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ABSTRACT

Application Programming Interfaces (APIs) allow software developers to reuse code

libraries, frameworks, or services without the need of having to implement relevant

functionalities from scratch. The benefits of reusing source code or services through

APIs have encouraged the adoption of APIs as the building blocks of modern-day

software systems. However, leveraging the benefits of APIs require a developer to

frequently learn how to use unfamiliar APIs — a process made difficult by the in-

creasing size of APIs, and the increase in the number of APIs with which a developer

has to work. In this dissertation, we investigated some of the challenges developers

encounter when working with unfamiliar APIs, and we designed and implemented

new programming tools to assist developers in learning how to use new APIs.

To investigate the difficulties developers encounter when learning to use APIs,

we conducted a programming study in which twenty participants completed two pro-

gramming tasks using real-world APIs. Through a systematic analysis of the screen

captured videos and the verbalizations of the participants, we isolated twenty dif-

ferent types of questions the programmers asked when learning to use APIs, and

identified five of the twenty questions as the most difficult for the programmers to

answer in the context of our study. Drawing from varied sources of evidence, such

as the verbalizations and the navigation paths of the participants, we explain why

the participants found certain questions hard to answer, and provide new insights to

the cause of the difficulties.
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To facilitate the API learning process, we designed and evaluated two novel pro-

gramming tools: API Explorer and Introspector. The API Explorer tool addresses

the difficulty a developer faces when the API types or methods necessary to imple-

ment a task are not accessible from the type the developer is working with. API

Explorer leverages the structural relationships between API elements to recommend

relevant methods on other objects, and to identify API types relevant to the use

of a method or class. The Introspector tool addresses the difficulty of formulating

effective queries when searching for code examples relevant to implementing a task.

Introspector combines the structural relationships between API types to recommend

types that should be used together with a seed to search for code examples for a given

task. Using the types recommended by Introspector as search query, a developer can

search for code examples across two code repositories, and in return, will get a list

of code examples ranked based on their relevance to the search query. We evaluated

API Explorer through a programming study, and evaluated Introspector quantita-

tively using ten tasks from six different APIs. The results of the evaluations suggest

that these programming tools provide effective support to programmers learning how

to use APIs.
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ABRÉGÉ

Les interfaces de programmation (API) permettent aux développeurs de réutiliser

du code, des bibliothques, des cadres d’application ou des services sans avoir à

réimplémenter des fonctionnalités importantes à partir de zéro. Les avantages de

la réutilisation de code source ou de services par des APIs ont encouragé l’adoption

des APIs comme composant essentiel des logiciels modernes. Cependant, pour tirer

parti des avantages des APIs, les développeurs doivent fréquemment apprendre à

utiliser des APIs inconnus, un processus rendu difficile par la taille grandissante des

APIs et par l’augmentation du nombre d’APIs avec lesquels les développeurs doivent

travailler. Dans cette dissertation, nous avons étudié les défis que les développeurs

rencontrent quand ils travaillent avec des APIs inconnus et nous avons conu et

implémenté de nouveaux outils de programmation pour aider les développeurs à

apprendre comment utiliser ces APIs.

Pour étudier les difficultés que les développeurs rencontrent lorsqu’ils apprennent

à utiliser les APIs, nous avons conduit une étude dans laquelle 20 participants ont

complété deux exercices de programmation en utilisant des APIs populaires. Par une

analyse détaillée des bandes vidéo enregistrées lors des exercices et des commentaires

émis par les participants, nous avons isolé vingt différent types de questions que les

programmeurs ont posées lorsqu’ils apprenaient à utiliser les APIs. Nous avons aussi

identifié cinq questions sur les 20 comme étant les plus difficiles à répondre par les

programmeurs dans le contexte de notre étude. Notre analyse fournit des éléments

probants qui expliquent la cause des difficultés observées.
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Pour faciliter l’apprentissage des APIs, nous avons conu et évalué deux outils

de programmation: API Explorer et Introspector. API Explorer est un outil qui a

pour but de diminuer la difficulté que les développeurs rencontrent quand les types

ou les méthodes nécessaire à l’accomplissement d’une tâche dans une API ne sont

pas accessibles à partir du type avec lequel le développeur travaille. API Explorer

tire parti des relations structurelles entre les éléments d’une API pour recomman-

der des méthodes pertinentes sur d’autres objets et pour identifier les types d’une

API pertinents pour l’utilisation d’une méthode ou d’une classe. Introspector est

un outil qui a pour but de réduire la difficulté à formuler des requêtes efficaces

lorsque les développeurs cherchent des exemples de code reliés à l’accomplissement

d’une tâche de programmation. Introspector combine les relations structurelles entre

les types d’une API pour recommander les types qui devraient être utilisés ensem-

ble avec un germe pour chercher des exemples de code pour une tâche particulire.

Un développeur peut ainsi chercher des exemples de code dans deux référentiels en

utilisant les types recommandés par Introspector. En retour, l’utilisateur recevra

une liste d’exemples de code triée en fonction de leur pertinence avec leur tâche

courante. Nous avons évalué API Explorer grâce à une étude avec des utilisateurs

et nous avons évalué quantitativement Introspector en analysant les résultats de dix

tâches effectuées avec six APIs différents. Les résultats de notre évaluation suggrent

que les outils de programmation que nous proposons offrent un support efficace pour

les programmeurs désirant apprendre à utiliser une API.
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CHAPTER 1
Introduction

Application Programming Interfaces (APIs) play a central role in modern-day soft-

ware development. Software developers often favor reuse of code libraries or frame-

works through APIs over re-invention since reuse increases productivity and improves

the quality of the software. An informal examination of a few software systems show

the wide spread use and heavy reliance on APIs by both medium-size and large scale

systems (see Table 5–1). For instance, Netbeans,1 an Integrated Development En-

vironment, written in Java relies on over 27 different APIs; JasperReport,2 an open

source system for creating reports in a variety of document formats, makes use of

over fifteen different APIs including an API for creating PDF documents, an API

for generating charts, and an API for parsing XML files. The benefits of using APIs,

however, do not come cheap: previous work on API usability showed that learning

how to use APIs presents several barriers [28, 40, 49, 51], and that “understanding

how the APIs are structured, selecting the appropriate classes and methods, figuring

out how to use the selected classes, and coordinating the use of different objects to-

gether all pose significant difficulties” [50]. These difficulties are further compounded

1 http://netbeans.org/

2 http://jasperforge.org/projects/jasperreports

1



Table 1–1: API usage in sample software systems.

System Description Version # of Libraries

JasperReport A framework for generating
reports.

4.0.0 15

Eclipse BIRT A business intelligence and
reporting tools designer.

2.6.2 6

Hibernate An object-relational map-
ping persistence framework.

3.6.4 27

Apache Tomcat An open source servlet con-
tainer.

7.0 5

Netbeans An Integrated Development
Environment.

5.5 23

by the increasing size and complexity of APIs: for example, version 1.5 of the Java

J2SE APIs is reported to contain more than 4000 classes and more than 35,000 dif-

ferent methods, and the Microsoft .NET 2.0 Framework contains more than 140,000

classes, methods, and fields [48]. Given the size of APIs and the increase in the

number of APIs, even experienced developers must frequently learn newer parts of

familiar APIs, or newer APIs when working on new tasks.

The main goal of this dissertation was to investigate why developers find certain

questions about the use of APIs hard to answer, and to suggest new ideas and tools

to facilitate the process of learning how to use an API. To achieve this goal, we

began with an exploratory study aimed at isolating the different types of questions

developers ask when learning to use an API and investigating those questions that

proved difficult for developers to answer; Next, we identified areas in the API learning

process where effective tool support is missing or could be improved; and finally, we
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designed and evaluated new techniques and programming tools to facilitate the API

learning process.

We begin with an example to illustrate the API learning process and to highlight

some of the challenges a developer may encounter when using an unfamiliar API; then

we present the research questions investigated in this thesis (Section 1.1). Lastly,

we present a summary of the contributions of the thesis in Section 1.2, with forward

references to chapters that provide a detailed presentation of each contribution.

1.1 Motivation

To help illustrate some of the questions developers ask when using unfamiliar APIs

and to highlight some of the challenges they may encounter answering those ques-

tions, we use a task completed in a user study conducted as part of this thesis. In the

task, we asked the participants to create a pie chart and save the chart in a graphic

format using the JFreeChart API, a popular open source API for generating charts.

One participant in the study began by looking for a type3 in the JFreeChart

API representing charts in general, or pie charts in particular. The questions asked

by the participant at this stage were about locating a central-type which embod-

ied the concept to be implemented: for instance, “Which class or interface of the

API provides support for creating a chart?”. The participant eventually found the

JFreeChart class, the central-type provided by the API for representing charts. The

participant soon realized that other classes, besides the JFreeChart class, were needed

3 An API type for our purpose is either an API class or an API interface.
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to create a pie chart. The questions asked by the participant then shifted to locat-

ing one or more secondary-types to be used together with the JFreeChart class for

creating a pie chart: for instance, “Which other classes related to the JFreeChart

class are relevant to creating a pie chart?”. The JFreeChart API provides two op-

tions for creating a pie chart: the easier and simpler way is through a convenience

method on the ChartFactory class; the other option, which requires the coordination

of several classes (Plot, Dataset, and Title), is through a public constructor of the

JFreeChart class. The participant, unaware of the existence of the ChartFactory

class (since ChartFactory is not directly accessible from the JFreeChart class), used

the constructor option.

Once all the relevant classes were located, the questions asked by the participant

then shifted to figuring out how to create instances of the central-type and secondary-

types, and how to coordinate the use of these types to create a pie chart: for in-

stance, “How do I create objects of type Plot?”; “How is Plot related to Dataset?”.

After creating the pie chart, the participant then looked for a “save” method on the

JFreeChart class, the last step needed to complete the task: “Does the JFreeChart

class provide a method for saving the chart?”. However, the JFreeChart class does

not contain a “save” method. The participant then looked through all the methods

of the JFreeChart class, thinking that the method was named something else. How-

ever, the participant did not find any “save” method. The questions asked by the

participant then shifted to locating a helper-type in the API for saving the chart to

a file in a graphic format: “Does the API provide a helper-type for saving charts in

a graphic format?”. The participant visited the documentation in search for a class

4



that could save a JFreeChart object in a graphic format. The participant was unable

to locate a helper-type and concluded that the API simply did not provide support

for saving charts. However, the API provides the helper-type ChartUtilities, which

provides methods (such “saveChartAsJPEG” and “saveChartAsPNG”) for saving

charts in different formats, but ChartUtilities is not directly accessible from the

JFreeChart class.

This example illustrates some of the questions developers ask when working with

unfamiliar APIs and some of the challenges they encounter when trying to answer

questions about the use of APIs. In general, the API learning process involves asking

questions and answering them through a series of incremental discoveries such as

locating the relevant types, understanding how they are related, and coordinating

the use of the different types. Making these discoveries without appropriate tool

support is challenging. In this thesis, we extend the body of knowledge in the area

of API learning by investigating the following research questions (RQ):

I. What are the different types of questions developers ask when work-

ing with unfamiliar APIs? The objective of this question was to isolate and

understand the needs of developers working with unfamiliar APIs, to identify

questions about the use of APIs that are difficult to answer, and to understand

the cause of the difficulty.

II. How well do existing tools support developers working with unfamil-

iar APIs? The objective of this question was to understand the degree to

which existing tools support the questions asked by developers, and to identify

areas where tool support is missing, or could be improved.
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III. How can programming tools facilitate the process of learning how to

use APIs? Having identified features that hinder the API learning process,

we proposed new ideas and techniques to support API learners, and as proof

of concept, implemented prototypes to evaluate the suitability of the proposed

ideas and techniques in supporting developers working with unfamiliar APIs.

1.2 Contributions of Thesis

1.2.1 Asking and Answering Questions About Unfamiliar APIs

To understand what a programmer needs to know when using a new API and how

best to support programmers, we conducted a study in which 20 participants worked

on two programming tasks using different real-world APIs. The study generated over

20 hours of screen captured videos and the verbalization of the participants span-

ning 40 different programming sessions. Our analysis of the data involved generating

generic versions of the questions asked by the participants about the use of the APIs,

abstracting each question from the specifics of a given API, and identifying those

questions that proved difficult to answer using the actions of the participants that

reflected a lack of progress when looking for information. Based on the results of our

analysis, we identified 20 different types of questions the programmers asked about

the use of the APIs grouped in five different categories: discovering the functional-

ity provided by an API relevant to a task, understanding the relationships between

types, discovering relevant dependent types, selecting relevant API elements,4 and

4 An API element could be an API method, an API class, or an API interface.
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understanding the behavior of API methods. We also identified the following ques-

tions as the most difficult for programmers to answer in the context of our study:

• Which keywords best describe a functionality provided by the API?

• How is the type X related to the type Y?

• Does the API provide a helper-type for manipulating objects of a given type?

• How do I create an object of a given type without a public constructor?

• How do I determine the outcome of a method call?

Drawing from varied sources of evidence, such as the verbalizations and the naviga-

tion paths of the participants, we explain why the participants found these questions

hard to answer, and provide new insights to the cause of the difficulties. We believe

the questions we have identified and the difficulties we observed can be used for eval-

uating tools aimed at improving API learning, and in identifying areas of the API

learning process where tool support is missing, or could be improved. As an exam-

ple, we identified some areas where support is limited from existing tools including

the need for IDE based tools that would assist a programmer in discovering relevant

API elements not accessible from a type the programmer is working with; and tools

that would assist a programmer in easily identifying types that would serve as a

good starting point for searching for examples, or for exploring the API for a given

programming task. We present the details of the study, the analysis of the data from

the study, and the results and observations in Chapter 3.

1.2.2 API Explorer: Coordinating the Use of Multiple Objects

Amongst the difficulties we observed, questions about the relationships between API

types (such as How is the type X related to the type Y?, or Does the API provide
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a helper-type for manipulating objects of a given type? ) proved the most difficult

for programmers to answer when working with unfamiliar APIs. The difficulties the

participants encountered were due in part to a mismatch between the structuring of

the APIs and the expectations of the participants. For instance, in the Chart task,

most participants expected the helper-type for saving a chart to be in either the

“util”, “io”, or “renderer” package of the API but it was somewhere else. Although

most participants successfully created the chart, some did not complete the task

because they could not locate the helper-type related to saving. For the second task,

participants had to validate an XML file against a given schema. Most participants

were able to locate the central-element for validating an XML file against a given

schema (Validator.validate(Source)), but could not figure out how to create a

Validator object or how to relate the Validator class to its secondary-type, Schema

class. One participant attributed the difficulty of relating Validator to Schema to the

absence of a “cross-reference in the API documentation that says get a Validator

instance from a Schema”.

We observed that, in general, the participants relied on imperfect proxies such

as domain knowledge, expectations of how an API should be structured, and nam-

ing conventions as beacons for locating related API elements, or for understanding

the relationships between a central-type and its corresponding secondary-types and

helper-types. However, these attributes do not stay the same across different APIs

and their use may be misleading, resulting in unsuccessful searches and wasted ef-

forts. We therefore need more reliable attributes that would assist programmers
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in discovering and coordinating the use of relevant helper-types. Specifically, we

investigated the following:

• How can we efficiently relate an API type to its secondary-types and helper-

types?

• How can we support API learners in the use of relevant API elements, and in

the coordination of related types?

To provide API learners the support needed to efficiently relate API elements or to

coordinate the use of multiple API elements, we proposed leveraging the structural

relationships and the flow of information between API classes and methods. Our

hypothesis is that the relationships between API elements such as the return types

of API methods and the parameters of methods are better beacons for locating or re-

lating relevant classes and methods than the use of domain knowledge, the expected

structure of an API, or naming conventions. For instance, using static analysis on

the API for the XML validation task, we can deduce that Validator and Schema

are structurally related through Schema.newValidator(), a method which returns an

instance of Validator. This fact can then be presented to an API learner, when

requested, to illustrate how to create a Validator object, or how to relate Validator

to Schema. To capture the relationships between API elements, we modeled an API

as a special dependency graph of entities (classes, interfaces, and methods) related

through structural and data flow relationships such as return types, method param-

eters, and subtyping. This representation, called API Exploration Graph, is simple
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but contains enough information for inferring the relationships between an API ele-

ment and its secondary-types and helper-types, and for supporting API learners in

the use and the coordination of these related types.

We developed a recommendation system, called API Explorer, which uses the

information on the API Exploration Graph to generate recommendations that would

assist a developer to discover helper-types not accessible from a main-type based on

the structural context in which help is requested. API Explorer is implemented as an

extension to the content assist feature of the Eclipse IDE. Content assist in Eclipse,

or IntelliSense in Microsoft Visual Studio, provides context sensitive autocompletion

of variable or method names, but is limited to showing only the methods of the

object on which it is invoked. Previous work to improve the content assist feature

has been limited to re-ordering the list of methods [5, 38]. API Explorer is the

first novel extension, to our knowledge, capable of suggesting relevant methods on

other objects, identifying API elements relevant to the use of a method or class, and

providing support for combining multiple objects. We use examples to illustrate how

API Explorer supports the needs of API learners:

How do I construct an object of a given type?

A common frustration amongst the participants in the exploratory study relates

to creating objects from classes without public constructors: “I need to create a

Schema object and also ... a Validator object. The problem is these two classes are
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abstract and I can’t find their derived classes.”5 API Explorer provides support for

creating objects from various construction patterns including declared constructors,

constructors of subtypes, factory methods, public methods, or static methods.

Consider a scenario in which a developer has to implement a solution to compose

and deliver an email message using the JavaMail API. Going through the documen-

tation of JavaMail, the developer found Message, the main-type representing an email

message. The developer then proceeds by attempting to construct an object of type

Message from the default constructor6 but is unsuccessful since Message is an ab-

stract class. Faced with an object construction hurdle, the developer would query

API Explorer for assistance by invoking content assist: the developer would enter

Message m =, then the key sequence Ctrl+Space, and API Explorer would instantly

display two options for creating a Message object from MimeMessage (see Figure 1–

1(A)). Selecting a recommendation reveals a hoverdoc, containing a rationale, that

explains why the element was recommended, and the documentation of the recom-

mended element to help a developer determine its relevance in the given context

(see Figure 1–1). Once the developer makes a selection, API Explorer automatically

expands the selected recommendation into code that shows how the elements needed

to create an object of type Message should be combined (see Figure 1–1(B)).

5 The Validator and Schema objects are created from factory methods

6 Three separate studies observed that most developers, both novice and experts
alike, begin object construction by attempting to use the default constructor [15, 49,
51].
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Figure 1–1: API Explorer shows the developer the types required to construct an
instance of Message and generates code which illustrate how to combine these types.

Does the API provide a helper-type for manipulating objects of a given

type?

Often, the methods API users need are not on the objects they are working with. For

instance, the method for saving the chart in a graphic format is not on the JFreeChart

class, but on the ChartUtilities class — a helper-type. Also, the JavaMail API,

provided by Sun Microsystems, has the method for sending an email message on

a different class, not the Message class. API Explorer supports API users by sug-

gesting relevant methods on other objects. For instance, a developer looking for a

“send” method on Message, will see three “send” methods of the Transport class

recommended by API Explorer (see Fig. 1–2).

At times, a developer may search for a method prefix that does not match

the name of any method on the helper-types (e.g., searching for “message.forward”

instead of “message.send”). In this case, API Explorer combines structural analysis
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Figure 1–2: API Explorer recommends three “send” methods of the Transport class
which can be used for sending an email Message object.

Figure 1–3: API Explorer combines structural analysis with synonym analysis to
recommends three “send” methods of the Transport class when a developer looks for
a “forward” method on the Message object.

with synonym analysis to recommend methods with a name similar to what the

developer is looking for (see Figure 1–3).

Evaluation. We evaluated API Explorer through a multiple-case study in which

eight programmers were asked to complete the same four programming tasks using

four different real-world APIs, each task presenting multiple API learning challenges.
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The results of the study were consistent across the participants and the tasks: the

participants successfully used API Explorer to discover relevant helper-types not ac-

cessible from a main-type, and experienced little difficulty selecting API elements

relevant to a given programming scenario when presented with a list of possible

helper-types. The results also showed that the use of structural relationships, com-

bined with the use of content assist to generate and present recommendations, could

be a viable, and an inexpensive, alternative when seeking to make helper-types dis-

coverable from objects a programmer is working with. We present the API Explo-

ration Graph, the algorithms of API Explorer, and the evaluation of API Explorer

in Chapter 4.

