
UNDERSTANDING AND REFACTORING THE MATLAB LANGUAGE

by

Soroush Radpour

School of Computer Science

McGill University, Montréal

August 2012

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright c© 2012 Soroush Radpour

Abstract

MATLAB is a very popular dynamic “scripting” language for numerical computations

used by scientists, engineers and students world-wide. MATLAB programs are often devel-

oped incrementally using a mixture of MATLAB scripts and functions and frequently build

upon existing code which may use outdated features. This results in programs that could

benefit from refactoring, especially if the code will be reused and/or distributed. Despite

the need for refactoring there appear to be no MATLAB refactoring tools available. Correct

refactoring of MATLAB is quite challenging because of its non-standard rules for binding

identifiers. Even simple refactorings are non-trivial. Compiler writers and software engi-

neers are generally not familiar with MATLAB and how it’s used so the problem has been

left untouched so far.

This thesis has two main contributions. The first is McBench, a tool that helps compiler

writers understand the language better. In order to have a systematic approach to the prob-

lem, we developed this tool to give us some insight about how programmers use MATLAB.

The second contribution is a suite of semantic-preserving refactoring for MATLAB func-

tions and scripts including: function and script inlining, converting scripts to functions,

extracting new functions, and converting dynamic feval calls to static function calls. These

refactorings have been implemented using the McLAB compiler framework, and an evalu-

ation is given on a large set of MATLAB programs which demonstrates the effectiveness of

our approach.

i

ii

Résumé

MATLAB est un « langage de script » dynamique utilisé à des fins de calcul numérique

par des scientifiques, ingénieurs et étudiants du monde entier. Les programmes MATLAB

sont souvent développés selon une méthode incrémentale, sur la base d’un mélange de

scripts et fonctions MATLAB, et sont habituellement conçus à partir d’un code existant

dont les fonctionnalités seraient obsolètes. Par conséquent, certains programmes pourraient

bénéficier de réusinage, surtout si le code sera réutilisé et/ou distribué. Malgré ce besoin, il

n’existe aucun outil MATLAB de ce genre. Le réusinage de MATLAB est assez difficile car

les règles pour la liaison des identificateurs ne sont pas standards. Même une opération de

maintenance simple revêt une certaine complexité. De plus, les créateurs de compilateurs

et les ingénieurs en informatique ne sont généralement pas familiers avec MATLAB et la

façon dont il est utilisé. C’est pourquoi à ce jour le problème n’a jamais été traité.

Cette thèse apporte deux contributions principales : d’une part la création de MCBENCH,

un outil aidant les créateurs de compilateurs à mieux comprendre le langage. Afin d’avoir

une approche systématique du problème, nous avons développé cet outil pour en savoir plus

sur la façon dont les programmeurs utilisent MATLAB. L’autre contribution est une suite

de réusinages préservant la sémantique des fonctions et scripts MATLAB : incorporation

de fonctions et scripts, conversion de scripts en fonctions, extraction de nouvelles fonc-

tions et conversion d’appels dynamiques feval en appels de fonction statique. Le cadriciel

et compilateur McLAB a été utilisé pour la mise en œuvre de ces réusinages. De plus, une

évaluation est donnée sur un large éventail de programmes MATLAB afin de démontrer

l’efficacité de notre approche.

iii

iv

Acknowledgements

This work was supported, in part, by the Natural Sciences and Engineering Research

Council of Canada (NSERC).

I would like to thank my advisor, Laurie Hendren, for providing me with the great

opportunity to participate in the McLAB project and supporting me. She taught me much

about research, compilers, writing and advising.

I would like to thank all the members of McLAB project for creating such a great frame-

work. I appriciate the support and patience from my colleagues at McLAB as I finished my

thesis concurrently with my other responsibilities.

Finally, I would like thank my parents and my brother for encouraging me and believing

in me.

v

vi

Table of Contents

Abstract i

Résumé iii

Acknowledgements v

Table of Contents vii

List of Figures xi

List of Tables xiii

Table of Contents xv

1 Introduction 1
1.1 Contributions . 2

1.2 Outline . 3

2 Background 5
2.1 MATLAB programs . 7

2.2 Kind Information . 8

2.3 Impact of Function and Script Lookup on Refactoring 10

3 McBench: A Tool for Understanding MATLAB Programs 13
3.1 McBench . 14

3.2 McAST XML Structure . 16

vii

3.3 Annotations . 20

3.4 XPath Queries . 21

3.5 Experiments . 22

3.5.1 Setup . 22

3.5.2 Example #1: Calls to feval with string literal targets 23

3.5.3 Example #2: Copy statements inside loops 25

3.5.4 Example #3: Variables with both Matrix and Scalar types 25

3.5.5 Refactoring Query-set . 27

3.6 Related Work . 28

4 Building Blocks for Refactoring 31
4.1 Static Analysis For Scripts . 31

4.2 Liveness and Reaching Definitions Analysis 34

4.2.1 Liveness Analysis . 35

4.2.2 Reaching Definitions Analysis . 36

4.3 Return Elimination . 37

5 Refactoring MATLAB 41
5.1 Inlining Scripts and Functions . 41

5.1.1 Inline Script . 42

5.1.2 Inline Function . 44

5.2 Converting Scripts to functions . 47

5.3 Extract Function . 50

5.4 Replacing feval . 52

6 Evaluation and Related work 55
6.1 Inlining Scripts . 55

6.2 Inlining Functions . 56

6.3 Converting Scripts to Functions . 57

6.4 Extract Function . 58

6.5 Replacing feval . 59

6.6 Related Work . 60

viii

7 Conclusions and Future Work 63

Appendices

List of AST nodes 65

Bibliography 67

ix

x

List of Figures

3.1 McBench result overview page for the refactoring query-set. 15

3.2 McBench detailed result view for “calls to addpath” query. 16

3.3 McBench code viewer showing the source code of one of the results from

Figure 3.2. 17

3.4 McBench architecture. McBench components are inside the highlighted

region. 18

3.5 XML tree representation of the source code shown in Listing 3.1. 20

4.1 A basic MATLAB project with two functions and two scripts 32

4.2 A small recursive program . 33

4.3 Script call graph for example in Figure 4.2. Strongly connected compo-

nents are shown with dotted lines. 33

4.4 A MATLAB script with a return statement before (a) and after (b) the return

simplification . 39

5.1 Original function (a) and inlined version before the necessary renames

where ndims has a Kind conflict (b). 45

5.2 Inlined version of MultiplyFn2 after the necessary renames (a) and spu-

rious copies removed (b) . 46

5.3 An example function for Extract Function refactoring 50

5.4 The steps showing the creation of the new function and the final result . . . 51

6.1 An example showing constraints used to select refactoring region 59

6.2 Distribution of number of arguments for the new functions. 60

xi

6.3 Result of running the Extract Function heuristic to split a function to two

parts . 61

xii

List of Tables

3.1 Distribution of size of the benchmarks . 23

4.1 A simple script with results for both Liveness (backward analysis) and

Reaching Definitions Analysis (forward analysis) for each program point . 37

6.1 Results from inlining all the calls to scripts 56

6.2 Results from inlining all the calls to functions 57

6.3 Results from converting scripts to functions 58

A.1 All the node types that McLAB XML output might contain. 65

xiii

xiv

List of Listings

2.1 Function stored in MultiplyCompatible.m 5

2.2 Script stored in SMultiplyCompatible.m 7

2.3 A function calling a script . 9

2.4 Example of Kind error due to script inlining 10

3.1 A simple script . 20

3.2 Default node case for NameExpr is overridden to add Kind Analysis infor-

mation . 21

4.1 Summary-approach flow analysis for scripts 34

5.1 Excerpts from a script which uses feval (... corresponds to elided code) . 53

xv

xvi

Chapter 1

Introduction

Refactoring may be defined as the process of applying a set of behavior-preserving

transformations in order to change the structure of a program. The goal can be to improve

readability, maintainability, performance or to reduce the complexity of code. Refactoring

has developed for the last 20 years, starting with the seminal theses by Opdyke [Opd92] and

Griswold [Gri91], and the well known book by Fowler [Fow99]. Many programmers have

come to expect refactoring support and popular IDEs such as Eclipse, Microsoft’s Visual

Studio, Sun’s NetBeans have integrated support for automated refactorings. However, the

benefits of refactoring tools have not yet reached the millions of MATLAB programmers.

Currently neither the proprietary Mathworks’ MATLAB IDE, nor open-source tools provide

refactoring support.

MATLAB is a popular dynamic (“scripting”) programming language that has been in use

since the late 1970s, and a commercial product of MathWorks since 1984, with millions

of users in the scientific, engineering and research communities. 1 There are currently over

1200 books based on MATLAB and its companion software, Simulink (http://www.

mathworks.com/support/books).

To study MATLAB programs, we built McBench query framework and gathered a large

body of MATLAB programs. In our studies we have found that the code could benefit from

1. The most recent data from MathWorks shows that the number of users of MATLAB was 1 million in
2004, with the number of users doubling every 1.5 to 2 years.(From www.mathworks.com/company/-
newsletters/news_notes/clevescorner/jan06.pdf.)

1

http://www.mathworks.com/support/books
http://www.mathworks.com/support/books

Introduction

refactoring for several reasons. First, the MATLAB language has evolved over the years, in-

crementally introducing many valuable high-level features such as functions, nested func-

tions, packages and so on. However, MATLAB programmers often build upon code avail-

able online or code found from books and frequently that code does not use the modern

high-level features. Thus, although code reuse has been an essential part of the MATLAB

eco-system, obsolete syntax and new language features complicates this reuse. Since MAT-

LAB does not currently have refactoring tools, programmers either do not refactor, or they

refactor code by hand which is time-consuming and error-prone. Secondly, the interactive

nature of developing MATLAB programs promotes a style of programming in which the

organization of functions and scripts is relatively unstructured and not modular. When de-

veloping small one-off scripts this may not be important, but when developing a complete

application or library, refactoring the code to be better structured and more modular is key

for reuse and maintenance.

Although desirable, developing correct and automatic refactorings for MATLAB is ac-

tually quite challenging. In particular, to ensure behavior-preserving refactorings, it is im-

portant to verify that identifiers maintain their correct kind (variable or function) and in the

case of functions, identifiers must resolve to the correct function after refactoring. Further-

more, there are some MATLAB features that are undesirable. For example, MATLAB scripts

are a hybrid of macros and functions and can lead to unstructured code which is hard to

analyze and optimize. Dynamic features like feval which evaluates a string as though it

were a MATLAB expression, also complicate programs and are often used inappropriately.

Thus, MATLAB-specific refactorings, which eliminate these features, are also very useful.

1.1 Contributions

In this thesis we present the refactorings that we developed for MATLAB, as well as

the reusable tools we built in our development process. Our first contribution is our query

framework. We built the McBench query framework in order to help us understand MAT-

LAB programs and identify refactoring opportunities. Our tool allows compiler writers to

search for specific syntactic and semantic features in a large body of MATLAB code that

we have collected. We also implemented various features to make it easier to read, under-

2

1.2. Outline

stand and browse through the MATLAB source code. To make McBench reusable for other

compiler researchers, we implemented an annotation framework that makes it possible to

expand the information available for querying.

Our second contribution is an extension to the McLAB static analysis framework. Our

extension can be used in data-flow analyses of functions to significantly improve the preci-

sion of the results in presence of script calls. A fixed-point analysis driver is implemented

which builds a call graph from script calls and propagates summary information of scripts

inter-procedurally through this graph. We also implemented Liveness and Reaching Defi-

nition Analysis using this extension.

Our final contribution is our refactoring tool. After studying MATLAB code we found

that scripts are commonly used in MATLAB and can benefit from refactoring. To tackle

this problem we have implemented Convert Script to Function and Inline Script. We also

implemented the Extract Function refactoring which is one of the most commonly used

refactorings [Fow99]. Inline Function refactoring was implemented to complement Inline

Script so that our tool can inline both functions and scripts. The replace feval refactoring

is an example of how a simple refactoring can get rid of nasty features.

1.2 Outline

This thesis is split into 6 chapters (including this introductory chapter). Chapter 2 gives

the necessary background information about the MATLAB language. This also includes

an introduction of Kind Analysis and the MATLAB lookup semantics. Chapter 3 presents

the McBench framework for searching through a large body of MATLAB code. We also

show some examples of how this framework can be used to understand MATLAB pro-

grams. Chapter 4 introduces our extension to the McLAB static analysis framework that

enables correct and more precise handling of script calls during flow analyses with mini-

mal effort. This chapter also presents our implementation of Liveness Analysis, Reaching

Definition Analysis and the Return Elimination algorithm that are used in our refactorings.

In Chapter 5 we present Inlining Scripts and Functions, Converting Scripts to Functions,

Extract Function and Replace feval refactorings that we have implemented for MATLAB.

Finally, Chapter 7 presents our conclusions and future work.

