
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important high frequency content. .

4.1.3 Discussion on the Estimation of ¢he Entropy of Quantized
Blocks.
" In section 3.4.1, the average entropy was defined as the mean of the entropy of
the individual coefficients (Eq. 3.5, 3.6). In other words, a block was considered as

NMK different sources. However in the context of DCT coding, a block should be

" considered as a unique entity. The entropy of a block would be H p defined as

) - ]
Hy =~ pLoga(py) (4.3)

beB é
where B is the set of all possible blocks. An example of a block is given in Table 4.1,
From a practical viewpoiﬁt, tlhe set B would be so large that any computation of
H g would be virtually impossible. In the rest of the thesis, ‘entropy’ will actually
mean Hg,q, which is more tractable. It should however be noted that it is only
an approximation and Hgyg > NIIZFH B- The equality is achieved if the transform .,
coefficients are independent. . .

e
4

4.2 . Some.Observations on the Quantized Coeflicients

Table 4.1 shows a typical block. It is taken from the first frame of image ALBER’]‘
and covers about two thirds of his right eye.

A striking observati(;n is that nearly -half of the coeﬂicientfs are zero valued.
Moreover, they form a rather-uniform big cluster. Since ALBEI;T moves his head
while talking, ‘verticai’ coeflicients ha;ve quite lz%fgc values compared to ‘horizontal’
ones. This is due tc-> the line interlace effect of frame coding. Other sampleyblocks
from different parts of the image, and different images, reveal the same structure,

namely, many zeros. In the uniform background in ALBERT only a few cocfficients

are not zeros. On the other hand, there are.-less zeros in QUILT because of the

[

A
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v\h “’o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o e8 112 9 4 1 1 5 0 5 -1 1 0 0 0 O 0
\ 1 {94 -1 -2 2 -4 1 2131 .2 0 0 0 0 0
2 1127 18 .12 6 -2 -1 0 0 1 0 0 © O O O O
3 (-17 27 9 0 4 0 @ -1 0 0 0 0 0 0 O O
4 |95 -7 .71~7 .71 -1 0 -1 0 0 0 0 0 0 0
5 |56 -11 -1 7 3 2 1 0 1 0 0 0 0 Q0 O O
6 [27 16 2 5 -3-1 -1 0 -1 0 0 6 0 0 O O
714 -9 5 2 21 0 00 0 0 6 0 0 0 0
8 1 1 2 0 ¢ 0 0 0 O0C 0 0 0 0 0 0 0
9 {6 3 1 -1 .21 000 0 0 0 0 0 0 0
10(-11 -5 0 2 1 0 0 0 0 0 0 0O 0 0 O O
1112 3 0 -2 -1-1 0¢0 0 0 0 0O 0 0 Q@ 0
12/-11 -1 1 1 1 0 ©0 0 0 0 0 0.0 0 O O .
13/1 2 o0 -1 0 0 0 0 0 0 0 O O 0 O 0
146 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ©
163 -1,1 0 0 0 0 0 0 0 0 0 0 06 0 0

Table 4.1 A typical quantized transform coefficient bloc. Taken
from ALBERT in the region of his rlght eye
Parameter ¢ = 1.0.

The second noteworthy observation concerns the probability density function

(PDF') of individual coefficients. Figs 4.1 and 4.2 show that the sh?x'pe of the PDF

differs dependmg on the pos1t10n of the coefficient within a block. The distribu-

tion gets narrower with increasing spatial frequency. Also the probab1hty that the
coefficient is zero increases quickly, from around 20% for F(2,2,0) to nearly 90%
for F(7, 7,0). This exiplains the large number of zeros in a block. Looking at the
PDF without taking into account the value zero shows that the symbols have very
different probabilities. Note that the coeﬁic.(i.ent F(0,0,0),,being the average lu-
a
minance value of the pels in a block, has a more uniform PDF (not shown here).
These statistics ;.re frnom LONG-SEQUENCE quantized with a block quantizer at the

threshold ol perceptibility (¢ = 1.0). Since this image really consists of a variety of

images, these results are quite genéral and robust.
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4.3 ' Dual Huffman and Run-Length Coders
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Fig. 4.2 Probability distribution functions for F'(7,7,0)
quantized, with, and without, the zero value. Different

vertical scales used.
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The design of a straight“bloék coder, namely, a mapping of every pos#ible block
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to a codeword, is vety imprattical due to the high cardinality of the source. An

efficient alternative using Huffman and run-length coding is presexjted.

The block is mapped into a.one-éiimensional vector by the use of a scanning
pattern. The vector ;;hus consists of NM K coefficients in a kn’own order. Taking
the example of Table 4.1 and using a zigzag scanning pattern starting from F(0, 0,0)
would result in: 8

‘ 768 112 94 127 194 -2 18 -17 95 . . . |
110*20001-12010.'.
00100. . . . . . 00000
The first coeﬂﬁgﬁents have a rather large variance and are rarely zero. Gradually,

the variance decreases and long successions of zeros start to appear. The last third

of the vector consists of zeros only.
>

To code the non-zero afnplitudes, a Huffman code HCgypy is used. Another

Huffman code HC,,, is used to code the runs of consecutive zeros. The following

- N
sequence: - TR o

p—

340020000000-10000050. . .000 v'vouldbe‘codedHCamp(3)
4 ' ’ .

HComp(4) HCrun(2) HComp(2) HCrun(7) HCamp(—1) HCryn(5) HCamp(5) EOB.

Knowing the length of a run of zeros permit one to compute the position of the next

non-zero coefficient. A special codeword, EOB (End Of Block), is used to say that ‘

. all of the remaining coefficients are zero. EOB reduces the occurrence of long runs.

The statistics ‘gsed to design the two previous coders are gathered as follows: A

histogram of non-zero amplitudes is generated with two additional source symbols,

EOB and prefiz. Prefix ciesignates the start of a run of zeros. The H C‘i,,;p code ,

is geperated according to these statistics. H Cyyp is generated, from the histogram
of the nlength of zero sequences, excluding the one going fo the end of block. In
the actual coder & Cyrun is & subcade of H Camp With the prefix code prefiz (ie, the

prefix leaf designates that what follows represent the code of a run of Zeros).
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- N
H Camp
Amplitude symbols Prefix EOB
HCryn

f: e

This coder will be called a separated dual coder since HCyyp and HCyy,p are

really two separate Huffman codes. It follows the idea of Chen and Pratt in their

v ° + »

‘scene adaptive coder’[ 7].

Another methaod consists of having an-fntegrated dual coder. In this case, the

v

source consists of the non-zero amplitudes, the runs of zeros and the EOB symbols.

A}

{..—3,—-2,-1,1,2,3....1,,2,,3,,.....EOB} where I, designates a run of I zcros.

The two previously mentioned histograms are merged to produce a single one tha}

N

*is used to generate an integrated Huffman code. This method was also used by-
-

Dubois and Moncet for the coding of NTSC pictures(32).

