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Abstract 

This thesis deals with the dynamic modeling and control of a cable-actuated system 

consisting of a payload attached to several actuated cables. The objective of this thesis is to 

design a stabilizing controller that positions the payload and suppresses the cables vibrations. 

The dynamics of the system is modeled using the lumped-mass method. First, PID and LQG 

control algorithms are used to design a controller. Later, motivated by the robust nature of the 

passivity-based control, its application to cable-actuated systems is investigated. Cable-actuated 

systems are usually non-square with non-collocated actuators and sensors, which generally limits 

the use of passivity-based control. In order to overcome these limitations, first a dynamic 

embedding is considered where an observer is used to construct a new output that realizes a 

passive input-output map. Next, an alternative input-output map is considered where the output 

is a scaled version of the true payload velocity and the input is a modified winch torque.  
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Résumé 

Cette thèse présente une étude de la modélisation dynamique et commande d’un système 

actionné par câbles, celui-ci composé d'un effecteur attaché à une série de câbles actionnés. 

L’objectif de cette thèse est de développer un contrôleur qui positionne l'effecteur et diminue les 

vibrations des câbles. La dynamique du système est modélisée en utilisant la méthode de masses 

localisées. D'abord, deux algorithmes de commande, PID et LQG sont utilisés pour développer la 

command. Puis, nous étudions l’application de la commande passive sur le système actionné pas 

câbles. Les systèmes actionnés par câbles sont généralement non carré avec des actionneurs et 

des senseurs non colocalisés, ce qui limite généralement l'utilisation de la commande passive. 

Pour trouver une solution pour ces contraintes, premièrement, nous considérons une intégration 

dynamique, où un observateur est utilisé pour construire une nouvelle sortie qui donne un 

système passif. Deuxièmement, nous considérons une entrée-sortie alternative, où la sortie est 

une version réduit de la vitesse réelle de l'effectuer et l'entrée est une modification du couple de 

treuil. 
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1 Introduction 

Cables are flexible load carrying or force transmitting tension members used in many 

mechanical cable-actuated systems such as tethered aerostats, tethered satellites, elevators, 

towing vehicles, mooring ships, tethered under water vehicles, cranes, and cable-actuated robots. 

Figure 1.1 shows three such systems: a tethered aerostat, an elevator and a towed underwater 

vehicle. Cables are widely utilized in various engineering applications since they are more 

dynamically responsive than rigid systems. In addition, cables have better maximum payload to 

weight ratio and mobility compared to rigid elements [1].  

 

   

(a) (b) (c) 

Figure 1.1: Examples of cable-actuated systems: (a) multi-tethered aerostat [2], (b) elevator [3], 

(c) towed underwater vehicle [4] 
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Because of their wide usage in various structures and systems, cables have been the subject 

of extensive academic research. This thesis deals with dynamic modeling and control of cables 

which are actuated by several winches in order to position and orient a payload mass in a cable-

actuated system as shown generically in Figure 1.2. There are two principal areas of research 

pertaining to cable-actuated systems: dynamic modeling and control of cables. Although the 

literature on dynamic modeling and control of cable-actuated systems has been ongoing for a 

number of decades, a number of issues remain, especially with respect to the control of these 

systems. Any cable that is used in a cable structure or cable-actuated system is prone to 

longitudinal and/or transverse vibration. In dealing with cable-actuated systems, a controller 

should be designed to reduce these vibrations. Moreover, in cable-actuated systems with an 

object to be moved, the controller should ensure tracking of a desired trajectory.  

 

 

Figure 1.2: A generic cable-actuated system 

 

1.1 Summary of previous work 

This literature review surveys prior works relevant to dynamics modeling and control of 

cables in cable-actuated systems with a description and a summary of each work. 
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1.1.1 Dynamics 

The dynamics of cable-actuated systems has been thoroughly studied. In this survey, the 

models reviewed are those that are more amenable to application in control, and some of their 

uses and limitations are discussed.  

The motion of a cable-actuated system can be predicted if the forces and/or moments applied 

to the system through actuators are given. This is known as the forward cable dynamics problem. 

On the other hand, in robotics for example, given a prescribed end-effector path, inverse 

dynamics algorithms are used to calculate the required torques that the motors must produce to 

make the end-effector move properly. Similarly, in the cable inverse dynamics problem, we want 

to compute actuator forces and/or moments such that the desired motion of the payload is 

accomplished, given the known system properties, such as payload mass, cable density and 

maximum allowable cable tension. Two types of cable models are identified: continuous and 

discrete models. 

1.1.1.1 Continuous models 

In dynamic modeling of cable-actuated systems for the purpose of control, cables are usually 

modeled as continuous systems. In this approach cables are modeled using either beam or string 

equations. A string is a flexible element that shows no resistance to bending, so if the bending 

stiffness of a cable is relatively small, it can be modeled as a string. In contrast, if the cable has 

significant bending stiffness, it is modeled as a beam [5]. Zhu and Chen [6] investigated the 

forced response of a translating cable with variable length and tension, and found that a 

translating cable without any sag can be modeled as a string, a pinned-pinned beam or a fixed-

fixed beam.  

 Beam model 

The dynamics of a cable have been investigated by modeling the cable as a vertically 

translating beam under tension [7]. The solution to a beam transverse vibration problem with 

time dependent boundary conditions was first addressed by reducing it into a free vibration beam 

problem [8]. Pota et al. [9] also used a beam equation of motion in order to model transverse 

vibration of a cable in a cable-actuated system. In this paper, a linear model was assumed to be 

valid around the final operating point. 
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Coupled vibration of a varying length flexible cable transporter system with arbitrary axial 

velocity was presented by Zhang and Agrawal [10] considering both transverse and longitudinal 

vibrations simultaneously. It was observed that an increase in internal damping can reduce 

longitudinal vibration, but has little effect on transverse vibration. Later, the problem of 

modeling longitudinal vibration of a flexible transporter system with varying cable length was 

presented by Zhang et al. [11]. In this research, the nonlinear Partial Differential Equations 

(PDE), governing the cable motion, were derived by applying Hamilton’s principle. 

Subsequently, in order to solve the governing equations of motion, the assumed mode method 

was used. Zhang and Agrawal [12] performed an investigation of modeling transverse vibration 

of a cable. Similarly, the governing equation for transverse vibration of a cable was derived 

using Hamilton’s principle. Since it is not possible to solve the coupled nonlinear PDE of motion 

analytically, Galerkin’s method was used to transform the infinite dimensional PDE to finite 

dimensional ordinary differential equations (ODE).  

 String model 

Otsuki et al. [13] formulated the dynamics of a length-varying cable using the string equation. 

Later, they presented another paper on suppression of transverse vibration of an elevator cable 

that was also modeled with the string equation [14]. Zhu and Zheng [15] obtained the exact 

response of a string with arbitrary varying length under general excitation. In this research, the 

response of the string to a general excitation was also derived through a wave method. This wave 

method was proven to be more accurate and efficient than the spatial discretization method when 

the propagating wave was non-dispersive.  

1.1.1.2 Discrete models 

In the context of discrete modeling, the dynamics of cables can be formulated using different 

methods such as finite element and finite difference methods. In the finite difference method, the 

finite difference approximation is used to derive spatial and time derivatives to the system of 

equations. Howell [16] used the finite difference method to develop cable’s differential equation 

of motion. Triantafyllou and Howell [17] studied the dynamic response of low tension cables 

using the finite difference method. Burgess [18] also developed the finite difference model with 

bending stiffness for simulation of undersea cables. 
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Buckham [19] performed a comprehensive literature review of discrete methods that are used 

for modeling the dynamics of cables, and then proceeded to use the lumped mass method (a 

specific instance of the finite element method) for dynamic modeling of an underwater vehicle 

system. In this thesis, cables are modeled using the discrete lumped mass model since it is more 

simple and versatile than other models. In addition, it has been confirmed that the lumped mass 

model can properly model longitudinal and transverse dynamics behavior of cables [20]. In the 

lumped mass method, a cable is modeled as a series of point masses connected by viscoelastic 

massless elements, and the equations of motion are derived for this approximate model. Lambert 

and Nahon [21] modeled a triple-tethered aerostat that supported the receiver in a very large 

radio telescope antenna, using a lumped mass model. The linear elements introduced in the 

lumped mass model do not tolerate torsion deformation. In order to consider the torsion 

deformation of the elements, Malahy [22] applied the finite element technique to third order 3D 

element and consider the element rotational equation of motion.  

1.1.2 Control and its challenges 

The control of cable-actuated systems has been addressed using different methods, including 

PID control, optimal and robust control. Cables are prone to longitudinal and/or transverse 

vibration. In dealing with cable-actuated systems with a payload to be moved, a controller is 

used to bring the object to its desired position. The controller should also reduce the cable 

vibration especially near the desired position of the object. In most research papers, author focus 

on damping the cable vibrations, and suggest using a separate simple feedback controller for 

positioning the object. 

Early studies on vibration control focused on stabilizing the system using passive damping 

and stiffness. Considering more complicated and time-varying conditions, researchers later 

employed active vibration control. Few studies exist on active damping of multimodal oscillation 

of cables, and the problems of active damping of transverse and longitudinal vibrations are 

usually considered separately. As mentioned earlier, for the purpose of control, cables can be 

modeled as continuous or discrete systems. A control method based on a discrete cable model 

introduced for controlling a cable driven parallel mechanism is given in [23]. In this latter work, 

the system considered of eight cables whose varying length was controlled by ground-based 

winches, while an aerostat held the platform aloft. A cascade control architecture was designed 
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with different control loops: the inner loop dealt with tension in the cables using the H∞-optimal-

control strategy, and the other loop controlled the position of the platform using inverse-dynamic 

control and PID control. 

1.1.2.1 Damping transverse vibration  

The locations of sensors and actuators in a cable-actuated system are limited to the two ends 

of the cable or near one of the two ends. This is one of the difficulties in dealing with active 

control of cables. In prior work, damping the transverse vibration of a cable is performed using a 

transverse actuator that is not attached to the cable [24]. Dealing with the gap between the 

actuator and the cable and positioning the actuator are two existing problems in active damping 

of the transverse vibration. 

As mentioned in section 1.1.1.1, a translating cable without any sag can be modeled as a 

string, as a pinned-pinned beam, or as a fixed-fixed beam. For small vibrations, longitudinal and 

transverse vibrations are uncoupled [6]. In this research, longitudinal vibration was neglected, 

and it was shown that the three models mentioned for the cable have the same forced response 

owing to small assumed bending stiffness. Stability of a cable with varying length was 

investigated by Zhu and Ni [25] considering both beam and string equation for cable transverse 

vibration. Later, using an active control approach, they dissipated the transverse vibratory energy 

of a cable modeled again as both string and beam. In addition, optimal gains leading to fastest 

rates of decay of vibratory energy of a cable-actuated system were identified [26].  

Zhang and Agrawal [12] designed a Lyapunov controller to damp transverse vibration of a 

cable transporter system. Two boundary controllers and one domain point-wise controller were 

proposed in order to dissipate transverse vibration. This controller simultaneously assured that 

the transporter object would reach its desired position and the closed-loop system would be 

stable. The length and the natural frequencies of cables in many cable-actuated systems change 

with time. In [12], the authors claimed that axially moving cables with arbitrary varying length 

and arbitrary axial velocity had not been properly studied before their research work. 

Neglecting longitudinal vibration, a control method was presented by Zhu and Chen [7] for 

dissipating vibratory energy of an elevator cable. The optimal damping coefficient was 

calculated for applied nonlinear active damping in order to dissipate the increasing vibratory 

energy of the cable during upward movement. Otsuki, et al. [13] used non-stationary robust 
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control that considers the effects of time varying characteristics as well as structured and 

unstructured uncertainties to damp the transverse vibrations of a cable. They also considered the 

application of non-stationary sliding mode control for suppression of transverse vibration of a 

cable-actuated system [14]. Here, there was a gap between the cable and the actuator which was 

located in the vicinity of one of the two ends of the cable. The actuator could apply a transverse 

force to the cable based on a non-stationary sliding mode control strategy. Both the non-

stationary robust control strategy and the non-stationary sliding mode control strategy were 

shown to be able to robustly control the cable against tension fluctuations along the cable. 