1.2.3 Introspector: Facilitating Effective Query Formulation

Learning from code examples is one of the strategies developers employ when learn-

ing how to use an API. Locating relevant code examples on the Web or in source

code repositories presents two major challenges: formulating the right search query

and evaluating the relevance of the search results to locate a suitable code example.

Searching for suitable code examples is an iterative and a refinement process: a devel-

oper formulates a search query (Query Formulation), retrieves some code examples,

and looks through the code examples for a relevant results (Determine Relevance

of Results); the entire process is repeated if no suitable example code was found

(Figure 1–4, Hill et al. [20]).

Query formulation is difficult because developers often lack a clear understand-

ing of what they need when beginning a new a task, and even when they do, they

have difficulty using keywords that correspond to those used by the API designers.
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Figure 1–4: An overview of the query formulation and code search process.

This difficulty, referred to as the vocabulary mismatch problem (multiple words for

the same topic) has been identified as a major challenge to query formulation [16, 18].

Research has reported a word agreement of less than 15% between the queries for-

mulated by users and the words used in the source code [16]. Our study corroborates

the vocabulary mismatch problem : we identified the question “Which keywords best

describe a functionality provided by the API?” as being difficult for programmers to

answer when working with unfamiliar APIs.

To assist developers in formulating effective queries, researchers have employed

natural language techniques that automatically extract, categorize, and recommend

word usage from the underlying source code [20, 37, 44]. Given one or more key-

words from the developer, these techniques would recommend alternative words to

help the developer explore the word usage in the given source code, and to use

these alternative words to reformulate search queries. Some of these techniques also

associate the recommended words with the program elements they describe so the

developer can see the context of the matches to the query words, and determine the
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relevance of each program element to the search [20]. However, these techniques are

still within the natural language domain — the developer still has to provide one or

more keywords as the seed, and therefore, they share to a certain extent some of the

limitations of the vocabulary mismatch problem.

We proposed a technique based on API types to help facilitate the process of

query formulation. Our idea is that instead of trying to guess the most appropriate

keywords to use as the seed of a query, the developer would provide an API type

relevant to the scenario to be implemented, then our technique would recommend

relevant types strongly associated with the usage of the given type. The developer can

then use the recommended types as a starting point for searching for code examples,

or for exploring the API for a given programming task. To investigate our technique,

we developed a programming tool called Introspector, implemented as an Eclipse

plug-in. Consider an example of a developer working on a task for sending an email

using the JavaMail API. Instead of trying to guess the most appropriate keywords to

use as a query for locating code examples, the developer can simply provide an API

type relevant to sending an email. For instance, the developer may provide the type

javax.mail.Message — by selecting Message in the editor and invoking Introspector

(see Figure 1–5).

Introspector uses five different heuristics that combine structural relationships

and type usage information to identify types that are strongly associated with the use

of Message (the seed). In this case, we identified six types that are strongly associated

with the usage of Message. To assist the developer in selecting types for query formu-

lation, we provide a confidence value and a rationale for each recommended type. A
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Figure 1–5: Identifying API types strongly associated with the use of Message.

confidence value of 1.0 implies the given type is associated with every possible use of

the seed, and each rationale corresponds to one of the heuristics of Introspector. For

instance, MimeMessage has two rationales: On all construction paths (to indicate that

it is associated with every usage of Message) and Referenced in documentation of seed

(to indicate that MimeMessage was singled out in the documentation of Message). The

developer may then examine some of the recommended types using their Javadoc,

and then select the types that should be used for retrieving code examples. In this

case, the developer may select all the types with a confidence value of 1.0 and the

Transport class since the task is about sending an email (see Figure 1–6).

Once the developer selects the types for the query, Introspector forwards the

search query to a code repository. Introspector currently supports the Google Code

Search7 and the Koders8 repositories. The results from the code repository are

7 www.google.com/codesearch/

8 www.koders.com
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Figure 1–6: Formulating a search query from the recommendations of Introspector.

source code files, however, not every source file contains examples relevant to the

search query. To assist the developer to quickly identify relevant results, we used the

partial program analysis framework [10] to identify type usage within each method

of the source files, then we compared the overlap between the types in the search

query and the types references within each method of a given source file. An overlap

of 100% implies every type in the search query is referenced within a given method.

We then ranked both the source files, and the methods within each source file based

on the degree of overlap, and display only the methods with an overlap of 50% and

above. In the case of this example, the “sendEmail” method of the first results

provides the exact code needed to send an email message. A developer can examine

the code corresponding to a method or class by double clicking on the corresponding

node.

Evaluation. We used ten tasks from six different APIs to evaluate our approach.

The description and solution of each task form part of the documentation provided by

the API designers, and were used as an oracle for evaluating the relevance of the code
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examples recommended by Introspector. We began the evaluation by selecting API

types to be used as the input for each task using three different seed selection schemes;

then, we ran Introspector for each task, and for each input type, to formulate a

search query. Subsequently, we searched for code examples using the formulated

search queries, and verified whether the solution provided for each task was amongst

the top three code examples recommended by Introspector. We also compared our

approach to the use of natural language queries when searching for code examples.

We observed that our approach is effective in identifying API types associated with

the usage context of a seed, and that our query formulation strategy is more effective

than the use of natural language based queries when searching for code examples.

We present the heuristics of Introspector and its evaluation in Chapter 5.

1.2.4 Summary of Contributions

This thesis makes the following contributions:

I. A catalog of the different types of questions programmers ask when working

with unfamiliar APIs, an objective criterion for determining hard-to-answer

questions, and a catalog of qualitative evidence explaining why developers find

certain questions hard to answer. These questions complement what is known

about the needs of API users, and can be used to identify areas of the API

learning process where tool support is missing, or could be improved.

II. The definition of a special dependency and data flow graph for APIs, called

an API Exploration Graph, and algorithms which leverage the structural rela-

tionships between API elements to provide support for relating an API type to
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its secondary-types and helper-types, and support on how to use and combine

these related types.

III. A technique to recommend API types strongly associated with the use of a given

type using heuristics based on structural dependencies and frequency measures.

The recommended types could serve as a starting point for query formulation,

or as an initial point for further exploration of the API for a given task.

IV. Two programming tools (API Explorer and Introspector) embodying the ideas

and techniques proposed in this thesis, and evidence that these tools facilitate

the process of learning how to use unfamiliar APIs.

1.3 Organization of Thesis

We continue in Chapter 2 with related work and a discussion of how this thesis relates

to previous efforts aimed at supporting programmers make use of APIs. In Chapter 3,

we present the details of the programming study, the analysis of the data from the

study, and our results and observations. We present the API Exploration Graph,

the algorithms of API Explorer, and the evaluation of API Explorer in Chapter 4.

The heuristics and the evaluation of Introspector is presented in Chapter 5, and we

conclude the thesis in Chapter 6.
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CHAPTER 2
Related Work

This thesis builds on previous work related to programming studies, the information

needs of programmers, and tools to help a developer working with unfamiliar APIs.

2.1 Programming Studies

2.1.1 API Usability Studies

Previous studies on API usability sought to identify factors that hinder the usabil-

ity of APIs and to understand the trade-offs between design options. Ellis et al.

conducted a study to compare the usability of the Factory pattern in contrast to

constructors for object creation using five programming tasks and twelve partici-

pants [15]. Ellis et al. observed that the participants experienced difficulty and

required significantly more time to construct an object with a Factory than with

a constructor. Stylos et al. conducted a user study in which the usability of pa-

rameterless constructors was compared to constructors with parameters using thirty

professional programmers and six tasks: they reported that programmers strongly

preferred and were more effective with APIs that provide parameterless construc-

tors [49]. In another study examining the placement of methods (that is, the class to

which a method belongs), Stylos et al. reported that participants were significantly

faster at identifying relevant dependencies and combining objects when the methods

of a starting class referenced its dependencies [51]. Clarke uses the “Cognitive Di-

mensions” [7], a framework for describing API usability problems, to identify specific
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usability issues with Microsoft APIs, and to help inform the design of more usable

APIs. Other studies have looked at the role of web resources in learning how to

use APIs: in a lab study involving twenty participants and five tasks, Brandt et al.

observed that programmers used the Web primarily for just-in-time learning of new

skills, and to clarify or remind themselves of previously acquired knowledge [3]. In a

different study, Stylos and Myers identified several challenges developers encounter

when using the Web and proposed Mica, a tool for identifying web pages with code

examples [50]. Prior studies have either focused on the usability of different API

design choices (e.g., Factory pattern versus constructors), or the usability issues of

a specific API, or a learning resource. Our study complements previous efforts by

looking at the specific questions developers ask when working with unfamiliar APIs,

the difficulties they encounter answering these questions, and the degree to which

existing tools support developers working with a new API.

2.1.2 Information Needs of Programmers

Several contributions have been made in the area of the information needs of pro-

grammers in general. Ko et al. conducted a study in which forty novice programmers

were asked to complete several tasks using Visual Basic .NET [28], and identified

learning barriers and information needs that must be satisfied for the programmers

to compete the tasks. In a different study, Ko et al. observed and transcribed the

activities of seventeen developers working on different tasks during a ninety minutes

session [27]. Ko et al. analyzed the transcripts for the type of information that

developers sought, the sources that they used, and the situations that prevented

information from being acquired: they identified twenty one different information
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needs of programmers, grouped into seven categories: writing code, submitting a

change, triaging bugs, reproducing a failure, understanding execution behavior, rea-

soning about design, and maintaining awareness. They also observed that the most

difficult needs to satisfy were questions about the rationale for design decisions, and

that questions about APIs that could not be answered using the documentation or

tools, were answered by consulting coworkers. Sillito et al. identified forty four dif-

ferent types of questions asked by programmers when maintaining software code, and

investigated the degree to which existing tools support the questions programmers

ask when modifying the source code [45]. In contrast, our study focused on the ques-

tions programmers ask when working with unfamiliar APIs, the factors that hinder

programmers from answering questions about the use of an API, and the sufficiency

of existing tool support.

2.1.3 Empirical Studies of Programming Strategies:

Work in the area of program comprehension has identified different strategies used

by programmers to understand programs [47]. Some have argued that programmers

use a top-down strategy to understand programs: that is, they work from higher level

abstractions to the code [4]; Others hold that programmers use a bottom-up strategy

by working from the code to the higher level abstractions [35]. Whether top-down

or bottom-up, programmers either work systematically (study a system in detail to

gain a global understanding of its structure) or opportunistically (focus only on areas

related to their task). Clarke calls these different work styles personas, and observed

that work styles are independent of a developer’s level of experience or educational

background [7]. We observed comparable work styles in the context of learning how
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to use APIs, although the goals were different from those of program comprehension.

We borrow terminologies from the program comprehension literature to help explain

some of our observations.

2.1.4 Information Foraging:

Pirolli and Card proposed the information foraging theory to help explain how

information-seekers search for information [36]. They observed that information-

seekers use the same strategies used by predators in the wild when making decisions

about where to look for information, what search strategies to use, or which in-

formation to consume. Central to the theory are information scents (cues which

guide information-seekers to relevant information), information patches (the infor-

mation sources), and the information diet (the decision of how to select the most

profitable patch). Pirolli and Card observed that information-seekers would adapt

their search strategies and environment, if need be, to maximize the gains of relevant

information per unit cost. In the user study, we make observations consistent with

the information foraging theory: programmers use cues (for instance, special words

such as tutorials or examples) in the documentation and the Web to locate relevant

classes and methods, and would adapt their strategies (for instance, reformulate a

query) to optimize the gains of relevant information.

2.1.5 Distinction from Previous Programming studies

In our study (Section 1.2.1), we isolated specific questions programmers ask when

working with unfamiliar APIs, investigated factors that prevented programmers from

answering questions about the use of APIs, and looked at areas of the API learning

process where tool support is missing, or could be improved. The contributions of our
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study are similar to that of Sillito et al. that looked at the questions programmers

asked when maintaining the source code [45], but ours is the the context of API

learning. In addition, we utilized a more objective criterion for determining hard-to-

answer questions, provide a catalog of qualitative evidence explaining why developers

find certain questions hard to answer, and used more varied sources of evidence (such

as navigation paths, verbalizations, and the time spent on various micro tasks) in

our analysis than either Sillito et al., or Ko et al [27]. Our work also complements

previous efforts on the needs of API users (which has mainly focus on a high-level

perspective of the challenges programmers encounter when working with unfamiliar

APIs) by investigating low-level questions asked by programmers when learning to

use unfamiliar APIs.

2.2 Tools To Support API Usage

2.2.1 Improving Code Completion Tools

IDEs, such as Eclipse and Microsoft Visual Studio, provide code completion systems

that support programmers when learning how to use APIs. These systems are trig-

gered by special characters, such a period after the name of an object, or by special

key combinations, such as Ctrl+Space, after a text prefix. The code completion

system displays an alphabetical list of accessible members of the object on which

the request is made, and progressively narrows the list of suggestions to match the

prefix entered by the user. Previous work on code completion systems focused on

re-ordering the list of suggested methods, or on predicting the method most likely

to be called next in a given context. Robbes and Lanza [38] modeled the change

history of systems as atomic operations and used this change history to predict the
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method of an object most likely to be called next. Bruch et al. used example code in

code repositories to improve the ordering of the list of suggested methods [5]. These

previous works share a common limitation: they can only suggest the members of

the object on which code completion is requested. API Explorer(Section 1.2.2) is

the first novel extension of code completion, to our knowledge, capable of suggesting

relevant methods on other objects, identifying related API elements of a given class

or method, and providing support to API users for combining multiple objects.

2.2.2 Documentation Improvement Tools

Some researchers have investigated ideas and techniques for improving the API docu-

mentation to reduce the difficulties of learning how to use APIs. Kim et al. proposed

eXoaDocs [26], a tool that integrates code snippets mined from the source code search

engine Koders into the Java API documentation (Javadoc). eXoaDocs queries the

Koders search engine for code examples that use a given API method, eliminates

segments from the code examples not relevant to the use of the API method, and

integrates the resulting code snippet in the description section of the method in the

API documentation. Jadeite [52], proposed by Stylos et al., uses usage statistics of

the classes and methods of APIs from code examples on the Web to help programmers

find commonly used API elements from the documentation, and also integrates code

snippet on how to create instances of API classes in the documentation. Jadeite also

introduced the concept of “placeholders”, a feature which enables API designers or

users to annotate the API documentation with classes they expect to exist in a given

package of the documentation, or methods they expected to exist on a given class,

and to add forward references to the actual parts of the APIs that should be used in
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lieu of the “placeholders”. Dekel and Herbsleb proposed eMoose [11], a tool which

makes programmers aware of important usage guidelines from the documentation of

API methods which if violated could lead to bugs.

Jadeite and eXoaDocs used techniques that rely on the existence of large col-

lections of example usages of an API to be effective. Consequently, newer APIs or

non-popular parts of existing APIs may not have sufficient example usages for Jadeite

and eXoaDocs to be beneficial. API Explorer, in contrast, leverages the structural

relationships between API elements, not collections of code examples, to assist a

developer in discovering relevant types and in coordinating the use of multiple API

elements. Jadeite’s “placeholders” concept is similar to API Explorer’s feature which

recommends relevant methods on other objects, but Jadeite relies on API designers or

user to first add the “placeholders”, and to subsequently link “placeholders” to parts

of the APIs that should be used instead. API Explorer, in contrast, automatically

identifies relevant methods on other objects, or relevant classes in other packages,

using structural relationships between API elements, and presents this information

through the code completion feature of the IDE.

2.2.3 Example Recommendation Tools

Example recommendation tools leverage the proliferation of code examples on the

Web and in open-source repositories to suggest source code that may be relevant to

a task and API a developer is working with. These tools differ in the techniques used

to retrieve code examples and in the kind of support afforded to API users. CodeBro-

ker used comments and method signatures written by the programmer to retrieve
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source code examples that demonstrate the usage of APIs element from a reposi-

tory [55]. Strathcona used the structural context of the code under development

such as the class in which an API element is to be used, its parent class and inter-

faces, and the signature of API methods to retrieve relevant code examples from a

repository [21]. Prospector [31], ParseWeb [53], and XSnippet [41] take queries of the

form “source-type → destination-type” as input, and recommend source code exam-

ples with method invocation sequences that show how to obtain the destination-type

from the source-type. Jiang et al. [23], Salah [42], and Heydarnoori [19] proposed

tools which used dynamic analysis of the interaction between sample applications

and APIs to identify valid usage scenarios and valid call sequence of API methods.

Code Conjurer [22] and Code Genie [29] used test cases written by programmers to

retrieve example usages of APIs element from code repositories.

Prospector and XSnippet are the most similar to API Explorer because they

combined the use of code examples with the structural relationships between API

elements such as the return types and the parameters of methods to identify relevant

method call sequences which link a source-type to a destination-type. However, the

support provided by Prospector and XSnippet is limited to object instantiation only,

and for both tools to work, the programmer must be aware of the destination-type,

which may not always be feasible. With API Explorer, programmers can obtain

instantiation support with only the source-type. Furthermore, API Explorer extends

these works by providing support for locating relevant methods on different objects,

and for identifying API elements relevant to the use of a class or method.
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2.2.4 Distinction from Previous Programming Tools

The decision to present the information contained in the API Exploration Graph

through the code completion feature of an IDE was inspired by empirical evidence

that the code completion feature of IDEs is the primary way through which program-

mers explore APIs [51]. With API Explorer, recommendations are presented through

the code completion feature of the IDE, and programmers are no longer limited to

seeing just the public members of the type on which code completion is requested:

we extend the toolbox of programmers by recommending relevant methods on ob-

jects different from that on which code completion is requested. Furthermore, API

Explorer, unlike previous tools, is not limited by the absence of extensive code exam-

ples since it relies on the structural relationships between API elements to support

programmers in relating and combining API elements.

2.3 Query Formulation Tools

2.3.1 Natural Language Techniques

Natural language techniques for query formulation seek to solve the problem: “given

one or more keywords, find the related words and the corresponding code elements in a

given code base”. These techniques use words and phrases in the source code to locate

code elements that match a given query, to recommend alternative words for query

reformulation, or to extract word usage in the source code for code comprehension.

JIRiSS extracts identifiers and comments in the source code to form a corpus of text,

then uses Latent Semantic Indexing to suggest close matches for misspelled query

terms, and to suggest code elements matching a query entered by the programmer

[37]. In Latent Semantic Indexing, the source code of a system is decomposed into
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a corpus of text documents (the level of granularity is either the class or method),

then a vector space is generated from the corpus. A document is then created from

the query entered by a developer and compared against each document in the corpus

to identify documents that are similar to the developer’s query.

Shepherd et al. used verbs and direct object — the object a verb acts on, e.g.,

the identifier “sendEmail” has verb “send” and object “Email” — pairs from method

signatures and comments in the source code to expand a poorly formed query into a

more effective search query, and to present search results in a format that is easy to

understand [44] . Hill et al. extended the work of Shepherd et al. by capturing not

only verbs, but also nouns and prepositional phrases from source code identifiers [20].

Ohbas and Gondow used Term Frequency-Inverse Document Frequency (TF/IDF)

to automatically extract keywords that represent major concepts in the source code

to facilitate program comprehension [34]. TF/IDF is a statistical measure used to

evaluate the importance of a word in a given document for a given corpus. Maskeri et

al. used the Latent Dirichlet Allocation (LDA) statistical model to extract domain

topics from the source code to facilitate program comprehension [32]. In LDA, a

document is considered to have a mixture of topics and each word in the document

is associated to at least one of the topics. Given the source code of a system as the

corpus, Maskeri et al. used LDA to identify a set of topics for the corpus, and to

associate the words (names of source code elements) in the document to a topic to fa-

cilitate program comprehension. Others have combined natural language techniques

and structural analysis for query expansion: for instance, given an query, Exemplar

uses the help documentation of APIs to identify API calls whose descriptions contain
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words corresponding to the query, and forwards the API calls to a corpus of code

examples to identify relevant code snippets[17].