Note that in both the separated and integrated coders, the F(0,0,0) coefficient’

-

is treated differently. Is is always the first element in thesscanning pattern and is

assigned a fixed length cod_ewbr& of twelve bits. It is not taken into accounnt ,;vhcn

r. . genera,.ting the histog?ams. '
The choice of the scanning pattern is important. Ope would want to have long
runs of zeros. Since zeros are coded in groups,’it is possible in theory to get bit

rates less than one bit per coeflicient.

Block Coding With NMK Coders

2

This represents an extension of the ideas presented above. Each coefficient has

w

Y its own set of amplitude and run-length histograms. The amplitude histogram is
@ computed from the values taken only by that particular coefficient. The runs are
- - 67 -
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those starting at the coeflicient in the scanning process. Both separate or integrated
N

codgs ‘can ‘be specified for each coefficient except for F(0,0,0). In this coder, the
codes are adapted to each coefficient. This arrangement will hopefully yield lower

bit rates at the cost of a huge increase in memory requirements and to a lesser

extent, complexity. It was however found that the gain was negligible for ‘the effort

2

deployed.

4.4 Results - ) 1 ‘

In this section, three factors affecting the efficiency of a dual Huffman-coder are

studied:

9

s N

- The type of coder, namely, integrated or sep‘érated. ‘ |

- The scanning patters. ', . - .
- The,robustness of the coder. “
Robustness ’ "

As seen previously, a coder is generated from histograms generated for a partic-
ular image. This coder will then Be optimal (or adapted) to that image and may be
"poor for another image. The robustness is a measure of the sensitivity of a coder to

different source images. It shows how a particular coder performs with Tespect to

one that is specifically adapted-to the source image. In order to test the robustness

—r

of the dual Huffman coder, two coders designed from different statistics are tried.

\ . ‘
on a set of images, Table 4.2. The ‘general’ coder draws its.statistics from LONG-

SEQUENCE, qu each image, an ‘individual’ coder is generated from the statistics
of the particular image only. The general coder will be said robust if it performs

relatively close to the individual coders on average.

L4
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Scanning Pattern - .

X Due to the fact that the energy is gonéentrated in low frequency coeflicients, the
° . o ‘
zigzag scanning pattern performs well. A more general method would be to scan

the coefficients in a decreasing order of weighted variance. The weighted variance

P v

beiﬁg the variance of the coefficient divided by the step-size of its quantizer. The

.

¢ idea is that it would ajlow for less runs of zeros and a more eflicient use of the EOB

) codeword. .
Results ¢ . ’
B . t
* o ~ .
. ’ ~« . All experiments were conducted using a block quanti?er with the parameter

- ¢ = 1.0 corresponding to the thresh%ld -of perception. Table 4.2 summarizes the

)

ff re’sults. ‘

V * Imafge Entropy | Individual | , Zigzag scanning Variance scanning
* Hayg Coders | integrated | separated | integrated | separated
LONG-SEQ 1.541 1.618 693 1.641 " 1.702
_ ALBERT | '0.987 | 1,058 1.056 1902 1.072 1.099
DA EIA CHART 1.607 1.771 1.767 1852 1.804 1.870
FLOWERS 1.410 1.576 1.573 .§42 1.602 | 1.658
TOYS 1.627 - LITT '1.791 1.882 1.841 1.917°
LETTERS 1.407 1.630 1.635 1.703 1.;662 1.710
‘ MEISEL 1.124 1.396 1.395. 1.462 1.388 | 1.450
OSCAR’ 1.433 | -1.595 1.592 1663 | 1634 | 1.690
QUILT . 2.465 2.948 “* 2.952 3.111 5.928 3.087
WAGONS | 1.338 | 1576 [ 1.580 1.646 1.601 1.647
L lyvon- | o814 | o0.843 0843 .| 0875 | 0875 | 0.896
Z ,‘ o * Table 4.2 Bit rates obtained in bits per pels for different coders.
o , The individual coders are ‘integrated’ and use a
@ ) §igzag scanning pattern. < ‘ .

[+3
Tp g e e

. .
: 6} .
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“troduce any additional distortion if any was present. In fact no di

As expected, the integrated coder perform better than the separated one yield-
ing a gain of about 4.5% for the zigzag scanning pattern. The zigzag scanning
pattern is quite good since it actually outperforms the weighted vajriance scanning
pattern by about 1.5%, which is not signiﬁcant: The robustness of the coders se'em
adequate for most images. Except for TOYS vyhich gave a difference of 0.78%, the
difference was less than 0.3 % which can be considereq negligible. Compared to the
average entropy, the bit rate obtained are acceptable. The pegform;nce depends
much on the image. YY(?N yielded a bit rate only 3.4% higher than its entropy
while MEISEL was 19.5% above entropy for integrated coders. On a;erage, the bit
rate is around 10% higher than the entropy. Appendix E gives table-of entropies
for the coefficients and the average number of bits taken to code each coeﬁicien:t
for the different coders. The average number of bits is soleiy based on the Nnon-zero
values taken by the coefficient.\ In other words, the share of bits to_code its zero

values is not taken into account{ For that reason, the average number of bit for a

N

coefficient cannot directly~b€ compared to its entropy.

4.5 Post Filtering-

Within the clusters of zeros in a block of quantized coefficients, there are often
isolated coefficients with non-zero amplitude. Most of the time their amplitude is
+1 or +£2. These coefficients are usually medium or high frequency ones and are not
important in the viewpoint of perceptibility. Forcing these isolated c;)efﬁcients to

zero will yield fewer and longer runs of zeros, thus loweririg the bit rate. Formally,

_ a coefficient will be said to be isolated if in the scanning pattern, the p'receding and

-

the following coefficients are both zero valued.

Furthermore, experiments showed that skipping the isolated 1

rences were

b
&
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perceptible e;cc’ept that the filtered i;nago appmar.ed very slightly less noisy than its
non filtered counte;part. A noticeable reduction in the bit rate resilted however.
'Skipping also the :t-2 isolated coeflicients had no effect and a negligible bit rate
saving. This suggest t%lat the majority of isolated coefficient have an amplitude of
:+1. Post ﬁlter;ng can be viewed as a type of quantization with memory. In that

case, the threshold is dependent on the value of adjacent pels. The {gsults obtained

are summarized in Table 4.3.

Entrop); No post filtering _ _,Witll,‘lP(?_Sji ﬁlﬁ(:ripg

Image ffm,g I Zigzag Variancoﬁ iigzhg Variance

scanning | scanning | scanning | scanning
LONGSEQ | 1541 | 1.618: | 1.641 1416 | 1.304
ALBERT 0.987 1.056 1.072 0.859 0.838

EIA CHART 1.607 1.767 \ 1.804 1.552 1.548 |
FLOWERS 1.410 1.573 1.602 1.353 1.318
TOYS 1.627 1.791 1.841 1.606 1.616
LETTERS I 30% 1.635 1.662 1.454 1.431
MEISEL 1.124 1.395 1.388 1.220 - 1.190
OSCAR 1.433 1.592 1.635 | 1.356 1.330

QUILT . 2.455 2.952 '2.928 2.669 2.617 b

} WAGONS ¢ 1.338 1.580 | 1.601 1.383 | 1.353
YVON 0814 | 0843 | 0875 | 0706 | 0.697

Table 4.3 Influence of slr(ipping isolated (%1)coefficients on the
bit rate. Comparison ¢f scanning patterns for the
coders with post-filtering. -

. _ /
A zigzag scanning pattern and an integ;'a,teéi coder were uséd as the reference.
A coder with post ﬁlt‘ering is not an entropy“coder since the reconstructed block
of coeﬁicient; z;t the receiver may be different from the one at the transmitter.