3

Introduction

4

Chapter 2

Background

MATLAB programs consist of a collection of functions and scripts. Listing 2.1 illustrates

a typical function called MultiplyCompatible. This function takes as input two arrays, n

and m, and returns true if they are both 2-dimensional arrays and the the number columns

of n is the same as the number of rows of m. 1

1 function r = MultiplyCompatible(n, m)

2 ndims = size(n);

3 mdims = size(m);

4 r = ((length(ndims)==2) && ...

5 (length(mdims)==2) && ...

6 (ndims(2)==mdims(1)));

7 end

8

9 % Kinds ...

10 % VAR: r,n,m,ndims,mdims,r

11 % FN: size, length

Listing 2.1 Function stored in MultiplyCompatible.m

MATLAB programs consist of a collection of functions and scripts. In general, MATLAB

functions have input parameters and may also have output parameters. Parameters obey

call-by-value semantics where semantically a copy of each input and output parameter is

1. Note that we have put the Kind of each identifier in comments at the end of each function/script
definition. This is just to help us explain Kind analysis later in this chapter.

5

Background

made. MATLAB does not explicitly declare local variables, nor explicitly declare the types

of any variables. Input and output parameters are explicitly declared as variables, whereas

other variables are implicitly declared upon their first definition. For example, statements 2

and 3 define the variables ndims and mdims. Variables defined within a function body are

local to the function unless they are explicitly declared to be global or persistent.

The globals structure maps global variable names to values. There is one such globals

structure shared by all functions. A variable “x” is local within a function until a call to

“global(x)” occurs within the function body. Currently it is possible for a function body to

contain both local and global uses of “x”. However, the current version of MATLAB issues

warnings that future versions will not allow this. Presumably this means that in future

versions, a call to “global(x)” will have to dominate all other occurrences of “x” within the

function body.

The persistents structure maps (fully qualified function name × variable name) to val-

ues. Persistent variables are like global variables, but are associated with a specific named

function only. Within function “f”, a variable “x” is made persistent through a call “persis-

tent(x)”. Calls to persistent may only occur in function bodies (and not scripts) and a call

to “persistent(x)” must dominate all other occurrences of “x” in the function body.

It is important to note that it is not possible to syntactically distinguish between ref-

erences to variables and calls to functions. For example, size(n) on line 2 is a call to a

function, whereas ndims(2) on line 6 is a reference to a variable, even though they use

the same syntactic structure. This lack of syntactic distinction between variables and func-

tions leads to complications that must be correctly handled by refactorings, as illustrated in

Section 2.2.

MATLAB scripts are even more unstructured than functions. Scripts are simply a se-

quence of statements that can be invoked. For example, consider the script in Listing 2.2,

which looks similar to the body of the function in Listing 2.1.

A script is executed in the workspace from which it was called, either the main workspace,

or the workspace of the last-called function. In MATLAB, workspaces store the values of

variables. There is an initial “main” workspace which is acted upon by commands entered

into the main read-eval-print loop. There is a also a stack of workspaces corresponding the

the function call stack. A call to a function creates and pushes a new workspace, which

6

2.1. MATLAB programs

1 ndims = size(n); % ndims has Kind VAR
2 mdims = size(m);
3 isCompatible = ((length(ndims)==2) && ...
4 (length(mdims)==2) && ...
5 (ndims(2)==mdims(1)));
6
7 % Kinds ...
8 % VAR: ndims,mdims, isCompatible
9 % ID: size, length

Listing 2.2 Script stored in SMultiplyCompatible.m

becomes the current workspace. For example, if SMultiplyCompatible is invoked from a

workspace which contains a variable size, then lines 1 and 2 of Listing 2.2, would refer

to elements of that variable. If the invoking workspace does not contain a variable called

size, then lines 1 and 2 refer to a call to the built-in function size. Furthermore, if the

script defines new variables, those will be put in the workspace of the caller. Clearly scripts

are not very modular, and thus developing refactorings to eliminate them by inlining or

converting scripts to functions is beneficial.

2.1 MATLAB programs

MATLAB programs are defined as directories of files. Each file of the form f.m contains

either: (a) a script, which is simply a sequence of MATLAB statements; or (b) a sequence

of function definitions. If the file f.m defines functions, then the first function defined in

the file should be called f (although even if it is not called f it is known by that name

in MATLAB). The first function is known as the primary function. Subsequent functions

are subfunctions. The primary and subfunctions within f.m are visible to each other, but

only the primary function is visible to functions defined in other .m files. Functions may

be nested, following the usual static scoping semantics of nested functions. That is, given

some nested function f’, all enclosing functions, and all functions declared in the same

nested scope are visible within the body of f’.

MATLAB directories may contain special private, package and type-specialized direc-

tories, which are distinguished by the name of the directory. Private directories must be

7

Background

named private/, Package directories start with a ‘+’, for example +mypkg/. The primary

function in each file f.m defined inside a package directory +p corresponds to a function

named p.f. To refer to this function one must use the fully qualified name, or an equivalent

import declaration. Package directories may be nested. Type-specialized directories have

names of the form @<typename>, for example @int32/. The primary function in a file f.m

contained in a directory @typename/ matches calls to f(a1,...), where the run-time type

of the primary (first) argument is typename.

2.2 Kind Information

Since MATLAB does not syntactically distinguish between variables and functions,

modern implementations of MATLAB have added a static analysis which determines the

Kind of each identifier at compile-time. In this chapter, we have indicated the results of the

Kind analysis as comments at the end of each function/script definition.

Kind Analysis[DHR11] assigns one of the following Kinds to each identifier:

VAR: The identifier must be looked up as a variable in a workspace;

FN: The identifier must be looked up as a named function;

ID: The Kind is not known, so at runtime the identifier must first be looked up in the

workspace and then if not found, it will be looked up as a function.

PREFIX: The identifier refers to a package, as the prefix of a fully-qualified function name.

For example in the expression mypkg.f, mypkg would have the Kind PREFIX.

It is a compile-time error if an identifier has conflicting Kinds (one occurrence is a VAR

and the other is a FN).

This static Kind assignment is now an integral part of the semantics of MATLAB, and

refactorings must ensure that the meaning of identifiers is maintained and that the refactor-

ing will not introduce any new Kind errors.

One twist in the Kind Analysis semantics that affects the refactorings is that the seman-

tics are different for scripts and functions. Scripts in MATLAB are simply a sequence of

statements that might be executed in different contexts. Since the set of variables in those

contexts are not known during compile time, the initial assumption is that every identifier

8

2.2. Kind Information

1 function r = MultiplyFn(a, b)
2 if (ndims(a)==3 && ndims(b)==3) % ndims has Kind FN
3 r = Do3DMult(a,b);
4 else
5 n = a; m = b;
6 SMultiplyCompatible;
7 if (isCompatible)
8 r = a * b;
9 else

10 error(’Matrix Dimension Error’);
11 end
12 end
13 end
14
15 % Kinds ...
16 % VAR: r, a, b, n, m
17 % FN: ndims, Do3DMult, SMultiplyCompatible
18 % ID: isCompatiblefunction

Listing 2.3 A function calling a script

needs a runtime lookup. There are two important implications of the difference between

the Kind analysis. Firstly, the Kind information for scripts are much less precise. This neg-

atively impacts our ability to analyze scripts. Secondly, any refactoring that moves code

between scripts and functions has to verify that the change in Kind information doesn’t

change the program behavior. Let us consider the example in Listing 2.3.

This function first checks to see if the number of dimensions of a and b are 3, and if so,

calls a general multiplication function, otherwise it continues to check for the ordinary 2-D

case. If we were to inline the call to the script SMutiplyCompatible (as given in Listing

2.2) care must be taken with the identifier ndims. In MultiplyFn the identifier ndims refers

to a function and will have Kind FN, whereas in SMultiplyCompatible ndims is assigned

to, and will have Kind VAR.

If we inlined without appropriately renaming ndims, as shown in Listing 2.4, we would

introduce a Kind error because the inlined source would use ndims in a conflicting manner.

Thus, at JIT compile-time a conflicting Kind error would be triggered on line 8.

9

Background

1 function r = MultiplyFn(a, b)
2 if (ndims(a)==3 && ndims(b)==3) % ndims has Kind FN
3 r = Do3DMult(a,b);
4 else
5 n = a; m = b;
6
7 % --- begin inlined script SMultiplyCompatible
8 ndims = size(n); % ndims has Kind VAR - Kind error
9 mdims = size(m);

10 isCompatible = ((length(ndims)==2) && ...
11 (length(mdims)==2) && ...
12 (ndims(2)==mdims(1)));
13 % --- end of inlined script SMultiplyCompatible
14
15 if (isCompatible)
16 r = a * b;
17 else
18 error(’Matrix Dimension Error’);
19 end
20 end
21 end
22
23 % Kinds ...
24 % VAR: r, a, b, n, m, isCompatible
25 % FN: Do3DMult, size, length
26 % ERROR: ndims

Listing 2.4 Example of Kind error due to script inlining

2.3 Impact of Function and Script Lookup on Refactor-

ing

In MATLAB the lookup of a script/function is performed relative to: f, the current func-

tion/script being executed; sourcefile, the file in which f is defined; fdir, the directory con-

taining the last called non-private function (calling scripts or private functions does not

change fdir); dir, the current directory; and path, a list of other directories. When looking

up function/script names, first f is searched for a nested function, then sourcefile is searched

for a subfunction, then the private directory of fdir is searched, then dir is searched, fol-

lowed by the directories on path.

In the case where there is both a non-specialized and type-specialized function matching

10

2.3. Impact of Function and Script Lookup on Refactoring

a call, the non-specialized version will be selected if it is defined as a nested, subfunction

or private function, otherwise the specialized function takes precedence.

Obviously if a piece of a program is moved from one directory to another, one must

ensure that the function lookup remains the same. A simple example of a lookup problem

would be if the function MultiplyCompatible was inlined into a a function which had a

private/ directory which included a new definition of the function size. The inlined ver-

sion would now call the private/size.m function instead of the standard library function.

A further complicating factor for MATLAB is that some of the arguments to the lookup

function use dynamic values. These are: fdir (changes each time a function is called), dir

(can be changed by the cd function) and path (can be dynamically set in the program).

The fact that the function lookup relies on some dynamic information means that a static

refactoring must use a static approximation to estimate the function lookup results.

Our examination of a large set of benchmarks showed that the current directory and

path do not normally change during the execution of the program. This is particularly true

if the application has been written in a way that makes it somewhat portable.

11

Background

12

Chapter 3

McBench: A Tool for Understanding MATLAB

Programs

Having a good understanding of typical uses of a language helps compiler writers to

identify opportunities and prioritize the improvements based on their relevance. In this

chapter we talk about our approach in understanding how MATLAB programmers code.

When writing a compiler optimization, it is helpful to know how often the particular pattern

occurs and what are the contexts where the pattern occurs in. It can help to identify common

coding patterns that can be refactored to improve code quality.

A compiler writer might want to know if a language builtin function is used frequently.

Do the calls occur in loops and is the function worth optimizing? The question might be

about language features. Do programmers use persistent variables? Or how do MATLAB

programmers use exceptions? How are copy statements used in MATLAB? Semantic ques-

tions also come up frequently. Are there cases where the type of a variable is different on

different branches?

Let’s take a simple question like how often the MATLAB builtin function i is called. In

many languages a simple regular expression that looks for pattern “i(” might give a good

estimate. Unfortunately this is not the case in MATLAB. A call to function i looks exactly

the same as an access to a variable with the same name. Although some of these questions

can be answered using regular expressions, as we saw these lexical tools are very limited.

Questions about nesting and contexts are even more difficult to answer using these tools, if

13

McBench: A Tool for Understanding MATLAB Programs

not impossible.

In the following sections we describe McBench, our framework to let the user search

through a large set of projects for specific patterns and see exactly where these patterns

occur. Section 3.1 talks about the different components of the framework. Then we briefly

describe the MATLAB parse tree and its eXtensible Markup Language (XML) representa-

tion as produced by McLAB parser (Section 3.2) and how to add annotations (Section 3.3).

Then we talk about the XPath query language (Section 3.4) and we show some examples

of how McBench can be used to gather statistics about how MATLAB is used (Section 3.5).

3.1 McBench

In order to provide faster search through the code database, we decided to pre-process

the source collection and run the queries on the processed data. Pre-processing starts with

parsing the source collection from MATLAB to the McLAB abstract syntax tree (AST).

Then the AST is converted to XML and during this process the XML output is annotated

with semantic information for future queries.

We chose the XPath language [BBC+07] to search through these XML documents. A

set of macros were added to the language to make common queries easier to write. Section

3.4 presents the language and our additions in more detail.

The framework consists of a web interface to add benchmarks, run queries and view

the results. We also created two implementations of the query engine:

McBench Cloud: This is a scalable implementation of the engine using Google AppEngine

technology and the MapReduce API 1. A query is executed on each project as a sep-

arate task that can run in parallel.

