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Abstract

As the level of realism required by modern video games and movies increases, so does the
need for natural-looking simulations. Reproducing the physical behaviour of humans has
been one of the pillars of modern research in the field of computer animation. This is
a challenging problem because it is difficult to describe what constitutes a natural pose or
motion. This problem can be addressed through optimizations that build on assumptions and
approximations about properties such as energy, head orientation, or centre of mass position.
Alternatively, instead of attempting to create realistic models for humans, motion capture
can be used to record (and replay) the pose and motion of human subjects. Most existing
approaches rely on some form of combination of physics-based optimization and motion
capture. Additionally, some approaches augment and/or attempt to replace motion capture
data with contact force measurements. The contributions of this thesis impact many of the
above. First, we introduce a setup and a calibration technique for synchronously recording
the pose as well as the contact forces in the special case of climbing. Our setup consists of
an instrumented bouldering wall that records contact forces and an array of motion capture
cameras that record posture. Our calibration technique uses an iterative and alternating
least-squares optimization to reconcile force measurements and captured poses in a single
space and time frame. Second, we study the relationship between captured motion and
forces in an effort to fully describe poses from contact forces. Eliminating the need for
motion capture is especially desirable in the context of climbing because of occlusions. To
estimate static poses from forces, we use a physics-based optimization. The optimal solution

for our objective function is the pose with the highest physical plausibility given the forces
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and additional constraints such as climber anatomy and hold positions. To eliminate local
minima and speed up our optimization, a simpler “hint objective” is used to guide our solver
toward a promising region. Comparison between poses reconstructed from forces and the
corresponding poses obtained via motion capture shows that our objective function is a good

model for human posture.
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Abrégé

Le réalisme toujours plus accru des films et des jeux vidéo modernes nécessite des simulations
paraissant de plus en plus naturelles. La reproduction des comportements physiques d’étres
humains est I'un des piliers de la recherche moderne dans le domaine de I'animation. C’est
un probleme complexe parce qu’il est difficile de décrire en quoi consiste une pose ou un
mouvement naturel. Pour adresser ce probleme, il est possible d’utiliser des optimisations
portant sur des hypotheses et approximations de propriétés telles que ’énergie du systeme,
lorientation de la téte, ou la position du centre de masse. Plutot que de tenter de modéliser
des étres humains de maniere réaliste, la capture de mouvement peut étre utilisée pour en-
registrer (et rejouer) la pose ou le mouvement de sujets capturés. La plupart des approches
existantes proposent une certaine combinaison d’optimisation basée sur la physique et de
capture de mouvement. Certaines approches complémentent et/ou tentent de remplacer la
capture de mouvement via des mesures de force de contact. Les contributions de cette these
sont pertinentes pour bon nombre de ces approches. En premier lieu, nous introduisons
un systeme et une technique de calibration pour mesurer de maniere synchrone des poses
et des forces de contact dans le cas particulier de ’escalade. Notre systeme est constitué
d’un mur d’escalade équippé de capteurs qui mesurent les forces de contact, ainsi que d’un
ensemble de caméras qui enregistrent la pose du grimpeur via capture de mouvement. Pour
notre technique de calibration, nous utilisons une optimisation des moindres carrés qui agit
de maniere itérative et alternante pour exprimer les forces et les poses capturées dans un
méme repere spatio-temporel. En second lieu, nous étudions la relation entre le mouvement

et les forces capturés dans le but d’exprimer des poses exclusivement en terme des forces



de contact mesurées par les capteurs. Eiminer ainsi la capture de mouvement est partic-
ulierement avantageux dans le contexte de ’escalade en raison des occlusions. Nous utilisons
une optimisation basée sur la physique afin d’estimer des poses statiques a partir de forces de
contact. La solution optimale pour notre fonction objectif est la pose la plus plausible pour
les forces de contact et autres contraintes physiques prises en compte, telles que ’anatomie
du grimpeur et '’emplacement des prises. Pour éliminer les minima locaux et pour accélérer
I’optimisation, nous utilisons une fonction objectif simple qui guide notre résolveur vers une
région prometteuse. En comparant des poses reconstruites a partir des forces de contact avec
des poses mesurées via capture de mouvement, nous montrons que notre fonction objectif

permet de modéliser de maniere adéquate le choix de posture d’étres humains.
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Chapter 1

Introduction

Producing physically plausible computer animation of virtual humans is difficult because of
the complexity and subtleties of how real humans control posture and motion. While it is
easy to write down the equations of motion for an articulated character, it is difficult to
model how this character should move or what constitutes a natural pose. One way to deal
with this is to devise an optimization problem and design a set of terms for the objective
function based on reasonable assumptions and approximations, such as terms that minimize
metabolic energy, that keep the head level, or that guide the centre of mass to a location
above the feet. Another way to generate plausible postures for virtual humans is to simply
use motion capture and record the pose of a real person. Captured motion can be challenging
to modify, however, and finding computational models to edit the motion for new purposes

is difficult.

In this thesis, we build on the idea of bringing together physics, optimization, and mo-
tion capture. This is a popular approach in research on virtual humans. However, we also
recognize that motion capture alone is only part of the picture. Contact forces are essential
for building up a clear understanding of how posture and motion are produced, as they let
us resolve the ambiguity in determining the torques applied at different joints. Contacts and

contact forces are critical, whether in the context of standing balance, object manipulation,



or in this research, during climbing. We see climbing motion and posture as an interesting
example to focus on because it combines locomotion and object manipulation, where the

object being manipulated is the body as a whole.

With our desire to study posture and movement of humans in interaction with their sur-
roundings, and the goal of developing improved virtual humans, we designed an instrumented
climbing wall. Our climbing wall permits forces and torques to be measured at the holds
while motion capture records the pose of the climber. It also allows a variety of different
experiments to be conducted: the pitch of the wall is adjustable, and hold positions are easily
reconfigurable in predefined pockets. Also, the wall is easily disassembled for transport or
long term storage. To enable the expression of forces and poses in the same coordinate frame,
we developed two calibration processes. The calibration process for force sensors mounted
in arbitrary locations is presented, in addition to a convenient calibration based on known

mounting locations.

In this investigation, we focus on static and slow-moving, near-static postures in order to
simplify the problem!. While we can capture both motion and contact forces simultaneously,
another goal of this work is to have a method for reconstructing the posture of a climber
from the force capture alone. Reconstruction of poses from forces is useful because motion
capture of climbing can be challenging due to occlusions, and because it is convenient to
be able to produce posture estimates for a climb without requiring the capture subject to
wear a motion capture suit. We use optimization to find a pose that meets the contact
constraints while being valid for the measured forces and satisfying additional plausibility
requirements, such as wall contact, joint limits, and facing direction. The objective function
is quite complex, and uses a physics-based simulation as a black box for its evaluation. As
such, we use Covariance Matrix Adaptation Evolution Strategy [Han06] (CMA-ES) to com-

pute the solution because a derivative-free, sample-based optimization method is well suited

"'We defer dynamics to future work.



in this case. We accelerate the optimization process with a simple objective function that
guides the hips of the character to a location predicted from the forces by a linear regression.
This helps bring our optimization to the neighbourhood of the optimal solution quickly, and
reduces the number of computationally expensive evaluations of our full objective function.
Our estimates of posture from recorded forces combine physics, capture, and optimization to

produce plausible poses which we validate with ground truth motion capture measurements.

Our three main contributions are: an instrumented climbing wall design, a calibration
process for this wall, and a new optimization-based method for estimating posture from
contact forces. The remainder of this thesis is structured as follows. We discuss the related
work in Chapter 2. In Chapter 3, we describe our instrumented bouldering wall design, we
detail the calibration procedure to relate motion capture and force measurements, and we
describe the capture process. In Chapter 4, we discuss the challenges in estimating poses
from forces and detail our optimization-based method. In Chapter 5, we present the results
for the described calibration and optimization. Finally, Chapter 6 contains a summary of

our work as well as directions for future applications and extensions.



Chapter 2

Related Work

In this chapter, we discuss related works from the fields of biomechanics, robotics, and ani-
mation. First, we explore works that are related to climbing. Then, we examine works that
focus on pose reconstruction by combining force and motion or by defining and exploiting a
low-dimensional pose manifold. Finally, we discuss works that use optimization methods for

physical simulations.

Climbing is a rich combination of locomotion and body manipulation. It is the focus of
many works in the field of biomechanics and is a challenge for many researchers in robotics.
Climbing-capable robots are useful as they can perform tasks that can be hazardous to hu-
man operators, but they need to have a high power-to-weight ratio and they need to be able

to generate stable grips with the surface.

While climbing has not been extensively studied in animation, a closely related topic has
received more attention: grasping synthesis and analysis. Combining motion and forces, and
the study of their underlying relationship is also a popular topic, and is often driven by pose
reconstruction from forces. Finding a relationship between forces and pose is interesting
because it is a first step in understanding how posture is chosen and it offers an additional

perspective in understanding what constitutes a natural, human-like pose. Other authors



reconstruct poses from different types of lower-dimensional data through the incorporation
of physical constraints. Finally, the use of optimization for physics-based simulation is a

common approach in dealing with space-time constraints.

2.1 Climbing and Grasping

Although not the focus of this research, the interest for climbing in the field of robotics shows
that it is a fundamental type of locomotion, alongside swimming and flying, that deserves to
be distinguished from the more traditional walking and running. While it could be argued
that similar gaits are found in climbing and walking for articulated robots, many gravity-
related constraints need to be taken into account to design a climbing-capable robot. Luk
et al. [LCBI1] described the design of an articulated climbing robot as early as 1991. Many
considerations emanating from the behaviour of insects, such as keeping the centre of mass
close to the wall or having a large limb to body length ratio, are taken into account in this
work. To grip onto smooth surfaces, the authors use vacuum suckers at the end of the limbs
as well as under the base of the robot. More recently, Spenko et al. [SHST08] presented
a design for a robot capable of climbing on a wide range of surfaces, including trees and
man made materials such as brick, stucco, cinder block and crushed rock. This flexibility is
achieved by using both interlocking mechanisms (using spines and claws) and bonding (using
smooth adhesive patches), allowing the robot to climb both rough and smooth surfaces. A
combination of these two methods is in fact used by many small animals such as lizards,
frogs, and insects. In practice, human climbs are fundamentally different and offer additional

constraints, as they are driven by the locations of the holds for grip.