This explains that bit rates are sometime below entropy. The gain with respect

to coders with no post-filtering is appreciable. Comparing integrated coders with
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zizgag scanning pattern show a reduction in the bit rate ranging from 9.6% for

QUILT to 18.6% fof ALBERT. The LONG-SEQUENCE gave a gain of 12.5%. In,

the case of post-filtering coders, the variance scanning pattern seems to give slightly
better results than the zigzag pattern. The difference is however quite small. Since
they do not seem to affect \t/he‘imoage quality, coders with post-filtering are thus
considered best. For LONG-SEQUENCE, the bit rate obtained of 1.394 bpp using

a variance scanning pattern is equivalent to a compression ratio of 5.7.
o

4.6 . Extension to 3D DCT

In this section, the block quantizer described in Section 3.6 is used. The quality
of the images obtained is similar with those obtained in the preceding study. How-
ever since two-dimensional and three-dimensional DCT do not produce exactly the

same impairments'in the viewpoint of quality, results cannot be directly compared.

Image ' 2D-DCT 3DDCT 4 .

] ‘No post F. | With post F. | No post F. | With post F.
LONG-SEQ 1.618 "1.416 1.107 0.891
ALBERT 1.056 0.859 0.647 0.466
EIA CHART |  1.767 1.552 1.245 1.004
FLOWERS 1.573 1.353 1.170 - 0.926
TOYS 1.791 1.606 | 0935 0.752
LETTERS 1.635 1.454 1.450 1,257
MEISEL 1.395 1.220 0914 0.718
OSCAR 1.502 1.356 0976 0.734
QUILT 2052 37 2.660 2.013 1.683
WAGONS' 1.580 1.383 1.242 1.030
YVON 0.843 0.706 0479 | 0.344 \

Table 4.4 Comparison of 2D coding and 3D coding for images
of approximately same quality.
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An integrated coder with a welghtod \arnanco'scanmn;, pattern is used. It is
compared to its ‘post ﬁltermg counterpart as well as to the two-dimensional (‘oder
The gain over two dlmensmnal precessing is important apd as expected depends
on the motion. For example TOYS which is mainly a still picture shows an 1mpresmve
gain. ALBERT and YVON whlch exhibit a fixed background also benefit from three-
dimensional processing reaching bit rates below 0.5 bits per pel. On average with

LONG-SEQUENCE, the bit rate is close to 1.1 bits per pel and post filtering allows &
¥ s

o

further gain of 20% yielding a bit rate of 0.9 bits per pels.




Chapter 5 | Cdnclusi’on

« -

°

. a
This study was aimed at investigating a block quantization method for discrete
cosine transform image coding that is adapted to tﬁe properties of the human visual

syst;:m. In the method developed, a block quantjzer is generated by a function.of

»///

a small set of parameters. Individual quantizers have a uniform step size. The

parametric function allows, for a given distortion ievel, to determine a step size for.

3.

each coefficient based on its overall subjective importance.

L]

A subjective test demonstrated the validity of this approach. Overall image

“

distortion was successfully controlled by one parameter for a set of three‘image‘s

exhibiting various features. The oz;inion of the viewers correlated well with the pa-

.

rameter value. The value of the parameter at which the distortion is at the threshold

of -perceptibility depends on the particular image and its ‘activity’. However the

»

values for the three test images were close.

. N\ .
The variable rate block coder used here is similar the one developed by Chen and

Pratt. Two enhancements have been added, namely, the use of an ihtegi‘ated Huff-

" man coder and post-filtering. These two enhancement permit a further reduction

of the bit rate of about 20% with respect to the original method.
For intraframe coding, an average bit rate of 1.4 bits per pel was obtained.

!
However the bit rate depends on the particular image and varied from a high of 2.6

4

bits per pel for QUILT to a low of 0.7 bits per pel for YVON.

o
-UY -
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The use of non-uniform quantizers, for ;\'hfch the step size increases ‘with the
value of the transform coefficient, was investigated to determine the further reduc-
tion in bit rate p\ossiblé over uniform quantization. How«;ver,, the gain achieved
was not significant enough to justify the added complexity. This is because most
coefficients are low. valued and only a‘ few are affected by non-uniform quantization.

A better bandwidth compx"ession was obtained wi.th interframe t}xr(;(‘~dimcnsional
DCT coding. However in that case, the gain over intraframe coding d(‘p'en(is on the
motion present in the image or more generally its temporal acti;rity. An average bit

rate of 0.9 bits per pel was achieved,with a low of 0.35 bits per pel for a hdad and

B /
shoulder scene typical of teleconferencing. The choice of the scanning pattern is

more delicate since the energy distribution among the coefficients depends greatly
N ' b
upon the motion present in the image. Further psychovisual experiments arc cer-
p A

tainly needed to optimize the three-dimensional block quantizers and to study the

effect of both the rfiotion present in the images and the temporal size of the blocks.

Adaptive block quantization can be implemented with two potential uses. One
may want to adapt the 6utpﬁt bit rate o a certain channel bandwidth, or in other
w?rds regulate ‘the output bit rate, In that case a simplé feedback mechanism de-
rived from some buffer status can “be used to control the block quantizen(incréase
or decrease the parameter ‘¢’ in Eq. 3.4). Another possible use would be to min-
imize the bit rate while keéping the quality of the image above the threshold of
perception. In that case, one will need to do an extensive study to separate images
into perceptual classes and, according to some measure of activity, select the most
appropriate block quantizer. The overhead added by adaptivity would be minimal
in terms of transmission since only one or two descriptive values of thg l;lock quan-
tizer should be sent. Computational complexity however would increase since the
quantizers should be éonstantly updated. A simple met}lod would be to have a
bank of block quantizers in memory and switch to @hé appropriate one as needed.

LYEON
s
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With decreasing hardware cost, this would lower processing overhead. '
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Appefxdix A. Test Images \

~

This appendix-present the first frame of the various sequences used for the test.