McBench Django: This implementation runs on a single computer and uses the process

pool design pattern to run the query on all of the available CPU cores.

We also created a web-based user interface to interact with the software. It provides

the ability to run custom queries and predefined query-sets. Figure 3.1 shows the McBench

results summary page for the query-set that we used before we implement our refactorings.

1. Available on http://mclab-bench.appspot.com

14

http://mclab-bench.appspot.com

3.1. McBench

Each row represents one project and for each project the summary page lists the number

of occurrences for each query. This number is linked to a detailed view that lists the oc-

curences of the searched pattern per file. So if we click on the number in the “calls to

addpath” column for the project “12137-pid-state-feedback-control-of-dc-motors” it will

bring us to the page shown in Figure 3.2. The last row is the sum of the results for each

column.

Figure 3.1 McBench result overview page for the refactoring query-set.

The detailed view lists all the files in the project that have matches to our query along

with the line numbers where the match is found. The file names are linked to the source-

code viewer that shows MATLAB source files with the search results highlighted. For ex-

ample if we want to view the calls to addpath in the project selected in Figure 3.2, we can

click on one of the listed files. Figure 3.3 shows the page that was accessed by clicking on

the “.../e_fixed_point/setup.m” link. Apart from showing the source-code, the code viewer

provides several features to ease browsing:

15

McBench: A Tool for Understanding MATLAB Programs

Syntax highlighting: Different terms are displayed using different colors and fonts ac-

cording to their category which improves the readability.

Search: Clicking on an identifier brings all other mentions of the identifier in the same

project.

Line numbers: Lines numbers allow users to refer to a specific part of a program easily

Figure 3.2 McBench detailed result view for “calls to addpath” query.

Figure 3.4 shows an overview of the architecture and components of McBench framework.

3.2 McAST XML Structure

In order to understand and write queries for McBench we need to know what the XML

output looks like. The XML closely replicates the AST from which it is created with small

differences and addition of annotations.

16

3.2. McAST XML Structure

Figure 3.3 McBench code viewer showing the source code of one of the results from Figure
3.2.

Each MATLAB project is represented by a CompilationUnits node. This node is

annotated with the project root path so that it is easy to find the project subsequently.

CompilationUnits is a collection Script and FunctionList nodes.

A Script node represents a script file in the project and it is annotated with the

original file name. It also has a StmtList node as a child which represent its body. A

FunctionList represents a file with one or more function definitions in it. Each function is

represented by a Function node. Input and output arguments are listed in nodes InputArgs

and OutputArgs which consist of a list of Name nodes. A Function can have nested func-

tions which are represented as a nested FunctionList node inside the Function. The body

of a Function is represented by a StmtList as well. A StmtList is a list that can contain

the following type of nodes:

AssignStmt: Represent an assignment statement. Its first child node represents the Left

Hand Side (LHS) and the second child represents the Right Hand Side (RHS) ex-

pression.

17

McBench: A Tool for Understanding MATLAB Programs

Matlab Source
Files

Matlab to Natlab
Translator

Natlab Parser Static Analysis

XML Output Annotation
Framework

XML Database QueryExtended XPath
Engine

Syntax
Highlighter

McBench Framework

Figure 3.4 McBench architecture. McBench components are inside the highlighted region.

IfStmt: This node represent an if statement. Its first child node is IfBlock and it can have

more IfBlocks which represent elseif syntax in MATLAB. An optional ElseBlock

is the last node in the IfStmt node which represents the else part of the statement.

The first child of the IfBlock node is the condition expression and the second child

is the StmtList that should be executed if the condition holds.

WhileStmt: Represents a while loop. The first child is the condition expression and the

second child is a StmtList.

ForStmt: Represents a for loop. The first child is an AssignStmt. Its LHS represents the

loop variable and its RHS is the range for the loop. The second child of a ForStmt is

a StmtList which is the loop body.

BreakStmt and ContinueStmt: These statements can only appear nested inside the loops

and represent break and continue syntax for loop control.

GlobalStmt and PersistentStmt: These statements represents declaration of variables as

global or persistent. These nodes can contain one or more Name nodes that identify

18

3.2. McAST XML Structure

the name of the variable.

ExprStmt: This node represents a simple call to a function. It can contain any Expression

as the target.

There are 48 different types of expressions in McAST. Here are those that can be used

as l-values and r-values.

NameExpr: This represents an access to an identifier. It might be a call a function or

access to a variable. The only child is a Name node that contains the name of the

identifier.

ParameterizedExpr: This node represent an access to an identifier with parameters. Again

this can be a variable access or a function call. The first child can be a NameExpr

(e.g. disp(param)), a CellIndexExpr (e.g. A1,2(param)), or a DotExpr (e.g.

A.B.f(param)). The remaining children are the parameters to the access.

DotExpr: This node represents an access to a struct or a class. The first child can be a

NameExpr, a ParameterizedExpr or a CellIndexExpr. The remaining children are

the Name nodes which are paramaters for the access (e.g. in a.b.c, b and c are

represented with Name nodes).

CellIndex: This node represents an access to a struct or an object. The first child can be

a NameExpr, a ParameterizedExpr or a DotExpr. The remaining children are the

indexing parameters.

MatrixExpr: This node represents a matrix literal definition syntax in MATLAB. It is also

used for multi-return syntax (e.g. [a, b] = call()).

There are 43 more types of expressions for unary and binary operations and literal values.

A complete list of these nodes are available in Appendix A. Listing 3.1 shows a simple

source code and Figure 3.5 shows the corresponding XML document.

19

McBench: A Tool for Understanding MATLAB Programs

1 for i=1:5

2 disp(’hello world’);

3 end

Listing 3.1 A simple script

CompilationUnits
Script [name=helloworld]

StmtList
ForStmt

AssignStmt
NameExpr [kind=VAR]

Name [nameId=i]
RangeExpr

IntLiteralExpr [value=1]
IntLiteralExpr [value=5]

StmtList
ExprStmt

ParameterizedExpr
NameExpr [kind=LDVAR]

Name [nameId=disp]
StringLiteralExpr
[value=hello world]

Figure 3.5 XML tree representation of the source code shown in Listing 3.1.

3.3 Annotations

Sometimes questions come up that need more semantic information about the code. For

example it might be useful to know how often a variable is read before being assigned to.

These questions are easily answered by running static analysis on the program, but new

questions with slight changes to constraints might come up and having the information

ready at hand is helpful. For example once you found the answer to the previous question,

you might want to know how often it occures inside loops. To use our framework to solve

this problem we needed to have the static analysis information available in the XML out-

20

3.4. XPath Queries

put. We decided to create the Annotations framework and let the programmers create new

annotations and choose which set of annotations should be added to the XML output.

The interface is similar to the McLAB analysis framework. For every node type the user

can specify any modification to the corresponding XML node. For example to annotate the

XML with Kind information the programmer needs to override the NameExpr node. The

code for this is shown in Listing 3.2.

1 void caseNameExpr(NameExpr n, Element e)

2 {

3 e.setAttribute(name, kind_analysis.get_result(n));

4 }

Listing 3.2 Default node case for NameExpr is overridden to add Kind Analysis information

We implemented annotations for Kind Analysis and Reaching Definition Analysis using

this framework.

3.4 XPath Queries

XPath is query language specification by World Wide Web Consortium (W3C) designed

to search and select nodes in XML documents. The basic idea is to select nodes by their

paths. For example in Figure 3.5 to address the for loop, a simple / separated list of nodes

that have to be traversed to reach that node can be used:

/CompilationUnits/Script/StmtList/ForStmt

To refer to a node property instead of a child node the @ symbol is used before the property

name. For example the name of the script can be referred to as:

/CompilationUnits/Script/@name

Notice that the path might not be unique. In the above example if there was another script

in the project, both of these names would be selected as results. To make the selection more

specific, constraints can be added to the path inside brackets. This query uses a condition

on the name of script ([@name=’helloworld’]).

/CompilationUnits/Script[@name=’helloworld’]/StmtList/ForStmt

21

McBench: A Tool for Understanding MATLAB Programs

Conditions can be combined using and and or operators. In the following example, the

position(.)=1 condition says that if there are multiple matching nodes, only select the

first one.

/CompilationUnits/Script[name=’helloworld’ and

position()=1]/StmtList/ForStmt

Althought XPath can be used to uniquely address XML nodes, we used them to search

through XML documents. So it is desirable to create queries that address a pattern instead

of one specific node. For example a query to find all calls to disp can be written as:

/CompilationUnits//ParameterizedExpr[./NameExpr/Name/@nameId=’disp’]

The above query uses // to address nodes nested anywhere in CompilationUnits node.

Inside conditions “.” refers to the current node and “./” to its children.

Sometimes the queries get too long and hard to read so we added some functions to the

language for common patterns.

is_call(target) This function return true if the current node is a call to a function or script

named target. For example a query to find calls to function disp can be written as

//*[is_call(’disp’)]

scripts(): This function returns the name of all scripts in current project. For example a

query to find calls to scripts can be written as

//*[is_call(scripts())]

functions(): This function returns the name of all functions in current project.

is_builtin(target): This function returns true if a builtin function with the same name ex-

ists in MATLAB.

3.5 Experiments

3.5.1 Setup

In order to have a representative collection of MATLAB code in our experiments we

gathered a large number of MATLAB projects. Benchmarks were obtained from individual

22

3.5. Experiments

contributors plus projects from several online code repositories 2 3 4 5. This is the same set

of projects that are used in [DHR11]. The benchmarks come from a wide variety of applica-

tion areas including Computational Physics, Statistics, Computational Biology, Geometry,

Linear Algebra, Signal Processing and Image Processing. It includes 3057 projects com-

posed of 13438 functions and 2145 scripts. The projects vary in size between 283 files in

one project to a single file. A summary of the size distribution of the benchmarks is given in

Table 3.1 which shows that the benchmarks tend to be small to medium in size. However,

we have also found 9 large and 2 very large benchmarks. The benchmarks presented here

are the most downloaded projects among the mentioned categories.

Benchmark Category # Benchmarks
Single (1 file) 2051
Small (2-9 files) 848
Medium (10-49 files) 113
Large (50-99 files) 9
Very Large (≥ 100 files) 2
Total 3024

Table 3.1 Distribution of size of the benchmarks
In the following sections we present our query results for our refactoring query-set

and then we present three example queries and their results on the benchmark set. These

benchmarks are also used in our evaluation of refactorings that we will discuss in Chapter

5.

3.5.2 Example #1: Calls to feval with string literal targets

Calls to feval with string literal targets can be considered a code smell that can be

usually refactored. We wanted to implement this refactoring so we looked into these calls

in more detail.

The process of writing the query to find these calls can be divided into five steps.

1. Find Parameterized Expressions anywhere in the tree.

2. http://www.mathworks.com/matlabcentral/fileexchange
3. http://people.sc.fsu.edu/~jburkardt/m_src/m_src.html
4. http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/
5. http://www.mathtools.net/MATLAB/

23

http://www.mathworks.com/matlabcentral/fileexchange
http://people.sc.fsu.edu/~jburkardt/m_src/m_src.html
http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/
http://www.mathtools.net/MATLAB/

McBench: A Tool for Understanding MATLAB Programs

//ParameterizedExpr

2. Make sure it is accessing a normal identifier (e.g. not feval.x() or feval{1}()).

That is the first child node should be of type NameExpr.

//ParameterizedExpr[./*[position()=1 and name(.)=’NameExpr’]]

3. Filter it by function name

//ParameterizedExpr[./*[position()=1 and

name(.)=’NameExpr’]/Name/@nameId=’feval’]

4. Filter the results by the node type of first argument. The first argument of function

calls appear as the second child node of the ParameterizedExpr, after the node that

represents the target.

//ParameterizedExpr[./*[position()=1 and

name(.)=’NameExpr’]/Name/@nameId=’feval’]/*[position()=2 and

name(.)=’StringLiteralExpr’]

5. For most cases the above query is fine but it does not use Kind information. For

example:

1 feval=zeros(50);

2 feval(’0’);

Here the feval(’0’) is a variable access. Nevertheless it shows up in the results. We

can use the annotated semantic data to filter out that result. As shown in Figure 3.5,

Kind information is available in kind attribute of NameExpr nodes. So we can filter

the NameExpr nodes for function calls using condition [@kind=’FUN’].

//ParameterizedExpr[./*[position()=1 and name(.)=’NameExpr’ and

./@kind=’FUN’]/Name/@nameId=’feval’]/*[position()=2 and

name(.)=’StringLiteralExpr’]

Notice that in the step 2, in order to refer to the first child of a Parameterized Expression

we first list all its children using /* syntax and then filter the results using position()

function.

24

3.5. Experiments

Running this query shows 23 occurrences. As a result, we decided to implement a

refactoring to replace these calls.