2.3.2 Structural-Based Techniques

Structural-based techniques use the relationships between source code elements to

generate queries, or to suggest elements relevant to a given query. Strathcona uses

the structural context of the code under development (the containing class, its parent

classes and interface, methods, and fields) to generate queries, and to recommend

code examples relevant to the current context of the programmer [21]. SNIFF com-

bines the API documentation and code from open source systems to facilitate query

formulation: it begins by annotating method calls in the source code with their

corresponding Javadoc description, then matches incoming queries to relevant code

snippets using the generated annotations. SNIFF also ranks the returned snippet

based on their relevance to the search query [6]. Several other techniques have been

proposed to solve the problem: “given a particular function, find the related func-

tions”: Altair takes the signature of a method as input, and recommends other

related API methods based on the extent to which the data they access overlap [30];

Robillard used program elements (methods and fields), and relationships between

elements (method calls and field access) to recommend code elements of interest

during code maintenance [39]; Saul et al. extended the work of Robillard by using

a callgraph and an algorithm based on the steady state of a random walk on the

callgraph [43].
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2.3.3 Distinction from Previous Query Formulation Tools

Our work on query formulation can be framed as “given a particular API type,

find the related types”: where the related types can be used as a starting point to

formulated effective queries, or to further explore an API. In this sense, our work

is related to most of the previous works cited in this section: we all share the goal

of looking for code elements that match a given query and search criteria. On

the other hand, our work has several differences: first, our work is in the context

of API comprehension while most of the previous efforts are concerned with code

comprehension and maintenance. Second, we work at the level of API types —

classes and interfaces, and are interested in recommending types, as opposed to API

methods, that are strongly associated to the use of a given API type. Lastly, our

approach relies only on the binary of the API to recommend related types. This

is a significant advantage since the binary is always available to the programmer,

but other types of information such as the client code of an API may not always be

available.
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CHAPTER 3
Asking and Answering Questions About Unfamiliar APIs:

An Exploratory Study

3.1 Introduction

To understand the challenges of learning a new API and how best to support devel-

opers, we conducted an exploratory study in which 20 participants worked on two

programming tasks using two different real-world APIs. We had three main goals for

the study: first, to understand the nature of the type of questions developers want

answered when learning to use APIs; second, to identify the questions developers

have difficulty answering when using a new API and to investigate the cause of the

difficulties; and third, to suggest ideas on how to improve the tool support available

to developers learning to use APIs. We begin by presenting the study methodology

(Section 3.2), then we present the analysis of over 20 hours of screen captured videos

and the think-aloud verbalizations of the participants generated by the study (Sec-

tion 3.3), and finally, we present the results and observations of the study, together

with the supporting evidence (Section 3.3.3). We conclude the chapter with the

implications of our observations on API design, documentation, and tool design.

3.2 Methodology

We conducted a laboratory study in which 20 participants worked on the same two

programming tasks using real-world APIs. All the 20 participants were unfamiliar

with the APIs used in the study.
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3.2.1 The Participants

We recruited participants from the student population of the department of Com-

puter Science at McGill University using on-campus posters and mailing lists, and

promised a monetary compensation of $20. Respondents were prescreened using a

questionnaire that asked potential candidates about their programming experience

and their knowledge of Java and Eclipse.

We selected 20 participants from the respondents for our study. The selected

participants reported a minimum of 1 year programming experience with Java, 1

year experience working with the Java API documentation (i.e., Javadoc), and some

experience programming with Eclipse. Our participants reported between 1 and

6 years of experience programming with Java, with a median of 3.5 years, and an

average of 1.5 years of paid programming experience. Five of the 20 participants were

female, and our participant pool included 4 Ph.D. students, 11 M.Sc. students, and 5

senior undergraduate students. Although all of our participants were students, they

are representative of the population of interest and their expertise level is comparable

to that of recent graduates in software development positions, which is our target

population since our work aims to support novice programmers.

3.2.2 The Tasks

We asked each participant to complete two programming tasks: the first task using

the JFreeChart1 API, and the second task using the Java API for XML Processing

1
www.jfree.org/jfreechart/
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(JAXP).2 JFreeChart is a popular open-source API for generating charts. We used

version 1.0.13 of the JFreeChart API, which has 37 packages and 426 non-exception

classes. JAXP is an API for validating and parsing XML documents, developed by

Sun Micosystems. We used version 1.4 of the JAXP API, which has 23 packages and

207 non-exception classes.

We selected tasks that involved combining multiple objects since previous work

on API usability observed that developers experienced the most difficulty performing

such tasks [51]. We reasoned that tasks requiring the combination of multiple objects

are more likely to reveal a variety of questions developer want answered and typical

challenges they encounter when learning to use APIs. The participants were given a

maximum of 35 minutes per programming task.

Chart-Task.

We asked the participants to use the JFreeChart API to construct a pie chart with

three slices (45% Undergrads, 35% Master’s, and 20% Ph.D.s), and to save the

chart to a file in a graphic format. To complete this task, a participant needed to

construct and configure at least five API types (JFreeChart, PiePlot, PieDataset,

ChartFactory, and ChartUtilities), and had to discover key relationships between

the types: for instance, the relationship between JFreeChart, the type for represent-

ing charts, and ChartUtilities, the type needed to save the chart.

XML-Task.

We asked the participants to use the JAXP API to verify whether the structure

2
http://jaxp.java.net
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of an XML file conforms to a given XML schema. The participants were provided

with both an XML file and an XML schema file, and were asked to implement

a solution that returns true if the XML file conforms to the given XML schema,

and false otherwise. This task required the combination of at least four API types

(Schema, Validator, SchemaFacotry, and Source) and was selected because of the

unique challenges it presents to object construction — all the required types are

abstract with no subtypes; the types must be created from factory or public methods.

3.2.3 Study Setting

Participants completed the study using the Eclipse IDE (version 3.4) and were per-

mitted to use any of the features of the IDE. Two main information sources were used

in the study: the documentation of the APIs and the Web, which provides access to

example usages of the APIs. These information sources have been reported to be the

primary learning resources for API users [50, 52]. We provided the participants with

the Firefox browser to access these information sources, and disabled the browser’s

history feature to prevent any learning effect between participants.

The programming studies were conducted individually in our research lab. The

participants began each study by watching a four-minute video tutorial about the

think-aloud protocol. Participants were then given time to practice thinking aloud

while working on a web search task. Soon after, the participant was given the

instructions for the Chart-Task and was given a maximum of 5 minutes to go over

the task requirements and to ask questions relating to the requirements. To avoid

influencing the strategy of the participants, we did not identify the classes or packages

of the APIs required to complete the tasks, as was the case with previous studies [51].
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Also, the participants were advised to proceed as they would typically do when

learning a new API.

Once the participant was satisfied with the task requirement, we loaded an

Eclipse project which contained a class with an empty main method and the libraries

of the relevant API. We then showed the participant how to use the Firefox browser

to access the Javadoc pages of the APIs from the bookmark menu. At this point,

the screen and voice recording software — Camtasia, version 4 — was started, and

the participant was asked to begin the task. The participant was asked to move to

the next task upon completion of the Chart-Task, or once the 35 minutes allocated

for the task elapsed. The tasks were completed in the same order by all the 20

participants.

3.2.4 Data Collection

We used three data collection techniques in our study: the think-aloud protocol,

screen captured videos, and interviews. In the think-aloud protocol [2], participants

are asked to verbalize their thought process while solving a given task. Having

participants think-aloud was particularly useful in our study as it permitted us to

obtain an insight into the participants’ understanding of the structure of the APIs,

to identify the types of questions participants ask when learning to use APIs, and

to understand why a participant may have difficulty answering a given question. We

also conducted semi-structured post-study interviews in which the participants were

asked to comment about the challenges experienced during the programming study.

The interviews lasted 5 minutes.

37



The screen contents, the verbalizations of the participants, and the interview

sessions were captured using Camtasia. The study produced a total of 40 different

programming sessions and about 20 hours of screen-captured videos and verbaliza-

tions of participants working with unfamiliar real-world APIs.

3.3 Data Analysis and Results

Our analysis focused on the questions the participants wanted answered about the

use of an API. Our goal was to identify those questions that are difficult to answer,

to understand why these questions proved difficult to answer, and to recommend

programming tools that could facilitate the API learning process. Our method for

analyzing the data involved three phases: identifying the different types of questions

asked by the participants, categorizing the questions, and coding the exploration

patterns used by the participants when searching for answers to these questions.

Our analysis approach was inspired by the work Sillito et al. [45] which looked at the

questions developers asked during code modification tasks. For brevity, we refer to

a participant by their ID (for instance, P5 for the fifth participant) and to the tasks

as T1 (for the Chart Task) and T2 (for the XML Task).

3.3.1 Identification of questions

In this phase, we went through the screen-captured videos and verbalizations to pro-

duce a list of specific questions asked by each participants, and to identify segments

of the videos, which we called episodes, corresponding to the approach used to an-

swer each question. Some questions were explicit: for instance, participant P11 asked

“How do I create a Graphics2D object?” while working on the Chart-tasks. Other

questions were easily inferred from the actions and verbalizations of the participants:
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Table 3–1: Different types of questions observed during the study: Part 1

Discovering Functionality

Q.1 Which packages or namespaces of an API provide types relevant to my task?
“I’m trying to find out which package has classes for creating
a pie chart” — P5,T1

Q.2 Is there an API type that provides a given functionality?
“the task says I should create a pie chart; I’m expecting some sort
of a PieChart class to be available” — P18,T1

Q.3 Does an API type provide a method for performing a given operation?
“Is there a method on BufferedImage that helps to save?” — P10,T1

Q.4 What is the functionality of a given API type?
“Let’s look at what the Validator class does” — P18,T2

Q.5 Can a method intended to perform operation A be used to perform operation B?
“I’m hoping that the draw method can be used to save to a file, but I’m not
too optimistic about it” — P6,T1

Q.6 Which keywords best describe a functionality provided by the API?
“I’m going to use the Firefox search to look if there’s any thing
involving[containing the word] “schema”” — P9,T2

Understanding Relationships

Q.7 How is the type X related to the type Y?
“How is Validator related to Schema?” — P18, T2

Q.8 How do I get an object of type X from the type Y?
“I need to figure out how to get a BufferedImage from a PiePlot” — P6,T1

Q.9 Which elements of the API are of the type X?
“Which classes of the API are Comparable?” — P11, T1

Q.10 Is the object X of the type Y?
“let’s see if RenderedImage takes BufferedImage” — P1,T1
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Table 3–2: Different types of questions observed during the study: Part 2

Discovering Dependencies

Q.11 Does the API provide a helper-type for manipulating objects of a given type?
“let’s see if there are classes related to BufferedImage which can give me the
possibility to write the image to a file” — P10,T1

Q.12 How do I create an object of a given type without a public constructor?
“the constructor is protected; so how do I create a Graphics2D object?” — P11,T1

Q.13 Which other API elements are necessary to use a given API type?
“I think I need something else that would save the chart to an image” — P1,T1

Selecting Relevant Elements

Q.14 Which subtype of an interface or class is the most appropriate for my task?
“I don’t know exactly which subtype of Source to use for reading an XML file” — P6,T2

Q.15 Which types of a given domain (package, namespace) are relevant to my task?
“Which classes of the “parsers” package could be used for validation?” — P18, T2

Q.16 Which method from a list of overloaded methods is relevant to my task?
“I’m trying to find the appropriate create-piechart method
because it seems to be overloaded” — P16,T1

Understanding Behavior

Q.17 What role do the arguments of a given method play in its usage?
“we have a newInstance(String) method that takes a String argument
and I have no idea what this String is suppose to be” — P9,T2

Q.18 What is the valid range of values for a primitive argument, such as an integer,
of a given method?
“I don’t know if this [double] value should be between 0 and 1” — P10,T1

Q.19 Is NULL a valid value for a non-primitive argument of a given method?
“let’s use NULL for Comparable and see if the method throws an exception” — P1,T1

Q.20 How do I determine the outcome of a method call?
“[the method] Validator.validate(Source) returns void; how do I know
the results of the validation?” — P12,T2
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for instance, P1 came across the method ImageIO.write(RenderedImage, ...), and

said “let’s see if RenderedImage takes BufferedImage”, then went ahead and used a

BufferedImage object where RenderedImage was expected. The actions and verbal-

ization of P1 in this example is phrased into the question: “Is BufferedImage of the

type RenderedImage?”. After identifying the list of specific questions for each partici-

pant, we then developed generic versions of the questions that slightly abstract from

the specifics of a given API. For instance, the question “Is BufferedImage of the type

RenderedImage?” can be stated more generally as “Is the object X of the type Y?”.

Based on these generic questions, we identified twenty different types of questions

asked by the participants across both tasks (Tables 3–1 and 3–2). We also provide

a specific instance for each generic question as an example. The generic questions

highlight, to a certain extent, the type and scope of the information developers need

when learning how to use APIs. The number of times each type of question was

observed (# of occurrences) and the number of participants that asked each type of

question (# of participants) are listed in Table 3–3.

Categorization of questions.

In the second phase of our analysis, we looked at the similarities, differences, and con-

nections between the different type of questions, producing five different categories

of the questions observed during the study.

• Discovering Functionality: The participants asked these type of questions

at the initial step of API exploration. At this stage, a participant is seeking

to identify the types, methods, or fields in an API relevant for implementing a

given task, or to identify keywords from the problem domain (the tasks) that
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Table 3–3: Frequency measures for questions Q.1 to Q.20

Question ID # of occurrences # of participants

Q.1 31 16
Q.2 11 7
Q.3 58 19
Q.4 32 17
Q.5 3 2
Q.6 38 13
Q.7 8 7
Q.8 2 1
Q.9 4 4
Q.10 2 2
Q.11 19 13
Q.12 57 19
Q.13 6 5
Q.14 29 17
Q.15 27 17
Q.16 4 4
Q.17 23 17
Q.18 3 3
Q.19 4 4
Q.20 15 13

maps to relevant elements in the solution domain (the documentation or code

examples). We identified six types of questions in this category (Q.1 to Q.6,

Table 3–1).

• Understanding Relationships: The participants asked these type of ques-

tions when they needed to understand the relationships between API types. At

this stage, participants had identified the types of an API relevant to a task,

but needed to understand how to correctly combine and coordinate the use

of the relevant elements. For instance, P18 had identified both Validator and
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Schema as relevant to validating an XML file against a schema (T2), but needed

to understand how these types are connected: “How is Validator related to

Schema?”. We identified four types of questions in this category (Q.7 to Q.10,

Table 3–1).

• Discovering Dependencies: The questions in this category came up after

a participant had started implementing a task: the participant suddenly real-

ized that the types they had discovered provides only partial support for their

task, and that other helper-classes were required to implement the task. For

instance, P10 attempted to save the chart as an image in T1 but realized that

BufferedImage provides no method for saving; he then looked for a class that

can be used for saving BufferedImage image: “let’s see if there are classes re-

lated to BufferedImage which can give me the possibility to write the image to

a file”. We identified three types of questions in this category (Q.11 to Q.13,

Table 3–2).

• Selecting Relevant Elements: The questions in this category were observed

when a participant had to make a choice between two or more subtypes of a

class or an interface, or select a method from a list of overloaded methods. We

identified three types of questions in this category (Q.14 to Q.16, Table 3–2).

• Understanding Behavior: The questions in this category were observed

when a participant needed to understand how a certain API method “works”.

What its valid inputs are, its expected behavior, or the role of each of its

arguments. We identified three types of questions in this category (Q.17 to

Q.20, Table 3–2).
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3.3.2 Abstraction of Developer Behavior

We needed a high-level abstraction of the actions of the participants to facilitate the

analysis of their behavior and the challenges they experienced when learning to use

APIs. Since our analysis is centered around the questions asked about the use of the

APIs, we transcribed the segments of the videos corresponding the time frame during

which a participant asked and searched for answers to a given question. Specifically,

for each participant and for each episode corresponding to a specific question, we

transcribed the video into a series of actions that summarizes the steps taken by the

participant to answer the question. We considered the following actions:

• Browse: the participant looked through a list of API elements (packages,

types, or methods) either within Eclipse, or in the documentation, before mak-

ing a selection. The Browse action has a target to denote the items (either pack-

ages, classes, methods, or search result) the participant was browsing through.

• Select: the participant selected an item from a list of API elements, or the

results of a search query after browsing. The Select actions has a target —

the name of the item selected, and a flag (Yes/No) to indicate if the selected

element was relevant to the question being answered. The target of the Select

action could also be None, if no item was selected.

• Read: the participant focused on a portion of text or code. The Read action

has a target — the name of the element being read, and a section (e.g., either

the introduction section, constructor section, or the method description of an

API element) to indicate the location the participant focused on.
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• Navigate: the participant followed a dependency or a link to another element.

The Navigate action has a target — the name of the item navigated to, a flag

(Yes/No) to indicate if the target led to information relevant to answering the

question.

• Search: the participant performed a search of the documentation or the Web.

The Search actions has a target (Documentation/Web), and a flag (Yes/No)

to indicate if the search query contained the name of an API element.

• Switch: the participant moved from the documentation to the Web, or IDE,

and vice versa.

• Use: the participant attempted to use an API element or code example found

on the Web. This action has a target — the element or code the participant

attempted to use, and a flag (Yes/No) to indicate if the participant was suc-

cessful.

• Backtrack: the participant stepped back to a previous location of certainty,

then decides to explore a different path. This action has a target — the location

the participant backtracked to.

As an example, Table 3–4 shows a partial transcript3 of the participant P15 looking

for information on how to save a BufferedImage; the transcribed actions is shown

under the “Action Sequence” column. P15 started by navigating to the documen-

tation page of BufferedImage, browsed through its subtypes, and then selected the

3 The entire transcripts for both tasks, and for the twenty participants are available
as an online appendix at www.cs.mcgill.ca/∼eduala/apistudy
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Table 3–4: Transcript excerpt for participant P15 — Chart Task

Time Question Action Sequence

0:18:10 How do I save a
BufferedImage?

Nav[BufferedImage]:Browse[subtypes]:
Select[WritableImage,No]:Read[WritableImage,Intro]:
Backtrack[BufferedImage]:Browse[methods]:
Read[createGraphics,description]:Switch[web]:
Search[web,Yes]:Select[3rd,Yes]:
Read[ImageIO.write,code]:Use[ImageIO.write,Yes]

subtype WritableImage, not relevant to saving an image. P15 read the introduction

section of WritableImage, then backtracked to BufferedImage. P15 then browsed

through the methods of BufferedImage, focusing on the createGraphics method,

before switching to the Web. P15 then searched the Web with a query contain-

ing an API element, selected the third results, read through the code example

and discovered the ImageIO.write(RenderedImage, ...) method. P15 then used

ImageIO.write(RenderedImage, ...) successful to save the image to a file.

What is a difficulty?

As part of our analysis, we intended to identify the types of questions that proved

difficult for the participants to answer and to understand the cause of the difficulty.

To accomplish this, we needed an objective measure as to what constitutes a diffi-

culty in the context of API learning. We decided not to use the amount of time taken

to answer a question as the main measure of difficulty since significant performance

variations have been observed amongst developers with similar level of experience [8].

At a higher-level, we observed that some of the actions, or sequence of actions, of

a participant that reflected a lack of progress in the search for answers to a given
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question would serve as a good measure for capturing difficulty. We used the follow-

ing action sequences as a definition of the difficulty participants encountered when

answering questions about the use of the APIs:

• Use[target, No]: This action sequence captures instances in which a par-

ticipant attempted to use an API element but was unsuccessful because the

API does not support the given usage. For instance, the participants P6

and P8 commented “How can I get an instance of Validator?” after their at-

tempt to instantiate Validator, an abstract class, from the default constructor

failed. This object instantiation difficulty is captured by the action sequence

Use[Validator.Constructor, No]. We observed that participants often had ex-

pectations about the design of an API and expressed frustration when the

structure of an API did not match their expectations.

• Browse[list ], Select[target, No], ..., thenBacktrack[list ], orNavigate[target,

No], ..., then Backtrack[...]: The Select[target, No] andNavigate[target,

No] action sequences capture instances in which a participant went down an

irrelevant information search path. Once a participant realized the information

on a given path was not relevant to answering their question, they backtracked

to previous location of certainty, and then chose a different path to explore: cap-

tured by the Backtrack action. We consider action sequence Select[target,

No], or Navigate[target, No], followed by a Backtrack as an indication of

difficulty in searching for answers to a given question. The participants relied

on cues in the documentation or code examples when looking for answer to a

given question. At times, the clues were not available or perceivable. In the

47



Table 3–5: A summary of the difficulties participants experienced answering different
types of questions about the use of APIs.