1.1.2.2 Damping longitudinal vibration 

Pota et al. [9] focused on the damping of longitudinal vibration of cables, and they illustrated 

the modeling and robust control of a linear cable transporter system that tolerated the non-

parametric uncertainties of the system. For bidirectional motion, two actuators were used at 

either end of the cable, one held the transporter object at its desired position and the other 

damped the residual longitudinal vibration. In further research by Zhang et al [11], the transporter 

object goal point was reached by applying a Lyapunov controller to the PDEs governing 

longitudinal vibration of a cable. The controller also dissipated vibratory energy due to 

longitudinal vibration and guaranteed the stability of the closed-loop system. 

1.1.2.3 Multimodal control 

One interesting control approach for active control of slightly sagged cables is using an 

actuator motion in the cable axial direction. Fujino and Susumpow [27] proposed two control 

schemes: active stiffness control and active sag-induced force control, for a slightly sagged cable 

using axial support movement. In this paper, multimodal response of a cable is controlled using a 

Lyapunov method that considers the stability of the system. They also showed that their control 

strategy leads to the reduction of cable vibratory energy [28]. A similar control approach was 

used by imposing a longitudinal action at one of the cable end supports, and a multimodal active 

control was designed to damp cable vibration by means of a longitudinal actuator at one movable 

support. 



8 

 

1.1.2.4 Passivity-based control 

In the literature, there are many applications of passivity-based control for mechanical 

systems, such as flexible robotic manipulators, that are similar to cable-actuated systems in terms 

of structure and behavior. In the present work, we aim to design a stabilizing controller for cable-

actuated systems using the Passivity Theorem that is well defined in [29] and [30]. Although 

passivity-based control has been widely used in many engineering applications, its use in cable-

actuated systems has been limited to cranes as a particular application. Alli and Singh [31] 

designed an optimal passivity-based controller for an overhead crane.  

In systems with flexible structures, the output (usually the payload motion) is not collocated 

with the actuators. This leads to nonminimum phase behavior and hence nonpassive input-output 

mapping. Wang and Vidyasagar [32] proposed an appropriate passive input-output transfer 

function for controlling a single flexible link by introducing a modified output. This idea is 

interesting, and will be investigated further and applied to a cable-actuated system in Chapters 5 

and 6.  

In the context of passive dynamic controller design, Juang et al. [33] proposed a controller 

consisting of passive second order systems with little knowledge of the system parameters. They 

claimed that in designing the controller, it is not necessary to use direct velocity feedback to have 

a stable controlled system, unlike the early framework for designing the passivity-based 

controllers. Moreover, this early framework required the system to be square and have collocated 

actuators and sensors. Lee, Flashner and Safonov [34] proposed a dynamic embedding that 

releases these two conditions in case the system itself is stable and does not have redundant 

actuators and sensors. Regarding the control of a linear time invariant (LTI) system, Collado, 

Lozano and Johansson [35] introduced an observer to render a LTI system strictly positive real 

(SPR). An interesting aspect of their passification technique is that the original system does not 

need to be square or even stable. 

Using the idea by Wang and Vidyasagar [32], Damaren developed a new output involving the 

payload motion and the joint motions for multi-link manipulators that yields the passivity 

property in [36] and [37]. In his work, the payload is assumed to be much heavier than the links. 

He extended this passivity-based approach to the situation where two flexible multi-link arms 

manipulate a massive payload [38]. Later in [39], Damaren presented an adaptive controller 

which can track a prescribed payload trajectory with simultaneous vibration suppression for 
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multi-link manipulators. In a recent work, Christoforou and Damaren [40] applied passivity–

based techniques on control of structurally flexible gantry robots.  

1.2 Thesis motivation, objective and outline 

1.2.1 Example system 

In this thesis, a particular horizontal cable-actuated system is used as a case study as shown in 

Figure 1.3. The system includes two cables extending from two winches and both attached to a 

payload mass which is supported from below. The two winches pull the cables to position the 

payload and reduce the vibrations in the cables. This will be accomplished by developing a 

controller that changes the cable lengths and regulates their tensions. The controller works in 

response to changes in the position of the payload. This example system exhibits all the key 

complexities of cable-actuated systems, while still being relatively simple. It is expected that 

controllers developed for this system could later be extended to more complex cable-actuated 

systems. 

 

 

Figure 1.3: Schematic of example cable-actuated system  

 

1.2.2 Motivation and objective 

This thesis is in the field of dynamics and control of cable-actuated systems. In many cable-

actuated systems, the purpose is to precisely position and orient a payload mass connected to 

several stretchable cables with varying lengths. The dynamics of a flexible cable is modeled 

continuously through nonlinear PDEs in terms of time and displacement. Different numerical 

approaches such as the finite element method and the finite difference method are used to model 

the nonlinear dynamics of a cable. The lumped mass method is a modular method that can model 

L
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the behavior of a large variety of cables. Moreover, compared to other numerical techniques, this 

method requires fewer variables to define the state of each element [19]. Consequently, in the 

present work, the cables dynamics models are developed using the lumped mass method. 

Any cable in a cable-actuated system is prone to longitudinal and transverse vibrations. Our 

objective is to design a stabilizing controller that brings the payload mass to a desired position, 

and at the same time suppresses the coupled vibrations of the cables. We have chosen to use the 

concept of the Passivity Theorem in the design of such controllers for cable-actuated systems 

because of the stability results that can be reached using this framework. Having seen 

applications of passivity-based control for flexible robotic manipulators that are similar to cable-

actuated systems motivates us to use this control approach. The Passivity Theorem is 

conceptually connected with power dissipation, and is a popular input-output stability technique. 

It states that the negative feedback connection of a passive system and a strictly passive system is 

stable. Passive systems are common in engineering, such as mechanical systems composed of 

masses, springs, and dashpots. Regarding the control objective of this thesis, applying passivity-

based control to cable-actuated systems can lead to new stability results if a passive input-output 

map can be found for the system. Passivity-based control design will guarantee the closed-loop 

stability of the cable-actuated system regardless of parameter violations and unmodeled 

dynamics. 

In studies dealing with the vibration control of cable-actuated systems, the transverse 

vibration of a cable is usually reduced by means of a transverse actuator. However, in many 

applications, it is not convenient to implement such a control device. Therefore, another 

objective of this thesis is to achieve the control design goals (accurately positioning the payload 

mass, while suppressing the coupled vibrations in the cables) by regulating the tensions in the 

cables only through the action of the winches.   

1.2.3 Outline 

The research conducted is presented in seven chapters. In Chapter 2, the required 

mathematical background, the solution to the LQG optimal controller, the definition of various 

passive systems and the Passivity Theorem are reviewed.  

The dynamics model is discussed in Chapter 3 in addition to static analysis of the lumped 

mass cable model. In this Chapter, the dynamic equations of motion of the example system 
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introduced in section 1.2.1 are developed. The foundations of cable lumped mass model 

including element tension and internal damping are introduced and the dynamics model is 

validated. A linearized dynamics model obtained using numerical techniques is also presented. 

The second topic of this thesis related to system control begins in Chapter 4 where we discuss 

two different methods of cable control. First, control objectives as well as application of control 

inputs are discussed. Then, a basic PID controller and optimal LQG controller are applied to the 

example system and their effectiveness in payload trajectory tracking and reducing cable 

vibrations are compared.  

In Chapter 5, the idea of using passivity-based control and the required system modifications 

are studied using the premise that any LTI system can be modified and transferred into a SPR 

system. Applying this modification to an unstable system is then studied in Chapter 5. The open-

loop system is made SPR by introducing an observer state-feedback. A state-feedback regulator 

including an integral action is required to track the desired payload trajectory. Later in Chapter 5, 

the positive realness of the modified system is verified and the performance of the designed 

passivity-based control in steady-state tracking and suppression of vibrations is evaluated.  

In Chapter 6, another version of the linear system model is developed using relative 

coordinates and including the winch dynamics. A μ-tip output that depends on payload position 

and winch motions is developed that yields the passivity property with respect to a suitable 

combination of the winch torques.  Theories related to μ-tip rate used to define a passive input-

output map are reviewed. Furthermore, the effectiveness of the passivity-based controller 

designed using feedforward and feedback elements in tracking and vibration suppression is 

investigated.  

Finally, a summary of the main contributions of this thesis and recommendations for future 

research are provided in Chapter 7. 
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2 Background Material 

In this chapter, first, the basic notation of input-output L2 stability is briefly described 

(section 2.1). Then, section 2.2 deals with linear quadratic Gaussian (LQG) control problem and 

its solution. Section 2.3 reviews the definitions and theorem related to passive systems. The basic 

version of the Passivity Theorem in the study of L2-stability is also defined in this section.  

2.1 Normed linear space 

The norm of a vector on a linear space is the length of the vector. For example, the norm of x 

on the linear space is ‖ ‖  √∑   
  

   , and the norm of x associated with an inner product space 

is given by ‖ ‖  √〈   〉 [41]. 

2.1.1 L2 space and extended L2 space 

Considering   {       } as the set of measurable functions, the L2 space is composed 

of functions whose second norm is finite, or otherwise stated, the L2 space represents the class of 

finite energy functions [42]. 

 

    {   
     ∫   ( ) ( )  

 

 

  } (2.1) 
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The inner product in L2 space is defined by [42] 

 

〈   〉   ∫   ( ) ( )  

 

 

  ‖ ‖   √〈   〉 (2.2) 

 

The function truncation     
     is [29] 

 

  ( )   {
 ( )      
                           

        (2.3) 

 

The extended L2 space named L2e is [29] 

 

     {   
       ( )         

 } (2.4) 

 

For a measurable function  (  ) with the conjugate transpose   (  )    (   ), the 

norm in frequency domain is defined using the Parseval’s Theorem [41]. 

 

‖ ‖  (
 

  
∫   (  ) (  )  

  

  

)

   

 (2.5) 

 

2.1.2 L∞ space 

   is the space of measurable functions that are bounded [42] 

 

    {   
     ‖ ‖   }  ‖ ‖         [        [  ( )]] (2.6) 

 

2.1.3 L2 stability 

The induced L2 gain of a linear system is the maximum gain of the system. Considering   as 

the LTI system mapping    , the induced gain or the system gain is defined as [41]: 
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‖ ‖           
‖ ‖ 
‖ ‖ 

          
‖  ‖ 
‖ ‖ 

       √    ( 
 (  ) (  ))

           ( (  )) 

(2.7) 

 

If      then for a system with finite gain ‖ ‖   , ‖  ‖  ‖ ‖ ‖ ‖  and the system 

is said to be L2-stable. L2-stability in terms of input and output energy implies that finite energy 

inputs lead to finite energy outputs [43]. 

2.2 Linear quadratic Gaussian (LQG) control 

In this section we will discuss the LQG problem and its solution assuming that the system 

dynamics is linear and known, and the measurement noise    and the process noise    are 

white noise with constant power spectral density matrices N and V. 

 

 ̇           

           
(2.8) 

 

The LQG problem is to find the optimal control u(t) which minimizes [44] 

 

   {      
 

 
∫[         ]  

 

 

} (2.9) 

 

where E is the expectation operator and        and        are design parameters. 

The solution to the LQG problem consists of first determining the optimal state-feedback gain 

   such that       . This is the solution to the linear quadratic regulator (LQR) problem. 

The next step is to find an optimal estimate of the state named  ̂ by a Kalman filter, so that 

 {[   ̂] [   ̂]} is minimized. The solution of LQG problem is then defined by       ̂  

Given the system  ̇        with an initial state x(0), the LQR finds the input signal u(t) 

which takes the system to zero states in an optimal manner by minimizing  

   ∫ [         ]  
 

 
. The optimal solution is  ( )      , where     

      and X 

is the unique positive semi-definite solution of the algebraic Riccati equation        
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            . The Kalman filter is a state estimator where  ̇̂    ̂      (    ̂). 