3.5.3 Example #2: Copy statements inside loops

In MATLAB every assignment is semantically a copy. These copies are sometimes un-

necessary and a Virtual Machine implementation can avoid making these copies. In the

McLAB Research Group a question came up regarding copy statements and how they are

used. In particular we needed to see the if statements in form a=b; were common and

whether these type of statements appear inside for loops. The query to find these state-

ments can be written as below:

//ForStmt//AssignStmt[./*[position()=1 and name(.)=’NameExpr’] and

./*[position()=2 and name(.)=’NameExpr’ and ./@kind=’VAR’]

We used the Kind Analysis results to filter out cases where the RHS is a function call

without any parameter (e.g. b=i).

There were 105 of these cases. Reading the source codes for these cases helps the

developers to understand the common patterns of copy-statement usage and find strategies

that can be applied in real world programs.

3.5.4 Example #3: Variables with both Matrix and Scalar types

In MATLAB scalars are semantically 1×1 matrices. In a virtual machine implementation

it is desirable to use a different type of variable for this specific type of matrices. This allows

the virtual machine to use registers or stack variables and avoid dynamic memory allocation

and pointer dereferencing. Static analysis can help to identify these scalar variables. An

assignment of an integer value to a variable is a good indication for these variables. But

matrices can grow and variables can get new values. So we wanted to write queries to

detect variable growths and change of types where variables get both scalar and matrix

literal values assigned to them.

There are a number of ways that a matrix can grow.

– Out of bound assignment (e.g. a(end+1)=1;)

25

McBench: A Tool for Understanding MATLAB Programs

– New values gets assigned to the variable. (e.g. a=zeros(size(a)+1));

An special case of the new value is the statement of the form

1 x = [x y];

This statement creates a new matrix is the concatenation of two matrices and assigns the

resulting value to the first matrix. This kind of matrix growth is slow and can be detected

without any shape analysis and additional annotations.

//AssignStmt[./*[position()=1 and

name(.)=’NameExpr’]/Name/@nameId=./*[position()=2 and

name(.)=’MatrixExpr’]/Row/NameExpr/Name/@nameId]

The query looks for assginment statments where the RHS is a matrix expressions that refers

to the same identifier as the LHS of the assignment. There were 1998 cases of this type and

more than half (1041) of them were inside a for loop. This is an opportunity for both

compiler programmers and refactoring tools to take these type of statements into account

and make an improvement that affects a large number of projects.

We also wanted to look at codes where a variable is used both as scalar and matrix

inside one function. In order to write the query we split the task to three steps.

1. Find assignment that have Matrix literal expressions in the RHS.

//AssignStmt[./*[position()=1 and name(.)=’NameExpr’] and

./*[position()=2 and name(.)=’MatrixExpr’ and ./Row]]

2. Find assignment that have integer literal expressions in the RHS.

//AssignStmt[./*[position()=1 and name(.)=’NameExpr’] and

./*[position()=2 and name(.)=’IntLiteralExpr’]]

3. Join the results from the previous two queries.

//AssignStmt[./*[position()=1 and name(.)=’NameExpr’] and

./*[position()=2 and name(.)=’MatrixExpr’ and ./Row] and

./*[position()=1 and

./Name/@nameId=//AssignStmt[./*[position()=1 and

name(.)=’NameExpr’] and ./*[position()=2 and

name(.)=’IntLiteralExpr’]]/*[position()=1]/Name/@nameId]]

26

3.5. Experiments

4. Filter the results for only the cases where both AssignStmt nodes are inside the same

function. The previous query will match even if the assignments are in two separate

functions in a project.

//AssignStmt[./*[position()=1 and name(.)=’NameExpr’] and

./*[position()=2 and name(.)=’MatrixExpr’ and ./Row] and

./*[position()=1 and

./Name/@nameId=ancestor::Function//AssignStmt[./*[position()=1

and name(.)=’NameExpr’] and ./*[position()=2 and

name(.)=’IntLiteralExpr’]]/*[position()=1]/Name/@nameId]]

The key here, is the use of ancestor::TYPE syntax to refer to the nearest parent

of type class TYPE. In this example, when we find an AssignStmt node that have

MatrixExpr in RHS, we want to go up in the tree until we find the enclosing func-

tion and only search within that function for the second AssignStmt. So instead of

//AssignStmt we use ancestor::Function//AssignStmt.

We found 53 occurrences of this pattern. These can be used to understand the use-cases as

well as benchmarks to measure improvements.

3.5.5 Refactoring Query-set

We developed McBench primarily to investigate refactoring opportunities. We wrote

following queries to examine different aspects of the language:

Calls to feval with string literal target: We will discuss this in the first example in

Section 3.5.2.

Script files: This query shows us if scripts are used frequently in MATLAB programs. We

found out that there are 2145 scripts in our project collection compared to 13438

functions and enabling the programmers to convert them to functions can make a

positive impact in the MATLAB code quality.

Calls to scripts from functions: Calls to scripts from functions negatively affect modu-

larity of the code. We wanted to find some code examples where this pattern occurs.

We found 197 cases of this pattern and they helped us understand the common use

cases of scripts.

27

McBench: A Tool for Understanding MATLAB Programs

3.6 Related Work

Code search is central piece to program comprehension and has been used for mainte-

nance of large code bases. Research has been done extensively in this field to provide tools

for programmers to find patterns in their own code base. Several programming languages

have been created to let the programmers search through large code base ASTs.

In particular TAWK [GAM96] extends the pattern syntax of AWK language to support

matching of ASTs. SCRUPLE [PP94] extends the target language with wild cards for ex-

pressions, statements or other syntactic elements. These wild cards can be used in the code

snippets to write queries in a language close to the target and are thus easy to understand.

In the GENOA language[Dev92] a programmer can specify how the AST should be trav-

esed to find the answer. ACS [PKPZ11] is similar to SCRUPLE in the sense that uses an

extended syntax of target language (SAP propietry language, ABAP) for writing queries

and elements that are unknown can be replaced by “...” or regular expressions.

In order to leverage from the available technologies we decided to use XML and related

tools. Search and storage of XML on databases have been research extensively. There were

a number of XML search tools that we looked into:

XPath XPath [BBC+07] is a declarative language that provides the ability to navigate the

XML document as a tree and select nodes that match a condition.

XQuery XQuery [CFR+01] is a high-level functional language that includes XPath as a

sub-language. Functions and SQL like joins bring more flexibility to the language.

We decided to use XPath for its simpler and more concise syntax.

The use of XML to represent an AST and XPath to search through AST XML has been

also proposed before. JavaML was introduced by Greg to represent Java AST in form of

XML to allow software analyses tools leverage the availability and ease of use of XML

tools and techniques [JB00]. Furthermore for ABAP language (Advanced Business Appli-

cation Programming), ACS (ABAP Code Search) uses XPath and a proprietary database

solution to run the queries on large code bases [PKPZ11]. Our approach is somewhat dif-

ferent in that we target our tool to compiler writers, not to search for a specific line in one

project, but to understand how users code and common patterns in the language. Further-

28

3.6. Related Work

more our search framework goes beyond syntactic matching and allows the programmer

to extend the XML with semantic data and use this data in queries. To the best of our

knowledge, this is the first tool targeted to MATLAB.

29

McBench: A Tool for Understanding MATLAB Programs

30

Chapter 4

Building Blocks for Refactoring

In this chapter we present the tools we created as building blocks for the refactorings.

First we introduce our extensions to the McSAF [Doh11] static analysis framework to sup-

port calls to scripts in Section 4.1, and our implementation of liveness and reaching defi-

nitions based on this framework in Section 4.2. Finally, we present the Return Elimination

algorithm in Section 4.3.

4.1 Static Analysis For Scripts

In MATLAB, programs consist of functions and scripts. Functions have a set of input and

output parameters and a scope which makes it possible to use normal intra-procedural flow

analysis techniques. Scripts, on the other hand, run in the caller’s workspace which makes

it difficult to analyze them unless some context about the caller’s workspace is available.

Moreover, scripts that are called within functions can modify the data in the caller and any

data-flow analysis needs to be aware of these side-effects. For example let’s see how the

Constant Propagation Analysis would work in MATLAB. Figure 4.1 shows a simple project.

Function f is the main function that calls into function f2 and script s1. In the first line of

the function f, the variable v is assigned to the constant value 5. In the next line there is a

call to f2 which assigns the constant value 1 to v but since each function call creates a new

workspace, the variable v in f2 does not share its value with the one in f. So after the call

to f2 returns, the variable v still has 5 as its value. But in the script s1 which is called in

31

Building Blocks for Refactoring

1 function f()
2 v = 5;
3 f2()
4 s1();
5 disp(v);
6 end

1 v = 3;
2 s2();

(a) Function f (b) Script s1

1 v = 1;
1 function f2()
2 v = 1;
3 end

(c) Script s2 (d) Function f2

Figure 4.1 A basic MATLAB project with two functions and two scripts

the next line, this is not the case. The variable v in s1 is the same variable present in f and

the assignment in the first line of s1 changes its value to the constant value 3. Furthermore

in s2 the variable v gets the value 1. So in last line of function f, disp(v) actually prints

out 1. In this example, an intra-procedural analysis that does not correctly handle scripts

would say that the value of v would be 5 in the last line of f. A correct, but conservative

analysis that handles scripts properly can only say that the value of v can not be inferred

intra-procedurally after a call to a script. One possible approach might be to inline all calls

to scripts and then run the analysis, however this approach will fail in presence of recursive

scripts and correct handling of script sematics is hard as shown in Section 5.1.1.

Since a conservative approach is suboptimal in presence of scripts and since analyzing

scripts was crucial to our refactorings, we implemented an extension to McSAF to support

calls to scripts. For each script a summary is created using a flow-analysis. In the constant

propagation example, using our framework one can implement a summary analysis to find

all the assigned variables in the called scripts and kill the constant propagation results for

those variables. Another summary analysis could run the Constant Propagation Analysis

on the scripts and find the constant values after the calls to scripts and update the results for

the calling function using the summary data. Summaries are propagated in the framework

until a fixed-point is reached. When a fixed-point is reached for every script the results can

be used in the analysis of the calling function.

32

4.1. Static Analysis For Scripts

1 v = 3;
2 B();

1 if (cond)
2 A();
3 v = 1;
4 C();

(a) Script A (b) Script B

1 v = 5;
2 F();

1 function F()
2 v = 2;
3 A();
4 end

(c) Script C (d) Function F

Figure 4.2 A small recursive program

To speed-up the fixed-point analysis, first we create a script call graph. We only visit a

node in a strongly connected component if all of the successor nodes are visited first. For

each strongly connected component, we iteratively propagate results until a fixed point is

reached. To see how it works let’s consider the example in Figure 4.2. Let’s say we are

analyzing the function F and we encounter the call to the script A. To build the summary

for the script A, the first step is building a script call graph. The scripts A and B have calls to

each other which forms a recursion. The script C is also called from B. The call graph only

includes nodes A, B and C since these are the scripts that are reachable from the function

F. Since the call graph is built only for script calls, it does not include the call to function

F from C. Figure 4.3 shows the script call graph for the above example.

A B

C

Figure 4.3 Script call graph for example in Figure 4.2. Strongly connected components are
shown with dotted lines.

33

Building Blocks for Refactoring

The scripts A and B are in the same component, with the script C as its successor.

The script C is in a separate component with no successors. So the algorithm starts by

computing the summary for C. Then it iteratively updates the results for A and B until there

is no change. Listing 4.1 shows the algorithm in more details.

1 function ScriptAnalysisDriver(Callgraph)

2 N = StronglyConnectedComponents(Callgraph)

3 E = {}

4 for ni ∈ N

5 for nj ∈ N

6 if ∃ s ∈ ni and ∃ s2 ∈ nj such that s calls s2

7 E = E ∪ {〈ni, nj〉} # For each call add an edge from caller to

callee

8

9 results = {〈ni, /0〉 | ni ∈ N}

10 for ni in post_order(C, E) # For each component

11 leader_node = ni[0]; # get the first member of the component

12 q = queue();

13 q.push(leader_node);

14 while q.size > 0 # Repeat until there aren’t any changes

15 s = q.pop()

16 summary = analyze(s)

17 if 〈s, summary〉 /∈ results

18 results = results ∪ {〈s, summary〉}
19 for s2 ∈ ni

20 if s2 calls s

21 q.push(s2)

Listing 4.1 Summary-approach flow analysis for scripts

4.2 Liveness and Reaching Definitions Analysis

As we will see in the refactorings, Liveness and Reaching Definitions analyses are very

fundamental tools. In this section we present the MATLAB versions of these analyses that

we developed to support the refactoring transformations presented in Chapter 5

34

4.2. Liveness and Reaching Definitions Analysis

4.2.1 Liveness Analysis

Liveness analysis computes, for each program point p, the set of variables that are used

before being defined on some path from p. We implemented this analysis using a backward

flow sensitive analysis with proper handling for script calls using our McSAF extension.

Similar to Liveness Analysis in other languages our implementation for MATLAB takes

variable accesses, assignments and output parameters into account:

– Output parameters: All the output parameters are added to the live set at the end of

program.