A sequence comprises usually twelve frames of the same scene except for SHORT-

SEQUENCE and LONG-SEQUENCE.
SHORT-SEQUENCE comprises eleven frames: EIA CHART, YVON, FLOWERS, OSCAR
MVT, GASTON, TOYS, QUILT, 'WAGONS, oscAR, ANNABELLE ALBERT,
L(‘)NG-SEQUENCE comprises 144 frames, twelve each from the scenes: YVON, EIA
CHART, ALBERT, WAGONS, FLOWERS, QUILT, OSCAR, MEISEL, LETTERS, TOYS,
ANNABELLE, OSCAR MVT, o

The actual size of an image on the display screen is 136mm x 124mm. For

the subjective test, images are viewed from a distance of approzimately one meter

which corresponds to four times the p:i.cfure height of the display screen.
{ .
i
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Fig. B.1 " Level of distortion dg ;o\>es’ponding toc= 2.0

e ] s "

Fig. B.2 Level of distortion dg corresponding to ¢ =1.5
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Fig. B.3 Level of distortion d4 corresponding to ¢ = 1.0 ’
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] r] . a1 3 -

. .Fig. B.4 Level of distortion ds corresponding to ¢ ;- 0.75

L4
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Fig. B.6 Level of distorti
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Appendi)g C. :Subjective Testsg’g)sjedure f

-

.

The subjective tests are comprised of two sessions of half* an hour each. In
R -

-
+ g 3

- . e )y & . ) . .
order to eliminate any bias, a pseudo random order of presentation is necessary.

The \first two presentations are éaniples chosen to show the kind of impairments
. &

being tested. The next-16 presentations are actual tests an can be separated into
four ('luadrﬁnts,”namely 3to 6, 7to 10, 11 to 14 afid 15 to 18. .Since each level of

distortion is presented four times, it 5{101/];]((1 be sgreaa over the four quadrants. Also,

- ~ ’

in a’presentation, EIA.CHART, ALBERT and QUILT should display different levels of
. l )

distortion. Levels of distortion were first assigried in a random order and reordered

to meet the above mentioned restrictions. Table C.1 and C.2 give, the order used

N

. for the first and second session respectively.

¢
<)

PRESENTATION

CHART ALBERT QUILT
1 dy cds dy
2 dg dy ds
' 3 de ds ds
4 dy d3 da .
b ds d1 dS ’
78 dy ds dy
© 7 ds de- 4y
8 R ds “dg
9 ds " d, d
10 da dg de
: 1 | ds “dg dy
12 ds | d
’ 13 dy ds ds
14 da d;. . de
15 , di 2 1 divw da
. 16 dg ds o ds”
17 ‘dy da dg
° 18 ds deg dy
) LY o - 2
Table C.1 ' First session order of presentation
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n »
* | PRESENTATION | CHART ALBERT QUILT
‘ 1 C 4y ds - A
. \ P 2 ds dg de
. 3 . ds dy dy
4 da de dy
. 5 dy - dg ds
6 dg dy dg M
' SN 7 ds Ty C
< 8 s di_.:. ‘!3 L3
9 dr dy ds
i . 10 dy ds dg
5 1 dg dg dg
12 d dy R
13 /dy dy | de
. 14 ds . de ds
' ‘ 15 | 4 - dr
? 16 e ds 1 dg dg
17 dg d dy
‘ 18 . - dy dr dy
. N Table C.2 Se’cc;nd session order of presentation .
P ° < ) 9, 8 .

Viewers were given a blank table to fill up and the following explicative note:
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' SUBJEGTIVE TEST

o .

. SESSION "1

JImpairment Scale

“

5 Imperceptible :
4 Perceptible, but not annoying ‘ ’
3 Slightly annoying : '
’ " 2 'Annoying . N N
1 Very annoying 4
SEQUENCE | CHART ALBERT QUILT
2 -
2 hd i
3 ' r»%‘_\-. . -
2
4 .
L5 . .
.6 ™
> 7 ) v
8 *
9 7 N
10 -
11 .
12 . ‘
13
.14 ' '
U 15 -/
16 . /‘?
17 . ./
18 - G VE
your NAME please : N L
8 - 89-
4

.\

N




S SUBJECTIVE TEST

| . DESCRIPTION
- . L

v Y
3

- We have asked yz)u to come along to help us assess the effects of impairments™
that can occur in digital coding of TV: The complete test will consist of two qoparuto
Sessions of which this is the first. .

H 1

\ . We are going to show a series of presentations, each of which consists of :
| ~ : : .

-
.

. . -‘the original TV sequence for 10 seconds. 4
. - a neutral grey for about 5 seconds. s
' - the coded TV sequencé for 10 seconds. ) \
- a neutral grey for 10 seconds, voting period.

We would like your opinion of the o/verall impairment level of the coded TV
sequence with tespect to the original. Your opinion should be expressed in terms’
of-the 5-grade impairment scale ranging from 5, imperceptible, to 1, very ennoying,
@ ’ which is shown at the top of the report form provided.  _

‘ . g \ ‘. ) -
- You do not need 4o use all the grades and you may use a given gradeas often
as you wish. Please record your opinion in the report form during the 10 second
. ' voting period. At the beginning of a sequence, the HDVS system may display for a
fraction of a second some frames‘_’that do not belong to the sequenge , please ignore
them. . ) ) 3

First, we are going to show you six examples of the impairments we are testing.
We would like you te record your opinion of these in the first two rows, but these
results will not be included in the main analysis. !

§ The session will last for about ha,lf an hour., Remember all that is required is
your persohal opinion.

Any questiofis ?

i 5
- . - )
: : .90 - S
o ; . . ;- - . o s
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Appendix #. Statistics on the transform coefficients
..,‘ \ ) & v )
« The mean, standard dev1ation minimum'‘and maximum values of all coefﬁc1ents \

. k2

were computed for both 16 x 16 %1 and 16 X 16 X 4 blocks. Tables of the resu‘lts

"
}

i
" for the standard deviation are given below “As for the mean values, except for

. -

F(0,0,0), they are all zero and thus are not u\y(fluded The image used to generate

theses statxsmcs is LONG SEQUENCE. The standard dev1at10n tables glve an idea of

the energy distribution among the coefﬁc1ents.

s

L

.

r

!

0 1

<
&>

2

3

o

4

5

6

7

8

9

10

11

12 )13

14

is

27.41
8.60 3.62
5.02 2.83

613"

3.48
293
2.36
2.26
1.53
0.92
0.78
0.63
0,59
0.61
0.%1
0.92

Y

[ S R VP "
. © ®,~3 - o =
Nk = o W B e O [

3.56_ 2.25

2.01
1.73
1.43
1.21
0.98
0.75
0.60
0.63
0.54
0.60

0.5

0.98

3.38°
2.36
2.27
2.29
2.03
1.34
1.08
0.92
0.80
0.70
0.63
0.52
0.67
0,60
0.57
0.83

2.53
1.90
1.90
2.21
1.98
1.17
0.92
0.74
0.58
0.53
0.54

*0.48

0.57

2.67
1.62
1.44
1.52
1.31
0 89
0.72
0.58
0.44
0.38
0.40
0.40
0.44

2.39
1.54
1.23
1.02
0.89
0.69
0.60
0.54
0.38
0.33
0.31
0.34
033

0.58 0.47 .0.44

0.51¢ 0.44 049"