The optimal   [    ] which minimizes  {[   ̂] [   ̂]} is         , where Y is 

the positive semi-definite solution of the algebraic Riccati equation                 

    [44].  

A LQG controller is combined with integral action as shown in Figure 2.1 to ensure that the 

output y tracks the reference command r and reject measurement noise and process noise. 

 

 

Figure 2.1: LQG controller with integral action and reference input 

 

Combining optimal state estimation, optimal state-feedback and integral action, the LQG 

controller state-space equations are 

 

[
 ̇̂
 ̇ 
]  [

                         
  

] [
 ̂
  
]  [

   
   

] [
 
 ] 

  [      ] [
 ̂
  
] 

(2.10) 

2.3 Passive systems 

Another stability theorem based on the input-output point of view is the Passivity Theorem 

which states that the negative feedback connection of one passive and one very strictly passive 

system is L2-stable. The notation of passivity is associated with energy dissipation. A system 

represented by the operator   such that      where       and       is considered. 

Definition 1. A square system                                is very strictly 

passive (VSP) if there exist real constants          and   (that is zero assuming zero initial 

conditions) such that [42] 

 

-K 

Kr 
 ̂ 

y r + 
xi 

∫   Plant 

_ 

u 
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∫  ( ) ( )    ‖ ‖  
   ‖ ‖  

 

 

 

              
  (2.11) 

 

A VSP is often referred to as input-output strictly passive system, or an input strictly passive 

system with finite gain. The system                              is 

 input strictly passive (ISP) when Eq. (2.11 holds with          

 output strictly passive (OSP) when Eq. (2.11) holds with          

 passive when Eq. (2.11) holds with          

2.3.1 Passive linear time-invariant (LTI) systems 

A LTI system   with minimal state space representation (A,B,C,D) or with transfer matrix 

 ( ) is considered. Using the Parseval’s Theorem, [30] and [43] 

 

∫  ( ) ( )  

 

 

 ∫   
 ( )  ( )  

 

 

 
 

  
  ∫   

 (  )  (  )  

 

  

 
 

  
  ∫ [

 

 
  
 (  )  (  )  

 

 
  
 (  )  (  )]   

 

  

 
 

  
  ∫[  

 (  )  (  )  (  )    
 (  ) (  )  (  )]  

 

  

 
 

  
  ∫   

 (  )[  (  )   (  )]  (  )  

 

  

 

(2.12) 

 

An LTI system   is passive if   (  )   (  )        ; while it is ISP if   (  )  

 (  )               . 

2.3.2 Positive real and strictly positive real systems 

Definition 2. A rational transfer matrix  ( ) is positive real (PR) if all elements of  ( ) are 

analytic in  ( )   , and   ( )   ( )    in  ( )   . Equivalent to the later condition is 

that the poles on the imaginary axis are simple and have nonnegative-definite residues, and 

  (  )   (  )         with    not a pole of any element of  (  ) [30]. 
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An LTI system with a PR transfer matrix is passive. Moreover, a PR system is minimum 

phase (all zeros will be in the closed left half plane) and at least marginally stable. A transfer 

function g(s) is PR if its phase response satisfies  
 

 
     (  )  

 

 
. 

Definition 3. A stable rational transfer matrix  ( ) is strictly positive real (SPR) if  (   ) 

is PR for some    ; that is, 1
st
 all elements of  ( ) are analytic in  ( )   , 2

nd
   (  )  

 (  )        , and 3
rd

     ( )   ( )     or if Z is singular       [ 
 (  )  

 (  )]    [30]. 

An LTI system’s transfer functions  ( ) is SPR if it is Hurwitz, has a phase response that 

satisfies  
 

 
     (  )  

 

 
 , and either has a strictly positive feed through matrix (the transfer 

function is biproper), or        
   { (  )}    if there is no feed through matrix (the 

transfer function is strictly proper). 

Lemma 1. A LTI system described by 

 

 ̇                    

              
(2.13) 

 

that is controllable and observable is positive real (PR) if and only if there exist real matrices 

P=P
T
 > 0, L, and W of appropriate dimension such that             ,           

and          [30]. 

Lemma 2. A LTI system described by Eq. (2.13) that is controllable and observable is 

strictly positive real (SPR) if and only if there exist real matrices P=P
T
 > 0, L, and W of 

appropriate dimension, and     such that                 ,           and 

         [30]. 

If a system with a minimal state-space realization satisfies Lemma 1 then it is passive; while 

it is SPR if it satisfies lemma 2. If the system is strictly proper (D = 0), the SPR Lemma reduces 

to that                 ,       [43]. Lemma 2 is called the Kalman-Yakubovich-

Popov Lemma (the KYP Lemma). 
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2.3.3 Passivity Theorem  

Consider the negative feedback interconnection of the systems           and       

    in Figure 2.2. If G is passive and H is very strictly passive with finite gain then          

implies          [45]. 

 

 

Figure 2.2: Negative feedback interconnection of two systems 

 

2.4 Positive definite matrices 

A symmetric matrix P is positive definite if            . 

A symmetric matrix is positive definite if all the diagonal entries are positive, and each 

diagonal entry is greater than the sum of the absolute values of all other entries in the 

corresponding row or column [46]. 

An arbitrary symmetric matrix is positive definite if and only if each of its principal sub-

matrices has a positive determinant. This is known as Sylvester's criterion [46]. 

Theorem 1. Given two Hermitian matrices of the same dimensions      and   , then 

there exist a non-singular matrix M such that         and           (          ), 

where          are eigenvalues of   
    . 

2.4.1 Schur compliment condition  

Let P be a symmetric matrix given by  

  [
  
   

] 

           is called the Schur compliment of a in P. Then, P is positive definite if and 

only if a and S are both positive definite [47]. 

G 

H 
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e2 
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3 Dynamics Model 

The dynamics of a continuous flexible cable is modeled through nonlinear PDEs in terms of 

time and displacement. In this approach, a cable can be modeled using either beam or string 

equations. However, our simulations show that using a beam equation will not lead to accurate 

results because the natural frequencies of longitudinal vibration of the cable do not change as 

long as the boundary conditions remain unchanged (e.g. changes in tension do not lead to 

changes of natural frequencies). Existing work on cables modeled using string equations, on the 

other hand, does not consider coupled vibrations of stretchable and varying length cables. The 

derivation of the continuous equation of motion of a planar cable ab initio and the model 

validation has been time consuming and the corresponding PDEs are not readily solvable. To 

simplify the modeling, a simpler discrete model of the cables has been selected for the purpose 

of control. As mentioned in section 1.1.1.2, in this thesis, cables are modeled using the lumped 

mass method that can properly model the longitudinal and transverse dynamics behavior of 

cables [20]. In addition, compared to other numerical techniques, the lumped mass method 

requires fewer variables to define the state of each element [48]. The lumped mass method leads 

to a series of ODEs that are solvable using standard numerical integration techniques. 

3.1 Cable dynamics 

The lumped mass method models the cable as a series of lumped masses called nodes that are 

connected by viscoelastic massless elements composed of springs and dampers, as shown in 
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Figure 3.1. For developing the mathematical model of the example system, a planar reference 

frame is considered with its origin at the left boundary as illustrated in Figure 3.1.  In the model 

that will be developed in this chapter, the effect of the winches is defined by changing the 

unstretched length of the first elements of the cables, denoted as     and     [49]. As such the 

dynamics of the winches are not considered here.  

 

 

Figure 3.1: The lumped mass model of the cables 

 

The accuracy of the lumped mass approach is controlled by the choice of element size. 

Increasing the number of elements used to model a cable leads to more precise calculation of the 

cable tension and smoother curvilinear profile, but increases the solver execution time. The 

number of elements on each cable is initially set to two allowing an approximate estimation of 

the first two cable natural frequencies in simulation. Later, the number of nodes on each cable 

and the number of cables will be set to arbitrary numbers   and    that can be changed to find a 

more accurate and general model of the system. 

3.1.1 Element tension and damping  

The tension and internal damping forces of the i
th

 cable element are calculated based on their 

linear relationship with the strain and strain rate of each element. The tension in the i
th

 cable 

element due to its stiffness,   
 , acting in the tangential direction is given by  

 

  
       (3.1) 

  

where, A is its cross sectional area and E is Young's modulus. It is ensured that the element 

strain,    
      

   
, remains positive by applying sufficient pretension to the cable.    

y 

x 
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√(       )  (       )  is the stretched length of the i
th

 element and     is its unstretched 

length. The stiffness of each cable element is also defined as    
  

   
. 

The damping behaviour of cables depends on their internal structure and  is difficult to model 

[50]. In this thesis internal dissipation is simply modeled using a viscous damping term. The 

internal damping force,   
  , generated in the i

th
 cable element is given by 

 

  
     

  (       ) (3.2) 

 

where,    and      are the tangential velocities of the two extreme nodes of the i
th

 cable element 

and   
  

 is the internal damping coefficient of the element. The magnitude of the damping ratio in 

a cable,  , is typically considered to be between 1% and 3% [49], where   
   

   
 

   

 √  
, and in 

this study the cable damping ratio, , is set to 1%. Although damping forces in cable systems are 

much smaller than elastic forces (cable tensions), they are included in dynamics model to prevent 

the instability that the system may experience due to numerical noise. 

3.1.2 Model assembly 

Given all the forces applied to the lumped masses, Newton’s second law for the i
th

 node is 

expressed as  

 

  
    
   

 [    
    (    )    

    (  )]  [    
     (    )    

     (  )] 

 

(3.3) 

  
    
   

 [     
    (    )    

    (  )]  [     
     (    )    

     (  )]     (3.4) 

 

where,    is the weight of the i
th

 node,         (         ) , and   is the density of the 

cable. For the node at the intersection of the two cables,    also includes the weight of the 

payload mass as shown in Figure 3.1. Here,    is the angle that i
th 

cable element makes with 

vertical axis drew from i
th

 node, as shown in the free body diagram of Figure 3.1, and   is the 

acceleration of gravity. 
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Assembling the dynamics of all cable nodes expressed in Eqs. (3.3) and (3.4), the system 

dynamics is described by a set of second order ODEs. The original ODEs are then rewritten in 

state-space form consisting of first order ODEs for displacement and velocity of each node. The 

system dynamic is then simulated by solving the ODEs using a Runge-Kutta method intended for 

initial value problems. The initial condition for the dynamics simulation is provided by the 

static/equilibrium solution that will be derived in the next section. 

3.2 Cable statics 

Setting the position of all the lumped masses to their static equilibrium ones at the beginning 

of the simulation ensures that the observed results of the dynamic simulation is only due to 

external sources. Determining the equilibrium configuration of a stiff cable can be demanding 

because even a small perturbation in a node position can lead to considerable change in the 

cable’s internal force. In order to find the cable equilibrium configuration, at first, the simulation 

was run using an arbitrary initial condition for the node positions until the transient oscillations 

decayed. This was found to be too time consuming.  

Another approach named the shooting method [51] was later chosen to find the cable 

equilibrium configuration given the position of the first cable node (r1, at winch end) and the 

position of the last node (rf, at payload end). In this process, the initial estimate for    is found 

using [49]  

 

     

   
      [

   

 
(
  
  
 
  
  
)] (3.5) 

 

where,    is the horizontal distance between the winch and the payload that is assumed as the 

initial guess for   , Figure 3.2, and    is the pretension applied to the cable. 
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Figure 3.2: The lumped mass cable model equilibrium configuration  

 

Given the applied force at the winch end of the cable (its horizontal component is equal to 

cable’s initial pretension,   , and its vertical component is equal to half of the cable’s 

weight 
 

 
  

     

 
), Newton’s second law is applied to the first cable node leading to the 

position of the next node, r2. The same procedure is performed for each node in succession. The 

horizontal force,   , remains constant along the cable, while the vertical component at i
th

 element 

is defined as 

 

   
     

 
 (

 

 
 ∑ 

   

 

)  (3.6) 

 

where      
  

   
 is the weight of the i

th
 cable element. The element angle of inclination,   , 

can now be calculated as       
  (

  

  
), as well as the force in i

th
 cable element,    

  

   (  ) 
. 