Climbing has also been studied by various research groups in the field of biomechanics
using instrumented holds. Rougier et al. [RBMB91] described the first instrumented wall
designed to measure the amplitude of forces at the holds in 1991. Testa et al. [TMD99]
used 3-Degrees of Freedom (3DoF) sensors. Quaine et al. [QMB97a] used two video cam-

eras to record two 2D views of the climber while recording forces on 3DoF transducers to



include postural information. A more recent instrumented bouldering wall design is de-
scribed by Fuss et al. [FNO7], where eight holds are equipped with 6DoF sensors. Works
using these setups focus on analyzing the performance of a climb and measuring the dif-
ficulty in climbing [RB91, FNO7], on studying the impact of the climber’s level of exper-
tise [FN06, FNO8, RBMB91, RB92|, and on studying the effects of specific posture changes
or constraints on forces at the holds [QMB97b, QMB97a, QM99, TMD99, TMDO03]. Our
setup is different in that it incorporates motion capture to offer full 3D reconstruction of
forces, torques and posture synchronized in time and space. The objective of our approach

is also different as we attempt to reconstruct poses from forces.

In computer animation, a closely related topic that has been widely covered is grasping.
In grasping, objects are manipulated through contacts with fingers. Similarly, in climbing,
the body is manipulated through contacts and grasps with the hands and feet. As such,
many works in grasping focus on evaluating the quality of a grasp or the choice of the
pose in different contexts in the same way as many works in biomechanics concentrate on
evaluating the performance of a climb or the effects of certain constraints on pose and forces.
The relevance of grasping in the context of this thesis is strengthened by the static nature
of grasps. Miller et al. [MA99] designed a system that computes measures of quality for a
grasp by determining the types of contacts given the pose of a hand and an object to grasp.
Ciocarlie et al. [CDL109] studied the selection of fingertip contact point locations during
grasping and manipulation through a number of disturbances. While gripping a single hold
can be enough to maintain contact with the surface in the case of climbing, the stability of a
grasp is determined by the joint contributions of each contact patch between the hand and
object. Therefore the considerations for a quality pose are vastly different and rely more on

energy efficiency than robustness to disturbances.



2.2 Combining Forces and Motion Capture

There exists a wide range of contributions to capture and synthesis of posture or force data
in computer animation. Brubaker et al. [BSF09], who studied the problem of estimating
forces acting on the system from a given motion, used a simulated character to model both
the subject and the constraints. We follow the same approach in the context of the opposite

problem of estimating poses from forces.

Motion capture and force sensing are used by Kry et al. [KP06b] to capture interactions,
focusing on hands and grasping. Joint compliance is estimated from small time windows
just before and after contacts, and used along with the reference trajectory to synthesize
new interactions. While it would be interesting to look at how this method could be applied
to climbing to synthesize new postures with different wall configurations, the focus of our

research is the relationship between static poses and forces at the holds.

More intimately related to our work, Yin et al. [YP03] explored how full body poses
can be estimated using force measurements from a foot-ground pressure sensor pad. Kry et
al. [KP06a] explored how grasp configurations can be estimated using force measurements
from a graspable device. These approaches use a database consisting of pairs of motion
capture and force data to find the pose for the closest set of measured forces. We, on the

other hand, use a physics-based approach to find a pose that best explains the forces.

Ha et al. [HBL11] used reduced features and a physics-based approach to reconstruct hu-
man motion from consumer-grade foot-ground pressure sensor pads. While they used a form
of motion capture to obtain hand positions, one can argue that in the case of climbing, both
hands and feet positions are given by the holds whereas only foot locations can be obtained
from standing on a platform. Fundamental differences are that our work focuses on statics
and explores how climbing-specific constraints can drive the reconstruction through the opti-

mization of an objective function that we introduce as a means of characterizing static poses.



In the field of computer vision, Rajalingham et al. [RVC10] presented a probabilistic
approach to determining the position of the feet for users in movement using an instrumented
floor surface. Their results were validated using synchronously recorded motion capture and
force data by placing markers on the subject’s feet. Using Bayesian filtering, the authors
were able to track the feet with reasonable precision using a coarse sensor array. While it
would be interesting to see how probabilistic approaches behave for predicting poses from
forces in our setup, our work is directed toward a physical approach to relating forces and

posture.

2.3 Pose Space Constraints and Optimization

In an effort to retrieve motion without the use of markers, several authors have focused on
combining video and physical constraints to reconstruct motion. Rosenhahn et al. [RSB108]
used simulation to enforce constraints found through analysis of capture of special inter-
actions to take advantage of the lower dimensionality of the pose manifold. Bregler et
al. [BMP04] started from a hand-initialization applied to a video frame to track a skeleton
and use exponential maps and twist motion to perform a differential motion estimation over
a video clip. Hasler et al. [HRT*09] extracted body shape information using 3D scanners
and used frames from moving cameras, synchronized through sound, to find a least-squares
reconstruction of the pose. They used climbing, which is difficult because of the occlusion
caused by the wall, as an example to prove the robustness of their method. While these works
do not rely on any force capture, they are highly relevant because they show how physical

constraints can be used to reduce and solve an otherwise under-constrained problem.

In order to compress motion capture data, Tournier et al. [TWCT09] presented a method
for retrieving an entire pose through end effector positions using an approximation of the
pose manifold found through principal geodesics analysis. Their work introduces an inter-

esting approach to approximating the pose manifold and is therefore extremely relevant in



the context of pose reconstruction. However, of all body positions, those of end effectors
are least relevant in distinguishing between poses in the case of climbing, as they are fixed
to hold locations. Important differences with our work are that we focus mainly on finding
a correlation between poses and the forces at the holds, and that our goal is to predict an

unknown pose for a given set of forces.

Another body of relevant research in animation concerns the use of optimization for
physics-based simulations. De Lasa et al. [dLMH10] described a means of expressing loco-
motion using a small number of features. Jain et al. [JYLO09] also looked at constrained
optimization for virtual characters to design controllers by formulating high-level objectives.
They used this method to build a number of controllers, including a climbing controller. A
method we share with Nunes et al. [NCNV*12] is the use of CMA-ES with simple penalties
around the main objective. However, all these works look at generating plausible motion
through the optimization of arbitrary objectives, while we are interested in optimizing the

physical quality of a static pose reconstructed from a set of forces.



Chapter 3

Design, Calibration, and Capture

In order to study the process of climbing, we designed an instrumented climbing wall to
measure forces and torques at the holds, and use motion capture to record the pose of the
climber. In this chapter, we first describe the wall and discuss the advantages of our design
that include portability and flexibility in capturing different climbing scenarios. Then, we
investigate the challenges in relating the force measurements captured by the wall with the
motion capture pose data, and offer a general solution for a complete calibration of the
system. Finally, we present the full capture procedure, elaborate on the main difficulties
and concerns for completing a capture trial, and present a visualization of the result of a

successful trial.

3.1 Wall Design

The instrumented bouldering wall’s main structure is an 8’-by-8’ torsion box, as shown in
Figure 3.1. The torsion box design was chosen in order to have a rigid yet light core, and will
ultimately allow us to hide sensors and wires inside and behind the pockets, leaving sensitive
material out of harm’s way and giving climbers the same freedom they would have on a
regular wall. Specifically, additional slits will be cut into the wall and additional plates will

be built to cover the pockets. The wall does not need to be fixed to a second supporting wall
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Figure 3.1: The instrumented bouldering wall.

as four additional beams offer support for the box and climber’s weight. This configuration
allows for easy movement of the wall and offers control over the desired tilt of the climbing

path.

Each climbing hold is mounted onto a front plate which is in turn attached to a 6-axis
force torque sensor. The sensor is fixed to a back plate that is mounted on the wall. The
hold, front plate, sensor, and back plate form a “sensor sandwich”, as shown in Figure 3.2.
Note that the high stiffness of the sensors ensures that there is a gap of a few millimetres
(and therefore no contact) between the front plates and the frame at all times. The sensor
sandwiches can be inserted into each pocket in four different orientations, providing flexi-
bility for designing climbing routes. The design also makes reconfiguration easy. Moving a
hold or changing its shape can be done by respectively unscrewing the sensor from one of
the 144 possible positions, and unscrewing the hold from the sensor. We built the wall from

the ground up with the help of an expert carpenter, as shown in Figure 3.3.
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Figure 3.2: Close-up on a “sensor sandwich”.

The sensors are multi-component transducers with six channels for linear and angular
forces expressed in a local coordinate frame. Each sensor is connected to a 6-channel strain
gauge amplifier with adjustable excitation voltage and gain. Excitation voltage and gain can
be adjusted with jumper pins, shown in Figure 3.4. Sensors can therefore easily be calibrated
for maximum sensitivity depending on the climber’s weight, or, in the case of dynamic mo-
tions, the planned motion. We use two similar types of sensors of varying sensitivity. These
different types were chosen for their shape and maximum load specifications. The chosen
sensors offer reasonable capacities and sensitivities. In practice, a climber weighing up to
200 1b can be completely suspended to a single hold — therefore making contact as far as
15 em from the centre of the sensor — and perform dynamic movements (such as chin-ups)
without exceeding 50% of the force and torque capacities. The sensors are also sensitive
enough to capture small tremors of muscle fatigue, as well as contacts as light as 0.01 Ib.
Furthermore, the sensors’ high stiffness is an important feature as the holds of a bouldering

wall need to be fixed. Finally, the size of the sensors is also appropriate (neither too large,
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Figure 3.3: The bouldering wall in construction.

nor too small), and spacers of different thickness, depending on the sensor type, are added

to the back plates to ensure the holds are situated along the surface of the wall.

A maximum of four amplifiers can be connected to a computer interface. Therefore, two
sets of respectively two and four sensors are connected and used to record data separately.
Since sensors possess different sensitivities and because they undergo different forces depend-
ing on their position on the wall, they need to be calibrated individually. There are three
gain and three excitation voltages to choose from at each channel, as shown in Table 3.1.
These settings provide a trade-off between the maximum and minimum loads that the sensor
can measure. Calibration matrices to convert raw voltage data to wrenches are close to diag-
onal and real-time visualization is enough to evaluate excitation voltage and gain choices for
sensor sensitivity, as shown in Figure 3.5. Sensor overload happens for voltages below -10 V
or above 10 V. Ideally, in order to obtain the greatest range and accuracy from the sensor,

these bounds should be reached when applying the maximum loads. In practice, we leave
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Figure 3.4: Picture of an amplifier board [AMTO06]. Jumper pins are highlighted.

Type Low sensitivity | Medium sensitivity | High sensitivity
Excitation Voltage 25V 5V 10V
Gain 1000 2000 4000

Table 3.1: Sensitivity settings for sensors.

a margin to avoid saturating the amplifier outputs. When there is ambiguity in choosing

a gain and excitation voltage for a channel, priority is always given to a higher excitation

voltage to minimize noise.

3.2 Calibration

The main challenge in capturing data from both the motion capture and force sensing equip-

ment is to find the relationship between the two independently recorded data sets, both in
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Voltages for second group of sensors.
6 T T T T T T T

Voltage (V)
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Time (s)

Figure 3.5: Voltages at each channel recorded for an example session.

time and space. Each sensor possesses its own local frame in which force measurements are
expressed as voltages, while skeleton reconstruction is expressed in the motion capture world
frame. Below, we describe how to obtain forces in the sensors’ local frames. Then, we detail
two techniques for calibrating the position and orientation of the sensors, which allow the
force and torque measurements to be expressed in the motion capture world reference frame.