0.72 0.78 0.81

2.27
1.81
1.49
0.98
0.75
.57
0.48
0.46
0.37
0.31
0.27
0.33
0.31
.40
0.64
0.84

1.94
1.55
135
0.77
0.58
0.563
0.39
0.36
0.31
0.27
0.23
0.29
0.28
0.42
0.563
0.63

160
0.99
094
0.66
0.58
0.45
035
0.29
0.23
0.24

+0.24

0.28
0.31
0.37
0.37
0.46

1.13
0.77
070
058
0.46
0.34
0.27
0.23
0.20
9.21
0.23
0.27
0.34

‘0.36

0.33
0.42

0.61
0.45
0.45
0.44
0.36
0.27
0.22
0.20
0.16
0.19
0.20
0.24
0.20
0.29
0.27
0.33

0 49
0.36
0.37
0.32
028
0.23
022
0.23
0.21
Q.21
0.21
0.21
0.23
0.26
0.26
0.35

041
0.29
0.29
0.26
0.23
0.20
0.20
0.22
0.24
0.21
0.19
0.19
0.20
0.24
0.25
0.40

0.38
0.23
0.22
0.21
0.19
017
0.15
0.16
0.17
0.16
015
0.16
0.18
0.20
0.20
0.32

0.20
0.17
016

0.16

014
0.13
0.11
0.10
0.10

0.1

0.11
0.12
0.14
0.16
0.14
0.22

0.14
0.11
0.10 |-
0.09
0.09
0.09 | -
0.07 | .
0.06
0.07
0.07] -
0.07
0.08
0.09] -
0.09
0.09
0.11

~

4

4

o

a

Table D.1 Standard deviation of 2D-DCT coefficients, the test
image is LONG-SEQUENCE.
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2

3 4 5 6 7+ 8 9 10

11

12

26.85 5.79
8.20 3:34
* 4.73 1.52
3.25 1.94
3.20 1.73
2.7% 1.50
218 1.21
210 1.0%
140 039
0.78 0.51
0.66 0.41
0.49 0.33
0.43 0.28
0.38 0.29
14| 039 0.31

B

O 0 3 M W e O

-
ks
[T S
~- O

v
—
W

_3.02

2.04
1.89
1.67
147
1.05
0.86

* 0.72
0.61
0.47
0.40

0.30*

034
"034
. 031

0.42

0.42
0.30
0.28
0.28
0.21
0.16
0.12
0.11
0.09
0.09
0.09

0.30
022
0.24
0.19
0.17
0.12
0.10
0.09
0 09
0.08
0.08
0.09 008
009 0.09
0.13 0.10
010 0.10
041 013

1:94 1.80 1.28 1.21 1.46 1.42 0.93
152 122 0.96 0.87 094 0.77 30.60
1.47 114 0.80 071 0.82 0.70 0.49
1.70 1.05 073 0.66 0.50 0.43 0.35
1.45 0.85 0.66 057 0.43. 0.41 0.26
0.84 0.56 0.48 0.43 0.43 035 032
0.67 0.47 0.40 0.31 0.27 026 0.18
0.57 0.42 0.38 028 (.23 ,0.20 012
0.44 031 Q25 023 021 0.5 012
0.35 0.24 018 015 ©.13 013 010
035 025 017 0.5 011 011 010
0.28 021 016 014 0.3 011 0,10
0.31 025 0.16 0.14 0.12 0!l 0.11
032 023 037 0.5 013 0.2 0.11
0.26 0.21 0.17 0.16 0.15 0.2 011
037 032 0.24 0.22 017 "015- 0.13

0,20
0.16
017
0.16
0.12
0.11
0.00
0.00
0.09
0,08
0.08
0.08
0,09
0.10
0.11
016

0.06
0.06
0.06
0.06
0.06
0.07
0.08

"1 g | 0.54 042
o

>
¢

the'test image is LONG-SEQUENCE.

o

Table D.2 S&iﬁdard deviation of 3D-DCT coefficients, frame (),v

0.07 0.08

0, 1

.2

3 . 4 b 6 7 8 9 10 11

12 13

14 156

4.29 157
181 110
1.39 1.04
1.22 0.95
110 0.82
0.91, 0.68
0.70 0.59
0.64 0.51
0.46 0.44
0.35 0.39
0.29 0,29
026 0.25
0.26 0.25
0.31 0.28
0.29 0.30
0.44 0.45

1.24
0.99
1.05
1.38
1.24
0.69
0.53
0.47
0.41
0.40
0.38
0.28
0.31
0.32
0.29
0.42

0.19 0.16
*0.14
0.14
012
0.11
0.09
0.08
0.08
0.07
0.87
0.07
0.08
0.09
0.09
0.10
8.2

1.30 1.53 1.42 1.37 0.72 0.36 0.30
0.93 0.86 090 1.18 087 0.38 0.28 0.17
1.00 0.71 0.71 0.97 0.75 0.38 0.26 0.19
1.15 0.94 053 0.53 0.39 027 0.21_ 0.16
1.13 085 0.456 0.35 0.23 0.21 0.17 0.14
0.68 0.57 0.38 0.26 0.20 0.16 0,13 0.10
0.51 0.43 0.33 0.23 0.17 0.13 0.16 0.08
0.36 031 0.27 0.23.0.16 0.10 0.09 0.07
0.20 0.23 0.20 0.19 0.13 0.09, 0.08 0.07
"0.30 .0.22 0.18 0.16 0.12 o.ogi a8 0.07
0.33 023 0.17 0.13 0.10 0.£9 0.08 0.07
0.29 0.25 0.20 0.17 0.14 "0.11 0.10 0.08
0.38 0.26 0.19 0.16 0.13 0.12 0.12 0.10
0.36 0.28 0.27 0.28 0.24 0.16 0.14 0.10
0.32 0.17 0.14

0.42 0.49 0.51 0.45 0.12

014
0.10
009
009
0.08
0.07
0 06
0.07
0 06
0.07
0.06
0.07 007
0.08 007
0.09_.0.08
0.09 0.08

0.14
0.11
o.11
0.11
0.09
0.08
0.08
0.08
0.08
0.07
0.07

0.09 0,06
0.08 0.05
0.07 0.05
0,07 7 0.04
0.086 0.04
0.06 0.04
0.06 0,03
0.05  0.03
0.05 0.03

0.05 0.03 |

0.06 0.03
0.05 0.03
007 0.04

0.07 0.0)

0.07 0.0
0.10 0,05

2

p-2o 025 031 041 0.11
,0.3¢ 019 0.16

.

the test image is LONG-SEQUENCE.
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0.13 0.11

\

Table D.3 Standard deviation of 3D-DET coefficients, frame 1,
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11
12
13
14
156

3.01
1.15
0.83
0.74
0,73

0.57

0.49
0.44
0.35
0.29
0.24
024
0.23
0.28
0.27
0.44

1.06
0.70
0.65

0.55

0.52
0.45
0:40
0%34
0.29
0.29

074
0.58
0.59
0.68
0.61
0.42

0.33

027

0 26
0.27

0252024

0,24
0.25
030
033
0.50

0.23
0.25
028
0 26
0.41

0.86 1.17
0.60 0.57
0.60 0.47
0.78 ' 0.52
09 0.49
042 0.37
033 030
0.26 0.23
020 0.17
022 0.18
022 018
V21 020
025 0.21
026 0.24
025 023
038 0.42