The element stretched length is then defined as 

 

   
  
   

(  
  
  
) (3.7) 

 

The position of (i+1)
th

 element is           (               ). This procedure is 

repeated until the position of the last node, rN is found. In order find the best approximation for 

the unstretched cable length, Lu, the error   ‖     ‖ is minimized using the fminsearch 

command in MATLAB. 

   x 
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3.3 Cable internal damping coefficient 

In order to specify the cable elements damping coefficient, the vertical spring-mass-damper 

system of Figure 3.3 is modeled in MATLAB. In this model, the nodes only move in vertical 

direction. The easiest way to show the effect of damping in the system is to introduce a velocity 

based term into the system equation of motion.  

 

    ̈     
   ̇        ( ) (3.8) 

 

Physically, the effect of the cable internal damping is modeled with a damper to dissipate 

energy. The equivalent cable damping coefficient is defined as 

 

   
           (3.9) 

 

where,    √
   

   
 is the system natural frequency. Using the lumped mass method and 

considering the whole cable as one element with two end nodes, the cable mass is accumulated 

on the two extreme nodes, so              
 

 
     is the equivalent mass of the bottom 

node as shown in Figure 3.3, and     
  

  
, where    the unstretched length of the cable. 

 

 

Figure 3.3: a vertical spring-mass-damper system 
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By discretizing the cable into N-1 element with length     
  

   
 as shown in Figure 3.3, the 

stiffness of each cable element becomes    
  

   
    (   ). In the following analysis, it will 

be shown that the damping coefficient of each cable element can similarly be approximated as 

  
      

  (   ).  

The unique solution of Eq. (3.8) can be found for specified initial condition by assuming that 

the solution is of the form  ( )      . In this section, the vibration of a spring–mass–damper 

system subjected to an external force is considered. Introducing the external force as a unit 

impulse function  ( )   ( ) or an impulse applied at t=0, the impulse response is equivalent to 

giving the system at rest an initial velocity of 
 

   
. The transient response of the vertical spring–

mass–damper system to the initial condition where all nodes are at rest and the payload node has 

the velocity of 
 

   
 is studied.  

In order to determine the damping ratio of an under-damped system from its time domain 

response,   ( ), the concept of logarithmic decrement, denoted by   and defined by   

  
  ( )

  (    )
 is used, where Td is the period of oscillation in time domain response. The damping 

ratio in terms of the logarithmic decrement is derived as [52] 

 

  
 

√      
 (3.10) 

 

Choosing the damping coefficient of each cable element as   
      

  (   ), the transient 

response of both systems shown in Figure 3.3 is similar. For example, the payload position, 

Figure 3.4, and the cable tension, Figure 3.5, show the same logarithmic decreasing behavior for 

the system modeled with different number of elements. The cables parameters for this simulation 

are taken as follows: the Young’s modulus          , the density             , the 

diameter of the cross sectional area          , the damping ratio        and the starting 

lengths      . The payload mass is set to          which yields to a pretension of       in the 

cable. 
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Figure 3.4: Payload position in response to unit impulse 

 

 

Figure 3.5: Cable tension in response to unit impulse 

 

3.4 Modal analysis and model validation 

Damping estimation is usually more accurate in modal coordinates, so the system’s second 

order model is defined in modal coordinates. A cable-actuated system in nodal coordinates is 

represented by the second order matrix differential equation 
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  ̈    ̇        

        ̇ ̇ 
(3.11) 

 

where,   is the nodal vector of displacement . For the cable system of Figure 3.3 considering 

three moving nodes,   [             ]
 . M, K and D are the mass, stiffness, and damping 

matrices. 

 

  [

    
    
    

]   [

         
           
      

]   [

  
     

     
   

   
    

     
     

  

    
    

  

] 

 

The cable damping ratio,  , is set to 1% to define the damping matrix D. In order to get a state-

space representation from the nodal model, the state vector X is defined as the combination of 

the structural displacement,  , and velocity,  ̇,   [
 
 ̇]. Eqs. (3.11) can then be written as the 

following state-space representation. The dimension of the state-space model is twice the number 

of degrees of freedom of the system 

 

 ̇         

     

(3.12) 

 

where  ,   and   are defined as 

 

  [
  

          
]   [

 
    

]   [    ̇] 

 

The matrix of natural frequencies,  , is defined as well as the matrix of mode shapes,   

specifying the natural modes of the system. These are the eigen-pairs of the state matrix A such 

that     
     and     .    is a diagonal complex matrix whose diagonal elements are 

eigen-values of the state matrix and   is the state vector in modal representation. Assuming a 

matrix of proportional damping as        , the i
th

 and (i+1)
th

 nonzero elements of    are 

given by 
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  (   )           √     

  (       )           √     

(3.13) 

 

This way (e.g. assuming the damping ratio of the cable to be       ), the dimensionless 

modal damping ratio related to i
th

 mode found from the structural properties of the system. 

 

   
   (  (   ))

|  (   )|
 (3.14) 

 

where,   (  (   )) is the real part of   (   ). The eigen-values of the state matrix are the roots 

of a polynomial equation of degree 2n, where n is the number of degrees of freedom of the 

system, so it is not straight forward to present a closed-form expression to find the damping ratio 

of the cable,  , from the modal ones defined by            .  

 

The vertical cable-actuated system of Figure 3.3 is simulated by solving the ODEs using a 

Runge-Kutta method. The model is validated by comparing the simulated frequencies with the 

theoretical longitudinal natural frequencies of a bar fixed at one end and attached to a mass, m, at 

the other end [50].  

 

  
  

  
 
√
 

 
     (  )    

 

   
          (3.15) 

 

Here,          ,                    and        
  

  
 are the Young’s modulus, 

cross sectional area, length and density of the cable, and   
   

    
   is the payload mass. The 

first three simulated natural frequencies (  
     

   

   
   

       
   

   
   

       
   

   
) are 

within 2.8 %, 4.1 % and 16 % of the theoretical ones (   
   

   
      

   

   
      

   

   
) 

respectively as shown in Figure 3.6. In this figure, the power spectrum of the transverse 

displacement of the vertical cable-actuated system in response to unit impulse is illustrated. The 
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impulse response of the system in terms of the payload displacement was shown in Figure 3.4. It 

consists of response of three modes of natural frequencies   
 ,   

  and   
 . The impulse response 

spectrum of Figure 3.6 shows peaks at these frequencies.  

 

 

 

 

Figure 3.6: Spectrum of payload position of vertical cable-actuated system in response to unit impulse 

  

The time domain impulse response of the closed-loop system can be written as  ( )  

∑   ( )
 
   , where   ( ) is the impulse response of the i

th
 mode (e.g. the system impulse response 

is the sum of modal responses). In Figure 3.7, the impulse response of modes 1, 2 and 3 are 

illustrated as sinusoids of frequency equal to       and    respectively. The total response of 

Figure 3.4 is the sum of these impulse responses. Defining the logarithmic decrement,  , in this 

simulation as shown in Figure 3.7, the first three modal damping ratios of the system are 

calculated using Eq. (3.10) as                                  , where the highest 

frequency modal response decays faster (e.g. the exponential decayed amplitude of i
th

 modal 

response is proportional to the modal damping   ). 

 



30 

 

 

Figure 3.7: Impulse response of the first three modes  

 

3.5 Dynamics model validation of the horizontal example system 

The horizontal cable-actuated system of Figure 1.3 is simulated by solving the corresponding 

ODEs using ode45 in MATLAB. The impulse response of the system in terms of the transverse 

vibration of the middle node on the first cable is shown in Figure 3.8.  

 

 

Figure 3.8: Transverse vibration of the middle node on the first cable in response to unite impulse 
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The model is validated by comparing the simulated frequencies of transverse vibrations of the 

first cable with the theoretical natural frequencies of a string with two fixed ends [53]. 

 

  
  

  

 
√
 

  
              (3.16) 

 

Here,          ,          
  

 
              are the Young’s modulus, mass per unit 

length and length of the cable, and        is the payload mass. A pretension of          is 

applied to the cable. The first three simulated natural frequencies associated with the transverse 

vibration of the middle node on the first cable (  
      

   

   
   

      
   

   
   

  

    
   

   
) are within 8 %, 8.3 % and 7.4 % of the theoretical ones (    

   

   
     

   

   
     

   

   
) 

respectively as shown in Figure 3.9. In this figure, the power spectrum of the transverse 

displacement of the first cable of the horizontal cable-actuated system in response to unit impulse 

is illustrated. The impulse response spectrum shows peaks at natural frequencies. 

 

 

Figure 3.9: Spectrum of transverse oscillation of the cable with 2 elements in response to unit impulse  

 

The accuracy of the lumped mass method improves by the increasing the number of 

elements. Increasing the number of elements used to model the cable from 2 elements to 10 

frequency 
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elements leads to more precise calculation of the cable natural frequencies as shown in Figure 

3.10 although increasing the solver execution time. Using 10 elements in modeling the cable, the 

simulated natural frequencies associated with the transverse vibration of the middle node on the 

first cable (  
        

   

   
   

      
   

   
   

      
   

   
) are within 0.04 %, 4.2 % and 2.7% 

of the theoretical ones (      
   

   
     

   

   
     

   

   
) respectively. 

 

 

Figure 3.10: Spectrum of transverse oscillation of the cable with 10 elements in response to unit impulse 

 

Ignoring the internal damping of the cables and the slider friction, an energy analysis is also 

performed to validate the system dynamics. The cables parameters for this simulation are taken 

as follows: the Young’s modulus E=437 MPa, the density             , the diameter of the 

cross sectional area d=6.16 mm and the starting lengths            . The payload mass is set 

to 1 kg and a pretension of 100 N in applied to the cables. The transient behavior of the example 

cable-actuated system of Figure 3.1 is studied in response to an impulse applied at the payload at 

t=0. The impulse response is equivalent to giving the system at rest an initial velocity of 
 

 ̂  
, 

where  ̂            
 

 
  (       ) with     be the unstretched length of the i

th
 cable. 

Each vibrating node has the greatest potential energy when it has the smallest kinetic energy. 

Since no work is done by the internal forces in the system, there should be no change in the total 
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amount of mechanical energy of the system. The conservation of the mechanical energy of the 

system in absence of external forces is verified by the results shown in Figure 3.11. 

 

 

Figure 3.11: The conservation of the mechanical energy of the system 

 

3.6 Linear model 

The nonlinear cable model is linearized around its equilibrium configuration in order to 

design a cable controller which will be discussed in the following chapters. Initially, the 

equilibrium configuration of each cable was assumed to be horizontal, implying that the effect of 

gravity on each node was ignored. In this linearized model only the axial motion was considered. 

The initial unstretched length is the same for all elements, so all elements have the same mass. 

The assembled linearized equation of motion of the N moving nodes was defined.  These N 

second order equations were then rewritten as a set of     first order equations using 

intermediate states representing the time derivatives of the N node positions. The transverse 

vibrations of the lumped masses were not present in this linearized system. However, the control 

design goal of this thesis is to precisely position the payload and suppress the cables longitudinal 

and transverse vibrations. In order to accomplish this goal, we found the linearized system that 
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considers cable deformations in both longitudinal and transverse directions by linearizing the 

nonlinear cable model around its true equilibrium configuration found in section 3.2 i.e. include 

the sag due to cables weight. 

The system inputs are the changes in the unstretched lengths of the cable elements closest to 

the winches,   [      ]
 . The output variable is the change in the position of the moving mass. 

The procedure of applying the control inputs will be discussed in detail in Chapter 4. The state-

space realization of the linearized system is given by Eq. (3.17) where, 

  [                            ̇      ̇      ̇      ̇      ̇ ]
 
, and each state variable, e.g.    , is 

measured from its initial value, e.g.   . 