Question
ID

# of occur-
rences

occurrences
with difficulty

# of partici-
pants

participants
with difficulty

Q.1 31 1 16 1
Q.2 11 5 7 3
Q.3 58 14 19 13
Q.4 32 3 17 3
Q.5 3 1 2 1
Q.6 38 17 13 7
Q.7 8 5 7 5
Q.8 2 1 1 1
Q.9 4 2 4 2
Q.10 2 0 2 0
Q.11 19 17 13 12
Q.12 57 35 19 17
Q.13 6 1 5 1
Q.14 29 8 17 8
Q.15 27 5 17 4
Q.16 4 0 4 0
Q.17 23 1 17 1
Q.18 3 2 3 2
Q.19 4 1 4 1
Q.20 15 11 13 11

absence of strong cues, participants were left to guess which search paths to

follow, and some participants inadvertently went down irrelevant search paths.

We summarize the difficulties the participants experienced answering the different

types of questions in Table 3–5. For each question, we provide the number of times

the question was observed (column two), the number of instances with a difficulty

(column three), the number of participants who posed the question (column four),

and the number of participants that experienced a difficulty answering the question.
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As a baseline, we considered a question difficult to answer if all of the following

conditions apply:

• At least half of the participants who posed a question experienced some diffi-

culty answering the question.

• At least five participants experienced some difficulty answering the question.

• A difficulty was observed in about half the total number of the instances in

which a question was asked.

For instance, we considered the participants to have experienced difficulty answering

question Q.20 since eleven of the thirteen participants who posed the question ex-

perienced difficulty answering it, and since a difficulty was observed in eleven of the

fifteen instances in which the question was asked. We identified five questions that

proved difficult for the participants to answer (boldfaced in Table 3–5):

Q.6 Which keywords best describe a functionality provided by the API?

Q.7 How is the type X related to the type Y?

Q.11 Does the API provide a helper-type for manipulating objects of a given type?

Q.12 How do I create an object of a given type without a public constructor?

Q.20 How do I determine the outcome of a method call?

3.3.3 Observations

We present our findings as observations of the challenges a developer may encounter

when learning to use an API, along with the supporting evidence for each observation.

These observations are supported by the results of our analysis of the data from the

study, and by the verbalizations of the participants.
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Observation 1 (Discovering Relevant Dependencies). Discovering relevant

API types not accessible from the type a developer is working with is a major challenge

to API learners.

Three questions (Q.7, Q.11, and Q.12) of the five we identified as being difficult

to answer involved a participant either looking for types related to, and relevant

to the use of a type they were working with (“let’s see if there are classes related

to BufferedImage which can give me the possibility to write the image to a file” —

P10, T1), or a participant seeking to discover the relationship between API types

(“How is Validator related to Schema?” — P18, T2). Although different, these

three questions illustrate a common problem: the participants experienced signif-

icant difficulty when relevant API types were not accessible from the type they

were working with (i.e., these helper-types were not referenced or reachable from

any of the public members of the type the developer was working with). For in-

stance, in the Chart Task, the participants could save the JFreeChart object using

ChartUtilities.saveChart(JFreeChart,...), but most experienced difficulty locat-

ing ChartUtilities because it is not accessible from JFreeChart. Twelve of the 20

participants in our study experienced some difficulty finding ChartUtilities (Q.11,

Table 3–5), and three of the participants were unable to complete the Chart-Task

because they could not locate this relevant dependency. This observation corrobo-

rates the findings of Stylos et al. [51] that method placement — the class on which a

method is placed — affects API usability. However, Observation 1 extends beyond

method placement: the participants also had difficulty discovering the relationships
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Table 3–6: A comparison of the search queries with, and without, an API element.

Search Queries With an API Element

Total Queries: 25
Reformulated Queries: 4
Successful Queries: 21

Search Queries Without an API Element

Total Queries: 13
Reformulated Queries: 12
Successful Queries: 1

between types (Q.7, Table 3–5), or creating objects for types without a public con-

structor (Q.12, Table 3–5) because the relevant helper-types were not accessible from

the type they were working with. Participant P4 attributed this difficulty to the lack

of a “cross-reference in the API that says get a Validator instance from a Schema”.

Observation 2 (Query Formulation). In the context of our study, having an

API element as one of the keywords in a search query was an effective strategy for

locating relevant code examples.

We analyzed the queries the participants formulated when searching for code exam-

ples on the Web and observed that queries that contain an API element were more

successful (that is, led to a relevant code example) than those without an API ele-

ment (see Table 3–6). There were a total of 25 queries containing an API element,

and of those, only four were reformulated, and 21 of the 25 queries containing an

API element led to a relevant code example. On the other hand, there were a total

of 13 queries without an API element: 12 of the 13 queries were reformulated, and

only one of the 13 queries led to a relevant code example. As an example, participant
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P18 started the XML-Task with the search query “java xml processing tutorials” but

found no relevant code example. He then turned to the documentation where he

identified the Schema class as relevant to the validation task. Participant P18 then

reformulated the search query to “java xml validation against schema” from which

he found a relevant code example.

A complementary observation about query formulation is the difficulty of guess-

ing keywords that correspond to word usage in APIs, or their documentation. This

difficulty was captured by the question Q.6 (Which keywords best describe a func-

tionality provided by the API? ): up to seven of the thirteen participants who asked

this question experienced some difficulty guessing a correct keyword.

Figure 3–1: Two possibilities for communicating method-level execution failures.

Observation 3 (Exceptions). The use of an exception to communicate the out-

come of a method execution hinders API comprehension.
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There is a long standing debate in the software development community regarding

whether an exception (as in Figure 3–1 (A)), or a return-status-object4 (as in Fig-

ure 3–1 (B)) should be used to communicate method-level execution failures, and

when each design choice may be appropriate [9, 25, 46]. When an exception is

used to communicate the failure of the validate(File) method, the implication is

that the File is considered valid if the method does not throw an exception. In

other words, the exception is used to communicate the return status (failure or

success) of the validate(File) method: the validation is said to have failed if the

method validate(File) throws an exception, and successful otherwise. However,

the extent to which this implication is apparent to a developer learning to use an

API remains uncertain. In the XML tasks, the participants had to use the method

Validator.validate(Source), that used an exception to communicate outcome, to

validate an XML file. We observed that the use of an exception to communicate

outcome was problematic to the participants: 11 of the 20 participants experienced

significant difficulty realizing the implication that if the method validate(Source)

does not throw an exception, then the Source file is considered valid (Q.20, Table 3–

5). The 20 participants spent an average of 4.2 minutes each before becoming aware

of the implication that the XML file is considered valid if the validation method does

not throw an exception; the average time spent to make this discovery increases to

4 We used the word return-status-object to represent either an error code (a prim-
itive such as a boolean or an integer), or an object that contains the return status
of a method execution.
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6.7 minutes if we consider just the 11 participants that faced a difficulty. Participants

P5, P14, and P20 were unable to make the discovery within the alloted time for the

task, even after spending 14 minutes, 9 minutes, and 21 minutes, respectively, on

this part of the task.

We looked at the verbalizations of the participants and the post-study interviews

in an attempt to understand why they could have missed the implication that the

XML file is considered valid if the validation method does not throw an exception.

We identified two possible reasons for this difficulty.

The expectation of the participants. The participants expected the API to

provide a validation method with a return-status-object (such as in Figure 3–1 (B)),

but validate(Source) had no return-status-object: “validate(Source) does not give

us something like true or false; I better look for a method that gives us a boolean”

— P1. Not finding the expected method (that is, a validate method with a return-

status-object), participants would initially assume that validate(Source) is not the

right method to use, instead of making the connection that an exception is used

to communicate the success or failure of the validation. They would then spend

time looking for other methods in the API with a return-status-object that could

be used to validate the XML file. Not finding an alternative, the participants would

then return to the validate(Source) method, re-read its documentation, and realize

that the XML file is considered valid if the validation method does not throw an

exception.
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Disagreement between API designers and our participants as to what con-

stitute an “error condition”. The second reason expressed by the participants as

to why they experienced difficulty associating exceptions to the success, or failure,

of the validation relates a disagreement as to what constitute an error condition.

According to expert API designers: “if a member [method] cannot successfully do

what it was designed to do — what the member name implies — it should be consid-

ered an execution failure, and an exception should be thrown” [9, p. 218]. In other

words, an execution failure is said to have occurred if the validate(Source) method

cannot validate the XML file, and an exception should therefore be thrown. Our

participants, on the other hand, seem to associate the throwing of an exception to

something catastrophic:

“if you’re just trying to validate something why would it throw an exception; It

doesn’t make sense; I expected it [validate(Source)] to return an object” — P14.

“in my experience ... I find consensus that you throw exceptions only when you

find an error. In a Validator you expect something to be valid or invalid. And if its

invalid that should be a common occurrence just as much as it is valid. So throwing

an exception for common occurrence is not a good idea” — P11.

This disagreement between API designers and our participants reflects the debate as

to when exceptions should be used. Some argue that exceptions are for “exceptional

conditions”; others argue that “exceptions should be used to report all errors” [9, p.

212]. The software development community has yet to agree on what constitutes an

exceptional condition. Our study indicates that this disagreement has the potential

for influencing API comprehension.
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Observation 4 (Web versus Documentation). The use of the Web had no effect

on the number of tasks successfully completed or the time taken to complete a task.

In designing the study, we had ten of the participants use the Web and the API

documentation as learning resources (the Web Group — WG), and the other ten

using just the documentation (the Documentation Group — DG). We reasoned that

partitioning the participants into two groups would help us identify the challenges

programmers faced when looking for answer to the questions using both learning

resources. We expected the participants in the Web Group to be significantly more

successful since the Web provides several code examples for both tasks. However, we

observed no significant advantage, either in terms of the number of tasks successfully

completed or the average time taken to complete a task, between the participants

of the Web Group over the participants of the Documentation Group. Six partici-

pants from the Documentation Group and seven participants from the Web Group

successfully completed task T1, and six participants from the Documentation Group

and five participants from the Web Group successfully completed task T2 (Table 3–

7). We obtained a chi-squared statistic of 0 when we compared the number of tasks

successfully completed between the two groups.

Table 3–7: The number of tasks successfully completed between the two groups.

DG WG

Successful Unsuccessful Successful Unsuccessful

T1 6 4 7 3
T2 6 4 5 5
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Table 3–8: The average task completion time (in minutes) of the participants for
both tasks, and both groups.

DG WG

MEAN STDEV MEAN STDEV

T1 29 ±7 25 ±9
T2 29 ±8 26 ±8

Looking at the task completion times (Table 3–8), the participants of the Documen-

tation Group spent an average of 29 (±7) minutes on task T1 while participants

from the Web Group spent an average of 25 (±9) minutes. We observed similar

results for task T2: participants of the Documentation Group spent an average of 29

(±8) minutes while participants from the Web Group spent an average of 26 (±8)

minutes. We used the Rank test to compare the task completion time between the

two groups and obtained a p-value of 0.45 for task T1 and a p-value of 0.26 for task

T2. But why were the participants who used the Web not significantly better than

those who used the API documentation?

We observed that some participants often underestimate the time required to

find code examples on the Web, extract the relevant code snippets, and to customize

the snippets into the context of a task. Some participants spent a significant amount

of time extracting and customizing relevant snippets. For example, participant P13

found a code example for task T2 at the 16 minutes mark, but was unable to com-

plete the task in the remaining 19 minutes because of difficulties in extracting and

customizing relevant code snippets. When asked about this in the post-study in-

terview, participant P13 commented that “the example had a different context from

our task, so I had to translate their ideas to ours and that takes some time”. Other
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participants started with the Web but soon realized the difficulty of finding relevant

code examples with no knowledge of the types in the API. For instance, P18 started

with the Web but soon abandoned the Web for the API documentation after two

unsuccessful searches, commenting “having some knowledge of the classes in the API

may actually be able to help me understand the information provided by the tutorials”.

In general, we observed that both learning resources provide complementary support

to programmers learning to use APIs. Also, the absence of a significant difference

between the two groups suggests that the time required by novice API users to find,

extract, and customize code snippets from code examples may be comparable to the

time needed to learn how to use APIs from the API documentation for basic tasks

such as the ones in our study.

3.4 Implications

3.4.1 API Design and Documentation

Proponents of the debate on how to communicate method-level failures typically en-

dorse either the use an exception, or the use of a return-status-object, but seldom

both: “exceptions should be used to report all errors for all code constructs” — [9,

p. 212]. Our results explain and document why the use of an exception to commu-

nicate the outcome of an operation may be problematic from an API-comprehension

perspective. In such situations, it seem reasonable for API designers to consider

providing both a return-status-object (to provide status information in the case of a

successful operation) and an exception (to communicate method execution failure).

Steven Clarke of the user experience group at Microsoft Research, and a pioneer of
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the work on API usability, echoed this view in a book on Framework Design Guide-

lines: “although return codes should not be used to indicate failures, you can still

consider returning status information in the case of a successful operation” [9, p.

213].

In general, our study underscores the need to investigate the impact of API

design choices on API comprehension and usability before adopting a given design

choice. APIs are provided to improve programmers’ productivity, but poorly de-

signed APIs may produce a counter effect. In our work with APIs, we have observed

situations where programmers had to re-invent the wheel because APIs designed for

their task were difficult to understand [12]. API usability studies provide a venue for

identifying and fixing usability and comprehension problems before an API is made

public.

3.4.2 Tool Design

The primary motivation for our study was to understand the nature of API learning

and how best to support programmers learning to use a new API. We have identified

20 different types of questions the programmers asked about the use of APIs and

also five questions that proved the most difficult for the programmers to answer. We

believe these questions could help evaluate existing tool support, and identify areas

where support is lacking. As an example, we present three areas of difficulty where

support is currently limited.

Discovering relevant API elements not accessible from the type a pro-

grammer is working with. Jadeite [52] uses a concept known as a “placeholder”

to allow a developer to annotate the documentation of an API type with other API
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types or methods not accessible, but relevant to its use. Given a particular func-

tion, Altair [30] and FRIAR [43] use heuristics and structural relationships to find

other related functions. Jadeite is the only tool, to our knowledge, aimed at help-

ing programmers discover types or methods not accessible from a main-type. We

consider Jadeite a precursor to an ideal tool for making relevant API elements not

accessible from a type discoverable. Our ideal tool would automatically generate and

recommend placeholders and would be integrated with the IDE, preferable with the

content assist feature of the IDE.

Discovering the types of an API relevant to implementing a task. The

names of API types and methods provide a common vocabulary between API users

and API designers; consequently, the use of types and methods for query formulation

proved to be an effective strategy (in the context of our study) for alleviating the

vocabulary mismatch problem when searching for code examples relevant to imple-

menting a task. Surprisingly, support is lacking for helping programmers discover

the types of an API relevant to a task. In fact, most code recommendation tools are

based on the premise that programmers already know the types of an API relevant

to their tasks [21, 53, 54], but this is often not the case. Jadeite once more is the only

tool aimed at helping programmers discover types relevant to a task. It leverages

usage statistics from code examples on the Web to display commonly used types

of an API more prominently. Jadeite has two drawbacks: it is unusable in the ab-

sence of a corpus of code examples, and its use of a popularity-based metric implies

less commonly use parts of an API would not be adequately supported. We believe

the API learning process would be better served by tools that use a combination of
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heuristics measures, not a corpus of code examples, to recommend types relevant to

implementing a task.

Unmasking the relationships between API types. Some of the difficulties

we observed occurred when the dependencies between related API elements were

not obvious. For instance, although the Validator class and Schema are related

(a Validator object is created from a Schema object), this relationship cannot be

inferred from the Validator class. Participant P4 referred to this as the absence of

a “cross-reference in the API documentation that says get a Validator instance from

a Schema” when commenting about the difficulty experienced relating these types.

Research tools which make such hidden relationships between API elements more

explicit could improve the API learning process, and facilitate API usability.

3.4.3 Threats to Validity

The results of our study are based on a systematic observation of programmers

working with real-world APIs in a laboratory environment. Given this setting, there

are factors which limit the generalizability of our observations.

The types of questions we observed in the study, the process of answering the

questions, and the challenges the participants experienced are related to a certain

extend to the tasks and the experience of the participants. Some of the questions and

the difficulties we observed in the study have been observed in previous API usability

studies in different settings [15, 28, 49, 51]; However, given that our study was

exploratory in nature and intended to probe why developers experience difficulties,

and also given the lab setting and pre-defined tasks, the catalog of questions cannot

be considered complete, but just a starting point.
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The difficulty the participants experienced in associating the throwing of an ex-

ception to the success, or failure, of the validation could have been a result of their

limited programming experience. This threat was mitigated by our use of the think-

aloud protocol which showed that our participants had no apparent confusion with

the validation domain (they could implement a solution to validate the XML file).

Rather, the difficulty they encountered was well isolated to the use of exceptions

to communicate method-level failures: the implication that an operation is consid-

ered successful if the method does not throw an exception was not apparent to our

participants. Even the more experienced participants (greater than three years of

programming experience) encountered difficulty completing the XML task: we com-

pared the success rate to the years of programming experience of the participants

for both tasks but observed no significant difference in the performance between the

participants with less than three years experience, and those with greater than three

years experience. Furthermore, Steven Clarke is quoted as reporting similar observa-

tions amongst professional programmers in a book on Framework Design Guidelines:

“In one API usability study we performed, developers had to call an Insert method

to insert ... records into a database. If the method did not throw an exception, the

implication was that the records had been inserted successfully. However, this was’t

clear to the participants in the study. They expected the method to return the number

of records that were successfully inserted” [9, p. 212]. The results of our study closely

corroborate Clarke’s observation amongst professional programmers; the extent and

reasons for the difficulty for the population of professional programmers would have

to be determined by another study.
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The size of our tasks, the number of tasks, and the number of participants

also limits the generalizability of our observations. Although our tasks represented

real usages of real-world APIs, they were limited in size to permit our participants

to complete a task within the 35 minutes time frame. With only two tasks and

20 participants, the questions and the challenges observed in our study could be

limited. However, given the observation that “programmers often approach larger

programming tasks by focusing on smaller subtasks” [51], we believe that the different

types of questions and the challenges we observed, possibly limited, would generalize

to other API learning tasks.

Lastly, our study involved only Java APIs and the Java API documentation.

Some of our observations may be different for APIs and documentation in other

languages. Also, since our study focused on programmers learning how to use unfa-

miliar Java APIs, our observations may not be applicable to programmers working

with familiar Java APIs. Further studies on API usability are required to verify the

generalizability of our observations to these contexts.

3.5 Summary

To understand what a programmer needs to know when using a new API and how

best to support programmers, we conducted a study in which 20 programmers worked

on programming tasks using different real-world APIs. The study generated over 20

hours of screen captured video and verbalization spanning 40 different programming

sessions. Our analysis of the data involved generating generic versions of the ques-

tions asked by the participants about the use of the APIs, and identifying those

questions the proved difficult to answer using the actions of the participants that
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reflected a lack of progress when looking for information. Based on the results of our

analysis, we identified 20 different types of questions the programmers asked about

the use of the API grouped in five different categories: discovering the functional-

ity provided by an API relevant to a task, understanding the relationships between

types, discovering relevant dependent types, selecting relevant API elements, and un-

derstanding the behavior of API methods. We also identified questions that proved

the most difficult for the programmers to answer, along with the evidence supporting

our observations. We believe the questions we have identified and the difficulties we

observed can be used for evaluating tools aimed at improving API learning, and in

identifying support that is missing from existing programming tools. As an exam-

ple, we identified two major areas where support is limited from existing tools: first,

IDE based tools that would assist a programmer to discover relevant API elements

not accessible from an type the programmer is working with; and second, tools that

would assist a programmer to easily identify types that would serve as a good start-

ing point for searching for examples, or exploring the API for a given programming

task.
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CHAPTER 4
API Explorer: Facilitating Discoverability in APIs

Through Structural-Based Recommendations

Empirical evidence indicates that when working on a programming task, most devel-

opers look for a main-type central to the scenario to be implemented and explore an

API by examining the methods and types referenced in the method signatures of the

main-type [51]. As a result, a developer may be at a significant disadvantage when

an API method essential to a task is located on a helper-type not directly accessible

from the main-type, or when other essential types are not referenced in the signature

of the methods on a main-type. For instance, Stylos et al. observed that plac-

ing a “send” method on a helper-type such as EmailTransport.send(EmailMessage),

instead of having it on the main-type such as EmailMessage.send(), significantly

hinders the process of learning how to use APIs; they observed that developers were

two to eleven times faster at combining multiple objects when relevant API methods

and types were accessible from the main-type [51]. A different study which looked

at the usability tradeoff between the use of the Factory pattern or a constructor for

object construction also reported that developers required significantly more time us-

ing a factory than a constructor because factory classes and methods are not easily

discoverable from the main-type [15].
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To help facilitate the discovery of API elements relevant to a task, we devel-

oped and released a novel tool called API Explorer.1 Our approach is based on the

intuition that the structural relationships between API elements, such as method-

parameter relationships, return-type relationships and subtype relationships, can be

leveraged to make discoverable the methods and types that are not directly accessible

from a main-type. For instance, we can use the fact that EmailTransport.send(Email-

Message) takes EmailMessage as a parameter to recommend the “send” method of

the EmailTransport class when a developer looks for a “send” method, or something

similar, on the EmailMessage class. Similar recommendations can be made for object

construction from factory methods, public methods, or subtypes. We implemented

API Explorer as a novel extension of the content assist feature of the Eclipse IDE.