Finally, we introduce a simple technique for synchronizing the two data sets in time.

3.2.1 Converting the Raw Data to Forces

As shown in Figures 3.5, sensors provide voltages for each of the six channels. However,

software records data in an unsigned integer format that first needs to be converted to
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voltages, and then to actual forces and torques using the sensor’s sensitivity matrix. The

voltage for a sensor is given by
V=Bo(U-L)/(2"—1)+ L, (3.1)

where V' is the 6-by-1 vector of voltages for the different channels, B is the corresponding
6-by-1 vector of unsigned integer values, U and L are respectively the 6-by-1 vectors for
upper and lower bounds on the voltages on the different channels, o is the Hadamard entry-
wise product, and 7 is the resolution of the computer interface in bits. Using the inverse
sensitivity matrices that are provided with each sensor, we then compute the forces and
torques from these voltages while taking into consideration possible cross-talk. The forces
and torques are given by

F=S(Vo0), (3.2)

where F' is the 6-by-1 vector containing the forces and torques, V' is the 6-by-1 vector
containing the voltages for the corresponding channels, S is the manufacturer-provided 6-
by-6 inverse cross-talk sensitivity matrix for the sensor, and C'is the 6-by-1 vector containing
the inverse of the correction factors ¢; for each channel 7. These correction factors are defined
as

ci = gi v; 1079, (3.3)

where g; and v; are respectively the chosen gain and excitation voltage for that channel, and
the last term is used to scale the sensitivity terms which originally convert microvolts to the
desired force units. Gains and excitation voltages can be changed at the amplifier boards
for each individual channel of each sensor by moving the jumper pin from one sensitivity
setting to another, as shown in Figure 3.4. Excitation voltage jumper pins for torques (on
the left), and forces (on the right), are highlighted in red. Gain jumper pins for torques and
forces (at the top) are highlighted in blue.

16



3.2.2 Optimization-Based Space Calibration

In order to visualize the force and motion data and to be able to relate the different coordinate
frames in which the different measurements are made, we need to find the appropriate
transforms. Our goal is to find the rigid transform, represented by the 4-by-4 transformation
matrix

§Rps

v = (3.4)
0 1

that converts homogeneous coordinates expressed in the sensor’s local frame to homogeneous
coordinates in the world motion capture frame. The leading superscript is used to denote
the frame in which a quantity is expressed, and for rigid transforms, the leading subscript
denotes the frame in which the quantity the transform accepts on its right hand side is ex-
pressed. Here s denotes the sensor frame, w denotes the world frame, “p, is the 3-by-1 vector
representing the origin of the sensor frame in world coordinates, ¥R is the 3-by-3 rotation
matrix that aligns the axis in the sensor frame with the corresponding axis in the world
frame, and the zero in the bottom row is a placeholder for a 1-by-3 vector of zeros. We use
a collection of force measurements at the sensor for forces applied at known locations (on
the front plate or hold rigidly attached to the sensor) to estimate the rigid transform that
gives us the position and orientation in the world frame. We first explain how we obtain the
contact locations where force is applied, and then describe how these contacts are combined

with the force measurements to obtain the position and orientation of the sensor.

To obtain contact locations, a calibration tool consisting of a rigid body with a sharp
tip is tracked with motion capture as it is rotated around a fixed contact point, as shown in
Figure 3.6. For a recorded set of orientations of our rigid body, the contact point p, is found
using a least-squares approach (see Appendix A for details), by computing
2

n
argminz H y Ej "pe — pr’

bpe,®pe j=1

, (3.5)

where b is the body frame, n is the number of collected samples, “p. is the position of the

contact point in homogeneous world coordinates, ’p, is the position of the contact point in
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homogeneous body coordinates, and ;' E; is given by the motion capture software for each
recorded frame j. In other words, we are looking for the point p,. that is invariant for ;" E' over
the data. That is the point that best describes a centre of rotation for all individual frames,
which is the location of the contact between the tip and surface. Knowing the position of
the tip in body coordinates, we can thereafter find any contact location in world coordinates

for any new recorded sequence of motion capture.

In order to find the position and orientation of a sensor, the calibration tool is used to
apply forces on the front plate and hold rigidly attached to the sensor. Since the calibration
tool contacts the wall surface at only one point, it can only generate linear forces. Assuming
the torque generated at the contact point is zero, we use data from multiple contact points
to estimate the location of the sensor frame. For simplicity, we define contact coordinate

frames aligned with the world coordinate frame. The measured torque can be expressed as
‘T=YRT+ (“ps— “pe) X YRS . (3.6)

Since we are not applying a torque at the contact point, = = 0. Thus, finding the origin and
orientation of the sensor’s local frame given a wide variety of contacts and associated applied
forces becomes an optimization problem where we are trying to find the sensor frame that
can best explain force and torque measurements for every given contact point. Concretely,

we solve for

ko om
argminz Z IR *7y; + (“ps — “pes) X “R °fi; |17, (3.7)
SRUPs 21 ;1
where k is the number of contacts and m is the number of recorded force samples per con-
tact. We find “p. using the calibration tool and motion capture, and °7 and °f are given
by the sensors. All that is needed in order to perform this calibration is therefore a large
and varied set of forces applied at various contact points to ensure that the problem is not

under-constrained. In practice, three different contact points and 2000 samples per contact

point are enough to find good solutions.
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Figure 3.6: The calibration tool in action.

We use motion capture to track the calibration tool as it is used to apply linear forces at
the contacts while the sensors record forces and torques. With the estimated contact point
locations and recorded forces at the sensor, Equation 3.7 is used to find estimates for ¥ R and
“ps. We use an iterative and alternating approach because of the non-linearities introduced
by the rotation, and because even after linearizing the rotation, the equation remains quar-
tic due to the fact that we minimize the norm of an expression containing a cross product
between the unknowns. We set ¥ R and “p;, to an initial approximation and solve for one of
the unknowns while fixing the other. Then, we alternate and repeat until we converge to an
acceptable error. In order to simplify the optimization, we use a first order approximation
and three variables to express the degrees of freedom of the rotation. In the following, we

describe each part of the alternating least-squares approach.
While solving for “ps using Equation 3.7 and a fixed R can be directly expressed as a

least-squares problem (see Appendix A for details), the rotational part of the problem is less

straightforward. The estimate we wish to obtain needs to be a rotation matrix and it should
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be expressed with fewer variables as there are only three degrees of freedom. Therefore,
we solve for a vector containing those degrees of freedom by linearizing the rotation. We
want to solve for a matrix R = exp([w]), where w is the 3-by-1 vector containing the said
degrees of freedom, and [w] is the skew symmetric matrix that computes the cross product
operation wx. To use a first-order approximation I + [w] of exp(|w]), we in fact solve for
a small change in rotation R such that our estimate at iteration [ + 1 is updated from the
estimate at iteration [ using

“Rip = "R R (3.8)

Substituting R, the above equation becomes
SR = TR (1 [w)), (3.9)

where we solve for w. Consequently, when solving for ¥ R with a fixed “p,, we solve for

ko m

argminy Y ||VRi(I+ [w]) *myj + (“ps = pa) X YR+ [wW]) iy | (3.10)
Yoi=1 =1

where ¥R, is the most recent estimate for ¥ R. We then use least-squares to find w (see Ap-

pendix A for details). We use the exponential map R = exp([w]) computed with Rodrigues’

formula to update our most recent estimate for R with Equation 3.8. Note that since w is

used to update rather than compute the orientation, we can bound the norm of w to a small

arbitrary value to perform smaller updates. Bounding the norm of w is useful to prevent

errors caused by large updates, due to the fact that the linearization is only accurate for

small rotations.

In sum, the calibration process consists of two steps. First, we calibrate the calibration
tool to have accurate contact positions. Then, we record motion and forces as the tool is
used to apply a varied set of linear forces at different contact locations rigidly attached to the
sensor (e.g., on the front plate or hold). Finally, the recorded forces and torques at the sensor
and the corresponding estimated contact position are used to compute a least-squares sensor
frame estimate via an iterative and alternating method, where we solve for the rotational

part by looking at first-order approximations of small updates.
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3.2.3 Pocket-Based Space Calibration

The previous approach is accurate and indispensable when sensors are not mounted in specific
locations. However, it is time consuming as it requires several motion and force recordings
for each sensor to be calibrated. In cases where sensors are attached in known pockets and
orientations, a more expedient calibration method is to place markers on arbitrary locations
on the wall and define a wall coordinate frame in which a sensor position and orientation
can be expressed. Recall that sensor sandwiches can be inserted in 4 different orientations.
The origin of each sensor frame can be computed from the orientation of the sensor sandwich
and the location of the pocket where it is mounted. Similarly, the orientation can be set to
the appropriate combination of 90-degree rotations about the axis of the wall frame. For
example, choosing the origin of the wall frame as the top left corner of the wall, defining the
x and y-axis of the frame as aligned with the horizontal and vertical borders of the pockets
and using the known size of pockets, sensor position can be precisely extracted. Orientation
is straightforward as well because sensors are attached perpendicularly to the wall and ob-
taining the rotation matrix to get from sensor to wall frame reduces to reorganizing the rows
of an identity matrix. The positions and orientations are then easily expressed in the world
frame using the position of the wall in that frame, determined by the markers attached to it

and motion capture, which allow us to extract the transform from wall to world coordinates.

3.2.4 Measurement Synchronization

Our equipment does not permit a synchronous recording of forces and motion capture. It does
not permit capturing forces from all six sensors at once either, because the two data capture
cards used to interface the sensor amplifiers record data independently. Therefore, an extra
step of measurement synchronization is needed. Similarly to what is done to synchronize
sound and video in cinema, we hit one of the sensors from each of the two sensor groups
with an object tracked with motion capture. The post-processing step consists of finding
the frame with a sharp peak at the beginning of the raw voltage data visualization, and the

frame where the tracked body used for synchronization has its momentum change in the
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motion capture data. This synchronization peak can be seen near the fifth second of the
recording in Figure 3.5. For simplicity, forces, which can otherwise be sampled at rates up

to 1000 Hz, are captured at 100 Hz, the same frequency as motion.

3.3 Capture

As in any system involving motion capture, one of the main challenges when it comes to
collecting quality data is placing the markers on the subject as well as positioning and direct-
ing the cameras such as to avoid occlusions. When capturing a climber, the front is mostly
occluded as the body is facing the wall. For that reason, most markers on the subject are
placed carefully to face away from the wall during a climbing session, as shown in Figure 3.7.
Sometimes marker positions are only fixed after several trials, especially when recording new
dynamic motions. For example, in some cases, a knee may be bent entirely, therefore re-
quiring upper leg markers to be moved slightly toward the outside instead of left completely
behind the hamstrings. Changing marker locations is however fast as it only requires us to
record a new skeleton configuration with the software. Our motion capture setup consists of
24 cameras, six of which have wide-angle lenses. These six cameras are placed close to the
wall, above and on each side, and are critical because they cover all the regions occluded
from the other cameras. Changing the position and orientation of cameras is time consum-

ing, as calibration for the motion capture setup with our software lasts more than 30 minutes.