– Variable access (e.g. ’= a’): In this case variable that is being accessed is added to

the live set.

– Variable assignment (e.g. ’a =’): In this case the variable that is being assigned to

is killed from the live set unless it is a global variable.

There are also cases in MATLAB which aren’t common in other languages. In our imple-

mentation we have considered these special cases:

– Global Variables (e.g. ’global a’): In MATLAB several functions can declare a vari-

able as global and in that case they all share the same variable. Since it is not trivial

to find all the accesses to global variables, we make a conservative assumption that

for every global variable there is a variable access at every program point so they

always stay in the live set.

– Persistent Variables (e.g. ’persistent a’): Persistent variables are similar to static

variables in C or Pascal. Their value is saved in global variables but they aren’t ac-

cessible in other functions. In this case it is sufficient to assume that there is an access

to the variable at the end of program that stores the local variable in a global storage.

– Save workspace or variable (e.g. ’save matrix’ and ’save matrix a’): In this case

all the target variables are added to the live set.

– Clear variables (e.g. ’clear a’): In this case all target variables are removed from

the live set.

– Script Call: For script calls we compute a summary that contains the live variables

in the beginning of each script. Then all these live variables are added to the current

live set. This is implemented using our extension to the analysis framework that we

35

Building Blocks for Refactoring

presented in Section 4.1.

4.2.2 Reaching Definitions Analysis

In Reaching Definitions Analysis, for each access to a variable we compute the set

of possible program-points where the variable is defined. We implemented this analysis

using a forward flow sensitive analysis that also uses our McSAF extension to support calls

to scripts. For Reaching Definition Analysis these are the common cases that need to be

considered:

– Variable assignment (e.g. ’a =’): In this case all the definitions of the variable that

is being assigned to is killed except the GLOBAL_DEF and a new definition for this

program point is added.

– Input parameters: Each input parameter is assigned a special PARAM_DEF value.

This kills the UNDEF value for input parameters.

Apart from the common cases there are few cases special to MATLAB semantics that we

considered in our implementation:

– Global Variables (e.g. ’global a’): An special GLOBAL_DEF is added to the defi-

nitions of the variable.

– Persistent Variables (e.g. ’persistent a’): In this case variable will have a special

PERSISTENT_DEF at the beginning of the program.

– Load variables (e.g. load matrix’): In this case a special LOAD_DEF is added to

all the variables in the current function or script but nothing is killed since a load

might fail.

– Clear variables (e.g. ’clear a’:) In this case all target variables are assigned to UN-

DEF.

– Undefined Variables: At the beginning of the program every identifier in the func-

tion or script body is added the current set with a special UNDEF value.

– Script Call: For script calls first the script results is computed using the same Reach-

ing Definition Analysis. Then for every variable v and reaching definition set r in the

script results, we do the following steps:

– If r does not include UNDEF, we kill the definitions of v and replace it SCRIPT_DEF.

36

4.3. Return Elimination

– If r includes UNDEF as well as some other definitions, a SCRIPT_DEF is added

to the definitions of v.

– If r only includes UNDEF, no change is necessary to the current set.

Table 4.1 shows an example function with step-by-step results for each of the analyses.

Liveness Reaching Definitions
/0 <A,[UNDEF]>, <B,[UNDEF]>, <C,[UNDEF]>

1 A = 10 A <A,[1]><B,[UNDEF]><C,[UNDEF]>
2 B = 10 A,B <A,[1]><B,[2]><C,[UNDEF]>
3 if (A<12) A,B <A,[1]><B,[2]><C,[UNDEF]>
4 C = B + A /0 <A,[1]><B,[2]><C,[4]>
5 end /0 <A,[1]><B,[2]><C,[UNDEF,4]>
6 C = 11 C <A,[1]><B,[2]><C,[6]>
7 B = 11 B,C <A,[1]><B,[7]><C,[6]>
8 A = B + C /0 <A,[8]><B,[7]><C,[6]>

Table 4.1 A simple script with results for both Liveness (backward analysis) and Reaching Def-
initions Analysis (forward analysis) for each program point

Notice that in some cases a variable might have multiple reaching definitions. In the

cases where one of these definitions is UNDEF, the variable might not be initialized in

some of the paths. In the example shown in Table 4.1, variable C has both UNDEF and

line-4 as definitions which shows that it is not initialized in the case the condition in line-3

does not hold. If UNDEF is not in the set, then the variable must be defined along all paths.

We use this feature to compute Definitely-Assigned Analysis with Reaching Definitions

Analysis at the same time.

4.3 Return Elimination

In MATLAB, programs can have return statements which cause the function or script to

immediately return. There is also an implicit return at the end of every script or function.

When we move code between function and script boundaries return statements don’t keep

their meanings. Converting return statements to explicit control flow makes it simpler to

37

Building Blocks for Refactoring

reason about the control flow. We implemented a simplification that eliminates return state-

ments and replaces them with conditionals. We start by collecting the locations of return

statements. We check if there is at least one return statement, otherwise there is no reason

to modify the code. If there is a return statement, first the body is wrapped inside a for loop

that runs only once and a flag is initialized at the beginning.

1 for TEMP_RETURN=1:1

2 RETURN_FLAG = false;

3 body

4 end

For each return location, we replace return statements with an assignment to RETURN_FLAG

and a break statement.

1 RETURN_FLAG = true;

2 break;

The last step is for each loop inside the body that had a nested return statement, wrap the

following sibling statements in an if statement:

1 while loop

2 ...

3 end

4 if (~RETURN_FLAG)

5 f ollowing− siblings

6 end

This makes sure that if the loop was broken as a result of a previous return the

program does not continue after the loop. Figure 4.4 shows a complete example of this

simplification. In the first two lines of Figure 4.4 (b), the RETURN_FLAG is initialized

and the auxiliary for loop is added. Lines 3, 4 and 5 code comes directly from the original

program, unmodified. The return statement in line 4 of (a) is then replaced by an assignment

to RETURN_FLAG at line 6 and a break from the enclosing loop at line 7 of (b). At line 10

of (b), right after the loop, we check the flag and avoid running the subsequent statements

in the case that the flag is set to true.

We will use this simplification and the analyses for the refactorings described in the

following chapters.

38

4.3. Return Elimination

1 for i=1:5
2 disp(’hello’);
3 if (i>3)
4 return;
5 end
6 end
7 disp(’world’);

(a)

1 RETURN_FLAG=false;
2 for TEMP_RETURN=1:1

3 for i=1:5
4 disp(’hello’);
5 if (i>3)

6 RETURN_FLAG = true;
7 break;

8 end
9 end

10 if (~RETURN_FLAG)

11 disp(’world’);

12 end

13 end

(b)

Figure 4.4 A MATLAB script with a return statement before (a) and after (b) the return simplifi-
cation

39

Building Blocks for Refactoring

40

Chapter 5

Refactoring MATLAB

In this chapter we introduce a family of behavior-preserving and automated refactor-

ings aimed at restructuring functions and scripts, and calls to functions and scripts. We

start with a standard refactoring, function-inlining, which demonstrates the key concepts

of ensuring that the Kind and lookup of identifiers remains correct. Function-inlining is

useful in MATLAB for efficiency reasons as many JIT-level optimizations work best intra-

procedurally. Thus, the function inlining refactoring may be useful both for the programmer

and for other compiler tools. We then describe two refactorings for scripts, inlining scripts

into functions and converting scripts to functions. Both of these are useful for eliminating

scripts. Then we introduce our Extract Function refactoring and a refactoring to replace

calls of feval to direct function calls. In the next chapter we present the evaluation of our

refactorings.

5.1 Inlining Scripts and Functions

In this section we present our approach for the Inline Function and Inline Script refac-

torings. The programmer identifies a particular call site which should be refactored by

inlining. There are several reasons why MATLAB programmers may want to apply such a

refactoring. They may want to inline calls to scripts in order to eliminate them. They may

want to inline functions at key call sites to enable other MATLAB optimizations or tools, or

as a precursor to another refactoring.

41

Refactoring MATLAB

Our approach is to create an inlining candidate and then analyze if the inlining is safe

or not. Inlinings that are safe are performed, whereas inlinings that definitely are not safe

generate an error message and will not be performed. Inlinings that may be safe under

a reasonable assumption generate warnings to the programmer, so the programmer can

decide whether to proceed or not.

If an inlining is performed, the inlining procedure attempts to keep the original identifier

names, renaming identifiers only when necessary to ensure the same semantics.

5.1.1 Inline Script

The Inline Script refactoring proceeds as follows. Given a call site c in function f that

calls script s, the refactoring procedure creates fs, a copy of f with s inlined, and then

verifies that fs has the same behaviour as f . To create function fs, if s contains return

statements, a transformation is applied to s to only have one exit point at the end of the

script. Then the call site c is replaced with the body of s. Listing ?? illustrates the result of

this first step, inlining the call to script SMultiplyCompatible.

The verification phase starts with checking the lookup semantics. Scripts run in the

same workspace and function lookup environment as the script call site with the exception

that scripts don’t have access to nested functions in the caller function - subfunctions or

functions inside private folder of the calling function are still accessible. The inliner

checks to see if any possible call site that was originally in s can resolve to a nested function

in fs and if so issues a NameResolutionChangeException. In this case the refactoring cannot

be done.

The next step is to verify fs regarding the Kind analysis semantics. To perform the

verification the flow-sensitive Kind analysis presented in [DHR11] must be run on the

original script s, the original version of f , and the inlined copy fs. Given the Kind analysis

results, all identifiers in fs are verified as follows.

Simple checks that immediately pass

Any identifier i that is in f , but not in s, needs no further verification since introducing

the body of s into f cannot possibly impact the Kind of i.

42

5.1. Inlining Scripts and Functions

Any identifier i which has the same Kind in s, f and fs will have the same meaning in

the inlined version and so no further verification is necessary.

Any identifier i which is not defined in f , but has the same Kind in s and fs also retains

its meaning and no further verification is necessary.

Kind conflicts resolved by variable renaming

An identifier i with Kind FN in f and Kind VAR in s or vice-versa will lead to a Kind

mismatch error for fs. This is precisely the problem demonstrated in Listing 2.4, where

ndims has Kind FN at line 2 and Kind VAR at line 7. This means that the refactoring is

not behavior-preserving, because the inlined version would result in a compile-time Kind

error, whereas the original version would not. This mismatch can be resolved by applying

a variable renaming refactoring. If i initially had the Kind VAR in s, then a copy of s is

created in which i is renamed to a fresh name, otherwise a copy of f is created in which

i is renamed to a fresh name. After renaming, the inlining refactoring is restarted. In our

example from Listing 2.4 the variable ndims at lines 7, 10 and 12 would be renamed to

ndims2.

Such a renaming is usually semantics preserving, except when the variable being re-

named is referenced via a dynamic feature like eval. For example, it would be incorrect

to name variable x in the statement sequence x = 3; eval(’x=x+1’); y = x; since eval

would not refer to the renamed x.

It would be possible to warn the user of such renamings so that the user can verify that

the renamed variable is not being accessed via a dynamic feature.

Kind specializations

The remaining cases all involve situations where the original Kind of an identifier x (in

either s or f) was ID, and the inlined version fs has a more specialized Kind for x (VAR

or FN). This is a potential problem because an identifier with Kind ID has a very general

lookup (first the current workspace is searched for variable and if a variable is not found

then a function lookup is used). If a more precise Kind is assigned to the inlined identifier,

then the lookup is specialized to that Kind (VAR is only looked up as a variable in the

43

Refactoring MATLAB

workspace and FN is only looked up as a function). Since the lookup becomes more specific

the behaviour may change. Thus, we must consider two cases, when an ID is specialized to

a VAR, and when an ID is specialized to a FN.

An ID x with a Kind that is specialized to VAR is semantics-preserving if all uses of

x have definitely been preceded by a an assignment to x. In this case the lookup will al-

ways find the variable in the current workspace, and thus an ID lookup is the same as a

VAR lookup. Thus, for these situations we check that x is assigned on all paths, and if so,

we allow the refactoring. If x is not assigned on all paths we reject the factoring with a

IDNotDefAssignedException.

An ID g with a Kind that is specialized to FN is in practice usually also semantics-

preserving. The only case in which this occurs is when there is no explicit definition of g in

fs (otherwise g would have Kind VAR) and g is found the library of named functions (i.e.

there does exist a named function called g). Thus, it is highly likely that the programmer

intends this to be looked up as a function. In this case we issue a warning that we are

assuming that g refers to a function and the user can accept the refactoring if this assumption

is correct. The assumption would only be incorrect if g was being assigned to via a dynamic

feature.

Our example from Listing 2.4 illustrates the most common case of specialization. In the

inlined version both size and length have Kind FN, whereas in the script they had Kind

ID.

5.1.2 Inline Function

The Inline Function refactoring allows the programmer to identify a call site c inside a

function f in form of [output]=g(input); and it inlines the call.