API Explorer relies on a specialized dependency graph for APIs, called an API

Exploration Graph, and several algorithms that use the information contained in the

graph to generate recommendations based on the structural context. We present

the API Exploration Graph, the algorithms of API Explorer, and the evaluation of

API Explorer. Portions of this chapter previously appeared in an ECOOP publica-

tion [13].

4.1 API Exploration Graph

We use an API Exploration Graph (XGraph) to model the structural relationships

between API elements. In an XGraph, API elements are represented as nodes; an

1 www.cs.mcgill.ca/ swevo/explorer
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edge exists between two nodes if the elements represented by the nodes share one of

several structural relationships.

Nodes: an XGraph uses two kinds of nodes to represent API elements: a node

to represent API types such as classes or interfaces, and a node to represent API

methods. We model a public constructor as a method that returns an object of the

created type. Our model does not contain fields (e.g., constants such as System.out)

because our approach is based on the assumption that object construction is either

through a constructor, a static method, or an instance method.

Edges: an XGraph uses four kinds of edges to capture the relationships between

API elements:

• created-from edge: this edge exists between an API type, T , and an API method,

M , if the method M returns an object of type T , or has a declared return type

of T . The created-from edge captures object construction through constructors,

static methods, or instance methods.

• is-parameter-of edge: this edge exists between an API type, T , and an API

method, M , if the type T is a parameter of the method M .

• is-subtype-of edge: this edge is used to represent subtype relationships between

API types. It exists between the type Tk and the type Tm, if Tk is a subtype of

Tm.

• requires edge: is used to distinguish instance methods from class methods. A

requires edge exist between a method, M , and an API type, T , if an instance of

T must exist on which the method M must be invoked.
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The XGraph is simple, but by combining the information encoded in multiple edges,

we are able to derive useful non-trivial facts about the relationships between API

elements. For instance, consider the example API in Listing 4.1: from knowing that

MimeMessage is-subtype-of Message, and that Message is-parameter-of the method

Transport.sendEmail, we can infer at least three facts. First, objects of type Message

could be created from MimeMessage; second, MimeMessage can be used whenever

Message is expected; and third, MimeMessage can also be sent using the “sendEmail”

method of Transport.

ab s t r a c t Message {
pub l i c vo id se tTex t ( S t r i n g )

}

MimeMessage extends Message {
pub l i c MimeMessage ( Se s s i on )

}

Transpo r t {
pub l i c s t a t i c vo id sendEmai l ( Message )

}

Se s s i o n {
pub l i c s t a t i c Se s s i on g e t I n s t a n c e ( P r o p e r t i e s )

}

Listing 4.1: A simplified version of the JavaMail API

Listing 4.1 shows a simplified version of the JavaMail API, and Figure 4–1 shows

the corresponding XGraph. JavaMail uses the types String and Properties from the

Java Runtime Environment (JRE). API Explorer maintains an XGraph of the JRE,
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Figure 4–1: The XGraph of the simplified JavaMail API in Listing 4.1. The nodes in bold-
face represent API types; the other nodes represent API methods, including constructors,
and the edges represent relationships between the nodes.

and automatically links it to the XGraph of APIs referencing types of the JRE, as in

Figure 4–1. We generate XGraphs from the binaries of APIs using the Javaassist2

byte code analysis library, and it takes less than one minute to create an XGraph

even for large APIs such as the JRE, which includes 3000 types and 9300 methods.

API Explorer uses the information in the XGraph to generate recommendations and

code showing how the recommended API elements should be combined. We present

the recommendation algorithms in Section 4.2, and use the sample API in Listing 4.1

and its XGraph to present examples of the algorithms.

2 www.javassist.org
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4.2 Recommendation Algorithms

4.2.1 Object Construction Algorithm

The object construction algorithm (Algorithm 1) facilitates the discovery of factory

methods, static methods, or subtypes that may be needed to construct an object of

a given API type, say T (input to the algorithm). The algorithm begins by looking

at the created-from edges of the node representing T in the XGraph (lines 4 and

8). The xgraph.getNodes(T,edgeType) function (line 8) returns the API element (a

factory method or constructor) each created-from edge points to, for every such edge

found on T . The algorithm is designed to first search for a way of creating an

object of type T that does not involve its subtypes. We did this to minimize the

number of recommendations presented to a user. If no recommendation for creating

an object of type T without its subtypes is found, the algorithm proceeds to look

at the created-from edges of the subtypes of T (lines 9 to 12). The algorithm uses

the is-subtype-of edge to locate the subtypes of T (line 10), then recursively calls

the getObjectConstructionProposals function for each subtype (lines 11 to 12). The

algorithm continues down the hierarchy until information on how to create an object

of type of T is found, or all the subtypes are exhausted. Upon completion, the

algorithm presents a list of recommendations showing different ways of creating an

object of type T . We present the code generation algorithm in Section 4.2.4 that

recursively looks for the parameters and dependencies of a selected recommendation,

and generates code showing how to combine them.
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Algorithm 1: Object Construction

Input: T, xgraph /* the type T for which object construction

assistance is requested and the XGraph */

Output: recommendations /* a list of recommended API elements

that could be used to create an object of type T */

1 Var edgeType := created-from /* a valid edge in the XGraph */

2 recommendations := ∅
3 begin
4 recommendations := getObjectConstructionProposals(T, xgraph,

edgeType)

5 function: getObjectConstructionProposals(T, xgraph, edgeType)
6 begin
7 Var proposals := ∅
8 proposals := xgraph.getNodes(T, edgeType) /* get the nodes in the

XGraph pointed to by the created-from edges of node T */

9 if proposals == ∅ then
10 Var subtypes = xgraph.getNodes(T, is-subtype-of )
11 foreach type ∈ subTypes do
12 proposals := proposals ∪

getObjectConstructionProposals(type,xgraph,edgeType)

13 return proposals

Example. Consider as an example a developer looking for assistance on how to

create an object of type Message. The algorithm begins by looking at the created-

from edges on the Message node. The Message node has no created-from edge; the

algorithm then proceeds by looking for subtypes of Message from which an object

could be created. The Message node, in this case, has a single is-subtype-of edge

pointing to MimeMessage. Next, the algorithm looks at the created-from edges on

the MimeMessage node, and finds MimeMessage(Session), a constructor for creating a

MimeMessage object. The algorithm, being aware that MimeMessage is a subtype of
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Message, recommends MimeMessage(Session) as a way of creating a Message object.

For simplicity, our example API has types with only a single object construction

option. However, in practice, an API may provide multiple ways of creating objects

of a given type. For instance, the JavaMail API provides four options for creating

a Session object. In such situations, API Explorer presents all the options to a

developer to decide the most appropriate construction pattern in a given usage con-

text. As will be seen in Section 4.3, the participants of our case study evaluation

demonstrated little difficulty selecting a relevant recommendation when presented

with multiple options.

4.2.2 Method Recommendation Algorithm

The method recommendation algorithm (Algorithm 2) is based on the observation

that if a method a developer needs is not available on the type, T , the developer is

working with, then one of the methods which take T , or an ancestor (a class, or an

interface) of T , as a parameter may provide the needed functionality. The algorithm

uses the is-parameter-of and the is-subtype-of edges of the XGraph to recommend

relevant methods on other objects.

The algorithm begins by looking at the API methods that take T as a parameter

using the is-parameter-of edges at the node T in the XGraph (lines 3, 12 to 15). The

algorithm verifies if the name of a method that takes T as a parameter starts with the

prefix entered by the user, and if so, adds that method to the list of proposals. If the

list of proposals is empty once all the methods that take T as parameter have been

examined, the algorithm uses synonym analysis to search for, and recommend, API

methods with a name similar to what the developer is looking for. Our intuition is
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Algorithm 2: Method Recommendation

Input: T, prefix, xgraph /* the type for which a recommendation is

being requested, the prefix provided by the user, and the

XGraph */

Output: recommendations /* list of recommended API methods */

1 recommendations := ∅
2 begin
3 recommendations := getMethodProposals(T, prefix, xgraph)
4 if recommendations == ∅ then
5 Var ancestors = T.getAncestors()
6 foreach type ∈ ancestors do
7 recommendations := recommendations ∪
8 getMethodProposals(type, prefix, xgraph)

9 function: getMethodProposals(T, prefix, xgraph)
10 begin
11 Var proposals := ∅
12 Var list := xgraph.getNodes(T, is-parameter-of )/* get the method

nodes pointed to by the is-parameter-of edges of node T

*/

13 foreach method ∈ list do
14 if method.nameStartsWith(prefix) then
15 proposals := proposals ∪ method

/* synonym analysis */

16 if proposals == ∅ then
17 Set prefixSet = getSynonyms(prefix)
18 foreach method ∈ list do
19 Set methodSet = getSynonyms(method.getName())
20 if methodSet ∩ prefixSet �= ∅ then
21 proposals := proposals ∪ {method}

22 return proposals

that, a developer looking for an API method to send an email object, if not searching
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for a method prefixed “send”, may be looking for something similar to “send”, such

as “transmit” or “deliver”, instead of something totally unrelated.

The synonym analysis part of the algorithm (lines 16 to 21) re-examines all the

API methods that take T as parameter. The synonym analysis begins by generating

the synonym set for the prefix entered by the user (line 17 ); then for each method

of the is-parameter-of edges of T, the algorithm extracts its prefix and generates

its synonym set. The methods whose synonym set have one or more elements in

common with the synonym set of the prefix entered by the user are added to the

list of proposals (lines 20 to 21). API Explorer uses the WordNet3 dictionary

to generate the synonym sets. We also augmented WordNet with common words

such as “insert”, “put”, and “append” often used interchangeably in APIs, and by

developers, but which are not necessarily synonyms in the English vocabulary.

The method recommendation algorithm may not find a relevant method amongst

the methods that take T as a parameter. In this case, the algorithm searches for

API methods that take an ancestor of T as a parameter (lines 4 to 8). The algorithm

uses the is-subtype-of edges at T to located its ancestors (line 5), and for each ances-

tor, calls the getMethodProposal function for recommendations (line 6 to 8). Upon

completion, the algorithm presents a list of API methods with a prefix matching, or

similar, to that entered by the developer, and with object of type T as a parameter.

Example. Consider as an example a developer looking for a “send” method on a

MimeMessage object. The algorithm begins by looking at the is-parameter-of edges of

3 http://wordnet.princeton.edu/
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the MimeMessage node, searching for methods prefixed “send” that take MimeMessage

as a parameter. The MimeMessage node, however, has no is-parameter-of edge; the

algorithm then looks for a supertype of MimeMessage by moving up its is-subtype-of

edge, and finds the type Message. Next, the algorithm looks at the is-parameter-of

edges of the Message node and, this time, finds an edge pointing to the static method

sendEmail(Message) on the Transport class. The algorithm does not terminate once

the first “send” method is found; it searches for all methods prefixed “send” that

can accept a MimeMessage object by looking at other is-parameter-of edges on the

current node and on other nodes up the hierarchy. In this example, the algorithm

would recommend the only method it found, Transport.sendEmail(Message), to the

developer with the knowledge that MimeMessage is a subtype of Message.

4.2.3 Relationship Exploration Algorithm

In our work with APIs, we have observed cases in which a developer has identified two

or more types relevant to their programming task, but remains uncertain about how

these types are related [12]. A developer wanting to verify the relationship between

the types T1 and T2 must either combine the results of multiple search tools, or go

through the documentation of at least one of the types before determining whether

or not they are related. Using the XGraph, our relationship exploration algorithm

(Algorithm 3) can help a developer efficiently explore the relationships between API

types.

The algorithm takes as input API types and the XGraph, and outputs the rela-

tionships between the types, if any. Given a single API type, the algorithm can locate

other API types related to it (lines 3 to 4). The xgraph.getRelatedTypes(typeArray[0])

75



Algorithm 3: Relationship Exploration

Input: typeArray[], xgraph /* an array of API types and the XGraph

*/

Output: relations /* a list of related API element */

1 begin
2 relations := ∅
3 if typeArray.length == 1 then
4 relations := relations ∪ xgraph.getRelatedTypes(typeArray[0])

5 else if typeArray.length == 2 then
6 Var listOfMethods0 = xgraph.getMethods(typeArray[0])
7 relations := relations ∪

getRelationships(typeArray[1], listOfMethods0)
8 Var listOfMethods1 = xgraph.getMethods(typeArray[1])
9 relations := relations ∪

getRelationships(typeArray[0], listOfMethods1)

10 function: getRelationships(T, listOfMethods)
11 begin
12 Var relationships := ∅
13 foreach method ∈ listOfMethods do
14 if method.getReturnType() <: T OR T ∈ method.getParameters()

then
15 relationships := relationships ∪ method

16 return relationships

function (line 4) returns a list of types related to typeArray[0] through the is-

parameter-of, is-subtype-of, or the created-from edge of the XGraph. Given two API

types typeArray[0] and typeArray[1], the algorithm looks for method-parameter or

return type relationships between the types (lines 5 to 9). For typeArray[0], the

algorithm first retrieves the list of all the API methods defined on typeArray[0]

(line 6). Then, for each method on typeArray[0], the algorithm checks whether the

method takes an object of type typeArray[1], or its ancestor, as a parameter, or has
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typeArray[1], or its subtype (represented as <:) as a return type. If so, the method

is added to the list of related elements (lines 7, 10 to 16). This same procedure is

repeated for the type typeArray[1] (lines 8 to 9), and the relationships between the

types are presented to the user.

Example. Consider as an example a developer wanting to explore the relationships

of MimeMessage. The developer will begin by issuing a query to the relationship ex-

ploration algorithm to identify the types related to MimeMessage. The algorithm uses

the edges of the XGraph to locate types related to MimeMessage: in this case, the

algorithm would reveal that MimeMessage is related to both Message and Transport

using the is-subtype-of and the is-parameter-of edges of the XGraph. The developer

may then explore the relationship between MimeMessage and one of the related types

(e.g., Transport) by selecting Transport. The algorithm then looks at the edges that

connect MimeMessage to Transport in the XGraph to provide an explanation of how

they are related. Upon completion, the algorithm would reveal that MimeMessage and

Transport are related through the Transport.sendEmail(Message) method. Tradi-

tional “reference search” features, such as that provided in the Eclipse IDE, are un-

able to determine that MimeMessage is related to Transport.sendEmail(Message) be-

cause they are not inheritance-aware. Our relationship exploration algorithm there-

fore complements existing “reference search” tools.

4.2.4 Code Generation Algorithm

The code generation algorithm is intended to show a developer how to correctly

coordinate the main-type and helper-types. This algorithm is triggered only when

a recommendation is selected. If the selected recommendation is a constructor, the
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algorithm first determines whether or not it has parameters. If the constructor has no

parameters, the algorithm generates code showing how to use the default constructor.

For constructors with parameters, the code generation algorithm first generates an

identifier for the non-primitive parameters, and for each non-primitive parameter

T, calls the object construction algorithm to determine how to create an object of

type T. The algorithm uses the method-parameter relationship to determine how the

statements should be ordered and how they relate to each other.

If the selected recommendation is an API method, the algorithm uses the requires

edge to determine whether or not the method is static. For a non-static method, the

algorithm begins by calling the object construction algorithm to create an object of

the type on which the method is defined, before invoking it. Then, for each non-

primitive parameter T of the selected method, the code generation algorithm calls

the object construction algorithm to determine how to create an object of type T.

For a static API method (i.e., method without a requires edge), the algorithm only

has to create objects for each non-primitive parameter. The algorithm does not

create objects for non-primitive parameter types already available from the context

in which API Explorer was invoked — it uses variables in the context that match a

given parameter type. For instance, if a developer selects Transport.send(Message)

from the recommendations on how to send a Message object m1, the code generation

algorithm will not create a new Message object, but will pick m1 from the context,

and output Transport.send(m1).
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4.2.5 Design rationale

We designed our approach with the awareness that a main-type may have several

helper-types, with each helper-type relevant to a different programming scenario. For

instance, the type Message of the JavaMail API has the method Transport.send(Message)

as a helper-type for sending email objects, and the method SearchTerm.match(Message)

as a helper-type for locating email objects that satisfy a given search criterion. Sim-

ilarly, an API type may have several object construction patterns, with each pattern

relevant to a different usage scenario. Our approach does not attempt to guess

which helper-type is relevant for a given programming scenario; it recommends all

valid helper-types in a given structural context (recommendations are ranked alpha-

betically), and allows the developer to select the most appropriate helper-type for a

given programming scenario. We designed our approach this way for two reasons:

first, a heuristic that attempts to narrow down the list of recommended help-types

by removing those considered irrelevant in a given scenario may inadvertently hide

a helper-type most appropriate for a given scenario. Such a mistake will further

undermine discoverability, the very problem our approach is intended to solve. To

avoid hampering discoverability, we opted for a design that relies on the developer

to select the helper-type most appropriate for a given task. Second, our experience

working with APIs indicates that developers have little problem selecting relevant

API elements from a list of recommendations. We therefore expect that developers

will have little difficulty selecting the most appropriate helper-type from a list of

possible helper-types for a given programming task. We discuss the extent to which

our expectations were valid in the evaluation.
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4.3 Evaluation of API Explorer

Our evaluation had two goals: first, to show the extent to which our assumptions

about the API exploration behavior of developers, and their ability to select rele-

vant recommendations, are reflected in realistic API usage contexts; and second, to

understand the specific circumstances in which API Explorer may be more or less

helpful in discovering helper-types not accessible from a given main-type. Given that

we were interested in studying how the approach supports people (as opposed to the

performance of algorithms taken in isolation), we favored a qualitative evaluation

methodology. We reasoned that a qualitative evaluation of our approach in the con-

text of several programming tasks will enable us to reliably evaluate the assumptions

and observations on which our approach is based, and to understand the contexts in

which the approach would not be effective.

4.3.1 Case Study Design

We used a case study methodology to evaluate our approach. Yin introduces the

case study methodology as “an empirical inquiry that investigates a contemporary

phenomenon within its real-life context” [56, p. 13], and Easterbrook et al. explains

that the case study methodology is particularly suited for evaluating software tools

“where the context is expected to play a role in the phenomena” [14, p. 297], as

in the case of API Explorer. For example, Holmes and Murphy used a case study

evaluation to provide an in-depth understanding of how and why their Strathcona

tool was helpful [21].

In the case study methodology, the cases (programming tasks, in our setting) are

selected to represent the phenomenon being studied, and each case is considered as a
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replication, rather than a member of a sample [14, 56]. Furthermore, our case study

methodology emphasizes generalization to similar contexts (i.e, if the selected cases

supports our hypotheses, then it is expected that similar cases will be supported by

our approach), not statistical generalization [56, p. 31]. The goal of our case study

was to answer the following questions:

Q.1 To what degree are our assumptions about the API exploration behavior of

developers reflected in practice?

Q.2 In which ways can structural relationships help when trying to increase the

discoverability of API elements necessary to solve a task?

Q.3 Would a developer be able to select a helper-type relevant to their task when

presented with a list of possible helper-types?

Q.4 In which situations would API Explorer not be helpful, and why?

4.3.2 Programming tasks

Our approach is intended to assist developers locate helper-types not accessible from

a type they may be working with. We therefore selected programming tasks that

typified the discoverability hurdles our approach is intended to solve. Three of the

tasks (the Email, XML, and Chart tasks) selected for the study have been the subject

of previous studies that investigated the discoverability problem [12, 51].

Email task: we asked the participants to use the JavaMail API to implement a

solution that would compose and deliver an email message. To complete the task, a

participant needed to create and configure at least four API types, all created from

factory methods or subtypes, and needed to discover a key relationship between
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Message and Transport to send the email message. We used version 1.4.2 of the

JavaMail API, which has five packages and 91 non-exception classes.