1.33
0.75
0.56
0.42
0.34

0.30

0.27
024
0.18
017
016
0.18
0.18
0.24

1.15
0.98
0.83
0.44
0.30
0.24
0.24
0.26
0.19
0.19
0.15
0.21
0.18
0.32

0.28 .0.41

0.48

0 60

0.94
0.80
0.70
0.39
025
0.20
018
0.19
0.15
015

8.51
0.42
0.41
0.33
0.27
0.18

0.15ﬂ

013
011
013

8134013

017
0.17
0.26
0.33
0.41

0.16
018
0.23
0.22
027

0.42
0.30
0.33
0.29

*0.24

0.15
0.12
0.10

©0,09

0.1
Q.13
0.16
0.20
0.21,
*
0.19
0123

0.25

0.20
0.21
0.22
0.17
0.12
0.10
0.09

0.08

0.09
0 09
0.12
0.13
0.15
0.14
0.17

0.20
0.16
0.16
013
0.12
0.10
3?09
0.09
0.10.
010
010
010
02
0.13
0.12
0.16

0.18

0.13
0.12
0.11
0.10
0.09
0.09
010

010,

009

’
0.08
0.08,

0.09
0.11
0.11
0.16

0.13
0.10
0.10
0.09
0.08
0.07

0.07°

0.07
0-08
007
007
0.07
0.08
0.10
0,10
0.19

0.09 0.05
0.07 0.05

0.07 0.05 |

0.07 0.04
0.06 0,04
0.06 0.04
0.05 0.03
0.04 0.03
0.05 003
0.05 0.03
005 0.03
0,05 0.04
g%s 0.04
0.07 0.05
0.07 0.04
0.09 0.06

@

]

@

Table D.4 Standard deviation of 3D-DCT coeﬂicxents frame 2,
. . the test image is LONG- SEQUENCE. ,

1

e

A

[
-

0

1

2

3 4

- b

6

\

7

8

9

‘10

11

12,

13

14 15

O 03 DN A WN = O

Tl bt ek et b bk
R o O N = O

1.65
0.63
0.46
0.38
0.36
0.33
0.27
0.26
0.24
0.20
0.17
0.21

'0.20

0.23
0.26

| 0.42

b6
0.46
0.38
0.34
0.33
0.28
0.27
0.23
0.22
0.24
0.24
0.24
0.28
0.33
0.37
0.58

0.48
0.33
0.31
0.29
0.27
0.24

0.20

0.18
0.18
0.19
0.18
0.21
0.23
0.25
0.26
0740

0.42 0.46
0.29 0.27
0.25 0.24
0.30 0.22
0.26 0.21
0.19 0.16
0.16 0.15
0.14 0.13
0.12 0.11
0.14 0.12
0.14 0.12
0.14 0.13
0.15 0.14

0.54
0.30
0.25
0,20
0.17
0.16
0.1%
0.14
0.11
0.12
0.11
0.13
0.13

0.71
0.41
0.32
0.22
0.16
0.14
0.i3
0.14
0.12
0.12
0.11
0.13
0.13

0.20 0.17 0.17 0.8

0.21 0.18
0.31 0.30

0.19

. 0.31

0.21

‘0.31

0.49
0.34
0.30
0.23
0.18
0.13

.13
0.13
0.10
0.12
0.11
0.13

0.14°

0.19
0.21
0.30

0.41
0.27
0.27
0.25
0.23
0.16
0.14
0.12
0.10
0.13
0.13
0.17
0.20
0,22
0.20
0.29

0.38
0.25

0.25,

0.29
0.25
017
0.13
0.13
0.11
0.13
0.14
0.17
0.22
022
0.20
0.28

0.30

0.29
0.19
0.18
Q.18
0.16
0.15
0.15
016
0.14
0.15
0.15
0.14
0.16
0.17
0.18
0.26

0.27
0.18
0.1
0.15
.14
0.12
0.14
0.16
0,18
0.16

0.14

0.13
0.13
0.17
0.17
0.30

0.28
0.13

0.12

0.12
0.11
0.09
0.09
0.10

0.11

0.10
0.09

0.10°

0.12
0.13
0.13
0.20

0.12 o.os\
0.09 0.05)
0.08 0.05
0.09 0.05
0.09 0.05
0.07 0.04
0/06 0.04
0.06 0.03
0.06 0.04
0.66 0.04
0.06 0.04
0.07 0.04
0.09 ,0.05
0.10 0.05
0.09 0.05
0.16" 0.06

L J
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Table D.5 Standa.rd devxatxon of 3D- DCT coefficients, fra.me 3,
the test image is LONG-SEQUENCE.
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J Appendix E Entropy and Bit Rates for Indwédual

‘ . ‘Coefficients
s : J I -
This appendix presents results corcerning the coefficients individublly. Table
. ) — . - N .
E.1 contains their entropy computed from the LONG-SEQUENCE image and coded
B k) h
with a quantization step distribution generated with the parametrical function de-

fined in Chapter 3 and parameter value ¢ = 1.0. The bit rates of Table E.2 are those

. . . . . e ) . s
resulting of the integrated coder using a zigzag scanning patterns o post filtering,

and thessame block quantizer as above. . % -
- ©

The bit rates of Table E.3 to E.6 resu\t, also of a three-dimensional integrated

@

coder and the'block quantizer as defined in Sect, 3.5.7

As mentionned in Chapter 3, bit rates really account for the-non:zero values of

‘the coefficients. The amount of bit coded with run length co_di?f.{; is not considered.

\ * 4 '1'(

o9
. L3
. . [

o 1 2 3 '4 5 6 7 B 9 10 11 12 13 14 165
10.6i 7.32 61135.49 495 4.61 4.24 3,88 3.44 3.16 266 2.39 212 1.88 1,36 81
7.69 6.28 5.44 479 4.27 3.81 349 3.13 2.74 239 192 1.62 1.36 1.07 0.68 37
6.72 5.67 4.97 4.33 3.78 3.26 2.95 2.59 2.22 1.90 149 1.21 0.98 0.72 040 0.13
6.16 5.14 454 3.91 337 278 244 206 175’ 149 116 0.86 0.69 045 024 007
5.78 4.78 4.4 3.50 2.92 2.34 1.95 1.56 1.35 1.05 20.82 0.62 0.45 0.29 0.3 0.03
5.33 434 3.65 3.02 245 1.94 154 119 0.99 :0.73 0.54 0.39 0.26 0.17 007 0.03
494 3.96 322 263 204 1.60 1.20 0.90 073 051 0.33-0.26 020 0.08 0.03 0.01
456 3.59 2.86 225 1.66 1.30 1.00 0.74 051 0.34 022 0.9 0.5 0.07 001 000
414 3.11 245 1.86 1.30 0.96 0.74 052 0.33 0.22 011 014 0.13 0.06 0.00 0.00

b

«
W N~ o1

P W3 D N A,
v

10| 3.29 241 192 146 103 068 046 0.31 0.26 0.19 0.12 0.x0 007 0.02 000 0.00
11 296 220 170 1.35 094 0.68 0.53 0.38 0.28 0:22° 0,16 0.10 0.06 0.02 0.00 0.00
12} 244 201 161 130 0.90 0.60 045 0.31 0.30 0.26 0.17 0.09 0.04 0.03 bor 0.00
13] 2.67 1.9% 156 1.25 080 0.71, 0.60 0.47 0.33 0.26 "0.16 0.11 0.07 0.03 0.01 0.00
14| 2583 187 142 1.12°0.82 0.71 0.61 0.49 032 0.23 0.13 0.09 0.07 0.03 0.00 0.00
15| 287 201 149 125 091 0.86 0.74 0.58 0.34 0.26 0.18 0.46°'0.15 0.09 0.06 000