The function inliner creates the function fg. fg is created as a copy of f with the call

site replaced with a statement sequence. For each input expression ei which corresponds

to parameter inparami a new assignment statement pi = ei is created at program-point c.

The body of g is transformed using our Return Elimination so as to have only one exit

point is then inserted after the last assignment for input arguments. After that assignment,

assignments of the form pi = ei are added for each output parameter pi. Figure 5.1(a) shows

44

5.1. Inlining Scripts and Functions

1 function r = MultiplyFn2(a, b)
2 if (ndims(a)==3 && ndims(b)==3)
3 r = do3DMult(a,b);
4 else
5 isCompatible =

MultiplyCompatible(a,b);
6 if (isCompatible)
7 r = a * b;
8 else
9 error(’Matrix Dimension

Error’);
10 end
11 end
12 end
13
14 % Kinds ...
15 % VAR: r, a, b, isCompatible
16 % FN: ndims, do3DMult,

MultiplyCompatible,
17 % error

1 function r = MultiplyFn2(a, b)
2 if (ndims(a)==3 && ndims(b)==3)
3 r = do3DMult(a,b);
4 else
5 % ---- start of inlined call
6 n = a;
7 m = b;
8 ndims = size(n);
9 mdims = size(m);

10 r = ((length(ndims)==2) &&
...

11 (length(mdims)==2) && ...
12 (ndims(2)==mdims(1)));
13 isCompatible = r;
14 % -- end of inlined call
15 if (isCompatible)
16 r = a * b;
17 else
18 error(’Matrix Dimension

Error’);
19 end
20 end
21 end
22
23 % Kinds ...
24 % VAR: r, a, b, n, m, mdims,

isCompatible
25 % FN: do3DMult, size, length,

error
26 % ERROR: ndims

(a) (b)

Figure 5.1 Original function (a) and inlined version before the necessary renames where
ndims has a Kind conflict (b).

an example function MultiplyFn2 and Figure 5.1(b) shows the initial inlining of the call

to “isCompatible = MultiplyCompatible(a,b)”.

A key step is deciding whether or not to accept the inlining by verifying the conditions.

If the conditions are verified a clean up process removes as many unnecessary introduced

variables as possible.

The verification process starts with matching the name resolution results. For every

identifier in g with Kind FN, the program checks if the lookup returns the same results

45

Refactoring MATLAB

1 function r = MultiplyFn2(a, b)
2 if (ndims(a)==3 && ndims(b)==3)
3 r = do3DMult(a,b);
4 else
5 % ---- start of inlined call
6 n = a;
7 m = b;
8 ndims2 = size(n);
9 mdims = size(m);

10 r2 = ((length(ndims2)==2) &&
...

11 (length(mdims)==2) && ...
12 (ndims2(2)==mdims(1)));
13 isCompatible = r2;
14 % -- end of inlined call
15 if (isCompatible)
16 r = a * b;
17 else
18 error(’Matrix Dimension

Error’);
19 end
20 end
21 end
22
23 % Kinds ...
24 % VAR: r, r2, a, b, n, m,

mdims, ndims2, isCompatible
25 % FN: do3DMult, error, size,

length, ndims

1 function r = MultiplyFn2(a, b)
2 if (ndims(a)==3 && ndims(b)==3)
3 r = do3DMult(a,b);
4 else
5 % ---- start of inlined call
6 ndims2 = size(a);
7 mdims = size(b);
8 r2 = ((length(ndims2)==2) &&

...
9 (length(mdims)==2) && ...

10 (ndims2(2)==mdims(1)));
11 % -- end of inlined call
12 if (r2)
13 r = a * b;
14 else
15 error(’Matrix Dimension

Error’);
16 end
17 end
18 end
19
20 % Kinds ...
21 % VAR: r, r2, mdims, ndims2
22 % FN: do3DMult, error, size,

length, ndims

(a) (b)

Figure 5.2 Inlined version of MultiplyFn2 after the necessary renames (a) and spurious
copies removed (b)

before and after inlining and otherwise rejects the refactoring by raising a NameResolu-

tionChangeException.

The next step is to verify the Kind analysis results using the following rules.

– For every identifier that is only present in one of the functions f or g no further

verification is necessary.

– For every identifier with Kind FN in both f and g, no further verification is necessary.

– For every identifier with Kind VAR in one of the functions f or g, and Kind VAR,

ID or FN in the other, a rename refactoring is triggered for the variable. Note that

46

5.2. Converting Scripts to functions

in script inlining we only needed to do renaming for conflicts between VAR and FN

because a script uses the same workspace as its caller. However, when inlining a

function, we are merging the workspaces of f and g and if an identifier occurs in

both f and g we must distinguish them by renaming.

– For every identifier with Kind ID in one of the functions f or g, and with the Kind

ID or FN in the other function an IDConflictException is raised, and the refactoring

will not be done. The rational for this decision is that within functions identifiers will

only have a Kind ID when there is neither an explicit assignment nor a function of

that name in the library. This implies that the identifier is being defined through some

dynamic feature, and thus the inlining is not safe.

Figure 5.2(a) shows the result of our example after the verification and renaming has

been done. Note that variable ndims was renamed due to a Kind conflict, and variable r

was renamed because this was a VAR in both the caller and the callee.

At this point the verification is complete and if no exceptions were raised, then fg has

the same behaviour as f . However, the inlined code may have a significant number of

new copy statements (one for each input and output parameter). Thus, to make the output

code cleaner, for each new assignment statement that was introduced for the parameters

another refactoring process checks if it is necessary and if not removes the assignment and

performs a copy propagation. More precisely, for each statement stmt in the form p = e;

where e is also a variable, we want to replace every use of p in fg with e. In order to do

that we compute the use-def relationships. For every use of p defined by stmt the algorithm

uses Reaching Copy Analysis to see if the use is a copy of e in the statement stmt. If all the

uses were copies of the definition in stmt, the assignment statement can be removed and all

the uses of p are changed to use e.

Figure 5.2(b) shows the result after copy elimination for our running example. Note

that the copies to a, b and isCompatible have been removed.

5.2 Converting Scripts to functions

Given that MATLAB scripts are very non-modular, a refactoring that converts scripts

into functions is useful for improving the overall structure of MATLAB programs. The

47

Refactoring MATLAB

programmer provides a complete program, and also identifies the script to be converted

to a function. If the refactoring can be done in a semantics-preserving manner, the Script-

to-Function refactoring converts the script to a function and replaces all calls to the script

with calls to the new function. Although useful, this refactoring is more complex than either

function or script inlining.

This refactoring requires the use of two additional analyses, Reaching Definitions and

Liveness which we described in Chapter 4.

To convert a script s to function f we need to: (1) determine input and output arguments

that will work for all calls to s, and (2) make sure that program behaviour will stay the same

after conversion.

To determine the input and output arguments, We first compute scriptDe f Assigned(s),

the set of variables that are definitely assigned by s (i.e. all variables that don’t have UNDEF

in the reaching definitions at the end of script). We also compute scriptMayAssigned(s), the

set of variables that are assigned at least in one path to end of s (i.e. have at least one reach-

ing definition at the end of script that’s not UNDEF). Finally, we compute scriptLives(s),

the set of live identifiers with Kind VAR or ID at the beginning of the body of s.

In order to build the function f some information about the contexts that script s is

being used is necessary. For each call ci to the script s, the following steps are performed:

– If the call site is inside some other script s′, a script a ScriptCallFromScriptException

is raised. The lack of structure in scripts makes it impossible to compute the set of

inputs and outputs for the script s.

– For each call site ci, the set callAssigned(ci) of definitely assigned variables and the

set callLives(ci) of live variables are computed at program point of ci. The set inputi
is defined as

inputi : scriptLives(s)∩ callAssigned(ci)

and out puti is defined as

out puti : scriptMayAssigned(s)∩ callLives(ci)

If any identifier in the out puti is not in scriptDe f Assigned(s) an OutputNotDefinitely-

AssignedException is raised.

48

5.2. Converting Scripts to functions

– The set lookupi is defined as:

lookupi{〈n : ResolveName(n)〉|n ∈ identi f ers(f)∧Kind(n) ∈ {ID,FN}}

After computing the inputi, out puti and lookupi, for each call site, first we verify that

all the call sites have the same input set. If there was any difference in any of the sets an

InputArgsNotMatchingException is raised. If they all match the set is used as the set of input

arguments for the function f . The output arguments are constructed using
⋃n

i=1 out puti.

Some of the outputs from script s might not be used at a specific call site (i.e. that identifier

is not live). But the refactoring can continue and the unused outputs can be ignored using

“∼” syntax or a temporary variable. Then the function f is built using the constructed

inputs, outputs and the body of s.

The next step is checking name resolution results. For every identifier n with Kind ID

or FN in f , the pair 〈n : ResolveName(n)〉 should match the pair in lookup1, ..., lookupn.

If there were any mismatches a NameResolutionChangeException is raised. To perform

ResolveName, f is assumed to be a primary function in the same folder as s.

The final step is to check Kind results. Similar to script inlining, identifiers with Kind ID

can turn to FN, or remain ID and identifiers with Kind VAR and can cause a Kind conflict.

The precise rules are:

– Identifiers that stay VAR or FN don’t need any further verification.

– Identifiers with Kind ID in both s and f might be referring to variables created dy-

namically in the calling functions. Since the function f is no longer running in the

calling function environment and workspace, it can not access to those variables. So

for any identifier with Kind ID in function f an UnresolvedIDException is raised.

– For all identifiers with Kind ID in s and Kind FN in f it is possible to warn the user

that the refactoring is assuming the ID is a function, which is the usual case.

– For all identifiers with Kind VAR in s and Kind conflict in f an UnresolvedKindCon-

flictException is raised. This type of Kind conflict can not be resolved with renaming

because it is not clear when the identifier was meant be to a function and when it

was meant to be a variable.

After the verification process each call ci to script s is replaced with an assignment. The

49

Refactoring MATLAB

1 function c=foo(a, b)
2 for i=1:10
3 c = a*i+b
4 if (c>100)
5 return;
6 end
7 end
8 disp(c)
9 end

1 function c=foo(a, b)
2 RETURN_FLAG=false;
3 for TEMP_RETURN=1:1
4 for i=1:10
5 c=a*i+b;
6 if (c>100)
7 RETURN_FLAG=true;
8 break
9 end

10 end
11 if (~RETURN_FLAG)
12 disp(c);
13 end
14 end

(a) Original Function (b) After Return Elimination

Figure 5.3 An example function for Extract Function refactoring

left hand side of the assignment is formed by putting o j for every output argument o j in f

that is also present in out puti and putting “∼” for those arguments that are not 1. The right

hand side of the assignment is formed by simply a call to f with all the input arguments.

5.3 Extract Function

Extract Function makes it possible to split functions with long bodies to into smaller

ones. The refactoring takes a sequence of statements as an input and turns them into a

new function. During the study of our MATLAB projects collection, we found out that the

average number of lines of code per function is 22.7. According to English et. al. this

number is 12.8 for Java [MP09]. This shows that MATLAB functions tend to be longer and

in more need of this refactoring.

Figure 5.3(a) shows an example function where we want to extract the loop body as a

new function. The first step in the refactoring is to remove the return inside the loop. Figure

5.3(b) shows the original function after this transformation.

Next we create the new function with the for loop as its body and a list of inputs and

1. In MATLAB, you can ignore some of the outputs of a function call by using “∼”. For example in
[~,a]=size(b);, the variable a will contain the size for the second dimention of b.

50

5.3. Extract Function

1 function [RETURN_FLAG, c]
=NEW_FUNC(a, b)

2 for i=1:10
3 c=a*i+b;
4 if (c>100)
5 RETURN_FLAG=true;
6 break
7 end
8 end
9 end

10
11 function c=foo(a, b)
12 RETURN_FLAG=false;
13 for TEMP_RETURN=1:1
14 [RETURN_FLAG, c]=NEW_FUNC(a,

b);
15 if (~RETURN_FLAG)
16 disp(c);
17 end
18 end

1 function [RETURN_FLAG,
c]=NEW_FUNC(a, b,
RETURN_FLAG)

2 for i=1:10
3 c=a*i+b;
4 if (c>100)
5 RETURN_FLAG=true;
6 break;
7 end
8 end
9 end

10
11 function c=foo(a, b)
12 RETURN_FLAG=false;
13 for TEMP_RETURN=1:1
14 [RETURN_FLAG, c]=NEW_FUNC(a,

b, RETURN_FLAG);
15 if (~RETURN_FLAG)
16 disp(c);
17 end
18 end

(a) After extracting function, RETURN_FLAG (b) Final version of the extracted
might be undefined after the call function and the call

Figure 5.4 The steps showing the creation of the new function and the final result

outputs. Since a, b are live at the beginning of the function and they are both defined, we

add them to the input arguments. RETURN_FLAG is live after the sequence and is assigned

in the sequence body so it should be in the outputs. Figure 5.4(a) shows the new function

with these inputs and outputs. But in the case where the RETURN_FLAG=true does not get

executed the return value of RETURN_FLAG is undefined. This is a problem since previously

if that section of code didn’t get executed the value of RETURN_FLAG would have stayed as

the old value (false).