XML task: we asked the participants to use the Java API for XML Processing

(JAXP)4 to verify whether the structure of an XML file conforms to a given XML

schema file. This task required the combination of at least four API types (Validator,

Schema, SchemaFacotry, and Source); we selected this task to evaluate the object

construction feature because of the unique challenges it presents — all the required

types are abstract with no subtypes; the types must be created from factory or

public methods (e.g., Validator can only be created from Schema.newValidator()).

We used version 1.4 of the JAXP API, which has 23 packages and 207 non-exception

classes.

Chart task: we asked the participants to use the JFreeChart5 API to create a pie

chart and to save the chart to a file in a graphic format. To complete this task, a

participant needed to coordinate at least five API types, and had to discover the rela-

tionship between JFreeChart, the type for representing charts, and ChartUtilities,

the type needed to save the chart. We used version 1.0.13 of the JFreeChart API,

which has 37 packages and 426 non-exception classes.

4 jaxp.dev.java.net

5 jfree.org/jfreechart
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PDF Task: we asked the participants to use the PDFBox6 API to implement a

solution to merge two PDF files. This task required the combination of just two

API types: PDFDocument and MergerUtility. However, the relationship between

PDFDocument and MergerUtility (related through an “append” method on Merg-

erUtility) cannot be determined through synonym analysis since “merge” is not a

synonym of “append”. We were interested in investigating whether the participants

would be able to use other features of API Explorer to discover this key relationship.

We used version 1.2.1 of the PDFBox API, which has 31 packages and 307 non-

exception classes.

4.3.3 Study participants

We recruited eight participants (henceforth referred to as P1, ..., and P8) through

our departmental mailing list. Our participants reported between 1.5 and 3 years of

experience programming with Java, with a median Java programming experience of

2.5 years. All the participants had at least six months experience working with the

Eclipse IDE. None of the participants, with the exception of P1, had used any of the

four APIs in the study; P1 had used the JFreeChart API in the past, but in a task

different from ours and could not remember the types provided by the API.

4.3.4 Study procedure

We provided each participant with a tutorial of the features of API Explorer before

the study began, and asked the participants to use API Explorer whenever they

believed a feature it provides could be helpful. We also provided each participant

6 pdfbox.apache.org
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with a description of the tasks and the documentation of the APIs. The four tasks

were completed in the same order by the participants, and the participants were

allowed a maximum of forty minutes per task. We asked the participants to think-

aloud whenever API Explorer was used to allow us to understand why the assistance

of API Explorer was needed, why the participant selected a given recommendation,

and whether or not the assistance provided by API Explorer was helpful. We also

used screen capturing software to document all the actions of the participants. To

avoid influencing the behavior of the participants, we did not inform them of which

types of an API were relevant to each task, or which type of an API to start from;

the decision of how to approach each task was left to each participant.

4.3.5 Results

The study produced a total of over 16 hours of screen captured videos and verbaliza-

tions of eight participants using API Explorer in 32 different programming sessions.

Our analysis of the data focused on the questions the participants asked about the

use of the APIs, how the participants used API Explorer to answer questions, and

the extent to which API Explorer was helpful. We begin by presenting task-level

observations that show the degree to which the API exploration behavior of the par-

ticipants supports the hypothesis on which our approach is based (Q.1). For each

task, and for each participant, we provide observations on how the participant ap-

proached the task, and the degree to which API Explorer was effective in helping the

participant discover helper-types not accessible from a main-type. Then, we present

episode-level observations: an analysis of all the instances in which API Explorer

was used by each participant, the degree to which a participant was able to select
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relevant recommendations, and the discoverability contexts in which API Explorer

proved helpful (Q.2 and Q.3). Lastly, we look at situations in which API Explorer

was not helpful (Q.4).

A. Tasks-Level Observations.

The first question (Q.1) was intended to investigate the degree to which the behavior

of our participants supports our main hypothesis (when working on a task, a devel-

oper typically starts from a main-type central to the programming scenario before

looking for helper-types) and to evaluate the degree to which API Explorer would

be helpful in discovering relevant helper-types. We present a detailed outline of the

observations from the Email task, and summarize the observations from the other

tasks in Table 4–1.

All eight participants started the Email tasks by looking for a type representing

an email message. They all found the abstract class Message from the documentation

and proceeded to query API Explorer for assistance on how to create an object of

type Message. API Explorer provided two recommendations: MimeMessage(Session)

and MimeMessage(Session,InputStream), both constructors from the subtype Mime-

Message; seven of the participants selected MimeMessage(Session), P5 selected Mime-

Message(Session,InputStream) thinking InputStream is needed to set the email con-

tent. P5 later reverted to MimeMessage(Session). After selecting MimeMessage(Sess-

ion), API Explorer provided four recommendations on how to create a Session object

from factory methods, and all the eight participants selected Session.getInstance-

(Properties), to complete the process of creating a Message object.
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Table 4–1: A summary of how the participants approached each task, their effec-
tiveness in using API Explorer (APIX) to locate helper-types not accessible from a
main-type, and the API Explorer feature (SA — synonym analysis, EC — enhanced
code completion, RE — relationship exploration, OC — object construction) used

to make the discovery. The check mark (�) represents Yes, and � represents No.

P1 P2 P3 P4 P5 P6 P7 P8

Email Task
Started from Message, then
looked for Transport

� � � � � � � �

Found Transport.send from Mes-
sage using APIX

� � � � � � � �

Feature used EC SA SA SA EC SA SA EC

Chart Task
Started from JFreeChart, then
looked for ChartUtil

� � � � � � � �

Found ChartUtil.write from
JFreeChart using APIX

� � � � � � � �

Feature used EC SA SA EC — — EC SA

PDF Task
Started from PDFDoc, then
looked for MergerUtil

� � � � � � � �

Found MergerUtil.append from
PDFDoc using APIX

� � � � � � � �

Feature used EC RE EC EC EC EC EC —

XML Task
Started from Validator, then
looked at Schema

� � � � � � � �

Found Schema.newValidator()

from Validator using APIX
� � � � � � � �

Feature used OC — OC OC OC — OC OC

The participants approached the next part of the task, sending the email mes-

sage, differently. P1 started with the documentation in search for assistance on how
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to send the message but did not find Transport. He then browsed through the meth-

ods of Message using the enhanced code completion (EC) feature of Eclipse when he

noticed Transport.send(Message) amongst the recommendations of API Explorer.

P5 and P8 also used the EC to discover Transport.send(Message) directly from

Message. Participants P2, P3, P4, P6, and P7 all used the synonym analysis (SA)

feature of API Explorer to query for a recommendation for “Message.send”, and

received four recommendations from which they discovered three different “send”

methods on the Transport class.

We summarize the observations from the other tasks in Table 4–1. For each task,

we indicate whether the participant started from the main-type before looking for the

helper-type, whether the participant was able to use API Explorer (APIX) to discover

the helper-type directly from the main-type, and the API Explorer feature that was

used to make the discovery. For the Chart task, seven of the eight participants started

from the main-type JFreeChart before looking for the helper-type ChartUtilities.

Only P6 started from ChartUtilities before looking for JFreeChart, and this oc-

curred because P6 had difficulties finding the main-type and happened to stumble

on ChartUtilities. Six of the eight participants successfully used APIX to dis-

cover ChartUtilities directly from JFreeChart. P5 did not attempt to use APIX

to look for a helper-type; he came up with an improvised solution that created a

BufferedImage from JFreeChart.

For the PDF task, all the eight participants started from the main-type PDFDocu-

ment before looking for the helper-type MergerUtility, and seven of the participants

successfully used APIX to discover MergerUtility directly from PDFDocument. P8
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used synonym analysis with “PDFDocument.merge” but got no recommendations.

He made no attempt to use other features of APIX, such as the enhanced code

completion, that could have helped him discover MergerUtility; he came up with

an improvised solution for merging the documents.

Five of the eight participants in the XML task started with the main-type

Validator; the other three started with the helper-type Schema. The domain that

provided support for validation had only six classes, with Schema at the top of the

list, and Validator at the end: that could have influenced the three participants that

started with Schema. Six of the participants used the object construction feature to

discover how to create a Validator object from Schema.newValidator(), the other

two used the documentation.

The results were consistent across the eight participants and in most of the tasks:

the participants typically began exploring an API from the main-type before look-

ing for a relevant helper-type, and successfully used API Explorer to discover

relevant helper-types directly from a main-type.

B. Episode-Level Observations.

To answer questions Q.2, Q.3, and Q.4, we analyzed all the segments of the screen

captured videos, which we called episodes, corresponding to instances in which a

participant used API Explorer to discover API elements relevant to a task. In our

analysis, we focused on the degree to which a participant was able to select API

elements relevant to a task from the recommendations of API Explorer, the discov-

erability contexts in which the assistance of API Explorer was requested, and whether
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or not the assistance provided was helpful. We consider the assistance provided by

API Explorer helpful if its recommendations contains an API element relevant to a

given request, and if the participant was able to recognize and select the relevant

element. The results of the analysis are summarized in Table 4–2.

The third column (# of usage episodes) of Table 4–2 shows the number of

episodes where API Explorer was used, per participant and per discoverability con-

text. For instance, P1 used API Explorer 21 times: four times to discover relevant

methods on other API types (row METH), 16 times to discover API elements nec-

essary to construct an object of a given API type (row OBJ), and once to look for

types related to a given API type that could be used to perform a given operation

(e.g., types related to PDFDocument that could be used for merging; row ER). The

participants requested the assistance of API Explorer a combined total of 161 times.

The fourth column presents the average number of recommendations per episode for

each of the different discoverability contexts. The average number of recommenda-

tions ranged from about 2 to 15 recommendations per episode.

The fifth column presents the number of episodes in which a participant was

unable to select or recognize an API element relevant to a task from the recom-

mendations made by API Explorer. We observed only two instances in which a

participant was unable to select a relevant API element from the recommendations

of API Explorer. In the first instance, P3 had requested the list of API types re-

lated to PDFDocument while looking for a type that could be used for merging PDF

files. API Explorer provided a list with 12 API types, including MergerUtility,
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Table 4–2: A summary of all instances in which API Explorer was used by each
participant for the various contexts (object construction [OBJ], looking for relevant
methods on other types [METH], and exploring the relationships between types
[ER]).

# of usage
episodes

average # of
recommendations

unable to
select

API
Explorer

not helpful

P1 OBJ 16 6.3 0 0
METH 4 5 0 0
ER 1 0 0 1

P2 OBJ 12 5.5 0 0
METH 4 4.2 0 2
ER 4 6 0 1

P3 OBJ 11 7.8 0 0
METH 3 8.2 0 0
ER 8 3.5 1 1

P4 OBJ 16 6.3 0 0
METH 3 9.1 0 0
ER 5 5.9 0 0

P5 OBJ 14 7 0 0
METH 2 15.2 0 0
ER 3 0 0 0

P6 OBJ 12 8.3 0 0
METH 4 5.1 0 1
ER 5 3.6 0 0

P7 OBJ 11 7.1 1 1
METH 3 8.6 0 0
ER 1 5.5 0 0

P8 OBJ 14 6.2 0 0
METH 2 8.4 0 0
ER 3 1.7 0 0

TOTAL 161 2 7
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but P3 failed to notice it because it was not visible, and P3 did not scroll to ex-

amine the entire list. In the second instance, P7 had requested for assistance on

how to create a Schema object, and received eight recommendations: P7 selected

DocumentBuilder.getSchema() instead of SchemaFactory.newSchema(File), but later

reverted to SchemaFactory.newSchema(File)when she realized a schema file was pro-

vided for the task. API Explorer was not helpful in only seven of the 161 episodes

in which it was used (last column): we address these situations below where we look

at the limitations of our approach.

The participants experienced little difficulty selecting API elements relevant to a

given programming scenario when presented with a list of possible helper-types.

API Explorer also proved mostly helpful when looking for helper-types relevant to

creating an object, relevant helper-methods on other objects, and when looking for

types related to a given API type that could be used to perform a given operation.

C. Limitations of our approach.

The last column of Table 4–2 shows some of the situations in which our approach was

not helpful: these involve the synonym analysis and relationship exploration features

of API Explorer. Our approach is also not helpful when the relationships between

API elements can only be determined at runtime.

The effectiveness of our synonym analysis algorithm depends on API methods

respecting naming conventions such as method names beginning with action verbs,

not acronyms, and on the ability of a developer to provide a prefix that matches, or

is a synonym to the name of a relevant method on a helper-type. In two instances,
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P2 and P8 had sought for assistance on how to merge PDF files using synonym

analysis with “PDFDocument.merge” but received no recommendation. This was

expected as “merge” is not a synonym of the “append” method on MergerUtility.

We had designed the PDF task to see whether the participants would be able to

use other features of API Explorer to discover MergerUtility from PDFDocument. In

particular, to address the limitations of the synonym analysis feature, we enhanced

the default Eclipse code completion feature with the ability to display not only

the methods defined on type T , but also the API methods that take an object of

type T as a parameter. For instance, a developer browsing through the methods of

Message using this enhanced code completion feature will also come across the method

Transport.send(Message). Thus, a relevant helper-method not recommended by

synonym analysis will be discovered when the developer looks through the methods

of T . As shown in Table 4–1 (PDF task), six of the eight participants were able to

use the enhanced code completion feature to discover MergerUtility directly from

PDFDocument.

Our relationship exploration algorithm has two limitations: it cannot identify

the API types that throw a given exception, and can only identify direct relation-

ships between API types. P1 had looked for types related to SendFailedException

that could be used to send an email message but was misinformed that there was

no related type, although this exception is thrown by Transport. This occurred

because the current version of our XGraph does not support types related through

thrown exceptions. However, P1 subsequently discovered Transport.send with the
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assistance of the method recommendation feature of API Explorer. P2 was misin-

formed that Document is not related to Source, although they are related through

DOMSource(Document), a constructor of a subtype of Source. This occurred because

our relationship exploration algorithm does not consider indirect relationships be-

tween API elements. We plan on extending our XGraph and algorithms to show

API types that throw a given exception and to support indirect relationships be-

tween API elements.

4.3.6 Summary of the evaluation

Overall, the results of the study were consistent across the participants and for most

of the tasks: the participants began exploring the APIs from a main-type before

looking for the helper-types, and were mostly successful at using API Explorer to lo-

cate helper-types not accessible from a main-type. The participants also experienced

little trouble selecting relevant elements when presented with multiple recommenda-

tions. Our understanding of the domain enabled us to select tasks from real-world

APIs with discoverability hurdles typical to those that have been identified in the

literature [15, 51]. We therefore expect our observations to generalize to similar con-

texts, namely, when seeking to make API elements not directly accessible from a

given API type more discoverable. The participants expressed four reasons why they

considered the assistance provided by API Explorer helpful:

• Saves time (P2, P3, P4, P5, P7, P8): “It would have taken me a lot of time to go

[to the documentation] and find which class will have a merge functionality. Using

the tool, I could find MergeUtility directly from PDFDocument” – P2.
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• Increases awareness (P1, P4, P6, P7, P8): “this is another thing I really like. A

lot of times when you look at an API, you look at just the first constructor and

use that. API Explorer shows me other better options that I wouldn’t have looked

for.” – P1.

• Serves as a reminder (P1): “I couldn’t remember the proper way of using it [the

JFreeChart class] and was reminded by the tool” – P1.

• Unmasks hidden relationships (P1, P2, P4, P5, P7, P8): “If you want to save

something, you would like to say object.save() but that option is usually not

provided; usually, it is something.save(object) [that is provided]. It [API Ex-

plorer] is useful because it can make the association between the object you want

to save and the method that you need to call” – P1.

API Explorer recursively shows a participant how to create and relate objects nec-

essary to use a selected recommendation, even if the required objects comes from

commonly used types. Two participants (P4 and P6) complained that this was not

necessary for commonly used types such as the String class: “telling me how to

construct a String might not necessarily be the most helpful thing because it is

commonly used.” – P6.

4.3.7 Threats to validity

As indicated in Section 4.3.1, our method of choice for evaluating API Explorer was

the case study, which emphasizes exploration of the relation between a phenomenon

and its context as opposed to generalization. In particular, the diversity of APIs

and programming languages present factors which limits the generalizability of the

results of our study. First, API Explorer will not be helpful for APIs without helper
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types, or APIs without indirect object construction patterns such as the Factory

pattern. The same is true for an API with a well-written API documentation that

includes actual usage examples. History, however, suggests that we are far from these

ideals: there are situations where it seems reasonable to provide a Factory, instead of

a constructor, and to provide helper-types. It is for such situations that we envisage

tools such as API Explorer to remain helpful in facilitating discoverablity in APIs.

Second, although the tasks used in our evaluation were drawn from real-world APIs,

it is likely that they did not uncover every discoverability hurdle that could occur

in practice. In particular, very few indirect relationships, a feature not currently

supported by API Explorer, were uncovered by the evaluation. As future work, we

plan on extending API Explorer to support indirect relationships and to conduct

further studies to evaluate this feature. Lastly, some APIs have the notion of an

internal API, intended to be used by the designers only, and the public API, for

general use. The current version of API Explorer does not take these differences

in account when making recommendations; there is therefore the possibility that

recommendations made by API Explorer may be from the internal API, a practice

discouraged by API designers.

4.4 Summary

Learning how to use APIs is major part of a software developer’s job — even expe-

rienced developers must learn newer parts of an existing API, or newer APIs when

working on a new project. We proposed an approach to address one of the challenges

a developer faces when learning a new API: discovering relevant helper-types not ac-

cessible from a main-type the developer is working with. Our approach leverages
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the structural relationships in APIs to make relevant API elements not accessible on

a given API type discoverable. We implemented our approach in a tool called API

Explorer, and evaluated the approach through a multiple-case study in which eight

participants replicated four programming tasks with several discoverability hurdles.

The results of the study were consistent across the participants and the tasks: API

Explorer effectively assisted the participants in locating helper-types not accessible

from a main-type in different discoverability contexts. The participants also expe-

rienced little difficulty selecting relevant API elements from the recommendations

of API Explorer. The results of our evaluation provide evidence that the use of

structural relationships to make API elements discoverable could be a viable, and

an inexpensive, alternative to API wrappers or API restructuring when seeking to

improve discoverability in APIs.
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CHAPTER 5
Introspector: Facilitating Effective Query Formulation

Learning from code examples is one strategy developers employ when learning how

to use an API. In the absence of appropriate examples in the documentation of

an API, developers turn to the Web or to code repositories such as Koders, or

Google Code Search in search for relevant code examples. To locate code examples

relevant to a given task, a developer has to formulate a search query, execute the

search query against a code repository or the Web, and go through the search results

to identify a suitable example. Formulating an effective search query (that is, a

search query that would return code examples relevant to a given a task) is however

difficult because developers often lack a clear understanding of what they need when

beginning a new task, and even when they do, they have difficulty providing keywords

that corresponding to those used by the API designers. Research has reported a

likelihood of less than 15% of having two people choosing the same keyword for a

familiar object [18]. The difficulty of selecting common keywords for familiar objects,

referred to as the vocabulary mismatch problem (that is, multiple words for the same

topic), has been identified as a major challenge to query formulation [16, 18].

To help developers formulate effective search queries for locating code examples,

we propose an approach based on the use of API types as keywords in a search

query. Our approach takes as input an API type — the seed — and recommends a

list of other types that should be used together with the seed to formulate a search
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query. Our approach is based on the intuition that the names of API types provide a

common vocabulary between API users and designers, and therefore the use of API

types in query formulation reduces the ambiguity as to the kind of code example

that a user is searching for. Consider the example of a developer working on a task

for sending an email using the JavaMail API (see Section 1.2.3). With our approach,

a developer would provide an API type relevant to sending an email: for instance,

the developer may provide javax.mail.Message as the seed. However, the seed alone

may not be sufficient to locate relevant code examples. For instance, the top five

results of using javax.mail.Message as a search query on Google Code Search do

not contain a relevant example for sending an email. Code repositories index the

source code of not only how an API may be used, but also the code of the API itself.

Therefore, the top results of the search query “javax.mail.Message” simply point to

different locations of its source file.1

We observed that we can greatly improve the chances of locating a relevant code

examples by combining the seed with one or more other API types that are associated

with its usage context. For instance, given the seed Message,2 our approach combines

several heuristics to identify and recommend other types in the API that are often

associated with its usage: for instance, our approach would recommend several types

1 The search was performed on October 12, 2011: see Figure 6–1, Appendix B, for
the screen shots of the search results.

2 For brevity and to enhance readability, javax.mail.Message is represented by its
simple name Message. Future references to other types will also be represented by
their simple names.
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including Address and Transport. The developer may then formulate and execute the

search query “Message, Address, Transport” (interpreted as “retrieve code examples

that reference the types Message, Address and Transport”) against a code search

engine (Google Code Search, or Koders) supported by our tool, Introspector. The

first search results in this case is a code example which demonstrates how to send

an email using the Java Mail API.