For the force sensors, the only concern is to choose gain and excitation parameters that
offer high sensitivity while preventing sensor overload. Recall that in our setup, the up-
per and lower bounds for voltages are respectively 10 V and -10 V. Since sensitivity can
only be increased or decreased by a factor of two (see Table 3.1), we favour settings that
guarantee no overload over settings that give a wider span of values (and therefore more
sensitivity). As shown in Figure 3.5, maximum and minimum recorded voltages are still
far from the upper and lower bounds. The choice of the sensitivity parameters is made

by trial and error: a simple trial lasting less than a minute is enough to see how voltages
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(a) (b)

Figure 3.7: Front (a) and back (b) view of marker placement on the climber.

are distributed. Typically, more torque can be generated on the hand holds because we
use holds that protrude to allow better grasping, as shown in Figure 3.2. Given that we
have three different types of sensors, and taking into consideration the impact of the type
of holds and movement on measured forces, choices for gains and excitation voltages vary
for each sensor. Table 3.2 shows settings for an example capture session where sensors 1
and 2 are more sensitive models and undergo important torques as they are equipped with
larger hand holds. Notice that when there is ambiguity in choosing a gain and excitation

voltage for a channel, priority is always given to a higher excitation voltage to minimize noise.

In sum, the pre-processing to perform a successful capture session first consists of placing
the cameras to avoid occlusions, calibrating the motion capture setup, and finding the origins
and orientations of the sensor frames in the newly defined world frame using one of the two
space calibration methods. Then, marker positions and sensor sensitivities are carefully
chosen to have quality data by trial and error. Those test trials are run for new skeleton
configurations as well as new jumper pin locations for gain and excitation voltage at each
channel. During the capture session, the subject uses a rigid object firmly held with a

tracked hand to strike a sensor from each of the two sensor groups prior to climbing, and
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Sensor | vf, | vfy | vf. | vTe | VTy | VT2 | gfe | 9fy | 9f: | 9Te | 9Ty | 9T
1 10 | 10 | 10 | 2.5 | 2.5 | 2.5 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000

2 10 | 10 | 10 | 2.5 | 2.5 | 2.5 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000

3 10 | 10 | 10 | 5 | 25| 5 |2000 | 2000 | 2000 [ 1000 | 1000 | 1000

4 10 | 10 | 10 | 10 | 10 | 10 | 4000 | 4000 | 4000 | 1000 | 1000 | 1000

5

6

10 | 10 | 10 | 10 | 5 | 10 | 4000 | 4000 | 4000 | 1000 | 1000 | 1000
10 | 10 | 10 | 5 5 | 10 | 4000 | 4000 | 4000 | 1000 | 1000 | 1000

Table 3.2: Excitation voltages (in V) and gains for an example trial.

then performs the desired task. The first step of post-processing consists of using the knocks
to synchronize the two force data streams with the motion stream. In order to perform this
synchronization, we use the sharp peaks in the early force samples for each group, and the
frame where the tracked hand abruptly changes momentum in the vicinity of the appropriate
sensor. Then, we extract voltages from the unsigned integer output and use the calibration
matrices to convert the recorded voltages to force measurements. Finally, we use the sensor
frames estimated with the space calibration procedure to express the measured forces in the
motion capture world frame. Figure 3.8 depicts the results of a successful capture, where
green squares represent sensor locations, red arrows represent forces measured by the sensor,
and green arrows represent the torques. Note that while the arrows offer useful information
about relative magnitudes, forces and torques are scaled independently and arbitrarily to fit

reasonably within the image.
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Figure 3.8: Climber during a trial (a) and obtained visualization (b).
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Chapter 4

Reconstruction of Static Poses

As a first step in understanding how motion and forces are produced during climbing, we
examine the relationship between posture and contact forces. Note that in this work, we
use the terms “contact forces” and “forces measured by the sensors” interchangeably. This
is because forces (as opposed to torques) are not affected by the distance between contact
and sensor. To study the relationship between forces and motion, several capture trials with
nine male and female participants of various skill levels were recorded. During each session,
climbers were asked to perform dynamic and static motions. For each participant, close to
twenty trials lasting from thirty seconds to a minute were performed. Finding a relationship
between measured forces and observed pose is difficult, and we distinguish between two forms
of ambiguity: similar poses can generate different forces, as shown in Figure 4.1, and similar
forces can be generated by different poses. To reduce ambiguity, we restrict our focus to
simpler problems where data consists of static poses and quasi-static transitions. For the
trials that we consider in this chapter, participants were asked to stay in contact with a given
set of holds and move slowly while performing natural and controlled movements to ensure
as little dynamic movements as possible. In order to have a wide variety in poses and forces,
climbers were asked to move their centre of mass as far as possible toward and away from the
wall, as close and as far as possible from the ground, and as far as possible to their left and

right. Controlled transitions, which offer a wide variety of additional poses, are also part of
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Figure 4.1: Subject generating arbitrary forces while maintaining a pose.

the considered data. In the static case, the pose determines the contact forces, but the forces
do not necessarily determine a pose. However, we believe that there is correlation between
forces at the hold and corresponding pose due to the way people select natural postures for
different situations. Below, we focus on reconstructing the climber’s posture from a given

set of hold positions and forces measured at the sensors.

4.1 Statistical Analysis

We take a preliminary look at the data to see how much of the posture and force spaces is
exploited by various climbers. The skeleton pose for a frame is given as the three coordinates
of the root (or hips) in the world frame, followed by the three Euler angles describing the
orientation of the root in the world, and the three Euler angles describing the joint angle for
each of the 17 joints in the frame of the parent body in the Biovision Hierarchy! (BvH). The
corresponding set of forces is given by the forces and torques in world coordinates measured
by the sensors at the four holds. A principal component analysis [Jol02] of the two data sets
reveals that only a few components are necessary to capture most of the variation in the
data in both cases, as shown in Figure 4.2. The lower dimensionality of both data sets can

be explained by the highly constrained nature of the problem: hands and feet are fixed, and

IBvH is a standard format for recording skeleton poses with motion capture [bvh].
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Figure 4.2: Variance explained against number of components for forces (a) and poses (b).

forces generated at the holds in the case of slow, controlled, and natural movement can be

explained by gravity.

In static or quasi-static poses, forces contain a lot of information on the location of the
centre of mass: without momentum, forces at the holds are highly dependent on the distri-
bution of the climber’s weight, as shown in Figure 4.3. We investigate the correspondence
between forces and static postures by performing linear regression [SL12] and canonical cor-
relation analysis [Tho00]. We use the kernel-trick [BAO1] to obtain polynomial regression
models from linear regression. For simplicity, and because we do not know the exact mass
of the different limbs, we approximate the centre of mass by the location of the root of the
skeleton (i.e., the hips). The location of the root can be predicted using first-order polyno-

mial regression with a maximum error in the order of 10 cm, as shown in Figure 4.4.
Despite accurately predicting hip position, regression fails to predict angles from forces.

Figure 4.5 shows the difference between predicted and actual x component of the right hip

angle: using more expressive functions for the regression such as second-order polynomials
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Figure 4.3: Correlation between forces and centre of mass position for static poses.

does not help. An explanation is that multiple linear regression is not suited for Euler angles
(which is the joint angle representation provided by the motion capture software) as they
are not independent, as they combine in a non-linear way, and as they are not a unique
representation of an orientation. As such, canonical covariance analysis is not helpful in
explaining joint angles from forces at the holds, as illustrated in Figure 4.6. Using once again
differences between predicted and actual angles, the grey-scale colour-map illustrates that
the majority of samples for different joint angles offers unacceptable error. In fact, rotations
are not a linear space and linear analysis tools such as regression or principal component
analysis are not appropriate in this case, regardless of the format in which orientations are
expressed. While a better statistical method would be principal geodesics analysis [FJLP04],
we choose to take a physics-based approach to tackle the problem, in the interest of finding

a physical relationship to interpret and model a hypothetical correlation.
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Figure 4.4: Root position regression error using first-order polynomials.
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Figure 4.5: Joint angle regression error with first- (a) and second-order polynomials (b).
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Figure 4.6: Joint angle prediction error using canonical covariance analysis.

4.2 Physics-Based Approach

In order to take advantage of the climbing-specific constraints and to account for physical
plausibility, we use a physics-based simulation — where physical plausibility of a pose is a
measure of the likeliness of that pose given the physical constraints. Specifically, hands and
feet are constrained to locations given by the four sensors at which forces are non-zero, the
climber must face the wall, he cannot penetrate it, has joint angle limits, and is subjected

to gravity.
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4.2.1 Physical Simulation and CMA-ES

In this section, we describe the simulation that captures the physical constraints, the op-
timization method used to reconstruct a pose from forces at the holds, and the projection

step required to interface the optimization with the simulation.

Simulation

The virtual character used to simulate the climber has its dimensions defined by the cap-
tured climber (stored in the BvH format). The said character is modelled using kinematic
chains: it is a set of rigid bodies attached using different types of joint constraints, shown
in Figure 4.7. Joint angle limits for each articulation are chosen arbitrarily to prevent un-
natural poses (e.g., poses where a knee is bent backwards), while ensuring that the skeleton
can reach all the recorded motion capture poses. The mass of the skeleton is proportional
to that of the climber, and the mass distribution among the different limbs is chosen using

anthropometric data from a study by Kreighbaum et al. [KB96].

To simulate contacts between the hands and feet and their corresponding holds, we use
joint constraints and constrain the end effectors to fixed locations. Those locations are de-
termined by assuming the climber is facing the wall, is upright, and is exerting force on the
holds (i.e, each end-effector is assigned to one of the four holds where force is measured, e.g.,
the right foot rests on the lowest, rightmost of these holds). Finally, contacts between the

character and a simulated climbing wall are used to prevent invalid poses.

The simulation is built using the Open Dynamics Engine? (ODE). Note that solving an
optimization involving such rigid constraints can be done using linear or quadratic program-
ming methods in the case of static poses. We choose a physical simulation instead with
the intent of exploring dynamics in the future. In the case of dynamic movement, several

space-time constraints as well as energy in the system need to be taken into account (e.g., a

20DE is an open-source, high-performance library for simulating rigid body dynamics [Smi.
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Figure 4.7: Skeleton model used for simulation.

hand can attach to different holds over the course of a dynamic movement).