To fix this problem we add all the output arguments that are not definitely assigned

inside the sequence but might be defined along some paths to s in the original function to

the input arguments. This way, even if the variable does not get a new value, the old value

would stay intact. Figure 5.4(b) shows the final version program, after adding these output

arguments to the inputs.

Our refactoring takes a sequence of statements s such that the sequence corresponds to

51

Refactoring MATLAB

a sequence in the AST inside the function f as the input and starts by eliminating the return

statements in s using the algorithm described in Chapter 4. Then a new function is created

with the sequence of statements s as its body.

Similar to the Script to Function algorithm, we use Reaching Definition Analysis and

Liveness Analysis to determine the function parameters. We run both analyses on the orig-

inal function f that contains s and on our newly created function fn. All the Live variables

at the beginning of the function fn that have any reaching definitions other than UNDEF or

GLOBAL_DEF at the beginning of s are added to the input arguments. All the Live vari-

ables right after the last statement in s that have any reaching definitions other than UNDEF

or GLOBAL_DEF at the end of fn are added to the output arguments. If any of these out-

put arguments has UNDEF in its reaching definitions at the end of fn, it is not definitely

assigned. If it is definitiely assigned before s it is also added to input arguments (similar to

RETURN_FLAG in the above example). Otherwise the process fails. For every global variable

in f that is mentioned in fn, we define them as globals in the new function fn.

The next step is checking Kind Analysis and name resolution results. For every identi-

fier n with Kind FN in fn, the lookup result for n in the context of f should match the lookup

results for n in context of fn. If there are any name resolution changes a NameResolution-

ChangeException is raised. The Kind of all the identifiers in fn should also match their

Kind in f , otherwise a UnresolvedKindConflictException is raised. Furthermore no iden-

tifier in fn should have the Kind ID, otherwise a UnresolvedIDException is raised. Then

the statement sequence s is replaced with an assignment that has a call to fn with the input

arguments on the RHS and the output arguments on the LHS, similar to the statement that

replaces a script call after converting the script to a function.

5.4 Replacing feval

The MATLAB builtin function feval takes a reference to a function (a function handle

or a string with the name of the function) as an argument and calls the function. If an feval

can be replaced by a direct call to a function, this leads to cleaner and more efficient code.

Somewhat to our surprise, we found numerous cases where programmers used a string

literal in feval, for example feval(’myfunc’,x). Consider the code in Listing 5.1, ex-

52

5.4. Replacing feval

1 %%%
2 % this program calculates and plots the wave-vector
3 % diagram (i.e.%photonic bands at constant frequency)
4 % ...
5 %%%
6 %%% the package contains the following programs:
7 %%% pwem2Db.m - main program
8 %%% epsgg.m - routine for calculating the matrix
9 %%% of Fourier coeff of dielectric fn ...

10 clear all
11 tic
12 omega=0.45; % normalized frequency "a/lambda"
13 r=0.43; % radius of cylindrical holes
14 na=1; nb=3.45; % refractive indices
15 ...
16 %%% matrix of Fourier coefficients
17 eps1 = feval (’epsgg’,r,na,nb,b1,b2,N1,N2);
18 ...
19 S=2.5; % point size for scatter plot
20 for j=1:length(BZx)
21 %%% diagonal matrices with elements
22 %%% (kx+Gx) si (ky+Gy)
23 [kGx, kGy] = feval(’kvect2’,BZx(j),BZy(j),
24 b1,b2,N1,N2);
25 [P, beta]=feval(’oblic_eigs’,omega,kGx,kGy,
26 eps1,N);
27 ...
28 end

Listing 5.1 Excerpts from a script which uses feval (... corresponds to elided code)

tracted from one of our benchmarks. 2 It appears that every time the programmer invokes

his own function, he uses feval (lines 17, 23 and 25). This must have been a program-

ming misunderstanding, as there is no valid reason to use feval rather than a direct call

in this program.

The only, not very valid reason, that one might use feval with a string constant is

to force a function call when there is also a variable with the same name. For example, if

a function defined the variable i, but the programmer also wanted to access the built-in

library function called i, they might use feval(’i’). It would seem much better in this

2. Excerpts from http://mathworks.fr/matlabcentral/fileexchange/
22774-wave-vector-diagram-for-a-2d-photonic-crystal/content/pwem2Db.m.

53

http://mathworks.fr/matlabcentral/fileexchange/22774-wave-vector-diagram-for-a-2d-photonic-crystal/content/pwem2Db.m
http://mathworks.fr/matlabcentral/fileexchange/22774-wave-vector-diagram-for-a-2d-photonic-crystal/content/pwem2Db.m

Refactoring MATLAB

case to rename the variable so as to avoid the conflict.

Our refactoring tool looks for those calls to feval which have a string constant as the

first argument, and then uses the results from Kind analysis to determine if an identifier

with Kind VAR with the same name exists. If there is no such identifier in the function, the

call to feval is replaced with a direct call to the function named inside the string literal.

Of course, with more complex string and call graph analyses one could support even more

such refactorings. However, it is interesting that such a simple refactoring is useful.

54

Chapter 6

Evaluation and Related work

In this chapter we present our evaluation of the refactoring algorithms on the same set

of MATLAB projects that we gathered for McBench described in Chapter 3.

In order to measure the effectiveness of our approach, we aim to answer these questions

for each refactoring:

RQ1 How many refactoring opportunities are available?

RQ2 How many times the algorithm could complete without renaming any identifiers?

RQ3 How many times there were assumptions that needed to be verified by the program-

mer?

RQ4 How many times each exception occurs?

RQ5 How invasive are the changes to the user code?

6.1 Inlining Scripts

As shown in Table 6.1, to answer the research questions for script inlining, we counted:

RQ1, every call to a script from a function as an inlining opportunity (191 calls); RQ2, the

number of simple cases with and without renaming (104) which corresponds to the number

of inlinings that succeed without user intervention; RQ3, the number of times some that IDs

were changed to FNs; and RQ4, the number of times each exception occurs. The results

show that more than half the inlining refactorings finished without any user intervention

55

Evaluation and Related work

(104 of 191). For 77 cases the user has to verify that there is no hidden variable definition,

and for 10 out of 191 cases the inlining was not possible. For RQ5, the only change to the

source codes that was necessary to finish in this refactoring was renaming variables, which

is not a significant change to the program.

Inlining result # call sites
Simple with no renames 104
Renames required 0
ID to FN warning 77
Name Resolution Change 0
Unassigned IDs 10
Total number of opportunities 191

Table 6.1 Results from inlining all the calls to scripts

6.2 Inlining Functions

RQ1 For inlining functions, we counted each function call of form [output]=g(input);

where the target was not a MATLAB builtin as an inlining opportunity. We measured:

– RQ2, the number of simple cases , and cases with renames.

– RQ4, the number of cases where the process failed with some exceptions. For this

refactoring there weren’t any cases where name resolution changes (NameResolu-

tionChangeException) or an ID that is not definitely assigned turns to VAR (IDNot-

DefAssignedException) .

For RQ3, there are no situations where user intervention is needed. In this algorithm, it

will either succeed or fail.

As indicated in Table 6.2, there were 2879 call sites, and all could be successfully

inlined. 527 of those were the simple case where no renaming was required. All of the

remaining cases could be handled by renaming. To answer RQ5 we also measured the

number of new statements that were added and the number of times these statements were

removed. For the simple case (527 call sites) there were 1456 new statements (on average

fewer than 3 statements) added to the code for assigning input and output arguments; Of

56

6.3. Converting Scripts to Functions

Inlining result # Number of call sites
Simple 527
Renames required 2352
Name Resolution Change 0
Conflicting IDs 0
Total number of opportunities 2879

Table 6.2 Results from inlining all the calls to functions

those 1456 statements copy propagation could remove 896 statements leaving only about

1 added statement on average.

6.3 Converting Scripts to Functions

To measure RQ1 for converting scripts to functions, each script is considered a candi-

date. Answers to RQ2, RQ3 and R4 are available in Table 6.3. In particular the table shows

the number of: simple cases where no user intervention was necessary (Simple); times that

Kind result for some identifiers changed from ID to more specialized Kind FN; cases where

there is a possible change in the name resolution; cases where a script is called from other

scripts and as a result there isn’t enough context information available; times where the

input arguments don’t match at every call site; cases where some of the IDs couldn’t be

resolved to either VAR or FN; and cases where the resulting function had conflicting Kinds.

It is important to note that all of those 705 cases where there were unresolved IDs were

inside scripts that weren’t called inside the project. These scripts were actually single file

projects that were meant to be used in other projects with some variables set before they

get called. Aside from these cases, the vast majority of the remaining cases are successfully

refactored, making this a very useful refactoring for cleaning up MATLAB programs that

use scripts.

To answer RQ5 we measured the number of variables that have to be passed as param-

eters to the created functions. A large number of input and output parameters can clutter

the code. So the function should only contain the necessary parameters. For those scripts

that were called at least once the number of inputs range between 0 to 5 with the average

57

Evaluation and Related work

Conversion result # Scripts
Simple 201
Warnings for IDs changed to FNs 1294
Name Resolution Change 0
Unresolved IDs 705
Call from script 148
Input Arguments mismatch 1
Unresolved Kind Conflicts 0
Total number of opportunities 2349

Table 6.3 Results from converting scripts to functions

of 1 and the number of outputs range between 0 to 12 with the average of 1.1. This shows

that the algorithm is fairly efficient in choosing a minimal set of parameters.

6.4 Extract Function

Source code usually has sections that are more suitable to be extracted as a separate

function as their data and control flows are less interwoven with other sections of the code.

Programmers make this decision on which sequence of statements makes more sense to be

extracted as a new function. Since we wanted to automate the evaluation, we decided to use

a heuristic to find a suitable region for a new function.

The region starts at the beginning of the function and ends at one of the statements

in the outermost nesting of the function. Our algorithm looks for functions with at least

7 statements in the outermost level. This gives us some flexibility in the choices for the

region. Since we want the region to contain some reasonable amount of code, we pass the

first few statements until the region contains at least 30 AST nodes. We don’t want to move

all the body of the original function to the new function either. So we stop the search when

we reach there are less than 30 AST nodes left in the original function outside the region.

Among these choices, we find the one that will need the minimum number of input and

output arguments. We only extract the region if the minimum number of arguments is less

than 15. Figure 6.1 shows these constraints.

We ran this algorithm over all the programs in our benchmarks. We found that out of

58

6.5. Replacing feval

Function body

At least 30 AST nodes


−−−−−−−−−−−−
−−−−−−−−−−−−
−−−−−−−−−−−−

Search for minimum arguments


−−−−−−−−−−−−
−−−−−−−−−−−−
−−−−−−−−−−−−
−−−−−−−−−−−−
−−−−−−−−−−−−

Leave at least 30 AST nodes


−−−−−−−−−−−−
−−−−−−−−−−−−
−−−−−−−−−−−−

Figure 6.1 An example showing constraints used to select refactoring region

13438 functions (RQ1), we could break 6536 functions into smaller ones (RQ2). The aver-

age number of arguments to the newly created functions were 2.8 (RQ5). This means that

the selection algorithm was effective in selecting regions with minimal inter-dependency.

Figure 6.2 shows the distribution of the number of arguments among these 6546 functions.

The average number of nodes in the new functions was 105.6 compared to 476.5 nodes in

the original functions.

RQ3 and RQ4: There were no exceptions during the execution and user validation is

not necessary for this algorithm.

Figure 6.3 shows an example of running our heuristic on one of the functions from our

benchmark set.

6.5 Replacing feval

There were 23 calls to feval with a string literal argument as target and all of them

could be converted to direct function calls. These are the same cases we found using

McBench.

59

Evaluation and Related work

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Number of Arguments

N
u
m
b
e
r
o
f
fu
n
c
ti
o
n
s

Figure 6.2 Distribution of number of arguments for the new functions.

6.6 Related Work

There is a wide variety of work on factoring covering a large number of programming

languages. In particular, there is a considerable body of work on automatic refactoring for

statically typed languages such as Java with quite well developed and rigorous approaches

for specifying correct refactorings. Similar to [SdM10] we reuse microrefactorings such

as variable rename and return elimination to make the specification and implementation of

more complex refactorings simpler. In their approach they also extend the Java language

to make the microrefactorings even simpler Our approach for refactoring MATLAB has

similar aims in that we want to precisely state that conditions under which a refactoring

is semantics-preserving. However, our approach is probably not as elegant as the recent

Java approaches. We think this stems at least partly from the language we are targeting -

MATLAB semantics are not as well defined, nor as regular as modern languages like Java.