We present our heuristics for identifying and recommending API types that

should be used together with a seed for searching for code examples, and the evalu-

ation of our approach.

5.1 Recommending Related Types

A given API type (henceforth referred to as the seed) is typically related to several

other types in an API. Our intuition is that through the use of association-based

heuristics and the relationships between API types, we can identify a core set of types

that are often associated with the usage of a seed. We use a two phase approach to

accomplish our goal: in phase one, we begin by identifying an initial set of types that

are structurally related to the seed; in phase two, we apply five different heuristics

to the initial set of types from phase one to recommend the types of an API that are

frequently associated with the usage of the seed, and therefore suitable for searching

for code examples involving the seed.

5.1.1 Phase I — Identifying an Initial Set of Types Related to the Seed

The goal of this phase is to isolate a subset of the API that would be suitable for a

more detailed analysis of the types frequently associated with the usage of a seed.

We begin by introducing two concepts that are relevant to identifying the initial set:
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Distance: this is a measure of how far an API type is from the seed, for a given

structural relationship. For instance, assuming that the type A (the seed) is the

super class of the type B, and B is the super class of the type C: then we say that B

is at a distance of one from A, and C is at a distance of two from A, given the subclass

relationship. We use the edges of the API Exploration Graph (see Section 4.1) to

measure the distance from an API type to a seed: a distance of one corresponds to

an edge between the seed and a type in the API. We use the distance from the seed

to determine how far to traverse a tree along edges corresponding to a relationship

type when generating the initial set.

Working set: this represents the set of API types that have been identified after

applying a given relationship from the seed to the types that are at a given distance

from the seed. For instance, given the subclass relationship example, the working set

will initially contain just the seed: {A}; for distance one, the set will now include B,

the subclass of the seed: {A, B}; for distance two, the set will include C, the subclass
of B: {A, B, C}. The given relationship is only applied to the new members of the

working set: that is, the types that were identified by the previous iteration.

We use the following structural relationships to identify an initial set of API types

for a given seed, within a specified distance:

• Parent : the parent class or interfaces of the seed, and of the types added to

the working set for each iteration, within a given distance. For instance, if

MimeMessage is the seed, this relationship would identify only its parent class

Message for distance one. However, for distance two, this relationship would
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also identify the parent class or interfaces of Message (a type added to the

working set by the first iteration).

• Subtype: the subtypes of the seed, and of the API types added to the working

set for each iteration, within a given distance.

• Return-type: the API types with methods that have the seed, or a type added

to the working set, as a return-type.

• Incoming Parameter : the API types that are a parameter to a method defined

on the the seed, or methods defined on a type added the working set.

• Outgoing Parameter : the API types with methods that take the seed, or a type

added to the working set, as a parameter.

• Polymorphic: the relationships presented above capture only simple relation-

ships between a seed and its related types. For instance, the subtype rela-

tionship can identify only the subtypes of the seed, and the outgoing parameter

relationship can only identity types that take the seed as a parameter. However,

types that take a subtype of the seed as a parameter would not be identified

by any of the relationships presented above. The polymorphic relationship is

an aggregation of the subtype and the outgoing parameter relationships, and

is used to identify the API types with methods that take subtypes of the

seed as a parameter, within a given distance. For instance, if MimeMessage

is the seed, and MimeMessage is a subtype of Message, then given the method

Transport.send(Message), MimeMessage would also be considered related to

Transport.
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• Object-construction: this relationship identify types related to the seed, or a

type added to the working set, through object instantiation. This relationship is

an aggregation of the return-type, subtype, and the parameter relationships. For

instance, given that Message can be created from the constructor of its subtype

MimeMessage(Session), then Message is also considered related to Session.

• Common friends : If the type A is related to the type B, and the type C is

related to B, then A would be considered related to C for distance two. For

instance, in the example below, Message is related to MessageWrapper, and

Transport is related to MessageWrapper, therefore Message is also related to

Transport through the common friends relationship.

MessageWrapper wrapper = new MessageWrapper(Message);

Transport.send(wrapper);

• Used together : this relationship identify types that are commonly used together

as method parameters. For instance, given the method Transport.send(Message,

Address), we consider the types Message and Address to be related through the

used-together relationship.

Most of these relationships are borrowed from the API Exploration Graph; we ex-

tended the graph with two new relationships (Common friends and Used together)

not captured by the original version. Given a seed as input, we use the above-

mentioned relationships to generate an initial set of types to be used in phase two to

identity API types that are frequently associated with the usage context of the seed.
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5.1.2 Phase II — Heuristics

The API types identified in phase one are structurally related to the seed, but most

of the types in the initial set are not always associated to its usage. To eliminate

types not relevant to the usage of a seed, and to identify types often associated with

the usage contexts of the seed, we apply five different heuristics to the initial set of

types. Each heuristic captures a different form of association between a seed and its

related types, and the results of the heuristics are eventually combined to recommend

API types with a strong association to the seed.

I. Tree-Based Heuristic

Object construction is typically the first step in making use of an API type. There-

fore, the API types necessary to construct an instance of a seed are associated with

its usage context. However, an API type may have multiple instantiation patterns

involving several types. The goal of the construction chain heuristic is to identify

those API types that are present on all of the construction paths of the seed. To

achieve our goal, the heuristic begins by creating a construction-chain tree with the

seed as the root (see Figure 5–1). The construction-chain tree represents all the

possible instantiation options for a given seed, and also of the types necessary to

create an instance of the seed. For each level in the tree, we compute the likelihood

(referred to as the level-based likelihood) of encountering each type at that level.

The likelihood is a function of the structure of the API, and assumes a uniform dis-

tribution of all the branches at each node of the tree. To compute the likelihood that

a given API type would be required to create an instance of the seed, we combine

the level-based likelihoods for the path from that type to the root of the tree.
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Figure 5–1: Partial construction tree for the type Message.

Assume that the seed is Message (its construction tree is presented in Fig-

ure 5–1). Level 1 of the tree present two options of creating the type Message:

MimeMessage(Session) and MimeMessage(Session, Inputstream). There are three

distinct types at this level: MimeMessage, Session, and Inputstream. The level-based

likelihood of encountering MimeMessage is 1.0 because it is on both paths; the likeli-

hood for Session is also 1.0. However, the likelihood for Inputstream is 0.5 because

it is on only one of the two paths. At level 2, we have three options of creating

an instance of Session involving two types: Properties and Authenticator. In this

case, the level-based likelihood of encountering Properties is 1.0 since it is on all

three paths, but the likelihood for Authenticator is 0.33 since it is on a single path.

Once all the level-based likehoods have been generated, we then proceed to compute

the likelihood that a type in the tree would be necessary to instantiate an object of

the seed — Message: we call this value the tree-based likelihood.

To compute the tree-based likelihood for type T, we multiply the level-based

likelihoods of each type along the path from the node T to the root of the tree. For
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instance, the tree-based likelihood that the type Properties would be required to

create an instance of Message is the product of level-based likelihoods for Message,

MimeMessage, Session, and Properties which gives us a value of 1.0. In contrast,

the tree-based likelihood of the type Authenticator is the product of level-based

likelihoods of Message, MimeMessage, Session, and Authenticator, which gives 0.33.

Observe that a type with a tree-based likelihood of 1.0 must be present to create an

instance of the seed, and therefore associated with the usage context of the seed. For

instance, in our example, the types MimeMessage, Session, and Properties must be

present to create an instance of Message. This heuristic outputs the set of API types

with a tree-based likelihood of 0.5 or above (that is, the types that are on 50% or

more of the construction paths of a seed).

II. Documentation Heuristic

The documentation heuristic is based on the observation that API designers often

make reference to other types relevant to the use of a given type in the documentation,

when such API documentation is available. For instance, the description section of

the Javadoc of the javax.mail.Messagemakes reference to both the MimeMessage and

the Transport types necessary for creating an instance of Message and for sending

an email, respectively (see Figure 5–2). Our intuition is that for cases where the

Javadoc of an API is available, the types mentioned in the description section of the

documentation are relevant to the use of the seed.

The documentation heuristic begins by extracting the simple name of the API

types in the initial set of types, then it checks whether the simple name of a given type

is mentioned in the description section of the Javadoc of the seed. We use regular
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Figure 5–2: An example of API types referenced in the description section of
the Javadoc of the type Message of the JavaMail API (source: http://download.-
oracle.com/javaee/6/api/javax/mail/Message.html, Oracle Corporation; retrieved
on September 25, 2011).

expressions to search through the text of the description section for references to a

given simple name. This heuristic outputs the API types in the initial set that are

also mentioned in the description section of the Javadoc of the seed; it does not keep

track of the number of times an API type was mentioned.

We use the simple name of an API type to determine whether or not a given

type is referenced in the documentation of the seed because our observations suggest

that designers typically use simple names, not absolute names, when referring to

API types in the Javadoc (see Figure 5–2). The use of the simple name to look for

types referenced in the Javadoc is imprecise, and raises the possibility for both false

positives (for instance, if the simple name is a prefix to a word in the documentation)
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and false negatives (for instance, if references to an API type is misspelled). However,

we consider the simplicity of this heuristic appropriate for our purpose (a simple check

for the presence or absence of a given word).

III. Data Flow Heuristic

This heuristic returns a list of API types that often flow in and out of the methods

defined on the seed. For instance, Address would be considered an incoming type

of Message because of the method Message.setFrom(Address), and Folder would be

considered an outgoing type because the method Message.getFolder() returns a

Folder. Given a seed such as the type Message, the data flow heuristic computes

the number of times in which an API type was either an incoming parameter or a

return-type of the methods defined on Message. The output of this heuristic is a

set of API types that occurred two or more times as a parameter or return type of

methods defined on the seed. Our intuition is that types that occurred two or more

times as either an incoming or outgoing type of the seed are highly relevant to its

usage.

IV. Collaborator Heuristics

We defined a collaborator as any type with a method that takes the seed as a pa-

rameter. For instance, Transport is considered a collaborator of Message because of

the method Transport.send(Message). For each collaborator, we count the number

of times the seed occurred as a parameter on one or more of its methods. Our intu-

ition is that collaborators that have the seed as a parameter on two or more of their

methods are highly relevant to the use of the seed. This heuristic computes, for each
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collaborator, the number of times the seed occurred as a parameter of its methods.

The output of this heuristic is a set of collaborators in which the seed occurred at

least twice as a parameter.

V. Type Usage Heuristic

This heuristic is based on the observation that the implementation of some collab-

orators reference not only the seed but also other API types that may be relevant

to the use of the seed. For instance, although not evident from its interface, the

Transport class of the JavaMail API references the types Address (which contains

the email address of the sender and recipients) and Session (which contains the mail

server information), both relevant to the use of Message. We therefore expect some

overlap between the types referenced within the collaborators and the types most

relevant to the use of a seed. We used bytecode analysis to generate the type usage

information for a given seed since our approach is based on the assumption that the

source code of an API may not be available to the developer. This heuristic begins

by looking for all the types referenced within each collaborator of the seed: that is,

all the fields declared by a collaborator and all the types referenced within methods

of the collaborator class. Then, the heuristic computes the intersection between the

set of types referenced within each collaborator and the initial set of types for a given

seed. We consider types that are common between both sets to be associated with

the use of the seed.

Recommending API types strongly associated with the usage of a seed.

Each of the five heuristics captures a different form of association between a seed
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and its related types: for instance, assuming the seed is Message, we know from the

Documentation heuristic that the type Transport may be associated with the use of

the type Message. However, a single association is typically not enough to recommend

an API type as strongly associated to the usage context of a seed. We use the number

of heuristics that support a given association between a seed and a related API type as

a measure of the strength of the relationship. The relationships between a seed and an

API type that are supported by all five heuristics are ranked first, relationships that

are supported by four heuristics are ranked second, relationships that are supported

by three heuristics are ranked third, relationships that are supported by two heuristics

are ranked fourth, and those supported by only a single heuristic are ranked last. We

recommend only API types that were identified by two or more of the five different

heuristics as being associated to the usage context of a seed. The types identified by

the construction chain heuristics with a likelihood of 1.0 are treated differently —

i.e., they do not need additional support from other heuristics — since such types

are on every instantiation path of the seed, and by default, are ranked first.

5.2 Evaluation

Our approach is based on the intuition that the use of API types to formulate search

queries can mitigate the challenges a developer encounters when searching for code

examples relevant to implementing a programming task. Specifically, we claimed

that the types recommended by Introspector can assist a developer in locating code

examples relevant to implementing a given programming task. We designed our

evaluation to investigate the following research question:
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Are the API types recommended by Introspector for a given seed effective for

searching for code examples relevant to a given task?

In our evaluation, we considered a search query to be effective if the solution of a

given task is amongst the top three code examples recommended by Introspector for

that query.

To investigate our research question, we used ten programming tasks from six

different real-world APIs (see Table 5–1). The description and the solution of each

task was provided by the API designers and form part of the documentation and

tutorials that came with the respective API. We selected tasks that required at least

four types from the corresponding API, and some of the tasks and APIs we selected

have been used in previous studies (the Eclipse Java Development Tool and Resources

APIs for Task 1 and Task 2 were used by Holmes et al. [21] and Bajracharya et al. [1];

the Apache POI API was used by Jureczko et al. [24]; the Twitter4J API was used

by Nita and Notkin [33]). We used the task description and the source code provided

by the API designers for each task as an oracle for evaluating the effectiveness of our

approach.

Seed Selection

Our approach takes as input an API type — the seed — and recommends additional

types that should be used together with the seed to search for relevant code examples

for a given task. To minimize seed selection bias and to ensure that the results of

the evaluation are not based on arbitrary seed selection, we used three different seed

selection schemes to evaluate our approach:
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Table 5–1: Tasks Description.

Task
ID

Task Description API API Description

1 Create a Java project. eclipse.jdt.core,
eclipse.core.re-
sources

Eclipse Java Development
Tool and resources APIs.

2 Create an AST. eclipse.jdt.core,
eclipse.core.re-
sources

3 Create a cell in Excel. Apache POI API for manipulating excel
files.

4 Add an image to an Excel
file.

Apache POI

5 Search for Tweets. Twitter4J Java library for Twitter.

6 Asynchronously update sta-
tus.

Twitter4J

7 Obtain cache statistics. JCache General purpose caching
API for Java applications.

8 Convert a Word document
to PDF.

JODConverter Java library to convert doc-
uments between different of-
fice formats.

9 Send a text message. Smack An instant messaging API.

10 Check availability (“pres-
ence”) of other users.

Smack

111



I. Central-type scheme. Previous work observed that when working with an

unfamiliar API, developers begin with a central-type representing the concept to be

implemented before looking for other relevant types [12, 51]. For instance, developers

would begin with the type PDFDocument when working on a task for manipulating

PDF documents. For tasks that have been the subject of a previous study, we

used the same seed as in previous work. For instance, Holmes and Murphy used

the type ASTParser for Task 2 [21], and we did the same. For tasks that have not

been used in previous studies, we selected a type we considered to be central to

each task as the seed using the observation from previous work. The seed used for

each task, for the Central-type scheme, is presented in Table 6–1, Appendix A. Even

with the inclusion of tasks from previous studies, the central-type scheme remains

subject to investigator bias. To help minimize the seed selection bias and to provide

important comparison points for our results, we applied two more seed selection

schemes: Keyword-based and Random.

II. Keyword-based scheme. Developers working with unfamiliar APIs often use

keywords from the task description to help locate types relevant to their task [12].

For instance, given a task description such as “Compose and send and email message

using the JavaMail API”, a developer may look for an API type containing the

keyword “email” or “message”. We used this strategy to look for keywords in the

task description that correspond to types in the solution for each task, and used

those types as the seed to our approach. For instance, the type javax.mail.Message

would be used as the seed for the task of composing and sending an email message

since this type contains the keyword “message”. The keywords used for selecting
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the seeds for the different tasks, and the seed used for each task, are presented in

Table 6–2, Appendix A.

III. Random scheme. At times, the task description may not contain keywords

that point to types relevant to implementing a given task. We used the random

seed scheme to reflect instances where a developer may begin with any of the types

relevant to implementing a task. For the random scheme, we consider each type

necessary to implement a task as a potential seed, and average the results across

the different seeds. For instance, five API types (IProject, IJavaProject, JavaCore,

IWorkspace, and IWorkspaceRoot) are needed to implement Task 1: in our evaluation,

we used each of the five types as a seed to recommend additional API types to be

used for searching relevant code examples. We would report the effectiveness of the

Random Scheme for Task 1 to be 2/5, assuming that only two of the five seeds lead

to a relevant code example. There were a total of 47 different seeds across the ten

tasks: we present the seeds for each task in Table 6–3, Appendix A.

Methodology.

We applied the three seed selection schemes to each of the ten tasks, and for each

task, we obtained different API types to be used as the seeds for evaluating our

approach. Next, we ran Introspector for each task, and for each seed, and obtained

an expanded set of API types identified as being often associated with the usage

context of the seed. We used the value three as the distance from the seed when

generating the expanded set. We selected a distance of three because, in our initial

investigation, we found that a distance above three created a much larger initial set
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with types less relevant to the seed, but did not increase the effectiveness of our

heuristics. We generated three search queries for each seed by combining the seed

with the top K (K = 1, 3, and 5) API types identified as relevant to the use of

the seed. Finally, using Introspector for each task and for each K, we executed the

search query against the Google Code Search repository, and obtained a list of code

examples ranked based on their relevance to the search query.

To evaluate the effectiveness of the search queries for each task, we manually

compared the top three code examples returned by Introspector for each K to the

solution provided in the documentation for the task. We also compared the solution

provided for each task with the results of using just the seed alone as a search query.

In our comparison, we considered a code example relevant to a given task if it was

an exact match to the solution provided by the API designers for the task, or if

it contained code snippets that could be extracted to form a solution for the task.

We present the results of the Keyword and Central-types schemes, for the different

values of K, in Tables 5–2 to Tables 5–5. The results of the Random scheme are

summarized in Table 5–6.

Comparison to Natural Language Queries.

As part of our evaluation, we compared our approach to the use of natural language

queries when searching for code examples. To formulate the search query for each

task, we used the verbs, nouns, and direct-objects (that is, the object a verb acts

on; for instance, the phrase “remove the attribute” has verb “remove” and object

“attribute”) [44] of the description of the task. This approach for formulating search

queries from task description was inspired by previous work [20, 44]. We also included

114



Table 5–2: The relevance of the code examples recommended by Introspector for the
Keyword and Central-type schemes: Seed alone.

Keyword(40%) Central-type(50%)

In top 3? Quality In top 3? Quality

Task 1 Yes Snippet Yes Snippet

Task 2 Yes Exact Yes Snippet

Task 3 Yes Snippet Yes Snippet

Task 4 Yes Snippet Yes Snippet

Task 5 No — No —

Task 6 No — No —

Task 7 No — No —

Task 8 — — Yes Snippet

Task 9 No — No —

Task 10 No — No —

the programming language of the API (Java, in our case) and the name of the API

as part of the search query to avoid ambiguity. The natural language query used

for each task is presented in Table 6–4, Appendix A. We executed the query of

each task on the code search engines (Google Code Search and Koders) supported

by Introspector, and compared the top three code examples returned by each code

search engine to the solution provided for the task. We used the same approach as

explained above to determine the relevance of the code examples returned by the

search engines. We summarize the results on the use of natural language queries in

Table 5–7.

5.2.1 Results

Introspector — Seed Selection Schemes.

115



Table 5–3: The relevance of the code examples recommended by Introspector for the
Keyword and Central-type schemes: K = 1.

Keyword(70%) Central-type(90%)

In top 3? Quality In top 3? Quality

Task 1 Yes Snippet Yes Snippet

Task 2 Yes Exact Yes Snippet

Task 3 Yes Snippet Yes Snippet

Task 4 Yes Snippet Yes Snippet

Task 5 Yes Snippet No —

Task 6 No — Yes Exact

Task 7 Yes Snippet Yes Snippet

Task 8 — — Yes Exact

Task 9 Yes Snippet Yes Snippet

Task 10 No — Yes Snippet

Table 5–4: The relevance of the code examples recommended by Introspector for the
Keyword and Central-type schemes: K = 3.