 ̇        

     
(3.17) 
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4 Control System 

In the context of control, the objective of this thesis is to design a controller that will apply 

force through the winches to position the payload of the cable-actuated systems precisely, and at 

the same time, suppress the cable vibrations. The winch control inputs are adjusted according to 

the payload tracking error. In dynamics model of the closed-loop system, the control input 

applied by each winch is approximated based on how the cable tension changes due to the 

change in the unstretched cable length, assuming that the cable remains straight during motion. If 

a cable has the unstretched length of     and the distance between the cable’s two ends is dj, then 

a change in the cable unstretched length of     will cause a change in the cable tension of     

 

      (
   (       )

       
 
      

   
) (4.1) 

 

The system control signal is then defined by changing of the unstretched length of the first 

element of each cable,   [
  
  
]  [

   
   
]. In the example system, each cable is initially    

     , and is discretized into      elements, so the method of changing the first cable element 

length is only valid up to 
  

  
        . In this chapter a PID controller and a LQG controller 

will be designed for the example system that responds to the payload positioning error. Later in 
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this chapter, the application of passivity-based control to cable-actuated systems will be 

discussed. 

4.1 PID and LQG for control system 

In the process of designing a controller for the cable-actuated system to position the payload 

and damp the cables vibrations, a PID control algorithm is first selected because of its simplicity. 

Although it is simple to implement a PID controller to control the nonlinear system, the PID 

control performance is limited as a result of its suboptimal gains. Therefore, designing a more 

advanced controller such as LQG will be discussed later in order to improve the tracking 

performance of the system.  

4.1.1 PID control 

The PID control input of the j
th

 winch, that is located at    , is adjusted according to the 

payload positioning error related to the j
th

 cable 

 

   |      |  |        | (4.2) 

 

where,    is the actual payload position and      is its desired position. Independent control 

inputs of the two winches are able to bring the payload to its desired position since the only 

possible      for             is where        . The j
th

 PID controller is defined by 

 

          ∫        ̇  (4.3) 

 

The three gains       and    are chosen to be the same for all the cables and are tuned 

manually. In MATLAB, ode45 or ode15s is used to integrate the state-space equations. Each of 

the mentioned PID controllers adds one state variable of ∫      to the original system state 

vector. This way, the PID controller is combined with the nonlinear system in one ode routine. 

At each time-step, the unstretched lengths and the masses of the first cable elements are 



37 

 

recalculated. The unstretched length the first cable element is adjusted using        
     

where,    
 
 is the original unstretched length. 

4.1.2 LQG control 

In section 2.2, the optimal LQG problem and its solution were defined for an LTI dynamics 

system. Given the linearized motion equations of the example system, Eq. (3.17), an LQG 

controller with integral action, as shown in Figure 2.1, is designed. The designed LQG controller 

ensures that the output,       which is the payload position, tracks the reference input, 

        which is the desired payload trajectory. The LQG controller, Figure 2.1, state-space 

representation designed based on the strictly proper (D=0) and LTI system of Eq. (3.17) is given 

by 

 

[  ̇̂
 ̇ 
]  [

             
  

] [
 ̂
  
]  [

   
   

] [
 
 
] 

  [      ] [
 ̂
  
] 

(4.4) 

 

where,    is the optimal state-feedback gain, and   [    ] is the optimal Kalman filter gain. 

The design parameters of Eq. (2.9) are set to   [
           
         

] and         , where 

  =10,   =2 and  =1 are the number of states, inputs and outputs of the linearized system of 

Eq. (3.17). The parameter   can be multiplied by an arbitrary integer S that is first set equal to 

one, in order to get a faster response of the closed-loop system. This controller is applied to the 

actual nonlinear example system of Figure 3.1, which is described by a set of second order ODEs 

obtained by assembling the dynamics of all cable nodes expressed in Eqs. (3.3) and (3.4). The 

closed-loop response of the same system is analysed and compared with the closed-loop 

response of the system with PID control in the next section. 

4.2 Comparison of PID and LQG control 

In order to study the closed-loop response of the system, the desired trajectory or the 

reference input is defined with a step change of 0.1 m in the payload position at    , starting 
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from        . As shown with a brown line in Figure 4.1, the desired position of the payload is 

set to         at    . The cable parameters for this simulation are as follows: the Young’s 

modulus             , the density             , the cable diameter         , the 

damping ratio        and the starting lengths            . The payload mass is         

and the slider Coulomb friction is              . The initial configurations of the cables are 

set to their equilibrium configurations, where the payload is located at x=0.5 m. In addition, no 

initial tension is considered in the cables.  

The controllers designed using the methods in section 4.1 are evaluated using the nonlinear 

model shown in Figure 3.1, Eq. (3.3), and Eq. (3.4). Figure 4.1 shows the x-position of the 

payload, x2, and the two lumped masses in the middle of the two cables, x1 and x3 of the cable-

actuated system of Figure 3.1. Figure 4.2 shows the error in the payload position, x2. Figure 4.3 

shows the control signal, u, or the system inputs which are the changes in the unstretched length 

of the first elements of the cables,    and   . 

 

 

Figure 4.1: Longitudinal oscillations using the PID and LQG controllers 
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Figure 4.2: Error in tracking the payload using the PID and LQG controllers 

 

 

Figure 4.3: Control signals using the PID and LQG controls 

 

In Figure 4.1, Figure 4.2 and Figure 4.3 the performance of the LQG controller and the PID 

controller (              
 

   
             ) applied to the example system are 

compared. Clearly, using the LQG controller leads to smaller longitudinal oscillations of the 

lumped masses and smoother control signal. However, both controllers demonstrate a very slow 

convergence to the steady-state payload position, requiring more than       to converge.  
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Figure 4.4: Transverse oscillations using the PID controller 

 

 

Figure 4.5: Transverse oscillations using the LQG controller with cables internal damping 

 

Figure 4.4 shows the performance of the PID controller in damping the transverse vibrations 

of the cables. Figure 4.5 shows the corresponding oscillations with the LQG controller. 

Comparing Figure 4.4 with Figure 4.5 shows that the LQG controller has better performance in 

reducing the transverse vibrations of the cables. 
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We know that the friction between the braids of a cable dissipates the energy within the cable 

structure, and this is modeled in the nonlinear simulation by the internal damping forces. It is 

worth determining whether the reduction in the cables’ transverse vibration is just as a result of 

the internal damping of the system (including the cables internal damping and the slider 

Coulomb damping) or whether the designed controller also affects these oscillations. It has been 

observed that ignoring all the internal damping sources, the closed-loop system becomes 

unstable during simulation. Therefore, the slider Coulomb damping is conserved in the dynamic 

model, and in order to see the performance of the PID controller and the LQG controller in 

reducing the transverse vibration of the cables, the dynamic system is simulated with zero cable 

internal damping, as shown in Figure 4.6 and Figure 4.7. In Figure 4.6 and Figure 4.7, the 

controller and the slider Coulomb friction are the only sources of damping in the system. These 

plots confirm that without the cables internal damping the PID controller is not effective at 

damping the transverse vibrations of the cables, while the LQG controller still damps the cables 

transverse vibrations effectively. 

 

 

Figure 4.6: Transverse oscillations using the PID controller without cables internal damping 
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Figure 4.7: Transverse oscillations using the LQG controller without cables internal damping 

 

Figure 4.8 and Figure 4.9 compare the PID controller and the LQG controller in terms of 

tension in the first cable element. Clearly, using the LQG controller, the cables experience much 

smaller tension oscillations. 

 

 

Figure 4.8: Variation of tension in the first cable element using the PID controller 
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Figure 4.9: Variation of tension in the first cable element using The LQG controller 

 

4.2.1 LQG control: a smoother trajectory  

In the simulation of the previous section, the desired trajectory of the closed-loop system was 

defined with a step of 0.1 m in the payload position. This reference input induces high amplitude 

vibrations in the cables. This may cause the actuators to fail or saturate in an attempt to move the 

payload and damp the cable vibrations. Therefore, a smooth desired trajectory is defined to move 

the payload smoothly from its initial position of 0.5 m to its final desired position of 0.6 m. The 

period of this trajectory is set to T=0.2 s and the payload is assumed to be at rest in its initial and 

final position. This smooth desired trajectory is defined by 

 

 ( )          (     (
  

 
)) 

(4.5) 

 

 

The cables parameters for the simulation are as follows: the Young’s modulus          , 

the density             , the cable diameter           and the starting lengths       

     . The payload mass is set to     , the slider Coulomb friction is             and a 

pretension of       is applied to the cables. Applying the LQG controller of Eq. (4.4) to the 

actual nonlinear example system of figure Figure 3.1, the closed-loop response to the desired 
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trajectory of Eq. (4.5) is shown in Figure 4.10. The LQG controller is able to suppress the 

vibration of this cable that is more tight and stiffer than the previous test case. In the previous 

test case, a cable with small modulus of elasticity was chosen because the PID control was 

unable to produce stable results for a stiffer cable. It is shown in Figure 4.10 that the designed 

LQG controller can provide a faster response than that shown in the previous section by 

multiplying the design parameter Q of Eq. (2.9) by an integer S that is now set to      . Figure 

4.10 shows the x-position of the payload and the two nodes in the middle of the two cables in 

addition to the payload desired trajectory. Clearly defining a smoother trajectory leads to smaller 

oscillations.  

 

 

Figure 4.10: Closed-loop response to a smooth trajectory using the LQG controller 
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5 Passivity-Based Control: Observer-Based Strictly 

Positive Real Design  

 

As mentioned in Chapter 2, the Passivity Theorem states that the feedback interconnection of 

a passive system and a very strictly passive (VSP) one is input-output stable. This section and the 

following chapters deal with illustrating the passivity property of the cable-actuated systems by 

defining suitable inputs and outputs, and applying passivity-based control scheme to cable-

actuated systems. In the control design procedures, the controller is designed based on the 

linearized system of Eq. (3.17) and then the designed controller is applied to the original system.  

5.1 Control design challenges 

  In dealing with LTI systems, passivity and positive real (PR) concepts are equivalent, and 

for a system to be PR, the relative degree of its transfer function must be -1, 0 or +1. The relative 

degree of the LTI transfer function of the example system,  ( )   (    )   , exceeds +1, 

and consequently, it is not PR. The incentive to find a PR transfer function for the cable-actuated 

system is that, according to the Passivity Theorem, any finite gain very strictly passive controller 

will stabilize the closed-loop system. Unlike previously designed advanced controllers for cable-

actuated systems, this would allow the design of very simple controllers for such systems, but 

there are some issues in the process of defining a passive input-output map for the system. First, 
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in cable-actuated systems, the control actuators and the sensors measuring the position or the 

velocity of the payload are not usually collocated, while collocation usually leads to a passive 

input-output map. Second, the numbers of inputs and outputs of cable-actuated systems are not 

necessarily equal which also limits the use of the passivity-based control. In order to overcome 

these limitations, first a dynamic embedding is considered where an observer is used to construct 

a new output that realizes a passive input-output map. Next, an alternative input-output map is 

considered where the output is a scaled version of the true payload velocity and the input is a 

modified winch torque. These two techniques will be discussed in detail in this chapter. 

5.2 Observer based strictly positive real design 

The technique of designing an observer and a controller to transfer a non-square system with 

non-collocated actuators and sensors to a strictly positive real (SPR) system was introduced by 

Collado et al. [35]. They stated that any observable and stabilizable system (even an unstable 

system) can be transferred to a SPR system by introducing of an observer, constructing a new 

output based on the observer states and designing a state feed-back stabilizing controller. 

As discussed in Chapter 3, the linearized time invariant system of the example cable–actuated 

system of Figure 3.1 in state-space realization is given by 

 

 ̇        

     

(5.1) 

 

 

where,   [
  
  
] is defined by changing of the unstretched length of the first element on each 

cable of Figure 3.1 and      is the payload position. This linearized system is unstable 

because an eigenvalue pair of its state matrix lies in the open right half complex plane (RHP). 