CMA-ES

We want to find a pose that best explains an arbitrary function — which we have yet to define
— of forces at the holds. Treating this as an optimization, we want the pose that minimizes
our objective while taking into account the constraints enforced by the simulation. In our
particular case, a pose is described only using angles at each joint. Root position and
orientation are not needed anymore since end effectors are constrained to the hold positions,
and therefore joint angles suffice to define a unique pose. In other words, we are looking for

the set of joint angles

argminf(¢', Fs), (4.1)
¢/€¢*

where ®* is the manifold of joint angles that describe poses respecting the constraints, f is
the objective function, and Fj is the set of linear forces at the four holds, measured by the
sensors. We choose CMA-ES to perform this optimization because we evaluate our objective
function via simulation. CMA-ES is an iterative, derivative-free, sample-based optimization
method where the fitness of samples is used to update the sampling multivariate normal

distribution. At each iteration, a number of samples is generated using the current sampling
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Figure 4.8: Illustration of the behaviour of CMA-ES (used with permission) [cmal].

distribution. The fitness of these samples is computed. The mean as well as the covariance
matrix of the sampling distribution is then updated for the next iteration such as to maximize
the likelihood of fit samples. As shown in Figure 4.8, the multivariate normal distribution
adapts the shape and centre of the sampling ellipsoid to move toward the optimum while

directing the search along the path to the optimum, located in the top right corner.

Projection Step

We use CMA-ES to find the set of joint angles describing a pose that respects the physical
constraints and optimizes our objective. CMA-ES produces sets of arbitrary Euler angles
¢ using a multivariate normal distribution. However, we are interested in joint angles that
describe poses satisfying the constraints enforced by the simulation. Therefore, we devise a
projection step I' to find, for a given arbitrary set of joint angles ¢, the closest set of angles

¢ = I'(¢) that describes a valid pose on the constrained pose manifold ®*.

This projection is achieved using a proportional-derivative controller, by starting with
a valid pose and treating the produced angles ¢ as desired angles at each joint. In other
words, we start from a pose satisfying the constraints (which can be taken from motion

capture data), and we apply torques at each joint individually to try and match the angles
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produced by CMA-ES, using differences in orientations, as well as stiffness and damping
parameters that offer a trade-off between speed and stability. After a small amount of time,
the simulation stabilizes into a new pose with joint angles ¢’ that is treated as the projection

of the pose described by ¢ onto the constraint manifold.

The fitness of the original sample ¢ is computed using the projected pose given by ¢/,
obtained after performing the projection step I'. Note that a minimum coordinate represen-
tation could alternatively be used as a search space, but with four fixed end effectors, we
find that simulation is an easier way of searching the space of valid poses (i.e., the space of

poses that satisfy the physical constraints).

4.2.2 Physical Plausibility as an Objective

In order to find the pose that best explains forces at the holds, our objective function
evaluates the fitness of a CMA-ES sample ¢ by computing the physical plausibility of the
pose given by ¢/ = TI'(¢), with the additional physical constraints that the pose is static
and generates the contact forces measured by the sensor. The plausibility for that pose is

computed as
p(¢, Fs) = || (4.2)

where 7, is the torque generated at the root (or hips), where the contact forces Fgs at the
sensors and gravity are acting on the system, and where the system is static. In other words,
we look at the constraint torque generated to enforce statics for the pose given by ¢’ when
the forces acting on the system are gravity and the forces measured by the sensors. We first

explain how we compute 7, and then justify why it is a good measure of physical plausibility.

We find the plausibility p using the ODE simulation. Rigid constraints are set on skele-
ton joint angles to enforce the pose given by ¢, while another fixed constraint is applied to
the root position and orientation in the world to enforce statics. In order to simulate the

forces generated by the holds on the hands and feet, the opposite of the forces measured by
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the sensors are applied to the appropriate end effectors. Gravity is also taken into account.
The constraint torques and forces that are necessary at the various joints and at the root to
maintain a static pose are computed using ODE, and their values give indications as to the
plausibility of the pose for the recorded forces. We first examine the information that can
be drawn from the wrench applied at the root to enforce statics, and we then focus on the

torques at the inner joints to maintain the pose.

The wrench that needs to be applied to the root to enforce statics contains information
on the physical plausibility of the pose for Fg. Typically, for a static pose, resultant forces
and torques at the root are zero as gravity and the sum of the forces generated by the holds
cancel out. A large torque means that there is a rotational acceleration on the root and
that the system would not be static were it not for the constraints. Assuming forces at the
holds are explained by the position of the centre of mass, as illustrated by Figure 4.3, we can
always hope to find a pose that minimizes torque at the root by distributing the skeleton’s
weight appropriately. Linear force at the root however is the difference between the chosen

weight of the skeleton and the sum of forces at the holds and is therefore pose-invariant.

Torques at the inner joints contain critical information as they describe the necessary
effort to maintain the pose described by ¢’. A small total inner torque is in general a good
measure of high human plausibility as it signifies that it is more natural to choose a pose
that requires less effort — where human plausibility of a pose is a measure of the likeliness
that a human produces that pose. However, in the case of our simulation, minimum overall
inner torque does not indicate that a simulated pose is a more natural choice. This can be
explain by the simplicity of our simulated model, which does not capture properties crucial
in evaluating effort for climbing. For instance, the shape of the holds is crucial to account
for the difficulty of grasping and therefore of applying force along a given limb (e.g., it is
easier to pull with the arm when the hand is grasping a hold that offers a comfortable grip).

Also, different subjects use distinct strategies to distribute effort over the muscle groups
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(e.g., experienced climbers use their legs more). Therefore, using inner joint torque as a
measure of the likeliness that a human produces a pose requires more information on the
force that a subject can generate with the different muscles, on the strategies used to dis-

tribute effort, as well as on the shapes of the holds and their repercussions on those strategies.

For the above reasons, we only use the rotational part of the wrench that needs to be
applied to the root to enforce statics as a measure of the quality of the pose given by ¢ for
explaining Fg. The closer that torque is to zero, the more plausible the pose. Consequently,
finding a unique pose with physical plausibility as an objective is under-constrained: the
set of centre of mass positions that minimize the said torque lie on a line parallel to the
linear part of the wrench applied to the root to enforce statics. To incorporate the missing
information on human plausibility and guide our optimizer toward a smaller set of good
solutions, we use statistical information gathered on the position of the root for a given set
of forces. We believe that this statistical information captures constraints associated with

the shape of the holds as well as with biomechanical properties of the climber.

4.2.3 Hint objective for improved optimization

While entire poses could not be estimated from forces using linear models even in the static
case, the aforementioned missing information concerning holds and human morphology can
be partly extracted from the data to help the optimization converge. As explained earlier,
linear regression can be used to accurately estimate root position with a maximum error in

the order of 10 cm.

The model to predict the position of the hips for a given set of forces is input into CMA-
ES and used to help reduce ambiguity. During initialization, 7/, the expected root position, is
computed with the regression model given the forces measured by the sensors. The distance
between the current location of the hips for a candidate pose and the estimated root position

for the sensor forces is used as a hint to guide the optimization toward a good solution. Since
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the regression error is in the order of 10 cm, we use 7’ to guide CMA-ES toward the set of

poses with a root position inside a 10 cm sphere from the estimate.

Conceptually, we guide our pose toward a configuration where the centre of mass, which
we approximate as root position, lies in a sphere, and use physical plausibility to project
that centre of mass onto the line that minimizes constraint torque applied to the root. In
practice, the optimal solution is described as the most physically plausible pose where the

hips are within a 10 cm radius of the expected hips position.

In sum, the optimization procedure starts with an arbitrary initial pose that satisfies the
constraints. Linear regression is used to find 7/, the predicted root position for forces Fg. For
a new CMA-ES sample ¢, the projection ¢/ = I'(¢) on the constrained joint angles manifold
is found using a proportional-derivative controller. The actual position of the root r is given
by the pose described with ¢'. The fitness — which we want to minimize — of the sample ¢
for explaining Fj is defined as

klr =7+ G(¢) if [lr—o|| >t

(o) = : (4.3)
p(¢, Fs)+ G(¢)  otherwise

where t is an estimate of the maximum regression error, used to determine the significance of
the information provided by ', G(¢') is a set of linear penalties applied when the skeleton is
not facing the wall, and k£ is a large weight that ensures CMA-ES discards samples where the
hips lie outside the sphere given by the regression. To penalize solutions where the skeleton
does not face the wall, G(¢') grows linearly with the orientation of the root about the y-axis.
Since the distance between actual and expected root positions r and 7’ is inexpensive to
compute for a given pose, the physical plausibility p is only evaluated when the solution is

promising in terms of human plausibility.

A limitation of this fitness function is its discontinuity. However, and because of the

weight k, poses with a hip position within the sphere given by the model are always fitter.
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Fitness for a set of joint angles
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Figure 4.9: Illustration of the shape of the fitness function.

Therefore, there is no risk that CMA-ES oscillates back and forth between both sides of the

discontinuities. Figure 4.9 gives a sketch of the behaviour of the objective function.

CMA-ES is guided toward the promising set of poses with reasonable human plausibility
using an inexpensive term. When in the subset of promising poses, CMA-ES uses physical
plausibility to find an optimal solution. Figure 4.10 illustrates the optimization process for an
example optimization using CMA-ES with 10 samples per iteration and 100 total iterations.
The figure illustrates the exploration of pose space, starting from an arbitrary pose and
converging toward the optimal pose, where each picture contains the population cloud for
a given iteration (indicated in the top-right corner). Our projection method allows an easy
exploration of the set of valid poses, and the optimization, after exploring those poses in
the initial iterations, converges when in the vicinity of the optimal solution by progressively

lowering the variance for each of the sampling variables.
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Figure 4.10: Visualization of the optimization process.




Chapter 5

Results and Discussion

In this chapter, we present the results and an evaluation of their quality for the calibration
of the wall and for the reconstruction of static poses. We present error measurements for
expressing the forces in the motion capture world frame, where we first analyze the perfor-
mance of our calibration tool, and then discuss the error for sensor position and orientation
estimates. Then, we discuss static pose reconstruction, where we first expand on the quality
of the regression for predicting hips position, then detail our choices for the parameters of
CMA-ES, and finally compare the optimal poses to ground truth motion capture measure-

ments. Timings are given for a dual-core 3GHz Intel i3 CPU with 4GB RAM.

5.1 Calibration

Our calibration procedures were used to capture nine different subjects and collect close to
an hour of climbing data. Each subject was asked to repeatedly perform several tasks with
different objectives such as shifting centre of mass position and completing routes following
different progressions. Two different hold patterns (shown in Figure 5.1) were designed by
an expert climber, and different types of holds were used in each position following the level
of expertise of the subject. Our setup supports the expedient calibration procedure: in prac-

tice, most of the capture sessions were recorded using the pocket-based procedure. Three
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Figure 5.1: First (a) and second (b) bouldering puzzles.

markers are placed in corners of the wall to define the coordinate frame in which sensor

frames are expressed as a function of pocket placement.