-

* Table E.1 Entropy table for the coefﬁclents quantized with the
parameter ¢ = 1.0 (2D DCT) and generated from

. the image LONG-SEQUENCE. o
Bl ’ V" e ' i e 4 —
] . - 94 - 4, ! h
® rd

3.62 2.72 2.16 1.64 1.11 0.80 0.60 ©43 030 0.20 0.13 0.13 0.11 0.06 0.00 0.00 ’

S
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ru\h 0

1

2

3

4 5

6

7

8

9

10

11

12

<13

14

15

12,00
9.68
7.74
6.79
6.11
6.41
4.80
4.26
3n
310
2.67
2.29

a

8.99
7.04
6.07
5.23
4.68
4.04
3.562
3.03
2.45
2.05
1.71

1.60

b ) e b e
o oo
= I G TR C RPN N R W N D

2.02%91 31
1.96 125
18 118
2,18 1.28

6.69
5.67

4.93

4.2
3.1

3.12

2.60
219
172
1,46
1.22
1.04
0.95
0.91
0.79
0.84

5 68
4.63
3.95
336
2.84
2.33
1.92
154
1.17
099
0.83
0.74
070
0.67

®0.58

0.66

4.80 4.29

3.88 3.23
3.24 2.59
272 2.05
219 1.61
172 1.23
132 0.93
099 071
071 0.47
0.58 037
052 0.31
6.46 " 0.30
043 0.26
0.43 - 0.32
0.38 032

0.43 0.40

3.77
2.84
2.21
1.70
1.23
0.89
0.63..
0.49
0.33
0.25
0,19
0.22
0.18
0.26
0.26
0.33

3.33
2.43
1.83
1.33
0.90
0.62
0.43
0.34
0.21
0.16
0.11
0.14
0.11
0.19
0.19
0.24

2.83
2.02
1.48
1.07
0.74
0.48
0.32
0.21
012
010
009
010

0.11"

0.12
0.11
0.12

2.50
1.66
1.19
084
0.53
0.33
0.21
013
008
0.06
006
007
0.09
0.09
0.08
0.09

1.98
1.22
0.85

060~

0.38
0.22
0.12
0.07
0.03
0.04
0.04
004
0.05
0.05
0.04
006

166
0.96
0.64
0.40
0.27
0.14
0.09

2
0.06
004
0.04
003
0.03
003
0.03
0.02
0.05

- {41
0.75
0.48
0.31
0.18
0.09
0.06
0 04
0 04
0.03
0.02
0 01
0.01
0.02
0.02
0.04

1.19
0.55
0.33
0.18
0.10
0.05
0.02
0.02
002
001
0.00
000
0.01
0.01
0.01
0.03

0.76
0.30
0.15
0.08
0.04
0.02
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
001

0.00

0.37
009
0.04
0.02
0,01
0.01.
0.00

0.00
0.00 1
0.00
0.00
0.00
0.00
000
0.00

[}

v
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Table.E.2 Average bit rate for the coefficients quantized with

. the parameter ¢ = 1.0 (2D DCT) and generated

from the image LONG- SEQUENCE. ' .

.

(-4
>

0 1

2 .

3

4

5

6

7

8

9

10

11

12

13

14

15

12.00 9.53
10.49" 7.83
8.58 7.0
7.70 6.35
7.08 5.95
6.36 5.37
5.81 4.85
5.23 4.33
4.52 3.71
3.89 3.10
3.45 2.72
3.03 2.40
2.74 “2.15
-2.81 2,08
2.59 2.01

© ® 3 AW - O

v

b et d et et s

ok N = O
.

3.36 2.21

“7.03

6.43
6.00
5.54
5.07
4.51
4.00
345
2.98
2,55
2.18
1.89
1.73
1.67
1.48
1.54

5.99
5.47
5.10
4.69
4.28
3.69
3.24
2,76
2.24
1.85
1.55
134
1.26
1.13
0.96
1.00

4.99
4.61
4.31
3.94
3.39
2.91
2.36
1.86
1.44
1.14
0.98
0.82
0.76
0.63
0.54
0.54

440
3.84
3.53
3.03
2.57

T2.10

1.65
1.23
0.87
061
0.49
043
0.34
0.32
0.27
0.32

3.74
3.33
2.98
2,57
2.06
158
1.14
0.81
0.57
0.37
0.25
0.23
0.19
0.18
0.17
0.18

3.35
2.92
2.52

'2.02

1.59
1.11
0.74
0.54
0.35
0.21
0.14
0.11
0.07
0.07
0.07
0.08

2,88
2.53
2 14
l 68
1.30

0.86,

055
0.36
0.2

o
0.09
0.06
0.05
0.04

0.03
0.04

2.563
2.10
1.74
1.35
0.90
0.55
0 34
0.19
012
0.06
0.04
0.03

‘0.03

0.02

L]
0.01

0.01

2.09
171
1.35
103
0.62
0.36
0.20
0.11
0.06
0.03
0.02
0.01
0.01
0.00
0.00
0.00

1.83
1 36

1.04

0.69
043
0.22
0.12
0.06
0.04
0.02
0.01
0.00
0.00

1.60
1.13
0.85
051
0.29
0.14
%.07
003
0.03
0.02
0.00
0.00
0.00

0.007 0.00
0.00 000

0.00 0.00

1.38
0.88
0.60
0.33
0.15
0.09
0.04
0.02
0.01

0.01

0.00
0.00
0,00
0.00
0.00
0.00

0.96
0.60
0.34
0.16
0.07
0.03
0.01
0.01
000
0.00
000
0.00
0.00
0.00
0.00
0.00

0.00

0.66
0.24
0.11
0.05
0.03
0.02

0.00
0.60

0.

o8]
0.00
000
0.00
0.00
0.00

- N ° -
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Table E.3 Average bit rate f)er coefficients, 3D DCT, frame 0; <
ahd generated from the image LONG-SEQUENCE.
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b

1

2

3

4 5

6

7

8

9

10

11

12

K

6.34
4.98
4.34
3.85
3.55
3.05
2.66
2.24
1.86
149
125
+ 10
105
1.03
0.97
1.09
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4