The system has two complex conjugate poles in the RHP. The location of the poles of the 

linearized system are as follows:             ,             ,              , 

          .  
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5.2.1 Design a stabilizing controller based on an observer 

First, a full-order observer for the system of Eq. (5.1) is given by 

 

 ̇̂    ̂      (    ̂) (5.2) 

 

where,   is the observer gain matrix and  ̂ is the estimated state vector. Next, a stabilizing state 

feed-back controller based on the estimated state vector is introduced by 

 

     ̂    (5.3) 

 

where   is the input signal, thus the state-space realization of the system including the state feed-

back is rewritten as 

 

 ̇  (    )       ( ̂   ) (5.4) 

 

Introducing the state estimation error  ̃   ̂    the state-space representation of the system 

combined with the observer and the state feed-back controller is given by 

 

[
 ̇

 ̇̃
]    [

 
 ̃
]      ,       [

       
     

] ,       [
 
 
] (5.5) 

 

where, K and L are designed such that         and         are stable. Thus for all 

positive definite matrices    and   , there exists positive definite matrices    and    as the 

solution for the Lyapunov equations  

 

  
             (5.6) 

 

  
             (5.7) 
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5.2.2 Positive realness requirements 

In order to find conditions which guarantee positive realness of the modified system of Eq. 

(5.5), its corresponding Lyapunov equation is written as 

 

  
             (5.8) 

 

Collado et al. [35] defined the matrix    [
    
     

] containing the design parameter   to be 

determined such that the modified system becomes SPR. Therefore, 

 

   [
         

    
        

] (5.9) 

 

For the modified system to be stable    and    should be positive definite:      and     . 

Using the Schur complement positive definite condition stated in section 2.4.1,      if and 

only if  

 

      (which is satisfied because of the positive definiteness of   ) and  

          which is satisfied if               (  ) 

 

where,           are the eigenvalues of   
     based on the theorem stated in section 2.4 

[35]. Similarly,      if and only if  

 

      (which is satisfied because of the positive definiteness of   ) and  

     (    
     )  

  (       )     

which is satisfied if               (  ) 

 

where,           are the eigenvalues of   
  (    

     )  
  (       ) [35]. 

Therefore, the modified system is stable if and only if 

 

     (     ) (5.10) 
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5.2.2.1 Definition of the new output 

Given the stable matrix    and defining the new output that depends on the observer states as 

 

    [
 
 ̃
] (5.11) 

 

the modified system of Figure 5.1 defined by the following state-space representation is SPR 

from   to the new output  .  

 

[
 ̇

 ̇̃
]    [

 
 ̃
]      

    [
 
 ̃
]    

   [
 
 ̃
]       ̂    ̂ 

(5.12) 

 

where,   is a dynamic embedded to the system which is combined with the observer and the 

state-feed-back. 

 

 

Figure 5.1: The modified SPR system: the observer state feedback controller and the dynamic embedding 

 

As mentioned in Chapter 2, based on the KYP lemma, the transfer matrix of the modified 

LTI system,   ( )    (     )
    , where    is stable, (     ) is stabilizable and 

(     ) is observable is SPR if and only if there exist positive definite symmetric matrices P 

and Q such that first,        
        and second,   

      . The first condition is 

satisfied for      (     ) and the second condition is satisfied by using the dynamic 

embedding   which defined the new output   as defined in Eq (5.12). 

Observer M System 
u Y  ̂   

-K 

  
+ 
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5.2.3 Checking if the modified system is SPR 

Given the modified LTI system   ( )    (     )
    , the positive realness of the 

system can be checked in the frequency domain. A square system from  ( ) to  ( ) is SPR if 

∫   ( ) ( )  
 

 
   which is equivalent to   

 (  )    (  )          in the frequency 

domain as shown in section 2.3.1 using Parseval’s theorem. The minimum Hermitian part of 

  ( ) is defined as 

 

 

 
    [  

 (  )    (  )] (5.13) 

 

and its maximum singular value is defined as 

 

 ̅[  (  )]  √    [  
 (  )  (  )] (5.14) 

 

where,      and       represent the minimum and maximum eigenvalues respectively. The 

minimum Hermitian part and the maximum singular value of the original system are shown in 

Figure 5.2 and those of the modified system are shown in Figure 5.3.  

 

 

Figure 5.2: The maximum singular value and the minimum Hermitian part of the original systems 
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Figure 5.3: The maximum singular value and the minimum Hermitian part of the modified systems 

 

Figure 5.2 shows the minimum Hermitian part and the maximum singular value of the 

original system. The minimum Hermitian part of the original system is negative, and 

consequently it is not even PR. The modified system consisting of the linearized system with the 

observer, state-feedback controller and the dynamic embedding is SPR over all frequencies since 

its minimum Hermitian part is positive, as shown in Figure 5.3.  

5.3 Steady-state tracking 

Up to now, it has been shown that the Kalman-Yakubovich-Popov (KYP) lemma holds for 

the system connected with an observer state-feedback and introducing a new output. Although by 

using this observer state-feedback technique the original system was transferred to a SPR system, 

it does not satisfy the steady-state tracking requirements for a desired reference trajectory. The 

observer state-feedback design procedure will be extended to address the steady-state tracking 

problem by including integral action on the tracking error. A schematic of the observer state-

feedback controller augmented with integral action is shown in Figure 5.4. Adding an integral 

term to the control law guarantees obtaining a system that yields zero steady-state tracking error 

for a desired trajectory input r as long as the closed-loop stability is maintained.  
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Figure 5.4: Schematic of the observer state-feedback controller augmented with an integral action 

 

5.3.1 Positive realness of the modified system   

Introducing the new state    ∫(   )  , the state-space representation of the modified 

system of Figure 5.4 including an integral term is given by 

 

[

 ̇

 ̇̃
 ̇ 

]   ̃ [
 
 ̃
  
]   ̃ [

 
 
]   ̃  [

             
      
   

]   ̃  [
 
 
 

 
 
  
]  (5.15) 

 

where  ̃  [
 
 
] is the input vector and  ̃  [    ] includes the state-feedback gain    and 

the gain    corresponding to the integral action. In order to find conditions which guarantee 

positive realness of the system with the state-space representation of Eq. (5.15), its 

corresponding Lyapunov equation is written as 

 

 ̃ 
  ̃   ̃  ̃    ̃  (5.16) 

 

where,  ̃  is chosen as  

 

 ̃  [
     

   ̃   
   

] (5.17) 

 

which contains the design parameter  ̃ to be determined such that the modified system with 

integral action becomes SPR from  ̃ to  ̃. Therefore, 
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 ̃  

System 
 

r u Y  ̂ 

 ̃ 

 ̃ ∫  
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 ̃  [

                
     (   )

   
    (   )

          ̃   (   )
           (   )

(   )
   (   )

    

]   (5.18) 

 

For the modified system to be stable  ̃  and  ̃  should be positive definite:  ̃    and  ̃   . 

Using Sylvester's criterion positive definite condition stated in section 2.4.1,      if and only 

if  

 

      which is satisfied because of the positive definiteness of    and  

          which is satisfied if  ̃   ̃               (  ) 

 

where,           are the eigenvalues of   
     based on the theorem stated in section 2.4. 

Similarly,      if and only if  

 

      which is satisfied because of the positive definiteness of    and  

 [(   )
   ]

 [(              
   )  (  ̃   (   )

         )       

  
    (   )

        ]    

which is satisfied if  ̃   ̃           ( ̃ ) and 

   [  ̃   (   )
         ]  [   

    (   )
        ]

    

Which is satisfied if  ̃   ̃           (  ̃) 

 

  ̃         are the eigenvalues of   
    

  {    [(   )
     ]    

 (         )} 

and  ̃         are the eigenvalues of   
  {      [ (   )

    
          

 ]}. 

Therefore, the modified system with integral action is stable if and only if 

 

   ( ̃   ̃ )   ̃     ( ̃ ) (5.19) 

 

As a result, the first condition of the KYP lemma is satisfied. The second condition is satisfied 

by using the dynamic embedding  ̃ which defined the new output  ̃ 
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 ̃   ̃ [
 
 ̃
  
]   ̃ 

  ̃ [
 
 ̃
  
]  [

 
 
 

 
 
  
]

 

[
     

   ̃   
   

]  [
 
  
]   (5.20) 

 

Given the new square LTI system  ̃ ( )   ̃ (    ̃ )
  
 ̃  from  ̃ to  ̃, the positive realness 

of the system is being checked. The system is SPR if  ̃ 
 (  )   ̃ (  )          in the 

frequency domain and the minimum Hermitian part of  ̃ ( ) is defined as  

 

 
    [ ̃ 

 (  )   ̃ (  )]. The minimum Hermitian part and the maximum singular value of the 

new system of Figure 5.4 is shown in Figure 5.5. The new system consisting of the linearized 

system with the observer, state-feedback controller, the dynamic embedding and the integral 

action is SPR over all frequencies since its minimum Hermitian part is positive. The minimum 

Hermitian part and the maximum singular value shown in Figure 5.5 illustrate that the integrator 

is dominating in this design. 

 

 

Figure 5.5: The maximum singular value and the minimum Hermitian part of the new systems  
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5.4 Passivity-based controlled response of the system 

Applying the observer state-feedback controller of Figure 5.4 augmented with an integral 

action to the original nonlinear example system of Figure 3.1, Eq. (3.3), and Eq. (3.4), the 

closed-loop response to the desired trajectory of (5.21) is shown in Figure 5.6.  The period of this 

trajectory is set to T=0.2 s and the payload is assumed to be at rest in its initial and final position. 

 

 ( )          (     (
  

 
)) 

(5.21) 

 

 

The cables parameters for this simulation are as follows: the Young’s modulus          , 

the density             , the cable diameter           and the starting lengths       

     . The payload mass is set to     , the slider Coulomb friction is             and a 

pretension of       is applied to the cables.  

Figure 5.6 shows the x-position of the payload, xpayload, and the two lumped masses in the 

middle of the two cables, x1 and x3 of the cable-actuated system of Figure 1.3 in addition to the 

desired trajectory. Figure 5.6 shows reasonably good tracking and suppression of the longitudinal 

vibrations using the observer state-feedback controller. Figure 5.7 demonstrates the control 

signal, u, or the system inputs which are the changes in the unstretched length of the first 

elements of the cables. Using the observer state-feedback controller leads to a smooth control 

signal as shown in Figure 5.7. 

 

Figure 5.6: Longitudinal oscillations using the observer state-feedback controller 
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Figure 5.7: Control signal using the observer state-feedback controller 

 

Figure 5.8 shows the performance of the observer state-feedback controller in damping the 

transverse vibrations of the node in the middle of the first cable. This figure shows that the 

observer state-feedback controller is effective in damping the transverse oscillations of the 

cables. Figure 5.9 shows the variation in the tension of the first cable element using the observer 

state-feedback controller. 

 

 

Figure 5.8: Transverse oscillations using the observer state-feedback controller 
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Figure 5.9: Variation in the tension of the first cable element using the observer state-feedback controller 
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6 Passive System Design: Introducing µ-tip Rate 

Motivated by the robust nature of passivity-based control, its application to cable-actuated 

systems is investigated in this thesis. In addition, the Passivity Theorem has the potential to lead 

to a very simple controller design which can make the implementation of the controller simple 

and practical. As discussed in section 5.1, cable-actuated systems are usually non-square with 

non-collocated actuators and sensors, which generally limits the use of passivity-based control. 