However, several small-scale tests were performed for the optimization-based calibration,
as well as a full wall calibration. For each sensor, three contact point locations are considered.
For each contact location, 20 seconds of motion capture and 20 seconds of force measurements
are recorded. Using Matlab, calibrating the calibration tool from 2500 frames of motion
capture takes less than a second, while estimating the position and orientation of a sensor
with the iterative and alternating method from 3 contact locations and 2000 motion capture
and force samples per point takes less than a minute. We present results for contact point

as well as sensor frame estimation.

5.1.1 Contact Points

After calibrating the tool, we use the least-squares estimate ’p? (i.e., the position of the
sharp tip in body coordinates) for estimating the sensor frames. Motion capture and forces

are recorded as the tool is used to apply forces at the holds. The position of the contact in
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world coordinates “p; is then estimated from the motion capture and °p* using the matrix
W E; (provided by the software at each frame) that describes the orientation and position of

the calibration tool in the world. We define the error as

1 n
€c = ﬁz H;JUEJ bp: - wp: ) (51)
j=1
where
w, * 1 - w b, x

This error is zero when °p? is the exact location of the tip of the calibration tool in the body
frame, when ;' E; gives the exact orientation and position of the tool in the world, and when
the contact location is perfectly constant throughout the trial. In other words, it is zero

when ¥E; *p? is frame-invariant.

The error ¢, can be seen as the average radius of the point cloud ¥FE; °p; where the
estimated contact points lie in world coordinates. A 2D view of an example cloud is shown
in Figure 5.2, where the individual contact point location estimates in world coordinates
wE; Pp* for each frame are in blue, and their average °p; is in red. Table 5.1 shows the
averaged estimation error €. as well as averaged standard deviation o, for the point cloud

for the three contact points at each hold during a full calibration procedure.

Several factors can explain the magnitude of these error and standard deviation. First,
the matrix ;' £, that describes the orientation and position of the tool at each frame, is
estimated by the software from the position of four markers placed on a flat surface of the
tool, as shown in Figure 3.6. The reported position of each of these markers is subjected to
noise in the order of 0.3 mm from the motion capture setup. Therefore, the matrices that we
use to calibrate the calibration tool as well as to compute contact estimates are noisy. This
explains the high estimation error, but also the large standard variation for the point clouds.
Also, the calibration procedure is done by hand and there is room for slight displacements

of the contact locations when the tool is rotated around for calibration as well as when it is
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World contact location on average (red) and for each frame (blue).
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Figure 5.2: Point cloud illustrating contact point estimation error.

Sensor | Average ¢, (mm) | Average 0. (mm)
1 4.3 7.7
2 3.3 6.1
3 4.6 5.2
4 3.4 5.7
) 4.4 8.6
6 4.1 9.4

Table 5.1: Averaged errors and standard deviations for three contact point estimates.
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used to apply the forces in different directions. Finally, the tip of the tool is not perfectly

sharp, and has a diameter close to 0.5 mm.

5.1.2 Sensor Frames

Sensor frame estimate error is expressed as the mean length of the torque vector at each
world contact location “p7;, estimated from each motion capture trial, using the least-squares
estimates Y R* and “p%, which describe the sensor frame, and the forces °f;; and torques °7;;,
measured for each corresponding contact at each frame of the force capture trial. For a given

sensor, frame estimation error is given by

k n
1 wpP* S w, * w, % w Pk S
€s = %ZZHSR Tij +( Ps — pcz) X sR fZJH (53)

i=1 j=1
This error is zero when each contact location is perfectly constant throughout the trial and
is perfectly described by “pZ;, when °f;; and °7;; are the exact forces and torques applied
in the sensor frame for the corresponding contact point, when ¥ R* and “p! give the exact

frame of the sensor, and when there is indeed zero torque applied at the contact.

Table 5.2 shows the sensor frame estimation error €, for each of the six sensors during
the full wall calibration. The iterative solver stops when the change in error is less than
0.01 Nmm per iteration. Since a torque is a force applied at a distance, and given that in
our setup, contacts with holds occur approximately 15 cm from sensors, an error of 75 Nmm
at the sensor represents a weight discrepancy of a mere 50 grams at the hold. Since forces
applied at the holds during the calibration and also during the capture trials are two to three
orders of magnitude larger, this is a very satisfying result. Note that no synchronization step
is performed for that calibration as we average contact point location over all the recorded
motion capture samples. Motion and forces are however recorded approximately at the same
time, and we make sure that forces are applied at a single contact point over the whole

duration of the two streams.
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Sensor | ¢, (Nmm)
1 75

2 55

3 92

4 87

)

6

102
96

Table 5.2: Errors for sensor frame estimates.

Sensor frame estimation error can be explained by the contact point estimate error, which
is in the order of 4 mm, the sensor noise, which is in the order of 0.1 N for forces and 1 Nmm
for torques, and human error, as minor torques are sometimes involuntarily applied at the

contacts due to friction and slight slips at the contact point.

A simple validation technique is to compare the climber’s weight to the weight derived
from measured forces expressed in the world frame for static poses. While this does not
provide an accurate measure of the calibration precision, it is a good means of detecting er-
rors in recorded gains, excitation voltages and sensor frame estimates. For the pocket-based
calibration, this step is critical as it is its main measure of quality. In practice, the weight
computed using the sensor calibration was always accurate with respect to the reported

weight of the climber.

Note that similar to what is done for pocket-based calibration and in the case where
sensors are attached to a fixed surface, markers can be used to avoid performing sensor
frame calibration every time a new motion capture calibration is required. Markers can
indeed be placed in arbitrary locations on the fixed surface to define a coordinate frame in
which the sensor frames can be saved. Since the markers are fixed to the surface, the location

of the sensors in surface frame can be re-used as long as the sensors are not moved. After
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a new motion capture calibration, the position of the markers can be used to retrieve the

sensor frames in the new world coordinates.

5.2 Reconstruction of Static Poses

Pose reconstruction was run on several, varied static poses. The reconstruction is compared
to ground truth for 5 of these poses in Figure 5.3. We first present the results for estimating
the root position using regression. Then, we focus on the details of the CMA-ES setup
by looking at the chosen parameters. Finally, we review results of the full optimization by

quantifying the reconstruction error.

5.2.1 Regression

Using a data set containing a wide variety of static poses and over 4000 frames of synchronized
motion capture and force data, we look at how well first-order polynomial regression on the
position of the root generalizes. We train the model on 90% of the samples and test it on the
remainder. Our error metric for the regression is simply the distance between the motion
capture ground truth and the predicted position of the hips for the corresponding forces
at the sensors. Table 5.3 shows the best, average, and worst reconstruction error, using
our error metric, for six different 90/10 partitions. As expected, we noticed that dynamic
motions and higher errors in root location estimation coincide, confirming our hypothesis

that the correlation is more pronounced in the static case.

5.2.2 CMA-ES

The sampling variables that we use for CMA-ES are the desired Euler angles for the chest,
shoulders, elbows, wrists, hips, knees and ankles (See Figure 4.7 for an illustration of the
different joints). We choose to ignore collars as well as neck and head joints, and we ignore
Euler angles that are irrelevant for a given joint. Collars are ignored because of their limited

range of motion and because their orientation is directly affected by the disposition of the
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Test | Best (cm) | Average (cm) | Worst (cm)
1 0.95 5.99 10.49
2 0.72 3.37 7.94
3 2.03 5.44 11.07
4 2.59 7.11 12.60
) 1.31 5.72 9.39
6 0.53 5.42 13.64

Table 5.3: Root position regression error.

body. Neck and head joints do have an impact on centre of mass location, but they are left
out because climbers do not use their heads to shift their weight in practice, instead keeping
it in a natural posture. For these joints, the desired joint angles are the joint angles for
the rest pose. In other words, the collars are encouraged to remain in a natural pose and
the head and neck are kept straight, which we find is a good strategy to reconstruct human
poses. Finally, for some articulations, only one or two Euler angles are needed to explore the
set of possible configurations. The knee for example is simulated using a hinge joint, and
only one Euler angle is used to describe the desired angle between the upper and lower leg
around the axis of the joint. In total, a CMA-ES sample is 24-dimensional. This number
is small compared to the 57 values used to describe all joint Euler angles as well as root
orientation and position in the constraint-free case, but it is still a considerable number of

variables for an optimization.

The parameters we choose for CMA-ES are 10 samples per iterations and a total of 100
iterations. Having a small population size causes the covariance matrix to be updated very
regularly and provides a more local search at each iteration, as illustrated by Figure 4.10.
The choice of parameters is very problem-specific. In contexts where local minima are
spread over a wide portion of the space of possible solutions, it is important to have a very

large covariance and number of samples per iteration to properly explore the solution space.
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However, the minima for our distance metric (that captures human plausibility) belong to a
set of poses that share the same root position. As for our physical plausibility metric, the
local minima belong to a set of poses which hips positions lie along a line L. Indeed, recall
that we are trying to minimize the torque generated by the constraint force at the root: the
said torque is invariant over any line parallel to that force because the two quantities are
related by a cross product. Conceptually, the minima of our combined fitness metric therefore
belong to the set of poses with root positions lying on the portion of the aforementioned line
L that is within the 10 cm maximum error sphere of our distance metric. Given the physical
constraints (such as hold positions and joint angle limits), these minima are very similar in
practice, and are concentrated in a small portion of the pose manifold (or solution space).
In sum, our context-specific choice of parameters enables subtle search near the mean of
the sampling distribution without compromising convergence toward the optimal solution.
Finally, and in order to explore a varied set of poses, we choose 30 degrees as the initial
standard deviation for the generated Euler angles. The CMA-ES optimization process for
the third example from Figure 5.3 is visualized in Figure 4.10. Recall that while there are
other means of solving this optimization, an important motivation for the current framework
that solves optimization problems using physical simulation and CMA-ES is that it can be

extended to solve complex dynamics problems with space and time constraints.

5.2.3 Reconstruction

Reconstruction error is computed as the average distance between geometric centres of cor-
responding skeleton bodies for the optimal solution and the motion capture ground truth.

In other words, reconstruction error is computed as
1 m
=S = bl (54)
i=1

where m is the total number of bodies in the skeleton (in our case, 18), “b; is the position of
the geometric centre of body ¢ in world coordinates in the simulation, and “b} is the position

of the corresponding body in the ground truth motion capture data. We choose to compute
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reconstruction error using body positions because it is simple in terms of computation as well
as interpretation. Also, this distance metric allows us to compare average reconstruction er-
ror with the threshold on the regression term, and assess the performance of the plausibility

term in our objective function.

Optimizations are run using ODE and Java. The projection step lasts approximately
one second. After the projection, root position is given instantaneously while computing
the physical plausibility takes close to a second. The weight k, used to define the promising
region, is set to 1000 and the threshold ¢, used to apply penalties pertaining to the distance
between actual and predicted root position, is 10 cm. Average reconstruction error is near
that threshold for all bodies, indicating that our method for computing the optimality of
the pose for a given set of forces using physical plausibility provides an accurate model for

reconstructing the remaining degrees of freedom.