—
<

3

bt b ped b
(3, BECQE U ORI

4.95
. 415
3.63
3.10
2.74
2.29
1.91
1.55
1.21
* 098
0.8
073
066
0.67
063
0.74

4.03
3.42
2.92
2.56
2.23
1.78
1.38
112
0 85
071
0.60
0.51
0.50
0.48
0.42
0.50

3.52
2.83
2.43
2.05
1.66
1.29 .
,0.97
0.73
0.49
043
0.39
0.36
0.37
0.36
0.30
0.39

2.98 2.64
2.41 1.99
1.93 1.51
1.56 1.16
1:25 0.81
0.9% 0.58
063 0.41
0.46 0.31
0.27 0.17
0.22-%0.13
022 0.09
020 0.11
0.19 009
0.20 0.15
018 0.16

2.31
1.66
1.22
0.88
0.58
0.35
0.24
017
0.11
007
0.04
0.07
0.04
0.10
0.13
0.17

1.85
1.27
0.87
0.60
0.32
0.21
0.13
0.07
0.04
0.03
0.01

0.03_

0.02
0.07
0.08
0.11

1.41
0.88
0.62

0.37 -

0.24
0.12
0.06
0.02
0.01
0.01
0.00
0 00
0.01
0.02
0.02
0.02

1.20
0.65

0.41¢

0.26

0.14

0.06
0.02
0.01
000
0.00
0.00
0.00
0.00
0.01
0.00
0.01

0.77
0.38
0.25
0.14
0.08
0.02
0.00
0.00
0 00
0.00
0.00
0.00
0.00
0.00
0.00
000

0.62”
0.28
0.15
0.07
0.04
- 0.01
0.00
0.00
000
0.00
.0.00
0.00
0.00
0.00
0.00
000

0.49
0.18
0.10
0.04
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.41
0.13
0.05
0.02
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.20
0.06
0.02
0.01
0.00
0.00
0.00
Q.00
000
0.00
0.00
0.00
0.00
0.00
0.00

0.00 0.00

'

0.23 0.23

Table E.4. Average bit rate per coefficients, 3D DCT, frame 1,
and generated from the image LONG-SEQUENCE.
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*

B

v\k]| O 1, 2 3 4 L 5 6 7 8 9 10 11 12 13 14 15
0- | 4.07 3.40 2.87 262 231 2.20 1.95 1.73 4.34 1.19 0.81 0.67 0.51 040 0.20 0.08
1 |3.28 284 237 203 176 1.59=],35 1,15 0,86 *0.65 0.43 0.32 0.22 0.13 0.04 0.01
2 |2.85 244 2.03 171 1.38 1.15, 0.96 0.81 0.58 0.44 0.27 0.20 0.11 0.06 001 0.00
3 1259 210/1.76 1.44 1.13° 0.86 0.71 0.55 0.40 0.31 0.21 0.09 0.06 002 0.00
4 1238 1.85/:.4'7 1.20 0.87 0.61 0.46 0.32 0.25 0.18 0.10 0.05 002 0.01 0.00 0.00
5 |2.06 155 119 090 0.62 0.43 0.31 0.20 0.14 0.08 0.04 0.02 0.01 0.00 0.00 0.00
6 |1.80 127 090 064 0.47 033 0.23 0.12 0.08 0.04 0.02 001 0.01 000 0.00 0.00
7 11.53 l.Oé 0.72 0.48 0.31 0.26 0.18 0.10 0.04 0.02 0.01 0,00 0.01 0.00 0.00 0.00

. 8./1.22 081 052 033 018 0.14 0.10 0.07 0.02 001 0.00 00 0.01 000 0.00 0.00
9 [1.10 072 0.47 028 0.16 0.13 0.09 0.06 0.03 0.01 0.00 0.01 0.60 0.00 0.00 0.00
10470.97 061 0.40 0.26 0.15 0.09 0.05 0.03 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00
11[087 057 039 024 0.14 0.09 0.09 0.05 0.03 0.03 0.01 0.00 000 0.00 0.00 0.00
121083 053 039 024 0.15* 0.08 005 0.04 0.04 0.04. 0.01 0.00 0.00 0.00 0.00 0.00
13/0.82 0.56 0.38 0.27 0.16 0.14 0.14 0.09 0.05 0.03 0.01 0.01 0.00 0.00 0.00 0.00
14070 050 0.32 0.23 ‘0.104 0.14 0.15 0.10 0.04 002 0.00 0.00 0.00 0.0(\ 0.00 0.00
15|0.87 065 043 033 0.20 0.22 0,21 0.13 0.05 0.04 0.01 0.01 0.01 0.01 : 0.00 0.00

\
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Table E.5 Average bit, rate per coefficients, 3D DCT, frame 2, .
’ and generated-from the image LONG-SEQUENCE.,
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v\ h 0 1

2

~ 3 4 5 6 7 8 9 10 11 12 13 14 15

JED SR

0 ]3.03 236
1 216 1.83
2 179 148
3 1.59 1.24
4 141 1.06
6 1.26 0.88
6 111 074
7 106 066
8 124 052
9 |07 052
107064 044
11060 041
121057,041
131057 045
147057 042
151073 065

1.90
1.41
114
0.93
0.75
059
0.46
0.36
030
027
0.24
0.25
0.25
026
025
035

166 1.49 145 145 1.24 108 1.02 078 0.67 0.61 0.49 0.24 008
117 099 092 089 078 062 0.54 040 0.33 027 018 0.09 0.02
0.88 073 0.64 060 051 042 036 029 0.21 0.18 0.10 0.03 0.01
0.71 0.54 0.43 040 0.33 0.29 0.27 020 0.14 012 0.06 002 @.00
0.53 040 0.29 0.22 0.18 0.17 0.18 0.14 0.10 0.07 0.03 0.01 0.00
0377026 0.22 0.3 0.10 0.11 0.10°0.07 0.06 0.03 0.01 0.00 000 )
027 018 0.15 010 007 0.07 0.08 004 0.04 0.03 0.01'0.00 0.00
020 0312 011 0.08 0.06 004 0.04 002 003 0.02 0.01 0.00 0.00
013 006 005 004 003-001 002 001 002 003 001 000 0.00
014 007 005 003 003 002 003 001 0.02 002 000 000 000
011 006 003 002 002 002 002 001 0.02 001 000 0.00 000
810 006 005 003 003 ,004 0.03 002 001 001 000 000 0.00 .
610 007 003 002 0.02 004 005 003 001 000 0.00 000 0.00
013 0.07 0.06 005 004 004 0.04 003 0.02 001 0.00 0.00 0.00- o
013 007 006 0.06 004 003 003 002 0.01 001 0.00 0.00 0.00 .

021 012 011 011 008 005 004 003 003 003 0.01 001 000

Table E.6 Average bit rate per coefficients, 3D DCT, frame 3,

<t

' o

and generated from the image LONG-SEQUENCE.

.

o
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