In order to overcome these limitations, a dynamic embedding was considered in Chapter 5 where 

an observer state-feedback was used to construct a new output that realizes a passive input-

output map. Later in Chapter 5, an integral term was added to the control law to guarantee a zero 

steady-state tracking error. Although a passive input-output map was found for the cable-

actuated system by using this observer-based technique, the controller design procedure and thus 

its implementation became complicated for a steady-state tracking problem. We now consider an 

alternative passification technique which leads to the design of a more practical and simpler 

controller. In this alternative technique, an input-output map is considered where the output is a 

scaled version of the true payload velocity and the input is a modified winch torque. An 

overview of this technique, along with simulation results, will be presented in this chapter. 
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6.1 Dynamics model in relative coordinates 

In order to derive the dynamic equations of motion of the example system, the generalized 

coordinate vector   [
 
  
] is considered that consists of rigid body motion coordinate vector 

  [
   
   
] and elastic coordinate vector    [

   
   
], where     and     are the vectors of 

relative coordinates on each cable. Considering three lumped masses on the first cable connected 

by springs      
  

     
 and dashpots       

  , i=1,2 as shown in Figure 6.1, relative coordinates 

                will form    . The displacements of the lumped masses on the first cable with 

respect to their equilibrium position in absolute coordinates (with respect to inertial frame) are 

labeled as x1, x2, x3. The first relative coordinate             gives the position of the first 

mass relative to inertial frame. The two others            , represent the relative displacement 

of the i
th

 mass on the first cable with respect to the previous one. That is,                 

               

 

 

Figure 6.1: Lumped-mass model of the cables, payload and winches     

 

Using relative coordinates the potential energy, PE, and the kinetic energy, KE, of the cable 

are given as 
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The virtual work of nonconservative forces is also given as 

 

   
  
 
       

   ̇          
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(6.3) 

 

 

The nonconservative forces are due to internal damping of cable elements,     ̇          , and 

the torque applied to the first winch,   . r represents the winch radius. Substituting into 

Lagrange’s equations  
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(6.4) 

 

 

where, the Lagrangian function is defined as        . The equation of motion of the first 

cable is formulated as  
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(6.5) 

 

 

which can be rewritten in the form  

 

   ̈      ̇            (6.6) 

 

6.1.1 Incorporating winch dynamics  

The equation of motion governing the dynamics of the first winch is 
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(6.7) 

 

 

where   and   are the moment of inertia and the radius of the winch.  Incorporating the winch 

dynamics to the dynamics of the cable,   ,    and    in Eq. (6.5) are replaced by 
 

  
 

 

 
       , 

 

 
  (           ) and 

 

 
        

 

 
    respectively. 

 

  
 is the equivalent mass of the 

winch added to the mass of the first node of the cable and     is the payload mass which is 

distributed on the last lumped masses of the two cables. Similarly, the equation of motion 

regarding the dynamics of the second cable is derived. Before the cable equations can be 

assembled, it is necessary to transform the cable matrices and vectors derived in local coordinate 

systems (xy) so that all the cable equations are referred to the inertial coordinate systems (XY) 

that is shown in Figure 6.1.  

The next step is to construct the overall system equations of motion by assembling the cables 

matrices and vectors found in inertial coordinate system XY. In the assembly procedure, the value 

of the unknown variables is the same for all cables joining at nodes where cables are connected. 

The nodal stiffness, mass, damping and load of each of the cables sharing the node are added to 

get the net amount at that node. The boundary conditions must also be applied before solving for 

q. It is known that the distance between the two winches,     , is constant, where N is the 

number of nodes on each cable chosen to be three in Figure 6.1. The payload position,   , is 

written down using the relative coordinates of each cable and then is set equal in order to find the 

appropriate kinematic constraint. Given N=3, the positions of the lumped masses of the second 

cable in absolute coordinates are labeled as x4, x5, x3 and in relative coordinates are labeled as 

                                 , all written in inertial coordinate system. Using 

the relative coordinates of the first cable 
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(6.8) 

 

 

Using the relative coordinates of the second cable 
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(6.9) 

 

 

Subtracting this equation from Eq. (6.8) gives    ∑      
 
    ∑      

 
              

∑     
 
    ∑     

 
   , where    represents the distance between the two winches that is constant. 

Taking the derivative of this equation, the kinematic constraint is derived as  

 

 ̇     ̇        [             ]  [       ] (6.10) 

 

where,   [                        ] ,    is the Jacobian matrix,     
   

   
,     

   

   
, 

    [
   

   

   

   
] and     [

   

   

   

   
]. 

 

Using relative coordinates, the motion equation for example system of Figure 6.1 finally looks 

like  

 

  ̈    ̇     [   ]     
   (6.11) 

 

subject to constraint of Eq. (6.10), where, M, D and K are the mass, damping and stiffness 

matrices respectively. These positive definite matrices are partitioned as 

 

  [
      

      
]    [

  
    

]         [
  
    

] 

 

  is the Lagrange multiplier,   is the winch torque vector and    is the Jacobian matrix from 

system kinematic constraint of (6.10). 

6.1.2 Forward dynamics 

In order to solve the motion Eq. (6.11) for  ̈, a new variable   and a matrix   are introduced 

such that        which satisfies the constraint of Eq. (6.10).  
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Given   [
  
  
], 

 

  [
[
 
 ̃  

] [
    
 ̃  

]

        

] 

(6.13) 

 

where  ̃     and  ̃   [    ] are found from the equation 

 

 ̇     ̃   ̇     ̃  [ ̇      ̇      ̇      ̇   ]
 
 (6.14) 

 

Rewriting Eq. (6.11) in terms of the new variable   yields 

  

    ̈      ̇        
 [   ]   (6.15) 

 

where,      
    [

            

            
],      

    and      
   . 

 

6.1.3  Modal analysis and dynamic verification  

Introducing the state vector [
 
 ̇
], the state-space representation of the example system is 

formulated as 

  

[
 ̇
 ̇̈
]  [

  
    

         
     

] [
 
 ̇
]  [

 
   

    [   ] 
]   

(6.16) 

  

The system is simulated by solving the above ODE using a Runge-Kutta method intended for 

initial value problems. The dynamics of the system is then validated by modal analysis and 
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checking the energy conservation of the system. The corresponding eigen-value problem of Eq. 

(6.15) is written as  

 

   
                           (6.17) 

 

where,    is total number of lumped masses that is the degrees of freedom of the system 

(chosen to be five in Figure 6.1) and    is the i
th

 natural frequency of the system.        is the 

i
th

 mode shape corresponding to   . For simplicity, let us consider the simplest case where 

    . In this case, the cables parameters for the simulation are as follows: the Young’s 

modulus          , the density             , the cable diameter           and the 

starting lengths            . The payload mass and the winches inertia are temporarily set 

to zero. The mode shapes are    [    ] ,    [                   ]  

and    [                   ]  as shown in Figure 6.2. For each mode the mass 

displacements are oscillatory and have the same frequency. 

 

 

Figure 6.2: Modes of the example system 

 

The mode shapes of this simple system composed of three masses 
 

 
    ,   (     ) and 

 

 
     are reasonable, verifying the accuracy of the dynamic model.  

The dynamics model is also validated by performing an energy analysis while ignoring the 

internal damping of the cables and the slider friction for the system with the same cables 

parameters. The payload mass in this simulation is set to      and a pretension of       is 

applied to the cables. The winches moment of inertia and radius are set to             and 

      . The transient behavior of the example cable-actuated system of Figure 6.1 is studied in 
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response to an initial offset of       in the payload position. Since no work is done by the 

external forces on the system, there should be no change in the total amount of mechanical 

energy of the system. The conservation of the mechanical energy of the system in absence of 

external forces is verified by the results shown in Figure 6.3. 

 

 

Figure 6.3: The kinetic, potential and mechanical energy of the system in absence of damping forces 

 

6.2 Alternative input-output map 

The motion control problem of a closed-loop and flexible multibody system manipulating a 

large payload was considered by Damaren [38]. He constructed a new system output, called 

      rate, that depends on the true payload position and the joint motions of the system. He 

also introduced an alternative input as a combination of the joint torques and illustrated the 

passivity property of the system from this alternative input to the       rate. The structural 

properties and the motion equations of the flexible multibody system modeled and controlled by 

Damaren are similar to those of a typical cable-actuated system. It therefore seems appropriate to 

use his idea to find an alternative input-output map for the cable-actuated system that is passive 
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and apply the passivity-based control to the system for the purpose of the steady-state tracking of 

the payload and the vibration suppression of the cables. 

 

       rate 

The payload position of the cable-actuated system, shown in Figure 6.1 can be formulated by 

forward kinematic maps of the two cables as 

 

    (      )          (6.18) 

 

This equation is similar to Eq. (6.8) and Eq. (6.9), where, for simplicity the payload position    

is called  . In Figure 6.1, the number of nodes on each cable,  , is set to three. The payload 

velocity is then defined as 

 

 ̇     (      ) ̇     (      ) ̇             (6.19) 

 

where,             are the Jacobian matrices. A more general output known as       rate is 

defined as a scaled version of the true payload velocity.  

 

 ̇  ∑  [    ̇       ̇  ]

 

   

  ̇  (   )[      ̇         ̇  ]

   ̇  (   )[      ̇        ̇ ] 

(6.20) 

 

where, 0<C1<1 and C2=1-C1 are called the load sharing parameters. It is obvious that  ̇  with 

    captures the velocity of the payload and with     it captures an output that only 

involves the winches motion. 

  

 Alternative control input,  ̂ 

The input vector   consisting of the two input torques applied to the cables through the two 

winched (located at nodes one and four in Figure 6.1) is determined as 
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  [          ]
  ̂ (6.21) 

 

where,  ̂ is the alternative control input. The same load sharing parameters that are used in 

forming the       rate are used here for distributing the required torque between the two 

winches. 

6.2.1 Positive realness analysis 

The state-space representation of the example system follows 

 

 ̇             ̂ (6.22) 
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where,   [
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],      [
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    ] with   being the winch radius. 

The dynamics of the cable-actuated system relating   ̂ to  ̇  can be described by  

   

 ̇   ( ) ̂       (       )
  
     

(6.24) 

 

This system is passive if ∫  ̇  ̂
 

 
    ,     . According to the definition of a passive system 

stated in section 2.3, a passive system is Hurwitz and has a phase response that satisfies      

    (  )     ,   . In a Nyquist diagram, the definition states that  (  ) is in the closed half 

plane   ( )    for a passive system [30]. In what follows, the range of   leading to passivity of 

the system will be found numerically by evaluating the frequency response of the system of Eq. 

(6.24). It will be also shown that this range becomes larger as the payload becomes heavier. The 

cable parameters for this simulation are as follows: the Young’s modulus          , the 

density             , the cable diameter           and the starting lengths       

     . A pretension of       is applied to the cables and the winches moment of inertia and 

radius are set to             and        respectively.  
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Given the payload mass to be     , the Bode diagram of the transfer function relating   ̂ to  ̇  

is shown in Figure 6.4. The system is passive for        . It is indicated by the phase 

response of   (  ) being bounded by      in Figure 6.4 a) for         . The phase response 

of the system for        which is over its critical value is also shown in Figure 6.4 b) which is 

not bounded by      indicating that the system is no longer passive.  

 

  

a)          b)        

  Figure 6.4: Bode diagram: mpayload=1 kg  

 

The Nyquist diagram of the cable-actuated system of Eq. (6.24) is shown in Figure 6.5. In 

Figure 6.5 a),          which is in the range leading to passivity of the system since the 

Nyquist diagram of  (  ) is in the closed half plane   ( )   . The Nyquist diagram of the 

system with        moves to the left half plane that indicates the violation of the passivity 

property of the system as shown in Figure 6.5 b). 

 

  

a)          b)        

Figure 6.5: Nyquist diagram: mpayload=1 kg 
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In the previous test case, the payload mass of      was chosen and the range of   leading to 

passivity property of the system was found to be         . In order to show that for a larger 

payload the passivity property of the system is achieved for a larger range of  , another test case 

is considered. In this case, a cable actuated system with the same cable properties and the same 

winches is modeled where the payload mass is set to      . Figure 6.6 a) shows that shows that 

by increasing the payload mass to      , the phase response of  (  ) is bounded by      up to 

        . Whereas, the phase response falls under      for a larger   as it is shown in Figure 

6.6 b) for       .  

  

a)          b)        

  Figure 6.6: Bode diagram: mpayload=10 kg  

 

The Nyquist diagram of the cable-actuated system with a payload mass of       is shown in 

Figure 6.7. In Figure 6.7 a) ,the Nyquist diagram is in the closed half plane   ( )    for 

        , indicating the passivity property of the system. For       , the Nyquist diagram is 

no longer in the closed half plane as shown in Figure 6.7 b).  
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a)          b)        

Figure 6.7: Nyquist diagram: mpayload=10 kg 

 

In conclusion, by increasing the payload mass from      to      , the range of   leading to 

passivity property of the system is increased from          to         . 