Durations as well as error measurements for the examples shown in Figure 5.3 are given
in Table 5.4. In practice, a sample evaluation with the full objective function is twice as
long as a sample evaluation with the hint term, as the extra step of evaluating physical
plausibility takes time to set up and stabilize. Without the hint term, the duration of an

optimization with the same settings is close to an hour.

Recall that the shape of the hold is not taken into account by our simplistic model.
Instead, contacts with the holds are simulated using ball joint constraints. Therefore, and
since the orientation of the end effectors does not have an important impact on the weight
distribution of the body, hands and feet do not necessarily match well in the provided
examples (such as Example 3). Ball joint constraints remain however preferable to fixed
constraints, as they provide more freedom in the exploration of the space of possible poses.
Another limitation that comes from the simplistic nature of the simulation is the choice of

joint angle limits. This is most visible with Example 1, where the left arm is stuck in a
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Example | Time (min) | ¢, (cm)
1 24.1 11.19
2 30.0 777
3 26.5 8.17
4 26.0 8.88
> 33.1 8.67

Table 5.4: Durations and reconstruction errors for optimization examples.

configuration where the elbow and wrist are locked. Such configurations can be avoided if
all the articulations are simulated using ball joint constraints with no joint limits. However,
joint limits are crucial in delimiting the set of plausible poses. In practice, they are chosen
arbitrarily through trial and error to provide an adequate trade-off between maximizing the

set of valid human poses that the skeleton can produce and minimizing the set of unnatural

poses that it can reach.
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Figure 5.3: Reconstruction (left) and ground truth (right) for varied examples.
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Chapter 6

Conclusions

Climbing and bouldering are difficult skills to learn because the actions and postures involved
depend not only on body position but also on how forces are applied. Building up a clear
understanding of how posture and motion are produced during climbing is useful for learning,

as well as to produce physically plausible computer animation of virtual humans.

6.1 Summary and Contributions

In the interest of building up a clear understanding of how posture and motion are produced
during climbing, we present the design of an instrumented climbing wall that capture forces
at the holds and offer calibration solutions to couple force sensing with a motion capture
setup. This innovative setup allows the capture of all contact forces and torques and full
3D postural information, and offers a flexible and portable solution to the study of climb-
ing. Our optimization-based calibration method is also easily generalizable to any arbitrary
setup consisting of force sensing and motion capture machinery, and enables the expression

of measured forces in the pose capture frame.

In an effort to understand the relationship between posture and contact forces, and be-

cause occlusions render motion capture difficult, we propose an objective function to describe
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what constitutes a natural pose for a given set of forces. As a first contribution, we focus on
the simpler case of static and quasi-static poses. We present new ideas in computing posture
from contacts alone, using optimization to find a physically valid pose while meeting other
important plausibility constraints. While linear regression cannot directly provide estimates
of posture from forces, it is useful in identifying the location of the hips, which we use as an
inexpensive hint on human plausibility to compensate for the simplicity of our model. We
use this hint to guide our optimization toward a promising subset of poses and compute a
measure of the physical plausibility of a pose to choose the optimal solution. Comparison
between our reconstructed poses and motion capture shows that our objective function is a

good model for human posture.

The three main contributions of this thesis are: an instrumented climbing wall design for
the study of climbing, a calibration process for arbitrary systems composed of force sensing
and motion capture devices, and a new optimization-based method for estimating climbing
posture from contact forces in the static case. Our secondary contributions are: a fast and
convenient space calibration in the case of known sensor mounting locations, and a simple
synchronization method for systems with asynchronous recording of motion capture and

force data.

6.2 Limitations and Future Work

Our calibration and capture procedures, as well as our pose reconstruction method, offer
satisfying results. We can identify a number of improvements that could lead to faster, more

accurate results, as well as exciting new possibilities based on the current work.

Several improvements could increase calibration precision and speed. Using a calibration
tool with a sharper tip, but also calibrating the calibration tool using a smaller motion cap-
ture setup would provide better contact point estimates. To improve sensor frame estimates,

forces could be sampled at a higher rate and re-sampled using a smoothing kernel to try
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and limit the impact of the noise. We also noticed that many of the cameras placed on the
ceiling behind the climber offer similar perspectives. Reducing their number will speed up
the motion capture system calibration, which is currently the bottleneck of the full capture
procedure. Another lengthy process is time synchronization, as we examine each of the
data streams manually. The search for the appropriate frames could be automated, but a
simpler solution would be to use the hardware to initiate the recordings at the same mo-
ment. Finally, while our intuition is that the pocket-based calibration is less accurate than
its optimization-based counterpart, it would be interesting to use the error metric given in

Equation 5.3 to empirically compare the accuracy of both methods.

While the goal of our pose reconstruction approach is to offer a means of characterizing
the relationship between forces and posture, the optimization process is slow. However, the
problem of evaluating sample fitness for a CMA-ES iteration is embarrassingly parallel and
pose reconstruction could be accelerated tenfold with the current settings by distributing
the evaluations. Another concern is that the regression is not likely to generalize well across
subjects in the current state. While we could devise a better model that takes into account
the mass and size of the climber, the real problem lies in the absence of tangible information
on human strength limits as well as how they distribute force among the different muscles.
If we had such information, we could determine the human plausibility of a pose using only

the inner joint torques and the shapes of the holds.

An important direction for future work is pose reconstruction from forces in the case of
dynamic movements. The current approach is not directly applicable to reconstruct poses
from forces in the dynamic case, as we do not look at how forces evolve over a period of time.
In the dynamic case, the weight of the climber and the forces at the holds might not cancel
out since the climber might carry momentum (e.g., in the case of upward momentum, forces
at the holds have a far smaller magnitude that the weight of the climber). However, since

we use a physical simulation to evaluate the fitness of poses, the current framework can be
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expanded to study dynamics. We could use a static sample to reconstruct an initial pose
for the climber. Then, optimization could be used to determine the set of torques generated
at the climber’s joints that best explains measured changes in forces at the holds over small

time windows. That set of torques could then be used to update the pose in a coherent way.

Finally, we believe that our methods for estimating posture from forces will be useful
for augmented reality applications. For instance, and taking inspiration from Todorov et
al. [TJ02], who show that augmented feedback is beneficial for learning a task , data pro-
jectors could be used to provide real-time visual feedback directly on the wall as a person is

climbing, for learning or rehabilitation.
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Appendix A

Space Calibration Optimization Detail

In this appendix, we detail the solving of the least-squares optimizations described in Sec-
tion 3.2. We describe the solution for the contact point estimation, and then look at the

sensor frame and describe the solution for frame origin and frame orientation estimation.

A.1 Contact Point

Recall that in order to find the contact locations, we choose to solve for

argminz H},”Ej "pe — pr’ 2, (A.1)

e, pe j=1

where °p. and “p. are the position of the contact in the body and world frame, and where

w w
w st Pbj
E. =
b~y — )

0 1

(A.2)

is the transform that converts coordinates in the body frame to coordinates in the world
frame (given by the motion capture software for each recorded frame j). We then set up the

problem of finding the estimates for ’p, and “p, as a classical least-squares system

argmin||A z — b]|?, (A.3)
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where

r = : (A.4)
“Pe
A is a block matrix containing
A= |vR,— 1|, (A.5)
and b is a block vector containing

b= —“’pbj . (A6)

For n frames, A is composed of n 3-by-6 blocks and b is composed of n 3-by-1 blocks. In the
case of our least squares problems, where there are more constraining equations than there
are free variables, the solution to Equation A.3 is found using AT, the pseudo-inverse [A1b72]
of A:

r=A"D. (A7)

A.2 Sensor Frame

Recall that in order to estimate the sensor frames, we choose to solve for

kK m
ar%minzz IR *7ij 4+ (“ps — “pei) X YR *fis |, (A.8)
SROPs oy =1

where k is the number of contacts, m is the number of recorded force samples per contact,
*f and °7 are the force and torque in the sensor frame, “p.; is the position of each contact
in the world, and ¥R and “p, are the orientation and origin of the sensor frame in world
coordinates. We use an iterative and alternating approach: we set ¥ R and “p, to an initial
approximation and solve for one of the unknowns while fixing the other. Then, we alternate
and repeat until we converge to an acceptable error. Below, we show details for the simpler

case of “ps, and review the different steps in solving for ¥ R.
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A.2.1 Origin of the Frame

Using Equation A.8, we set up the problem of finding the estimate for “p, as a classical

least-squares system

Wy, = A;’; b, , (A.9)
where _ -
0 RUEI e I 1Y
Ap=|=rs-°fy 0 RN T (A.10)
sr2 fiy o =gt i 0

S

FOTig = YPeiz (§72  *fig) + “Peiy (§73 - °fij)
bp = | = ¥ry - *Tyj + “Peiz (Y11 °fij) = “Peiw (V73 - °fij) | » (A.11)

s

T = YPeiy (U1 fij) + VPeiw (872 - 7 fi)

and where Y1, Y19 an(i “r3 denote respectively the first, second and third rows of the rotation
matrix VR, “Peiz, “Deiy and “pe;, are respectively the z, y and z coordinate of the ith contact
point “p.;, and °f;; and °7;; are the j force and torque measurements for that i*" contact
point. For k contact points and m force measurements per contact point, A, and b, are

respectively composed of km 3-by-3 blocks and £m 3-by-1 blocks.

A.2.2 Orientation of the Frame

Recall that when solving for ¥R with a fixed “ps, we choose to solve for

kK m
argmin " IR+ () 7y + (= ) % FRATH ) Sl (A1)

i=1 j=1

where ¥ I?; is the most recent estimate for ¥ R. We set up the problem of finding the estimate

for w as a classical least-squares system
w=Ab,, (A.13)
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where

Aijin Aijiz Aijis
Aijor Aijoa Aijos
A _
T T ?
Aijs1 Aijza Aijas
br = | = YRy *1i5 — “psi X YR °fij | 5
and where
w w
Ajin = —Jri2 Tige + 5113 Tijy

—(= “Psiz ST22 + “Dsiy 2732) ° fija

(= “Dsiz 2723 + Dsiy 5733) °fijy

w w
A¢j12 s T11 Tijz — s 713 Tijz
C w C w S
+(— “Dsiz 2121 + DPsiy 2731) ° fije
C w C w S
—(— “Dsiz 2723 + “Dsiy 2733) ° fija
w w
Aijis — sT11 Tijy T sT12 Tija
C w C w S
—(= “Psiz 2121 + Dsiy 5731) *fijy
C w C w S
+(— “Psiz ¥T20 + Psiy 2732) ° fija
w w
Aijor = — T2 Tijz + 2793 Tijy

C w
—( Dsiz sT12 —

c w
+( Psiz s T13 —
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“Psix 2”1”32) sfijz

“Dsiz ;UT33) Sfijy )

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)



w w
Amz = T2l Tijz — 723 Tijx
C w C w S
_'_( Psiz ¢ T11 — Psix 3T31) fijz <A20>

_<cpsiz ;1)7”13 — “Psix ?7”33) Sfijx

w w
Aijos = — 5721 Tijy + 5722 Tiju
C w Cc w S
+(“Psiz S7T12 — Dsiz 2732) ° fija (A.21)

_(Cpsiz ;”7"11 — Pz 2"7“31) Sfijy

w w
Aijs1 = — I3 Tije + Y33 Tijy
C w C w S
—(= “Psiy sT12 + Psiz 722) * fij2 (A.22)

c w c w s
+(_ psiy 5T13 + Psiz 3T23) fijy )

w w
Aij32 = 731 Tijz — 733 Tijx
C w C w S
(= “Dsiy £711 + Psiz 27T21) * fijs (A.23)

—(= “Psiy £713 + Psiz 2723) *fijo

w w
Ajjzs = — 131 Tijy + $732 Tija
C w C w S
—(= “Psiy a1 + Dsiz 5721) * fijy (A.24)

C w C w S
+(— “Psiy 2112 + Dsiz 2 722) *fiju s

where the second subscript index after rotation matrix row number designates the matrix
column number, and where, for simplicity, we write “py; to designate “ps — “p.; (which is
in fact the origin of the sensor frame expressed in the coordinate frame of contact 7). Once
again, for k contact points and m force measurements per contact point, A, and b, are

respectively composed of km 3-by-3 blocks and km 3-by-1 blocks.