Keyword(80%) Central-type(90%)

In top 3? Quality In top 3? Quality

Task 1 Yes Snippet Yes Snippet

Task 2 Yes Snippet Yes Exact

Task 3 Yes Snippet Yes Snippet

Task 4 Yes Snippet Yes Snippet

Task 5 Yes Snippet No —

Task 6 No — Yes Exact

Task 7 Yes Snippet Yes Snippet

Task 8 — — Yes Snippet

Task 9 Yes Snippet Yes Snippet

Task 10 Yes Exact Yes Snippet
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Table 5–5: The relevance of the code examples recommended by Introspector for the
Keyword and Central-type schemes: K = 5.

Keyword Scheme Central-type Scheme

In top 3? Quality In top 3? Quality

Task 1 Yes Snippet Yes Snippet

Task 2 Yes Exact Yes Snippet

Task 3 Yes Snippet Yes Snippet

Task 4 Yes Snippet Yes Snippet

Task 5 — — — —

Task 6 No — — —

Task 7 — — — —

Task 8 — — Yes Exact

Task 9 Yes Snippet Yes Snippet

Task 10 Yes Exact Yes Snippet

The second and third column of Tables 5–2 to 5–5 presents a summary of the re-

sults of the Keyword and Central-type schemes: the “In top 3” column indicates

whether the solution for a given task is amongst the top three code examples rec-

ommended by Introspector; the “Quality” column indicates whether a recommended

code example can be used without the need for customization: “Exact” implies the

recommended code example can be used without customization, and “Snippet” im-

plies the recommended code example has to be customization to get a solution for

the task. We used a dash (—) in the “In top 3” column to indicate instances in

which a search query could not be generated for a given scheme, or for a given value

of K. For instance, we could not generate a search query for the Keyword scheme

for Task 8 because there was no keyword in the task description that matched the

117



Table 5–6: A summary of the proportion of seeds, for each task, with a relevant
code example amongst the top three examples recommended by Introspector for the
Random scheme. For instance, for Task 1, three of the five (3/5) seeds lead to a
relevant code example when the seed alone was used as a search query. However,
across all the ten tasks, only 15 (that is, 31% ) of the 47 seeds led to a relevant code
example given the seed alone.

Seed Alone K = 1 K = 3 K = 5

Task 1 3/5 4/5 4/5 4/5

Task 2 2/4 3/4 4/4 4/4

Task 3 4/6 6/6 6/6 6/6

Task 4 2/6 2/6 2/6 —

Task 5 0/5 2/5 3/5 —

Task 6 2/5 3/5 4/5 —

Task 7 0/4 2/4 3/4 —

Task 8 2/4 4/4 3/4 —

Task 9 0/4 3/4 4/4 4/4

Task 10 0/4 1/4 3/4 3/4

Average: 15/47 (31%) 30/47 (63%) 36/47 (76%) —

name of an API type. Also, we could not generate a search query in ten cases for

K = 5 because the number of API types recommended by Introspector was below

five (see Table 5–5). Lastly, the value next to the name of each scheme represents

the proportion of the search queries, for the given value of K and for a given seed

selection scheme, with a relevant code example amongst the top three examples rec-

ommended by Introspector. For instance, when the seed alone was used as the search

query, four of the ten (that is, 40%) search queries of the Keyword scheme provided

code examples relevant to the corresponding task (see Table 5–2). In general, for the

Keyword and Central-type schemes, we observed that the effectiveness of the search
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queries improved as we increased the value of K from the seed alone to the top one,

and top three recommended types. The effectiveness of the search queries for the

Keyword based scheme improved from 40% (seed alone) to 70% (K=1), then to 80%

(K=3); and the Central-type scheme improved from 50% (seed alone) to 90% (K=1),

and remained unchanged for K=3. We did not provide the proportion of effective

queries for K=5 since search queries could not be created for ten cases.

Table 5–6 provides a summary of the results for the Random scheme. For each

task, and for each value of K, we provide the proportion of the seeds with a relevant

code example amongst the top three examples recommended by Introspector. For

instance, we observed that three of the five (that is, 3/5) seeds of Task 1 led to a

relevant code example when the seed alone was used as a search query. However,

when we consider all ten tasks, only 15 (that is, 31%) of the 47 seeds led to a relevant

code example when just the seed was used as a search query. When we used the first

API type (that is, K=1) recommended by Introspector together with the seed as

the search query, the effectiveness of the Random schemes, across all the ten tasks

(that is, the 47 seeds), increased to 63%. Code search engines index the source code

of not only how an API is used, but also the source files of the API. We observed

that most of the top three code examples point to different source files of the API

when the seed alone is used as a search query. By providing an additional API type

associated with the usage context of the seed, we significantly improved the quality

of the search results.

The first API type recommended by Introspector was not always associated with

the usage of the seed. This explains why the effectiveness of the Random scheme,
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for K=1, was 63%. When we increased the value of K to the top three API types

recommended by Introspector, the effectiveness of the Random scheme, across all ten

tasks, increased to 76%. The reason for the increase is that most of the search queries

generated by Introspector for each of the 47 different seeds now contain at least one

additional API type relevant to the usage context of the seed. The improvement in

the effectiveness of the queries given the increase from K=1 to K=3 highlights the

robustness of our approach: for 36 of the 47 different seeds across the ten tasks, there

was at least one API type associated to the usage context of a seed amongst the top

three API types recommended by Introspector.

Notwithstanding the demonstrated usefulness of Introspector to increase the

performance of searches, there are some factors which limit the effectiveness of our

approach: API evolution, incorrect recommendations, and multiple usage contexts.

API evolution: as APIs evolve, API designers are faced with the challenge of sup-

porting existing client code while making changes to support changing requirements.

With time, an API may provide both a deprecated approach, and a newer approach

for implementing a given task. However, our approach cannot differentiate between

the deprecated and the new approach of implementing a task, resulting in irrelevant

recommendations. For instance, for task 4 (“Add an image to an Excel file”), Intro-

spector recommended no code examples: on closer examination, we observed that

the API provides support for both the older and newer Excel file formats; however,

the search query generated by Introspector was for the older Excel file format for

which code examples may not be available.
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Incorrect associations: Our approach recommends related types based on asso-

ciation heuristics, and the strength of the relationship with the seed (that is, the

number of heuristics that support the relationship between a seed and its related

types). At times, the associations inferred by the heuristics may be incorrect, result-

ing in irrelevant recommendations. The relationship between the seed and a relevant

type must be supported by two or more of the five heuristics, to be recommended

by our approach. We observed that there are cases where an API type relevant to

the use of a seed may not be recommended because the support from the heuristics

is limited — that is, the relationship between a seed and a relevant API type is

supported by only a single association heuristic. For instance, Introspector did not

recommend API types to be used with the seed as a search query for task 5, for

the Central-type scheme. On closer examination, we observed that the relationship

between the seed and the relevant types for the task had support only from a single

heuristic. The results of the evaluation however suggest that the number of cases

where our approach may omit relevant related types is limited.

Multiple usage contexts: An API type may have multiple usage contexts: some

usages may be related to its primary purpose, and there may be other secondary

usage contexts. For instance, the primary usage context of the type Message of the

JavaMail API is creating and sending an email message, and this fact is reflected

in its Javadoc which references the type MimeMessage (for instantiating a Message

object) and the type Transport (for sending an email message). However, the type

Message may also be used in other contexts, such as for retrieving email messages

from a mail server. Our approach is based on measures (such as, the instantiation
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Table 5–7: The relevance of the code examples returned by the code search engines
using natural language queries.

Google Code (20%) Koders (30%)

In top 3? Quality In top 3? Quality

Task 1 No — No —

Task 2 No — No —

Task 3 No — Yes Snippet

Task 4 No — Yes Snippet

Task 5 Yes Snippet No —

Task 6 No — No —

Task 7 No — No —

Task 8 No — No —

Task 9 No — Yes Snippet

Task 10 Yes Exact No —

pattern of a seed, and the types referenced in the Javadoc of the seed) that favor

the primary usage of an API type. Consequently, the expanded set generated for

a given API type may not lead to relevant code examples for tasks which involve

uncommon, secondary usages of an API type.

Natural Language Queries (NLQ).

Table 5–7 presents the results of the use of NLQ to search for code examples for the

ten tasks using Google Code Search and Koders. We found a solution for only two

of the tasks amongst the top three code examples returned by Google Code Search,

and for three of the tasks amongst the top three code examples returned by Koders.

Code search engines retrieve code examples by matching keywords in a search query

to the source code in their repository. The word usage in a task description, or the
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keywords that may be used by a developer to formulate a search query may not

reflect the word usage in the API, or code examples that make use of the API. This

explains why the search queries from NLQ were not effective in retrieving relevant

code examples.

5.2.2 Discussion

In general, our approach — the use API types to formulate search queries — out-

performed the use of NLQ when searching for code examples relevant to a task.

Observe that the results for the Random scheme takes into account the seeds of both

the Central-type and the Keyword-based schemes: the results of the Random scheme

is therefore an average across all the ten tasks and the three seed selection schemes.

We observed that the results of using the seed alone as a search query (that is, 31%

effectiveness) is comparable to the use of NLQ. However, there is a significant im-

provement in the effectiveness of the search queries when the results of the NLQ are

compared to the results for K=1 and K=3. For instance, for the Random scheme,

we found a relevant solution for 61% (K=1) to 76% (K=3) of the 47 different seeds

across all the ten tasks. In contrast, we found a solution for only two of the tasks

with Google Code Search, and for three of the tasks with Koders using NLQ.

The use of natural language queries to search for code examples is ineffective

when API users have a hard time guessing the words that were used by the API

designers to implement a given feature of an API. API types provide a common

vocabulary between API users and API designers; thus, the use of API types to

formulate queries seems to be an effective strategy when searching for code examples

relevant to a programming task.
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Symmetry of expanded sets. A potential concern about our approach is the

possibility that the performance of our tool is independent of the choice of seed for

a given task. In other words, if the overlap between the expanded sets of the types

relevant to implementing a task is high, then it matters less what the choice of seed

is for a given task. To investigate this concern, we generated the pairwise overlap

between all the possible seeds for each task (that is, all the types of an API relevant

to implementing a given task), for the ten tasks. Specifically, for each possible pair of

seeds, for each task, we began by generating the expanded set for the two seeds; next,

we computed the intersection of the expanded sets; then we computed the average

size of the expanded set for the given pair.

We summarize the results of the this analysis using bar charts: the results of

the first, the middle, and the last task are presented in Figure 5–3; the results of the

other tasks are presented in Appendix C. Each group of blue and red bars represents

a summary of the overlap for a pair of seeds for a given task. The blue bars represent

the average size of the expanded set for a given pair, and the red bars represent the

overlap between the expanded set for a given pair. Blue bars without a corresponding

red bar indicates that there is no overlap between the expanded sets for that pair.

For instance, there was no overlap between the expanded sets in three of the ten pairs

of seeds for Task 1. We observe that, in general, the overlap between the expanded

sets for the seeds in each task was low: therefore, the performance of our approach

is mostly sensitive to the choice of the seed.
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Figure 5–3: A summary of the pairwise overlap between the expanded sets of the
seeds for the first (Task 1), middle (Task 5), and last task (Task 10). The blue bars
represent the average size of the expanded set for a given pair, and the red bars
represent the overlap between the expanded set for a given pair.
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5.3 Summary

Searching for code examples for a programming task is a common strategy used

by developers working with unfamiliar APIs. However, formulating effective search

queries for locating relevant code examples is challenging because of the vocabulary

mismatch problem — multiple words for the same topic. We proposed a technique

based on API types to help facilitate the process of query formulation: our idea is

that instead of trying to guess the most appropriate keywords to use as the search

query, the developer would provide an API type relevant to the scenario to be imple-

mented, then our technique would recommend relevant types strongly associated with

the usage of the given type. The developer would then use the recommended types

as a starting point for searching for code examples. We implemented our approach

as an Eclipse plug-in called Introspector, and evaluated the approach quantitatively

using ten tasks from six APIs. We also compared our approach to the use of natural

language based queries. We observed that our approach is effective in identifying

API types associated with the usage context of a seed, and that our query formula-

tion approach is the most effective when the top three API types recommended by

Introspector are combined with the seed to search for code examples. The evalua-

tion also suggest that our query formulation strategy is more effective than the use

of natural language based queries when searching for code examples.

126



CHAPTER 6
Conclusions

Learning how to use APIs has become a major part of a software developer’s job. The

goal of this thesis was to identify and understand some of the challenges a developer

encounters when working with unfamiliar APIs, and to design and implement novel

tools to facilitate the API learning process. To achieve this goal, we started with

an exploratory study to investigate the different types of questions developers ask

when working with unfamiliar APIs, to identify those questions that are difficult to

answer, and to investigate the cause of the difficulty. Our study involved twenty

participants working on the same two programming tasks using real-world APIs.

The study generated over 20 hours of screen captured video and the verbalization of

the participants spanning 40 different programming sessions.

Our analysis of the data involved generating generic versions of the questions

asked by the participants about the use of the APIs, abstracting each question from

the specifics of a given API, and identifying those questions that proved difficult for

the participants to answer. Based on the results of our analysis, we isolated twenty

different types of questions the programmers asked when learning to use APIs, and

identified five of the twenty questions as the most difficult for the programmers to

answer in the context of our study. Our analysis also provides evidence to explain

the cause of the observed difficulties. The different types of questions we identified

and the difficulties we observed can be used to evaluate tools aimed at improving

127



the API learning process, and to identify areas of the learning process where tool

support is lacking or could be improved. For instance, we observed that tool support

to assist a programmer in identifying types that would serve as a good starting point

to search for code examples or to explore an API for a given task is limited.

In the second phase, we designed and evaluated programming tools (API Ex-

plorer and Introspector) to address some of the questions we identified as being

difficult for developers to answer when working with unfamiliar APIs. The API

Explorer tool was designed to address the difficulty a developer faces when the API

elements necessary to implement a task are not accessible from the type the developer

is working with. API Explorer leverages the relationships between API elements to

recommend relevant methods on other objects, to identify API elements relevant to

the use of a method or class, and to support a developer in combining multiple ob-

jects. We implemented API Explorer as a novel extension of the content assist feature

of the Eclipse IDE, and evaluated API Explorer through a case study in which eight

participants completed four programming tasks with several discoverability hurdles.

The participants experienced little difficulty selecting relevant API elements from the

recommendations of API Explorer, and found the recommendations of API Explorer

helpful in locating helper-types in several discoverability contexts.

The Introspector tool was designed to address the difficulty of formulating ef-

fective queries when searching for code examples relevant to implementing a task.

Introspector combines the structural relationships and the flow of information be-

tween API types to recommend types that should be used together with a seed to

search for code examples for a given task. Using the recommended types as search
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query, a developer can search for code examples across two code repositories using

Introspector, and in return, will get a list of code examples ranked based on their

relevance to the search query. We evaluated Introspector quantitatively using ten

tasks from six different APIs. We also compared the recommendations of Introspec-

tor to the use of natural language based queries when searching for code examples.

The results of the evaluation suggest that the use of API types to formulate search

is a more effective strategy than the use of natural language based queries when

searching for code examples.

APIs have become the major mechanism of reusing source code. Before benefit-

ing from reuse, developers have to learn how to use APIs. This thesis expands on the

body of work on API learning by investigating the causes of the difficulties develop-

ers encounter when working with unfamiliar APIs, and by designing and evaluating

new programming tools to facilitate the API learning process. A major distinction

of this thesis is our use of the structural relationships between API types and meth-

ods to generate recommendations on how to use an API. Previous efforts on tools

for API learning have predominantly focused and relied on the existence of a large

corpus of source code examples to generate recommendations. However, there are

situations where a corpus of source code examples for an API may not be available:

for instance, new APIs, and less frequently used parts of existing APIs typically do

not have a repository of examples. In the absence of examples, tools that need a

corpus to generate recommendations will not be helpful. The contributions of this

dissertation therefore complement previous tools that rely solely on the existence of

code examples; this dissertation also demonstrates that in the absence of a corpus of
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code examples, we can leverage the relationships between API elements to provide a

measure of support to developers learning to use APIs.

This dissertation is one small piece of the research effort to understand and

support API learning, but there are other areas on API learning and usability worth

investigating. The contributions of this thesis are based on observing programmers

working with a strongly typed programming language: an interesting venue of future

work would be to investigate the usability challenges of APIs based on untyped

languages such as Python or JavaScript. It would also be worthwhile to investigate

the extent to which the approaches proposed in this thesis are applicable to untyped

languages. In our work with APIs, we focused predominantly on code libraries; we

did not look at code frameworks.1 Studies to investigate the cause of the challenges

developers encounter when learning how to extend code frameworks will no doubt

reveal other challenges not observed in our work, and may also provide avenues of

interesting research and new programming tools. We also observed through our

study that integrating code examples found on the Web, or code repositories, into

a developer’s project is difficult, particularly for novice API learners. However, tool

support for customizing and integrating code examples into a developer’s project is

1 Inversion of Control — the decision as to when an API method should be called
— is typically used to differentiate between code frameworks and code libraries. Code
libraries allow the reuse of code through API types and methods, but the developer
decides when a method should be called. A framework allows the reuse of both code
and design, but the decision as to when a method is called is made by the framework.
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limited. It is our hope that some of these observations and unanswered questions

would inspire future research efforts on API usability and learning.
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Appendix A — Supplementary Data from the Evaluation of Introspector

Table 6–1: Seeds for the Central-type scheme, for each task.

Task ID Seeds

1 IJavaProject

2 ASTParser

3 Cell

4 Picture

5 Query

6 AsynTwitter

7 CacheStatistics

8 DocumentConverter

9 Message

10 RosterEntry
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Table 6–2: Keywords from the task descriptions that were used to generate seeds for
the keyword-based scheme.

Task ID Keywords Seeds

1 “java project” IJavaProject

2 “AST” AST

3 “Cell”, “Excel” Cell

4 “image”, “Excel” Picture

5 “tweets”, “search” Query, Tweet

6 “status” Status

7 “cache statistics” Cache, CacheStatistics

8 — —

9 “message” Message

10 “presence” Presence

Table 6–3: Seeds for the Random scheme, for each task.

Task ID Seeds (types needed for each task)

1 IJavaProject, IProject, JavaCore, IWorkspace, IWorkspaceRoot

2 ASTParser, ICompilationUnit, AST, CompilationUnit

3 Cell, Row, Sheet, WorkBook, CreationHelper, HSSFWorkBook

4 Picture, Drawing, ClientAnchor, Sheet, WorkBook, HSSFWorkBook

5 Query, QueryResult, Twitter, TwitterFactory, Tweet

6 AsynTwitter, TwitterListener, TwitterAdapter, Status, AsynTwitter-
Factory

7 CacheStatistics, Cache, CacheFactory, CacheManager

8 DocumentConverter, OpenOfficeConnection, OpenOfficeDocument-
Converter, SocketOpenOfficeConnection

9 Message, Chat, ChatManager, XMPPConnection

10 RosterEntry, XMPPConnection, Roster, Presence
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Table 6–4: Search queries and options for the natural language query evaluation.
These search queries were executed on Koders and Google Code Search.

Task ID Search Query Search Options

1 “create java project” Java

2 “create AST” Java

3 “create cell in excel” java

4 “add image to excel” Java

5 “search tweets” Java

6 “update status asynchronously” Java

7 “obtain cache statistics” Java

8 “convert from word to pdf” Java

9 “send text message” Java

10 “check presence of users” Java
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Appendix B — Supplemental Figures

Figure 6–1: An example of using the seed javax.mail.Message to search for code ex-
ample on how to send an email message using Google Code Search (October 15, 2011).
The top search results all point to different source files of the javax.mail.Message

class.

141



Appendix C — Supplemental Data for Symmetry Analysis

A summary of the pairwise overlap between the expanded sets of the seeds for Tasks

2, 3, 4, 6, 7, 8 and 9. The blue bars represent the average size of the expanded set

for a given pair, and the red bars represent the overlap between the expanded set for

a given pair.

142



 

 

 

Task 2 

Task 3 

Task 4 

143



 

 

 

Task 6 

Task 7 

Task 8 

144



 

Task 9 

145



Appendix D — Ethics Board Approval of User Studies

McGill University Research Ethics Board Approval of User Studies

REB File #:6-0605 — Empirical Studies of Software Developers Involved in a

Modification Task (see next page).
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