There are also interesting approaches for other languages including Erlang, Fortran,

Haskell[LRT03, Lee11] and Javascript, all of which present special benefits and challenges,

just as our approach has special benefits and challenges for MATLAB. Our feval refactor-

ing is similar to Tidier[SA09] refactoring that turns apply(Func, [args]) in Erlang

60

6.6. Related Work

1 function [zipfilename] =
exportToZip(funcname,
zipfilename)

2 if (~iscell(funcname))
3 funcname = {funcname};
4 end
5 if isempty(funcname)
6 error(’No function names

specified’);
7 end
8 if (~iscellstr(funcname))
9 error(’Function names must

be strings’);
10 end
11 req = cell(size(funcname));
12 for i = (1 : numel(funcname))
13 req{i} =

mydepfun(funcname{i}, 1);
14 end
15 req = vertcat(req{:});
16 req = unique(req);
17 d = i_root_directory(req);
18 n = numel(d);
19 for i = (1 : numel(req))
20 req{i} = req{i}(((n + 1) :

end));
21 end
22 zip(zipfilename, req, d);
23 fprintf(1, ’Created %s with %d

entries\n’, zipfilename,
numel(req));

24
25 end

1 function [zipfilename] =
exportToZip(funcname,
zipfilename)

2 [zipfilename, req] =
TMPNAME(funcname,
zipfilename)

3 req = vertcat(req{:});
4 req = unique(req);
5 d = i_root_directory(req);
6 n = numel(d);
7 for i = (1 : numel(req))
8 req{i} = req{i}(((n + 1) :

end));
9 end

10 zip(zipfilename, req, d);
11 fprintf(1, ’Created %s with %d

entries\n’, zipfilename,
numel(req));

12 end
13
14 function [zipfilename, req] =

TMPNAME(funcname,
zipfilename)

15 if (~iscell(funcname))
16 funcname = {funcname};
17 end
18 if isempty(funcname)
19 error(’No function names

specified’);
20 end
21 if (~iscellstr(funcname))
22 error(’Function names must

be strings’);
23 end
24 req = cell(size(funcname));
25 for i = (1 : numel(funcname))
26 req{i} =

mydepfun(funcname{i}, 1);
27 end
28 end

(a) Original function (b) After extraction

Figure 6.3 Result of running the Extract Function heuristic to split a function to two parts

61

Evaluation and Related work

to the simpler remote function call Func(args) when the last argument is a list of ele-

ments with statically known types.

Most related to our work is the work on JavaScript[FMM+11]. JavaScript has similari-

ties with our work in that both JavaScript and MATLAB have some dynamic features which

pose challenges for automated refactoring. Some of our goals are also similar, in that both

approaches suggest some language-specific refactorings that help clean up the code.

Our approach shares an important similarity with the Fortran refactoring work. Over-

bey et. al. [ONJ09, OJ09] point out the benefits of refactoring for languages that have

evolved over time. This is also one our main motivations for refactoring MATLAB. Al-

though the specific refactorings are quite different, the motivation and the applicability of

our approaches is very similar.

We are not aware of any refactoring work for MATLAB, but there is one related paper

on source-level transformation for MATLAB [MP99]. In this work the authors show that

a variety of source-level transformations can have important performance benefits. These

transformations go beyond the typical loop transformations and capture MATLAB-specific

behaviour such as converting loops to calls to libraries and restructuring loops to avoid

incremental array growth. Automating these transformations would be an interesting next

step, and our foundational analyses and refactorings should aid in that process.

62

Chapter 7

Conclusions and Future Work

In this thesis we have identified an important domain for refactoring, MATLAB pro-

grams. Millions of scientists, engineers and researchers use MATLAB to develop their ap-

plications, but no tools are available to support refactoring their programs. This means that

it is difficult for the programmers to improve upon old code which use out-of-date lan-

guage constructs or to restructure their initial prototype code to a state in which it can be

distributed. Such refactoring tools are especially needed because MATLAB programmers

are often not professional programmers and the frequently proceed by reusing old code,

and programming using program features that are not ideal for their purposes.

To address this new refactoring domain we developed McBench tool to make it easier

to understand how the MATLAB programmers write their code and we made the tool ex-

tensible so that it can be reused for other research projects. We have also developed a set of

refactoring transformations for functions and scripts, including function and script inlining,

converting scripts to functions, and eliminating simple cases of feval. For each refactor-

ing we established a procedure which defined both the transformation and the conditions

which must be verified to ensure that the refactoring is semantics-preserving. In particular,

we emphasized that both the kinds of identifiers and the function lookup semantics must be

considered when deciding if a refactoring can be safely applied or not.

We have implemented all of the refactorings presented in the paper using our McLAB

compiler toolkit, and we applied the refactorings to a large number of MATLAB applica-

tions. Our results show that, on this benchmark set, the refactorings are applicable.

63

Conclusions and Future Work

McBench is already being used in McLAB to understand how the programmers use dif-

ferent aspects of MATLAB language. An excellent opportunity for future work is to develop

a XPath query builder that would make it even easier to use McBench. New annotations

for type information and points-to analysis will make it possible to write completely new

kinds of queries.

There is an excellent opportunity to build upon our refactoring tools to write new refac-

torings including performance enhancing refactorings and refactorings to enable a more

effective translation of MATLAB to Fortran. The script to function refactoring is planned to

be used in McLAB Fortran compiler.

McBench can be repurposed as a MATLAB lint tool. A collection of code smell detec-

tion queries can show the user places that can benefit from refactoring. An inline comment

viewer to complement the code highlighter can precisely show the code section along with

a description of the reasons to avoid specified code patterns. This can help MATLAB pro-

grammers to improve their codes and learn more about coding best practices.

64

List of AST nodes

Annotation AssignStmt Attribute BreakStmt
CellArrayExpr CellIndexExpr ClassDef ClassEvents

DefaultCaseBlock CompilationUnits ContinueStmt ColonExpr
DotExpr ElseBlock EndExpr Event

ExpandedAnnotation ExprStmt FPLiteralExpr ForStmt
FunctionHandleExpr FunctionDecl Function FunctionList

GlobalStmt IfBlock IfStmt InputParamList
IntLiteralExpr LambdaExpr MatrixExpr Methods

NestedFunctionList NameExpr Name OutputParamList
ParamDeclList ParameterizedExpr PersistentStmt Properties

Property PropertyAccess RangeExpr ReturnStmt
ShellCommandStmt Script Row Signature
ArrayTransposeExpr StringLiteralExpr SuperClass StmtList

SwitchCaseBlock SwitchStmt TryStmt VariableDecl
WhileStmt AndExpr EDivExpr ELDivExpr
EPowExpr EQExpr ETimesExpr GEExpr

GTExpr LEExpr LTExpr MDivExpr
MinusExpr MLDivExpr MPowExpr MTimesExpr

ShortCircuitAndExpr OrExpr PlusExpr NEExpr
ShortCircuitOrExpr MTransposeExpr UPlusExpr NotExpr

UMinusExpr

Table A.1 All the node types that McLAB XML output might contain.

65

List of AST nodes

66

Bibliography

[BBC+07] A. Berglund, S. Boag, D. Chamberlin, M. Fernandez, M. Kay, J. Robie, and

J. Simeon. Xml path language (xpath) 2.0, world wide web consortium rec-

ommendation rec-xpath20-20070123, 2007.

[CFR+01] D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and M. Stefanescu. Xquery:

A query language for xml. working draft (feb.), world wide web consortium,

2001.

[Dev92] P.T. Devanbu. Genoa - a customizable, language- and front-end independent

code analyzer. In Software Engineering, 1992. International Conference on,

1992, pages 307 –317.

[DHR11] Jesse Doherty, Laurie Hendren, and Soroush Radpour. Kind analysis for MAT-

LAB. In In Proceedings of OOPSLA 2011, 2011.

[Doh11] Jesse Doherty. Mcsaf: An extensible static analysis framework for the matlab

language. Master’s thesis, McGill University, September 2011.

[FMM+11] Asger Feldthaus, Todd Millstein, Anders Møller, Max Schäfer, and Frank Tip.

Tool-supported refactoring for JavaScript. In In Proceedings of OOPSLA

2011, 2011.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-

Wesley, 1999.

[GAM96] W.G. Griswold, D.C. Atkinson, and C. McCurdy. Fast, flexible syntactic pat-

tern matching and processing. In Program Comprehension, 1996, Proceed-

ings., Fourth Workshop on, mar 1996, pages 144 –153.

67

file:10.1109/icse.1992.753508
file:10.1109/icse.1992.753508
http://www.sable.mcgill.ca/mclab
http://www.sable.mcgill.ca/mclab
file:10.1109/wpc.1996.501129
file:10.1109/wpc.1996.501129

Bibliography

[Gri91] William G. Griswold. Program Restructuring as an Aid to Software Mainte-

nance. Ph.D. thesis, University of Washington, 1991.

[JB00] Greg J and Badros. Javaml: a markup language for java source code. Computer

Networks, 33(1-6):159 – 177, 2000.

[Lee11] Da Young Lee. A case study on refactoring in Haskell programs. In Proceed-

ing of the 33rd international conference on Software engineering, Waikiki,

Honolulu, HI, USA, 2011, ICSE ’11, pages 1164–1166. ACM, New York,

NY, USA.

[LRT03] Huiqing Li, Claus Reinke, and Simon Thompson. Tool support for refactoring

functional programs. In Proceedings of the 2003 ACM SIGPLAN workshop on

Haskell, Uppsala, Sweden, 2003, Haskell ’03, pages 27–38. ACM, New York,

NY, USA.

[MP99] Vijay Menon and Keshav Pingali. A case for source-level transformations

in MATLAB. In Proceedings of the 2nd conference on Domain-specific lan-

guages, Austin, Texas, United States, 1999, DSL ’99, pages 53–65. ACM,

New York, NY, USA.

[MP09] English M. and McCreanor P. Exploring the differing usages of programming

language features in systems developed in c++ and java. Limerick, Ireland,

2009, PPIG ’09.

[OJ09] Jeffrey L. Overbey and Ralph E. Johnson. Regrowing a language: refactoring

tools allow programming languages to evolve. SIGPLAN Not., 44:493–502,

October 2009.

[ONJ09] Jeffrey L. Overbey, Stas Negara, and Ralph E. Johnson. Refactoring and the

evolution of Fortran. In Proceedings of the 2009 ICSE Workshop on Software

Engineering for Computational Science and Engineering, 2009, SECSE ’09,

pages 28–34. IEEE Computer Society, Washington, DC, USA.

[Opd92] William F. Opdyke. Refactoring Object-Oriented Frameworks. Ph.D. thesis,

University of Illinois at Urbana-Champaign, 1992.

[PKPZ11] O. Panchenko, J. Karstens, H. Plattner, and A. Zeier. Precise and scalable

querying of syntactical source code patterns using sample code snippets and a

68

http://www.sciencedirect.com/science/article/pii/s1389128600000372
file:10.1109/icpc.2011.31
file:10.1109/icpc.2011.31
file:10.1109/icpc.2011.31

Bibliography

database. In Program Comprehension (ICPC), 2011 IEEE 19th International

Conference on, june 2011, pages 41 –50.

[PP94] S. Paul and A. Prakash. A framework for source code search using program

patterns. Software Engineering, IEEE Transactions on, 20(6):463 –475, jun

1994.

[SA09] Konstantinos Sagonas and Thanassis Avgerinos. Automatic refactoring of Er-

lang programs. In Proceedings of the Eleventh International ACM SIGPLAN

Symposium on Principles and Practice of Declarative Programming, Septem-

ber 2009, pages 13–24. ACM, New York, NY, USA.

[SdM10] Max Schaefer and Oege de Moor. Specifying and implementing refactorings.

SIGPLAN Not., 45:286–301, October 2010.

69

file:10.1109/icpc.2011.31
file:10.1109/icpc.2011.31
file:10.1109/32.295894
file:10.1109/32.295894

	Abstract
	Résumé
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Contributions
	Outline

	Background
	MATLAB programs
	Kind Information
	Impact of Function and Script Lookup on Refactoring

	McBench: A Tool for Understanding Matlab Programs
	McBench
	McAST XML Structure
	Annotations
	XPath Queries
	Experiments
	Setup
	Example #1: Calls to feval with string literal targets
	Example #2: Copy statements inside loops
	Example #3: Variables with both Matrix and Scalar types
	Refactoring Query-set

	Related Work

	Building Blocks for Refactoring
	Static Analysis For Scripts
	Liveness and Reaching Definitions Analysis
	Liveness Analysis
	Reaching Definitions Analysis

	Return Elimination

	Refactoring Matlab
	Inlining Scripts and Functions
	Inline Script
	Inline Function

	Converting Scripts to functions
	Extract Function
	Replacing feval

	Evaluation and Related work
	Inlining Scripts
	Inlining Functions
	Converting Scripts to Functions
	Extract Function
	Replacing feval
	Related Work

	Conclusions and Future Work
	List of AST nodes
	Bibliography