6.3 Controller design 

In the context of control, the objective of this thesis is to design a passivity-based controller 

that will apply torques through the winches to have the cable-actuated system payload track a 

prescribed desired trajectory precisely, and at the same time, suppress the cable vibrations. From 

the Passivity Theorem, it is guaranteed that any controller that is strictly passive with finite gain, 

such as a simple derivative controller, will stabilize the system. The winch control inputs are 

adjusted according to the payload tracking error. The desired payload trajectory restricts the 

payload to move smoothly from its initial position of 0.5 m to its finial desired position of 0.6 m. 

The period of this trajectory is set to T=0.2 s and the payload is assumed to be at rest in its initial 

and final position. This smooth desired trajectory is defined by   ,  ̇  and  ̈  
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 ̈ ( )      (
 

 
)
 

   (
  

 
) (6.27) 

 

Given this desired trajectory, it is chosen to design a feedforward control in conjunction with 

feedback control to get good payload tracking. The objective of feedforward control is to cancel 

out some parts of the system dynamics while the passivity property is preserved in the error 

dynamics. Using the generalized coordinates [
 
  
], the motion equation of the cable-actuated 

system of Figure 6.1 is rewritten in order to establish feedforward and feedback elements of the 

controller.  

 

    ̈     ̇   ̂ (6.28) 

 

 ̂   ̈      ̇   [          ]
  ̂ (6.29) 

   

where,  

 

       
           

   (6.30) 

 

 ̂                
       

         (6.31) 

 

    is equal to the moment of inertia of the winch,  , and    ̇   ̇   ̇  
 

 

 ( ̇     ̇)

  
 is zero for 

the cable-actuated system of Figure 6.1. A similar set of equations for a flexible system with 

closed-loop is derived by Damaren [38].  Eq. (6.28) is the rigid-body motion equation and Eq. 

(6.29) is the elastic motion equation.  

Given the desired trajectory   , the desired form of   is approximated by    and the tracking 

errors are  

 

 ̃       (6.32) 

 

 ̃         (6.33) 
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A filtered error    is introduced as [38] 

 

     ̇̃    ̃  (6.34) 

 

where,   (   
    

 )   is positive definite. A virtual reference trajectory and its corresponding 

error are now proposed by  

 

 ̇   ̇    ̃  (6.35) 

 

 ̇̃   ̇   ̇   ̇̃    ̃  (6.36) 

 

The feedforward element of the controller is defined by 

 

    ̈   ̂   (6.37) 

 

Damaren [38] proved the passivity of the system from  ̂   ̂  to    by considering the function  

 

  
 

 
 ̇̃ 
      ̇̃  

 

 
(   )[ ̇̃ 

  ̂   ̇̃   ̃ 
     ̃ ] (6.38) 

 

where,  ̃        . He showed that the derivative of   gives 

 ̇    
 ( ̂   ̂ ) (6.39) 

 

Integration of this equation shows the passivity property of the system from  ̂   ̂  to   . The 

procedure of proving the passivity property of the cable actuated system is similar to this. Using 

the passivity theorem, the stabilization of the passified cable-actuated system is guaranteed with 

a feedback strictly passive controller. Selecting a simple PD controller as feedback with the gains 

   and   , we get 
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 ̂   ̂    ( ̇̃    ̃ )     ̃  (6.40) 

 

where,     ̇̃    ̃ . The final form of the control law follows from Eq. (6.21), Eq. (6.37) and 

Eq. (6.40) 

 

  [          ]
 [   ( ̈    ̇̃ )    ( ̇̃    ̃ )     ̃ ] (6.41) 

 

which is simple to design and implement. 

6.4 Analyzing the controlled response 

The control law of Eq. (6.41) is applied to the cable actuated system defined by Eq. (6.22) 

and Eq. (6.23) and the closed-loop response to a prescribed payload trajectory is discussed here. 

The closed-loop response of the system is compared applying the passivity-based controller 

designed in Chapter 5 by introducing an observer with the one designed in this Chapter by 

introducing   -tip rate. The cables parameters for this simulation are as follows: the Young’s 

modulus          , the density             , the cable diameter           and the 

starting lengths            . A pretension of       is applied to the cables and the winches 

moment of inertia and radius are set to             and        respectively. The payload mass 

is      and the payload desired trajectory is defined by Eq. (6.25), Eq. (6.26) and Eq. (6.27). 

The design parameters are given as                     and          . Figure 6.8 

a) shows the position of the payload and the prescribed trajectory using the  -tip rate technique. 

Figure 6.8 b) shows the payload position of the same system and the same the prescribed 

trajectory while using the observer-based technique of Chapter 5. The simulations show 

reasonably good payload tracking in both case, while the  -tip rate technique seems to be more 

effective in vibration suppression. 
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a)  -tip rate method b) Observer-based method 

Figure 6.8: Payload tracking and longitudinal oscillation using different passification techniques  

 

Figure 6.9 a) and Figure 6.9 b) compares the  -tip rate technique and the observer-based 

technique in terms of tension in the first cable element. It is clear that by using the  -tip rate 

technique, the variation of tension in the first cable element damps out more quickly. 

 

 
 

a)  -tip rate method b) Observer-based method 

Figure 6.9: Variation of tension in the first cable element using different passification techniques 

 

Therefore, the controller designed based on the µ-tip rate technique is more effective in vibration 

suppression compared to the controller designed based on the observer-based technique. 

Figure 6.10 a) and Figure 6.10 b) compares the  -tip rate technique and the observer-based 

technique in terms of control signals. In  -tip rate technique, the control signals are the input 

torques applied through the winches. In observer-based technique, the control signals are the 

changes in the unstretched length of the first elements on each cable. Therefore, these figures are   

plotted in different units.  
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a)  -tip rate method b) Observer-based method 

Figure 6.10: Control signals using different passification techniques 
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7 Conclusion 

The focus of this thesis is the dynamics modeling and control of cable-actuated-systems 

consisting of a payload and several actuated cables. The objective was to design a stabilizing 

controller that positions the payload precisely, while suppressing the cable vibrations. In this 

thesis, we modeled the cables using the lumped mass method that properly modeled the 

longitudinal and transverse dynamics behavior of cables. In the process of designing a controller, 

PID and LQG control algorithms were first used. Although it was simple to implement the PID 

controller, its performance was limited as a result of its suboptimal gains. Using the LQG 

controller increased the performance in payload positioning and vibration suppression, but its 

implementation procedure was complicated, and there was no guarantee of robustness. The 

robust nature of the passivity-based control and the fact that it has the potential to lead to a 

simple controller design motivated us to investigate its application to our systems. Cable-

actuated systems are usually non-square with non-collocated actuators and sensors, which limits 

the use of passivity-based control. In order to overcome these limitations, we first considered a 

dynamic embedding where an observer state-feedback was used to construct a new output that 

realizes a passive input-output map. Later, we considered an alternative passification technique, 

called  -tip rate. In this technique, an input-output map is considered where the output is a scaled 

version of the true payload velocity and the input is a combination of the winch torques.   

We found the dynamics model of the system by discretizing the cables into a series of 

lumped masses connected by viscoelastic massless elements. We performed several simulations 
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to determine the precision and the reliability of the dynamics model. Considering two elements 

on each cable, the first three simulated natural frequencies associated with the transverse 

vibration of the first cable were within    ,       and       of the theoretical ones. The 

accuracy of the dynamics model was shown to be improved by increasing the number of 

elements. Using ten elements on each cable, the simulated natural frequencies associated with 

the transverse vibration of the first cable were within       ,       and       of the theoretical 

ones. Ignoring the internal damping of the system, an energy analysis verified the conservation 

of the mechanical energy of the system in absence of external forces. These results create an 

adequate level of confidence that the model is capable of predicting realistic behavior of the 

cable-actuated system. 

Designing the PID and LQG controllers, a series of closed-loop simulation were performed 

by actuating the winches according the payload position error feedback. The control input 

applied by each winch was approximated by the change in the unstretched length of the first 

cable element. Comparing the performance of the LQG controller and the PID controller applied 

to the same example system illustrated that the LQG controller leads to smaller oscillations of 

the cables and smoother control signal. In addition, the tension oscillations were much smaller 

when using the LQG controller. The PID controller was able to stabilize the system in      , 

when the desired trajectory was defined with a step of 0.1 m in the payload position. The LQG 

controller has the potential to stabilize the system more quickly. When the desired trajectory was 

formulated as         (     (
  

   
)) which is slower compared to the step input, the LQG 

controller stabilize the system in        , with good tracking performance. 

The Passivity Theorem states that the negative feedback interconnection of a passive system 

and a very strictly passive system is input-output stable. In order to realize a passive input-output 

map for the cable actuated system, we first considered an observer state-feedback in series with a 

dynamic embedding. The proposed observer-based passification technique applied to the 

unstable linearized system does not require the system to have relative degree   ,   or   . The 

original system has non-square transfer function with two inputs and one output. Given the 

modified LTI system, we verified the positive realness of the system in the frequency domain. 

The modified design consisting of the linearized system with the observer, state-feedback 

controller and the dynamic embedding had positive minimum Hermitian part over all 
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frequencies, verifying that it has SPR properties. Later an integral term was added to the control 

law guaranteeing zero steady-state tracking error. We revised the positive realness condition of 

the system in order to properly satisfy the requirements of the KYP lemma. The new system 

consisting of the linearized system with the observer, state-feedback controller, dynamic 

embedding and integral action was also shown to be SPR with positive minimum Hermitian part 

over all frequencies. The controller designed based on the observer-based technique stabilized 

the system in         with good tracking performance.   

Although a passive input-output map was found for the cable-actuated system by using the 

observer-based technique, we found the controller design procedure and thus its implementation 

to be complicated for a steady-state tracking problem. Therefore, as an alternative, we considered 

 -tip rate passification technique which led to a more practical and simpler controller design. 

After incorporating the dynamics of the winches, we defined a new output, called       rate, as 

a scaled version of the true payload velocity. We found the range of the design parameter   

leading to passivity of the system numerically from the frequency response of the system. The 

system passivity property was shown to be dependent on the payload mass, and for heavier 

payloads the modified system was passive for a larger range of  . Given the payload mass to be 

    , the system was shown to be passive for         , while for a       payload mass, 

this range increased to         . Both observer-based and µ-tip technique led to design 

controllers capable of stabilizing the system and bring the payload to its desired position in 

       , while, the controller designed based on the µ-tip rate technique was more effective in 

vibration suppression of the cables. The controller designed based on  -tip rate technique was 

able to decrease the variations of tension in the cable to     of its final value in        , while it 

took        for the controller designed based on the observer-based technique to accomplish the 

same task. Consequently, compared to the observer-based passification technique, we found the 

µ-tip rate to be a more effective controller. 

 

Future work 

Future work for designing a controller for the cable-actuated system can be broken down into 

the following steps: 
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 The  -tip rate technique was applied to the linearized model of the cable-actuated system 

where we did not see the transverse vibration of the lumped masses. Effort should be 

made to apply the  -tip rate technique to a linearized model that considers cable 

deformations in both longitudinal and transverse directions. This way, one can study the 

effect of the designed controller on damping the transverse vibration of the cables. 

 The stability of the closed-loop system and the robustness of the controller with respect to 

parameter uncertainties of the system should be studied first numerically and then 

analytically. 

 In order to damp the cable vibrations, it may be necessary to extend the control procedure 

to a nonlinear case. A first approach could be to design a gain scheduled SPR controller. 

 Efforts should be made to generalize the developed control technique to be applicable to 

two or three dimensional cable actuated systems. 

 The same load sharing parameters that we used in forming the       rate were used for 

distributing the required torque between the two winches. Alternative methods of load 

sharing could be investigated, for example optimal distribution of the winch torque, while 

satisfying the desired net force on the payload. 

 Efforts should be made to validate the proposed control algorithm experimentally on a 

physical testbed. 
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