61



Bibliography

[AIb72]

[AMTO6]

[BAO1]

[BMP04]

[BSFO9]

[bvh]

[CDL*09]

[cmal

[dLMH10]

A. E. Albert. Regression and the Moore-Penrose Pseudoinverse. Academic

Press Inc., 1972.
AMTI. MSA-6 MiniAmp: Strain Gage Amplifier Instruction Manual, 2006.

G. Baudat and F. Anouar. Kernel-Based Methods and Function Approxima-

tions. In International Joint Conference on Neural Networks, 2001.

C. Bregler, J. Malik, and K. Pullen. Twist Based Acquisition and Tracking
of Animal and Human Kinematics. International Journal of Computer Vision,

56(3):179-194, 2004.

M. A. Brubaker, L. Sigal, and D. J. Fleet. Estimating Contact Dynamics. In
International Conference on Computer Vision, pages 2389-2396, 2009.

BVH. http://www.mindfiresolutions.com/BVH-biovision-hierarchy.

M. T. Ciocarlie, H. Dang, J. Lukos, M. Santello, and P. K. Allen. Functional
Analysis of Finger Contact Locations During Grasping. In WHC, pages 401—
405, 2009.

CMA-ES. http://en.wikipedia.org/wiki/CMA-ES.

M. de Lasa, I. Mordatch, and A. Hertzmann. Feature-Based Locomotion Con-

trollers. In ACM SIGGRAPH, 2010.

62


http://www.mindfiresolutions.com/BVH-biovision-hierarchy
http://en.wikipedia.org/wiki/CMA-ES

[FILP04]

[FNOG6]

[FNO7]

[FNOS]

[Han06]

[HBL11]

[HRT*09]

[Jol02]

[JYL09]

[KB96]

P.T. Fletcher, S. Joshi, C. Lu, and S.M. Pizer. Principal Geodesic Analysis
for the Study of Nonlinear Statistics of Shape. IEEE Transactions on Medical
Imaging, 23(8):995 — 1005, 2004.

F. K. Fuss and G. Niegl. Instrumented Climbing Holds and Dynamics of Sport
Climbing. In The Engineering of Sport 6, pages 57-62. Springer New York,
2006.

F. K. Fuss and G. Niegl. The Impact of Technology on Sport II, chapter The
Fully Instrumented Climbing Wall: Performance Analysis, Route Grading and

Vector Diagrams — a Preliminary Study, pages 677-682. Taylor and Francis,
2007.

F. K. Fuss and G. Niegl. Instrumented Climbing Holds and Performance Anal-
ysis in Sport Climbing. Sports Technology, 1(6):301-313, 2008.

N. Hansen. The CMA Evolution Strategy: A Comparing Review. In Towards
a New Evolutionary Computation, volume 192, pages 75-102. Springer Berlin /
Heidelberg, 2006.

S. Ha, Y. Bai, and K. C. Liu. Human Motion Reconstruction from Force Sensors.

In Proceedings of ACM SIGGRAPH/Eurographics SCA, pages 129-138, 2011.

N. Hasler, B. Rosenhahn, T. Thorméhlen, M. Wand, J. Gall, and H.-P. Seidel.
Markerless Motion Capture with Unsynchronized Moving Cameras. In [EFEE

Conference on Computer Vision and Pattern Recognition, 20009.
I. T. Jolliffe. Principal Component Analysis, Second Edition. Springer, 2002.

S. Jain, Y. Ye, and K. C. Liu. Optimization-Based Interactive Motion Synthesis.
ACM Transactions on Graphics, 28(1):10:1-10:12, 2009.

E. Kreighbaum and K. M. Barthels. Biomechanics: A Qualitative Approach for
Studying Human Movement. Allyn and Bacon, 1996.

63



[KP06a]

[KPOGD)

[LCBO1]

[MA9Y]

[NCNV+12]

[QMO9]

[QMBY7a]

[QMBY7h]

[RBY1]

P. G. Kry and D. K. Pai. Grasp Recognition and Manipulation with the Tango.
In International Symposium on Fxperimental Robotics, volume 10. Springer,

2006.

P. G. Kry and D. K. Pai. Interaction Capture and Synthesis. In ACM SIG-
GRAPH, pages 872-880, 2006.

B. L. Luk, A. A. Collie, and J. Billingsley. Robug II: An Intelligent Wall
Climbing Robot. In International Conference on Robotics and Automation,

1991.

A. T. Miller and P. K. Allen. Examples of 3D Grasp Quality Computations.
In 1999 IEEE International Conference on Robotics and Automation, pages
1240-1246, 1999.

R. F. Nunes, J. B. Cavalcante-Neto, C. A. Vidal, P. G. Kry, and V. B. Zordan.
Using Natural Vibrations to Guide Control for Locomotion. In Proceedings
of the ACM SIGGRAPH Symposium on Interactive 8D Graphics and Games,
pages 87-94, 2012.

F. Quaine and L. Martin. A Biomechanical Study of Equilibrium in Sport Rock
Climbing. Gait and Posture, 10(3):233-239, 1999.

F. Quaine, L. Martin, and J.-P. Blanchi. Effect of a Leg Movement on the
Organisation of the Forces at the Holds in a Climbing Position: 3-D Kinetic
Analysis. Human Movement Science, 16(2-3):337-346, 1997.

F. Quaine, L. Martin, and J.-P. Blanchi. The Effect of Body Position and
Number of Supports on Wall Reaction Forces in Rock Climbing. Journal of
Applied Biomechanics, 13:14 — 23, 1997.

P. Rougier and J.-P. Blanchi. Evaluation Objective de la Difficulté en Escalade
Par la Relation Posturo-Cinétique. Sciences Techniques pour la Recherche en

Activités Physiques et Sportives, 26:61 — 77, 1991.

64



[RB92]

[RBMBO1]

[RSB*08]

[RVC10]

[SHS+08)]

[SL12]

[Smi]

[Tho00]

[TJ02]

P. Rougier and J.-P. Blanchi. Mesure de la Force Maximale Volontaire a partir
d’une Posture Quadrupodale en Escalade : Influence du Niveau d’Expertise.

Science and Sports, 7(1):19-25, 1992.

P. Rougier, R. Billat, R. Merlin, and J.-P. Blanchi. Conception d’un Systéme
pour Etudier la Relation Posturo-Cinétique dans un Plan Vertical : Application

sur une Population de Grimpeurs. Innovation et Technologie en Biologie et

Médecine, 12:568 — 580, 1991.

B. Rosenhahn, C. Schmaltz, T. Brox, J. Weickert, D. Cremers, and H.-P. Seidel.
Markerless Motion Capture of Man-Machine Interaction. In Computer Vision

and Pattern Recognition, pages 1-8, 2008.

R. Rajalingham, Y. Visell, and J. R. Cooperstock. Probabilistic Tracking of
Pedestrian Movements via In-Floor Force Sensing. In Computer and Robot

Vision, pages 143 — 150, 2010.

M. A. Spenko, G. C. Haynes, A. Saunders, A. A. Rizzi, M. Cutkosky, R. J. Full,
and D. E. Koditschek. Biologically Inspired Climbing with a Hexapedal Robot.
Journal of Field Robotics, 25(4 — 5):223 — 242, 2008.

G. A. F. Seber and A. J. Lee. Linear Regression Analysis, Second Edition. John
Wiley and Sons, 2012.

Russell Smith. Open Dynamics Engine. http://www.ode.org.

B. Thompson. Reading and Understanding More Multivariate Statistics, vol-
ume 13, chapter Canonical Correlation Analysis, pages 285 — 316. American

Psychological Association, 2000.

E. Todorov and M. I. Jordan. Optimal Feedback Control as a Theory of Motor
Coordination. Natural Neuroscience, 5(11):1226-1235, 2002.

65


http://www.ode.org

[TMD99] M. Testa, L. Martin, and B. Debt. Effects of the Type of Holds and Movement
Amplitude on Postural Control associated with a Climbing Task. Gait and
Posture, 9(1):57-64, 1999.

[TMDO03] M. Testa, L. Martin, and B. Debti. 3D Analysis of Posturo-Kinetic Coordina-
tion associated with a Climbing Task in Children and Teenagers. Neuroscience

Letters, 336(1):45-49, 2003.

[TWC*09] M. Tournier, X. Wu, N. Courty, E. Arnaud, and L. Revéret. Motion Compres-
sion using Principal Geodesics Analysis. Computer Graphics Forum, 28(2):355—
364, 20009.

[YPO03] K. Yin and D. K. Pai. FootSee: An Interactive Animation System. In Proceed-
ings of ACM SIGGRAPH /Eurographics SCA, pages 329-338, 2003.

66



	Introduction
	Related Work
	Climbing and Grasping
	Combining Forces and Motion Capture
	Pose Space Constraints and Optimization

	Design, Calibration, and Capture
	Wall Design
	Calibration
	Converting the Raw Data to Forces
	Optimization-Based Space Calibration
	Pocket-Based Space Calibration
	Measurement Synchronization

	Capture

	Reconstruction of Static Poses
	Statistical Analysis
	Physics-Based Approach
	Physical Simulation and CMA-ES
	Physical Plausibility as an Objective
	Hint objective for improved optimization


	Results and Discussion
	Calibration
	Contact Points
	Sensor Frames

	Reconstruction of Static Poses
	Regression
	CMA-ES
	Reconstruction


	Conclusions
	Summary and Contributions
	Limitations and Future Work

	Space Calibration Optimization Detail
	Contact Point
	Sensor Frame
	Origin of the Frame
	Orientation of the Frame


	Bibliography

